Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

August 7, 2023

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 63 Industrial Park Road, Putnam, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced address (the "Property"). Cellco's facility consists of antennas and remote radio heads attached to a tower. Equipment associated with the facility is located on the ground adjacent to the tower. Cellco's facility was approved by the Siting Council ("Council") in May of 2002 (PE1133-VER-20150617). A copy of the Council's shared use approval is included in <u>Attachment 1</u>.

Cellco's proposed modification involves the installation of two (2) interference mitigation filters ("Filters") on Cellco's existing antenna platform and mounting assembly. The filter specification sheet is included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Putnam's Chief Elected Official and Land Use Officer.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The Filters will be installed on Cellco's existing antenna platform and mounting assembly.

Robinson+Cole

Melanie A. Bachman, Esq. August 7, 2023 Page 2

- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new Filters will not result in a change to radio frequency (RF) emissions from the facility. Therefore, no new RF emissions information is included in this filing.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis Report ("MA"), the existing tower, foundation, antenna platform and mounting assembly can support Cellco's proposed modifications. A copy of the SA and MA are included in Attachment 3.

A copy of the parcel map and Property owner information is included in <u>Attachment 4</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 5</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Enclosures Copy to:

Barney Seney, Mayor Bruce Fitzback, Land Use Agent DMV Putnam, Property Owner Kamoya Bautista, Verizon Wireless

ATTACHMENT 1

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

August 5, 2015

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: PE1133-VER-20150618 – Cellco Partnership d/b/a Verizon Wireless sub-petition for a declaratory ruling for approval of an eligible facility request for modifications to an existing telecommunications facility located at 63 Industrial Park Road, Putnam, Connecticut.

Dear Attorney Baldwin:

The Connecticut Siting Council (Council) hereby approves your Eligible Facilities Request (EFR) to install antennas and associated equipment at the above-referenced facility pursuant to the Federal Communications Commission Wireless Infrastructure Report and Order, with the following conditions:

- The proposed coax lines and remote radio heads shall be installed in accordance with the structural analysis
 report performed by FDH Engineering, Inc. dated September 24, 2014 and stamped by Dennis Abel;
- Within 45 days following completion of the equipment installation, Cellco shall provide documentation that
 its installation complied with the recommendations of the structural analysis;
- Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and
 operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
- The validity of this action shall expire one year from the date of this letter; and
- The petitioner may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the EFR received on June 18, 2015.

Thank you for your attention and cooperation.

Very truly yours,

Melanie Bachman

Acting Executive Director

MB/MP

c: Honorable Anthony Falzarano, Mayor, Town of Putnam Douglas Cutler, Town Administrator, Town of Putnam Gerard Cotnoir, Sr., Planning Chairman, Town of Putnam

1133-VER-30150618-Putseca-63 Industrial Park Road-docisign.docs

CONNECTICUT SITING COUNCIL

Affirmative Action / Equal Opportunity Employer

ATTACHMENT 2

BSF0020F3V1-1

TWIN BANDSTOP 900MHZ INTERFERENCE MITIGATION FILTER

The BSF0020 is ideal for co-located 700, 850 and 900 networks. Utilising a 2,6MHz guardband the BSF0020 provides rejection of the 900 UL band while passing 700/850 UL and DL bands. Capable of being used in an outdoor environment the BSF0020 contains two identical bandstop filters, suitable for 2x2 MIMO configuration, offering excellent insertion loss, group delay and rejection.

FEATURES

- · Passes full 700 and 850 bands
- · Low insertion loss
- Rejection of 900MHz uplink
- DC/AISG pass
- Twin unit
- · Dual twin mounting available

TECHNICAL SPECIFICATIONS	6					
BAND NAME	700 PATH / 850 UPLINK PATH	850 BOWNLINK PATH				
Passband	698 - 849MHz	869 - 891 5MHz				
Insertion loss	0.1dB typical / 0.3dB maximum 0.5dB typical, 1.45dB maximum					
Return loss	24dB typical,	18dB minimum				
Maximum input power (Per Port)	100W average 200W average and 66W pe					
Rejection	53dB minimum @ 894.1 - 896.5MHz					
ELECTRICAL						
Impedance	500	Dhms				
-160dBc maximum in UL Band (assuming 20MHz Signal), with 2 x 43dBm carriers -153dBc maximum with 2 x 43dBm						

DC / AISG		
Passband	0 - 13MHz	
Insertion loss	0,3dB maximum	
Return loss	15dB minimum	
Input voltage range	± 33V	
DC current rating	2A continuous, 4A peak	
Compliance	3GPP TS 25,461	

ENVIRONMENTAL	
For further details of environme	ntal compliance, please contact Kaelus.
Temperature range	-20°C to +60°C -4°F to +140°F
Ingress protection	IP67
Altitude	2600m 8530ft
Lightning protection	RF port: ±5kA maximum (8/20us), IEC 61000-4-5 - Unit must be terminated with some lightning protection circuits.
MTBF	>1,000,000 hours
Compliance	ETSI EN 300 019 class 4,1H, RoHS, NEBS GR-487-CORE

MECHANICAL	
Dimensions H x D x W	269 x 277 x 80mm 10,60 x 10.90 x 3.15in (Excluding brackets and connectors)
Weight	8.0 kg 17.6 lbs (no bracket)
Finish	Powder coated, light grey (RAL7035)
Connectors	RF: 4.3-10 (F) x 4
Mounting	Optional pole/wall bracket supplied with two metal clamps 45-178mm diameter poles or custom bracket. See ordering information.

ORDERING INFORMATION

PART NUMBER	CONFIGURATION	OPTIONAL FEATURES	CONNECTORS	
BSF0020F3V1	TWIN, 2 in / 2 out	DC/AISG PASS NO BRACKET	4.3-10 (F)	
	TWIN, 2 in / 2 out	DC/AISG PASS	4.3-10 (F)	
BSF0020F3V1-1 BSF0020F3V1-2	QUAD, 4 in / 4 out	DC/AISG PASS	4.3-10 (F)	

ELECTRICAL BLOCK DIAGRAM

MECHANICAL BLOCK DIAGRAM

ATTACHMENT 3

T + 561.995.7670 F + 561.995.7626

sbasite.com

Structural Analysis Report

Client: Verizon

Client Site ID / Name: 5000242993 / Putnam South CT Application #: 232409, v3

SBA Site ID / Name: CT00802-S / Putnam Freight

196' Self Supporting Tower

63 Industrial Park Road Putnam, Connecticut 06260 Lat: 41.897142, Long: -71.892247

Project number: CT00802-VZW-070523

Analysis Results

Tower	74.7%	Pass
Foundation	82.5%	Pass

Change in tower stress due to mount modification / replacement	N/A
Offering of the Control	

Prepared by:

Reviewed by:

Mojdeh Sadeghzadeh Structural Engineer I 214-570-8110 ext. 2610 MSadeghzadeh@sbasite.com Anantha (Shan) Shanubhogue, P.E. Senior Manager, Structural Engineering (561) 981-7390 SShanubhogue@sbasite.com

July 11, 2023

Table of Contents

Introduction	3
Analysis Criteria	
Appurtenance Loading	3
Existing Loading:	4
Proposed Loading:	
Analysis Results	
Tower	
Foundation System	
Conclusions	
Installation Requirements	7
Assumptions and Limitations	8
Assumptions	
Limitations	
Appendix	9
Tower Geometry	•••
Coax Layout	
tnxTower Report	
Foundation Analysis Report	

Introduction

The purpose of this report is to summarize the analysis results on the 196' Self Supporting Tower to support the proposed antennas and transmissions lines in addition to those currently installed.

Table 1 List of Documents Used

Item	Document
Tower drawings	Sabre, Job No.99-04060, dated 04/21/1999.
Foundation drawing	N/A
Geotechnical report	N/A
Modification drawings	N/A
Mount Analysis	Maser Consulting, Project No. 20777647A, dated 04/22/2021.
Latest SA Report	TES, Project No. 132046, dated 07/27/2022.

Analysis Criteria

Table 2 Code Related Data

Jurisdiction (State/County/City)	Connecticut / Windham / Putnam
Governing Codes	ANSI/TIA-222-H, 2021 IBC, 2022 Connecticut State Building Code
Basic wind speed (3-Sec gust)	121.0 mph
Wind Speed with Ice (3-Sec gust)	50 mph
Service Wind Speed (3-Sec gust)	60 mph
Ice Thickness	1 in
Risk Category	
Exposure Category	C
Topographic Category	1
Crest Height	0 ft.
Ground Elevation	268.95 ft.
Seismic Parameter S _s	0.184
Seismic Parameter S ₁	0.055

This structural analysis is based upon the tower being classified as a Risk Category II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Appurtenance Loading

Existing Loading:

Table 3 Existing Appurtenances

Mount Elev. (ft)	CL Elev. (ft)	Туре	Qty	Manufacturer	Model	Feed Line Size	Mount Type Qty.	Carrier
196	196	4	3	- 4		5	(3) Abandoned Sector Frames w/ Pipes	
		Panel	3	Kathrein	800-10966			
		Panel	3	Cci	TPA65R-BU8D			
		Panel	3	Powerwave	7770		(3) Sector	
		TMA	6	Powerwave	LGP21401	1	Frames	
		TMA	6	Powerwave	21401	(12) 1 5/8"	Commoscope	AT&T
186	186	RRU	3	Ericsson	RRUS 8843 B2 B66A	Coax (1) 3" Conduit (6) 3/4" DC* (2) 5/8" Fiber*	MTC3615 W/Mods [(3) Pipe Mast, (6) Steel Angle Brace (3"x3"x3") & (3)Pipe Brace]	
100		RRU	3	Ericsson	RRUS 4415 B30			
		RRU	3	Ericsson	RRUS 12			
		RRU	3	Ericsson	RRUS 4478 B14			
		RRU	3	Ericsson	4449 B5, B12			
		RRU	3	Ericsson	RRUS A2			
		OVP	2	Raycap	DC6-48-60-18-8F			
		Panel	6	Commscope	JAHH-65B-R3B	777A S-43-2X 6A Hybrid (3) Sector Frames w/ Mods+ (3) CommScop BSAMNTSBS- 2-2		
		Panel	3	Samsung	MT6407-77A			
470	176	Diplexer	3	Commscope	CBC78T-DS-43-2X			Verizon
176		RRU	3	Samsung	B2/B66A		(3) CommScope	
		RRU	3	Samsung	B5/B13		BSAMNTSBS-	
		Surge	2	RFS	DB-T1-6Z-8AB-0Z		2-2	
		Panel	3	Commscope	FFVV-65B-R2		(3) Sector	
166	166	RRU	3	Fujitsu	TA08025-B604	(1) 1.75" (3) Sector		Dish
100	100	RRU	3	Fujitsu	TA08025-B605	Hybrid	[Commscope	Wireless
		OVP	1	Raycap	RDIDC-9181-PF-48		MTC3975083]	

^{*}Routed outside the 3" Conduit.

Proposed Loading:

Information pertaining to proposed antennas and transmission lines were based upon the Application #: 232409, v3 from Verizon and is listed in Table 4.

Table 4 Proposed Appurtenances

Mount Elev. (ft)	CL Elev. (ft)	Туре	Qty	Manufacturer	Model	Feed Line Size	Mount Type Qty.	Carrier	
		Panel	6	Commscope	JAHH-65B-R3B				
	176	Panel	3	Samsung MT6407-77A	(3) Sector				
		İ	Diplexer	3	Commscope	CBC78T-DS-43-2X	(10) 1 5/8"	Frames w/ Mods+	
176		RRU	3	Samsung	B2/B66A	(2) 1 5/8"	(3) CommScope	Verizon	
		RRU	3	Samsung	B5/B13	Hybrid -	BSAMNTSBS-		
		Surge	2	RFS	DB-T1-6Z-8AB-0Z		2-2		
		Filter	2	Kaelus	BSF0020F3V1-1				

Analysis Results

Tower

The results of the structural analysis are shown below in table 5. Additional information for the tower analysis is provided within the Appendix.

Table 5 Tower Analysis Summary

Structural Component	% Capacity	Analysis Result
Leg	61.2	Pass
Diagonal	74.7	Pass
Horizontal	45.8	Pass
Top girt	5.7	Pass
Bolt	73.0	Pass
Anchor Bolt	55.1	Pass

Foundation

The results of the foundation reaction comparison are shown below in table 6. Additional information for the foundation analysis is provided within the Appendix.

Table 6 Foundation Reaction Comparison Summary

Structural Component	Max Usage (%)	Analysis Result
Foundation	82.5	Pass

Conclusions

Based on the analysis results, the existing tower and foundation were found to be <u>acceptable</u> to safely support the equipment listed in this analysis. No modification to the tower and foundation is needed at this time.

Installation Requirements

This analysis was performed under the assumption that the carrier will place the proposed equipment and feed lines at the installation height listed in Table 4 and in accordance with the coax layout shown. TMAs and RRUs are to be installed on existing mounts behind tenant's antennas unless otherwise noted. No equipment is to be installed directly in the climbing path. All equipment is to be installed per mount manufacturer specifications. In case site conditions do not allow for the required installation parameters to be met the carrier must notify SBA Communications Corporation engineers for approval of an alternative placement.

Assumptions and Limitations

Assumptions

This analysis was completed based on the following assumptions:

- Tower and foundation were built in accordance to manufacturer specifications.
- Tower and foundation has been properly maintained in accordance with the manufacturer's specifications
- All existing structural members were assumed to be in good condition with no physical damage or deterioration associated with corrosion
- Welds and bolts are assumed able to carry their intended original design loads.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Table 3 and 4.
- This analysis may be affected if any assumptions are not valid or have been made in error. SBA should be notified to determine the effect on the structural integrity of the tower.

Limitations

The computer generated analysis performed by the tower software is limited to theoretical capacities of the towers structural members and does not account for any missing or damaged members or connections. The tower and foundation are assumed to have been properly designed, fabricated, installed and maintained, barring any conflicting findings from the most recent inspection.

SBA Communications Corporation has used its due diligence to verify the information provided to perform this analysis. It is unreasonable to perform a more detailed inspection of a tower and its components. This report is not a condition assessment of the tower or foundation.

Appendix

	Salare 10.7				CaCl	ŝ				0.0 R		79 K SHEAR
	Salare 10,75" x 0.365"	101			L3z3x3/16	7						TORQUE 14 kip-ft 50 mph WIND - 1,0000 in ICE AXIAL
		13 19/3 19/34		LAXAKOVB	י פ	Medelle	s		4	20 O M	1 1 m	SHEAR MOMENT 16 K 1962 kip-II
8					L2-1/2x2-1/2x3/16	c liexe liexallo					KAN	TORQUE 0 kip-ti SEISMIC AXIAL 143 K
				-		1	N		1	40,0 ft		SHEAR MOMENT 649 kip-ft
	Sobre 6.655 to	L4x4k3r8							*		>×<	SHEAR: 32 K AXIAL 82 K
	5005	78					12	124				MAX. CORNER REACTIONS AT BAS DOWN: 339 K SHEAR: 39 K UPLIFT: -274 K
		13 17						61.6	k	60 O R		ALL REACTIONS ARE FACTORED
		LO 1/243 1/243/8										Deflections are based up Tower Risk Category II. Topographic Category 1 TOWER RATING: 74.7%
	S						2			80.0 R		Tower is located in Wind Tower designed for Expo Tower designed for a 12 Tower is also designed for
	Sabre 0 625-10 322-		< z									GRADE 50 ksi
	A572-50		A36		i		×			100.0 h	K >	800 10958 wireunt pipe (954204.9 SL2 (2) JAI-91459-030 wireunt pipe (73
		13 I/2 x 3 I/2 x							14			Commonospe MTC2615 Moonl Mode Emply Pipe Mount Emply Pipe Mount Emply Pipe Mount
	Salve 6 625" x U	P x 1/4		×X	₹ 2	NA.	2				\sim	RRUSAZ (16.445.2-0.4) DOS-48-60-18-67 (2411.18.5) DOS-48-60-18-67 (2411.18.5) Commiscope MTCQ015 Commiscope MTCQ015
	5" x 0 432"									120 O H	-	448 85818 (17.9+12.19±2.44) 449 85818 (17.9+12.19±2.44) 648 85818 (17.9+12.19±2.44) 88195 A2 (16.4+15.2+2.4) 88195 A2 (16.4+15.2+2.4)
			١				Ĭ					HRUS-12 (20.4410.547.5) HRUS-12 (20.410.547.5) 4478 B14 (10.1412.402.6) 4478 B14 (10.1412.402.6) 4478 B14 (10.1412.402.6)
	S	F			1		0			140.0 R		8843 62 / 696 (14.5x13.2x10.5) 4415 800 (165412.4x5.5) 4415 800 (165412.4x5.5) 4415 800 (165412.4x5.5) RRUS 12 (20.4x18.5x7.5x)
	Sabro 5 5625" x 0.375"	L2 1/2×2 1/2×1/4						5 49 6.66667	3			(2) 21401 MA(14492.7) (2) 21401 MA(14492.7) (2) 21401 MA(1492.7) (8) 21401 MA(1492.7) (8) 27 (8) (14.9) (32×(0.9) (6) 32 (16) (14.9) (32×(0.9)
	.52	-					-			1600 R		7770 wmmantpipe (Socilics) (5) LGP21401 (14/2/27) (5) LGP21401 (14/2/27) (5) LGP21401 (14/2/27)
	Sabre 4.5" x 0,436"	L2-1/2x2-1/2x3/16							1			TPAGSF-BLBD wimoust pipe (Bib2) TPAGSF-BLBD wimoust pipe (Bib2) TPAGSF-BLBD wimoust pipe (Bib2) 7770 wimoust pipe (Bib2) 7770 wimoust pipe (Sids11d) 7770 wimoust pipe (Sids11d)
	x 0,436*	PXJVI6									神中山神	(4) Emply Pipo Mount (4) Emply Pipo Mount 50.1 900 10960 wimount pipe (964204) 800 10960 wimount pipe (964204)
		į,			١.					180.0 ft	4-41-4	Abandoned T-Frame Abandoned T-Frame (4) Empty Plea Mount

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION		
Abandoned T-Frame	193	M16407-77A wimount pipe (25.12x10.06-6.51)	176		
Viandoned T Frame	196	M16407-77A wirrount pipe (35.12x1606x5.51)	176		
Usandoned T-Framo	196	MT6407-77A wimount pipe (25.12x16.00x5.51)	176		
4) Empty Pipe Mount	196	CBCRIT-DS-26W14F05P50 (6.446.946.6)	176		
(4) Empty Pipo Mount	196	CBC/8T OS-20W14F05P50 (0.446.940.6)	176		
(4) Emply Pipe Mount	196	CSC 78T OS 2KW 1 6 05 P50 (U. 4 6 9 6 6)	179		
S(I	196	RODGGA(15x15x10)	176		
000 10960 witnount pipe (96/20x5.9)	106	02/996A(15x15x10)	176		
800 10006 wmount pipe (96/20/5 5)	186	BIZMIGGA(15x15x1Q)	176		
TRAGER GUIDO witnount pipe (96x20.7x7.7)	196	01385 RRH (15(15(8.1)	170		
TPA65R GUSD witnount pipe (96x20.7±7.7)	186	01365 RRH ((5a15e6.1)	176		
TPASSR-BUBO wirrount pipe (96/20.7x7.7)	106	01205 80H(15a5a8.1)	176		
7778 wincontpipe (55×11×5)	106	00-81/08-71 (24/24/10)	176		
770 wmaintpipe (55x11x5)	186	D0 61/08-T1 (26/24/10)	176		
7770 wmount pipe (Sout tel)	100	BSF0020FDV1-1 (10.6" x 10.9" x 3.15")	176		
2) LGP21401 (14x7x2.7)	186	BSF0020F3V1-1 (10.6" x 10.9" x 3.15")	176		
2) LGP21401 (14x7s2.7)	106	BSAMIT-SRS-9-2	176		
LGP21401 (14x/hg./)	100	USAWI 585.22	176		
2) 21401 (MA(14/9/2.7)	186	BSAMI SRS 22	176		
2) 21401 TMA(1449-2.7)	186	Sector Frame	176		
2) 21401 TMA(14:9/2.7)	186	Sector Frame	176		
942 62 / 806 (14.9x13.2x10.9)	186	Socky Flame	The state of the s		
1843 89 / 866 (14.9x13.2x10.9)	186		176		
ISI3 62 / 866 (14.9+12.2+10.9)	100	Cli & Empty Pipe	176		
1415 800 (165x12.4x5.0)	100	(2) 6' Empty Pipe	176		
415 EOO (165412 4659)	106	(2) & Empty Pipe	176		
The second party of the second party of the second		Mount Mod	176		
(415 f)00 (10.5x13.4x5.5)	106	MountMod	176		
IRUS 12 (20 Act 8.547.5)	186	Mount Mod	176		
ARUS 12 (20.4x18.5x7.5)	100	(2) JANN 658 R39 wimount page (72x13.8x6.2)	176		
HRUS 12 (20.4x18.5x7.5) 6478 II14 (18.1x13.4x8.26)	100	(2) JAH1 056 R38 wirrount pipe (72x13 Bell 2)	176		
The same of the sa	106	FFVV-650-R2 wimount pipe (72v19/6x7.ft)	166		
470 814 (18 1+13 4+8.26)	106	TA08025 8504 (15.75x14.96x7.87)	166		
478 B14 (18.1±13.4±2.26)	116	TA09025-B604 (15.75x14.96x7.87)	166		
449 95-012 (17.9+13.19+9.44)	106	TAGEO25-EI604 (15.75a14.96a7.87)	166		
1449 85:812 (17.9-13.19-0.44)	186	TA00025-B605 (15.75x14.96x9.05)	166		
4411 (85-1812 (17.9) (12.19) (44)	100	TA00025-B605 (15.75x14.96x9.05)	160		
RUSA2 (18.4x15.2x0.4)	186	TA08025-B605 (15.75x14.96x9.05)	196		
RUSA2(164x15.2Q.4)	190	HDIDC 9181 PF-48 (16.57x14.57x8.40)	100		
RU9AZ(16.4x15.2x3.4)	100	(MTC39/5083) Sector Frame	100		
IOF-48-60-18-8F (24x11x18.5)	196	(MTC3975083) Sector Frame	HE		
C6-48-60-18-8F (24x11x18:5)	106	(MTC3975093) Sector Frame	164		
envinoscope MTCDG15	106	FFVV458-R2 wimnut pipe (72x19.6x7.8)	166		
отитивооре МТСО615	100	FFVV 650 - R2 witnount pipe (72x19.0x7.th)	tee		
emmonospie MTC3615	106	9.3	160		
launi Mode	196	51,4	140		
mply Pipe Mount	186	SL5	120		
mpty Pipe Mount	106	9.6	100		
moly Pipe Mount	106	8.7	80		
00 10906 withount pipe (95/20/6.9)	100	\$18	160		
12	100	9.9	40		
2) JAV0+650-030 wmountpipe (72s13.fbi6.2)	176	SL10	20		

		MAT	ERIAL STRENG				
GRADE	Fy	Fu	GRA	DE Fv		Fu	
A572-50	50 ksi	65 ksi	A36	36 ksl	58	kai	

TOWER DESIGN NOTES

- n County, Connecticut.

 a C to the TIA-222-H Standard.
 b basic wind in accordance with the TIA-222-H Standard.
 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
 a 60 mph wind.
- Crest Helght of 0.00 ft

SBA Communications Corporation

R051 Congress Avenue

Glient Crosso2-VZW-070523

Glient Crosso by MSadeghzadeh Appld.

Scale: NTS

Scale: NTS

Scale: NTS

Scale: NTS SBA 쀐 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX: Client | Drawn by: MSader Code: TIA-222-H | Date: 07/11/23

Coax Layout

	CT00802-S								
#	CARRIER	SIZE	QTY.	ELEVATION	NOTES				
1		1-5/8"	12		Coax				
2		3"	1	100	Conduit				
3	AT&T	3/4"	6	186'	DC				
4		5/8"	2		Fiber				
5		1-5/8"	10	176	Coax				
6	Verizon	1-5/8"	2	176'	Hybrid				
7	Dish Wireless	1.75"	1	166'	Hybrid				

tnxTower	Job		Page 1 of 29
SBA Communications Corporation 8051 Congress Avenue	Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Boca Raton, FL 33487-1307 Phone: FAY:	Client		Designed by MSadeahzadeh

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 196.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 7.40 ft at the top and 27.00 ft at the base.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Windham County, Connecticut.

Tower base elevation above sea level: 268.95 ft.

Basic wind speed of 121 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

√ Use Code Stress Ratios

- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile
- ✓ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- ✓ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)

 SR Members Have Cut Ends
 SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- ✓ Use Azimuth Dish Coefficients
 ✓ Project Wind Area of Appurt.
- Autocale Torque Arm Areas
 Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component
- √ Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules

√ Calculate Redundant Bracing Forces

Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression

All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque

√ Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

tnxTower

SBA Communications Corporation

8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX:

Job		Page 2 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

Triangular Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	ft			ſŧ		ft
T1	196.00-180.00			7.40	1	16.00
T2	180.00-160.00			9.00	1	20.00
T3	160.00-100.00			11.00	1	20.00
	140.00-140.00			13.00	1	20.00
T4	2 10101			15.00	1	20.00
T5	120.00-100.00			17.00	1	20.00
T6	100.00-80.00			19.00	ī	20.00
T 7	80.00-60.00			21.00	î	20.00
T8	60.00-40.00			23.00	1	20.00
T9	40.00-20.00			25.00	1	20.00
T10	20.00-0.00			25.00	1	20.00

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset
	ft	ft		Panels		in	in
Т1	196 00-180 00	5.33	X Brace	No	No	0.0000	0.0000

tnxTower	Job	Page 3 of 29
SBA Communications Corporation 8051 Congress Avenue	Project CT00802-VZW-070523	Date 10:42:00 07/11/23
Boca Raton, FL 33487-1307 Phone: FAX:	Client	Designed by MSadeghzadeh

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Type	K Brace	Horizontals	Ôffset	Offset
				End			50
	ſŧ	ſ		Panels		īn	in
T2	180.00-160.00	6.67	X Brace	No	No	0.0000	0.0000
T3	160.00-140.00	6.67	Х Втасе	No	No	0.0000	0.0000
T4	140.00-120.00	6.67	X Brace	No	No	0.0000	0.0000
T5	120.00-100.00	10.00	X Brace	No	No	0.0000	0.0000
T6	100.00-80.00	10.00	X Brace	No	No	0.0000	0.0000
T7	80.00-60.00	10.00	X Brace	No	No	0.0000	0.0000
T8	60.00-40.00	10.00	X Brace	No	No	0.0000	0.0000
T9	40.00-20.00	10.00	K1 Down	No	Yes	0.0000	0.0000
T10	20.00-0.00	10.00	K1 Down	No	Yes	0.0000	0.0000

Tower Section Geometry (cont	it a i
------------------------------	--------

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagona
Elevation	Type	Size	Grade	Туре	Size	Grade
ft						
T1 196.00-180.00	Pipe	Sabre 4" x 0.318"	A572-50	Equal Angle	L2x2x3/16	A36
			(50 ksi)			(36 ksi)
T2 180.00-160.00	Pipe	Sabre 4.5" x 0.438"	A572-50	Equal Angle	L2-1/2x2-1/2x3/16	`A36 ´
			(50 ksi)			(36 ksi)
T3 160.00-140.00	Pipe	Sabre 5.5625" x 0.375"	A572-50	Equal Angle	L2 1/2x2 1/2x1/4	`A36 ´
			(50 ksi)			(36 ksi)
T4 140.00-120.00	Pipe	Sabre 6.625" x 0 .432"	A572-50	Equal Angle	L3 1/2 x 3 1/2 x 1/4	`A36 ´
			(50 ksi)			(36 ksi)
T5 120.00-100.00	Pipe	Sabre 6.625" x 0 .432"	A572-50	Equal Angle	L3 1/2 x 3 1/2 x 1/4	A36
			(50 ksi)			(36 ksi)
T6 100.00-80.00	Pipe	Sabre 8.625"x0.322"	A572-50	Equal Angle	L3 1/2 x 3 1/2 x 1/4	`A36´
			(50 ksi)			(36 ksi)
T7 80.00-60.00	Pipe	Sabre 8.625"x0.5"	A572-50	Equal Angle	L3 1/2x3 1/2x3/8	`A36´
			(50 ksi)			(36 ksi)
T8 60.00-40.00	Pipe	Sabre 8.625"x0.5"	A572-50	Equal Angle	L4x4x3/8	`A36 ´
			(50 ksi)	. 0		(36 ksi)
T9 40.00-20.00	Pipe	Sabre 8.625"x0.5"	A572-50	Equal Angle	L3 1/2x3 1/2x3/8	`A36´
			(50 ksi)			(36 ksi)
T10 20.00-0.00	Pipe	Sabre 10.75" x 0.365"	A572-50	Equal Angle	L3 1/2x3 1/2x3/8	A36
			(50 ksi)			(36 ksi)

Tower Elevation fl	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 196.00-180.00	Equal Angle	L2-1/2x2-1/2x3/16	A36 (36 ksi)	Solid Round		A36 (36 ksi)

tnxTower	Job		Page 4 of 29
SBA Communications Corporation	Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX:	Client		Designed by MSadeghzadeh

Tower Section Geometry (cont'd)								
Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade	
9 40.00-20.00	Girts None	Flat Bar		A36	Equal Angle	L4x4x3/8	A36	96
T10 20.00-0.00	None	Flat Bar		(36 ksi) A36 (36 ksi)	Equal Angle	L4x4x3/8	(36 ksi) A36 (36 ksi)	

Tower Section Geometry (cont'd)							
Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade	
ft T9 40.00-20.00	Solid Round		A572-50	Equal Angle	L4x4x1/4	A36	
			(50 ksi) A572-50	Equal Angle	L4x4x1/4	(36 ksi) A36	
Т10 20.00-0.00	Solid Round		(50 ksi)	Equal Aligic	D-IX-IXII I	(36 ksi)	

		To	wer Section	on Geometry (cont'd)	
Tower Elevation	Redundant Bracing Grade		Redundant Type	Redundant Size	K Factor	
T9 40.00-	A36	Horizontal (1)	Equal Angle	L2-1/2x2-1/2x3/16	ı	
20.00	(36 ksi)	Diagonal (1)	Equal Angle	L2-1/2x2-1/2x3/16	1	
T10 20.00-	`A36 ´	Horizontal (1)	Equal Angle	L3x3x3/16	ı	
0.00	(36 ksi)	Diagonal (1)	Equal Angle	L3x3x3/16	I	

Tower Section Geometry (cont'd)									
Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
ft	ft²	0.0000	A36	1		1.05	36.0000	36.0000	36.0000
T1 196.00- 180.00 T2 180.00-	0.00	0.0000	(36 ksi) A36	1	1	1.05	36.0000	36.0000	36.0000
160.00 T3 160.00- 140.00	0.00	0.0000	(36 ksi) A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36.0000

tnxTower	Job	Page 5 of 29
SBA Communications Corporation 8051 Congress Avenue	Project CT00802-VZW-070523	Date 10:42:00 07/11/23
Boca Raton, FL 33487-1307 Phone: FAX:	Client	Designed by MSadeghzadeh

Tower Elevation	Gussel Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
T4 140.00-	0.00	0.0000	A36	1	- 1	1.05	36,0000	36.0000	36.0000
120.00	STATUTA	0.000	(36 ksi)			1.03	30.0000	30.0000	30.0000
T5 120.00-	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36,0000
100.00			(36 ksi)						
T6 100.00-	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
80.00			(36 ksi)						
T7 80.00-60.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						
T8 60.00-40.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						
T9 40.00-20.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						
T10 20.00-0.00	0.00	0.0000	A36	1	1	1.05	36.0000	36.0000	36.0000
			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fa	ctors!			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
ft	Angles	Rounds		X V	X V	X Y	X Y	X Y	X Y	X Y
T1 196.00-	Yes	Yes	1_	i	i	1	1	1	1	1
180.00 T2 180.00- 160.00	Yes	Yes	1	1	1	1	1	1	1	1
T3 160.00- 140.00	Yes	Yes	1	1	1	Î	1	1	1	1
T4 140.00- 120.00	Yes	Yes	1	î	1	1	i	1	i	i
T5 120.00- 100.00	Yes	Yes	1	1	î 1	î	1	î	ì	i
T6 100.00- 80.00	Yes	Yes	1	1	1	i	1	Î	Î	1
T7 80.00- 60.00	Yes	Yes	I	1	Î	1	1	î	į	1
T8 60.00- 40.00	Yes	Yes	1	1	1	1	1	î	į.	1
T9 40.00- 20.00	Yes	Yes	1	1	1	1	1	î	1	i
T10 20.00- 0.00	Yes	Yes	1	1	î Î	î	1	î	1	i

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

tnxTower

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487-1307
Phone:
FAX:

Job		Page 6 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

Tower Elevation	Leg		Diago	nal	Top G	irt	Botton	i Girt	Mid	Girt	Long Ho	rizontal	Short Ho	rizontal
fi	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 196.00-	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00 T2 180.00-	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00 T3 160.00-	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00 T4 140.00-	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00 T5 120.00-	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00 T6 100.00-	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
80.00 T7 80.00-60.00	3	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75
T8 60.00-40.00	S 10	1	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75 0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 40.00-20.00 T10 20.00-0.00		1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation	Redund Horizo		Reduna Diago		Redundan Diago		Redunda Horiz		Redundan	t Vertical	Redundo	ant Hip	Redundant Hip Diagonal	
fi	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 196.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
180.00 T2 180.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
160.00 T3 160.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
140.00 T4 140.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00 T5 120.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00 T6 100.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
80.00 T7 80.00-60.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 60.00-40.00		0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 40.00-20.00		0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 20.00-0.00		0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

tnxTower	Job	Page 7 of 29
SBA Communications Corporation 8051 Congress Avenue	Project CT00802-VZW-070523	Date 10:42:00 07/11/23
Boca Raton, FL 33487-1307 Phone: FAX:	Client	Designed by MSadeghzadeh

Tower	Leg	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hor	izontal	Short Hort	izontal
Elevation	Connection														
fi	Туре							C							
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1 196.00-	Flange	1.0000	4	0.6250	1	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
180.00		A325X		A325X		A325X		A325X		A325N		A325X		A325N	
T2 180.00-	Flange	1.2500	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
160.00		A325X>1"		A325X		A325X		A325X		A325N		A325X		A325N	
T3 160.00-	Flange	1.2500	4	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
140.00		A325X>1"		A325X		A325X		A325X		A325N		A325X		A325N	
T4 140.00-	Flange	1.2500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
120.00		A325X>1"		A325X		A325X		A325X		A325N		A325X		A325N	
T5 120.00-	Flange	1.2500	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
100.00		A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	
T6 100.00-	Flange	1.3750	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
80.00		A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	
T7 80.00-60.00	Flange	1.3750	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	
T8 60.00-40.00	Flange	1.3750	6	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
		A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	
T9 40.00-20.00	Flange	1.3750	6	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.7500	0	0.6250	0
		A325X>1"		A325X		A325X		A325N		A325N		A325X		A325N	
T10 20.00-0.00	Flange	1.5000	0	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.7500	0	0.6250	0
		A325X>1"		A325X		A325X		A325N		A325N		A325X	1	A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	Leg		Torque Calculation	•	ft	in	(Frac FW)		Row	in	in	in	plf
Safety Line 3/8	С	No	No	Ar (CaAa)	196.00 - 8.00	0.0000	-0.45	1	1	0.3750	0.3750		0.22
Climbing Ladder	С	No	No	Af (CaAa)	196.00 - 8.00	0.0000	-0.44	1	1	1.5000	1.5000		7.90
Empty Feedline Ladder (Af) ***	С	No	No	Af (CaAa)	196.00 - 8.00	0.0000	-0.44	1	1	0.2500	3.0000		8.40
1 5/8" Coax	Α	No	No	Ar (CaAa)	186.00 - 8.00	0.0000	-0.4	12	6	0.5000	1.9800		1.04
3" Conduit	A	No	No	Аг (СаАа)	186.00 - 8.00	0.0000	-0.4	1	1	0.5000	3.0000		2.80
5/8" Fiber	A	No	No	Ar (CaAa)	186.00 - 8.00	0.0000	-0.36	2	2	0.5000	0.6250		0.15
3/4" DC	A	No	No	Ar (CaAa)	186.00 - 8.00	0.0000	-0.35	6	6	0.5000	0.7500		0.33
Feedline Ladder (Af) ***	A	No	No	Af (CaAa)	196.00 - 8.00	0.0000	-0.4	1	1	0.2500	3.0000		8.40
1-5/8" Coax	В	No	No	Ar (CaAa)	176.00 - 8.00	0.0000	0.45	10	5	0.5000	1.9800		1.04
l 5/8" Hybrid	В	No	No	Ar (CaAa)	176.00 - 8.00	0.0000	0.43	2	2	0.5000	1.6250		2.80

tnxTower	Job	Page 8 of 29
SBA Communications Corporation	Project CT00802-VZW-0	70523 Date 10:42:00 07/11/23
8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX:	Client	Designed by MSadeghzadeh

Description		Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	#	# Per	Clear Spacing	Width or Diameter	Perimeter	Weight
	or Leg	Snieiu	Torque	Турс	ft	in	(Frac FW)		Row	in	in	in	plf
			Calculation							0.5000	2.0000		8.40
Feedline Ladder (Af) ***	В	No	No	Af (CaAa)	1 76.00 - 8.00	0.0000	0.45	1	1	0.5000	3.0000		
1.75" Hybrid	Α	No	No	Ar (CaAa)	166.00 - 8.00	0.0000	0.3	1	1	0.5000	1.7500		1.00
Feedline Ladder (Af) ***	Α	No	No	Af (CaAa)	166.00 - 8.00	0.0000	0.3	1	1	0.2500	3.0000		8.40

		Fee	d Line/	Linear	Appurte	nances	- Entered As	Area
Description	Face	Allow		Component	Placement	Total	$C_A A_A$	Weight
	or Leg	Shield	From Torque Calculation	Туре	ft	Number	fi²/ft	plf
***			Culculation					

Feed Line/Linear	Appurtenances	Section Areas	
Feed Line/Linear	Appurtenances	Section Alea	3

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
Section	fl		ft²	ft^2	ft²	ft²	K
T1	196.00-180.00	A	0.000	0.000	27.506	0.000	0.24
11	170.00 100.00	В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	12.600	0.000	0.26
T2	180.00-160.00	A	0.000	0.000	79.070	0.000	0.58
12	100.00 100.00	В	0.000	0.000	44.880	0.000	0.39
		Ċ	0.000	0.000	15.750	0.000	0.33
T3	160.00-140.00	Ā	0.000	0.000	88.520	0.000	0.71
13	100.00 110.00	В	0.000	0.000	56.100	0.000	0.49
		č	0.000	0.000	15.750	0.000	0.33
T4	140.00-120.00	Ā	0.000	0.000	88.520	0.000	0.71
14	140.00-120.00	В	0.000	0.000	56.100	0.000	0.49
		Č	0.000	0.000	15.750	0.000	0.33
T5	120.00-100.00	Ă	0.000	0.000	88.520	0.000	0.71
13	120.00-100.00	В	0.000	0.000	56.100	0.000	0.49
		Č	0.000	0.000	15.750	0.000	0.33
Т6	100.00-80.00	Ä	0.000	0.000	88.520	0.000	0.71
10	100.00 00.00	В	0.000	0.000	56.100	0.000	0.49
		č	0.000	0.000	15.750	0.000	0.33
T7	80.00-60.00	Ā	0.000	0.000	88.520	0.000	0.71
1 /	80.00-00.00	В	0.000	0.000	56.100	0.000	0.49
		č	0.000	0.000	15.750	0.000	0.33
Т8	60.00-40.00	A	0,000	0.000	88.520	0.000	0.71
10	00.00-40.00	В	0.000	0.000	56.100	0.000	0.49
		Č	0.000	0.000	15.750	0.000	0.33

tnxTower	Job	Page 9 of 29
SBA Communications Corporation 8051 Congress Avenue	Project CT00802-VZW-070523	Date 10:42:00 07/11/23
Boca Raton, FL 33487-1307 Phone: FAX:	Client	Designed by MSadeghzadeh

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
	ft		ft ²	ft ²	ft ²	R^2	K
T9	40.00-20.00	A	0.000	0.000	88.520	0.000	0.71
		В	0.000	0.000	56.100	0.000	0.49
		C	0.000	0.000	15.750	0.000	0.33
T10	20.00-0.00	Α	0.000	0.000	53.112	0.000	0.42
		В	0.000	0.000	33.660	0.000	0.29
		C	0.000	0.000	9.450	0.000	0.20

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft²	ft²	ft ²	ft ²	K
T1	196.00-180.00	Α	1.190	0.000	0.000	39.860	0.000	0.61
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	24.024	0.000	0.48
T2	180.00-160.00	Α	1.178	0.000	0.000	114.812	0.000	1.70
		В		0.000	0.000	57.953	0.000	0.96
		C		0.000	0.000	29.888	0.000	0.60
T3	160.00-140.00	A	1.163	0.000	0.000	130.335	0.000	1.98
		В		0.000	0.000	72.184	0.000	1.20
		C		0.000	0.000	29.712	0.000	0.59
T4	140.00-120.00	Α	1.147	0.000	0.000	129.743	0.000	1.96
		В		0.000	0.000	71.893	0.000	1.19
	(+)	C		0.000	0.000	29.513	0.000	0.59
T5	120.00-100.00	Α	1.128	0.000	0.000	129.063	0.000	1.94
		В		0.000	0.000	71.559	0.000	1.18
		C		0.000	0.000	29.285	0.000	0.58
T6	100.00-80.00	Α	1.106	0.000	0.000	128.261	0.000	1.92
		B C		0.000	0.000	71.165	0.000	1.16
				0.000	0.000	29.016	0.000	0.58
T7	80.00-60.00	Α	1.078	0.000	0.000	127.280	0.000	1.89
		В		0.000	0.000	- 70.683	0.000	1.15
		C		0.000	0.000	28.687	0.000	0.57
T8	60.00-40.00	Α	1.042	0.000	0.000	126.005	0.000	1.85
		В		0.000	0.000	70.057	0.000	1.13
		C		0.000	0.000	28.259	0.000	0.56
T9	40.00-20.00	Α	0.991	0.000	0.000	124.152	0.000	1.79
		В		0.000	0.000	69.146	0.000	1.10
		C		0.000	0.000	27.636	0.000	0.54
T10	20.00-0.00	Α	0.887	0.000	0.000	72.287	0.000	1.01
		В		0.000	0.000	40.405	0.000	0.63
		C		0.000	0.000	15.840	0.000	0.31

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	196.00-180.00	-0.0900	5.7038	1.3636	7.1944
T2	180.00-160.00	1.6949	11.1858	4.0042	11.7993

tnxTower

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487-1307
Phone:
FAX:

Job		Page 10 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

Section	Elevation	CP_X	CPz	CP _X Ice	CP _z Ice
	ft	in	in	in	in
T3	160.00-140.00	2.7460	10.6419	5.0466	10.4840
T4	140.00-120.00	2.6172	10.5322	5.0561	10.8023
T5	120.00-100.00	3.2308	12.8087	6.0313	12.8610
T6	100.00-80.00	3.3474	13.3781	6.2457	13.4869
T7	80.00-60.00	3.5600	14.3404	6.6022	14.4534
T8	60.00-40.00	3.5226	14,4483	6.6396	14.8720
T9	40.00-20.00	3.2125	13.5389	6.0414	14.0064
T10	20.00-0.00	2.0335	8.9323	3.7872	9.3966

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T1	1	Safety Line 3/8	180.00 -	0.6000	0.6000
		AV. 1894-7-	196.00		
T1	2	Climbing Ladder	180.00 -	0.6000	0.6000
			196.00	0.6000	0.6000
Tl	3	Empty Feedline Ladder (Af)	180.00 -	0.6000	0.0000
		1.500	196.00 180.00 -	0.6000	0.6000
Tl	5	1 5/8" Coax	186.00	0.0000	0.0000
		3" Conduit	180.00 -	0.6000	0.6000
T1	6	3 Conduit	186.00	0.0000	0.0000
	7	5/8" Fiber	180.00 -	0.0000	0.0000
T1	/	3/8 11001	186.00	0.000	
T1	8	3/4" DC	180.00 -	0.0000	0.0000
11	٥	3/4 De	186.00		
T1	9	Feedline Ladder (Af)	180.00 -	0.6000	0.6000
11	,	1 ccume Eactor (14)	196.00		
T2	1	Safety Line 3/8	160.00 -	0.6000	0.6000
12	ાં	<i>Dozoty</i> ==== 11 =	180.00		
T2	2	Climbing Ladder	160.00 -	0.6000	0.6000
12	_	5	180.00		
T2	3	Empty Feedline Ladder (Af)	160.00 -	0.6000	0.6000
			180.00		
T2	5	1 5/8" Coax	160.00 -	0.6000	0.6000
			180.00		
T2	6	3" Conduit		0.6000	0.6000
115040			180.00		0.0000
T2	7	5/8" Fiber	160.00 -	0.0000	0.0000
			180.00	0.0000	0.0000
T2	8	3/4" DC	160.00 -	0.0000	0.0000
			180.00	0.6000	0.6000
T2	9	Feedline Ladder (Af)	160.00 -	0.6000	0.6000
			180.00	0.6000	0.6000
T2	11	1-5/8" Coax	160.00 - 176.00	0.0000	0.0000
	1921	1 5/01 17-4-14		0.6000	0.6000
T2	12	1 5/8" Hybrid	176.00	0.0000	0.0000
I	1 ,,	Feedline Ladder (Af)	160.00	0.6000	0.6000
T2	13	reedine Ladder (A1)	176.00		0.0000
Ł	I.	,	1,0.00	. 2	

tnxTower	Job	Page 11 of 29	
SBA Communications Corporation 8051 Congress Avenue	Project CT00802-VZW-070523	Date 10:42:00 07/11/23	
Boca Raton, FL 33487-1307 Phone: FAX:	Client	Designed by MSadeghzadeh	

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T2	15	1.75" Hybrid	160.00 -	0.6000	0.6000
T2	16	Foodling I - 44 (+ 0)	166.00	0.7007	
12	16	Feedline Ladder (Af)	160.00 - 166.00	0.6000	0.6000
Т3	1	Safety Line 3/8	140.00 -	0.6000	0.6000
1			160.00	0.0000	0.0000
T3	2	Climbing Ladder	140.00 -	0.6000	0.6000
Т3	3	Empty Feedline Ladder (Af)	160.00	0.6000	
13	2	Empty recuire Ladder (A1)	140.00 - 160.00	0.6000	0.6000
T3	5	1 5/8" Coax	140.00 -	0.6000	0.6000
			160.00		0100.00
T3	6	3" Conduit	140.00 -	0.6000	0.6000
Т3	7	5/8" Fiber	160.00	2 2222	
1.5	1	3/8 Fiber	140.00 - 160.00	0.0000	0.0000
Т3	8	3/4" DC	140.00 -	0.0000	0.0000
	154	01	160.00	1300000	Carte
T3	9	Feedline Ladder (Af)	140.00 -	0.6000	0.6000
T3	11	1-5/8" Coax	160.00	0.6000	0.6000
15	11	1-5/6 COAX	140.00 - 160.00	0.6000	0.6000
T3	12	1 5/8" Hybrid	140.00 -	0.6000	0.6000
			160.00	175571818961	
T3	13	Feedline Ladder (Af)	140.00 -	0.6000	0.6000
Т3	15	1.75" Hybrid	160.00	0.6000	0.4000
	13	1.75 Hybrid	140,00 - 160,00	0.6000	0.6000
Т3	16	Feedline Ladder (Af)	140.00 -	0.6000	0.6000
			160.00		A0000000040
T4	1	Safety Line 3/8	120.00 -	0.6000	0.6000
T4	2	Climbing Ladder	140.00	0.6000	0.6000
		Clinioning Ladder	120.00 - 140.00	0.0000	0.0000
T4	3	Empty Feedline Ladder (Af)	120.00 -	0.6000	0.6000
	-		140.00	WY538945	95000000
T4	5	1 5/8" Coax	120.00 -	0.6000	0.6000
T4	6	3" Conduit	140.00 120.00 -	0.6000	0.6000
	- 1	3 Conduit	140.00	0.0000	0.0000
T4	7	5/8" Fiber	120.00 -	0.0000	0.0000
T4		A	140.00	4040000	vary as many
T4	8	3/4" DC	120.00 -	0.0000	0.0000
T4	9	Feedline Ladder (Af)	140.00 120.00 -	0.6000	0.6000
/000651	1	` ′	140.00	0.0000	Serverses
T4	11	1-5/8" Coax	120.00 -	0.6000	0.6000
T4		1.8/00.77	140.00		
T4	12	1 5/8" Hybrid	120.00 -	0.6000	0.6000
T4	13	Feedline Ladder (Af)	140.00 120.00 -	0.6000	0.6000
	7]	Daddi (A1)	140.00	0.0000	0.0000
T4	15	1.75" Hybrid	120.00 -	0.6000	0.6000
T4	1.6	Foodlin - I - 44- WAN	140.00	0.6333	
14	16	Feedline Ladder (Af)	120.00 - 140.00	0.6000	0.6000
T5	1	Safety Line 3/8	100.00 -	0.6000	0.6000
l,	1	7 77.55	120.00		
		•			

tnxTower

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487-1307
Phone:
FAX:

Job		Page 12 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

	T (T)	Denoviation	Feed Line	K_a	K_a
Tower	Feed Line	Description	Segment Elev.	No Ice	Ice
Section T5	Record No.	Climbing Ladder	100.00 -	0.6000	0.6000
13	-	Chinding Laws	120.00	17795750000	0.1-0.18.1.3.3
T5	3	Empty Feedline Ladder (Af)	100.00 -	0.6000	0.6000
13	' 	Empty 1 codiate Essent (1-1-)	120.00		
T5	5	1 5/8" Coax	100.00 -	0.6000	0.6000
13	[120.00		
T5	6	3" Conduit	100.00 -	0.6000	0.6000
1.5			120.00		
T5	7	5/8" Fiber	100.00 -	0.0000	0.0000
			120.00	0.000000001	
T5	8	3/4" DC	100.00 -	0.0000	0.0000
			120.00		0.6000
T5	9	Feedline Ladder (Af)	100.00 -	0.6000	0.6000
			120.00	0.6000	0.6000
T5	11	1-5/8" Coax	100.00 -	0.6000	0.6000
	li l		120.00	0.6000	0.6000
T5	12	1 5/8" Hybrid	100.00 -	0.0000	0.0000
			120.00	0.6000	0.6000
T5	13	Feedline Ladder (Af)	100.00 -	0.0000	0.0000
		1 201 11 4 44	120.00 100.00 -	0.6000	0.6000
T5	15	1.75" Hybrid		0.0000	0.0000
	13	D 11: - I - II- (AA)	120.00 100.00 -	0.6000	0.6000
T5	16	Feedline Ladder (Af)	120.00	0.0000	0.0000
		Safety Line 3/8		0.6000	0.6000
T6	1	Climbing Ladder		0.6000	0.6000
T6	2	Empty Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
T6	3 5	Empty Feedilile Ladder (A1)	80.00 - 100.00	0.6000	0.6000
T6	6		80.00 - 100.00	0.6000	0.6000
T6	7		80.00 - 100.00	0.0000	0.0000
T6	8	3/4" DC	80.00 - 100.00	0.0000	0.0000
T6 T6	9	Feedline Ladder (Af)	* * * * * * * * * * * * * * * * * * * *	0.6000	0.6000
T6	11	1-5/8" Coax		0.6000	0.6000
T6	12	1 5/8" Hybrid	80.00 - 100.00	0.6000	0.6000
T6	13	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
T6	15	1.75" Hybrid	80.00 - 100.00	0.6000	0.6000
Т6	16	Feedline Ladder (Af)	80.00 - 100.00	0.6000	0.6000
T7	1	Safety Line 3/8	60.00 - 80.00	0.6000	0.6000
T7	2	Climbing Ladder	60.00 - 80.00	0.6000	0.6000
T7	3	Empty Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
T7	5	1 5/8" Coax		0.6000	0.6000
T7	6	3" Conduit		0.6000	0.6000
T7	7	5/8" Fiber		0.0000	0.0000
Т7	8	3/4" DC	60.00 - 80.00	0.0000	0.0000
Т7	9	Feedline Ladder (Af)		0.6000	0.6000
T7	11	1-5/8" Coax	60.00 - 80.00	0.6000 0.6000	0.6000
T7	12	1 5/8" Hybrid		0.6000	0.6000
T7	13	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
T7	15	1.75" Hybrid	60.00 - 80.00	0.6000	0.6000
T7	16	Feedline Ladder (Af)		0.6000	0.6000
Т8	1	Safety Line 3/8		0.6000	0.6000
Т8	2	Climbing Ladder		0.6000	0.6000
T8	3	Empty Feedline Ladder (Af)		0.6000	0.6000
T8	5	1 5/8" Coax	40.00	0.6000	0.6000
T8		3" Conduit 5/8" Fiber	22122	0.0000	0.0000
T8	7			0.0000	0.0000
T8		Feedline Ladder (Af)	- C000002 GH		
T8	, ,	recuille Ladder (At)	1 10.00 - 00.00	3.0000	

tnxTower	Job	Page 13 of 29	
SBA Communications Corporation 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX:	Project CT00802-VZW-070523	Date 10:42:00 07/11/23	
	Client	Designed by MSadeghzadeh	

Tower	Feed Line	Description	Feed Line	K_a	K _a
Section	Record No.		Segment Elev.	No Ice	Ice
T8	11	1-5/8" Coax	40.00 - 60.00	0.6000	0.6000
T8	12	1 5/8" Hybrid	40.00 - 60.00	0.6000	0.6000
T8	13	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
T8	15	1.75" Hybrid	40.00 - 60.00	0.6000	0.6000
T8	16	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
Т9	1	Safety Line 3/8	20.00 - 40.00	0.6000	0.6000
T9	2	Climbing Ladder	20.00 - 40.00	0.6000	0.6000
T9	3	Empty Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T9	5	1 5/8" Coax	20.00 - 40.00	0.6000	0.6000
T9	6	3" Conduit	20.00 - 40.00	0.6000	0.6000
Т9	7	5/8" Fiber	20.00 - 40.00	0.0000	0.0000
Т9	8	3/4" DC	20.00 - 40.00	0.0000	0.0000
Т9	9	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T9	11	1-5/8" Coax	20.00 - 40.00	0.6000	0.6000
T9	12	1 5/8" Hybrid	20.00 - 40.00	0.6000	0.6000
T9	13	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T9	15	1.75" Hybrid	20.00 - 40.00	0.6000	0.6000
T9	16	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T10	1	Safety Line 3/8	8.00 - 20.00	0.6000	0.6000
T10	2	Climbing Ladder	8.00 - 20.00	0.6000	0.6000
T10	3	Empty Feedline Ladder (Af)	8.00 - 20.00	0.6000	0.6000
T10	5	1 5/8" Coax	8.00 - 20.00	0.6000	0.6000
T10	6	3" Conduit	8.00 - 20.00	0.6000	0.6000
T10	7	5/8" Fiber	8.00 - 20.00	0.0000	0.0000
T10	8	3/4" DC	8.00 - 20.00	0.0000	0.0000
T10	9	Feedline Ladder (Af)	8.00 - 20.00	0,6000	0.6000
T10	11	1-5/8" Coax	8.00 - 20.00	0,6000	0.6000
T10	12	1 5/8" Hybrid	8.00 - 20.00	0.6000	0.6000
T10	13	Feedline Ladder (Af)	8.00 - 20.00	0.6000	0.6000
T10	15	1.75" Hybrid	8.00 - 20.00	0.6000	0.6000
T10	16	Feedline Ladder (Af)	8.00 - 20.00	0.6000	0.6000

User Defined Loads - Seismic

Description	Elevation	Offset From Centroid	Azimuth Angle	E_{v}	E_{hx}	E_{hz}	E_h
	ft	ft	٥	K	K	K	K
SL1	196.00	0.00	0.0000	0.12	0.00	0.00	0.36
SL2	180.00	0.00	0.0000	0.48	0.00	0.00	1.38
SL3	160.00	0.00	0.0000	0.23	0.00	0.00	0.58
SL4	140.00	0.00	0.0000	0.20	0.00	0.00	0.44
SL5	120.00	0.00	0.0000	0.18	0.00	0.00	0.35
SL6	100.00	0.00	0.0000	0.19	0.00	0.00	0.30
SL7	80.00	0.00	0.0000	0.26	0.00	0.00	0.33
SL8	60.00	0.00	0.0000	0.28	0.00	0.00	0.27
SL9	40.00	0.00	0.0000	0.33	0.00	0.00	0.21
SL10	20.00	0.00	0.0000	0.31	0.00	0.00	0.10

tnxTower

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487-1307
Phone:
FAX:

Job		Page 14 of 29		
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23		
Client		Designed by MSadeghzadeh		

Discrete	Tower	Loads
D1301616	101101	Loudo

Description		Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C₁A₁ Side	Weight K
			Vert ft ft ft	•	ft		ft²	ft²	

Abandoned T-Frame	Α	From Leg	1.50	0.0000	196.00	No Ice	16.58	10.27	0.32
Abandoned 1 11ano			0.00			1/2" Ice	20.58	13.30	0.45
			0.00			1" Ice	24.58	16.33	0.58
Abandoned T-Frame	В	From Leg	1.50	0.0000	196.00	No Ice	16.58	10.27	0.32
Abalidoned 1-11mile	_	11022 2-8	0.00			1/2" Ice	20.58	13.30	0.45
			0.00			1" Ice	24.58	16.33	0.58
Abandoned T-Frame	С	From Leg	1.50	0.0000	196.00	No Ice	16.58	10.27	0.32
Adandoned 1-Ftame	C	110th Deg	0.00			1/2" Ice	20.58	13.30	0.45
			0.00			1" Ice	24.58	16.33	0.58
(4) P		From Leg	3.00	0.0000	196.00	No Ice	1.90	1.90	0.03
(4) Empty Pipe Mount	Α	Flom Leg	0.00	0.0000	170.00	1/2" Ice	2.28	2.28	0.04
			0.00			1" Ice	2.66	2.66	0.05
		P I	3.00	0.0000	196.00	No Ice	1.90	1.90	0.03
(4) Empty Pipe Mount	В	From Leg	0.00	0.0000	170.00	1/2" Ice	2.28	2.28	0.04
			0.00			1" Ice	2.66	2.66	0.05
	_			0.0000	196.00	No Ice	1.90	1.90	0.03
(4) Empty Pipe Mount	С	From Leg	3.00	0.0000	190.00	1/2" Ice	2.28	2.28	0.04
			0.00 0.00			1" Ice	2.66	2.66	0.05
AT&T							15.00	0.40	0.14
800 10966 w/mount pipe	A	From Leg	3.00	0.0000	186.00	No Ice	17.36	9.40	0.14
(96x20x6.9)		Ü	0.00			1/2" Ice	17.99	10.82	0.26
(0.00			1" Ice	18.63	12.09	0.38
800 10966 w/mount pipe	В	From Leg	3.00	0.0000	186.00	No Ice	17.36	9.40	0.14
(96x20x6.9)		_	0.00			1/2" Ice	17.99	10.82	0.26
(30112011013)			0.00			1" Ice	18.63	12.09	0.38
800 10966 w/mount pipe	С	From Leg	3.00	0.0000	186.00	No Ice	17.36	9.40	0.14
(96x20x6.9)		Ū	0.00			1/2" Ice	17.99	10.82	0.26
(50,20,0.5)			0.00			1" Ice	18.63	12.09	0.38
TPA65R-BU8D w/mount	Α	From Leg	3.00	0.0000	186.00	No Ice	17.87	10.02	0.12
pipe (96x20.7x7.7)			0.00			1/2" Ice	18.50	11.44	0.23
pipe (90x20.7x1.17)			0.00			1" Ice	19.14	12.72	0.36
TPA65R-BU8D w/mount	В	From Leg	3.00	0.0000	186.00	No Ice	17.87	10.02	0.12
pipe (96x20.7x7.7)		110111 208	0.00			1/2" Ice	18.50	11.44	0.23
pipe (90x20./x/./)			0.00			1" Ice	19.14	12.72	0.36
TPA65R-BU8D w/mount	С	From Leg		0.0000	186.00	No Ice	17.87	10.02	0.12
	C	1 tom beg	0.00			1/2" Ice	18.50	11.44	0.23
pipe (96x20.7x7.7)			0.00			1" Ice	19.14	12.72	0.36
###O / A -i	Α.	From Leg	3.00	0.0000	186.00	No Ice	6.32	4.83	0.06
7770 w/mount pipe	Α	Fioni Leg	0.00	0.0000	200.00	1/2" Ice	7.03	6.00	0.11
(55x11x5)			0.00			1" Ice	7.69	7.03	0.17
	P	Enors I ac	3.00	0.0000	186.00	No Ice	6.32	4.83	0.06
7770 w/mount pipe	В	From Leg	0.00	0.0000	100.00	1/2" Ice	7.03	6.00	0.11
(55x11x5)						1" Ice	7.69	7.03	0.17
	_	T	0.00	0.0000	186.00	No Ice	6.32	4.83	0.06
7770 w/mount pipe	C	From Leg	3.00	0.0000	100.00	1/2" Ice	7.03	6.00	0.11
(55x11x5)			0.00			1" Ice	7.69	7.03	0.17
			0.00 3.00	0.0000	186.00	No Ice	0.82	0.35	0.02
(2) LGP21401 (14x7x2.7)	Α	From Leg							

tnxTower	Job	Page 15 of 29		
SBA Communications Corporation 8051 Congress Avenue	Project CT00802-VZW-070523	Date 10:42:00 07/11/23		
Boca Raton, FL 33487-1307 Phone: FAX:	Client	Designed by MSadeghzadeh		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
	g		Vert						
			ft ft	o	ft		ft²	ft²	K
			0.00			1" Ice	1.06	0.54	0.03
(2) LGP21401 (14x7x2.7)	В	From Leg	3.00	0.0000	186.00	No Ice	0.82	0.35	0.02
,		5	0.00		100.00	1/2" Ice	0.94	0.44	0.02
			0.00			1" Ice	1.06	0.54	0.03
(2) LGP21401 (14x7x2.7)	С	From Leg	3.00	0.0000	186.00	No Ice	0.82	0.35	0.02
		•	0.00			1/2" Ice	0.94	0.44	0.02
			0.00			1" Ice	1.06	0.54	0.03
2) 21401 TMA (14x9x2.7)	A	From Leg	3.00	0.0000	186.00	No Ice	1.05	0.35	0.02
			0.00			1/2" Ice	1.18	0.44	0.03
			0.00			1" Ice	1.32	0.54	0.03
2) 21401 TMA (14x9x2.7)	В	From Leg	3.00	0.0000	186.00	No Ice	1.05	0.35	0.02
		_	0.00			1/2" Ice	1.18	0.44	0.03
			0.00			1" Ice	1.32	0.54	0.03
2) 21401 TMA (14x9x2.7)	C	From Leg	3.00	0.0000	186.00	No Ice	1.05	0.35	0.02
		_	0.00			1/2" Ice	1.18	0.44	0.03
			0.00			1" Ice	1.32	0.54	0.03
8843 B2 / B66	Α	From Leg	3.00	0.0000	186.00	No Ice	1.64	1.35	0.06
(14.9x13.2x10.9)		•	0.00			1/2" Ice	1.80	1.50	0.07
			0.00			1" Ice	1.97	1.65	0.09
8843 B2 / B66	В	From Leg	3.00	0.0000	186.00	No Ice	1.64	1.35	0.06
(14.9x13.2x10.9)		Ü	0.00			1/2" Ice	1.80	1.50	0.07
			0.00			1" Ice	1.97	1.65	0.09
8843 B2 / B66	C	From Leg	3.00	0.0000	186.00	No Ice	1.64	1.35	0.06
(14.9x13.2x10.9)		· ·	0.00			1/2" Ice	1.80	1.50	0.07
			0.00			1" Ice	1.97	1.65	0.09
415 B30 (16.5x13.4x5.9)	A	From Leg	3.00	0.0000	186.00	No Ice	1.84	0.82	0.05
		•	0.00			1/2" Ice	2.01	0.94	0.06
			0.00			1" Ice	2.19	1.07	0.08
415 B30 (16.5x13.4x5.9)	В	From Leg	3.00	0.0000	186.00	No Ice	1.84	0.82	0.05
			0.00			1/2" Ice	2.01	0.94	0.06
			0.00			1" Ice	2.19	1.07	0.08
415 B30 (16.5x13.4x5.9)	C	From Leg	3.00	0.0000	186.00	No Ice	1.84	0.82	0.05
			0.00			1/2" Ice	2.01	0.94	0.06
			0.00			1" Ice	2.19	1.07	0.08
RUS 12 (20.4x18.5x7.5)	Α	From Leg	3.00	0.0000	186.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
			0.00			1" Ice	3.59	1.60	0.11
RUS 12 (20.4x18.5x7.5)	В	From Leg	3.00	0.0000	186.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
			0.00			1" Ice	3.59	1.60	0.11
RUS 12 (20.4x18.5x7.5)	C	From Leg	3.00	0.0000	186.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
			0.00			1" Ice	3.59	1.60	0.11
78 B14 (18.1x13.4x8.26)	A	From Leg	3.00	0.0000	186.00	No Ice	2.02	1.25	0.06
,		3	0.00		,	1/2" Ice	2.20	1.40	0.08
			0.00			1" Ice	2.39	1.55	0.10
78 B14 (18.1x13.4x8.26)	В	From Leg	3.00	0.0000	186.00	No Ice	2.02	1.25	0.06
,		J	0.00			1/2" Ice	2.20	1.40	0.08
			0.00			1" Ice	2.39	1.55	0.10
78 B14 (18.1x13.4x8.26)	С	From Leg	3.00	0.0000	186.00	No Ice	2.02	1.25	0.06
,		J	0.00			1/2" Ice	2.20	1.40	0.08
			0.00			1" Ice	2.39	1.55	0.10

SBA Communications Corporation

8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX:

Job		Page 16 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
	Leg		Vert fi ft ft	0	ft		ft²	ft²	K
4449 B5/B12	A	From Leg	3.00	0.0000	186.00	No Ice	1.97	1.41	0.07
(17,9x13.19x9.44)		Automatical Control	0.00			1/2" Ice	2.14	1.56	0.09
(0.00			1" Ice	2.33	1.73	0.11 0.07
4449 B5/B12	В	From Leg	3.00	0.0000	186.00	No Ice	1.97	1.41 1.56	0.07
(17.9x13.19x9.44)			0.00			= 1/2" Ice	2.14 2.33	1.73	0.03
			0.00	0.0000	186.00	1" Ice No Ice	1.97	1.73	0.07
4449 B5/B12	C	From Leg	3.00	0.0000	186.00	1/2" Ice	2.14	1.56	0.09
(17.9x13.19x9.44)			0.00			1" Ice	2.33	1.73	0.11
		D 1	0.00	0.0000	186.00	No Ice	2.08	0.50	0.02
RRUS A2 (16.4x15.2x3.4)	A	From Leg	3.00 0.00	0.0000	180.00	1/2" Ice	2.26	0.61	0.03
			0.00			1" Ice	2.44	0.73	0.05
PRIST AG (1 (4-15 2-2 4)	В	From Leg	3.00	0.0000	186.00	No Ice	2.08	0.50	0.02
RRUS A2 (16.4x15.2x3.4)	D	FIOIII Leg	0.00	0.0000	200111	1/2" Ice	2.26	0.61	0.03
			0.00			1" Ice	2.44	0.73	0.05
RRUS A2 (16.4x15.2x3.4)	С	From Leg	3.00	0.0000	186.00	No Ice	2.08	0.50	0.02
RRUS A2 (10.4x15.2x5.4)	v	110 2-8	0.00			1/2" Ice	2.26	0.61	0.03
			0.00			1" Ice	2.44	0.73	0.05
DC6-48-60-18-8F	Α	From Leg	3.00	0.0000	186.00	No Ice	2.20	3.70	0.03
(24x11x18.5)			0.00			1/2" Ice	2.40	3.94	0.06
(24/11/10/0)			0.00			1" Ice	2.60	4.19	0.10
DC6-48-60-18-8F	В	From Leg	3.00	0.0000	186.00	No Ice	2.20	3.70	0.03
(24x11x18.5)		_	0.00			1/2" Ice	2.40	3.94	0.06
(=			0.00			1" Ice	2.60	4.19	0.10
Commoscope MTC3615	Α	From Leg	1.50	0.0000	186.00	No Ice	29.44	11.31	0.76 1.08
•			0.00			1/2" Ice	35.54	15.62	1.08
			0.00		106.00	1" Ice	41.64	19.93 11.31	0.76
Commoscope MTC3615	В	From Leg	1.50	0.0000	186.00	No Ice 1/2" Ice	29.44 35.54	15.62	1.08
			0.00			1" Ice	41.64	19.93	1.39
			0.00	0.0000	186.00	No Ice	29.44	11.31	0.76
Commoscope MTC3615	C	From Leg	1.50	0.0000	180.00	1/2" Ice	35.54	15.62	1.08
			0.00 0.00			1" Ice	41.64	19.93	1.39
	-	Mana	0.00	0.0000	186.00	No Ice	15.50	15.50	0.65
Mount Mods	C	None		0.0000	100.00	1/2" Ice	37.63	37.63	1.76
						1" Ice	59.77	59.77	2.88
E to Dies Mount	Α	From Leg	3.00	0.0000	186.00	No Ice	1.90	1.90	0.03
Empty Pipe Mount	А	110m Ecg	0.00	0.000		1/2" Ice	2.28	2.28	0.04
			0.00			1" Ice	2.66	2.66	0.05
Empty Pipe Mount	В	From Leg	3.00	0.0000	186.00	No Ice	1.90	1.90	0.03
Empty 1 the wioding	D	110	0.00			1/2" Ice	2.28	2.28	0.04
			0.00			1" Ice	2.66	2.66	0.05
Empty Pipe Mount	С	From Leg	3.00	0.0000	186.00	No Ice	1.90	1.90	0.03
Zinpoy 1 ipo mos and			0.00			1/2" Ice 1" Ice	2.28 2.66	2.28 2.66	0.04 0.05
Verizon							0.50	7.00	0.00
2) JAHH-65B-R3B w/mount	A	From Leg	3.00	0.0000	176.00	No Ice	9.59	7.88	0.09 0.17
pipe (72x13.8x8.2)			0.00			1/2" Ice	10.26	9.17 10.31	0.17
			0.00	0.0000	176.00	1" Ice	10.90 9.59	7.88	0.20
2) JAHH-65B-R3B w/mount	В	From Leg	3.00	0.0000	176.00	No Ice 1/2" Ice	9.39 10.26	9.17	0.09
pipe (72x13.8x8.2)			0.00 0.00			1" Ice	10.20	10.31	0.26

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487-1307
Phone:
FAX:

Job		Page
		17 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	o	fi		ft²	fî²	K
(2) JAHH-65B-R3B w/mount	С	From Leg	ft 3.00	0.0000	176.00	No Ice	9.59	7.88	0.09
pipe (72x13.8x8.2)		rioni Leg	0.00	0.0000	170.00	1/2" Ice	10.26	9.17	0.09
11 (0.00			1" Ice	10.20	10.31	0.17
MT6407-77A w/mount pipe	Α	From Leg	3.00	0.0000	176.00	No Ice	5.91	3.74	0.12
(35.12x16.06x5.51)			0.00	0.0000	170.00	1/2" Ice	6.72	4.79	0.12
			0.00			1" Ice	7.44	5.70	0.22
MT6407-77A w/mount pipe	В	From Leg	3.00	0.0000	176.00	No Ice	5.91	3.74	0.12
(35.12x16.06x5.51)		· ·	0.00			1/2" Ice	6.72	4.79	0.17
			0.00			1" Ice	7.44	5.70	0.22
MT6407-77A w/mount pipe	C	From Leg	3.00	0.0000	176.00	No Ice	5.91	3.74	0.12
(35.12x16.06x5.51)			0.00			1/2" Ice	6.72	4.79	0.17
			0.00			1" Ice	7.44	5.70	0.22
CBC78T-DS-2X/W14F05P50	A	From Leg	3.00	0.0000	176.00	No Ice	0.37	0.51	0.02
(6.4x6.9x9.6)			0.00			1/2" Ice	0.45	0.60	0.03
			0.00			1" Ice	0.53	0.70	0.04
CBC78T-DS-2X/W14F05P50	В	From Leg	3.00	0.0000	176.00	No Ice	0.37	0.51	0.02
(6.4x6.9x9.6)			0.00			1/2" Ice	0.45	0.60	0.03
			0.00			1" Ice	0.53	0.70	0.04
CBC78T-DS-2X/W14F05P50	C	From Leg	3.00	0.0000	176.00	No Ice	0.37	0.51	0.02
(6.4x6.9x9.6)			0.00			1/2" Ice	0.45	0.60	0.03
			0.00			1" Ice	0.53	0.70	0.04
B2/B66A (15x15x10)	Α	From Leg	3.00	0.0000	176.00	No Ice	1.88	1.25	0.08
			0.00			1/2" Ice	2.05	1.39	0.10
			0.00			1" Ice	2.22	1.54	0.12
B2/B66A (15x15x10)	В	From Leg	3.00	0.0000	176.00	No Ice	1.88	1.25	0.08
			0.00			1/2" Ice	2.05	1.39	0.10
DD D (() () F 1 F 1 O)	_	_	0.00			1" Ice	2.22	1.54	0.12
B2/B66A (15x15x10)	C	From Leg	3.00	0.0000	176.00	No Ice	1.88	1.25	80.0
			0.00			1/2" Ice	2.05	1.39	0.10
D12/D5 DD11/15 15 0 1)		_	0.00			1" Ice	2.22	1.54	0.12
B13/B5 RRH (15x15x8.1)	A	From Leg	3.00	0.0000	176.00	No Ice	1.88	1.01	0.07
			0.00			1/2" Ice	2.05	1.14	0.09
D12/D5 DD11 (15-15 0 1)	-		0.00			1" Ice	2.22	1.28	0.11
B13/B5 RRH (15x15x8.1)	В	From Leg	3.00	0.0000	176.00	No Ice	1.88	1.01	0.07
			0.00			1/2" Ice	2.05	1.14	0.09
D12/D5 DDH (15-15-0 1)	C	E I	0.00	0.0000	1.00	1" Ice	2.22	1.28	0.11
B13/B5 RRH (15x15x8.1)	C	From Leg	3.00	0.0000	176.00	No Ice	1.88	1.01	0.07
			0.00			1/2" Ice	2.05	1.14	0.09
DB-B1 / DB-T1 (24x24x10)	В	Erom Loo	0.00	0.0000	177.00	1" Ice	2.22	1.28	0.11
DB-B1 / DB-11 (24x24x10)	ь	From Leg	3.00	0.0000	176.00	No Ice	4.80	2.00	0.04
			0.00			1/2" Ice	5.07	2.19	0.08
DB-B1 / DB-T1 (24x24x10)	С	From Leg		0.0000	176.00	1" Ice	5.35	2.39	0.12
DB-B1 / DB-11 (24x24x10)	C	Pioni Leg	3.00	0.0000	176.00	No Ice	4.80	2.00	0.04
			0.00			1/2" Ice	5.07	2.19	0.08
BSF0020F3V1-1 (10.6" x	Α	From Leg	0.00 3.00	0.0000	176.00	1" Ice	5.35	2.39	0.12
10.9" x 3.15")	A.	TIOH LEE	0.00	0.0000	176.00	No Ice	0.96	0.30	0.02
10.5 13.13)			0.00			1/2" Ice	1.09	0.38	0.02
BSF0020F3V1-1 (10.6" x	В	From Leg	3.00	0.0000	176.00	1" Ice	1.22	0.46	0.03
10.9" x 3.15")	ם	110m Leg	0.00	0.0000	176.00	No Ice 1/2" Ice	0.96	0.30	0.02
10.5 15.15)			0.00			1/2" Ice 1" Ice	1.09	0.38	0.02
BSAMNT-SBS-2-2	Α	From Leg	3.00	0.0000	176.00	No Ice	1.22 0.48	0.46 0.48	0.03 0.07
			0.00	0.0000	170.00	1/2" Ice	0.70	0.40	0.07

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487-1307
Phone:
FAX:

Job		Page 18 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Lateral Vert fi fi	٠	fi		ft²	ft²	K
			0.00			1" Ice	0.82	0.82	0.11
DOALDIT CDC 2.2	В	From Leg	3.00	0.0000	176.00	No Ice	0.48	0.48	0.07
BSAMNT-SBS-2-2	D	TTOM LOG	0.00			1/2" Ice	0.65	0.65	0.09
			0.00			1" Ice	0.82	0.82	0.11
BSAMNT-SBS-2-2	С	From Leg	3.00	0.0000	176.00	No Ice	0.48	0.48	0.07
		_	0.00			1/2" Ice	0.65	0.65	0.09
			0.00			1" Ice	0.82	0.82	0.11 0.32
Sector Frame	A	From Leg	1.50	0.0000	176.00	No Ice	16.58	10.27 13.30	0.32
			0.00			1/2" Ice 1" Ice	20.58 24.58	16.33	0.48
	_		0.00	0.0000	176.00	No Ice	16.58	10.33	0.32
Sector Frame	В	From Leg	1.50 0.00	0.0000	170.00	1/2" Ice	20.58	13.30	0.48
			0.00			1" Ice	24.58	16.33	0.64
C 4 F	С	From Leg	1.50	0.0000	176.00	No Ice	16.58	10.27	0.32
Sector Frame	C	From Leg	0.00	0.0000		1/2" Ice	20.58	13.30	0.48
			0.00			1" Ice	24.58	16.33	0.64
(3) 6' Empty Pipe	Α	From Leg	3.00	0.0000	176.00	No Ice	1.43	1.43	0.03
(5) 6 Empty 1 ipe			0.00			1/2" Ice	1.93	1.93	0.04
			0.00			1" Ice	2.43	2.43	0.05
(3) 6' Empty Pipe	В	From Leg	3.00	0.0000	176.00	No Ice	1.43	1.43	0.03
(3) 0 2			0.00			1/2" Ice	1.93	1.93	0.04
			0.00			1" Ice	2.43	2.43	0.05
(3) 6' Empty Pipe	C	From Leg	3.00	0.0000	176.00	No Ice	1.43	1.43	0.03
()			0.00			1/2" Ice	1.93	1.93	0.04 0.05
			0.00		176.00	1" Ice	2.43	2.43 6.51	0.03
Mount Mod	Α	From Leg	3.00	0.0000	176.00	No Ice	9.96	8.79	0.27
			0.00			1/2" Ice 1" Ice	13.44 16.92	11.07	0.45
		_	0.00	0.0000	176.00	No Ice	9.96	6.51	0.43
Mount Mod	В	From Leg	3.00	0.0000	170.00	1/2" Ice	13.44	8.79	0.35
			0.00			1" Ice	16.92	11.07	0.45
	0	E I oo	0.00 3.00	0.0000	176.00	No Ice	9.96	6.51	0.27
Mount Mod	С	From Leg	0.00	0.0000	170.00	1/2" Ice	13.44	8.79	0.35
			0.00			1" Ice	16.92	11.07	0.45
Dish Wireless						N7 T -	10.75	765	0.10
FFVV-65B-R2 w/mount pipe	A	From Leg	3.00	0.0000	166.00	No Ice	12.75 13. 4 5	7.65 8.94	0.10
(72x19.6x7.8)			0.00			1/2" Ice 1" Ice	14.12	10.07	0.19
	_		0.00	0.0000	166.00	No Ice	12.75	7.65	0.10
FFVV-65B-R2 w/mount pipe	В	From Leg	3.00	0.0000	100.00	1/2" Ice	13.45	8.94	0.19
(72x19.6x7.8)			0.00			1" Ice	14.12	10.07	0.30
		r	0.00 3.00	0.0000	166.00	No Ice	12.75	7.65	0.10
FFVV-65B-R2 w/mount pipe	С	From Leg	0.00	0.0000	100.00	1/2" Ice	13.45	8.94	0.19
(72x19.6x7.8)			0.00			1" Ice	14.12	10.07	0.30
T + 00025 D / 04	Α.	From Leg	3.00	0.0000	166.00	No Ice	1.96	1.03	0.06
TA08025-B604	Α	I tom Log	0.00			1/2" Ice	2.14	1.17	0.08
(15.75x14.96x7.87)			0.00			1" Ice	2.32	1.31	0.10
TA08025-B604	В	From Leg	3.00	0.0000	166.00	No Ice	1.96	1.03	0.06
(15.75x14.96x7.87)	,		0.00			1/2" Ice	2.14	1.17	0.08
(13./3/14.70//.0/)			0.00			1" Ice	2.32	1.31	0.10
TA08025-B604	C	From Leg	3.00	0.0000	166.00	No Ice	1.96	1.03	0.06
(15.75x14.96x7.87)	_	9	0.00			1/2" Ice	2.14	1.17	0.08
(12.,2.12.13.01.,)			0.00			1" Ice	2.32	1.31	0.10

tnxTower	Job		Page 19 of 29
SBA Communications Corporation 8051 Congress Avenue	Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Boca Raton, FL 33487-1307 Phone: FAX:	Client		Designed by MSadeghzadeh

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C₄A₄ Side	Weight
			Vert fi fi fi	o	ft		ft²	ft²	K
TA08025-B605	A	From Leg	3.00	0.0000	166.00	No Ice	1.96	1.19	0.07
(15.75x14.96x9.05)		×	0.00			1/2" Ice	2.14	1.33	0.09
			0.00			1" Ice	2.32	1.48	0.11
TA08025-B605	В	From Leg	3.00	0.0000	166.00	No Ice	1.96	1.19	0.07
(15.75x14.96x9.05)			0.00			1/2" Ice	2.14	1.33	0.09
			0.00			1" Ice	2.32	1.48	0.11
TA08025-B605	C	From Leg	3.00	0.0000	166.00	No Ice	1.96	1.19	0.07
(15.75x14.96x9.05)			0.00			1/2" Ice	2.14	1.33	0.09
			0.00			1" Ice	2.32	1.48	0.11
RDIDC-9181-PF-48	C	From Leg	3.00	0.0000	166.00	No Ice	2.01	1.17	0.02
(16.57x14.57x8.46)			0.00	.5		1/2" Ice	2.19	1.31	0.04
			0.00			1" Ice	2.37	1.46	0.06
MTC3975083) Sector Frame	A	From Leg	1.50	0.0000	166.00	No Ice	10.60	8.10	0.41
			0.00			1/2" Ice	16.40	12.60	0.56
			0.00			1" Ice	22.20	17.10	0.70
MTC3975083) Sector Frame	В	From Leg	1.50	0.0000	166.00	No Ice	10.60	8.10	0.41
			0.00			1/2" Ice	16.40	12,60	0.56
			0.00			1" Ice	22.20	17.10	0.70
MTC3975083) Sector Frame	C	From Leg	1.50	0.0000	166.00	No Ice	10.60	8.10	0.41
			0.00			1/2" Ice	16.40	12.60	0.56
***			0.00			1" Ice	22.20	17.10	0.70

Load Combinations

Comb. No.				
1	Dead Only			*******
2	1.2 Dead+1.0 Wind 0 deg - No Ice			
3	0.9 Dead+1.0 Wind 0 deg - No Ice			
4	1.2 Dead+1.0 Wind 30 deg - No Ice			
5	0.9 Dead+1.0 Wind 30 deg - No Ice			
6	1.2 Dead+1.0 Wind 60 deg - No Ice			
7	0.9 Dead+1.0 Wind 60 deg - No Ice			
8	1.2 Dead+1.0 Wind 90 deg - No Ice			
9	0.9 Dead+1.0 Wind 90 deg - No Ice			
10	1.2 Dead+1.0 Wind 120 deg - No Ice			
11	0.9 Dead+1.0 Wind 120 deg - No Ice			
12	1.2 Dead+1.0 Wind 150 deg - No Ice			
13	0.9 Dead+1.0 Wind 150 deg - No Ice			
14	1.2 Dead+1.0 Wind 180 deg - No Ice			
15	0.9 Dead+1.0 Wind 180 deg - No Ice			
16	1.2 Dead+1.0 Wind 210 deg - No Ice			
17	0.9 Dead+1.0 Wind 210 deg - No Ice			
18	1.2 Dead+1.0 Wind 240 deg - No Ice			
19	0.9 Dead+1.0 Wind 240 deg - No Ice			
20	1.2 Dead+1.0 Wind 270 deg - No Ice			

SBA Communications

Corporation
8051 Congress Avenue
Boca Raton, FL 33487-1307
Phone:
FAX:

Job		Page 20 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

Comb.		Description	
No.	0.0 Partitio Wind 270 day. No los		
21	0.9 Dead+1.0 Wind 270 deg - No Ice 1.2 Dead+1.0 Wind 300 deg - No Ice		
22	1.2 Dead+1.0 Wind 300 deg - No Ice		
23	0.9 Dead+1.0 Wind 300 deg - No Ice		
24	1.2 Dead+1.0 Wind 330 deg - No Ice		
25	0.9 Dead+1.0 Wind 330 deg - No Ice		
26	1.2 Dead+1.0 Ice+1.0 Temp		
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp		
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp		
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp		
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp		
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp		
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp		
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp		
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp		
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp		
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp		
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp		
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp		
39	Dead+Wind 0 deg - Service		
40	Dead+Wind 30 deg - Service		
41	Dead+Wind 60 deg - Service		
42	Dead+Wind 90 deg - Service		
43	Dead+Wind 120 deg - Service		
44	Dead+Wind 150 deg - Service		
45	Dead+Wind 180 deg - Service		
46	Dead+Wind 210 deg - Service		
47	Dead+Wind 240 deg - Service		
48	Dead+Wind 270 deg - Service		
	Dead+Wind 300 deg - Service		
49	Dead+Wind 330 deg - Service		
50	Dead+Wind 350 deg - Service		
51	1.2 Dead+1.0 Ev+1.0 Eh 0 deg		
52	0.9 Dead-1.0 Ev+1.0 Eh 0 deg		
53	1.2 Dead+1.0 Ev+1.0 Eh 30 deg		
54	0.9 Dead-1.0 Ev+1.0 Eh 30 deg		
55	1.2 Dead+1.0 Ev+1.0 Eh 60 deg		
56	0.9 Dead-1.0 Ev+1.0 Eh 60 deg		
57	1.2 Dead+1.0 Ev+1.0 Eh 90 deg		
58	0.9 Dead-1.0 Ev+1.0 Eh 90 deg		
59	1.2 Dead+1.0 Ev+1.0 Eh 120 deg		
60	0.9 Dead-1.0 Ev+1.0 Eh 120 deg		
61	1.2 Dead+1.0 Ev+1.0 Eh 150 deg		
62	0.9 Dead-1.0 Ev+1.0 Eh 150 deg		
63	1.2 Dead+1.0 Ev+1.0 Eh 180 deg		
64	0.9 Dead-1.0 Ev+1.0 Eh 180 deg	70	
65	1.2 Dead+1.0 Ev+1.0 Eh 210 deg		
66	0.9 Dead-1.0 Ev+1.0 Eh 210 deg		
67	1.2 Dead+1.0 Ev+1.0 Eh 240 deg		
68	0.9 Dead-1.0 Ev+1.0 Eh 240 deg		
69	1.2 Dead+1.0 Ev+1.0 Eh 270 deg		
70	0.9 Dead-1.0 Ev+1.0 Eh 270 deg		
71	1.2 Dead+1.0 Ev+1.0 Eh 300 deg		
72	0.9 Dead-1.0 Ev+1.0 Eh 300 deg		
73	1.2 Dead+1.0 Ev+1.0 Eh 330 deg		
73 74	0.9 Dead-1.0 Ev+1.0 Eh 330 deg		

tnxTower	Job	Page 21 of 29
SBA Communications Corporation 8051 Congress Avenue	Project CT00802-VZW-070523	Date 10:42:00 07/11/23
Boca Raton, FL 33487-1307 Phone: FAX:	Client	Designed by MSadeghzadeh

Maximum	Tower	Deflections	- Service	Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	196 - 180	3.253	43	0.1310	0.0183
T2	180 - 160	2.804	43	0.1298	0.0181
T3	160 - 140	2.242	43	0.1226	0.0166
T4	140 - 120	1.727	43	0.1081	0.0143
T5	120 - 100	1.279	43	0.0938	0.0122
T6	100 - 80	0.896	43	0.0769	0.0101
T7	80 - 60	0.585	43	0.0580	0.0078
T8	60 - 40	0.349	43	0.0446	0.0060
T9	40 - 20	0.171	43	0.0304	0.0045
T10	20 - 0	0.055	43	0.0160	0.0022

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft	The state of the s	Comb.	in	0	0	ft
196.00	Abandoned T-Frame	43	3.253	0.1310	0.0183	852219
186.00	800 10966 w/mount pipe (96x20x6.9)	43	2.973	0.1306	0.0183	426107
180.00	SL2	43	2.804	0.1298	0.0181	340464
176.00	(2) JAHH-65B-R3B w/mount pipe (72x13.8x8.2)	43	2.690	0.1290	0.0179	Inf
166.00	FFVV-65B-R2 w/mount pipe (72x19.6x7.8)	43	2.408	0.1256	0.0172	135119
160.00	SL3	43	2.242	0.1226	0.0166	87147
140.00	SL4	43	1.727	0.1081	0.0143	70443
120.00	SL5	43	1.279	0.0938	0.0122	75982
100.00	SL6	43	0.896	0.0769	0.0101	65511
80.00	SL7	43	0.585	0.0580	0.0078	61313
60.00	SL8	43	0.349	0.0446	0.0060	88229
40.00	SL9	43	0.171	0.0304	0.0045	79524
20.00	SL10	43	0.055	0.0160	0.0022	65737

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	•	0
T 1	196 - 180	12.793	10	0.5157	0.0745
T2	180 - 160	11.023	10	0.5112	0.0737
T3	160 - 140	8.808	10	0.4824	0.0674
T4	140 - 120	6.780	10	0.4250	0.0583
T5	120 - 100	5.015	10	0.3685	0.0498
T6	100 - 80	3.509	10	0.3015	0.0411
T7	80 - 60	2.291	10	0.2270	0.0315
T8	60 - 40	1.365	10	0.1744	0.0246

SBA Communications Corporation

8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX:

	Job	Page 22 of 29
	Project CT00802-VZW-070523	Date 10:42:00 07/11/23
3	Client	Designed by MSadeghzadeh

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ſſ	Deflection in	Load Comb.	0	۰
T9	40 - 20	0.669	10	0.1187	0.0182
T10	20 - 0	0.215	11	0.0624	0.0090

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	۰	
196.00	Abandoned T-Frame	10	12.793	0.5157	0.0745	217379
186.00	800 10966 w/mount pipe (96x20x6.9)	10	11.690	0.5140	0.0743	108690
180.00	(90x20x0.9) SL2	10	11.023	0.5112	0.0737	87693
176.00	(2) JAHH-65B-R3B w/mount pipe	10	10.576	0.5080	0.0729	408003
166.00	(72x13.8x8.2) FFVV-65B-R2 w/mount pipe	10	9.462	0.4947	0.0698	34290
160.00	(72x19.6x7.8) SL3	10	8.808	0.4824	0.0674	21892
140.00	SL4	10	6.780	0.4250	0.0583	17675
120.00	SL5	10	5.015	0.3685	0.0498	19146
100.00	SL6	10	3.509	0.3015	0.0411	16568
	SL7	10	2.291	0.2270	0.0315	1 5544
80.00	SL8	10	1.365	0.1744	0.0246	22452
60.00	SL9	10	0.669	0.1187	0.0182	20329
40.00 20.00	SL10	11	0.215	0.0624	0.0090	16827

Bolt Design Data

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Rat Loc	ıd	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allow	able		
T 1	196	Leg	A325X	1.0000	4	1.30	54.52	0.024	1	1	Bolt Tension
		Diagonal	A325X	0.6250	1	3.83	7.88	0.487	/	1	Member Block Shear
		Top Girt	A325X	0.6250	1	0.48	9.91	0.049	/	1	Member Block Shear
T2	180	Leg	A325X>1'	1.2500	4	8.88	76.32	0.116	/	1	Bolt Tension
		Diagonal	A325X	0.6250	1	7.24	9.91	0.730	/	Ĩ	Member Block Shear
T3	160	Leg	A325X>1'	1.2500	4	17.52	76.32	0.230	1	1	Bolt Tension
		Diagonal	A325X	0.6250	1	7.66	13.22	0.580	1	1	Member Block Shear
T4	140	Leg	A325X>1'	1.2500	6	17.05	76.32	0.223	1	1	Bolt Tension
		Diagonal	A325X	0.7500	1	8.47	14.36	0.590	1	1	Member Bearing

tnxTower	Job	Page 23 of 29
SBA Communications Corporation 8051 Congress Avenue	Project CT00802-VZW-070523	Date 10:42:00 07/11/23
Boca Raton, FL 33487-1307 Phone: FAX:	Client	Designed by MSadeghzadeh

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	fi			in	Bolts	per Bolt K	per Bolt K	Allowable	-	
T5	120	Leg	A325X>1'	1.2500	6	21.75	76.32	0.285	1	Bolt Tension
		Diagonal	A325X	0.7500	1	9.84	14.36	0.685	1	Member Bearing
Т6	100	Leg	A325X>1'	1.3750	6	26.65	90.95	0.293	1	Bolt Tension
		Diagonal	A325X	0.7500	1	10.43	14.36	0.727	1	Member Bearing
T 7	80	Leg	A325X>1'	1.3750	6	31.39	90.95	0.345	1	Bolt Tension
		Diagonal	A325X	0.7500	1	11.20	21.53	0.520	1	Member Bearing
T8	60	Leg	A325X>1'	1.3750	6	35.96	90.95	0.395	1	Bolt Tension
		Diagonal	A325X	0.7500	1	12.07	21.53	0.560	1	Member Bearing
Т9	40	Leg	A325X>1'	1.3750	6	38.94	90.95	0.428	1	Bolt Tension
		Diagonal	A325X	0.6250	2	8.04	17.26	0.466	1	Bolt Shear
T10	20	Diagonal	A325X	0.6250	2	8.45	17.26	0.490	1	Bolt Shear

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu
	fì		ft	ft		in ²	K	K	ϕP_n
T1	196 - 180	Sabre 4" x 0.318"	16.03	5.34	49.1 K=1.00	3.6784	-11.04	138.82	0.080 1
T2	180 - 160	Sabre 4.5" x 0.438"	20.03	6.68	55.5 K=1.00	5.5894	-48.06	200.84	0.239 1
T3	160 - 140	Sabre 5.5625" x 0.375"	20.03	6.68	43.6 K=1.00	6.1114	-87.20	239.36	0.364 1
T4	140 - 120	Sabre 6.625" x 0 .432"	20.03	6.68	36.5 K=1.00	8.4049	-124.71	343.10	0.363 1
T5	120 - 100	Sabre 6.625" x 0 .432"	20.03	10.02	54.8 K=1.00	8.4049	-157.80	303.75	0.520 1
Т6	100 - 80	Sabre 8.625"x0.322"	20.03	10.02	40.9 K=1.00	8.3993	-192.69	334.42	0.576 1
T7	80 - 60	Sabre 8.625"x0.5"	20.03	10.02	41.8 K=1.00	12.7627	-227.81	505.56	0.451 1
T8	60 - 40	Sabre 8.625"x0.5"	20.03	10.02	41.8 K=1.00	12.7627	-262.59	505.56	0.519 1
Т9	40 - 20	Sabre 8.625"x0.5"	20.03	5.01	20.9 K=1.00	12.7627	-287.52	556.30	0.517 1

SBA Communications Corporation

8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX:

Job		Page
		24 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

Section	Elevation	Size	L	L_u	Kl/r	A	P_{u}	ϕP_n	Ratio P.,
No.	ft		fi	ft		in²	K	K	ϕP_{s}
T10	20 - 0	Sabre 10.75" x 0.365"	20.03	5.01	16.4 K=1.00	11.9083	-321.67	525.49	0.612

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Diagonal Design Data (Compression)

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
No.	ft		ft	ft		in^2	K	K	ϕP_n
T1	196 - 180	L 2 x 2 x 3/16	10.23	4.93	150.2 K=1.00	0.7150	-3.92	9.07	0.432
T2	180 - 160	L2-1/2x2-1/2x3/16	12.58	6.12	148.4 K=1.00	0.9023	-7.25	11.73	0.618
T3	160 - 140	L2 1/2x2 1/2x1/4	14.32	6.94	169.6 K=1.00	1.1900	-7.74	11.85	0.654
T4	140 - 120	L3 1/2 x 3 1/2 x 1/4	16.11	7.79	134.8 K=1.00	1.6875	-8.43	26.59	0.317
T5	120 - 100	L3 1/2 x 3 1/2 x 1/4	19.30	9.47	163.9 K=1.00	1.6875	-9.89	17.99	0.550
T6	100 - 80	L3 1/2 x 3 1/2 x 1/4	21.03	10.25	177.3 K=1.00	1.6875	-10.57	15.37	0.687
T7	80 - 60	L3 1/2x3 1/2x3/8	22.81	11.14	194.5 K=1.00	2.4800	-11.36	18.75	0.606
T8	60 - 40	L4x4x3/8	24.62	12.05	183.4 K=1.00	2.8600	-12.25	24.32	0.504
Т9	40 - 20	L3 1/2x3 1/2x3/8	16.01	15.10	169.4 K=1.00	2.4800	-16.08	24.74	0.650
T10	20 - 0	L3 1/2x3 1/2x3/8	16.80	15.80_	177.2 K=1.00	2.4800	-16.90	22.61	0.747

 $^{^{1}}P_{u}/\phi P_{n}$ controls

Horizontal Design Data ((Compression))
--------------------------	---------------	---

Section	Elevation	11	Size	L	L_{u}	Kl/r	A	P_u	ϕP_m	Ratio P_u
No.	ft			ft	ft		in ²	K	K	ϕP_{π}
Т9	40 - 20		L4x4x3/8	24.00	11.64	163.7 K=0.92	2.8600	-11.53	30.55	0.377
T10	20 - 0		L4x4x3/8	26.00	12.55	174.3 K=0.91	2.8600	-12.34	26.96	0.458 1

tnxTower	Job	Page 25 of 29
SBA Communications Corporation 8051 Congress Avenue	Project CT00802-VZW-070523	Date 10:42:00 07/11/23
Boca Raton, FL 33487-1307 Phone: FAX:	Client	Designed by MSadeghzadeh

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio P _u
	<u>_f</u> t		ft	ft		in^2	K	K	φP,,
Tl	196 - 180	L2-1/2x2-1/2x3/16	7.40	6.78	164.3 K=1.00	0.9023	-0.55	9.57	0.057

¹ $P_{\mu} / \phi P_n$ controls

Redundant Horizontal	(1)	Design Data	(Compression)

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
Т9	40 - 20	L2-1/2x2-1/2x3/16	6.00	5.64	136.8 K=1.00	0.9023	-4.99	13.81	0.361
T10	20 - 0	L3x3x3/16	6.50	6.05	121.9 K=1.00	1.0900	-5.58	20.81	0.268 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Redundant Diagonal (1) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_{μ}	ϕP_n	Ratio P.,
	ft		ft	ft		in ²	K	K	ΦP_n
Т9	40 - 20	L2-1/2x2-1/2x3/16	7.62	7.15	173.3 K=1.00	0.9023	-3.17	8.60	0.368
T10	20 - 0	L3x3x3/16	8.01	7.43	149.6 K=1.00	1.0900	-3.44	13.93	0.247

¹ P_u / ϕP_n controls

Inner Bracing Design Data (Compression)

SBA Communications Corporation

8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX:

Job		Page 26 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

Section	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_n	Ratio P _u
No.	ft	ft ft		in ²	K	K	ϕP_a		
Т9	40 - 20	L4x4x1/4	12.00	12.00	181.1 K=1.00	1.9400	-0.02	16.92	0.001 1
T10	20 - 0	L4x4x1/4	13.00	13.00	196.2 K=1.00	1.9400	-0.02	14.42	0.001 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Tension Checks

Leg Design Data (Tension)

Section	Elevation	Size	L	L_u	Kl/r	A	P_{μ}	ϕP_n	Ratio P _u
No.	ft		ft	ft		in ²	K	K	ϕP_n
T 1	196 - 180	Sabre 4" x 0.318"	16.03	5.34	49.1	3.6784	5.20	165.53	0.031
T2	180 - 160	Sabre 4.5" x 0.438"	20.03	6.68	55.5	5.5894	35.51	251.52	0.141 1
Т3	160 - 140	Sabre 5.5625" x 0.375"	20.03	6.68	43.6	6.1114	70.06	275.01	0.255
T4	_ 140 - 120	Sabre 6.625" x 0 .432"	20.03	6.68	36.5	8.4049	102.32	378.22	0.271
T5	120 - 100	Sabre 6.625" x 0 .432"	20.03	10.02	54.8	8.4049	130.51	378.22	0.345
Т6	100 - 80	Sabre 8.625"x0.322"	20.03	10.02	40.9	8.3993	159.91	377.97	0.423
T7	80 - 60	Sabre 8.625"x0.5"	20.03	10.02	41.8	12.7627	188.36	574.32	0.328
Т8	60 - 40	Sabre 8.625"x0.5"	20.03	10.02	41.8	12.7627	215.75	574.32	0.376
T9	40 - 20	Sabre 8.625"x0.5"	20.03	5.01	20.9	12.7627	234.10	574.32	0,408

20 - 0

T10

Diagonal Design Data (Tension)

5.01

20.03

Sabre 10.75" x 0.365"

 0.485^{1}

535.87

259.98

16.4 11.9083

¹ P_u / ϕP_n controls

Page Job tnxTower 27 of 29 Project Date SBA Communications Corporation 8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX: CT00802-VZW-070523 10:42:00 07/11/23 Client Designed by

MSadeghzadeh

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	φP _n	Ratio P _u
	ft		ft	ft		in ²	K	K	φ <i>P</i> _n
T1	196 - 180	L 2 x 2 x 3/16	10.23	4.93	98.8	0.4308	3.83	18.74	0.205 1
T2	180 - 160	L2-1/2x2-1/2x3/16	12.58	6.12	96.6	0.5713	7.24	24.85	0.291 1
T3	160 - 140	L2 1/2x2 1/2x1/4	14.32	6.94	110.5	0.7519	7.66	32.71	0.234 1
T4	140 - 120	L3 1/2 x 3 1/2 x 1/4	16.11	7.79	87.3	1.1016	8.47	47.92	0.177 1
T5	120 - 100	L3 1/2 x 3 1/2 x 1/4	19.30	9.47	105.7	1.1016	9.84	47.92	0.205 1
Т6	100 - 80	L3 1/2 x 3 1/2 x 1/4	21.03	10.25	114.3	1.1016	10.43	47.92	0.218 1
T7	80 - 60	L3 1/2x3 1/2x3/8	22.81	11.14	126.5	1.6139	11.20	70.20	0.160 1
Т8	60 - 40	L4x4x3/8	24.62	12.05	118.9	1.8989	12.07	82.60	0.146 1
Т9	40 - 20	L3 1/2x3 1/2x3/8	16.01	15.10	174.4	1.6491	15.02	71.73	0.209 1
T10	20 - 0	L3 1/2x3 1/2x3/8	16.80	15.80	182.2	1.6491	15.75	71.73	0.220 1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

	Horizontal Design Data (Tension)										
Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{ν}	ϕP_n	Ratio P.,		
	ft		ft	ft		in^2	\boldsymbol{K}	K	φΡ.,		
Т9	40 - 20	L4x4x3/8	24.00	11.64	113.6	2.8600	11.74	92.66	0.127		
T10	20 - 0	L4x4x3/8	26.00	12.55	122.5	2.8600	12.52	92.66	0.135		

¹ P_u / ϕP_n controls

	Top Girt Design Data (Tension)								
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_{u}	ϕP_n	Ratio P.,
	fl		ft	fl		in ²	K	K	ΦP_{\parallel}
T 1	196 - 180	L2-1/2x2-1/2x3/16	7.40	6.78	109.0	0.5713	0.48	24.85	0.020 1

tnxTower	Job		Page 28 of 29
SBA Communications Corporation	Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
8051 Congress Avenue Boca Raton, FL 33487-1307 Phone:	Client		Designed by MSadeghzadeh

 $^{^{1}}P_{u}/_{\phi}P_{n}$ controls

Redundant Horizontal (1) Design Data (Tension)									
Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu
No.	ft		ft	ft		in²	K	K	ϕP_n
T9	40 - 20	L2-1/2x2-1/2x3/16	6.00	5.64	87.0	0.9023	4.99	29.24	0.171
T10	20 - 0	L3x3x3/16	6.50	6.05	77.3	1.0900	5.58	35.32	0.158 1

 $^{^{1}} P_{u} / \phi P_{n}$ controls

	Redundant Diagonal (1) Design Data (Tension)									
Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio Pu	
No.	ft		ft	ft		in²	K	K	ϕP_{π}	
T9	40 - 20	L2-1/2x2-1/2x3/16	7.43	6.96	107.3	0.9023	3.22	29.24	0.110	
T10	20 - 0	L3x3x3/16	7.81	7.24	92.5	1.0900	3.49	35.32	0.099	

¹ P_u / ϕP_n controls

Section Capacity Table									
				G. W. J.	- D	-70	0/	Dagg	
Section	Elevation	Сотропепі	Size	Critical	P	θP_{allow}	70	Pass	

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
T1	196 - 180	Leg	Sabre 4" x 0.318"	2	-11.04	138.82	8.0	Pass
T2	180 - 160	Leg	Sabre 4.5" x 0.438"	26	-48.06	200.84	23.9	Pass
T3	160 - 140	Leg	Sabre 5.5625" x 0.375"	47	-87.20	239.36	36.4	Pass
T4	140 - 120	Leg	Sabre 6.625" x 0 .432"	68	-124.71	343.10	36.3	Pass
T5	120 - 100	Leg	Sabre 6.625" x 0 .432"	89	-157.80	303.75	52.0	Pass
T6	100 - 80	Leg	Sabre 8.625"x0.322"	104	-192.69	334.42	57.6	Pass
T7	80 - 60	Leg	Sabre 8.625"x0.5"	119	-227.81	505.56	45.1	Pass
	60 - 40	Leg	Sabre 8.625"x0.5"	134	-262.59	505.56	51.9	Pass
T8 T9	40 - 20	Leg	Sabre 8.625"x0.5"	149	-287.52	556.30	51.7	Pass
	20 - 0	Leg	Sabre 10.75" x 0.365"	200	-321.67	525.49	61.2	Pass
T10		Diagonal	L 2 x 2 x 3/16	7	-3.92	9.07	43.2	Pass
T1	196 - 180	Diagoliai	LZ KZ KJ/10	·			48.7 (b)	
T2	180 - 160	Diagonal	L2-1/2x2-1/2x3/16	28	-7.25	11.73	61.8 73.0 (b)	Pass
тз	160 - 140	Diagonal	L2 1/2x2 1/2x1/4	49	-7.74	11.85	65.4	Pass

SBA Communications Corporation 8051 Congress Avenue

8051 Congress Avenue Boca Raton, FL 33487-1307 Phone: FAX:

Job		Page
		29 of 29
Project	CT00802-VZW-070523	Date 10:42:00 07/11/23
Client		Designed by MSadeghzadeh

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
T4	140 - 120	Diagonal	L3 1/2 x 3 1/2 x 1/4	70	-8.43	26.59	31.7	Pass
							59.0 (b)	
T5	120 - 100	Diagonal	L3 1/2 x 3 1/2 x 1/4	91	-9.89	17.99	55.Ò ´	Pass
							68.5 (b)	
T6	100 - 80	Diagonal	L3 1/2 x 3 1/2 x 1/4	106	-10.57	15.37	68.7	Pass
							72.7 (b)	
T7	80 - 60	Diagonal	L3 1/2x3 1/2x3/8	121	-11.36	18.75	60.6	Pass
T8	60 - 40	Diagonal	L4x4x3/8	136	-12.25	24.32	50.4	Pass
	40.00						56.0 (b)	
T9	40 - 20	Diagonal	L3 1/2x3 1/2x3/8	152	-16.08	24.74	65.0	Pass
T10	20 - 0	Diagonal	L3 1/2x3 1/2x3/8	203	-16.90	22.61	74.7	Pass
T9	40 - 20	Horizontal	L4x4x3/8	151	-11.53	30.55	37.7	Pass
T10	20 - 0	Horizontal	L4x4x3/8	202	-12.34	26.96	45.8	Pass
T1	196 - 180	Top Girt	L2-1/2x2-1/2x3/16	6	-0.55	9.57	5.7	Pass
T9	40 - 20	Redund Horz 1 Bracing	L2-1/2x2-1/2x3/16	160	-4.99	13.81	36.1	Pass
T10	20 - 0	Redund Horz 1 Bracing	L3x3x3/16	211	-5.58	20.81	26.8	Pass
Т9	40 - 20	Redund Diag 1 Bracing	L2-1/2x2-1/2x3/16	161	-3.17	8.60	36.8	Pass
T10	20 - 0	Redund Diag 1 Bracing	L3x3x3/16	208	-3.44	13.93	24.7	Pass
T9	40 - 20	Inner Bracing	L4x4x1/4	174	-0.02	16.92	0.5	Pass
T10	20 - 0	Inner Bracing	L4x4x1/4	225	-0.02	14.42	0.5	Pass
							Summary	
						Leg (T10)	61.2	Pass
	9					Diagonal (T10)	74.7	Pass
						Horizontal (T10)	45.8	Pass
						Top Girt (T1)	5.7	Pass
						Redund Horz 1	36.1	Pass
						Bracing (T9) Redund Diag 1	36.8	Pass
						Bracing (T9) Inner Bracing (T10)	0.5	Pass
						Bolt Checks RATING =	73.0 74.7	Pass Pass

Analysis complete Project#: CT00802-VZW-070523 1.00 Structure Date **Tower Data** 1.60 $F_a =$ Risk category: Tower type: SST Site class: D (default) 2.40 196 $F_{\nu} =$ Height (ft): 0.52 T (sec) =Seismic Date 27 Base face width (ft): R =3.00 Short period (S_s): 0.184 Number of sections: 10 1.01 1sec period (S₁): 0.055 Ke = 0.07 Long period transition (T_L) (Fig B-19): 6 $C_s =$ Note: 1: Get self weight & add weight (feedline) from "Mast Forces table (tnxTower Reports)" V_s (kip) = 4.31 Ts(sec) =0.45 2: Get appurtenance weight from "Appurt. Pressure table (tnxTower Reports)" Tnx User Forces 3: Get the guy weight from "WEIGHTAUXDATA" excel file from the trx out put files Add Weight Appurtenance Self Top $*E_v$ Guy Weight Total Weight $E_h(F_x)$ Top Elev Weight Weight (feedline) width Section kip kip kip kip kip kip ft kip ft 0.12 1.32 2.97 0.36 0.50 196 7.4 1.15 12.22 1.38 0.48 1.90 1.30 9.02 2 180 9 0.23 5.83 0.58 1.94 1.53 160 11 2.36 3 0.20 0.44 5.02 3.49 1.53 0.00 13 140 4 0.18 4.70 0.35 0.00 1.53 3.17 120 15 5 0.19 4.82 0.30 0.00 1.53 100 17 3.29 6 0.33 0.26 6.65 1.53 0.00 80 19 5.12 7 0.28 0.00 7.23 0.27 1.53 21 5.70 60 8 0.33 8.40 0.21 1.53 0.00 23 6.87 9 40 0.31 8.00 0.10 0.92 0.00 25 7.08 10 20

12.28

13.43

17.0

40.13

65.84

4.31

Self Support Anchor Bolt Check

	SBA Project #:	CT00802-VZW-	070523
	Code:	H	
Leg Reaction	n	THE RESERVE AND DE	
Uplift(kips)	274	Shear (kips):	32
Comp(kips)	339	Shear (kips):	39

Strength Reduction Factors

Tension: 0.75
Compression: 0.90
Shear: 0.75
Flexure: 0.9

Bolt Capacity: 55.1% Pas.

Self Support Base Reaction Comparison Table

Site ID:	CT00802-S	
Design TIA:	TIA-222-F	
Current TIA:	TIA-222-H	Select
Component:	Self Support Base	Select

- 13.50 PM - 11 TAN	TIA-22	2-F Compared To TIA-	-222-H	
	SST BASE FOU	NDATION REACTION	COMPARISON	
REACTIONS PER LEG	ORIGINAL DESIGN REACTIONS	*MODIFIED DESIGN REACTIONS	ANALYSIS REACTIONS	% RATING
UPLIFT (kips)	245.9	331.9	274.0	82.5%
COMPRESSION (kips)	308.0	415.8	339.0	81.5%
HEAR(kips)/MOMENT(kip-ft)	35.2	47.6	39.0	82.0%

^{*}Original Design Reactions were multiplied by 1.35 for comparison as allowed by TIA-222-H, Section 15.4.3.

Colliers Engineering & Design CT. P.C. 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis

SMART Tool Project #: 10206279 Colliers Engineering & Design CT. P.C. Project #: 23777044

July 10, 2023

Site Information

Site ID:

5000242993-VZW / PUTNAM SOUTH CT -

SBA - Putnam Freight

Site Name:

PUTNAM SOUTH CT - SBA - Putnam Freight

Carrier Name:

Verizon Wireless 63 Industrial Dr

Address:

Putnam, Connecticut 06260

Windham County

Latitude:

41.897139°

Longitude:

-71.89225°

Structure Information

Tower Type:

240-Ft Self Support

Mount Type:

12.58-Ft T-Frame

FUZE ID # 17123838

Analysis Results

T-Frame: 87.8% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report
Available & Submitted via portal at https://pmi.vzwsmart.com
For additional questions and support, please reach out to:
pmisupport@colliersengineering.com

Report Prepared By: Andy Hanes

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks					
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 2645089, dated February 24, 2021					
Mount Mapping Report	Hudson Design Group LLC, Site ID: 469277, dated February 4, 2021					
Previous Mount Analysis	Maser Consulting Connecticut, Project #: 20777647A, dated April 22, 2021					
PMI Report	Maser Consulting Connecticut, Project #: 20777647A, dated November 2, 2022					
Filter Add Scope	Provided by Verizon Wireless					

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-F

2022 Connecticut State Building Code (CSBC), Effective October 1, 2022

Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), Vulti	125 mph
------------------	--	---------

Ice Wind Speed (3-sec. Gust): 50 mph Design Ice Thickness: 1.00 in Risk Category: Ш Exposure Category: С Topographic Category: 1 Topographic Feature Considered: N/A Topographic Method: N/A Ground Elevation Factor, Ke: 0.991

Seismic Parameters: Ss: 0.184 g

S₁: 0.055 g

Maintenance Parameters: Wind Speed (3-sec. Gust): 30 mph

Maintenance Load, Lv: 250 lbs.
Maintenance Load, Lm: 500 lbs.

Analysis Software: RISA-3D (V17)

July 10, 2023 Site ID: 5000242993-VZW / PUTNAM SOUTH CT -SBA - Putnam Freight Page | 3

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Equipment Elevation (ft) Quantity Manufacturer		Model	Status		
(1)	17	3	Samsung	MT6407-77A	
		6	Commscope	JAHH-65B-R3B	
		3	Samsung	B2/B66A RRH-BR049	Retained
176.00	176.00	3	Samsung	B5/B13 RRH-BR04C	Ketairiec
170.00	270.00	2	Raycap	RHSDC-6627-PF-48	
		3	Commscope	CBC78T-DS-43-2X	
		2	KAelus	BSF0020F3V1-1	Added

Any proposed antennas not currently installed should be mounted such that the centerline of the antennas does not exceed 6 inches vertically from the center of the antenna mount(s).

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Colliers Engineering & Design CT. P.C. and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design CT. P.C. to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity
 of the connected member unless otherwise specified in this report.

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design CT. P.C. is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

o Channel, Solid Round, Angle, Plate

ASTM A36 (Gr. 36)

o HSS (Rectangular)

ASTM 500 (Gr. B-46)

o Pipe

ASTM A53 (Gr. B-35)

o Threaded Rod

F1554 (Gr. 36)

o Bolts

ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design CT. P.C.

Analysis Results:

Component	Utilization %	Pass/Fail
Connection Check	20.6 %	Pass
Horizontal Face	63.9 %	Pass
Face Vertical	55.5 %	Pass
Standoff Horizontal D	10.3 %	Pass
TES Standoff Horizontal	16.6 %	Pass
End Plate	28.8 %	Pass
Standoff Vertical	24.1 %	Pass
Standoff Diagonal	5.3 %	Pass
Antenna Pipe	82.6 %	Pass
Stabilizer	81.5 %	Pass
Mod Mount Pipe	87.8 %	Pass
Mod Face Horizontal	86.4 %	Pass
Mod V-kit	72.1 %	Pass

Structure Rating – (Controlling Utilization of all Components)	87.8%
--	-------

BASELINE mount weight per SBA agreement: 2630 lbs

Increase in mount weight due to Verizon loading change per SBA agreement: No Change

The weights listed above include 3 sector(s).

July 10, 2023 Site ID: 5000242993-VZW / PUTNAM SOUTH CT -SBA - Putnam Freight

Page | 5

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

les Way	SALA SALAS	Mount Pipe	s Excluded	Mount Pipes Included			
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.) 23.3			
0	41.4	13.7	51.0				
0.5	53.8	19.4	67.2	32.8			
1	65.4	24.2	82.6	41.5			

Notes:

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 1 sector(s).
- Ka factors included in (EPA)a calculations

Requirements:

The existing mounts are **SUFFICIENT** for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

N/A

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations

Mount Desktop - Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading.

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com.

For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000242993

SMART Project #: 10206279

Fuze Project ID: 17123838

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present
 or any installed system, SMART Tool vendor to be notified prior to install. Any special photos
 outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's
 signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact
 the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - o Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations,
 pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - o Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- O Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

Antenna & equipment placement and comment
 The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
\Box The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
OR
\Box The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Special Instructions / Validation as required from the MA or any other information the contractor
deems necessary to share that was identified:
Issue:
N/A
Response:
Special Instruction Confirmation:
\square The contractor has read and acknowledges the above special instructions.
\square All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.
☐ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.
OR
☐ The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.

Comments:	4	
Contractor certifies that	t the climbing facility /	safety climb was not damaged prior to starting work:
□Yes □	No	
Contractor certifies no r	new damage created di	uring the current installation:
□Yes □	No	
Contractor to certify the	condition of the safet	y climb and verify no damage when leaving the site:
☐ Safety Climb in	n Good Condition	☐ Safety Climb Damaged
Certifying Individual:		
Company: Employee Name: Contact Phone: Email: Date:		

Structure: 5000242993-VZW - PUTNAM SOUTH CT - SBA - Putnam Freight

Sector:

Mount Elev:

Structure Type: Self Support 176.00

10206279

7/10/2023

Page: 1

		Height	Width (in)	H Dist Fm L.	Pipe #	Pipe Pos V	Ant Pos	C. Ant	Ant H Off	Status	Validation
Ref#	Model	(in)	_						0	Retained	10/06/2022
R2	MT6407-77A	35.1	16.1	148	1	а	Front	36.96	0	Retained	10/00/2022
R4	B2/B66A RRH-BR049	15	15	148	1	а	Behind	36	0	Retained	10/06/2022
R7	CBC78T-DS-43-2X	6.4	6.9	127	2	a	Front	48	-8	Retained	10/06/2022
A3	JAHH-65B-R3B	72	13.8	79	3	а	Front	36.96	9	Retained	10/06/2022
A3	JAHH-65B-R3B	72	13.8	79	3	b	Front	36.96	-9	Retained	10/06/2022
A1	BSF0020F3V1-1	10.6	10.9	79	3	a	Behind	36	0	Added	
A1	BSF0020F3V1-1	10.6	10.9	79	3	b	Front	36	0	Added	
A6	RHSDC-6627-PF-48	29.5	16.5	27	4	а	Behind	9	0	Retained	10/06/2022
RRU	B5/B13 RRH-BR04C	15	15		Memb	er				Retained	10/06/2022

Structure: 5000242993-VZW - PUTNAM SOUTH CT - SBA - Putnam Freight

Sector: B

Structure Type: Self Support

176.00

Mount Elev:

10206279

Page: 2

7/10/2023

Ref#	Model		Height (in)	Width (in)	H Dist Frm L.	Pipe #	Pipe Pos V	Ant Pos	C. Ant Frm T.	Ant H Off	Status	Validation
R2	MT6407-77A		35.1	16.1	148	1	а	Front	36.96	0	Retained	10/06/2022
R4	B2/B66A RRH-BR049		15	15	148	1	а	Behind	36	0	Retained	10/06/2022
R7	CBC78T-DS-43-2X		6.4	6.9	127	2	а	Front	48	-8	Retained	10/06/2022
А3	JAHH-65B-R3B		72	13.8	79	3	а	Front	36.96	9	Retained	10/06/2022
А3	JAHH-65B-R3B		72	13.8	79	3	b	Front	36.96	-9	Retained	10/06/2022
A6	RHSDC-6627-PF-48	8.5	29.5	16.5	27	4	а	Behind	9	0	Retained	10/06/2022

Structure: 5000242993-VZW - PUTNAM SOUTH CT - SBA - Putnam Freight

Sector:

10206279

Structure Type: Self Support 176.00 Mount Elev:

Page: 3

7/10/2023

				#	Pos V	Pos	Frm T,	H Off	Status	Validation
	35.1	16.1	148	1	а	Front	36.96	0	Retained	10/06/2022
H-BR049	15	15	148	1	а	Behind	36	0	Retained	10/06/2022
	6.4	6.9	127	2	8	Front	48	-8	Retained	10/06/2022
	72	13.8	79	3	а	Front	36.96	9	Retained	10/06/2022
3B		13.8	79	3	ь	Front	36.96	-9	Retained	10/06/2022
4:	3-2X	3-2X 6.4 3 72	3-2X 6.4 6.9 3 72 13.8	3-2X 6.4 6.9 127 3 72 13.8 79	3-2X 6.4 6.9 127 2 3 72 13.8 79 3	3-2X 6.4 6.9 127 2 8 3 3 4 5 7 13.8 79 3 8	3-2X 6.4 6.9 127 2 a Front 3 72 13.8 79 3 a Front	3-2X 6.4 6.9 127 2 a Front 48 3-2X 72 13.8 79 3 a Front 36.96	3-2X 6.4 6.9 127 2 a Front 48 -8 3-2X 72 13.8 79 3 a Front 36.96 9	3-2X 6.4 6.9 127 2 a Front 48 -8 Retained 3-2X 72 13.8 79 3 a Front 36.96 9 Retained

		The second secon	FCC #
	Antenna Mount Mapping F	orm (PATENT PENDING)	1202920
	ISBA	Mapping Date:	 2021
Tower Owner: Site Name:	Putnam South	Tower Type:	Support
Site Number or ID:	469277	Tower Height (Ft.):	40
Mapping Contractor:	Hudson Design Group LLC	Mount Elevation (Ft.):	6.5 publication.

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, making the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication or disclosure by any method is prohibited except by express written permission of TES, All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety medification or disclosure by any method is prohibited except by express written permission of TES, All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety medification or disclosure by any method is prohibited except by express written permission.

Sector / Position	Mount Pipe Size & Length	Vertical Offset Dimension	Horizontal Offset "C1, C2, C3, etc."	Sector / Pasition	eometries (Unit = Inches) Mount Pipe Size & Length	Vertical Offset Dimension "u"	Horizontal Offset "C1, C2, C3, etc."
A1	PIPE 2" STD X 6' LONG	55.00	24.00	C1	PIPE 2" STD X 6' LONG	55.00	24.00
A2	PIPE 2" STD X 6' LONG	55.00	71.50	C2	PIPE 2" STD X 6' LONG	55.00	71.50
A3	PIPE 2" STD X 6' LONG	55.00	127.00	C3	PIPE 2" STD X 6' LONG	55.00	127.00
A4	PIPE 2" STD X 6' LONG	55.00	148.00	C4	PIPE 2" STD X 6' LONG	55.00	148.00
AS	THEE SIEKS COME			CS			
A6	1985 - 277			C6			
B1	PIPE 2" STD X 6' LONG	55.00	24.00	D1	Programme 12		
B2	PIPE 2" STD X 6' LONG	55.00	71.50	D2			
B3	PIPE 2" STD X 6' LONG	55.00	127.00	D3			
B4	PIPE 2" STD X 6' LONG	55.00	148.00	D4			
B5				D5			
86				D6			
-	Distance between bottom ra	il and mour	t CL elevati	on (dim d). Unit is Inches. See 'Mount Elev Ref' to	ab for details.	18.00
	Distance from	op of botto	m support r	all to low	est tip of ant./eqpt. of Carrier above. (Nest tip of ant./eqpt. of Carrier below. (Nest on or comments below.	(/AII > 10 IL)	

Tower Face Width at Mount Elev. (ft.): 9.5 | Tower Leg Size or Pole Shaft Diameter at Mount Elev. (in.):

SECTOR B	10	-sector c	
~	_ V	000000000	
1/2 FAC	EB		
LEC 8	10	LEG C	
188	1/2/	1	
1	(4	11	
- /-	-		*******
SECTOR A	LEG A		
		-	Horizontal
			Offset "h"

	Enter antenn	a model.	If not labe	led, enter '	'Unknown'	£	Mountin (Units are inch		Photos of antennas	
Ants. Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty		Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horiz. Offset "h" (Use "-" if Ant, is behind)	Antenna Azimuth (Degrees)	Photo Numbers
					Sector A					
Ant _{1a}				100				_		
Ant _{1b}	LNX-6514DS-A1M	11.85	7.10	73.00		176.667	35.00	8,00	20.00	130
Antıc				35.1						-
Ant _{2a}					_			40.50	20.00	130
Ant _{2b}	(2) JAHH-65B-R3B	14.00	7.50	72.00		176.75	34.00	12.50	20.00	130
Ant _{2c}	AHCA RRH 4T4R B5	12.50	7.50	14.00		180.917	-16.00	-9.00		130
Ant _{3a}	RHSDC-6627-PF-48	15.00	10.00	28.00		177.833	21.00	-5.00		130
Ant _{3b}										_
Ant₃c										
Anta										
Ant _{4b}										
Ant _{4c}								_		_
Ant _{Sa}					-	_				_
Ant _{Sb}					-			_		
Ant _{Sc}						-				
Ant on Standoff	B66a RRH 4X45	11.50	8.00	21.00			-19.00	6.00		148
Ant on Standoff	B13 RRH4X30	12.00	7.00	25.00			-24.00	6.50		147
Ant on Tower	7									
Ant on										

£	Antre 🚜		Antss	4	Anta	2	Ante	£	Antu
L	盏	L	2	L	2	-	1	ă L	
		_					11		III
G1	Antse J_	_	Antac		Anilse		Asil4c	1	Ants
	C2	C.	- s	×	,				
					15				_

	int Azimuti		e)	Tower Leg Azimuth		1			_		Sector B				
	for Each S 20.00		li an Ai	for Each Sec 350.00		Antia		1							
Sector A: Sector B:	140.00		Leg A:	110,00	Deg	Antıb	LNX-6514DS-A1M	11.85	7.10	73.00	176.667	35.00	8.00	140,00	131
Sector C:	245.00	Deg	_	230.00	Deg	Ant _{1c}		-							VA III
Sector D:	245.00		Leg C: Leg D:	230.00	Deg	Ant _{2a}		-							
SECTOR D:	_		_	ella a de la companya	Deg	Ant _{2b}	(2) JAHH-65B-R3B	14.00	7.50	72.00	176.75	34.00	12.50	140.00	130
	170.00	_	oing rac	ility Information		Ant _{2c}	AHCA RRH 4T4R B5	12.50	7.50	14.00	180.917	-16.00	-9.00		130
ocation:	170.00	Deg	_	Outside Face B		Ant _{3a}	RHSDC-6627-PF-48	15.00	10.00	28.00	177.833	21.00	-5.00		130
Climbing		sion Typ	e:	Good condition.		Ant _{3b}									
Facility		ccess:		Climbing path was unobs	tructed.	Antac									
	Ço	ndition:		Good condition.		Ant _{4s}									
	3	, IT	11.	23		Antab									
1	ר ר	4011	III	П		Ant _{dc}									
	1 1		111			Ant _{Sa}									
4			*			Antsb									
0.5	T	.		19 10 Exchange		Antsc									
0.2		. III I	111	200	T PM-1 T01 / F 112	Ant on Standoff	B66a RRH 4X45	11.50	8.00	21.00		-19.00	6.00		148
				PLATE CF 44T (b/4 17	E PACH TOP OF MAD NO MEDICAL TO COMPET TO PECHT OF CAMMEN ASSOCIE > 10 FT;	Ant on				10			+	-	
Ü		Bill	1111			Standoff	B13 RRH4X30	12.00	7.00	25.00		-24.00	6.50		147
q	F,		111		E Fide toy of the	Ant on									
to lunion-	~		115	PLATFO CF ANT (N/A IF	E FIGHTON OF HAN ON MODICIES TO HICKEST THE ADDIT OF CHARGE DELON > (U.ST.)	Ant on							-		
- 2	1, ,1		I n	T. BORON		Tower									
								1998			Sector C				-
			Ш			Ant ₁		115 -11							
1			111			Ant _{1b}	LNX-6514DS-A1M	11.85	7.10	73.00	176.667	35.00	8.00	245.00	130
	- 1		11,0	187		Ant _{1c}									
		**** ** **		rin .		Ant _{Za}		10-							
		IE	= 1			Ant _{2b}	(2) JAHH-65B-R3B	14.00	7.50	72.00	176.75	34.00	12.50	245.00	130
1			7	'		Ant _{2c}	AHCA RRH 4T4R B5	12.50	7.50	14.00	180.917	-16.00	-9.00		130
1		=	=	-		Anta		110							
3			/	TERRO		Ant _{3b}									
			/			Ant _{3c}									
1	1 [1 15	\Box	SIPC ANT./E	E FRANTO' OF BUTTON T RAL TO LONEST TO OF DAT OF CARRIER ASCAL ' - 10 FT)	Ant _{da}									
=	=		₹ 6		· 10 FT)	THEE									
-	A STATE OF		∃ ∄	-		Ant _{4c}									
L	1./.	ì.	البر	Serve	E this time of some	Ant _{Sa}									
No. of Column Page	5			ant, 2	THE RESERVED	Ant _{Sb}									
-7.	فقار د		_	A PRESENT		Antsc									
						Ant on	B66a RRH 4X45	11.50	8.00	21.00		-19.00	6.00		148
1			7 7	7		Standoff Ant on					-				
- 1		J.	7	3		Standoff	B13 RRH4X30	12.00	7.00	25.00		-24.00	6.50		147
-			-	L-		Ant on		0.00	W.						
						Ant on	4								
	4					Tower									
											Sector D		•		
						Ant _{1a}									
						Antıb									
						Ant _{1c}									
						Ant _{2a}									
						Ant _{Zb}									
						Ant _{2c}									
						Ant _{Ba}									
						Antab				Trans		_/1			
						Ant _{ac}									
						Ant _{4a}									
						Ant _{4b}									
						Ant _{4c}									
						Antsa									
						Antsb									
						Ant _{Sc}									
						Ant on Standoff									
						Ant on		+							
						Standoff									
						Ant on									
						Tower									
						Ant on									
						Tower									

	Observed Safety and Structural Issues During the Mount Mapping	
Issue #	Description of Issue	Photo #

1		
2	(2) 1-1/4"Ø HYBRID CABLE	167
3	TOWER TAG INFO: SABRE COMMUNNICATIONS CORP. MODEL / JOB#: 53TL 99-04060, TOWER HEIGHT: 196'/240', LOCATION: PUTNAM, CT	3
4		
5		
6		
7		
8		

Mapping Notes

- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic mea
 3. Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.
 4. Please measure and enter the bolt sizes and types under the Members Box in the spreadheat of the mount type.
 5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.
 6. Please measure and report the size and length of all existing antenna mounting pipes.
 7. Please measure and report the antenna information for all sectors.

- 8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

Standard Conditions

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

V2.0 Updated on 8-31-2020

Mapping Contractor.

Hudson Design Group LLC

Mount Elevation (FL):

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication modification or disclosure by any method is prohibited except by express written permission of TES. All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, FCC, FAA and other safety requirements that may apply, TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

Please Insert Sketches of the Antenna Mount

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	Surface(P
1	Antenna D	None					33			1
2	Antenna Di	None					33			
3	Antenna Wo (0 Deg)	None					33			
4	Antenna Wo (30 Deg)	None					33			
5	Antenna Wo (60 Deg)	None				21227	33			
6	Antenna Wo (90 Deg)	None					33			
7	Antenna Wo (120 Deg)	None					33			
8	Antenna Wo (150 Deg)	None					33			
9	Antenna Wo (180 Deg)	None					33			
10	Antenna Wo (210 Deg)	None					33			
11	Antenna Wo (240 Deg)	None					33			
12	Antenna Wo (270 Deg)	None					33			
13	Antenna Wo (300 Deg)	None					33			
14	Antenna Wo (330 Deg)	None				75	33	100		
15	Antenna Wi (0 Deg)	None					33			
16	Antenna Wi (30 Deg)	None			A-0.		33			
17	Antenna Wi (60 Deg)	None					33			
18	Antenna Wi (90 Deg)	None					33			
19	Antenna Wi (120 Deg)	None					33			
20	Antenna Wi (150 Deg)	None	1				33			
21	Antenna Wi (180 Deg)	None					33	1		
22	Antenna Wi (210 Deg)	None		智业チ			33			
23	Antenna Wi (240 Deg)	None					33			
24	Antenna Wi (270 Deg)	None					33			
25	Antenna Wi (300 Deg)	None	1				33	+		
26	Antenna Wi (330 Deg)	None			-		33			
27	Antenna Wm (0 Deg)	None					33			
28	Antenna Wm (30 Deg)	None	100		-		33			-
29	Antenna Wm (60 Deg)	None					33	†		
30	Antenna Wm (90 Deg)	None					33			
31	Antenna Wm (120 Deg)	None					33			
32	Antenna Wm (150 Deg)	None					33			
	Antenna Wm (180 Deg)	None					33	+		
	Antenna Wm (210 Deg)	None					33			
	Antenna Wm (240 Deg)	None					33			
	Antenna Wm (270 Deg)	None			-		33	1		-
	Antenna Wm (300 Deg)	None					33	1		
	Antenna Wm (330 Deg)	None					33			
39	Structure D	None		-1						
40	Structure Di	None						27		
41	Structure Wo (0 Deg)	None						27		
	Structure Wo (30 Deg)	None	+					54		
43	Structure Wo (60 Deg)	None						54		
	Structure Wo (90 Deg)	None						54		
	Structure Wo (120 D	None	-					54		
	Structure Wo (150 D		-					54		
	Structure Wo (180 D	None						54		
	Structure Wo (210 D	None						54		
	Structure Wo (240 D	None						54		
	Structure Wo (270 D	None	+		-			54		
	Structure Wo (300 D	None						54		
		None						54		
	Structure Wo (330 D	None						54		
53	Structure Wi (0 Deg)	None						54		

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed Area(Me.	Surface(P.
54	Structure Wi (30 Deg)	None					1000	54	NO DE
55	Structure Wi (60 Deg)	None						54	
	Structure Wi (90 Deg)	None			THE PARTY OF			54	11 / 00
	Structure Wi (120 De.,	None						54	
	Structure Wi (150 De	None						54	
	Structure Wi (180 De	None						54	
	Structure Wi (210 De	None					A. Tolu	54	The state of
	Structure Wi (240 De	None						54	
	Structure Wi (270 De	None						54	
	Structure Wi (300 De.,	None						54	
	Structure Wi (330 De	None						54	
UT	Structure Wm (0 Deg)	None						54	
	Structure Wm (30 De	None	FIRST B					54	
	Structure Wm (60 De.,	None						54	
	Structure Wm (90 De.,	None				1		54	
	Structure Wm (120 D	None						54	
	Structure Wm (150 D.,	None		THE PARTY OF			ATT CALL	54	
71	Structure Wm (180 D	None						54	
	Structure Wm (210 D	None				II.	BY (III)	54	STATE OF THE
	Structure Wm (240 D	None						54	
	Structure Wm (270 D	None					LEWY LINE	54	
-	Structure Wm (300 D	None						54	
75 76	Structure Wm (330 D	None			THE !		701 - 1	54	
77	Lm1	None					1		
_	Lm2	None					1		
78	LIN2 Lv1	None					1		
79	Lv2	None			LASL		1		
80	Antenna Ev	None					33		
81	A STATE OF THE PARTY OF THE PAR	None					22		
82	Antenna Eh (0 Deg)	None	+				22		
83	Antenna Eh (90 Deg)	ELY		023					
84	Structure Ev	ELZ		-,020	057				
85	Structure Eh (0 Deg)		.057		007				
86	Structure Eh (90 Deg)	ELX	.007						

Load Combinations

	Description	Sol	PS.	B	Fa	В	Fa	В	Fa	В	Fa	. В	Fa	.B	Fa	В.,	.Fa	В	Fa	В	Fa	В	Fa
1	1.2D+1.0Wo (0 Deg)	Yes	Y	1			1.2		1	41	_	_	_	1		-		-	-				H
2	1.2D+1.0Wo (30 Deg)	Yes	Y		1.2				1	42			_		_	-	-	-	-	-		-	
3	1.2D+1.0Wo (60 Deg)	Yes	Y		1.2				1	43		-		-	_	-	L	-		-		-	
4	1.2D+1.0Wo (90 Deg)	Yes	Y	1	1.2	39	1.2	6	1	44			-	-	-	-		-		-	-	-	-
5	1.2D+1.0Wo (120 Deg)	Yes	Y		1.2	-		_	1	45	-	-				-	-		-	-	-		
6	1,2D+1.0Wo (150 Deg)	Yes	Y	-	1.2	+			1	46		_	- 22			-			-	-		-	
7	1.2D+1.0Wo (180 Deg)	Yes	Υ	1	1.2	39	1.2	9	1	47				1		-	ļ.,	-		-	-		
8	1.2D+1.0Wo (210 Deg)	Yes	Y	1	1.2	39	1.2	10	1	48				-		-		-	_	-		-	
9	1.2D+1.0Wo (240 Deg)	Yes	Y	1	1.2	39	1.2	11	1	49						-			_	-			
10	1.2D+1.0Wo (270 Deg)	Yes	Y		1.2	100		-		50						-		-		-		-	
11	1.2D+1.0Wo (300 Deg)	Yes	Y		1.2	-	-	-		51	-	-		-		-		\vdash	-		75.00		-
12	1.2D+1.0Wo (330 Deg)	Yes	Y	1	1.2	39	1.2	14	1	52	_	<u> </u>	_	-		-	-	-		-	-	-	-
13	1.2D + 1.0Di + 1.0Wi (0 Deg)	Yes	Υ	1	1.2	39	1.2	2	1	40	_	15	_	53	1	-	-	-	_	-	_		
14	1.2D + 1.0Di + 1.0Wi (30 Deg)	Yes	Υ	1	1.2	39	1.2	2	1	40		16	-	54	1		-	-		1	-		
15	1.2D + 1.0Di + 1.0Wi (60 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	_	17	-	55			-	_		-	-	-	-
16		Yes	Y	1	1.2	39	1.2	2	1	40		18	-	56	1	-	ļ.,,	-		-	-	-	
17	1.2D + 1.0Di + 1.0Wi (120 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	1	19	-	57	1			-					
18	1.2D + 1.0Di + 1.0Wi (150 Deg)			1	1.2	39	1.2	2	1	40		20	1	58	1	-						-	
19	1.2D + 1.0Di + 1.0Wi (180 Deg)			1	1.2	39	1.2	2	1	40	1	21	1	59	1					_			

Load Combinations (Continued)

	Description				_	_	_		-		-		1144511	-	Time:	na-col	1762	542750.1		****	nas	(15.5	ndes	
20	Description 1.2D + 1.0Di + 1.0Wi (210 Deg)	Voc	P.	SI	<u> 3</u>	Fa.	.B	Fa.	B	. Fa	.B	Fa	В	Fa			. B	.Fa	.B	Fa	. B	Fa	В	Fa
21	1.2D + 1.0Di + 1.0Wi (240 Deg)									1	40		22		-	1	-	-	-					-
22	1.2D + 1.0Di + 1.0Wi (270 Deg)	Yes	V								40 40		23		61		+	-	-		-			-
23	1.2D + 1.0Di + 1.0Wi (300 Deg)	Yes	V		1	1.2	30	1.4	2 2	1	40		24 25		62 63	_	\vdash	-	\vdash					
24	1.2D + 1.0Di + 1.0Wi (330 Deg)	Yes	V							1	40		26		64	_	-	-	+	-				
	1.2D + 1.5Lm1 + 1.0Wm (0 Deg)	Yes	Y	-							27		65		04	-			_	+-				
	1.2D + 1.5Lm1 + 1.0Wm (30 Deg										28		66			100	\vdash		\vdash					
	1.2D + 1.5Lm1 + 1.0Wm (60 Deg				1	12	39	1 3	77	1 5	29	1	67			1		-	\vdash		1			
	1.2D + 1.5Lm1 + 1.0Wm (90 Deg										30		68					-						
	1.2D + 1.5Lm1 + 1.0Wm (120 D.				1	12	39	1 2	77	1.5	31	1	69	_										
	1.2D + 1.5Lm1 + 1.0Wm (150 D.				1	12	39	1 2	77	1.5	32	1	70									-		
31	1.2D + 1.5Lm1 + 1.0Wm (180 D.	Yes	Y		1	12	39	1.2	77	1.5	33	1	71	_					1		311			
	1.2D + 1.5Lm1 + 1.0Wm (210 D.										34		72	_			Т							
33	1.2D + 1.5Lm1 + 1.0Wm (240 D.,	Yes	Ÿ								35		73				Т							
34	1.2D + 1.5Lm1 + 1.0Wm (270 D	Yes	Y								36		74											
	1.2D + 1.5Lm1 + 1.0Wm (300 D										37		75											
	1.2D + 1.5Lm1 + 1.0Wm (330 D				1	1.2	39	1.2	77	1.5	38	1	76									E		
	1.2D + 1.5Lm2 + 1.0Wm (0 Deg)				1	1.2	39	1.2	78	1.5	27	1	65				П							
38	1.2D + 1.5Lm2 + 1.0Wm (30 Deg	Yes	Y								28		66		-cr								X 1	
	1.2D + 1.5Lm2 + 1.0Wm (60 Deg				1	1.2	39	1.2	78	1.5	29	1	67				П							
	1.2D + 1.5Lm2 + 1.0Wm (90 Deg				1	1.2	39	1.2	78	1.5	30	1	68	1						100				
	1.2D + 1.5Lm2 + 1.0Wm (120 D.,				1	1.2	39	1.2	78	1.5	31	1	69											
42	1.2D + 1.5Lm2 + 1.0Wm (150 D	Yes	Y		1	1.2	39	1.2	78	1.5	32	1	70	1										
43	1.2D + 1.5Lm2 + 1.0Wm (180 D	Yes	Y		1	1.2	39	1.2	78	1.5	33	1	71	1										
44	1.2D + 1.5Lm2 + 1.0Wm (210 D	Yes	Y								34		72	1										
45	1.2D + 1.5Lm2 + 1.0Wm (240 D	Yes	Υ		1	1.2	39	1.2	78	1.5	35	1	73	1										
46	1.2D + 1.5Lm2 + 1.0Wm (270 D	Yes	Y		1	1.2	39	1.2	78	1.5	36	1	74	1										
47	1.2D + 1.5Lm2 + 1.0Wm (300 D	Yes	Y		1	1.2	39	1.2	78	1.5	37	1	75	1										
	1.2D + 1.5Lm2 + 1.0Wm (330 D			_	1	1.2	39	1.2	78	1.5	38	1	76	1		31								
49		Yes								1.5														
50		Yes	$\overline{}$							1.5								-						
51	1.4D	Yes	Y				39																	
52	1.2D + 1.0Ev + 1.0Eh (0 Deg)	Yes	Y						81		E		82		83			1						
53	1.2D + 1.0Ev + 1.0Eh (30 Deg) 1.2D + 1.0Ev + 1.0Eh (60 Deg)	Yes	Y								E.,,		-					.866					Щ	
54 55	1.2D + 1.0Ev + 1.0Eh (90 Deg)	Yes	Y						81		E		82	.5	_	_		_	_	.866		_	_	
56	1.2D + 1.0Ev + 1.0Eh (120 Deg)	Ves	Y						81		E		82			1			E					
57	1.2D + 1.0Ev + 1.0Eh (150 Deg)	Yes	Y	-	1	1.2	39	1.2	81	1	E									.866				
	1.2D + 1.0Ev + 1.0Eh (180 Deg)	Voc	Y						81		E	_						8					_	
59	1.2D + 1.0Ev + 1.0Eh (210 Deg)	Vec	V						81		E.,.			-1				-1						
60	1.2D + 1.0Ev + 1.0Eh (240 Deg)	Voe	V						81		E.,,			_			_	8					-	_
	1.2D + 1.0Ev + 1.0Eh (270 Deg)	Vec	V								E							5					-	
62	1.2D + 1.0Ev + 1.0Eh (300 Deg)	Ves	V	=	1	1.2	20	1.2	81	1			82	-	83	-1	E	_	E	-1 8		_		
63	1.2D + 1.0Ev + 1.0Eh (330 Deg)	Yes	V																				-	
64		Yes		- 1							E				14.50			.866					-	
65	0.9D - 1.0Ev + 1.0Eh (30 Deg)	Yes	V		1						E				83			.866				-	-	
66	0.9D - 1.0Ev + 1.0Eh (60 Deg)				1	0	30	0	01	4	E	1								.5 .866			_	
67	0.9D - 1.0Ev + 1.0Eh (90 Deg)			_	1						E						E		E		-			
68	0.9D - 1.0Ev + 1.0Eh (120 Deg)				1								82							.866			-	
69	0.9D - 1.0Ev + 1.0Eh (150 Deg)				1						E							5 8				e i lines	-	-
70	0.9D - 1.0Ev + 1.0Eh (180 Deg)	Yes	V		1									-1			_	o				70.00		
71	0.9D - 1.0Ev + 1.0Eh (210 Deg)			_	1													8				-		
72	0.9D - 1.0Ev + 1.0Eh (240 Deg)				1													5				5		
73	0.9D - 1.0Ev + 1.0Eh (270 Deg)	Yes	Y		1						E		82			o -1				0				
74	0.9D - 1.0Ev + 1.0Eh (300 Deg)			_	1													.5			-	- 74		
75	0.9D - 1.0Ev + 1.0Eh (330 Deg)			_	1															5		-	-	
	,3/	_			-		00		101			-1	02		UU	0		.000		0			_	

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diag
1	N1	-4	0	4	0	
2	N2	-10.333333	0	4	0	
3	N3	2.25	0	4	0	
4	N4	1.333333	0	4	0	
5	N5	-3	0	4	0	
6	N6	-5	0	4	0	
7	N7	-9.333333	0	4	0	
8	N12A	2	0	4	0	1,71
9	N15	2	0	4.25	00	
10	N16	-4	3	4	0	
11	N17	-10.333333	3	4	0	
12	N18	2.25	3	4	0	
13	N19	1.333333	3	4	0	
14	N20	-3	3	4	0	
15	N21	-5	3	4	0	
	N22	-9.333333	3	4	0	
16	N27	2	3	4	0	
17	N30	2	3	4.25	0	
18		-4.191511	0	3.839302	Ō	
19	N31	-4.191511	3	3.839302	0	
20	N32	-7.064169	0	1.428839	0	
21	N33		3	1.428839	Ŏ	
22	N34	-7.064169	0	2.071629	0	
23	N35	-6.298127	3	2.071629	0	
24	N36	-6.298127	4.583333	4.25	0	
25	N40	2		4.25	0	
26	N44	2	-1.416667		0	
27	N47	-4.446859	3	3.62504	0	
28	N48	-4.446859	0	3.62504		
29	N49	-6.042785	3	2.2859	0	
30	N50	-6.042785	0	2.2859	0	
31	N50A	-9.333333	1.5	44	0	
32	N52	-8.596258	1.5	0.143264	0	
33	N35A	.25	0	4	0	
34	N36A	.25	0	4.25	0	
35	N37	.25	3	4	. 0	
36	N38	.25	3	4.25	0	
37	N39	.25	4.583333	4.25	0	
38	N40A	.25	-1.416667	4.25	0	
39	N41	-3.75	0	4	0	
40	N42	-3.75	0	4.25	0	
41	N43	-3.75	3	4	0	
	N44A	-3.75	3	4.25	0	
42	N45	-3.75	4.583333	4.25	0	
43	N46	-3.75	-3.416667	4.25	0	
44	N47A	-8.333333	0	4	0	
45	N48A	-8.333333	Ö	4.25	0	
46		-8.333333	3	4	0	
47	N49A	-8.333333	3	4.25	0	
48	N50B	-8.333333	4.583333	4.25	0	
49	N51A		-1.416667	4.25	Ö	
50	N52B	-8.333333	-1.410007	4	0	
51	N53	-10.083333	0	4.25	0	
52	N54	-10.083333			0	
53	N55	-10.083333	3	4.25	0	
54	N56	-10.083333	3		0	
55	N57	-10.083333	4.583333	4.25	0	THE THE
56	N58	-10.083333	-1.416667	4.25	U	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap.
57	N59	-7.526988	3	1.040488	0	
58	N60	-16.882661	1.5	-0.60917	0	
59	N61	-10.776179	.5	-7.886592	0	
60	N62	-10.083333	1.5	4.25	0	
61	N63	-10.083333	3.25	4.25	0	
62	N64	-10.083333	25	4.25	0	
63	N65	-10.083333	2.5	4.25	0	
64	N66	-10.083333	.5	4.25	0	
65	N67	-10.083333	3.833333	4.25	0	
66	N66A	-4	-1	4	0	
67	N67A	-10.333333	-1	4	0	
68	N68	2.25	-1	4	ŏ	
69	N69	-0.666667	-1	4	Ö	
70	N70	-3	1-1	4	Ö	
71	N71	-5	-1	4	0	
72	N72	-9.333333	-1	4	0	
73	N73	2	-1	4	Ö	
74	N74	2	-1	4.25	Ö	
75	N75	.25	-1	4	Ö	
76	N76	.25		4.25	ŏ	
77	N77	-3.75	-1	4.20	ő	
78	N78	-3.75	151	4.25	Ö	
79	N79	-8.333333	-1	4.20	0	
80	N80	-8.333333	-1	4.25	0	
81	N81	-10.083333	-1	4	0	
82	N82	-10.083333	-1	4.25	0	
83	N83	-7.064169	-3.5	1.428839	0	
84	N85	1.333333	.5	4	0	
85	N85A	-7.064169	<u>-1</u>	1.428839	0	
86	N86	-8.666667	-1	4	0	
87	N87	-1.333333	-1	4	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design R.	. A [in2]	lvy fin41	Izz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	None	None	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Mod Face Horizontal	PIPE 2.5	None	None	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
3	Horizontal Face	L3X3X4	None	None	A36 Gr.36	Typical	1.44	1.23	1.23	.031
4	Mod V-kit	L2.5x2.5x4	None	None	A36 Gr.36	Typical	1.19	.692	.692	.026
5	Face Vertical	PIPE 2.0	None	None	A53 Gr. B	Typical	1.02	.627	.627	1.25
6	TES Standoff Horiz	L3X3X6	None	None	A36 Gr.36	Typical	2.11	1.75	1.75	.101
7	Standoff Horizontal D	LL3x3x4x3	None	None	A36 Gr.36	Typical	2.88	5.48	2.46	.063
8	Standoff Vertical	PIPE 2.0	None	None	A53 Gr. B	Typical	1.02	.627	.627	1.25
9	Standoff Diagonal	SR 0.75	None	None	A36 Gr.36	Typical	.442	.016	.016	.031
10	Stabilizer	PIPE 2.0	None	None	A53 Gr. B	Typical	1.02	.627	.627	1.25
11	Mod Mount Pipe	PIPE 2.5	None	None	A53 Gr. B	Typical	1.61	1.45	1.45	2.89
12	End Plate	PL3/8x7	None	None	A36 Gr.36	Typical	2.625	.031	10.719	.119
13	TES End Plate	PL3/8x6	None	None	A36 Gr.36	Typical	2.25	.026	6.75	.101
14	TES Standoff Horiz	LL3x3x4x3	None	None	A36 Gr.36	Typical	2:88	5.48	2.46	.063

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1	Densitvfk/ft^31	Yield[ksi]	Rv	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	12
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	11

Hot Rolled Steel Properties (Continued)

	Label	E [ksi]	G [ksi]	Nu	Therm (/1	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
4	A992	29000	11154	3	.65	.49	50	1.1	65	1.1
4_			11154	3	.65	.49	42	1.4	58	1.3
5	A500 Gr. B 42	29000					46	14		1.3
6	A500 Gr B 46	29000	11154	.3	.65	.49	46	1.4		58

Member Primary Data Rotate(deg) Section/Shape Design List Material Design Rules Type I Joint J Joint K Joint Label A36 Gr.36 Typical 180 Horizontal Face None None N1 M1 N2 A36 Gr.36 Typical Horizontal Face None **N3** 180 None N₁ M2 **RIGID** Typical RIGID None None N15 **M6** N12A 3 A36 Gr.36 Typical Horizontal Face None None 180 N16 M7A N17 4 A36 Gr.36 Typical Horizontal Face None None 180 N16 N18 5 **M8 RIGID** Typical RIGID None None N30 N27 M12 6 None A53 Gr. B Typical Face Vertical None N7 N22 M13 Typical Face Vertical None None A53 Gr. B N21 RRU N₆ 8 A53 Gr. B Typical Face Vertical None None N₂0 **N5** M15 9 A53 Gr. B **Typical** None Face Vertical None N4 N19 10 M16 **RIGID** RIGID Typical None None M17 N16 N32 11 **RIGID Typical** RIGID None None N31 12 M18 N₁ A36 Gr.36 Typical Standoff Horiz. None 270 None N36 13 M19 N32 TES Standoff .. A36 Gr.36 **Typical** None None 90 N31 **N35** 14 M₂₀ A36 Gr.36 90 **End Plate** None None Typical N34 M25 N36 15 A36 Gr.36 Typical 90 **End Plate** None None **N33** M₂₆ N35 16 A53 Gr. B Typical Standoff Vertical None None N50 N49 M27 17 A53 Gr. B **Typical** Standoff Vertical None None N48 N47 18 M28 A36 Gr.36 Standoff Diago... Typical None None N48 19 M29 N49 **Typical** Antenna Pipe A53 Gr. B None None N44 20 MP1A N40 A53 Gr. B Typical None Stabilizer None N60 N50A 21 M30 **RIGID** None None RIGID Typical 22 **N35A N36A** M25A Typical RIGID RIGID None None **N38** 23 N37 M26A A53 Gr. B **Typical** Antenna Pipe None None **N40A** 24 MP2A N39 **RIGID** Typical RIGID None None N42 25 **M28A** N41 RIGID **Typical** None None RIGID 26 **M29A** N43 **N44A** A53 Gr. B **Typical** Mod Mount Pipe None None N46 27 **МРЗА** N45 RIGID None **Typical RIGID** None **N48A** 28 M31A N47A None RIGID Typical RIGID None N50B N49A 29 **M32A Typical** Antenna Pipe None None A53 Gr. B **N52B** N51A 30 MP4A RIGID Typical RIGID None None N53 N54 31 M34 RIGID Typical RIGID None None **N56 N55** 32 M35 Typical A53 Gr. B Antenna Pipe None None N57 **N58** 33 MP5A A53 Gr. B Typical 180 Mod Face Hori ... None None **N68** 34 **M35A N67A** RIGID **Typical** RIGID None None N74 35 M36 N73 RIGID Typical None RIGID None N76 N75 M37 36 RIGID Typical RIGID None None N78 37 M38 N77 RIGID Typical RIGID None None N80 N79 38 M39 **RIGID** Typical None RIGID None N81 N82 39 M40 A36 Gr.36 <u>Typical</u> Mod V-kit None None N72 N83 40 **M40A** A36 Gr.36 270 None Typical Mod V-kit None M41 N69 N83 41 A53 Gr. B Typical Stabilizer None None N85 N61 42 M42 A36 Gr.36 **Typical** Mod V-kit None None N86 N85A 43 M43 A36 Gr.36 Typical

270

N85A

N87

Mod V-kit

None

None

M44

44

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physica	I Defl RatAnalysis	Inactive	Seismic.
1	M1						Yes	** NA **		None
2	M2	100					Yes	** NA **	والمستناف الأمانيان	None
3	M6		000X00				Yes	** NA **		None
4	M7A						Yes	** NA **		None
5	M8						Yes	** NA **		None
6	M12		000X00				Yes	** NA **		None
7	M13						Yes	** NA **		None
8	RRU						Yes	** NA **	استثنيها الدا	None
9	M15						Yes	** NA **		None
10	M16						Yes	** NA **		None
11	M17						Yes	** NA **		None
12	M18						Yes	** NA **		None
13	M19	BenPIN					Yes	** NA **		None
14	M20	BenPIN					Yes	** NA **		None
15	M25						Yes	** NA **		None
16	M26						Yes	** NA **		None
17	M27						Yes	** NA **		None
18	M28						Yes	** NA **	1000	None
19	M29	BenPIN	BenPIN				Yes	** NA **		None
20	MP1A					-	Yes	** NA **	1111111	None
21	M30	000000					Yes	** NA **		None
22	M25A		000000				Yes	** NA **	V-	None
23	M26A		000000				Yes	** NA **		None
24	MP2A						Yes	** NA **	I BALL	None
25	M28A		000000				Yes	** NA **		None
26	M29A		00000				Yes	** NA **		None
27	MP3A						Yes	** NA **		None
28	M31A		000000				Yes	** NA **	*	None
29	M32A		000000				Yes	** NA **		None
30	MP4A	18					Yes	** NA **		None
31	M34		000000				Yes	** NA **		None
32	M35		000000				Yes	** NA **		None
33	MP5A		33333				Yes	** NA **	1	None
34	M35A						Yes	** NA **		None
35	M36						Yes	** NA **		
36	M37						Yes	** NA **		None
37	M38						Yes	** NA **		None
38	M39						Yes	** NA **	1000	None
39	M40						Yes	** NA **		None
40	M40A	BenPIN	BenPIN				Yes	** NA **		None
41	M41	BenPIN	BenPIN				Yes	** NA **		None
42	M42	000000	Delli II4				Yes	** NA **		None
43	M43	BenPIN	BenPIN				Yes Yes			None
44	M44	BenPIN	BenPIN				Yes	** NA **	-	None None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-43.55	2.08
2	MP1A	My	022	2.08
3	MP1A	Mz	0	2.08
4	MP1A	Y	-43.55	4.08
5	MP1A	My	022	4.08
6	MP1A	Mz	0	4.08
7	MP3A	Y	-31.65	1.33

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
8	MP3A	Mv	033	1.33
9	MP3A	Mz	.024	1.33
10	MP3A	Y	-31.65	4.83
11	MP3A	Mv	033	4,83
12	MP3A	Mz	.024	4.83
13	MP3A	Y	-31.65	1.33
14	MP3A	Mv	033	1.33
15	MP3A	Mz	024	1.33
16	MP3A	Y	-31.65	4.83
17	MP3A	My	033	4.83
18	MP3A	Mz	024	4.83
19	MP1A	Y	-84.4	3
20	MP1A	Mv	.042	3
21	MP1A	Mz	0	3
22	RRU	Y	-70.3	1.5
23	RRU	My	.035	1.5
24	RRU	Mz	0	1.5
25	MP4A	Y	-32	.75
26	MP4A	My	.013	.75
27	MP4A	Mz	0	.75
28	MP2A	Y	-10.4	4
29	MP2A	My	005	4
30	MP2A	Mz	007	4
31	MP3A	Y	-17.6	3
32	MP3A	My	.009	3
33	MP3A	Mz	0	3

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	-36.586	2.08
2	MP1A	My	018	2.08
3	MP1A	Mz	0	2.08
4	MP1A	Y	-36.586	4.08
5	MP1A	My	018	4.08
6	MP1A	Mz	0	4.08
7	MP3A	Y	-71.823	1.33
8	MP3A	My	075	1.33
9	MP3A	Mz	.054	1.33
10	MP3A	Y	-71.823	4.83
11	MP3A	My	075	4.83
12	MP3A	Mz	.054	4.83
13	MP3A	Y	-71.823	1.33
	MP3A	My	075	1.33
14	MP3A	Mz	054	1.33
15 16	MP3A	Y	-71.823	4.83
	MP3A	My	075	4.83
17	MP3A	Mz	054	4.83
18	MP1A	Y	-46.145	3
19	MP1A	My	.023	3
20	MP1A	Mz	0	3
21	RRU	Y	-41.507	1.5
22	RRU	My	.021	1.5
23	RRU	Mz	0	1.5
24		Y	-90.273	.75
25	MP4A	My	.038	.75
26	MP4A	Mz	0	.75
27	MP4A	IVIZ		

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
28	MP2A	Y	-11.075	4
29	MP2A	My	006	4
30	MP2A	Mz	007	4
31	MP3A	Y	-17.864	3
32	MP3A	My	.009	3
33	MP3A	Mz	0	3

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	2.08
2	MP1A	Z	-113.508	2.08
3	MP1A	Mx	0	2.08
4	MP1A	X	0	4.08
5	MP1A	Z	-113.508	4.08
6	MP1A	Mx	0	4.08
7	MP3A	X	0	1.33
8	MP3A	Z	-220.012	1.33
9	MP3A	Mx	165	1.33
10	MP3A	X	0	4.83
11	MP3A	Z	-220.012	4.83
12	MP3A	Mx	165	4.83
13	MP3A	X	0	1.33
14	MP3A	Z	-220.012	1.33
15	MP3A	Mx	.165	1.33
16	MP3A	X	0	4.83
17	MP3A	Z	-220.012	4.83
18	MP3A	Mx	.165	4.83
19	MP1A	X	0	3
20	MP1A	Z	-74.867	3
21	MP1A	Mx	0	3
22	RRU	X	0	1.5
23	RRU	Z	-74.867	1.5
24	RRU	Mx	0	1.5
25	MP4A	X	0	.75
26	MP4A	Z	-153.115	.75
27	MP4A	Mx	0	.75
28	MP2A	X	0	4
29	MP2A	Z	-17.871	4
30	MP2A	Mx	.012	4
31	MP3A	X	0	3
32	MP3A	Z	-46.369	3
33	MP3A	Mx	0	3

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	48.12	2.08
2	MP1A	Z	-83.347	2.08
3	MP1A	Mx	024	2.08
4	MP1A	X	48.12	4.08
5	MP1A	Z	-83.347	4.08
6	MP1A	Mx	024	4.08
7	MP3A	X	100.567	1.33
8	MP3A	Z	-174.188	1.33
9	MP3A	Mx	235	1.33
10	MP3A	X	100.567	4.83
11	MP3A	Z	-174.188	4.83

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
12	MP3A	Mx	235	4.83
13	MP3A	X	100.567	1.33
14	MP3A	Z	-174.188	1.33
15	MP3A	Mx	.026	1.33
16	MP3A	X	100.567	4.83
17	MP3A	Z	-174.188	4.83
18	MP3A	Mx	.026	4.83
19	MP1A	X	34.354	3
	MP1A	7	-59.503	3
20	MP1A	Mx	.017	3
21	RRU	X	33.207	1.5
22		7	-57.516	1.5
23	RRU	Mx	.017	1.5
24	RRU	X	71.969	.75
25	MP4A	7	-124.654	.75
26	MP4A		.03	.75
27	MP4A	Mx	8.247	4
28	MP2A	X		4
29	MP2A	Z	-14.285	4
30	MP2A	Mx	.005	
31	MP3A	X	19.146	3
32	MP3A	Z	-33.163	3
33	MP3A	Mx	.01	3

Member Point Loads (BLC 5: Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1A	X	53.439	2.08
2	MP1A	Ž	-30.853	2.08
3	MP1A	Mx	027	2.08
4	MP1A	X	53.439	4.08
5	MP1A	Z	-30.853	4.08
6	MP1A	Mx	027	4.08
7	MP3A	X	141.49	1.33
8	MP3A	Z	-81.69	1.33
9	MP3A	Mx	209	1.33
10	MP3A	X	141.49	4.83
11	MP3A	Z	-81.69	4.83
12	MP3A	Mx	209	4.83
13	MP3A	X	141.49	1.33
14	MP3A	Z	-81.69	1.33
15	MP3A	Mx	086	1.33
16	MP3A	X	141.49	4.83
17	MP3A	Z	-81.69	4.83
18	MP3A	Mx	086	4.83
19	MP1A	X	48.837	3
20	MP1A	Z	-28.196	3
21	MP1A	Mx	.024	3
22	RRU	X	42.876	1.5
23	RRU	Z	-24.754	1.5
24	RRU	Mx	.021	1.5
25	MP4A	X	108.758	.75
26	MP4A	Z	-62.792	.75
27	MP4A	Mx	.045	.75
28	MP2A	X	11.901	4
29	MP2A	Z	-6.871	4
30	MP2A	Mx	001	4
31	MP3A	X	19.174	3

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
32	MP3A	Z	-11.07	3
33	MP3A	Mx	.01	3

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	44.438	2.08
2	MP1A	Z	0	2.08
3	MP1A	Mx	022	2.08
4	MP1A	X	44.438	4.08
5	MP1A	Z	0	4.08
6	MP1A	Mx	022	4.08
7	MP3A	X	144.501	1.33
8	MP3A	Z	0	1.33
9	MP3A	Mx	-,151	1.33
10	MP3A	X	144.501	4.83
11	MP3A	Z	0	4.83
12	MP3A	Mx	151	4.83
13	MP3A	X	144.501	1.33
14	MP3A	Z	0	1.33
15	MP3A	Mx	151	1.33
16	MP3A	X	144.501	4.83
17	MP3A	Z	0	4.83
18	MP3A	Mx	151	4.83
19	MP1A	X	50.233	3
20	MP1A	Z	HOLEHES O DO	3
21	MP1A	Mx	.025	3
22	RRU	X	41.056	1.5
23	RRU	Z	0	1.5
24	RRU	Mx	.021	1.5
25	MP4A		116.406	.75
26	MP4A	X	0	.75
27	MP4A	Mx	.049	.75
28	MP2A	X	12.365	4
29	MP2A	Z	0	4
30	MP2A	Mx	006	4
31	MP3A	X	14.064	3
32	MP3A	Z	0	3
33	MP3A	Mx	.007	3

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	53.439	2.08
2	MP1A	Z	30.853	2.08
3	MP1A	Mx	027	2.08
4	MP1A	X	53.439	4.08
5	MP1A	Z	30.853	4.08
6	MP1A	Mx	027	4.08
7	MP3A	X	141.49	1.33
8	MP3A	Z	81.69	1.33
9	MP3A	Mx	086	1.33
10	MP3A	X	141.49	4.83
11	MP3A	Z	81.69	4.83
12	MP3A	Mx	086	4.83
13	MP3A	X	141.49	1.33
14	MP3A	Z	81.69	1.33
15	MP3A	Mx	209	1.33

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP3A	X	141.49	4.83
17	MP3A	Z	81.69	4.83
18	MP3A	Mx	209	4.83
19	MP1A	X	48.837	3
20	MP1A	Z	28.196	3
21	MP1A	Mx	.024	3
22	RRU	X	42.876	1.5
23	RRU	Z	24.754	1.5
24	RRU	Mx	.021	1.5
25	MP4A	X	108.758	.75
26	MP4A	Z	62.792	.75
27	MP4A	Mx	.045	.75
28	MP2A	X	11.901	4
29	MP2A	Z	6.871	4
30	MP2A	Mx	011	4
31	MP3A	X	19.174	3
32	MP3A	Z	11.07	3
33	MP3A	Mx	.01	3

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	48.12	2.08
2	MP1A	Z	83.347	2.08
3	MP1A	Mx	024	2.08
4	MP1A	X	48.12	4.08
5	MP1A	Z	83.347	4.08
6	MP1A	Mx	024	4.08
7	MP3A	X	100.567	1.33
8	MP3A	Z	174.188	1.33
9	MP3A	Mx	.026	1.33
	MP3A	X	100.567	4.83
10	MP3A	Z	174.188	4.83
	MP3A	Mx	.026	4.83
12	MP3A	X	100.567	1.33
13	MP3A	Z	174.188	1.33
	MP3A	Mx	235	1.33
15	MP3A	X	100.567	4.83
16	MP3A	Z	174.188	4.83
17	MP3A	Mx	235	4.83
18	MP1A	X	34.354	3
19	MP1A	Z	59.503	3
20	MP1A MP1A	Mx	.017	3
21	RRU	X	33.207	1.5
22	RRU	Z	57.516	1.5
23		Mx	.017	1.5
24	RRU MP4A	X	71.969	.75
25		Z	124.654	.75
26	MP4A	Mx	.03	.75
27	MP4A	IVIX X	8.247	4
28	MP2A	7	14.285	4
29	MP2A	Mx	014	4
30	MP2A	X	19.146	3
31	MP3A	Z	33.163	3
32	MP3A	Mx	.01	3
33	MP3A	IVIX		

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	2.08
2	MP1A	Z	113.508	2.08
3	MP1A	Mx	0	2.08
4	MP1A	X	0	4.08
5	MP1A	Z	113.508	4.08
6	MP1A	Mx	0	4.08
7	MP3A	×	0	1.33
8	MP3A	Z	220.012	1.33
9	MP3A	Mx	.165	1.33
10	MP3A	X	0	4.83
11	MP3A	Z	220.012	4.83
12	MP3A	Mx	.165	4.83
13	MP3A	X	0	1.33
14	MP3A	Z	220.012	1.33
15	MP3A	Mx	165	1.33
16	MP3A	X	0	4.83
17	MP3A	Z	220.012	4.83
18	MP3A	Mx	165	4.83
19	MP1A	X	0	3
20	MP1A	Z	74.867	3
21	MP1A	Mx	0	3
22	RRU	X	0	1.5
23	RRU	Z	74.867	1.5
24	RRU	Mx	0	1.5
25	MP4A	X	0	.75
26	MP4A	Z	153.115	.75
27	MP4A	Mx	0	.75
28	MP2A	X	0	4
29	MP2A	Z	17.871	4
30	MP2A	Mx	012	4
31	MP3A	X	0	3
32	MP3A	Z	46.369	3
33	MP3A	Mx	0	3

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-48.12	2.08
2	MP1A	Z	83.347	2.08
3	MP1A	Mx	.024	2.08
4	MP1A	X	-48.12	4.08
5	MP1A	Z	83.347	4.08
6	MP1A	Mx	.024	4.08
7	MP3A	X	-100.567	1.33
8	MP3A	Z	174.188	1.33
9	MP3A	Mx	.235	1.33
10	MP3A	X	-100.567	4.83
11	MP3A	Z	174.188	4.83
12	MP3A	Mx	.235	4.83
13	MP3A	X	-100.567	1.33
14	MP3A	Z	174.188	1.33
15	MP3A	Mx	026	1.33
16	MP3A	X	-100.567	4.83
17	MP3A	Z	174.188	4.83
18	МРЗА	Mx	026	4.83
19	MP1A	X	-34.354	3
20	MP1A	Z	59.503	3

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP1A	Mx	017	3
22	RRU	X	-33.207	1.5
23	RRU	Z	57.516	1.5
24	RRU	Mx	017	1.5
25	MP4A	X	-71.969	.75
26	MP4A	Z	124.654	.75
27	MP4A	Mx	03	.75
28	MP2A	X	-8.247	4
29	MP2A	Z	14.285	4
30	MP2A	Mx	005	4
	MP3A	X	-19.146	3
31 32	MP3A	Z	33.163	3
33	MP3A	Mx	01	3

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-53.439	2.08
2	MP1A	Z	30.853	2.08
3	MP1A	Mx	.027	2.08
	MP1A	X	-53.439	4.08
4	MP1A	Z	30.853	4.08
5	MP1A	Mx	.027	4.08
7	MP3A	X	-141.49	1.33
	MP3A	Z	81.69	1.33
8	MP3A	Mx	.209	1.33
9	MP3A	X	-141.49	4.83
10	MP3A	Z	81.69	4.83
11 12	MP3A	Mx	.209	4.83
	MP3A	X	-141.49	1.33
13	MP3A	Z	81.69	1.33
14	MP3A	Mx	.086	1.33
15		X	-141.49	4.83
16	MP3A MP3A	Z	81.69	4.83
17	MP3A	Mx	.086	4.83
18	MP1A	X	-48.837	3
19	MP1A	Z	28.196	3
20	MP1A	Mx	024	3
21		X	-42.876	1.5
22	RRU	Z	24.754	1.5
23	RRU RRU	Mx	021	1.5
24	MP4A	X	-108.758	.75
25		Z	62.792	.75
26	MP4A	Mx	045	.75
27	MP4A	X	-11.901	4
28	MP2A	Z	6.871	4
29	MP2A	Mx	.001	4
30	MP2A	X	-19.174	3
31	MP3A	Z	11.07	3
32	MP3A	Mx	01	3
33	MP3A	IVIX	01	

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
A A A Control of the	X	-44.438	2.08
	7	0	2.08
	Mx	.022	2.08
	X	-44.438	4.08
	Member Label MP1A MP1A MP1A MP1A MP1A	MP1A X MP1A Z MP1A Mx	MP1A X -44.438 MP1A Z 0 MP1A Mx .022 MP1A Mx .022

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP1A	Z	0	4.08
6	MP1A	Mx	.022	4.08
7	MP3A	X	-144.501	1.33
8	MP3A	Z	0	1.33
9	MP3A	Mx	.151	1.33
10	MP3A	X	-144.501	4.83
11	MP3A	Z	0	4.83
12	MP3A	Mx	.151	4.83
13	MP3A	X	-144.501	1.33
14	MP3A	Z	0	1.33
15	MP3A	Mx	.151	1.33
16	MP3A	X	-144.501	4.83
17	MP3A	Z	0	4.83
18	MP3A	Mx	.151	4.83
19	MP1A	X	-50,233	3
20	MP1A	Ž	0	3
21	MP1A	Mx	025	3
22	RRU	X	-41.056	1.5
23	RRU	Z	0	1.5
24	RRU	Mx	021	1.5
25	MP4A	X	-116.406	.75
26	MP4A	Z	0	.75
27	MP4A	Mx	049	.75
28	MP2A	X	-12.365	4
29	MP2A	Z	0	4
30	MP2A	Mx	.006	4
31	MP3A	X	-14.064	3
32	MP3A	Z	0	3
33	MP3A	Mx	007	3

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-53.439	2.08
2	MP1A	Z	-30.853	2.08
3	MP1A	Mx	.027	2.08
4	MP1A	X	-53.439	4.08
5	MP1A	Z	-30.853	4.08
6	MP1A	Mx	.027	4.08
7	MP3A	X	-141.49	1.33
8	MP3A	Z	-81.69	1.33
9	MP3A	Mx	.086	1.33
10	MP3A	X	-141.49	4.83
11	MP3A	Z	-81.69	4.83
12	MP3A	Mx	.086	4.83
13	MP3A	X	-141.49	1.33
14	MP3A	Z	-81.69	1.33
15	MP3A	Mx	.209	1.33
16	MP3A	X	-141.49	4.83
17	MP3A	Z	-81.69	4.83
18	MP3A	Mx	.209	4.83
19	MP1A	X	-48.837	3
20	MP1A	Z	-28.196	3
21	MP1A	Mx	024	3
22	RRU	X	-42.876	1.5
23	RRU	Z	-24.754	1.5
24	RRU	Mx	021	1.5

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP4A	X	-108.758	.75
25 26 27	MP4A	Z	-62.792	.75
27	MP4A	Mx	045	.75
20	MP2A	X	-11.901	4
28 29	MP2A	Z	-6.871	4
30	MP2A	Mx	.011	4
	MP3A	X	-19.174	3
31	MP3A	Z	-11.07	3
33	MP3A	Mx	01	3

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Point Loads (BLC 14 : Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP1A	X	-48.12	2.08
2	MP1A	Z	-83.347	2.08
3	MP1A	Mx	.024	2.08
	MP1A	X	-48.12	4.08
5	MP1A	Z	-83.347	4.08
6	MP1A	Mx	.024	4.08
7	MP3A	X	-100.567	1.33
	MP3A	Ž	-174.188	1.33
9	MP3A	Mx	026	1,33
10	MP3A	X	-100.567	4.83
11	MP3A	Z	-174.188	4.83
12	MP3A	Mx	026	4.83
13	MP3A	X	-100.567	1.33
	MP3A	Z	-174.188	1.33
14	MP3A	Mx	.235	1.33
15	MP3A	X	-100.567	4.83
16 17	MP3A	Z	-174.188	4.83
	MP3A	Mx	.235	4.83
18	MP1A	X	-34.354	3
19	MP1A	Z	-59.503	3
20	MP1A	Mx	017	3
21	RRU	X	-33.207	1.5
22	RRU	Z	-57.516	1.5
23	RRU	Mx	017	1.5
24	MP4A	X	-71.969	.75
25	MP4A	7	-124.654	.75
26 27	MP4A MP4A	Mx	03	.75
	MP2A		-8.247	4
28	MP2A	X Z	-14.285	4
29	MP2A	Mx	.014	4
30	MP3A	X	-19.146	3
31	MP3A	Z	-33.163	3 3
32 33	MP3A	Mx	01	3

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

Direction	Magnitude[lb,k-ft]	Location[ft,%]
X	0	2.08
7	-20.576	2.08
Mx	0	2.08
X	0	4.08
7	-20.576	4.08
Mx	0	4.08
X	Ů,	1.33
Z	-38.661	1.33
	Direction X Z Mx X Z Mx X Z Mx Z X Z	X 0 Z -20.576 Mx 0 X 0 X 0 Z -20.576 Mx 0 X 0 X 0 X 0 X 0 X 0

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP3A	Mx	029	1.33
10	MP3A	X	0	4.83
11	MP3A	Z	-38.661	4.83
12	MP3A	Mx	029	4.83
13	MP3A	X	0	1.33
14	MP3A	Z	-38.661	1.33
15	MP3A	Mx	.029	1.33
16	MP3A	X	0	4.83
17	MP3A	Z	-38.661	4.83
18	MP3A	Mx	.029	4.83
19	MP1A	X	0	3
20	MP1A	Z	-17.365	3
21	MP1A	Mx	0	3
22	RRU	X	Ö	1.5
23	RRU	Z	-17,365	1.5
24	RRU	Mx	0	1.5
25	MP4A	X	0	.75
26	MP4A	Z	-35.644	.75
27	MP4A	Mx	0	.75
28	MP2A	X	0	4
29	MP2A	Z	-4.235	4
30	MP2A	Mx	.003	4
31	MP3A	X	0	3
32	MP3A	Z	-9.561	3
33	MP3A	Mx	0	3

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft, %]
1	MP1A	X	8.814	2.08
2	MP1A	Z	-15.266	2.08
3	MP1A	Mx	004	2.08
4	MP1A	X	8.814	4.08
5	MP1A	Z	-15.266	4.08
6	MP1A	Mx	004	4.08
7	MP3A	X	17.797	1.33
8	MP3A	Z	-30.826	1.33
9	MP3A	Mx	042	1.33
10	MP3A	X	17.797	4.83
11	MP3A	Z	-30.826	4.83
12	MP3A	Mx	042	4.83
13	MP3A	X	17.797	1.33
14	MP3A	Z	-30.826	1.33
15	MP3A	Mx	.005	1.33
16	MP3A	X	17.797	4.83
17	MP3A	Z	-30.826	4.83
18	MP3A	Mx	.005	4.83
19	MP1A	X	8.023	3
20	MP1A	Z	-13.897	3
21	MP1A	Mx	.004	3
22	RRU	X	7.773	1.5
23	RRU	Z	-13.463	1.5
24	RRU	Mx	.004	1.5
25	MP4A	X	16.852	.75
26	MP4A	Z	-29.189	.75
27	MP4A	Mx	.007	.75
28	MP2A	X	1.986	4

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP2A	Z	-3.44	4
29 30	MP2A	Mx	.001	4
31	MP3A	X	4.038	3
32	MP3A	Z	-6.994	3
33	MP3A	Mx	.002	3

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	10.16	2.08
2	MP1A	Z	-5.866	2.08
3	MP1A	Mx	005	2.08
4	MP1A	X	10.16	4.08
5	MP1A	Z	-5.866	4.08
6	MP1A	Mx	005	4.08
7	MP3A	X	25.515	1.33
8	MP3A	Z	-14.731	1.33
9	MP3A	Mx	038	1.33
10	MP3A		25.515	4.83
	MP3A	X	-14.731	4.83
11 12	MP3A	Mx	038	4.83
13	MP3A	X	25.515	1.33
14	MP3A	Ž	-14.731	1.33
	MP3A	Mx	016	1.33
15 16	MP3A	X	25.515	4.83
17	MP3A	7	-14.731	4.83
	MP3A	Mx	016	4.83
18	MP1A		11.613	3
19	MP1A	Ž	-6.705	3
20	MP1A	Mx	.006	3
21	RRU	X	10.311	1.5
22	RRU	Z	-5.953	1.5
23	RRU	Mx	.005	1.5
24	MP4A	X	25.831	.75
25	MP4A	7	-14.913	.75
26		Mx	.011	.75
27	MP4A MP2A	X	2.985	4
28		Z	-1.723	4
29	MP2A	Mx	000344	4
30	MP2A	X	4.421	3
31	MP3A	Ž	-2.553	3
32	MP3A	Mx	.002	3
33	MP3A	IVIX	.002	

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	8.783	2.08
2	MP1A	Z	0	2.08
3	MP1A	Mx	004	2.08
4	MP1A	X	8.783	4.08
5	MP1A	Z	0	4.08
6	MP1A	Mx	004	4.08
7	MP3A	X	26.396	1.33
8	MP3A	Z	0	1.33
9	MP3A	Mx	027	1.33
10	MP3A	X	26.396	4.83
11	MP3A	Z	0	4.83
12	MP3A	Mx	027	4.83

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP3A	X	26.396	1.33
14	MP3A	Z	0	1.33
15	MP3A	Mx	027	1.33
16	MP3A	X	26.396	4.83
17	MP3A	Z	0	4.83
18	MP3A	Mx	027	4.83
19	MP1A	X	12.091	3
20	MP1A	Z	0	3
21	MP1A	Mx	.006	3
22	RRU	X	10.087	1.5
23	RRU	Z	0	1.5
24	RRU	Mx	.005	1.5
25	MP4A	X	27.888	.75
26	MP4A	Z	0	.75
27	MP4A	Mx	.012	.75
28	MP2A	X	3.183	4
29	MP2A	Z	0	4
30	MP2A	Mx	002	4
31	MP3A	X	3.62	3
32	MP3A	Z	0	3
33	MP3A	Mx	.002	3

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	10.16	2.08
2	MP1A	Z	5.866	2.08
3	MP1A	Mx	005	2.08
4	MP1A	X	10.16	4.08
5	MP1A	Z	5.866	4.08
6	MP1A	Mx	005	4.08
7	MP3A	X	25.515	1.33
8	MP3A	Z	14.731	1.33
9	MP3A	Mx	016	1.33
10	MP3A	X	25.515	4.83
11	MP3A	Z	14.731	4.83
12	MP3A	Mx	016	4.83
13	MP3A	X	25.515	1.33
14	MP3A	Z	14.731	1.33
15	MP3A	Mx	038	1.33
16	MP3A	X	25.515	4.83
17	MP3A	Z	14.731	4.83
18	MP3A	Mx	038	4.83
19	MP1A	X	11.613	3
20	MP1A	Z	6.705	3
21	MP1A	Mx	.006	3
22	RRU	X	10.311	1.5
23	RRU	Z	5.953	1.5
24	RRU	Mx	.005	1.5
25	MP4A	X	25.831	.75
26	MP4A	Z	14.913	.75
27	MP4A	Mx	.011	.75
28	MP2A	X	2.985	4
29	MP2A	Z	1.723	4
30	MP2A	Mx	003	4
31	MP3A	X	4.421	3
32	MP3A	Z	2.553	3

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP3A	Mx	.002	3

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	×	8.814	2.08
2	MP1A	Z	15.266	2.08
3	MP1A	Mx	004	2.08
4	MP1A	X	8.814	4.08
5	MP1A	Z	15.266	4.08
6	MP1A	Mx	004	4.08
7	MP3A	X	17.797	1.33
8	MP3A	Z	30.826	1.33
9	MP3A	Mx	.005	1.33
10	MP3A	X	17.797	4.83
11	MP3A	Z	30.826	4.83
2	MP3A	Mx	.005	4.83
13	MP3A	X	17.797	1.33
14	MP3A	Z	30.826	1.33
15	MP3A	Mx	042	1.33
16	MP3A	X	17.797	4.83
17	MP3A	Z	30.826	4.83
18	MP3A	Mx	042	4.83
19	MP1A	X	8.023	3
20	MP1A	Z	13.897	3
21	MP1A	Mx	.004	3
22	RRU	X	7.773	1.5
23	RRU	Z	13.463	1.5
24	RRU	Mx	.004	1,5
25	MP4A	X	16.852	.75
26	MP4A	Z	29.189	.75
27	MP4A	Mx	.007	.75
28	MP2A	X	1.986	4
29	MP2A	Z	3.44	4
30	MP2A	Mx	003	4
31	MP3A	X	4.038	3
32	MP3A	Z	6.994	3
33	MP3A	Mx	.002	3

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	2.08
2	MP1A	Z	20.576	2.08
3	MP1A	Mx	0	2.08
4	MP1A	X	0	4.08
5	MP1A	Z	20.576	4.08
6	MP1A	Mx	0	4.08
7	MP3A	X	0	1.33
8	MP3A	Z	38.661	1.33
9	MP3A	Mx	.029	1.33
10	MP3A	X	0	4.83
11	MP3A	Z	38.661	4.83
12	MP3A	Mx	.029	4.83
13	MP3A	X	0	1.33
14	MP3A	Z	38.661	1.33
15	MP3A	Mx	029	1.33
16	MP3A	X	0	4.83

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP3A	Z	38.661	4.83
18	MP3A	Mx	029	4.83
19	MP1A	X	0	3
20	MP1A	Z	17.365	3
21	MP1A	Mx	0	3
22	RRU	X	0	1.5
23	RRU	Z	17.365	1.5
24	RRU	Mx	0	1.5
25	MP4A	X	0	.75
26	MP4A	Z	35.644	.75
27	MP4A	Mx	0	.75
28	MP2A	X	Ö	4
29	MP2A	Z	4.235	4
30	MP2A	Mx	003	4
31	MP3A	X	0	3
32	MP3A	Z	9.561	3
33	MP3A	Mx	0	3

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-8.814	2.08
2	MP1A	Z	15.266	2.08
3	MP1A	Mx	.004	2.08
4	MP1A	X	-8.814	4.08
5	MP1A	Z	15.266	4.08
6	MP1A	Mx	.004	4.08
7	MP3A	X	-17.797	1.33
8	MP3A	Z	30.826	1.33
9	MP3A	Mx	.042	1.33
10	MP3A	X	-17.797	4.83
11	MP3A	Z	30.826	4.83
12	MP3A	Mx	.042	4.83
13	MP3A	X	-17.797	1.33
14	MP3A	Z	30.826	1.33
15	MP3A	Mx	005	1.33
16	MP3A	X	-17.797	4.83
17	MP3A	Z	30.826	4.83
18	MP3A	Mx	005	4.83
19	MP1A	X	-8.023	3
20	MP1A	Z	13.897	3
21	MP1A	Mx	004	3
22	RRU	X	-7.773	1.5
23	RRU	Z	13.463	1.5
24	RRU	Mx	004	1.5
25	MP4A	X	-16.852	.75
26	MP4A	7	29.189	.75
27	MP4A	Mx	007	.75
28	MP2A	X	-1.986	4
29	MP2A	X	3.44	4
30	MP2A	Mx	001	4
31	MP3A	X	-4.038	3
32	MP3A	Ž	6.994	3
33	MP3A	Mx	002	3

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-10.16	2.08
2	MP1A	Z	5.866	2.08
3	MP1A	Mx	.005	2.08
4	MP1A	X	-10.16	4.08
5	MP1A	Z	5.866	4.08
6	MP1A	Mx	.005	4.08
7	MP3A	X	-25.515	1.33
8	MP3A	Z	14.731	1,33
9	MP3A	Mx	.038	1.33
10	MP3A	X	-25.515	4.83
11	MP3A	Z	14.731	4.83
12	MP3A	Mx	.038	4.83
13	MP3A	X	-25.515	1.33
14	MP3A	Z	14.731	1.33
15	MP3A	Mx	.016	1.33
16	MP3A	X	-25.515	4.83
17	MP3A	Z	14.731	4.83
18	MP3A	Mx	.016	4.83
19	MP1A	X	-11.613	3
20	MP1A	Z	6.705	3
21	MP1A	Mx	006	3
22	RRU	X	-10.311	1.5
23	RRU	Z	5.953	1.5
24	RRU	Mx	005	1.5
25	MP4A	X	-25.831	.75
26	MP4A	Z	14.913	.75
27	MP4A	Mx	011	.75
28	MP2A	X	-2.985	4
29	MP2A	Z	1.723	4
30	MP2A	Mx	.000344	4
31	MP3A	X	-4.421	3
32	MP3A	Z	2.553	3
33	MP3A	Mx	002	3

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-8.783	2.08
2	MP1A	Z	0	2.08
3	MP1A	Mx	.004	2.08
4	MP1A	X	-8.783	4.08
5	MP1A	Z	0	4.08
6	MP1A	Mx	.004	4.08
7	MP3A	X	-26.396	1.33
8	MP3A	Z	0	1.33
9	MP3A	Mx	.027	1.33
10	MP3A	X	-26.396	4.83
11	MP3A	Z	0	4.83
12	MP3A	Mx	.027	4.83
13	MP3A	X	-26.396	1.33
14	MP3A	Z	0	1.33
15	MP3A	Mx	.027	1.33
16	MP3A	X	-26.396	4.83
17	MP3A	Z	0	4.83
18	MP3A	Mx	.027	4.83
19	MP1A	X	-12.091	3
20	MP1A	Z	0	3

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP1A	Mx	006	3
22	RRU	X	-10.087	1.5
23	RRU	Z	0	1.5
24	RRU	Mx	005	1.5
25	MP4A	X	-27.888	.75
26	MP4A	Z	0	.75
27	MP4A	Mx	012	.75
28	MP2A	X	-3.183	4
29	MP2A	Z	0	4
30	MP2A	Mx	.002	4
31	_MP3A	X	-3.62	3
32	МРЗА	Z	0	3
33	MP3A	Mx	002	3

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP1A	X	-10.16	2.08
2 MP1A	Z	-5.866	2.08
3 MP1A	Mx	.005	2.08
4 MP1A		-10.16	4.08
5 MP1A	X Z	-5.866	4.08
6 MP1A	Mx	.005	4.08
7 MP3A	X	-25.515	1.33
8 MP3A	Z	-14.731	1.33
9 MP3A	Mx	.016	1.33
10 MP3A		-25.515	4.83
11 MP3A	X	-14.731	4.83
12 MP3A	Mx	.016	4.83
13 MP3A	X	-25.515	1.33
14 MP3A	Z	-14.731	1.33
15 MP3A	Mx	.038	1.33
16 MP3A		-25.515	4.83
17 MP3A	X	-14.731	4.83
18 MP3A	Mx	.038	4.83
19 MP1A	X	-11.613	3
20 MP1A	Z	-6.705	3
21 MP1A	Mx	006	3
22 RRU	X	-10.311	1.5
23 RRU	Z	-5.953	1.5
24 RRU	Mx	005	1.5
25 MP4A	X	-25.831	.75
26 MP4A	Z	-14.913	.75
27 MP4A	Mx	011	.75
28 MP2A	X	-2.985	4
29 MP2A	Z	-1.723	4
30 MP2A	Mx	.003	4
31 MP3A	X	-4.421	3
32 MP3A	Z	-2.553	3
33 MP3A	Mx	002	3

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1A	X	-8.814	2.08
2	MP1A	Z	-15.266	2.08
3	MP1A	Mx	.004	2.08
4	MP1A	X	-8.814	4.08

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP1A	Z	-15,266	4.08
6	MP1A	Mx	.004	4.08
7	MP3A	X	-17.797	1.33
8	MP3A	Z	-30.826	1.33
9	MP3A	Mx	005	1.33
10	MP3A	X	-17.797	4.83
11	MP3A	Z	-30.826	4.83
12	MP3A	Mx	005	4.83
13	MP3A	X	-17.797	1.33
14	MP3A	Z	-30.826	1.33
15	MP3A	Mx	.042	1.33
16	MP3A	X	-17.797	4.83
17	MP3A	Z	-30.826	4.83
18	MP3A	Mx	.042	4.83
19	MP1A	X	-8.023	3
20	MP1A	Z	-13.897	3
21	MP1A	Mx	004	3
22	RRU	X	-7.773	1.5
23	RRU	Ž	-13.463	1.5
	RRU	Mx	004	1.5
24 25	MP4A	X	-16.852	.75
26	MP4A	Ž	-29.189	.75
27	MP4A	Mx	007	.75
	MP2A	X	-1.986	4
28	MP2A	Z	-3.44	4
29	MP2A	Mx	.003	4
30	MP3A	X	-4.038	3
31	MP3A	Z	-6.994	3
32 33	MP3A	Mx	002	3

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	2.08
2	MP1A	7	-6.538	2.08
3	MP1A	Mx	0	2.08
4	MP1A	X	0	4.08
5	MP1A	Z	-6.538	4.08
6	MP1A	Mx	0	4.08
7	MP3A	X	0	1.33
8	MP3A	Z	-12.673	1.33
9	MP3A	Mx	01	1.33
10	MP3A	X	0	4.83
11	MP3A	Z	-12.673	4.83
12	MP3A	Mx	01	4.83
13	MP3A	X	0	1.33
14	MP3A	Z	-12.673	1.33
15	MP3A	Mx	.01	1.33
16	MP3A	X	0	4.83
17	MP3A	Z	-12.673	4.83
18	MP3A	Mx	.01	4.83
19	MP1A	X	0	3
20	MP1A	Z	-4.312	3
21	MP1A	Mx	0	3
22	RRU	X	0	1.5
23	RRU	Z	-4.312	1.5
24	RRU	Mx	0	1.5

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP4A	X	0	75
25 26	MP4A	Z	-8.819	.75
27	MP4A	Mx	0	75
28	MP2A	X	0	4
29	MP2A	Z	-1.029	4
30	MP2A	Mx	.000686	4
31	MP3A	X	0	3
32	MP3A	Z	-2.671	3
33	MP3A	Mx	0	3

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	2.772	2.08
2	MP1A	Z	-4.801	2.08
3	MP1A	Mx	001	2.08
4	MP1A	X	2.772	4.08
5	MP1A	Z	-4.801	4.08
6	MP1A	Mx	001	4.08
7	MP3A	X	5.793	1.33
8	MP3A	Z	-10.033	1.33
9	MP3A	Mx	014	1.33
10	MP3A	X	5.793	4.83
11	MP3A	Z	-10.033	4.83
12	MP3A	Mx	014	4.83
13	MP3A	X	5.793	1.33
14	MP3A	7	-10.033	1.33
15	MP3A	Mx	.001	1.33
16	MP3A	X	5.793	4.83
17	MP3A	Z	-10.033	4.83
18	MP3A	Mx	.001	4.83
19	MP1A	X	1.979	3
20	MP1A	Z Z	-3.427	3
21	MP1A	Mx	.00099	3
22	RRU	X	1.913	1.5
23	RRU	Z	-3.313	1.5
24	RRU	Mx	.000956	1.5
25	MP4A	X	4.145	.75
26	MP4A	Z	-7.18	.75
27	MP4A	Mx	.002	.75
28	MP2A	X	.475	4
29	MP2A	Z	823	4
30	MP2A	Mx	.000311	4
31	MP3A	X	1.103	3
32	MP3A	Z	-1.91	3
33	MP3A	Mx	.000552	3

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	3.078	2.08
2	MP1A	Z	-1.777	2.08
3	MP1A	Mx	002	2.08
4	MP1A	X	3.078	4.08
5	MP1A	Z	-1.777	4.08
6	MP1A	Mx	002	4.08
7	MP3A	X	8.15	1.33
8	MP3A	Z	-4.705	1.33

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP3A	Mx	012	1.33
10	MP3A	X	8.15	4.83
11	MP3A	Z	-4.705	4.83
12	MP3A	Mx	012	4.83
13	MP3A	X	8.15	1.33
14	MP3A	7	-4.705	1.33
	MP3A	Mx	005	1.33
15 16	MP3A	X	8.15	4.83
17	MP3A	7	-4.705	4.83
	MP3A	Mx	005	4.83
18	MP1A	X	2.813	3
19	MP1A	Z	-1.624	3
20		Mx	.001	3
21	MP1A	X	2.47	1.5
22	RRU	Z	-1.426	1.5
23	RRU	Mx	.001	1.5
24	RRU	X	6.264	.75
25	MP4A	Z	-3.617	.75
26	MP4A	Mx	.003	.75
27	MP4A		.685	4
28	MP2A	Z	396	4
29	MP2A		-7.9e-5	4
30	MP2A	Mx		3
31	MP3A	X	1.104	3
32	MP3A	Z	638	3
33	MP3A	Mx	.000552	<u> </u>

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	2.56	2.08
2	MP1A	Z	0	2.08
3	MP1A	Mx	001	2.08
4	MP1A	X	2.56	4.08
5	MP1A	Z	0	4.08
6	MP1A	Mx	001	4.08
7	MP3A	X	8.323	1.33
8	MP3A	Z	0	1.33
9	MP3A	Mx	009	1.33
10	MP3A	X	8.323	4.83
11	MP3A	Z	0	4.83
12	MP3A	Mx	009	4.83
13	MP3A	X	8.323	1.33
14	MP3A	Z	0	1.33
15	MP3A	Mx	009	1.33
16	MP3A	X	8.323	4.83
17	MP3A	Z	0	4.83
18	MP3A	Mx	009	4.83
19	MP1A	X	2.893	3
20	MP1A	Z	0	3
21	MP1A	Mx	.001	3
22	RRU	X	2.365	1.5
23	RRU	Z	0	1.5
24	RRU	Mx	.001	1.5
25	MP4A	X	6.705	.75
26	MP4A	Z	0	.75
27	MP4A	Mx	.003	.75
28	MP2A	X	.712	4

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
29	MP2A	Z	O O	Δ
29 30	MP2A	Mx	000356	4
31	MP3A	X	.81	3
32 33	MP3A	Z	0	3
33	MP3A	Mx	.000405	3

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	3.078	2.08
2	MP1A	Z	1.777	2.08
3	MP1A	Mx	002	2.08
4	MP1A	X	3.078	4.08
5	MP1A	Z	1.777	4.08
6	MP1A	Mx	002	4.08
7	MP3A	X	8.15	1.33
8	MP3A	Z	4.705	1.33
9	MP3A	Mx	005	1.33
10	MP3A	X	8.15	4.83
11	MP3A	Z	4.705	4.83
12	MP3A	Mx	005	4.83
13	MP3A	X	8.15	1.33
14	MP3A	Z	4.705	1.33
15	MP3A	Mx	012	1,33
16	MP3A	X	8.15	4.83
17	MP3A	Z	4.705	4.83
18	MP3A	Mx	012	4.83
19	MP1A	X	2.813	3
20	MP1A	Z	1.624	3
21	MP1A	Mx	.001	3
22	RRU	X	2.47	1.5
23	RRU	Z	1.426	1.5
24	RRU	Mx	.001	1.5
25	MP4A	X	6.264	.75
26	MP4A	Z	3.617	.75
27	MP4A	Mx	.003	.75
28	MP2A	X	.685	4
29	MP2A	Z	.396	4
30	MP2A	Mx	000606	4
31	MP3A	X	1.104	3
32	MP3A	Z	.638	3
33	MP3A	Mx	.000552	3

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	2.772	2.08
2	MP1A	Z	4.801	2.08
3	MP1A	Mx	001	2.08
4	MP1A	X	2.772	4.08
5	MP1A	Z	4.801	4.08
6	MP1A	Mx	001	4.08
7	MP3A	X	5.793	1.33
8	MP3A	Z	10.033	1.33
9	MP3A	Mx	.001	1.33
10	MP3A	X	5.793	4.83
11	MP3A	Z	10.033	4.83
12	MP3A	Mx	.001	4.83

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP3A	X	5.793	1.33
14	MP3A	Z	10.033	1.33
15	MP3A	Mx	014	1.33
16	MP3A	X	5.793	4.83
17	MP3A	Z	10.033	4.83
18	MP3A	Mx	014	4.83
19	MP1A	X	1.979	3
20	MP1A	Z	3.427	3
21	MP1A	Mx	.00099	3
22	RRU	X	1.913	1.5
23	RRU	Z	3.313	1.5
24	RRU	Mx	.000956	1.5
25	MP4A	X	4.145	.75
26	MP4A	Z	7.18	.75
27	MP4A	Mx	.002	.75
28	MP2A	X	.475	4
29	MP2A	Z	.823	4
30	MP2A	Mx	000786	4
31	MP3A	X	1.103	3
32	MP3A	Z	1.91	3
33	MP3A	Mx	.000552	3

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	0	2.08
2	MP1A	Z	6.538	2.08
3	MP1A	Mx	0	2.08
4	MP1A	X	0	4.08
5	MP1A	Z	6.538	4.08
6	MP1A	Mx	0	4.08
7	MP3A	X	0	1.33
8	MP3A	Z	12.673	1.33
9	MP3A	Mx	.01	1.33
10	MP3A	X	0	4.83
11	MP3A	Z	12.673	4.83
12	MP3A	Mx	.01	4.83
13	MP3A	X	0	1.33
14	MP3A	Z	12.673	1.33
15	MP3A	Mx	01	1.33
16	MP3A	X	0	4.83
17	MP3A	Z	12.673	4.83
18	MP3A	Mx	01	4.83
19	MP1A	X	0	3
20	MP1A	Z	4.312	3
21	MP1A	Mx	0	3
22	RRU	X	0	1.5
23	RRU	Z	4.312	1.5
24	RRU	Mx	0	1.5
25	MP4A	X	0	.75
26	MP4A	Z	8.819	.75
27	MP4A	Mx	0	.75
28	MP2A	X	0	4
29	MP2A	Z	1.029	4
30	MP2A	Mx	000686	4
31	MP3A	X	0	3
32	MP3A	Z	2.671	3

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

,	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
33	MP3A	Mx	0	3

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-2.772	2.08
2	MP1A	Z	4.801	2.08
3	MP1A	Mx	.001	2.08
4	MP1A	X	-2.772	4.08
5	MP1A	Z	4.801	4.08
6	MP1A	Mx	.001	4.08
7	MP3A	X	-5.793	1.33
8	MP3A	Z	10.033	1.33
9	MP3A	Mx	.014	1.33
10	MP3A	X	-5.793	4.83
11	MP3A	Z	10.033	4.83
12	МРЗА	Mx	.014	4.83
13	MP3A	X	-5.793	1.33
14	МРЗА	Z	10.033	1.33
15	MP3A	Mx	001	1.33
16	MP3A	X	-5.793	4.83
17	MP3A	Z	10.033	4.83
18	MP3A	Mx	001	4.83
19	MP1A	X	-1.979	3
20	MP1A	Z	3.427	3
21	MP1A	Mx	00099	3
22	RRU	X	-1.913	1.5
23	RRU	Z	3.313	1.5
24	RRU	Mx	000956	1.5
25	MP4A	X	-4.145	.75
26	MP4A	Z	7.18	.75
27	MP4A	Mx	002	.75
28	MP2A	X	475	4
29	MP2A	Z	.823	4
30	MP2A	Mx	000311	4
31	MP3A	X	-1.103	3
32	MP3A	Z	1.91	3
33	МРЗА	Mx	000552	3

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-3.078	2.08
2	MP1A	Z	1.777	2.08
3	MP1A	Mx	.002	2.08
4	MP1A	X	-3.078	4.08
5	MP1A	Z	1.777	4.08
6	MP1A	Mx	.002	4.08
7	MP3A	X	-8.15	1.33
8	MP3A	Z	4.705	1.33
9	MP3A	Mx	.012	1.33
10	МРЗА	X	-8.15	4.83
11	MP3A	Z	4.705	4.83
12	MP3A	Mx	.012	4.83
13	MP3A	X	-8.15	1.33
14	MP3A	Z	4.705	1.33
15	MP3A	Mx	.005	1.33
16	MP3A	X	-8.15	4.83

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP3A	Z	4.705	4.83
18	MP3A	Mx	.005	4.83
19	MP1A	X	-2.813	3
20	MP1A	Z	1.624	3
21	MP1A	Mx	001	3
22	RRU	X	-2.47	1.5
23	RRU	Z	1.426	1.5
24	RRU	Mx	001	1.5
25	MP4A	X	-6.264	.75
26	MP4A	Z	3.617	.75
27	MP4A	Mx	003	,75
28	MP2A	X	685	4
29	MP2A	Z	.396	4
30	MP2A	Mx	7.9e-5	4
31	MP3A	X	-1.104	3
	MP3A	Z	.638	3
33	MP3A	Mx	000552	3

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

M	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP1A	X	-2.56	2.08
2	MP1A	Z	0	2.08
3	MP1A	Mx	.001	2.08
4	MP1A	X	-2.56	4.08
5	MP1A	Z	0	4.08
6	MP1A	Mx	.001	4.08
7	MP3A	X	-8.323	1.33
8	MP3A	Z	0	1.33
9	MP3A	Mx	.009	1.33
10	MP3A	X	-8.323	4.83
11	MP3A	Z	0	4.83
12	MP3A	Mx	.009	4.83
13	MP3A	X	-8.323	1.33
14	MP3A	Z	0	1.33
15	MP3A	Mx	.009	1.33
	MP3A	X	-8.323	4.83
16	MP3A	Z	0	4.83
17	MP3A	Mx	.009	4.83
18	MP1A	X	-2.893	3
19	MP1A	Z	0	3
20		Mx	001	3
21	MP1A	X	-2.365	1.5
22	RRU	Z	0	1.5
23	RRU	Mx	001	1.5
24	RRU	X	-6.705	.75
25	MP4A	Z	0	.75
26	MP4A	Mx	003	.75
27	MP4A	X	712	4
28	MP2A	Z	0	4
29	MP2A	Mx	.000356	4
30	MP2A	X	81	3
31	MP3A	Z	0	3
32	MP3A	Mx	000405	3
33	MP3A	IVIX	000400	

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

Member Label Direction Magnitude[lb,k-ft] Location[ft,%]

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-3.078	2.08
2	MP1A	Z	-1.777	2.08
3	MP1A	Mx	.002	2.08
4	MP1A	X	-3.078	4.08
5	MP1A	Z	-1.777	4.08
6	MP1A	Mx	.002	4.08
7	MP3A	X	-8.15	1.33
8	MP3A	Z	-4.705	1.33
9	MP3A	Mx	.005	1.33
10	MP3A	X	-8.15	4.83
11	MP3A	Z	-4.705	4.83
12	МРЗА	Mx	.005	4.83
13	MP3A	X	-8.15	1.33
14	MP3A	Z	-4.705	1.33
15	MP3A	Mx	.012	1.33
16	MP3A		-8.15	4.83
17	MP3A	X	-4.705	4.83
18	MP3A	Mx	.012	4.83
19	MP1A	X	-2.813	3
20	MP1A	Z	-1.624	3
21	MP1A	Mx	001	3
22	RRU	X	-2.47	1.5
23	RRU	Z	-1.426	1.5
24	RRU	Mx	001	1.5
25	MP4A	X	-6.264	.75
26	MP4A	Z	-3.617	.75
27	MP4A	Mx	003	.75
28	MP2A	X	685	4
29	MP2A	Z	396	4
30	MP2A	Mx	.000606	4
31	MP3A	X	-1.104	3
32	MP3A	Z	638	3
33	MP3A	Mx	000552	3

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	-2.772	2.08
2	MP1A	Z	-4.801	2.08
3	MP1A	Mx	.001	2.08
4	MP1A	X	-2.772	4.08
5	MP1A_	Z	-4.801	4.08
6	MP1A	Mx	.001	4.08
7	MP3A	X	-5.793	1.33
8	MP3A	Z	-10.033	1.33
9	MP3A	Mx	001	1.33
10	MP3A	X	-5.793	4.83
11	MP3A	Z	-10.033	4.83
12	MP3A	Mx	001	4.83
13	MP3A	X	-5.793	1.33
14	MP3A	Z	-10.033	1.33
15	MP3A	Mx	.014	1.33
16	MP3A	X	-5.793	4.83
17	MP3A	Z	-10.033	4.83
18	MP3A	Mx	.014	4.83
19	MP1A	X	-1.979	3
20	MP1A	Z	-3.427	3

3

3 1.5

MP3A MP1A

MP1A MP1A RRU

18

19

20

21 22

	Point Loads (BLC 38 : Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP1A	Mx	00099	3
22	RRU	X	-1.913	1.5
23	RRU	Z	-3.313	1.5
24	RRU	Mx	000956	1.5
25	MP4A	X	-4.145	.75
26	MP4A	Z	-7.18	.75
27	MP4A	Mx	002	.75
28	MP2A	X	475	4
29	MP2A	Z	823	4
30	MP2A	Mx	.000786	4
31	MP3A	X	-1.103	3
32	MP3A	Z	-1.91	3
33	MP3A	Mx	000552	3
lember l	Point Loads (BLC 77 :	Lm1)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M36	Y	-500	0
<u>lember l</u>	Point Loads (BLC 78 :			1
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	M38	Υ	-500	U
1	Member Label M35A	Direction	Magnitude[lb,k-ft] -250	Location[ft,%] 0
1 1	IVIOOA			
lember l	Point Loads (BLC 80 :	Lv2)	V-100 M 0.7 WW 99 99 990	10
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M35A	Y	-250	%50
lember l	Point Loads (BLC 81 :	Antenna Ev)		
remper i	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Y	993	2.08 2.08
2	MP1A	My	000496	7 HX
3	MP1A	Mz	0	2.08
3 4	MP1A	Mz Y	993	2.08 4.08
3 4 5	MP1A MP1A	Mz Y My	0 993 000496	2.08 4.08 4.08
3 4	MP1A MP1A MP1A	Mz Y My Mz	0 993 000496 0	2.08 4.08 4.08 4.08
3 4 5 6 7	MP1A MP1A MP1A MP3A	Mz Y My Mz Y	0 993 000496 0 722	2.08 4.08 4.08 4.08 1.33
3 4 5 6 7 8	MP1A MP1A MP1A MP3A MP3A	Mz Y My Mz Y My	0 993 000496 0 722 000752	2.08 4.08 4.08 4.08 1.33 1.33
3 4 5 6 7 8 9	MP1A MP1A MP1A MP3A MP3A MP3A	Mz Y My Mz Y My	0 993 000496 0 722 000752	2.08 4.08 4.08 4.08 1.33 1.33
3 4 5 6 7 8 9	MP1A MP1A MP1A MP3A MP3A MP3A MP3A	Mz Y My Mz Y My My	0 993 000496 0 722 000752 .000541 722	2.08 4.08 4.08 4.08 1.33 1.33 4.83
3 4 5 6 7 8 9 10	MP1A MP1A MP1A MP3A MP3A MP3A MP3A MP3A	Mz Y My Mz Y My Mz Y My My Mz Y My	0 993 000496 0 722 000752 .000541 722 000752	2.08 4.08 4.08 4.08 1.33 1.33 4.83 4.83
3 4 5 6 7 8 9 10 11	MP1A MP1A MP1A MP3A MP3A MP3A MP3A MP3A MP3A MP3A	Mz Y My Mz Y My Mz Y My Mz Y My Mz Y Mz Y	0 993 000496 0 722 000752 .000541 722 000752	2.08 4.08 4.08 4.08 1.33 1.33 4.83 4.83 4.83
3 4 5 6 7 8 9 10 11 12	MP1A MP1A MP1A MP3A MP3A MP3A MP3A MP3A MP3A MP3A MP3A	Mz Y My	0 993 000496 0 722 000752 .000541 722 000752 .000541 722	2.08 4.08 4.08 4.08 1.33 1.33 4.83 4.83 4.83 4.83
3 4 5 6 7 8 9 10 11 12 13	MP1A MP1A MP1A MP3A MP3A MP3A MP3A MP3A MP3A MP3A MP3A MP3A	Mz Y My My My My My My Mz Y My	0993000496 0722000752 .000541722000752 .000541722000752	2.08 4.08 4.08 4.08 1.33 1.33 4.83 4.83 4.83 1.33 1.33
3 4 5 6 7 8 9 10 11 12 13 14	MP1A MP1A MP1A MP3A MP3A MP3A MP3A MP3A MP3A MP3A MP3A MP3A MP3A	Mz Y My My Mz Y My Mz Y My Mz Y My	0993000496 0722000752 .000541722000752 .000541722000541722000541	2.08 4.08 4.08 4.08 1.33 1.33 4.83 4.83 4.83 1.33 1.33 1.33
3 4 5 6 7 8 9 10 11 12 13	MP1A MP1A MP1A MP3A MP3A MP3A MP3A MP3A MP3A MP3A MP3A MP3A	Mz Y My My My My My My Mz Y My	0993000496 0722000752 .000541722000752 .000541722000752	2.08 4.08 4.08 4.08 1.33 1.33 4.83 4.83 4.83 1.33 1.33

Mz

Мy

Mz

-.000541

-1.924

000962

0

-1.603

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
23	RRU	My	.000801	1.5
24	RRU	Mz	0	1.5
25	MP4A	Y	73	.75
26	MP4A	My	.000304	.75
27	MP4A	Mz	0	.75
28	MP2A	Y	237	4
29	MP2A	Mv	000119	4
30	MP2A	Mz	000158	4
31	MP3A	Y	401	3
32	MP3A	My	.000201	3
33	MP3A	Mz	0	3

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	Z	-2.482	2.08
2	MP1A	Mx	0	2.08
3	MP1A	Z	-2.482	4.08
4	MP1A	Mx	0	4.08
5	MP3A	Z	-1.804	1.33
6	MP3A	Mx	001	1.33
7	MP3A	7	-1.804	4.83
8	MP3A	Mx	001	4.83
9	MP3A	Z	-1.804	1.33
10	MP3A	Mx	.001	1.33
11	MP3A	Z	-1.804	4.83
12	MP3A	Mx	.001	4.83
13	MP1A	Z	-4.811	3
14	MP1A	Mx	0	3
15	RRU	7	-4.007	1.5
16	RRU	Mx	0	1.5
17	MP4A	Z	-1.824	.75
18	MP4A	Mx	0	.75
19	MP2A	Z	593	4
20	MP2A	Mx	.000395	4
21	MP3A	Z	-1.003	3
22	MP3A	Mx	0	3

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP1A	X	2.482	2.08
2	MP1A	Mx	001	2.08
3	MP1A	X	2,482	4.08
4	MP1A	Mx	001	4.08
5	MP3A	X	1.804	1.33
6	MP3A	Mx	002	1.33
7	MP3A	X	1.804	4.83
8	MP3A	Mx	002	4.83
9	MP3A	X	1.804	1.33
10	MP3A	Mx	002	1.33
11	MP3A	X	1.804	4.83
12	MP3A	Mx	002	4.83
13	MP1A	X	4.811	3
14	MP1A	Mx	.002	3
15	RRU	X	4.007	1.5
16	RRU	Mx	.002	1.5
17	MP4A	X	1.824	.75

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP4A	Mx	.00076	.75
19	MP2A	X	.593	4
20	MP2A	Mx	000296	4
21	MP3A	X	1.003	3
22	MP3A	Mx	.000502	3

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction		End Magnitude[lb/ft,F.,	. Start Location[ft,%]	End Location[ft,%]
1	M1	Y	-7.835	-7.835	0	%100
2	M2	Ý	-7.835	-7.835	0	%100
3	M7A	Ÿ	-7.835	-7.835	0	%100
	M8	Y	-7.835	-7.835	0	%100
5	M13	Y	-5.138	-5.138	0	%100
	RRU	Y	-5.138	-5.138	0	%100
6 7	M15	T V	-5.138	-5.138	0	%100
	M16	V	-5.138	-5.138	0	%100
8	M19	Y	-7.835	-7.835	0	%100
9	M20	V	-7.835	-7.835	0	%100
10	M25	+ · · ·	-11.833	-11.833	0	%100
11		Ÿ	-11.833	-11.833	0	%100
12	M26	V	-5.138	-5.138	0	%100
13	M27	Y	-5.138	-5.138	0	%100
14	M28	+	-2.791	-2.791	0	%100
15	M29		-5.138	-5.138	0	%100
16	MP1A	\ \ \ \ \ \ \	-5.138	-5.138	0	%100
17	M30	Y	-5.138	-5.138	0	%100
18	MP2A	T	-5.86	-5.86	0	%100
19	MP3A	Y	-5.138	-5.138	Ů,	%100
20	MP4A	Y	-5.138	-5.138	0	%100
21	MP5A			-5.86	0	%100
22	M35A	Y	-5.86	-6.814	0	%100
23	M40A	Y	-6.814	-6.814	0	%100
24	M41	Y	-6.814	-5.138	0	%100
25	M42	Υ	-5.138	-6.814	0	%100
26	M43	Y	-6.814		0	%100 %100
27	M44	Υ	-6.814	-6.814	U	/0100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	Member Label M1	X	0	0	0	%100
2	M1	7	-24.151	-24.151	0	%100
2	M2	Y	0	0	0	%100
3	M2	7	-24.151	-24.151	0	%100
4	M7A	X	0	0	0	%100
5	M7A	7	-24,151	-24.151	0	%100
6	M8	Y	0	0	0	%100
1	M8	7	-24.151	-24.151	0	%100
8	M13	Y	0	0	0	%100
9		7	-9.381	-9.381	0	%100
10	M13 RRU	X	0.001	0	0	%100
11	RRU	7	-9.381	-9.381	0	%100
12		Y	0.001	0	0	%100
13	M15 M15	7	-9.381	-9.381	0	%100
14	M16	- 	0	0	0	%100
15		7	-9.381	-9.381	0	%100
16	M16 M19	X	0	0	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft.	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
18	M19	Z	-10.865	-10.865	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	-10.865	-10.865	0	%100
21	M25	X	0	0	0	%100
22	M25	Z	-1.063	-1.063	0	%100
23	M26	X	0	0	0	%100
24	M26	Z	-1.063	-1.063	0	%100
25	M27	X	0	0	0	%100
26	M27	Z	-9.381	-9.381	0	%100
27	M28	X	0	0	0	%100
28	M28	Z	-9.381	-9.381	0	%100
29	M29	X	0	0	0	%100
30	M29	Z	-3.136	-3.136	0	%100
31	MP1A	X	0	0	0	%100
32	MP1A	Z	-11.472	-11.472	0	%100
33	M30	X	0	0	0	%100
34	M30	Z	-8.357	-8.357	0	%100
35	MP2A	X	0	0	0	%100
36	MP2A	Z	-11.472	-11.472	0	%100
37	MP3A	X	0	0	0	%100
38	MP3A	Z	-13.887	-13.887	0	%100
39	MP4A	X	0	0	0	%100
40	MP4A	Z	-11.472	-11.472	0	%100
41	MP5A	X	0	0	0	%100
42	MP5A	Z	-11.472	-11.472	0	%100
43	M35A	X	0	0	0	%100
44	M35A	Z	-13.887	-13.887	0	%100
45	M40A	X	0	0	0	%100
46	M40A	Z	-11.755	-11.755	0	%100
47	M41	X	0	0	0	%100
48	M41	Z	-17.652	-17.652	0	%100
49	M42	X	0	0	0	%100
50	M42	Z	-5.842	-5.842	0	%100
51	M43	X	0	0	0	%100
52	M43	Z	-4.649	-4.649	0	%100
53	M44	X	0	0	0	%100
54	M44	Z	-16.753	-16.753	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	9.056	9.056	0	%100
2	M1	Z	-15.686	-15.686	0	%100
3	M2	X	9.056	9.056	0	%100
4	M2	Z	-15.686	-15.686	0	%100
5	M7A	X	9.056	9.056	0	%100
6	M7A	Z	-15.686	-15.686	0	%100
7	M8	X	9.056	9.056	0	%100
8	M8	Z	-15.686	-15.686	0	%100
9	M13	X	4.69	4.69	0	%100
10	M13	Z	-8.124	-8.124	0	%100
11	RRU	X	4.69	4.69	0	%100
12	RRU	Z	-8.124	-8.124	0	%100
13	M15	X	4.69	4.69	0	%100
14	M15	Z	-8.124	-8.124	0	%100
15	M16	X	4.69	4.69	0	%100
16	M16	Z	-8.124	-8.124	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
17	M19	X	8.979	8.979	0	%100
18	M19	Z	-15.551	-15.551	0	%100
19	M20	X	8.979	8.979	0	%100
20	M20	Z	-15.551	-15.551	0	%100
21	M25	X	.878	.878	0	%100
22	M25	Z	-1.521	-1.521	0	%100
23	M26	X	.878	.878	0	%100
24	M26	Z	-1.521	-1.521	0	%100
25	M27	X	4.69	4.69	0	%100
26	M27	7	-8.124	-8.124	0	%100
27	M28	X	4.69	4.69	0	%100
28	M28	Z	-8.124	-8.124	0	%100
29	M29	X	1.794	1.794	0	%100
30	M29	Z	-3.106	-3.106	0	%100
31	MP1A	X	5.736	5.736	0	%100
32	MP1A	Z	-9.935	-9.935	0	%100
33	M30	X	5.732	5.732	0	%100
34	M30	Z	-9.929	-9.929	0	%100
35	MP2A	X	5.736	5.736	0	%100
36	MP2A	Z	-9.935	-9.935	0	%100
37	MP3A	X	6.943	6.943	0	%100
38	MP3A	Z	-12.026	-12.026	0	%100
39	MP4A	X	5.736	5.736	0	%100
	MP4A	Z	-9.935	-9.935	0	%100
40	MP5A	X	5.736	5.736	0	%100
41	MP5A	Z	-9.935	-9.935	0	%100
42	M35A	X	5.207	5.207	0	%100
	M35A	Z	-9.02	-9.02	0	%100
44		X	3.461	3.461	0	%100
45	M40A	Z	-5.994	-5.994	0	%100
46	M40A	X	9.886	9.886	0	%100
47	M41	Ž	-17.123	-17.123	0	%100
48	M41	X	5.378	5.378	Ö	%100
49	M42	Z	-9.315	-9.315	0	%100
50	M42		.009	.009	0	%100
51	M43	X	016	016	Ö	%100
52	M43	Z		9.959	0	%100
53 54	M44 M44	Z	9.959 -17.249	-17.249	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	5.229	5.229	0	%100
2	M1	7	-3.019	-3.019	0	%100
3	M2	X	5.229	5.229	0	%100
	M2	7	-3.019	-3.019	0	%100
4	M7A	X	5.229	5.229	0	%100
5	M7A	7	-3.019	-3.019	0	%100
6		X	5.229	5.229	0	%100
1	M8 M8	7	-3.019	-3.019	0	%100
8		X	8.124	8.124	0	%100
9	M13	7	-4.69	-4.69	0	%100
10	M13	X	8.124	8.124	0	%100
11	RRU	7	-4.69	-4.69	0	%100
12	RRU	+ -	8.124	8.124	0	%100
13	M15	7	-4.69	-4.69	0	%100
14	M15 M16	X	8.124	8.124	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
16	M16	Z	-4.69	-4.69	0	%100
17	M19	X	14.159	14.159	0	%100
18	M19	Z	-8.175	-8.175	0	%100
19	M20	X	14.159	14.159	0	%100
20	M20	Z	-8.175	-8.175	0	%100
21	M25	X	1.385	1.385	0	%100
22	M25	Z	8	8	0	%100
23	M26	X	1.385	1.385	0	%100
24	M26	Z	8	8	0	%100
25	M27	X	8.124	8.124	Ŏ	%100
26	M27	Z	-4.69	-4.69	Ö	%100
27	M28	X	8.124	8.124	0	%100
28	M28	Z	-4.69	-4.69	Ŏ	%100
29	M29	X	3.018	3.018	0	%100
30	M29	Z	-1.742	-1.742	0	%100
31	MP1A	X	9.935	9.935	Ŏ	%100
32	MP1A	Z	-5.736	-5.736	Ö	%100
33	M30	X	7.659	7.659	0	%100
34	M30	Z	-4.422	-4.422	′ 0	%100
35	MP2A	X	9.935	9.935	0	%100
36	MP2A	Z	-5.736	-5.736	0	%100
37	MP3A	X	12.026	12.026	0	%100
38	MP3A	Z	-6.943	-6.943	0	%100
39	MP4A	X	9.935	9.935	0	%100
40	MP4A	Z	-5.736	-5.736	0	%100
41	MP5A	X	9.935	9.935	0	%100
42	MP5A	Z	-5.736	-5.736	0	%100 %100
43	M35A	X	3.007	3.007	0	%100 %100
44	M35A	Z	-1.736	-1.736	0	%100 %100
45	M40A	X	6.647	6.647	0	%100
46	M40A	Z	-3.838	-3.838	0	%100
47	M41	X	11.563	11.563	0	%100 %100
48	M41	Z	-6.676	-6.676	0	%100
49	M42	X	9.222	9.222	0	%100 %100
50	M42	Z	-5.324	-5.324	0	%100 %100
51	M43	X	3.186	3.186	0	%100 %100
52	M43	Z	-1.839	-1.839	0	%100 %100
53	M44	X	11.455	11.455	0	%100 %100
54	M44	7	-6.613	-6.613	0	%100 %100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M7A	X	0	0	0	%100
6	M7A	Z	0	0	0	%100
7	M8	X	0	0	0	%100
8	M8	Z	0	0	0	%100
9	M13	X	9.381	9.381	0	%100
10	M13	Z	0	0	0	%100
11	RRU	X	9.381	9.381	0	%100
12	RRU	Z	0	0	0	%100
13	M15	X	9.381	9.381	0	%100
14	M15	Z	0	0	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[ft,%]
15	M16	X	9.381	9.381	0	%100
16	M16	Z	0	0	0	%100
	M19	X	7.65	7.65	0	%100
17	M19	Ž	0	0	0	%100
18	M20	X	7.65	7.65	0	%100
19	M20	Z	0	0	0	%100
20		X	.748	.748	0	%100
21	M25	Z	0	0	0	%100
22	M25	X	.748	.748	0	%100
23	M26	Ž	0	0	0	%100
24	M26	X	9.381	9.381	0	%100
25	M27		9.561	0	0	%100
26	M27	Z	9.381	9.381	0	%100
27	M28	X	9.361	0	Ŏ	%100
28	M28	Z		2.931	0	%100
29	M29	<u>X</u>	2.931	0	Ů Ö	%100
30	M29	Z	0	11.472	0	%100
31	MP1A	X	11.472	0	0	%100
32	MP1A	Z	0	3.115	0	%100
33	M30	X	3,115		i i	%100
34	M30	Z	0	0	0	%100 %100
35	MP2A	X	11.472	11.472	0	%100
36	MP2A	Z	0	0		%100
37	MP3A	X	13.887	13.887	0	%100 %100
38	MP3A	Z	0	0	0	%100 %100
39	MP4A	X	11.472	11.472	0	
40	MP4A	Z	0	0	0	%100
41	MP5A	X	11.472	11.472	0	%100
42	MP5A	Z	0	0	0	%100
43	M35A	X	0	0	0	%100
44	M35A	Z	0	0	0	%100
45	M40A	X	13.263	13.263	0	%100
46	M40A	Z	0	0	0	%100
47	M41	X	4.812	4.812	0	%100
48	M41	Z	0	0	0	%100
49	M42	X	5.629	5.629	0	%100
50	M42	Z	0	0	0	%100
51	M43	X	11.969	11.969	0	%100
	M43	Z	0	0	0	%100
52		X	3.372	3.372	0	%100
53 54	M44 M44	Ž	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitudellb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
4	- Distriction of the second of	Direction	5.229	5.229	0	%100
1.	M1	+		3.019	0	%100
2	M1		3.019			%100
3	M2	X	5.229	5.229	0	%100
4	M2	Z	3.019	3.019	U	
5	M7A	X	5.229	5.229	0	%100
6	M7A	7	3.019	3.019	0	%100
7	M8	- V	5,229	5.229	0	%100
		7	3.019	3.019	0	%100
8	M8		8.124	8.124	0	%100
9	M13			4.69	0	%100
10	M13		4.69		0	%100
11	RRU	X	8.124	8.124	0	
12	RRU	Z	4.69	4.69	0	%100
13	M15	X	8.124	8.124	0	%100

Member Distributed Loads (BLC 45: Structure Wo (120 Deg)) (Continued)

44 1	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
14	M15	Z	4.69	4.69	0	%100
15	M16	X	8.124	8.124	0	%100
16	M16	Z	4.69	4.69	0	%100
17	M19	X	.484	.484	0	%100
18	M19	Z	.279	.279	0	%100
19	M20	X	.484	.484	0	%100
20	M20	Z	.279	.279	0	%100
21	M25	X	.047	.047	0	%100
22	M25	Z	.027	.027	0	%100
23	M26	X	.047	.047	0	%100
24	M26	Z	.027	.027	0	%100
25	M27	X	8.124	8.124	0	%100
26	M27	Z	4.69	4.69	0	%100
27	M28.	X	8.124	8.124	Ö	%100
28	M28	Z	4.69	4.69	Ō	%100
29	M29	X	2.147	2.147	Ö	%100
30	M29	Z	1.24	1.24	Ō	%100
31	MP1A	X	9,935	9.935	Ö	%100 %100
32	MP1A	Z	5.736	5.736	Ö	%100
33	M30	X	.006	.006	0	%100
34	M30	Z	.003	.003	Ö	%100
35	MP2A	X	9.935	9.935	Ö	%100
36	MP2A	Z	5.736	5.736	Ö	%100
37	MP3A	X	12.026	12.026	0	%100 %100
38	MP3A	Z	6.943	6.943	0	%100 %100
39	MP4A	X	9.935	9.935	0	%100 %100
40	MP4A	Z	5.736	5.736	0	%100 %100
41	MP5A	X	9.935	9.935	0	%100 %100
42	MP5A	Z	5.736	5.736	0	%100 %100
43	M35A	X	3.007	3.007	0	%100 %100
44	M35A	Z	1.736	1.736	0	%100
45	M40A	X	15.672	15.672	0	%100
46	M40A	Z	9.048	9.048	0	%100
47	M41	X	2.331	2.331	0	%100
48	M41	Z	1.346	1.346	0	%100 %100
49	M42	X	.62	.62	0	%100 %100
50	M42	Z	.358	.358	0	%100 %100
51	M43	X	14.375	14.375	0	%100 %100
52	M43	Z	8.299	8.299	0	
53	M44	X	.18	.18	0	%100
54	M44	Z	.104	.104	0	%100
Q T	INITT	_	. 104	104	U I	%100

Member Distributed Loads (BLC 46: Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.,	. Start Location[ft %]	End Location[ft,%]
1	M1	X	9.056	9.056	0	%100
2	M1	Z	15.686	15.686	0	%100
3	M2	X	9.056	9.056	0	%100
4	M2	Z	15.686	15.686	0	%100
5	M7A	X	9.056	9.056	0	%100
6	M7A	Z	15.686	15.686	0	%100
7	M8	X	9.056	9.056	0	%100
8	M8	Z	15.686	15.686	Ŏ	%100
9	M13	X	4.69	4.69	0	%100
10	M13	Z	8.124	8.124	Ō	%100
11	RRU	X	4.69	4.69	Ô	%100
12	RRU	Z	8.124	8.124	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
13	M15	X	4.69	4.69	0	%100
14	M15	Z	8.124	8.124	0	%100
15	M16	X	4.69	4.69	0	%100
16	M16	Z	8.124	8.124	0	%100
17	M19	X	1.083	1.083	0	%100
18	M19	Z	1.876	1.876	0	%100
19	M20	X	1.083	1.083	0	%100
20	M20	Z	1.876	1.876	0	%100
21	M25	X	.106	.106	0	%100
22	M25	Z	.183	.183	0	%100
23	M26	X	.106	.106	0	%100
24	M26	Z	.183	.183	0	%100
25	M27	X	4.69	4.69	0	%100
26	M27	Z	8.124	8.124	0	%100
27	M28	X	4.69	4.69	0	%100
28	M28	Z	8.124	8.124	0	%100
29	M29	X	1.291	1.291	0	%100
30	M29	Z	2.236	2.236	0	%100
31	MP1A	X	5.736	5.736	0	%100
32	MP1A	Z	9.935	9.935	0	%100
33	M30	X	1.314	1.314	0	%100
34	M30	Z	2.276	2.276	0	%100
35	MP2A	X	5.736	5.736	0	%100
36	MP2A	Z	9.935	9.935	0	%100
37	MP3A	X	6.943	6.943	0	%100
38	MP3A	Z	12.026	12.026	0	%100
39	MP4A	X	5.736	5.736	0	%100
40	MP4A	Z	9.935	9.935	0	%100
	MP5A	X	5.736	5.736	0	%100
41	MP5A	Z	9.935	9.935	0	%100
	M35A	X	5.207	5.207	0	%100
43	M35A	Z	9.02	9.02	0	%100
44		X	8.671	8.671	0	%100
45	M40A M40A	Ž	15.019	15.019	0	%100
46		X	4.556	4.556	0	%100
47	M41	Z	7.891	7.891	0	%100
48	M41	X	.411	.411	0	%100
49	M42	Z	.712	.712	Ö	%100
50	M42	X	6.47	6.47	0	%100
51	M43	Ž	11.206	11.206	0	%100
52	M43		3,449	3.449	0	%100
53 54	M44 M44	Z	5.974	5.974	Ŏ	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

Mombor Label	Direction	Start Magnitude[lb/ft	End Magnitude[ib/ft,F	. Start Location[ft,%]	End Location[ft,%]
	X	0	0	0	%100
	7	24 151	24.151	0	%100
	Y	0	0	0	%100
	+ ^	24 151	24 151	0	%100
A CONTRACTOR OF THE PARTY OF TH		0	0	0	%100
		24 151	24 151	0	%100
		27.101	0	0	%100
Control of the Contro		2/ 151	24 151	0	%100
	- Z	24.101	0	0	%100
The second secon		0.381	9 381	Û	%100
	X	9.301	0	0	%100
	Member Label M1 M1 M2 M2 M7A M7A M8 M8 M8 M13 M13 RRU	Member Label Direction M1 X M1 Z M2 X M2 Z M7A X M7A Z M8 X M8 Z M13 X M13 Z	Member Label Direction Start Magnitude[lb/ft M1 X 0 M1 Z 24.151 M2 X 0 M2 Z 24.151 M7A X 0 M7A Z 24.151 M8 X 0 M8 Z 24.151 M13 X 0 M13 Z 9.381	M1 X 0 0 M1 Z 24.151 24.151 M2 X 0 0 M2 Z 24.151 24.151 M7A X 0 0 M7A Z 24.151 24.151 M8 X 0 0 M8 Z 24.151 24.151 M13 X 0 0 M13 Z 9.381 9.381	Member Label Direction Start Magnitude[lb/ft End Magnitude[lb/ftF Start Location[ft.%] M1 X 0 0 0 M1 Z 24.151 24.151 0 M2 X 0 0 0 M2 Z 24.151 24.151 0 M7A X 0 0 0 M7A Z 24.151 24.151 0 M8 X 0 0 0 M8 Z 24.151 24.151 0 M8 Z 24.151 0 0 M13 X 0 0 0 M13 Z 9.381 9.381 0

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

12	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[ft,%]
13	RRU	Z	9.381	9.381	0	%100
	M15	X	0	0	0	%100
14	M15	Z	9.381	9.381	0	%100
15	M16	X	0	0	0	%100
16	M16	Z	9.381	9.381	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	10.865	10.865	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	10.865	10.865	0	%100
21	M25	X	0	0	0	%100
22	M25	Z	1.063	1.063	0	%100
23	M26	, X	0	0	0	%100
24	M26	Z	1.063	1.063	0	%100
25	M27	X	0	0	0	%100
26	M27	Z	9.381	9.381	0	%100
27	M28	X	0	0	0	%100
28	M28	Z	9.381	9.381	. 0	%100
29	M29	X	0	0	0	%100
30	M29	Z	3.136	3.136	0	%100
31	MP1A	X	0	0	Ö	%100
32	MP1A	Z	11.472	11.472	0	%100
33	M30	X	0	0	0	%100
34	M30	Z	8.357	8.357	Ö	%100
35	MP2A	X	0	0	Ö	%100
36	MP2A	Z	11.472	11.472	0	%100
37	MP3A	X	0	0	Ö	%100 %100
38	MP3A	Z	13.887	13.887	Ö	%100 %100
39	MP4A	X	0	0	0	%100 %100
40	MP4A	Z	11.472	11.472	Ö	%100 %100
41	MP5A	X	0	0	0	%100 %100
42	MP5A	Z	11.472	11.472	0	%100 %100
43	M35A	X	0	0	0	%100 %100
44	M35A	Z	13.887	13.887	0	%100 %100
45	M40A	X	0	0	0	%100 %100
46	M40A	Z	11.755	11.755	0	%100 %100
47	M41	X	0	0	0	%100 %100
48	M41	Z	17.652	17.652	0	%100
49	M42	X	0	0	0	%100 %100
50	M42	Z	5.842	5.842	0	%100 %100
51	M43	X	0	0	0	%100 %100
52	M43	Ž	4.649	4.649	0	%100 %100
53	M44	X	4.049	4.649	0	
54	M44	7	16,753	16.753	0	%100 %100
V (LVITT		10.733	10 / 0.5		V6.71111

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	-9.056	-9.056	0	%100
2	M1	Z	15.686	15.686	0	%100
3	M2	X	-9.056	-9.056	0	%100
4	M2	Z	15.686	15.686	0	%100
5	M7A	X	-9.056	-9.056	0	%100
6	M7A	Z	15.686	15.686	0	%100
7	M8	X	-9.056	-9.056	0	%100
8	M8	Z	15.686	15.686	0	%100
9	M13	X	-4.69	-4.69	Ō	%100
10	M13	Z	8.124	8.124	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F		End Location[ft,%]
11	RRU	X	-4.69	-4.69	0	%100
12	RRU	Z	8.124	8.124	0	%100
13	M15	X	-4.69	-4.69	0	%100
14	M15	Z	8.124	8.124	0	%100
15	M16	X	-4.69	-4.69	0	%100
16	M16	Z	8.124	8.124	0	%100
17	M19	X	-8.979	-8.979	0	%100
18	M19	Z	15.551	15.551	0	%100
19	M20	X	-8.979	-8.979	0	%100
20	M20	Z	15.551	15.551	0	%100
21	M25	X	878	878	00	%100
22	M25	Z	1.521	1.521	0	%100
23	M26	X	878	878	0	%100
24	M26	Z	1.521	1.521	0	%100
25	M27	X	-4.69	-4.69	0	%100
26	M27	Z	8.124	8.124	0	%100
27	M28	X	-4.69	-4.69	0	%100
28	M28	Z	8.124	8.124	0	%100
29	M29	X	-1.794	-1.794	0	%100
30	M29	Z	3.106	3.106	0	%100
31	MP1A	X	-5.736	-5.736	0	%100 [,]
32	MP1A	Ž	9.935	9.935	0	%100
33	M30	X	-5.732	-5.732	0	%100
34	M30	Z	9.929	9.929	0	%100
35	MP2A	X	-5.736	-5.736	0	%100
36	MP2A	Z	9.935	9.935	0	%100
37	MP3A	X	-6.943	-6.943	0	%100
	MP3A	Z	12.026	12.026	0	%100
38	MP4A	X	-5.736	-5.736	0	%100
39	MP4A	Z	9.935	9.935	0	%100
40	MP5A	X	-5.736	-5.736	0	%100
41	MP5A	Z	9.935	9.935	0	%100
42		X	-5.207	-5.207	0	%100
43	M35A	Ž	9.02	9.02	0	%100
44	M35A	X	-3.461	-3.461	0	%100
45	M40A	Z	5.994	5.994	0	%100
46	M40A	- X	-9.886	-9.886	0	%100
47	M41		17.123	17.123	0	%100
48	M41	Z	-5.378	-5.378	0	%100
49	M42	X	9.315	9.315	0	%100
50	M42	Z		009	0	%100
51	M43	X	009	.016	0	%100
52	M43	Z	.016		0	%100 %100
53	M44	<u>X</u>	-9.959	-9.959	0	%100
54	M44	Z	17.249	17.249	U	70100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitudellb/ft	End Magnitude[lb/ft,F.,	. Start Location[ft.%]	End Location[ft,%]
4	M1	X	-5.229	-5.229	0	%100
2	M1	7	3.019	3.019	0	%100
2	M2	Y	-5.229	-5.229	0	%100
4	M2	7	3.019	3.019	0	%100
5	M7A	X	-5.229	-5.229	0	%100
6	M7A	7	3.019	3.019	0	%100
7	M8	Y	-5.229	-5.229	0	%100
0	M8	7	3.019	3.019	0	%100
9	M13	X	-8.124	-8.124	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
10	M13	Z	4.69	4.69	0	%100
11	RRU	X	-8.124	-8.124	0	%100
12	RRU	Z	4.69	4.69	0	%100
13	M15	X	-8.124	-8.124	0	%100
14	M15	Z	4.69	4.69	0	%100
15	M16	X	-8.124	-8.124	0	%100
16	M16	Z	4.69	4.69	0	%100
17	M19	X	-14.159	-14.159	0	%100
18	M19	Z	8.175	8.175	0	%100
19	M20	X	-14.159	-14.159	0	%100
20	M20	Z	8.175	8.175	0	%100
21	M25	X	-1.385	-1.385	0	%100
22	M25	Z	.8	.8	0	%100
23	M26	X	-1.385	-1.385	0	%100 %100
24	M26	Z	.8	.8	0	%100 %100
25	M27	X X	-8.124	-8.124	0	%100 %100
26	M27	Z	4.69	4.69	0	%100 %100
27	M28	X	-8.124	-8.124		
28	M28	Z	4.69	4.69	0	%100
29	M29	X			0	%100
30	M29	ż	-3.018	-3.018	0	%100
31	MP1A		1.742	1.742	0	%100
32		X	-9.935	-9.935	0	%100
	MP1A	Z	5,736	5.736	0	%100
33	M30	X	-7.659	-7.659	0	%100
34	M30	Z	4.422	4.422	0	%100
35	MP2A	X	-9.935	-9.935	0	%100
36	MP2A	Z	5.736	5.736	0	%100
37	MP3A	X	-12.026	-12.026	0	%100
38	MP3A	Z	6.943	6.943	0	%100
39	MP4A	X	-9.935	-9.935	0	%100
40	MP4A	Z	5.736	5.736	0	%100
41	MP5A	X	-9.935	-9.935	0	%100
42	MP5A	Z	5.736	5.736	Ô	%100
43	M35A	X	-3.007	-3.007	0	%100
44	M35A	Z	1.736	1.736	0	%100
45	M40A	X	-6.647	-6.647	0	%100
46	M40A	Z	3.838	3.838	Ö	%100
47	M41	X	-11.563	-11.563	0	%100
48	M41	Z	6.676	6.676	Ö	%100
49	M42	X	-9.222	-9.222	Ö	%100 %100
50	M42	Z	5.324	5.324	0	%100 %100
51	M43	X	-3.186	-3.186	0	%100 %100
52	M43	Z	1.839	1.839	0	%100 %100
53	M44	X	-11.455	-11.455	0	
54	M44	Z	6.613	6.613	0	%100 %100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude(lb/ft	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M7A	X	0	0	0	%100
6	M7A	Z	0	Ō	0	%100
7	M8	X	0	0	0	%100
8	M8	Z	0	0	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

Mei	mber Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%
9	M13	X	-9.381	-9.381	0	%100
10	M13	Z	0	0	0	%100
11	RRU	X	-9.381	-9.381	0	%100
12	RRU	Z	0	Q	0	%100
13	M15	X	-9.381	-9.381	0	%100
14	M15	Z	0	0	0	%100
15	M16	X	-9.381	-9.381	0	%100
16	M16	Z	0	0	0	%100
17	M19	X	-7.65	-7.65	0	%100
18	M19	Z	0	0	0	%100
19	M20	X	-7.65	-7.65	0	%100
20	M20	Z	0	0	0	%100
21	M25	X	748	748	0	%100
22	M25	Z	0	0	0	%100
23	M26	X	748	748	0	%100
24	M26	Z	0	0	0	%100
25	M27	X	-9.381	-9.381	0	%100
26	M27	Z	0	0	0	%100
27	M28	X	-9.381	-9.381	0	%100
28	M28	Z	0	0	0	%100
29	M29	X	-2.931	-2.931	0	%100
30	M29	Z	0	0	0	%100
	MP1A	X	-11,472	-11.472	0	%100
	MP1A	Z	0	0	0	%100
32	M30	X	-3.115	-3.115	0	%100
33	M30	Z	0	0	0	%100
34	MP2A	X	-11.472	-11.472	0	%100
		Z	0	0	0	%100
	MP2A	X	-13.887	-13.887	0	%100
	MP3A	Z	0	0	0	%100
	MP3A	X	-11.472	-11.472	0	%100
	MP4A	Ž	0	0	0	%100
	MP4A	X	-11.472	-11.472	0	%100
	MP5A	Ž	0	0	0	%100
	MP5A	X	0	0	0	%100
	M35A		0	0	0	%100
	M35A	Z	-13.263	-13.263	0	%100
	M40A	X	-13.263	0	0	%100
46	M40A	Z		-4.812	0	%100
47	M41	X	-4.812	0	0	%100
48	M41	Z	0	-5.629	0	%100
49	M42	X	-5.629		0	%100
50	M42	Z	0	11.000	0	%100
51	M43	X	-11.969	-11.969	0.	%100
52	M43	Z	0	0		%100 %100
53	M44	X	-3.372	-3.372	0	
54	M44	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
The state of the s	X		-5.229	0	%100
	7		-3.019	0	%100
	Y		-5.229	0	%100
	7			0	%100
	Y			0	%100
	7			0	%100
	Y			0	%100
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	Member Label M1 M1 M2 M2 M2 M7A M7A M8	M1 X M1 Z M2 X M2 Z M7A X M7A Z	M1 X -5.229 M1 Z -3.019 M2 X -5.229 M2 Z -3.019 M7A X -5.229 M7A Z -3.019 M7A Z -3.019	M1 X -5.229 -5.229 M1 Z -3.019 -3.019 M2 X -5.229 -5.229 M2 Z -3.019 -3.019 M7A X -5.229 -5.229 M7A Z -3.019 -3.019 M7A Z -3.019 -5.229	M1 X -5.229 -5.229 0 M1 Z -3.019 0 M2 X -5.229 0 M2 Z -3.019 0 M7A X -5.229 -5.229 M7A Z -3.019 0 M7A Z -3.019 -3.019 M7A Z -5.229 5.229

Member Distributed Loads (BLC 51: Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude(lb/ft.	End Magnitude[lb/ft,F.,	. Start Location[ft.%]	End Location[ft,%]
8	M8	Z	-3.019	-3.019	- 0	%100
9	M13	X	-8.124	-8.124	0	%100
10	M13	Z	-4.69	-4.69	0	%100
11	RRU	X	-8.124	-8.124	0	%100
12	RRU	Z	-4.69	-4.69	0	%100
13	M15	X	-8.124	-8.124	0	%100
14	M15	Z	-4.69	-4.69	0	%100
15	M16	X	-8.124	-8.124	0	%100
16	M16	Z	-4.69	-4.69	0	%100
17	M19	X	484	484	0	%100
18	M19	Z	279	279	0	%100
19	M20	X	484	484	0	%100
20	M20	Z	279	279	0	%100
21	M25	X	047	047	0	%100
22	M25	Z	027	027	0	%100
23	M26	X	047	047	Ō	%100
24	M26	Z	027	027	0	%100
25	M27	X	-8.124	-8.124	0	%100
26	M27	Z	-4.69	-4.69	0	%100
27	M28	X	-8.124	-8.124	0	%100
28	M28	Z	-4.69	-4.69	0	%100
29	M29	X	-2.147	-2.147	0	%100
30	M29	Z	-1.24	-1.24	0	%100
31	MP1A	X	-9.935	-9.935	0	%100
32	MP1A	Z	-5.736	-5.736	0	%100
33	M30	X	006	006	0	%100
34	M30	Z	003	003	0	%100
35	MP2A	X	-9.935	-9.935	0	%100
36	MP2A	Z	-5.736	-5.736	0	%100
37	MP3A	X	-12.026	-12.026	0	%100
38	MP3A	Z	-6.943	-6.943	0	%100
39	MP4A	X	-9.935	-9.935	0	%100
40	MP4A	Z	-5.736	-5.736	Ō	%100
41	MP5A	X	-9.935	-9.935	0	%100
42	MP5A	Z	-5.736	-5.736	0	%100
43	M35A	X	-3.007	-3.007	0	%100
44	M35A	Z	-1.736	-1.736	0	%100
45	M40A	X	-15.672	-15.672	0	%100
46	M40A	Z	-9.048	-9.048	0	%100
47	M41	X	-2.331	-2.331	0	%100
48	M41	Z	-1.346	-1.346	0	%100
49	M42	X	62	62	Ö	%100
50	M42	Z	358	358	Ŏ	%100
51	M43	X	-14.375	-14.375	0	%100
52	M43	Z	-8.299	-8.299	Ö	%100
53	M44	X	18	18	0	%100
54	M44	Z	104	104	Ö	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
1	M1	X	-9.056	-9.056	0	%100
2	M1	Z	-15.686	-15.686	0	%100
3	M2	X	-9.056	-9.056	0	%100
4	M2	Z	-15.686	-15.686	0	%100
5	M7A	X	-9.056	-9.056	0	%100
6	M7A	Z	-15.686	-15.686	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

Me	ember Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
7	M8	X	-9.056	-9.056	0	%100
8	M8	Z	-15.686	-15.686	0	%100
9	M13	X	-4.69	-4.69	0	%100
10	M13	Z	-8.124	-8.124	0	%100
11	RRU	X	-4.69	-4.69	0	%100
12	RRU	Z	-8.124	-8.124	0	%100
13	M15	X	-4.69	-4.69	0	%100
14	M15	Z	-8.124	-8.124	0	%100
15	M16	X	-4.69	-4.69	0	%100
16	M16	Z	-8.124	-8.124	0	%100
17	M19	X	-1.083	-1.083	0	_%100
18	M19	Z	-1.876	-1.876	0 6	%100
	M20	X	-1.083	-1.083	0	%100
19	M20	Z	-1.876	-1.876	0	%100
20	M25	X	- 106	106	0	%100
21 22	M25	Ž	183	183	0	%100
	M26	X	106	106	0	%100
23	M26	Z	-,183	183	0	%100
24	M27	X	-4.69	-4.69	0	%100
25	M27	Z	-8.124	-8.124	0	%100
26	M28	X	-4.69	-4.69	0	%100
27		Z	-8.124	-8.124	0 8	%100
28	M28	X	-1.291	-1.291	0	%100
29	M29	Z	-2.236	-2.236	0	%100
30	M29	X	-5.736	-5.736	0	%100
31	MP1A	Z	-9.935	-9.935	0	%100
32	MP1A	X	-1.314	-1.314	0	%100
33	M30	Z	-2.276	-2.276	0	%100
34	M30		-5.736	-5.736	0	%100
35	MP2A	X	-9.935	-9.935	0	%100
36	MP2A	Z	-6.943	-6.943	0	%100
37	MP3A	X	-12.026	-12.026	0	%100
38	MP3A	Z	-5.736	-5.736	0	%100
39	MP4A	X	-9.935	-9.935	0	%100
40	MP4A	Z	-9.935 -5.736	-5.736	0	%100
41	MP5A	X	-9.935	-9.935	0	%100
42	MP5A	Z		-9.935 -5.207	0	%100 %100
43	M35A	X	-5.207	-5.207 -9.02	0	%100
44	M35A	Z	-9.02	-9.02 -8.671	0	%100
45	M40A	X	-8.671		0	%100
46	M40A	Z	-15.019	-15.019	0	%100 %100
47	M41	X	-4.556	-4.556	0	%100 %100
48	M41	Z	-7.891	-7.891		%100 %100
49	M42	X	411	-,411	0	%100 %100
50	M42	Z	712	712	0	%100 %100
51	M43	X	-6.47	-6.47	0	
52	M43	Z	-11.206	-11.206	0	%100
53	M44	X	-3.449	-3.449	0	%100
54	M44	Z	-5.974	-5.974	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.,	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	7	-5.691	-5.691	0	%100
2		T V	0	0	0	%100
3	M2	7	-5.691	-5.691	0	%100
4	M2	<u> </u>	-3.031	0.001	0	%100
5	M7A	X		1 0		70 100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

6	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F		End Location[ft.%]
7	M7A M8	Z	-5.691	-5.691	0	%100
		X	0	0	0	%100
8	M8	Z	-5.691	-5.691	0	%100
9	M13	X	0	0	0	%100
10	M13	Z	-2.997	-2.997	0	%100
11	RRU	X	0	0	0	%100
12	RRU	Z	-2.997	-2.997	0	%100
13	M15	X	0	0	0	%100
14	M15	Z	-2.997	-2.997	0	%100
15	M16	X	0	0	0	%100
16	M16	Z	-2.997	-2.997	0	%100
17	M19	X	0	0	0 4	%100
18	M19	Z	-2.591	-2.591	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	-2.591	-2.591	0	%100
21	M25	X	0	0	0	%100
22	M25	Z	847	847	0	%100
23	M26	X	0	0	0	%100
24	M26	Z	847	847	0	%100
25	M27	X	0	0	0	%100
26	M27	Z	-2.997	-2.997	0 5	%100
27	M28	X	0	0	0	%100
28	M28	Z	-2.997	-2.997	0	%100
29	M29	X	0	- 0	0	%100
30	M29	Z	-1.894	-1.894	0	%100
31	MP1A	X	0	0	0	%100
32	MP1A	Z	-3.663	-3.663	0	%100
33	M30	X	0	0	0	%100
34	M30	Z	-2.668	-2.668	0	%100
35	MP2A	X	0	0	0	%100
36	MP2A	Z	-3.663	-3.663	0	%100
37	MP3A	X	0	0	0	%100
38	MP3A	Z	-4.049	-4.049	0	%100
39	MP4A	X	0	0	0	%100
40	MP4A	Z	-3.663	-3.663	0	%100
41	MP5A	X	0	0	0	%100
42	MP5A	Z	-3.663	-3.663	0	%100
43	M35A	X	0	0	0	%100
44	M35A	Z	-4.049	-4.049	0	%100
45	M40A	X	0	0	0	%100
46	M40A	Z	-2.963	-2.963	0	%100
47	M41	X	0	0	0	%100
48	M41	Z	-4.427	-4.427	0	%100
49	M42	X	0	0	0	%100 %100
50	M42	Z	-1.865	-1.865	0	%100
51	M43	X	0	0	0	%100 %100
52	M43	Z	-1.164	-1.164	0	%100
53	M44	X	0	0	0	%100
54	M44	Z	-4.202	-4.202	0	%100 %100

Member Distributed Loads (BLC 54: Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft.	End Magnitude[lb/ft,F.	Start Location[ft %]	End Location[ft.%]
1	M1	X	2.134	2.134	0	%100
2	M1	Z	-3.697	-3.697	0	%100
3	M2	X	2.134	2.134	0	%100
4	M2	Z	-3.697	-3.697	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%] %100
5	M7A	X	2.134	2.134	0	%100 %100
6	M7A	Z	-3.697	-3,697	0	%100 %100
7	M8	X	2.134	2.134	0	%100 %100
8	M8	Z	-3.697	-3.697	0	%100 %100
9	M13	X	1.499	1.499	0	
10	M13	Z	-2.596	-2.596	0	%100 %100
11	RRU	X	1.499	1.499	0	%100
12	RRU	Z	-2.596	-2.596	0	%100
13	M15	X	1.499	1.499	0	%100
14	M15	Z	-2.596	-2.596	0	%100
15	M16	X	1,499	1,499	0	%100
16	M16	Z	-2.596	-2.596	0	%100
17	M19	X	2.141	2.141	0	%100
18	M19	Z	-3.709	-3.709	0	%100
19	M20	X	2.141	2.141	0	%100
20	M20	Z	-3.709	-3.709	0	%100
21	M25	X	.7	.7	00	%100
22	M25	Z	-1.212	-1.212	0	%100
23	M26	X	.7	.7	00	%100
24	M26	Z	-1.212	-1.212	0	%100
25	M27	X	1.499	1.499	0	%100
26	M27	Z	-2.596	-2.596	0	%100
27	M28	X	1.499	1.499	0	%100
28	M28	Z	-2.596	-2.596	0	%100
29	M29	X	1.083	1.083	0	%100
30	M29	Z	-1.876	-1.876	0	%100
31	MP1A	X	1.831	1.831	0	%100
32	MP1A	Z	-3.172	-3.172	0	%100
33	M30	X	1.83	1.83	0	%100
34	M30	Z	-3.17	-3.17	0	%100
35	MP2A	X	1.831	1.831	0	%100
36	MP2A	Z	-3.172	-3.172	0	%100
37	MP3A	X	2.025	2.025	0	%100
38	MP3A	Z	-3.507	-3.507	0	%100
39	MP4A	X	1.831	1.831	0	%100
40	MP4A	Z	-3.172	-3.172	0	%100
41	MP5A	X	1.831	1.831	0	%100
42	MP5A	Z	-3.172	-3.172	0	%100
42	M35A	X	1.518	1.518	0	%100
44	M35A	Z	-2.63	-2.63	0	%100
	M40A	X	.872	.872	0	%100
45	M40A	Z	-1.511	-1.511	0	%100
46		X	2.479	2.479	0	%100
47	M41	Z	-4.294	-4.294	Ö	%100
48	M41	X	1.717	1.717	0	%100
49	M42		-2.974	-2.974	Ö	%100
50	M42	Z	.002	.002	0	%100
51	M43	X	004	004	Ö	%100
52	M43	Z	2.498	2.498	0	%100
53 54	M44 M44	X Z	-4.326	-4.326	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	M1	X	1.232	1.232	0	%100
2	M1	7	- 711	711	0	%100
3	M2	X	1.232	1.232	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.	Start Location[ft.%]	End Location[ft,%]
4	M2	Z	711	711	0	%100
5	M7A	X	1.232	1.232	0	%100
6	M7A	Z	711	711	0	%100
7	M8	X	1.232	1.232	0	%100
8	M8	Z	711	711	0	%100
9	M13	X	2.596	2.596	0	%100
10	M13	Z	-1.499	-1.499	0	%100
11	RRU	X	2.596	2.596	0	%100
12	RRU	Z	-1.499	-1.499	O	%100
13	M15	X	2.596	2.596	0	%100
14	M15	Z	-1.499	-1.499	0	%100
15	M16	X	2.596	2.596	0	%100
16	M16	Z	-1.499	-1.499	0	%100
17	M19	X	3.377	3.377	0	%100
18	M19	Z	-1.95	-1.95	0	%100
19	M20	X	3.377	3.377	0	%100 %100
20	M20	Z	-1.95	-1.95	0	%100 %100
21	M25	X	1.103	1.103	0	%100 %100
22	M25	Ž	637	637	0	%100 %100
23	M26	X	1.103	1.103	0	%100
24	M26	Z	637	637	0	%100 %100
25	M27	X	2.596	2.596	0	%100 %100
26	M27	Ž	-1.499	-1.499	0	%100
27	M28	X	2.596	2.596	0	
28	M28	Ž	-1.499	-1.499	0	%100 %100
29	M29	X	1.823	1.823	0	%100 %100
30	M29	Z	-1.052	-1.052	0	
31	MP1A	X	3.172	3.172	0	%100
32	MP1A	Ž	-1.831	-1.831	0	%100
33	M30	X	2.445	2.445		%100
34	M30	Z	-1.412	-1.412	0	%100
35	MP2A	X	3.172	3.172		%100
36	MP2A	Z	-1.831	3.172	0	%100
37	MP3A	X	3.507	-1.831	0	%100
38	MP3A	Ž		3.507	0	%100
39	MP4A	X	-2.025 3.172	-2.025	0	%100
40	MP4A	Z		3.172	0	%100
41	MP5A	X	-1.831 3.172	-1.831 3.172	0	%100
42	MP5A				0	%100
43		Z	-1.831	-1.831	0	%100
44	M35A	X	.877	.877	0	%100
	M35A	Z	506	506	0	%100
45	M40A	X	1.676	1.676	0	%100
46	M40A	Z	967	967	0	%100
47	M41	X	2.9	2.9	0	%100
48	M41	Z	-1.674	-1.674	0	%100
49	M42	X	2.945	2.945	0	%100
50	M42	Z	-1.7	-1.7	0	%100
51	M43	X	.798	.798	0	%100
52	M43	Z	46	46	0	%100
53	M44	X	2.873	2.873	0	%100
54	M44	Z	-1.659	-1.659	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft.%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100

Member Distributed Loads (BLC 56: Structure Wi (90 Deg)) (Continued)

Me	mber Label	Direction		.End Magnitude[lb/ft,F		End Location[ft,%]
3	M2	X	0	0	0	%100 %100
4	M2	Z	0	0	0	%100
5	M7A	X	0	0	0	%100
6	M7A	Z	0	0	0	%100 %100
7	M8	X	0	0	0	%100
8	M8	Z	0	0	0	%100
9	M13	X	2.997	2.997	0	%100
10	M13	Z	0	0	0	%100 %100
11	RRU	X	2.997	2.997	0	%100 %100
12	RRU	Z	0	0	0	%100 %100
13	M15	X	2.997	2.997	0	%100 %100
14	M15	Z	0	0	0	%100 %100
15	M16	X	2.997	2.997	0	%100 %100
16	M16	Z	0	0	0	%100 %100
17	M19	X	1.825	1.825	0	
18	M19	Z	0	0	0	%100 %100
19	M20	X	1.825	1.825	0	
20	M20	Z	0	0	0	%100 %100
21	M25	X	.596	.596	0	
22	M25	Z	0	0	0	%100 %100
23	M26	X	.596	.596	0	%100
24	M26	Z	0	0	0	%100
25	M27	X	2.997	2.997	0	%100 %100
26	M27	Z	0	0	0	%100
27	M28	X	2.997	2.997	0	%100
28	M28	Z	0	0	0	%100
29	M29	X	1.77	1.77	0	%100
30	M29	Z	0	0	0	%100
31	MP1A	X	3.663	3.663	0	%100
32	MP1A	Z	0	0	0	%100
33	M30	X	.995	.995	0	%100 %100
34	M30	Z	0	0	0	%100 %100
35	MP2A	X	3.663	3.663	0	%100
36	MP2A	Z	0	0	0	%100
37	MP3A	X	4.049	4.049	0	%100 %100
38	MP3A	Z	0	0	0	%100 %100
39	MP4A	X	3.663	3.663	0	%100 %100
40	MP4A	Z	0	0	0	%100
41	MP5A	X	3.663	3.663	0	%100 %100
42	MP5A	Z	0	0	0	%100 %100
43	M35A	X	0	0	0	%100 %100
44	M35A	Z	0	0	0	%100
45	M40A	X	3.343	3.343	0	%100 %100
46	M40A	Z	0	0	0	%100 %100
47	M41	X	1.207	1.207	0	
48	M41	Z	0	0	0	%100 %100
49	M42	X	1.797	1.797	0	%100
50	M42	Z	0	0	0	%100
51	M43	X	2.996	2.996	0	%100 %100
52	M43	Z	0	0	0	%100
53	M44	X	.846	.846	0	%100 %100
54	M44	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Marchael abol			End Magnitude[lb/ft.F	Start Location[ft,%]	End Location[ft.%]
1	Member Label M1	X	1.232	1.232	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F.,		End Location[ft,%]
2	M1	Z	.711	.711	0	%100
3	M2	X	1.232	1.232	0	%100
4	M2	Z	.711	.711	0	%100
5	M7A	<u>X</u>	1.232	1.232	0	%100
6	M7A	Z	.711	.711	0	%100
7	M8	X	1.232	1.232	0	%100
8	M8	Z	.711	.711	0	%100
9	M13	X	2.596	2.596	0	%100
10	M13	Z	1.499	1.499	0	%100
11	RRU	X	2.596	2.596	0	%100
12	RRU	Z	1.499	1.499	0	%100
13	M15	X	2.596	2.596	0	%100
14	M15	Z	1.499	1.499	0	%100
15	M16	X	2.596	2.596	0	%100
16	M16	Z	1.499	1.499	0	%100
17	M19	X	.115	.115	0	%100
18	M19	Z	.067	.067	0	%100
19	M20	X	.115	.115	0	%100
20	M20	Z	.067	.067	0	%100
21	M25	X	.038	.038	0	%100
22	M25	Z	.022	.022	Ö	%100
23	M26	X	.038	.038	Ö	%100
24	M26	Z	.022	.022	0	%100
25	M27	X	2.596	2.596	Ö	%100
26	M27	Z	1.499	1.499	Ŏ	%100
27	M28	X	2.596	2.596	Ö	%100
28	M28	Z	1.499	1.499	Ö	%100
29	M29	X	1.297	1.297	Ö	%100
30	M29	Z	.749	.749	0	%100
31	MP1A	X	3.172	3.172	0	%100 %100
32	MP1A	Z	1.831	1.831	Ö	%100 %100
33	M30	X	.002	.002	ő	%100 %100
34	M30	Z	.001	.001	ő	%100
35	MP2A	X	3.172	3.172	0	%100 %100
36	MP2A	Z	1.831	1.831	0	%100 %100
37	MP3A	X	3.507	3.507	0	%100
38	MP3A	Z	2.025	2.025	0	%100 %100
39	MP4A	X	3.172	3.172	0	%100 %100
40	MP4A	Z	1.831	1.831	0	%100 %100
41	MP5A	X	3.172	3.172	0	%100 %100
42	MP5A	Z	1.831	1.831	0	
43	M35A	X	.877	.877		%100 %100
44	M35A	Z	.506		0	%100
45	M40A	X	3.951	.506	0	%100
46	M40A	Z	2.281	3.951	0	%100
47	M41	X		2.281	0	%100
48	M41	Z	.585	.585	0	%100
49	M42		.338	.338	0	%100
50	M42	X	.198	.198	0	%100
		Z	.114	.114	0	%100
51	M43	X	3.599	3.599	0	%100
52	M43	Z	2.078	2.078	0	%100
53	M44	X	.045	.045	0	%100
54	M44	Z	.026	.026	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

Member Label Direction Start Magnitude[lb/ft,...End Magnitude[lb/ft,F... Start Location[ft,%] End Location[ft,%]

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%
1	M1	X	2.134	2.134	0	%100
2	M1	Z	3.697	3.697	0	%100
3	M2	X	2.134	2.134	0	%100
4	M2	Z	3.697	3.697	0	%100
5	M7A	X	2.134	2.134	0	%100
6	M7A	Z	3.697	3.697	0	%100
7	M8	X	2.134	2.134	0	%100
8	M8	Z	3.697	3.697	0	%100
9	M13	X	1.499	1.499	0	%100
10	M13	Z	2.596	2.596	0	%100
11	RRU	X	1.499	1.499	0	%100
12	RRU	Z	2.596	2.596	0	%100
13	M15	X	1.499	1.499	0	%100
14	M15	Z	2.596	2.596	0	%100
15	M16	X	1.499	1.499	0	%100
16	M16	Z	2.596	2.596	0	%100
17	M19	X	.258	.258	0	%100
18	M19	Z	.447	.447	0	%100
19	M20	X	.258	.258	0	%100
20	M20	Z	.447	.447	0	%100
21	M25	X	.084	.084	0	%100
22	M25	Z	.146	.146	0	%100
23	M26	X	.084	.084	0	%100
24	M26	Z	.146	.146	0	%100
25	M27	X	1.499	1.499	0	%100
26	M27	Z	2.596	2.596	0	%100
27	M28	X	1.499	1.499	0	%100
28	M28	Z	2.596	2.596	0	%100
29	M29	X	.78	.78	0	%100
30	M29	Z	1.351	1.351	0	%100
31	MP1A	X	1.831	1.831	0	%100
32	MP1A	Z	3.172	3.172	0	%100
33	M30	X	.419	.419	0	%100
34	M30	Ž	.727	.727	0	%100
35	MP2A	X	1.831	1.831	0	%100
36	MP2A	Z	3.172	3.172	0	%100
37	MP3A	X	2.025	2.025	0	%100
38	MP3A	Ž	3.507	3.507	0	%100
39	MP4A	X	1.831	1.831	0	%100
40	MP4A	Z	3.172	3.172	0	%100
41	MP5A	X	1.831	1.831	0	%100
42	MP5A	Z	3.172	3.172	0	%100
	M35A	X	1.518	1.518	0	%100
43	M35A	Z	2.63	2.63	0	%100
44	M40A	X	2.186	2.186	0	%100
45	M40A	Z	3.786	3.786	0	%100
46	M41	X	1.143	1.143	0	%100
47	M41	Z	1.979	1.979	0	%100
48		X	.131	.131	0	%100
49	M42	Ž	.227	.227	0	%100
50	M42	X	1.62	1.62	0	%100
51	M43	Z	2.805	2.805	0	%100
52	M43	X	.865	.865	0	%100
53 54	M44 M44	ż	1.498	1.498	Ö	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

1	Member Label M1	Direction	Start Magnitude[lb/ft,			End Location[ft,%]
2	M1	X	0	0	0	%100
3	M2	Z	5.691	5.691	0	%100
4	M2	X	0	0	0	%100
5		Z	5.691	5.691	0	%100
	M7A	X	0	0	0	%100
6	M7A	Z	5.691	5.691	0	%100
	M8	X	0	0	0	%100
8	M8	Z	5.691	5.691	0	%100
9	M13	X	0	0	0	%100
10	M13	Z	2.997	2.997	0	%100
11	RRU	X	0	0	00	%100
12	RRU	Z	2.997	2.997	0	%100
13	M15	X	0	0	0	%100
14	M15	Z	2.997	2.997	0	%100
15	M16	X	0	0	0	%100
16	M16	Z	2.997	2.997	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	2.591	2.591	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	2.591	2.591	0	%100
21	M25	X	0	0	0	%100
22	M25	Z	.847	.847	0	%100
23	M26	X	0	0	0	%100
24	M26	Z	.847	.847	0	%100
25	M27	X	0	0	0	%100
26	M27	Z	2.997	2.997	0	%100
27	M28	X	0	0	0	%100
28	M28	Z	2.997	2.997	0	%100
29	M29	X	0	0	0	%100
30	M29	Z	1.894	1.894	0	%100
31	MP1A	X	0	0	0	%100
32	MP1A	Z	3.663	3.663	Ö	%100
33	M30	X	0	0	Ö	%100
34	M30	Z	2.668	2.668	Ŏ	%100
35	MP2A	X	0	0	0	%100
36	MP2A	Z	3.663	3.663	0	%100
37	MP3A	X	0	0.000	0	%100
38	MP3A	Z	4.049	4.049	Ö	%100
39	MP4A	X	0	0	0	%100 %100
40	MP4A	Z	3.663	3.663	0	%100
41	MP5A	X	0.000	0	0	%100
42	MP5A	Z	3.663	3.663	0	%100 %100
43	M35A	X	0	0	0	%100 %100
44	M35A	Z	4.049	4.049	0	70 TUU 0/ 100
45	M40A	X	0	0	0	%100 %100
46	M40A	Z	2.963	2.963	0	
47	M41	X	2.963	2.963		%100 %100
48	M41	Ž	4.427		0	%100
49	M42	X		4.427	0	%100
50	M42	Z	1 965	0	0	%100
51	M43	X	1.865	1.865	0	%100
52	M43	Z	0	0	0	%100
53	M44	X	1.164	1.164	0	%100
54			0	0	0	%100
34	M44	Z	4.202	4.202	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

ol Direction Stort Magnitude(IIh/ft End Magnitude(IIh/ft E Stort Legation(ft %)) End Legation(ft %)

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F		End Location[ft,%] %100
1	M1	X	-2.134	-2.134	0	%100
2	M1	Z	3.697	3.697	0	%100
3	M2	X	-2.134	-2.134	0	%100
4	M2	Z	3.697	3.697		%100 %100
5	M7A	X	-2.134	-2.134	0	%100
6	M7A	Z	3.697	3.697	0	%100 %100
7	M8	X	-2.134	-2.134	0	%100
8	M8	Z	3.697	3.697	0	%100 %100
9	M13	X	-1.499	-1.499	0	%100
10	M13	Z	2.596	2.596	0	
11	RRU	X	-1.499	-1.499	0	%100
12	RRU	Z	2.596	2.596	0	%100
13	M15	X	-1.499	-1.499	0	%100
14	M15	Z	2.596	2.596	0	%100
15	M16	X	-1.499	-1.499	0	%100
16	M16	Z	2.596	2.596	0	%100
17	M19	X	-2.141	-2.141	0	%100
18	M19	Z	3.709	3.709	0	%100
19	M20	X	-2.141	-2.141	0	<u>%100</u>
20	M20	Z	3.709	3.709	0	%100
21	M25	X	7	7	0	%100
22	M25	Z	1.212	1.212	0	%100
23	M26	X	7	7	0	%100
24	M26	Z	1.212	1.212	0	%100
25	M27	X	-1.499	-1.499	0	%100
26	M27	Z	2.596	2.596	0	%100
27	M28	X	-1.499	-1.499	0	%100
28	M28	Z	2.596	2.596	0	%100
29	M29	X	-1.083	-1.083	0	%100
30	M29	Z	1.876	1.876	0	%100
31	MP1A	X	-1.831	-1.831	0	%100
32	MP1A	Z	3.172	3.172	0	%100
33	M30	X	-1.83	-1.83	0	%100
34	M30	Z	3.17	3.17	0	%100
35	MP2A	X	-1.831	-1.831	0	%100
36	MP2A	Z	3.172	3.172	0	%100
37	MP3A	X	-2.025	-2.025	0	%100
38	MP3A	Z	3.507	3.507	0	%100
39	MP4A	X	-1.831	-1.831	0	%100
40	MP4A	Z	3.172	3.172	0	%100
41	MP5A	X	-1.831	-1.831	0	%100
42	MP5A	Z	3.172	3.172	0	%100
	M35A	X	-1.518	-1.518	0	%100
43	M35A	Z	2.63	2.63	0	%100
	M40A	X	872	872	0	%100
45	M40A	Z	1.511	1.511	0	%100
46		X	-2.479	-2.479	0	%100
47	M41	Z	4.294	4.294	0	%100
48	M41	X	-1.717	-1.717	0	%100
49	M42	Z	2.974	2.974	0	%100
50	M42		002	002	0	%100
51	M43	Z	.002	.004	0	%100
52	M43		-2.498	-2.498	0	%100
53 54	M44 M44	X Z	4.326	4.326	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

T 1	Member Label	Direction		.End Magnitude[lb/ft,F.		End Location[ft,%]
	M1	X	-1.232	-1.232	0	%100
2	M1	Z	.711	.711	0	%100
3	M2	X	-1.232	-1.232	0	%100
4	M2	Z	.711	.711	0	%100
5	M7A	X	-1.232	-1.232	0	%100
6	M7A	Z	.711	.711	0	%100
7	M8	X	-1.232	-1.232	0	%100
8	M8	Z	.711	.711	0	%100
9	M13	X	-2.596	-2.596	0	%100
10	M13	Z	1.499	1.499	0	%100
11	RRU	X	-2.596	-2.596	0	%100
12	RRU	Z	1.499	1.499	0	%100
13	M15	X	-2.596	-2.596	0	%100
14	M15	Z	1.499	1.499	0	%100
15	M16	X	-2.596	-2.596	0	%100
16	M16	Z	1.499	1.499	0	%100
17	M19	X	-3.377	-3.377	0	%100
18	M19	Z	1.95	1.95	0	%100
19	M20	X	-3.377	-3.377	0	%100
20	M20	Z	1.95	1.95	0	%100
21	M25	X	-1.103	-1.103	0	%100
22	M25	Z	.637	.637	0	%100
23	M26	X	-1.103	-1.103	0	%100
24	M26	Z	.637	.637	0	%100
25	M27	X	-2.596	-2.596	Ö	%100
26	M27	Z	1.499	1.499	Ö	%100
27	M28	X	-2.596	-2.596	Ů.	%100
28	M28	Z	1.499	1.499	Ŏ	%100
29	M29	X	-1.823	-1.823	0	%100
30	M29	Z	1.052	1.052	ő	%100
31	MP1A	X	-3.172	-3.172	0	%100
32	MP1A	Z	1.831	1.831	0	%100
33	M30	X	-2.445	-2.445	0	%100
34	M30	Z	1.412	1.412	0	%100
35	MP2A	X	-3.172	-3.172	0	%100
36	MP2A	Z	1.831	1.831	0	%100 %100
37	MP3A	X	-3.507	-3.507	0	%100 %100
38	MP3A	Z	2.025	2.025	0	%100 %100
39	MP4A	X	-3.172	-3.172	0	%100
40	MP4A	Z	1.831	1.831	0	%100
41	MP5A	X	-3.172	-3.172		
42	MP5A	Z	1.831	1.831	0	%100 %100
43	M35A	X	877	877	0	%100
44	M35A	Ž	.506		0	%100 %100
45	M40A	X	-1.676	.506		%100
46	M40A	Z	.967	-1.676	0	%100
47	M41	X		.967	0	%100
48	M41	Z	-2.9	-2.9	0	%100
49	M42	X	1.674	1.674	0	%100
50	M42	X 7	-2.945	-2.945	0	%100
51	M43	Z	1.7	1.7	0	%100
52	M43	X	798	798	0	%100
		4	.46	.46	0	%100
53	M44	X	-2.873	-2.873	0	%100
54	M44	Z	1.659	1.659	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

Mambar Label Direction Start Magnitude (Ib/ft Ford Magnitude (Ib/ft F Start Location (ft %)) Ford Location (ft %)

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,% %100
1	M1	X	0	0	0	
2	M1	Z	0	0	0	%100 %100
3	M2	X	0	0	0	%100 %100
4	M2	<u>Z</u>	0	0	0	%100 %100
5	M7A	X	0	0	0	
6	M7A	Z	0	0	0	%100 %100
7	M8	X	0	0	0	
8	M8	Z	0	0	0	%100 %100
9	M13	X	-2.997	-2.997	0	%100
10	M13	Z	0	0	0	%100
11	RRU	X	-2.997	-2.997	0	%100
12	RRU	Z	0	0	0	%100
13	M15	X	-2.997	-2.997	00	%100
14	M15	Z	0	0	0	%100
15	M16	X	-2.997	-2.997	0	%100
16	M16	Z	0	0	0	%100
17	M19	X	-1.825	-1.825	0	%100
18	M19	Z	0	0	0	%100
19	M20	X	-1.825	-1.825	0	%100
20	M20	Z	0	0	0	%100
21	M25	X	596	596	0	%100
22	M25	Z	0	0	0	%100
23	M26	X	596	596	0	%100
24	M26	Z	0	0	0	%100
25	M27	X	-2.997	-2.997	0	%100
26	M27	Z	0	0	0	%100
27	M28	X	-2.997	-2.997	0	%100
28	M28	Z	0	0	0	%100
29	M29	X	-1.77	-1.77	0	%100
30	M29	Z	0	0	0	%100
31	MP1A	X	-3.663	-3.663	0	%100
32	MP1A	Z	0	0	0	%100
33	M30	X	995	995	0	%100
34	M30	Z	0	0	0	%100
35	MP2A	X	-3.663	-3.663	0	%100
36	MP2A	Z	0	0	0	%100
37	MP3A	X	-4.049	-4.049	0 =	%100
38	MP3A	Z	0	0	0	%100
39	MP4A	X	-3.663	-3.663	0	%100
	MP4A	Z	0	0	0	%100
40	MP5A	X	-3.663	-3.663	0	%100
41	MP5A	Z	0	0	0	%100
	M35A	X	0	0	0	%100
43		Z	0	0	0	%100
44	M35A M40A	X	-3.343	-3.343	0	%100
45		Ž	-5.545	0	0	%100
46	M40A	X	-1.207	-1.207	0	%100
47	M41	Z	0	0	Ö	%100
48	M41		-1.797	-1.797	0	%100
49	M42	X	-1.797	0	0	%100
50	M42		-2.996	-2.996	0	%100
51	M43	X	-2.996	-2.990	0	%100
52	M43	Z	846	846	0	%100
53 54	M44 M44	X	846	046	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

Member Label Direction Stort Magnitude IIb/ft Fed Magnitude IIb/ft F. Stort Legetics Iff %1 Fed Legetics I

Member Distributed Loads (BLC 63: Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%
1	M1	X	-1.232	-1.232	0	%100
2	M1	Z	711	711	0	%100
3	M2	X	-1.232	-1.232	0	%100
4	M2	Z	711	711	0	%100
5	M7A	X	-1.232	-1.232	0	%100
6	M7A	Z	711	711	0	%100
7	M8	X	-1.232	-1.232	0	%100
8	M8	Z	711	711	0	%100
9	M13	X	-2.596	-2.596	0	%100
10	M13	Z	-1.499	-1.499	0	%100
11	RRU	X	-2.596	-2.596	0	%100
12	RRU	Z	-1.499	-1.499	Ö	%100
13	M15	X	-2.596	-2.596	0	%100
14	M15	Z	-1.499	-1.499	0	%100
15	M16	X	-2.596	-2.596	0	%100
16	M16	Z	-1.499	-1.499	0	%100
17	M19	X	115	115	0	%100
18	M19	Z	067	067	0	%100
19	M20	X	115	-,115	0	%100
20	M20	Z	067	067	Ö	%100
21	M25	X	038	038	0	%100
22	M25	Z	022	022	0	%100
23	M26	X	038	038	0	%100
24	M26	Z	022	022	0	%100
25	M27	X	-2.596	-2.596	0	%100
26	M27	Z	-1.499	-1.499	0	%100
27	M28	X	-2.596	-2.596	0	%100
28	M28	Z	-1.499	-1.499	0	%100
29	M29	X	-1.297	-1.297	0	%100
30	M29	Z	749	749	0	%100
31	MP1A	X	-3.172	-3.172	0	%100
32	MP1A	Z	-1.831	-1.831	0	%100
33	M30	X	002	002	0	%100
34	M30	Z	001	001	Ō	%100
35	MP2A	X	-3.172	-3.172	0	%100
36	MP2A	Z	-1.831	-1.831	0	%100
37	MP3A	X	-3.507	-3.507	0	%100
38	MP3A	Z	-2.025	-2.025	Ö	%100
39	MP4A	X	-3.172	-3.172	0	%100
40	MP4A	Z	-1.831	-1.831	Ö	%100
41	MP5A	X	-3.172	-3.172	0	%100
42	MP5A	Z	-1.831	-1.831	0	%100 %100
43	M35A	X	877	877	0	%100
44	M35A	Z	506	506	0	%100
45	M40A	X	-3.951	-3.951	0	%100
46	M40A	Z	-2.281	-2.281	0	%100 %100
47	M41	X	585	585	0	%100 %100
48	M41	Z	338	338	0	%100 %100
49	M42	X	198	198	0	%100 %100
50	M42	Ž	114	114	0	%100 %100
51	M43	X	-3.599	-3.599	0	
52	M43	Z	-2.078	-2.078	0	%100 %100
53	M44	X	045	-2.078	0	%100
54	M44	Ż	026	026	0	%100 %100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

Mamber Lobel Disaction Start Magaitudellb/ft Fad Magaitudellb/ft F Start Location Ift 9/1 Fad Location Ift 9/1

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F.,		End Location[ft,%]
1	M1	<u> </u>	-2.134	-2.134	0	%100 %100
2	M1	Z	-3.697	-3.697	0	%100
3	M2	X	-2.134	-2.134	0	%100
4	M2	Z	-3.697	-3.697	0	%100
5	M7A	X	-2.134	-2.134		%100 %100
6	M7A	Z	-3.697	-3.697	0	%100
7	M8	X	-2.134	-2.134	0	%100 %100
8	M8	Z	-3.697	-3.697	0	
9	M13	X	-1.499	-1.499	0	%100 %100
10	M13	Z	-2.596	-2.596	0	%100
11	RRU	X	1.499	-1.499	0	%100 %100
12	RRU	Z	-2.596	-2.596	0	
13	M15	X	-1.499	-1.499	0	%100 %100
14	M15	Z	-2.596	-2.596	0	
15	M16	X	-1.499	-1.499	0	%100
16	M16	Z	-2.596	-2.596	0	%100
17	M19	X	258	258	0	%100
18	M19	Z	447	447	0	%100
19	M20	X	-,258	258	0	%100
20	M20	Z	447	447	0	%100
21	M25	X	084	084	0	%100
22	M25	Z	146	146	0	%100
23	M26	X	084	084	0	%100
24	M26	Z	146	146	0	%100
25	M27	X	-1.499	-1.499	0	%100
26	M27	Z	-2.596	-2.596	0	%100
27	M28	X	-1.499	-1.499	0	%100
28	M28	Z	-2.596	-2.596	0	%100
29	M29	X	78	78	0	%100
30	M29	Z	-1.351	-1.351	0	%100
31	MP1A	X	-1.831	-1.831	0	%100
32	MP1A	Z	-3.172	-3.172	0	%100
33	M30	X	419	419	0	%100
34	M30	Z	727	727	0	%100
35	MP2A	X	-1.831	-1.831	0	%100
36	MP2A	Z	-3.172	-3.172	0	%100
37	MP3A	X	-2.025	-2.025	0	%100
38	мР3А	Z	-3.507	-3.507	0	%100
39	MP4A	X	-1.831	-1.831	0	%100
40	MP4A	Z	-3.172	-3.172	0	%100
41	MP5A	X	-1.831	-1.831	0	%100
42	MP5A	Z	-3.172	-3.172	0	%100
43	M35A	X	-1.518	-1.518	0	%100
44	M35A	Z	-2.63	-2.63	0	%100
45	M40A	X	-2.186	-2.186	0	%100
46	M40A	Z	-3.786	-3.786	0	%100
47	M41	X	-1.143	-1.143	0	%100
48	M41	Z	-1.979	-1.979	0	%100
48	M42	X	131	-,131	0	%100
	M42	Z	227	227	0	%100
50 51	M43	X	-1.62	-1.62	0	%100
		Z	-2.805	-2.805	0	%100
52	M43 M44	X	865	865	Ō	%100
53 54	M44	Z	-1.498	-1.498	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	. Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	0	0	0	%100
2	M1	Z	-1.391	-1.391	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	-1.391	-1.391	0	%100
5	M7A	X	0	0	0	%100
6	M7A	Z	-1.391	-1.391	0	%100
7	M8	X	0	0	0	%100
8	M8	Z	-1.391	-1.391	0	%100
9	M13	X	0	0	0	%100
10	M13	Z	54	54	0	%100
11	RRU	X	0	0	0	<u></u> %100
12	RRU	Z	54	54	0	%100
13	M15	X	0	0	0	%100
14	M15	Z	54	54	0	%100
15	M16	X	0	0	0	%100
16	M16	Z	54	54	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	626	626	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	626	626	0	%100
21	M25	X	0	0	0	%100
22	M25	Z	061	061	0	%100
23	M26	X	0	0	0	%100
24	M26	Z	061	061	0	%100
25	M27	X	0	0	0	%100
26	M27	Z	54	54	0	%100
27	M28	X	0	0	0	%100
28	M28	Z	54	54	0	%100
29	M29	X	0	0	0	%100
30	M29	Z	181	181	0	%100
31	MP1A	X	0	0	0	%100
32	MP1A	Z	661	661	0	%100
33	M30	X	0	0	0	%100
34	M30	Z	481	481	0	%100
35	MP2A	X	0	0	0	%100
36	MP2A	Z	661	661	0	%100
37	MP3A	X	0	0	0	%100
38	MP3A	Z	8	8	0	%100
39	MP4A	X	0	0	0	%100
40	MP4A	Z	661	661	0	%100
41	MP5A	X	0	0	0	%100
42	MP5A	Z	661	661	0	%100
43	M35A	X	0	0	0	%100
44	M35A	Z	8	8	Ō	%100
45	M40A	X	0	0	0	%100
46	M40A	Z	677	677	0	%100
47	M41	X	0	0	0	%100
48	M41	Z	-1.017	-1.017	Ô	%100
49	M42	X	0	0	0	%100
50	M42	Z	337	337	Ö	%100
51	M43	X	0	0	0	%100
52	M43	Z	268	268	Ö	%100
53	M44	X	0	200	0	%100
54	M44	Z	965	965	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	. Start Location[ft.%]	End Location[ft.%
1	M1	X	.522	.522	0	%100
2	M1	Z	904	904	0	%100
3	M2	X	.522	.522	0	%100
4	M2	Z	904	904	0	%100
5	M7A	X	.522	.522	0	%100
	M7A	Z	904	904	0	%100
6	M8	X	.522	.522	0	%100
7	M8	Z	904	904	0	%100
8		X	.27	.27	0	%100
9	M13	Z	468	468	0	%100
10	M13	X	.27	.27	0	%100
11	RRU		468	468	0	%100
12	RRU	Z	.27	.27	0	%100
13	M15	X		468	0	%100
14	M15	Z	468	.27	0	%100
15	M16	X	.27		0	%100
16	M16	Z	468	468	0	%100
17	M19	X	.517	.517		%100
18	M19	Z	896	-,896	0	%100 %100
19	M20	X	.517	.517	0	
20	M20	Z	896	896	0	%100
21	M25	X	.051	.051	0	%100
22	M25	Z	088	088	0	%100
23	M26	X	.051	.051	0	%100
24	M26	Z	088	088	0	%100
25	M27	X	.27	.27	0	%100
26	M27	Z	468	468	0	%100
27	M28	X	.27	.27	0	%100
28	M28	Z	468	468	0	%100
29	M29	X	.103	.103	0	%100
	M29	Z	179	179	0	%100
30	MP1A	X	.33	.33	0	%100
31		Z	572	572	0	%100
32	MP1A	X	.33	.33	0	%100
33	M30	Z	572	572	0	%100
34	M30	X	.33	.33	0	%100
35	MP2A	Z	572	572	0	%100
36	MP2A		572	.4	0	%100
37	MP3A	X	693	693	0	%100
38	MP3A	Z		.33	0	%100
39	MP4A	X	.33	572	0	%100
40	MP4A	Z	572	372	0	%100
41	MP5A	X	.33	572	0	%100
42	MP5A	Z	572		0	%100 %100
43	M35A	X	.3	.3	0	%100
44	M35A	Z	52	52		%100
45	M40A	X	.199	.199	0	%100 %100
46	M40A	Z	345	345	0	
47	M41	X	.569	.569	0	%100
48	M41	Z	986	986	0	%100
49	M42	X	.31	.31	00	%100
50	M42	Z	537	537	0	%100
51	M43	X	.000545	.000545	0	%100
52	M43	Z	000944	000944	0	%100
53	M44	X	.574	.574	0	%100
54	M44	Z	994	994	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	.301	.301	0	%100
2	M1	Z	174	174	0	%100
3	M2	X	.301	.301	0	%100
4	M2	Z	174	174	0	%100
5	M7A	X	.301	.301	0	%100
6	M7A	Z	174	174	0	%100
7	M8	X	.301	.301	0	%100
8	M8	Z	174	174	0	%100
9	M13	X	.468	.468	0	%100
10	M13	Z	27	27	0	%100
11	RRU	X	.468	.468	0	%100
12	RRU	Z	27	27	0	%100
13	M15	X	.468	.468	0	%100
14	M15	Z	27	27	0	%100
15	M16	X	.468	.468	0	%100
16	M16	Z	27	27	0	%100
17	M19	X	.816	.816	0	%100
18	M19	Z	471	471	0	%100
19	M20	X	.816	.816	0	%100
20	M20	Z	471	471	Ö	%100
21	M25	X	.08	.08	0	%100
22	M25	Z	046	046	Ö	%100
23	M26	X	.08	.08	0	%100 %100
24	M26	Z	046	046	0	%100 %100
25	M27	X	.468	.468	0	%100 %100
26	M27	Z	27	27	0	%100 %100
27	M28	X	.468	.468	0	%100
28	M28	Z	27	27	0	%100
29	M29	X	.174	.174	0	%100 %100
30	M29	Z	1	-,1	0	%100
31	MP1A	X	.572	.572	0	%100
32	MP1A	Z	33	33	0	%100 %100
33	M30	X	.441	.441	0	%100
34	M30	Z	255	255	0	%100 %100
35	MP2A	X	.572	.572	0	%100
36	MP2A	Z	33	33	0	%100 %100
37	MP3A	X	.693	.693	0	%100
38	MP3A	Z	4	4	0	%100 %100
39	MP4A	X	.572	.572	0	%100 %100
40	MP4A	Z	33	33	0	%100 %100
41	MP5A	X	.572	.572		
42	MP5A	Z	33	33	0	%100 %100
43	M35A	X	.173	.173		%100
44	M35A	Z	1		0	%100
45	M40A	X	.383	1 .383	0	%100
46	M40A	Z	221		0	%100
47	M41	X		221	0	%100
48	M41	Z	.666	.666	0	%100
49	M42	X	385	385	0	%100
50	M42		.531	.531	0	%100
51	M43	Z X	307	307	0	%100
52	M43	Z	.183	.183	0	%100
	M44		106	106	0	%100
53 54		X	.66	.66	0	%100
J4	M44		381	381	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

11101112	Member Label	Direction	Start Magnitude[lb/ft.,	End Magnitude[lb/ft,F		End Location[ft,%]
1 1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M7A	X	0	0	0	%100
6	M7A	Z	0	0	0	%100
7	M8	X	0	0	0	%100
8	M8	Z	0	0	0	%100
9	M13	X	.54	.54	0	%100
10	M13	Z	0	0	0	%100
11	RRU	X	.54	.54	0	%100
12	RRU	Z	0	0	0	%100
13	M15	X	.54	.54	0	%100
14	M15	Z	0	0	0	%100
15	M16	X	.54	.54	0	%100
16	M16	Z	0	0	0	%100
17	M19	X	.441	.441	0	%100
18	M19	Z	0	0	0	%100
19	M20	X	.441	.441	0	%100
20	M20	Z	0	0	0	%100
21	M25	X	.043	.043	0	%100
22	M25	Z	0	0	0	%100
23	M26	X	.043	.043	0	%100
24	M26	Z	0	0	0	%100
25	M27	X	.54	.54	0	%100
26	M27	Z	0	0	0	%100
27	M28	X	.54	.54	0	%100
28	M28	Z	0	0	0	%100
29	M29	X	.169	.169	0	%100
30	M29	Z	0	0	0	%100
31	MP1A	X	.661	.661	0	%100
	MP1A	Z	0	0	0	%100
32	M30	X	.179	.179	0	%100
33	M30	Z	0	0	0	%100
34	MP2A	X	.661	.661	0	%100
35	MP2A	Z	0	0	0	%100
36	MP3A	X	.8	.8	0	%100
37	MP3A	Z	0	0	0	%100
38		X	.661	.661	0	%100
39	MP4A MP4A	Z	0	0	0	%100
40		X	.661	.661	0	%100
41	MP5A		0	0	0	%100
42	MP5A	Z	0	O O	Ö	%100
43	M35A	Z	0	0	Ö	%100
44	M35A		.764	.764	Ö	%100
45	M40A	X		0	Ŏ	%100
46	M40A	Z	.277	.277	0	%100
47	M41	X		0	0	%100
48	M41	Z	0	.324	0	%100 %100
49	M42	X	.324		0	%100
50	M42	Z	0	0	0	%100
51	M43	X	.689	.689	0	%100
52	M43	Z	0	0	0	%100 %100
53	M44	X	.194	.194		%100 %100
54	M44	Z	0	0	0	/6 100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

Member Distributed Loads (BLC 69: Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	.End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	.301	.301	0	%100
2	<u>M1</u>	Z	.174	.174	0	%100
3	M2	X	.301	.301	0	%100
4	M2	Z	.174	.174	0	%100
5	M7A	X	.301	.301	0	%100
6	M7A	Z	.174	.174	0	%100
7	M8	X	.301	.301	0	%100
8	M8	Z	.174	.174	0	%100
9	M13	X	.468	.468	0	%100
10	M13	Z	.27	.27	0	%100
11	RRU	X	.468	.468	0	%100
12	RRU	Z	.27	.27	0	%100
13	M15	X	.468	.468	0	%100
14	M15	Z	.27	.27	0	%100
15	M16	X	.468	.468	0	%100
16	M16	Z	.27	.27	0	%100
17	M19	X	.028	.028	0	%100 %100
18	M19	Z	.016	.016	Ö	%100 %100
19	M20	X	.028	.028	0	%100
20	M20	Z	.016	.016	Ö	%100 %100
21	M25	X	.003	.003	0	%100 %100
22	M25	Z	.002	.002	0	%100 %100
23	M26	X	.003	.003	0	%100 %100
24	M26	Z	.002	.002	0	%100 %100
25	M27	X	.468	.468	0	%100 %100
26	M27	Z	.27	.27	0	%100 %100
27	M28	X	.468	.468	0	%100 %100
28	M28	Z	.27	.27	0	%100 %100
29	M29	X	.124	.124	0	%100 %100
30	M29	Z	.071	.071	0	%100 %100
31	MP1A	X	.572	.572	0	%100 %100
32	MP1A	Z	.33	.33	0	
33	M30	X	.000344	.000344	0	%100 %100
34	M30	Z	.000199	.000344	0	%100 %100
35	MP2A	X	.572	.572		%100 %100
36	MP2A	Z	.33	.33	0	%100 %100
37	MP3A	X	.693	.693	0	
38	MP3A	Z	.093	.695		%100 %100
39	MP4A	X	.572	.572	0	
40	MP4A	Z	.33	.33	0	%100
41	MP5A	X	.572			%100
42	MP5A	Z	.33	.572	0	%100 %100
43	M35A	X		.33	0	%100 %400
44	M35A	Z	.173	.173	0	%100
45	M40A		.1	.1	0	%100
46	M40A	X Z	.903	.903	0	<u>%100</u>
47			.521	.521	0	%100
	M41	X	.134	.134	0	%100
48	M41	Z	.078	.078	0	%100
49	M42	X	.036	.036	0	%100
50	M42	Z	.021	.021	0	%100
51	M43	X	.828	.828	0	%100
52	M43	Z	.478	.478	0	%100
53	M44	X	.01	.01	0	%100
54	M44	Z	.006	.006	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

Mamber Label Direction Start Magaitudellb/ff Fad Magaitudellb/ff F Start Legation(ff %) Fad Legation(ff %)

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,.	End Magnitude[lb/ft,F		End Location[ft.%
1	M1	Z	.522	.522	0	%100
2	M1		.904	.904	0	%100
3	M2	X	.522	.522	0	%100
4	M2	Z	.904	.904	0	%100
5	M7A	X	.522	.522	0	%100
6	M7A	Z	.904	.904	0	%100
7	M8	X	.522	.522	0	%100
8	M8	Z	.904	.904	0	%100
9	M13	X	.27	.27	0	%100
10	M13	Z	.468	.468	0	%100
11	RRU	X	.27	.27	0	%100
12	RRU	Z	.468	.468	0	%100
13	M15	X	.27	.27	0	%100
14	M15	Z	.468	.468	0	%100
15	M16	X	.27	.27	0	%100
16	M16	Z	.468	.468	0	%100
17	M19	X	.062	.062	0	%100
18	M19	Z	.108	.108	0	%100
19	M20	X	.062	.062	. 0	%100
20	M20	Z	.108	.108	0	%100
21	M25	X	.006	.006	0	%100
22	M25	Z	.011	.011	0	%100
23	M26	X	.006	.006	0	%100
24	M26	Z	.011	.011	0	%100
25	M27	X	.27	.27	0	%100
26	M27	Z	.468	.468	0	%100
27	M28	X	.27	.27	0	%100
28	M28	Z	.468	.468	0	%100
29	M29	X	.074	.074	0	%100
30	M29	Z	,129	.129	0	%100
31	MP1A	X	.33	.33	0	%100
32	MP1A	Z	.572	.572	0	%100
33	M30	X	.076	.076	0	%100
34	M30	Z	.131	.131	0	%100
35	MP2A	X	.33	.33	0	%100
	MP2A	Z	.572	.572	0	%100
36 37	MP3A	X	.4	.4	0	%100
38	MP3A	Z	.693	.693	0	%100
	MP4A	X	.33	.33	0	%100
39	MP4A	Z	.572	.572	0	%100
40		X	.33	.33	0	%100
41	MP5A	Z	.572	.572	0	%100
42	MP5A	X	.3	.3	0	%100
43	M35A	Z	.52	.52	0	%100
44	M35A	X	.499	.499	0	%100
45	M40A	Z	.865	.865	Ō	%100
46	M40A	X	.262	.262	0	%100
47	M41	Z	.455	.455	Ö	%100
48	M41		.024	.024	0	%100
49	M42	X	.024	.024	0	%100
50	M42	Z	.373	.373	0	%100
51	M43	X		.645	0	%100
52 53	M43	Z	.645	.199	0	%100
	M44	X Z	.199	.155		%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

		Direction	Start Magnitude[ID/It,.	End wagnitudelipur.e.	Start Location[ft,%]	End Location[ft,%]
	M1	X	0	0	0	%100
2	M1	Z	1.391	1.391	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	1.391	1.391	0	%100
5	M7A	X	0	0	0	%100
6	M7A	Z	1.391	1.391	0	%100
7	M8	X	0	0	0	%100
8	M8	Z	1.391	1.391	0	%100
9	M13	X	0	0	0	%100
10	M13	Z	.54	.54	0	%100
11	RRU	X	0	0	0	%100
12	RRU	Z	.54	.54	0	%100
13	M15	X	0	0	0	%100
14	M15	Z	.54	.54	0	%100
15	M16	X	0	0	0	%100
16	M16	Z	.54	.54	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	.626	.626	0	%100
19	M20	X	0	0	0	%100
20	M20	Z	.626	.626	0	%100
21	M25	X	0	0	0	%100
22	M25	Z	.061	.061	0	%100
23	M26	X	0	0	0	%100
24	M26	Z	.061	.061	Ō	%100
25	M27	X	0	0	0	%100
26	M27	Z	.54	.54	0	%100
27	M28	X	0	0	0	%100
28	M28	Z	.54	.54	0	%100
29	M29	X	0	0	0	%100
30	M29	Z	.181	.181	Ō	%100
31	MP1A	X	0	0	Ö	%100
32	MP1A	Z	.661	.661	Ö	%100
33	M30	X	0	0	0	%100 %100
34	M30	Z	.481	.481	0	%100
35	MP2A	X	0	0	Ö	%100 %100
36	MP2A	Z	.661	.661	Ö	%100 %100
37	MP3A	X	0	0	Ö	%100 %100
38	MP3A	Z	.8	.8	Ö	%100 %100
39	MP4A	X	0	0	0	%100 %100
40	MP4A	Z	.661	.661	Ö	%100 %100
41	MP5A	X	0	0	Ö	%100
42	MP5A	Z	.661	.661	0	%100 %100
43	M35A	X	0	0	0	%100 %100
44	M35A	Z	.8	.8	0	%100 %100
45	M40A	X	0	0	0	%100 %100
46	M40A	Z	.677	.677	Ö	%100 %100
47	M41	X	0	0	0	%100 %100
48	M41	Z	1.017	1.017	0	%100 %100
49	M42	X	0	0	0	
50	M42	Z	.337	.337	0	%100
51	M43	X	0	0	0	%100
52	M43	Z	.268	.268		%100
53	M44	X	0	.268	0	%100
54	M44	Z	.965	.965	0	%100 %100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,% %100
1	M1	Z	522	522	0	%100 %100
2	M1	Z	.904	.904	0	%100 %100
3	M2	X	522	522	0	%100 %100
4	M2	Z	.904	.904	0	
5	M7A	X	522	522	0	%100
6	M7A	Z	.904	.904	0	%100
7	M8	X	522	522	0	%100
8	M8	Z	.904	.904	0	%100
9	M13	X	27	27	0	%100
10	M13	Z	.468	.468	0	%100
11	RRU	X	27	27	0	%100
12	RRU	Z	.468	.468	0	%100
13	M15	X	27	27	0	%100
14	M15	Z	.468	.468	0	%100
15	M16	X	27	27	0	%100
16	M16	Z	.468	.468	0	%100
17	M19	X	517	517	0	%100
18	M19	Z	.896	.896	0	%100
19	M20	X	517	517	0	%100
20	M20	Z	.896	.896	0	%100
21	M25	X	051	051	0	%100
22	M25	Z	.088	.088	0	%100
23	M26	X	051	051	0	%100
24	M26	Z	.088	.088	0	%100
25	M27	X	27	27	0	%100
26	M27	Z	.468	.468	0	%100
27	M28	X	27	27	0	%100
28	M28	Z	.468	.468	0	%100
29	M29	X	103	103	0	%100
30	M29	Z	.179	.179	0	%100
31	MP1A	X	33	33	0	%100
32	MP1A	Z	.572	.572	0	%100
	M30	X	33	33	0	%100
33	M30	Z	.572	.572	0	%100
34	MP2A	X	33	33	0	%100
35	MP2A	Z	.572	.572	0	%100
36	MP3A	X	4	4	0	%100
37		Z	.693	.693	0	%100
38	MP3A	X	33	33	0	%100
39	MP4A	Z	.572	.572	0	%100
40	MP4A	X	33	33	0	%100
41	MP5A	Z	.572	.572	0	%100
42	MP5A		3	3	Ö	%100
43	M35A	Z	.52	.52	0	%100
44	M35A		199	199	0	%100
45	M40A	X	.345	.345	Ö	%100
46	M40A	Z	569	569	0	%100
47	M41	X	.986	.986	0	%100
48	M41	Z		31	0	%100
49	M42	X	31	.537	0	%100
50	M42	Z	.537	000545	0	%100 %100
51	M43	X	000545		0	%100 %100
52	M43	Z	.000944	.000944	0	%100 %100
53	M44	X	574	574		%100 %100
54	M44	Z	.994	.994	0	70 IUU

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

Member Label Direction Start Magnitude III/ff Food Magnitude III/ff F Start Location Iff (4) Food Location Iff (4)

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	.End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	301	301	0	%100
2	M1	Z	.174	.174	0	%100
3	M2	X	301	301	0	%100
4	M2	Z	.174	.174	0	%100
5	M7A	X	301	301	0	%100
6	M7A	Z	.174	.174	0	%100
7	M8	X	301	301	0	%100
8	M8	Z	.174	.174	0	%100
9	M13	X	468	468	0	%100
10	M13	Z	.27	.27	0	%100
11	RRU	X	468	468	0	%100
12	RRU	Z	.27	.27	0	%100
13	M15	X	468	468	0	%100
14	M15	Z	.27	.27	0	%100
15	M16	X	468	468	0	%100
16	M16	Z	.27	.27	0	%100
17	M19	X	816	816	0	%100
18	M19	Z	.471	.471	0	%100
19	M20	X	816	816	0	%100
20	M20	Z	.471	.471	0	%100
21	M25	X	08	08	0	%100
22	M25	Z	.046	.046	0	%100
23	M26	X	08	08	0	%100
24	M26	Z	.046	.046	0	%100
25	M27	X	468	468	Ö	%100
26	M27	Z	.27	.27	Ö	%100
27	M28	X	468	468	0	%100 %100
28	M28	Z	.27	.27	Ö	%100
29	M29	X	174	174	0	%100 %100
30	M29	Z	1.1	1	0	%100 %100
31	MP1A	X	572	572	Ö	%100
32	MP1A	Z	.33	.33	Ö	%100
33	M30	X	441	441	0	%100
34	M30	Z	.255	.255	Ö	%100
35	MP2A	X	572	572	0	%100
36	MP2A	Z	.33	.33	0	%100 %100
37	MP3A	X	693	693	0	%100
38	MP3A	Z	.4	.4	ő	%100
39	MP4A	X	572	572	0	%100
40	MP4A	Z	.33	.33	0	%100 %100
41	MP5A	X	572	572	0	%100 %100
42	MP5A	Z	.33	.33	0	%100 %100
43	M35A	X	173	173	0	%100 %100
44	M35A	Z	113	173	0	70 IUU 0/ 100
45	M40A	X	383	383		%100
46	M40A	Z	.221	.221	0	%100 %100
47	M41	X	666		0	%100 %100
48	M41	Z	.385	666	0	%100
49	M42	X	.303	.385	0	%100
50	M42	Z	531	531	0	%100
51	M43	X	.307	.307	0	%100
52	M43	Z	183	183	0	%100
53	M44		.106	.106	0	%100
54	M44	X	66	66	0	%100
04	IVI44	Z	.381	.381	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction		.End Magnitude[lb/ft,F.		End Location[ft.%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100 %100
5	M7A	X	0	0	0	
6	M7A	Z	0	0	0	%100
7	M8	X	0	0	0	%100
8	M8	Z	0	0	0	%100
9	M13	X	54	54	0	%100
10	M13	Z	0	0	0	%100
11	RRU	X	54	-,54	0	%100
12	RRU	Z	0	0	0	%100
13	M15	X	54	54	0	%100
14	M15	Z	0	0	0	%100
15	M16	X	54	54	0	%100
16	M16	Z	0	0	0	%100
17	M19	X	441	441	0	%100
18	M19	Z	0	0	0	%100
19	M20	X	-,441	441	0	%100
20	M20	Z	0	0	0	%100
21	M25	X	043	043	0	%100
22	M25	Z	0	0	0	%100
23	M26	X	043	043	0	%100
24	M26	Z	0	0	0	%100
25	M27	X	54	54	0	%100
26	M27	Z	0	0	0	%100
27	M28	X	54	54	0	%100
28	M28	Z	0	0	0	%100
29	M29	X	169	169	.0	%100
30	M29	Z	0	0	0	%100
31	MP1A	X	661	661	0	%100
32	MP1A	Z	0	0	0	%100
33	M30	X	179	179	0	%100
34	M30	Z	0	0	0	%100
35	MP2A	X	661	661	0	%100
36	MP2A	Z	0	0	0	%100
37	MP3A	X	8	8	0	%100
38	MP3A	Z	0	0	0	%100
39	MP4A	X	661	661	0	%100
40	MP4A	Z	0	0	0	%100
41	MP5A	X	661	661	0	%100
42	MP5A	Z	0	0	0	%100
43	M35A	X	0	0	0	%100
44	M35A	Z	0	0	0	%100
45	M40A	X	764	764	0	%100
46	M40A	Ž	0	0	0	%100
47	M41	X	277	277	0	%100
48	M41	Z	0	0	0	%100
49	M42	X	324	324	0	%100
50	M42	Z	0	0	0	%100
51	M43	X	689	689	0	%100
52	M43	Z	0	0	0	%100
53	M44	X	194	194	0	%100
54	M44	Ž	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

Member Distributed Loads (BLC 75: Structure Wm (300 Deg)) (Continued)

-	Member Label	Direction		.End Magnitude[lb/ft,F.	Start Location[ft,%]	End Location[ft,%]
1	M1	X	301	301	0	%100
2	M1	Z	174	174	0	%100
3	M2	X	301	301	0	%100
4	M2	Z	174	174	0	%100
5	M7A	X	301	301	0	%100
6	M7A	Z	174	174	0	%100
7	M8	X	301	301	0	%100
8	M8	Z	174	174	0	%100
9	M13	X	468	468	0	%100
10	M13	Z	27	27	0	%100
11	RRU	X	468	468	0	%100
12	RRU	Z	27	27	0	%100
13	M15	X	468	468	0	%100
14	M15	Z	27	27	0	%100
15	M16	X	468	468	0	%100
16	M16	Z	27	27	0	%100
17	M19	X	028	028	0	%100
18	M19	Z	016	016	0	%100
19	M20	X	028	028	0	%100
20	M20	Z	016	016	0	%100
21	M25	X	003	003	0	%100
22	M25	Z	002	002	0	%100
23	M26	X	003	003	0	%100
24	M26	Z	002	002	0	%100
25	M27	X	468	468	0	%100
26	M27	Z	27	27	0	%100
27	M28	X	468	468	0	%100
28	M28	Z	27	27	0	%100
29	M29	X	124	124	0	%100
30	M29	Z	071	071	0	%100
31	MP1A	X	572	572	0	%100
32	MP1A	Z	33	33	0	%100
33	M30	X	000344	000344	0	%100
34	M30	Z	000199	000199	0	%100
35	MP2A	X	572	572	0	%100
36	MP2A	Z	33	33	0	%100
37	MP3A	X	693	693	0	%100
38	MP3A	Z	4	4	0	%100
39	MP4A	X	572	572	0	%100
40	MP4A	Z	33	33	0	%100
41	MP5A	X	572	572	0	%100
42	MP5A	Z	33	33	0	%100
43	M35A	X	173	173	0	%100
44	M35A	Z	1	1	0	%100
45	M40A	X	903	903	0	%100
46	M40A	Z	521	521	0	%100
47	M41	X	134	134	0	%100
48	M41	Z	078	078	0	%100
49	M42	X	036	036	0	%100
50	M42	Z	021	021	Ō	%100
51	M43	X	828	828	0	%100
52	M43	Z	478	478	0	%100
53	M44	X	01	01	0	%100
54	M44	Z	006	006	Ö	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

Mamber Label Discotion Start Magnitude IIb/ff End Magnitude IIb/ff E. Start Legation Iff %1 End Legation Iff %1

Member Distributed Loads (BLC 76: Structure Wm (330 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%] %100
1	M1	X	522	522	0	
2	<u>M1</u>	Z	904	904	0	%100 %100
3	M2	X	-,522	522	0	%100 %100
4	M2	Z	904	904	0	
5	M7A	X	522	522	0	%100
6	M7A	Z	904	904	0	%100
7	M8	X	522	522	0	%100
8	M8	Z	904	904	0	%100
9	M13	X	27	27	0	%100
10	M13	Z	468	468	0	%100
11	RRU	X	27	27	0	%100
12	RRU	Z	- 468	-,468	0	%100
13	M15	X	27	27	0	%100
14	M15	Z	468	468	0	%100
15	M16	X	27	27	0	%100
16	M16	Z	468	468	0	%100
17	M19	X	062	062	0	%100
18	M19	Z	108	108	0	%100
19	M20	X	062	062	0	%100
20	M20	Z	108	108	0	%100
21	M25	X	006	006	0	%100
22	M25	Z	011	011	0	%100
23	M26	X	006	006	0	%100
24	M26	Z	011	011	0	%100
25	M27	X	27	27	0	%100
26	M27	Z	468	468	0	%100
27	M28	X	27	27	0	%100
28	M28	Z	468	468	0	%100
29	M29	X	074	074	0	%100
30	M29	Z	129	-,129	0	%100
31	MP1A	X	33	33	0	%100
32	MP1A	Z	572	572	0	%100
33	M30	X	076	076	0	%100
34	M30	Z	131	131	0	%100
35	MP2A	X	33	-,33	0	%100
36	MP2A	Z	572	572	0	%100
37	MP3A	X	4	4	0	%100
38	MP3A	Z	693	693	0	%100
39	MP4A	X	33	-,33	0	%100
40	MP4A	Z	572	572	0	%100
41	MP5A	X	33	33	0	%100
42	MP5A	Z	572	572	0	%100
43	M35A	X	3	3	0	%100
44	M35A	Z	52	52	0	%100
45	M40A		499	499	0	%100
46	M40A	X Z	865	865	0	%100
47	M41	X	262	262	0	%100
48	M41	Z	455	455	0	%100
49	M42	X	024	024	0	%100
50	M42	Z	041	041	0	%100
51	M43	X	373	373	0	%100
52	M43	Z	645	645	0	%100
	M44	X	199	- 199	0	%100
53 54	M44	Z	344	344	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude(ksf)
		No D	ata to Print			

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [Ib]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N34	max	879.744	1	199.585	14	956.67	1	Ó	75	0	75	0	75
2		min	-976.099	7	24.908	8	-1088.728	7	0	1	0	1	0	1
3	N33	max	2149.768	1	170.147	14	1539.167	1	0	75	0	75	0	75
4		min	-1554.85	7	21.944	8	-1154.923	7	0	1	0	1	0	1
5	N60	max	830.043	8	56.381	2	458.614	8	0	75	0	75	0	75
6		min	-1192.658	2	-23.514	8	-651.143	2	0	1	0	1	0	1
7	N61	max	1510.389	2	65.691	20	1593.99	2	0	75	0	75	0	75
8		min	-1674.187	8	16.301	2	-1779.749	8	0	1	0	1	0	1
9	N83	max	4722.636	2	2239.093	20	2225.482	21	.006	2	.005	8	.005	8
10		min	-1532.256	8	750.923	65	752.29	66	005	8	005	2	005	2
11	N85A	max	6120.802	8	63.844	14	-553.716	8	.006	2	0	75	.008	8
12		min	-9243.56	2	17.158	71	-2206.846	14	006	8	0	1	008	2
13	Totals:	max	2065.225	9	2718.242	20	3356.951	1					20000000	
14		min	-2065.229	3	924.997	66	-3356.975	7				Lon		

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[ft]	LC	Shear	.Loc[ft]	Dir	LC	phi*Pncp	hi*Pnt [.phi*Mn v	.phi*Mn zCb	Egn
1	M1	L3X3X4	.450	5.278	8	.344	1.979	z	8	19187.9	46656	1.688	3.403 1	H2-1
2	M2	L3X3X4	.533	5.273	8	.295	5.273	Z	2	19638.8	46656	1.688	3.345 1	H2-1
3	M7A	L3X3X4	.639	5.278	2	.260	.264	V	8		46656	1.688	3.756 3	
4	M8	L3X3X4	.561	0	2	.181	5.273	z	2	19638.8	46656	1.688	3.756 2	H2-1
5	M13	PIPE 2.0	.555	1.5	2	.246	1.5		2	28843.4	32130	1.872	1.872 1	H1-1b
6	RRU	PIPE 2.0	.496	0	2	.358	1.5		2	28843.4	32130	1.872	1.872 2	H3-6
7	M15	PIPE 2.0	.232	0	2	.190	0		8	28843.4	32130	1.872	1.872 2	H1-1b
8	M16	PIPE 2.0	.415	0	8	.253	.5		8	28843.4	32130	1.872	1.872 2	H1-1b
9	M19	LL3x3x4x3	.103	2.435	2	.071	.315	z	44	75720.2	93312	7.427	4.415 1	H1-1b
10	M20	L3X3X6	.166	.344	2	.098	.315		38	57685.7	68364	2.307	5.322 2	H2-1
11	M25	PL3/8x7	.288	0	14	.007	1	V	2	59273.24	85050	.664	11.309 1	H1-1b
12	M26	PL3/8x7	.280	0	14	.005	0	V	2		85050	.664	11.309 1	H1-1b
13	M27	PIPE 2.0	.105	0	2	.241	3		2	28843.4	32130	1.872	1.872 2	H3-6
14	M28	PIPE 2.0	.079	0	2	.220	0		2	28843.4	32130	1.872	1.872 1	
15	M29	SR 0.75	.053	1.826	13	.025	0		2	3727.724 1	4313.8	.179	.179 1	H1-1b
16	MP1A	PIPE 2.0	.362	5.563	32	.129	4.625		26	20866.7	32130	1.872	1.872 4	H1-1b
17	M30	PIPE 2.0	.231	0	8	.008	0		8	12575.4	32130	1.872		H1-1b
18	MP2A	PIPE 2.0	.390	5.563	8	.157	5.563	-	32	20866.7	32130	1.872		H1-1b
19	MP3A	PIPE 2.5	.878	5.583	2	.589	4.75		2	30038.4	50715	3.596	3.596 4	H3-6
20	MP4A	PIPE 2.0	.826	5.563	8	.411	5.563		2		32130	1.872	1.872 4	
21	MP5A	PIPE 2.0	.360	5.563	2	.163	5.563		2	20866.7	32130	1.872	1.872 3	
22	M35A	PIPE 2.5	.864	8.913	2	.424	2.097		2	14366.5	50715	3.596	3.596 1	H1-1a
23	M40A	L2.5x2.5x4	.119	2.122	8	.045	4.244	z	2	21422.4	38556	1.114	2.328 1	H2-1
24	M41	L2.5x2.5x4	.721	3.667	2	.012	7.334	V	2		38556	1.114	2.038 1	H2-1
25	M42	PIPE 2.0	.815	8.838	2	.010	0		2		32130	1.872	1.872 2	
26	M43	L2.5x2.5x4	.091	1.515	2	.049	0	V	8	+	38556	1.114	2.471 1	H2-1
27	M44	L2.5x2.5x4	.534	3.141	8	.011	6.281	v	2		38556	1.114	2.129 1	H2-1

VzWSMART Tool® Vendor

Client:	Verizon Wireless	Date:	7/7/2023
Site Name:	PUTNAM SOUTH CT - SBA - Putnam Freight		9
MDG #:	5000242993		
Fuze ID #:	17123838	Page:	1
			Version 1.01

I. Mount-to-Tower Connection Check

Custom Orientation Required

2	
Nodes	Orientation
(Jabeled per Risa)	(per graphic of typical platform)

Nodes	Orientation
(labeled per Risa)	(per graphic of typical platform)
N34	50
N33	50

Tower Connection Bolt Checks

Bolt Orientation

Bolt Quantity per Reaction:

d_x (in) (Delta X of typ. bolt config. sketch): d_v(in) (Delta Y of typ. bolt config. sketch):

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips):

Required Shear Strength / bolt (kips):

Tensile Capacity / bolt (kips):

Shear Capacity / bolt (kips):

Bolt Overall Utilization:

Tower Connection Baseplate Checks

Yes Parallel

2 (Horizontal)
9
2
A307
0.75
1.6
1.8
14.9
8.9
20.6%

ATTACHMENT 4

Property Card: 63 INDUSTRIAL PARK RD

Town of Putnam, CT

Parcel Information

Parcel ID: 038-087-000

Vision ID: 3164

Owner: DMW PUTNAM LLC

Co-Owner:

Mailing Address: 643 MANLEY STREET

WEST BRIDGEWATER, MA 02379

Map: 038

Lot: -087

Land Area in Acres: 2.39
Use Description: Industrial

Zone:

Neighborhood Code: 2

Sale History

Book/Page: 0791/ 0090 Sale Date: 10/19/2016

Sale Price: \$200,000

Assessed Value

Land: \$84,700

Buildings: \$136,200

Extra Bldg Features: \$2,400

Outbuildings: \$102,000

Total: \$325,300

Building Details: Building #1

Exterior Detais

Building Type: Warehouse

Appr. Year Built:

Occupancy: 1
Stories: 1

Roof Cover: Enamel Metal Roof Type: Gable

Ext Wall Desc 1: Pre-finsh Metl

Ext Wall Desc 2:

Building Interior

Living Area: 9904

No. Total Rooms:

No. Bedroms:

No. Full Baths:

No. Half Baths:

Bath Style:

Kitchen Style:

Wall Type 1: Minim/Masonry

Wall Type 2:

Heat Type: Forced Air-Duc

Heat Fuel: Gas A/C Type: None

Environmental Inventory

EPA ID:

Zone: I

Allowed Use:

Agriculture/Livestock/Domestic Animals, Public Uses, Transportation, Utilities, Storage/Distribution, Business Services, Lodging/Dining/Conference/Banquet, Industrial, Technology, Accessory Uses,

Environmental Database Listings:

SDADB CPCS

PROPERTY

LWDS

ERNS

ENF

Disclaimer:

The Environmental Records Inventory layer was developed to identify properties where additional research and due diligence is warranted. The properties in this layer were included in a search of environmental databases, had a history of commercial, industrial, or institutional use, or have been zoned to allow a broad range of non-residential uses.

The information provided by these database references has been gathered from various sources and is not intended to be authoritative or to replace appropriate due diligence in researching the status of these properties.

ATTACHMENT 5

Certificate of Mailing — Firm

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Here	of Pacaint		
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of received)	ing employee)		eonost ^{ill}	\$003.19 ⁰ ZIP 06103 041L12203937	
USPS® Tracking Number Firm-specific Identifier	(Name, Street, C	Address ity, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
3.	Barney Seney, Mayo Town of Putnam 200 School Street Putnam, CT 06260 Bruce Fitzback, Lan Town of Putnam 200 School Street Putnam, CT 06260 DMV Putnam 643 Manley Street West Bridgewater, M	d Use Agent	AUG AUG	7 2023 USPS		
4.	2.0					
5.						
6.				+1		
	100000000000000000000000000000000000000					