## smartlink

May 9, 2014
Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
$\left.\begin{array}{ll}\text { Re: } & \begin{array}{l}\text { Notice of Exempt Modification - Three (3) New Radio } \\ \text { Heads Only }\end{array} \\ \text { Property Address: } \\ \text { 82 Tyrone Road, Pomfret, CT 06258 } \\ \text { (the "Property") }\end{array}\right\}$

Dear Ms. Bachman:
AT\&T currently maintains a wireless telecommunications facility on an existing 154 -foot monopole (tower) location on the Property. AT\&T's facility consists of nine (9) wireless telecommunication antennas at a height of 152 -feet. The tower is owned by Crown Castle, LLC. The Council approved AT\&T's use of the tower in the following prior decisions; EM-CING-112-090205 and EM-CING-112-130110. In its 1/25/2013 decision (the "Decision"), the Council approved for AT\&T to install 6 Remote Radio Heads (Ericsson RRUS-11) but AT\&T only installed three (3). AT\&T now intends to install the remaining RRUS-11's to complete the installation. This Exempt Mod Application is necessary because the 1/25/2013 decision is over one year old. Please refer to Tab 1 for further specifications of the new radio heads.

Please accept this application as notification pursuant to R.C.S.A. §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. §16-50j72(b)(2). In accordance with R.C.S.A. §16-50j-73, a copy of this letter is being sent to the Pomfret Board of Selectmen. A copy of this letter is also being sent to Crown Castle, LLC the owner of the property where the tower is located.

The planned modifications to AT\&T's facility fall squarely within those activities explicitly provided for in R.C.S.A. §16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. AT\&T's new RRUS-11's will be installed at the 152 -foot level of the 154 -foot monopole.

## smartlink

2. The proposed modifications will not involve any changes to ground-mounted equipment and, therefore, will not require and extension of the site boundary.
3. The proposed modifications will not increase the noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the modified facility will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A RF emissions calculation for AT\&T's modified facility was provided in the application which led to the $1 / 25 / 2013$ Decision. See Tab 2 attached.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The tower and its foundation can support AT\&T's proposed modifications. (See Structural Analysis Report included in Tab 3).
For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitutes an exempt modification under R.C.S.A. §16-50j-72(b)(2).

cc: Crown Castle, LLC 12725 Morris Road Extension Suite 400 Alpharetta GA 30004

Pomfret Board of Selectmen - 5 Haven Road, Pomfret Center, CT 06259

33 Boston Post Road West, Marlborough, Massachusetts 01752
p: 508.954.7702 • adam.braillard@smartlinkllc.com
www.smartlinkllc.com


















SIIE WORK General wotes;





 NuOOR LCour inums.








## CONCRETE AND REINFORCING STEEL NOTES






$\underset{5}{5} 5$









 STRUCTURAL STEEL NOTES:







2. AL structural stec work shal be done in accoroance wit asc specifactons.

SOIL COMPACTION NOTES FOR SLAB ON GRADE:





 COMPACTION EQUIPMENT:
 CONSTRUCTION NOTES:




ELECTRICAL installation notes:

 . Conour fournms are schemic. contractor stall instal conours so thet access to eaurment is no
 CABLES SHLLL Not ee routeo throuer luoose-STIE cable tray runcos.



10. ALL te wraps stral be cut fush wit approved cuting tool to rewove shrap eoges

OTHERME SPECIRED.





7. racenay and cable tray shall ae liteo or haeled for electrical use in accoobance wit nem, ul.








26. Casmist, boxes, avo mrewars to mich The exsing nistaumon wher possile.







smartlink
ANNAPOLSS EXCHANGE PARKw SUITE 200

CT1050 POMFRET


Dewberry
Dewberry Engineers Inc.



DRawn By
Renewed Br:
CHECKED BY:
PROEECT NUMEER: $\quad 50063024$
JOB NUMER: $\quad 50063027$
Uob
82 TYRONE ROAD
82 TYRONE ROAD
WINDHAM COUNTY
$\triangle$ SHEET TILE
GENERAL NOTES




##  








隹




Ecin wrivo puwusio













 22 New conouro
为


 nere


## CONNECTION OF GROUND WIRES

 TO GROUNDING BAR (CIGBE)

SECTION 'A-A'
nets:
doubung up or stacking of connections is not perumiea
. oxid
TYPICAL GROUND BAR
MECHANICAL CONNECTION DETAIL


CONNECTION TO EQUIPMENT DETAIL 3


TYPICAL ANTENNA 4

bono antenna grounong kit cable to top cigee
2. BoND ANTENN GROUNONG KT CABLE TO botom cige.
3. SCHEMATC GROUNONG DAGGAM IS TPICAL FOR EACH SECTOR.
4. GROUNO ALL EOUPMENT PER MANUFACTURER RECOMMENations.

SCHEMATIC GROUNDING DIAGRAM
SCMEE NTIS.
5

## at\&t

## 500 ENTERPRISE DRVE SUITE 3 A ROCKY HILL, CT 06067

smartink SUITE 200ANNAPOLS, MD
21401

CT1050 POMFRET


Dewberry ${ }^{*}$ Dewberry Engineers Inc.



|  <br>  |
| :--- |

200 North Glebe Road, Suite 1000 Arlington VA 22203-3728

Todd Oliver
Smartlink, LLC
Market Manager, NE
33 Boston Post Road, Suite 210
Marlborough, MA 01752
Reference: Smartlink LLC Site, 82 Tyrone Road, Pomfret, CT
Date: 6 May 2014

1. This letter will address the additional RF impact that adding AT\&T LTE antennas to the referenced site. Attached are two documents which cover the modeled RF emissions from the site.
2. The first report, "RF Emissions Compliance Report," for the site complied by Sitesafe, uses the antenna patterns for the antennas at the site to calculate the General Public Maximum Permissible Exposure (MPE) on the ground. The total MPE of all the carriers is $0.585 \%$ (based on the General Public MPE) based on this modeling, with AT\&T antennas emitting a maximum of $0.585 \%$ of the General Public MPE on the ground.
3. The second attachment has the calculations, used by the Connecticut Siting Council, which assumes the maximum antenna gain transmits in a spherical pattern where the worst case results would be at the base of the tower. That calculation, based on the existing antennas, gives a result of $15.23 \%$ of the General Public MPE, with the AT\&T antennas emitting 15.23\% of the General Public MPE on the ground, using the modeling predictions used by Connecticut Siting Council.
4. In either case, the site is compliant with FCC guidelines. If you have any questions regarding this site, the compliance report, please contact me at 719-434-0700 or dcotton@sitesafe.com.
 Date: 2014-May-07

# RF EMISSIONS COMPLIANCE REPORT 

## Smartlink LLC on behalf of AT\&T Mobility, LLC

AT\&T Mobility, LLC Site FA: 10035021
AT\&T Mobility, LLC Site ID: CT1050
AT\&T Mobility, LLC USID: 140501
AT\&T Mobility, LLC Site Name: Pomfret
82 Tyrone Road
Pomfret, CT
5/6/2014

Report Status:
AT\&T Mobility, LLC Is Compliant

Prepared By:
Sitesafe, Inc.

## Engineering Statement in Re:

Electromagnetic Energy Analysis
AT\&T Mobility, LLC
Pomfret, CT
My signature on the cover of this document indicates:
That I am registered as a Professional Engineer in the jurisdiction indicated; and
That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Sitesafe, Inc. in Arlington, Virginia; and
That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by AT\&T Mobility, LLC (See attached Site Summary and Carrier documents), and that AT\&T Mobility, LLC's installations involve communications equipment, antennas and associated technical equipment at a location referred to as the "Pomfret" ("the site"); and

That AT\&T Mobility, LLC proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by AT\&T Mobility, LLC and shown on the worksheet, and that worst-case $100 \%$ duty cycle have been assumed; and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radiofrequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio-frequency radiation must utilize the standards set by the FCC, which is the Federal Agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," defined as situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and (2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and

That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of AT\&T Mobility, LLC's operating frequency as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed AT\&T Mobility, LLC operation is no more than $0.585 \%$ of the maximum in any accessible area on the ground and

That it is understood per FCC Guidelines and OET65 Appendix A, that regardless of the existent radio-frequency environment, only those licenses whose contributions exceed five percent of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any noncompliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than $0.585 \%$ of the maximum in any accessible area up to two meters above the ground per OET-65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET-65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier and frequency range indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding Radio Frequency Safety.

In summary, it is stated here that the proposed operation at the site would not result in exposure of the Public to excessive levels of radio-frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307 and that AT\&T Mobility, LLC's proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals, and approved contractor personnel trained in radio-frequency safety; and that the instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower, or in the immediate proximity of the antennas.

Note: Sitesafe has used data obtained from the "Connecticut Siting Council" to create this report. The manufacturer antenna patterns for AT\&T Mobility, LLC were used to determine the RF emissions from the AT\&T Mobility, LLC antennas. Sitesafe has also referenced the AT\&T Mobility, LLC construction diagram for this site. The AT\&T Mobility, LLC construction diagram references that RRU (Remote Radio Units) will be installed at the site with the existing antennas.

The following documents below were the primary sources of data used to create this report. The primary document was the "Connecticut Siting Council" document. The AT\&T Mobility, LLC construction diagram was referenced when appropriate.

Connecticut Siting Council: AlphaExMPowDens 4-16-14
AT\&T Mobility, LLC Construction Diagram: 10035021.AE201.140501 (CT1050) Dewberry Rev 1
${ }^{12}$ This Power Density information was taken from the Connecticut Siting Council database dated April 16, 2014.
${ }^{[2]}$ This Power Density information is based on worse case assumptions from AT\&T's radio frequency engineers.


## AT\&T Mobility, LLC <br> Pomfret <br> Site Summary

| Carrier | Area Maximum Percentage MPE |
| :---: | :---: |
| AT\&T Mobility, LLC | $0.194 \%$ |
| AT\&T Mobility, LLC | $0.21 \%$ |
| AT\&T Mobility, LLC | $0.18 \%$ |
|  |  |
| Composite Site MPE: | $0.585 \%$ |


| Control Number | Power Density Calculations |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Site | Carrier | \#Channels | ERP/Ch | Ant Ht |  |  |  |  |  |
| EM-CING-112-130110 | Pomfret - 82 Tyrone Road | AT\&T UMTS |  |  |  | Power Density (mw/c | MHz | $s$ | \%MPE | Site Total |
| EM-CING-112-130110 | Pomfret - 82 Tyrone Road | AT\&T UMTS | 2 | 565 | 152 | 0.0176 | 880 | 0.5867 | 3.00\% |  |
| EM-CING-112-130110 | Pomfret - 82 Tyrone Road | AT\&T GSM | 1 | 875 | 152 | 0.0272 | 1900 | 1.0000 | 2.72\% |  |
| EM-CING-112-130110 | Pomfret - 82 Tyrone Road | AT\&T GSM | 1 | 283 | 152 | 0.0044 | 880 | 0.5867 |  |  |
| EM-CING-112-130110 | Pomfret -82 Tyrone Road | AT\&TLTE | 4 | 525 | 152 | 0.0327 | 1900 | 1.0000 | 3.27\% |  |
|  |  | AR\&tit | 1 | 1771 | 154 | 0.0269 | 734 | 0.4893 | 5.29\% | 15.23\% |

## Pinnacle Wireless

Pinnacle Wireless
Suite A Building 2
800 Marshall Phelps Road
Windsor, CT 06095

Kevin Clements
1117 Perimeter Ctr W, Suite W303
Atlanta, GA 30328
(678) 467-7228
kclements@gpdgroup.com
GPD\# 2012832.07
January 4, 2013
STRUCTURAL ANALYSIS REPORT WITH MODIFICATION DESIGN
Site USID:
Site FA:
Site Name:
AT\&T Project
Codes:

ANALYSIS CRITERIA: Codes: TIA/EIA-222-F, 2003 IBC, ASCE 7-05 \& 2005 CTBC
$85-\mathrm{mph}$ with $0^{\prime \prime}$ ice
28 -mph with $1^{\prime \prime}$ ice
82 Tyrone Rd, Pomfret, CT 06258, Windham County Latitude $41^{\circ} 53^{\prime} 24.871^{\prime \prime} \mathrm{N}$, Longitude $71^{\circ}$ 57' 20.199" W Market: New England
150' Monopole

Lauren Groppi,
GPD is pleased to submit this Structural Analysis Report with Modification Design to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

## Analysis Results

| Tower Stress Level with Proposed Equipment: | $95.4 \%$ | Pass |
| :--- | :--- | :--- |
| Foundation Ratio with Proposed Equipment: | $76.8 \%$ | Pass |

Note: In order for this analysis results to be valid for the proposed, existing, and reserved loading in Appendix A the modifications referenced in the design drawings by GPD (Project \#: 2012832.07, dated 1/4/2012) must be installed.

We at GPD appreciate the opportunity of providing our continuing professional services to you and Pinnacle Wireless. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.


## SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing modified structure is capable of carrying the proposed loading configuration as specified by AT\&T Mobility to Pinnacle Wireless. This report was commissioned by Ms. Lauren Groppi of Pinnacle Wireless.

## All proposed coax shall be internal to the monopole in order for the analysis results to be valid.

The proposed modifications by GPD (Project \#: 2012832.07, dated $1 / 4 / 2012$ ), consist of adding flat plate reinforcement from $0^{\prime}-130.3^{\prime}$, installing bridge stiffeners at $110^{\prime}$, adding anchor rods to the base and extending the existing pad foundation, and have been considered in this analysis. See Appendix H for the modification drawings.

TOWER SUMMARY AND RESULTS

| Member | Capacity | Results |
| :--- | :---: | :---: |
| Monopole | $95.4 \%$ | Pass |
| Anchor Rods | $89.6 \%$ | Pass |
| Base Plate | $74.6 \%$ | Pass |
| Flange Bolts | $30.7 \%$ | Pass |
| Flange Plates | $68.4 \%$ | Pass |
|  |  |  |
| Foundation | $76.8 \%$ | Pass |

## ANALYSIS METHOD

TNX Tower (Version 6.0.4.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

| Document | Remarks | Source |
| :--- | :--- | :---: |
| Equipment Modification Form | AT\&T Internal Loading Document, uploaded 8/27/12 | Siterra |
| Construction Drawings | Not Provided | $\mathrm{N} / \mathrm{A}$ |
| Tower Design | Not Provided | $\mathrm{N} / \mathrm{A}$ |
| Foundation Design | Not Provided | $\mathrm{N} / \mathrm{A}$ |
| Modification Drawings | GPD Project \#: 2012832.07, dated 1/4/12 | GPD |
| Geotechnical Report | Dr. Clarence Welti, dated 5/15/09 | Siterra |
| Previous Structural Analysis | GPD Project \#: 2009013.07, dated 6/2/09 | Siterra |
| Tower Mapping | GPD and Northeast Towers Inc, dated 12/3/08 | Siterra |

## ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
3. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
4. The soil parameters are as per data supplied or as assumed and stated in the calculations.
5. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
6. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
7. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
8. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
9. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
10. All existing loading was obtained from the previous analysis by GPD Job \#: 2009013.07, dated 6/2/09, site photos, the provided equipment modification form and is assumed to be accurate.
11. The existing AT\&T loading elevation found in the previous analysis by GPD Job \#: 2009013.07, dated 6/2/09 was found to vary from the EMF and site photos. The existing AT\&T loading elevation was based on the site photos.
12. The proposed modifications by GPD (Project \#: 2012832.07, dated $1 / 4 / 2012$ ), consist of adding flat plate reinforcement from $0^{\prime}-130.3^{\prime}$, installing bridge stiffeners at $110^{\prime}$, adding anchor rods to the base and extending the existing pad foundation, and have been considered in this analysis. See Appendix H for the modification drawings.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD Group should be allowed to review any new information to determine its effect on the structural integrity of the tower.

## DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

## APPENDIX A

## Tower Analysis Summary Form

Tower Analysis Summary Form


## APPENDIX B

tnxTower Output File

| tnxTower | 71304 POMFRET-TYRONE RD |  | $\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| GPD <br> 520 South Main Street, Suite 2531 | Project | 2012832.07 | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 18:20:26 01/04/13 } \end{array}$ |
| Akron, OH 44311 <br> Phone: 330.572 .2100 <br> FAX: 330.572 .2101 | Client | Pinnacle Wireless | Designed by jfields |

## Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard
The following design criteria apply:
Tower is located in Windham County, Connecticut.
Basic wind speed of 85 mph .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 28 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph
A non-linear (P-delta) analysis was used
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.
Feed Line/Linear Appurtenances - Entered As Area



| Description | Face or Leg | Allow Shield | Component Type | Placement ft | Total Number |  | $\begin{aligned} & C_{A} A_{A} \\ & {f t^{2} / f t}^{2} \end{aligned}$ | Weight plf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ Mod Plate | A | No | $\begin{aligned} & \text { CaAa (Out Of } \\ & \text { Face) } \end{aligned}$ | 130.25-0.75 | 2 | No Ice | 0.00 | 0.00 |
|  |  |  |  |  |  | 1/2" Ice | 0.00 | 1.30 |
|  |  |  |  |  |  | $1{ }^{1 \prime}$ Ice | 0.00 | 2.60 |
|  |  |  |  |  |  | $2^{\prime \prime}$ Ice | 0.00 | 3.90 |
| 5" x 1-1/4" Mod Plate | A | No | $\begin{aligned} & \mathrm{CaAa} \text { (Out Of } \\ & \text { Face) } \end{aligned}$ |  |  | 4 " Ice | 0.00 | 5.20 |
|  |  |  |  | 130.25-0.75 | 1 | No Ice | 0.21 | 0.00 |
|  |  |  |  |  |  | 1/2" Ice | 0.32 | 1.30 |
|  |  |  |  |  |  | $1^{\prime \prime}$ Ice | 0.43 | 2.60 |
|  |  |  |  |  |  | 2" Ice | 0.65 | 3.90 |
| $5^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ Mod Plate | A | No | CaAa (Out Of Face) |  |  | 4" Ice | 1.10 | 5.20 |
|  |  |  |  | 130.25-0.75 | 1 | No Ice | 0.21 | 0.00 |
|  |  |  |  |  |  | $1 / 2^{\prime \prime}$ Ice | 0.32 | 1.30 |
|  |  |  |  |  |  | 1" Ice | 0.43 | 2.60 |
|  |  |  |  |  |  | 2" Ice | 0.65 | 3.90 |
|  |  |  |  |  |  | 4 " Ice | 1.10 | 5.20 |

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

$l b$ <br>

\hline \multirow[t]{4}{*}{$$
\begin{aligned}
& 10^{\prime}-8 " \text { Central Platform w/ } \\
& 42^{\prime \prime} \text { tower extension }
\end{aligned}
$$} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 43.32 \& 43.32 \& 2500.00 <br>

\hline \& \& \& \& \& \& 1/2" Ice \& 46.28 \& 46.28 \& 3250.00 <br>
\hline \& \& \& \& \& \& 1 " Ice \& 49.24 \& 49.24 \& 4000.00 <br>
\hline \& \& \& \& \& \& 2" Ice \& 55.16 \& 55.16 \& 5500.00 <br>
\hline \multirow{6}{*}{(2) $7770.00 \mathrm{w} /$ Mount Pipe} \& \& \& \& \& \& 4 " Ice \& 67.00 \& 67.00 \& 8500.00 <br>
\hline \& \multirow[t]{5}{*}{A} \& \multirow[t]{2}{*}{From Centroid-Le} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 5.88 \& 4.10 \& 61.54 <br>
\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 6.31 \& 4.73 \& 107.08 <br>
\hline \& \& \multirow[t]{3}{*}{g} \& 0.00 \& \& \& 1 " Ice \& 6.75 \& 5.37 \& 160.39 <br>
\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 7.66 \& 6.70 \& 289.46 <br>
\hline \& \& \& \& \& \& 4 " Ice \& 9.58 \& 9.87 \& 654.29 <br>
\hline \multirow[t]{5}{*}{(2) $7770.00 \mathrm{w} /$ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From
Centroid-Le
g} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 5.88 \& 4.10 \& 61.54 <br>
\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 6.31 \& 4.73 \& 107.08 <br>
\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 6.75 \& 5.37 \& 160.39 <br>
\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 7.66 \& 6.70 \& 289.46 <br>
\hline \& \& \& \& \& \& 4 " Ice \& 9.58 \& 9.87 \& 654.29 <br>
\hline \multirow[t]{5}{*}{(2) $7770.00 \mathrm{w} / \mathrm{Mount}$ Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{2}{*}{From Centroid-Le} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& \& 5.88 \& 4.10 \& 61.54 <br>
\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 6.31 \& 4.73 \& 107.08 <br>
\hline \& \& \multirow[t]{3}{*}{g} \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 6.75 \& 5.37 \& 160.39 <br>
\hline \& \& \& \& \& \& 2 " Ice \& 7.66 \& 6.70 \& 289.46 <br>
\hline \& \& \& \& \& \& 4 " Ice \& 9.58 \& 9.87 \& 654.29 <br>

\hline \multirow[t]{5}{*}{SBNH-1D6565C w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 11.45 \& 9.12 \& 82.70 <br>

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.06 \& 10.21 \& 162.03 <br>
\hline \& \& \& 2.00 \& \& \& 1 I' Ice \& 12.69 \& 11.18 \& 254.15 <br>
\hline \& \& \& \& \& \& 2 " Ice \& 14.03 \& 13.17 \& 469.01 <br>
\hline \& \& \& \& \& \& 4" Ice \& 17.05 \& 17.35 \& 1051.99 <br>

\hline \multirow[t]{5}{*}{$$
\begin{aligned}
& \text { AM-X-CD-17-65-00T w/ } \\
& \text { Mount Pipe }
\end{aligned}
$$} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$
\]} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 11.31 \& 9.10 \& 105.82 <br>

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 11.93 \& 10.52 \& 189.52 <br>
\hline \& \& \& 2.00 \& \& \& $1^{\prime \prime}$ Ice \& 12.55 \& 11.60 \& 285.59 <br>
\hline \& \& \& \& \& \& 2" Ice \& 13.88 \& 13.80 \& 512.39 <br>
\hline \& \& \& \& \& \& 4" Ice \& 16.88 \& 18.41 \& 1127.38 <br>

\hline \multirow[t]{4}{*}{$$
\begin{aligned}
& \text { AM-X-CD-17-65-00T w/ } \\
& \text { Mount Pipe }
\end{aligned}
$$} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$
\]} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{152.00} \& No Ice \& 11.31 \& 9.10 \& 105.82 <br>

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 11.93 \& 10.52 \& 189.52 <br>
\hline \& \& \& 2.00 \& \& \& 1 1" Ice \& 12.55 \& 11.60 \& 285.59 <br>
\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 13.88 \& 13.80 \& 512.39 <br>
\hline
\end{tabular}

| tnxTower | 71304 POMFRET-TYRONE RD |  | $\begin{aligned} & \text { Page } \\ & \\ & \\ & \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| GPD <br> 520 South Main Street, Suite 2531 | Project | 2012832.07 | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 18:20:26 01/04/13 } \end{array}$ |
| Akron, OH 44311 <br> Phone: 330.572 .2100 <br> FAX: 330.572 .2101 | Client | Pinnacle Wireless | Designed by jfields |




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \(f t\) \(f t\) ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$
Front

$f t^{2}$ \& $C_{A} A_{A}$
Side

$f t ⿳ ⺈^{2}$ \& Weight

$l b$ <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.03 \& 1.03 \& <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\text {" Ice }}$ \& 1.28 \& 1.28 \& 25.48 <br>
\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 1.81 \& 1.81 \& 52.76 <br>
\hline \& \& \& \& \& \& 4" Ice \& 3.11 \& 3.11 \& 147.65 <br>
\hline
\end{tabular}

| Critical Deflections and Radius of Curvature - Service Wind |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Elevation <br> ft | Appurtenance | Gov. | Deflection | Tilt |  |  |
|  |  | Load | Deflection | Tilt | Twist | Radius of Curvature |
|  | 10'-8" Central Platform w/ 42" tower | Comb. | in | ${ }^{\circ}$ | - | $f t$ |
|  | 10-8 Central Platform w/ 42" tower extension | 33 | 44.523 | 2.9349 | 0.0032 | 7674 |
| 107.00 | 4' Dipole | 33 | 22.218 | 2.0292 |  |  |
| 97.00 | 4' Dipole | 33 | 18.203 | 1.8379 | $\begin{aligned} & 0.0002 \\ & 0.0002 \end{aligned}$ | $3297$ |

## Section Capacity Table

| Section No. | $\qquad$ | Component Type | Size | Critical Element | $\begin{aligned} & P \\ & l b \end{aligned}$ | $\begin{gathered} S F * P_{\text {allow }} \\ l b \end{gathered}$ | $\begin{gathered} \% \\ \text { Capacity } \end{gathered}$ | Pass <br> Fail |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | $150-129.25$ $129.25-110$ | Pole | TP17.4673×14.5×0.1875 | 1 | -3473.10 | 542361.69 | 78.5 | Pass |
| L3 | $129.25-110$ 110 | Pole Pole | TP20.22x17.4673x0.47 | 2 | -5418.02 | , | 84.6* | Pass |
| L4 | 70-31 | Pole | TP31.52 ${ }^{\text {TP } 24.5145 \times 0.599}$ | 3 | -10791.30 | * | 89.5* | Pass |
| L5 | 31-0 | Pole | TP36x29.7312x0.622 | 5 | -26914.60 | * | 87.7* | Pass |
|  |  |  |  |  |  | * | 95.4* | Pass |
|  |  |  |  |  |  |  | Summary |  |
|  |  |  |  |  |  | Pole (L5) | 95.4* | Pass |
|  |  |  |  |  |  | RATING = | 95.4* | Pass |

## APPENDIX C

Tower Elevation Drawings

$\qquad$ ${ }^{\text {rad }}$ $\qquad$ App In Face $\qquad$
$\qquad$ Truss Leg


Base Plate \& Anchor Rod Calculations


GPD Unstiffened Square Base Plate Stress (Rev F) - V2.07
520 South Main Street • Suite 2531 • Akron, Ohio 44311• PHONE 330-572-2100 • FAX 330-572-2101

| Calculated By: |  |
| :--- | :--- | :--- | :--- |
| Checked By: JDF | Date: |
|  | Date: |

## APPENDIX E

Modification Calculations


## APPENDIX F

Flange Plate \& Flange Bolt Calculations


520 South Main Street • Suite 2531 • Akron, Ohio 44311• PHONE 330-572-2100 • FAX 330-572-2101


## APPENDIX G

Foundation Calculations
Mat Foundation Analysis

| General Info |
| :---: |
| TIA/EIA-222-F (ASD) |
| Soil |
| Mono Pad |
| Square |
| No |
|  |
|  |

## 71304 POMFRET-TYRONE RD 2012832.07

| Tower Reactions |  |
| :---: | :---: |
| Moment, M | $1939.14 \mathrm{k}-\mathrm{ft}$ |
| Axial, P | 27.76 k |
| Shear, V | 19.96 k |


| Overturning Summary (Required $\mathrm{FS}=\mathbf{1 . 5}$ ) |  | Load Case |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{FS}(\mathrm{ot}) \mathrm{x}$ | 1.95 | $\geq 1.5$ | $1 \mathrm{D}+1 \mathrm{~W}$ |
| $\mathrm{FS}(\mathrm{ot}) \mathrm{y}$ | 1.95 | $\geq 1.5$ | $1 \mathrm{D}+1 \mathrm{~W}$ |
| Controlling Capacity | $\mathbf{7 6 . 8 \%}$ | Pass |  |


| Pad \& Pier Geometry |  |  |
| :---: | :---: | :---: |
| Pier Width, $\varnothing$ | 5 | ft |
| Pad Length, L | 22 | ft |
| Pad Width, W | 22 | ft |
| Pad Thickness, t | 3 | ft |
| Depth, D | 8 | ft |
| Height Above Grade, HG | 0.5 | ft |


| Pad \& Pier Reinforcing |  |
| :---: | :--- |
| Rebar Fy | ksi |
| Concrete Fc' | ksi |
| Clear Cover | in |
| Reinforced Top \& Bottom? |  |
| Pad Reinforcing Size |  |
| Pad Quantity Per Layer |  |
| Pier Rebar Size |  |
| Pier Quantity of Rebar |  |


| Soil Properties |  |
| :---: | :---: |
| Soil Type | Granular |
| Soil Unit Weight | 120 pcf |
| Angle of Friction, $\varnothing$ | $28^{\circ}$ |
| Bearing Type | Gross |
| Ultimate Bearing | 12 ksf |
| Water Table Depth | 1 ft |
| Frost Depth | 4 ft |



GPD Mat Foundation Analysis - V1.01

## Modification Drawings

## POMFRET-T' USID \#: 150' MOr



## GENERAL NOTES

1. THE FOLLOWING DRRWING REPRESEN MMODIFCATIONS TO THE EXISTNG TOWER. THE MODIFCATOONS ARE

2. THESE MODIFCATIONS HAVE BEEN DESIGNED IN ACCORDANCE WTH THE GOVERNNG PROVSIONS OF
 specinano






 (ZRC OR EOUAL). AND REPANTED TO MATCH THE EXISTING FINISH (IF APPLLCABLE).
 GRADE. PANTABLE SLICONE CAULKING AS MANUFACTURED EY DOW AND ACCETABELE TO GPD. 2. LOADINGS:

WIND LOADS:
FASTEST MLEE WIND SPEED (PER: TIA/EIA-222-F, 2003 IBC, ASCE 7-05, \& 2005 CTBC) 85 MPH
(WINDHAM COUNTY. CONNECTICUT) ICE LOADS:

1. RADAL BASE IEE
FASTEST MLE WIND SPEED (CONCURRENT W/ICE)
2. Structural steel:

SPECIICCATONS
LATEST EDTION OF AISC
MATERIAL

| PLATES | ASTM A572 (GR 65) |
| :---: | :---: |
| BRIDGE STIFFENERS | ASTM A572 (GR 65) |
| ONE SIDE BOLTS | AJAX 20MM (PC8.8) W/ HIGH STRENGTH SLEEVE (Fu=120KSI) |
| WASHERS | ASTM A194-2H |
| PIPE | ASTM A53-B (GR 42) |
| ANCHOR RODS | ASTM F1554 (GR 105) |
| ANCHOR ROD BRACKETS | ASTM A572 (GR 65) |
| HOT DIPPED GALVANIZING | ASTM A123 |
| WELDS | E70xx |
| PPOXX | NEW STEEL TO BE PAINTED TO MATCH EXISTING TOWER |

11 ALL MATERIAL UTLIZED FOR THIS PROJECT MUST BE NEW AND FREE OF ANY DEFECTS. ANY MATERIAL
SUBSTTUUONS, INCLUDING BUT NOT LIMTED TO ALTERED SIZES AND/OR STRENGTHS, MUST BE APPROVED SUBSTTIUTIONS, INCLUDING BUT NOT LIMTIED TO ALTERED SIZES AND/OR STRENGTHS, MUST BE APPROVED
BY THE OWNER AND ENGINEER IN WRITING.
12. ALL SUBSTIUTES PROPOSED BY THE CONTRACTOR SHALL BE APPROVED IN WRTING BY THE ENGINEER
COOTRACTR SHAL PROVDE DOCUMENTATIN TO ENGINEER FOR DEIERMINING IF SUBSTHUTE IS SUTTAELE CONTRACTOR SHAL PROVIDE DOCUMENTATION TO ENGINER FOR DEIERMINING IF SUESTIUTE IS SUITAELE
FR USE AND MEETS THE ORIGINAL DESIGN CRTERIA. DIFERENCES RRM THE OIGINL DESGN, INCLUDING
MANTENANCE REPAR AND REPLACEMENT SHAL MAINTENANCE, REPAIR AND REPLACEMENT, SHALL BE NNOTED. EESTMATES OF COSTS/RESDITS ASSOCLATED
WTTH THE SUBSTIUTION (INCLUDING RE-DESIGN COSTS AND COSTS TO SUB-CONTRACTORS) SHALL BE

13. PROVIDE STRUCTURAL STEEL SHOP DRAWINGS TO ENGINEER FOR APPROVAL PRIOR TO FABRICATION.
14. UNLESS NOTED OTHERWISE, ALL NEW MEMBERS SHALL MAINTAIN THE EXISTING MEMBER WORK LINES
AND
NOT INTRODUCE ECCENTICIIES INTO THE STRUCTURE.
15. THE ENGINEER (GPD GROUP) SHALL MAKE POST INSTALLATION OBSERVATION FOR TOWER AND
FOUNDATION. CONTRACTOR SHALL COORDINATE THE ON-SITE INSTALLATION OBSERVATION W/ ENGINER (GPD FOUNDATION. CONTRACTOR SHALL COORDINATE THE ON-SITE INSTALLATION OBSERVATION W/ ENGINER GND
GROUP) AT LEAST 5 BUSIIESS DAYS PRIOR TO THE CONCRETE POUR FOR EACH FOUNDATION MODIFCATION. CONPAATOR SHALL COORDINATE W/ENGINEER (GPD GROUP) WITHIN 72 FOR EACH FOUNDATION MODIFCATION.
THE TOWER MODIF


## CONTRACTOR NOTES








5. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR INTIATNG. MANTANING. AND SUPERVIING ALL SAFETY
PROGRAMS ANO PRECAUTIONS IN CONNECTON WTH THIS WORK.




## CONTINUED CONTRA

 APPURTENANCES MUST BE REEPACEE AND/OR RESTORE
DOWNTME MUST BE COOROLINTED WTH THE TOWER OWNER
8. SOME ATACHMENTS MAY REDURE CUSTOM MODICCATONS


ANCONTRCCOR SHAL ONLY WORK WTHIN THE LMITS OF THI


## 

 MATERIL ANY OBJECTS/STEP BOLTS THAT PREVENT TOWER FR TO THE ENGINEER IMMEDIATELY.

## FOUNDATION

## 

- STEPHANE MENDRROTH (NEXLINK GLOBAL SERVCES) $67 \varepsilon$ - KEVIN CLLMENTS (GPD GROUP) $678-467-722$


2. ExITTING FOUNDATON INFORMATON BASED UPON A

3. CONCRETE WORK SHALL BE IN ACCOROANCE WTH LOCAL CONCREEE. PROCEDURES FOR THE PROTECTION OF EXXAVVAT
 DHIANCE PROMDED WOR
HONECOMBS OR VIOSS.
4. weloing is prohibted on reinforcing steel and embed 6. CONCRETE SHALL DEVELOP A MINIMUM COMPRESSNE STREN Z. AL FOUNDATINS SHALL REST ON AND AGANST FRM UNE


 Co pronio \#7 $2^{\prime}-6^{-6} \times 2^{\prime}-6^{\prime \prime}$ corner bars at all pl
5. SOLL INFORMATON II BASED ON A GEOTTEHNICAL REPOR1
2009). IF SOIL CONOITONS ENCOUNTERED ARE DIFFERENT 2009). IF SOIL CONOITOOS.
NOTFF ENGINER MMMEDATEYY.




6. CARE SHAL BE TAKEN DURING INSTALATION OF DOWELS
 NoN-DESTRUCTVE MEAN TO LOCATE EXISTING R
IMEDAATELY IF EXISTING STEEL IS ENCOUNTERED.
$\frac{16}{\text { AND CONTRACTOR SHALL }}$ OBTAIN AND BECOME FAMLLAR WITH




 21. EOUPMENT PAD. SHELTER, AND ICE ERIDGE SUPPORT II
COMIISSON. CONTRACTOR SHALL TAKE GREAT CARE AND AL



| DETAIL |
| :--- |
| $i^{\circ}=1,1^{\prime}-0^{\circ}$ |
| $s-02$ |










DETAIL
$r^{=}=1^{\prime}-0^{-}$
$8-05$
$s$,


$\underset{i^{\circ}=11^{\prime}-0^{\circ}}{\text { DETAIL }}\left(\frac{12}{s-05}\right)$


| DETAIL 9 |
| :--- |
| ${ }^{\circ}=1=i^{\prime}-0^{\circ}$ |
| $s-05$ |



MODIFICATION INSPECTIC

| CONSTRUCTION/INSTALATION BEFORE CONSTRUCTION |  |  |  |
| :---: | :---: | :---: | :---: |
| CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY <br> ENGINEER OF RECORD) | REPORT ITEM | CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD) | R |
| $X$ | MODIFICATION INSPECTION CHECKLIST DRAWING | X | CONSTRUCTION INSPECTIK |
| X | ENGINEER OF RECORD APPROVED SHOP DRAWINGS | X | FOUNDATION INSPECTION: |
| X | FABRICATION INSPECTION | X | CONCRETE COMP. STREN |
| X | FABRICATOR CERTIFIED WELD INSPECTION | X | POST INSTALLED ANCHOF |
| X | MATERIAL TEST REPORT | X | BASE PLATE GROUT VERI |
| X | FABRICATOR NDE INSPECTION | X | CONTRACTOR'S CERTIFIEC |
| X | NDE REPORT OF MONOPOLE BASE PLATE (AS REQUIRED) | X | EARTHWORK: LIFT AND D |
| X | PACKING SLIPS | X | ON SITE COLD GALVANIZ |
| ADDITIONAL TESTING AND INSPECTIONS: |  | - | GUY WIRE TENSION REPC |
|  |  | X | GC AS-BUILT DOCUMENT |
|  |  | ADDITIONAL TESTING AND INSPECTIONS: |  |
|  |  | E: X DENOTES A DOCUMENT <br> - DENOTES A DOCUMENT | EEDED FOR THE MODIFIC. HAT IS NOT REQUIRED F |

## MODIFICATION INSPECTION NOTES:

## GENERAL

1. THE MODIFICATION INSPECTION IS A VISUAL INSPECTION OF TOWER MODIFICATIONS AND REVIEN OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE NAMELY THE MAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, ,
2. THE MODIFICATION INSPECTION IS TO CONFIRM INSTALLATION CONFIGURATION AND DOES THE MONLY AND IS NOT A REVIEW OF THE MODIFICATION DESIGN ITSELF, NOR OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTVENESS AND DESIGN. RESIDES WITH THE ENGINEER OF RECORD AT ALL TIMES.
3. TO ENSURE THAT THE REQUIREMENTS OF THE MODIFICATION INSPECTION ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MODIFICATION INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS A PO OR PAYMENT IS RECEIVED. IT IS EXPETED THAT EACH PARTY WILL BE PROACTVE IN REACHING OUT TO THE OTHER PARTY. CONTACT INFORMATION IS NOT KNOWN

## MODIFICATION INSPECTOR

$\frac{1}{\text { RECEVING MODIFICATION INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS }}$
-REVIEW THE REQUIREMENTS OF THE MODIFICATION INSPECTION CHECKLIST

- WORK WITH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS,
-DISCUSS ANY SITE SPECIFIC INSPECTIONS OR CONCERNS

2. THE MODIFICATION INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTOR (GC) INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FR ADHERENGE TO HE CONIRACT DOCUMENTS, CONDUCTING THE IN-FIELD INSPECTIONS, AND SUBMITTING THE MODIFICATION INSPECTION REPORT.

## GENERAL CONTRACTOR

1. THE GC IS REQUIRED TO CONTACT THE MODIFICATION INSPECTOR AS SOON AS TO то:
-REVIEW THE REQUIREMENTS OF THE MODIFICATION INSPECTION CHECKLIST
-WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE
-BEITER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS
2. THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MODIFICATION INSPECTION CHECKLIST.

## RECOMMENDATIONS

1. THE FOLLOWING RECOMMENDATIONS AND SUGGESTIC ICIENCY AND EFFECTIVENESS OF DELIVERING A MODIFIC,
-IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM PREFERABLY 10, TO THE MODIFICATION INSPECTOR -THE GC AND MODIFICATION INSPECTOR COORDINATE PROJECT.

- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC

SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING O
-IT MAY BE BENEFICIAL TO INSTALL ALL TOWER MOD
COMNDATION INSPECTIONS TO ALLOW FOUNDATION A
-WHEN POSSIBLE, IT IS PREFERRE
DURING THE MODIFICATION INSPECTION HAVE THE G
INITIAL MODIFICATION INSPECTION. THEREFORE, THE MODIFICATION INSPECTION CAREFULLY TO ENSURE AI THEIR DISPOSAL WHEN THE MI INSPECTOR IS ON S

CANCELLATION OR DELAYS IN SCHED MODIFICATION INSPECTION

1. IF THE GC AND MODIFICATION INSPECTOR AGREE TO NSPECTION WILL BE CONDUCTED, AND EITHER PARTY C SHALL NOT BE RESPONSIBLE FOR ANY COSTS, FEES PENALTIES RELATED TO THE CANCELLATION OR DELAY INC (E.G. TRAVEL AND LODGING, COSTS OF KEEPING EQUIPM BE MADE IN THE EVENT THAT THE DELAY/CANCELLATIO
CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE

Pinnacle Wireless
Suite A Building 2
800 Marshall Phelps Road
Windsor, CT 06095

Kevin Clements
1117 Perimeter Ctr W, Suite W303
Atlanta, GA 30328
(678) 467-7228
kclements@gpdgroup.com
GPD\# 2012832.07
January 4, 2013

## STRUCTURAL ANALYSIS REPORT WITH MODIFICATION DESIGN

AT\&T DESIGNATION:

ANALYSIS CRITERIA:
Site USID: 71304
Site FA: 10035021
Site Name: POMFRET-TYRONE RD
AT\&T Project: MOD LTE 082712
Codes: TIA/EIA-222-F, 2003 IBC, ASCE 7-05 \& 2005 CTBC
$85-\mathrm{mph}$ with 0 " ice
28 -mph with 1 " ice
82 Tyrone Rd, Pomfret, CT 06258, Windham County
Latitude $41^{\circ} 53$ 24.871" N, Longitude $71^{\circ} 57^{\prime} 20.199 " \mathrm{~W}$
Market: New England
150' Monopole

Lauren Groppi,

GPD is pleased to submit this Structural Analysis Report with Modification Design to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

## Analysis Results

| Tower Stress Level with Proposed Equipment: | $95.4 \%$ | Pass |
| :--- | :--- | :--- |
| Foundation Ratio with Proposed Equipment: | $76.8 \%$ | Pass |

Note: In order for this analysis results to be valid for the proposed, existing, and reserved loading in Appendix A the modifications referenced in the design drawings by GPD (Project \#: 2012832.07, dated 1/4/2012) must be installed.

We at GPD appreciate the opportunity of providing our continuing professional services to you and Pinnacle Wireless. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.


## SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing modified structure is capable of carrying the proposed loading configuration as specified by AT\&T Mobility to Pinnacle Wireless. This report was commissioned by Ms. Lauren Groppi of Pinnacle Wireless.

## All proposed coax shall be internal to the monopole in order for the analysis results to be valid.

The proposed modifications by GPD (Project \#: 2012832.07, dated 1/4/2012), consist of adding flat plate reinforcement from $0^{\prime}-130.3^{\prime}$, installing bridge stiffeners at $110^{\prime}$, adding anchor rods to the base and extending the existing pad foundation, and have been considered in this analysis. See Appendix H for the modification drawings.

## TOWER SUMMARY AND RESULTS

| Member | Capacity | Results |
| :--- | :---: | :---: |
| Monopole | $95.4 \%$ | Pass |
| Anchor Rods | $89.6 \%$ | Pass |
| Base Plate | $74.6 \%$ | Pass |
| Flange Bolts | $30.7 \%$ | Pass |
| Flange Plates | $68.4 \%$ | Pass |
|  |  |  |
| Foundation | $76.8 \%$ | Pass |

## ANALYSIS METHOD

TNX Tower (Version 6.0.4.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

| Document | Remarks | Source |
| :--- | :--- | :---: |
| Equipment Modification Form | AT\&T Internal Loading Document, uploaded 8/27/12 | Siterra |
| Construction Drawings | Not Provided | N/A |
| Tower Design | Not Provided | N/A |
| Foundation Design | Not Provided | N/A |
| Modification Drawings | GPD Project \#: 2012832.07, dated 1/4/12 | GPD |
| Geotechnical Report | Dr. Clarence Welti, dated 5/15/09 | Siterra |
| Previous Structural Analysis | GPD Project \#: 2009013.07, dated 6/2/09 | Siterra |
| Tower Mapping | GPD and Northeast Towers Inc, dated 12/3/08 | Siterra |

## ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
9. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
10. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
11. All existing loading was obtained from the previous analysis by GPD Job \#: 2009013.07, dated 6/2/09, site photos, the provided equipment modification form and is assumed to be accurate.
12. The existing AT\&T loading elevation found in the previous analysis by GPD Job \#: 2009013.07, dated 6/2/09 was found to vary from the EMF and site photos. The existing AT\&T loading elevation was based on the site photos.
13. The proposed modifications by GPD (Project \#: 2012832.07, dated $1 / 4 / 2012$ ), consist of adding flat plate reinforcement from $0^{\prime}-130.3^{\prime}$, installing bridge stiffeners at $110^{\prime}$, adding anchor rods to the base and extending the existing pad foundation, and have been considered in this analysis. See Appendix H for the modification drawings.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD Group should be allowed to review any new information to determine its effect on the structural integrity of the tower.

## DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

## APPENDIX A

Tower Analysis Summary Form


| Antenna |  |  |  |  |  |  |  | Mount |  |  | Transmission Line |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Antenna Owner | Mount Height (ft) | Antenna CL (tt) | Quantity | Type | Manufacturer | Model | Azimuth | Quantity | Manufacturer | Type | Quantity | Model | Size | $\begin{array}{\|c\|} \hline \text { Attachment } \\ \text { Internal/External } \end{array}$ |
| AT\&T Mobility | 152 | 152 | 6 | Panel | Powerwave | 7770.00 | 30,150,270 | ' | Unknown | 10'-8" Platiorm w/ Rails | 12 | Unknown | 1-1/4" | Internal |
| AT\&T Mobility | 152 | 152 | 6 | TMA | Powerwave | LGP21401 |  |  |  | on the same mount |  |  |  |  |
| AT\&T Mobility | 152 | 152 | 6 | Diplexer | Powerwave | LGP21903 |  |  |  | on the same mount |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Unknown | 100 | 100 | 1 | Dipole | Unknown | Dipole (2 element) |  |  |  | Flush mounted | 1 | Unknown | 1/2" | Internal |

Proposed Loading

| Antenna |  |  |  |  |  |  |  | Mount |  |  | Transmission Line |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Antenna Owner | Mount Height (ft) | Antenna CL (tt) | Quantity | Type | Manufacturer | Model | Azimuth | Quantity | Manufacturer | Type | Quantity | Model | Size | $\begin{gathered} \text { Attachment } \\ \text { Internal/External } \end{gathered}$ |
| AT\&T Mobility | 52 | 154 | 1 | anel | drew | SBNH-1D6565C | 30 |  |  | on the existing mount | 1 | uit | $2^{\prime \prime}$ | Internal |
| AT\&T Mobility | 152 | 154 | 2 | Panel | KMW | AM-X-CD-17-65-00T | 150,270 |  |  | on the existing mount | 1 | Fiber Line | 1/2" | Within Conduit |
| AT\&T Mobility | 152 | 152 | 6 | RRU | Ericsson | RBS 6601 |  |  |  | on the existing mount | 2 | DC Line | 3/4" | Internal |
| AT\&T Mobility | 152 | 152 | 1 | Surge Suppresser | Raycap | DC6-48-60-18-8F |  |  |  | on the existing mount |  |  |  |  |

Note: The proposed loading shall be in addition to the existing loading at the same elevation.

| Antenna |  |  |  |  |  |  |  | Mount |  |  | Transmission Line |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Antenna Owner | $\begin{aligned} & \text { Mount } \\ & \text { Height (ft) } \end{aligned}$ | Antenna CL (tt) | Quantity | Type | Manufacturer | Model | Azimuth | Quantity | Manufacturer | Type | Quantity | Model | Size | $\begin{array}{\|c\|} \hline \text { Attachment } \\ \text { Internal/External } \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## APPENDIX B

tnxTower Output File

| tnxTower | Job | POMFRET-TYRONE RD | $\text { Page } \quad 1 \text { of } 4$ |
| :---: | :---: | :---: | :---: |
| GPD <br> 520 South Main Street, Suite 2531 | Project | 2012832.07 | $\begin{aligned} & \text { Date } \\ & \text { 18:20:26 01/04/13 } \end{aligned}$ |
| Akron, OH 44311 <br> Phone: 330.572.2100 <br> FAX: 330.572.2101 | Client | Pinnacle Wireless | Designed by jfields |

## Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Windham County, Connecticut.
Basic wind speed of 85 mph .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 28 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

## Feed Line/Linear Appurtenances - Entered As Area

| Description | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | Allow Shield | Component Type | Placement ft | Total Number |  | $C_{A} A_{A}$ $f t^{2} / f t$ | Weight plf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5/8" Step Bolts | A | No | CaAa (Out Of Face) | 150.00-8.00 | 1 | No Ice | 0.04 | 1.00 |
|  |  |  |  |  |  | 1/2" Ice | 0.14 | 1.56 |
|  |  |  |  |  |  | 1" Ice | 0.24 | 2.73 |
|  |  |  |  |  |  | 2" Ice | 0.44 | 6.91 |
|  |  |  |  |  |  | 4 " Ice | 0.84 | 22.58 |
| Safety Line 3/8 | A | No | CaAa (Out Of Face) | 150.00-8.00 | 1 | No Ice | 0.04 | 0.22 |
|  |  |  |  |  |  | 1/2" Ice | 0.14 | 0.75 |
|  |  |  |  |  |  | $1^{\prime \prime}$ Ice | 0.24 | 1.28 |
|  |  |  |  |  |  | 2" Ice | 0.44 | 2.34 |
|  |  |  |  |  |  | 4" Ice | 0.84 | 4.46 |
| LDF6-50A (1-1/4 FOAM) | A | No | Inside Pole | 150.00-8.00 | 12 | No Ice | 0.00 | 0.66 |
|  |  |  |  |  |  | 1/2" Ice | 0.00 | 0.66 |
|  |  |  |  |  |  | 1" Ice | 0.00 | 0.66 |
|  |  |  |  |  |  | 2 " Ice | 0.00 | 0.66 |
|  |  |  |  |  |  | 4" Ice | 0.00 | 0.66 |
| 2" Flex Conduit | A | No | Inside Pole | 150.00-8.00 | 1 | No Ice | 0.00 | 0.32 |
|  |  |  |  |  |  | 1/2" Ice | 0.00 | 0.32 |
|  |  |  |  |  |  | $1^{\prime \prime}$ Ice | 0.00 | 0.32 |
|  |  |  |  |  |  | 2" Ice | 0.00 | 0.32 |
|  |  |  |  |  |  | 4 " Ice | 0.00 | 0.32 |
| 1/2" Fiber Cable | A | No | Inside Pole | 150.00-8.00 | 1 | No Ice | 0.00 | 0.15 |
|  |  |  |  |  |  | 1/2" Ice | 0.00 | 0.15 |
|  |  |  |  |  |  | 1" Ice | 0.00 | 0.15 |
|  |  |  |  |  |  | 2" Ice | 0.00 | 0.15 |
|  |  |  |  |  |  | 4 " Ice | 0.00 | 0.15 |
| 3/4" DC Power Line | A | No | Inside Pole | 150.00-8.00 | 2 | No Ice | 0.00 | 0.33 |
|  |  |  |  |  |  | 1/2" Ice | 0.00 | 0.33 |
|  |  |  |  |  |  | 1" Ice | 0.00 | 0.33 |
|  |  |  |  |  |  | 2" Ice | 0.00 | 0.33 |
|  |  |  |  |  |  | 4" Ice | 0.00 | 0.33 |
| LDF4P-50A (1/2 FOAM) | B | No | Inside Pole | 100.00-8.00 | 1 | No Ice | 0.00 | 0.15 |
|  |  |  |  |  |  | 1/2" Ice | 0.00 | 0.15 |
|  |  |  |  |  |  | $1^{\prime \prime}$ Ice | 0.00 | 0.15 |
|  |  |  |  |  |  | 2" Ice | 0.00 | 0.15 |
|  |  |  |  |  |  | 4 " Ice | 0.00 | 0.15 |


| tnxTower | 71304 POMFRET-TYRONE RD |  | $\begin{aligned} & \text { Page } \\ & \\ & 2 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| GPD <br> 520 South Main Street, Suite 2531 | Project | 2012832.07 | Date 18:20:26 01/04/13 |
| Akron, OH 44311 <br> Phone: 330.572.2100 <br> FAX: 330.572.2101 | Client | Pinnacle Wireless | Designed by jfields |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Allow Shield \& Component Type \& Placement
ft \& Total Number \& \& $C_{A} A_{A}$

$f t^{2} / f t$ \& Weight
plf <br>
\hline \multirow[t]{5}{*}{5" x 1-1/4" Mod Plate} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{130.25-0.75} \& \multirow[t]{5}{*}{2} \& No Ice \& 0.00 \& 0.00 <br>
\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 1.30 <br>
\hline \& \& \& \& \& \& 1 " Ice \& 0.00 \& 2.60 <br>
\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 3.90 <br>
\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 5.20 <br>
\hline \multirow[t]{5}{*}{5" x 1-1/4" Mod Plate} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{130.25-0.75} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.21 \& 0.00 <br>
\hline \& \& \& \& \& \& 1/2" Ice \& 0.32 \& 1.30 <br>
\hline \& \& \& \& \& \& 1 " Ice \& 0.43 \& 2.60 <br>
\hline \& \& \& \& \& \& 2" Ice \& 0.65 \& 3.90 <br>
\hline \& \& \& \& \& \& 4 " Ice \& 1.10 \& 5.20 <br>
\hline \multirow[t]{5}{*}{$5 "$ x 1-1/4" Mod Plate} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{130.25-0.75} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.21 \& 0.00 <br>
\hline \& \& \& \& \& \& 1/2" Ice \& 0.32 \& 1.30 <br>
\hline \& \& \& \& \& \& $1{ }^{1 /}$ Ice \& 0.43 \& 2.60 <br>
\hline \& \& \& \& \& \& 2" Ice \& 0.65 \& 3.90 <br>
\hline \& \& \& \& \& \& 4" Ice \& 1.10 \& 5.20 <br>
\hline
\end{tabular}

## Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
\(\circ\)
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front $f t^{2}$ \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

$l b$ <br>
\hline \multirow[t]{5}{*}{10'-8" Central Platform w/ 42 " tower extension} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 43.32 \& 43.32 \& 2500.00 <br>
\hline \& \& \& \& \& \& 1/2" Ice \& 46.28 \& 46.28 \& 3250.00 <br>
\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 49.24 \& 49.24 \& 4000.00 <br>
\hline \& \& \& \& \& \& 2" Ice \& 55.16 \& 55.16 \& 5500.00 <br>
\hline \& \& \& \& \& \& 4" Ice \& 67.00 \& 67.00 \& 8500.00 <br>
\hline \multirow[t]{5}{*}{(2) $7770.00 \mathrm{w} / \mathrm{Mount}$ Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 5.88 \& 4.10 \& 61.54 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.31 \& 4.73 \& 107.08 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 6.75 \& 5.37 \& 160.39 <br>
\hline \& \& \& \& \& \& 2" Ice \& 7.66 \& 6.70 \& 289.46 <br>
\hline \& \& \& \& \& \& 4" Ice \& 9.58 \& 9.87 \& 654.29 <br>
\hline \multirow[t]{5}{*}{(2) $7770.00 \mathrm{w} /$ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 5.88 \& 4.10 \& 61.54 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.31 \& 4.73 \& 107.08 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 6.75 \& 5.37 \& 160.39 <br>
\hline \& \& \& \& \& \& 2" Ice \& 7.66 \& 6.70 \& 289.46 <br>
\hline \& \& \& \& \& \& 4" Ice \& 9.58 \& 9.87 \& 654.29 <br>
\hline \multirow[t]{5}{*}{(2) $7770.00 \mathrm{w} /$ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 5.88 \& 4.10 \& 61.54 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.31 \& 4.73 \& 107.08 <br>
\hline \& \& \& 0.00 \& \& \& 1" Ice \& 6.75 \& 5.37 \& 160.39 <br>
\hline \& \& \& \& \& \& 2" Ice \& 7.66 \& 6.70 \& 289.46 <br>
\hline \& \& \& \& \& \& 4" Ice \& 9.58 \& 9.87 \& 654.29 <br>

\hline \multirow[t]{5}{*}{SBNH-1D6565C w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 11.45 \& 9.12 \& 82.70 <br>

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.06 \& 10.21 \& 162.03 <br>
\hline \& \& \& 2.00 \& \& \& 1" Ice \& 12.69 \& 11.18 \& 254.15 <br>
\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 14.03 \& 13.17 \& 469.01 <br>
\hline \& \& \& \& \& \& 4 " Ice \& 17.05 \& 17.35 \& 1051.99 <br>
\hline \multirow[t]{5}{*}{AM-X-CD-17-65-00T w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Centroid-Le g} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{152.00} \& No Ice \& 11.31 \& 9.10 \& 105.82 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 11.93 \& 10.52 \& 189.52 <br>
\hline \& \& \& 2.00 \& \& \& 1 " Ice \& 12.55 \& 11.60 \& 285.59 <br>
\hline \& \& \& \& \& \& 2" Ice \& 13.88 \& 13.80 \& 512.39 <br>
\hline \& \& \& \& \& \& 4" Ice \& 16.88 \& 18.41 \& 1127.38 <br>
\hline \multirow[t]{4}{*}{AM-X-CD-17-65-00T w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& From \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{152.00} \& No Ice \& 11.31 \& 9.10 \& 105.82 <br>
\hline \& \& Centroid-Le \& 0.00 \& \& \& 1/2" Ice \& 11.93 \& 10.52 \& 189.52 <br>
\hline \& \& g \& 2.00 \& \& \& 1" Ice \& 12.55 \& 11.60 \& 285.59 <br>
\hline \& \& \& \& \& \& 2" Ice \& 13.88 \& 13.80 \& 512.39 <br>
\hline
\end{tabular}

| tnxTower | Job 71304 POMFRET-TYRONE RD |  | $\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| GPD <br> 520 South Main Street, Suite 2531 <br> Akron, OH 44311 <br> Phone: 330.572.2100 <br> FAX: 330.572.2101 | Project | 2012832.07 | $\begin{array}{\|l\|} \hline \text { Date } \\ \text { 18:20:26 01/04/13 } \end{array}$ |
|  | Client | Pinnacle Wireless | Designed by jfields |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or Leg
\end{tabular} \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

ft \& \& \begin{tabular}{l}
$C_{A} A_{A}$ <br>
Front <br>
$f t^{2}$

 \& 

$C_{A} A_{A}$ <br>
Side <br>
$f t^{2}$
\end{tabular} \& Weight

$l b$ <br>

\hline \multirow{5}{*}{(2) LGP21401} \& \multirow{4}{*}{A} \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{152.00} \& 4" Ice \& 16.88 \& 18.41 \& 1127.38 <br>

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.00 \& 0.23 \& 10.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.31 \& 21.26 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.40 \& 30.32 <br>
\hline \& \multirow{4}{*}{B} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{152.00} \& 2" Ice \& 0.00 \& 0.61 \& 54.89 <br>

\hline \multirow{5}{*}{(2) LGP21401} \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& \& \& \& 4" Ice \& 0.00 \& 1.12 \& 135.29 <br>

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.00 \& 0.23 \& 10.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.31 \& 21.26 <br>
\hline \& \multirow{6}{*}{C} \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.40 \& 30.32 <br>
\hline \& \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{152.00} \& 2" Ice \& 0.00 \& 0.61 \& 54.89 <br>

\hline \multirow{6}{*}{(2) LGP21401} \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& \& \& \& 4" Ice \& 0.00 \& 1.12 \& 135.29 <br>

\hline \& \& \& 4.00 \& \& \& No Ice \& 0.00 \& 0.23 \& 10.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.31 \& 21.26 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.40 \& 30.32 <br>
\hline \& \multirow{5}{*}{A} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{152.00} \& 2" Ice \& 0.00 \& 0.61 \& 54.89 <br>

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& \& \& \& 4" Ice \& 0.00 \& 1.12 \& 135.29 <br>

\hline \multirow[t]{5}{*}{(2) LGP21903 Diplexer} \& \& \& 4.00 \& \& \& No Ice \& 0.00 \& 0.18 \& 10.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.25 \& 13.44 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.32 \& 16.93 <br>
\hline \& \multirow{4}{*}{B} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{6}{*}{152.00} \& 2" Ice \& 0.00 \& 0.49 \& 27.95 <br>

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& \& \& \& 4 " Ice \& 0.00 \& 0.94 \& 71.54 <br>

\hline \multirow[t]{5}{*}{(2) LGP21903 Diplexer} \& \& \& 4.00 \& \& \& No Ice \& 0.00 \& 0.18 \& 10.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.25 \& 13.44 <br>
\hline \& \multirow{6}{*}{C} \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.32 \& 16.93 <br>
\hline \& \& \& \& \multirow{5}{*}{0.0000} \& \& 2" Ice \& 0.00 \& 0.49 \& 27.95 <br>

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& \& \& \multirow{4}{*}{152.00} \& 4 " Ice \& 0.00 \& 0.94 \& 71.54 <br>

\hline \multirow[t]{5}{*}{(2) LGP21903 Diplexer} \& \& \& \& \& \& No Ice \& 0.00 \& 0.18 \& 10.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.25 \& 13.44 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.32 \& 16.93 <br>
\hline \& \multirow{5}{*}{A} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{152.00} \& 2 " Ice \& 0.00 \& 0.49 \& 27.95 <br>

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& \& \& \& 4 " Ice \& 0.00 \& 0.94 \& 71.54 <br>

\hline \multirow[t]{5}{*}{(2) RBS 6601} \& \& \& \& \& \& No Ice \& 0.55 \& 0.40 \& 22.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.70 \& 0.52 \& 34.88 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.86 \& 0.64 \& 50.27 <br>
\hline \& \multirow{5}{*}{B} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{152.00} \& 2 " Ice \& 1.19 \& 0.91 \& 89.38 <br>

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& \& \& \& 4 " Ice \& 1.97 \& 1.55 \& 206.33 <br>

\hline \multirow[t]{5}{*}{(2) RBS 6601} \& \& \& \& \& \& No Ice \& 0.55 \& 0.40 \& 22.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.70 \& 0.52 \& 34.88 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.86 \& 0.64 \& 50.27 <br>
\hline \& \multirow{5}{*}{C} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{152.00} \& 2 " Ice \& 1.19 \& 0.91 \& 89.38 <br>

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& \& \& \& 4 " Ice \& 1.97 \& 1.55 \& 206.33 <br>

\hline \multirow[t]{5}{*}{(2) RBS 6601} \& \& \& \& \& \& No Ice \& 0.55 \& 0.40 \& 22.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.70 \& 0.52 \& 34.88 <br>
\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 0.86 \& 0.64 \& 50.27 <br>
\hline \& \multirow{5}{*}{C} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{152.00} \& 2" Ice \& 1.19 \& 0.91 \& 89.38 <br>

\hline \& \& \multirow{5}{*}{$$
\begin{aligned}
& \text { From } \\
& \text { Centroid-Le } \\
& \mathrm{g}
\end{aligned}
$$} \& \& \& \& 4 " Ice \& 1.97 \& 1.55 \& 206.33 <br>

\hline \multirow[t]{5}{*}{DC6-48-60-18-8F Surge Suppression Unit} \& \& \& \& \& \& No Ice \& 1.47 \& 1.47 \& 32.80 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.67 \& 1.67 \& 50.52 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.88 \& 1.88 \& 70.72 <br>
\hline \& \multirow{7}{*}{B} \& \& \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{107.00} \& 2 " Ice \& 2.33 \& 2.33 \& 119.24 <br>
\hline \& \& \multirow{6}{*}{From Leg} \& \& \& \& 4 " Ice \& 3.38 \& 3.38 \& 252.92 <br>
\hline \multirow[t]{5}{*}{4' Dipole} \& \& \& 3.00 \& \& \& \& 0.79 \& 0.79 \& 10.00 <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.03 \& 1.03 \& 16.34 <br>
\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.28 \& 1.28 \& 25.48 <br>
\hline \& \& \& \& \& \& 2" Ice \& 1.81 \& 1.81 \& 52.76 <br>
\hline \& \& \& \& \& \& 4 " Ice \& 3.11 \& 3.11 \& 147.65 <br>
\hline 4' Dipole \& B \& From Leg \& 3.00 \& 0.0000 \& 97.00 \& No Ice \& 0.79 \& 0.79 \& 10.00 <br>
\hline
\end{tabular}

| tnxTower | 71304 POMFRET-TYRONE RD |  | $\text { Page } 4 \text { of } 4$ |
| :---: | :---: | :---: | :---: |
| GPD <br> 520 South Main Street, Suite 2531 | Project | 2012832.07 | $\begin{aligned} & \text { Date } \\ & \text { 18:20:26 01/04/13 } \end{aligned}$ |
| Akron, OH 44311 <br> Phone: 330.572.2100 <br> FAX: 330.572.2101 | Client | Pinnacle Wireless | Designed by jfields |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \(f t\) \(f t\) ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\)
Front

$f t^{2}$ \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$ <br>
\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.03 \& 1.03 \& 16.34 <br>
\hline \& \& \& 0.00 \& \& \& $1 "$ Ice \& 1.28 \& 1.28 \& 25.48 <br>
\hline \& \& \& \& \& \& 2 " Ice \& 1.81 \& 1.81 \& 52.76 <br>
\hline \& \& \& \& \& \& 4" Ice \& 3.11 \& 3.11 \& 147.65 <br>
\hline
\end{tabular}

Critical Deflections and Radius of Curvature - Service Wind

| Elevation ft | Appurtenance | Gov. Load <br> Comb. | Deflection in | Tilt | Twist | Radius of Curvature ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 152.00 | 10'-8" Central Platform w/ 42" tower extension | 33 | 44.523 | 2.9349 | 0.0032 | 7674 |
| 107.00 | 4' Dipole | 33 | 22.218 | 2.0292 | 0.0002 | 3297 |
| 97.00 | 4' Dipole | 33 | 18.203 | 1.8379 | 0.0002 | 3183 |

Section Capacity Table

| Section No. | Elevation ft | Component Type | Size | Critical Element | $\begin{aligned} & P \\ & l b \end{aligned}$ | $\begin{gathered} S F^{*} P_{\text {allow }} \\ l b \end{gathered}$ | \% <br> Capacity | Pass <br> Fail |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 150-129.25 | Pole | TP17.4673x14.5x0.1875 | 1 | -3473.10 | 542361.69 | 78.5 | Pass |
| L2 | 129.25-110 | Pole | TP20.22x17.4673x0.47 | 2 | -5418.02 | * | 84.6* | Pass |
| L3 | 110-70 | Pole | TP25.94x20.22x0.534 | 3 | -10791.30 | * | 89.5* | Pass |
| L4 | 70-31 | Pole | TP31.52x24.5145x0.599 | 4 | -18678.40 | * | 87.7* | Pass |
| L5 | 31-0 | Pole | TP36x29.7312x0.622 | 5 | -26914.60 | * | 95.4* | Pass |
|  |  |  |  |  |  | Pole (L5) RATING = | $\begin{gathered} \text { Summary } \\ 95.4^{*} \\ \mathbf{9 5 . 4}^{*} \end{gathered}$ | Pass Pass |

[^0]
## APPENDIX C

## Tower Elevation Drawings


150.0 ft


DESIGNED APPURTENANCE LOADING

| TYPE | ELEVATION | TYPE | ELEVATION |
| :--- | :--- | :--- | :--- |
| 10'-8" Central Platform w/ 42" tower <br> extension | 152 | (2) LGP21903 Diplexer | 152 |
|  |  | (2) LGP21903 Diplexer | 152 |
| (2) 7770.00 w/Mount Pipe | 152 | (2) LGP21903 Diplexer | 152 |
| (2) 7770.00 w/Mount Pipe | 152 | (2) RBS 6601 | 152 |
| (2) 7770.00 w/Mount Pipe | 152 | (2) RBS 6601 | 152 |
| SBNH-1D6565C w/ Mount Pipe | 152 | (2) RBS 6601 | 152 |
| AM-X-CD-17-65-00T w/ Mount Pipe | 152 | DC6-48-60-18-8F Surge Suppression | 152 |
| AM-X-CD-17-65-00T w/ Mount Pipe | 152 | Unit |  |
| (2) LGP21401 | 152 | 4' Dipole | 107 |
| (2) LGP21401 | 152 | $4^{\prime}$ Dipole | 97 |
| (2) LGP21401 | 152 |  |  |

MATERIAL STRENGTH

| GRADE | Fy | Fu | GRADE | Fy | Fu |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A572-65 | 65 ksi | 80 ksi |  |  |  |

## TOWER DESIGN NOTES

1. Tower is located in Windham County, Connecticut.
. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard
2. Tower is also designed for a 28 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
3. Deflections are based upon a 50 mph wind.
4. TOWER RATING: 78.5\%


TORQUE 155 lb -ft 28 mph WIND - 1.0000 in ICE


TORQUE 379 lb-ft REACTIONS - 85 mph WIND


GPD
520 South Main Street, Suite 2531
Akron, OH 44311
Phone: 330.572 .2100
FAX: 330.572 .2101

71304 POMFRET-TYRONE RD
$\square$ Project: 2012832.07

| Code: TIA/EIA-222-F | Date: 01/04/13 | Scale: NTS |
| :--- | :--- | :--- |
| Path: $\begin{array}{l}\text { C:USersifieldsIDesktoplDroplTNXI2012832.07/71304.eri }\end{array}$ | Dwg No. E-1 |  |

$\qquad$ Round $\qquad$ Flat $\qquad$ App In Face $\qquad$ App Out Face $\qquad$ Truss Leg



## APPENDIX D

Base Plate \& Anchor Rod Calculations

Anchor Rod and Base Plate Stresses
71304 POMFRET-TYRONE RD
2012832.07

GPD GROUP
 calculations for determination of anchor rod forces in the analysis.

| Anchor Rods |  | Base Plate |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Pole Diameter = <br> Number of Rods = <br> Type = <br> Rod Yield Strength (Fy) = <br> ASIF = <br> Rod Circle $=$ <br> Rod Diameter = <br> Net Tensile Area = <br> Max Tension on Rod = <br> Max Compression on Rod = <br> Allow. Rod Force = | 36 in | Plate Strength (Fy) = | 60 | ksi |
|  | 8 | Plate Thickness | 2.5 | in |
|  | Upset Rod | Plate Width | 44 | in |
|  | 75 ksi | Est. Dist. b/w ea. Rod = | 6 | in |
|  | 1.333 | $\mathrm{W}_{\text {calc }}=$ | 31.000 | in |
|  | 44 in | $\mathrm{W}_{\text {max }}=$ | 26.225 | in |
|  | 2.25 in | W | 26.23 | in |
|  | $3.25 \mathrm{in}^{2}$ | $\mathrm{S}=$ | 27.32 | $i^{3}$ |
|  | 157.81 kips | $\mathrm{fb}=$ | 44.76 | ksi |
|  | 162.61 kips | Fb | 60 | ksi |
|  | 195.00 kips | Base Plate Capacity = | 74.6\% | OK |
| Anchor Rod Capacity = | 80.9\% |  |  |  |



$\begin{array}{ll}\text { Calculated By: JDF Date: } \\ \text { Checked By: } & \text { Date: }\end{array}$
1/4/2013
$\qquad$

## MODIFIED ANCHOR ROD CALCULATIONS

Moment from RISA $(M)=$
Axial from RISA $(P)=$
Shear from RISA $(\mathrm{V})=$

Inner Bolt Diameter = Number Inner Bolts ( $\mathrm{N}_{\text {inner }}$ ) $=$ Inner Bolt Area $\left(\mathrm{A}_{\text {inner }}\right)=$ Inner Bolt MOI ( $\left.\mathrm{I}_{\text {o.inner }}\right)=$
1939.14 kip-ft
27.76 kip
19.96 kip

| Code | TIA/EIA-222-F |
| :--- | ---: |
| ASIF $=$ | 1.33 |
| Allowable Stress | Ratio $=$ | 105\%

Outer Bolt Diameter $=$ Number Outer Bolts $\left(\mathrm{N}_{\text {outer }}\right)=$
Outer Bolt Area $\left(\mathrm{A}_{\text {outer }}\right)=$
Outer Bolt MOI $\left(\mathrm{I}_{\text {o.outer }}\right)=$

### 2.25 in

$8 \quad$ Inner Bolt Circle $\left(\mathrm{BC}_{\text {inner }}\right)=\quad 44$ in
$3.98 \mathrm{in}^{2}$
Total Area $\left(\mathrm{A}_{\text {tot.in }}\right)=$
$31.81 \mathrm{in}^{2}$
1.26 in $^{4}$

Percent Total Area $\left(\eta_{\text {in }}\right)=$
69.2\%

Axial, Inner Bolts $\left(\mathrm{P}^{*} \eta_{\text {in }}\right)=$
Shear, Inner Bolts $\left(\mathrm{P}^{*} \eta_{\text {in }}\right)=$ 19.22 kips 19.96 kips
1.5 in
$8 \quad$ Outer Bolt Circle $\left(\mathrm{BC}_{\text {outer }}\right)=\quad 53.17$ in

$1.77 \mathrm{in}^{2} \quad$ Total Area $\left(\mathrm{A}_{\text {tot.out }}\right)=$|  | $14.14 \mathrm{in}^{2}$ |
| :--- | :--- |

$0.25 \mathrm{in}^{4}$
Percent Total Area ( $\eta_{\text {out }}$ ) =
30.8\%

| $\mathrm{I}_{\text {inner }}=$ | $7707.75 \mathrm{in}^{4}$ | $\left(\mathrm{N}_{\text {inner }}{ }^{*} \mathrm{~A}_{\text {inner }} * \mathrm{BC}_{\text {inner }}{ }^{2} / 8+\mathrm{N}_{\text {inner }} * \mathrm{I}_{\text {o.inner }}\right)$ |
| :---: | :---: | :---: |
| $\mathrm{I}_{\text {outer }}=$ | 4997.80 in. ${ }^{4}$ | $\left(\mathrm{N}_{\text {outer }}{ }^{*} \mathrm{~A}_{\text {outer }} * \mathrm{BC}_{\text {outer }}{ }^{2} / 8+\mathrm{C}\right.$ |
| $\mathrm{Itot}=$ | 12705.55 in. ${ }^{4}$ | $\left(l_{\text {inner }}+l_{\text {outer }}\right)$ |
| $\mathrm{F}_{\text {inner }}=$ | 162.61 kips | $\left.\left(M^{*}\left(B C_{\text {inner }} / 2\right)^{*} \mathrm{~A}_{\text {inner }}\right) / I_{\text {total }}+\mathrm{P}^{*} \eta_{\text {in }} / \mathrm{N}_{\text {inner }}\right)$ |
| $\mathrm{F}_{\text {outer }}=$ | 87.11 kips | $\left.\left(\mathrm{M}^{*}\left(\mathrm{BC}_{\text {outer }} / 2\right)^{*} \mathrm{~A}_{\text {outer }}\right) / I_{\text {total }}+\mathrm{P}^{*} \eta_{\text {out }} / \mathrm{N}_{\text {outer }}\right)$ |
| ter / $\Omega=$ | 72.89 kips |  |

Modified Anchor Rod Rating
$\%=$
89.6\% OK

## APPENDIX E

Modification Calculations



## APPENDIX F

Flange Plate \& Flange Bolt Calculations


| Acceptable Stress Ratio |  |
| :---: | :---: |
|  | $=105.0 \%$ |



| UpperStiffeners |  |  |
| :---: | :---: | :---: |
| Configuration $=1 \quad$ None |  |  |


| Lower Flange Plate |  |
| :---: | :---: |
| Location = | External |
| Plate Strength $\left(\mathrm{F}_{\mathrm{y}}\right)=$ | 60 ksi |
| Plate Thickness = | 1 in |
| Outer Diameter $=$ | 26 in |
| wcalc = | 10.96 in |
| wmax = | 15.95 in |
| w = | 10.96 in |
| $S=$ | 1.83 in^3 |
| $\mathrm{f}_{\mathrm{b}}=$ | 15.29 ksi |
| $\mathrm{F}_{\mathrm{b}}=$ | 60 ksi |
| LP Capacity = | 25.5\% OK |


| Lower Stiffeners |  |  |
| :---: | :---: | :---: |
| Configuration $=1 \quad$ None |  |  |

GPD Flange Plate Stress (Rev F) - V1.08


## APPENDIX G

Foundation Calculations

| Bearing Summary |  | Load Case |  |
| :---: | :---: | :--- | :---: |
| Qxmax | 1.86 | ksf | $1 \mathrm{D}+1 \mathrm{~W}$ |
| Qymax | 1.86 | ksf | $1 \mathrm{D}+1 \mathrm{~W}$ |
| Qmax @ 45 | 2.44 | ksf | $1 \mathrm{D}+1 \mathrm{~W}$ |
| $\mathrm{Q}_{\text {(all) Gross }}$ | 6.00 | ksf |  |
|  | Pass |  |  |
| Controlling Capacity | $\mathbf{4 0 . 7 \%}$ |  |  |


| General Info |  |
| :---: | :---: |
| Code | TIA/EIA-222-F (ASD) |
| Bearing On | Soil |
| Foundation Type | Mono Pad |
| Pier Type | Square |
| Reinforcing Known | No |
| Max Capacity | 1 |


| Overturning Summary (Required $\mathbf{F S}=\mathbf{1 . 5}$ ) |  | Load Case |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{FS}(\mathrm{ot}) \mathrm{x}$ | 1.95 | $\geq 1.5$ | $1 \mathrm{D}+1 \mathrm{~W}$ |  |
| $\mathrm{FS}(\mathrm{ot}) \mathrm{y}$ | 1.95 | $\geq 1.5$ | 1D+1W |  |
| Controlling Capacity | $\mathbf{7 6 . 8 \%}$ | Pass |  |  |


| Pad \& Pier Geometry |  |  |
| :---: | :---: | :---: |
| Pier Width, $\varnothing$ | 5 | ft |
| Pad Length, L | 22 | ft |
| Pad Width, W | 22 | ft |
| Pad Thickness, t | 3 | ft |
| Depth, D | 8 | ft |
| Height Above Grade, HG | 0.5 | ft |



| Pad \& Pier Reinforcing |  |
| :---: | :--- |
| Rebar Fy | ksi |
| Concrete Fc' | ksi |
| Clear Cover | in |
| Reinforced Top \& Bottom? |  |
| Pad Reinforcing Size |  |
| Pad Quantity Per Layer |  |
| Pier Rebar Size |  |
| Pier Quantity of Rebar |  |


| Soil Properties |  |
| :---: | :---: |
| Soil Type | Granular |
| Soil Unit Weight | 120 pcf |
| Angle of Friction, $\varnothing$ | $28^{\circ}$ |
| Bearing Type | Gross |
| Ultimate Bearing | 12 ksf |
| Water Table Depth | 1 ft |
| Frost Depth | 4 ft |



GPD Mat Foundation Analysis - V1.01

## APPENDIX H

Modification Drawings

## POMFRET-TYRONE RD USID \#: 71304 <br> 150' MONOPOLE



## GENERAL NOTES









 2 Loalngs:


10. Structuval steel:
specificatons










13. Provioe structural stel shop drawnigs to enaneer for approval proro to fabricaton




## CONTRACTOR NOTES











## CONTINUED CONTRACTOR NOTES







## FOUNDATION NOTES

 - STEPAME WENEROTH (NEXLINK GLOBAL SERVCES) 678-366-1247



 $\mathbf{5}$ welong is prohilitied on renforcing stel and embements.
Welong is prohiried on renoorcing stel and emeements.

















## Nain

 Nom
## 


 install 3000 ( nepa 701) fre blanke around all coax.
E. More splater and sparks shall ee anticianien gnen the prenously galv. surface.

 a fumes createo from welong on a premously gall. subface can be hazaroous. . prop to weling, all surfaces shall be properit grouno to rewove gallanizim







## MODIFICATION PLATE NOTES

contractor shall wstal fat plates, stifenerer, and brackets at locatons per plan vew use hax bouts wit correct slege levgits per deals. boit threnos shall not be in 3 all holes drlied in pole solvent cleaned and toucheo up wit zrc zicc rich pant. 4 sLi Joints to be jacked togerner using 6 ton come-A-Longs prior to mounting channel. SHM PCATES ARE TO be USED below sup Jont AS REOURED.
'snu--ticht conotion:


## ANCHOR ROD NOTES

cincinesctor shall nstal anchor roos per manvacturer's instalation proceuvies ano


 4 contractor shall instal roos ano brackets at locatons nucacted on orammss. S. contracroor shall verry that tower is pume prior to the instalaton of Anr tower




 10. HALF OR A MNMUM OF 4 ( (WHCCHEEER IS GREATER) NEW ANCHOR ROOS SHALL EE TESTED.




 L5 New Anchor roos to ee hot dipeed galvanize to a minmu of $3^{\prime \prime}$ below the concret


| ANTENNA SCHEDULE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Eleatoon | staus | ANEIM | Mount | coax |
| 152'-0" |  | ${ }^{\text {(6) }} 7770.00$ |  | (12) $11 / 4$ |
|  | Ex\|cinc | (6) L6P21401 |  |  |
|  | Proiposed | (1) S8NH-105555C |  | (1) 2' $^{\text {c conour }}$ |
|  | ${ }^{\text {Proposseg }}$ | (2) AM-X-CCD-17-65-00T |  | (1) $1 / 2^{2} \mathrm{~F}$ FIEER |
|  | Proposeo | (6) Res 6601 |  | (2) $3 / 4{ }^{\circ} \mathrm{DC}$ |
|  |  |  |  |  |
| $100^{\circ}-0^{\prime \prime}$ | Exstinc | (1) DPPoLE (2 Elemenss) | (1) fusth Mount | (1) |


| MODIFICATION SCHEDULE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Smmeol | Elevatow | MEMERR TPE | ExSITING MEMEER | NEW MEMEER | Notes |
| (A) | $110^{\prime}-3^{\prime \prime} \pm$ to $130^{\prime}-3^{\prime \prime} \pm$ | flat plates | 12 SIIED Monopole |  | (ent |
| (B) | $110^{-00} 0^{\prime \prime}$ | ¢ ${ }_{\text {groge }}^{\text {SIffever }}$ | - | 1-1/44 THCK PLAEE |  //5-04 for wore Niornation. |
| (C) | 90'-0"土 To 109'-9" $\pm$ | FLat plates | 12 SIIED MONOPOLE |  | NSTAL F FLAT PLATES TO EXXISTING TMWER SHAFT. SEE DEEAAL <br> 5/S-03. $6 / \mathrm{S}$-04, \& $12 / \mathrm{S}$-05 FOR MORE INFORMATION. |
| (D) |  | FLat plates | 12 SIIED MONOPOLE |  |  |
| (E) | $56^{\prime}-3^{\prime \prime} \pm$ To $74^{\prime \prime-3^{\prime \prime} \pm}$ | flat plates | ${ }^{12}$ SILED MONOPOLE |  |  |
| - ${ }^{\text {¢ }}$ | $28^{8}-6^{\prime \prime} \pm$ To $58^{\prime}-6^{\prime \prime} \pm$ | flat plates | 12 SIIED MONOPOLE |  |  |
| (G) | $0^{\circ}-99^{\prime \prime}$ to 30 $30-99^{\prime \prime} \pm$ | flat plates | ${ }^{12}$ SIIED MONOPOLE |  | ISTALL FLAT PLATES TO EXISTING TOWER SHAFT. SEE DEEAALL $1 / 5-02,2 / \mathrm{S}-03, \& 8 / \mathrm{S}-05$ FOR MORE INFORMATON. |
| - ${ }^{\text {¢ }}$ | $0^{-}-0^{\prime \prime} \pm$ to $3^{3}-0^{\prime \prime} \pm$ | ANCHOR RODS W/BRACKETS | (8) $2-1 / 44^{\circ} \mathrm{P}$ Roos |  | NSTALL ANCHOR RODS WITH BRACKETS TO THE EXISTING TOWER BASE. SEE DETAIL $1 / \mathrm{S}-02$ FOR MORE INFORMATION |
| (J) | GRADE | FOUNDATION COLLAR | PAD \& PIER | CONCERT COLAR | INSTALL CONCRETE COLLAR TO EXISTING TOWER FOUNDATION. SEE SHEET F-01 FOR MORE INFORMATION. |



















DETAIL


DETALL (:)




 DOWEL DETAIL

| MODIFICATION INSPECTION CHECKLIST |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BEFORE CONSTRUCTION |  | DURING CONSTRUCTION |  | AFTER CONSTRUCTION |  |
| CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD) | REPORT ITEM | CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD) | REPORT Item | CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING ENGINEFR OF RECORD | REPORT ITEM |
| X | MODIFICATION INSPECTION CHECKLST DRAWING | X | CONSTRUCTION INSPECTIONS | X | MODIFICATION INSPECTOR REDLINE OR RECORD DRAWING(S) |
| X | Engineer of record approved shop drawing | X | FOUNDATION INSPECTIONS | X | PoSt installed anchor rod pull-out testing |
| X | FABRICATION Inspection | X | CONCRETE COMP. STRENGTH AND SLUMP TESTS | X | Photographs |
| $\times$ | fabricator certified welo inspection | X | POSt installed anchor rod verrication | Adotional testing and inspe | tions: |
| X | MATERIAL TEST REPORT | X | base plate grout verification |  |  |
| X | FABRICATOR NDE INSPECTION | X | CONTRACTOR'S CERTIFIED WELD INSPECTION |  |  |
| X | noe report of monopole base plate (As required) | X | EARTHWORK: LIT AND DENSITY |  |  |
| X | PACKING SLIPS | $\times$ | on site cold galvanizing verification |  |  |
| Adoitional testing and inspections: |  | - | GUY WIRE TENSION REPORT |  |  |
|  |  | $\times$ | GC AS-BULL DOCUMENTS |  |  |
|  |  | Adotional testing And inspections: |  |  |  |
|  |  | OTE: X DENOTES A DOCUMENT <br> - DENOTES A DOCUMENT | EDED FOR THE MODIFICATION INSPECTION REPO HAT IS NOT REQUIRED FOR THE MODIFICATION |  |  |

## MODIFICATION INSPECTION NOTES:

GENERAL


2 THE MODIICATIN INSPECTION IS TI CONFIRM INSTALLATION CONFIGURATON AND
WORKMANSHP ONLY AND IS NOT A REVIEW OF THE MOOIFICATION DESIGN TSELF, NOR
 OUSERSH MOF THE STRUCTURAL MADEIFCATON DESSIG
RESIDS WTH THE ENGINER OF RECORD AT ALL TMES.
3. TO ENSURE THAT THE REQUREMENTS OF THE MODIICATION INSPECTION ARE MET, IT IS NTAL THAT THE GENERAL CONTRACTOR (GC) AND THE MODIFICATON NSPECTER, BEGIN
 CONTACT INFORMATION IS NOT KNOWN.

MODIFICATION INSPECTOR
THE MODIFICATION INSPECTOR IS REOURED TO CONTACT THE GC AS SOON AS
RECEVNG A PO OR PAYMENT FOR THE MOOFFCCTION INSPECTON TO:

- REVEW THE REQUREMENTS OF THE MODIFICATON INSPECTION CHECKLLST
-WORK WTH THE GC TO DEVELOP A SCHEDULE TO CONDUCT ON-STIE INSPECTIONS,

INCLUDNG FOUNDATION INSPECTIONS
-DISCUSS ANY SITE SPECIFIC INSPCTTONS OR CONCERNS



GENERAL CONTRACTOR


MODIFICATION INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS
-BETIER UNDERSTAND ALL INSPECTION AND TESTING REQUREMENTS
2 THE GC SHAL PERFORM AND RECORD THE TESS AND INSPECTION RESUUTTS IN
ACCORDANCE WITH THE REQUUREMENTS OF THE MODFILAATION INSPECTION CHECKLIST.

## RECOMMENDATIONS

1. THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENANCE THE
EFFICIENCY AND EFFECTVENESS OF DELIVERNG A MODIFICATON INSPECTION REPORT:
-IT IS SUGGESTED THAT THE GC PROVID A MINMUM OF 5 BUSINESS DAYS NOTICE,
PREEERABLY 10 , CO THE MOIFCCATION INSPECTOR AS TO WHEN THE STIE WLL BE READY
 WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MODIFICATION INSPECTOR ON-STE MMULTAN BE BENEFICAL TO OUNDATION INSPECTIONS TO ALLOW FOUNDATION AND MODIFICATION INSPECTION(S) TO

 THEIR DISPOSAL WHEN THE MI INSPECTOR IS ON SITE.

CANCELLATION OR DELAYS IN SCHEDULED MODIFICATION INSPECTION

 (E.G. TRAVEL AND LODGING, COSTS OF KEERING EQUIPMENT ON-SITE, ETC.). EXCEPTIONS MAY
BE MADE IN THE EVENT THAT THE DELAY/CANCELATION IS CAUSED BY WEATHP OR OTHER


CORRECTION OF FAILING MODIFICATION INSPECTION 1. IT THE MODFICATION INSTALLATON WOULD FALL THE MODIFCATION INSPECTION (FAALED MODIFICATIN INSPECTION") THE GC SHALL WORK WIT
COOROINATE A REMEDATION PLAN IN ONE OF TWO WAYS:

$$
\begin{aligned}
& \text { RECORD TO. } \\
& \text { CONDITION. }
\end{aligned}
$$

VERIFICATION INSPECTIONS

1. TOWER OWNER RESERVES THE RIGHT TO CONDUCT A VERFICATION INSPECTION TO VERIF
THE ACCURACY AND COMPLETENESS
OF PREVIOUSLY COMPLETED MOOFICATION

2. VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT FIRM AFTER


REQUIRED PHOTOS
$\frac{1}{\text { I }}$ BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS ARE TO BE
TAKEN AND INCLUDED IN THE MODIFICATION INSPECTION REPORT:
-PRE-CONSTRUCTION GENERAL SITE CONDITION
AND INSPECTION

RAW MATERIALS
PHOTOS OF ALL CRIIICAL DETALLS
FOUNDATO
FOUNDATION MODIFIC
WELD PREPARATION
BBLT PRTPALATION AND TORQUE
FINAL NTSAALIID
FINAL INSTALLED CONDTIIN
SURFACE COTNG REPAR
-POST CONSTRUCTION PHOTOGRAPHS
MODIFICATIONS
M
2. photos of elevated modifications taken from the ground shall be considered

$$
\begin{aligned}
& \begin{array}{l}
\text {-CORRECT FALING ISSUES TO COMPLY WITH THE SPECIIICATIONS CONTAINED IN THE } \\
\text { ORGINA CONTRACT DOCUMENTS ANO COROINATE A SUPPLEMENT MODFICATION } \\
\text { INSPECTION. }
\end{array} \\
& \begin{array}{l}
\text { INSPECTION. WER OWNER'S APPRRVAL, THE GC MAY WORK WITH THE ENGINEER OF } \\
\text { OR, WTH TOWE } \\
\text { RECORD TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT USING THE AS-BUILT }
\end{array}
\end{aligned}
$$


[^0]:    *See Appendix E for the modification calculations.

