Transcend Wireless

10 Industrial Ave, SUITE 3

April 17, 2017

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
T-Mobile Northeast LLC - CTFF600E
Tower Share Application
80 Lonetown Road, Redding, CT 06896
Latitude- 41.317778
Longitude- - 73.383333

Dear Ms. Bachman,
This letter and attachments are submitted on behalf of T-Mobile Northeast LLC ("T-Mobile"). T-Mobile plans to install antennas and related equipment at the tower site located at 80 Lonetown Road in Redding, Connecticut.

T-Mobile will install six (6) 700/1900/2100 MHz antennas and six (6) RRUs at the 92 ' level of the existing 100' lattice tower. One (1) hybrid cable will also be installed. T-Mobile's equipment cabinets will be placed on a 6^{\prime} X 15^{\prime} concrete pad within the existing ground facility. Included are plans by Hudson Design Group, dated April 17, 2017, depicting the planned changes and attached as Exhibit A. Also included is a structural analysis prepared by Hudson Design Group, dated November 15, 2016, confirming that the existing tower is structurally capable of supporting the proposed equipment. This is attached as Exhibit B.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of T-Mobile's intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Julia Pemberton, First Selectman of the Town of Redding, as well as the tower and property owner, Andrew \& Elizabeth Mound. Please see the attached letter from Andrew \& Elizabeth Mound authorizing the proposed shared use of this facility attached as Exhibit C.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the lattice tower is $100^{\prime} ;$ T-Mobile's proposed antennas will be located at a center line height of 92^{\prime}.
2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a tower power density of 12.84%, as evidenced by Exhibit D.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, T-Mobile respectfully submits that the shared use of this facility satisfies these criteria.
A. Technical Feasibility. The existing lattice tower has been deemed structurally capable of supporting TMobile's proposed loading. The structural analysis is included in Exhibit B.
B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this lattice tower in Redding. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit T-Mobile to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit C, authorizing T-Mobile to file this application for shared use.
C. Environmental Feasibility. The proposed shared use of this facility would have minimal environmental impact. The installation of T-Mobile equipment at the 92^{\prime} level of the existing 100 ' tower would have an insignificant visual impact on the area around the tower. T-Mobile's ground equipment would be installed within the existing facility compound. T-Mobile's shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit D, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
D. Economic Feasibility. T-Mobile has entered into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, a Letter of Authorization has been provided by the owner to assist T-Mobile with this tower sharing application.
E. Public Safety Concerns. As discussed above, the lattice tower is structurally capable of supporting TMobile's proposed loading. T-Mobile is not aware of any public safety concerns relative to the proposed sharing of the existing lattice tower. T-Mobile's intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Redding.

Sincerely,
Tyle Richers
Kyle Richers
Transcend Wireless
10 Industrial Ave., Suite 3
Mahwah, New Jersey
krichers@transcendwireless.com
908-447-4716
cc:
Julia Pemberton- First Selectman, Town of Redding
Andrew \& Elizabeth Mound- Tower and Property Owner

SITE NUMBER: CTFF600E

SITE NAME: CTFF600E

RF DESIGN GUIDELINE: 707B

APPROVALS

PROJECT MANAGER	DATE
CONSTRUCTION	DATE
RF ENGINEERING	DATE
ZONING / STIE ACQ.	DATE
OPERATIONS	DATE
TOWER OWNER	DATE

DRAWING INDEX		
$\begin{aligned} & \text { SHEET } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	REV.
T-1	TITLE SHEET	2
GN-1	general notes	2
A-1	COMPOUND PLAN, ellevation \& EQUIPMENT LOCATION	2
A-2	TOWER EQUPMENT DETALS	2
A-3	GROUND EQUPMENT DETALS	2
A-4	EQUIPMENT DETALS	2
S-1	TOWER MODIFICATION DETALS	2
S-2	TOWER MODIFICATION DETALS	2
S-3	TOWER MODIFICATION DEtalls	2
S-4	TOWER MODIFICATION DETALS	2
E-1	ELECTRICAL Detalls \& Notes	2
6-1	GROUNIING SCHEmATIC \& RISER DIAGRAM	2
6-2	GROUNING DETALS \& NOTES	2

Transcend Wireless

Hudson

TITLE SHEET

TOWER OWNER
DATE

72 HOURS

CALL toLl free $1-800-922-4455$
or call 811
UNDERGROUND SERVICE ALERT

GROUNDING NOTES

THE SUBCONTRACTOR SHALL REVEW AND INSPECT THE EXISTING FACILTY

 SUBCONTRACTOR SHALL REPORT
CONTRACTOR FOR RESOLUTON.
2. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO,

4. METAL RACEWA SHALL NOT BE USED AS THE NEC REQURED EOUPMENT GROUND
CONDUCTORA. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN

5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER
GROUND BAR WTH GREEN GROUND BAR WTH GREN INSULATED SUPPLEMENTAL EQUIPMENT GROUN WIRES,
6 AAG STRNDD COPER OR LARGER FOR INDOOR BTS 2 AWG STRANDED
6. Exothermic welds shall be used for all grounding connections below
7. APPROVED ANTIOXIDANT COATINGS (IE, CONDUCTVE GEL OR PASTE) SHALL BE
8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR
BOLTED TO GROUND BAR.
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED
FOR GROUNOING CONNECTIONS.
10. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SEC.
 d Approved grounding tre condur clamps.
2. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF $1 / 2$ IN. OR GREATER ELECTRICALLY CONDUCTVE REINFORCING STEEL
MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTIN USING \#2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC
250.50

GENERAL NOTES

FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS
2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT
THE CELL SITE TO FAMLLARIZE WITH THE EXIITING CONDITONS AND TO CONFIRM
 DRAWINGS. AA
COTTRACTOR.
3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ISSUE ALL APRRORRATES NOTICES AND COMPY WTTH ALL LAWS, ORDINANCES RULES
 PERFORMANG OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH
APPLISABE MUNIIPL AND UTLITY COMPANY SPCEFICAIIONS AN LOCAL
4. DRawings provided here are not to be scaled and are intended to show
OUTLINE only.
5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLLDE FURNISHING MATERALLS
EQUPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLLETE ALL EQUPMENE APPURTENANCES, AND LABOR NECESSU
INSTALIATIONS AS INICATED ON THE DRAWINGS.
 THE SUBCONTRACTOR SHALL INSTALL ALL EQUPMENT AND MATERIALS IN
ACOROANE WWH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY
STATED OTHERWISE.
 DRAWINGS, THE SUBCONTRACTOR SHALL PROR
SPACE FOR APPROVAL BY THE CONTRACTOR.
9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1
 ADD NEW TRAYS AS NECESSARY.
ROUTING WITH THE CONTRACTOR.
10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS,
LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPARED AT LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE
SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
11. SUBCONTRACTOR SHALL LEGALY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXAL CABLES AND OTHER ITEMS REMOVED FROM THE EXXISTING
FACLITIY, ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
LOCATON. LOCATION.
12. SUbcontractor shall leave premises in clean condition.
13. ALL CONCRETE REPAR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN
CONCRETE INSTITUTE (ACI) 301 .
4. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AR-ENTRAINED E DONE IN ACCORDANCE WITH ACI 318 CODE REQUIREMENTS.
15. ALL STRUCTURAL STEEL WORK SHALL BE DETALED, FABRICATED AND ERECTED IN A36 (Fy $=36$ ksi) UNLESS OTHERWISE AOTED. PIPES SHALL BE ASTM A53 TTPE E(Fy $=36$ KSi) ACL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED
GALVANIZED. $\operatorname{TOUCHUP}$ ALL SCRATCHES AN OTHER MARKS IN THE FELD AFTER STEEL IS ERECTED USING A COMPATBLE ZINC RICH PAINT.
16. CONSTRUCTION SHALL COMPLY WITH SPECIIICATIONS AND "GENERAL CONSTRUCTION
SERVICES FOR CONSTRUCTION OF T-MOBILL SITES." 17. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR
TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTON SHOWN
 CONTRACTOR OF ANY
WTH CONSTRUCTION
18. THE EXISTING CEL SITE IS IN FULL COMMERCIAL OPERATION ANY CONSTRUCTION ANY WORK ON EXISTING EQUPMENT MUST BE COORDINATED WITH CONTRACTOR.
ALSO WORK SOUL
ALS SCHEULED FOR AN APPROPRIATE MAITENANCE WINDO LLY in Low traffic Periods after midigh
19. SINCE THE CELL SITE IS ACTVE, ALL SAFETY PRECAUTONS MUST BE TAAEN WHEN SHOLD BE SHHTDOWN PRIOR TO PERFORMING AN WORK THAT COULD EXPOSE THE WORKERS TO DANGER PERSONAL RF EXPOSURE MONTT
BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.
20. APPLICABLE BUILDING CODES:

SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE.
AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHRRTT HAVING JURISICICTIN AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORIT HAVING JURISOICTION
CAHJ FOR THE LOCATON THE EDTION OF HE AHJ AOPOTED COEDS AND
STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIIND
BULLDNG CODE:
AMENDENTS
2003 IBC WITH 2005 CT SUPPLEMENT, $+2009 \& 2013$ CT AMENDMENT
ELLECRTICAL CODE: REFER TO ELECTRICAL DRAWINGS
LIGTENING CODE: REFER TO ELECTRICAL DRAWNGS

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE
FOLIOWING STANDARDS:
AMERLCAN CONCRETE INSTITUTE (ACI) 318; BUILDING CODE
REQUREMENTS FOR STRUCTURAL CONCREIE;
american institute of steel construction (aisc) manual of steel construction, asd, fourteenth edition;
TELECOMMUNICATINNS INDUSTRY ASSOCIATION (TAA) 222-F,
STRUCTURAL STANDARDS FOR STEEL
EQUIPMENT AND ANTENNA SUPPORTING STRUCTURES; REFER
TO ELECTRICAL DRAWINGS FOR SPECIFIC ELECTRICAL STANDARDS.
FOR ANY CONFLCTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS
REGARDING MATERALL, METHOOS OF CONSTRUCTION, OR OTHER REQUREMENT,

T-MOBILE NORTHEAST LLC

Transcend Wireless

Hudson

Deaben coive

STE Number:
CTFF600E
CTFF600E
STIE ADORESS:
80 LONETOWN ROAD
REDNANGO COB96
FARFILED COUNTY
SHEET TTLE
general notes

GN-1

(Revised)
 STRUCTURAL ANALYSIS REPORT

For
\section*{CTFF600E}
80 LONETOWN ROAD
REDDING, CT 06896

Antennas Mounted to the Tower

Prepared for:
Transcend Wireless

Dated: November 15, 2016 (Rev 2)
Dated: October 11, 2016 (Rev 1) Dated: October 5, 2016

Prepared by:

1600 Osgood Street Bldg. 20 N Suite 3090

SCOPE OF WORK:

Hudson Design Group $\amalg C$ (HDG) has been authorized by T-Mobile to conduct a structural evaluation of the 100' self-supporting tower supporting the proposed T-Mobile's a ntennas loc ated at elevation 92' above the ground level.

This report represents this office's findings, conclusions and recommendations perta ining to the support of T-Mobile's proposed a ntennas listed below.

Record drawings of the existing tower were not available for our use. The previous structural analysis report prepared by Centek Engineering, dated September 23, 2013, was available and obta ined for our use.

CONCUSION SUMMARY:

HDG performed structural analysis of the existing tower with the following proposed modifications:

1. Add horizontal members from E.0' to E.60'.
2. Replace existing diagonals from El.60' to E.80'.
3. Enlarge existing foundation.

Based on our evaluation, we have determined that the existing tower and foundation with proposed modifications are in conformance with the ANSI/TIA-222-G Standard for the loading considered under the criteria listed in this report. The tower structure is rated at 99.8\% - (Legs at Tower Section T3 from EL. 40^{\prime} to EL. 60^{\prime} C ontrolling).

APPURIENANCES CONFGURATION:

Tenant	Appurtenances	Elev.	Mount
T-Mobile	(3) APXV18-206516-S-A20 Antennas	$\mathbf{9 2}^{\prime}$	T- Frame
T-Mobile	(3) LNX-6512DS-A1M Antennas	$\mathbf{9 2}^{\prime}$	T- Frame
T-Mobile	(6) RRUS-11	$\mathbf{9 2}^{\prime}$	T- Frame
VERIZON	(4) BXA-80063-6CF Antennas	82^{\prime}	T- Frame
VERIZON	(2) BXA-80080-4CF Antennas	82^{\prime}	T- Frame
VERIZON	(6) FD9R6004 Diplexers	82^{\prime}	T- Frame
VERIZON	(1) SBNHH-1D65B Antenna	82^{\prime}	T- Frame
VERIZON	(2) SBNHH-1D45B Antennas	82^{\prime}	T- Frame
VERIZON	(3) RRH2X60-700	82^{\prime}	T- Frame
VERIZON	(3) RRH2X60-PCS	82^{\prime}	T- Frame
VERIZON	DB-T1-6Z-8AB-0Z	82^{\prime}	T- Frame
VERIZON (FUTURE)	(1) SBNHH-1D65B Antenna	82^{\prime}	T- Frame
VERIZON (FUTURE)	(2) SBNHH-1D45B Antennas	82^{\prime}	T- Frame
VERIZON (FUTURE)	(3) RRH4X45-AWS	82^{\prime}	T- Frame
VERIZON (FUTURE)	DB-T1-6Z-8AB-0Z	82^{\prime}	T- Frame

*Proposed T-Mobile Appurtenances shown in Bold.

T-MOBILE EXISTING/ PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
T-Mobile	(1) Fber Cable	$\mathbf{9 2}^{\prime}$	Tower Face

*Proposed T-Mobile Coax Cables shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Legs	$\mathbf{9 9 . 8 \%}$	$40-60$	PASS	Controlling
Diagonals	96.0%	$40-60$	PASS	
Secondary Horizontals	16.9%	$0-20$	PASS	
Top Girts	34.8%	$0-20$	PASS	

DESIGN CRIERIA:

1. EIA/TIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

City/Town: Redding
County: Fairfield
Wind Load: 110 mph (3 second gust)
Structural Class: II
Exposure Category: B
Topographic Category: 1
Nominal Ice Thickness: 0.75 inch
2. Approximate height above grade to proposed a ntennas: 92'
*Calculations and referenced documents are attac hed.

ASSUMPIIONS:

1. The tower dimensions, member sizes and material strength a re as indic ated in the previous structural analysis report prepared by Centek Engineering, dated September 23, 2013.
2. The existing appurtenances configuration is as stated in this report. All antennas, coax cables and waveguide cables are assumed to be propenly installed and supported as per the manufacturer's requirements.
3. The tower and foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its membercapacities.
4. The support mounts and platforms are not a nalyzed and are considered adequate to support the loading. The analysis is limited to the primary support struc ture itself.
5. All prior structural modification, if any, are assumed to be as per the data supplied (if a vailable), a nd installed properly.

SUPPORTRECOMMENDATIONS:

HDG recommends that the proposed antennas and RRHs be mounted on the proposed T-frame supported by the tower.

Photo 1: Photo illustrating the Tower with Appurtenances shown.

CALCULATIONS

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
PiROD 12' T-Frame (T-Mobile Proposed)	92	RFS DB-T1-6Z-8AB-0Z	82
		SBNHH-1D65B w/ Mount Pipe (Verizon - future)	82
PiROD 12' T-Frame	92		
PiROD 12' T-Frame	92	SBNHH-1D45B w/ Mount Pipe	82
APXV18-206516S-C-A20 w/mount pipe	92	SBNHH-1D45B w/ Mount Pipe	82
		RRH4X45-19	82
APXV18-206516S-C-A20 w/mountpipe	92	RRH4X45-19	82
		RFS DB-T1-6Z-8AB-0Z	82
APXV18-206516S-C-A20 w/mount pipe	92	PiROD 12' Lightweight T-Frame (Verizon - existing)	82
LNX-6512DS-VTM w/ Mount Pipe	92	PiROD 12' Lightweight T-Frame	82
LNX-6512DS-VTM w/ Mount Pipe	92	PiROD 12' Lightweight T-Frame	82
LNX-6512DS-VTM w/ Mount Pipe	92	(2) BXA-80063/6CF w/mount pipe	82
(2) RRUS 11	92	(2) BXA-80063/6CF w/mount pipe	82
(2) RRUS 11	92	(2) BXA-80080/4CF w/mount pipe	82
(2) RRUS 11	92	(2) FD9R6004 Diplexer	82
RRH2×60-700	82	(2) FD9R6004 Diplexer	82
RRH2x60-700	82	(2) FD9R6004 Diplexer	82
RRH2x60-700	82	SBNHH-1D65B w/ Mount Pipe	82
RRH 2×60 PCS	82	(Verizon - proposed)	
RRH2x60 PCS	82	SBNHH-1D45B w/ Mount Pipe	82
RRH 2×60 PCS	82	SBNHH-1D45B w/ Mount Pipe	82

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut
2. Tower designed for Exposure B to the TIA-222-G Standard.
3. Tower designed for a 110 mph basic wind in accordance with the TIA-222-G Standard.
4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 99.8\%

ALL REACTIONS
ARE FACTORED
MAX. CORNER REACTIONS AT BASE:
DOWN: 120024 lb
SHEAR: 13371 lb
UPLIFT: -107610 lb
SHEAR: 11897 lb

TORQUE 464 lb-ft
50 mph WIND - 0.7500 in ICE
AXIAL
13591 lb

TORQUE 3941 lb -ft
REACTIONS - 110 mph WIND

Hudson	Hudson Design Group LLC Osgood Street Bldg. 20N Suite 3090 North Andover, MA 01845	${ }^{\text {Iog }}$ CTFF600E Modifications		
		Project 100 ft	orting Tower	
		Client T -Mobile	Drawn by: kw	
		枹 TIA-22	Date: 11/15/16	Scale: NTS
	FAX: (978) $336-5586$	Path:		$\mathrm{Owg}^{\text {No. }}$

Hudson Design Group LLC	Job	CTFF600E Modifications	REDDING, CT	$\begin{array}{ll} \hline \text { Page } \\ & \\ & \\ \hline \end{array}$
	100 ft Self Supporting Tower			$\begin{aligned} & \text { Date } \\ & \text { 14:52:46 11/15/16 } \end{aligned}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-Mobil		Designed by kw

Tower Input Data

The main tower is a 3 x free standing tower with an overall height of 100.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 2.50 ft at the top and 12.71 ft at the base.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in Fairfield County, Connecticut.
Basic wind speed of 110 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of
	$f t$		$f t$	Sections	

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation ft	Diagonal Spacing \qquad	Bracing Type		Has Horizontals	Top Girt Offset in	Bottom Girt Offset in
T1	100.00-80.00	4.00	X Brace	No	No	0.0000	0.0000
T2	80.00-60.00	4.00	X Brace	No	No	0.0000	0.0000
T3	60.00-40.00	5.00	X Brace	No	Yes	0.0000	0.0000
T4	40.00-20.00	6.67	X Brace	No	Yes	0.0000	0.0000
T5	20.00-0.00	6.67	X Brace	No	Yes	0.0000	0.0000

Hudson Design Group LLC	Job	CTFF600E Modifications	REDDING, CT	$\begin{array}{ll} \text { Page } \\ & 2 \text { of } 10 \end{array}$
	100 ft Self Supporting Tower			Date 14:52:46 11/15/16
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-Mobile		Designed by kw

Tower Section Geometry (cont'd)

Tower Elevation ft	$\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 100.00-80.00	Pipe	ROHN 2.5 STD	$\begin{aligned} & \text { A572-50 } \\ & (50 \mathrm{ksi}) \end{aligned}$	Equal Angle	L1 1/4x1 1/4x3/16	$\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$
T2 80.00-60.00	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L2x $2 \times 1 / 4$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T3 60.00-40.00	Pipe	ROHN 2.5 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L1 1/2x1 1/2x1/4	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T4 40.00-20.00	Pipe	ROHN 3 STD	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$	Equal Angle	L2x $2 \times 1 / 4$	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$
T5 20.00-0.00	Pipe	ROHN 3 X-STR	$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \\ \hline \end{gathered}$	Equal Angle	L2 1/2x2 1/2x1/4	$\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \\ \hline \end{gathered}$

Tower Section Geometry (cont'd)

Tower Elevation $f t$	Top Girt	Type	Top Girt	Top Girt	Bottom Girt
Size		Grade	Bottom Girt	Sottom Girt	
Size					

Tower Section Geometry (cont'd)

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
T3 60.00-40.00	Equal Angle	$\mathrm{L} 21 / 2 \times 21 / 2 \times 3 / 16$	A 36	Solid Round	A572-50	
			$(36 \mathrm{ksi})$		$(50 \mathrm{ksi})$	
T4 40.00-20.00	Equal Angle	$\mathrm{L} 21 / 2 \times 21 / 2 \times 3 / 16$	A 36	Solid Round	A572-50	
		$(36 \mathrm{ksi})$		$(50 \mathrm{ksi})$		
T5 20.00-0.00	Equal Angle	$\mathrm{L} 21 / 2 \times 21 / 2 \times 3 / 16$	A 36	Solid Round	A572-50	
			$(36 \mathrm{ksi})$		$(50 \mathrm{ksi})$	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description | Face
 or
 Leg | Shield
 Shion | Component
 Type | Placement | Total
 Number | Number
 Per Row | Clear
 Spacing
 in | Width or Perimeter
 Diameter
 in | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | | | |

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CTFF600E Modifications	REDDING, CT	Page 3 of 10
	100 ft Self Supporting Tower			Date 14:52:46 11/15/16
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	T-Mobile			Designed by kw

Description	Face or Leg	Allow Shield	Component Type	Placement	Total Number	Number Per Row	Clear Spacing in	Width or	Periameter in	in

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

$l b$

\hline \multirow[t]{2}{*}{PiROD 12' Lightweight T-Frame} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{2}{*}{82.00} \& No Ice \& 10.20 \& 10.20 \& 253.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 16.20 \& 16.20 \& 355.00

\hline (Verizon - existing) \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 22.20 \& 22.20 \& 457.00

\hline \multirow[t]{3}{*}{PiROD 12' Lightweight T-Frame} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 10.20 \& 10.20 \& 253.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 16.20 \& 16.20 \& 355.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 22.20 \& 22.20 \& 457.00

\hline \multirow[t]{3}{*}{PiROD 12' Lightweight T-Frame} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 10.20 \& 10.20 \& 253.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 16.20 \& 16.20 \& 355.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 22.20 \& 22.20 \& 457.00

\hline \multirow[t]{3}{*}{(2) BXA-80063/6CF w/mount pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 8.23 \& 5.95 \& 44.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.99 \& 7.22 \& 107.20

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 9.71 \& 8.33 \& 178.24

\hline \multirow[t]{3}{*}{(2) BXA-80063/6CF w/mount pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 8.23 \& 5.95 \& 44.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.99 \& 7.22 \& 107.20

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 9.71 \& 8.33 \& 178.24

\hline \multirow[t]{3}{*}{(2) BXA-80080/4CF w/mount pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 5.48 \& 4.03 \& 32.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.93 \& 4.65 \& 76.83

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.39 \& 5.29 \& 127.02

\hline \multirow[t]{3}{*}{(2) FD9R6004 Diplexer} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 0.37 \& 0.08 \& 2.60

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.45 \& 0.14 \& 4.90

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.54 \& 0.20 \& 8.29

\hline \multirow[t]{3}{*}{(2) FD9R6004 Diplexer} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 0.37 \& 0.08 \& 2.60

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.45 \& 0.14 \& 4.90

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.54 \& 0.20 \& 8.29

\hline \multirow[t]{3}{*}{(2) FD9R6004 Diplexer} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 3.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{82.00} \& No Ice \& 0.37 \& 0.08 \& 2.60

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.45 \& 0.14 \& 4.90

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.54 \& 0.20 \& 8.29

\hline ********** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{SBNHH-1D65B w/ Mount Pipe (Verizon - proposed)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 8.65 \& 7.09 \& 66.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.30 \& 8.27 \& 135.68

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.92 \& 9.17 \& 212.84

\hline \multirow[t]{3}{*}{SBNHH-1D45B w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 12.84 \& 6.95 \& 89.95

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 13.53 \& 8.13 \& 174.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 14.19 \& 9.02 \& 266.48

\hline \multirow[t]{3}{*}{SBNHH-1D45B w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 12.84 \& 6.95 \& 89.95

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 13.53 \& 8.13 \& 174.04

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 14.19 \& 9.02 \& 266.48

\hline \multirow[t]{3}{*}{RRH2x60-700} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 3.96 \& 1.82 \& 60.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.27 \& 2.08 \& 82.72

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 4.60 \& 2.36 \& 109.06

\hline \multirow[t]{3}{*}{RRH2x60-700} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{82.00} \& No Ice \& 3.96 \& 1.82 \& 60.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.27 \& 2.08 \& 82.72

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.60 \& 2.36 \& 109.06

\hline
\end{tabular}

Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CTFF600E Modifications	REDDING, CT	Page 4 of 10
	Project	100 ft Self Supporting Tower		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:52:46 } \\ 11 / 15 / 16 \\ \hline \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	T-Mobile			Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline \multirow[t]{3}{*}{RRH2x60-700} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 3.96 \& 1.82 \& 60.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.27 \& 2.08 \& 82.72

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.60 \& 2.36 \& 109.06

\hline \multirow[t]{3}{*}{RRH2x60 PCS} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 2.51 \& 1.55 \& 55.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 1.74 \& 72.75

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.96 \& 1.94 \& 93.35

\hline \multirow[t]{3}{*}{RRH2x60 PCS} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 2.51 \& 1.55 \& 55.00

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 2.73 \& 1.74 \& 72.75

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.96 \& 1.94 \& 93.35

\hline \multirow[t]{3}{*}{RRH2x60 PCS} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 2.51 \& 1.55 \& 55.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 1.74 \& 72.75

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.96 \& 1.94 \& 93.35

\hline \multirow[t]{3}{*}{RFS DB-T1-6Z-8AB-0Z} \& \multirow[t]{4}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 5.60 \& 2.33 \& 44.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.92 \& 2.56 \& 80.13

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 6.24 \& 2.79 \& 120.22

\hline \multicolumn{9}{|l|}{**********} \&

\hline SBNHH-1D65B w/ Mount \& A \& From Leg \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 8.65 \& 7.09 \& 66.55

\hline Pipe \& \& \& $$
-6.00
$$ \& \& \& \[

1 / 2^{\prime \prime} Ice
\] \& 9.30 \& 8.27 \& 135.68

\hline (Verizon - future) \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 9.92 \& 9.17 \& 212.84

\hline \multirow[t]{3}{*}{SBNHH-1D45B w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 12.84 \& 6.95 \& 89.95

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 13.53 \& 8.13 \& 174.04

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 14.19 \& 9.02 \& 266.48

\hline \multirow[t]{3}{*}{SBNHH-1D45B w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 12.84 \& 6.95 \& 89.95

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 13.53 \& 8.13 \& 174.04

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 14.19 \& 9.02 \& 266.48

\hline \multirow[t]{3}{*}{RRH4X45-19} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 2.70 \& 2.77 \& 59.50

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 2.94 \& 3.01 \& 83.40

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.18 \& 3.26 \& 110.58

\hline \multirow[t]{3}{*}{RRH4X45-19} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 2.70 \& 2.77 \& 59.50

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 2.94 \& 3.01 \& 83.40

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.18 \& 3.26 \& 110.58

\hline \multirow[t]{3}{*}{RFS DB-T1-6Z-8AB-0Z} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 3.00 \& 0.0000 \& 82.00 \& No Ice \& 5.60 \& 2.33 \& $$
44.00
$$

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.92 \& 2.56 \& 80.13

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.24 \& 2.79 \& 120.22

\hline ********** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{| PiROD 12' T-Frame |
| :--- |
| (T-Mobile - Proposed) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& 0.0000 \& 92.00 \& No Ice \& 12.20 \& 12.20 \& 360.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.60 \& 17.60 \& 490.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 23.00 \& 23.00 \& 620.00

\hline \multirow[t]{3}{*}{PiROD 12' T-Frame} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& 0.0000 \& 92.00 \& No Ice \& 12.20 \& 12.20 \& 360.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.60 \& 17.60 \& 490.00

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 23.00 \& 23.00 \& 620.00

\hline \multirow[t]{3}{*}{PiROD 12' T-Frame} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& 0.0000 \& 92.00 \& \& 12.20 \& 12.20 \& 360.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 17.60 \& 17.60 \& 490.00

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 23.00 \& 23.00 \& 620.00

\hline \multirow[t]{3}{*}{APXV18-206516S-C-A20 w/mount pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 92.00 \& No Ice \& 4.00 \& 3.45 \& 41.50

\hline \& \& \& 6.00 \& \& \& 1/2" Ice \& 4.47 \& 4.28 \& 77.56

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 4.96 \& 4.98 \& 119.60

\hline \multirow[t]{3}{*}{APXV18-206516S-C-A20
w/mount pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 92.00 \& No Ice \& 4.00 \& 3.45 \& 41.50

\hline \& \& \& 6.00 \& \& \& 1/2" Ice \& 4.47 \& 4.28 \& 77.56

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.96 \& 4.98 \& 119.60

\hline \multirow[t]{3}{*}{APXV18-206516S-C-A20 w/mount pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 92.00 \& No Ice \& 4.00 \& 3.45 \& 41.50

\hline \& \& \& 6.00 \& \& \& 1/2" Ice \& 4.47 \& 4.28 \& 77.56

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.96 \& 4.98 \& 119.60

\hline \multirow[t]{3}{*}{LNX-6512DS-VTM w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 3.00 \& 0.0000 \& 92.00 \& No Ice \& 5.84 \& 4.54 \& 47.25

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 6.29 \& 5.21 \& 95.35

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 6.76 \& 5.89 \& 149.50

\hline LNX-6512DS-VTM w/ \& B \& From Leg \& 3.00 \& 0.0000 \& 92.00 \& No Ice \& 5.84 \& 4.54 \& 47.25

\hline
\end{tabular}

Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CTFF600E Modifications	REDDING, CT	Page 5 of 10
	100 ft Self Supporting Tower			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:52:46 11/15/16 } \end{array}$
$\begin{gathered} \text { North Andover, MA } 01845 \\ \text { Phone: (978) 557-5553 } \\ \text { FAX: (978) 336-5586 } \end{gathered}$	T-Mobile			Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \(f t\) \(f t\) ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[t]{2}{*}{Mount Pipe} \& \& \& -6.00 \& \& \& 1/2" Ice \& 6.29 \& 5.21 \& 95.35

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 6.76 \& 5.89 \& 149.50

\hline \multirow[t]{3}{*}{LNX-6512DS-VTM w/ Mount Pipe} \& C \& From Leg \& 3.00 \& 0.0000 \& 92.00 \& No Ice \& 5.84 \& 4.54 \& 47.25

\hline \& \& \& -6.00 \& \& \& 1/2" Ice \& 6.29 \& 5.21 \& 95.35

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.76 \& 5.89 \& 149.50

\hline \multirow[t]{3}{*}{(2) RRUS 11} \& A \& From Leg \& 2.00 \& 0.0000 \& 92.00 \& No Ice \& 3.25 \& 1.37 \& 50.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 71.50

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.74 \& 1.74 \& 95.33

\hline \multirow[t]{3}{*}{(2) RRUS 11} \& B \& From Leg \& 2.00 \& 0.0000 \& 92.00 \& No Ice \& 3.25 \& 1.37 \& 50.70

\hline \& \& \& 0.00 \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 3.49 \& 1.55 \& 71.50

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.74 \& 1.74 \& 95.33

\hline \multirow[t]{3}{*}{(2) RRUS 11} \& C \& From Leg \& 2.00 \& 0.0000 \& 92.00 \& No Ice \& 3.25 \& 1.37 \& 50.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 71.50

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 3.74 \& 1.74 \& 95.33

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$ Ice+1.0 Temp
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice+1.0 Temp

Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CTFF600E Modifications	REDDING, CT	Page 6 of 10
	100 ft Self Supporting Tower			Date 14:52:46 11/15/16
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	T-Mobile			Designed by kw

Comb.	Description	
No.		
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

		Maximum Reactions			
Location	Condition	Gov. Load Comb.	Vertical $l b$	$\begin{gathered} \text { Horizontal, } X \\ l b \end{gathered}$	Horizontal, Z $l b$
Leg C	Max. Vert	18	119787.02	11660.28	-6534.06
	Max. H_{x}	18	119787.02	11660.28	-6534.06
	Max. H_{z}	7	-107588.44	-10382.93	5808.05
	Min. Vert	7	-107588.44	-10382.93	5808.05
	Min. H_{x}	7	-107588.44	-10382.93	5808.05
	Min. H_{z}	18	119787.02	11660.28	-6534.06
Leg B	Max. Vert	10	120024.17	-11594.26	-6659.94
	Max. H_{x}	23	-107410.81	10312.19	5921.93
	Max. H_{z}	23	-107410.81	10312.19	5921.93
	Min. Vert	23	-107410.81	10312.19	5921.93
	Min. H_{x}	10	120024.17	-11594.26	-6659.94
	Min. H_{z}	10	120024.17	-11594.26	-6659.94
Leg A	Max. Vert	2	119758.76	140.88	13364.50
	Max. H_{x}	21	3323.26	501.66	337.47
	Max. H_{z}	2	119758.76	140.88	13364.50
	Min. Vert	15	-107609.64	-132.98	-11896.37
	Min. H_{x}	11	-54270.44	-508.42	-6119.56
	Min. H_{z}	15	-107609.64	-132.98	-11896.37

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear $_{x}$ lb	Shear lb	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	11325.71	0.00	-0.00	894.29	-1248.78	0.00
1.2 Dead+1.6 Wind 0 deg - No	13590.85	0.00	-20297.71	-1268340.95	-1528.61	3067.51
Ice						
0.9 Dead+1.6 Wind 0 deg - No	10193.13	0.01	-20297.70	-1267102.11	-1148.70	3060.71
Ice						
1.2 Dead+1.6 Wind 30 deg - No	13590.85	10116.38	-17522.11	-1099190.82	-636783.92	3940.89
Ice						
0.9 Dead+1.6 Wind 30 deg - No	10193.13	10116.38	-17522.11	-1098153.00	-635649.20	3937.16

	Job	CTFF600E Modifications	REDDING, CT	Page 7 of 10
	Project	100 ft Self Supportin	g Tower	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:52:46 11/15/16 } \end{array}$
1600 Osgood Street Bldg. 20N Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client \quad T-Mobile			Designed by kw

Load Combination	Vertical $l b$	Shear $_{x}$ $l b$	Shear $_{z}$ $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Ice						
1.2 Dead+1.6 Wind 60 deg - No	13590.85	16572.29	-9568.01	-610171.53	-1060269.61	3576.42
0.9 Dead+1.6 Wind 60 deg - No	10193.13	16572.29	-9568.01	-609707.59	-1058619.15	3572.75
Ice						
1.2 Dead+1.6 Wind 90 deg - No	13590.85	20232.78	0.01	1088.68	-1272005.84	2403.42
Ice						
0.9 Dead+1.6 Wind 90 deg - No	10193.13	20232.78	0.01	819.13	-1270116.46	2400.64
Ice						
1.2 Dead+1.6 Wind 120 deg -	13590.85	17578.33	10148.85	635789.59	-1100854.07	649.77
No Ice						
0.9 Dead+1.6 Wind 120 deg -	10193.13	17578.33	10148.86	634763.85	-1099169.34	647.27
No Ice						
1.2 Dead+1.6 Wind 150 deg -	13590.85	10116.40	17522.10	1101358.75	-636761.17	-1321.52
No Ice						
0.9 Dead+1.6 Wind 150 deg -	10193.13	10116.40	17522.10	1099779.80	-635627.76	-1318.25
No Ice						
1.2 Dead+1.6 Wind 180 deg -	13590.85	0.00	19136.03	1223617.01	-1527.94	-2949.88
No Ice						
0.9 Dead+1.6 Wind 180 deg -	10193.13	0.00	19136.03	1221878.20	-1149.23	-2945.94
No Ice						
1.2 Dead+1.6 Wind 210 deg -	13590.85	-10116.40	17522.10	1101377.41	633714.68	-3940.89
No Ice						
0.9 Dead+1.6 Wind 210 deg -	10193.13	-10116.40	17522.10	1099798.27	633338.52	-3937.16
No Ice						
1.2 Dead+1.6 Wind 240 deg -	13590.85	-17578.33	10148.86	635808.52	1097828.90	-3742.75
No Ice						
0.9 Dead+1.6 Wind 240 deg -	10193.13	-17578.33	10148.86	634782.52	1096901.20	-3736.24
No Ice						
1.2 Dead+1.6 Wind 270 deg -	13590.85	-20232.78	0.01	1089.17	1268991.33	-2403.46
No Ice						
0.9 Dead+1.6 Wind 270 deg -	10193.13	-20232.78	0.01	819.49	1267858.98	-2400.67
No Ice						
1.2 Dead+1.6 Wind 300 deg -	13590.85	-16572.29	-9568.01	-610189.16	1057244.60	-604.44
No Ice						
0.9 Dead+1.6 Wind 300 deg -	10193.13	-16572.29	-9568.01	-609725.14	1056351.31	-604.69
No Ice						
1.2 Dead+1.6 Wind 330 deg -	13590.85	-10116.38	-17522.11	-1099209.17	633737.27	1321.55
No Ice						
0.9 Dead+1.6 Wind 330 deg -	10193.13	-10116.38	-17522.11	-1098171.27	633359.86	1318.27
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	39856.69	-0.00	-0.00	4332.54	-4903.04	-0.03
1.2 Dead+1.0 Wind 0 deg+1.0	39856.69	0.00	-4281.07	-270985.52	-4929.13	392.24
Ice+1.0 Temp						
1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$	39856.69	2117.07	-3666.87	-232682.26	-141780.85	464.19
Ice+1.0 Temp						
1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$	39856.69	3604.49	-2081.05	-130957.17	-239293.28	409.10
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	39856.69	4234.13	-0.00	4350.95	-278631.37	245.86
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	39856.69	3707.52	2140.54	142018.48	-243375.95	22.00
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	39856.69	2117.07	3666.87	241384.43	-141779.96	-209.41
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	39856.69	0.00	4162.11	274970.76	-4930.37	-387.87
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	39856.69	-2117.07	3666.87	241385.08	131922.20	-464.20
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	39856.69	-3707.52	2140.54	142019.54	233519.50	-415.16
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	39856.69	-4234.13	-0.00	4350.99	268774.59	-245.92

Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CTFF600E Modifications	REDDING, CT	Page 8 of 10
	100 ft Self Supporting Tower			Date 14:52:46 11/15/16
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client \quad T-Mobile			Designed by kw

Load Combination	Vertical $l b$	Shear $_{x}$ $l b$	Shear $_{z}$ $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	39856.69	-3604.49	-2081.05	-130958.80	229435.39	-20.31
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	39856.69	-2117.07	-3666.87	-232682.79	131923.01	209.49
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	11325.71	0.00	-3774.37	-234971.41	-1256.13	570.25
Dead+Wind 30 deg - Service	11325.71	1881.15	-3258.24	-203545.69	-119291.56	731.15
Dead+Wind 60 deg - Service	11325.71	3081.62	-1779.18	-112679.64	-197979.37	664.70
Dead+Wind 90 deg - Service	11325.71	3762.29	0.00	898.85	-237324.97	447.90
Dead+Wind 120 deg - Service	11325.71	3268.70	1887.18	118833.13	-205525.28	121.23
Dead+Wind 150 deg - Service	11325.71	1881.15	3258.24	205339.38	-119290.93	-246.64
Dead+Wind 180 deg - Service	11325.71	-0.00	3558.35	228054.17	-1256.39	-548.14
Dead+Wind 210 deg - Service	11325.71	-1881.15	3258.24	205341.57	116779.61	-731.15
Dead+Wind 240 deg - Service	11325.71	-3268.70	1887.18	118832.97	203012.67	-695.91
Dead+Wind 270 deg - Service	11325.71	-3762.29	-0.00	898.91	234814.85	-447.90
Dead+Wind 300 deg - Service	11325.71	-3081.62	-1779.18	-112680.75	195468.57	-112.13
Dead+Wind 330 deg - Service	11325.71	-1881.15	-3258.24	-203545.63	116778.96	246.65

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	$P Z$	PX	PY	$P Z$	
Comb.	$l b$						
1	0.00	-11325.71	-0.00	-0.00	11325.71	0.00	0.000\%
2	-0.00	-13590.85	-20297.71	-0.00	13590.85	20297.71	0.000\%
3	-0.00	-10193.13	-20297.71	-0.01	10193.13	20297.70	0.000\%
4	10116.39	-13590.85	-17522.11	-10116.38	13590.85	17522.11	0.000\%
5	10116.39	-10193.13	-17522.11	-10116.38	10193.13	17522.11	0.000\%
6	16572.29	-13590.85	-9568.01	-16572.29	13590.85	9568.01	0.000\%
7	16572.29	-10193.13	-9568.01	-16572.29	10193.13	9568.01	0.000\%
8	20232.78	-13590.85	-0.00	-20232.78	13590.85	-0.01	0.000\%
9	20232.78	-10193.13	-0.00	-20232.78	10193.13	-0.01	0.000\%
10	17578.33	-13590.85	10148.85	-17578.33	13590.85	-10148.85	0.000\%
11	17578.33	-10193.13	10148.85	-17578.33	10193.13	-10148.86	0.000\%
12	10116.39	-13590.85	17522.11	-10116.40	13590.85	-17522.10	0.000\%
13	10116.39	-10193.13	17522.11	-10116.40	10193.13	-17522.10	0.000\%
14	0.00	-13590.85	19136.03	-0.00	13590.85	-19136.03	0.000\%
15	0.00	-10193.13	19136.03	-0.00	10193.13	-19136.03	0.000\%
16	-10116.39	-13590.85	17522.11	10116.40	13590.85	-17522.10	0.000\%
17	-10116.39	-10193.13	17522.11	10116.40	10193.13	-17522.10	0.000\%
18	-17578.33	-13590.85	10148.85	17578.33	13590.85	-10148.86	0.000\%
19	-17578.33	-10193.13	10148.85	17578.33	10193.13	-10148.86	0.000\%
20	-20232.78	-13590.85	-0.00	20232.78	13590.85	-0.01	0.000\%
21	-20232.78	-10193.13	-0.00	20232.78	10193.13	-0.01	0.000\%
22	-16572.29	-13590.85	-9568.01	16572.29	13590.85	9568.01	0.000\%
23	-16572.29	-10193.13	-9568.01	16572.29	10193.13	9568.01	0.000\%
24	-10116.39	-13590.85	-17522.11	10116.38	13590.85	17522.11	0.000\%
25	-10116.39	-10193.13	-17522.11	10116.38	10193.13	17522.11	0.000\%
26	0.00	-39856.69	-0.00	0.00	39856.69	0.00	0.000\%
27	0.00	-39856.69	-4281.07	-0.00	39856.69	4281.07	0.000\%
28	2117.07	-39856.69	-3666.87	-2117.07	39856.69	3666.87	0.000\%
29	3604.49	-39856.69	-2081.05	-3604.49	39856.69	2081.05	0.000\%
30	4234.13	-39856.69	-0.00	-4234.13	39856.69	0.00	0.000\%
31	3707.52	-39856.69	2140.54	-3707.52	39856.69	-2140.54	0.000\%
32	2117.07	-39856.69	3666.87	-2117.07	39856.69	-3666.87	0.000\%
33	-0.00	-39856.69	4162.11	-0.00	39856.69	-4162.11	0.000\%
34	-2117.07	-39856.69	3666.87	2117.07	39856.69	-3666.87	0.000\%

Hudson Design Group LLC	Job	CTFF600E Modifications	REDDIN	$\begin{aligned} & \text { Page } \\ & \\ & 9 \text { of } 10 \end{aligned}$
	100 ft Self Supporting Tower			Date 14:52:46 11/15/16
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	T-Mobile			Designed by kw

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	$P Z$	PX	PY	$P Z$	
Comb.	$l b$						
35	-3707.52	-39856.69	2140.54	3707.52	39856.69	-2140.54	0.000\%
36	-4234.13	-39856.69	-0.00	4234.13	39856.69	0.00	0.000\%
37	-3604.49	-39856.69	-2081.05	3604.49	39856.69	2081.05	0.000\%
38	-2117.07	-39856.69	-3666.87	2117.07	39856.69	3666.87	0.000\%
39	0.00	-11325.71	-3774.37	-0.00	11325.71	3774.37	0.000\%
40	1881.15	-11325.71	-3258.24	-1881.15	11325.71	3258.24	0.000\%
41	3081.62	-11325.71	-1779.18	-3081.62	11325.71	1779.18	0.000\%
42	3762.29	-11325.71	-0.00	-3762.29	11325.71	0.00	0.000\%
43	3268.70	-11325.71	1887.18	-3268.70	11325.71	-1887.18	0.000\%
44	1881.15	-11325.71	3258.24	-1881.15	11325.71	-3258.24	0.000\%
45	-0.00	-11325.71	3558.35	0.00	11325.71	-3558.35	0.000\%
46	-1881.15	-11325.71	3258.24	1881.15	11325.71	-3258.24	0.000\%
47	-3268.70	-11325.71	1887.18	3268.70	11325.71	-1887.18	0.000\%
48	-3762.29	-11325.71	-0.00	3762.29	11325.71	0.00	0.000\%
49	-3081.62	-11325.71	-1779.18	3081.62	11325.71	1779.18	0.000\%
50	-1881.15	-11325.71	-3258.24	1881.15	11325.71	3258.24	0.000\%

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	\circ

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb	Deflection in	Tilt	Twist 。	Radius of Curvature $f t$
92.00	PiROD 12' T-Frame	43	2.105	0.1968	0.0090	150558
82.00	PiROD 12' Lightweight T-Frame	43	1.694	0.1924	0.0084	66219

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \phi P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
T1	100-80	Leg	ROHN 2.5 STD	2	-12248.00	63511.40	19.3	Pass
T2	80-60	Leg	ROHN 2.5 STD	38	-48368.10	63519.00	76.1	Pass
T3	60-40	Leg	ROHN 2.5 STD	71	-75085.60	75206.70	99.8	Pass
T4	40-20	Leg	ROHN 3 STD	113	-95647.80	97988.80	97.6	Pass
T5	20-0	Leg	ROHN 3 X-STR	146	-116053.00	123303.00	94.1	Pass
T1	100-80	Diagonal	L1 1/4x1 1/4x3/16	7	-2970.45	4490.61	66.1	Pass
T2	80-60	Diagonal	L2x2x1/4	64	-4328.36	17419.60	24.8	Pass
T3	60-40	Diagonal	L1 1/2x1 1/2x1/4	76	-3688.79	3842.72	96.0	Pass

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CTFF600E Modifications	REDDING, CT	Page $\begin{aligned} & \text { P of } 10\end{aligned}$
	Project	100 ft Self Supporting Tower		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:52:46 11/15/16 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	T-Mobile			Designed by kw

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \phi P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
T4	40-20	Diagonal	L2x2x1/4	118	-4304.12	5880.68	73.2	Pass
T5	20-0	Diagonal	L2 1/2x2 1/2x1/4	151	-4540.46	9045.76	50.2	Pass
T3	60-40	Secondary Horizontal	L2 1/2x2 1/2x3/16	84	-514.47	7149.02	7.2	Pass
T4	40-20	Secondary Horizontal	L2 1/2x2 1/2x3/16	135	-747.41	5700.53	13.1	Pass
T5	20-0	Secondary Horizontal	L2 1/2x2 1/2x3/16	168	-693.87	4113.28	16.9	Pass
T1	100-80	Top Girt	L3x3x1/4	5	-196.61	32489.70	0.6	Pass
T3	60-40	Top Girt	L1 1/2x1 1/2x1/4	75	-819.51	3488.88	23.5	Pass
T4	40-20	Top Girt	L2x2x1/4	117	-1485.16	5045.13	29.4	Pass
T5	20-0	Top Girt	L2 1/2x2 1/2x1/4	150	-2280.36	6556.44	34.8	Pass
							Summary	
						Leg (T3)	99.8	Pass
						Diagonal (T3)	96.0	Pass
						Secondary Horizontal (T5)	16.9	Pass
						Top Girt (T5)	34.8	Pass
						RATING =	99.8	Pass

Unit Base Foundation

Checks capacity of square mat foundation with raised piers for a self-supporting tower

BU\#: CTFF600E

Site Name:

App Number:

TIA-222 Revision: G

Design Reactions		
Shear, S:	20.3	kips
Moment, M:	1272.0	ft -kips
Compression/leg, Ca:	120.0	kips
Uplift/leg, Ua:	107.6	kips
Tower Weight, Wt:	13.6	kips
Tower Height, H:	100	ft
Base Face Width, w':	12.7	ft

Pad Properties			
Depth, D:	4.0	ft	
Pad Width, W:	18.5	ft	
Pad Thickness, T:	4.5	ft	
Ext. Above Grade, E:	0.5	ft	
Neglected Depth, N:	0.0	ft	
Pad Rebar Size, Sp:			
Pad Rebar Quantity, mp:	36	\#N/A	

Pier Properties			
Pier Shape:	Square		
Pier Width, di:	2.0	ft	
Pier Rebar Size, Sc:			
Pier Rebar Quantity, mc:	12	\#N/A	
Pier Tie Size, St:			
Tie Quantity, mt:	6	\#N/A	
Material Properties			
Rebar Tensile, Fy:	60000	psi	
Concrete Strength, F'c:	3500	psi	
Concrete Density, סc:	150	pcf	
Clear Cover, cc:	3	in	

Soil Properties			
Soil Unit Weight, $\mathbf{Y}:$	120	pcf	
Ultimate Bearing: Bc:	6.000	ksf	
Cohesion, $\mathbf{C o}:$	0.000	ksf	
Friction Angle, $\boldsymbol{\phi}:$	30	degrees	
Base Sliding, $\boldsymbol{\mu}:$	0.35		

Design Checks

	Capacity/ Availability	Demand/ Limits	Check
Base Sliding (kips):	238.21	20.30	$\mathbf{8 . 5 \%}$
Overturning (k-ft):	1670.95	1272.00	$\mathbf{7 6 . 1 \%}$
Bearing (ksf):	4.50	2.01	$\mathbf{4 4 . 7 \%}$
1-way Shear (kips):	\#N/A	\#N/A	\#N/A
2-way Shear (kips):	\#N/A	120.00	\#N/A
Pier concrete stress (ksf):	1048.32	120.00	$\mathbf{1 1 . 4 \%}$
Pier moment capacity (k-ft):	117.40	0.00	$\mathbf{0 . 0 \%}$
Pad moment capacity(k-ft):	\#N/A	548.02	\#N/A

\lceil Tower centroid is offset from foundation

Transcend Wireless

Letter of Authorization

Site: Self-Support Tower at 80 Lonetown Road, Redding, CT
Owner: Andrew Mound \& Elizabeth Mound
Lessee: T-Mobile Northeast LLC
We, Andrew Mound \& Elizabeth Mound, owners of the tower facility located at the address identified above (the "Tower Facility), do hereby authorize T-Mobile Northeast LLC, its successors and assigns, and/or its agent, (collectively, the "Lessee") to act as our non-exclusive agent for the sole purpose of filing and consummating any land-use or building permit applications) as may be required by the applicable permitting authorities for Lessee's telecommunications' installations.

We understand that this application may be denied, modified or approved with conditions. The above authorization is limited to the acceptance by Lessee only of conditions related to Lessee's installation and any such conditions of approval or modifications will be Lessee's sole responsibility.

Signature:
Aemound
Print Name: Andrew Mound
Date: $\quad 4 / 15 / 17$

Signature:

Print Name: Elizabeth Mound
Date: $4 / 15 / 17$
environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTFF600E

CTFF600E
80 Lonetown Road
Redding, CT 06896
August 31, 2016
EBI Project Number: 6216003845

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{1 2 . 8 4} \%$

August 31, 2016

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CTFF600E - CTFF600E

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{8 0}$ Lonetown Road, Redding, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limit for the 700 MHz Band is approximately 467 $\mu \mathrm{W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{8 0}$ Lonetown Road, Redding, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 UMTS channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 2 LTE channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
3) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
environmental | engineering | due diligence
5) For the following calculations the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
6) The antennas used in this modeling are the RFS APXV18-206516S-C-A20 for 2100 MHz (AWS) channels and the Commscope LNX-6512DS-A1M for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXV18-206516S-C-A20 has a maximum gain of $\mathbf{1 6 . 3} \mathbf{~ d B d}$ at its main lobe at 2100 MHz .. The Commscope LNX-6512DS-A1M has a maximum gain of $\mathbf{1 2} \mathbf{~ d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antenna mounting height centerline of the proposed antennas is $\mathbf{9 0}$ feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
9) All calculations were done with respect to uncontrolled / general public threshold limits.

EBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	4.43%
Sector B:	4.43%
Sector C:	4.43%
T-Mobile Per Sector	
Maximum:	4.43%
Site Total:	12.84%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 2 . 8 4 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

