NORTHE兰ST
 SITE SOLUTIONS

Turnkey Wireless Development

Northeast Site Solutions
Denise Sabo
4 Angelas Way, Burlington CT 06013
203-435-3640
denise@northeastsitesolutions.com

February 6, 2024

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification
101 Mountain Road, Redding CT 06896
Latitude: 41.278333
Longitude: -73.442222
T-Mobile Site\#: CT11116C_L600

Dear Ms. Bachman:
T-Mobile currently maintains two (2) antenna at the 74 -foot level of the existing 80 -foot monopole located at 101 Mountain Road, Redding CT. The tower and property are owned by CL\&P d/b/a Eversource. T-Mobile intends to remove the two (2) existing antenna and replace them with two (2) new $600 / 700 / 1900 / 2100 \mathrm{MHz}$ antenna. T-Mobile also intends to replace the existing pipe mast with a new pipe $25-\mathrm{ft}$ mast attached to the 68 foot transmission tower. The new pipe mast overall height will remain the same $(80-\mathrm{ft})$. The new antennas would be installed flush mounted at the 77 -foot level of the new 80 -foot monopole. This modification includes B2, B5 hardware that is both 4 G (LTE), and 5G capable.

T-Mobile Planned Modifications:
Remove: None

Remove and Replace:
(2) APX16DWV Antenna (Remove) - (2) APXVAALL18 600/700/1900/2100 MHz Antenna (Replace)
(1) 4 " Sch. 40 Pipe Mast (Remove) - (1) 10 " Sch. 80 Pipe Mast (Replace)

Install New:
(2) Andrew ATSBTTOP- MF-4G Smart Bias Tees flush mounted

Existing to Remain:
(8) $7 / 8$ " Coax cables

Turnkey Wireless Development

This facility was originally approved by the Connecticut Siting Council on December 8, 1999 Petition No. 441.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to First Selectman Julia Pemberton and Aimee Pardee, Land Use Director, as well as the property owner and the tower owner (Eversource).

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under
R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640
Fax: 413-521-0558
Office: 4 Angelas Way, Burlington CT 06013
Email: denise@northeastsitesolutions.com

Attachments:
cc:
Julia Pemberton, First Selectman
100 Hill Road, P.O. Box 1028 Redding, CT 06875

Aimee Pardee, Land Use Director
100 Hill Road, P.O. Box 1028 Redding, CT 06875

CL\&P d/b/a Eversource Energy, as tower owner and property owner
PO BOX 270, Hartford, CT 06141

Exhibit A

Original Facility Approval

Petition No. 441
Omnipoint Communications
Staff Report
December 8, 1999
On December 6, 1999, Connecticut Siting Council (Council) member Edward S. Wilensky, and Council staff Steve Levine met Omnipoint representatives Brendan Sharkey, Chetan Dhaduk, and Brian Raggozine in Redding for inspection of an electric transmission structure. The structure is owned by Connecticut Light and Power Co. (CL\&P). Omnipoint, with the agreement of CL\&P, proposes to modify the structure for telecommunications use and is petitioning the Council for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need (Certificate) is required for the modification. Omnipoint submits that the proposed modification will not have a substantial adverse environmental effect and will reduce the need for new telecommunications towers by utilizing an existing structure.

Omnipoint proposes to place a pipe-mount with two panel antennas atop existing CL\&P structure \#3275, which is located within the CL\&P right-of-way between Route 7 and Mountain Road in Redding. The monopole-style tower is 68 feet tall. Associated equipment would be mounted on a new 7 ft . by 10 ft . fenced concrete slab poured near the base of the tower. Access to the site would be by private easement along an existing driveway that leads to near the base of the tower. Utility service would be routed underground along the driveway from an existing CL\&P distribution pole.

As proposed, Omnipoint's equipment would extend approximately 11.5 feet above the tower, bringing the total height to approximately 80 feet. The antenna structure itself would consist of 5.5 foot-high antennas with approximately 6 feet of pipe showing between the antenna bottoms and the top of the lattice structure. The pipe would be 4 inches in diameter, and the asymmetrical antenna cluster would measure between approximately 10 inches and 2 feet in width, depending on the direction of view.

The proposed antennas and associated equipment will not increase the noise levels at the existing site, under normal operating conditions, by six decibels or more. The worst case power density for the telecommunications operations at the site has been calculated to be 2.52% of the applicable standard for uncontrolled environments. Omnipoint contends that the proposed installation will not cause a substantial adverse environmental effect, and for this reason would not require a Certificate.

Exhibit B

Property Card

99 MOUNTAIN RD

Location	99 MOUNTAIN RD	Mblu	$35 / / 82 / \mathrm{C} /$
Acct\#	3582C	Owner	EVERSOURCE
Assessment	$\$ 252,000$	Appraisal	$\$ 360,000$
PID 100623	Building Count	1	

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2023	\$0	\$360,000	\$360,000
Assessment			
Valuation Year	Improvements	Land	Total
2023	\$0	\$252,000	\$252,000

Owner of Record

Owner EVERSOURCE

Co-Owner

Address

PO BOX 270
HARTFORD , CT 06141

Sale Price $\quad \$ 0$
Certificate 1
Book \& Page 0000/0000
Sale Date $\quad 10 / 01 / 2015$
Instrument 25

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Instrumen	Sale Date
EVERSOURCE	\$0	1	0000/0000	25	10/01/2015
CONN LIGHT \& POWER	\$0		0296/356X	xx	09/16/2003

Building Information

Building 1 : Section 1

Year Built:
Living Area: 0
Replacement Cost: \$0
Building Percent Good:

Replacement Cost
Less Depreciation:

Building Attributes	
Field	Description
Style	Vacant Land
Model	
Grade:	
Stories	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Heat Fuel	
Heat Type:	
AC Type:	
Total Bedrooms	
Full Bathrooms	
Half Bathrooms	
Total Xtra Fixtrs	
Total Rooms	
Bath Style:	
Kitchen Style:	
Fireplaces 2	
Cndtn	
Whirlpool Tubs	
Fin Bsmt Area	
Fin Bsmt Qual	
Bsmt Garages	
Num Park	
Fireplaces	
Fndtn Cndtn	
Basement	

Building Photo

(https://images.vgsi.com/photos/ReddingCTPhotos//default.jpg).

Building Layout

(ParcelSketch, ashx? . id=100623\&bid=20626).

Building Sub-Areas (sq ft)	Legend
No Data for Building Sub-Areas	

Extra Features

	Extra Features	Legend
	No Data for Extra Features	

Land

Land Use		Land Line Valua	ion
Use Code	435	Size (Acres)	0.00
Description	Cell Site Vac Lnd	Frontage	
Zone	R-2	Depth	
Neighborhood		Assessed Value	\$252,000
Alt Land Appr	No	Appraised Value	\$360,000
Category			

Outbuildings

	Outbuildings	Legend
	No Data for Outbuildings	

Valuation History

Appraisal						
	Valuation Year	Improvements				
2022		$\$ 0$	Land	Total		
2021		$\$ 0$	$\$ 360,000$			
2020	$\$ 0$	$\$ 360,000$	$\$ 360,000$			

Assessment					
	Valuation Year	Improvements			
2022		$\$ 0$	Land	Total	
2021		$\$ 0$	$\$ 252,000$	$\$ 252,000$	
2020	$\$ 0$	$\$ 252,000$	$\$ 252,000$		

(c) 2023 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

SITE NAME: RIDGEFIELD/ ETHAN ALLEN H SITE ID: CT11116C

101 MOUNTAIN RD. CL\&P POLE \#3275
REDDING, CT 06896

T-MOBILE RAN TEMPLATE (PROVIDED BY RFDS)
67E04B OUTDOOR

GENERAL NOTES	
 Sill Noll BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS 为 ALL DIMENSIONS, ELEVATIONS, AND OTHER REFERENCES TO EXISTING STRUCTVES, SURFACE, AND SUBSURFACE CONDITONS ARE APPROXIMATE. NO GUARANTEE IS MADE FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION SHOWN. THE CONTRACTOR SHALL VERIFY AND COORDINAE ALL DIMENSIONS, ELEVATONS AND ANGLES WITH EXISTING CONDITIONS AND WITH ARCHITECTURAL AND SITE DRAWINGS BEFORE PROCEEDING WITH ANY WORK. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON THE DRAWINGS OR IN THE WRITTEN SPECIFICATIONS. CONTRACTOR SHALL MAINTAIN A CURRENT SET OF DRAWINGS AND SPECIFICATIONS ON SIE AT ALL TIMES AND INSURE DISTRIBUTION OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEVANT PARTIES AS SOON AS THE ARE MADE AVAILABLE. ALL OLD DRAWINGS SHALL BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE BE MARKED VOID AND REMOVED FROM THE CONTRACT AREA. THE CONTRACTOR SHALL FURISH AN 'AS-BUILT' SET OF DRAWINGS TO OWNER UPON COMPLEION OF PROJECT. LOCATION OF EQUIPMENT AND WORK SUPPLIED BY OTHERS THAT IS DIAGRAMMATICALLY INDICATED ON THE DRAWINGS, SHALL BE DETERMINED BY THE CONTRACTOR. THE CONTRACTOR SHALL DEERMINE LOCATHNS AND DIMENSIONS SUBECT TO STRUCTURAL THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION PROCEURE AND SEQUENCE AND TO ENSURE THE SAFETY OF THE EXISTING STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY 	 Cau uir naix sim Conk CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVLL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITING TO THE CONSTRUCTION MANAGER FOR REVIEW. 20. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA. \qquad \qquad 24.

PROJECT INFORMATION	
Stre name:	RIogreilo/ Ethan allen H
STE D:	cril1160
Stie Aodess:	
applicant:	OONFELED, CT. 060002
CONTACT PERSON:	MATT BANDLE (PROJECT MANAGER) NORTHEAST SITE (508) 642-880
Engner of recoro:	 Carlo F Centore, PE
Stre cooromates:	Latuve $44^{-16} 6^{-4-40^{2}}{ }^{\mathrm{N}}$

NOTES AND SPECIFICATIONS

3. Desion critera

SIE NOTES

1. THE convrracior shall call uturies prior to the start of

2. THE AREAS OF THE Conpound Disurpeg by THE Work shall be

GENERAL NOTES

 COOE, NATONAL ELECTRCAL COOE ANO LOCAL CO

thuctural steel

Leal stel is desined by aloonabl stress desion (as)

5.

1. Connecton Ancles shall have a mimw thicness of $1 / 4$ mChes.
 3. LOCK WaSHER ARE NOT PRRMTIED FOR A325 STEEL ASSEMULES.
. SHop comnectons shall be weloed or hich strencin bolied.

2. fabricate beems wth mil camber

GENERAL

2. THE Morifarion ispegion is io covirn

MODFICATIO INSPECTOR (MI)
THE MII SAAL

GENERAL CONTRACTOR (GC)

- Review the moifactoon ispection report

CORRECTON OF FALING MODIFICATION

REOUIRED PHOTOGRAPHS
 - PRE-CONSTRUCTION: GENERAL Conotron of THE

ABUTIERS LIST				
${ }^{\text {ReF }}$	10	A00Ress	OMWER	mallig adoress
	${ }^{3490}$	105 mountan road		105 Mountan roab, Reoomg, ct of896
2	${ }^{3496}$	103 MOUNTAN ROAD	CLARE LOUSE FISCCHR	103 MOUNTAN Road, reoonce ct 06896
3	3565	100 mountan road	NCHOLS STENBRCK \& KRSTEN FRISCH	100 Mountan roao, reoong, ct oc896
4	3495	97 Mountan road	ILONA REVOC HORVATH TRUST \& JUDITH 50/50 TEE ILONA C/O HORVATH LIFE USE	97 Mountan road, ReDonc, ct ocs96
5	3497	99 mountan road	karen derrisse	99 mounan road, redinc, ct 06896
6	3880	219 Ethan allen hum	219 EAH Lic	
7	3477	227 Ethan allen hur	kuczo hoolme company uc	52 ERDMANV LNEE, MLTTON, CT 06897

ELECTRICAL SPECIFICATION

 $\frac{\text { SECTION } 16130}{1.01 .}$

SECTION 16140

 1. 15 MNUTE TMER SWTCH - INTERNATC \#FFI 15M (NIEROR LGHTS)
2. OULLX Recerpacle - Pas \#2095 (FFCl) Specification grade

SECTION 16170

SECTION 16190

A. all dences shall be mstalleo in accoroance wit zone 2 sesmc requirmenis

SECTION 16195

\qquad
 8. Lettres to ee whte on back backerouno wit Lettres $1-1 / 2$ NCHH high wit $1 / 4$ Ich margin.
c. İENTFication nomenclature shall ee in accoraance wit omwer's stanoros

c. Grounomg of paneloaros:

 2. THE MNMMUM SIE of EQuirment crouno conouctor Shall be \#12 ANG coppee
3. EACH FEEDER or branch circut shall have Equiment crouno conouctor(s) Mstalled in the saw celluar grounong sstem:
 provie the clus 1. grouno gars
2. Exteror croundng (where regured due to measure ac resitance greater than specified

SECTON 16470

A. refer to contract dramwss for detals ano scheoules

SECTION 16477

SECTON 16960

SECTION 16961

Exhibit D

Structural Analysis Report

Centered on Solutions ${ }^{\text {s. }}$

Structural Analysisoof Antenna Mast and Pole

> T-Mobile Site Ref: CT11116C

$$
\begin{array}{r}
\text { Eversource Structure No. } 3275 \\
68^{\circ} \quad(A G L) E l e c t r i c ~ T r a n s m i s s i o n ~ P o l e ~
\end{array}
$$

101 Mountain Road
Redding, $C T$

CENTEK Project No. 22006.03

Date: May 25, 2022
Rev 5: January 17, 2024

Max Stress Ratio=80\%

Prepared for:
T-Mobile USA 35 Griffin Road Bloomfield, CT 06002

Table of Contents

SECTION 1- REPORT

- INTRODUCTION
- PRIMARY ASSUMPTIONS USED IN THE ANALYSIS
- ANALYSIS
- DESIGN BASIS
- RESULTS
- CONCLUSION

SECTION 2--CONDITIONS \& SOFTWARE

- STANDARD ENGINEERING CONDITIONS
- GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAMS
- RISA 3-D
- PLS POLE

SECTION 3- DESIGN CRITERIA

- CRITERIA FOR DESIGN OF PCS FACILITIES ON OR EXTENDING ABOVE METAL ELECTRIC TRANSMISSON TOWERS
- EVERSOURCE DESIGN CRITERIA TABLE
- PCS SHAPE FACTOR CRITERIA
- WIRE LOADS SHEET

SECTION 4 - DRAWINGS

- TOWER AND MAST DRAWINGS

SECTION 5 -
 TIA-222-H LOAD CALCULATIONS FOR MAST ANALYSIS

- MAST WIND \& ICE LOAD

SECTION 6 -
 MAST ANALYSIS PER TIA-222H

- RISA 3-D ANALYSIS REPORT
- MAST CONNECTION TO TOWER ANALYSIS

SECTION 7 - NESC/EVERSOURCE LOAD CALCULATIONS

- MAST WIND LOAD

SECTION 8 - MAST ANALYSIS PER NESC/EVERSOURCE

- RISA 3-D ANALYSIS REPORT

SECTION 9 - PLS POLE ANALYSIS

- COAX CABLE LOAD ON UTILITY POLE CALCULATION
- PLS REPORT
- POLE EMBEDMENT CHECK

SECTION 10 - REFERENCE MATERIAL

- RFDS SHEET
- EQUIPMENT CUT SHEETS
- BORING LOG

Introduction

The purpose of this report is to analyze the antenna mast and 68' (AGL) utility pole located at 101 Mountain Road in Redding, CT for the proposed antenna and equipment upgrade by T-Mobile.
The existing/proposed loads consist of the following:

- T-MOBILE (Existing to Remain):

Coax Cables: Eight (8) 7/8" \varnothing coax cables mounted to the exterior of the pole/mast.

- T-MOBILE (Existing to be Removed):

Antennas: Two (2) RFS APX16DWV-16DWVS panel antennas flush mounted with a RAD center elevation of $74-\mathrm{ft}$ above grade.
Mast: 4" Sch. 40 Pipe.

- T-MOBILE (Proposed):

Antennas: Two (2) RFS APXVAALL18_43 panel antennas and two (2) Andrew ATSBT-TOP-MF-4G Smart Bias Tees flush mounted with a RAD center elevation of 77 -ft above grade.
Coax Cables: Eight (8) 7/8" \varnothing coax cables mounted to the exterior of the pole/mast. Mast: 10" Sch. 80 Pipe.

Primary assumptionsused in the analysis

- ASCE Manual No. 48-19, "Design of Steel Transmission Pole Structures", defines steel stresses for evaluation of the utility pole.
- All utility tower members are adequately protected to prevent corrosion of steel members.
- All proposed antenna mounts are modeled as listed above.
- All coaxial cable will be installed within the antenna mast unless specified otherwise.
- Antenna mast will be properly installed and maintained.
- No residual stresses exist due to incorrect pole erection.
- All bolts are appropriately tightened providing the necessary connection continuity.
- All welds conform to the requirements of AWS D1.1.
- Antenna mast and utility pole will be in plumb condition.
- Utility pole was properly installed and maintained and all members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- Any deviation from the analyzed loading will require a new analysis for verification of structural adequacy.
- Direct embedment evaluation assumes $1 / 2^{\prime \prime}$ deflection at top of steel canister under worst case loading is acceptable.
- Backfill within the steel canister has been properly compacted to allow for transfer of tower base forces to the steel canister with minimal deflection of backfill material.
- Per Meyer Industries original pole design drawings the steel pole tapers at $0.25 \mathrm{in} / \mathrm{ft}$ from top to 68 '-5" below top (with 3 '-5" slip joint). The bottom $15-\mathrm{ft}$ of the pole is straight (with $12-\mathrm{ft}$ embedment).
- Steel canister/casing diameter based on Eversource standard size of pole base diameter + 20 ".

Analysis

The proposed replacement mast consisting of a $10-\mathrm{in} \times 25.0-\mathrm{ft}$ long SCH. 80 pipe (O.D. $=10.75^{\prime \prime}$) connected at two points to the existing tower was analyzed for its ability to resist loads prescribed by the TIA-222H standard. Section 5 of this report details these gravity and lateral wind loads. NESC prescribed loads were also applied to the mast in order to obtain reactions needed for analyzing the utility pole structure. These loads are developed in Section 7 of this report. Load cases and combinations used in RISA-3D for TIA-222-H loading and for NESC/NU loading are listed in report Sections 6 and 8, respectively.

Design Basis

Our analysis was performed in accordance with ASCE 48-19, "Design of Steel Transmission Pole Structures", NESC C2-2023 and Eversource Design Criteria.

- UTILITY POLE ANALYSIS

The purpose of this analysis is to determine the adequacy of the existing utility structure to support the proposed antenna loads. The loading and design requirements were analyzed in accordance with the EVERSOURCE Design Criteria Table, NESC C2-2023 ~ Construction Grade B, and ASCE Manual No. 48-19, "Design Of Steel Transmission Pole Structures".
Load cases considered:
Load Case 1: NESC Heavy
Wind Pressure..................................... 4.0 psf
Radial Ice Thickness............................. 0.5"
Vertical Overload Capacity Factor............. 1.50
Wind Overload Capacity Factor................ 2.50
Wire Tension Overload Capacity Factor...... 1.65
Load Case 2: NESC Extreme
Wind Speed...................................... $110 \mathrm{mph}{ }^{(1)}$
Radial Ice Thickness.............................. 0"
Note 1: NESC C2-2023, Section25, Rule 250C: Extreme Wind Loading, $1.25 \times$ Gust Response Factor (wind speed: 3second gust)

- MAST ASSEMBLY ANALYSIS

Mast, appurtenances and connections to the utility tower were analyzed and designed in accordance with TIA-222-H and AISC standards.
Load cases considered:
Load Case 1:
Wind Speed.. 125 mph (2022 CSBC Appendix-P)
Radial Ice Thickness 0"

Load Case 2:
Wind Pressure
50 mph wind pressure
Radial Ice Thickness............................... 1.0"

Results

- MAST ASSEMBLY

The proposed pipe mast was determined to be structurally adequate.

Component	Stress Ratio (percentage of capacity)	Result
$10^{\prime \prime}$ Sch. 80	23.0%	PASS
Connection to Tower	22.0%	PASS

- UTILITY POLE

This analysis finds that the subject utility pole is adequate to support the antenna mast and related appurtenances. The pole stresses meet the requirements set forth by the ASCE 4819, "Design of Steel Transmission Pole Structures" for the applied NESC Heavy and Extreme load cases. The detailed analysis results are provided in Section 9 of this report. The analysis results are summarized as follows:
A maximum usage of $\mathbf{8 0 . 1 7 \%}$ occurs in the utility pole under the NESC Extreme loading condition.

POLE SECTION:

The utility pole was found to be structurally adequate.

Tower Section	Elevation	Stress Ratio (\% of capacity)	Result
Tube Number 1	$0.00^{\prime}-3.00^{\prime}(\mathrm{AGL})$	80.17%	PASS

BASE REACTIONS:

From PLS-Pole analysis based on NESC/EVERSOURCE prescribed loads.

Load Case	Shear	Axial	Moment
NESC Heavy Wind	8.73 kips	30.39 kips	$474.44 \mathrm{ft}-\mathrm{kips}$
NESC Extreme Wind	13.40 kips	16.13 kips	651.02 ft -kips

Note $1-10 \%$ increase to be be applied to tower base reactions for foundation verification per OTRM 051

POLE DIRECT EMBEDMENT:

The existing utility pole is directly embedded $12-\mathrm{ft}$ into the ground, which consists of solid rock ledge (Refer to the boring log located in section 10 of this report), within a 5' diameter steel canister. The embedment was determined to be structurally sufficient to support the proposed loading.

Type	Embedment Required	Embedment Provided	Result
Direct Embedment	$10.1-\mathrm{ft}$	$12-\mathrm{ft}$	PASS

Note 1: 10% increase to PLS base reactions used in embedment analysis per OTRM 051.

Conclusion

This analysis shows that the subject utility pole and proposed replacement antenna mast are adequate to support the proposed equipment upgrade.
The analysis is based, in part on the information provided to this office by Eversource and T-Mobile. If the existing conditions are different than the information in this report, CENTEK engineering, Inc. must be contacted for resolution of any potential issues.
Please feel free to call with any questions or comments.
Respectfully Submitted by:

Timothy J. Lynn, PE Structural Engineer

STANDARD CONDITIONS FORFURNISHINGOF PROFESSIONAL ENGINEERINGSERVICESON EXISTINGSTRUCTURES

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessarily limited to:

- Information supplied by the client regarding the structure itself, its foundations, the soil conditions, the antenna and feed line loading on the structure and its components, or other relevant information.
- Information from the field and/or drawings in the possession of CENTEK engineering, Inc. or generated by field inspections or measurements of the structure.
- It is the responsibility of the client to ensure that the information provided to CENTEK engineering, Inc. and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and are in an un-corroded condition and have not deteriorated. It is therefore assumed that its capacity has not significantly changed from the "as new" condition.
- All services will be performed to the codes specified by the client, and we do not imply to meet any other codes or requirements unless explicitly agreed in writing. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement. In the absence of information to the contrary, all work will be performed in accordance with the latest revision of ANSI/ASCE10 \& ANSI/EIA-222.
- All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. CENTEK engineering, Inc. is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

GENERAL DESCRIPTION OF STRUCTURAL ANALYSIS PROGRAM~RISA-3D

RISA-3D Structural Analysis Program is an integrated structural analysis and design software package for buildings, bridges, tower structures, etc.

Modeling Features:

- Comprehensive CAD-like graphic drawing/editing capabilities that let you draw, modify and load elements as well as snap, move, rotate, copy, mirror, scale, split, merge, mesh, delete, apply, etc.
- Versatile drawing grids (orthogonal, radial, skewed)
- Universal snaps and object snaps allow drawing without grids
- Versatile general truss generator
- Powerful graphic select/unselect tools including box, line, polygon, invert, criteria, spreadsheet selection, with locking
- Saved selections to quickly recall desired selections
- Modification tools that modify single items or entire selections
- Real spreadsheets with cut, paste, fill, math, sort, find, etc.
- Dynamic synchronization between spreadsheets and views so you can edit or view any data in the plotted views or in the spreadsheets
- Simultaneous view of multiple spreadsheets
- Constant in-stream error checking and data validation
- Unlimited undo/redo capability
- Generation templates for grids, disks, cylinders, cones, arcs, trusses, tanks, hydrostatic loads, etc.
- Support for all units systems \& conversions at any time
- Automatic interaction with RISASection libraries
- Import DXF, RISA-2D, STAAD and ProSteel 3D files
- Export DXF, SDNF and ProSteel 3D files

Analysis Features:

- Static analysis and P-Delta effects
- Multiple simultaneous dynamic and response spectra analysis using Gupta, CQC or SRSS mode combinations
- Automatic inclusion of mass offset (5% or user defined) for dynamic analysis
- Physical member modeling that does not require members to be broken up at intermediate joints
- State of the art 3 or 4 node plate/shell elements
- High-end automatic mesh generation - draw a polygon with any number of sides to create a mesh of well-formed quadriateral (NOT triangular) elements.
- Accurate analysis of tapered wide flanges - web, top and bottom flanges may all taper independently
- Automatic rigid diaphragm modeling
- Area loads with one-way or two-way distributions
- Multiple simultaneous moving loads with standard AASHTO loads and custom moving loads for bridges, cranes, etc.
- Torsional warping calculations for stiffness, stress and design
- Automatic Top of Member offset modeling
- Member end releases \& rigid end offsets
- Joint master-slave assignments
- Joints detachable from diaphragms
- Enforced joint displacements
- 1-Way members, for tension only bracing, slipping, etc.
- 1-Way springs, for modeling soils and other effects
- Euler members that take compression up to their buckling load, then turn off.
- Stress calculations on any arbitrary shape
- Inactive members, plates, and diaphragms allows you to quickly remove parts of structures from consideration
- Story drift calculations provide relative drift and ratio to height
- Automatic self-weight calculations for members and plates
- Automatic subgrade soil spring generator

Graphics Features:

- Unlimited simultaneous model view windows
- Extraordinary "true to scale" rendering, even when drawing
- High-speed redraw algorithm for instant refreshing
- Dynamic scrolling stops right where you want
- Plot \& print virtually everything with color coding \& labeling
- Rotate, zoom, pan, scroll and snap views
- Saved views to quickly restore frequent or desired views
- Full render or wire-frame animations of deflected model and dynamic mode shapes with frame and speed control
- Animation of moving loads with speed control
- High quality customizable graphics printing

Design Features:

- Designs concrete, hot rolled steel, cold formed steel and wood
- ACI 1999/2002, BS 8110-97, CSA A23.3-94, IS456:2000,EC 2-1992 with consistent bar sizes through adjacent spans
- Exact integration of concrete stress distributions using parabolic or rectangular stress blocks
- Concrete beam detailing (Rectangular, T and L)
- Concrete column interaction diagrams
- Steel Design Codes: AISC ASD 9th, LRFD 2nd \& 3rd, HSS Specification, CAN/CSA-S16.11994 \& 2004, BS 5950-1-2000, IS 800-1984, Euro 3-1993 including local shape databases
- AISI 1999 cold formed steel design
- NDS 1991/1997/2001 wood design, including Structural Composite Lumber, multi-ply, full sawn
- Automatic spectra generation for UBC 1997, IBC 2000/2003
- Generation of load combinations: ASCE, UBC, IBC, BOCA, SBC, ACI
- Unbraced lengths for physical members that recognize connecting elements and full lengths of members
- Automatic approximation of K factors
- Tapered wide flange design with either ASD or LRFD codes
- Optimization of member sizes for all materials and all design codes, controlled by standard or user-defined lists of available sizes and criteria such as maximum depths
- Automatic calculation of custom shape properties
- Steel Shapes: AISC, HSS, CAN, ARBED, British, Euro, Indian, Chilean
- Light Gage Shapes: AISI, SSMA, Dale / Incor, Dietrich, MarinolWARE
- Wood Shapes: Complete NDS species/grade database
- Full seamless integration with RISAFoot (Ver 2 or better) for advanced footing design and detailing
- Plate force summation tool

Results Features:

- Graphic presentation of color-coded results and plotted designs
- Color contours of plate stresses and forces with quadratic smoothing, the contours may also be animated
- Spreadsheet results with sorting and filtering of: reactions, member \& joint deflections, beam \& plate forces/stresses, optimized sizes, code designs, concrete reinforcing, material takeoffs, frequencies and mode shapes
- Standard and user-defined reports
- Graphic member detail reports with force/stress/deflection diagrams and detailed design calculations and expanded diagrams that display magnitudes at any dialed location
- Saved solutions quickly restore analysis and design results.

GENERAL DESCRIPTIONOFSTRUCTURAL ANALYSIS PROGRAM~PLS-POLE

PLS-POLE provides all of the capabilities a structural engineer requires to design transmission, substation or communications structures. It does so using a simple easy to use graphical interface that rests upon our time tested finite element engine. Regardless of whether you want to model a simple wood pole or a guyed steel X-Frame; PLS-POLE can handle the job simply, reliably and efficiently.

Modeling Features:

- Structures are made of standard reusable components that are available in libraries. You can easily create your own libraries or get them from a manufacturer
- Structure models are built interactively using interactive menus and graphical commands
- Automatic generation of underlying finite element model of structure
- Steel poles can have circular, $4,6,8,12,16$, or 18 -sided, regular, elliptical or user input cross sections (flat-to-flat or tip-to-tip orientations)
- Steel and concrete poles can be selected from standard sizes available from manufacturers
- Automatic pole class selection
- Cross brace position optimizer
- Capability to specify pole ground line rotations
- Capability to model foundation displacements
- Can optionally model foundation stiffness
- Guys are easily handled (modeled as exact cable elements in nonlinear analysis)
- Powerful graphics module (members color-coded by stress usage)
- Graphical selection of joints and components allows graphical editing and checking
- Poles can be shown as lines, wire frames or can be rendered as 3-d polygon surfaces

Analysis Features:

- Automatic distribution of loads in 2-part suspension insulators (v-strings, horizontal vees, etc.)
- Design checks for ASCE, ANSI/TIA/EIA 222 (Revisions F and G) or other requirements
- Automatic calculation of dead and wind loads
- Automated loading on structure (wind, ice and drag coefficients) according to:
- ASCE 74-1991
- NESC 2002
- NESC 2007
- IEC 60826:2003
- EN50341-1:2001 (CENELEC)
- EN50341-3-9:2001 (UK NNA)
- EN50341-3-17:2001 (Portugal NNA)
- ESAA C(b)1-2003 (Australia)
- TPNZ (New Zealand)
- REE (Spain)
- EIA/TIA 222-F
- ANSI/TIA 222-G
- CSA S37-01
- Automated microwave antenna loading as per EIA/TIA 222-F and ANSI/TIA 222-G
- Detects buckling by nonlinear analysis

Results Features:

- Detects buckling by nonlinear analysis
- Easy to interpret text, spreadsheet and graphics design summaries
- Automatic determination of allowable wind and weight spans
- Automatic determination of interaction diagrams between allowable wind and weight spans
- Automatic tracking of part numbers and costs

Criteria for Design of PCS Facilities On or Extending Above Metal Electric Transmission Towers \& Analysis of Transmission Towers supporting PCSMasts ${ }^{\text {(1) }}$

lntroduction

This criteria is the result from an evaluation of the methods and loadings specified by the separate standards, which are used in designing telecommunications towers and electric transmission towers. That evaluation is detailed elsewhere, but in summary; the methods and loadings are significantly different. This criteria specifies the manner in which the appropriate standard is used to design PCS facilities including masts and brackets (hereafter referred to as "masts"), and to evaluate the electric transmission towers to support PCS masts. The intent is to achieve an equivalent level of safety and security under the extreme design conditions expected in Connecticut and Massachusetts.

ANSI Standard TIA-222-H covering the design of telecommunications structures specifies LRFD design approach. This approach applies the loads from extreme weather loading conditions, and designs the structure so that it does not exceed code defined percentage of failure strength.

ANSI Standard C2-2023 (National Electrical Safety Code) covering the design of electric transmission metal structures is based upon an ultimate strength/yield stress design approach. This approach applies a multiplier (overload capacity factor) to the loads possible from extreme weather loading conditions, and designs the structure so that it does not exceed its ultimate strength (yield stress).

Each standard defines the details of how loads are to be calculated differently. Most of the Eversource effort in "unifying" both codes was to establish what level of strength each approach would provide, and then increasing the appropriate elements of each to achieve a similar level of security under extreme weather loadings.

Two extreme weather conditions are considered. The first is an extreme wind condition (hurricane) based upon a 1700-year recurrence for TIA-22-H risk category III and a 100-year recurrence for NESC Grade B. The second is a winter condition combining wind and ice loadings.

The following sections describe the design criteria for any PCS mast extending above the top of an electric transmission tower, and the analysis criteria for evaluating the loads on the transmission tower from such a mast from the lower portions of such a mast, and loads on the pre-existing electric lower portions of such a mast, and loads on the pre-existing electric transmission tower and the conductors it supports.
| Note 1: Prepared from documentation provide from Northeast Utilities.

PCSMast

The PCS facility (mast, external cable/trays, including the initial and any planned future support platforms, antennas, etc. extending the full height above the top level of the electric transmission structure) shall be designed in accordance with the provisions of TIA 222-H:

ELECTRIC TRANSMISSION TOWER

The electric transmission tower shall be analyzed using yield stress theory in accordance with the attached table titled "Eversource Design Criteria". This specifies uniform loadings (different from the TIA loadings) on the each of the following components of the installed facility:

- PCS mast for its total height above ground level, including the initial and planned future support platforms, antennas, etc. above the top of an electric transmission structure.
- Conductors are related devices and hardware.
- Electric transmission structure. The loads from the PCS facility and from the electric conductors shall be applied to the structure at conductor and PCS mast attachment points, where those load transfer to the tower.

The uniform loadings and factors specified for the above components in the table are based upon the National Electrical Safety Code 2023 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to TIA and its loads and factors with the exceptions noted above. (Note that the NESC does not require the projected wind surfaces of structures and equipment to be increased by the ice covering.)

In the event that the electric transmission tower is not sufficient to support the additional loadings of the PCS mast, reinforcement will be necessary to upgrade the strength of the overstressed members.

Eversource

Overhead Transmission Standards

Attachment A Eversource Design Criteria

		Attachment A ES Design Criteria						
			V (MPH)	Q (PSF)	Kz	Gh		
	¢	Antenna Mount	TIA	$\begin{gathered} \text { TIA } \\ (0.75 \mathrm{Wi}) \end{gathered}$	TIA	TIA	$\begin{array}{\|c} \hline \text { TIA, Section 3.1.1.1 } \\ \text { disallowed for } \\ \text { connection design } \end{array}$	TIA
든 읃 O 0		Tower/Pole Analysis with antennas extending above top of Tower/Pole (Yield Stress)	-----	4	1	1	2.5	1.6 Flat Surfaces 1.3 Round Surfaces
		Tower/Pole Analysis with antennas below top of Tower/Pole (on two faces)	-----	4	1	1	2.5	1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:	Conductor Loads Provided by ES					
		Antenna Mount	85	TIA	TIA	TIA	$\begin{array}{\|c\|} \hline \text { TIA, Section 3.1.1.1 } \\ \text { disallowed for } \\ \text { connection design } \end{array}$	TIA
		Tower/Pole Analysis with antennas extending above top of Tower/Pole	For wind speed use OTRM 060 Map 1, Rule 250C: Extreme Wind Loading Apply a $1.25 \times$ Gust Response Factor to all telecommunication equipment projected above top of tower/pole and apply a $1.0 \times$ Gust Response Factor to the tower/pole structure					1.6 Flat Surfaces 1.3 Round Surfaces
		Tower/Pole Analysis with antennas below top of Tower/Pole	For wind speed use OTRM 060 Map 1, Rule 250C: Extreme Wind Loading Height above ground is based on overall height to top of tower/pole					1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:	Conductor Loads Provided by ES					
$\stackrel{*}{.}$		Tower/Pole Analysis with antennas extending above top of Tower/Pole	For wind speed use OTRM 060 Map 1, Rule 250D: Extreme Ice with Wind Loading 4 PSF Wind Load $1.25 \times$ Gust Response Factor Apply a $1.25 \times$ Gust Response Factor to all telecommunication equipment projected above top of tower/pole and apply a $1.0 \times$ Gust Response Factor to the tower/pole structure					1.6 Flat Surfaces 1.3 Round Surfaces
		Tower/Pole Analysis with antennas below top of Tower/Pole	For wind speed use OTRM 060 Map 1, Rule 250D: Extreme Ice with Wind Loading 4 PSF Wind Load Height above ground is based on overall height to top of tower/pole					1.6 Flat Surfaces 1.3 Round Surfaces
		Conductors:	Conductor Loads Provided by ES					
		*Only for structures installed after 2007						

Communication Antennas on Transmission Structures			
Eversource Approved by: CPS (CT/WMA) Jcc (NH/EMA) Design	OTRM 059	Rev. 1	
	Page 8 of 10	11/19/2018	

Eversource

Overhead Transmission Standards

determined from NESC applied loading conditions (not TIA Loads) on the structure and mount as specified below, and shall include the wireless communication mast and antenna loads per NESC criteria)
The strength reduction factor obtained from the field investigation shall be applied to the members or connections that are showing signs of deterioration from their original condition With the written approval of Eversource Transmission Line Engineering on a case by case the existing structures may be analyzed initially using the current NESC code, then it is permitted to use the original design code with the original conductor load should the existing tower fail the current NESC code.
The structure shall be analyzed using yield stress theory in accordance with Attachment A,
"Eversource Design Criteria." This specifies uniform loadings (different from the TIA loadings) on each of the following components of the installed facility:
a) Wireless communication mast for its total height above ground level, including the initial and any planned future equipment (Support Platforms, Antennas, TMA's etc.) above the top of an electric transmission structure.
b) Conductors and related devices and hardware (wire loads will be provided by Eversource).
c) Electric Transmission Structure
i) The loads from the wireless communication equipment components based on NESC and Eversource Criteria in Attachment A, and from the electric conductors shall be applied to the structure at conductor and wireless communication mast attachment points, where those loads transfer to the tower. ii)
ii) Shape Factor Multiplier:

NESC Structure Shape	Cd
Polyround (for polygonal steel poles)	1.3
Flat	1.6
Open Lattice	3.2
Pole with Coaxial Cable	See Below Table

iii) When Coaxial Cables are mounted alongside the pole structure, the shape multiplier shall be:

Mount Type	Cable Cd	Pole Cd
Coaxial Cables on outside periphery (One layer)	1.45	1.45
Coaxial Cables mounted on stand offs	1.6	1.6

d) The uniform loadings and factors specified for the above components in Attachment A, "Eversource Design Criteria" are based upon the National Electric Safety Code 2007 Edition Extreme Wind (Rule 250C) and Combined Ice and Wind (Rule 250B-Heavy) Loadings. These provide equivalent loadings compared to the TIA and its loads and factors with the exceptions noted above.

Communication Antennas on Transmission Structures

Project: PCS Wire Loads for Structure 3275
Date: 4/28/2022
Engineer: RB
Purpose: Calculate wire loads for existing T-Mobile site.

Shield Wires:
7\#8 ALWLD, sagged in PLS-CADD

Conductors:

336 kcmil 26/7 "Linnet" ACSR, sagged in PLS-CADD

Project: PCS Wire Loads for Structure 3275
Date: 4/26/2022
Engineer: RB
Purpose: Calculate wire loads for existing T-Mobile site.

Shield Wires:

7\#8 ALWLD, sagged in PLS-CADD

Conductors:
336 kcmil 26/7 "Linnet" ACSR, sagged in PLS-CADD

MAST REPLACEMENT DESIGN

STRUCT. NO. 3275

T-MOBILE - CT11116C 101 MOUNTAIN ROAD REDDING, CT 06896

DESIGN BASIS

1. GOVERNING CODE: 2021 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2022 CT STATE BUILDING CODE.
2. TIA-222-H, ASCE MANUAL NO. 48-19 - "DESIGN OF STEEL TRANSMISSION POLE STRUCTURES SECOND EDITION", NESC C2-2023 AND EVERSOURCE DESIGN CRITERIA.
3. DESIGN CRITERIA

WIND LOAD: (ANTENNA MAST)
$\frac{\text { ULTIMATE DESIGN WIND SPEED }}{}(\mathrm{V})=125 \mathrm{MPH}$ (2022 CSBC: APPENDIX 'P')

WIND LOAD: (UTILITY POLE \& FOUNDATION) BASIC WIND SPEED (V) $=110 \mathrm{MPH}$ ($3-$ SECOND GUST) BASIC WIND SPEED (V) $=110$ MPH ($3-$ SECOND GUST)
BASED ON NESC C2-2023, SECTION 25 RULE 250C.

GENERAL NOTES

1. REFER TO STRUCTURAL ANALYSIS AND MAST DESIGN PREPARED BY CENTEK ENGINEERING, INC., FOR T-MOBILE, DATED 1/17/24.
2. TOWER GEOMETRY AND STRUCTURE MEMBER SIZES WERE OBTAINED FROM THE TOWER DESIGN DRAWINGS PREPARED BY MEYER INDUSTRIES INC.; JOB NO. T-4011-RR DATED FEBRUARY 26, 1973.
3. ALL CONSTRUCTION SHALL BE IN ACCORDANCE WITH THE GOVERNING BUILDING CODE.
4. DRAWINGS INDICATE THE MINIMUM STANDARDS, BUT IF ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO ANY WORK SHOULD BE INDICATED TO BE SUBSTANDARD TO
ORDINANCES, LAWS, CODES, RULES, OR REGULATIONS BEARING ON THE WORK, THE CONTRACTOR SHALL INCLUDE IN HIS SCOPE OF WORK AND SHALL EXECUTE THE WORK CORRECTLY IN ACCORDANCE WITH SUCH ORDINANCES, LAWS, CODES, RULES OR REGULATIONS WITH NO INCREASE IN COSTS.
5. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAKING SUCH INVESTIGATIONS CONCERNING PHYSICAL CONDITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH
AFFECT PERFORMANCE AND COST OF THE WORK. THIS AFFECT PERFORMANCE AND COST OF THE WORK. THIS
INCLUDES VERIFYING ALL DIMENSIONS, ELEVATIONS, ANGLES, INCLUDES VERIFYING ALL DIMENSIONS, ELEVATIONS,
AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA. CONTRACTOR SHALL TAKE FIELD MEASUREMENTS NECESSARY TO ASSURE PROPER FIT OF ALL FINISHED WORK.
6. PCS MAST INSTALLATION SHALL BE CONDUCTED BY FIELD CREWS EXPERIENCED IN THE ASSEMBLY AND ERECTION OF TRANSMISSION STRUCTURES. ALL SAFETY PROCEDURES THE INDUSTRY AND IN COMPLIANCE WITH OSHA.
7. IF ANY FIELD CONDITIONS EXIST WHICH PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL PROCEED WITH AFFECTED WORK AFTER CONFLICT IS SATISFACTORIL RESOLVED.
8. ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HELD LIABLE FOR ALL REPAIRS
REQUIRED FOR EXISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIVITIES.
9. NO DRILLING WELDING OR TAPING IS PERMITTED ON CL\&P OWNED EQUIPMENT.
$\mathrm{N}-1$

STRUCTURAL STEEL

1. ALL STRUCTURAL STEEL IS DESIGNED BY LOAD RESISTANCE FACTOR DESIGN (LRFD).
2. MATERIAL SPECIFICATIONS
A. STRUCTURAL STEEL (W SHAPES)---ASTM A992
A. $\quad(\mathrm{FY}=50 \mathrm{KSI})$
B. STRUCTURAL STEEL (OTHER SHAPES)---ASTM A36 B. $\quad(F Y=36 \mathrm{KSI})$
C. STRUCTURAL STEEL (SOLID ROUND BAR)---

ASTM A572_GR50 (50 KSI)
D. STRUCTURAL HSS (RECTANGULAR SHAPES)---ASTM A500 GRADE B, (FY $=46 \mathrm{KSI}$)
E. STRUCTURAL HSS (ROUND SHAPES)---ASTM A500
F. PIPE---ASTM A53 GRADE B $(F Y=35 \mathrm{KSI})$
3. FASTENER SPECIFICATIONS
A. CONNECTION BOLTS---ASTM A325-N, UNLESS OTHERWISE SCHEDULED.
B. U-BOLTS---ASTM A307
C. ANCHOR RODS---ASTM F1554
D. WELDING ELECTRODES---ASTM E70XX FOR A36 \&
E. BLIND BOLTS---AS1252 PROPERTY CLASS 8.8 (FU=120 KSI).
4. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL. DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE ENGINEER FOR REVIEW. SHOP DRAWINGS SHALL INCLUDE THE FOLLOWING: SECTION PROFILES, SIZES, CONNECTION ATTACHMENTS, REINFORCING, ANCHORAGE, SIZE AND TYPE OF FASTENERS AND ACCESSORIES. INCLUDE ERECTION DRAWINGS ELEVATIONS AND DETAILS
5. STRUCTURAL STEEL SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH THE CATEST
6. PROVIDE ALL PLATES, CLIP ANGLES, CLOSURE PIECES, STRAP ANCHORS, MISCELLANEOUS PIECES AND HOLES REQUIRED TO COMPLETE THE STRUCTURE.
7. FIT AND SHOP ASSEMBLE FABRICATIONS IN THE LARGEST PRACTICAL SECTIONS FOR DELIVERY TO SITE
8. INSTALL FABRICATIONS PLUMB AND LEVEL, ACCURATELY FITTED, AND FREE FROM DISTORTIONS OR DEFECTS.
9. AFTER ERECTION OF STRUCTURES, TOUCHUP ALL WELDS ABRASIONS AND NON-GALVANIZED SURFACES WITH A 95% ORGANIC ZINC RICH PAINT IN ACCORDANCE WITH
10. ALL STEEL MATERIAL (EXPOSED TO WEATHER) SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT DIPPED GALVANIZED) COATINGS" ON IRONS AND STEEL PRODUCTS.
11. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC COATING (HOT-DIP) ON IRON AND STEEL HARDWARE".
12. CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES APPEARANCE AND QUALITY OF WELDS, AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES". ALL WELDING SHALL BE DONE USING THE SCHEDULED ELECTRODES AND WELDING SHALL CONFORM TO AISC AND D1.1 WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLET J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION" 14 TH EDITION. AT THE COMPLETION OF WELDING, ALL DAMAGE TO GALVANIZED COATING SHALL BE REPAIRED.
13. THE ENGINEER SHALL BE NOTIFIED OF ANY INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NON CONFORMING MATERIALS OR CONDITIONS TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE ENGINEER REVIEW.
14. CONNECTION ANGLES SHALL HAVE A MINIMUM THICKNESS OF $1 / 4$ INCHES.
15. STRUCTURAL CONNECTION BOLTS SHALL CONFORM TO ASTM A325. ALL BOLTS SHALL BE $3 / 4$ " DIAMETER MINIMUM AND SHALL HAVE A MINIMUM OF TWO BOLTS, UNLESS OTHERWISE ON THE DRAWINGS.
16. ALL BOLTS SHALL BE INSTALLED PER THE REQUIREMENTS OF AISC 14TH EDITION \& RCSC "SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH STRENGTH BOLTS".
17. ALL BOLTS SHALL BE INSTALLED AS SNUG-TIGH CONNECTIONS UNLESS OTHERWISE INDICATED. CONNECTIONS SPECIFIED AS PRETENSIONED OR TENSION NOT LESS THAN THAT GIVEN IN TABLE J3.1 OF AISC 14TH EDITION.
18. LOCK WASHER ARE NOT PERMITTED FOR A325 BOLTED STEEL ASSEMBLIES.
19. LOAD INDICATOR WASHERS SHALL BE UTILIZED ON ALL PRETENSIONED OR SLIP-CRITICAL CONNECTIONS.
20. SHOP CONNECTIONS SHALL BE WELDED OR HIGH STRENGTH BOLTED.
21. MILL BEARING ENDS OF COLUMNS, STIFFENERS, AND OTHER BEARING SURFACES TO TRANSFER LOAD OVER ENTIRE CROSS SECTION.
22. FABRICATE BEAMS WITH MILL CAMBER UP.
23. LEVEL AND PLUMB INDIVIDUAL MEMBERS OF THE STRUCTURE TO AN ACCURACY OF 1:500, BUT NOT TO EXCEED $1 / 4$ " IN THE FULL HEIGHT OF THE COLUMN.
24. COMMENCEMENT OF STRUCTURAL STEEL WORK WITHOUT NOTIFYING THE ENGINEER OF ANY DISCREPANCIES WILL BE CONSIDERED ACCEPTANCE OF PRECEDING WORK.

MODIFICATION INSPECTION REPORT REQUIREMENTS

MODIFICATION INSPECTION REPORT REQUIREMENTS					
PRE-CONSTUCTION		DURING CONSTRUCTION		POST-CONSTRUCTION	
$\begin{gathered} \text { SCHEDULED } \\ \text { TEM } \end{gathered}$	REPORT TIEM	$\begin{aligned} & \text { SCHEDULED } \\ & \text { TEM } \end{aligned}$	REPORT TEM	$\begin{gathered} \mathrm{SCHEDULED} \\ \text { TEM } \end{gathered}$	REPORT TEM
x	EOR MODIFICATION INSPECTION DRAWING	-	FOUNDATIONS	x	MODIFICATION INSPECTOR RECORD REDLINE DRAWING
\times	EOR APPROVED SHOP DRAWINGS	-	EARTHWORK: BACKFILL MATERIAL \& COMPACTION	-	POST-INSTALLED ANCHOR ROD PULL-OUT TEST
-	EOR APPROVED POST-INSTALLED ANCHOR MPII	-	REBAR \& FORMWORK GEOMETRY VERIFICATION	x	Photographs
-	FABRICATION INSPECTION	-	CONCRETE TESTING		
-	FABRICATOR CERTIFIED WELDER INSPECTION	x	STEEL INSPECTION		
x	MATERIAL CERTIFICATIONS	-	POST INSTALLED ANCHOR ROD VERIFICATION		
		-	base plate grout verification		
		-	CONTRACTOR'S CERTIFIED WELD INSPECTION		
		X	ON-SITE COLD Galvanizing verification		
		x	CONTRACTOR AS-BUILT REDLINE DRAWINGS		

CORRECTION OF FAILING MODIFICATION

NSPECTION

1. THE MODIFICATION INSPECTION IS A VISUAL INSPECTION OF STRUCTURAL MODIFICATIONS, TO INCLUDE A REVIEW AND COMPILATION OF SPECIFIED SUBMITTALS AND COMPLANCE WITH THE CONSTRUCTION DOCUMENTS PREPARED UNDER THE DIRECTION OF THE ENGINEER OF RECORD (EOR).
2. THE MODIFICATION INSPECTION IS TO CONFIRM INSTALLATION CONFIGURATION AND GENERAL WORKMANSHIP AND IS NOT A REVIEW OF THE MODIFICATION DESIGN. OWNERSHIP OF THE MODIFICATION DESIGN EFFECTIVENESS AND INTENT RESIDES WITH THE
ENGINEER OF RECORD.
3. TO ENSURE COMPLIANCE WITH THE MODIFICATION INSPECTION REQUIREMENTS THE GENERAL CONTRACTOR INSPECTION REQUIREMENTS THE GENERAL CONTRACTOR
(GC) AND THE MODIFICATION INSPECTOR (MI) COMMENCE (GC) AND THE MODIFICATION INSPECTOR (MI) COMMENCE
COMMUNICATION UPON AUTHORIZATION TO PROCEED BY COMMUNICATION UPON AUTHORIZATION TO PROCEED
THE CLIENT. EACH PARTY SHALL BE PROACTIVE IN CONTACTING THE OTHER. THE EOR SHALL BE CONTACTED IF SPECIFIC GC/MI CONTACT INFORMATION IS NOT MADE AVAILABLE.
4. THE GC SHALL PROVIDE THE MI WITH A MINIMUM OF 5 BUSINESS DAYS NOTICE OF IMPENDING INSPECTIONS.
5. WHEN POSSIBLE, THE GC AND MI SHALL BE ON SITE DURING THE MODIFICATION INSPECTION TO HAVE ANY NOTED DEFICIENCIES ADDRESSED DURING THE INITIAL MODIFICATION INSPECTION.

MODIFICATION INSPECTOR (MI)

- THE MI SHALL CONTACT THE GC UPON AUTHORIZATION BY
THE CLIENT TO. THE CLIENT TO
- REVIEW THE MODIFICATION INSPECTION REPOR REQUIREMENTS.
WORK WITH THE GC IN DEVELOPMENT OF A SCHEDULE FOR ON-SITE INSPECTIONS
- DISCUSS CRITICAL INSPECTIONS AND PROJECT

2. THE MI IS RESPONSIBLE FOR COLLECTION OF ALL INSPECTION AND TEST REPORTS, REVIEWING REPORTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING ON-SITE INSPECTIONS AND COMPILATION \& SUBMISSION CLIENT AND THE EOR.

GENERAL CONTRACTOR (GC)

1. THE GC IS REQUIRED TO CONTACT THE GC UPON AUTHORIZATION TO PROCEED WITH CONSTRUCTION BY THE CLIENT TO:

- REVIEW THE MODIFICATION INSPECTION REPOR REQUIREMENTS.

WORK WITH THE MI IN DEVELOPMENT OF A SCHEDULE FOR ON-SITE INSPECTIONS

- DISCUSS CRITICAL INSPECTIONS AND PROJECT CONCERNS.

2. THE GC IS RESPONSIBLE FOR COORDINATING AND SCHEDULING IN ADVANCE ALL REQUIRED INSPECTIONS SCHEDULING IN ADVANCE
AND TESTS WITH THE MI.
3. SHOULD THE STRUCTURAL MODIFICATION NOT COMPLY WITH THE REQUIREMENTS OF THE CONSTRUCTION DOCUMENTS, THE GC SHALL WORK WITH THE MODIFICATION INSPECTOR IN A VIABLE REMEDIATION PLAN AS FOLLOWS

- CORRECT ALL DEFICIENCIES TO COMPLY WITH THE CONTRACT DOCUMENTS AND COORDINATE WITH THE CONTRACT DOCUMENTS AND COORD
WITH CLIENT AUTHORIZATION, THE GC MAY WORK WITH THE EOR TO REANALYZE THE MODIFICATION USING THE AS-BUILT CONDITION.

REQUIRED PHOTOGRAPHS

1. THE GC AND MI SHALL AT MINIMUM PHOTO DOCUMENT THE FOLLOWING FOR INCLUSION IN THE MODIFICATION INSPECTION REPORT

- PRE-CONSTRUCTION: GENERAL CONDITION OF THE SITE.
- DURING CONSTRUCTION: RAW MATERIALS, CRITICAL DETAILS, WELD PREPARATION, BOLT INSTALLATION \& TORQUE, FINAL IN
COATING REPAIRS
- POST-CONSTRUCTION: FINAL CONDITION OF THE SITE

MODIFICATION MODIFICATION INSPECTION

 REQUIREMENTSMI-1

NOTE CONTRACTOR TO VERIFY ALL DIMENSIONS PRIOR TO FABRICATION

$=N \mathrm{~K}=$ engineering	Subject:	Loads on AT\&T Mast - Structure 3275
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L. Checked by: C.F.C. Job No. 22006.03

Development of Design Heights, Exposure Coefficients, and Velocity Pressu Ies Per TIA-222-H

Wind Speeds

Basic W ind Speed	$\mathrm{V}:=125$	mph	(User Input-2022 CSBC Appendix P)
Basic Wind Speed with Ice	$V_{i}:=50$	mph	(User Input per Annex B ofTIA-222-H)
Basic Wind Speed Service Loads	$\mathrm{V}_{\text {Ser }}:=60$	mph	(User Input-TIA-222-H Section 2.8.3)
Input			
Structure Type =	Structure_Type		(User Input)
Structure Category =	SC : $=$ III		(User Input)
ExposureCategory=	Exp := C		(User Input)
Structure Height =	$\mathrm{h}:=68$	ft	(User Input)
Height to Center ofAntennas=	$\mathrm{z}_{\text {ant }}:=78$	ft	(User Input)
Height to Center of Mast =	$\mathrm{z}_{\text {Mast1 }}:=78.5$	ft	(User Input)
Height to Center of Mast =	$\mathrm{z}_{\text {Mast2 }}:=65$	ft	(User Input)
Radial Ice Thickness=	$t_{i}:=1.0$	in	(User Input per Annex B ofTIA-२२2-H)
Radial Ice Density =	Id := 56.00	pcf	(User Input)
Topograpic Factor $=$	$\mathrm{K}_{\mathrm{zt}}:=1.0$		(User Input)
Shielding Factor for Appurtenances $=$	$\mathrm{K}_{\mathrm{a}}:=1.0$		(User Input)
Ground Elevation Factor =	$\mathrm{K}_{\mathrm{e}}=0.996$		(User Input)
Gust Response Factor =	$\mathrm{G}_{\mathrm{H}}:=1.35$		(User Input - Section 2.6.9.4 of TIA-2२2-H)

Output

Wind Direction Probability Factor =

Importance Factors =

Wind Direction Probability Factor (Service) $=$
$\mathrm{K}_{\mathrm{d}}:=\left\lvert\, \begin{array}{lll}0.95 \text { if Structure_Type }=\text { Pole } & =0.95 & \text { (Per Table 2-2 of } \\ 0.85 \text { if Structure_Type }=\text { Lattice } & & \text { TIA-२22-H) }\end{array}\right.$
$\mathrm{I}_{\text {ice }}:= \begin{cases}0 \text { if } \mathrm{SC}=1 \\ 1.00 \text { if } \mathrm{SC}=2 & =1.15 \\ 1.15 \text { if } \mathrm{SC}=3 & \text { (Per Table 2-3 of } \\ 1.25 \text { if } \mathrm{SC}=4 & \text { TIA-२22-H) }\end{cases}$
(Per Section 2.8.3 of
TIA-२22-H)

二NT $=\mathrm{K}$ engineering	Subject:	Loads on AT\&T Mast - Structure 3275
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L. Checked by: C.F.C. Job No. 22006.03

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{K}_{\mathrm{iz}}:=\left(\frac{z_{\text {ant }}}{33}\right)^{0.1}=1.09 \\
\text { Velocity Pressure CoefficientAn ennas }= \\
\text { Velocity Pressure w/o Ice Antennas }= \\
\text { Velocity Pressure with lce Antennas }= \\
\text { Velocity Pressure Service }= \\
\mathrm{K}_{\text {izMast } 1}:=\left(\frac{\mathrm{z}_{\text {Mast1 }}}{33}\right)^{0.1}=1.091
\end{array} \\
& \text { Velocity Pressure Coefficient Mast = } \\
& \text { Velocity Pressure w/o lce Mast= } \\
& t_{\text {izant }}:=t_{i} \cdot l_{i c e} \cdot K_{i z} \cdot K_{z t} 0.35=1.253 \\
& K z_{a n t}:=2.01\left(\left(\frac{z_{\text {ant }}}{z g}\right)\right)^{\frac{2}{\alpha}}=1.201 \\
& q z_{\text {ant }}:=0.00256 \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{Kz}_{\mathrm{ant}} \cdot \mathrm{~V}^{2}=45.441 \\
& \text { qzice.ant }:=0.00256 \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{Kz}_{\mathrm{ant}} \cdot \mathrm{~V}_{\mathrm{i}}^{2}=7.271 \\
& \mathrm{qz} \mathrm{ant.Ser}:=0.00256 \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{~K}_{\mathrm{dSer}} \cdot \mathrm{Kz}_{\mathrm{ant}} \cdot{ }_{\mathrm{V}}{ }_{\mathrm{Ser}}{ }^{2}=9.368 \\
& \mathrm{t}_{\text {izMast } 1}:=\mathrm{t}_{\mathrm{i}} \mathrm{l}_{\text {ice }} \cdot \mathrm{K}_{\text {izMast }} \cdot \mathrm{K}_{\mathrm{zt}}{ }^{0.35}=1.254 \\
& K z_{\text {Mast1 }}:=2.01\left(\left(\frac{z_{\text {Mast1 }}}{z g}\right)\right)^{\frac{2}{\alpha}}=1.203 \\
& \mathrm{qz}_{\text {Mast } 1}:=0.00256 \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{Kz}_{\text {Mast } 1} \cdot \mathrm{~V}^{2}=45.503 \\
& \text { qzice.Mast1 }:=0.00256 \cdot K_{z t} \cdot K_{e} \cdot K_{d} \cdot K_{\text {Mast1 }} \cdot V_{i}^{2}=7.28 \\
& \mathrm{qz}_{\text {Mast1.Ser }}:=0.00256 \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{~K}_{\mathrm{dSer}} \cdot \mathrm{~K}_{\mathrm{Z}_{\text {Mast } 1}} \cdot \mathrm{~V}_{\text {Ser }}{ }^{2}=9.38 \\
& \mathrm{t}_{\text {izMast2 }}:=\mathrm{t}_{\mathrm{i}} \cdot \mathrm{l}_{\text {ice }} \cdot \mathrm{K}_{\text {izMast2 }} \cdot \mathrm{K}_{\mathrm{zt}}^{0.35}=1.231 \\
& K z_{\text {Mast2 }}:=2.01\left(\left(\frac{z_{\text {Mast2 }}}{z g}\right)\right)^{\frac{2}{\alpha}}=1.156 \\
& \mathrm{qz}_{\text {Mast2 }}:=0.00256 \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{Kz}_{\text {Mast2 }} \cdot \mathrm{V}^{2}=43.73 \\
& \text { qz } \text { ice.Mast2 }:=0.00256 \cdot K_{z t} \cdot K_{e} \cdot K_{d} \cdot K_{z_{\text {Mast }}} \cdot V_{i}{ }^{2}=6.997 \\
& \mathrm{qz}_{\text {Mast2.Ser }}:=0.00256 \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{~K}_{\mathrm{dSer}} \cdot \mathrm{Kz}_{\text {Mast2 }} \cdot \mathrm{V}_{\text {Ser }}{ }^{2}=9.015
\end{aligned}
$$

Gravity Loads (without ice)
Weight of the mast=
Gravity Loads (ice only)
IceAreaper Linear Foot =

Weight of Ice on Mast=

IceAreaper Linear Foot =

Weight of Ice on Mast =

Wind Load (with ice)

Mast Projected SurfaceArea w/ Ice=
Total MastWind Force w/lce=

Mast Projected SurfaceArea w/lce=
Total MastWind Force w/Ice=
Wind Load (without ice)
Mast Projected Surface Area =
Total Mast W ind Force $=$
Total Mast W ind Force $=$

Wind Load (Service)

Total MastW ind Force Service Loads =
Total MastWind Force Service Loads=
(Pipe 10 Sc. 80) (User Input)
Round (User Input)
$D_{\text {mast }}:=10.75$ in (User Input)
$\mathrm{L}_{\text {mast }}:=25 \quad \mathrm{ft} \quad$ (User Input)
$t_{\text {mast }}:=0.5 \quad$ in \quad (User Input)
$\mathrm{Ca}_{\text {mast }}=1.2$

Self Weight
(Computed internally by Risa-3D)
plf
BLC 1
$A i_{\text {mast }}:=\frac{\pi}{4}\left[\left(D_{\text {mast }}+t_{\text {izMast } 1} \cdot 2\right)^{2}-D_{\text {mast }}{ }^{2}\right]=47.3 \quad$ sqin
$W_{\text {ICEmast }}:=$ Id. $\frac{A i_{\text {mast }}}{144}=18$
plf
$A i_{\text {mast }}:=\frac{\pi}{4}\left[\left(D_{\text {mast }}+t_{\text {izMast } 2} \cdot 2\right)^{2}-D_{\text {mast }}{ }^{2}\right]=46.3 \quad$ sqin
WICEmast $:=\mathrm{Id} \cdot \frac{\mathrm{Ai}_{\text {mast }}}{144}=18 \quad$ plf

AICE $_{\text {mast }}:=\frac{\left(D_{\text {mast }}+2 \cdot t_{\text {izMast } 1}\right)}{12}=1.105$
$\mathrm{qz}_{\text {ice.Mast } 1} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {mast }} \cdot$ AICE $_{\text {mast }}=13 \quad$ plf
AICE $_{\text {mast }}:=\frac{\left(D_{\text {mast }}+2 \cdot t_{\text {izMast } 2}\right)}{12}=1.101 \quad \mathrm{sff}$
qzice.Mast $1 \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {mast }} \cdot$ AICE $_{\text {mast }}=13 \quad$ plf
$A_{\text {mast }}:=\frac{D_{\text {mast }}}{12}=0.896 \quad \mathrm{sf} /$
$\begin{array}{lll}\mathrm{qz}_{\text {Mast } 1} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {mast }} \cdot \mathrm{A}_{\text {mast }}=66 & \text { plf } & \text { BLC5 } \\ \text { qZ }_{\text {Mast } 2} \cdot \mathrm{G}_{\mathrm{H}} \cdot \text { Ca mast } \cdot \mathrm{A}_{\text {mast }}=63 & \text { plf } & \text { BLC5 }\end{array}$

qz $_{\text {Mast1.Ser }} \cdot G_{H} \cdot \mathrm{Ca}_{\text {mast }} \cdot A_{\text {mast }}=14$	plf	BLC6
qZ	Mast2.Ser $\cdot G_{H} \cdot$ Ca $_{\text {mast }} \cdot A_{\text {mast }}=13$	plf

二NT $=\mathrm{K}$ engineering	Subject:	Loads on AT\&T Mast - Structure 3275
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L. Checked by: C.F.C. Job No. 22006.03

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model =	RFSAPXVAALL18_43		
Antenna Shape $=$	Flat		(User Input)
Ante ma Height $=$	$\mathrm{L}_{\text {ant }}:=72$	in	(User Input)
Antenna Width =	$W_{\text {ant }}:=24$	in	(User Input)
Antenna Thickness=	$\mathrm{T}_{\text {ant }}:=8.5$	in	(User Input)
Antenna Weight =	WT ant $:=118$	lbs	(User Input)
Number of Antennas $=$	$\mathrm{Nant}:=2$		(User Input)
AntennaAspectRatio =	$\operatorname{Ar}_{\mathrm{ant}}:=\frac{\mathrm{L}_{\mathrm{ant}}}{\mathrm{~W}_{\mathrm{ant}}}$		
Antenna Force Coefficient $=$	$\mathrm{Ca}_{\text {ant }}=1.22$		

Gravity Load (without ice)
Weight of All Antennas=
Gravity Loads (ice only)
Volume of Each Antenna =

Volume of Ice on EachAntenna =

Weight of Ice on EachAntenna $=$

Weight of Ice onAllAntennas =

Wind Lœad (with ice)

Surface Area for One Antenna w/ Ice =

Antenna Projected Surface Area w/ $\mathrm{ce}=$

Total Antenna Wind Forcew/Ice=

Wind Lcad (without ice)
SurfaceArea for One Antenna $=$
Antenna Projected Surface Area $=$
Total AntennaWind Force $=$
Wind Load (Service)

TotalAntenna Wind ForceService Loads =

RFSAPXVAALL18_43
$W T_{\text {ant }} N_{\text {ant }}=236$
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}=1 \times 10^{4}$
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {ant }}+2 \cdot \mathrm{t}_{\text {izant }}\right)\left(\mathrm{W}_{\text {ant }}+2 \cdot \mathrm{t}_{\text {izant }}\right) \cdot\left(\mathrm{T}_{\text {ant }}+2 \cdot \mathrm{t}_{\text {izant }}\right)-\mathrm{V}_{\text {ant }}=7049$
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot \operatorname{ld}=228$
$W_{\text {ICEant }} N_{\text {ant }}=457$

SA $_{\text {ICEant }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\text {izant }}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\text {izant }}\right)}{144}=13.7$
AICEant $:=$ SA $_{\text {ICEant }} \cdot N_{\text {ant }}=27.4$
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}$ ice.ant $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\text {ICE }}$ ant $=329$
$S A_{\text {ant }}:=\frac{L_{\text {ant }} \cdot W_{\text {ant }}}{144}=12$
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \mathrm{N}_{\text {ant }}=24$
$F_{\text {ant }}:=q z_{\text {ant }} \cdot G_{H} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\mathrm{ant}}=1799$
$F_{\text {ant.Ser }}:=q z_{a n t . S e r} \cdot G_{H} \cdot \mathrm{Ca}_{\text {ant }} \cdot K_{a} \cdot A_{\text {ant }}=371$
lbs
lbs
lbs
lbs
sf
lbs
lbs
BLC 2
cu in
cu in
s
sf
sf
s
BLC 4

BLC 5

BLC 6

Location: Redding, CT

Prepared by: T.J.L. Checked by: C.F.C.
Rev. 5: 12/21/23 Job No. 22006.03

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model $=$
Antenna Shape $=$
Antema Height $=$
Antenna Width $=$
Antenna Thickness $=$
Antenna Weight $=$

Number of Antennas =

AntennaAspectRatio =

Antenna Force Coefficient=

Gravity Load (without ice)
Weight of All Antennas=
Gravity Loads (ice only)
Volume of Each Antenna =

Volume of Ice on EachAntenna =

Weight of Ice on EachAntenna =

Weight of Ice onAllAntennas =

Wind Lœad (with ice)

Surface Area for One Antenna w/ lce $=$
Antenna Projected Surface Area w/ ce $=$
Total Antenna Wind Forcew/ Ice $=$
Wind Load (without ice)
SurfaceArea for One Antenna $=$
Antenna Projected Surface Area $=$
Total AntennaW ind Force $=$
Wind Load (Service)

TotalAntenna Wind ForceServiceLoads $=$

CommscopeATSBT-TOP-MF-4G Bias Tœ	
Flat	(User Input)
$L_{\text {ant }}:=5.63$	in
$W_{\text {ant }}:=3.7$	in
$T_{\text {ant }}:=2$	(User Input)
$W_{\text {ant }}:=2$	in
$N_{\text {ant }}:=2$	(User Input)
$\mathrm{Ar}_{\text {ant }}:=\frac{L_{\text {ant }}}{W_{\text {ant }}}=1.5$	(User Input)
$\mathrm{Ca}_{\text {ant }}=1.2$	

$\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\mathrm{ant}}=4 \quad \mathrm{lbs}$
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\mathrm{ant}} \cdot \mathrm{T}_{\mathrm{ant}}=42$
cu in
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\text {ant }}+2 \cdot \mathrm{t}_{\text {izant }}\right)\left(\mathrm{W}_{\text {ant }}+2 \cdot \mathrm{t}_{\text {izant }}\right) \cdot\left(\mathrm{T}_{\text {ant }}+2 \cdot \mathrm{t}_{\text {izant }}\right)-\mathrm{V}_{\text {ant }}=186$
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot \mathrm{ld}=6$
lbs
$W_{\text {ICEant }} N_{\text {ant }}=12$
Ibs

SA $_{\text {ICEant }}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\text {izant }}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{t}_{\text {izant }}\right)}{144}=0.4 \quad$ sf
$\mathrm{A}_{\text {ICEant }}:=\mathrm{SA}_{\text {ICEant }} \cdot \mathrm{N}_{\text {ant }}=0.7$ sf
$\mathrm{Fi}_{\text {ant }}:=\mathrm{qz}_{\text {ice.ant }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\text {ICEant }}=8 \quad$ lbs
$\mathrm{SA}_{\text {ant }}:=\frac{\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\text {ant }}}{144}=0.1$
sf
$\mathrm{A}_{\text {ant }}:=\mathrm{SA}_{\text {ant }} \cdot \mathrm{N}_{\mathrm{ant}}=0.3 \quad$ sf
$F_{\text {ant }}:=q z_{\text {ant }} \cdot G_{H} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\text {ant }}=21 \quad$ lbs
BLC5
$\mathrm{F}_{\text {ant.Ser }}:=\mathrm{qz} \mathrm{annt}$ Ser $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{ant}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\mathrm{ant}}=4 \quad$ lbs
BLC 6

Centered on Solutions"

Redding, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 22006.03

Development of Wind \& Ice Load on Antenna Mounts

Mount Data:

Mbunt Type:
Mount Shape =

Pipe Mount Length =
2 inch Pipe MountLinear Weight $=$
Pipe Mount Outside Diameter $=$
Number of Mounting Pipes=
Tri-Bracket Weight =
Wind Load (NESC Extreme)
Assumes Mount is Shielded by Antenna

Mount Projected SurfaceArea =

Total Mount W ind Force $=$

Wind Løad (NESC Heavy)

Assumes Mount is Shielded by Antenna

Mount Projected SurfaceArea w/ lce =

Total Mount Wind Force $=$

Wind Load (Service)

Assumes Mount is Shielded by Antenna

TotalAntenna Wind ForceServiceLoads =

Gravity Loads (without ice)

Weight Each Pipe Mount =

Weight of All Mounts=

Gravity Load (ice only)

Volume of Each Pipe $=$
$\mathrm{V}_{\mathrm{mnt}}:=\frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{mnt}}{ }^{2} \cdot \mathrm{~L}_{\mathrm{mnt}}=425$
Cu in
$V_{\text {ice }}:=\left[\frac{\pi}{4} \cdot\left[\left(D_{m n t}+2 \cdot t_{\text {izant }}\right)^{2}\right] \cdot\left(L_{m n t}+2 \cdot t_{\text {izant }}\right)\right]-V_{m n t}=1418$
$W_{\text {ICEmnt }}:=\frac{V_{\text {ice }}}{1728} \cdot \operatorname{ld}=46$
lbs
$\mathrm{W}_{\text {ICEmnt }} \cdot \mathrm{N}_{\text {mnt }}+5=97$
lbs
BLC 5

AICEmnt $:=0.0$
$\mathrm{Fi}_{\text {mnt }}:=\mathrm{qz} \mathrm{ice.ant} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {ant }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{A}_{\text {ICEmnt }}=0$
lbs
BLC 4
$F_{\text {ant.Ser }}:=q z_{\text {ant.Ser }} \cdot G_{H} \cdot \mathrm{Ca}_{\text {ant }} \cdot K_{a} \cdot A_{\text {mnt }}=0$
lbs
$W T_{m n t}:=W_{m n t} \cdot \frac{L_{m n t}}{12}=29$
lbs
$W T_{m n t} \cdot N_{m n t}+W_{\text {tb.mnt }}=256$
lbs
BLC 2
cu in

BLC 3

1T三K engineering	Subject:	Loads on AT\&T Mast - Structure 3275
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L. Checked by: C.F.C. Job No. 22006.03

Development of Wind \& Ice Load on Coax Cables

Cable Data:
Type $=\quad 7 / 8^{\prime \prime}$
Shape $=\quad$ Round \quad (User Input)
Coax Outside Diameter =
Coax Cable Length $=$
Weight of Coax per foot $=$
Total Number of Coax=
No. of Coax Projecting Outside Face of PCS Mast=

Coax aspect ratio,
Coax Cable Force Factor Coefficient $=$

Gravity Loads (without ice)

Weight of all cables w/o ice

Gravity Loads (ice only)
IceAre aper Linear Foot=
lce WeightAll Coax per foot =
Wind Load (with ice)

Coax projected surface area w/ lce =

Total Coax Wind Force w/ Ice =
Wind Lœad (without ice)
Coax projected surface area $=$

Total CoaxW ind Force $=$

Wind Load (Service)

Total CoaxW ind Force Service Loads =
$\mathrm{WT}_{\text {coax }}:=\mathrm{Wt}_{\text {coax }} \cdot \mathrm{N}_{\text {coax }}=9 \quad$ plf
plf
plf

$$
\mathrm{F}_{\text {coax }}:=\mathrm{Ca}_{\text {coax }} \cdot{ }^{q z_{\text {Mast }}} \text {.Ser } \cdot G_{H} \cdot A_{\text {coax }}=3
$$

BLC2
$\mathrm{Ai}_{\text {coax }}:=\frac{\pi}{4}\left[\left(\mathrm{D}_{\text {coax }}+2 \cdot \mathrm{t}_{\mathrm{izMast} 1}\right)^{2}-\mathrm{D}_{\text {coax }}{ }^{2}\right]=9.3 \quad$ sqin $\mathrm{WTi}_{\text {coax }}:=\mathrm{N}_{\text {coax }} \cdot \mathrm{Id} \cdot \frac{\mathrm{Ai}_{\text {coax }}}{144}=58 \quad$ plf $\mathrm{AICE}_{\text {coax }}:=\frac{\left(\mathrm{NP}_{\text {coax }} \cdot \mathrm{D}_{\text {coax }}+2 \cdot \mathrm{t}_{\text {izMast } 1}\right)}{12}=0.4 \quad \mathrm{sfft}$

$$
\mathrm{Fi}_{\text {coax }}:=\mathrm{Ca}_{\text {coax }} \cdot \mathrm{qZ}_{\text {ice.Mast } 1} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{AlCE}_{\text {coax }}=5
$$

$$
\mathrm{A}_{\text {coax }}:=\frac{\left(\mathrm{NP}_{\text {coax }} \mathrm{D}_{\text {coax }}\right)}{12}=0.2
$$

$$
\mathrm{F}_{\text {coax }}:=\mathrm{Ca}_{\text {coax }} \cdot \mathrm{qz}_{\text {Mast }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{~A}_{\text {coax }}=14
$$

BLC 5

BLC6
\qquad
Model Name : Strcuture \#3275-Mast

Detail Report: M1

Load Combination: LC 4: 1.0D + 1.0WService

		Input Data			
		Shape:	PIPE_10.0X	I Node:	BOTCONNECTION
		Member Type:	Column	J Node:	TOPM AST
		Length (ft):	25	I Release:	Fixed
		Material Type:	Hot Rolled Steel	J Release:	Fixed
		Design Rule:	Typical	I Offset:	N/A
		Internal Sections:	97	J Offset:	N/A
		Design Code:	AISC 14th (360-10): LRFD	T/C Only:	Both Way

Material Properties

Material:	A53 Gr. B	Therm. Coeff. (/1E5 F):	0.65	F_{u} (ksi):	60
E (ksi):	29000	Density (k/ft ${ }^{3}$):	0.49	$\mathbf{R}_{\mathbf{t}}$:	1.2
G (ksi):	11154	F_{y} (ksi):	35		
Nu:	0.3	Ry:	1.5		

Shape Properties

d (in):	10.75	Area (in ${ }^{2}$):	15.1	$\mathrm{I}_{\mathrm{zz}}\left(\mathrm{in}{ }^{4}\right):$	199
t (in):	0.465	$J\left(n^{4}\right):$	398		
Z (in ${ }^{3}$):	49.2	$\mathrm{I}_{\mathrm{yy}}\left(\mathrm{in}{ }^{4}\right.$):	199		
Design Properties					
$L_{b y-y}(f t):$	25	K_{y-y} :	1	Max Defl Ratio:	L/1156
$L_{\text {b z-z }}(\mathrm{ft})$:	25	K-z:	1	Max Defl Location:	25
$L_{\text {comp top (}}(\mathrm{ft})$:	25	y sway:	No	Span:	N/A
Lcomp bot (ft):	25	z sway:	No	τ_{b} :	1
$L_{\text {torque }}(\mathrm{ft})$:	25	Function:	Lateral		
C_{b} :	1	Seismic DR:	None		

Diagrams:

	Subject:	Mast Connection to Pole \# 3275
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L. Checked by: C.F.C. Job No. 22006.03

Mast Top Connection:

Maximum Design Reactions at Brace:

Vertical $=$	Vert $:=0 \cdot \mathrm{kips}$	(User Input)
Horizontal $=$	Horz $:=6.3 \cdot \mathrm{kips}$	(User Input)
Moment $=$	Moment $:=0$	(User Input)

Bolt Data:

Bolt Grade =
Number of Bolts=
Bolt Diameter $=$
Nomianl Tensile Strength =
Nomianl Shear Strength $=$
Resistance Factor $=$

Bolt Eccentricity from C.L. Mast =

Vetical Spacing Betwœn Top and Bottom Bolts =
Horizontal Spacing Between Bolts =

BoltArea =

A 307 Rod	(User Input)
$\mathrm{n}_{\mathrm{b}}:=6$	(User Input)
$\mathrm{d}_{\mathrm{b}}:=0.625 \mathrm{in}$	(User Input)
$\mathrm{F}_{\mathrm{nt}}:=45 \cdot \mathrm{ksi}$	(User Input)
$\mathrm{F}_{\mathrm{nv}}:=27 \cdot \mathrm{ksi}$	(User Input)
$\phi:=0.75$	(User Input)
$\mathrm{e}:=16 \cdot \mathrm{in}$	(User Input)
$\mathrm{S}_{\text {vert }}:=9 \cdot \mathrm{in}$	(User Input)
$\mathrm{S}_{\text {horz }}:=14.75 \cdot \mathrm{in}$	(User Input)

$a_{b}:=\frac{1}{4} \cdot \pi \cdot d_{b}{ }^{2}=0.307 \cdot \mathrm{in}^{2}$

C=NT $=\mathrm{K}$ engineering	Subject:	Mast Connection to Pole \# 3275
	Location: Rev. 5: 12/21/23	Redding, CT Prepared by: T.J.L. Checked by: C.F.C. Job No. 22006.03

Check Bolt Stresses:

Wind Acting Parallel to Stiffiner Plate:

$$
\begin{aligned}
& f_{v}:=\frac{\text { Vert }}{n_{b} \cdot a_{b}}=0 \cdot \mathrm{ksi} \\
& \begin{array}{l}
\text { Condition }:=\mathrm{if}\left(\mathrm{f}_{\mathrm{v}}<\phi \cdot \mathrm{F}_{\mathrm{nv}}, \text { "OK" , "Overstressed" }\right) \quad \frac{\mathrm{f}_{\mathrm{v}}}{\left(\phi \cdot \mathrm{~F}_{\mathrm{nv}}\right)}=0 . \% \\
\text { Condition1 }=\text { "OK" }
\end{array} \\
& F_{n t}^{\prime}:=\left\{\begin{array}{l}
\left(1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v}\right) \text { if } 1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v} \leq F_{n t}=45 \cdot \mathrm{ksi} \\
F_{n t} \text { otherwise }
\end{array}\right. \\
& F_{\text {tension.bolt }}:=\frac{\text { Horz }}{n_{b}}+\frac{\text { Vert } \cdot \mathrm{e}}{S_{\text {vert }}{ }^{2}}=1.05 \cdot \text { kips } \\
& \text { TensionStress Each Bolt = } \\
& f_{t}:=\frac{F_{\text {tension.bolt }}}{a_{b}}=3.4 \cdot \mathrm{ksi} \\
& \begin{array}{l}
\text { Condition2 : }=\mathrm{if}\left(\mathrm{f}_{\mathrm{t}}<\phi \cdot \mathrm{F}_{\mathrm{nt}}^{\prime}, \text { "OK" " "Overstressed" }\right) \\
\text { Condition2 }=\text { "OK" }
\end{array}
\end{aligned}
$$

Wind Acting Perpendicular to Stiffiner Plate:

Mast Connection to Bottom Bracket:

Design Reactions at Brace:

Axial $($ Max $)=$
Axial $($ Min $)=$
Horz $=$
Moment $=$

Axial $_{\max }:=2.3 \cdot \mathrm{kips}$	(User Input)
Axial $_{\min }:=1.8 \cdot \mathrm{kips}$	(User Input)
Horz $:=2.6 \cdot \mathrm{kips}$	(User Input)
Moment $:=0 \cdot \mathrm{kips} \cdot \mathrm{ft}$	(User Input)

Resistance Factors:
Yielding Factor $=$
Rupture Factor $=$
Shear Factor $=$

$\phi_{\mathrm{t}}:=0.9$	(User Input)
$\phi_{\mathrm{r}}:=0.75$	(User Input)
$\phi_{\mathrm{V}}:=0.9$	(User Input)

Bolt Data:
Bolt Type $=$
Bolt Diameter $=$
Number of Bolts $=$
Design Tensile Strength $=$
Design Shear Strength $=$
Distance from Seat Plate to Threaded Rod $=$

Check Bolt:
Shear Force =

Bolt Shear \% of Capacity =

CheckBoltShear $=$

ASTMA36 Rœd
$D:=0.625 \cdot$ in
$\mathrm{N}_{\mathrm{b}}:=1$
$F_{t}:=10.4 \cdot \mathrm{kips}$
$\mathrm{F}_{\mathrm{V}}:=12.5 \cdot \mathrm{kips}$
dist $:=3$-in
$\mathrm{f}_{\mathrm{v}}:=\frac{\text { Horz }}{\mathrm{N}_{\mathrm{b}}}=2.6 \cdot \mathrm{kips}$
$\frac{f_{v}}{F_{v}}=20.8 \%$
Condition1:= if $\left(\frac{f_{v}}{F_{v}} \leq 1.00\right.$, "OK", "Overstressed" $)$
Condition1 = "OK"

C $=N T$ 二人 engineering	Subject:	Mast Connection to Bottom Bracket
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L. Checked by: C.F.C. Job No. 22006.03

Check Bracket:

Yield Strength $=$	$\mathrm{F}_{\mathrm{y}}:=36 \cdot \mathrm{ksi}$	(User Input)
Plate Height $=$	$\mathrm{PI}_{\mathrm{h}}:=6 \cdot \mathrm{in}$	(User Input)
Plate Thickness $=$	$\mathrm{PI}_{\mathrm{t}}:=0.5 \cdot \mathrm{in}$	(User Input)
Plate Length $=$	$\mathrm{PI}_{\mathrm{I}}:=11 \cdot \mathrm{in}$	(User Input)
Number of Plates $=$	$\mathrm{n}_{\mathrm{plt}}:=4$	(User Input)

Plate GrossArea $=$ Inside of BracketBox Dimension = Outside of Bracket Box Dimension =

Section Modulus BracketAssembly=

Design Bending Stress=
Design Shear $=$
Local Moment $=$

Bending Stress =

Max Shear $=$

Design Weld Stress =
Weld Size =

WeldArea $=$

Section Modulus of Weld =

Weld Stress=
$F_{y w}:=70 \cdot \mathrm{ksi}$
(User Input)
$\mathrm{F}_{\mathrm{w}}:=0.45 \cdot \mathrm{~F}_{\mathrm{yw}}=31.5 \cdot \mathrm{ksi}$
sw $:=0.25 \cdot \mathrm{in}$
(User Input)
$A_{w}:=\left(d_{2}+2 \cdot 0.707 \cdot s w\right)^{2}-d_{2}{ }^{2}=8.609 \cdot$ in $^{2} \quad$ (User Input)
$S_{x}:=\frac{\left(d_{2}+2 \cdot 0.707 \cdot s w\right)^{4}-\left(d_{2}\right)^{4}}{6 \cdot\left(d_{2}+2 \cdot 0.707 \cdot s w\right)}=34.45 \cdot \mathrm{in}^{3} \quad$ (User Input)
$f_{w}:=\frac{M_{\text {minor }}}{S_{x}}+\frac{\text { Horz }}{A_{w} \cdot 0.5}=0.83 \cdot \mathrm{ksi}$
$\begin{array}{ll}\text { Condition3 }:=\mathrm{if}\left(\mathrm{f}_{\mathrm{w}}<\mathrm{F}_{\mathrm{w}}, \text { "OK" , "Overstressed" }\right) & \frac{\mathrm{f}_{\mathrm{w}}}{\mathrm{F}_{\mathrm{w}}}=2.6 \cdot \% \\ \text { Condition3 }=\text { "OK" }\end{array}$

$$
\begin{aligned}
\text { Plate GrossArea }= & \mathrm{A}_{\mathrm{g}}:=\mathrm{Pl}_{\mathrm{h}} \cdot \mathrm{Pl}_{\mathrm{t}}=3.75 \cdot \mathrm{in}^{2} \\
\text { Effective NetArea }= & \mathrm{A}_{\mathrm{en}}:=\mathrm{A}_{\mathrm{g}}=3.75 \cdot \mathrm{in}^{2} \\
\text { Tensile Yieding }= & \mathrm{P}_{\mathrm{at}}:=\phi_{\mathrm{t}} \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{g}}=121.5 \cdot \mathrm{kips} \\
\text { Tensile Rupture }= & \mathrm{P}_{\mathrm{ar}}:=\phi_{\mathrm{r}} \cdot \mathrm{~F}_{\mathrm{u}} \cdot \mathrm{~A}_{\mathrm{en}}=163.125 \cdot \mathrm{kips} \\
\text { Design Tension }= & \mathrm{Pa}:=\min \left(\mathrm{P}_{\mathrm{at}}, \mathrm{P}_{\mathrm{ar}}\right)=121.5 \cdot \mathrm{kips} \\
\text { Design Shear }= & \mathrm{V}_{\mathrm{n}}:=\phi_{\mathrm{V}} \cdot 0.6 \cdot \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{g}}=72.9 \cdot \mathrm{kips} \\
\text { Design Bending Stress }= & \mathrm{F}_{\mathrm{b}}:=0.9 \cdot \mathrm{~F}_{\mathrm{y}}=32.4 \cdot \mathrm{ksi}
\end{aligned}
$$

Wind Acting Parallel to Stiffiner Plates:

$$
\begin{aligned}
& \text { Moment Parallel }= \\
& \text { Bending Stress= } \\
& M_{\text {par }}:=\text { Moment }+ \text { Axial }_{\text {max }} \cdot \mathrm{d}+\mathrm{M}_{\text {minor }}+\text { Horz } \cdot \mathrm{S}_{\text {vert }}=50.3 \cdot \mathrm{in} \cdot \mathrm{kips} \\
& f_{b}:=\frac{M_{\text {par }}}{S_{x}}=1.94 \cdot \mathrm{ksi} \\
& \text { Max Tension }= \\
& \text { Max Shear = } \\
& \frac{f_{b}}{F_{b}}+\frac{T_{\text {max }}}{P a}+\frac{V_{\text {max }}}{V_{n}}=7.8 . \% \\
& \mathrm{~T}_{\text {max }}:=\frac{\text { Horz }}{\mathrm{n}_{\text {plt }}}=0.867 \cdot \mathrm{kips} \\
& \mathrm{~V}_{\text {max }}:=\frac{\text { Axial }_{\max }}{\mathrm{n}_{\mathrm{plt}}}=0.767 \cdot \mathrm{kips} \\
& \text { Condition4: }=\text { if }\left(\frac{f_{b}}{F_{b}}+\frac{T_{\text {max }}}{P a}+\frac{V_{\text {max }}}{V_{n}}<1 \text {, "OK", "Overstressed" }\right) \\
& \text { Condition4 = "OK" }
\end{aligned}
$$

Wind Acting Perpendicular to Stiffiner Plates:

$$
\begin{aligned}
& \text { Moment Parallel }= \\
& \text { Moment } \text { Perpendicular }= \\
& \text { Bending Stress = } \\
& \text { Max Tension = } \\
& M_{\text {par }}:=\text { Axial }_{\text {max }} \cdot \mathrm{d}=23.644 \cdot \mathrm{in} \cdot \mathrm{kips} \\
& M_{\text {perp }}:=\text { Horz } \cdot d=26.728 \cdot \text { in } \cdot \text { kips } \\
& \mathrm{f}_{\mathrm{b}}:=\frac{\mathrm{M}_{\text {par }}}{\mathrm{S}_{\mathrm{x}}}=0.91 \cdot \mathrm{ksi} \\
& \mathrm{~T}_{\text {max }}:=\frac{\mathrm{M}_{\text {perp }}}{\mathrm{d}_{\mathrm{plt}}}=1.909 \cdot \mathrm{kips} \\
& \text { MaxShear }=\quad \mathrm{V}_{\text {max }}:=\frac{\text { Axial }_{\text {max }}+\text { Horz }}{\mathrm{n}_{\mathrm{plt}}}+\frac{\text { Moment }+\mathrm{M}_{\text {minor }}+\text { Horz• } \mathrm{S}_{\text {vert }}}{\mathrm{d}_{\mathrm{plt}}}=3.537 \cdot \mathrm{kips} \\
& \text { Condition5: }=\text { if }\left(\frac{\mathrm{f}_{\mathrm{b}}}{\mathrm{~F}_{\mathrm{b}}}+\frac{\mathrm{T}_{\text {max }}}{\mathrm{Pa}}+\frac{\mathrm{V}_{\text {max }}}{\mathrm{V}_{\mathrm{n}}}<1 \text {, "OK" , "Overstressed" }\right) \\
& \text { Condition5 = "OK" } \\
& \frac{f_{b}}{F_{b}}+\frac{T_{\text {max }}}{P a}+\frac{V_{\text {max }}}{V_{n}}=9.2 . \%
\end{aligned}
$$

Weld Data:

Weld Yield Stress $=$	$\mathrm{F}_{\mathrm{yw}}:=70 \cdot \mathrm{ksi}$	(User Input)
Design Weld Stress $=$	$\mathrm{F}_{\mathrm{w}}:=0.45 \cdot \mathrm{~F}_{\mathrm{yw}}=31.5 \cdot \mathrm{ksi}$	
Weld Size $=$	$\mathrm{sw}^{\prime}:=0.25 \cdot \mathrm{in}$	(User Input)
Weld Area $=$	$\mathrm{A}_{\mathrm{w}}:=14.0 \cdot \mathrm{in}^{2}$	(User Input)
Mbdulus of Weld $=$	$\mathrm{S}_{\mathrm{x}}:=\frac{108.9}{5.5} \cdot \mathrm{in}^{3}=19.8 \cdot \mathrm{in}^{3}$	(User Input)
S Modulus of Weld $=$	$\mathrm{S}_{\mathrm{z}}:=\frac{406.9}{8.125} \cdot \mathrm{in}^{3}=50.1 \cdot \mathrm{in}^{3}$	(User Input)
	$\mathrm{A}_{\mathrm{w} 1}:=2.8 \cdot \mathrm{in}^{2} \quad$ (User Input)	

Wind Acting Parallel to Stiffiner Plates:

$$
\begin{array}{ll}
\text { Moment Parallel }= & M_{\text {par }}:=\text { Moment }+ \text { Axial }_{\text {max }} \cdot d+M_{\text {minor }}+\text { Horz } \cdot S_{\text {vert }}=50.3 \cdot \mathrm{in} \cdot \mathrm{kips} \\
\text { Weld Stress }= & \mathrm{f}_{\mathrm{w}}:=\frac{M_{\text {par }}}{S_{x}}+\frac{\text { Axial }_{\text {max }}+\text { Horz }}{A_{w}}=2.89 \cdot \mathrm{ksi} \\
& \text { Condition6 }:=\operatorname{if}\left(\mathrm{f}_{\mathrm{w}}<\mathrm{F}_{\mathrm{w}}, \text { "OK" , "Overstressed" }\right) \quad \frac{\mathrm{f}_{w}}{F_{w}}=9.2 \cdot \% \\
& \text { Condition } 6=\text { "OK" }
\end{array}
$$

Wind Acting Perpendicular to Stiffiner Plates:

> Moment Parallel $=$
> $M_{\text {par }}:=$ Axial $_{\text {max }} \cdot \mathrm{d}=23.644 \cdot \mathrm{in} \cdot \mathrm{kips}$
> Moment Perpendicular $=$
> $M_{\text {perp }}:=$ Horz $\cdot d=26.728 \cdot$ in.kips
> Weld Stress $=\quad f_{w}:=\frac{M_{\text {par }}}{S_{x}}+\frac{M_{\text {perp }}}{S_{z}}+\frac{\text { Axial }_{\text {max }}+\text { Horz }}{A_{w}}+\frac{\text { Moment }+M_{\text {minor }}+\text { Horz• } S_{\text {vert }}}{\left(d_{\text {plt }} \cdot A_{w 1}\right)}=2.76 \cdot \mathrm{ksi}$
> $\begin{aligned} & \text { Condition7:= if }\left(\mathrm{f}_{\mathrm{w}}<\mathrm{F}_{\mathrm{w}}, \text { "OK" , "Overstressed" }\right) \\ & \text { Condition7 }=\text { "OK" }\end{aligned}$

K engineering	Subject:	Mast Connection to CL\&P Pole \# 3275
Centered on Solutions ${ }^{-}$wemucenternacian	Location:	Redding, CT
Banfoud Cliostos Fif 2014888517	Rev. 5: 12/21/23	Prepared by: T.J.L. Checked by: C.F.C. Job No. 22006.03

Mast Bottom Connection:

Maximum Design Reactions at Brace:

Vertical $=$	Vert $:=1.8 \cdot \mathrm{kips}$	(User Input)
Horizontal $=$	Horz $:=2.6 \cdot \mathrm{kips}$	(User Input)
Moment $=$	Moment $:=0 \cdot f \mathrm{ft} \cdot \mathrm{kips}$	(User Input)

Bolt Data:

Bolt Grade =
Number of Bolts $=$
Bolt Diameter $=$
Nomianl Tensile Strength $=$
Nomianl Shear Strength $=$
Resistance Factor =

Bolt Eccentricity from C.L.Mast =
Horizontal Spacing Between Bolts =
VerticalDistance from Botof Mast to Center of Barcket =

BoltArea $=$

Vetic a Spacing From Plate CL to Bolt $1=$
Vetic a Spacing From Plate CL to Bolt 2 =

Bolt Polar Moment of Ineria =

BoltArea $=$

A307 Rod	(User Input)
$\mathrm{n}_{\mathrm{b}}:=8$	(User Input)
$\mathrm{d}_{\mathrm{b}}:=0.625 \mathrm{in}$	(User Input)
$\mathrm{F}_{\mathrm{nt}}:=45 \cdot \mathrm{ksi}$	(User Input)
$\mathrm{F}_{\mathrm{nv}}:=27 \cdot \mathrm{ksi}$	(User Input)
$\phi:=0.75$	(User Input)
$\mathrm{e}:=16 \cdot \mathrm{in}$	(User Input)
$\mathrm{S}_{\text {horz }}:=17.25 \cdot \mathrm{in}$	(User Input)
$\mathrm{S}_{\text {vert }}:=7.25 \cdot \mathrm{in}$	(User Input)
$a_{b}:=\frac{1}{4} \cdot \pi \cdot d_{b}^{2}=0 .$	2
$\mathrm{d}_{1}:=2 \cdot \mathrm{in}$	(User Input)
$\mathrm{d}_{2}:=6 \cdot \mathrm{in}$	(User Input)
$I_{p}:=4 \cdot\left(d_{1}\right)^{2}+4 \cdot\left(d_{2}\right)^{2}=160 \cdot \mathrm{in}^{2}$	
$\mathrm{a}_{\mathrm{b}}:=\frac{1}{4} \cdot \pi \cdot \mathrm{~d}_{\mathrm{b}}^{2}=0 .$	2

Check Bolt Stresses:
Wind Acting Parallel to Stiffiner Plate:

Shear Stress per Bolt =	$\mathrm{f}_{\mathrm{v}}:=\frac{\text { Vert }}{\mathrm{n}_{\mathrm{b}} \cdot \mathrm{a}_{\mathrm{b}}}=0.733 \cdot \mathrm{ksi}$
	$\begin{aligned} & \text { Condition1 := if }\left(\mathrm{f}_{\mathrm{v}}<\phi \cdot \mathrm{F}_{\mathrm{nv}}, \text { "OK" , "Overstressed" }\right) \quad \frac{\mathrm{f}_{\mathrm{v}}}{\left(\phi \cdot \mathrm{~F}_{\mathrm{nv}}\right)}=3.6 \cdot \% \\ & \text { Condition1 }=\text { "OK" } \end{aligned}$
Tensile StressAdjusted forShear $=$	$F_{n t}^{\prime}:=\left\lvert\, \begin{aligned} & \left(1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v}\right) \text { if } 1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v} \leq F_{n t}=45 \cdot \mathrm{ksi} \\ & F_{n t} \text { otherwise } \end{aligned}\right.$
Tension Force Each Bolt =	$F_{\text {tension.bolt }}:=\frac{\text { Horz }}{n_{b}}+\frac{\left(\text { Vert } \cdot \mathrm{e}+\text { Moment }+ \text { Horz } \cdot \mathrm{S}_{\text {vert }}\right) \cdot d_{2}}{I_{\mathrm{p}}}=2.1 \cdot \mathrm{kips}$
TensionStress Each Bolt =	$f_{t}:=\frac{F_{\text {tension.bolt }}}{a_{b}}=6.9 \cdot \mathrm{ksi}$
	$\begin{aligned} & \text { Condition2 := if }\left(\mathrm{f}_{\mathrm{t}}<\phi \cdot \mathrm{F}_{\mathrm{nt}}, \text { "OK" , "Overstressed" }\right) \\ & \text { Condition2 }=\text { "OK" } \quad \frac{\mathrm{f}_{\mathrm{t}}}{\left(\phi \cdot \mathrm{~F}_{n t}^{\prime}\right)}=20.4 . \% \end{aligned}$

Wind Acting Perpendicular to Stiffiner Plate:

Shear Stress per Bolt=

Tensile StressAdjusted forShear =

$$
\begin{array}{ll}
\text { Tension Force per Bolt }= & F_{\text {tension.conn }}:=\frac{\text { Horz } \cdot \mathrm{e}}{\mathrm{~S}_{\text {horz }} \cdot \frac{\text { Vert } \cdot \mathrm{e} \cdot \mathrm{~d}_{2}}{2}}+\frac{\mathrm{I}_{\mathrm{p}}}{}=1.683 \cdot \mathrm{kips} \\
\text { TensionStress Each Bolt }= & \mathrm{f}_{\mathrm{t}}:=\frac{\mathrm{F}_{\text {tension.conn }}}{a_{b}}=5.485 \cdot \mathrm{ksi} \\
& \text { Condition4 }:=\mathrm{if}\left(\mathrm{f}_{\mathrm{t}}<\phi \cdot \mathrm{F}^{\prime}{ }_{\mathrm{nt}}, \text { "OK" , "Overstressed" }\right) \quad \frac{\mathrm{f}_{\mathrm{t}}}{\left(\phi \cdot \mathrm{~F}^{\prime} \mathrm{nt}\right)}=16.3 \cdot \% \\
& \text { Condition } 4=\text { "OK" }
\end{array}
$$

$f_{v}:=\sqrt{\left[\frac{\text { Vert }}{n_{b} \cdot a_{b}}+\frac{\left(\text { Moment }+ \text { Horz } \cdot S_{\text {vert }}\right) \cdot 2}{S_{\text {horz }} \cdot n_{b} \cdot a_{b}}\right]^{2}+\left(\frac{\text { Horz }}{n_{b} \cdot a_{b}}\right)^{2}}=1.939 \cdot \mathrm{ksi}$

Condition3 := if($\mathrm{f}_{\mathrm{v}}<\phi \cdot \mathrm{F}_{\mathrm{nv}}$, "OK", "Overstressed")
$\frac{f_{v}}{\left(\phi \cdot F_{n v}\right)}=9.6 \cdot \%$
$F_{n t}^{\prime}:=\left\{\begin{array}{l}\left(1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v}\right) \text { if } 1.3 \cdot F_{n t}-\frac{F_{n t}}{\phi \cdot F_{n v}} \cdot f_{v} \leq F_{n t}=45 \cdot \mathrm{ksi} \\ F_{n t} \text { otherwise }\end{array}\right.$

二NT $=\mathrm{K}$ engineering	Subject:	Load Analysis of AT\&T Equipment on Structure \#3275
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L Checked by: C.F.C. Job No. 22006.03

二NJT N (engineering	Subject:	Load Analysis of AT\&T Equipment on Structure \#3275
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L Checked by: C.F.C. Job No. 22006.03

Development of Wind \& Ice Load on Mast

Mast Data:
Mast Shape $=$
Mast Diameter $=$
Mast Length $=$

Wind Load (NESC Extreme)

Mast Projected Surface Area =

Total MastW ind Force $($ Above Structure $)=$
Total MastW ind Force $($ Below Structure $)=$

Wind Load (NESE Heavy)

Mast Projected SurfaceArea w/ lce=

Total MastWind Force w/lce=

Gravity Loads (without ice)

Weight of the Mast =

Gravity Loads (ice only)

IceAreaper Linear Foot =

Weight of lce on Mast =
(Pipe 10Sch. 80)
Round

$\mathrm{D}_{\text {mast }}:=10.75$	in	(User Input)
$\mathrm{L}_{\text {mast }}:=25$	ft	(User Input)
$\mathrm{t}_{\text {mast }}:=0.5$	in	(User Input)

二NT $=\mathrm{K}$ engineering	Subject:	Load Analysis of AT\&T Equipment on Structure \#3275
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L Checked by: C.F.C. Job No. 22006.03

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model =

RFSAPXVAALL18_43
Antenna Shape $=$
Flat
(User Input)
Ante ma Height =
Antenna Width =
Antenna Thickness=

Antenna Weight =

Number of Antennas =

$\mathrm{L}_{\mathrm{ant}}:=72$	in	(User Input)
$\mathrm{W}_{\mathrm{ant}}:=24$	in	(User Input)
$\mathrm{T}_{\mathrm{ant}}:=8.5$	in	(User Input)
$\mathrm{WT}_{\mathrm{ant}}:=118$	lbs	(User Input)
$\mathrm{N}_{\mathrm{ant}}:=2$		(User Input)

Gravity Load (without ice)

Weight of All Antennas=

Gravity Load (ice only)

Volume of Each Antenna =

Volume of Ice on EachAntenna =

Weight of Ice on EachAntenna =

Weight of Ice onAllAntennas =
Wind Load (NESC Heavy)

Effective ProjectedArea for OneArtenna $=$

Antenna Projected Surface Area =

TotalAntenna Wind Forcew/ Ice =

Wind Load (NESC Extreme)

Effective ProjectedArea for OneArtenna $=$

Antenna Projected Surface Area =

Total AntennaW ind Force=
$\mathrm{Wt}_{\mathrm{a} 1}:=\mathrm{WT}_{\text {ant }} \cdot \mathrm{N}_{\mathrm{ant}}=236$
lbs
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\mathrm{ant}} \cdot \mathrm{W}_{\text {ant }} \cdot T_{\text {ant }}=1 \times 10^{4} \quad \mathrm{cu}$ in
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right)\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right)\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right)-\mathrm{V}_{\mathrm{ant}}=2650 \quad \mathrm{cu}$ in
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot$ Id $=86$
lbs
$\mathrm{Wt}_{\mathrm{i} . \mathrm{a} 1}:=\mathrm{W}_{\text {ICEant }} \cdot \mathrm{N}_{\mathrm{ant}}=172$
lbs

$$
\begin{aligned}
\mathrm{EPA}_{\mathrm{N}}:= & \left.\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right)}{144}=12.67 \quad E P A_{\mathrm{T}}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{lr}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{lr}\right)}{144}=4 .\right\} \\
& \mathrm{EPA}_{\mathrm{A} 1}:=E P A_{\mathrm{N}} \cdot \cos (\phi)^{2}+E P A_{\mathrm{T}} \cdot \sin (\phi)^{2}=12.67 \\
& \mathrm{EPA}_{\mathrm{A} 2}:=E P A_{\mathrm{N}} \cdot \cos (120 \cdot \operatorname{deg}-\phi)^{2}+E P A_{\mathrm{T}} \cdot \sin (120 \cdot \mathrm{deg}-\phi)^{2}=6.78 \\
& E P A_{\mathrm{tot}}:=E P A_{\mathrm{A} 1}+E P A_{\mathrm{A} 2}=19.454 \\
& \mathrm{Fi}_{\text {ant } 1}:=\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot E P A_{\mathrm{tot}}=125
\end{aligned}
$$

$E P A_{N}:=\frac{\mathrm{L}_{\text {ant }} \cdot W_{\text {ant }}}{144}=12 \quad E P A_{\mathrm{T}}:=\frac{\mathrm{L}_{\text {ant }} \cdot \mathrm{T}_{\text {ant }}}{144}=4.25$
$E P A_{A 1}:=E P A_{N} \cdot \cos (\phi)^{2}+E P A_{T} \cdot \sin (\phi)^{2}=12$
$E P A_{A 2}:=E P A_{N} \cdot \cos (120 \cdot d e g-\phi)^{2}+E P A_{T} \cdot \sin (120 \cdot d e g-\phi)^{2}=6.19$
$E P A_{\text {tot }}:=E P A_{A 1}+E P A_{A 2}=18.188$
$F_{\text {ant } 1}:=q z \cdot C d_{F} \cdot E P A_{\text {tot }} \cdot m=1157$
lbs

C $=N \mathrm{~N}=\mathrm{K}$ engineering	Subject:	Load Analysis of AT\&T Equipment on Structure \#3275
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L Checked by: C.F.C. Job No. 22006.03

Development of Wind \& Ice Load on Antennas

Antenna Data:

Antenna Model $=$
Antenna Shape $=$
Antema Height $=$
Antenna Width $=$
Antenna Thickness=
Antenna Weight $=$

Gravity Load (without ice)

Weight of All Antennas=

$$
\mathrm{Wt}_{\mathrm{a} 1}:=\mathrm{W} \mathrm{~T}_{\text {ant }} \cdot N_{\mathrm{ant}}=4
$$

lbs

Gravity Load (ice only)

Volume of Each Antenna =

Volume of Ice on EachAntenna $=$

Weight of Ice on EachAntenna $=$

Weight of lce onAllAntennas =
Wind Lœad (NESC Heavy)

Effective ProjectedArea for OneArtenna $=$

Antenna Projected Surface Area =

TotalAntenna Wind Forcew/ Ice =
Wind Load (NESC Extreme)

Effective ProjectedArea for OneArtenna $=$

Antenna Projected Surface Area =

Total Antenna W ind Force=
$\mathrm{V}_{\mathrm{ant}}:=\mathrm{L}_{\text {ant }} \cdot \mathrm{W}_{\text {ant }}{ }^{\top}$ ant $=42 \quad \mathrm{cu}$ in
$\mathrm{V}_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right)\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right)\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right)-\mathrm{V}_{\mathrm{ant}}=52 \quad \mathrm{cu}$ in
$W_{\text {ICEant }}:=\frac{V_{\text {ice }}}{1728} \cdot$ ld $=2$
lbs
$\mathrm{Wt}_{\mathrm{i} . \mathrm{a} 1}:=\mathrm{W}_{\text {ICEant }} \cdot \mathrm{N}_{\text {ant }}=3 \quad$ lbs

$$
\begin{aligned}
\mathrm{EPA}_{\mathrm{N}}:= & \frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{lr}\right) \cdot\left(\mathrm{W}_{\mathrm{ant}}+2 \cdot \mathrm{lr}\right)}{144}=0.22 \quad E P A_{\mathrm{T}}:=\frac{\left(\mathrm{L}_{\mathrm{ant}}+2 \cdot \mathrm{lr}\right) \cdot\left(\mathrm{T}_{\mathrm{ant}}+2 \cdot \mathrm{Ir}\right)}{144}=0 . \\
& \mathrm{EPA}_{\mathrm{A} 1}:=\mathrm{EPA}_{\mathrm{N}} \cdot \cos (\phi)^{2}+E P A_{\mathrm{T}} \cdot \sin (\phi)^{2}=0.22 \\
& \mathrm{EPA}_{\mathrm{A} 2}:=\mathrm{EPA}_{\mathrm{N}} \cdot \cos (120 \cdot \operatorname{deg}-\phi)^{2}+E P A_{\mathrm{T}} \cdot \sin (120 \cdot \mathrm{deg}-\phi)^{2}=0.16 \\
& \mathrm{EPA}_{\mathrm{tot}}:=\mathrm{EPA}_{\mathrm{A} 1}+\mathrm{EPA}_{\mathrm{A} 2}=0.374 \\
& \mathrm{Fi}_{\text {ant } 1}:=\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{EPA}_{\text {tot }}=2
\end{aligned}
$$

$$
\begin{aligned}
& E P A_{N}:=\frac{L_{a n t} \cdot W_{\text {ant }}}{144}=0.14 \quad E P A_{\mathrm{T}}:=\frac{L_{a n t} \cdot{ }^{\top} \text { ant }}{144}=0.08 \\
& E P A_{A 1}:=E P A_{N} \cdot \cos (\phi)^{2}+E P A_{T} \cdot \sin (\phi)^{2}=0.14 \\
& E P A_{A 2}:=E P A_{N} \cdot \cos (120 \cdot d e g-\phi)^{2}+E P A_{T} \cdot \sin (120 \cdot d e g-\phi)^{2}=0.09 \\
& E P A_{\text {tot }}:=E P A_{A 1}+E P A_{A 2}=0.239 \\
& F_{\text {ant } 1}:=q z \cdot C d_{F} \cdot E P A_{\text {tot }} \cdot m=15
\end{aligned}
$$

CommscopeATSBT-TOP-MF-4G

Flat
(User Input)
$L_{a n t}:=5.63 \quad$ in
(User Input)
$\mathrm{W}_{\mathrm{ant}}:=3.7 \quad$ in \quad (User Input)
$\mathrm{T}_{\text {ant }}:=2 \quad$ in \quad (User Input)
$W T_{\text {ant }}:=2$ lbs (User Input)
$\mathrm{N}_{\text {ant }}:=2$
(User Input)

二NT三K engineering	Subject:	Load Analysis of AT\&T Equipment on Structure \#3275
	Location:	Redding, CT
	Rev. 5: 12/21/23	Prepared by: T.J.L Checked by: C.F.C. Job No. 22006.03

Development of Wind \& Ice Load on Antenna Mounts

Mount Data:

Mbunt Type:
Mount Shape $=$ Pipe Mount Length $=$

2 inch Pipe MountLinear Weight =
Pipe Mount Outside Diameter $=$
Number of Mounting Pipes=
Tri-Bracket Weight =

Wind Load (NESC Extreme)

Assumes Mount is Shielded by Antenna

Mount Projected SurfaceArea =

Total Mount W ind Force $=$

Wind Load (NESC Heavy)

Assumes Mount is Shielded by Antenna

Mount Projected SurfaceArea w/ Ice =

Total Mount W ind Force $=$

Gravity Loads (without ice)

Weight Each Pipe Mount =

Weight ofAll Mounts $=$

Gravity Load (ice only)

Volume of Each Pipe $=$

Volume of Ice on EachPipe =

W eight of lce each mount (incl, hardware) =

Weight of Ice onAll Mounts =

Universal Tri-Bracke

Flat
$L_{\text {mnt }}:=96$
(User Input)
(User Input)
$\mathrm{W}_{\mathrm{mnt}}:=3.66 \quad$ plf \quad (User Input)
$\mathrm{D}_{\mathrm{mnt}}:=2.375 \quad$ in \quad (User Input)
$\mathrm{N}_{\mathrm{mnt}}:=2$
(User Input)
$\mathrm{W}_{\text {tb.mnt }}:=197$ lbs (User Input)
$A_{m n t}:=0.0 \quad$ sf
$\mathrm{F}_{\mathrm{mnt}}:=\mathrm{qz} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\mathrm{mnt}} \cdot \mathrm{m}=0$
lbs

AICEmnt $^{:=0.0} \mathrm{sf}$
$\mathrm{Fi}_{\text {mnt }}:=\mathrm{p} \cdot \mathrm{Cd}_{\mathrm{F}} \cdot \mathrm{A}_{\text {ICEmnt }}=0$
lbs
$W T_{\mathrm{mnt}}:=\mathrm{W}_{\mathrm{mnt}} \cdot \frac{\mathrm{L}_{\mathrm{mnt}}}{12}=29$
lbs
$W T_{m n t} \cdot N_{m n t}+W_{t b . m n t}=256$
lbs
$\mathrm{V}_{\mathrm{mnt}}:=\frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{mnt}}{ }^{2} \cdot \mathrm{~L}_{\mathrm{mnt}}=425$
cu in
$V_{\text {ice }}:=\left[\frac{\pi}{4} \cdot\left[\left(D_{m n t}+1\right)^{2}\right] \cdot\left(L_{m n t}+1\right)\right]-V_{m n t}=442$
Cu in
$W_{\text {ICEmnt }}:=\frac{V_{\text {ice }}}{1728} \cdot \mathrm{Id}=14$
lbs
$\mathrm{W}_{\text {ICEmnt }} \cdot \mathrm{N}_{\mathrm{mnt}}+5=34$
lbs

BLC5

BLC 4

BLC 2

BLC 3

二 $=\mathrm{NT}$ 二人 engineering	Subject：	Load Analysis of AT\＆T Equipment on Structure \＃3275
	Location：	Redding，CT
	Rev．5：12／21／23	Prepared by：T．J．L Checked by：C．F．C． Job No． 22006.03

Development of Wind \＆Ice Load on Coax Cables

Coax Cable Data：

Coax Type＝
 Shape $=$
 Coax Outside Diameter＝
 Coax Cable Length $=$
 Weight of Coax per foot $=$
 Total Number of Coax＝
 No．of Coax Projecting Outside Face of Member＝

Wind Load（NESC Extreme）

Coax projected surface area＝

Total Coax Wind Force（Above Top ofTower）＝

Total CoaxW ind Force $($ Below Top ofTower $)=$

Wind Load（NESC Heavy）

Coax projected surface area w／lce＝

Total Coax Wind Force w／Ice＝

Gravity Loads（without ice）

Weight of all cables w／o ice

Gravity Load（ice only）

IceAreaper Linear Foot＝
lce WeightAll Coax per foot＝
HELIAX 7／8＂

Round
$D_{\text {coax }}:=1.11$ in（User Input）
$\mathrm{L}_{\text {coax }}:=13 \quad \mathrm{t} \quad$（User Input）
$\mathrm{Wt}_{\text {coax }}:=0.54$ plf（User Input）
$\mathrm{N}_{\text {coax }}:=16 \quad$（User Input）
$\mathrm{NP}_{\text {coax }}:=2$
（User Input）
$\mathrm{WT}_{\text {coax }}:=\mathrm{W} \mathrm{t}_{\text {coax }} \cdot \mathrm{N}_{\text {coax }}=9$
plf
BLC 2
$A_{\text {coax }}:=\frac{\left(N P_{\text {coax }} D_{\text {coax }}\right)}{12}=0.2$

$$
\begin{array}{ll}
\mathrm{F}_{\text {coax }}:=\mathrm{qz} \cdot \mathrm{Cd}_{\operatorname{coax}} \cdot \mathrm{A}_{\text {coax }} \cdot \mathrm{m}=12 & \text { plf } \\
\text { BLC5 } \\
\mathrm{F}_{\text {coax }}:=\mathrm{qz} \cdot \mathrm{Cd}_{\text {coax }} \cdot \mathrm{A}_{\text {coax }}=9 & \text { plf } \\
\text { BLC5 }
\end{array}
$$

$\operatorname{AICE}_{\text {coax }}:=\frac{\left(N P_{\text {coax }} \cdot D_{\text {coax }}+2 \cdot \mathrm{lr}\right)}{12}=0.3$
$\mathrm{Fi}_{\text {coax }}:=\mathrm{p} \cdot \mathrm{Cd}_{\text {coax }} \cdot \mathrm{AICE}_{\text {coax }}=2$
plf
BLC 4
$A i_{\text {coax }}:=\frac{\pi}{4}\left[\left(\mathrm{D}_{\text {coax }}+2 \cdot \mid r\right)^{2}-\mathrm{D}_{\text {coax }}{ }^{2}\right]=2.5$

plf
sqin

BLC 3

二NT三K engineering	Subject:	Coax Cable on Pole \#3275
	Location:	Redding, CT
	Rev. 3: 7/21/23	Prepared by: T.J.L Checked by: C.F.C. Job No. 22006.03

Coax Cable on CL\&P Pole

Coaxial Cable Span	$=10 \mathrm{ft}$ (User Input)	
Heaw Wind Pressure =	$\mathrm{p}:=4 \cdot \mathrm{psf} \quad$ (User Input NE	igure 250-1 \& Table 250-1)
Radial lce Thickness=	Ir $:=0.5 \cdot \mathrm{in} \quad$ (User Input N	Figure250-1 \& Table 250-1)
Radial Ice Density =	$\mathrm{Id}:=56 \cdot \mathrm{pcf} \quad$ (User Inp	
Basic Windspeed =	$\mathrm{V}:=110 \quad \mathrm{mph}$ (User Inp	
Height to Top of CoaxAbove Grade $=$	TC $:=68 \quad \mathrm{ft}$ (User Inp	
Multiplier Gust Response Factor =	$m:=1.25 \quad$ (User Input - On	Extreme wind case)
	2	
Velocity Pressure Coefficient =	$\mathrm{Kz}:=2.01 \cdot\left(\frac{0.67 \mathrm{TC}}{900}\right)^{9.5}=1.073$	(NESC 2023 Table 250-2)
Turbulence Intensity Constant=	$\mathrm{C}_{\text {exp }}:=0.2$	(NESC 2023 Table 250-3)
Integral Length Scale of Turbulence Constant $=$	$L_{s}:=220$	(NESC 2023 Table 250-3)
Effective Height $=$	$z_{S}:=0.67 \cdot T C=45.56$	(NESC 2023 Table 250-3)
Turbulence Intensity =	$I_{z}:=C_{\exp } \cdot\left(\frac{33}{z_{s}}\right)^{\frac{1}{6}}=0.19$	(NESC 2023 Table 250-3)
Response Term =	$\mathrm{B}_{\mathrm{t}}:=\left[\frac{1}{\left[1+\left(0.56 \cdot \frac{\mathrm{z}_{\mathrm{s}}}{\mathrm{~L}_{\mathrm{s}}}\right)\right]}\right]^{0.5}=0.947$	(NESC 2023 Table 250-3)
Gust Response Factor =	$\text { Grf }:=\frac{\left[1+\left(4.61 \cdot I_{z} \cdot B_{t}\right)\right]}{\left(1+6.1 \cdot I_{z}\right)}=0.847$	(NESC 2023 Table 250-3)
Wind Pressure =	$q z:=0.00256 \cdot \mathrm{Kz} \cdot \mathrm{V}^{2} \cdot \mathrm{Grf}=28.2$	(NESC 2023 Section 250.

Extreme Wind Vertical Load=
Extreme_Wind $_{\text {Vert }}:=\overrightarrow{\left(\mathrm{N}_{\text {coax }} \cdot \mathrm{W}_{\text {coax }} \cdot \mathrm{Coax}_{\text {Span }} \cdot \mathrm{OF}_{\text {EWV }}\right)}$

Extreme Wind Transverse Load =
Extreme_Wind $\left._{\text {Trans }}:=\xrightarrow[{\left[\left(q z \cdot p s f \cdot A \cdot \mathrm{Cd}_{\text {coax }}\right) \cdot \text { Coax }_{\text {Span }} \cdot \mathrm{OF}_{\mathrm{EWT}}\right.}]\right]{ }$

Extreme_Wind Vert $=86 \mathrm{lb}$
Extreme_Wind ${ }_{\text {Trans }}=83 \mathrm{lb}$

Tekla.Tedds Centek Engineering, Inc, 63-2 North Branford Road Branford, CT 06405	Project Structure 3275 / T-Mobile - CT11116C				Job Ref. 22006.03	
	Section Pole Embedment				Sheet no./rev. 1	
	Calc. by TJL	$\begin{aligned} & \text { Date } \\ & 12 / 21 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

FLAGPOLE EMBEDMENT (IBC)

In accordance with IBC 2015

Soil capacity data

Allowable passive pressure
Maximum allowable passive pressure
Load factor 1 (1806.1)
$L_{\text {sbc }}=400$ pcf
$P_{\text {max }}=2000$ psf

Load factor 2 (1806.3.4)
$L D F_{1}=\mathbf{1 . 0 0}$
$L D F_{2}=2.0$

Pole geometry

Shape of the pole
Diameter of the pole
Laterally restrained

Load data

First point load
Distance of P_{1} from ground surface
Second point load
Distance of P_{2} from ground surface
Uniformly distributed load
Start distance of W from ground surface
End distance of W from ground surface
Applied moment
Distance of M_{1} from ground surface

Tekla.Tedds Centek Engineering, Inc, 63-2 North Branford Road Branford, CT 06405	Project Structure 3275 / T-Mobile - CT11116C				Job Ref. 22006.03	
	Section Pole Embedment				Sheet no./rev.2	
	Calc. by TJL	$\begin{array}{\|l\|} \hline \text { Date } \\ 12 / 21 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

Shear force and bending moment

Total shear force
Total bending moment at grade
Distance of resultant lateral force
Embedment depth (1807.3.2.1)
Embedment depth provided
Allowable lateral passive pressure
Factor A
Embedment depth required
Actual lateral passive pressure
$\mathrm{F}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{W} \times\left(\mathrm{a}_{1}-\mathrm{a}\right)=\mathbf{8 8 4 4 \mathrm { lbs }}$
$M_{g}=P_{1} \times H_{1}+P_{2} \times H_{2}+W \times\left(a_{1}-a\right) \times\left(a+a_{1}\right) / 2+M_{1}=429660 \mathrm{lb} _f t$
$\mathrm{h}=\mathrm{abs}\left(\mathrm{M}_{\mathrm{g}} / \mathrm{F}\right)=48.58 \mathrm{ft}$
$D=12 \mathrm{ft}$
$S_{1}=\min \left(P_{\text {max }}, L_{\text {sbc }} \times \min (D, 12 \mathrm{ft}) / 3\right) \times \mathrm{LDF}_{1} \times \mathrm{LDF}_{2}=\mathbf{3 2 0 0} \mathrm{psf}$
$\mathrm{A}=2.34 \times \mathrm{abs}(\mathrm{F}) /\left(\mathrm{S}_{1} \times\right.$ Dia $)=1.6 \mathrm{ft}$
$D_{1}=0.5 \times \mathrm{A} \times\left(1+(1+((4.36 \times h) / A))^{0.5}\right)=\mathbf{1 0 . 1} \mathrm{ft}$
$\mathrm{S}_{2}=(2.34 \times \operatorname{abs}(\mathrm{F}) \times((4.36 \times \mathrm{h})+(4 \times \mathrm{D}))) /\left(4 \times \mathrm{D}^{2} \times \mathrm{Dia}\right)=2333.7 \mathrm{psf}$

Section 1 - Site Information

Site ID: CT11116C		Site Name: Ridgefield/ Ethan Allen H			Latitude: 41.27845755
Status: Draft		Site Class: Utility Lattice Tower			Longitude: -73.4425574
Version: 3		Site Type: Structure Non Building			Address: 101 Mountain Rd. CL\&P Pole \#3275
Project Type: L600		Plan Year: 2021			City, State: Redding, CT
Approved: Not approved		Market: CONNECTICUT CT			Region: NORTHEAST
Approved By: Not approved		Vendor: Ericsson			
Last Modified: 12/19/2023 11:2 Last Modified By: SHERAZ.SO	$\begin{aligned} & : 04 \text { AM } \\ & \text { PI1@T-MOBILE.COM } \end{aligned}$	Landlord: Northeast Utilities			
RAN Template: 67E04B Outdoo			AL Ten		
Sector Count: 2	Antenna Count: 2		Coax Line Count: 16	TMA Count: 2	RRU Count: 2

[^0]----- This section is intentionally blank. -----

Section 3 - Proposed Template Images

----- This section is intentionally blank. -----

Section 4 - Siteplan Images
----- This section is intentionally blank. -----

Proposed RAN Equipment		
Template: 67E04B Outdoor		
Enclosure	1	2
Enclosure Type	RBS 6102	Ancillary Equipment (Ericsson)
Radio	RUS01 B2 (x3)RUS01 B4 (x6) G1900	
Baseband		
Hybrid Cable System		Hybrid Trunk 6/24 4AWG 10m
RAN Scope of Work:		
RF NOTES: 12/14/2023 - In order to avoid delays in resubmitting the CT Sitting Council and reduce structural loading, it is necessary to switch to a 6-foot Octo antenna. Additionally, the Rad Ctr needs to be changed to the new 77 -foot rad ctr in order to provide clearance with the transmission tower.		

Sector 2 (Existing) view from behind			
Coverage Type	A - Outdoor Macro	\checkmark	
Antenna	1		
Antenna Model	RFS - APX16DWV-16DWV-S-E-A20 (Quad)		
Azimuth	190		
M. Tilt	0		
Height (ft)	(74)		
Ports	P1		P2
Active Tech	G1900	$\boxed{L 2100}$	
Dark Tech			
Restricted Tech			
Decomm. Tech	U1900	U2100	
E. Tilt	(2)	(2)	
Cables	$718{ }^{\text {" Coax - } 95 \mathrm{ft} \text {. }}$	$718{ }^{\text {" Coax }-95 ~ f t . ~}$	
TMAs			
Diplexer / Combiners			
Radio			
Sector Equipment			
Unconnected Equipment:			
Scope of Work:			

Sector 2 (Proposed) view from behind				
Coverage Type	A - Outdoor Macro			
Antenna	1			
Antenna Model	RFS - APXVAALL18_43-U-NA20 (Octo)			
Azimuth	190			
M. Tilt	0			
Height (ft)	(77)			
Ports	P1	P2	P3	P4
Active Tech	L600 N600 L700	L600 N600 L700	G1900	$\boxed{4100}$
Dark Tech				
Restricted Tech				
Decomm. Tech				
E. Tilt				
Cables	$\text { 7/8" Coax - } 95 \text { ft. (x2) }$ Coax Jumper (x2)	$\text { 7/8" Coax - } 95 \text { ft. (x2) }$ Coax Jumper (x2)	$\begin{aligned} & 7 / 8{ }^{\text {" Coax }-95 \mathrm{ft} .}(\mathbf{x 2}) \\ & \text { Coax Jumper (x2) } \end{aligned}$	$\text { 7/8" Coax - } 95 \text { ft. (x2) }$ Coax Jumper (x2)
TMAs		Commscope - Smart BiasT - ATSBT-TOP-MF-4G (At Antenna)		
Diplexer / Combiners				
Radio	IRadio 4480 B71+B85 (At Cabinet)			
Sector Equipment				
Unconnected Equipment:				
Scope of Work:				

*A dashed border indicates shared connected equipment. Any shared equipment, besides the first, is denoted with the SHARED keyword.

Sector 3 (Existing) view from behind			
Coverage Type	A - Outdoor Macro		
Antenna	1		
Antenna Model	RFS - APX16DWV-16DWV-S-E-A20 (Quad)		
Azimuth	330		
M. Tilt	0		
Height (ft)	(74)		
Ports	P1		P2
Active Tech	G1900	L2100	
Dark Tech			
Restricted Tech			
Decomm. Tech	(U1900)	(U2100)	
E. Tilt	(2)	(2)	
Cables	$7 / 8 \mathrm{Cl}$ Coax - 95 ft .	7/8" Coax - 95 ft .	
TMAs			
Diplexer / Combiners			
Radio			
Sector Equipment			
Unconnected Equipment:			
Scope of Work:			

Sector 3 (Proposed) view from behind					
Coverage Type	A - Outdoor Macro				
Antenna	1				
Antenna Model	RFS - APXVAALL18_43-U-NA20 (Octo)				
Azimuth	330				
M. Tilt	0				
Height (ft)	(77)				
Ports	P1	P2	P3	P4	
Active Tech	L600 N600 L700	L600 N600 L700	G1900	$\boxed{\square 2100}$	
Dark Tech					
Restricted Tech					
Decomm. Tech					
E. Tilt					
Cables	$\text { 7/8" Coax - } 95 \text { ft. (x2) }$ Coax Jumper (x2)	$\text { 7/8" Coax - } 95 \text { ft. (x2) }$ Coax Jumper (x2)	$\text { 7/8" Coax - } 95 \text { ft. (x2) }$	$7 / 8 \text { " Coax - } 95 \mathrm{ft} . \text { (x2) }$ Coax Jumper (x2)	
TMAs		Commscope - Smart BiasT -ATSBT-TOP-MF-4G (At Antenna)			
Diplexer / Combiners					
Radio	IRadio 4480 B71+B85 (At Cabinet)	$\text { \\|Radio } 4480 \text { B71+B85 (At Cabinet) }$			
Sector Equipment					
Unconnected Equipment:					
Scope of Work:					

*A dashed border indicates shared connected equipment. Any shared equipment, besides the first, is denoted with the SHARED keyword.

Dual Slant Polarized Quad Band (8 Port) Antenna, 617-894/617-894/1695-2690/1695$2690 \mathrm{MHz}, 65 \mathrm{deg}, 15.0 / 14.6 / 18.4 / 18.3 \mathrm{dBi}$, 1.8 m (6 ft), RET, 2-12$/ 2-12^{\circ} / 2-12^{\circ} / 2-12^{\circ}$

FEATURES / BENEFITS

This antenna provides a 8 Port multi-band flexible platform for advanced use for flexible use in deployment scenarios for encompassing 600, 700, 800, AWS, PCS \& BRS applications.24 Inch Width For Easier Zoning
Field Replaceable (Integrated) AISG RET platform for reduced environmental exposure and long lasting quality
Θ Superior elevation pattern performance across the entire electrical down tilt rangeIncludes three AISG RET motors - Includes $\mathbf{0 . 5 m}$ AISG jumper for optional daisy chain of two high band RET motors for one single AISG point of high band tilt control.Low band arrays driven by a single RET motor

Technical Features

LOW BAND LEFT ARRAY (617-894 MHZ) [R1]

Frequency Band	MHz	617-698	698-746	746-806	806-894
Gain Typical	dBi	14.3	15.0	14.8	15.0
Gain Over All Tilts	dBi	13.8+/-. 5	14.5+/-. 5	$14.3+/-.5$	$14.6+/ .4$
Horizontal Beamwidth @3dB	Deg	$65+/-2$	$64+/-2$	$66+/-2$	$62+/-5$
Vertical Beamwidth @3dB	Deg	14+/-1	$13+/-.9$	12+/-. 7	11+/-. 9
Electrical Downtilt Range	Deg	2 to 12			
Upper Side Lobe Suppression Peak to +20	dB	15	15	15	14
Front-to-Back, at +/-30 ${ }^{\circ}$, Copolar	dB	22	22	24	27
Cross Polar Discrimination (XPD) @ Boresight	dB	18	18	16	15
Cross Polar Discrimination (XPD) @ +/-60	dB	4	3	7	5
3rd Order PIM $2 \times 43 \mathrm{dBm}$	dBc	-153			
VSWR	-	1.5:1			
Cross Polar Isolation	dB	25			
Maximum Effective Power per Port	Watt	400			

Dual Slant Polarized Quad Band (8 Port) Antenna, 617-894/617-894/1695-2690/16952690MHz, $65 \mathrm{deg}, 15.0 / 14.6 / 18.4 / 18.3 \mathrm{dBi}$, 1.8m (6ft), RET, 2-12$/ 2-12^{\circ} / 2-12^{\circ} / 2-12^{\circ}$

HIGH BAND RIGHT ARRAY (1695-2690 MHZ) [Y2]
Frequency Band
Gain Typical
Gain Over All Tilts
Horizontal Beamwidth @3dB
Deg
Vertical Beamwidth @3dB
Deg
Electrical Downtilt Range
Deg
Upper Side Lobe
Suppression Peak to +20

ELECTRICAL SPECIFICATIONS

Impedance	Ohm		50.0
Polarization	Deg	$\pm 45^{\circ}$	

MECHANICAL SPECIFICATIONS

Dimensions - H x W x D	$\mathrm{mm}(\mathrm{in})$	$1829 \times 609 \times 215(72 \times 24 \times 8.5)$
Weight (Antenna Only)	$\mathrm{kg}(\mathrm{lb})$	
Weight (Mounting Hardware only)	$\mathrm{kg}(\mathrm{lb})$	
Shipping Weight	$\mathrm{kg}(\mathrm{lb})$	
Connector type		$11.5(25.3)$
Radome Material / Color		

TESTING AND ENVIRONMENTAL

Temperature Range	${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	
Lightning protection		
Survival/Rated Wind Velocity	km / h	-40 to $60(-40$ to 140$)$
Wind Load @Rated Wind Front	N	
Wind Load @Rated Wind Side	N	Direct Ground
Wind Load @Rated Wind Rear	N	$240(150)$

Top Smart Bias Tee

- Reduces cable and site lease costs by eliminating the need for AISG home run cables
- AISG 1.1 and 2.0 compliant
- Operates at 10-30 Vdc
- Weatherproof AISG connectors
- Intuitive schematics simplify and ensure proper installation
- Enhanced lightning protection plus grounding stud for additional surge protection
- 7-16 DIN female connector (ANT)
- 7-16 DIN male connector (BTS)

Product Classification

Product Type

General Specifications

AISG Input Connector

Antenna Interface
Antenna Interface Signal
BTS Interface
BTS Interface Signal

Color

EU Certification
Grounding Lug Thread Size
Smart Bias Tee Type

Dimensions

Height

143 mm | 5.63 in
Width
Depth

Electrical Specifications

3rd Order IMD

3rd Order IMD Test Method
Insertion Loss, typical
Electromagnetic Compatibility (EMC)

8-pin DIN Female
7-16 DIN Female
RF | dc Blocked
7-16 DIN Male
AISG data | RF | dc
Silver
CE
M8
10-30 V Top

50 mm | 1.969 in

Two +43 dBm carriers
0.1 dB

CFR 47 Part 15, Subpart B, Class B | EN 55022, Class B | ICES-003 Issue 4 CAN

ATSBT-TOP-MF-4G

Material Specifications

Material Type
Aluminum

Environmental Specifications

Operating Temperature

Ingress Protection Test Method
Packaging and Weights
Weight, net
Regulatory Compliance/Certifications

THE CONNECTICUT LIGHT \& POWER COMPANY
Berlin, Conn.
TEST BORING \& SOIL SAMPLING RECORD

Exhibit \&

Power Density/RF Emissions Report

FOX HILL TELECOM

Radio Frequency Emissions Analysis Report

T. Mobile

Site ID: CT11116C

Ridgefield/ Ethan Allen H
101 Mountain Rd. CL\&P Pole \#3275
Redding, CT 06896

January 30, 2024

Fox Hill Telecom Project Number: 231001

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	4.99%

T-MOBILE
Attn: RF Manager
35 Griffin Road South
Bloomfield, CT 06009

Emissions Analysis for Site: CT11116C - Ridgefield/ Ethan Allen H

Fox Hill Telecom, Inc ("Fox Hill") was directed to analyze the proposed upgrades to the T-MOBILE facility located at $\mathbf{1 0 1}$ Mountain Rd. CL\&P Pole \#3275, Redding, CT, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)$ - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

General population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the $600 \mathrm{MHz} \& 700 \mathrm{MHz}$ bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report the percentage of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

FOX HILL TELECOM

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at 101 Mountain Rd. CL\&P Pole \#3275, Redding, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 for far field modeling calculations.

In OET-65, plane wave power densities in the Far Field of an antenna are calculated by considering antenna gain and reflective waves that would contribute to exposure.

Since the radiation pattern of an antenna has developed in the Far Field region the power gain in specific directions needs to be considered in exposure predictions to yield an Effective Radiated Power (ERP) in each specific direction from the antenna. Also, since the vertical radiation pattern of the antenna is considered, the exposure calculations would most likely be reduced significantly at ground level, resulting in a more realistic estimate of the actual exposure levels. To determine a worst-case scenario at each point along the calculation radials, each point was calculated using the antenna gain value at each angle of incident and compared against the result using an isotropic radiator at the antenna height with the greater of the two used to yield the more pessimistic far field value for each point along the calculation radial.

Additionally, to model a truly "worst case" prediction of exposure levels at or near a surface, such as at ground-level or on a rooftop, reflection off the surface of antenna radiation power can be assumed, resulting in a potential 1.6 times increase in power density in calculating far field power density values.

With these factors Considered, the worst case Far Field prediction model utilized in this analysis is determined by the following equation:

Equation 9 per FCC OET65 for Far Field Modeling

$$
S=\frac{33.4 E R P}{R^{2}}
$$

S = Power Density (in $\mu \mathrm{w} / \mathrm{cm}^{2}$)
ERP = Effective Radiated Power from antenna (watts)
$\mathrm{R}=$ Distance from the antenna (meters)

Predicted far field power density values for all carriers identified in this report were calculated 6 feet above the ground level and are displayed as a percentage of the applicable FCC standards. All emissions values for other carriers were calculated using the same Far Field model outlined above, using industry standard radio configurations and frequency band selection based upon available licenses in this geographic area for emissions contribution estimates.

For each T-Mobile sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE / 5G NR	600 MHz	2	60
LTE	700 MHz	2	20
LTE	$1900 \mathrm{MHz}($ PCS $)$	4	40
GSM	1900 MHz (PCS)	1	15
LTE	$2100 \mathrm{MHz}($ AWS $)$	4	40

Table 1: Channel Data Table

FOX HILL TELECOM

The following T-Mobile antennas listed in Table 2 were used in the modeling for transmission in the $600 \mathrm{MHz}, 700 \mathrm{MHz}, 1900 \mathrm{MHz}$ (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
B	1	RFS APXVAALL18_43-C-NA20	78
C	1	RFS APXVAALL18_43-C-NA20	78

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

FOX HILL TELECOM

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

$\begin{gathered} \text { Antenna } \\ \text { ID } \\ \hline \end{gathered}$	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna B1	$\begin{gathered} \text { RFS } \\ \text { APXVAALL18_43-C-NA20 } \end{gathered}$	$\begin{gathered} 600 \mathrm{MHz} / 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) / } \\ 2100 \mathrm{MHz} \text { (AWS) } \\ \hline \end{gathered}$	$\begin{gathered} 12.85 / 13.55 / \\ 15.85 / 17.15 \\ \hline \end{gathered}$	13	495	18,250.04	4.99
Sector B Composite MPE\%							4.99
Antenna C1	$\begin{gathered} \text { RFS } \\ \text { APXVAALL18_43-C-NA20 } \\ \hline \end{gathered}$	$\begin{gathered} \hline 600 \mathrm{MHz} / 700 \mathrm{MHz} / \\ 1900 \mathrm{MHz} \text { (PCS) / } \\ 2100 \mathrm{MHz} \text { (AWS) } \\ \hline \end{gathered}$	$\begin{gathered} 12.85 / 13.55 / \\ 15.85 / 17.15 \\ \hline \end{gathered}$	13	495	18,250.04	4.99
Sector C Composite MPE\%							4.99

Table 3: T-MOBILE Emissions Levels

The Following table (table 4) shows all additional identified carriers on site and their emissions contribution estimates, along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, both T-Mobile sectors have the same configuration yielding the same results for both sectors. Table 5 below shows a summary for each T-MOBILE Sector as well as the composite estimated MPE value for the site.

Site Composite MPE \%	
Carrier	MPE \%
T-MOBILE - Max Per Sector Value	$\mathbf{4 . 9 9 \%}$
No Additional Carriers on Site	NA
Site Total MPE \%:	$\mathbf{4 . 9 9 \%}$

Table 4: All Carrier MPE Contributions

T-MOBILE Sector B Total:	4.99%
T-MOBILE Sector C Total:	4.99%
Site Total:	

Table 5: Site MPE Summary

FOX HILL TELECOM

Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, both T-Mobile sectors have the same configuration yielding the same results for both sectors.

T-MOBILE _ Frequency Band / Technology Max Power Values (Per Sector)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$	Calculated \% MPE
T-Mobile 600 MHz LTE / 5G NR	2	1,390.44	78	8.32	600 MHz	400	2.08\%
T-Mobile 700 MHz LTE	2	485.32	78	2.76	700 MHz	467	0.59\%
T-Mobile 1900 MHz (PCS) LTE	4	1,849.52	78	11.10	1900 MHz (PCS)	1000	1.11\%
T-Mobile 1900 MHz (PCS) GSM	1	693.57	78	1.00	1900 MHz (PCS)	1000	0.10\%
T-Mobile 2100 MHz (AWS) LTE	4	1,981.80	78	11.10	2100 MHz (AWS)	1000	1.11\%
						Total:	4.99 \%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions estimates value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (\%)
Sector B:	4.99%
Sector C:	4.99%
T-MOBILE Maximum	4.99%
Total (per sector):	
Site Total:	4.99%
Site Compliance Status:	COMPLIANT

The estimated composite MPE value for this site assuming all carriers present is $\mathbf{4 . 9 9 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon the far field calculations performed for all carriers identified in this report.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite estimated values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

Principal RF Engineer
Fox Hill Telecom, Inc
Worcester, MA 01609
(978)660-3998

Exhibit '

Letter of Authorization

```
56 Prospect Street
Hartford, CT 06103
P.O. Box 270
Hartford, CT 06141-0270
(860) 665-5000

Ms. Amanda Olsen
Northeast Site Solutions
420 Main St,
Sturbridge, MA 01566
RE: T-Mobile Antenna Site CT11116C, Mountain Road, Redding CT, Eversource Structure 3275
Ms. Olsen:
Based on our reviews of the site drawings, the structural analysis and foundation review provided by Centek Engineering, along with a third-party review performed by Paul J. Ford and Company, we accept the proposed modification.

Please work with Christopher Gelinas of Eversource Real Estate to process the site lease amendment. Please do not hesitate to contact us with questions or concerns. Christopher can be contacted at 860-6652008, and I can be contacted at (860) 728-4862.

Sincerely,

\section*{Masie Hart}

Masie Hartt
Transmission Line Engineering

Ref: 2024-0117 - CT11116C - Structural Analysis Rev5 (22006.03)
2023-0920 - CT11832C - Mount Analysis Rev0 (22006.03)
2024-0117_22006.03 CT11116C - Rev3 CDs (S\&S)

\section*{Exhibit (}

\section*{Recipient Mailings}



\section*{Instructions}
1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage \(®\), you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office \({ }^{\text {TM }}\), or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.


\section*{Instructions}
1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage \(®\), you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office \({ }^{\text {TM }}\), or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

\section*{Click-N-Ship® Label Record}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
USPS TRACKING \# : \\
9405503699300658074490
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{} & 599705347 & Priority Mail® Postage: & \$9.85 \\
\hline \multicolumn{2}{|l|}{Print Date:} & 02/06/2024 & & \$9.85 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Ship Date: \\
Expected
\end{tabular}} & 02/06/2024 & & \\
\hline \multicolumn{3}{|l|}{Delivery Date: 02/08/2024} & & \\
\hline \multirow[t]{4}{*}{From:} & \multicolumn{3}{|l|}{DEBORAH A CHASE Reff: CT1} & 116 C \\
\hline & \multicolumn{4}{|l|}{NORTHEAST SITE SOLUTIONS} \\
\hline & \multicolumn{4}{|l|}{46 HUNTINGTON AVE} \\
\hline & \multicolumn{4}{|l|}{WORCESTER MA 01606-3543} \\
\hline \multirow[t]{4}{*}{} & \multicolumn{4}{|l|}{CONNECTICUT LIGHT \& POWER-EVERSOURCE} \\
\hline & \multicolumn{4}{|l|}{ENERGY} \\
\hline & \multicolumn{4}{|l|}{PO BOX 270} \\
\hline & \multicolumn{4}{|l|}{HARTFORD CT 06141-0270} \\
\hline
\end{tabular}



\section*{Instructions}
1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage \(®\), you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office \({ }^{\text {TM }}\), or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

\section*{Crilll6C-TMO}

\section*{UNITED STATES \\ POSTIL SERVICE.}

\author{
GREENDALE
}

290 W BOYLSTON ST
WORCESTER, MA 01606-2378
(800)275-8777


Prepaid Mail 1
Weight: 1 ib 2.20 oz
Acceptance Date:
Tue 02/06/2024
Tracking \#:
9405503699300658074490
\(\begin{array}{lll}\text { Prepaid Mail } 1 & \$ 0.00\end{array}\)
Redding Center, CT 06875
Weight: 1 lb 2.20 oz
Acceptance Date:
Tue 02/06/2024
Tracking \#:
9405503699300658074476

Grand Total:

Text your tracking number to 28777 (2usps) to get the latest status. Standard Message and Data rates may apply. You may also isit www.usps.com USPS Tracking or call 1-800-222-1811.

Preview your Mail Track your Packages
Sign up for FREE
https://informeddel ivery.usps.com
All sales final on stamps and postage. Refunds for guaranteed services only.

Thark you for your business.
Tell us about your experience. Go to: https://postalexperience.com/Pos or scan this code with your mobile device.

\[
\text { or call } 1-800-410-7420
\]```


[^0]:    Section 2 - Existing Template Images

