Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

September 23, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 54 Waterbury Road, Prospect, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and related equipment on the ground, near the base of the tower. Cellco's use of the tower was approved by the Siting Council ("Council") in September of 2006 (EM-VER-115-060810). Cellco did reached out to the Town of Prospect in an effort to obtain copies of local approvals for the existing tower. The Town indicated, by email, that it was unable to locate the original tower approval. Included in <u>Attachment 1</u> is a copy of the Council's EM-VER-115-060810 approval and the Town's email correspondence regarding the original tower approvals.

Cellco now intends to modify its facility by replacing nine (9) of its existing antennas with six (6) new NHH-65B-R2B antennas and three (3) new Samsung MT6407-77A antennas on its existing antenna platform. Cellco also intends to remove three (3) remote radio heads ("RRHs") and install six (6) new RRHs on its existing antenna platform. A set of project plans showing Cellco's proposed facility modifications, new antennas and RRHs specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Prospect's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. September 23, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A Cumulative Power Density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. September 23, 2022 Page 3

Sincerely,

Kunig mm

Kenneth C. Baldwin

Enclosures

Copy to:

Robert Chatfield, Prospect Mayor Mary Barton, Land Use Inspector Charles and Averyll Bradshaw, Property Owner Aleksey Tyurin, Verizon Wireless

ATTACHMENT 1

Archived: Thursday, September 22, 2022 7:48:51 AM From: Egor Evsuk Sent: Wed, 21 Sep 2022 18:27:03 +0000ARC To: Mayo, Rachel; Baldwin, Kenneth Subject: Fwd: 54 Waterbury Rd / Prospect North CT Sensitivity: Normal

Rachel, FYI on request for original approvals for the Prospect North CT tower. Thanks

nization. Do not click links or open att

Get Outlook for iOS

From: Rosalyn Moffo <rmoffo@townofprospect.org> Sent: Wednesday, September 21, 2022 2:20 PM To: Egor Evsuk Subject: 54 Waterbury Rd

CAUTION: This email originated from outside of the

Good Afternoon,

After review of the files, it was found that we do not have any original approvals on the Tower on 54 Waterbury Rd. What we have been informed is to give notice to the Siting Council of the State of Connecticut on this and they will handle from here.

Thank you for time.

Rosalyn Moffo Land Use Tech

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us www.ct.gov/csc

September 1, 2006

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **EM-VER-115-060810** - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 54 Waterbury Road, Prospect, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on August 31, 2006, the Connecticut Siting Council (Council) acknowledged your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the condition that the modifications specified on drawing ST-1 and sealed by Jeffrey Kirby, P.E. are performed prior to the antenna installation and that a signed letter from a Professional Engineer is submitted to the Council to certify that the modifications have been properly completed.

The proposed modifications are to be implemented as specified here and in your notice dated August 10, 2006, including the placement of all necessary equipment and shelters within the tower compound. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

ry truly yours Colin Č. Tait

Vice Chairman CCT/laf

c: The Honorable Robert J. Chatfield, Mayor, Town of Prospect William J. Donovan, Zoning Enforcement Officer, Town of Prospect Thomas F. Flynn III, Esq., Sprint Nextel Communications Thomas J. Regan, Esq., Brown Rudnick Berlack Israels LLP Michele G. Briggs, New Cingular Wireless PCS, LLC Christopher B. Fisher, Esq., Cuddy & Feder LLP

VERIZON/PROSPECT/dc083106.DOC

ATTACHMENT 2

verizon PROSPECT NORTH CT 54 WATERBURY RD PROSPECT, CT 06712

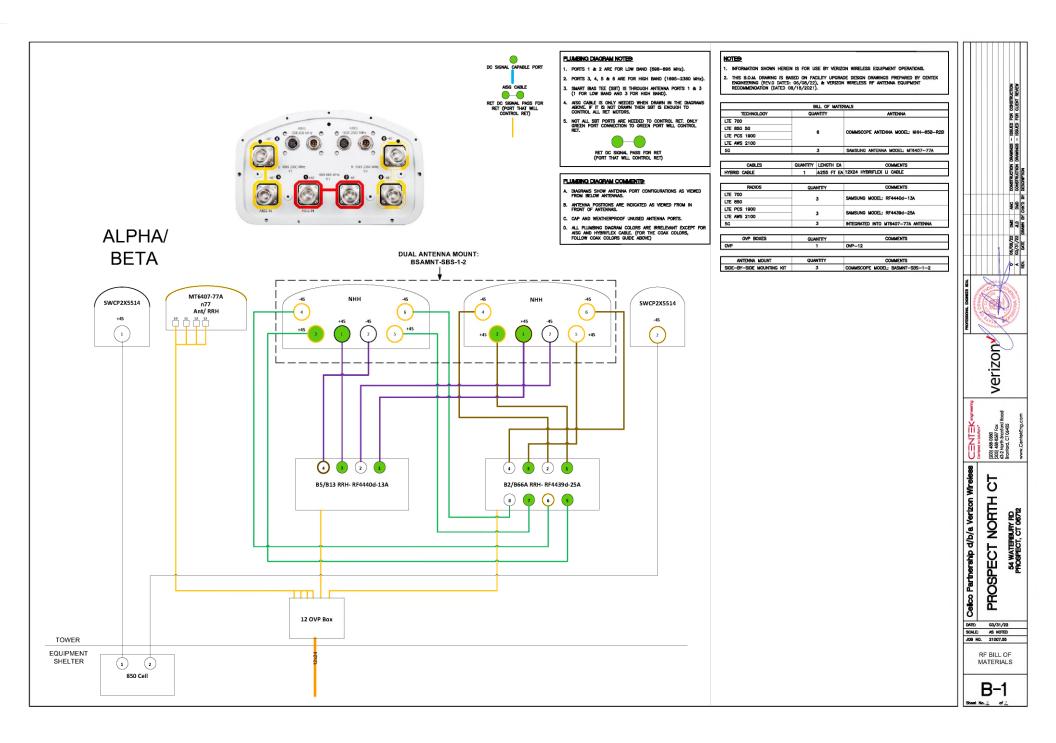
GENERAL NOTES AND SPECIFICATIONS

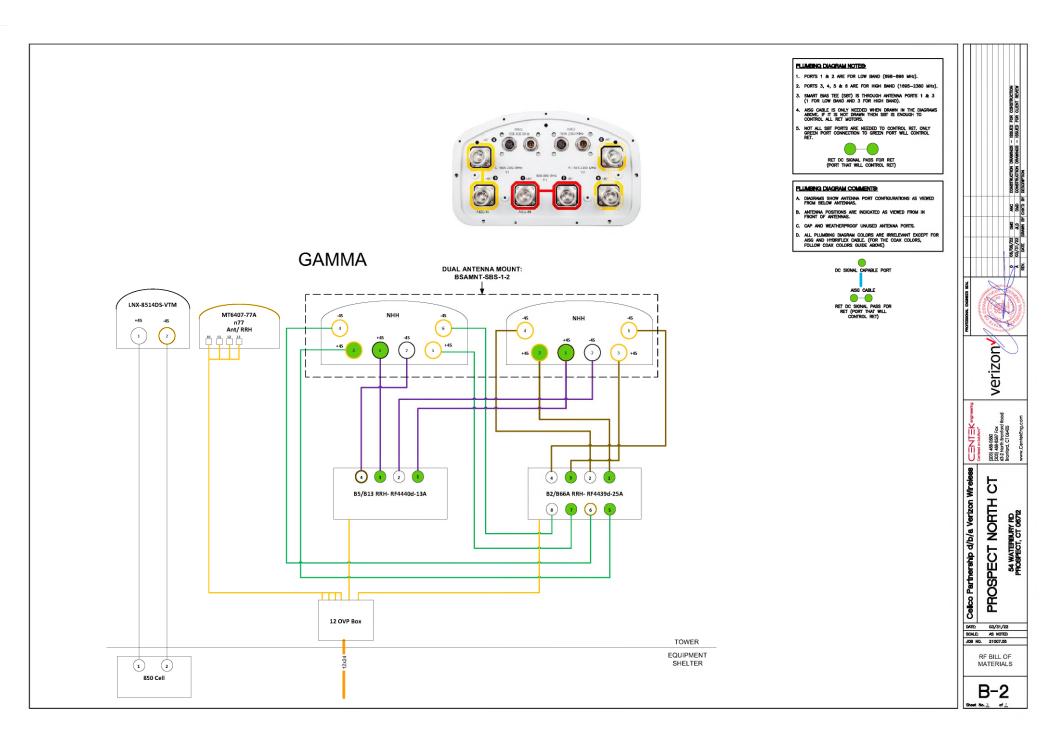
- ALL WORK SHALL BE IN ACCORDANCE WITH THE 2015 INTERNATIONAL BUILDING CODE AS MODIFIED BY THE 2016 CONNECTICUT SUPPLIEHT, INCLUDING THE THYEAT-222 REVISION TO STRUCTURES, STANDARDS FOR STELL ANTONAL ELECTRICAL CODE, AND LOOK, CODES.
- SHOULD ANY FIELD CONDITIONS PRECLUDE COMPLIANCE WITH THE DRAWINGS, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER AND SHALL NOT PROCEED WITH ANY AFFECTED WORK.
- CONTINUE TO BUILD FOR ALL BRANNESS AND SPECIFICATIONS IN THE CONTINUET OF DATABATERY STATES AND A STATES AND A STATES SHOWN IN THE SET OF DAWINGS. THE CONTINUETOR SHALL REATED PARTIES, THE SUBCOTTRACTORS SHALL REATED TO REAL PARTIEST OF THE INFORMATION THAT AFFECTS THER WORK.
- Contractor shall provide a complete build-out with all finished structural, mechanical, and electrical. Components and provide items as shown or indicated on the drawings or in the written specifications.
- SPEUFORMUS. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB ALL IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.
- CONTRACTOR SHALL SECURE AND PAY FOR ALL PERMITS AND ALL INSPECTIONS REQUIRED AND SHALL ALSO PAY FEES REQUIRED FOR THE GENERAL CONSTRUCTION, AND ALL TRADES AS APPLICABLE PERMITS SHALL BE PAND FOR BY THE RESPECTIVE SUBCONTRACTORS.
- CONTRACTOR SWILL MARTIAN A CURRENT SET OF DRAWINGS AND DESERVICIONS OF SET AT ALL THES MO NEXES DRITTERING OF NEW DRAWINGS TO SUBCONTRACTORS AND OTHER RELEAMET PARTIES AS SOOM AS THEY ARE MORE AVAILABLE, ALL LOU DRAWINGS SALL EE WARKED VOD AND REMAYED FROM THE CONTRACT AREA. THE CONTRACTOR SWILL FURNISH AN MS-BUILT SET OF DRAWINGS TO MOMER UFON CONFLICTION OF PROLECT.
- LOCATION OF EQUIPMENT, AN WORK SUPPLY COMPLETION OF EAUMOLT. LOCATION OF EQUIPMENT, AN WORK SUPPLY BY OTHERS THAT IS DAGRAMMATICALLY INDICATED ON THE DRAWINGS SHALL BE DETERMINED BY THE CONTRACTOR, THE CONTRACTOR SHALL DETERMINE LOCATIONS AND DIMENSIONS SUBJECT TO STRUCTURAL CONDITIONS AND WORK OF THE SUBCONTRACTORS.
- THE CONTRACTOR IS SOLELY RESPONSIBLE TO DETERMINE CONSTRUCTION THE CONTINUETOR IS SOLLT RESPONSELE TO DELEMENTE CONSTRUCTION PROCEDURE AND TSECURIENCE AND TO DENUET THE EXERT OF THE EXERT STRUCTURES AND ITS COMPONENT PARTS DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF MATTERER SHORING, BROKING, UNDERPRINTING, ETC. THAT MAY BE REDESSARY, MAINTAN EXISTING BULLING'S/PROPERTY'S OPERATIONS, COORDINET, BROKING WITH BULLING/PROPERTY OWNER.
- . ALL UTILITY WORK SHALL BE IN ACCORDANCE WITH LOCAL UTILITY COMPANY REQUIREMENTS AND SPECIFICATIONS.
- 12. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUBCONTRACTORS FOR ANY CONDITION PER MFR.'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.

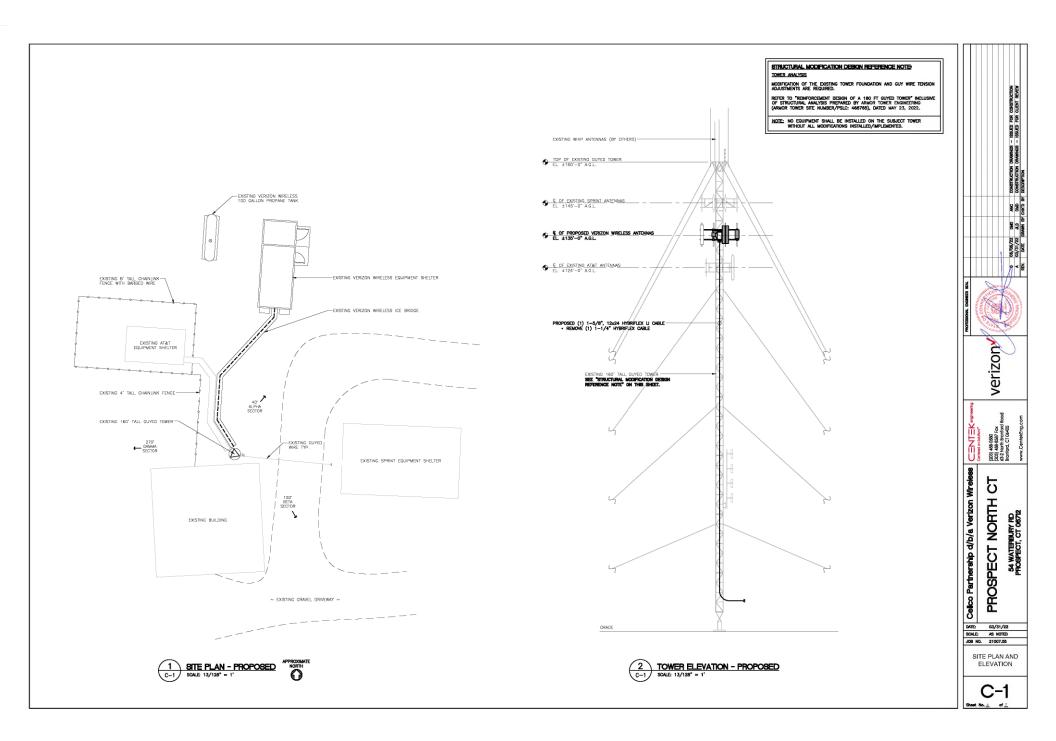
- 13. Any and all errors, discrepancies, and "Missed" items are to be brought to the attention of the vericon wireless construction wanger during the biodong process by the contractor, all these times are to be included in the bio. No "extra" will be allowed for Missed items.
- 14. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE SAFETY FROM THE TIME THE JOB IS AWARDED UNTIL ALL WORK IS COMPLETE AND ACCEPTED BY THE
- 15. CONTRACTOR TO REVIEW ALL SHOP DRAWINGS AND SUBMIT COPY TO ENGINEER FOR APPROVAL DRAWINGS MUST BEAR THE CHECKER'S INITIALS BEFORE SUBMITTING TO THE CONSTRUCTION MANAGER FOR REVIEW.
- THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES, AND EXISTING CONDITIONS AT THE SITE, PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA.
- COORDINATION, LAYOUT, FURNISHING AND INSTALLATION OF CONDUIT AND ALL APPURTEMANCES REQUIRED FOR PROPER INSTALLATION OF ELECTRICAL AND TELECOMMUNICATION SERVICE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 18. ALL EQUIPMENT AND PRODUCTS PURCHASED ARE TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTORS FOR ANY CONDITION PER THE MANUFACTURER'S RECOMMENDATIONS. CONTRACTOR TO SUPPLY THESE ITEMS AT NO COST TO OWNER OR CONSTRUCTION MANAGER.
- ALL DAMAGE CAUSED TO ANY EXISTING STRUCTURE SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTRACTOR WILL BE HILD LABLE FOR ALL REPAIRS REQURED PEDISTING STRUCTURES IF DAMAGED DURING CONSTRUCTION ACTIMITES.
- 20. THE CONTRACTOR SHALL CONTACT "CALL BEFORE YOU DIG" AT LEAST 48 HOURS PROR TO ANY EXCAVATIONS AT 1-800-922-4458, ALL UTILITES SHALL BE DEDITIFIED AND CLEARLY MARCE PRIOR TO ANY EXCAVATION WORK, CONTRACTOR SHALL MINITAN AND PROTECT MARKED UTILITIES THROUGHOUT PROJECT COMPLETION.
- 21. ALL CONSTRUCTION SHALL BE IN COMPLIANCE WITH THE GOVERNING BUILDING
- 22. BEFORE BEGINNING THE WORK, THE CONTRACTOR IS RESPONSIBLE FOR MAXING SUCH INVESTIGATIONS CONCERNING PHYSICAL COMMITIONS (SURFACE AND SUBSURFACE) AT OR CONTIGUOUS TO THE SITE WHICH MAY AFFECT PERFORMANCE AND COST OF THE WORK.
- 24. AS THE WORK PROGRESSES, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY CONDITIONS WHICH ARE IN CONFLICT OR OTHERWISE NOT CONSISTENT WITH THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONSTRUCTION DOCUMENTS AND SHALL NOT PROCEED WITH SUCH WORK UNTIL THE CONFLICT IS SATISFACTORILY RESOLVED.

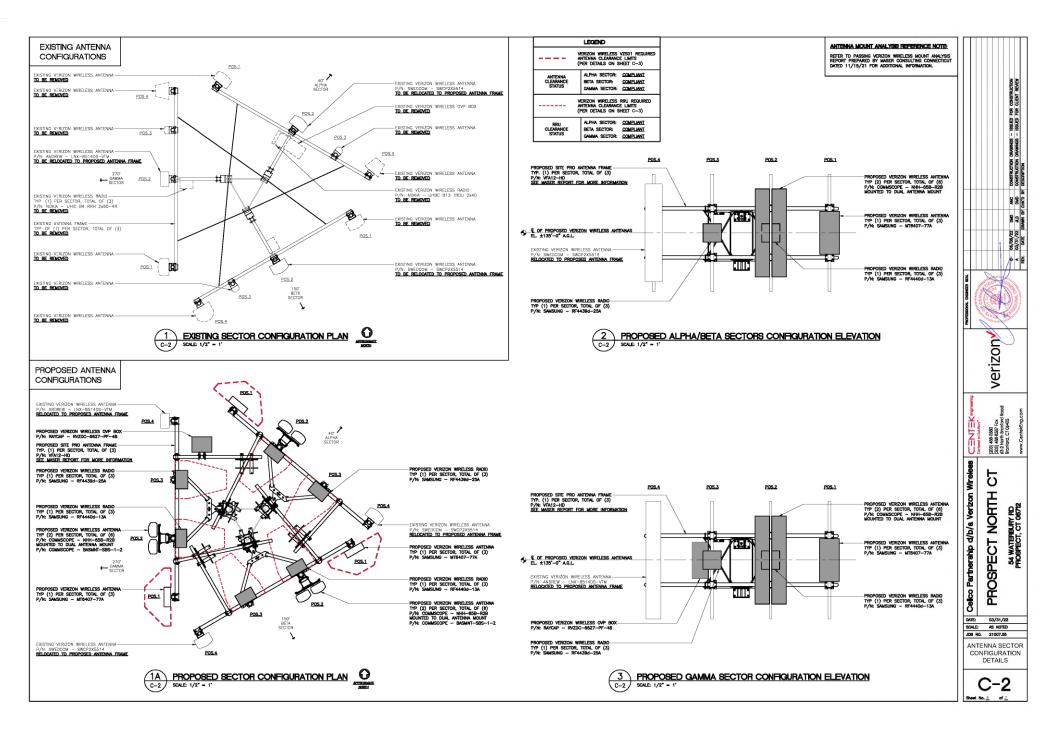
SITE DIRECTIONS

FROM: 20 ALEXANDER DRIVE 2ND FLOOR


- 1. START DUT GONG NORTH ON ALEXANDER DR TOMARD BANKES NOLSTRAL RD. 2. TURN RGHT ONTD BANKES MOLISTRAL RD. 3. TMAC THE 19 THIST ONTO THE AND TABLE TO ALEXAND THE TO FOLLOW CT-70/CT-68. 4. TURN HERT ONTO S WARD TO/CT-10/CT-68. 5. TURN LET ONTO MAN ST/CT-70/CT-68. 7. TURN LET ONTO MAN ST/CT-70/CT-68. 6. TURN LET ONTO MAN ST/CT-70/CT-68. 6. TURN HERT ONTO MAN ST/CT-60/CT-68. 6. TURN RGHT ONTO MARTERUMT RG/CT-68. 6. TURN RGHT ONTO MARTERUMT RG/CT-68.

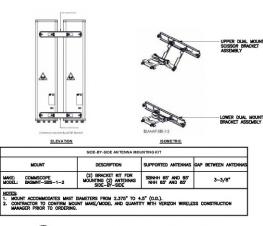

0 VICINITY MAP SCALE: 1" = 1000"


TO: 54 WATERBURY RD PROSPECT, CT 06712

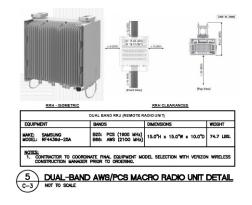

0.18 M 0.11 M 4.35 M 1.24 M 0.15 M 0.29 M 1.40 M 3.40 M 0.52 M

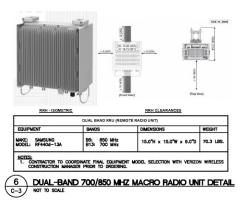
DEOK	an Basis:						
		FRNATIONAL BUILDING (IBC) AS MODIFIED	RV.	-		80	
		ernational Building (IBC) as modified IG CODE and Amendments.				TRUCTION	
	CRITERIA:					CUBAT	
		BASED ON TABLE 1604.5 OF THE 2015				5 5	
B/IN INTE CON	IPORTANCE FACTO RNATIONAL BUILD NECTICUT STATE	EED (TOWER): 97 MPH (Vond) (EXPOSUR OR 1.0 BASED ON ASCE 7-10) PER 20 DING CODE (IBC) AS WODIFIED BY THE 21 BUILDING CODE.	15 018			- Issued for construction - Issued for construction	
		NOT CONTROL): PER ASCE 7-10 MININ AND OTHER STRUCTURES.				DOWNINGS	
PRO	JECT SUM	MARY				88	NOL
1. THE PRO	POSED UPGRADE	SCOPE OF WORK AT THE EXISTING UNIN	WINED			LISHOC	DESCRIPTION
		REQUIRED MODIFICATION ALONG WITH GUY ESIGN IS BY OTHERS AND IS REFERENCE TRUCTION DRAWINGS.		ION ET			CHIKLD BY D
		ED LATTICE TOWER MOUNTED ANTENNA S					비
		NG ANDREW - HBXX-6517DS-A2M ANTE				83	The second secon
		NG ANTEL - BXA-70063-6CF ANTENNAS				88	5
• RE	NOVE (3) EXISTIN	NG AMPHENOL - BXA-171063-12CF-ED	IN-2			06/06/22	BM
		NG 1-1/4" HYBRIFLEX CABLE.					
		NG NOKIA RADIOS.				/o <	REV
• RE	NOVE (1) EXISTIN	NG RAYCAP OVP BOX.			R	Security	٦
• RE	ian (1) existin	g andrew — linx—85140s—VTM Antenn	AS.			ALCOT COL	
• RE	iain (2) existin	g swedcom - SwcP2x5514 Antennas.			DICINE		
		g 1-5/8" coaxial cables.					
		NG 1-5/8" SPARE COAXIAL CABLES.			PROFESSIONUL	and the second states	
		COPE - NHH-65B-R2B ANTENNAS.			2		4
		NG - NT6407-77A ALL-IN-ONE ANTENN NG - RF4439d-25A RRUs.	ey naus.			\geq	
		NG - RF4440d-13A RRUs.				5	
		COPE - BASMNT-SBS-1-2 ANTENNA M	OUNTS.			ĬŽ.	
 INS 	TALL (1) 12x24	HYBRIFLEX LI CABLE.				1	
• INS	TALL (1) OVP-1	2 BOX.				Ψ.	
		IPMENT SHELTER:			-	-	_
• REI	wove (3) existin	ng nokia radios.					
					1	Koo	
		DI UTON	_			Comment on Idulation (200) 488-0580 63-2 North Branford Road Branford, CT 06405	www.cenrexcng.com
РНО	JECTINH	ORMATION		_	Ī	203) 498-0590 203) 498-0590 2033 488-8587 Fo 53-2 North Branfo Stanford, CT 0640	
SITE NAM	E:	PROSPECT NORTH CT				12233	
SITE ADDR	ESS:	54 WATERBURY RD PROSPECT, CT 06712				0 2727.99 1	-
LESSEE/T	ENANT:	CELLCO PARTNERSHIP d.b.a. VERIZON WIRELESS 20 ALEXANDER DRIVE 2ND FLOOR WALLINGFORD, CT 06492			Wireless	너	
CONTACT	PERSON:	WALLINGFORD, CT 06492 WALTER CHARCZNSKI (CONSTRUCTION M VERIZON WIRELESS (860) 306-1806	ianager)		NIL NIL		
ENGINEER					ĽΫ.	E	
ENGINEER		CENTEX ENGINEERING, INC. 63—2 NORTH BRANFORD RD. BRANFORD, CT. 06405 (203) 488—0580			a Ve		
PROJECT	COORDINATES:	LATITUDE: 41° 30' 39.3408"N LONGITUDE: 72' 58' 56.3772"W			d/b	ECT NOR	
		(COORDINATES REFERENCED FROM VER WIRELESS RFDS DATED 08/18/2021)	ZON		rehip	U ≱£	
	INDEX				Partnership d/b/a Verizon	SPECT NORTH 54 WATEBURY RD FROBPECT: CT 06772	
SHT. NO.	DESCRIPTION			REV.		Q	
T1	TITLE SHEET			0	Celco	E C	
				-	o	-	
B-1 B-2		aterials - Alpha/Beta sectors Iaterials - Gamma sector		0	DATE	03/31/22	
0-2		MILINING - GAMMA SECIOR		-	JOB N		-
C-1	SITE PLAN AN	D ELEVATION		0	and N		\neg
C-2		FOR CONFIGURATION DETAILS		0		SHEET	
C-3	RF DETAILS			0		and the fi	
							٦
E-1	ELECTRICAL D	etails and specifications		0		T-1	

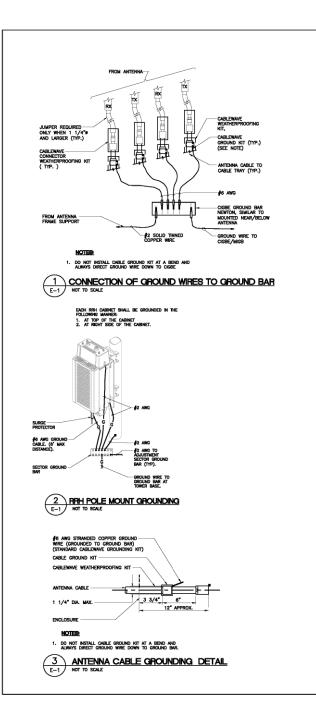
ELEVATION - ISOMETRIC

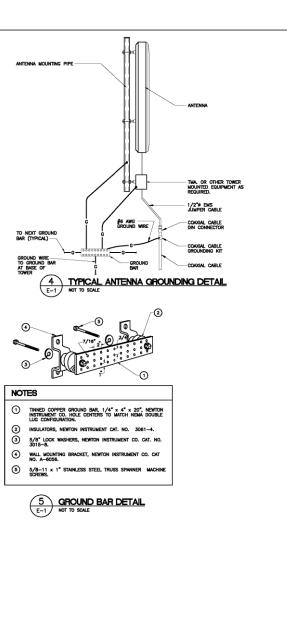

NHH-65C-R2B (BOTTOM VIEW)

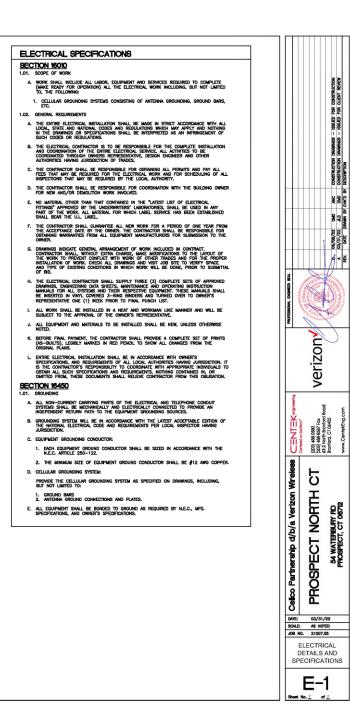
6-PORT SECTOR ANTENNA				
EQUIPMENT	DIMENSIONS	WEIGHT (WITH MOUNTING KIT)		
MAKE: COMMSCOPE MODEL: NHH-65B-R2B	72.0°L x 11.9°W x 7.0°D	43.7 LBS.		


	-		
	ANTENN	A FRONT	
	SECTOR	ANTENNA	
Equipment	DIMENSI	ONS	WEIGHT
WAKE: SAMSUNG WODEL: MT6407-77A		x 16.1"W x 5.5"D T TO EXCEED)	87 LBS. (NOT TO EXCEED)
LEARANCES AND SERVICE A	REA		
	31.5*	HORIZONTAL DIST.	ANCE: 31.5"
TOP:	0110	(ANT. TO ANT.)	
	15.7*	(ANT. TO ANT.) VERTICAL DISTAN (ANT. TO ANT.)	CE: 63.0"









SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A


Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

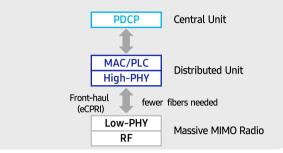
C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

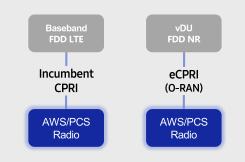
AWS/PCS MACRO RADIO DUAL-BAND AND HIGH POWER

FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

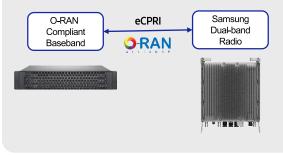
RF4439d-25A



Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration


Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

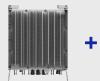
O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.


The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

Same as an incumbent radio volume

 2 FH connectivity
 O-RAN capability
 More carriers and spectrum

Technical Specifications

ltem	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

SAMSUNG

700/850MHZ MACRO RADIO

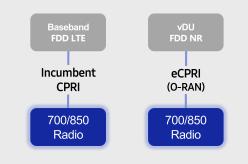
DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4440d-13A

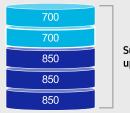
Homepage samsungnetworks.com



Youtube www.youtube.com/samsung5g

Points of Differentiation

Continuous Migration

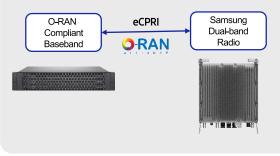

Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.

The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

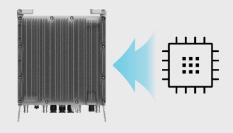
Supports up to 5 carriers


Technical Specifications

Item	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.


Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Secured Integrity

Access to sensitive data is allowed only to authorized software.

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

6-port sector antenna, 2x 698–896 and 4x 1695–2360 MHz, 65° HPBW, 2x RET. Both high bands share the same electrical tilt.

- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- Separate RS-485 RET input/output for low and high band
- One RET for low band and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO

General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Grounding Type	RF connector body grounded to reflector and mounting bracket
Performance Note	Outdoor usage Wind loading figures are validated by wind tunnel measurements described in white paper WP-112534-EN
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	4.3-10 Female
RF Connector Location	Bottom
RF Connector Quantity, high band	4
RF Connector Quantity, low band	2
RF Connector Quantity, total	6

Remote Electrical Tilt (RET) Information

RET Interface, quantity2 female 2 maleInput Voltage10-30 VdcInternal Bias TeePort 1 Port 3Internal RETHigh band (1) Low band (1)Power Consumption, idle state, maximum2 W	RET Interface	8-pin DIN Female 8-pin DIN Male
Internal Bias TeePort 1 Port 3Internal RETHigh band (1) Low band (1)	RET Interface, quantity	2 female 2 male
Internal RET High band (1) Low band (1)	Input Voltage	10-30 Vdc
	Internal Bias Tee	Port 1 Port 3
Power Consumption, idle state, maximum 2 W	Internal RET	High band (1) Low band (1)
	Power Consumption, idle state, maximum	2 W
Power Consumption, normal conditions, maximum 13 W	Power Consumption, normal conditions, maximum	13 W

Page 1 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

Protocol

Dimensions

301 mm 11.85 in
180 mm 7.087 in
1828 mm 71.969 in
19.8 kg 43.651 lb

Array Layout

-	Тор	Array R1 Y1
_	_	Y1 Y2
Y1	Y2	
	R1	
Left	Right	51
Bo	ttom	

View from the front of the antenna (Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance

Operating Frequency Band

50 ohm

1695 - 2360 MHz | 698 - 896 MHz

Page 2 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

3GPP/AISG 2.0 (Single RET)

301 mm 11.85 in
180 mm 7.087 in
1828 mm 71.969 in
19.8 kg 43.651 lb

AISG RET UID

ANxxxxxxxxxxxxxxxx1 ANxxxxxxxxxxxxxx2

Conns

Freq (MHz)

RET (SRET)

<u>NHH</u>

Polarization	±45°
Total Input Power, maximum	900 W @ 50 °C

Electrical Specifications

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	2300-2360
Gain, dBi	14.9	15	17.7	17.9	18.4	18.7
Beamwidth, Horizontal, degrees	65	60	71	69	64	57
Beamwidth, Vertical, degrees	12.4	11.2	5.7	5.2	4.9	4.6
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	0-7
USLS (First Lobe), dB	13	14	18	18	19	18
Front-to-Back Ratio at 180°, dB	30	29	31	30	29	31
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	30	30	30	30	30	30
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50°C, maximum, watts	300	300	300	300	300	300

Electrical Specifications, BASTA

Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	2300-2360
Gain by all Beam Tilts, average, dBi	14.5	14.5	17.3	17.7	18.1	18.5
Gain by all Beam Tilts Tolerance, dB	±0.6	±1.1	±0.4	±0.4	±0.5	±0.3
Gain by Beam Tilt, average, dBi	0 ° 14.4 7 ° 14.6 14 ° 14.3	0 ° 14.7 7 ° 14.7 14 ° 14.1	0 ° 17.2 4 ° 17.3 7 ° 17.3	0 ° 17.6 4 ° 17.7 7 ° 17.7	0 ° 18.0 4 ° 18.2 7 ° 18.1	0 ° 18.3 4 ° 18.5 7 ° 18.6
Beamwidth, Horizontal Tolerance, degrees	±2	±2.1	±3	±4.1	±6.5	±2.9
Beamwidth, Vertical Tolerance, degrees	±0.7	±0.7	±0.3	±0.2	±0.3	±0.2
USLS, beampeak to 20° above beampeak, dB	13	14	16	16	17	15
Front-to-Back Total Power at 180° ± 30°, dB	23	22	27	27	25	25
CPR at Boresight, dB	22	21	23	23	22	19

Page 3 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

COMMSCOPE°

10	7	16	13	11	4				
ations									
Effective Projective Area (EPA), frontal			0.26 m ² 2.799 ft ²						
, lateral		0.22 m² 2.36	58 ft²						
al		278.0 N @ 150	km/h (62.5 lbf @) 150 km/h)					
al		230.0 N @ 150	km/h (51.7 lbf @) 150 km/h)					
mum		537.0 N @ 150	km/h (120.7 lbf	@ 150 km/h)					
		282.0 N @ 150	km/h (63.4 lbf @) 150 km/h)					
		241 km/h 14	49.75 mph						
	ations	ations , frontal , lateral al	ations 0.26 m² 2.79 , frontal 0.22 m² 2.36 al 278.0 N @ 150 al 230.0 N @ 150 mum 537.0 N @ 150 282.0 N @ 150	ations , frontal 0.26 m² 2.799 ft² , lateral 0.22 m² 2.368 ft² al 278.0 N @ 150 km/h (62.5 lbf @ al 230.0 N @ 150 km/h (51.7 lbf @ mum 537.0 N @ 150 km/h (120.7 lbf	ations , frontal 0.26 m² 2.799 ft² 0.22 m² 2.368 ft² al 278.0 N @ 150 km/h (62.5 lbf @ 150 km/h) al 230.0 N @ 150 km/h (51.7 lbf @ 150 km/h) 537.0 N @ 150 km/h (120.7 lbf @ 150 km/h) 282.0 N @ 150 km/h (63.4 lbf @ 150 km/h)				

Packaging and Weights

Width, packed	409 mm 16.102 in
Depth, packed	299 mm 11.772 in
Length, packed	1952 mm 76.85 in
Weight, gross	32.3 kg 71.209 lb

Regulatory Compliance/Certifications

_

Agency	Classification
CHINA-ROHS	Below maximum concentration value
ISO 9001:2015	Designed, manufactured and/or distributed under this quality management system
ROHS	Compliant

Included Products

Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

Page 4 of 4

©2021 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: September 14, 2021

ATTACHMENT 3

	General	Power	Density					
Site Name: Plymouth N								
Tower Height: Verizon @ 135ft								
-				CALC.		MAX.		
				POWER		PERMISS.	FRACTION	
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	DENS	FREQ.	EXP.	MPE	Total
*F&S Oil				451	0.0031	0.3007	0.10%	
*New Haven Transit				451	0.0031	0.3007	0.10%	
*US Post Office				415	0.0031	0.2767	0.11%	
*Central Comm.				452	0.0031	0.3013	0.10%	
*CT Motor Club				150.92	0.0381	0.2	1.91%	
*Sprint	1	350	146	865	0.0064	0.5767	0.11%	
*Sprint	5	622	146	1900	0.0571	1	0.57%	
*Sprint	1	875	146	865	0.0161	0.5767	0.28%	
*Sprint	1	3112	146	1900	0.0571	1	0.57%	
*Sprint	2	1556	146	2500	0.0571	1	0.57%	
*Clearwire	2	153	146	2496	0.0056	1	0.06%	
*Clearwire	1	211	151	23 GHz	0.0036	1	0.04%	
*AT&T-UMTS	2	836	126	850	0.0418	0.5667	0.74%	
*AT&T-PCS-UMTS	2	1154	126	1900	0.0576	1	0.58%	
*AT&T-LTE	2	1239	126	700	0.0619	0.4667	1.33%	
*AT&T-PCS-LTE	2	1876	126	1900	0.0937	1	0.94%	
*AT&T-GSM	2	836	126	850	0.0418	0.5667	0.74%	
VZW 700	4	689	135	0.0054	751	0.5007	1.09%	
VZW CDMA	2	476	135	0.0019	877.26	0.5848	0.32%	
VZW Cellular	4	700	135	0.0055	874	0.5827	0.95%	
VZW PCS	4	2992	135	0.0236	1975	1.0000	2.36%	
VZW AWS	4	1671	135	0.0132	2120	1.0000	1.32%	
VZW CBAND	2	13335	135	0.0526	3730.08	1.0000	5.26%	
								20.15%
* Source: Siting Council								

ATTACHMENT 4

Reinforcement Design of a 160 ft Guyed Tower

Site Number/PSLC: 468765 Site Name: Prospect North CT County: New Haven Location: Waterbury Rd, Prospect, CT

Checked By:

Patrick Botimer Structural Design Engineer V

Kenneth Tang Date: 2022.05.26 10:36:03-07'00'

Centek Engineering

63-2 North Branford Rd,

Branford, CT 06405

May 2022

May 23, 2022

Doug Drost Centek Engineering 63-2 North Branford Rd Branford, CT 06405

RE: Verizon Wireless – 468765 – Prospect North CT 54 Waterbury Rd, Prospect, CT

Doug:

We have completed the modification design of the subject tower. The tower was analyzed according to the code wind and ice parameters outlined in the *Code Requirements Table* following this letter.

The subject tower is a 160' guyed tower consisting of all-welded sections with pipe legs and pipe bracing. The tower has been previously reinforced. Tower face dimension is 30" the full height above an 80" tapered base. The tower mast is laterally supported by three levels of guying attached to one set of three guy anchors. Foundation capacities were based on a foundation investigation completed by our office and site-observed soil characteristics.

The loading used in the analysis consisted of the existing antennas/lines as well as the following for Verizon Wireless at 135' on existing antenna frames:

- (6) Commscope NHH-65B-R2B antennas [2 per sector]
- (2) Swedcom SWCP 2X5514 antennas [1ea for Alpha & Gamma]
- (1) Andrew LNX-8514DS-VTM antenna [Beta]
- (3) Samsung MT6407-77A antennas [1 per sector]
- (3 ea) Samsung RF4439d-25A and RF4440d-13A units [1 ea. per sector]
- (1) RVZDC-6627-PF-48 OVP-12
- (18) 1-5/8" coax cables and (1) 12x24 hybriflex cables

The proposed feed line is located as shown on drawing E-7.

The scope of reinforcement, as shown in drawing 22012, includes the following:

- Expand the foundation pad from an existing square 3'-4" pad to 8'x3'4" pad
- Change guy cable tension in guy levels 2 and 3

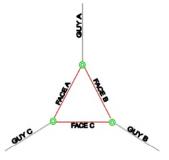
With the reinforcements properly install, the tower and foundation will have adequate capacity to support the proposed loading with a maximum stress rating of 99.5%. We recommend a post-construction inspection be completed by a structural engineer to document that tower-mounted equipment has been placed in compliance with the requirements of this analysis. For a detailed listing of the tower's post-reinforcement performance, please see pages 11 and 13 of the calculations.

We appreciate the opportunity to provide our professional services to Centek Engineering and Verizon Wireless, and if you have any questions concerning this analysis, please contact us.

Sincerely,

ARMOR TOWER, INC.

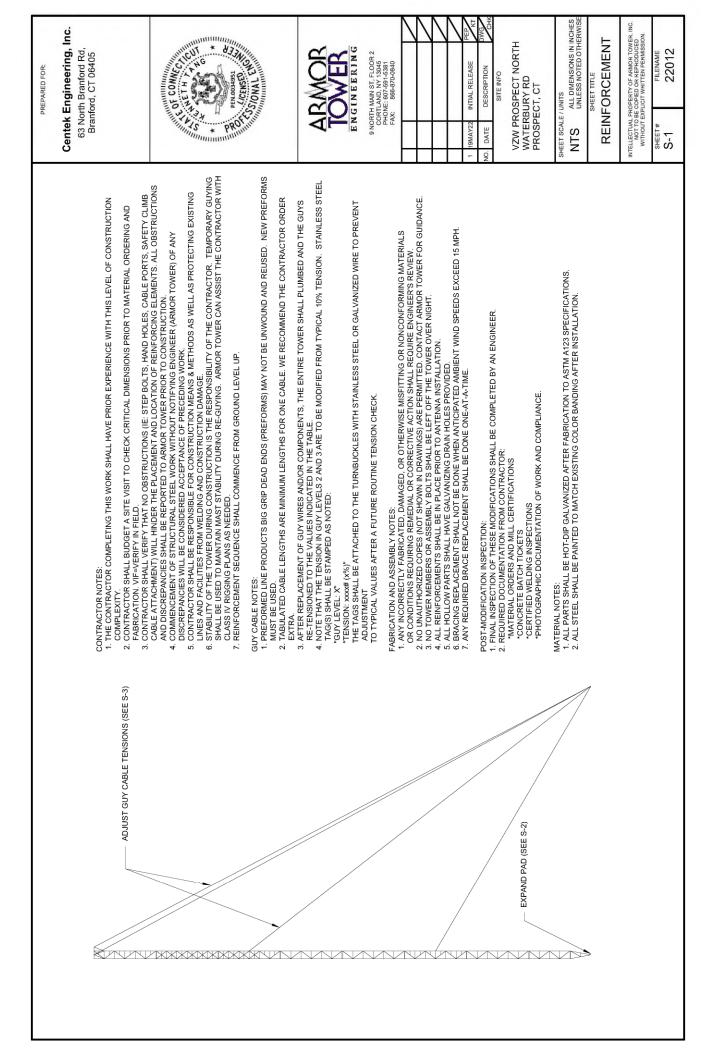
Patrick Propert Structural Design Engineer III

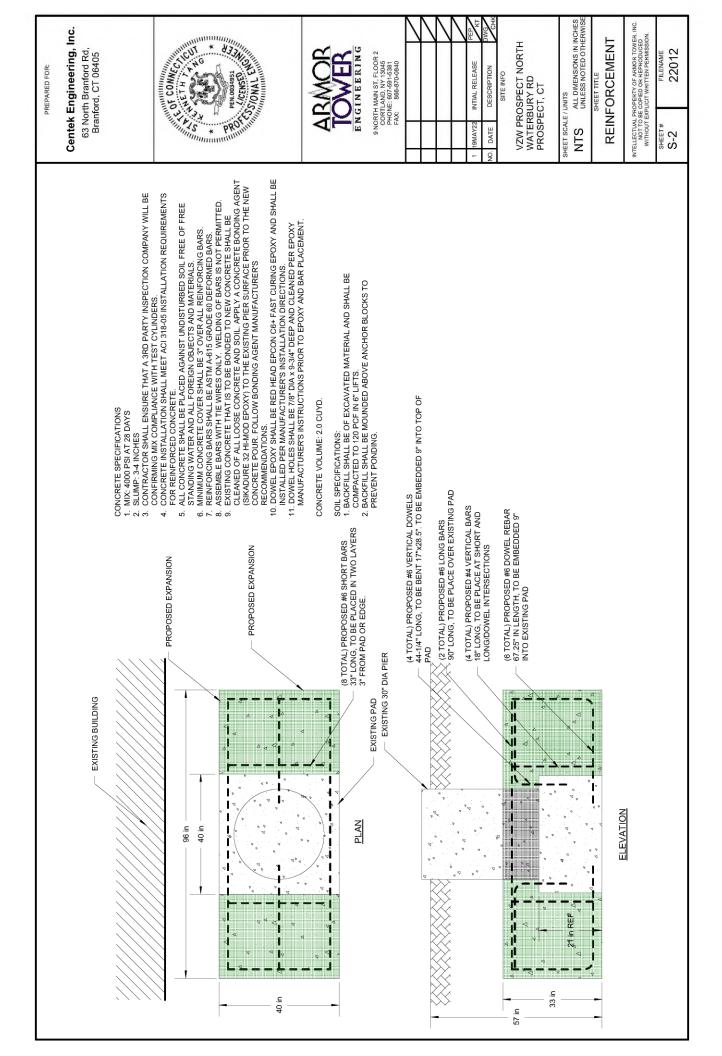


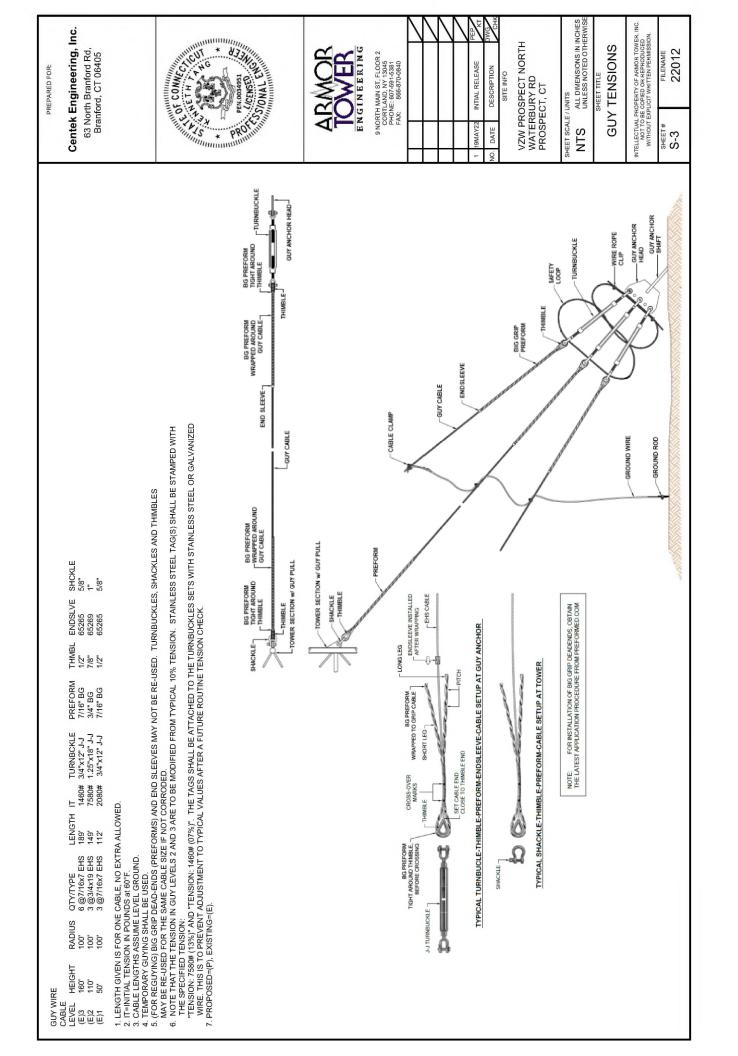
CODE REQUIREMENTS

Governing code:	2015 CT State Building Code				
Code basis/adoption:	2015 International Building Code				
Referenced standard:	ANSI/TIA 222-G-2				
Basic wind speed: (3-sec. gust):	Per IBC 2015 1609.3.1 and ASCE 7-10				
	V_{asd} 97 mph with no ice				
	50 mph with $3/4$ " concurrent ice				
County of site location:	New Haven				
ASCE 7 Special wind region:	No				
Structure/Risk Category:	II				
Exposure Category:	С				
Topographic Category: (Method 1)	1 - no topographic escalation				
Crest Height:	0 ft				

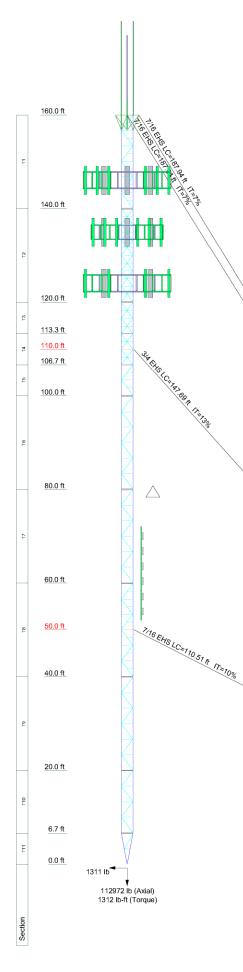
PRIMARY ASSUMPTIONS CONSIDERED IN THIS PROJECT

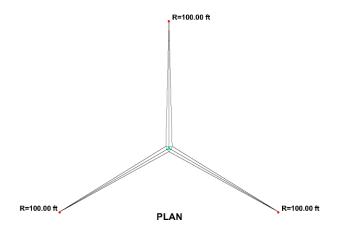

- 1. Leg A is assumed to be oriented North.
- 2. Allowable steel stresses are defined by AISC-LRFD-99/360-16 and all welds conform to AWS D1.1 specification.
- 3. If reserved antennas/feed lines by other carriers or the tower owner are to be considered in this analysis, it is the responsibility of Centek Engineering and its affiliates to provide this information.



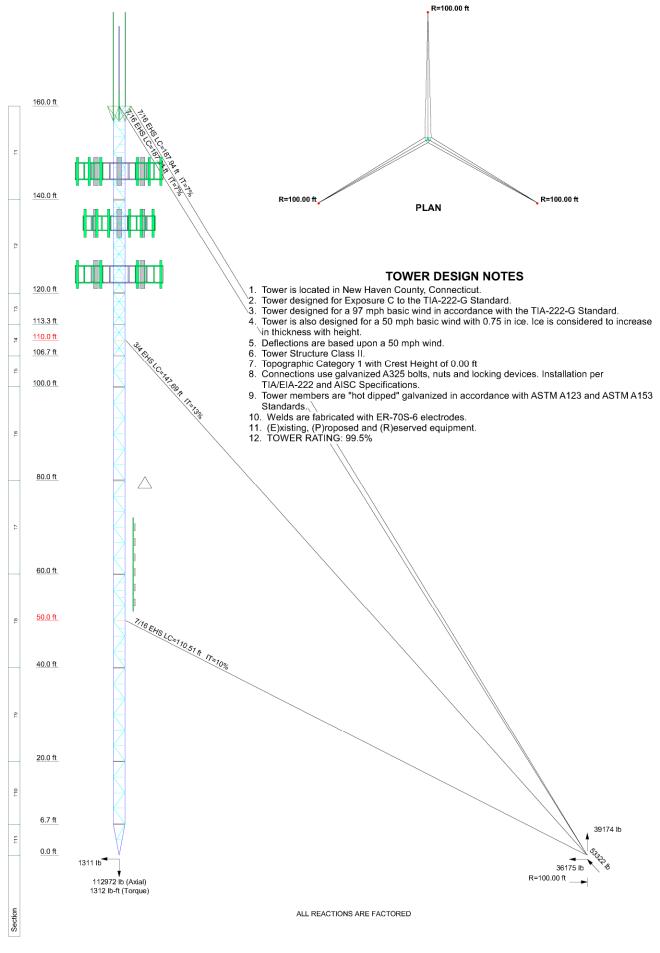

- 4. Any deviation from the analyzed antenna loading will require a re-analysis of the tower for verification of structural integrity. This analysis has considered the proposed feed lines to be located as shown on drawing E-7.
- 5. This analysis assumes all tower members are galvanized adequately to prevent corrosion of the steel and that all tower members are in "like new" condition with no physical deterioration. This analysis also assumes the tower has been maintained properly per TIA 222-H Annex J recommended inspection and maintenance procedures for tower owners and is in a plumb condition. Armor Tower has not completed a condition assessment of the tower.
- 6. No accounting for residual stresses due to incorrect tower erection can be made. This analysis assumes all bolts are appropriately tightened providing necessary connection continuity and that the installation of the tower was performed by a qualified tower erector.
- 7. Foundation capacities are based on a foundation investigation completed by this office in March 2022 and site-observed soil characteristics. If more accurate data for soil properties is required, Armor Tower can assist the client in obtaining the appropriate boring logs and subsurface investigation.
- 8. No conclusions, expressed or implied, shall indicate that Armor Tower has made an evaluation of the original design, materials, fabrication, or potential installation or erection deficiencies. Any information contrary to that assumed for the purpose of preparing this analysis could alter the findings and conclusions stated herein.
- Tower member sizes and geometry are based on a tower reinforcement design completed by Bay State Design in January 2011 and a structural analysis completed be Trylon in October 2016. Existing antenna loading is based in part on the Trylon structural analysis, as well as emails with

Centek Engineering. It is our assumption that this data is complete and accurately reflects the existing conditions of the tower and equipment. Armor Tower has not been commissioned to field-validate this data. Armor Tower reserves the right to add to or modify this report as more information becomes available. Proposed equipment was outlined in an RF design (Rev. 1) dated August 2021.

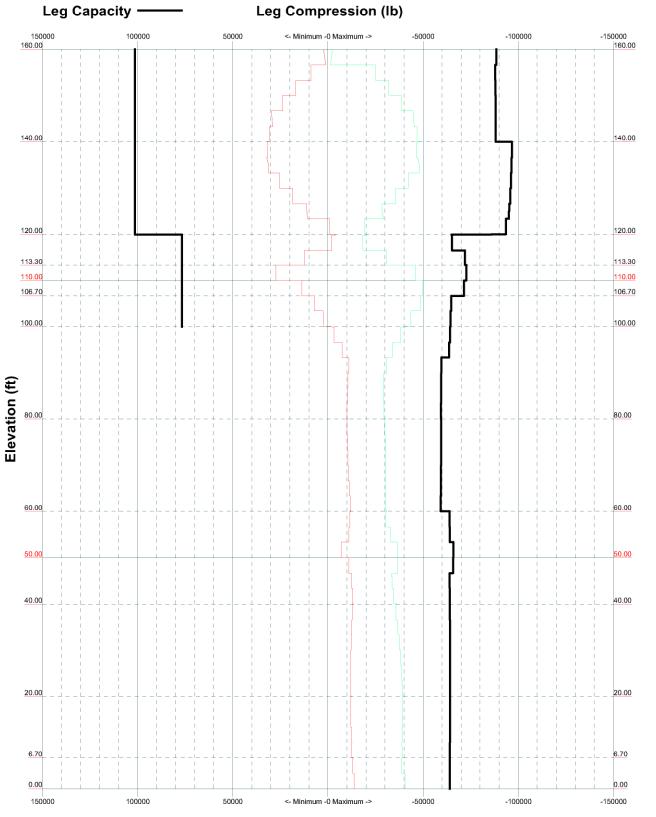

10. The investigation of the load carrying capacities of the antenna supporting frames/mounts is outside the scope of this analysis. Antenna mount certification can be completed under a separate contract.



PREPARED FOR:	= THE MODIFICATIONS		TUATION THAT MAY	VE AS A SOURCE OF									TIS VITAL THAT THE CONNER POINT OF CONNER POINT OF CONNER POINT OF TIS VITAL THAT THE CONNEL THAT THAT THAT THAT THAT THAT THAT THA							
 | | | | |
 | | | |
 | | | | ι γ γ
 | | |
 | | PAGE PROPERTIES AND A DATE AND A |
|---|--------------------------|---|--|---|---|---|--|--|--|---|---|---|---|---|---|---|---|---|--|---
---	---	--	---
--	---	--	---
--	--	--	
--	--	--	
--			
		ANY BY	AN ANTICIPATE EVERY SITUATION THAT MAY
 | | | | |
 | | | |
 | | ω
 | | ω
 | | | |
 | φ <u>ε</u> | |
| MI IS AN ON-SITE VISUAL AND HANDS-ON INSF
UDING A REVIEW OF CONSTRUCTION REPOR | | DOCUMENTATION PROVIDED BY THE GENERAL CONTRACTOR (GC), AS WELL AS
INSPECTION DOCUMENTS REVOLDED BY ARD PARTN INSPECTORS. THE MI STO
ENSURE THE INSTALATION WAS CONSTRUCTED IN ACCORDANCE WITH THE
CONTRACT DOCUMENTS, MMELY THE MODIFICATION DRAWINGS AS DESIGNED
THE ENSURED OF BECORD FORD. | NOCUMENT, CODE OR POLICY CAN ANTICIPAT | DE. ACCORDINGLY, THIS CHECKLIST IS INTENE | OUDING FRINCIPLES IN ESTABLISTING GUIDELING | MI IS TO CONFIRM INSTALLATION CONFIGURA | AND IS NOT A REVIEW OF THE MOUTINGATION DESIGNTI SELF. THE MITUNEED OF THE MOUTINGATION DESIGN, OWNERSHIP OF TH
DEES NOT TAKE OWNERSHIP OF THE MODIFICATION DESIGN, OWNERSHIP OF TH
THE DETUDATION INFOLUTION DESIGNS EEEEETIVENEES AND INTEGED TO RESIDES | WITH THE EOR AT ALL TIMES. THE MI INSPECTOR SHALL INSPECT AND NOTE | FORMANCE/NONCONFORMANCE AND PROVIC
TACT FOR EVALUATION. | NSURE THAT THE REQUIREMENTS OF THE MI | GENERAL CONTRACTOR (GC) AND THE MI INSPECTOR BEGIN COMMUNICATING AND
COORDINATING AS SOON AS A PURCHASE ORDER (PO) IS RECEIVED. IT IS | EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN REACHING OUT THE
OTHER PARTY, IE CONTACT INFORMATION IS NOT KNOWN, THE GC AND/OR
INSPECTOR SHALL CONTACT THE OWNER POINT OF CONTACT. | | VICE LEVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGG | SERVICE LEVEL COMMITMENT:
THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO
ENAMOLE: THE
FERDING THE FEFECTIVENESS OF DELIVERING AN MI REPORT: | SERVICE LEVEL COMMITMENT:
THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OF
ENHANCE THE
EFFICIENCY AND EFFECTIVENESS OF DELIVERING AN MI REPORT:
1. THE GG SHALL PROVIDE A MINIMUM OF 5 BUSIESS DAYS NOTI
1. OF THE MI INSECTOR AS TO WHEN THE SITE WILL BE READ | VICE LEVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGG
ANCT AND
ENCY AND
ENCOTAND
E GC SHALL PROVIDE A MINIMUM OF 5 BUSIN
0, TO THE MINISPECTOR AS TO WHEN THE S
ECONDUCTE CONDUCTE OLO | //CE LEVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGG
CANCE THE
ENCOTANE
ENCOTANE
ENCOTANE
ENCOTANE
E CONDUCTE
IN INSPECTOR AS TO WHEN THE SI
E CONDUCTER
IN INSPECTOR CORDINATE CLO:
ROLOCT
HIE GC AND MI INSPECTOR COORDINATE CLO:
ROLOCT
ROLOCT | RVICE LEVEL COMMITMENT:
E FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED T
HANCE THE
FLENCY AND EFFECTIVENESS OF DELIVERING AN MI REPORT:
THE GS SHALL PROVIDE A MINIMUM OF SUBSURSES DATS NOTICE, PREF
THE GS SHALL PROVIDE A MINIMUM OF SUBSURSES DATS NOTICE, PREF
THE GS CAND. PROVIDE A MINIMUM OF SUBSURSES DATS NOTICE, PREF
THE GS CAND. PROVIDE A MINIMUM OF SUBSURSES DATS NOTICE, PREF
THE GS CAND. PROVIDE A MINIMUM OF SUBSURSES DATS NOTICE, PREF
RECORDUCTED.
THE GS CAND. MINSPECTOR CONDINATE CLOSELY THROUGHOUT THE F
PROJECT.
WINEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR
WIND TAREOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING | RVICE LEVEL COMMITMENT:
E FOLLOWING RECOMMENDATIONS AND SUGGI
HANCY THE
FLANCY THE
FLANCY THE FFFECTIVENESS OF DELIVERING
THE GC SHALL PROVIDE A MINIMIM OF SUGSIN
10, TO THE MI USPECTOR AS TO WHEN THE SI
BE CONDUCTED.
THE GC AND MI INSPECTOR AS TO WHEN THE SI
WHEN POSSIBLE, IT IS PREFERED TO HAVE TH
SMULTANEOUSLY FOR ANY GUY WIRE TENSIO
WHEN POSSIBLE, IT IS PREFERED TO HAVE TH
SMULTONS. | //CELEVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGG
ANCE THE
ENEVENTHE
ENEVENTHE
ENEVENTHE
FOLLOWING RECOMMENDATIONS AND SUGG
ANCE THE MINISPECTOR AS TO WHEN THE SI
E CONDUCTED.
I.E CONDUCTED
E CONDUCTED
FOLLOWING RECORDINATE CLOI
RECONDUCTED
FOLLOWING RECORDINATE CLOI
FOLLOWING
FOLLOWING
E CONDUCTED
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOWING
FOLLOW | ///CE LEVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGG
ENCY THE
ENCY THE
ENCY THE
ENCY THE
ENCY THE ENCY THE AND SUGG
ANCT THE AND SECTOR AS TO WHEN THE SI
E CONDUCTED
IF CONDUCTED
FE CONDUCTED | AVICE LEVEL COMMITMENT:
FEOLLOWING RECOMMENDATIONS AND SUGGI
HANCE THE
HANCE THE MINING RECOMMENDATIONS AND SUGGI
HANCE SALL PROVIDE AMINIMAN OF 5 BUSIN
THE GC SHALL PROVIDE AMINIMAN OF 5 BUSIN
THE GC SANDLINISPECTOR COORDINATE CLOS
PROJECT
WIEN POSSIBLE. IT IS PREFERED TO HAVE TH
RADUECT
WIEN POSSIBLE. IT IS PREFERED TO HAVE TH
RECONDUCTED.
WIEN POSSIBLE. IT IS PREFERED TO HAVE TH
WIEN POSSIBLE. IN IS PREFERED TO HAVE TH
WIEN POSSIBLE. IN IS PREFERED TO HAVE TH
WIEN POSSIBLE. IN IS PREFERED TO HAVE TH
WIENT POSSIBLE. IN IS PREFERED TO H | SERVICE LEVEL COMMITMENT:
THE FOLLOWING RECOMMENDATIONS AND SUGGI
EFICIENCY AND EFFECTIVENESS OF DELIVERING
EFICIENCY AND FFFECTIVENESS OF DELIVERING
T. THE GG SHALL PROVIDE AMINIMUM OF 5 BUSIN
1, TO THE MINSPECTOR AS TO WHEN THE SI
BE CONDUCTED.
2. THE GG AND MINSPECTOR COORDINATE CLOS
PROJECT.
2. WHEN POSSIBLE, IT IS PREFERERED TO HAVE TH
SMULTANEOUSLY FOR ANY GUY WIRE TENSIO
PROJECT.
2. WHEN POSSIBLE, IT IS PREFERERED TO HAVE TH
SMULTANEOUSLY FOR ANY GUY WIRE TENSIO
PROJECT.
2. WHEN POSSIBLE, IT IS PREFERERED TO HAVE TH
SMULTANEOUSLY FOR ANY OHOOSET OCO
RENIER ALL CONSTRUCTION FACILITIES ARE A
INSPECTOR IS ON SITE. | SERVICE LEVEL COMMITMENT:
THE FOLLOWING RECOMMENDATIONS AND SUGGI
EFFICIENCY AND EFFECTIVENESS OF DELIVERING
EFFICIENCY AND FFFECTIVENESS OF DELIVERING
1, TH GG SANAL PROVIDE AMINIMUM OF 5 BUSIN
1, TO THE MINSPECTOR AS TO WHEN THE SI
BE CONDUCTED.
THE GG SAND MINSPECTOR AS TO WHEN THE SI
BE CONDUCTED.
. WHEN POSSIBLE. IT IS PREFERED TO HAVE TH
SMULTANEOUSLY FOR ANY GUY WIRE TENSION
PROJECT.
. WHEN POSSIBLE. IT IS PREFERED TO HAVE TH
SMULTANEOUSLY FOR ANY GUY WIRE TENSION
PERATIONS.
MILTHEFORE. IT IS PREFEREND TO HAVE TH
DURING MI TO HAVE ANY MINORA DEFICIENCIES
RESURE ALL CONSTRUCTION FACILITIES ARE A
INSPECTOR IS ON SITE.
MINIMA ARE TO BE TAKEN AND INCLUDED IN
MINIMA. ARE TO BE TAKEN AND AND AND AND AND AND AND AND AND AN | //CELEVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGGI
ANDE THE
CIENCY AND EFFECTIVENESS OF DELIVERING
CIENCY AND EFFECTIVENESS OF DELIVERING
FIE COSHALL PROVIDE A MINIMUM OF 5 BUSIN
7: TO THE MINSPECTOR AS TO WHEN THE SI
E CONDUCTED.
FIE OF SUBJECTION
FIE OF AND MINSPECTOR AS TO WHEN THE SI
E CONDUCTED.
FIE OF SUBJECTION
FIE OF AND MINIMUM OF 5 BUSING
A CARACTOR AND MINIMUM OF 5 BUSING
FIE OF AND THE MINIMUM OF 5 BUSING
FIE OF AND MINIMOR DEFICIENCIES
FIE OF AND THE MINING PACIFICIENCIES
A CARACTORIS ON SITE.
INTERPHOTOS:
UNEED PHOTOS:
UNEED PHOTOS: | SERVICE LEVEL COMMITMENT:
THE FOLLOWING RECOMMENDATIONS AND SUGGI
EFICIENCY AND EFFECTIVENESS OF DELIVERING
EFICIENCY AND EFFECTIVENESS OF DELIVERING
T. THE GO SANAL PROVIDE AMINIMUM OF 5 BUSIN
1. TO THE MINSPECTOR AS TO WHEN THE SI
BE CONDUCTED.
THE GC ADD MI INSPECTOR AS TO WHEN THE SI
BE CONDUCTED.
. WHEN POSSIBLE. IT IS PREFERED TO HAVE TH
SWLUTANGOUSLY FOR ANY GUY WIRE TENSION
PROJECT.
. WHEN POSSIBLE. IT IS PREFERED TO HAVE TH
SWLUTANGOUSLY FOR ANY GUY WIRE TENSION
PROJECT.
MILTHEEFORE THE GC MAY CHOOSE TO COO
RERATIONS.
MILTHEEFORE THE GC MAY CHOOSE TO COO
ERSURE ALL CONSTRUCTION FACILITIES ARE A
MINUM. ARE TO BE TAKEN AND INCLUDED IN
PRECONSIRUCTION GENERAL SITE CONDITION
PROCORMINANT ARE TO BE TAKEN AND INCLUDED IN
PRECONSIRUCTION GENERAL SITE CONDITION
PRECONSIRUCTION MENTION FOR CONDITION
PRECONSIRUCTION MENTION FOR CONDITION
PRECONSIRUCTION MENTIONED IN CONDINANT
PRECONSIRUCTION MENTIONED IN CONDICINANT
PRECONSIRUCTION MENTIONED IN CONDICINANT
PRECONSIRUCTION GENERAL SITE CONDITION
PRECONSIRUCTION MENTIONED IN CONDICINANT
PRECONSIRUCTION MENTIONED | ERVICE LEVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGGI
FOLLOWING RECOMMENDATIONS AND SUGGI
COLLOWING RECOMMENDATIONS AND SUGGI
THE GCS SHALL PROVIDE A MINIMUM OF 5 BUSIN
THE GCS SHALL PROVIDE A MINIMUM OF 5 BUSIN
THE COST AND MINISPECTOR AS TO WHEN THE SI
BE CONDUCTED.
AND THE MINISPECTOR AS TO WHEN THE SI
BE CONDUCTED.
THE AC AND MINISPECTOR COORDINATE CLOS
PROJECT.
WHEN POSSIBLE. IT IS PREFERRED TO HAVE TH
ROLLECT.
WHEN POSSIBLE. IT IS PREFERRED TO HAVE TH
WINUT ANGOUSLY FOR ANY GUY WIRE TENSION
PROJECT.
WHEN POSSIBLE. IT IS PREFERRED TO TAVE TH
WINUT ANGOUSLY FOR ANY GUY WIRE TENSION
PROJECT ON STRUCTION FACILITIES ARE A
MINITARE ALL CONSTRUCTION FACILITIES ARE A
MINISPECTORIS ON SIGN.
ECURED PHOTOS:
ELECTION AGUN INSPECTION
HOTOGRAPHS DURING THE REINFORCEMENTING
RECONDAND INSPECTION
AND TERRALS
PHOTOS FALL CONTINUES
PHOTOS FALL CONTINUES
PHOTOS FALL CONTINUES
PHOTOS FALL CONTINUES
PHOTOS FALL CONTINUES
PHOTOS FALL CONDITION
AND TERRALS
PHOTOS FALL CANDING
PHONENTING
AND MINISPECTION AND INSPECTION
AND MATERIALS
PHOTOS FALL CANDING
PHONENTING
AND MATERIALS
PHOTOS FALL CONTINUES
AND MATERIALS
AND MATERIALS
AND MATERIALS
AND MATERIALS
AND MATERIALS
AND MATERIALS
AND MATERIALS
AND MATERIALS
AND MATERIALS | SERVICE LEVEL COMMITMENT:
THE FOLLOWING RECOMMENDATIONS AND SUGGI
EFICIENCY AND EFFECTIVENESS OF DELIVERING
EFICIENCY AND EFFECTIVENESS OF DELIVERING
T. THE GO SANAL PROVIDE A MINIMUM OF 5 BUSIN
1. TO THE MINSPECTOR AS TO WHEN THE SI
BE CONDUCTED.
. WHEN POSSIBLE. IT IS PREFERED TO HAVE TH
SULUTANGOUSLY FOR ANY GUY WIRE TENSION
PROJECT.
. WHEN POSSIBLE. IT IS PREFERED TO HAVE TH
SULUTANGOUSLY FOR ANY GUY WIRE TENSION
PROJECT.
. WHEN POSSIBLE. IT IS PREFERED TO HAVE TH
SULTANGOUSLY FOR ANY GUY WIRE TENSION
PROJECT.
MILTHEREFORE THE GC MAY CHOOSE TO COO
REATIONS.
MILTHEREFORE THE GC MAY CHOOSE TO COO
ENSURE ALL CONSTRUCTION FACILITIES ARE A
INSPECTOR IS ON SITE.
. INSPECTOR IS ON SITE.
. RECOURED PHOTOS:
BETWEN THE GC AND THE MINSPECTOR THE FC
MINIMUM, ARE TO BE TAKEN AND INCLUDED IN
PHOTOGRAPHS DURING THE REINFORCEMENTING
FRECOURED PHOTOS:
BETWEN THE CONSTRUCTION ACILITIES ARE A
INSPECTOR IS ON SITE.
. PHOTOS OF ALL CRITICAL DETAILS
. PHOTOS OF ALL CRITICAL DETAILS
. PHOTOS OF ALL CRITICAL DETAILS
. FOUNDARTION MODIFICATIONS
. PHOTOGRAPHS DURING THE REINFORCEMENTING
. PHOTOGRAPHS DURING THE REINFORCEMENTIN | ERVICE LEVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGGI
COLLOWING RECOMMENDATIONS AND SUGGI
UAUCE THE
PROJECY AND EFFECTIVENESS OF DELIVERING
THE GC SHALL PROVIDE A MINIMUM OF 5 BUSIN
THE GC SHALL PROVIDE A MINIMUM OF 5 BUSIN
THE GC AND MI INSPECTOR AS TO WHEN THE SI
BE CONDUCTED.
THE GC AND MI INSPECTOR AS TO WHEN THE SI
BROJECT.
WHEN POSSIBLE. IT IS PREFERRED TO HAVE TH
SMULTANEDUSLY FOR ANY GUY WIRE TENSION
FRAJECT.
WHEN POSSIBLE. IT IS PREFERRED TO HAVE TH
REAL FORMING MINICIPACIENCIES ARE A
MINIMUM AND FORMAN CHOOSET TO COO
FISTER ALL CONSTRUCTION FACILITIES ARE A
MINIMUM ARE TO BE TAKEN AND INSPECTOR IS ON SITE.
COURED PHOTOS:
MINIMUM ARE TO BE TAKEN AND INSPECTOR THE FC
MINIMUM ARE TO BE TAKEN AND INSPECTOR THE FC
MINIMUM AND INSPECTION GENERAL SITE CONDITION
PHOTOSO FE TAKEN AND INSPECTION
PHOTOSO FIL CRITICAL DETAILS
FOUNDATION MODIFICATIONS
WELD PREPARATION
BOLT INSTALLEDON
FILM INSTALLEDON
MINIMUM CONDITION
MINIMUM CONDICICION CONDITION | ERVICE LEVEL COMMITMENT:
#FOLLOWING RECOMMENDATIONS AND SUGGI
#FOLLOWING RECOMMENDATIONS AND SUGGI
#HOLECY AND EFFECTIVENESS OF DELIVERING
THE GC SHALL PROVIDE A MINIMUM OF 5 BUSIN
THE GC SHALL PROVIDE A MINIMUM OF 5 BUSIN
THE CONDUCTED.
RE CONDUCTED AS TO WHEN THE SI
BE CONDUCTED.
WHEN POSSIBLE. IT IS PREFERRED TO HAVE TH
WHEN ARE TOWN.
WHIN MARENOME. TO CONCENTION FACILITIES ARE A
MINIMUM ARE TO BE TAKEN AND INCLUDED IN
INSPECTOR IS ON SITE.
COURED PHOTOS:
WILD PREFORE. TO REAL SITE CONDITION
PHOTOSO FEAL CONSTRUCTION GENERAL SITE CONDITION
PHOTOSO FEAL CRITCAL DETAILS
FOUNDATION MODIFICATIONS
WELD PREPARATION
SUED REPORTION
SUELD REPORTION
WILD REPORTION
WILD REPEARATION
WELD REPORTION
WILD REPORTION
WILD REPORTION
WILD REPEARATION
WILD REPORTION
WILD RE | SERVICE LEVEL COMMITMENT:
THE FOLLOWING RECOMMENDATIONS AND SUGGI
EFICIENCY AND EFFECTIVENESS OF DELIVERING
EFICIENCY AND FFFECTIVENESS OF DELIVERING
T. THE GS SHALL FROVIDE AMINIMIM OF 5 BUSIN
1, TO THE MINSPECTOR AS TO WHEN THE SI
BE CONDUCTED.
MINERCORD MINSPECTOR CORDINATE CLOS
PROJECT.
NHEN POSSIBLE, IT IS PREFERED TO HAVE TT
SIMULTANEOUSLY FOR ANY GUY WIRE TENSIO
PROJECT.
NHEREORE, IF IS PREFERED TO HAVE TT
SIMULTANEOUSLY FOR ANY OF OF OTALET
ORING MI TO HAVE ANY MINOR DEFICIENCES
RECUIRED PHOTOS:
MINTHEERORE, THE GG ANY CHOOSE TO COO
ENSURE ALL CONSTRUCTION FACILITIES ARE A
INSPECTOR IS ON SITE.
REQUIRED PHOTOS:
ENSURE ALL CONSTRUCTION FACILITIES ARE A
INSPECTOR IS ON SITE.
FROUMMIM, ARE TO BE TAKEN AND INCLUDED IN
PRE-CONSTRUCTION GENERAL SITE CONDITION
PRE-CONSTRUCTION GENERAL SITE CONDITION
PRE-CONSTRUCTION
FROUT INSTALLATION
THOTOGRAPHS DURING THE REINFORCEMENT
REQUIRED PHOTOS OF ALL CRITICAL
PRE-CONSTRUCTION
FIRAL INSTALLED CONDITION
TERLIL INSTALLED CONDITION
TERLING REPARTION
TERLING REPARTION
TO MENDER AND INSPECTION
THAL INSTALLED CONDITION
TERLIL INSTALLED CONDITION
T | //CELEUVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGGI
MACE THE
FOLLOWING RECOMMENDATIONS AND SUGGI
SENCY AND EFFECTIVENESS OF DELIVERING
EGS SHALL PROVIDE A MINIMUM OF 5 BUSING
TO THE MINSPECTOR AS TO WHEN THE SI
E CONDUCTED
E CONDUCTED
THE ROSSIBLE. IT IS PREFERED TO HAVE THE
MULTANEOUSLY FOR ANY GUY WIRE TENSIO
REG CAND MI INSPECTOR COORDINATE CLO
ROLECT.
THEN POSSIBLE. IT IS PREFERERD TO HAVE THE
HAN POSSIBLE. IT IS PREFERERD TO HAVE THE
IS THREFORE. THE GC MAY CHOOSE TO CO
NURL TONS.
IN THREFORE. THE GC MAY CHOOSE TO CO
INSURE ALL CONSTRUCTION FACILITIES ARE /
SPECTOR IS ON SITE.
UIRED PHOTOS:
UIRED PHOTOS:
INTEREFORE. THE GC MAY CHOOSE TO CO
INSURE ALL CONSTRUCTION FACILITIES ARE /
SPECTOR IS ON SITE.
UIRED PHOTOS:
UIRED PHOTOS:
UIRED PHOTOS:
UIRED PHOTOS:
UIRED PHOTOS:
UIRED PHOTOS:
UIRED PHOTOS:
UIRED PHOTOS:
UIRED PHOTOS:
UIRED PROPORTION FACILITIES ARE /
SUNDATION MORFICATIONS
IS TOORSTRUCTION SERVERAL SITE CONDITION
ALL INSTALLED CONDITION
MAL INSTALLED CONDITION
MAL INSTALLED CONDITION
MAL INSTALLED CONDITION
MAL INSTALLED CONDITION
IS FLOATTOOR FOR THE REINFORCEMENT
IS CONSTRUCTION PHOTOR REPAIR
IF ACCONDITION OF BELAVITE AND
INTERVALIENCE ONDITION
MAL INSTALLED CONDITION
MAL INSTALLED CONDITION
IS CONSTRUCTION PHOTOR REPAIRS
INTERVALIENCE ONDITION
IS IN THE ALL CONDITION
IS IN THE ALL | SERVICE LEVEL COMMITMENT:
THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO
ENHANCE THE
RENOLICE THE
EFICIENCE THE
FETCILOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO
EFICIENCE THE
EFICIENCE THE
EFICIENCE THE
COMPUCTED.
THE CGSHALL PROVIDE A MINIMUM OF 8 BUSINESS DAYS NOTICE, PREFERABL
1. THE CGSHALL PROVIDE A MINIMUM OF 8 BUSINESS DAYS NOTICE, PREFERABL
1. THE CGSHALL PROVIDE A MINIMUM OF 8 BUSINESS DAYS NOTICE, PREFERABL
1. THE CGSHALL PROVIDE A MINIMUM OF 8 BUSINESS DAYS NOTICE, PREFERABL
1. THE CGSHALL TAPEOLOSE TO WHEN THE SITE WILL BE READY FOR THE MI
PROJECT
PROJECT
2. WHEN POSSIBLE, TI S PREFERRED TO HAVE THE GO AND MI INSPECTOR ON-S
SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING
THERE ALL CONSTBLE, TI S PREFERRED TO HAVE THE GO CANDING
WI. THERE ALL CONSTBLE, TI S PREFERRED TO HAVE THE GO CANDING THE INITI
MI. THERE ALL CONSTBLE, TI S PREFERRED TO HAVE THE ROLEONING
THEM POSSIBLE, TI S PREFERRED TO HAVE THE ROLEONING OR RE-TENSIONING
WI. THERE ALL CONSTBLE, TI S PREFERRED TO HAVE THE ROLEONING
TERCONSTBLE, TI S PREFERRED TO HAVE THE ROLEONING PHOTOGRAPHS, AT I
MI. THERE ALL CONSTBLE, TI S PREFERRED TO HAVE THE ROLEONING PHOTOGRAPHS, AT I
NIL THERE ALL CONSTBLE, TI S PREFERRED TO HAVE THE ROLEONING PHOTOGRAPHS, AT I
NIL THERE ALL CONSTBLE, THE CONDITION
TERCONSTBLE, THE ADAVIDATION MODIFICATION CONSTRUCTION
THERE ALL CONSTRUCTION GENERAL SITE CONDITION
THERE TO CONSTRUCTION GENERAL SITE CONDITION
THERE TO THE RELIVER THE FOLLOWING PHOTOGRAPHS, AT I
MILTHERE ALL CONSTRUCTION GENERAL SITE CONDITION
TERCONSTRUCTION ADDIFICATIONS
THOLED REPARTANCE
THOLED REPARTA | //CELEUVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGGI
MACE THE
AUXCE THE
COLLOWING RECOMMENDATIONS AND SUGGI
SENCY AND EFFECTIVENESS OF DELIVERING
FEGS SHALL PROVIDE A MINIMUM OF 5 BUSH)
FLOS CANDUCTED
ECONDUCTED
COLOCT
THE MINSPECTOR AS TO WHEN THE SI
ECONDUCTED
ADJECT.
THEN DOSSIBLE, IT IS PREFERED TO HAVE TH
WILT ANEOUSLY FOR ANY GUY WIRE TENSIO
REACTONS.
THE OSSIBLE, IT IS PREFERERED TO HAVE TH
HEN DOSSIBLE, IT IS PREFERERED TO HAVE TH
HEN DOSSIBLE, IT IS PREFERERED TO HAVE TH
WILT ANEOUSLY FOR ANY GUY WIRE TENSIO
BEATONS.
UNED PHOTOS:
UNEED PHOTOS:
UNEED PHOTOS:
UNEED PHOTOS:
UNEED PHOTOS:
UNEED PHOTOS:
UNEED PHOTOS
IS THE GA MAY CHOOSETOR THE FI
AMINUM ARE TO BE TAKEN AND INCLUDED IN
CONSTRUCTION GENERAL SITE CONDITION
OTOGRAPHS DURING THE REINFORCEMENTI
RECTION AND INSPECTION
OTOGRAPHS DURING THE REINFORCEMENTI
SUNDATION MOSTICALITIES ARE J
WIMATRIALS
UNDATION MOSTICALITIES ARE J
AND AND INSPECTION
AND INSPECTION
WAL INSTALLED CONDITION
WAL INSTALLED CONDITION | //CELEUCEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGGI
MACE THE
FOLLOWING RECOMMENDATIONS AND SUGGI
ALECTA
FEG SHALL PROVIDE AMINIMUM OF 5 BUSIN
FEG SHALL PROVIDE AMINIMUM OF 5 BUSIN
FEG SHALL PROVIDE AMINIMUM OF 5 BUSIN
FEG SCAND MINSPECTOR AS TO WHEN THE SI
ECONDUCTED
FEG SCAND MINSPECTOR AS TO WHEN THE SI
COLECT.
HEN DOSSIBLE, IT IS PREFERERED TO HAVE TI
HEN DOSSIBLE, IT IS PREFERERED TO HAVE TO
BEATONS.
UNED PHOTOS:
ITHEFORE, THE GG MAY CHOOSE TO COI
UNED PHOTOS:
UNED PHOTOS:
UNED PHOTOS:
UNED PHOTOS:
UNED PHOTOS
UNED THE GG MAY CHOOSE TO COI
SECTOR IS ON SITE.
UNED PHOTOS
ITHE MINIMA RE TO BE TAKEN AND INCLUDED IN
OTOGRAFHE DOR THE REINFORCEMENTI
RECTION AND INSPECTION
OTOGRAFHIS DURING THE REINFORCEMENTI
WIMATRIALS
UNDATION MOSTICALITIES ARE J
UNED PREPARATION
OTOGRAFHIS DURING THE REINFORCEMENTI
WIMATRIALS
UNDATION MOSTICALITIES ARE J
WAL INSTALLED CONDITION
WAL INSTALLED CONDITION
WAL INSTALLED CONDITION
MAL INSTALED CONDITION
MAL | //CE LEVEL COMMITMENT:
FOLLOWIG RECOMMENDATIONS AND SUGGI
MACE THE
EQLOWIG RECOMMENDATIONS AND SUGGI
SHORY AND EFFECTIVENESS OF DELIVERING
EGC SHALL PROVIDE A MINIMUM OF 5 BUSIN
FEGC SHALL PROVIDE A MINIMUM OF 5 BUSIN
FEGC SHALL REVOUR AS TO WHEN THE SI
ECONDUCTED.
TO THE MINISPECTOR AS TO WHEN THE SI
ECONDUCTED.
FERCINGE IT IS PREFERRED TO HAVE TI
HEN POSSIBLE. IT IS PREFERRED TO HAVE TI
HER TO POSSIBLE. IT IS PREFERRED TO HAVE TO
HER TO POSSIBLE. IT IS PREFERRED TO HAVE TO HAVE TO
HER TO POSSIBLE. IT IS PREFERRED TO HAVE TO HAVE TO
HER TO POSSIBLE. IT IS PREFERRED TO HAVE TO HER TO
HER TO HAVE TO HER TI HER TO HER TILLS
UNDATION AND INSPECTION
WILLINGTALLATION
WAL INSTALLED CONDITION
WAL INSTALLED CONDITION
WAL INSTALLED CONDITION
WAL INSTALLED CONDITION
WAL INFELL CONDITION
TO SO FILL CATTORS OF ELE VATER MODIFICATIONS TAKEN OI
TO SO FILL WATER PREPARATION
WAL INFELL CONDITION
TO SO FILL WATER PREPARATION
TO SO FILL WATER DADIFICATIONS TO SUBSIDERED ADEQUATE OR SUFFICIENTION
TO SO FILL WATER DADIFICATIONS TO SUFFICIENTION
TO SO FILL WATER DADIFICATIONS TO SUFFICIENTION
TO SO FILL | //CE LEVEL COMMITMENT:
FOLLOWIG RECOMMENDATIONS AND SUGGI
MACE THE
EQLOWIG RECOMMENDATIONS AND SUGGI
SHORY AND EFFECTIVENESS OF DELIVERING
EGC SHALL PROVIDE A MINIMUM OF 8 BUSIN
FEG SHALL PROVIDE A MINIMUM OF 8 BUSIN
FEG SHALL PROVIDE A MINIMUM OF 8 BUSIN
ECONDUCTED.
TO THE MINSPECTOR AS TO WHEN THE SI
ECONDUCTED.
FEG SCAND MINSPECTOR AS TO WHEN THE SI
ANULTANEOUSLY FOR ANY GUY WIRE TENSIO
RALECT.
HEN POSSIBLE. IT IS PREFERED TO LANCE TI
HEN POSSIBLE. IT IS PREFERED TO LANCE TO
RULTANEOUSLY FOR ANY GUY WIRE TENSIO
ERATIONS.
LI THEEFORE. THE GG ANY CHOOSE TO CO
RULE AND STORE.
LI THEEFORE. THE GG ANY CHOOSE TO CO
RULT AND STORE.
LI THEEFORE. THE GG ANY CHOOSE TO CO
RULT AND STORE.
LI THEEFORE. THE GG ANY CHOOSE TO CO
RULT AND STORE.
LI THEEFORE. THE GG ANY CHOOSE TO CO
RULT AND STORE.
LI THE CONSTRUCTION FACILITIES ARE A
SECTOR IS ON SITE.
UIRED PHOTOS:
WIMATRALES
OF ALL CATITOR STORE.
LI THEREPORE.
TO THE CONDITION
ALL INSTALLED CONDITION
ALL INSTAL | ALCE LEVEL COMMITMENT:
FOLLOWING RECOMMENDATIONS AND SUGGI
MACE THE
FOLLOWING RECOMMENDATIONS AND SUGGI
ALCENT
FEG SHALL PROVIDE A MINIMUM OF 5 BUSIN
FEG SHALL PROVIDE A MINIMUM OF 5 BUSIN
FEG SHALL PROVIDE A MINIMUM OF 5 BUSIN
FEG SCAND MINSPECTOR A CORDINATE CLO
RECOMDUCTED
CONDUCTED
FOLLETT
FIEN POSSIBLE, IT IS PREFERERED TO HAVE TI
HEN POSSIBLE, IT IS PREFERERED TO HAVE TI
VILLATUROUSING
ALCENT
FIEN POSSIBLE, IT IS PREFERERED TO HAVE TI
VILLATORSSIBLE, IT IS PREFERERED TO HAVE TI
UNATIONS
IT THEFORE, THE GG AND MINOR DEFICIENCES
A SUBJERT
UNED PHOTOS:
IT HEEFORE, THE GG AND THE MINSPECTOR THE F
ALENT TO SISTILE. IT IS PREFERERED TO HAVE TI
URED PHOTOS:
IT HEEFORE, THE GG AND THE MINSPECTOR THE F
ALENT TO SISTILE. IT IS PREFERERED TO HAVE TI
UNAL ARE TO BE TAKEN AND INCLUDED IN
CONSTRUCTION GENERAL SITE CONDITION
AL INSTALLED CONDITION
AL INSTALED CONDITION
AL INSTALLED CONDITION |
| MODIFICATION INSPECTION NOTES
GENERAL: | THE MI | | | bort shall be included in the MI report. ARISE. | ectorshall perform a Non-Destructive examination INSPEC | | | | placing the concrete. A sealed written report shall CONFC CONTA | on report.
results included in the foundation report. TO EN | | report. EXPEC Ut was removed and/or installed in accordance INSPEC INSPEC | | | | | | ы с с с | S → HERTE | STATE: 2, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | STUTE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 | | | | report 35
was ETA 17
sthrat 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | report SE report 174 24 25 25 25 25 25 25 25 25 25 25 25 25 25
 | report
was
sthat
ition
Report
Sthat
ition
Report
State
ition
Report
State
ition
Report
State
ition
Report
State
ition
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
St | report. The frequence of the frequence o | report
was
sthat
ition
read
read
read
read
read
read
read
read | report
wass
that
that
that
that
that
that
that
t | report
wass
that
that
tion
RR
that
that
tion
RR
that
tion
RR
that
tion
RR
that
tion
that
tion
that
that
tion
that
that
that
that
that
that
that
tha
 | report
was
start
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
f | report
w was
starts
frag
frag
frag
frag
frag
frag
frag
frag | report
wass
that
that
that
that
that
that
that
t | report
w
was
starts
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
frant
fran | report
w was
start
f tan
f tan | report
www.ss
stantart
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
repor
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
report
r | report
w was
start
that
that
that
that
that
that
that |
 |
| Description | | | ndustry stanc | | hese contract drawings. A certified NDT Inspector shall | A NDE of the pole to base plate connection is required and a written report shall be included in the MI report
The Marchal chinement lets chall be included in the MI accord | | | | | | med and a report shall be included in the MI report.
to the MI inspector that certifies that the grout was rem
port. | | An AWS tertified weld inspector shall inspect and test field welds, in accordance with AWS D1.1/D1.1M: "Structural welding code – steel". A report
shall be provided. NDE of field welds shall be performed as required per contract documents. The NDE report shall be included in the CM report. | st field weids, in accordance with AMS D1.J/D1.JM: "Str
med as required per contract documents. The NDE repoor
tographic documentation to the MI inspector verifying it
to standards. The cold gaivanizing compound is to be as | An AVS certified weld inspector shall inspect and test field welds, in accordance with AVS D1.1/D1.1M: "Structural welding code –steel." A repo
shall be avoided. NDE field welds shall be performed as equiced per contract documenta to NDE Text NDE report (
the general contractor shall provide structures and performed as equired per contract documentation and the special performance and any and the general contractor shall provide structural welding code –steel." A repo
applied per manufacturer specifications and applicable standards. The cold galvanizing compound is to be approved by the tower owner,
The general contractor shall provide a report in accordance. The cold galvanizing compound is to be approved by the tower owner.
The general contractor shall should a report in accordance with applicable standards documenting mast trand plumbal galva and ensitions. | Is frield welds, in accordance with AWS D1.1/D1.1M. "Sr
med as required per contract documents. The NDE repoor
lographic documentation to the MI inspector verifying,
log standards. The cold galvanizing compound is to be a
dance with applicable standards documenting mast twi
dance with applicable standards documenting mast twi
dance with applicable standards documenting mast twi
dance and shall be noted. | If field welds, in accordance with AWS D1.1/D1.1M. "Strate as required per contract documents. The NDE report
tographic documentation to the MI inspector verifying,
the standards. The cold gainonizing compound is to be a
dance with applicable standards documenting mast twi
dance with applicable standards documenting mast twi
dance sthall be noted. | If field welds, in accordance with AWS DL1/DL1M. "Sr
are a sequeled part contract documents. The NDE repor-
tographic documentation to the Minspector verfying, a
log standards. The cold galvanizing compound is to be a
log standards. The cold galvanizing compound is to be a
log standards the disc standards of the standards
the original design drawings either stating
the original design drawing all changes shall be submit
andards shall be noted. | * Strield welds, in accordance with AWS DL1/DL1.IM. "Straed as required ber contract documents. The NDE report tographic documentation to the Minapector verifying i log standards. The cold galonion to the Minapector verifying at twins a point of the standards documenting mat twins the ender wings either standards shall be submit andards shall be noted. In accordance with indust industriation to be submit andards shall be noted. We are condance with indust indust be workmanship was performed in accordance with indust indust indust indust andards shall be noted. | If field we lds, in accordance with AWS D.1.//D.1.M. "Sr,
big spablic documentation to the Minapector verfying, a
loggaphic documentation to the Minapector verfying, a
loggaphic documentation to the Minapector verfying, a
date with applicable standards documenting mast twi-
the original design drawings either stating
"installed as
date standards shall be noted."
with and stating and changes shall be submit
and and s shall be noted.
Werhaniship was performed in accordance with indust
modification process.
 | If field we lds, in accordance with AWS D.1./JD.1.M. "Sr
big spablic documentation to the Minapector verfying, a
log spablic documentation to the Minapector verfying, a
log spablic documentation to the Minapector verfying, a
dance with applicable standards documenting mat twi-
dance with applicable standards documenting mat twi-
the original documentation to the angles shall be submit
the original document and in accordance with infuted
andards shall be noted. | An AVS certified weld inspector shall inspect and test field welds, in accordance with AVS DL1/DL1M. "Structural welding code –steel." A repc
shall be periode. MDE field welds shall be performed as required per contract documents. The NDE repairable be indicated in the CVM report
the general contractor shall provide a report in accordance with applicable standards documentation in the MI inspect. The NDE repairable between the new contractor shall provide a report in accordance with applicable standards shall be indicated in the CVM report
The general contractor shall provide a report in accordance with applicable standards documenting mast twist and plumb and guy cable transions.
The general contractor shall submit a legble coay of the original design drawing at changes shall be submitted when the EON is specifying
additional inspections. Description and applicable standards shall be noted.
POST-CONSTRUCTOR
A there from the general contractor stating that the work maniphip was performed in accordance with industry standards and these contract
additional inspections. Description and applicable standards shall be noted.
POST-CONSTRUCTOR
A report the provided informal parter to work maniphip was performed in accordance with industry standards and these contract
drawings, including listing additional parters to the modification process.
POST-CONSTRUCTOR
A report Priore shall be fested in accordance with all prases of the construction. The photos shall be provided indicating testing results.
POST-CONSTRUCTOR
A inspection and applicable standards shall be noted.
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON
POST-CONSTRUCTON | If field welds, in accordance with AWS DL1/DL1M: "Str
prographic decumentation to the Minispect. The NDE report
prographic decumentation to the Minispect. Werfyngin
(a standards. The cold galvaniting compound is to be a
theore with applicate standards either stanting
theore with applicate standards either stanting
theore with applicate standards with the submit
theore with applicate standards either stanting
theore with applicate standards with the submit
theore with applicate standards with the submit
theore with applicate standards with indust
theorements and a report stanting the submit
and drift after process.
In the submit application to the submit and a report shall be provi-
ued with contract documents and a report shall be provi-
ted with contract documents and a report shall be provi-
ted with contract documents and a report shall be provi-
ted with contract documents and a report shall be provi-
ted with contract documents and a report shall be provi-
ted with contract documents and a report shall be provi-
ted with contract documents and a report shall be provi-
ted with contract documents and a report shall be provi-
ted with contract documents and a report shall be provi-
ted with contract documents and a report shall be provi-
ted with contract document and approval. | An AWS certified weld impector shall imspect and test field welds, in accordance with AWS D1./D1.IM: "Structural welding code –steel". A
The Bepreviation frield welds shall be performed are required becommentation to the MII imspector verifying that any on-site old galonaring
applied per manufacturer specifications and applicable strandards. The cold galonaring the NDF and the approved by the tower owner.
The general contractor shall provide a report in accordance with policible strandards for the work and the approved by the tower owner.
The general contractor shall provide a report in accordance, with policible strandards strate and palonaring
applied per manufacturer specifications and applicable standards. The cold galonaring compound is to be approved by the tower owner.
The general contractor shall provide a report in accordance with policible strandards strate and palonaring and contractor shall provide a report in accordance with policible strandards shall be approved by the cover owner.
The general contractor shall supply that its device or denome and a report stating. Thistaled as designed "or normage" and charac-
difficant inspections. Description and applicable standards shall be noted.
POST-CONSTNUCION
A letter from the general contractor stating that the workmanthip was performed in accordance with industry standards and these contract
policible and/or brains and applicable standards shall be noted.
POST-CONSTNUCION
A letter from the general contractor stating that the workmanthip was performed in accordance with industry standards and these contract
policible and/or brains and a report. Photos shall decument and a report shall be provided indicating testing testing
testing theorem and applicable standards shall be noted.
POST-CONSTNUCION
A letter from the general contractor shall be noted on the contractor of the modification. The MI
most performance shall werly the bolt hole size and condition. The MI report shall be provided infined infined in a modification. The MI
mispector shall looker | If field welds, in accordance with AWS DL1/DL1M. "Structure field welds, in accordance with AWS DL1/DL1M. Erepaint expansion required barrent for the own maps for werflying its standards. The cold galvanizing compound is to be any data with
specification with specification with any contraining compound is to be any additional action of the any specoving all changes shall be submit and stroke shall be noted. The photo structure and a treport shall be proving all duams are solved and a treport shall be proving and a condition. The Mires solved and a treport shall be proving a size and condition. The Mires shall be noted and a treport shall be proving a structure solved and a treport shall be proving and at the final resolution and approval. | If field welds, in accordance with AWS DL1/DL1M. "Structure developed as the everoped set equired galaxies the cold galavanisting compound is to be a galaxies with specification the denote with specification with specification and the standards. The cold galavanisting compound is to be a developed with specification and the standards that and the standards that the denote shall be submit and strong shall be submit and strong shall be submit and strong standards. The cold galavanisting compound is to be a developed at the standards that the submit denote shall be noted | If field welds, in accordance with AWS DL1/DL1M. "Sr
tographic documentation to the OM inspection Verifying is
tographic documentation to the OM inspection verifying is
the anote with spationary and the OM inspection verifying is
the anote with spationary and strandards that the standards is
the anote with spationary and the strandards that the standards
the anote with spationary and the strandards that the standards
the anote with spationary and the strandards that the standards
the Strandards that the noted | To the field welds, in accordance with AWS DL1/DL1M. "Structure developed by the everoption of the everoptic of the everoption of the everoption of the ever | If field welds, in accordance with AWS D1.1/D1.1M: "Str
biggaphic decumentation to the Minispect. In Microsoft
biggaphic decumentation to the Minispect. Werflying it
biggaphic decumentation to the Minispect. Werflying it
the anew and the Minispect and the Minispect Minispect
and an and the minispect and a secondance with indust
the anew and the minispect and a secondance with indust
workmanship was performed in accordance with indust
and factors proted.
And the minispect and a seport shall be submit
and documents and a seport shall be provin-
tion with contract documents and a seport shall be provin-
all document all phases of the construction. The photo
these of 10% of all non pre-tensioned boits installed as
a size and condition. The Mir eport shall contain the con-
titled and the final resolution and approval.
Dancies between the contractor's redline drawing and it | If field welds, in accordance with AWS D1.1/D1.1M: "Str
bigadase required But and the Kernents. The NDE report
bigadase required But and the Kernents. The NDE report
is estandards. The cold galvaniting compound is to be at
the one origin with applications are and a technical
the one origin with applications and a technical
the configuration proceed.
And the noteed.
And the noteed.
The one of the construction. The photo
the set of the one photo and a
technicated as
and strict shall be noted.
The set of the construction. The photo
the set of 10% of all non pre-tensioned botts installed as
a size and condition. The Mi report shall contain the con-
tures of 10% of all non pre-tensioned botts installed as
a size and condition. The Mi report shall contain the con-
titled and the final resolution and approval. | If field we lds, in accordance with AWS D1.1/D1.1M: "Str
prographic documentation to the Minspector wer/lyngs
tographic documentation to the Minspector wer/lyngs
los standards. The cold galvaniting compound is to be at
the one with papilote standards stantards that
the one with specification frawings either stantar
the one original design charwing all changes shall be submit
address shall be mored.
In EOR/RH forms approving all changes shall be submit
to work manship was performed in accordance with indust
unit EOR/RH forms approving all changes shall be provi-
nal document all phases of the construction. The photo
and condition proces of the construction. The photo
thress of 10% of all non pre-tensioned bolts installed as
a size and condition. The Mire port shall contain the con-
tained and the final resolution and approval.
and/des between the contractor's redling drawing and the
and cles between the contractor's redling drawing and the
and cles between the contractor's redling drawing and the
and the final resolution and approval. | If field we lds, in accordance with AWS D1.1/D1.1M: "Sr
prographic documentation to the Minspector we flying
tographic documentation to the Minspector we flying is
use standards. The cold galvaniting compound is to be a
theore with papilote standards stanting for the submit
theore with galotic standards stanting for the submit
theore with papilote standards stanting for the submit
decording stand is to be any
difficultion process.
All EOR/RH forms approving all changes shall be submit
andards shall be noteed.
In EOR/RH forms approving all changes shall be provin-
tion with contract documents and a report shall be provin-
all document all phases of the construction. The photo
the Mit contract documents and a report shall be provin-
all document all phases of the construction. The photo
as size and condition. The Mir port shall contain the con-
tacted and the final resolution and approval.
and cost due on the contractor's redling drawing and t
and the final resolution and approval. | If field welds, in accordance with AWS D1.1/D1.1M: "Str
orgagabilic documentation to the OM imspector. The NDE report
orgaphic documentation to the OM imspector werflying
the area with application and a standard standard standard
theore with application and a standard standard standard
theore with application and a standard standard
theore with application and a standard standard
theore with application and a standard standard
workmanship was performed in accordance with indust
industry to a standard documents and a report shall be provin-
all document all phases of the construction. The photo
these of 10% of all non pre-tensioned boils installed as
e size and condition. The Mir eport shall contain the con-
titled and the final resolution and approval.
and cise between the contractor's redline drawing and it | If field we lds, in accordance with AWS D1.1/D1.1M: "Str
prographic documentation to the Minspector wer/lyngs
by a strandards. The cold galvaniting compound is to be a
be standards. The cold galvaniting compound is to be a
theore with papilole strandards that
theore with galpilole strandards that
work manship was performed in accordance with indust
theorement all phases of the construction. The photo
and document all phases of the construction. The photo
work more a point of a lin on pre-tensioned bolts installed as
a size and condition. The Mire point shall be provid-
ted at the final resolution and approval.
and the final resolution and approval.
 | If field welds, in accordance with AWS D1.1/D1.1M: "Str
prographic documentation to the Minspector wer/lyngs
tographic documentation to the Minspector wer/lyngs
los standards. The cold galvaniting compound is to be at
the one with papilole standards stantard strates
the one with specification process that he submit
the one original design charwing all changes shall be submit
addrefs shall be mored.
In EOR/RH forms approving all changes shall be provin-
ted with contract documents and a report shall be provin-
all document all phases of the construction. The photo
readition process of the construction. The photo
recess of 10% of all non pre-tensioned bolts installed as
a size and condition. The Mire port shall contain the con-
tacted shell the final resolution and approval.
and/de and the final resolution and approval. | If field we lds, in accordance with AWS D1.1/D1.1M: "Sr
prographic documentation to the Minapecro ver flyings
log standards. The cold galvaniting compound is to be a
gene with spation frawings either standards shall be submit
the original design frawings either standards the
the original design frawings either standards
the original design frawings of the construction. The photo
and lards shall be noted.
These of 10% of all non pre-tensioned bolts installed as
a size and condition. The Mir report shall be provi-
tified and the final resolution and approval.
Defined and the final resolution and approval. | If field we lds, in accordance with AWS D1.1/D1.1M: "Str
prographic documentation to the Minispector verifying
log standards. The cold galvaniting compound is to be a
decommentation to the Minispector verifying
the original decign drawings either stanting
the original decign drawing and a report shall be provi-
ulated as shall be noted.
The stanting fragments and a report shall be provi-
all document all phases of the construction. The photo
and condition. The Mir report shall be provi-
ties at a size and condition. The Mir report shall be provi-
ant de the final resolution and approval.
Defined and the final resolution and approval.
 | If field we lds, in accordance with AWS D1.1/D1.1M: "Sr
prographic documentation to the Minspector we flying
to graphic documentation to the Minspector we flying
be standards. The cold galvaniting compound is to be a
theore with papilot estandiards stantard site the
theore with papilot estandiards shall be submit
the original document and a report shall be submit
andards shall be noted.
In ECR/RH florms approving all changes shall be provin-
tion with contract documents and a report shall be provin-
all document all phases of the construction. The photo
and condition. The Mire port shall be provin-
all document all phases of the construction. The photo
as size and condition. The Mire port shall contain the con-
tained and the final resolution and agproval.
and the final resolution and agproval. |
| MI CHECKLIST | PRE-CONSTRUCTION | This retensition and the interact in the Wingstone processing of the interaction, the contractor shall prove
drawings. These are to include, but are not limited to, avisual layout of the new reinforcement,
amounts, strept are 53, affort (interaction and prioritic) and the interaction of the new reinforcement,
submitted to the EOR for supproval. Approved Sesembly (shop drawings shall be included in the N | A letter from the fabricator stating that the work was
included in the MI report. | A CWI shall inspect all welding performed on structural members during fabrication.
Material test reports shall be provided for material used in construction and shall be | Critial shop welds that require testing are noted on these contract drawings. A certified NDT insp
and the report included in the MI report. | A NDE of the pole to base plate connection is required and a
The MAPPOLAT chronical lists shall be included in the Mill record | ור ואמררומו מוויףףוווק וומני מיומו אר וווגוממרת ווו נור וא | CONSTRUCTION | A visual observation of the excavation, epoxy holes, and placed rebar shall be performed before
be included in the MI report. | The concrete mix design, sitump tests, and compressive strength tests shall be part of the foundat
coundation sub-grades shall be inspected and approved by an approved foundation inspector and | Micropiles/rock archors shall be inspected by the foundation inspection vendor and shall be incl
Additional torsing and /or inspection mentionmants and noted in these control documents | Post-installed larchor rod verification shall be performed and a report shall be included in the M
The general contractor shall power documentation to the M inspector that certifies that the gro
with contractor documents for inclusion in the M report. | | An AWS certified weld inspector shall inspect and test field welds, in accordance with AWS DL1/L
shall be provided. NDE of field welds shall be performed as required per contract documents. The | An AVS certified weld inspector shall inspect and test field welds, in accordance with AVS D11/L
shall be provided. NDE of field welds shall be performed as required per contract documents. The
the general contractor shall provide written and photographic documentation to the MI respection
phote ber manufacturer specifications and applicable standards. The cold goloanizing compound | An AVS certified weld inspector shall inspect and test field welds, in accordance with AVS DL1/I
shall be provided. NDE of field welds shall are performed as a performed as the correct documents. The
the general contactor shall provide written and photographic documentation to this M inspector
applied per membracture specifications and applicable standards. The cold galvanitize compound
applied per membractor shall subvide arisetible correct and desimates and concumentation. The
The general contractor shall submit a secondare contraction shall accompound
the general contractor shall submit a secondare contractor shall submit share standard. | An AWS certified weld inspector shall inspect and test field welds, in accordance with AWS D11/I
shall be provided. NDE of field welds shall be performed as required per contract documents. The
The general contractor shall provide written and photographic chournentation to the Mi Inspector
preserved and provide arraport and applicable standards. The cold goivanizing compound
The general contractor shall provide a report in accordance with applicable standards documents
The general contractor shall submit a legible copy of the only of the opplicable standards documentin
The general contractor shall submit a legible copy of the only of the opplicable standards documentin
The general contractor shall submit a legible copy of the only of the only design dowings there standards shall
advictorial inspections. Description and applicable standards shall be noted. | A MX5 certified weld inspector shall inspect and te
vall be provided. NDF of field welds shall be perfor-
te general contracts valip provide written and applica-
piele per manufacturer specifications and applica-
pies per manufacturer specifications and applica-
nce general contractor shall provide a report in accor-
re general contractor shall provide a report in accor-
re general contractor shall provide a report in accor-
ter required and approved by the engineer of recor-
ditional inspections. Description and applicable si
difficients. | A MS certified weld inspector shall inspect and te
all be provided. NEE of field weld shall be perfor-
able to provide within and plot
palled per manufacturer specifications and applicat
performance shall submit a legible coup of
regeneral contractor shall submit a legible coup of
recencil inspections. Description and applicable st
ditional inspections. Description and applicable st
additional inspections. Description and applicable st
ditional inspections. Description and applicable st
additional inspections. Description and additional inspection and applicable st
additional inspection and additional additionadditionadditional additional a | An AVS certified weld inspector shall inspect and test field welds, in accordance with AVS DL1/L
shall be provided. NDE of field welds shall be performed as required per contract documents. The
The general contractor shall provide written and photographic documentation to the MI inspector
provide per manufacturer specifications and applicable standards. The cold genomizing compound
The general contractor shall provide a report in accordance with applicable standards documentin
The general contractor shall provide a report in accordance with applicable standards documentin
The general contractor shall provide a report in accordance with applicable standards documentin
The general contractor shall provide a report in accordance with applicable standards documentin
the general contractor shall provide a report in accordance with applicable standards documentin
additional inspections. Description and applicable standards shall be noted.
POST-CONSTRUCTION
A tetter from the general contractor shall with the workmanship was performed in accordance w
drawings, including listing additional parties to the modification process. | An AWS certified weld inspector shall inspect and test field welds, in accordance with AWS D11/I
shall be provided. NDE of field welds shall be performed as required per contract documents. The
The general contractor shall provide written and photographic documentation to the Mi inspector
per general contractor shall provide a report in accordance with applicable standards. Accountants
and photographic accounted welds are applicable standards. The cold generating compount
The general contractor shall provide a report in accordance with applicable standards documentin
The general contractor shall provide a report in accordance with applicable standards documentin
The general contractor shall provide a report in accordance with applicable standards documentin
The general contractor shall service a report in accordance with applicable standards documentin
The general contractor shall service a report in accordance with applicable standards documentin
additional inspections. Description and applicable standards shall be noted.
Dest-installed archor rocks shall be tested in accordance with contract documents and a report sha
Post-installed archor rocks shall be tested in accordance with contract documents and a report sha
Post-installed archor rocks shall be tested in accordance with contract documents and a report sha | An AWS certified weld
inspector shall inspect and test field welds, in accordance with AWS D11/
shall be provided. NDE of field welds shall be performed as required per contract obcuments. The
The general contractor shall provide written and photographic documentation to the WM inspecto
performant and accordance shall be performed as required per contract obcumentations.
The general contractor shall provide a report in accordance with applicable standards documenti
The general contractor shall provide a report in accordance with applicable standards documenti
The general contractor shall provide a report in accordance with applicable standards documenti
The general contractor shall provide a report in accordance with applicable standards document
the general contractor shall shall be the standards shall be noted.
POST-CONSTRUCTION
A letter from the general contractor standards shall be noted.
Post-installed anchor rous shall be tested in accordance with contract documents and a report sh
Provegables. Including listing additional parties to the andread occuments
Post-installed anchor rous shall be tested in accordance with contract documents and a report sh
Prost-installed anchor rous shall be tested in accordance with contract documents and a report sh
Prost-installed anchor rous shall be tested in accordance with contract documents and a report sh
Prost-installed anchor rous shall be tested in the poloc. | An AVS certified weld inspector shall inspect and te
shall be provided. NEG of the performance
the general contractor shall powide written and pho
applied per manufacture specifications and application
the general contractor shall powide a report in accoss
the general contractor shall solving a replete cory of
were required and approved by the engineer of race
additional inspections. Description and applicable so
performance and approved by the engineer of race
additional inspections. Description and applicable so
process that the restored or and approved by the englineer of race
additional inspections. Description and applicable so
process that the restored contractor shall be to deted
of anotype. The restored contractor shall be to deted
the order of the protocos. | An AWS certified weld inspector shall inspect and test field welds, in accordance with AWS DL1,
shall be provided. NDE of field welds shall be performed as required per contract documents. Th
the general contractor shall provide written and photographic documentation to the MI inspect
applied per manufacturer specifications and applicable standards. The cold gaivaning compound
the general contractor shall provide a report in accordance with applicable standards documentation
the general contractor shall submit a legple corps of the original design drawings either stating.
Were required and approved by the engineer of recout. EOR/NPI form approving all thanges sh
additional inspections. Description and applicable standards shall be noted.
Post: CONSTRUCTION
A letter from the general contractor stating that the workmanship was performed in accordance
drawings, intradice shall be noted in an applicable standards shall be noted.
A letter from the general contractor stating that the workmanship was performed in accordance
edowings. Intradued and intradues that the workmanship was performed in accordance
drawings, intradued and in a papilicable standards shall be noted. | In AMS certified weld inspector shall inspect and to
eall be provided any ARE of field weeks shall be perfor-
general contractor shall provide a right in accor-
general contractor shall provide a right in accor-
tion and approved by the engineer of face
general contractor shall submit a legible coopt of
ever exterired and approved by the engineer of face
difficiential inspections. Description and applicable si
anyosis, including listing additional parties to the
arrowings, including listing additional parties to the
instruction of the externation and applicable si
difficiential inspections. Description and applicable si
post-routing listing additional parties to the
instruction of the photo.
The shall be included in Mr report. Photos
inspector shall be nut and with the bolic
opper, indiciding all nonconformance(s) sin-
genct routing fail and endering all nonconformance(s)
and proving house with shore on the last
of the structor shall observe shall observe and report any discre-
te Minspector shall observe and report any discre-
te Minspector shall observe and report any discre- | In AMS certified weld inspector shall inspect and te
earlies and the service shall inspect and te
general contractor shall provide arriten and policity
pilled per manufacturer specifications and application
regeneral contractor shall submit a legible cosp of
regeneral contractor shall submit a legible cosp of
reverted approved by the engineer of reso
diftional inspections. Description and applicable s
set institute action resolution and applicable s
and approved by the engineer of reso
diftional inspections. Description and applicable s
set institute action resolution and applicable s
is instituted and werly the installation and upplicable
set resoluting listing additional parties to the na-
comorgs, including listing additional parties to the
resolution and upplicable set in accordance
is Mi inspector shall be not upplicable submit
spector shall obser the rut and werly the built
spector shall obser the rut and werly the built
and pringenetor shall obser ve and reprover
and inspector shall obser ve and reprover
a purities in the support of the photo.
 | In AMS certified weld inspector shall inspect and te
all be provided shall be performed
general contractor shall provide a right and the
piled per manufacturer specifications and application
egeneral contractor shall submit a legible copy of
ever evented and approved by the engineer of record
evertued and approved by the engineer of record
evertued and approved by the engineer of record
and approved by the engineer of record
shiftional inspections. Description and applicable size
shiftional inspections. Description and applicable size
diditional inspections. Description and applicable size
shiftional inspections and and werly the instanton
size insulated and werly the bittion
foreignaphs shall be induced in AM report. Photos
end M inspector shall conduced on AM report. Photos
and y identifies the exact location of the photo.
The M inspector shall obser the run and werly the but to
spector shall loosen the run and werly the but to
appector shall loosen the run and werly the but to
and proting all nonconformante(s) lates
and unduced all none of the photo. | In AMS certified weld inspector shall inspect and te
all be provided solution. After of the berfore
general contractor shall provide a right in accor-
pielde per manufacturer specifications and application
e general contractor shall submit a legible corpt of
ere required and approved by the engineer of reco-
tor event and approved by the engineer of reco-
ditional inspections. Description and applicable s
post-construction and approved by the engineer of reco-
struction and approved by the engineer of reco-
ditional inspections. Description and applicable s
post-construction and approved by the engineer of reco-
structional enter contractor stating that the
reavings. Including listing additional parties to then
reavings. Including listing additional parties to the
reavings including listing additional betasfel in accorda-
tions that looker than on the plants.
In the support of the labolis.
Description and welly the bolis.
Description and welly the bolis. | In AMS certified weld inspector shall inspect and te
all be provided shall be performed
pilled per manufacturer specifications and application
pilled per manufacturer specifications and application
egeneral contractor shall submit a legible copy of
regeneral contractor shall submit a legible copy of
the regeneral contractor shall be the informer of tractor
specification and approved by the informer of tractor
specification and approved by the informer of trac-
ditional inspections. Description and applicable s
specification and approved by the informer of trac-
solutional inspections. Description and applicable s
is installed indicating listing additional parties to the
neodypies shall be indicating listing additional parties to the
monitory shall be indicating additional parties to the
molecular particulation and upplicables.
In Minspector shall indicating additional parties is
spector shall observe and verify the but to
major. Indicating all on nononformance(s) listing
the other indicating all on nononformance(s) listing | In AMS certified weld inspector shall inspect and to
all be provided shall be performed
general contractor shall provide a regort in accor-
general contractor shall provide a regort in accor-
general contractor shall submit a legible copy of
evertime and approved by the engineer of rec-
ditional inspections. Description and applicable si
admits, including listing additional parties to the
admits of the engineer of rec-
ditional inspection. Description and applicable si
post-constructions that the
admits and approved by the engineer of rec-
ditional inspections. Description and applicable si
post-installed another reds shall be tasted in accorda
installed another reds shall be tasted in accorda-
toring single and the spector shall be tasted in accorda
poper inducing the supportion on dite
procer inducing all nonconformance(s) fus-
tor inspector shall observe and report any discre-
ie M inspector shall observe and report any discre- | In AMS certified weld inspector shall inspect and to
all be provided shall be performed
general contractor shall provide a right and to
pilled per manufacture repectifications and application
compared to mitactor shall submit a legible coopt of
eventued and approved by the engineer of record
eventued and approved by the engineer of record
and approved by the engineer of record
difficiential inspections. Description and applicable s
and applicable statisticable and approved
and approved by the engineer of record
difficiential inspections. Description and applicable s
and approved by the engineer of record
and provide shall be tested in accord
inspector shall bosen the nut and with the but
appet, indicable at an approved phills
and purificating and and and engine
and inspector shall observe and report any discre-
te M inspector shall observe and report any discre-
te M inspector shall observe and report any discre-
 | In AMS certified weld inspector shall inspect and to
all be provided. MRE of field weeks shall be perfor-
general contractor shall provide a report in accor-
general contractor shall submit allowed a report in accor-
general contractor shall submit allowed by the engline coupt of
ever eventued and approved by the engline coupt of
ever eventued and approved by the engline coupt of
antimgs. Including listing additional partices to the en-
ditional inspection. Description and applicable si
antiger including listing additional partices to the
activity of the event of the event of the englished
between the event of the event of the event
is luding the supporting photos.
The fullowed the supporting photos and
applicables in the supporting photos and
appent induring the supporting photographs. | In AMS certified weld inspector shall inspect and to
eall be provided. MRE of field weeks shall be perfor-
general contractor shall provide a report in accor-
general contractor shall submit all submit and
egeneral contractor shall submit all submit and
egeneral contractor shall submit all submit and
annings, included in my the engineer of reco-
ditional inspection. Description and applicable of
annings, including listing addining brittes to the na-
sering surfactor shall be tested in accordance
is verificable of the engineer of the
activity in the port. Photos s
pactor shall loosen the nut and weity the both of
the photi. The supporting photographs
and unding the supporting photograph.
In Junchlist fuidating all foroconformance(j) (at
in Junchlist indicating a | n AMS certified weld inspector shall inspect and to
all be provided shall be performed
general contractor shall provide a report in accor-
general contractor shall provide a report in accor-
general contractor shall submit a legible copy of
evertification and approved by the engineer of rec-
ditional inspections. Description and applicable s
post-construction and approved by the engineer of rec-
ditional inspections. Description and applicable s
post-installed anchor reds shall be tasted in accorda-
torings, including listing additional parties to the en-
contractor shall be included in Mr report. Photoc-
institution and the spector shall be tasted in accorda-
post-tor shall be read to on the photo-
sis in protector shall be tasted in accorda-
spector shall loosen the nut and with the bolt hol
uppet including all nonconformance(s) lus-
tion interpretor shall observe and report any discre-
ie Minspector shall observe and report any discre- | In AMS certified weld inspector shall inspect and to
all be provided scalar by endored weither be perfor-
general contractor shall provide a report in accor-
general contractor shall submit algo be obtained
and approved by the englise coupt of
ever equired and approved by the englised coupt
of the statistic statistic statistic statistic
difficient inspections. Description and applicable st
and spinosistic shall be tested in accord
and spinosistic shall be the test of the coupt
is straining in inspections and applicable st
difficient inspections. Description and applicable st
and spinosistic shall be the test of the coupt
is straining in the test of the coupt of
difficient in the superior of the photo-
spic or shall be install and on and applicable
appent in during the supporting photographs.
In function the superior shall be the total of
appent in during the supporting photographs. | In AMS certified weld inspector shall inspect and to
egameral contractor shall provide a report in accor-
general contractor shall provide a report in accor-
regeneral contractor shall submit albe level of the
egeneral contractor shall submit albe
corpord
ere required and approved by the englieble corpord
ere required and approved by the englieble corpord
annugs. Including listing additional partices to the
annugs. Including listing additional partices to the
abilitorial inspections. Description and applicable si
difficient inspection is a post-
contractor stall be to the additional partices to the
abilitorial lossen the nut advertly the to the
operator shall be to the diactor and approves
a post-restabilitor and the supporting photos.
The inspector shall be to the diactor
and puritie to the supporting photographs.
The inspector shall lossen the nut advertly the tool the
opert induring the supporting photographs. | n AMS certified weld inspector shall inspect and to
ealling provide XIRE of field weld shall be perfor-
generation and contractor shall provide a report in accor-
generation and contractor shall provide a report in accor-
generation and approved by the engineer of recor-
generation and approved by the engineer of recor-
action inspections. Description and applicables of
a contractor shall submit a fighle copy of
ever required and approved by the engineer of reco-
ditional inspections. Description and applicables of
a contractor shall be induced in according
a post of the contractor shall be to the obt to
post on induring the supporting photographs.
In a punchist indicating all nonconformance(s) iden
in hispector shall observe and report any discre-
to M inspector shall observe and report any discre-
to M inspector shall observe and report any discre- | n AMS certified weld inspector shall inspect and to
ealling provided weld inspector shall inspect and to
general contractor shall provide a report in accor-
general contractor shall provide a report in accor-
general contractor shall submit a legible copy of
ever equired and approved by the englineer of reco
diftional inspection. Description and applicable s
arongs, including that the the
arongs including that general contractor stating that the
simulation of the provest and the stating that the
arongs including the supporting photos a
poet or shall be induced in more point. Photos a
privatighted andring the supporting photosphal.
In purior during the supporting photographs.
In purior during the supporting photographs. | In AMS certified weld inspector shall inspect and to
eall be provided. MSE of field welds shall be perfor-
general contractor shall powel we intern the accur-
general contractor shall powel as report in accor-
regeneral contractor shall submit algo explore
eventuated and approved by the englinee or for
eventuation inspection. Description and applicable of
antigative adding listing addining brittes to the
activity. Inspection contractor staling that the
best-reporting photomap and support
is general contractor staling that the
activity inspection of the photo-
best-reporting the tested in accordiant
potent shall be install and contractor
applicable of the photomap and spir-
able to the obt holo
applicable of the supporting photographs.
In all notifies the supporting photographs.
In all photomap and agring
additional inspector shall be to the holt holo
applicable of the supporting photographs.
In all photomap and agring
a contractor shall be to the holt holt
and purise that a supporting photographs.
 |
| Report Item | | Jrawings | | Fabricator Certified Weld Inspection A
Material Test Reports (MTR) | eport | NDE of Monopole Base Plate A.
Doubling Sline / Barbh Turkore Tri | Inspections: | | | Concrete comp. strength, slump tests Tr
Earthwork E | | Post-Installed anchor rod verification Tr
Base Plate grout verification w | | Field Certified Weld Inspection 8h | ation | | | Stor | suo: | Sug | :suo
 | :::0 | | s:
decumentation | | Cumentation
 | bcume ntation | Ocume mation | Docume mtation | ocume mtation
 | ocume mtation | ocume ntation | ocumentation | ocume ntation
 | ocumentation | ocumentation | ocume intation
 | Commentation | ocume ritation |
| Required | V Mil Chack list demains | | | NA Fabricator C
NA Material Te: | | NA NDE of Mon
X Dacking Slip | | EN I | X Foundation Inspections | X Concrete co
X Earthwork | NA Micropile/Rock anchors | NA Post-Install
NA Base Plate g | NA Field Certifi | | NA On-Site cold | | | On-S
Twist
GC A: | On-S
Twist
GC A: | On-S
GC A: | On-S
Twist
GC A:
Cons
 | On-S
GC A:
GC A:
Post- | On-S
On-S
GC A:
GC A:
Post-
Post-
Bolt i | | |
 | | | |
 | | | |
 | | |
 | | |

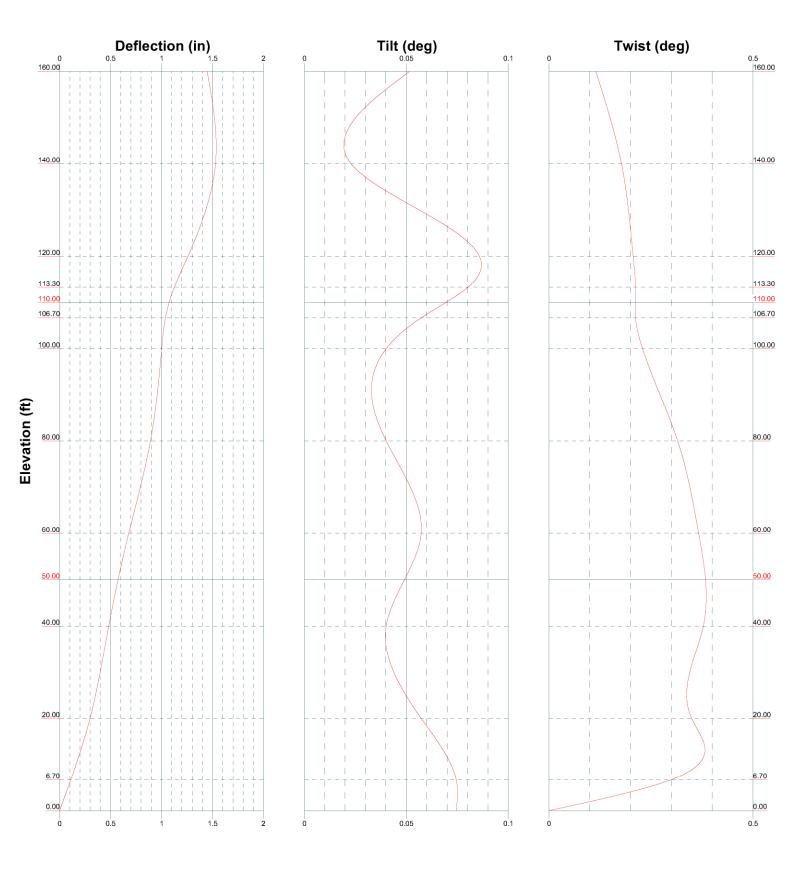

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
2.5"ODx15' Omni	160	(2) SWCP 2x5514 w. MtgPipe	135
2.5"ODx20' Omni	160	(E-VZW-Alpha)	
2.0"ODx15' Omni	160	(2) SWCP 2x5514 w. MtgPipe	135
2.0"ODx15' Omni	160	(E-VZW-Beta)	135
DB404	160	LNX-8514DS-VTM w. Mtg. Pipe (E-VZW-Gamma)	135
2" Sch40 x 8ft (Long antenna pipe)	160	ORAN RE4439d-25A RRU	135
Valmont 13' Standoff Frame (set of 3)	146	(P-VZW-Alpha)	100
APXVSPP18-C-A20 w. Mtg Pipe (Sprint)	146	ORAN RF4439d-25A RRU (P-VZW-Beta)	135
APXVSPP18-C-A20 w. Mtg Pipe (Sprint)	146	ORAN RF4439d-25A RRU (P-VZW-Gamma)	135
APXVSPP18-C-A20 w. Mtg Pipe (Sprint)	146	ORAN RF4440d-13A RRU (P-VZW-Alpha)	135
LLPX310R-V1 w. MtgPipe (Sprint)	146	ORAN RF4440d-13A RRU	135
LLPX310R-V1 w. MtgPipe (Sprint)	146	(P-VZW-Beta)	
LLPX310R-V1 w. MtgPipe (Sprint)	146	ORAN RF4440d-13A RRU	135
Nokia FWHR 2.5 RRH (Sprint)	146	(P-VZW-Gamma)	
Nokia FWHR 2.5 RRH (Sprint)	146	RVZDC-6627-PF-48 (12Circuit OVP)	135
Nokia FWHR 2.5 RRH (Sprint)	146	(P-VZW)	101
TD-RRH-8x20-2500 (Sprint)	146	Ericsson RRUS-32 B2 (1900) (AT&T)	124
TD-RRH-8x20-2500 (Sprint)	146	Ericsson RRUS-32 B2 (1900) (AT&T)	124
TD-RRH-8x20-2500 (Sprint)	146	10' Pirod Frame (set of 3) (AT&T)	124
ALU 800MHz 2x50W RRH w. Filter (Sprint)	146	(2) KMW AM-X-CD-16-65-00T w. Mtg Pipe (AT&T)	124
ALU 800MHz 2x50W RRH w. Filter (Sprint)	146	KMW AM-X-CD-16-65-00T w. Mtg Pipe (AT&T)	124
ALU 800MHz 2x50W RRH w. Filter (Sprint)	146	KMW AM-X-CD-16-65-00T w. Mtg Pipe (AT&T)	124
ALU RRH 4x45 65 (1900 MHz) (Sprint)	146	(2) SBNH-1D6565C w. Mtg Pipe (AT&T)	124
ALU RRH 4x45 65 (1900 MHz)	146	HPA-65R-BUU-H8 w. MtgPipe (AT&T)	124
(Sprint)	140	HPA-65R-BUU-H8 w. MtgPipe (AT&T)	124
ALU RRH 4x45 65 (1900 MHz)	146	HPA-65R-BUU-H8 w. MtgPipe (AT&T)	124
(Sprint)		TMA Dual Band 850/1900 (AT&T)	124
Distro Box (Sprint)	146	TMA Dual Band 850/1900 (AT&T)	124
12' booms (set of 3) (E-VZW)	135	TMA Dual Band 850/1900 (AT&T)	124
Samsung MT6407-77A	135	RRUS-11 (AT&T)	124
(P-VZW-Alpha)		RRUS-11 (AT&T)	124
Samsung MT6407-77A (P-VZW-Beta)	135	RRUS-11 (AT&T)	124
Samsung MT6407-77A (P-VZW-Gamma)	135	Ericsson RRUS-32 B2 (1900) (AT&T)	124
(2) NHH-65B-R2B w. Mtg Pipe	135	RxxDC-4750-PF-48 Surge Protector (AT&T)	120
(P-VZW-Alpha)	405	DB224	72 - 52
(2) NHH-65B-R2B w. Mtg Pipe (P-VZW-Beta)	135	VZW-2022	0
(2) NHH-65B-R2B w. Mtg Pipe (P-VZW-Gamma)	135		


TOWER DESIGN NOTES

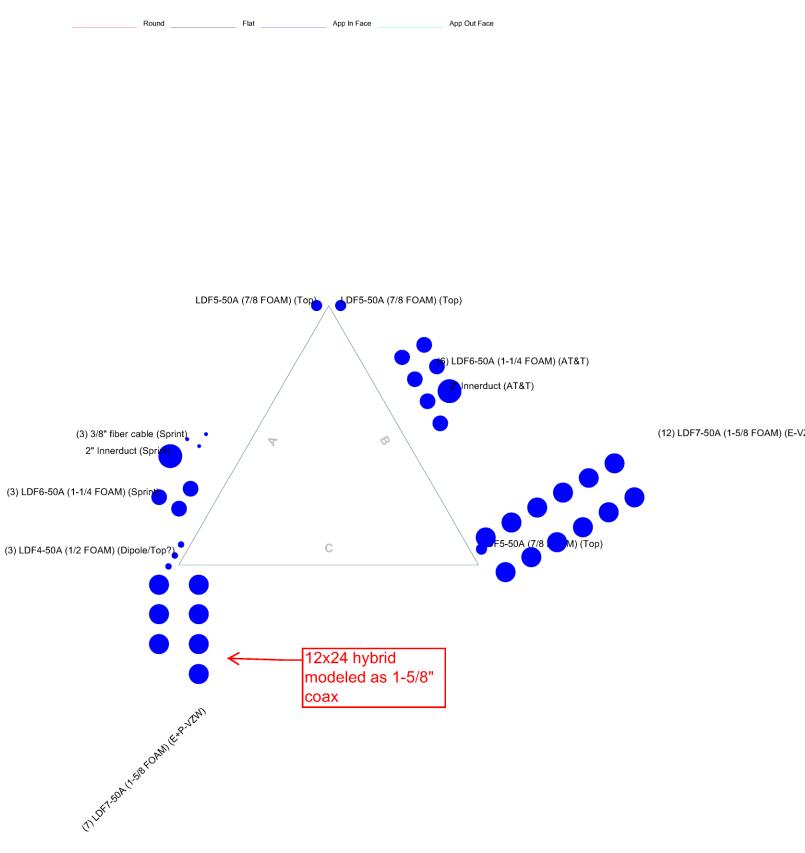
- 1. Tower is located in New Haven County, Connecticut.
- 2. Tower designed for Exposure C to the TIA-222-G Standard.
- 3. Tower designed for a 97 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 50 mph wind.
- 6. Tower Structure Class II.
- 7. Topographic Category 1 with Crest Height of 0.00 ft
- Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.
- 9. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards.
- 10. Welds are fabricated with ER-70S-6 electrodes.
- 11. (E)xisting, (P)roposed and (R)eserved equipment.
- 12. TOWER RATING: 99.5%

ARMOR	Armor Tower, Inc.	^{Job:} 160' Guyed Towe	r Reinforc	ement
	9 North Main St.	Project: Verizon Wireless:	Prospect Nor	th, CT
TOWER	Cortland, NY 13045	Client: Centek Engineering	Drawn by: PEP	App'd:
	Phone: (607) 591-5381	Code: TIA-222-G	Date: 05/23/22	Scale: NTS
	FAX: (866) 870-0840	Path:	Energie Draw Participie of TRENDFrame E.L.	Dwg No. E-1



TIA-222-G - 97 mph/50 mph 0.7500 in Ice Exposure C Leg Compression (Ib)

Armor Tower, Inc. ^{100:} 160' Guyed Tower Reinforceme	nt
ARMOR 9 North Main St. Project: Verizon Wireless: Prospect North, C	r
TOWER Cortland, NY 13045	
Phone: (607) 591-5381 Code: TIA-222-G Date: 05/23/22 Scale	NTS
FAX: (866) 870-0840 Path: Descent for the control of the control o	^{Io.} E-3

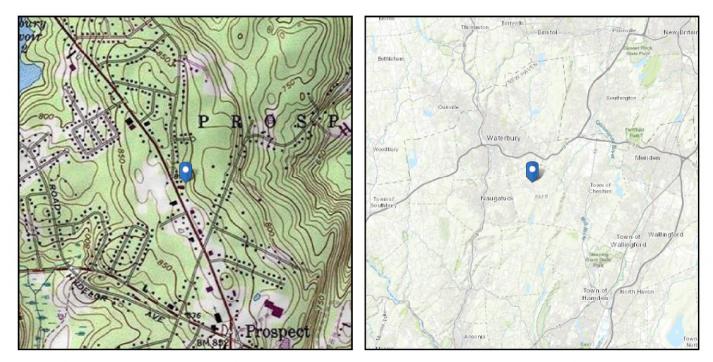

TIA-222-G - Service - 50 mph

Maximum Values

Armor Tower, Inc. Job: 1	60' Guyed Towe	r Reinforce	ement				
	Project: Verizon Wireless: Prospect North, CT						
IOWER Cortland, NY 13045	Centek Engineering	Drawn by: PEP	App'd:				
Phone: (607) 591-5381	TIA-222-G	Date: 05/23/22	Scale: NTS				
FAX: (866) 870-0840 Path:	Diverse (Towardow, Deschooldware) (Towardow, Deschoold, T. Tawer, Do Barl Createring, and a	E MARINA PRANE PARTICION (A TOP MAP ANNA POLI	Dwg No. E-5				

Feed Line Plan

No Address at This


Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 869.75 ft (NAVD 88) Latitude: 41.510928 Longitude: -72.982327

C

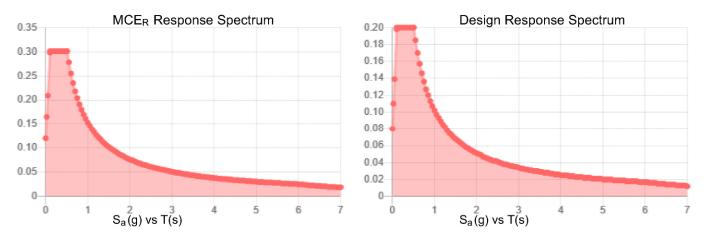
Wind

Results:

122 Vmph	←	125/97 per CT SB
76 Vmph		
86 Vmph		
92 Vmph		
99 Vmph		

Date Socressed:

AGE M & E3072023 Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
Ss :	0.188	S _{DS} :	0.2	
S ₁ :	0.064	S _{D1} :	0.102	
F _a :	1.6	Τ _L :	6	
F _v :	2.4	PGA :	0.097	
S _{MS} :	0.301	PGA M :	0.156	
S _{M1} :	0.153	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Tue Nov 30 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Tue Nov 30 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Maser Consulting Connecticut 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@colliersengineering.com

Replacement Antenna Mount Analysis Report and PMI Requirements

Mount Analysis-R

SMART Tool Project #: 10115372 Maser Consulting Connecticut Project #: 21781146A

November 15, 2021

Site Information

Site ID: Site Name: Carrier Name: Address: 468765-VZW / PROSPECT NORTH CT PROSPECT NORTH CT Verizon Wireless 54 Watterbury Rd Prospect, Connecticut 06712 New Haven County 41.510928° -72.982327°

Latitude: Longitude:

Structure Information

Tower Type: Mount Type: 160-Ft Self Support 12.50-Ft Sector Frame

FUZE ID # 2011031

Analysis Results

Sector Frame: 40.4% Pass

***Contractor PMI Requirements:

Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com Contractor - Please Review Specific Site PMI Requirements Upon Award Requirements may also be Noted on A & E drawings For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Nathan LaPorte

Executive Summary:

The objective of this report is to summarize the analysis results of the antenna support mount including the proposed modifications at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 675023, dated October 25, 2021
Mount Mapping Report	Hudson Design Group, LLC Site ID: 468765, dated January 12, 2021
Previous Mount Analysis	Maser Consulting Project #: 21781146A, dated November 2, 2021
Mount Specification	Site Pro 1 Part #: VFA12-HD

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), V _{ULT} : Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, K _e :	118 mph 50 mph 1.00 in II C 1 N/A N/A 0.969
Seismic Parameters:	Ss: S ₁ :	0.197 g 0.054 g
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	30 mph 250 lbs. 500 lbs.

Analysis Software: RISA-3D (V17)

Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		1	Andrew	LNX-8514DS-VTM	Retained
		2	Swedcom	SWCP2X5514	Retained
		6	Commscope	NHH-65B-R2B	
134.50	135.00	3	Samsung	MT6407-77A]
		3	Samsung	RF4439d-25A	Added
	3 Samsung		3 Samsung RF4440d-13A		
		1	Raycap	RVZDC-6627-PF-48	

The following equipment has been considered for the analysis of the mounts:

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- 1. All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

0	Channel, Solid Round, Angle, Plate	

- HSS (Rectangular)
- o Pipe
- Threaded Rod
- o Bolts

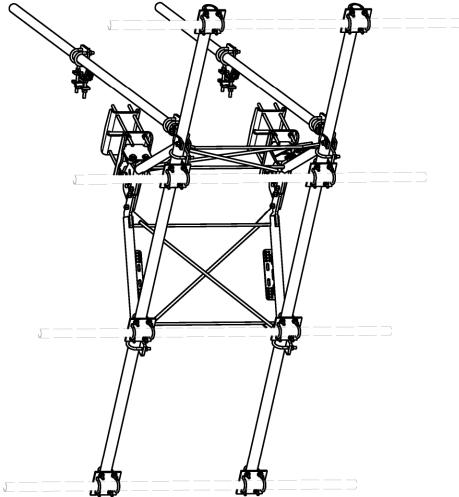
ASTM A36 (Gr. 36) ASTM 500 (Gr. B-46) ASTM A53 (Gr. B-35) F1554 (Gr. 36) ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

Analysis Results:

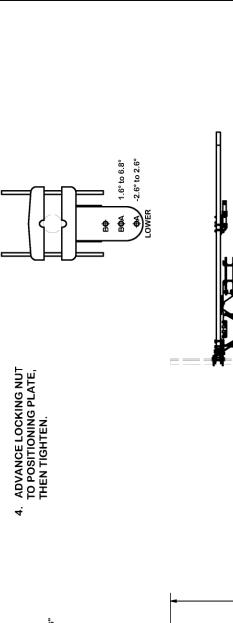
7.4%	Pass
11.1%	Pass
39.8%	Pass
8.0%	Pass
40.4%	Pass
26.2%	Pass
30.7%	Pass
13.3 %	Pass
	11.1% 39.8% 8.0% 40.4% 26.2% 30.7%

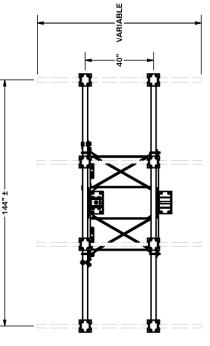
Recommendation:

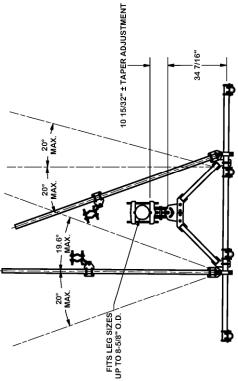

The proposed antenna mounts are **SUFFICIENT** for the final loading configuration and do not require modifications.

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

Attachments:


- 1. Mount Specification
- 2. Analysis Calculations
- 3. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 4. Antenna Placement Diagrams
- 5. TIA Adoption and Wind Speed Usage Letter


				PARTS LIST			
	ITEM	QTγ	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
	-	2	X-VFAW	SUPPORT ARM		71.41	142.81
	2	٦	X-HDCAMTBW	CLAMP WELDMENT FOR BCAM-HD		33.86	33.86
	3	٢	Х-МНТРНD	MULTI-HOLE TAPER PLATE WELDMENT		36.24	36.24
	4	2	X-VFAPL4	VFA-HD PIVOT PLATE	12 in	15.88	31.77
	5	2	X-LCBP4	BENT BACKING PLATE	13 in	19.00	38.01
¢	9	۲	X-HDCAMSS	ANGLE ADJUSTMENT WELDMENT FOR BCAM-HD		16.39	16.39
	7	4	X-SPTB	SLIDING PIPE TIE BACK PLATE	5 1/2 in	5.87	23.49
	8	-	X-HDCAMSP	POSITIONING PLATE WELDMENT FOR BCAM-HD		2.58	2.58
	6	4	X-TBCA	TIE BACK CLIP ANGLE		2.01	8.02
	10	8	SCX2	CROSSOVER PLATE	7 in	4.80	38.37
//	11	4	MCP	CLAMP HALF 1/2" THICK, 11-5/8" LONG	12 1/16 in	3.59	14.37
	12	8	DCP	1/2" THICK, 5-3/4" CNTER TO CENTER CLAMP HALF	8 1/8 in	2.36	18.90
	13	2	P2126	2-3/8" X 126" (2" SCH. 40) GALVANIZED PIPE	126 in	40.75	81.50
_	14	2	P30150	2-7/8" X 150" (2-1/2" SCH. 40) GALVANIZED PIPE	150 in	76.94	153.87
J	15	4	A34212	3/4" × 2-1/2" UNC HEX BOLT (A325)	2 1/2 in	0.48	1.92
	16	4	G34FW	3/4" HDG USS FLATWASHER		0.06	0.24
	17	4	G34LW	3/4" HDG LOCKWASHER		0.04	0.17
	18	4	G34NUT	3/4" HDG HEAVY 2H HEX NUT		0.21	0.85
S	19	8	G58R-18	5/8" × 18" THREADED ROD (HDG.)	18 in	0.40	3.19
	20	4	G58R-12	5/8" × 12" THREADED ROD (HDG.)		1.05	4.18
	21	4	G58R-8	5/8" × 8" THREADED ROD (HDG.)		0.70	2.79
Ĭ	22	4	X-UB5300	5/8" X 3" X 5-1/4" X 2-1/2" U-BOLT (HDG.)		1.15	4.60
5	23	8	X-UB5258	5/8" X 2-5/8" X 4-1/2" X 2" U-BOLT (HDG.)		1.00	8.00
	24	2	G5807	5/8" × 7" HDG HEX BOLT GR5 FULL THREAD	7 in	0.70	1.41
	25	-	G5806	5/8" x 6" HDG HEX BOLT GR5 FULL THREAD	6 in	0.62	0.62
	26	8	G5804	5/8" × 4" HDG HEX BOLT GR5		0.44	3.55
	27	4	G5802	5/8" × 2" HDG HEX BOLT GR5		0.27	1.08
	28	8	A582114	5/8" x 2-1/4" HDG A325 HEX BOLT	2 1/4 in	0.31	2.50
	29	25	G58FW	5/8" HDG USS FLATWASHER	1/8 in	0.07	1.76
	30	66	G58LW	5/8" HDG LOCKWASHER		0.03	1.72
	31	71	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	9.22
	32	32	X-UB1300	1/2" X 3" X 5" X 2" GALV U-BOLT		0.74	23.64
	33	16	X-UB1212	1/2" X 2" X 3" X 1-1/4" U-BOLT (HDG.)		0.60	9.56
	34	64	G12FW	1/2" HDG USS FLATWASHER	3/32 in	0.03	2.18
	35	64	G12LW	1/2" HDG LOCKWASHER	1/8 in	0.01	0.89
F. /	36	64	G12NUT	1/2" HDG HEAVY 2H HEX NUT		20.0	4.58
3						TOTAL WT. #	738.06



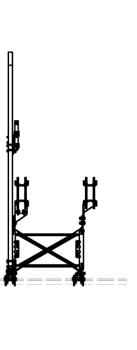
Description Contention Contention <thcontent< th=""> Contention Contention</thcontent<>	1 5		۱L	1	• 0	GE F {	5
TOLERANCE NOTES DESCRIPTION TOLERANCE NOTES TOLERANCES ON INCLESS OTHERWISE NOTED ARE: TOLEANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: TOLEANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SaveD, SHEAR DAID CAS CUT FOLES & 4.0307) UNLESS OTHERWISE NOTED ARE: DESCRIPTION LEK ILECTION CEK DER LIZZIO17 BRUDS ARE 4.12 DEGREE ALL OTHER AASEMBLY (# 0.007) CPD NO: DATE DATE RENDS ARE 4.12 DEGREE CPD NO: DER RUDS ARE 4.12 DEGREE CPD NO: RENDS ARE 4.12 DEGREE CPD NO: DER RUDS ARE 4.12 DEGREE CPD NO: <	Engineering Autom. New York, N New York, N New York, N New York, N Engineering Attanta, GA Support Team. Des Angeles, 12888-753-7446 Pynoub, N		DABTNO			DWG. NO.	
TOLERANCE NOTES TOLERANCE NOTES TOLERANCE NO INNENSIONS, UNLESS OTHERWISE NOTED ARE: DESCRIPTION TOLERANCES ON DIRNENSIONS, UNLESS OTHERWISE NOTED ARE: DESCRIPTION RAWED, SHEARED AND GAS CUT FLOGES (# 0.80°) NO CONING OF HOLES DECK 512/2017 BEND RAS CUT FLOER (# 0.80°) LECTION CEK 731/2017 LABER CUT EDGES AND HOLES (# 0.80°) NO CONING OF HOLES LECTION CEK 731/2017 ALL OTHER MACHINING (# 0.80°) CONING OF HOLES CEK 731/2017 ALL OTHER MACHINING (# 0.80°) CEK 72/2017 ALL OTHER MACHINER IS AND MOLES CEN 731/2017 ALL OTHER MACHINER IS AND MOLES CEN 731/2017 ALL OTHER MACHINER IS AND MOLES CEN 732/2017 ALL OTHER MACHINER IS AND MOLES MULTINE ON ONE AND MOLES 74.0007 71.0007 CEN 74.0007 71.0007<	DUTY MBLY ARMS		ENG ABBOYAL	_	-	CHECKED BY	BMC 12/13/2017
TOLERANCE NOTES TOLERANCE NOTES TOLERANCE NOTED ARE: Saweb, SHEARED AND GAS CUT FLORES OTHERWISE NOTED ARE: Saweb, SHEARED AND GAS CUT FLORES (± 0.007) Datue Datue CEK 5/29/2018 Lester cut flores and holes (± 0.007) NO CONING OF HOLES LECTION CEK 1/31/2017 ALL OTHER ASSEMBLY (± 0.007) NO CONING OF HOLES CEK 1/31/2017 ALL OTHER ASSEMBLY (± 0.007) ALL OTHER ASSEMBLY (± 0.007) Ano coning of HOLES CEK 1/31/2017 ALL OTHER ASSEMBLY (± 0.007) ALL OTHER ASSEMBLY (± 0.007) ALL OTHER ASSEMBLY (± 0.007) CEK 2/2/2017 REND SACONTANDE REPORTANTING (# 0.007) ALL OTHER ASSEMBLY (± 0.007) ALL OTHER ASSEMBLY (± 0.007)	11		DDAWN DV	CEK 1/06/0017		DRAWING USAGE	CUSTOMER
TOLERANCE NOTES TOLERANCE NOTES TOLERANCE NOTED ARE: Saweb, SHEARED AND GAS CUT FLORES OTHERWISE NOTED ARE: Saweb, SHEARED AND GAS CUT FLORES (± 0.007) Datue Datue CEK 5/29/2018 Lester cut flores and holes (± 0.007) NO CONING OF HOLES LECTION CEK 1/31/2017 ALL OTHER ASSEMBLY (± 0.007) NO CONING OF HOLES CEK 1/31/2017 ALL OTHER ASSEMBLY (± 0.007) ALL OTHER ASSEMBLY (± 0.007) Ano coning of HOLES CEK 1/31/2017 ALL OTHER ASSEMBLY (± 0.007) ALL OTHER ASSEMBLY (± 0.007) ALL OTHER ASSEMBLY (± 0.007) CEK 2/2/2017 REND SACONTANDE REPORTANTING (# 0.007) ALL OTHER ASSEMBLY (± 0.007) ALL OTHER ASSEMBLY (± 0.007)	DESCRIPTI			2		ASS SUB	1 02
TOLERANCE NOTES TOLERANCE NOTES TOLEANCE NOTES TOLENCIA CEK TOTAL CEX TOTAL CPD BY NAME TOTAL	iii si		/ č	5			
LECTION CPD	MLESS OTHERWISE N EDGES (# 0.030") :0.030") - NO CONING	<i>t 0.010") -</i> NO CONING				10 ARE PROPRIETARY INFORMA	OR DISCLOSURE WITHOUT TI
LECTION CPD	TOLERANCE NOTES TOLERANCE NOTES TOLERANCES ON DIMENSIONS, L SAMED, SHEARED AND GAS CUT DRILLED AND GAS CUT POLES (#	LASER CUT EDGES AND HOLES	BENDS ARE £ 1/2 DEGREE			PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWIN	INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE VALMONT INDUSTRIES IS STRICTLY PROHIBITED.
UPDATED BCAM VERSION 1 TO BCAM VERSION 2 UPDATED PIN LEG CONNECTION CHANGED PIN LEG CONNECTION CHANGED TIE-BACK FRONT CONNECTION CHANGED TIE-BACK FRONT CONNECTION DESCRIPTION OF REVISIONS REVISION HISTORY	TOLERANCE NOTES TOLERANCE NOTES TOLERANCES ON DIMENSIONS, L SWEED, SHEARED AND GAS CUT DRILLED AND GAS CUT HOLES (#	6/29/2018 LASER CUT EDGES AND HOLES /				DATE PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN TH	INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE VALMONT INDUSTRIES IS STRICTLY PROHIBITED.
	TOLERANCE NOTES TOLERANCES ON DIMENSIONS, L SAWED, SHEARED AND GAS CUT POLES (# DRILLED AND GAS CUT HOLES (#	CEK 5/29/2018 LASER CUT EDGES AND HOLES /	CEK 12/7/2017 BENUS ARE E 1/2 DEGREE	CEK 7/31/2017 ALL UTHER ASSEMBLY /4 0 060")		DATE PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN TH	INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE VALMONT INDUSTRIES IS STRICTLY PROHIBITED.

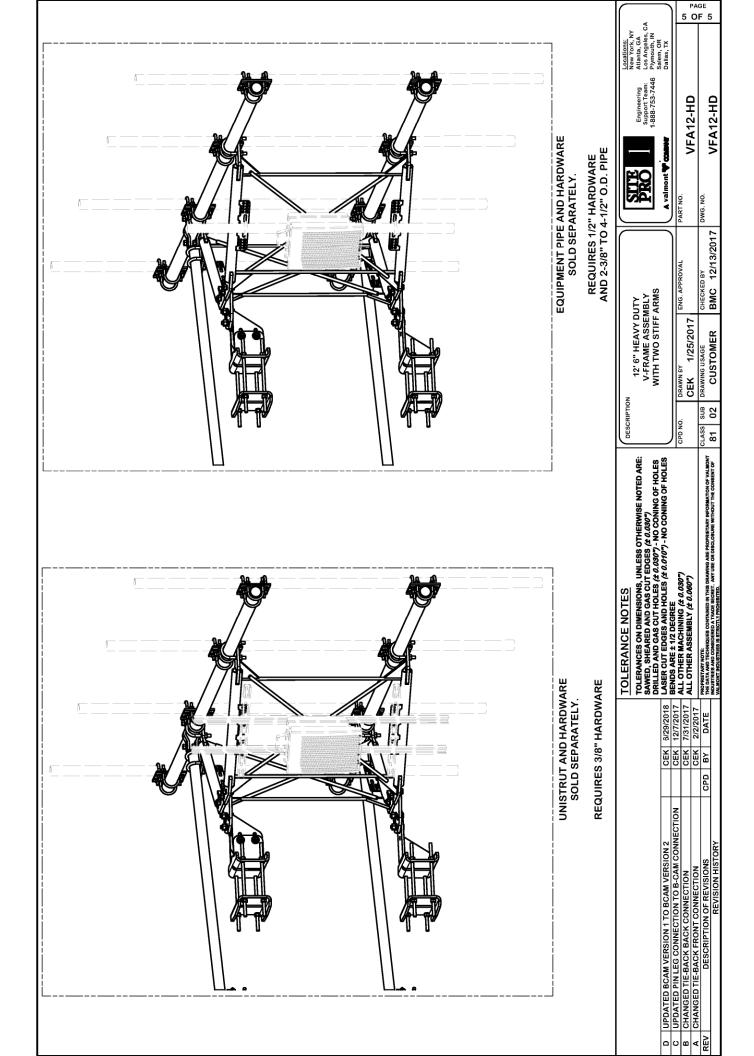
Description TOLERANCE NOTES Description Lecentors			۱L	3	РА 0	GE F (5
TOLERANCE NOTES TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: DESCRIPTION 12'6" HEAVY DI TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: DESCRIPTION 12'6" HEAVY DI SAMED, SHEARED AND GAS CUT EDGES (# 0.0307) - NO CONING OF HOLES UNTH TWO STIFF. UNTH TWO STIFF. CEK 8/29/2017 LABER CUT EDGES AND HOLES (# 0.0607) UNTH TWO STIFF. CEK 8/29/2017 LABER CUT EDGES (# 0.0607) UNTER MORE OF HOLES CEK 8/29/2017 ALL OTHER ASEMBLY (# 0.0607) CPD NOC DRAWN BY CED BY DATE REVAMENTING CLASS SUB DRAWN BY CPD BY DATE REVAMENTARY OF 0.06077 CPD NOC CLASS SUB DRAWN BY REVAMENTARY REVENTER REVAMENTARY REQUIRE OF ANGLE REVAMENTARY RECOMENTARY RECOMMANDOR FOLLOWER CPD NOC DRAWN BY CPD BY DATE REVAMENTARY RECOMMANDOR FOLLOWER DRAWING USAGE	Engineering Atlanta, Constront, New York, NY New York, NY Engineering Atlanta, GA Support Team: Los Angeles, A 1-888-753-7446 Pymoub, IN Salann, OR		DAPTNO				VFA12-HD
TOLERANCE NOTES TOLERANCE NOTES DESCRIPTION TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: DESCRIPTION DESCRIPTION TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: DESCRIPTION DESCRIPTION TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: DESCRIPTION DESCRIPTION TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: DESCRIPTION DESCRIPTION CEK 5/29/2018 LASER OUT FOLDES (# 0.000') - NO CONING OF HOLES DERCED CEK 7/31/2017 ALL OTHER MACHINING (# 0.000') DERCED DERCED CEK 7/31/2017 ALL OTHER MACHINING (# 0.000') DERCED DERCED DERCED CEK 7/27/2017 ALL OTHER MACHINING (# 0.000') DERCED	DUTY MBLY ARMS		ENG ABBOUNT	_		CHECKED BY	BMC 12/13/2017
TOLERANCE NOTES TOLERANCE NOTES TOLERANCE NOTES TOLERANCE NOTED SHEARED SHE			DEAMN DV	CER 1/06/0017		DRAWING USAGE	CUSTOMER
TOLERANCE NOTES TOLERANCE NOTES TOLERANCE NOTES TOLERANCE NOTED SHEARED SHE	DESCRIPTIO			2		ASS SUB	1 02
CEK 6/29/2018 CEK 12/7/2017 CEK 12/7/2017 CEK 2/2/2017 CEK 2/2/2017 CEK 2/2/2017 CEK 2/2/2017 CEK 2/2/2017		 81	' ī	5			
CPD BY	<u>ES</u> ONS, UNLESS OTHERWISE NO S CUT EDGES (<i>2 0.0307</i>) LES (<i>2 0.0307</i>) - NO CONING O	HOLES (± 0.010") - NO CONING C		(ED IN THIS DRAWING ARE PROPRIETARY INFORMATIC	RET. ANY USE OR DISOLOSURE WITHOUT THE TED.
CPD BY	TOLERANCE NOTE TOLERANCES ON DIMENSI SAWED, SHEARED AND GAS DRILLED AND GAS CUT HO	LASER CUT EDGES AND	BENDS ARE # 1/2 DEGRE	ALL OTHER MACHININ		PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINE	INDUSTRIES AND CONSIDERED A TRADE SEC VALMONT INDUSTRIES IS STRICTLY PROHIBI
CPD	TOLERANCE NOTE TOLERANCES ON DIMENSI SAWED, SHEARED AND GAS CUT HO	3/29/2018 LASER CUT EDGES AND			2/2/2017	Г	Γ
UPDATED BCAM VERSION 1 TO BCAM VERSION 2 UPDATED PIN LEG CONNECTION TO B-CAM CONNECTION CHANGED TIE-BACK RONC CONNECTION CHANGED TIE-BACK RONC CONNECTION CHANGED TIE-BACK RONC CONNECTION DESCRIPTION OF REVISION HISTORY	TOLERANCE NOTE TOLERANCES ON DIMENSI SAWED, SHEARED AND GAS CUT HO	CEK 6/29/2018 LASER CUT EDGES AND	CEK 12/7/2017 BENUS ARE # 1/2 DEGREE	CEK 7/31/2017 ALLOTHER ASSEMBLY	CEK 2/2/2017	DATE	Γ
	TOLERANCE NOTE TOLERANCES ON DIMENSI SAWED, SHEARED AND GAS CUT HO	CEK 6/29/2018 LASER CUT EDGES AND		CEK 7/31/2017 ALL OTHER ASSEMBLY	CEK 2/2/2017	DATE	Γ

- STEP 2

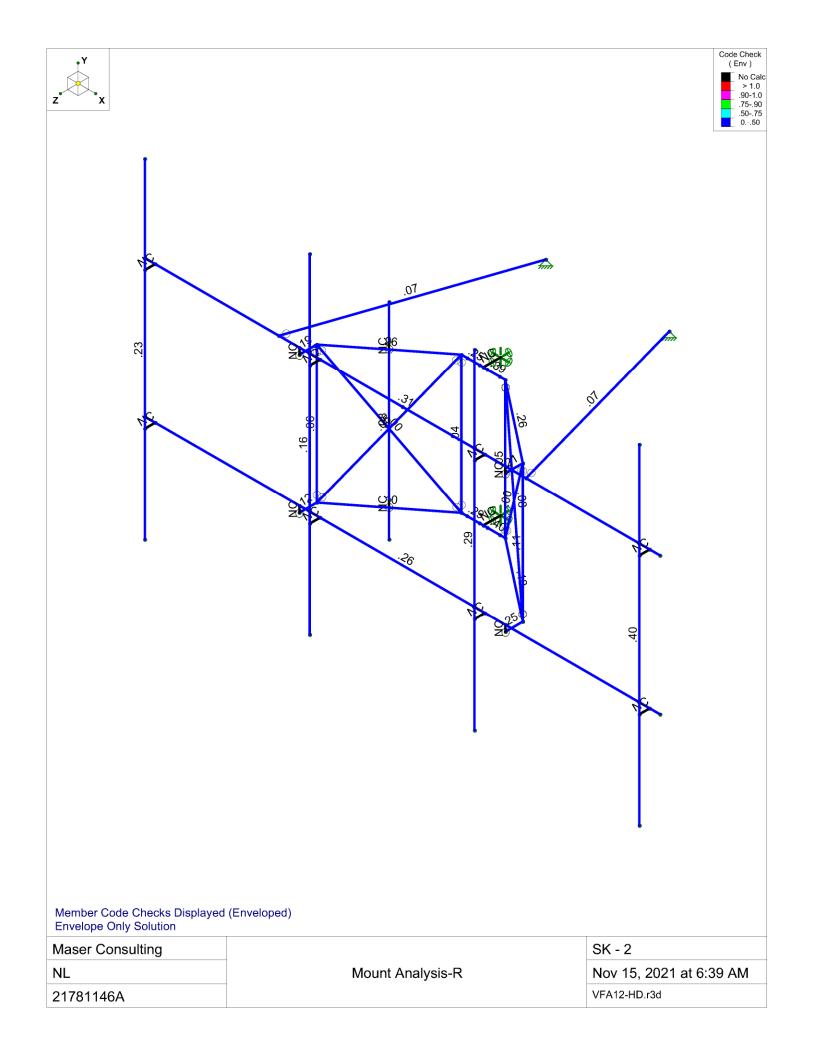
म्र

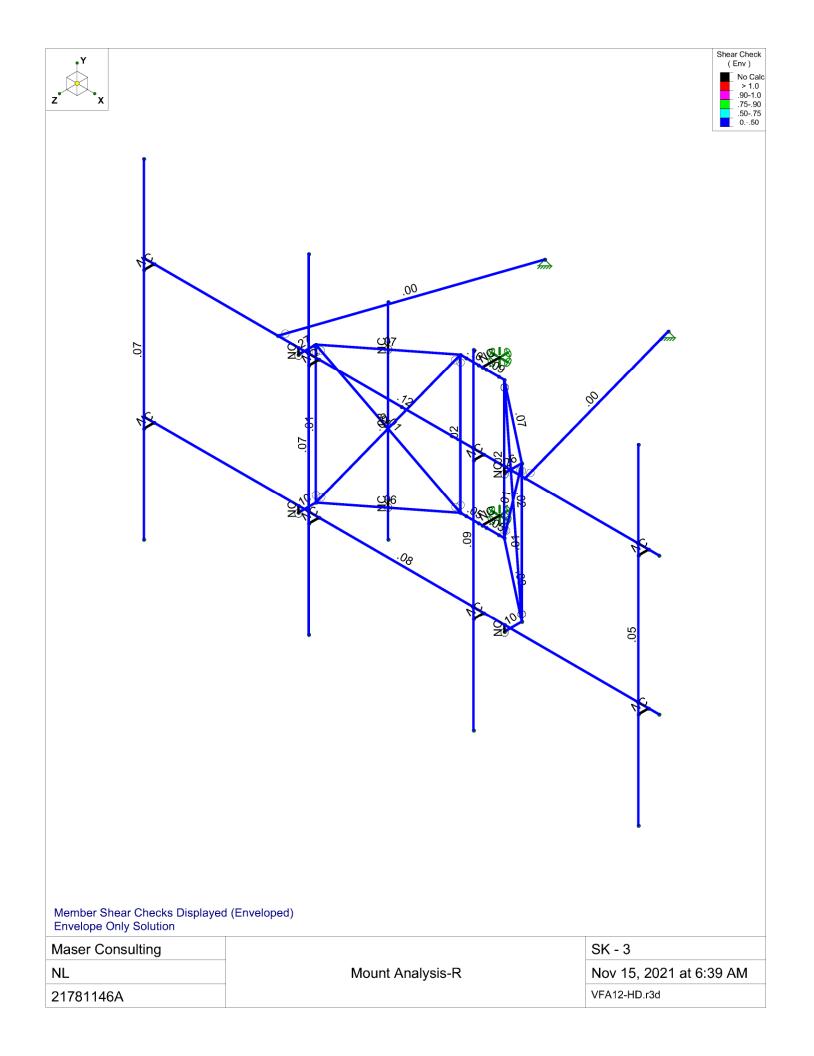
STEP 4-


ANGLE CALIBRATING PROCEDURE:


1. MEASURE TOWER TAPER AND PICK LOWER BRACKET HOLE:

HOLE A = -2.6° TO 2.6°
 HOLE B = 1.6° TO 6.8°


2. USE CALIBRATING BOLT TO ADJUST FRAME TO DESIRED TAPER



Envelope Only Solution		
Maser Consulting		SK - 1
NL	Mount Analysis-R	Nov 15, 2021 at 6:38 AM
21781146A		VFA12-HD.r3d

Basic Load Cases

	BLC Description	Category	X GravY GravZ Grav		Distrib	Area(M.	Surfac
1	Antenna D	None		33			
2	Antenna Di	None		33			
3	Antenna Wo (0 Deg)	None		33			
4	Antenna Wo (30 Deg)	None		33			
5	Antenna Wo (60 Deg)	None		33			
6	Antenna Wo (90 Deg)	None		33			
7	Antenna Wo (120 Deg)	None		33			
8	Antenna Wo (150 Deg)	None		33			
9	Antenna Wo (180 Deg)	None		33			
10	Antenna Wo (210 Deg)	None		33			
11	Antenna Wo (240 Deg)	None		33			
12	Antenna Wo (270 Deg)	None		33			
13	Antenna Wo (300 Deg)	None		33			
14	Antenna Wo (330 Deg)	None		33			
15	Antenna Wi (0 Deg)	None		33			
16	Antenna Wi (30 Deg)	None		33			
17	Antenna Wi (60 Deg)	None		33			
18	Antenna Wi (90 Deg)	None		33			
19	Antenna Wi (120 Deg)	None		33			
20	Antenna Wi (150 Deg)	None		33			
21	Antenna Wi (180 Deg)	None		33			
22	Antenna Wi (210 Deg)	None		33			
23	Antenna Wi (240 Deg)	None		33			
24	Antenna Wi (270 Deg)	None		33			
25	Antenna Wi (300 Deg)	None		33			
26	Antenna Wi (330 Deg)	None		33			
27	Antenna Wm (0 Deg)	None		33			
28	Antenna Wm (30 Deg)	None		33			
29	Antenna Wm (60 Deg)	None		33			
30	Antenna Wm (90 Deg)	None		33			
31	Antenna Wm (120 Deg)	None		33			
32	Antenna Wm (150 Deg)	None		33			
33	Antenna Wm (180 Deg)	None		33			
34	Antenna Wm (210 Deg)	None		33			
35	Antenna Wm (240 Deg)	None		33			
36	Antenna Wm (270 Deg)	None		33			
37	Antenna Wm (270 Deg)	None		33			
38	Antenna Wm (330 Deg)	None		33			
39	Structure D	None	-1				
40	Structure Di	None	-1		29		
40	Structure Wo (0 Deg)	None			58		
41	Structure Wo (0 Deg)	None			58		
42	Structure Wo (50 Deg)	None			58		
43					58		
44	Structure Wo (90 Deg)	None					
	Structure Wo (120 Deg)	None			58 58		
46	Structure Wo (150 Deg)	None					
47	Structure Wo (180 Deg)	None			58		
48	Structure Wo (210 Deg)	None			58		
49	Structure Wo (240 Deg)	None			58		
50	Structure Wo (270 Deg)	None			58		
51	Structure Wo (300 Deg)	None			58		
52	Structure Wo (330 Deg)	None			58		
53	Structure Wi (0 Deg)	None			58		
54	Structure Wi (30 Deg)	None			58		
55 56	Structure Wi (60 Deg)	None			58		
	Structure Wi (90 Deg)	None			58		

Basic Load Cases (Continued)

	BLC Description	Category	X Grav	.Y Grav	Z Grav	Joint	Point	Distrib	. Area(M.	.Surfac
57	Structure Wi (120 Deg)	None						58		
58	Structure Wi (150 Deg)	None						58		
59	Structure Wi (180 Deg)	None						58		
60	Structure Wi (210 Deg)	None						58		
61	Structure Wi (240 Deg)	None						58		
62	Structure Wi (270 Deg)	None						58		
63	Structure Wi (300 Deg)	None						58		
64	Structure Wi (330 Deg)	None						58		
65	Structure Wm (0 Deg)	None						58		
66	Structure Wm (30 Deg)	None						58		
67	Structure Wm (60 Deg)	None						58		
68	Structure Wm (90 Deg)	None						58		
69	Structure Wm (120 Deg)	None						58		
70	Structure Wm (150 Deg)	None						58		
71	Structure Wm (180 Deg)	None						58		
72	Structure Wm (210 Deg)	None						58		
73	Structure Wm (240 Deg)	None						58		
74	Structure Wm (270 Deg)	None						58		
75	Structure Wm (300 Deg)	None						58		
76	Structure Wm (330 Deg)	None						58		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					33			
82	Antenna Eh (0 Deg)	None					22			
83	Antenna Eh (90 Deg)	None					22			
84	Structure Ev	ELY		042						
85	Structure Eh (0 Deg)	ELZ	105							
86	Structure Eh (90 Deg)	ELX			.105					

Load Combinations

	Description	Solve	P	S B	F	a E	3 F	a	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.2D+1.0Wo (0 Deg)	Yes	Υ	•	1 1	1.2 3	39 1	1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Deg)	Yes	Y		1 1	1.2 3	39 1	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Deg)	Yes	Y		1 1	1.2 3	39 1	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)	Yes	Y	· ·	1 1	1.2 3	39 1	1.2	6	1	44	1												
5	1.2D+1.0Wo (120 Deg)				1 1	1.2 3	39 1	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 Deg)					1.2 3		1.2	8	1	46	1												
7	1.2D+1.0Wo (180 Deg)					1.2 3		1.2	9	1	47	1												
8	1.2D+1.0Wo (210 Deg)				1 1	1.2 3	39 1	1.2	10	1	48	1												
9	1.2D+1.0Wo (240 Deg)				1 1	1.2 3	39 1	1.2	11	1	49	1												
10	1.2D+1.0Wo (270 Deg)				1 1	1.2 3	39 1	1.2	12	1	50	1												
11	1.2D+1.0Wo (300 Deg)				1 1	1.2 3	39 1	1.2	13	1	51	1												
12	1.2D+1.0Wo (330 Deg)				1 1	1.2 3	39 1	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0Wi (0 .				1 1	1.2 3	39 1	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Wi (3					1.2 3		1.2	2	1	40	1	16	1	54	1								
15	1.2D + 1.0Di + 1.0Wi (6					1.2 3		1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0Wi (9					1.2 3			2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.0Wi (1					1.2 3		1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0Wi (1					1.2 3		1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0Wi (1				1 1	1.2 3	39 1	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0Wi (2					1.2 3		1.2	2	1	40	1	22	1	60	1								
21	1.2D + 1.0Di + 1.0Wi (2				1 1	1.2 3	39 1	1.2	2	1	40	1	23	1	61	1								
22	1.2D + 1.0Di + 1.0Wi (2	Yes	Y	· ·	1 1	1.2 3	39 1	1.2	2	1	40	1	24	1	62	1								

Load Combinations (Continued)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lout		00//		acu.	<u> </u>																			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						B	Fa	B	Fa	BLC	Fa	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23	1.2D + 1.0Di + 1.0Wi (3	Yes	Y		1	1.2	39	1.2	2	1	40	1	25	1	63	1								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24	1.2D + 1.0Di + 1.0Wi (3	· Yes	Y		1	1.2	39	1.2	2	1	40	1	26	1	64	1								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																									_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																									
34 12D + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 36 1 74 1 35 1.2D + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 37 1 75 1																				-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																									
36 1.2D + 1.5Lm1 + 1.0W Yes Y 1 1.2 39 1.2 77 1.5 38 1 76 1 1.1.2 1.1.2 1.1.2 1.1.2 1.1.2 1.1.2 1.1.2 1.1.2																									_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																									
40 $1.2D + 1.5Lm^2 + 1.0W$ Yes Y 1 1.2 39 1.2 78 1.5 30 1 68 1 1 1.2 39 1.2 78 1.5 31 1 69 1 1 1.2 39 1.2 78 1.5 32 1 70 1 1 1 1.2 39 1.2 78 1.5 32 1																									
41 $1.2D + 1.5Lm^2 + 1.0W$ Yes Y 1 1.2 39 1.2 78 1.5 31 1 69 1 1 1.2 39 1.2 78 1.5 31 1 69 1 1 1.2 39 1.2 78 1.5 32 1 70 1 1 1.2 39 1.2 78 1.5 34 1 71 1 1 1.2 39 1.2 78 1.5 34 1 72 1 1 1.2 39 1.2 78 1.5 35 1 73 1 1.2 <																									
42 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 32 1 70 1 1.2 1.1.2 1.7.5 1.																									_
43 $1.2D + 1.5Lm2 + 1.0W$ Yes Y 1 1.2 39 1.2 78 1.5 33 1 71 1																									
44 $1.2D + 1.5Lm2 + 1.0W$ Yes Y 1 1.2 39 1.2 78 1.5 34 1 72 1 u																									
45 $1.2D + 1.5Lm2 + 1.0W$ Yes Y 1 1.2 39 1.2 78 1.5 35 1 73 1 u													-												
46 $1.2D + 1.5Lm2 + 1.0W$ Yes Y 1 1.2 39 1.2 78 1.5 36 1 74 1 u																									
47 $1.2D + 1.5Lm2 + 1.0W$ YesY1 1.2 39 1.2 78 1.5 37 1 75 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																									
48 1.2D + 1.5Lm2 + 1.0W Yes Y 1 1.2 39 1.2 78 1.5 38 1 76 1													1												
49 $1.2D + 1.5Lv1$ YesY1 1.2 39 1.2 79 1.5 u <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																									
50 1.2D + 1.5Lv2 Yes Y 1 1.2 39 1.2 80 1.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>30</td><td></td><td>10</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												30		10	-										
51 1.4D Yes Y 1 1.4 39 1.4 <td></td>																									
52 1.2D + 1.0Ev + 1.0Eh (0Yes Y 1 1.2 39 1.2 81 1 E 1 83 ELZ 1 E 1 E 1 E 1 E 1 83 ELZ 1 E 1 E 1 E 1 83 ELZ 1 E 1 E 1 E 1 83 ELZ 1 E 1 E 1 E 1 E 1 E 1 83 ELZ 1 E 5 54 1.2D + 1.0Ev + 1.0Eh (6Yes Y 1 1.2 39 1.2 81 1 E 1 82 5 83 1 ELZ 5 E 866 ELZ 5 ELZ 5 ELZ 5 ELZ 1 1 1 1 1 1 1 1 1 82 5 83 1 ELZ 5 ELZ 6 ELZ 5 ELZ 1 1 1 1										00	1.5														
53 1.2D + 1.0Ev + 1.0Eh (3Yes Y 1 1.2 39 1.2 81 1 E 1 82 .866 83 .5 ELZ .866 E .5 54 1.2D + 1.0Ev + 1.0Eh (6Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E 866 55 1.2D + 1.0Ev + 1.0Eh (1Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E 1 56 1.2D + 1.0Ev + 1.0Eh (1Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .66 ELZ .5 E 1 .5 .5 .5 .5 .5 .5 .5 .5 ELZ .5 ELZ .5 EL .5 .5 .5										01	1	C	4	00	4	02		EI 7	1	C					
54 1.2D + 1.0Ev + 1.0Eh (6Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 .866 ELZ .5 E .866 55 1.2D + 1.0Ev + 1.0Eh (9Yes Y 1 1.2 39 1.2 81 1 E 1 82 83 1 ELZ E 1 1 1 82 83 1 ELZ E 1 1 1 82 83 1 ELZ E 1 1 1 82 83 1 ELZ E 1 1 82 83 866 ELZ 1 8 1 1 82 1 82 1 82 1 83 ELZ 1 8 1 1 8 1 82 83 1 1	-																			-					
55 1.2D + 1.0Ev + 1.0Eh (9Yes Y 1 1.2 39 1.2 81 1 E 1 ELZ E 1 I													· ·												
56 1.2D + 1.0Ev + 1.0Eh (1Yes Y 1 1.2 39 1.2 81 1 E 1 82 5 83 .866 ELZ 5 E .866																									
57 1.2D + 1.0Ev + 1.0Eh (1Yes Y 1 1.2 39 1.2 81 1 E 1 82 -866 83 .5 ELZ866 E .5 58 1.2D + 1.0Ev + 1.0Eh (1Yes Y 1 1.2 39 1.2 81 1 E 1 82 -866 83 .5 ELZ866 E .5 59 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 -866 83 -5 ELZ - 866 E 5 60 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 5 83 6 ELZ 5 E 5 E 66 E 6 E 66 E 6 E 6											1														
58 1.2D + 1.0Ev + 1.0Eh (1Yes Y 1 1.2 39 1.2 81 1 E 1 83 ELZ 1 E - 60 59 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 -866 83 5 ELZ 5 60 60 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 5 83 5 ELZ 5 E 5 61 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 5 83 5 ELZ 5 E 866 ELZ 5 E 866 E 1 E 1 82 5 83 1 E 1 E 1 E 1 E 1 E 1 E 1 E E 5																									
59 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 866 83 5 ELZ866 E 5 60 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 5 ELZ866 ELZ 5 ELZ .66 61 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 5 83 4 ELZ E 666 40 62 1.2D + 1.0Ev + 1.0Eh (3Yes Y 1 1.2 39 1.2 81 1 E 1 82 5 83 4 ELZ E 4 40 <																					.5				
60 1.2D + 1.0Ev + 1.0Eh (2Yes Y 1 1.2 39 1.2 81 1 E 1 82 -5 83 -866 ELZ -5 E -866 Image: Second S																					-				
61 1.2D + 1.0Ev + 1.0Eh (2 Yes Y 1 1.2 39 1.2 81 1 E 1 82 83 -1 ELZ E -1 62 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 866 ELZ .5 E 866 63 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 866 ELZ .5 E 866 5 .5 E 5 .5 E .5 E 5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 <													-												
62 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 866 ELZ .5 E 866 63 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .5 83 866 ELZ .5 E 866 63 1.2D + 1.0Ev + 1.0Eh (3 Yes Y 1 1.2 39 1.2 81 1 E 1 82 .86 83 5 ELZ .66																									
63 1.2D + 1.0Ev + 1.0Eh (3., Yes Y 1 1 1.2 39 1.2 81 1 E., 1 82 .866 835 ELZ .866 E.,5																									
						1					1											j			
64 U.9D - I.UEV + I.UEN (U., YES) Y 1 .9 39 .9 81 -1 E1 82 1 83 EL4 1 E						1					1														
65 0.9D - 1.0Ev + 1.0Eh (3 Yes Y 1 9 39 9 81 -1 E1 82 .866 83 5 ELZ.866 E 5														82	.866	83	.5	ELZ	.866	E	.5				
66 0.9D - 1.0Ev + 1.0Eh (6 Yes Y 1 .9 39 .9 81 -1 E1 82 .5 83 .866 ELZ .5 E866						1																			
67 0.9D - 1.0Ev + 1.0Eh (9 Yes Y 1 9 39 9 81 -1 E1 82 83 1 ELZ E 1						1								82	_	83									
68 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 825 83 .866 ELZ5 E866																									
69 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E1 82866 83 .5 ELZ866 E5																					.5				
70 0.9D - 1.0Ev + 1.0Eh (1 Yes Y 1 .9 39 .9 81 -1 E -1 83 ELZ -1 E						1																			
71 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 1 .9 39 .9 81 -1 E1 82866 835 ELZ866 E5						1																			
72 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 1 .9 39 .9 81 -1 E1 825 83866 ELZ5 E866						1									5							i			
73 0.9D - 1.0Ev + 1.0Eh (2 Yes Y 1 1 .9 39 .9 81 -1 E1 82 83 -1 ELZ E1 -1														82											
74 0.9D - 1.0Ev + 1.0Eh (3 Yes Y 1 .9 39 .9 81 -1 E -1 82 .5 83 866 ELZ .5 E 866 LZ						1				81															
75 0.9D - 1.0Ev + 1.0Eh (3 Yes Y 1 9 39 9 81 -1 E1 82 .866 835 ELZ.866 E5			Vaa			1	.9	39	.9	81	-1	E	-1	82	.866	83	5	ELZ	.866	E	5				

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Dia
1	N1	6.25	0.145833	8.083333	0	
2	N2	-6.25	0.145833	8.083333	0	
3	N3	6.25	3.479167	8.083333	0	
4	N4	-6.25	3.479167	8.083333	0	
5	N5	-6.	0.145833	8.083333	0	
6	N6	-6.	3.479167	8.083333	0	
7	N7	-2.	0.145833	8.083333	0	
8	N8	-2.	3.479167	8.083333	0	
9	N9	2.	0.145833	8.083333	0	
10	N10	2.	3.479167	8.083333	0	
11	N11	6.	0.145833	8.083333	0	
12	N12	6.	3.479167	8.083333	0	
13	N13	-6.	0.145833	8.333333	0	
14	N14	-6.	3.479167	8.333333	0	
15	N15	-2.	0.145833	8.333333	0	
16	N16	-2.	3.479167	8.333333	0	
17	N17	2.	0.145833	8.333333	0	
18	N18	2.	3.479167	8.333333	0	
19	N19	6.	0.145833	8.333333	0	
20	N20	6.	3.479167	8.333333	0	
21	N21	-2.5	0	8.083333	0	
22	N22	-2.5	3.333333	8.083333	0	
23	N23	2.5	0	8.083333	0	
24	N24	2.5	3.333333	8.083333	0	
25	N25	-2.5	0	7.661458	0	
26	N26	-2.5	3.333333	7.661458	0	
27	N27	2.5	0	7.661458	0	
28	N28	2.5	3.333333	7.661458	0	
29	N29	-0.	0	6.119792	0	
30	N30	-0.	3.333333	6.119792	Ő	
31	N31	-0.53125	0	6.119792	0	
32	N32	-0.53125	3.333333	6.119792	0	
33	N33	0.53125	0	6.119792	0	
34	N34	0.53125	3.333333	6.119792	Ő	
35	N35	-0.	0	5.703125	0	
36	N36	-0.	3.333333	5.703125	0	
37	N39	-6.	5.8125	8.333333	0	
38	N40	-2.	5.8125	8.333333	0	
39	N41	2.	5.8125	8.333333	0	
40	N42	6.	5.8125	8.333333	0	
41	N43	-6.	-2.1875	8.333333	0	
42	N44	-0.	-2.1875	8.333333	0	
43	N45	2.	-2.1875	8.333333	0	
44	N46	6.	-2.1875	8.333333	0	
44	N58	-2.5	3.333333	7.708333	0	
46	N76	-0.09375	0	6.119792	0	
40	N77	-0.395834	0	6.119792	0	
47	N78	0.09375	0	6.119792	0	
48 49	N78	0.395833	0	6.119792		
49 50			3.333333	6.119792	0	
	N80	-0.09375			0	
51	N81	-0.395834	3.333333	6.119792	0	
52	N82	0.09375	3.333333	6.119792	0	
53	N83	0.395833	3.333333	6.119792	0	
54	N58A	-0.	3.479167	8.083333	0	
55	N59	-2.5	0.145833	8.083333	0	
56	N60	-2.5	3.479167	8.083333	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
57	N61	2.5	0.145833	8.083333	0	
58	N62	2.5	3.479167	8.083333	0	
59	N60A	3.	3.479167	8.083333	0	
60	N61A	1.5	3.333333	3.105049	0	
61	N61B	-3.	3.479167	8.083333	0	
62	N62A	-1.5	3.333333	3.105049	0	
63	N63	-1.515625	3.333333	6.890625	0	
64	N64	-1.515625	0	6.890625	0	
65	N65	-1.682292	3.333333	6.723958	0	
66	N66	-1.682292	0	6.723958	0	
67	N67	-1.682292	4.166667	6.723958	0	
68	N68	-1.682292	-0.833333	6.723958	0	

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Antenna Pipe	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	.627	.627	1.25
2	Horizontal mount	PIPE_2.5	Beam	Pipe	Q235	Typical	1.61	1.45	1.45	2.89
3	Standoff Horizontal	PIPE 2.0	Beam	Pipe	Q235	Typical	1.02	.627	.627	1.25
4	Standoff Diagonal	SR 0.75	Beam	BAR	Q235	Typical	.442	.016	.016	.031
5	Tieback	PIPE 2.0	Beam	Pipe	Q235	Typical	1.02	.627	.627	1.25
6	Standoff Vertical	SR 0.625	Beam	BAR	Q235	Typical	.307	.007	.007	.015
7	Standoff Plate	PL5/8X3.5	Beam	BAR	Q235	Typical	2.188	.071	2.233	.253
8	tower pipe	PIPE_3.0	Column	Pipe	A53 Gr. B	Typical	2.07	2.85	2.85	5.69

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1	Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
2	A53 Gr. B	29000	11154	.3	.65	.49	35	1.5	60	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
5	A500 Gr. B 42	29000	11154	.3	.65	.49	42	1.4	58	1.3
6	A500 Gr. B 46	29000	11154	.3	.65	.49	46	1.4	58	1.3
7	Q235	29000	11154	.3	.65	.49	35	1.5	58	1.2

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N2	N1			Horizontal mou	Beam	Pipe	Q235	Typical
2	M2	N4	N3			Horizontal mou	Beam	Pipe	Q235	Typical
3	M3	N5	N13			RIGID	None	None	RIGID	Typical
4	M4	N6	N14			RIGID	None	None	RIGID	Typical
5	M5	N8	N16			RIGID	None	None	RIGID	Typical
6	M6	N7	N15			RIGID	None	None	RIGID	Typical
7	M9	N10	N18			RIGID	None	None	RIGID	Typical
8	M10	N9	N17			RIGID	None	None	RIGID	Typical
9	M11	N12	N20			RIGID	None	None	RIGID	Typical
10	M12	N11	N19			RIGID	None	None	RIGID	Typical
11	M13	N22	N26		90	Standoff Plate	Beam	BAR	Q235	Typical
12	M14	N21	N25		90	Standoff Plate	Beam	BAR	Q235	Typical
13	M15	N23	N27		90	Standoff Plate	Beam	BAR	Q235	Typical
14	M16	N24	N28		90	Standoff Plate	Beam	BAR	Q235	Typical
15	OVP	N26	N32			Standoff Horiz	Beam	Pipe	Q235	Typical
16	M18	N25	N31			Standoff Horiz	Beam	Pipe	Q235	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
17	M19	N27	N33			Standoff Horiz	Beam	Pipe	Q235	Typical
18	M20	N28	N34			Standoff Horiz	Beam	Pipe	Q235	Typical
19	M21	N32	N30		90	Standoff Plate	Beam	BÁR	Q235	Typical
20	M22	N34	N30		90	Standoff Plate	Beam	BAR	Q235	Typical
21	M23	N31	N29		90	Standoff Plate	Beam	BAR	Q235	Typical
22	M24	N33	N29		90	Standoff Plate	Beam	BAR	Q235	Typical
23	M25	N31	N26			Standoff Diago		BAR	Q235	Typical
24	M26	N32	N25			Standoff Diago	Beam	BAR	Q235	Typical
25	M27	N33	N28			Standoff Diago	Beam	BAR	Q235	Typical
26	M28	N27	N34			Standoff Diago	Beam	BAR	Q235	Typical
27	M29	N29	N35			RIGID	None	None	RIGID	Typical
28	M30	N30	N36			RIGID	None	None	RIGID	Typical
29	MP4A	N39	N43			Antenna Pipe	Beam	Pipe	A53 Gr. B	
30	MP3A	N40	N44			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
31	MP2A	N41	N45			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
32	MP1A	N42	N46			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
33	M44	N25	N26			Standoff Vertical	Beam	BÁR	Q235	Typical
34	M45	N31	N32			Standoff Vertical	Beam	BAR	Q235	Typical
35	M46	N33	N34			Standoff Vertical	Beam	BAR	Q235	Typical
36	M47	N27	N28			Standoff Vertical	Beam	BAR	Q235	Typical
37	M47B	N22	N60			RIGID	None	None	RIGID	Typical
38	M48A	N21	N59			RIGID	None	None	RIGID	Typical
39	M49A	N24	N62			RIGID	None	None	RIGID	Typical
40	M50A	N23	N61			RIGID	None	None	RIGID	Typical
41	M51A	N30	N36			RIGID	None	None	RIGID	Typical
42	M52A	N29	N35			RIGID	None	None	RIGID	Typical
43	M44A	N60A	N61A			Tieback	Beam	Pipe	Q235	Typical
44	M44B	N61B	N62A			Tieback	Beam	Pipe	Q235	Typical
45	OVP1	N67	N68			Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
46	M46A	N63	N65			RIGID	None	None	RIGID	Typical
47	M47A	N64	N66			RIGID	None	None	RIGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
1	M1						Ýes				None
2	M2						Yes				None
3	M3						Yes	** NA **			None
4	M4						Yes	** NA **			None
5	M5						Yes	** NA **			None
6	M6						Yes	** NA **			None
7	M9						Yes	** NA **			None
8	M10						Yes	** NA **			None
9	M11						Yes	** NA **			None
10	M12						Yes	** NA **			None
11	M13						Yes	Default			None
12	M14						Yes	Default			None
13	M15						Yes				None
14	M16						Yes				None
15	OVP						Yes	Default			None
16	M18						Yes				None
17	M19						Yes				None
18	M20						Yes	Default			None
19	M21						Yes	Default			None
20	M22						Yes				None
21	M23						Yes				None

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
22	M24						Yes			None
23	M25	BenPIN	BenPIN			Euler Buc	Yes	Default		None
24	M26	BenPIN	BenPIN			Euler Buc	Yes	Default		None
25	M27	BenPIN	BenPIN			Euler Buc	Yes			None
26	M28	BenPIN	BenPIN			Euler Buc	Yes			None
27	M29						Yes	** NA **	Inactive	None
28	M30						Yes	** NA **	Inactive	None
29	MP4A						Yes			None
30	MP3A						Yes			None
31	MP2A						Yes			None
32	MP1A						Yes			None
33	M44	BenPIN	BenPIN				Yes			None
34	M45	BenPIN	BenPIN				Yes			None
35	M46	BenPIN	BenPIN				Yes			None
36	M47	BenPIN	BenPIN				Yes	Default		None
37	M47B		000X00				Yes	** NA **		None
38	M48A		000X00				Yes	** NA **		None
39	M49A		000X00				Yes	** NA **		None
40	M50A		000X00				Yes	** NA **		None
41	M51A						Yes	** NA **		None
42	M52A						Yes	** NA **		None
43	M44A	BenPIN					Yes	Default		None
44	M44B	BenPIN					Yes	Default		None
45	OVP1						Yes			None
46	M46A		000X00				Yes	** NA **		None
47	M47A		000X00				Yes	** NA **		None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Y	-15	2
2	MP4A	My	007	2
3	MP4A	Mz	0	2
4	MP4A	Y	-15	4.75
5	MP4A	My	007	4.75
6	MP4A	Mz	0	4.75
7	MP2A	Y	-21.85	.88
8	MP2A	My	011	.88
9	MP2A	Mz	.013	.88
10	MP2A	Y	-21.85	5.88
11	MP2A	My	011	5.88
12	MP2A	Mz	.013	5.88
13	MP2A	Y	-21.85	.88
14	MP2A	My	011	.88
15	MP2A	Mz	013	.88
16	MP2A	Y	-21.85	5.88
17	MP2A	My	011	5.88
18	MP2A	Mz	013	5.88
19	MP1A	Y	-43.55	2.38
20	MP1A	My	022	2.38
21	MP1A	Mz	0	2.38
22	MP1A	Y	-43.55	4.38
23	MP1A	My	022	4.38
24	MP1A	Mz	0	4.38
25	MP3A	Y	-74.7	2
26	MP3A	My	.025	2

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
27	MP3A	Mz	0	2
28	MP2A	Y	-70.3	2
29	MP2A	My	.023	2
30	MP2A	Mz	0	2
31	OVP1	Y	-32	2.5
32	OVP1	My	009	2.5
33	OVP1	Mz	005	2.5

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Y	-85.558	2
2	MP4A	My	043	2
3	MP4A	Mz	0	2
4	MP4A	Y	-85.558	4.75
5	MP4A	My	043	4.75
6	MP4A	Mz	0	4.75
7	MP2A	Y	-60.411	.88
8	MP2A	My	03	.88
9	MP2A	Mz	.035	.88
10	MP2A	Y	-60.411	5.88
11	MP2A	My	03	5.88
12	MP2A	Mz	.035	5.88
13	MP2A	Y	-60.411	.88
14	MP2A	My	03	.88
15	MP2A	Mz	035	.88
16	MP2A	Y	-60.411	5.88
17	MP2A	My	03	5.88
18	MP2A	Mz	035	5.88
19	MP1A	Y	-35.505	2.38
20	MP1A	My	018	2.38
21	MP1A	Mz	0	2.38
22	MP1A	Y	-35.505	4.38
23	MP1A	My	018	4.38
24	MP1A	Mz	0	4.38
25	MP3A	Y	-44.762	2
26	MP3A	My	.015	2
27	MP3A	Mz	0	2
28	MP2A	Y	-42.626	2
29	MP2A	My	.014	2
30	MP2A	Mz	0	2
31	OVP1	Y	-87.651	2.5
32	OVP1	My	025	2.5
33	OVP1	Mz	015	2.5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	0	2
2	MP4A	Z	-198.12	2
3	MP4A	Mx	0	2
4	MP4A	Х	0	4.75
5	MP4A	Z	-198.12	4.75
6	MP4A	Mx	0	4.75
7	MP2A	Х	0	.88
8	MP2A	Z	-160.724	.88
9	MP2A	Mx	094	.88
10	MP2A	Х	0	5.88

				Leasting[ft 9/1
11	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
11	MP2A	Z	-160.724	5.88
12	MP2A	Mx	094	5.88
13	MP2A	X	0	.88
14	MP2A	Z	-160.724	.88
15	MP2A	Mx	.094	.88
16	MP2A	X	0	5.88
17	MP2A	Z	-160.724	5.88
18	MP2A	Mx	.094	5.88
19	MP1A	X	0	2.38
20	MP1A	Z	-93.49	2.38
21	MP1A	Mx	0	2.38
22	MP1A	X	0	4.38
23	MP1A	Z	-93.49	4.38
24	MP1A	Mx	0	4.38
25	MP3A	X	0	2
26	MP3A	Z	-74.394	2
27	MP3A	Mx	0	2
28	MP2A	X	0	2
29	MP2A	Z	-74.394	2
30	MP2A	Mx	0	2
31	OVP1	X	0	2.5
32	OVP1	Z	-132.801	2.5
33	OVP1	Mx	.022	2.5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	95.204	2
2	MP4A	Z	-164.899	2
3	MP4A	Mx	048	2
4	MP4A	Х	95.204	4.75
5	MP4A	Z	-164.899	4.75
6	MP4A	Mx	048	4.75
7	MP2A	X	73.553	.88
8	MP2A	Z	-127.398	.88
9	MP2A	Mx	111	.88
10	MP2A	X	73.553	5.88
11	MP2A	Z	-127.398	5.88
12	MP2A	Mx	111	5.88
13	MP2A	X	73.553	.88
14	MP2A	Z	-127.398	.88
15	MP2A	Mx	.038	.88
16	MP2A	X	73.553	5.88
17	MP2A	Z	-127.398	5.88
18	MP2A	Mx	.038	5.88
19	MP1A	X	39.634	2.38
20	MP1A	Z	-68.648	2.38
21	MP1A	Mx	02	2.38
22	MP1A	X	39.634	4.38
23	MP1A	Z	-68.648	4.38
24	MP1A	Mx	02	4.38
25	MP3A	X	34.114	2
26	MP3A	Z	-59.087	2
27	MP3A	Mx	.011	2
28	MP2A	Х	33.555	2
29	MP2A	Z	-58.118	2
30	MP2A	Mx	.011	2

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	OVP1	Х	61.614	2.5
32	OVP1	Z	-106.719	2.5
33	OVP1	Mx	0	2.5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	151.543	2
2	MP4A	Z	-87.493	2
3	MP4A	Mx	076	2
4	MP4A	Х	151.543	4.75
5	MP4A	Z	-87.493	4.75
6	MP4A	Mx	076	4.75
7	MP2A	Х	103.812	.88
8	MP2A	Z	-59.936	.88
9	MP2A	Mx	087	.88
10	MP2A	Х	103.812	5.88
11	MP2A	Z	-59.936	5.88
12	MP2A	Mx	087	5.88
13	MP2A	Х	103.812	.88
14	MP2A	Z	-59.936	.88
15	MP2A	Mx	017	.88
16	MP2A	Х	103.812	5.88
17	MP2A	Z	-59.936	5.88
18	MP2A	Mx	017	5.88
19	MP1A	Х	44.014	2.38
20	MP1A	Z	-25.412	2.38
21	MP1A	Mx	022	2.38
22	MP1A	Х	44.014	4.38
23	MP1A	Z	-25.412	4.38
24	MP1A	Mx	022	4.38
25	MP3A	X	48.407	2
26	MP3A	Z	-27.948	2
27	MP3A	Mx	.016	2
28	MP2A	Х	45.5	2
29	MP2A	Z	-26.269	2
30	MP2A	Mx	.015	2
31	OVP1	Х	115.009	2.5
32	OVP1	Z	-66.4	2.5
33	OVP1	Mx	022	2.5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	167.276	2
2	MP4A	Z	0	2
3	MP4A	Mx	084	2
4	MP4A	X	167.276	4.75
5	MP4A	Z	0	4.75
6	MP4A	Mx	084	4.75
7	MP2A	Х	106.254	.88
8	MP2A	Z	0	.88
9	MP2A	Mx	053	.88
10	MP2A	Х	106.254	5.88
11	MP2A	Z	0	5.88
12	MP2A	Mx	053	5.88
13	MP2A	Х	106.254	.88
14	MP2A	Z	0	.88

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
15	MP2A	Mx	053	.88
16	MP2A	Х	106.254	5.88
17	MP2A	Z	0	5.88
18	MP2A	Mx	053	5.88
19	MP1A	Х	36.601	2.38
20	MP1A	Z	0	2.38
21	MP1A	Mx	018	2.38
22	MP1A	Х	36.601	4.38
23	MP1A	Z	0	4.38
24	MP1A	Mx	018	4.38
25	MP3A	Х	49.729	2
26	MP3A	Z	0	2
27	MP3A	Mx	.017	2
28	MP2A	Х	45.253	2
29	MP2A	Z	0	2
30	MP2A	Mx	.015	2
31	OVP1	Х	151.947	2.5
32	OVP1	Z	0	2.5
33	OVP1	Mx	044	2.5

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	151.543	2
2	MP4A	Z	87.493	2
3	MP4A	Mx	076	2
4	MP4A	Х	151.543	4.75
5	MP4A	Z	87.493	4.75
6	MP4A	Mx	076	4.75
7	MP2A	Х	103.812	.88
8	MP2A	Z	59.936	.88
9	MP2A	Mx	017	.88
10	MP2A	Х	103.812	5.88
11	MP2A	Z	59.936	5.88
12	MP2A	Mx	017	5.88
13	MP2A	Х	103.812	.88
14	MP2A	Z	59.936	.88
15	MP2A	Mx	087	.88
16	MP2A	Х	103.812	5.88
17	MP2A	Z	59.936	5.88
18	MP2A	Mx	087	5.88
19	MP1A	X	44.014	2.38
20	MP1A	Z	25.412	2.38
21	MP1A	Mx	022	2.38
22	MP1A	Х	44.014	4.38
23	MP1A	Z	25.412	4.38
24	MP1A	Mx	022	4.38
25	MP3A	Х	48.407	2
26	MP3A	Z	27.948	2
27	MP3A	Mx	.016	2
28	MP2A	X	45.5	2
29	MP2A	Z	26.269	2
30	MP2A	Mx	.015	2
31	OVP1	Х	139.88	2.5
32	OVP1	Z	80.76	2.5
33	OVP1	Mx	054	2.5

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	95.204	2
2	MP4A	Z	164.899	2
3	MP4A	Mx	048	2
4	MP4A	X	95.204	4.75
5	MP4A	Z	164.899	4.75
6	MP4A	Mx	048	4.75
7	MP2A	X	73.553	.88
8	MP2A	Z	127.398	.88
9	MP2A	Mx	.038	.88
10	MP2A	X	73.553	5.88
11	MP2A	Z	127.398	5.88
12	MP2A	Mx	.038	5.88
13	MP2A	X	73.553	.88
14	MP2A	Z	127.398	.88
15	MP2A	Mx	111	.88
16	MP2A	X	73.553	5.88
17	MP2A	Z	127.398	5.88
18	MP2A	Mx	111	5.88
19	MP1A	X	39.634	2.38
20	MP1A	Z	68.648	2.38
21	MP1A	Mx	02	2.38
22	MP1A	X	39.634	4.38
23	MP1A	Z	68.648	4.38
24	MP1A	Mx	02	4.38
25	MP3A	X	34.114	2
26	MP3A	Z	59.087	2
27	MP3A	Mx	.011	2
28	MP2A	X	33.555	2
29	MP2A	Z	58.118	2
30	MP2A	Mx	.011	2
31	OVP1	Х	75.973	2.5
32	OVP1	Z	131.59	2.5
33	OVP1	Mx	044	2.5

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	0	2
2	MP4A	Z	198.12	2
3	MP4A	Mx	0	2
4	MP4A	Х	0	4.75
5	MP4A	Z	198.12	4.75
6	MP4A	Mx	0	4.75
7	MP2A	Х	0	.88
8	MP2A	Z	160.724	.88
9	MP2A	Mx	.094	.88
10	MP2A	Х	0	5.88
11	MP2A	Z	160.724	5.88
12	MP2A	Mx	.094	5.88
13	MP2A	Х	0	.88
14	MP2A	Z	160.724	.88
15	MP2A	Mx	094	.88
16	MP2A	Х	0	5.88
17	MP2A	Z	160.724	5.88
18	MP2A	Mx	094	5.88
19	MP1A	Х	0	2.38
20	MP1A	Z	93.49	2.38

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP1A	Mx	0	2.38
22	MP1A	Х	0	4.38
23	MP1A	Z	93.49	4.38
24	MP1A	Mx	0	4.38
25	MP3A	Х	0	2
26	MP3A	Z	74.394	2
27	MP3A	Mx	0	2
28	MP2A	Х	0	2
29	MP2A	Z	74.394	2
30	MP2A	Mx	0	2
31	OVP1	Х	0	2.5
32	OVP1	Z	132.801	2.5
33	OVP1	Mx	022	2.5

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-95.204	2
2	MP4A	Z	164.899	2
3	MP4A	Mx	.048	2
4	MP4A	Х	-95.204	4.75
5	MP4A	Z	164.899	4.75
6	MP4A	Mx	.048	4.75
7	MP2A	Х	-73.553	.88
8	MP2A	Z	127.398	.88
9	MP2A	Mx	.111	.88
10	MP2A	Х	-73.553	5.88
11	MP2A	Z	127.398	5.88
12	MP2A	Mx	.111	5.88
13	MP2A	Х	-73.553	.88
14	MP2A	Z	127.398	.88
15	MP2A	Mx	038	.88
16	MP2A	Х	-73.553	5.88
17	MP2A	Z	127.398	5.88
18	MP2A	Mx	038	5.88
19	MP1A	Х	-39.634	2.38
20	MP1A	Z	68.648	2.38
21	MP1A	Mx	.02	2.38
22	MP1A	Х	-39.634	4.38
23	MP1A	Z	68.648	4.38
24	MP1A	Mx	.02	4.38
25	MP3A	Х	-34.114	2
26	MP3A	Z	59.087	2
27	MP3A	Mx	011	2
28	MP2A	Х	-33.555	2
29	MP2A	Z	58.118	2
30	MP2A	Mx	011	2
31	OVP1	Х	-61.614	2.5
32	OVP1	Z	106.719	2.5
33	OVP1	Mx	0	2.5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-151.543	2
2	MP4A	Z	87.493	2
3	MP4A	Mx	.076	2
4	MP4A	Х	-151.543	4.75

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP4A	Z	87.493	4.75
6	MP4A	Mx	.076	4.75
7	MP2A	Х	-103.812	.88
8	MP2A	Z	59.936	.88
9	MP2A	Mx	.087	.88
10	MP2A	Х	-103.812	5.88
11	MP2A	Z	59.936	5.88
12	MP2A	Mx	.087	5.88
13	MP2A	Х	-103.812	.88
14	MP2A	Z	59.936	.88
15	MP2A	Mx	.017	.88
16	MP2A	Х	-103.812	5.88
17	MP2A	Z	59.936	5.88
18	MP2A	Mx	.017	5.88
19	MP1A	Х	-44.014	2.38
20	MP1A	Z	25.412	2.38
21	MP1A	Mx	.022	2.38
22	MP1A	Х	-44.014	4.38
23	MP1A	Z	25.412	4.38
24	MP1A	Mx	.022	4.38
25	MP3A	Х	-48.407	2
26	MP3A	Z	27.948	2
27	MP3A	Mx	016	2
28	MP2A	Х	-45.5	2
29	MP2A	Z	26.269	2
30	MP2A	Mx	015	2
31	OVP1	Х	-115.009	2.5
32	OVP1	Z	66.4	2.5
33	OVP1	Mx	.022	2.5

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-167.276	2
2	MP4A	Z	0	2
3	MP4A	Mx	.084	2
4	MP4A	Х	-167.276	4.75
5	MP4A	Z	0	4.75
6	MP4A	Mx	.084	4.75
7	MP2A	Х	-106.254	.88
8	MP2A	Z	0	.88
9	MP2A	Mx	.053	.88
10	MP2A	Х	-106.254	5.88
11	MP2A	Z	0	5.88
12	MP2A	Mx	.053	5.88
13	MP2A	Х	-106.254	.88
14	MP2A	Z	0	.88
15	MP2A	Mx	.053	.88
16	MP2A	Х	-106.254	5.88
17	MP2A	Z	0	5.88
18	MP2A	Mx	.053	5.88
19	MP1A	Х	-36.601	2.38
20	MP1A	Z	0	2.38
21	MP1A	Mx	.018	2.38
22	MP1A	Х	-36.601	4.38
23	MP1A	Z	0	4.38
24	MP1A	Mx	.018	4.38

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP3A	Х	-49.729	2
26	MP3A	Z	0	2
27	MP3A	Mx	017	2
28	MP2A	Х	-45.253	2
29	MP2A	Z	0	2
30	MP2A	Mx	015	2
31	OVP1	Х	-151.947	2.5
32	OVP1	Z	0	2.5
33	OVP1	Mx	.044	2.5

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-151.543	2
2	MP4A	Z	-87.493	2
3	MP4A	Mx	.076	2
4	MP4A	X	-151.543	4.75
5	MP4A	Z	-87.493	4.75
6	MP4A	Mx	.076	4.75
7	MP2A	X	-103.812	.88
8	MP2A	Z	-59.936	.88
9	MP2A	Mx	.017	.88
10	MP2A	X	-103.812	5.88
11	MP2A	Z	-59.936	5.88
12	MP2A	Mx	.017	5.88
13	MP2A	X	-103.812	.88
14	MP2A	Z	-59.936	.88
15	MP2A	Mx	.087	.88
16	MP2A	X	-103.812	5.88
17	MP2A	Z	-59.936	5.88
18	MP2A	Mx	.087	5.88
19	MP1A	X	-44.014	2.38
20	MP1A	Z	-25.412	2.38
21	MP1A	Mx	.022	2.38
22	MP1A	X	-44.014	4.38
23	MP1A	Z	-25.412	4.38
24	MP1A	Mx	.022	4.38
25	MP3A	X	-48.407	2
26	MP3A	Z	-27.948	2
27	MP3A	Mx	016	2
28	MP2A	X	-45.5	2
29	MP2A	Z	-26.269	2
30	MP2A	Mx	015	2
31	OVP1	X	-139.88	2.5
32	OVP1	Z	-80.76	2.5
33	OVP1	Mx	.054	2.5

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-95.204	2
2	MP4A	Z	-164.899	2
3	MP4A	Mx	.048	2
4	MP4A	Х	-95.204	4.75
5	MP4A	Z	-164.899	4.75
6	MP4A	Mx	.048	4.75
7	MP2A	Х	-73.553	.88
8	MP2A	Z	-127.398	.88

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP2A	Mx	038	.88
10	MP2A	X	-73.553	5.88
11	MP2A	Z	-127.398	5.88
12	MP2A	Mx	038	5.88
13	MP2A	Х	-73.553	.88
14	MP2A	Z	-127.398	.88
15	MP2A	Mx	.111	.88
16	MP2A	Х	-73.553	5.88
17	MP2A	Z	-127.398	5.88
18	MP2A	Mx	.111	5.88
19	MP1A	Х	-39.634	2.38
20	MP1A	Z	-68.648	2.38
21	MP1A	Mx	.02	2.38
22	MP1A	Х	-39.634	4.38
23	MP1A	Z	-68.648	4.38
24	MP1A	Mx	.02	4.38
25	MP3A	Х	-34.114	2
26	MP3A	Z	-59.087	2
27	MP3A	Mx	011	2
28	MP2A	Х	-33.555	2
29	MP2A	Z	-58.118	2
30	MP2A	Mx	011	2
31	OVP1	X	-75.973	2.5
32	OVP1	Z	-131.59	2.5
33	OVP1	Mx	.044	2.5

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	0	2
2	MP4A	Z	-38.902	2
3	MP4A	Mx	0	2
4	MP4A	Х	0	4.75
5	MP4A	Z	-38.902	4.75
6	MP4A	Mx	0	4.75
7	MP2A	Х	0	.88
8	MP2A	Z	-31.824	.88
9	MP2A	Mx	019	.88
10	MP2A	Х	0	5.88
11	MP2A	Z	-31.824	5.88
12	MP2A	Mx	019	5.88
13	MP2A	Х	0	.88
14	MP2A	Z	-31.824	.88
15	MP2A	Mx	.019	.88
16	MP2A	Х	0	5.88
17	MP2A	Z	-31.824	5.88
18	MP2A	Mx	.019	5.88
19	MP1A	Х	0	2.38
20	MP1A	Z	-18.957	2.38
21	MP1A	Mx	0	2.38
22	MP1A	Х	0	4.38
23	MP1A	Z	-18.957	4.38
24	MP1A	Mx	0	4.38
25	MP3A	Х	0	2
26	MP3A	Z	-15.975	2
27	MP3A	Mx	0	2
28	MP2A	X	0	2

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP2A	Z	-15.975	2
30	MP2A	Mx	0	2
31	OVP1	Х	0	2.5
32	OVP1	Z	-27.464	2.5
33	OVP1	Mx	.005	2.5

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	18.725	2
2	MP4A	Z	-32.432	2
3	MP4A	Mx	009	2
4	MP4A	Х	18.725	4.75
5	MP4A	Z	-32.432	4.75
6	MP4A	Mx	009	4.75
7	MP2A	Х	14.677	.88
8	MP2A	Z	-25.421	.88
9	MP2A	Mx	022	.88
10	MP2A	Х	14.677	5.88
11	MP2A	Z	-25.421	5.88
12	MP2A	Mx	022	5.88
13	MP2A	Х	14.677	.88
14	MP2A	Z	-25.421	.88
15	MP2A	Mx	.007	.88
16	MP2A	Х	14.677	5.88
17	MP2A	Z	-25.421	5.88
18	MP2A	Mx	.007	5.88
19	MP1A	Х	8.118	2.38
20	MP1A	Z	-14.061	2.38
21	MP1A	Mx	004	2.38
22	MP1A	Х	8.118	4.38
23	MP1A	Z	-14.061	4.38
24	MP1A	Mx	004	4.38
25	MP3A	Х	7.379	2
26	MP3A	Z	-12.781	2
27	MP3A	Mx	.002	2
28	MP2A	Х	7.27	2
29	MP2A	Z	-12.592	2
30	MP2A	Mx	.002	2
31	OVP1	Х	12.837	2.5
32	OVP1	Z	-22.234	2.5
33	OVP1	Mx	0	2.5

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	29.917	2
2	MP4A	Z	-17.273	2
3	MP4A	Mx	015	2
4	MP4A	Х	29.917	4.75
5	MP4A	Z	-17.273	4.75
6	MP4A	Mx	015	4.75
7	MP2A	Х	21.142	.88
8	MP2A	Z	-12.206	.88
9	MP2A	Mx	018	.88
10	MP2A	Х	21.142	5.88
11	MP2A	Z	-12.206	5.88
12	MP2A	Mx	018	5.88

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP2A	Х	21.142	.88
14	MP2A	Z	-12.206	.88
15	MP2A	Mx	003	.88
16	MP2A	Х	21.142	5.88
17	MP2A	Z	-12.206	5.88
18	MP2A	Mx	003	5.88
19	MP1A	Х	9.348	2.38
20	MP1A	Z	-5.397	2.38
21	MP1A	Mx	005	2.38
22	MP1A	Х	9.348	4.38
23	MP1A	Z	-5.397	4.38
24	MP1A	Mx	005	4.38
25	MP3A	Х	10.675	2
26	MP3A	Z	-6.163	2
27	MP3A	Mx	.004	2
28	MP2A	Х	10.106	2
29	MP2A	Z	-5.835	2
30	MP2A	Mx	.003	2
31	OVP1	Х	23.784	2.5
32	OVP1	Z	-13.732	2.5
33	OVP1	Mx	005	2.5

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

1 2	MP4A	V		Location[ft,%]
2		Х	33.093	2
	MP4A	Z	0	2
3	MP4A	Mx	017	2
4	MP4A	Х	33.093	4.75
5	MP4A	Z	0	4.75
6	MP4A	Mx	017	4.75
7	MP2A	Х	21.943	.88
8	MP2A	Z	0	.88
9	MP2A	Mx	011	.88
10	MP2A	Х	21.943	5.88
11	MP2A	Z	0	5.88
12	MP2A	Mx	011	5.88
13	MP2A	Х	21.943	.88
14	MP2A	Z	0	.88
15	MP2A	Mx	011	.88
16	MP2A	Х	21.943	5.88
17	MP2A	Z	0	5.88
18	MP2A	Mx	011	5.88
19	MP1A	Х	8.073	2.38
20	MP1A	Z	0	2.38
21	MP1A	Mx	004	2.38
22	MP1A	Х	8.073	4.38
23	MP1A	Z	0	4.38
24	MP1A	Mx	004	4.38
25	MP3A	X	11.111	2
26	MP3A	Z	0	2
27	MP3A	Mx	.004	2
28	MP2A	Х	10.235	2
29	MP2A	Z	0	2
30	MP2A	Mx	.003	2
31	OVP1	X	31.044	2.5
32	OVP1	Z	0	2.5

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	OVP1	Mx	009	2.5
ember	Point Loads (BLC	<u> 19 : Antenna Wi (1</u>	20 Deg))	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	29.917	2
2	MP4A	Z	17.273	2
3	MP4A	Mx	015	2
4	MP4A	X	29.917	4.75
5	MP4A	Z	17.273	4.75
6	MP4A	Mx	015	4.75
7	MP2A	Х	21.142	.88
8	MP2A	Z	12.206	.88
9	MP2A	Mx	003	.88
10	MP2A	X	21.142	5.88
11	MP2A	Z	12.206	5.88
12	MP2A	Mx	003	5.88
13	MP2A	X	21.142	.88
14	MP2A	Z	12.206	.88
15	MP2A	Mx	018	.88
16	MP2A	X	21.142	5.88
17	MP2A	Z	12.206	5.88
18	MP2A	Mx	018	5.88
19	MP1A	X	9.348	2.38
20	MP1A	Z	5.397	2.38
21	MP1A	Mx	005	2.38
22	MP1A	X	9.348	4.38
23	MP1A	Z	5.397	4.38
24	MP1A	Mx	005	4.38
25	MP3A	X	10.675	2
26	MP3A	Z	6.163	2
27	MP3A	Mx	.004	2
28	MP2A	X	10.106	2
29	MP2A	Z	5.835	2
30	MP2A	Mx	.003	2
31	OVP1	X	28.435	2.5
32	OVP1	Z	16.417	2.5
33	OVP1	Mx	011	2.5

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	18.725	2
2	MP4A	Z	32.432	2
3	MP4A	Mx	009	2
4	MP4A	Х	18.725	4.75
5	MP4A	Z	32.432	4.75
6	MP4A	Mx	009	4.75
7	MP2A	Х	14.677	.88
8	MP2A	Z	25.421	.88
9	MP2A	Mx	.007	.88
10	MP2A	Х	14.677	5.88
11	MP2A	Z	25.421	5.88
12	MP2A	Mx	.007	5.88
13	MP2A	Х	14.677	.88
14	MP2A	Z	25.421	.88
15	MP2A	Mx	022	.88
16	MP2A	Х	14.677	5.88

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP2A	Z	25.421	5.88
18	MP2A	Mx	022	5.88
19	MP1A	Х	8.118	2.38
20	MP1A	Z	14.061	2.38
21	MP1A	Mx	004	2.38
22	MP1A	Х	8.118	4.38
23	MP1A	Z	14.061	4.38
24	MP1A	Mx	004	4.38
25	MP3A	Х	7.379	2
26	MP3A	Z	12.781	2
27	MP3A	Mx	.002	2
28	MP2A	Х	7.27	2
29	MP2A	Z	12.592	2
30	MP2A	Mx	.002	2
31	OVP1	Х	15.522	2.5
32	OVP1	Z	26.885	2.5
33	OVP1	Mx	009	2.5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	2
2	MP4A	Z	38.902	2
3	MP4A	Mx	0	2
4	MP4A	X	0	4.75
5	MP4A	Z	38.902	4.75
6	MP4A	Mx	0	4.75
7	MP2A	Х	0	.88
8	MP2A	Z	31.824	.88
9	MP2A	Mx	.019	.88
10	MP2A	Х	0	5.88
11	MP2A	Z	31.824	5.88
12	MP2A	Mx	.019	5.88
13	MP2A	Х	0	.88
14	MP2A	Z	31.824	.88
15	MP2A	Mx	019	.88
16	MP2A	Х	0	5.88
17	MP2A	Z	31.824	5.88
18	MP2A	Mx	019	5.88
19	MP1A	Х	0	2.38
20	MP1A	Z	18.957	2.38
21	MP1A	Mx	0	2.38
22	MP1A	Х	0	4.38
23	MP1A	Z	18.957	4.38
24	MP1A	Mx	0	4.38
25	MP3A	Х	0	2
26	MP3A	Z	15.975	2
27	MP3A	Mx	0	2
28	MP2A	Х	0	2
29	MP2A	Z	15.975	2
30	MP2A	Mx	0	2
31	OVP1	Х	0	2.5
32	OVP1	Z	27.464	2.5
33	OVP1	Mx	005	2.5

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-18.725	2
2	MP4A	Z	32.432	2
3	MP4A	Mx	.009	2
4	MP4A	Х	-18.725	4.75
5	MP4A	Z	32.432	4.75
6	MP4A	Mx	.009	4.75
7	MP2A	X	-14.677	.88
8	MP2A	Z	25.421	.88
9	MP2A	Mx	.022	.88
10	MP2A	Х	-14.677	5.88
11	MP2A	Z	25.421	5.88
12	MP2A	Mx	.022	5.88
13	MP2A	X	-14.677	.88
14	MP2A	Z	25.421	.88
15	MP2A	Mx	007	.88
16	MP2A	X	-14.677	5.88
17	MP2A	Z	25.421	5.88
18	MP2A	Mx	007	5.88
19	MP1A	X	-8.118	2.38
20	MP1A	Z	14.061	2.38
21	MP1A	Mx	.004	2.38
22	MP1A	X	-8.118	4.38
23	MP1A	Z	14.061	4.38
24	MP1A	Mx	.004	4.38
25	MP3A	X	-7.379	2
26	MP3A	Z	12.781	2
27	MP3A	Mx	002	2
28	MP2A	X	-7.27	2
29	MP2A	Z	12.592	2
30	MP2A	Mx	002	2
31	OVP1	X	-12.837	2.5
32	OVP1	Z	22.234	2.5
33	OVP1	Mx	0	2.5

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-29.917	2
2	MP4A	Z	17.273	2
3	MP4A	Mx	.015	2
4	MP4A	Х	-29.917	4.75
5	MP4A	Z	17.273	4.75
6	MP4A	Mx	.015	4.75
7	MP2A	Х	-21.142	.88
8	MP2A	Z	12.206	.88
9	MP2A	Mx	.018	.88
10	MP2A	Х	-21.142	5.88
11	MP2A	Z	12.206	5.88
12	MP2A	Mx	.018	5.88
13	MP2A	Х	-21.142	.88
14	MP2A	Z	12.206	.88
15	MP2A	Mx	.003	.88
16	MP2A	Х	-21.142	5.88
17	MP2A	Z	12.206	5.88
18	MP2A	Mx	.003	5.88
19	MP1A	Х	-9.348	2.38
20	MP1A	Z	5.397	2.38

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP1A	Mx	.005	2.38
22	MP1A	Х	-9.348	4.38
23	MP1A	Z	5.397	4.38
24	MP1A	Mx	.005	4.38
25	MP3A	Х	-10.675	2
26	MP3A	Z	6.163	2
27	MP3A	Mx	004	2
28	MP2A	Х	-10.106	2
29	MP2A	Z	5.835	2
30	MP2A	Mx	003	2
31	OVP1	Х	-23.784	2.5
32	OVP1	Z	13.732	2.5
33	OVP1	Mx	.005	2.5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-33.093	2
2	MP4A	Z	0	2
3	MP4A	Mx	.017	2
4	MP4A	Х	-33.093	4.75
5	MP4A	Z	0	4.75
6	MP4A	Mx	.017	4.75
7	MP2A	Х	-21.943	.88
8	MP2A	Z	0	.88
9	MP2A	Mx	.011	.88
10	MP2A	Х	-21.943	5.88
11	MP2A	Z	0	5.88
12	MP2A	Mx	.011	5.88
13	MP2A	Х	-21.943	.88
14	MP2A	Z	0	.88
15	MP2A	Mx	.011	.88
16	MP2A	Х	-21.943	5.88
17	MP2A	Z	0	5.88
18	MP2A	Mx	.011	5.88
19	MP1A	Х	-8.073	2.38
20	MP1A	Z	0	2.38
21	MP1A	Mx	.004	2.38
22	MP1A	Х	-8.073	4.38
23	MP1A	Z	0	4.38
24	MP1A	Mx	.004	4.38
25	MP3A	Х	-11.111	2
26	MP3A	Z	0	2
27	MP3A	Mx	004	2
28	MP2A	Х	-10.235	2
29	MP2A	Z	0	2
30	MP2A	Mx	003	2
31	OVP1	Х	-31.044	2.5
32	OVP1	Z	0	2.5
33	OVP1	Mx	.009	2.5

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-29.917	2
2	MP4A	Z	-17.273	2
3	MP4A	Mx	.015	2
4	MP4A	Х	-29.917	4.75

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
5	MP4A	Z	-17.273	4.75
6	MP4A	Mx	.015	4.75
7	MP2A	X	-21.142	.88
8	MP2A	Z	-12.206	.88
9	MP2A	Mx	.003	.88
10	MP2A	X	-21.142	5.88
11	MP2A	Z	-12.206	5.88
12	MP2A	Mx	.003	5.88
13	MP2A	X	-21.142	.88
14	MP2A	Z	-12.206	.88
15	MP2A	Mx	.018	.88
16	MP2A	X	-21.142	5.88
17	MP2A	Z	-12.206	5.88
18	MP2A	Mx	.018	5.88
19	MP1A	X Z	-9.348	2.38
20	MP1A		-5.397	2.38
21	MP1A	Mx	.005	2.38
22	MP1A	X	-9.348	4.38
23	MP1A	Z	-5.397	4.38
24	MP1A	Mx	.005	4.38
25	MP3A	X	-10.675	2
26	MP3A	Z	-6.163	2
27	MP3A	Mx	004	2
28	MP2A	X	-10.106	2
29	MP2A	Z	-5.835	2
30	MP2A	Mx	003	2
31	OVP1	X	-28.435	2.5
32	OVP1	Z	-16.417	2.5
33	OVP1	Mx	.011	2.5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-18.725	2
2	MP4A	Z	-32.432	2
3	MP4A	Mx	.009	2
4	MP4A	Х	-18.725	4.75
5	MP4A	Z	-32.432	4.75
6	MP4A	Mx	.009	4.75
7	MP2A	Х	-14.677	.88
8	MP2A	Z	-25.421	.88
9	MP2A	Mx	007	.88
10	MP2A	Х	-14.677	5.88
11	MP2A	Z	-25.421	5.88
12	MP2A	Mx	007	5.88
13	MP2A	Х	-14.677	.88
14	MP2A	Z	-25.421	.88
15	MP2A	Mx	.022	.88
16	MP2A	Х	-14.677	5.88
17	MP2A	Z	-25.421	5.88
18	MP2A	Mx	.022	5.88
19	MP1A	Х	-8.118	2.38
20	MP1A	Z	-14.061	2.38
21	MP1A	Mx	.004	2.38
22	MP1A	Х	-8.118	4.38
23	MP1A	Z	-14.061	4.38
24	MP1A	Mx	.004	4.38

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
25	MP3A	Х	-7.379	2
26	MP3A	Z	-12.781	2
27	MP3A	Mx	002	2
28	MP2A	Х	-7.27	2
29	MP2A	Z	-12.592	2
30	MP2A	Mx	002	2
31	OVP1	Х	-15.522	2.5
32	OVP1	Z	-26.885	2.5
33	OVP1	Mx	.009	2.5

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	2
2	MP4A	Z	-12.806	2
3	MP4A	Mx	0	2
4	MP4A	X	0	4.75
5	MP4A	Z	-12.806	4.75
6	MP4A	Mx	0	4.75
7	MP2A	X	0	.88
8	MP2A	Z	-10.389	.88
9	MP2A	Mx	006	.88
10	MP2A	X	0	5.88
11	MP2A	Z	-10.389	5.88
12	MP2A	Mx	006	5.88
13	MP2A	X	0	.88
14	MP2A	Z	-10.389	.88
15	MP2A	Mx	.006	.88
16	MP2A	X	0	5.88
17	MP2A	Z	-10.389	5.88
18	MP2A	Mx	.006	5.88
19	MP1A	X	0	2.38
20	MP1A	Z	-6.043	2.38
21	MP1A	Mx	0	2.38
22	MP1A	X	0	4.38
23	MP1A	Z	-6.043	4.38
24	MP1A	Mx	0	4.38
25	MP3A	X	0	2
26	MP3A	Z	-4.809	2
27	MP3A	Mx	0	2
28	MP2A	X	0	2
29	MP2A	Z	-4.809	2
30	MP2A	Mx	0	2
31	OVP1	X	0	2.5
32	OVP1	Z	-8.584	2.5
33	OVP1	Mx	.001	2.5

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	6.154	2
2	MP4A	Z	-10.659	2
3	MP4A	Mx	003	2
4	MP4A	Х	6.154	4.75
5	MP4A	Z	-10.659	4.75
6	MP4A	Mx	003	4.75
7	MP2A	Х	4.754	.88
8	MP2A	Z	-8.235	.88

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
9	MP2A	Mx	007	.88
10	MP2A	Х	4.754	5.88
11	MP2A	Z	-8.235	5.88
12	MP2A	Mx	007	5.88
13	MP2A	Х	4.754	.88
14	MP2A	Z	-8.235	.88
15	MP2A	Mx	.002	.88
16	MP2A	X	4.754	5.88
17	MP2A	Z	-8.235	5.88
18	MP2A	Mx	.002	5.88
19	MP1A	Х	2.562	2.38
20	MP1A	Z	-4.437	2.38
21	MP1A	Mx	001	2.38
22	MP1A	X Z	2.562	4.38
23	MP1A	Z	-4.437	4.38
24	MP1A	Mx	001	4.38
25	MP3A	X	2.205	2
26	MP3A	Z	-3.819	2
27	MP3A	Mx	.000735	2
28	MP2A	X	2.169	2
29	MP2A	Z	-3.757	2
30	MP2A	Mx	.000723	2
31	OVP1	X	3.983	2.5
32	OVP1	Z	-6.898	2.5
33	OVP1	Mx	0	2.5

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	9.795	2
2	MP4A	Z	-5.655	2
3	MP4A	Mx	005	2
4	MP4A	Х	9.795	4.75
5	MP4A	Z	-5.655	4.75
6	MP4A	Mx	005	4.75
7	MP2A	Х	6.71	.88
8	MP2A	Z	-3.874	.88
9	MP2A	Mx	006	.88
10	MP2A	Х	6.71	5.88
11	MP2A	Z	-3.874	5.88
12	MP2A	Mx	006	5.88
13	MP2A	Х	6.71	.88
14	MP2A	Z	-3.874	.88
15	MP2A	Mx	001	.88
16	MP2A	Х	6.71	5.88
17	MP2A	Z	-3.874	5.88
18	MP2A	Mx	001	5.88
19	MP1A	Х	2.845	2.38
20	MP1A	Z	-1.643	2.38
21	MP1A	Mx	001	2.38
22	MP1A	Х	2.845	4.38
23	MP1A	Z	-1.643	4.38
24	MP1A	Mx	001	4.38
25	MP3A	Х	3.129	2
26	MP3A	Z	-1.806	2
27	MP3A	Mx	.001	2
28	MP2A	Х	2.941	2

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
29	MP2A	Z	-1.698	2
30	MP2A	Mx	.00098	2
31	OVP1	X	7.434	2.5
32	OVP1	Z	-4.292	2.5
33	OVP1	Mx	001	2.5

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	10.812	2
2	MP4A	Z	0	2
3	MP4A	Mx	005	2
4	MP4A	Х	10.812	4.75
5	MP4A	Z	0	4.75
6	MP4A	Mx	005	4.75
7	MP2A	Х	6.868	.88
8	MP2A	Z	0	.88
9	MP2A	Mx	003	.88
10	MP2A	Х	6.868	5.88
11	MP2A	Z	0	5.88
12	MP2A	Mx	003	5.88
13	MP2A	Х	6.868	.88
14	MP2A	Z	0	.88
15	MP2A	Mx	003	.88
16	MP2A	Х	6.868	5.88
17	MP2A	Z	0	5.88
18	MP2A	Mx	003	5.88
19	MP1A	Х	2.366	2.38
20	MP1A	Z	0	2.38
21	MP1A	Mx	001	2.38
22	MP1A	Х	2.366	4.38
23	MP1A	Z	0	4.38
24	MP1A	Mx	001	4.38
25	MP3A	Х	3.214	2
26	MP3A	Z	0	2
27	MP3A	Mx	.001	2
28	MP2A	Х	2.925	2
29	MP2A	Z	0	2
30	MP2A	Mx	.000975	2
31	OVP1	Х	9.821	2.5
32	OVP1	Z	0	2.5
33	OVP1	Mx	003	2.5

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	9.795	2
2	MP4A	Z	5.655	2
3	MP4A	Mx	005	2
4	MP4A	Х	9.795	4.75
5	MP4A	Z	5.655	4.75
6	MP4A	Mx	005	4.75
7	MP2A	Х	6.71	.88
8	MP2A	Z	3.874	.88
9	MP2A	Mx	001	.88
10	MP2A	Х	6.71	5.88
11	MP2A	Z	3.874	5.88
12	MP2A	Mx	001	5.88

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
13	MP2A	Х	6.71	.88
14	MP2A	Z	3.874	.88
15	MP2A	Mx	006	.88
16	MP2A	Х	6.71	5.88
17	MP2A	Z	3.874	5.88
18	MP2A	Mx	006	5.88
19	MP1A	X	2.845	2.38
20	MP1A	Z	1.643	2.38
21	MP1A	Mx	001	2.38
22	MP1A	Х	2.845	4.38
23	MP1A	Z	1.643	4.38
24	MP1A	Mx	001	4.38
25	MP3A	Х	3.129	2
26	MP3A	Z	1.806	2
27	MP3A	Mx	.001	2
28	MP2A	Х	2.941	2
29	MP2A	Z	1.698	2
30	MP2A	Mx	.00098	2
31	OVP1	Х	9.041	2.5
32	OVP1	Z	5.22	2.5
33	OVP1	Mx	003	2.5

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

1 MP4A X 6.154 2 2 MP4A Z 10.659 2 3 MP4A X 6.154 2 4 MP4A X 6.154 4.75 5 MP4A X 6.154 4.75 6 MP4A X 6.154 4.75 7 MP2A Z 10.659 4.75 6 MP4A X 4.754 .88 8 MP2A X 4.754 .88 9 MP2A X 4.754 .88 10 MP2A X 4.754 .88 11 MP2A Z 8.235 .88 11 MP2A Z 8.235 .88 12 MP2A X 4.754 .88 14 MP2A Z 8.235 .88 15 MP2A Z 8.235 .5.88 16 MP2A Z <th></th> <th>Member Label</th> <th>Direction</th> <th>Magnitude[lb,k-ft]</th> <th>Location[ft,%]</th>		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
2 MP4A Z 10.659 2 3 MP4A Mx 003 2 4 MP4A X 6.154 4.75 5 MP4A Z 10.659 4.75 6 MP4A Mx 003 4.75 6 MP4A Mx 003 4.75 7 MP2A X 4.754 .88 8 MP2A Z 8.235 .88 9 MP2A X 4.754 5.88 11 MP2A Z 8.235 5.88 12 MP2A X 4.754 5.88 13 MP2A Z 8.235 5.88 14 MP2A Z 8.235 5.88 15 MP2A X 4.754 5.88 15 MP2A Z 8.235 5.88 16 MP2A Z 8.235 5.88 19 MP1A	1				
3 MP4A Mx 003 2 4 MP4A X 6.154 4.75 5 MP4A Z 10.659 4.75 6 MP4A Mx 003 4.75 7 MP2A X 4.754 .88 8 MP2A Z 8.235 .88 9 MP2A Z 8.235 .588 10 MP2A X 4.754 5.88 11 MP2A Z 8.235 5.88 12 MP2A Z 8.235 5.88 13 MP2A Z 8.235 5.88 14 MP2A Z 8.235 5.88 15 MP2A Z 8.235 5.88 16 MP2A Z 8.235 5.88 17 MP2A Z 8.235 5.88 19 MP1A X 2.662 2.38 20 MP1A			Z		2
4 MP4A X 6.154 4.75 5 MP4A Z 10.659 4.75 6 MP4A Mx 003 4.75 7 MP2A X 4.754 .88 8 MP2A Z 8.235 .88 9 MP2A X 4.754 5.88 10 MP2A X 4.754 5.88 11 MP2A Z 8.235 5.88 11 MP2A Z 8.235 5.88 12 MP2A Mx .002 5.88 13 MP2A X 4.754 .88 14 MP2A Z 8.235 .88 15 MP2A Mx 4.007 .88 16 MP2A Z 8.235 5.88 18 MP2A Mx 007 5.88 19 MP1A X 2.562 2.38 21 MP1A					
5 MP4A Z 10.659 4.75 6 MP4A Mx 003 4.75 7 MP2A X 4.754 .88 8 MP2A Z 8.235 .88 9 MP2A Mx .002 .88 10 MP2A X 4.754 5.88 11 MP2A X 4.754 5.88 12 MP2A X 4.754 5.88 13 MP2A Z 8.235 5.88 13 MP2A Z 8.235 .88 14 MP2A Z 8.235 .88 15 MP2A Z 8.235 5.88 16 MP2A Z 8.235 5.88 17 MP2A Z 8.235 5.88 18 MP2A X 2.562 2.38 20 MP1A X 2.562 2.38 21 MP1A					
6 MP4A Mx 003 4.75 7 MP2A X 4.754 .88 8 MP2A Z 8.235 .88 9 MP2A Mx .002 .88 10 MP2A X 4.754 5.88 11 MP2A Z 8.235 5.88 12 MP2A X 4.754 5.88 13 MP2A Z 8.235 5.88 14 MP2A Z 8.235 .88 15 MP2A X 4.754 .5.88 16 MP2A Z 8.235 .5.88 17 MP2A Z 8.235 .5.88 18 MP2A X 4.754 5.88 19 MP1A X 2.562 2.38 20 MP1A Z 4.437 2.38 21 MP1A X 2.562 4.38 23 MP1A <td></td> <td></td> <td></td> <td></td> <td></td>					
7 MP2A X 4.754 .88 8 MP2A Z 8.235 .88 9 MP2A Mx .002 .88 10 MP2A X 4.754 5.88 11 MP2A Z 8.235 5.88 11 MP2A Z 8.235 5.88 12 MP2A X 4.754 .88 13 MP2A Z 8.235 .88 14 MP2A Z 8.235 .88 15 MP2A Z 8.235 .88 16 MP2A Z 8.235 .588 17 MP2A Z 8.235 .588 19 MP1A X 2.562 2.38 20 MP1A X 2.562 4.38 21 MP1A X 2.562 4.38 22 MP1A Z 4.437 4.38 24 MP1A					
8 MP2A Z 8.235 .88 9 MP2A Mx .002 .88 10 MP2A X 4.754 5.88 11 MP2A Z 8.235 5.88 12 MP2A X 4.754 5.88 13 MP2A X 4.754 .88 14 MP2A Z 8.235 .88 14 MP2A X 4.754 .88 14 MP2A Z 8.235 .88 15 MP2A X 4.754 .588 16 MP2A X 4.754 .588 17 MP2A Z .8.235 .5.88 18 MP2A X .007 .5.88 19 MP1A Z .4.37 .2.38 21 MP1A X .2.562 .2.38 22 MP1A X .2.562 .4.38 23 MP1A			X		
9 MP2A Mx .002 .88 10 MP2A X 4.754 5.88 11 MP2A Z 8.235 5.88 12 MP2A Mx .002 5.88 13 MP2A X 4.754 .88 14 MP2A Z 8.235 .88 14 MP2A Z 8.235 .88 15 MP2A Mx 007 .88 16 MP2A Z 8.235 5.88 18 MP2A Z 8.235 5.88 19 MP1A X 007 5.88 20 MP1A Z 4.437 2.38 21 MP1A X 2.562 4.38 23 MP1A Z 4.437 4.38 24 MP1A Mx 001 4.38 25 MP3A Z 3.819 2 27 MP3A	8	MP2A	Z		.88
10 MP2A X 4.754 5.88 11 MP2A Z 8.235 5.88 12 MP2A Mx .002 5.88 13 MP2A X 4.754 .88 14 MP2A Z 8.235 .88 15 MP2A Z 8.235 .88 16 MP2A Z 8.235 5.88 17 MP2A Z 8.235 5.88 18 MP2A Z 8.235 5.88 18 MP2A X 007 5.88 19 MP1A X 2.562 2.38 20 MP1A Z 4.437 2.38 21 MP1A X 2.562 4.38 23 MP1A Z 4.437 4.38 24 MP1A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A	9	MP2A	Mx		
12 MP2A Mx .002 5.88 13 MP2A X 4.754 .88 14 MP2A Z 8.235 .88 15 MP2A Mx 007 .88 16 MP2A X 4.754 5.88 16 MP2A X 4.754 5.88 17 MP2A Z 8.235 5.88 18 MP2A X 007 5.88 19 MP1A X 2.562 2.38 20 MP1A Z 4.437 2.38 21 MP1A Mx 001 2.38 22 MP1A X 2.562 4.38 23 MP1A Z 4.437 4.38 24 MP1A X 2.562 4.38 25 MP3A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A	10	MP2A		4.754	
13 MP2A X 4.754 .88 14 MP2A Z 8.235 .88 15 MP2A Mx 007 .88 16 MP2A X 4.754 5.88 17 MP2A Z 8.235 5.88 17 MP2A Z 8.235 5.88 18 MP2A X 007 5.88 19 MP1A X 2.562 2.38 20 MP1A Z 4.437 2.38 21 MP1A Mx 001 2.38 22 MP1A X 2.562 4.38 23 MP1A X 2.562 4.38 24 MP1A X 2.562 4.38 25 MP3A Z 3.819 2 26 MP3A Z 3.819 2 27 MP3A X 2.00735 2 28 MP2A	11	MP2A	Z	8.235	5.88
14 MP2A Z 8.235 .88 15 MP2A Mx 007 .88 16 MP2A X 4.754 5.88 17 MP2A Z 8.235 5.88 18 MP2A X 007 5.88 19 MP1A X 2.562 2.38 20 MP1A Z 4.437 2.38 21 MP1A X 2.562 4.38 23 MP1A X 2.562 4.38 24 MP1A X 2.205 2 26 MP3A Z 3.819 2 26 MP3A Z 3.819 2 26 MP3A X 2.169 2 29 MP2A X 2.169 2 30 MP2A Z 3.757 2 31 OVP1 X 4.911 2.5	12	MP2A	Mx	.002	5.88
15 MP2A Mx 007 .88 16 MP2A X 4.754 5.88 17 MP2A Z 8.235 5.88 18 MP2A Mx 007 5.88 19 MP1A X 2.562 2.38 20 MP1A Z 4.437 2.38 21 MP1A Mx 001 2.38 22 MP1A X 2.562 4.38 23 MP1A X 2.562 4.38 24 MP1A X 2.562 4.38 25 MP3A X 2.205 2 26 MP3A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A	13	MP2A	X	4.754	.88
16 MP2A X 4.754 5.88 17 MP2A Z 8.235 5.88 18 MP2A Mx 007 5.88 19 MP1A X 2.562 2.38 20 MP1A Z 4.437 2.38 21 MP1A Mx 001 2.38 22 MP1A X 2.562 4.38 23 MP1A X 2.562 4.38 24 MP1A X 2.562 4.38 24 MP1A X 2.205 2 26 MP3A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1	14	MP2A	Z	8.235	.88
17MP2AZ8.2355.8818MP2AMx0075.8819MP1AX2.5622.3820MP1AZ4.4372.3821MP1AMx0012.3822MP1AX2.5624.3823MP1AZ4.4374.3824MP1AX2.205225MP3AX2.205226MP3AZ3.819227MP3AMx.000735228MP2AX2.169229MP2AZ3.757230MP2AMx.000723231OVP1X4.9112.5		MP2A	Mx		.88
18 MP2A Mx 007 5.88 19 MP1A X 2.562 2.38 20 MP1A Z 4.437 2.38 21 MP1A Mx 001 2.38 22 MP1A Mx 001 2.38 23 MP1A X 2.562 4.38 23 MP1A Z 4.437 4.38 24 MP1A Mx 001 4.38 25 MP3A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5	16	MP2A	X	4.754	5.88
19MP1AX2.5622.3820MP1AZ4.4372.3821MP1AMx0012.3822MP1AX2.5624.3823MP1AZ4.4374.3824MP1AMx0014.3825MP3AX2.205226MP3AZ3.819227MP3AMx.000735228MP2AX2.169229MP2AZ3.757230MP2AMx.000723231OVP1X4.9112.5		MP2A		8.235	
20 MP1A Z 4.437 2.38 21 MP1A Mx 001 2.38 22 MP1A X 2.562 4.38 23 MP1A Z 4.437 4.38 24 MP1A Z 4.437 4.38 24 MP1A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5	18	MP2A	Mx		5.88
21 MP1A Mx 001 2.38 22 MP1A X 2.562 4.38 23 MP1A Z 4.437 4.38 24 MP1A Mx 001 4.38 25 MP3A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5	19	MP1A	X	2.562	
22 MP1A X 2.562 4.38 23 MP1A Z 4.437 4.38 24 MP1A Mx 001 4.38 25 MP3A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5	20	MP1A	Z	4.437	2.38
23 MP1A Z 4.437 4.38 24 MP1A Mx 001 4.38 25 MP3A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5		MP1A	Mx	001	2.38
24 MP1A Mx 001 4.38 25 MP3A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5	22	MP1A	X	2.562	4.38
25 MP3A X 2.205 2 26 MP3A Z 3.819 2 27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5					
26 MP3A Z 3.819 2 27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5				001	
27 MP3A Mx .000735 2 28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5			X		2
28 MP2A X 2.169 2 29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5				3.819	
29 MP2A Z 3.757 2 30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5					
30 MP2A Mx .000723 2 31 OVP1 X 4.911 2.5			X		
31 OVP1 X 4.911 2.5					2
32 OVP1 Z 8.506 2.5			X		
	32	OVP1	Z	8.506	2.5

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	OVP1	Mx	003	2.5
embe	r Point Loads (BLC	<u> 33 : Antenna Wm (</u>	180 Deg))	
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	2
2	MP4A	Z	12.806	2
3	MP4A	Mx	0	2
4	MP4A	X	0	4.75
5	MP4A	Z	12.806	4.75
6	MP4A	Mx	0	4.75
7	MP2A	Х	0	.88
8	MP2A	Z	10.389	.88
9	MP2A	Mx	.006	.88
0	MP2A	Х	0	5.88
1	MP2A	Z	10.389	5.88
2	MP2A	Mx	.006	5.88
3	MP2A	Х	0	.88
4	MP2A	Z	10.389	.88
5	MP2A	Mx	006	.88
6	MP2A	X	0	5.88
7	MP2A	Z	10.389	5.88
8	MP2A	Mx	006	5.88
9	MP1A	X	0	2.38
20	MP1A	Z	6.043	2.38
1	MP1A	Mx	0	2.38
2	MP1A	X	0	4.38
3	MP1A	Z	6.043	4.38
4	MP1A	Mx	0	4.38
25	MP3A	X	0	2
26	MP3A	Z	4.809	2
27	MP3A	Mx	0	2
28	MP3A MP2A	X	0	2
29	MP2A	Z	4.809	2
30	MP2A	Mx	0	2
81	OVP1	X	0	2.5
32	OVP1	Z	8.584	2.5
33	OVP1 OVP1	Mx	001	2.5

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-6.154	2
2	MP4A	Z	10.659	2
3	MP4A	Mx	.003	2
4	MP4A	Х	-6.154	4.75
5	MP4A	Z	10.659	4.75
6	MP4A	Mx	.003	4.75
7	MP2A	Х	-4.754	.88
8	MP2A	Z	8.235	.88
9	MP2A	Mx	.007	.88
10	MP2A	Х	-4.754	5.88
11	MP2A	Z	8.235	5.88
12	MP2A	Mx	.007	5.88
13	MP2A	Х	-4.754	.88
14	MP2A	Z	8.235	.88
15	MP2A	Mx	002	.88
16	MP2A	Х	-4.754	5.88

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
17	MP2A	Z	8.235	5.88
18	MP2A	Mx	002	5.88
19	MP1A	Х	-2.562	2.38
20	MP1A	Z	4.437	2.38
21	MP1A	Mx	.001	2.38
22	MP1A	Х	-2.562	4.38
23	MP1A	Z	4.437	4.38
24	MP1A	Mx	.001	4.38
25	MP3A	Х	-2.205	2
26	MP3A	Z	3.819	2
27	MP3A	Mx	000735	2
28	MP2A	Х	-2.169	2
29	MP2A	Z	3.757	2
30	MP2A	Mx	000723	2
31	OVP1	Х	-3.983	2.5
32	OVP1	Z	6.898	2.5
33	OVP1	Mx	0	2.5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-9.795	2
2	MP4A	Z	5.655	2
3	MP4A	Mx	.005	2
4	MP4A	Х	-9.795	4.75
5	MP4A	Z	5.655	4.75
6	MP4A	Mx	.005	4.75
7	MP2A	Х	-6.71	.88
8	MP2A	Z	3.874	.88
9	MP2A	Mx	.006	.88
10	MP2A	Х	-6.71	5.88
11	MP2A	Z	3.874	5.88
12	MP2A	Mx	.006	5.88
13	MP2A	Х	-6.71	.88
14	MP2A	Z	3.874	.88
15	MP2A	Mx	.001	.88
16	MP2A	Х	-6.71	5.88
17	MP2A	Z	3.874	5.88
18	MP2A	Mx	.001	5.88
19	MP1A	Х	-2.845	2.38
20	MP1A	Z	1.643	2.38
21	MP1A	Mx	.001	2.38
22	MP1A	Х	-2.845	4.38
23	MP1A	Z	1.643	4.38
24	MP1A	Mx	.001	4.38
25	MP3A	Х	-3.129	2
26	MP3A	Z	1.806	2
27	MP3A	Mx	001	2
28	MP2A	Х	-2.941	2
29	MP2A	Z	1.698	2
30	MP2A	Mx	00098	2
31	OVP1	Х	-7.434	2.5
32	OVP1	Z	4.292	2.5
33	OVP1	Mx	.001	2.5

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-10.812	2
2	MP4A	Z	0	2
3	MP4A	Mx	.005	2
4	MP4A	Х	-10.812	4.75
5	MP4A	Z	0	4.75
6	MP4A	Mx	.005	4.75
7	MP2A	Х	-6.868	.88
8	MP2A	Z	0	.88
9	MP2A	Mx	.003	.88
10	MP2A	X	-6.868	5.88
11	MP2A	Z	0	5.88
12	MP2A	Mx	.003	5.88
13	MP2A	Х	-6.868	.88
14	MP2A	Z	0	.88
15	MP2A	Mx	.003	.88
16	MP2A	X	-6.868	5.88
17	MP2A	Z	0	5.88
18	MP2A	Mx	.003	5.88
19	MP1A	X	-2.366	2.38
20	MP1A	Z	0	2.38
21	MP1A	Mx	.001	2.38
22	MP1A	X	-2.366	4.38
23	MP1A	Z	0	4.38
24	MP1A	Mx	.001	4.38
25	MP3A	X	-3.214	2
26	MP3A	Z	0	2
27	MP3A	Mx	001	2
28	MP2A	Х	-2.925	2
29	MP2A	Z	0	2
30	MP2A	Mx	000975	2
31	OVP1	Х	-9.821	2.5
32	OVP1	Z	0	2.5
33	OVP1	Mx	.003	2.5

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-9.795	2
2	MP4A	Z	-5.655	2
3	MP4A	Mx	.005	2
4	MP4A	Х	-9.795	4.75
5	MP4A	Z	-5.655	4.75
6	MP4A	Mx	.005	4.75
7	MP2A	Х	-6.71	.88
8	MP2A	Z	-3.874	.88
9	MP2A	Mx	.001	.88
10	MP2A	Х	-6.71	5.88
11	MP2A	Z	-3.874	5.88
12	MP2A	Mx	.001	5.88
13	MP2A	Х	-6.71	.88
14	MP2A	Z	-3.874	.88
15	MP2A	Mx	.006	.88
16	MP2A	Х	-6.71	5.88
17	MP2A	Z	-3.874	5.88
18	MP2A	Mx	.006	5.88
19	MP1A	Х	-2.845	2.38
20	MP1A	Z	-1.643	2.38

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP1A	Mx	.001	2.38
22	MP1A	Х	-2.845	4.38
23	MP1A	Z	-1.643	4.38
24	MP1A	Mx	.001	4.38
25	MP3A	Х	-3.129	2
26	MP3A	Z	-1.806	2
27	MP3A	Mx	001	2
28	MP2A	Х	-2.941	2
29	MP2A	Z	-1.698	2
30	MP2A	Mx	00098	2
31	OVP1	Х	-9.041	2.5
32	OVP1	Z	-5.22	2.5
33	OVP1	Mx	.003	2.5

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-6.154	2
2	MP4A	Z	-10.659	2
3	MP4A	Mx	.003	2
4	MP4A	Х	-6.154	4.75
5	MP4A	Z	-10.659	4.75
6	MP4A	Mx	.003	4.75
7	MP2A	Х	-4.754	.88
8	MP2A	Z	-8.235	.88
9	MP2A	Mx	002	.88
10	MP2A	Х	-4.754	5.88
11	MP2A	Z	-8.235	5.88
12	MP2A	Mx	002	5.88
13	MP2A	X Z	-4.754	.88
14	MP2A	Z	-8.235	.88
15	MP2A	Mx	.007	.88
16	MP2A	Х	-4.754	5.88
17	MP2A	Z	-8.235	5.88
18	MP2A	Mx	.007	5.88
19	MP1A	X Z	-2.562	2.38
20	MP1A	Z	-4.437	2.38
21	MP1A	Mx	.001	2.38
22	MP1A	Х	-2.562	4.38
23	MP1A	Z	-4.437	4.38
24	MP1A	Mx	.001	4.38
25	MP3A	Х	-2.205	2
26	MP3A	Z	-3.819	2
27	MP3A	Mx	000735	2
28	MP2A	Х	-2.169	2
29	MP2A	Z	-3.757	2
30	MP2A	Mx	000723	2
31	OVP1	Х	-4.911	2.5
32	OVP1	Z	-8.506	2.5
33	OVP1	Mx	.003	2.5

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M10	Y	-500	0

Member Point Loads (BLC 78 : Lm2)

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft %]	
RISA-3D Version 17.0.4	[R:\\\\Structural\M	ount Replacement\Rev 0\RISA\\	/FA12-HD.r3d] Page 31	

1	Member Label M12	Direction Y	Magnitude[lb,k-ft] -500	Location[ft,%]
1			-500	0
embe	r Point Loads (BLC	79 : Lv1)		
011100	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	Member Laber	Y	-250	0
1			-230	0
embe	r Point Loads (BLC	80 : Lv2)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	M1	Y	-250	%50
embe	r Point Loads (BLC	81 : Antenna Ev)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Y	63	2
2	MP4A	My	000315	2
3	MP4A	Mz	0	2
4	MP4A	Y NA -	63	4.75
5	MP4A	My	000315	4.75
6	MP4A	Mz	0	4.75
7	MP2A	Y	918	.88
8	MP2A	My	000459	.88
9	MP2A	Mz	.000536	.88
10	MP2A	Y	918	5.88
11	MP2A	My	000459	5.88
12	MP2A	Mz	.000536	5.88
13	MP2A	Y NA	918	.88
14	MP2A	My	000459	.88
15	MP2A	Mz Y	000536	.88
16	MP2A		918	5.88
17	MP2A	My	000459	5.88
18	MP2A	Mz	000536	5.88
19 20	MP1A	Y NAV	<u>-1.83</u> 000915	2.38
20	MP1A MP1A	My Mz	000915	<u>2.38</u> 2.38
22	MP1A MP1A	Mz Y	-1.83	4.38
23	MP1A MP1A	My	000915	4.38
24	MP1A	Mz	000915	4.38
25	MP1A MP3A	Y	-3.139	4.30
26	MP3A MP3A	My	.001	2
20	MP3A MP3A	Mz	0	2
28	MP3A MP2A	Y	-2.954	2
20 29	MP2A MP2A	My	.000985	2
30	MP2A	Mz	0	2
31	OVP1	Y	-1.345	2.5
32	OVP1	My	000388	2.5
33	OVP1	Mz	000224	2.5

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Z	-1.576	2
2	MP4A	Mx	0	2
3	MP4A	Z	-1.576	4.75
4	MP4A	Mx	0	4.75
5	MP2A	Z	-2.296	.88
6	MP2A	Mx	001	.88
7	MP2A	Z	-2.296	5.88

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
8	MP2A	Mx	001	5.88
9	MP2A	Z	-2.296	.88
10	MP2A	Mx	.001	.88
11	MP2A	Z	-2.296	5.88
12	MP2A	Mx	.001	5.88
13	MP1A	Z	-4.576	2.38
14	MP1A	Mx	0	2.38
15	MP1A	Z	-4.576	4.38
16	MP1A	Mx	0	4.38
17	MP3A	Z	-7.848	2
18	MP3A	Mx	0	2
19	MP2A	Z	-7.386	2
20	MP2A	Mx	0	2
21	OVP1	Z	-3.362	2.5
22	OVP1	Mx	.00056	2.5

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	1.576	2
2	MP4A	Mx	000788	2
3	MP4A	Х	1.576	4.75
4	MP4A	Mx	000788	4.75
5	MP2A	Х	2.296	.88
6	MP2A	Mx	001	.88
7	MP2A	Х	2.296	5.88
8	MP2A	Mx	001	5.88
9	MP2A	Х	2.296	.88
10	MP2A	Mx	001	.88
11	MP2A	Х	2.296	5.88
12	MP2A	Mx	001	5.88
13	MP1A	Х	4.576	2.38
14	MP1A	Mx	002	2.38
15	MP1A	Х	4.576	4.38
16	MP1A	Mx	002	4.38
17	MP3A	Х	7.848	2
18	MP3A	Mx	.003	2
19	MP2A	Х	7.386	2
20	MP2A	Mx	.002	2
21	OVP1	Х	3.362	2.5
22	OVP1	Mx	000971	2.5

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	Y	-5.66	-5.66	0	%100
2	M2	Y	-5.66	-5.66	0	%100
3	M13	Y	-6.617	-6.617	0	%100
4	M14	Y	-6.617	-6.617	0	%100
5	M15	Y	-6.617	-6.617	0	%100
6	M16	Y	-6.617	-6.617	0	%100
7	OVP	Y	-4.957	-4.957	0	%100
8	M18	Y	-4.957	-4.957	0	%100
9	M19	Y	-4.957	-4.957	0	%100
10	M20	Y	-4.957	-4.957	0	%100
11	M21	Y	-6.617	-6.617	0	%100
12	M22	Ý	-6.617	-6.617	0	%100

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
13	M23	Y	-6.617	-6.617	0	%100
14	M24	Y	-6.617	-6.617	0	%100
15	M25	Y	-2.673	-2.673	0	%100
16	M26	Y	-2.673	-2.673	0	%100
17	M27	Y	-2.673	-2.673	0	%100
18	M28	Y	-2.673	-2.673	0	%100
19	MP4A	Y	-4.957	-4.957	0	%100
20	MP3A	Y	-4.957	-4.957	0	%100
21	MP2A	Y	-4.957	-4.957	0	%100
22	MP1A	Y	-4.957	-4.957	0	%100
23	M44	Y	-2.497	-2.497	0	%100
24	M45	Y	-2.497	-2.497	0	%100
25	M46	Y	-2.497	-2.497	0	%100
26	M47	Y	-2.497	-2.497	0	%100
27	M44A	Y	-4.957	-4.957	0	%100
28	M44B	Y	-4.957	-4.957	0	%100
29	OVP1	Y	-4.957	-4.957	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	-11.438	-11.438	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	-11.438	-11.438	0	%100
5	M13	Х	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	Х	0	0	0	%100
8	M14	Z	0	0	0	%100
9	M15	Х	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	Х	0	0	0	%100
12	M16	Z	0	0	0	%100
13	OVP	Х	0	0	0	%100
14	OVP	Z	-4.516	-4.516	0	%100
15	M18	Х	0	0	0	%100
16	M18	Z	-4.516	-4.516	0	%100
17	M19	Х	0	0	0	%100
18	M19	Z	-4.516	-4.516	0	%100
19	M20	Х	0	0	0	%100
20	M20	Z	-4.516	-4.516	0	%100
21	M21	Х	0	0	0	%100
22	M21	Z	-2.486	-2.486	0	%100
23	M22	Х	0	0	0	%100
24	M22	Z	-2.486	-2.486	0	%100
25	M23	Х	0	0	0	%100
26	M23	Z	-2.486	-2.486	0	%100
27	M24	Х	0	0	0	%100
28	M24	Z	-2.486	-2.486	0	%100
29	M25	X	0	0	0	%100
30	M25	Z	-2.575	-2.575	0	%100
31	M26	Х	0	0	0	%100
32	M26	Z	-2.575	-2.575	0	%100
33	M27	Х	0	0	0	%100
34	M27	Z	-2.575	-2.575	0	%100
35	M28	X	0	0	0	%100
36	M28	Z	-2.575	-2.575	0	%100

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
37	MP4A	Х	0	0	0	%100
38	MP4A	Z	-9.448	-9.448	0	%100
39	MP3A	Х	0	0	0	%100
40	MP3A	Z	-9.448	-9.448	0	%100
41	MP2A	Х	0	0	0	%100
42	MP2A	Z	-9.448	-9.448	0	%100
43	MP1A	Х	0	0	0	%100
44	MP1A	Z	-9.448	-9.448	0	%100
45	M44	Х	0	0	0	%100
46	M44	Z	-2.486	-2.486	0	%100
47	M45	Х	0	0	0	%100
48	M45	Z	-2.486	-2.486	0	%100
49	M46	Х	0	0	0	%100
50	M46	Z	-2.486	-2.486	0	%100
51	M47	Х	0	0	0	%100
52	M47	Z	-2.486	-2.486	0	%100
53	M44A	Х	0	0	0	%100
54	M44A	Z	793	793	0	%100
55	M44B	X	0	0	0	%100
56	M44B	Z	793	793	0	%100
57	OVP1	Χ	0	0	0	%100
58	OVP1	Z	-9.448	-9.448	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	4.289	4.289	0	%100
2	M1	Z	-7.429	-7.429	0	%100
3	M2	Х	4.289	4.289	0	%100
4	M2	Z	-7.429	-7.429	0	%100
5	M13	Х	.311	.311	0	%100
6	M13	Z	538	538	0	%100
7	M14	Х	.311	.311	0	%100
8	M14	Z	538	538	0	%100
9	M15	Х	.311	.311	0	%100
10	M15	Z	538	538	0	%100
11	M16	Х	.311	.311	0	%100
12	M16	Z	538	538	0	%100
13	OVP	Х	.508	.508	0	%100
14	OVP	Z	88	88	0	%100
15	M18	Х	.508	.508	0	%100
16	M18	Z	88	88	0	%100
17	M19	Х	3.571	3.571	0	%100
18	M19	Z	-6.185	-6.185	0	%100
19	M20	Х	3.571	3.571	0	%100
20	M20	Z	-6.185	-6.185	0	%100
21	M21	Х	.932	.932	0	%100
22	M21	Z	-1.615	-1.615	0	%100
23	M22	Х	.932	.932	0	%100
24	M22	Z	-1.615	-1.615	0	%100
25	M23	Х	.932	.932	0	%100
26	M23	Z	-1.615	-1.615	0	%100
27	M24	Х	.932	.932	0	%100
28	M24	Z	-1.615	-1.615	0	%100
29	M25	Х	1.03	1.03	0	%100
30	M25	Z	-1.783	-1.783	0	%100
31	M26	Х	1.03	1.03	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
32	M26	Z	-1.783	-1.783	0	%100
33	M27	Х	1.481	1.481	0	%100
34	M27	Z	-2.566	-2.566	0	%100
35	M28	Х	1.481	1.481	0	%100
36	M28	Z	-2.566	-2.566	0	%100
37	MP4A	Х	4.724	4.724	0	%100
38	MP4A	Z	-8.183	-8.183	0	%100
39	MP3A	Х	4.724	4.724	0	%100
40	MP3A	Z	-8.183	-8.183	0	%100
41	MP2A	Х	4.724	4.724	0	%100
42	MP2A	Z	-8.183	-8.183	0	%100
43	MP1A	Х	4.724	4.724	0	%100
44	MP1A	Z	-8.183	-8.183	0	%100
45	M44	Х	1.243	1.243	0	%100
46	M44	Z	-2.153	-2.153	0	%100
47	M45	Х	1.243	1.243	0	%100
48	M45	Z	-2.153	-2.153	0	%100
49	M46	Х	1.243	1.243	0	%100
50	M46	Z	-2.153	-2.153	0	%100
51	M47	Х	1.243	1.243	0	%100
52	M47	Z	-2.153	-2.153	0	%100
53	M44A	X	2.51	2.51	0	%100
54	M44A	Z	-4.347	-4.347	0	%100
55	M44B	X	.251	.251	0	%100
56	M44B	Z	435	435	0	%100
57	OVP1	Х	4.724	4.724	0	%100
58	OVP1	Z	-8.183	-8.183	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	2.476	2.476	0	%100
2	M1	Z	-1.43	-1.43	0	%100
3	M2	Х	2.476	2.476	0	%100
4	M2	Z	-1.43	-1.43	0	%100
5	M13	Х	1.615	1.615	0	%100
6	M13	Z	932	932	0	%100
7	M14	Х	1.615	1.615	0	%100
8	M14	Z	932	932	0	%100
9	M15	Х	1.615	1.615	0	%100
10	M15	Z	932	932	0	%100
11	M16	Х	1.615	1.615	0	%100
12	M16	Z	932	932	0	%100
13	OVP	Х	.124	.124	0	%100
14	OVP	Z	072	072	0	%100
15	M18	Х	.124	.124	0	%100
16	M18	Z	072	072	0	%100
17	M19	Х	5.428	5.428	0	%100
18	M19	Z	-3.134	-3.134	0	%100
19	M20	Х	5.428	5.428	0	%100
20	M20	Z	-3.134	-3.134	0	%100
21	M21	Х	.538	.538	0	%100
22	M21	Z	311	311	0	%100
23	M22	Х	.538	.538	0	%100
24	M22	Z	311	311	0	%100
25	M23	Х	.538	.538	0	%100
26	M23	Z	311	311	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
27	M24	Х	.538	.538	0	%100
28	M24	Z	311	311	0	%100
29	M25	Х	1.672	1.672	0	%100
30	M25	Z	965	965	0	%100
31	M26	Х	1.672	1.672	0	%100
32	M26	Z	965	965	0	%100
33	M27	Х	2.454	2.454	0	%100
34	M27	Z	-1.417	-1.417	0	%100
35	M28	Х	2.454	2.454	0	%100
36	M28	Z	-1.417	-1.417	0	%100
37	MP4A	Х	8.183	8.183	0	%100
38	MP4A	Z	-4.724	-4.724	0	%100
39	MP3A	Х	8.183	8.183	0	%100
40	MP3A	Z	-4.724	-4.724	0	%100
41	MP2A	Х	8.183	8.183	0	%100
42	MP2A	Z	-4.724	-4.724	0	%100
43	MP1A	Х	8.183	8.183	0	%100
44	MP1A	Z	-4.724	-4.724	0	%100
45	M44	Х	2.153	2.153	0	%100
46	M44	Z	-1.243	-1.243	0	%100
47	M45	X	2.153	2.153	0	%100
48	M45	Z	-1.243	-1.243	0	%100
49	M46	X	2.153	2.153	0	%100
50	M46	Z	-1.243	-1.243	0	%100
51	M47	X	2.153	2.153	0	%100
52	M47	Z	-1.243	-1.243	0	%100
53	M44A	X	7.754	7.754	0	%100
54	M44A	Z	-4.477	-4.477	0	%100
55	M44B	Х	3.842	3.842	0	%100
56	M44B	Z	-2.218	-2.218	0	%100
57	OVP1	Х	8.183	8.183	0	%100
58	OVP1	Z	-4.724	-4.724	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	X	2.486	2.486	0	%100
6	M13	Z	0	0	0	%100
7	M14	X	2.486	2.486	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	2.486	2.486	0	%100
10	M15	Z	0	0	0	%100
11	M16	Х	2.486	2.486	0	%100
12	M16	Z	0	0	0	%100
13	OVP	Х	2.769	2.769	0	%100
14	OVP	Z	0	0	0	%100
15	M18	X	2.769	2.769	0	%100
16	M18	Z	0	0	0	%100
17	M19	X	2.769	2.769	0	%100
18	M19	Z	0	0	0	%100
19	M20	Х	2.769	2.769	0	%100
20	M20	Z	0	0	0	%100
21	M21	Х	0	0	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
22	M21	Z	0	0	0	%100
23	M22	Х	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	Х	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	Х	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	Х	2.318	2.318	0	%100
30	M25	Z	0	0	0	%100
31	M26	Х	2.318	2.318	0	%100
32	M26	Z	0	0	0	%100
33	M27	X	2.318	2.318	0	%100
34	M27	Z	0	0	0	%100
35	M28	Х	2.318	2.318	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	Х	9.448	9.448	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	Х	9.448	9.448	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	Х	9.448	9.448	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	Х	9.448	9.448	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	Х	2.486	2.486	0	%100
46	M44	Z	0	0	0	%100
47	M45	Х	2.486	2.486	0	%100
48	M45	Z	0	0	0	%100
49	M46	Х	2.486	2.486	0	%100
50	M46	Z	0	0	0	%100
51	M47	Х	2.486	2.486	0	%100
52	M47	Z	0	0	0	%100
53	M44A	X	8.663	8.663	0	%100
54	M44A	Z	0	0	0	%100
55	M44B	X	8.663	8.663	0	%100
56	M44B	Z	0	0	0	%100
57	OVP1	Х	9.448	9.448	0	%100
58	OVP1	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	2.476	2.476	0	%100
2	M1	Z	1.43	1.43	0	%100
3	M2	Х	2.476	2.476	0	%100
4	M2	Z	1.43	1.43	0	%100
5	M13	Х	1.615	1.615	0	%100
6	M13	Z	.932	.932	0	%100
7	M14	Х	1.615	1.615	0	%100
8	M14	Z	.932	.932	0	%100
9	M15	Х	1.615	1.615	0	%100
10	M15	Z	.932	.932	0	%100
11	M16	Х	1.615	1.615	0	%100
12	M16	Z	.932	.932	0	%100
13	OVP	Х	5.428	5.428	0	%100
14	OVP	Z	3.134	3.134	0	%100
15	M18	Х	5.428	5.428	0	%100
16	M18	Z	3.134	3.134	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	D 1				
		Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
17	M19	X	.124	.124	0	%100
18	M19	Z	.072	.072	0	%100
19	M20	X	.124	.124	0	%100
20	M20	Z	.072	.072	0	%100
21	M21	X	.538	.538	0	%100
22	M21	Z	.311	.311	0	%100
23	M22	X	.538	.538	0	%100
24	M22	Z	.311	.311	0	%100
25	M23	X	.538	.538	0	%100
26	M23	Z	.311	.311	0	%100
27	M24	X	.538	.538	0	%100
28	M24	Z	.311	.311	0	%100
29	M25	Х	2.454	2.454	0	%100
30	M25	Z	1.417	1.417	0	%100
31	M26	Х	2.454	2.454	0	%100
32	M26	Z	1.417	1.417	0	%100
33	M27	X	1.672	1.672	0	%100
34	M27	Z	.965	.965	0	%100
35	M28	Х	1.672	1.672	0	%100
36	M28	Z	.965	.965	0	%100
37	MP4A	Х	8.183	8.183	0	%100
38	MP4A	Z	4.724	4.724	0	%100
39	MP3A	X	8.183	8.183	0	%100
40	MP3A	Z	4.724	4.724	0	%100
41	MP2A	Х	8.183	8.183	0	%100
42	MP2A	Z	4.724	4.724	0	%100
43	MP1A	Х	8.183	8.183	0	%100
44	MP1A	Z	4.724	4.724	0	%100
45	M44	Х	2.153	2.153	0	%100
46	M44	Z	1.243	1.243	0	%100
47	M45	Х	2.153	2.153	0	%100
48	M45	Z	1.243	1.243	0	%100
49	M46	Х	2.153	2.153	0	%100
50	M46	Z	1.243	1.243	0	%100
51	M47	Х	2.153	2.153	0	%100
52	M47	Z	1.243	1.243	0	%100
53	M44A	Х	3.842	3.842	0	%100
54	M44A	Z	2.218	2.218	0	%100
55	M44B	X	7.754	7.754	0	%100
56	M44B	Z	4.477	4.477	0	%100
57	OVP1	X	8.183	8.183	0	%100
58	OVP1	Z	4.724	4.724	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	Х	4.289	4.289	0	%100
2	M1	Z	7.429	7.429	0	%100
3	M2	Х	4.289	4.289	0	%100
4	M2	Z	7.429	7.429	0	%100
5	M13	Х	.311	.311	0	%100
6	M13	Z	.538	.538	0	%100
7	M14	Х	.311	.311	0	%100
8	M14	Z	.538	.538	0	%100
9	M15	Х	.311	.311	0	%100
10	M15	Z	.538	.538	0	%100
11	M16	X	.311	.311	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Distributed Lot			100 Deg// 100	ianaca/	
	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
12	M16	Z	.538	.538	0	%100
13	OVP	X	3.571	3.571	0	%100
14	OVP	Z	6.185	6.185	0	%100
15	M18	X	3.571	3.571	0	%100
16	M18	Z	6.185	6.185	0	%100
17	M19	Х	.508	.508	0	%100
18	M19	Z	.88	.88	0	%100
19	M20	X	.508	.508	0	%100
20	M20	Z	.88	.88	0	%100
21	M21	X	.932	.932	0	%100
22	M21	Z	1.615	1.615	0	%100
23	M22	X	.932	.932	0	%100
24	M22	Z	1.615	1.615	0	%100
25	M23	X	.932	.932	0	%100
26	M23	Z	1.615	1.615	0	%100
27	M24	X	.932	.932	0	%100
28	M24	Z	1.615	1.615	0	%100
29	M25	X	1.481	1.481	0	%100
30	M25	Z	2.566	2.566	0	%100
31	M26	X	1.481	1.481	0	%100
32	M26	Z	2.566	2.566	0	%100
33	M27	X	1.03	1.03	0	%100
34	M27	Z	1.783	1.783	0	%100
35	M28	X	1.03	1.03	0	%100
36	M28	Z	1.783	1.783	0	%100
37	MP4A	X	4.724	4.724	0	%100
38	MP4A	Z	8.183	8.183	0	%100
39	MP3A	X	4.724	4.724	0	%100
40	MP3A	Z	8.183	8.183	0	%100
41	MP2A	X	4.724	4.724	0	%100
42	MP2A	Z	8.183	8.183	0	%100
43	MP1A	X	4.724	4.724	0	%100
44	MP1A	Z	8.183	8.183	0	%100
45	M44	X	1.243	1.243	0	%100
46	M44	Z	2.153	2.153	0	%100
47	M45	X	1.243	1.243	0	%100
48	M45	Z	2.153	2.153	0	%100
49	M46	X	1.243	1.243	0	%100
50	M46	Z	2.153	2.153	0	%100
51	M47	X	1.243	1.243	0	%100
52	M47	Z	2.153	2.153	0	%100
53	M44A	X	.251	.251	0	%100
54	M44A	Z	.435	.435	0	%100
55	M44B	X	2.51	2.51	0	%100
56	M44B	Z	4.347	4.347	0	%100
57	OVP1	X	4.724	4.724	0	%100
58	OVP1	Z	8.183	8.183	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	11.438	11.438	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	11.438	11.438	0	%100
5	M13	Х	0	0	0	%100
6	M13	Z	0	0	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

wienn	er Distributed Loa	aus (DLC 4/	. Structure WO	(100 Deg)) (C01	ninueu)	
	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
7	M14	Х	0	0	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	0	0	0	%100
12	M16	Z	0	0	0	%100
13	OVP	X	0	0	0	%100
14	OVP	Z	4.516	4.516	0	%100
15	M18	X	0	0	0	%100
16	M18	Z	4.516	4.516	0	%100
17	M19		4.510	0		%100
		X Z	-	4.516	0	
18	M19		4.516		0	%100 %100
19	M20	X	0	0	0	%100
20	M20	Z	4.516	4.516	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	2.486	2.486	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	2.486	2.486	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	2.486	2.486	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	2.486	2.486	0	%100
29	M25	X	0	0	0	%100
30	M25	Z	2.575	2.575	0	%100
31	M26	X	0	0	0	%100
32	M26	Z	2.575	2.575	0	%100
33	M27	X	0	0	0	%100
34	M27	Z	2.575	2.575	0	%100
35	M28	Х	0	0	0	%100
36	M28	Z	2.575	2.575	0	%100
37	MP4A	x	0	0	0 0	%100
38	MP4A	Z	9.448	9.448	0	%100
39	MP3A	x	0	0	0	%100
40	MP3A	Z	9.448	9.448	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	9.448	9.448	0	%100
43	MP1A	X	0	0	0	%100
43	MP1A	Z	9.448	9.448	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	2.486	2.486	U U U U U U U U U U U U U U U U U U U	<u>%100</u>
47	M45	X	0	0	0	%100
48	M45	Z	2.486	2.486	0	%100
49	M46	X	0	0	0	%100
50	M46	Z	2.486	2.486	0	%100
51	M47	X	0	0	0	%100
52	M47	Z	2.486	2.486	0	%100
53	M44A	X	0	0	0	%100
54	M44A	Z	.793	.793	0	%100
55	M44B	X	0	0	0	%100
56	M44B	Z	.793	.793	0	%100
57	OVP1	Х	0	0	0	%100
58	OVP1	Z	9.448	9.448	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
	1	M1	Х	-4.289	-4.289	0	%100
_			×				

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%
2	M1	Z	7.429	7.429	0	%100
3	M2	X	-4.289	-4.289	0	%100
4	M2	Z	7.429	7.429	0	%100
5	M13	Х	311	311	0	%100
6	M13	Z	.538	.538	0	%100
7	M14	X	311	311	0	%100
8	M14	Z	.538	.538	0	%100
9	M15	X	311	311	0	%100
10	M15	Z	.538	.538	0	%100
11	M16	x	311	311	0	%100
12	M16	Z	.538	.538	0	%100
13	OVP	X	508	508	0	%100
14	OVP	Z	.88	.88	0	%100
15	0VF	X	508	508	0	%100
16	M18	Z	.88	.88	0	%100
17	M19	X	-3.571	-3.571	0	%100
18	M19	Z	6.185	6.185	0	%100
19	M20	X	-3.571	-3.571	0	%100
20	M20	Z	6.185	6.185	0	%100
21	M21	<u> </u>	932	932	0	%100
22	M21	Z	1.615	1.615	0	%100
23	M22	X	932	932	0	%100
24	M22	Z	1.615	1.615	0	%100
25	M23	X	932	932	0	%100
26	M23	Z	1.615	1.615	0	%100
27	M24	X	932	932	0	%100
28	M24	Z	1.615	1.615	0	%100
29	M25	X	-1.03	-1.03	0	%100
30	M25	Z	1.783	1.783	0	%100
31	M26	X	-1.03	-1.03	0	%100
32	M26	Z	1.783	1.783	0	%100
33	M27	Х	-1.481	-1.481	0	%100
34	M27	Z	2.566	2.566	0	%100
35	M28	Х	-1.481	-1.481	0	%100
36	M28	Z	2.566	2.566	0	%100
37	MP4A	X	-4.724	-4.724	0	%100
38	MP4A	Z	8.183	8.183	0	%100
39	MP3A	X	-4.724	-4.724	0	%100
40	MP3A	Z	8.183	8.183	0	%100
41	MP2A	X	-4.724	-4.724	0	%100
42	MP2A	Z	8.183	8.183	0	%100
43	MP1A	X	-4.724	-4.724	0	%100
44	MP1A	Z	8.183	8.183	0	%100
45	M44	X	-1.243	-1.243	0	%100
46	M44	Z	2.153	2.153	0	%100
			-1.243	-1.243	-	
47	M45	X			0	<u>%100</u> %100
48	M45	Z	2.153	2.153	0	
49	M46	X	-1.243	-1.243	0	%100
50	M46	Z	2.153	2.153	0	<u>%100</u>
51	M47	X	-1.243	-1.243	0	%100
52	M47	Z	2.153	2.153	0	%100
53	M44A	<u> </u>	-2.51	-2.51	0	%100
54	M44A	Z	4.347	4.347	0	%100
55	M44B	X	251	251	0	%100
56	M44B	Z	.435	.435	0	%100
57	OVP1	X	-4.724	-4.724	0	%100
58	OVP1	Z	8.183	8.183	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

4	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
1	<u>M1</u>	X	-2.476	-2.476	0	%100
2	M1	Z	1.43	1.43	0	%100
3	M2	X	-2.476	-2.476	0	%100
4	M2	Z	1.43	1.43	0	%100
5	M13	X	-1.615	-1.615	0	%100
6	M13	Z	.932	.932	0	%100
7	M14	Х	-1.615	-1.615	0	%100
8	M14	Z	.932	.932	0	%100
9	M15	Х	-1.615	-1.615	0	%100
10	M15	Z	.932	.932	0	%100
11	M16	×	-1.615	-1.615	0	%100
12	M16	Z	.932	.932	0	%100
13	OVP	X	124	124	0	%100
14	OVP	Z	.072	.072	0	%100
15						
	M18	X	124	124	0	%100
16	M18	Z	.072	.072	0	%100
17	M19	X	-5.428	-5.428	0	%100
18	M19	Z	3.134	3.134	0	%100
19	M20	X	-5.428	-5.428	0	%100
20	M20	Z	3.134	3.134	0	%100
21	M21	X	538	538	0	%100
22	M21	Z	.311	.311	0	%100
23	M22	X	538	538	0	%100
24	M22	Z	.311	.311	0	%100
25	M23	X	538	538	0	%100
26	M23	Z	.311	.311	0	%100
27	M24	X	- 538	538	0	%100
28	M24	Z	.311	.311	0	%100
29	M25	×	-1.672	-1.672	0	%100
30	M25	Z	.965	.965	0	%100
31	M26	X	-1.672	-1.672	0	%100
32	M26	Z	.965	.965	0	%100
33	M20	X	-2.454	-2.454	0	%100
		Z				
34	M27		1.417	1.417	0	%100
35	M28	X	-2.454	-2.454	0	%100
36	M28	Z	1.417	1.417	0	%100
37	MP4A	X	-8.183	-8.183	0	%100
38	MP4A	Z	4.724	4.724	0	%100
39	MP3A	X	-8.183	-8.183	0	%100
40	MP3A	Z	4.724	4.724	0	%100
41	MP2A	X	-8.183	-8.183	0	%100
42	MP2A	Z	4.724	4.724	0	%100
43	MP1A	Х	-8.183	-8.183	0	%100
44	MP1A	Z	4.724	4.724	0	%100
45	M44	×	-2.153	-2.153	0	%100
46	M44	Z	1.243	1.243	0	%100
47	M45	X	-2.153	-2.153	0	%100
48	M45	Z	1.243	1.243	0	%100
49	M46	X	-2.153	-2.153	0	%100
50	M46	Z	1.243	1.243	0	%100
51	M47	X	-2.153	-2.153	0	%100
52	M47	Z	1.243	1.243	0	%100
53	M44A	X	-7.754	-7.754	0	%100
54	M44A	Z	4.477	4.477	0	%100
55	M44B	X	-3.842	-3.842	0	%100
	NAAAD	Z	2.218	2.218	0	%100
56 57	M44B	X	-8.183	-8.183	0	%100

RISA-3D Version 17.0.4 [R:\...\...\Structural\Mount Replacement\Rev 0\RISA\VFA12-HD.r3d] Page 43

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
58	OVP1	Z	4.724	4.724	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

mem					0	
1	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
1	M1 M1	X Z	0	0	0	<u>%100</u>
	M2		0			%100 %100
3		X 7	· · ·	0	0	<u>%100</u>
4	M2	Z	0	0	0	%100
5	M13	<u> </u>	-2.486	-2.486	0	%100
6	M13	Z	0	0	0	%100
7	M14	<u> </u>	-2.486	-2.486	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	-2.486	-2.486	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	-2.486	-2.486	0	%100
12	M16	Z	0	0	0	%100
13	OVP	X	-2.769	-2.769	0	%100
14	OVP	Z	0	0	0	%100
15	M18	Х	-2.769	-2.769	0	%100
16	M18	Z	0	0	0	%100
17	M19	Х	-2.769	-2.769	0	%100
18	M19	Z	0	0	0	%100
19	M20	Х	-2.769	-2.769	0	%100
20	M20	Z	0	0	0	%100
21	M21	Х	0	0	0	%100
22	M21	Z	0	0	0	%100
23	M22	Х	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	x	0	0	0 0	%100
26	M23	Z	0	0	0	%100
27	M20	x	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	x	-2.318	-2.318	0	%100
30	M25	Z	0	0	0	%100
31	M26	×	-2.318	-2.318	0	%100
32	M26	Z	0	0	0	%100
33	M20	×	-2.318	-2.318	0	%100
33	M27	Z	-2.310	-2.310	0	%100
			· · ·	•		
35	M28	X Z	-2.318	-2.318	0	<u>%100</u>
36	M28		0	0		%100 %100
37	MP4A	X 7	-9.448	-9.448	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	<u> </u>	-9.448	-9.448	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	<u> </u>	-9.448	-9.448	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	<u> </u>	-9.448	-9.448	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	X	-2.486	-2.486	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	-2.486	-2.486	0	%100
48	M45	Z	0	0	0	%100
49	M46	Х	-2.486	-2.486	0	%100
50	M46	Z	0	0	0	%100
51	M47	Х	-2.486	-2.486	0	%100
52	M47	Z	0	0	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
53	M44A	Х	-8.663	-8.663	0	%100
54	M44A	Z	0	0	0	%100
55	M44B	Х	-8.663	-8.663	0	%100
56	M44B	Z	0	0	0	%100
57	OVP1	Х	-9.448	-9.448	0	%100
58	OVP1	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft,%]
1	Member Laber	X	-2.476	-2.476	0	%100
2	M1	Z	-1.43	-1.43	0	%100
3	M2	x	-2.476	-2.476	0	%100
4	M2	Z	-1.43	-1.43	0	%100
5	M13	X	-1.615	-1.615	0	%100
6	M13	Z	932	932	0	%100
7	M10 M14	X	-1.615	-1.615	0	%100
8	M14	Z	932	932	0	%100
9	M15	x	-1.615	-1.615	0	%100
10	M15	Z	932	932	0	%100
11	M16	x	-1.615	-1.615	0	%100
12	M16	Z	932	932	0	%100
13	OVP	x	-5.428	-5.428	0	%100
14	OVP	Z	-3.134	-3.134	Ŭ Û	%100
15	M18	x	-5.428	-5.428	0	%100
16	M18	Z	-3.134	-3.134	Ŭ Û	%100
17	M19	x	124	124	0	%100
18	M19	Z	072	072	Ŭ Û	%100
19	M20	×	124	124	0 0	%100
20	M20	Z	072	072	0	%100
21	M21	Х	538	538	0	%100
22	M21	Z	311	311	0	%100
23	M22	Х	538	538	0	%100
24	M22	Z	311	311	0	%100
25	M23	Х	538	538	0	%100
26	M23	Z	311	311	0	%100
27	M24	Х	538	538	0	%100
28	M24	Z	311	311	0	%100
29	M25	Х	-2.454	-2.454	0	%100
30	M25	Z	-1.417	-1.417	0	%100
31	M26	Х	-2.454	-2.454	0	%100
32	M26	Z	-1.417	-1.417	0	%100
33	M27	Х	-1.672	-1.672	0	%100
34	M27	Z	965	965	0	%100
35	M28	Х	-1.672	-1.672	0	%100
36	M28	Z	965	965	0	%100
37	MP4A	Х	-8.183	-8.183	0	%100
38	MP4A	Z	-4.724	-4.724	0	%100
39	MP3A	X	-8.183	-8.183	0	%100
40	MP3A	Z	-4.724	-4.724	0	%100
41	MP2A	Χ	-8.183	-8.183	0	%100
42	MP2A	Z	-4.724	-4.724	0	%100
43	MP1A	X	-8.183	-8.183	0	%100
44	MP1A	Z	-4.724	-4.724	0	%100
45	M44	<u> </u>	-2.153	-2.153	0	%100
46	M44	Z	-1.243	-1.243	0	%100
47	M45	Х	-2.153	-2.153	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
48	M45	Z	-1.243	-1.243	0	%100
49	M46	Х	-2.153	-2.153	0	%100
50	M46	Z	-1.243	-1.243	0	%100
51	M47	Х	-2.153	-2.153	0	%100
52	M47	Z	-1.243	-1.243	0	%100
53	M44A	X	-3.842	-3.842	0	%100
54	M44A	Z	-2.218	-2.218	0	%100
55	M44B	X	-7.754	-7.754	0	%100
56	M44B	Z	-4.477	-4.477	0	%100
57	OVP1	X	-8.183	-8.183	0	%100
58	OVP1	Z	-4.724	-4.724	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	-4.289	-4.289	0	%100
2	M1	Z	-7.429	-7.429	0	%100
3	M2	Х	-4.289	-4.289	0	%100
4	M2	Z	-7.429	-7.429	0	%100
5	M13	Х	311	311	0	%100
6	M13	Z	538	538	0	%100
7	M14	Х	311	311	0	%100
8	M14	Z	538	538	0	%100
9	M15	X	311	311	0	%100
10	M15	Z	538	538	0	%100
11	M16	Х	311	311	0	%100
12	M16	Z	538	538	0	%100
13	OVP	Х	-3.571	-3.571	0	%100
14	OVP	Z	-6.185	-6.185	0	%100
15	M18	Х	-3.571	-3.571	0	%100
16	M18	Z	-6.185	-6.185	0	%100
17	M19	X	508	508	0	%100
18	M19	Z	88	88	0	%100
19	M20	X	508	508	0	%100
20	M20	Z	88	88	0	%100
21	M21	X	932	932	0	%100
22	M21	Z	-1.615	-1.615	0	%100
23	M22	X	932	932	0	%100
24	M22	Z	-1.615	-1.615	0	%100
25	M23	X	932	932	0	%100
26	M23	Z	-1.615	-1.615	0	%100
27	M24	X	932	932	0	%100
28	M24	Z	-1.615	-1.615	0	%100
29	M25	X	-1.481	-1.481	0	%100
30	M25	Z	-2.566	-2.566	0	%100
31	M26	X	-1.481	-1.481	0	%100
32	M26	Z	-2.566	-2.566	0	%100
33	M27	Х	-1.03	-1.03	0	%100
34	M27	Z	-1.783	-1.783	0	%100
35	M28	X	-1.03	-1.03	0	%100
36	M28	Z	-1.783	-1.783	0	%100
37	MP4A	X	-4.724	-4.724	0	%100
38	MP4A	Z	-8.183	-8.183	0	%100
39	MP3A	Χ	-4.724	-4.724	0	%100
40	MP3A	Z	-8.183	-8.183	0	%100
41	MP2A	X	-4.724	-4.724	0	%100
42	MP2A	Z	-8.183	-8.183	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
43	MP1A	Х	-4.724	-4.724	0	%100
44	MP1A	Z	-8.183	-8.183	0	%100
45	M44	Х	-1.243	-1.243	0	%100
46	M44	Z	-2.153	-2.153	0	%100
47	M45	Х	-1.243	-1.243	0	%100
48	M45	Z	-2.153	-2.153	0	%100
49	M46	Х	-1.243	-1.243	0	%100
50	M46	Z	-2.153	-2.153	0	%100
51	M47	Х	-1.243	-1.243	0	%100
52	M47	Z	-2.153	-2.153	0	%100
53	M44A	Х	251	251	0	%100
54	M44A	Z	435	435	0	%100
55	M44B	Х	-2.51	-2.51	0	%100
56	M44B	Z	-4.347	-4.347	0	%100
57	OVP1	Х	-4.724	-4.724	0	%100
58	OVP1	Z	-8.183	-8.183	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	-3.698	-3.698	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	-3.698	-3.698	0	%100
5	M13	Х	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	Х	0	0	0	%100
8	M14	Z	0	0	0	%100
9	M15	Х	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	Х	0	0	0	%100
12	M16	Z	0	0	0	%100
13	OVP	Х	0	0	0	%100
14	OVP	Z	-1.604	-1.604	0	%100
15	M18	Х	0	0	0	%100
16	M18	Z	-1.604	-1.604	0	%100
17	M19	Х	0	0	0	%100
18	M19	Z	-1.604	-1.604	0	%100
19	M20	Х	0	0	0	%100
20	M20	Z	-1.604	-1.604	0	%100
21	M21	Х	0	0	0	%100
22	M21	Z	-1.414	-1.414	0	%100
23	M22	Х	0	0	0	%100
24	M22	Z	-1.414	-1.414	0	%100
25	M23	Х	0	0	0	%100
26	M23	Z	-1.414	-1.414	0	%100
27	M24	Х	0	0	0	%100
28	M24	Z	-1.414	-1.414	0	%100
29	M25	X	0	0	0	%100
30	M25	Z	-1.795	-1.795	0	%100
31	M26	Х	0	0	0	%100
32	M26	Z	-1.795	-1.795	0	%100
33	M27	Х	0	0	0	%100
34	M27	Z	-1.795	-1.795	0	%100
35	M28	Х	0	0	0	%100
36	M28	Z	-1.795	-1.795	0	%100
37	MP4A	Х	0	0	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
38	MP4A	Z	-3.341	-3.341	0	%100
39	MP3A	Х	0	0	0	%100
40	MP3A	Z	-3.341	-3.341	0	%100
41	MP2A	Х	0	0	0	%100
42	MP2A	Z	-3.341	-3.341	0	%100
43	MP1A	Х	0	0	0	%100
44	MP1A	Z	-3.341	-3.341	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	-1.858	-1.858	0	%100
47	M45	Х	0	0	0	%100
48	M45	Z	-1.858	-1.858	0	%100
49	M46	Х	0	0	0	%100
50	M46	Z	-1.858	-1.858	0	%100
51	M47	Х	0	0	0	%100
52	M47	Z	-1.858	-1.858	0	%100
53	M44A	Х	0	0	0	%100
54	M44A	Z	28	28	0	%100
55	M44B	Х	0	0	0	%100
56	M44B	Z	28	28	0	%100
57	OVP1	Х	0	0	0	%100
58	OVP1	Z	-3.341	-3.341	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	1.387	1.387	0	%100
2	M1	Z	-2.402	-2.402	0	%100
3	M2	Х	1.387	1.387	0	%100
4	M2	Z	-2.402	-2.402	0	%100
5	M13	Х	.176	.176	0	%100
6	M13	Z	304	304	0	%100
7	M14	Х	.176	.176	0	%100
8	M14	Z	304	304	0	%100
9	M15	Х	.176	.176	0	%100
10	M15	Z	304	304	0	%100
11	M16	Х	.176	.176	0	%100
12	M16	Z	304	304	0	%100
13	OVP	Х	.181	.181	0	%100
14	OVP	Z	313	313	0	%100
15	M18	Х	.181	.181	0	%100
16	M18	Z	313	313	0	%100
17	M19	Х	1.268	1.268	0	%100
18	M19	Z	-2.197	-2.197	0	%100
19	M20	Х	1.268	1.268	0	%100
20	M20	Z	-2.197	-2.197	0	%100
21	M21	Х	.53	.53	0	%100
22	M21	Z	918	918	0	%100
23	M22	Х	.53	.53	0	%100
24	M22	Z	918	918	0	%100
25	M23	Х	.53	.53	0	%100
26	M23	Z	918	918	0	%100
27	M24	Х	.53	.53	0	%100
28	M24	Z	918	918	0	%100
29	M25	Х	.718	.718	0	%100
30	M25	Z	-1.243	-1.243	0	%100
31	M26	Х	.718	.718	0	%100
32	M26	Z	-1.243	-1.243	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft %]	End Location[ft,%]
33	Member Laber	X	1.033	1.033	0	%100
34	M27	Z	-1.789	-1.789	0	%100
35	M28	X	1.033	1.033	0	%100
36	M28	Z	-1.789	-1.789	0	%100
37	MP4A	Х	1.67	1.67	0	%100
38	MP4A	Z	-2.893	-2.893	0	%100
39	MP3A	Х	1.67	1.67	0	%100
40	MP3A	Z	-2.893	-2.893	0	%100
41	MP2A	Х	1.67	1.67	0	%100
42	MP2A	Z	-2.893	-2.893	0	%100
43	MP1A	Х	1.67	1.67	0	%100
44	MP1A	Z	-2.893	-2.893	0	%100
45	M44	Х	.929	.929	0	%100
46	M44	Z	-1.609	-1.609	0	%100
47	M45	X	.929	.929	0	%100
48	M45	Z	-1.609	-1.609	0	%100
49	M46	Х	.929	.929	0	%100
50	M46	Z	-1.609	-1.609	0	%100
51	M47	X	.929	.929	0	%100
52	M47	Z	-1.609	-1.609	0	%100
53	M44A	Х	.887	.887	0	%100
54	M44A	Z	-1.537	-1.537	0	%100
55	M44B	X	.089	.089	0	%100
56	M44B	Z	154	154	0	%100
57	OVP1	Х	1.67	1.67	0	%100
58	OVP1	Z	-2.893	-2.893	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.801	.801	0	%100
2	M1	Z	462	462	0	%100
3	M2	Х	.801	.801	0	%100
4	M2	Z	462	462	0	%100
5	M13	Х	.913	.913	0	%100
6	M13	Z	527	527	0	%100
7	M14	Х	.913	.913	0	%100
8	M14	Z	527	527	0	%100
9	M15	Х	.913	.913	0	%100
10	M15	Z	527	527	0	%100
11	M16	Х	.913	.913	0	%100
12	M16	Z	527	527	0	%100
13	OVP	Х	.044	.044	0	%100
14	OVP	Z	025	025	0	%100
15	M18	Х	.044	.044	0	%100
16	M18	Z	025	025	0	%100
17	M19	Х	1.928	1.928	0	%100
18	M19	Z	-1.113	-1.113	0	%100
19	M20	Х	1.928	1.928	0	%100
20	M20	Z	-1.113	-1.113	0	%100
21	M21	Х	.306	.306	0	%100
22	M21	Z	177	177	0	%100
23	M22	Х	.306	.306	0	%100
24	M22	Z	177	177	0	%100
25	M23	Х	.306	.306	0	%100
26	M23	Z	177	177	0	%100
27	M24	Х	.306	.306	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
28	M24	Z	- 177	177	0	%100
29	M25	Х	1.165	1.165	0	%100
30	M25	Z	673	673	0	%100
31	M26	Х	1.165	1.165	0	%100
32	M26	Z	673	673	0	%100
33	M27	Х	1.711	1.711	0	%100
34	M27	Z	988	988	0	%100
35	M28	Х	1.711	1.711	0	%100
36	M28	Z	988	988	0	%100
37	MP4A	Х	2.893	2.893	0	%100
38	MP4A	Z	-1.67	-1.67	0	%100
39	MP3A	Х	2.893	2.893	0	%100
40	MP3A	Z	-1.67	-1.67	0	%100
41	MP2A	Х	2.893	2.893	0	%100
42	MP2A	Z	-1.67	-1.67	0	%100
43	MP1A	X	2.893	2.893	0	%100
44	MP1A	Z	-1.67	-1.67	0	%100
45	M44	X	1.609	1.609	0	%100
46	M44	Z	929	929	0	%100
47	M45	Х	1.609	1.609	0	%100
48	M45	Z	929	929	0	%100
49	M46	X	1.609	1.609	0	%100
50	M46	Z	929	929	0	%100
51	M47	Х	1.609	1.609	0	%100
52	M47	Z	929	929	0	%100
53	M44A	X	2.742	2.742	0	%100
54	M44A	Z	-1.583	-1.583	0	%100
55	M44B	X	1.358	1.358	0	%100
56	M44B	Z	784	784	0	%100
57	OVP1	X	2.893	2.893	0	%100
58	OVP1	Z	-1.67	-1.67	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	Х	1.405	1.405	0	%100
6	M13	Z	0	0	0	%100
7	M14	Х	1.405	1.405	0	%100
8	M14	Z	0	0	0	%100
9	M15	Х	1.405	1.405	0	%100
10	M15	Z	0	0	0	%100
11	M16	Х	1.405	1.405	0	%100
12	M16	Z	0	0	0	%100
13	OVP	Х	.984	.984	0	%100
14	OVP	Z	0	0	0	%100
15	M18	Х	.984	.984	0	%100
16	M18	Z	0	0	0	%100
17	M19	Х	.984	.984	0	%100
18	M19	Z	0	0	0	%100
19	M20	Х	.984	.984	0	%100
20	M20	Z	0	0	0	%100
21	M21	Х	0	0	0	%100
22	M21	Z	0	0	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

menns					naca/	
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
23	M22	Х	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	Х	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	Х	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	Х	1.616	1.616	0	%100
30	M25	Z	0	0	0	%100
31	M26	Х	1.616	1.616	0	%100
32	M26	Z	0	0	0	%100
33	M27	Х	1.616	1.616	0	%100
34	M27	Z	0	0	0	%100
35	M28	Х	1.616	1.616	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	Х	3.341	3.341	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	Х	3.341	3.341	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	Х	3.341	3.341	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	Х	3.341	3.341	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	X	1.858	1.858	0	%100
46	M44	Z	0	0	0	%100
47	M45	X	1.858	1.858	0	%100
48	M45	Z	0	0	0	%100
49	M46	Х	1.858	1.858	0	%100
50	M46	Z	0	0	0	%100
51	M47	Х	1.858	1.858	0	%100
52	M47	Z	0	0	0	%100
53	M44A	Х	3.063	3.063	0	%100
54	M44A	Z	0	0	0	%100
55	M44B	Х	3.063	3.063	0	%100
56	M44B	Z	0	0	0	%100
57	OVP1	Х	3.341	3.341	0	%100
58	OVP1	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.801	.801	0	%100
2	M1	Z	.462	.462	0	%100
3	M2	Х	.801	.801	0	%100
4	M2	Z	.462	.462	0	%100
5	M13	Х	.913	.913	0	%100
6	M13	Z	.527	.527	0	%100
7	M14	Х	.913	.913	0	%100
8	M14	Z	.527	.527	0	%100
9	M15	Х	.913	.913	0	%100
10	M15	Z	.527	.527	0	%100
11	M16	X	.913	.913	0	%100
12	M16	Z	.527	.527	0	%100
13	OVP	X	1.928	1.928	0	%100
14	OVP	Z	1.113	1.113	0	%100
15	M18	Х	1.928	1.928	0	%100
16	M18	Z	1.113	1.113	0	%100
17	M19	Х	.044	.044	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

			, on acture m			
	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
18	M19	Z	.025	.025	0	%100
19	M20	Х	.044	.044	0	%100
20	M20	Z	.025	.025	0	%100
21	M21	Х	.306	.306	0	%100
22	M21	Z	.177	.177	0	%100
23	M22	Х	.306	.306	0	%100
24	M22	Z	.177	.177	0	%100
25	M23	Х	.306	.306	0	%100
26	M23	Z	.177	.177	0	%100
27	M24	X	.306	.306	0	%100
28	M24	Z	.177	.177	0	%100
29	M25	Х	1.711	1.711	0	%100
30	M25	Z	.988	.988	0	%100
31	M26	Х	1.711	1.711	0	%100
32	M26	Z	.988	.988	0	%100
33	M27	X	1.165	1.165	0	%100
34	M27	Z	.673	.673	0	%100
35	M28	X	1.165	1.165	0	%100
36	M28	Z	.673	.673	0	%100
37	MP4A	X	2.893	2.893	0	%100
38	MP4A	Z	1.67	1.67	0	%100
39	MP3A	X	2.893	2.893	0	%100
40	MP3A	Z	1.67	1.67	0	%100
41	MP2A	X	2.893	2.893	0	%100
42	MP2A	Z	1.67	1.67	0	%100
43	MP1A	X	2.893	2.893	0	%100
44	MP1A	Z	1.67	1.67	0	%100
45	M44	X	1.609	1.609	0	%100
46	M44	Z	.929	.929	0	%100
47	M45	X	1.609	1.609	0	%100
48	M45	Z	.929	.929	0	%100
49	M46	X	1.609	1.609	0	%100
50	M46	Z	.929	.929	0	%100
51	M47	X	1.609	1.609	0	%100
52	M47	Z	.929	.929	0	%100
53	M44A	Х	1.358	1.358	0	%100
54	M44A	Z	.784	.784	0	%100
55	M44B	Х	2.742	2.742	0	%100
56	M44B	Z	1.583	1.583	0	%100
57	OVP1	X	2.893	2.893	0	%100
58	OVP1	Z	1.67	1.67	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	1.387	1.387	0	%100
2	M1	Z	2.402	2.402	0	%100
3	M2	Х	1.387	1.387	0	%100
4	M2	Z	2.402	2.402	0	%100
5	M13	X	.176	.176	0	%100
6	M13	Z	.304	.304	0	%100
7	M14	Х	.176	.176	0	%100
8	M14	Z	.304	.304	0	%100
9	M15	Х	.176	.176	0	%100
10	M15	Z	.304	.304	0	%100
11	M16	X	.176	.176	0	%100
12	M16	Z	.304	.304	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

member	Distributed LO				(maca)	
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
13	OVP	X	1.268	1.268	0	%100
14	OVP	Z	2.197	2.197	0	%100
15	M18	Х	1.268	1.268	0	%100
16	M18	Z	2.197	2.197	0	%100
17	M19	Х	.181	.181	0	%100
18	M19	Z	.313	.313	0	%100
19	M20	Х	.181	.181	0	%100
20	M20	Z	.313	.313	0	%100
21	M21	Х	.53	.53	0	%100
22	M21	Z	.918	.918	0	%100
23	M22	Х	.53	.53	0	%100
24	M22	Z	.918	.918	0	%100
25	M23	X	.53	.53	0	%100
26	M23	Z	.918	.918	0	%100
27	M24	X	.53	.53	0	%100
28	M24	Z	.918	.918	0	%100
29	M25	Х	1.033	1.033	0	%100
30	M25	Z	1.789	1.789	0	%100
31	M26	X	1.033	1.033	0	%100
32	M26	Z	1.789	1.789	0	%100
33	M27	X	.718	.718	0	%100
34	M27	Z	1.243	1.243	0	%100
35	M28	X	.718	.718	0	%100
36	M28	Z	1.243	1.243	0	%100
37	MP4A	Х	1.67	1.67	0	%100
38	MP4A	Z	2.893	2.893	0	%100
39	MP3A	Х	1.67	1.67	0	%100
40	MP3A	Z	2.893	2.893	0	%100
41	MP2A	Х	1.67	1.67	0	%100
42	MP2A	Z	2.893	2.893	0	%100
43	MP1A	X	1.67	1.67	0	%100
44	MP1A	Z	2.893	2.893	0	%100
45	M44	Х	.929	.929	0	%100
46	M44	Z	1.609	1.609	0	%100
47	M45	Х	.929	.929	0	%100
48	M45	Z	1.609	1.609	0	%100
49	M46	X	.929	.929	0	%100
50	M46	Z	1.609	1.609	0	%100
51	M47	X	.929	.929	0	%100
52	M47	Z	1.609	1.609	0	%100
53	M44A	X	.089	.089	0 0	%100
54	M44A	Z	.154	.154	0 0	%100
55	M44B	x	.887	.887	0 0	%100
56	M44B	Z	1.537	1.537	0 0	%100
57	OVP1	x	1.67	1.67	0 0	%100
58	OVP1	Z	2.893	2.893	0 0	%100
~~	U		2.000	2.000	•	/0.00

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	3.698	3.698	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	3.698	3.698	0	%100
5	M13	Х	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	Х	0	0	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

Michill	ber Distributed Loa		. Oli uclui e Mi		(mueu)	
	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
8	M14	Z	0	0	0	%100
9	M15	Х	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	Х	0	0	0	%100
12	M16	Z	0	0	0	%100
13	OVP	Х	0	0	0	%100
14	OVP	Z	1.604	1.604	0	%100
15	M18	Х	0	0	0	%100
16	M18	Z	1.604	1.604	0	%100
17	M19	X	0	0	0	%100
18	M19	Z	1.604	1.604	0	%100
19	M20	Х	0	0	0	%100
20	M20	Z	1.604	1.604	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	1.414	1.414	0	%100
23	M22	X	0	0	0	%100
24	M22	Z	1.414	1.414	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	1.414	1.414	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	1.414	1.414	0	%100
29	M25	Χ	0	0	0	%100
30	M25	Z	1.795	1.795	0	%100
31	M26	X	0	0	0	%100
32	M26	Z	1.795	1.795	0	%100
33	M27	X	0	0	0	%100
34	M27	Z	1.795	1.795	0	%100
35	M28	X	0	0	0	%100
36	M28	Z	1.795	1.795	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	3.341	3.341	0	%100
39	MP3A	X	0	0	0	%100
40	MP3A	Z	3.341	3.341	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	3.341	3.341	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	3.341	3.341	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	1.858	1.858	0	%100 %100
47	M45	X	0	0	0	<u>%100</u>
48	M45	Z	1.858	1.858	0	%100
49	M46	X Z	0	0	0	<u>%100</u>
50	M46		1.858	1.858	0	%100 %100
51	M47	X	0	0	0	%100 %100
52	M47	Z	1.858	1.858	0	%100 %100
53	M44A	X	0	0	0	%100
54	M44A	Z	.28	.28	0	%100 %100
55	M44B	X	0	0	0	<u>%100</u>
56	M44B	Z	.28	.28	0	%100 %100
57	OVP1	X	0	0	0	%100 %100
58	OVP1	Z	3.341	3.341	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	1	M1	Х	-1.387	-1.387	0	%100
2	2	M1	Z	2.402	2.402	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	ber Distributed Loa		. otractare m	210 Deg// (0011	iniucu)	
	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
3	M2	X	-1.387	-1.387	0	%100
4	M2	Z	2.402	2.402	0	%100
5	M13	X	176	176	0	%100
6	M13	Z	.304	.304	0	%100
7	M14	X	176	176	0	%100
8	M14	Z	.304	.304	0	%100
9	M15	X	176	176	0	%100
10	M15	Z	.304	.304	0	%100
11	M16	X	176	176	0	%100
12	M16	Z	.304	.304	0	%100
13	OVP	Х	181	181	0	%100
14	OVP	Z	.313	.313	0	%100
15	M18	Х	181	181	0	%100
16	M18	Z	.313	.313	0	%100
17	M19	X	-1.268	-1.268	0	%100
18	M19	Z	2.197	2.197	0	%100
19	M20	X	-1.268	-1.268	0	%100
20	M20	Z	2.197	2.197	0 0	%100
21	M21	x	53	53	0 0	%100
22	M21	Z	.918	.918	0	%100
23	M22	X	53	53	0	%100
24	M22	Z	.918	.918	0	%100
25	M23	X	53	53	0	%100
26	M23	Z	.918	.918	0	%100
27	M23	X	53	53	0	%100
28	M24	Z	.918	.918	0	%100
29	M24	X	718	718	0	%100
30	M25	Z	1.243	1.243	0	%100
31	M25	X	718	718	0	%100
32	M26	Z	1.243	1.243	0	%100
33 34	M27	X Z	-1.033	-1.033	0	%100
	M27		1.789	1.789	-	%100
35	M28	X	-1.033	-1.033	0	%100
36	M28	Z	1.789	1.789	0	%100
37	MP4A	X	-1.67	-1.67	0	%100
38	MP4A	Z	2.893	2.893	0	%100
39	MP3A	X	-1.67	-1.67	0	%100
40	MP3A	Z	2.893	2.893	0	%100
41	MP2A	X	-1.67	-1.67	0	%100
42	MP2A	Z	2.893	2.893	0	%100
43	MP1A	X	-1.67	-1.67	0	%100
44	MP1A	Z	2.893	2.893	0	%100
45	M44	X	929	929	0	%100
46	M44	Z	1.609	1.609	0	%100
47	M45	X	929	929	0	%100
48	M45	Z	1.609	1.609	0	%100
49	M46	X	929	929	0	%100
50	M46	Z	1.609	1.609	0	%100
51	M47	X	929	929	0	%100
52	M47	Z	1.609	1.609	0	%100
53	M44A	Х	887	887	0	%100
54	M44A	Z	1.537	1.537	0	%100
55	M44B	Х	089	089	0	%100
56	M44B	Z	.154	.154	0	%100
57	OVP1	Х	-1.67	-1.67	0	%100
58	OVP1	Z	2.893	2.893	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

wienno.	ei Distributeu Lo		Structure WI	(240 Deg))		
	Member Label	Direction		End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	<u>M1</u>	X	801	801	0	%100
2	M1	Z	.462	.462	0	%100
3	M2	X	801	801	0	%100
4	M2	Z	.462	.462	0	%100
5	M13	X	- 913	913	0	%100
6	M13	Z	.527	.527	0	%100
7	M14	x	913	913	0	%100
8	M14	Z	.527	.527	0	%100
9	M15	X	913	913	0	%100
10	M15	Z	.527	.527	0	%100
11	M15	X	913	913	0	%100
12	M16	Z	.527	.527	0	%100
13	OVP	X	044	044	0	%100
14	OVP	Z	.025	.025	0	%100
15	M18	<u> </u>	044	044	0	%100
16	M18	Z	.025	.025	0	%100
17	M19	X	-1.928	-1.928	0	%100
18	M19	Z	1.113	1.113	0	%100
19	M20	X	-1.928	-1.928	0	%100
20	M20	Z	1.113	1.113	0	%100
21	M21	X	306	306	0	%100
22	M21	Z	.177	.177	0	%100
23	M22	X	306	306	0	%100
24	M22	Z	.177	.177	0	%100
25	M23	X	306	306	0	%100
26	M23	Z	.177	.177	0	%100
27	M24	X	306	306	0	%100
28	M24	Z	.177	.177	0	%100
29	M25	x	-1.165	-1.165	0	%100
30	M25	Z	.673	.673	0	%100
31	M26	X	-1.165	-1.165	0	%100
32	M26	Z	.673	.673	0	%100
33	M27	X	-1.711	-1.711	0	%100
34	M27	Z	.988	.988	0	%100
35	M28	X	-1.711	-1.711	0	%100
36	M28	Z	.988	.988	0	%100
37	MP4A	X	-2.893	-2.893	0	%100
38	MP4A	Z	1.67	1.67	0	%100
39	MP3A	X	-2.893	-2.893	0	%100
40	MP3A	Z	1.67	1.67	0	%100
41	MP2A	X	-2.893	-2.893	0	%100
42	MP2A	Z	1.67	1.67	0	%100
43	MP1A	X	-2.893	-2.893	0	%100
44	MP1A	Z	1.67	1.67	0	%100
45	M44	Х	-1.609	-1.609	0	%100
46	M44	Z	.929	.929	0	%100
47	M45	Х	-1.609	-1.609	0	%100
48	M45	Z	.929	.929	0	%100
49	M46	x	-1.609	-1.609	0	%100
50	M46	Z	.929	.929	0 0	%100
51	M40	X	-1.609	-1.609	0	%100
52	M47	Z	.929	.929	0	%100
53	M44A	X	-2.742	-2.742	0	%100
53	M44A M44A	Z		1.583	0	%100
55			1.583			
00	M44B	X	-1.358	-1.358	0	%100
	NAAAD	7	704			
56 57	M44B OVP1	Z	.784 -2.893	.784 -2.893	0	<u>%100</u> %100

RISA-3D Version 17.0.4 [R:\...\...\Structural\Mount Replacement\Rev 0\RISA\VFA12-HD.r3d] Page 56

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
58	OVP1	Z	1.67	1.67	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	<u>Nel Distributed Loa</u>				O	— <i>II</i>
	Member Label	Direction		End Magnitude[lb/ft,F		End Location[ft,%]
1	<u>M1</u>	X	0	0	0	%100
2	M1	Z	0	0	0	%100 %100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	<u> </u>	-1.405	-1.405	0	%100
6	M13	Z	0	0	0	%100
7	M14	<u> </u>	-1.405	-1.405	0	%100
8	M14	Z	0	0	0	%100
9	M15	X	-1.405	-1.405	0	%100
10	M15	Z	0	0	0	%100
11	M16	Х	-1.405	-1.405	0	%100
12	M16	Z	0	0	0	%100
13	OVP	X	984	984	0	%100
14	OVP	Z	0	0	0	%100
15	M18	Х	984	984	0	%100
16	M18	Z	0	0	0	%100
17	M19	Х	984	984	0	%100
18	M19	Z	0	0	0	%100
19	M20	X	984	984	0	%100
20	M20	Z	0	0	0	%100
21	M21	X	0	0	0	%100
22	M21	Z	0	0	0	%100
23	M22	x	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	0	0	0	%100
20	M23	X	0	0	0	%100
28	M24	Z	0	0	0	%100
20	M25	X	-1.616	-1.616	0	%100
30	M25	Z	-1.010	-1.010	0	%100
31	M25	X		-1.616	0	%100
		Z	-1.616			
32	M26		0	0	0	%100 %100
33	M27	X	-1.616	-1.616	0	%100
34	M27	Z	0	0	0	%100
35	M28	<u>×</u>	-1.616	-1.616	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	<u>×</u>	-3.341	-3.341	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	Х	-3.341	-3.341	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	-3.341	-3.341	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	-3.341	-3.341	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	Х	-1.858	-1.858	0	%100
46	M44	Z	0	0	0	%100
47	M45	Х	-1.858	-1.858	0	%100
48	M45	Z	0	0	0	%100
49	M46	X	-1.858	-1.858	0	%100
50	M46	Z	0	0	0	%100
51	M47	x	-1.858	-1.858	0	%100
52	M47	Z	0	0	0	%100
				-		

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
53	M44A	Х	-3.063	-3.063	0	%100
54	M44A	Z	0	0	0	%100
55	M44B	Х	-3.063	-3.063	0	%100
56	M44B	Z	0	0	0	%100
57	OVP1	Х	-3.341	-3.341	0	%100
58	OVP1	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	iser Bistributed Edu		· On acture m			
	Member Label	Direction		. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	Χ	801	801	0	%100
2	M1	Z	462	462	0	%100
3	M2	X	801	801	0	%100
4	M2	Z	462	462	0	%100
5	M13	X	913	913	0	%100
6	M13	Z	527	527	0	%100
7	M14	X	913	913	0	%100
8	M14	Z	527	527	0	%100
9	M15	Χ	913	913	0	%100
10	M15	Z	527	527	0	%100
11	M16	X	913	913	0	%100
12	M16	Z	527	527	0	%100
13	OVP	X	-1.928	-1.928	0	%100
14	OVP	Z	-1.113	-1.113	0	%100
15	M18	X	-1.928	-1.928	0	%100
16	M18	Z	-1.113	-1.113	0	%100
17	M19	Х	044	044	0	%100
18	M19	Z	025	025	0	%100
19	M20	X	044	044	0	%100
20	M20	Z	025	025	0	%100
21	M21	X	306	306	0	%100
22	M21	Z	177	177	0	%100
23	M22	X	306	306	0	%100
24	M22	Z	177	177	0	%100
25	M23	X	306	306	0	%100
26	M23	Z	177	177	0	%100
27	M24	X	306	306	0	%100
28	M24	Z	177	177	0	%100
29	M25	X	-1.711	-1.711	0	%100
30	M25	Z	988	988	0	%100
31	M26	X	-1.711	-1.711	0	%100
32	M26	Z	988	988	0	%100
33	M27	X	-1.165	-1.165	0	%100
34	M27	Z	673	673	0	%100
35	M28	X	-1.165	-1.165	0	%100
36	M28	Z	673	673	0	%100
37	MP4A	X	-2.893	-2.893	0	%100
38	MP4A	Z	-1.67	-1.67	0	%100
39	MP3A	<u> </u>	-2.893	-2.893	0	%100
40	MP3A	Z	-1.67	-1.67	0	%100
41	MP2A	<u> </u>	-2.893	-2.893	0	%100
42	MP2A	Z	-1.67	-1.67	0	%100
43	MP1A	<u> </u>	-2.893	-2.893	0	%100
44	MP1A	Z	-1.67	-1.67	0	%100
45	M44	<u> </u>	-1.609	-1.609	0	%100
46	M44	Z	929	929	0	%100
47	M45	Х	-1.609	-1.609	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
48	M45	Z	929	929	0	%100
49	M46	Х	-1.609	-1.609	0	%100
50	M46	Z	929	929	0	%100
51	M47	Х	-1.609	-1.609	0	%100
52	M47	Z	929	929	0	%100
53	M44A	Х	-1.358	-1.358	0	%100
54	M44A	Z	784	784	0	%100
55	M44B	Х	-2.742	-2.742	0	%100
56	M44B	Z	-1.583	-1.583	0	%100
57	OVP1	Х	-2.893	-2.893	0	%100
58	OVP1	Z	-1.67	-1.67	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft.%]	End Location[ft,%]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1			J	y i <i>i</i>	• • •	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2					0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Z				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	M13	Z	304	304	0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	M14	Х	176	176	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	M14	Z	304	304	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	M15	Х	176	176	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	M15	Z	304	304	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	M16	Х	176	176	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	M16	Z	304	304	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	OVP	Х	-1.268	-1.268	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Z	-2.197	-2.197	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	M18		-1.268	-1.268	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	M18	Z	-2.197	-2.197	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Х				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						0	
23 M22 X 53 53 0 %100 24 M22 Z 918 918 0 %100 25 M23 X 53 0 %100 26 M23 Z 918 918 0 %100 26 M23 Z 918 918 0 %100 27 M24 X 53 0 %100 28 M24 Z 918 918 0 %100 29 M25 X -1.033 -1.033 0 %100 30 M25 Z -1.789 -1.789 0 %100 31 M26 X -1.033 -1.033 0 %100 33 M27 X 718 718 0 %100 34 M27 Z -1.243 -1.243 0 %100 36 M28 Z 2893			Χ				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	
25 M23 X 53 53 0 %100 26 M23 Z 918 918 0 %100 27 M24 X 53 53 0 %100 28 M24 Z 918 918 0 %100 29 M25 X -1.033 -1.033 0 %100 30 M25 Z -1.789 -1.789 0 %100 31 M26 X -1.033 -1.033 0 %100 32 M26 Z -1.789 0 %100 33 M27 X -7.718 718 0 %100 34 M27 Z -1.243 -1.243 0 %100 35 M28 X 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A Z -2.893 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>						0	
26 M23 Z 918 918 0 %100 27 M24 X 53 53 0 %100 28 M24 Z 918 918 0 %100 29 M25 X -1.033 -1.033 0 %100 30 M25 Z -1.789 -1.789 0 %100 31 M26 X -1.033 -1.033 0 %100 32 M26 Z -1.789 -1.789 0 %100 33 M27 X -7.18 718 0 %100 34 M27 Z -1.243 -1.243 0 %100 35 M28 X 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 -1.67 0 %100 39 MP4A Z							
27 M24 X 53 53 0 %100 28 M24 Z 918 918 0 %100 29 M25 X -1.033 -1.033 0 %100 30 M25 Z -1.789 -1.789 0 %100 31 M26 X -1.033 -1.033 0 %100 32 M26 Z -1.789 -1.789 0 %100 33 M27 X 718 718 0 %100 34 M27 Z -1.243 -1.243 0 %100 35 M28 X 718 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 -1.67 0 %100 39 MP3A X -1.67 -1.67 0 %100 40 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
28 M24 Z 918 918 0 %100 29 M25 X -1.033 -1.033 0 %100 30 M25 Z -1.789 -1.789 0 %100 31 M26 X -1.033 -1.033 0 %100 32 M26 Z -1.789 -1.789 0 %100 33 M27 X 718 718 0 %100 34 M27 Z -1.243 -1.243 0 %100 35 M28 X 718 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 0 %100 39 MP4A Z -2.893 -2.893 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A						-	
29 M25 X -1.033 -1.033 0 %100 30 M25 Z -1.789 -1.789 0 %100 31 M26 X -1.033 -1.033 0 %100 32 M26 Z -1.789 -1.789 0 %100 33 M27 X -1.789 -1.789 0 %100 34 M27 Z -1.243 -1.243 0 %100 35 M28 X 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 -1.67 0 %100 38 MP4A Z -2.893 -2.893 0 %100 39 MP3A X -1.67 -1.67 0 %100 41 MP2A X -1.67 -1.67 0 %100							
30 M25 Z -1.789 -1.789 0 %100 31 M26 X -1.033 -1.033 0 %100 32 M26 Z -1.789 -1.789 0 %100 33 M27 X 718 718 0 %100 34 M27 Z -1.243 -1.243 0 %100 35 M28 X 718 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 -1.67 0 %100 39 MP3A X -1.67 -1.67 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100						-	
31 M26 X -1.033 -1.033 0 %100 32 M26 Z -1.789 -1.789 0 %100 33 M27 X 718 718 0 %100 34 M27 Z -1.243 -1.243 0 %100 35 M28 X 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 -1.67 0 %100 39 MP3A X -1.67 -1.67 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100						-	
32 M26 Z -1.789 -1.789 0 %100 33 M27 X 718 718 0 %100 34 M27 Z -1.243 -1.243 0 %100 35 M28 X 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 -1.67 0 %100 38 MP4A Z -2.893 -2.893 0 %100 39 MP3A X -1.67 -1.67 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100						-	
33 M27 X 718 718 0 %100 34 M27 Z -1.243 -1.243 0 %100 35 M28 X 718 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 -1.67 0 %100 38 MP4A Z -2.893 -2.893 0 %100 39 MP3A X -1.67 -1.67 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100							
34 M27 Z -1.243 -1.243 0 %100 35 M28 X 718 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 -1.67 0 %100 38 MP4A Z -2.893 -2.893 0 %100 39 MP3A X -1.67 -1.67 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100							
35 M28 X 718 718 0 %100 36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 -1.67 0 %100 38 MP4A Z -2.893 -2.893 0 %100 39 MP3A X -1.67 -1.67 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100			X				
36 M28 Z -1.243 -1.243 0 %100 37 MP4A X -1.67 -1.67 0 %100 38 MP4A Z -2.893 -2.893 0 %100 39 MP3A X -1.67 -1.67 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100							
37 MP4A X -1.67 -1.67 0 %100 38 MP4A Z -2.893 -2.893 0 %100 39 MP3A X -1.67 -1.67 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100							
38 MP4A Z -2.893 -2.893 0 %100 39 MP3A X -1.67 -1.67 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100						-	
39 MP3A X -1.67 -1.67 0 %100 40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100							
40 MP3A Z -2.893 -2.893 0 %100 41 MP2A X -1.67 -1.67 0 %100							
41 MP2A X -1.67 -1.67 0 %100							
			<u> </u>				
42 MP2A Z -2.893 -2.893 0 %100	42	MP2A	Z	-2.893	-2.893	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
43	MP1A	Х	-1.67	-1.67	0	%100
44	MP1A	Z	-2.893	-2.893	0	%100
45	M44	Х	929	929	0	%100
46	M44	Z	-1.609	-1.609	0	%100
47	M45	Х	929	929	0	%100
48	M45	Z	-1.609	-1.609	0	%100
49	M46	Х	929	929	0	%100
50	M46	Z	-1.609	-1.609	0	%100
51	M47	Х	929	929	0	%100
52	M47	Z	-1.609	-1.609	0	%100
53	M44A	Х	089	089	0	%100
54	M44A	Z	154	154	0	%100
55	M44B	Х	887	887	0	%100
56	M44B	Z	-1.537	-1.537	0	%100
57	OVP1	Х	-1.67	-1.67	0	%100
58	OVP1	Z	-2.893	-2.893	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	M1		0	0	0	%100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	M1	Z	739	739	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	M2	Х	0	0	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	M2	Z	739	739	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	M13	Х	0	0	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	M13	Z	0	0	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	M14	Х	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	M14	Z	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	M15	Х	0	0	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	M15	Z	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	M16	Х	0	0	0	%100
14 OVP Z 292 292 0 $\%100$ 15M18X000 $\%100$ 16M18Z 292 292 0 $\%100$ 17M19X000 $\%100$ 18M19Z 292 292 0 $\%100$ 19M20X000 $\%100$ 20M20Z 292 292 0 $\%100$ 21M21X000 $\%100$ 23M22X000 $\%100$ 24M22Z 161 161 0 $\%100$ 25M23X000 $\%100$ 26M23Z 161 161 0 $\%100$ 28M24Z 161 161 0 $\%100$ 29M25X000 $\%100$ 30M25Z 166 166 0 $\%100$ 31M26X000 $\%100$ 33M27X000 $\%100$ 34M27Z 166 166 0 $\%100$ 36M28Z 166 166 0 $\%100$	12	M16	Z				
14 OVP Z 292 292 0 $\%100$ 15M18X000 $\%100$ 16M18Z 292 292 0 $\%100$ 17M19X000 $\%100$ 18M19Z 292 292 0 $\%100$ 19M20X000 $\%100$ 20M20Z 292 292 0 $\%100$ 21M21X000 $\%100$ 23M22X000 $\%100$ 24M22Z 161 161 0 $\%100$ 25M23X000 $\%100$ 26M23Z 161 161 0 $\%100$ 28M24Z 161 161 0 $\%100$ 29M25X000 $\%100$ 30M25Z 166 166 0 $\%100$ 31M26X000 $\%100$ 33M27X000 $\%100$ 34M27Z 166 166 0 $\%100$ 36M28Z 166 166 0 $\%100$	13	OVP	Х	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	OVP	Z	292	292	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	M18	Х	0	0	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	M18	Z	292	292	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	M19	Х	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	M19	Z	292	292	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	M20	Х	0	0	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	M20	Z	292	292	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M21	Х	0	0		%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	M21	Z	161	161	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	M22	Х	0		0	%100
26 M23 Z 161 161 0 %100 27 M24 X 0 0 0 %100 28 M24 Z 161 161 0 %100 29 M25 X 0 0 0 %100 30 M25 Z 166 166 0 %100 31 M26 X 0 0 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 0 0 0 %100 34 M27 Z 166 166 0 %100 35 M28 X 0 0 %100 %100	24	M22	Z	161	161	0	%100
26 M23 Z 161 161 0 %100 27 M24 X 0 0 0 %100 28 M24 Z 161 161 0 %100 29 M25 X 0 0 0 %100 30 M25 Z 166 166 0 %100 31 M26 X 0 0 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 0 0 0 %100 34 M27 Z 166 166 0 %100 35 M28 X 0 0 %100 %100	25	M23	Х	0	0	0	%100
28 M24 Z 161 161 0 %100 29 M25 X 0 0 0 %100 30 M25 Z 166 166 0 %100 31 M26 X 0 0 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 0 0 0 %100 34 M27 Z 166 166 0 %100 35 M28 X 0 0 0 %100 36 M28 Z 166 166 0 %100	26	M23	Z	161	161	0	
29 M25 X 0 0 0 %100 30 M25 Z 166 166 0 %100 31 M26 X 0 0 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 0 0 0 %100 34 M27 Z 166 166 0 %100 35 M28 X 0 0 0 %100 36 M28 Z 166 166 0 %100	27	M24	Х	0	0	0	%100
30 M25 Z 166 166 0 %100 31 M26 X 0 0 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 0 0 0 %100 34 M27 Z 166 166 0 %100 35 M28 X 0 0 0 %100 36 M28 Z 166 166 0 %100	28	M24	Z	161	161	0	%100
30 M25 Z 166 166 0 %100 31 M26 X 0 0 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 0 0 0 %100 34 M27 Z 166 166 0 %100 35 M28 X 0 0 %100 36 M28 Z 166 166 0 %100	29	M25	Х	0	0	0	%100
32 M26 Z 166 166 0 %100 33 M27 X 0 0 0 %100 34 M27 Z 166 166 0 %100 35 M28 X 0 0 0 %100 36 M28 Z 166 166 0 %100	30	M25	Z	166	166	0	%100
33 M27 X 0 0 %100 34 M27 Z 166 166 0 %100 35 M28 X 0 0 0 %100 36 M28 Z 166 166 0 %100	31	M26	Х	0	0	0	%100
34 M27 Z 166 166 0 %100 35 M28 X 0 0 0 %100 36 M28 Z 166 166 0 %100	32	M26	Z	166	166	0	%100
34 M27 Z 166 166 0 %100 35 M28 X 0 0 0 %100 36 M28 Z 166 166 0 %100		M27	Х	0	0		%100
36 M28 Z166166 0 %100		M27	Z	166	166		%100
36 M28 Z166166 0 %100		M28	Х				
		M28	Z	166	166	0	
	37	MP4A	Х			0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
38	MP4A	Z	611	611	0	%100
39	MP3A	Х	0	0	0	%100
40	MP3A	Z	611	611	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	611	611	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	611	611	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	161	161	0	%100
47	M45	Х	0	0	0	%100
48	M45	Z	161	161	0	%100
49	M46	Х	0	0	0	%100
50	M46	Z	161	161	0	%100
51	M47	Х	0	0	0	%100
52	M47	Z	161	161	0	%100
53	M44A	Х	0	0	0	%100
54	M44A	Z	051	051	0	%100
55	M44B	Х	0	0	0	%100
56	M44B	Z	051	051	0	%100
57	OVP1	Х	0	0	0	%100
58	OVP1	Z	611	611	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.277	.277	0	%100
2	M1	Z	48	48	0	%100
3	M2	Х	.277	.277	0	%100
4	M2	Z	48	48	0	%100
5	M13	Х	.02	.02	0	%100
6	M13	Z	035	035	0	%100
7	M14	Х	.02	.02	0	%100
8	M14	Z	035	035	0	%100
9	M15	Х	.02	.02	0	%100
10	M15	Z	035	035	0	%100
11	M16	Х	.02	.02	0	%100
12	M16	Z	035	035	0	%100
13	OVP	Х	.033	.033	0	%100
14	OVP	Z	057	057	0	%100
15	M18	Х	.033	.033	0	%100
16	M18	Z	057	057	0	%100
17	M19	Х	.231	.231	0	%100
18	M19	Z	4	4	0	%100
19	M20	Х	.231	.231	0	%100
20	M20	Z	4	4	0	%100
21	M21	Х	.06	.06	0	%100
22	M21	Z	104	104	0	%100
23	M22	Х	.06	.06	0	%100
24	M22	Z	104	104	0	%100
25	M23	Х	.06	.06	0	%100
26	M23	Z	104	104	0	%100
27	M24	Х	.06	.06	0	%100
28	M24	Z	104	104	0	%100
29	M25	Х	.067	.067	0	%100
30	M25	Z	115	115	0	%100
31	M26	Х	.067	.067	0	%100
32	M26	Z	115	115	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
33	M27	Х	.096	.096	0	%100
34	M27	Z	166	166	0	%100
35	M28	Х	.096	.096	0	%100
36	M28	Z	166	166	0	%100
37	MP4A	Х	.305	.305	0	%100
38	MP4A	Z	529	529	0	%100
39	MP3A	X	.305	.305	0	%100
40	MP3A	Z	529	529	0	%100
41	MP2A	X	.305	.305	0	%100
42	MP2A	Z	529	529	0	%100
43	MP1A	X	.305	.305	0	%100
44	MP1A	Z	529	529	0	%100
45	M44	X	.08	.08	0	%100
46	M44	Z	139	139	0	%100
47	M45	X	.08	.08	0	%100
48	M45	Z	139	139	0	%100
49	M46	X	.08	.08	0	%100
50	M46	Z	139	139	0	%100
51	M47	X	.08	.08	0	%100
52	M47	Z	139	139	0	%100
53	M44A	X	.162	.162	0	%100
54	M44A	Z	281	281	0	%100
55	M44B	X	.016	.016	0	%100
56	M44B	Z	028	028	0	%100
57	OVP1	X	.305	.305	0	%100
58	OVP1	Z	529	529	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.16	.16	0	%100
2	M1	Z	092	092	0	%100
3	M2	Х	.16	.16	0	%100
4	M2	Z	092	092	0	%100
5	M13	Х	.104	.104	0	%100
6	M13	Z	06	06	0	%100
7	M14	Х	.104	.104	0	%100
8	M14	Z	06	06	0	%100
9	M15	Х	.104	.104	0	%100
10	M15	Z	06	06	0	%100
11	M16	Х	.104	.104	0	%100
12	M16	Z	06	06	0	%100
13	OVP	Х	.008	.008	0	%100
14	OVP	Z	005	005	0	%100
15	M18	Х	.008	.008	0	%100
16	M18	Z	005	005	0	%100
17	M19	Х	.351	.351	0	%100
18	M19	Z	203	203	0	%100
19	M20	Х	.351	.351	0	%100
20	M20	Z	203	203	0	%100
21	M21	Х	.035	.035	0	%100
22	M21	Z	02	02	0	%100
23	M22	Х	.035	.035	0	%100
24	M22	Z	02	02	0	%100
25	M23	Х	.035	.035	0	%100
26	M23	Z	02	02	0	%100
27	M24	Х	.035	.035	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
28	M24	Z	02	02	0	%100
29	M25	Х	.108	.108	0	%100
30	M25	Z	062	062	0	%100
31	M26	Х	.108	.108	0	%100
32	M26	Z	062	062	0	%100
33	M27	Х	.159	.159	0	%100
34	M27	Z	092	092	0	%100
35	M28	Х	.159	.159	0	%100
36	M28	Z	092	092	0	%100
37	MP4A	Х	.529	.529	0	%100
38	MP4A	Z	305	305	0	%100
39	MP3A	Х	.529	.529	0	%100
40	MP3A	Z	305	305	0	%100
41	MP2A	Х	.529	.529	0	%100
42	MP2A	Z	305	305	0	%100
43	MP1A	Х	.529	.529	0	%100
44	MP1A	Z	305	305	0	%100
45	M44	Х	.139	.139	0	%100
46	M44	Z	08	08	0	%100
47	M45	Х	.139	.139	0	%100
48	M45	Z	08	08	0	%100
49	M46	Х	.139	.139	0	%100
50	M46	Z	08	08	0	%100
51	M47	Х	.139	.139	0	%100
52	M47	Z	08	08	0	%100
53	M44A	Х	.501	.501	0	%100
54	M44A	Z	289	289	0	%100
55	M44B	Х	.248	.248	0	%100
56	M44B	Z	143	143	0	%100
57	OVP1	Х	.529	.529	0	%100
58	OVP1	Z	305	305	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	0	0	0	%100
5	M13	Х	.161	.161	0	%100
6	M13	Z	0	0	0	%100
7	M14	Х	.161	.161	0	%100
8	M14	Z	0	0	0	%100
9	M15	Х	.161	.161	0	%100
10	M15	Z	0	0	0	%100
11	M16	Х	.161	.161	0	%100
12	M16	Z	0	0	0	%100
13	OVP	Х	.179	.179	0	%100
14	OVP	Z	0	0	0	%100
15	M18	Х	.179	.179	0	%100
16	M18	Z	0	0	0	%100
17	M19	Х	.179	.179	0	%100
18	M19	Z	0	0	0	%100
19	M20	Х	.179	.179	0	%100
20	M20	Z	0	0	0	%100
21	M21	Х	0	0	0	%100
22	M21	Z	0	0	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

menno						
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
23	M22	Х	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	Х	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	Х	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	.15	.15	0	%100
30	M25	Z	0	0	0	%100
31	M26	Х	.15	.15	0	%100
32	M26	Z	0	0	0	%100
33	M27	Х	.15	.15	0	%100
34	M27	Z	0	0	0	%100
35	M28	Х	.15	.15	0	%100
36	M28	Z	0	0	0	%100
37	MP4A	Х	.611	.611	0	%100
38	MP4A	Z	0	0	0	%100
39	MP3A	Х	.611	.611	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	Х	.611	.611	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	Х	.611	.611	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	Х	.161	.161	0	%100
46	M44	Z	0	0	0	%100
47	M45	Х	.161	.161	0	%100
48	M45	Z	0	0	0	%100
49	M46	Х	.161	.161	0	%100
50	M46	Z	0	0	0	%100
51	M47	Х	.161	.161	0	%100
52	M47	Z	0	0	0	%100
53	M44A	Х	.56	.56	0	%100
54	M44A	Z	0	0	0	%100
55	M44B	Х	.56	.56	0	%100
56	M44B	Z	0	0	0	%100
57	OVP1	Х	.611	.611	0	%100
58	OVP1	Z	0	0	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.16	.16	0	%100
2	M1	Z	.092	.092	0	%100
3	M2	Х	.16	.16	0	%100
4	M2	Z	.092	.092	0	%100
5	M13	Х	.104	.104	0	%100
6	M13	Z	.06	.06	0	%100
7	M14	Х	.104	.104	0	%100
8	M14	Z	.06	.06	0	%100
9	M15	Х	.104	.104	0	%100
10	M15	Z	.06	.06	0	%100
11	M16	Х	.104	.104	0	%100
12	M16	Z	.06	.06	0	%100
13	OVP	Х	.351	.351	0	%100
14	OVP	Z	.203	.203	0	%100
15	M18	Х	.351	.351	0	%100
16	M18	Z	.203	.203	0	%100
17	M19	Х	.008	.008	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
18	M19	Z	.005	.005	0	%100
19	M20	Х	.008	.008	0	%100
20	M20	Z	.005	.005	0	%100
21	M21	Х	.035	.035	0	%100
22	M21	Z	.02	.02	0	%100
23	M22	Х	.035	.035	0	%100
24	M22	Z	.02	.02	0	%100
25	M23	Х	.035	.035	0	%100
26	M23	Z	.02	.02	0	%100
27	M24	Х	.035	.035	0	%100
28	M24	Z	.02	.02	0	%100
29	M25	Х	.159	.159	0	%100
30	M25	Z	.092	.092	0	%100
31	M26	Х	.159	.159	0	%100
32	M26	Z	.092	.092	0	%100
33	M27	Х	.108	.108	0	%100
34	M27	Z	.062	.062	0	%100
35	M28	X	.108	.108	0	%100
36	M28	Z	.062	.062	0	%100
37	MP4A	X	.529	.529	0	%100
38	MP4A	Z	.305	.305	0	%100
39	MP3A	X	.529	.529	0	%100
40	MP3A	Z	.305	.305	0	%100
41	MP2A	X	.529	.529	0	%100
42	MP2A	Z	.305	.305	0	%100
43	MP1A	X	.529	.529	0	%100
44	MP1A	Z	.305	.305	0	%100
45	M44	X	.139	.139	0	%100
46	M44	Z	.08	.08	0	%100
47	M45	<u> </u>	.139	.139	0	%100
48	M45	Z	.08	.08	0	%100
49	M46	<u> </u>	.139	.139	0	%100
50	M46	Z	.08	.08	0	%100
51	M47	<u>×</u>	.139	.139	0	%100
52	M47	Z	.08	.08	0	%100
53	M44A	X	.248	.248	0	%100
54	M44A	Z	.143	.143	0	%100
55	M44B	X	.501	.501	0	%100
56	M44B	Z	.289	.289	0	%100
57	OVP1	<u> </u>	.529	.529	0	%100
58	OVP1	Z	.305	.305	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	Х	.277	.277	0	%100
2	M1	Z	.48	.48	0	%100
3	M2	Х	.277	.277	0	%100
4	M2	Z	.48	.48	0	%100
5	M13	Х	.02	.02	0	%100
6	M13	Z	.035	.035	0	%100
7	M14	Х	.02	.02	0	%100
8	M14	Z	.035	.035	0	%100
9	M15	Х	.02	.02	0	%100
10	M15	Z	.035	.035	0	%100
11	M16	Х	.02	.02	0	%100
12	M16	Z	.035	.035	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

Michibe				1100 Deg// 100	intina eu j	
	Member Label	Direction	· · · ·	. End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
13	OVP	Χ	.231	.231	0	%100
14	OVP	Z	.4	.4	0	%100
15	M18	X	.231	.231	0	%100
16	M18	Z	.4	.4	0	%100
17	M19	Х	.033	.033	0	%100
18	M19	Z	.057	.057	0	%100
19	M20	X	.033	.033	0	%100
20	M20	Z	.057	.057	0	%100
21	M21	X	.06	.06	0	%100
22	M21	Z	.104	.104	0	%100
23	M22	Х	.06	.06	0	%100
24	M22	Z	.104	.104	0	%100
25	M23	X	.06	.06	0	%100
26	M23	Z	.104	.104	0	%100
27	M24	x	.06	.06	0	%100
28	M24	Z	.104	.104	0	%100
29	M25	x	.096	.096	0	%100
30	M25	Z	.166	.166	0	%100
31	M26	X	.096	.096	0	%100
32	M26	Z	.166	.166	0	%100
33	M27	X	.067	.067	0	%100
34	M27	Z	.115	.115	0	%100
35	M28	X	.067	.067	0	%100
36	M28	Z	.115	.115	0	%100
37	MP4A	X	.305	.305	0	%100
38	MP4A	Z	.529	.529	0	%100
39	MP3A	x	.305	.305	0	%100
40	MP3A	Z	.529	.529	0	%100
41	MP2A	x	.305	.305	0	%100
42	MP2A	Z	.529	.529	0	%100
43	MP1A	X	.305	.305	0	%100
44	MP1A	Z	.529	.529	0	%100
45	M44	X	.020	.08	0	%100
46	M44	Z	.139	.139	0	%100
47	M45	X	.08	.08	0	%100
48	M45	Z	.139	.139	0	%100
49	M45	X	.08	.08	0	%100
50	M40	Z	.139	.139	0	%100
51	M40	X	.08	.08	0	%100
52	M47	Z	.139	.139	0	%100
53	M44A	X	.016	.016	0	%100
54	M44A	Z	.028	.018	0	%100
55	M44B	X	.162	.162	0	%100
56	M44B	Z	.102	.281	0	%100
57	OVP1	X	.305	.305	0	%100
58	OVP1	Z	.529	.529	0	%100
50	OVET	∠	.329	.329	U	/0100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	X	0	0	0	%100
2	M1	Z	.739	.739	0	%100
3	M2	Х	0	0	0	%100
4	M2	Z	.739	.739	0	%100
5	M13	Х	0	0	0	%100
6	M13	Z	0	0	0	%100
7	M14	Х	0	0	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

Micini	Der Distributed Loa		. Otracture min	(100 Deg)) (00)	intinueu)	
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
8	M14	Z	0	0	0	%100
9	M15	Х	0	0	0	%100
10	M15	Z	0	0	0	%100
11	M16	Х	0	0	0	%100
12	M16	Z	0	0	0	%100
13	OVP	Х	0	0	0	%100
14	OVP	Z	.292	.292	0	%100
15	M18	Х	0	0	0	%100
16	M18	Z	.292	.292	0	%100
17	M19	Х	0	0	0	%100
18	M19	Z	.292	.292	0	%100
19	M20	Х	0	0	0	%100
20	M20	Z	.292	.292	0	%100
21	M21	Х	0	0	0	%100
22	M21	Z	.161	.161	0	%100
23	M22	Χ	0	0	0	%100
24	M22	Z	.161	.161	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	.161	.161	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	.161	.161	0	%100
29	M25	X	0	0	0	%100
30	M25	Z	.166	.166	0	%100
31	M26	X	0	0	0	%100
32	M26	Z	.166	.166	0	%100
33	M27	X	0	0	0	%100
34	M27	Z	.166	.166	0	%100
35	M28	X	0	0	0	%100
36	M28	Z	.166	.166	0	%100
37	MP4A	X	0	0	0	%100
38	MP4A	Z	.611	.611	0	%100
39	MP3A	<u> </u>	0	0	0	%100
40	MP3A	Z	.611	.611	0	%100
41	MP2A	X	0	0	0	%100
42	MP2A	Z	.611	.611	0	%100
43	MP1A	X	0	0	0	%100
44	MP1A	Z	.611	.611	0	%100
45	M44	X	0	0	0	%100
46	M44	Z	.161	.161	0	%100 %100
47	M45	X	0	0	0	<u>%100</u>
48	M45	Z	.161	.161	0	%100
49	M46	X Z	0	0	0	<u>%100</u>
50	M46		.161	.161	0	%100 %100
51	M47	X Z	0	0	0	%100 %100
52	M47		.161	.161	0	%100 %100
53	M44A	X	0	0	0	%100
54	M44A	Z	.051	.051	0	%100 %100
55	M44B	X	0	0	0	%100 %100
56	M44B	Z	.051	.051	0	%100 %100
57	OVP1	X	0	0	0	%100 %100
58	OVP1	Z	.611	.611	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
1	M1	X	277	277	0	%100
2	M1	Z	.48	.48	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Del Distributeu Lua		· Otractare min	1210 Deg// (00	indifiacu)	
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
3	M2	Х	- 277	277	0	%100
4	M2	Z	.48	.48	0	%100
5	M13	X	02	02	0	%100
6	M13	Z	.035	.035	ů 0	%100
7	M14	X	02	02	0	%100
8	M14	Z	.035	.035	0	%100
9	M14	X	02	02	0	%100
10	M15	Z	.035	.035	0	%100
11	M16	X	02	02	0	%100
12	M16	Z	.035	.035	0	%100
13	OVP	X	033	033	0	%100
14	OVP	Z	.057	.057	0	%100
15	M18	X	033	033	0	%100
16	M18	Z	.057	.057	0	%100
17	M19	X	231	231	0	%100
18	M19	Z	.4	.4	0	%100
19	M20	X	231	231	0	%100
20	M20	Z	.4	.4	0	%100
21	M21	X	06	06	0	%100
22	M21	Z	.104	.104	0	%100
23	M22	X	06	06	0	%100
24	M22	Z	.104	.104	0	%100
25	M23	×	06	06	0 0	%100
26	M23	Z	.104	.104	0	%100
27	M24	X	06	06	0	%100
28	M24	Z	.104	.104	0	%100
29	M25	X	067	067	0	%100
30	M25	Z	.115	.115	0	%100
31	M26	X	067	067	0	%100
32	M26	Z	.115	.115	0	%100
33	M27	X	096	096	0	%100
34	M27	Z	.166	.166	0	%100
35	M28	X	096	096	0	%100
36	M28	Z	.166	.166	0	%100
37	MP4A	X	305	305	0	%100
38	MP4A	Z	.529	.529	0	%100
39	MP3A	X	305	305	0	%100
40	MP3A	Z	.529	.529	0	%100
41	MP2A	X	305	305	0	%100
42	MP2A	Z	.529	.529	0	%100
43	MP1A	Х	305	305	0	%100
44	MP1A	Z	.529	.529	0	%100
45	M44	X	08	08	0	%100
46	M44	Z	.139	.139	Ő	%100
47	M45	X	08	08	0	%100
48	M45	Z	.139	.139	0	%100
49	M46	X	08	08	0	%100
50	M46	Z	.139	.139	0	%100
50	M47	X	08	08	0	%100
52	M47	Z	.139	.139	0	%100
53	M44A	X	162	162	0	%100
54	M44A	Z	.281	.281	0	%100
55	M44B	X	016	016	0	%100
56	M44B	Z	.028	.028	0	%100
57	OVP1	X	305	305	0	%100
58	OVP1	Z	.529	.529	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

1	Member Label M1	Direction X	Start Magnitude[lb/ft, 16	End Magnitude[lb/ft,F 16	.Start Location[ft,%] 0	End Location[ft,% %100
2	M1	Z	.092	.092	0	%100
3	M2	X	16	16	0	%100
4	M2	Z	.092	.092	0	%100
5	M13	X	104	104	0	%100
6	M13	Z	.06	.06	0	%100
7	M13	X	104	104	0	%100
8	M14	Z	.06	.06	0	%100
o 9		X				%100
	M15		104	104	0	
10	M15	Z	.06	.06	0	%100
11	M16	X	104	104	0	%100
12	M16	Z	.06	.06	0	%100
13	OVP	<u>X</u>	008	008	0	%100
14	OVP	Z	.005	.005	0	%100
15	M18	X	008	008	0	%100
16	M18	Z	.005	.005	0	%100
17	M19	X	351	351	0	%100
18	M19	Z	.203	.203	0	%100
19	M20	X	351	351	0	%100
20	M20	Z	.203	.203	0	%100
21	M21	X	035	035	0	%100
22	M21	Z	.02	.02	0	%100
23	M22	X	035	035	0	%100
24	M22	Z	.02	.02	0	%100
25	M23	X	035	035	0	%100
26	M23	Z	.02	.02	0	%100
27	M24	X	035	035	0	%100
28	M24	Z	.02	.02	0	%100
29	M25	X	108	108	0	%100
30	M25	Z	.062	.062	0	%100
31	M26	X	108	108	0	%100
32	M26	Z	.062	.062	0	%100
33	M27	X	159	159	0	%100
34	M27	Z	.092	.092	0	%100
35	M28	X	159	159	0	%100
36	M28	Z	.092	.092	0	%100
37	MP4A	X	529	529	0	%100
38	MP4A	Z	.305	.305	0	%100
39	MP3A	X	529	529	0	%100
40	MP3A	Z	.305	.305	0	%100
40	MP3A MP2A	X	529	529	0	<u>%100</u> %100
42	MP2A	Z	.305	.305	0	%100
42	MP1A	X	529	529	0	%100
43	MP1A MP1A	Z	.305	.305	0	%100
45	M44	X	139	139	0	%100
46	M44	Z	.08	.08	0	%100
47	M45	X	139	139	0	%100
48	M45	Z	.08	.08	0	%100
49	M46	X	139	139	0	%100
50	M46	Z	.08	.08	0	%100
51	M47	X	139	139	0	%100
52	M47	Z	.08	.08	0	%100
53	M44A	<u> </u>	501	501	0	%100
54	M44A	Z	.289	.289	0	%100
55	M44B	X	248	248	0	%100
56	M44B	Z	.143	.143	0	%100
57	OVP1	X	529	529	0	%100

RISA-3D Version 17.0.4 [R:\...\...\Structural\Mount Replacement\Rev 0\RISA\VFA12-HD.r3d] Page 69

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
58	OVP1	Z	.305	.305	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	bei Distributeu Lua			210 20977		
	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M2	X	0	0	0	%100
4	M2	Z	0	0	Ő	%100
5	M13	X	161	161	0	%100
6	M13	Z	0	0	0	%100
7	M13					
		X	161	161	0	%100
8	M14	Z	0	0	0	%100
9	M15	<u> </u>	161	161	0	%100
10	M15	Z	0	0	0	%100
11	M16	X	161	161	0	%100
12	M16	Z	0	0	0	%100
13	OVP	X	179	179	0	%100
14	OVP	Z	0	0	0	%100
15	M18	Х	179	179	0	%100
16	M18	Z	0	0	0	%100
17	M19	X	179	179	0	%100
18	M19	Z	0	0	0	%100
19	M10 M20	X	179	179	0	%100
20	M20	Z	0	0	0	%100
20	M20	X		0	0	%100
		Z	0	0	0	
22	M21		0			%100
23	M22	X	0	0	0	%100
24	M22	Z	0	0	0	%100
25	M23	X	0	0	0	%100
26	M23	Z	0	0	0	%100
27	M24	X	0	0	0	%100
28	M24	Z	0	0	0	%100
29	M25	X	15	15	0	%100
30	M25	Z	0	0	0	%100
31	M26	Х	15	15	0	%100
32	M26	Z	0	0	Ő	%100
33	M27	×	15	15	0	%100
34	M27	Z	0	0	0	%100
35	M28	X	15	15	0	%100
36	M28	Z	0	0	0	%100
37		X	611	611	0	%100
	MP4A	~ 7				
38	MP4A	Z	0	0	0	%100
39	MP3A	X	611	611	0	%100
40	MP3A	Z	0	0	0	%100
41	MP2A	X	611	611	0	%100
42	MP2A	Z	0	0	0	%100
43	MP1A	X	611	611	0	%100
44	MP1A	Z	0	0	0	%100
45	M44	Х	161	161	0	%100
46	M44	Z	0	0	0	%100
47	M45	×	161	161	0	%100
48	M45	Z	0	0	0	%100
49	M46	X	161	161	0	%100
50	M46	Z	0	0	0	%100
			-	161		
51	M47	X Z	161		0	%100
52	M47	Δ	0	0	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
53	M44A	X	56	56	0	%100
54	M44A	Z	0	0	0	%100
55	M44B	Х	56	56	0	%100
56	M44B	Z	0	0	0	%100
57	OVP1	Х	611	611	0	%100
58	OVP1	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft	. End Magnitude[lb/ft,F	.Start Location[ft.%]	End Location[ft,%]
1	M1	Х	16	16	0	%100
2	M1	Z	092	092	0	%100
3	M2	X	16	16	0	%100
4	M2	Z	092	092	0	%100
5	M13	×	104	104	0	%100
6	M13	Z	06	06	0	%100
7	M14	X	104	104	0	%100
8	M14	Z	06	06	0	%100
9	M15	x	104	104	0 0	%100
10	M15	Z	06	06	0 0	%100
11	M16	x	104	104	0	%100
12	M16	Z	06	06	0	%100
13	OVP	x	351	351	0 0	%100
14	OVP	Z	203	203	0 0	%100
15	M18	x	351	351	0	%100
16	M18	Z	203	203	0	%100
17	M19	x	008	008	0 0	%100
18	M19	Z	005	005	0	%100
19	M20	X	008	008	0	%100
20	M20	Z	005	005	0	%100
21	M21	X	035	035	0	%100
22	M21	Z	02	02	0 0	%100
23	M22	X	035	035	0	%100
24	M22	Z	02	02	0	%100
25	M23	Х	035	035	0	%100
26	M23	Z	02	02	0	%100
27	M24	Х	035	035	0	%100
28	M24	Z	02	02	0	%100
29	M25	Х	159	159	0	%100
30	M25	Z	092	092	0	%100
31	M26	Х	159	159	0	%100
32	M26	Z	092	092	0	%100
33	M27	Х	108	108	0	%100
34	M27	Z	062	062	0	%100
35	M28	Х	108	108	0	%100
36	M28	Z	062	062	0	%100
37	MP4A	Х	529	529	0	%100
38	MP4A	Z	305	305	0	%100
39	MP3A	Х	529	529	0	%100
40	MP3A	Z	305	305	0	%100
41	MP2A	Х	529	529	0	%100
42	MP2A	Z	305	305	0	%100
43	MP1A	Х	529	529	0	%100
44	MP1A	Z	305	305	0	%100
45	M44	Х	139	139	0	%100
46	M44	Z	08	08	0	%100
47	M45	Х	139	139	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	.Start Location[ft,%]	End Location[ft,%]
48	M45	Z	08	08	0	%100
49	M46	Х	139	139	0	%100
50	M46	Z	08	08	0	%100
51	M47	Х	139	139	0	%100
52	M47	Z	08	08	0	%100
53	M44A	Х	248	248	0	%100
54	M44A	Z	143	143	0	%100
55	M44B	X	501	501	0	%100
56	M44B	Z	289	289	0	%100
57	OVP1	Х	529	529	0	%100
58	OVP1	Z	305	305	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M1	Х	277	277	0	%100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	M1	Z	48	48	0	%100
	3	M2	Х	277	277	0	%100
	4	M2	Z	48	48	0	%100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	M13	Х	02	02	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	M13	Z	035	035	0	%100
9 M15 X 02 02 0 %100 10 M15 Z 035 02 0 %100 11 M16 X 02 0 %100 12 M16 Z 035 035 0 %100 13 OVP X 231 231 0 %100 14 OVP Z 4 4 0 %100 15 M18 X 231 231 0 %100 16 M18 Z 4 4 0 %100 17 M19 X 033 033 0 %100 18 M19 Z 057 057 0 %100 20 M20 Z 066 06 0 %100 21 M21 Z 104 104 0 %100 22 M	7	M14		02	02	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			X				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Χ				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
15M18X2312310%10016M18Z440%10017M19X0330330%10018M19Z0570570%10019M20X0330330%10020M20Z0570570%10021M21X066060%10022M21Z1041040%10023M22X06060%10024M22Z1041040%10025M23X06060%10026M23Z1041040%10027M24X066060%10028M24Z1041040%10030M25Z1661660%10031M26X0960960%10033M27X0670670%10034M27Z1151150%10035M28Z1151150%10036M28Z1151150%10037MP4AX3053050%10038MP4AZ5295290%100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
16M18Z4.40 $\%100$ 17M19X0330330 $\%100$ 18M19Z0570570 $\%100$ 19M20X0330330 $\%100$ 20M20Z0570570 $\%100$ 21M21X06060 $\%100$ 23M22X1041040 $\%100$ 24M22Z1041040 $\%100$ 25M23X06060 $\%100$ 26M23Z1041040 $\%100$ 27M24X06060 $\%100$ 28M24Z1041040 $\%100$ 29M25X0960960 $\%100$ 30M25Z1661660 $\%100$ 31M26X0960960 $\%100$ 33M27X0670670 $\%100$ 34M27Z1151150 $\%100$ 36M28Z1151150 $\%100$ 38MP4AZ5295290 $\%100$ 39MP3AZ5295290 $\%100$ 41MP2AX3053050 $\%100$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
18M19Z 057 057 0%10019M20X 033 033 0%10020M20Z 057 057 0%10021M21X 066 066 0%10022M21Z 104 104 0%10023M22X 066 066 0%10024M22Z 104 104 0%10025M23X 066 066 0%10026M23Z 104 104 0%10027M24X 066 066 0%10028M24Z 104 104 0%10029M25X 096 096 0%10030M25Z 166 166 0%10031M26X 096 096 0%10033M27X 067 0 %10034M27Z 115 115 0%10035M28X 067 067 0%10036M28Z 115 115 0 %10037MP4AX 305 305 0%10039MP3AX 305 305 0%10041MP2AX 305 305 0%100<							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						+	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X				
24 M22 Z 104 104 0 %100 25 M23 X 06 06 0 %100 26 M23 Z 104 104 0 %100 27 M24 X 06 06 0 %100 28 M24 Z 104 104 0 %100 29 M25 X 096 096 0 %100 30 M25 Z 166 166 0 %100 31 M26 X 096 096 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 067 067 0 %100 34 M27 Z 115 115 0 %100 36 M28 Z 115 115 0 %100 37 MP4A							
25 M23 X 06 06 0 %100 26 M23 Z 104 104 0 %100 27 M24 X 06 06 0 %100 28 M24 Z 104 104 0 %100 29 M25 X 096 096 0 %100 30 M25 Z 166 166 0 %100 31 M26 X 096 096 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 067 0.067 0 %100 34 M27 Z 115 115 0 %100 35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 38 MP4A						0	
26 M23 Z 104 104 0 %100 27 M24 X 06 06 0 %100 28 M24 Z 104 104 0 %100 29 M25 X 096 096 0 %100 30 M25 Z 166 166 0 %100 31 M26 X 096 096 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 067 067 0 %100 34 M27 Z 115 115 0 %100 35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 39 MP3A							
27 M24 X 06 06 0 %100 28 M24 Z 104 104 0 %100 29 M25 X 096 096 0 %100 30 M25 Z 166 166 0 %100 31 M26 X 096 096 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 067 067 0 %100 34 M27 Z 115 115 0 %100 35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 39 MP3A X 529 529 0 %100 40 MP3A							
28 M24 Z 104 104 0 %100 29 M25 X 096 096 0 %100 30 M25 Z 166 166 0 %100 31 M26 X 096 096 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 067 067 0 %100 34 M27 Z 115 115 0 %100 35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
29 M25 X 096 096 0 %100 30 M25 Z 166 166 0 %100 31 M26 X 096 096 0 %100 32 M26 Z 166 096 0 %100 33 M27 X 067 067 0 %100 34 M27 Z 115 115 0 %100 35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 38 MP4A Z 529 529 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
30 M25 Z 166 166 0 %100 31 M26 X 096 096 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 067 067 0 %100 34 M27 Z 115 115 0 %100 35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 38 MP4A Z 529 529 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100						-	
31 M26 X 096 096 0 %100 32 M26 Z 166 166 0 %100 33 M27 X 067 067 0 %100 34 M27 Z 115 115 0 %100 35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 38 MP4A Z 529 529 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100						0	
32 M26 Z 166 166 0 %100 33 M27 X 067 067 0 %100 34 M27 Z 115 115 0 %100 35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 38 MP4A Z 529 529 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100						-	
33 M27 X 067 067 0 %100 34 M27 Z 115 115 0 %100 35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 38 MP4A Z 529 529 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100							
34 M27 Z 115 115 0 %100 35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 38 MP4A Z 529 529 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100							
35 M28 X 067 067 0 %100 36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 38 MP4A Z 529 529 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100			X				
36 M28 Z 115 115 0 %100 37 MP4A X 305 305 0 %100 38 MP4A Z 529 529 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100							
37 MP4A X 305 305 0 %100 38 MP4A Z 529 529 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100							
38 MP4A Z 529 529 0 %100 39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100							
39 MP3A X 305 305 0 %100 40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100							
40 MP3A Z 529 529 0 %100 41 MP2A X 305 305 0 %100							
41 MP2A X305305 0 %100							
42 MP2A Z529529 0 %100			X				
	42	MP2A	Z	529	529	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,	End Magnitude[lb/ft,F	Start Location[ft,%]	End Location[ft,%]
43	MP1A	Х	- 305	305	0	%100
44	MP1A	Z	529	529	0	%100
45	M44	Х	08	08	0	%100
46	M44	Z	139	139	0	%100
47	M45	Х	08	08	0	%100
48	M45	Z	139	139	0	%100
49	M46	Х	08	08	0	%100
50	M46	Z	139	139	0	%100
51	M47	Х	08	08	0	%100
52	M47	Z	139	139	0	%100
53	M44A	Х	016	016	0	%100
54	M44A	Z	028	028	0	%100
55	M44B	Х	162	162	0	%100
56	M44B	Z	281	281	0	%100
57	OVP1	Х	305	305	0	%100
58	OVP1	Z	529	529	0	%100

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
		No	Data to Print			• • • •

Envelope Joint Reactions

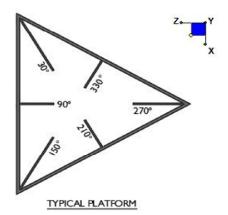
	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N35	max	1388.189	46	1055.056	24	1467.045	13	138	67	Ō	75	.248	47
2		min	-489.509	49	330.532	66	-263.625	7	451	13	0	1	105	49
3	N36	max	1503.245	11	1058.959	19	518.91	7	125	1	0	75	.24	47
4		min	-1788.707	5	327.31	74	-1366.822	1	446	19	0	1	102	49
5	N61A	max	434.682	2	53.18	2	1472.226	2	0	75	0	75	0	75
6		min	-466.209	8	-34.794	8	-1583.627	8	0	1	0	1	0	1
7	N62A	max	518.378	6	58.342	12	1641.143	12	0	75	0	75	0	75
8		min	-485.423	12	-39.898	6	-1756.794	6	0	1	0	1	0	1
9	Totals:	max	1623.083	10	2130.047	24	2277.992	1						
10		min	-1623.083	4	673.56	67	-2277.996	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Loc[. LC	Shear Check	Loc[ft]	Dir	LC	phi*Pnc	phi*Pnt	phi*Mn	.phi*Mn	.Cb Eqn
1	M1	PIPE 2.5	.257	8.724		.083	8.724		31	14558.7	50715	3.596		2. H1-1b
2	M2	PIPE 2.5	.307	3.255	6	.125	8.724		2	14558.7	50715	3.596	3.596	2H1-1b
3	M13	PL5/8X3.5	.188	.422	11	.270	.374	y	5	66184.77	68906.25	.897	5.024	1H1-1b
4	M14	PL5/8X3.5	.117	0	49	.102	.422	У	2	66184.77	68906.25	.897	5.024	1H1-1b
5	M15	PL5/8X3.5	.249	0	44	.102	.422	ý	12	66184.77	68906.25	.897	5.024	1H1-1b
6	M16	PL5/8X3.5	.213	.422	3	.259	.422	y	3	66184.77	68906.25	.897	5.024	1H1-1b
7	OVP	PIPE 2.0	.261	0	5	.074	0		6	31128.25	32130	1.872	1.872	1H1-1b
8	M18	PIPE_2.0	.099	0	2	.060	0		14	31128.25	32130	1.872	1.872	1H1-1b
9	M19	PIPE 2.0	.100	0	12	.082	0		47	31128.25	32130	1.872	1.872	1H1-1b
10	M20	PIPE_2.0	.262	0	3	.070	0		45	31128.25	32130	1.872	1.872	2H1-1b
11	M21	PL5/8X3.5	.254	.531	24	.099	.443	y	11	67591.76	68906.25	.897	5.024	1H1-1b
12	M22	PL5/8X3.5	.387	.531	38	.088	.443	у	3	67591.76	68906.25	.897	5.024	1H1-1b
13	M23	PL5/8X3.5	.287	.531	14	.045	.531	y	1	67591.76	68906.25	.897	5.024	1H1-1b
14	M24	PL5/8X3.5	.404	.531	48	.051	.133	У	37	67591.76	68906.25	.897	5.024	1H1-1b
15	M25	SR 0.75	.001	4.167	47	.009	0		6	2863.936	13916.2	.174	.174	1H1-1b*
16	M26	SR_0.75	.045	0	18	.016	0		3	2863.936	13916.2	.174	.174	1H1-1b*

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Check	Loc[. LC	Shear Check	Loc[ft] Di	ir LC	phi*Pnc	phi*Pnt	phi*Mn	phi*Mn	.Cb Eqn
17	M27	SR 0.75	.000	0	75	.012	0	47	2863.936	13916.2	.174	.174	1 H1-1a
18	M28	SR 0.75	.080	4.167	44	.019	0	11	2863.936	13916.2	.174	.174	1H1-1b*
19	MP4A	PIPE 2.0	.226	5.667	49	.070	2.333	10	14916.0	32130	1.872	1.872	4H1-1b
20	MP3A	PIPE 2.0	.157	2.333	47	.072	2.333	11	14916.0	32130	1.872	1.872	4H1-1b
21	MP2A	PIPE 2.0	.288	2.333	7	.090	5.667	5	14916.0	32130	1.872	1.872	3H1-1b
22	MP1A	PIPE_2.0	.398	2.333	41	.053	4.417	38	14916.0	32130	1.872	1.872	4H1-1b
23	M44	SR 0.625	.058	1.667	12	.013	0	43	2158.269	9664.074	.101	.101	1H1-1b
24	M45	SR 0.625	.045	1.667	11	.023	0	11	2158.269	9664.074	.101	.101	1H1-1b
25	M46	SR_0.625	.047	1.667	6	.022	0	5	2158.269	9664.074	.101	.101	1H1-1b
26	M47	SR 0.625	.111	0	2	.014	0	38	2158.269	9664.074	.101	.101	1H1-1b*
27	M44A	PIPE 2.0	.066	5.201	2	.003	0	9	23229.2	32130	1.872	1.872	1H1-1b*
28	M44B	PIPE 2.0	.074	5.201	12	.003	5.201	5	23229.2	32130	1.872	1.872	1H1-1b*
29	OVP1	PIPE_2.0	.078	2.5	11	.076	.833	11	23808.54	32130	1.872	1.872	1H1-1b


Client:	Verizon Wireless	Date:	11/15/2021
Site Name:	Prospect North CT		
Project No.	21781146A		
Title:	Mount Analysis-R	Page:	1

Version 3.1

I. Mount-to-Tower Connection Check

RISA Model Data

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N35	90
N36	90

Tower Connection Bolt Checks

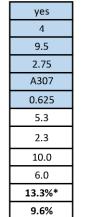
Any moment resistance?:

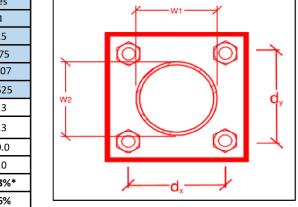
Bolt Quantity per Reaction:

d_x (in) (Delta X of typ. bolt config. sketch) : d_v (in) (Delta Y of typ. bolt config. sketch) : Bolt Type:

Bolt Diameter (in):

Required Tensile Strength (kips):


Required Shear Strength (kips):


Tensile Strength / bolt (kips):

Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:

*Note: Tension reduction not required if tension or shear capacity < 30%

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – New Mount Passing MA Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u> For additional questions and support, please reach out to pmisupport@colliersengineering.com

<u>**Purpose**</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped.
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: *https://pmi.vzwsmart.com*

Photo Requirements:

- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- <u>Photos taken at Mount Elevation</u>
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation of mounts. Each entire sector shall be in one photo to show the interconnection of members.
 - These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.

- Photos that show the model number of each antenna and piece of equipment installed per sector.
- Photos of each installed mount; pictures shall also include connection hardware (Ubolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the installed mount elevation.

Antenna & equipment placement and Geometry Confirmation:

• The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.

<u>Special Instructions / Validation as required from the MA or any other information the contractor</u> <u>deems necessary to share that was identified:</u>

Issue:

Contractor shall remove existing antenna mounts and all associated hardware on each sector and replace with new sector frames (Site Pro 1 Part #: VFA12-HD).

Contractor shall install four (4) 96" long P2 STD mount pipes on each sector, spaced evenly along proposed mount face.

Contractor shall install proposed tiebacks at a maximum of 6" away from the standoff horizontal connections at the top face horizontal on both sides of the mounts. Connect other end of tiebacks to adjacent tower legs.

Contractor shall install proposed OVP unit directly to one (1) new 60" long P2 STD OVP pipe connected to left side standoff horizontals on the Alpha sector using one (1) 1/2" Dia. U-Bolt at each standoff connection.

Response:

<u>Contractor certifies that the climbing facility / safety climb was not damaged or obstructed prior to</u> <u>starting work:</u>

□ Yes □ No

Contractor certifies no new damage/obstructions created during the current installation:

Yes		No
105		110

<u>Contractor to certify the condition of the safety climb and verify no obstructions when leaving the site:</u>

\Box Safety climb in good condition with no obstructions	🗆 Safety Climb Damaged
Safety Climb Obstructed	

Comments:

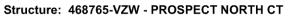
New Mount Certification:

The contractor certifies that the New Mount installed is as specified in the Passing Mount Analysis.
 The contractor notes that the New Mount installed is not as specified and engineering approval was received for the New Mount installed.

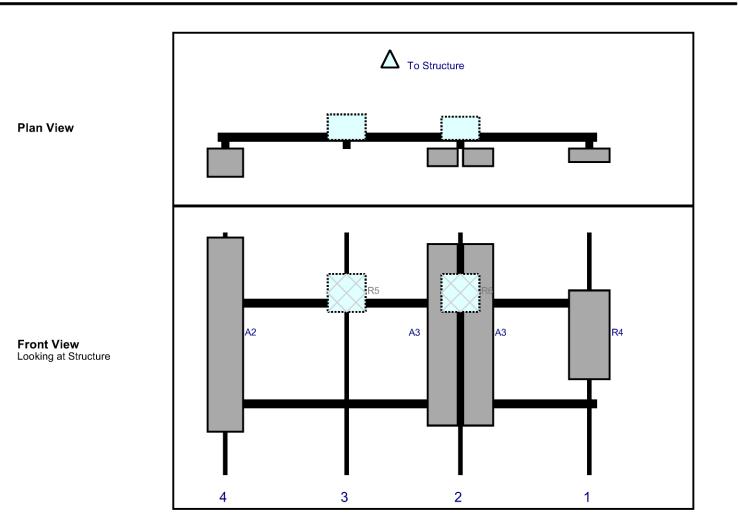
Antenna & equipment placement and Geometry Confirmation:

□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

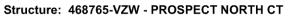
OR

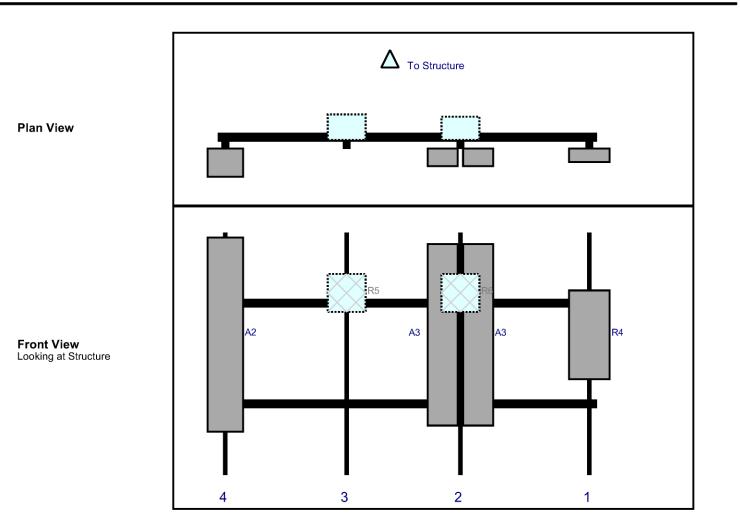

□ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

Special Instruction Confirmation:

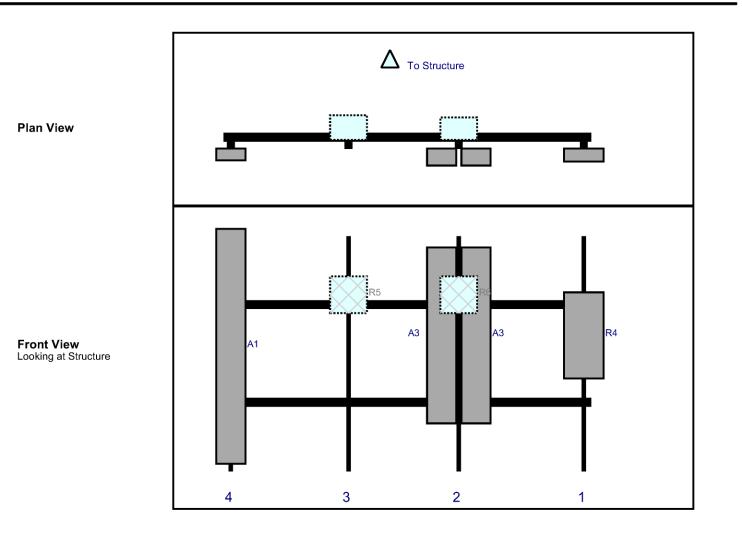

 \Box The contractor has read and acknowledges the above special instructions.

Certifying Individual:


Company:	
Employee Name: Contact Phone:	
Contact Phone:	
Email:	
Date:	



		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R4	MT6407-77A	35.1	16.1	147	1	а	Front	40.56	0	Added	
A3	NHH-65B-R2B	72	11.9	96	2	а	Front	40.56	7	Added	
A3	NHH-65B-R2B	72	11.9	96	2	b	Front	40.56	-7	Added	
R6	RF4440d-13A	15	15	96	2	а	Behind	24	0	Added	
R5	RF4439d-25A	15	15	51	3	а	Behind	24	0	Added	
A2	SWCP2X5514	77	14	3	4	а	Front	40.5	0	Retained	01/12/2021



		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R4	MT6407-77A	35.1	16.1	147	1	а	Front	40.56	0	Added	
A3	NHH-65B-R2B	72	11.9	96	2	а	Front	40.56	7	Added	
A3	NHH-65B-R2B	72	11.9	96	2	b	Front	40.56	-7	Added	
R6	RF4440d-13A	15	15	96	2	а	Behind	24	0	Added	
R5	RF4439d-25A	15	15	51	3	а	Behind	24	0	Added	
A2	SWCP2X5514	77	14	3	4	а	Front	40.5	0	Retained	01/12/2021

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R4	MT6407-77A	35.1	16.1	147	1	а	Front	40.56	0	Added	
A3	NHH-65B-R2B	72	11.9	96	2	а	Front	40.56	7	Added	
A3	NHH-65B-R2B	72	11.9	96	2	b	Front	40.56	-7	Added	
R6	RF4440d-13A	15	15	96	2	а	Behind	24	0	Added	
R5	RF4439d-25A	15	15	51	3	а	Behind	24	0	Added	
A1	LNX-8514DS-VTM	96	11.9	3	4	а	Front	45	0	Retained	01/12/2021

Subject

Maser Consulting Connecticut

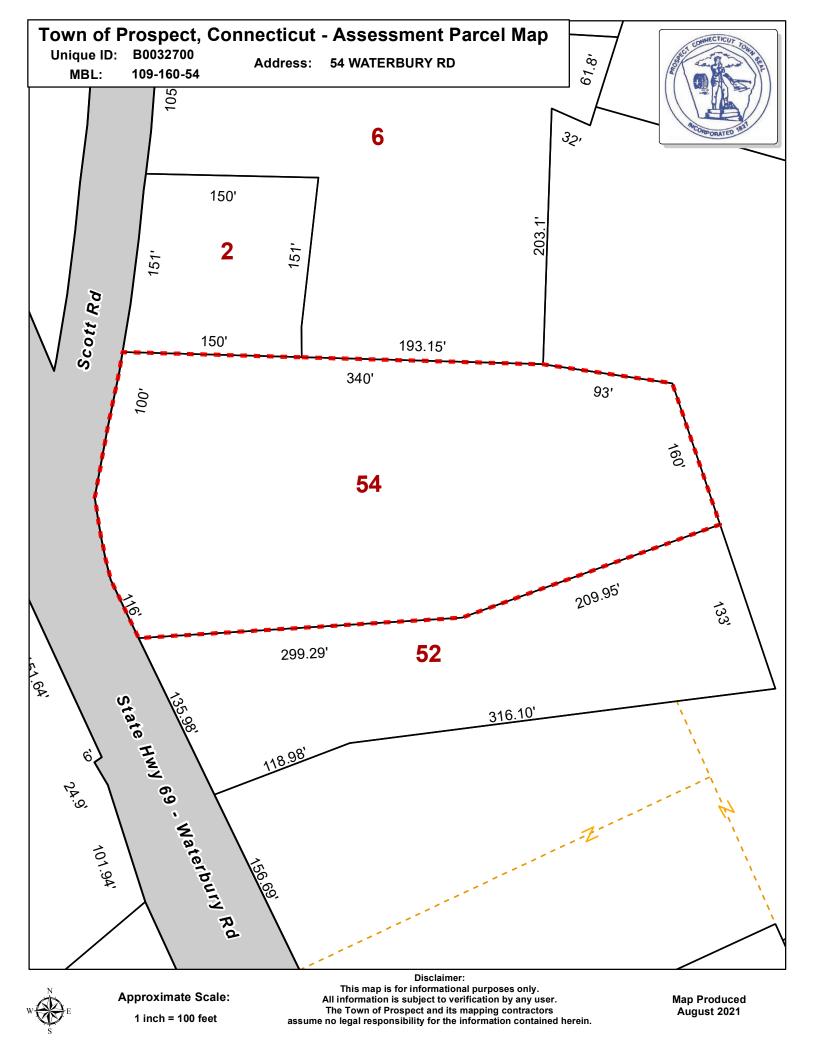
TIA-222-H Usage

	FUZE ID # 2011031	
Structure mormation	Tower Type: Mount Type:	160-Ft Self Support 12.50-Ft Sector Frame
Structure Information		160 Et Solf Support
	Latitude: Longitude:	New Haven County 41.510928° -72.982327°
	Address:	54 Watterbury Rd Prospect, Connecticut 06712
	Site Name: Carrier Name:	PROSPECT NORTH CT Verizon Wireless
Site Information	Site ID:	468765-VZW / PROSPECT NORTH CT
	Ů,	

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.


As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Derek Hartzell, PE^V Technical Specialist

ATTACHMENT 5

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2020.

www.townofprospect.org

Information on the Property Records for the Municipality of Prospect was last updated on 9/22/2022.

Property Summary Information

Parcel Data And Values Bu	Building Outbuildings Sales Permits						
	Parcel Information						
Location:	54 WATERBURY RD	Property Use:	Residential	Primary Use:	Residential		
Unique ID:	B0032700	Map Block Lot:	109 160 54	Acres:	1.9000		
490 Acres:	0.00	Zone:	В	Volume / Page:	40/ 413		
Developers Map / Lot:		Census:	3471				
Value Information		Owner's Information					

	Appraised Value	Assessed Value	Owner's Data
Land	106,722	74,710	BRADSHAW CHARLES E & AVERYLL B
Buildings	115,333	80,730	54 WATERBURY RD PROSPECT, CT 06712
Detached Outbuildings	314,919	220,440	
Total	536,974	375,880	

ATTACHMENT 6

PROSPECT NORTH Certificate of Mailing — Firm

Certificate of Mailing — Firm						
Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	TOTAL NO. of Pieces Listed by Sender Postmaster, per (name of receiving	Affix Stamp Here Postmark with Date of Receipt. neopost ⁰⁷ 09/23/2022 US POSTAGE \$003.09 ⁰ ZIP 06103 041L12203937				
				•		
USPS [®] Tracking Number Firm-specific Identifier	(Name, Street, C	Address Sity, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1. 2. 3.	Town of Prospect36 Center StreetProspect, CT 06712Mary Barton, LandTown of Prospect36 Center StreetProspect, CT 06712Charles and Averyl54 Waterbury Road	36 Center Street Prospect, CT 06712 Mary Barton, Land Use Inspector Town of Prospect			23 2022 E	
4.			-			
5.			-			
6.			_			
				L		