

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

September 17, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 171 Town Hill Road, Plymouth, CT 06279 Latitude: 41.668389 Longitude: 73.019956 Site# 826768 Crown Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 171 Town Hill Road, Plymouth, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 132-foot level of the existing 169-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated August 24, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated June 6, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Town of Plymouth Planning and Zoning Commission on June 22, 2000 by way of a Special Permit issuance. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to David V. Merchant, Mayor, for the Town of Plymouth, Margus T. Laan, Planning Director, as well as the tower owner (Crown Castle) and property owner (Terryville Country Fair Inc)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 169-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 132-feet.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.

- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
- 4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 26.88% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in Plymouth. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 132-foot level of the existing 169-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Plymouth.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc: David V. Merchant, Mayor Town of Plymouth Town Hall – Mayor's Office 80 Main Street Terryville, CT 06786

Margus T. Laan, Planning Director Town of Plymouth Town Hall – Land Use Office 80 Main Street Terryville, CT 06786

Terryville Country Fair Inc. 171 Town Hill Road PO Box 72 Terryville, CT 06786

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

TOWN OF PLYMOUTH, CONNECTICUT	ZONING PERMIT NO. 00- 201
	Fee Paid: \$ /00.00 # 058 194
	Date: July 5 19 2000
Permission is hereby granted to Terryville Lions	Club & Omniporat
T A	

as follows: Size ft. long, ft. wide, stories high; distance from road center line ft; distance from each lot line: E ft.; W ft.; S N ft.; for the use of the facility as a Tele communication Tower or approved by P+2 on 6/22/2000 with stipulations

PLANNING AND ZONING COMMISSION, TOWN OF PLYMOUTH CONNECTICUT

A see approved Sete Plan

Joted 3/2000 Received Remail

3/6/2000 6/20/2000 Agent of the Planning and Zoning Commission

The recipient of this permit accepts this permit on the condition that he, as owner or as representing the owner, agrees to comply with all applicable ordinances and regulations of the Town of Plymouth and the State of Connecticut regarding the use, occupancy and type of activity to be instituted. It is furthermore understood that the facility can not be used until a Certificate of Occupancy has been issued by the Planning and Zoning Commission and that any change of use similarly does require a new Certificate of Occupancy. Before a Certificate of Occupancy will be issued a plot plan drawn to a scale of 1" - 50' prepared and certified by a licensed enaineer or land surveyor must be submitted to the Planning and Zoning Commission showing all boundaries of the line of any public or private right-of-way, sanitary facilities and water supply. This permit shall be valid for one year.

PAGE 3

MOTION: Gaye Zukauskas made a motion to add Town Hill Road/Lions back on the agenda. Steve Panasuk seconded. VOTE: S. Panasuk – Aye, G. Zukauskas – Aye, W. Radke – Aye and Chairman Herzing so voted.

MOTION: Patrick Herzing made a motion for a 5-minute recess at 9:23 p.m. VOTE: All in favor.

Chairman Patrick Herzing called the meeting back to order at 9:28 p.m.

Town Hill Road/Lions - Special Permit — Telecommunication Tower — Omnipoint — MOTION: Gaye Zukauskas made a motion to approve the application for the telecommunication tower-Town Hill Road-Lions Club and Omnipoint-State ID #CT-11417C consisting of 5 sheets, cover dated 6/20/00, vicinity plan dated 3/8/00, sheet C-1, C-2 and C-3 all dated 6/20/00 with the only stipulation that Plymouth emergency services to have free access as needed with no charge to the Town. Any additional carriers to come in for a special permit. Bond to be set by Public Works in the event of abandonment. Steve Panasuk seconded. VOTE: S. Panasuk - Ave. G. Zukauskas — Ave. W. Radke — Aye and Chairman Herzing so voted.

- 11. Town Hill/Washington Roads Pines Subdivision Bond Reduction CT Water Co. CT Water Co. has sold most of the lots in the subdivision to Mr. Zappone. Discussion was had. MOTION: Wayne Radke made a motion to reduce the bond as requested and get a new bond from Mr. Zappone before reduction of CT Water Co.'s bond. Gaye Zukauskas seconded. VOTE: S. Panasuk Aye, G. Zukauskas Aye, W. Radke Aye and Chairman Herzing so voted.
- 16. Plymouth Housing Authority Section 8-24 Review Yefko Property Mr. Kuehn read the memo dated 6/21 from Anthony A. Lorenzetti, PE into the record. He is in support of this proposal. It would be a solution to the parking situation at Gosinski Park. Half of it would be for off street parking and the other half for a minimum 20,000 sq. ft. residential parcel for a low/moderate income housing. The resolution should be 39,100 not 29,100. Mr. Kuehn read the resolution into the record. MOTION: Gaye Zukauskas made a motion to accept the resolution for an 8-24 review. Wayne Radke seconded. VOTE: S. Panasuk Aye, G. Zukauskas Aye, W. Radke Aye and Chairman Herzing so voted.
- 18. Land Use Corner Gaye strikes again. The final revision has been faxed to the Plymouth News. Gaye suggested that Mr. Kuehn do one next month on industrial property.
- 21. Correspondence from ZBA Chairman Mike Cole Patrick Herzing will call Mike Cole and get a time set up probably in September to get together to discuss the zoning regulations. It was suggested to have Mike come up with an agenda of issues to look at ahead of time.
- 22. Proposed ordinance for zoning violations The Town Council tabled this item at their last meeting so no public hearing has been scheduled. It recommends a \$150 fine per violation. Maybe we can not issue any permits to people who have not finished and cleaned up their last items.

STAFF COMMENTS –Mr. Kuehn informed the Commission that 36 signs will be going up in the industrial park for the public hearing.

Exhibit B

Property Card

Parcel ID 048-073B-012

Account

00041600

Property Information

Owner	TERRYVILLE COUNTRY FAIR INC	
Address	171 TOWN HILL RD	
Mailing Address	PO BOX 72 TERRYVILLE CT 06786	
Land Use	-	
Land Class	E	

Census Tract	4254
Neighborhood	103
Zoning	RA1
Acreage	20.46
Utilities	
Lot Setting/ Desc	/1

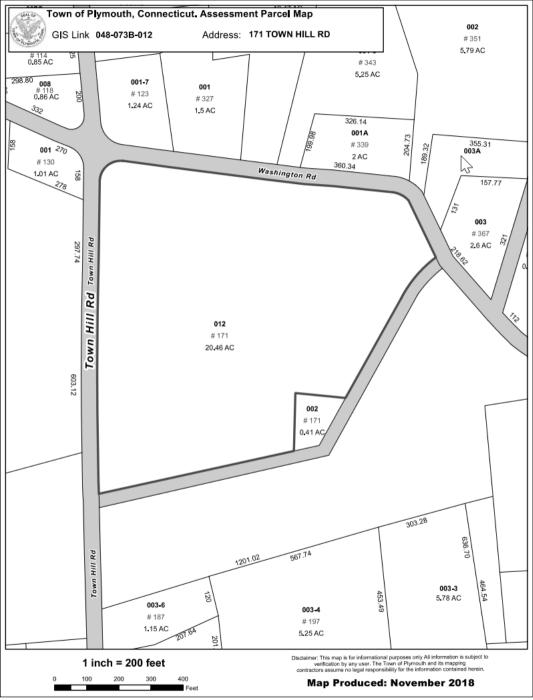
Photo

PARCEL VALUATIONS (Assessed value = 70% of Appraised Value)

	Appraised	Assessed
Buildings	83250	
Outbuildings		
mprovements		
Extras		
_and	0	
Γotal	1042260	729580
Previous		

Construction Details

Year Built	
Stories	
Building Style	
Building Use	
Building Condition	
Total Rooms	
Bedrooms	
Full Bathrooms	
Half Bathrooms	
Bath Style	
Kitchen Style	
Roof Style	
Roof Cover	


EXTERIOR WALLS:		
Primary		
Secondary		
INTERIOR WAL	LS:	
Primary		
Secondary		
FLOORS:		
Primary		
Secondary		
HEATING/AC:		
Heating Type		
Heating Fuel		
AC Type		

BUILDING AREA:

Effective Building Area	
Gross Building Area	
Total Living Area	

SALES HISTORY:

Sale Date	0
Sale Price	0
Book/ Page	152/643

Exhibit C

Construction Drawings

wireless.

DISH Wireless L.L.C. SITE ID:

BOHVN00014A

DISH Wireless L.L.C. SITE ADDRESS:

171 TOWN HILL ROAD PLYMOUTH, CT 06786

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL ELECTRICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

TOWER SCOPE OF WORK:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)
 INSTALL (1) PROPOSED PLATFORM
 INSTALL PROPOSED JUMPERS

- INSTALL (6) PROPOSED RRUS (2 PER SECTOR)
 INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
 INSTALL (1) PROPOSED HYBRID CABLE

- GROUND SCOPE OF WORK:

 INSTALL (1) PROPOSED METAL PLATFORM

 INSTALL (1) PROPOSED ICE BRIDGE

 INSTALL (1) PROPOSED PPC CABINET

 INSTALL (1) PROPOSED EQUIPMENT CABINET

 INSTALL (1) PROPOSED POWER CONDUIT

- PROPOSED TELCO CONDUIT
 PROPOSED TELCO-FIBER BOX INSTALL
- INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)
- INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED)
 EXISTING METER SOCKET ON EXISTING H-FRAME TO BE UTILIZED

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

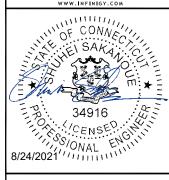
CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCFEDING WITH THE WORK.

SITE INFORMATION PROJECT DIRECTORY PROPERTY OWNER: TERRYVILLE COUNTRY FAIR I DISH Wireless L.L.C. ADDRESS: PO BOX 76 5701 SOUTH SANTA FE DRIVE TERRYVILLE, CT 06786 LITTLETON, CO 80120 TOWER TYPE: MONOPOLE TOWER CO SITE ID: 826768 TOWER OWNER: CROWN CASTLE 2000 CORPORATE DRIVE TOWER APP NUMBER: 553358 CANONSBURG, PA 15317 (877) 486-9377 COUNTY: LITCHFIELD SITE DESIGNER: INFINIGY 2500 W. HIGGINS RD. STE. 500 LATITUDE (NAD 83): 41° 40' 6.20" N 41.668389 N HOFFMAN ESTATES, IL 60169 LONGITUDE (NAD 83): 73° 1' 11.84" W (847) 648-4068 73.019956 W ZONING JURISDICTION: SITE ACQUISITION: NICHOLAS CURRY NICHOLAS.CURRY@CROWNCASTLE.COI ZONING DISTRICT: CONSTRUCTION MANAGER: JAVIER SOTO JAVIER.SOTO@DISH.COM PARCEL NUMBER: PLYM-000004-001600 OCCUPANCY GROUP: RF ENGINEER: SYED ZAIDI SYFD ZAIDIODISH COM CONSTRUCTION TYPE: POWER COMPANY: TELEPHONE COMPANY: AT&T

DIRECTIONS

DIRECTIONS FROM TOURS OF DISTINCTION AIRPORT:

DEPART AND HEAD TOWARD MASSACO ST, TURN RIGHT ONTO MASSACO ST, TURN RIGHT ONTO US-202 W / CT-10 / HOPMEADOW ST, TURN RIGHT ONTO CT-167 / MEST ST, TURN LEFT TO STAY ON CT-167 / BUSHY HILL RD, TURN RIGHT ONTO CANTON RD, KEEP RIGHT TO GET ONTO WILDWOOD RD, BEAR LEFT ONTO NOTCH RD, ROAD NAME CHANGES TO WASHBURN RD, BEAR LEFT ONTO LAWTON RD, BEAR RIGHT ONTO US-202 E / US-44 E / ALBANY TPKE, TURN LEFT ONTO DOWD AVE, ROAD NAME CHANGES TO MAPLE AVE, KEEP STRAIGHT TO GET ONTO CT-179 / MAPLE AVE, KEEP STRAIGHT TO GET ONTO CT-179 / MAPLE AVE, TURN RIGHT ONTO CT-4 / SPIELMAN HWY, TURN LEFT ONTO CT-72 / TERRYVILLE RD, TURN RIGHT ONTO N MAIN ST, TURN RIGHT ONTO US-6 W / MAIN ST, TURN LEFT ONTO S MAIN ST, KEEP RIGHT TO GET ONTO S EAGLE ST, TURN RIGHT ONTO WASHINGTON RD, TURN LEFT, ARRIVE AT, 171 TOWN HILL ROAD, PLYMOUTH, CT 06786.


5701 SOUTH SANTA FF DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY8

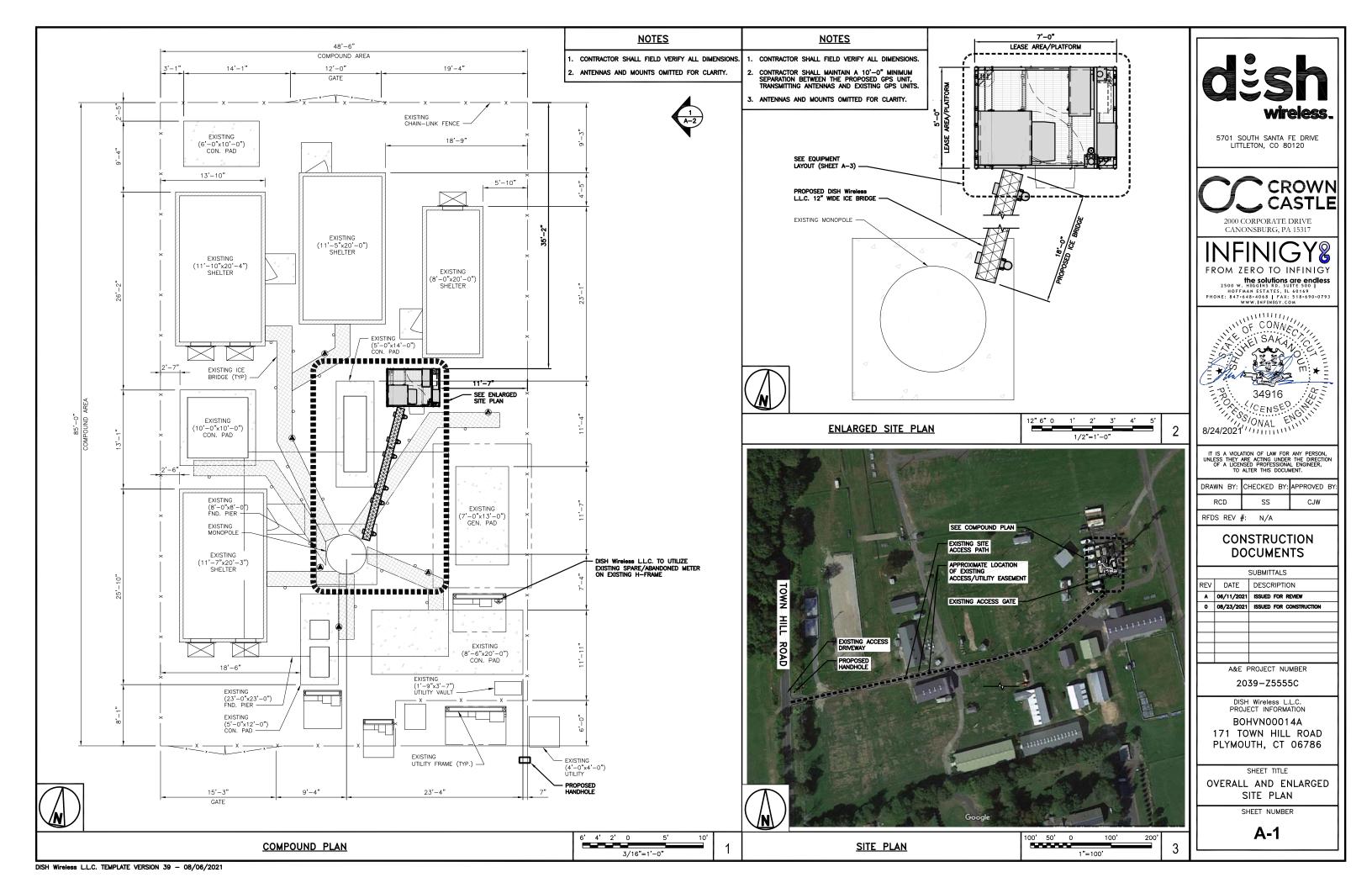
the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

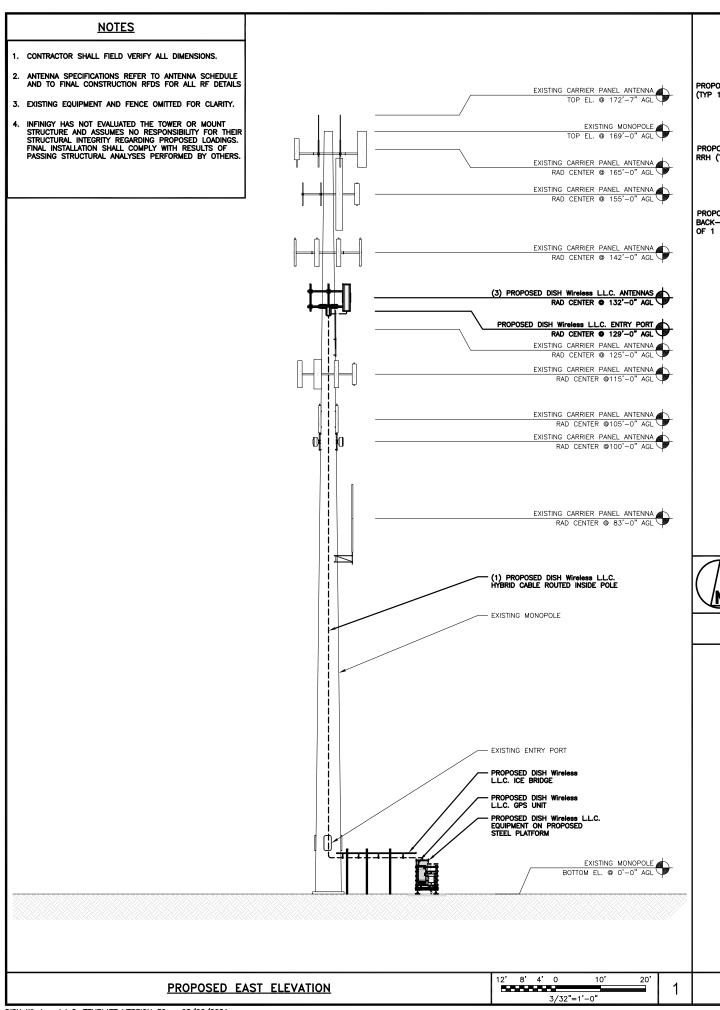
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

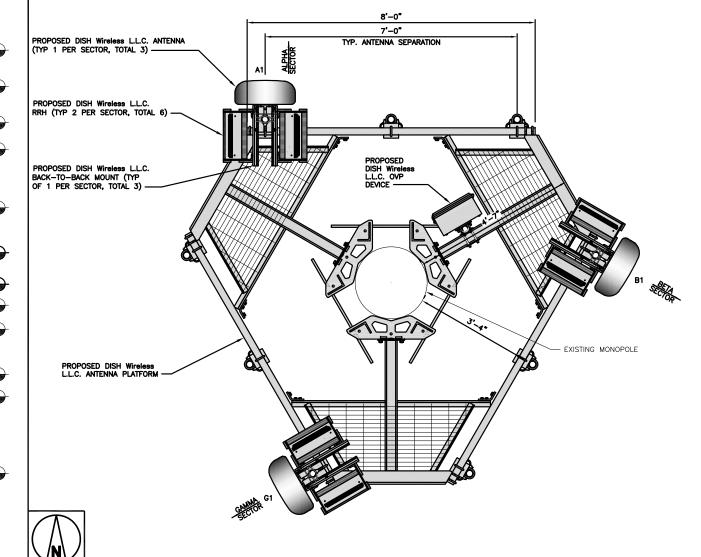
	DRAWN BY:	CHECKED BY:	APPROVED B
ı	RCD	SS	CJM

RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**


	SUBMITTALS			
REV	REV DATE DESCRIPTION			
A	06/11/2021	ISSUED FOR REVIEW		
0	08/23/2021	ISSUED FOR CONSTRUCTION		
A&E PROJECT NUMBER				
	2039-Z5555C			


BOHVN00014A 171 TOWN HILL ROAD PLYMOUTH, CT 06786


> SHEET TITLE TITLE SHEET

SHEET NUMBER

T-1

ANTENNA TRANSMISSION CABLE SECTOR POSITION MANUFACTURER - MODEL NUMBER FEED LINE TYPE AND LENGTH RAD CENTER TECHNOLOGY SIZE (HxW) **AZMUITH** 132'-0" JMA WIRELESS - MX08FR0665-21 72.0" x 20.0" ALPHA A1 PROPOSED 5G 0. (1) HIGH-CAPACITY HYBRID CABLE BETA B1 PROPOSED IMA WIRELESS - MX08FR0665-2 72.0" x 20.0" 120° 132'-0" (190' LONG) 132'-0" GAMMA C1 PROPOSED JMA WIRELESS - MX08FR0665-21 5G 72.0" x 20.0" 240°

		RRH	
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY
ALPHA	A1	FUJITSU - TA08025-B604	5G
ALPHA A1		FUJITSU - TA08025-B605	5G
BETA	B1	FUJITSU - TA08025-B604	5G
	B1	FUJITSU - TA08025-B605	5G
GAMMA	G1	FUJITSU - TA08025-B604	5G
	G1	FUJITSU - TA08025-B605	5G

ANTENNA LAYOUT

NOTES

- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF
- ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

2" 6" 0

3/4"=1'-0

ANTENNA SCHEDULE

NO SCALE

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROWN

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY 8 FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

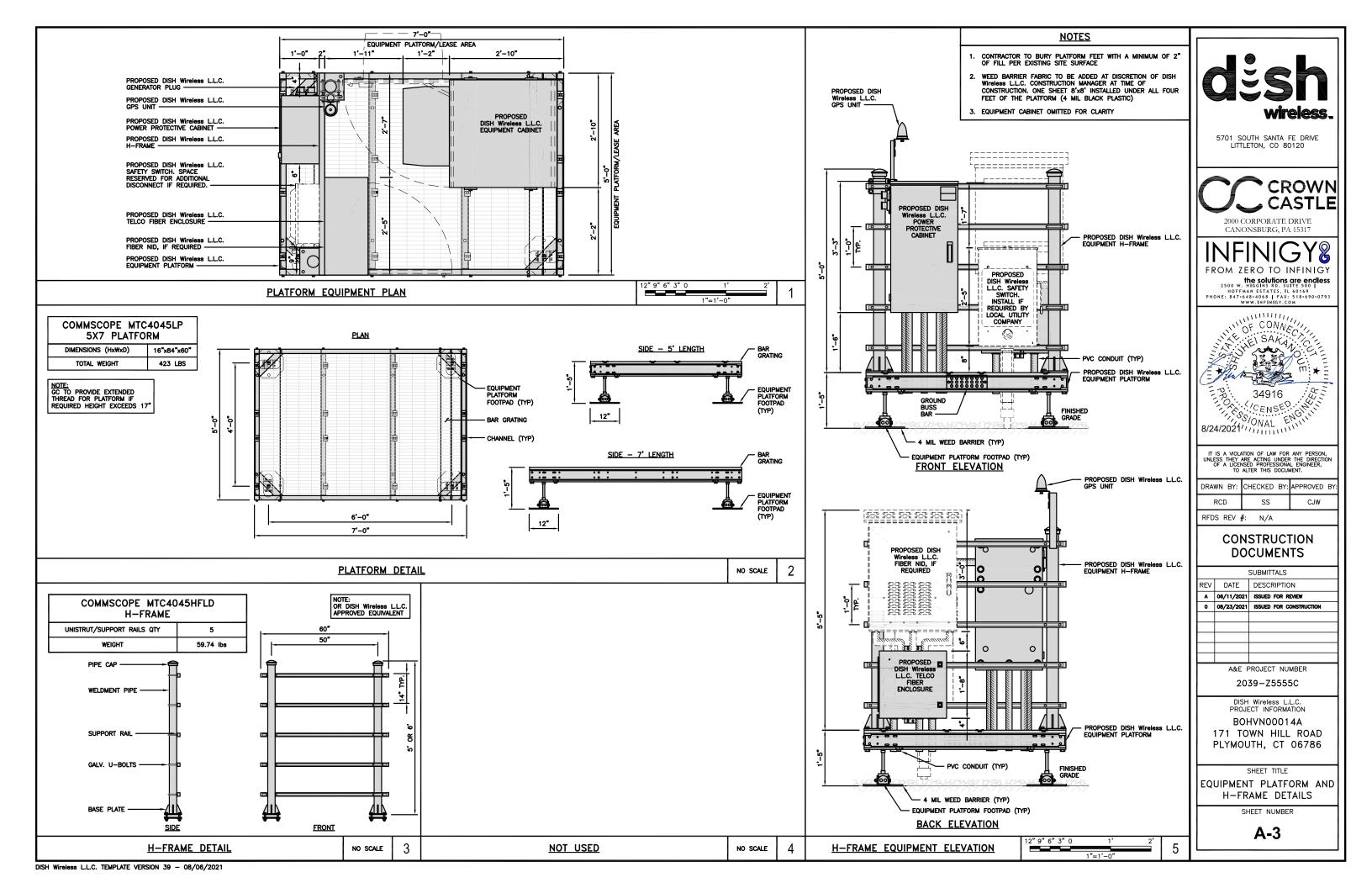
DRAWN BY: CHECKED BY: APPROVED BY CJW

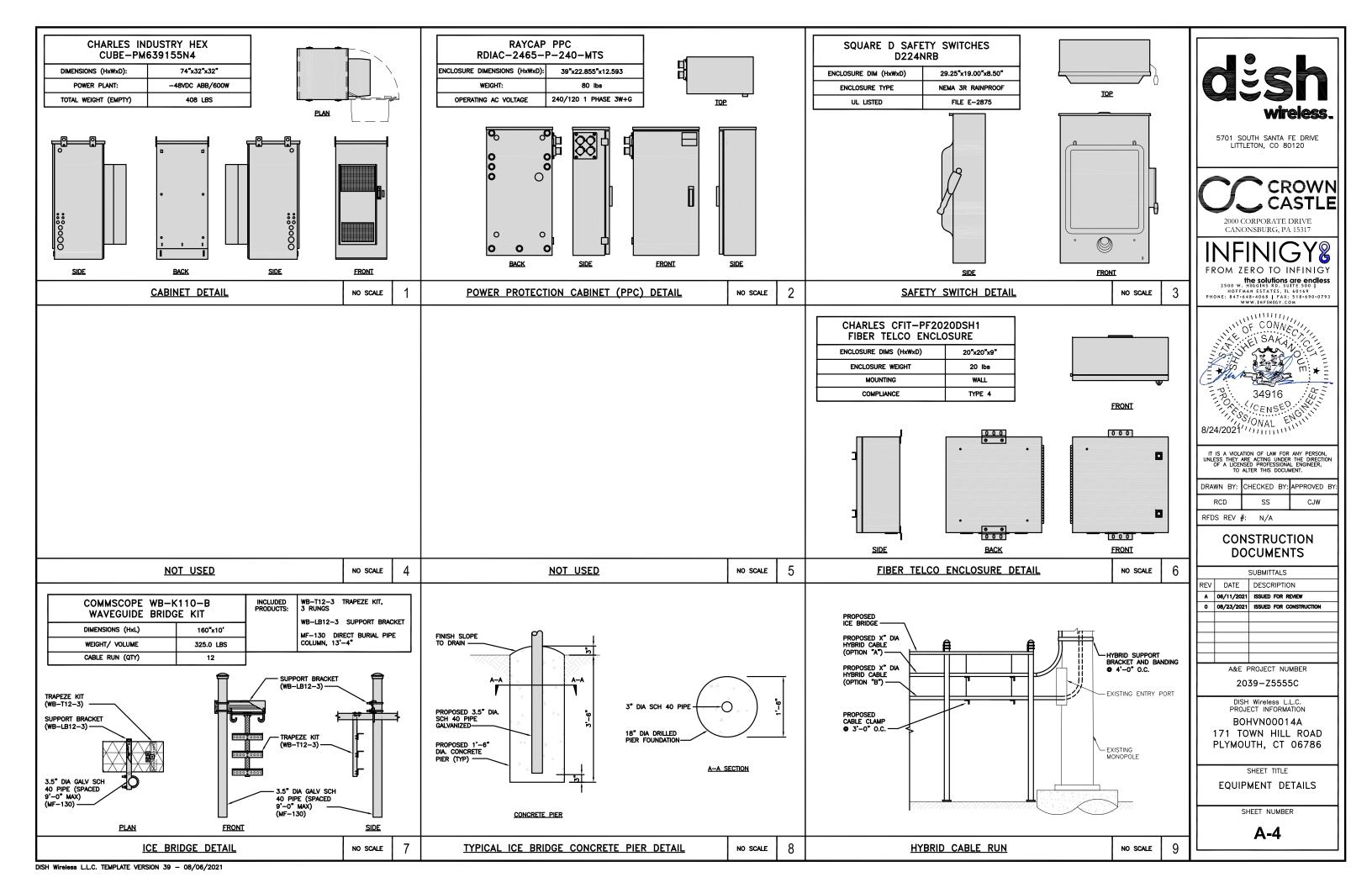
RFDS REV #: N/A

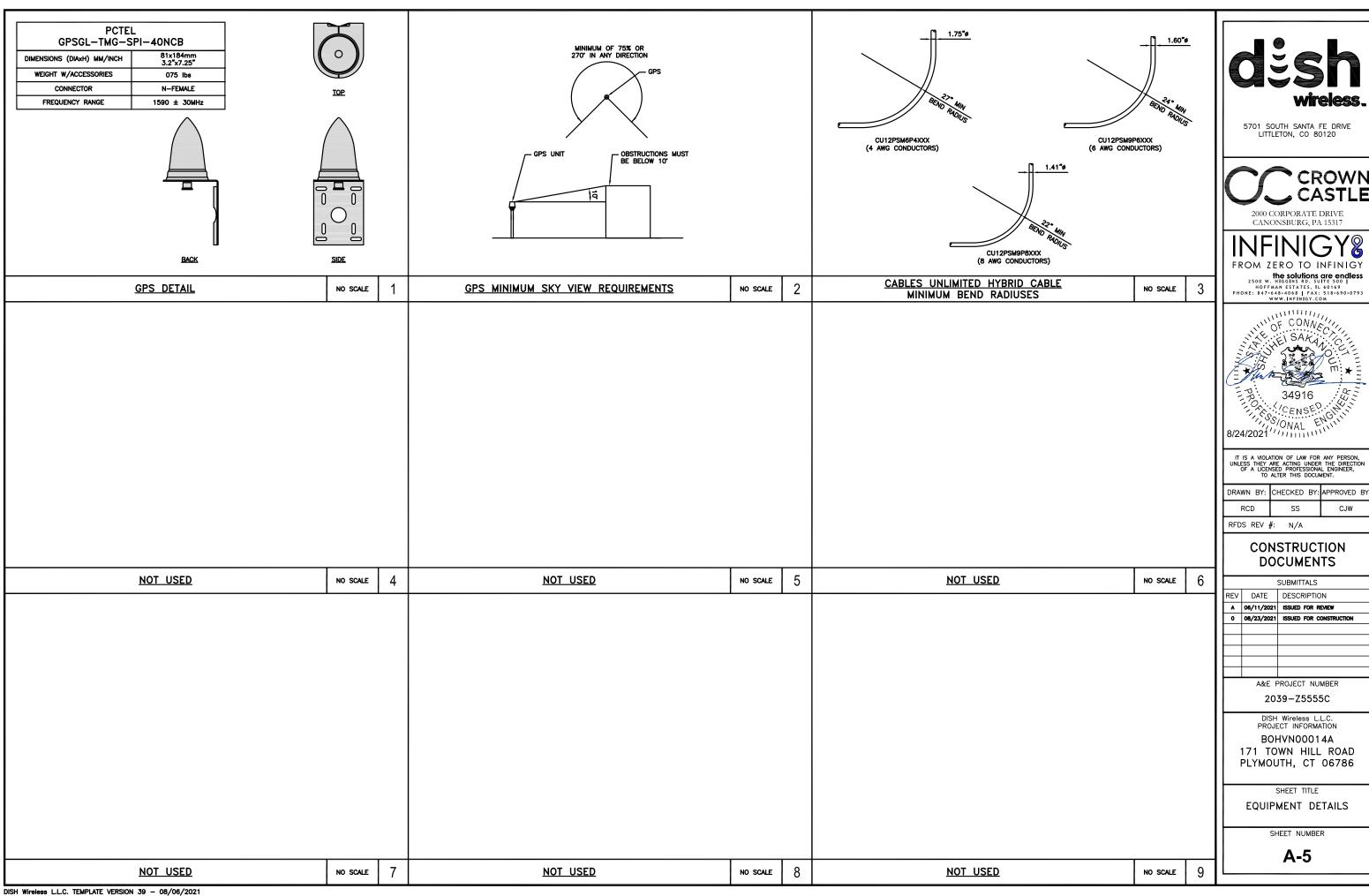
CONSTRUCTION **DOCUMENTS**

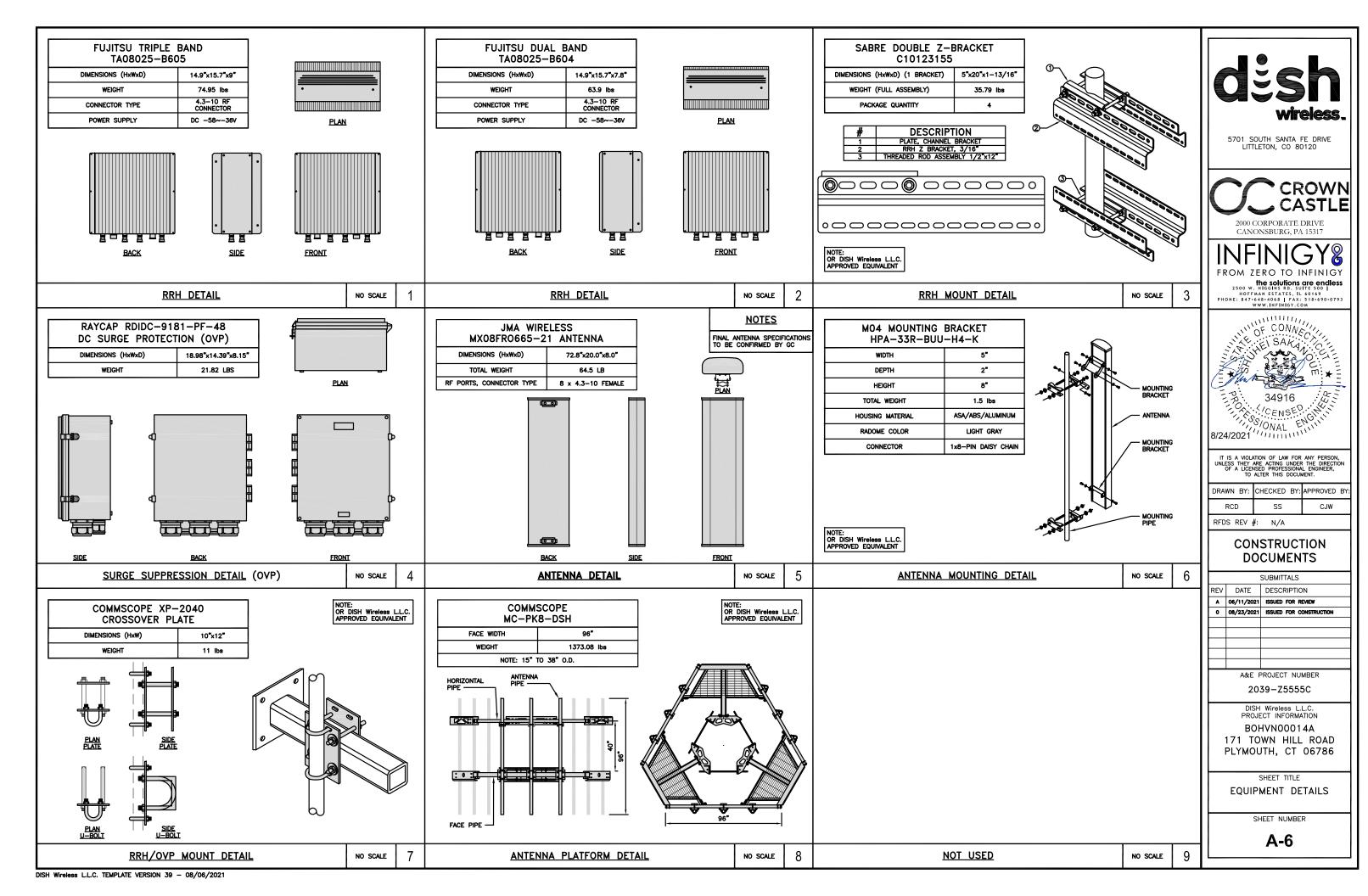
	SUBMITTALS					
REV	DATE	DESCRIPTION				
A	06/11/2021	ISSUED FOR REVIEW				
0	08/23/2021	ISSUED FOR CONSTRUCTION				
	A&E F	PROJECT NUMBER				
	A&E F	PROJECT NUMBER				

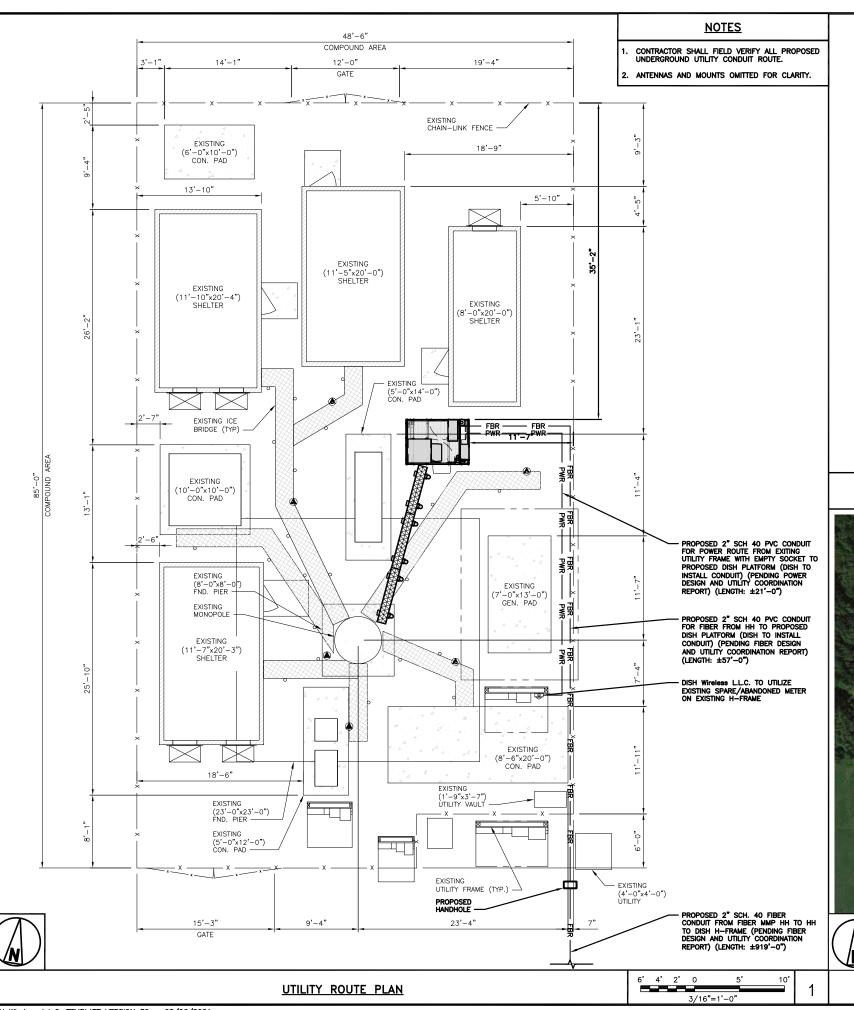
2039-Z5555C


DISH Wireless L.L.C.


PROJECT INFORMATION BOHVN00014A 171 TOWN HILL ROAD PLYMOUTH, CT 06786


ELEVATION, ANTENNA LAYOUT AND SCHEDULE SHEET NUMBER


SHEET TITLE


A-2

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING $\pm 24V$ and $\pm 48V$ conductors. RED MARKINGS SHALL IDENTIFY $\pm 24V$ and blue markings shall identify $\pm 48V$.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS.
 VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES

PROPOSED 2" SCH 40 PVC CONDUIT FOR POWER ROUTE FROM EXITING UTILITY FRAME WITH EMPTY SOCKET TO PROPOSED DISH PLATFORM (DISH TO INSTALL CONDUIT) (PENDING POWER DESIGN AND UTILITY COORDINATION REPORT) (LENGTH: ±21'-0") SEE COMPOUND PLAN ACCESS PATH APPROXIMATE LOCATION OF EXISTING ACCESS/UTILITY EASEMENT

EXISTING ACCESS GATE

EXISTING ACCESS DRIVEWAY HANDHOLE

PROPOSED 2" SCH 40 PVC CONDUIT FOR FIBER FROM HH TO PROPOSED DISH PLATFORM (DISH TO INSTALL CONDUIT) (PENDING FIBER DESIGN AND UTILITY COORDINATION REPORT) (LENGTH: ±57'-0")

> PROPOSED 2" SCH. 40 FIBER CONDUIT FROM FIBER MMP HH TO HH TO DISH H-FRAME (PENDING FIBER DESIGN AND UTILITY COORDINATION REPORT) (LENGTH: ±919'-0")

OVERALL UTILITY ROUTE PLAN

1"=100

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROWN CASTLE

> 2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY8 FROM ZERO TO INFINIGY

the solutions are endless
2500 w. Higgins RD. Suite 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY CJW

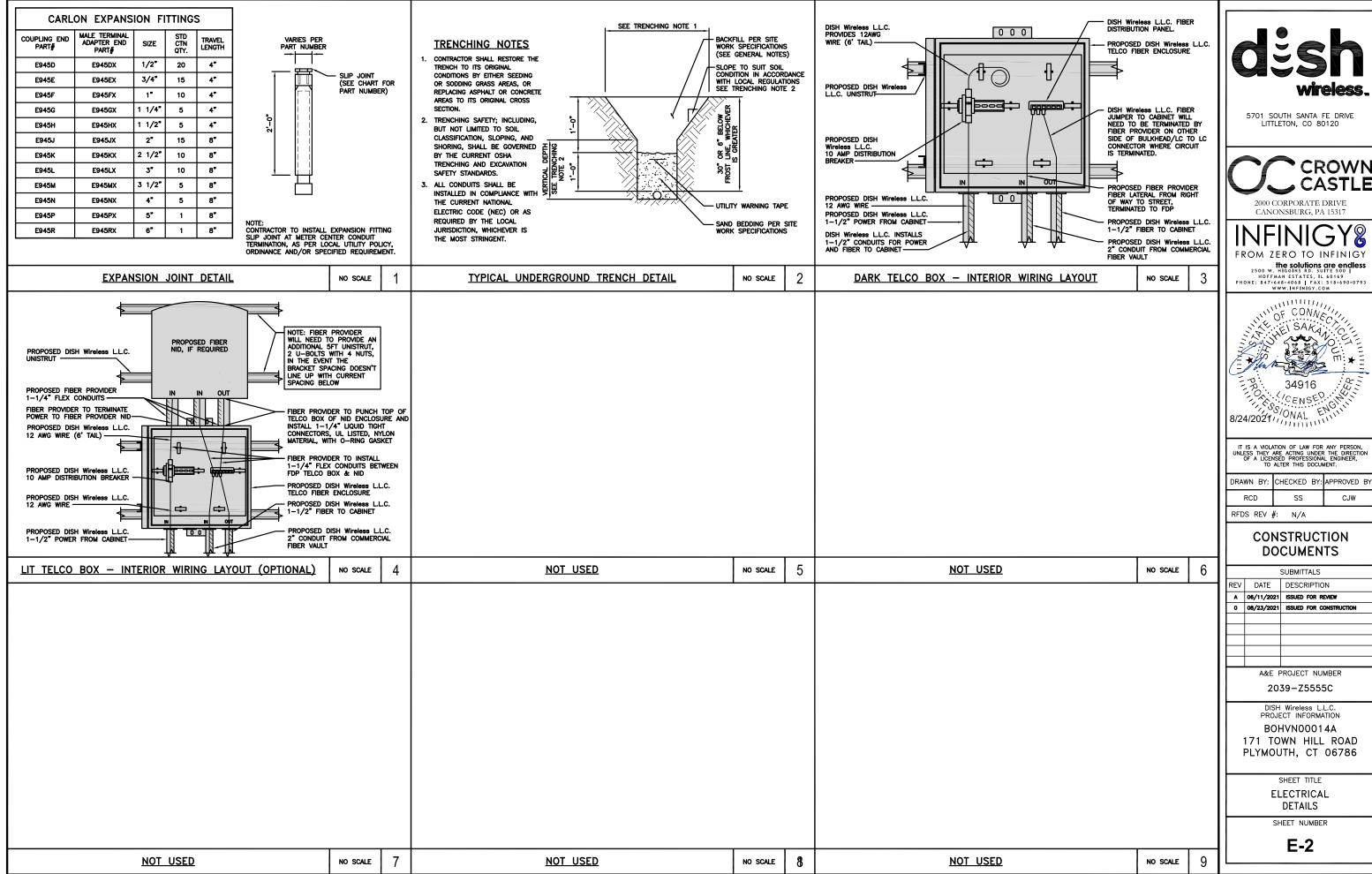
RFDS REV #:

CONSTRUCTION **DOCUMENTS**

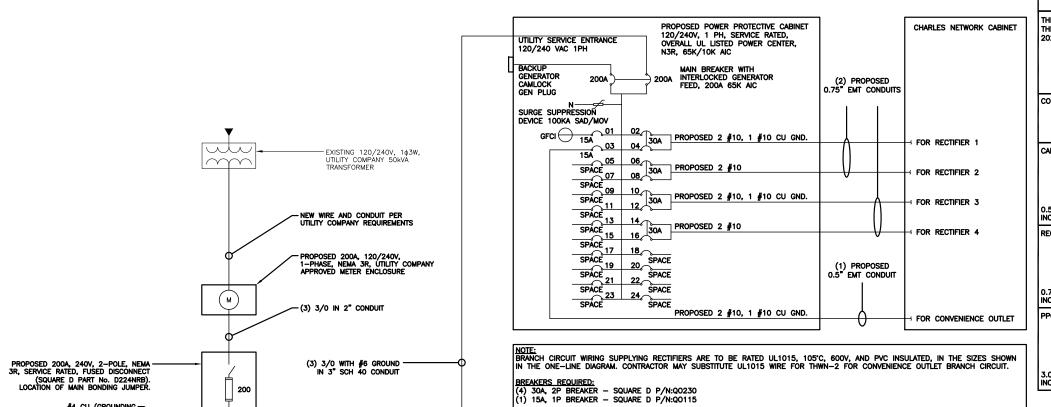
SUBMITTALS. DATE DESCRIPTION REV A 06/11/2021 ISSUED FOR REVIEW 0 08/23/2021 ISSUED FOR CONSTRUCTION

> A&E PROJECT NUMBER 2039-Z5555C

PROJECT INFORMATION


BOHVN00014A 171 TOWN HILL ROAD PLYMOUTH, CT 06786

SHEET TITLE


ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER

E-1

CJW

NOTES

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(σ) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358. 0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA

3.0" CONDUIT - 2.907 SQ. IN AREA CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND

= 0.0633 SQ. IN

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

2.0" CONDUIT - 1.316 SQ. IN AREA

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND

= 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

= 0.8544 SQ. IN

3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

2

NO SCALE

PROPOSED CHARLES PANEL SCHEDULE (WATTS) (WATTS) LOAD SERVED L1 L2 2880 2880 ABB/GE INFINITY RECTIFIER 1 ABB/GE INFINITY RECTIFIER 2 VOLTAGE AMPS 200A MCB, 1\(\phi\), 24 Si MB RATING: 65,000 A

PANEL SCHEDULE

CONTRACTOR TO REFER TO -

NO SCALE

34916 W. CENSED W. S. ONAL ENGLISH SIZE OF THE SECOND SIZE OF THE SECO IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

> DRAWN BY: CHECKED BY: APPROVED BY CJW RCD SS

5701 SOUTH SANTA FE DRIVE

LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG PA 15317

INFINIGY 8

FROM ZERO TO INFINIGY the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, 1L 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

OF CONNECTION OF SAKA

34916 (CENSED)

CROWN

RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS			
REV	DATE	DESCRIPTION		
A	06/11/2021	ISSUED FOR REVIEW		
0	08/23/2021	ISSUED FOR CONSTRUCTION		
	405.5	DO IFOT AULUDED		

A&E PROJECT NUMBER

2039-Z5555C

PROJECT INFORMATION BOHVN00014A 171 TOWN HILL ROAD PLYMOUTH, CT 06786

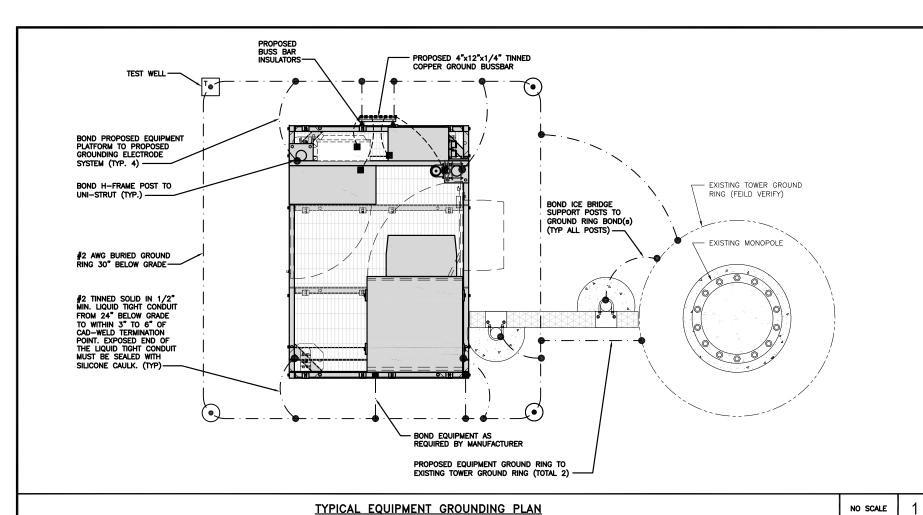
SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER

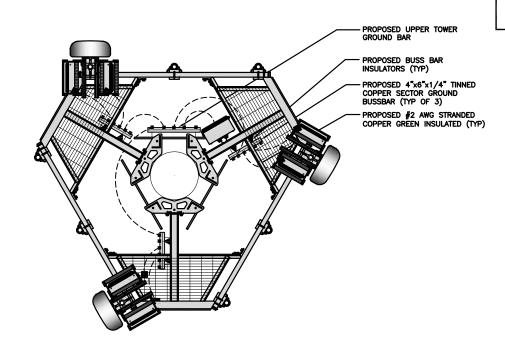
E-3

11	CTIFIER 3	ABB/GE INFINI												
11	CTIFIER 3	DÉCTICIO T		2880	704	10	Σ	Α	Σ	9				
15	GE INFINITY	RECTIFIER 3	2880		306	12	Σ	В	Σ	11				\Box
15		ABB/GE INFINI		2880	704	14	Y	Α	Σ	13				
19	CTIFIER 4	RÉCTIFIER 4	2880		JUA	16	Ы	В	Σ	15				П
21		-SPACE-				18	Σ	A	Σ	17				
	SPACE-	-SPACE-				20	Σ	В	Σ	19				П
180 180 11520 11520 PACE, 120/240V L1 L2 NC 11700 11700 VOLTAGE AMPS	SPACE-	-SPACE-				22	Σ	Α	Σ	21				П
PACE, 120/240V L1 L2 VOLTAGE AMPS VOLTAGE AMPS	SPACE-	-SPACE-				24	Σ	В	Σ	23				\Box
NC 11700 11700 VOLTAGE AMPS			11520	11520								180	180	ョ
				•				L2			L1	/240V	E, 120/	PAG
				PS	TAGE AM	VOL	0	170	1)	11700			VC.
98 98 AMPS					PS	AMI		98			98			
98 MAX AMPS				MAX AMPS					8	9				_
123 MAX 125%					125%	MAX			23	12				


NOT USED

NO SCALE

DISH Wireless L.L.C. TEMPLATE VERSION 39 - 08/06/2021


#4 CU (GROUNDING ELECTRODE CONDUCTOR)

GROUNDING ELECTRODE SHALL BE-SPACED MINIMUM 6' APART

NOTES

ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE

TEST GROUND ROD WITH INSPECTION SLEEVE EXOTHERMIC CONNECTION MECHANICAL CONNECTION ---- #6 AWG STRANDED & INSULATED 🖶 GROUND BUS BAR

 (\bullet) GROUND ROD

— · — · — #2 AWG SOLID COPPER TINNED ▲ BUSS BAR INSULATOR

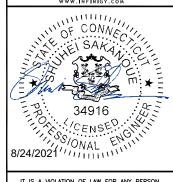
GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN BROWNER FOR THE FOUNDATION OF THE FOUNDATION AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- C Interior ground Ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
-) Interior unit bonds: Metal frames, cabinets and individual metallic units located with the area of the interior ground ring require a #6 awg stranded green insulated copper bond to the
- L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH CAST FOR THE ANGEL OF THE COPPER SHALL BE MADE AT EACH
- M <u>Exterior unit bonds:</u> Metallic objects, external to or mounted to the building, shall be bonded to the exterior ground ring. Using #2 tinned solid copper wire
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE (COLUMN) BAR
- (P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROWN

2000 CORPORATE DRIVE

CANONSBURG PA 15317 INFINIGY8

FROM ZERO TO INFINIGY the solutions are endless 2500 W. HIGGINS RD. SUITE 500 | HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY CJW

RFDS REV #:

CONSTRUCTION **DOCUMENTS**

SUBMITTALS. REV DATE DESCRIPTION A 06/11/2021 ISSUED FOR REVIEW 0 08/23/2021 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER 2039-Z5555C

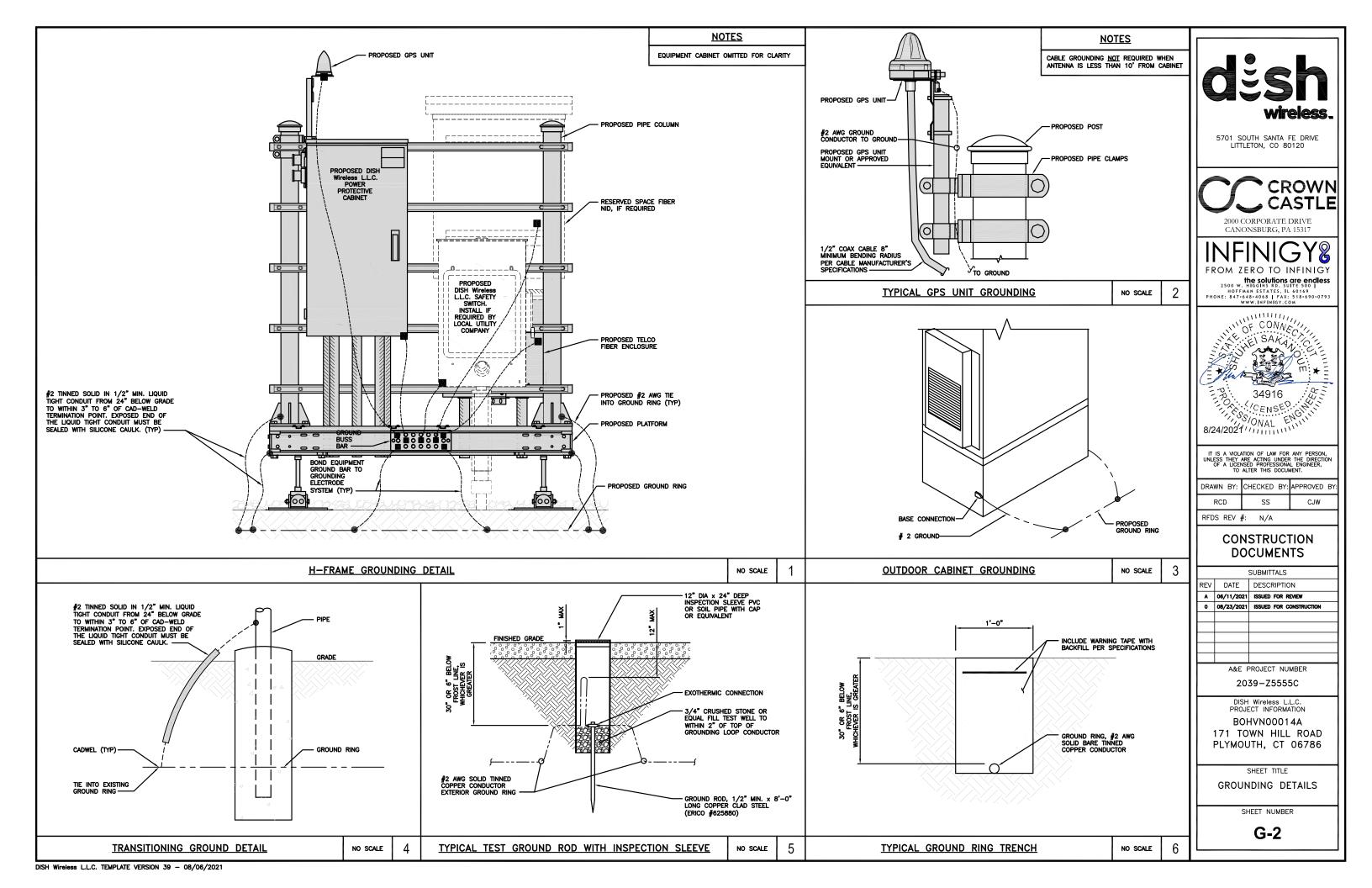
PROJECT INFORMATION BOHVN00014A 171 TOWN HILL ROAD

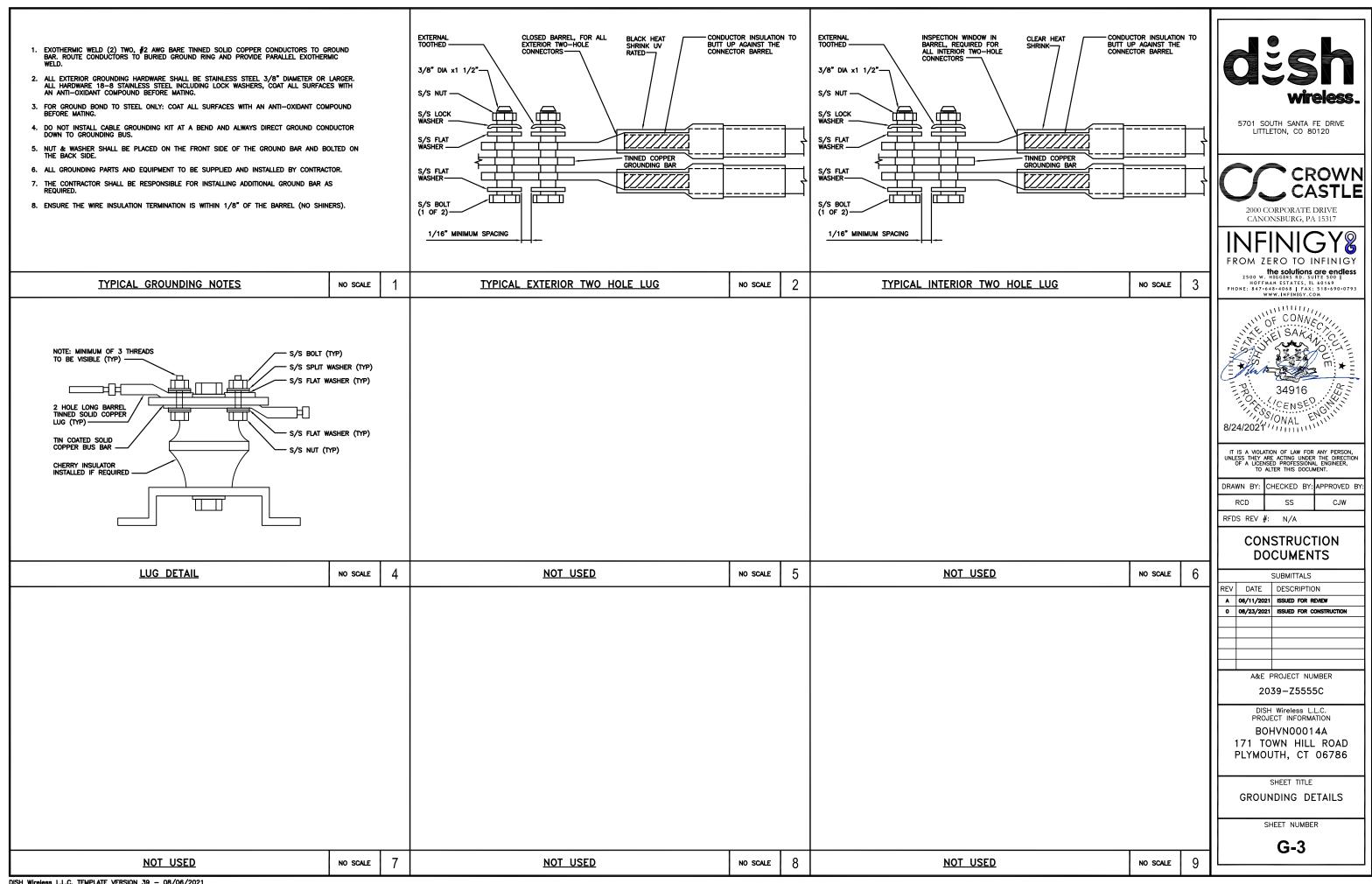
PLYMOUTH, CT 06786

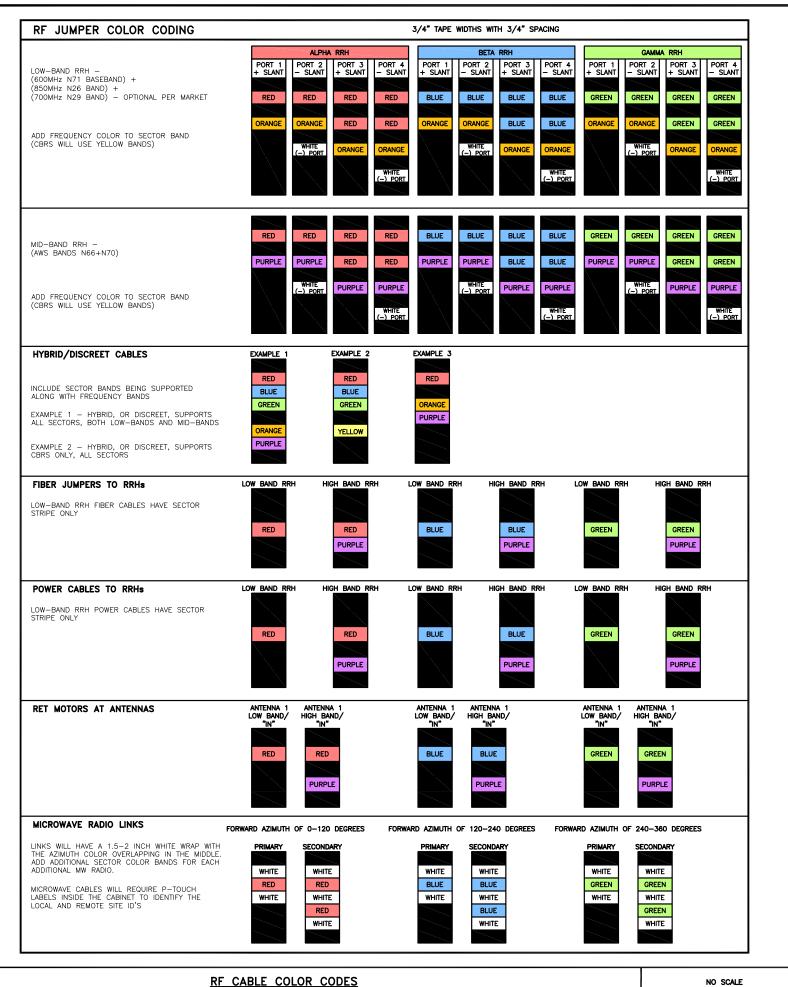
SHEET TITLE

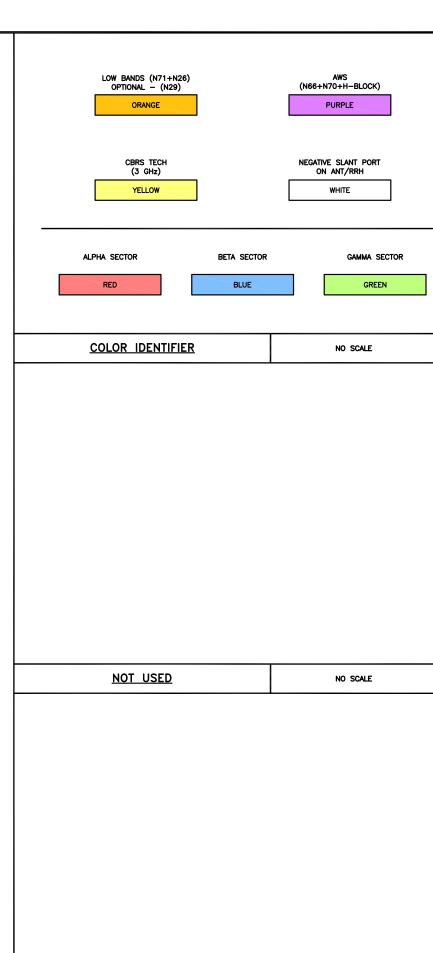
GROUNDING PLANS AND NOTES

SHEET NUMBER

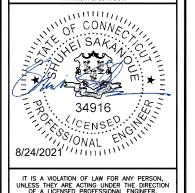

G-1


TYPICAL ANTENNA GROUNDING PLAN


NO SCALE


GROUNDING KEY NOTES

NO SCALE


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY 8 FROM ZERO TO INFINIGY

the solutions are endless
2500 w. Higgins RD. Sulte 500 |
HOFFAM ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
www.infinigy.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

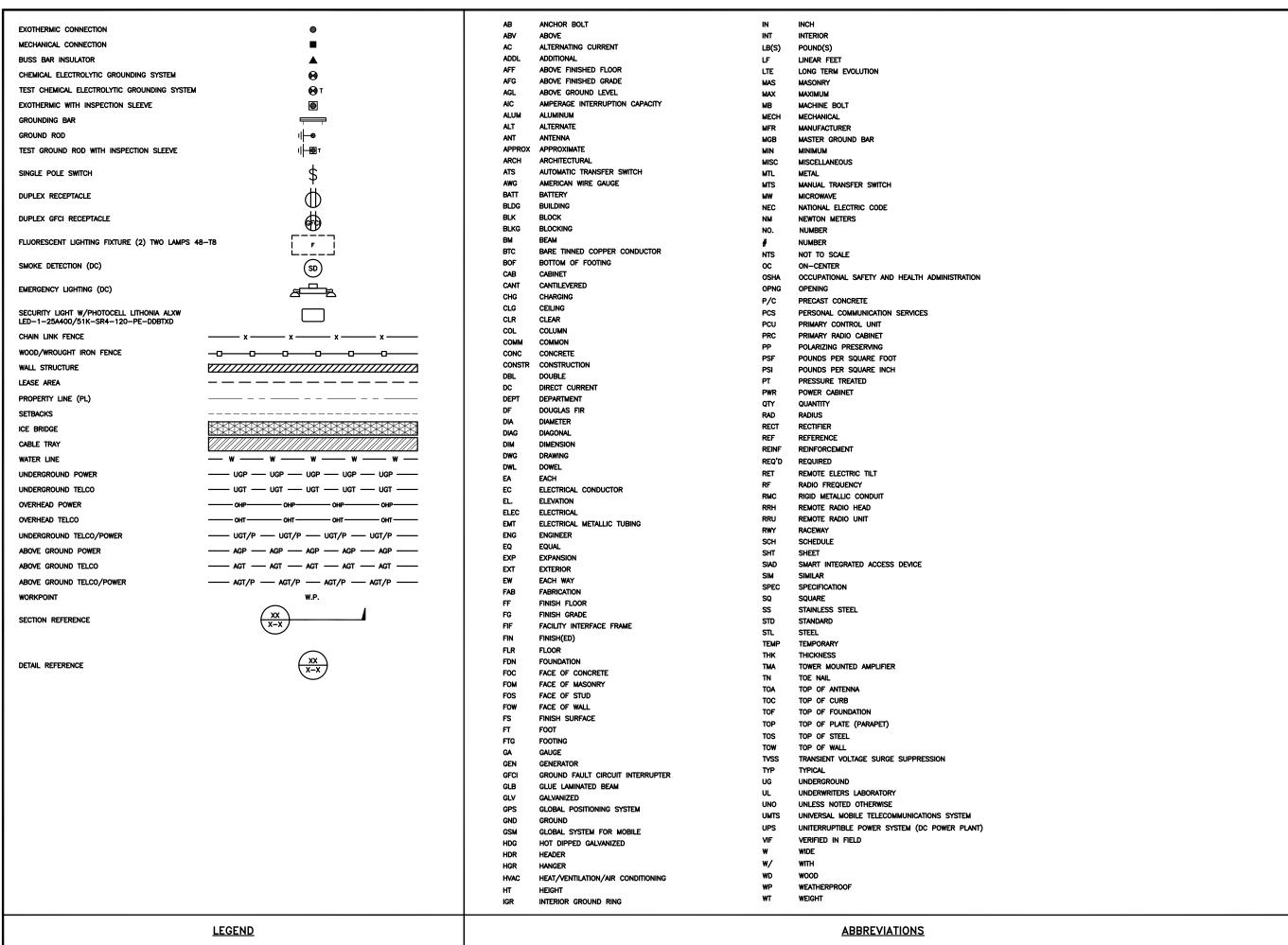
DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCE)	SS		CJW	

RFDS REV #: N/A

CONSTRUCTION **DOCUMENTS**

	SUBMITTALS				
REV	DATE	DESCRIPTION			
A	06/11/2021	ISSUED FOR REVIEW			
0	08/23/2021	ISSUED FOR CONSTRUCTION			
	405.5	DO IFOT NUMBER			

A&E PROJECT NUMBER


2039-Z5555C

PROJECT INFORMATION BOHVN00014A 171 TOWN HILL ROAD PLYMOUTH, CT 06786

SHEET TITLE CABLE COLOR CODES

SHEET NUMBER

RF-1

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY &

The solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCE)	SS		CJW	

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

	SUBMITTALS					
REV	DATE	DESCRIPTION				
Α	06/11/2021	ISSUED FOR REVIEW				
0	08/23/2021	ISSUED FOR CONSTRUCTION				
	∧ 9aE E	DO IECT NILIMPED				

A&E PROJECT NUMBER

2039-Z5555C

PROJECT INFORMATION
BOHVN00014A
171 TOWN HILL ROAD
PLYMOUTH, CT 06786

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRR ROPE, BENDING OF THE WIRR ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRR ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIReless L.L.C. AND DISH WIRELSS L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILTY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA—322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIReless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWNINGS
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 I

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED	BY:
RCD	SS	CJW	
RFDS REV	#: N/A		

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 06/11/2021 ISSUED FOR REVIEW

O 08/23/2021 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

2039-Z5555C

PROJECT INFORMATION
BOHVN00014A
171 TOWN HILL ROAD
PLYMOUTH, CT 06786

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'f AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- · CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2*
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW. THWN. THWN-2. XHHW. XHHW-2. THW. THW-2. RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 50. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

FROM ZERO TO INFINIGY the solutions are encless

The solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WW.IBHINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED	BY:	APPROVED	Β'n
	RCD	SS		CJW	
	RFDS REV ;	#: N/A			

CONSTRUCTION DOCUMENTS

	SUBMITTALS			
REV	DATE	DESCRIPTION		
A	06/11/2021	ISSUED FOR REVIEW		
0	08/23/2021	ISSUED FOR CONSTRUCTION		
	A&E F	PROJECT NUMBER		

2039-Z5555C

PROJECT INFORMATION
BOHVN00014A
171 TOWN HILL ROAD
PLYMOUTH, CT 06786

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

The solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RCD	SS	CJW
DRAWN BY:	CHECKED BY:	APPROVED BY:

RFDS REV #: N/A

CONSTRUCTION DOCUMENTS

	SUBMITTALS						
REV	DATE	DESCRIPTION					
A	06/11/2021	ISSUED FOR REVIEW					
0	08/23/2021	ISSUED FOR CONSTRUCTION					
	∧ 9aE E	DECT NUMBER					

A&E PROJECT NUMBER

2039-Z5555C

PROJECT INFORMATION
BOHVN00014A
171 TOWN HILL ROAD
PLYMOUTH, CT 06786

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: June 06, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-20000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOHVN00014A Site Name: CT-CCI-T-826768

Crown Castle Designation: BU Number: 826768

Site Name: PLYMOUTH/RT 6

 JDE Job Number:
 645129

 Work Order Number:
 1966237

 Order Number:
 553358 Rev. 1

Engineering Firm Designation: Crown Castle Project Number: 1966237

Site Data: 171 Town Hill Road, Plymouth, Litchfield County, CT

Latitude 41° 40′ 6.197", Longitude -73° 1′ 11.842"

169 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity - 78.5%

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Matthew Hussak

Respectfully submitted by:

Terry P. Styran, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity - LC7

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 169 ft Monopole tower designed by PIROD MANUFACTURES INC..

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 120 mph

Exposure Category:CTopographic Factor:1Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elevetion	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)												
		3	fujitsu	TA08025-B604														
	132.0	132.0	3	fujitsu	TA08025-B605													
132.0			132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	132.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1
		1	raycap	RDIDC-9181-PF-48														
		1	tower mounts	Commscope MC-PK8-DSH														

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antonna		Number of Feed Lines	Feed Line Size (in)
	168.0	3	rfi antennas	COL45-70		
		3	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe		
		3	ericsson	AIR6449 B41 w/ Mount Pipe		
164.0	165.0	3	ericsson	RADIO 4449 B71 B85A_T- MOBILE	11 3	7/8 1-5/8
		3	ericsson	RRUS 4415 B25	3	1-3/0
		3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe		
	164.0	1	tower mounts	Platform Mount [LP 404- 1_KCKR]		
		3	alcatel lucent	1900MHz RRH		
		3	alcatel lucent	800MHZ RRH		İ
		3	alcatel lucent	TD-RRH8x20-25		İ
155.0	155.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	4	1-1/4
		3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe		
		1	tower mounts	Platform Mount [LP 305-1]		
142.0	142.0	6	antel	LPA-80080/6CF w/ Mount Pipe	- 8	1-5/8
142.0	142.0	3	commscope	SBNHH-1D65B	0	1-5/6

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)									
			commscope	SBNHH-1D65B w/ Mount Pipe											
			rfs celwave	DB-T1-6Z-8AB-0Z	•										
		3	samsung telecommunications	MT6407-77A w/ Mount Pipe											
		3	samsung telecommunications	RFV01U-D1A											
		3	samsung telecommunications	RFV01U-D2A											
		1 tower mounts Platform Mount [LP 403-1]		Platform Mount [LP 403-1]											
121.0	125.0	1	rfs celwave	201-4	1	1/2									
121.0	121.0	1	tower mounts	Side Arm Mount [SO 701-1]	l	1/2									
		3	cci antennas	DTMABP7819VG12A											
			6	cci antennas	TPX-070821										
		3	ericsson	RRUS 11											
		3	ericsson	RRUS 12 B2	•										
		3	ericsson	RRUS 4426 B66											
	115.0	3	ericsson	RRUS 4478 B14											
											3	ericsson	RRUS 4478 B5		
		3	ericsson	WCS RRUS-32-B30	12	1-5/8									
115.0		6	kaelus	DBCT108F1V92-1	6	5/8									
110.0		110.0	110.0	110.0	110.0	110.0	110.0	110.0	110.0	110.0	3	kathrein	80010965	3 2	3/8
						3	kmw communications	AM-X-CD-16-65-00T-RET	2	conduit					
		3	powerwave technologies	7770.00											
		3	quintel technology	QS66512-2											
		1	raycap	DC6-48-60-18-8C											
		2	raycap	DC6-48-60-18-8F											
		1	tower mounts	Platform Mount [LP 301-1]											
105.0	105.0	3	rfs celwave	APXV18-206517S-C w/ Mount Pipe	6	1-5/8									
74.0	83.0	1	decibel	DB810T3E-XT	1	7/8									
74.0	74.0	1	tower mounts	Side Arm Mount [SO 701-1]		1/0									

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	3491991	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	3678682	CCISITES
4-TOWER MANUFACTURER DRAWINGS	3491992	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 4 Gootton Supacity (Gammary)												
Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail				
L1	169 - 164.25	Pole	TP26x18x0.25	1	-0.45	1060.11	0.2	Pass				
L2	164.25 - 129.75	Pole	TP34.0625x21.5x0.3125	2	-15.10	1976.75	20.6	Pass				
L3	129.75 - 96.08	Pole	TP41.75x32.1327x0.375	3	-30.46	2937.41	38.2	Pass				
L4	96.08 - 63.25	Pole	TP49.0625x39.8023x0.375	4	-40.29	3460.30	54.9	Pass				
L5	63.25 - 31.25	Pole	TP56.125x46.9543x0.375	5	-51.45	3964.20	67.2	Pass				
L6	31.25 - 0 Pole		TP62.9375x53.8466x0.375	6	-66.55	4574.01	78.5	Pass				
							Summary					
						Pole (L6)	78.5	Pass				
						Rating =	78.5	Pass				

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	76.1	Pass
1	Base Plate	0	36.9	Pass
1	Base Foundation (Structure)	0	69.3	Pass
1	Base Foundation (Soil Interaction)	0	53.4	Pass

Structure Rating (max from all components) =	78.5%
--	-------

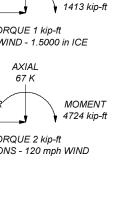
Notes:

4.1) Recommendations

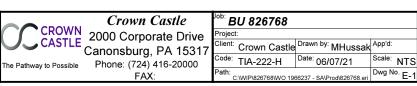
The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT


	22		8	60	00	8			169.0 ft	
_	4.75	18	0.2500	2.38	18.0000	26.0000	-	0.3	164.3 ft	
2	36.88	18	0.3125	3.83	21.5000	34.0625		3.4		
			0		2	ró				
							-		129.8 ft	
ю	37.50	18	0.3750	4.67	32.1327	41.7500		5.6		
							A572-65		96.1 ft	
4	37.50	18	0.3750	5.50	39.8023	49.0625	4	6.7		
					8	4				
							-		63.3 ft	
5	37.50	18	0.3750	6.25	46.9543	56.1250		7.8		
		_	0.3		46.9	56.1		7		ALL REACTION ARE FACTORE
							_		31.3 ft	AXIAL 113 K
										SHEAR 12 K
9	37.50	18	0.3750		53.8466	62.9375		8.8		TORQUE 1 kip- 50 mph WIND - 1.5000 AXIAL
					.,					67 K SHEAR
				£				32.5	<u>0.0 ft</u>	41 K / TORQUE 2 kip-
Section	Length (ft)	Number of Sides	Thickness (in)	Socket Length (ft)	Top Dia (in)	Bot Dia (in)	Grade	Weight (K) 33		REACTIONS - 120 mp

MATERIAL STRENGTH


			-			
GRADE	Fy	Fu	GRADE	Fy	Fu	
Δ572-65	65 kei	80 kei				

TOWER DESIGN NOTES

- 1. Tower is located in Litchfield County, Connecticut.
- 2. Tower designed for Exposure C to the TIA-222-H Standard.
- 3. Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.
- 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 78.5%

MOMENT

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Litchfield County, Connecticut.
- Tower base elevation above sea level: 890.00 ft.
- Basic wind speed of 120 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guvs To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component

Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	169.00-164.25	4.75	2.38	18	18.0000	26.0000	0.2500	1.0000	A572-65 (65 ksi)
L2	164.25-129.75	36.88	3.83	18	21.5000	34.0625	0.3125	1.2500	A572-65 (65 ksi)
L3	129.75-96.08	37.50	4.67	18	32.1327	41.7500	0.3750	1.5000	À572-65 (65 ksi)
L4	96.08-63.25	37.50	5.50	18	39.8023	49.0625	0.3750	1.5000	À572-65 (65 ksi)
L5	63.25-31.25	37.50	6.25	18	46.9543	56.1250	0.3750	1.5000	À572-65 (65 ksi)
L6	31.25-0.00	37.50		18	53.8466	62.9375	0.3750	1.5000	À572-65 (65 ksi)

Tapered	Pole	Pro	perties
----------------	------	-----	---------

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	18.2391	14.0846	560.6340	6.3012	9.1440	61.3117	1122.0058	7.0437	2.7280	10.912
	26.3625	20.4326	1711.6544	9.1412	13.2080	129.5922	3425.5610	10.2183	4.1360	16.544
L2	22.6051	21.0154	1191.8828	7.5216	10.9220	109.1268	2385.3338	10.5097	3.2340	10.349
	34.5398	33.4758	4817.4335	11.9812	17.3038	278.4040	9641.2058	16.7411	5.4450	17.424
L3	33.5680	37.7996	4816.4038	11.2740	16.3234	295.0611	9639.1451	18.9034	4.9954	13.321
	42.3362	49.2466	10650.982	14.6881	21.2090	502.1916	21315.979	24.6280	6.6880	17.835
			2				3			
L4	41.5295	46.9284	9216.5336	13.9967	20.2196	455.8222	18445.194	23.4686	6.3452	16.921
							6			
	49.7615	57.9503	17355.137	17.2841	24.9238	696.3293	34733.111	28.9807	7.9750	21.267
			8				9			
L5	48.9866	55.4411	15196.922	16.5357	23.8528	637.1126	30413.842	27.7258	7.6040	20.277
			9				3			
	56.9330	66.3564	26056.150	19.7913	28.5115	913.8821	52146.586	33.1845	9.2180	24.581
			6				5			
L6	56.1579	63.6445	22990.273	18.9824	27.3541	840.4705	46010.797	31.8283	8.8170	23.512
			1				5			
	63.8506	74.4650	36822.894	22.2097	31.9722	1151.7142	73694.241	37.2396	10.4170	27.779
			6				7			

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
L1 169.00-			1	1	1			
164.25								
L2 164.25-			1	1	1			
129.75								
L3 129.75-			1	1	1			
96.08								
L4 96.08-			1	1	1			
63.25								
L5 63.25-			1	1	1			
31.25								
L6 31.25-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	•

A	From Torque <u>Calculation</u> No	t Type	ft	Number	Per Row	d Docition	Diamete	r	
	<u>Calculation</u>	Type	ft			Dooition			
						Position	r		plf
Α	No						in	in	
	INO	Surface Ar	169.00 -	1	1	-0.500	0.3750		0.22
		(CaAa)	0.00			-0.500			
Α	No			1	1		0.5400	1.6965	2.00
		(CaAa)	0.00			-0.500			
_			100.00			0.450	4 0000		0.05
В	No			1	1		1.6000		2.35
		(CaAa)	0.00			-0.425			
۸	No	Surface Ar	121.00	1	1	0.210	0 6300		0.15
^	NO			1	1		0.0300		0.13
		(Оана)	0.00			0.200			
Α	No	Surface Ar	115.00 -	12	6	0.115	1.9800		0.82
			0.00		-	0.300			
Α	No	Surface Ar	115.00 -	2	1	0.310	2.0000		0.34
		(CaAa)	0.00			0.340			
		, ,							
В	No	Surface Ar	105.00 -	6	6	-0.250	1.9800		0.82
		(CaAa)	0.00			-0.060			
Α	No			1	1		1.0900		0.33
		(CaAa)	0.00			0.010			
	В А А В	B No A No A No A No B No	A No Surface Af (CaAa) B No Surface Ar (CaAa) A No Surface Ar (CaAa) A No Surface Ar (CaAa) A No Surface Ar (CaAa) A No Surface Ar (CaAa) B No Surface Ar (CaAa)	A No Surface Ar 169.00 - (CaAa) 0.00 B No Surface Ar 132.00 - (CaAa) 0.00 A No Surface Ar 121.00 - (CaAa) 0.00 A No Surface Ar 115.00 - (CaAa) 0.00 A No Surface Ar 115.00 - (CaAa) 0.00 B No Surface Ar 105.00 - (CaAa) 0.00 A No Surface Ar 74.00 -	A No Surface Ar 169.00 - 1 (CaAa) 0.00 B No Surface Ar 132.00 - 1 (CaAa) 0.00 A No Surface Ar 121.00 - 1 (CaAa) 0.00 A No Surface Ar 115.00 - 12 (CaAa) 0.00 A No Surface Ar 115.00 - 2 (CaAa) 0.00 B No Surface Ar 105.00 - 6 (CaAa) 0.00 A No Surface Ar 74.00 - 1	A No Surface Af 169.00 - 1 1 B No Surface Ar 132.00 - 1 1 CaAa) 0.00 A No Surface Ar 121.00 - 1 1 CaAa) 0.00 A No Surface Ar 115.00 - 12 6 (CaAa) 0.00 A No Surface Ar 115.00 - 2 1 (CaAa) 0.00 B No Surface Ar 105.00 - 6 6 (CaAa) 0.00 A No Surface Ar 74.00 - 1 1	A No Surface Ar 169.00 - 1 1 -0.500 (CaAa) 0.00 1 1 1 -0.500 B No Surface Ar 132.00 - 1 1 1 -0.450 (CaAa) 0.00 1 -0.425 A No Surface Ar 121.00 - 1 1 -0.210 (CaAa) 0.00 1 -0.200 A No Surface Ar 115.00 - 12 6 0.115 (CaAa) 0.00 0.00 0.300 A No Surface Ar 115.00 - 2 1 0.310 (CaAa) 0.00 0.340 B No Surface Ar 105.00 - 6 6 -0.250 (CaAa) 0.00 A No Surface Ar 74.00 - 1 1 0.000	A No Surface Ar 169.00 - 1 1 -0.500 0.5400 B No Surface Ar 132.00 - 1 1 -0.450 1.6000 (CaAa) 0.00 1 1 1 -0.455 1.6000 A No Surface Ar 121.00 - 1 1 -0.210 0.6300 (CaAa) 0.00 1 1 -0.200 A No Surface Ar 115.00 - 12 6 0.115 1.9800 0.300 A No Surface Ar 115.00 - 2 1 0.310 2.0000 B No Surface Ar 105.00 - 6 6 -0.250 1.9800 (CaAa) 0.00 0.00 A No Surface Ar 74.00 - 1 1 0.000 1.0900	A No Surface Ar 169.00 - 1 1 -0.500 0.5400 1.6965 B No Surface Ar 132.00 - 1 1 -0.450 1.6000 (CaAa) 0.00 1 1 1 -0.425 A No Surface Ar 121.00 - 1 1 -0.210 0.6300 (CaAa) 0.00 1 1 -0.200 A No Surface Ar 115.00 - 12 6 0.115 1.9800 (CaAa) 0.00 0.300 A No Surface Ar 115.00 - 2 1 0.310 2.0000 (CaAa) 0.00 B No Surface Ar 105.00 - 6 6 -0.250 1.9800 (CaAa) 0.00 A No Surface Ar 74.00 - 1 1 0.000 1.0900

Feed Line/Linear Appurtenances - Entered As Area

Description	or	Allow Shield	Exclude From	Componen t	Placement	Total Number		C_AA_A	Weight
***	Leg		Torque Calculation	Туре	ft			f l° /ft	plf
*** 810921-701(7/8)	С	No	No	Inside Pole	164.00 - 0.00	7	No Ice	0.00	0.34
	_					•	1/2" Ice	0.00	0.34
							1" Ice	0.00	0.34
							2" Ice	0.00	0.34
HCS 6X12	С	No	No	Inside Pole	164.00 - 0.00	3	No Ice	0.00	2.40
4AWG(1-5/8)							1/2" Ice	0.00	2.40
, ,							1" Ice	0.00	2.40
***							2" Ice	0.00	2.40
HB114-1-08U4-	С	No	No	Inside Pole	155.00 - 0.00	3	No Ice	0.00	1.30
M6F(1-1/4)							1/2" Ice	0.00	1.30
							1" Ice	0.00	1.30
							2" Ice	0.00	1.30
HB114-21U3M12-	С	No	No	Inside Pole	155.00 - 0.00	1	No Ice	0.00	1.22
XXXF(1-1/4)							1/2" Ice	0.00	1.22
							1" Ice	0.00	1.22
							2" Ice	0.00	1.22
***						_			
HB158-1-08U8-	С	No	No	Inside Pole	142.00 - 0.00	2	No Ice	0.00	1.30
S8J18(1-5/8)							1/2" Ice	0.00	1.30
							1" Ice 2" Ice	0.00	1.30
LDE7 F0A (4 F/0)	_	NI-	NI-	lasida Dala	440.00 0.00			0.00	1.30
LDF7-50A(1-5/8)	С	No	No	inside Pole	142.00 - 0.00	6	No Ice	0.00	0.82
							1/2" Ice 1" Ice	0.00	0.82 0.82
							2" Ice	0.00 0.00	0.82
FB-L98B-034-	Α	No	No	Incido Dolo	115.00 - 0.00	1	No Ice	0.00	0.06
XXX(3/8)	А	INO	NO	Iliside Pole	113.00 - 0.00	'	1/2" Ice	0.00	0.06
AAA(3/0)							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
FB-L98B-034-	Α	No	No	Inside Pole	115.00 - 0.00	2	No Ice	0.00	0.06
XXX(3/8)	^	NO	INO	molue i die	1 13.00 - 0.00	_	1/2" Ice	0.00	0.06
^^(3/0)							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
WR-VG82ST-	Α	No	No	Inside Pole	115.00 - 0.00	4	No Ice	0.00	0.31
VVIN-V 00201-	^	NO	INO	molue i die	1 13.00 - 0.00	7	140 106	0.00	0.51

Description	Face		Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or Leg	Shield	From Torque	t Type	ft	Number		f t ²/ft	plf
			Calculation)					
BRDA(5/8)							1/2" Ice	0.00	0.31
							1" Ice	0.00	0.31
							2" Ice	0.00	0.31
WR-VG82ST-	Α	No	No	Inside Pole	115.00 - 0.00	2	No Ice	0.00	0.31
BRDA(5/8)							1/2" Ice	0.00	0.31
` ,							1" Ice	0.00	0.31
							2" Ice	0.00	0.31

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	C_AA_A	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	_
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	169.00-164.25	Α	0.000	0.000	0.606	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
L2	164.25-129.75	Α	0.000	0.000	4.399	0.000	0.08
		В	0.000	0.000	0.360	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.55
L3	129.75-96.08	Α	0.000	0.000	32.124	0.000	0.32
		В	0.000	0.000	15.984	0.000	0.12
		С	0.000	0.000	0.000	0.000	0.75
L4	96.08-63.25	Α	0.000	0.000	52.994	0.000	0.49
		В	0.000	0.000	44.255	0.000	0.24
		С	0.000	0.000	0.000	0.000	0.73
L5	63.25-31.25	Α	0.000	0.000	54.000	0.000	0.49
		В	0.000	0.000	43.136	0.000	0.23
		С	0.000	0.000	0.000	0.000	0.71
L6	31.25-0.00	Α	0.000	0.000	52.734	0.000	0.48
		В	0.000	0.000	42.125	0.000	0.23
		С	0.000	0.000	0.000	0.000	0.69

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A _F	C_AA_A	C_AA_A	Weight
Sectio	Elevation	or	Thickness	71	,	In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	169.00-164.25	Α	1.499	0.000	0.000	3.454	0.000	0.05
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
L2	164.25-129.75	Α	1.479	0.000	0.000	25.085	0.000	0.34
		В		0.000	0.000	1.035	0.000	0.02
		С		0.000	0.000	0.000	0.000	0.55
L3	129.75-96.08	Α	1.441	0.000	0.000	77.635	0.000	1.35
		В		0.000	0.000	31.894	0.000	0.48
		С		0.000	0.000	0.000	0.000	0.75
L4	96.08-63.25	Α	1.392	0.000	0.000	115.525	0.000	2.05
		В		0.000	0.000	75.297	0.000	1.03
		С		0.000	0.000	0.000	0.000	0.73
L5	63.25-31.25	Α	1.321	0.000	0.000	119.181	0.000	2.03
		В		0.000	0.000	72.684	0.000	0.97
		С		0.000	0.000	0.000	0.000	0.71
L6	31.25-0.00	Α	1.183	0.000	0.000	113.628	0.000	1.88
		В		0.000	0.000	69.987	0.000	0.91
		С		0.000	0.000	0.000	0.000	0.69

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X	CPz
				lce	lce
	ft	in	in	in	in
L1	169.00-164.25	-0.4971	1.0572	-1.5012	2.3869
L2	164.25-129.75	-0.4883	0.9727	-1.5767	2.4086
L3	129.75-96.08	-1.7371	-5.2546	-2.5980	-3.5941
L4	96.08-63.25	-0.5591	-8.7797	-1.7280	-6.5732
L5	63.25-31.25	-0.8365	-9.4110	-2.2487	-7.2494
L6	31.25-0.00	-0.8712	-9.9119	-2.3281	-7.7447

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	1	Safety Line 3/8	164.25 -	1.0000	1.0000
	_		169.00		
L1	2	PiRod Ladder	164.25 -	1.0000	1.0000
L2	1	Safety Line 3/8	169.00 129.75 -	1.0000	1.0000
LZ	'	Salety Line 3/6	164.25	1.0000	1.0000
L2	2	PiRod Ladder	129.75 -	1.0000	1.0000
			164.25		
L2	13	CU12PSM9P6XXX(1-1/2)	129.75 -	1.0000	1.0000
			132.00		
L3	1	Safety Line 3/8	96.08 -	1.0000	1.0000
		B:B 11 11	129.75	4 0000	4 0000
L3	2	PiRod Ladder	96.08 -	1.0000	1.0000
L3	13	CU12PSM9P6XXX(1-1/2)	129.75 96.08 -	1.0000	1.0000
LS	13	C012F3W9F6XXX(1-1/2)	129.75	1.0000	1.0000
L3	15	LDF4-50A(1/2)	96.08 -	1.0000	1.0000
	.0	251 1 0071(172)	121.00	1.0000	1.0000
L3	17	LDF7-50A(1-5/8)	96.08 -	1.0000	1.0000
		` '	115.00		
L3	18	2" Flexible Conduit	96.08 -	1.0000	1.0000
		. = =	115.00		
L3	24	LDF7-50A(1-5/8)	96.08 -	1.0000	1.0000
L4	1	Safety Line 3/8	105.00 63.25 -	1.0000	1.0000
L4	'	Salety Line 3/6	96.08	1.0000	1.0000
L4	2	PiRod Ladder	63.25 -	1.0000	1.0000
	_		96.08		
L4	13	CU12PSM9P6XXX(1-1/2)	63.25 -	1.0000	1.0000
			96.08		
L4	15	LDF4-50A(1/2)	63.25 -	1.0000	1.0000
	47	LDE7 50 A (4 5 (9)	96.08	4 0000	4 0000
L4	17	LDF7-50A(1-5/8)	63.25 - 96.08	1.0000	1.0000
L4	18	2" Flexible Conduit	63.25 -	1.0000	1.0000
	10	2 1 lexible dolladit	96.08	1.0000	1.0000
L4	24	LDF7-50A(1-5/8)	63.25 -	1.0000	1.0000
		,	96.08		
L4	26	LDF5-50A(7/8)	63.25 -	1.0000	1.0000
			74.00		
L5	1	Safety Line 3/8	31.25 -	1.0000	1.0000
, _	ا	المالية المحالية	63.25	4 0000	1 0000
L5	2	PiRod Ladder	31.25 - 63.25	1.0000	1.0000
L5	13	CU12PSM9P6XXX(1-1/2)		1.0000	1.0000
	13	33 121 SIVISI OXXX(131/2)	31.23	1.0000	1.0000

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.		Segment	No Ice	Ice
			Elev.		
			63.25		
L5	15	LDF4-50A(1/2)	31.25 -	1.0000	1.0000
			63.25		
L5	17	LDF7-50A(1-5/8)	31.25 -	1.0000	1.0000
			63.25		
L5	18	2" Flexible Conduit	31.25 -	1.0000	1.0000
			63.25		
L5	24	LDF7-50A(1-5/8)	31.25 -	1.0000	1.0000
			63.25		
L5	26	LDF5-50A(7/8)	31.25 -	1.0000	1.0000
			63.25		
L6	1	Safety Line 3/8	0.00 - 31.25	1.0000	1.0000
L6	2	PiRod Ladder	0.00 - 31.25	1.0000	1.0000
L6	13	CU12PSM9P6XXX(1-1/2)	0.00 - 31.25	1.0000	1.0000
L6	15	LDF4-50A(1/2)	0.00 - 31.25	1.0000	1.0000
L6	17	LDF7-50A(1-5/8)	0.00 - 31.25	1.0000	1.0000
L6	18	2" Flexible Conduit	0.00 - 31.25	1.0000	1.0000
L6	24	LDF7-50A(1-5/8)	0.00 - 31.25	1.0000	1.0000
L6	26	LDF5-50A(7/8)	0.00 - 31.25	1.0000	1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.		Segment	Calculatio	Width
			Elev.	n	Ratio
				Method	
L1	2	PiRod Ladder	164.25 -	Manual	1.0000
			169.00		
L2	2	PiRod Ladder	129.75 -	Manual	1.0000
			164.25		
L3	2	PiRod Ladder	96.08 -	Manual	1.0000
			129.75		
L4	2	PiRod Ladder	63.25 -	Manual	1.0000
			96.08		
L5	2	PiRod Ladder	31.25 -	Manual	1.0000
			63.25		
L6	2	PiRod Ladder	0.00 - 31.25	Manual	1.0000

Discrete	T	1
IJISCEPE	IOWER	ı nane

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft ²	ft ²	K
Lightning Rod 5/8" x 4'	С	From Leg	3.00 0.00 2.00	0.0000	169.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.25 0.66 0.97 1.49	0.25 0.66 0.97 1.49	0.03 0.03 0.04 0.06
8' x 3" Mount Pipe	С	From Leg	3.00 0.00 0.00	0.0000	167.00	No Ice 1/2" Ice	2.40 3.19 3.67	2.40 3.19 3.67	0.04 0.06 0.08

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft²	К
***						1" Ice 2" Ice	4.68	4.68	0.14
APXVAARR24_43-U-NA20	Α	From Leg	4.00	0.0000	164.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe	, ,	r rom Log	0.00	0.0000	101.00	1/2"	15.46	7.55	0.31
•			1.00			Ice	16.23	8.25	0.46
						1" Ice	17.82	9.67	0.79
	_					2" Ice			
APXVAARR24_43-U-NA20	В	From Leg	4.00	0.0000	164.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe			0.00			1/2"	15.46	7.55	0.31
			1.00			Ice	16.23	8.25	0.46
						1" Ice 2" Ice	17.82	9.67	0.79
APXVAARR24_43-U-NA20	С	From Leg	4.00	0.0000	164.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe	C	1 Tolli Leg	0.00	0.0000	104.00	1/2"	15.46	7.55	0.13
w, would be			1.00			Ice	16.23	8.25	0.46
						1" Ice	17.82	9.67	0.79
						2" Ice			
AIR6449 B41 w/ Mount	Α	From Leg	4.00	0.0000	164.00	No Ice	5.18	2.72	0.12
Pipe		-	0.00			1/2"	5.59	3.05	0.16
			1.00			Ice	6.01	3.39	0.22
						1" Ice	6.90	4.13	0.34
	_					2" Ice			
AIR6449 B41 w/ Mount	В	From Leg	4.00	0.0000	164.00	No Ice	5.18	2.72	0.12
Pipe			0.00			1/2"	5.59	3.05	0.16
			1.00			lce 1" lce	6.01 6.90	3.39 4.13	0.22 0.34
						2" Ice	0.90	4.13	0.34
AIR6449 B41 w/ Mount	С	From Leg	4.00	0.0000	164.00	No Ice	5.18	2.72	0.12
Pipe	Ū	r rom Log	0.00	0.0000	101.00	1/2"	5.59	3.05	0.16
po			1.00			lce	6.01	3.39	0.22
						1" Ice	6.90	4.13	0.34
						2" Ice			
AIR 32 B2A/B66AA w/	Α	From Leg	4.00	0.0000	164.00	No Ice	3.76	3.15	0.19
Mount Pipe			0.00			1/2"	4.12	3.49	0.25
			1.00			Ice	4.48	3.84	0.32
						1" Ice	5.24	4.58	0.48
AIR 32 B2A/B66AA w/	В	From Leg	4.00	0.0000	164.00	2" Ice No Ice	3.76	2.15	0.19
Mount Pipe	Ь	Fioni Leg	0.00	0.0000	104.00	1/2"	3.76 4.12	3.15 3.49	0.19
Would Fibe			1.00			Ice	4.12	3.84	0.23
			1.00			1" Ice	5.24	4.58	0.48
						2" Ice	0.2	1.00	0.10
AIR 32 B2A/B66AA w/	С	From Leg	4.00	0.0000	164.00	No Ice	3.76	3.15	0.19
Mount Pipe		_	0.00			1/2"	4.12	3.49	0.25
			1.00			Ice	4.48	3.84	0.32
						1" Ice	5.24	4.58	0.48
	_					2" Ice			
RADIO 4449 B71 B85A_T-	Α	From Leg	4.00	0.0000	164.00	No Ice	1.97	1.59	0.07
MOBILE			0.00			1/2"	2.15	1.75	0.09
			1.00			Ice 1" Ice	2.33 2.72	1.92 2.28	0.12 0.17
						2" Ice	2.12	2.20	0.17
RADIO 4449 B71 B85A T-	В	From Leg	4.00	0.0000	164.00	No Ice	1.97	1.59	0.07
MOBILE	-		0.00			1/2"	2.15	1.75	0.09
- -			1.00			Ice	2.33	1.92	0.12
						1" Ice	2.72	2.28	0.17
						2" Ice			
RADIO 4449 B71 B85A_T-	С	From Leg	4.00	0.0000	164.00	No Ice	1.97	1.59	0.07
MOBILE			0.00			1/2"	2.15	1.75	0.09
			1.00			Ice	2.33	1.92	0.12
						1" Ice	2.72	2.28	0.17
RRUS 4415 B25	Α	From Leg	4.00	0.0000	164.00	2" Ice No Ice	1.64	0.68	0.04
11100 44 10 020	^	i ioni Leg	0.00	0.0000	104.00	1/2"	1.80	0.00	0.04
			0.00			1/4	1.00	5.13	0.00

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft²	K
			1.00			Ice	1.97	0.91	0.07
	_					1" Ice 2" Ice	2.33	1.18	0.11
RRUS 4415 B25	В	From Leg	4.00	0.0000	164.00	No Ice 1/2"	1.64	0.68	0.04
			0.00 1.00			lce	1.80 1.97	0.79 0.91	0.06 0.07
			1.00			1" Ice 2" Ice	2.33	1.18	0.11
RRUS 4415 B25	С	From Leg	4.00	0.0000	164.00	No Ice	1.64	0.68	0.04
		_	0.00			1/2"	1.80	0.79	0.06
			1.00			Ice	1.97	0.91	0.07
51.4						1" Ice 2" Ice	2.33	1.18	0.11
Platform Mount [LP 404- 1_KCKR]	С	None		0.0000	164.00	No Ice 1/2"	35.82 45.85	35.82 45.85	2.32 3.02
I_RORK]						Ice	55.76	55.76	3.89
						1" Ice 2" Ice	75.77	75.77	6.14
(2) 4' x 2" Pipe Mount	Α	From Leg	4.00	0.0000	164.00	No Ice	0.79	0.79	0.03
			0.00			1/2"	1.03	1.03	0.04
			0.00			lce 1" lce	1.28	1.28	0.04
						2" Ice	1.81	1.81	0.07
(2) 4' x 2" Pipe Mount	В	From Leg	4.00	0.0000	164.00	No Ice	0.79	0.79	0.03
(=,			0.00			1/2"	1.03	1.03	0.04
			0.00			Ice	1.28	1.28	0.04
						1" Ice 2" Ice	1.81	1.81	0.07
(2) 4' x 2" Pipe Mount	С	From Leg	4.00	0.0000	164.00	No Ice	0.79	0.79	0.03
			0.00 0.00			1/2" Ice	1.03 1.28	1.03 1.28	0.04 0.04
***			0.00			1" Ice 2" Ice	1.81	1.81	0.07
COL45-70	Α	From Leg	4.00	0.0000	164.00	No Ice	1.38	1.38	0.01
			0.00			1/2"	2.32	2.32	0.02
			4.00			Ice	3.27	3.27	0.03
						1" Ice	4.82	4.82	0.09
COL45-70	Α	From Leg	4.00	0.0000	164.00	2" Ice No Ice	1.38	1.38	0.01
0024370		1 Tom Log	0.00	0.0000	104.00	1/2"	2.32	2.32	0.02
			4.00			Ice	3.27	3.27	0.03
						1" Ice	4.82	4.82	0.09
COL 45 70	В	From Log	4.00	0.0000	164.00	2" Ice	1 20	4.20	0.01
COL45-70	В	From Leg	4.00 0.00	0.0000	164.00	No Ice 1/2"	1.38 2.32	1.38 2.32	0.01 0.02
			4.00			Ice	3.27	3.27	0.03
						1" Ice	4.82	4.82	0.09
***						2" Ice			
APXVTM14-C-120 w/	Α	From Leg	4.00	0.0000	155.00	No Ice	4.09	2.86	0.08
Mount Pipe		1 Tom Log	0.00	0.0000	133.00	1/2"	4.48	3.23	0.13
			0.00			Ice	4.88	3.61	0.19
						1" Ice	5.71	4.40	0.33
APXVTM14-C-120 w/	В	Erom Loc	4.00	0.0000	155.00	2" Ice No Ice	4.09	2.86	0.08
Mount Pipe	D	From Leg	0.00	0.0000	100.00	1/2"	4.09 4.48	3.23	0.08
meant ipe			0.00			Ice	4.88	3.61	0.19
						1" Ice	5.71	4.40	0.33
ADVO/TNA/ CO COO C	_		4.00	0.0000	455.00	2" Ice	4.65	0.00	0.00
APXVTM14-C-120 w/	С	From Leg	4.00	0.0000	155.00	No Ice	4.09	2.86	0.08
Mount Pipe			0.00 0.00			1/2" Ice	4.48 4.88	3.23 3.61	0.13 0.19
			3.00			1" Ice	5.71	4.40	0.13
						2" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft²	K
APXVSPP18-C-A20 w/	Α	From Leg	4.00	0.0000	155.00	No Ice	4.60	4.01	0.10
Mount Pipe			0.00			1/2"	5.05	4.45	0.16
			0.00			Ice	5.50	4.89	0.23
						1" Ice 2" Ice	6.44	5.82	0.42
APXVSPP18-C-A20 w/	В	From Leg	4.00	0.0000	155.00	No Ice	4.60	4.01	0.10
Mount Pipe	_		0.00			1/2"	5.05	4.45	0.16
·			0.00			Ice	5.50	4.89	0.23
						1" Ice	6.44	5.82	0.42
APXVSPP18-C-A20 w/	_	From Log	4.00	0.0000	155.00	2" Ice	4.60	4.04	0.40
Mount Pipe	С	From Leg	4.00 0.00	0.0000	155.00	No Ice 1/2"	4.60 5.05	4.01 4.45	0.10 0.16
Would't ipe			0.00			Ice	5.50	4.89	0.23
						1" Ice 2" Ice	6.44	5.82	0.42
TD-RRH8x20-25	Α	From Leg	4.00	0.0000	155.00	No Ice	4.05	1.53	0.07
			0.00			1/2"	4.30	1.71	0.10
			0.00			Ice 1" Ice	4.56	1.90	0.13
						2" Ice	5.10	2.30	0.20
TD-RRH8x20-25	В	From Leg	4.00	0.0000	155.00	No Ice	4.05	1.53	0.07
			0.00			1/2"	4.30	1.71	0.10
			0.00			Ice	4.56	1.90	0.13
						1" Ice 2" Ice	5.10	2.30	0.20
TD-RRH8x20-25	С	From Leg	4.00	0.0000	155.00	No Ice	4.05	1.53	0.07
			0.00			1/2"	4.30	1.71	0.10
			0.00			lce 1" lce	4.56 5.10	1.90 2.30	0.13 0.20
						2" Ice	0.10	2.00	0.20
800MHZ RRH	Α	From Leg	4.00	0.0000	155.00	No Ice	2.13	1.77	0.05
			0.00			1/2"	2.32	1.95	0.07
			0.00			Ice 1" Ice	2.51	2.13	0.10
900MUZ DDU	В	From Log	4.00	0.0000	155.00	2" Ice No Ice	2.92	2.51	0.16
800MHZ RRH	ь	From Leg	4.00 0.00	0.0000	155.00	1/2"	2.13 2.32	1.77 1.95	0.05 0.07
			0.00			Ice	2.51	2.13	0.10
						1" Ice	2.92	2.51	0.16
						2" Ice			
800MHZ RRH	С	From Leg	4.00	0.0000	155.00	No Ice	2.13	1.77	0.05
			0.00 0.00			1/2" Ice	2.32 2.51	1.95 2.13	0.07 0.10
			0.00			1" Ice	2.92	2.51	0.16
						2" Ice			
1900MHz RRH	Α	From Leg	4.00	0.0000	155.00	No Ice	2.49	3.26	0.04
			0.00			1/2"	2.70	3.48	0.08
			0.00			lce 1" lce	2.91 3.35	3.72 4.21	0.11 0.19
						2" Ice	3.33	4.21	0.19
1900MHz RRH	В	From Leg	4.00	0.0000	155.00	No Ice	2.49	3.26	0.04
		Ū	0.00			1/2"	2.70	3.48	0.08
			0.00			Ice	2.91	3.72	0.11
						1" Ice 2" Ice	3.35	4.21	0.19
1900MHz RRH	С	From Leg	4.00	0.0000	155.00	No Ice	2.49	3.26	0.04
1000WHZ 14441	Ü	1 Tom Log	0.00	0.0000	100.00	1/2"	2.70	3.48	0.08
			0.00			Ice	2.91	3.72	0.11
						1" Ice	3.35	4.21	0.19
Diotform Manual II D 005 43	^	Nia-a-		0.0000	455.00	2" Ice	10.04	40.04	4.40
Platform Mount [LP 305-1]	С	None		0.0000	155.00	No Ice 1/2"	18.04 22.04	18.04 22.04	1.12 1.47
						Ice	26.06	26.06	1.88
						1" Ice	34.16	34.16	2.90
						2" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft²	Κ
6' x 2" Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	155.00	No Ice 1/2" Ice	1.43 1.92 2.29	1.43 1.92 2.29	0.02 0.03 0.05
6' x 2" Mount Pipe	В	From Leg	4.00	0.0000	155.00	1" Ice 2" Ice No Ice	3.06 1.43	3.06 1.43	0.09
O X 2 Would Tipo	J	r rom Log	0.00	0.0000	100.00	1/2" Ice 1" Ice	1.92 2.29 3.06	1.92 2.29 3.06	0.03 0.05 0.09
6' x 2" Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	155.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.43 1.92 2.29 3.06	1.43 1.92 2.29 3.06	0.02 0.03 0.05 0.09
***						00			
MT6407-77A w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice	4.91 5.26 5.61 6.36	2.68 3.14 3.62 4.63	0.10 0.14 0.18 0.29
MT6407-77A w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice	4.91 5.26 5.61	2.68 3.14 3.62	0.10 0.14 0.18
						1" Ice 2" Ice	6.36	4.63	0.29
MT6407-77A w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice	4.91 5.26 5.61 6.36	2.68 3.14 3.62 4.63	0.10 0.14 0.18 0.29
(2) LPA-80080/6CF w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	4.56 5.11 5.61 6.65	10.26 11.43 12.31 14.13	0.05 0.11 0.19 0.36
(2) LPA-80080/6CF w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	4.56 5.11 5.61 6.65	10.26 11.43 12.31 14.13	0.05 0.11 0.19 0.36
(2) LPA-80080/6CF w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	4.56 5.11 5.61 6.65	10.26 11.43 12.31 14.13	0.05 0.11 0.19 0.36
SBNHH-1D65B w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	4.09 4.49 4.89 5.72	3.30 3.68 4.07 4.87	0.07 0.13 0.20 0.39
SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	4.09 4.49 4.89 5.72	3.30 3.68 4.07 4.87	0.07 0.13 0.20 0.39
SBNHH-1D65B w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	4.09 4.49 4.89 5.72	3.30 3.68 4.07 4.87	0.07 0.13 0.20 0.39
SBNHH-1D65B	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	4.16 4.57 4.99 5.85	2.49 2.88 3.27 4.09	0.04 0.09 0.15 0.28

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	- 3		Vert ft ft ft	0	ft		ft²	ft²	К
						2" Ice			
SBNHH-1D65B	В	From Leg	4.00	0.0000	142.00	No Ice	4.16	2.49	0.04
			0.00			1/2"	4.57	2.88	0.09
			0.00			Ice	4.99	3.27	0.15
						1" Ice 2" Ice	5.85	4.09	0.28
SBNHH-1D65B	С	From Leg	4.00	0.0000	142.00	No Ice	4.16	2.49	0.04
	-		0.00			1/2"	4.57	2.88	0.09
			0.00			Ice	4.99	3.27	0.15
						1" Ice	5.85	4.09	0.28
RFV01U-D1A	Α	From Log	4.00	0.0000	142.00	2" Ice No Ice	1.88	1.25	0.08
KFV010-DIA	А	From Leg	0.00	0.0000	142.00	1/2"	2.05	1.23	0.08
			0.00			Ice	2.22	1.54	0.12
						1" Ice	2.60	1.86	0.18
						2" Ice			
RFV01U-D1A	В	From Leg	4.00	0.0000	142.00	No Ice	1.88	1.25	0.08
			0.00			1/2"	2.05 2.22	1.39	0.10 0.12
			0.00			lce 1" lce	2.22	1.54 1.86	0.12
						2" Ice	2.00	1.00	0.10
RFV01U-D1A	С	From Leg	4.00	0.0000	142.00	No Ice	1.88	1.25	0.08
			0.00			1/2"	2.05	1.39	0.10
			0.00			Ice	2.22	1.54	0.12
						1" Ice 2" Ice	2.60	1.86	0.18
RFV01U-D2A	Α	From Leg	4.00	0.0000	142.00	No Ice	1.88	1.01	0.07
111 1010 5271	,,	r rom Log	0.00	0.0000	142.00	1/2"	2.05	1.14	0.09
			0.00			Ice	2.22	1.28	0.11
						1" Ice	2.60	1.59	0.15
DEVOALL DOA	-	F	4.00	0.0000	4.40.00	2" Ice	4.00	4.04	0.07
RFV01U-D2A	В	From Leg	4.00 0.00	0.0000	142.00	No Ice 1/2"	1.88 2.05	1.01 1.14	0.07 0.09
			0.00			Ice	2.22	1.14	0.03
			0.00			1" Ice	2.60	1.59	0.15
						2" Ice			
RFV01U-D2A	С	From Leg	4.00	0.0000	142.00	No Ice	1.88	1.01	0.07
			0.00 0.00			1/2" Ice	2.05 2.22	1.14 1.28	0.09 0.11
			0.00			1" Ice	2.60	1.59	0.11
						2" Ice	2.00	1.00	0.10
DB-T1-6Z-8AB-0Z	Α	From Leg	4.00	0.0000	142.00	No Ice	4.80	2.00	0.04
			0.00			1/2"	5.07	2.19	0.08
			0.00			Ice	5.35	2.39	0.12
						1" Ice 2" Ice	5.93	2.81	0.21
DB-T1-6Z-8AB-0Z	С	From Leg	4.00	0.0000	142.00	No Ice	4.80	2.00	0.04
	_	3	0.00			1/2"	5.07	2.19	0.08
			0.00			Ice	5.35	2.39	0.12
						1" Ice	5.93	2.81	0.21
Platform Mount [LP 403-1]	С	None		0.0000	142.00	2" Ice No Ice	18.94	18.94	1.50
riationii Modrit [Li 403-1]	C	None		0.0000	142.00	1/2"	23.31	23.31	1.90
						Ice	27.74	27.74	2.37
						1" Ice	36.77	36.77	3.53
Decal Auton 11 d			4.00	0.0000	4.40.00	2" Ice	0.00	0.00	0.07
Dual Antenna Mounting	Α	From Leg	4.00	0.0000	142.00	No Ice	0.00	0.00	0.07
Bracket			0.00 0.00			1/2" Ice	0.00 0.00	0.00 0.00	0.09 0.11
			0.00			1" Ice	0.00	0.00	0.15
						2" Ice			
Dual Antenna Mounting	В	From Leg	4.00	0.0000	142.00	No Ice	0.00	0.00	0.07
Bracket			0.00			1/2"	0.00	0.00	0.09
			0.00			lce 1" lce	0.00 0.00	0.00 0.00	0.11 0.15
						. 100	0.00	0.00	0.10

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft²	К
Dual Antenna Mounting Bracket	С	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.07 0.09 0.11 0.15
*** MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	132.00	No Ice 1/2" Ice 1" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
TA08025-B604	Α	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B604	В	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B604	С	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B605	Α	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
TA08025-B605	В	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
TA08025-B605	С	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
RDIDC-9181-PF-48	С	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	2.31 2.50 2.70 3.12	1.29 1.45 1.61 1.96	0.02 0.04 0.06 0.12
Commscope MC-PK8-DSH	С	None		0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	34.24 62.95 91.66 149.08	34.24 62.95 91.66 149.08	1.75 2.10 2.45 3.15
(2) 8' x 2" Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06

Description	Face	Offset	Offsets:	Azimuth	Placement		C_AA_A	$C_A A_A$	Weight
	or Leg	Type	Horz Lateral Vert	Adjustmen t			Front	Side	
			ft ft ft	o	ft		ft ²	ft²	K
						1" Ice 2" Ice	4.40	4.40	0.12
(2) 8' x 2" Mount Pipe	В	From Leg	4.00	0.0000	132.00	No Ice	1.90	1.90	0.03
(2) 6 % 26	_		0.00	0.0000	.02.00	1/2"	2.73	2.73	0.04
			0.00			Ice	3.40	3.40	0.06
						1" Ice 2" Ice	4.40	4.40	0.12
(2) 8' x 2" Mount Pipe	С	From Leg	4.00	0.0000	132.00	No Ice	1.90	1.90	0.03
			0.00			1/2"	2.73	2.73	0.04
			0.00			Ice 1" Ice	3.40 4.40	3.40 4.40	0.06 0.12
***						2" Ice	4.40	4.40	0.12
201-4	Α	From Leg	3.00	0.0000	121.00	No Ice	1.13	1.13	0.00
		-	0.00			1/2"	2.00	2.00	0.01
			4.00			Ice	2.90	2.90	0.03
011 1 11 1100						1" Ice 2" Ice	4.31	4.31	0.08
Side Arm Mount [SO 701-	Α	From Leg	1.50	0.0000	121.00	No Ice	0.85	1.67	0.07
1]			0.00 0.00			1/2" Ice	1.14 1.43	2.34 3.01	0.08 0.09
			0.00			1" Ice	2.01	4.35	0.03
						2" Ice			0
4' x 2" Pipe Mount	Α	From Leg	3.00	0.0000	121.00	No Ice	0.79	0.79	0.03
			0.00			1/2"	1.03	1.03	0.04
			0.00			Ice	1.28	1.28	0.04
***						1" Ice 2" Ice	1.81	1.81	0.07
7770.00	Α	From Leg	4.00	0.0000	115.00	No Ice	5.51	2.93	0.04
7770.00	^	From Leg	0.00	0.0000	113.00	1/2"	5.87	3.27	0.04
			0.00			Ice	6.23	3.63	0.11
						1" Ice	6.99	4.35	0.20
	_					2" Ice			
7770.00	В	From Leg	4.00	0.0000	115.00	No Ice	5.51	2.93	0.04
			0.00 0.00			1/2" Ice	5.87 6.23	3.27 3.63	0.07 0.11
			0.00			1" Ice	6.99	4.35	0.11
						2" Ice	0.55	4.55	0.20
7770.00	С	From Leg	4.00	0.0000	115.00	No Ice	5.51	2.93	0.04
		-	0.00			1/2"	5.87	3.27	0.07
			0.00			Ice	6.23	3.63	0.11
						1" Ice	6.99	4.35	0.20
AM-X-CD-16-65-00T-RET	Α	From Leg	4.00	0.0000	115.00	2" Ice No Ice	4.69	2.34	0.05
AW-X-6D-10-03-001-KE1		1 Tolli Leg	0.00	0.0000	113.00	1/2"	5.15	2.77	0.03
			0.00			Ice	5.61	3.20	0.15
						1" Ice 2" Ice	6.57	4.10	0.27
AM-X-CD-16-65-00T-RET	В	From Leg	4.00	0.0000	115.00	No Ice	4.69	2.34	0.05
			0.00			1/2"	5.15	2.77	0.10
			0.00			Ice	5.61	3.20	0.15
						1" Ice 2" Ice	6.57	4.10	0.27
AM-X-CD-16-65-00T-RET	С	From Leg	4.00	0.0000	115.00	No Ice	4.69	2.34	0.05
/ OD 10 00 001 TIET	J	om Log	0.00	5.0000	. 10.00	1/2"	5.15	2.77	0.03
			0.00			Ice	5.61	3.20	0.15
						1" Ice	6.57	4.10	0.27
80010965	٨	From Leg	4.00	0.0000	115.00	2" Ice No Ice	12.22	4.21	0.11
00010903	Α	rioni Leg	0.00	0.0000	113.00	1/2"	12.23 13.00	4.21	0.11
			0.00			Ice	13.79	5.57	0.13
						1" Ice	15.41	6.99	0.46
00040005	-		4.00	0.0000	445.00	2" Ice	40.00	4.04	0.44
80010965	В	From Leg	4.00	0.0000	115.00	No Ice	12.23	4.21	0.11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ^e	ft²	K
			0.00			1/2" Ice 1" Ice	13.00 13.79 15.41	4.88 5.57 6.99	0.19 0.27 0.46
80010965	С	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	12.23 13.00 13.79 15.41	4.21 4.88 5.57 6.99	0.11 0.19 0.27 0.46
QS66512-2	Α	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	4.01 4.41 4.81 5.65	3.37 3.76 4.15 4.97	0.11 0.17 0.23 0.38
QS66512-2	В	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	4.01 4.41 4.81 5.65	3.37 3.76 4.15 4.97	0.11 0.17 0.23 0.38
QS66512-2	С	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	4.01 4.41 4.81 5.65	3.37 3.76 4.15 4.97	0.11 0.17 0.23 0.38
(3) DBCT108F1V92-1	А	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	0.32 0.40 0.49 0.69	0.64 0.74 0.85 1.09	0.03 0.03 0.04 0.06
(2) DBCT108F1V92-1	В	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	0.32 0.40 0.49 0.69	0.64 0.74 0.85 1.09	0.03 0.03 0.04 0.06
DBCT108F1V92-1	С	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	0.32 0.40 0.49 0.69	0.64 0.74 0.85 1.09	0.03 0.03 0.04 0.06
RRUS 12 B2	Α	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	3.14 3.36 3.59 4.07	1.28 1.43 1.60 1.95	0.05 0.07 0.10 0.16
RRUS 12 B2	В	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	3.14 3.36 3.59 4.07	1.93 1.28 1.43 1.60 1.95	0.05 0.07 0.10 0.16
RRUS 12 B2	С	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	3.14 3.36 3.59	1.28 1.43 1.60	0.05 0.07 0.10
DTMABP7819VG12A	Α	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice 2" Ice No Ice 1/2" Ice 1" Ice	4.07 0.98 1.10 1.23 1.52	1.95 0.34 0.42 0.51 0.71	0.16 0.02 0.03 0.04 0.06
DTMABP7819VG12A	В	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice	0.98 1.10 1.23	0.34 0.42 0.51	0.02 0.03 0.04
DTMABP7819VG12A	С	From Leg	4.00	0.0000	115.00	1" Ice 2" Ice No Ice	1.52 0.98	0.71 0.34	0.06

Leg Lateral t Vert ft	0.03 0.04 0.06 0.08 0.09 0.14 0.06 0.08
RRUS 4478 B5 A From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 11 Ice 2.57 1.66 2" Ice 1.28 1.06 1.29 1.34 1" Ice 2.57 1.66 2" Ice 1.29 1.34 1" Ice 2.57 1.66 2" Ice 1.29 1.34 1" Ice 2.57 1.66 2" Ice 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	0.04 0.06 0.06 0.08 0.09 0.14 0.06 0.08
RRUS 4478 B5 A From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 115.00 No Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 B From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 1/2" Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.57 1.66 2" Ice 2.19 1.34 1" Ice 2.57 1.66 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.04 0.06 0.06 0.08 0.09 0.14 0.06 0.08
RRUS 4478 B5 A From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 B From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 Ice 2.19 1.34 1.06 0.00 1/2" 2.01 1.20 Ice 2.19 1.34	0.08 0.09 0.14 0.06 0.08
RRUS 4478 B5 B From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1.20 0.000 115.00 No Ice 2.19 1.34 1.06 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	0.09 0.14 0.06 0.08
RRUS 4478 B5 B From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1.000 Ice 2.19 1.34 1" Ice 2.57 1.66 RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 Ice 2.19 1.34	0.14 0.06 0.08
RRUS 4478 B5 B From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice	0.08
0.00 1/2" 2.01 1.20 0.00 lce 2.19 1.34 1" lce 2.57 1.66 2" lce RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No lce 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 lce 2.19 1.34	0.08
RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 Ice 2.19 1.34	
RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 Ice 2.19 1.34	0.09
0.00 1/2" 2.01 1.20 0.00 lce 2.19 1.34	0.14 0.06
0.00 lce 2.19 1.34	0.08
	0.00
1" Ice 2.57 1.66 2" Ice	0.14
RRUS 4478 B14 A From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06	0.06
0.00 1/2" 2.01 1.20	0.08
0.00 lce 2.19 1.34	0.09
1" Ice 2.57 1.66 2" Ice (2) RRUS 4478 B14 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06	0.14 0.06
0.00 1/2" 2.01 1.20	0.08
0.00 lce 2.19 1.34	0.09
1" Ice 2.57 1.66 2" Ice	0.14
WCS RRUS-32-B30 A From Leg 4.00 0.0000 115.00 No Ice 3.31 2.42	0.08
0.00 1/2" 3.56 2.64	0.10
0.00 lce 3.81 2.86 1" lce 4.33 3.32 2" lce	0.14 0.21
WCS RRUS-32-B30 B From Leg 4.00 0.0000 115.00 No Ice 3.31 2.42	0.08
0.00 1/2" 3.56 2.64	0.10
0.00 lce 3.81 2.86	0.14
1" lce 4.33 3.32 2" lce	0.21
WCS RRUS-32-B30 C From Leg 4.00 0.0000 115.00 No Ice 3.31 2.42	0.08
0.00 1/2" 3.56 2.64 0.00 lce 3.81 2.86	0.10 0.14
1" lce 4.33 3.32 2" lce	0.21
(2) TPX-070821 A From Leg 4.00 0.0000 115.00 No Ice 0.47 0.10	0.01
0.00 1/2" 0.56 0.15	0.01
0.00 lce 0.66 0.20 1" lce 0.87 0.33 2" lce	0.02 0.03
(2) TPX-070821 B From Leg 4.00 0.0000 115.00 No Ice 0.47 0.10	0.01
0.00 1/2" 0.56 0.15	0.01
0.00 lce 0.66 0.20	0.02
1" Ice 0.87 0.33 2" Ice	0.03
(2) TPX-070821 C From Leg 4.00 0.0000 115.00 No Ice 0.47 0.10	0.01
0.00 1/2" 0.56 0.15	0.01
0.00 lce 0.66 0.20 1" lce 0.87 0.33 2" lce	0.02 0.03
(2) RRUS 11 B From Leg 4.00 0.0000 115.00 No Ice 2.78 1.19	0.05
0.00 1/2" 2.99 1.33	0.07
0.00 lce 3.21 1.49	0.09
1" Ice 3.66 1.83	0.15
2" Ice RRUS 11 C From Leg 4.00 0.0000 115.00 No Ice 2.78 1.19	0.05

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft ²	K
			0.00 0.00			1/2" Ice	2.99 3.21	1.33 1.49	0.07 0.09
	_					1" Ice 2" Ice	3.66	1.83	0.15
RRUS 4426 B66	В	From Leg	4.00 0.00	0.0000	115.00	No Ice 1/2"	1.64 1.80	0.73 0.84	0.05 0.06
			0.00			Ice 1" Ice 2" Ice	1.97 2.33	0.97 1.24	0.08 0.11
(2) RRUS 4426 B66	С	From Leg	4.00 0.00	0.0000	115.00	No Ice 1/2"	1.64 1.80	0.73 0.84	0.05 0.06
			0.00			Ice	1.97	0.97	0.08
						1" Ice 2" Ice	2.33	1.24	0.11
DC6-48-60-18-8F	Α	From Leg	4.00	0.0000	115.00	No Ice	1.21	1.21	0.02
			0.00 0.00			1/2" Ice	1.89 2.11	1.89 2.11	0.04 0.07
			0.00			1" Ice 2" Ice	2.57	2.57	0.13
DC6-48-60-18-8F	В	From Leg	4.00	0.0000	115.00	No Ice	1.21	1.21	0.02
			0.00 0.00			1/2" Ice	1.89 2.11	1.89	0.04 0.07
			0.00			1" Ice 2" Ice	2.57	2.11 2.57	0.13
DC6-48-60-18-8C	В	From Leg	4.00	0.0000	115.00	No Ice	1.14	1.14	0.03
			0.00 0.00			1/2" Ice	1.79 2.00	1.79 2.00	0.05 0.07
						1" Ice 2" Ice	2.45	2.45	0.13
Platform Mount [LP 301-1]	С	None		0.0000	115.00	No Ice	23.81	23.81	1.59
						1/2" Ice	30.24 36.33	30.24 36.33	2.10 2.73
Al as Oll Diras Massact	•	From Low	4.00	0.0000	445.00	1" Ice 2" Ice	48.05	48.05	4.34
4' x 2" Pipe Mount	Α	From Leg	1.00 0.00	0.0000	115.00	No Ice 1/2"	0.79 1.03	0.79 1.03	0.03 0.04
			0.00			Ice	1.28	1.28	0.04
						1" Ice 2" Ice	1.81	1.81	0.07
4' x 2" Pipe Mount	В	From Leg	1.00 0.00	0.0000	115.00	No Ice 1/2"	0.79 1.03	0.79 1.03	0.03 0.04
			0.00			Ice	1.28	1.28	0.04
						1" Ice 2" Ice	1.81	1.81	0.07
4' x 2" Pipe Mount	С	From Leg	1.00	0.0000	115.00	No Ice	0.79	0.79	0.03
			0.00 0.00			1/2" Ice	1.03 1.28	1.03 1.28	0.04 0.04
***						1" Ice 2" Ice	1.81	1.81	0.07
APXV18-206517S-C w/	Α	From Leg	1.00	0.0000	105.00	No Ice	3.79	3.16	0.05
Mount Pipe			0.00 0.00			1/2" Ice	4.38 4.99	3.75 4.35	0.09 0.15
			0.00			1" Ice 2" Ice	6.25	5.59	0.28
APXV18-206517S-C w/	В	From Leg	1.00	0.0000	105.00	No Ice	3.79	3.16	0.05
Mount Pipe			0.00 0.00			1/2" Ice	4.38 4.99	3.75 4.35	0.09 0.15
			0.00			1" Ice	6.25	5.59	0.28
APXV18-206517S-C w/	С	From Leg	1.00	0.0000	105.00	2" Ice No Ice	3.79	3.16	0.05
Mount Pipe		3	0.00			1/2"	4.38	3.75	0.09
			0.00			Ice 1" Ice	4.99 6.25	4.35 5.59	0.15 0.28
						2" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft ²	ft²	К

DB810T3E-XT	Α	From Leg	3.00 0.00	0.0000	74.00	No Ice 1/2"	4.53 6.07	4.53 6.07	0.05 0.08
			9.00			Ice 1" Ice 2" Ice	7.63 10.79	7.63 10.79	0.12 0.24
Side Arm Mount [SO 701- 1]	Α	From Leg	1.50 0.00 0.00	0.0000	74.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.85 1.14 1.43 2.01	1.67 2.34 3.01 4.35	0.07 0.08 0.09 0.12
6' x 2" Mount Pipe	Α	From Leg	3.00 0.00 2.00	0.0000	74.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.43 1.92 2.29 3.06	1.43 1.92 2.29 3.06	0.02 0.03 0.05 0.09
***						2 100			

Load Combinations

Comb.	Description
No	Divided
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp

Comb.	Description
No.	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
L1	169 - 164.25	Pole	Max Tension	2	0.00	-0.00	-0.00
			Max. Compression	26	-0.52	0.33	-0.18
			Max. Mx	20	-0.28	0.81	-0.07
			Max. My	14	-0.28	0.13	-0.75
			Max. Vy	8	0.31	-0.51	-0.07
			Max. Vx	2	-0.31	0.13	0.58
			Max. Torque	24			0.52
L2	164.25 - 129.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-33.08	1.75	0.68
			Max. Mx	20	-15.12	321.85	-0.47
			Max. My	14	-15.12	1.06	-321.58
			Max. Vy	20	-16.20	321.85	-0.47
			Max. Vx	2	-16.25	0.14	321.57
			Max. Torque	16		• • • • • • • • • • • • • • • • • • • •	-0.68
L3	129.75 - 96.08	Pole	Max Tension	1	0.00	0.00	0.00
	00.00		Max. Compression	26	-61.61	3.70	1.20
			Max. Mx	20	-30.49	1101.54	-3.03
			Max. My	14	-30.51	4.26	-1098.55
			Max. Vy	20	-29.12	1101.54	-3.03
			Max. Vx	2	-28.95	-1.62	1098.33
			Max. Torque	19	20.00	1.02	-1.16
L4	96.08 - 63.25	Pole	Max Tension	1	0.00	0.00	0.00
	00.20		Max. Compression	26	-76.32	5.85	5.62
			Max. Mx	20	-40.34	2097.30	-4.56
			Max. My	2	-40.36	-3.92	2087.07
			Max. Vy	20	-33.17	2097.30	-4.56
			Max. Vx	2	-32.80	-3.92	2087.07
			Max. Torque	21	02.00	0.02	-1.99
L5	63.25 - 31.25	Pole	Max Tension	1	0.00	0.00	0.00
	01.20		Max. Compression	26	-92.33	8.21	8.80
			Max. Mx	20	-51.49	3188.51	-6.52
			Max. My	2	-51.51	-6.07	3166.01
			Max. Vy	20	-36.50	3188.51	-6.52
			Max. Vx	2	-36.10	-6.07	3166.01
			Max. Torque	21	00.10	0.07	-1.99
L6	31.25 - 0	Pole	Max Tension	1	0.00	0.00	0.00
LO	31.23 - 0	I OIC	Max. Compression	26	-112.98	11.06	12.71
			Max. Mx	20	-66.55	4622.16	-8.70
			Max. My	2	-66.55	-8.52	4584.91
			Max. Vy	20	-39.72	-6.52 4622.16	-8.70
			Max. Vx	2	-39.72	-8.52	4584.91
			Max. Vx Max. Torque	21	-JJ.JZ	-0.52	-1.99

Maximum	Reactions
waximum	Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Pole	Max. Vert	36	112.98	11.57	-0.02
	Max. H _x	21	49.93	39.69	-0.08
	Max. H _z	2	66.57	-0.08	39.29
	Max. M _x	2	4584.91	-0.08	39.29
	$Max. M_z$	8	4615.92	-39.69	0.08
	Max. Torsion	9	1.99	-39.69	0.08
	Min. Vert	17	49.93	19.81	-34.07
	Min. H _x	9	49.93	-39.69	0.08
	Min. H _z	15	49.93	0.08	-39.29
	Min. M _x	14	-4579.04	0.08	-39.29
	Min. M _z	20	-4622.16	39.69	-0.08
	Min. Torsion	21	-1.99	39.69	-0.08

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	55.48	0.00	0.00	-2.37	2.46	0.00
1.2 Dead+1.0 Wind 0 deg -	66.57	0.08	-39.29	-4584.91	-8.52	-0.53
No Ice						
0.9 Dead+1.0 Wind 0 deg -	49.93	0.08	-39.29	-4527.79	-9.18	-0.53
No Ice						
1.2 Dead+1.0 Wind 30 deg -	66.57	19.81	-34.07	-3976.87	-2308.41	-1.4
No Ice						
0.9 Dead+1.0 Wind 30 deg -	49.93	19.81	-34.07	-3927.21	-2280.80	-1.4
No Ice						
1.2 Dead+1.0 Wind 60 deg -	66.57	35.81	-20.63	-2361.70	-4088.86	-1.98
No Ice						
0.9 Dead+1.0 Wind 60 deg -	49.93	35.81	-20.63	-2332.18	-4039.82	-1.9
No Ice						
1.2 Dead+1.0 Wind 90 deg -	66.57	39.69	-0.08	-14.59	-4615.92	-1.9
No Ice						
0.9 Dead+1.0 Wind 90 deg -	49.93	39.69	-0.08	-13.68	-4559.99	-1.9
No Ice						
1.2 Dead+1.0 Wind 120 deg	66.57	34.15	19.57	2277.97	-3977.31	-1.4
- No Ice						
0.9 Dead+1.0 Wind 120 deg	49.93	34.15	19.57	2250.67	-3929.18	-1.4
- No Ice						
1.2 Dead+1.0 Wind 150 deg	66.57	19.67	33.98	3959.37	-2288.26	-0.5
- No Ice						
0.9 Dead+1.0 Wind 150 deg	49.93	19.67	33.98	3911.37	-2260.91	-0.5
- No Ice						
1.2 Dead+1.0 Wind 180 deg	66.57	-0.08	39.29	4579.04	14.77	0.5
- No Ice						
0.9 Dead+1.0 Wind 180 deg	49.93	-0.08	39.29	4523.41	13.80	0.5
- No Ice						
1.2 Dead+1.0 Wind 210 deg	66.57	-19.81	34.07	3970.97	2314.66	1.4
- No Ice						
0.9 Dead+1.0 Wind 210 deg	49.93	-19.81	34.07	3922.83	2285.41	1.4
- No Ice						
1.2 Dead+1.0 Wind 240 deg	66.57	-35.81	20.63	2355.81	4095.09	1.9
- No Ice						
0.9 Dead+1.0 Wind 240 deg	49.93	-35.81	20.63	2327.81	4044.42	1.9
- No Ice	aa ==	22.22	2.22	a ==	4000 46	
1.2 Dead+1.0 Wind 270 deg	66.57	-39.69	0.08	8.70	4622.16	1.9
- No Ice	40.00	00.00	0.00	0.04	4504.04	
0.9 Dead+1.0 Wind 270 deg	49.93	-39.69	0.08	9.31	4564.61	1.9
- No Ice	00.57	24.45	40.57	0000 00	2002 52	
1.2 Dead+1.0 Wind 300 deg	66.57	-34.15	-19.57	-2283.86	3983.56	1.4
- No Ice						

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M₂	Torque
oomana.	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 300 deg	49.93	-34.15	-19.57	-2255.04	3933.80	1.46
- No Ice						
1.2 Dead+1.0 Wind 330 deg	66.57	-19.67	-33.98	-3965.27	2294.52	0.53
- No Ice						
0.9 Dead+1.0 Wind 330 deg	49.93	-19.67	-33.98	-3915.75	2265.53	0.53
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	112.98	-0.00	-0.00	-12.71	11.06	-0.00
1.2 Dead+1.0 Wind 0	112.98	0.02	-11.51	-1407.38	8.87	-0.07
deg+1.0 Ice+1.0 Temp		0.02			0.0.	0.0.
1.2 Dead+1.0 Wind 30	112.98	5.80	-9.98	-1221.74	-691.03	-0.48
deg+1.0 Ice+1.0 Temp	112.00	0.00	0.00		001.00	0.10
1.2 Dead+1.0 Wind 60	112.98	10.02	-5.77	-712.17	-1202.76	-0.76
deg+1.0 Ice+1.0 Temp	112.50	10.02	3.77	7 12.17	1202.70	0.70
1.2 Dead+1.0 Wind 90	112.98	11.57	-0.02	-15.22	-1389.20	-0.83
deg+1.0 lce+1.0 Temp	112.30	11.57	-0.02	-13.22	-1309.20	-0.03
1.2 Dead+1.0 Wind 120	112.98	10.01	5.74	682.35	-1200.43	-0.69
deg+1.0 lce+1.0 Temp	112.90	10.01	5.74	002.33	-1200.43	-0.09
1.2 Dead+1.0 Wind 150	112.98	5.77	9.96	1193.63	-686.98	-0.36
deg+1.0 lce+1.0 Temp	112.90	3.77	9.90	1193.03	-000.90	-0.30
1.2 Dead+1.0 Wind 180	112.98	-0.02	11.51	1381.61	13.55	0.07
	112.96	-0.02	11.51	1301.01	13.33	0.07
deg+1.0 Ice+1.0 Temp	440.00	F 00	0.00	4405.07	740.45	0.40
1.2 Dead+1.0 Wind 210	112.98	-5.80	9.98	1195.97	713.45	0.48
deg+1.0 lce+1.0 Temp	440.00	40.00	<i>-</i>	000.40	4005.40	0.75
1.2 Dead+1.0 Wind 240	112.98	-10.02	5.77	686.40	1225.19	0.75
deg+1.0 lce+1.0 Temp	440.00	44.57	0.00	40.54	4444.00	0.00
1.2 Dead+1.0 Wind 270	112.98	-11.57	0.02	-10.54	1411.62	0.83
deg+1.0 Ice+1.0 Temp	440.00	40.04	4	700.44	4000.05	0.00
1.2 Dead+1.0 Wind 300	112.98	-10.01	-5.74	-708.11	1222.85	0.69
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	112.98	-5.77	-9.96	-1219.40	709.40	0.36
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	55.48	0.02	-9.26	-1073.95	-0.13	-0.11
Dead+Wind 30 deg - Service	55.48	4.67	-8.03	-931.76	-537.97	-0.33
Dead+Wind 60 deg - Service	55.48	8.44	-4.86	-554.09	-954.41	-0.46
Dead+Wind 90 deg - Service	55.48	9.35	-0.02	-5.17	-1077.60	-0.47
Dead+Wind 120 deg -	55.48	8.05	4.61	530.95	-928.25	-0.35
Service						
Dead+Wind 150 deg -	55.48	4.63	8.01	924.14	-533.26	-0.14
Service						
Dead+Wind 180 deg -	55.48	-0.02	9.26	1069.05	5.31	0.11
Service						
Dead+Wind 210 deg -	55.48	-4.67	8.03	926.86	543.14	0.33
Service						
Dead+Wind 240 deg -	55.48	-8.44	4.86	549.20	959.58	0.46
Service						
Dead+Wind 270 deg -	55.48	-9.35	0.02	0.27	1082.77	0.47
Service						
Dead+Wind 300 deg -	55.48	-8.05	-4.61	-535.84	933.42	0.35
Service	555	0.00		000.01		2.50
Dead+Wind 330 deg -	55.48	-4.63	-8.01	-929.04	538.43	0.14
Service	33.10	50	2.01	020.01	333.10	3.11

Solution Summary

	Sur	n of Applied Force	es				
Load Comb.	PX K	PY K	PZ K	PX K	PY K	PZ K	% Error
1	0.00	-55.48	0.00	0.00	55.48	0.00	0.000%
2	0.08	-66.57	-39.29	-0.08	66.57	39.29	0.000%
3	0.08	-49.93	-39.29	-0.08	49.93	39.29	0.000%
4	19.81	-66.57	-34.07	-19.81	66.57	34.07	0.000%
5	19.81	-49.93	-34.07	-19.81	49.93	34.07	0.000%
6	35.81	-66.57	-20.63	-35.81	66.57	20.63	0.000%
7	35.81	-49.93	-20.63	-35.81	49.93	20.63	0.000%
8	39.69	-66.57	-0.08	-39.69	66.57	0.08	0.000%
9	39.69	-49.93	-0.08	-39.69	49.93	0.08	0.000%

	Sur	n of Applied Force	es		Sum of Reactions			
Load	PX	PY	PZ	PX	PY	PZ	% Erro	
Comb.	K	K	K	K	K	K		
10	34.15	-66.57	19.57	-34.15	66.57	-19.57	0.000%	
11	34.15	-49.93	19.57	-34.15	49.93	-19.57	0.000%	
12	19.67	-66.57	33.98	-19.67	66.57	-33.98	0.000%	
13	19.67	-49.93	33.98	-19.67	49.93	-33.98	0.000%	
14	-0.08	-66.57	39.29	0.08	66.57	-39.29	0.000%	
15	-0.08	-49.93	39.29	0.08	49.93	-39.29	0.000%	
16	-19.81	-66.57	34.07	19.81	66.57	-34.07	0.000%	
17	-19.81	-49.93	34.07	19.81	49.93	-34.07	0.000%	
18	-35.81	-66.57	20.63	35.81	66.57	-20.63	0.000%	
19	-35.81	-49.93	20.63	35.81	49.93	-20.63	0.000%	
20	-39.69	-66.57	0.08	39.69	66.57	-0.08	0.000%	
21	-39.69	-49.93	0.08	39.69	49.93	-0.08	0.000%	
22	-34.15	-66.57	-19.57	34.15	66.57	19.57	0.000%	
23	-34.15	-49.93	-19.57	34.15	49.93	19.57	0.000%	
24	-19.67	-66.57	-33.98	19.67	66.57	33.98	0.000%	
25	-19.67	-49.93	-33.98	19.67	49.93	33.98	0.000%	
26	0.00	-112.98	0.00	0.00	112.98	0.00	0.000%	
27	0.02	-112.98	-11.51	-0.02	112.98	11.51	0.000%	
28	5.80	-112.98	-9.98	-5.80	112.98	9.98	0.000%	
29	10.02	-112.98	-5.77	-10.02	112.98	5.77	0.000%	
30	11.57	-112.98	-0.02	-11.57	112.98	0.02	0.000%	
31	10.01	-112.98	5.74	-10.01	112.98	-5.74	0.000%	
32	5.77	-112.98	9.96	-5.77	112.98	-9.96	0.000%	
33	-0.02	-112.98	11.51	0.02	112.98	-11.51	0.000%	
34	-5.80	-112.98	9.98	5.80	112.98	-9.98	0.000%	
35	-10.02	-112.98	5.77	10.02	112.98	-5.77	0.000%	
36	-11.57	-112.98	0.02	11.57	112.98	-0.02	0.000%	
37	-10.01	-112.98	-5.74	10.01	112.98	5.74	0.000%	
38	-5.77	-112.98	-9.96	5.77	112.98	9.96	0.000%	
39	0.02	-55.48	-9.26	-0.02	55.48	9.26	0.000%	
40	4.67	-55.48	-8.03	-4.67	55.48	8.03	0.000%	
41	8.44	-55.48	-4.86	-8.44	55.48	4.86	0.000%	
42	9.35	-55.48	-0.02	-9.35	55.48	0.02	0.000%	
43	8.05	-55.48	4.61	-8.05	55.48	-4.61	0.000%	
43	4.63	-55.48	8.01	-4.63	55.48	-4.01 -8.01	0.000%	
4 4 45	-0.02	-55.48	9.26	0.02	55.48	-9.26	0.0007	
45 46	-0.02 -4.67	-55.48	8.03	4.67	55.48 55.48	-9.26 -8.03	0.0009	
47	-8.44	-55.48	4.86	8.44	55.48	-6.03 -4.86	0.0007	
48	-9.35	-55.48	0.02	9.35	55.48 55.48	-4.00 -0.02	0.000%	
40 49	-9.35 -8.05	-55.48	-4.61	9.35 8.05	55.48 55.48	-0.02 4.61	0.000%	
49 50	-6.05 -4.63	-55.48	-4.61 -8.01	4.63	55.48	4.61 8.01	0.000%	

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.0000001
2	Yes	4	0.0000001	0.00085388
3	Yes	4	0.0000001	0.00041330
4	Yes	6	0.0000001	0.00012110
5	Yes	5	0.0000001	0.00098131
6	Yes	6	0.0000001	0.00012841
7	Yes	6	0.0000001	0.00004371
8	Yes	5	0.0000001	0.00009185
9	Yes	4	0.0000001	0.00099911
10	Yes	6	0.0000001	0.00011981
11	Yes	5	0.0000001	0.00097122
12	Yes	6	0.0000001	0.00012140
13	Yes	5	0.0000001	0.00098497
14	Yes	5	0.0000001	0.00006002
15	Yes	4	0.0000001	0.00061270
16	Yes	6	0.0000001	0.00012490
17	Yes	6	0.0000001	0.00004274
18	Yes	6	0.0000001	0.00012404
19	Yes	6	0.0000001	0.00004206

tnxTower Report - version 8.0.9.0

20	Yes	5	0.0000001	0.00006913
21	Yes	4	0.0000001	0.00073962
22	Yes	6	0.0000001	0.00012314
23	Yes	5	0.0000001	0.00099783
24	Yes	6	0.0000001	0.00012147
25	Yes	5	0.0000001	0.00098410
26	Yes	4	0.0000001	0.00009639
27	Yes	5	0.0000001	0.00092893
28	Yes	6	0.0000001	0.00013710
29	Yes	6	0.0000001	0.00013842
30	Yes	5	0.0000001	0.00091765
31	Yes	6	0.0000001	0.00013429
32	Yes	6	0.0000001	0.00013486
33	Yes	5	0.0000001	0.00091446
34	Yes	6	0.0000001	0.00013833
35	Yes	6	0.0000001	0.00013739
36	Yes	5	0.0000001	0.00093425
37	Yes	6	0.0000001	0.00014024
38	Yes	6	0.0000001	0.00013923
39	Yes	4	0.0000001	0.00014437
40	Yes	4	0.0000001	0.00058681
41	Yes	4	0.0000001	0.00066430
42	Yes	4	0.0000001	0.00015968
43	Yes	4	0.0000001	0.00057907
44	Yes	4	0.0000001	0.00060010
45	Yes	4	0.0000001	0.00014515
46	Yes	4	0.0000001	0.00063710
47	Yes	4	0.0000001	0.00060684
48	Yes	4	0.0000001	0.00015795
49	Yes	4	0.0000001	0.00062758
50	Yes	4	0.0000001	0.00060264

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	169 - 164.25	23.303	47	1.1048	0.0013
L2	166.625 - 129.75	22.753	47	1.1047	0.0013
L3	133.58 - 96.08	15.319	47	1.0153	0.0009
L4	100.75 - 63.25	8.925	47	0.8207	0.0006
L5	68.75 - 31.25	4.206	47	0.5668	0.0005
L6	37.5 - 0	1.282	47	0.3067	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
169.00	Lightning Rod 5/8" x 4'	47	23.303	1.1048	0.0013	75403
167.00	8' x 3" Mount Pipe	47	22.840	1.1047	0.0013	75403
164.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	47	22.146	1.1035	0.0013	75403
155.00	APXVTM14-C-120 w/ Mount Pipe	47	20.078	1.0905	0.0012	30103
142.00	MT6407-77A w/ Mount Pipe	47	17.151	1.0511	0.0010	16149
132.00	MX08FRO665-21 w/ Mount Pipe	47	14.983	1.0078	0.0009	12101
121.00	201-4	47	12.712	0.9505	0.0008	10103
115.00	7770.00	47	11.533	0.9153	0.0007	9277
105.00	APXV18-206517S-C w/ Mount	47	9.672	0.8505	0.0007	8165
	Pipe					
74.00	DB810T3E-XT	47	4.868	0.6105	0.0005	7479

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L1	169 - 164.25	99.603	18	4.7261	0.0056
L2	166.625 - 129.75	97.257	18	4.7258	0.0056
L3	133.58 - 96.08	65.501	18	4.3455	0.0041
L4	100.75 - 63.25	38.168	18	3.5127	0.0027
L5	68.75 - 31.25	17.986	18	2.4255	0.0019
L6	37.5 - 0	5.480	18	1.3115	0.0008

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
169.00	Lightning Rod 5/8" x 4'	18	99.603	4.7261	0.0056	18568
167.00	8' x 3" Mount Pipe	18	97.627	4.7261	0.0056	18568
164.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	18	94.666	4.7212	0.0056	18568
155.00	APXVTM14-C-120 w/ Mount Pipe	18	85.830	4.6667	0.0053	7209
142.00	MT6407-77A w/ Mount Pipe	18	73.329	4.4985	0.0046	3831
132.00	MX08FRO665-21 w/ Mount Pipe	18	64.063	4.3137	0.0040	2863
121.00	201-4	18	54.358	4.0687	0.0034	2387
115.00	7770.00	18	49.316	3.9177	0.0032	2190
105.00	APXV18-206517S-C w/ Mount Pipe	18	41.363	3.6402	0.0029	1925
74.00	DB810T3E-XT	18	20.820	2.6126	0.0021	1754

Compression Checks

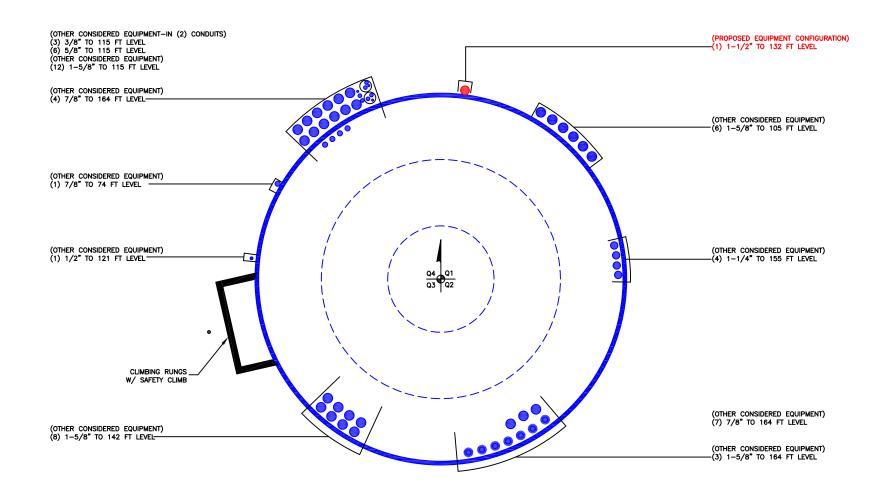
Pole Design Data

Section	Elevation	Size	1	Lu	KI/r	Α	Pu	ϕP_n	Ratio
No.	Liovation	0.20	_	- u	7 47 7		_	Ψ' η	P_u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
L1	169 - 164.25 (1)	TP26x18x0.25	4.75	0.00	0.0	17.258 6	-0.45	1009.63	0.000
L2	164.25 - 129.75 (2)	TP34.0625x21.5x0.3125	36.88	0.00	0.0	32.181 6	-15.10	1882.62	0.008
L3	129.75 - 96.08 (3)	TP41.75x32.1327x0.375	37.50	0.00	0.0	47.821 1	-30.46	2797.53	0.011
L4	96.08 - 63.25 (4)	TP49.0625x39.8023x0.37 5	37.50	0.00	0.0	56.333 7	-40.29	3295.52	0.012
L5	63.25 - 31.25 (5)	TP56.125x46.9543x0.375	37.50	0.00	0.0	64.537 2	-51.45	3775.43	0.014
L6	31.25 - 0 (6)	TP62.9375x53.8466x0.37 5	37.50	0.00	0.0	74.465 0	-66.55	4356.20	0.015

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	φM _{nx}	Ratio M _{ux}	M _{uy}	ф <i>M</i> ny	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	169 - 164.25 (1)	TP26x18x0.25	0.83	571.42	0.001	0.00	571.42	0.000
L2	164.25 - 129.75 (2)	TP34.0625x21.5x0.3125	322.48	1557.39	0.207	0.00	1557.39	0.000
L3	129.75 - 96.08 (3)	TP41.75x32.1327x0.375	1106.18	2842.24	0.389	0.00	2842.24	0.000
L4	96.08 - 63.25 (4)	TP49.0625x39.8023x0.37 5	2114.76	3754.93	0.563	0.00	3754.93	0.000
L5	63.25 - 31.25 (5)	TP56.125x46.9543x0.375	3236.35	4686.48	0.691	0.00	4686.48	0.000
L6	31.25 - 0 (6)	TP62.9375x53.8466x0.37 5	4724.37	5847.24	0.808	0.00	5847.24	0.000

	Pole Shear Design Data									
Section No.	Elevation	Size	Actual V _u	φV _n	Ratio V _u	Actual T _u	φ <i>T</i> _n	Ratio T _u		
	ft		K	K	ϕV_n	kip-ft	kip-ft	$\overline{\phi T_n}$		
L1	169 - 164.25 (1)	TP26x18x0.25	0.11	302.89	0.000	0.00	576.93	0.000		
L2	164.25 - 129.75 (2)	TP34.0625x21.5x0.3125	16.26	564.79	0.029	0.63	1604.78	0.000		
L3	129.75`-´ 96.08 (3)	TP41.75x32.1327x0.375	29.31	839.26	0.035	0.70	2952.96	0.000		
L4	96.08 - 63.25 (4)	TP49.0625x39.8023x0.37 5	33.88	988.66	0.034	1.98	4097.85	0.000		
L5	63.25 - 31.25 (5)	TP56.125x46.9543x0.375	37.74	1132.63	0.033	1.98	5378.23	0.000		
L6	31.25 - 0 (6)	TP62.9375x53.8466x0.37 5	41.36	1306.86	0.032	1.98	7160.17	0.000		


	Pole Interaction Design Data									
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria	
	ft	ϕP_n	φ <i>M</i> _{nx}	ϕM_{n_V}	ϕV_n	ϕT_n	Ratio	Ratio		
L1	169 - 164.25 (1)	0.000	0.001	0.000	0.000	0.000	0.002	1.050	4.8.2	
L2	164.25 - 129.75 (2)	0.008	0.207	0.000	0.029	0.000	0.216	1.050	4.8.2	
L3	129.75 - 96.08 (3)	0.011	0.389	0.000	0.035	0.000	0.401	1.050	4.8.2	
L4	96.08 - 63.25 (4)	0.012	0.563	0.000	0.034	0.000	0.577	1.050	4.8.2	
L5	63.25 - 31.25 (5)	0.014	0.691	0.000	0.033	0.000	0.705	1.050	4.8.2	
L6	31.25 - 0 (6)	0.015	0.808	0.000	0.032	0.000	0.824	1.050	4.8.2	

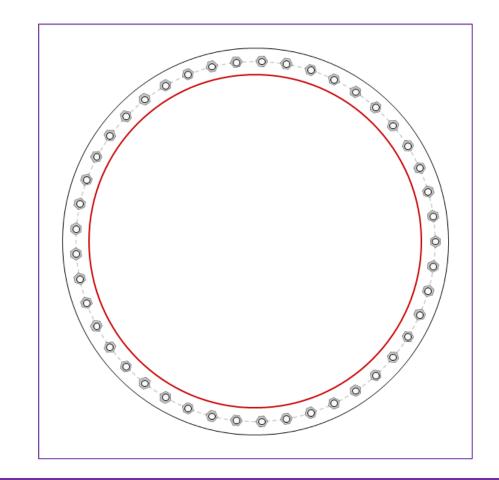
	Section Capacity Table								
Section	Elevation	Component	Size	Critical	P	øP _{allow}	%	Pass	
No.	ft	Type		Element	K	K	Capacity	Fail	

Section	Elevation	Component	Size	Critical	Р	ø P_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
L1	169 - 164.25	Pole	TP26x18x0.25	1	-0.45	1060.11	0.2	Pass
L2	164.25 - 129.75	Pole	TP34.0625x21.5x0.3125	2	-15.10	1976.75	20.6	Pass
L3	129.75 - 96.08	Pole	TP41.75x32.1327x0.375	3	-30.46	2937.41	38.2	Pass
L4	96.08 - 63.25	Pole	TP49.0625x39.8023x0.375	4	-40.29	3460.30	54.9	Pass
L5	63.25 - 31.25	Pole	TP56.125x46.9543x0.375	5	-51.45	3964.20	67.2	Pass
L6	31.25 - 0	Pole	TP62.9375x53.8466x0.375	6	-66.55	4574.01	78.5	Pass
							Summary	
						Pole (L6)	78.5	Pass
						RATING =	78.5	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	
BU#	826768
Site Name	Plymouth/Rt 6
Order #	553358 Rev. 1

Analysis Considerations				
TIA-222 Revision	Н			
Grout Considered:	No			
I _{ar} (in)	1.5			

Applied Loads				
Moment (kip-ft)	4724.37			
Axial Force (kips)	66.55			
Shear Force (kips)	41.36			

^{*}TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(45) 1-1/4" ø bolts (A687 N; Fy=105 ksi, Fu=125 ksi) on 68" BC

Base Plate Data

73" OD x 2.5" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data

N/A

Pole Data

62.9375" x 0.375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 72.62	φPn_t = 90.84	Stress Rating
Vu = 0.92	φVn = 57.52	76.1%
Mu = 0.9	φMn = 30.76	Pass

Base Plate Summary

Max Stress (ksi):	17.45	(Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	36.9%	Pass

CCIplate - Version 4.1.1 Analysis Date: 6/7/2021

Pier and Pad Foundation

BU # : 826768
Site Name: Plymouth/Rt. 6
App. Number: 553358 Rev. 1

TIA-222 Revision: H
Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

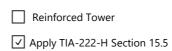
Superstructure Analysis Reactions				
Compression, P _{comp} :	66.57	kips		
Base Shear, Vu_comp:	41.33	kips		
Moment, M _u :	4724.36	ft-kips		
Tower Height, H:	169	ft		
BP Dist. Above Fdn, bp _{dist} :	2.75	in		

Pier Properties				
Pier Shape:	Circular			
Pier Diameter, dpier :	7.5	ft		
Ext. Above Grade, E:	0.5	ft		
Pier Rebar Size, Sc :	9			
Pier Rebar Quantity, mc :	39			
Pier Tie/Spiral Size, St :	4			
Pier Tie/Spiral Quantity, mt:	11			
Pier Reinforcement Type:	Tie			
Pier Clear Cover, cc _{pier} :	3	in		

Pad Properties				
Depth, D :	8.5	ft		
Pad Width, W ₁:	27	ft		
Pad Thickness, T:	2.5	ft		
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	9			
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	36			
Pad Clear Cover, cc_{pad} :	3	in		

Material Properties				
Rebar Grade, Fy:	60	ksi		
Concrete Compressive Strength, F'c:	4	ksi		
Dry Concrete Density, δ c :	150	pcf		

Soil Properties				
Total Soil Unit Weight, γ :	125	pcf		
Ultimate Gross Bearing, Qult:	12.000	ksf		
Cohesion, Cu :		ksf		
Friction Angle, $oldsymbol{arphi}$:	34	degrees		
SPT Blow Count, N _{blows} :	104			
Base Friction, μ :	0.6			
Neglected Depth, N:	3.75	ft		
Foundation Bearing on Rock?	No			
Groundwater Depth, gw :	14	ft		


Foundation Analysis Checks								
	Capacity	Demand	Rating*	Check				
Lateral (Sliding) (kips)	548.20	41.33	7.2%	Pass				
Bearing Pressure (ksf)	9.00	2.54	26.8%	Pass				
Overturning (kip*ft)	9553.25	5105.80	53.4%	Pass				
Pier Flexure (Comp.) (kip*ft)	6863.08	4993.01	69.3%	Pass				
Pier Compression (kip)	28118.83	118.26	0.4%	Pass				
Pad Flexure (kip*ft)	3941.07	1717.08	41.5%	Pass				
Pad Shear - 1-way (kips)	777.90	260.69	31.9%	Pass				
Pad Shear - 2-way (Comp) (ksi)	0.190	0.064	32.0%	Pass				
Flexural 2-way (Comp) (kip*ft)	4354.14	2995.80	65.5%	Pass				

*Rating per TIA-222-H Section

Structural Rating*:	
Soil Rating*:	53.4%

<--Toggle between Gross and Net

BU:	826768
WO:	1966237
APP:	553358 Rev. 1
TIA:	TIA-222-H

Table 1: Tower Geometry

	Height Above Ground (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	169.000	4.750	2.375	18	18.0000	26.0000	0.2500	1.0000	A572-65
2	166.630	36.875	3.830	18	21.5000	34.0625	0.3125	1.2500	A572-65
3	133.580	37.500	4.670	18	32.1327	41.7500	0.3750	1.5000	A572-65
4	100.750	37.500	5.500	18	39.8023	49.0625	0.3750	1.5000	A572-65
5	68.750	37.500	6.250	18	46.9543	56.1250	0.3750	1.5000	A572-65
6	37.500	37.500	0.000	18	53.8466	62.9375	0.3750	1.5000	A572-65

Table 2: Splice Check

(Highlighted values can be taken from the Tapered Pole Properties table of the TNX Output)

	Lap Splice Length (in)	Bottom Inner Diameter (in)	Required Splice (in)	Splice Check	Tip Diameter (in)	A (in²)	l (in⁴)	Bottom w/t	S (in³)
1	28.500	25.500	38.250	Reduce Strength	26.363	20.433	1711.654	16.544	129.855
2	45.960	33.438	50.156	Reduce Strength	34.540	33.476	4817.434	17.424	278.950
3	56.040	41.000	61.500	Reduce Strength	42.336	49.247	10650.982	17.835	503.162
4	66.000	48.313	72.469	Reduce Strength	49.762	57.950	17355.138	21.267	697.533
5	75.000	55.375	83.063	Reduce Strength	56.933	66.356	26056.151	24.581	915.327

Table 3: Loading

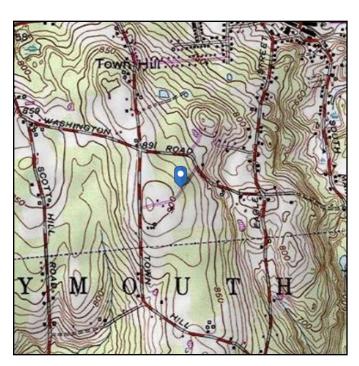
(Highlighted values can be taken from the MPAUXDATA worksheet created with the TNX output)

	$\sqrt{(F_y/E)}*(w/t)$	Reduction Factor	F' _y (ksi)	ΦΡ _n (kip)	ФМ _п (kip-ft)	ΦV _n (kip)	P _u (kip)	M _u (kip-ft)	V _u (kip)
1	0.783	0.62	50.61	738	493	221	0.45	0.83	0.11
2	0.825	0.87	70.75	1713	1480	514	15.10	322.48	16.26
3	0.844	0.87	69.71	2497	2631	749	30.46	1106.18	29.31
4	1.007	0.87	66.16	2936	3461	881	40.29	2114.76	33.88
5	1.164	0.85	61.93	3317	4252	995	51.45	3236.35	37.74

Results

	Ratio (%)
1	0.2%
2	21.7%
3	41.4%
4	59.6%
5	74.1%

Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 889.9 ft (NAVD 88)

Risk Category: || Latitude: 41.668388

Soil Class: D - Stiff Soil Longitude: -73.019956

Wind

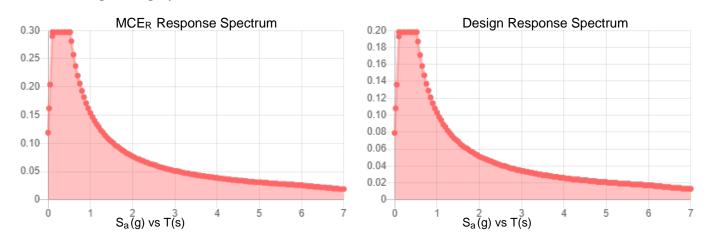
Results:

Wind Speed: 119 Vmph 120 mph per Appendix N of 2018 Connecticut State Building Code

10-year MRI 76 Vmph 25-year MRI 86 Vmph 50-year MRI 91 Vmph 100-year MRI 98 Vmph

Date Somessed: MS6 EMSE 24-202 Fig. 26.5-1A and Figs. CC-1—CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.186	S _{DS} :	0.198	
S_1 :	0.064	S _{D1} :	0.103	
F _a :	1.6	T _L :	6	
F_{v} :	2.4	PGA:	0.095	
S_{MS} :	0.297	PGA _M :	0.152	
S _{M1} :	0.154	F _{PGA} :	1.6	
		1 .	1	

Seismic Design Category B

Data Accessed: Mon May 24 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon May 24 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: July 29, 2021

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 704-405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: Dish Network Dish 5G

Carrier Site Number: BOHVN00014A
Carrier Site Name: CT-CCI-T-826768

Crown Castle Designation: Crown Castle BU Number: 826768

Crown Castle Site Name: PLYMOUTH/RT 6

Crown Castle JDE Job Number: 645129 Crown Castle Order Number: 553358 Rev. 1

Engineering Firm Designation: Trylon Report Designation: 189031

Site Data: 171 Town Hill Road, Plymouth, Litchfield County, CT, 06786

Latitude 41°40'6.20" Longitude -73°1'11.84"

Structure Information: Tower Height & Type: 169.0 ft Monopole

Mount Elevation: 132.0 ft
Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient*
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Marius Balan

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC TIA-222 Revision: TIA-222-H

Risk Category:

Ultimate Wind Speed: 120 mph

Exposure Category: Topographic Factor at Base: 1.0 **Topographic Factor at Mount:** 1.0 Ice Thickness: 1.5 in Wind Speed with Ice: 50 mph Seismic S_s: 0.186 Seismic S₁: 0.064 **Live Loading Wind Speed:** 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details	
132.0	132.0		3	JMA WIRELESS	MX08FRO665-21	0.0 ft Dlotform
		3	FUJITSU	TA08025-B604	8.0 ft Platform [Commscope MC-	
		3	FUJITSU	TA08025-B605	PK8-C1	
		1	RAYCAP	RDIDC-9181-PF-48	PRO-CJ	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	553358, Rev. 1	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate

HSS (Rectangular)

Pipe

ASTM A36 (GR 36)

ASTM A500 (GR B-46)

ASTM A53 (GR 35)

Connection Bolts

ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
	Mount Pipe(s)	MP8	132.0	26.5	Pass
1, 2	Horizontal(s)	H3		11.8	Pass
	Standoff(s)	M7		45.7	Pass
	Bracing(s)	M1		36.8	Pass
	Plate(s)	M10		21.3	Pass
	Handrail(s)	M19		10.5	Pass
	Mount Connection(s)	-		18.6	Pass

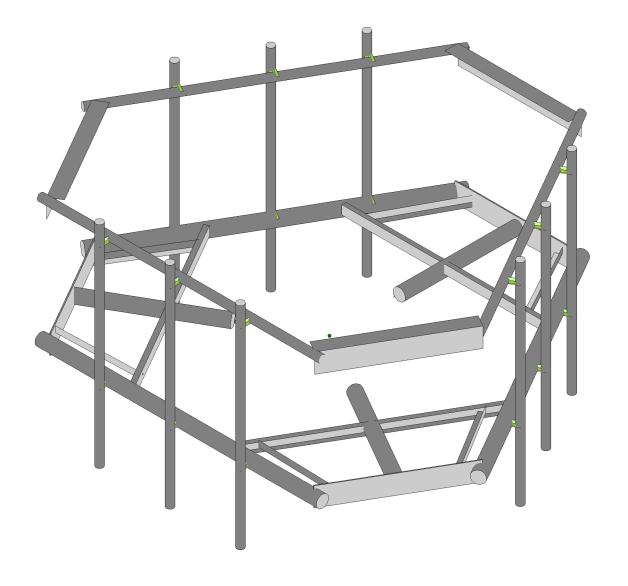
Structure Rating (max from all components) =	45.7%
--	-------

Notes:

2) Rating per TIA-222-H, Section 15.5

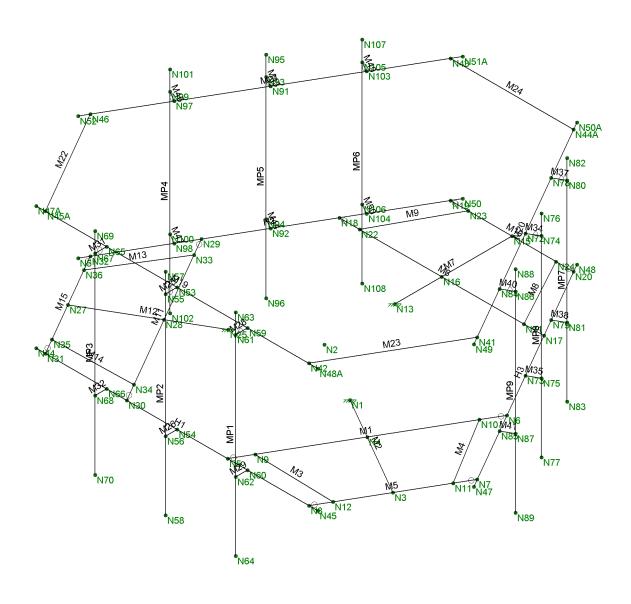
¹⁾ See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, part no MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

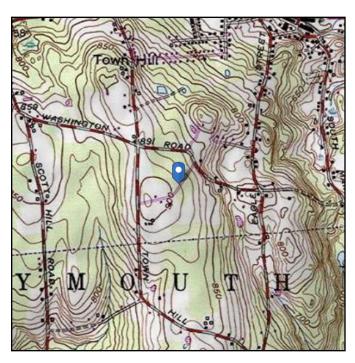

APPENDIX A WIRE FRAME AND RENDERED MODELS

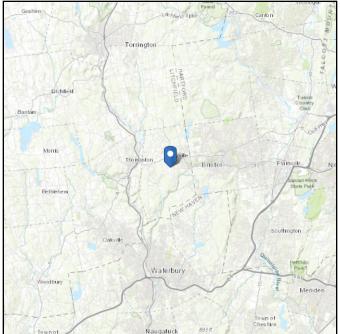
Trylon		SK - 1	
MB	826768	July 28, 2021 at 9:37 AM	
		826768.r3d	

Trylon		SK - 2
MB	826768	July 28, 2021 at 9:37 AM
		826768.r3d

APPENDIX B SOFTWARE INPUT CALCULATIONS

Address:


No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 889.9 ft (NAVD 88)

Risk Category: || Latitude: 41.668389

Soil Class: D - Stiff Soil Longitude: -73.019956

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.186	S _{DS} :	0.198	
S_1 :	0.064	S _{D1} :	0.103	
Fa:	1.6	T _L :	6	
F _v :	2.4	PGA:	0.095	
S _{MS} :	0.297	PGA _M :	0.152	
S _{M1} :	0.154	F _{PGA} :	1.6	
		L.	1	

Seismic Design Category B

Data Accessed: Tue Jul 27 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Jul 27 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT DATA			
Job Code:	189031		
Carrier Site ID:	BOHVN00014A		
Carrier Site Name:	CT-CCI-T826768		

CODES AND STANDARDS			
Building Code:	2015 IBC		
Local Building Code:	18 Connecticut State Buildi		
Design Standard:	TIA-222-H		

STRUCTURE DETAILS			
Mount Type:	Platform		
Mount Elevation:	132.0	ft.	
Number of Sectors:	3		
Structure Type:	Monopole		
Structure Height:	169.0	ft.	

ANALYSIS CRITERIA			
Structure Risk Category:	II		
Exposure Category:	С		
Site Class:	D - Stiff Soil		
Ground Elevation:	889.9	ft.	

TOPOGRAPHIC DATA			
Topographic Category:	1.00		
Topographic Feature:	N/A		
Crest Point Elevation:	0.00	ft.	
Base Point Elevation:	0.00	ft.	
Crest to Mid-Height (L/2):	0.00	ft.	
Distance from Crest (x):	0.00	ft.	
Base Topo Factor (K _{zt}):	1.00		
Mount Topo Factor (K _{zt}):	1.00		

WIND PARAMETERS								
Design Wind Speed:	120	mph						
Wind Escalation Factor (K _s):	1.00							
Velocity Coefficient (K _z):	1.34							
Directionality Factor (K _d):	0.95							
Gust Effect Factor (Gh):	1.00							
Shielding Factor (K _a):	0.90							
Velocity Pressure (q _z):	45.50	psf						

ICE PARAMETERS								
Design Ice Wind Speed:	50	mph						
Design Ice Thickness (t _i):	1.50	in						
Importance Factor (I _i):	1.00							
Ice Velocity Pressure (qzi):	45.50	psf						
Mount Ice Thickness (tiz):	1.72	in						

WIND STRUCTURE CALCULATIONS									
Flat Member Pressure: 81.90 p									
Round Member Pressure:	49.14	psf							
Ice Wind Pressure:	7.30	psf							

SEISMIC PARAMETERS							
Importance Factor (I _e):	1.00						
Short Period Accel .(S _s):	0.186	g					
1 Second Accel (S ₁):	0.064	g					
Short Period Des. (S _{DS}):	0.20	g					
1 Second Des. (S _{D1}):	0.10	g					
Short Period Coeff. (F _a):	1.60						
1 Second Coeff. (F _v):	2.40						
Response Coefficient (Cs):	0.10						
Amplification Factor (A _S):	1.20						

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	
81	
	`
	(0.9-0.2Sds) + 1.0E 315 AZI (0.9-0.2Sds) + 1.0E 330 AZI 1.2D + 1.5 Lv1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	132	No Ice	8.01	3.21	82.50
MP2/MP5/MP8, 0/120/240			w/ Ice	9.62	4.62	282.83
TA08025-B604	3	132	No Ice	1.96	0.98	63.90
MP2/MP5/MP8, 0/120/240			w/ Ice	2.39	1.31	69.48
TA08025-B605	3	132	No Ice	1.96	1.13	75.00
MP2/MP5/MP8, 0/120/240			w/ Ice	2.39	1.47	74.02
RDIDC-9181-PF-48	1	132	No Ice	2.01	1.17	21.85
MP/MP/MP8, 0/120/240			w/ Ice	2.44	1.52	72.95
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			<u> </u>

EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
-			w/ Ice			
			No Ice			
-			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	K _z	K _d	t _d	q z [psf]	q _{zi} [psf]
MX08FRO665-21	3	132	1.00	1.34	0.95	1.72	45.50	7.90
TA08025-B604	3	132	1.00	1.34	0.95	1.72	45.50	7.90
TA08025-B605	3	132	1.00	1.34	0.95	1.72	45.50	7.90
RDIDC-9181-PF-48	1	132	1.00	1.34	0.95	1.72	45.50	7.90

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	328.02	180.59	278.88	131.45	278.88	180.59
MP2/MP5/MP8, 0/120/240		w/ Ice	68.40	41.75	59.52	32.87	59.52	41.75
TA08025-B604	3	No Ice	80.41	50.24	70.35	40.18	70.35	50.24
MP2/MP5/MP8, 0/120/240		w/ Ice	16.96	11.22	15.05	9.31	15.05	11.22
TA08025-B605	3	No Ice	80.41	54.79	71.87	46.25	71.87	54.79
MP2/MP5/MP8, 0/120/240		w/ Ice	16.96	12.09	15.34	10.46	15.34	12.09
RDIDC-9181-PF-48	1	No Ice	82.39	56.48	73.75	47.84	73.75	56.48
MP/MP/MP8, 0/120/240		w/ Ice	17.35	12.46	15.72	10.83	15.72	12.46
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		No Ice w/ Ice						

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F p [lbs]
MX08FRO665-21	3	132	82.5	9.82
TA08025-B604	3	132	63.9	7.61
TA08025-B605	3	132	75	8.93
RDIDC-9181-PF-48	1	132	21.85	2.60

APPENDIX C SOFTWARE ANALYSIS OUTPUT

fly `cVUŁ'A cXY 'GYltijb[g

Öã] æ ÁÚ^&dã] } • ÁÇ ¦ÁT^{ à^¦ÁÔæ}&•	ÍÁ
$T = \frac{A(x) e^{A(x)}}{a(x)} = \frac{A(x)^{A(x)}}{a(x)} = \frac{A(x)^{A(x)}}$	JΪÁ
Q & å^ ÁÚ @ æ ÁÖ^-{ { æaa } } Ñ	Ÿ^•
(0,84 ^ æ ^ Án æ £ ; * ÁÔæ) æ 8 æ Át; ¦ ÁY ē; å Ñ	Ÿ^•
Q& a^A/ æ a*Ñ	Ÿ^•
√ læ) • ÁŠ[æå ÁÖć, } ÁQ c^l • ^ & cā, * ÁY [[å ÁY æ∥Ñ	Ϋ́Λ•
OH^ae/S[aeå/AT^•@/C]a âCD	FII
T^*^Å/[^\a) &^Á(͡a) D	ÈG
ÚĒÖ^ cæÔĒ æļ • ã Á/[^¦æ} &^	€ÉÉ
Q& å^ÁÚÉÖ^ œÁ[¦Á/æ j•Ñ	Ϋ́Λ•
OE of { access accept AQC acc	Ÿ^•
Tæ¢Á@^¦æaaaa } • Á{¦ÁY æþÁÚcã~}^••	Н
Ö kaq ãĉ Á0888^ ^ kaqā } ÁÇā Ho ^ 8âGD	HÍÌÈ
YællÁT^•@AÚā^ÁQĪĎ	G
Óā ^}•[` aa } AÔ[∫ ç^¦* ^} &^ A/[EAGFEÒËD	
X^¦ca8æd/AOt¢ã	Z
Õ [[àæ ÁT ^{ à ^ ÁU ã ^ } cæ aā] ÁÚ æ } ^	ÝŸ
ÚczeaRÁU[ç^	Ù]æ••^ÁQ&&^ ^¦æe^å
Ö^}æ{ 8&ÁÚ[ç^	OB&^ ^ aec^åAÛ[ç^
- J - (E 13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P[ơÁÜ[^åÁÛơ^^ ÁÔ[å^	OEDÙÔÁFÍ c@ÇHÎ €ËFÎ DMÁSÜØÖ
Oãbŏ•oÁŪcã-}^••Ñ	Ÿ^• (@\¦æac^D
ÜQÜQĞ[}}^&qa[}AQ[å^	OEQÙÔÁFÍ c@QHÎ €ËFÎ DMÁSÜØÖ
Ô[åÁØ[¦{ ^åÁÙ¢^ ÁÔ[å^	Þ[}^
Y [[å ÆO[å^	Þ[}^
Y[[åÁv^{]^\aec`\^	ŁÁF€€Ø
Ô[}& ^&\^[å^	Þ[}^
Tæ[}¦^ÂÔ[å^	Þ[}^
O#~{	Þ[}^ <i>Æ</i> Ö ãåã;*
Ùœ a } ^••ÂÛc^^ ÂÔ[å^	OEDÙÔÁFI c@QHÎ €ËF€DMÂSÜØÖ
Œab • œÛcã-} ^••Ñ	Ÿ^• (Q1 \temace \mathred{Q} 1 \temace \mathred{Q} 2 \temace \mathred{Q} 1 \temace
Þ`{ à^¦Á; ÂÛ@^æÁÜ^*ã[}•	
Ü^* [4] } ÁÛ] æ\$a} * ÁQ\&\^{ ^} cÁQ\$ D	
Óãæ¢ãæ∮Ô[ˇ{}ÁT^cQ[å	Ò¢æ\$cÁQ;c^*¦æá{}}
Úæl{^ÁÔ^œÁØæ&q¦ÁÇÚÔOED	ÊÍ
Ô[} & ^ &\ AÛd^•• AÔ [&\	Ü^&ca) * * ad
W•^ÁÔ¦æ&∖^åÁÙ^&æĨ}•Ñ	Ÿ^•
W•^ÁÔ¦æ&\^åÁÙ^&æaį̇́∫•ÁÛ æàÑ	Þ[
ÓæåÁØlæ{ā]*ÁVæ}}ā́(*•Ñ	ÞÍ
W, `•^åÂØ[ˈ¦&^ÁY æˈsjð] *•Ñ	ΫΛ•
TāļÁFÁÓæÁÖãæ(EÁÚ) æ&ā; *Ñ	Þ[
Ô[} &\^&\AU^àæ\AU^c	ÜÒӌܴÙÒV´ŒÙVTŒÎFÍ
T ā Á ÁÚc^\Á; ¦ÁÔ[´{ }	F
Tæ¢ÁÑÁÙ¢^ Á[¦ÁÔ[ˇ{´}	Ì
1 6 61 47	

fţ`cVUŁAcXY`GYMjb[gž7cbljbi YX

Ù^ã{ 884Ô[å^	ŒŨÔÒà ŒÎ
Û^ã{ 88Â0æ ^Á0 ^çæ 1} } ÁÇ D	Þ[ØÔ} &\^å
OfaåÁÓæ^Á/^ð @Ñ	Ϋ́Λ•
ÔœÝ	È€G
ÔÁZ	ÆG
VÁÝÁG^&D	Þ[🕬 & '^å
VÁZÁÇ^&D	Þ[ðÐ) &\^å
ÜÄ	Н
ÜÆ	H
ԜԢ] ĐÝ	Ĕĺ
Ô¢Ô¢] ĤZ	ĔÍ
ÙÖF	F
ŲÖÙ	F
ÙĘ	F
VŠÁG^&D	I
Üã√ÁÔæ:	CA LÁCO
Ö¦ãø⁄Ôæc	U@\
U{ ÅZ	F
Ų (<i>Ř</i>	F
Ôå Á Z	F
Ôå Á Ý	F
ÜQÆ	F
Ü Ģ Ř	F

<chFc``YX'GhYY`DfcdYfl]Yg

	Šæà^	ÒÆX•ãa	ÕÆX•ãã	þř	V@\{ ÁQEF ÒÈ	HÖ^}•ãcîŽiĐodÈ	ÈŸã∧∣åŽj∙ãã	Ü^	ØĭŽj•ãã	Üc
F	ŒIJĠ	GJ€€€	FFFÍ I	ÈH	ÊÍ	ÈJ	Í€€€€	FÈ	î퀀€	FÈ
G	OEHÎ ÁÕ¦ÈHÎ	GJ€€€	FFFÍ I	ÈH	Ēί	ÈJ	HÎ €€€	FĚ	ĺÌ€€€	FÈ
Н	OÉÏGÁÕ¦Ě€	GJ€€€	FFFÍ I	ÈH	ĒÍ	ÈJ	Í€€€€	FÈ	î퀀€	FÈ
1	OÉ €€ÁÕ¦ÈÓÁÜÞÖ	GJ€€€	FFFÍ I	ÈH	Ēί	ĚĞ	IŒ€€	FÈ	ĺÌ€€€	FÈH
ĺ	OÉ €€ÁÕ¦ÈÓÁÜ^&c	GJ€€€	FFFÍ I	ÈH	Ēί	ĚĞ	I΀€€	FÈ	í쀀€	FÈH
Î	OÉ HÁÕ¦ ÈÓ	GJ€€€	FFFÍ I	ÈH	Ēί	ÈJ	HÍ €€€	FÈ	΀€€€	FÈG
Ï	OEF€ÌÍ	GJ€€€	FFFÍ I	ÈH	Ēί	ÈJ	Í€€€€	FÈ	î퀀€	FÈH

7c'X': cfa YX'GhYY'DfcdYff]Yg

	Šæà^	ÒÆX•ãã	ÕÆX•ãã	Þř	V@N¦{ ÁQEEFÒÍÁROI	Ö^}•ãcÎŽÐcâHá	ŸãN∣åŽj∙ãã	ØĭŽj•ãã
Ŧ	OÉÍHÁÙÙÁÕ¦HH	GJÍ €€	FFHI Î	È	ĚÍ	ÈΙ	HH€€€	lÍ€€€
റ	OÉÍHÁÙÙÁզ̀EF	GJÍ €€	FFHI Î	È	Ēĺ	ÈJ	Í €€€€	îÍ€€€

<chFc``YX'GhYY`GYW¶cb'GYhg</pre>

	Šæà^	Ù@ ≱ ^	V^]^	Ö^∙ã} Æãc	Tæe^∖ãæ⇔	Ö^• ã} Æ⊞	ÈOEAŽAjGá	Q^ÃŽAJIá	Q:ÆŽjlá	RÁŽAIIá
F	ÎÊÄ¢€ÈHÄÚ∣æe^	ÎLĂ¢€EHÎÄÁÚ æe^	Ó^æ{	ÜÒÔV	OEHÎ ÁÕ¦ÈHÎ		ŒÉÉ	È€GÏ	ÌÈÎÌ	ÌE€Î
G	Š@¢@¢H	ŠŒ¢ŒH	Ó^æ{	Ùaj * ^ ÁOEj * ^	OEHÎ ÁÕ¦ÈHÎ	V^] a&a	ĔŒ	ÈĠÏF	ÈGÏF	È€J
Н	ÚŒÓ HĚ	ÚQÚÒ´HĚ	Ó^æ{	Ú ą ^	OÉ HÁÕ¦ ÈÓ	V^] a&ae	ŒĚ	ΙĚG	ΙĚG	JÈ€I
- 1	ÔHÝÍ	ÔHÝÍ	Ó^æ{	Ô@#}}^	OEHÎ ÁÕ¦ÈHÎ	V^] a&a	FÈΪ	ÈGIF	FÈÍ	ÈΗ
ĺ	ÚŒÓ′GÈE	ÚŒÓ ŒÈ	Ó^æ{	Úą^	OÉ HÁÕ¦ ÈÓ	V^] a&ae	FÈ€G	ĒĞ	ĒĠ	FĚGÍ
Î	ŠÎÊÄÝIÈÎÄÝ€ÈGÍÄ	ŠÎĒÄÝIÈÎÄÝ⊕ÈGÍÆ	√Ó^æ(Ùaj * ^ ÁOEj * ^	OEHÎ ÁÕ¦ÈHÎ	V^] a&a	ŒÜ₩	ΙĖ̈́ÍͿ	FGÈÏH	ÈÉÍÍ

7c'X': cfa YX'GhYY'GYWJcb'GYhg

	Šæà^	Ù@ ≱ ^	V^]^	Ö^∙ãt}Æã⊞È	Tæe^∖俢	Ö^•ā*}ÁÜEEEOEAÃAjGá	Q^Ããjlá	Q:Æğlá RÆğlá
F	ÔØFŒ	ÌÔWFÈGÍÝ€ÍÏ	Ó^æŧ	Þ[}^	OÊÍHÁÙÙÁÕ¦HH	V^]ã&æ; LĚÌF	ÈÉÍÏ	IÈF È€€ÎH

>c]bh6ci bXUfm7cbX]h]cbg

	R[ã]oÁŠæà∧	ÝÁŽÐajá	ŸÁŽÐajá	ZÁŽEAjá	ÝÁÜ[dĚŽËdĐæåá	ŸÁÜ[dÈŽËdE)æåá	ZÁÜ[dÈŽËeĐæåá
F	ÞĠ	Ü^æ & æ (a j }	Ü^æ & æ (a] }	Ü^æ&aã[}	Ü^æ \$a { }	Ü^æ &a {}}	Ü^æ s æ[]}
G	ÞF	Ü^æ \$ æ [}	Ü^æ \$ æ [}	Ü^æ&aã[}	Ü^æ \$ æ [}	Ü^æ &a {}}	Ü^æ s æ[]}
Н	ÞFH	Ü^æ&aã[}	Ü^æ & æ (a j }	Ü^æ&aã[}	Ü^æ \$a {i}}	Ü^æ &a {i}}	Ü^æ s aaaa }

6 Ug]W@UX'7 UgYg

	ÓŠÔÁÖ^•&¦₫æ[}	Ôæe^*[¦^	ÝÁŐ¦æçãcî	ŸÁÕ¦æçãĉ		R[ã]c		Öã dãa čo^a		ÈÙ~¦-æ&^ Q #È
F	Ù^ -ÁY ^ ð t @c	ÖŠ			Ë		G€		Н	
G	Ùd * & c * \^ Á * 3 å Á *	Y ŠÝ						HH		
Н	Ùdˇ&cˇ¦^ÁY∄åÁŸ	Y ŠŸ						HH		
- 1	YājåÁŠ[æåÁ€ÁOEZQ	Y ŠÝ					G€			
ĺ	YājåÁŠ[æåÁH€ÁOEZQ	Þ[}^					I€			
Î	YājāÁŠ[æāÁlÍÁOEZQ	Þ[}^					I€			
Ï	YājåÁŠ[æåÁÌ€ÁOEZQ	Þ[}^					I€			
Ì	YājåÁŠ[æåÁJ€ÁOEZQ	ΥŠΫ́					G€			
J	YajaÁŠ[æåÁFG€ÁOZQ	Þ[}^					I€			
F€	YājāÁŠ[æåÁFHÍÁOZQ	Þ[}^					I€			
FF	Yaja'ÁŠ[æåÁFÍ€ÁOEZQ	Þ[}^					I€			
FG	03 ,^ÁY ^ã @c	UŠF					G€	HH	Η	
FH	Ùd šč¦^ÁQA^ÁYājåÁÝ	UŠG						HH		
FI	Ùd šč¦^ÁQA^ÁYājåÄŸ	UŠH						HH		
FÍ	Q3vÁY ∄åÁŠ[æåÁ€ÁOZQ	UŠG					G€			
FÎ	Q3.^ÁYā¦åÁŠ[æåÁH€ÁOEZQ	Þ[}^					I€			
FΪ	Q3v^ÁY ∄åÁŠ[æåÁÍÍÁOÐZQ	Þ[}^					I€			
FÌ	Q3.^ÁYā¦åÁŠ[æåÁÌ€ÁOEZQ	Þ[}^					I€			
FJ	Q3v^ÁY ã¦åÁŠ[æåÁJ€ÁOEZQ	UŠH					G€			
G€	Q3.^ÁY ajåÁŠ[æåÁFG€ÁOZQ	Þ[}^					I€			
Œ	Q3A^ÁY ajåÁŠÍaåáÆHÍÁOEZQ	Þ[}^					I€			
Œ	(SA^ÁY ajåÁŠÍaåáÁFÍ€ÁOEZQ	Þ[}^					I€			
GH	Ù^ãr{ã&ÁŠ[æåÁÝ	ÒŠÝ	⊞FJ				G€			
G	Ù^ãr{ 88,485[æå,47	ÒŠŸ		⊞FJ			G€			
GÍ	Šãç^ÁŠ[æåÁFÁQŠçD	ŠŠ				F				
GÎ	Šãç^ÁŠ aå ÁGÁÇŠç D	ŠŠ ŠŠ ŠŠ ŠŠ ŠŠ				F				
GÏ	Šãç^ÁŠ[æåÁHÁÇŠçD	ŠŠ				F				
GÌ	Šãç^ÁŠ[æåÁiÁQŠçD	ŠŠ				F				
GJ	Šãç^ÁŠ[æåÁÁÁŠçD	ŠŠ				F				
H€	Šãç^ÁŠ aả Á ÁŠ D	ŠŠ				F				
HF	Tænjic^}æ) &^ÁsjiæniÁFÁÇsj(D	Þ[}^				F				
HG	Tænjic^}æ) &^Ánjiæ á ÁGÁÇnji(D	Þ[}^				F				
HH	Tænije^}ænj&^ÁnjjænjÁHÁÇŠ(D	Þ[}^				F				
Н	Tænjic^}æ) &^ÁŠ[ænáÁkÁÇŠ(D	Þ[}^				F				
HÍ	Tænf,c^}æ),&^ÁŠ[ænáÁÍÁÇŠ(D	Þ[}^				F				
HÎ	Tænf,c^}æ),&^ÁŠ[ænáÁÍÁÇŠ(D	Þ[}^				F				
ΗÏ	Tænf,c^}æ),&^ÁŠ[ænáÁiÁÇŠ(D	Þ[}^				F				
HÌ	Tænjio^}ænja&^AŠ[ænåAlÁÇŠ(D	Þ[}^				F				

6 Ug]W@ UX'7 UgYg'ff cbhjbi YXŁ

	ÓŠÔÁÖ^•&¦ā]cā[}	Ôæe^*[¦^	ÝÁÕ¦æçãcî	ŸÁÕ¦æçãcî	ZÁŐ¦æçãcî	R[ã]c	Ú[ặc	Öã dãa čo^å	O.E.^æQT ^ EEEÙ ` ¦ æ&^QE
HJ	Tænjie^}ænji&^AõjiænåÁuÁçõš(D	Þ[}^				F			
	ÓŠÔÁFÁV¦æ)•ãN}œÁŒ^æÁŠ[æå•	Þ[}^						J	
IF	ÓŠÔÁFGÁV¦æ}• ãr} oÁŒ^æÆS[æŒ	Þ[}^						J	

@UX'7ca V]bUhjcbg

	Ö^• &¦āj cā[}	ÙЩ̈́Ι	Ú誰Ù誰	É	: Øæ&d:	ÓŒ	Øæ&À	ΉŎΉ	Øæ&È	HĎ HÌ	Øæ£À	EĎE	Øæ&È	ĎΨ̈̀	Øæ£À	ΉÖ	Øæ£À	HĎ ÌÌÌÌ	Øæ£À	ΉÖË	Øæ£È	Ě	Øæ&HH
F	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				FÈ																		
G	FĚGÖŠÆÁFY ŠÆÁQZQ	Ÿ^•	Ϋ	ΪŠ	FÈG	G	F	Н		1	F												
Н	FĚCÖŠÆÆY ŠÆÆÓZC	Ÿ^•		ΪŠ		G	ÈÎÎ	Н	Ě	ĺ	F												
	FÉGÖŠÁÉÁFY ŠÁLÍÁOEZO		Ϋ	ΪŠ			È€Ï	Н	È€Ï	Î	F												
ĺ	FĚCÖŠÆÆFYŠÂR€ÆOEZO	Ÿ^•	Ϋ	ΰš		G	Ě	Н	Èîî	Ϊ	F												
Î	FÉGÖŠÁÉÁFY ŠÁJ€ÁOZQ				FÈG	G		Н	F	ì	F												
Ï				ÖŠ		G	ΉĬ		ĤÎÎ	J	F												\neg
ì	FÉGÖŠÆÆFYŠÆFHÍÆ	Ÿ^•		ÖŠ			Ëë		Ë€Ï	F€	F												
J	FÈGÖŠÆÆFYŠÆFÍ€Æ0ZQ	Ÿ^•	Ϋ	ΰš	FÈG	G	Ĥîî	Н	Ě	FF	F												
F€	FÈGÖŠÆÆFYŠÆFÌ€Æ0ZQ	Ÿ^•	Ϋ	ΪŠ	FÈG	G	Ë	Н		I	Ë												
FF	FÈGÖŠÆÁFYŠÆGF€Á0ZQ	Ÿ^•	Ϋ	ΪŠ	FÈG	G	ĤÎÎ	Н	Η̈́	ĺ	Ë												
FG		Ÿ^•	Ϋ	ΪŠ	FÈG	G	⊞ëë	Н	ËË€Ï		Ë												
FH		Ÿ^•		ΪŠ		G	Ħ	Н	ĤÎÎ	Ϊ	Ë												
FI	FÈGÖŠÆÁFYŠÆGÏ€Á0ZQ	Ÿ^•		ΪŠ		G		Н	Ë	Ì	Ë												
FÍ		Ÿ^•		ΪŠ		G	Ě	Н	ĤÎÎ	J	Ë												
FÎ		Ÿ^•		ΪŠ		G	Ë€Ï		Ëë	F€	Ë												
FΪ				ÖŠ		G	ÈÎÎ	Н	Ħ	FF	Ħ												
FÌ	€ÈÖŠÁÉÁFYŠÁ€ÁDZQ		Ϋ	ÖŠ	À	G	F	Н		1	F												
FJ	€ÐÖŠÆÆFY ŠÆHEÆOZQ		Ϋ	ΪŠ	È		ÈÎÎ	Н		ĺ	F												
G€	€ÈÖŠÁÉÁFYŠÁNÍÁOEZQ		Ϋ	ΪŠ		G	Ë€Ï	Н	Ë€Ï	Î	F												
Œ	€ÐÖŠÆÆFYŠÂR€ÆOEZQ		Ϋ	ΪŠ	À	G	Ě	Н	Èîî	Ϊ	F												
Œ	€ÐÖŠÆÆFY ŠÁJ€ÆOEZO	Ÿ^•	Ϋ	ÖŠ	À	G		Н	F	Ì	F												
GH		Ÿ^•		ÖŠ	À	G	Ħ		Ħîî	J	F												
G		Ÿ^•		ÖŠ	À	_	ĦĦ		Ë€Ï		F												
GÍ				ΪŠ	À	_	ĦÎÎÎ	Н	Ě	FF	F												
GÎ			Ϋ	ΪŠ	À	G	Ë	Н		ļ	Ë												
Ğ	€ÈÖŠÆÆFYŠÆGF€ÁOZQ	_		ΪŠ	È	G	ĦÎÎÎ			ĺ	Ш											Ш	
GÌ		Ÿ^•	Ϋ	ΪŠ	À		ĦĦ		ŒÏ€Ï	Î	Ш												
GJ		Ÿ^•	Ϋ	ÖŠ	À	G	Ħ		Ħîî	Ï	Ë												
H€		Ÿ^•	Ϋ	ΰŠ	È	G		Н	Ë	İ	Ë												
HF		Ÿ^•	Ϋ	ÖŠ		G	Ě		Ħîî		Ë												
HG		Ÿ^•		ΰŠ	È	G	È€Ï		Ëëë														
HH				<u>ŠĊ</u>	È	G	ÈÎÎ	Н	_	FF	Ë												
H	FÉGÖŠÆÁFÖŠÆÁFY ŠÆÆÁQEĚ			<u>Š</u>			₽ F	FH		FI	v	FÍ	F										
	FÉGÖSÁÉÁFÖSÁÁFÁFY ŠÁÁHEÁÐ			<u> </u>			ŧ F	FH		FI	Ě	FΪ	F										
HĨ	FÈGÖŠÆÁFÖŠÆÆÁFY ŠÆÁ Í ÆÈ			ΰŠ				FH		_		FΪ	F										
ΗÏ	FÈGÖŠÆÆFÖŠÆÆFY ŠæÆÆ			ΰŠ	•		F	FH	_		ÈÎÎ	FÌ	F										
	FÈCOSÁÉÁFOSÁÁÉÁFY ŠÁÁJ€ÁÐ				FÈG						F												
	FÈGÖŠÆÆFÖŠÆÆFY ŠÆFŒ				FÈ																		
	FÈGÖŠÆÆFÖŠÆÆFY ŠÆFHÈÈ				FÈ							_											
	FÈGÖŠÆÆFÖŠÆÆFY ŠÆFÍ ÈÈ				FÈ						Ě	œ											
	FÈGÖŠÆÆFÖŠÆÆFY ŠÆFÌ ÈÈ				FÈG							FÍ											
	FÈGÖŠÆÆFÖŠÆÆFY ŠÆGFÈÈ				FÈG								Ë										
	FÉGÖSÁÉÁFÖSÁÆÁFY SÁGGÉÉ	Y^•	Ϋ	IJS	FÈG	U⊞	‡ F_	FH	⊞€	FI	⊞€	FI	Ë										

@UX'7ca V]bUhjcbg'fl7cbhjbi YXŁ

(○	<u> </u>	K 7 Ca VIDUIJC DY II C DI	ı joi	IXL													—		—	—
1 中の公民への総合が、製品 銀行・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・													ĎŒØ	Øæ£À	EĎ ÈÈ	Øæ£È	ĎË	Øæ£Ĥ	ĎÈ	Zæ&HH
T FROSEACOSSAPY SAMERYAN OS FES UNE F FH RE F B II OS FE	ΙÍ								FI	ĤÎÎ	FÌ	Ë								
T FROSEACOSÁAN SÁMEN** Y OS FR3 DIE F F H H E F F H E H E				ÖŠ FĒG	UЩ	₽F	FH		FI	Ë	FJ	Ë								
THE GOSEAN COSEAN SAMERY: Y OS FES DIE F FHEE IE E E CF E	ΙÏ	FÉGÖSÁÉÁFÖSÁÉÁFY ŠÁÁHEIII Y^•	Ϋ																	
J. PECOSAR OSAR Y SAHETY**	ΙÌ	FIEGÖSÁÉÁFÖSÁÉÁFY ŠÁHFIETY^•	Ϋ																	
「	IJ	FÈGÖSÁÉÁFÖSÁÉÁFY SÁHHÌÌÌŸ^•	Ÿ																	
F F F F F F F F F F		ŒÉÉÉÈÙª• DÆÆÆÈÒÆÆOZOŸ^•	Ϋ																	
「G (中田全田Ja) 中部でも名(本田ヤー、 Y																				
「中で住宅に対しからた宅の本産性^^ Y OS FE3 ONE		1 -																		
「	, ·	-		ÖŠ FŘ	ÒĤ	Ť														
「「東江田田山」の氏本在の木の山本・ 〇 〇 下田 〇田田	ĺ	13					1													
「	11			ÖŠ FĖ	ÒĤ	Η̈́														
「	7.0	13																		
「		-		ÖĞ FİB	ÒĤ	#Îîî	ÒĤ	Ť												
「		-		ÖĞ EĞ)#	<u> </u>	ÒЩ	ш												
「	, .	-																		
F F FEECHJA - DÉFRECAJ																				
G (京在金田以本の比片在60社 6世紀~ 字 O O O F E O O E O E E	_																		\vdash	
TH (東廷全民以中) (京本在) (本民政)																				
「中田田田以本の応用である年 福祉へ																			\vdash	
「						_	1													
「		-																		
T	^ ^												_							
「	A	1 3																	\vdash	
T	A 1																			
「		-																		
F (空口を記し) のだん下在の木 (全社学 ^ * * * * * * * * * * * * * * * * * *							1													
「日 (空口を日辺)																				
		13																		
「																				
「																			Щ	
T	ΪΙ	ÇEÈJËETECÙå•DÁEÁFRECÓÁFÌ€ÁTTË"^•	Ϋ																	
T (東白田田以 ・ の花 F E C C E C C E C C E E	ΪÍ	ÇEÈJËETEQÙå•DÁEÁFÈEÒÁGF€ÁTTË ^•	Ϋ	ÖŠĖÎ	段	ĦÎÎÎ	ÒÜ	Ħ												
T (東白田田) (A C C C C C C C C C	ΪÎ	ÇĒDĒŒĒGÙå•DÁEÁFĒ€ÒÆGÍÁĒĒŸ^•	Ϋ	ÖŠĖÎ	ÒÜ	ĦĦ	ÒŒ	⊞ëë												
T (東白色田込) * DÉCFÉO AG 《在性》 * Y OŠ É Î OÉÉ É OÉÉ É DÉÉ I DÉÉ DÉÉ DÉÉ BÉ DÉÉ DÉÉ DÉÉ DÉÉ DÉÉ DÉÉ	ΪΪ	ÇEÈIËEÈGÙå•DÁÉÁFÈEÒÁGI€ÁÈÈŸ^•	Ϋ	ÖŠĖÎ	ÒŒ	ΉĬ	ÒÈ	ĦÎÎÎ												
J GEDÉREUJA O DÉA FIEO ÁNHE ATÉTY		ŒÈJËŒÈCÙå• DÆÆFÈCÓÆJ €ÆËË^•	Ϋ		ÒÈ		ÒŒ	Ë												
E (長白田田) 1 (日本 日本 1																				
F (東白) (東白) (東西) (東西) (東西) (東西) (東西) (東西) (東西) (東西		1 -					1													
Ì G FÈSÖÆÆTË ÆSÇF Ÿ^• Ÿ ÖŠ FÈS G FË Ì H FÈSÖÆÆTË ÆSÇG Ÿ^• Ÿ ÖŠ FÈS G FË Ì I FÈSÖÆÆTË ÆSÇH Ÿ^• Ÿ ÖŠ FÈS G FË Ì I FÈSÖÆÆTË ÆSÇH Ÿ^• Ÿ ÖŠ FÈS G FË Ì I FÈSÖÆÆTË ÆSÇI Ÿ^• Ÿ ÖŠ FÈS G FË Ì I FÈSÖÆÆTË ÆSÇI Ÿ^• Ÿ ÖŠ FÈS G FË Ì I FÈSÖÆÆTË ÆSÇI Ÿ^• Ÿ ÖŠ FÈS H€ FË Ì I FÈSÖÆÆTË ÆSÇI Ÿ^• Ÿ ÖŠ FÈS H€ FË Ì I FÈSÖÆÆTË ÆÆTEY { ÆËŸ^• Ÿ ÖŠ FÈS H€ FË I Ē H G Ē H H Ì J FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË I Ē H G Ē H H Ē H J € FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË I Ē H G Ē H H Ē H J F FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË I Ē H G Ē H H Ē H J G FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË I Ē H G Ē H H Ē H J H FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË I Ē H G Ē H H Ē H J H FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË J Ē H G Ē H H Ē H J H FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË J Ē H G Ē H H Ē H J H FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË F Ē Ē H G Ē H H Ē H J H FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË F Ē Ē H G Ē H H Ē H J H FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË F Ē Ē H G Ē H H Ē H J H FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË F Ē Ē H G ĒĒ I H Ē H J FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FË F FĒ Ē H G ĒĒ I H Ē H J FÈSÖÆÆTË Ä ÆÆTEY { ÆËY^• Ÿ ÖŠ FÈS HF FĒ F FĒ H G ĒĒ I H Ē H				00 -																
ÎH FIESOÁÉARÍÉÁS, G Ÿ^* Ÿ ÖŠ FIES G FIÉ ÎI FIESOÁÉARÍÉÁS, H Ý^* Ÿ ÖŠ FIES G FIÉ ÎÍ FIESOÁÉARÍÉÁS, I Ý^* Ÿ ÖŠ FIES G FIÉ ÎÎ FIESOÁÉARÍÉÁS, I Ý^* Ÿ ÖŠ FIES G JFÉ ÎÏ FIESOÁÉARÍÉÁS, I Ý^* Ÿ ÖŠ FIES HE FIÉ I ÎÌ FIESOÁÉARÍÉÁS, ÆRÉEY { ÆRÉY^* Ÿ ÖŠ FIES HE FIÉ I IÉH G IEH H ÎÌ FIESOÁÉARÍÉÁS, ÆRÉEY { ÆRÉY^* Ÿ ÖŠ FIES HE FIÉ I IÉH G IEH H I ÎÌ FIESOÁÉARÍÉÁS, ÆRÉEY { ÆRÉY^* Ÿ ÖŠ FIES HE FIÉ I IÉH G IEH H I I JE FIESOÁEARÍÉÁS, ÆRÉEY { ÆRÉY^* Ÿ ÖŠ FIES HE FIÉ I IÉH G IEH H I I J J J J J J J J J J J J J J J J J J	_																			
Ì I FÈSOÁÉATĚ ÁŠÇH Ý^• Ÿ ÖŠ FÈS G FĚ Ì Í FÈSOÁÉATĚ ÁŠÇI Ý^• Ÿ ÖŠ FÈS G FĚ Ì Î FÈSOÁÉATĚ ÁŠÇÎ Ý^• Ÿ ÖŠ FÈS H€ FĚ Ì Ï FÈSOÁÉATĚ ÁŠÇÎ Ý^• Ÿ ÖŠ FÈS H€ FĚ Ì Ì PÈSOÁÉATĚ ÁŠÇÂ ÁÉTÝ^• Ÿ ÖŠ FÈS H€ FĚ Ì Ì PÈSOÁÉATĚ ŠI ÆÁTÈY { ÆËÝ^• Ÿ ÖŠ FÈS HF FĚ Í ÉI H G ÉI H Ì J PÈSOÁÉATĚ ŠI ÆÁTÈY { ÆËÝ^• Ÿ ÖŠ FÈS HF FĚ Í ÉI H G ÉI H ÉI H JG PÈSOÁÉATĚ ŠI ÆÁTÈY { ÆËÝ^• Ÿ ÖŠ FÈS HF FĚ Ì ÉI H G ÉÉI H ÉÏ H JI PÈSOÁÉATĚ ŠI ÆÁTÈY { ÆËÝ^• Ÿ ÖŠ FÈS HF FĚ J ÉI H G ÉEI H ÉI H JI PÈSOÁÉATĚ ŠI ÆÁTÈY { ÆËÝ^• Ÿ ÖŠ FÈS HF FĚ J ÉI H G ÉEI H ÉI H JI PÈSOÁÉATĚ ŠI ÆÁTÈY { ÆËÝ^• Ÿ ÖŠ FÈS HF FĚ J ÉI H G ÉI H EI H	_	: ==:=:=;=;:																		
Ì Í FÈSÖÆÆTË ÆÇI Ÿ^• Ÿ ÖŠ FÈS GÌ FË Ì Î FÈSÖÆÆTË ÆÇÎ Ÿ^• Ÿ ÖŠ FÈS GJ FË Ì Ï FÈSÖÆÆTË ÆÇÎ Ÿ^• Ÿ ÖŠ FÈS GJ FË Ì Ï FÈSÖÆÆTË ÄŞ ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HE FË Ì Ì FÈSÖÆÆTË Š ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HF FĚ I BÊH G BÉH H Ì J FÈSÖÆÆTË Š ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HF FĚ Í BÊH G BÉI H BEI J € FÈSÖÆÆTË Š ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HF FĚ Î BÊH G BEI H BEI JF FÈSÖÆÆTË Š ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HF FĚ Ï BÊH G BEI H BÉI JG FÈSÖÆÆTË Š ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HF FĚ Ï BÊH G BÈH H BÉI JH FÈSÖÆÆTË Š ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HF FĚ J BÊH G BÈH H BÉI JH FÈSÖÆÆTË Š ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HF FĚ J BÊH G BÈI H BÉI JI FÈSÖÆÆTË Š ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HF FĚ F€ BÊH G BÈI H BEI JÍ FÈSÖÆÆTË Š ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HF FĚ F€ BÊH G BÈI H BEI JÍ FÈSÖÆÆTË Š ÆÆÆÈY { ÆËY^• Ÿ ÖŠ FÈS HF FĚ F€ BÊH G BÈI H BEI	_																			
Ì Î FÈSÔÆÆTĚ ÁŠÇÍ Ÿ^• Ÿ ÖŠ FÈS GJ FĚ Ì Ï FÈSÔÆÆTĚ ÁŠÇÎ Ÿ^• Ÿ ÖŠ FÈS H€ FĚ Ì Ì FÈSÔÆÆTĚ ŠĮ ÆÆTÈY { ÆËŸ^• Ÿ ÖŠ FÈS HF FĚ I ÈÉ H G ÈÉ H H Ì J FÈSÔÆÆTĚ ŠĮ ÆÆTÈY { ÆËŸ^• Ÿ ÖŠ FÈS HF FĚ Í ÈÉ H G ÈÉ I H ÈÈ F J€ FÈSÔÆÆTĚ ŠĮ ÆÆTÈY { ÆËŸ^• Ÿ ÖŠ FÈS HF FĚ Î ÈÉ H G ÈÉ I H ÈÈ I JF FÈSÔÆÆTĚ ŠĮ ÆÆTÈY { ÆËŸ^• Ÿ ÖŠ FÈS HF FĚ Ï ÈÉ H G ÈÈ H ÈÉ I JG FÈSÔÆÆTĚ ŠĮ ÆÆTÈY { ÆËŸ^• Ÿ ÖŠ FÈS HF FĚ Ĭ ÈÉ H G ÈÈ H ÈÉ H JH FÈSÔÆÆTĚ ŠĮ ÆÆTÈY { ÆËŸ^• Ÿ ÖŠ FÈS HF FĚ J ÈÉ H G ÈÉ H ÈÉ H JI FÈSÔÆÆTĚ ŠĮ ÆÆTÈY { ÆËŸ^• Ÿ ÖŠ FÈS HF FĚ J ÈÉ H G ËÉ I H ÈÉ I JI FÈSÔÆÆTĚ ŠĮ ÆÆTÈY { ÆËŸ^• Ÿ ÖŠ FÈS HF FĚ F€ ÈÉ H G ËÉ I H ÈÈ I JÍ FÈSÔÆÆTĚ ŠĮ ÆÆTÈY { ÆËŸ^• Ÿ ÖŠ FÈS HF FĚ F€ ÈÉ H G ËÉ I H ÈÈ F		: ==:=:=;=;::																		
ÌÏ FÌEÒ/É-ÁT-Í ÁÇÎ Ý^• Ÿ ÖŠ FÌE H€ FĚ I BÌ H G BÍ H H ÌÌ FÌEÒ/É-ÁT-Í ŠỊ Æ-ÁT-ÈY { AÈT-Ý^• Ÿ ÖŠ FÌE HF FĚ I BÌ H G BÍ H H BÌ H J€ FÌEÒ/É-ÁT-Í ŠỊ Æ-ÁT-ÈY { AÈT-Ý^• Ÿ ÖŠ FÌE HF FĚ I BÌ H G BÌ H B I JF FÌEÒ/É-ÁT-Í ŠỊ Æ-ÁT-ÈY { AÈT-Ý^• Ÿ ÖŠ FÌE HF FĚ I BÌ H G BÌ H BÌ H JG FÌEÒ/É-ÁT-Í ŠỊ Æ-ÁT-ÈY { AÈT-Ý^• Ÿ ÖŠ FÌE HF FĚ I BÌ H G BÌ H BÌ H JH FÌEÒ/É-ÁT-Í ŠỊ Æ-ÁT-ÈY { AÈT-Ý^• Ÿ ÖŠ FÌE HF FĚ J BÌ H G BÌ H BÌ H JI FÌEÒ/É-ÁT-Ì ŠỊ Æ-ÁT-ÈY { AÈT-Ý^• Ÿ ÖŠ FÌE HF FĚ F€ BÌ H G BÌ H BÌ H JÍ FÌEÒ/É-ÁT-Ì ŠỊ Æ-ÁT-ÈY { AÈT-Ý^• Ÿ ÖŠ FÌE HF FĚ FF BÌ H G BÌ H BÌ H																				
ÌÌ FÈSÔKÉAFĒ ŠỊ KÉAFĒY { MĚÝ^• Ÿ ÖŠ FÈS HF FĚ Ị BỂ H G BẾ I H BỆ FỆ BỆ I BỆ H G BỆ I H BỆ FỆ BỆ H BỆ I BỆ H G BỆ I H BỆ I BỆ H BỆ I BỆ H G BỆ I H BỆ I BỆ H G BỆ I H BỆ I BỆ H G BỆ I H BỆ I BỆ H G BỆ I H BỆ I BỆ H G BỆ I H BỆ I BỆ H G BỆ I H BỆ I BỆ H G BỆ I H BỆ I BỆ H G BỆ H H BỆ I BỆ H G BỆ H H BỆ I BỆ H G BỆ H H BỆ I BỆ H G BỆ H BỆ H BỆ H BỆ H BỆ H BỆ H BỆ																				
Ì J FÈSÖKÉAFÉ ŠỊ KÉKFÈY { MĚÝ ^• Ÿ ÖŠ FÈS HF FĚ Í BÉ H G BÉ I H BÉ H J€ FÈSÖKÉAFÉ ŠỊ KÉKFÈY { MĚÝ ^• Ÿ ÖŠ FÈS HF FĚ Î BÊ H G BE I H BE I JF FÈSÖKÉAFÉ ŠỊ KÉKFÈY { MĚÝ ^• Ÿ ÖŠ FÈS HF FĚ Ï BÊ H G BE IF H BÉ I JG FÈSÖKÉAFÉ ŠỊ KÉKFÈY { MĚÝ ^• Ÿ ÖŠ FÈS HF FĚ Ĭ BÊ H G BÉ IF H BÉ I JH FÈSÖKÉAFÉ ŠỊ KÉKFÈY { MĚÝ ^• Ÿ ÖŠ FÈS HF FĚ J BÊ H G BÉ IF H BÉ I JI FÈSÖKÉAFÉ ŠỊ KÉKFÈY { MĚÝ ^• Ÿ ÖŠ FÈS HF FĚ J BÊ H G BÉ II H BE I JÍ FÈSÖKÉAFÉ ŠỊ KÉKFÈY { MĚÝ ^• Ÿ ÖŠ FÈS HF FĚ F€ BÊ H G BÉ II H BE I JÍ FÈSÖKÉAFÉ ŠỊ KÉKFÈY { MĚÝ ^• Ÿ ÖŠ FÈS HF FĚ FF BÊ H G BÉ II H BE I			Ÿ					È L	_	È LI	L									
J€ FRESORÉARTÉ SI, RÉARTÉEY { ARTÉY^• Ÿ ÖŠ FRESOREARTÉ SI, RÉARTÉEY { ARTÉY^• Ÿ ÖŠ FRESOREARTÉE SI, RÉARTÉEY { ARTÉY^• Ÿ ÖŠ FRESOREARTÉE SI, RÉARTÉEY { ARTÉY^• Ÿ ÖŠ FRESOREARTÉE SI, RÉARTÉEY { ARTÉY^• Ÿ ÖŠ FRESOREARTÉE SI, RÉARTÉEY { ARTÉY^• Ÿ ÖŠ FRESOREARTÉE SI, RÉARTÉEY { ARTÉY^• Ÿ ÖŠ FRESOREARTÉE SI, RÉARTÉEY { ARTÉY^•	· ·			OS FEE		ΓĚ	í					<u> </u>								
JF FESOKÉARÉ ŠI, ÆÁRÉEY { AÆÝY• Ÿ ÖŠ FEG HF FÉ Ï BÉH G BÉH H BÉI JG FESOKÉARÉ ŠI, ÆÁRÉEY { AÆÝY• Ÿ ÖŠ FEG HF FÉ Ì BÉH G BÉH BÉH JH FESOKÉARÉ ŠI, ÆÁRÉEY { AÆÝY• Ÿ ÖŠ FEG HF FÉ J BÉH G BÉH H BÉI JI FESOKÉARÉ ŠI, ÆÁRÉEY { AÆÝY• Ÿ ÖŠ FEG HF FÉ FF BÉH G BÉI H BÉI JÍ FESOKÉARÉ ŠI, ÆÁRÉEY { AÆÝY• Ÿ ÖŠ FEG HF FÉ FF BÉH G BÉI H BEI																				
JG FESOKÉAFÉ Š KÉÁFÉEY { AÉÉÝ^• Ÿ ÖŠ FEG HF FÉ Ì BÉH G HÉEH HÉH BÉI JH FESOKÉAFÉ Š KÉÁFÉEY { AÉÉÝ^• Ÿ ÖŠ FEG HF FÉ JEH G HÉEI H BÉI BÉI H BÉI B BÉI B BÉI B BÉI B <td>J€</td> <td>PRODUKENTE SCHENEY (ANTHONY</td> <td>Ϋ́</td> <td></td>	J€	PRODUKENTE SCHENEY (ANTHONY	Ϋ́																	
JH FÉSÖÁÉÁFÉ ŠÍ ÆÁFÉEY { MÉÉÝ^• Ÿ ÖŠ FÉG HF FÉ J ÉÉ H G ÉÉI H ÉÉ I JI FÉSÖÆÁFÉ ŠÍ ÆÁFÉEY { MÉÉÝ^• Ÿ ÖŠ FÉG HF FÉ FF ÉÉ H G ÉÉI H ÉÐ I JÍ FÉSÖÆÁFÉ ŠÍ ÆÁFÉEY { MÉÉÝ^• Ÿ ÖŠ FÉG HF FÉ FF ÉÉ H G ÉÉI H ÉÐ F																				
JI FÊSÖÆÆÆËŠ,ÆÆÆËY { ÆËŸ^• Ÿ ÖŠ FÊS HF FĚ FF ÈÉ H G ËÉI I H ÈEI I H È																				
JÍ FÉGÖÁÉÁFÉ ŠI ÁÉÁFÉEY (AÉÉÝ^• Ÿ ÖŠ FÉG HF FÉ FF ÉÉ H G ÉÉÍ I H ÉEHF		FIEDUALAHUS ALAFIEY (ANTIYA	Ϋ́																$\perp \perp$	
JI FESOAEARE SCAEAREEY CAEEY^O Y OS FEG HF FEE I BE H G EE H H I E EE																				
	JÎ	FEGOAÉAFÉ S(AÉAFÉEY { AFÉÝ^•	Ϋ́	ÖŠ FĒG	HF	FĚ	1	ŒÎH	G	ŒÎH	Н	ΙËĖ								

@UX'7ca V]bUhjcbgˈff/cbhjbi YXŁ

<u> </u>			
Ö^• &¦āj cāj}	Ù誰Ú誰l		
JÏ FÈSÖÆÆÆËŠ(ÆÆÆÉE)		ÖŠ FĖG	
Jì FÈSÖÁÉÁFÉ Š(ÁÉÁFÈE)	/ { ΑΞΞ Ϋ́^• Ϋ́	ÖŠ FÈG	HF FÉ I BÉ H G EEI H EEI H EEI H
JJ FÉGÖÁÉÁFÉ Š(ÁÉÁFÉE)	/ { ΑΞΞ Ϋ́Λ• Ϋ́	ÖŠ FÈG	HF FĚ Ï È H G È H H È I
F€€ FÈSÖÆÆÆË Š(ÆÆÆE	/ { À ÌÌŸ^• Ÿ	ÖŠ FÈG	
F€F FÈSÖÆÆFE Š(ÆÆFÈ€)		ÖŠ FĚG	
F€G FÈSÖÆÆÆË Š(ÆÆÆE			HF FÉ F€ EÉ H G EÉ I H EÉEII
FEH FÉSÖÁÉÁFÉ Š(ÁÉÁFÉE)			HF FÉ FF EÉ H G EÉ I H EEF
F€ FÈSÖÆÆÆË Š(ÆÆÆÈ		ÖŠ FĒG	
FÉ FÉSÖÆÆFÉ Š ÆÆÆÈ		ÖŠ FĒG	
F€ FÈSÖÆÆFĚ Š ÆÆFÈ		ÖŠ FĒG	
F€ FÉSÖÆÆFĚ Š ÆÆÆÈ			
FE FESOALATES ALATES		ÖŠ FĒG	
		ÖŠ FĒG	
F€J FÉGÖÆÆFĚ Š(ÆÆFÈ€)		ÖŠ FĒG	
FF€ FÈSÖÆÆÆĚŠ(ÆÆÆÈE)			HG FĚ F€ BÉ H G BÉI I H BÉI I
FFF FEGÖÆÆFE Š(ÆÆFEE)			HG FÉ FF BÉ H G BÉ I H BEHF
FFG FÈGÖÆÆFÈ Š(ÆÆÆÈE)		ÖŞ FÈG	
FFH FESÖÆÆÆEŠ Š ÆÆÆES		ÖŠ FÈG	
FFI FESÖÆÆÆEŠ(ÆÆÆES)		ÖŠ FĒG	
FFÍ FÉGÖÁEÁFÉ Š(ÁEÁFÉE)		ÖŠ FÈG	
FFÎ FÊGÖÁÉÁFÊ Š(ÁÉÁFÈE)		ÖŠ FÈG	HG FÉ Ì È H G È H H È H
FFÏ FÉGÖÁÉÁFÉ Š(ÁÉÁFÉE)	/ { ΑΞΞ Ϋ́Λ∙ Ϋ́	ÖŠ FÈG	
FFÌ FÈCOÁEÁFÉ Š(ÁEÁFÈE)			HG FÉ F€ BÉ H G BE I H BEE I
FFJ FEGÖÆÆÆË Š(ÆÆÆE)			HG FÉ FF EÉ H G EÉ I H EEFF
FOE FESOAEAFIES AEAFIES		ÖŠ FĒG	
FOF FESÖÁÉÁFIÉ Š, ÁÉÁFIE		ÖŠ FĒG	
FOG FÉGÖÆÆFÉ Š ÆÆFE		ÖŠ FĒG	
FGH FÉGÖÁÉÁFÉ Š(ÁÉÁFÉE)		ÖŠ FĒG	
FG FEGÖÆÆFE Š(ÆÆFEE)		ÖŠ FĒG	
FG FEGÖÆÆFE Š(ÆÆFEE)		ÖŠ FĒG	
FG FESÖÆÆFE Š ÆÆÆE			HH FÉ F€ BÉH G BÉI H BÉI
FG FESÖÆÆFE Š ÆÆÆE			HH FÉ FF BÉ H G BÉÍ I H BÉF
FG FESÖÆÆFE Š ÆÆÆE		ÖŠ FĒG	
FGJ FÉGÖÆÆFÉ Š(ÆÆFÉE)			
		ÖŠ FĒG	
FHE FÉGÖÆÆÆ Š(ÆÆÆÈ		ÖŠ FĒG	
FHF FÉGÖÆÆFÉ Š(ÆÆÆ		ÖŠ FĒG	
FHG FÉGÖÆÆFÉ Š(ÆÆFÈE)		ÖŠ FĒG	
FHH FÉSÖÁÉÁFÉ Š(ÁÉÁFÉE)	/ { AHLY^• Y	OŞ FEG	HH FÉ J ÉÉH G ÉHF H ÉÉI
FH FÈGÖÆÆÆÉŠ(ÆÆÆÈE)			HH FÉ F€ BÉ H G BE I H BÉ I
FH FEGÖÆÆFE Š(ÆÆFEE)			HH FË FF E H G E H H EEFF
FHÎ FÊGÖÆÆÆÊ Š(ÆÆÆÈE)			HI FË I BÊHG BÊHH
FHÏ FÈSÖÆÆFĚŠ(ÆÆFÈE)		ÖŠ FĒG	
FH FESÖÆÆÆE Š(ÆÆÆE)		ÖŠ FĒG	
FHJ FÉGÖÁÉÁFÉ Š(ÁÉÁFÉE)		ÖŠ FĒG	HI FE I BEH G BEH H BEI
FI€ FÉGÖÆÆÆËŠ(ÆÆÆEE)		ÖŠ FÈG	
FIF FEGÖÆÆÆEŠ(ÆÆÆES)		ÖŠ FÈG	HI FEE J EE H G EEE H H EE I
FIG FESÖÆÆÆEŠ ÁEÆÆ		ÖŠ FĒG	HI FÉ F€ ÉGHG ÉEIIH ÉGI
FIH FESÖÆÆÆEŠ ÁÆÆÆ		ÖŠ FĒG	HI FÉ FF BÉ H G BÉ I H BEHF
FII FÉGÖÁÉÁFÉ Š(ÁÉÁFÉE)		ÖŠ FĒG	
FIÍ FÉGÖÆÆFÉ Š(ÆÆFEE)		ÖŠ FĒG	
FIÎ FÊGÖÆÆÆË Š(ÆÆÆE		ÖŠ FĒG	
FII FÉGÖÁÉÁFÉ Š(ÁÉÁFÉE)		ÖŠ FĒG	
FIÌ FÈSÖÆÆFĚ Š(ÆÆFÈE)		ÖŠ FĒG	
III I LOOPERITO, ALAKE	(/	US FEE	

@UX7ca V]bUh]cbgffcbh]bi YXŁ

"					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	 	
Ö^• &¦āj cāj}								EEØæ&E	DEE Ø
FIJ FÉGÖÆÆÆÉŠ(ÆÆÆEEY {		ÖŞ FEG H		€ÎHGE		***			
FÍ€ FÉGÖÆÆÆĚŠ(ÆÆÆÈEY {		ÖŞ FEG H				⊞€			
FÍF FÉGÖÆÁFÉŠ, ÆÁFÉEY {		ÖŞ FEG H				Ë€HF			
FÍG FÉGÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H		∄ H G E		<u> </u>			
FÍH FÉGÖÆÆÆËŠ(ÆÆÆEEY {		ÖŞ FEG H		€ÎHGE		ÈEHF			
FÍI FÉGÖÆÁFÉŠ, ÆÁFÉEY {		ÖŞ FEG H		∄ H G E		<u>E</u>			
FÍÍ FÉGÖÆÁFÉŠ, ÆÆÆFÉEY {		ÖŞ FÈG HÍ		€ÎHGE					
FÍÎ FÈSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H		∄ H G H					
FÍÏ FÌÈSÖÆÆÆŤŠ(ÆÆÆFÈEY {		ÖŞ FEG H			ÈEHF H				
FÍÌ FÈSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H				EG I			
FÍJ FÉGÖÆÁFÉŠ, ÆÁFÉEY {		ÖŞ FÈG HÍ							
F΀ FÊSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H		€ÎHGE					
FÎF FÊÇÖÆÆÆËŠ(ÆÆÆEEY {		ÖŞ FÈG HÍ		€ÎHGË		Ë€HF			
FÎG FÊSÖÆÆÆĚŠ(ÆÆÆÈEY {		ÖŞ FEG H		€ÎHGE		Ë€I I			
FÎH FÊSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H		€ÎHGË					
FÎ FÊSÖÆÆÆË Š(ÆÆÆEY {		ÖŞ FEG H		€ H G E					
FÎÍ FÉGÖÆÆÆËŠ(ÆÆÆEEY {		ÖŠ FĒG HÍ		∄HGE					
FÎÎ FÊSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H							
FÎÏ FÊSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H				⊞€HF			
FÎÌ FÊSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H		∄ H G E					
FÎJ FÊSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H		∄ H G E					
FÏ € FÈSÖÆÆÆĚŠ(ÆÆÆEY {		ÖŞ FEG H		∄ H G E					
FÏF FÊSÖÆÆFÊ Š(ÆÆFÈEY {		ÖŞ FEG H		∄ H G E					
FÏG FÈSÖÆÆFËŠ, ÆÆFEEY {		ÖŞ FEG H		∄ H G H					
FÏH FÉSÖÆÆÆÉ Š(ÆÆÆEEY {		ÖŞ FEG H		€ÎHGË					
FÜJ FÉGÖÁÉÁFIĚŠ(ÁÉÁFÈEY {		ÖŞ FÈG HÎ							
FÏÍ FÉGÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H							
FÎÎ FÊSÖÆÆÆÊ Š(ÆÆÆEY {		ÖŞ FEG H		€ÎHG E					
FÜÜ FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY {		ÖŞ FEG H		€ H G		EEHF			
FÏÌ FÈSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H		€ÎHGË		Ë€I I			
FÏ J FÉGÖÆÆÆË Š(ÆÆÆEEY {		ÖŞ FEG HÎ		€ H G					
FÌ€ FÈSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H		€ÎHGË					
FÌF FÈSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H	<u> </u>	_	EHF H				
FÌG FÈSÖÆÆFËŠ(ÆÆFÈEY {		ÖŞ FEG HÎ				⊞€			
FÌH FÈSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG HÎ				HEH-		\perp	
FÌI FÈSÖÆÆÆËŠ(ÆÆÆESY {	033	ÖŞ FEG H		∄ H G E		<u> </u>			
FÌÍ FÉGÖÆÆÆËŠ(ÆÆÆEEY {		ÖŞ FEG H		∄ H G E				\perp	
FÎÎ FÊSÖÆÆÆËŠ(ÆÆÆEY {		ÖŞ FEG H		∄HGE					
FÌÏ FÈSÖÆÆÆËŠ(ÆÆÆEEY {		ÖŠ FĒG H		€ H G E				\perp	
FÌÌ FÈSÖÆÆÆËŠ(ÆÆÆESY {		ÖŠ FĒG H		€ÎHG H					
FÌJ FÈGÖÆÆÆĚŠ(ÆÆÆÈEY {		ÖŠ FĒG HĪ	FE J	∉ H G B	±€H H	性目			
FJ€ FÉSÖÆÆÆĚŠ(ÆÆÆE) {		ÖŠ FÉG H							
FJF FÉGÖÆÆÆĚŠ(ÆÆÆÉY {		ÖŠ FĒG H							
FJG FÉGÖÆÆÆĚŠ(ÆÆÆÈEY (ÖŠ FĒG H		H G E					
FJH FÉGÖÁÉÁFÉ Š ÁEÁFÉEY {		ÖŠ FĒG H		€ H G					
FJI FÉGÖÆÆÆĚŠ(ÆÆÆÈEY (ÖŠ FĒG H		∄HG B					
FJÍ FÉGÖÆÆÆĚŠ(ÆÆÆÈY {		ÖŠ FĒG H		∄ H G ⊞					
FJÎ FÊSÖÆÆÆĚŠ(ÆÆÆÈEY {		ÖŠ FĒG H		∄ H G É					
FJÏ FÉGÖÆÆÆĚŠ(ÆÆÆÈEY {		ÖŠ FĒG H							
FJÌ FÉGÖÆÆÆĚŠ(ÆÆÆEEY {		ÖŞ FEG H							
FJJ FÉGÖÆÆÆĚŠ(ÆÆÆÈEY {		ÖŞ FEG H							
GEE FIESÖÆÆÆTĚ Š, ÆÆÆTÈEY {	AETY^● Y	ÖŠ FĒG HÌ	FE I E	∄ H G E	⊞ H ⊞				

@UX'7ca V]bUhjcbg'f7cbhjbi YXŁ

Ö^• &lā cā } Ù\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
GEF FIESÖÆÆÆËŠ(ÆÆÆEY {ÆËËŸ^• Ÿ	ÖŠ FĒS HÌ FĒL Í ĒĒH G ĒĒ I H ĒĒHF
GEG FIESÖÁÉÁFIĽŠ, ÁÉÁFIEY (ÁETÝ 1/2 Ý	ÖŠ FĒS HÌ FĒ Î ĒĒ H G ĒĒ I H ĒĒ I
GEH FESÖÆÆFE Š(ÆÆFEY (ÆEŸ^• Ÿ	ÖŠ FĒG HÌ FĒL Ï ĒĒH G ĒEHF H ĒĒ I
GE FECOÁEÁFIĚ ŠĮ ÁEÁFIÈY { ÁBETÝ ^• Ÿ	ÖŠ FĒG HÌ FĒL Ì ĒĒH G HĒ ĒĒH ĒĒH
G€Í FÉGÖÁÉÁFÉ Š(ÁÉÁFÉEY { ÁBÉTÝ^• Ÿ	ÖŠ FĒG HÌ FĒ JĒÉH GĒĒH HĒÚ
G€Î FÈSÖÆÆÆËŠ(ÆÆÆEY{ÆËËŸ^• Ÿ	ÖŠ FĒG HÌ FĒ F€ ĒÉ H G ĒĒCI H ĒCI
GE FREGÖÆÆFE Š(ÆÆFEY { ARTYN• Ÿ	ÖŠ FĒG HÌ FĒ FF ĒĒ H G ĒĒC I H ĒĒHF
GE FESÖÆÆÆEŠ Š ÆÆÆEY { ÆEËŸ^• Ÿ	ÖŠ FĒG HÌ FĒÉ I BĒH G BĒĒH H JĒĒĒĒĒ
G€J FÈSÖÆÆÆËŠ(ÆÆÆEY {ÆËËŸ^• Ÿ	ÖŠ FĒG HÌ FĒ Í ĒĒH G ĒĒI HĒĒF
GF€ FESÖÆÆTE Š(ÆÆFEY (ÆËŸ^• Ÿ	ÖŠ FĒG HÌ FĒĒ Î BĒH G ĒĒU HĒŪU
GFF FEGÖÆÆFE Š(ÆÆFEY (ÆËŸ^• Ÿ	ÖŠ FĒG HÌ FĒĒ Ï ÞĒH G ÞĒĒH H ÞĒĒÚ
GFG FESÖÆÆFE Š(ÆÆFEY (ÆËŸ^• Ÿ	ÖŠ FĒG HÌ FĒĒ Ì ĒBĒH G ĒFĒĒĒH ĒBĒH
GFH FESÖÆÆÆEŠ Š ÆÆÆESY { ÆEËŸ^• Ÿ	ÖŠ FĒG HÌ FĒ JĒĒH GĒHF HĒĒÚ
GFI FESÖÆÆÆË Š(ÆÆÆEEY (ÆËŸ^• Ÿ	ÖŠ FĒS HÌ FĒ F€ ĒÉ H G ĒĒ I H ĒĒI I
GFÍ FIÈSÖÁEÁFIĚŠ ÁEÁFIÈEY { ÁBÉEÝ^• Ÿ	ÖŠ FĒS HÌ FĒ FF ĒĒ H G ĒĒ I H ĒĒF
GFÎ FÊSÖÆÆÆËŠ(ÆÆÆEY{ÆËŸ^• Ÿ	ÖŞ FEG HJ FE I BEH G BEH H
GFÏ FESÖÆÆFE Š, ÆÆFEY { AREŸ^• Ÿ	ÖŠ FĒS HJ FĒ Í ÞÉH G ÞÉ I H ÞÉHF
GFÌ FÈSÖÆÆÆËŠ(ÆÆÆÈY(ÆËŸ^• Ÿ	ÖŠ FĒS HJ FĒ Î BĒH G BĒ H H BĒ I
GFJ FESÖÆÆÆË Š(ÆÆÆEY (ÆËŸ^• Ÿ	ÖŠ FĒS HJ FĒ Ï ĒĒH G ĒĒF H ĒĒ I
GG€ FESÖÆÆÆË Š(ÆÆÆEY {ÆËŸ^• Ÿ	ÖŠ FĒS HJ FĒ Ì BĒH G HĒ ËH BĒH
GOF FESÖÆÆFE Š(ÆÆFEY (ÆÉTŸ^• Ÿ	ÖŠ FĒS HJ FĒ J BĒH G ĒĒH H BĒ I
GGG FEGÖÁEÁFIĚ ŠĮ ÁEÁFEEY { ÁEÉÝ^• Ÿ	ÖŠ FĒS HJ FĒ F€ ĒĒ H G ĒĒ I H ĒĒ I
GOH FESÖÆÆÆË Š(ÆÆÆEY (ÆËŸ^• Ÿ	ÖŠ FĒS HJ FĒ FF ĒĒ H G ĒĒ I H ĒĒ F
GG FESÖÆÆÆËŠ(ÆÆÆEY {ÆËŸ^• Ÿ	ÖŠ FĒS HJ FĒ I ĒĒ H G ĒĒ H H [ĪĒ ĒĒ
GG FESÖÆÆFE Š ÆÆFEY { ÆÆŸ^• Ÿ	ÖŠ FĒS HJ FĒ Í ÞÉ H G ÞÉÍ H H ÞÉFF
GG FESÖÆÆÆËŠ(ÆÆÆEY {ÆËŸ^• Ÿ	ÖŠ FĒS HJ FĒ Î BĒH G ĒĒI H ĒĒI
GG FESÖÆÆFE Š ÆÆFEY { ÆÆŸ^• Ÿ	ÖŠ FĒS HJ FĒ Ï ĒĒH G ĒĒH H ĒĒÚ
GG FESÖÆÆFE Š(ÆÆFEY { ÆEFY^• Ÿ	ÖŠ FĒS HJ FĒ Ì BĒH G FĒĒ H ĒĒH
GGJ FESÖÆÆFE Š(ÆÆFEY {ÆÉFÝ^• Ÿ	ÖŠ FĒG HJ FĒ J ĒĒH G ĒĒF H ĒĒÚ
GH€ FESÖÆÆÆËŠ(ÆÆÆEY {ÆËŸ^• Ÿ	ÖŠ FĒS HJ FĒ F€ ĒĒ H G ĒĒ I H ĒĒ I
GHF FESÖÆÆÆËŠ(ÆÆÆEEY {ÆËËŸ^◆ Ÿ	ÖŠ FĒG HU FĒ FF ĒĒ H G ĒĒ I H ĒĒF

9bj YcdY'>c]bhFYUMjcbg

	R[ã]c		⁄A¥jaá	ŠÔ	ŸÆjaá	ŠÔ	Z <i>Ä</i> ţaá	ŠÔ	TÝÆÇàËcá	ŠÔ	TŸÆ(àË-cá	ŠÔ	TZÁÃÇàËcá	ŠÔ
F	ÞĞ		₩ ĬJ	Н	JĦĖÏH			Z	ÍIËÎH	HF	G€ÎÈÈÌÎ	НН	FÏIGĐJI	FJ
G			ΞËΪJ	GΪ	ËHÈGG	FG		표	⊞FÎFÈEÎH	HÌ		FĞ	ËFÏIGÈJÏÌ	GÏ
Н	ÞF	{æ¢ FÍÌ	JĒÏI	FΪ	JÎÍËFI	Į	FììoàòFî	Ţ	HHÎÈHÎ	ΙÎ	G€ÍÈHÏÌ	FJ	FÌ€HÈEFÍ	J
1		{ã ËFÍÌ	ÎÈIÌ	ď	ËJÍJÈFH	H	F€ÍÈÌÍ	Я	Ëŧ∰Í	Œ	ËFÌÏGÈ€ÍÏ	Jĺ	ËFÌ€HÈGÎH	HH
ĺ	ÞFH	{æ¢lfé	ÌÙJÏ	FÌ	FÎIGÈÈÌI	Ĵ	FÌÌIÈHFÍ	I	Î⊕HËJJ	FJÌ	HÌ FHÈ FG		FÍÍÌ 🖨Ì H	H€
Î		{ã} ËF	1 Ë JF	F€		\blacksquare	ÌÎĦÎF	Ð,	ĔÌJĔĦÎ	FΪG	₿ĺ₿JG	Ĝ	ËΓÍÍJĚÎΗ	Î
Ϊ	V[œ ∳ K	{æ¢ HFI	GÈ€FG		GJÌ Ï ÈÈÌ F	Î	ÍHIÌÈ€J	ΙH						
Ì		{ â ËHFI	GÈEFG	F€	ËGJÌÏÈÈÌF	H€	FĤIĒÏJ	ÎΪ						

9bj YcdY5=G7 % h fl *\$!% L @F: 8 GhYY 7cXY7\ YWg

	T^{ à^¦	Ù@ ≱ ^	Ô[å^ÁÔ@^&\	Š[&Ž[já	ŠÔ	Ù@ælÁÔ@^&\	ğŒ	ШΉ]@a£Ú##j	@ŒÚÈÈ		È @AETÈÈ	iii Ò~}
F	ΤÏ	ÚQÚÒ´HĚ	ÈÌ€	€	Н	ÈH	€	FI	ÎIJĦ	ïìïí€	ÏJÍH⊞	ĒJÍH⊞	##PF#Fà
G	TG	ÚQÚÒ´HĚ	ÈÏJ	€	ΙÍ	ÈίΙ	€	FΪ	ÎHJЩ	ïìïí€	ÏJÍH⊞	ĒJÍH⊞	₩PFËà
Н	TFG	ÚQÚÒ´HĚ	ÈÍJ	€	HJ	ÈÍ€	€	FF	ÎIJĦ	ïìïí€	ÏJÍH⊞		##PF#Fà
1	ΤÎ	ÔHÝÍ	ÈÌÏ	ΗΒ̈́ÍÎ	Н	ÈΉ	ÎĚĦ	È HJ	HÏF€ÈÈÈ	ΙΪÎĠ	JÌ FÌŒÌÌ	ÌF€I	∰PF Ë à

9bj YcdY5=G7 '% h fl *\$!% L '@F: 8 'GhYY '7cXY7\ YWg 'fl c bhjbi YXL

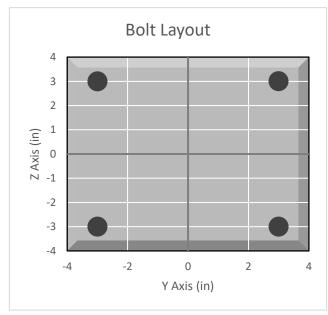
	T^{ à^¦	Ù@ ∄ ^	Ô[å^ÁÔ@^&\	Š[8Ž[já	ŠÔ	Ù@ælÁÔ@^&\	ŠĮĖĖĖĖĖ (SELÚĖĖ (SELÚĖĖ) (SETĖĖ (SETĖĖĖ) ČY)
ĺ	TF	ÔHÝÍ	ΗÌΪ	Η̈́ḖÍÎ	ΙÎ	ÈHÎ	ÎHEE HUH F€EEIÎÎÎ GÎ JÎFÊGEÊ F€ EEPFÊTÂ
Î	TFF	ÔHÝÍ	ÈĤΙ	ΗĖίî	HÌ	ÈHF	ÎÉLE IÍH F€EHIÎGÎJÎFEGEH F€I HEPFEFA
Ϊ	ΤÚÌ	ÚŒÓ′GÈ€	ÈΪJ	ΙÌ	F€	È∃G	
Ì	TÚJ	ÚŒÓ GÈE	ÈĠĬJ	ΙÌ	F€	ÈEGÌ	
J	ΤÚΗ	ÚŒÓ GÈE	ÈĠÏ Ì	l lì	ĺ	È€HG	IÌ JŒÌÎ⊞HGFH€FÌÏF⊞ÈÌÏF⊞ÈPFËà
F€	TÚF	ÚŒÓ GÈE	ÈĠĬÎ	ΙÌ	FÍ	ÈHH	
FF	ΤÚΙ	ÚŒÓ GÈE	ÈĠĬÎ	l lì	F€	È€GJ	
FG		ÚŒÓ GÈE	ÈĠĬÍ	ΙÌ	F€	ÈF	
FH	TÚG	ÚŒÓ GÈE	ÈĠÏÍ	ΙÌ	FI	ÈΗ	
FI	ΤÚΪ	ÚŒÓ GÈE	ĚĠÍ	ΙÌ		ÈΗ	
FÍ	ΤÚÎ	ÚŒÓ GÈE	ÈGÍG	ΙÌ	FÎ	È€HÍ	G€ÌÎ ##HGFH€ FÌÏF###PF#Fä
FÎ	TF€	Î LE A¢€EHÎ AKU EE	ÉGI	GF	G	ÈÌI	GF ^ HÏ HÍ FHIIII I JGG Î €€ÎÎ IIÎ FJÏ IIIIIIIP FEFA
FΪ	Τĺ	Î LE A¢€EHÎ AKU EE	ÈG	Œ	FH	ÈÌI	GF ^ GH FHEET I JGG Î €€ET EET GFT EETEN
FÌ	TFÍ	Î LE A¢€LHÎ AKÚ LEE		Œ	Ϊ	ÈÈF	GF ^ IGH FHEET I JGG Î €ET EET GG EET FET À
FJ	TI	ŠŒ¢ŒH	ÈÍÏ	€	FH	È€GJ	€ ^ IFŒJÎ ŒGHJŒÍ ĨËŒFÌŒŒF PŒ
G€	TFH	Š@¢@¢H	ÈΙJ	€	HF	ÈEGÌ	€ : IHŒJÎ ŒGHUŒÍ ĨĒŒFÌŒŒF PŒF
Œ	ΤÌ	Š@¢@¢H	Èl€	€	GÎ	ÈEGJ	€ : H ŒJÎ ŒGHUŒÍ Í ÏË ŒFÌ ŒF PŒ
GG		Š@¢@¢H	ÈHH	€	G	ÈEGJ	€ îÎŒĴĤŒĤĤĤĤĨĒĤFÌŒĤF
GH	TFI	ŠŒ¢ŒH	ÈĠ	€	Ì	ÈEGÌ	€ ^ H ŒJÎ ŒGHJŒÍ Í Ï Ë ŒFÌ ŒŒF PŒF
G	TH	ŠQ¢Q¢H	ÈG	€	G€	È€GJ	€ : IJŒĴÎŒĠĦIJŒĬĨĬĔŒFÌŒŒF
GÍ	PH	ÚQÚÒ' HẾ	ĖĠ	ΙÌ	G€Ï	È€ÎJ	G ljejj miji(€iliHmiliHmilihebelika
GÎ	PF	ÚQÚÒ HẾ	<u> </u>	ΙÌ	F€Í	ÈÏÍ	ÏG F€Î€ÎÎŒÏÌÏÍ€ÏJÍHŒŒJÍHŒŒFPFŒà
Ğ	PG	ÚQÚÒ HẾ	ÈG€	<u>l</u> Ì	FÍJ	ÈEÏG	ÏG ΀ÎÎ⊞ÏÌÏÍ€ÏJÍH⊞EJÍH⊞EPFEÄ
GÌ	TFJ	ÚŒÓ, Œ€	ÈFF	ΪG	F€	È€F	G G I JF⊞HGFH€ FÌ Ï F⊞HÌ Ï F⊞HÌPFËFÀ
GJ	T GF	ÚŒÓ GÈE	<u>È</u> €J	ΪG		ÌEJÏ	G FGFI JFEE HGFH€ FÌ Ï FEEE Ì Ï FEEE À
H€	TG€	ÚŒÓ Œ	È€ì	G	FĮ̂	Ï€JÏ	ÏG Ì FIJF⊞HGFH€ FÌ Ï F⊞EÌ Ï F⊞EÈ
HF	TG	ŠÎÊĂYIÊÎĀYÊ		Œ	FÌ	È€H€	IG^Î[FFÏ #] Ï ÎÎ F GÎ I #F G #F P G#F
HG		ŠÎÊĂYIÊÎĀYĒ		ΗÌĚ	H€	È€HG	€ ^ J [FFÏ #] Ï [Î F G Î I # FG # P G # P
HH	TŒ	ŠÎ Ê ĂYI È Î ĂY È	ÈEI€	HÈ€ÎG	GG	È€HG	IG^FF[FFI #] I I I I I I I I I I

9bj YcdYBcbY7c`X': cfa YX'GhYY'7cXY7\ YWg

T^{à^¦ Ù@a}^	Ô[å^ÆÔ@^&\		V}ŽaáT}^^Ž直T}::Ž直 Ôà Ô{ ^^Ô{ :: Ò~}
		Þ[ÁÖæææÁt[ÁÚlð] cÁEE	

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 7/28/2021



BOLT TOOL 1.5.2

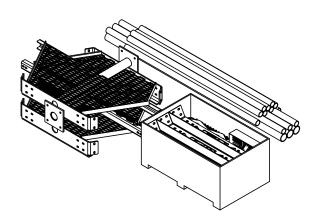
Project Data									
Job Code:	189031								
Carrier Site ID:	BOHVN00014A								
Carrier Site Name:	CT-CCI-T-826768								

Code									
Design Standard:	TIA-222-H								
Slip Check:	No								
Pretension Standard:	AISC								

Bolt Properties									
Connection Type:	Bolt								
Diameter:	0.625	in							
Grade:	A325								
Yield Strength (Fy):	92	ksi							
Ultimate Strength (Fu):	120	ksi							
Number of Bolts:	4								
Threads Included:	Yes								
Double Shear:	No								
Connection Pipe Size:	-	in							

Connection Description	
Standoff to Collar	

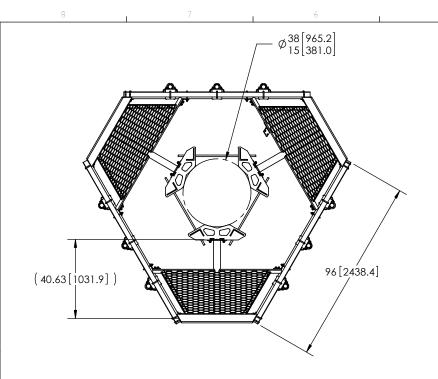
Bolt Check*					
Tensile Capacity (ϕT_n) :	20340.1	lbs			
Shear Capacity (φV _n):	13805.8	lbs			
Tension Force (T _u):	3968.8	lbs			
Shear Force (V _u):	470.4	lbs			
Tension Usage:	18.6%				
Shear Usage:	3.2%				
Interaction:	18.6%	Pass			
Controlling Member:	M2				
Controlling LC:	42				

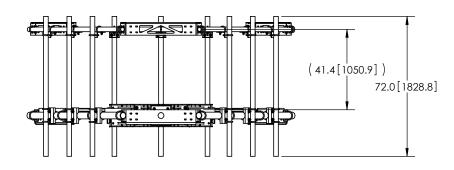

^{*}Rating per TIA-222-H Section 15.5

APPENDIX E SUPPLEMENTAL DRAWINGS

ITEM	PART NO.	DESCRIPTION	QTY.	WEIGHT	NOTE NO.
1 MTC3006SB	STEEL BUNDLE FOR SNUB NOSE PLATFORM	1 402.64 LBS			
2 MCPK8CSB	PIPE STEEL BUNDLE FOR MC-PK8-C	1 464.27 LBS			
3 MCPK8CHWK	HARDWARE KIT FOR MC-PK8-C	1 543.22 LBS			

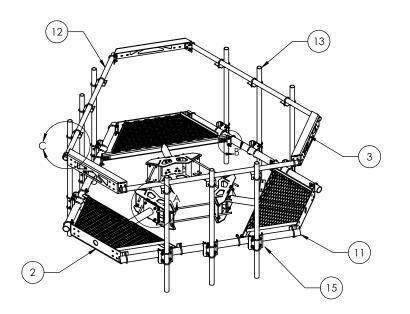
REVISIONS					
REV.	ECN	DESCRIPTION	BY	DATE	
Α		Initial release	DRR	12/27/11	
В	8000005979	CHANGE NOSE CORNER BRKT, ADD GUB-4240	MSM	11/25/14	
С	8000007579	NEW RINGMOUNT WELDMENT DESIGN	RJC	04/07/15	

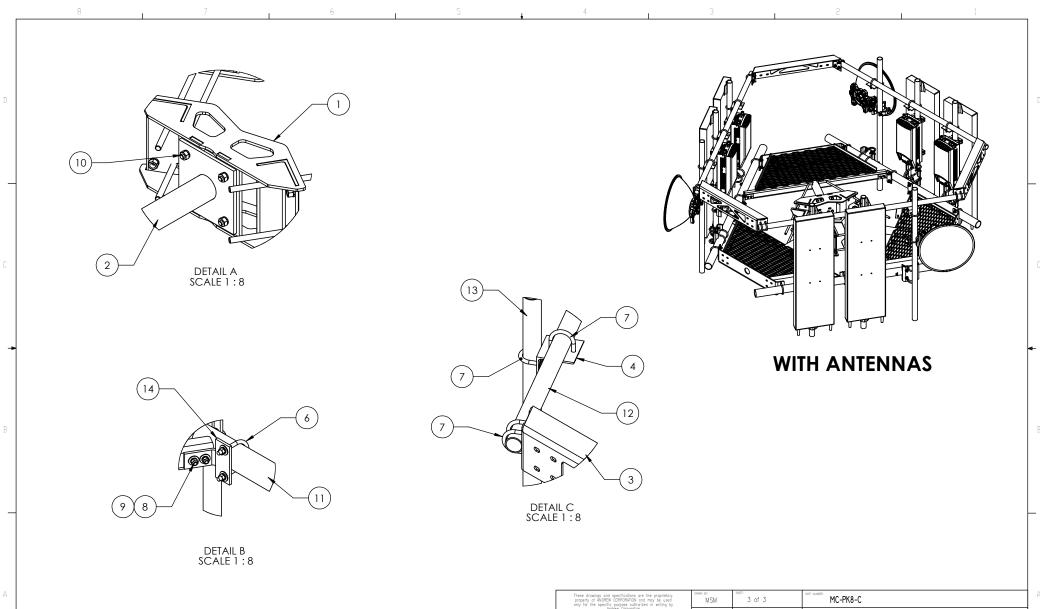

FOR BOM ENTRY ONLY



NOTES:

1. CUSTOMER ASSEMBLY SHEETS 2-3.


property of ANDREW CORPORATION and may be only for the specific purpose authorized in wr Andrew Corporation.	be used iriting by	MSM	1 of 3	MC-PK8-C
Andrew Corporation. ALL DIMENSIONS ARE IN INCHES U.O.S. TOLERANCES UNLESS OTHERWISE SPECIFIED:		онохо ву: ТР	NTS	LOW PROFILE PLATFORM KIT 8' FACE
.X = ± .12 ANGLES .XX = ± .06 FRACTIONS	±2° ±1/32	10/18/11	A36, A500	SHARIC POE ASSEMBLY DRAWING
.XXX= ± .03 REMOVE BURRS AND BREAK EDGES .005		11/32	REVISION:	GALV A123
DO NOT SCALE THIS PRINT	C	1410.14 LBS	ANDREW @ U.S.A.	


NOTES:

- 1. ALL METRIC DIMENSIONS ARE IN BRACKETS.
 2. WILL FIT MONOPOLES 15"-38" OD.

	ITEM	PART NO.	DESCRIPTION	QTY.	WEIGHT
>[1	MC-RM1550-3	12" - 50" OD RINGMOUNT	1	230.42 LBS
	2	MTC300601	Low Profile Co-Location Platform Snub Nose	3	134.21 LBS
	3	MT195801	Corner Weldment Snub Nose Handrail	3	27.10 LBS
	4	XA2020.01	CROSS OVER ANGLE	9	2.65 LBS
	5	GUB-4356	1/2" X 3-5/8" X 6" GALV U-BOLT	18	0.82 LBS
	6	GUB-4355	1/2" X 3-5/8" X 5" GALV U-BOLT	12	0.71 LBS
	7	GUB-4240	1/2" X 2-1/2" X 4" GALV U-BOLT	48	0.56 LBS
	8	GB-04145	1/2" X 1-1/2" GALV BOLT KIT	12	0.13 LBS
	9	GWF-04	1/2" GALV FLAT WASHER	24	0.03 LBS
	10	GB-0520A	5/8" X 2" GALV BOLT KIT (A325)	12	0.27 LBS
	11	MT54796	3.50" OD X 96" GALV PIPE	3	60.28 LBS
	12	MT-651-96	Ø 2.375" OD X 96" PIPE	3	29.07 LBS
Ī	13	MT-651	2.375" OD x 72" PIPE	9	21.80 LBS
Ī	14	MT19617	MT196 Pipe Mount Plate	6	2.49 LBS
	15	MT21701	PIPE MOUNT PLATE	9	7.93 LBS

These drawings and specifications are the proprietary property of ANDREW CORPORATION and may be used only for the specific purpose authorized in writing by Andrew Corporation.	MSM	2 of 3	MC-PK8-C
LL DIMENSIONS ARE IN INCHES U.O.S.	онахиах вт: ТР	NTS	25" OD Snub Nose MT-196
OLERANCES UNLESS OTHERWISE SPECIFIED: .X = \pm .12 ANGLES \pm 2' .XX = \pm .06 FRACTIONS \pm 1/32	10/18/11	A36, A53	BRANG TYSE ASSEMBLY DRAWING
.XXX= ± .03 REMOVE BURRS AND BREAK EDGES .005	REVISION:	GALV A123	WESTCHESTER, IL, 60154
DO NOT SCALE THIS PRINT		1361.27 LBS	ANDREW & U.S.A.

NTS

A36, A53 FNSH GALV A123

1361.27 LBS

10/18/11

С

DO NOT SCALE THIS PRINT

25" OD Snub Nose MT-196

WESTCHESTER, IL. 60154

ASSEMBLY DRAWING

NOTES:

1. ALL METRIC DIMENSIONS ARE IN BRACKETS.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00014A

826768

171 Town Hill Road Plymouth, Connecticut 06786

August 31, 2021

EBI Project Number: 6221004807

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of FCC general population allowable limit:	26.88%				

August 31, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00014A - 826768

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **171 Town Hill Road** in **Plymouth, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 171 Town Hill Road in Plymouth, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 132 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd
Height (AGL):	132 feet	Height (AGL):	132 feet	Height (AGL):	132 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.31	ERP (W):	5,236.31	ERP (W):	5,236.31
Antenna A1 MPE %:	1.49%	Antenna B1 MPE %:	1.49%	Antenna C1 MPE %:	1.49%

environmental | engineering | due diligence

Site Composite MPE %					
Carrier	MPE %				
Dish Wireless (Max at Sector A):	1.49%				
Sprint	0.79%				
T-Mobile	7.58%				
Town	2.28%				
Verizon	3.46%				
Nextel	0.54%				
AT&T	10.74%				
Site Total MPE % :	26.88%				

Dish Wireless MPE % Per Sector					
Dish Wireless Sector A Total:	1.49%				
Dish Wireless Sector B Total:	1.49%				
Dish Wireless Sector C Total:	1.49%				
Site Total MPE % :	26.88%				

Dish Wireless Maximum MPE Power Values (Sector A)								
Dish Wireless Frequency Band / Technology (Sector A)	Allowable MPE (μW/cm²)	Calculated % MPE						
Dish Wireless 600 MHz n71	4	223.68	132.0	2.03	600 MHz n71	400	0.51%	
Dish Wireless 1900 MHz n70	4	542.70	132.0	4.92	1900 MHz n70	1000	0.49%	
Dish Wireless 2190 MHz n66	4	542.70	132.0	4.92	2190 MHz n66	1000	0.49%	
	•		•			Total:	1.49%	

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	1.49%
Sector B:	1.49%
Sector C:	1.49%
Dish Wireless Maximum MPE % (Sector A):	1.49%
<u> </u>	24,0004
Site Total:	26.88%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **26.88**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

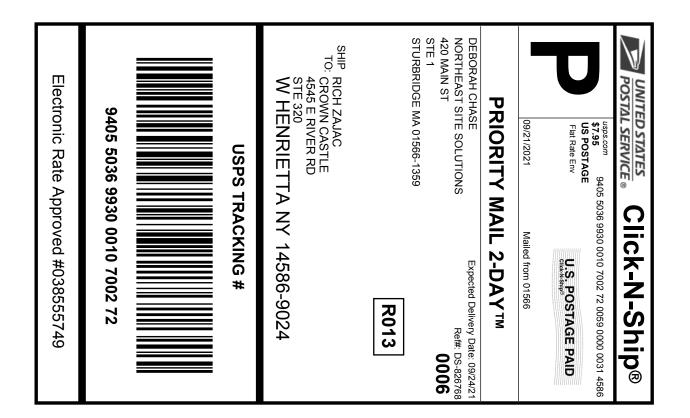
Re: Tower Share Application

Crown Castle telecommunications site at: 171 TOWN HILL ROAD, PLYMOUTH, CT 06786

T-MOBILE USA TOWER LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 826768/PLYMOUTH/RT 6 Customer Site ID: BOHVN00014A/CT-CCI-T-826768 Site Address: 171 Town Hill Road, Plymouth, CT 06786

By:


Richard Zajac

Site Acquisition Specialist

Date: 9/7/2021

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0010 7002 72

Trans. #: 544158090 Print Date: 09/21/2021 09/21/2021 Ship Date: 09/24/2021 Delivery Date:

Priority Mail® Postage: Total:

\$7.95 \$7.95

Ref#: DS-826768

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0010 7002 89

Trans. #: 544158090 Print Date: 09/21/2021 09/21/2021 Ship Date: 09/24/2021 Delivery Date:

Priority Mail® Postage: \$7.95 \$7.95 Total:

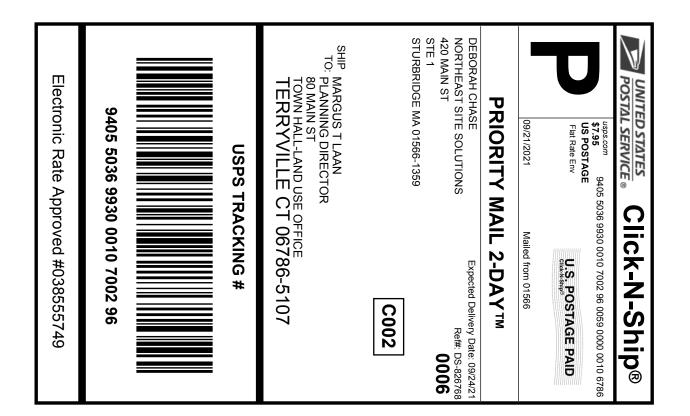
Ref#: DS-826768 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


DAVID V MERCHANT

MAYOR OF PLYMOUTH

80 MAIN ST

TERRYVILLE CT 06786-5107

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0010 7002 96

Trans. #: 544158090 Print Date: 09/21/2021 09/21/2021 Ship Date: 09/24/2021 Delivery Date:

Priority Mail® Postage: Total:

\$7.95 \$7.95

Ref#: DS-826768

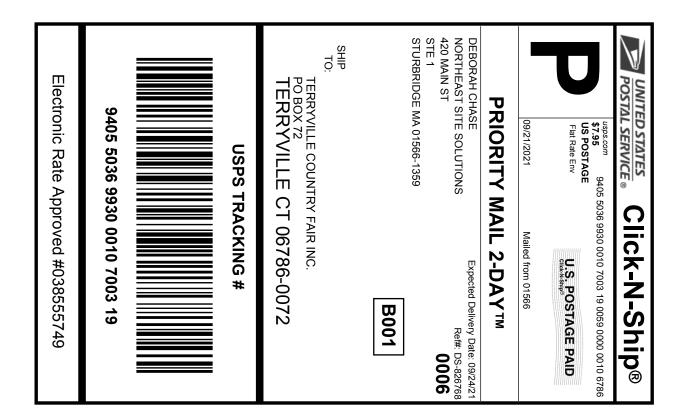
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


MARGUS T LAAN

PLANNING DIRECTOR

80 MAIN ST

TOWN HALL-LAND USE OFFICE **TERRYVILLE CT 06786-5107**

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0010 7003 19

Trans. #: 544158090 Print Date: 09/21/2021 09/21/2021 Ship Date: 09/24/2021 Delivery Date:

Priority Mail® Postage: Total:

\$7.95 \$7.95

Ref#: DS-826768

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

TERRYVILLE COUNTRY FAIR INC.

PO BOX 72

TERRYVILLE CT 06786-0072

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

826768- Plymouth

FISKDAL	FISKDALE 458 MAIN S E, MA 0153 800)275-8	[8-9998 777	
09/23/2021			02:06 PM
Product	Qty	Unit Price	Price
Prepaid Mail Terryville, (Weight: 1 lb Acceptance D Thu 09/2	1 07 06786 5.00 oz		ÇO100
Prepaid Mail Terryville, Weight: 1 lk Acceptance [Thu 09/2 Tracking #: 9405 50	5.00 02 Date:		\$0.00
- L.J. a. H.	Date: 23/2021		\$0.00 89
Tracking # 9405 5	etta, NY 1 1b 2.00 0 Date: 1/23/2021 5036 9930	0010 700	
			00 O

Date: June 06, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-20000

Subject: Structural Analysis Report

Carrier Designation: DISH Network Co-Locate

Site Number: BOHVN00014A Site Name: CT-CCI-T-826768

Crown Castle Designation: BU Number: 826768

Site Name: PLYMOUTH/RT 6

 JDE Job Number:
 645129

 Work Order Number:
 1966237

 Order Number:
 553358 Rev. 1

Engineering Firm Designation: Crown Castle Project Number: 1966237

Site Data: 171 Town Hill Road, Plymouth, Litchfield County, CT

Latitude 41° 40′ 6.197″, Longitude -73° 1′ 11.842″

169 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity - 78.5%

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Matthew Hussak

Respectfully submitted by:

Terry P. Styran, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity - LC7

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 169 ft Monopole tower designed by PIROD MANUFACTURES INC..

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 120 mph

Exposure Category:CTopographic Factor:1Ice Thickness:1.5 inWind Speed with Ice:50 mphService Wind Speed:60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elevetion	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
132.0	132.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	168.0	3	rfi antennas	COL45-70			
		3	ericsson	AIR 32 B2A/B66AA w/ Mount Pipe			
		3	ericsson AIR6449 B41 w/ Mount Pipe				
164.0	165.0	3	ericsson	RADIO 4449 B71 B85A_T- MOBILE	11	7/8 1-5/8	
			ericsson	RRUS 4415 B25		1 3/6	
			rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe			
	164.0	1	tower mounts	Platform Mount [LP 404- 1_KCKR]			
		3	3 alcatel lucent 1900MHz RRH				
		3	3 alcatel lucent 800MHZ RRH				
		3	alcatel lucent	TD-RRH8x20-25			
155.0	155.0 155.0		rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	4	1-1/4	
		3 rfs celwave		APXVTM14-C-120 w/ Mount Pipe			
	1 to		tower mounts	Platform Mount [LP 305-1]			
142.0	142.0	6	antel	LPA-80080/6CF w/ Mount Pipe	8	1-5/8	
142.0	142.0	3	commscope	SBNHH-1D65B	0	1-5/6	

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)						
	3 2		commscope	SBNHH-1D65B w/ Mount Pipe								
			rfs celwave	DB-T1-6Z-8AB-0Z								
		3	samsung telecommunications	MT6407-77A w/ Mount Pipe								
		3	samsung telecommunications	RFV01U-D1A								
		3	samsung telecommunications	RFV01U-D2A								
		1	tower mounts	Platform Mount [LP 403-1]								
121.0	125.0	1	rfs celwave	201-4	1	1/2						
121.0	121.0	1	tower mounts	Side Arm Mount [SO 701-1]	'	1/2						
		3	cci antennas	DTMABP7819VG12A								
								6	cci antennas	TPX-070821		
		3	ericsson	RRUS 11								
		3	ericsson	RRUS 12 B2								
	115.0	3	ericsson	RRUS 4426 B66								
		3	ericsson	RRUS 4478 B14								
				3	ericsson	RRUS 4478 B5						
			3	ericsson	WCS RRUS-32-B30	12	1-5/8					
115.0		6	kaelus	DBCT108F1V92-1	6	5/8						
		3	kathrein	80010965	3 2	3/8 conduit						
		3	kmw communications	AM-X-CD-16-65-00T-RET		Conduit						
		3 powerwave 7770.00 technologies										
		3	quintel technology	QS66512-2								
		1	raycap	DC6-48-60-18-8C								
		2	raycap	DC6-48-60-18-8F								
		1	tower mounts	Platform Mount [LP 301-1]								
105.0	105.0	3	rfs celwave	APXV18-206517S-C w/ Mount Pipe	6	1-5/8						
74.0	83.0	1	decibel	DB810T3E-XT	. 1	7/8						
74.0	74.0	1	tower mounts	Side Arm Mount [SO 701-1]	1	1/0						

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	3491991	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	3678682	CCISITES
4-TOWER MANUFACTURER DRAWINGS	3491992	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

	2010 4 Gootion Supusity (Summary)							
Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	169 - 164.25	Pole	TP26x18x0.25	1	-0.45	1060.11	0.2	Pass
L2	164.25 - 129.75	Pole	TP34.0625x21.5x0.3125	2	-15.10	1976.75	20.6	Pass
L3	129.75 - 96.08	Pole	TP41.75x32.1327x0.375	3	-30.46	2937.41	38.2	Pass
L4	96.08 - 63.25	Pole	TP49.0625x39.8023x0.375	4	-40.29	3460.30	54.9	Pass
L5	63.25 - 31.25	Pole	TP56.125x46.9543x0.375	5	-51.45	3964.20	67.2	Pass
L6	31.25 - 0	Pole	TP62.9375x53.8466x0.375	6	-66.55	4574.01	78.5	Pass
							Summary	
						Pole (L6)	78.5	Pass
						Rating =	78.5	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	76.1	Pass
1	Base Plate	0	36.9	Pass
1	Base Foundation (Structure)	0	69.3	Pass
1	Base Foundation (Soil Interaction)	0	53.4	Pass

Structure Rating (max from all components) =	78.5%
--	-------

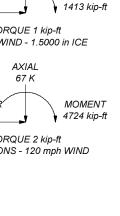
Notes:

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT


			ō		8	8			169.0 ft	
-	4.75	18	0.2500	2.38	18.0000	26.000	-	0.3	164.3 ft	
2	36.88	18	0.3125	3.83	21.5000	34.0625		3.4		
							-		129.8 ft	
м	37.50	18	0.3750	4.67	32.1327	41.7500		5.6		
							-65		96.1 ft	
4	37.50	18	0.3750	5.50	39.8023	49.0625	A572-65	6.7	63.3 f <u>t</u>	
Ŋ	37.50	18	0.3750	6.25	46.9543	56.1250		7.8	900.1	ALL REACTIONS ARE FACTOREL
									31.3 ft	AXIAL 113 K
တ	37.50	18	0.3750		53.8466	62.9375		8.8	0.0 ft_	SHEAR 12 K TORQUE 1 kip-ft 50 mph WIND - 1.5000 AXIAL 67 K SHEAR 41 K
Section	Length (ft)	Number of Sides	Thickness (in)	Socket Length (ft)	Top Dia (in)	Bot Dia (in)	Grade	Weight (K) 32.5	<u>5.9 ft</u>	TORQUE 2 kip-fl REACTIONS - 120 mph

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- 1. Tower is located in Litchfield County, Connecticut.
 2. Tower designed for Exposure C to the TIA-222-H Standard.
 3. Tower designed for a 120 mph basic wind in accordance with the TIA-222-H Standard.
 4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 78.5%

MOMENT

^{Job:} BU 826768		
Project:		
Client: Crown Castle		
Code: TIA-222-H		Scale: NTS
Path: C:\WIP\826768\WO 196	66237 - SA\Prod\826768.eri	Dwg No. E-

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Litchfield County, Connecticut.
- Tower base elevation above sea level: 890.00 ft.
- Basic wind speed of 120 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guvs To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination Sort Capacity Reports By Component

Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	169.00-164.25	4.75	2.38	18	18.0000	26.0000	0.2500	1.0000	A572-65 (65 ksi)
L2	164.25-129.75	36.88	3.83	18	21.5000	34.0625	0.3125	1.2500	A572-65 (65 ksi)
L3	129.75-96.08	37.50	4.67	18	32.1327	41.7500	0.3750	1.5000	A572-65 (65 ksi)
L4	96.08-63.25	37.50	5.50	18	39.8023	49.0625	0.3750	1.5000	À572-65 (65 ksi)
L5	63.25-31.25	37.50	6.25	18	46.9543	56.1250	0.3750	1.5000	À572-65 (65 ksi)
L6	31.25-0.00	37.50		18	53.8466	62.9375	0.3750	1.5000	A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	It/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	18.2391	14.0846	560.6340	6.3012	9.1440	61.3117	1122.0058	7.0437	2.7280	10.912
	26.3625	20.4326	1711.6544	9.1412	13.2080	129.5922	3425.5610	10.2183	4.1360	16.544
L2	22.6051	21.0154	1191.8828	7.5216	10.9220	109.1268	2385.3338	10.5097	3.2340	10.349
	34.5398	33.4758	4817.4335	11.9812	17.3038	278.4040	9641.2058	16.7411	5.4450	17.424
L3	33.5680	37.7996	4816.4038	11.2740	16.3234	295.0611	9639.1451	18.9034	4.9954	13.321
	42.3362	49.2466	10650.982	14.6881	21.2090	502.1916	21315.979	24.6280	6.6880	17.835
			2				3			
L4	41.5295	46.9284	9216.5336	13.9967	20.2196	455.8222	18445.194	23.4686	6.3452	16.921
							6			
	49.7615	57.9503	17355.137	17.2841	24.9238	696.3293	34733.111	28.9807	7.9750	21.267
			8				9			
L5	48.9866	55.4411	15196.922	16.5357	23.8528	637.1126	30413.842	27.7258	7.6040	20.277
			9				3			
	56.9330	66.3564	26056.150	19.7913	28.5115	913.8821	52146.586	33.1845	9.2180	24.581
			6				5			
L6	56.1579	63.6445	22990.273	18.9824	27.3541	840.4705	46010.797	31.8283	8.8170	23.512
			1				5			
	63.8506	74.4650	36822.894	22.2097	31.9722	1151.7142	73694.241	37.2396	10.4170	27.779
			6				7			

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft ²	in				in	in	in
L1 169.00-			1	1	1			
164.25								
L2 164.25-			1	1	1			
129.75								
L3 129.75-			1	1	1			
96.08								
L4 96.08-			1	1	1			
63.25								
L5 63.25-			1	1	1			
31.25								
L6 31.25-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	-

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation	1					in	in	
Safety Line 3/8	Α	No	Surface Ar	169.00 -	1	1	-0.500	0.3750		0.22
			(CaAa)	0.00			-0.500			
PiRod Ladder	Α	No	Surface Af	169.00 -	1	1	-0.500	0.5400	1.6965	2.00
			(CaAa)	0.00			-0.500			
***	_				_	_				
CU12PSM9P6XXX(1-	В	No	Surface Ar	132.00 -	1	1	-0.450	1.6000		2.35
1/2) ***			(CaAa)	0.00			-0.425			
LDF4-50A(1/2)	Α	No	Surface Ar	121.00 -	1	1	-0.210	0.6300		0.15
,			(CaAa)	0.00			-0.200			

LDF7-50A(1-5/8)	Α	No	Surface Ar	115.00 -	12	6	0.115	1.9800		0.82
			(CaAa)	0.00			0.300			
2" Flexible Conduit	Α	No	Surface Ar	115.00 -	2	1	0.310	2.0000		0.34
			(CaAa)	0.00			0.340			
***	_									
LDF7-50A(1-5/8)	В	No	Surface Ar	105.00 -	6	6	-0.250	1.9800		0.82
***			(CaAa)	0.00			-0.060			
			0 ()	7400		4	0.000	4 0000		0.00
LDF5-50A(7/8)	Α	No	Surface Ar	74.00 -	1	1	0.000	1.0900		0.33
****			(CaAa)	0.00			0.010			

Feed Line/Linear Appurtenances - Entered As Area

Description	or	Allow Shield	Exclude From	Componen t	Placement	Total Number		C_AA_A	Weight
***	Leg		Torque Calculation	Туре	ft			f l° /ft	plf
*** 810921-701(7/8)	С	No	No	Inside Pole	164.00 - 0.00	7	No Ice	0.00	0.34
	_					•	1/2" Ice	0.00	0.34
							1" Ice	0.00	0.34
							2" Ice	0.00	0.34
HCS 6X12	С	No	No	Inside Pole	164.00 - 0.00	3	No Ice	0.00	2.40
4AWG(1-5/8)							1/2" Ice	0.00	2.40
, ,							1" Ice	0.00	2.40
***							2" Ice	0.00	2.40
HB114-1-08U4-	С	No	No	Inside Pole	155.00 - 0.00	3	No Ice	0.00	1.30
M6F(1-1/4)							1/2" Ice	0.00	1.30
							1" Ice	0.00	1.30
							2" Ice	0.00	1.30
HB114-21U3M12-	С	No	No	Inside Pole	155.00 - 0.00	1	No Ice	0.00	1.22
XXXF(1-1/4)							1/2" Ice	0.00	1.22
							1" Ice	0.00	1.22
							2" Ice	0.00	1.22
***						_			
HB158-1-08U8-	С	No	No	Inside Pole	142.00 - 0.00	2	No Ice	0.00	1.30
S8J18(1-5/8)							1/2" Ice	0.00	1.30
							1" Ice 2" Ice	0.00	1.30
LDE7 F0A (4 F/0)	_	NI-	NI=	lasida Dala	440.00 0.00			0.00	1.30
LDF7-50A(1-5/8)	С	No	No	inside Pole	142.00 - 0.00	6	No Ice	0.00	0.82
							1/2" Ice 1" Ice	0.00	0.82 0.82
							2" Ice	0.00 0.00	0.82
FB-L98B-034-	Α	No	No	Incido Dolo	115.00 - 0.00	1	No Ice	0.00	0.06
XXX(3/8)	А	INO	NO	Iliside Pole	113.00 - 0.00	'	1/2" Ice	0.00	0.06
AAA(3/0)							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
FB-L98B-034-	Α	No	No	Inside Pole	115.00 - 0.00	2	No Ice	0.00	0.06
XXX(3/8)	^	NO	INO	molue i die	1 13.00 - 0.00	_	1/2" Ice	0.00	0.06
^^(3/0)							1" Ice	0.00	0.06
							2" Ice	0.00	0.06
WR-VG82ST-	Α	No	No	Inside Pole	115.00 - 0.00	4	No Ice	0.00	0.31
VVIN-V 00201-	^	NO	INO	molue i die	1 13.00 - 0.00	7	140 106	0.00	0.51

Description	Face		Exclude	Componen	Placement	Total		$C_A A_A$	Weight
	or Leg	Shield	From Torque	t Type	ft	Number		f t ²/ft	plf
			Calculation)					
BRDA(5/8)							1/2" Ice	0.00	0.31
							1" Ice	0.00	0.31
							2" Ice	0.00	0.31
WR-VG82ST-	Α	No	No	Inside Pole	115.00 - 0.00	2	No Ice	0.00	0.31
BRDA(5/8)							1/2" Ice	0.00	0.31
` ,							1" Ice	0.00	0.31
							2" Ice	0.00	0.31

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	C_AA_A	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	_
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	169.00-164.25	Α	0.000	0.000	0.606	0.000	0.01
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.00
L2	164.25-129.75	Α	0.000	0.000	4.399	0.000	0.08
		В	0.000	0.000	0.360	0.000	0.01
		С	0.000	0.000	0.000	0.000	0.55
L3	129.75-96.08	Α	0.000	0.000	32.124	0.000	0.32
		В	0.000	0.000	15.984	0.000	0.12
		С	0.000	0.000	0.000	0.000	0.75
L4	96.08-63.25	Α	0.000	0.000	52.994	0.000	0.49
		В	0.000	0.000	44.255	0.000	0.24
		С	0.000	0.000	0.000	0.000	0.73
L5	63.25-31.25	Α	0.000	0.000	54.000	0.000	0.49
		В	0.000	0.000	43.136	0.000	0.23
		С	0.000	0.000	0.000	0.000	0.71
L6	31.25-0.00	Α	0.000	0.000	52.734	0.000	0.48
		В	0.000	0.000	42.125	0.000	0.23
		С	0.000	0.000	0.000	0.000	0.69

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	C_AA_A	C_AA_A	Weight
Sectio	Elevation	or	Thickness	- 40	,	In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	169.00-164.25	Α	1.499	0.000	0.000	3.454	0.000	0.05
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.00
L2	164.25-129.75	Α	1.479	0.000	0.000	25.085	0.000	0.34
		В		0.000	0.000	1.035	0.000	0.02
		С		0.000	0.000	0.000	0.000	0.55
L3	129.75-96.08	Α	1.441	0.000	0.000	77.635	0.000	1.35
		В		0.000	0.000	31.894	0.000	0.48
		С		0.000	0.000	0.000	0.000	0.75
L4	96.08-63.25	Α	1.392	0.000	0.000	115.525	0.000	2.05
		В		0.000	0.000	75.297	0.000	1.03
		С		0.000	0.000	0.000	0.000	0.73
L5	63.25-31.25	Α	1.321	0.000	0.000	119.181	0.000	2.03
		В		0.000	0.000	72.684	0.000	0.97
		С		0.000	0.000	0.000	0.000	0.71
L6	31.25-0.00	Α	1.183	0.000	0.000	113.628	0.000	1.88
		В		0.000	0.000	69.987	0.000	0.91
		С		0.000	0.000	0.000	0.000	0.69

Feed Line Center of Pressure

Section	Elevation	CP _X	CP _Z	CP _X	CP _Z
				Ice	Ice
	ft	in	in	in	in
L1	169.00-164.25	-0.4971	1.0572	-1.5012	2.3869
L2	164.25-129.75	-0.4883	0.9727	-1.5767	2.4086
L3	129.75-96.08	-1.7371	-5.2546	-2.5980	-3.5941
L4	96.08-63.25	-0.5591	-8.7797	-1.7280	-6.5732
L5	63.25-31.25	-0.8365	-9.4110	-2.2487	-7.2494
L6	31.25-0.00	-0.8712	-9.9119	-2.3281	-7.7447

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.	,	Segment	No Îce	Ice
			Elev.		
L1	1	Safety Line 3/8	164.25 -	1.0000	1.0000
L1	2	PiRod Ladder	169.00	1.0000	1.0000
L1	2	PIROG Ladder	164.25 - 169.00	1.0000	1.0000
L2	1	Safety Line 3/8	129.75 -	1.0000	1.0000
		,	164.25		
L2	2	PiRod Ladder	129.75 -	1.0000	1.0000
	40	OLIA OD OMODOVVVVA A (O)	164.25	4 0000	4 0000
L2	13	CU12PSM9P6XXX(1-1/2)	129.75 - 132.00	1.0000	1.0000
L3	1	Safety Line 3/8	96.08 -	1.0000	1.0000
		carety _me ere	129.75		
L3	2	PiRod Ladder	96.08 -	1.0000	1.0000
			129.75		
L3	13	CU12PSM9P6XXX(1-1/2)	96.08 -	1.0000	1.0000
L3	15	LDF4-50A(1/2)	129.75 96.08 -	1.0000	1.0000
LS	15	LDF4-50A(1/2)	121.00	1.0000	1.0000
L3	17	LDF7-50A(1-5/8)	96.08 -	1.0000	1.0000
		` '	115.00		
L3	18	2" Flexible Conduit	96.08 -	1.0000	1.0000
	0.4	LDE7 504 (4.5/0)	115.00	4 0000	4 0000
L3	24	LDF7-50A(1-5/8)	96.08 - 105.00	1.0000	1.0000
L4	1	Safety Line 3/8	63.25 -	1.0000	1.0000
		carety _me ere	96.08		
L4	2	PiRod Ladder	63.25 -	1.0000	1.0000
			96.08		
L4	13	CU12PSM9P6XXX(1-1/2)	63.25 -	1.0000	1.0000
L4	15	LDF4-50A(1/2)	96.08 63.25 -	1.0000	1.0000
	10	251 4 00/1(1/2)	96.08	1.0000	1.0000
L4	17	LDF7-50A(1-5/8)	63.25 -	1.0000	1.0000
			96.08		
L4	18	2" Flexible Conduit	63.25 -	1.0000	1.0000
L4	24	LDF7-50A(1-5/8)	96.08 63.25 -	1.0000	1.0000
L4	24	LDF7-30A(1-3/6)	96.08	1.0000	1.0000
L4	26	LDF5-50A(7/8)	63.25 -	1.0000	1.0000
		` /	74.00		
L5	1	Safety Line 3/8	31.25 -	1.0000	1.0000
1.5		المالية المحالية	63.25	4 0000	4 0000
L5	2	PiRod Ladder	31.25 - 63.25	1.0000	1.0000
L5	13	CU12PSM9P6XXX(1-1/2)		1.0000	1.0000
	.01	·- · · · · · · · · · · · · · · · · ·	31.20		

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.		Segment	No Ice	Ice
			Elev.		
			63.25		
L5	15	LDF4-50A(1/2)	31.25 -	1.0000	1.0000
			63.25		
L5	17	LDF7-50A(1-5/8)	31.25 -	1.0000	1.0000
			63.25		
L5	18	2" Flexible Conduit	31.25 -	1.0000	1.0000
			63.25		
L5	24	LDF7-50A(1-5/8)	31.25 -	1.0000	1.0000
			63.25		
L5	26	LDF5-50A(7/8)	31.25 -	1.0000	1.0000
			63.25		
L6	1	Safety Line 3/8	0.00 - 31.25	1.0000	1.0000
L6	2	PiRod Ladder	0.00 - 31.25	1.0000	1.0000
L6	13	CU12PSM9P6XXX(1-1/2)	0.00 - 31.25	1.0000	1.0000
L6	15	LDF4-50A(1/2)	0.00 - 31.25	1.0000	1.0000
L6	17	LDF7-50A(1-5/8)	0.00 - 31.25	1.0000	1.0000
L6	18	2" Flexible Conduit	0.00 - 31.25	1.0000	1.0000
L6	24	LDF7-50A(1-5/8)	0.00 - 31.25	1.0000	1.0000
L6	26	LDF5-50A(7/8)	0.00 - 31.25	1.0000	1.0000

Effective Width of Flat Linear Attachments / Feed Lines

Tower	Attachment	Description	Attachment	Ratio	Effective
Section	Record No.	•	Segment	Calculatio	Width
			Elev.	n	Ratio
				Method	
L1	2	PiRod Ladder	164.25 -	Manual	1.0000
			169.00		
L2	2	PiRod Ladder	129.75 -	Manual	1.0000
			164.25		
L3	2	PiRod Ladder	96.08 -	Manual	1.0000
			129.75		
L4	2	PiRod Ladder	63.25 -	Manual	1.0000
			96.08		
L5	2	PiRod Ladder	31.25 -	Manual	1.0000
			63.25		
L6	2	PiRod Ladder	0.00 - 31.25	Manual	1.0000

Discrete	Tower	Loade
INSCIPT	a IOWer	i nans

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft ²	ft ²	К
Lightning Rod 5/8" x 4'	С	From Leg	3.00 0.00 2.00	0.0000	169.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.25 0.66 0.97 1.49	0.25 0.66 0.97 1.49	0.03 0.03 0.04 0.06
8' x 3" Mount Pipe	С	From Leg	3.00 0.00 0.00	0.0000	167.00	No Ice 1/2" Ice	2.40 3.19 3.67	2.40 3.19 3.67	0.04 0.06 0.08

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
***						1" Ice 2" Ice	4.68	4.68	0.14
APXVAARR24_43-U-NA20	Α	From Leg	4.00	0.0000	164.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe	,,	i ioni Log	0.00	0.0000	101.00	1/2"	15.46	7.55	0.31
•			1.00			Ice	16.23	8.25	0.46
						1" Ice	17.82	9.67	0.79
ADVI/AADD24 42 II NA20	D	From Log	4.00	0.0000	164.00	2" Ice	14.60	6.07	0.40
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.00 0.00	0.0000	164.00	No Ice 1/2"	14.69 15.46	6.87 7.55	0.19 0.31
w/ wount ripe			1.00			Ice	16.23	8.25	0.46
			1.00			1" Ice	17.82	9.67	0.79
						2" Ice		0.0.	00
APXVAARR24_43-U-NA20	С	From Leg	4.00	0.0000	164.00	No Ice	14.69	6.87	0.19
w/ Mount Pipe		_	0.00			1/2"	15.46	7.55	0.31
			1.00			Ice	16.23	8.25	0.46
						1" Ice	17.82	9.67	0.79
AID0440 D44/ Massat		F	4.00	0.0000	404.00	2" Ice	5.40	0.70	0.40
AIR6449 B41 w/ Mount	Α	From Leg	4.00 0.00	0.0000	164.00	No Ice 1/2"	5.18 5.59	2.72 3.05	0.12 0.16
Pipe			1.00			Ice	6.01	3.39	0.16
			1.00			1" Ice	6.90	4.13	0.34
						2" Ice	0.00	0	0.0.
AIR6449 B41 w/ Mount	В	From Leg	4.00	0.0000	164.00	No Ice	5.18	2.72	0.12
Pipe		_	0.00			1/2"	5.59	3.05	0.16
			1.00			Ice	6.01	3.39	0.22
						1" Ice	6.90	4.13	0.34
AID0440 D44/ Max	0	F	4.00	0.0000	404.00	2" Ice	5.40	0.70	0.40
AIR6449 B41 w/ Mount	С	From Leg	4.00 0.00	0.0000	164.00	No Ice 1/2"	5.18 5.59	2.72 3.05	0.12 0.16
Pipe			1.00			Ice	6.01	3.39	0.16
			1.00			1" Ice	6.90	4.13	0.34
						2" Ice			
AIR 32 B2A/B66AA w/	Α	From Leg	4.00	0.0000	164.00	No Ice	3.76	3.15	0.19
Mount Pipe			0.00			1/2"	4.12	3.49	0.25
			1.00			Ice	4.48	3.84	0.32
						1" Ice 2" Ice	5.24	4.58	0.48
AIR 32 B2A/B66AA w/	В	From Leg	4.00	0.0000	164.00	No Ice	3.76	3.15	0.19
Mount Pipe	В	1 Tom Log	0.00	0.0000	104.00	1/2"	4.12	3.49	0.15
Would he			1.00			Ice	4.48	3.84	0.32
						1" Ice	5.24	4.58	0.48
						2" Ice			
AIR 32 B2A/B66AA w/	С	From Leg	4.00	0.0000	164.00	No Ice	3.76	3.15	0.19
Mount Pipe			0.00			1/2"	4.12	3.49	0.25
			1.00			lce 1" lce	4.48 5.24	3.84 4.58	0.32 0.48
						2" Ice	5.24	4.30	0.46
RADIO 4449 B71 B85A T-	Α	From Leg	4.00	0.0000	164.00	No Ice	1.97	1.59	0.07
MOBILE	, ,		0.00	0.000		1/2"	2.15	1.75	0.09
			1.00			Ice	2.33	1.92	0.12
						1" Ice	2.72	2.28	0.17
5.5.6 5 5	_					2" Ice			
RADIO 4449 B71 B85A_T-	В	From Leg	4.00	0.0000	164.00	No Ice	1.97	1.59	0.07
MOBILE			0.00			1/2"	2.15	1.75	0.09
			1.00			lce 1" lce	2.33 2.72	1.92 2.28	0.12 0.17
						2" Ice	2.12	2.20	0.17
RADIO 4449 B71 B85A_T-	С	From Leg	4.00	0.0000	164.00	No Ice	1.97	1.59	0.07
MOBILE		- 3	0.00			1/2"	2.15	1.75	0.09
			1.00			Ice	2.33	1.92	0.12
						1" Ice	2.72	2.28	0.17
DDUO 4445 DOS		F==== 1	4.00	0.0000	404.00	2" Ice	4.04	0.00	0.04
RRUS 4415 B25	Α	From Leg	4.00 0.00	0.0000	164.00	No Ice 1/2"	1.64 1.80	0.68 0.79	0.04 0.06
			0.00			1/4	1.00	0.19	0.00

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft ²	K
			1.00			Ice 1" Ice 2" Ice	1.97 2.33	0.91 1.18	0.07 0.11
RRUS 4415 B25	В	From Leg	4.00 0.00 1.00	0.0000	164.00	No Ice 1/2" Ice 1" Ice	1.64 1.80 1.97 2.33	0.68 0.79 0.91 1.18	0.04 0.06 0.07 0.11
RRUS 4415 B25	С	From Leg	4.00 0.00 1.00	0.0000	164.00	2" Ice No Ice 1/2" Ice 1" Ice	1.64 1.80 1.97 2.33	0.68 0.79 0.91 1.18	0.04 0.06 0.07 0.11
Platform Mount [LP 404- 1_KCKR]	С	None		0.0000	164.00	2" Ice No Ice 1/2" Ice 1" Ice	35.82 45.85 55.76 75.77	35.82 45.85 55.76 75.77	2.32 3.02 3.89 6.14
(2) 4' x 2" Pipe Mount	Α	From Leg	4.00 0.00 0.00	0.0000	164.00	2" Ice No Ice 1/2" Ice 1" Ice	0.79 1.03 1.28 1.81	0.79 1.03 1.28 1.81	0.03 0.04 0.04 0.07
(2) 4' x 2" Pipe Mount	В	From Leg	4.00 0.00 0.00	0.0000	164.00	2" Ice No Ice 1/2" Ice 1" Ice	0.79 1.03 1.28 1.81	0.79 1.03 1.28 1.81	0.03 0.04 0.04 0.07
(2) 4' x 2" Pipe Mount	С	From Leg	4.00 0.00 0.00	0.0000	164.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	0.79 1.03 1.28 1.81	0.79 1.03 1.28 1.81	0.03 0.04 0.04 0.07
*** COL45-70	Α	From Leg	4.00 0.00 4.00	0.0000	164.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.38 2.32 3.27 4.82	1.38 2.32 3.27 4.82	0.01 0.02 0.03 0.09
COL45-70	Α	From Leg	4.00 0.00 4.00	0.0000	164.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.38 2.32 3.27 4.82	1.38 2.32 3.27 4.82	0.01 0.02 0.03 0.09
COL45-70	В	From Leg	4.00 0.00 4.00	0.0000	164.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.38 2.32 3.27 4.82	1.38 2.32 3.27 4.82	0.01 0.02 0.03 0.09
APXVTM14-C-120 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	155.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.09 4.48 4.88 5.71	2.86 3.23 3.61 4.40	0.08 0.13 0.19 0.33
APXVTM14-C-120 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	155.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.09 4.48 4.88 5.71	2.86 3.23 3.61 4.40	0.08 0.13 0.19 0.33
APXVTM14-C-120 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	155.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.09 4.48 4.88 5.71	2.86 3.23 3.61 4.40	0.08 0.13 0.19 0.33

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft²	K
APXVSPP18-C-A20 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	155.00	No Ice 1/2" Ice 1" Ice	4.60 5.05 5.50 6.44	4.01 4.45 4.89 5.82	0.10 0.16 0.23 0.42
APXVSPP18-C-A20 w/ Mount Pipe	В	From Leg	4.00 0.00	0.0000	155.00	2" Ice No Ice 1/2"	4.60 5.05	4.01 4.45	0.10 0.16
APXVSPP18-C-A20 w/	С	From Leg	0.00 4.00	0.0000	155.00	Ice 1" Ice 2" Ice No Ice	5.50 6.44 4.60	4.89 5.82 4.01	0.23 0.42 0.10
Mount Pipe	O	1 Tom Leg	0.00 0.00	0.0000	100.00	1/2" Ice 1" Ice 2" Ice	5.05 5.50 6.44	4.45 4.89 5.82	0.16 0.23 0.42
TD-RRH8x20-25	Α	From Leg	4.00 0.00 0.00	0.0000	155.00	No Ice 1/2" Ice 1" Ice	4.05 4.30 4.56 5.10	1.53 1.71 1.90 2.30	0.07 0.10 0.13 0.20
TD-RRH8x20-25	В	From Leg	4.00 0.00 0.00	0.0000	155.00	2" Ice No Ice 1/2" Ice	4.05 4.30 4.56	1.53 1.71 1.90	0.07 0.10 0.13
TD-RRH8x20-25	С	From Leg	4.00	0.0000	155.00	1" Ice 2" Ice No Ice 1/2"	5.10 4.05	2.30 1.53	0.20 0.07
			0.00 0.00			Ice 1" Ice 2" Ice	4.30 4.56 5.10	1.71 1.90 2.30	0.10 0.13 0.20
800MHZ RRH	Α	From Leg	4.00 0.00 0.00	0.0000	155.00	No Ice 1/2" Ice 1" Ice 2" Ice	2.13 2.32 2.51 2.92	1.77 1.95 2.13 2.51	0.05 0.07 0.10 0.16
800MHZ RRH	В	From Leg	4.00 0.00 0.00	0.0000	155.00	No Ice 1/2" Ice 1" Ice	2.13 2.32 2.51 2.92	1.77 1.95 2.13 2.51	0.05 0.07 0.10 0.16
800MHZ RRH	С	From Leg	4.00 0.00 0.00	0.0000	155.00	2" Ice No Ice 1/2" Ice 1" Ice	2.13 2.32 2.51 2.92	1.77 1.95 2.13 2.51	0.05 0.07 0.10 0.16
1900MHz RRH	Α	From Leg	4.00 0.00 0.00	0.0000	155.00	2" Ice No Ice 1/2" Ice 1" Ice	2.49 2.70 2.91 3.35	3.26 3.48 3.72 4.21	0.04 0.08 0.11 0.19
1900MHz RRH	В	From Leg	4.00 0.00 0.00	0.0000	155.00	2" Ice No Ice 1/2" Ice	2.49 2.70 2.91	3.26 3.48 3.72	0.04 0.08 0.11
1900MHz RRH	С	From Leg	4.00 0.00 0.00	0.0000	155.00	1" Ice 2" Ice No Ice 1/2" Ice	3.35 2.49 2.70 2.91	4.21 3.26 3.48 3.72	0.19 0.04 0.08 0.11
Platform Mount [LP 305-1]	С	None		0.0000	155.00	1" Ice 2" Ice No Ice 1/2" Ice	3.35 18.04 22.04 26.06	4.21 18.04 22.04 26.06	0.19 1.12 1.47 1.88
						1" Ice 2" Ice	34.16	34.16	2.90

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft ^e	ft ²	K
6' x 2" Mount Pipe	A	From Leg	4.00	0.0000	155.00	No Ice	1.43	1.43	0.02
·		Ū	0.00			1/2"	1.92	1.92	0.03
			0.00			Ice	2.29	2.29	0.05
						1" Ice 2" Ice	3.06	3.06	0.09
6' x 2" Mount Pipe	В	From Leg	4.00	0.0000	155.00	No Ice	1.43	1.43	0.02
o XZ Wount i po		1 Tom Log	0.00	0.0000	100.00	1/2"	1.92	1.92	0.03
			0.00			Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
6' v 2" Mount Ding	C	From Log	4.00	0.0000	155.00	2" Ice	1 12	1 12	0.02
6' x 2" Mount Pipe	С	From Leg	4.00 0.00	0.0000	155.00	No Ice 1/2"	1.43 1.92	1.43 1.92	0.02 0.03
			0.00			Ice	2.29	2.29	0.05
						1" Ice	3.06	3.06	0.09
						2" Ice			
*** MT6407-77A w/ Mount	Α	From Leg	4.00	0.0000	142.00	No Ice	4.91	2.68	0.10
Pipe	А	Fioni Leg	0.00	0.0000	142.00	1/2"	5.26	3.14	0.10
po			0.00			Ice	5.61	3.62	0.18
						1" Ice	6.36	4.63	0.29
	_					2" Ice			
MT6407-77A w/ Mount	В	From Leg	4.00	0.0000	142.00	No Ice	4.91	2.68	0.10
Pipe			0.00 0.00			1/2" Ice	5.26 5.61	3.14 3.62	0.14 0.18
			0.00			1" Ice	6.36	4.63	0.10
						2" Ice			
MT6407-77A w/ Mount	С	From Leg	4.00	0.0000	142.00	No Ice	4.91	2.68	0.10
Pipe			0.00			1/2"	5.26	3.14	0.14
			0.00			Ice 1" Ice	5.61 6.36	3.62 4.63	0.18 0.29
						2" Ice	0.50	4.03	0.23
(2) LPA-80080/6CF w/	Α	From Leg	4.00	0.0000	142.00	No Ice	4.56	10.26	0.05
Mount Pipe			0.00			1/2"	5.11	11.43	0.11
			0.00			Ice	5.61	12.31	0.19
						1" Ice 2" Ice	6.65	14.13	0.36
(2) LPA-80080/6CF w/	В	From Leg	4.00	0.0000	142.00	No Ice	4.56	10.26	0.05
Mount Pipe		J	0.00			1/2"	5.11	11.43	0.11
			0.00			Ice	5.61	12.31	0.19
						1" Ice	6.65	14.13	0.36
(2) LPA-80080/6CF w/	С	From Leg	4.00	0.0000	142.00	2" Ice No Ice	4.56	10.26	0.05
Mount Pipe	Ü	1 Tom Log	0.00	0.0000	142.00	1/2"	5.11	11.43	0.11
•			0.00			Ice	5.61	12.31	0.19
						1" Ice	6.65	14.13	0.36
SBNHH-1D65B w/ Mount	Α	From Leg	4.00	0.0000	142.00	2" Ice No Ice	4.09	3.30	0.07
Pipe	А	Fioni Leg	0.00	0.0000	142.00	1/2"	4.09	3.68	0.07
pc			0.00			Ice	4.89	4.07	0.20
						1" Ice	5.72	4.87	0.39
CDNIIII ADCED/ Maxima	D	Ги	4.00	0.0000	4.40.00	2" Ice	4.00	2.20	0.07
SBNHH-1D65B w/ Mount Pipe	В	From Leg	4.00 0.00	0.0000	142.00	No Ice 1/2"	4.09 4.49	3.30 3.68	0.07 0.13
i ipc			0.00			Ice	4.89	4.07	0.20
						1" Ice	5.72	4.87	0.39
ODNIIII (DOED / ***	^	F '	4.00	0.0000	440.00	2" Ice	4.00	0.00	0.0=
SBNHH-1D65B w/ Mount	С	From Leg	4.00	0.0000	142.00	No Ice	4.09	3.30	0.07
Pipe			0.00 0.00			1/2" Ice	4.49 4.89	3.68 4.07	0.13 0.20
			0.00			1" Ice	5.72	4.87	0.39
						2" Ice		-	
SBNHH-1D65B	Α	From Leg	4.00	0.0000	142.00	No Ice	4.16	2.49	0.04
			0.00 0.00			1/2" Ice	4.57 4.99	2.88 3.27	0.09 0.15
			0.00			1" Ice	4.99 5.85	3.27 4.09	0.15

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ^e	ft²	K
SBNHH-1D65B	В	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.16 4.57 4.99 5.85	2.49 2.88 3.27 4.09	0.04 0.09 0.15 0.28
SBNHH-1D65B	С	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.16 4.57 4.99 5.85	2.49 2.88 3.27 4.09	0.04 0.09 0.15 0.28
RFV01U-D1A	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.88 2.05 2.22 2.60	1.25 1.39 1.54 1.86	0.08 0.10 0.12 0.18
RFV01U-D1A	В	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.88 2.05 2.22 2.60	1.25 1.39 1.54 1.86	0.08 0.10 0.12 0.18
RFV01U-D1A	С	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.88 2.05 2.22 2.60	1.25 1.39 1.54 1.86	0.08 0.10 0.12 0.18
RFV01U-D2A	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice	1.88 2.05 2.22 2.60	1.01 1.14 1.28 1.59	0.07 0.09 0.11 0.15
RFV01U-D2A	В	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	1.88 2.05 2.22 2.60	1.01 1.14 1.28 1.59	0.07 0.09 0.11 0.15
RFV01U-D2A	С	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	1.88 2.05 2.22 2.60	1.01 1.14 1.28 1.59	0.07 0.09 0.11 0.15
DB-T1-6Z-8AB-0Z	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	4.80 5.07 5.35 5.93	2.00 2.19 2.39 2.81	0.04 0.08 0.12 0.21
DB-T1-6Z-8AB-0Z	С	From Leg	4.00 0.00 0.00	0.0000	142.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.80 5.07 5.35 5.93	2.00 2.19 2.39 2.81	0.04 0.08 0.12 0.21
Platform Mount [LP 403-1]	С	None		0.0000	142.00	No Ice 1/2" Ice 1" Ice	18.94 23.31 27.74 36.77	18.94 23.31 27.74 36.77	1.50 1.90 2.37 3.53
Dual Antenna Mounting Bracket	Α	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.07 0.09 0.11 0.15
Dual Antenna Mounting Bracket	В	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.07 0.09 0.11 0.15

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Vert ft ft ft	0	ft		ft ²	ft²	К
Dual Antenna Mounting Bracket	С	From Leg	4.00 0.00 0.00	0.0000	142.00	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.07 0.09 0.11 0.15
***						2 ICE			
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	132.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	132.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	132.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.11 0.19 0.29 0.52
TA08025-B604	Α	From Leg	4.00 0.00 0.00	0.0000	132.00	No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B604	В	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B604	С	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B605	Α	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
TA08025-B605	В	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
TA08025-B605	С	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
RDIDC-9181-PF-48	С	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	2.31 2.50 2.70 3.12	1.29 1.45 1.61 1.96	0.02 0.04 0.06 0.12
Commscope MC-PK8-DSH	С	None		0.0000	132.00	2" Ice No Ice 1/2" Ice 1" Ice	34.24 62.95 91.66 149.08	34.24 62.95 91.66 149.08	1.75 2.10 2.45 3.15
(2) 8' x 2" Mount Pipe	Α	From Leg	4.00 0.00 0.00	0.0000	132.00	2" Ice No Ice 1/2" Ice	1.90 2.73 3.40	1.90 2.73 3.40	0.03 0.04 0.06

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	ft		ft ²	ft ²	K
						1" Ice	4.40	4.40	0.12
(2) 8' x 2" Mount Pipe	В	From Leg	4.00	0.0000	132.00	2" Ice No Ice	1.90	1.90	0.03
(2) 6 X 2 Would Tipe		1 Tom Log	0.00	0.0000	132.00	1/2"	2.73	2.73	0.04
			0.00			Ice	3.40	3.40	0.06
						1" Ice 2" Ice	4.40	4.40	0.12
(2) 8' x 2" Mount Pipe	С	From Leg	4.00	0.0000	132.00	No Ice 1/2"	1.90 2.73	1.90 2.73	0.03 0.04
			0.00 0.00			Ice	3.40	3.40	0.04
***			0.00			1" Ice 2" Ice	4.40	4.40	0.12
201-4	Α	From Leg	3.00	0.0000	121.00	No Ice	1.13	1.13	0.00
			0.00			1/2"	2.00	2.00	0.01
			4.00			Ice	2.90	2.90	0.03
0'da Arra Manas 100 704	•	F1	4.50	0.0000	404.00	1" Ice 2" Ice	4.31	4.31	0.08
Side Arm Mount [SO 701-	Α	From Leg	1.50 0.00	0.0000	121.00	No Ice 1/2"	0.85 1.14	1.67 2.34	0.07 0.08
1]			0.00			lce	1.14	3.01	0.08
			0.00			1" Ice	2.01	4.35	0.12
41 v 2" Dine Mount	۸	From Log	2.00	0.0000	121.00	2" Ice	0.70	0.70	0.02
4' x 2" Pipe Mount	Α	From Leg	3.00 0.00	0.0000	121.00	No Ice 1/2"	0.79 1.03	0.79 1.03	0.03 0.04
			0.00			Ice	1.03	1.03	0.04
			0.00			1" Ice	1.81	1.81	0.07
***						2" Ice			
7770.00	Α	From Leg	4.00	0.0000	115.00	No Ice	5.51	2.93	0.04
			0.00			1/2"	5.87	3.27	0.07
			0.00			Ice	6.23	3.63	0.11
						1" Ice 2" Ice	6.99	4.35	0.20
7770.00	В	From Leg	4.00	0.0000	115.00	No Ice	5.51	2.93	0.04
			0.00			1/2"	5.87	3.27	0.07
			0.00			Ice	6.23	3.63	0.11
						1" Ice 2" Ice	6.99	4.35	0.20
7770.00	С	From Leg	4.00	0.0000	115.00	No Ice	5.51	2.93	0.04
		_	0.00			1/2"	5.87	3.27	0.07
			0.00			Ice	6.23	3.63	0.11
						1" Ice 2" Ice	6.99	4.35	0.20
AM-X-CD-16-65-00T-RET	Α	From Leg	4.00	0.0000	115.00	No Ice	4.69	2.34	0.05
			0.00			1/2"	5.15	2.77	0.10
			0.00			Ice 1" Ice 2" Ice	5.61 6.57	3.20 4.10	0.15 0.27
AM-X-CD-16-65-00T-RET	В	From Leg	4.00	0.0000	115.00	No Ice	4.69	2.34	0.05
			0.00			1/2"	5.15	2.77	0.10
			0.00			Ice	5.61	3.20	0.15
						1" Ice 2" Ice	6.57	4.10	0.27
AM-X-CD-16-65-00T-RET	С	From Leg	4.00	0.0000	115.00	No Ice	4.69	2.34	0.05
			0.00			1/2"	5.15	2.77	0.10
			0.00			Ice	5.61	3.20	0.15
						1" Ice 2" Ice	6.57	4.10	0.27
80010965	Α	From Leg	4.00	0.0000	115.00	No Ice	12.23	4.21	0.11
		ŭ	0.00			1/2"	13.00	4.88	0.19
			0.00			Ice	13.79	5.57	0.27
						1" Ice 2" Ice	15.41	6.99	0.46
80010965	В	From Leg	4.00	0.0000	115.00	No Ice	12.23	4.21	0.11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ^e	ft²	K
			0.00			1/2" Ice 1" Ice	13.00 13.79 15.41	4.88 5.57 6.99	0.19 0.27 0.46
80010965	С	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	12.23 13.00 13.79 15.41	4.21 4.88 5.57 6.99	0.11 0.19 0.27 0.46
QS66512-2	Α	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	4.01 4.41 4.81 5.65	3.37 3.76 4.15 4.97	0.11 0.17 0.23 0.38
QS66512-2	В	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	4.01 4.41 4.81 5.65	3.37 3.76 4.15 4.97	0.11 0.17 0.23 0.38
QS66512-2	С	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	4.01 4.41 4.81 5.65	3.37 3.76 4.15 4.97	0.11 0.17 0.23 0.38
(3) DBCT108F1V92-1	А	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	0.32 0.40 0.49 0.69	0.64 0.74 0.85 1.09	0.03 0.03 0.04 0.06
(2) DBCT108F1V92-1	В	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	0.32 0.40 0.49 0.69	0.64 0.74 0.85 1.09	0.03 0.03 0.04 0.06
DBCT108F1V92-1	С	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	0.32 0.40 0.49 0.69	0.64 0.74 0.85 1.09	0.03 0.03 0.04 0.06
RRUS 12 B2	Α	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	3.14 3.36 3.59 4.07	1.28 1.43 1.60 1.95	0.05 0.07 0.10 0.16
RRUS 12 B2	В	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	3.14 3.36 3.59 4.07	1.93 1.28 1.43 1.60 1.95	0.05 0.07 0.10 0.16
RRUS 12 B2	С	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice 1" Ice	3.14 3.36 3.59	1.28 1.43 1.60	0.05 0.07 0.10
DTMABP7819VG12A	Α	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice 2" Ice No Ice 1/2" Ice 1" Ice	4.07 0.98 1.10 1.23 1.52	1.95 0.34 0.42 0.51 0.71	0.16 0.02 0.03 0.04 0.06
DTMABP7819VG12A	В	From Leg	4.00 0.00 0.00	0.0000	115.00	2" Ice No Ice 1/2" Ice	0.98 1.10 1.23	0.34 0.42 0.51	0.02 0.03 0.04
DTMABP7819VG12A	С	From Leg	4.00	0.0000	115.00	1" Ice 2" Ice No Ice	1.52 0.98	0.71 0.34	0.06

Leg Lateral t Vert ft ft ft ft ft ft ft ft ft ft ft ft ft	0.03 0.04 0.06 0.08 0.09 0.14 0.06 0.08
RRUS 4478 B5 A From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 11 Ice 2.57 1.66 2" Ice 1.28 1.06 1.29 1.34 1" Ice 2.57 1.66 2" Ice 1.29 1.34 1" Ice 2.57 1.66 2" Ice 1.29 1.34 1" Ice 2.57 1.66 2" Ice 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	0.04 0.06 0.06 0.08 0.09 0.14 0.06 0.08
RRUS 4478 B5 A From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 115.00 No Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 B From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 1/2" Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.57 1.66 2" Ice 2.19 1.34 1" Ice 2.57 1.66 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 0.000 1/2" 2.01 1.20 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.04 0.06 0.06 0.08 0.09 0.14 0.06 0.08
RRUS 4478 B5 A From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 B From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 Ice 2.19 1.34 1.06 0.00 1/2" 2.01 1.20 Ice 2.19 1.34	0.08 0.09 0.14 0.06 0.08
RRUS 4478 B5 B From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1.20 0.000 115.00 No Ice 2.19 1.34 1.06 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	0.09 0.14 0.06 0.08
RRUS 4478 B5 B From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1.000 Ice 2.19 1.34 1" Ice 2.57 1.66 RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 Ice 2.19 1.34	0.14 0.06 0.08
RRUS 4478 B5 B From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 Ice 2.19 1.34 1" Ice 2.57 1.66 2" Ice	0.08
0.00 1/2" 2.01 1.20 0.00 lce 2.19 1.34 1" lce 2.57 1.66 2" lce RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No lce 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 lce 2.19 1.34	0.08
RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 Ice 2.19 1.34	
RRUS 4478 B5 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06 0.00 1/2" 2.01 1.20 0.00 Ice 2.19 1.34	0.09
0.00 1/2" 2.01 1.20 0.00 lce 2.19 1.34	0.14 0.06
0.00 lce 2.19 1.34	0.08
	0.00
1" Ice 2.57 1.66 2" Ice	0.14
RRUS 4478 B14 A From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06	0.06
0.00 1/2" 2.01 1.20	0.08
0.00 lce 2.19 1.34	0.09
1" Ice 2.57 1.66 2" Ice (2) RRUS 4478 B14 C From Leg 4.00 0.0000 115.00 No Ice 1.84 1.06	0.14 0.06
0.00 1/2" 2.01 1.20	0.08
0.00 lce 2.19 1.34	0.09
1" Ice 2.57 1.66 2" Ice	0.14
WCS RRUS-32-B30 A From Leg 4.00 0.0000 115.00 No Ice 3.31 2.42	0.08
0.00 1/2" 3.56 2.64	0.10
0.00 lce 3.81 2.86 1" lce 4.33 3.32 2" lce	0.14 0.21
WCS RRUS-32-B30 B From Leg 4.00 0.0000 115.00 No Ice 3.31 2.42	0.08
0.00 1/2" 3.56 2.64	0.10
0.00 lce 3.81 2.86	0.14
1" lce 4.33 3.32 2" lce	0.21
WCS RRUS-32-B30 C From Leg 4.00 0.0000 115.00 No Ice 3.31 2.42	0.08
0.00 1/2" 3.56 2.64 0.00 lce 3.81 2.86	0.10 0.14
1" lce 4.33 3.32 2" lce	0.21
(2) TPX-070821 A From Leg 4.00 0.0000 115.00 No Ice 0.47 0.10	0.01
0.00 1/2" 0.56 0.15	0.01
0.00 lce 0.66 0.20 1" lce 0.87 0.33 2" lce	0.02 0.03
(2) TPX-070821 B From Leg 4.00 0.0000 115.00 No Ice 0.47 0.10	0.01
0.00 1/2" 0.56 0.15	0.01
0.00 lce 0.66 0.20	0.02
1" Ice 0.87 0.33 2" Ice	0.03
(2) TPX-070821 C From Leg 4.00 0.0000 115.00 No Ice 0.47 0.10	0.01
0.00 1/2" 0.56 0.15	0.01
0.00 lce 0.66 0.20 1" lce 0.87 0.33 2" lce	0.02 0.03
(2) RRUS 11 B From Leg 4.00 0.0000 115.00 No Ice 2.78 1.19	0.05
0.00 1/2" 2.99 1.33	0.07
0.00 lce 3.21 1.49	0.09
1" Ice 3.66 1.83	0.15
2" Ice RRUS 11 C From Leg 4.00 0.0000 115.00 No Ice 2.78 1.19	0.05

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft ²	K
			0.00 0.00			1/2" Ice	2.99 3.21	1.33 1.49	0.07 0.09
	_					1" Ice 2" Ice	3.66	1.83	0.15
RRUS 4426 B66	В	From Leg	4.00 0.00	0.0000	115.00	No Ice 1/2"	1.64 1.80	0.73 0.84	0.05 0.06
			0.00			Ice 1" Ice 2" Ice	1.97 2.33	0.97 1.24	0.08 0.11
(2) RRUS 4426 B66	С	From Leg	4.00 0.00	0.0000	115.00	No Ice 1/2"	1.64 1.80	0.73 0.84	0.05 0.06
			0.00			Ice	1.97	0.97	0.08
						1" Ice 2" Ice	2.33	1.24	0.11
DC6-48-60-18-8F	Α	From Leg	4.00	0.0000	115.00	No Ice	1.21	1.21	0.02
			0.00 0.00			1/2" Ice	1.89 2.11	1.89 2.11	0.04 0.07
			0.00			1" Ice 2" Ice	2.57	2.57	0.13
DC6-48-60-18-8F	В	From Leg	4.00	0.0000	115.00	No Ice	1.21	1.21	0.02
			0.00 0.00			1/2" Ice	1.89 2.11	1.89	0.04 0.07
			0.00			1" Ice 2" Ice	2.57	2.11 2.57	0.13
DC6-48-60-18-8C	В	From Leg	4.00	0.0000	115.00	No Ice	1.14	1.14	0.03
			0.00 0.00			1/2" Ice	1.79 2.00	1.79 2.00	0.05 0.07
						1" Ice 2" Ice	2.45	2.45	0.13
Platform Mount [LP 301-1]	С	None		0.0000	115.00	No Ice	23.81	23.81	1.59
						1/2" Ice	30.24 36.33	30.24 36.33	2.10 2.73
Al as Oll Dire a Massact	•	From Low	4.00	0.0000	445.00	1" Ice 2" Ice	48.05	48.05	4.34
4' x 2" Pipe Mount	Α	From Leg	1.00 0.00	0.0000	115.00	No Ice 1/2"	0.79 1.03	0.79 1.03	0.03 0.04
			0.00			Ice	1.28	1.28	0.04
						1" Ice 2" Ice	1.81	1.81	0.07
4' x 2" Pipe Mount	В	From Leg	1.00 0.00	0.0000	115.00	No Ice 1/2"	0.79 1.03	0.79 1.03	0.03 0.04
			0.00			Ice	1.03	1.28	0.04
						1" Ice 2" Ice	1.81	1.81	0.07
4' x 2" Pipe Mount	С	From Leg	1.00	0.0000	115.00	No Ice	0.79	0.79	0.03
			0.00 0.00			1/2" Ice	1.03 1.28	1.03 1.28	0.04 0.04
***						1" Ice 2" Ice	1.81	1.81	0.07
APXV18-206517S-C w/	Α	From Leg	1.00	0.0000	105.00	No Ice	3.79	3.16	0.05
Mount Pipe			0.00 0.00			1/2" Ice	4.38 4.99	3.75 4.35	0.09 0.15
			0.00			1" Ice 2" Ice	6.25	5.59	0.28
APXV18-206517S-C w/	В	From Leg	1.00	0.0000	105.00	No Ice	3.79	3.16	0.05
Mount Pipe			0.00 0.00			1/2" Ice	4.38 4.99	3.75 4.35	0.09 0.15
			0.00			1" Ice	6.25	5.59	0.28
APXV18-206517S-C w/	С	From Leg	1.00	0.0000	105.00	2" Ice No Ice	3.79	3.16	0.05
Mount Pipe		3	0.00			1/2"	4.38	3.75	0.09
			0.00			Ice 1" Ice	4.99 6.25	4.35 5.59	0.15 0.28
						2" Ice			

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft ²	ft²	К

DB810T3E-XT	Α	From Leg	3.00 0.00	0.0000	74.00	No Ice 1/2"	4.53 6.07	4.53 6.07	0.05 0.08
			9.00			Ice 1" Ice 2" Ice	7.63 10.79	7.63 10.79	0.12 0.24
Side Arm Mount [SO 701- 1]	Α	From Leg	1.50 0.00 0.00	0.0000	74.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.85 1.14 1.43 2.01	1.67 2.34 3.01 4.35	0.07 0.08 0.09 0.12
6' x 2" Mount Pipe	Α	From Leg	3.00 0.00 2.00	0.0000	74.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.43 1.92 2.29 3.06	1.43 1.92 2.29 3.06	0.02 0.03 0.05 0.09
***						2 100			

Load Combinations

Comb.	Description
No	Divided
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp

Comb.	Description
No.	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
No.				Comb.	K	kip-ft	kip-ft
L1	169 - 164.25	Pole	Max Tension	2	0.00	-0.00	-0.00
			Max. Compression	26	-0.52	0.33	-0.18
			Max. Mx	20	-0.28	0.81	-0.07
			Max. My	14	-0.28	0.13	-0.75
			Max. Vy	8	0.31	-0.51	-0.07
			Max. Vx	2	-0.31	0.13	0.58
			Max. Torque	24			0.52
L2	164.25 - 129.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-33.08	1.75	0.68
			Max. Mx	20	-15.12	321.85	-0.47
			Max. My	14	-15.12	1.06	-321.58
			Max. Vy	20	-16.20	321.85	-0.47
			Max. Vx	2	-16.25	0.14	321.57
			Max. Torque	16		• • • • • • • • • • • • • • • • • • • •	-0.68
L3	129.75 - 96.08	Pole	Max Tension	1	0.00	0.00	0.00
	00.00		Max. Compression	26	-61.61	3.70	1.20
			Max. Mx	20	-30.49	1101.54	-3.03
			Max. My	14	-30.51	4.26	-1098.55
			Max. Vy	20	-29.12	1101.54	-3.03
			Max. Vx	2	-28.95	-1.62	1098.33
			Max. Torque	19	20.00	1.02	-1.16
L4	96.08 - 63.25	Pole	Max Tension	1	0.00	0.00	0.00
	00.20		Max. Compression	26	-76.32	5.85	5.62
			Max. Mx	20	-40.34	2097.30	-4.56
			Max. My	2	-40.36	-3.92	2087.07
			Max. Vy	20	-33.17	2097.30	-4.56
			Max. Vx	2	-32.80	-3.92	2087.07
			Max. Torque	21	02.00	0.02	-1.99
L5	63.25 - 31.25	Pole	Max Tension	1	0.00	0.00	0.00
	01.20		Max. Compression	26	-92.33	8.21	8.80
			Max. Mx	20	-51.49	3188.51	-6.52
			Max. My	2	-51.51	-6.07	3166.01
			Max. Vy	20	-36.50	3188.51	-6.52
			Max. Vx	2	-36.10	-6.07	3166.01
			Max. Torque	21	00.10	0.07	-1.99
L6	31.25 - 0	Pole	Max Tension	1	0.00	0.00	0.00
LO	31.23 - 0	I OIC	Max. Compression	26	-112.98	11.06	12.71
			Max. Mx	20	-66.55	4622.16	-8.70
			Max. My	2	-66.55	-8.52	4584.91
			Max. Vy	20	-39.72	-6.52 4622.16	-8.70
			Max. Vx	2	-39.72	-8.52	4584.91
			Max. Vx Max. Torque	21	-JJ.JZ	-0.52	-1.99

Maximum	Reactions
waximum	Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Pole	Max. Vert	36	112.98	11.57	-0.02
	Max. H _x	21	49.93	39.69	-0.08
	Max. H _z	2	66.57	-0.08	39.29
	Max. M _x	2	4584.91	-0.08	39.29
	$Max. M_z$	8	4615.92	-39.69	0.08
	Max. Torsion	9	1.99	-39.69	0.08
	Min. Vert	17	49.93	19.81	-34.07
	Min. H _x	9	49.93	-39.69	0.08
	Min. H _z	15	49.93	0.08	-39.29
	Min. M _x	14	-4579.04	0.08	-39.29
	Min. M _z	20	-4622.16	39.69	-0.08
	Min. Torsion	21	-1.99	39.69	-0.08

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	55.48	0.00	0.00	-2.37	2.46	0.00
1.2 Dead+1.0 Wind 0 deg -	66.57	0.08	-39.29	-4584.91	-8.52	-0.53
No Ice						
0.9 Dead+1.0 Wind 0 deg -	49.93	0.08	-39.29	-4527.79	-9.18	-0.53
No Ice						
1.2 Dead+1.0 Wind 30 deg -	66.57	19.81	-34.07	-3976.87	-2308.41	-1.4
No Ice						
0.9 Dead+1.0 Wind 30 deg -	49.93	19.81	-34.07	-3927.21	-2280.80	-1.4
No Ice						
1.2 Dead+1.0 Wind 60 deg -	66.57	35.81	-20.63	-2361.70	-4088.86	-1.98
No Ice						
0.9 Dead+1.0 Wind 60 deg -	49.93	35.81	-20.63	-2332.18	-4039.82	-1.9
No Ice						
1.2 Dead+1.0 Wind 90 deg -	66.57	39.69	-0.08	-14.59	-4615.92	-1.9
No Ice						
0.9 Dead+1.0 Wind 90 deg -	49.93	39.69	-0.08	-13.68	-4559.99	-1.9
No Ice						
1.2 Dead+1.0 Wind 120 deg	66.57	34.15	19.57	2277.97	-3977.31	-1.4
- No Ice						
0.9 Dead+1.0 Wind 120 deg	49.93	34.15	19.57	2250.67	-3929.18	-1.4
- No Ice						
1.2 Dead+1.0 Wind 150 deg	66.57	19.67	33.98	3959.37	-2288.26	-0.5
- No Ice						
0.9 Dead+1.0 Wind 150 deg	49.93	19.67	33.98	3911.37	-2260.91	-0.5
- No Ice						
1.2 Dead+1.0 Wind 180 deg	66.57	-0.08	39.29	4579.04	14.77	0.5
- No Ice						
0.9 Dead+1.0 Wind 180 deg	49.93	-0.08	39.29	4523.41	13.80	0.5
- No Ice						
1.2 Dead+1.0 Wind 210 deg	66.57	-19.81	34.07	3970.97	2314.66	1.4
- No Ice						
0.9 Dead+1.0 Wind 210 deg	49.93	-19.81	34.07	3922.83	2285.41	1.4
- No Ice						
1.2 Dead+1.0 Wind 240 deg	66.57	-35.81	20.63	2355.81	4095.09	1.9
- No Ice						
0.9 Dead+1.0 Wind 240 deg	49.93	-35.81	20.63	2327.81	4044.42	1.9
- No Ice	aa ==	22.22	2.22	a ==	4000 46	
1.2 Dead+1.0 Wind 270 deg	66.57	-39.69	0.08	8.70	4622.16	1.9
- No Ice	40.00	00.00	0.00	0.04	4504.04	
0.9 Dead+1.0 Wind 270 deg	49.93	-39.69	0.08	9.31	4564.61	1.9
- No Ice	00.57	24.45	40.53	0000 00	2002 52	
1.2 Dead+1.0 Wind 300 deg	66.57	-34.15	-19.57	-2283.86	3983.56	1.4
- No Ice						

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
Combination	K	K	K	kip-ft	kip-ft	kip-ft
0.9 Dead+1.0 Wind 300 deg	49.93	-34.15	-19.57	-2255.04	3933.80	1.46
- No Ice						
1.2 Dead+1.0 Wind 330 deg	66.57	-19.67	-33.98	-3965.27	2294.52	0.53
- No Ice						
0.9 Dead+1.0 Wind 330 deg	49.93	-19.67	-33.98	-3915.75	2265.53	0.53
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	112.98	-0.00	-0.00	-12.71	11.06	-0.00
1.2 Dead+1.0 Wind 0	112.98	0.02	-11.51	-1407.38	8.87	-0.07
deg+1.0 Ice+1.0 Temp		0.02			0.0.	0.0.
1.2 Dead+1.0 Wind 30	112.98	5.80	-9.98	-1221.74	-691.03	-0.48
deg+1.0 Ice+1.0 Temp	112.00	0.00	0.00	1221 1	001.00	0.10
1.2 Dead+1.0 Wind 60	112.98	10.02	-5.77	-712.17	-1202.76	-0.76
deg+1.0 Ice+1.0 Temp	112.00	10.02	0.77	7 12.17	1202.10	0.70
1.2 Dead+1.0 Wind 90	112.98	11.57	-0.02	-15.22	-1389.20	-0.83
deg+1.0 lce+1.0 Temp	112.30	11.57	-0.02	-13.22	-1303.20	-0.03
1.2 Dead+1.0 Wind 120	112.98	10.01	5.74	682.35	-1200.43	-0.69
deg+1.0 lce+1.0 Temp	112.90	10.01	5.74	002.33	-1200.43	-0.09
1.2 Dead+1.0 Wind 150	112.98	5.77	9.96	1193.63	-686.98	-0.36
deg+1.0 lce+1.0 Temp	112.90	3.77	9.90	1193.03	-000.90	-0.30
1.2 Dead+1.0 Wind 180	112.00	0.00	11 51	1201.61	10 55	0.07
	112.98	-0.02	11.51	1381.61	13.55	0.07
deg+1.0 lce+1.0 Temp	440.00	5.00	0.00	4405.07	740.45	0.40
1.2 Dead+1.0 Wind 210	112.98	-5.80	9.98	1195.97	713.45	0.48
deg+1.0 lce+1.0 Temp	440.00	40.00		000.40	4005.40	0.75
1.2 Dead+1.0 Wind 240	112.98	-10.02	5.77	686.40	1225.19	0.75
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	112.98	-11.57	0.02	-10.54	1411.62	0.83
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	112.98	-10.01	-5.74	-708.11	1222.85	0.69
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	112.98	-5.77	-9.96	-1219.40	709.40	0.36
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	55.48	0.02	-9.26	-1073.95	-0.13	-0.11
Dead+Wind 30 deg - Service	55.48	4.67	-8.03	-931.76	-537.97	-0.33
Dead+Wind 60 deg - Service	55.48	8.44	-4.86	-554.09	-954.41	-0.46
Dead+Wind 90 deg - Service	55.48	9.35	-0.02	-5.17	-1077.60	-0.47
Dead+Wind 120 deg -	55.48	8.05	4.61	530.95	-928.25	-0.35
Service						
Dead+Wind 150 deg -	55.48	4.63	8.01	924.14	-533.26	-0.14
Service						
Dead+Wind 180 deg -	55.48	-0.02	9.26	1069.05	5.31	0.11
Service						
Dead+Wind 210 deg -	55.48	-4.67	8.03	926.86	543.14	0.33
Service						
Dead+Wind 240 deg -	55.48	-8.44	4.86	549.20	959.58	0.46
Service	_			-		
Dead+Wind 270 deg -	55.48	-9.35	0.02	0.27	1082.77	0.47
Service	22.10	2.30				
Dead+Wind 300 deg -	55.48	-8.05	-4.61	-535.84	933.42	0.35
Service	33.10	3.30		000.01	000. I L	2.00
Dead+Wind 330 deg -	55.48	-4.63	-8.01	-929.04	538.43	0.14
Service	555		0.01	020.01	5555	3.71

Solution Summary

	Sur	n of Applied Force	es		Sum of Reaction	ns	
Load Comb.	PX K	PY K	PZ K	PX K	PY K	PZ K	% Error
1	0.00	-55.48	0.00	0.00	55.48	0.00	0.000%
2	0.08	-66.57	-39.29	-0.08	66.57	39.29	0.000%
3	0.08	-49.93	-39.29	-0.08	49.93	39.29	0.000%
4	19.81	-66.57	-34.07	-19.81	66.57	34.07	0.000%
5	19.81	-49.93	-34.07	-19.81	49.93	34.07	0.000%
6	35.81	-66.57	-20.63	-35.81	66.57	20.63	0.000%
7	35.81	-49.93	-20.63	-35.81	49.93	20.63	0.000%
8	39.69	-66.57	-0.08	-39.69	66.57	0.08	0.000%
9	39.69	-49.93	-0.08	-39.69	49.93	0.08	0.000%

	Sur	n of Applied Force	es		Sum of Reactions				
Load	PX	PY	PZ	PX	PY	PZ	% Erro		
Comb.	K	K	K	K	K	K			
10	34.15	-66.57	19.57	-34.15	66.57	-19.57	0.000%		
11	34.15	-49.93	19.57	-34.15	49.93	-19.57	0.000%		
12	19.67	-66.57	33.98	-19.67	66.57	-33.98	0.000%		
13	19.67	-49.93	33.98	-19.67	49.93	-33.98	0.000%		
14	-0.08	-66.57	39.29	0.08	66.57	-39.29	0.000%		
15	-0.08	-49.93	39.29	0.08	49.93	-39.29	0.000%		
16	-19.81	-66.57	34.07	19.81	66.57	-34.07	0.000%		
17	-19.81	-49.93	34.07	19.81	49.93	-34.07	0.000%		
18	-35.81	-66.57	20.63	35.81	66.57	-20.63	0.000%		
19	-35.81	-49.93	20.63	35.81	49.93	-20.63	0.000%		
20	-39.69	-66.57	0.08	39.69	66.57	-0.08	0.000%		
21	-39.69	-49.93	0.08	39.69	49.93	-0.08	0.000%		
22	-34.15	-66.57	-19.57	34.15	66.57	19.57	0.000%		
23	-34.15	-49.93	-19.57	34.15	49.93	19.57	0.000%		
24	-19.67	-66.57	-33.98	19.67	66.57	33.98	0.000%		
25	-19.67	-49.93	-33.98	19.67	49.93	33.98	0.000%		
26	0.00	-112.98	0.00	0.00	112.98	0.00	0.000%		
27	0.02	-112.98	-11.51	-0.02	112.98	11.51	0.000%		
28	5.80	-112.98	-9.98	-5.80	112.98	9.98	0.000%		
29	10.02	-112.98	-5.77	-10.02	112.98	5.77	0.000%		
30	11.57	-112.98	-0.02	-11.57	112.98	0.02	0.000%		
31	10.01	-112.98	5.74	-10.01	112.98	-5.74	0.000%		
32	5.77	-112.98	9.96	-5.77	112.98	-9.96	0.000%		
33	-0.02	-112.98	11.51	0.02	112.98	-11.51	0.000%		
34	-5.80	-112.98	9.98	5.80	112.98	-9.98	0.000%		
35	-10.02	-112.98	5.77	10.02	112.98	-5.77	0.000%		
36	-11.57	-112.98	0.02	11.57	112.98	-0.02	0.000%		
37	-10.01	-112.98	-5.74	10.01	112.98	5.74	0.000%		
38	-5.77	-112.98	-9.96	5.77	112.98	9.96	0.000%		
39	0.02	-55.48	-9.26	-0.02	55.48	9.26	0.000%		
40	4.67	-55.48	-8.03	-4.67	55.48	8.03	0.000%		
41	8.44	-55.48	-4.86	-8.44	55.48	4.86	0.000%		
42	9.35	-55.48	-0.02	-9.35	55.48	0.02	0.000%		
43	8.05	-55.48	4.61	-8.05	55.48	-4.61	0.000%		
43	4.63	-55.48	8.01	-4.63	55.48	-8.01	0.000%		
4 4 45	-0.02	-55.48	9.26	0.02	55.48	-9.26	0.0007		
45 46	-0.02 -4.67	-55.48	8.03	4.67	55.48 55.48	-9.26 -8.03	0.0009		
47	-8.44	-55.48	4.86	8.44	55.48	-6.03 -4.86	0.0007		
48	-9.35	-55.48	0.02	9.35	55.48 55.48	-4.00 -0.02	0.000%		
40 49	-9.35 -8.05	-55.48	-4.61	9.35 8.05	55.48 55.48	-0.02 4.61	0.000%		
49 50	-6.05 -4.63	-55.48	-4.61 -8.01	4.63	55.48	4.61 8.01	0.000%		

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.0000001
2	Yes	4	0.0000001	0.00085388
3	Yes	4	0.0000001	0.00041330
4	Yes	6	0.0000001	0.00012110
5	Yes	5	0.0000001	0.00098131
6	Yes	6	0.0000001	0.00012841
7	Yes	6	0.0000001	0.00004371
8	Yes	5	0.0000001	0.00009185
9	Yes	4	0.0000001	0.00099911
10	Yes	6	0.0000001	0.00011981
11	Yes	5	0.0000001	0.00097122
12	Yes	6	0.0000001	0.00012140
13	Yes	5	0.0000001	0.00098497
14	Yes	5	0.0000001	0.00006002
15	Yes	4	0.0000001	0.00061270
16	Yes	6	0.0000001	0.00012490
17	Yes	6	0.0000001	0.00004274
18	Yes	6	0.0000001	0.00012404
19	Yes	6	0.0000001	0.00004206

tnxTower Report - version 8.0.9.0

20	Yes	5	0.0000001	0.00006913
21	Yes	4	0.0000001	0.00073962
22	Yes	6	0.0000001	0.00012314
23	Yes	5	0.0000001	0.00099783
24	Yes	6	0.0000001	0.00012147
25	Yes	5	0.0000001	0.00098410
26	Yes	4	0.0000001	0.00009639
27	Yes	5	0.0000001	0.00092893
28	Yes	6	0.0000001	0.00013710
29	Yes	6	0.0000001	0.00013842
30	Yes	5	0.0000001	0.00091765
31	Yes	6	0.0000001	0.00013429
32	Yes	6	0.0000001	0.00013486
33	Yes	5	0.0000001	0.00091446
34	Yes	6	0.0000001	0.00013833
35	Yes	6	0.0000001	0.00013739
36	Yes	5	0.0000001	0.00093425
37	Yes	6	0.0000001	0.00014024
38	Yes	6	0.0000001	0.00013923
39	Yes	4	0.0000001	0.00014437
40	Yes	4	0.0000001	0.00058681
41	Yes	4	0.0000001	0.00066430
42	Yes	4	0.0000001	0.00015968
43	Yes	4	0.0000001	0.00057907
44	Yes	4	0.0000001	0.00060010
45	Yes	4	0.0000001	0.00014515
46	Yes	4	0.0000001	0.00063710
47	Yes	4	0.0000001	0.00060684
48	Yes	4	0.0000001	0.00015795
49	Yes	4	0.0000001	0.00062758
50	Yes	4	0.0000001	0.00060264

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	169 - 164.25	23.303	47	1.1048	0.0013
L2	166.625 - 129.75	22.753	47	1.1047	0.0013
L3	133.58 - 96.08	15.319	47	1.0153	0.0009
L4	100.75 - 63.25	8.925	47	0.8207	0.0006
L5	68.75 - 31.25	4.206	47	0.5668	0.0005
L6	37.5 - 0	1.282	47	0.3067	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	0	ft
	11111 5 15/01 11					
169.00	Lightning Rod 5/8" x 4'	47	23.303	1.1048	0.0013	75403
167.00	8' x 3" Mount Pipe	47	22.840	1.1047	0.0013	75403
164.00	APXVAARR24_43-U-NA20 w/	47	22.146	1.1035	0.0013	75403
	Mount Pipe					
155.00	APXVTM14-C-120 w/ Mount	47	20.078	1.0905	0.0012	30103
	Pipe					
142.00	MT6407-77A w/ Mount Pipe	47	17.151	1.0511	0.0010	16149
132.00	MX08FRO665-21 w/ Mount Pipe	47	14.983	1.0078	0.0009	12101
121.00	201-4	47	12.712	0.9505	0.0008	10103
115.00	7770.00	47	11.533	0.9153	0.0007	9277
105.00	APXV18-206517S-C w/ Mount	47	9.672	0.8505	0.0007	8165
	Pipe					
74.00	DB810T3E-XT	47	4.868	0.6105	0.0005	7479

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L1	169 - 164.25	99.603	18	4.7261	0.0056
L2	166.625 - 129.75	97.257	18	4.7258	0.0056
L3	133.58 - 96.08	65.501	18	4.3455	0.0041
L4	100.75 - 63.25	38.168	18	3.5127	0.0027
L5	68.75 - 31.25	17.986	18	2.4255	0.0019
L6	37.5 - 0	5.480	18	1.3115	0.0008

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
169.00	Lightning Rod 5/8" x 4'	18	99.603	4.7261	0.0056	18568
167.00	8' x 3" Mount Pipe	18	97.627	4.7261	0.0056	18568
164.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	18	94.666	4.7212	0.0056	18568
155.00	APXVTM14-C-120 w/ Mount Pipe	18	85.830	4.6667	0.0053	7209
142.00	MT6407-77A w/ Mount Pipe	18	73.329	4.4985	0.0046	3831
132.00	MX08FRO665-21 w/ Mount Pipe	18	64.063	4.3137	0.0040	2863
121.00	201-4	18	54.358	4.0687	0.0034	2387
115.00	7770.00	18	49.316	3.9177	0.0032	2190
105.00	APXV18-206517S-C w/ Mount Pipe	18	41.363	3.6402	0.0029	1925
74.00	DB810T3E-XT	18	20.820	2.6126	0.0021	1754

Compression Checks

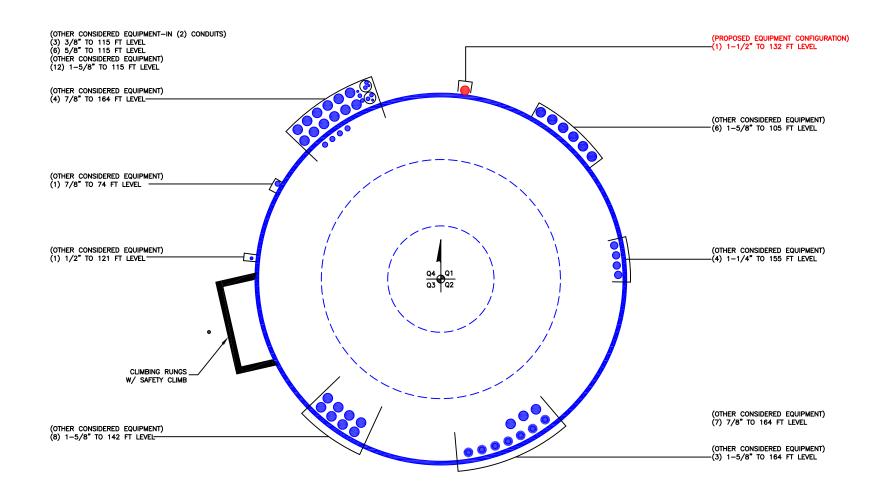
Pole Design Data

Section	Elevation	Size	1	Lu	KI/r	Α	Pu	ϕP_n	Ratio
No.	Liovation	0.20	_	- u	7 47 7		_	Ψ' η	P_u
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
L1	169 - 164.25 (1)	TP26x18x0.25	4.75	0.00	0.0	17.258 6	-0.45	1009.63	0.000
L2	164.25 - 129.75 (2)	TP34.0625x21.5x0.3125	36.88	0.00	0.0	32.181 6	-15.10	1882.62	0.008
L3	129.75 - 96.08 (3)	TP41.75x32.1327x0.375	37.50	0.00	0.0	47.821 1	-30.46	2797.53	0.011
L4	96.08 - 63.25 (4)	TP49.0625x39.8023x0.37 5	37.50	0.00	0.0	56.333 7	-40.29	3295.52	0.012
L5	63.25 - 31.25 (5)	TP56.125x46.9543x0.375	37.50	0.00	0.0	64.537 2	-51.45	3775.43	0.014
L6	31.25 - 0 (6)	TP62.9375x53.8466x0.37 5	37.50	0.00	0.0	74.465 0	-66.55	4356.20	0.015

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	φM _{nx}	Ratio M _{ux}	M _{uy}	φM _{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	169 - 164.25 (1)	TP26x18x0.25	0.83	571.42	0.001	0.00	571.42	0.000
L2	164.25 - 129.75 (2)	TP34.0625x21.5x0.3125	322.48	1557.39	0.207	0.00	1557.39	0.000
L3	129.75 - 96.08 (3)	TP41.75x32.1327x0.375	1106.18	2842.24	0.389	0.00	2842.24	0.000
L4	96.08 - 63.25 (4)	TP49.0625x39.8023x0.37 5	2114.76	3754.93	0.563	0.00	3754.93	0.000
L5	63.25 - 31.25 (5)	TP56.125x46.9543x0.375	3236.35	4686.48	0.691	0.00	4686.48	0.000
L6	31.25 - 0 (6)	TP62.9375x53.8466x0.37 5	4724.37	5847.24	0.808	0.00	5847.24	0.000

Pole Shear Design Data									
Section No.	Elevation	Size	Actual V _u	φV _n	Ratio V _u	Actual T _u	φ <i>T</i> _n	Ratio T _u	
	ft		K	K	ϕV_n	kip-ft	kip-ft	$\overline{\phi T_n}$	
L1	169 - 164.25 (1)	TP26x18x0.25	0.11	302.89	0.000	0.00	576.93	0.000	
L2	164.25 - 129.75 (2)	TP34.0625x21.5x0.3125	16.26	564.79	0.029	0.63	1604.78	0.000	
L3	129.75`-´ 96.08 (3)	TP41.75x32.1327x0.375	29.31	839.26	0.035	0.70	2952.96	0.000	
L4	96.08 - 63.25 (4)	TP49.0625x39.8023x0.37 5	33.88	988.66	0.034	1.98	4097.85	0.000	
L5	63.25 - 31.25 (5)	TP56.125x46.9543x0.375	37.74	1132.63	0.033	1.98	5378.23	0.000	
L6	31.25 - 0 (6)	TP62.9375x53.8466x0.37 5	41.36	1306.86	0.032	1.98	7160.17	0.000	


	Pole Interaction Design Data								
Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ <i>M</i> _{nx}	ϕM_{n_V}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	169 - 164.25 (1)	0.000	0.001	0.000	0.000	0.000	0.002	1.050	4.8.2
L2	164.25 - 129.75 (2)	0.008	0.207	0.000	0.029	0.000	0.216	1.050	4.8.2
L3	129.75 - 96.08 (3)	0.011	0.389	0.000	0.035	0.000	0.401	1.050	4.8.2
L4	96.08 - 63.25 (4)	0.012	0.563	0.000	0.034	0.000	0.577	1.050	4.8.2
L5	63.25 - 31.25 (5)	0.014	0.691	0.000	0.033	0.000	0.705	1.050	4.8.2
L6	31.25 - 0 (6)	0.015	0.808	0.000	0.032	0.000	0.824	1.050	4.8.2

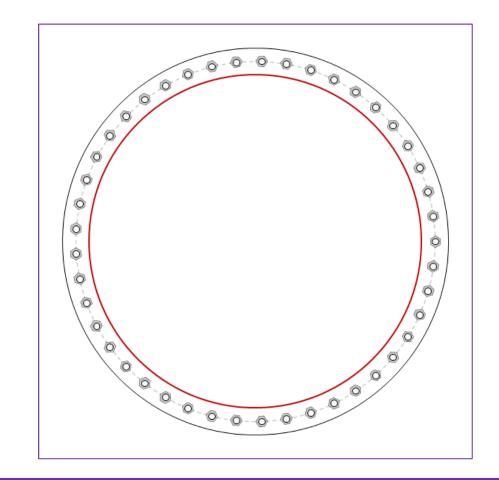
Section Capacity Table								
Section	Elevation	Component	Size	Critical	P	øP _{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail

Section	Elevation	Component	Size	Critical	Р	ø P_{allow}	%	Pass
No.	ft	Type		Element	K	K	Capacity	Fail
L1	169 - 164.25	Pole	TP26x18x0.25	1	-0.45	1060.11	0.2	Pass
L2	164.25 - 129.75	Pole	TP34.0625x21.5x0.3125	2	-15.10	1976.75	20.6	Pass
L3	129.75 - 96.08	Pole	TP41.75x32.1327x0.375	3	-30.46	2937.41	38.2	Pass
L4	96.08 - 63.25	Pole	TP49.0625x39.8023x0.375	4	-40.29	3460.30	54.9	Pass
L5	63.25 - 31.25	Pole	TP56.125x46.9543x0.375	5	-51.45	3964.20	67.2	Pass
L6	31.25 - 0	Pole	TP62.9375x53.8466x0.375	6	-66.55	4574.01	78.5	Pass
							Summary	
						Pole (L6)	78.5	Pass
						RATING =	78.5	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	
BU#	826768
Site Name	Plymouth/Rt 6
Order#	553358 Rev. 1

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
I _{ar} (in)	1.5

Applied Loads				
Moment (kip-ft)	4724.37			
Axial Force (kips)	66.55			
Shear Force (kips)	41.36			

^{*}TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(45) 1-1/4" ø bolts (A687 N; Fy=105 ksi, Fu=125 ksi) on 68" BC

Base Plate Data

73" OD x 2.5" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data

N/A

Pole Data

62.9375" x 0.375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 72.62	φPn_t = 90.84	Stress Rating
Vu = 0.92	φVn = 57.52	76.1%
Mu = 0.9	φMn = 30.76	Pass

Base Plate Summary

Max Stress (ksi):	17.45	(Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	36.9%	Pass

CCIplate - Version 4.1.1 Analysis Date: 6/7/2021

Pier and Pad Foundation

BU # : 826768
Site Name: Plymouth/Rt. 6
App. Number: 553358 Rev. 1

TIA-222 Revision: H
Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

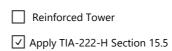
Superstructure Analysis Reactions				
Compression, P _{comp} :	66.57	kips		
Base Shear, Vu_comp:	41.33	kips		
Moment, M _u :	4724.36	ft-kips		
Tower Height, H:	169	ft		
BP Dist. Above Fdn, bp _{dist} :	2.75	in		

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier :	7.5	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc :	9	
Pier Rebar Quantity, mc :	39	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt:	11	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Pad Properties				
Depth, D :	8.5	ft		
Pad Width, W ₁:	27	ft		
Pad Thickness, T:	2.5	ft		
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	9			
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	36			
Pad Clear Cover, cc_{pad} :	3	in		

Material Properties				
Rebar Grade, Fy:	60	ksi		
Concrete Compressive Strength, F'c:	4	ksi		
Dry Concrete Density, δ c :	150	pcf		

Soil Properties						
Total Soil Unit Weight, γ :	125	pcf				
Ultimate Gross Bearing, Qult:	12.000	ksf				
Cohesion, Cu :		ksf				
Friction Angle, $oldsymbol{arphi}$:	34	degrees				
SPT Blow Count, N _{blows} :	104					
Base Friction, μ :	0.6					
Neglected Depth, N:	3.75	ft				
Foundation Bearing on Rock?	No					
Groundwater Depth, gw :	14	ft				


Foundation Analysis Checks							
	Capacity	Demand	Rating*	Check			
Lateral (Sliding) (kips)	548.20	41.33	7.2%	Pass			
Bearing Pressure (ksf)	9.00	2.54	26.8%	Pass			
Overturning (kip*ft)	9553.25	5105.80	53.4%	Pass			
Pier Flexure (Comp.) (kip*ft)	6863.08	4993.01	69.3%	Pass			
Pier Compression (kip)	28118.83	118.26	0.4%	Pass			
Pad Flexure (kip*ft)	3941.07	1717.08	41.5%	Pass			
Pad Shear - 1-way (kips)	777.90	260.69	31.9%	Pass			
Pad Shear - 2-way (Comp) (ksi)	0.190	0.064	32.0%	Pass			
Flexural 2-way (Comp) (kip*ft)	4354.14	2995.80	65.5%	Pass			

*Rating per TIA-222-H Section

Structural Rating*:	
Soil Rating*:	53.4%

<--Toggle between Gross and Net

BU:	826768
WO:	1966237
APP:	553358 Rev. 1
TIA:	TIA-222-H

Table 1: Tower Geometry

	Height Above Ground (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
1	169.000	4.750	2.375	18	18.0000	26.0000	0.2500	1.0000	A572-65
2	166.630	36.875	3.830	18	21.5000	34.0625	0.3125	1.2500	A572-65
3	133.580	37.500	4.670	18	32.1327	41.7500	0.3750	1.5000	A572-65
4	100.750	37.500	5.500	18	39.8023	49.0625	0.3750	1.5000	A572-65
5	68.750	37.500	6.250	18	46.9543	56.1250	0.3750	1.5000	A572-65
6	37.500	37.500	0.000	18	53.8466	62.9375	0.3750	1.5000	A572-65

Table 2: Splice Check

(Highlighted values can be taken from the Tapered Pole Properties table of the TNX Output)

	Lap Splice Length (in)	Bottom Inner Diameter (in)	Required Splice (in)	Splice Check	Tip Diameter (in)	A (in²)	l (in⁴)	Bottom w/t	S (in³)
1	28.500	25.500	38.250	Reduce Strength	26.363	20.433	1711.654	16.544	129.855
2	45.960	33.438	50.156	Reduce Strength	34.540	33.476	4817.434	17.424	278.950
3	56.040	41.000	61.500	Reduce Strength	42.336	49.247	10650.982	17.835	503.162
4	66.000	48.313	72.469	Reduce Strength	49.762	57.950	17355.138	21.267	697.533
5	75.000	55.375	83.063	Reduce Strength	56.933	66.356	26056.151	24.581	915.327

Table 3: Loading

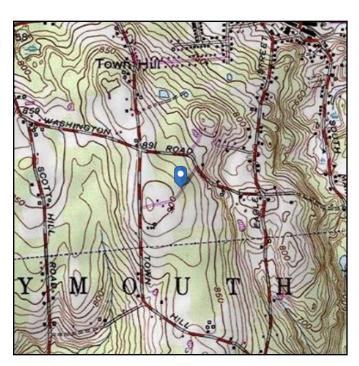
(Highlighted values can be taken from the MPAUXDATA worksheet created with the TNX output)

	$\sqrt{(F_y/E)}*(w/t)$	Reduction Factor	F' _y (ksi)	ΦΡ _n (kip)	ФМ _п (kip-ft)	ΦV _n (kip)	P _u (kip)	M _u (kip-ft)	V _u (kip)
1	0.783	0.62	50.61	738	493	221	0.45	0.83	0.11
2	0.825	0.87	70.75	1713	1480	514	15.10	322.48	16.26
3	0.844	0.87	69.71	2497	2631	749	30.46	1106.18	29.31
4	1.007	0.87	66.16	2936	3461	881	40.29	2114.76	33.88
5	1.164	0.85	61.93	3317	4252	995	51.45	3236.35	37.74

Results

	Ratio (%)
1	0.2%
2	21.7%
3	41.4%
4	59.6%
5	74.1%

Address:


No Address at This Location

ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 889.9 ft (NAVD 88)

Risk Category: || Latitude: 41.668388

Soil Class: D - Stiff Soil Longitude: -73.019956

Wind

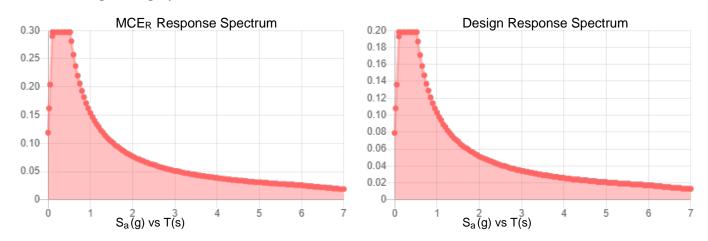
Results:

Wind Speed: 119 Vmph 120 mph per Appendix N of 2018 Connecticut State Building Code

10-year MRI 76 Vmph 25-year MRI 86 Vmph 50-year MRI 91 Vmph 100-year MRI 98 Vmph

Date Somessed: MS6 EMSE 24-202 Fig. 26.5-1A and Figs. CC-1—CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.186	S _{DS} :	0.198	
S_1 :	0.064	S _{D1} :	0.103	
F _a :	1.6	T _L :	6	
F_{v} :	2.4	PGA:	0.095	
S_{MS} :	0.297	PGA _M :	0.152	
S _{M1} :	0.154	F _{PGA} :	1.6	
		1 .	1	

Seismic Design Category B

Data Accessed: Mon May 24 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon May 24 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.