

August 29, 2014

Melanie A. Bachman Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Sprint PCS-Exempt Modification - Crown Site BU: 876378

Sprint PCS Site ID: CT33XC514

Located at: 15 Kluge Road, Prospect, CT 06712

Dear Ms. Bachman:

This letter and exhibits are submitted on behalf of Sprint PCS (Sprint). Sprint is making modifications to certain existing sites in its Connecticut system in order to implement their 2.5GHz LTE technology. Please accept this letter and exhibits as notification, pursuant to § 16-50j-73 of the Regulations of Connecticut State Agencies ("R.C.S.A."), of construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In compliance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to The Honorable Robert J. Chatfield, Mayor for Town of Prospect, and Mrs. Marie J. Kluge, Property Owner.

Sprint plans to modify the existing wireless communications facility owned by Crown Castle and located at **15 Kluge Road, Prospect, CT 06712**. Attached are a compound plan and elevation depicting the planned changes (Exhibit-1), and documentation of the structural sufficiency of the structure to accommodate the revised antenna configuration (Exhibit-2). Also included is a power density table report reflecting the modification to Sprint's operations at the site (Exhibit-3).

The changes to the facility do not constitute a modification as defined in Connecticut General Statutes ("C.G.S.") § 16-50i(d) because the general physical characteristics of the facility will not be significantly changed. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in the R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower. Sprint's additional antennas will be located at the same elevation on the existing tower.
- 2. There will be no proposed modifications to the ground and no extension of boundaries.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more.

- 4. A Structural Modification Report confirming that the tower and foundation can support Sprint's proposed modifications is included as Exhibit-2.
- 5. The operation of the additional antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) adopted safety standard. A cumulative General Power Density table report for Sprint's modified facility is included as Exhibit-3.

For the foregoing reasons, Sprint respectfully submits the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Donna Neal.

Sincerely,

Jeff Barbadora

Real Estate Specialist

Enclosures

Tab 1: Exhibit-1: Compound plan and elevation depicting the planned changes

Tab 2: Exhibit-2: Structural Modification Report

Tab 3: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)

cc: The Honorable Robert J. Chatfield, Mayor Town of Prospect 36 Center Street

Prospect, CT 06712

Mrs. Marie J. Kluge

15 Kluge Road

Prospect, CT 06712

SITE NUMBER:

CT33XC514

N. BETHANY/DAVID KLUGE

15 KLUGE ROAD PROSPECT, CT 06712

CROWN ID#: 876378

CROWN SITE NAME: N. BETHANY/DAVID KLUDGE

SHEET INFORMATION			ION	VICINITY MAP (NOT TO	SCALE)		SHEET INDEX
SITE NUMBER:	CT33XC514	LANDLORD:	CROWN CASTLE USA 2000 CORPORATE DRIVE		Z Leo Rd	SHT. NO.	SHEET DESCRIPTION
SITE NAME:	N. BETHANY/DAVID KLUGE		CANONSBURG, PA		T ave	T-1	TITLE SHEET
SITE ADDRESS:	15 KLUGE ROAD	LOCAL POWER COMPANY:	CONNECTICUT LIGHT AND POWER		E	SP-1	GENERAL NOTES
	PROSPECT, CT 06712		CONTACT CUSTOMER SERVICE (800) 286-2000		George St.	SP-2	GENERAL NOTES
COUNTY:	NEW HAVEN	APPLICANT:	SPRINT	Grounds Mair	ilenance Z	A-1	SITE PLAN
COORDINATES:	41° 28′ 11.60″ N		6580 SPRINT PARKWAY OVERLAND PARK,		Hay	A-2	ELEVATION
(NAD 83)	72° 58′ 21.32″ W		KANSAS 66251		P P	A-3	ENLARGED EQUIPMENT LAYOUT PLANS
GROUND ELEV:	804'± AMSL	ENGINEER:	JAMES QUICKSELL (845) 567-6656 EXT. 2835		C. (a)	A-4	ANTENNA LAYOUT PLANS
	MONODOLE		JQuicksell@tectonicengineering.com	SITE	(E)	A-5	RAN WIRING DIAGRAM
STRUCTURE TYPE:	MONOPOLE	SPRINT CM:	GARY WOOD (860) 940-9168	Klusic Rd		A-6	CABLE DETAILS
STRUCTURE HEIGHT	Γ: 190'-0"± AGL		gary. wood@sprint.com		Used Car 🚔	S-1	EQUIPMENT DETAILS
STRUCTURE		CROWN CM:	JASON D'AMICO (860) 209-0104		Osed Car	S-2	EQUIPMENT SCHEMATIC DETAILS
RAD CENTER:	190'-0"± AGL		jason.d'amico@crowncastle.com		⊚ Radio n	E-1	ELECTRICAL & GROUNDING PLANS
ZONING CLASSIFICATION:		AAV:	AT&T		Z.	E-2	GROUNDING DETAILS & NOTES
CLASSIFICATION:	RA-1				/Hav		
MAP-BLOCK-LOT:	112 74 15				en Ad		
					(64)		
					~		
GENERAL NOTES			S	AERIAL VIEW (NOT TO	SCALE)		APPROVALS

GENERAL NOTES

- THIS IS AN UNMANNED TELECOMMUNICATION FACILITY AND NOT FOR HUMAN HABITATION: HANDICAP ACCESS REQUIREMENTS ARE NOT REQUIRED. FACILITY HAS NO PLUMBING OR REFRIGERANTS.
 THIS FACILITY SHALL MEET OR EXCEED ALL FAA AND FCC REGULATOR REQUIREMENTS.
- CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE PROJECT OWNER'S REPRESENTATIVE IN WRITING OF DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.
- 3. DEVELOPMENT AND USE OF THIS SITE WILL CONFORM TO ALL APPLICABLE CODES AND ORDINANCES.
 - · 2005 STATE OF CONNECTICUT BUILDING CODE.

 - ANSI/TIA/EIA-222-F-1996.
 NATIONAL ELECTRICAL CODE, LATEST EDITION.

PROJECT DESCRIPTION

- 1. (1) NEW 2.5 EQUIPMENT RACK INSIDE EXIST MMBTS CABINET.
- 2. (3) NEW RFS APXVTM14-C-120 ANTENNAS.
- 3. (3) NEW TD-RRH8x20-25 RRH.
- 4. (1) NEW 1-1/4" HYBRID CABLE.

		/			
CRIAL	VIEW	(NOT	ТО	SCALE)	

APPROVALS

THE FOLLOWING PARTIES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AND MAY IMPOSE CHANGES OR MODIFICATIONS.

CONSTRUCTION:	DATE:	
LEASING/ SITE ACQUISITION:	DATE:	
LANDLORD/ PROPERTY OWNER:	DATE:	
R.F. ENGINEER:	DATE:	

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**

TECTONIC Engineering & Surveying Consultants P.C.

1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703

www.tectonicengineering.com

SUBMITTALS

1	L						
l	PRO	JECT NO	7225.CT33XC5I4				
	NO	DATE	DESCRIPTION	BY			
	0	06/19/14	FOR COMMENT	JT			
	1	08/07/14	PER COMMENTS	MF			
	2	08/26/14	FOR CONSTRUCTION	JT			
	_		3				

REVIEWED BY

SITE NUMBER: CT33XC514

SITE NAME:

N. BETHANY/DAVID KLUGE SITE ADDRESS:

> 15 KLUGE ROAD PROSPECT, CT 06712

> > SHEET TITLE:

TITLE SHEET

SHEET NO:

T-1

DIVISION 01000-GENERAL NOTES

- THE CONTRACTOR SHALL GIVE ALL NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC. AUTHORITY, MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS, AND LOCAL AND STATE JURISDICTIONAL CODES BEARING ON THE PERFORMANCE OF THE WORK. THE WORK PERFORMED ON THE PROJECT AND THE MATERIALS INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES.
- 2. THE ARCHITECT/ENGINEER HAVE MADE EVERY EFFORT TO SET FORTH IN THE CONSTRUCTION AND CONTRACT DOCUMENTS THE COMPLETE SCOPE OF WORK. THE CONTRACTOR BIDDING THE JOB IS NEVERTHELESS CAUTIONED THAT MINOR OMISSIONS OR ERRORS IN THE DRAWINGS AND OR SPECIFICATIONS SHALL NOT EXCUSE SAID CONTRACTOR FROM COMPLETING THE PROJECT AND IMPROVEMENTS IN ACCORDANCE WITH THE INTENT OF
- 3. THE CONTRACTOR OR BIDDER SHALL BEAR THE RESPONSIBILITY OF NOTIFYING (IN WRITING) THE PROJECT OWNER'S REPRESENTATIVE OF ANY CONFLICTS, ERRORS, OR OMISSIONS PRIOR TO THE SUBMISSION OF CONTRACTOR'S PROPOSAL OR PERFORMANCE OF WORK.
- 4. THE SCOPE OF WORK SHALL INCLUDE FURNISHING ALL MATERIALS, EQUIPMENT, LABOR AND ALL OTHER MATERIALS AND LABOR DEEMED NECESSARY TO COMPLETE THE WORK/PROJECT AS DESCRIBED HEREIN.
- 5. THE CONTRACTOR SHALL VISIT THE JOB SITE PRIOR TO THE SUBMISSION OF BIDS OR PERFORMING WORK TO FAMILIARIZE HIMBELF WITH THE FIELD CONDITIONS AND TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 6. ONCE THE CONTRACTOR HAS RECEIVED AND ACCEPTED THE NOTICE TO PROCEED. CONTRACTOR WILL CONTACT THE CROWN CASTLE CONSTRUCTION MANAGER OF RECORD (NOTED ON THE FIRST PAGE ON THIS CONSTRUCTION DRAWING) A MINIMUM OF 48 HOURS PRIOR TO WORK START. UPON ARRIVAL TO THE JOB SITE, CONTRACTOR CREW IS REQUIRED CALL 1-800-788-7011 TO NOTIFY THE CROWN CASTLE NOC WORK HAS
- 7. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS ACCORDING TO THE MANUFACTURER'S/VENDOR'S SPECIFICATIONS UNLESS NOTED OTHERWISE OR WHERE LOCAL CODES OR ORDINANCES TAKE
- 8. THE CONTRACTOR SHALL PROVIDE A FULL SET OF CONSTRUCTION DOCUMENTS AT THE SITE UPDATED WITH THE LATEST REVISIONS AND ADDENDUMS OR CLARIFICATIONS AVAILABLE FOR THE USE BY ALL PERSONNEL INVOLVED WITH THE PROJECT.
- 9. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER
- 10. THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS WHICH MAY BE REQUIRED FOR THE WORK BY THE ARCHITECT/ENGINEER, THE STATE, COUNTY OR LOCAL GOVERNMENT
- 11. THE CONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING IMPROVEMENTS, EASEMENTS, PAVING, CURBING, ETC. DURING CONSTRUCTION. UPON COMPLETION OF WORK, THE CONTRACTOR SHALL REPAIR ANY DAMAGE THAT MAY HAVE OCCURRED DUE TO CONSTRUCTION
- 12. THE CONTRACTOR SHALL KEEP THE GENERAL WORK AREA CLEAN AND HAZARD FREE DURING CONSTRUCTION AND DISPOSE OF ALL DIRT, DEBRIS, RUBBISH AND REMOVE EQUIPMENT NOT SPECIFIED AS REMAINING ON THE PROPERTY. PREMISES SHALL BE LEFT IN CLEAN CONDITION AND FREE FROM PAINT SPOTS, DUST, OR SMUDGES OF ANY NATURE.
- 13. THE CONTRACTOR SHALL COMPLY WITH ALL PERTINENT SECTIONS OF THE BASIC STATE BUILDING CODE, LATEST EDITION, AND ALL OSHA BASIC STATE BUILDING CODE, LATEST EDITION, AND ALL OSHA REQUIREMENTS AS THEY APPLY TO THIS PROJECT, ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK SHALL BE RELOCATED AS DIRECTED BY THE ARCHITECT/ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR PIER DRILLING AROUND OR NEAR UTILITIES. THE CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT INJURIED TO ALL FALL PROTECTION BY CONTRACTOR CONTRACTOR SHALL PROVIDE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) FLECTRICAL LIMITED TO A) FALL PROTECTION, B) CONFINED SPACE, C) ELECTRICAL SAFETY, D) TRENCHING AND EXCAVATION OF ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHICH INTERFERE WITH THE EXECUTION OF THE WORK SHALL BE REMOVED AND OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT THE POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK SUBJECT TO THE APPROVAL OF THE ARCHITECT/ENGINEER.
- 14. THE CONTRACTOR SHALL NOTIFY THE PROJECT OWNER'S REPRESENTATIVE IN WRITING WHERE A CONFLICT OCCURS ON ANY OF THE CONTRACT DOCUMENTS. THE CONTRACTOR IS NOT TO ORDER MATERIAL OR CONSTRUCT ANY PORTION OF THE WORK THAT IS IN CONFLICT UNTIL CONFLICT IS RESOLVED BY THE LESSEE/LICENSEE REPRESENTATIVE.
- 15. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, ELEVATIONS, PROPERTY LINES, ETC. ON THE JOB.
- 16. THE CONTRACTOR SHALL NOTIFY THE THE RF ENGINEER FOR ANTENNA AZIMUTH VERIFICATION (DURING ANTENNA INSTALLATION) PRIOR TO CONDUCTING SWEEP TESTS.
- 17 THE CONTRACTOR SHALL SUBMIT AT THE END OF THE PROJECT A COMPLETE SET OF AS-BUILT DRAWINGS TO THE CLIENT REPRESENTATIVE.

- 18. REFER TO: CONSTRUCTION STANDARDS-SPRINT DOCUMENT EXHIBIT A-STANDARD CONSTRUCTION SPECIFICATIONS FOR WIRELESS SITES REV. 4.0- 02.15.2011.DOCM.
- 19. REFER TO: WEATHER PROOFING SPECS: EXCERPT EXH A-WIHRPRF-STD CONSTR SPECS._157201110421855492.DOCM
- 20. REFER TO: COLOR CODING-SPRINT NEXTEL ANT AND LINE COLOR CODING (DRAFT) V3 09-08-11.PDF
- 21. REFER TO LATEST DOCUMENTATION REVISION.

DIVISION 03000-CONCRETE

- 1.03 APPLICABLE STANDARDS (USE LATEST EDITIONS)
- AC1-301 SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS. ACI-347 GUIDE TO FORM WORK FOR CONCRETE. ASTM C33- CONCRETE AGGREGATE

- ASTM C94 READY MIXED CONCRETE e. ASTM C150 PORTLAND CEMENT.
- ASTM C260 AIR-ENTRAINING ADMIXTURES FOR CONCRETE ASTM C309— LIQUID MEMBRANE FORMING COMPOUNDS FOR CURING CONCRETE.
- ASTM C494 CHEMICAL ADMIXTURES FOR CONCRETE
- ASTM A615- DEFORMED AND PLAIN BILLET-STEEL BARS FOR CONCRETE REINFORCEMENT
- J. ASTM A185- STEEL WELDED WIRE FABRIC (PLAIN) FOR CONCRETE REINFORCEMENT

1.04 QUALITY ASSURANCE

CONCRETE MATERIALS AND OPERATIONS SHALL BE TESTED AND INSPECTED BY THE ARCHITECT/ENGINEER AS DIRECTED BY THE CLIENT'S REPRESENTATIVE.

3.04 SURFACE FINISHES

A. SURFACES AGAINST WHICH BACKFILL OR CONCRETE SHALL BE PLACED REQUIRE NO TREATMENT EXCEPT REPAIR OF DEFECTIVE

B. SURFACES THAT WILL BE PERMANENTLY EXPOSED SHALL PRESENT A UNIFORM FINISH PROVIDED BY THE REMOVAL OF FINS AND THE FILLING HOLES AND OTHER IRREGULARITIES WITH DRY PACK GROUT, OR BY SACKING WITH UTILITY OR ORDINARY GROUT.

- C. SURFACES THAT WOULD NORMALLY BE LEVEL AND WHICH WILL BE PERMANENTLY EXPOSED TO THE WEATHER SHALL BE SLOPED FOR DRAINAGE. LINESS ENGINEER'S DESIGN DRAWING SPECIFIES A HORIZONTAL SURFACE OR SURFACES SUCH AS STAIR TREADS, WALLS, CURBS, AND PARAPETS SHALL BE SLOPED APPROXIMATELY 1/4" PER FOOT.
- D. SURFACES THAT WILL BE COVERED BY BACKFILL OR CONCRETE SHALL BE SMOOTH SCREENED
- E. EXPOSED SLAB SURFACES SHALL BE CONSOLIDATED, SCREENED, FLOATED, AND STEEL TROWELED. HAND OR POWER-DRIVEN EQUIPMENT MAY BE USED FOR FLOATING. FLOATING SHALL BE STARTED AS SOON AS THE SCREENED SURFACE HAS ATTAINED A STIFFNESS TO PERMIT FINISHING OPERATIONS, OPERATIONS, ALL EDGES MUST HAVE A 3/4" CHAMFER.
- 1.04 QUALITY ASSURANCE CONCRETE MATERIALS AND OPERATIONS SHALL BE TESTED AND INSPECTED BY THE ENGINEER

3.05 PATCHING

THE CONTRACTOR SHALL NOTIFY THE ENGINEER IMMEDIATELY UPON REMOVAL OF THE FORMS TO OBSERVE CONCRETE SURFACE CONDITIONS. IMPERFECTIONS SHALL BE PATCHED ACCORDING TO THE ENGINEER'S

3.06 DEFECTIVE CONCRETE

THE CONTRACTOR SHALL NOTIFY OR REPLACE CONCRETE NOT CONFORMING TO REQUIRED LEVELS AND LINES, DETAILS, AND ELEVATIONS AS SPECIFIED IN ACI 301.

A. IMMEDIATELY AFTER PLACEMENT, THE CONTRACTOR SHALL PROTECT THE CONCRETE FROM PREMATURE DRYING, EXCESSIVELY HOT OR COLD TEMPERATURES, AND MECHANICAL INJURY. FINISHED WORK SHALL BE PROTECTED.

- CONCRETE SHALL BE MAINTAINED WITH MINIMAL MOISTURE LOSS AT RELATIVELY CONSTANT TEMPERATURE FOR PERIOD NECESSARY FOR HYDRATION OF CEMENT AND HARDENING OF CONCRETE.
- C. ALL CONCRETE SHALL BE WATER CURED PER ACCEPTABLE PRACTICES SPECIFIED BY ACI CODE (LATEST EDITION)

DIVISION 05000 - METALS

PART 1 - GENERAL

1.01 WORK INCLUDED

- THE WORK CONSISTS OF THE FABRICATION AND INSTALLATION OF ALL MATERIALS TO BE FURNISHED. AND WITHOUT LIMITING THE GENERALITY THEREOF, INCLUDING ALL EQUIPMENT, LABOR AND SERVICES REQUIRED FOR ALL STRUCTURAL STEEL WORK AND ALL ITEMS INCIDENTAL AS SPECIFIED AND AS SHOWN ON THE DRAWINGS:
- STEEL FRAMING INCLUDING BEAMS, ANGLES, CHANNELS AND PLATES. WELDING AND BOLTING OF ATTACHMENTS.

1.02 REFERENCE STANDARDS

- THE WORK SHALL CONFORM TO THE CODES AND STANDARDS OF THE FOLLOWING AGENCIES AS FURTHER CITED HEREIN:
- ASTM: AMERICAN SOCIETY FOR TESTING AND MATERIALS AS PUBLISHED IN "COMPILATION OF ASTM STANDARDS IN BUILDING CODES" OR LATEST EDITION.

 AWS: AMERICAN WELDING SOCIETY CODE OR LATEST EDITION.
- AISC: AMERICAN INSTITUTE OF STEEL CONSTRUCTION "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS" (LATEST EDITION).

PART 2 - PRODUCTS

2.01 MATERIALS

A. STRUCTURAL STEEL: SHALL COMPLY WITH THE REQUIREMENTS OF ASTM A36 AND A992 FOR STRUCTURAL STEEL.

ALL PROPOSED STRUCTURAL STEEL SHALL BE FABRICATED AND ERECTED IN ACCORDANCE WITH AISC CODE AND ASTM SPECIFICATIONS (LATEST EDITION) ALL NEW STEEL SHALL CONFORM TO THE FOLLOWING.

- 1. STRUCTURAL WIDE FLANGE: ASTM A992 Fy=50KSI. 2. MISCELLANEOUS STEEL (PLATES), CHANNELS, ANGLES, ETC): ASTM A36 (Fy=36KSI). 3.STRUCTURAL TUBING: ASTM A500 Gr. B (Fy=46KSI).
- STEEL PIPE: ASTM A53 Gr B (Fy=35KSI).

2.02 WELDING

- ALL WELDING SHALL BE DONE BY CERTIFIED WELDERS. CERTIFICATION DOCUMENTS SHALL BE MADE AVAILABLE FOR ENGINEER'S AND/OR
- WELDING ELECTRODES FOR MANUAL SHIELDED METAL ARC WELDING SHALL CONFORM TO ASTM 1-233, E70 SERIES. BARE ELECTRODES AND GRANULAR FLUX USED IN THE SUBMERGED ARC PROCESS SHALL CONFORM TO AISC SPECIFICATIONS
- C. FIELD WELDING SHALL BE DONE AS PER AWS D1.1 REQUIREMENTS VISUAL INSPECTION IS ACCEPTABLE.
- STUD WELDING SHALL BE ACCOMPLISHED BY CAPACITOR DISCHARGE (CD) WELDING TECHNIQUE USING CAPACITOR DISCHARGE STUD WELDER.
- PROVIDE STUD FASTENERS OF MATERIALS AND SIZES SHOWN ON DRAWINGS OR AS RECOMMENDED BY THE MANUFACTURER FOR STRUCTURAL LOADINGS REQUIRED
- FOLLOW MANUFACTURERS SPECIFICATIONS AND INSTRUCTIONS TO PROPERLY SELECT AND INSTALL STUD WELDS.

2.03 BOLTING

- BOLTS SHALL BE CONFORMING TO ASTM A35 HIGH STRENGTH HOT DIP GALVANIZED WITH ASTM A153 HEAVY HEX TYPE NUTS.
- BOLTS SHALL BE 3/4" (MINIMUM) CONFORMING TO ASTM A325, HOT DIP GALVANIZED, ASTM A153 NUTS SHALL BE HEAVY HEX TYPE.
- ALL CONNECTIONS SHALL BE 2 BOLTS MINIMUM.
- EXCEPT WHERE SHOWN, ALL BEAM TO BEAM AND BEAM TO COLUMN CONNECTIONS TO BE DOUBLE ANGLED CONNECTIONS WITH HIGH STRENGTH BOLTS (THREADS EXCLUDED FROM SHEAR PLANE) AND HARDENED WASHERS
- E. STANDARD, OVERSIZED OR HORIZONTAL SHORT SLOTTED HOLES.
- SNUG-TIGHT STRENGTH BEARING BOLTS MAY BE USED IN STANDARD HOLES CONFORMING TO ACIS, USING THE TURN OF
- FULLY-TENSIONED HIGH STRENGTH (SLIP CRITICAL) SHALL BE USED IN OVERSIZED SLOT HOLES (RESPECTIVE OF SLOT ORIENTATION).
- ALL BRACED CONNECTION, MOMENT CONNECTION AND CONNECTIONS NOTED AS "SLIP CRITICAL" SHALL BE BE SLIP CRITICAL JOINTS WITH CLASS A SURFACE CONDITIONS. UNLESS OTHERWISE NOTED
- EPOXY ANCHOR ASSEMBLIES SHALL BE AS MANUFACTURED BY HILTI OR ENGINEER APPROVED FOUAL AS FOLLOWS:

BASE MATERIAL

ANCHOR SYSTEM

CONCRETE HOLLOW & GROUTED CMU OR BRICK HILTI HIT-HY 200

2.04 FABRICATION

A. FABRICATION OF STEEL SHALL CONFORM TO THE AISC AND AWS

A. STRUCTURAL STEEL EXPOSED TO WEATHER SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123. (LATEST EDITION) UNLESS OTHERWISE NOTED

2.06 PROTECTION

A. UPON COMPLETION OF ERECTION, INSPECT ALL GALVANIZED STEEL AND PAINT ANY FIELD CUTS, WELDS OR GALVANIZED BREAKS WITH (2) COATS OF ZINC-RICH COLD GALVANIZING PAINT.

PART 3 - ERECTION

- A. PROVIDE ALL ERECTION, EQUIPMENT, BRACING, PLANKING, FIELD BOLTS, NUTS, WASHERS, DRIFT PINS, AND SIMILAR MATERIALS WHICH DO NOT FORM A PART OF THE COMPLETED CONSTRUCTION, BUT ARE NECESSARY FOR ITS
- B. ERECT AND ANCHOR ALL STRUCTURAL STEEL IN ACCORDANCE WITH AISC REFERENCE STANDARDS, ALL WORK SHALL BE ACCURATELY SET TO ESTABLISHED SUITABLE ATTACHMENTS TO THE CONSTRUCTION OF THE BUILDING
- C. TEMPORARY BRACING, GUYING, AND SUPPORT SHALL BE PROVIDED TO KEEP THE STRUCTURE SET AND ALIGNED AT ALL TIMES DURING CONSTRUCTION, AND TO PREVENT DANGER TO PERSONS AND PROPERTY, CHECK ALL TEMPORARY LOADS AND STAY WITHIN SAFE

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**

FCTONIC

TECTONIC Engineering & Surveying Consultants P.C.

1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656

Fax: (845) 567-8703 www.tectonicengineering.com

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE CASE OF THE CASE

SUBMITTALS PROJECT NO: 7225.CT33XC514 NO DATE DESCRIPTION 0 06/19/14 FOR COMMENT 1 08/07/14 PER COMMENTS 2 08/26/14 FOR CONSTRUCTION		
NO DATE DESCRIPTION 0 06/19/14 FOR COMMENT 1 08/07/14 PER COMMENTS	SUBMIT	TALS
0 06/19/14 FOR COMMENT 1 08/07/14 PER COMMENTS	OJECT NO: 7225.CT	33XC514
I 08/07/I4 PER COMMENTS	DATE DESCR	RIPTION
	06/19/14 FOR C	OMMENT
2 08/26/14 FOR CONSTRUCTION	08/07/14 PER CO	OMMENTS
	08/26/14 FOR CON	STRUCTION

8/26/14

REVIEWED BY

SITE NUMBER CT33XC514

SITE NAME: N. BETHANY/DAVID KLUGE

SITE ADDRESS:

15 KLUGE ROAD PROSPECT, CT 06712

SHEET TITLE:

GENERAL NOTES

SHEET NO: SP-1

DIVISION 13000-SPECIAL CONSTRUCTION ANTENNA INSTALLATION

PART 1 - GENERAL

1.01 WORK INCLUDED

A. ANTENNAS AND HYBRIFLEX CABLES ARE FURNISHED BY CLIENT'S REPRESENTATIVE UNDER SEPARATE CONTRACT. THE CONTRACTOR SHALL ASSIST ANTENNA INSTALLATION CONTRACTOR IN TERMS OF COORDINATION AND SITE ACCESS. ERECTION SUBCONTRACTOR SHALL BE RESPONSIBLE FOR THE PROPERTY.

B. INSTALL ANTENNAS AS INDICATED ON DRAWINGS AND CLIENT'S REPRESENTATIVE SPECIFICATIONS.

C. INSTALL GALVANIZED STEEL ANTENNA MOUNTS AS INDICATED ON DRAWINGS.

D. INSTALL FURNISHED GALVANIZED STEEL OR ALUMINUM WAVEGUIDE AND PROVIDE PRINTOUT OF THAT RESULT

F. INSTALL HYBRIFLEX CABLES AND TERMINATIONS BETWEEN ANTENNAS AND EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. WEATHERPROOF ALL CONNECTORS BETWEEN THE ANTENNA AND EQUIPMENT PER MANUFACTURER'S REQUIREMENTS.

G. ANTENNA AND HYBRIFLEX CABLE GROUNDING:

 ALL EXTERIOR #6 GREEN GROUND WIRE DAISY CHAIN CONNECTIONS ARE TO BE WEATHER SEALED WITH ANDREWS CONNECTOR/SPLICE WEATHERPROOFING KIT TYPE 3221213 OR EQUIVALENT.

ALL HYBRIFLEX CABLE GROUNDING KITS ARE TO BE INSTALLED
ON STRAIGHT RUNS OF HYBRIFLEX CABLE (NOT WITHIN BENDS).
1.02 RELATED WORK FURNISH THE FOLLOWING WORK AS SPECIFIED
UNDER CONSTRUCTION DOCUMENTS, BUT COORDINATE WITH QOTHER
TRADES PRIOR TO BID:

1. FLASHING OF OPENING INTO OUTSIDE WALLS.

2. SEALING AND CAULKING ALL OPENINGS.
3. PAINTING.

4. CUTTING AND PATCHING.

1.03 REQUIREMENTS OF REGULATOR AGENCIES

A. FURNISH U.L. LISTED EQUIPMENT WHERE SUCH LABEL IS AVAILABLE. INSTALL IN CONFORMANCE WITH U.L. STANDARDS WHERE APPLICABLE.

WHERE APPLICABLE.

B. INSTALL ANTENNA, ANTENNA CABLES, GROUNDING SYSTEM IN ACCORDANCE WITH DRAWINGS AND SPECIFICATIONS IN EFFECT AT PROJECT LOCATION AND RECOMMENDATIONS OF STATE AND LOCAL BULDING CODES HAVING JURISDICTION OVER SPECIFIC PORTIONS OF WORK. THIS WORK INCLUDES, BUT IS NOT LIMITED TO THE

EIA — ELECTRONIC INDUSTRIES ASSOCIATION RS—22.
 STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWERS AND ANTENNA SUPPORTING STRUCTURES.

 FAA - FEDERAL AVIATION ADMINISTRATION ADVISORY CIRCULAR AC 70/7480-IH, CONSTRUCTION MARKING AND LIGHTING.

 FCC - FEDERAL COMMUNICATION COMMISSION RULES AND REGULATIONS FORM 715, OBSTRUCTION MARKING AND LIGHTING SPECIFICATION FOR ANTENNA STRUCTURES

 AISC - AMERICAN INSTITUTE OF STEEL CONSTRUCTION FOR STRUCTURAL JOINTS USING ASTM 1325 OR A490 BOLTS.

5. NEC - NATIONAL ELECTRIC CODE - ON TOWER LIGHTING KITS.

 UL – UNDERWRITER'S LABORATORIES APPROVED ELECTRICAL PRODUCTS.

IN ALL CASES, PART 77 OF THE FAA RULES AND PARTS 17
AND 22 OF THE FCC RULES ARE APPLICABLE AND IN THE EVENT
OF CONFLICT, SUPERSEDE ANY OTHER STANDARDS OR
SPECIFICATIONS

8. LIFE SAFETY CODE NFPA, LATEST EDITION.

DIVISION 13000-EARTHWORK

PART 1 GENERAL

1.01 WORK INCLUDED: REFER TO SURVEY AND SITE PLAN FOR WORK INCLUDED.

1.02 RELATED WORK

A. CONSTRUCTION OF EQUIPMENT FOUNDATIONS

INSTALLATION OF ANTENNA SYSTEM

PART 2 PRODUCTS

2.01 MATERIALS

A. ROAD AND SITE MATERIALS; FILL MATERIAL SHALL BE
ACCEPTABLE, SELECT FILL SHALL BE IN ACCORDANCE WITH LOCAL
DEPARTMENT OF HIGHWAY AND PUBLIC TRANSPORTATION
STANDARD SPECIFICATIONS

B. SOIL STERILIZER SHALL BE EPA REGISTERED OF LIQUID COMPOSITION AND OF PRE-EMERGENCE DESIGN.

C. SOIL STABILIZER FABRIC SHALL BE MIRAFI OR EQUAL — 600X AT ACCESS ROAD AND COMPOUND.

 GRAVEL FILL; WELL GRADED, HARD, DURABLE, NATURAL SAND AND GRAVEL, FREE FROM ICE AND SNOW, ROOTS, SOD RUBBISH, AND OTHER DELETERIOUS OR ORGANIC MATTER.

MATERIAL SHALL CONFORM TO THE FOLLOWING GRADATION REQUIREMENTS.

GRAVEL FILL TO BE PLACED IN LIFTS OF 9" MAXIMUM THICKNESS AND 90 % DENSITY. COMPACTED TO 95

E. NO FILL OR EMBANKMENT MATERIALS SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OF EMBANKMENT.

2.02 EQUIPMENT

A. COMPACTION SHALL BE ACCOMPLISHED BY MECHANICAL MEANS. LARGER AREAS SHALL BE COMPACTED BY SHEEPS FOOT, VIBRATORY OR RUBBER TIED ROLLERS WEIGHING AT LEAST FIVE TONS. SMALLER AREAS SHALL BE COMPACTED BY POWER-DRIVER, HAND HELD TAMPERS.

B. PRIOR TO OTHER EXCAVATION AND CONSTRUCTION EFFORTS GRUB ORGANIC MATERIAL TO A MINIMUM OF 6" BELOW ORIGINAL GROUND LEVEL.

C. UNLESS OTHERWISE INSTRUCTED BY CLIENT'S REPRESENTATIVE.
REMOVE TREES, BRUSH AND DEBRIS FROM THE PROPERTY TO AN
AUTHORIZED DISPOSAL LOCATION.

D. PRIOR TO PLACEMENT OF FILL OR BASE MATERIALS, ROLL THE SOIL.

E. WHERE UNSTABLE SOIL CONDITIONS ARE ENCOUNTERED, LINE THE GRUBBED AREAS WITH STABILIZER MAT PRIOR TO PLACEMENT OF FILL OR BASE MATERIAL.

3.03 INSTALLATION

A. THE SITE AND TURNAROUND AREAS SHALL BE AT THE SUB-BASE COURSE ELEVATION PRIOR TO FORMING FOUNDATIONS. GRADE OR FILL THE SITE AND ACCESS ROAD AS REQUIRED TO PRODUCE EVEN DISTRIBUTION OF SPOILS RESULTING FROM FOUNDATION EXCAVATIONS. THE RESULTING GRADE SHALL CORRESPOND WITH SAID SUB-BASE COURSE, ELEVATIONS ARE TO BE CALCULATED FORM FINISHED GRADES OR SLOPES INDICATED.

B. THE ACCESS ROAD SHALL BE BROUGHT TO BASE COURSE ELEVATION $\,$ PRIOR TO FOUNDATION CONSTRUCTION.

DO NOT CREATE DEPRESSIONS WHERE WATER MAY POND.

D. THE CONTRACT INCLUDES ALL NECESSARY GRADING, BANKING, DITCHING AND COMPLETE SURFACE COURSE FOR ACCESS ROAD. ALL ROADS OR ROUTES UTILIZED FOR ACCESS TO PUBLIC THOROUGHFARE IS INCLUDED IN SCOPE OF WORK UNLESS OTHERWISE INDICATED.

E. WHEN IMPROVING AN EXISTING ACCESS ROAD, GRADE THE EXISTING ROAD TO REMOVE ANY ORGANIC MATTER AND SMOOTH THE SURFACE BEFORE PLACING FILL OR STONE.

F. PLACE FILL OR STONE IN 3" MAXIMUM LIFTS AND COMPACT BEFORE PLACING NEXT LIFT.

G. THE FINISH GRADE, INCLUDING TOP SURFACE COURSE, SHALL EXTEND A MINIMUM OF 12" BEYOND THE SITE FENCE AND SHALL COVER THE AREA AS INDICATED.

H. RIPRAP SHALL BE APPLIED TO THE SIDE SLOPES OF ALL FENCED AREAS, PARKING AREAS AND TO ALL OTHER SLOPES GREATER THAN 2:1.

 RIPRAP SHALL BE APPLIED TO THE SIDES OF DITCHES OR DRAINAGE SWALES AS INDICATED ON PLANS.

J. RIPRAP ENTIRE DITCH FOR 6'-0" IN ALL DIRECTIONS AT CULVERT OPENINGS.

K. SEED, FERTILIZER AND STRAW COVER SHALL BE APPLIED TO ALL OTHER DISTURBED AREAS AND DITCHES, DRAINAGE, SWALES, NOT OTHERWISE RIP—RAPPED.

L. UNDER NO CIRCUMSTANCES SHALL DITCHES, SWALES OR CULVERTS BE PLACED SO THEY DIRECT WATER TOWARDS, OR PERMIT STANDING WATER IMMEDIATELY ADJACENT TO SITE. IF OWNER DESIGNS OR IF DESIGN ELEVATIONS CONFLICT WITH THIS GUIDANCE ADVISE THE OWNER IMMEDIATELY.

IF A DITCH LIES WITH SLOPE GREATER THAN TEN PERCENT, MOUND DIVERSIONARY HEADWALL IN THE DITCH AT CULVERT ENTRANCES. RIP—RAP THE UPSTREAM SIDE OF THE HEADWALL AS WELL AS THE DITCH FOR 6'-O" ABOVE THE CULVERT.

N. IF A DITCH LIES WITH SLOPES GREATER THAN TEN PERCENT, MOUND DIVERSIONARY HEADWALLS IN THE DITCH FOR 6'-0" ABOVE THE CULVERT ENTRANCE.

O. SEED AND FERTILIZER SHALL BE APPLIED TO SURFACE CONDITIONS WHICH WILL ENCOURAGE ROOTING. RAKE AREAS TO BE SEEDED TO EVEN THE SURFACE AND TO LOOSEN THE SOIL.

P. SOW SEED IN TWO DIRECTIONS IN TWICE THE QUANTITY
RECOMMENDED BY THE SEED PRODUCER

IT IS THE CONTRACTOR'S RESPONSIBILITY TO ENSURE GROWTH OF SEEDED AND LANDSCAPED AREAS BY WATERING UP TO THE POINT OF RELEASE FROM THE CONTRACT. CONTINUE TO REWORK BARE AREAS UNTIL COMPLETE COVERAGE IS OBTAINED.

3.04 FIELD QUALITY CONTROL

A. COMPACTION SHALL BE D-1557 FOR SITE WORK AND 95 % MAXIMUM DENSITY UNDER SLAB AREAS. AREAS OF SETTLEMENT WILL BE EXCAVATED AND REFILLED AT CONTRACTOR'S EXPENSE, REQUIRED. USE OF EROSION CONTROL MESH OR MULCH NET SHALL BE AN ACCEPTABLE ALTERNATIVE.

B. THE COMPACTION TEST RESULTS SHALL BE AVAILABLE PRIOR TO THE CONCRETE POUR.

3.05 PROTECTION

A. PROTECT SEEDED AREAS FORM EROSION BY SPREADING STRAW TO A UNIFORM LOOSE DEPTH OF 1"-2". STAKE AND TIE DOWN AS REQUIRED. USE OF EROSION CONTROL MESH OR MULCH NET SHALL BE AN ACCEPTABLE ALTERNATIVE.

B. ALL TREES PLACED IN CONJUNCTION WITH A LANDSCAPE CONTRACT SHALL BE WRAPPED, TIED WITH HOSE PROTECTED WIRE AND SECURED TO STAKES EXTENDING 2'-0" INTO THE GROUND ON FOUR SIDES OF THE TREE.

2. ALL EXPOSED AREAS SHALL BE PROTECTED AGAINST WASHOUTS AND SOIL EROSION. STRAW BALES SHALL BE PLACED AT THE INLET APPROACH TO ALL NEW OR EXISTING CULVERTS, REFER TO DETAILS ON DRAWINGS.

SYMBOLS	ABBREVIATIONS
	GROUND WIRE
— — е — — е —	ELECTRIC
	TELEPHONE
	OVERHEAD WIRE
	PROPERTY LINE
-xxx	CHAIN LINK FENCE
A-1	ANTENNA MARK
(E)	EXISTING
(P)	PROPOSED DETAIL
DET #	REFERENCE
♦	SURFACE ELEVATION

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

TECTONIC

ENGINEERING SURVEYING CONSTRUCTION MANAGEMENT

TECTONIC Engineering & Surveying

1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703

www.tectonicengineering.com

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNIENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

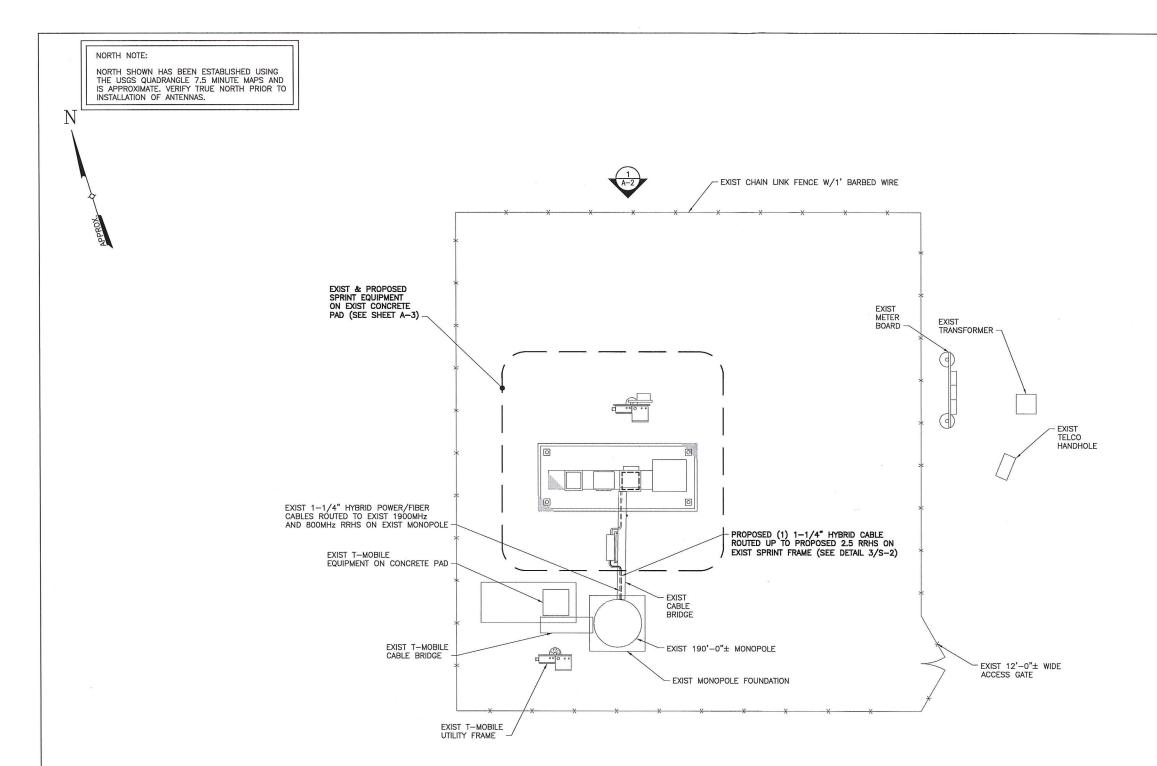
	SU	IBMITTALS	
PRO	DJECT NO	: 7225.CT33XC5I4	
NO	DATE	DESCRIPTION	B'
0	06/19/14	FOR COMMENT	J
1	08/07/14	PER COMMENTS	М
2	08/26/14	FOR CONSTRUCTION	J

ı	PATE.	REVIEWED BY
	8/26/14	TMQ
1	1	College and College
ı	630	SEAL MALE
ı	000	The same of the same
П	. 5 5	SOUMAND TO SO
П	2 K3 :	2 2000
П	200%	- O
П	= , /=	
П	2 F3 .	
	= 7	No. 22038
П	· .	10.2200
П	8 OA	-S/CEMSEY- SYS
	800 5	D
	- 60	TOTOMAN STORY

SITE NUMBER: CT33XC514

SITE NAME:
N. BETHANY/DAVID KLUGE

SITE ADDRESS:


15 KLUGE ROAD
PROSPECT, CT 06712

SHEET TITLE:

GENERAL NOTES

SHEET NO:

SP-2

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

TECTONIC

ENGINEERING
 SURVEYING
 CONSTRUCTION
 MANAGEMENT

TECTONIC Engineering & Surveying Consultants P.C.

1279 Route 300 Newburgh, NY 12550 Phone: (845) 567—6656 Fax: (845) 567—8703

www.tectonicengineering.com

THIS DOCUMENT IS THE CREATION.
DESIGN, PROPERTY AND COPYRIGHTED
WORK OF SPRINT COMMUNICATIONS, INC.
ANY DUPLICATION OR USE WITHOUT
EXPRESS WRITTEN CONSENT IS STRICTLY
PROHIBITED, DUPLICATION AND USE BY
GOVERNMENT AGENCIES FOR THE
PURPOSES OF CONDUCTING THEIR
LAWFULLY AUTHORIZED REGULATORY AND
ADMINISTRATIVE FUNCTIONS IS
SPECIFICALLY ALLOWED.

	SUBMITTALS				
PR	DJECT NO	: 7225.CT33XC5I4			
NO	DATE	DESCRIPTION	BY		
0	06/19/14	FOR COMMENT	JT		
1	08/07/14	PER COMMENTS	MF		
2	08/26/14	FOR CONSTRUCTION	JT		

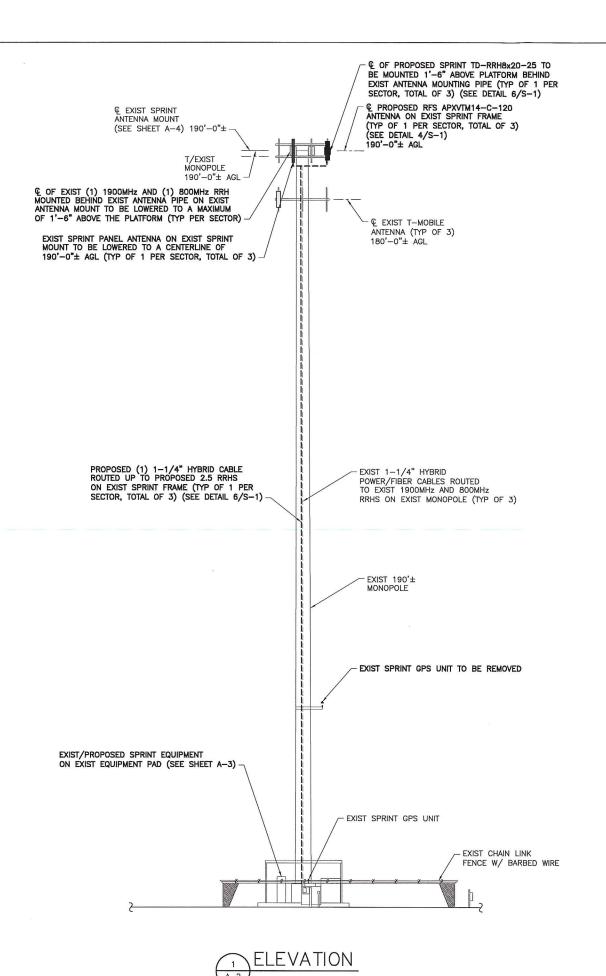
	i i		1		

8/26/14 JMQ
SEAL OF T
35600
SOIR COUNTY
No construction
33: 40-100:103
San Committee of the Co

REVIEWED BY

DATE,

SITE NUMBER: CT33XC514


SITE NAME:
N. BETHANY/DAVID KLUGE

SITE ADDRESS: 15 KLUGE ROAD PROSPECT, CT 06712

SHEET TITLE:

SITE PLAN

SHEET NO:

THE EXISTING MONOPOLE SHALL
BE ANALYZED BY A PROFESSIONAL ENGINEER
LICENSED IN THE STATE OF CONNECTICUT
(TO BE COORDINATED BY OTHERS).

THE EXISTING MOUNT HAS BEEN ANALYZED BY TECTONIC ENGINEERING AND FOUND TO BE ADEQUATE TO SUPPORT THE PROPOSED SPRINT UPGRADE ONCE THE MODIFICATIONS ARE COMPLETED AS DETAILED IN THE STRUCTURAL ANALYSIS EVALUATION LETTER, REV 1 DATED 8/26/14.

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

TECTONIC

ENGINEERING
 SURVEYING
 CONSTRUCTION
 MANAGEMENT

TECTONIC Engineering & Surveying Consultants P.C.

1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703

www.tectonicengineering.com

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

SUBMITTALS PROJECT NO: 7225.CT33XC514 NO DATE DESCRIPTION BY 0 06/19/14 FOR COMMENT JT 1 08/07/14 PER COMMENTS MP 2 08/26/14 FOR CONSTRUCTION JT

SEAL STAD

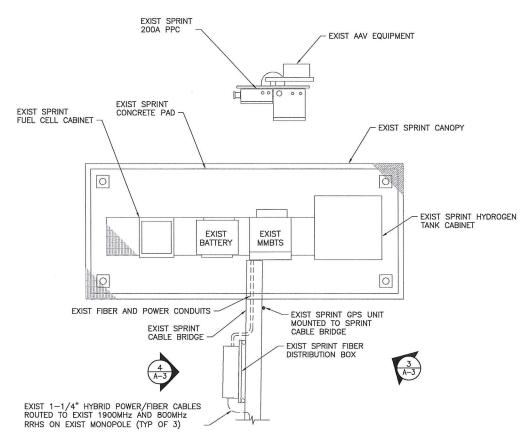
REVIEWED BY

CT33XC514

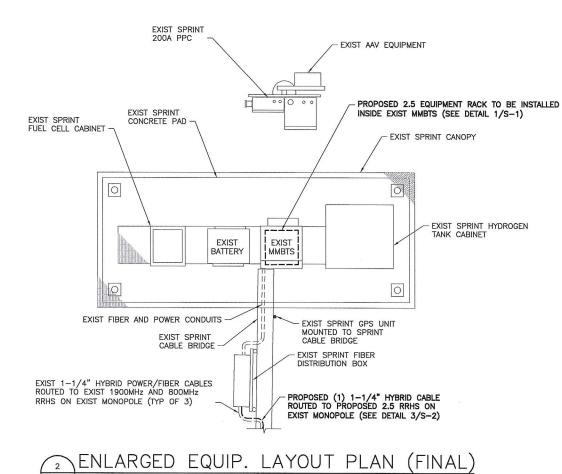
SITE NAME:
N. BETHANY/DAVID KLUGE

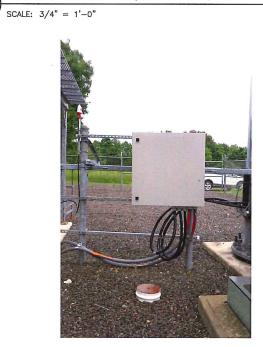
SITE ADDRESS: 15 KLUGE ROAD PROSPECT, CT 06712

SHEET TITLE:


ELEVATION

SHEET NO:




NORTH SHOWN HAS BEEN ESTABLISHED USING THE USGS QUADRANGLE 7.5 MINUTE MAPS AND IS APPROXIMATE. VERIFY TRUE NORTH PRIOR TO INSTALLATION OF ANTENNAS.

ENLARGED EQUIPMENT LAYOUT PLAN (EXIST) SCALE: 3/4" = 1'-0"

EXIST EQUIPMENT PAD

EXIST FIBER DISTRIBUTION BOX SCALE: NTS

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**

TECTONIC Engineering & Surveying Consultants P.C.

1279 Route 300 Newburgh, NY 12550

Phone: (845) 567-6656 Fax: (845) 567-8703 www.tectonicengineering.com

0 06/19/14 FOR COMMENTS		SL	IBMITTALS
0 06/19/14 FOR COMMENT 1 08/07/14 PER COMMENTS	PRO	DJECT NO	7225.CT33XC5I4
I 08/07/I4 PER COMMENTS	NO	DATE	DESCRIPTION
	0	06/19/14	FOR COMMENT
2 08/26/14 FOR CONSTRUCTI	I	08/07/14	PER COMMENTS
	2	08/26/14	FOR CONSTRUCTI

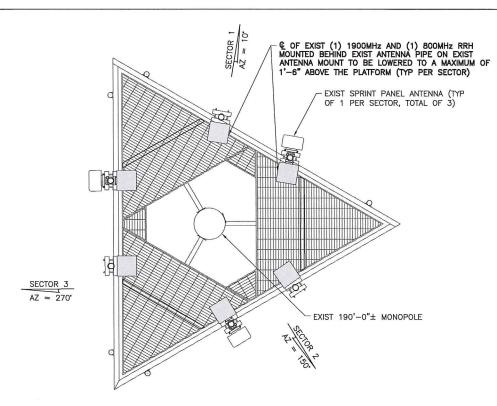
DATE.	REVIEWED BY
8/26/14	JMQ
10000	SEAL
90 C	C/P
8 6 6	
363.5	

CT33XC514

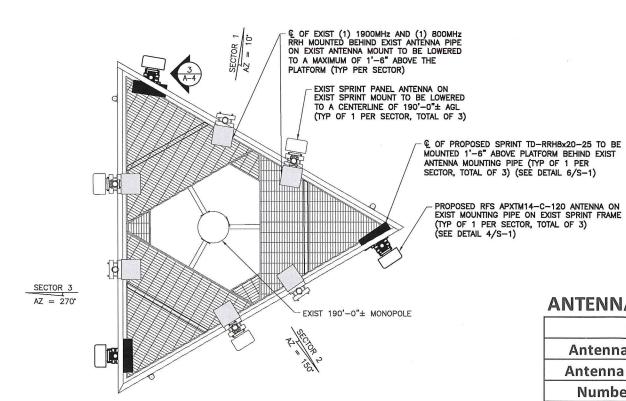
SITE NAME:

N. BETHANY/DAVID KLUGE

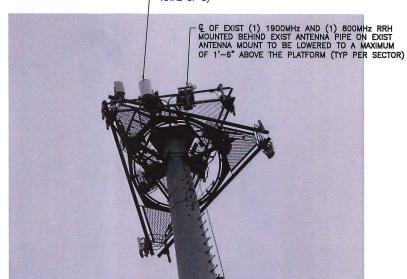
SITE ADDRESS: 15 KLUGE ROAD


PROSPECT, CT 06712

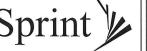
SHEET TITLE:


ENLARGED EQUIPMENT LAYOUT PLANS

SHEET NO:



ANTENNA LAYOUT PLAN (EXIST) SCALE: 3/8" = 1'-0"


ANTENNA LAYOUT PLAN (FINAL)

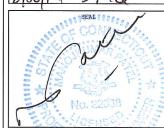
EXIST SPRINT PANEL ANTENNA (TYP OF 1 PER SECTOR, TOTAL OF 3)

THE EXISTING MONOPOLE SHALL BE ANALYZED BY A PROFESSIONAL ENGINEER LICENSED IN THE STATE OF CONNECTICUT (TO BE COORDINATED BY OTHERS).

> THE EXISTING MOUNT HAS BEEN ANALYZED BY TECTONIC ENGINEERING AND FOUND TO BE ADEQUATE TO SUPPORT THE PROPOSED SPRINT UPGRADE ONCE THE MODIFICATIONS ARE COMPLETED AS DETAILED IN THE STRUCTURAL ANALYSIS EVALUATION LETTER, REV 1 DATED 8/26/14.

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**

TECTONIC Engineering & Surveying Consultants P.C.


1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703

www.tectonicengineering.com

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY SOLVENWINE AGENIC

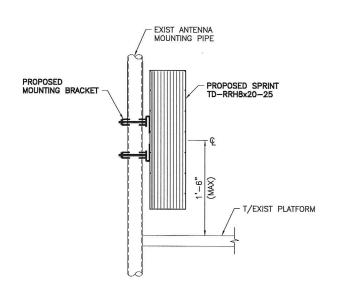
	SL	JBMITTALS	
PRO	DJECT NO	: 7225.CT33XC5I4	
NO	DATE	DESCRIPTION	B,
0	06/19/14	FOR COMMENT	J.
1	08/07/14	PER COMMENTS	М
2	08/26/14	FOR CONSTRUCTION	J
		7	
			$\overline{}$

REVIEWED BY 8/26/14

CT33XC514

SITE NAME: N. BETHANY/DAVID KLUGE

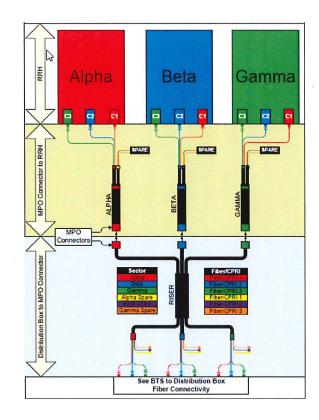
SITE ADDRESS:

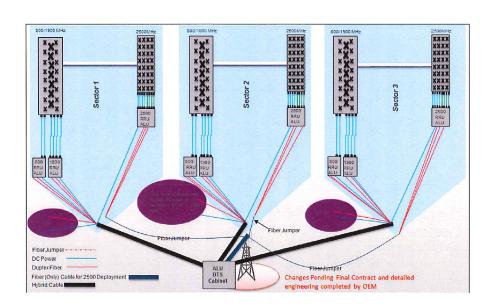

15 KLUGE ROAD PROSPECT, CT 06712

SHEET TITLE:

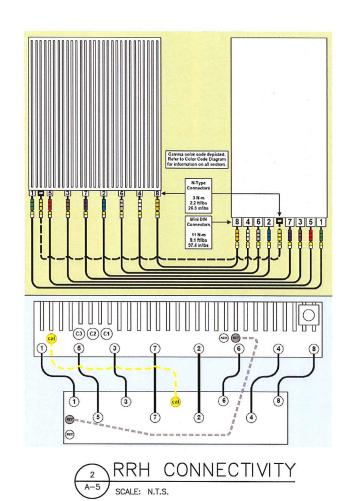
ANTENNA LAYOUT PLANS

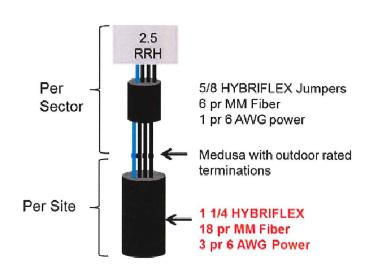
SHEET NO:


A-4


ANTENNA DATA

Status	Exist	Proposed
Antenna Manufacturer	RFS-CEL WAVE	RFS-CEL WAVE
Antenna Model Number	APXVSPP18C-A20	APXVTM14-C-120
Number of Antennas	3	3
Antenna RAD Center	190'	190'
Antenna Azimuth	10/150/270	10/150/270
Antenna RRH Model Number	1900MHz/800MHz RRHS	2.5GHz RRH-V3
Number of RRH	6	3




2.5 CABLE COLOR CODING

SCALE: N.T.S.

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

TECTONIC

PLANNING
 ENGINEERING
 SURVEYING
 CONSTRUCTION
 MANAGEMENT

TECTONIC Engineering & Surveying Consultants P.C.

1279 Route 300 Newburgh, NY 12550 Phone: (845) 567—6656 Fax: (845) 567—8703

www.tectonicengineering.com

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADDINISTRATIVE FUNCTIONS IS

B,
ГЈ
s M
10N J

PATE REVIEWED BY

SITE NUMBER: CT33XC514

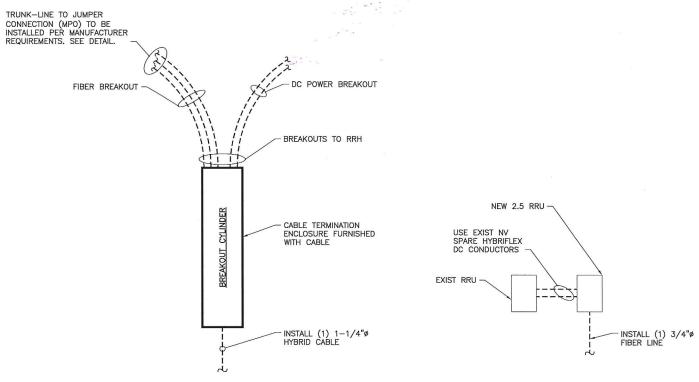
SITE NAME:
N. BETHANY/DAVID KLUGE

SITE ADDRESS:

15 KLUGE ROAD PROSPECT, CT 06712

SHEET TITLE:

RAN WIRING DIAGRAM


SHEET NO:

IMPORTANTII LINE UP WHITE
MARKINGS ON JUMPER AND RISER
IP—MPO CONNECTOR. PUSH THE
WHITE MARK ON THE JUMPER
CONNECTOR FLUSH AGAINST THE RED
SEAL ON THE RISER CONNECTION

IMPORTANTII ROTATE THE BAYONET HOUSING CLOCKWISE UNTIL A CLICK SOUND IS HEARD TO ENSURE A GOOD CONNECTION -

2.5 HYBRID CABLE W/FIBER & DC FEEDERS

FIBER ONLY TRUNK LINES

HYBRIFLEX RISER/JUMPER CONNECTION DETAILS

SPECIAL NOTES: CABLE MARKINGS AT RAD CENTER AND ALL WALL/BLDG. PENETRATIONS

- \bullet ALL COLOR CODE TAPE SHALL BE 3M-35 AND SHALL BE INSTALLED USING A MINIMUM OF (3) WRAPS OF TAPE.
- \bullet all color bands installed at the tower top shall be a minimum of 3" wide and shall have a minimum of 3/4" of spacing between each color.
- ALL COLOR BANDS INSTALLED AT OR NEAR THE GROUND MAY BE ONLY 3/4" WIDE. EACH TOP-JUMPER SHALL BE COLOR CORDED WITH (1) SET OF 3" WIDE BANDS.
- \bullet Each main coax shall be color coded with (1) set of 3" bands near the top—jumper connection and with 3/4" color bands just prior to entering the bts or transmitter building.
- ALL BOTTOM JUMPERS SHALL BE COLOR CODED WITH (1) SET OF 3/4" BANDS ON EACH END OF THE BOTTOM JUMPER.
- \bullet ALL COLOR CODES SHALL BE INSTALLED SO AS TO ALIGN NEATLY WITH ONE ANOTHER FROM SIDE—TO—SIDE.
- \bullet EACH COLOR BAND SHALL HAVE A MINIMUM OF (3) WRAPS AND SHALL BE NEATLY TRIMMED AND SMOOTHED OUT AS TO AVOID UNRAVELING.
- \bullet X-Pole antennas should use "XX-1" for the "+45" port, "XX-2" for the "-45" port.
- COLOR BAND #4 REFERS TO THE FREQUENCY BAND: ORANGE=850, VIOLET=1900. USED ON JUMPERS ONLY.
- RF FEEDLINE SHALL BE IDENTIFIED WITH A METAL TAG (STAINLESS OR BRASS) AND STAMPED WITH THE SECTOR, ANTENNA POSITION, AND CABLE NUMBER.
- ANTENNAS MUST BE IDENTIFIED, USING THE SECTOR LETTER AND ANTENNA NUMBER, WITH
 A PLACE MARKED BRIDE TO INSTALLATION.

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

TECTONIC

ENGINEERING
 SURVEYING
 CONSTRUCTION
 MANAGEMENT

TECTONIC Engineering & Surveying Consultants P.C.

1279 Route 300 Newburgh, NY 12550

Fax: (845) 567-8703 www.tectonicengineering.com

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ASSEMBLATION FUNCTIONS IS SEMENISTRATIVE FUNCTIONS IS

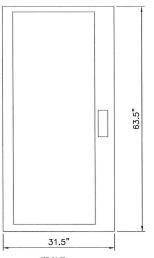
	SL	JBMITTALS	
PRO	DJECT NO	: 7225.CT33XC5I4	_
NO	DATE	DESCRIPTION	E
0	06/19/14	FOR COMMENT	,
1	08/07/14	PER COMMENTS	1
2	08/26/14	FOR CONSTRUCTION	

1	DATE	REVIEWED BY
1	8/26/14	JMQ
1	9/ 1	Of Action
- 1	000	SEAL
- 1	0016	The second second
-1	000	3000
-1	3 K3 3	
-	200/	N
-1	3,63	U
- 1	= 78 0	- In
-1	= -6	Min manage in i
-	200	MO. ZZUSO : NES
- 1	20	". Common of Sois
-	6000	The state of the s
1	1 200	CONTRACT FOR SO

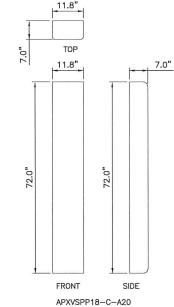
SITE NUMBER:

CT33XC514

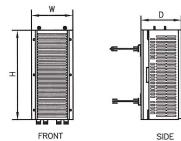
SITE NAME:
N. BETHANY/DAVID KLUGE


CIME ADDRESS.

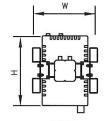
15 KLUGE ROAD PROSPECT, CT 06712

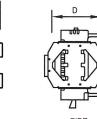

SHEET TITLE:

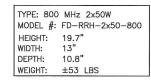
CABLE DETAILS

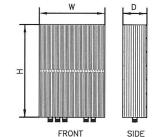

SHEET NO:

9927 MMBTS MODULAR CELL SPECIFICATIONS: HEIGHT: 63.5" WIDTH: 31.5" DEPTH: 38.0"


(EXIST) ANTENNA DETAIL SCALE: 3/4"=1'-0"




1900 MHz 4x45W MODEL #: RRH 1900 4X45 65MHz HEIGHT: 25.0" WIDTH: 11.1" DEPTH: 11.4" WEIGHT: ±60 LBS.


SCALE: 1 1/2"=1'-0"

(EXIST) RRH DETAILS

TYPE: 2.5 RRH MODEL #: TD-RRH8x20-25 HEIGHT: 26.1" WIDTH: DEPTH: 18.6" DEPTH: 6.7" WEIGHT: ±70 LBS

(PROPOSED) RRH DETAIL

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**

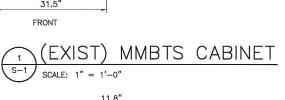
TECTONIC Engineering & Surveying Consultants P.C.

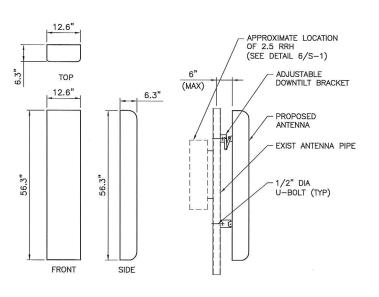
1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703

www.tectonicengineering.com

	SL	JBMITTALS
PRO	DJECT NO	: 7225.CT33XC5I4
NO	DATE	DESCRIPTION
0	06/19/14	FOR COMMENT
1	08/07/14	PER COMMENTS
2	08/26/14	FOR CONSTRUCTION

SITE NUMBER: CT33XC514


SITE NAME: N. BETHANY/DAVID KLUGE


> SITE ADDRESS: 15 KLUGE ROAD

PROSPECT, CT 06712

SHEET TITLE: EQUIPMENT DETAILS

SHEET NO: S-1

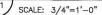
(EXIST) BATTERY CABINET

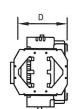
BATTERY

SPECIFICATIONS:

HEIGHT: 63.5"

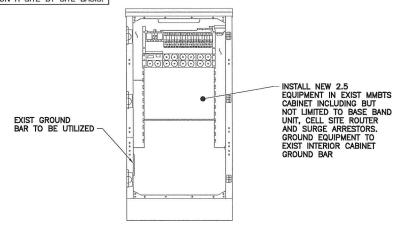
WIDTH: 31.5"


DEPTH: 28.0"


APXVTM14-C-120

31.5"

FRONT


(PROPOSED) ANTENNA DETAIL

SCALE: N.T.S.

NOTE:
LOCATIONS SHOWN FOR
INSTALLATION OF NEW
EQUIPMENT IN EXISTING
CABINET ARE APPROXIMATE.
ACTUAL SPACE AVAILABLE
TO BE VERIFIED IN FIELD
ON A SITE BY SITE BASIS.

FRONT ELEVATION (CABINET INTERIOR)

MMBTS INTERIOR DETAIL S-2 SCALE: N.T.S.

LEGEND: 1. P1000T—HG UNISTRUT, 12" LONG. 2. 6" PIPE HANGER. 3. EXISTING SUPPORT PIPE. 4. NEW STANDOFF BRACKET, ANDREW PART# 30848-4. 5. NEW ROUND MEMBER ADAPTER SIZED FOR EXISTING PIPE SUPPORT. 6. BREAKOUT UNIT. 7. CABLE. SIDE VIEW TOP VIEW

RFS HYBRIFLEX RISER CABLES SCHEDULE

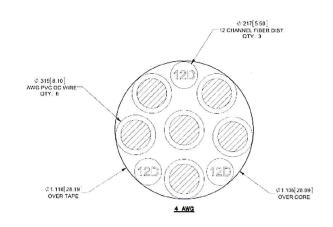
Fiber Only (Existing DC Power)	Hybrid cable MN: HB058-M12-050F 12x multi-mode fiber pairs, Top: Outdoor protected connectors, Bottom:LC Connectors, S/8 cable, 50ft	50 ft
	MN: HB058-M12-075F	75 ft
	MN: HB058-M12-100F	100 ft
	MN:HB058-M12-125F	125 ft
	MN:HB058-M12-150F	150 ft
	MN:HB058-M12-175F	175 ft
	MN:HB058-M12-200F	200 ft

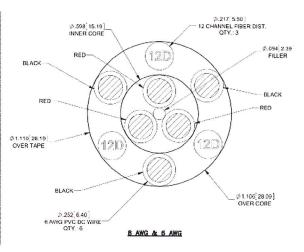
	Hybrid cable	
	MN: HB114-08U3M12-050F	50 ft
	3x 8 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC	5011
Power	Connectors, 11/4 cable, 50ft	
8	MN: HB114-08U3M12-075F	75 ft
Ŋ	MN: HB114-08U3M12-100F	100 ft
8 AWG	MN: HB114-08U3M12-125F	125 ft
	MN: HB114-08U3M12-150F	150 ft
	MN: HB114-08U3M12-175F	175 ft
	MN: HB114-08U3M12-200F	200 ft

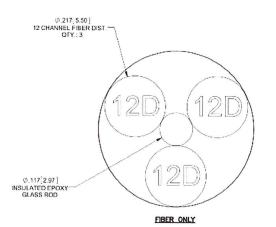
6 AWG Power	Hybrid cable MN: HB114-13U3M12-225F 3x 6 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC Connectors, 11/4 cable, 225ft	225 ft
6 AW	MN: HB114-13U3M12-250F	250 ft
	MN: HB114-13U3M12-275F	275 ft
	MN: HB114-13U3M12-300F	300 ft

AWG Power	Hybrid cable MN: HB114-21U3M12-225F 3x 6 AWG power pairs, 12x multi-mode fiber pairs, Outdoor rated connectors & LC Connectors, 1 1/4 cable, 225ft	325 ft
4 A	MN: HB114-21U3M12-350F	350 ft
	MN: HB114-21U3M12-375F	375 ft

RFS HYBRIFLEX JUMPER CABLE SCHEDULE


	Hybrid Jumper cable	
	MN: HBF012-M3-5F1	5 ft
<u>></u>	5 ft, 3x multi-mode fiber pairs, Outdoor & LC connectors, 1/2 cable	
Fiber Only	MN: HBF012-M3-10F1	10 ft
	MN: HBF012-M3-15F1	15 ft
	MN: HBF012-M3-20F1	20 ft
	MN: HBF012-M3-25F1	25 ft
	MN: HBF012-M3-30F1	30 ft


ower	Hybrid Jumper cable MM: HBF058-08UJM3-5F1 5 ft, 1x 8 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC Connectors, 5/8 cable	5 ft
8 AWG Power	MN: HBF058-08U1M3-10F1	10 ft
	MN: HBF058-08U1M3-15F1	15 ft
	MN: HBF058-08U1M3-20F1	20 ft
	MN: HBF058-08U1M3-25F1	25 ft
	MN: HBF058-08U1M3-30F1	30 ft


ower	Hybrid Jumper cable MN: HBF058-13U1M3-5F1 5 ft, 1x 6 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC Connectors, 5/8 cable	5 ft
6 AWG Power	MN: HBF058-13U1M3-10F1	10 ft
	MN: HBF058-13U1M3-15F1	15 ft
	MN: HBF058-13U1M3-20F1	20 ft
	MN: HBF058-13U1M3-25F1	25 ft
	MN: HBF058-13U1M3-30F1	30 ft

	Hybrid Jumper cable	
ŗ	MN: HBF078-21U1M3-5F1 5 ft, 1x 4 AWG power pair, 3x multi-mode fiber pairs, Outdoor & LC Connectors.	5 ft
4 AWG Powe	7/8 cable	
	MN: HBF078-21U1M3-10F1	10 ft
	MN: HBF078-21U1M3-15F1	15 ft
	MN: HBF078-21U1M3-20F1	20 ft
	MN: HBF078-21U1M3-25F1	25 ft
	MN: HBF078-21U1M3-30F1	30 ft

HYBRID CABLE	DC CONDUCTO	OR SIZE GUIDELINE	
MANUF:	RFS		
CABLE	LENGTH	DC CONDUCTOR	CABLE DIAMETER
FIBER ONLY	VARIES	USE NV HYBRIFLEX	7/8"
HYBRIFLEX	<200'	8 AWG	1-1/4"
HYBRIFLEX	225-300'	6 AWG	1-1/4"
HYBRIFLEX	325-375'	4 AWG	1-1/4"

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

TECTONIC

ENGINEERING
 SURVEYING
 CONSTRUCTION
 MANAGEMENT

TECTONIC Engineering & Surveying Consultants P.C.

1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703

Fax: (845) 567-8636 www.tectonicengineering.com

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

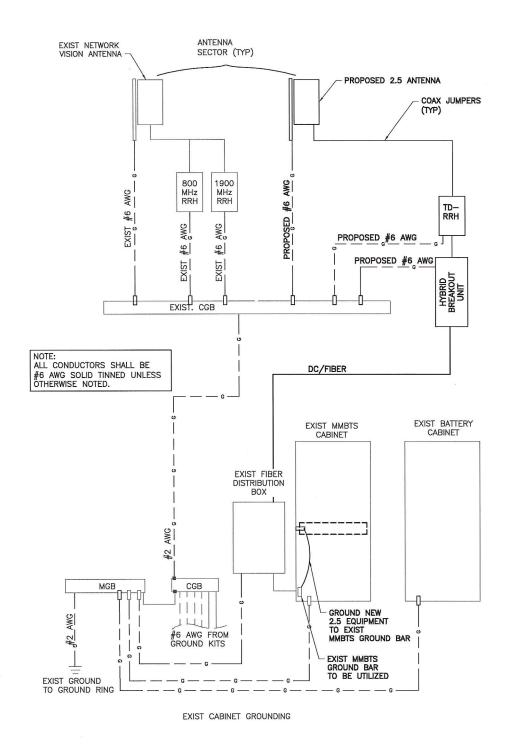
PRO	DJECT NO	: 7225.CT33XC5I4
NO	DATE	DESCRIPTION
0	06/19/14	FOR COMMENT
1	08/07/14	PER COMMENTS
2	08/26/14	FOR CONSTRUCTION
_		AND HOLD

DATE REVIEWED BY

SITE NUMBER: CT33XC514

SITE NAME:

N. BETHANY/DAVID KLUGE


SITE ADDRESS:

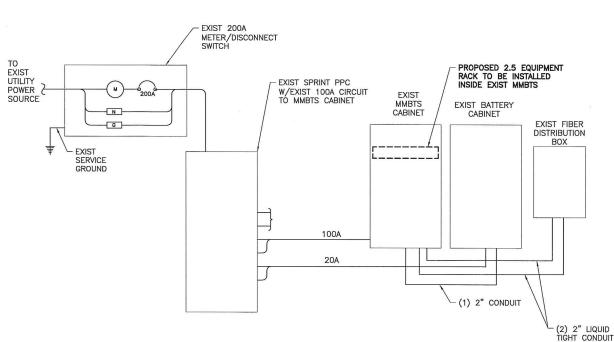
15 KLUGE ROAD PROSPECT, CT 06712

SHEET TITLE:
EQUIPMENT
SCHEMATIC DETAILS

SHEET NO:

S-2

LEGEND


CADWELD CONNECTION

MECHANICAL CONNECTION

COMPRESSION CONNECTION

TYPICAL GROUNDING ONE LINE DIAGRAM

SCALE: NTS

TYPICAL ELECTRICAL & TELCO PLAN

SCALE: NTS

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY OVERLAND PARK, KANSAS 66251

TECTONIC

PLANNING
 ENGINEERING
 SURVEYING
 CONSTRUCTION
 MANAGEMENT

TECTONIC Engineering & Surveying

1279 Route 300 Newburgh, NY 12550 Phone: (845) 567-6656 Fax: (845) 567-8703

www.tectonicengineering.com

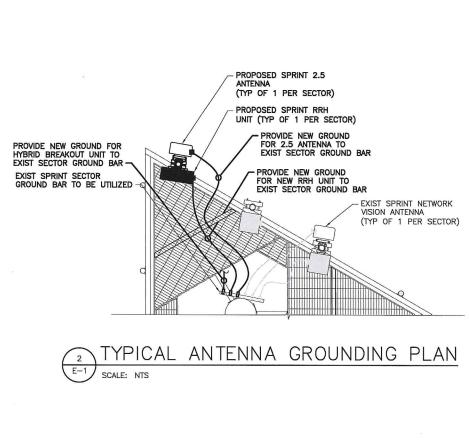
THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPOSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

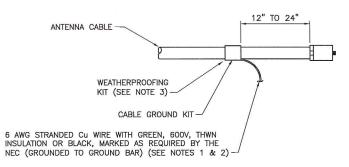
DATE	REVIEWED BY
8/26/14	TMQ
	COMME
63,	SEAL
200	Contract Con
000	AL CO
3 A 3 6	San Time
2 60 %	
2/	1
= = 1	
60	No. 22038 : 45 €
200	NO. 22/00
2	3. C/mm. 1000 W/3
-	A STATE OF THE STATE OF
1000	Comment Elling

SITE NUMBER: CT33XC514

SITE NAME:
N. BETHANY/DAVID KLUGE

SITE ADDRESS:


15 KLUGE ROAD PROSPECT, CT 06712

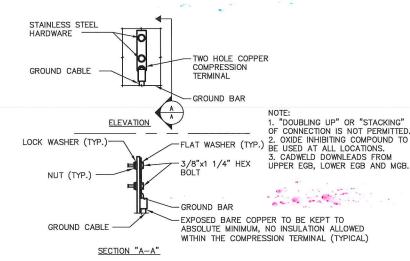

SHEET TITLE:

ELECTRICAL & GROUNDING PLANS

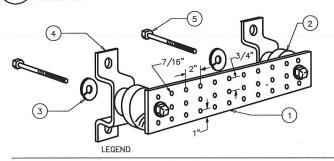
SHEET NO:

E-1

CONNECTION OF CABLE GROUND KIT TO ANTENNA CABLE

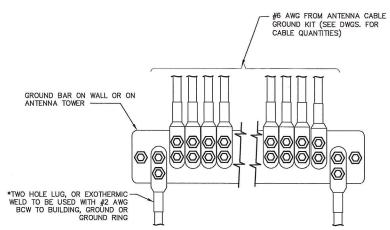

NOTES:

DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO


GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE

WEATHER PROOFING SHALL BE (TYPE AND PART NUMBER) AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER AND APPROVED BY CONTRACTOR.

CABLE GROUNDING KIT DETAIL E-2 SCALE: N.T.S.


GROUNDING BAR CONN. DETAIL E-2 SCALE: NTS

- 1- COPPER TINNED GROUND BAR, 1/4"X 4"X 20", OR OTHER LENGTH AS REQUIRED, HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION INSULATORS, NEWTON INSTRUMENT CAT. NO. 3061-4 OR EQUAL
- 5/8" LOCKWASHERS OR EQUAL
- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT NO. A-6056 OR EQUAL

ALL BOLTS, NUTS, WASHERS AND LOCK WASHERS SHALL BE 18-8

- * GROUND BARS AT THE BOTTOM OF TOWERS/MONOPOLES SHALL ONLY USE EXOTHERMIC WELDS.
- ATTACH "DO NOT DISCONNECT" LABELS TO GROUND BARS. CAN USE BRASS TAG "DO NOT DISCONNECT" AT EACH HYBRID GROUND POINT OR BACK-A-LITE PLATE LABEL ON GROUND BAR.
- CONNECT SEQUENCE- BOLT/WASHER/NO-OX/GROUND BAR/NO-OX/WASHER/LOCK-WASHER/NUT. THIS IS REPEATED FOR EACH

ANTENNA GROUND BAR DETAIL E-2 SCALE: NTS

GROUNDING NOTES:

- 1. GROUNDING SHALL BE IN ACCORDANCE WITH NEC ARTICLE 250-GROUNDING AND BONDING.
- 2. ALL GROUND WIRES SHALL BE #2 AWG UNLESS NOTED OTHERWISE.
- ALL GROUNDING WIRES SHALL PROVIDE A STRAIGHT, DOWNWARD PATH TO GROUND WITH GRADUAL BENDS AS REQUIRED. GROUND WIRES SHALL NOT BE LOOPED OR SHARPLY BENT.
- 4. EACH EQUIPMENT CABINET SHALL BE CONNECTED TO THE MASTER ISOLATION GROUND BAR (MGB) WITH #2 AWG INSULATED STRANDED COPPER WIRE. EQUIPMENT CABINETS WALL HAVE (2)
- 5. PROVIDE DEDICATED #2 AWG COPPER GROUND WIRE FROM EACH ANTENNA MOUNTING PIPE TO ASSOCIATED CIGBE
- 6. THE CONTRACTOR SHALL VERIFY THAT THE EXISTING GROUND BARS HAVE ENOUGH SPACE/HOLES FOR ADDITIONAL TWO HOLE LUGS.
- 7. ALL CONDUITS SHALL BE RIGID GALVANIZED STEEL AND SHALL BE PROVIDED WITH
- 8. PROVIDE GROUND CONNECTIONS FOR ALL METALLIC STRUCTURES, ENCLOSURES, RACEWAYS AND OTHER CONDUCTIVE ITEMS ASSOCIATED WITH THE INSTALLATION OF CARRIER'S FOLLIPMENT
- 9. WHEN CABLE LENGTH IS OVER 20' THE MANUFACTURERS GROUND KIT MUST BE INSTALLED PER THE MANUFACTURERS SPECIFICATIONS. 10. REFER TO "ANTI-THEFT UPDATE TO SPRINT GROUNDING 082412.PDF" FOR GUIDELINE TO
- SUSPECTED OR ACTUAL THEFT OF GROUNDING.
- 11. HOME RUN GROUNDS ARE NOT APPROVED BY CROWN CASTLE CONSTRUCTION STANDARDS AND THAT ANTENNA BUSS BARS SHOULD BE INSTALLED DIRECTLY TO TOWER STEEL WITHOUT INSULATORS OR DOWN CONDUCTORS.

PROTECTIVE GROUNDING SYSTEM GENERAL NOTES:

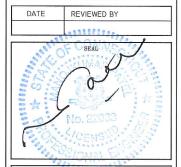
- 1. AT ALL TERMINATIONS AT EQUIPMENT ENCLOSURES, PANEL, AND FRAMES OF EQUIPMENT AND WHERE EXPOSED FOR GROUNDING. CONDUCTOR TERMINATION SHALL BE PERFORMED UTILIZING TWO HOLE BOLTED TONGUE COMPRESSION TYPE LUGS WITH STAINLESS STEEL SELF—TAPPING SCREWS.
- 2. ALL CLAMPS AND SUPPORTS USED TO SUPPORT THE GROUNDING SYSTEM CONDUCTORS AND PVC CONDUITS SHALL BE PVC TYPE (NON CONDUCTIVE). DO NOT USE METAL BRACKETS OR SUPPORTS WHICH WOULD FORM A COMPLETE RING AROUND ANY GROUNDING CONDUCTOR
- 3. ALL GROUNDING CONNECTIONS SHALL BE COATED WITH A COPPER SHIELD ANTI-CORROSIVE AGENT SUCH AS T&B KOPR SHIELD, VERIFY PRODUCT WITH PROJECT MANAGER
- 4. ALL BOLTS, WASHERS, AND NUTS USED ON GROUNDING CONNECTIONS SHALL BE STAINLESS STEEL.
- 5. INSTALL GROUND BUSHING ON ALL METALLIC CONDUITS AND BOND TO THE EQUIPMENT GROUND BUS IN THE PANEL BOARD.
- 6. GROUND ANTENNA BASES, FRAMES, CABLE RACKS, AND OTHER METALLIC COMPONENTS WITH #2 INSULATED TINNED STRANDED COPPER GROUNDING CONDUCTORS AND CONNECT TO INSULATED SURFACE MOUNTED GROUND BARS. CONNECTION DETAILS SHALL FOLLOW MANUFACTURER'S SPECIFICATIONS FOR GROUNDING
- 7. GROUND HYBRID CABLE SHIELD AT BOTH ENDS USING MANUFACTURER'S GUIDELINES.

ELECTRICAL AND GROUNDING NOTES

- 1. ALL ELECTRICAL WORK SHALL CONFORM TO THE REQUIREMENTS OF THE NATIONAL ELECTRICAL CODE (NEC) AS WELL AS APPLICABLE STATE AND LOCAL CODES.
- ALL ELECTRICAL ITEMS SHALL BE U.L. APPROVED OR LISTED AND PROCURED PER SPECIFICATION REQUIREMENTS.
- 3. ELECTRICAL AND TELCO WIRING OUTSIDE A BUILDING AND EXPOSED TO WEATHER SHALL BE IN WATER TIGHT GALVANIZED RIGID STEEL CONDUITS OR SCHEDULE 80 PVC (AS PERMITTED BY CODE) AND WHERE REQUIRED IN LIQUID TIGHT FLEXIBLE
- 4. BURIED CONDUIT SHALL BE SCHEDULE 40 PVC.
- 5. ELECTRICAL WIRING SHALL BE COPPER WITH TYPE XHHW, THWN, OR THNN INSULATION.
- 6. RUN TELCO CONDUIT OR CABLE BETWEEN TELEPHONE UTILITY DEMARCATION POINT AND PROJECT OWNER CELL SITE TELCO CABINET AND BTS CABINET AS INDICATED ON THIS DRAWING PROVIDE FULL LENGTH PULL ROPE IN INSTALLED TELCO CONDUIT. PROVIDE GREENLEE CONDUIT MEASURING TAPE AT EACH END.
- 7. WHERE CONDUIT BETWEEN BTS AND PROJECT OWNER CELL SITE PPC AND BETWEEN BTS AND PROJECT OWNER CELL SITE TELCO SERVICE CABINET ARE UNDERGROUND USE PVC, SCHEDULE 40 CONDUIT, ABOVE THE GROUND PORTION OF THESE
- 8. ALL EQUIPMENT LOCATED OUTSIDE SHALL HAVE NEMA 3R ENCLOSURE.
- 9. GROUNDING SHALL COMPLY WITH NEC ART. 250.
- 10. GROUND HYBRID CABLE SHIELDS AT 3 LOCATIONS USING MANUFACTURER'S HYBRID CABLE GROUNDING KITS SUPPLIED BY PROJECT OWNER
- 11. USE #2 COPPER STRANDED WIRE WITH GREEN COLOR INSULATION FOR ABOVE GRADE GROUNDING (UNLESS OTHERWISE SPECIFIED) AND #2 SOLID TINNED BARE COPPER WRE FOR BELOW GRADE GROUNDING AS INDICATED ON THE DRAWING.
- 12. ALL GROUND CONNECTIONS TO BE BURNDY HYGROUND COMPRESSION TYPE CONNECTORS OR CADWELD EXOTHERMIC WELD. DO NOT ALLOW BARE COPPER WIRE TO BE IN CONTACT WITH GALVANIZED STEEL
- 13. ROUTE GROUNDING CONDUCTORS ALONG THE SHORTEST AND STRAIGHTEST PATH POSSIBLE, EXCEPT AS OTHERWISE INDICATED. GROUNDING LEADS SHOULD NEVER BE BENT AT RIGHT ANGLE. ALWAYS MAKE AT LEAST 12" RADIUS BENDS. #2 WIRE CAN BE BENT AT 6" RADIUS WHEN NECESSARY, BOND ANY METAL OBJECTS WITHIN 6 FEET OF PROJECT OWNER EQUIPMENT OR CABINET TO MASTER GROUND BAR OR GROUNDING RING
- 14. CONNECTIONS TO GROUND BARS SHALL BE MADE WITH TWO HOLE COMPRESSION TYPE COPPER LUGS. APPLY OXIDE INHIBITING COMPOUND TO ALL LOCATIONS.
- 15. APPLY OXIDE INHIBITING COMPOUND TO ALL COMPRESSION TYPE GROUND
- 16. BOND ANTENNA MOUNTING BRACKETS, HYBRID CABLE GROUND KITS, AND RRHs TO EGB PLACED NEAR THE ANTENNA LOCATION.
- 17. BOND ANTENNA EGB'S AND MGB TO GROUND RING
- CONTRACTOR SHALL TEST COMPLETED GROUND SYSTEM AND RECORD RESULT FOR PROJECT CLOSE—OUT DOCUMENTATION. 5 OHMS MINIMUM RESISTANCE REQUIRED.
- 19. CONTRACTOR SHALL CONDUCT ANTENNA, HYBRID CABLES, GPS COAX AND RRH RETURN-LOSS AND DISTANCE- TO-FAULT MEASUREMENTS (SWEEP TESTS) AND RECORD RESULTS FOR PROJECT CLOSE OUT.
- 20. CONTRACTOR SHALL CHECK CAPACITY OF EXISTING SERVICE & PANEL ON SITE TO DETERMINE IF CAPACITY EXISTS TO ACCOMMODATE THE ADDED LOAD OF THIS PROJECT. ADVISE ENGINEER OF ANY DISCREPANCY
- 21. LOCATION OF ALL OUTLET, BOXES, ETC, AND THE TYPE OF CONNECTION (PLUG OR DIRECT) SHALL BE CONFIRMED WITH THE OWNER'S REPRESENTATIVE PRIOR TO
- 22. ELECTRICAL CHARACTERISTICS OF ALL EQUIPMENT (NEW AND EXISTING) SHALL BE FIELD VERIFIED WITH THE OWNERS REPRESENTATIVE AND EQUIPMENT SUPPLIER PRIOR TO ROUGH—IN OF CONDUIT AND WIRE. ALL EQUIPMENT SHALL BE PROPERLY CONNECTED ACCORDING TO THE NAMEPLATE DATA FURNISHED ON THE EQUIPMENT.

2.5 EQUIPMENT DEPLOYMENT 6850 SPRINT PARKWAY **OVERLAND PARK, KANSAS 66251**

TECTONIC Engineering & Surveying Consultants P.C


1279 Route 300 Newburgh, NY 12550

Phone: (845) 567-6656 Fax: (845) 567-8703

www.tectonicengineering.com

THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF SPRINT COMMUNICATIONS, INC. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITTEN CONSENT IS STRICTLY PROHIBITED, DUPLICATION AND USE BY GOVERNIFENT AGENCIES FOR THE PURPOSES OF TONDUCTING THEIR PURPOSES OF TONDUCTING THEIR AGMINISTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED.

	SL	JBMITTALS	
PRO	DJECT NO	: 7225.CT33XC5I4	
NO	DATE	DESCRIPTION	В
0	06/19/14	FOR COMMENT	J
1	08/07/14	PER COMMENTS	М
2	08/26/14	FOR CONSTRUCTION	J
		•	

SITE NUMBER: CT33XC514

SITE NAME:

N. BETHANY/DAVID KLUGE SITE ADDRESS

> 15 KLUGE ROAD PROSPECT, CT 06712

> > SHEET TITLE:

GROUNDING DETAILS & NOTES

SHEET NO:

E-2

Date: June 04. 2014

Veronica Harris Crown Castle 1200 McArthur Blvd Mahwah, NJ 07430

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject: **Structural Analysis Report**

Carrier Designation: Sprint PCS Co-Locate Scenario 2.5B **Carrier Site Number:** CT33XC514

Crown Castle BU Number: Crown Castle Designation: 876378

> Crown Castle Site Name: N. BETHANY / DAVID KLUDGE

Crown Castle JDE Job Number: 288226 **Crown Castle Work Order Number:** 773477 **Crown Castle Application Number:** 246002 Rev. 0

Engineering Firm Designation: **Crown Castle Project Number:** 773477

15 Kluge Road, PROSPECT, New Haven County, CT Site Data:

Latitude 41° 28′ 16.05″, Longitude -72° 58′ 20.55″

190 Foot - Monopole Tower

Dear Veronica Harris,

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 773477, in accordance with application 246002, revision 0.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC5: Existing + Proposed Equipment

Sufficient Capacity

Note: See Table 1 and Table 2 for the proposed and existing loading, respectively.

This analysis has been performed in accordance with the TIA/EIA-222-F standard and 2005 CT State Building Code with 2009 amendment based upon a wind speed of 85 mph fastest mile.

All equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at Crown Castle appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Structural analysis prepared by: Nithesh Poojari S / Nathan Martinak, EIT

Respectfully submitted by:

Jamal A. Huwel, P.E. Manager Engineering

Date Signed: 06/04/2014

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing Antenna and Cable Information

Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Table 6 - Tower Components vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 190 ft. Monopole tower designed by Engineered Endeavors, Inc. in July of 1999. The tower was originally designed for a wind speed of 89 mph per TIA/EIA-222-F.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice, 37.6 mph with 0.75 inch ice thickness and 50 mph under service loads.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model		Feed Line Size (in)	Note
192.0	192.0	3	alcatel lucent	TD-RRH8x20-25	1	1-1/4	
192.0		3	rfs celwave	APXVTM14-C-120	_ I	1-1/4	_

Table 2 - Existing Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	alcatel lucent	1900MHz RRH (65MHz)			
		3	alcatel lucent	800 EXTERNAL NOTCH FILTER		1-1/4	
		3	alcatel lucent	800MHZ RRH			
192.0	192.0	9	rfs celwave	ACU-A20-N	3		1
		1	rfs celwave	APXV9ERR18-C-A20			
	2	2	rfs celwave	APXVSPP18-C-A20			
		1	tower mounts	Handrail Kit [NA 507-3]			
		1 tower mounts	tower mounts	Platform Mount [LP 601-1]			
180.0	180.0 180.0		ems wireless	DR65-19-02DPQ w/ Mount Pipe	6	1-5/8	1
		1	tower mounts	Platform Mount [LP 305-1]	-		

Notes:

1) Existing Equipment

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Flouration	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
190	190	12	decibel	DB 980	-	-
180	180	12	decibel	DB 980	-	-
170	170	12	decibel	DB 980	-	-

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	FDH Engineering	2192530	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	EEI	2051620	CCISITES
4-TOWER MANUFACTURER DRAWINGS	EEI	2051615	CCISITES

3.1) Analysis Method

tnxTower (version 6.1.4.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

	able of Godiner Capacity (Carrinally)							
Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	190 - 163.221	Pole	TP24.453x19.5x0.188	1	-4.421	730.376	42.7	Pass
L2	163.221 - 126.83	Pole	TP30.714x23.42x0.25	2	-7.518	1224.031	60.3	Pass
L3	126.83 - 86.397	Pole	TP37.602x29.422x0.313	3	-12.762	1873.825	62.1	Pass
L4	86.397 - 42.938	Pole	TP44.927x36.027x0.375	4	-20.852	2687.554	59.6	Pass
L5	42.938 - 0	Pole	TP52x43.059x0.438	5	-33.723	3722.322	56.0	Pass
							Summary	
						Pole (L3)	62.1	Pass
						Rating =	62.1	Pass

Table 6 - Tower Component Stresses vs. Capacity – LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	53.7	Pass
1	Base Plate	0	72.8	Pass
1	Base Foundation (Soil Interaction)	0	58.5	Pass

Structure Rating (max from all components) =	72.8%

Notes:

4.1) Recommendations

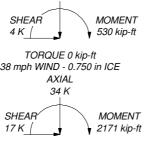
The tower and its foundation have sufficient capacity to carry the existing and proposed loads. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

Section	Ŋ	4	п	α	-
Length (ft)	49'5/8"	48'7-29/32"	44'9-1/4"	39'11-3/8"	26'9-11/32"
Number of Sides	18	18	18	18	18
Thickness (in)	0.438	0.375	0.313	0.250	0.188
Socket Length (ft)		6'1-3/8"	5'2-13/32"	4'4-1/16"	3'6-11/16"
Top Dia (in)	43.059	36.027	29.422	23.420	19.500
Bot Dia (in)	52.000	44.927	37.602	30.714	24.453
Grade			A572-65		
Weight (K) 27.9	10.9	7.9	5.0	2.9	12
<u>0.0 ft</u>	<u>0.0 ft</u>	42.9 ft	86.4 ft	126.8 ft	190.0 ft
TORQUE 0 REACTIONS - 85	AXIAL 45 K SHEAR 4 K TORQUE 0 38 mph WIND - 0. AXIAL 34 K SHEAR 17 K				

DESIGNED APPURTENANCE LOADING


TYPE	ELEVATION	TYPE	ELEVATION
Lightning Rod 5/8" x 6'	193	(3) ACU-A20-N	192
APXVTM14-C-120	192	(3) ACU-A20-N	192
APXVTM14-C-120	192	1900MHz RRH (65MHz)	192
APXVTM14-C-120	192	1900MHz RRH (65MHz)	192
TD-RRH8x20-25	192	1900MHz RRH (65MHz)	192
TD-RRH8x20-25	192	Miscellaneous [NA 507-3]	192
TD-RRH8x20-25	192	Platform Mount [LP 601-1]	192
APXVSPP18-C-A20	192	DR65-19-02DPQ w/ Mount Pipe	180
APXV9ERR18-C-A20	192	DR65-19-02DPQ w/ Mount Pipe	180
APXVSPP18-C-A20	192	DR65-19-02DPQ w/ Mount Pipe	180
800 EXTERNAL NOTCH FILTER	192	6' x 2" Mount Pipe	180
800 EXTERNAL NOTCH FILTER	192	6' x 2" Mount Pipe	180
800 EXTERNAL NOTCH FILTER	192	6' x 2" Mount Pipe	180
800MHZ RRH	192	Platform Mount [LP 305-1]	180
800MHZ RRH	192	GPS_A	48
800MHZ RRH	192	Side Arm Mount [SO 701-1]	48
(3) ACU-A20-N	192		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
 Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 50 mph wind.
- 5. TOWER RATING: 62.1%

QUE 0 kip-ft IS - 85 mph WIND

Crown Castle	Jo
IN CACTLE 2000 Corporate Drive	F
Canonsburg, PA 15317	Ĺ
cci Phone: (724) 416-2000	_
FAX: (724) 416-2254	ľ

^{Job:} BU# 876378		
Project:		
Client: Crown Castle	Drawn by: Nithesh	App'd:
Code: TIA/EIA-222-F	Date: 06/04/14	Scale: NTS
Path:	•	Dwg No. F-1

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Basic wind speed of 85 mph. 3)
- Nominal ice thickness of 0.750 in. 4)
- Ice thickness is considered to increase with height. 5)
- Ice density of 56.000 pcf.
- A wind speed of 38 mph is used in combination with ice. 7)
- Temperature drop of 50.000 °F. 8)
- 9) Deflections calculated using a wind speed of 50 mph.
- 10) User specified elevation for calculation of G_h is 0'.
- A non-linear (P-delta) analysis was used. 11)
- Pressures are calculated at each section. 12)
- Stress ratio used in pole design is 1.333. 13)
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are 14) not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- Use Code Safety Factors Guys
 - Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas SR Members Have Cut Ends Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Use TIA-222-G Tension Splice Capacity Exemption

Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- Consider Feedline Torque Include Angle Block Shear Check Poles
- Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
	•	Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	190'-163'2-	26'9-11/32"	3'6-11/16"	18	19.500	24.453	0.188	0.750	A572-65
	21/32"								(65 ksi)
L2	163'2-21/32"-	39'11-3/8"	4'4-1/16"	18	23.420	30.714	0.250	1.000	A572-65
	126'9-31/32"								(65 ksi)
L3	126'9-31/32"-	44'9-1/4"	5'2-13/32"	18	29.422	37.602	0.313	1.250	A572-65
	86'4-3/4"								(65 ksi)
L4	86'4-3/4"-	48'7-29/32"	6'1-3/8"	18	36.027	44.927	0.375	1.500	A572-65
	42'11-1/4"								(65 ksi)
L5	42'11-1/4"-0'	49'5/8"		18	43.059	52.000	0.438	1.750	À572-65
									(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in ³	in⁴	in²	in	
L1	19.801	11.493	541.578	6.856	9.906	54.672	1083.869	5.748	3.102	16.544
	24.830	14.441	1074.203	8.614	12.422	86.477	2149.820	7.222	3.974	21.193
L2	24.441	18.385	1246.935	8.225	11.897	104.809	2495.511	9.194	3.682	14.727
	31.188	24.174	2834.407	10.815	15.603	181.659	5672.544	12.089	4.966	19.863
L3	30.681	28.873	3091.079	10.334	14.947	206.809	6186.226	14.439	4.628	14.811
	38.182	36.986	6497.564	13.238	19.102	340.155	13003.678	18.497	6.068	19.417
L4	37.548	42.435	6814.316	12.656	18.302	372.334	13637.599	21.221	5.681	15.149
	45.620	53.028	13297.543	15.816	22.823	582.643	26612.583	26.519	7.247	19.326
L5	44.854	59.185	13582.948	15.130	21.874	620.971	27183.769	29.598	6.808	15.562
	52.802	71.601	24050.512	18.305	26.416	910.452	48132.670	35.807	8.382	19.159

Tower Elevation	Gusset Area	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor	Weight Mult.	Double Angle Stitch Bolt	Double Angle Stitch Bolt
	(per face)			A_r		Spacing	Spacing
ft	ft ²	in				Diagonals in	Horizontals in
L1 190'-			1	1	1		
163'2-21/32" L2 163'2-			1	1	1		
21/32"-126'9- 31/32"							
L3 126'9-			1	1	1		
31/32"-86'4- 3/4"							
L4 86'4-3/4"-			1	1	1		
42'11-1/4" L5 42'11-1/4"-			1	1	1		
0'			·	•	•		

	Feed Line/Linear App	ourtenances - Entered As Round Or Flat
--	----------------------	--

Description	Face	Allow	Component	Placement	Total	Number	Clear	Width or	Perimete	Weight
	or	Shield	Type		Number	Per Row	Spacing	Diamete	r	_
	Leg			ft			in	r		klf
								in	in	
/										

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		,	ft			ft²/ft	klf
HB114-1-0813U4-M5J(В	No	Inside Pole	190' - 0'	3	No Ice	0.000	0.001
1 1/4")						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
						2" Ice	0.000	0.001
						4" Ice	0.000	0.001
HB114-21U3M12-	В	No	Inside Pole	190' - 0'	1	No Ice	0.000	0.001
XXXF(1-1/4")						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
						2" Ice	0.000	0.001
						4" Ice	0.000	0.001
/								
LDF7-50A(1-5/8")	Α	No	Inside Pole	180' - 0'	6	No Ice	0.000	0.001
						1/2" Ice	0.000	0.001
						1" Ice	0.000	0.001
						2" Ice	0.000	0.001
						4" Ice	0.000	0.001
/								
FLC 12-50J(1/2")	Α	No	CaAa (Out Of	48' - 0'	2	No Ice	0.064	0.000
` '			Face)			1/2" Ice	0.164	0.001
			,			1" Ice	0.264	0.002

Description	Face Allow or Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg	,,	ft			ft²/ft	klf
					2" Ice	0.464	0.007
					4" Ice	0.864	0.023
/							

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation		_		In Face	Out Face	
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	190'-163'2-	Α	0.000	0.000	0.000	0.000	0.083
	21/32"	В	0.000	0.000	0.000	0.000	0.129
		С	0.000	0.000	0.000	0.000	0.000
L2	163'2-21/32"-	Α	0.000	0.000	0.000	0.000	0.179
	126'9-31/32"	В	0.000	0.000	0.000	0.000	0.175
		С	0.000	0.000	0.000	0.000	0.000
L3	126'9-31/32"-	Α	0.000	0.000	0.000	0.000	0.199
	86'4-3/4"	В	0.000	0.000	0.000	0.000	0.195
		С	0.000	0.000	0.000	0.000	0.000
L4	86'4-3/4"-42'11-	Α	0.000	0.000	0.000	0.648	0.216
	1/4"	В	0.000	0.000	0.000	0.000	0.209
		С	0.000	0.000	0.000	0.000	0.000
L5	42'11-1/4"-0'	Α	0.000	0.000	0.000	5.496	0.226
		В	0.000	0.000	0.000	0.000	0.207
		С	0.000	0.000	0.000	0.000	0.000

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness	_		In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	190'-163'2-	Α	0.917	0.000	0.000	0.000	0.000	0.083
	21/32"	В		0.000	0.000	0.000	0.000	0.129
		С		0.000	0.000	0.000	0.000	0.000
L2	163'2-21/32"-	Α	0.895	0.000	0.000	0.000	0.000	0.179
	126'9-31/32"	В		0.000	0.000	0.000	0.000	0.175
		С		0.000	0.000	0.000	0.000	0.000
L3	126'9-31/32"-	Α	0.863	0.000	0.000	0.000	0.000	0.199
	86'4-3/4"	В		0.000	0.000	0.000	0.000	0.195
		С		0.000	0.000	0.000	0.000	0.000
L4	86'4-3/4"-42'11-	Α	0.813	0.000	0.000	0.000	2.395	0.232
	1/4"	В		0.000	0.000	0.000	0.000	0.209
		С		0.000	0.000	0.000	0.000	0.000
L5	42'11-1/4"-0'	Α	0.750	0.000	0.000	0.000	19.456	0.356
		В		0.000	0.000	0.000	0.000	0.207
		С		0.000	0.000	0.000	0.000	0.000

Feed Line Center of Pressure

Section	Elevation	CP_X	CPz	CP _X Ice	CP _Z Ice
	ft	in	in	in	in
L1	190'-163'2-21/32"	0.000	0.000	0.000	0.000
L2	163'2-21/32"- 126'9-31/32"	0.000	0.000	0.000	0.000
L3	126'9-31/32"-86'4- 3/4"	0.000	0.000	0.000	0.000
L4	86'4-3/4"-42'11- 1/4"	0.000	-0.024	0.000	-0.085
L5	42'11-1/4"-0'	0.000	-0.186	0.000	-0.593

	Discrete Tower Loads								
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	К
Lightning Rod 5/8" x 6'	С	None		0.000	193'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.375 0.989 1.619 2.464 4.076	0.375 0.989 1.619 2.464 4.076	0.033 0.037 0.045 0.074 0.184
/ APXVTM14-C-120	Α	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice	6.897 7.348 7.807 8.752 10.746	3.607 3.967 4.333 5.140 6.971	0.056 0.096 0.140 0.245 0.525
APXVTM14-C-120	В	From Leg	4.000 0' 0'	0.000	192'	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	6.897 7.348 7.807 8.752 10.746	3.607 3.967 4.333 5.140 6.971	0.056 0.096 0.140 0.245 0.525
APXVTM14-C-120	С	From Leg	4.000 0' 0'	0.000	192'	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	6.897 7.348 7.807 8.752 10.746	3.607 3.967 4.333 5.140 6.971	0.056 0.096 0.140 0.245 0.525
TD-RRH8x20-25	Α	From Leg	4.000 0' 0'	0.000	192'	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.720 5.014 5.316 5.948 7.314	1.703 1.920 2.145 2.622 3.680	0.070 0.097 0.128 0.201 0.397
TD-RRH8x20-25	В	From Leg	4.000 0' 0'	0.000	192'	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	4.720 5.014 5.316 5.948 7.314	1.703 1.920 2.145 2.622 3.680	0.070 0.097 0.128 0.201 0.397
TD-RRH8x20-25	С	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	4.720 5.014 5.316 5.948 7.314	1.703 1.920 2.145 2.622 3.680	0.070 0.097 0.128 0.201 0.397
APXVSPP18-C-A20	Α	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	8.260 8.807 9.364 10.502 12.882	5.283 5.736 6.196 7.138 9.273	0.057 0.107 0.162 0.292 0.634
APXV9ERR18-C-A20	В	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	8.260 8.807 9.364 10.502 12.882	5.808 6.266 6.731 7.683 9.950	0.062 0.114 0.172 0.308 0.661
APXVSPP18-C-A20	С	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice	8.260 8.807 9.364	5.283 5.736 6.196	0.057 0.107 0.162

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft ²	ft ²	K
						1" Ice 2" Ice 4" Ice	10.502 12.882	7.138 9.273	0.292 0.634
800 EXTERNAL NOTCH FILTER	Α	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.770 0.890 1.018 1.301 1.970	0.375 0.465 0.563 0.787 1.337	0.011 0.017 0.024 0.045 0.114
800 EXTERNAL NOTCH FILTER	В	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.770 0.890 1.018 1.301 1.970	0.375 0.465 0.563 0.787 1.337	0.011 0.017 0.024 0.045 0.114
800 EXTERNAL NOTCH FILTER	С	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.770 0.890 1.018 1.301 1.970	0.375 0.465 0.563 0.787 1.337	0.011 0.017 0.024 0.045 0.114
800MHZ RRH	Α	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	2.490 2.706 2.931 3.407 4.462	2.068 2.271 2.481 2.928 3.927	0.053 0.074 0.098 0.157 0.318
800MHZ RRH	В	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	2.490 2.706 2.931 3.407 4.462	2.068 2.271 2.481 2.928 3.927	0.053 0.074 0.098 0.157 0.318
800MHZ RRH	С	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	2.490 2.706 2.931 3.407 4.462	2.068 2.271 2.481 2.928 3.927	0.053 0.074 0.098 0.157 0.318
(3) ACU-A20-N	Α	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.078 0.121 0.173 0.302 0.665	0.136 0.189 0.251 0.400 0.802	0.001 0.002 0.004 0.012 0.045
(3) ACU-A20-N	В	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.078 0.121 0.173 0.302 0.665	0.136 0.189 0.251 0.400 0.802	0.001 0.002 0.004 0.012 0.045
(3) ACU-A20-N	С	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.078 0.121 0.173 0.302 0.665	0.136 0.189 0.251 0.400 0.802	0.001 0.002 0.004 0.012 0.045
1900MHz RRH (65MHz)	Α	From Leg	4.000 0' 0'	0.000	192'	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	2.698 2.936 3.183 3.703 4.846	2.771 3.011 3.260 3.784 4.935	0.060 0.084 0.111 0.176 0.354
1900MHz RRH (65MHz)	В	From Leg	4.000 0'	0.000	192'	No Ice 1/2"	2.698 2.936	2.771 3.011	0.060 0.084

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft ²	K
			0'			Ice	3.183	3.260	0.111
						1" Ice 2" Ice 4" Ice	3.703 4.846	3.784 4.935	0.176 0.354
1900MHz RRH (65MHz)	С	From Leg	4.000	0.000	192'	No Ice	2.698	2.771	0.060
			0' 0'			1/2"	2.936 3.183	3.011	0.084 0.111
			U			Ice 1" Ice	3.703	3.260 3.784	0.111
						2" Ice 4" Ice	4.846	4.935	0.354
Miscellaneous [NA 507-3]	С	None		0.000	192'	No Ice	18.500	18.500	0.508
						1/2" Ice	26.400 34.300	26.400 34.300	0.703 0.897
						1" Ice	50.100	50.100	1.287
	_					2" Ice 4" Ice	81.700	81.700	2.064
Platform Mount [LP 601-1]	С	None		0.000	192'	No Ice	28.470 33.590	28.470	1.122 1.514
						1/2" Ice	33.590 38.710	33.590 38.710	1.514
						1" Ice	48.950	48.950	2.689
						2" Ice 4" Ice	69.430	69.430	4.255
/ DR65-19-02DPQ w/ Mount	Α	From Leg	4.000	0.000	180'	No Ice	8.637	5.196	0.051
Pipe	^	i ioni Leg	0'	0.000	100	1/2"	9.290	6.360	0.031
·			0'			Ice	9.910	7.239	0.179
						1" Ice 2" Ice	11.176 13.829	9.029 12.810	0.342 0.810
						4" Ice	13.029	12.010	0.010
DR65-19-02DPQ w/ Mount	В	From Leg	4.000	0.000	180'	No Ice	8.637	5.196	0.051
Pipe			0' 0'			1/2" Ice	9.290 9.910	6.360 7.239	0.111 0.179
			U			1" Ice	11.176	9.029	0.179
						2" Ice 4" Ice	13.829	12.810	0.810
DR65-19-02DPQ w/ Mount	С	From Leg	4.000	0.000	180'	No Ice 1/2"	8.637	5.196	0.051 0.111
Pipe			0' 0'			lce	9.290 9.910	6.360 7.239	0.111
						1" Ice	11.176	9.029	0.342
OL OHAA LE:			4 000	0.000	1001	2" Ice 4" Ice	13.829	12.810	0.810
6' x 2" Mount Pipe	Α	From Leg	4.000 0'	0.000	180'	No Ice 1/2"	1.425 1.925	1.425 1.925	0.022 0.033
			0'			Ice	2.294	2.294	0.048
						1" Ice	3.060	3.060	0.090
						2" Ice 4" Ice	4.702	4.702	0.231
6' x 2" Mount Pipe	В	From Leg	4.000	0.000	180'	No Ice	1.425	1.425	0.022
			0'			1/2"	1.925	1.925	0.033
			0'			Ice 1" Ice	2.294 3.060	2.294 3.060	0.048 0.090
						2" Ice 4" Ice	4.702	4.702	0.231
6' x 2" Mount Pipe	С	From Leg	4.000	0.000	180'	No Ice	1.425	1.425	0.022
			0'			1/2"	1.925	1.925	0.033
			0'			Ice 1" Ice	2.294 3.060	2.294 3.060	0.048 0.090
						2" Ice 4" Ice	4.702	4.702	0.231
Platform Mount [LP 305-1]	С	None		0.000	180'	No Ice	18.010	18.010	1.121
						1/2"	23.330	23.330	1.352
						Ice 1" Ice	28.650 39.290	28.650 39.290	1.584 2.046
						2" Ice	60.570	60.570	2.972
						4" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	fl fl	К
/									
GPS_A	С	From Leg	3.000	0.000	48'	No Ice	0.297	0.297	0.001
-		_	0'			1/2"	0.374	0.374	0.005
			0'			Ice	0.459	0.459	0.010
						1" Ice	0.655	0.655	0.025
						2" Ice 4" Ice	1.151	1.151	0.079
Side Arm Mount [SO 701-	С	From Leg	1.500	0.000	48'	No Ice	0.850	1.670	0.065
1]	-		0'			1/2"	1.140	2.340	0.079
.,			0'			lce	1.430	3.010	0.093
			•			1" Ice	2.010	4.350	0.121
						2" Ice 4" Ice	3.170	7.030	0.177
/									

Load Combinations

Comb. No.	Description
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 60 deg - No Ice
5	Dead+Wind 90 deg - No Ice
6	Dead+Wind 120 deg - No Ice
7	Dead+Wind 150 deg - No Ice
8	Dead+Wind 180 deg - No Ice
9	Dead+Wind 210 deg - No Ice
10	Dead+Wind 240 deg - No Ice
11	Dead+Wind 270 deg - No Ice
12	Dead+Wind 300 deg - No Ice
13	Dead+Wind 330 deg - No Ice
14	Dead+Ice+Temp
15	Dead+Wind 0 deg+Ice+Temp
16	Dead+Wind 30 deg+lce+Temp
17	Dead+Wind 60 deg+lce+Temp
18	Dead+Wind 90 deg+Ice+Temp
19	Dead+Wind 120 deg+Ice+Temp
20	Dead+Wind 150 deg+Ice+Temp
21	Dead+Wind 180 deg+Ice+Temp
22	Dead+Wind 210 deg+Ice+Temp
23	Dead+Wind 240 deg+Ice+Temp
24	Dead+Wind 270 deg+Ice+Temp
25	Dead+Wind 300 deg+Ice+Temp
26	Dead+Wind 330 deg+Ice+Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 30 deg - Service
29	Dead+Wind 60 deg - Service
30	Dead+Wind 90 deg - Service
31	Dead+Wind 120 deg - Service
32	Dead+Wind 150 deg - Service
33	Dead+Wind 180 deg - Service
34	Dead+Wind 210 deg - Service
35	Dead+Wind 240 deg - Service
36	Dead+Wind 270 deg - Service
37	Dead+Wind 300 deg - Service
38	Dead+Wind 330 deg - Service

Maximum	Member	Forces
IVIAXIIIIUIII	Melliber	LOICES

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Force K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	190 -	Pole	Max Tension	1	0.000	0.000	0.000
	163.221		Max. Compression	14	-8.695	-0.040	-0.023
			Max. Mx	5	-4.424	-148.597	0.220
			Max. My	8	-4.422	0.214	-148.851
			Max. Vy	5	7.347	-148.597	0.220
			Max. Vx	8	7.358	0.214	-148.851
			Max. Torque	3	7.000	0.214	-0.099
L2	163.221 -	Pole	Max Tension	1	0.000	0.000	0.000
LZ	126.83	1 010	Wax Telision	'	0.000	0.000	0.000
	120.00		Max. Compression	14	-12.954	-0.040	-0.023
			Max. Mx	5	-7.521	-444.398	0.547
			Max. My	8	-7.519	0.541	-445.032
			Max. Vy	11	-9.282	444.356	-0.570
			Max. Vx	8	9.292	0.541	-445.032
			Max. Torque	3			-0.099
L3	126.83 - 86.397	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-19.663	-0.040	-0.023
			Max. Mx	5	-12.764	-858.169	0.912
			Max. My	8	-12.763	0.908	-859.228
			Max. Vý	11	-11.623	858.128	-0.939
			Max. Vx	8	11.634	0.908	-859.228
			Max. Torque	3			-0.098
L4	86.397 - 42.938	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-29.529	-0.040	0.006
			Max. Mx	5	-20.853	-1407.291	1.302
			Max. My	8	-20.853	1.301	-1408.804
			Max. Vý	11	-14.132	1407.252	-1.329
			Max. Vx	8	14.143	1.301	-1408.804
			Max. Torque	2			-0.109
L5	42.938 - 0	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	14	-44.726	0.243	0.137
			Max. Mx	11	-33.723	2167.859	-1.406
			Max. My	8	-33.723	1.488	-2170.315
			Max. Vy	11	-16.809	2167.859	-1.406
			Max. Vx	8	16.829	1.488	-2170.315
			Max. Torque	12			0.152

Maximum Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, 2 K
		Comb.			
Pole	Max. Vert	15	44.726	0.001	3.867
	Max. H _x	11	33.731	16.791	0.000
	Max. H _z	2	33.731	0.000	16.812
	Max. M _x	2	2170.128	0.000	16.812
	$Max. M_z$	5	2167.512	-16.791	-0.000
	Max. Torsion	12	0.115	14.542	8.406
	Min. Vert	1	33.731	0.000	0.000
	Min. H _x	5	33.731	-16.791	-0.000
	Min. H _z	8	33.731	-0.000	-16.812
	Min. M _x	8	-2170.315	-0.000	-16.812
	Min. M _z	11	-2167.859	16.791	0.000
	Min. Torsion	6	-0.115	-14.542	-8.406

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	33.731	0.000	0.000	0.090	0.170	0.000
Dead+Wind 0 deg - No Ice	33.731	-0.000	-16.812	-2170.128	-1.139	-0.071
Dead+Wind 30 deg - No Ice	33.731	8.395	-14.559	-1880.040	-1084.807	-0.016
Dead+Wind 60 deg - No Ice	33.731	14.542	-8.406	-1086.163	-1877.759	0.043
Dead+Wind 90 deg - No Ice	33.731	16.791	0.000	-1.220	-2167.512	0.091
Dead+Wind 120 deg - No Ice	33.731	14.542	8.406	1084.080	-1876.456	0.115
Dead+Wind 150 deg - No Ice	33.731	8.396	14.560	1878.923	-1082.538	0.109
Dead+Wind 180 deg - No Ice	33.731	0.000	16.812	2170.315	1.488	0.073
Dead+Wind 210 deg - No Ice	33.731	-8.395	14.559	1880.226	1085.156	0.016
Dead+Wind 240 deg - No Ice	33.731	-14.542	8.406	1086.348	1878.107	-0.044
Dead+Wind 270 deg - No Ice	33.731	-16.791	-0.000	1.406	2167.859	-0.093
Dead+Wind 300 deg - No Ice	33.731	-14.542	-8.406	-1083.893	1876.803	-0.115
Dead+Wind 330 deg - No Ice	33.731	-8.396	-14.560	-1878.735	1082.886	-0.107
Dead+Ice+Temp	44.726	0.000	0.000	-0.137	0.243	0.000
Dead+Wind 0	44.726	-0.001	-3.867	-530.496	0.037	-0.031
deg+lce+Temp						
Dead+Wind 30	44.726	1.930	-3.349	-459.546	-264.819	-0.025
deg+lce+Temp						
Dead+Wind 60	44.726	3.344	-1.933	-265.497	-458.652	-0.012
deg+Ice+Temp						
Dead+Wind 90	44.726	3.862	0.001	-0.345	-529.522	0.004
deg+lce+Temp						
Dead+Wind 120	44.726	3.345	1.935	264.865	-458.442	0.019
deg+lce+Temp						
Dead+Wind 150	44.726	1.932	3.350	459.068	-264.456	0.029
deg+lce+Temp						
Dead+Wind 180	44.726	0.001	3.867	530.228	0.458	0.031
deg+lce+Temp						
Dead+Wind 210	44.726	-1.930	3.349	459.278	265.314	0.025
deg+lce+Temp						
Dead+Wind 240	44.726	-3.344	1.933	265.229	459.147	0.012
deg+lce+Temp	44.700	0.000	0.004	0.070	500.047	0.004
Dead+Wind 270	44.726	-3.862	-0.001	0.076	530.017	-0.004
deg+lce+Temp	44.700	0.045	4.005	005.404	450.007	0.040
Dead+Wind 300	44.726	-3.345	-1.935	-265.134	458.937	-0.019
deg+lce+Temp	44.700	4.000	0.050	450.000	004.050	0.000
Dead+Wind 330	44.726	-1.932	-3.350	-459.336	264.950	-0.029
deg+lce+Temp	00.704	0.000	E 047	754.000	0.000	0.004
Dead+Wind 0 deg - Service	33.731	-0.000	-5.817	-751.808	-0.282	-0.024
Dead+Wind 30 deg - Service	33.731	2.905	-5.038	-651.305	-375.734	-0.005
Dead+Wind 60 deg - Service	33.731	5.032	-2.909	-376.254	-650.461	0.015
Dead+Wind 90 deg - Service	33.731	5.810	0.000	-0.362	-750.847	0.032 0.040
Dead+Wind 120 deg -	33.731	5.032	2.909	375.653	-650.006	0.040
Service	22 724	2 905	5.038	651.027	-374.945	0.027
Dead+Wind 150 deg -	33.731	2.905	5.038	651.037	-374.945	0.037
Service	22 724	0.000	E 017	751 005	0.620	0.005
Dead+Wind 180 deg -	33.731	0.000	5.817	751.995	0.629	0.025
Service	33.731	2.005	5.020	651 402	276 001	0.005
Dead+Wind 210 deg -	33.731	-2.905	5.038	651.492	376.081	0.005
Service	22 724	E 022	2.000	276 442	650 900	0.016
Dead+Wind 240 deg -	33.731	-5.032	2.909	376.442	650.809	-0.016
Service	20.724	F 040	0.000	0.540	754 404	0.000
Dead+Wind 270 deg -	33.731	-5.810	-0.000	0.549	751.194	-0.032
Service	22 721	E 022	2 000	275 466	650 252	0.040
Dead+Wind 300 deg - Service	33.731	-5.032	-2.909	-375.466	650.353	-0.040
Dead+Wind 330 deg -	33.731	-2.905	-5.038	-650.849	375.292	-0.037
	JJ./J/	-2.500	-5.056	-050.049	313.232	-0.037

Solution Summary

Sum of Applied Forces							
Load	PX	· · PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.000	-33.731	0.000	0.000	33.731	0.000	0.000%

	Sun	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
2	-0.000	-33.731	-16.812	0.000	33.731	16.812	0.000%
3	8.395	-33.731	-14.559	-8.395	33.731	14.559	0.000%
4	14.542	-33.731	-8.406	-14.542	33.731	8.406	0.000%
5	16.791	-33.731	0.000	-16.791	33.731	-0.000	0.000%
6	14.542	-33.731	8.406	-14.542	33.731	-8.406	0.000%
7	8.396	-33.731	14.560	-8.396	33.731	-14.560	0.000%
8	0.000	-33.731	16.812	-0.000	33.731	-16.812	0.000%
9	-8.395	-33.731	14.559	8.395	33.731	-14.559	0.000%
10	-14.542	-33.731	8.406	14.542	33.731	-8.406	0.000%
11	-16.791	-33.731	-0.000	16.791	33.731	0.000	0.000%
12	-14.542	-33.731	-8.406	14.542	33.731	8.406	0.000%
13	-8.396	-33.731	-14.560	8.396	33.731	14.560	0.000%
14	0.000	-44.726	0.000	0.000	44.726	0.000	0.000%
15	-0.001	-44.726	-3.867	0.001	44.726	3.867	0.000%
16	1.930	-44.726	-3.349	-1.930	44.726	3.349	0.000%
17	3.344	-44.726	-1.933	-3.344	44.726	1.933	0.000%
18	3.862	-44.726	0.001	-3.862	44.726	-0.001	0.000%
19	3.345	-44.726	1.935	-3.345	44.726	-1.935	0.000%
20	1.932	-44.726	3.350	-1.932	44.726	-3.350	0.000%
21	0.001	-44.726	3.867	-0.001	44.726	-3.867	0.000%
22	-1.930	-44.726	3.349	1.930	44.726	-3.349	0.000%
23	-3.344	-44.726	1.933	3.344	44.726	-1.933	0.000%
24	-3.862	-44.726	-0.001	3.862	44.726	0.001	0.000%
25	-3.345	-44.726	-1.935	3.345	44.726	1.935	0.000%
26	-1.932	-44.726	-3.350	1.932	44.726	3.350	0.000%
27	-0.000	-33.731	-5.817	0.000	33.731	5.817	0.000%
28	2.905	-33.731	-5.038	-2.905	33.731	5.038	0.000%
29	5.032	-33.731	-2.909	-5.032	33.731	2.909	0.000%
30	5.810	-33.731	0.000	-5.810	33.731	-0.000	0.000%
31	5.032	-33.731	2.909	-5.032	33.731	-2.909	0.000%
32	2.905	-33.731	5.038	-2.905	33.731	-5.038	0.000%
33	0.000	-33.731	5.817	-0.000	33.731	-5.817	0.000%
34	-2.905	-33.731	5.038	2.905	33.731	-5.038	0.000%
35	-5.032	-33.731	2.909	5.032	33.731	-2.909	0.000%
36	-5.810	-33.731	-0.000	5.810	33.731	0.000	0.000%
37	-5.032	-33.731	-2.909	5.032	33.731	2.909	0.000%
38	-2.905	-33.731	-5.038	2.905	33.731	5.038	0.000%

Non-Linear Convergence Results

_					
	Load	Converged?	Number	Displacement	Force
	Combination		of Cycles	Tolerance	Tolerance
	1	Yes	4	0.0000001	0.0000001
	2	Yes	4	0.0000001	0.00078520
	3	Yes	6	0.0000001	0.00012840
	4	Yes	6	0.0000001	0.00012751
	5	Yes	4	0.0000001	0.00071466
	6	Yes	6	0.0000001	0.00012749
	7	Yes	6	0.0000001	0.00012764
	8	Yes	4	0.0000001	0.00072216
	9	Yes	6	0.0000001	0.00012754
	10	Yes	6	0.0000001	0.00012834
	11	Yes	4	0.0000001	0.00076441
	12	Yes	6	0.0000001	0.00012735
	13	Yes	6	0.0000001	0.00012729
	14	Yes	4	0.0000001	0.0000001
	15	Yes	5	0.0000001	0.00033277
	16	Yes	5	0.0000001	0.00047761
	17	Yes	5	0.0000001	0.00047644
	18	Yes	5	0.0000001	0.00033247
	19	Yes	5	0.0000001	0.00047586
	20	Yes	5	0.0000001	0.00047612
	21	Yes	5	0.0000001	0.00033285
	22	Yes	5	0.0000001	0.00047667
	23	Yes	5	0.0000001	0.00047753

tnxTower Report - version 6.1.4.1

24	Yes	5	0.0000001	0.00033248
25	Yes	5	0.0000001	0.00047548
26	Yes	5	0.0000001	0.00047553
27	Yes	4	0.0000001	0.00014355
28	Yes	5	0.0000001	0.00016336
29	Yes	5	0.0000001	0.00016098
30	Yes	4	0.0000001	0.00013906
31	Yes	5	0.0000001	0.00016128
32	Yes	5	0.0000001	0.00016168
33	Yes	4	0.0000001	0.00014079
34	Yes	5	0.0000001	0.00016106
35	Yes	5	0.0000001	0.00016323
36	Yes	4	0.0000001	0.00014127
37	Yes	5	0.0000001	0.00016089
38	Yes	5	0.0000001	0.00016069

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	190 - 163.221	41.508	34	2.175	0.001
L2	166.778 - 126.83	31.303	34	1.971	0.000
L3	131.168 - 86.397	18.364	34	1.454	0.000
L4	91.597 - 42.938	8.448	34	0.915	0.000
L5	49.052 - 0	2.333	34	0.439	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	Curvature ft
193.000	Lightning Rod 5/8" x 6'	34	41.508	2.175	0.001	19100
192.000	APXVTM14-C-120	34	41.508	2.175	0.001	19100
180.000	DR65-19-02DPQ w/ Mount Pipe	34	37.021	2.097	0.001	9550
48.000	GPS_A	34	2.240	0.429	0.000	4807

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	190 - 163.221	119.492	8	6.266	0.002
L2	166.778 - 126.83	90.151	8	5.680	0.001
L3	131.168 - 86.397	52.927	9	4.191	0.000
L4	91.597 - 42.938	24.364	9	2.639	0.000
L5	49.052 - 0	6.732	9	1.267	0.000

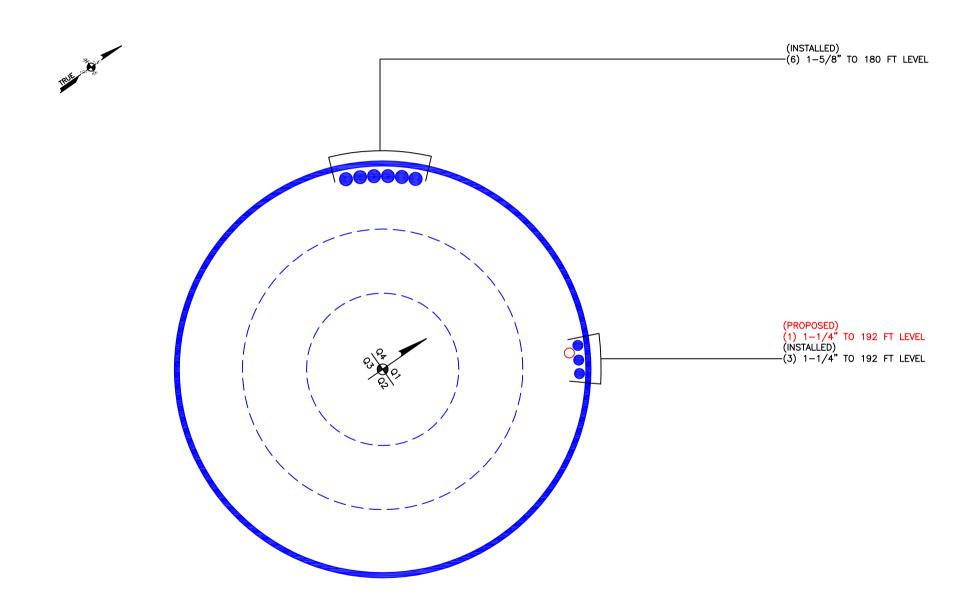
Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
193.000	Lightning Rod 5/8" x 6'	8	119.492	6.266	0.002	6774
192.000	APXVTM14-C-120	8	119.492	6.266	0.002	6774
180.000	DR65-19-02DPQ w/ Mount Pipe	8	106.593	6.043	0.002	3386

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
48.000	GPS_A	9	6.464	1.237	0.000	1668

Compression Checks

	Pole Design Data											
Section No.	Elevation	Size	L	Lu	KI/r	F _a	Α	Actual P	Allow. Pa	Ratio P		
	ft		ft	ft		ksi	in ²	K	ĸ	Pa		
L1	190 - 163.221 (1)	TP24.453x19.5x0.188	26.779	0.000	0.0	39.000	14.049	-4.421	547.919	0.008		
L2	163.221 - 126.83 (2)	TP30.714x23.42x0.25	39.948	0.000	0.0	39.000	23.545	-7.518	918.253	0.008		
L3	126.83 - 86.397 (3)	TP37.602x29.422x0.313	44.771	0.000	0.0	39.000	36.044	-12.762	1405.720	0.009		
L4	86.397 - 42.938 (4)	TP44.927x36.027x0.375	48.659	0.000	0.0	39.000	51.697	-20.852	2016.170	0.010		
L5	42.938 - 0 (5)	TP52x43.059x0.438	49.052	0.000	0.0	39.000	71.601	-33.723	2792.440	0.012		


	Pole Bending Design Data									
Section No.	Elevation ft	Size	Actual M _x kip-ft	Actual f _{bx} ksi	Allow. F _{bx} ksi	Ratio f _{bx}	Actual M _y kip-ft	Actual f _{by} ksi	Allow. F _{by} ksi	Ratio
						F _{bx}				F _{by}
L1	190 - 163.221 (1)	TP24.453x19.5x0.188	148.97 2	21.845	39.000	0.560	0.000	0.000	39.000	0.000
L2	163.221 - 126.83 (2)	TP30.714x23.42x0.25	445.34 3	31.017	39.000	0.795	0.000	0.000	39.000	0.000
L3	126.83 - 86.397 (3)	TP37.602x29.422x0.313	859.75 8	31.944	39.000	0.819	0.000	0.000	39.000	0.000
L4	86.397 - 42.938 (4)	TP44.927x36.027x0.375	1409.5 58	30.552	39.000	0.783	0.000	0.000	39.000	0.000
L5	42.938 - 0 (5)	TP52x43.059x0.438	2170.9 00	28.613	39.000	0.734	0.000	0.000	39.000	0.000

		Po	le She	ear De	esign	Data				
Section No.	Elevation ft	Size	Actual V K	Actual f _v ksi	Allow. F _v ksi	Ratio f _v	Actual T kip-ft	Actual f _{vt} ksi	Allow. F _{vt} ksi	Ratio f _{vt}
L1	190 - 163.221 (1)	TP24.453x19.5x0.188	7.363	0.524	26.000	0.040	0.099	0.007	26.000	0.000
L2	163.221 - 126.83 (2)	TP30.714x23.42x0.25	9.298	0.395	26.000	0.030	0.098	0.003	26.000	0.000
L3	126.83 - 86.397 (3)	TP37.602x29.422x0.313	11.639	0.323	26.000	0.025	0.098	0.002	26.000	0.000
L4	86.397`- 42.938 (4)	TP44.927x36.027x0.375	14.148	0.274	26.000	0.021	0.096	0.001	26.000	0.000
L5	42.938 - 0 (5)	TP52x43.059x0.438	16.824	0.235	26.000	0.018	0.016	0.000	26.000	0.000

	Pole Interaction Design Data								
Section No.	Elevation ft	Ratio P P _a	Ratio f _{bx} F _{bx}	Ratio f _{by} F _{by}	Ratio f _v	Ratio f _{vt}	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	190 - 163.221 (1)	0.008	0.560	0.000	0.040	0.000	0.569	1.333	H1-3+VT 🗸
L2	163.221 - 126.83 (2)	0.008	0.795	0.000	0.030	0.000	0.804	1.333	H1-3+VT 🗸
L3	126.83 - 86.397 (3)	0.009	0.819	0.000	0.025	0.000	0.828	1.333	H1-3+VT 🗸
L4	86.397 - 42.938 (4)	0.010	0.783	0.000	0.021	0.000	0.794	1.333	H1-3+VT 🖊
L5	42.938 - 0 (5)	0.012	0.734	0.000	0.018	0.000	0.746	1.333	H1-3+VT 🗸

Section Capacity Table									
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	SF*P _{allow} K	% Capacity	Pass Fail	
L1	190 - 163.221	Pole	TP24.453x19.5x0.188	1	-4.421	730.376	42.7	Pass	
L2	163.221 - 126.83	Pole	TP30.714x23.42x0.25	2	-7.518	1224.031	60.3	Pass	
L3	126.83 - 86.397	Pole	TP37.602x29.422x0.313	3	-12.762	1873.825	62.1	Pass	
L4	86.397 - 42.938	Pole	TP44.927x36.027x0.375	4	-20.852	2687.554	59.6	Pass	
L5	42.938 - 0	Pole	TP52x43.059x0.438	5	-33.723	3722.322	56.0	Pass	
							Summary		
						Pole (L3)	62.1	Pass	
						RATING =	62.1	Pass	

APPENDIX B BASE LEVEL DRAWING

BUSINESS UNIT: 876378 TOWER ID: C_BASELEVEL

APPENDIX C ADDITIONAL CALCULATIONS

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev F

Site Data

BU#: 876378 Site Name: *N. BETHANY / DAVID KLUI*

App #: 246002 Rev # 0

Pole Manufacturer: Other

Anchor Rod Data			
Qty:	16		
Diam:	2.25	in	
Rod Material:	A615-J		
Strength (Fu):	100	ksi	
Yield (Fy):	75	ksi	
Bolt Circle:	61	in	

Plate Data			
Diam:	67	in	
Thick:	2	in	
Grade:	60	ksi	
Single-Rod B-eff:	10.32	in	

Stiffener Data (Welding at both sides)			
Config:	0	*	
Weld Type:			
Groove Depth:		< Disregard	
Groove Angle:		< Disregard	
Fillet H. Weld:		in	
Fillet V. Weld:		in	
Width:		in	
Height:		in	
Thick:		in	
Notch:		in	
Grade:		ksi	
Weld str.:		ksi	

THICK.	0.4373	
Grade:	65	ksi
# of Sides:	18	"0" IF Round
Fu	80	ksi
Reinf. Fillet Weld	0	"0" if None
	•	

Pole Data

Diam:

Stress Increase Factor			
ASIF:	1.333		

Reactions		
Moment:	2171	ft-kips
Axial:	34	kips
Shear:	17	kips

If No stiffeners, Criteria:	AISC ASD	<-Only Applcable to Unstiffened Case
-----------------------------	----------	--------------------------------------

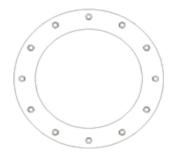
Anchor Rod Results

Maximum Rod Tension: 104.7 Kips
Allowable Tension: 195.0 Kips
Anchor Rod Stress Ratio: 53.7% Pass

	Rigid
′ Kips	Service, ASD
) Kips	Fty*ASIF
Pass	

Base Plate ResultsFlexural CheckBase Plate Stress:43.7 ksiAllowable Plate Stress:60.0 ksiBase Plate Stress Ratio:72.8% Pass

Rigid
Service ASD
0.75*Fy*ASIF
Y.L. Length:
31.89


<u>n/a</u>

Stiffener Results

Horizontal Weld: n/a
Vertical Weld: n/a
Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a
Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a
Plate Comp. (AISC Bracket): n/a

Pole Results

Pole Punching Shear Check: n/a

CCIplate v2.0 Analysis Date: <u>04-06-2014</u>

^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Monopole Pier and Pad Foundation

BU #: 876378

Site Name: N. BETHANY / DAVID KLUD

App. Number: 246002 Rev # 0 TIA-222 Revision:

TIA ZZZ NOVISION.		
Design Reactions		
Shear, S :	17	kips
Moment, M:	2171	ft-kips
Tower Height, H:	190	ft
Tower Weight, Wt:	34	kips
Base Diameter, BD :	4.33	ft

Foundation Dimensions		
Depth, D :	5	ft
Pad Width, W:	24.5	ft
Neglected Depth, N:	3.5	ft
Thickness, T:	2.50	ft
Pier Diameter, Pd:	7.00	ft
Ext. Above Grade, E:	1.00	ft
BP Dist. Above Pier:	3	in.
Clear Cover, Cc:	3.0	in

Soil Properties			
Soil Unit Weight, γ:	0.130	kcf	
Ult. Bearing Capacity, Bc:	15.0	ksf	
Angle of Friction, Φ:	39	deg	
Cohesion, Co:	0.000	ksf	
Passive Pressure, Pp :	0.000	ksf	
Base Friction, μ:	0.30		

Material Properties							
Rebar Yield Strength, Fy:	60000	psi					
Concrete Strength, F'c:	4000	psi					
Concrete Unit Weight, δc:	0.150	kcf					
Seismic Zone, z:	1						

Rebar Properties		
Pier Rebar Size, Sp :	8	
Pier Rebar Quanity, mp:	46	36
Pad Rebar Size, Spad:	8	
Pad Rebar Quanity, mpad:	40	10
Pier Tie Size, St :	4	3
Tie Quanity, mt:	16	5

Design Checks			
	Capacity/	Demand/	
	Availability	Limits	Check
Req'd Pier Diam.(ft)	7	5.833333333	ок
Overturning (ft-kips)	3708.94	2171.00	58.5%
Shear Capacity (kips)	74.38	17.00	22.9%
Bearing (ksf)	11.25	1.98	17.6%
Pad Shear - 1-way (kips)	739.12	314.57	42.6%
Pad Shear - 2-way (kips)	1745.46	89.23	5.1%
Pad Moment Capacity (k-ft)	3633.44	935.67	25.8%
Pier Moment Capacity (k-ft)	4559.40	2230.50	48.9%

Maximum Allowable Moment of a Circular Pier Rev.G

Axial Load (Negative for Compression) = -34.00 kips

Pier Pro	<u>perties</u>		<u>Material Properties</u>
Concrete:		_	Concrete compressive strength = 4000 psi
Pier Diameter =	7.0	ft	Reinforcement yield strength = 60000 psi
Concrete Area =	5541.8	in ²	Modulus of elasticity = 29000 ksi
			Reinforcement yield strain = 0.00207
Reinforcement:		_	Limiting compressive strain = 0.003
Clear Cover =	3.00	in	
Cage Diameter =	6.42	ft	
Bar Size =	8		Seismic Properties
Bar Diameter =	1.00	in	Seismic Zone = 1
Bar Area =	0.79	in ²	
Number of Bars =	46		
_			

OK

Minimum Area of Steel

Required area of steel = $27.71 ext{ in}^2$ Provided area of steel = $36.34 ext{ in}^2$

Axial Loading

Load factor = 1.3

Reduction factor = 0.9

Factored axial load = -49.1111 kips

Neutral Axis

Distance from extreme edge to neutral axis = 12.24 in
Equivalent compression zone factor = 0.85

Distance from extreme edge to
equivalent compression zone factor = 10.40 in
Distance from centroid to neutral axis = 29.76 in

Compression Zone

in² Area of steel in compression zone = 6.32 Angle from centroid of pier to intersection of equivalent compression zone and edge of pier = 41.21 deg Area of concrete in compression = 394.47 in^2 Force in concrete = 0.85 * f`c * Acc = 1341.21 kips Total reinforcement forces = -1292.10 kips Factored axial load = -49.11 kips Force in concrete = -1341.21 kips

Sum of the forces in concrete = 0.00 kips OK

Maximum Moment

First moment of the concrete

Distance between centroid of concrete
in compression and centroid of pier = 35.81 in
Moment of concrete in compression = 48022.66 in-kips
Total reinforcement moment = 31006.97 in-kips
Nominal moment strength of column = 79029.63 in-kips
Factored moment strength of column = 54712.82 in-kips

area in compression about the centoid = 14124.31 in³

Maximum Allowable Moment = 4559.40 ft-kips

Individual Bars

				Distance							
				Distance		Aroa of					
	مام م		Distance	to Area of							
	Angle from first	Diotopoo	Distance	equivalent		steel in					
Por		Distance to centroid	to neutral	comp.	Strain	compressi	Stroce	Avial force			
Bar #	bar (dog)		axis	zone	Strain	on (in^2)	Stress	Axial force			
1	(deg)	(in)	(in) -29.76	(in)	0.0072045		(ksi)	(kips) -47.40			
2	0.00	0.00 5.24		-31.60 -26.35	-0.0072945 -0.0060096	0.00	-60.00 -60.00				
3	7.83	10.39	-24.52			0.00	-60.00	-47.40			
4	15.65		-19.37	-21.21		-0.0047486 0.00		-47.40			
5	23.48	15.34		-14.42 -16.26 -0.003535		0.00	-60.00	-47.40			
6	31.30	20.00	-9.76	-11.59	-0.0023914	0.00	-60.00	-47.40			
7	39.13	24.30	-5.46	-7.30	-0.0013392	0.00	-38.84	-30.68			
8	46.96	28.14	-1.62	-3.46	-0.0003979	0.00	-11.54	-9.12			
9	54.78	31.45	1.69	-0.14	0.0004149 0.00		12.03	9.51			
10	62.61	34.18 36.28	4.42	2.59	0.0010841	0.79	31.44	22.15			
	70.43		6.52	4.68	0.0015973	0.79	46.32	33.91			
11	78.26	37.69	7.93	6.10	0.0019447	0.79	56.40	41.87			
12	86.09	38.41	8.65	6.81	0.0021201	0.79	60.00	44.71			
13	93.91	38.41	8.65	6.81	0.0021201	0.79	60.00	44.71			
14	101.74	37.69	7.93	6.10	0.0019447	0.79	56.40	41.87			
15	109.57	36.28	6.52	4.68	0.0015973	0.79	46.32	33.91			
16	117.39	34.18	4.42	2.59	0.0010841	0.79	31.44 12.03	22.15			
17	125.22	31.45				0.00		9.51			
18	133.04	28.14	-1.62	-3.46	-0.0003979 0.00		-11.54	-9.12			
19	140.87	24.30	-5.46	-7.30	-0.0013392 -0.0023914	0.00	-38.84	-30.68			
20	148.70	20.00				0.00	-60.00	-47.40			
21	156.52	15.34			-0.003535	0.00	-60.00	-47.40			
22	164.35	10.39			-0.0047486	0.00	-60.00	-47.40			
23	172.17	5.24	-24.52 -26.35 -0.0060096		0.00	-60.00	-47.40				
24	180.00	0.00			0.00	-60.00	-47.40				
25	187.83	-5.24				0.00	-60.00	-47.40			
26	195.65	-10.39	-40.15	-41.98	-0.0098405	0.00	-60.00	-47.40			
27	203.48	-15.34	-45.10	-46.93	-0.0110541	0.00	-60.00	-47.40			
28	211.30	-20.00	-49.76	-51.60	-0.0121977	0.00	-60.00	-47.40			
29	219.13	-24.30	-54.06	-55.89	-0.0132499	0.00	-60.00	-47.40			
30	226.96	-28.14	-57.90	-59.73	-0.0141912	0.00	-60.00	-47.40			
31	234.78	-31.45	-61.21	-63.05	-0.015004	0.00	-60.00	-47.40			
32	242.61	-34.18	-63.94	-65.78	-0.0156732	0.00	-60.00	-47.40			
33	250.43	-36.28	-66.04	-67.87	-0.0161863	0.00	-60.00	-47.40			
34	258.26	-37.69	-67.46	-69.29	-0.0165338	0.00	-60.00	-47.40			
35	266.09	-38.41	-68.17	-70.01	-0.0167092	0.00	-60.00	-47.40			
36	273.91	-38.41	-68.17	-70.01	-0.0167092	0.00	-60.00	-47.40			
37	281.74	-37.69		-67.46 -69.29 -0.01653		0.00	-60.00	-47.40			
38	289.57	-36.28	-66.04	-67.87	-0.0161863	0.00	-60.00	-47.40			
39	297.39	-34.18	-63.94	-65.78	-0.0156732	0.00	-60.00	-47.40			
40	305.22	-31.45				0.00	-60.00	-47.40			
41	313.04	-28.14	-57.90 -59.73 -0.0141912 0.00			-60.00	-47.40				
42	320.87	-24.30	-54.06			-60.00	-47.40				
43	328.70	-20.00			0.00	-60.00	-47.40				
44	336.52	-15.34	-45.10			-60.00	-47.40				
45	344.35	-10.39	-40.15 -41.98 -0.0098405 0.00		-60.00	-47.40					
46	352.17	-5.24	-35.00	-36.84	-0.0085795	0.00	-60.00	-47.40			

RADIO FREQUENCY FCC REGULATORY COMPLIANCE MAXIMUM PERMISSIBLE EXPOSURE (MPE) ASSESSMENT

Sprint Existing Facility

Site ID: CT33XC514

N. Bethany / David Kluge

15 Kluge Road Prospect, CT 06798

July 14, 2014

EBI Project Number: 62143787

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

July 14, 2014

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Radio Frequency Maximum Permissible Exposure (MPE) Assessment for Site: CT33XC514 - N. Bethany / David Kluge

Site Total: 2.38% - MPE% in full compliance

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 15 Kluge Road, Prospect, CT, for the purpose of determining whether the radio frequency (RF) exposure levels from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band (850 MHz Band) is approximately 567 μ W/cm², and the general population exposure limit for the 1900 MHz and 2500 MHz bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 15 Kluge Road, Prospect, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 2 channels in the 1900 MHz Band were considered for each sector of the proposed installation.
- 2) 1 channel in the 800 MHz Band was considered for each sector of the proposed installation
- 3) 2 channels in the 2500 MHz Band were considered for each sector of the proposed installation.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the RFS APXVSPP18-C-A20, RFS APXV9ERR18-C-A20 and the RFS APXVTM14-C-I20. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APXVSPP18-C-A20 has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. The RFS APXV9ERR18-C-A20 has a 14.9 dBd gain value at its main lobe at 1900 MHz and 11.9 dBd at its main lobe for 850 MHz. The RFS APXVTM14-C-I20 has a 15.9 dBd gain value at its main lobe at 2500 MHz. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline for the proposed antennas is **192 feet** above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

	Site ID	CT33XC514	- N. Bethany /	David Kluge												
	Site Addresss	15 Kluge F	Road, Prospect,	CT, 06798												
	Site Type		Monopole													
Sector 1																
						Power										
						Out Per			Antenna Gain							Power
Antenna							Number of	Composite	(10 db	Antenna	analysis		Cable Loss	Additional		Density
	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	,	Height (ft)	height	Cable Size		Loss (dB)	ERP	Percentage
1a	RFS	APXV9ERR18-C-A20	RRH	1900 MHz	CDMA / LTE	20	2	40	4.9	192	186	1/2 "	0.5	0	110.17	0.11%
1a	RFS	APXV9ERR18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	1.9	192	186	1/2 "	0.5	0	27.61	0.05%
1B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	5.9	192	186	1/2 "	0.5	0	138.69	0.25%
												Sector to	otal Power D	ensity Value:	0.42%	
							Sector 2									
							Jector 2									
						Power										
						Out Per			Antenna Gain							Power
Antenna							Number of	Composite	(10 db	Antenna	analysis		Cable Loss	Additional		Density
Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	reduction)	Height (ft)	height	Cable Size		Loss (dB)	ERP	Percentage
2a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	2	40	5.9	192	186	1/2 "	0.5	0	138.69	0.14%
2a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	3.4	192	186	1/2 "	0.5	0	39.00	0.07%
2B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	5.9	192	186	1/2 "	0.5	0	138.69	0.25%
												Sector to	otal Power D	ensity Value:	0.47%	
							Sector 3									
									•							
						Power										
						Out Per			Antenna Gain							Power
Antenna							Number of	Composite	(10 db	Antenna	analysis		Cable Loss	Additional		Density
Number	Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	(Watts)	Channels	Power	reduction)	Height (ft)	height	Cable Size		Loss (dB)	ERP	Percentage
3a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	2	40	5.9	192	186	1/2 "	0.5	0	138.69	0.14%
3a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	3.4	192	186	1/2 "	0.5	0	39.00	0.07%
3B	RFS	APXVTMM14-C-120	RRH	2500 MHz	CDMA / LTE	20	2	40	5.9	192	186	1/2 "	0.5	0	138.69	0.25%
			•						•			Sector to	otal Power D	ensity Value:	0.47%	

Site C	Composite MPE %
Carrier	MPE %
Sprint	1.36%
T-Mobile	1.02%
Total Site MPE %	2.38%

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public Maximum Permissible Exposure (MPE) to radio frequency energy.

The anticipated Maximum Composite contributions from the Sprint facility are 1.36% (0.42% from sector 1, 0.47% from sector 2 and 0.47% from sector 3) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is **2.38**% of the allowable FCC established general public limit sampled at 6 feet above ground level. This total composite site value is based upon MPE values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street

Burlington, MA 01803