STATE OF CONNECTICUT<br>CONNECTICUT SITING COUNCIL<br>Ten Franklin Square, New Britain, CT 06051<br>Phone: (860) 827-2935 Fax: (860) 827-2950<br>E-Mail: siting.council@ct.gov<br>Web Site: portal.ct.gov/csc

## VIA ELECTRONIC MAIL

February 21, 2024

Kenneth C. Baldwin, Esq.
Robinson \& Cole
280 Trumbull Street
Hartford, CT 06103-3597
kbaldwin@rc.com

RE: SUBPETITION NO. 1133-VER-20230614-Cellco Partnership d/b/a Verizon Wireless eligible facility request for modification to an existing telecommunications facility located at 97 High Street, Portland, Connecticut. Request for Project Changes.

Dear Attorney Baldwin:
The Connecticut Siting Council (Council) is in receipt of your correspondence dated February 21, 2024, regarding a change to the above-referenced Eligible Facility Request (EFR) that was approved by the Council on July 17, 2023.

Pursuant to Condition No. 1 of the Council's July 17, 2023 approval, your request to install antenna models MT6413-77A and RT4423 in lieu of MT6407-77A and CBRS; and remote radio head model RF4461-13A in lieu of model RF4440d-13A is hereby approved.

This approval applies only to the project changes described in your February 21, 2024 correspondence.
Please be advised that deviations from the standards established by the Council in the EFR approval are enforceable under the provisions of Connecticut General Statutes §16-50u.

Thank you for your attention and cooperation.
Sincerely,


Melanie A. Bachman
Executive Director

## MAB/IN/dll

c: The Honorable Ryan J. Curley, First Selectperson, Town of Portland (rcurley@portlandct.org)

## Robinson+Cole

KEnNETH C. BALDWIN

280 Trumbull Street
Hartford, CT 06103-3597
Main (860) 275-8200
Fax (860) 275-8299
kbaldwin@rc.com
Direct (860) 275-8345

Also admitted in Massachusetts and New York

February 21, 2024
Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

## Re: SUBPETITION NO. 1133-VER-20230614 - Cellco Partnership d/b/a Verizon Wireless eligible facility request for modification to an existing telecommunications facility at 97 High Street, Portland, Connecticut

## Minor Equipment Changes

Dear Attorney Bachman:
On behalf of Cellco Partnership d/b/a Verizon Wireless ("Cellco"), and pursuant to Conditions No. 1 of the Siting Council's decision in SUBPETITION NO. 1133-VER-20230614, I respectfully request staff approval of the following minor equipment changes at the SRR Towers, Inc. wireless facility at 97 High Street in Portland, Connecticut.

Due to equipment availability issues, Cellco will install antenna models MT6413-77A and RT4423 ${ }^{1}$ in lieu of models MT6407-77A and CBRS. Cellco will also be installing remote radio head (RRH) model RF4461-13A in lieu of model RF4440d-13A.

Attached is a revised set of project plans, specifications for the new antennas and RRHs, and an updated Structural Analysis Report and Antenna Mount Analysis Report confirming that the new tower and mounts are capable of supporting this new equipment. Please contact me if you have any questions or need any additional information.

[^0]
## Robinson+Cole

Melanie A. Bachman, Esq.
February 21, 2024
Page 2

${ }^{K}$ Kenneth C. Baldwin

Copy to:
SRR Towers, Inc.
Ryan Curley, Portland First Selectman
Tim Parks
Michael Humphreys

Structural

February 13, 2024
BST Management, LLC
352 Park Street
Suite 106
North Reading, MA 01864
Re: Comprehensive Structural Analysis Report

| Structure: | 80.4ft Self-Supporting Tower with 10ft Extension |
| :--- | :--- |
| Site Address: | 97 High Street, Portland, Connecticut 06480 (Middlesex County) |
| Site Name: | Latitude: $41.5807^{\circ}$ N, Longitude: $72.6238^{\circ} \mathrm{W}$ |
|  | BST Management, LLC - Portland |
| Site Number: | BST Management, LLC - CT-1680 <br>  <br> Verizon - 469381 |
| SC Number: | 240022 REV 1 |
| Status: | Structure Passes (77\% Capacity) |
|  | Foundation Passes |

Per your request, Structural Components, LLC has completed a structural analysis for the above referenced project to verify the tower's compliance to the following design criteria:

| Standard: | TIA-222-H <br> Structural Standard for Antenna Supporting Structures <br> and Antennas |
| :--- | :--- |
| Building Code: | 2021 International Building Code w/Amendments <br> 2022 Connecticut State Building Code |
| Design Basic Wind Speed without Ice: | 120 mph 3 -second gust VuLT |
| Design Basic Wind Speed with Ice: | 50 mph 3 -second gust |
| Ice Thickness: | $1^{n}$ radial |
| Serviceability Basic Wind Speed: | 60 mph 3 -second gust |
| Exposure Category: | C |
| Topographic Category: | 1 |
| Ground Elevation: | 345 ft |
| Risk Category: | II |
| Seismic Site Class: | $\mathrm{D}, \mathrm{S}_{\mathbf{s}}=0.208, \mathrm{~S}_{1}=0.056$ |
| Seismic Design Category: | B |

Please refer to the following structural analysis report, which gives complete details of the tower loading, results, information provided, and necessary assumptions.

We trust you find this report satisfactory. Please do not hesitate to contact us if you should have any questions or concerns.

Best Regards, Structural Components LLC

Wesley Culver
Engineering Manager
/TR


## 1 LOADING CONFIGURATION

The following antennas, mounts, transmission lines, and other appurtenances were considered for the structural analysis.

| Elevation (ft) |  | Equipment |  | Feedlines |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mount | Equip |  |  |  |  |  |
| 90.5 | 90.5 | (1) | 5/8 ${ }^{17} 6^{\prime}$ Lightning Rod |  | - | Existing |
| 90.0 | 90.0 | $\begin{array}{\|l} \hline(3) \\ \text { (3) } \\ (3) \\ (3) \\ (3) \\ (1) \\ (3) \\ (3) \\ \hline \end{array}$ | CommScope NNH4-65B-R6 Panels Samsung RT4423 Panels w/ RRU Samsung MT6413-77A Panels Samsung RF4439d-25A RRUs ${ }^{(3)}$ Samsung RF4461d-13A RRUs ${ }^{(3)}$ CommScope FE-16148-OVP-B12 TMA SitePro VFA12-HD Sector Frame Mounts Tlebacks |  | $6 \times 12$ Hybrid | Verizon Final |
| 77.0 | 77.0 | (1) | L6 $6^{\prime \prime} \times 6^{\prime \prime} \times 7 / 16^{\prime \prime}$ Ring Mount |  | - | Existing |
| $76.7{ }^{(4)}$ | 78.7 | (3) | Ericsson RRUS 32 B2 <br> Raycap DC6-48-60-18-8F SSD | (6) $7 / 8^{n} \mathrm{TX}$ <br> (3) $0.92^{n} \mathrm{OD} D \mathrm{DC}$ <br> (4) $3 / 4^{\prime \prime} \mathrm{OD} \mathrm{DC}$ <br> (1) $3 / 8^{n}$ Fiber <br> (1) $1 / 2^{n}$ Fiber |  | AT\&T <br> Final |
|  | 77.2 | (3) (3) (1) | Ericsson RRUS 32 B30 ${ }^{(3)}$ <br> Ericsson RRUS 32 B66A ${ }^{(3)}$ <br> Raycap DC6-48-60-18-8F SSD |  |  |  |
|  | 76.7 | $\begin{aligned} & 11 \\ & (3) \\ & (3) \\ & (3) \\ & (3) \\ & (3) \\ & (3) \\ & (1) \\ & (3) \end{aligned}$ | CCITPA65R-BU6DA-K Panels Ericsson AIR6449 B77D Panels Ericsson AlR6419 B77G Panels CCIDMP65R-BU6DA Panels Ericsson RRUS 4478 B14 Ericsson RRUS 4449 B5/B12 Raycap DC9-48-60-24-8C-EV SSDs 12' Sector Frame Mounts |  |  |  |
| 75.0 | 75.0 | (1) | L6 $6^{n} \times 6^{\prime \prime} \times 7 / 16^{\prime \prime}$ Ring Mount | - |  | Existing |
| 73.0 | 73.0 |  | 2-3/8" $\times$ 8' Pipe Mount |  |  |  |
| 67.7 | 67.7 |  | L6 $6^{\prime \prime} \times 6^{\prime \prime} \times 7 / 16^{\prime \prime}$ Ring Mount |  |  |  |

1) Elevations reference centerline of panel, yagi, mounts, and dish antennas, and base of whip antennas, in relation to the base of the tower.
2) Refer to the feed line diagram and analysis output in Appendix A for the location and orientation of feedlines and equipment.
3) Secondary appurtenances such as TMAs, Diplexers, and RRUs are considered to be installed directly behind panel antennas for frontal area shielding. See analysis output for magnitude of individual shielding.
4) Elevations adjusted from Structural Components Mapping dated 03/15/2022, Job \# 220142.

## 2 RESULTS

The analysis was performed using tnxTower v8.1.1.0, a structural analysis program developed by Tower Numerics, Inc. specifically for the communication tower industry.

### 2.1 TOWER MEMBER STRESS LEVELS

The tower has the following stress ratios in its structural members.

| Elev. (ft) | Member | Stress Ratio* |
| :---: | :---: | :---: |
| $0-90.4$ | Legs | 0.77 |
| $0-90.4$ | Bracing | 0.63 |
| $0-90.4$ | Connections | 0.63 |

Stress ratio (SR) criteria:
$S R \leq 1.00$ is completely within code limits.
SR $\leq 1.05$ is considered within acceptable tolerance of code limits.
SR>1.05 is outside acceptable tolerance of code limits and requires structural modifications.

* Seismic analysis for similar structures under similar loading conditions has been shown to produce significantly lower stress ratios than wind and ice. Therefore, seismic analysis has not been included in the current analysis.


### 2.2 FOUNDATION REACTIONS

The reactions listed below are for the design wind speed listed. Reactions are factored loads.

| Reactlon Type | Current <br> Wind <br> Reactions | Current <br> Ieed <br> Reactions | Foundation Status |
| :---: | :---: | :---: | :---: |
| Moment (ft-kips) | $1,237.5$ | 310.2 |  |
| Shear (kips) | 22.4 | 5.5 |  |
| Axial (kips) | 21.8 | 43.7 |  |
| Leg Compression (kips) | 72.4 | - |  |
| Leg Uplift (kips) | 62.8 | - | Passes* |
| Leg Shear (kips) | 10.8 | - |  |

* See Appendix A for foundation calculations.


### 2.3 TOWER DEFLECTION

The tower deflections have been reviewed and are believed to be acceptable for the proposed equipment. The carrier(s) should review the deflections for the service wind condition included in Appendix A for compatibility with their equipment.

## 3 PROVIDED INFORMATION AND ASSUMPTIONS

The following information was directly used to generate this report, and can be found in Appendix B.

| Document | Author | Date | Reference |
| :--- | :--- | :--- | :--- |
| Collocation Application | Verizon | $11 / 21 / 2023$ | CT-1680 |
| RFDS | Verizon | $09 / 27 / 2023$ | Portland HS CT |
| Mount Analysis | Centek Engineering | $11 / 09 / 2023$ | 22017.06 REV1 |
| Construction Drawings | Centek Engineering | $02 / 12 / 2024$ | 22017.06 |
| Structural Analysis Report - Verizon | Structural Components, LLC | $01 / 23 / 2024$ | 240022 |
| Post Modification Inspection Report | Structural Components, LLC | $09 / 19 / 2023$ | 230193 |

The following assumptions were made in order to complete the analysis. These assumptions must be checked. If they do not accurately represent the existing or proposed tower, foundation, soil, and loading conditions, we must be notified so that we can make the appropriate changes to our analysis, conclusions, and recommendations.

1. The tower and foundation are in good condition with no corrosion, damage or fatiguing issues which could reduce the carrying capacity of the tower.
2. All welds and connections are assumed to develop at least the member capacity, unless determined otherwise and explicitly stated in this report.
3. All prior structural modifications, if any, are assumed to be as per date supplied/ available, to be properly installed and to be fully effective.
4. The following assumptions regarding member minimum material or type apply to this structure, unless otherwise noted in analysis:

- Angle Legs: A36
- Angle Bracing: A36
- Splice Bolts: A307
- Gusset Plates: A36
o Brace Bolts: A325N

5. The feedline and appurtenance configuration is as stated in the report. All antennas, coax, cables and waveguide cables are assumed to be properly installed and supported as per manufacturer requirement.
6. The support mounts and/or platforms are not analyzed and are considered adequate to support the loading.
7. All mounting systems connect at tower bracing points. Local stresses are not considered unless noted otherwise in analysis.
8. Some assumptions are made regarding antenna and mount sizes and their projected areas based on a best interpretation of the data supplied and a best knowledge of antenna type and industry practice.
9. The soil parameters are as per data supplied, or as assumed, and stated in the calculations.

## 4 CONCLUSIONS

To the best of our knowledge and belief the tower and foundations satisfy the requirements of the applicable codes and standards having jurisdiction over the work for the loadings and conditions as outlined in this report. Structural modifications are not required at this time.

## APPENDIX A

## Tower Profile and Calculations



| Structural Components, LLC | 240022 REV 1 |  |  |
| :---: | :---: | :---: | :---: |
| 1870 West 64th Lane, Unit A | Project Portiand (CT-1680) |  |  |
| Denver, CO 80221 | ${ }^{\text {Client }}$ BST Management, LLC | Drawn by treed | Appd: |
| Phone: (866) 386-7622 | Code: TIA-222-H | Dato: 02/13/24 | Scale: NTS |
| FAX: | Path: |  | Dwg No. E-1 |



| Structural Components, LLC |
| :---: |
| 1870 West 64th Lane, Unit A |
| Denver, CO 80221 |
| Phone: (866) $386-7622$ |
| FAX: |


| 100: 240022 REV 1 |  |  |
| :---: | :---: | :---: |
| Projoct Portiand (CT-1680) |  |  |
| Client BST Management, LLC | Dramn by treed | Appid: |
| code: TIA-222-H | Date: 02/13/24 | Scale: NTS |
| Path: |  | Dwg No. E-1 |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Job |  | $\begin{array}{ll} \hline \text { Page } & \\ & 1 \text { of } 32 \end{array}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |

## Tower Input Data

The main tower is a 4 x free standing tower with an overall height of 90.33 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 5.04 ft at the top and 13.08 ft at the base.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower base elevation above sea level: 345.00 ft .
Basic wind speed of 120 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
Pressures are calculated at each section.
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

## Options

| Consider Moments - Legs | Distribute Leg Loads As Uniform |
| :--- | :--- |
| Consider Moments - Horizontals | Assume Legs Pinned |
| Consider Moments - Diagonals | Assume Rigid Index Plate |
| Use Moment Magnification | $\sqrt{ }$ Use Clear Spans For Wind Area |
| $\sqrt{ }$ Use Code Stress Ratios | $\sqrt{\text { Use Clear Spans For KL/r }}$ |
| $\sqrt{\text { Use Code Safety Factors - Guys }}$ | Retension Guys To Initial Tension |
| Escalate Ice | Bypass Mast Stability Checks |
| Always Use Max Kz | $\sqrt{\text { Use Azimuth Dish Coefficients }}$ |
| Use Special Wind Profile | $\sqrt{\text { Project Wind Area of Appurt. }}$ |
| Include Bolts In Member Capacity | Autocalc Torque Arm Areas |
| Leg Bolts Are At Top Of Section | Add IBC .6D+W Combination |
| $\sqrt{\text { Secondary Horizontal Braces Leg }}$ | $\sqrt{\text { Sort Capacity Reports By Component }}$ |
| Use Diamond Inner Bracing (4 Sided) | Triangulate Diamond Inner Bracing |
| SR Members Have Cut Ends | Treat Feed Line Bundles As Cylinder |
| SR Members Are Concentric | Ignore KL/ry For 60 Deg. Angle Legs |

Use ASCE 10 X-Brace Ly Rules
$\sqrt{ }$ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
$\sqrt{ }$ SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
$\sqrt{ }$ Include Angle Block Shear Check
Use TLA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Job | 240022 REV 1 | $\text { Page } 2 \text { of } 32$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |



Square Tower

## Tower Section Geometry

| Tower Section | Tower Elevation | Assembly Database | Description | Section Width | Number of Sections | Section <br> Length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f t$ |  |  | $f$ |  | $f$ |
| T1 | 90.33-78.06 |  |  | 5.04 | 1 | 12.27 |
| T2 | 78.06-74.56 |  |  | 5.04 | 1 | 3.50 |
| T3 | 74.56-72.31 |  |  | 5.04 | 1 | 2.25 |
| T4 | 72.31-67.56 |  |  | 5.04 | 1 | 4.75 |
| T5 | 67.56-65.44 |  |  | 5.04 | 1 | 2.13 |
| T6 | 65.44-57.52 |  |  | 5.04 | 1 | 7.92 |
| T7 | 57.52-50.27 |  |  | 6.01 | 1 | 7.25 |
| T8 | 50.27-41.98 |  |  | 6.91 | 1 | 8.29 |
| T9 | 41.98-34.19 |  |  | 7.93 | , | 7.79 |
| T10 | 34.19-26.90 |  |  | 8.88 | 1 | 7.29 |
| T11 | 26.90-20.10 |  |  | 9.78 | 1 | 6.79 |
| T12 | 20.10-13.42 |  |  | 10.61 | 1 | 6.69 |
| T13 | 13.42-6.71 |  |  | 11.44 | 1 | 6.71 |
| T14 | 6.71-0.00 |  |  | 12.26 | 1 | 6.71 |

## Tower Section Geometry (cont'd)

| Tower <br> Section | Tower <br> Elevation | Diagonal <br> Spacing | Bracing <br> Type | Has <br> KBrace <br> End | Has <br> Horizontals | Top Girt <br> Offset | Bottom Girt <br> Offset |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ft | $f t$ |  |  |  | Panels |  |
| T1 | $90.33-78.06$ | 6.08 | X Brace | No | Yes | 1.2500 | in |
| T2 | $78.06-74.56$ | 3.50 | K Brace Up | No | Yes | 0.0000 | 0.0000 |
| T3 | $74.56-72.31$ | 2.25 | K Brace Down | No | Yes | 0.0000 | 0.0000 |
| T4 | $72.31-67.56$ | 4.75 | K Brace Up | No | Yes | 0.0000 | 0.0000 |
| T5 | $67.56-65.44$ | 2.00 | K Brace Down | No | Yes | 0.0000 | 1.5000 |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & \\ & 3 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Tower <br> Section | Tower <br> Elevation | Diagonal <br> Spacing | Bracing <br> Type | Has <br> K Brace <br> End | Has <br> Horizontals | Top Girt <br> Offset | Bottom Girt <br> Offset |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ft | fi |  |  | Panels |  | in |

## Tower Section Geometry (cont'd)

| Tower Elevation $f t$ | $\begin{aligned} & \text { Leg } \\ & \text { Type } \end{aligned}$ | Leg Size | Leg Grade | $\begin{gathered} \text { Diagonal } \\ \text { Type } \end{gathered}$ | $\begin{gathered} \text { Diagonal } \\ \text { Size } \end{gathered}$ | Diagonal Grade |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T1 90.33-78.06 | Equal Angle | L4x4x1/4 | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | Equal Angle | L2x2x1/4 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T2 78.06-74.56 | Equal Angle | L4x4x $3 / 8$ | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2x2 1/2x $3 / 16$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T3 74.56-72.31 | Equal Angle | L4x4x3/8 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Equal Angle | L2 1/2×2 $1 / 2 \times 3 / 16$ | $\begin{gathered} \text { A36 } \\ \text { ( } 36 \mathrm{ksi} \text { ) } \end{gathered}$ |
| T4 72.31-67.56 | Equal Angle | L4x $4 \times 3 / 8$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Equal Angle | L2 1/2×2 $1 / 2 \times 3 / 16$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T5 67.56-65.44 | Equal Angle | L4x4x3/8 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Equal Angle | L2x $2 \times 3 / 16$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T6 65.44-57.52 | Equal Angle | L4x4x $3 / 8$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2 $\times 21 / 2 \times 3 / 16$ | $\begin{gathered} \text { A36 } \\ \text { ( } 36 \mathrm{ksi} \text { ) } \end{gathered}$ |
| T7 57.52-50.27 | Equal Angle | L4x4x $3 / 8$ | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2x2 1/2x3/16 | $\begin{gathered} \text { A36 } \\ \text { ( } 36 \mathrm{ksi} \text { ) } \end{gathered}$ |
| T8 50.27-41.98 | Equal Angle | L5x5x $3 / 8$ | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2x2 1/2x3/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T9 41.98-34.19 | Equal Angle | L5x5x3/8 | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2x2 1/2x3/16 | $\begin{gathered} \text { A36 } \\ \text { ( } 36 \mathrm{ksi} \text { ) } \end{gathered}$ |
| T10 34.19-26.90 | Equal Angle | L5x5x3/8 | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2x2 1/2x $3 / 16$ | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T11 26.90-20.10 | Equal Angle | L5x5x3/8 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2x2 1/2×3/16 | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T12 20.10-13.42 | Equal Angle | L5x5x5/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2 1/2x2 $1 / 2 \times 3 / 16$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T13 13.42-6.71 | Equal Angle | L5x5x5/16 | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | Equal Angle | L3x3x5/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T14 6.71-0.00 | Equal Angle | L5x5x5/16 | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | Equal Angle | L3x3x5/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |

## Tower Section Geometry (cont'd)

| Tower Elevation $f t$ | Top Girt Type | Top Girt Size | Top Girt Grade | Bottom Girt Type | Bottom Girt Size | Bottom Girt Grade |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T1 90.33-78.06 | Equal Angle | L2 1/2x2 1/2x3/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Solid Round |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T2 78.06-74.56 | Single Angle | L4x $31 / 2 \mathrm{x} 1 / 4$ | A36 | Solid Round |  | A36 |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & \\ & 4 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \\ \hline \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Tower Elevation $f t$ | Top Girt Type | $\begin{gathered} \text { Top Girt } \\ \text { Size } \end{gathered}$ | Top Girt Grade | Bottom Girt Type | $\begin{gathered} \text { Bottom Girt } \\ \text { Size } \end{gathered}$ | Bottom Girt Grade |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (36 ksi) |  |  | (36 ksi) |
| T4 72.31-67.56 | Double Equal Angle | $2 \mathrm{~L} 4 \times 4 \times 3 / 8$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Solid Round |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T5 67.56-65.44 | Single Angle |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Equal Angle | L3x3x3/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T8 50.27-41.98 | Equal Angle | L2 1/2x2 1/2x ${ }^{\text {/ }} 16$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Solid Round |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T12 20.10-13.42 | Single Angle | L2x2 1/2x1/4 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Solid Round |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |

Tower Section Geometry (cont'd)

| Tower Elevation <br> $f t$ | No. of Mid Girts | $\begin{aligned} & \text { Mid Girt } \\ & \text { Type } \end{aligned}$ | $\begin{gathered} \text { Mid Girt } \\ \text { Size } \end{gathered}$ | Mid Girt Grade | Horizontal Type | Horizontal Size | Horizontal Grade |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T2 78.06-74.56 | None | Flat Bar |  | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L4x ${ }^{1 / 2 \times 1 / 4}$ | $\begin{gathered} \text { A36 } \\ \text { (36 ksi) } \end{gathered}$ |
| T3 74.56-72.31 | None | Flat Bar |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L4x3 1/2x1/4 | $\begin{gathered} \text { A36 } \\ \text { ( } 36 \mathrm{ksi} \text { ) } \end{gathered}$ |
| T4 72.31-67.56 | None | Flat Bar |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L4x $31 / 2 \times 1 / 4$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T5 67.56-65.44 | None | Flat Bar |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L4x $31 / 2 \times 1 / 4$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T13 13.42-6.71 | None | Flat Bar |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Equal Angle | L1 3/4x1 3/4x3/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T14 6.71-0.00 | None | Flat Bar |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Equal Angle | L1 3/4x13/4x3/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |

Tower Section Geometry (cont'd)

| Tower Elevation $\qquad$ $f t$ | Secondary Horizontal Type | Secondary Horizontal Size | Secondary Horizontal Grade | Inner Bracing Type | Inner Bracing Size | Inner Bracing Grade |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T2 78.06-74.56 | Solid Round |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2 1/2x2x3/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T3 74.56-72.31 | Solid Round |  | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2 $1 / 2 \times 2 \times 3 / 16$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T5 67.56-65.44 | Solid Round |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Single Angle | L2 1/2x2x3/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T6 65.44-57.52 | Solid Round |  | $\begin{gathered} \text { A36 } \\ \text { (36 ksi) } \end{gathered}$ | Equal Angle | L1 3/4x1 3/4x $3 / 16$ | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T8 50.27-41.98 | Solid Round |  | $\begin{gathered} \text { A36 } \\ \text { ( } 36 \mathrm{ksi} \text { ) } \end{gathered}$ | Single Angle | L2 1/2x2x3/16 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ |
| T12 20.10-13.42 | Solid Round |  | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | Equal Angle | L2x2x3/16 | $\begin{gathered} \text { A36 } \\ \text { (36 ksi) } \\ \hline \end{gathered}$ |


| tnxTower | 240022 REV 1 |  | $\text { Page } 5 \text { of } 32$ |
| :---: | :---: | :---: | :---: |
| Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 Phone: (866) 386-7622 FAX: | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |

## Tower Section Geometry (cont'd)

| Tower Elevation | Redundant Bracing Grade |  | $\begin{aligned} & \text { Redundant } \\ & \text { Type } \end{aligned}$ | $\begin{gathered} \text { Redundant } \\ \text { Size } \end{gathered}$ | K Factor |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T13 | A36 | Horizontal (1) | Equal Angle | L1 3/4x1 3/4x3/16 | 1 |
| 13.42-6.71 | (36 ksi) | Diagonal (1) | Equal Angle | L1 3/4×1 3/4×3/16 | 1 |
| T14 6.71-0.00 | A36 | Horizontal (1) | Equal Angle | L1 3/4x1 3/4×3/16 | 1 |
|  | (36 ksi) | Diagonal (1) | Equal Angle | L1 3/4x1 3/4x3/16 | 1 |

## Tower Section Geometry (cont'd)

| Tower Elevation $\qquad$ <br> $f t$ | Gusset Area (perface) $\qquad$ | Gusset Thickness $\qquad$ in | Gusset Grade | Adjust. Factor $A_{f}$ | Adjust. <br> Factor <br> $A_{r}$ | Weight Mult. | Double Angle Stitch Bolt Spacing Diagonals in | Double Angle Stitch Bolt Spacing Horizontals in | Double Angle Stitch Bolt Spacing Redundants in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T1 90.33-78.06 | 0.00 | 0.2500 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T2 78.06-74.56 | 0.35 | 0.2500 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T3 74.56-72.31 | 0.35 | 0.2500 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T4 72.31-67.56 | 0.58 | 0.2500 | $\begin{gathered} \text { A36 } \\ \text { (36 ksi) } \end{gathered}$ | 1 | 1 | 1 | 36.0000 | Third-Pt | 36.0000 |
| T5 67.56-65.44 | 0.58 | 0.2500 | $\begin{gathered} \text { A36 } \\ \text { ( } 36 \mathrm{ksi} \text { ) } \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T6 65.44-57.52 | 0.00 | 0.3750 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T7 57.52-50.27 | 0.00 | 0.3750 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T8 50.27-41.98 | 0.00 | 0.3750 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T9 41.98-34.19 | 0.00 | 0.3750 | $\begin{gathered} \mathrm{A} 36 \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| $\begin{gathered} \text { T10 } \\ 34.19-26.90 \end{gathered}$ | 0.00 | 0.3750 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T11 26.90-20.10 | 0.00 | 0.3750 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T12 20.10-13.42 | 0.00 | 0.3125 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T13 13.42-6.71 | 0.43 | 0.2500 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |
| T14 6.71-0.00 | 0.43 | 0.2500 | $\begin{gathered} \text { A36 } \\ (36 \mathrm{ksi}) \end{gathered}$ | 1 | 1 | 1 | 36.0000 | 36.0000 | 36.0000 |

## Tower Section Geometry (cont'd)

| Tower Elevation | Calc | Calc K | K Factors ${ }^{\text {I }}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Legs | $X$ | $K$ | Single | Girts | Horiz. | Sec. | Inner |
|  |  |  |  | Brace | Brace | Diags |  |  | Horiz. | Brace |
|  | Single | Solid |  | Diags | Diags |  |  |  |  |  |
|  | Angles | Rounds |  | X | $\boldsymbol{X}$ | $X$ | $X$ | $X$ | X | $X$ |
| $f t$ |  |  |  | $Y$ | $Y$ | $\boldsymbol{Y}$ | $Y$ | $Y$ | $Y$ | $Y$ |
| T1 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 FAX: | Job | 240022 REV 1 | $\begin{gathered} \text { Page } \\ \\ 6 \text { of } 32 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Fortland (CT-1680) | Date 15:03:20 02/13/24 |
|  | Client | BST Management, LLC | Designed by treed |


| Tower Elevation | Calc K <br> Single Angles | Calc K Solid Rounds | Legs | $K$ Factors ${ }^{\text {I }}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} X \\ \text { Brace } \end{gathered}$ | $\begin{gathered} K \\ \text { Brace } \end{gathered}$ | $\begin{aligned} & \text { Single } \\ & \text { Diags } \end{aligned}$ | Girts | Horiz. | Sec. Horiz. | Inner <br> Brace |
|  |  |  |  | Diags | Diags |  |  |  |  |  |
|  |  |  |  | $\boldsymbol{X}$ | X | $X$ | $X$ | X | $\underset{Y}{X}$ | $\underset{Y}{X}$ |
| $f$ |  |  |  | $Y$ |
| 90.33-78.06 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T2 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 78.06-74.56 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T3 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 74.56-72.31 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T4 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | , |
| 72.31-67.56 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T5 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 67.56-65.44 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T6 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 65.44-57.52 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T7 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 57.52-50.27 |  |  |  | 1 | 1 |  | 1 | 1 | 1 | 1 |
| T8 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 50.27-41.98 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T9 | No | No | 1 | , | 1 | 1 | 1 | 1 | 1 | 1 |
| 41.98-34.19 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T10 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 34.19-26.90 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T11 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 26.90-20.10 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T12 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 20.10-13.42 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T13 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 13.42-6.71 |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| T14 6.71-0.00 | No | No | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

${ }^{7}$ Note: $K$ factors are applied to member segment lengths. $K$-braces without inner supporting members will have the $K$ factor in the out-of-plane direction applied to the overall length.

Tower Section Geometry (cont'd)

| Tower Elevation $f t$ | Leg |  | Diagonal |  | Top Girt |  | Bottom Girt |  | Mid Girt |  | Long Horizontal |  | Short Horizontal |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Net Width Deduct in | $U$ | Net Width Deduct in |  | Net Width Deduct in |  | Net Width Deduct in | $U$ |
| T1 90.33-78.06 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T2 78.06-74.56 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T3 74.56-72.31 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T4 72.31-67.56 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T5 67.56-65.44 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T6 65.44-57.52 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T7 57.52-50.27 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T8 50.27-41.98 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T9 41.98-34.19 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T10 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| $\begin{gathered} \text { 34.19-26.90 } \\ \text { T11 } \end{gathered}$ | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| $\begin{gathered} 26.90-20.10 \\ \mathrm{~T} 12 \\ 20.10-13.42 \end{gathered}$ | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A | Job |  | $\text { Page } 7 \text { of } 32$ |
| :---: | :---: | :---: | :---: |
|  | 240022 REV 1 |  |  |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \\ \hline \end{array}$ |
| Denver, CO 80221 Phone: (866) $386-7622$ FAX: | Client | BST Management, LLC | Designed by treed |


| Tower Elevation $f t$ | Leg |  | Diagonal |  | Top Girt |  | Bottom Girt |  | Mid Girt |  | Long Horizontal |  | Short Horizontal |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Net Width Deduct in | $U$ | Net Width Deduct in |  | Net Width Deduct in |  | $\begin{gathered} \text { Net } \\ \text { Width } \\ \text { Deduct } \\ \text { in } \\ \hline \end{gathered}$ | $U$ | $\begin{gathered} \text { Net } \\ \text { Width } \\ \text { Deduct } \\ \text { in } \\ \hline \end{gathered}$ | $U$ | Net Width Deduct in | $U$ |  | U |
| T13 13.42-6.71 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T14 6.71-0.00 | 0.0000 | 1 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |


| $\begin{gathered} \text { Tower } \\ \text { Elevation } \\ f t \end{gathered}$ | Redundant Horizontal |  | Redundant Diagonal |  | Redundant Sub-Diagonal |  | $\begin{gathered} \text { Redundant } \\ \text { Sub-Horizontal } \end{gathered}$ |  | Redundant Vertical |  | Redundant Hip |  | Redundant Hip Diagonal |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Net Width Deduct in | $U$ | Net Width Deduct in |  | Net Width Deduct in |  |  | $U$ |  | U |  | $U$ | Net Width Deduct in | $U$ |
| T1 90.33-78.06 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T2 78.06-74.56 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T3 74.56-72.31 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T4 72.31-67.56 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T5 67.56-65.44 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T6 65.44-57.52 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T7 57.52-50.27 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T8 50.27-41.98 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T9 41.98-34.19 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| $\begin{gathered} \text { T10 } \\ 34.19-26.90 \end{gathered}$ | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| $\begin{gathered} \mathrm{T11} \\ 26.90-20.10 \end{gathered}$ | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| $\begin{gathered} \mathrm{T} 12 \\ 20.10-13.42 \end{gathered}$ | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T13 13.42-6.71 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |
| T14 6.71-0.00 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 | 0.0000 | 0.75 |

Tower Section Geometry (cont'd)

| Tower Elevation | Connection Offsets |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diagonal |  |  |  | K-Bracing |  |  |  |
|  | $\begin{gathered} \text { Vert. } \\ \text { Top } \end{gathered}$ | $\begin{gathered} \text { Horiz. } \\ \text { Top } \end{gathered}$ | $\begin{aligned} & \text { Vert. } \\ & \text { Bot. } \end{aligned}$ | Horiz. Bot. | $\begin{aligned} & \text { Vert. } \\ & \text { Top } \end{aligned}$ | Horiz. Top | Vert. <br> Bot. | Horiz. Bot. |
| $f$ | in |
| T1 90.33-78.06 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| T2 78.06-74.56 | 4.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| T3 74.56-72.31 | 0.0000 | 0.0000 | 3.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| T4 72.31-67.56 | 4.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| T5 67.56-65.44 | 0.0000 | 0.0000 | 3.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| T6 65.44-57.52 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| T7 57.52-50.27 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| T8 50.27-41.98 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| T9 41.98-34.19 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| $\begin{gathered} \text { T10 } \\ 3419-2690 \end{gathered}$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| $\begin{gathered} \text { T11 } \\ 26.90-20.10 \end{gathered}$ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & 8 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Tower Elevation | Connection Offsets |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diagonal |  |  |  | K-Bracing |  |  |  |
|  | Vert. <br> Top | Horiz. Top | Vert. Bot. | Horiz. Bot. | Vert. <br> Top | Horiz. Top | Vert. <br> Bot. | Horiz. Bot. |
| $f t$ | in |
| T12 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 20.10-13.42 |  |  |  |  |  |  |  |  |
| T13 13.42-6.71 | 0.0000 | 0.0000 | 5.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| T14 6.71-0.00 | 0.0000 | 0.0000 | 5.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

## Tower Section Geometry (cont'd)

| Tower Elevation $f t$ | Leg Connection Type | Leg |  | Diagonal |  | Top Girt |  | Bottom Girt |  | Mid Girt |  | Long Horizontal |  | Short Horizontal |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Boll Size in | No. | Bolt Size in | No. | Bolt Size in | No. | Bolt Size in |  | Bolt Size in |  | Bolt Size in | No. | Bolt Size in | No. |
| T1 90.33-78.06 | Sleeve DS | 0.6250 | 12 | 0.6240 | 1 | 0.6250 | 1. | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  |  | A307 |  | A325N |  | A325N |  | A325N |  | A 325 N |  | A325N |  | A325N |  |
| T2 78.06-74.56 | Flange | 0.7500 | 0 | 0.5410 | 2 | 0.6250 | 2 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 3 | 0.6250 | 0 |
|  |  | A307 |  | A325N |  | A325N |  | A325N |  | A 325 N |  | A325N |  | A325N |  |
| T3 74.56-72.31 | Flange | 0.7500 | 0 | 0.5410 | 2 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 3 | 0.6250 | 0 |
|  |  | A307 |  | A325N |  | A325N |  | A325N |  | A 325 N |  | A 325 N |  | A325N |  |
| T4 72.31-67.56 | Flange | 0.7500 | 0 | 0.5410 | 2 | 0.6250 | 3 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 3 | 0.6250 | 0 |
|  |  | A307 |  | A325N |  |
| T5 67.56-65.44 | Flange | 0.7500 | 0 | 0.5410 | 2 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 3 | 0.6250 | 0 |
|  |  | A307 |  | A325N |  |
| T6 65.4457.52 | Flange | 0.7500 | 0 | 0.5410 | 2 | 0.6250 | 0 | 0.6250 | 3 | 0.6250 | 0 | 0.6250 | 3 | 0.6250 | 0 |
|  |  | A307 |  | A325N |  | A325N |  | A325N |  | A 325 N |  | A325N |  | A325N |  |
| T7 57.52-50.27 | Flange | 0.7500 | 0 | 0.5410 | 2 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  |  | A307 |  | A325N |  | A 325 N |  | A325N |  | A 325 N |  | A325N |  | A325N |  |
| T8 50.27-41.98 | Sleeve DS | 0.6250 | 12 | 0.5410 | 2 | 0.6250 | 3 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  |  | A307 |  | A325N |  | A 325 N |  | A325N |  | A 325 N |  | A325N |  | A325N |  |
| T9 41.98-34.19 | Flange | 0.7500 | 0 | 0.5410 | 2 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  |  | A307 |  | A325N |  |
| T10 | Flange | 0.7500 | 0 | 0.5410 | 2 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
| 34.19-26.90 |  | A 307 |  | A325N |  | A 325 N |  |
| T11 | Flange | 0.7500 | 0 | 0.5410 | 2 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
| 26.90-20.10 |  | A 307 |  | A 325 N |  | A 325 N |  | A325N |  | A325N |  | A325N |  | A325N |  |
| T12 | Sleeve DS | 0.6250 | 12 | 0.5410 | 2 | 0.6250 | 1 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
| 20.10-13.42 |  | A 307 |  | A 32.5 N |  | A 325 N |  | A325N |  | A325N |  | A325N |  | A325N |  |
| T13 13.42-6.71 | Flange | 0.7500 | 0 | 0.5410 | 2 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 1 | $0.6250$ | 0 |
|  |  | A307 |  | A325N |  | $\mathrm{A} 325 \mathrm{~N}$ |  |
| T14 6.71-0.00 | Flange | $\begin{aligned} & 0.7500 \\ & \text { A307 } \end{aligned}$ | 0 | $\begin{array}{r} 0.5410 \\ \text { A325N } \end{array}$ | 2 | $\begin{aligned} & 0.6250 \\ & \mathrm{~A} 325 \mathrm{~N} \end{aligned}$ | 0 | $\begin{aligned} & 0.6250 \\ & \mathrm{~A} 325 \mathrm{~N} \end{aligned}$ | 0 | $\begin{aligned} & 0.6250 \\ & \mathrm{~A} 325 \mathrm{~N} \end{aligned}$ | 0 | $\begin{array}{r} 0.6250 \\ \text { A325N } \\ \hline \end{array}$ | 1 | $\begin{aligned} & 0.6250 \\ & \mathrm{~A} 325 \mathrm{~N} \end{aligned}$ | 0 |

Tower Section Geometry (cont'd)

| thxTOWer | Job | Page |  |
| :---: | :--- | :--- | :--- |
|  | 240022 REV 1 | Project | Portland (CT-1680) |


| Tower Elevation $f t$ | Redundant Horizontal |  | Redundant Diagonal |  | Redundant Sub-Diagonal |  | Redundant Sub-Horizontal |  | Redundant Vertical |  | Redundant Hip |  | Redrmdant Hip Diagonal |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bolt Size in | No. |
| T1 90.33-78.06 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A325N |  | A 325 N |  | A325N |  |
| T2 78.06-74.56 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A325N |  | A 325 N |  | A325N |  | A325N |  | A325N |  | A325N |  | A 325 N |  |
| T3 74.56-72.31 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A325N |  | A 325 N |  |
| T4 72.31-67.56 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A325N |  |
| T5 67.56-65.44 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A325N |  | A 325 N |  | A.325N |  |
| T6 65.44-57.52 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A325N |  |
| T7 57.52-50.27 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A 325 N |  | A325N |  | A 325 N |  |
| T8 50.27-41.98 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A 325 N |  | A325N |  | A325N |  | A 325 N |  | A325N |  | A325N |  | A325N |  |
| T9 41.98-34.19 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A325N |  | A 325 N |  |
| T10 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
| 34.19-26.90 | A325N |  | A325N |  | A325N |  | A325N |  | A 325 N |  | A325N |  | A 325 N |  |
| T11 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
| 26.90-20.10 | A325N |  |
| T12 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
| 20.10-13.42 | A325N |  |
| T13 13.42-6.71 | 0.5000 | 1 | 0.5000 | 1 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A325N |  |
| T14 6.71-0.00 | 0.5000 | 1 | 0.5000 | 1 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 | 0.6250 | 0 |
|  | A325N |  |

Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | Allow Shield | Exclude From Torque Calculation | Component Type | Placement <br> $f$ | Face Offset in | Lateral Offset (Frac FW) | \# | $\begin{gathered} \# \\ \text { Per } \end{gathered}$ Row | $\begin{aligned} & \text { Clear } \\ & \text { Spacing } \\ & \text { in } \end{aligned}$ | Width or Diameter in | Perimeter in | Weight plf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ***Leg A AZ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 Deg*** |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Feedline | C | No | No | Af (CaAa) | 77.00-0.00 | 0.0000 | 0 | 2 | 2 | 24.0000 | 2.0000 |  | 4.20 |
| Ladder (Af) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LDF5-50A | C | No | No | $\mathrm{Ar}(\mathrm{CaAa})$ | 76.70-0.00 | 0.0000 | 0.01 | 6 | 6 | 1.0900 | 1.0900 |  | 0.33 |
| (7/8 FOAM) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| (AT\&T) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.92" DC | C | No | No | $\mathrm{Ar}(\mathrm{CaAa})$ | 76.70-0.00 | 0.0000 | -0.07 | 3 | 3 | 0.9200 | 0.9200 |  | 0.42 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3/8" Fiber | C | No | No | Ar (CaAa) | 76.70-0.00 | 0.0000 | 0.07 | 1 | 1 | 0.3750 | 0.3750 |  | 0.10 |
| (AT\&T) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1/2" Fiber | C | No | No | Ar (CaAa) | 76.70-0.00 | 0.0000 | 0.075 | 1 | 1 | 0.5000 | 0.5000 |  | 0.10 |
| (AT\&T) 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3/4" OD | C | No | No | Ar (CaAa) | 76.70-0.00 | 0.0000 | 0.12 | 4 | 2 | 0.7500 | 0.7500 |  | 0.40 |
| (AT\&T) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1" Conduit | C | No | No | $\mathrm{Ar}(\mathrm{CaAa})$ | 48.00-0.00 | 0.0000 | 0.25 | 1 | 1 | 1.0000 | 1.0000 |  | 0.75 |
| $5 / 16^{\prime \prime}$ OD | D | No | No | $\mathrm{Ar}(\mathrm{CaAa})$ | 48.00 - | -4.0000 | 0.25 | 1 | 1 | 0.3125 | 0.3125 |  | 2.00 |
| (dead) |  |  |  |  | $50.00$ |  |  |  |  |  |  |  | 2.00 |


| thx TOWer | Job | Page |  |
| :---: | :--- | ---: | :--- |
|  | Project | 240022 REV 1 | Portland (CT-1680) |


| Description | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | Allow Shield | Exclude From Torque Calculation | Component Type | Placement <br> $f t$ | Face Offset in | Lateral Offset <br> (Frac FW) | \# | $\begin{gathered} \# \\ \text { Per } \\ \text { Row } \end{gathered}$ | Clear Spacing in | Width or Diameter in | Perimeter <br> in | Weight plf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 1-5 / 16^{\prime \prime} \text { OD } \\ \text { (dead) } \end{gathered}$ | D | No | No | $\mathrm{Ar}(\mathrm{CaAa})$ | 54.00-0.00 | 0.0000 | 0.5 | 1 | 1 | 1.3125 | 1.3125 |  | 1.00 |
| Safety Line 3/8 ***** | C | No | No | $\mathrm{Ar}(\mathrm{CaAa})$ | 90.33-0.00 | 0.0000 | 0.5 | 1 | 1 | 0.3750 | 0.3750 |  | 0.22 |
| $6 \times 12$ HCS <br> (Verizon) | D | No | No | $\mathrm{Ar}(\mathrm{CaAa})$ | 90.00-0.00 | 0.0000 | -0.4 | 2 | 2 | 1.5400 | 1.5400 |  | 1.70 |

Feed Line/Linear Appurtenances Section Areas

| Tower <br> Section | Tower Elevation $f t$ | Face | $A_{R}$ $f^{2}$ | $A_{F}$ $f^{2}$ | $C_{A} A_{A}$ In Face $f^{2}$ | $\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ f^{2} \end{gathered}$ | Weight lb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T1 | 90.33-78.06 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 0.460 | 0.000 | 2.70 |
|  |  | D | 0.000 | 0.000 | 3.677 | 0.000 | 40.59 |
| T2 | 78.06-74.56 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 4.571 | 0.000 | 31.98 |
|  |  | D | 0.000 | 0.000 | 1.078 | 0.000 | 11.90 |
| T3 | 74.56-72.31 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 4.549 | 0.000 | 30.70 |
|  |  | D | 0.000 | 0.000 | 0.693 | 0.000 | 7.65 |
| T4 | 72.31-67.56 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 9.603 | 0.000 | 64.82 |
|  |  | D | 0.000 | 0.000 | 1.463 | 0.000 | 16.15 |
| T5 | 67.56-65.44 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 4.296 | 0.000 | 29.00 |
|  |  | D | 0.000 | 0.000 | 0.654 | 0.000 | 7.22 |
| T6 | 65.44-57.52 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 16.006 | 0.000 | 108.03 |
|  |  | D | 0.000 | 0.000 | 2.438 | 0.000 | 26.92 |
| T7 | 57.52-50.27 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 14.657 | 0.000 | 98.93 |
|  |  | D | 0.000 | 0.000 | 2.722 | 0.000 | 28.38 |
| T8 | 50.27-41.98 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 17.366 | 0.000 | 117.67 |
|  |  | D | 0.000 | 0.000 | 3.705 | 0.000 | 40.48 |
| T9 | 41.98-34.19 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 16.532 | 0.000 | 112.17 |
|  |  | D | 0.000 | 0.000 | 3.423 | 0.000 | 34.28 |
| T10 | 34.19-26.90 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 15.471 | 0.000 | 104.97 |
|  |  | D | 0.000 | 0.000 | 3.203 | 0.000 | 32.08 |
| T11 | 26.90-20.10 | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 14.410 | 0.000 | 97.78 |


| tnxTower <br> Structural Components, LLC 1870 West 64 th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 FAX: | Job |  | $\begin{aligned} & \text { Page } \\ & \\ & 11 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Tower <br> Section | Tower <br> Elevation <br> $f$ | Face | $A_{R}$ | $A_{F}$ | $C_{A} A_{A}$ <br> In Face | $C_{A} A_{A}$ <br> Out Face | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $f^{2}$ | $f^{2}$ | $f^{2}$ | $f^{2}$ | lb |
|  |  | D | 0.000 | 0.000 | 2.983 | 0.000 | 29.88 |
| T12 | $20.10-13.42$ | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 14.190 | 0.000 | 96.28 |
| T13 |  | D | 0.000 | 0.000 | 2.938 | 0.000 | 29.43 |
|  | $13.42-6.71$ | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C14 | 0.000 | 0.000 | 14.231 | 0.000 | 96.56 |
|  |  | D | 0.000 | 0.000 | 2.946 | 0.000 | 29.51 |
|  | $6.71-0.00$ | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 14.231 | 0.000 | 96.56 |
|  |  | D | 0.000 | 0.000 | 2.946 | 0.000 | 29.51 |

Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower <br> Section | Tower Elevation ft | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | Ice Thickness in | $A_{R}$ $f^{2}$ | $A_{F}$ $f^{2}$ | $C_{A} A_{A}$ In Face $f^{2}$ | $\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ {f t^{2}}^{2} \end{gathered}$ | Weight <br> lb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T1 | 90.33-78.06 | A | 1.098 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 3.155 | 0.000 | 26.95 |
|  |  | D |  | 0.000 | 0.000 | 11.599 | 0.000 | 127.61 |
| T2 | 78.06-74.56 | A | 1.087 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 12.238 | 0.000 | 124.42 |
|  |  | D |  | 0.000 | 0.000 | 3.388 | 0.000 | 37.16 |
| T3 | 74.56-72.31 | A | 1.083 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 12.153 | 0.000 | 122.52 |
|  |  | D |  | 0.000 | 0.000 | 2.175 | 0.000 | 23.82 |
| T4 | 72.31-67.56 | A | 1.078 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 25.606 | 0.000 | 257.55 |
|  |  | D |  | 0.000 | 0.000 | 4.583 | 0.000 | 50.12 |
| T5 | 67.56-65.44 | A | 1.073 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 11.432 | 0.000 | 114.71 |
|  |  | D |  | 0.000 | 0.000 | 2.046 | 0.000 | 22.34 |
| T6 | 65.44-57.52 | A | 1.064 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 42.461 | 0.000 | 424.44 |
|  |  | D |  | 0.000 | 0.000 | 7.601 | 0.000 | 82.78 |
| T7 | 57.52-50.27 | A | 1.050 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 38.684 | 0.000 | 384.26 |
|  |  | D |  | 0.000 | 0.000 | 8.199 | 0.000 | 90.14 |
| T8 | 50.27-41.98 | A | 1.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 45.824 | 0.000 | 453.63 |
|  |  | D |  | 0.000 | 0.000 | 11.032 | 0.000 | 125.26 |
| T9 | 41.98-34.19 | A | 1.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 43.382 | 0.000 | 426.20 |
|  |  | D |  | 0.000 | 0.000 | 9.954 | 0.000 | 109.09 |
| T10 | 34.19-26.90 | A | 0.992 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 40.246 | 0.000 | 391.36 |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Tower Section | Tower Elevation $f t$ | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | Ice Thickness in | $A_{R}$ $f^{2}$ | $A_{F}$ $f^{7}$ | $C_{A} A_{A}$ In Face $f^{2}$ | $\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ f^{2} \end{gathered}$ | Weight <br> lb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T11 | 26.90-20.10 | D | 0.967 | 0.000 | 0.000 | 9.228 | 0.000 | 100.35 |
|  |  | A |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  | 20.10-13.42 | C | 0.934 | 0.000 | 0.000 | 37.106 | 0.000 | 356.54 |
| T12 |  | D |  | 0.000 | 0.000 | 8.501 | 0.000 | 91.61 |
|  |  | A |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 36.070 | 0.000 | 341.38 |
| T13 | 13.42-6.71 | D | 0.888 | 0.000 | 0.000 | 8.256 | 0.000 | 87.94 |
|  |  | A |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
| T14 | 6.71-0.00 | C | 0.796 | 0.000 | 0.000 | 35.496 | 0.000 | 328.58 |
|  |  | D |  | 0.000 | 0.000 | 8.112 | 0.000 | 84.98 |
|  |  | A |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 34.148 | 0.000 | 302.15 |
|  |  | D |  | 0.000 | 0.000 | 7.780 | 0.000 | 78.78 |

Feed Line Center of Pressure

| Section | Elevation | $C P_{X}$ | $C P_{Z}$ | $C P_{X}$ <br> Ice <br> in | $C P_{Z}$ <br> Ice <br> in |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T1 | ft | in | in | $20.33-78.06$ | 1.4277 |
| T2 | $78.06-74.56$ | 2.7626 | 1.2043 | 3.6056 | 2.9720 |
| T3 | $74.56-72.31$ | 3.1920 | 0.9732 | 5.9068 | 1.8610 |
| T4 | $72.31-67.56$ | 3.7135 | 0.9794 | 4.9996 | 1.2167 |
| T5 | $67.56-65.44$ | 2.3399 | 0.6493 | 7.9591 | 1.8220 |
| T6 | $65.44-57.52$ | 4.9646 | 1.2717 | 1.9241 | 0.5003 |
| T7 | $57.52-50.27$ | 5.0162 | 1.7458 | 10.8230 | 2.3454 |
| T8 | $50.27-41.98$ | 4.6827 | 2.1503 | 10.5243 | 3.1358 |
| T9 | $41.98-34.19$ | 5.6369 | 2.5305 | 12.3747 | 4.0324 |
| T10 | $34.19-26.90$ | 5.9797 | 2.6998 | 13.0637 | 4.8809 |
| T11 | $26.90-20.10$ | 6.2439 | 2.8346 | 13.5615 | 5.0672 |
| T12 | $20.10-13.42$ | 5.5037 | 2.5544 | 12.3642 | 4.7105 |
| T13 | $13.42-6.71$ | 5.8564 | 2.7208 | 12.9968 | 4.9381 |
| T14 | $6.71-0.00$ | 5.5916 | 2.6253 | 12.0543 | 4.6085 |

## Shielding Factor Ka

| Tower <br> Section | Feed Line <br> Record No. | Description | Feed Line Segment Elev. | $\begin{gathered} K_{o} \\ \text { No Ice } \end{gathered}$ | $\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T1 | 14 | Safety Line 3/8 | 78.06-90.33 | 0.6000 | 0.6000 |
| T1 | 16 | 6×12 HCS | 78.06-90.00 | 0.6000 | 0.6000 |
| T2 | 2 | Feedline Ladder (Af) | 74.56-77.00 | 0.6000 | 0.5038 |
| T2 | 5 | LDF5-50A (7/8 FOAM) | 74.56-76.70 | 0.6000 | 0.5038 |
| T2 | 6 | $0.92^{\text { }} \mathrm{DC}$ | 74.56-76.70 | 0.6000 | 0.5038 |
| T2 | 7 | 3/8 ${ }^{11}$ Fiber | 74.56-76.70 | 0.6000 | 0.5038 |
| T2 | 8 | 1/2" Fiber | 74.56-76.70 | 0.6000 | 0.5038 |
| T2 | 10 | $3 / 4^{\prime \prime}$ OD | 74.56-76.70 | 0.6000 | 0.5038 |
| T2 | 14 | Safety Line 3/8 | 74.56-78.06 | 0.6000 | 0.5038 |


| tnxTower | Job |  | $\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Structural Components, LLC 1870 West 64th Lane, Unit A | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
| Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Client | BST Management, LLC | Designed by treed |


| Tower Section | Feed Line Record No. | Description | Feed Line Segment Elev. | $\begin{gathered} K_{a} \\ \text { No Ice } \end{gathered}$ | $\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T2 | 16 | 6x12 HCS | 74.56-78.06 | 0.6000 | 0.5038 |
| T3 | 2 | Feedline Ladder (Af) | 72.31-74.56 | 0.5973 | 0.3629 |
| T3 | 5 | LDF5-50A (7/8 FOAM) | 72.31-74.56 | 0.5973 | 0.3629 |
| T3 | 6 | $0.92^{\prime \prime} \mathrm{DC}$ | 72.31-74.56 | 0.5973 | 0.3629 |
| T3 | 7 | 3/8 ${ }^{\text {n }}$ Fiber | 72.31-74.56 | 0.5973 | 0.3629 |
| T3 | 8 | 1/2" Fiber | 72.31-74.56 | 0.5973 | 0.3629 |
| T3 | 10 | $3 / 4^{\prime \prime}$ OD | 72.31-74.56 | 0.5973 | 0.3629 |
| T3 | 14 | Safety Line 3/8 | 72.31-74.56 | 0.5973 | 0.3629 |
| T3 | 16 | $6 \times 12 \mathrm{HCS}$ | 72.31-74.56 | 0.5973 | 0.3629 |
| T4 | 2 | Feedline Ladder (Af) | 67.56-72.31 | 0.6000 | 0.5315 |
| T4 | 5 | LDF5-50A (7/8 FOAM) | 67.56-72.31 | 0.6000 | 0.5315 |
| T4 | 6 | 0.92" DC | 67.56-72.31 | 0.6000 | 0.5315 |
| T4 | 7 | 3/8" Fiber | 67.56-72.31 | 0.6000 | 0.5315 |
| T4 | 8 | 1/2" Fiber | 67.56-72.31 | 0.6000 | 0.5315 |
| T4 | 10 | $3 / 4$ " OD | 67.56-72.31 | 0.6000 | 0.5315 |
| T4 | 14 | Safety Line 3/8 | 67.56-72.31 | 0.6000 | 0.5315 |
| T4 | 16 | $6 \times 12 \mathrm{HCS}$ | 67.56-72.31 | 0.6000 | 0.5315 |
| T5 | 2 | Feedline Ladder (Af) | 65.44-67.56 | 0.4832 | 0.1706 |
| T5 | 5 | LDF5-50A (7/8 FOAM) | 65.44-67.56 | 0.4832 | 0.1706 |
| T5 | 6 | 0.92" DC | 65.44-67.56 | 0.4832 | 0.1706 |
| T5 | 7 | 3/8" Fiber | 65.44-67.56 | 0.4832 | 0.1706 |
| T5 | 8 | $1 / 2^{\text {n }}$ Fiber | 65.44-67.56 | 0.4832 | 0.1706 |
| T5 | 10 | $3 / 4^{\prime \prime}$ OD | 65.44-67.56 | 0.4832 | 0.1706 |
| T5 | 14 | Safety Line 3/8 | 65.44-67.56 | 0.4832 | 0.1706 |
| T5 | 16 | $6 \times 12 \mathrm{HCS}$ | 65.44-67.56 | 0.4832 | 0.1706 |
| T6 | 2 | Feedline Ladder (Af) | 57.52-65.44 | 0.6000 | 0.6000 |
| T6 | 5 | LDF5-50A (7/8 FOAM) | 57.52-65.44 | 0.6000 | 0.6000 |
| T6 | 6 | $0.92{ }^{\text {² }} \mathrm{DC}$ | 57.52-65.44 | 0.6000 | 0.6000 |
| T6 | 7 | 3/8" Fiber | 57.52-65.44 | 0.6000 | 0.6000 |
| T6 | 8 | 1/2" Fiber | 57.52-65.44 | 0.6000 | 0.6000 |
| T6 | 10 | 3/4" OD | 57.52-65.44 | 0.6000 | 0.6000 |
| T6 | 14 | Safety Line 3/8 | 57.52-65.44 | 0.6000 | 0.6000 |
| T6 | 16 | $6 \times 12$ HCS | 57.52-65.44 | 0.6000 | 0.6000 |
| T7 | 2 | Feedline Ladder (Af) | 50.27-57.52 | 0.6000 | 0.6000 |
| T7 | 5 | LDF5-50A (7/8 FOAM) | 50.27-57.52 | 0.6000 | 0.6000 |
| T7 | 6 | 0.92" DC | 50.27-57.52 | 0.6000 | 0.6000 |
| T7 | 7 | 3/8" Fiber | 50.27-57.52 | 0.6000 | 0.6000 |
| T7 | 8 | 1/2" Fiber | 50.27-57.52 | 0.6000 | 0.6000 |
| T7 | 10 | 3/4" OD | 50.27-57.52 | 0.6000 | 0.6000 |
| T7 | 13 | 1-5/16" OD | 50.27-54.00 | 0.6000 | 0.6000 |
| T7 | 14 | Safety Line 3/8 | 50.27-57.52 | 0.6000 | 0.6000 |
| T7 | 16 | $6 \times 12 \mathrm{HCS}$ | 50.27-57.52 | 0.6000 | 0.6000 |
| T8 | 2 | Feedline Ladder (Af) | 41.98-50.27 | 0.6000 | 0.6000 |
| T8 | 5 | LDF5-50A (7/8 FOAM) | 41.98-50.27 | 0.6000 | 0.6000 |
| T8 | 6 | 0.92" DC | 41.98-50.27 | 0.6000 | 0.6000 |
| T8 | 7 | 3/8" Fiber | 41.98-50.27 | 0.6000 | 0.6000 |
| T8 | 8 | 1/2" Fiber | 41.98-50.27 | 0.6000 | 0.6000 |
| T8 | 10 | $3 / 4^{\text {I }} \mathrm{OD}$ | 41.98-50.27 | 0.6000 | 0.6000 |
| T8 | 11 | 1" Conduit | 41.98-48.00 | 0.6000 | 0.6000 |
| T8 | 12 | $5 / 16^{\prime \prime}$ OD | 48.00-50.00 | 0.6000 | 0.6000 |
| T8 | 13 | 1-5/16 ${ }^{\prime \prime}$ OD | 41.98-50.27 | 0.6000 | 0.6000 |
| T8 | 14 | Safety Line 3/8 | 41.98-50.27 | 0.6000 | 0.6000 |
| T8 | 16 | $6 \times 12 \mathrm{HCS}$ | 41.98-50.27 | 0.6000 | 0.6000 |
| T9 | 2 | Feedline Ladder (Af) | 34.19-41.98 | 0.6000 | 0.6000 |
| T9 | 5 | LDF5-50A (7/8 FOAM) | 34.19-41.98 | 0.6000 | 0.6000 |
| T9 | 6 | $0.92^{\prime \prime} \mathrm{DC}$ | 34.19-41.98 | 0.6000 | 0.6000 |
| T9 | 7 | 3/8' ${ }^{\text {n }}$ Fiber | 34.19-41.98 | 0.6000 | 0.6000 |
| T9 | 8 | 1/2" Fiber | 34.19-41.98 | 0.6000 | 0.6000 |
| T9 | 10 | $3 / 4^{\prime \prime}$ OD | 34.19-41.98 | 0.6000 | 0.6000 |
| T9 | 11 | 1 1' Conduit | 34.19-41.98 | 0.6000 | 0.6000 |
| T9 | 13 | 1-5/16" OD | 34.19-41.98 | 0.6000 | 0.6000 |
| T9 | 14 | Safety Line 3/8 | 34.19-41.98 | 0.6000 | 0.6000 |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:03:20 02/13/24 } \\ \hline \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Tower Section | Feed Line Record No. | Description | Feed Line Segment Elev. | $\begin{gathered} K_{a} \\ \text { No Ice } \\ \hline \end{gathered}$ | $\begin{gathered} K_{a} \\ \text { Ice } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T9 | 16 | 6x12 HCS | 34.19-41.98 | 0.6000 | 0.6000 |
| T10 | 2 | Feedline Ladder (Af) | 26.90-34.19 | 0.6000 | 0.6000 |
| T10 | 5 | LDF5-50A (7/8 FOAM) | 26.90-34.19 | 0.6000 | 0.6000 |
| T10 | 6 | 0.92" DC | 26.90-34.19 | 0.6000 | 0.6000 |
| T10 | 7 | 3/8" Fiber | 26.90-34.19 | 0.6000 | 0.6000 |
| T10 | 8 | 1/2" Fiber | 26.90-34.19 | 0.6000 | 0.6000 |
| T10 | 10 | 3/4" OD | 26.90-34.19 | 0.6000 | 0.6000 |
| T10 | 11 | 1" Conduit | 26.90-34.19 | 0.6000 | 0.6000 |
| T10 | 13 | 1-5/16" OD | 26.90-34.19 | 0.6000 | 0.6000 |
| T10 | 14 | Safety Line 3/8 | 26.90-34.19 | 0.6000 | 0.6000 |
| T10 | 16 | $6 \times 12 \mathrm{HCS}$ | 26.90-34.19 | 0.6000 | 0.6000 |
| T11 | 2 | Feedline Ladder (Af) | 20.10-26.90 | 0.6000 | 0.6000 |
| T11 | 5 | LDF5-50A (7/8 FOAM) | 20.10-26.90 | 0.6000 | 0.6000 |
| T11 | 6 | 0.92" DC | 20.10-26.90 | 0.6000 | 0.6000 |
| T11 | 7 | $3 / 8^{\text {n }}$ Fiber | 20.10-26.90 | 0.6000 | 0.6000 |
| T11 | 8 | 1/2" Fiber | 20.10-26.90 | 0.6000 | 0.6000 |
| T11 | 10 | 3/4" OD | 20.10-26.90 | 0.6000 | 0.6000 |
| T11 | 11 | 1" Conduit | 20.10-26.90 | 0.6000 | 0.6000 |
| T11 | 13 | 1-5/16" OD | 20.10-26.90 | 0.6000 | 0.6000 |
| T11 | 14 | Safety Line 3/8 | 20.10-26.90 | 0.6000 | 0.6000 |
| T11 | 16 | $6 \times 12 \mathrm{HCS}$ | 20.10-26.90 | 0.6000 | 0.6000 |
| T12 | 2 | Feedline Ladder (Af) | 13.42-20.10 | 0.6000 | 0.6000 |
| T12 | 5 | LDF5-50A (7/8 FOAM) | 13.42-20.10 | 0.6000 | 0.6000 |
| T12 | 6 | 0.92" DC | 13.42-20.10 | 0.6000 | 0.6000 |
| T12 | 7 | 3/8 ${ }^{\text {n }}$ Fiber | 13.42-20.10 | 0.6000 | 0.6000 |
| T12 | 8 | 1/2" Fiber | 13.42-20.10 | 0.6000 | 0.6000 |
| T12 | 10 | 3/4" OD | 13.42-20.10 | 0.6000 | 0.6000 |
| T12 | 11 | 1" Conduit | 13.42-20.10 | 0.6000 | 0.6000 |
| T12 | 13 | 1-5/16" OD | 13.42-20.10 | 0.6000 | 0.6000 |
| T12 | 14 | Safety Line 3/8 | 13.42-20.10 | 0.6000 | 0.6000 |
| T12 | 16 | $6 \times 12 \mathrm{HCS}$ | 13.42-20.10 | 0.6000 | 0.6000 |
| T13 | 2 | Feedline Ladder (Af) | 6.71-13.42 | 0.6000 | 0.6000 |
| T13 | 5 | LDF5-50A (7/8 FOAM) | 6.71-13.42 | 0.6000 | 0.6000 |
| T13 | 6 | $0.92{ }^{\prime \prime} \mathrm{DC}$ | 6.71-13.42 | 0.6000 | 0.6000 |
| T13 | 7 | 3/8" Fiber | 6.71-13.42 | 0.6000 | 0.6000 |
| T13 | 8 | 1/2" Fiber | 6.71-13.42 | 0.6000 | 0.6000 |
| T13 | 10 | 3/4" OD | 6.71-13.42 | 0.6000 | 0.6000 |
| T13 | 11 | 1" Conduit | 6.71-13.42 | 0.6000 | 0.6000 |
| T13 | 13 | 1-5/16" OD | 6.71-13.42 | 0.6000 | 0.6000 |
| T13 | 14 | Safety Line 3/8 | 6.71-13.42 | 0.6000 | 0.6000 |
| T13 | 16 | $6 \times 12 \mathrm{HCS}$ | 6.71-13.42 | 0.6000 | 0.6000 |
| T14 | 2 | Feedline Ladder (Af) | 0.00-6.71 | 0.6000 | 0.6000 |
| T14 | 5 | LDF5-50A (7/8 FOAM) | 0.00-6.71 | 0.6000 | 0.6000 |
| T14 | 6 | $0.92{ }^{\prime \prime} \mathrm{DC}$ | 0.00-6.71 | 0.6000 | 0.6000 |
| T14 | 7 | 3/8 ${ }^{\text {n }}$ Fiber | 0.00-6.71 | 0.6000 | 0.6000 |
| T14 | 8 | 1/2" Fiber | 0.00-6.71 | 0.6000 | 0.6000 |
| T14 | 10 | $3 / 4^{\prime \prime} \mathrm{OD}$ | 0.00-6.71 | 0.6000 | 0.6000 |
| T14 | 11 | 1" Conduit | 0.00-6.71 | 0.6000 | 0.6000 |
| T14 | 13 | 1-5/16" OD | 0.00-6.71 | 0.6000 | 0.6000 |
| T14 | 14 | Safety Line 3/8 | 0.00-6.71 | 0.6000 | 0.6000 |
| T14 | 16 | $6 \times 12 \mathrm{HCS}$ | 0.00-6.71 | 0.6000 | 0.6000 |


| tnxTower <br> Structural Components, LLC | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | Date 15:03:20 02/13/24 |
| Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Client | BST Management, LLC | Designed by treed |


| Description | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | $\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$ | Offsets: <br> Horz <br> Lateral <br> Vert <br> $f t$ <br> $f t$ <br> $f t$ | Azimuth Adjustment <br> - | Placement |  | $C_{A} A_{A}$ <br> Front $f t^{2}$ | $C_{A} A_{A}$ Side <br> $f^{2}$ | Weight lb |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6^{1} \times 5 / 8$ " Lighting Rod | A | From Leg | 0.00 | 0.0000 | 90.50 | No Ice | 0.38 | 0.38 | 10.00 |
|  |  |  | 0.00 |  |  | $1 / 2^{\text {" }}$ Ice | 0.99 | 0.99 | 14.19 |
|  |  |  | *** |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NNH4-65B-R6 <br> (Verizon) | A | From Leg | 3.00 | 30.0000 | 90.00 | No Ice | 12.27 | 5.75 | 83.00 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 12.77 | 6.21 | 155.14 |
|  |  |  | 0.00 |  |  | 1" Ice | 13.27 | 6.67 | 233.92 |
| NNH4-65B-R6 <br> (Verizon) | B | From Leg | 3.00 | 60.0000 | 90.00 | No Ice | 12.27 | 5.75 | 83.00 |
|  |  |  | 0.00 |  |  | $1 / 2^{\text {n }}$ Ice | 12.77 | 6.21 | 155.14 |
|  |  |  | 0.00 |  |  | 1" Ice | 13.27 | 6.67 | 233.92 |
| NNH4-65B-R6 (Verizon) | D | From Leg | 3.00 | 0.0000 | 90.00 | No Ice | 12.27 | 5.75 | 83.00 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 12.77 | 6.21 | 155.14 |
|  |  |  | 0.00 |  |  | 1" Ice | 13.27 | 6.67 | 233.92 |
| RT4423 w/ RRU (Verizon) | A | From Leg | 3.00 | 30.0000 | 90.00 | No Ice | 0.87 | 0.43 | 18.70 |
|  |  |  | -5.00 |  |  | $1 / 2^{\prime \prime} \text { Ice }$ | 0.99 | 0.52 | 25.74 |
|  |  |  | 0.00 |  |  | 1 Ice | 1.11 | 0.61 | 34.59 |
| RT4423 w/ RRU (Verizon) | B | From Leg | 3.00 | 60.0000 | 90.00 | No Ice | 0.87 | 0.43 | 18.70 |
|  |  |  | -5.00 |  |  | 1/2" Ice | 0.99 | 0.52 | 25.74 |
|  |  |  | 0.00 |  |  | 1 " Ice | 1.11 | 0.61 | 34.59 |
| RT4423 w/ RRU (Verizon) | D | From Leg | 3.00 | 0.0000 | 90.00 | No Ice | 0.87 | 0.43 | 18.70 |
|  |  |  | -5.00 |  |  | $1 / 2^{\prime \prime}$ Ice | 0.99 | 0.52 | 25.74 |
|  |  |  | 0.00 |  |  | 1" Ice | 1.11 | 0.61 | 34.59 |
| MT6413-77A (Verizon) | A | From Leg | 3.00 | 30.0000 | 90.00 | No Ice | 3.78 | 1.46 | 57.30 |
|  |  |  | 5.00 |  |  | 1/2" Ice | 4.03 | 1.65 | 81.61 |
|  |  |  | 0.00 |  |  | 1"Ice | 4.29 | 1.84 | 109.36 |
| MT6413-77A. (Verizon) | B | From Leg | 3.00 | 60.0000 | 90.00 | No Ice | 3.78 | 1.46 | 57.30 |
|  |  |  | 5.00 |  |  | $1 / 2$ I' Ice | 4.03 | 1.65 | 81.61 |
|  |  |  | 0.00 |  |  | 1" Ice | 4.29 | 1.84 | 109.36 |
| $\begin{aligned} & \text { MT6413-77A } \\ & \text { (Verizon) } \end{aligned}$ | D | From Leg | 3.00 | 0.0000 | 90.00 | No Ice | 3.78 | 1.46 | 57.30 |
|  |  |  | 5.00 |  |  | $1 / 2^{\prime \prime}$ Ice | 4.03 | 1.65 | 81.61 |
|  |  |  | 0.00 |  |  | 1" Ice | 4.29 | 1.84 | 109.36 |
| RF4439d-25A (Full Frontal Shielding) (Verizon) | A | From Leg | 2.50 | 30.0000 | 90.00 | No Ice | 0.00 | 1.25 | 74.70 |
|  |  |  | 0.00 |  |  | $1 / 2^{\prime \prime}$ Ice | 0.00 | 1.39 | 93.02 |
|  |  |  | 0.00 |  |  | 1" Ice | 0.00 | 1.54 | 114.12 |
| RF4439d-25A (Full Frontal Shielding | B | From Leg | 2.50 | 60.0000 | 90.00 | No Ice | 0.00 | 1.25 | 74.70 |
|  |  |  | 0.00 |  |  | 1/2" Ise | 0.00 | 1.39 | 93.02 |
| (Verizon) |  |  | 0.00 |  |  | 1" Ice | 0.00 | 1.54 | 114.12 |
| RF4439d-25A (Full Frontal Shielding) | D | From Leg | 2.50 | 0.0000 | 90.00 | No Ice | 0.00 | 1.25 | 74.70 |
|  |  |  | 0.00 |  |  | $1 / 2^{\text {" }}$ Ice | 0.00 | 1.39 | 93.02 |
| (Verizon) |  |  | 0.00 |  |  | 1"Ice | 0.00 | 1.54 | 114.12 |
| RF4416d-13A (Full Frontal Shielding) | A | From Leg | 2.50 | 30.0000 | 90.00 | No Ice | 0.00 | 1.28 | 79.10 |
|  |  |  | 0.00 |  |  | $1 / 2^{\text {" }}$ Ice | 0.00 | 1.42 | 97.61 |
| (Verizon) |  |  | 0.00 |  |  | 1" Ice | 0.00 | 1.57 | 118.91 |
| RF4416d-13A (Full Frontal Shielding) | B | From Leg | 2.50 | 60.0000 | 90.00 | No Ice | 0.00 | 1.28 | 79.10 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 0.00 | 1.42 | 97.61 |
| (Verizon) |  |  | 0.00 |  |  | 1" Ice | 0.00 | 1.57 | 118.91 |
| RF4416d-13A (Full Frontal Shielding) | D | From Leg | 2.50 | 0.0000 | 90.00 | No Ice | 0.00 | 1.28 | 79.10 |
|  |  |  | 0.00 |  |  | $1 / 2^{\text {" }}$ Ice | 0.00 | 1.42 | 97.61 |
| (Verizon) |  |  | 0.00 |  |  | 1" Ice | 0.00 | 1.57 | 118.91 |
| FE-16148-OVP-B12 (Verizon) | A | From Leg | 1.00 | 30.0000 | 90.00 | No Ice | 1.87 | 1.07 | 15.21 |
|  |  |  | 0.00 |  |  | $1 / 2^{\text {n }}$ Ice | 2.04 | 1.20 | 31.51 |
|  |  |  | 0.00 |  |  | 1" Ice | 2.21 | 1.35 | 50.47 |
| (4) 2-3/8" $\times 8^{\prime}$ Pipe Mount (Verizon) | A | From Leg | 3.00 | 30.0000 | 90.00 | No Ice | 1.90 | 1.90 | 30.00 |
|  |  |  | 0.00 |  |  | 1/2" Ice | 2.73 | 2.73 | 44.37 |
|  |  |  | 0.00 |  |  | 1" Ice | 3.40 | 3.40 | 64.01 |
| (4) 2-3/8" $x 8^{\prime}$ Pipe Mount (Verizon) | B | From Leg | 3.00 | 60.0000 | 90.00 | No Ice | 1.90 | 1.90 | 30.00 |
|  |  |  | 0.00 |  |  | $1 / 2^{\text {n }}$ Ice | 2.73 | 2.73 | 44.37 |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front \(f t^{2}\) \& \(C_{A} A_{A}\)
Side

$f^{2}$ \& Weight

$l b$ <br>
\hline \multirow{4}{*}{(4) 2-3/8" x $8^{\prime}$ Pipe Mount (Verizon)} \& \multirow{4}{*}{D} \& \multirow{4}{*}{From Leg} \& 0.00 \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{90.00} \& $1^{\prime \prime}$ Ice \& 3.40 \& 3.40 \& 64.01 <br>
\hline \& \& \& 3.00 \& \& \& No Ice \& 1.90 \& 1.90 \& 30.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.73 \& 2.73 \& 44.37 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.40 \& 3.40 \& 64.01 <br>
\hline \multirow[t]{3}{*}{(3) SitePro VFA12-HD (Verizon)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 25.00 \& 25.00 \& 800.00 <br>
\hline \& \& \& \& \& \& $1 / 2^{\text {n }}$ Ice \& 37.00 \& 37.00 \& 1100.00 <br>
\hline \& \& \& \& \& \& 1"Ice \& 47.00 \& 47.00 \& 1500.00 <br>
\hline \multirow[t]{3}{*}{Tieback (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{30.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 0.00 \& 1.33 \& 25.00 <br>
\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {n }}$ Ice \& 0.00 \& 2.13 \& 45.00 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 2.93 \& 65.00 <br>
\hline \multirow[t]{3}{*}{Tieback (Verizon)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 0.00 \& 1.33 \& 25.00 <br>
\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 0.00 \& 2.13 \& 45.00 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\text {" Ice }}$ \& 0.00 \& 2.93 \& 65.00 <br>
\hline \multirow[t]{3}{*}{Tieback (Verizon)} \& \multirow[t]{3}{*}{D} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{90.00} \& No Ice \& 0.00 \& 1.33 \& 25.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 2.13 \& 45.00 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.00 \& 2.93 \& 65.00 <br>
\hline *** \& \& \& \& \& \& \& \& \& <br>
\hline \multirow[t]{3}{*}{Ring Mount} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{77.00} \& No Ice \& 6.87 \& 6.87 \& 850.00 <br>
\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ lce \& 8.25 \& 8.25 \& 1020.00 <br>
\hline \& \& \& \& \& \& 1" Ice \& 9.62 \& 9.62 \& 1190.00 <br>
\hline \multicolumn{10}{|l|}{*** 0} <br>
\hline RRUS-32 (Full Frontal \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{30.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 0.00 \& 2.42 \& 77.00 <br>
\hline Shielding) \& \& \& -2.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.00 \& 2.64 \& 104.93 <br>
\hline (AT\&T) \& \& \& 0.50 \& \& \& $1{ }^{1 /}$ Ice \& 0.00 \& 2.86 \& 136.47 <br>
\hline RRUS-32 (Full Frontal \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{2}{*}{76.70} \& No Ice \& 0.00 \& 2.42 \& 77.00 <br>
\hline Shielding) \& \& \& -2.00 \& \& \& 1/2" Ice \& 0.00 \& 2.64 \& 104.93 <br>
\hline (AT\&T) \& \& \& 0.50 \& \& \& 1 I' Ice \& 0.00 \& 2.86 \& 136.47 <br>
\hline RRUS-32 (Full Frontal \& \multirow[t]{3}{*}{D} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{76.70} \& No Ice \& 0.00 \& 2.42 \& 77.00 <br>
\hline Shielding) \& \& \& -2.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.00 \& 2.64 \& 104.93
136.47 <br>
\hline (AT\&T) \& \& \& 0.50 \& \& \multirow[t]{3}{*}{76.70} \& 1" Ice
No Ice \& 0.00
3.31 \& 2.86
2.42 \& 136.47
77.00 <br>
\hline RRUS-32 \& \multirow[t]{2}{*}{A} \& \multirow[t]{2}{*}{From Leg} \& 1.50
2.00 \& \multirow[t]{2}{*}{30.0000} \& \& No Ice
$1 / 2^{\text {² }}$ Ice \& 3.31
3.56 \& 2.42
2.64 \& 104.93 <br>
\hline (AT\&T) \& \& \& 2.00 \& \& \& 1" Ice \& 3.81 \& 2.86 \& 136.47 <br>

\hline \multirow[t]{3}{*}{| RRUS-32 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 3.31 \& 2.42 \& 77.00 <br>

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 3.56 \& 2.64 \& 104.93 <br>
\hline \& \& \& 2.00 \& \& \& $1{ }^{1 /}$ Ice \& 3.81 \& 2.86 \& 136.47 <br>

\hline \multirow[t]{3}{*}{| RRUS-32 |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{D} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 3.31 \& 2.42 \& 77.00 <br>

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 3.56 \& 2.64 \& 104.93 <br>
\hline \& \& \& 2.00 \& \& \& 1 " Ice \& 3.81 \& 2.86 \& 136.47 <br>
\hline \multirow[t]{2}{*}{RRUS-32 (Full Frontal Shielding)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{2}{*}{30.0000} \& \multirow[t]{2}{*}{76.70} \& No Ice \& 0.00 \& 2.42 \& 77.00 <br>
\hline \& \& \& 5.00 \& \& \& 1/2" Ice \& 0.00 \& 2.64 \& 104.93 <br>
\hline (AT\&T) \& \& \& 0.50 \& \& \& $1^{1 \prime}$ Ice \& 0.00 \& 2.86 \& 136.47 <br>
\hline RRUS-32 (Full Frontal \& \multirow[t]{3}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 1.50 \& \multirow[t]{2}{*}{60.0000} \& \multirow[t]{2}{*}{76.70} \& No Ice \& 0.00 \& 2.42 \& 77.00 <br>
\hline Shielding) \& \& \& 5.00 \& \& \& 1/2" Ice \& 0.00 \& 2.64 \& 104.93 <br>
\hline (AT\&T) \& \& \& 0.50 \& \& \& 1" Ice \& 0.00 \& 2.86 \& 136.47
77.00 <br>
\hline RRUS-32 (Full Frontal \& \multirow[t]{2}{*}{D} \& \multirow[t]{2}{*}{From Leg} \& 1.50 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{76.70} \& No Ice \& 0.00 \& 2.42 \& 77.00 <br>
\hline Shielding) \& \& \& 5.00 \& \& \& 1/2' Ice \& 0.00
0.00 \& 2.64
2.86 \& 104.93
136.47 <br>
\hline (AT\&T) \& \& \& 0.50
2.00 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{2}{*}{76.70} \& 1 Ice
No Ice \& 0.00
2.20 \& 2.86
2.20 \& 136.47
20.00 <br>
\hline \multirow[t]{2}{*}{(AT\&T)} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 2.00
2.00 \& \& \& 1/2" Ice \& 2.40
2.60 \& 2.40 \& 42.56 <br>
\hline \& \& \& 2.00 \& \& \& 1"Ice \& 2.60 \& 2.60 \& 68.29 <br>

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { DC6-48-60-18-8F } \\
\text { (AT\&T) }
\end{gathered}
$$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{2}{*}{76.70} \& No Ice \& 2.20 \& 2.20 \& 20.00 <br>

\hline \& \& \& 2.00 \& \& \& 1/2' Ice \& 2.40 \& 2.40 \& 42.56 <br>
\hline \& \& \& 0.50 \& \& \& $1{ }^{1 /}$ Ice \& 2.60 \& 2.60 \& 68.29 <br>
\hline \multirow[t]{3}{*}{TPA65R-BU6DA-K (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{30.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 12.71 \& 5.62 \& 69.00 <br>
\hline \& \& \& -5.00 \& \& \& 1/2" Ice \& 13.21 \& 6.07 \& 142.96 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.71 \& 6.53 \& 223.56 <br>
\hline
\end{tabular}

| tnxTower <br> Structural Components, LLC <br> 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Job |  | $\begin{array}{\|l\|l\|} \hline \text { Page } & \\ & 17 \text { of } 32 \end{array}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Deslgned by treed |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \&  \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f^{2}\)
\end{tabular} \& \(C_{\Delta} A_{A}\) Side \(f t^{2}\) \& Weight

lb <br>
\hline \multirow[t]{3}{*}{TPA65R-BU6DA-K (AT\&T)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 12.71 \& 5.62 \& 69.00 <br>
\hline \& \& \& -5.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 13.21 \& 6.07 \& 142.96 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.71 \& 6.53 \& 223.56 <br>
\hline \multirow[t]{3}{*}{TPA65R-BU6DA-K (AT\&T)} \& \multirow[t]{3}{*}{D} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 12.71 \& 5.62 \& 69.00 <br>
\hline \& \& \& -5.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 13.21 \& 6.07 \& 142.96 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.71 \& 6.53 \& 223.56 <br>
\hline \multirow[t]{3}{*}{AIR6449 B77D (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{30.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 4.05 \& 2.74 \& 95.50 <br>
\hline \& \& \& -2.00 \& \& \& 1/2" Ice \& 4.32 \& 2.97 \& 129.12 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.59 \& 3.20 \& 166.64 <br>
\hline \multirow[t]{3}{*}{AIR6449 B77D (AT\&T)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 4.05 \& 2.74 \& 95.50 <br>
\hline \& \& \& -2.00 \& \& \& 1/2" Ice \& 4.32 \& 2.97 \& 129.12 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.59 \& 3.20 \& 166.64 <br>
\hline \multirow[t]{3}{*}{AIR6449 B77D (AT\&T)} \& \multirow[t]{3}{*}{D} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 4.05 \& 2.74 \& 95.50 <br>
\hline \& \& \& -2.00 \& \& \& 1/2" Ice \& 4.32 \& 2.97 \& 129.12 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.59 \& 3.20 \& 166.64 <br>
\hline \multirow[t]{3}{*}{AIR6419 B77G (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{30.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 4.17 \& 2.02 \& 55.40 <br>
\hline \& \& \& -2.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 4.44 \& 2.23 \& 84.59 <br>
\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 4.71 \& 2.44 \& 117.51 <br>
\hline \multirow[t]{3}{*}{AIR6419 B77G (AT\&T)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 4.17 \& 2.02 \& 55.40 <br>
\hline \& \& \& -2.00 \& \& \& 1/2" Ice \& 4.44 \& 2.23 \& 84.59 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.71 \& 2.44 \& 117.51 <br>
\hline \multirow[t]{3}{*}{AIR6419 B77G (AT\&T)} \& \multirow[t]{3}{*}{D} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 4.17 \& 2.02 \& 55.40 <br>
\hline \& \& \& -2.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 4.44 \& 2.23 \& 84.59 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.71 \& 2.44 \& 117.51 <br>
\hline \multirow[t]{3}{*}{DMP65R-BU6DA (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{30.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 12.71 \& 5.62 \& 80.00 <br>
\hline \& \& \& 5.00 \& \& \& 1/2" Ice \& 13.21 \& 6.07 \& 153.96 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.71 \& 6.53 \& 234.56 <br>

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { DMP65R-BUGDA } \\
\text { (AT\&T) }
\end{gathered}
$$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 12.71 \& 5.62 \& 80.00 <br>

\hline \& \& \& 5.00 \& \& \& $1 / 2^{\text {n }}$ Ice \& 13.21 \& 6.07 \& 153.96 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.71 \& 6.53 \& 234.56 <br>
\hline \multirow[t]{3}{*}{DMP65R-BU6DA (AT\&T)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 12.71 \& 5.62 \& 80.00 <br>
\hline \& \& \& 5.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 13.21 \& 6.07 \& 153.96 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.71 \& 6.53 \& 234.56 <br>

\hline \multirow[t]{3}{*}{| 4478 RRU |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{30.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 1.64 \& 0.91 \& 60.00 <br>

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 1.80 \& 1.03 \& 74.20 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.97 \& 1.17 \& 90.89 <br>

\hline \multirow[t]{3}{*}{| 4478 RRU |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 1.64 \& 0.91 \& 60.00 <br>

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 1.80 \& 1.03 \& 74.20 <br>
\hline \& \& \& 0.00 \& \& \& 1"Ice \& 1.97 \& 1.17 \& 90.89 <br>

\hline \multirow[t]{3}{*}{| 4478 RRU |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{D} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 1.64 \& 0.91 \& 60.00 <br>

\hline \& \& \& 2.00 \& \& \& $1 / 2^{\text {n }}$ Ice \& 1.80 \& 1.03 \& 74.20 <br>
\hline \& \& \& 0.00 \& \& \& 1"Ice \& 1.97 \& 1.17 \& 90.89 <br>

\hline \multirow[t]{3}{*}{| 4449 RRU |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{30.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 1.64 \& 1.02 \& 74.00 <br>

\hline \& \& \& 2.00 \& \& \& $1 / 2^{\text {n }}$ Ice \& 1.80 \& 1.15 \& 90.04 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.97 \& 1.28 \& 108.70 <br>

\hline \multirow[t]{3}{*}{| 4449 RRU |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 1.64 \& 1.02 \& 74.00 <br>

\hline \& \& \& 2.00 \& \& \& 1/2" Ice \& 1.80 \& 1.15 \& 90.04 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 1.97 \& 1.28 \& 108.70 <br>

\hline \multirow[t]{3}{*}{| 4449 RRU |
| :--- |
| (AT\&T) |} \& \multirow[t]{3}{*}{D} \& \multirow[t]{3}{*}{From Leg} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 1.64 \& 1.02 \& 74.00 <br>

\hline \& \& \& 2.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 1.80 \& 1.15 \& 90.04 <br>
\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.97 \& 1.28 \& 108.70 <br>

\hline \multirow[t]{3}{*}{$$
\begin{gathered}
\text { DC9-48-60-24-8C-EV } \\
\text { (AT\&T) }
\end{gathered}
$$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{30.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 2.74 \& 4.78 \& 16.00 <br>

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {n }}$ Ice \& 2.96 \& 5.06 \& 53.06 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.20 \& 5.35 \& 94.20 <br>
\hline \multirow[t]{3}{*}{(3) 12' Sector Frames (AT\&T)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{76.70} \& No Ice \& 25.00 \& 25.00 \& 800.00 <br>
\hline \& \& \& \& \& \& 1/2" Ice \& 37.00 \& 37.00 \& 1100.00 <br>
\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 47.00 \& 47.00 \& 1500.00 <br>
\hline
\end{tabular}

| tnxTower <br> Structural Components, LLC <br> 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Description | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | Offset <br> Type | Ofsets: <br> Horz <br> Lateral <br> Vert <br> $f t$ <br> $f t$ <br> $f t$ | Azimuth Adjustment <br> - | Placement |  | $C_{A} A_{A}$ Front <br> $f t^{2}$ | $C_{A} A_{A}$ Side <br> $f t^{2}$ | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ring Mount | C | Nome |  | 0.0000 | 75.00 | No Ice $1 / 2^{\text {n }}$ Ice 1" Ice | $\begin{aligned} & 6.87 \\ & 8.25 \\ & 9.62 \end{aligned}$ | $\begin{aligned} & 6.87 \\ & 8.25 \\ & 9.62 \end{aligned}$ | $\begin{gathered} 850.00 \\ 1020.00 \\ 1190.00 \end{gathered}$ |
| 2-3/8" x $8^{\prime}$ Pipe Mount | A | From Leg | $\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$ | 0.0000 | 73.00 | $\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\text {n }} \text { Ice } \\ & 1 \text { I' Ice } \end{aligned}$ | $\begin{aligned} & 1.90 \\ & 2.73 \\ & 3.40 \end{aligned}$ | $\begin{aligned} & 1.90 \\ & 2.73 \\ & 3.40 \end{aligned}$ | $\begin{aligned} & 30.00 \\ & 44.37 \\ & 64.01 \end{aligned}$ |
| Ring Mount | C | None |  | 0.0000 | 67.70 | No Ice $1 / 2^{\text {H }}$ Ice 1" Ice | $\begin{aligned} & 6.87 \\ & 8.25 \\ & 9.62 \end{aligned}$ | $\begin{aligned} & 6.87 \\ & 8.25 \\ & 9.62 \end{aligned}$ | $\begin{gathered} 850.00 \\ 1020.00 \\ 1190.00 \end{gathered}$ |

Force Totals

| Load Case | Vertical Forces $l b$ | Sum of Forces X $l b$ | Sum of Forces Z $l b$ | Sum of Overturning Moments, $M_{x}$ $l b-f t$ | Sum of Overturning Moments, $M_{z}$ $l b-f t$ | Sum of Torques $l b-f t$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Leg Weight | 3728.23 |  |  |  |  |  |
| Bracing Weight | 5215.45 |  |  |  |  |  |
| Total Member Self-Weight | 8943.69 |  |  | -2924.94 | -1888.15 |  |
| Gusset Weight | 111.27 |  |  |  |  |  |
| Total Weight | 18136.42 |  |  | -2924.94 | -1888.15 |  |
| Wind 0 deg - No Ice |  | -172.29 | -19042.55 | -1086249.57 | 11413.26 | 517.48 |
| Wind 45 deg - No Ice |  | 15562.18 | -15546.55 | -857381.49 | -857331.29 | 2979.08 |
| Wind 90 deg - No Ice |  | 20506.37 | 172.29 | 10376.47 | -1144248.41 | -3616.04 |
| Wind 135 deg - No Ice |  | 15805.84 | 15790.21 | 870342.64 | -876142.33 | -7152.66 |
| Wind 180 deg - No Ice |  | 172.29 | 19042.55 | 1080399.69 | -15189.56 | -517.48 |
| Wind 225 deg - No Ice |  | -15562.18 | 15546.55 | 851531.60 | 853554.99 | -2979.08 |
| Wind 270 deg - No Ice |  | -20506.37 | -172.29 | -16226.35 | 1140472.10 | 3616.04 |
| Wind 315 deg - No Ice |  | -15805.84 | -15790.21 | -876192.52 | 872366.02 | 7152.66 |
| Member Ice Gusset Ice | $\begin{array}{r} 11293.92 \\ 118.44 \end{array}$ |  |  |  |  |  |
| Gusset Ice | $\begin{array}{r} 118.44 \\ 40193.86 \end{array}$ |  |  | -3858.81 | -11706.05 |  |
| Wind 0 deg - Ice |  | -30.31 | -4705.11 | -273613.25 | -9365.10 | 1535.40 |
| Wind 45 deg - Ice |  | 3820.71 | -3817.93 | -214601.56 | -222621.10 | 1968.23 |
| Wind 90 deg - Ice |  | 5144.73 | 30.31 | -1517.86 | -298208.14 | -253.89 |
| Wind 135 deg - Ice |  | 3863.57 | 3860.79 | 210194.55 | -225931.70 | -2039.96 |
| Wind 180 deg - Ice |  | 30.31 | 4705.11 | 265895.64 | -14047.00 | -1535.40 |
| Wind 225 deg - Ice |  | -3820.71 | 3817.93 | 206883.95 | 199209.00 | -1968.23 |
| Wind 270 deg - Ice |  | -5144.73 | -30.31 | -6199.75 | 274796.04 | 253.89 |
| Wind 315 deg - Ice |  | -3863.57 | -3860.79 | -217912.16 | 202519.60 | 2039.96 |
| Total Weight | 18136.42 |  |  | -2924.94 | -1888.15 |  |
| Wind 0 deg - Service |  | -43.07 | -4760.64 | -275534.50 | 6802.58 | 129.37 |
| Wind 45 deg - Service |  | 3890.55 | -3886.64 | -218317.48 | -210383.55 | 744.77 |
| Wind 90 deg - Service |  | 5126.59 | 43.07 | -1377.99 | -282112.83 | -904.01 |
| Wind 135 deg - Service |  | 3951.46 | 3947.55 | 213613.55 | -215086.31 | -1788.16 |
| Wind 180 deg - Service |  | 43.07 | 4760.64 | 266127.81 | 151.88 | -129.37 |
| Wind 225 deg - Service |  | -3890.55 | 3886.64 | 208910.79 | 217338.02 | -744.77 |
| Wind 270 deg - Service |  | -5126.59 | -43.07 | -8028.70 | 289067.30 | 904.01 |


| tnxTower <br> Structural Components, LLC <br> 1870 West 64 th Lane, Unit A | 240022 REV 1 |  | Page 19 of 32 |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | Date <br> 15:03:20 02/13/24 |
| Denver, CO 80221 Phone: (866) $386-7622$ FAX: | Client | BST Management, LLC | Designed by treed |


| Load | Vertical | Sum of | Sum of | Sum of | Sum of <br> Case <br> Forces | Forces |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | Forces |
| :---: |
|  |

## Load Combinations

| Comb. No. | Description |
| :---: | :---: |
| 1 | Dead Only |
| 2 | 1.2 Dead+1.0 Wind 0 deg - No Ice |
| 3 | 0.9 Dead+1.0 Wind 0 deg - No Ice |
| 4 | 1.2 Dead+1.0 Wind 45 deg - No Ice |
| 5 | 0.9 Dead+1.0 Wind 45 deg - No Ice |
| 6 | 1.2 Dead+1.0 Wind 90 deg - No Ice |
| 7 | 0.9 Dead+1.0 Wind 90 deg - No Ice |
| 8 | 1.2 Dead+1.0 Wind 135 deg - No Ice |
| 9 | 0.9 Dead+1.0 Wind 135 deg - No Ice |
| 10 | 1.2 Dead+1.0 Wind 180 deg - No Ice |
| 11 | 0.9 Dead+1.0 Wind 180 deg - No Ice |
| 12 | 1.2 Dead+1.0 Wind 225 deg - No Ice |
| 13 | 0.9 Dead+1.0 Wind 225 deg - No Ice |
| 14 | 1.2 Dead+1.0 Wind 270 deg - No Ice |
| 15 | 0.9 Dead+1.0 Wind 270 deg - No Ice |
| 16 | 1.2 Dead+1.0 Wind 315 deg - No Ice |
| 17 | 0.9 Dead+1.0 Wind 315 deg - No Ice |
| 18 | 1.2 Dead+1.0 Ice+1.0 Temp |
| 19 | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp |
| 20 | 1.2 Dead+1.0 Wind $45 \mathrm{deg}+1.0$ Ice+1.0 Temp |
| 21 | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp |
| 22 | 1.2 Dead+1.0 Wind $135 \mathrm{deg}+1.0$ Ice+1.0 Temp |
| 23 | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp |
| 24 | 1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp |
| 25 | 1.2 Dead+1.0 Wind 270 deg+1.0 Icet1.0 Temp |
| 26 | 1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp |
| 27 | Dead+Wind 0 deg - Service |
| 28 | Dead+Wind 45 deg - Service |
| 29 | Dead+Wind 90 deg - Service |
| 30 | Dead+Wind 135 deg - Service |
| 31 | Dead+Wind 180 deg - Service |
| 32 | Dead+Wind 225 deg - Service |
| 33 | Dead+Wind 270 deg - Service |
| 34 | Dead+Wind 315 deg - Service |

## Maximum Reactions

| Location | Condition | Gov. <br> Load | Vertical <br> $\boldsymbol{l b}$ | Horizontal, $\boldsymbol{X}$ <br> $\boldsymbol{l b}$ | Horizontal, $Z$ <br> $\boldsymbol{l b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Leg D | Max. Vert | 12 | 70615.66 | 8774.93 | -8669.13 |
|  | Max. $\mathrm{H}_{\mathbf{x}}$ | 12 | 70615.66 | 8774.93 | -8669.13 |
|  | Max. $\mathrm{H}_{\mathbf{z}}$ | 5 | -61480.32 | -7599.19 | 7480.90 |
|  | Min. Vert | 5 | -61480.32 | -7599.19 | 7480.90 |
|  | Min. $\mathrm{H}_{\mathbf{x}}$ | 5 | -61480.32 | -7599.19 | 7480.90 |
|  | Min. $\mathrm{H}_{\mathbf{z}}$ | 12 | 70615.66 | 8774.93 | -8669.13 |
|  | Leg C | Max. Vert | $\mathbf{8}$ | 72226.67 | -8734.40 |


| traxTOWer | Job | Page |  |
| :---: | :--- | :--- | :--- |
|  | 240022 REV 1 | ProJect | Portland (CT-1680) |



## Tower Mast Reaction Summary

| Load Combination | Vertical <br> $l b$ | Shear ${ }_{r}$ <br> $l b$ | Shear $z_{z}$ <br> $l b$ | Overturning Moment, $M_{x}$ lb-ft | Overturning Moment, $M_{z}$ lb-ft | Torque <br> $l b-f t$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dead Only | 18136.42 | 0.00 | 0.00 | -2924.94 | -1888.15 | 0.00 |
| 1.2 Dead+1.0 Wind 0 deg - No | 21763.70 | -172.29 | -19042.55 | -1087357.37 | 11035.62 | 517.48 |
| Ice <br> 0.9 Dead+1.0 Wind 0 deg - No | 16322.78 | -172.29 | -19042.55 | -1086479.89 | 11602.07 | 517.48 |
| $\begin{aligned} & \text { Ice } \\ & \text { 1.2 Dead+1.0 Wind } 45 \mathrm{deg} \text { - No } \end{aligned}$ | 21763.70 | 15562.18 | -15546.56 | -858585.52 | -858327.97 | 2979.08 |
| $\begin{aligned} & \text { Ice } \\ & 0.9 \text { Dead }+1.0 \text { Wind } 45 \mathrm{deg} \text { - No } \end{aligned}$ | 16322.78 | 15562.18 | -15546.56 | -857708.04 | -857761.53 | 2979.08 |
| $\begin{aligned} & \text { Ice } \\ & \text { 1.2 Dead+1.0 Wind } 90 \mathrm{deg}-\text { No } \end{aligned}$ | 21763.70 | 20506.37 | 172.29 | 9791.48 | -1145394.65 | -3616.03 |
| Ice <br> 0.9 Dead+1.0 Wind 90 deg - No | 16322.78 | 20506.37 | 172.29 | 10668.96 | -1144828.21 | -3616.03 |
| Ice 1.2 Dead+1.0 Wind 135 deg - | 21763.70 | 15805.84 | 15790.21 | 870376.70 | -877139.01 | -7152.65 |
| No Ice 0.9 Dead+1.0 Wind 135 deg - | 16322.78 | 15805.84 | 15790.21 | 871254.18 | -876572.56 | -7152.65 |
| No Ice <br> 1.2 Dead+1.0 Wind 180 deg - | 21763.70 | 172.29 | 19042.55 | 1080337.52 | -15567.19 | -517.48 |
| No Ice 0.9 Dead+1.0 Wind 180 deg - | 16322.78 | 172.29 | 19042.55 | 1081215.00 | -15000.75 | -517.48 |
| No Ice 1.2 Dead+1.0 Wind 225 deg - | 21763.70 | -15562.18 | 15546.56 | 851565.67 | 853796.40 | -2979.08 |
| No Ice 0.9 Dead+1.0 Wind 225 deg - | 16322.78 | -15562.18 | 15546.56 | 852443.15 | 854362.85 | -2979.08 |
| 1.2 Dead+1.0 Wind 270 deg - | 21763.70 | -20506.37 | -172.29 | -16811.33 | 1140863.08 | 3616.03 |
| No Ice 0.9 Dead +1.0 Wind 270 deg - | 16322.78 | -20506.37 | -172.29 | -15933.85 | 1141429.53 | 3616.03 |
| No Ice 1.2 Dead+1.0 Wind 315 deg - | 21763.70 | -15805.84 | -15790.21 | -877396.55 | 872607.44 | 7152.65 |
| No Ice 0.9 Dead+1.0 Wind 315 deg - | 16322.78 | -15805.84 | -15790.21 | -876519.07 | 873173.88 | 7152.65 |
| No Ice 1.2 Dead+1.0 Ice+1.0 Temp | 43660.02 | 0.00 | 0.00 | -4443.79 | -12083.68 | 0.00 |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & 21 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \\ \hline \end{array}$ |
| $\begin{gathered} \text { Denver, CO } 80221 \\ \text { Phone: (866) 386-7622 } \\ \text { FAX: } \end{gathered}$ | Client | BST Management, LLC | Designed by treed |


| Load Combination | Vertical <br> $l b$ | Shear ${ }_{x}$ $l b$ | Shear ${ }_{z}$ <br> lb | Overturning Moment, $M_{x}$ $l b-f t$ | Overturning Moment, $M_{z}$ $l b-f t$ | Torque <br> $l b-f t$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.2 Dead+1.0 Wind 0 deg+1.0 | 43660.02 | -30.31 | -4705.11 | -274381.69 | -9742.73 | 1535.40 |
| Ice+1.0 Temp |  |  |  |  |  |  |
| 1.2 Dead+1.0 Wind $45 \mathrm{deg}+1.0$ | 43660.02 | 3820.71 | -3817.93 | -215359.52 | -223171.71 | 1968.23 |
| Ice+1.0 Temp 22317.1 |  |  |  |  |  |  |
| 1.2 Dead+1.0 Wind $90 \mathrm{deg}+1.0$ | 43660.02 | 5144.73 | 30.31 | -2102.84 | -298849.06 | -253.89 |
|  |  |  |  |  |  |  |
| 1.2 Dead+1.0 Wind 135 | 43660.02 | 3863.57 | 3860.80 | 209782.55 | -226482.31 | -2039.96 |
| deg+1.0 Ice+1.0 Temp |  |  |  |  |  |  |
| 1.2 Dead+1.0 Wind 180 | 43660.02 | 30.31 | 4705.12 | 265494.11 | -14424.63 | -1535.39 |
| deg+1.0 Ice+l.0 Temp 265 |  |  |  |  |  |  |
| 1.2 Dead+1.0 Wind 225 | 43660.02 | -3820.71 | 3817.93 | 206471.95 | 199004.35 | -1968.23 |
| deg+1.0 Ice+1.0 Temp |  |  |  |  |  |  |
| 1.2 Dead+1.0 Wind 270 | 43660.02 | -5144.73 | -30.31 | -6784.74 | 274681.70 | 253.89 |
| deg+1.0 Ice+1.0 Temp 27681.20 253.8 |  |  |  |  |  |  |
| 1.2 Dead+1.0 Wind 315 | 43660.02 | -3863.57 | -3860.80 | -218670.13 | 202314.95 | 2039.97 |
| deg+1.0 Ice+1.0 Temp 202314.9S 2039.97 |  |  |  |  |  |  |
| Dead+Wind 0 deg - Service | 18136.42 | -43.07 | -4760.64 | -273886.80 | 1437.20 | 129.37 |
| Dead+Wind 45 deg - Service | 18136.42 | 3890.55 | -3886.64 | -216693.84 | -215903.70 | 744.77 |
| Dead+Wind 90 deg - Service | 18136.42 | 5126.59 | 43.07 | 400.41 | -287670.37 | -904.01 |
| Dead+Wind 135 deg - Service | 18136.42 | 3951.46 | 3947.55 | 215546.72 | -220606.46 | -1788.16 |
| Dead+Wind 180 deg - Service | 18136.42 | 43.07 | 4760.64 | 268036.92 | -5213.51 | -129.37 |
| Dead+Wind 225 deg - Service | 18136.42 | -3890.55 | 3886.64 | 210843.96 | 212127.39 | -744.77 |
| Dead+Wind 270 deg - Service | 18136.42 | -5126.59 | -43.07 | -6250.29 | 283894.06 | 904.01 |
| Dead+Wind 315 deg - Service | 18136.42 | -3951.46 | -3947.55 | -221396.59 | 216830.15 | 1788.16 |

## Solution Summary

| Load Comb. | Sum of Applied Forces |  |  | Sum of Reactions |  |  | \% Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PX | PY | $P Z$ | $P X$ | PY | $P Z$ |  |
|  | $l b$ |  |
| 1 | 0.00 | -18136.42 | 0.00 | -0.00 | 18136.42 | -0.00 | 0.000\% |
| 2 | -172.29 | -21763.70 | -19042.55 | 172.29 | 21763.70 | 19042.55 | 0.000\% |
| 3 | -172.29 | -16322.78 | -19042.55 | 172.29 | 16322.78 | 19042.55 | 0.000\% |
| 4 | 15562.18 | -21763.70 | -15546.55 | -15562.18 | 21763.70 | 15546.56 | 0.000\% |
| 5 | 15562.18 | -16322.78 | -15546.55 | -15562.18 | 16322.78 | 15546.56 | 0.000\% |
| 6 | 20506.37 | -21763.70 | 172.29 | -20506.37 | 21763.70 | -172.29 | 0.000\% |
| 7 | 20506.37 | -16322.78 | 172.29 | -20506.37 | 16322.78 | -172.29 | 0.000\% |
| 8 | 15805.84 | -21763.70 | 15790.21 | -15805.84 | 21763.70 | -15790.21 | 0.000\% |
| 9 | 15805.84 | -16322.78 | 15790.21 | -15805.84 | 16322.78 | -15790.21 | 0.000\% |
| 10 | 172.29 | -21763.70 | 19042.55 | -172.29 | 21763.70 | -19042.55 | 0.000\% |
| 11 | 172.29 | -16322.78 | 19042.55 | -172.29 | 16322.78 | -19042.55 | 0.000\% |
| 12 | -15562.18 | -21763.70 | 15546.55 | 15562.18 | 21763.70 | -15546.56 | 0.000\% |
| 13 | -15562.18 | -16322.78 | 15546.55 | 15562.18 | 16322.78 | -15546.56 | 0.000\% |
| 14 | -20506.37 | -21763.70 | -172.29 | 20506.37 | 21763.70 | 172.29 | 0.000\% |
| 15 | -20506.37 | -16322.78 | -172.29 | 20506.37 | 16322.78 | 172.29 | 0.000\% |
| 16 | -15805.84 | -21763.70 | -15790.21 | 15805.84 | 21763.70 | 15790.21 | 0.000\% |
| 17 | -15805.84 | -16322.78 | -15790.21 | 15805.84 | 16322.78 | 15790.21 | 0.000\% |
| 18 | 0.00 | -43660.02 | 0.00 | -0.00 | 43660.02 | -0.00 | 0.000\% |
| 19 | -30.31 | -43660.02 | -4705.11 | 30.31 | 43660.02 | 4705.11 | 0.000\% |
| 20 | 3820.71 | -43660.02 | -3817.93 | -3820.71 | 43660.02 | 3817.93 | 0.000\% |
| 21 | 5144.73 | -43660.02 | 30.31 | -5144.73 | 43660.02 | -30.31 | 0.000\% |
| 22 | 3863.57 | -43660.02 | 3860.79 | -3863.57 | 43660.02 | -3860.80 | 0.000\% |
| 23 | 30.31 | -43660.02 | 4705.11 | -30.31 | 43660.02 | -4705.12 | 0.000\% |
| 24 | -3820.71 | -43660.02 | 3817.93 | 3820.71 | 43660.02 | -3817.93 | 0.000\% |
| 25 | -5144.73 | -43660.02 | -30.31 | 5144.73 | 43660.02 | 30.31 | 0.000\% |
| 26 | -3863.57 | -43660.02 | -3860.79 | 3863.57 | 43660.02 | 3860.80 | 0.000\% |
| 27 | -43.07 | -18136.42 | -4760.64 | 43.07 | 18136.42 | 4760.64 | 0.000\% |
| 28 | 3890.55 | -18136.42 | -3886.64 | -3890.55 | 18136.42 | 3886.64 | 0.000\% |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & 22 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Fortland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Load | Sum of Applied Forces |  |  | Sum of Reactions |  |  | \% Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $P X$ | PY | PZ | PX | $P Y$ | PZ |  |
| Comb. | $l b$ |  |
| 29 | 5126.59 | -18136.42 | 43.07 | -5126.59 | 18136.42 | -43.07 | 0.000\% |
| 30 | 3951.46 | -18136.42 | 3947.55 | -3951.46 | 18136.42 | -3947.55 | 0.000\% |
| 31 | 43.07 | -18136.42 | 4760.64 | -43.07 | 18136.42 | -4760.64 | 0.000\% |
| 32 | -3890.55 | -18136.42 | 3886.64 | 3890.55 | 18136.42 | -3886.64 | 0.000\% |
| 33 | -5126.59 | -18136.42 | -43.07 | 5126.59 | 18136.42 | 43.07 | 0.000\% |
| 34 | -3951.46 | -18136.42 | -3947.55 | 3951.46 | 18136.42 | 3947.55 | 0.000\% |

Maximum Tower Deflections - Service Wind

| Section <br> No. | Elevation | Horz. <br> Deflection <br> in | Gov. <br> Lood <br> Comb. | Tilt | Twist |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T1 | $90.333-78.063$ | 0.957 | 34 | 0.0843 | 0 |
| T2 | $78.063-74.563$ | 0.741 | 34 | 0.0806 | 0.0089 |
| T3 | $74.563-72.313$ | 0.680 | 34 | 0.0789 | 0.0076 |
| T4 | $72.313-67.563$ | 0.641 | 34 | 0.0777 | 0.0070 |
| T5 | $67.563-65.438$ | 0.557 | 34 | 0.0732 | 0.0065 |
| T6 | $65.438-57.521$ | 0.523 | 34 | 0.0711 | 0.0051 |
| T7 | $57.521-50.271$ | 0.407 | 34 | 0.0613 | 0.0046 |
| T8 | $50.271-41.979$ | 0.315 | 34 | 0.0528 | 0.0029 |
| T9 | $41.979-34.187$ | 0.226 | 34 | 0.0442 | 0.0021 |
| T10 | $34.187-26.895$ | 0.154 | 34 | 0.0368 | 0.0014 |
| T11 | $26.895-20.103$ | 0.099 | 34 | 0.0292 | 0.0010 |
| T12 | $20.103-13.415$ | 0.057 | 34 | 0.0229 | 0.0007 |
| T13 | $13.415-6.7075$ | 0.026 | 34 | 0.0139 | 0.0005 |
| T14 | $6.7075-0$ | 0.003 | 32 | 0.0073 | 0.0002 |
|  |  |  |  |  | 0.0001 |

## Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance | Gov. <br> Load | Deflection | Tilt | Twist | Radius of <br> Curvature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ft |  | Comb. | in | 0 | 0 | ot |

## Maximum Tower Deflections - Design Wind

| Section <br> No. | Elevation | Horz. <br> Deflection <br> in | Gov. <br> Load <br> Comb. | Tilt | o wist |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ft | $90.333-78.063$ | 3.746 | 16 | 0.3215 |
| T1 | $78.063-74.563$ | 2.918 | 16 | 0.3108 | 0 |
| T2 | $74.563-72.313$ | 2.680 | 16 | 0.3048 | 0.0354 |
| T3 |  |  |  | 0.0305 |  |
|  |  |  |  |  |  |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 Phone: (866) 386-7622 FAX: | Job |  | $\begin{aligned} & \text { Page } \\ & 23 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Section No. | Elevation | Horz. Deflection in |  | Tilt 。 | Twist - |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T4 | 72.313-67.563 | 2.530 | 16 | 0.3008 | 0.0261 |
| T5 | 67.563-65.438 | 2.204 | 16 | 0.2845 | 0.0204 |
| T6 | 65.438-57.521 | 2.070 | 16 | 0.2771 | 0.0185 |
| T7 | 57.521-50.271 | 1.615 | 16 | 0.2405 | 0.0118 |
| T8 | 50.271-41.979 | 1.254 | 16 | 0.2081 | 0.0083 |
| T9 | 41.979-34.187 | 0.898 | 16 | 0.1749 | 0.0055 |
| T10 | 34.187-26.895 | 0.614 | 16 | 0.1458 | 0.0041 |
| T11 | 26.895-20.103 | 0.394 | 16 | 0.1160 | 0.0029 |
| T12 | 20.103-13.415 | 0.227 | 16 | 0.0910 | 0.0019 |
| T13 | 13.415-6.7075 | 0.105 | 16 | 0.0552 | 0.0010 |
| T14 | 6.7075-0 | 0.012 | 8 | 0.0290 | 0.0005 |

## Critical Deflections and Radius of Curvature - Design Wind

| Elevation | Appurtenance | Gov. <br> Load | Deflection | Tilt | Twist | Radius of <br> Curvature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f t$ |  | Comb. | in | 0 | 0 | ot |
| 90.50 | $6^{\prime} \times 5 / 8^{\prime \prime}$ Lighting Rod | 16 | 3.746 | 0.3215 | 0.0354 | 91386 |
| 90.00 | NNH4-65B-R6 | 16 | 3.724 | 0.3213 | 0.0353 | 91386 |
| 77.00 | Ring Mount | 16 | 2.845 | 0.3090 | 0.0297 | 56067 |
| 76.70 | RRUS-32 (Full Frontal Shielding) | 16 | 2.824 | 0.3084 | 0.0295 | 53474 |
| 75.00 | Ring Mount | 16 | 2.709 | 0.3055 | 0.0282 | 102187 |
| 73.00 | 2-3/8" $\times$ 8' $^{\prime}$ Pipe Mount | 16 | 2.576 | 0.3023 | 0.0267 | 40775 |
| 67.70 | Ring Mount | 16 | 2.213 | 0.2850 | 0.0206 | 8142 |

Bolt Design Data

| Section No. | Elevation <br> $f t$ | Component Type | Bolt Grade | Bolt Size in | Number Of Bolts | Maximum Load per Bolt lb | Allowable Load per Bolt lb | Ratio <br> Load <br> Allowable | Allowable Ratio | Criteria |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T1 | 90.333 | Leg | A307 | 0.6250 | 12 | 855.83 | 16240.00 | $\begin{aligned} & 0.053 \\ & 0.174 \end{aligned}$ | 1 | Bearing <br> Member Block Shear |
|  |  | Diagonal | A325N | 0.6240 | 1 | 1649.75 | 9492.94 |  | 1 |  |
|  |  | Top Girt | A325N | 0.6250 | 1 | 102.68 | 8482.50 | 0.012 | 1 | Member Bearing |
| T2 | 78.063 | Diagonal <br> Top Girt | A325N | 0.5410 | 2 | 1458.29 | 5577.24 | 0.261 | 1 | Member Block Shear |
|  |  |  | A325N | 0.6250 | 2 | 365.57 | 11010.90 | 0.033 | 1 | Member Block Shear |
| T3 | 74.563 | Diagonal | A325N | 0.5410 | 2 | 1670.60 | 7208.49 | 0.232 | 1 | Member Block Shear |
|  |  | Horizontal | A325N | 0.6250 | 3 | 292.52 | 10059.40 | 0.029 | 1 | Member Block Shear |
| T4 | 72.313 | Diagonal | A325N | 0.5410 | 2 | 2612.11 | 7208.49 | 0.362 | 1 | Member Block Shear |
|  |  | Top Girt | A325N | 0.6250 | 3 | 615.88 | 15080.00 | 0.041 | 1 | Gusset Bearing |
| T5 | 67.563 | Diagonal | A325N | 0.5410 | 2 | 2008.95 | 5577.24 | 0.360 | 1 | Member Block Shear |
|  |  | Horizontal | A325N | 0.6250 | 3 | 163.77 | 10059.40 | 0.016 | 1 | Member Block Shear |


| tnxTower <br> Structural Components, LLC <br> 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } 24 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \\ \hline \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |



## Compression Checks

| Leg Design Data (Compression) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section No. | Elevation | Size | $L$ | $L_{u}$ | $K / / r$ | A | $P_{u}$ | $\phi P_{n}$ | Ratio $P_{u}$ |
|  | $f$ |  | $f$ | $f t$ |  | $i n^{2}$ | $l b$ | $l b$ | $\phi P_{n}$ |
| T1 | $\begin{gathered} 90.333- \\ 78.063 \end{gathered}$ | L4x4x1/4 | 12.27 | 6.08 | $\begin{gathered} 91.8 \\ \mathbf{K}=1.00 \end{gathered}$ | 1.9400 | -5135.01 | 50194.10 | $0.102^{1}$ |
| T2 | $\begin{gathered} 78.063- \\ 74.563 \end{gathered}$ | L4x4x3/8 | 3.50 | 3.50 | $\begin{gathered} 53.3 \\ \mathrm{~K}=1.00 \end{gathered}$ | 2.8600 | -11070.20 | 93762.70 | $0.118^{1}$ |
| T3 | $\begin{gathered} 74.563- \\ 72.313 \end{gathered}$ | L4x4x $3 / 8$ | 2.25 | 2.25 | $\begin{gathered} 34.3 \\ \mathrm{~K}=1.00 \end{gathered}$ | 2.8600 | -11133.20 | 99159.10 | $0.112^{1}$ |
| T4 | $\begin{gathered} 72.313- \\ 67.563 \end{gathered}$ | L4x4x3/8 | 4.75 | 4.75 | $\begin{gathered} 72.3 \\ \mathrm{~K}=1.00 \end{gathered}$ | 2.8600 | -20249.50 | 86020.10 | $0.235^{1}$ |
| T5 | 67.563 - | L4x4x 3 /8 | 2.13 | 0.13 | 1.9 | 2.8600 | -26119.10 | 102948.00 | $0.254^{1}$ |


| thaxTOWer | Job | Page |  |
| :---: | :--- | :--- | :--- |
|  | Project | 240022 REV 1 | 25 of 32 |
|  | Client | Portland (CT-1680) | Date |


| Section No. | Elevation <br> $f$ | Size | $L$ <br> $f t$ | $L_{u}$ $f t$ | $K l / r$ | A $i n^{2}$ | $\begin{gathered} P_{\mathrm{u}} \\ l b \end{gathered}$ | $\begin{gathered} \phi P_{n} \\ l b \end{gathered}$ | Ratio <br> $P_{u}$ <br> $\phi P_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 65.438 |  |  |  | $\mathrm{K}=1.00$ |  |  |  | $\checkmark$ |
| T6 | $\begin{gathered} 65.438 \\ 57.521 \end{gathered}$ | L4x4x $3 / 8$ | 7.95 | 7.95 | $\begin{gathered} 121.0 \\ \mathrm{~K}=1.00 \end{gathered}$ | 2.8600 | -29068.70 | 55545.30 | $0.523^{1}$ |
| T7 | $\begin{gathered} 57.521- \\ 50.271 \end{gathered}$ | L4x $4 \times 3 / 8$ | 7.28 | 7.28 | $\begin{gathered} 110.8 \\ \mathbf{K}=1.00 \end{gathered}$ | 2.8600 | -36797.90 | 63198.00 | $0.582^{1}$ |
| T8 | $\begin{gathered} 50.271- \\ 41.979 \end{gathered}$ | L5x5x $3 / 8$ | 8.32 | 8.32 | $\begin{gathered} 100.9 \\ \mathrm{~K}=1.00 \end{gathered}$ | 3.6100 | -41706.80 | 88365.70 | $0.472^{1}$ |
| T9 | $\begin{gathered} 41.979- \\ 34.187 \end{gathered}$ | L5x5x3/8 | 7.82 | 7.82 | $\begin{gathered} 94.8 \\ \mathrm{~K}=1.00 \end{gathered}$ | 3.6100 | -48551.40 | 93230.70 | $0.521^{1}$ |
| T10 | $\begin{gathered} 34.187- \\ 26.895 \end{gathered}$ | L5x5x $3 / 8$ | 7.32 | 7.32 | $\begin{gathered} 88.7 \\ \mathrm{~K}=1.00 \end{gathered}$ | 3.6100 | -53268.70 | 97793.20 | $0.545^{1}$ |
| T11 | $\begin{gathered} 26.895- \\ 20.103 \end{gathered}$ | L5x5x3/8 | 6.82 | 6.82 | $\begin{gathered} 82.6 \\ \mathrm{~K}=1.00 \end{gathered}$ | 3.6100 | -57637.10 | 102053.00 | $0.565^{1}$ |
| T12 | $\begin{gathered} 20.103 \\ 13.415 \end{gathered}$ | L5x5x5/16 | 6.71 | 6.71 | $\begin{gathered} 81.0 \\ \mathrm{~K}=1.00 \end{gathered}$ | 3.0300 | -64926.90 | 84358.10 | $0.770^{1}$ |
| T13 | $\begin{gathered} 13.415- \\ 6.7075 \end{gathered}$ | L5x5x5/16 | 6.73 | 3.37 | $\begin{gathered} 40.6 \\ \mathrm{~K}=1.00 \end{gathered}$ | 3.0300 | -62333.40 | 100100.00 | $0.623^{1}$ |
| T14 | 6.7075-0 | L5x5x5/16 | 6.73 | 3.37 | $\begin{gathered} 40.6 \\ \mathrm{~K}=1.00 \end{gathered}$ | 3.0300 | -62776.00 | 100100.00 | $0.627^{1}$ |

${ }^{1} P_{u} / \phi P_{n}$ controls

Diagonal Design Data (Compression)

| Section No. | Elevation <br> ft | Size | $\begin{aligned} & L \\ & f i \end{aligned}$ | $\begin{gathered} \overline{L_{u}} \\ f t \end{gathered}$ | Kl/r | A $i n^{2}$ | $\begin{gathered} \overline{P_{u}} \\ l b \end{gathered}$ | $\begin{gathered} \phi P_{n} \\ l b \end{gathered}$ | Ratio $P_{\mathrm{u}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T1 | $\begin{gathered} 90.333- \\ 78.063 \end{gathered}$ | L2x $2 \times 1 / 4$ | 7.90 | 3.69 | $\begin{gathered} 113.2 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.9380 | -1674.43 | 20156.50 | $0.083^{1}$ |
| T2 | $\begin{gathered} 78.063- \\ 74.563 \end{gathered}$ | L2x2 1/2x3/16 | 4.31 | 4.03 | $\begin{gathered} 113.2 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.8090 | -3382.03 | 17388.40 | $0.194$ |
| T3 | $\begin{gathered} 74.563- \\ 72.313 \end{gathered}$ | L2 1/2x2 1/2x $/ 16$ | 3.38 | 3.16 | $\begin{gathered} 76.5 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.9020 | -3996.79 | 26497.00 | $0.151^{1}$ |
| T4 | $\begin{gathered} 72.313- \\ 67.563 \end{gathered}$ | L2 1/2×2 1/2x $/$ /16 | 5.38 | 5.02 | $\begin{gathered} 121.7 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.9020 | -5812.34 | 17338.40 | $0.335^{1}$ |
| T5 | $\begin{gathered} 67.563- \\ 65.438 \end{gathered}$ | L2x2x $3 / 16$ | 3.22 | 3.01 | $\begin{gathered} 91.5 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.7150 | -4908.30 | 18959.90 | $0.259^{1}$ |
| T6 | $\begin{gathered} 65.438- \\ 57.521 \end{gathered}$ | L2 $21 / 2 \times 3 / 16$ | 9.67 | 4.97 | $\begin{gathered} 139.7 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.8090 | -3514.52 | 11872.90 | $0.296^{1}$ |
| T7 | $\begin{gathered} 57.521- \\ 50.271 \end{gathered}$ | L2 $21 / 2 \times 3 / 16$ | 9.72 | 4.95 | $\begin{gathered} 139.0 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.8090 | -2841.76 | 11987.10 | $0.237^{1}$ |
| T8 | $\begin{gathered} 50.271 \\ 41.979 \end{gathered}$ | L2x2 1/2x3/16 | 11.14 | 5.64 | $\begin{gathered} 158.5 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.8090 | -2919.84 | 9221.79 | $0.317^{1}$ |
| T9 | $\begin{gathered} 41.979- \\ 34.187 \end{gathered}$ | L2x2 1/2x3/16 | 11.47 | 5.78 | $\begin{gathered} 162.4 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.8090 | -2751.95 | 8781.19 | $0.313^{1}$ |
| T10 | $\begin{gathered} 34.187- \\ 26.895 \end{gathered}$ | L2x2 1/2x3/16 | 11.85 | 5.95 | $\begin{gathered} 167.1 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.8090 | -2593.84 | 8293.25 | $0.313^{1}$ |
| T11 | $\begin{gathered} 26.895 \\ 20.103 \end{gathered}$ | L2x2 1/2x3/16 | 12.26 | 6.13 | $\begin{gathered} 172.3 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.8090 | -2669.41 | 7801.97 | $0.342^{1}$ |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 FAX: | Job | 240022 REV 1 | $\begin{array}{ll} \hline \text { Page } & \\ & 26 \text { of } 32 \end{array}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Section No. | Elevation | Size | $L$ | $L_{u}$ | Kl/r | $A$ | $P_{u}$ | $\phi P_{n}$ | $\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f$ |  | $f t$ | $f i$ |  | in ${ }^{2}$ | $l b$ | lb | $\phi P_{n}$ |
| T12 | $\begin{gathered} 20.103- \\ 13.415 \end{gathered}$ | L2 1/2×2 1/2x3/16 | 12.90 | 6.45 | $\begin{gathered} 156.3 \\ K=1.00 \end{gathered}$ | 0.9020 | -4092.55 | 10566.60 | $0.387^{\prime}$ |
| T13 | $\begin{gathered} 13.415- \\ 6.7075 \end{gathered}$ | L3x3x5/16 | 8.82 | 8.50 | $\begin{gathered} 110.7 \\ \mathrm{~K}=1.00 \end{gathered}$ | 1.7800 | -6741.75 | 39401.70 | $0.171^{1}$ |
| T14 | 6.7075-0 | L3x3x5/16 | 9.38 | 9.08 | $\begin{gathered} 118.2 \\ \mathrm{~K}=1.00 \end{gathered}$ | 1.7800 | -6993.96 | 35938.10 | $0.195^{1}$ |

${ }^{1} P_{\mu} / \phi P_{n}$ controls

| Horizontal Design Data (Compression) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section No. | Elevation | Size | $L$ | $\boldsymbol{L}_{\mu}$ | Kl/r | A | $P_{\mathbf{u}}$ | $\phi P_{n}$ | Ratio $P_{u}$ |
|  | ft |  | $f t$ | $f t$ |  | in ${ }^{2}$ | $l b$ | $l b$ | $\phi P_{n}$ |
| T3 | $\begin{gathered} 74.563- \\ 72.313 \end{gathered}$ | L4x $31 / 2 \times 1 / 4$ | 5.04 | 3.53 | $\begin{gathered} 39.4 \\ K=1.00 \end{gathered}$ | 1.8100 | -884.12 | 59980.20 | $0.015^{1}$ |
| T5 | $\begin{gathered} 67.563- \\ 65.438 \end{gathered}$ | LAx $31 / 2 \mathrm{x} 1 / 4$ | 5.04 | 3.53 | $\begin{gathered} 39.4 \\ K=1.00 \end{gathered}$ | 1.8100 | -487.75 | 59980.20 | $0.008^{1}$ |
| T14 | 6.7075-0 | L1 3/4x13/4x3/16 | 12.26 | 5.92 | $\begin{gathered} 206.9 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.6211 | -943.41 | 4152.93 | $0.227^{1}$ |
|  |  | KL/R>200 (C) - 219 |  |  |  |  |  |  |  |

${ }^{1} P_{u} / \phi P_{n}$ controls

## Top Girt Design Data (Compression)

| Section No. | Elevation | Size | $L$ | $L_{\mu}$ | Kl/r | $A$ | $P_{u}$ | $\phi P_{n}$ | $\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | fi |  | $f i$ | $f t$ |  | $\mathrm{in}^{2}$ | $l b$ | $l b$ | $\phi P_{n}$ |
| T1 | $\begin{gathered} 90.333- \\ 78.063 \end{gathered}$ | L2 1/2x2 1/2x3/16 | 5.04 | 4.71 | $\begin{gathered} 114.1 \\ K=1.00 \end{gathered}$ | 0.9020 | -124.40 | 19169.70 | $0.006^{1}$ |
| T2 | $\begin{gathered} 78.063- \\ 74.563 \end{gathered}$ | L4x $31 / 2 \times 1 / 4$ | 5.04 | 3.53 | $\begin{gathered} 57.7 \\ K=1.00 \end{gathered}$ | 1.8100 | -537.54 | 56580.10 | $0.010^{1}$ |
| T4 | $\begin{gathered} 72.313- \\ 67.563 \end{gathered}$ | 2L4x4x $3 / 8$ | 5.04 | 4.71 | $\begin{gathered} 45.9 \\ \mathrm{~K}=1.00 \end{gathered}$ | 5.7200 | -1208.11 | 187393.00 | $0.006^{1}$ |
| T8 | $\begin{gathered} 50.271- \\ 41.979 \end{gathered}$ | L2 1/2x2 1/2x3/16 | 6.91 | 6.49 | $\begin{gathered} 157.3 \\ \mathbf{K}=1.00 \end{gathered}$ | 0.9020 | -626.78 | 10431.90 | $0.060^{1}$ |
| T12 | $\begin{gathered} 20.103- \\ 13.415 \end{gathered}$ | L2x2 1/2x1/4 | 10.61 | 10.20 | $\begin{gathered} 288.6 \\ \mathrm{~K}=1.00 \end{gathered}$ | 1.0600 | -2264.09 | 3642.36 | $0.622^{1}$ |
|  |  | KL/R > 200 (C) - 190 |  |  |  |  |  |  |  |

[^1]| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 Phone: (866) 386-7622 FAX: | Job |  | $\begin{aligned} & \text { Page } \\ & 27 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Section No. | Elevation <br> fi | Size | $L$ $f i$ | $L_{\mathrm{w}}$ <br> $f t$ | K $1 / r$ | $A$ | $P_{4}$ 16 | $\phi P_{n}$ $l b$ | Ratio $P_{u}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | J | J |  |  | 16 | $l b$ | $\phi P_{n}$ |
| T5 | $\begin{gathered} 67.563- \\ 65.438 \end{gathered}$ | L3x3x3/16 | 5.04 | 3.53 | $\begin{gathered} 71.1 \\ \mathrm{~K}=1.00 \end{gathered}$ | 1.0900 | -957.91 | 32089.70 | $0.030^{1}$ |

${ }^{1} P_{u} / \phi P_{n}$ controls

Redundant Horizontal (1) Design Data (Compression)

| Section No. | Elevation <br> ft | Size | $L$ <br> ft | $\begin{aligned} & L_{u} \\ & f t \end{aligned}$ | Kl/r | A $i n^{2}$ | $P_{u}$ <br> $l b$ | $\phi P_{n}$ $l b$ | $\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T13 | $\begin{gathered} 13.415- \\ 6.7075 \end{gathered}$ | L1 3/4x1 3/4x3/16 | 3.06 | 2.86 | $\begin{gathered} 99.8 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.6211 | -936.75 | 15355.50 | $0.061^{1}$ |
| T14 | 6.7075-0 | L1 3/4x1 3/4x3/16 | 3.06 | 2.86 | $\begin{gathered} 99.8 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.6211 | -943.41 | 15355.50 | $0.061^{1}$ |

${ }^{1} P_{u} / \phi P_{n}$ controls

## Redundant Diagonal (1) Design Data (Compression)

| Section No. | Elevation <br> ft | Size | $L$ $f t$ | $\begin{aligned} & L_{u} \\ & f t \end{aligned}$ | Kl/r | A $i n^{2}$ | $P_{u}$ $l b$ | $\begin{gathered} \phi P_{n} \\ l b \end{gathered}$ | Ratio $P_{u}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T13 | $\begin{array}{r} 13.415- \\ 6.7075 \end{array}$ | L1 3/4x1 3/4x3/16 | 4.69 | 4.39 | $\begin{gathered} 153.4 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.6211 | -721.67 | 7552.38 | $0.096^{1}$ |
| T14 | 6.7075-0 | L1 3/4x1 3/4×3/16 | 4.41 | 4.09 | $\begin{gathered} 142.9 \\ \mathbf{K}=1.00 \end{gathered}$ | 0.6211 | -679.00 | 8699.96 | $0.078^{1}$ |

${ }^{1} P_{u} / \phi P_{n}$ controls

| Inner Bracing Design Data (Compression) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section No. | Elevation | Size | $L$ | $L_{u}$ | $K 1 / r$ | $A$ | $P_{u}$ | $\phi P_{n}$ | $\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$ |
|  | $f t$ |  | $f t$ | fi |  | in ${ }^{2}$ | $l b$ | $l b$ | $\phi P_{n}$ |
| T2 | $\begin{gathered} 78.063- \\ 74.563 \end{gathered}$ | L2 1/2×2×3/16 | 3.56 | 3.23 | $\begin{gathered} 90.8 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.8090 | -6.14 | 21570.60 | $0.000^{1}$ |
| T5 | $\begin{gathered} 67.563- \\ 65.438 \end{gathered}$ | L2 1/2×2×3/16 | 3.56 | 3.23 | $\begin{gathered} 90.8 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.8090 | -3.59 | 21570.60 | $0.000^{1}$ |
| T12 | $\begin{gathered} 20.103- \\ 13.415 \end{gathered}$ | L2 $2 \times 3$ / 16 | 15.01 | 14.59 | $\begin{gathered} 444.5 \\ \mathrm{~K}=1.00 \end{gathered}$ | 0.7150 | -131.79 | 1035.81 | $0.127^{1}$ |
| $\mathrm{KL} / \mathrm{R}>250$ ( C$)-187$ |  |  |  |  |  |  |  |  |  |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & 28 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |

${ }^{1} P_{\downarrow} / \phi P_{n}$ controls

## Tension Checks

|  |  |  | De | gn | 2 | Ons |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section No. | Elevation | Size | $L$ | $L_{u}$ | $K 1 / r$ | A | $P_{u}$ | $\phi P_{n}$ | Ratio $P_{u}$ |
|  | fi |  | fi | $f t$ |  | $i n^{2}$ | lb | $l b$ | $\phi P_{n}$ |
| T1 | $\begin{gathered} 90.333- \\ 78.063 \end{gathered}$ | L4×4x1/4 | 12.27 | 6.08 | 58.4 | 1.9400 | 3557.06 | 62856.00 | $0.057^{1}$ |
| T2 | $\begin{gathered} 78.063- \\ 74.563 \end{gathered}$ | L4x4x $3 / 8$ | 3.50 | 3.50 | 34.1 | 2.8600 | 7901.13 | 92664.00 | $0.085^{!}$ |
| T3 | $\begin{gathered} 74.563 \\ 72.313 \end{gathered}$ | L4x4x $3 / 8$ | 2.25 | 2.25 | 22.0 | 2.8600 | 7262.08 | 92664.00 | $0.078^{1}$ |
| T4 | $\begin{gathered} 72.313- \\ 67.563 \end{gathered}$ | L4x4x3/8 | 4.75 | 4.75 | 46.3 | 2.8600 | 15889.80 | 92664.00 | $0.171^{1}$ |
| T5 | $\begin{gathered} 67.563- \\ 65.438 \end{gathered}$ | L $4 \times 4 \times 3 / 8$ | 2.13 | 0.13 | 1.2 | 2.8600 | 20337.60 | 92664.00 | $0.219^{1}$ |
| T6 | $\begin{gathered} 65.438 \\ 57.521 \end{gathered}$ | L4x4x $3 / 8$ | 7.95 | 7.95 | 77.5 | 2.8600 | 23486.00 | 92664.00 | $0.253^{1}$ |
| T7 | $\begin{gathered} 57.521- \\ 50.271 \end{gathered}$ | L4x4x $3 / 8$ | 7.28 | 7.28 | 71.0 | 2.8600 | 30413.90 | 92664.00 | $0.328^{1}$ |
| T8 | $\begin{gathered} 50.271- \\ 41.979 \end{gathered}$ | L5x5x3/8 | 8.32 | 8.32 | 64.0 | 3.6100 | 35275.50 | 116964.00 | $0.302^{1}$ |
| T9 | $\begin{gathered} 41.979- \\ 34.187 \end{gathered}$ | L5x5x3/8 | 7.82 | 7.82 | 60.2 | 3.6100 | 41423.30 | 116964.00 | $0.354^{1}$ |
| T10 | $\begin{gathered} 34.187 \\ 26.895 \end{gathered}$ | L5x5x3/8 | 7.32 | 7.32 | 56.3 | 3.6100 | 45911.00 | 116964.00 | $0.393^{1}$ |
| T11 | $\begin{gathered} 26.895- \\ 20.103 \end{gathered}$ | L5x5x3/8 | 6.82 | 6.82 | 52.4 | 3.6100 | 49840.00 | 116964.00 | $0.426^{1}$ |
| T12 | $\begin{gathered} 20.103- \\ 13.415 \end{gathered}$ | L5x5x5/16 | 6.71 | 6.71 | 51.3 | 3.0300 | 56030.30 | 98172.00 | $0.571^{1}$ |
| T13 | $\begin{gathered} 13.415- \\ 6.7075 \end{gathered}$ | L5x5x5/16 | 6.73 | 3.37 | 25.7 | 3.0300 | 54872.90 | 98172.00 | $0.559^{1}$ |
| T14 | 6.7075-0 | L5x5x5/16 | 6.73 | 3.37 | 25.7 | 3.0300 | 54885.80 | 98172.00 | $0.559^{1}$ |

${ }^{1} P_{u} / \phi P_{n}$ controls
Diagonal Design Data (Tension)

| Section No. | Elevation | Size | $L$ | $L_{\mu}$ | Kl/r | A | $P_{v}$ | $\phi P_{\text {n }}$ | $\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f t$ |  | $f$ | fi |  | $\mathrm{in}^{2}$ | $l b$ | $l b$ | $\phi P_{n}$ |
| T1 | $\begin{gathered} 90.333- \\ 78.063 \end{gathered}$ | L2x2x1/4 | 7.90 | 3.69 | 72.7 | 0.5631 | 1649.75 | 24493.20 | $0.067^{1}$ |
| T2 | $\begin{gathered} 78.063- \\ 74.563 \end{gathered}$ | L2x2 1/2x3/16 | 4.31 | 4.03 | 80.6 | 0.5131 | 2916.59 | 22319.60 | $0.131^{1}$ |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Job | 240022 REV 1 | $\begin{aligned} & \text { Page } \\ & 29 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Projact | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Deslgned by treed |


| Section | Elevation | Size | $L$ | $L_{u}$ | $K V / r$ | $A$ | $P_{u}$ | Ratio <br> No. | $f i$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{1} P_{u} / \phi P_{n}$ controls

| Horizontal Design Data (Tension) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section No. | Elevation | Size | $L$ | $L_{u}$ | $K l / r$ | $A$ | $P_{u}$ | $\phi P_{n}$ | $\begin{gathered} \text { Ratio } \\ P_{4} \\ \hline \end{gathered}$ |
|  | $f$ |  | $f$ | $f$ |  | $\mathrm{in}^{2}$ | $l b$ | $l b$ | $\phi P_{n}$ |
| T3 | $\begin{gathered} 74.563- \\ 72.313 \end{gathered}$ | L4x $1 / 2 \times 1 / 4$ | 5.04 | 3.53 | 39.4 | 1.2169 | 877.56 | 52934.10 | $0.017^{1}$ |
| T5 | $\begin{gathered} 67.563- \\ 65.438 \end{gathered}$ | L4x $31 / 2 \times 1 / 4$ | 5.04 | 3.53 | 39.4 | 1.2169 | 491.30 | 52934.10 | $0.009^{1}$ |
| T14 | 6.7075-0 | L1 3/4x1 3/4x $3 / 16$ | 12.26 | 5.92 | 198.5 | 0.3604 | 943.41 | 15675.30 | $0.060^{1}$ |

${ }^{1} P_{u} / \phi P_{n}$ controls

## Top Girt Design Data (Tension)

| Section No. | Elevation | Size | $L$ | $L_{u}$ | Kl/r | $A$ | $P_{u}$ | $\phi P_{n}$ | Ratio $P_{u}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f$ |  |  | $f$ | $f t$ |  | $\mathrm{in}^{2}$ | $l b$ | $l b$ | $\phi P_{n}$ |
| T1 | 90.333 - | L2 1/2x2 1/2x3/16 | 5.04 | 4.71 | 72.6 | 0.5710 | 102.68 | 24839.90 | $0.004^{1}$ |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 FAX: | Job 240022 REV 1 |  | $\begin{aligned} & \text { Page } \\ & 30 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Section | Elevation | Size | $L$ | $L_{u}$ | $K l / r$ | $A$ | $P_{u}$ | $\phi_{n}$ | Ratio <br> No. | $f t$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{1} P_{u} / \phi P_{n}$ controls

## Bottom Girt Design Data (Tension)

| Section No. | Elevation | Size | $L$ | $L_{u}$ | Kl/r | A | $P_{\text {u }}$ | $\phi P_{n}$ | $\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f$ |  | $f t$ | $f t$ |  | $i n^{2}$ | $1 b$ | $l b$ | $\phi P_{n}$ |
| T5 | $\begin{gathered} 67.563- \\ 65.438 \end{gathered}$ | L3x3x3/16 | 5.04 | 3.53 | 60.2 | 1.0900 | 1207.14 | 35316.00 | $\begin{gathered} 0.034^{1} \\ \end{gathered}$ |

${ }^{1} P_{y} / \phi P_{n}$ controls

## Redundant Horizontal (1) Design Data (Tension)

| Section No. | Elevation | Size | $L$ | $L_{u}$ | KI/r | $A$ | $P_{u}$ | $\phi P_{n}$ | $\begin{gathered} \text { Ratio } \\ P_{\mu} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f t$ |  | $f t$ | $f t$ |  | in ${ }^{2}$ | $l b$ | $l b$ | $\phi P_{n}$ |
| T13 | $\begin{gathered} 13.415- \\ 6.7075 \end{gathered}$ | L1 3/4x1 3/4x3/16 | 3.06 | 2.86 | 63.8 | 0.3779 | 936.75 | 16439.90 | $\begin{gathered} 0.057^{1} \\ \end{gathered}$ |
| T14 | 6.7075-0 | L1 3/4x1 3/4x3/16 | 3.06 | 2.86 | 63.8 | 0.3779 | 943.41 | 16439.90 | $0.057^{1}$ |

${ }^{1} P_{u} / \phi P_{n}$ controls

## Redundant Diagonal (1) Design Data (Tension)

| Section No. | Elevation | Size | $L$ | $L_{\mu}$ | Kl/r | A | $P_{u}$ | $\phi P_{n}$ | $\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $f t$ |  | $f$ | $f$ |  | $\mathrm{in}^{2}$ | $l b$ | $l b$ | $\phi P_{n}$ |
| T13 | $\begin{gathered} 13.415- \\ 6.7075 \end{gathered}$ | L1 3/4x1 3/4x3/16 | 4.69 | 4.39 | 98.1 | 0.3779 | 721.67 | 16439.90 | $0.044^{1}$ |
| T14 | 6.7075-0 | L1 3/4x $13 / 4 \times 3 / 16$ | 4.41 | 4.09 | 91.4 | 0.3779 | 679.00 | 16439.90 | $0.041^{1}$ |


| tnxTower <br> Structural Components, LLC 1870 West 64th Lane, Unit A | Job | 240022 REV 1 | $\begin{array}{\|l\|l\|} \hline \text { Page } & \\ & 31 \text { of } 32 \end{array}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
| Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | Client | BST Management, LLC | Designed by treed |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation \& Size \& $L$
$f t$ \& $L_{u}$
$A$ \& K $/$ r \& A
$i n^{2}$ \& $P u$
$l b$ \& $\phi P_{n}$

$l$ \& $$
\begin{gathered}
\text { Ratio } \\
P_{u}
\end{gathered}
$$ <br>

\hline \& \& \& \& ر \& \& \& 16 \& $l b$ \& $\phi P_{n}$ <br>
\hline
\end{tabular}

${ }^{1} P_{\jmath} / \phi P_{n}$ controls

| Inner Bracing Design Data (Tension) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Section No. | Elevation | Size | $L$ | $L_{u}$ | Kl/r | $A$ | $P_{v}$ | $\phi P_{n}$ | Ratio $P_{u}$ |
|  | $f i$ |  | $f t$ | $f t$ |  | $\mathrm{in}^{2}$ | $l b$ | $l b$ | $\phi P_{n}$ |
| T2 | $\begin{gathered} 78.063- \\ 74.563 \end{gathered}$ | L2 1/2x2x3/16 | 7.13 | 6.80 | 136.0 | 0.8090 | 90.88 | 26211.60 | $0.003^{1}$ |
| T5 | $\begin{gathered} 67.563- \\ 65.438 \end{gathered}$ | L2 $1 / 2 \times 2 \times 3 / 16$ | 7.13 | 6.80 | 136.0 | 0.8090 | 192.41 | 26211.60 | $0.007^{\circ 1}$ |
| T8 | $\begin{gathered} 50.271- \\ 41.979 \end{gathered}$ | L2 1/2x2x3/16 | 9.77 | 9.35 | 187.1 | 0.8090 | 29.18 | 26211.60 | $0.001^{11}$ |
| T12 | $\begin{gathered} 20.103- \\ 13.415 \end{gathered}$ | L2 $2 \times 3 / 16$ | 15.01 | 14.59 | 283.8 | 0.7150 | 202.74 | 23166.00 | $0.009{ }^{1}$ |

* DL controls
${ }^{1} P_{u} / \phi P_{n}$ controls


## Section Capacity Table

| Section No. | Elevation ft | Component Type | Size | Critical Element | $\begin{aligned} & P \\ & l b \end{aligned}$ | $\begin{gathered} a P_{\text {allow }} \\ l b \end{gathered}$ | \% Capacity | $\begin{aligned} & \text { Pass } \\ & \text { Fail } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T1 | 90.333-78.063 | Leg | L4×4×1/4 | 4 | -5135.01 | 50194.10 | 10.2 | Pass |
| T2 | 78.063-74.563 | Leg | L4x4x3/8 | 28 | -11070.20 | 93762.70 | 11.8 | Pass |
| T3 | 74.563-72.313 | Leg | L4x4x3/8 | 54 | -11133.20 | 99159.10 | 11.2 | Pass |
| T4 | 72.313-67.563 | Leg | L4×4x3/8 | 66 | -20249.50 | 86020.10 | 23.5 | Pass |
| T5 | 67.563-65.438 | Leg | L $4 \times 4 \times 3 / 8$ | 86 | -26119.10 | 102948.00 | 25.4 | Pass |
| T6 | 65.438-57.521 | Leg | L4x4x3/8 | 108 | -29068.70 | 55545.30 | 52.3 | Pass |
| T7 | 57.521-50.271 | Leg | L4x4x $3 / 8$ | 120 | -36797.90 | 63198.00 | 58.2 | Pass |
| T8 | 50.271-41.979 | Leg | L5x5x3/8 | 132 | -41706.80 | 88365.70 | 47.2 | Pass |
| T9 | 41.979-34.187 | Leg | L5x5x3/8 | 150 | -48551.40 | 93230.70 | 52.1 | Pass |
| T10 | 34.187-26.895 | Leg | L5x5x3/8 | 162 | -53268.70 | 97793.20 | 54.5 | Pass |
| T11 | 26.895-20.103 | Leg | L5x5x3/8 | 174 | -57637.10 | 102053.00 | 56.5 | Pass |
| T12 | 20.103-13.415 | Leg | L5x5x5/16 | 186 | -64926.90 | 84358.10 | 77.0 | Pass |
| T13 | 13.415-6.7075 | Leg | L5x5x5/16 | 204 | -62333.40 | 100100.00 | 62.3 | Pass |
| T14 | 6.7075-0 | Leg | L5x5x5/16 | 236 | -62776.00 | 100100.00 | 62.7 | Pass |
| T1 | 90.333-78.063 | Diagonal | L2x $2 \times 1 / 4$ | 14 | -1674.43 | 20156.50 | 8.3 | Pass |
| T2 | 78.063-74.563 | Diagonal | L2 $\times 21 / 2 \times 3 / 16$ | 42 | -3382.03 | 17388.40 | 19.4 | Pass |
| T3 | 74.563-72.313 | Diagonal | L2 $1 / 2 \times 21 / 2 \times 3 / 16$ | 60 | -3996.79 | 26497.00 | 15.1 | Pass |
| T4 | 72.313-67.563 | Diagonal | L2 1/2x2 1/2×3/16 | 78 | -5812.34 | 17338.40 | 33.5 | Pass |
| T5 | 67.563-65.438 | Diagonal | L2x $2 \times 3 / 16$ | 97 | -4908.30 | 18959.90 | 25.9 | Pass |
| T6 | 65.438-57.521 | Diagonal | L2x2 1/2x3/16 | 113 | -3514.52 | 11872.90 | 29.6 | Pass |
| T7 | 57.521-50.271 | Diagonal | L2x2 1/2x3/16 | 125 | -2841.76 | 11987.10 | 23.7 | Pass |
| T8 | 50.271-41.979 | Diagonal | L2x2 1/2x3/16 | 143 | -2919.84 | 9221.79 | 31.7 | Pass |
| T9 | 41.979-34.187 | Diagonal | L2 $\times 2$ 1/2x3/16 | 155 | -2751.95 | 8781.19 | 31.3 | Pass |
| T10 | 34.187-26.895 | Diagonal | L2 $\times 21 / 2 \times 3 / 16$ | 167 | -2593.84 | 8293.25 | 31.3 | Pass |
| T11 | 26.895-20.103 | Diagonal | L2x2 1/2x3/16 | 180 | -2669.41 | 7801.97 | 34.2 | Pass |
| T12 | 20.103-13.415 | Diagonal | L2 1/2×2 $1 / 2 \times 3 / 16$ | 197 | -4092.55 | 10566.60 | 38.7 | Pass |


| tnxTower <br> Structural Components, LLC 1870 West 64 th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 FAX: | Job 240022 REV 1 |  | $\begin{aligned} & \text { Page } \\ & \\ & 32 \text { of } 32 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Project | Portland (CT-1680) | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 15:03:20 02/13/24 } \end{array}$ |
|  | Client | BST Management, LLC | Designed by treed |


| Section No. | $\begin{gathered} \text { Elevation } \\ f t \end{gathered}$ | Component Type | Size | Critical Element | $\begin{aligned} & P \\ & l b \end{aligned}$ | $\begin{gathered} \\| P_{\text {allow }} \\ l b \end{gathered}$ | \% Capacity | Pass Fail |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T13 | 13.415-6.7075 | Diagonal | L3x3x5/16 | 216 | -6741.75 | 39401.70 | 17.1 | Pass |
| T14 | 6.7075-0 | Diagonal | L3x3x5/16 | 243 | -6993.96 | 35938.10 | 19.5 | Pass |
| T3 | 74.563-72.313 | Horizontal | L4x3 1/2x1/4 | 41 | 877.56 | 52934.10 | 1.7 | Pass |
| T5 | 67.563-65.438 | Horizontal | L4x3 1/2x1/4 | 77 | 491.30 | 52934.10 | 0.9 | Pass |
| T14 | 6.7075-0 | Horizontal | L1 3/4x1 3/4×3/16 | 219 | -943.41 | 4152.93 | 22.7 | Pass |
| T1 | 90.333-78.063 | Top Girt | L2 1/2x2 1/2x3/16 | 5 | -124.40 | 19169.70 | 0.6 | Pass |
| T2 | 78.063-74.563 | Top Girt | L4x $31 / 2 \times 1 / 4$ | 33 | 731.14 | 52934.10 | 1.4 | Pass |
| T4 | 72.313-67.563 | Top Girt | 2L4x $4 \times 3 / 8$ | 69 | 1847.63 | 168263.00 | 1.1 | Pass |
| T8 | 50.271-41.979 | Top Girt | L2 1/2×2 1/2x3/16 | 137 | -626.78 | 10431.90 | 6.0 | Pass |
| T12 | 20.103-13.415 | Top Girt | L2x2 1/2x1/4 | 190 | -2264.09 | 3642.36 | 62.2 | Pass |
| T5 | 67.563-65.438 | Bottom Girt | L $3 \times 3 \times 3 / 16$ | 91 | 1207.14 | 35316.00 | 3.4 | Pass |
| T13 | 13.415-6.7075 | Redund Horz 1 Bracing | L1 3/4×13/4x3/16 | 224 | -936.75 | 15355.50 | 6.1 | Pass |
| T14 | 6.7075-0 | Redund Horz 1 Bracing | L1 3/4x1 3/4x3/16 | 253 | -943.41 | 15355.50 | 6.1 | Pass |
| T13 | 13.415-6.7075 | Redund Diag 1 Bracing | L1 3/4x1 3/4x3/16 | 229 | -721.67 | 7552.38 | 9.6 | Pass |
| T14 | 6.7075-0 | Redund Diag 1 Bracing | L1 3/4x1 3/4x3/16 | 254 | -679.00 | 8699.96 | 7.8 | Pass |
| T2 | 78.063-74.563 | Inner Bracing | L2 1/2x2x3/16 | 30 | 90.88 | 26211.60 | 0.3 | Pass |
| T5 | 67.563-65.438 | Inner Bracing | L2 $1 / 2 \times 2 \times 3 / 16$ | 87 | 192.41 | 26211.60 | 0.7 | Pass |
| T8 | 50.271-41.979 | Inner Bracing | L2 $1 / 2 \times 2 \times 3 / 16$ | 133 | 29.18 | 26211.60 | 0.5 | Pass |
| T12 | 20.103-13.415 | Inner Bracing | L $2 \times 2 \times 3 / 16$ | 187 | -131.79 | 1035.81 | $12.7$ <br> Summary | Pass |
|  |  |  |  |  |  | Leg (T12) | 77.0 | Pass |
|  |  |  |  |  |  | Diagonal (T12) | 38.7 | Pass |
|  |  |  |  |  |  | Horizontal (T14) | 22.7 | Pass |
|  |  |  |  |  |  | Top Girt (T12) | 62.2 | Pass |
|  |  |  |  |  |  | Bottom Girt (T5) | 3.4 | Pass |
|  |  |  |  |  |  | Redund <br> Horz 1 <br> Bracing <br> (T14) | 6.1 | Pass |
|  |  |  |  |  |  | Redund <br> Diag 1 <br> Bracing <br> (T13) | 9.6 | Pass |
|  |  |  |  |  |  | Inner Bracing (T12) | 12.7 | Pass |
|  |  |  |  |  |  | Bolt Checks RATING = | $62.7$ | Pass Pass |

[^2]

## Stress Distribution Chart

## $0^{\prime}$ - 90'3-31/32"




## PIER/PAD \& MAT FOUNDATION

Template $=$ "SquareCombPierPadMat.xmcd"
Version $=4.02$
PROJECT DATA
$\mathrm{Job}=$ " 240022 REV 1 "

## 1870 West 64h Lane, UnitA <br> Derver,CO 80221

866-386-7622

Client = "BST Management, LLC"
Site = "Portland (CT-1680)"
Model = "90ft SST"

## DESIGN CODES AND STANDARDS

Code $=\binom{$ "TIA-222-H, "Structural Standard for Antenna Supporting Structures and Antennas" 2017." }{ "ACI 318-14, "Building Code Requirements for Structural Concrete and Commentary," 2014." }

## FACTORED FOUNDATION DESIGN LOADS

Overdesign Factor: $\quad \alpha=1.00$
Calculation Mode: $\quad$ calc $=$ "Analysis (no seismic provision check)"

Percentage for Passing: $\quad \mathrm{PP}=100 . \%$
reinf ${ }^{\prime}=$ "Reinforcing Details Available"

Load Comb. \#1 Load Comb.\#2 Load Comb.\#3
Load Combination:

$$
\mathrm{Comb}_{2}^{\prime}=" 0.9 \mathrm{D}+1.6 \mathrm{~W} "
$$

Overall Moment

$$
\mathrm{Comb}_{1}=" 1.2 \mathrm{D}+1.0 \mathrm{~W} "
$$

$$
\mathbf{M}_{\mathrm{u}_{1}}=1237.5 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

$$
\mathrm{M}_{\mathrm{u}_{2}}=928.1 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Overall Shear:
OverallAxial:

$$
\mathrm{V}_{\mathrm{u}_{1}}=22.4 \cdot \mathrm{kip}
$$

$$
\mathrm{V}_{\mathrm{u}_{2}}=22.4 \cdot \mathrm{kip}
$$

$$
\mathrm{P}_{\mathrm{u}_{1}}=21.8 \cdot \mathrm{kip}
$$

$$
\mathrm{P}_{\mathrm{u}_{2}}=16.3 \cdot \mathrm{kip}
$$

Leg Moment

$$
\mathrm{LM}_{\mathrm{u}_{1}}=0.0 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

$$
\mathrm{LM}_{\mathrm{u}_{7}}=0.0 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Leg Shear.
Leg Axial:

$$
\mathrm{S}_{\mathrm{u}_{1}}=10.8 \cdot \mathrm{kip}
$$

$$
\operatorname{Pmax}_{\mathrm{u}_{1}}=72.4 \cdot \mathrm{kip}
$$

$$
\operatorname{Pmin}_{\mathrm{u}_{1}}=-62.8 \cdot \mathrm{kip}
$$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{u}_{2}}=10.8 \cdot \mathrm{kip} \\
& \operatorname{Pmax}_{\mathrm{u}_{2}}=54.3 \cdot \mathrm{kip} \\
& \operatorname{Pmin}_{\mathrm{u}_{2}}=-47.1 \cdot \mathrm{kip}
\end{aligned}
$$

$\mathrm{Comb}_{3}=" 1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{~W} "$

$$
\mathrm{Comb}_{3}=" 1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{~W} "
$$

$$
\mathrm{M}_{\mathrm{u}_{\imath}}=310.2 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

$$
\mathrm{V}_{\mathrm{u}_{3}}=5.5 \cdot \mathrm{kip}
$$

$\mathrm{V}_{\mathrm{u}_{3}}=5.5 \cdot \mathrm{kip}$
$\mathrm{P}_{\mathrm{u}_{3}}=43.7 \cdot \mathrm{kip}$
$\mathrm{LM}_{\mathrm{u}_{3}}=0.0 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$\mathrm{S}_{\mathrm{u}_{3}}=12.6 \cdot \mathrm{kip}$
$\mathrm{Pmax}_{\mathrm{u}_{\mathrm{z}}}=72.4 \cdot \mathrm{kip}$
$\operatorname{Pmin}_{u_{3}}=-61.5 \cdot \mathrm{kip}$

## DIMENSIONS

Depth: $\mathrm{D}=6.5 \cdot \mathrm{ft} \quad$ (from grade to bottom of pad)
Pad Width:
Pad Thickness:
Pier Separation:
Pier (or mat) Extension:
Pier: $\quad$ Pier $=$ "Square"
Base Plate Geometry:
Tower Ofiset:
Tower Leg Ofiset:
$\mathrm{W}=18.0 \cdot \mathrm{ft} \quad$ (each way)
$\mathrm{T}=2.0 \cdot \mathrm{ft}$
$\mathrm{Wt}=13.0 \cdot \mathrm{ft}$
$\mathrm{E}=0.5 \cdot \mathrm{ft} \quad$ (above-grade portion)
$\mathrm{D}_{\mathrm{p}}=2.0 \cdot \mathrm{ft}$
$\mathrm{BPG}=$ "None" $\quad \mathrm{BP}=0.0$ - in
eccl $=0.0 \cdot \mathrm{ft} \quad$ (center of tower to center of pad)
$\mathrm{ecc} 2=0.0 \cdot \mathrm{ft} \quad$ (center of tower leg to center of pier)
Concrete Volume:
$\mathrm{V}_{\mathrm{pad}}=24.0 \cdot \mathrm{yd}^{3}$
$\mathrm{V}_{\text {pier }}=0.7 \cdot \mathrm{yd}^{3}$
$\mathrm{V}_{\text {conc }}=27.0 \cdot \mathrm{yd}^{3}$

## SITE \& GEOTECHNICAL DATA

| Soil Parameters: | Geo = "GDP, 03/06/2017, Job \# 2017702.58" |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Soil Unit Weight | $\gamma_{\text {soil }}=136.5385 \cdot \mathrm{pcf}$ |  |  |  |  |
| Soil Cone Override: | soilcone = "N" | $\phi_{\text {cone }}=0.0 \cdot \mathrm{deg}$ |  |  |  |
| Constant Lateral Pressure: | costpres $=$ "N" | " $\mathrm{CP}_{\mathrm{p}}=0 \cdot \mathrm{psf}$ | (for pier) | $\mathrm{CP}_{\mathrm{P}}=$ | (for pad) |
| Equivalent Fluid Pressure: | $\begin{array}{ll} \text { EFpres }=\text { "N" } & \text { EFP }=0.0 \cdot \text { pcf } \\ \phi_{1}=15.0 \cdot \mathrm{deg} & \text { (above water table) } \\ \phi_{2}=" \mathrm{~N} / \mathrm{A} " \cdot \text { deg } & \text { (below water table) } \end{array}$ |  |  |  |  |
| Angle of Intemal Friction: |  |  |  |  |  |
| Ultimate Bearing Pressure: | $\mathrm{B}_{\mathrm{c}}{ }^{\text {c }}=30.0 \cdot \mathrm{ksf}$ | Bearing = "Capacity at Depth" |  |  |  |
| Cohesion: | $\mathrm{c}=10000 \cdot \mathrm{psf}$ |  |  |  |  |
| Adhesion: | $\mathrm{c}_{\mathrm{A}}=0 \cdot \mathrm{psf}$ |  |  |  |  |
| Passive Pressure Coefficient (Rankine): | $\mathrm{K}_{\mathrm{p} 1}=1.70$ | (above water table) | $\mathrm{K}_{\mathrm{p} 2}=$ "N/A" (below water table) |  |  |
| Active Pressure Coefficient: | $\mathrm{K}_{\mathrm{a} 1}=0.59 \quad$ (above water table) |  | $\mathrm{K}_{\mathrm{a} 2}=$ "N/A" (below water table) |  |  |
| Ultimate Friction Coefficient: | $\mu=0.60$ | (base) | $\mu_{\text {s }}=$ |  | (sides) |
| Ulitimate Siliding Friction: | $\mathrm{f}_{\mathrm{s}}=0 \cdot \mathrm{psf}$ | (base) | $\mathrm{f}_{\text {S. } \mathrm{s}}=$ | 00-psf | (sides) |
| Depth Neglected: | $\mathrm{D}_{\mathrm{n}}=2.5 \mathrm{ft}$ |  |  |  |  |
| Depth of Water Table: | $\mathrm{D}_{\mathrm{w}}=$ "Below Footing" |  |  |  |  |

Seismic Design Category: $\quad$ SDCT $=$ "Seismic Design Category B" Note $_{\text {SDC }}=$ "N/A"

## MATERIAL SPECIFICATIONS

| Concrete: | Compressive Strength: | $f_{c}=3000 \cdot \mathrm{psi}$ |
| :--- | :--- | :--- |
|  | Clear Cover: | $\mathbf{c c}=3.0 \cdot \mathrm{in}$ |
|  | LightweightAggregate Factor: | $\lambda=1.00$ |
|  | Unit Weight: | $\gamma_{\text {conc }}=150 \cdot \mathrm{pcf}$ |
| Rebar: | Yield Strength: | $\mathrm{F}_{\mathrm{y}}=60 \cdot \mathrm{ksi}$ |

## LATERAL CAPACITY

| Design Resist | Lat Load | Check | Ratio |
| :---: | :---: | :---: | :---: |
| $\min \left(\phi V_{n}\right)=1112 \cdot \mathrm{kip}$ | $\max \left(\mathrm{V}_{\mathrm{u}}\right)=22 \cdot \mathrm{kip}$ | Check' ${ }_{\text {lateral }}=$ "OK" | Ratio ${ }_{\text {lateral }}=0.02$ |
| OVERTURNING |  |  |  |
| Design Resist. | O.T. Moment | Check | Ratio |
| $\min (\mathrm{MR1} 1, \mathrm{MR} 2)=6760 \mathrm{ft} \cdot \mathrm{kip}$ | $\max \left(\mathrm{M}_{\text {u.ot }}\right)=1394 \cdot \mathrm{ft} \cdot \mathrm{kip}$ | Check' ${ }_{\text {over }}=$ "OK" | Ratio' $_{\text {over }}=0.47$ |
| SOIL BEARING |  |  |  |
| Design Bearing Capacity | Max. Bearing | Check | Ratio |
| $\phi \mathrm{B}_{\mathrm{c}}=22500 \cdot \mathrm{psf}$ | $\mathrm{P}_{\text {pos }}=2640 \cdot \mathrm{psf}$ | Check' $^{\text {comp }}$ = "OK" | Ratio $^{\text {comp }}$ = 0.12 |


| PAD REINFORCEMENT/STRENGTH |  |
| :---: | :---: |
| *Pad reinforcement is assumed |  |
| Number of Reinforcing Layers: | Mats = "Top \& Bottom Mats" |
| Pad has Hoops or Tles? | Tie ${ }_{\mathrm{p}}=$ "No" |
| Bar Quantity: | $\mathrm{n}_{\mathrm{p}}=21 \quad$ (per layer per direction) |
| Bar Size: | $\mathrm{s}_{\mathrm{p}}=6$ |
| Bar Spacing (center to center): | $\mathrm{sp}_{\mathrm{p} . \mathrm{ctr}}=10.5 \cdot \mathrm{in}$ |
| Bar Spacing (clear): | $\mathrm{sp}_{\mathrm{p} . \mathrm{cl}}=9.7 \cdot \mathrm{in}$ |
| Total Weight (per mat): | $\mathrm{W} \mathrm{t}_{\mathrm{tp}}=1104 \mathrm{lbf}$ |
| Check of Reinforcing | Check $_{\text {spp.cl }}=$ "OK" |
| Spacing and Minimum Reinforcing: | Check $_{\text {spp.cl2 }}=$ "OK" |
|  | Check $_{\text {minp }}=$ "N/A" |

## REINFORCING FLEXURAL STRENGTH

| Case | Design Strength | Calculated Max Moment | Check | Ratio |
| :--- | :--- | :--- | :--- | :--- |
| A | $\phi \mathrm{M}_{\mathrm{nA}}=805 \cdot \mathrm{ft} \cdot \mathrm{kip}$ | $\max \left(\mathrm{M}_{\mathrm{u} . \mathrm{TA}}\right)=85 \mathrm{ft} \cdot \mathrm{kip}$ |  |  |
| B | $\phi \mathrm{M}_{\mathrm{nB}}=805 \cdot \mathrm{ft} \cdot \mathrm{kip}$ | $\max \left(\mathrm{M}_{\mathrm{u} . \mathrm{TB}}\right)=426 \mathrm{ft} \cdot \mathrm{kip}$ | Check' $_{\text {flex }}=$ "OK" |  |$\quad$ Ratio $_{\text {flex }}=0.53$

(Case A = Bottom of Pad in Tension at Toe, Case B = Top of Pad in Tension at Heel)

## PAD ONE-WAY SHEAR


(Case 1 = Hinging about Pad Edge Adjacent to Pier 1, Case 2 = Hinging about Pad Edge Adjacent to Piers 2/3.)
Shear Reinforcing Check: $\quad$ Check' $^{\text {shrmf }}=$ "OK"

TWO-WAYPAD SHEAR

| Design Strength | Calculated Max Shear | Check | Ratio |
| :--- | :--- | :--- | :--- |
| $\phi V_{\mathrm{n} 2}=573 \cdot \mathrm{kip}$ | $\max \left(\mathrm{V}_{\mathrm{u} 2}\right)=130 \cdot \mathrm{kip}$ | Check $_{\text {shear } 2}=$ "OK" $^{\prime \prime}$ | Ratio $_{\text {shear. } 2=0.23}$ |

## PIER REINFORCEMENT

| Gross Area: | $A_{\text {pier }}=4.0 \cdot \mathrm{ft}^{2}$ |
| :--- | :--- |
| Effective Gross Area: | $A_{\text {pier }}^{\prime}=2.0 \cdot \mathrm{ft}^{2}$ |

Design Pier Area Factor: $\quad \mathrm{P}_{\mathrm{Ag}}=50 . \%$
Check of Area Factor: $\quad$ Check $_{\mathrm{PAg}}=$ "OK"

## LONGITUDINAL PIER REINFORCING

Bar Q
Hook
Hook
Che
TIES
Tie Size: $\quad s_{t}=4.0000$

Check of Tie Size: $\quad$ Check $_{\text {st }}=$ "OK"

| Maximum Crosstie Spacing (hx): (O for none) |  | $\mathrm{h}_{\mathrm{x}}=0.0 \cdot \mathrm{in}$ |  |
| :---: | :---: | :---: | :---: |
| Tie Levels: (0 if none) | Qty. Spaces | Spacing |  |
|  | $\mathrm{qsp} \mathrm{tl}=7.0000$ | $\mathrm{sp}_{\mathrm{t} 1}=8.0 \cdot \mathrm{in}$ | (top) |
|  | $\mathrm{qsp}_{\mathrm{t} 2}=0.0000$ | $\mathrm{sp}_{\mathrm{t} 2}=0.0 \cdot \mathrm{in}$ | (mid.) |
|  | $\mathrm{qsp}_{\mathrm{t} 3}=0.0000$ | $\mathrm{sp}_{\mathrm{t} 3}=0.0 \cdot \mathrm{in}$ | (bot) |

Maximum Required Tie Spacing (top, mid., bot.):
TIE SPLICE

Required Lap Splice Length: $\quad$ Lap $=24.0000 \cdot$ in

$$
\begin{aligned}
& \text { sp }_{\text {t.max }}=12.0 \cdot \text { in } \\
& \text { Check }_{\text {tie }}=\text { "OK" } \\
& \text { Note }_{\text {SDCt } 3}=\text { "N/A" } \\
& \text { Check }_{\text {sp.cl }}=\text { "OK" } \\
& \text { Note }_{\text {SDCt2 }}=\text { "N/A" }
\end{aligned}
$$

| Bar Size: | $s_{c}=6$ |  |
| :--- | :--- | :--- |
| Bend Dia: | bend $_{c}=4.5 \cdot \mathrm{in}$ | (inside) |
| Bar Weight | $\mathrm{Wt}_{\mathrm{tc}}=133 \mathrm{lbf}$ | (per pier) |
| Check $_{\text {hookc }}=$ "N/A" |  |  |

Tie Weight $\quad W t_{t c}=133 \cdot 1 b f \quad$ (per pier)

$$
\text { Note }_{\text {SDCt1 }}=\text { "N/A" }
$$

Tie Quantity: $\quad n_{t}=8$

## MINIMUM LONGITUDINAL REINFORCEMENT

Pier Area of Steel:

$$
A_{\mathrm{tc}}=5.3 \cdot \mathrm{in}^{2} \quad \text { Ratio }_{\min . \mathrm{c}}=1.8 . \% \quad \text { (based on effective pier gross area) }
$$

Minimum Steel Area Required: $\quad A_{\text {min. }}=2.9 \cdot \mathrm{in}^{2}$
Maximum SteelArea Allowed: $\quad A_{\text {max. }}=23.0 \cdot$ in $^{2}$
Check of SteelArea: $\quad$ Check $_{\min . \mathrm{c}}=$ "OK"

## BASE PLATE BEARING ON CONCREIE

| Design Strength | Calculated Max Compression | Check | $\underline{\text { Ratio }}$ |
| :--- | :--- | :--- | :--- |
| $\phi B_{n}=0 \cdot k i p$ | $\max \left(\operatorname{Pmax}_{u}\right)=72 \cdot \mathrm{kip}$ | Check'bear $_{\prime}=" N / A^{\prime}$ | Ratio' bear $=0.00$ |

## COMPRESSIVE STRENGTH OF PIER CONCREIE

| Design Strength | Calculated Max Compression | Check | Ratio |
| :---: | :---: | :---: | :---: |
| $\phi \mathrm{P}_{\mathrm{n}}=382 \cdot \mathrm{kip}$ | $\max \left(\mathrm{P}_{\text {upier }}\right)=76 \cdot \mathrm{kip}$ | Check'comp2 = "OK" | Ratio' $_{\text {comp2 }}=\mathbf{0 . 2 0}$ |

## SHEAR STRENGTH OF PIER CONCRETE

| Design Strength | Calculated Max Shear | Check | Ratio |
| :---: | :---: | :---: | :---: |
| $\phi \mathrm{V}_{\text {npM }}=70 \cdot \mathrm{kip}$ | $\max \left(S_{u}\right)=13 \cdot \mathrm{kip}$ | Check' $_{\text {shear.p }}=$ "OK" | Ratio ${ }_{\text {shear.p }}=0.19$ |

Shear Reinforcing Check: Check' ${ }^{\text {shrrnfp }}=$ "OK"

## PIER MOMENT CAPACITY



Controlling Foundation: $\quad$ CFP $=57.7 . \%$

## APPENDIX B

Data Provided for Analysis


FINAL CONFIBURATION - Uint all Instalied equipment after propowed modification or Initial installation.

|  | SECTOR 1 | SECTOR 2 | SECTOR 3 | SECTOR 4 (ff necessary) |
| :---: | :---: | :---: | :---: | :---: |
| Curront Proposed RAD Conter (FiAOL) | 90 | 90 | 90 |  |
| Tower Mount Halgmt (f) dilfornet than RND etr) | 80 | 80 | 80 |  |
| Meunt Typo (Labol Exieting" ${ }^{\text {a }}$ no chango) | \%-ara | T-Arm | F-入Ir |  |
| Mount model! | тab | 7DD | 7ad |  |
| Antenna Manutactures | Coemscope | Samrung | Sazaung |  |
| Antonna Modoll (Attach Speca) | 18m4-65i-86 | RT4423 | 1676423-77¢ |  |
| Antanna Dimemelons (Wirtix in inches) | $19.60 \times 55.11 \times 7.76$ | $11.18 \times 8.7 \times 4.2$ | $28.91 \times 15.75 \times 5.51$ |  |
| Antennia Wolghtr (las.) | 73.86 | 18.7 | 57.32 |  |
| Antonna Qumetity | 3 | 3 | 3 |  |
| Diah Manufecturne |  |  |  |  |
| Diak Models (attach Speca) |  |  |  |  |
| Ditah Ditamater (Fi) |  |  |  |  |
| Olah Wolotit (Lhe.) |  |  |  |  |
| Diah Mount Retght |  |  |  |  |
| Ausmuthe |  |  |  |  |



## verizon

NORTHEAST > North East > New England > Wallingford-1 > PORTLAND HS CT - B Cheiban, Ziad - ziad.cheiban@verizonwireless.com - 20230927_153155

| Project Details |  | Location Information |  |
| :---: | :---: | :---: | :---: |
| Carrier Aggregation | N | Site ld | 616480547 |
| Ecip | N | Search Ring\# |  |
| Project Name | PORTLAND HS CT | E-NodeB ID\# | null |
| Project Alt Name | PORTLAND HS CT | PSLC\# | 469381 |
| Project Id | 16599668 | Switch Name | Wallingford-1 |
| Designed Sector Carrier 4G | 15 | Tower Type |  |
| Designed Sector Carrier 5G | 3 | Site Type | MACRO |
| Additional Sector Carrier 4G | 0 | Street Address | 97 High Street |
| Additlonal Sector Carrier 5G | 0 | City | Portland |
| Suffix | Rev4-2023-09-27 | State | CT |
| FP Solution Type \& Tech Type | MCR;4G_700;4G_850;4G_AWS;4G_CBRS;5 G_L-Sub̄̄;4G_PC̄S | Zip Code | 06480 |
|  |  | County | Middlesex |
|  |  | Latitude | 41.58071/41 $1^{\circ} 34^{\prime} 50.556^{\text {n }}$ |
|  |  | Longitude | $-72.63136 / 72^{\circ} 37{ }^{\text {5 } 52.896}$ |


| Project Scope |
| :--- | :--- |
| Rev4-2023-09-27 |
| Use RF4461d-13A low band RRH and 6413 C-Band MMU |
|  |
|  |
|  |


| Antenna Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Added Antenna |  |  |  |  |  |  |  |  |  |  |  |  |
| 700 | 850 | 1800 | AWs | CERS | L-Sub6 | Make | Model | Center line | $\begin{array}{\|l\|} \hline \text { Tip } \\ \text { Height } \end{array}$ | Azimuth | $\begin{array}{\|l} \text { Install } \\ \text { Type } \end{array}$ | Quantit |
|  |  |  |  |  | 5 G | Samsung | MT6413-77A | 90 | 91.2 | $\begin{array}{\|l} \hline 30(1), 150(2), 2 \\ 70(3) \end{array}$ | PHYSICAL | 3 |
| LTE | LTE | LTE | LTE |  |  | COMMSCOPE | NNH4-65B-R6 | 90 | 93 | $\begin{aligned} & 30(1), 150(2), 2 \\ & 70(3) \end{aligned}$ | PHYSICAL | 3 |
|  |  |  |  | LTE |  | Samsung | RT4423 | 90 | 90.4 | $\begin{aligned} & 30(199,150(20) \\ & , 270(21) \end{aligned}$ | PHYSICAL | 3 |





Services

| 0002 (8118082) |  |  |
| :---: | :---: | :---: |
| 01 | 02 | 03 |
| 30 | 150 | 270 |
| 064040 | 064040 | 064040 |
| NNH4-65B-R6 | NNH4-65B-R6 | NNH4-65B-R6 |
| COMMSCOPE | COMMSCOPE | COMMSCOPE |
| 90 | 90 | 90 |
| 2050 | 2050 | 2050 |
| 0 | 0 | 0 |
| 2 | 2 | 2 |
| 93 | 93 | 93 |
| 84.67 (W/MHz) EIRP | 84.67 (W/MHz) EIRP | 84.67 (W/MHz) EIRP |
| 46.0 dBm | 46.0 dBm | 46.0 dBm |
| Samsung | Samsung | Samsung |
| B2/B66A RRH ORAN (RF4439d-25A) | B2/B66A RRH ORAN <br> (RF4439d-25A) | $\begin{aligned} & \text { B2/B66A RRH ORAN } \\ & \text { (RF4439d-25A) } \end{aligned}$ |
| 4,4 | 4,4 | 4,4 |
| 11298467 | 11298468 | 11298469 |
| VZNPP | VZNPP | VZNPP |
| 20 | 20 | 20 |
| $72.0 \times 19.6 \times 7.79$ | $72.0 \times 19.6 \times 7.79$ | $72.0 \times 19.6 \times 7.79$ |
| 81.82 | 81.82 | 81.82 |



| Cellsign | Antonna |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sector | Make | Modol | $\begin{array}{\|l\|} \hline \text { Ant CL } \\ \text { Helgh AG } \end{array}$ | $\begin{aligned} & \text { Ant Tip } \\ & \text { Heloght } \end{aligned}$ | Aalmuth |  | $\begin{array}{\|l\|l\|} \hline \text { Woch } \\ \text { Downelit } \end{array}$ | Oaln | Bendwidth | $\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Regulamor } \\ \text { y power } \end{array} \\ \hline \end{array}$ | 700 | ${ }^{1050}$ | 1400 | 2100 | 28 OHz | 31 OHz | 3 Sogz | Lsub-s | CBR8 |
| 0003 | Sambung | MT6413-77A | 90 | ${ }^{1012}$ | 270 | 1 | 0 | 23.15 | 105 | 744.34 |  |  |  |  |  |  |  |  |  |
| 19 | Sempung | RT4423 | 90 | 90.A | 30 | 7 | 0 | 10.34 | 67 | 3.76 |  |  |  |  |  |  |  |  | CBRS_CALLS |
| 02 | COMMSCOPP | NNH4-658-R | 90 | 93 | 150 | 2 | 0 | 11.94 | 69.75 | 66.49 | wajag69 |  |  |  |  |  |  |  |  |
| 03 | COMMSCOPR | NNH4-65P-R | 90 | 93 | 270 | 2 | 0 | 12.54 | 65 | 301.17 |  | KNKA404 |  |  |  |  |  |  |  |
| 0002 | ${ }^{\text {Sambung }}$ | MT8413-77A | 80 | 81.2 | 150 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  |  |  |
| 0002 | Samsung | MT6413-77A | 90 | 91.2 | 150 | 1 | 0 | 23.15 | 105 | 743,34 |  |  |  |  |  |  |  |  |  |
| 0001 | Sameung | MT6413-77A | 90 | 81.2 | 30 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNE581,W= NNE522,WNNE S83,WRNE56 4,WRNE585 |  |
| 02 |  | NNH4-65-R | 90 | 93 | 150 | 2 | 0 | 12.54 | 65 | 301.17 |  | KNKA404 |  |  |  |  |  |  |  |
| 01 | COMMSCOP | NNH4658-R | 80 | 93 | 30 | 2 | 0 | 12.54 | 85 | 301.17 |  | KNKA404 |  |  |  |  |  |  |  |
| 21 | Samsung | RT4423 | 90 | 90.4 | 270 | 7 | - | 10.34 | 67 | ${ }^{3.76}$ |  |  |  |  |  |  |  |  | GBRS_CALLS |
| 0001 | Samsung | MT6413-77A | 90 | ${ }^{01.2}$ | 30 | 1 | 0 | 23.15 | 105 | 74.34 |  |  |  |  |  |  |  | $\begin{aligned} & \text { WRNE555,WF } \\ & \text { NE5E6.WRNE } \\ & \text { SE7,WRNE5E } \end{aligned}$ |  |
| 02 | COMMSCOP | NNHH4-65B-R | 90 | 93 | 150 | ${ }^{2}$ | 0 | 13.92 | 60.75 | 168.95 |  |  | $\begin{array}{\|l\|l\|} \hline \text { KNLH251,WP } \\ \mathbf{O I 7 3 0} \end{array}$ |  |  |  |  |  |  |
| 03 | COMmscope | NNH4-65E-R | 90 | 93 | 270 | 2 | 0 | 13.92 | 80.75 | 189.95 |  |  | $\begin{array}{\|l\|} \hline \text { KNLH251,WP } \\ \text { OJ730 } \end{array}$ |  |  |  |  |  |  |
| 03 | COMMSCOP既 | NNH4-65-R | 90 | 93 | 270 | 2 | 0 | 11.94 | 89.75 | 86.49 | W0.0889 |  |  |  |  |  |  |  |  |
| 01 | COMMSCOPP | NNH4658R | 90 | 93 | 30 | 2 | 0 | 11.94 | 69.75 | 65.49 | WOJ0889 |  |  |  |  |  |  |  |  |
| 20 | Sansung | RT423 | 90 | 90.4 | 150 | 7 | 0 | 10.34 | 67 | ${ }^{3} 76$ |  |  |  |  |  |  |  |  | $\begin{aligned} & \hline \text { CBRS_CALLS } \\ & \text { IGN } \\ & \hline \end{aligned}$ |
| 0003 | Samsung | MT6413-77A | ${ }^{90}$ | 91.2 | 270 | 1 | 0 | 23.15 | 105 | 74.34 |  |  |  |  |  |  |  | WRNES55,VG6 NESEB,WRN 587,WRNE5B |  |
| 01 | COMMSCOPA | QNNH4-65B-R | 90 | 93 | 30 | 2 | 0 | 13.92 | ${ }^{80.75}$ | 188.95 |  |  | $\begin{aligned} & \begin{array}{l} \text { KNLH251.WP } \\ \text { O.J730 } \end{array} \\ & \hline \end{aligned}$ |  |  |  |  |  |  |
| 03 | COMMSCOPE | ¢NNT4 $658-\mathrm{R}$ | 90 | 93 | 270 | 2 | 0 | 13.93 | ${ }^{63.5}$ | 84.67 |  |  |  | $\begin{array}{\|l\|l\|} \hline \text { WOGA908,wd } \\ \text { GB276 } \end{array}$ |  |  |  |  |  |
| 02 | COMMSCOPE | (NNH465B-R | 90 | 93 | 150 | 2 | 0 | 13.93 | 63.5 | 84.67 |  |  |  | $\begin{array}{\|l\|} \hline \text { WagA906,Wg } \\ \text { GB276 } \end{array}$ |  |  |  |  |  |
| 01 | COMMSCOPP | 相N(44-55-R | 90 | ${ }^{93}$ | 30 | 2 | 0 | 13.93 | ${ }^{63.5}$ | 84.67 |  |  |  | $\begin{array}{\|l\|} \hline \text { WaGA906,Wg } \\ \text { GB276 } \end{array}$ |  |  |  |  |  |




## С三NT三K ${ }_{\text {engineering }}$

## Antenna Mount Analysis

 ReportSite Ref: Portland HS

97 High Street Portland, $C T$

$$
\text { Centek Project No. } 22017.06
$$

Dato: May 11, 2023 Rev 1: November 9, 2023

Max Stress Ratio = 44\%


Prepared for:
Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

CENTEK Engineering, Inc.
Mount Analysis
Verizon Site Ref. ~ Portand HS
Portland, CT
Rev 1 ~ November 9, 2023

## Table of Contents

## SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT
- CONNECTION


## SECTION 3 - REFERENCE MATERIALS

- RF DATA SHEET


## C三NT三K ${ }_{\text {engineering }}$

## Centered on Solutions

November 9, 2023
Mr. Phillip Cotto
Structure Consulting Group
49 Brattle Street
Arlington, Ma

## Re: Structural Letter ~ Antenna Mount <br> Verizon - Site Ref: Portland HS <br> 97 High Street <br> Portland, CT

Centek Project No. 22017.06
Dear Mr. Cotto,
Centek Engineering, Inc. has reviewed the Verizon antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the proposed mount, consisting of three (3) V-frame sector mounts (SitePro P/N: VFA12-HD) to support the proposed equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2021 International Building Code as modified by the 2022 Connecticut State Building Code (CTBC) including ASCE 7-16 and ANSI/TIA-222-H Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures".

The loads considered in this analysis consist of the following:

## - Verizon:

V-Frames: Three (3) Commscope NNH4-65B-R6 panel antennas, three (3) Samsung MT6413-77A panel antennas, three (3) Samsung RT4423 panel antennas, three (3) Samsung RF4439d-25A (B2/B66A) RRHs, three (3) Samsung RF4461d-13A (B5/B13) RRHs, three (3) Samsung RF4423-48B RRHs and one (1) OVP Box mounted on three (3) V-Frames with a RAD center elevation of $90 \mathrm{ft}+/$ AGL.

The antenna mount was analyzed per the requirements of the 2021 International Building Code as modified by the 2022 Connecticut State Building Code considering a Ultimate design wind speed of 120 mph for Portland as required in Appendix P of the 2022 Connecticut State Building Code.

Based on our review of the installation, it is our opinion that the subject antenna mount has sufficient capacity to support the aforementioned antenna configuration.
If there are any questions regarding this matter, please feel free to call.


CENTEK Engineering, Inc.
Mount Analysis
Verizon Site Ref. ~ Portand HS
Portland, CT
Rev 1 ~ November 9, 2023

## Section 2 - Calculations

| engineering | Subject: | TIA-222-H Loads |
| :---: | :---: | :---: |
|  | Location: | Portland, CT |
|  | Rev. 1: 11/9/23 | Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06 |

## Develorment of Desian Heights, Exposure Coefficients and Velocity Pressuies Per TIA-222H

Wind Speeds

| $\quad$ Basic Wind Speed | $V:=120$ | mph | (User Input-CSEC 2022 Appendx P) |
| :--- | :--- | :--- | :--- |
| Basic Wind Speed with Ice | $V_{i}:=50$ | mph | (User Input - TA-222-H AnnexB) |
| Basic Wind Speed (Mount) | $V_{m}:=30$ | mph | (User Input - TA-222-H Section 16.3) |



C=NT三K ${ }^{\text {engineering }}$
Centerad on Solutions wowsentekeng. com 65-2 Norlh Granford Poxd Branlord, CT Owlos

P: $(20517485-0500$ F: 00314188.8587

Location:

Rev. 1: 11/9/23

TIA-222-H Loads

Portland, CT
Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06

## Development of Wind \& ice Loed on Appurtenances

Appurtenance Data:

Appurtenance Model $=$
Appurtenance Shape $=$ Appurtenance Height=

Appurenance Width $=$
Appurtenance Thickness=
Appurtenance Weight=
Number of Appurenances=

AppurtenanceAspect Ratio $=$

AppurtenanceForce Coefficient $=$

## Wha Loed (wlhart Ice)

SurfaceArea for One Appurtenance (Front) =
Total Appurterance Wird Force $=$

SurfaceArea for One Appurtenance (Side) =
Total Appurkenance Wind Force $=$

## Whd Ladd (wlith lce)

SurfaceArea for One Appurtenance w/ lce (Front)=
TotalAppurtenencWind Force w/ $\mathbf{\text { ce= }}$ =

SurfaceAres for One Appurtenance w/ Ice (Side) =
TotalAppurtenence Wird Force w/ $\mathrm{We}=$

## Wind Lcad (Mount)

SuriaceArea for One Appurtenance (Frort) $=$
Total Appurterance Wird Force $=$

SurfaceArea for One Appurtenance (Side) =
Total Appurterance Wird Force $=$

Gravity Loads (lee anly)
Volume of Each Appurtenance $=$
Volurne oflce on EachAppurtenance $=$

Weight of ice on EachAppurtenance $=$
Weight of lce onAllAppurterances =

| Commscope NNH4-65B-R6 |  |  |
| :---: | :---: | :---: |
| Flat |  | (User Input) |
| $\mathrm{L}_{\text {app }}:=71.969$ | in | (User Input) |
| $W_{\text {app }}:=19.606$ | in | (User Input) |
| $\mathrm{T}_{\text {app }}:=7.756$ | in | (User Input) |
| $\mathrm{wT}_{\text {app }}:=90$ | lbs | (User Input) |
| $\mathrm{Napp}:=1$ |  | (User Input) |
| $\mathrm{Ar}_{\mathrm{app}}:=\frac{\mathrm{L}_{\mathrm{app}}}{\mathrm{~W}_{\mathrm{app}}}=3.7$ |  |  |
| $\mathrm{Ca}_{\text {app }}=1.25$ |  |  |

$$
\mathrm{SA}_{\mathrm{appF}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{~W}_{\mathrm{app}}}{144}=9.8
$$

$$
\mathrm{F}_{\mathrm{app}}:=9 \mathrm{Z}_{\mathrm{m}} \cdot \mathrm{G}_{H} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{~K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{app}} \cdot \mathrm{~N}_{\mathrm{app}}=45
$$

$$
\mathrm{SA}_{\mathrm{appS}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{~T}_{\mathrm{app}}}{144}=3.9
$$

$$
F_{\mathrm{app}}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot K_{a} \cdot S A_{\mathrm{appS}}=18
$$

$$
\mathrm{V}_{\mathrm{app}}:=\mathrm{L}_{\mathrm{app}} \cdot \mathrm{~W}_{\mathrm{app}} \cdot T_{\mathrm{app}}=1 \times 10^{4} \quad \text { cuin }
$$

$$
V_{i c e}:=\left(L_{a p p}+2 \cdot t_{i z}\right)\left(W_{\text {app }}+2 \cdot t_{i z}\right) \cdot\left(T_{a p p}+2 \cdot t_{i z}\right)-V_{a p p}=6053 \quad c u \text { in }
$$

$$
W_{\text {ICEapp }}:=\frac{V_{\text {ice }}}{1728} \cdot I d=196
$$

lbs

$$
W_{\text {ICEapp }} \cdot N_{\text {app }}=196
$$

$$
\begin{aligned}
& \mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{~W}_{\text {app }}}{144}=9.8 \\
& \mathrm{~F}_{\mathrm{app}}:=\mathrm{qz}_{\mathrm{ant}} \cdot \mathbf{G}_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {appF }} \cdot \mathbf{N}_{\mathrm{app}}=715 \quad \text { lbs } \\
& \mathrm{SA}_{\text {appS }}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{~T}_{\text {app }}}{144}=3.9 \\
& F_{\text {app }}:=q Z_{a n t} \cdot G_{H} \cdot C_{a p p} \cdot K_{a} \cdot S A_{a p p S}=283 \\
& \mathrm{SA}_{\text {ICEappF }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=11.5 \quad \mathrm{sf}
\end{aligned}
$$

$$
\begin{aligned}
& \text { SA }{ }_{\text {ICEAppS }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=5.3 \quad \mathrm{sf} \\
& \mathrm{Fl}_{\text {app }}:=\text { GZice,ant } \mathbf{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{~K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEappS }}=67 \quad \mathrm{lbs}
\end{aligned}
$$


 Branford, CTOG-10s $P(205) 489-0569$
$F:(203) 485.857$

Subject:

Location:

Rev. 1: 11/9/23

TIA-222-H Loads Portland, CT

Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06

## Development of Wind \&/ce Load on Appuitenances

Appurtenance Data:

Appurtenance Model =
Appurtenance Shape $=$
Appurtenance Height=
Appurlenance Width $=$
Appurtenance Thickness=
Appurtenance Weight=
Number of Appurenances=

AppurtenanceAspect Ratio=

Appurtenance Force Coefficient =

## Whd Load (whthat les)

SurfaceArea for One Appurtenance (Front) $=$
Total Appurterance Wind Force=

Surface Area for One Appurtenance (Side) $=$
Total Apputerance Wind Force =

## What Laad (w/th icel)

SurfaceArem for One Appurtenance w/ ce (Front)=
TotalAppurtenence WindForcew/ $\mathrm{te}=$

SurfaceArei for One Appurtenance w/ Ice (Side) =
TotalAppurternco Wird Force w/ te=

## Whd Lcad (Mount)

## SurfaceArea for One Appurtenance (Front)

Total Appurterance Wind Force=

SurfaceArea for One Appurtenance (Side) =
Total Appurterance Wind Force $=$

Gravity Loads (lce conly)
Volume of Each Appurtenance $=$
Volume oflce on EachAppurtenance $=$

Weight of ice on EachAppurtenance $=$
Weight of lce onAllAppurterances =

Samsung MT6413-77A
Flat
$\mathrm{L}_{\mathrm{app}}:=\mathbf{2 8 . 9}$ in (User Input)
$\mathrm{W}_{\mathrm{app}}:=15.75$ in $\quad$ (User Input)
$\mathrm{T}_{\mathrm{app}}:=5.51$ in $\quad$ (User Input)
$W T_{\text {app }}:=60$ lbs (User Input)
$N_{\text {app }}:=$ (User Input)
$\mathrm{Ca}_{\mathrm{app}}=1.2$
$\mathrm{SA}_{\mathrm{appF}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{W}_{\text {app }}}{144}=3.2$
sf
$F_{\text {app }}:=q z_{a n t} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p F}=221 \quad$ lbs
$\mathrm{SA}_{\mathrm{apps}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}}{144}=1.1$
$F_{\text {app }}:=q z_{a n t} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p S}=77 \quad$ lbs

SAyCEappF $:=\frac{\left(L_{\text {app }}+2 \cdot t_{i z}\right) \cdot\left(W_{\text {app }}+2 \cdot t_{i z}\right)}{144}=4 \quad$ sf

SA $_{1 \text { CEapps }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right)}{144}=1.8 \quad \mathrm{sf}$

$\mathrm{SA}_{\text {appF }}:=\frac{\text { Lapp } \cdot W_{\text {app }}}{144}=3.2$
sf
$F_{\text {app }}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p F}=14 \quad \mathrm{lbs}$
$\mathrm{SA}_{\mathrm{apps}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\text {app }}}{144}=1.1$
s
$F_{a p p}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{a p p} \cdot K_{a} \cdot S A_{a p p S}=5$
lbs
$\mathrm{V}_{\text {app }}:=\mathrm{L}_{\text {app }} \cdot \mathrm{W}_{\text {app }} \cdot \mathrm{T}_{\text {app }}=2508 \quad$ cuin
$V_{\text {ice }}:=\left(L_{a p p}+2 \cdot t_{i z}\right)\left(W_{\text {app }}+2 \cdot t_{i z}\right) \cdot\left(T_{\text {app }}+2 \cdot t_{i z}\right)-V_{\text {app }}=2124 \quad c u$ in
$W_{\text {ICEapp }}:=\frac{V_{\text {ice }}}{1728} \cdot l d=69$ lbs

W $_{\text {ICEapp }} \cdot \mathrm{N}_{\text {app }}=69 \quad$ lbs

C三NT三K ${ }^{\text {engineering }}$
Cenkered on Solutions nwowsentekenacom 63.2 Morth Branford Powd P:(203) 4E8-0580 Eranlord, CT Ó̃4OS


Location:

Rev. 1: 11/9/23

TIA-222-H Loads

Portland, CT
Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06

## Develcoment of Wind \& icee Load on Appurtenances

Appurtenance Data:

Appurtenance Model $=$
Appurtenance Shape $=$
Appurtenance Haight=
Appurtenance Width $=$
Appurtenance Thickness=
Appurtenance Weight=
Number of Appurienances=

AppurtananceAspect Ratio $=$

Appurtenance Force Coeficient $=$
Wind Load (without ice)
SurfaceArea for One Appurtenance (Frort) =
Total Appurterance Wind Force=

SurfaceArea for One Appurtenance (Side)=
Total Appurterance Wird Force $=$

Wind Lcad (with ice)
SurfaceAres for One Appurtanance w/ lce (Front)=
TotalAppurtenence Wind Forcew/ be=

SurfaceAres for One Appurtenance w/ lce (Side)=
TotalAppurteranceWird Forcew/ Le=

## Wind Load (Mount)

SurfaceArea for One Appurtenance (Frort) =
Tóal Appurierence Wird Force=

SurfaceArea for One Appurtenance (Side) $=$
Total Appurterance Wind Force $=$

Gravity Loads (ice only)
Volume of Each Appurtenance =
Volume of lœan EachAppurtenance $=$

Weight of ice on EachAppurtenance $=$
Welght of lce onAA Appurtenances =

Sarnsung RT4423
Fla

| $L_{\text {app }}:=12.3$ | in | (User Input) |
| :--- | :--- | :--- |
| $W_{\text {app }}:=8.7$ | in | (User Input) |
| $T_{\text {app }}:=1.4$ | in | (User Input) |
| $W T_{a p p}:=3$ | lbs | (User Input) |
| $N_{\text {app }}:=1$ |  | (User Input) |
| $A_{a p p}:=\frac{L_{\text {app }}}{W_{\text {app }}}=1.4$ |  |  |
| $\mathrm{Ca}_{\text {app }}=1.2$ |  |  |

$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\text {app }} \cdot W_{\text {app }}}{144}=0.7$

$F_{\text {app }}:=q z_{a n t} \cdot G_{H} \cdot C_{a p p} \cdot K_{a} \cdot S A_{a p p F} \cdot N_{\text {app }}=52$ lbs
$\mathrm{SA}_{\mathrm{apps}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}}{144}=0.1$
$F_{\text {app }}:=q z_{a n t} \cdot G_{H} \cdot C_{a p p} \cdot K_{a} \cdot S A_{a p p s}=8 \quad$ lbs
$S A_{\text {ICEappF }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right)}{144}=1.2 \quad \mathrm{~s}$

SA ICEapps $:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.4 \quad$ sf
$\mathrm{Fi}_{\text {app }}:=\mathrm{qZ}$ ice.ant $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot$ SA $_{Y \text { CEappS }}=5 \quad$ lbs
$\mathrm{SA}_{\mathrm{appF}}:=\frac{\mathrm{L}_{\text {app }} \cdot \mathrm{W}_{\text {app }}}{144}=0.7$
sf
$F_{a p p}:=q_{m} \cdot G_{H} \cdot \mathrm{Ca}_{a p p} \cdot K_{a} \cdot S A_{a p p F} \cdot N_{a p p}=3 \quad$ lbs
$\mathrm{SA}_{\mathrm{appS}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}}{144}=0.1$ sf
$F_{\text {app }}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p S}=1 \quad$ lbs
$V_{\mathrm{app}}:=\mathrm{L}_{\mathrm{app}} \cdot \mathrm{W}_{\mathrm{app}} \cdot T_{\mathrm{app}}=150 \quad$ cuin
$V_{\text {ice }}:=\left(L_{a p p}+2 \cdot t_{i z}\right)\left(W_{a p p}+2 \cdot t_{t z}\right) \cdot\left(T_{a p p}+2 \cdot t_{i z}\right)-V_{a p p}=508 \quad$ cuin
$W_{\text {ICEapp }}: \left.=\frac{V_{\text {ice }}}{1728} \cdot \right\rvert\, d=16$ lbs
$W_{\text {ICEapp }} \cdot N_{\text {app }}=16$
lbs

C三NT三K engineering
Centered on Solutions＇moxcenctekerseam 65－2 Narth Eranford Rawd Branford，©TOGMOS

P： ： 2037 488－DSAO F：（2019 4By．8587

Subject：

Location：

Rev．1：11／9／23

Portland，CT
Prepared by：T．J．L．Checked by：C．F．C． Job No． 22017.06

## Development of Wind \＆Ice Load on Appurtenances

## Appurtenance Data：

Appuitenance Model $=$
Appurtenance Shape $=$
Appurtenance Height＝
Appurtenance Width $=$
Appurtenance Thickness＝
Appurenance Weight $=$
Number of Appurtenances＝

AppurtenanceAspect Ratio $=$

Appurtenance Force Coefificient＝

## Whd Lead（whthart leo）

SurfaceAvee for One Appurtenance（Front）＝
Total Appurteranœ Wind Force $=$

SurfaceArea for One Appurtenance（Side）＝
Total Appurterance Wird Force $=$

Wind Lagd（wlth loo）
SurfaceArea for One Appurtenance w／ice（Front）＝
TotalAppurerence Wind Forcew／te＝

SurfaceArea for Ohe Appurtenance w／lce（Side）＝
TotalAppurterance WindForcew／te＝

Whd Lcad（Mount）

SurfaceArea for One Appurtenance（Front）＝
Total Appurterance Wird Force＝

SurfaceArea for One Appurtenance（Side）＝
Todel Appurteranœ Wind Force $=$

Crurly Loads（ice conly）
Volume of Each Appurtenance $=$
Volume of lce on EachAppurtenance $=$

Weight of lce on EachAppurtenance＝
Weight of lce onAAA Appurterances＝

## Samsung RF4439－25A（B2B由A）RRH

Flat
$L_{\text {app }}:=15$ in（User Input）
$W_{\text {app }}:=15$ in（User Input）
$\mathrm{T}_{\text {app }}:=10$ in（User Input）
$\mathrm{WT}_{\text {app }}:=75$ lbs（User input）
$\mathrm{N}_{\mathrm{app}}:=1 \quad$（User Input）
$\mathrm{Ar}_{\mathrm{app}}:=\frac{\mathrm{L}_{\mathrm{app}}}{\mathrm{W}_{\mathrm{app}}}=1.0$
$\mathrm{Ca}_{\mathrm{app}}=1.2$
$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\text {app }} \cdot \mathrm{W}_{\text {app }}}{144}=1.6$
sf
$F_{\text {app }}:=q Z_{a n t} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p F}=109$ lbs
$S A_{\text {apps }}:=\frac{L_{\text {app }} \cdot T_{\text {app }}}{144}=1$
$F_{\text {app }}:=q Z_{a n t} \cdot G_{H} \cdot \mathrm{Ca}_{a p p} \cdot K_{a} \cdot S A_{a p p S}=73$
$F_{\text {app }}:=\mathrm{qZ}_{\text {ant }} \mathbf{G}_{\mathbf{H}} \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot \mathrm{SA}_{\text {apps }}=73 \quad \mathrm{lbs}$

SA $_{1 C E a p p F}:=\frac{\left(L_{\text {app }}+2 \cdot t_{i z}\right) \cdot\left(W_{\text {app }}+2 \cdot t_{i z}\right)}{144}=2.1 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {app }}:=$ qZice．ant $\mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {app }} \cdot \mathrm{K}_{\mathrm{a}} \cdot$ SA $_{\text {ICEappF }}=26 \quad$ lbs
SA ICEappS $:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.5 \quad$ sf
$\mathrm{Fi}_{\text {app }}:=$ पZice．ant $\cdot \mathbf{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {app }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{ICE}}$ apps $=19$ lbs
$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\text {app }} \cdot W_{\text {app }}}{144}=1.6$
$F_{\text {app }}:=q_{m} \cdot G_{H} \cdot C_{a p p} \cdot K_{a} \cdot S A_{\text {appF }}=7$
s
$S A_{\text {appS }}:=\frac{L_{\text {app }} \cdot T_{\text {app }}}{144}=1$
sf
$F_{a p p}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{a p p} \cdot K_{a} \cdot S A_{a p p S}=5$
$\mathrm{V}_{\mathrm{app}}:=\mathrm{L}_{\mathrm{app}} \cdot \mathrm{W}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}=\mathbf{2 2 5 0}$
cuin
$V_{\text {ice }}:=\left(L_{a p p}+2 \cdot t_{i z}\right)\left(W_{\text {app }}+2 \cdot t_{i z}\right) \cdot\left(T_{a p p}+2 \cdot t_{i z}\right)-V_{\text {app }}=1610 \quad c u$ in
$W_{\text {ICEApp }}:=\frac{V_{\text {ice }}}{1728} \cdot l d=52$
lbs
$W_{\text {ICEapp }} \cdot \mathrm{N}_{\text {app }}=52 \quad \mathrm{lbs}$

C三NT二Kengineering
Centerad on Solutions＂moxymbmekekyarem 63－）Marts Ee anford Fonad P：（2051448－0SBB

$P(2051488-0580$
$F:(2051488.8587$

Location：

Rev．1：11／9／23

TIA－222－H Loads

Portland，CT
Prepared by：T．J．L．Checked by：C．F．C． Job No． 22017.06

## Development of Wind \＆lce Load on Appurtenances

Appurtenance Data：

Appurtenance Model＝
Appurtenance Shape $=$
Appurtenance Height＝
Appurtenance Width $=$
Appurtenance Thickness＝
Appurenance Weight＝
Number of Appurenances＝

AppurtenanceAspact Ratio $=$

Appurtenance Force Coefficient $=$

## Whd Laed（wlhout lce）

SurfaceAreafor One Appurtenance（Front）＝
Total Appurterance Wind Force＝

SurfaceArea for One Appurtenance（Side）＝
Total Aqpurteranc Wind Force $=$

## Whd Laad（with loes）

SurfaceAres for One Appurtenence w／lce（Front）＝
TotalAppurterance Wind Forcew／ce＝

SurfaceAre⿴囗十 for One Appurtenance w／lce（Side）＝
TotalAppurtenance WindForcew／ te＝

## Whd Load（Mount）

SurfaceArea for One Appurtenance（Front）＝
Total Appurterance Wird Force＝

SurfaceArea for One Appurtenance（Side）＝
Total Appurterance Wird Force＝

Gravky Loeds（ice anly）
Volume of Each Appurtenance $=$
Volume of iceon EachAppuntenance $=$

Weight of lce on EachApputtenance $=$
Weight of lce onAll Appurterances＝

Samsung RF4461d－13A（B5B13）RRH

| Flat |  | （User Input） |
| :---: | :---: | :---: |
| $L_{\text {app }}:=14.96$ | in | （User Input） |
| $W_{\text {app }}:=14.96$ | in | （User Inpul） |
| $\mathrm{T}_{\text {app }}:=10.23$ | in | （User Input） |
| $\mathrm{WT}_{\text {app }}:=80$ | lbs | （User Input） |
| $\mathrm{N}_{\text {app }}:=1$ |  | （User input） |
| $A r_{\mathrm{app}}:=\frac{\mathrm{L}_{\mathrm{app}}}{\mathrm{~W}_{\mathrm{app}}}$ |  |  |
| $\mathrm{Ca}_{\text {app }}=1.2$ |  |  |

$\mathrm{SA}_{\mathrm{appF}}:=\frac{\mathrm{Lapp}_{\text {app }} \cdot \mathrm{W}_{\text {app }}}{144}=1.6$
$F_{\text {app }}:=q Z_{a n t} \cdot G_{H} \cdot C_{a p p} \cdot K_{a} \cdot S A_{a p p F}=109 \quad$ lbs
$\mathrm{SA}_{\mathrm{appS}}:=\frac{\mathrm{L}_{\text {app }} \cdot \mathrm{T}_{\text {app }}}{144}=1.1$
$\mathrm{F}_{\mathrm{app}}:=\mathbf{q} \mathbf{z a n t} \mathbf{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{appS}}=74 \quad$ lbs

SA ${ }_{\text {ICEappF }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=2.1 \quad$ sf
$\mathrm{Fi}_{\text {app }}:=$ qZice．ant $\cdot \mathbf{G}_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {HCEappF }}=26 \quad$ lbs
SA ${ }_{\text {ICEappS }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right)}{144}=1.6 \quad$ sf
$\mathrm{Fi}_{\text {app }}:=$ qZice．ant $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {app }} \cdot \mathrm{K}_{\mathrm{a}} \cdot$ SA $_{\text {YCEapps }}=19$ lbs
$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\text {app }} \cdot \mathrm{W}_{\text {app }}}{144}=1.6 \quad$ sf
$F_{a p p}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p F}=7$ lbs
$\mathrm{SA}_{\mathrm{apps}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}}{144}=1.1$
$F_{a p p}:=q z_{m} \cdot G_{H} \cdot a_{a p p} \cdot K_{a} \cdot S A_{a p p S}=5 \quad$ lbs
$\mathrm{V}_{\text {app }}:=\mathrm{L}_{\mathrm{app}} \cdot \mathrm{W}_{\mathrm{app}} \cdot \mathrm{T}_{\text {app }}=\mathbf{2 2 8 9}$
cuin
$V_{\text {ice }}:=\left(L_{a p p}+2 \cdot \cdot_{\mathrm{iz}}\right)\left(\mathrm{W}_{\text {app }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\text {app }}=1623 \quad \mathrm{cu}$ in
$W_{\text {ICEapp }}: \left.=\frac{V_{\text {ice }}}{1728} \cdot \right\rvert\, \mathrm{ld}=53$
Ibs
$\mathrm{W}_{\text {ICEapp }} \cdot \mathrm{N}_{\text {app }}=53$

| 二 ${ }^{\text {a }}$ 二人 engineering | Subject： | TIA－222－H Loads |
| :---: | :---: | :---: |
| Centered on Solutions ${ }^{-}$monsentemessom 63．2 Morth Eaminard Rased <br> P：（201） 488.4560 | Location： | Portland，CT |
|  | Rev．1：11／9／23 | Prepared by：T．J．L．Checked by：C．F．C． Job No． 22017.06 |

## Develcoment of Wind \＆lce Loed on Appurtenances

## Appurtenance Data

Appurtenance Model＝
Appurtenance Shape $=$
Appurterance Helght＝
Appurtenance Width $=$
Appurtenance Thickness＝
Appurtenance Weight＝
Number of Appurenances＝

AppurtenanceAspect Ratio $=$

Appurtenance Force Coeflicient＝

## Whd Lcad（whart ice）

SurfaceArea for One Appurtenance（Frort）＝
Total Apputerance Wird Force＝

SurfaceArea for One Appurtenance（Side）＝
Total Appurterance Wind Force＝

## Whd Laad（with loe）

SurfaceArea for One Appurtenance w／lce（Front）＝
Total Appurierence Wind Force w／ $\mathrm{ce}=$

SurfaceArea for One Appurtenance w／lce（Side）＝
TotalAppurtenance Wind Force w／Le＝

Wind Lcad（Mount）

SurfaceArea for One Appurtenance（Frort）＝
Total Appurterance Wind Force $=$

SurfaceArea for One Appurtenance（Side）＝
Total Apputerance Wind Force＝

Gravily Loads（ica only）
Volume of Each Appurtenance $=$
Volume oflce on EachAppurtenance＝

Weight of Ice on Each Appurtenance $=$
Weight of lce onAlAppurterances＝

Samsung RF4423－48B RRH
Flat
$L_{\text {app }}:=11.8$ in（User Input）
$\mathrm{W}_{\mathrm{app}}:=8.7$ in $\quad$（User Input）
$T_{\text {app }}:=3.6$ in（User Input）
$W T_{\text {app }}:=16$ bos（User Input）
$N_{\text {app }}:=1 \quad$（User input）
$\operatorname{Ar}_{\text {app }}:=\frac{L_{\text {app }}}{W_{\text {app }}}=1.4$
$\mathrm{Ca}_{\mathrm{app}}=1.2$
$\mathrm{SA}_{\text {appF }}:=\frac{\text { Lapp } \cdot W_{\text {app }}}{144}=0.7$
$F_{a p p}:=q z_{a n t} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p F}=50 \quad$ lbs
$\mathrm{SA}_{\mathrm{appS}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}}{144}=0.3$
$F_{\text {app }}=q z_{\text {ant }} \cdot G_{H} \cdot C_{a p p} \cdot K_{a} \cdot S A_{a p p S}=21 \quad$ lbs
$S A_{\text {ICEappF }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.1 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {app }}:=$ Fice．ant $\cdot \mathbf{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot$ SA $_{\mathrm{ICE}} \mathrm{EappF}=14 \quad \mathrm{lbs}$
SA $_{\text {YCEapps }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.6 \quad$ sf
$\mathrm{Fi}_{\text {app }}:=$ qZice．ant $\cdot \mathbf{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {app }} \cdot \mathrm{K}_{\mathrm{a}} \cdot$ SA $_{\text {YCEappS }}=7 \quad$ lbs
$\mathrm{SA}_{\mathrm{appF}}:=\frac{\mathrm{L}_{\text {app }} \cdot W_{\text {app }}}{144}=0.7$
sf
$F_{\text {app }}:=q z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p F}=3 \quad$ lbs
$S A_{\text {apps }}:=\frac{L_{\text {app }} \cdot T_{\text {app }}}{144}=0.3$
sf
$F_{a p p}:=q_{m} \cdot G_{H} \cdot \mathrm{Ca}_{a p p} \cdot K_{a} \cdot S A_{a p p S}=1$ lbs
$\mathrm{V}_{\text {app }}:=\mathrm{L}_{\text {app }} \cdot W_{\text {app }} \cdot T_{\text {app }}=370$
cuin
$V_{\text {ice }}:=\left(L_{a p p}+2 \cdot t_{i z}\right)\left(W_{a p p}+2 \cdot t_{i z}\right) \cdot\left(T_{a p p}+2 \cdot t_{i z}\right)-V_{a p p}=621 \quad c u$ in
$W_{\text {ICEApp }}:=\frac{V_{\text {ice }}}{1728} \cdot$ id $=20$
lbs
$\mathrm{W}_{\text {ICEapp }} \cdot \mathrm{N}_{\text {app }}=20$
lbs

C三NT三K engineering

 Braniord, CTOwSOS

F: 12031498.858 ?

Location:

Rev. 1: 11/9/23

TIA-222-H Loads

Portland, CT
Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06

## Develcopment of Wind \& 1 ce Lcad on Appurtenances

Appurtenance Data:

Appuitenance Model =
Appurtenance Shape $=$
Appurtenance Height=
Appurtenance Width $=$
Appurtenance Thickness=
Appurtenance Weight=
Number of Appurbnances=

AppurtenanceAspect Ratio $=$

Appurtenance Force Coefficient=
Whd Leed (whithout lice)
SuraceArea for One Appurtenance (Frort) =
Total Apputteranc Wind Force $=$

SurfaceAreafor One Appurtenance (Side) =
Total Appurterance Wind Force =

Whd Lcad (wlith loos)
SurfaceAres for One Appurtenance w/ lce (Front)=
TotalAppurtenance Wind Force w/ be=

SurfaceArea for One Appurtenance w/ lce (Side) =
TotalAppurterence Wind Force w/ te=

Wind Lcad (Mount)

## SuraceArea for One Appurtenance (Frort) =

Total Appurterance Wird Force $=$

SurfaceArea for One Appurtanance (Side) =
Total Appurtarence Wird Force $=$

Gravily Loads (ice only)
Volume of Each Appurtenance $=$
Volume oflce on Each Appurtenance $=$

Weight of lce on EachAppurtenance $=$
Weight of lce onAll Appurterances =

OVPBox
Flat
$\begin{array}{lll}L_{\text {app }}:=29.5 & \text { in } & \text { (User Input) } \\ W_{\text {app }}:=16.5 & \text { in } & \text { (User Input) } \\ T_{\text {app }}:=12.6 & \text { in } & \text { (User Input) } \\ W T_{\text {app }}:=32 & \text { ibs } & \text { (User Input) } \\ N_{\text {app }}:=1 & & \text { (User Input) } \\ A_{\text {app }}:=\frac{L_{\text {app }}}{W_{\text {app }}}=1.8 & \\ \mathrm{Ca}_{\text {app }}=1.2\end{array}$
$F_{a p p}:=q z_{a n t} \cdot G_{H} \cdot C_{a p p} \cdot K_{a} \cdot S A_{a p p F}=236 \quad$ lbs
$S A_{\text {appS }}:=\frac{\mathrm{L}_{\text {app }} \cdot T_{\text {app }}}{144}=2.6$
$\mathrm{F}_{\mathrm{app}}:=\mathrm{qz}_{\mathrm{ant}} \cdot \mathbf{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{appS}}=180$

SA ICEappF $:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=4.2$
$\mathrm{Fi}_{\text {app }}:=$ qZace.ant $\mathbf{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{ICE}} \mathrm{EappF}=51$

SAACEappS $:=\frac{\left(L_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(T_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right)}{144}=3.4 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {app }}:=$ qice.ant $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathbf{a}} \cdot \mathrm{SA}_{I C E a p p s}=41$ lbs
$\mathrm{SA}_{\mathrm{appF}}:=\frac{\mathrm{L}_{\mathrm{ap}} \cdot \mathrm{W}_{\mathrm{app}}}{144}=3.4$
sf
$F_{\text {app }}:=q Z_{m} \cdot \mathbf{G}_{H} \cdot \mathbf{C a}_{\text {app }} \cdot K_{a} \cdot S A_{\text {appF }}=15 \quad$ lbs
$\mathrm{SA}_{\text {appS }}:=\frac{L_{\text {app }} \cdot T_{\text {app }}}{144}=2.6$
$F_{\text {app }}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{appS}}=11 \quad \mathrm{lbs}$
$\mathrm{V}_{\mathrm{app}}:=\mathrm{L}_{\mathrm{app}} \cdot \mathrm{W}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}=6133$
cuin
$V_{\text {ice }}:=\left(L_{a p p}+2 \cdot t_{i z}\right)\left(W_{\text {app }}+2 \cdot t_{i z}\right) \cdot\left(T_{a p p}+2 \cdot t_{i z}\right)-V_{a p p}=3107 \quad$ cuín
$W_{\text {ICEapp }}:=\frac{V_{\text {ice }}}{1728} \cdot \operatorname{ld}=101$
lbs
$W_{\text {ICEapp }}-N_{\text {app }}=101$ lbs


Ervelope Only Soludion

| Centek Engineering |  |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: |
| TJL | Portland HS <br> Member Framing | Nov 9, 2023 at 8:58 AM |  |  |  |
| 22017.06 |  | Mount.R3D |  |  |  |


|  | Company Designer Job Number Model Narne | $\begin{aligned} & \text { : Centek Engineering } \\ & : \text { TJL } \\ & : 22017.06 \\ & : \text { Portland HS } \end{aligned}$ | Nov 9, 2023 8:57 AM Checked By: |
| :---: | :---: | :---: | :---: |

(Global) Model Settings

| Display Sections for Member Calcs | 5 |
| :--- | :--- |
| Max Internal Sections for Member Calcs | 97 |
| Include Shear Deformation? | Yes |
| Increase Nailing Capacity for Wind? | Yes |
| Include Warping? | Yes |
| Trans Load Btwn Intersecting Wood Wall? | Yes |
| Area Load Mesh (in^2) | 144 |
| Merge Tolerance (in) | .12 |
| P-Delta Analysis Tolerance | $0.50 \%$ |
| Include P-Delta for Walls? | Yes |
| Automatically Iterate Stiffness for Walls? | Yes |
| Max Iterations for Wall Stiffness | 3 |
| Gravity Acceleration (ft/sec^2) | 32.2 |
| Wall Mesh Size (in) | 12 |
| Eigensolution Convergence Tol. (1.E-) | 4 |
| Vertical Axis | Y |
| Global Member Orientation Plane | XZ |
| Static Solver | Sparse Accelerated |
| Dynamic Solver | Accelerated Solver |
| Hot Rolled Steel Code |  |
| Adjust Stiffness? | AISC 15th(360-16): LRFD |
| RISAConnection Code | Yes(Iterative) |
| Cold Formed Steel Code | AISC 15th(360-16): LRFD |
| Wood Code | AISI S100-10: ASD |
| Wood Temperature | AWC NDS-12: ASD |
| Concrete Code | < 100F |
| Masonry Code | ACI 318-11 |
| Aluminum Code | ACI 530-11: ASD |
| Stainless Steel Code | AA ADM1-10: ASD - Building |
| Adjust Stiffness? | AISC 14th(360-10): ASD |
| Number of Shear Regions | Yes(Iterative) |
| Region Spacing Increment (in) | 4 |
| Biaxial Column Method | 4 |
| Parme Beta Factor (PCA) | Exact Integration |
| Concrete Stress Block | R5 |
| Use Cracked Sections? | Rectangular |
| Use Cracked Sections Slab? | Yes |
| Bad Framing Wamings? | No |
| Unused Force Warnings? | No |
| Min 1 Bar Diam. Spacing? | No |
| Concrete Rebar Set | REBAR_SET_ASTMA615 |
| Min \% Steel for Column | Max \% Steel for Column |

Company
Centek Engineering
Nov 9, 2023
Designer Job Number

TJL
8:57 AM
Model Name
Checked By:
Portland HS $\qquad$
(Global) Model Settings, Continued

| Seismic Code | ASCE 7-10 |
| :---: | :---: |
| Seismic Base Elevation (ft) | Not Entered |
| Add Base Weight? | Yes |
| Ct X | . 02 |
| Ct Z | . 02 |
| TX (sec) | Not Entered |
| T Z (sec) | Not Entered |
| RX | 3 |
| R Z | 3 |
| Ct Exp. X | . 75 |
| Ct Exp. Z | . 75 |
| SD1 | 1 |
| SDS | 1 |
| S1 | 1 |
| TL (sec) | 5 |
| Risk Cat | I or II |
| Drift Cat | Other |
| Om Z | 1 |
| Om X | 1 |
| Cd Z | 1 |
| Cd X | 1 |
| Rho Z | 1 |
| Rho X | 1 |
| Footing Overturning Safety Factor | 1 |
| Optimize for OTM/Sliding | No |
| Check Concrete Bearing | No |
| Footing Concrete Weight (k/ft^3) | 150.001 |
| Footing Concrete f'c (ksi) | 4 |
| Footing Concrete Ec (ksi) | 3644 |
| Lambda | 1 |
| Footing Steel fy (ksi) | 60 |
| Minimum Steel | 0.0018 |
| Maximum Steel | 0.0075 |
| Footing Top Bar | \#3 |
| Footing Top Bar Cover (in) | 2 |
| Footing Bottom Bar | \#3 |
| Footing Bottom Bar Cover (in) | 3.5 |
| Pedestal Bar | \#3 |
| Pedestal Bar Cover (in) | 1.5 |
| Pedestal Ties | \#3 |

Hot Rolled Steel Properties

| Label |  | E [ksi] | G [ksi] | Nu | Therm | Density[k/ft^3] | Yield[ksi] | Ry | Fu[ksi] | Rt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A36 Gr. 36 | 29000 | 11154 | . 3 | . 65 | . 49 | 36 | 1.5 | 58 | 1.2 |
| 2 | A572 Gr. 50 | 29000 | 11154 | . 3 | . 65 | 49 | 50 | 1.1 | 58 | 1.2 |
| 3 | A992 | 29000 | 11154 | . 3 | . 65 | . 49 | 50 | 1.1 | 58 | 1.2 |
| 4 | A500 Gr. 42 | 29000 | 11154 | . 3 | . 65 | . 49 | 42 | 1.3 | 58 | 1.1 |
| 5 | A500 Gr. 46 | 29000 | 11154 | . 3 | . 65 | . 49 | 46 | 1.2 | 58 | 1.1 |
| 6 | A53 Grade B | 29000 | 11154 | . 3 | . 65 | . 49 | 35 | 1.5 | 58 | 1.2 |

Company Centek Engineering
Designer Job Number Model Narite

Portland $1 / 3$

Checked By $\qquad$

Hot Rolled Steel Section Sets

| Label |  | Shape | Type | Design List | Material | Design | A [in2] | Iyy [in4] | Izz [in4] J [in4] |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Antenna Mast_2.0.. | PIPE 2.0 | Column | Pipe | A53 Grade B | Typical | 1.02 | . 627 | . 627 | 1.25 |
| 2 | Horizontal_2.5 ST... | PIPE 2.5 | Beam | Pipe | A53 Grade B | Typical | 1.61 | 1.45 | 1.45 | 2.89 |
| 3 | Outrigger_2.0 ST... | PIPE 2.0 | Beam | Pipe | A53 Grade B | Typical | 1.02 | . 627 | . 627 | 1.25 |
| 4 | Stabilizer_2.0 ST... | PIPE 2.0 | Beam | Pipe | A53 Grade B | Typical | 1.02 | . 627 | . 627 | 1.25 |
| 5 | 0.625" Dia. Bar | $0.625^{\prime}$ Dia. | Column | BAR | A36 Gr. 36 | Typical | . 307 | . 007 | . 007 | . 015 |
| 6 | 0.75"Dia. Bar | SR 3/4 | Column | BAR | A36 Gr. 36 | Typical | . 442 | 016 | 016 | . 031 |

## Hot Rolled Steel Design Parameters

|  | Label | Shape | Length[ft] | Lbyy[ft] | Lbzz[ft] | Lcomp top[. | Lcomp bot[... | L-tora... | Kyy | Kzz | Cb | Functi... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | \|Horizontal_2.5 STD... | 12.5 | Segment |  | Lbyy |  |  |  |  |  | Lateral |
| 2 | M2 | \|Horizontal_2.5 STD... | 12.5 | Segment |  | Lbyy |  |  |  |  |  | Lateral |
| 3 | M3 | Stabilizer_2.0 STD ... | 10.18 |  |  | Lbyy |  |  |  |  |  | Lateral |
| 4 | M4 | Outrigger_2.0 STD ... | 2.521 | Segment | Segment | Lbyy |  |  |  |  |  | Lateral |
| 5 | M5 | Outrigger_2.0 STD ... | 2.521 | Segment | Segment | Lbyy |  |  |  |  |  | Lateral |
| 6 | M6 | Outrigger_2.0 STD ... | 2.521 | Segment | Segment | Lbyy |  |  |  |  |  | Lateral |
| 7 | M7 | Outrigger_2.0 STD ... | 2.521 | Segment | Segment | Lbyy |  |  |  |  |  | Lateral |
| 8 | M8 | 0.625" Dia. Bar | 3.333 |  |  |  |  |  |  |  |  | Lateral |
| 9 | M9 | 0.625" Dia. Bar | 3.333 |  |  |  |  |  |  |  |  | Lateral |
| 10 | M10 | 0.75"Dia. Bar | 3.659 | 1.83 | 1.83 | Lbyy |  |  |  |  |  | Lateral |
| 11 | M11 | 0.625" Dia. Bar | 3.333 |  |  |  |  |  |  |  |  | Lateral |
| 12 | M12 | 0.75"Dia. Bar | 3.659 | 1.83 | 1.83 | Lbyy |  |  |  |  |  | Lateral |
| 13 | M13 | 0.625" Dia. Bar | 3.333 |  |  |  |  |  |  |  |  | Lateral |
| 14 | M14 | 0.75"Dia. Bar | 3.659 | 1.83 | 1.83 | Lbyy |  |  |  |  |  | Lateral |
| 15 | M15 | 0.75"Dia. Bar | 3.659 | 1.83 | 1.83 | Lbyy |  |  |  |  |  | Lateral |
| 16 | PS. 2 | Antenna Mast 2.0 ... | 6 |  |  | Lbyy |  |  |  |  |  | Lateral |
| 17 | PS. 1 | Antenna Mast_2.0 ... | 8 |  |  | Lbyy |  |  |  |  |  | Lateral |
| 18 | M19 | Antenna Mast_2.0 ... | 6 |  |  | Lbyy |  |  |  |  |  | Lateral |
| 19 | M21A | Antenna Mast_2.0 ... | 6 |  |  | Lbyy |  |  |  |  |  | Lateral |

## Member Primary Data

|  | Label | 1 Joint | J Joint | K Joint | Rotate(... | Section/Shape | Type | Design List | Material | Design ... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | N2 | N34 |  |  | Horizontal_2.5 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 2 | M2 | N1 | N33 |  |  | Horizontal_2.5 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 3 | M3 | N7 | N8 |  |  | Stabilizer_2.0 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 4 | M4 | N10 | N20 |  |  | Outrigger_2.0 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 5 | M5 | N9 | N19 |  |  | Outrigger_2.0 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 6 | M6 | N28 | N22 |  |  | Outrigger_2.0 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 7 | M7 | N27 | N21 |  |  | Outrigger_2.0 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 8 | M8 | N12 | N11 |  |  | 0.625" Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 9 | M9 | N18 | N17 |  |  | 0.625" Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 10 | M10 | N12 | N17 |  |  | $0.75^{\text {n Dia. Bar }}$ | Column | BAR | A36 Gr. 36 | Typical |
| 11 | M11 | N26 | N25 |  |  | 0.625" Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 12 | M12 | N18 | N11 |  |  | 0.75"Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 13 | M13 | N24 | N23 |  |  | $0.625^{\text {² D Dia. Bar }}$ | Column | BAR | A36 Gr. 36 | Typical |
| 14 | M14 | N26 | N23 |  |  | $0.75{ }^{\text {"Dia. Bar }}$ | Column | BAR | A36 Gr. 36 | Typical |
| 15 | M15 | N24 | N25 |  |  | 0.75 "Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 16 | PS. 2 | N5 | N6 |  |  | Antenna Mast_2.0 STD Pi. | Column | Pipe | A53 Grade B | Typical |
| 17 | PS. 1 | N37 | N38 |  |  | Antenna Mast_2.0 STD Pi.. | Column | Pipe | A53 Grade B | Typical |

$\qquad$

Member Primary Data (Continued)

|  | Label | 1 Joint | $J$ Joint | $K$ Joint | Rotate(. | Section/Shape | Type | Design List | Material | Design . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | M19 | N41A | N42A |  |  | Antenna Mast_2.0 STD Pi.. | Column | Pipe | A53 Grade B | Typical |
| 19 | M20 | N19 | N21 |  |  | RIGID | None | None | RIGID | Typical |
| 20 | M21 | N20 | N22 |  |  | RIGID | None | None | RIGID | Typical |
| 21 | M21A | N41B | N42B |  |  | Antenna Mast_2.0 STD Pi.. | Column | Pipe | A53 Grade B | Typical |

Joint Coordinates and Temperatures

|  | Label | $\mathrm{X}[\mathrm{ft}]$ | Y [ft] | Z [ft] | Temp [F] | Detach From Dia... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N1 | 0 | 0. | -0. | 0 |  |
| 2 | N2 | 0 | 3.333334 | -0. | 0 |  |
| 3 | N3 | . 25 | 0. | -0. | 0 |  |
| 4 | N4 | . 25 | 3.333334 | -0. | 0 | Ita |
| 5 | N5 | . 25 | -1.333333 | -0. | 0 |  |
| 6 | N6 | 25 | 4.666667 | -0. | 0 |  |
| 7 | N7 | 3.390625 | 3.333334 | -0. | 0 |  |
| 8 | N8 | 6.025403 | 3.333334 | -9.833125 | 0 |  |
| 9 | N9 | 3.78125 | 0. | -0. | 0 |  |
| 10 | N10 | 3.78125 | 3.333334 | -0. | 0 | (1at |
| 11 | N11 | 4.138628 | 0. | -0.357378 | 0 |  |
| 12 | N12 | 4.138628 | 3.333334 | -0.357378 | 0 |  |
| 13 | N17 | 5.206335 | 0. | -1.425085 | 0 |  |
| 14 | N18 | 5.206335 | 3.333334 | -1.425085 | 0 |  |
| 15 | N19 | 5.563713 | 0. | -1.782463 | 0 |  |
| 16 | N20 | 5.563713 | 3.333334 | -1.782463 | 0 |  |
| 17 | N21 | 6.936287 | 0. | -1.782463 | 0 |  |
| 18 | N22 | 6.936287 | 3.333334 | -1.782463 | 0 |  |
| 19 | N23 | 7.293665 | 0. | -1.425085 | 0 |  |
| 20 | N24 | 7.293665 | 3.333334 | -1.425085 | 0 |  |
| 21 | N25 | 8.361372 | 0. | -0.357378 | 0 |  |
| 22 | N26 | 8.361372 | 3.333334 | -0.357378 | 0 |  |
| 23 | N27 | 8.71875 | 0. | -0. | 0 |  |
| 24 | N28 | 8.71875 | 3.333334 | -0. | 0 |  |
| 25 | N29 | 12.25 | 0. | -0. | 0 |  |
| 26 | N30 | 12.25 | 3.333334 | -0. | 0 |  |
| 27 | N33 | 12.5 | 0. | -0. | 0 |  |
| 28 | N34 | 12.5 | 3.333334 | -0. | 0 |  |
| 29 | N35 | 6.25 | 3.333334 | -1.782463 | 0 |  |
| 30 | N36 | 6.25 | 0. | -1.782463 | 0 |  |
| 31 | N35A | 4.25 | 0. | -0. | 0 |  |
| 32 | N36A | 4.25 | 3.333334 | -0. | 0 |  |
| 33 | N37 | 12.25 | -2.333333 | 0 | 0 |  |
| 34 | N38 | 12.25 | 5.666667 | 0 | 0 |  |
| 35 | N39 | 8.25 | 0. | -0. | 0 |  |
| 36 | N40 | 8.25 | 3.333334 | -0. | 0 |  |
| 37 | N41A | 8.25 | -1.333333 | -0. | 0 |  |
| 38 | N42A | 8.25 | 4.666667 | -0. | 0 |  |
| 39 | N41B | 4.25 | -1.333333 | -0. | 0 |  |
| 40 | N42B | 4.25 | 4.666667 | -0. | 0 |  |

$\qquad$
Model Narne

Joint Boundary Conditions

|  | Joint Label | X [k/in] | Y [k/in] | Z [k/in] | X Rot.[k-ft/rad] | Y Rot.[k-ft/rad] | Z Rot.[k-ft/rad] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N8 | Reaction | Reaction | Reaction |  |  |  |
| 2 | N19 |  |  |  |  |  |  |
| 3 | N20 |  |  |  |  |  |  |
| 4 | N17 |  |  |  |  | 5 |  |
| 5 | N18 |  |  |  |  |  |  |
| 6 | N21 |  |  |  |  | - |  |
| 7 | N22 |  |  |  |  |  |  |
| 8 | N23 |  |  |  |  |  |  |
| 9 | N24 |  |  |  |  |  |  |
| 10 | N35 | Reaction | Reaction | Reaction |  |  |  |
| 11 | N36 | Reaction | Reaction | Reaction |  |  |  |

## Member Point Loads (BLC 2 : Dead Load)

| Member Label |  | Direction | Magnitude $[k, k$ - ft$]$ | Location[ft, \%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS. 1 | Y | -. 045 | 1.5 |
| 2 | PS. 1 | Y | -. 045 | 6.5 |
| 3 | PS. 2 | Y | -. 03 | 2 |
| 4 | PS. 2 | Y | -. 03 | 4 |
| 5 | PS. 1 | Y | -. 075 | 3 |
| 6 | PS. 1 | Y | -. 08 | 5 |
| 7 | M21A | Y | -. 016 | 1 |
| 8 | M19 | Y | -. 032 | \%50 |
| 9 | M21A | Y | -. 003 | \%50 |

## Member Point Loads (BLC 3: Ice Load)

| Member Label |  | Direction | Magnitude[k,k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS. 1 | Y | -. 098 | 1.5 |
| 2 | PS. 1 | Y | -. 098 | 6.5 |
| 3 | PS. 2 | $Y$ | -. 035 | 2 |
| 4 | PS. 2 | $Y$ | -. 035 | 4 |
| 5 | PS. 1 | Y | -. 052 | 3 |
| 6 | PS. 1 | Y | -. 053 | 5 |
| 7 | M21A | Y | -. 02 | 1 |
| 8 | M19 | Y | -. 101 | \%50 |
| 9 | M21A | Y | -. 016 | \%50 |


| Member Point Loads (BLC 6: Wind with Ice $\mathbf{X}$ ) |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Label |  |  |  |  |  |  | Direction | Magnitudelk,k-ft] | Locationflt,\%] |
| 1 |  |  |  |  |  |  |  |  |  |


| Member Label | Direction |  | Magnitude[k,k-ft] |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS. 1 | $X$ | .142 | Location $[f t, \%]$ |
| 2 | PS.1 | $X$ | .142 | 1.5 |
| 3 | PS.2 | $X$ | .039 | 6.5 |
| 4 | PS.2 | $X$ | .039 | 2 |
| 5 | PS.1 | $X$ | .073 | 4 |
| 6 | PS.1 | $X$ | .074 | 3 |
| 7 | M21A | $X$ | .021 | 5 |
| 8 | M19 | $X$ | .18 | 1 |
| 9 | M21A | $X$ | .008 | $\% 50$ |

## Member Point Loads (BLC 8 : Wm Wind X)

|  | Member Label | Direction | Magnitude[k,k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS. 1 | X | . 009 | 1.5 |
| 2 | PS. 1 | X | . 009 | 6.5 |
| 3 | PS. 2 | X | . 003 | 2 |
| 4 | PS. 2 | X | . 003 | 4 |
| 5 | PS. 1 | X | . 005 | 3 |
| 6 | PS. 1 | X | . 005 | 5 |
| 7 | M21A | X | . 001 | 1 |
| 8 | M19 | X | . 011 | \%50 |
| 9 | M21A | X | . 001 | \%50 |

Member Point Loads (BLC 9: Wind with Ice Z)

| Member Label | Direction |  | Magnitude[ $k, k-f t]$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS. 1 | $Z$ | .073 | Location[ft,\%] |
| 2 | PS.1 | $\mathbf{Z}$ | .073 | 1.5 |
| 3 | PS.2 | $Z$ | .024 | 6.5 |
| 4 | PS.2 | $Z$ | .024 | 2 |
| 5 | M19 | $Z$ | .051 | 4 |
| 6 | M21A | $Z$ | .014 | $\% 50$ |

## Member Point Loads (BLC 10 : Wind Z)

| Member Label | Direction |  | Magnituderk,k-ft] |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS.1 | $Z$ | .358 | Location[ft, $\%]$ |
| 2 | PS. | $Z$ | .358 | 1.5 |
| 3 | PS.2 | $Z$ | .111 | 6.5 |
| 4 | PS.2 | $Z$ | .111 | 2 |
| 5 | M19 | $Z$ | .236 | 4 |
| 6 | M21A | $Z$ | .052 | $\% 50$ |

Member Point Loads (BLC 11 : Wm Wind Z)

| Member Label | Direction |  | Magnitude $[k, k$ - $f t]$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS. 1 | $Z$ | .023 | Location $[f t, \%]$ |
| 2 | PS.1 | $Z$ | .023 | 1.5 |
| 3 | PS.2 | $Z$ | .007 | 6.5 |
| 4 | PS.2 | $Z$ | .007 | 2 |
| 5 | M19 | $Z$ | .015 | 4 |
| 6 | M21A | $Z$ | .003 | $\% 50$ |

Company
Nov 9, 2023
Designer
Job Number
TJL
22017.06

8:57 AM

Model Name
Portland HS

Member Distributed Loads (BLC 6 : Wind with Ice X)

|  | Member Label | Direction | Start Magnitude[k/ft, F, ksf] | End Magnitudelk. | Start Locationfft,\% | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M3 | X | . 003 | . 003 | 0 | 0 |
| 2 | M4 | X | . 003 | . 003 | 0 | 0 |
| 3 | M5 | X | . 003 | . 003 | 0 | 0 |
| 4 | M6 | X | . 003 | . 003 | 0 | 0 |
| 5 | M7 | X | . 003 | . 003 | 0 | 0 |
| 6 | M8 | X | . 003 | . 003 | 0 | 0 |
| 7 | M9 | X | . 003 | . 003 | 0 | 0 |
| 8 | M10 | X | . 003 | . 003 | 0 | 0 |
| 9 | M11 | X | . 003 | . 003 | 0 | 0 |
| 10 | M12 | X | . 003 | . 003 | 0 | 0 |
| 11 | M13 | X | . 003 | . 003 | 0 | 0 |
| 12 | M14 | X | . 003 | . 003 | 0 | 0 |
| 13 | M15 | X | . 003 | . 003 | 0 | 0 |
| 14 | PS. 2 | X | . 003 | . 003 | 0 | 0 |
| 15 | PS. 1 | X | . 003 | . 003 | 0 | 0 |
| 16 | M19 | X | . 003 | . 003 | 0 | 0 |
| 17 | M20 | X | . 003 | . 003 | 0 | 0 |
| 18 | M21 | X | . 003 | . 003 | 0 | 0 |
| 19 | M21A | X | . 003 | . 003 | 0 | 0 |

## Member Distributed Loads (BLC 7: Wind X)

|  | Member Label | Direction | Start Magnitude [k/ft,F,ksf] | End Magnitude[k]... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M3 | X | . 018 | . 018 | 0 | 0 |
| 2 | M4 | X | . 018 | . 018 | 0 | 0 |
| 3 | M5 | X | . 018 | . 018 | 0 | 0 |
| 4 | M6 | X | . 018 | . 018 | 0 | 0 |
| 5 | M7 | X | . 018 | . 018 | 0 | 0 |
| 6 | M8 | X | . 018 | . 018 | 0 | 0 |
| 7 | M9 | X | . 018 | . 018 | 0 | 0 |
| 8 | M10 | X | . 018 | . 018 | 0 | 0 |
| 9 | M11 | X | . 018 | . 018 | 0 | 0 |
| 10 | M12 | X | . 018 | . 018 | 0 | 0 |
| 11 | M13 | X | . 018 | . 018 | 0 | 0 |
| 12 | M14 | X | . 018 | . 018 | 0 | 0 |
| 13 | M15 | X | . 018 | . 018 | 0 | 0 |
| 14 | PS. 2 | X | . 018 | . 018 | 0 | 0 |
| 15 | PS. 1 | X | . 018 | . 018 | 0 | 0 |
| 16 | M19 | X | . 018 | . 018 | 0 | 0 |
| 17 | M20 | X | . 018 | . 018 | 0 | 0 |
| 18 | M21 | X | . 018 | . 018 | 0 | 0 |
| 19 | M21A | X | . 018 | . 018 | 0 | 0 |

## Member Distributed Loads (BLC 8:Wm Wind X)

|  | Member Label | Direction | Start Magnitude[k/ft,F,ksf] | End Magnitude[k]... | Start Location[ft,\%] | End Locationnft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M3 | X | . 003 | . 003 | 0 | 0 |
| 2 | M4 | X | . 003 | . 003 | 0 | 0 |
| 3 | M5 | X | . 003 | . 003 | 0 | 0 |
| 4 | M6 | X | . 003 | . 003 | 0 | 0 |
| 5 | M7 | X | . 003 | . 003 | 0 | 0 |
| 6 | M8 | X | . 003 | . 003 | 0 | 0 |



Member Distributed Loads (BLC 8 ; Wm Wind X) (Continued)

|  | Member Label | Direction | Start Magnitude[k/ft,F,ksf] | End Magnitude[ k .... | Start Location[ft, \%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | M9 | X | . 003 | . 003 | 0 | 0 |
| 8 | M10 | X | . 003 | . 003 | 0 | 0 |
| 9 | M11 | X | . 003 | . 003 | 0 | 0 |
| 10 | M12 | X | . 003 | . 003 | 0 | 0 |
| 11 | M13 | X | . 003 | . 003 | 0 | 0 |
| 12 | M14 | X | . 003 | . 003 | 0 | 0 |
| 13 | M15 | X | . 003 | . 003 | 0 | 0 |
| 14 | PS. 2 | X | . 003 | . 003 | 0 | 0 |
| 15 | PS. 1 | X | . 003 | . 003 | 0 | 0 |
| 16 | M19 | X | . 003 | . 003 | 0 | 0 |
| 17 | M20 | X | . 003 | . 003 | 0 | 0 |
| 18 | M21 | X | . 003 | . 003 | 0 | 0 |
| 19 | M21A | X | . 003 | . 003 | 0 | 0 |

Member Distributed Loads (BLC 9 : Wind with Ice Z)

|  | Member Label | Direction | Start Magnitude[k/ft,F,ksf] | End Magnitude[k/... | Start Location[ft,\%] | End Locationff,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | Z | . 003 | . 003 | 0 | 0 |
| 2 | M2 | Z | . 003 | . 003 | 0 | 0 |
| 3 | M3 | Z | . 003 | . 003 | 0 | 0 |
| 4 | M4 | Z | . 003 | . 003 | 0 | 0 |
| 5 | M5 | Z | . 003 | . 003 | 0 | 0 |
| 6 | M6 | Z | . 003 | . 003 | 0 | 0 |
| 7 | M7 | Z | . 003 | . 003 | 0 | 0 |
| 8 | M8 | Z | . 003 | . 003 | 0 | 0 |
| 9 | M9 | Z | . 003 | . 003 | 0 | 0 |
| 10 | M10 | Z | . 003 | . 003 | 0 | 0 |
| 11 | M11 | Z | . 003 | . 003 | 0 | 0 |
| 12 | M12 | Z | . 003 | . 003 | 0 | 0 |
| 13 | M13 | Z | . 003 | . 003 | 0 | 0 |
| 14 | M14 | Z | . 003 | . 003 | 0 | 0 |
| 15 | M15 | Z | . 003 | . 003 | 0 | 0 |
| 16 | PS. 2 | Z | . 003 | . 003 | 0 | 0 |
| 17 | M19 | Z | . 003 | . 003 | 0 | 0 |
| 18 | M20 | Z | . 003 | . 003 | 0 | 0 |
| 19 | M21 | Z | . 003 | . 003 | 0 | 0 |
| 20 | M21A | Z | . 003 | . 003 | 0 | 0 |

## Member Distributed Loads (BLC 10 : Wind Z)

|  | Member Label | Direction | Start Magnitude[k/ft,F,ksf] | End Magnitude[k/... | Start Location[ft, \%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | Z | . 018 | . 018 | 0 | 0 |
| 2 | M2 | Z | . 018 | . 018 | 0 | 0 |
| 3 | M3 | Z | . 018 | . 018 | 0 | 0 |
| 4 | M4 | Z | . 018 | . 018 | 0 | 0 |
| 5 | M5 | Z | . 018 | . 018 | 0 | 0 |
| 6 | M6 | Z | . 018 | . 018 | 0 | 0 |
| 7 | M7 | Z | . 018 | . 018 | 0 | 0 |
| 8 | M8 | Z | . 018 | . 018 | 0 | 0 |
| 9 | M9 | Z | . 018 | . 018 | 0 | 0 |
| 10 | M10 | Z | . 018 | . 018 | 0 | 0 |
| 11 | M11 | Z | . 018 | . 018 | 0 | 0 |
| 12 | M12 | Z | . 018 | . 018 | 0 | 0 |



|  | Member Label | Direction | Start Magnitude[ $\mathbf{k} / \mathrm{ft}, \mathrm{F}, \mathrm{ksf}]$ | End Magnitude[k]... | Start Location $[\mathrm{ft}, \%]$ | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | M13 | Z | . 018 | . 018 | 0 | 0 |
| 14 | M14 | Z | . 018 | . 018 | 0 | 0 |
| 15 | M15 | Z | . 018 | . 018 | 0 | 0 |
| 16 | PS. 2 | Z | . 018 | . 018 | 0 | 0 |
| 17 | M19 | Z | . 018 | . 018 | 0 | 0 |
| 18 | M20 | Z | . 018 | . 018 | 0 | 0 |
| 19 | M21 | Z | . 018 | . 018 | 0 | 0 |
| 20 | M21A | Z | . 018 | . 018 | 0 | 0 |

## Member Distributed Loads (BLC 11 : Wm Wind Z)

|  | Member Label | Direction | Start Magnitude[k/ft,F,ksf] | End Magnitude[k]... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | Z | . 003 | . 003 | 0 | 0 |
| 2 | M2 | Z | . 003 | . 003 | 0 | 0 |
| 3 | M3 | Z | . 003 | . 003 | 0 | 0 |
| 4 | M4 | Z | . 003 | . 003 | 0 | 0 |
| 5 | M5 | Z | . 003 | . 003 | 0 | 0 |
| 6 | M6 | Z | . 003 | . 003 | 0 | 0 |
| 7 | M7 | Z | . 003 | . 003 | 0 | 0 |
| 8 | M8 | Z | . 003 | . 003 | 0 | 0 |
| 9 | M9 | Z | . 003 | . 003 | 0 | 0 |
| 10 | M10 | Z | . 003 | . 003 | 0 | 0 |
| 11 | M11 | Z | . 003 | . 003 | 0 | 0 |
| 12 | M12 | Z | . 003 | . 003 | 0 | 0 |
| 13 | M13 | Z | . 003 | . 003 | 0 | 0 |
| 14 | M14 | Z | . 003 | . 003 | 0 | 0 |
| 15 | M15 | Z | . 003 | . 003 | 0 | 0 |
| 16 | PS. 2 | Z | . 003 | . 003 | 0 | 0 |
| 17 | M19 | Z | . 003 | . 003 | 0 | 0 |
| 18 | M20 | Z | . 003 | . 003 | 0 | 0 |
| 19 | M21 | Z | . 003 | . 003 | 0 | 0 |
| 20 | M21A | Z | . 003 | . 003 | 0 | 0 |

## Basic Load Cases

|  | BLC Description | Category | X Gra...Y Gra... | Z Gra... Joint | Point | Distrib.. | Areal.. | Surfa... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Self Weight | None | -1 |  |  |  |  |  |
| 2 | Dead Load | None |  |  | 9 |  |  |  |
| 3 | Ice Load | None |  |  | 9 |  |  |  |
| 4 | Lm Maintenance Load (5001b) | None |  |  |  |  |  |  |
| 5 | Lv Maintenance Load (2501b) | None |  |  |  |  |  |  |
| 6 | Wind with Ice $X$ | None |  |  | 9 | 19 |  |  |
| 7 | Wind $X$ | None |  |  | 9 | 19 |  |  |
| 8 | Wm Wind $X$ | None |  |  | 9 | 19 |  |  |
| 9 | Wind with Ice Z | None |  |  | 6 | 20 |  |  |
| 10 | Wind Z | None |  |  | 6 | 20 |  |  |
| 11 | Wm Wind Z | None |  |  | 6 | 20 |  |  |



## Load Combinations

Description So..P...S... BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac.
1.4D

| 1 | 1.4D Yes | Y | 1 | 14 | 2 | 14 |  |  |  |  |  | Fac.. |  |  |  |  |  |  |  |  |  | Fac.. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1.2D+1.5LV Yes | Y | 1 | 1.4 | 2 | 1.4 | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 1.2D + 1.0W (X-directi... Yes | $Y$ | 1 | 12 | 2 | 2 | 7 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | $1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}(. . . Y$ Yes | $Y$ | 1 | 1.2 | 2 | 1.2 | 3 | 1 | 6 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 1.2D +1.5Lm+1.0Wm ...Yes | $Y$ | 1 | 1.2 | 2 | 1.2 | 4 | 1.5 | 8 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 1.2D + 1.0W (Z-directi... Yes | $Y$ | 1 | 1.2 | 2 | 1.2 | 10 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 1.2D + 1.0Di + 1.0Wi (... Yes | $Y$ | 1 | 1.2 | 2 | 1.2 | 3 | 1 | 9 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | 1.2D +1.5Lm+ 1.0Wm ...Yes | $Y$ | 1 | 1.2 | 2 | 1.2 | 4 | 1.5 | 11 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |

Envelope Joint Reactions

| Joint |  |  | X [k] | LC | $\mathrm{Y}[\mathrm{k}]$ | LC | 2 [k] | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N8 | max | . 233 | 3 | . 025 | 1 | . 919 | 6 | 0 | 8 | 0 | 8 | 0 | 8 |
| 2 |  | min | -. 271 | 6 | . 021 | 3 | -1.212 | 3 | 0 | 1 | 0 | 1 | 0 | 1 |
| 3 | N35 | max | -. 133 | 6 | . 687 | 7 | . 804 | 3 | 0 | 8 | 0 | 8 | 0 | 8 |
| 4 |  | min | -1.769 | 3 | . 384 | 3 | -2.878 | 6 | 0 | 1 | 0 | 1 | 0 | 1 |
| 5 | N36 | max | . 86 | 7 | . 658 | 4 | . 68 | 4 | 0 | 8 | 0 | 8 | 0 | 8 |
| 6 |  | min | -. 568 | 3 | . 247 | 6 | -. 958 | 6 | 0 | 1 | 0 | 1 | 0 | 1 |
| 7 | Totals: | max | 0 | 8 | 1.335 | 4 | 0 | 3 |  |  |  |  |  |  |
| 8 |  | min | -2.104 | 3 | . 827 | 8 | -2.918 | 6 |  |  |  |  |  |  |

Envelope Joint Displacements

| Joint |  |  | X [in] | LC | $\begin{aligned} & Y \text { [in] } \\ & .035 \end{aligned}$ | $\frac{\mathrm{LC}}{6}$ | $\begin{gathered} Z[\mathrm{in}] \\ .3 \end{gathered}$ | LC | $\begin{gathered} \text { X Rotation [rad] } \\ 3.976 \mathrm{e}-03 \\ \hline \end{gathered}$ | LC Y Rotation [rad] LC |  |  | Z Rotation [rad] | $\begin{array}{\|c\|} \hline \text { LC } \\ \hline 3 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N1 | max | . 063 | 3 |  |  |  |  |  | 6 | $1.2 \mathrm{e}-02$ | 6 | 9.437e-04 |  |
| 2 |  | min | -. 115 | 6 | -. 031 | 3 | -. 035 | 1 | $-2.189 \mathrm{e}-03$ | 3 | -4.5e-04 | 4 | $-9.599 \mathrm{e}-04$ | 6 |
| 3 | N2 | max | . 036 | 3 | . 035 | 6 | . 452 | 6 | 2.539e-03 | 6 | $1.23 \mathrm{e}-02$ | 6 | $1.072 \mathrm{e}-03$ | 3 |
| 4 |  | min | -. 045 | 6 | -. 032 | 3 | -. 009 | 4 | -2.295e-03 | 3 | -3.806e-04 | 4 | -9.84e-04 | 6 |
| 5 | N3 | max | . 063 | 3 | . 032 | 7 | . 264 | 6 | 3.976e-03 | 6 | 1.2e-02 | 6 | 9.436e-04 | 3 |
| 6 |  | min | -. 115 | 6 | -. 028 | 3 | -. 034 | 1 | -2.189e-03 | 3 | -4.5e-04 | 4 | -9.599e-04 | 6 |
| 7 | N4 | max | . 036 | 3 | . 032 | 7 | . 415 | 6 | $2.539 \mathrm{e}-03$ | 6 | $1.23 \mathrm{e}-02$ | 6 | $1.072 \mathrm{e}-03$ | 3 |
| 8 |  | min | -. 045 | 6 | -. 028 | 3 | -. 008 | 4 | -2.295e-03 | 3 | -3.806e-04 | 4 | -9.84e-04 | 6 |
| 9 | N5 | max | . 079 | 3 | . 032 | 7 | . 201 | 6 | $3.906 \mathrm{e}-03$ | 6 | $1.2 \mathrm{e}-02$ | 6 | $1.014 \mathrm{e}-03$ | 3 |
| 10 |  | min | -. 13 | 6 | -. 028 | 3 | -. 045 | 1 | $-2.189 \mathrm{e}-03$ | 3 | -4.5e-04 | 4 | -9.599e-04 | 6 |
| 11 | N6 | max | . 02 | 3 | . 032 | 7 | . 456 | 6 | $2.609 \mathrm{e}-03$ | 6 | $1.23 \mathrm{e}-02$ | 6 | 1.002e-03 | 3 |
| 12 |  | min | -. 029 | 6 | -. 028 | 3 | -. 041 | 3 | -2.295e-03 | 3 | -3.806e-04 | 4 | -9.841e-04 | 6 |
| 13 | N7 | max | . 036 | 3 | . 034 | 7 | . 016 | 3 | $1.447 \mathrm{e}-03$ | 6 | $9.639 \mathrm{e}-03$ | 6 | $6.175 \mathrm{e}-04$ | 3 |
| 14 |  | min | -. 045 | 6 | . 011 | 3 | -. 018 | 6 | -1.158e-03 | 3 | -1.301e-03 | 3 | -2.923e-04 | 6 |
| 15 | N8 | max | 0 | 8 | 0 | 8 | 0 | 8 | $1.91 \mathrm{e}-03$ | 1 | 7.888e-03 | 3 | $1.312 \mathrm{e}-03$ | 3 |
| 16 |  | min | 0 | 1 | 0 | 1 | 0 | 1 | $1.435 \mathrm{e}-03$ | 3 | 5.127e-05 | 2 | -1.996e-04 | 6 |
| 17 | N9 | max | . 062 | 3 | . 033 | 7 | . 082 | 3 | $2.235 \mathrm{e}-03$ | 6 | $5.246 \mathrm{e}-03$ | 6 | 3.777e-04 | 3 |
| 18 |  | min | -. 115 | 6 | . 013 | 3 | -. 152 | 6 | -8.113e-04 | 3 | -4.928e-04 | 1 | -4.431e-04 | 6 |
| 19 | N10 | max | . 036 | 3 | . 033 | 7 | . 023 | 3 | $1.311 \mathrm{e}-03$ | 6 | 8.501e-03 | 6 | 3.855e-04 | 3 |
| 20 |  | min | -. 045 | 6 | . 013 | 3 | -. 061 | 6 | -1.017e-03 | 3 | -1.196e-03 | 3 | -4.005e-04 | 7 |
| 21 | N11 | max | . 05 | 3 | . 037 | 7 | . 069 | 3 | $2.019 \mathrm{e}-03$ | 6 | 2.987e-03 | 3 | $1.281 \mathrm{e}-04$ | 3 |
| 22 |  | min | -. 09 | 6 | . 013 | 3 | -. 127 | 6 | -5.166e-04 | 3 | $-5.778 \mathrm{e}-03$ | 6 | -8.88e-04 | 6 |
| 23 | N12 | max | . 024 | 3 | . 037 | 7 | . 012 | 3 | $1.391 \mathrm{e}-03$ | 6 | 2.666e-03 | 3 | $4.435 \mathrm{e}-04$ | 3 |
| 24 |  | min | -. 036 | 6 | . 013 | 3 | -. 053 | 6 | -7.218e-04 | 3 | $-2.003 \mathrm{e}-03$ | 6 | -5.474e-04 | 7 |
| 25 | N17 | max | . 011 | 3 | . 036 | 7 | . 031 | 3 | $1.191 \mathrm{e}-03$ | 6 | 2.786e-03 | 3 | -4.683e-04 | 3 |
| 26 |  | min | -. 02 | 6 | . 004 | 3 | -. 058 | 6 | $1.051 \mathrm{e}-04$ | 3 | -4.897e-03 | 6 | -2.42e-03 | 7 |

$\qquad$
Portland IIG

| Joint |  |  | $X$ [in] LC |  | $Y$ [in] | LC | Z [in] LC |  | $\begin{gathered} \text { X Rotation [rad] } \\ \hline 1.01 \mathrm{e}-03 \\ \hline \end{gathered}$ | LC Y Rotation [rad] LC |  |  | $\begin{gathered} \mathrm{Z} \text { Rotation [rad] } \\ -2.46 \mathrm{e}-04 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{LC} \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | N18 | max | 0 | 3 | . 036 | 7 | -. 005 | 2 |  | 7 | $4.415 \mathrm{e}-04$ | 3 |  |  |
| 28 |  | min | -. 01 | 6 | . 004 | 3 | -. 029 | 6 | -5.278e-05 | 3 | -2.066e-03 | 6 | -2.361e-03 | 7 |
| 29 | N19 | max | 0 | 8 | . 027 | 7 | . 02 | 3 | $6.829 \mathrm{e}-04$ | 7 | $2.43 \mathrm{e}-03$ | 3 | -4.687e-04 | 3 |
| 30 |  | min | 0 | 1 | . 004 | 3 | -. 038 | 6 | $3.857 \mathrm{e}-04$ | 3 | -4.619e-03 | 6 | -3.33e-03 | 7 |
| 31 | N20 | max | 0 | 8 | . 027 | 7 | -. 004 | 2 | 6.565e-04 | 7 | -5.094e-04 | 2 | -4.791e-04 | 3 |
| 32 |  | min | 0 | 1 | . 004 | 3 | -. 02 | 6 | 4.026e-04 | 6 | $-2.371 \mathrm{e}-03$ | 6 | -3.328e-03 | 7 |
| 33 | N21 | max | 0 | 8 | -. 004 | 3 | . 038 | 6 | $6.829 \mathrm{e}-04$ | 7 | $2.43 \mathrm{e}-03$ | 3 | -4.687e-04 | 3 |
| 34 |  | min | 0 | 1 | -. 027 | 7 | -. 02 | 3 | 3.857e-04 | 3 | -4.619e-03 | 6 | -3.33e-03 | 7 |
| 35 | N22 | max | 0 | 8 | -. 004 | 3 | . 02 | 6 | 6.565e-04 | 7 | -5.094e-04 | 2 | -4.791e-04 | 3 |
| 36 |  | min | 0 | 1 | -. 027 | 7 | . 004 | 2 | 4.026e-04 | 6 | -2.371e-03 | 6 | $-3.328 \mathrm{e}-03$ | 7 |
| 37 | N23 | max | . 011 | 3 | -. 008 | 3 | . 059 | 6 | $2.79 \mathrm{e}-04$ | 3 | $2.787 \mathrm{e}-03$ | 3 | -6.364e-04 | 3 |
| 38 |  | min | -. 021 | 6 | -. 042 | 7 | -. 031 | 3 | -3.293e-04 | 6 | $-5.187 \mathrm{e}-03$ | 6 | -2.611e-03 | 7 |
| 39 | N24 | max | -. 001 | 3 | -. 008 | 3 | . 03 | 6 | $5.174 \mathrm{e}-04$ | 3 | 5.077e-04 | 3 | -3.814e-04 | 3 |
| 40 |  | min | -. 01 | 6 | -. 042 | 7 | . 005 | 2 | -5.375e-04 | 6 | -2.405e-03 | 6 | -2.64e-03 | 7 |
| 41 | N25 | max | . 049 | 3 | -. 019 | 3 | . 131 | 6 | $4.08 \mathrm{e}-04$ | 3 | 3.007e-03 | 3 | -1.206e-03 | 3 |
| 42 |  | min | -. 092 | 6 | -. 049 | 7 | -. 069 | 3 | -1.606e-03 | 6 | $-5.675 \mathrm{e}-03$ | 6 | -2.55e-03 | 7 |
| 43 | N26 | max | . 024 | 3 | -. 019 | 3 | . 06 | 6 | $5.829 \mathrm{e}-04$ | 3 | 2.813e-03 | 3 | -5.439e-04 | 3 |
| 44 |  | min | -. 038 | 6 | -. 049 | 7 | -. 014 | 3 | -1.67e-03 | 6 | -2.047e-03 | 6 | -2.545e-03 | 7 |
| 45 | N27 | max | . 062 | 3 | -. 028 | 3 | . 155 | 6 | $9.807 \mathrm{e}-04$ | 3 | $3.068 \mathrm{e}-03$ | 3 | -1.82e-03 | 3 |
| 46 |  | min | -. 116 | 6 | -. 057 | 7 | -. 082 | 3 | $-1.518 \mathrm{e}-03$ | 6 | -1.661e-02 | 6 | -3.895e-03 | 7 |
| 47 | N28 | max | . 037 | 3 | -. 025 | 3 | . 069 | 6 | $1.105 \mathrm{e}-03$ | 3 | 2.157e-03 | 3 | -1.342e-03 | 3 |
| 48 |  | min | -. 046 | 6 | -. 057 | 7 | -. 027 | 3 | -1.011e-03 | 6 | -1.498e-02 | 6 | -3.91e-03 | 7 |
| 49 | N29 | max | . 062 | 3 | -. 12 | 3 | 1.127 | 6 | $1.489 \mathrm{e}-03$ | 3 | 2.584e-03 | 3 | -7.332e-04 | 3 |
| 50 |  | min | -. 116 | 6 | -. 296 | 7 | -. 198 | 3 | -4.803e-03 | 6 | -2.599e-02 | 6 | -4.428e-03 | 7 |
| 51 | N30 | max | . 037 | 3 | -. 12 | 3 | 1.022 | 6 | $1.555 \mathrm{e}-03$ | 3 | 2.602e-03 | 3 | -1.698e-03 | 3 |
| 52 |  | min | -. 046 | 6 | -. 296 | 7 | -. 131 | 3 | -6.971e-04 | 7 | -2.611e-02 | 6 | -4.426e-03 | 7 |
| 53 | N33 | max | . 062 | 3 | -. 122 | 3 | 1.205 | 6 | $1.489 \mathrm{e}-03$ | 3 | 2.584e-03 | 3 | -7.333e-04 | 3 |
| 54 |  | min | -. 116 | 6 | -. 31 | 7 | -. 206 | 3 | -4.803e-03 | 6 | -2.599e-02 | 6 | -4.428e-03 | 7 |
| 55 | N34 | max | . 037 | 3 | -. 125 | 3 | 1.1 | 6 | $1.555 \mathrm{e}-03$ | 3 | 2.602e-03 | 3 | -1.698e-03 | 3 |
| 56 |  | min | -. 046 | 6 | -. 31 | 7 | -. 139 | 3 | -6.971e-04 | 7 | -2.611e-02 | 6 | -4.426e-03 | 7 |
| 57 | N35 | max | 0 | 8 | 0 | 8 | 0 | 8 | $6.565 \mathrm{e}-04$ | 7 | -5.094e-04 | 2 | -4.791e-04 | 3 |
| 58 |  | min | 0 | 1 | 0 | 1 | 0 | 1 | $4.026 \mathrm{e}-04$ | 6 | -2.371e-03 | 6 | -3.328e-03 | 7 |
| 59 | N36 | max | 0 | 8 | 0 | 8 | 0 | 8 | $6.829 \mathrm{e}-04$ | 7 | 2.43e-03 | 3 | -4.687e-04 | 3 |
| 60 |  | min | 0 | 1 | 0 | 1 | 0 | 1 | 3.857e-04 | 3 | -4.619e-03 | 6 | -3.33e-03 | 7 |
| 61 | N35A | max | . 062 | 3 | . 03 | 4 | . 072 | 3 | $1.958 \mathrm{e}-03$ | 6 | $3.444 \mathrm{e}-03$ | 6 | $1.989 \mathrm{e}-04$ | 3 |
| 62 |  | min | -. 115 | 6 | . 012 | 6 | -. 176 | 6 | -7.375e-04 | 3 | -5.307e-04 | 1 | -7.034e-04 | 7 |
| 63 | N36A | max | . 036 | 3 | . 03 | 4 | . 028 | 3 | $1.14 \mathrm{e}-03$ | 6 | $6.615 \mathrm{e}-03$ | 6 | $1.487 \mathrm{e}-04$ | 3 |
| 64 |  | min | -. 045 | 6 | . 012 | 6 | -. 104 | 6 | -8.946e-04 | 3 | -6.161e-04 | 3 | -6.81e-04 | 7 |
| 65 | N37 | max | . 062 | 3 | -. 12 | 3 | 1.292 | 6 | $1.488 \mathrm{e}-03$ | 3 | $2.584 \mathrm{e}-03$ | 3 | $1.322 \mathrm{e}-04$ | 3 |
| 66 |  | min | -. 206 | 6 | -. 296 | 7 | -. 24 | 3 | -6.029e-03 | 6 | -2.599e-02 | 6 | -4.418e-03 | 7 |
| 67 | N38 | max | . 14 | 4 | -. 12 | 3 | 1.06 | 6 | $1.556 \mathrm{e}-03$ | 3 | $2.602 \mathrm{e}-03$ | 3 | -2.2e-03 | 2 |
| 68 |  | min | . 043 | 6 | -. 296 | 7 | -. 087 | 3 | -4.472e-04 | 7 | -2.611e-02 | 6 | -4.435e-03 | 7 |
| 69 | N39 | max | . 062 | 3 | -. 018 | 6 | . 069 | 6 | $9.05 \mathrm{e}-04$ | 3 | 3.152e-03 | 3 | -1.268e-03 | 3 |
| 70 |  | min | -. 116 | 6 | -. 038 | 4 | -. 065 | 3 | -1.203e-03 | 6 | -1.414e-02 | 6 | -2.813e-03 | 7 |
| 71 | N40 | max | . 037 | 3 | -. 018 | 6 | -. 002 | 2 | $9.904 \mathrm{e}-04$ | 3 | $2.038 \mathrm{e}-03$ | 3 | -7.735e-04 | 3 |
| 72 |  | min | -. 046 | 6 | -. 038 | 4 | -. 015 | 3 | -1.206e-03 | 6 | -1.214e-02 | 6 | -2.824e-03 | 7 |
| 73 | N41A | max | . 043 | 3 | -. 018 | 6 | . 089 | 6 | $9.05 \mathrm{e}-04$ | 3 | 3.152e-03 | 3 | -1.198e-03 | 3 |
| 74 |  | min | -. 144 | 6 | -. 038 | 4 | -. 079 | 3 | -1.273e-03 | 6 | -1.414e-02 | 6 | -2.813e-03 | 7 |
| 75 | N42A | max | . 061 | 4 | -. 018 | 6 | . 001 | 3 | $9.904 \mathrm{e}-04$ | 3 | $2.038 \mathrm{e}-03$ | 3 | -8.439e-04 | 3 |
| 76 |  | min | -. 017 | 6 | -. 038 | 4 | -. 026 | 6 | -1.135e-03 | 6 | $-1.214 \mathrm{e}-02$ | 6 | -2.824e-03 | 7 |
| 77 | N41B | max | . 067 | 3 | . 03 | 4 | . 084 | 3 | 1.887e-03 | 6 | $3.444 \mathrm{e}-03$ | 6 | $2.808 \mathrm{e}-04$ | 3 |
| 78 |  | min | -. 125 | 6 | . 012 | 6 | -. 207 | 6 | $-7.374 \mathrm{e}-04$ | 3 | -5.307e-04 | 1 | -7.032e-04 | 7 |



Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] | LC | $Y$ [in] | LC | Z [in] LC |  | X Rotation [rad] | LC Y Rotation [rad] LC |  |  | Z Rotation [ [rad] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 79 | N42B | max | . 034 | 3 | . 03 | 4 | . 017 | 4 | $1.211 \mathrm{e}-03$ | 6 | 6.615e-03 | 6 | 7.826e-05 | 3 |
| 80 |  | min | -. 036 | 6 | . 012 | 6 | -. 085 | 6 | -8.947e-04 | 3 | -6.161e-04 | 3 | -6.81e-04 | 7 |

Envelope AISC 15th(360-16): LRFD Steel Code Checks

|  | Mem. | Shape | Code Check | L. | LC | Sh...Loc[ft] | Dir | phi*P. | phitP. | phi*Mn y-y [k-ft] | phi*...cb | Eqn |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | PIPE 2.5 | . 444 | 8...\| | 6 | . 1093.776 |  | 614.559 | 50.715 | 3.596 | 3.5...2 $2 . .$. | H1... |
| 2 | M2 | PIPE 2.5 | . 383 | 8.... | 6 | . 0948.724 |  | 614.559 | 50.715 | 3.596 | 3.5... 2... | H1. |
| 3 | M3 | PIPE 2.0 | . 143 | 5... | 3 | 00910.18 |  | 39.492 | 32.13 | 1.872 | 1.8... 1.... | H1... |
| 4 | M4 | PIPE 2.0 | . 228 | 2... | 3 | . 0842.521 |  | 332.032 | 32.13 | 1.872 | 1.8... 1... | H1.e. |
| 5 | M5 | PIPE 2.0 | . 160 | 2... | 7 | . 0682.521 |  | 432.032 | 32.13 | 1.872 | 1.8... 1.... | H1... |
| 6 | M6 | PIPE 2.0 | . 231 | 2... | 7 | . 086.499 |  | 732.032 | 32.13 | 1.872 | 1.8... 1.... | H1. |
| 7 | M7 | PIPE 2.0 | . 226 | 2... | 7 | . 091.499 |  | 732.032 | 32.13 | 1.872 | 1.8...1.... | H1... |
| 8 | M8 | 0.625' Dia. | . 190 | 3... | 6 | 0243.333 |  | 61.058 | 9.94 | . 104 | . $1042 \ldots$ | H1. |
| 9 | M9 | 0.625' Dia. | . 177 | 0 | 3 | . 019 |  | 61.058 | 9.94 | . 104 | . 104 2.... | H1... |
| 10 | M10 | SR 3/4 | . 141 | 0 | 3 | 020 |  | 66.954 | 14.314 | . 179 | . 1791 | H1.. |
| 11 | M11 | 0.625' Dia. | . 194 | 0 | 3 | 0230 |  | 61.058 | 9.94 | . 104 | . 104 2.... | H1... |
| 12 | M12 | SR 3/4 | . 144 | 0 | 3 | 0210 |  | 66.954 | 14.314 | . 179 | . $1792 . .$. | H1.. |
| 13 | M13 | 0.625' Dia. | . 194 | 0 | 3 | 0190 |  | 61.058 | 9.94 | . 104 | . $1042 \ldots$ | H1.. |
| 14 | M14 | SR 3/4 | . 158 | 0 | 3 | 0170 |  | 66.954 | 14.314 | . 179 | . 1792 | H1.. |
| 15 | M15 | SR 3/4 | . 151 | 0 | 3 | 0180 |  | 66.954 | 14.314 | . 179 | . 1791 | H1... |
| 16 | PS. 2 | PIPE 2.0 | . 097 | 1... | 6 | 0271.375 |  | 620.867 | 32.13 | 1.872 | 1.8... $1 . .$. | H1.. |
| 17 | PS. 1 | PIPE 2.0 | . 311 | 5... | 4 | . 0395.667 |  | 614.916 | 32.13 | 1.872 | 1.8...4.... | H1.. |
| 18 | M19 | PIPE 2.0 | . 195 | 4... | 3 | . 0584.625 |  | 620.867 | 32.13 | 1.872 | 1.8... $1 . . .1$ | H1. |
| 19 | M21A | PIPE_2.0 | . 113 | 1...) | 6 | . 0711.375 |  | 620.867 | 32.13 | 1.872 | 1.8... $1 . . . \mid$ | H1... |



| 二NT三Kengineering | Subject: | Connection to Host Structure |
| :---: | :---: | :---: |
|  | Location: | Portand, CT |
|  | Rev. 0: 5/11/23 | Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06 |

## Antenna Mount Connection:

AnchorData:
A307 Threaded Rod=

| Number of Anctor Bolts $=$ | $\mathrm{N}:=4$ | (User hput) |
| ---: | :--- | :--- |
| Dianeter of Bolts $=$ | $\mathrm{D}:=0.625 \mathrm{in}$ | (User hput) |
| Design Tension $=$ | $\mathrm{T}_{\text {design }}:=10.4 \cdot \mathrm{kips}$ | (User hput) |
| Design Shear $=$ | $\mathrm{V}_{\text {design }}:=6.23 \cdot \mathrm{kips}$ | (User Input) |

Design Reactions:

| $F x=$ | $F_{x}=1.7 \cdot \mathrm{kips}$ | (User Input) |
| :--- | :--- | :--- |
| $F y=$ | $F_{y}:=0.7 \cdot \mathrm{k} \mid p s$ | (User Input) |
| $\mathrm{Fz}=$ | $F_{\mathbf{z}}=2.8 \cdot \mathrm{kjps}$ | (User Input) |

AnchorCheok


## verizons

NORTHEAST > North East > New England > Wallingford-1 > PORTLAND HS CT - B Cheiban, Ziad - ziad.cheiban@verizonwireless.com - 20230927_153155


| Antenna Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Added Antenna |  |  |  |  |  |  |  |  |  |  |  |  |
| 700 | 850 | 1900 | Aws | CBRS | L-Subs | Make | Model | $\begin{aligned} & \text { Center } \\ & \text { line } \end{aligned}$ | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Tip } \\ \text { Height } \end{array} \end{array}$ | Azimuth | $\begin{array}{\|l} \text { Install } \\ \text { Type } \end{array}$ | Quantit |
|  |  |  |  |  | 5 G | Samsung | MT6413-77A | 90 | 91.2 | $\begin{aligned} & 30(1), 150(2), 2 \\ & 70(3) \end{aligned}$ | PHYSICAL | 3 |
| LTE | LTE | LTE | LTE |  |  | COMMSCOPE | NNH4-65B-R6 | 90 | 93 | $\begin{aligned} & 30(1), 150(2), 2 \\ & 70(3) \end{aligned}$ | PHYSICAL | 3 |
|  |  |  |  | LTE |  | Samsung | RT4423 | 90 | 90.4 | $\begin{aligned} & 30(19), 150(20) \\ & , 270(21) \end{aligned}$ | PHYSICAL | 3 |




| Services |  |  |  |
| :---: | :---: | :---: | :---: |
| 700 LTE | 0002 (8118082) |  |  |
| Sector | 01 | 02 | 03 |
| Azimuth | 30 | 150 | 270 |
| Cell/Enodeb-ld | 064040 | 064040 | 064040 |
| Antenna Model | NNH4-65B-R6 | NNH4-65B-R6 | NNH4-65B-R6 |
| Antenna Make | COMMSCOPE | COMMSCOPE | COMMSCOPE |
| Centerline | 90 | 90 | 90 |
| DLEARFCN | 5230 | 5230 | 5230 |
| Mech Down-tilt | 0 | 0 | 0 |
| Elect Down-tilt | 2 | 2 | 2 |
| Tip Height | 93 | 93 | 93 |
| Regulatory Power | 66.49 (W/MHz) ERP | 66.49 (W/MHz) ERP | 66.49 (W/MHz) ERP |
| Cell Max Power | 46.0 dBm | 46.0 dBm | 46.0 dBm |
| TMA Make |  |  |  |
| TMA Model |  |  |  |
| RRU Make | Samsung | Samsung | Samsung |
| RRU Model | RF4461d-13A | RF4461d-13A | RF4461d-13A |
| Number of Tx, Rx | 4.4 | 4,4 | 4,4 |
| Position |  |  |  |
| Transmitter ld | 11232662 | 11232663 | 11232664 |
| Source | VZNPP | VZNPP | VZNPP |
| Bandwidth | 10 | 10 | 10 |
| Ant. Dlmensions $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ (inch) | $72.0 \times 19.6 \times 7.79$ | $72.0 \times 19.6 \times 7.79$ | $72.0 \times 19.6 \times 7.79$ |
| Weight(lb) | 81.82 | 81.82 | 81.82 |



Services

| Sector |
| :--- |
| Azimuth |
| Cell/Enodeb-Id |
| Antenna Model |
| Antenna Make |
| Centerline |
| DLEARFCN |
| Mech Down-tilt |
| Elect Down-tilt |
| Tip Height |
| Regulatory Power |
| Cell Max Power |
| TMA Make |
| TMA Model |
| RRU Make |
| RRU Model |
| Bandwidth |
| Ant. Dimensions |
| H W W $\times$ D(inch) |
| Position |
| Transmitter Id |
| Source |
| Weight(lb) |

Services

| 0002 (8118082) |  |  |
| :---: | :---: | :---: |
| 01 | 02 | 03 |
| 30 | 150 | 270 |
| 064040 | 064040 | 064040 |
| NNH4-65B-R6 | NNH4-65B-R6 | NNH4658-R6 |
| COMMSCOPE | COMMSCOPE | COMMSCOPE |
| 90 | 90 | 90 |
| 2050 | 2050 | 2050 |
| 0 | 0 | 0 |
| 2 | 2 | 2 |
| 93 | 93 | 93 |
| 84.67 (W/MHz) EIRP | 84.67 (W/MHz) EIRP | 84.67 (W/MHz) EIRP |
| 46.0 dBm | 46.0 dBm | 46.0 dBm |
|  |  |  |
|  |  |  |
| Samsung | Samsung | Samsung |
| $\begin{aligned} & \text { B2/B66A RRH ORAN } \\ & \text { (RF4439d-25A) } \end{aligned}$ | $\begin{aligned} & \hline \text { B2/B66A RRH ORAN } \\ & \text { (RF4439d-25A) } \end{aligned}$ | B2/B66A RRH ORAN (RF4439d-25A) |
| 4,4 | 4,4 | 4.4 |
| 11298467 | 11298468 | 11298469 |
| VZNPP | VZNPP | VZNPP |
| 20 | 20 | 20 |
| $72.0 \times 19.6 \times 7.79$ | $72.0 \times 19.6 \times 7.79$ | $72.0 \times 19.6 \times 7.79$ |
| 81.82 | 81.82 | 81.82 |



| Callamans Par Antanna |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Soctor | Mako | Model | Ant CL Helght AG | $\begin{aligned} & \text { Ant Tip } \\ & \text { Height } \end{aligned}$ | Axtmuth | $\begin{aligned} & \text { Eloct } \\ & \text { Down-silt } \end{aligned}$ | $\begin{aligned} & \text { Moch } \\ & \text { Downilit } \end{aligned}$ | Galn | Bandwidth | $\begin{aligned} & \text { Regulator } \\ & \text { y Power } \end{aligned}$ | 700 | 850 | 1200 | 2100 | 28 CHz | 31 ctz | 39 Clt | LSub-s | CBRs |
| 0003 | Samsung | MT6413-77A | 90 | 81.2 | 270 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNESEA,WF NESE2,WRNE 583,WRNEES 4,WRNESS5 |  |
| 19 | Samsung | RT4423 | ${ }^{00}$ | 90.4 | 30 | 7 | 0 | 10.34 | 67 | 3.76 |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { CBRS_CALLS } \\ & \text { IGN } \end{aligned}$ |
| 02 | COMMSCOPE | NNH4-65B-R | 90 | 93 | 150 | 2 | 0 | 11.94 | 69.75 | 66.49 | W0.0689 |  |  |  |  |  |  |  |  |
| 03 | COMMSCOPE | NNH4-65B-R | 90 | 93 | 270 | 2 | 0 | 12.54 | 65 | 301.17 |  | KNKA104 |  |  |  |  |  |  |  |
| 0002 | Samsung | MT6413-77A | 90 | 91.2 | 150 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNE581,WF NE5B2,WRNE 583,WRNE 58 4.WRNES85 |  |
| 0002 | Sarnsung | MT6413-77A | 90 | 91.2 | 150 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNE5B5,WF NE5e6,WRNE 587,WRNES8 |  |
| 0001 | Samsung | MT6413.77A | 90 | 01.2 | 30 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNE581,WF NE582,WRNE 583,WRNE58 4.WRNE585 |  |
| 02 | COMMSCOPE | NNH4-658-R | 90 | 93 | 150 | 2 | 0 | 12.54 | 65 | 301.17 |  | KNKAMO4 |  |  |  |  |  |  |  |
| 01 | COMMSCOPE | NNH4-658-R | 90 | 93 | 30 | 2 | 0 | 12.54 | 65 | 301.17 |  | KNKA404 |  |  |  |  |  |  |  |
| 21 | Samsung | RT4423 | 90 | 90.4 | 270 | 7 | 0 | 10.34 | 67 | 3.76 |  |  |  |  |  | . |  |  | $\underset{\text { IGN }}{\text { CBR_CALLS }}$ |
| 0001 | Samsung | MTE413.77A | 90 | 91.2 | 30 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNE585,WF NE506,WRNE 507,WRNE58 |  |
| 02 | COMMSCOPE | NNH4-658-R | 90 | 93 | 150 | 2 | 0 | 13.92 | 60.75 | 188.95 |  |  | KNLH251,WP 0.7730 |  |  |  |  |  |  |
| 03 | COMMSCOP\& | NNH4-658-R | 90 | 93 | 270 | 2 | 0 | 13.82 | 60.75 | 188.95 |  |  | KNLH251,WP OS730 |  |  |  |  |  |  |
| 03 | COMMSCOPE | NNH4-658-R | 90 | 93 | 270 | 2 | 0 | 11.94 | 69.75 | 86.49 | Wajaces |  |  |  |  |  |  |  |  |
| 01 | COMMSCOPE | NNH4-658-R | 90 | 93 | 30 | 2 | 0 | 11.94 | 69.75 | 66.49 | Wasa689 |  |  |  |  |  |  |  |  |
| 20 | Samsung | RT4423 | 90 | 90.4 | 150 | 7 | 0 | 10.34 | 67 | 3.76 |  |  |  |  |  |  |  |  | $\underset{\text { CBRS_CALLS }}{\text { IGN }}$ |
| 0003 | Samoung | MT6413-77A | 00 | 91.2 | 270 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNESES,WF NESBB,WRNE 587,WRNE58 |  |
| 01 | COMMSCOPE | NNH4-65B-R | 90 | 93 | 30 | 2 | 0 | 13.92 | 60.75 | 188.95 |  |  | $\begin{array}{l\|} \text { KNLH251,WP } \\ \text { OJ730 } \end{array}$ |  |  |  |  |  |  |
| 03 | COMMSCOP | NNH4-658-R | 90 | 93 | 270 | 2 | 0 | 13.83 | 83.5 | 84.67 |  |  |  | WQGAgob,WC GB276 |  |  |  |  |  |
| 02 | COMMSCOP: | NNH4-65B-R | 90 | 93 | 150 | 2 | 0 | 13.93 | 63.5 | 84.67 |  |  |  | $\begin{array}{\|l\|} \hline \text { WQGA906,Wd } \\ \text { GB278 } \end{array}$ |  |  |  |  |  |
| 01 | COMMSCOP | NNH4-858-R | 80 | 93 | 30 | 2 | 0 | 13.93 | 63.5 | 84.67 |  |  |  | WQGA90B,WC $68276$ |  |  |  |  |  |




NOTES AND SPECIFICATIONS:
 2
 - wax mix - 1

 7. - "


 ${ }^{12}$ Kax





Nom

 ${ }^{2}$ Kivinu wix














(3) PROPOSOD EOUMENT CABNET DETAL


|  |  |  |  |  |  |  |  |  |  | 棕 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | -mo |  | arm |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |




|  |  |  | 为 |  |  |  |  |  <br>  |  |  |  | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | さいə＾ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $1 \mathrm{D} / \mathrm{/} / \mathrm{P}$ ¢ ${ }^{\text {dpe }}$ |  |  |  |







January 22, 2024
BST Management, LLC
352 Park Street
Suite 106
North Reading, MA 01864
Re: Comprehensive Structural Analysis Report
Structure: $\quad 80.4 \mathrm{ft}$ Self-Supporting Tower with 10ft Extension
Site Address: 97 High Street, Portland, Connecticut 06480 (Middlesex County)
Latitude: $41.5807^{\circ} \mathrm{N}$, Longitude: $72.6238^{\circ} \mathrm{W}$
Site Name: BST Management, LLC - Portland
Verizon - Portland
Site Number: BST Management, LLC - CT-16B0
Verizon-469381
SC Number: 230262
Status: $\quad$ Structure Passes (79\% Capacity) Foundation Passes

Per your request, Structural Components, LLC has completed a structural analysis for the above referenced project to verify the tower's compliance to the following design criteria:

| Standard: | TIA-222-H <br> Structural Standard for Antenna Supporting Structures <br> and Antennas |
| :--- | :--- |
| Building Code: | 2021 International Building Code w/Amendments |
| 2022 Connecticut State Building Code |  |$|$| Design Basic Wind Speed without Ice: | 120 mph 3 -second gust Vult |
| :--- | :--- |
| Design Basic Wind Speed with Ice: | 50 mph 3 -second gust |
| Ice Thickness: | $1^{\prime \prime}$ radial |
| Serviceability Basic Wind Speed: | 60 mph 3 -second gust |
| Exposure Category: | C |
| Topographic Category: | 1 |
| Ground Elevation: | 345 ft |
| Risk Category: | II |
| Seismic Site Class: | $\mathrm{D}, \mathrm{S}_{\mathrm{s}}=0.208, \mathrm{~S}_{1}=0.056$ |
| Seismic Design Category: | B |

Please refer to the following structural analysis report, which gives complete details of the tower loading, results, information provided, and necessary assumptions.

We trust you find this report satisfactory. Please do not hesitate to contact us if you should have any questions or concerns.

Best Regards,
Structural Components LLC
Wesley Culver
Engineering Manager
/TR


Michael DeBoer, P.E.
Connecticut P.E. \# 0018022

## 1 LOADING CONFIGURATION

The following antennas, mounts, transmission lines, and other appurtenances were considered for the structural analysis.

| Elevation (ft) |  | Equipment |  | Feedlines |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mount | Equip |  |  |  |  |  |
| 90.5 | 90.5 |  | $5 / 8^{\prime \prime} \times 6^{\prime}$ Lightning Rod |  | - | Existing |
| 90.0 | 90.0 | $\begin{aligned} & \text { (3) } \\ & (3) \\ & (3) \\ & (1) \\ & (3) \end{aligned}$ | CommScope NNH4-65B-R6 Panels <br> Samsung RT4423 Panels <br> Samsung MT6413-77A Panels <br> Samsung CBRS RRH - RT4401-48A RRUs <br> Samsung RF4439d-25A RRUs <br> Samsung RF4440d-13A RRUs <br> CommScope FE-16148-OVP-B12 TMA <br> SitePro VFA12-HD Sector Frame Mounts |  | 6x12 Hybrid | Verizon Final |
| 77.0 | 77.0 | (1) | $L 6^{\prime \prime} \times 6^{\prime \prime} \times 7 / 16^{\prime \prime}$ Ring Mount |  | - | Existing |
| $76.7{ }^{(4)}$ | 78.7 | (3) | Ericsson RRUS 32 B2 Raycap DC6-48-60-18-8F SSD | (6) $7 / 8^{n} \mathrm{TX}$ <br> (3) $0.92^{n}$ OD DC <br> (4) $3 / 4^{n}$ OD DC <br> (1) $3 / 8^{\prime \prime}$ Fiber <br> (1) $1 / 2^{\prime \prime}$ Fiber |  | AT\&T <br> Final |
|  | 77.2 | (3) (3) (1) | Ericsson RRUS 32 B30 ${ }^{(3)}$ Ericsson RRUS 32 B66A $^{(3)}$ Raycap DC6-48-60-18-8F SSD |  |  |  |
|  | 76.7 | $\begin{aligned} & 11 \\ & \hline(3) \\ & (3) \\ & (3) \\ & (3) \\ & (3) \\ & (3) \\ & (1) \\ & (3) \end{aligned}$ | CCITPA65R-BU6DA-K Panels Ericsson AIR6449 B77D Panels Ericsson AIR6419 B77G Panels CCIDMP65R-BU6DA Panels Ericsson RRUS 4478 B14 Ericsson RRUS 4449 B5/B12 Raycap DC9-48-60-24-8C-EV SSDs 12' Sector Frame Mounts |  |  |  |
| 75.0 | 75.0 | (1) | L6 $6^{\prime \prime} \times 6^{\prime \prime} \times 7 / 16^{\prime \prime}$ Ring Mount | - |  | Existing |
| 73.0 | 73.0 | (1) | 2-3/8 $8^{\prime \prime} \times 8^{\prime}$ Pipe Mount |  |  |  |
| 67.7 | 67.7 | (1) | L6 $6^{\prime \prime} \times 6^{n} \times 7 / 16^{\prime \prime}$ Ring Mount |  |  |  |

1) Elevations reference centerline of panel, yagi, mounts, and dish antennas, and base of whip antennas, in relation to the base of the tower.
2) Refer to the feed line diagram and analysis output in Appendix A for the location and orientation of feedlines and equipment.
3) Secondary appurtenances such as TMAs, Diplexers, and RRUs are considered to be installed directly behind panel antennas for frontal area shielding. See analysis output for magnitude of individual shielding.
4) Elevations adjusted from Structural Components Mapping dated 03/15/2022, Job \# 220142.

## 2 RESULTS

The analysis was performed using tnxTower v8.1.1.0, a structural analysis program developed by Tower Numerics, Inc. specifically for the communication tower industry.

### 2.1 TOWER MEMBER STRESS LEVELS

The tower has the following stress ratios in its structural members.

| Elev. (ft) | Member | Stress Ratio* |
| :---: | :---: | :---: |
| $0-90.4$ | Legs | 0.79 |
| $0-90.4$ | Bracing | 0.64 |
| $0-90.4$ | Connections | 0.64 |

## Stress ratio (SR) criteria:

## SR $\leq 1.00$ is completely within code limits.

SR $\leq 1.05$ is considered within acceptable tolerance of code limits.
SR> 1.05 is outside acceptable tolerance of code limits and requires structural modifications.

* Seismic analysis for similar structures under similar loading conditions has been shown to produce significantly
lower stress ratios than wind and ice. Therefore, seismic analysis has not been included in the current analysis.


### 2.2 FOUNDATION REACTIONS

The reactions listed below are for the design wind speed listed. Reactions are factored loads.

| Reaction Type | Current <br> Wind <br> Reactions | Current <br> Iced <br> Reactions | Foundation Status |
| :---: | :---: | :---: | :---: |
| Moment (ft-kips) | $1,265.9$ | 320.4 |  |
| Shear (kips) | 22.7 | 5.6 |  |
| Axial (kips) | 21.8 | 43.6 |  |
| Leg Compression (kips) | 73.9 | - |  |
| Leg Uplift (kips) | 64.4 | - |  |
| Leg Shear (kips) | 11.1 | - | Passes* $^{*}$ |

* See Appendix A for foundation calculations.


### 2.3 TOWER DEFLECTION

The tower deflections have been reviewed and are believed to be acceptable for the proposed equipment. The carrier(s) should review the deflections for the service wind condition included in Appendix A for compatibility with their equipment.

## 3 PROVIDED INFORMATION AND ASSUMPTIONS

The following information was directly used to generate this report, and can be found in Appendix B.

| Document | Author | Date | Reference |
| :--- | :--- | :--- | :--- |
| Collocation Application | Verizon | $11 / 21 / 2023$ | CT-1680 |
| Mount Analysis | Centek Engineering | $11 / 09 / 2023$ | 22017.06 REV1 |
| Structural Analysis Report - Verizon | Structural Components, LLC | $05 / 18 / 2023$ | 230262 |
| Post Modification Inspection Report | Structural Components, LLC | $09 / 19 / 2023$ | 230193 |

The following assumptions were made in order to complete the analysis. These assumptions must be checked. If they do not accurately represent the existing or proposed tower, foundation, soil, and loading conditions, we must be notified so that we can make the appropriate changes to our analysis, conclusions, and recommendations.

1. The tower and foundation are in good condition with no corrosion, damage or fatiguing issues which could reduce the carrying capacity of the tower.
2. All welds and connections are assumed to develop at least the member capacity, unless determined otherwise and explicitly stated in this report.
3. All prior structural modifications, if any, are assumed to be as per date supplied/available, to be properly installed and to be fully effective.
4. The following assumptions regarding member minimum material or type apply to this structure, unless otherwise noted in analysis:

- Angle Legs: A36
- Angle Bracing: A36
- Splice Bolts: A307
- Gusset Plates: A36
- Brace Bolts: A325N

5. The feedline and appurtenance configuration is as stated in the report. All antennas, coax, cables and waveguide cables are assumed to be properly installed and supported as per manufacturer requirement.
6. The support mounts and/or platforms are not analyzed and are considered adequate to support the loading.
7. All mounting systems connect at tower bracing points. Local stresses are not considered unless noted otherwise in analysis.
8. Some assumptions are made regarding antenna and mount sizes and their projected areas based on a best interpretation of the data supplied and a best knowledge of antenna type and industry practice.
9. The soil parameters are as per data supplied, or as assumed, and stated in the calculations.

## 4 CONCLUSIONS

To the best of our knowledge and belief the tower and foundations satisfy the requirements of the applicable codes and standards having jurisdiction over the work for the loadings and conditions as outlined in this report. Structural modifications are not required at this time.

| Structural Components, LLC 1870 West 64th Lane, Unit A | Projoct Porttand (CT-1680) |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Denver CO 80221 | Cliont BST Management, LLC | Dram by freed | Appd: |
| Phone: (866) 386-7622 | Code: TIA-222-H | Datas 01/22/24 | Scale: NTS |
| FAX: | Path: |  | Dwg No. E-1 |



Structural Components, LLC
1870 West 64th Lane, Unit A

| 100: 240022 |  |  |
| :---: | :---: | :---: |
| Prolect Portand (CT-1680) |  |  |
| Client: BST Management, LLC | Dramb by treed | Appod: |
| Coode T IA-222-H | Date: 01/22/24 | Scaie: NTS |
| Pate: |  | Dwa No. E-1 |

## Feed Line Plan

6'8-17/32'


| Structural Components, LLC <br> 1870 West 64th Lane, Unit A <br> Denver, CO 80221 <br> Phone: (866) 386-7622 <br> FAX: | lob: 240022 |  |  |
| :---: | :---: | :---: | :---: |
|  | Client EST Managernent, LLC | Drawn by: treed | Appos: |
|  | Coda: TIA-222-H | Data: 01/22/24 | Scale: NTS |
|  | Path: |  | Dwg No. E-7 |

## SELF SUPPORTING TOWER POST MODIFICATION INSPECTION REPORT



PREPARED FOR:

PREPARED BY:
Stephen Kasanovich
Structural Components, LLC
SC Job \# 230193

DATE:
September 19, 2023

## re Structural <br> IC Components

1870W. 64th Lane, Unit A Denver, CO 80221 PH: 720-489-3764

| CLIENT: | Blue Sky Towers | DATE AT SITE: | Monday, September 11, 2023 |
| :---: | :---: | :---: | :---: |
| SITE (ID): | CT-1680 | TOWER TYPE: | SST |
| ADDRESS: | 97 High Street | TOWER HEIGHT: | $90^{\prime}$ |
|  | Portiand, CT 06480 | WEATHER: | 75F, sunny, N wind 0-5mph |
| LEAD: | Wilson Worn | SUPPORT: | Ani Doke |

## PROJECT

Subject: Post Modification Inspection of SST Tower Reinforcement and Extension
Location: 97 High Street
Portland, CT 06480

Structure: $\quad$ 90' SST Tower

Purpose: $\quad$ The purpose of this post modification inspection is to ensure that the proposed modification has been completed per the attached structural modification drawings and meets all guidelines from Structural Components.

## PARTICIPATION PERSONNEL

## SRR Representative:

Ricardo Costa<br>Blue Sky Towers, LLC<br>352 Park St STE 106<br>North Reading, MA 01864

## SUPPLEMENTAL INFORMATION

Appendix A - Redlined Modification Drawings
Appendix B - Photos During and After Construction
Appendix C - Material Testing Reports


|  |  |  |
| :---: | :---: | :---: |
|  | 1870 W. G4th Lane, Unit A Denver, CO 80221 | PH: 720-489-3764 |
| CLIENT: | Blue Sky Towers $\quad$ DATE AT SITE: Monday, Septem | ar 11, 2023 |
| SITE (ID): <br> ADDRESS: | CT-1680 TOWER TYPE: SST |  |
|  | 97 High Street TOWER HEIGHT: $90^{\circ}$ |  |
|  | Portland, CT 06480 WEATHER: 75F, sunny, N wil | 0-5mph |
| LEAD: | Wilson Worn SUPPORT: Ani Doke |  |
| Note: See Modification Drawings for Referenced Standards |  |  |
| INSPECTION OF REINFORCED CONCRETE CONSTRUCTION |  |  |
| INSPECTION REQUIRED | VERIFICATION AND INSPECTION | NOTES |
| NO | INSPECTION OF REINFORCING STEEL, INCLUDING PRESTRESSING TENDONS, AND PLACEMENT. PERIODIC |  |
| NO | INSPECTION OF REINFORCING STEEL WELDING IN ACCORDANCE WITH TABLE 1705.2.2, ITEM 2b |  |
| NO | INSPECTION OF BOLTS TO BE INSTALLED IN CONCRETE PRIOR TO AND DURING PLACEMENT OF CONCRETE CONTINUOUS |  |
| NO | INSPECTION OF HORIZONTAL OR UPWARD SLOPING ANCHORS INSTALLED IN HARDENED CONCRETE CONTNUOUS |  |
| NO | INSPECTION OF ANCHORS INSTALLED IN HARDENED CONCRETE (OTHER ORIENTATIONS) PERIODIC |  |
| NO | VERIFYNG USE OF DESIGN MIX PERIODIC |  |
| NO | AT THE TIME FRESH CONCRETE IS SAMPLED TO FABRICATE SPECIMENS FOR STRENGTH TESTS, PERFORM SLUMP AND AIR CONTENT TESTS, AND DETERMINE THE TEMPERATURE OF THE CONCRETE CONTNUUUS |  |
| NO | INSPECTION FOR MAINTENANCE OF SPECIFIED CURING TEMPERATURES AND TECHNIQUES PERIODIC |  |
| NO | INSPECTION OF PRESTRESSED CONCRETE: <br> a. APPLICATION OF PRESTRESSING FORCES <br> b. GROUTING OF BONDED PRESTRESSING TENDONS IN THE SEISMIC-FORCERESISTING SYSTEM CONTINUOUS |  |
| NO | ERECTION OF PRECAST CONCRETE MEMBERS PERIODIC |  |
| NO | VERIFICATION OF IN-SITU CONCRETE STRENGTH, PRIOR TO STRESSING OF TENDONS IN POSTTENSIONED CONCRETE AND PRIOR TO REMOVAL OF SHORES AND FORMS FROM BEAMS AND STRUCTURAL SLABS PERIODIC |  |
| NO | INSPECTION OF FORMWORK FOR SHAPE, LOCATION AND DIMENSIONS OF THE CONCRETE MEMBER BEING FORMED PERIODIC |  |

## REPORT CONTENTS



Note: See ModIfication Drawings for Referenced Standards

| MATERIAL VERIFICATION OF HIGH-STRENGTH BOLTS, NUTS AND WASHERS |  |  |
| :---: | :---: | :---: |
| INSPECTION REQUIRED | VERIFICATION AND INSPECTION | NOTES |
| YES | IDENTIFICATION MARKINGS TO CONFORM TO ASTM STANDARDS SPECIFIED IN THE APPROVED CONSTRUCTION DOCUMENTS PERIODIC | APPROVED |
| YES | MANUFACTURER'S CERTIFICATE OF COMPLIANCE REQUIRED PERIODIC | MATERIAL CERTIFICATIONS AVAILABLE, APPROVED |
| INSPECTION OF HIGH STRENGTH BOLTING |  |  |
| INSPECTION REQUIRED | VERIFICATION AND INSPECTION | NOTES |
| YES | SNUG TIGHT JOINTS PERIODIC | APPROVED |
| NO | PRETENSIONED AND SLIP-CRITICAL JOINTS USING TURN-OF-NUT WITH MATCHMARKING, TWIST OFF BOLT OR DIRECT TENSION INDICATOR METHODS OF INSTALLATION PERIODIC |  |
| NO | PRETENSIONED AND SLIP-CRITICAL JOINTS USING TURN-OF-NUT WITHOUT MATCHMARKING, OR CALIBRATED WRENCH METHODS OF INSTALLATION CONTINUOUS |  |
| MATERIAL VERIFICATION OF STRUCTURAL STEEL AND COLD-FORNED STEEL DECK |  |  |
| INSPECTION REQUIRED | VERIFICATION AND INSPECTION | NOTES |
| YES | FOR STRUCTURAL STEEL, IDENTIFICATION MARKINGS TO CONFORM TO AISC 303 PERIODIC | APPROVED |
| NO | FOR OTHER STEEL IDENTIFICATION MARKINGS TO CONFORM TO ASTM STANDARDS SPECIFIED IN THE APPROVED CONSTRUCTION DOCUMENTS PERIODIC |  |
| YES | MANUFACTURER'S CERTIFIED TEST REPORTS PERIODIC | MATERIAL CERTIFICATIONS AVAILABLE, APPROVED |
| MATERIAL VERIFICATION OF WELD FILLER MATERIALS |  |  |
| INSPECTION REQUIRED | VERIFICATION AND INSPECTION | NOTES |
| YES | IDENTIFICATION MARKINGS TO CONFORM TO AWS SPECIFICATION IN THE APPROVED CONSTRUCTION DOCUMENTS PERIODIC |  |
| YES | MANUFACTURER'S CERTIFICATION OF COMPLIANCE REQUIRED PERIODIC |  |
| INSPECTION OF WELDING |  |  |
| INSPECTION REQUIRED | VERIFICATION AND INSPECTION | NOTES |
| NO | COMPLETE AND PARTIAL JOINT PENETRATION GROOVE WELDS CONTNUOUS |  |
| NO | MULTIPASS FILLET WELDS CONTINUOUS |  |
| NO | SINGLE-PASS FILLET WELDS $>5 / 46^{n}$ CONTINUOUS |  |
| NO | PLUG AND SLOT WELDS CONTMUOUS |  |
| YES | SINGLE-PASS FILLET WELDS <5/16" PERIODIC |  |

## 記 Structural Components <br> Bringing it All Together

## PHOTO SUMMARY

|  | 1870 W. 67th Lane, Unit A | Denver, CO 80221 | PH: 720-489-3764 |
| :---: | :---: | :---: | :---: |
| CLIENT: | Blue Sky Towers | DATE AT SITE: | Monday, September 11, 2023 |
| SITE (ID): | CT-1680 | TOWER TYPE: | SST |
| ADDRESS: | 97 High Street | TOWER HEIGHT | $90^{\prime}$ |
|  | Portland, CT 06480 | WEATHER: | 75F, sunny, N wind 0 -5mph |
| LEAD: | Wilson Worn | SUPPORT: | Ani Doke |

Item \#1 on S-1 Sheet
INSTALL NEW 1-3/4"x1-3/4"x3/16" ANGLE SUB-HORIZONTALS AND1-3/4"x1-3/4"x3/16" ANGLE SUBDIAGONALS FROM 0' - 13' $\mathbf{4 '}^{\prime \prime}$


## $F \square$ Structural <br> LIC Components

## PHOTO SUMMARY

|  | 1870 W. 64th Lane, Unit A | Denver, CO 8022 Pri ${ }^{\text {P }}$ (20-489-3764 |
| :---: | :---: | :---: |
| CLIENT: | Blue Sky Towers | DATE AT SITE: Monday, September 11, 2023 |
| SITE (ID): | CT-1680 | TOWER TYPE: SST |
| ADDRESS: | 97 High Street | TOWER HEIGHT: ${ }^{\text {90' }}$ |
|  | Portland, CT 06480 | WEATHER: $\quad 75 \mathrm{~F}$, sunny. N wind $0-5 \mathrm{mph}$ |
| LEAD: | Wilson Worn | SUPPORT: Ani Doke |

## Item *2 on S-1 Sheet

REPLACE EXISTING TOP GIRTS WITH NEW 2-1/2"x2"x1/4" ANGLES AT 20'


| CLIENT: | Blue Sky Towers | DATE AT SITE: | Monday, September 11, 2023 |
| :---: | :---: | :---: | :---: |
| SITE (ID): | CT-1680 | TOWER TYPE: | SST |
| ADDRESS: | 97 High Street | TOWER HEIGH | 90' |
|  | Portland, CT 06480 | WEATHER: | 75F, sunny, N wind 0-5mph |
| LEAD: | Wilson Worn | SUPPORT: | Ani Doke |

## Item \#3 on S-1 Sheet

INSTALL NEW $10^{\prime}$ TOWER EXTENSION AT $80^{\prime}$. INSTALL 5/8" x $6^{\prime}$ LIGHTNING ROD TO THE EXTENSION TOP GIRT.

1870 W. 64th Lane, Unit A Denver, CO 80221 PH: 720-489-3764

| CLIENT: | Blue Sky Towers | DATE AT SITE: | Monday, Septamber 11, 2023 |
| :---: | :---: | :---: | :---: |
| SITE (ID): | CT-1680 | TOWER TYPE: | SST |
| ADDRESS: | 97 High Street | TOWER HEIGH | 90' |
|  | Portland, CT 06480 | WEATHER: | 75F, sunny, N wind $0-5 \mathrm{mph}$ |
| LEAD: | Wilson Worn | SUPPORT: | Ani Doke |

## Item \#3 on S-1 Sheet

INSTALL (2) NEW SAFETY CLIMB SYSTEMS FROM 0' - 91'


## $F \rightarrow$ Structural <br> Er Components

|  | 1870 W. 64th Lane, Unit A | Denver, CO 80221 | PH: 720-489-3764 |
| :---: | :---: | :---: | :---: |
| CLIENT: | SRR Towers, Inc | DATE AT SITE: | Monday, September 11, 2023 |
| SITE (ID): | CT-1680 | TOWER TYPE: | SST |
| ADDRESS: | 97 High Street | TOWER HEIGHT | $90^{\prime}$ |
|  | Portland, CT 06480 | WEATHER: | 75F, sunny, N wind 0-5mph |
| LEAD: | Wilson Worn | SUPPORT: | Ani Doke |

APPENDIX A
REDLINED MODIFICATION DRAWINGS










(TOP OF BASE PLATE) NOTE: ELEVATIONS ARE ROUNDED TO THE NEAREST INCH.
E











## APPENDIX B

PHOTOS DURING \& AFTER CONSTRUCTION


CT-1680 Site Photos (1)


CT-1680 Site Photos (6)


CT-1680 Site Photos (11)


CT-1680 Site Photos (16)


CT-1680 Site Photos (21)


CT-1680 Site Photos (2)


CT-1680 Site Photos (7)


CT-1680 Site Photos (12)


CT-1680 Site Photos (17)


CT-1680 Site Photos (22)


CT-1680 Site Photos (3)


CT-1680 Site Photos (8)


CT-1680 Site Photos (13)


CT-1680 Site Photos (18)


CT-1680 Site Photos (23)


CT-1680 Site Photos (4)


CT-1680 Site Photos (9)


CT-1680 Site Photos (14)


CT-1680 Site Photos (19)


CT-1680 Site Photos (5)


CT-1680 Site Photos (10)


CT-1680 Site Photos (15)


CT-1680 Site Photos (20)


CT-1680 Site Photos (27)


CT-1680 Site Photos (28)


CT-1680 Site Photos (24)


CT-1680 Site Photos (25)


CT-1680 Site Photos (26)

CT-1680 Site Photos (31)



CT-1680 Site Photos (32)


CT-1680 Site Photos (33)


CT-1680 Site Photos (29)


CT-1680 Site Photos (30)


CT-1680 Site Photos (34)


CT-1680 Site Photos (35)


CT-1680 Site Photos (36)


CT-1680 Site Photos (41)


CT-1680 Site Photos (46)


CT-1680 Site Photos (51)


CT-1680 Site Photos (56)


CT-1680 Site Photos (61)


CT-1680 Site Photos (66)


CT-1680 Site Photos (37)


CT-1680 Site Photos (38)


CT-1680 Site Photos (43)


CT-1680 Site Photos (48)


CT-1680 Site Photos (53)


CT-1680 Site Photos (58)


CT-1680 Site Photos (63)


CT-1680 Site Photos (39)


CT-1680 Site Photos (40)


CT-1680 Site Photos (42)


CT-1680 Site Photos (47)


CT-1680 Site Photos (52)


CT-1680 Site Photos (57)


CT-1680 Site Photos (62)


CT-1680 Site Photos (67)


CT-1680 Site Photos (68)


CT-1680 Site Photos (50)

CT-1680 Site Photos (69)


CT-1680 Site Photos (49)


CT-1680 Site Photos (54)


CT-1680 Site Photos (59)


CT-1680 Site Photos (64)


CT-1680 Site Photos (70)


CT-1680 Site Photos (71)


CT-1680 Site Photos (76)


CT-1680 Site Photos (81)


CT-1680 Site Photos (86)


CT-1680 Site Photos (91)


CT-1680 Site Photos (96)


CT-1680 Site Photos (101)


CT-1680 Site Photos (72)


CT-1680 Site Photos (77)


CT-1680 Site Photos (82)


CT-1680 Site Photos (87)


CT-1680 Site Photos (92)


CT-1680 Site Photos (97)

CT-1680 Site Photos (102)



CT-1680 Site Photos (73)


CT-1680 Site Photos (78)


CT-1680 Site Photos (83)


CT-1680 Site Photos (88)


CT-1680 Site Photos (93)


CT-1680 Site Photos (98)


CT-1680 Site Photos (74)


CT-1680 Site Photos (79)


CT-1680 Site Photos (75)


CT-1680 Site Photos (80)


CT-1680 Site Photos (84)


CT-1680 Site Photos (89)


CT-1680 Site Photos (94)


CT-1680 Site Photos (99)


CT-1680 Site Photos (85)


CT-1680 Site Photos (90)


CT-1680 Site Photos (95)


CT-1680 Site Photos (100)


CT- 1680 Site Photos (103)


CT-1680 Site Photos (104)
CT-1680 Sie Pho (104)


CT-1680 Site Photos (105)


CT-1680 Site Photos (106)


CT-1680 Site Photos (111)


CT-1680 Site Photos (116)


CT-1680 Site Photos (121)


CT-1680 Site Photos (126)


CT- 1680 Site Photos (131)


CT-1680 Site Photos (136)


CT-1680 Site Photos (107)


CT-1680 Site Fhotos (112)


CT-1680 Site Photos (117)


CT-1680 Site Photos (122)


CT-1680 Site Photos (127)


CT-1680 Site Photos (132)


CT-1680 Site Photos (137)


CT-1680 Site Photos (108)


CT-1680 Site Photos (113)


CT-1680 Site Photos (118)


CT-1680 Site Photos (109)


CT-1680 Site Photos (114)


CT-1680 Site Photos (119)


CT-1680 Site Photos (123)


CT-1680 Site Photos (128)


CT-1680 Site Photos (133)


CT-1680 Site Photos (138)


CT-1680 Site Photos (124)


CT-1680 Site Photos (129)


CT-1680 Site Photos (134)


CT-1680 Site Photos (139)


CT-1680 Site Photos (110)


CT-1680 Site Photos (115)


CT-1680 Site Photos (120)


CT-1680 Site Photos (125)


CT-1680 Site Photos (130)


CT-1680 Site Photos (135)


CT-1680 Site Photos (140)


CT-1680 Site Photos (141)


CT-1680 Site Photos (146)


CT-1680 Site Photos (151)


CT-1680 Site Photos (156)


CT-1680 Site Photos (161)


CT-1680 Site Photos (166)


CT-1680 site Photos (171)


CT-1680 Site Photos (142)


CT-1680 Site Photos (147)


CT-1680 Site Photos (152)


CT-1680 Site Photos (157)


CT-1680 Site Photos (162)


CT-1680 Site Photos (167)


CT-1680 Site Photos (172)


CT-1680 Site Photos (143)


CT-1680 Site Photos (148)


CT-1680 Site Photos (153)


CT-1680 Site Photos (158)


CT-1680 Site Photos (163)


CT-1680 Site Photos (168)


CT-1680 Site Photos (144)


CT-1680 Site Photos (149)


CT-1680 Site Photos (154)


CT-1680 Site Photos (159)


CT-1680 Site Photos (164)


CT-1680 Site Photos (169)


CT-1680 Site Photos (174)


CT-1680 Site Photos (173)


CT-1680 Site Photos (145)


CT-1680 Site Photos (150)


CT-1680 Site Photos (155)


CT-1680 Site Photos (160)


CT-1680 Site Photos (165)


CT-1680 Site Photos (170)


CT-1680 Site Photos (175)


CT-1680 Site Photos (177)


CT-1680 Site Photos (178)


CT-1680 Site Photos (176)


CT-1680 Site Photos (181)

CT-1680 Site Photos (186)


CT-1680 Site Photos (191)


CT-1680 Site Photos (196)


CT-1680 Sitt Photos (201)


CT-1680 Site Photos (206)



CT-1680 Site Photos (207)


CT-1680 Site Photos (187)


CT-1680 Site Photos (192)


CT-1680 Site Photos (197)


CT-1680 Site Photos (202)


CT-1680 Site Photos (183)


CT-1680 Site Photos (188)


CT-1680 Site Photos (199)

CT-1680 Site Photos (204)



CT-1680 Site Photos (198)


CT-1680 Site Photos (208)


CT-1680 Site Photos (193)


CT-1680 Site Photos (203)


CT-1680 Site Photos (180)


CT-1680 Site Photos (184)


CT-1680 Site Photos (189)


CT-1680 Site Photos (194)


CT-1680 Site Photos (185)


CT-1680 Site Photos (190)

CT-1680 Site Photos (209)



CT-1680 Site Photos (210)


CT-1680 Site Photos (211)


CT-1680 Sile Photos (216)


CT-1680 Site Photos (221)


CT-1680 Site Photos (226)


CT-1680 Site Photos (231)


CT-1680 Sile Photos (236)


CT-1680 Site Photos (241)


CT-1680 Site Photos (212)


CT-1680 Site Photos (217)


CT-1680 Site Photos (222)


CT-1680 Site Photos (227)


CT-1680 Site Photos (232)


CT-1680 Site Photos (237)


CT-1680 Site Photos (242)


CT-16BO Site Photos (213)


CT-1680 Site Photos (218)


CT-1680 Site Photos (223)


CT-1680 Site Photos (228)


CT-1680 Site Photos (233)


CT-1680 Site Photos (238)


CT-16B0 Site Photos (214)


CT-1680 Site Photos (219)


CT-1680 Site Photos (224)


CT-1680 Site Photos (229)


CT-1680 Site Photos (234)


CT-1680 Site Photos (239)


CT-1680 Site Photos (215)


CT-1680 Site Photos (220)


CT-1680 Site Photos (225)


CT-1680 Site Photos (230)


CT-1680 Site Photos (235)


CT-1680 Site Photos (240)


CT-1680 Site Photos (243)

CT-1680 Site Photos (244)


CT-1680 Site Photos (245)


CT-1680 Site Photos (246)


CT-1680 Site Photos (251)


CT-1680 Site Photos (256)


CT-1680 Site Photos (261)


CT-1680 Site Photos (266)


CT-1680 Site Photos (271)


CT-1680 Site Photos (276)


CT-1680 Site Photos (247)


CT-1680 Site Photos (252)


CT-1680 Site Photos (257)


CT-1680 Site Photos (262)


CT-1680 Site Photos (267)


CT-1680 Site Photos (272)


CT-1680 Site Photos (277)


CT-1680 Site Photos (248)


CT-1680 Site Photos (249)


CT-1680 Site Photos (250)


CT-1680 Site Photos (253)


CT-1680 Site Photos (258)


CT-1680 Site Photos (263)


CT-1680 Site Photos (268)


CT-1680 Site Photos (273)


CT-1680 Site Photos (278)


CT-1680 Site Photos (254)


CT-1680 Site Photos (259)


CT-1680 Site Photos (264)


CT-1680 Site Photos (269)


CT-1680 Site Photos (274)


CT-1680 Site Photos (279)


CT-1680 Site Photos (255)


CT-1680 Site Photos (260)


CT-1680 Site Photos (265)


CT-1680 Site Photos (270)


CT-1680 Site Photos (275)


CT-1680 Site Photos (280)


CT-1680 Site Photos (281)


CT-1680 Site Photos (286)


CT-1680 Site Photos (291)


CT-1680 Site Photos (296)


CT-1680 Site Photos (301)


CT-1680 Site Photos (306)


CT-1680 Site Photos (311)


CT-1680 Site Photos (282)


CT-1680 Site Photos (287)


CT-1680 Site Photos (292)


CT-1680 Site Photos (297)


CT-1680 Site Photos (302)


CT-1680 Site Photos (307)


CT-1680 Site Photos (312)


CT-16B0 Site Photos (283)


CT-1680 Site Photos (288)


CT-1680 Site Photos (293)


CT-1680 Site Photos (298)


CT-1680 Site Photos (303)


CT-1680 Site Photos (308)


CT-1680 Site Photos (313)


CT-1680 Site Photos (284)


CT-1680 Site Photos (289)


CT-1680 Site Photos (294)


CT-1680 Site Photos (299)


CT-1680 Site Photos (304)


CT-1680 Site Photos (309)


CT-1680 Site Photos (314)


CT-1680 Site Photos (285)


CT-1680 Site Photos (290)


CT-1680 Site Photos (295)


CT-1680 Site Photos (300)


CT-1680 Site Photos (305)


CT-1680 Site Photos (310)


CT-1680 Site Photos (315)


CT-1680 Site Photos (316)


CT-1680 Site Photos (321)


CT-1680 Site Photos (326)


CT-1680 Site Photos (331)


CT-1680 Site Photos (336)


CT-1680 Site Photos (341)


CT-1680 Site Photos (346)


CT-1680 Site Photos (317)


CT-1680 Site Photos (322)


CT-1680 Site Photos (327)


CT-1680 Site Photos (332)


CT-1680 Site Photos (337)


CT-1680 Site Photos (342)


CT-1680 Site Photos (347)


CT-1680 Site Photos (318)


CT-1680 Site Photos (323)


CT-1680 Site Photos (328)


CT-1680 Site Photos (333)


CT-1680 Site Photos (338)


CT-1680 Site Photos (343)


CT-1680 Site Photos (348)


CT-1680 Site Photos (319)


CT-1680 Site Photos (324)


CT-1680 Site Photos (329)


CT-1680 Site Photos (334)


CT-1680 Site Photos (339)


CT-1680 Site Photos (344)


CT-1680 Site Photos (349)


CT-1680 Site Photos (320)


CT-1680 Site Photos (325)


CT-1680 Site Photos (330)


CT-1680 Site Photos (335)


CT-1680 Site Photos (340)


CT-1680 Site Photos (345)


CT-1680 Site Photos (350)


CT-1680 Site Photos (351)


CT-1680 Site Photos (356)


CT-1680 Site Photos (361)


CT-1680 Site Photos (366)


CT-1680 Site Photos (371)


CT-1680 Site Photos (376)


CT-1680 Site Photos (381)


CT-1680 Site Photos (352)


CT-1680 Site Photos (357)


CT-1680 Site Photos (362)


CT-1680 Site Photos (367)


CT-1680 Site Photos (372)


CT-1680 Site Photos (377)


CT-1680 Site Photos (382)


CT-1680 Site Photos (353)


CT-1680 Site Photos (358)


CT-1680 Site Photos (363)


CT-1680 Site Photos (368)


CT-1680 Site Photos (373)


CT-1680 Site Photos (378)


CT-1680 Site Photos (383)


CT-1680 Site Photos (354)


CT-1680 Site Photos (359)


CT-1680 Site Photos (364)


CT-1680 Site Photos (369)


CT-1680 Site Photos (374)


CT-1680 Site Photos (379)


CT-1680 Site Photos (384)


CT-1680 Site Photos (355)


CT-1680 Site Photos (360)


CT-1680 Site Photos (365)


CT-1680 Site Photos (370)


CT-1680 Site Photos (375)


CT-1680 Site Photos (380)


CT-1680 Site Photos (385)


CT-1680 Site Photos (386)


CT-1680 Site Photos (391)


CT-1680 Site Photos (396)


CT-1680 Site Photos (401)


CT-1680 Site Photos (406)


CT-1680 Site Photos (411)


CT-1680 Site Photos (387)


CT-1680 Site Photos (392)


CT-1680 Site Photos (397)


CT-1680 Site Photos (402)


CT-1680 Site Photos (407)


CT-1680 Site Photos (412)


CT-1680 Site Photos (388)


CT-1680 Site Photos (393)


CT-1680 Site Photos (398)


CT-1680 Site Photos (403)


CT-1680 Site Photos (408)


CT-1680 Site Photos (413)


CT-1680 Site Photos (389)


CT-1680 Site Photos (394)


CT-1680 Site Photos (399)


CT-1680 Site Photos (404)


CT-1680 Site Photos (409)


CT-1680 Site Photos (414)

CT-1680 Site Photos (419)



CT-1680 Site Photos (390)


CT-1680 Site Photos (395)


CT-1680 Site Photos (400)


CT-1680 Site Photos (405)


CT-1680 Site Photos (410)


CT-1680 Site Photos (415)


CT-1680 Site Photos (416)

CT-1680 Site Photos (417)


CT-1680 Site Photos (418)


CT-1680 Site Photos (420)


CT-1680 Site Photos (421)


CT-1680 Site Photos (426)


CT-1680 Site Photos (431)


CT-1680 Site Photos (436)


CT-1680 Site Photos (441)


CT-1680 Site Photos (446)


CT-1680 Site Photos (451)


CT-1680 Site Photos (422)


CT-1680 Site Photos (427)


CT-1680 Site Photos (432)


CT-1680 Site Photos (437)


CT-1680 Site Photos (442)


CT-1680 Site Photos (447)


CT-1680 Site Photos (452)


CT-1680 Site Photos (423)


CT-1680 Site Photos (428)


CT-1680 Site Photos (433)


CT-1680 Site Photos (438)


CT-1680 Site Photos (443)


CT-1680 Site Photos (448)


CT-1680 Site Photos (453)


CT-1680 Site Photos (424)


CT-1680 Site Photos (429)


CT-1680 Site Photos (434)


CT-1680 Site Photos (439)


CT-1680 Site Photos (444)


CT-1680 Site Photos (449)


CT-1680 Site Photos (455)


CT-1680 Site Photos (456)


CT-1680 Site Photos (457)


CT-1680 Site Photos (458)


CT-1680 Site Photos (461)


CT-1680 Site Photos (466)


CT-1680 Site Photos (471)


CT-1680 Site Photos (476)


CT-1680 Site Photos (481)


CT-1680 Site Photos (486)


CT-1680 Site Photos (462)


CT-1680 Site Photos (467)


CT-1680 Site Photos (472)


CT-1680 Site Photos (477)


CT-1680 Site Photos (482)


CT-1680 Site Photos (487)


CT-1680 Site Photos (463)


CT-1680 Site Photos (468)


CT-1680 Site Photos (473)


CT-1680 Site Photos (478)


CT-1680 Site Photos (483)

CT-1680 Site Photos (488)



CT-1680 Site Photos (459)


CT-1680 Site Photos (460)


CT-1680 Site Photos (464)


CT-1680 Site Photos (469)


CT-1680 Site Photos (474)


CT-1680 Site Photos (479)


CT-1680 Site Photos (484)


CT-1680 Site Photos (489)


CT-1680 Site Photos (465)


CT-1680 Site Photos (470)


CT-1680 Site Photos (475)


CT-1680 Site Photos (480)


CT-1680 Site Photos (485)


CT-1680 Site Photos (490)


CT-1680 Site Photos (491)


CT-1680 Site Photos (496)


CT-1680 Site Photos (501)


CT-1680 Site Photos (506)


CT-1680 Site Photos (511)


CT-1680 Site Photos (516)


CT-1680 Site Photos (521)


CT-1680 Site Photos (492)


CT-1680 Site Photos (497)


CT-1680 Site Photos (502)


CT-1680 Site Photos (507)


CT-1680 Site Photos (512)


CT-1680 Site Photos (517)


CT-1680 Site Photos (522)


CT-1680 Site Photos (493)


CT-1680 Site Photos (498)


CT-1680 Site Photos (503)


CT-1680 Site Photos (508)


CT-1680 Site Photos (513)


CT-1680 Site Photos (518)


CT-1680 Site Photos (523)


CT-1680 Site Photos (494)


CT-1680 Site Photos (499)


CT-1680 Site Photos (504)


CT-1680 Site Photos (509)


CT-1680 Site Photos (514)


CT-1680 Site Photos (519)


CT-1680 Site Photos (525)


CT-1680 Site Photos (526)


CT-1680 Site Photos (527)


CT-1680 Site Photos (531)


CT-1680 Site Photos (532)


CT-1680 Site Photos (528)


CT-1680 Site Photos (529)


CT-1680 Site Photos (530)


CT-1680 Site Photos (535)


CT-1680 Site Photos (536)


1680_Post-con_Site_Photos (


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


CT-1680 Site Photos (537)


CT-1680 Site Photos (533)


CT-1680 Site Photos (534)


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos ::


1680_Post-con_Site_Photos :


1680_Post-con_Site_Photos (:


1680_Post-con_Sile_Photos :


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos :


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos :


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (!


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos ::


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos


1680_Post-can_Site_Photos (:


1680_Post-con_Site_Photos :


1680_Post-con_Site_Photos (:


1680 P


1680_Post-con_Site_Photos :


1680 Post-con Site Photos


1680_Post-con_Site_Photos :


1680_Post-con_Site_Photos :

1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos :


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:


1680 Post-con Site Photos (:


1680_Post-con_Site_Photos (:


1680_Post-con_Site_Photos (:
68


1680_Post-con_Site_Photos (


1680_Post-con_Site_Photos (1
1680_Post-con_Site Photos (I
1680_Post-con_Site_Photos (1


1680_Post-con_Site_Photos (1


1680_Post-con_Site_Photos (1
1680_Post-con_Site_Photos (1


1680_Post-con_Site_Photos (
1680_Post-con_Site_Photos (1


1680_Post-con_Site_Photos 1


1680_Post-con_Site_Photos (1


1680_Post-con_Site_Photos (י


1680_Post-con_Site_Photos (1


1680_Post-con_Site_Photos ( 1


1680_Post-con_Site_Photos (1


1680_Post-con_Site_Photos ('


1680_Post-con_Site_Photos (1


1680_Post-con_Site_Photos ('


1680_Post-con_Site_Photos 1'


1680_Post-con_Site_Photos (I


1680_Post-con_Site_Photos (1


## F. Structural <br> S. Components <br> Bringing if All Together.

|  | 1870 W. 64th Lane, Unit A | Denver, CO 80221 | PH: 720-489-3764 |
| :---: | :---: | :---: | :---: |
| CLIENT: | SRR Towers, Inc | DATE AT SITE: | Monday, September 11, 2023 |
| SITE (ID): | CT-1680 | TOWER TYPE: | SST |
| ADDRESS: | 97 High Street | TOWER HEIGHT: | 90' |
|  | Portland, CT 06480 | WEATHER: | 75F, sunny, N wind $0-5 \mathrm{mph}$ |
| LEAD: | Wilson Wom | SUPPORT: | Ani Doke |

## APPENDIX C

MATERIAL TESTING REPORTS




Page 4 of 3












CW-01133-01


CW-01133-01

$$
\begin{gathered}
50 y \\
c \\
5 \\
5
\end{gathered}
$$


CW-01133-01



Machine Settings

Welder Certificate
Welder and Welding Operator Qualification Test Record

2860 Whte Sulphur Road - Gainesulte, GA 30501 - 770.533 .5220 -ww. southemgeotech.com

| Welder or welding operator's name | Ismael Burciage | Identification No. 079 |
| :---: | :---: | :---: |
| Welding process GMAW Manual | Semiautomatic | Machine |

(Fat horizontal, overneac or vertical - if vertical, state whether upward or downward)
(orecualified)
In accordance with procedure specification number_ E-U2ה-GF (ereoualified)
Material specification_A572 Grade 50
Dianneler and wall thickness ill pipe) -otherwise. joint thickness_1-1-inch
Diameter and thickness range tils qualifes $\quad 1 / 88^{10}$ Untinited
Specilleation No AWS $518 \quad$ FILLER MATERIAL $\quad$ Classification_ERTOS-6__ FNO_F4
Descrnbe filler metal (if not covered by AWS specification!_______
Fiux for submerged arc or gas for gas metal arc or Пux cored arc welding_84\% Argen and $16 \%$ Cartoon Dioxide Appearance_salistaction Undercut nind none




Test Winessed By $\quad$ SGC (Rodney Clark)
Test Conducted By
SGC (Rodney Clark)
We. the undersigned, certity that the statements in this record sre correct and the welds were prepared and lested in
accordance with the requirements of American Welding Society AWS D1.1-2010.

人)


WPS Report
Fabrication Letter


CWI Report

C=NT三K ${ }_{\text {ongineerins }}$

Centered on Solutions ${ }^{\text {s. }}$

## $\frac{\text { Antenna Mount Analysis }}{\text { Report }}$

Site Ref: Portland HS

97 High Street
Portland, CT

$$
\text { Centek Project No. } 22017.06
$$

Qate: May 11, 2023
Rev 1: November 9, 2023

$$
\text { Max Stress Ratio }=44 \%
$$



Prepared for:
Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

CENTEK Engineering, Inc.
Mount Analysis
Verizon Site Ref. ~ Portand HS
Portland, CT
Rev 1 ~ November 9, 2023

## Table of Contents

SECTION 1 - REPORT

- ANTENNA AND APPURTENANCE SUMMARY
- STRUCTURE LOADING
- CONCLUSION

SECTION 2 - CALCULATIONS

- WIND LOAD ON APPURTENANCES
- RISA3D OUTPUT REPORT
- CONNECTION


## SECTION 3 - REFERENCE MATERIALS

- RF DATA SHEET


## C=NTEK ${ }_{\text {engineering }}$

## Centered on Solutions

November 9, 2023
Mr. Phillip Cotto
Structure Consulting Group
49 Brattle Street
Arlington, Ma
Re: Structural Letter ~ Antenna Mount
Verizon - Site Ref: Portland HS
97 High Street
Portland, CT
Centek Project No. 22017.06
Dear Mr. Cotto,
Centek Engineering, Inc. has reviewed the Verizon antenna installation at the above referenced site. The purpose of the review is to determine the structural adequacy of the proposed mount, consisting of three (3) V-frame sector mounts (SitePro P/N: VFA12-HD) to support the proposed equipment configuration. The review considered the effects of wind load, dead load and ice load in accordance with the 2021 International Building Code as modified by the 2022 Connecticut State Building Code (CTBC) including ASCE 7-16 and ANSI/TIA-222-H Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures".

The loads considered in this analysis consist of the following:

- Verizon:

V-Frames: Three (3) Commscope NNH4-65B-R6 panel antennas, three (3) Samsung MT6413-77A panel antennas, three (3) Samsung RT4423 panel antennas, three (3) Samsung RF4439d-25A (B2/B66A) RRHs, three (3) Samsung RF4461d-13A (B5/B13) RRHs, three (3) Samsung RF4423-48B RRHs and one (1) OVP Box mounted on three (3) V-Frames with a RAD center elevation of $90 \mathrm{ft}+/-$ AGL.
The antenna mount was analyzed per the requirements of the 2021 International Building Code as modified by the 2022 Connecticut State Building Code considering a Ultimate design wind speed of 120 mph for Portland as required in Appendix $P$ of the 2022 Connecticut State Building Code.
Based on our review of the installation, it is our opinion that the subject antenna mount has sufficient capacity to support the aforementioned antenna configuration.
If there are any questions regarding this matter, please feel free to call.


CENTEK Engineering, Inc.
Mount Analysis
Verizon Site Ref. ~ Portand HS
Portland, CT
Rev 1 ~ November 9, 2023

Section 2-Calculations

|  | Subject: | TIA-222-H Loads |
| :---: | :---: | :---: |
| Centered on Solutions ${ }^{-}$moxesentekencicen | Location: | Portland, CT |
|  | Rev. 1: 11/9/23 | Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06 |

## Development of Desian Heights, Exposure Coefficients, and Velocity Pressures Per Tla_22+1 <br> Wind Speeds

Basic Wind Speed
Basic Wind Speed with Ice
Basic Wind Speed (Mbunt)

Input
Structure Type $=$
Structure Category $=$
Exposure Category $=$
Stucture Height $=$
Height to Center ofAntennas $=$
Radial ice Thickness $=$
Radial lce Density $=$
Topograpic Factor $=$
Shielding Factor forAppurtenances $=$
Rooftop Wind Speed-up Factor $=$
Ground Elevation Factor $=$
Gust Response Factor $=$

Output
Wind Direction Probabilily Factor $=$

> Importance Factors =

$$
\mathrm{K}_{\mathrm{iz}}:=\left(\frac{z_{\text {ant }}}{33}\right)^{0.1}=1.106
$$

Velocity Pressure CoefficientAntemas=

Velocity Pressure w/o lce Antennas=
Velocity Pressue with Ice Antennas=
Velocily Pressure with Ice Antennas=

| $V:=120$ | mph | (User Input-CSBC 2022 AppendixP) |
| :--- | :--- | :--- |
| $V_{i}:=50$ | mph | (User Input-TA-222-H AnnexB) |
| $V_{m}:=30$ | mph | (User Input-TIA-222-H Section 16.3) |


| Structure_Type := Flexible |  | (User Input) |
| :---: | :---: | :---: |
| SC := III |  | (User Input) |
| Exp := C |  | (User Input) |
| $\mathrm{h}:=90$ | ft | (User Input) |
| $z_{\text {ant }}:=90$ | ft | (User Input) |
| $t_{i}:=1.0$ | in | (User Input per Annex B ofTIA-222-H) |
| \|d $:=56.00$ | pcf | (User Input) |
| $\mathrm{K}_{\mathrm{zt}}:=1$ |  | (User Input) |
| $K_{a}:=1.0$ |  | (User Input) |
| $\mathrm{K}_{\mathrm{s}}:=1.0$ |  | (User Input) |
| $\mathrm{K}_{\mathrm{e}}=0.996$ |  | (User Input) |
| $\mathrm{G}_{\mathrm{H}}=1.35$ |  | (User Input) |

$\mathrm{K}_{\mathrm{d}}:=0.95 \quad$ (Per Table 2-2 of T(A-222-H)
I ice: $=\left\lvert\, \begin{array}{ll}0 \text { if } \mathrm{SC}=1 \\ 1.00 \text { if } \mathrm{SC}=2 & =1.15 \\ 1.15 \text { if } \mathrm{SC}=3 \\ 1.25 \text { if } \mathrm{SC}=4 & \text { (Per Table 2-3 of } \\ \text { TIA-222-H) }\end{array}\right.$

$t_{i z}:=t_{i \cdot} l_{i c e} \cdot K_{i z} \cdot K_{z t}^{0.35}=1.271$
$K z_{\text {ant }}:=2.01\left(\left(\frac{z_{\text {ant }}}{z g}\right)\right)^{\frac{2}{\alpha}}=1.238$
$q z_{a n t}:=0.00256 \cdot K_{z t} \cdot K_{s} \cdot K_{e} \cdot K_{d} \cdot K z_{a n t} \cdot V^{2}=43.16$
qzice.ant $:=0.00256 \cdot K_{z t} \cdot K_{s} \cdot K_{e} \cdot K_{d} \cdot K z_{a n t} \cdot V_{i}^{2}=7.493$
$q z_{m}:=0.00256 \cdot K_{z t} \cdot K_{s} \cdot K_{e} \cdot K_{d} \cdot K z_{a n t} V_{m}{ }^{2}=2.697$

| 二NT二K engineering | Subject: | TIA-222-H Loads |
| :---: | :---: | :---: |
|  | Location: | Portland, CT |
|  | Rev. 1: 11/9/23 | Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06 |

## Develcopment of Wind \& lce Load on Appurtenances

## Appurtenance Data:

Appurtenance Model $=$
Appurtenance Shape $=$
Appurtenance Height=
Appurtenance W idth $=$
Appurtenance Thickness $=$
Appurtenance Weight $=$
Number of Appurenances=

AppurtenanceAspect Ratio $=$

Appurtenance Force Coefficient =

## Wind Load (without ice)

SurfaceArea for One Appurlenance (Front) $=$
Total Appurterance Wind Force $=$

SurfaceArea for One Appurtenance (Side) $=$
Total Appurterance Wind Force $=$

## Wind Load (with ice)

SurfaceArea for One Appurtenance w/ lce (Front)=
Total Appurteranoe Wind Force w/ $\mathrm{ce}=$

SurfaceArem for One Appurtenance w/lce (Side) =
TotalAppurtenance Wind Force w/ $\mathrm{we}=$

## Wind Lcad (Mount)

SurfaceArea for One Appurtenance (Front) $=$
Total Appurtenanœ Wind Force $=$

SurfaceArea for One Appurtenance (Side) $=$
Total Appurterance Wind Force $=$

Gravity Loads (ice only)
Volume of Each Appurtenance $=$
Volume of $1 œ$ on EachAppurlenance $=$

Weight of lce on Each Appurtenance $=$
Weight of lce onAll Appurterances =

Commscope NNH4-65B-R6
Fla

| $\mathrm{L}_{\text {app }}:=71.969$ | in | (User Input) |
| :---: | :---: | :---: |
| $W_{\text {app }}:=19.606$ | in | (User Input) |
| $\mathrm{T}_{\text {app }}:=7.756$ | in | (User Input) |
| $W T_{\text {app }}:=90$ | lbs | (User Input) |
| $\mathrm{Napp}:=1$ |  | (User Input) |
| $\mathrm{Ar}_{\mathrm{app}}:=\frac{\mathrm{L}_{\mathrm{app}}}{\mathrm{~W}_{\mathrm{app}}}$ |  |  |
| $\mathrm{Ca}_{\text {app }}=1.25$ |  |  |

$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot W_{\text {app }}}{144}=9.8$
$\mathrm{F}_{\text {app }}:=q Z_{\text {ant }} \cdot \mathbf{G}_{\mathbf{H}} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{\mathrm{a}} \cdot \mathbf{S A} \mathrm{appF} \cdot \mathrm{N}_{\text {app }}=\mathbf{7 1 5} \quad \mathrm{lbs}$
$\mathrm{SA}_{\mathrm{appS}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}}{144}=3.9$
$F_{\text {app }}:=q z_{a n t} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p S}=283$
lbs
$\mathrm{SA}_{\text {ICEappF }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=11.5$
$\mathrm{Fi}_{\text {app }}:=\mathrm{qZ}_{\text {ice.ant }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {app }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEappF }} \cdot \mathrm{N}_{\text {app }}=145 \quad \mathrm{lbs}$
SA ${ }_{\text {ICEappS }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=5.3$
$\mathrm{Fi}_{\text {app }}:=\mathrm{qZ}_{\text {ice.ant }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {app }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEappS }}=67$ lbs
$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\text {app }} \cdot W_{\text {app }}}{144}=9.8$
sf
$\mathrm{F}_{\mathrm{app}}:=\mathrm{G} Z_{\mathrm{m}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{appF}} \cdot \mathrm{N}_{\mathrm{app}}=45$ lbs
$\mathrm{SA}_{\mathrm{appS}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\text {app }}}{144}=3.9$
sf
$\mathrm{F}_{\mathrm{app}}:=\mathrm{q} \mathrm{z}_{\mathrm{m}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA} \mathrm{appS}=18$
$V_{\text {app }}:=\mathrm{L}_{\mathrm{app}} \cdot W_{\mathrm{app}} \cdot T_{\mathrm{app}}=1 \times 10^{4} \quad$ cuin
$V_{\text {ice }}:=\left(L_{a p p}+2 \cdot t_{i z}\right)\left(W_{\text {app }}+2 \cdot t_{i z}\right) \cdot\left(T_{\text {app }}+2 \cdot t_{i z}\right)-V_{\text {app }}=6053 \quad$ cuin
$W_{\text {ICEapp }}: \left.=\frac{V_{\text {ice }}}{1728} \cdot \right\rvert\, d=196$
lbs
$W_{\text {ICEapp }} \cdot \mathrm{N}_{\text {app }}=196$ lbs

| gineering | Subject: | TIA-222-H Loads |
| :---: | :---: | :---: |
| Cenllered on Solutions" maxconternacem | Location: | Portland, CT |
| Elarifond, CT O6405 F: 2033$)^{488-8587}$ | Rev. 1: 11/9/23 | Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06 |

## Development of Wind \& ice Load on Appurtenances

## Appurtenance Data:

Appurtenance Model $=$
Appurtenance Shape $=$
Appurtenance Height=
Appurtenance Width $=$ Appurtenance Thickness=

Appurtenance Weight $=$
Number of Appurenances=

AppurtenanceAspectRatio $=$

AppurtenanceForce Coefficient $=$

## Wind Load (without ica)

SurfaceArea for One Appurtenance (Front) $=$
Total Appurterance Wird Force $=$

SurfaceArea for One Appurtenance (Side) $=$
Total Appurtenance Wind Force $=$

## Wind Load (with ice)

SurfaceArem for One Appurtenance w/ lce (Front)=
TotalAppurterance Wind Force w/ $\mathrm{Le}=$

SurfaceArea for One Appurtenance w/ lce (Side) =
TotalAppurtenance Wind Force w/ ce=

## Wind Load (Mount)

SurfaceArea for One Appurtenance (Front) $=$
Total Appurterance Wind Force $=$

Surface Areafor One Appurtenance (Side) $=$
Total A ppurterance Wind Force $=$

Gravity Loads (ice only)
Volume of Each Appurtenance $=$
Volume of 100 on EachAppurtenance $=$

Weight of lce on EachAppurtenance $=$
Weight of lce onAll Appurterances $=$

| Samsung MT6413-77A |  |
| :--- | :--- | :--- |
| Flat |  |
| $\mathrm{L}_{\text {app }}:=28.9 \quad$ in | (User Input) |
| $\mathrm{W}_{\text {app }}:=15.75 \quad$ in | (User Input) |
| $\mathrm{T}_{\text {app }}:=5.51 \quad$ in | (User Input) |
| $\mathrm{WT}_{\text {app }}:=60 \quad$ lbs | (User Input) |
| $\mathrm{N}_{\text {app }}:=1$ |  |
| $\mathrm{Ar}_{\text {app }}:=\frac{\mathrm{L}_{\text {app }}}{\mathrm{W}_{\text {app }}}=1.8$ |  |
| $\mathrm{Ca}_{\text {app }}=1.2$ |  |

$\mathrm{SA}_{\mathrm{appF}}:=\frac{\text { Lapp } \cdot \mathrm{W}_{\text {app }}}{144}=3.2 \quad$ sf
$F_{\text {app }}:=q Z_{a n t} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S_{a p p F}=221 \quad$ lbs
$\mathrm{SA}_{\mathrm{apps}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\text {app }}}{144}=1.1 \quad$ sf
$F_{a p p}:=q Z_{a n t} \cdot G_{H} \cdot C_{a p p} \cdot K_{a} \cdot S A_{a p p S}=77 \quad$ lbs

SA $_{\text {ICEappF }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=4 \quad$ sf

SA ICEappS $:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(T_{\text {app }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.8 \quad$ sf


SA appF $:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{W}_{\text {app }}}{144}=3.2$
sf
$F_{a p p}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{a p p} \cdot K_{a} \cdot S A_{a p p F}=14 \quad$ lbs
SA apps $:=\frac{\mathrm{L}_{\text {app }} \cdot T_{\text {Tapp }}}{144}=1.1$
sf
$F_{\text {app }}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{a p p} \cdot K_{a} \cdot S A_{a p p S}=5 \quad$ lbs
$\mathrm{V}_{\text {app }}:=L_{\mathrm{app}} \cdot \mathrm{W}_{\mathrm{app}} \cdot T_{\mathrm{app}}=2508$
cu in
$V_{\text {ice }}:=\left(L_{a p p}+2 \cdot t_{i z}\right)\left(W_{\text {app }}+2 \cdot t_{i z}\right) \cdot\left(T_{a p p}+2 \cdot t_{i z}\right)-V_{a p p}=2124 \quad$ cu in
$W_{\text {ICEapp }}: \left.=\frac{V_{\text {ice }}}{1728} \cdot \right\rvert\, d=69$
lbs
$\mathrm{W}_{\text {lCEapp }} \cdot \mathrm{N}_{\text {app }}=69$
lbs

Page 3

C三NT三K engineering
Centered on Solutions ${ }^{-}$momysentererigesm 63-2 Morth Branford Road P: (203) HEs-0500 Beanford, CTOS405

## Subject:

Location:

Rev. 1: 11/9/23

TIA-222-H Loads

Portland, CT
Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06

## Development of Wind \& Ice Load on Appurtenances

Appurtenance Data:

Appurtenance Model $=$
Appurtenance Shape $=$
Appurtenance Height=
Appurtenance Width $=$
Appurtenance Thickness $=$
Appurtenance Weight $=$
Number of Appurenances $=$
AppurtenanceAspect Ratio $=$

Appurtenance Force Coefficient $=$

## Wind Load (without ice)

Surface Area for One Appurlenance (Front) $=$
Total Appurterance Wind Force $=$

Surface Area for One Appurtenance (Side) $=$
Total Afpurterance Wind Force $=$

Wind Load (with ice)
SurfaceArea for One Appurtenance w/ Ice (Front)=
TotalAppurtenance Wind Force w/ ce=

SurfaceAremfor One Appurtenance w/ lce (Side)=
TotalAppurlerance Wind Force w/lce=

## Wind Load (Mount)

Surface Area for One Appurtenance (Front) =
Total Appurterance Wind Force $=$

SurfaceArea for One Appurtenance (Side) $=$
Total Appurtenance Wind Force $=$

Gravity Loads (ice only)
Volume of Each Appurlenance $=$
Volume of l © on EachAppurtenance $=$

Weight of Ice on Each Appurtenance $=$
Weight of lce onAll Appurterances =

Samsung RT4423
Flat
(User Input)

| $L_{\text {app }}:=12.3$ | in | (User Input) |
| :--- | :--- | :--- |
| $W_{\text {app }}:=8.7$ | in | (User Input) |
| $\mathrm{T}_{\text {app }}:=1.4$ | in | (User Input) |
| $W T_{\text {app }}:=3$ | lbs | (User Input) |
| $\mathrm{N}_{\text {app }}:=1$ |  | (User Input) |

$\mathrm{Ca}_{\text {app }}=1.2$
$\mathrm{SA}_{\mathrm{appF}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot W_{\text {app }}}{144}=0.7$
$F_{\mathrm{app}}:=q z_{a n t} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p F} \cdot N_{a p p}=52$
$\mathrm{SA}_{\text {appS }}:=\frac{\mathrm{L}_{\text {app }} \cdot \mathrm{T}_{\text {app }}}{144}=0.1$
lbs
$F_{\text {app }}:=q Z_{a n t} \cdot G_{H} \cdot C_{a p p} \cdot K_{a} \cdot S_{a p p S}=8 \quad$ lbs

SA $_{\text {ICEappF }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot t_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.2 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {app }}:=$ qZ $_{\text {ice.ant }} \cdot \mathbf{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{a} \cdot \mathrm{SA}_{\text {ICEappF }} \cdot \mathrm{N}_{\text {app }}=14 \quad \mathrm{lbs}$
$S_{\text {ICEapps }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.4 \quad$ sf
$\mathrm{Fi}_{\mathrm{app}}:=\mathrm{qz}$ ice.ant $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mid C E a p p S}=5 \quad$ lbs
$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\text {app }} \cdot W_{\text {app }}}{144}=0.7$
sf
$F_{\text {app }}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{\text {appF }} \cdot N_{\text {app }}=3 \quad$ lbs
$\mathrm{SA}_{\text {apps }}:=\frac{\mathrm{L}_{\text {app }} \cdot \mathrm{T}_{\text {app }}}{144}=0.1$
$F_{\text {app }}:=q Z_{n} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p S}=1 \quad$ lbs
$\mathrm{V}_{\text {app }}:=\mathrm{L}_{\text {app }} \cdot \mathrm{W}_{\text {app }} \cdot T_{\text {app }}=150 \quad$ cuin
$V_{\text {ice }}:=\left(L_{\text {app }}+2 \cdot t_{i z}\right)\left(W_{\text {app }}+2 \cdot t_{i z}\right) \cdot\left(T_{\text {app }}+2 \cdot t_{i z}\right)-V_{\text {app }}=508$ cu in
$W_{\text {ICEapp }}: \left.=\frac{V_{\text {ice }}}{1728} \cdot \right\rvert\, d=16$
lbs
$W_{\text {ICEapp }} \cdot N_{\text {app }}=16$
lbs

|  | Subject: | TIA-222-H Loads |
| :---: | :---: | :---: |
|  | Location: | Portland, CT |
|  |  |  |
|  |  | Prepared by: T.J.L. Checked by: C.F.C. |
|  | Rev. 1: 11/9/23 | Job No. 22017.06 |

## Development of Wind \& lce Load on Appurtenances

Appurtenance Data:

Appurtenance Model $=$

Appurtenance Shape $=$
Appurtenance H aigh $\mathrm{t}=$
Appurtenance Width $=$
Appurtenance Thickness=
Appurtenance Weight $=$
Number of Appurenances=

AppurtenanceAspectRatio $=$

Appurtenance Force Coefficient =
Wind Lcad (without ice)
Surface Area for One Appurtenance (Front) =
Total Appurterance Wind Force $=$

SurfaceArea for One Appurtenance (Side) $=$
Total Appurterance Wind Force =

## Wind Load (with ice)

SurfaceArea for One Appurtenance w/ Ice (Front)=
TotalAppurterance Wind Force w/ $\mathrm{ce}=$

SurfaceArm for One Appurtenancew/lce (Side) =
Total Appurienance Wind Force w/ $\mathrm{we}=$

Wind Lcad (Mount)

SurfaceArea for One Appurtenance $($ Front $)=$
TotalAppurterance Wind Force =

SurfaceAreafor One Appurtenance (Side) =
Total Appurterance Wind Force $=$

## Gravity Loads (ice only)

Volume of Each Appurtenance $=$
Volume of $1 \propto$ on EachAppurtenance $=$

Weight of lce on EachAppurtenance $=$
Weight of lce onAll Appurterances =

Samsung RF4439-25A(B2B6AA)RRH

| Flat | (User Input) |  |
| :--- | :--- | :--- |
| $\mathrm{L}_{\text {app }}:=15$ | in | (User Input) |
| $W_{\text {app }}:=15$ | in | (User Input) |
| $\mathrm{T}_{\text {app }}:=10$ | in | (User Input) |
| $W T_{\text {app }}:=75$ | ibs | (User Input) |
| $\mathrm{N}_{\text {app }}:=1$ |  |  |
| $\mathrm{Ar}_{\text {app }}:=\frac{\mathrm{L}_{\text {app }}}{\mathrm{W}_{\text {app }}}=1.0$ |  |  |
| $\mathrm{Ca}_{\text {app }}=1.2$ |  |  |



SA $_{\text {ICEappF }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=2.1 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {app }}:=\mathrm{qz}_{\text {ice.ant }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot$ SA $_{\text {ICEappF }}=\mathbf{2 6} \quad$ lbs
SA $_{\text {ICEappS }}:=\frac{\left(\mathrm{L}_{\text {app }}+2 \cdot t_{\text {iz }}\right) \cdot\left(T_{\text {app }}+2 \cdot t_{\text {iz }}\right)}{144}=1.5 \quad \mathrm{sf}$
$\mathrm{Fi}_{\mathrm{app}}:=\mathrm{qZ}_{\text {ice.ant }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {ICEappS }}=19$ lbs
$S A_{\mathrm{appF}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot W_{\mathrm{app}}}{144}=1.6 \quad$ sf
$F_{\text {app }}:=q Z_{T} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{\text {appF }}=7 \quad$ lbs
$\mathrm{SA}_{\text {apps }}:=\frac{L_{\text {app }} \cdot T_{\text {app }}}{144}=1$
sf
$F_{\text {app }}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{a p p} \cdot K_{a} \cdot S A_{a p p S}=5$ lbs
$\mathrm{V}_{\text {app }}:=\mathrm{L}_{\text {app }} \cdot \mathrm{W}_{\text {app }} \cdot \mathrm{T}_{\text {app }}=2250 \quad$ cuin
$V_{\text {ice }}:=\left(L_{a p p}+2 \cdot t_{i z}\right)\left(W_{a p p}+2 \cdot t_{i z}\right) \cdot\left(T_{a p p}+2 \cdot t_{i z}\right)-V_{a p p}=1610 \quad c u$ in
$W_{\text {lCEapp }}:=\frac{V_{\text {ice }}}{1728} \cdot 1 d=52$
$\mathbf{W}_{\text {ICEapp }} \cdot \mathbf{N}_{\text {app }}=52$
lbs
lbs

C三NT三K engineering
Centered on Solutions ${ }^{-}$mowrentering.cem 63-2 Marth Branfond Rousd P: (703) 4EA-0580 Braniond, CTOC405

## Subject:

Location:

Rev. 1: 11/9/23

TIA-222-H Loads

Portland, CT
Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06

## Development of Wind \& lce Load on Appurtenances

Appurtenance Data:

Appurtenance Model $=$
Appurtenance Shape $=$
Appurtenance Height=
Appurtenance Width $=$
Appurtenance Thickness =
Appurtenance Weight $=$
Number of Appurenances=

AppurlenanceAspect Ratio $=$

Appurtenance Force Coefficient $=$

## Wind Lcad (without ice)

SurfaceArea for One Appurtenance (Front)=
Total Appurterence Wind Force $=$

SurfaceArea for One Appurtenance (Side) $=$
Total Appurleranœ Wind Force $=$

## Wind Load (with ice)

SurfaceArem for One Appurtenance w/ Ice (Front)=
TotalApountenance Wind Force w/lce=

SurfaceArఱ for One Appurtenance w/lce (Side) =
TotalAppurterance WindForce w/ ce=

## Wind Load (Mount)

Surface Area for One Appurtenance $($ Front $)=$
Total A ppurle rance Wind Force $=$

SurfaceArea for One Appurtenance (Side) $=$
Total Appurterance Wind Force $=$

Gravity Loads (ice only)
Volurne of Each Appurtenance $=$
Volume of lœ on EachAppurtenance $=$

Weight oflce on EachAppurtenance $=$
Weight of lce onAll Appurterances =

Samsung RF4461d-13A(B5B13) RRH
Flat (User Input)
$L_{\text {app }}:=14.96$ in (User Inpult)
$W_{\text {app }}:=14.96$ in (User Input)
$\mathrm{T}_{\mathrm{app}}:=10.23$ in (User Input)
$W T_{\text {app }}:=80$ lbs (User Input)
$\mathrm{N}_{\mathrm{app}}:=1 \quad$ (User Input)
$\mathrm{Ar}_{\mathrm{app}}:=\frac{\mathrm{L}_{\mathrm{app}}}{\mathrm{W}_{\mathrm{app}}}=1.0$
$\mathrm{Ca}_{\mathrm{app}}=1.2$
$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\text {app }} \cdot \mathrm{W}_{\text {app }}}{144}=1.6$
$F_{\text {app }}:=q z_{a n t} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p F}=109 \quad$ lbs
$\mathrm{SA}_{\text {appS }}:=\frac{\text { Lapp } \cdot \text { T }_{\text {app }}}{144}=1.1$
$\mathrm{F}_{\mathrm{app}}:=\mathrm{qZ} \mathrm{ani} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{appS}}=74 \quad \mathrm{lbs}$
$\mathrm{SA}_{\text {ICEapp }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=2.1 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {app }}:=$ qice.ant $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {app }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{I \mathrm{CE} \text { appF }}=26 \quad \mathrm{lbs}$
SA $_{\text {ICEapps }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \cdot_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.6$
$\mathrm{Fi}_{\text {app }}:=\mathrm{Zz}_{\mathrm{ice} . a n t} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{I C E a p p S}=19 \quad \mathrm{lbs}$
$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\text {app }} \cdot W_{\text {app }}}{144}=1.6 \quad$ sf
$F_{\text {app }}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{\text {appF }}=7$ lbs
$\mathrm{SA}_{\mathrm{appS}}:=\frac{\text { Lapp }^{\text {ap }} \mathrm{T}_{\text {app }}}{144}=1.1$
sf
$F_{\text {app }}:=q Z_{m} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p S}=5 \quad$ lbs
$\mathrm{V}_{\text {app }}:=\mathrm{L}_{\text {app }} \cdot \mathrm{W}_{\text {app }} \cdot \mathrm{T}_{\text {app }}=2289 \quad$ cu in
$V_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\mathrm{app}}=1623 \quad \mathrm{cu}$ in
$W_{\text {ICEapp }}:=\frac{V_{\text {ice }}}{1728} \cdot$ ld $=53$
lbs
$W_{\text {lCEapp }} \cdot N_{\text {app }}=53$
lbs

| 二 | Subject： | TIA－222－H Loads |
| :---: | :---: | :---: |
|  | Location： | Portland，CT |
|  | Rev．1：11／9／23 | Prepared by：T．J．L．Checked by：C．F．C． Job No． 22017.06 |

## Development of Wind \＆lce Load on Apputtenances

## Appurtenance Data：

Appurtenance Model＝
Appurtenance Shape $=$
Appurtenance Height＝
Appurtenance Width $=$
Appurtenance Thickness $=$
Appurtenance Weight $=$
Number of Appurenances＝
AppurtenanceAspectRatio $=$

Appurtenance Force Coefficient $=$
Wind Load（without ice）
SurfaceArea for One Appurtenance（Front）$=$
TotalAppurterance Wird Force $=$

Surface Area for One Appurtenance（Side）$=$
Total Appurtenance Wind Force $=$

## Wind Load（with ice）

SurfaceAre⿴囗十介 One Appurtenance w／lce（Front）＝
TotalAppurtenance Wind Force w／Le＝

SurfaceArө⿴囗十 for One Appurtenance w／Ice（Side）＝
Total Appurtenance Wind Force w／tce＝

## Wind Load（Mount）

SurfaceArea for One Appurtenance（Front）＝
TotalAppurterance Wind Force $=$

SurfaceArea for One Appurtenance（Side）＝
TotalA Purterance Wind Force $=$

Gravity Loads（ice only）
Volume of Each Appurfenance $=$
Volume of lœe on EachAppurtenance $=$

Weight of lce on Each Appurtenance $=$
Weight of ice onAll Appurterences $=$

Samsung RF4423－48B RRH
Fla

| $\mathrm{L}_{\text {app }}:=11.8$ | in | （User Input） |
| :--- | :--- | :--- |
| $\mathrm{W}_{\text {app }}:=8.7$ | in | （User Input） |
| $\mathrm{T}_{\text {app }}:=3.6$ | in | （User Input） |
| $\mathrm{WT}_{\text {app }}:=16$ | lbs | （User Input） |
| $\mathrm{N}_{\text {app }}:=1$ |  | （User Input） |
| $\mathrm{Ar}_{\text {app }}:=\frac{\mathrm{L}_{\text {app }}}{\mathrm{W}_{\text {app }}}=1.4$ |  |  |
| $\mathrm{Ca}_{\text {app }}=1.2$ |  |  |

$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\text {app }} \cdot W_{\text {app }}}{144}=0.7$ $\square$
$F_{\text {app }}:=q z_{a n t} G_{H} \cdot C_{a p p} \cdot K_{a} \cdot S A_{a p p F}=50 \quad \mathrm{lbs}$
$\mathrm{SA}_{\text {apps }}:=\frac{\mathrm{L}_{\text {app }} \cdot \mathrm{T}_{\text {app }}}{144}=0.3$
sf
$F_{\text {app }}:=q Z_{a n t} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S_{a p p S}=21$ lbs
$S A_{I C E a p p F}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \cdot_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\text {app }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=1.1$
sf
$\mathrm{Fi}_{\mathrm{app}}:=q z_{\text {ice．ant }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{I \mathrm{CE}} \mathrm{EappF}=14 \quad$ lbs
SA $_{\text {ICEappS }}:=\frac{\left(\mathrm{L}_{\text {app }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\text {app }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=0.6$
sf
$\mathrm{Fi}_{\mathrm{app}}:=$ qzice．ant $\cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{a p p} \cdot \mathrm{~K}_{\mathrm{a}} \cdot \mathrm{SA}_{I C E}$ appS $=7$
lbs

$$
\begin{array}{ll}
\mathrm{SA}_{\mathrm{appF}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{~W}_{\mathrm{app}}}{144}=0.7 & \text { sf } \\
\mathrm{F}_{\mathrm{app}}:=q Z_{\mathrm{m}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{~K}_{\mathrm{a}} \cdot S A_{\mathrm{appF}}=3 & \text { lbs } \\
\mathrm{SA}_{\mathrm{appS}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot T_{\mathrm{app}}}{144}=0.3 & \text { sf } \\
\mathrm{F}_{\mathrm{app}}:=9 Z_{\mathrm{m}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{~K}_{\mathrm{a}} \cdot S A_{\mathrm{appS}}=1 & \text { lbs }
\end{array}
$$

$$
\mathrm{V}_{\mathrm{app}}:=\mathrm{L}_{\mathrm{app}} \cdot W_{\mathrm{app}} \cdot \mathrm{~T}_{\mathrm{app}}=370 \quad \text { cuin }
$$

$V_{\text {ice }}:=\left(L_{a p p}+2 \cdot t_{i z}\right)\left(W_{\text {app }}+2 \cdot t_{i z}\right) \cdot\left(T_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\mathrm{app}}=621$
$W_{\text {ICEApp }}:=\frac{V_{\text {ice }}}{1728} \cdot I d=20$
lbs
$W_{\text {lCEapp }} \cdot N_{\text {app }}=20$

C三NT三K engineering
Centered on Solutions ${ }^{*}$ momesenterng.com 63.2 Morth Banfond Roasd P: (205) 489-0510 Branford, CT OO405

Subject:

Location:

Rev. 1: 11/9/23

TIA-222-H Loads

Portland, CT
Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06

## Develooment of Wind \& lce Load on Appurtenances

Appurtenance Data:

Appurtenance Model $=$
Appurtenance Shape $=$
Appurtenance Height=
Appurtenance Width $=$
Appurtenance Thickness=
Appurtenance Weight $=$
Number of Appurenances=

AppurtenanceAspectRatio $=$

Appurtenance Force Coefficient =

## Wind Lcad (without ice)

Surface Area for One Appurtenance (Front) $=$
Total Appurlerance Wind Force $=$

SurfaceAreafor One Appurtenance (Side) $=$
Total Appurterance Wind Force =

## Wind Load (with ice)

SurfaceArea for One Appurtenance w/ Ice (Fronl)=
TotalAppurtenance Wind Force w/ $\mathrm{ce}=$

SurfaceArmfor One Appurtenance w/lce (Side) =
TotalAppurenance Wind Force w/ Le=

Wind Lcad (Mount)

## SurfaceArea for One Appurtenance (Front)=

Total Appurterence Wind Force $=$

SurfaceArea for One Appurtenance (Side) $=$
Total Afpurterance Wind Force =

Gravity Loads (ice only)
Volume of Each Appurtenance=
Volume of $/ \propto$ on EachAppurtenance $=$

Weight of lce on Each Appurtenance $=$
Weight of lce onAll Appurteranœes =

OVP Box
Flat

| $\mathrm{L}_{\text {app }}:=29.5$ | in | (User Input) |
| :--- | :--- | :--- |
| $\mathrm{W}_{\text {app }}:=16.5$ | in | (User Input) |
| $\mathrm{T}_{\text {app }}:=12.6$ | in | (User Input) |
| $W_{\text {app }}:=32$ | lbs | (User Input) |
| $\mathrm{N}_{\text {app }}:=1$ |  | (User Input) |

$A r_{\text {app }}:=\frac{\mathrm{L}_{\text {app }}}{W_{\text {app }}}=1.8$
$\mathrm{Ca}_{\mathrm{app}}=1.2$

SA ${ }_{\text {appF }}:=\frac{L_{\text {app }} \cdot W_{\text {app }}}{144}=3.4$
$F_{\text {app }}:=q z_{\text {ant }} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{\text {appF }}=236$
lbs
$\mathrm{SA}_{\mathrm{appS}}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}}{144}=2.6$
sf
$\mathrm{F}_{\mathrm{app}}:=\mathrm{q} \mathrm{zant} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\text {appS }}=180$ lbs

SA ICEappF $:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{W}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=4.2 \quad \mathrm{sf}$
$\mathrm{Fi}_{\text {app }}:=\mathrm{qz}_{\text {ice.ant }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{a p p} \cdot \mathrm{~K}_{\mathrm{a}} \cdot \mathrm{SA}_{I C E a p p F}=51 \quad \mathrm{lbs}$
$\mathrm{SA}_{\text {ICEappS }}:=\frac{\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)}{144}=3.4$
$\mathrm{Fi}_{\text {app }}:=\mathrm{qZ}_{\text {ice.ant }} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\text {app }} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mid C E a p p S}=41 \quad$ lbs
$\mathrm{SA}_{\text {appF }}:=\frac{\mathrm{L}_{\text {app }} \cdot W_{\text {app }}}{144}=3.4$
sf
$F_{\text {app }}:=q Z_{T m} \cdot G_{H} \cdot \mathrm{Ca}_{\text {app }} \cdot K_{a} \cdot S A_{a p p F}=15 \quad$ lbs
$\mathrm{SA}_{\text {apps }}:=\frac{\mathrm{L}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}}{144}=2.6$
$\mathrm{F}_{\mathrm{app}}:=\mathrm{q} Z_{\mathrm{m}} \cdot \mathrm{G}_{\mathrm{H}} \cdot \mathrm{Ca}_{\mathrm{app}} \cdot \mathrm{K}_{\mathrm{a}} \cdot \mathrm{SA}_{\mathrm{appS}}=11$
lbs
$\mathrm{V}_{\mathrm{app}}:=\mathrm{L}_{\mathrm{app}} \cdot \mathrm{W}_{\mathrm{app}} \cdot \mathrm{T}_{\mathrm{app}}=6133 \quad$ cuin
$V_{\text {ice }}:=\left(\mathrm{L}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)\left(\mathrm{W}_{\text {app }}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right) \cdot\left(\mathrm{T}_{\mathrm{app}}+2 \cdot \mathrm{t}_{\mathrm{iz}}\right)-\mathrm{V}_{\mathrm{app}}=3107 \quad \mathrm{cuin}$
$W_{\text {ICEapp }}:=\frac{V_{\text {ice }}}{1728} \cdot$ Id $=101$
lbs
$\mathrm{W}_{\text {ICEapp }} \cdot \mathrm{N}_{\text {app }}=101$ lbs



## (Global) Model Settings

| Display Sections for Member Calcs | 5 |
| :---: | :---: |
| Max Internal Sections for Member Calcs | 97 |
| Include Shear Deformation? | Yes |
| Increase Nailing Capacity for Wind? | Yes |
| Include Warping? | Yes |
| Trans Load Btwn Intersecting Wood Wall? | Yes |
| Area Load Mesh (in^2) | 144 |
| Merge Tolerance (in) | 12 |
| P-Delta Analysis Tolerance | 0.50\% |
| Include P-Delta for Walls? | Yes |
| Automatically Iterate Stiffness for Walls? | Yes |
| Max Iterations for Wall Stiffness | 3 |
| Gravity Acceleration (ft/sec^2) | 32.2 |
| Wall Mesh Size (in) | 12 |
| Eigensolution Convergence Tol. (1.E-) | 4 |
| Vertical Axis | Y |
| Global Member Orientation Plane | XZ |
| Static Solver | Sparse Accelerated |
| Dynamic Solver | Accelerated Solver |
| Hot Rolled Steel Code | AISC 15th(360-16): LRFD |
| Adjust Stiffness? | Yes(Iterative) |
| RISAConnection Code | AISC 15th(360-16): LRFD |
| Cold Formed Steel Code | AISI S100-10: ASD |
| Wood Code | AWC NDS-12: ASD |
| Wood Temperature | < 100F |
| Concrete Code | ACI 318-11 |
| Masonry Code | ACl 530-11: ASD |
| Aluminum Code | AA ADM 1-10: ASD - Building |
| Stainless Steel Code | AISC 14th(360-10): ASD |
| Adjust Stiffness? | Yes(Iterative) |
| Number of Shear Regions | 4 |
| Region Spacing Increment (in) | 4 |
| Biaxial Column Method | Exact Integration |
| Parme Beta Factor (PCA) | . 65 |
| Concrete Stress Block | Rectangular |
| Use Cracked Sections? | Yes |
| Use Cracked Sections Slab? | No |
| Bad Framing Warnings? | No |
| Unused Force Warnings? | Yes |
| Min 1 Bar Diam. Spacing? | No |
| Concrete Rebar Set | REBAR SET_ASTMA615 |
| Min \% Steel for Column | 1 |
| Max \% Steel for Column | 8 |

$\qquad$
(Global) Model Settings, Continued

| Seismic Code | ASCE 7-10 |
| :--- | :--- |
| Seismic Base Elevation (ft) | Not Entered |
| Add Base Weight? | Yes |
| Ct X | .02 |
| Ct Z | .02 |
| T X (sec) | Not Entered |
| T Z (sec) | Not Entered |
| R X | 3 |
| R Z | 3 |
| Ct Exp. X | .75 |
| Ct Exp. Z | .75 |
| SD1 | 1 |
| SDS | 1 |
| S1 | 1 |
| TL (sec) | 5 |
| Risk Cat | 1 or II |
| Drift Cat | Other |
| Om Z | 1 |
| Om X | 1 |
| Cd Z | 1 |
| Cd X | 1 |
| Rho Z | 1 |
| Rho X | 1 |
|  |  |
| Footing Overturning Safety Factor | 1 |
| Optimize for OTM/Sliding | No |
| Check Concrete Bearing | No |
| Footing Concrete Weight (k/ft 3 3) | 150.001 |
| Footing Concrete f'c (ksi) | 4 |
| Footing Concrete Ec (ksi) | 3644 |
| Lambda | 1 |
| Footing Steel fy (ksi) | 60 |
| Minimum Steel | 0.0018 |
| Maximum Steel | 0.0075 |
| Footing Top Bar | 23 |
| Footing Top Bar Cover (in) | $\# 3$ |
| Footing Bottom Bar | 3.5 |
| Footing Bottom Bar Cover (in) | 1.53 |
| Pedestal Bar |  |
| Pedestal Bar Cover (in) | Pedestal Ties |
|  |  |

Hot Rolled Steel Properties

| Label |  | E[ksi] | G [ksi] | Nu | Therm | Density $\left[1 / \mathrm{ft}^{\wedge} 3\right]$ | Yield[ksi] | Ry | Fulksi | Rt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A36 Gr. 36 | 29000 | 11154 | 3 | . 65 | 49 | 36 | 1.5 | 58 | 1.2 |
| 2 | A572 Gr. 50 | 29000 | 11154 | 3 | 65 | 49 | 50 | 1.1 | 58 | 1.2 |
| 3 | A992 | 29000 | 11154 | . 3 | . 65 | . 49 | 50 | 1.1 | 58 | 1.2 |
| 4 | A500 Gr. 42 | 29000 | 11154 | . 3 | 65 | 49 | 42 | 1.3 | 58 | 1.1 |
| 5 | A500 Gr. 46 | 29000 | 11154 | . 3 | . 65 | 49 | 46 | 1.2 | 58 | 1.1 |
| 6 | A53 Grade B | 29000 | 11154 | . 3 | . 65 | 49 | 35 | 1.5 | 58 | 1.2 |

Centek Engineering
TJL
Nov 9, 2023
8:57 AM
$\qquad$
$\qquad$

## Hot Rolled Steel Section Sets

| Label |  | Shape | Type | Design List | Material | Design ... A |  | lyy [in4] Izz [in4] J [in4] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Antenna Mast_2.0... | PIPE_2.0 | Column | Pipe | A53 Grade B | Typical | 1.02 | . 627 | . 627 | 1.25 |
| 2 | Horizontal_2.5 ST... | PIPE 2.5 | Beam | Pipe | A53 Grade B | Typical | 1.61 | 1.45 | 1.45 | 2.89 |
| 3 | Outrigger_2.0 ST... | PIPE 2.0 | Beam | Pipe | A53 Grade B | Typical | 1.02 | . 627 | . 627 | 1.25 |
| 4 | Stabilizer_2.0 ST... | PIPE 2.0 | Beam | Pipe | A53 Grade B | Typical | 1.02 | . 627 | . 627 | 1.25 |
| 5 | 0.625" Dia. Bar | 0.625 Dia. | Column | BAR | A36 Gr. 36 | Typical | . 307 | . 007 | . 007 | . 015 |
| 6 | 0.75"Dia. Bar | SR 3/4 | Column | BAR | A36 Gr. 36 | Typical | . 442 | . 016 | . 016 | . 031 |

## Hot Rolled Steel Design Parameters

|  | Label | Shape | Length[ft] | Lbyy ft ] | Lbzz[f] | Lcomp top | Lcomp bot[. | L-tora. | Kyy | Kzz | Cb | Functi... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | Horizontal_2.5 STD.. | 12.5 | Segment |  | Lbyy |  |  |  |  |  | Lateral |
| 2 | M2 | Horizontal_2.5 STD.. | 12.5 | Segment |  | Lbyy |  |  |  |  |  | Lateral |
| 3 | M3 | Stabilizer_2.0 STD . | 10.18 |  |  | Lbyy |  |  |  |  |  | Lateral |
| 4 | M4 | Outrigger_2.0 STD | 2.521 | Segment | Segment | Lbyy |  |  |  |  |  | Lateral |
| 5 | M5 | Outrigger_2.0 STD .. | 2.521 | Segment | Segment | Lbyy |  |  |  |  |  | Lateral |
| 6 | M6 | Outrigger_2.0 STD | 2.521 | Segment | Seament | Lbyy |  |  |  |  |  | Lateral |
| 7 | M7 | Outrigger_2.0 STD | 2.521 | Segment | Segment | Lbyy |  |  |  |  |  | Lateral |
| 8 | M8 | 0.625" Dia. Bar | 3.333 |  |  |  |  |  |  |  |  | Lateral |
| 9 | M9 | $0.625^{\prime \prime}$ Dia. Bar | 3.333 |  |  |  |  |  |  |  |  | Lateral |
| 10 | M10 | 0.75"Dia. Bar | 3.659 | 1.83 | 1.83 | Lbyy |  |  |  |  |  | Lateral |
| 11 | M11 | $0.625^{\prime \prime}$ Dia. Bar | 3.333 |  |  |  |  |  |  |  |  | Lateral |
| 12 | M12 | 0.75"Dia. Bar | 3.659 | 1.83 | 1.83 | Lbyy |  |  |  |  |  | Lateral |
| 13 | M13 | 0.625" Dia. Bar | 3.333 |  |  |  |  |  |  |  |  | Lateral |
| 14 | M14 | 0.75"Dia. Bar | 3.659 | 1.83 | 1.83 | Lbyy |  |  |  |  |  | Lateral |
| 15 | M15 | 0.75"Dia. Bar | 3.659 | 1.83 | 1.83 | Lbyy |  |  |  |  |  | Lateral |
| 16 | PS. 2 | Antenna Mast_2.0 ... | 6 |  |  | Lbyy |  |  |  |  |  | Lateral |
| 17 | PS. 1 | Antenna Mast_2.0 ... | 8 |  |  | Lbyy |  |  |  |  |  | Lateral |
| 18 | M19 | Antenna Mast_2.0 ... | 6 |  |  | Lbyy |  |  |  |  |  | Lateral |
| 19 | M21A | Antenna Mast_2.0 ... | 6 |  |  | Lbyy |  |  |  |  |  | Lateral |

## Member Primary Data

|  | Label | 1 Joint | $J$ Joint | $K$ Joint | Rotate(... | .. Section/Shape | Type | Design List | Material | Design |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | N2 | N34 |  |  | Horizontal_2.5 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 2 | M2 | N1 | N33 |  |  | Horizontal_2.5 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 3 | M3 | N7 | N8 |  |  | Stabilizer_2.0 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 4 | M4 | N10 | N20 |  |  | Outrigger_2.0 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 5 | M5 | N9 | N19 |  |  | Outrigger_2.0 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 6 | M6 | N28 | N22 |  |  | Outrigger_2.0 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 7 | M7 | N27 | N21 |  |  | Outrigger_2.0 STD Pipe | Beam | Pipe | A53 Grade B | Typical |
| 8 | M8 | N12 | N11 |  |  | 0.625" Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 9 | M9 | N18 | N17 |  |  | 0.625" Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 10 | M10 | N12 | N17 |  |  | 0.75"Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 11 | M11 | N26 | N25 |  |  | 0.625" Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 12 | M12 | N18 | N11 |  |  | 0.75"Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 13 | M13 | N24 | N23 |  |  | 0.625" Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 14 | M14 | N26 | N23 |  |  | 0.75"Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 15 | M15 | N24 | N25 |  |  | 0.75"Dia. Bar | Column | BAR | A36 Gr. 36 | Typical |
| 16 | PS. 2 | N5 | N6 |  |  | Antenna Mast_2.0 STD Pi.. | Column | Pipe | A53 Grade B | Typical |
| 17 | PS. 1 | N37 | N38 |  |  | Antenna Mast_2.0 STD Pi.. | Column | Pipe | A53 Grade B | Typical |

Nov 9, 2023
$\qquad$

## Member Primary Data (Continued)

|  | Label | 1 Joint | $J$ Joint | $K$ Joint | Rotate(. | Section/Shape | Type | Design List | Material | Design ... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | M19 | N41A | N42A |  |  | Antenna Mast_2.0 STD Pi.. | Column | Pipe | A53 Grade B | Typical |
| 19 | M20 | N19 | N21 |  |  | RIGID | None | None | RIGID | Typical |
| 20 | M21 | N20 | N22 |  |  | RIGID | None | None | RIGID | Typical |
| 21 | M21A | N41B | N42B |  |  | Antenna Mast_2.0 STD Pi..\| | Column | Pipe | A53 Grade B | Typical |

Joint Coordinates and Temperatures

|  | Label | $\mathrm{X}[\mathrm{ft}]$ | $\mathrm{Y}[\mathrm{ft}]$ | Z [ft] | Temp [F] | Detach From Dia... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N1 | 0 | 0. | -0. | 0 |  |
| 2 | N2 | 0 | 3.333334 | -0. | 0 |  |
| 3 | N3 | . 25 | 0. | -0. | 0 |  |
| 4 | N4 | . 25 | 3.333334 | -0. | 0 |  |
| 5 | N5 | . 25 | -1.333333 | -0. | 0 |  |
| 6 | N6 | . 25 | 4.666667 | -0. | 0 |  |
| 7 | N7 | 3.390625 | 3.333334 | -0. | 0 |  |
| 8 | N8 | 6.025403 | 3.333334 | -9.833125 | 0 |  |
| 9 | N9 | 3.78125 | 0. | -0. | 0 |  |
| 10 | N10 | 3.78125 | 3.333334 | -0. | 0 |  |
| 11 | N11 | 4.138628 | 0. | -0.357378 | 0 |  |
| 12 | N12 | 4.138628 | 3.333334 | -0.357378 | 0 |  |
| 13 | N17 | 5.206335 | 0. | -1.425085 | 0 |  |
| 14 | N18 | 5.206335 | 3.333334 | -1.425085 | 0 |  |
| 15 | N19 | 5.563713 | 0. | -1.782463 | 0 |  |
| 16 | N20 | 5.563713 | 3.333334 | -1.782463 | 0 |  |
| 17 | N21 | 6.936287 | 0. | -1.782463 | 0 |  |
| 18 | N22 | 6.936287 | 3.333334 | -1.782463 | 0 |  |
| 19 | N23 | 7.293665 | 0. | -1.425085 | 0 |  |
| 20 | N24 | 7.293665 | 3.333334 | -1.425085 | 0 |  |
| 21 | N25 | 8.361372 | 0. | -0.357378 | 0 |  |
| 22 | N26 | 8.361372 | 3.333334 | -0.357378 | 0 |  |
| 23 | N27 | 8.71875 | 0. | -0. | 0 |  |
| 24 | N28 | 8.71875 | 3.333334 | -0. | 0 |  |
| 25 | N29 | 12.25 | 0. | -0. | 0 |  |
| 26 | N30 | 12.25 | 3.333334 | -0. | 0 |  |
| 27 | N33 | 12.5 | 0. | -0. | 0 |  |
| 28 | N34 | 12.5 | 3.333334 | -0. | 0 |  |
| 29 | N35 | 6.25 | 3.333334 | -1.782463 | 0 |  |
| 30 | N36 | 6.25 | 0. | -1.782463 | 0 |  |
| 31 | N35A | 4.25 | 0. | -0. | 0 |  |
| 32 | N36A | 4.25 | 3.333334 | -0. | 0 |  |
| 33 | N37 | 12.25 | -2.333333 | 0 | 0 |  |
| 34 | N38 | 12.25 | 5.666667 | 0 | 0 |  |
| 35 | N39 | 8.25 | 0. | -0. | 0 |  |
| 36 | N40 | 8.25 | 3.333334 | -0. | 0 |  |
| 37 | N41A | 8.25 | -1.333333 | -0. | 0 |  |
| 38 | N42A | 8.25 | 4.666667 | -0. | 0 |  |
| 39 | N41B | 4.25 | -1.333333 | -0. | 0 |  |
| 40 | N42B | 4.25 | 4.666667 | -0. | 0 |  |

$\qquad$

Joint Boundary Conditions

|  | Joint Label | $\mathrm{X}[\mathrm{k} / \mathrm{in}]$ | Y [k/in] | Z [k/in] | X Rot.[k-ft/rad] | Y Rot.[k-ft/rad] | Z Rot.[k-ft/rad] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N8 | Reaction | Reaction | Reaction |  |  |  |
| 2 | N19 |  |  |  |  |  |  |
| 3 | N20 |  |  |  |  |  |  |
| 4 | N17 |  |  |  |  |  |  |
| 5 | N18 |  |  |  |  |  |  |
| 6 | N21 |  |  |  |  | 56. | min |
| 7 | N22 |  |  |  |  |  |  |
| 8 | N23 |  |  |  |  |  |  |
| 9 | N24 |  |  |  |  |  |  |
| 10 | N35 | Reaction | Reaction | Reaction |  |  |  |
| 11 | N36 | Reaction | Reaction | Reaction |  |  |  |

## Member Point Loads (BLC 2 : Dead Load)

| Member Label |  | Direction | Magnitude[k, k -ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS. 1 | Y | -. 045 | 1.5 |
| 2 | PS. 1 | Y | -. 045 | 6.5 |
| 3 | PS. 2 | Y | -. 03 | 2 |
| 4 | PS. 2 | Y | -. 03 | 4 |
| 5 | PS. 1 | Y | -. 075 | 3 |
| 6 | PS. 1 | Y | -. 08 | 5 |
| 7 | M21A | Y | -. 016 | 1 |
| 8 | M19 | Y | -. 032 | \%50 |
| 9 | M21A | Y | -. 003 | \%50 |

## Member Point Loads (BLC 3 : Ice Load)

| Member Labe |  | Direction | Magnitude[k,k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS. 1 | Y | -. 098 | 1.5 |
| 2 | PS. 1 | Y | -. 098 | 6.5 |
| 3 | PS. 2 | Y | -. 035 | 2 |
| 4 | PS. 2 | Y | -. 035 | 4 |
| 5 | PS. 1 | Y | -. 052 | 3 |
| 6 | PS. 1 | Y | -. 053 | 5 |
| 7 | M21A | Y | -. 02 | 1 |
| 8 | M19 | Y | -. 101 | \%50 |
| 9 | M21A | Y | -. 016 | \%50 |

Member Point Loads (BLC 6 : Wind with Ice X)

| Member Label |  | Direction |  | Magnitude[k,k-ft] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS. | $X$ | .034 | Locationfft,\%] |
| 2 | PS.1 | $X$ | .034 | 1.5 |
| 3 | PS.2 | $X$ | .011 | 6.5 |
| 4 | PS.2 | $X$ | .011 | 2 |
| 5 | PS.1 | $X$ | .019 | 4 |
| 6 | PS.1 | $X$ | .019 | 3 |
| 7 | M21A | $X$ | .007 | 5 |
| 8 | M19 | $X$ | .041 | 1 |
| 9 | M21A | $X$ | .005 | $\% 50$ |

Company
Nov 9, 2023
Designer
Job Number
$\qquad$

Member Point Loads (BLC 7 : Wind X)

| Member Lab |  | Direction | Magnitude[k, k -ft] | Location [ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS. 1 | X | . 142 | 1.5 |
| 2 | PS. 1 | X | . 142 | 6.5 |
| 3 | PS. 2 | X | . 039 | 2 |
| 4 | PS. 2 | X | . 039 | 4 |
| 5 | PS. 1 | X | . 073 | 3 |
| 6 | PS. 1 | X | . 074 | 5 |
| 7 | M21A | X | . 021 | 1 |
| 8 | M19 | X | . 18 | \%50 |
| 9 | M21A | X | . 008 | \%50 |

## Member Point Loads (BLC 8 : Wm Wind X)



Member Point Loads (BLC 9 : Wind with Ice Z)

| Member Label | Direction |  | Magnitude $[k, k-\mathrm{ft]}$ | Location $[f t, \%]$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS.1 | $Z$ | .073 | 1.5 |
| 2 | PS.1 | $Z$ | .073 | 6.5 |
| 3 | PS.2 | $Z$ | .024 | 2 |
| 4 | PS.2 | $Z$ | .024 | 4 |
| 5 | M19 | $Z$ | .051 | $\% 50$ |
| 6 | M21A | $Z$ | .014 | $\% 50$ |

Member Point Loads (BLC 10 : Wind Z)

|  | Member Label | Direction |  | Magnitude $[k, k-\mathrm{ft}]$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS.1 | $Z$ | .358 | Location[ft,\%] |
| 2 | PS.1 | $Z$ | .358 | 1.5 |
| 3 | PS.2 | $Z$ | .111 | 6.5 |
| 4 | PS.2 | $Z$ | .111 | 2 |
| 5 | M19 | $Z$ | .236 | 4 |
| 6 | M21A | $Z$ | .052 | $\% 50$ |

Member Point Loads (BLC 11 : Wm Wind Z)

| Member Label | Direction |  | Magnitude[k,k-ft] | Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: |
| 1 | PS.1 | $Z$ | .023 | 1.5 |
| 2 | PS.1 | $Z$ | .023 | 6.5 |
| 3 | PS.2 | $Z$ | .007 | 2 |
| 4 | PS.2 | $Z$ | .007 | 4 |
| 5 | M19 | $Z$ | .015 | $\% 50$ |
| 6 | M21A | $Z$ | .003 | $\% 50$ |

$\qquad$
ANEMETSCHEK COMPANY
Model Name
Portland HS

Member Distributed Loads (BLC 6 : Wind with Ice X)

|  | Member Label | Direction | Start Magnitude[k/ft,F,ksf] | End Magnitude[k/.. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M3 | X | . 003 | . 003 | 0 | 0 |
| 2 | M4 | X | . 003 | . 003 | 0 | 0 |
| 3 | M5 | X | . 003 | . 003 | 0 | 0 |
| 4 | M6 | X | . 003 | . 003 | 0 | 0 |
| 5 | M7 | X | . 003 | . 003 | 0 | 0 |
| 6 | M8 | X | . 003 | . 003 | 0 | 0 |
| 7 | M9 | X | . 003 | . 003 | 0 | 0 |
| 8 | M10 | X | . 003 | . 003 | 0 | 0 |
| 9 | M11 | X | . 003 | . 003 | 0 | 0 |
| 10 | M12 | X | . 003 | . 003 | 0 | 0 |
| 11 | M13 | X | . 003 | . 003 | 0 | 0 |
| 12 | M14 | X | . 003 | . 003 | 0 | 0 |
| 13 | M15 | X | . 003 | . 003 | 0 | 0 |
| 14 | PS. 2 | X | . 003 | . 003 | 0 | 0 |
| 15 | PS. 1 | X | . 003 | . 003 | 0 | 0 |
| 16 | M19 | X | . 003 | . 003 | 0 | 0 |
| 17 | M20 | X | . 003 | . 003 | 0 | 0 |
| 18 | M21 | X | . 003 | . 003 | 0 | 0 |
| 19 | M21A | X | . 003 | . 003 | 0 | 0 |

## Member Distributed Loads (BLC 7 : Wind X)

|  | Member Label | Direction | Start Magnitude [ $\mathrm{k} / \mathrm{ft}, \mathrm{F}, \mathrm{ksf}]$ | End Magnitude[k/... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M3 | X | . 018 | . 018 | 0 | 0 |
| 2 | M4 | X | . 018 | . 018 | 0 | 0 |
| 3 | M5 | X | . 018 | . 018 | 0 | 0 |
| 4 | M6 | X | . 018 | . 018 | 0 | 0 |
| 5 | M7 | X | . 018 | . 018 | 0 | 0 |
| 6 | M8 | X | . 018 | . 018 | 0 | 0 |
| 7 | M9 | X | . 018 | . 018 | 0 | 0 |
| 8 | M10 | X | . 018 | . 018 | 0 | 0 |
| 9 | M11 | X | . 018 | . 018 | 0 | 0 |
| 10 | M12 | X | . 018 | . 018 | 0 | 0 |
| 11 | M13 | X | . 018 | . 018 | 0 | 0 |
| 12 | M14 | X | . 018 | . 018 | 0 | 0 |
| 13 | M15 | X | . 018 | . 018 | 0 | 0 |
| 14 | PS. 2 | X | . 018 | . 018 | 0 | 0 |
| 15 | PS. 1 | X | . 018 | . 018 | 0 | 0 |
| 16 | M19 | X | . 018 | . 018 | 0 | 0 |
| 17 | M20 | X | . 018 | . 018 | 0 | 0 |
| 18 | M21 | X | . 018 | . 018 | 0 | 0 |
| 19 | M21A | X | . 018 | . 018 | 0 | 0 |

Member Distributed Loads (BLC 8 : Wm Wind X)

|  | Member Label | Direction | Start Magnitude[k/ft,F,ksf] | End Magnitude[k/... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M3 | X | . 003 | . 003 | 0 | 0 |
| 2 | M4 | X | . 003 | . 003 | 0 | 0 |
| 3 | M5 | X | . 003 | . 003 | 0 | 0 |
| 4 | M6 | X | . 003 | . 003 | 0 | 0 |
| 5 | M7 | X | . 003 | . 003 | 0 | 0 |
| 6 | M8 | X | . 003 | . 003 | 0 | 0 |

Nov 9, 2023
Designer
Job Number
Model Name
$\qquad$
Checked By:

|  | Member Label | Direction | Start Magnitude[k/ft,F, ksf] | End Magnitude[k/... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | M9 | X | . 003 | . 003 | 0 | 0 |
| 8 | M10 | X | . 003 | . 003 | 0 | 0 |
| 9 | M11 | X | . 003 | . 003 | 0 | 0 |
| 10 | M12 | X | . 003 | . 003 | 0 | 0 |
| 11 | M13 | X | . 003 | . 003 | 0 | 0 |
| 12 | M14 | X | . 003 | . 003 | 0 | 0 |
| 13 | M15 | X | . 003 | . 003 | 0 | 0 |
| 14 | PS. 2 | X | . 003 | . 003 | 0 | 0 |
| 15 | PS. 1 | X | . 003 | . 003 | 0 | 0 |
| 16 | M19 | X | . 003 | . 003 | 0 | 0 |
| 17 | M20 | X | . 003 | . 003 | 0 | 0 |
| 18 | M21 | X | . 003 | . 003 | 0 | 0 |
| 19 | M21A | X | . 003 | . 003 | 0 | 0 |

Member Distributed Loads (BLC 9 ; Wind with Ice Z)

|  | Member Label | Direction | Start Magnitude[k/ft, F, ksf] | End Magnitudelk/... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | Z | . 003 | . 003 | 0 | 0 |
| 2 | M2 | Z | . 003 | . 003 | 0 | 0 |
| 3 | M3 | Z | . 003 | 003 | 0 | 0 |
| 4 | M4 | Z | . 003 | . 003 | 0 | 0 |
| 5 | M5 | Z | . 003 | . 003 | 0 | 0 |
| 6 | M6 | Z | . 003 | . 003 | 0 | 0 |
| 7 | M7 | Z | . 003 | . 003 | 0 | 0 |
| 8 | M8 | Z | . 003 | . 003 | 0 | 0 |
| 9 | M9 | Z | . 003 | . 003 | 0 | 0 |
| 10 | M10 | Z | . 003 | . 003 | 0 | 0 |
| 11 | M11 | Z | . 003 | . 003 | 0 | 0 |
| 12 | M12 | Z | . 003 | 003 | 0 | 0 |
| 13 | M13 | Z | . 003 | . 003 | 0 | 0 |
| 14 | M14 | Z | . 003 | . 003 | 0 | 0 |
| 15 | M15 | Z | . 003 | . 003 | 0 | 0 |
| 16 | PS. 2 | Z | . 003 | . 003 | 0 | 0 |
| 17 | M19 | Z | . 003 | . 003 | 0 | 0 |
| 18 | M20 | Z | . 003 | . 003 | 0 | 0 |
| 19 | M21 | Z | . 003 | . 003 | 0 | 0 |
| 20 | M21A | Z | . 003 | . 003 | 0 | 0 |

## Member Distributed Loads (BLC 10 : Wind Z)

|  | Member Label | Direction | Start Magnitude[k/ft, F, ksf] | End Magnitude[k/... | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | Z | . 018 | . 018 | 0 | 0 |
| 2 | M2 | Z | . 018 | . 018 | 0 | 0 |
| 3 | M3 | Z | . 018 | . 018 | 0 | 0 |
| 4 | M4 | Z | . 018 | . 018 | 0 | 0 |
| 5 | M5 | Z | . 018 | . 018 | 0 | 0 |
| 6 | M6 | Z | . 018 | . 018 | 0 | 0 |
| 7 | M7 | Z | . 018 | . 018 | 0 | 0 |
| 8 | M8 | Z | . 018 | . 018 | 0 | 0 |
| 9 | M9 | Z | . 018 | . 018 | 0 | 0 |
| 10 | M10 | Z | . 018 | . 018 | 0 | 0 |
| 11 | M11 | Z | . 018 | . 018 | 0 | 0 |
| 12 | M12 | Z | . 018 | . 018 | 0 | 0 |

Company
Designer
Nov 9, 2023
Job Number $\qquad$

## Member Distributed Loads (BLC 10 : Wind Z) (Continued)

|  | Member Label | Direction | Start Magnitude[k/ft,F, ksf] | End Magnitude[k].. | Start Location[ft, \%] | End Location [ft, \%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | M13 | Z | . 018 | . 018 | 0 | 0 |
| 14 | M14 | Z | . 018 | . 018 | 0 | 0 |
| 15 | M15 | Z | . 018 | . 018 | 0 | 0 |
| 16 | PS. 2 | Z | . 018 | . 018 | 0 | 0 |
| 17 | M19 | Z | . 018 | . 018 | 0 | 0 |
| 18 | M20 | Z | . 018 | . 018 | 0 | 0 |
| 19 | M21 | Z | . 018 | . 018 | 0 | 0 |
| 20 | M21A | Z | . 018 | . 018 | 0 | 0 |

Member Distributed Loads (BLC 11 : Wm Wind Z)

|  | Member Label | Direction | Start Magnitude[k/ft,F,ksf] | End Magnitude[k/.. | Start Location[ft,\%] | End Location[ft,\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | Z | . 003 | . 003 | 0 | 0 |
| 2 | M2 | Z | . 003 | 003 | 0 | 0 |
| 3 | M3 | Z | . 003 | . 003 | 0 | 0 |
| 4 | M4 | Z | 003 | 003 | 0 | 0 |
| 5 | M5 | Z | . 003 | . 003 | 0 | 0 |
| 6 | M6 | Z | . 003 | . 003 | 0 | 0 |
| 7 | M7 | Z | . 003 | . 003 | 0 | 0 |
| 8 | M8 | Z | . 003 | . 003 | 0 | 0 |
| 9 | M9 | Z | . 003 | . 003 | 0 | 0 |
| 10 | M10 | Z | 003 | . 003 | 0 | 0 |
| 11 | M11 | Z | . 003 | . 003 | 0 | 0 |
| 12 | M12 | Z | . 003 | . 003 | 0 | 0 |
| 13 | M13 | Z | . 003 | . 003 | 0 | 0 |
| 14 | M14 | Z | . 003 | . 003 | 0 | 0 |
| 15 | M15 | Z | . 003 | . 003 | 0 | 0 |
| 16 | PS. 2 | Z | . 003 | . 003 | 0 | 0 |
| 17 | M19 | Z | . 003 | . 003 | 0 | 0 |
| 18 | M20 | Z | . 003 | . 003 | 0 | 0 |
| 19 | M21 | Z | . 003 | . 003 | 0 | 0 |
| 20 | M21A | Z | . 003 | . 003 | 0 | 0 |

## Basic Load Cases

| BLC Description |  | Category | X Gra...Y Gra.. Z Gra... Joint |  | Point | Distrib..Area(... Surfa... |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Self Weight | None | - -1 |  |  |  |  |  |
| 2 | Dead Load | None |  |  | 9 |  |  |  |
| 3 | Ice Load | None |  |  | 9 |  |  |  |
| 4 | Lm Maintenance Load (5001b) | None |  |  |  |  |  |  |
| 5 | Lv Maintenance Load (2501b) | None |  |  |  |  |  |  |
| 6 | Wind with Ice $X$ | None |  |  | 9 | 19 |  |  |
| 7 | Wind X | None |  |  | 9 | 19 |  |  |
| 8 | Wm Wind $X$ | None |  |  | 9 | 19 |  |  |
| 9 | Wind with Ice Z | None |  |  | 6 | 20 |  |  |
| 10 | Wind Z | None |  |  | 6 | 20 |  |  |
| 11 | Wm Wind Z | None |  |  | 6 | 20 |  |  |

Load Combinations
Description So..P... S... BLCFac.. BLCFac.. BLCFac.. BLCFac.. BLCFac.. BLCFac.. BLCFac..BLCFac.. BLCFac.. BLCFac...


Envelope Joint Reactions

| Joint |  |  | X [k] | LC | $\mathrm{Y}[\mathrm{k}]$ | LC | Z [k] | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N8 | max | . 233 | 3 | . 025 | 1 | . 919 | 6 | 0 | 8 | 0 | 8 | 0 | 8 |
| 2 |  | min | -. 271 | 6 | . 021 | 3 | -1.212 | 3 | 0 | 1 | 0 | 1 | 0 | 1 |
| 3 | N35 | max | -. 133 | 6 | 687 | 7 | . 804 | 3 | 0 | 8 | 0 | 8 | 0 | 8 |
| 4 |  | min | -1.769 | 3 | . 384 | 3 | -2.878 | 6 | 0 | 1 | 0 | 1 | 0 | 1 |
| 5 | N36 | max | . 86 | 7 | . 658 | 4 | . 68 | 4 | 0 | 8 | 0 | 8 | 0 | 8 |
| 6 |  | min | -. 568 | 3 | . 247 | 6 | -. 958 | 6 | 0 | 1 | 0 | 1 | 0 | 1 |
| 7 | Totals: | max | 0 | 8 | 1.335 | 4 | 0 | 3 |  |  |  |  |  |  |
| 8 |  | min | -2.104 | 3 | . 827 | 8 | -2.918 | 6 |  |  |  |  |  |  |

Envelope Joint Displacements

| Joint |  |  | X [in] | LC | Y [in] | LC | $\mathrm{Z}[\mathrm{in}]$ | LC | $\begin{gathered} \mathrm{X} \text { Rotation [rad] } \\ 3.976 \mathrm{e}-03 \end{gathered}$ | LC Y Rotation [rad] |  | LC | Z Rotation [rad] | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N1 | max | . 063 | 3 | . 035 | 6 | . 3 | 6 |  | 6 | $1.2 \mathrm{e}-02$ | 6 | $9.437 \mathrm{e}-04$ |  |
| 2 |  | min | -. 115 | 6 | -. 031 | 3 | -. 035 | 1 | -2.189e-03 | 3 | -4.5e-04 | 4 | -9.599e-04 | 6 |
| 3 | N2 | max | . 036 | 3 | . 035 | 6 | . 452 | 6 | $2.539 \mathrm{e}-03$ | 6 | $1.23 \mathrm{e}-02$ | 6 | $1.072 \mathrm{e}-03$ | 3 |
| 4 |  | min | -. 045 | 6 | -. 032 | 3 | -. 009 | 4 | -2.295e-03 | 3 | -3.806e-04 | 4 | -9.84e-04 | 6 |
| 5 | N3 | max | . 063 | 3 | . 032 | 7 | . 264 | 6 | $3.976 \mathrm{e}-03$ | 6 | $1.2 \mathrm{e}-02$ | 6 | $9.436 \mathrm{e}-04$ | 3 |
| 6 |  | min | -. 115 | 6 | -. 028 | 3 | -. 034 | 1 | -2.189e-03 | 3 | -4.5e-04 | 4 | -9.599e-04 | 6 |
| 7 | N4 | max | . 036 | 3 | . 032 | 7 | 415 | 6 | $2.539 \mathrm{e}-03$ | 6 | $1.23 \mathrm{e}-02$ | 6 | $1.072 \mathrm{e}-03$ | 3 |
| 8 |  | min | -. 045 | 6 | -. 028 | 3 | -. 008 | 4 | -2.295e-03 | 3 | -3.806e-04 | 4 | -9.84e-04 | 6 |
| 9 | N5 | max | . 079 | 3 | . 032 | 7 | . 201 | 6 | $3.906 \mathrm{e}-03$ | 6 | $1.2 \mathrm{e}-02$ | 6 | $1.014 \mathrm{e}-03$ | 3 |
| 10 |  | min | -. 13 | 6 | -. 028 | 3 | -. 045 | 1 | -2.189e-03 | 3 | -4.5e-04 | 4 | -9.599e-04 | 6 |
| 11 | N6 | max | . 02 | 3 | . 032 | 7 | . 456 | 6 | $2.609 \mathrm{e}-03$ | 6 | 1.23e-02 | 6 | $1.002 \mathrm{e}-03$ | 3 |
| 12 |  | min | -. 029 | 6 | -. 028 | 3 | -. 041 | 3 | -2.295e-03 | 3 | -3.806e-04 | 4 | -9.841e-04 | 6 |
| 13 | N7 | max | . 036 | 3 | . 034 | 7 | . 016 | 3 | $1.447 \mathrm{e}-03$ | 6 | $9.639 \mathrm{e}-03$ | 6 | $6.175 \mathrm{e}-04$ | 3 |
| 14 |  | min | -. 045 | 6 | . 011 | 3 | -. 018 | 6 | -1.158e-03 | 3 | $-1.301 \mathrm{e}-03$ | 3 | -2.923e-04 | 6 |
| 15 | N8 | max | 0 | 8 | 0 | 8 | 0 | 8 | $1.91 \mathrm{e}-03$ | 1 | 7.888e-03 | 3 | $1.312 \mathrm{e}-03$ | 3 |
| 16 |  | min | 0 | 1 | 0 | 1 | 0 | 1 | $1.435 \mathrm{e}-03$ | 3 | $5.127 \mathrm{e}-05$ | 2 | -1.996e-04 | 6 |
| 17 | N9 | max | . 062 | 3 | . 033 | 7 | 082 | 3 | $2.235 \mathrm{e}-03$ | 6 | $5.246 \mathrm{e}-03$ | 6 | $3.777 \mathrm{e}-04$ | 3 |
| 18 |  | min | -. 115 | 6 | . 013 | 3 | -. 152 | 6 | -8.113e-04 | 3 | -4.928e-04 | 1 | -4.431e-04 | 6 |
| 19 | N10 | max | . 036 | 3 | . 033 | 7 | . 023 | 3 | $1.311 \mathrm{e}-03$ | 6 | 8.501e-03 | 6 | 3.855e-04 | 3 |
| 20 |  | min | -. 045 | 6 | . 013 | 3 | -. 061 | 6 | -1.017e-03 | 3 | $-1.196 \mathrm{e}-03$ | 3 | -4.005e-04 | 7 |
| 21 | N11 | max | . 05 | 3 | . 037 | 7 | . 069 | 3 | $2.019 \mathrm{e}-03$ | 6 | 2.987e-03 | 3 | $1.281 \mathrm{e}-04$ | 3 |
| 22 |  | min | -. 09 | 6 | . 013 | 3 | -. 127 | 6 | -5.166e-04 | 3 | $-5.778 \mathrm{e}-03$ | 6 | -8.88e-04 | 6 |
| 23 | N12 | max | . 024 | 3 | . 037 | 7 | . 012 | 3 | $1.391 \mathrm{e}-03$ | 6 | 2.666e-03 | 3 | $4.435 \mathrm{e}-04$ | 3 |
| 24 |  | min | -. 036 | 6 | . 013 | 3 | -. 053 | 6 | -7.218e-04 | 3 | -2.003e-03 | 6 | -5.474e-04 | 7 |
| 25 | N17 | max | . 011 | 3 | . 036 | 7 | . 031 | 3 | $1.191 \mathrm{e}-03$ | 6 | 2.786e-03 | 3 | -4.683e-04 | 3 |
| 26 |  | min | -. 02 | 6 | . 004 | 3 | -. 058 | 6 | $1.051 \mathrm{e}-04$ | 3 | -4.897e-03 | 6 | -2.42e-03 | 7 |

Company Designer Job Number Model Name

Centek Engineering
TJL
22017.06

Portland HS

Nov 9, 2023
8:57 AM
Checked By
$\qquad$

| Joint |  |  | $X$ [in] | $\frac{\mathrm{LC}}{3}$ | $\begin{aligned} & \mathrm{Y}[\mathrm{in}] \\ & .036 \end{aligned}$ | $\frac{\mathrm{LC}}{7}$ | $\frac{Z[\text { in }]}{-.005}$ | $\frac{\mathrm{LC}}{2}$ | $\begin{gathered} X \text { Rotation }[\mathrm{rad}] \\ \hline 1.01 \mathrm{e}-03 \\ \hline \end{gathered}$ | LC Y Rotation [rad] LC |  |  | Z Rotation [rad] | $\begin{gathered} \text { LC } \\ \hline 3 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | N18 | max |  |  |  |  |  |  |  | 7 | $4.415 \mathrm{e}-04$ | 3 | -2.46e-04 |  |
| 28 |  | min | -. 01 | 6 | . 004 | 3 | -. 029 | 6 | -5.278e-05 | 3 | -2.066e-03 | 6 | -2.361e-03 | 7 |
| 29 | N19 | max | 0 | 8 | . 027 | 7 | . 02 | 3 | $6.829 \mathrm{e}-04$ | 7 | $2.43 \mathrm{e}-03$ | 3 | -4.687e-04 | 3 |
| 30 |  | min | 0 | 1 | . 004 | 3 | -. 038 | 6 | $3.857 \mathrm{e}-04$ | 3 | -4.619e-03 | 6 | -3.33e-03 | 7 |
| 31 | N20 | max | 0 | 8 | . 027 | 7 | -. 004 | 2 | 6.565e-04 | 7 | -5.094e-04 | 2 | -4.791e-04 | 3 |
| 32 |  | min | 0 | 1 | . 004 | 3 | -. 02 | 6 | 4.026e-04 | 6 | -2.371e-03 | 6 | -3.328e-03 | 7 |
| 33 | N21 | max | 0 | 8 | -. 004 | 3 | . 038 | 6 | $6.829 \mathrm{e}-04$ | 7 | 2.43e-03 | 3 | -4.687e-04 | 3 |
| 34 |  | min | 0 | 1 | -. 027 | 7 | -. 02 | 3 | $3.857 \mathrm{e}-04$ | 3 | -4.619e-03 | 6 | -3.33e-03 | 7 |
| 35 | N22 | max | 0 | 8 | -. 004 | 3 | . 02 | 6 | $6.565 \mathrm{e}-04$ | 7 | -5.094e-04 | 2 | -4.791e-04 | 3 |
| 36 |  | min | 0 | 1 | -. 027 | 7 | . 004 | 2 | $4.026 \mathrm{e}-04$ | 6 | -2.371e-03 | 6 | -3.328e-03 | 7 |
| 37 | N23 | max | 011 | 3 | -. 008 | 3 | . 059 | 6 | $2.79 \mathrm{e}-04$ | 3 | $2.787 \mathrm{e}-03$ | 3 | -6.364e-04 | 3 |
| 38 |  | min | -. 021 | 6 | -. 042 | 7 | -. 031 | 3 | -3.293e-04 | 6 | -5.187e-03 | 6 | -2.611e-03 | 7 |
| 39 | N24 | max | -. 001 | 3 | -. 008 | 3 | . 03 | 6 | $5.174 \mathrm{e}-04$ | 3 | $5.077 \mathrm{e}-04$ | 3 | -3.814e-04 | 3 |
| 40 |  | min | -. 01 | 6 | -. 042 | 7 | . 005 | 2 | -5.375e-04 | 6 | -2.405e-03 | 6 | -2.64e-03 | 7 |
| 41 | N25 | max | . 049 | 3 | -. 019 | 3 | . 131 | 6 | $4.08 \mathrm{e}-04$ | 3 | $3.007 \mathrm{e}-03$ | 3 | -1.206e-03 | 3 |
| 42 |  | min | -. 092 | 6 | -. 049 | 7 | -. 069 | 3 | -1.606e-03 | 6 | -5.675e-03 | 6 | -2.55e-03 | 7 |
| 43 | N26 | max | . 024 | 3 | -. 019 | 3 | . 06 | 6 | $5.829 \mathrm{e}-04$ | 3 | $2.813 \mathrm{e}-03$ | 3 | -5.439e-04 | 3 |
| 44 |  | min | -. 038 | 6 | -. 049 | 7 | -. 014 | 3 | -1.67e-03 | 6 | -2.047e-03 | 6 | -2.545e-03 | 7 |
| 45 | N27 | max | . 062 | 3 | -. 028 | 3 | . 155 | 6 | $9.807 \mathrm{e}-04$ | 3 | $3.068 \mathrm{e}-03$ | 3 | -1.82e-03 | 3 |
| 46 |  | min | -. 116 | 6 | -. 057 | 7 | -. 082 | 3 | -1.518e-03 | 6 | -1.661e-02 | 6 | -3.895e-03 | 7 |
| 47 | N28 | max | . 037 | 3 | -. 025 | 3 | . 069 | 6 | $1.105 \mathrm{e}-03$ | 3 | 2.157e-03 | 3 | -1.342e-03 | 3 |
| 48 |  | min | -. 046 | 6 | -. 057 | 7 | -. 027 | 3 | -1.011e-03 | 6 | $-1.498 \mathrm{e}-02$ | 6 | -3.91e-03 | 7 |
| 49 | N29 | max | . 062 | 3 | -. 12 | 3 | 1.127 | 6 | $1.489 \mathrm{e}-03$ | 3 | $2.584 \mathrm{e}-03$ | 3 | -7.332e-04 | 3 |
| 50 |  | min | -. 116 | 6 | -. 296 | 7 | -. 198 | 3 | -4.803e-03 | 6 | -2.599e-02 | 6 | -4.428e-03 | 7 |
| 51 | N30 | max | . 037 | 3 | -. 12 | 3 | 1.022 | 6 | $1.555 \mathrm{e}-03$ | 3 | 2.602e-03 | 3 | -1.698e-03 | 3 |
| 52 |  | min | -. 046 | 6 | -. 296 | 7 | -. 131 | 3 | -6.971e-04 | 7 | -2.611e-02 | 6 | -4.426e-03 | 7 |
| 53 | N33 | max | . 062 | 3 | -. 122 | 3 | 1.205 | 6 | $1.489 \mathrm{e}-03$ | 3 | $2.584 \mathrm{e}-03$ | 3 | -7.333e-04 | 3 |
| 54 |  | min | -. 116 | 6 | -. 31 | 7 | -. 206 | 3 | -4.803e-03 | 6 | -2.599e-02 | 6 | -4.428e-03 | 7 |
| 55 | N34 | max | . 037 | 3 | -. 125 | 3 | 1.1 | 6 | $1.555 \mathrm{e}-03$ | 3 | 2.602e-03 | 3 | -1.698e-03 | 3 |
| 56 |  | min | -. 046 | 6 | -. 31 | 7 | -. 139 | 3 | -6.971e-04 | 7 | -2.611e-02 | 6 | -4.426e-03 | 7 |
| 57 | N35 | max | 0 | 8 | 0 | 8 | 0 | 8 | $6.565 \mathrm{e}-04$ | 7 | -5.094e-04 | 2 | -4.791e-04 | 3 |
| 58 |  | min | 0 | 1 | 0 | 1 | 0 | 1 | $4.026 \mathrm{e}-04$ | 6 | -2.371e-03 | 6 | -3.328e-03 | 7 |
| 59 | N36 | max | 0 | 8 | 0 | 8 | 0 | 8 | $6.829 \mathrm{e}-04$ | 7 | $2.43 \mathrm{e}-03$ | 3 | -4.687e-04 | 3 |
| 60 |  | min | 0 | 1 | 0 | 1 | 0 | 1 | 3.857e-04 | 3 | -4.619e-03 | 6 | -3.33e-03 | 7 |
| 61 | N35A | max | . 062 | 3 | . 03 | 4 | . 072 | 3 | $1.958 \mathrm{e}-03$ | 6 | $3.444 \mathrm{e}-03$ | 6 | $1.989 \mathrm{e}-04$ | 3 |
| 62 |  | min | -. 115 | 6 | . 012 | 6 | -. 176 | 6 | -7.375e-04 | 3 | -5.307e-04 | 1 | -7.034e-04 | 7 |
| 63 | N36A | max | . 036 | 3 | . 03 | 4 | . 028 | 3 | $1.14 \mathrm{e}-03$ | 6 | 6.615e-03 | 6 | $1.487 \mathrm{e}-04$ | 3 |
| 64 |  | min | -. 045 | 6 | . 012 | 6 | -. 104 | 6 | -8.946e-04 | 3 | -6.161e-04 | 3 | -6.81e-04 | 7 |
| 65 | N37 | max | . 062 | 3 | -. 12 | 3 | 1.292 | 6 | $1.488 \mathrm{e}-03$ | 3 | 2.584e-03 | 3 | $1.322 \mathrm{e}-04$ | 3 |
| 66 |  | min | -. 206 | 6 | -. 296 | 7 | -. 24 | 3 | -6.029e-03 | 6 | -2.599e-02 | 6 | $-4.418 \mathrm{e}-03$ | 7 |
| 67 | N38 | max | . 14 | 4 | -. 12 | 3 | 1.06 | 6 | $1.556 \mathrm{e}-03$ | 3 | 2.602e-03 | 3 | -2.2e-03 | 2 |
| 68 |  | min | . 043 | 6 | -. 296 | 7 | -. 087 | 3 | -4.472e-04 | 7 | -2.611e-02 | 6 | -4.435e-03 | 7 |
| 69 | N39 | max | . 062 | 3 | -. 018 | 6 | . 069 | 6 | $9.05 \mathrm{e}-04$ | 3 | 3.152e-03 | 3 | -1.268e-03 | 3 |
| 70 |  | min | -. 116 | 6 | -. 038 | 4 | -. 065 | 3 | -1.203e-03 | 6 | $-1.414 \mathrm{e}-02$ | 6 | -2.813e-03 | 7 |
| 71 | N40 | max | . 037 | 3 | -. 018 | 6 | -. 002 | 2 | $9.904 \mathrm{e}-04$ | 3 | $2.038 \mathrm{e}-03$ | 3 | -7.735e-04 | 3 |
| 72 |  | min | -. 046 | 6 | -. 038 | 4 | -. 015 | 3 | -1.206e-03 | 6 | $-1.214 \mathrm{e}-02$ | 6 | -2.824e-03 | 7 |
| 73 | N41A | max | . 043 | 3 | -. 018 | 6 | . 089 | 6 | 9.05e-04 | 3 | 3.152e-03 | 3 | -1.198e-03 | 3 |
| 74 |  | min | -. 144 | 6 | -. 038 | 4 | -. 079 | 3 | -1.273e-03 | 6 | $-1.414 \mathrm{e}-02$ | 6 | -2.813e-03 | 7 |
| 75 | N42A | max | . 061 | 4 | -. 018 | 6 | . 001 | 3 | $9.904 \mathrm{e}-04$ | 3 | $2.038 \mathrm{e}-03$ | 3 | -8.439e-04 | 3 |
| 76 |  | min | -. 017 | 6 | -. 038 | 4 | -. 026 | 6 | -1.135e-03 | 6 | $-1.214 \mathrm{e}-02$ | 6 | -2.824e-03 | 7 |
| 77 | N41B | max | . 067 | 3 | . 03 | 4 | . 084 | 3 | 1.887e-03 | 6 | $3.444 \mathrm{e}-03$ | 6 | $2.808 \mathrm{e}-04$ | 3 |
| 78 |  | min | -. 125 | 6 | . 012 | 6 | -. 207 | 6 | -7.374e-04 | 3 | -5.307e-04 | 1 | -7.032e-04 | 7 |


|  | $\begin{aligned} & \lambda \mathrm{SCHE} \end{aligned}$ |  | Compa Design Job Nu Model | ber ame | $\begin{array}{ll} \text { : CeI } \\ \vdots & \text { TJl } \\ \vdots & 220 \\ : & \text { Por } \end{array}$ | tek <br> 17.0 land | ngineeri HS |  |  |  |  |  | ov 9, 2023 <br> 57 AM hecked By: |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Envelope Joint Displacements (Continued) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Joint |  |  | $X$ [in] | LC | Y [in] | LC | Z [in] | LC | $\times$ Rotation [rad] | LC Y Rotation [rad] LC |  |  | Z Rotation [rad] | LC |
| 79 | N42B | max | . 034 | 3 | . 03 | 4 | . 017 | 4 | $1.211 \mathrm{e}-03$ | 6 | $6.615 \mathrm{e}-03$ | 6 | 7.826e-05 | 3 |
| 80 |  | min | -. 036 | 6 | . 012 | 6 | -. 085 | 6 | -8.947e-04 | 3 | -6.161e-04 | 3 | -6.81e-04 | 7 |

Envelope AISC 15th(360-16): LRFD Steel Code Checks

| Mem... Shape |  |  | Code Check | L. | LC | Sh... Loc[ft] | Dir | phi*P...p | phi* ${ }^{\text {P }}$ | phi*Mn y - $\mathrm{y}[\mathrm{k}-\mathrm{ft}]$ | phi*. | Cb Eqn |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | M1 | PIPE 2.5 | . 444 | 8.... | 6 | 1093.776 |  | 614.5595 | 50.715 | 3.596 | 3.5.. 2 | 2....H1 |
| 2 | M2 | PIPE 2.5 | 383 | 8.... | 6 | 0948.724 |  | 614.5595 | 50.715 | 3.596 | 3.5... 2 | $2 \ldots . \mathrm{H1}$. |
| 3 | M3 | PIPE 2.0 | . 143 | 5.... | 3 | . 00910.18 |  | 39.4923 | 32.13 | 1.872 | 1.8.. 1 | 1... H1... |
| 4 | M4 | PIPE 2.0 | . 228 | 2... | 3 | 0842.521 |  | 332.032 | 32.13 | 1.872 | 1.8.. | 1... H 1. |
| 5 | M5 | PIPE 2.0 | . 160 | 2.... | 7 | . 0682.521 |  | 432.032 | 32.13 | 1.872 | 1.8.. | 1.... $\mathrm{H} 1 .$. |
| 6 | M6 | PIPE 2.0 | . 231 | 2... | 7 | 086.499 |  | 732.0323 | 32.13 | 1.872 | 1.8... | 1... $\mathrm{H} 1 .$. |
| 7 | M7 | PIPE 2.0 | 226 | 2.... | 7 | 091.499 |  | 732.0323 | 32.13 | 1.872 | 1.8... | 1.... H1 |
| 8 | M8 | 0.625' Dia. | . 190 | 3... | 6 | . 0243.333 |  | 61.058 | 9.94 | . 104 | 1042 | 2.... H 1. |
| 9 | M9 | 0.625' Dia. | . 177 | 0 | 3 | 0190 |  | 61.058 | 9.94 | 104 | 1042 | 2... $\mathrm{H} 1 .$. |
| 10 | M10 | SR 3/4 | 141 | 0 | 3 | 020 |  | 66.9541 | 14.314 | . 179 | 179 | 1 H 1. |
| 11 | M11 | 0.625' Dia. | . 194 | 0 | 3 | 0230 |  | 61.058 | 9.94 | . 104 | 1042 | 2.... H1 |
| 12 | M12 | SR 3/4 | . 144 | 0 | 3 | 0210 |  | 66.954 | 14.314 | . 179 | 1792 | 2... H 1. |
| 13 | M13 | 0.625' Dia. | . 194 | 0 | 3 | 0190 |  | 61.058 | 9.94 | . 104 | 1042 | 2.... H 1 |
| 14 | M14 | SR 3/4 | . 158 | 0 | 3 | 0170 |  | 66.954 | 14.314 | . 179 | 1792 | 2... H 1. |
| 15 | M15 | SR 3/4 | . 151 | 0 | 3 | 0180 |  | 66.954 | 14.314 | . 179 | . 179 | 1 H1... |
| 16 | PS. 2 | PIPE 2.0 | . 097 | 1.... | 6 | 0271.375 |  | 620.867 | 32.13 | 1.872 | 1.8... 1 | 1... H 1. |
| 17 | PS. 1 | PIPE 2.0 | . 311 | 5.... | 4 | . 0395.667 |  | 614.916 | 32.13 | 1.872 | 1.8.. | 4...H1. |
| 18 | M19 | PIPE 2.0 | . 195 | 4.... | 3 | 0584.625 |  | 620.867 | 32.13 | 1.872 | 1.8... 1 | 1... H 1. |
| 19 | M21A | PIPE 2.0 | . 113 | 1.... | 6 | 0711.375 |  | 620.86732 | 32.13 | 1.872 | 1.8... | 1... H 1. |




Envelope Only Solution
Centek Engineering
TJL
Nov 9, 2023 at 8:57 AM
Unity Check
Mount.R3D

| engineering | Subject: | Connection to Host Structure |
| :---: | :---: | :---: |
| Centered on Solutions ${ }^{-1}$ manucentekergsers | Location: | Portland, CT |
|  | Rev. 0: 5/11/23 | Prepared by: T.J.L. Checked by: C.F.C. Job No. 22017.06 |

## Antenna Mount Connection:

AnchorData:
A307 Threaded Rod =

| Number of Anc hor Bolts $=$ | $\mathrm{N}:=4$ | (User Input) |
| ---: | :--- | ---: |
| Diameter of Bolts $=$ | $\mathrm{D}:=0.625 \mathrm{in}$ | (User Input) |
| Design Tension $=$ | $\mathrm{T}_{\text {design }}:=10.4 \cdot \mathrm{kips}$ | (User Input) |
| Design Shear $=$ | $\mathrm{V}_{\text {design }}:=6.23 \cdot \mathrm{kips}$ | (User Input) |

## Design Reactions:

| $\mathrm{Fx}_{\mathrm{x}}=$ | $\mathrm{F}_{\mathrm{X}}:=1.7 \cdot \mathrm{kips}$ | (User Inpul) |
| :--- | :--- | :--- |
| $\mathrm{Fy}=$ | $\mathrm{F}_{\mathrm{y}}:=0.7 \cdot \mathrm{kips}$ | (User Input) |
| $\mathrm{Fz}=$ | $\mathrm{F}_{\mathrm{z}}:=2.8 \cdot \mathrm{kips}$ | (User Input) |

## AnchorCheck:

| Max Tension Force $=$ | $T_{\text {Max }}:=\frac{F_{Z}}{N}=700 \mathrm{lb}$ |
| :---: | :---: |
| Max Shear Force= | $V_{\text {Max }}:=\frac{F_{Y}}{N}+\frac{F_{X}}{N}=6001 \mathrm{~b}$ |
| Condition $1=$ | Condition1: $=$ if $\left(\frac{T_{\text {Max }}}{T_{\text {design }}}+\frac{V_{\text {Max }}}{V_{\text {design }}} \leq 1.0,{ }^{\text {n }}\right.$ (OK" , "NG $\left.{ }^{\prime \prime}\right)=$ "OK" |
| \% of Capacity= | $\max \left[\frac{T_{\text {Max }}}{T_{\text {design }}}, \frac{V_{\text {Max }}}{V_{\text {design }}},\left(\frac{\frac{T_{\text {Max }}}{T_{\text {design }}}+\frac{V_{\text {Max }}}{V_{\text {design }}}}{1.0}\right)\right]=16.4 . \%$ |

## verizon

NORTHEAST > North East > New England > Wallingford-1 > PORTLAND HS CT - B Cheiban, Ziad - ziad.cheiban@verizonwireless.com - 20230927_153155

| Project Details |  | Location Information |  |
| :---: | :---: | :---: | :---: |
| Carrier Aggregation | N | Site Id | 616480547 |
| Ecip | N | Search Ring\# |  |
| Project Name | PORTLAND HS CT | E-NodeB ID\# | null |
| Project Alt Name | PORTLAND HS CT | PSLC\# | 469381 |
| Project Id | 16599668 | Switch Name | Wallingford-1 |
| Designed Sector Carrier 4G | 15 | Tower Type |  |
| Designed Sector Carrier 5G | 3 | Site Type | MACRO |
| Additional Sector Carrier 4G | 0 | Street Address | 97 High Street |
| Additional Sector Carrier 5G | 0 | City | Portland |
| Suffix | Rev4-2023-09-27 | State | CT |
| FP Solution Type \& Tech Type | MCR;4G_700;4G_850;4G_AWS;4G CBRS; 5 G_L-Sub6;4G_PCS | Zip Code | 06480 |
|  |  | County | Middlesex |
|  |  | Latitude | 41.58071/41 ${ }^{\circ} 34^{\prime} 50.556^{\prime \prime}$ |
|  |  | Longitude | $-72.63136172^{\circ} 37^{\prime} 52.896^{\prime \prime}$ |



| Antenna Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Added Antenna |  |  |  |  |  |  |  |  |  |  |  |  |
| 700 | 850 | 1900 | AWs | CERS | L-Sub6 | Make | Model | Center \|line | Tip Height | Azimuth | $\begin{array}{\|l} \text { Insfall } \\ \text { Type } \end{array}$ | Quantit |
|  |  |  |  |  | 5 G | Samsung | MT6413-77A | 90 | 91.2 | $\begin{aligned} & 30(1), 150(2), 2 \\ & 70(3) \end{aligned}$ | PHYSICAL | 3 |
| LTE | LTE | LTE | LTE |  |  | COMMSCOPE | NNH4-65B-R6 | 90 | 93 | $\begin{aligned} & \begin{array}{l} 30(1), 150(2), 2 \\ 70(3) \end{array} \end{aligned}$ | PHYSICAL | 3 |
|  |  |  |  | LTE |  | Samsung | RT4423 | 90 | 90.4 | $\begin{array}{\|l\|l} \hline 30(19), 150(20) \\ , 270(21) \end{array}$ | PHYSICAL | 3 |


| Removed Antenna |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 700 | 850 | 4900 | AWs | Cbrs | L-Sub6 | Make | Modal | Center | Tip Height | Azimuth | Install Type | Quantit |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Retained Antenna |  |  |  |  |  |  |  |  |  |  |  |  |
| 700 | 850 | 1900 | AWS | CBRS | L-Sub6 | Make | Model | Center line | Tip Height | Azimuth | Install Type | Quantit |


| Non Antenna Summary |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Added Non Antenna |  |  |  |  |  |  |  |  |  |  |
| Equipment Type | Location | 700 | 850 | 1900 | AWS | CBRS | Make | Model | Install Type | Quantity |
| Hybrid Cable | Tower |  |  |  |  |  | Hybrid Cables | 1-1/4" Hybrid Cables | PHYSICAL | 2 |
| OVP | Tower |  |  |  |  |  |  | 12 OVP | PHYSICAL | 1 |
| RRU | Tower |  |  | LTE | LTE |  | Samsung | $\begin{aligned} & \text { B2/B66A RRH ORAN } \\ & \text { (RF4439d-25A) } \end{aligned}$ | PHYSICAL | 3 |
| RRU | Tower |  |  |  |  | LTE | Samsung | RF4423-48B | PHYSICAL | 3 |
| RRU | Tower | LTE | LTE |  |  |  | Samsung | RF4461d-13A | PHYSICAL | 3 |




| Services |  |  |  |
| :---: | :---: | :---: | :---: |
| 850 LTE | 0002 (8118082) |  |  |
| Sector | 01 | 02 | 03 |
| Azimuth | 30 | 150 | 270 |
| Cell/Enodeb-ld | 064040 | 064040 | 064040 |
| Antenna Model | NNH4-65B-R6 | NNH4-65B-R6 | NNH4-65B-R6 |
| Antenna Make | COMMSCOPE | COMMSCOPE | COMMSCOPE |
| Centerline | 90 | 90 | 90 |
| DLEARFCN | 2450 | 2450 | 2450 |
| Mech Down-tilt | 0 | 0 | 0 |
| Elect Down-tilt | 2 | 2 | 2 |
| Tip Height | 93 | 93 | 93 |
| Regulatory Power | 301.17 (W/MHz) ERPSD | 301.17 (W/MHz) ERPSD | 301.17 (W/MHz) ERPSD |
| Cell Max Power | 46.0 dBm | 46.0 dBm | 46.0 dBm |
| TMA Make |  |  |  |
| TMA Model |  |  |  |
| RRU Make | Samsung | Samsung | Samsung |
| RRU Model | RF4461d-13A | RF4461d-13A | RF4461d-13A |
| Number of Tx, Rx | 4.4 | 4, 4 | 4,4 |
| Position |  |  |  |
| Transmitter Id | 11298595 | 11298596 | 11298597 |
| Source | VZNPP | VZNPP | VZNPP |
| Bandwidth | 10 | 10 | 10 |
| Ant. Dimensions $H \times W \times D$ (inch) | $72.0 \times 19.6 \times 7.79$ | $72.0 \times 19.6 \times 7.79$ | $72.0 \times 19.6 \times 7.79$ |
| Weight(lb) | 81.82 | 81.82 | 81.82 |


| Services |  |  |  |
| :---: | :---: | :---: | :---: |
| 1900 LTE |  | 0002 (8118082) |  |
| Sector | 01 | 02 | 03 |
| Azimuth | 30 | 150 | 270 |
| Cell/Enodeb-ld | 064040 | 064040 | 064040 |
| Antenna Model | NNH4-65B-R6 | NNH4-65B-R6 | NNH4-65B-R6 |
| Antenna Make | COMMSCOPE | COMMSCOPE | COMMSCOPE |
| Centerline | 90 | 90 | 90 |
| DLEARFCN | 1050 | 1050 | 1050 |
| Mech Down-tilt | 0 | 0 | 0 |
| Elect Down-tilt | 2 | 2 | 2 |
| Tip Height | 93 | 93 | 93 |
| Regulatory Power | 168.95 (W/MHz) EIRP | 168.95 (W/MHz) EIRP | 168.95 (W/MHz) EIRP |
| Cell Max Power | 46.0 dBm | 46.0 dBm | 46.0 dBm |
| TMA Make |  |  |  |
| TMA Model |  |  |  |
| RRU Make | Samsung | Samsung | Samsung |
| RRU Model | $\begin{aligned} & \text { B2/B66A RRH ORAN } \\ & \text { (RF4439d-25A) } \end{aligned}$ | B2/B66A RRH ORAN (RF4439d-25A) | B2/B66A RRH ORAN (RF4439d-25A) |
| Number of Tx, Rx | 4,4 | 4,4 | 4, 4 |
| Position |  |  | $\cdots$ |
| Transmitter Id | 11298592 | 11298593 | 11298594 |
| Source | VZNPP | VZNPP | VZNPP |
| Bandwidth | 10 | 10 | 10 |
| Ant. Dimensions $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ (inch) | $72.0 \times 19.6 \times 7.79$ | $72.0 \times 19.6 \times 7.79$ | $72.0 \times 19.6 \times 7.79$ |
| Weight(Ib) | 81.82 | 81.82 | 81.82 |




| Callsigns Per Antenna |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sector | Maka ${ }^{\text {M }}$ | Madel | Ant CL Height AG | Ant Tip Helght | AzImuth | Elect Down-tilt | Mech Down-tllt | Galn | Bandwldth | Regulator y Power | 700 | 650 | 1900 | 2100 2 | 28 GHz | 31 GHz | 39 GHz | LSub-s | CBRS |
| 0003 | Samsung | MT6413-77A | 90 | 91.2 | 270 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNE5B1,WF NE582,WRNE 583,WRN E58 4, WRNE585 |  |
| 19 | Samsung | RT4423 | 90 | 80.4 | 30 | 7 | 0 | 10.34 | 67 | 3.76 |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { CBRS_CALLS } \\ & \text { IGN } \end{aligned}$ |
| 02 | COMMSCOPE | NNH4-658-R | 90 | 83 | 150 | 2 | 0 | 11.94 | 69.75 | 66.49 | WQJa6e9 |  |  |  |  |  |  |  |  |
| 03 | COMMSCOPE | NNH4-658-R | 90 | 93 | 270 | 2 | 0 | 12.54 | 65 | 301.17 |  | KNKAA04 |  |  |  |  |  |  |  |
| 0002 | Samsung | MT6413.77A | 90 | 91.2 | 150 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNE589, WR NE582, W'RNE 583,WRNE58 4,WRNE585 |  |
| 0002 | Samsung | MT6413.77A | 90 | 91.2 | 150 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNE5E5,WI- NE586, WRNE 587, WRME58 |  |
| 0001 | Samsung | MT64 13-77A | 90 | 91.2 | 30 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNE5E1, WF NE582,WRNE 583,WRME58 4,WRNE 585 |  |
| 02 | COMMSCOPE | NNH4-658-R | 90 | 93 | 150 | 2 | 0 | 12.54 | 65 | 301.17 |  | KNKA404 |  |  |  |  |  |  |  |
| 01 | COMMSCOPE | NNH4.658-R | 90 | 93 | 30 | 2 | 0 | 12.54 | 65 | 301.17 |  | KNKA404 |  |  |  |  |  |  |  |
| 21 | Samsung | RT4423 | 90 | 30.4 | 270 | 7 | 0 | 10.34 | 67 | 3.76 |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { CBRS_CALLS } \\ & \text { IGN } \end{aligned}$ |
| 0001 | Samsung | MT6413-77A | 90 | 91.2 | 30 | 1 | 0 | 23.15 | 105 | 743.34 |  |  |  |  |  |  |  | $\begin{aligned} & \text { WRNE585,WI } \\ & \text { NE5B6,V/RNE } \\ & 587, \text { WRINE58 } \end{aligned}$ |  |
| 02 | COMMSCOPE | NNH4-658-R | 90 | 93 | 150 | ${ }^{2}$ | 0 | 13.92 | 60.75 | 168.95 |  |  | $\begin{array}{\|l\|} \hline \text { KNLH251,WP } \\ \text { OJ730 } \\ \hline \end{array}$ |  |  |  |  |  |  |
| 03 | COMMSCOP限 | NNH4-65B-R | 90 | 93 | 270 | 2 | 0 | 13.92 | 60.75 | 16895 |  |  | KNLH251,WP O. 730 |  |  |  |  |  |  |
| 03 | COMMSCOPE | NNH4-658-R | 80 | 93 | 270 | 2 | 0 | 11.94 | 69.75 | 66.49 | WQJO689 |  |  |  |  |  |  |  |  |
| 01 | COMMSCOPE | NNH4-658-R | 90 | 93 | 30 | 2 | 0 | 11.94 | 69.75 | 66.49 | WQJQ689 |  |  |  |  |  |  |  |  |
| 20 | Samsung | RT4423 | 80 | 90.4 | 150 | 7 | 0 | 10.34 | 67 | 3.76 |  |  |  |  |  |  |  |  | CBRS_CALLS <br> IGN |
| 0003 | Samsung | MT6413-77A | 90 | 91.2 | 270 | 1 | 0 | 23,15 | 105 | 743.34 |  |  |  |  |  |  |  | WRNE585,WF NE586,WRNE 587,WRNE58 |  |
| 01 | COMMSCOP | -NNH4-65B-R | 90 | 93 | 30 | 2 | 0 | 13.92 | 60.75 | 168.95 |  |  | $\begin{aligned} & \text { KNLH251,WP } \\ & \text { OJ730 } \end{aligned}$ |  |  |  |  |  |  |
| 03 | COMMSCOP | ENNH4-658-R | 90 | 93 | 270 | 2 | 0 | 13.93 | ${ }^{63.5}$ | 84.67 |  |  |  | WQGA906,WC GB276 |  |  |  |  |  |
| 02 | COMMSCOPE | ENNH4-656-R | 90 | 93 | 150 | 2 | 0 | 13.93 | ${ }^{63.5}$ | 84.67 |  |  |  | $\begin{array}{\|l\|} \hline \text { WQGA906,WC } \\ \text { GB276 } \\ \hline \end{array}$ |  |  |  |  |  |
| 01 | COMMSCOP | ENNH4-658-R | 90 | ${ }^{93}$ | 30 | 2 | 0 | 13.93 | 63.5 | 84.67 |  |  |  | WQGA906,WC GB276 |  |  |  |  |  |




## verizon ${ }^{\vee}$

## SITE NAME: PORTLAND HS CT SITE ID: 616480547 97 HIGH STREET PORTLAND, CT 06480



PROUECT SUMMARY





5. MSTLU (1) PRepesse prrap ow 12
7. NSTLL (3) sector frame avimu mouns, Tr. (1) Per sector






| PROJECT INFORMATION |  |
| :---: | :---: |
| STE MuE: | portumo ns or |
| sme in: | 81940547 |
| Stre nopres: |  |
| npucum: |  |
| conrict pessow: | MICHAH HUMPHREVS (CONSTRUCTION MANAGER) (860) 560-8410 |
| Enenerer of recomo: | Conir icimizn icc <br>  |
| sne cooramurs: | UTMOE $41-34-5.50 .0^{\circ}$ <br> Erouno Eeumor: scoit Aus. <br>  |



縰

画


## NOTES AND SPECIFICATIONS:

## degcur base


ossan cantrui



## ate notes

THE Covirccror swl clu umine pror to me sine or






## ceneral noties










- .












2. 


2.


26. ME ME Cun/ ,


## RIUCTURAL STEI

Esmess pescan (sol


## 

Ppesill


















.



| ANTENNA/APPURTENANCE SCHEDULE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Desmum/Raposesp | ntrown (mm) |  | ~19ame | Nzwr | (EPP) Repu (om | (E/P) castes (em |
| ${ }^{1}$ | Proposs | Sumshe: R1423 | $12.0 \times 8.7 \times 1.5$ | $0^{\circ}$ | ${ }_{3}$ |  |  |
| ${ }_{\sim}^{2}$ | Praposesesm |  | $\frac{71.0 \times 1.98 \times 7.7}{20.9 \times 15.7}$ | $\frac{8}{6}$ | ${ }_{3}{ }_{3}$ |  |  |
| $\sim$ | Proposesp | suwsume wrali-7x | $289 \times 15.73 \times 5.5$ ( |  |  |  |  |
| 81 | Praposes | Sussume erimez | $120 \times 4.7 \times 1.5$ | ${ }^{00}$ | ${ }^{150}$ |  | (9) Ex12 mpartux (2) |
| ${ }_{83}^{82}$ | ${ }_{\text {Praposes }}^{\text {Propesed }}$ |  | $\frac{71.9 \times 10.9 \times 7.7}{20.9 \times 1375 \times 59}$ | ${ }^{\text {oob }}$ | ${ }_{1}^{185 \sigma}$ |  |  |
| al | Praposso | Suswn: ri423 | $120 \times 47 \times 1.5$ | ${ }^{00}$ | ${ }^{270}$ | (P) SWSLWe Cons |  |
| ${ }^{\circ}$ | Propesesid |  | $71.9 \times 18.9 \times 7.7$ | ${ }^{\text {oo }}$ | ${ }^{27 \%}$ |  |  |
|  |  | swaswe: neali-7n | $22.9 \times 15.78 \times 8.3)$ | ${ }^{\circ}$ | 270 |  |  |



$\left(\begin{array}{c}1 \\ (-2) \text { SECTOR PTAME MOUNT DETAL } \\ \text { SSAEE } 3 / 16^{\circ}-1-0^{\circ}\end{array}\right.$



(3) ANIENA ELEVATON - PROPOSED



1
$(\mathrm{c}-3$
ANTIENNA COT TO SOABLE


2-3 COMPOUND SURFACING DETALL



3. merr to nots on sher $n-1$ for nomponc reaumeanss.

(3) CONCRETE PAD DETALL (TYP)


NOTES:









 E. Cownour now a w. own (or sumbr) ste convur.



 METAL PPE THOOUCH CONCREIE ( 3 LOOR/ WALL OR BLOCK WALLPPEE AND CONDUTT PENEIRATION 4 DETALL IN NON-RATED PARTIIION


## Iccinss of selwe mpued nusu min

 it simen numere culiza SCNE Not To SCCIE




(2) COMBINED RRH/CLIP-ON ANIENNA DETALL





(5) DUAL-BAND AWS/PCS MACRO RADIO UNTT DETALL






(1) COMPOUND GHOUNDNQ PLAN



(5) ww caumo we mp.




(10) bonv grouno ant to cround pnc mp. 2 pucte
(0) bove growno ent to croonv ris tr. 2 puce
(12) "ce amore
(13) Lone towr momiti granio




(11) section croouno ar mp.



(2) ANIENNA GROUNDING PLAN





(4) GROUND-STD. DETALL FENCE GROUNDING

(2) MASTER/EOUIPMENT GROUND BAR DETALLS


(5) CONNECTION OF GROUND WIRES TO GROUND BAR

(3) GROUND BAR DETALL


## ECIPICAL SPECFCATON

## con









1．Tieptone calls．


1.02 Conivective










．SL mak sill



4．Strop prumnes：


 SECTON 16T11






| CONDUT SCHEDULE SECTION 16m |  |  |  |
| :---: | :---: | :---: | :---: |
| canarime | nectarave | umbatan | 边 |
| am | NTICEL 3 S6 |  | $\mathrm{N} / \mathrm{A}$ |
| Mc，grap aly |  | N4 Wruar expana gramma | ${ }^{6}$ ments |
|  |  |  | 18 ments |
| PCC，Schilue zo |  |  | 18 mentes |
| Luav nier mix | MmTCle 350 |  | N／A |
| fiex mem | nmole 38 |  | N／A |
|  |  |  |  |
|  |  |  |  |

## SECTION $1612 x^{2}$





## $\frac{\text { gection } 10130}{1.01 .}$



$\frac{\text { SECTON } 10140}{1.01 .}$


2 OUPLIX Recepticle－Pas


 SECTION 1.1070


## ECTON 10060

## SECTON 181900


SECTION 16BD




E

## SECTON 18450




## c．Crownome of Pulioare



．）Eequruer groomone convuer


 caviec crawnows sstax：


 I．Mravi irifini comectons mo purs．



## SECTON 18470


SECTION 16477



## SCTION 1862

## guppled br owner，netaled gr contractor

，










SECIION 18961







[^0]:    ${ }^{1}$ The RT4423 antenna includes a built-in RRH, which will replace RRH model RT4401-48A as originally approved.

[^1]:    ${ }^{1} P_{\mu} / \phi P_{n}$ controls

[^2]:    Program Version 8.1.1.0-6/3/2021 File://10.0.1.130/Active/Jobs/Blue Sky Tower III LLC/Portland - CT 1680/240022-RFQ QTE PO SA INV/Analysis/Calcs/REV 1/240022REV1.Portland.CT-1680.BSTManagementLLC.Analysis.eri

