

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

June 16, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application

101 Pierce Road, Preston, CT 06365

Latitude: 41.538175 Longitude: -71.951630 Site #: 876366_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 101 Pierce Road, Preston, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 119-foot level of the existing 155-foot monopole tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by Hudson Design Group, dated June 9, 2022, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated December 17, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of Preston Planning Commission on August 3, 1999. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Sandra Allyn-Gauthier, First Selectwoman and Kathy Warzecha, Town Planner for the Town of Preston, as well as the tower owner (Crown Castle) and property owner (Panus Farm LLC).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 155-feet and the Dish Wireless LLC antennas will be located at a centerline height of 119-feet.
- 2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 20.81% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing tower has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Preston. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 119-foot level of the existing 155-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Preston.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: Sandra Allyn-Gauthier, First Selectwoman Preston Town Hall 389 Route 2 Preston, CT 06365

Kathy Warzecha, Town Planner Preston Town Hall 389 Route 2 Preston, CT 06365

Panus Farm LLC - Property Owner 60 Pierce Road Preston, CT 06365

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

TOWN OF PRESTON TOWN OFFICES 389 ROUTE 2 PRESTON. CONNECTICUT 06365-8830

to Dan for signature of 1/99

FILE COPY

Date: August 10, 1999

Certified Mail

Sprint Spectrum, L.P.
One International Blvd
Suite 800 Mahwah New, Jersey 07495

Dear Attorney Regan:

At the regular meeting of the Preston Planning and Zoning Commission held on

August 3, 1999, the Commission reviewed application Site Plan # 2-99 and Special Exception 4-99
for the installation of a monopole and other associated work at 101 Peirce Road
The Commission voted unanimously to approve the subject application with the following
modifications:

1. Note sight distance for the driveway on the plan.

2. Gravel drive shall have 6" of gravel rather than 4". The driveway shall have a paved apron. A driveway permit is required for its installation.

3. An As-built plan must be provided for the project after the construction is completed. The as-built must be provided prior to the release of the bond.

4. A bond for the site work in the amount of \$28,000.00 must be submitted on forms as provided by the town with the final format to be approved by the town attorney.

5. A bond in the amount \$29,500.00 must be posted for the tower dismantling. This bond is to be renewed every two years and must be renewed by August 3, 2001. In the event the bond is not renewed it will be a violation of this permit.

6. The Commission requested that a company representative contact the First Selectmen to afford the town due consideration to address the town's emergency communication needs.

Please provide one mylar copy of the plan revised in accordance with the above noted and produced or reproduced in compliance with section 7-31 of the Connecticut General Statues regarding requirements for the filing of a map. In addition, provide two (2) paper copies. After endorsement of the plan by the Chairman, the mylar copy of the plan must be filed with the Town Clerk's office.

BONDING: Prior to the endorsement of the plan the two bonds in the amount of \$28,000 and 29,500 must be filed with the Commission using the format as approved by the Commission (see attached forms). The Town will hold the bonds until such time the Commission approves their reduction or

ÐΤ

release. Any plan filed without the appropriate bond will be considered to be in violation with the approved plan and zoning regulations. In order for the Commission to consider a bond release or reduction, a letter requesting a release or reduction must be submitted to the Planning and Zoning Office two (2) weeks prior to the regularly scheduled meeting. This will allow adequate time to conduct a site inspection of the completed work. Unauthorized work could result in delays with the bond release or reduction by the Commission.

OTHER PERMITS REQUIRED: Prior to the commencement of any work, a zoning permit and other subsequent town and state permits must be obtained.

SITE INSPECTIONS: During the construction of the project, inspections will be conducted of the progress by the town staff. A forty-eight hour notice is required for the inspections. In the event that there is concern with the location of the structure, parking etc, the Zoning Enforcement Officer may require that a land surveyor licensed in the State of Connecticut locate the structure prior to construction. Failure to provide notice to the town of the work and failure to construct the project as shown on the plan without prior approval of the changes could result in problems with the issuance of Certificate of Occupancy and the release or reduction of the bond. Please contact the Planning and Zoning Office at 889-2529 to schedule an appointment to inspect the project at the following times:

- 1. After the installation of the erosion and sediment control.
- 2. After the structure has been staked out and the footings are to be placed.
- 3. After the parking and sidewalks have been staked out.
- 4. Completion of the project.

If there are any questions regarding this application or if the staff can be of any assistance at any time during the project construction, please do not hesitate to contact the office.

Congratulations on the success completion of the application.

Very truly yours, Dane / Kuleszensew)

Daniel Kulesza

Town Planner

cc: ZEO

First Selectman
Inland Wetland Officer
Building Inspector
Walter and Ruth Panus

Exhibit B

Property Card

101 PIERCE RD

Location 101 PIERCE RD **Mblu** 8-0/ PIE1/ 101/ /

Acct# 00059300 Owner PANUS FARM LLC

Assessment \$257,750 **Appraisal** \$1,137,200

> PID 602 **Building Count** 1

Current Value

Appraisal								
Valuation Year Improvements Land Total								
2017	\$92,400	\$1,044,800	\$1,137,200					
	Assessment							
Valuation Year	Improvements	Land	Total					
2017	\$64,	700 \$193,05	0 \$257,750					

Owner of Record

Owner PANUS FARM LLC Sale Price \$0

Co-Owner Certificate

Address 60 PIERCE RD **Book & Page** 0196/0038 PRESTON, CT 06365 Sale Date 12/03/2015

Instrument 01

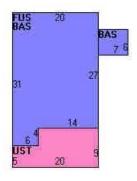
Ownership History

Ownership History										
Owner Sale Price Certificate Book & Page Instrument Sale Date										
PANUS FARM LLC	\$0		0196/0038	01	12/03/2015					
SHEA JOAN	\$0		0193/0185	01	11/19/2014					
SHEA JOAN - TRUSTEE	\$0		0193/0180	01	11/19/2014					
PANUS RUTH L ESTATE OF	\$0		0190/0842		11/26/2013					
PANUS RUTH L TRUSTEE	\$0		0188/0206		03/26/2013					

Building Information

Building 1 : Section 1

Year Built: 1950 Living Area: 1,170
Replacement Cost: \$89,164
Building Percent Good: 65


Replacement Cost

Less Depreciation: \$58,000					
В	uilding Attributes				
Field	Description				
Style	Conventional				
Model	Residential				
Grade:	Below Average				
Stories:	2 Stories				
Occupancy	1				
Exterior Wall 1	Wood Shingle				
Exterior Wall 2					
Roof Structure:	Gable/Hip				
Roof Cover	Asph/F Gls/Cmp				
Interior Wall 1	Plastered				
Interior Wall 2	Panel				
Interior Flr 1	Carpet				
Interior Flr 2	Vinyl/Asphalt				
Heat Fuel	Gas				
Heat Type:	Hot Water				
AC Type:	None				
Total Bedrooms:	4 Bedrooms				
Total Bthrms:	1				
Total Half Baths:	1				
Total Xtra Fixtrs:					
Total Rooms:	6 Rooms				
Bath Style:	Average				
Kitchen Style:	Average				
Num Kitchens	01				
Cndtn					
Usrfld 103					
Usrfld 104					
Usrfld 105					
Usrfld 106					
Usrfld 107					
Num Park					
Fireplaces					
Usrfld 108					
Usrfld 101					
Usrfld 102					

(http://images.vgsi.com/photos/PrestonCTPhotos/\\00\\00\\34\\36.jpg)

Building Layout

(http://images.vgsi.com/photos/PrestonCTPhotos//Sketches/602_602.jpg)

	Building Sub-Areas (sq ft)						
Code	Description	Gross Area	Living Area				
BAS	First Floor	606	606				
FUS	Upper Story, Finished	564	564				
UST	Utility, Storage, Unfinished	156	0				
		1,326	1,170				

Usrfld 100	
Usrfld 300	
Usrfld 301	

Extra Features

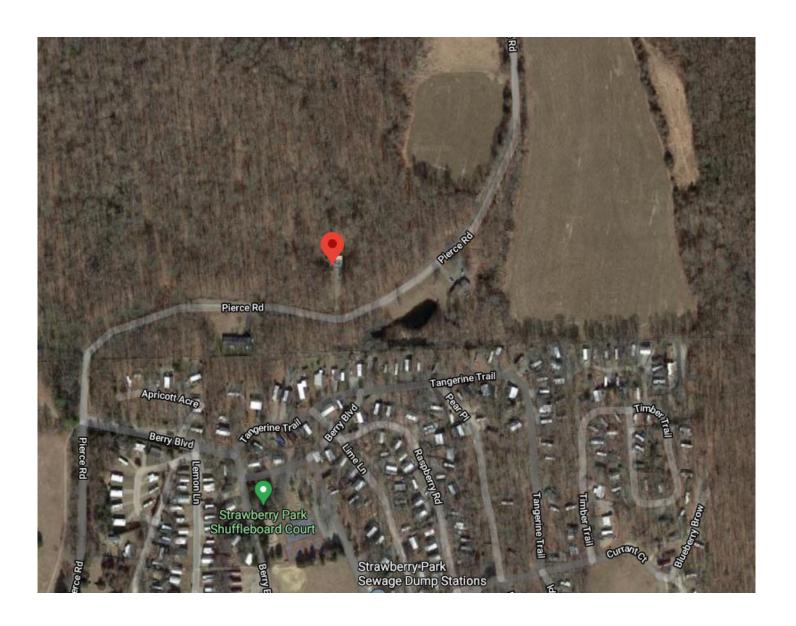
Extra Features	Legend
No Data for Extra Features	

Land

Land Use		Land Line Valuation		
Use Code	1010	Size (Acres)	198.45	
Description	Single Fam MDL-01	Frontage	0	
Zone	R-80	Depth	0	
Neighborhood	0050	Assessed Value	\$193,050	
Alt Land Appr	No	Appraised Value	\$1,044,800	
Category				

Outbuildings

Outbuildings <u>Legend</u>							
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #	
FGR1	GARAGE-AVE			492.00 S.F.	\$2,400	1	
FGR1	GARAGE-AVE			2088.00 S.F.	\$16,700	1	
SLO1	SILO-WD OR CNC			3432.00 DIAxHT	\$4,800	1	
BRN3	1 STORY W/LOFT			1744.00 S.F.	\$2,300	1	
BRN8	POLE BARN			5124.00 S.F.	\$3,600	1	
SHD1	SHED FRAME			270.00 S.F.	\$600	1	
LNT	LEAN-TO			930.00 S.F.	\$300	1	
SHD2	W/LIGHTS ETC			4090.00 S.F.	\$3,700	1	


Valuation History

Appraisal								
Valuation Year Improvements Land Total								
2011	\$119,800	\$976,600	\$1,096,400					
2006	\$101,600	\$493,500	\$595,100					
2001	\$102,200	\$466,700	\$568,900					

Assessment							
Valuation Year	Improvements	Land	Total				
2011	\$83,900	\$91,600	\$175,500				
2006	\$71,100	\$58,900	\$130,000				

2001 \$71,500 \$46,900 \$118,400

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

Exhibit C

Construction Drawings

CISS Wireless

DISH Wireless L.L.C. SITE ID:

BOBOS01004A

DISH Wireless L.L.C. SITE ADDRESS:

101 PIERCE ROAD PRESTON, CT 06365

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES

CODE TYPE CO

BUILDING
2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS
MECHANICAL
2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
ELECTRICAL
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

SHEET INDEX					
SHEET NO.	SHEET TITLE				
T-1	TITLE SHEET				
A-1	OVERALL AND ENLARGED SITE PLAN				
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE				
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS				
A-4	EQUIPMENT DETAILS				
A-5	EQUIPMENT DETAILS				
A-6	EQUIPMENT DETAILS				
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES				
E-2	ELECTRICAL DETAILS				
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE				
G-1	GROUNDING PLANS AND NOTES				
G-2	GROUNDING DETAILS				
G-3	GROUNDING DETAILS				
RF-1	RF CABLE COLOR CODE				
GN-1	LEGEND AND ABBREVIATIONS				
GN-2	RF SIGNAGE				
GN-3	GENERAL NOTES				
GN-4	GENERAL NOTES				
GN-5	GENERAL NOTES				

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

TOWER SCOPE OF WORK:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
- INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT
- INSTALL PROPOSED JUMPERS
 INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
- INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- INSTALL (1) PROPOSED HYBRID CABLE
- INSTALL (1) PROPOSED CABLE ENTRY PORT

GROUND SCOPE OF WORK:

- INSTALL (1) PROPOSED METAL PLATFORM
- INSTALL (1) PROPOSED ICE BRIDGE
- INSTALL (1) PROPOSED ICE BRIDGE
 INSTALL (1) PROPOSED PPC CABINET
- INSTALL (1) PROPOSED EQUIPMENT CABINET INSTALL (1) PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- INSTALL (1) PROPOSED GPS UNIT
- INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)
- INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)
- INSTALL (1) PROPOSED 200A METER IN EXISTING SOCKET

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811
UTILITY NOTIFICATION CENTER OF CONNECTICUT
(800) 922-4455
WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

811.

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 PROPERTY OWNER 60 PIERCE RD ADDRESS: PRESTON, CT 06365 **TOWER TYPE:** MONOPOLE TOWER OWNER: CROWN CASTLE 2000 CORPORATE DRIVE TOWER CO SITE ID: CANONSBURG, PA 15317 876366 TOWER APP NUMBER: (877) 486-9377 COUNTY: **NEW LONDON** SITE DESIGNER: HUDSON DESIGN GROUP, LLC. 45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845 LATITUDE (NAD 83): 41° 32' 17.46" N 41.53818 (978) 557-5553 LONGITUDE (NAD 83): 71° 57' 6.00" W -71.95167 ZONING JURISDICTION: TOWN OF PRESTON-CT SITE ACQUISITION: COURTNEY PRESTON **COURTNEY.PRESTON.CONTRACTOR OCROWNCASTLE.COM ZONING DISTRICT:** PARCEL NUMBER: CONSTRUCTION JAVIER SOTO 8-0/PIE1/101A JAVIER.SOTO DISH.COM **MANAGER:** OCCUPANCY GROUP: ARVIN SEBASTIAN RF ENGINEER: ARVIN.SEBASTIANODISH.COM CONSTRUCTION TYPE: POWER COMPANY: NORTHEAST UTILITIES

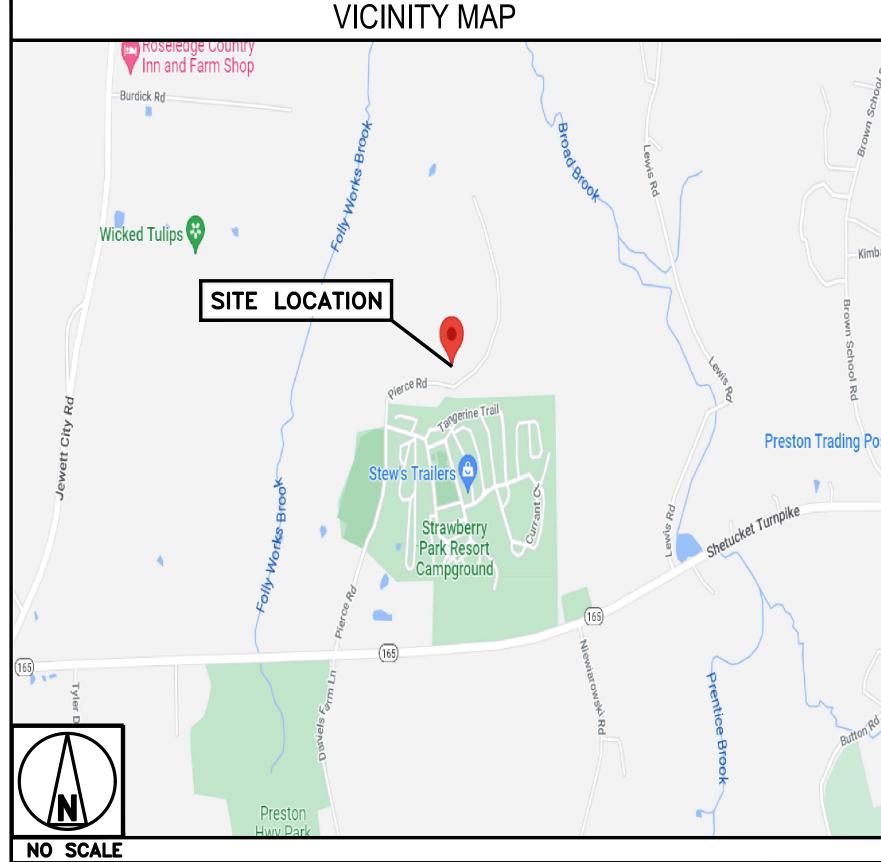
PROJECT DIRECTORY

APPLICANT:

DISH Wireless L.L.C.

DIRECTIONS

DIRECTIONS FROM BRADLEY INTERNATIONAL AIRPORT:

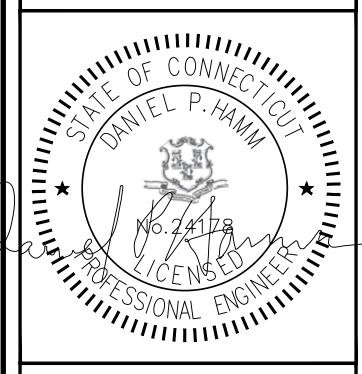

TELEPHONE COMPANY: TBD

SITE INFORMATION

PANUS FARM LLC

PROPERTY OWNER:

GET ON BRADLEY INTERNATIONAL AIRPORT CON IN EAST GRANBY FROM BRADLEY INTERNATIONAL AIRPORT. HEAD NORTH TOWARD BRADLEY INTERNATIONAL AIRPORT. SLIGHT LEFT ONTO BRADLEY INTERNATIONAL AIRPORT. CONTINUE STRAIGHT. KEEP RIGHT TO CONTINUE TOWARD BRADLEY INTERNATIONAL AIRPORT CON. TAKE I-91 S, CT-2 E AND I-395 N TO CT-164 S IN GRISWOLD. TAKE EXIT 22 FROM I-395 N. CONTINUE ONTO BRADLEY INTERNATIONAL AIRPORT CON. CONTINUE ONTO CT-20 E/BRADLEY INTERNATIONAL AIRPORT CON. TAKE THE EXIT ONTO I-91 S TOWARD HARTFORD. TAKE EXIT 30 ON THE LEFT TO MERGE ONTO I-84 E. TAKE EXIT 55 FOR CT-2 E TOWARD NORWICH/NEW LONDON/I-84 E. CONTINUE ONTO CT-2 E. KEEP LEFT AT THE FORK TO STAY ON CT-2 E, FOLLOW SIGNS FOR 2 E. TAKE EXIT 28N TO MERGE ONTO I-395 N TOWARD PROVIDENCE. TAKE EXIT 22 FOR CT-164 TOWARD CT-138/PRESTON CITY/PACHAUG. CONTINUE ON CT-164 S. DRIVE TO PIERCE RD IN PRESTON. TURN RIGHT ONTO CT-164 S. TURN LEFT ONTO CT-165 E. TURN LEFT ONTO PIERCE RD. 101 PIERCE RD. PRESTON, CT 06365.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE N. ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY

JJ SMA DPH

RFDS REV #:

PRELIMINARY DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 01/22/2022 ISSUED FOR REVIEW

B 04/05/2022 ISSUED FOR REVIEW

C 06/09/2022 ISSUED FOR REVIEW

A&E PROJECT NUMBER

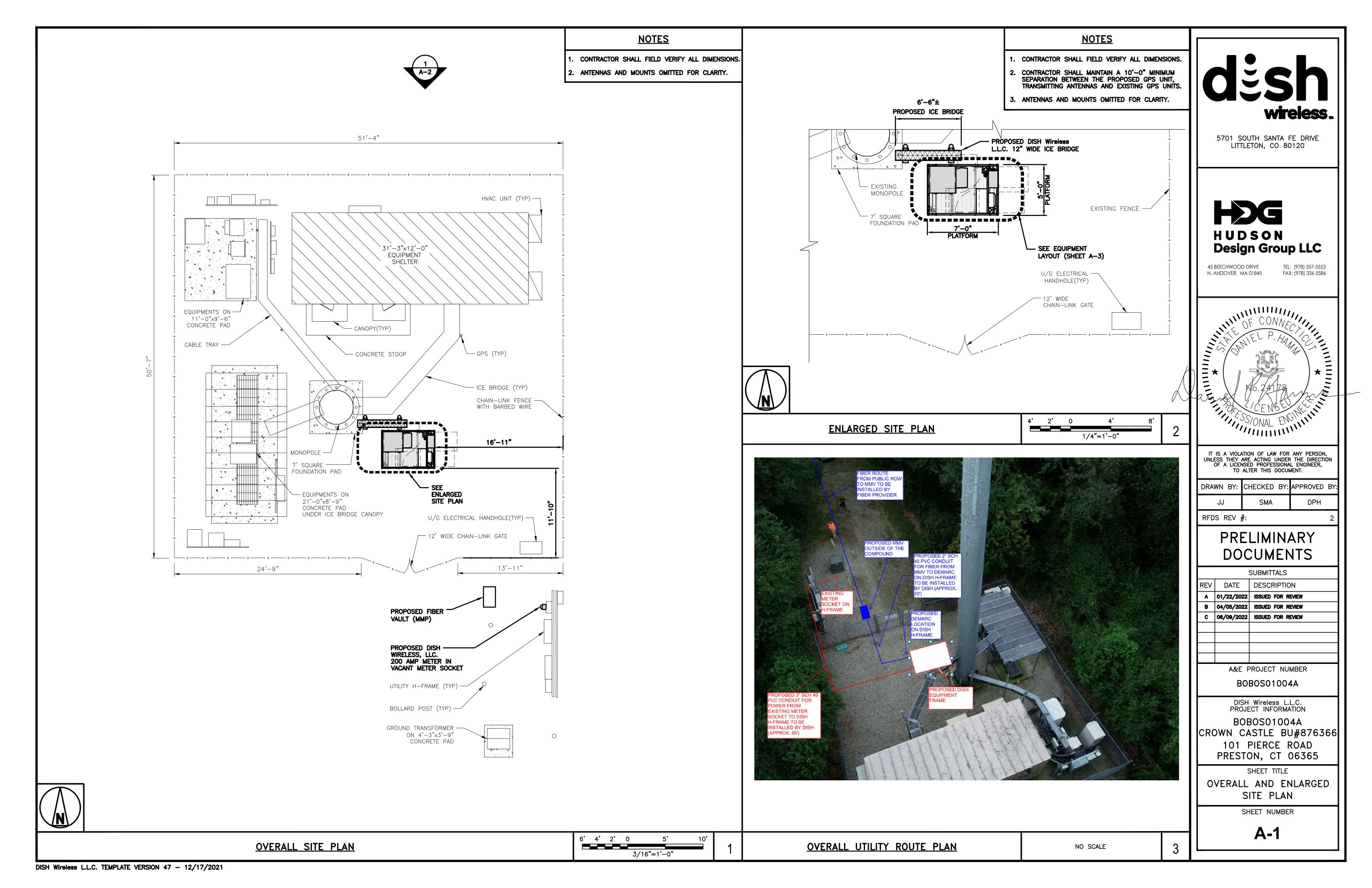
BOBOS01004A

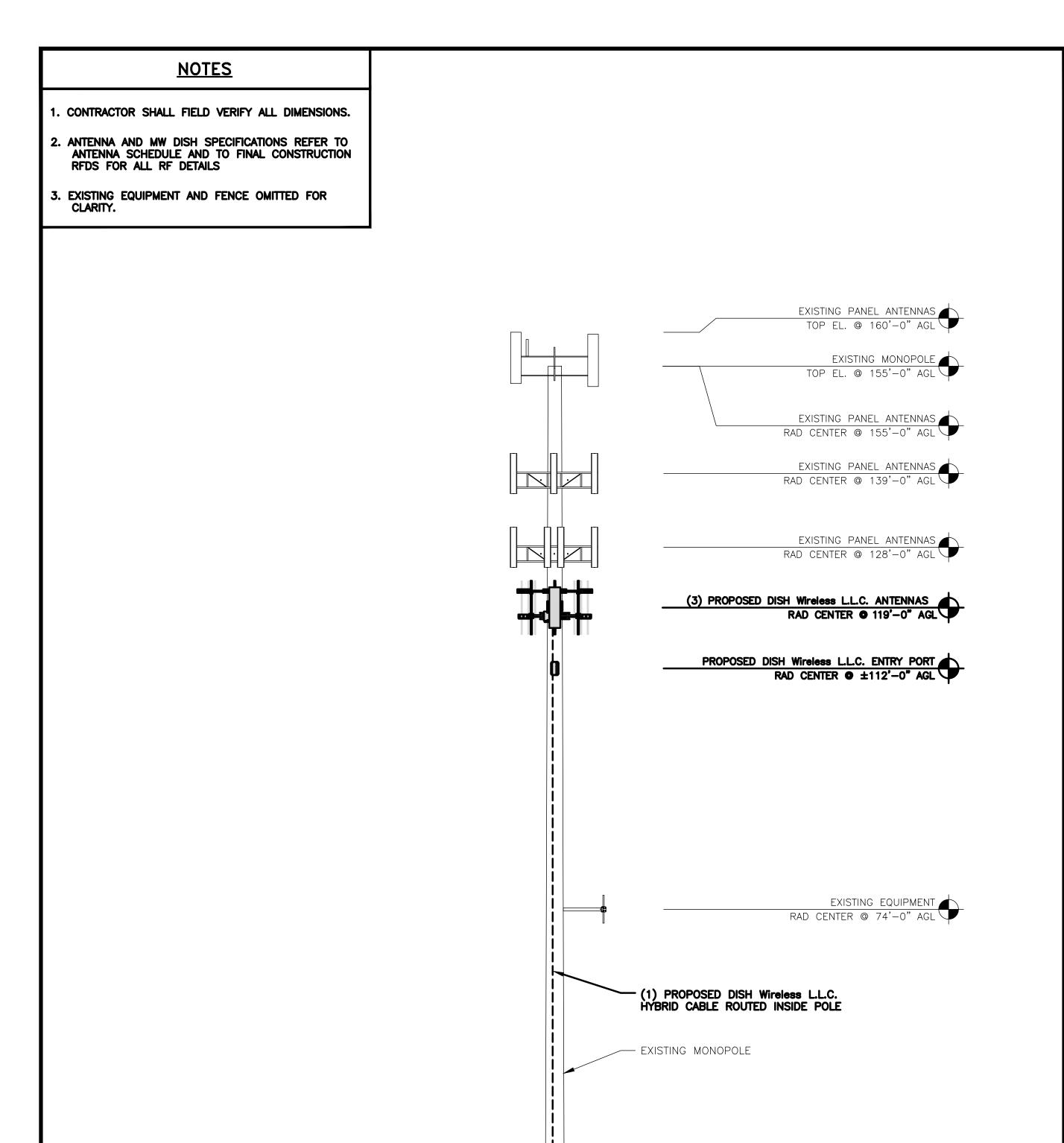
DISH Wireless L.L.C.

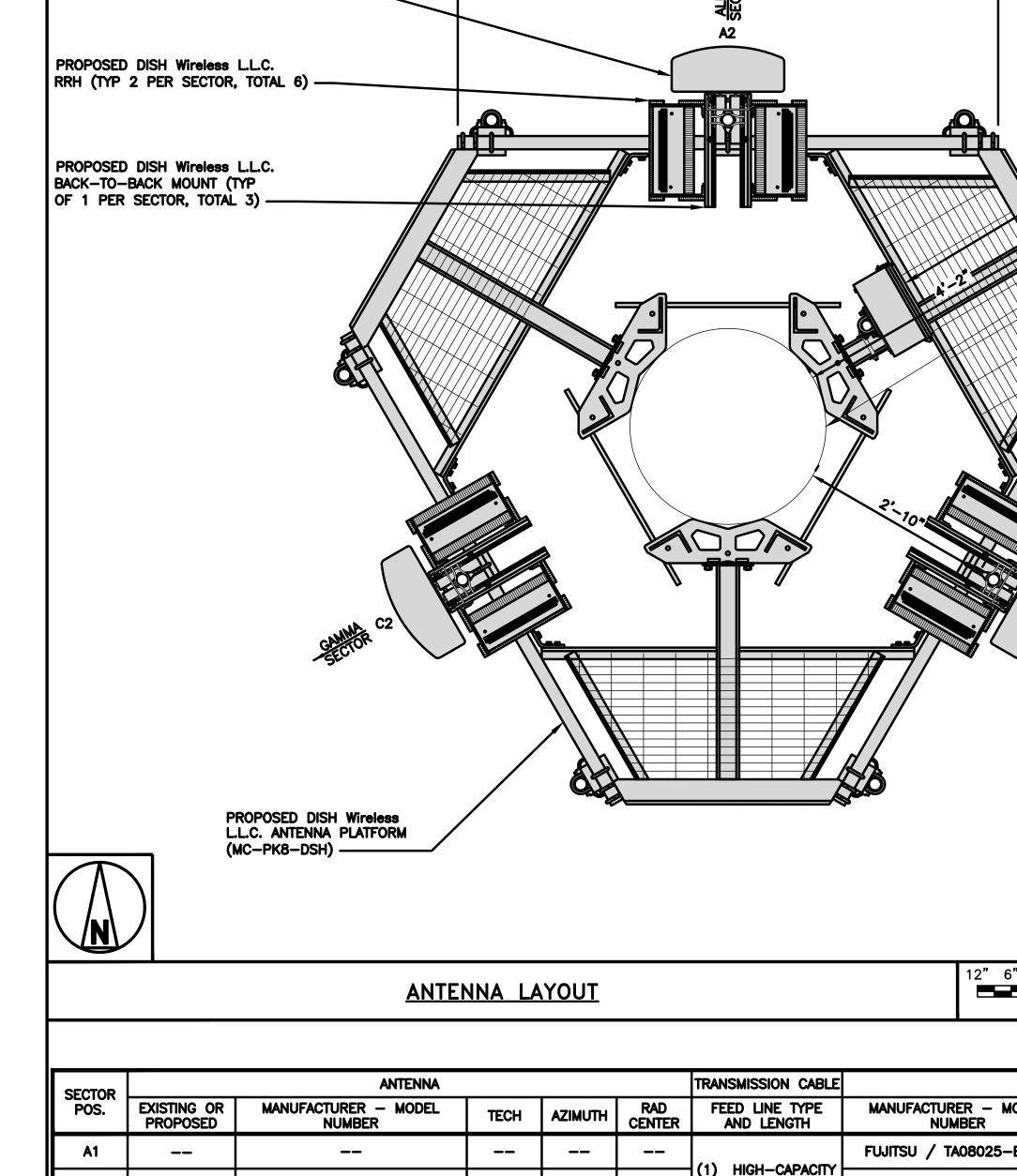
PROJECT INFORMATION

BOBOSO1004A

CROWN CASTLE BU#876366


101 PIERCE ROAD


PRESTON, CT 06365


SHEET TITLE
TITLE SHEET

SHEET NUMBER

T-1

SECTOR		ANTENNA				TRANSMISSION CABLE	RRH			OVP		
POS.	EXISTING OR PROPOSED	MANUFACTURER — MODEL NUMBER	TECH	AZIMUTH	RAD CENTER	FEED LINE TYPE AND LENGTH	MANUFACTURER — MODEL NUMBER	TECH	POS.	MANUFACTURER MODEL		
A1			-			(1) HIGH—CAPACITY HYBRID CABLE (150' LONG)	FUJITSU / TA08025-B604	5G	A2	504045 /		
A2	PROPOSED	JMA WIRELESS/MX08FR0665-21	5G	o.	119'-0"		` HYBRID CABLE	` HYBRID CABLE	FUJITSU / TA08025-B605	5G	A2	RAYCAP / RDIDC-9181 -PF-48
A 3										_F1 _ -43		
B1							FUJITSU / TA08025-B604	5G	B2			
B2	PROPOSED	JMA WIRELESS/MX08FR0665-21	5G	120°	119'-0"	SHARED W/ALPHA	FUJITSU / TA08025-B605	5G	B2	SHARED W/ALPHA		
В3												
C1							FUJITSU / TA08025-B604	5G	C2			
C2	PROPOSED	JMA WIRELESS/MX08FR0665-21	5G	240°	119'-0"	SHARED W/ALPHA	FUJITSU / TA08025-B605	5G	C2	SHARED W/ALPHA		
С3												

8'-0"

<u>NOTES</u>

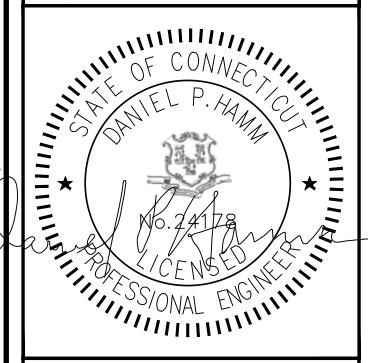
PROPOSED DISH Wireless L.L.C. ANTENNA

(TYP 1 PER SECTOR, TOTAL 3) -

- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS.
- 2. ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

PROPOSED DISH Wireless L.L.C. OVP DEVICE


- EXISTING MONOPOLE

3/4"=1'-0"

NO SCALE

45 BEECHWOOD DRIVE TEL: (978) 557-5553 N. ANDOVER, MA 01845 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

JJ SMA DPH	DRAWN	BY:	CHECKED	BY:	APPROVED	BY
	JJ		SMA		DPH	

RFDS REV #:

PRELIMINARY DOCUMENTS

		SUBMITTALS	
REV	DATE	DESCRIPTION	
A	01/22/2022	ISSUED FOR REVIEW	
В	04/05/2022	ISSUED FOR REVIEW	
С	06/09/2022	ISSUED FOR REVIEW	
·			
A&E PROJECT NUMBER			
	BOBOS01004A		

DISH Wireless L.L.C.
PROJECT INFORMATION

BOBOS01004A CROWN CASTLE BU#876366 101 PIERCE ROAD PRESTON, CT 06365

SHEET TITLE

ELEVATION, ANTENNA

LAYOUT AND SCHEDULE

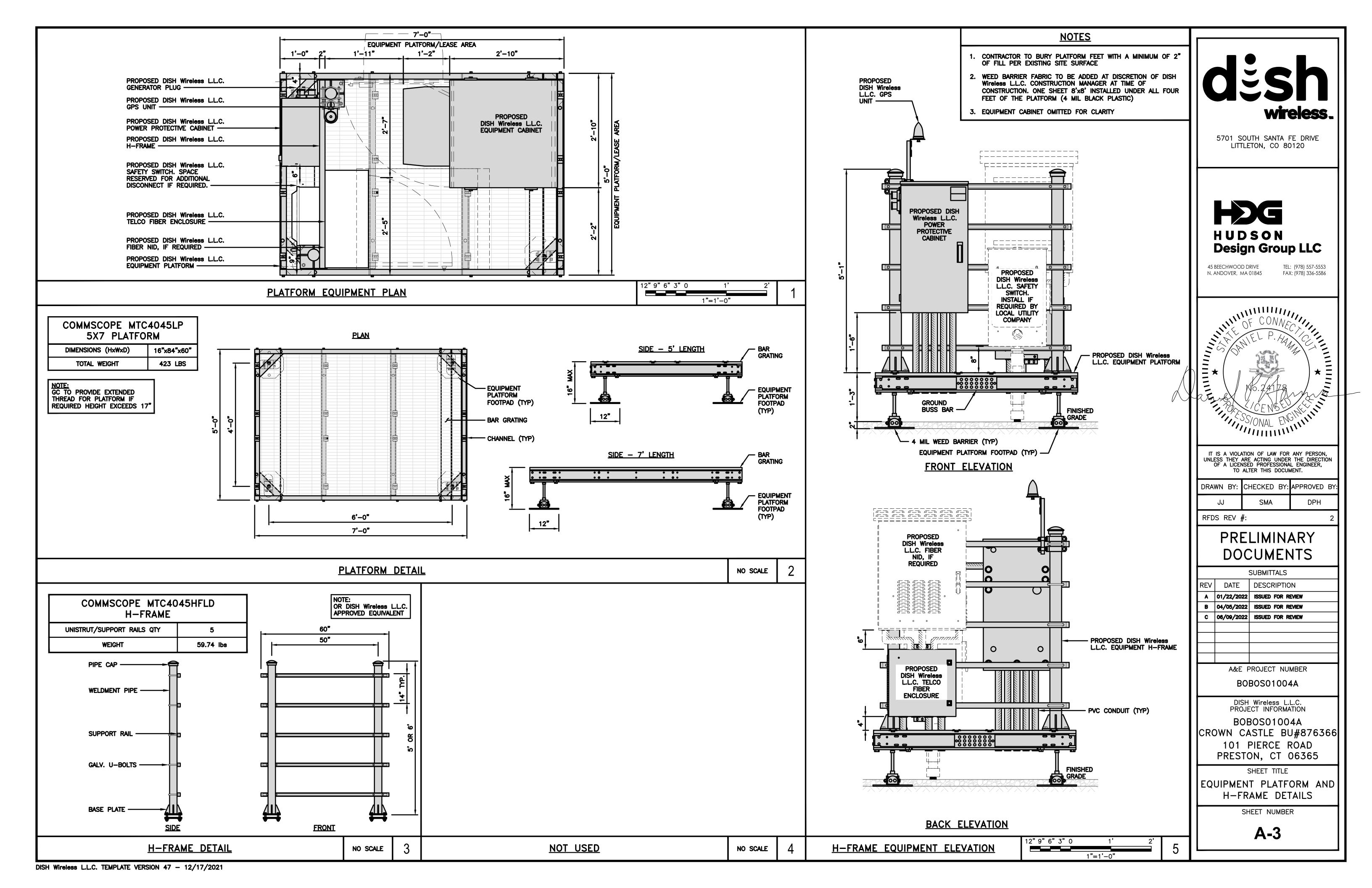
SHEET NUMBER

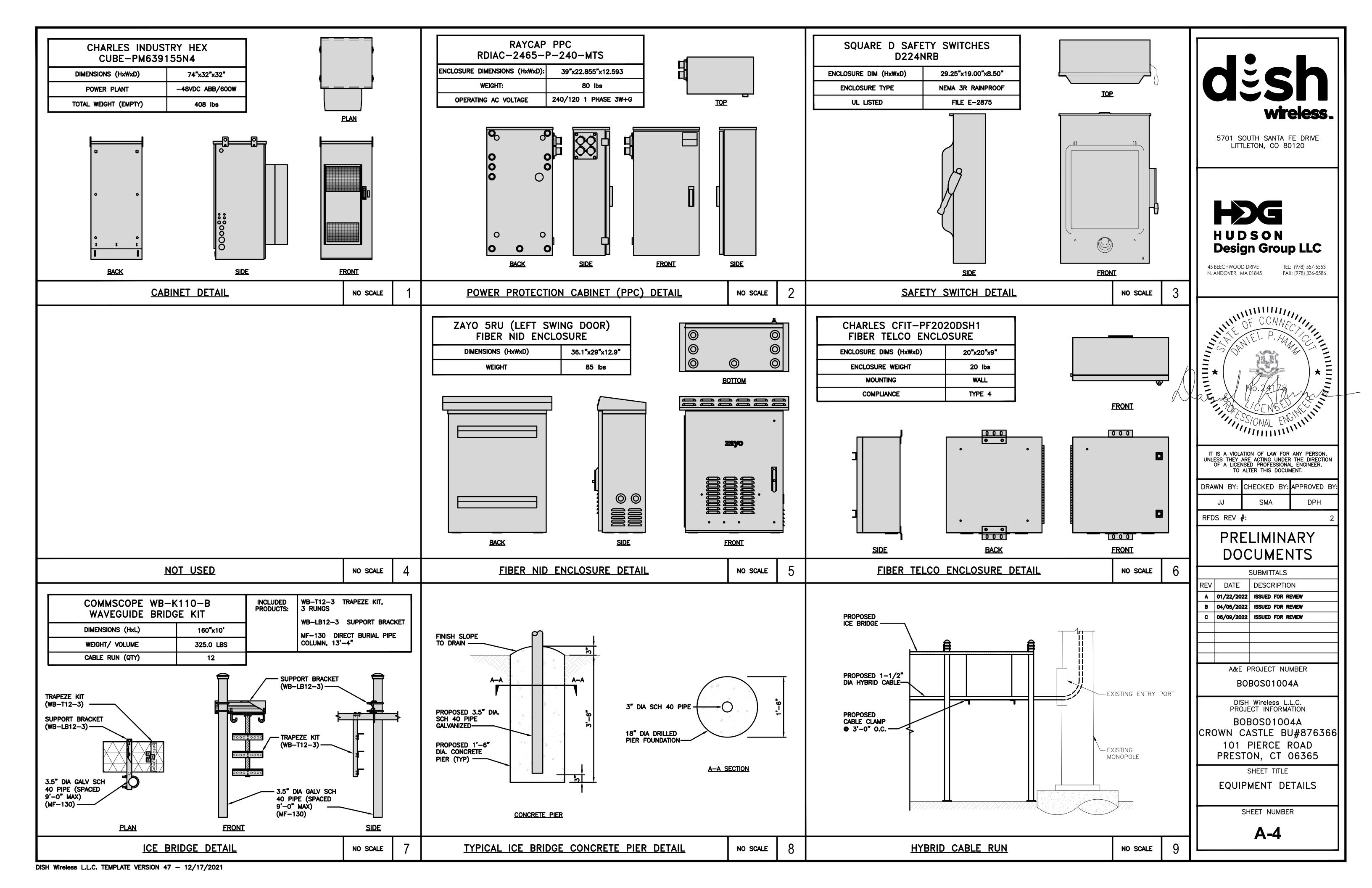
A-2

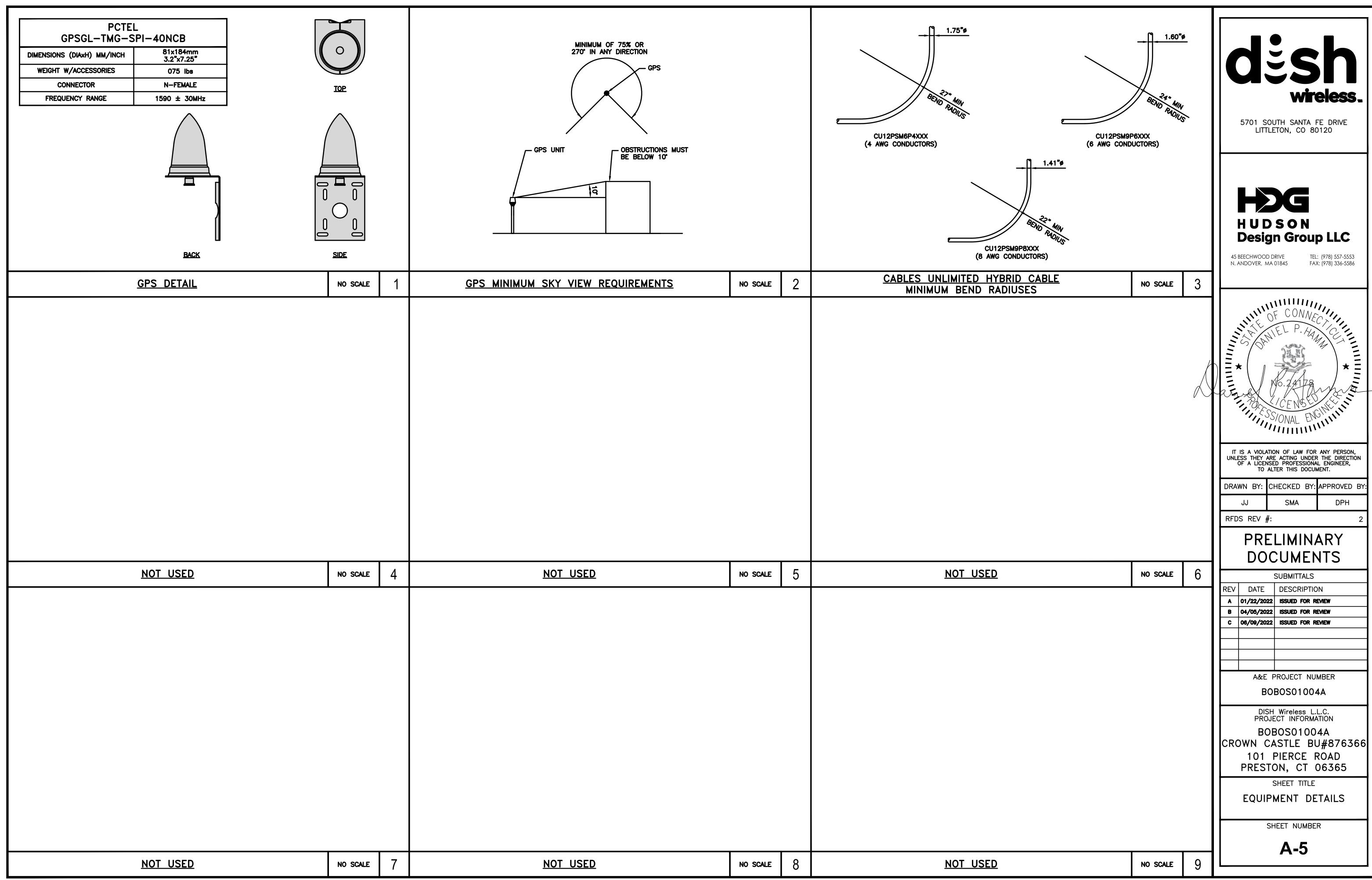
- EXISTING ENTRY PORT

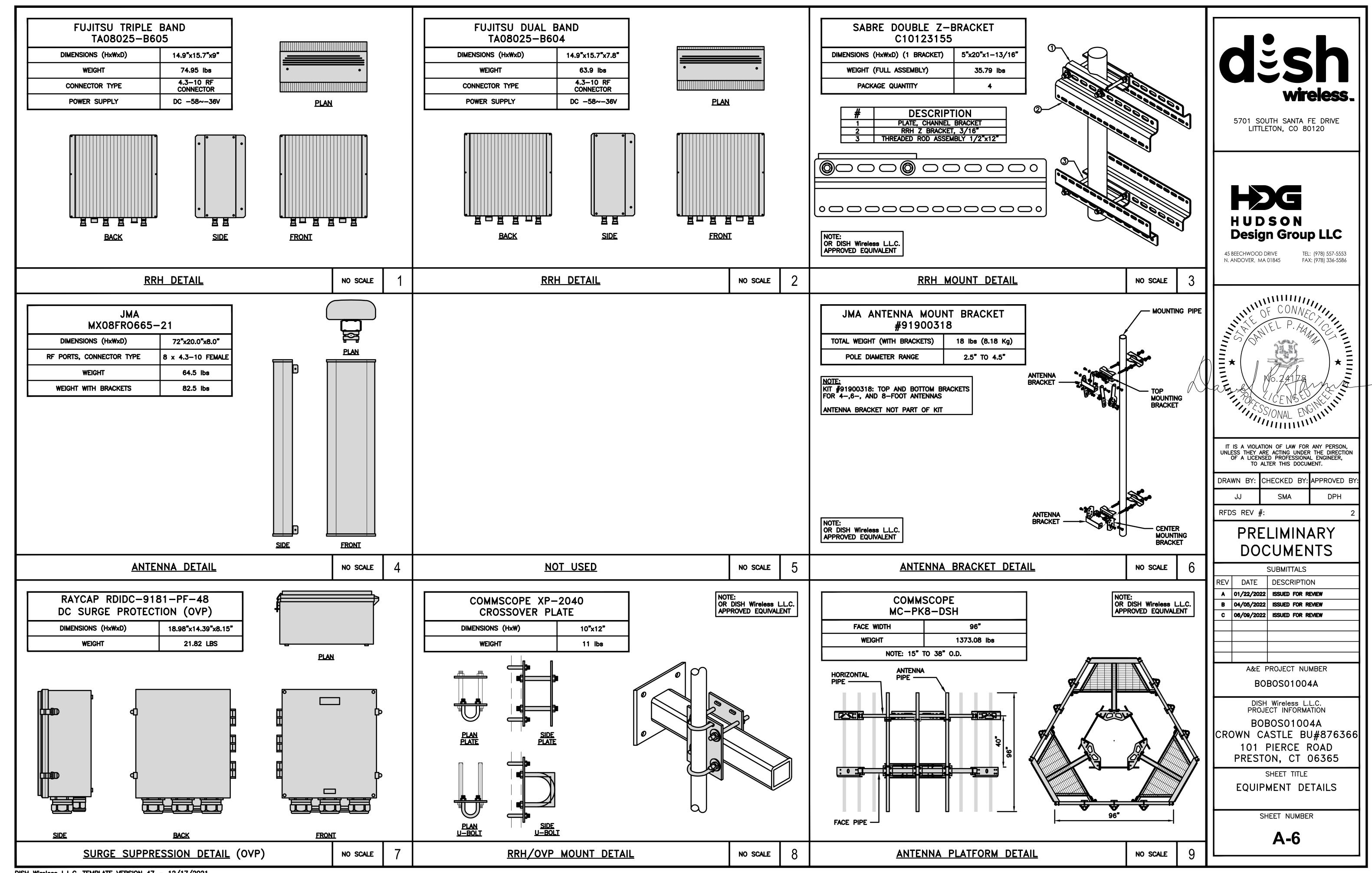
ANTENNA SCHEDULE

DISH Wireless L.L.C. TEMPLATE VERSION 47 - 12/17/2021

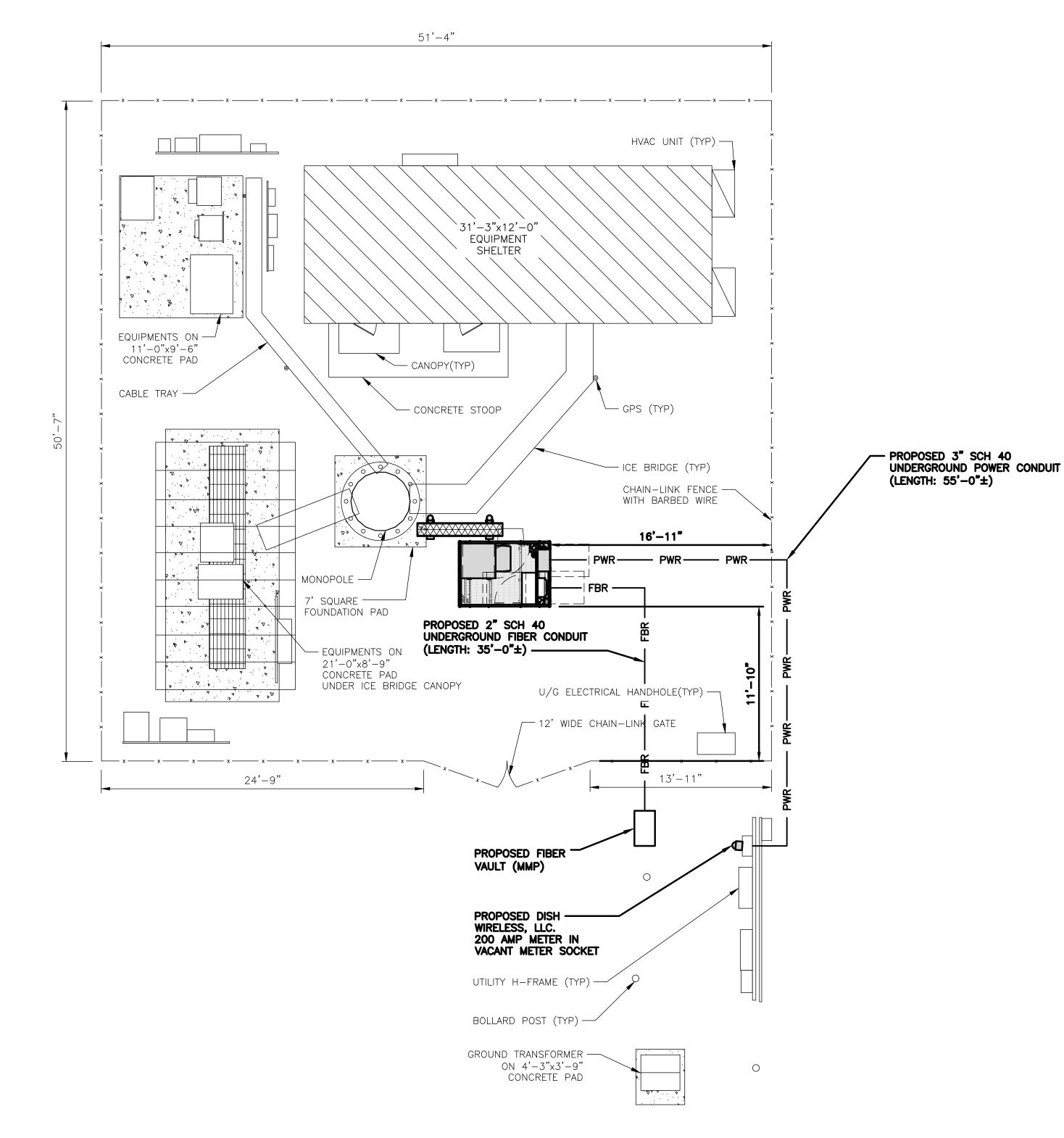

PROPOSED DISH Wireless L.L.C. ICE BRIDGE


PROPOSED DISH Wireless L.L.C. EQUIPMENT ON PROPOSED STEEL PLATFORM

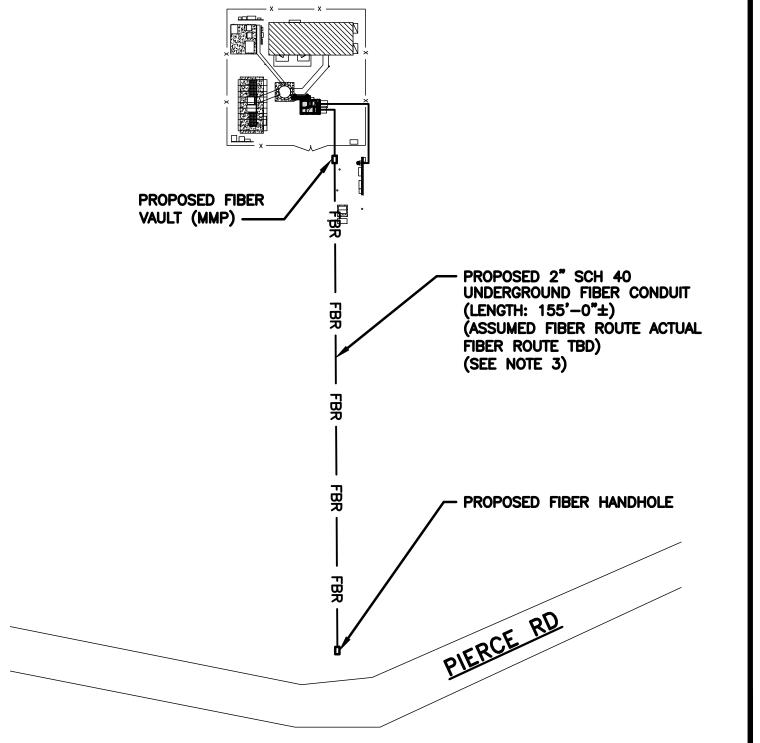

PROPOSED DISH Wireless L.L.C.


PROPOSED ELEVATION

GPS UNIT -



- 1. CONTRACTOR SHALL FIELD VERIFY ALL PROPOSED UNDERGROUND UTILITY CONDUIT ROUTE.
- 2. ANTENNAS AND MOUNTS OMITTED FOR CLARITY.
- 3. DUE TO UTILITY EASEMENT RIGHTS SPECIFIED IN THE GROUND LEASE, CUSTOMER MAY INSTALL EQUIPMENT WITHIN SPECIFIED UTILITY EASEMENT AREA. "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 REPRESENT PLANNED ROUTING BASED ON BEST AVAILABLE INFORMATION INCLUDING BUT NOT LIMITED TO A SURVEY, EXHIBITS, METES AND BOUNDS OF THE UTILITY EASEMENT, FIELD VERIFICATION, PRIOR PROJECT DOCUMENTATION AND OTHER REAL PROPETY RIGHTS DOCUMENTS. WHEN INSTALLING THE UTILITIES PLEASE LOCATE AND FOLLOW EXISTING PATH. IF EXISTING PATH IS MATERIALLY INCONSISTENT WITH "PWR" AND "FBR" PATH DEPICTED ON A-1 AND E-1 AND SAID VARIANCE IS NOT NOTED ON CDs, PLEASE NOTIFY TOWER OWNER AS FURTHER COORDINATION MAY BE NEEDED.

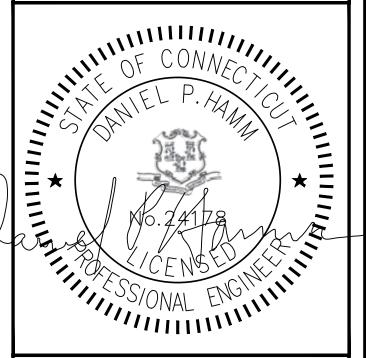


UTILITY ROUTE PLAN

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

- 1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- 2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- 9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE N. ANDOVER, MA 01845 TEL: (978) 557-5553 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
JJ		SMA		DPH	

RFDS REV #:

PRELIMINARY DOCUMENTS

	SUBMITTALS		
REV	DATE	DESCRIPTION	
A	01/22/2022	ISSUED FOR REVIEW	
В	04/05/2022	ISSUED FOR REVIEW	
С	06/09/2022	ISSUED FOR REVIEW	
	A&E F	PROJECT NUMBER	

BOBOSO1004A

DISH Wireless L.L.C. PROJECT INFORMATION BOBOS01004A

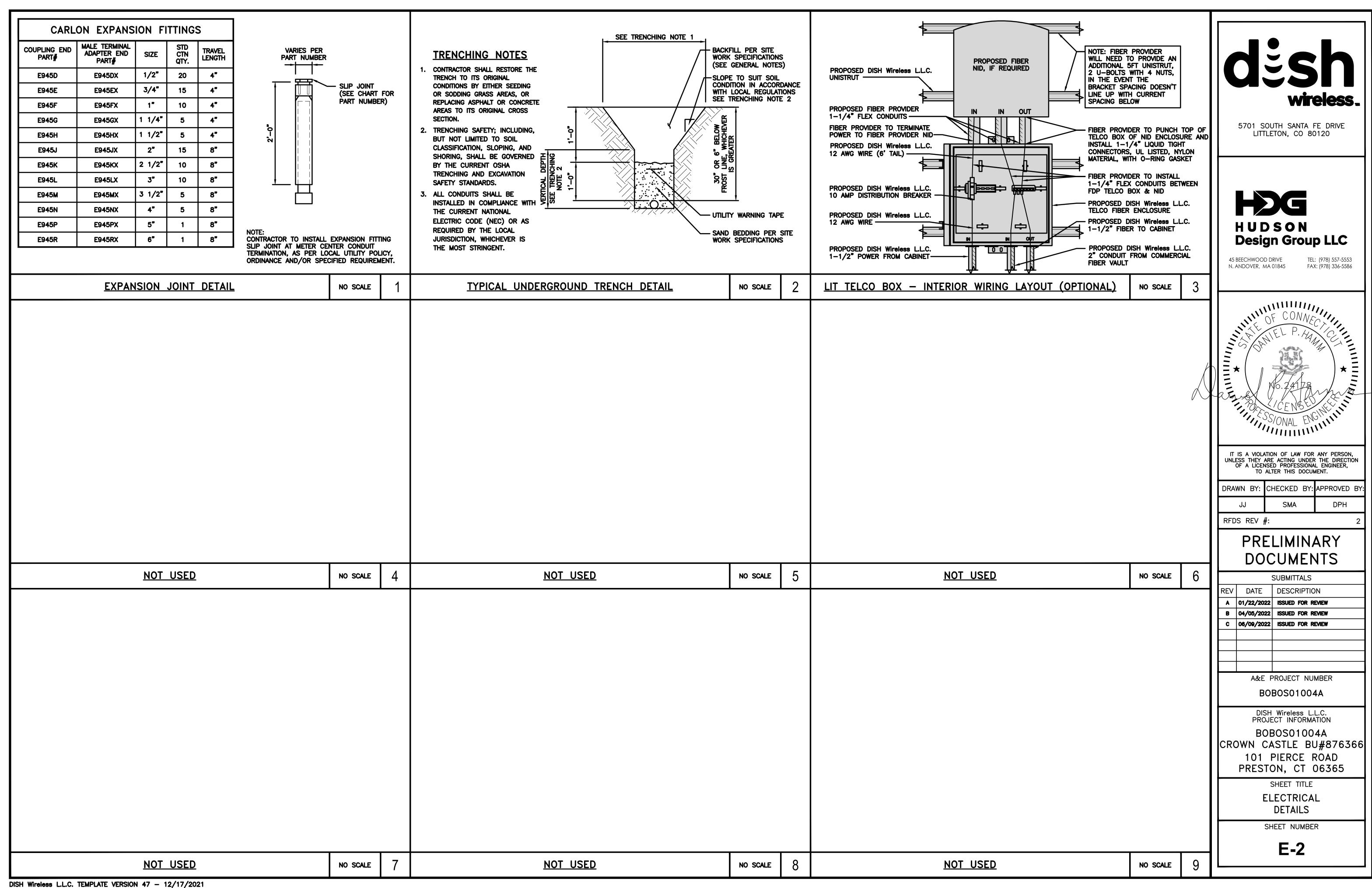
CROWN CASTLE BU#876366 101 PIERCE ROAD PRESTON, CT 06365

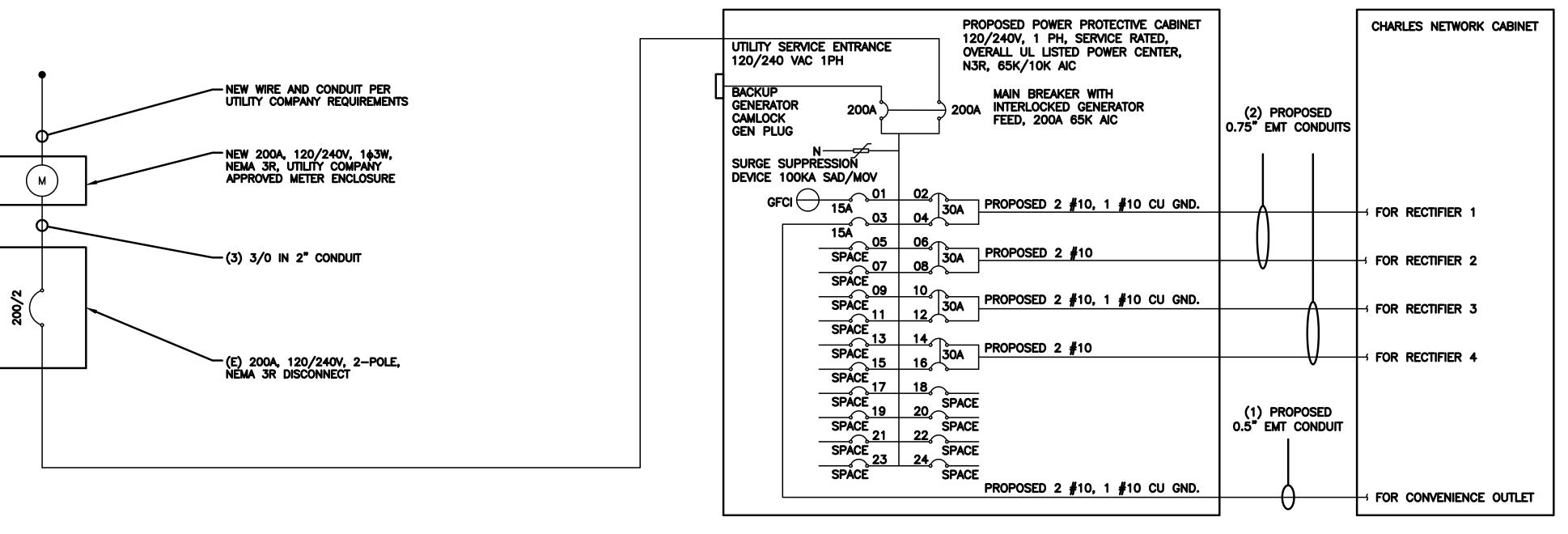
SHEET TITLE

ELECTRICAL/FIBER ROUTE

PLAN AND NOTES

SHEET NUMBER


E-1


6' 4' 2' 0 5' 10' 3/16"=1'-0"

OVERALL UTILITY ROUTE PLAN

NO SCALE

DISH Wireless L.L.C. TEMPLATE VERSION 47 - 12/17/2021

BREAKERS REQUIRED:

(4) 30A, 2P BREAKER - SQUARE D P/N:Q0230 (1) 15A, 1P BREAKER - SQUARE D P/N:Q0115

NO SCALE

NOTES

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED SHORT CIRCUIT CALCULATIONS AND THE AIC RATINGS FOR EACH DEVICE IS ADEQUATE TO PROTECT THE EQUIPMENT AND THE ELECTRICAL SYSTEM.

THE ENGINEER OF RECORD HAS PERFORMED ALL REQUIRED VOLTAGE DROP CALCULATIONS AND ALL BRANCH CIRCUIT AND FEEDERS COMPLY WITH THE NEC (LISTED ON T-1) ARTICLE 210.19(A)(1) FPN NO. 4.

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

> #12 FOR 15A-20A/1P BREAKER: $0.8 \times 30A = 24.0A$ #10 FOR 25A-30A/2P BREAKER: $0.8 \times 40A = 32.0A$ #8 FOR 35A-40A/2P BREAKER: $0.8 \times 55A = 44.0A$ #6 FOR 45A-60A/2P BREAKER: $0.8 \times 75A = 60.0A$

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA

0.75" CONDUIT - 0.213 SQ. IN AREA 2.0" CONDUIT - 1.316 SQ. IN AREA 3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND

= 0.0633 SQ. IN 0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES,

INCLUDING GROUND WIRE, AS INDICATED ABOVE. RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

> #10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND TOTAL = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

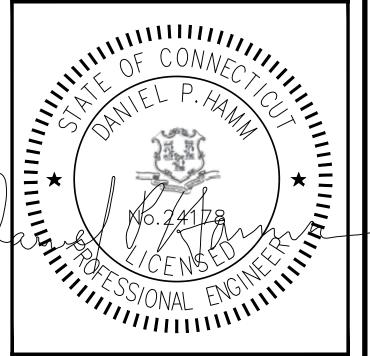
= 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

NOTE:
BRANCH CIRCUIT WIRING SUPPLYING RECTIFIERS ARE TO BE RATED UL1015, 105°C, 600V, AND PVC INSULATED, IN THE SIZES SHOWN

IN THE ONE—LINE DIAGRAM. CONTRACTOR MAY SUBSTITUTE UL1015 WIRE FOR THWN—2 FOR CONVENIENCE OUTLET BRANCH CIRCUIT.


PROPOSED CHARLES PANEL SCHEDULE (WATTS) (WATTS) LOAD SERVED LOAD SERVED L1 L2 PPC GFCI OUTLET 180 ABB/GE INFINITY CHARLES GFCI OUTLET RECTIFIER 1 -SPACE-5 \(\text{A} \) \(\text{A} \) \(\text{B} \) \(\text{A} \) \(8 \) ABB/GE INFINITY RECTIFIER 2 -SPACE-ABB/GE INFINITY
RECTIFIER 3 ABB/GE INFINITY -SPACE-RÉCTIFIER 4 -SPACE-19 - B - 20 -SPACE--SPACE--SPACE-21 A - 22 -SPACE--SPACE-23 - B - 24 -SPACE-VOLTAGE AMPS 180 180 200A MCB, 1φ, 24 SPACE, 120/240V MB RATING: 65,000 AIC 11520 11520 11700 11700 VOLTAGE AMPS

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE TEL: (978) 557-5553 N. ANDOVER, MA 01845 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON. UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED	BY
JJ	SMA	DPH	

RFDS REV #:

PRELIMINARY DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
A	01/22/2022	ISSUED FOR REVIEW
В	04/05/2022	ISSUED FOR REVIEW
С	06/09/2022	ISSUED FOR REVIEW
	A&E F	PROJECT NUMBER

BOBOS01004A

DISH Wireless L.L.C. PROJECT INFORMATION

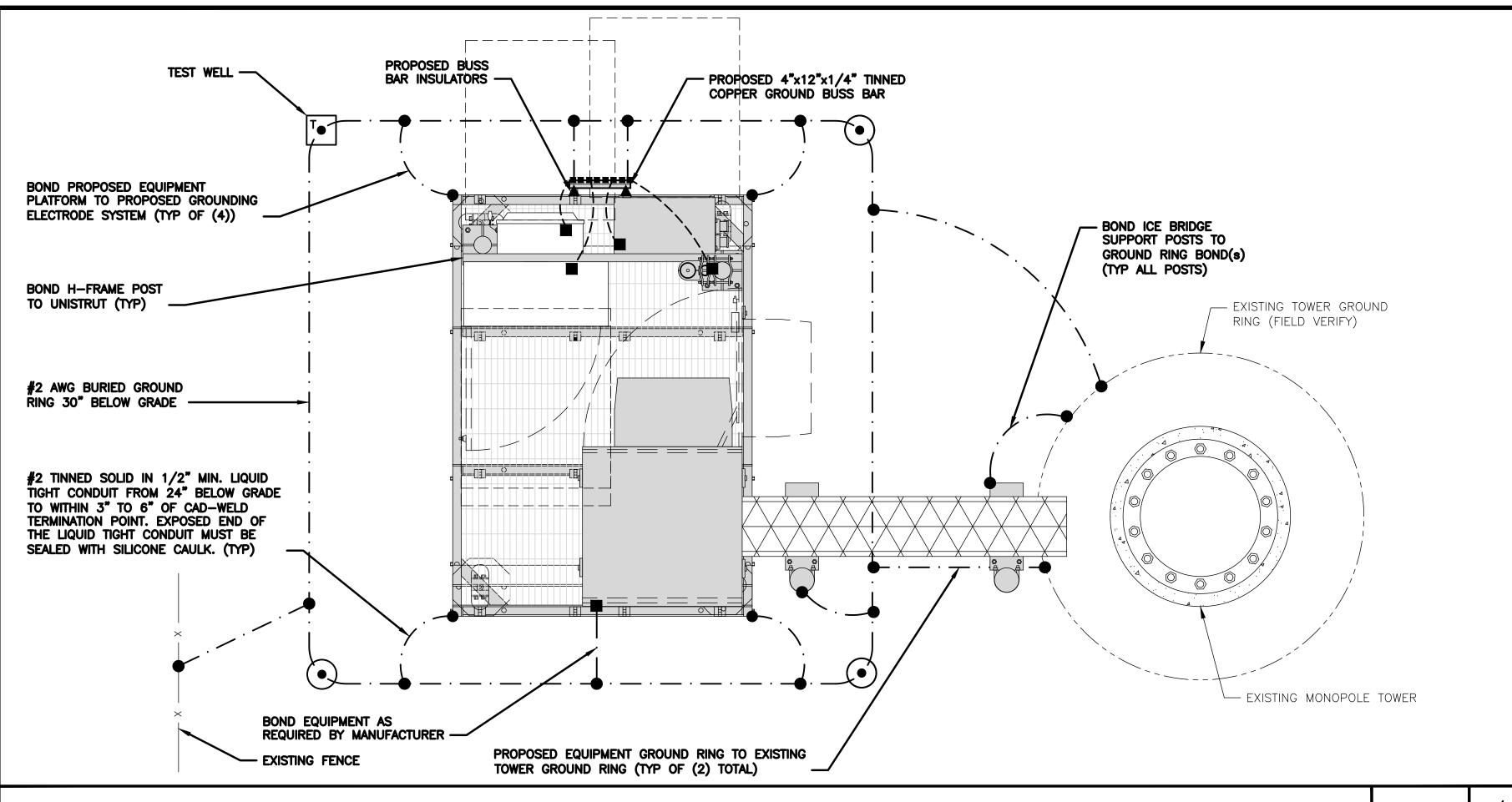
BOBOS01004A CROWN CASTLE BU#876366 101 PIERCE ROAD

PRESTON, CT 06365 SHEET TITLE

| ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

E-3


MAX AMPS MAX 125%

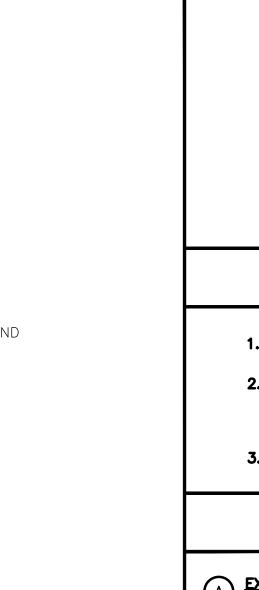
PANEL SCHEDULE

NOT USED

NO SCALE

DISH Wireless L.L.C. TEMPLATE VERSION 47 - 12/17/2021

TYPICAL EQUIPMENT GROUNDING PLAN


TYPICAL ANTENNA GROUNDING PLAN

NOTES

NO SCALE

NO SCALE

EXOTHERMIC CONNECTION TEST GROUND ROD WITH INSPECTION SLEEVE MECHANICAL CONNECTION ---- #6 AWG STRANDED & INSULATED GROUND BUS BAR

BUSS BAR INSULATOR

#2 AWG SOLID COPPER TINNED

GROUNDING LEGEND

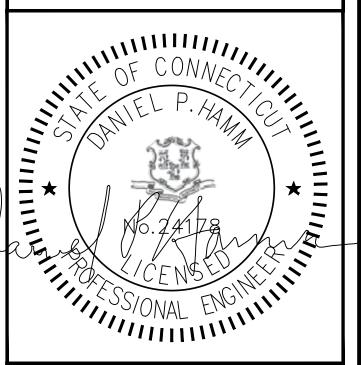
1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.

GROUND ROD

- 2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- A EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- <u>TOWER GROUND RING:</u> THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN INSULATED CONDUCTOR.
- BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE
- E GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- EXTERIOR CABLE ENTRY PORT GROUND BARS: LUCATED AT THE ENTRANCE TO THE CELL SITE DOILDING. SO TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING. BOND INSPECTION SLEEVE.
- 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- K INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING.
- FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING.
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.


wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE N. ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

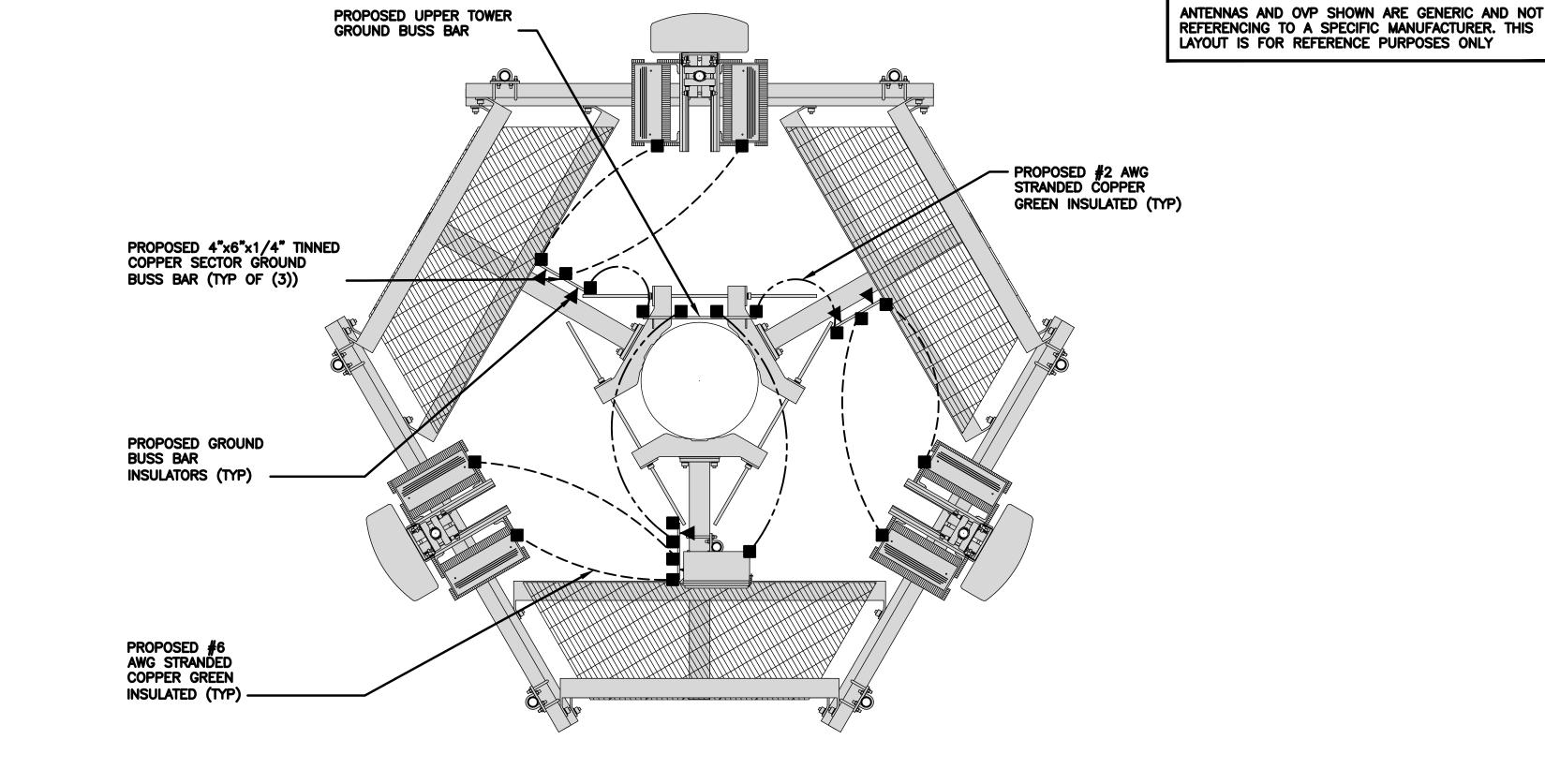
DRAWN BY:	CHECKED BY:	APPROVED BY
JJ	SMA	DPH

RFDS REV #:

PRELIMINARY DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
A	01/22/2022	ISSUED FOR REVIEW
В	04/05/2022	ISSUED FOR REVIEW
С	06/09/2022	ISSUED FOR REVIEW
	A&E F	PROJECT NUMBER

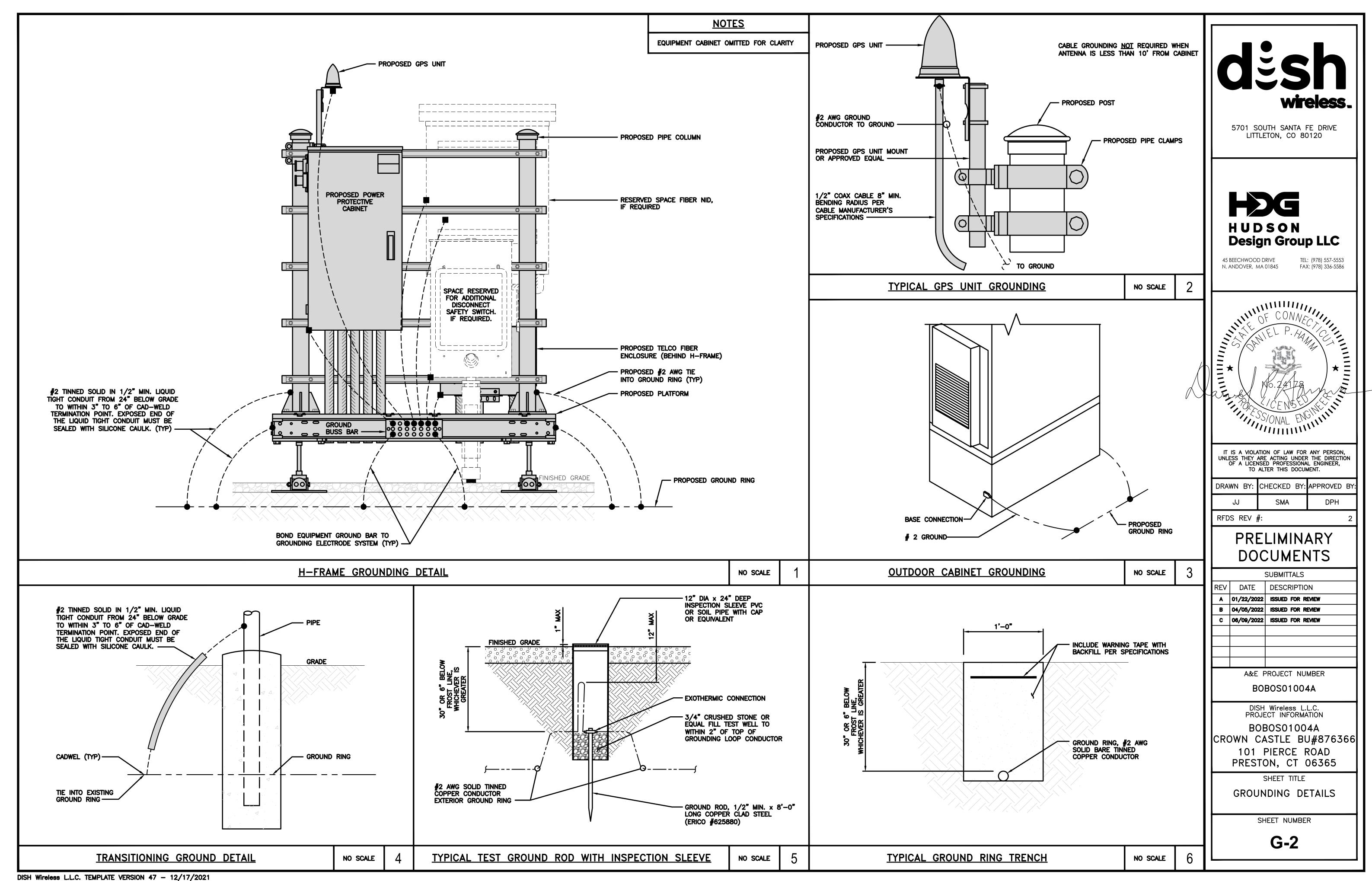
BOBOS01004A

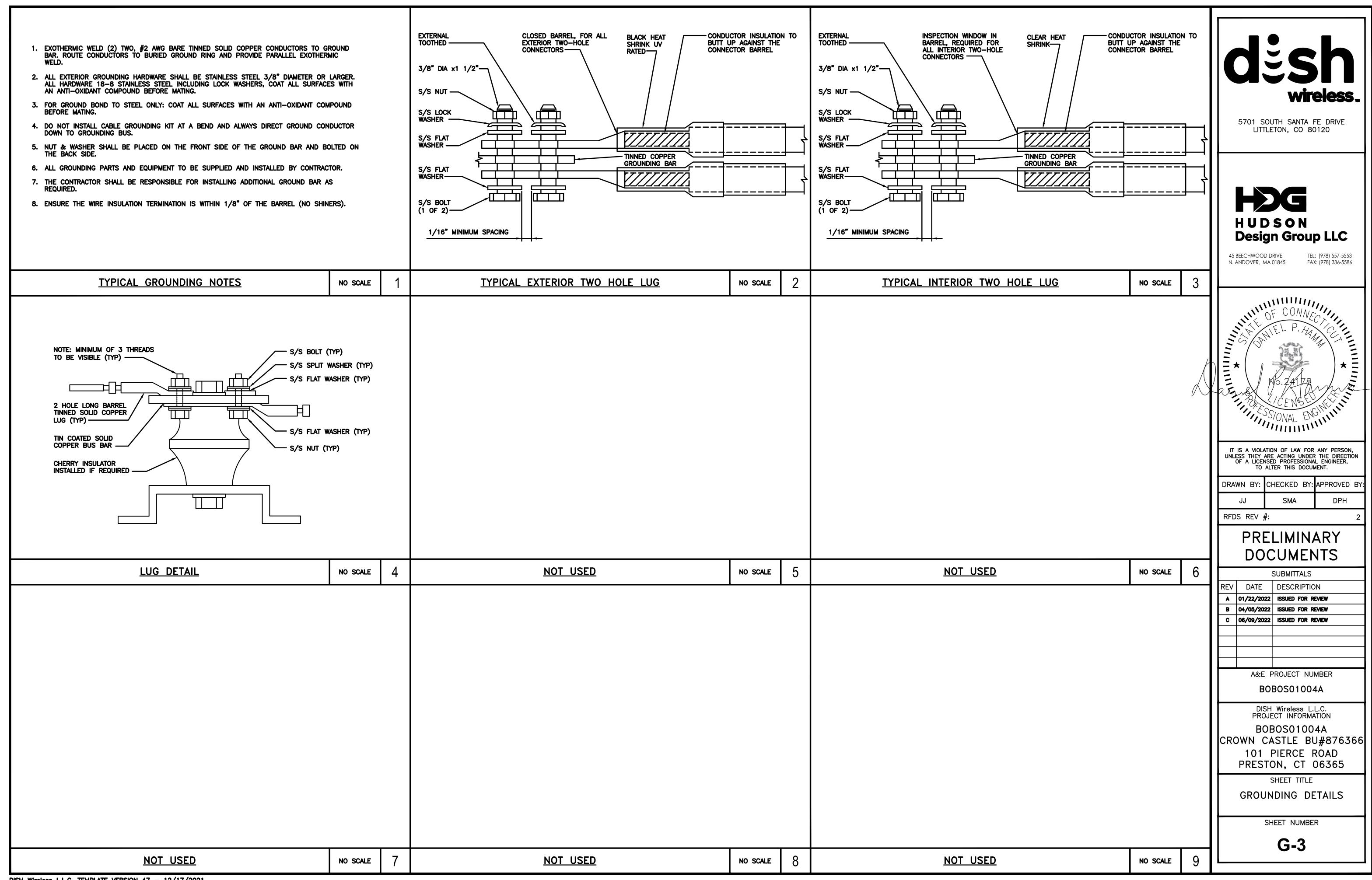

DISH Wireless L.L.C. PROJECT INFORMATION

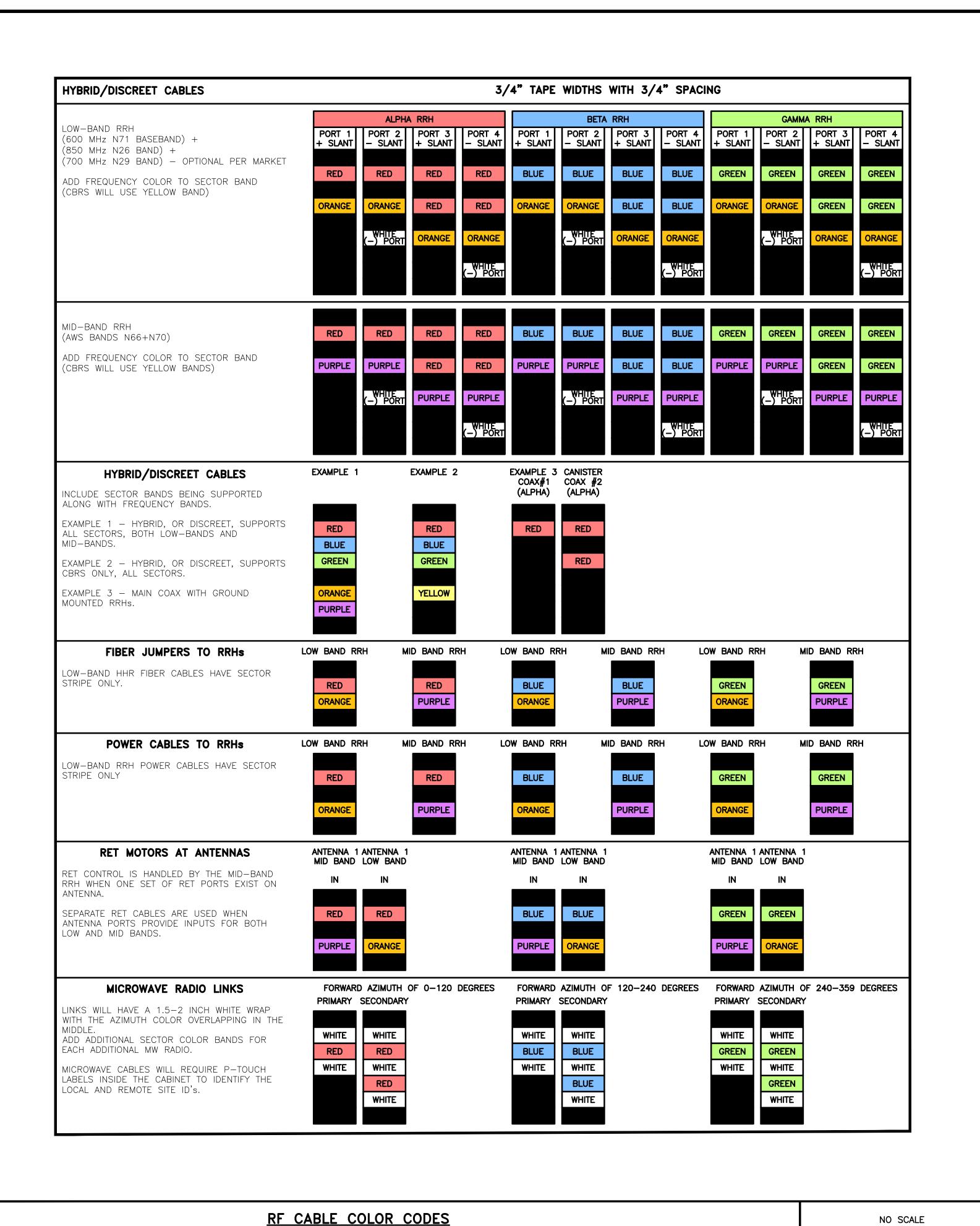
BOBOS01004A CROWN CASTLE BU#876366 101 PIERCE ROAD PRESTON, CT 06365

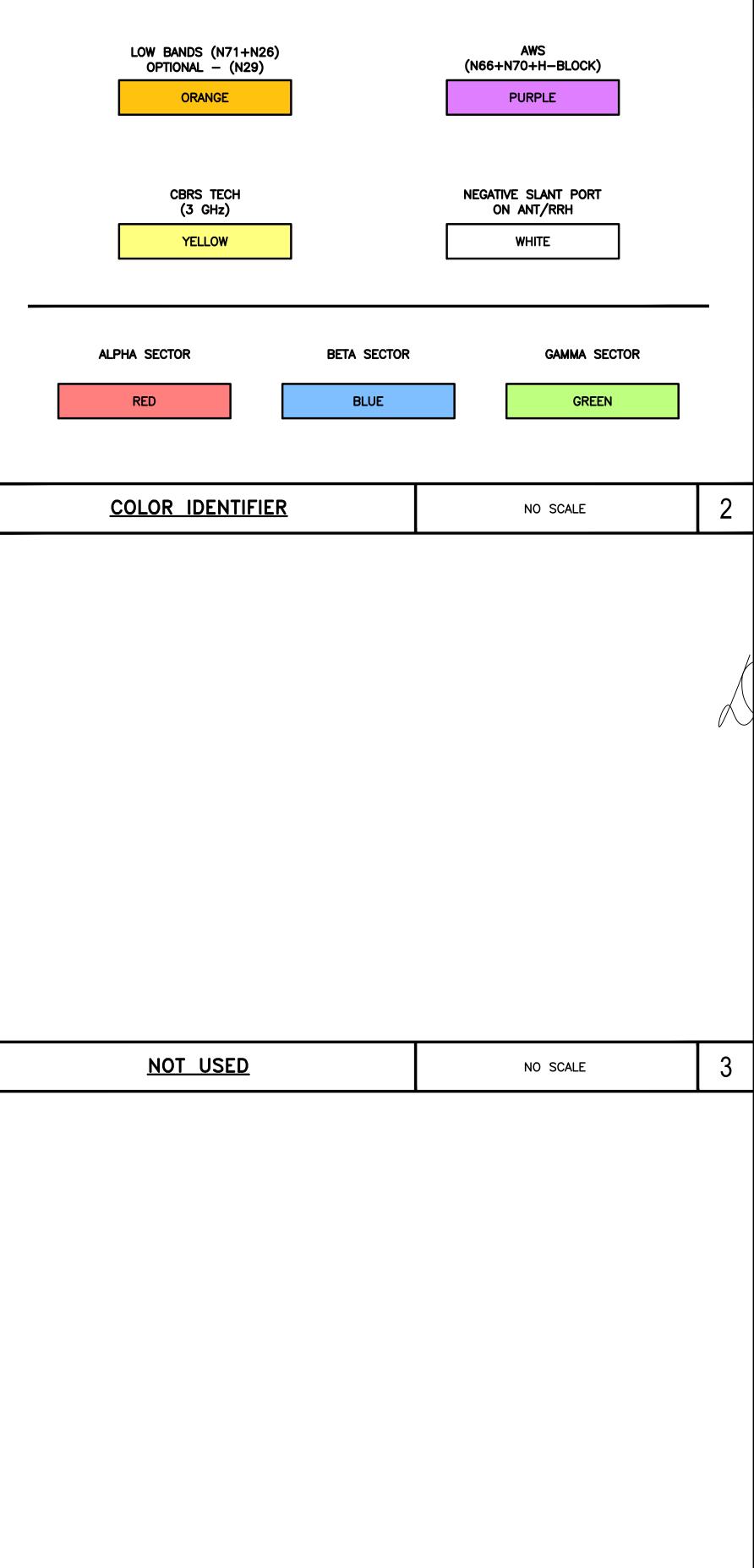
> SHEET TITLE GROUNDING PLANS AND NOTES

> > SHEET NUMBER


G-1



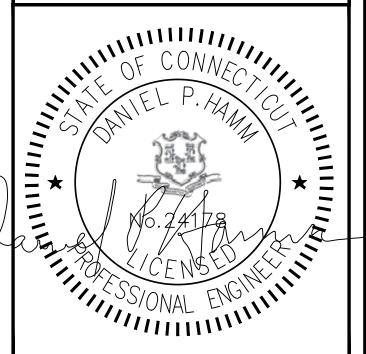

GROUNDING KEY NOTES


REFER TO DISH Wireless L.L.C. GROUNDING NOTES.

NO SCALE

NO SCALE

NOT USED


NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE TEL: (978) 557-5553 N. ANDOVER, MA 01845 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

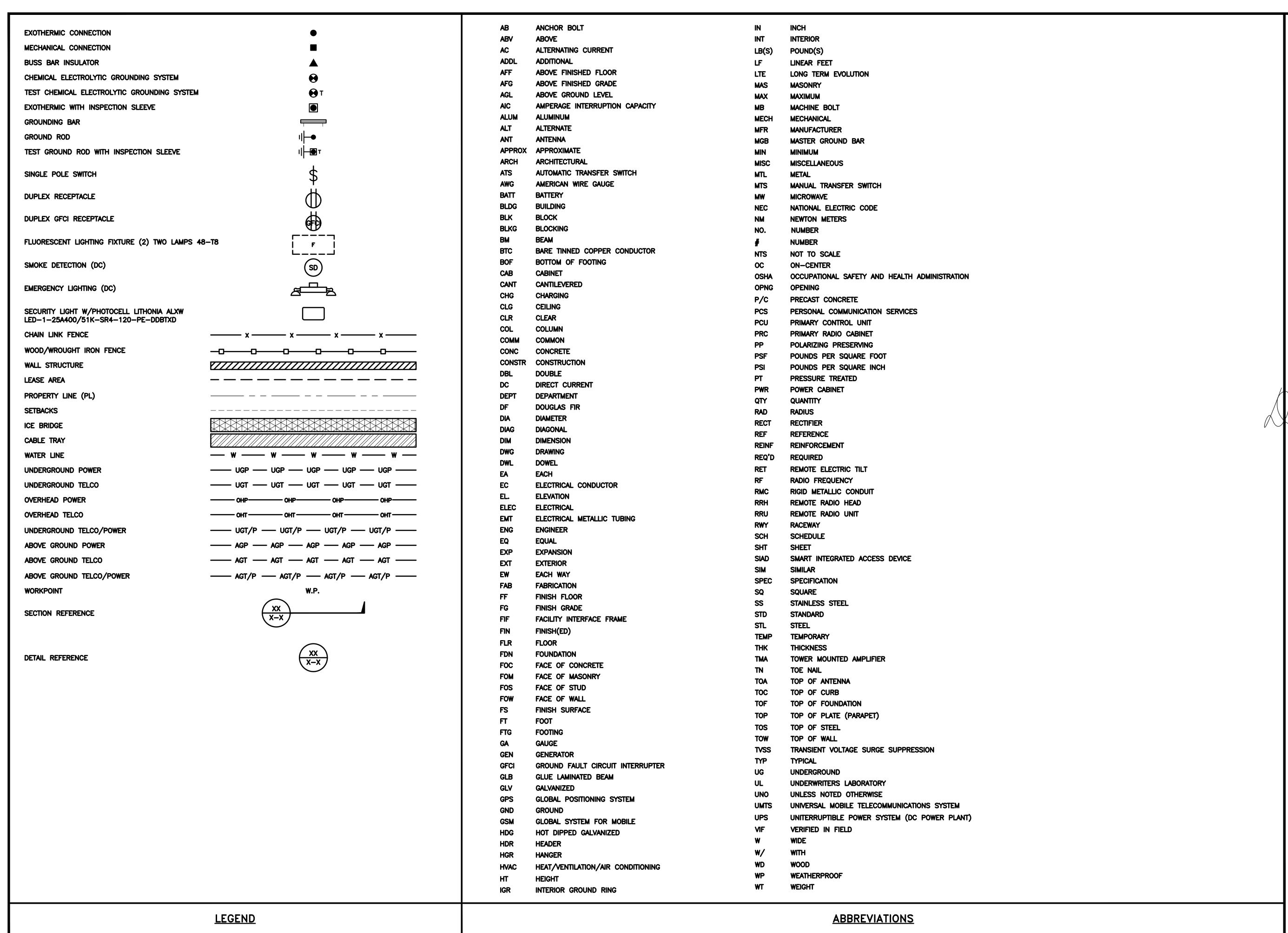
DRAWN BY:	CHECKED BY:	APPROVED BY
JJ	SMA	DPH

RFDS REV #:

PRELIMINARY **DOCUMENTS**

		SUBMITTALS
REV	DATE	DESCRIPTION
A	01/22/2022	ISSUED FOR REVIEW
В	04/05/2022	ISSUED FOR REVIEW
C	06/09/2022	ISSUED FOR REVIEW
	A&E F	PROJECT NUMBER
	DΩ	DOCO10044

B0B0S01004A

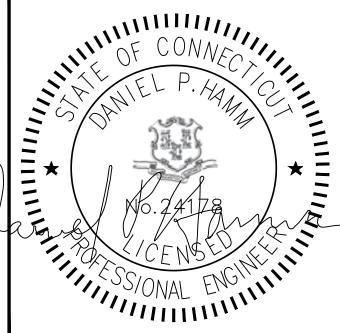

DISH Wireless L.L.C. PROJECT INFORMATION

BOBOS01004A CROWN CASTLE BU#876366 101 PIERCE ROAD PRESTON, CT 06365

SHEET TITLE

CABLE COLOR CODES SHEET NUMBER

RF-1



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE N. ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

JJ SMA DPH

RFDS REV #:

PRELIMINARY DOCUMENTS

	SUBMITTALS		
REV	DATE	DESCRIPTION	
A	01/22/2022	ISSUED FOR REVIEW	
В	04/05/2022	ISSUED FOR REVIEW	
C	06/09/2022	ISSUED FOR REVIEW	
	•		

A&E PROJECT NUMBER

BOBOSO1004A

DISH Wireless I I C

DISH Wireless L.L.C. PROJECT INFORMATION BOBOS01004A

CROWN CASTLE BU#876366 101 PIERCE ROAD PRESTON, CT 06365

SHEET TITLE

LEGEND AND
ABBREVIATIONS

SHEET NUMBER

		SIGN TYPES
TYPE	COLOR	COLOR CODE PURPOSE
INFORMATION	GREEN	"INFORMATIONAL SIGN" TO NOTIFY OTHERS OF SITE OWNERSHIP & CONTACT NUMBER AND POTENTIAL RF EXPOSURE.
NOTICE	BLUE	"NOTICE BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)
CAUTION	YELLOW	"CAUTION BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)
WARNING	ORANGE/RED	"WARNING BEYOND THIS POINT" RF FIELDS AT THIS SITE EXCEED FCC RULES FOR HUMAN EXPOSURE. FAILURE TO OBEY ALL POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS COULD RESULT IN SERIOUS INJURY. IN ACCORDANCE WITH FEDERAL COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)

SIGN PLACEMENT:

- RF SIGNAGE PLACEMENT SHALL FOLLOW THE RECOMMENDATIONS OF AN EXISTING EME REPORT, CREATED BY A THIRD PARTY PREVIOUSLY AUTHORIZED BY DISH Wireless L.L.C.
- INFORMATION SIGN (GREEN) SHALL BE LOCATED ON EXISTING DISH Wireless L.L.C EQUIPMENT.
 - A) IF THE INFORMATION SIGN IS A STICKER, IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C EQUIPMENT CABINET.

 B) IF THE INFORMATION SIGN IS A METAL SIGN IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C H-FRAME WITH A SECURE ATTACH METHO
- IF EME REPORT IS NOT AVAILABLE AT THE TIME OF CREATION OF CONSTRUCTION DOCUMENTS; PLEASE CONTACT DISH Wireless L.L.C. CONSTRUCTION MANAGER FOR FURTHER INSTRUCTION ON HOW TO PROCEED.

NOTES:

- 1. FOR DISH Wireless L.L.C. LOGO, SEE DISH Wireless L.L.C. DESIGN SPECIFICATIONS (PROVIDED BY DISH Wireless L.L.C.)
- 2. SITE ID SHALL BE APPLIED TO SIGNS USING "LASER ENGRAVING" OR ANY OTHER WEATHER RESISTANT METHOD (DISH Wireless L.L.C. APPROVAL REQUIRED
- 3. TEXT FOR SIGNAGE SHALL INDICATE CORRECT SITE NAME AND NUMBER AS PER DISH Wireless L.L.C. CONSTRUCTION MANAGER RECOMMENDATIONS.
- 4. CABINET/SHELTER MOUNTING APPLICATION REQUIRES ANOTHER PLATE APPLIED TO THE FACE OF THE CABINET WITH WATER PROOF POLYURETHANE ADHESIVE
- 5. ALL SIGNS WILL BE SECURED WITH EITHER STAINLESS STEEL ZIP TIES OR STAINLESS STEEL TECH SCREWS
- 6. ALL SIGNS TO BE 8.5"x11" AND MADE WITH 0.04" OF ALUMINUM MATERIAL

INFORMATION

This is an access point to an area with transmitting antennas.

Obey all signs and barriers beyond this point.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874

Site ID:

THIS SIGN IS FOR REFERENCE PURPOSES ONLY

NOTICE

Transmitting Antenna(s)

Radio frequency fields beyond this point MAY *EXCEED* the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dish

A CAUTION

Transmitting Antenna(s)

Radio frequency fields beyond this point MAY *EXCEED* the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dish

AWARNING

Transmitting Antenna(s)

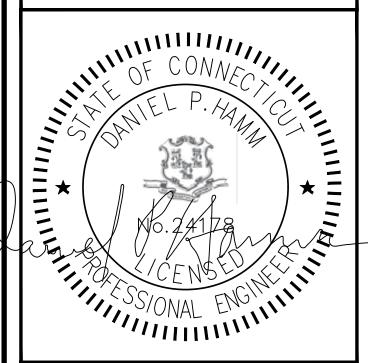
Radio frequency fields beyond this point *EXCEED* the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dėsh


dish wireless.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

5 BEECHWOOD DRIVE

OOD DRIVE TEL: (978) 557-5 , MA 01845 FAX: (978) 336-5

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY

JJ SMA DPH

RFDS REV #:

PRELIMINARY DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 01/22/2022 ISSUED FOR REVIEW

B 04/05/2022 ISSUED FOR REVIEW

C 06/09/2022 ISSUED FOR REVIEW

A&E PROJECT NUMBER
BOBOS01004A

DISH Wireless L.L.C.
PROJECT INFORMATION

BOBOSO1004A

CROWN CASTLE BU#876366

101 PIERCE ROAD

PRESTON, CT 06365

SHEET TITLE

RF

SHEET NUMBER

GN-2

SIGNAGE

RF SIGNAGE

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

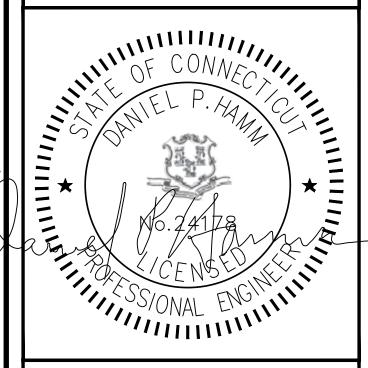
GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER


- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE TEL: (978) 557-5553 N. ANDOVER, MA 01845 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

JJ SMA DPH

RFDS REV #:

PRELIMINARY DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 01/22/2022 ISSUED FOR REVIEW

B 04/05/2022 ISSUED FOR REVIEW

C 06/09/2022 ISSUED FOR REVIEW

A&E PROJECT NUMBER

DISH Wireless L.L.C.
PROJECT INFORMATION

BOBOS01004A

BOBOSO1004A CROWN CASTLE BU#876366 101 PIERCE ROAD PRESTON, CT 06365

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE—THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER—TO—CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

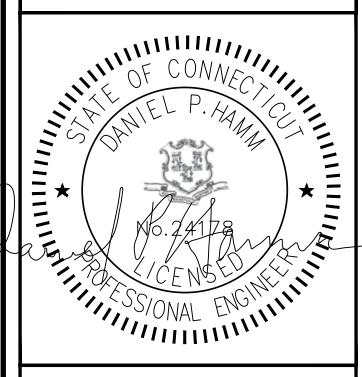
#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL. STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- . ELECTRICAL METALLIC TUBING (EMT) OR METAL—CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 2. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE ℓ WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.



5701 SOUTH SANTA FE DRIVE LITTLETON. CO 80120

45 BEECHWOOD DRIVE N. ANDOVER, MA 01845

DRIVE TEL: (978) 557-5553 A 01845 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

JJ SMA DPH

RFDS REV #:

PRELIMINARY DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 01/22/2022 ISSUED FOR REVIEW

B 04/05/2022 ISSUED FOR REVIEW

C 06/09/2022 ISSUED FOR REVIEW

A&E PROJECT NUMBER

DISH Wireless L.L.C.
PROJECT INFORMATION

BOBOS01004A

BOBOSO1004A CROWN CASTLE BU#876366 101 PIERCE ROAD PRESTON, CT 06365

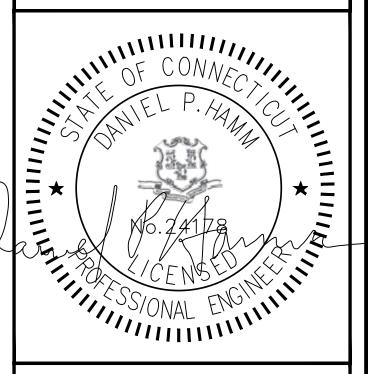
SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- 13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDUITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.



5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

45 BEECHWOOD DRIVE N. ANDOVER, MA 01845

TEL: (978) 557-5553 FAX: (978) 336-5586

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED	BY
JJ	SMA	DPH	

RFDS REV #:

PRELIMINARY DOCUMENTS

		SUBMITTALS
REV	DATE	DESCRIPTION
A	01/22/2022	ISSUED FOR REVIEW
В	04/05/2022	ISSUED FOR REVIEW
С	06/09/2022	ISSUED FOR REVIEW
	A&E F	PROJECT NUMBER

A&E PROJECT NUMBER
BOBOSO1004A

DISH Wireless L.L.C.
PROJECT INFORMATION

BOBOS01004A

CROWN CASTLE BU#876366

101 PIERCE ROAD PRESTON, CT 06365

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: December 16, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOBOS01004A

Crown Castle Designation: BU Number: 876366

Site Name: WAPPINGERS FALLS / PRESTON CIT

 JDE Job Number:
 675285

 Work Order Number:
 2013159

 Order Number:
 576664 Rev. 2

Engineering Firm Designation: Crown Castle Project Number: 2013159

Site Data: 101 Pierce Road, PRESTON, NEW LONDON County, CT

Latitude 41° 32' 17.46", Longitude -71° 57' 6"

155 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity

his analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Matthew Schmitt

Respectfully submitted by:

Digitally signed by Maham

e/2021.12.17 14:11:19

Maham Barimani, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC7
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 155 ft Monopole tower designed by Engineered Endeavors, Inc. The tower has been modified multiple times to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 125 mph

Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
Service Wind Speed:

B

1

1

50 mph
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Floyation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
119.0	119.0 119.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)		
159.0	159.0	1	tower mounts	Miscellaneous [NA 507-1]				
		3	ericsson	AIR6449 B41_T-MOBILE w/ Mount Pipe				
		3	ericsson	RADIO 4415 B66A				
		3	ericsson	RADIO 4424 B25_TMO				
155.0	155.0	157.0	55.0	3	ericsson	RADIO 4449 B71 B85A_T- MOBILE	4	1-5/8
	3	rfs celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe					
		3	rfs celwave	APXVAALL24_43-U- NA20_TMO w/ Mount Pipe				
	155.0	1	tower mounts	Platform Mount [LP 712-1]				
	141.0 139.0 140.0	141.0	3	cci antennas	HPA-65R-BUU-H8 w/ Mount Pipe			
		3	kathrein	80010966 w/ Mount Pipe	12	1-1/4		
130.0		3	ericsson	RRUS 11	4 2 2	3/4 3/8		
139.0		3	ericsson	RRUS 32 B2				
		3	ericsson	RRUS 4478 B14	2	Conduit		
		3	powerwave technologies	7770.00 w/ Mount Pipe				

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		6	powerwave technologies	LGP21401		
		2	raycap	DC6-48-60-18-8F		
	139.0	1	tower mounts	Platform Mount [LP 303-1]		
	134.0	1	raycap	RVZDC-6627-PF-48		
	131.0	6	antel	LPA-80063/6CF w/ Mount Pipe		
128.0		3	commscope	CBC78T-DS-43-2X		
		6	commscope	JAHH-65B-R3B w/ Mount Pipe		
		131.0	3	samsung telecommunications	MT6407-77A w/ Mount Pipe	14
	120.0		3	samsung telecommunications	RF4439D-25A	17
		3	samsung telecommunications	RF4440D-13A		
	128.0	1	tower mounts	Side Arm Mount [SO 102-3]		
		1	tower mounts	T-Arm Mount [TA 602-3]		
74.0	74.0	1	lucent	KS24019-L112A	1	1/0
74.0 74.0		1	tower mounts	Side Arm Mount [SO 701-1]] I	1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	2194336	CCISITES
4-POST-MODIFICATION INSPECTION	6133027	CCISITES
4-POST-MODIFICATION INSPECTION	2391519	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	2208798	CCISITES
4-TOWER MANUFACTURER DRAWINGS	2174297	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	5971889	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	2271037	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

tnxTower was used to determine the loads on the modified structure. Additional calculations were performed to determine the stresses in the pole and in the reinforcing elements. These calculations are included in Appendix C.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
L1	155 - 150	Pole	TP19.036x18x0.1875	Pole	11.9%	Pass
L2	150 - 145	Pole	TP20.073x19.036x0.1875	Pole	19.1%	Pass
L3	145 - 140	Pole	TP21.109x20.073x0.1875	Pole	25.5%	Pass
L4	140 - 135	Pole	TP22.146x21.109x0.1875	Pole	37.1%	Pass
L5	135 - 130	Pole	TP23.182x22.146x0.1875	Pole	46.7%	Pass
L6	130 - 126.79	Pole	TP24.59x23.182x0.1875	Pole	57.1%	Pass
L7	126.79 - 121.79	Pole	TP24.671x23.473x0.25	Pole	49.9%	Pass
L8	121.79 - 116.79	Pole	TP25.87x24.671x0.25	Pole	58.8%	Pass
L9	116.79 - 111.79	Pole	TP27.068x25.87x0.25	Pole	67.2%	Pass
L10	111.79 - 106.79	Pole	TP28.267x27.068x0.25	Pole	74.3%	Pass
L11	106.79 - 101.79	Pole	TP29.465x28.267x0.25	Pole	80.6%	Pass
L12	101.79 - 97.5	Pole	TP30.494x29.465x0.25	Pole	85.3%	Pass
L13	97.5 - 97.25	Pole	TP30.554x30.494x0.25	Pole	85.5%	Pass
L14	97.25 - 92.25	Pole	TP31.752x30.554x0.25	Pole	90.4%	Pass
L15	92.25 - 87.41	Pole	TP34.07x31.752x0.25	Pole	94.6%	Pass
L16	87.41 - 81.58	Pole	TP33.825x32.412x0.3125	Pole	76.0%	Pass
L17	81.58 - 76.58	Pole	TP35.037x33.825x0.3125	Pole	78.2%	Pass
L18	76.58 - 71.58	Pole	TP36.249x35.037x0.3125	Pole	80.2%	Pass
L19	71.58 - 68	Pole	TP37.117x36.249x0.3125	Pole	81.6%	Pass
L20	68 - 67.75	Pole + Reinf.	TP37.178x37.117x0.4875	Reinf. 1 Tension Rupture	79.3%	Pass
L21	67.75 - 62.75	Pole + Reinf.	TP38.39x37.178x0.475	Reinf. 1 Tension Rupture	81.0%	Pass
L22	62.75 - 57.75	Pole + Reinf.	TP39.602x38.39x0.475	Reinf. 1 Tension Rupture	82.5%	Pass
L23	57.75 - 52.75	Pole + Reinf.	TP40.814x39.602x0.4625	Reinf. 1 Tension Rupture	83.9%	Pass
L24	52.75 - 48.96	Pole + Reinf.	TP43.17x40.814x0.4625	Reinf. 1 Tension Rupture	84.8%	Pass
L25	48.96 - 42.03	Pole	TP42.791x41.108x0.375	Pole	71.8%	Pass
L26	42.03 - 37.03	Pole	TP44.005x42.791x0.375	Pole	72.5%	Pass
L27	37.03 - 32.03	Pole	TP45.22x44.005x0.375	Pole	73.1%	Pass
L28	32.03 - 27.03	Pole	TP46.434x45.22x0.375	Pole	73.7%	Pass
L29	27.03 - 22.03	Pole	TP47.649x46.434x0.375	Pole	74.2%	Pass
L30	22.03 - 17.03	Pole	TP48.863x47.649x0.375	Pole	74.7%	Pass
L31	17.03 - 12.03	Pole	TP50.078x48.863x0.375	Pole	75.1%	Pass
L32	12.03 - 7.03	Pole	TP51.292x50.078x0.375	Pole	75.5%	Pass
L33	7.03 - 2.03	Pole	TP52.507x51.292x0.375	Pole	75.9%	Pass
L34	2.03 - 0	Pole	TP53x52.507x0.375	Pole	76.1%	Pass

Section No.	Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
					Summary	
				Pole	94.6%	Pass
				Reinforcement	84.8%	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Tubic	Tower component offices to: capacity			
Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	75.5	Pass
1	Base Plate	0	95.5	Pass
1	Base Foundation (Structure)	0	88.5	Pass
1	Base Foundation (Soil Interaction)	0	87.1	Pass

Structure Rating (max from all components) =	95.5%
--	-------

Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT

-	5.000	8	0.188		3.000	19.036		0.2	155.0 ft				A57
7	5.000 €	8	0.188		19.036 18.000	20.073		0.2	150.0 ft				
т	5.000	18	0.188					0.2	145.0 ft 140.0 ft				1. 2. 3.
4	5.000	8	0.188		21.109	22.146 21.109	-	0.2	135.0 ft	Ħ			3. 4.
2	5.000	8	0.188		22.146 21.109 20.073	23.182		0.2	130.0 ft				5. 6. 7.
9	5.0000790	18	0.188	3,580	23.182	24.590		0.3					8.
		8	0.2500,250		23.473	24.67 1		6.0	123.2 ft		— II.		
00	5.000	18	_		24.67	27.068 25.8724.67124.590		0.3	116.8 ft				
თ	5.000	18	0.250		25.870	27.068		4.0	111.8 ft		_		
6	5.000	18	0.250		27.068 25.870 24.6723.47323.182	31.7 52.834 94 29.465 28.267		4.0	106.8 ft				
=	5.000	18	0.250		30.5 34.23 1465 28.267	29.465		4.0	<u>101.8 ft</u>				
13 12	5.00 0. 250290	18 18	0.250.250250		2991465	3804 94		0,0 0.3	97.5 ft				
4	5.000.3	18 1	0.250.2		30.534	31.7 30		0.4 0	92.3 ft				
15	5.83@.670	18	0.250	4.830	31.752	34.070		6.0					
9		6	0.313		6 2.412	23.825		9.	82,6 ft				
17	5.000	18	0.3130.31		7 33.82	38.390.3781736.249 35.0333.825	4572-65	9.0	76.6 ft		\bigcirc		
8	0 5.000	18	0.476.467313 0.313		1935.03	1736.24	¥	9.0	71.6 ft				
20 19	5.00 0.25 &80	18 18	5.40731		3.36.2	0.3781	=	0,00.4	68.0 ft				
21		18			0 37.13			6.0	62.8 ft				
22	5.000	18	3 0.475		39.602 38.390 37.138.36.24935.037 33.8282	4 39.602		1.0	<u>57.8 ft</u>				
23	5.000	18	0.463		39.60	40.814		1.0	<u>52.8 ft</u>				
24	30 720	8	0.463	5.930	40.814	43.170		2.0					
25	6.93	8	375		108	797		Ć.	<u>43.0 ft</u>			A	
26	5.000	18	0.3750		42.79	45.220 44.00ED		6.0	<u>37.0 ft</u>			ALL REACTION ARE FACTOR	
27	5.000	18	0.375		44.00	45.220		6.0	32.0 ft			AXIAL 65 K	
78	5.000	18	0.375		45.220	9 46.43		6.0	<u>27.0 ft</u>		S	SHEAR	\ MOMENT
59	5.000	18	0.375		50.078 48.863 47.649 46.434 45.220 44.005 42.7911	50.078 48.863 47.649 46.434		6.0	22.0 ft			κ/	₹ 862 kip-ft
8	5.000	48	0.375		3 47.649	3 48.860		1.0	<u>17.0 ft</u>	Щ	50 i	TORQUE 0 ki mph WIND - 1.0	
31	5.000	18	0.375		3 48.86;			1.0	<u>12.0 ft</u>			AXIAL 46 K	
32	5.000	8	5 0.375			7 51.292		1.0	<u>7.0 ft</u>	Ш	c,	46 K	NACMENT
34 33	.0305.000	18	0.3750.375		52 5031 292	53.0062.507		1 0	2.0 ft 0.0 ft		29	HEAR	MOMENT 3508 kip-fi
(1)	2.0			£	52.	53.		21.20.4	<u>0.0 it</u>	шШ	u RF∆	TORQUE 1 ki CTIONS - 125 r	
Section	Length (ft)	Number of Sides	Thickness (in)	Socket Length (ft)	Top Dia (in)	Bot Dia (in)	Grade	Weight (K)			, LA		طلا الله الم

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572 65	65 kei	90 kgi			

TOWER DESIGN NOTES

- Tower is located in New London County, Connecticut. Tower designed for Exposure B to the TIA-222-H Standard.

- Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.000 ft
 TOWER RATING: 94.6%

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in New London County, Connecticut.
- Tower base elevation above sea level: 290.000 ft.
- Basic wind speed of 125 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.000 ft.
- Nominal ice thickness of 1.000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.000 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50.000 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz

Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Špans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	155.000-	5.000	0.000	18	18.000	19.036	0.188	0.750	A572-65
L2	150.000 150.000-	5,000	0.000	18	19.036	20.073	0.188	0.750	(65 ksi) A572-65
LZ	145.000	5,000	0.000	10	19.030	20.073	0.100	0.750	(65 ksi)
L3	145.000-	5.000	0.000	18	20.073	21,109	0.188	0.750	À572-65
1.4	140.000	E 000	0.000	10	24 400	22 146	0.100	0.750	(65 ksi)
L4	140.000- 135.000	5.000	0.000	18	21.109	22.146	0.188	0.750	A572-65 (65 ksi)
L5	135.000-	5.000	0.000	18	22.146	23.182	0.188	0.750	A572-65
	130.000	0.700	0.500	4.0	00.400	0.4 =00	0.400		(65 ksi)
L6	130.000- 123.210	6.790	3.580	18	23.182	24.590	0.188	0.750	A572-65 (65 ksi)
L7	123.210	5.000	0.000	18	23.473	24.671	0.250	1.000	A572-65
	121.790								(65 ksi)
L8	121.790-	5.000	0.000	18	24.671	25.870	0.250	1.000	A572-65
L9	116.790 116.790-	5.000	0.000	18	25.870	27.068	0.250	1.000	(65 ksi) A572-65
	111.790	0.000					0.200		(65 ksi)
L10	111.790-	5.000	0.000	18	27.068	28.267	0.250	1.000	A572-65
L11	106.790 106.790-	5.000	0.000	18	28.267	29.465	0.250	1.000	(65 ksi) A572-65
L	101.790	3.000	0.000	10	20.207	23.403	0.200	1.000	(65 ksi)
L12	101.790-	4.290	0.000	18	29.465	30.494	0.250	1.000	À572-65
L13	97.500 97.500-97.250	0.250	0.000	18	30.494	30.554	0.250	1.000	(65 ksi) A572-65
LIS	97.500-97.250	0.230	0.000	10	30.494	30,334	0.250	1.000	(65 ksi)
L14	97.250-92.250	5.000	0.000	18	30.554	31.752	0.250	1.000	A572-65
1.45	00 050 00 500	0.070	4.000	40	04.750	04.070	0.050	4.000	(65 ksi)
L15	92.250-82.580	9.670	4.830	18	31.752	34.070	0.250	1.000	A572-65 (65 ksi)
L16	82.580-81.580	5.830	0.000	18	32.412	33.825	0.313	1.250	A572-65
									(65 ksi)
L17	81.580-76.580	5.000	0.000	18	33.825	35.037	0.313	1.250	A572-65 (65 ksi)
L18	76.580-71.580	5.000	0.000	18	35.037	36.249	0.313	1.250	A572-65
									(65 ksi)
L19	71.580-68.000	3.580	0.000	18	36.249	37.117	0.313	1.250	A572-65 (65 ksi)
L20	68.000-67.750	0,250	0.000	18	37,117	37.178	0.487	1.950	A572-65
									(65 ksi)
L21	67.750-62.750	5.000	0.000	18	37.178	38.390	0.475	1.900	A572-65
L22	62,750-57,750	5,000	0.000	18	38.390	39.602	0.475	1.900	(65 ksi) A572-65
									(65 ksi)
L23	57.750-52.750	5.000	0.000	18	39.602	40.814	0.463	1.850	A572-65
L24	52.750-43.030	9.720	5.930	18	40.814	43.170	0.463	1.850	(65 ksi) A572-65
									(65 ksi)
L25	43.030-42.030	6.930	0.000	18	41.108	42.791	0.375	1.500	A572-65
L26	42.030-37.030	5.000	0.000	18	42.791	44.005	0.375	1.500	(65 ksi) A572-65
220	12.000 07.000	0.000	0.000	10	12.701	44.000	0.070	1.000	(65 ksi)
L27	37.030-32.030	5.000	0.000	18	44.005	45.220	0.375	1.500	A572-65
L28	32.030-27.030	5.000	0.000	18	45.220	46.434	0.375	1.500	(65 ksi) A572-65
LZU	32.030-27.030	3.000	0.000	10	45.220	40.434	0.575	1.500	(65 ksi)
L29	27.030-22.030	5.000	0.000	18	46.434	47.649	0.375	1.500	À572-65
1.20	22.030-17.030	5,000	0.000	10	47.640	40 062	0.275	1 500	(65 ksi)
L30	ZZ.UJU-17.UJU	5.000	0.000	18	47.649	48.863	0.375	1.500	A572-65 (65 ksi)
L31	17.030-12.030	5.000	0.000	18	48.863	50.078	0.375	1.500	À572-65
1.20	12 020 7 020	E 000	0.000	40	E0 070	E4 000	0.275	1 500	(65 ksi)
L32	12.030-7.030	5.000	0.000	18	50.078	51.292	0.375	1.500	A572-65 (65 ksi)
L33	7.030-2.030	5.000	0.000	18	51.292	52.507	0.375	1.500	A572-65
104	0.000.000	0.000		40	F0 507	F0 000	0.075	4.500	(65 ksi)
L34	2.030-0.000	2.030		18	52.507	53.000	0.375	1.500	A572-65 (65 ksi)

Tapered Pole Properties	

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	18.249	10.601	424.933	6.323	9.144	46.471	850.425	5.301	2.838	15.136
	19.301	11.218	503.512	6.691	9.671	52.067	1007.687	5.610	3.020	16.109
L2	19.301	11.218	503.512	6.691	9.671	52.067	1007.687	5.610	3.020	16.109
	20.354	11.834	591,226	7.059	10.197	57.980	1183,231	5.918	3,203	17.082
L3	20.354	11.834	591.226	7.059	10.197	57.980	1183.231	5.918	3.203	17.082
	21.406	12.451	688.578	7.427	10.724	64.211	1378.062	6.227	3.385	18.055
L4	21.406	12.451	688.578	7.427	10.724	64.211	1378.062	6.227	3.385	18.055
	22.459	13.068	796.070	7.795	11.250	70.761	1593.187	6.535	3.568	19.028
L5	22.459	13.068	796.070	7.795	11.250	70.761	1593.187	6.535	3.568	19.028
	23.511	13.685	914.204	8.163	11.777	77.628	1829.610	6.844	3.750	20.001
L6	23.511	13.685	914.204	8.163	11.777	77.628	1829.610	6.844	3.750	20.001
	24.940	14.523	1092.568	8.663	12.492	87.463	2186.574	7.263	3.998	21.322
L7	24.668	18.427	1255.545	8.244	11.924	105.294	2512.742	9.215	3.691	14.765
	25.013	19.378	1460.140	8.670	12.533	116.503	2922.202	9.691	3.902	15.609
L8	25.013	19.378	1460.140	8.670	12.533	116.503	2922.202	9.691	3.902	15.609
	26.230	20.329	1685.836	9.095	13.142	128.279	3373.889	10.167	4.113	16.452
L9	26.230	20.329	1685.836	9.095	13.142	128.279	3373.889	10.167	4.113	16.452
	27.447	21.280	1933.666	9.521	13.751	140.623	3869.877	10.642	4.324	17.296
L10	27.447	21.280	1933.666	9.521	13.751	140.623	3869.877	10.642	4.324	17.296
	28.664	22,231	2204.668	9.946	14.360	153.533	4412.237	11.118	4.535	18.14
L11	28.664	22.231	2204.668	9.946	14.360	153.533	4412.237	11.118	4.535	18.14
	29.881	23.182	2499.876	10.371	14.968	167.010	5003.041	11.593	4.746	18.984
L12	29.881	23.182	2499.876	10.371	14.968	167.010	5003.041	11.593	4.746	18.984
	30.926	23.998	2773.245	10.737	15.491	179.025	5550.139	12.001	4.927	19.708
L13	30.926	23.998	2773.245	10.737	15.491	179.025	5550.139	12.001	4.927	19.708
	30.986	24.046	2789.763	10.758	15.521	179.738	5583.196	12.025	4.937	19.75
L14	30.986	24.046	2789.763	10.758	15.521	179.738	5583.196	12.025	4.937	19.75
	32.203	24.997	3134.029	11.183	16.130	194.297	6272.182	12.501	5.148	20.593
L15	32.203	24.997	3134.029	11.183	16.130	194.297	6272.182	12.501	5.148	20.593
	34.557	26.836	3877.977	12.006	17.308	224.063	7761.056	13.421	5.556	22.225
L16	34.053	31.839	4144.760	11.395	16.465	251.725	8294.973	15.922	5.155	16.495
	34.299	33.241	4716.635	11.897	17.183	274.489	9439.476	16.623	5.403	17.29
L17	34.299	33.241	4716.635	11.897	17.183	274.489	9439.476	16.623	5.403	17.29
	35.530	34.443	5247.100	12.327	17.799	294.797	10501.104	17.225	5.617	17.973
L18	35.530	34.443	5247.100	12.327	17.799	294.797	10501.104	17.225	5.617	17.973
	36.760	35.645	5815.918	12.758	18.415	315.830	11639.488	17.826	5.830	18.656
L19	36.760	35.645	5815.918	12.758	18.415	315.830	11639.488	17.826	5.830	18.656
	37.642	36.506	6247.497	13.066	18.856	331.334	12503.214	18.256	5.983	19.144
L20	37.615	56.678	9607.732	13.004	18.856	509.544	19228.106	28.344	5.675	11.64
	37.676	56.772	9655.496	13.025	18.886	511.242	19323.697	28.391	5.685	11.662
L21	37.678	55.335	9417.538	13.030	18.886	498.643	18847.468	27.673	5.707	12.015
	38.909	57.162	10381.645	13.460	19.502	532.336	20776.951	28.587	5.921	12.464
L22	38.909	57.162	10381.645	13.460	19.502	532.336	20776.951	28.587	5.921	12.464
	40.140	58.990	11409.404	13.890	20.118	567.131	22833.820	29.500	6.134	12.914
L23	40.141	57.456	11119.807	13.894	20.118	552,736	22254.246	28.733	6.156	13.31
	41.372	59.235	12185.147	14.325	20.733	587.705	24386.327	29.623	6.369	13.771
L24	41.372	59.235	12185.147	14.325	20.733	587.705	24386.327	29.623	6.369	13.771
1.05	43.765	62.694	14446.697	15.161	21.930	658.753	28912.403	31.353	6.784	14.668
L25	43.146	48.482	10162.507	14.460	20.883	486.649	20338.386	24.246	6.575	17.533
	43.393	50.485	11475.212	15.058	21.738	527.893	22965.522	25.248	6.871	18.323
L26	43.393	50.485	11475.212	15.058	21.738	527.893	22965.522	25.248	6.871	18.323
	44.626	51.931	12489.424	15.489	22.355	558.693	24995.282	25.970	7.085	18.893
L27	44.626	51.931	12489.424	15.489	22.355	558.693	24995.282	25.970	7.085	18.893
	45.860	53.377	13561.702	15.920	22.972	590.366	27141.248	26.693	7.299	19.463
L28	45.860	53.377	13561.702	15.920	22.972	590.366	27141.248	26.693	7.299	19.463
	47.093	54.822	14693.661	16.351	23.589	622.912	29406.656	27.416	7.512	20.033
L29	47.093	54.822	14693.661	16.351	23.589	622.912	29406.656	27.416	7.512	20.033
	48.326	56.268	15886.917	16.782	24.206	656.331	31794.739	28.139	7.726	20.603
L30	48.326	56.268	15886.917	16.782	24.206	656.331	31794.739	28.139	7.726	20.603
	49.559	57.713	17143.088	17.213	24.823	690.624	34308.733	28.862	7.940	21.173
L31	49.559	57.713	17143.088	17.213	24.823	690.624	34308.733	28.862	7.940	21.173
	50.793	59.159	18463.789	17.645	25.440	725.790	36951.873	29.585	8.154	21.743
L32	50.793	59.159	18463.789	17.645	25.440	725.790	36951.873	29.585	8.154	21.743

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	w	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
	52.026	60.604	19850.636	18.076	26.057	761.829	39727.393	30.308	8.367	22.313
L33	52.026	60.604	19850.636	18.076	26.057	761.829	39727.393	30.308	8.367	22.313
	53.259	62.050	21305.247	18.507	26.674	798.742	42638.528	31.031	8.581	22.883
L34	53,259	62.050	21305.247	18.507	26,674	798.742	42638,528	31.031	8.581	22,883
	53.760	62.637	21915.529	18.682	26.924	813.977	43859.896	31.324	8.668	23.115

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area (per face)	Thickness	A_{f}	Factor A _r	g	Stitch Bolt Spacing	Stitch Bolt Spacing	Stitch Bolt Spacing
ft	ft²	in				Diagonals in	Horizontals in	Redundants in
L1 155 000-	π-	111	1	1	1	111	111	
150.000			'					
L2 150 000-			1	1	1			
145.000								
L3 145.000-			1	1	1			
140.000								
L4 140.000-			1	1	1			
135.000			,					
L5 135.000-			1	1	1			
130.000			4	4	4			
L6 130.000- 123.210			1	1	1			
L7 123.210			1	1	1			
121.790			'	'	'			
L8 121.790-			1	1	1			
116.790			•	•	·			
L9 116.790-			1	1	1			
111.790								
L10 111.790-			1	1	1			
106.790								
L11 106.790-			1	1	1			
101.790					_			
L12 101.790-			1	1	1			
97.500			4	4	4			
L13 97.500-			1	1	1			
97.250 L14 97.250-			1	1	1			
92.250			1	I	ı			
L15 92 250-			1	1	1			
82.580			•		· ·			
L16 82 580-			1	1	1			
81.580								
L17 81.580-			1	1	1			
76.580								
L18 76.580-			1	1	1			
71.580								
L19 71.580-			1	1	1			
68.000			_	4	0.004450			
L20 68.000-			1	1	0.961153			
67.750			1	4	0.975618			
L21 67.750- 62.750			ı	1	0.975616			
L22 62.750-			1	1	0.965777			
57.750			'		0.505777			
L23 57.750-			1	1	0.982074			
52.750			•					
L24 52 750-			1	1	0.975253			
43.030								
L25 43.030-			1	1	1			
42.030								
L26 42.030-			1	1	1			
37.030								
L27 37.030-			1	1	1			
32.030			4	4	4			
L28 32.030-			1	1	1			
27.030 L29 27.030-			1	1	1			
22.030			1	I	ı			
22.000								

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.			Double Angle
Elevation	Area	Thickness	\mathcal{A}_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_r		Spacing	Spacing	Spacing
	. 0					Diagonals	Horizontals	Redundants
ft	ft ²	in				in	in	in
L30 22.030-			1	1	1			
17.030								
L31 17.030-			1	1	1			
12.030								
L32 12.030-			1	1	1			
7.030								
L33 7.030-			1	1	1			
2.030								
L34 2.030-			1	1	1			
0.000								

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Diacomont	Total	Number	Start/En	Width or	Perimete	Weight
Description	360101	From	t t	riacement	Number	Per Row	d d	Diamete	r	Weight
		Torque	Type	ft	Number	I GI KOW	Position	Diamete	,	klf
				11			FUSILIUII	,, ;,,	*	NII
		Calculation						ın	in	
CCI-65FP-060100	Α	No	Surface Af	70.000 -	1	1	-0.100	6.000	14.000	0.000
			(CaAa)	45.000			0.000			
CCI-65FP-060100	В	No	Surface Af	70.000 -	1	1	-0.100	6.000	14.000	0.000
			(CaAa)	45.000			0.000			
CCI-65FP-060100	С	No	Surface Af	70.000 -	1	1	-0.100	6.000	14.000	0.000
			(CaAa)	45.000			0.000			
CCI-65FP-045100	Α	No	Surface Af	99.000	1	1	-0.100	4.500	11.000	0.000
001 0011 010100	, ,	110	(CaAa)	84.000	•		0.000		111000	0.000
CCI-65FP-045100	В	No	Surface Af	99.000	1	1	0.100	4.500	11.000	0.000
CCI-031 F-043 100	ь	NO			'	'		4.500	11.000	0.000
	_		(CaAa)	84.000			0.000			
CCI-65FP-045100	С	No	Surface Af	99.000 -	1	1	-0.100	4.500	11.000	0.000
			(CaAa)	84.000			0.000			
*										
CU12PSM9P6XXX(1-	Α	No	Surface Ar	119.000 -	1	1	0.500	1.600		0.002
1/2)			(CaAa)	0.000			0.500			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or	Shield	From	t		Number			
	Leg		Torque	Type	ft			ft²/ft	klf
			Calculation	1					

HB158-21U6S24-	С	No	No	Inside Pole	155.000 -	4	No Ice	0.000	0.003
xxM_TMO(1-5/8)					0.000		1/2" Ice	0.000	0.003
							1" Ice	0.000	0.003
*									
LDF6-50A(1-1/4)	С	No	No	Inside Pole	139.000 -	12	No Ice	0.000	0.001
					0.000		1/2" I ce	0.000	0.001
							1" Ice	0.000	0.001
FB-L98B-002-	С	No	No	Inside Pole	139.000 -	2	No Ice	0.000	0.000
75000(3/8)					0.000		1/2" I ce	0.000	0.000
							1" Ice	0.000	0.000
WR-VG86ST-	С	No	No	Inside Pole	139.000 -	4	No Ice	0.000	0.001
BRD(3/4)					0.000		1/2" I ce	0.000	0.001
							1" I ce	0.000	0.001
2" Flex Conduit	С	No	No	Inside Pole	139.000 -	2	No Ice	0.000	0.000
					0.000		1/2" I ce	0.000	0.000
							1" I ce	0.000	0.000
*									
AVA7-50(1-5/8)	С	No	No	Inside Pole	128.000 -	12	No Ice	0.000	0.001
					0.000		1/2" Ice	0.000	0.001
							1" Ice	0.000	0.001
HB158-1-08U8-	С	No	No	Inside Pole	128.000 -	2	No Ice	0.000	0.001
tnxTower Report	- vers	ion 8 1	1.0						

tnxTower Report - version 8.1.1.0

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg	Onicia	Torque Calculation	Туре	ft	rvamber		ft²/ft	klf
S8J18(1-5/8)			Galdalation		0.000		1/2" Ice 1" Ice	0.000 0.000	0.001 0.001
LDF4-50A(1/2)	С	No	No	Inside Pole	74.000 - 0.000	1	No Ice 1/2" Ice 1" Ice	0.000 0.000 0.000	0.000 0.000 0.000

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation		- 0	- 0	In Face	Out Face	
n	ft		ft ²	ft²	ft ²	ft²	K
L1	155.000-150.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.050
L2	150.000-145.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.050
L3	145.000-140.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.050
L4	140.000-135.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.091
L5	135.000-130.000	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.102
L6	130.000-123.210	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.191
L7	123.210-121.790	Α	0.000	0.000	0.000	0.000	0.000
		В	0.000	0.000	0.000	0.000	0.000
		С	0.000	0.000	0.000	0.000	0.045
L8	121.790-116.790	Ā	0.000	0.000	0.354	0.000	0.005
		В	0.000	0.000	0.000	0.000	0.000
		Ċ	0.000	0.000	0.000	0.000	0.157
L9	116.790-111.790	Ä	0.000	0.000	0.800	0.000	0.012
		В	0.000	0.000	0.000	0.000	0.000
		Ċ	0.000	0.000	0.000	0.000	0.157
L10	111.790-106.790	Ä	0.000	0.000	0.800	0.000	0.012
		В	0.000	0.000	0.000	0.000	0.000
		Č	0.000	0.000	0.000	0.000	0.157
L11	106.790-101.790	Ā	0.000	0.000	0.800	0.000	0.012
		В	0.000	0.000	0.000	0.000	0.000
		Č	0.000	0.000	0.000	0.000	0.157
L12	101.790-97.500	Ä	0.000	0.000	1.811	0.000	0.010
		В	0.000	0.000	1.125	0.000	0.000
		Č	0.000	0.000	1.125	0.000	0.135
L13	97.500-97.250	Ä	0.000	0.000	0.227	0.000	0.001
2.0	011000 011200	В	0.000	0.000	0.188	0.000	0.000
		Č	0.000	0.000	0.188	0.000	0.008
L14	97.250-92.250	Ä	0.000	0.000	4.550	0.000	0.012
	011200 021200	В	0.000	0.000	3.750	0.000	0.000
		Č	0.000	0.000	3.750	0.000	0.157
L15	92.250-82.580	Ä	0.000	0.000	7.735	0.000	0.023
LIO	32.230 02.300	В	0.000	0.000	6.188	0.000	0.000
		Č	0.000	0.000	6.188	0.000	0.303
L16	82.580-81.580	A	0.000	0.000	0.160	0.000	0.002
210	32.000-01.000	B	0.000	0.000	0.000	0.000	0.002
		C	0.000	0.000	0.000	0.000	0.031
L17	81,580-76,580	A	0.000	0.000	0.800	0.000	0.031
L17	01.000-70.000	В	0.000	0.000	0.000	0.000	0.000
		ט	0.000	0.000	0.000	0.000	0.000

Tower	Tower	Face	A_R	A_F	C _A A _A	CAAA	Weight
Sectio	Elevation		ft²	ft²	In Face	Out Face ft²	14
n	ft				ft²		K
	70 500 74 500	C	0.000	0.000	0.000	0.000	0.157
L18	76.580-71.580	A	0.000	0.000	0.800	0.000	0.012
		В	0.000	0.000	0.000	0.000	0.000
	74 500 00 000	C	0.000	0.000	0.000	0.000	0.157
L19	71.580-68.000	Α	0.000	0.000	2.573	0.000	0.008
		В	0.000	0.000	2.000	0.000	0.000
	00 000 07 750	C	0.000	0.000	2.000	0.000	0.113
L20	68.000-67.750	A	0.000	0.000	0.290	0.000	0.001
		В	0.000	0.000	0.250	0.000	0.000
	07 750 00 750	C	0.000	0.000	0.250	0.000	0.008
L21	67.750-62.750	Α	0.000	0.000	5.800	0.000	0.012
		В	0.000	0.000	5.000	0.000	0.000
	00 750 57 750	C	0.000	0.000	5.000	0.000	0.158
L22	62.750-57.750	A	0.000	0.000	5.800	0.000	0.012
		В	0.000	0.000	5.000	0.000	0.000
		C	0.000	0.000	5.000	0.000	0.158
L23	57.750-52.750	A	0.000	0.000	5.800	0.000	0.012
		В	0.000	0.000	5.000	0.000	0.000
	50.750.40.000	C	0.000	0.000	5.000	0.000	0.158
L24	52.750-43.030	Α	0.000	0.000	9.305	0.000	0.023
		В	0.000	0.000	7.750	0.000	0.000
	40,000,40,000	C	0.000	0.000	7.750	0.000	0.306
L25	43.030-42.030	A	0.000	0.000	0.160	0.000	0.002
		В	0.000	0.000	0.000	0.000	0.000
	40 000 07 000	C	0.000	0.000	0.000	0.000	0.032
L26	42.030-37.030	Α	0.000	0.000	0.800	0.000	0.012
		В	0.000	0.000	0.000	0.000	0.000
1.07	07.000.00.000	C	0.000	0.000	0.000	0.000	0.158
L27	37.030-32.030	A B	0.000	0.000	0.800	0.000	0.012
			0.000	0.000	0.000	0.000	0.000
	00 000 07 000	C	0.000	0.000	0.000	0.000	0.158
L28	32.030-27.030	A	0.000	0.000	0.800	0.000	0.012
		В	0.000	0.000	0.000	0.000	0.000
1.00	07 000 00 000	C	0.000	0.000	0.000	0.000	0.158
L29	27.030-22.030	A B	0.000	0.000	0.800	0.000	0.012
		С	0.000	0.000	0.000	0.000	0.000
1.00	00 000 47 000		0.000	0.000	0.000	0.000	0.158
L30	22.030-17.030	A	0.000	0.000	0.800	0.000	0.012
		B C	0.000	0.000	0.000	0.000	0.000
1.04	47 000 40 000	C	0.000	0.000	0.000	0.000	0.158
L31	17.030-12.030	A B	0.000	0.000	0.800	0.000	0.012
		В	0.000	0.000	0.000	0.000	0.000
1.00	40 000 7 000	C	0.000	0.000	0.000	0.000	0.158
L32	12.030-7.030	A	0.000	0.000	0.800	0.000	0.012
		В	0.000	0.000	0.000	0.000	0.000
1.00	7 000 0 000	C	0.000	0.000	0.000	0.000	0.158
L33	7.030-2.030	A B	0.000	0.000	0.800	0.000	0.012
		C	0.000	0.000	0.000	0.000	0.000
104	0.000.000		0.000	0.000	0.000	0.000	0.158
L34	2.030-0.000	A	0.000	0.000	0.325	0.000	0.005
		B C	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.064

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft ²	ft ²	ft²	ft ²	K
L1	155.000-150.000	Α	0.991	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.050
L2	150.000-145.000	Α	0.987	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.050
L3	145.000-140.000	Α	0.984	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000

Tower	Tower	Face	Ice	A _R	AF	C _A A _A	C _A A _A	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	rr o.g
n	ft	Leg	in	ft²	ft²	ft²	ft²	K
		С		0.000	0.000	0.000	0.000	0.050
L4	140.000-135.000	A	0.980	0.000	0.000	0.000	0.000	0.000
		B C		0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000
L5	135.000-130.000	A	0.977	0.000	0.000	0.000	0.000	0.091 0.000
LJ	133,000-130,000	В	0.577	0.000	0.000	0.000	0.000	0.000
		Č		0.000	0.000	0.000	0.000	0.102
L6	130.000-123.210	Α	0.972	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.191
L7	123.210-121.790	Α	0.969	0.000	0.000	0.000	0.000	0.000
		В		0.000	0.000	0.000	0.000	0.000
L8	121.790-116.790	C A	0.967	0.000 0.000	0.000 0.000	0.000 0.781	0.000 0.000	0.045 0.012
LO	121.730-110.730	В	0.307	0.000	0.000	0.000	0.000	0.000
		č		0.000	0.000	0.000	0.000	0.157
L9	116.790-111.790	Α	0.962	0.000	0.000	1.762	0.000	0.027
		В		0.000	0.000	0.000	0.000	0.000
		C		0.000	0.000	0.000	0.000	0.157
L10	111.790-106.790	Α	0.958	0.000	0.000	1.758	0.000	0.027
		B C		0.000	0.000 0.000	0.000 0.000	0.000	0.000
L11	106.790-101.790	A	0.954	0.000 0.000	0.000	1.754	0.000 0.000	0.157 0.027
LII	100.730-101.730	В	0.954	0.000	0.000	0.000	0.000	0.027
		Č		0.000	0.000	0.000	0.000	0.157
L12	101.790-97.500	Α	0.949	0.000	0.000	2.911	0.000	0.031
		В		0.000	0.000	1.410	0.000	0.008
		С		0.000	0.000	1.410	0.000	0.143
L13	97.500-97.250	A	0.947	0.000	0.000	0.322	0.000	0.003
		В		0.000	0.000	0.235	0.000	0.001
L14	97.250-92.250	C A	0.945	0.000 0.000	0.000 0.000	0.235 6.439	0.000 0.000	0.009 0.053
L 14	91.230-92.230	В	0.545	0.000	0.000	4.695	0.000	0.033
		Ċ		0.000	0.000	4.695	0.000	0.184
L15	92.250-82.580	Α	0.937	0.000	0.000	11.093	0.000	0.095
		В		0.000	0.000	7.733	0.000	0.044
1.40	00 500 04 500	C	0.004	0.000	0.000	7.733	0.000	0.347
L16	82.580-81.580	A B	0.931	0.000 0.000	0.000 0.000	0.347 0.000	0.000 0.000	0.005 0.000
		C		0.000	0.000	0.000	0.000	0.000
L17	81.580-76.580	Ä	0.928	0.000	0.000	1.728	0.000	0.026
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.157
L18	76.580-71.580	Α	0.922	0.000	0.000	1.722	0.000	0.026
		В		0.000	0.000	0.000	0.000	0.000
1.40	71.580-68.000	C	0.916	0.000	0.000	0.000	0.000	0.157
L19	71.300-00.000	A B	0.916	0.000 0.000	0.000 0.000	3.595 2.366	0.000 0.000	0.031 0.012
		C		0.000	0.000	2.366	0.000	0.125
L20	68.000-67.750	Ā	0.914	0.000	0.000	0.381	0.000	0.003
		В		0.000	0.000	0.296	0.000	0.002
		С		0.000	0.000	0.296	0.000	0.009
L21	67.750-62.750	A	0.910	0.000	0.000	7.620	0.000	0.057
		В		0.000	0.000	5.910	0.000	0.031
L22	62,750-57,750	C A	0.903	0.000 0.000	0.000 0.000	5.910 7.605	0.000 0.000	0.188 0.056
LZZ	02.730-37.730	В	0.903	0.000	0.000	5.903	0.000	0.030
		C		0.000	0.000	5.903	0.000	0.188
L23	57.750-52.750	Ā	0.895	0.000	0.000	7.590	0.000	0.056
		В		0.000	0.000	5.895	0.000	0.030
		С		0.000	0.000	5.895	0.000	0.188
L24	52.750-43.030	Α	0.882	0.000	0.000	12.387	0.000	0.095
		В		0.000	0.000	9.117	0.000	0.046
L25	43.030-42.030	C A	0,872	0.000 0.000	0.000 0.000	9.117 0.336	0.000 0.000	0.353 0.005
LZJ	70,000-42,000	В	0.012	0.000	0.000	0.000	0.000	0.003
		Č		0.000	0.000	0.000	0.000	0.032
L26	42.030-37.030	A	0.865	0.000	0.000	1.665	0.000	0.025
		В		0.000	0.000	0.000	0.000	0.000

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft²	ft²	ft ²	K
		С		0.000	0.000	0.000	0.000	0.158
L27	37.030-32.030	Α	0.854	0.000	0.000	1.654	0.000	0.025
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.158
L28	32.030-27.030	Α	0.841	0.000	0.000	1.641	0.000	0.024
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.158
L29	27.030-22.030	Α	0.825	0.000	0.000	1.625	0.000	0.024
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.158
L30	22.030-17.030	Α	0.807	0.000	0.000	1.607	0.000	0.024
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.158
L31	17.030-12.030	Α	0.783	0.000	0.000	1.583	0.000	0.023
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.158
L32	12.030-7.030	Α	0.751	0.000	0.000	1.551	0.000	0.023
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.158
L33	7.030-2.030	Α	0.697	0.000	0.000	1.497	0.000	0.022
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.158
L34	2.030-0.000	Α	0.600	0.000	0.000	0.568	0.000	0.008
		В		0.000	0.000	0.000	0.000	0.000
		С		0.000	0.000	0.000	0.000	0.064

Feed Line Center of Pressure

Section	Elevation	CPx	CPz	CP _X	CPz
				Ice	Ice
	ft	in	in	in	in
L1	155.000-150.000	0.000	0.000	0.000	0.000
L2	150.000-145.000	0.000	0.000	0.000	0.000
L3	145.000-140.000	0.000	0.000	0.000	0.000
L4	140.000-135.000	0.000	0.000	0.000	0.000
L5	135.000-130.000	0.000	0.000	0.000	0.000
L6	130.000-123.210	0.000	0.000	0.000	0.000
L7	123.210-121.790	0.000	0.000	0.000	0.000
L8	121.790-116.790	0.000	-0.590	0.000	-0.730
L9	116.790-111.790	0.000	-1.253	0.000	-1.532
L10	111.790-106.790	0.000	-1.254	0.000	-1.537
L11	106.790-101.790	0.000	-1.256	0.000	-1.540
L12	101.790-97.500	0.000	-0.903	0.000	-1.210
L13	97.500-97.250	0.000	-0.599	0.000	-0.870
L14	97.250-92.250	0.000	-0.605	0.000	-0.877
L15	92.250-82.580	0.000	-0.672	0.000	-0.956
L16	82.580-81.580	0.000	-1.261	0.000	-1.552
L17	81.580-76.580	0.000	-1.262	0.000	-1.548
L18	76.580-71.580	0.000	-1.263	0.000	-1.548
L19	71.580-68.000	0.000	-0.747	0.000	-1.055
L20	68.000-67.750	0.000	-0.569	0.000	-0.847
L21	67.750-62.750	0.000	-0.574	0.000	-0.853
L22	62.750-57.750	0.000	-0.584	0.000	-0.862
L23	57.750-52.750	0.000	-0.593	0.000	-0.872
L24	52.750-43.030	0.000	-0.678	0.000	-0.967
L25	43.030-42.030	0.000	-1.268	0.000	-1.539
L26	42.030-37.030	0.000	-1.269	0.000	-1.527
L27	37.030-32.030	0.000	-1.269	0.000	-1.521
L28	32.030-27.030	0.000	-1.270	0.000	-1.513
L29	27.030-22.030	0.000	-1.271	0.000	-1.503
L30	22.030-17.030	0.000	-1.271	0.000	-1.490
L31	17.030-12.030	0.000	-1.272	0.000	-1.472
L32	12.030-7.030	0.000	-1.272	0.000	-1.447
L33	7.030-2.030	0.000	-1.273	0.000	-1.404
L34	2.030-0.000	0.000	-1.273	0.000	-1.323

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	· · · · · · · · · · · · · · · ·	Segment	No Îce	lce
			Elev.		
L8	22	CU12PSM9P6XXX(1-1/2)	116.79 -	1.0000	1.0000
L9	22	CU12PSM9P6XXX(1-1/2)	119.00 111.79 - 116.79	1.0000	1.0000
L10	22	CU12PSM9P6XXX(1-1/2)	106.79 - 111.79	1.0000	1.0000
L11	22	CU12PSM9P6XXX(1-1/2)	101.79 - 106.79	1.0000	1.0000
L12	4	CCI-65FP-045100	97.50 - 99.00	1.0000	1.0000
L12	5	CCI-65FP-045100	97.50 - 99.00	1.0000	1.0000
L12	6	CCI-65FP-045100	97.50 - 99.00	1.0000	1.0000
L12	22	CU12PSM9P6XXX(1-1/2)	97.50 - 101.79	1.0000	1.0000
L13	4	CCI-65FP-045100	97.25 - 97.50	1.0000	1.0000
L13	5	CCI-65FP-045100	97.25 - 97.50	1.0000	1.0000
L13	6	CCI-65FP-045100	97.25 - 97.50	1.0000	1.0000
L13	22	CU12PSM9P6XXX(1-1/2)	97.25 - 97.50	1.0000	1.0000
L14	4	CCI-65FP-045100	92.25 - 97.25	1.0000	1.0000
L14	5	CCI-65FP-045100	92.25 - 97.25	1.0000	1.0000
L14	6	CCI-65FP-045100	92.25 - 97.25	1.0000	1.0000
L14	22	CU12PSM9P6XXX(1-1/2)	92.25 - 97.25	1.0000	1.0000
L15	4	CCI-65FP-045100	84.00 - 92.25	1.0000	1.0000
L15	5	CCI-65FP-045100	84.00 - 92.25	1.0000	1.0000
L15	6	CCI-65FP-045100	84.00 - 92.25	1.0000	1.0000
L15	22	CU12PSM9P6XXX(1-1/2)	82.58 - 92.25	1.0000	1.0000
L16	22	CU12PSM9P6XXX(1-1/2)	81.58 - 82.58	1.0000	1.0000
L17	22	CU12PSM9P6XXX(1-1/2)	76.58 - 81.58	1.0000	1.0000
L18	22	CU12PSM9P6XXX(1-1/2)	71.58 - 76.58	1.0000	1.0000
L19	1	CCI-65FP-060100	68.00 - 70.00	1.0000	1.0000
L19	2	CCI-65FP-060100	68.00 - 70.00	1.0000	1.0000
L19	3	CCI-65FP-060100	68.00 - 70.00	1.0000	1.0000
L19	22	CU12PSM9P6XXX(1-1/2)	68.00 - 71.58	1.0000	1.0000
L20	1	CCI-65FP-060100	67.75 - 68.00	1.0000	1.0000
L20	2	CCI-65FP-060100	67.75 -	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	,	Segment Elev.	No Ice	Ice
			68.00		
L20	3	CCI-65FP-060100	67.75 - 68.00	1.0000	1.0000
L20	22	CU12PSM9P6XXX(1-1/2)	67.75 - 68.00	1.0000	1.0000
L21	1	CCI-65FP-060100	62.75 - 67.75	1.0000	1.0000
L21	2	CCI-65FP-060100	62.75 - 67.75	1.0000	1.0000
L21	3	CCI-65FP-060100	62.75 67.75	1.0000	1.0000
L21	22	CU12PSM9P6XXX(1-1/2)	62.75 67.75	1.0000	1.0000
L22	1	CCI-65FP-060100	57.75 - 62.75	1.0000	1.0000
L22	2	CCI-65FP-060100	57.75 - 62.75	1.0000	1.0000
L22	3	CCI-65FP-060100	57.75 - 62.75	1.0000	1.0000
L22	22	CU12PSM9P6XXX(1-1/2)	57.75 - 62.75	1.0000	1.0000
L23	1	CCI-65FP-060100	52.75 - 57.75	1.0000	1.0000
L23	2	CCI-65FP-060100	52.75 - 57.75	1.0000	1.0000
L23	3	CCI-65FP-060100	52.75 - 57.75	1.0000	1.0000
L23	22	CU12PSM9P6XXX(1-1/2)	52.75 - 57.75	1.0000	1.0000
L24	1	CCI-65FP-060100	45.00 - 52.75	1.0000	1.0000
L24	2	CCI-65FP-060100	45.00 - 52.75	1.0000	1.0000
L24	3	CCI-65FP-060100	45.00 - 52.75	1.0000	1.0000
L24	22	CU12PSM9P6XXX(1-1/2)	43.03 - 52.75	1.0000	1.0000
L25 L26	22 22	CU12PSM9P6XXX(1-1/2) CU12PSM9P6XXX(1-1/2)	42.03 - 43.03	1.0000 1.0000	1.0000 1.0000
L26 L27	22	CU12PSM9P6XXX(1-1/2)	37.03 - 42.03 32.03 -	1.0000	1.0000
L27 L28	22	CU12PSM9P6XXX(1-1/2)	37.03 - 37.03 - 27.03 -	1.0000	1.0000
L20 L29	22	CU12PSM9P6XXX(1-1/2)	32.03 22.03 -	1.0000	1.0000
L30	22	CU12PSM9P6XXX(1-1/2)	27.03 - 27.03 - 17.03 -	1.0000	1.0000
L30	22	CU12PSM9P6XXX(1-1/2)	22.03 12.03 -	1.0000	1.0000
L32	22	CU12PSM9P6XXX(1-1/2)	17.03 17.03 7.03 - 12.03	1.0000	1.0000
L33	22	CU12PSM9P6XXX(1-1/2)	2.03 - 7.03	1.0000	1.0000
L34	22	CU12PSM9P6XXX(1-1/2)	0.00 - 2.03	1.0000	1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n	Ratio
				Method	

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment Elev.	Calculatio n	Width Ratio
			LIEV.	Method	Natio
L12	4	CCI-65FP-045100	97.50 -	Auto	0.0000
L12	5	CCI-65FP-045100	99.00 97.50 -	Auto	0.0000
L12	6	CCI-65FP-045100	99.00 - 97.50 99.00	Auto	0.0000
L13	4	CCI-65FP-045100	97.25 - 97.50	Auto	0.0000
L13	5	CCI-65FP-045100	97.25 - 97.50	Auto	0.0000
L13	6	CCI-65FP-045100	97.25 97.50	Auto	0.0000
L14	4	CCI-65FP-045100	92.25 - 97.25	Auto	0.0000
L14	5	CCI-65FP-045100	92.25 - 97.25	Auto	0.0000
L14	6	CCI-65FP-045100	92.25 - 97.25	Auto	0.0000
L15	4	CCI-65FP-045100	84.00 - 92.25	Auto	0.0000
L15	5	CCI-65FP-045100	84.00 - 92.25	Auto	0.0000
L15	6	CCI-65FP-045100	84.00 - 92.25	Auto	0.0000
L19	1	CCI-65FP-060100	68.00 - 70.00	Auto	0.0100
L19	2	CCI-65FP-060100	68.00 - 70.00	Auto	0.0100
L19	3	CCI-65FP-060100	68.00 - 70.00	Auto	0.0100
L20	1	CCI-65FP-060100	67.75 68.00	Auto	0.0533
L20	2	CCI-65FP-060100	67.75 - 68.00	Auto	0.0533
L20	3	CCI-65FP-060100	67.75 - 68.00	Auto	0.0533
L21	1	CCI-65FP-060100	62.75 - 67.75	Auto	0.0310
L21	2	CCI-65FP-060100	62.75 67.75	Auto	0.0310
L21	3	CCI-65FP-060100	62.75 - 67.75	Auto	0.0310
L22	1	CCI-65FP-060100	57.75 - 62.75	Auto	0.0025
L22	2	CCI-65FP-060100	57.75 - 62.75	Auto	0.0025
L22	3	CCI-65FP-060100	57.75 - 62.75	Auto	0.0025
L23	1	CCI-65FP-060100	52.75 57.75	Auto	0.0000
L23	2	CCI-65FP-060100	52.75 - 57.75	Auto	0.0000
L23	3	CCI-65FP-060100	52.75 - 57.75	Auto	0.0000
L24	1	CCI-65FP-060100	45.00 - 52.75	Auto	0.0000
L24	2	CCI-65FP-060100	45.00 - 52.75	Auto	0.0000
L24	3	CCI-65FP-060100	45.00 - 52.75	Auto	0.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	κ
Lighting Rod 1/2" x 2'	С	From Leg	4.000 0.000 0.000	0.000	164.000	No Ice 1/2" Ice 1" Ice	0.100 0.264 0.395	0.100 0.264 0.395	0.020 0.021 0.024
AIR6449 B41_T-MOBILE w/ Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice 1" Ice	5.190 5.590 6.020	2.710 3.040 3.380	0.128 0.174 0.227
AIR6449 B41_T-MOBILE w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice 1" Ice	5.190 5.590 6.020	2.710 3.040 3.380	0.128 0.174 0.227
AIR6449 B41_T-MOBILE w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice 1" Ice	5.190 5.590 6.020	2.710 3.040 3.380	0.128 0.174 0.227
APX16DWV-16DWV-S-E- A20 w/ Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice 1" Ice	6.290 6.860 7.450	2.760 3.270 3.790	0.061 0.105 0.157
APX16DWV-16DWV-S-E- A20 w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice	6.290 6.860 7.450	2.760 3.270 3.790	0.061 0.105 0.157
APX16DWV-16DWV-S-E- A20 w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice	6.290 6.860 7.450	2.760 3.270 3.790	0.061 0.105 0.157
APXVAALL24_43-U- NA20_TMO w/ Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice	14.690 15.460 16.230	6.870 7.550 8.250	0.183 0.311 0.453
APXVAALL24_43-U- NA20_TMO w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	155,000	1" Ice No Ice 1/2" Ice 1" Ice	14.690 15.460 16.230	6.870 7.550 8.250	0.183 0.311 0.453
APXVAALL24_43-U- NA20_TMO w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice 1" Ice	14.690 15.460 16.230	6.870 7.550 8.250	0.183 0.311 0.453
RADIO 4415 B66A	Α	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice 1" Ice	1.856 2.027 2.204	0.870 0.997 1.134	0.050 0.064 0.081
RADIO 4415 B66A	В	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice	1.856 2.027 2.204	0.870 0.997 1.134	0.050 0.064 0.081
RADIO 4415 B66A	С	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice	1.856 2.027 2.204	0.870 0.997 1.134	0.050 0.064 0.081
RADIO 4424 B25_TMO	Α	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice	2.052 2.231 2.417	1.610 1.772 1.941	0.086 0.107 0.131
RADIO 4424 B25_TMO	В	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice	2.052 2.231 2.417	1.610 1.772 1.941	0.086 0.107 0.131
RADIO 4424 B25_TMO	С	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice	2.052 2.231 2.417	1.610 1.772 1.941	0.086 0.107 0.131

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
RADIO 4449 B71 B85A_T-	Α	From Leg	4.000	0.000	155.000	1" Ice No Ice	1.970	1.587	0.073
MOBILE		J	0.000 2.000			1/2" Ice 1" Ice	2.147 2.331	1.749 1.918	0.093 0.116
RADIO 4449 B71 B85A_T- MOBILE	В	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice	1.970 2.147 2.331	1.587 1.749 1.918	0.073 0.093 0.116
RADIO 4449 B71 B85A_T- MOBILE	С	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice	1.970 2.147 2.331	1.587 1.749 1.918	0.073 0.093 0.116
Platform Mount [LP 712-1]	С	None		0.000	155.000	1" Ice No Ice 1/2" Ice	19.640 22.330 25.020	19.640 22.330 25.020	1.068 1.532 1.996
Miscellaneous [NA 507-1]	С	None		0.000	159.000	1" Ice No Ice 1/2"	4.560 6.390	4.560 6.390	0.245 0.311
9' x 2" Pipe Mount	С	From Leg	4.000	0.000	155.000	Ice 1" Ice No Ice	8.180 2.138	8.180 2.138	0.402 0.065
			0.000 4.000			1/2" Ice 1" Ice	3.066 4.010	3.066 4.010	0.081 0.103
8' x 2.375" Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice 1" Ice	1.900 2.728 3.401	1.900 2.728 3.401	0.061 0.075 0.095
8' x 2.375" Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	155.000	No Ice 1/2" Ice	1.900 2.728 3.401	1.900 2.728 3.401	0.061 0.075 0.095
8' x 2.375" Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice	1.900 2.728 3.401	1.900 2.728 3.401	0.061 0.075 0.095
4' x 2" Pipe Mount	Α	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice	0.785 1.028 1.281	0.785 1.028 1.281	0.029 0.035 0.044
4' x 2" Pipe Mount	В	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice	0.785 1.028 1.281	0.785 1.028 1.281	0.029 0.035 0.044
4' x 2" Pipe Mount	С	From Leg	4.000 0.000 2.000	0.000	155.000	1" Ice No Ice 1/2" Ice 1" Ice	0.785 1.028 1.281	0.785 1.028 1.281	0.029 0.035 0.044
Transition Ladder	С	From Leg	2.000 0.000 -2.000	0.000	155.000	No Ice 1/2" Ice 1" Ice	6.000 8.000 10.000	6.000 8.000 10.000	0.160 0.240 0.320
* HPA-65R-BUU-H8 w/ Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	139.000	No Ice 1/2" Ice 1" Ice	12.250 13.190 14.160	8.330 9.230 10.150	0.105 0.194 0.297
HPA-65R-BUU-H8 w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	139.000	No Ice 1/2" Ice	12.250 13.190 14.160	8.330 9.230 10.150	0.105 0.194 0.297
HPA-65R-BUU-H8 w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	139.000	1" Ice No Ice 1/2" Ice	12.250 13.190 14.160	8.330 9.230 10.150	0.105 0.194 0.297

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	9		Vert ft ft ft	0	ft		ft²	ft²	К
			- 11			1" I ce			
80010966 w/ Mount Pipe	Α	From Leg	4.000 0.000 2.000	0.000	139.000	No Ice 1/2" Ice	14.610 15.470 16.350	6.840 7.630 8.420	0.159 0.267 0.389
80010966 w/ Mount Pipe	В	From Leg	4.000 0.000 2.000	0.000	139.000	1" Ice No Ice 1/2" Ice	14.610 15.470 16.350	6.840 7.630 8.420	0.159 0.267 0.389
80010966 w/ Mount Pipe	С	From Leg	4.000 0.000 2.000	0.000	139.000	1" Ice No Ice 1/2" Ice	14.610 15.470 16.350	6.840 7.630 8.420	0.159 0.267 0.389
7770.00 w/ Mount Pipe	Α	From Leg	4.000 0.000 1.000	0.000	139.000	1" Ice No Ice 1/2" Ice	5.746 6.179 6.607	4.254 5.014 5.711	0.055 0.103 0.157
7770.00 w/ Mount Pipe	В	From Leg	4.000 0.000 1.000	0.000	139.000	1" Ice No Ice 1/2" Ice	5.746 6.179 6.607	4.254 5.014 5.711	0.055 0.103 0.157
7770.00 w/ Mount Pipe	С	From Leg	4.000 0.000 1.000	0.000	139.000	1" Ice No Ice 1/2" Ice	5.746 6.179 6.607	4.254 5.014 5.711	0.055 0.103 0.157
RRUS 11	Α	From Leg	4.000 0.000	0.000	139.000	1" Ice No Ice 1/2"	2.784 2.992	1.187 1.334	0.048 0.068
RRUS 11	В	From Leg	1.000 4.000 0.000	0.000	139.000	Ice 1" Ice No Ice 1/2"	3.207 2.784 2.992	1.490 1.187 1.334	0.092 0.048 0.068
RRUS 11	С	From Leg	1.000 4.000	0.000	139.000	Ice 1" Ice No Ice	3.207 2.784	1.490 1.187	0.092 0.048
RRUS 32 B2	Α	From Leg	0.000 1.000 4.000	0.000	139.000	1/2" Ice 1" Ice No Ice	2.992 3.207 2.731	1.334 1.490 1.668	0.068 0.092 0.053
NNU3 32 B2	A	From Leg	0.000 1.000	0.000	139.000	1/2" Ice 1" Ice	2.953 3.182	1.855 2.049	0.033 0.074 0.098
RRUS 32 B2	В	From Leg	4.000 0.000 1.000	0.000	139.000	No Ice 1/2" Ice 1" Ice	2.731 2.953 3.182	1.668 1.855 2.049	0.053 0.074 0.098
RRUS 32 B2	С	From Leg	4.000 0.000 1.000	0.000	139.000	No Ice 1/2" Ice 1" Ice	2.731 2.953 3.182	1.668 1.855 2.049	0.053 0.074 0.098
RRUS 4478 B14	Α	From Leg	4.000 0.000 1.000	0.000	139.000	No Ice 1/2" Ice	1.843 2.012 2.190	1.059 1.197 1.342	0.060 0.076 0.094
RRUS 4478 B14	В	From Leg	4.000 0.000 1.000	0.000	139.000	1" Ice No Ice 1/2" Ice	1.843 2.012 2.190	1.059 1.197 1.342	0.060 0.076 0.094
RRUS 4478 B14	С	From Leg	4.000 0.000 1.000	0.000	139.000	1" Ice No Ice 1/2" Ice	1.843 2.012 2.190	1.059 1.197 1.342	0.060 0.076 0.094
(2) LGP21401	Α	From Leg	4.000 0.000 1.000	0.000	139.000	1" Ice No Ice 1/2" Ice 1" Ice	1.104 1.239 1.381	0.207 0.274 0.348	0.014 0.021 0.030

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
(2) LGP21401	В	From Leg	4.000	0.000	139,000	No Ice	1.104	0.207	0.014
(-,			0.000 1.000			1/2" Ice 1" Ice	1.239 1.381	0.274 0.348	0.021 0.030
(2) LGP21401	С	From Leg	4.000 0.000 1.000	0.000	139.000	No Ice 1/2" Ice 1" Ice	1.104 1.239 1.381	0.207 0.274 0.348	0.014 0.021 0.030
DC6-48-60-18-8F	Α	From Leg	4.000 0.000 1.000	0.000	139.000	No Ice 1/2" Ice 1" Ice	1.212 1.892 2.105	1.212 1.892 2.105	0.020 0.042 0.067
DC6-48-60-18-8F	В	From Leg	4.000 0.000 1.000	0.000	139.000	No Ice 1/2" Ice	1.212 1.892 2.105	1.212 1.892 2.105	0.020 0.042 0.067
Platform Mount [LP 303-1]	С	None		0.000	139.000	1" Ice No Ice 1/2" Ice 1" Ice	14.690 18.010 21.340	14.690 18.010 21.340	1.250 1.569 1.942
(2) LPA-80063/6CF w/ Mount Pipe	Α	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	9.831 10.400 10.933	10.215 11.384 12.269	0.052 0.145 0.246
(2) LPA-80063/6CF w/ Mount Pipe	В	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	9.831 10.400 10.933	10.215 11.384 12.269	0.052 0.145 0.246
(2) LPA-80063/6CF w/ Mount Pipe	С	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	9.831 10.400 10.933	10.215 11.384 12.269	0.052 0.145 0.246
(2) JAHH-65B-R3B w/ Mount Pipe	Α	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	5.500 5.970 6.450	4.380 4.840 5.300	0.096 0.169 0.254
(2) JAHH-65B-R3B w/ Mount Pipe	В	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	5.500 5.970 6.450	4.380 4.840 5.300	0.096 0.169 0.254
(2) JAHH-65B-R3B w/ Mount Pipe	С	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	5.500 5.970 6.450	4.380 4.840 5.300	0.096 0.169 0.254
RVZDC-6627-PF-48	А	From Leg	4.000 0.000 6.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	3.792 4.044 4.303	2.514 2.727 2.947	0.032 0.063 0.099
MT6407-77A w/ Mount Pipe	Α	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	4.907 5.256 5.615	2.682 3.145 3.624	0.096 0.136 0.180
MT6407-77A w/ Mount Pipe	В	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	4.907 5.256 5.615	2.682 3.145 3.624	0.096 0.136 0.180
MT6407-77A w/ Mount Pipe	С	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	4.907 5.256 5.615	2.682 3.145 3.624	0.096 0.136 0.180
RF4439D-25A	Α	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	1.865 2.035 2.212	1.252 1.394 1.544	0.075 0.093 0.114

Description	Face	Offset	Offsets:	Azimuth	Placement		C _A A _A	C _A A _A	Weight
	or Leg	Type	Horz Lateral Vert	Adjustmen t			Front	Side	
			ft ft ft	0	ft		ft²	ft²	К
RF4439D-25A	В	From Leg	4.000	0.000	128.000	No Ice	1.865	1.252	0.075
			0.000 3.000			1/2" Ice 1" Ice	2.035 2.212	1.394 1.544	0.093 0.114
RF4439D-25A	С	From Leg	4.000	0.000	128.000	No Ice	1.865	1.252	0.075
			0.000 3.000			1/2" Ice 1" Ice	2.035 2.212	1.394 1.544	0.093 0.114
RF4440D-13A	Α	From Leg	4.000	0.000	128.000	No Ice	1.865	1.129	0.073
			0.000 3.000			1/2" Ice 1" Ice	2.035 2.212	1.267 1.411	0.090 0.110
RF4440D-13A	В	From Leg	4.000	0.000	128.000	No Ice	1.865	1.129	0.073
			0.000 3.000			1/2" I ce 1" I ce	2.035 2.212	1.267 1.411	0.090 0.110
RF4440D-13A	С	From Leg	4.000	0.000	128.000	No Ice	1.865	1.129	0.073
			0.000 3.000			1/2" I ce	2.035 2.212	1.267 1.411	0.090 0.110
			3.000			1" Ice	2,212	1,711	0.110
CBC78T-DS-43-2X	Α	From Leg	4.000	0.000	128.000	No Ice	0.368	0.512	0.021
			0.000 3.000			1/2" Ice 1" Ice	0.446 0.531	0.605 0.705	0.027 0.035
CBC78T-DS-43-2X	В	From Leg	4.000	0.000	128.000	No Ice	0.368	0.512	0.021
			0.000 3.000			1/2" I ce 1" I ce	0.446 0.531	0.605 0.705	0.027 0.035
CBC78T-DS-43-2X	С	From Leg	4.000 0.000 3.000	0.000	128.000	No Ice 1/2" Ice 1" Ice	0.368 0.446 0.531	0.512 0.605 0.705	0.021 0.027 0.035
T-Arm Mount [TA 602-3]	С	None		0.000	128.000	No Ice 1/2" Ice	13.400 16.440 19.700	13.400 16.440 19.700	0.774 1.004 1.292
Side Arm Mount [SO 102-	С	None		0.000	128,000	1" Ice No Ice	3.600	3.600	0.075
3]	-					1/2" Ice 1" Ice	4.180 4.750	4.180 4.750	0.105 0.135
Mount Reinforcement	С	None		0.000	128.000	No Ice	28.630	28.630	0.280
Specifications						1/2" Ice 1" Ice	37.310 45.800	37.310 45.800	0.670 0.940
12' Horizontal Handrail	Α	From Leg	4.000	0.000	128.000	No Ice	4.000	0.020	0.065
			0.000 2.500			1/2" Ice 1" Ice	5.230 6.470	0.060 0.120	0.089 0.122
12' Horizontal Handrail	В	From Leg	4.000	0.000	128.000	No Ice	2.280	0.010	0.033
			0.000 2.500			1/2" Ice 1" Ice	3.500 4.750	0.040 0.090	0.050 0.076
12' Horizontal Handrail	С	From Leg	4.000	0.000	128.000	No Ice	2.280	0.010	0.033
			0.000 2.500			1/2" Ice 1" Ice	3.500 4.750	0.040 0.090	0.050 0.076
(2) 6' x 2.5" Schedule 40	Α	From Leg	2.000	0.000	128.000	No Ice	1.728	1.728	0.035
Pipe			0.000 2.500			1/2" Ice 1" Ice	2.090 2.461	2.090 2.461	0.048 0.065
(2) 6' x 2.5" Schedule 40	В	From Leg	2.000	0.000	128.000	No Ice	1.728	1.728	0.035
Pipe			0.000 2.500			1/2" Ice 1" Ice	2.090 2.461	2.090 2.461	0.048 0.065
(2) 6' x 2.5" Schedule 40	С	From Leg	2.000	0.000	128.000	No Ice	1.728	1.728	0.035

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustmen	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Lateral Vert	t					
			ft ft ft	0	ft		ft²	ft²	K
Pipe			0.000			1/2"	2.090	2.090	0.048
*			2.500			Ice 1" Ice	2.461	2.461	0.065
MX08FRO665-21 w/	Α	From Leg	4.000	0.000	119.000	No Ice	8.010	4.230	0.108
Mount Pipe		3	0.000 0.000			1/2" I ce	8.520 9.040	4.690 5.160	0.194 0.292
MX08FRO665-21 w/	В	From Leg	4.000	0.000	119.000	1" Ice No Ice	8.010	4.230	0.108
Mount Pipe			0.000	0.000	,,,,,,,,	1/2" Ice 1" Ice	8.520 9.040	4.690 5.160	0.194 0.292
MX08FRO665-21 w/	С	From Leg	4.000	0.000	119.000	No Ice	8.010	4.230	0.108
Mount Pipe	Ū	110111 209	0.000	0.000	1101000	1/2"	8.520	4.690	0.194
			0.000			Ice 1" Ice	9.040	5.160	0.292
TA08025-B604	Α	From Leg	4.000 0.000	0.000	119.000	No Ice 1/2"	1.964 2.138	0.981 1.112	0.064 0.081
			0.000			Ice 1" Ice	2.130	1.250	0.100
TA08025-B604	В	From Leg	4.000	0.000	119.000	No Ice	1.964	0.981	0.064
			0.000 0.000			1/2" Ice 1" Ice	2.138 2.320	1.112 1.250	0.081 0.100
TA08025-B604	С	From Leg	4.000	0.000	119.000	No Ice	1.964	0.981	0.064
			0.000 0.000			1/2" Ice 1" Ice	2.138 2.320	1.112 1.250	0.081 0.100
TA08025-B605	Α	From Leg	4.000	0.000	119.000	No Ice	1.964	1.129	0.075
		5	0.000 0.000			1/2" I ce 1" I ce	2.138 2.320	1.267 1.411	0.093 0.114
TA08025-B605	В	From Leg	4.000	0.000	119.000	No Ice	1.964	1.129	0.075
			0.000 0.000			1/2" Ice	2.138 2.320	1.267 1.411	0.093 0.114
T400005 B005	0	E. 1	4.000	0.000	440.000	1" Ice	4.004	4.400	0.075
TA08025-B605	С	From Leg	4.000 0.000	0.000	119.000	No Ice 1/2"	1.964 2.138	1.129 1.267	0.075 0.093
			0.000			Ice 1" Ice	2.320	1.411	0.114
RDIDC-9181-PF-48	Α	From Leg	4.000	0.000	119.000	No Ice	2.312	1.293	0.022
			0.000			1/2" Ice 1" Ice	2.502 2.700	1.448 1.610	0.041 0.063
Commscope MC-PK8-DSH	С	None		0.000	119.000	No Ice	34.240	34.240	1.749
						1/2" Ice 1" Ice	62.950 91.660	62.950 91.660	2.099 2.450
(2) 8' x 2" Mount Pipe	Α	From Leg	4.000	0.000	119.000	No Ice	1.900	1.900	0.029
		_	0.000 0.000			1/2" Ice 1" Ice	2.728 3.401	2.728 3.401	0.044 0.063
(2) 8' x 2" Mount Pipe	В	From Leg	4.000	0.000	119.000	No Ice	1.900	1.900	0.029
(-, -, -, -, -, -, -, -, -, -, -, -, -, -		3	0.000 0.000			1/2" I ce	2.728 3.401	2.728 3.401	0.044 0.063
(2) 8' x 2" Mount Pipe	С	From Leg	4.000	0.000	119.000	1" Ice No Ice	1.900	1.900	0.029
(2) O X 2 MOGRET IPO	9	. rom Log	0.000	0.000	1 101000	1/2"	2.728	2.728	0.044
*			0.000			Ice 1" Ice	3.401	3.401	0.063
KS24019-L112A	С	From Leg	3.000	0.000	74.000	No Ice	0.100	0.100	0.005
	-		0.000	-		1/2"	0.180	0.180	0.006
			0.000			Ice 1" Ice	0.260	0.260	0.008

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	K
Side Arm Mount [SO 701-1]	С	From Leg	2.000 0.000 0.000	0.000	74.000	No Ice 1/2" Ice 1" Ice	0.850 1.140 1.430	1.670 2.340 3.010	0.065 0.079 0.093

Load Combinations

Comb.	Description
No.	·
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1,2 Dead+1,0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1,2 Dead+1,0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1,2 Dead+1,0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45 46	Dead+Wind 180 deg - Service
46 47	Dead+Wind 210 deg - Service
47 40	Dead+Wind 240 deg - Service
48 49	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service

Comb. No.		Description
50	Dead+Wind 330 deg - Service	

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	155 - 150	Pole	Max Tension	26	0.000	-0.000	-0.000
			Max. Compression	26	-7.848	1.444	-0.826
			Max. Mx	20	-3.700	37.445	-0.413
			Max. My	14	-3.697	0.723	-37.083
			Max. Vy	20	-5.892	37.445	-0.413
			Max. Vx	14	5.893	0.723	-37.083
	150 115		Max. Torque	24			1.339
L2	150 - 145	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-8.269	1.460	-0.828
			Max. Mx	20	-3.965	67.633	-0.416
			Max. My	14	-3.962 6.487	0.736	-67.280
			Max. Vy Max. Vx	20 14	-6.187 6.189	67.633 0.736	-0.416
			Max. Torque	24	0.109	0.730	-67.280 1.339
L3	145 - 140	Pole	Max. Torque Max Tension	1	0.000	0.000	0.000
L3	145 - 140	Fole	Max. Compression	26	-8.708	1.474	-0.828
			Max. Mx	20	4.248	99.316	-0.417
			Max. My	14	-4.245	0.747	-98.974
			Max. Vy	20	-6.491	99.316	-0.417
			Max. Vx	14	6.493	0.747	-98.974
			Max. Torque	24	0.430	0.7 47	1.339
L4	140 - 135	Pole	Max Tension	1	0.000	0.000	0.000
	110 100	, 0,0	Max. Compression	26	-15.362	1.198	-0.655
			Max. Mx	20	7.341	156.269	-0.376
			Max. My	14	-7.335	0.690	-155.988
			Max. Vy	20	-11.352	156.269	-0.376
			Max. Vx	14	11.356	0.690	-155.988
			Max. Torque	24			1.338
L5	135 - 130	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-15.900	1.217	-0.651
			Max. Mx	20	-7.751	213.778	-0.375
			Max. My	14	-7.745	0.704	-213.516
			Max. Vy	20	-11.660	213.778	-0.375
			Max. Vx	2	-11.664	0.708	212.613
			Max. Torque	24			1.121
L6	130 - 123.21	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-24.254	1.230	0.129
			Max. Mx	20	-10.999	272.295	-0.049
			Max. My	14	-10.976	0.716	-272.174
			Max. Vy	20	-18.494	272.295	-0.049
			Max. Vx	2	-18.596	0.721	272.035
1.7	400.04	D-I-	Max. Torque	24	0.000	0.000	1.120
L7	123.21 - 121.79	Pole	Max Tension	1	0.000	0.000	0.000
	121.79		Max. Compression	26	-25.283	1.255	0.137
			Max. Mx	20	-25.263 -11.792	365.673	-0.047
			Max. My	14	-11.792	0.735	-366.062
			Max. Vy	20	-18.861	365,673	-0.047
			Max. Vx	2	-18.964	0.741	365.924
			Max. Torque	14	10.504	0.7 4 1	-0.965
L8	121.79 -	Pole	Max Tension	1	0.000	0.000	0.000
_0	116.79	. 510	max rondion		3.300	3.300	5.555
			Max. Compression	26	-30.932	1.292	0.488
			Max. Mx	20	-15.329	467.557	0.065
			Max. My	2	-15.300	0.767	468.529
			Max. Vy	20	-22.265	467.557	0.065
			Max. Vx	2	-22.403	0.767	468.529
			Max. Torque	14			-0.965
L9	116.79 -	Pole	Max Tension	1	0.000	0.000	0.000
	111.79						

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
			Max. Compression	26	-31.737	1.347	0.514
			Max. Mx	20	-16.071	579.570	0.076
			Max. My	2	-16.043	0.801	581,225
			Max. Vy	20	-22.557	579.570	0.076
			Max. Vx	2	-22.695	0.801	581.225
			Max. Torque	14			-0.964
L10	111.79 - 106.79	Pole	Max Tension	1	0.000	0.000	0.000
	100110		Max. Compression	26	-32.568	1,401	0.539
			Max. Mx	20	-16.846	693.025	0.087
			Max. My	2	-16.820	0.834	695.363
			Max. Vy	20	-22.845	693.025	0.087
			Max. Vx	2	-22 982	0.834	695.363
			Max. Torque	14			-0.962
L11	106.79 -	Pole	Max Tension	1	0.000	0.000	0.000
	101.79						
			Max. Compression	26	-33.424	1.454	0.565
			Max. Mx	20	-17.652	807.902	0.097
			Max. My	2	-17.627	0.865	810.922
			Max. Vy	20	-23.128	807.902	0.097
			Max. Vx	2	-23.266	0.865	810.922
			Max. Torque	14			-0.961
L12	101.79 - 97.5	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-34.203	1.499	0.587
			Max. Mx	20	-18.365	907.585	0.107
			Max. My	2	-18.341	0.891	911.191
			Max. Vý	20	-23.370	907.585	0.107
			Max. Vx	2	-23.507	0.891	911.191
			Max. Torque	14			-0.960
L13	97.5 - 97.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-34.252	1.503	0.588
			Max. Mx	20	-18.422	913.427	0.108
			Max. My	2	-18.399	0.892	917.066
			Max. Vy	20	-23.378	913.427	0.108
			Max. Vx	2	-23.509	0.892	917.066
			Max. Torque	14			-0.959
L14	97.25 - 92.25	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-35.237	1.553	0.613
			Max Mx	20	-19.266	1030.969	0.119
			Max. My	2	-19 244	0.921	1035.291
			Max. Vý	20	-23.660	1030.969	0.119
			Max. Vx	2	-23.797	0.921	1035.291
			Max. Torque	14			-0.959
L15	92.25 -	Pole	Max Tension	1	0.000	0.000	0.000
	82.58		Max. Compression	26	-36.205	1.587	0.633
			Max. Mx	20	-20.116	1146.055	0.033
			Max. My	20	-20.096	0.949	1151.035
			Max. Vy	20	-23.926	1146.055	0.130
			Max. Vx	20	-23 920 -24 063	0.949	1151.035
			Max. Torque	14	-24.003	0.545	-0.957
L16	82.58 -	Pole	Max Tension	1	0.000	0.000	0.000
	81.58		May Compression	26	30 220	1.629	0.657
			Max. Compression	26	-38.239		
			Max. Mx	20	-21.733	1286.855	0.144
			Max. My	2	-21.715	0.983	1292.628
			Max. Vy Max. Vx	20 2	-24.384 -24.521	1286.855 0.983	0.144 1292.628
			Max. Vx Max. Torque	2 14	-24.321	0.903	-0.956
L17	81.58 -	Pole	Max Tension	14	0.000	0.000	0.000
L11	76.58	i OiG	WIGH TOTISION	'	3.000		3.000
			Max. Compression	26	-39.349	1.666	0.678
			Max. Mx	20	-22.762	1409.461	0.156
			Max. My	2	-22.745	1.011	1415.915
			Max. Vy	20	-24.683	1409.461	0.156
			Max. Vx	2	-24.820	1.011	1415.915
			Max. Torque	14			-0.955

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.	n	rype		Comb.	K	kip-ft	kip-ft
L18	76.58 -	Pole	Max Tension	1	0.000	0.000	0.000
	71.58		May Compression	26	-40.602	2.051	0.500
			Max. Compression Max. Mx	26 20	-40.602 -23.898	1533.928	0.500
			Max. My	20	-23.881	1.317	1540.687
			Max. Vy	20	-25.026	1533.928	0.057
			Max. Vx	2	-25.178	1.317	1540.687
			Max. Torque	14			-1.139
L19	71.58 - 68	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-41.475	2.079	0.516
			Max. Mx	20	-24.667	1623.854	0.111
			Max. My	2	-24.651	1.382	1631,150
			Max. Vy	20	-25.240	1623.854	0.111
			Max. Vx	2	-25.391	1.382	1631.150
L20	68 - 67.75	Pole	Max. Torque Max Tension	14 1	0.000	0.000	-1.139
LZU	00 - 07.73	Pole	Max. Compression	1 26	-41.557	2.084	0.000 0.518
			Max. Mx	20	-24.754	1630.163	0.115
			Max. My	2	-24.738	1.386	1637 496
			Max. Vy	20	-25.249	1630.163	0.115
			Max. Vx	2	-25.393	1.386	1637.496
			Max. Torque	14			-1.138
L21	67.75 - 62.75	Pole	Max Tension	1	0.000	0.000	0.000
	02.73		Max. Compression	26	-43.204	2,121	0.540
			Max. Mx	20	-26.153	1757.283	0.192
			Max. My	2	-26.139	1.477	1765.365
			Max. Vý	20	-25.614	1757.283	0.192
			Max. Vx	2	-25.765	1.477	1765.365
			Max. Torque	14			-1.138
L22	62.75 - 57.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-44.881	2.162	0.564
			Max. Mx	20	-27.587	1886.213	0.269
			Max. My	2	-27.573	1.569	1895.043
			Max. Vy	20	-25.974	1886.213	0.269
			Max. Vx	2	-26.125	1.569	1895.043
1.00	F7 7F	Dala	Max. Torque	14	0.000	0.000	-1.138
L23	57.75 - 52.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-46.585	2.204	0.588
			Max. Mx	20	-29.048	2016.922	0.346
			Max. My	2	-29.036	1.660	2026.498
			Max. Vy	20	-26.326	2016.922	0.346
			Max. Vx	2	-26.477	1.660	2026.498
L24	52.75 -	Pole	Max. Torque Max Tension	14 1	0.000	0.000	-1.137 0.000
LZ4	43.03	Fole	wax rension	'	0.000	0.000	0.000
			Max. Compression	26	-47.884	2.237	0.607
			Max. Mx	20	-30.171	2117.153	0.405
			Max. My	2	-30.160	1.730	2127.294
			Max. Vy	20	-26.586	2117.153	0.405
			Max. Vx	2	-26.737	1.730	2127,294
L25	43.03 -	Pole	Max. Torque Max Tension	14	0.000	0.000	-1.137 0.000
LZS	42.03	Fole	wax rension	1	0.000	0.000	0.000
			Max. Compression	26	-51.726	2.297	0.641
			Max. Mx	20	-33.382	2303.408	0.513
			Max. My	2	-33.372	1.858	2314.581
			Max. Vy	20	-27.163	2303.408	0.513
			Max. Vx	2	-27.313	1.858	2314.581
L26	42.03 -	Pole	Max. Torque Max Tension	14 1	0.000	0.000	-1.136 0.000
LZU	37.03	i die					
			Max. Compression	26	-53.225	2.341	0.667
			Max. Mx	20	-34.751	2439.844	0.591
			Max. My	2	-34.741	1.949	2451.760
			Max. Vy	20	-27.438	2439.844	0.591
			Max. Vx	2	-27.588	1.949	2451.760

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.		• •		Comb.	K	kip-ft	kip-ft
			Max. Torque	14			-1.136
L27	37.03 - 32.03	Pole	Max Tension	1	0.000	0.000	0.000
	32.03		Max. Compression	26	-54.755	2.385	0.693
			Max. Mx	20	-36.148	2577.624	0.669
			Max. My	2	-36 140	2.041	2590.281
			Max. Vy	20	-27 701	2577.624	0.669
			Max. Vx	2	-27.850	2.041	2590.281
			Max. Torque	<u>-</u> 14	211000	21011	-1.136
L28	32.03 -	Pole	Max Tension	1	0.000	0.000	0.000
	27.03		Max. Compression	26	-56.318	2,431	0.719
			Max. Mx	20	37.576	2716.689	0.748
			Max. My	2	-37.569	2.132	2730.082
			Max. Vy	20	-37 309 -27 951	2716.689	0.748
			Max. Vx	20	-28 100	2.132	2730.082
				2 14	-20.100	2.132	
1.00	27.02	Dala	Max. Torque		0.000	0.000	-1.135
L29	27.03 - 22.03	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-57.911	2.477	0.746
			Max. Mx	20	-39.032	2857.013	0.827
			Max. My	2	-39.026	2.223	2871.140
			Max, Vý	20	-28.205	2857.013	0.827
			Max. Vx	2	-28.353	2.223	2871 140
			Max. Torque	14			1 135
L30	22.03 -	Pole	Max Tension	1	0.000	0.000	0.000
	17.03		Max. Compression	26	-59.534	2.524	0.773
			Max. Mx	20	40.516	2998.613	0.906
			Max. My	2	-40.512	2.313	3013.469
			Max. Vy	20	-28.461	2998.613	0.906
			Max. Vx	2	-28.609	2.313	3013.469
			Max. Torque	14	-20.003	2.010	1.135
L31	17.03 -	Pole	Max Tension	1	0.000	0.000	0.000
	12.03		Mary Communication	00	04.404	0.574	0.000
			Max. Compression	26	-61.184	2.571	0.800
			Max. Mx	20	-42.030	3141.504	0.985
			Max. My	2	-42.027	2.404	3157.085
			Max. Vy	20	-28.721	3141.504	0.985
			Max. Vx	2	-28.868	2.404	3157.085
			Max. Torque	14			-1.135
L32	12.03 - 7.03	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-62.859	2.618	0.827
			Max. Mx	20	-43.573	3285.702	1.064
			Max. My	2	-43.571	2.494	3302.004
			Max. Vy	20	-28.984	3285.702	1.064
			Max. Vx	2	-29.130	2.494	3302.004
			Max. Torque	14			-1.134
L33	7.03 - 2.03	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	26	-64.550	2.664	0.853
			Max. Mx	20	-45.145	3431.221	1.143
			Max. My	2	-45.144	2.584	3448.240
			Max. Vy	20	-29.250	3431.221	1.143
			Max Vx	2	-29.395	2.584	3448 240
			Max. Torque	14			-1.134
L34	2.03 - 0	Pole	Max Tension	1	0.000	0.000	0.000
•	·		Max. Compression	26	-65.233	2.681	0.864
			Max. Mx	20	45.791	3490.684	1.176
			Max. My	2	-45.791	2.620	3507.992
			Max. Vy	20	-29.359	3490.684	1.176
			Max. Vx	2	-29.504	2.620	3507.992
			Max. Torque	14	-20.004	2.020	-1.134
			IVIAA TOTOLE	14			- 1. 1.04

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	65.233	0.000	0.000
	Max. H _x	20	45.803	29.341	0.013
	Max. H _z	3	34.352	0.013	29.485
	Max. M_x	2	3507.992	0.013	29.485
	$Max. M_z$	8	3487.360	-29.341	-0.013
	Max. Torsion	2	1.134	0.013	29.485
	Min. Vert	19	34.352	25.403	-14.732
	Min. H _x	8	45.803	-29.341	-0.013
	Min. H _z	15	34.352	-0.013	-29.485
	Min. M _x	14	-3507.578	-0.013	-29.485
	$Min. M_z$	20	-3490.684	29.341	0.013
	Min, Torsion	14	-1,134	-0.013	-29.485

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	38.169	-0.000	0.000	-0.169	1.301	-0.000
1.2 Dead+1.0 Wind 0 deg -	45.803	-0.013	-29.485	-3507.992	2.620	-1.134
No Ice						
0.9 Dead+1.0 Wind 0 deg -	34.352	-0.013	-29.485	-3453.887	2,169	-1.106
No Ice						
1.2 Dead+1.0 Wind 30 deg -	45.803	14.659	-25.529	-3037.576	-1741.981	-0.976
No Ice	0.4.0=0	44.0=0				
0.9 Dead+1.0 Wind 30 deg -	34.352	14.659	-25.529	-2990.717	-1715.546	-0.958
No Ice	45.000	05 400	44.700	4750 004	2040 404	0.555
1.2 Dead+1.0 Wind 60 deg - No Ice	45.803	25.403	-14.732	-1753.301	-3019.421	-0.555
0.9 Dead+1.0 Wind 60 deg -	34,352	25,403	-14,732	-1726,227	-2973,299	-0.552
No Ice	34.332	25,405	-14.732	-1120.221	-2913.299	-0.552
1.2 Dead+1.0 Wind 90 deg -	45,803	29.341	0.013	0.759	-3487,360	0.017
No Ice	40.000	20.041	0.010	0.700	0407.000	0.017
0.9 Dead+1.0 Wind 90 deg -	34,352	29.341	0.013	0.804	-3434.033	0.004
No Ice	0.1002		0.0.0		0.0000	0.00
1.2 Dead+1.0 Wind 120 deg	45.803	25.416	14.754	1754.558	-3020.386	0.584
- No Ice						
0.9 Dead+1.0 Wind 120 deg	34.352	25.416	14.754	1727.576	-2974.255	0.559
- No Ice						
1.2 Dead+1.0 Wind 150 deg	45.803	14.681	25.541	3038.125	-1743.655	0.993
- No Ice						
0.9 Dead+1.0 Wind 150 deg	34.352	14.681	25.541	2991.363	-1717.206	0.963
- No Ice	45.000	0.040	00.405	0507.570	0.000	4.404
1.2 Dead+1.0 Wind 180 deg	45.803	0.013	29.485	3507.578	0.686	1.134
- No Ice	34,352	0.013	29,485	3453,578	0,251	1.107
0.9 Dead+1.0 Wind 180 deg - No Ice	34.332	0.013	29.400	3433.376	0.231	1.107
1.2 Dead+1.0 Wind 210 deg	45.803	-14.659	25.529	3037,169	1745.292	0.971
- No Ice	45.005	-14.000	20.020	3037.103	1740.202	0.57 1
0.9 Dead+1.0 Wind 210 deg	34.352	-14.659	25.529	2990.412	1717.970	0.954
- No Ice	011002	1 11000	201020	20001112	11 111070	0.001
1.2 Dead+1.0 Wind 240 deg	45.803	-25.403	14.732	1752.892	3022.741	0.550
- No Ice						
0.9 Dead+1.0 Wind 240 deg	34.352	-25.403	14.732	1725.922	2975.729	0.547
- No Ice						
1.2 Dead+1.0 Wind 270 deg	45.803	-29.341	-0.013	-1.176	3490.684	-0.017
- No Ice						
0.9 Dead+1.0 Wind 270 deg	34.352	-29.341	-0.013	-1.114	3436.465	-0.005
- No Ice	45.000	05.440	,, -	4754.001	0000 700	0.500
1.2 Dead+1.0 Wind 300 deg	45,803	-25.416	-14.754	-1754.981	3023.703	-0.580
- No Ice	24.250	05 440	44754	4707.004	2070 004	0.555
0.9 Dead+1.0 Wind 300 deg - No Ice	34.352	-25.416	-14.754	-1727.891	2976.684	-0.555
1.2 Dead+1.0 Wind 330 deg	45.803	-14,681	-25.541	-3038,547	1746,964	-0.988
- No Ice	40.003	-14.001	-20.041	-3030,047	1740.904	-0.966
· NO ICE						

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 330 deg	34.352	-14.681	-25.541	-2991.677	1719.628	-0.958
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	65,233	-0.000	-0.000	-0.864	2.681	-0.000
1.2 Dead+1.0 Wind 0	65.233	-0.004	-7.188	-861.371	3.140	-0.341
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30	65,233	3.578	-6.223	-745.945	-425.426	-0.262
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60	65,233	6.201	-3.591	-430.889	-739.237	-0.112
dea+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	65.233	7.162	0.004	-0.621	-854,208	0.067
dea+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	65,233	6.204	3,597	429,569	-739.532	0.229
deg+1.0 Ice+1.0 Temp	33,233	0.20	0,00	.20,000	. 55,552	0,220
1.2 Dead+1.0 Wind 150	65,233	3.584	6,227	744,411	-425.935	0.329
deg+1.0 Ice+1.0 Temp	00.200	0.00	0.22		1201000	0.020
1.2 Dead+1.0 Wind 180	65.233	0.004	7.188	859.545	2,553	0.341
deg+1.0 Ice+1.0 Temp	00.200	0.00	71.00	0001010	2.000	0.0
1.2 Dead+1.0 Wind 210	65,233	-3.578	6,223	744,120	431,122	0.261
deg+1.0 Ice+1.0 Temp	00.200	0.070	0.220	711.120	1011122	0.201
1.2 Dead+1.0 Wind 240	65,233	-6,201	3,591	429,062	744,935	0.112
dea+1.0 Ice+1.0 Temp	00.200	0.201	0.001	420.002	144.000	0.112
1.2 Dead+1.0 Wind 270	65,233	-7.162	-0.004	-1.208	859,905	-0.068
deg+1.0 Ice+1.0 Temp	00.200	7.1102	0.001	1.200	000.000	0.000
1.2 Dead+1.0 Wind 300	65.233	-6.204	-3.597	-431.398	745,227	-0.229
deg+1.0 Ice+1.0 Temp	00.200	0.204	0.007	401.000	140.221	0.225
1.2 Dead+1.0 Wind 330	65.233	-3,584	-6.227	-746.240	431.629	-0.329
deg+1.0 Ice+1.0 Temp	00.200	0.004	O.ZZ7	140.240	401.020	0.020
Dead+Wind 0 deg - Service	38.169	-0.003	-6.401	-756.043	1.587	-0.242
Dead+Wind 30 deg - Service	38.169	3.182	-5.542	-654.672	-374.344	-0.210
Dead+Wind 60 deg - Service	38,169	5.515	-3.198	-377.928	-649.600	-0.122
Dead+Wind 90 deg - Service	38.169	6.370	0.003	0.034	-750.428	-0.002
Dead+Wind 120 deg -	38.169	5.518	3.203	377.940	-649.809	0.120
Service	30.103	3.310	3.203	377.340	-043.003	0.120
Dead+Wind 150 deg -	38,169	3.187	5,545	654,530	-374.706	0.209
Service	00.100	0.107	0.040	004.000	014.100	0.200
Dead+Wind 180 deg -	38.169	0.003	6.401	755.693	1.169	0.242
Service	30.103	0.003	0.401	700.000	1.103	0.242
Dead+Wind 210 deg -	38.169	-3.182	5,542	654,322	377.100	0.210
Service	30.103	-3.102	3.342	004.022	377.100	0.210
Dead+Wind 240 deg -	38.169	-5.515	3.198	377.579	652,357	0.122
Service	30.103	0.010	5.130	311.313	002.007	0.122
Dead+Wind 270 deg -	38.169	-6.370	-0.003	-0.384	753.184	0.001
Service	30.109	-0.570	-0.003	-0.304	755.104	0.001
Dead+Wind 300 deg -	38.169	-5.518	-3.203	-378.290	652,565	-0.120
Service	30.108	-0.010	-0.203	-370.290	002.000	-0.120
Dead+Wind 330 deg -	38.169	-3.187	-5.545	-654.881	377.461	-0.209
Service	30.109	-0.107	-0.040	-004.001	311.401	-0.209

Solution Summary

	Sun	n of Applied Force	es		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.000	-38.169	0.000	0.000	38.169	0.000	0.000%
2	-0.013	-45.803	-29.485	0.013	45.803	29.485	0.000%
3	-0.013	-34.352	-29.485	0.013	34.352	29.485	0.000%
4	14.659	-45.803	-25.529	-14.659	45.803	25.529	0.000%
5	14.659	-34.352	-25 529	-14.659	34.352	25.529	0.000%
6	25.403	-45.803	-14.732	-25.403	45.803	14.732	0.000%
7	25.403	-34.352	-14.732	-25.403	34.352	14.732	0.000%
8	29.341	-45.803	0.013	-29.341	45.803	-0.013	0.000%
9	29.341	-34.352	0.013	-29.341	34.352	-0.013	0.000%
10	25.416	-45.803	14.754	-25.416	45.803	-14.754	0.000%
11	25.416	-34.352	14.754	-25.416	34.352	-14.754	0.000%
12	14.681	-45.803	25.541	-14.681	45.803	-25.541	0.000%
13	14.681	-34.352	25.541	-14.681	34.352	-25.541	0.000%

	Sun	of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
14	0.013	-45.803	29.485	-0.013	45.803	-29.485	0.000%
15	0.013	-34.352	29.485	-0.013	34.352	-29.485	0.000%
16	-14.659	-45.803	25.529	14.659	45,803	-25.529	0.000%
17	-14.659	-34.352	25.529	14.659	34.352	-25.529	0.000%
18	-25.403	-45.803	14.732	25.403	45.803	-14.732	0.000%
19	-25.403	-34.352	14.732	25.403	34.352	-14.732	0.000%
20	-29.341	-45.803	-0.013	29.341	45.803	0.013	0.000%
21	-29.341	-34.352	-0.013	29.341	34.352	0.013	0.000%
22	-25.416	-45.803	-14.754	25.416	45.803	14.754	0.000%
23	-25.416	-34.352	-14.754	25.416	34.352	14.754	0.000%
24	-14.681	-45.803	-25.541	14.681	45.803	25.541	0.000%
25	-14.681	-34.352	-25.541	14.681	34.352	25.541	0.000%
26	0.000	-65.233	0.000	0.000	65.233	0.000	0.000%
27	-0.004	-65,233	-7.188	0.004	65.233	7,188	0.000%
28	3.578	-65.233	-6.223	-3.578	65.233	6.223	0.000%
29	6.201	-65,233	-3.591	-6,201	65,233	3,591	0.000%
30	7.162	-65.233	0.004	-7.162	65.233	-0.004	0.000%
31	6.204	-65,233	3,597	-6.204	65.233	-3.597	0.000%
32	3.584	-65.233	6.227	-3.584	65.233	-6.227	0.000%
33	0.004	-65.233	7.188	-0.004	65.233	-7.188	0.000%
34	-3.578	-65.233	6.223	3.578	65.233	-6.223	0.000%
35	-6.201	-65.233	3.591	6.201	65.233	-3.591	0.000%
36	7 162	-65.233	-0.004	7.162	65,233	0.004	0.000%
37	-6.204	-65.233	-3.597	6.204	65.233	3.597	0.000%
38	-3.584	-65.233	-6.227	3.584	65,233	6,227	0.000%
39	-0.003	-38.169	-6.401	0.003	38.169	6.401	0.000%
40	3.182	-38.169	-5.542	-3.182	38.169	5,542	0.000%
41	5.515	-38.169	-3.198	-5.515	38.169	3.198	0.000%
42	6.370	-38.169	0.003	-6.370	38.169	-0.003	0.000%
43	5.518	-38.169	3.203	-5.518	38.169	-3.203	0.000%
44	3.187	-38.169	5,545	-3.187	38.169	-5.545	0.000%
45	0.003	-38.169	6,401	-0.003	38,169	-6.401	0.000%
46	-3.182	-38.169	5.542	3.182	38.169	-5.542	0.000%
47	-5.515	-38.169	3,198	5.515	38.169	-3.198	0.000%
48	-6.370	-38.169	-0.003	6.370	38.169	0.003	0.000%
49	-5.518	-38.169	-3.203	5,518	38.169	3.203	0.000%
50	3.187	-38.169	-5.545	3.187	38.169	5.545	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00000344
2	Yes	6	0.0000001	0.00007856
3	Yes	5	0.0000001	0.00047284
4	Yes	7	0.0000001	0.00018584
5	Yes	6	0.0000001	0.00081925
6	Yes	7	0.0000001	0.00019010
7	Yes	6	0.0000001	0.00083917
8	Yes	5	0.0000001	0.00035810
9	Yes	5	0.0000001	0.00012321
10	Yes	7	0.0000001	0.00019023
11	Yes	6	0.0000001	0.00083935
12	Yes	7	0.0000001	0.00018599
13	Yes	6	0.0000001	0.00081996
14	Yes	6	0.0000001	0.00007596
15	Yes	5	0.0000001	0.00045627
16	Yes	7	0.0000001	0.00019174
17	Yes	6	0.0000001	0.00084570
18	Yes	7	0.0000001	0.00018737
19	Yes	6	0.0000001	0.00082599
20	Yes	5	0.0000001	0.00035950
21	Yes	5	0.0000001	0.00012456
22	Yes	7	0.0000001	0.00018741
23	Yes	6	0.0000001	0.00082643

24 Yes 7 0.00000001 0.00019176 25 Yes 6 0.00000001 0.00084561 26 Yes 4 0.00000001 0.00025613 27 Yes 7 0.00000001 0.00014117 28 Yes 7 0.00000001 0.00018505 29 Yes 7 0.00000001 0.00018590 30 Yes 7 0.00000001 0.00018590 30 Yes 7 0.00000001 0.00018591 31 Yes 7 0.00000001 0.00018575 32 Yes 7 0.00000001 0.00018575 32 Yes 7 0.00000001 0.00018652 33 Yes 7 0.00000001 0.00018852 34 Yes 7 0.00000001 0.00018830 35 Yes 7 0.00000001 0.00018830 36 Yes 7 0.00000001 0.00018735 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
26 Yes 4 0.00000001 0.00025613 27 Yes 7 0.00000001 0.00014117 28 Yes 7 0.00000001 0.00018505 29 Yes 7 0.00000001 0.00018590 30 Yes 7 0.00000001 0.00018590 30 Yes 7 0.00000001 0.00018575 31 Yes 7 0.00000001 0.00018575 32 Yes 7 0.00000001 0.00018575 32 Yes 7 0.00000001 0.00018575 32 Yes 7 0.00000001 0.00014852 33 Yes 7 0.00000001 0.00018830 35 Yes 7 0.00000001 0.00018830 36 Yes 7 0.00000001 0.00018893 36 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00018693 <t< td=""><td>24</td><td>Yes</td><td>7</td><td>0.00000001</td><td>0.00019176</td></t<>	24	Yes	7	0.00000001	0.00019176
27 Yes 7 0.00000001 0.00014117 28 Yes 7 0.00000001 0.00018505 29 Yes 7 0.00000001 0.00018590 30 Yes 7 0.00000001 0.00013951 31 Yes 7 0.00000001 0.00018575 32 Yes 7 0.00000001 0.00018452 33 Yes 7 0.00000001 0.0001482 34 Yes 7 0.00000001 0.00014830 35 Yes 7 0.00000001 0.00018830 35 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00018735 38 Yes 7 0.00000001 0.00018735 38 Yes 7 0.00000001 0.00018711 39 Yes 5 0.00000001 0.00018911 <td< td=""><td>25</td><td>Yes</td><td>6</td><td>0.00000001</td><td>0.00084561</td></td<>	25	Yes	6	0.00000001	0.00084561
28 Yes 7 0.00000001 0.00018505 29 Yes 7 0.00000001 0.00018590 30 Yes 7 0.00000001 0.00013951 31 Yes 7 0.00000001 0.00018575 32 Yes 7 0.00000001 0.00018452 33 Yes 7 0.00000001 0.00014082 34 Yes 7 0.00000001 0.00018693 35 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00018911 39 Yes 5 0.00000001 0.00018911 <t< td=""><td>26</td><td>Yes</td><td>4</td><td>0.00000001</td><td>0.00025613</td></t<>	26	Yes	4	0.00000001	0.00025613
29 Yes 7 0.00000001 0.00018590 30 Yes 7 0.00000001 0.00013951 31 Yes 7 0.00000001 0.00018575 32 Yes 7 0.00000001 0.00018452 33 Yes 7 0.00000001 0.00014082 34 Yes 7 0.00000001 0.00018830 35 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00018735 38 Yes 5 0.00000001 0.00018735 38 Yes 5 0.00000001 0.00018735 <t< td=""><td>27</td><td>Yes</td><td>7</td><td>0.00000001</td><td>0.00014117</td></t<>	27	Yes	7	0.00000001	0.00014117
30 Yes 7 0.00000001 0.00013951 31 Yes 7 0.00000001 0.00018575 32 Yes 7 0.00000001 0.00018452 33 Yes 7 0.00000001 0.00014082 34 Yes 7 0.00000001 0.00018830 35 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00014115 37 Yes 7 0.00000001 0.00014115 37 Yes 7 0.00000001 0.00018735 38 Yes 5 0.00000001 0.00018735 38 Yes 5 0.00000001 0.00018735 40 Yes 5 0.00000001 0.00009461 <t< td=""><td>28</td><td>Yes</td><td>7</td><td>0.00000001</td><td>0.00018505</td></t<>	28	Yes	7	0.00000001	0.00018505
31 Yes 7 0.00000001 0.00018575 32 Yes 7 0.00000001 0.00018452 33 Yes 7 0.00000001 0.00014082 34 Yes 7 0.00000001 0.00018830 35 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00014115 37 Yes 7 0.00000001 0.00018735 38 Yes 5 0.00000001 0.00018735 40 Yes 5 0.00000001 0.00056395 41 Yes 5 0.00000001 0.00059404 <t< td=""><td>29</td><td>Yes</td><td>7</td><td>0.00000001</td><td>0.00018590</td></t<>	29	Yes	7	0.00000001	0.00018590
32 Yes 7 0.00000001 0.00018452 33 Yes 7 0.00000001 0.00014082 34 Yes 7 0.00000001 0.00018830 35 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00014115 37 Yes 7 0.00000001 0.00018735 38 Yes 7 0.00000001 0.00018911 39 Yes 5 0.00000001 0.0009461 40 Yes 5 0.00000001 0.00056395 41 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.00057722 <td< td=""><td>30</td><td>Yes</td><td>7</td><td>0.00000001</td><td>0.00013951</td></td<>	30	Yes	7	0.00000001	0.00013951
33 Yes 7 0.00000001 0.00014082 34 Yes 7 0.00000001 0.00018830 35 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00014115 37 Yes 7 0.00000001 0.00018735 38 Yes 7 0.00000001 0.00018911 39 Yes 5 0.00000001 0.0009461 40 Yes 5 0.00000001 0.00056395 41 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00057722 <td< td=""><td>31</td><td>Yes</td><td>7</td><td>0.00000001</td><td>0.00018575</td></td<>	31	Yes	7	0.00000001	0.00018575
34 Yes 7 0.00000001 0.00018830 35 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00014115 37 Yes 7 0.00000001 0.00018735 38 Yes 7 0.00000001 0.00018911 39 Yes 5 0.00000001 0.0009461 40 Yes 5 0.00000001 0.00056395 41 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00057722 <td< td=""><td>32</td><td>Yes</td><td>7</td><td>0.00000001</td><td>0.00018452</td></td<>	32	Yes	7	0.00000001	0.00018452
35 Yes 7 0.00000001 0.00018693 36 Yes 7 0.00000001 0.00014115 37 Yes 7 0.00000001 0.00018735 38 Yes 7 0.00000001 0.00018911 39 Yes 5 0.00000001 0.0009461 40 Yes 5 0.00000001 0.00056395 41 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00059318 43 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00057896	33	Yes	7	0.00000001	0.00014082
36 Yes 7 0.00000001 0.00014115 37 Yes 7 0.00000001 0.00018735 38 Yes 7 0.00000001 0.00018911 39 Yes 5 0.00000001 0.0009461 40 Yes 5 0.00000001 0.00056395 41 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.0009435 46 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00057896	34	Yes	7	0.00000001	0.00018830
37 Yes 7 0.00000001 0.00018735 38 Yes 7 0.00000001 0.00018911 39 Yes 5 0.00000001 0.0009461 40 Yes 5 0.00000001 0.00056395 41 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00059318 43 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.0009435 46 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00057896 49 Yes 5 0.00000001 0.00057896	35	Yes	7	0.00000001	0.00018693
38 Yes 7 0.00000001 0.00018911 39 Yes 5 0.00000001 0.00009461 40 Yes 5 0.00000001 0.00056395 41 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.0005714 43 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.0009435 46 Yes 5 0.00000001 0.00061106 47 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00057896	36	Yes	7	0.00000001	0.00014115
39 Yes 5 0.00000001 0.00009461 40 Yes 5 0.00000001 0.00056395 41 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00007714 43 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.0009435 46 Yes 5 0.00000001 0.00061106 47 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.0007766 49 Yes 5 0.00000001 0.00057896	37	Yes	7	0.00000001	0.00018735
40 Yes 5 0.00000001 0.00056395 41 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00007714 43 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.0009435 46 Yes 5 0.00000001 0.00061106 47 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00007766 49 Yes 5 0.00000001 0.00057896	38	Yes	7	0.00000001	0.00018911
41 Yes 5 0.00000001 0.00059404 42 Yes 5 0.00000001 0.00007714 43 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.00009435 46 Yes 5 0.00000001 0.00061106 47 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00007766 49 Yes 5 0.00000001 0.00057896	39	Yes		0.00000001	0.00009461
42 Yes 5 0.00000001 0.00007714 43 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.00009435 46 Yes 5 0.00000001 0.00061106 47 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00007766 49 Yes 5 0.00000001 0.00057896	40	Yes	5	0.00000001	0.00056395
43 Yes 5 0.00000001 0.00059318 44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.00009435 46 Yes 5 0.00000001 0.00061106 47 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00007766 49 Yes 5 0.00000001 0.00057896	41	Yes		0.00000001	0.00059404
44 Yes 5 0.00000001 0.00056478 45 Yes 5 0.00000001 0.00009435 46 Yes 5 0.00000001 0.00061106 47 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00007766 49 Yes 5 0.00000001 0.00057896	42	Yes	5	0.00000001	0.00007714
45 Yes 5 0.00000001 0.00009435 46 Yes 5 0.00000001 0.00061106 47 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00007766 49 Yes 5 0.00000001 0.00057896	43	Yes	5	0.00000001	0.00059318
46 Yes 5 0.00000001 0.00061106 47 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00007766 49 Yes 5 0.00000001 0.00057896	44	Yes		0.00000001	0.00056478
47 Yes 5 0.00000001 0.00057722 48 Yes 5 0.00000001 0.00007766 49 Yes 5 0.00000001 0.00057896	45	Yes		0.00000001	0.00009435
48 Yes 5 0.00000001 0.00007766 49 Yes 5 0.00000001 0.00057896	46	Yes		0.00000001	0.00061106
49 Yes 5 0.00000001 0.00057896	47	Yes	5	0.00000001	0.00057722
	48	Yes		0.00000001	0.00007766
50 Yes 5 0.00000001 0.00061113	49	Yes	5	0.00000001	0.00057896
	50	Yes	5	0.00000001	0.00061113

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	155 - 150	30.814	46	1.948	0.006
L2	150 - 145	28.787	50	1.931	0.005
L3	145 - 140	26.785	50	1.901	0.004
L4	140 - 135	24.819	50	1.860	0.003
L5	135 - 130	22.900	50	1.806	0.003
L6	130 - 123.21	21.043	50	1.740	0.002
L7	126.79 - 121.79	19.889	50	1.691	0.002
L8	121.79 - 116.79	18.141	50	1.641	0.002
L9	116.79 - 111.79	16.465	39	1.560	0.002
L10	111.79 - 106.79	14.878	39	1.471	0.001
L11	106.79 - 101.79	13.387	39	1.376	0.001
L12	101.79 - 97.5	11.997	39	1.278	0.001
L13	97.5 - 97.25	10.888	39	1.192	0.001
L14	97.25 - 92.25	10.825	39	1.187	0.001
L15	92.25 - 82.58	9.635	39	1.087	0.001
L16	87.41 - 81.58	8.583	39	0.989	0.001
L17	81.58 - 76.58	7.409	39	0.928	0.001
L18	76.58 - 71.58	6.481	39	0.844	0.001
L19	71.58 - 68	5.640	39	0.763	0.000
L20	68 - 67.75	5.090	39	0.705	0.000
L21	67.75 - 62.75	5.053	39	0.702	0.000
L22	62.75 - 57.75	4.345	39	0.650	0.000
L23	57.75 - 52.75	3.691	39	0.598	0.000
L24	52.75 - 43.03	3.092	39	0.547	0.000
L25	48.96 - 42.03	2.673	39	0.509	0.000
L26	42.03 - 37.03	1.963	39	0.464	0.000
L27	37.03 - 32.03	1.509	39	0.403	0.000
L28	32.03 - 27.03	1.118	39	0.343	0.000
L29	27.03 - 22.03	0.789	39	0.286	0.000
L30	22.03 - 17.03	0.519	39	0.230	0.000
L31	17.03 - 12.03	0.307	39	0.175	0.000
L32	12.03 - 7.03	0.152	39	0.122	0.000
L33	7.03 - 2.03	0.051	39	0.070	0.000
L34	2.03 - 0	0.004	39	0.020	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	0	ft
164.000	Lighting Rod 1/2" x 2'	46	30.814	1.948	0.006	11826
159.000	Miscellaneous [NA 507-1]	46	30.814	1.948	0.006	11826
155.000	AIR6449 B41_T-MOBILE w/ Mount Pipe	46	30.814	1.948	0.006	11826
139.000	HPA-65R-BUU-H8 w/ Mount Pipe	50	24.431	1.850	0.003	5836
128.000	(2) LPA-80063/6CF w/ Mount Pipe	50	20.321	1.708	0.002	4588
119.000	MX08FRO665-21 w/ Mount Pipe	50	17.196	1.599	0.002	3630
74.000	KS24019-L112A	39	6.036	0.803	0.001	3456

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	155 - 150	142.864	14	9.019	0.027
L2	150 - 145	133.487	14	8.951	0.022
L3	145 - 140	124.222	2	8.816	0.018
L4	140 - 135	115.122	2	8.632	0.015
L5	135 - 130	106.238	2	8.388	0.012
L6	130 - 123.21	97.640	2	8.082	0.010
L7	126.79 - 121.79	92.298	2	7.855	0.009
L8	121.79 - 116.79	84.199	2	7.624	0.008
L9	116.79 - 111.79	76.430	2	7.248	0.007
L10	111.79 - 106.79	69.071	2	6.836	0.006
L11	106.79 - 101.79	62.156	2	6.397	0.006
L12	101.79 - 97.5	55.707	2	5.941	0.005
L13	97.5 - 97.25	50.557	2	5.543	0.004
L14	97.25 - 92.25	50.267	2	5.519	0.004
L15	92.25 - 82.58	44.741	2	5.050	0.004
L16	87.41 - 81.58	39.858	2	4.596	0.003
L17	81.58 - 76.58	34.406	2	4.311	0.003
L18	76.58 - 71.58	30.098	2	3.925	0.003
L19	71.58 - 68	26.190	2	3.544	0.002
L20	68 - 67.75	23,635	2	3.276	0.002
L21	67.75 - 62.75	23.464	2	3.264	0.002
L22	62.75 - 57.75	20.176	2	3.020	0.002
L23	57.75 - 52.75	17.141	2	2.781	0.002
L24	52.75 - 43.03	14.356	2	2.541	0.001
L25	48.96 - 42.03	12.410	2	2.363	0.001
L26	42.03 - 37.03	9.112	2	2.154	0.001
L27	37.03 - 32.03	7.006	2	1.871	0.001
L28	32.03 - 27.03	5.192	2	1.595	0.001
L29	27.03 - 22.03	3.663	2	1.327	0.001
L30	22.03 - 17.03	2.411	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.066	0.000
L31	17.03 - 12.03	1.427	2	0.813	0.000
L32	12.03 - 7.03	0.706	2	0.566	0.000
L33	7.03 - 2.03	0.239	2	0.326	0.000
L34	2.03 - 0	0.020	2	0.093	0.000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	0	ft
164.000	Lighting Rod 1/2" x 2'	14	142.864	9.019	0.027	2885
159.000	Miscellaneous [NA 507-1]	14	142.864	9.019	0.027	2885
155.000	AIR6449 B41_T-MOBILE w/	14	142.864	9.019	0.027	2885
	Mount Pipe					
139.000	HPA-65R-BUU-H8 w/ Mount	2	113.326	8.588	0.014	1343
	Pipe					
128.000	(2) LPA-80063/6CF w/ Mount	2	94.297	7.934	0.010	1034
	Pipe					
119.000	MX08FRO665-21 w/ Mount Pipe	2	79.817	7.431	0.008	809
74.000	KS24019-L112A	2	28.031	3.730	0.002	749

Compression Checks

Pole Design Data	Po	le	Des	ian	Data
------------------	----	----	-----	-----	------

Section	Elevation	Size	L	Lu	KI/r	Α	P_u	φPn	Ratio
No.	ft		ft	ft		in²	κ	K	$\frac{P_u}{\phi P_n}$
L1	155 - 150 (1)	TP19.036x18x0.188	5.000	0.000	0.0	11.217	-3.699	656.224	0.006
L2	150 - 145 (2)	TP20.073x19.036x0.188	5.000	0.000	0.0	11.834	-3.964	692.309	0.006
L3	145 - 140 (3)	TP21.109x20.073x0.188	5.000	0.000	0.0	12,451	-4.247	728,394	0.006
L4	140 - 135 (4)	TP22.146x21.109x0.188	5.000	0.000	0.0	13.068	-7.339	764.480	0.010
L5	135 - 130 (5)	TP23.182x22.146x0.188	5.000	0.000	0.0	13.685	-7.749	800.565	0.010
L6	130 - 123.21	TP24 59x23 182x0 188	6.790	0.000	0.0	14,081	-10.981	823.732	0.013
L7	(6) 123,21 -	TP24.671x23.473x0.25	5.000	0.000	0.0	19,378	-11.774	1133.630	0.010
	121.79 (7)								
L8	121.79 - 116.79 (8)	TP25.87x24.671x0.25	5.000	0.000	0.0	20.329	-15.300	1189.270	0.013
L9	116.79 - 111.79 (9)	TP27.068x25.87x0.25	5.000	0.000	0.0	21.280	-16.043	1244.900	0.013
L10	111.79 - 106.79 (10)	TP28.267x27.068x0.25	5.000	0.000	0.0	22.231	-16.820	1300.540	0.013
L11	106.79 (10) 106.79 - 101.79 (11)	TP29.465x28.267x0.25	5.000	0.000	0.0	23.182	-17.627	1356.170	0.013
L12	101.79 (11) 101.79 - 97.5 (12)	TP30.494x29.465x0.25	4.290	0.000	0.0	23.998	-18.341	1403.900	0.013
L13	97.5 - 97.25 (13)	TP30.554x30.494x0.25	0.250	0.000	0.0	24.046	-18.399	1406.690	0.013
L14	97.25 - 92.25 (14)	TP31.752x30.554x0.25	5.000	0.000	0.0	24.997	-19.244	1462.320	0.013
L15	92.25 - 82.58 (15)	TP34.07x31.752x0.25	9.670	0.000	0.0	25.917	-20.096	1516.170	0.013
L16	82.58 - 81.58 (16)	TP33.825x32.412x0.313	5.830	0.000	0.0	33.241	-21.715	1944.580	0.011
L17	81.58 - 76.58 (17)	TP35.037x33.825x0.313	5.000	0.000	0.0	34.443	-22.744	2014.900	0.011
L18	76.58 - 71.58 (18)	TP36.249x35.037x0.313	5.000	0.000	0.0	35.645	-23.882	2085.230	0.011
L19	71.58 - 68 (19)	TP37.117x36.249x0.313	3.580	0.000	0.0	36.506	-24.651	2135.580	0.012
L20	68 - 67.75 (20)	TP37.178x37.117x0.488	0.250	0.000	0.0	56.772	-24.738	3321.160	0.007
L21	67.75 - 62.75 (21)	TP38.39x37.178x0.475	5.000	0.000	0.0	57.162	-26.139	3344.000	0.008
L22	62.75 - 57.75 (22)	TP39.602x38.39x0.475	5.000	0.000	0.0	58.990	-27.573	3450.890	0.008
L23	57.75 - 52.75 (23)	TP40.814x39.602x0.463	5.000	0.000	0.0	59.235	-29.036	3465.240	0.008
L24	52.75 - 43.03 (24)	TP43.17x40.814x0.463	9.720	0.000	0.0	60.583	-30.160	3544.130	0.009
L25	43.03 - 42.03	TP42.791x41.108x0.375	6.930	0.000	0.0	50.486	-33.372	2953.400	0.011

Section No.	Elevation	Size	L	Lu	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	K	ΦP_n
	(25)								
L26	42.03 - 37.03	TP44.005x42.791x0.375	5.000	0.000	0.0	51.931	-34.741	3037.970	0.011
1.07	(26)	TD 45 00: 44 005: 0 075	5 000	0.000	0.0	E0 077	00.444	0400 500	0.040
L27	37.03 - 32.03 (27)	TP45.22x44.005x0.375	5.000	0.000	0.0	53.377	-36.141	3122.530	0.012
L28	32.03 - 27.03	TP46.434x45.22x0.375	5.000	0.000	0.0	54.822	-37.569	3207.100	0.012
	(28)		0.000	0.000	0.0	0.1022	0000	02011100	0.0.2
L29	27.03 - 22.03	TP47.649x46.434x0.375	5.000	0.000	0.0	56.268	-39.026	3291.660	0.012
	(29)								
L30	22.03 - 17.03	TP48.863x47.649x0.375	5.000	0.000	0.0	57.713	-40.512	3376.230	0.012
1.04	(30)	TD50 070 40 000 0 075	5 000	0.000	0.0	50.450	40.007	0400 700	0.040
L31	17.03 - 12.03 (31)	TP50.078x48.863x0.375	5.000	0.000	0.0	59.159	-42.027	3460.790	0.012
L32	12.03 - 7.03	TP51.292x50.078x0.375	5.000	0.000	0.0	60.604	-43.571	3545.360	0.012
LOZ	(32)	11 01.202,000.01 0,0.010	0.000	0.000	0.0	00.001	10.07 1	0010.000	0.012
L33	7.03 - 2.03	TP52.507x51.292x0.375	5.000	0.000	0.0	62.050	-45.144	3629.930	0.012
	(33)								
L34	2.03 - 0 (34)	TP53x52.507x0.375	2.030	0.000	0.0	62.637	-45.791	3664.260	0.012

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	ф <i>М</i> _{пх}	Ratio M _{ux}	Muy	ϕM_{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	155 - 150 (1)	TP19.036x18x0.188	37.584	317.939	0.118	0.000	317.939	0.000
L2	150 - 145 (2)	TP20.073x19.036x0.188	67.775	349.072	0.194	0.000	349.072	0.000
L3	145 - 140 (3)	TP21.109x20.073x0.188	99.461	381.078	0.261	0.000	381.078	0.000
L4	140 - 135 (4)	TP22.146x21.109x0.188	156.403	413.875	0.378	0.000	413.875	0.000
L5	135 - 130 (5)	TP23.182x22.146x0.188	213.917	447.380	0.478	0.000	447.380	0.000
L6	130 - 123.21	TP24.59x23.182x0.188	272.412	469.225	0.581	0.000	469.225	0.000
L7	(6) 123.21 -	TD24 674v22 472v0 25	266 172	716.555	0.511	0.000	740 555	0.000
L/	123.21 - 121.79 (7)	TP24.671x23.473x0.25	366.173	710.555	0.511	0.000	716.555	0.000
L8	121.79 (7)	TP25,87x24,671x0,25	468,529	779,438	0.601	0.000	779,438	0.000
LO	116.79 (8)	1723,07324,07130,23	400.329	119,430	0.001	0.000	119,430	0.000
L9	116.79	TP27.068x25.87x0.25	581,225	843,967	0.689	0.000	843,967	0.000
	111 79 (9)	11 27 000020 07 00:20	001.220	040.007	0.000	0.000	040.007	0.000
L10	111.79 -	TP28,267x27,068x0,25	695,363	910.025	0.764	0.000	910,025	0.000
	106.79 (10)							
L11	106.79 - [´]	TP29.465x28.267x0.25	810.923	977.475	0.830	0.000	977.475	0.000
	101.79 (11)							
L12	101.79 - 97.5	TP30.494x29.465x0.25	911.192	1036.367	0.879	0.000	1036.367	0.000
	(12)							
L13	97.5 - 97.25	TP30.554x30.494x0.25	917.067	1039.825	0.882	0.000	1039.825	0.000
1.4.4	(13)	TD04 750-00 554-0 05	4005.000	4400 500	0.000	0.000	4400 500	0.000
L14	97.25 - 92.25	TP31.752x30.554x0.25	1035,292	1109,592	0.933	0.000	1109,592	0.000
L15	(14) 92.25 - 82.58	TP34.07x31.752x0.25	1151.033	1178.108	0.977	0.000	1178.108	0.000
LIJ	(15)	11 34.07 \ 31.7 32 \ 0.23	1101.000	1170.100	0.511	0.000	1170.100	0.000
L16	82.58 - 81.58	TP33.825x32.412x0.313	1292.625	1647.525	0.785	0.000	1647.525	0.000
	(16)							
L17	81.58 - 76.58	TP35.037x33.825x0.313	1415.917	1751.667	0.808	0.000	1751.667	0.000
	(17)							
L18	76.58 - 71.58	TP36.249x35.037x0.313	1540.667	1857.625	0.829	0.000	1857.625	0.000
	(18)							
L19	71.58 - 68	TP37.117x36.249x0.313	1631.117	1934.533	0.843	0.000	1934.533	0.000
	(19)	TD07.470.07.447.0.400	1007 500	0.405.005	0.547	0.000	0.405.005	0.000
L20	68 - 67.75	TP37.178x37.117x0.488	1637.500	3165.225	0.517	0.000	3165.225	0.000
1.04	(20)	TD20 20-27 470-0 475	4705.007	2005 005	0.500	0.000	2005 005	0.000
L21	67.75 - 62.75	TP38.39x37.178x0.475	1765.367	3295.825	0.536	0.000	3295.825	0.000
L22	(21) 62.75 - 57.75	TP39.602x38.39x0.475	1895.042	3511.250	0.540	0.000	3511.250	0.000
LZZ	(22)	1733.002336.3330.475	1090.042	3311.230	0.040	0.000	3311.230	0.000
L23	57.75 - 52.75	TP40.814x39.602x0.463	2026.500	3638.625	0.557	0.000	3638.625	0.000
220	(23)	11 1010 147001002701400	2020.000	3000.020	3.007	0.000	0000.020	3.000
	(==)							

Section No.	Elevation	Size	M ux	ϕM_{nx}	Ratio M _{ux}	Muy	ϕM_{ny}	Ratio M _{uy}
740.	ft		kip-ft	kip-ft	$\frac{Mu_x}{\phi M_{nx}}$	kip-ft	kip-ft	$\frac{M_{ny}}{\Phi M_{ny}}$
L24	52.75 - 43.03 (24)	TP43.17x40.814x0.463	2127.292	3807.158	0.559	0.000	3807.158	0.000
L25	43.03 - 42.03 (25)	TP42.791x41.108x0.375	2314.583	3120.408	0.742	0.000	3120.408	0.000
L26	42.03 - 37.03 (26)	TP44.005x42.791x0.375	2451.758	3274.375	0.749	0.000	3274.375	0.000
L27	37.03 - 32.03 (27)	TP45.22x44.005x0.375	2590.283	3430.325	0.755	0.000	3430.325	0.000
L28	32.03 - 27.03 (28)	TP46.434x45.22x0.375	2730.083	3588.108	0.761	0.000	3588.108	0.000
L29	27.03 - 22.03 (29)	TP47.649x46.434x0.375	2871.142	3747.617	0.766	0.000	3747.617	0.000
L30	22.03 - 17.03 (30)	TP48.863x47.649x0.375	3013.467	3908.700	0.771	0.000	3908.700	0.000
L31	17.03 - 12.03 (31)	TP50.078x48.863x0.375	3157.083	4071.233	0.775	0.000	4071.233	0.000
L32	12.03 - 7.03 (32)	TP51.292x50.078x0.375	3302.008	4235.083	0.780	0.000	4235.083	0.000
L33	7.03 - 2.03 (33)	TP52.507x51.292x0.375	3448.242	4400.125	0.784	0.000	4400.125	0.000
L34	2.03 - 0 (34)	TP53x52.507x0.375	3507.992	4467.442	0.785	0.000	4467.442	0.000

Pole Shear Design Data	Pole	Shear	Design	Data
------------------------	------	-------	--------	------

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u	·	V_u	T_u	·	T_u
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	$\overline{\phi T_n}$
L1	155 - 150 (1)	TP19.036x18x0.188	5.892	196.867	0.030	0.002	324.968	0.000
L2	150 - 145 (2)	TP20.073x19.036x0.188	6.188	207.693	0.030	0.002	361.691	0.000
L3	145 - 140 (3)	TP21.109x20.073x0.188	6.491	218.518	0.030	0.002	400.378	0.000
L4	140 - 135 (4)	TP22.146x21.109x0.188	11.353	229.344	0.050	0.003	441.031	0.000
L5	135 - 130 (5)	TP23.182x22.146x0.188	11.661	240.169	0.049	0.003	483.649	0.000
L6	130 - 123.21 (6)	TP24.59x23.182x0.188	18.570	247.119	0.075	0.773	512.046	0.002
L7	123.21 - 121.79 (7)	TP24.671x23.473x0.25	18.938	340.090	0.056	0.772	727.352	0.001
L8	121.79 - 116.79 (8)	TP25.87x24.671x0.25	22.403	356.780	0.063	0.963	800.494	0.001
L9	116.79 - 111.79 (9)	TP27.068x25.87x0.25	22.695	373.471	0.061	0.962	877.142	0.001
L10	111.79 (9) 111.79 - 106.79 (10)	TP28.267x27.068x0.25	22.982	390.161	0.059	0.961	957.292	0.001
L11	106.79 - 101.79 (11)	TP29.465x28.267x0.25	23.265	406.851	0.057	0.960	1040.942	0.001
L12	101.79 - 97.5 (12)	TP30.494x29.465x0.25	23.507	421.171	0.056	0.958	1115.508	0.001
L13	97.5 - 97.25 (13)	TP30.554x30.494x0.25	23.509	422.006	0.056	0.958	1119.933	0.001
L14	97.25 - 92.25 (14)	TP31.752x30.554x0.25	23.797	438.696	0.054	0.957	1210.275	0.001
L15	92.25 - 82.58 (15)	TP34.07x31.752x0.25	24.063	454.852	0.053	0.956	1301.058	0.001
L16	82.58 - 81.58 (16)	TP33.825x32.412x0.313	24.521	583.374	0.042	0.955	1712.142	0.001
L17	81.58 - 76.58 (17)	TP35.037x33.825x0.313	24.820	604.471	0.041	0.954	1838.217	0.001
L18	76.58 - 71.58 (18)	TP36.249x35.037x0.313	25.178	621.350	0.041	1.139	1968.775	0.001
L19	71.58 - 68 (19)	TP37.117x36.249x0.313	25,391	635.640	0.040	1,138	2065.008	0.001
L20	68 - 67.75 (20)	TP37.178x37.117x0.488	25.393	996.347	0.025	1.138	3201.417	0.000
L21	67.75 - 62.75 (21)	TP38.39x37.178x0.475	25.765	1003.200	0.026	1.137	3331.017	0.000
L22	62.75 - 57.75	TP39.602x38.39x0.475	26.125	1035.270	0.025	1.137	3547.383	0.000
tnxTowe	er Report - vers	sion 8 1 1 0						

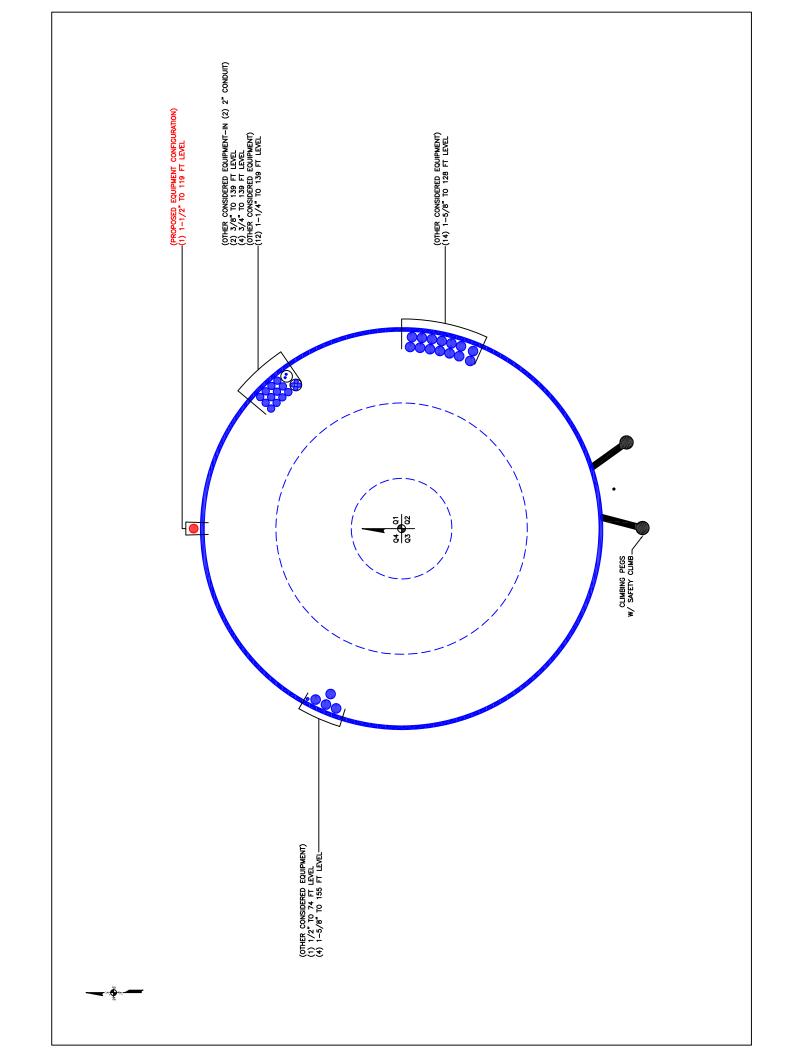
tnxTower Report - version 8.1.1.0

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	$\overline{\phi T_n}$
	(22)							
L23	57.75 - 52.75 (23)	TP40.814x39.602x0.463	26.477	1039.570	0.025	1.136	3673.600	0.000
L24	52.75 - 43.03 (24)	TP43.17x40.814x0.463	26.737	1063.240	0.025	1.136	3842.783	0.000
L25	43.03 - 42.03 (25)	TP42.791x41.108x0.375	27.313	886.020	0.031	1.136	3291.183	0.000
L26	42.03 - 37.03 (26)	TP44.005x42.791x0.375	27.587	911.390	0.030	1.135	3482.358	0.000
L27	37.03 - 32.03 (27)	TP45.22x44.005x0.375	27.850	936.760	0.030	1.135	3678.925	0.000
L28	32.03 - 27.03 (28)	TP46.434x45.22x0.375	28.100	962.129	0.029	1.135	3880.892	0.000
L29	27.03 - 22.03 (29)	TP47.649x46.434x0.375	28.353	987.499	0.029	1.134	4088.258	0.000
L30	22.03 - 17.03 (30)	TP48.863x47.649x0.375	28.609	1012.870	0.028	1.134	4301.017	0.000
L31	17.03 - 12.03 (31)	TP50.078x48.863x0.375	28.868	1038.240	0.028	1.134	4519.175	0.000
L32	12.03 - 7.03 (32)	TP51.292x50.078x0.375	29.130	1063.610	0.027	1.134	4742.725	0.000
L33	7.03 - 2.03 (33)	TP52.507x51.292x0.375	29.395	1088.980	0.027	1.134	4971.675	0.000
L34	2.03 - 0 (34)	TP53x52.507x0.375	29.504	1099.280	0.027	1.134	5066.167	0.000

Pole	Interaction	Design	Data
I OIC	IIIICI action	DCSIGII	Data

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		P_u	Mux	Muy	Vu	T_u	Stress	Stress	
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	155 - 150 (1)	0.006	0.118	0.000	0.030	0.000	0.125	1.050	4.8.2
L2	150 - 145 (2)	0.006	0.194	0.000	0.030	0.000	0.201	1.050	4.8.2
L3	145 - 140 (3)	0.006	0.261	0.000	0.030	0.000	0.268	1.050	4.8.2
L4	140 - 135 (4)	0.010	0.378	0.000	0.050	0.000	0.390	1.050	4.8.2
L5	135 - 130 (5)	0.010	0.478	0.000	0.049	0.000	0.490	1.050	4.8.2
L6	130 - 123.21 (6)	0.013	0.581	0.000	0.075	0.002	0.600	1.050	4.8.2
L7	123.21 - 121.79 (7)	0.010	0.511	0.000	0.056	0.001	0.525	1.050	4.8.2
L8	121.79 -	0.013	0.601	0.000	0.063	0.001	0.618	1.050	4.8.2
	116.79 (8)								
L9	116.79 -	0.013	0.689	0.000	0.061	0.001	0.705	1.050	4.8.2
	111.79 (9)								
L10	111.79 -	0.013	0.764	0.000	0.059	0.001	0.781	1.050	4.8.2
	106.79 (10)								
L11	106.79 -	0.013	0.830	0.000	0.057	0.001	0.846	1.050	4.8.2
	101.79 (11)								
L12	101.79 - 97.5	0.013	0.879	0.000	0.056	0.001	0.895	1.050	4.8.2
	(12)								
L13	97.5 - 97.25	0.013	0.882	0.000	0.056	0.001	0.898	1.050	4.8.2
	(13)								
L14	97.25 - 92.25	0.013	0.933	0.000	0.054	0.001	0.949	1.050	4.8.2
	(14)								
L15	92.25 - 82.58	0.013	0.977	0.000	0.053	0.001	0.993	1.050	4.8.2
	(15)								
L16	82.58 - 81.58	0.011	0.785	0.000	0.042	0.001	0.798	1.050	4.8.2
	(16)	0.044	0.000	0.000	0.044	0.004	0.004	4.050	4.0.0
L17	81.58 - 76.58	0.011	0.808	0.000	0.041	0.001	0.821	1.050	4.8.2
	(17)								
L18	76.58 - 71.58	0.011	0.829	0.000	0.041	0.001	0.843	1.050	4.8.2
	(18)	0.040	0.040		0.040	0.004	0.050	4.050	4.0.0
L19	71.58 - 68	0.012	0.843	0.000	0.040	0.001	0.856	1.050	4.8.2
	(19)								

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.	ft		Mux	Muy	V_u		Stress Ratio	Stress Ratio	
		ϕP_n	φ <i>M</i> _{nx}	φ <i>M</i> _{ny}	φVn	φTn			
L20	68 - 67.75 (20)	0.007	0.517	0.000	0.025	0.000	0.525	1.050	4.8.2
L21	67.75 - 62.75 (21)	0.008	0.536	0.000	0.026	0.000	0.544	1.050	4.8.2
L22	62.75 - 57.75 (22)	800.0	0.540	0.000	0.025	0.000	0.548	1.050	4.8.2
L23	57.75 - 52.75 (23)	0.008	0.557	0.000	0.025	0.000	0.566	1.050	4.8.2
L24	52.75 - 43.03 (24)	0.009	0.559	0.000	0.025	0.000	0.568	1.050	4.8.2
L25	43.03 - 42.03 (25)	0.011	0.742	0.000	0.031	0.000	0.754	1.050	4.8.2
L26	42.03 - 37.03 (26)	0.011	0.749	0.000	0.030	0.000	0.761	1.050	4.8.2
L27	37.03 - 32.03 (27)	0.012	0.755	0.000	0.030	0.000	0.768	1.050	4.8.2
L28	32.03 - 27.03 (28)	0.012	0.761	0.000	0.029	0.000	0.773	1.050	4.8.2
L29	27.03 - 22.03 (29)	0.012	0.766	0.000	0.029	0.000	0.779	1.050	4.8.2
L30	22.03 - 17.03 (30)	0.012	0.771	0.000	0.028	0.000	0.784	1.050	4.8.2
L31	17.03 - 12.03 (31)	0.012	0.775	0.000	0.028	0.000	0.788	1.050	4.8.2
L32	12.03 - 7.03 (32)	0.012	0.780	0.000	0.027	0.000	0.793	1.050	4.8.2
L33	7.03 - 2.03 (33)	0.012	0.784	0.000	0.027	0.000	0.797	1.050	4.8.2
L34	2.03 - 0 (34)	0.012	0.785	0.000	0.027	0.000	0.798	1.050	4.8.2


A 41	^		
Section	Cana	CITY	I ahle
OCCUOII	Capa	IVILY	IGNIC

No. ft Type Element K K Capacity Fail L1 155-150 Pole TP19.036x18x0.188 1 -3.699 689.035 11.9 Pass L2 150-145 Pole TP20.073x19.036x0.188 2 -3.964 726.924 19.1 Pass L3 145-140 Pole TP21.109x20.073x0.188 3 -4.247 764.814 25.5 Pass L4 140-135 Pole TP22.146x21.109x0.188 4 -7.339 802.704 37.1 Pass L5 135-130 Pole TP23.182x22.146x0.188 5 -7.749 840.593 46.7 Pass L6 130-123.21 Pole TP24.671x23.473x0.25 7 -11.774 1190.311 50.0 Pass L7 123.21-121.79 Pole TP24.671x23.473x0.25 7 -11.774 1190.311 50.0 Pass L8 121.79-116.79 Pole TP24.69x23.473x0.25 7 -11.774 1190.311 </th <th>Section</th> <th>Elevation</th> <th>Component</th> <th>Size</th> <th>Critical</th> <th>Р</th> <th>øP_{allow}</th> <th>%</th> <th>Pass</th>	Section	Elevation	Component	Size	Critical	Р	øP _{allow}	%	Pass
L2 150 - 145 Pole TP20.073x19.036x0.188 2 -3.964 726.924 19.1 Pass L3 145 - 140 Pole TP21.109x20.073x0.188 3 -4.247 764.814 25.5 Pass L4 140 - 135 Pole TP22.146x21.109x0.188 4 -7.339 802.704 37.1 Pass L5 135 - 130 Pole TP23.182x22.146x0.188 5 -7.749 840.593 46.7 Pass L6 130 - 123.21 Pole TP24.59x23.182x0.188 6 -10.981 864.919 57.1 Pass L7 123.21 - 121.79 Pole TP24.671x23.473x0.25 7 -11.774 1190.311 50.0 Pass L8 121.79 - 116.79 Pole TP25.87x24.671x0.25 8 -15.300 1248.733 58.9 Pass L9 116.79 - 111.79 Pole TP25.87x24.671x0.25 8 -15.300 1248.733 58.9 Pass L9 116.79 - 111.79 Pole TP27.068x25.87x0.25 9 -16.043 1307.145 67.2 Pass L10 111.79 - 106.79 Pole TP28.267x27.068x0.25 10 -16.820 1365.567 74.3 Pass L11 106.79 - 101.79 Pole TP29.465x28.267x0.25 11 -17.627 1423.978 80.6 Pass L12 101.79 - 97.5 Pole TP30.494x29.465x0.25 12 -18.341 1474.095 85.3 Pass L13 97.5 - 97.25 Pole TP30.494x29.465x0.25 12 -18.341 1474.095 85.3 Pass L15 92.25 - 82.58 Pole TP31.752x30.554x0.25 14 -19.244 1535.436 90.4 Pass L15 92.25 - 82.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L17 81.58 - 76.58 Pole TP33.825x32.412x0.313 17 -22.744 2115.645 78.2 Pass L16 82.58 - 81.58 Pole TP33.6249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L26 68 - 67.75 Pole TP36.249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L20 68 - 67.75 Pole TP37.1178x37.117x0.488 20 -24.738 3487.218 50.0 Pass L20 68 - 67.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 -57.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L26 42.03 -37.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 -37.03 -32.03 Pole TP45.22x44.005x0.375 27 -36.141 31278.656 73.1 Pass L27 37.03 -32.03 Pole TP45.22x44.005x0.375 27 -36.141 31278.656 73.1 Pass L27 37.03 -32.03 Pole TP45.22x44.005x0.375 27 -36.141 31278.656 73.1		ft	Type		Element	K	K	Capacity	Fail
L3 145 - 140 Pole TP21.109x20.073x0.188 3 -4.247 764.814 25.5 Pass L4 140 - 135 Pole TP22.146x21.109x0.188 4 -7.339 802.704 37.1 Pass L5 135 - 130 Pole TP23.182x22.146x0.188 5 -7.749 840.593 46.7 Pass L6 130 - 123.21 Pole TP24.55x23.182x0.188 6 -10.981 864.919 57.1 Pass L7 123.21 - 121.79 Pole TP24.671x23.473x0.25 7 -11.774 1190.311 50.0 Pass L8 121.79 - 116.79 Pole TP25.87x24.671x0.25 8 -15.300 1248.733 58.9 Pass L9 116.79 - 111.79 Pole TP27.068x25.87x0.25 9 -16.043 1307.145 67.2 Pass L10 111.79 - 106.79 Pole TP27.068x25.87x0.25 10 -16.820 1365.567 74.3 Pass L11 106.79 - 101.79 Pole TP29.465x28.267x0.25 11 -17.627 1423.978 80.6 Pass L12 101.79 - 97.5 Pole TP30.494x29.465x0.25 12 -18.341 1474.095 85.3 Pass L13 97.5 - 97.25 Pole TP30.494x29.465x0.25 13 -18.399 1477.024 85.5 Pass L14 97.25 - 92.25 Pole TP31.752x30.554x0.25 14 -19.244 1535.436 90.4 Pass L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L17 81.58 - 76.58 Pole TP33.825x32.412x0.313 17 -22.744 2115.645 78.2 Pass L19 71.58 - 68 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L26 68 - 67.75 Pole TP38.389x37.178x0.475 21 -26.139 3417.200 51.8 Pass L26 67.75 Pole TP38.38y37.178x0.475 21 -26.139 3511.200 51.8 Pass L26 67.75 Pole TP38.38y37.178x0.475 21 -26.139 3511.200 51.8 Pass L26 42.03 -97.05 Pole TP34.07x40.814x0.463 24 -30.160 3721.336 54.1 Pass L26 42.03 -37.03 Pole TP44.005x42.791x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 -37.03 Pole TP44.005x42.791x0.375 27 -36.141 3278.656 73.1 Pass L26 42.03 -37.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass L27 37.03 -32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass L27 37.03 -32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass L27 37.03 -32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass L27 37.03 -32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass L27 37.03 -32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656	L1	155 - 150	Pole	TP19.036x18x0.188	1	-3.699	689.035	11.9	Pass
L4 140 - 135	L2	150 - 145	Pole	TP20.073x19.036x0.188	2	-3.964	726.924	19.1	Pass
L5 135 - 130	L3	145 - 140	Pole	TP21.109x20.073x0.188	3	-4.247	764.814	25.5	Pass
L6 130 - 123.21 Pole TP24.59x23.182x0.188 6 -10.981 864.919 57.1 Pass L7 123.21 - 121.79 Pole TP24.671x23.473x0.25 7 -11.774 1190.311 50.0 Pass L8 121.79 - 116.79 Pole TP25.87x24.671x0.25 8 -15.300 1248.733 58.9 Pass L9 116.79 - 111.79 Pole TP27.068x25.87x0.25 9 -16.043 1307.145 67.2 Pass L10 111.79 - 106.79 Pole TP28.267x27.068x0.25 10 -16.820 1365.567 74.3 Pass L11 106.79 - 101.79 Pole TP29.465x28.267x0.25 11 -17.627 1423.978 80.6 Pass L12 101.79 - 97.5 Pole TP30.494x29.465x0.25 12 -18.341 1474.095 85.3 Pass L14 97.25 - 92.25 Pole TP31.752x30.554x0.25 12 -18.341 1477.024 85.5 Pass L14 97.25 - 82.58 Pole<	L4	140 - 135	Pole	TP22.146x21.109x0.188	4	-7.339	802.704	37.1	Pass
L7 123.21 - 121.79	L5	135 - 130	Pole	TP23.182x22.146x0.188	5	-7.749	840.593	46.7	Pass
L8 121.79 - 116.79 Pole TP25.87x24.671x0.25 8 -15.300 1248.733 58.9 Pass L9 116.79 - 111.79 Pole TP27.068x25.87x0.25 9 -16.043 1307.145 67.2 Pass L10 111.79 - 106.79 Pole TP28.267x27.068x0.25 10 -16.820 1365.567 74.3 Pass L11 106.79 - 101.79 Pole TP29.465x28.267x0.25 11 -17.627 1423.978 80.6 Pass L12 101.79 - 97.5 Pole TP30.494x29.465x0.25 12 -18.341 1474.095 85.3 Pass L13 97.5 - 97.25 Pole TP30.554x30.494x0.25 13 -18.399 1477.024 85.5 Pass L14 97.25 - 92.25 Pole TP31.752x30.554x0.25 14 -19.244 1535.436 90.4 Pass L15 92.25 - 82.58 Pole TP34.07x31.752x0.25 15 -20.096 1591.978 94.6 Pass L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L17 81.58 - 76.58 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L18 76.58 - 71.58 Pole TP36.249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L20 68 - 67.75 Pole TP37.17x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 68 - 67.75 Pole TP37.17x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 68 - 67.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP38.39x37.178x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP44.005x48.8463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP44.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1	L6	130 - 123.21	Pole	TP24.59x23.182x0.188	6	-10.981	864.919	57.1	Pass
L9 116.79 - 111.79 Pole TP27.068x25.87x0.25 9 -16.043 1307.145 67.2 Pass L10 111.79 - 106.79 Pole TP28.267x27.068x0.25 10 -16.820 1365.567 74.3 Pass L11 106.79 - 101.79 Pole TP29.465x28.267x0.25 11 -17.627 1423.978 80.6 Pass L12 101.79 - 97.5 Pole TP30.494x29.465x0.25 12 -18.341 1474.095 85.3 Pass L13 97.5 - 97.25 Pole TP30.554x30.494x0.25 12 -18.341 1474.095 85.5 Pass L14 97.25 - 92.25 Pole TP31.752x30.554x0.25 14 -19.244 1535.436 90.4 Pass L15 92.25 - 82.58 Pole TP34.07x31.752x0.25 15 -20.096 1591.978 94.6 Pass L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L17 81.58 - 76.58 P	L7	123.21 - 121.79	Pole	TP24.671x23.473x0.25	7	-11.774	1190.311	50.0	Pass
L10 111.79 - 106.79 Pole TP28.267x27.068x0.25 10 -16.820 1365.567 74.3 Pass L11 106.79 - 101.79 Pole TP29.465x28.267x0.25 11 -17.627 1423.978 80.6 Pass L12 101.79 - 97.5 Pole TP30.494x29.465x0.25 12 -18.341 1474.095 85.3 Pass L13 97.5 - 97.25 Pole TP30.554x30.494x0.25 13 -18.399 1477.024 85.5 Pass L14 97.25 - 92.25 Pole TP31.752x30.554x0.25 14 -19.244 1535.436 90.4 Pass L15 92.25 - 82.58 Pole TP34.07x31.752x0.25 15 -20.096 1591.978 94.6 Pass L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L17 81.58 - 76.58 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L18 76.58 - 71.58 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L19 71.58 - 68 Pole TP37.117x36.249x0.313 18 -23.882 2189.491 80.2 Pass L20 68 - 67.75 Pole TP37.117x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 67.75 - 62.75 Pole TP37.378x37.117x0.488 20 -24.738 3487.218 50.0 Pass L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L8	121.79 - 116.79	Pole	TP25.87x24.671x0.25	8	-15.300	1248.733	58.9	Pass
L11 106.79 - 101.79 Pole TP29.465x28.267x0.25 11 -17.627 1423.978 80.6 Pass L12 101.79 - 97.5 Pole TP30.494x29.465x0.25 12 -18.341 1474.095 85.3 Pass L13 97.5 - 97.25 Pole TP30.554x30.494x0.25 13 -18.399 1477.024 85.5 Pass L14 97.25 - 92.25 Pole TP31.752x30.554x0.25 14 -19.244 1535.436 90.4 Pass L15 92.25 - 82.58 Pole TP34.07x31.752x0.25 15 -20.096 1591.978 94.6 Pass L16 82.58 - 81.58 Pole TP35.037x33.825x0.251 15 -20.096 1591.978 94.6 Pass L17 81.58 - 76.58 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L18 76.58 - 71.58 Pole TP36.249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L20 68 - 67.75 Pol	L9	116.79 - 111.79	Pole	TP27.068x25.87x0.25	9	-16.043	1307.145	67.2	Pass
L12 101.79 - 97.5 Pole TP30.494x29.465x0.25 12 -18.341 1474.095 85.3 Pass L13 97.5 - 97.25 Pole TP30.554x30.494x0.25 13 -18.399 1477.024 85.5 Pass L14 97.25 - 92.25 Pole TP31.752x30.554x0.25 14 -19.244 1535.436 90.4 Pass L15 92.25 - 82.58 Pole TP34.07x31.752x0.25 15 -20.096 1591.978 94.6 Pass L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L17 81.58 - 76.58 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L18 76.58 - 71.58 Pole TP36.249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L19 71.58 - 68 Pole TP37.117x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 68 - 67.75 Pole TP37.178x37.117x0.488 20 -24.738 3487.218 50.0 Pass L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L10	111.79 - 106.79	Pole	TP28.267x27.068x0.25	10	-16.820	1365.567	74.3	Pass
L13 97.5 - 97.25 Pole TP30.554x30.494x0.25 13 -18.399 1477.024 85.5 Pass L14 97.25 - 92.25 Pole TP31.752x30.554x0.25 14 -19.244 1535.436 90.4 Pass L15 92.25 - 82.58 Pole TP34.07x31.752x0.25 15 -20.096 1591.978 94.6 Pass L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L17 81.58 - 76.58 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L18 76.58 - 71.58 Pole TP36.249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L19 71.58 - 68 Pole TP37.117x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 68 - 67.75 Pole TP37.178x37.117x0.488 20 -24.738 3487.218 50.0 Pass L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L11	106.79 - 101.79	Pole	TP29.465x28.267x0.25	11	-17.627	1423.978	80.6	Pass
L14 97.25 - 92.25 Pole TP31.752x30.554x0.25 14 -19.244 1535.436 90.4 Pass L15 92.25 - 82.58 Pole TP34.07x31.752x0.25 15 -20.096 1591.978 94.6 Pass L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L17 81.58 - 76.58 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L18 76.58 - 71.58 Pole TP36.249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L19 71.58 - 68 Pole TP37.117x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 68 - 67.75 Pole TP37.178x37.117x0.488 20 -24.738 3487.218 50.0 Pass L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole<	L12	101.79 - 97.5	Pole	TP30.494x29.465x0.25	12	-18.341	1474.095	85.3	Pass
L15 92.25 - 82.58 Pole TP34.07x31.752x0.25 15 -20.096 1591.978 94.6 Pass L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L17 81.58 - 76.58 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L18 76.58 - 71.58 Pole TP36.249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L19 71.58 - 68 Pole TP37.117x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 68 - 67.75 Pole TP37.17x36.249x0.313 19 -24.738 3487.218 50.0 Pass L21 67.75 - 62.75 Pole TP38.39x37.17x0.488 20 -24.738 3487.218 50.0 Pass L22 62.75 - 57.75 Pole TP38.39x37.17x0.475 21 -26.139 3511.200 51.8 Pass L23 57.75 - 52.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L13	97.5 - 97.25	Pole	TP30.554x30.494x0.25	13	-18.399	1477.024	85.5	Pass
L16 82.58 - 81.58 Pole TP33.825x32.412x0.313 16 -21.715 2041.809 76.0 Pass L17 81.58 - 76.58 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L18 76.58 - 71.58 Pole TP36.249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L19 71.58 - 68 Pole TP37.117x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 68 - 67.75 Pole TP37.178x37.117x0.488 20 -24.738 3487.218 50.0 Pass L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pol	L14	97.25 - 92.25	Pole	TP31.752x30.554x0.25	14	-19.244	1535.436	90.4	Pass
L17 81.58 - 76.58 Pole TP35.037x33.825x0.313 17 -22.744 2115.645 78.2 Pass L18 76.58 - 71.58 Pole TP36.249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L19 71.58 - 68 Pole TP37.117x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 68 - 67.75 Pole TP37.178x37.117x0.488 20 -24.738 3487.218 50.0 Pass L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L15	92.25 - 82.58	Pole	TP34.07x31.752x0.25	15	-20.096	1591.978	94.6	Pass
L18 76.58 - 71.58 Pole TP36.249x35.037x0.313 18 -23.882 2189.491 80.2 Pass L19 71.58 - 68 Pole TP37.117x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 68 - 67.75 Pole TP37.178x37.117x0.488 20 -24.738 3487.218 50.0 Pass L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pa	L16	82.58 - 81.58	Pole	TP33.825x32.412x0.313	16	-21.715	2041.809	76.0	Pass
L19 71.58 - 68 Pole TP37.117x36.249x0.313 19 -24.651 2242.359 81.6 Pass L20 68 - 67.75 Pole TP37.178x37.117x0.488 20 -24.738 3487.218 50.0 Pass L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pas	L17	81.58 - 76.58	Pole	TP35.037x33.825x0.313	17	-22.744	2115.645	78.2	Pass
L20 68 - 67.75 Pole TP37.178x37.117x0.488 20 -24.738 3487.218 50.0 Pass L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L18	76.58 - 71.58	Pole	TP36.249x35.037x0.313	18	-23.882	2189.491	80.2	Pass
L21 67.75 - 62.75 Pole TP38.39x37.178x0.475 21 -26.139 3511.200 51.8 Pass L22 62.75 - 57.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L19	71.58 - 68	Pole	TP37.117x36.249x0.313	19	-24.651	2242.359	81.6	Pass
L22 62.75 - 57.75 Pole TP39.602x38.39x0.475 22 -27.573 3623.434 52.2 Pass L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L20	68 - 67.75	Pole	TP37.178x37.117x0.488	20	-24.738	3487.218	50.0	Pass
L23 57.75 - 52.75 Pole TP40.814x39.602x0.463 23 -29.036 3638.502 53.9 Pass L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L21	67.75 - 62.75	Pole	TP38.39x37.178x0.475		-26.139	3511.200	51.8	Pass
L24 52.75 - 43.03 Pole TP43.17x40.814x0.463 24 -30.160 3721.336 54.1 Pass L25 43.03 - 42.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L22	62.75 - 57.75	Pole	TP39.602x38.39x0.475		-27.573	3623.434	52.2	Pass
L25 43.03 - 42.03 Pole TP42.791x41.108x0.375 25 -33.372 3101.070 71.8 Pass L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L23	57.75 - 52.75	Pole	TP40.814x39.602x0.463	23	-29.036	3638.502	53.9	Pass
L26 42.03 - 37.03 Pole TP44.005x42.791x0.375 26 -34.741 3189.868 72.5 Pass L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L24	52.75 - 43.03	Pole	TP43.17x40.814x0.463	24	-30.160	3721.336	54.1	Pass
L27 37.03 - 32.03 Pole TP45.22x44.005x0.375 27 -36.141 3278.656 73.1 Pass	L25	43.03 - 42.03	Pole	TP42.791x41.108x0.375	25	-33.372	3101.070	71.8	Pass
	L26	42.03 - 37.03	Pole	TP44.005x42.791x0.375	26	-34.741	3189.868	72.5	Pass
L28 32.03 - 27.03 Pole TP46.434x45.22x0.375 28 -37.569 3367.455 73.7 Pass	L27	37.03 - 32.03	Pole	TP45.22x44.005x0.375	27	-36.141	3278.656	73.1	Pass
	L28	32.03 - 27.03	Pole	TP46.434x45.22x0.375	28	-37.569	3367.455	73.7	Pass

Section	Elevation	Component	Size	Critical	Р	ø P_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
L29	27.03 - 22.03	Pole	TP47.649x46.434x0.375	29	-39.026	3456.243	74.2	Pass
L30	22.03 - 17.03	Pole	TP48.863x47.649x0.375	30	-40.512	3545.041	74.6	Pass
L31	17.03 - 12.03	Pole	TP50.078x48.863x0.375	31	-42.027	3633.829	75.1	Pass
L32	12.03 - 7.03	Pole	TP51.292x50.078x0.375	32	-43.571	3722,628	75.5	Pass
L33	7.03 - 2.03	Pole	TP52.507x51.292x0.375	33	-45.144	3811.426	75.9	Pass
L34	2.03 - 0	Pole	TP53x52.507x0.375	34	-45.791	3847.473	76.0	Pass
							Summary	
						Pole (L15)	94.6	Pass
						RATING =	94.6	Pass

^{*}NOTE: Above stress ratios for reinforced sections are approximate. More exact calculations are presented in Appendix C.

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Site BU: 876366

Work Order: 2013159

Pole Geometry

Convright ©	2019	Crown	Castle

Pole Height . Base (fi		Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1 155		31.79	3.58	18	18	24.59	0.1875	Auto	A572-65
2 126.79)	44.21	4.83	18	23.47	34.07	0.25	Auto	A572-65
87.41		44.38	5.93	18	32.41	43.17	0.3125	Auto	A572-65
48.96		48.96	0	18	41.11	53	0.375	Auto	A572-65

Reinforcement Configuration

	Bottom Effective Elevation (ft)	Top Effective Elevation (ft)	Туре	Model	Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	47	68	plate	CCI-SFP-060100	3	х						×						х					
2	85.5	97.5	plate	CCI-SFP-045100	3	х						х						х					
3																							
4																						П	
5																							
6																						П	
7																						П	
8																						П	
9																							
10																							

Reinforcement Details

	B (in)	H (in)	Gross Area (in²)	Pole Face to Centroid (in)	Bottom Termination Type	Bottom Termination Length (in)	Top Termination Type	Top Termination Length (in)	Lu (in)	Net Area (in2)	Bolt Hole Size (in)	Reinforcement Material
1	6	1	6	0.5	PC 8.8 - M20 (100)	24	PC 8.8 - M20 (100)	24.000	16.000	4.750	1.1875	A572-65
2	4.5	1	4.5	0.5	PC 8.8 - M20 (100)	18	PC 8.8 - M20 (100)	18.000	20.000	3.250	1.1875	A572-65

TNX Geometry Input

Inc	rement (ft): 5	port to TNX							
			Lap Splice Length			Bottom Diameter		Tapered Pole	Weight
	Section Height (ft)	Section Length (ft)	(ft)	Number of Sides	Top Diameter (in)	(in)	Wall Thickness (in)	Grade	Multiplier
1	155 - 150	5		18	18.000	19.036	0.1875	A572-65	1.000
2	150 - 145	5		18	19.036	20.073	0.1875	A572-65	1.000
3	145 - 140	5		18	20.073	21.109	0.1875	A572-65	1.000
4	140 - 135	5		18	21.109	22.146	0.1875	A572-65	1.000
5	135 - 130	5		18	22.146	23.182	0.1875	A572-65	1.000
6	130 - 126.79	6.79	3.58	18	23.182	24.590	0.1875	A572-65	1.000
7	126.79 - 121.79	5		18	23.473	24.671	0.25	A572-65	1.000
8	121.79 - 116.79	5		18	24.671	25.870	0.25	A572-65	1.000
9	116.79 - 111.79	5		18	25.870	27.068	0.25	A572-65	1.000
10	111.79 - 106.79	5		18	27.068	28.267	0.25	A572-65	1.000
11	106.79 - 101.79	5		18	28.267	29.465	0.25	A572-65	1.000
12	101.79 - 97.5	4.29		18	29.465	30.494	0.25	A572-65	1.000
13	97.5 - 97.25	0.25		18	30.494	30.554	0.25	A572-65	1.000
14	97.25 - 92.25	5		18	30.554	31.752	0.25	A572-65	1.000
15	92.25 - 87.41	9.67	4.83	18	31.752	34.070	0.25	A572-65	1.000
16	87.41 - 81.58	5.83		18	32.412	33.825	0.3125	A572-65	1.000
17	81.58 - 76.58	5		18	33.825	35.037	0.3125	A572-65	1.000
18	76.58 - 71.58	5		18	35.037	36.249	0.3125	A572-65	1.000
19	71.58 - 68	3.58		18	36.249	37.117	0.3125	A572-65	1.000
20	68 - 67.75	0.25		18	37.117	37.178	0.4875	A572-65	0.961
21	67.75 - 62.75	5		18	37.178	38.390	0.475	A572-65	0.976
22	62.75 - 57.75	5		18	38.390	39.602	0.475	A572-65	0.966
23	57.75 - 52.75	5		18	39.602	40.814	0.4625	A572-65	0.982
24	52.75 - 48.96	9.72	5.93	18	40.814	43.170	0.4625	A572-65	0.975
25	48.96 - 42.03	6.93		18	41.108	42.791	0.375	A572-65	1.000
26	42.03 - 37.03	5		18	42.791	44.005	0.375	A572-65	1.000
27	37.03 - 32.03	5		18	44.005	45.220	0.375	A572-65	1.000
28	32.03 - 27.03	5		18	45.220	46.434	0.375	A572-65	1.000
29	27.03 - 22.03	5		18	46.434	47.649	0.375	A572-65	1.000
30	22.03 - 17.03	5		18	47.649	48.863	0.375	A572-65	1.000
31	17.03 - 12.03	5		18	48.863	50.078	0.375	A572-65	1.000
32	12.03 - 7.03	5		18	50.078	51.292	0.375	A572-65	1.000
33	7.03 - 2.03	5		18	51.292	52.507	0.375	A572-65	1.000
34	2.03 - 0	2.03		18	52.507	53.000	0.375	A572-65	1.000

TNX Section Forces

Ind	crement (ft)	:	5		Т	NX Outpu	ıt	
						M _{ux} (kip-		
	Section I	lei	ight (ft)	P _u	(K)	ft)	Vu	(K)
1	155	-	150		3.70	37.58		5.89
2	150	-	145		3.96	67.77		6.19
3	145	-	140		4.25	99.46		6.49
4	140	-	135		7.34	156.40		11.35
5	135	-	130		7.75	213.92		11.66
6	130	-	126.79		10.98	272.41		18.57
7	126.79	-	121.79		11.77	366.17		18.94
8	121.79	-	116.79		15.30	468.53		22.40
9	116.79	-	111.79		16.04	581.23		22.69
10	111.79	-	106.79		16.82	695.36		22.98
11	106.79	-	101.79		17.63	810.92		23.27
12	101.79	-	97.5		18.34	911.19		23.51
13	97.5	-	97.25		18.40	917.07		23.51
14	97.25	-	92.25		19.24	1035.29		23.80
15	92.25	-	87.41		20.10	1151.04		24.06
16	87.41	-	81.58		21.71	1292.63		24.52
17	81.58	-	76.58		22.74	1415.92		24.82
18	76.58	-	71.58		23.88	1540.69		25.18
19	71.58	-	68		24.65	1631.15		25.39
20	68	_	67.75		24.74	1637.50		25.39
21	67.75	-	62.75		26.14	1765.37		25.76
22	62.75	-	57.75		27.57	1895.04		26.12
23	57.75	-	52.75		29.04	2026.50		26.48
24	52.75	-	48.96		30.16	2127.29		26.74
25	48.96	-	42.03		33.37	2314.58		27.31
26	42.03	-	37.03		34.74	2451.76		27.59
27	37.03	-	32.03		36.14	2590.28		27.85
28	32.03	-	27.03		37.57	2730.08		28.10
29	27.03	-	22.03		39.03	2871.14		28.35
30	22.03	-	17.03		40.51	3013.47		28.61
31	17.03	-	12.03		42.03	3157.09		28.87
32	12.03	-	7.03		43.57	3302.00		29.13
33	7.03	-	2.03		45.14	3448.24		29.40
34	2.03	-	0		45.79	3507.99		29.50

Analysis Results

Elevation (ft)	Component Type	Size	Critical Element	% Capacity	Pass / Fail
155 - 150	Pole	TP19.036x18x0.1875	Pole	11.9%	Pass
150 - 145	Pole	TP20.073x19.036x0.1875	Pole	19.1%	Pass
145 - 140	Pole	TP21.109x20.073x0.1875	Pole	25.5%	Pass
140 - 135	Pole	TP22.146x21.109x0.1875	Pole	37.1%	Pass
135 - 130	Pole	TP23.182x22.146x0.1875	Pole	46.7%	Pass
130 - 126.79	Pole	TP24.59x23.182x0.1875	Pole	57.1%	Pass
126.79 - 121.79	Pole	TP24.671x23.473x0.25	Pole	49.9%	Pass
121.79 - 116.79	Pole	TP25.87x24.671x0.25	Pole	58.8%	Pass
116.79 - 111.79	Pole	TP27.068x25.87x0.25	Pole	67.2%	Pass
111.79 - 106.79	Pole	TP28.267x27.068x0.25	Pole	74.3%	Pass
106.79 - 101.79	Pole	TP29.465x28.267x0.25	Pole	80.6%	Pass
101.79 - 97.5	Pole	TP30.494x29.465x0.25	Pole	85.3%	Pass
97.5 - 97.25	Pole	TP30.554x30.494x0.25	Pole	85.5%	Pass
97.25 - 92.25	Pole	TP31.752x30.554x0.25	Pole	90.4%	Pass
92.25 - 87.41	Pole	TP34.07x31.752x0.25	Pole	94.6%	Pass
87.41 - 81.58	Pole	TP33.825x32.412x0.3125	Pole	76.0%	Pass
81.58 - 76.58	Pole	TP35.037x33.825x0.3125	Pole	78.2%	Pass
76.58 - 71.58	Pole	TP36.249x35.037x0.3125	Pole	80.2%	Pass
71.58 - 68	Pole	TP37.117x36.249x0.3125	Pole	81.6%	Pass
68 - 67.75	Pole + Reinf.	TP37.178x37.117x0.4875	Reinf. 1 Tension Rupture	79.3%	Pass
67.75 - 62.75	Pole + Reinf.	TP38.39x37.178x0.475	Reinf. 1 Tension Rupture	81.0%	Pass
62.75 - 57.75	Pole + Reinf.	TP39.602x38.39x0.475	Reinf. 1 Tension Rupture	82.5%	Pass
57.75 - 52.75	Pole + Reinf.	TP40.814x39.602x0.4625	Reinf. 1 Tension Rupture	83.9%	Pass
52.75 - 48.96	Pole + Reinf.	TP43.17x40.814x0.4625	Reinf. 1 Tension Rupture	84.8%	Pass
48.96 - 42.03	Pole	TP42.791x41.108x0.375	Pole	71.8%	Pass
42.03 - 37.03	Pole	TP44.005x42.791x0.375	Pole	72.5%	Pass
37.03 - 32.03	Pole	TP45.22x44.005x0.375	Pole	73.1%	Pass
32.03 - 27.03	Pole	TP46.434x45.22x0.375	Pole	73.7%	Pass
27.03 - 22.03	Pole	TP47.649x46.434x0.375	Pole	74.2%	Pass
22.03 - 17.03	Pole	TP48.863x47.649x0.375	Pole	74.7%	Pass
17.03 - 12.03	Pole	TP50.078x48.863x0.375	Pole	75.1%	Pass
12.03 - 7.03	Pole	TP51.292x50.078x0.375	Pole	75.5%	Pass
7.03 - 2.03	Pole	TP52.507x51.292x0.375	Pole	75.9%	Pass
2.03 - 0	Pole	TP53x52.507x0.375	Pole	76.1%	Pass
				Summary	
			Pole	94.6%	Pass
			Reinforcement	84.8%	Pass
			Overall	94.6%	Pass

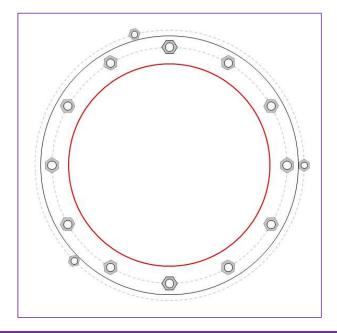
Additional Calculations

Section	Mom	ent of Inertia	a (in ⁴)		Area (in²)		% Сај	pacity*	
Elevation (ft)	Pole	Reinf.	Total	Pole	Reinf.	Total	Pole	R1	R2
155 - 150	503	n/a	503	11.22	n/a	11.22	11.9%		
150 - 145	591	n/a	591	11.83	n/a	11.83	19.1%		
145 - 140	688	n/a	688	12.45	n/a	12.45	25.5%		
140 - 135	796	n/a	796	13.07	n/a	13.07	37.1%		
135 - 130	914	n/a	914	13.68	n/a	13.68	46.7%		
130 - 126.79	996	n/a	996	14.08	n/a	14.08	57.1%		
126.79 - 121.79	1460	n/a	1460	19.38	n/a	19.38	49.9%		
121.79 - 116.79	1685	n/a	1685	20.33	n/a	20.33	58.8%		
116.79 - 111.79	1933	n/a	1933	21.28	n/a	21.28	67.2%		
111.79 - 106.79	2204	n/a	2204	22.23	n/a	22.23	74.3%		
106.79 - 101.79	2499	n/a	2499	23.18	n/a	23.18	80.6%		
101.79 - 97.5	2772	n/a	2772	24.00	n/a	24.00	85.3%		
97.5 - 97.25	2789	n/a	2789	24.05	n/a	24.05	85.5%		
97.25 - 92.25	3133	n/a	3133	25.00	n/a	25.00	90.4%		
92.25 - 87.41	3492	n/a	3492	25.92	n/a	25.92	94.6%		
87.41 - 81.58	4715	n/a	4715	33.24	n/a	33.24	76.0%		
81.58 - 76.58	5245	n/a	5245	34.44	n/a	34.44	78.2%		
76.58 - 71.58	5814	n/a	5814	35.64	n/a	35.64	80.2%		
71.58 - 68	6245	n/a	6245	36.50	n/a	36.50	81.6%		
68 - 67.75	6276	3307	9583	36.56	18.00	54.56	52.7%	79.3%	
67.75 - 62.75	6916	3519	10435	37.77	18.00	55.77	54.4%	81.0%	
62.75 - 57.75	7597	3737	11334	38.97	18.00	56.97	56.1%	82.5%	
57.75 - 52.75	8322	3962	12284	40.17	18.00	58.17	57.6%	83.9%	
52.75 - 48.96	8902	4136	13038	41.08	18.00	59.08	58.8%	84.8%	
48.96 - 42.03	11471	n/a	11471	50.48	n/a	50.48	71.8%		
42.03 - 37.03	12485	n/a	12485	51.93	n/a	51.93	72.5%		
37.03 - 32.03	13557	n/a	13557	53.37	n/a	53.37	73.1%		
32.03 - 27.03	14688	n/a	14688	54.82	n/a	54.82	73.7%		
27.03 - 22.03	15881	n/a	15881	56.27	n/a	56.27	74.2%		
22.03 - 17.03	17137	n/a	17137	57.71	n/a	57.71	74.7%		
17.03 - 12.03	18457	n/a	18457	59.16	n/a	59.16	75.1%		
12.03 - 7.03	19843	n/a	19843	60.60	n/a	60.60	75.5%		
7.03 - 2.03	21298	n/a	21298	62.05	n/a	62.05	75.9%		
2.03 - 0	21908	n/a	21908	62.63	n/a	62.63	76.1%		

Note: Section capacity checked using 5 degree increments.

Rating per TIA-222-H Section 15.5.

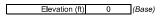
Monopole Base Plate Connection



Site Info	
BU#	876366
Site Name	NGERS FALLS / PRESTO
Order #	576664 Rev 2

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	See Custom Sheet
I _{ar} (in)	See Custom Sheet

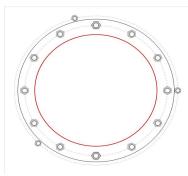
Applied Loads	
Moment (kip-ft)	3507.99
Axial Force (kips)	45.79
Shear Force (kips)	29.50


^{*}TIA-222-H Section 15.5 Applied

Connection Properties	А	nalysis Results	
Anchor Rod Data	Anchor Rod Summary	(u	inits of kips, kip-in)
GROUP 1: (12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 62" BC	GROUP 1:		
GROUP 2: (3) 1-3/4" ø bolts (A193 Gr. B7 N; Fy=105 ksi, Fu=125 ksi) on 71.09" BC	Pu_t = 193.18	φPn_t = 243.75	Stress Rating
pos. (deg): 0, 105, 225	Vu = 2.46	φVn = 149.1	75.5%
	Mu = n/a	φMn = n/a	Pass
Base Plate Data			
68" OD x 1.75" Plate (A871-60; Fy=60 ksi, Fu=75 ksi)	GROUP 2:		
	Pu_t = 128.45	φPn_t = 178.13	Stress Rating
Stiffener Data	Vu = 0	φVn = 112.75	68.7%
N/A	Mu = n/a	φMn = n/a	Pass
Pole Data	Base Plate Summary		
53" x 0.375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)	Max Stress (ksi):	54.16	(Flexural)
	Allowable Stress (ksi):	54	
	Stress Rating:	95.5%	Pass
	=		

CCIplate - Version 4.1.2 Analysis Date: 12/16/2021

CCIplate



note: Bending interaction not considered when Grout Considered = "Yes"

Bolt Group	Resist Axial	Resist Shear	Induce Plate Bending	Grout Considered	Apply at BARB Elevation	BARB CL Elevation (ft)
1	Yes	Yes	Yes	No	No	
2	No	No	No	No	No	

Custom	ı Bolt Cor	nection								
Boit	Bolt Group ID	Location (deg.)	Diameter (in)	<u>Material</u>	Bolt Circle (in)	Eta Factor, n:	l _{ar} (in):	Thread Type	Area Override, in^2	Tension Only
1	1	0	2.25	A615-75	62	0.5	1	N-Included		No
2	1	30	2.25	A615-75	62	0.5	1	N-Included		No
3	1	60	2.25	A615-75	62	0.5	1	N-Included		No
4	1	90	2.25	A615-75	62	0.5	1	N-Included		No
5	1	120	2.25	A615-75	62	0.5	1	N-Included		No
6	1	150	2.25	A615-75	62	0.5	1	N-Included		No
7	1	180	2.25	A615-75	62	0.5	1	N-Included		No
8	1	210	2.25	A615-75	62	0.5	1	N-Included		No
9	1	240	2.25	A615-75	62	0.5	1	N-Included		No
10	1	270	2.25	A615-75	62	0.5	1	N-Included		No
11	1	300	2.25	A615-75	62	0.5	1	N-Included		No
12	1	330	2.25	A615-75	62	0.5	1	N-Included		No
13	2	0	1.75	A193 Gr. B7	71.09	0.5	0	N-Included		No
14	2	105	1.75	A193 Gr. B7	71.09	0.5	0	N-Included		No
15	2	225	1.75	A193 Gr. B7	71.09	0.5	0	N-Included		No

Plot Graphic

CCIplate - Version 4.1.2 Analysis Date: 12/16/2021

Pier and Pad Foundation

BU # :	
Site Name:	
App. Number:	

TIA-222 Revision: H
Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	7
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Re	eactions	
Compression, P _{comp} :	45.8	kips
Base Shear, Vu_comp:	29.49	kips
Moment, M _u :	3507.99	ft-kips
Tower Height, H :	155	ft
BP Dist. Above Fdn, bp _{dist} :	3.25	in

Found	lation Anal	ysis Check	(S	
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	284.81	29.49	9.9%	Pass
Bearing Pressure (ksf)	4.31	3.18	73.8%	Pass
Overturning (kip*ft)	4271.95	3722.41	87.1%	Pass
Pier Flexure (Comp.) (kip*ft)	3919.45	3640.70	88.5%	Pass
Pier Compression (kip)	23390.64	85.49	0.3%	Pass
Pad Flexure (kip*ft)	3676.71	1673.90	43.4%	Pass
Pad Shear - 1-way (kips)	578.23	288.87	47.6%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.000	0.0%	Pass
Flexural 2-way (Comp) (kip*ft)	3408.07	2184.42	61.0%	Pass

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier :	7	ft
Ext. Above Grade, E:	1	ft
Pier Rebar Size, Sc :	8	
Pier Rebar Quantity, mc :	30	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt :	5	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	3	in

*Rating per TIA-222-H Section

Pier Tie/Spiral Quantity, mt: Pier Reinforcement Type:	
Pier Clear Cover, cc _{pier} :	in
Pad Properties	

i au i roperties					
Depth, D :	6	ft			
Pad Width, W ₁:	23	ft			
Pad Thickness, T :	2.5	ft			
Pad Rebar Size (Top dir.2), Sp top2:	8				
Pad Rebar Quantity (Top dir. 2), mp top2:	20				
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8				
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	43				
Pad Clear Cover, cc_{pad}:	3	in			

Material Properties					
Rebar Grade, Fy :	60	ksi			
Concrete Compressive Strength, F'c:	3	ksi			
Dry Concrete Density, δ c :	150	pcf			

Soil Properties					
Total Soil Unit Weight, γ :	al Soil Unit Weight, γ: 125 pcf				
Ultimate Net Bearing, Qnet:	5.000	ksf			
Cohesion, Cu :	0.000	0 ksf			
Friction Angle, $oldsymbol{arphi}$:	34	34 degrees			
SPT Blow Count, N _{blows} :					
Base Friction, μ :	0.6				
Neglected Depth, N:	3.50	ft			
Foundation Bearing on Rock?	No				
Groundwater Depth, gw:	6	ft			

<--Toggle between Gross and Net

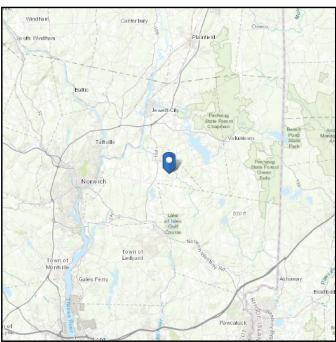
Address:

No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-16 Elev

Risk Category: **Ⅱ**


Soil Class: D - Default (see

Section 11.4.3)

Elevation: 290.25 ft (NAVD 88)

Latitude: 41.538183 **Longitude:** -71.951667

Wind

Results:

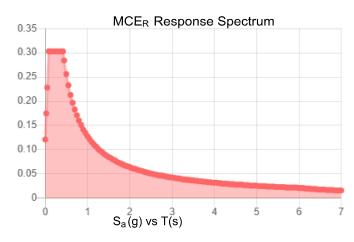
Wind Speed 125 Vmph
10-year MRI 75 Vmph
25-year MRI 86 Vmph
50-year MRI 97 Vmph
100-year MRI 103 Vmph

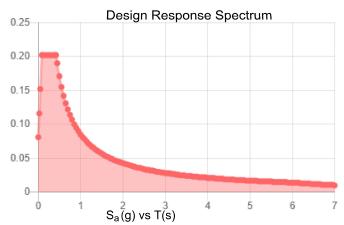
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

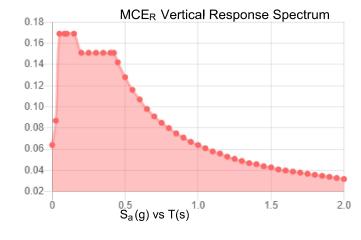
Date Accessed: Thu Dec 16 2021

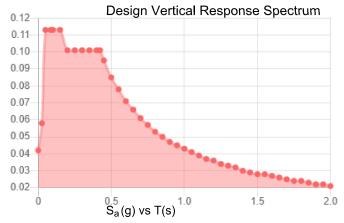
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic


Site Soil Class: D - Default (see Section 11.4.3)


Results:


0	0.400	0	0.005
S _s :	0.189	S_{D1} :	0.085
S_1 :	0.053	T_L :	6
F _a :	1.6	PGA:	0.104
F_{ν} :	2.4	PGA _M :	0.165
S _{MS} :	0.303	F _{PGA} :	1.593
S _{M1} :	0.128	l _e :	1
S _{DS} :	0.202	C_v :	0.7

Seismic Design Category B

Data Accessed: Thu Dec 16 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Thu Dec 16 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: 876366

BOBOS01004A 101 Pierce Road Preston, Connecticut 06365

May 25, 2022

EBI Project Number: 6222003246

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	20.81%			

May 25, 2022

Attn: Dish Wireless

Emissions Analysis for Site: 876366 - BOBOS01004A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 101 Pierce Road in Preston, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 101 Pierce Road in Preston, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-21 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 119 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21	Make / Model:	JMA MX08FRO665- 21
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd	Gain:	11.35 dBd / 15.75 dBd
Height (AGL):	II9 feet	Height (AGL):	II9 feet	Height (AGL):	I I 9 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts	Total TX Power (W):	280.00 Watts
ERP (W):	1,424.17	ERP (W):	1,424.17	ERP (W):	1,424.17
Antenna A1 MPE %:	0.59%	Antenna B1 MPE %:	0.59%	Antenna C1 MPE %:	0.59%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	0.59%			
AT&T	3.54%			
Verizon	11.02%			
T-Mobile	5.66%			
Site Total MPE % :	20.81%			

Dish Wireless MPE % Per Sector					
Dish Wireless Sector A Total: 0.59%					
Dish Wireless Sector B Total:	0.59%				
Dish Wireless Sector C Total:	0.59%				
Site Total MPE % : 20.81%					

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	110.82	119.0	1.25	600 MHz n71	400	0.31%
Dish Wireless 1900 MHz n70	4	245.22	119.0	2.76	1900 MHz n70	1000	0.28%
						Total:	0.59%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	0.59%
Sector B:	0.59%
Sector C:	0.59%
Dish Wireless Maximum MPE % (Sector A):	0.59%
Site Total:	20.81%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **20.81%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application

Crown Castle telecommunications site at: 101 PIERCE ROAD, PRESTON, CT 06365

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

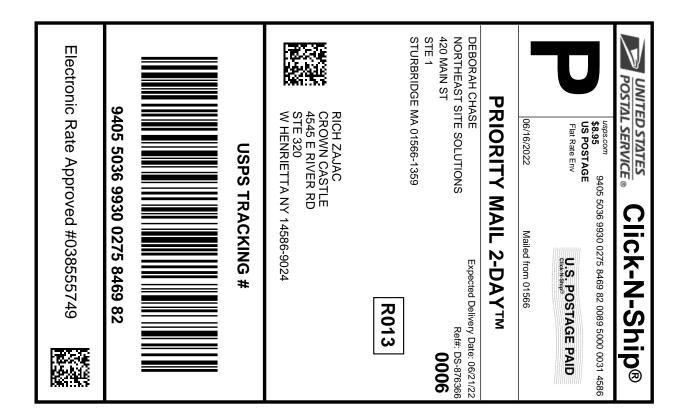
Crown Site ID/Name: 876366/WAPPINGERS FALLS / PRESTON CIT

Customer Site ID: BOBOS01004A/

Site Address: 101 Pierce Road, PRESTON, CT 06365

By:

Richard Zajac
Site Acquisition Specialist


Crown Castle

6/13/2022

Date:

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0275 8469 82

565819418 06/16/2022 06/16/2022 Trans. #: Print Date: Ship Date: 06/21/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-876366

From: **DEBORAH CHASE**

NORTHEAST SITE SOLUTIONS

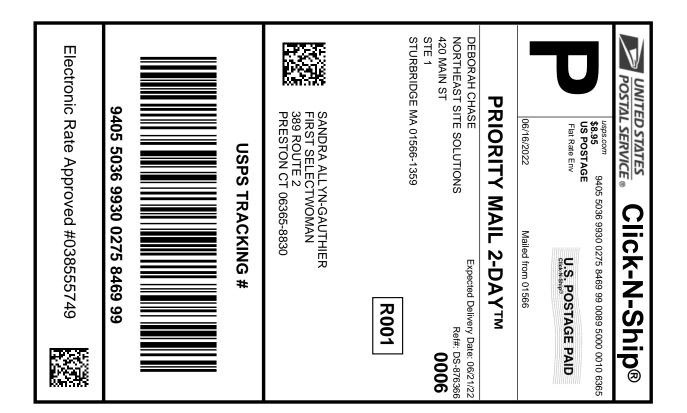
420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD


STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0275 8469 99

565819418 06/16/2022 06/16/2022 Trans. #: Print Date: Ship Date: 06/21/2022 Delivery Date:

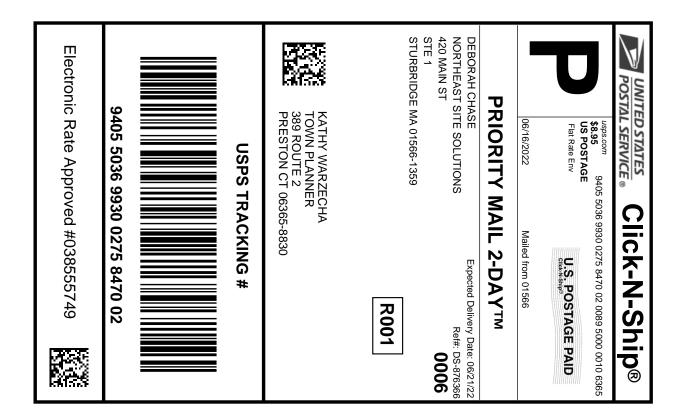
Priority Mail® Postage: \$8.95 Total: \$8.95

From: **DEBORAH CHASE** Ref#: DS-876366

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

SANDRA ALLYN-GAUTHIER

FIRST SELECTWOMAN 389 ROUTE 2

PRESTON CT 06365-8830

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0275 8470 02

565819418 06/16/2022 06/16/2022 Trans. #: Print Date: Ship Date: 06/21/2022 Delivery Date:

Priority Mail® Postage: Total:

\$8.95 \$8.95

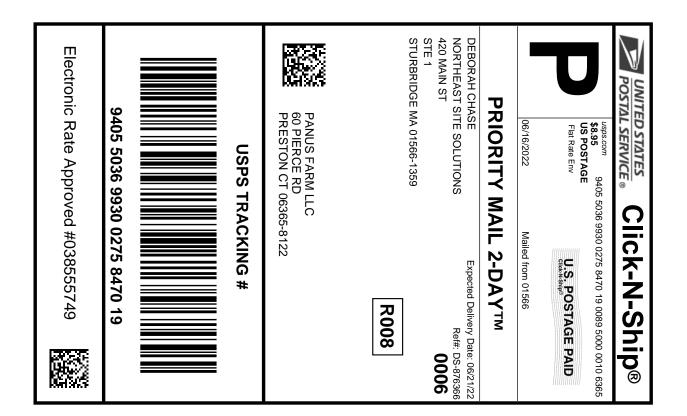
Ref#: DS-876366

From: **DEBORAH CHASE**

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

KATHY WARZECHA

TOWN PLANNER 389 ROUTE 2

PRESTON CT 06365-8830

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0275 8470 19

565819418 06/16/2022 06/16/2022 Trans. #: Print Date: Ship Date: Delivery Date: 06/21/2022

Priority Mail® Postage: Total:

\$8.95 \$8.95

Ref#: DS-876366

From: **DEBORAH CHASE**

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

PANUS FARM LLC

60 PIERCE RD

PRESTON CT 06365-8122

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

87636 Crown DISL

FARMINGTON
210 MAIN ST
FARMINGTON, CT 06032-9998
(800) 275-8777

(800) 275-8777 06/21/2022 09:31 AM Product Qtv Unit Price Prepaid Mail \$0.00 Preston, CT 06365 Weight: 0 1b 9.90 oz Acceptance Date: Tue 06/21/2022 Tracking #: 9405 5036 9930 0275 8469 99 Prepaid Mail \$0.00 West Henrietta, NY 14586 Weight: 0 lb 2.00 oz Acceptance Date: Tue 06/21/2022 Tracking #: 9405 5036 9930 0275 8469 82 Prepaid Mail \$0.00 Preston, CT 06365 Weight: 0 lb 10.00 oz Acceptance Date: Tue 06/21/2022 Tracking #: 9405 5036 9930 0275 8470 19 Prepaid Mail \$0.00 Preston, CT 06365 Weight: 0 lb 11.90 oz Acceptance Date: Tue 06/21/2022 Tracking #: 9405 5036 9930 0275 8470 02

Grand Total: \$0.00

Preview your Mail Track your Packages Sign up for FREE @ https://informeddelivery.usps.com

All sales final on stamps and postage. Refunds for guaranteed services only. Thank you for your business.

Tell us about your experience. Go to: https://postalexperience.com/Pos or scan this code with your mobile device,

