RACHEL A. SCHWARTZMAN

Please Reply To: Bridgeport Writer's Direct Dial: (203) 337-4110 E-Mail: rschwartzman@cohenandwolf.com

October 6, 2014

Attorney Melanie Bachman Acting Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06501

Re: Notice of Exempt Modification Town of Plainville/T-Mobile co-location Site ID CTHA110B 77 West Main Street, Plainville, CT

Dear Attorney Bachman:

This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, the town of Plainville owns the existing self-supporting telecommunications tower and related facility at 77 West Main Street, Plainville, Connecticut (41.6708/-72.8711). T-Mobile intends to add three (3) antennas and related equipment at this existing telecommunications facility in Plainville ("Plainville Facility"). Please accept this letter as notification, pursuant to R.C.S.A. §16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R. C.S.A. § 16-50j-73, a copy of this letter is being sent to the Town Manager, Robert E. Lee, and the property owner, the town of Plainville.

The existing Plainville Facility consists of an 80-foot self-supporting tower.¹ T-Mobile plans to add three (3) antennas mounted on double standoff brackets at a centerline of 77 feet. T-Mobile will also install coax cables, reuse existing coax cables, install an equipment cabinet on a proposed H-frame, and install three (3) remote radio units on a proposed H-frame. (See the plans revised to October 6, 2014 attached hereto as **Exhibit A**). The existing Plainville Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated September 16, 2014, and attached hereto as **Exhibit B**.

The planned modifications to the Plainville Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1

657 ORANGE CENTER ROAD ORANGE, CT 06477 TEL: (203) 298-4066 FAX: (203) 298-4068

While the online docket for the Connecticut Siting Council does not provide a docket or petition number for approval of this structure, it does reference this structure in connection with a notices of intent captioned TS-T-MOBILE-110-060629, EM-POCKET-110-080911, EM-T-MOBILE-110-090507, and EM-

October 6, 2014 CTHA110B Page 2

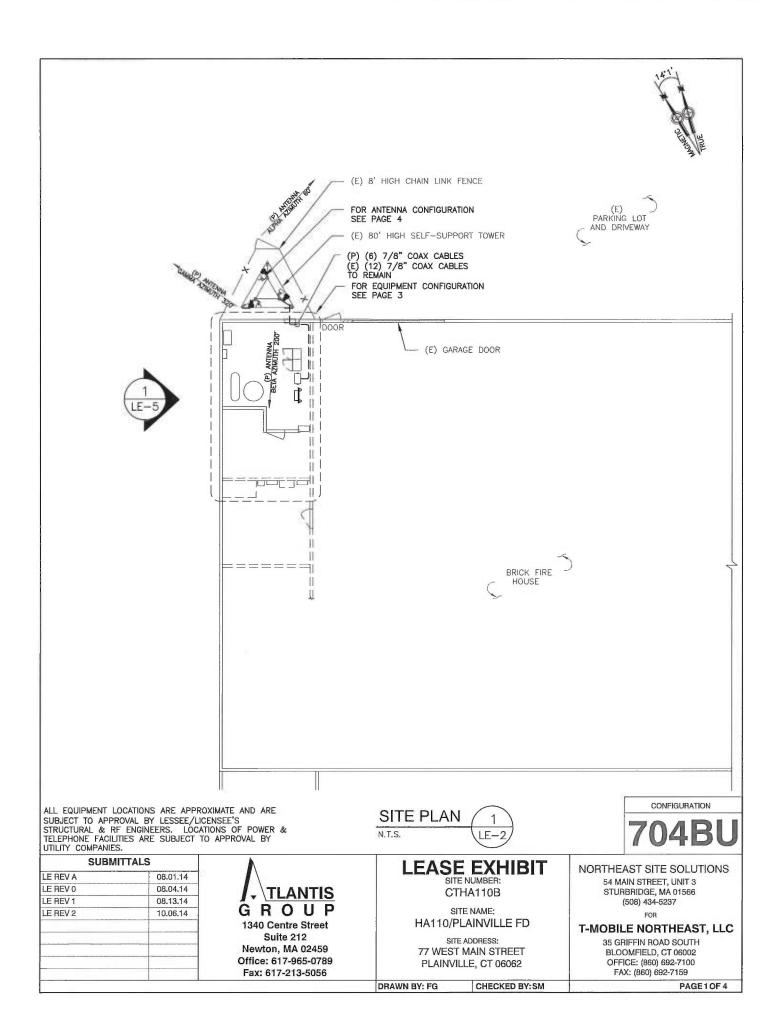
1. The proposed modification will not increase the height of the tower. T-Mobile's existing antennas are at a centerline of 77 feet; the additional antennas will be installed at the same 77-foot level. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.

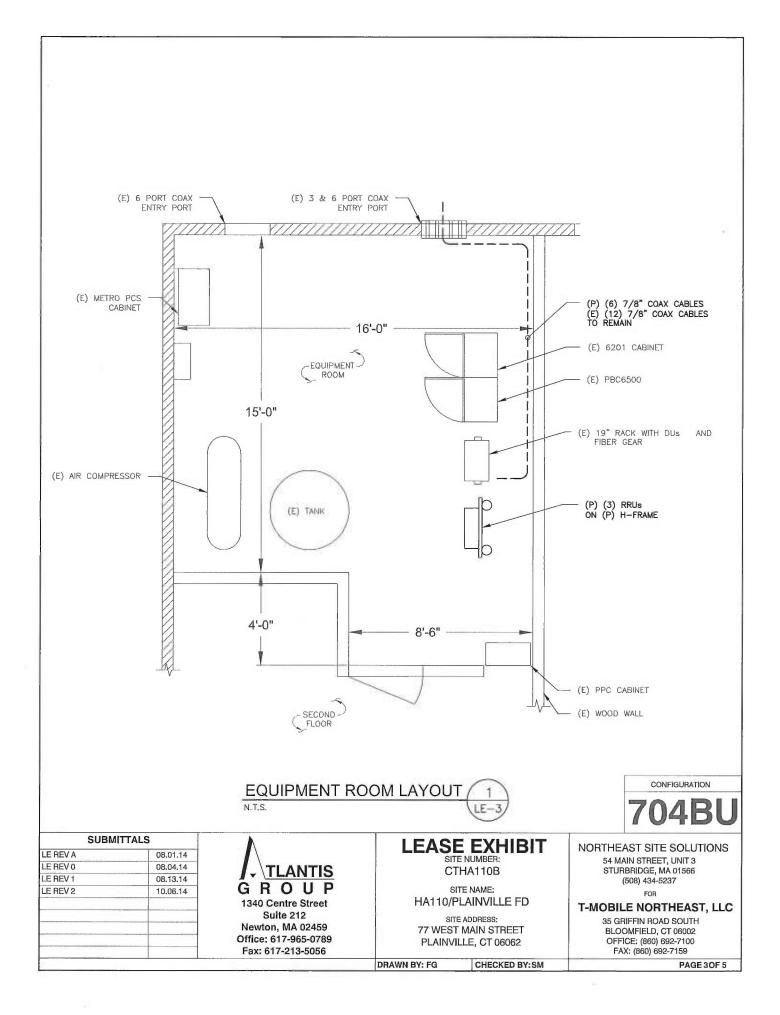
2. The proposed modifications will not require an extension on the site boundaries or lease area, as depicted on Sheet two of Exhibit A. T-Mobile's equipment will be located entirely within the existing compound area.

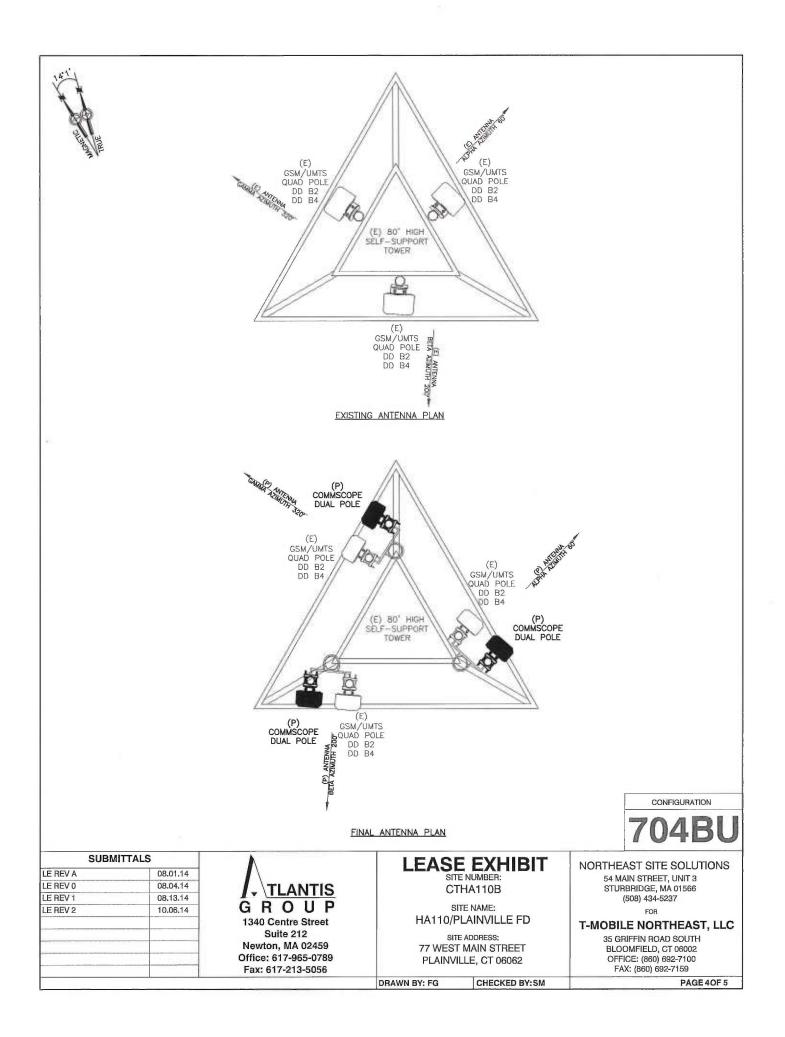
3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.

4. The operation of the additional antennas and equipment will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated September 25, 2014, T-Mobile's operations would add 25.87% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 28.02% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as **Exhibit C**.

For the foregoing reasons, T-Mobile respectfully submits that the proposed additional antennas and equipment at the Plainville Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement of this exempt modification, T-Mobile shall commence construction approximately sixty days from the receipt of the Council's decision.


Sincerely, Raily Sch


Rachel A. Schwartzman, Esq.


cc: Town Manager Robert E. Lee, Town of Plainville Town of Plainville Sheldon J. Freincle, Northeast Site Solutions

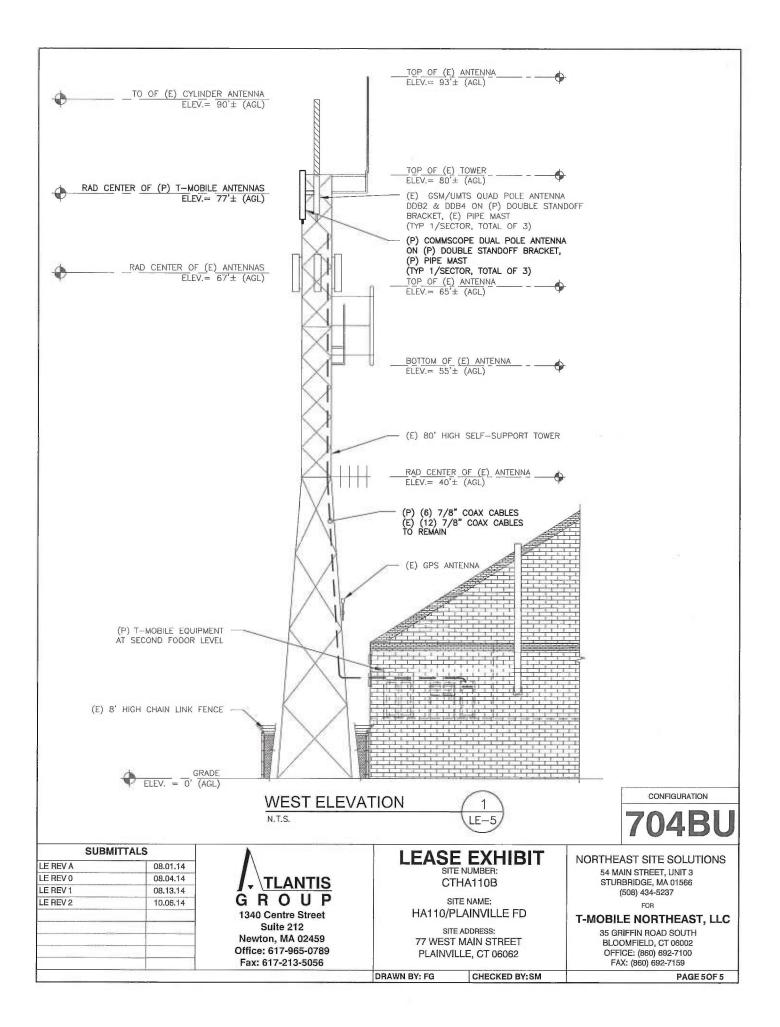

1115 BROAD STREET PO. BOX 1821 BRIDGEPORT, CT 06601-1821 TEL: (203) 368-0211 FAX: (203) 394-9901 158 DEER HILL AVENUE DANBURY, CT 06810 TEL: (203) 792-2771 FAX: (203) 791-8149 320 POST ROAD WEST WESTPORT, CT 06880 TEL: (203) 222-1034 FAX: (203) 227-1373 657 ORANGE CENTER ROAD ORANGE, CT 06477 TEL: (203) 298-4066 FAX: (203) 298-4068 EXHIBIT A

EXHIBIT B

REINFORCEMENT DESIGN REPORT SELF SUPPORTING TOWER

Prepared For: • • T • • Mobile = 35 Griffin Road South

Bloomfield, CT 06002

Tower Rating

Tower: Foundation:

Pass (96.9 %) n: Unknown

Atlantis Group, Inc. 09-16-2014

CT Professional Engineer License No: 26725

Site ID: CTHA110B Site Name: Plainville FD 77 West Main Street Plainville, CT

Prepared By: Atlantis Group, Inc. 1340 Centre Street, Suite 212 Newton, Massachusetts 02459 Phone: 617-965-0789, Fax: 617-965-0103

Complete Design Services for Wireless Telecommunications Networks CTHA110B–Structural Analysis

CONTENTS

1.0 - SUBJECT AND REFERENCES

1.1 - STRUCTURE

2.0 - PROPOSED ADDITION

3.0 - CODES AND LOADING

4.0 - STANDARD CONDITIONS FOR ENGINEERING SERVICES ON EXISTING STRUCTURES

5.0 - ANALYSIS AND ASSUMPTIONS

6.0 - RESULTS AND CONCLUSION

APPENDIX

A – REINFORCEMENT DRAWINGS

B – CALCULATIONS

Complete Design Services for Wireless Telecommunications Networks CTHA110B–Structural Analysis

1.0 SUBJECT AND REFERENCES

The purpose of this report is to design the reinforcement of the existing 80 feet high selfsupporting tower, located at 77 West Main Street, Plainville, CT for the alteration and addition of wireless telecommunication appurtenances proposed by T-Mobile.

The design is based on the following documents provided to us:

- 1. Structural Analysis Report prepared by our office for T-Mobile dated 09/03/2014.
- 2. Proposed antenna information from RFDS v3.0 provided by T-Mobile dated 05/07/2013.

1.1 <u>STRUCTURE</u>

The self-supporting tower is an 80 foot high, triangular tower manufactured by Rohn. Round pipe legs are X-braced the full height with single angle bracing. Please refer to the tower design drawings in Appendix A, for details about the tower reinforcement.

2.0 EXISTING AND PROPOSED CONFIGURATION

Antennas and Appurtenances:

The analysis is based on the following existing and proposed appurtenances:

Existing Configuration of T-Mobile Appurtenances:

Sector	RAD Center (ft.)		Antennas	Mount	Feed Lines
Alpha	77	GSM/UMTS	(1) APX16PV-16PVL (1) dd B2 TMA (1) dd B4 TMA	(1) Single Standoff bracket	
Beta	77	GSM/UMTS	(1) APX16PV-16PVL (1) dd B2 TMA (1) dd B4 TMA	(1) Single Standoff bracket	(12) 7/8"
Gamma	77	GSM/UMTS	(1) APX16PV-16PVL (1) dd B2 TMA (1) dd B4 TMA	(1) Single Standoff bracket	

Complete Design Services for Wireless Telecommunications Networks

CTHA110B–Structural Analysis

Proposed Configuration of T-Mobile Appurtenances:

Sector	RAD Center (ft.)	An	tennas	Mount	Feed Lines
Alpha	77	LTE Antenna	(1) LNX-6515DS-VTM (1) APX16PV-16PVL (1) dd B2 TMA (1) dd B4 TMA	(1) Double Standoff bracket	
Beta	77	LTE Antenna	(1) LNX-6515DS-VTM (1) APX16PV-16PVL (1) dd B2 TMA (1) dd B4 TMA	(1) Double Standoff bracket	(18) 7/8"
Gamma	77	LTE Antenna	(1) LNX-6515DS-VTM (1) APX16PV-16PVL (1) dd B2 TMA (1) dd B4 TMA	(1) Double Standoff bracket	

Existing and Remaining Appurtenances by Others:

RAD Center (ft.) Carrier	Antenna & TMA	Mount	Feed Lines
80	(1) 6″x 12′ Omni		(1) 7/8"
78	(1) 2″ OD x 16' Omni	3' Standoff	(1) 1/2"
76	(1) MYPB24015PTNF Panel Antenna		(1) 1/2"
67	(3) 742213 Panel Antennas	(3) Pipe Mounts	(6) 7/8"
59	(1) TAD6073A Panel Antenna (1) 14' Dipole	3' Standoff 6' Standoff	(1) ½" (1) 7/8"
58	(1) 2" OD x 12' Omni	3' Standoff	(1) 1/2"
57	(1) ANT150D3 Panel Antenna	3' Standoff	(1) 1/2"
43	(1) 1' Yagi		(1) 1/2"
41	(2) 1' Yagi		(1) 1/2"

1340 Centre Street, Suite 212 Newton, Massachusetts 02459 Phone: 617-965-0789 Fax: 617-965-0103

Complete Design Services for Wireless Telecommunications Networks

CTHA110B-Structural Analysis

3.0 CODES AND LOADING

The tower was analyzed per ANSI/TIA-222-F as referenced by the 2005 Connecticut Building Code with 2005 Supplement, which is the adopted building code. The following wind loading was used in compliance with the standard for Hartford County, CT.

- Basic wind speed 80 mph (W) without ice [fastest-mile speed equivalent to 95 mph 3second gust].
- Basic wind speed 69 mph (W_i) with 1/2" radial non-escalating ice.

The following load combinations were used with wind blowing at 0°, 60° and 90°, measured from a line normal to each face of the self-supporting tower.

- D+W
- D + I + W_i

D: Dead Load of structure and appurtenances W: Wind Load, without ice W₁: Wind Load with ice I: Ice Gravity Load

4.0 STANDARD CONDITIONS FOR ENGINEERING SERVICES ON EXISTING STRUCTURES

The analysis is based on the information provided to Atlantis Group and is assumed to be current and correct. Unless otherwise noted, the structure and the foundation system are assumed to be in good condition, free of defects and can achieve theoretical strength.

It is assumed that the structure has been maintained and shall be maintained during its service. The superstructure and the foundation system are assumed to be designed with proper engineering practice and fabricated, constructed and erected in accordance with the design documents. Atlantis Group will accept no liability which may arise due to any existing deficiency in design, material, fabrication, erection, construction, etc. or lack of maintenance.

Contractor should inspect the condition of the existing structure, mounts and connections and notify Atlantis Group for any discrepancies and deficiencies before proceeding with the construction.

The evaluation results presented in this report are only applicable for the previously mentioned existing and proposed additions and alterations. Any deviation of the proposed equipment and placement, etc., will require Atlantis Group to generate an additional structural evaluation.

Complete Design Services for Wireless Telecommunications Networks

CTHA110B–Structural Analysis

5.0 ANALYSIS and ASSUMPTIONS

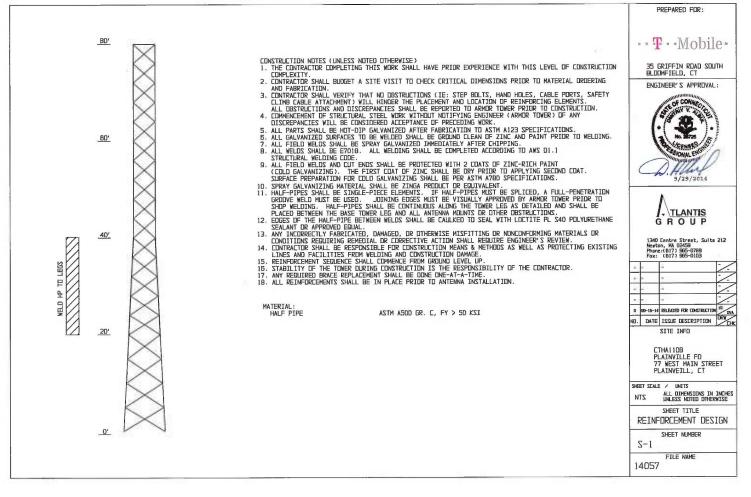
The tower was analyzed by utilizing tnxTower, a non-linear 3-Dimensional finite element program, a product of Tower Numerics, Inc. Software output for this analysis is provided in Appendix A of this report.

Tower member sizes, geometry and existing antenna loading are based on a Natcomm structural analysis dated July 2008 and may not be up to date. We recommend a tower mapping to document that all provided information is accurate and that all members and connections are in good condition.

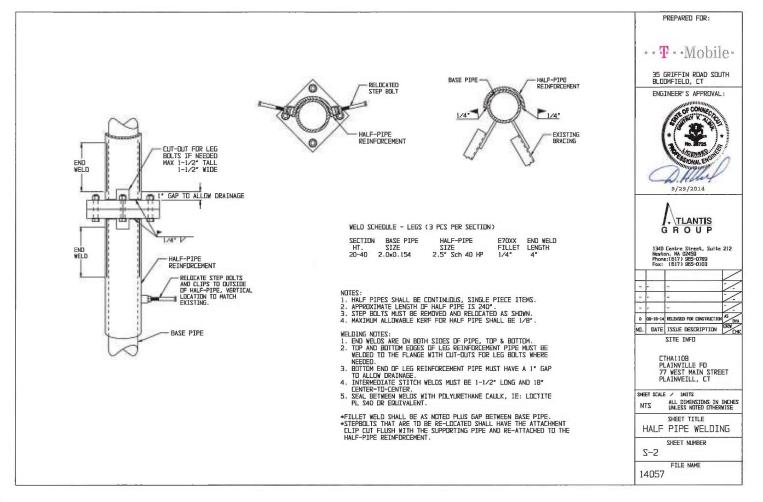
6.0 RESULTS and CONCLUSION

Based on an analysis per ANSI/TIA-222-F, the existing tower is found to have **adequate** structural capacity (once the reinforcement is installed) for the proposed changes by T-Mobile. For the aforementioned load combinations and as a maximum, the legs are stressed to **97%** of capacity. Maximum usage of bracing is 74.6%. Due to a complete lack of subsurface information, the foundation system could not be analyzed in this study.

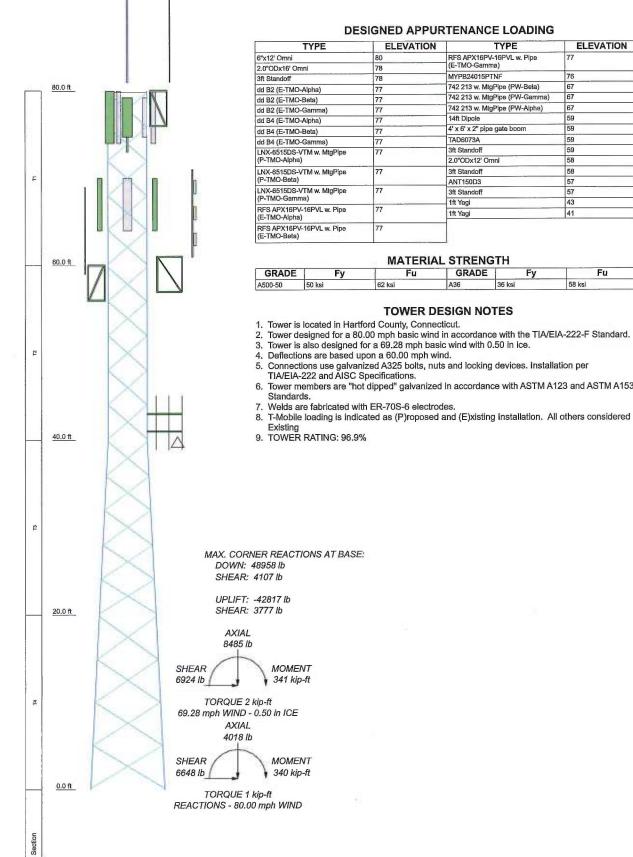
Therefore, the proposed additions and alterations by T-Mobile can be implemented with the conditions outlined in this report.


Should you have any questions or need any clarifications about this report, please contact us at (617) 965-0789.

Sincerely, Atlantis Group, Inc.


1340 Centre Street, Suite 212 Newton, Massachusetts 02459 Phone: 617-965-0789 Fax: 617-965-0103

APPENDIX A REINFORCEMENT DRAWINGS


L

23

L

APPENDIX B CALCULATIONS

DESIGNED APPURTENANCE LOADING

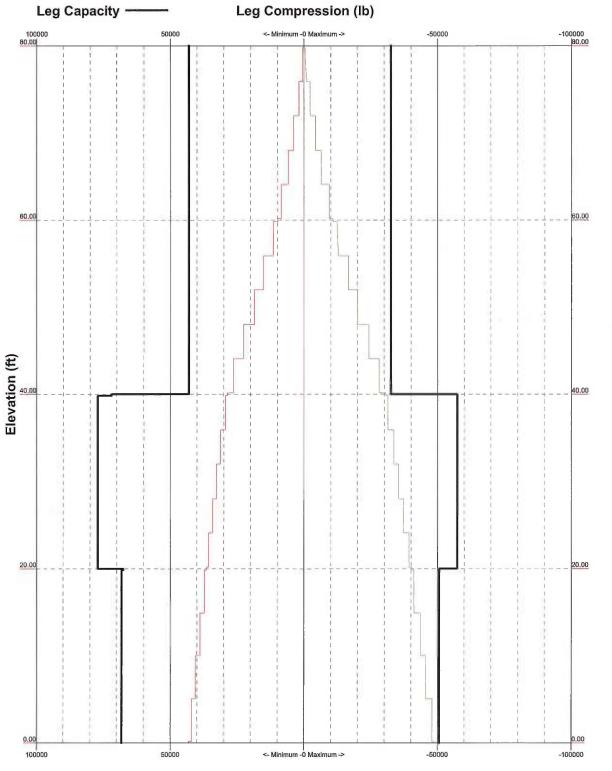
TYPE	ELEVATION	TYPE	ELEVATION	
6"x12' Omni	80	RFS APX16PV-16PVL w. Pipe	77	
2.0"ODx16' Omni	78	(E-TMO-Gamma)		
3ft Standoff	78	MYPB24015PTNF	76	
dd B2 (E-TMO-Alpha)	77	742 213 w. MtgPipe (PW-Beta)	67	
dd B2 (E-TMO-Beta)	77	742 213 w. MtgPipe (PW-Gamma)	67	
dd B2 (E-TMO-Gamma)	77	742 213 w. MtgPipe (PW-Alpha)	67	
dd B4 (E-TMO-Alpha)	77	14ft Dipole	59	
dd B4 (E-TMO-Beta)	77	4' x 6' x 2" pipe gate boom	59	
dd B4 (E-TMO-Gamma)	77	TAD6073A	59	
LNX-6515DS-VTM w. MtgPipe	77	3ft Standoff	59	
(P-TMO-Alpha)		2.0"ODx12' Omni	58	
LNX-6515DS-VTM w. MtgPipe	77	3ft Standoff	58	
(P-TMO-Beta)		ANT150D3	57	
LNX-6515DS-VTM w. MtgPipe	77	3ft Standoff	57	
(P-TMO-Gamma)		1ft Yagi	43	
RFS APX16PV-16PVL w. Pipe (E-TMO-Alpha)	77	1ft Yagi	41	
RFS APX16PV-16PVL w. Pipe (E-TMO-Beta)	77			

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A500-50	50 ksi	62 ksi	A36	36 ksi	58 ksi

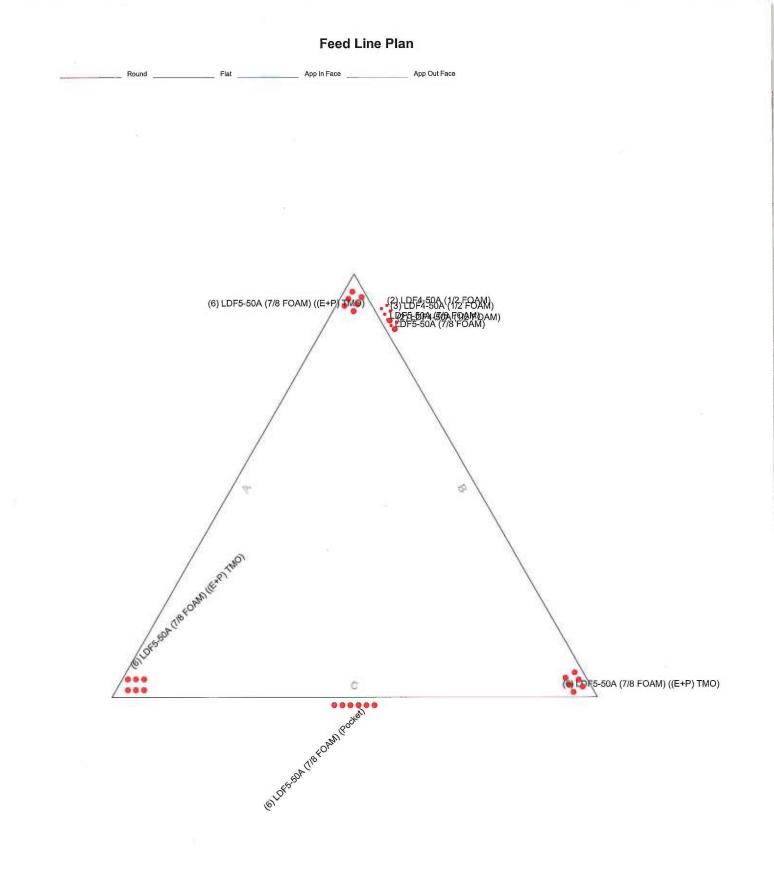
TOWER DESIGN NOTES

5. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications.


6. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153

7. Welds are fabricated with ER-70S-6 electrodes.

8. T-Mobile loading is indicated as (P)roposed and (E)xisting Installation. All others considered


MAX. CORNER REACTIONS AT BASE:

	Atlantis Group, Inc.	Job: 80ft ROHN SS	V MOD DESIG	N
	1340 Centre Street, Suite 212	Project: CTHA110B		
GROUP	Newton, MA 02459	Client: T-Mobile	Drawn by: AS	App'd:
		Code: TIA/EIA-222-F	Date: 09/15/14	Scale: NTS
		Path: Y.Mants Group/T-Wable/GTHA1108 Planville	PD/2014-09 Med Devigmins cales Med Deviant	Dwg No. E-1

TIA/EIA-222-F - 80.00 mph/69.28 mph 0.50 in Ice

		^{Job:} 80ft ROHN SS	V MOD DESIG	N
	1340 Centre Street, Suite 212	Project: CTHA110B		
GROUP	Newton, MA 02459	Client: T-Mobile	Drawn by: AS	App'd:
		Code: TIA/EIA-222-F	Date: 09/15/14	Scale: NTS
	FAX: (671) 965-0103	Path: Y:Mienfis Group/T-Mobile/CTHA110B (Ruby)	e FD2014-09 Mod Designing calcs-Mod Designi	Dwg No. E-3

		^{Job:} 80ft ROHN SS	V MOD DESIG	N
TLANTIS	1340 Centre Street, Suite 212	Project: CTHA110B		
G R O U P	Newton, MA 02459	Client: T-Mobile	Drawn by: AS	App'd:
		Code: TIA/EIA-222-F	Date: 09/15/14	Scale: NTS
FAX: (671) 965-0103		Path: Y Mantes Groupt-WesterCTHA1108 Plained	e PD-2014-09 Most Design/Inv calce-Most Design/	Dwg No. E-7

	Job		Page
G R O U P		80ft ROHN SSV MOD DESIGN	1 of 5
Atlantis Group, Inc. 1340 Centre Street, Suite 212	Project	CTHA110B	Date 11:38:38 09/15/14
Newton, MA 02459 Phone: (617) 965-0789 FAX: (671) 965-0103	Client	T-Mobile	Designed by AS

Load Combinations

Comb.		Description
No.	D 101	
1	Dead Only	
2	Dead+Wind 0 deg - No Ice	
3	Dead+Wind 30 deg - No Ice	
4	Dead+Wind 60 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
6	Dead+Wind 120 deg - No Ice	
7	Dead+Wind 150 deg - No Ice	
8	Dead+Wind 180 deg - No Ice	
9	Dead+Wind 210 deg - No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+Ice+Temp	
16	Dead+Wind 30 deg+Ice+Temp	
17	Dead+Wind 60 deg+Ice+Temp	
18	Dead+Wind 90 deg+Ice+Temp	
19	Dead+Wind 120 deg+Ice+Temp	
20	Dead+Wind 150 deg+Ice+Temp	
21	Dead+Wind 180 deg+Ice+Temp	
22	Dead+Wind 210 deg+Ice+Temp	
23	Dead+Wind 240 deg+Ice+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind 300 deg+Ice+Temp	
26	Dead+Wind 330 deg+Ice+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Maximum Tower Deflections - Service Wind						
Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist	
	ft	in	Comb.	٥	o	
T1	80 - 60	4.36	31	0.439	0.051	
T2	60 - 40	2.54	27	0.404	0.042	
T3	40 - 20	1.09	27	0.247	0.023	
T4	20 - 0	0.28	27	0.125	0.008	

Λ	Job	80ft ROHN SSV MOD DESIGN	Page 2 of 5
GROUP			
Atlantis Group, Inc. 1340 Centre Street, Suite 212	Project	CTHA110B	Date 11:38:38 09/15/14
Newton, MA 02459 Phone: (617) 965-0789 FAX: (671) 965-0103	Client	T-Mobile	Designed by AS

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	D	0	ft
80.00	6"x12' Omni	31	4.36	0.439	0.051	55801
78.00	2.0"ODx16' Omni	31	4.17	0.439	0.051	55801
77.00	RFS APX16PV-16PVL w. Pipe	31	4.08	0.439	0.050	55801
76.00	MYPB24015PTNF	31	3.99	0.439	0.050	55801
67.00	742 213 w. MtgPipe	31	3.16	0.429	0.047	21462
59.00	14ft Dipole	27	2.46	0.399	0.041	13097
58.00	2.0"ODx12' Omni	27	2.38	0.393	0.041	12420
57.00	ANT150D3	27	2.29	0.386	0.040	11797
43.00	1ft Yagi	27	1.27	0.271	0.026	6885
41.00	1ft Yagi	27	1.14	0.255	0.024	6595

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	o	
T1	80 - 60	7.74	2	0.776	0.096
T2	60 - 40	4.53	2	0.716	0.080
T3	40 - 20	1.93	10	0.439	0.044
T4	20 - 0	0.51	15	0.222	0.016

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	· 0	0	ft
80.00	6"x12' Omni	2	7.74	0.776	0.096	31744
78.00	2.0"ODx16' Omni	2	7.41	0.776	0.095	31744
77.00	RFS APX16PV-16PVL w. Pipe	2	7.25	0.776	0.095	31744
76.00	MYPB24015PTNF	2	7.08	0.776	0.094	31744
67.00	742 213 w. MtgPipe	2	5.61	0.760	0.088	12209
59.00	14ft Dipole	2	4.38	0.706	0.079	7445
58.00	2.0"ODx12' Omni	2	4.23	0.695	0.077	7059
57.00	ANT150D3	2	4.08	0.684	0.076	6703
43.00	1ft Yagi	10	2.25	0.482	0.049	3900
41,00	1ft Yagi	10	2.04	0.453	0.046	3735

Bolt Design Data

Section No.	Elevation ft	Component Type	Bolt Grade	Maximum Load per Bolt lb	Allowable Load Ib	Ratio Load Allowable	Allowable Ratio	Criteria
T1	80	Leg	A325N	2451.04	13480.50	0.182	1.333	Bolt Tension
		Diagonal	A325N	1378.11	2084.38	0.661	1.333	Member Block Shear
		Top Girt	A325N	87.34	2084.38	0.042 🖌	1.333	Member Block Shear
T2	60	Leg	A325N	7132.22	13445.20	0.530	1.333	Bolt Tension
		Diagonal	A325N	2072.85	2084.38	0.994 🖌	1.333	Member Block

G R O U P	Job	80ft ROHN SSV MOD DESIGN	Page 3 of 5
Atlantis Group, Inc. 1340 Centre Street, Suite 212	Project	CTHA110B	Date 11:38:38 09/15/14
Newton, MA 02459 Phone: (617) 965-0789 FAX: (671) 965-0103	Client	T-Mobile	Designed by AS

No.	Elevation ft	Component Type	Bolt Grade	Maximum Load per Bolt lb	Allowable Load lb	Load Allowa	d	Allowable Ratio	Criteria
Т3	40	Leg	A325N	9067.11	13488.90	0.672	V	1.333	Shear Bolt Tension
		Diagonal	A325N	1133.69	2084.38	0.544	1	1.333	Member Block Shear
T4	20	Leg	A354-BC	10741.20	12655.30	0.849	V	1.333	Bolt Tension
		Diagonal	A325N	1418.60	2084.38	0.681	V	1.333	Member Block Shear

Compression Checks

Leg Design Data (Compression)

Section No.	Elevation	L	L_u	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P	
	ft	ft	ft		ksi	in ²	lb	Ib	P_a	
T1	80 - 60	20.00	3.93	60.0 K=1.00	22.72	1.07	-10860.10	24417.10	0.445	V
T2	60 - 40	20.00	3.93	60.0 K=1.00	22.72	1.07	-30614.20	24417.10	1.254	~
T3	40 - 20	20.03	3.94	62.0 K=1.00	22.37	1.93	-40309.20	43097.90	0.935	V
T4	20 - 0	20.03	4.92	62.4 K=1.00	22.31	1.70	-49112.90	38012.90	1.292	V

Diagonal Design Data (Compression)

Section No.	Elevation	L	L_u	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P
	ft	ft	ft		ksi	in ²	lb	lb	P_a
T1	80 - 60	6.01	2.77	114.1 K=1.02	11.11	0.36	-1370.66	3992.64	0.343
T2	60 - 40	6.01	2.77	114.1 K=1.02	11.11	0.36	-2135.58	3992.64	0.535 🖌
T3	40 - 20	7.45	3.61	146.3 K=1.00	6.98	0.36	-1006.89	2508.14	0.401
T4	20 - 0	9.21	4.51	182.6 K=1.00	4.48	0.36	-1292.17	1609.80	0.803

		Тор	Girt D	esign Da	ta (Con	pressio	on)		
Section No.	Elevation	L	L_u	Kl/r	F _a	A	Actual P	Allow. P-	Ratio P
110.	ft	ft	ft		ksi	in ²	lb	1b	$\overline{P_a}$
T1	80 - 60	4.54	4.13	167.5 K=1.00	5.32	0.36	-96.23	1913.29	0.050

G R O U P	Job	80ft ROHN SSV MOD DESIGN	Page 4 of 5
Atlantis Group, Inc. 1340 Centre Street, Suite 212	Project	CTHA110B	Date 11:38:38 09/15/14
Newton, MA 02459 Phone: (617) 965-0789 FAX: (671) 965-0103	Client	T-Mobile	Designed by AS

			Т	ension	Checks				
			Leg De	esign Da	ata (Tens	ion)			
Section No.	Elevation	L	L_u	Kl/r	F _a	A	Actual P	Allow. Pa	Ratio P
	ft	ft	ft		ksi	in ²	16	lb	P_a
T1	80 - 60	20.00	3.93	60.0	30.00	1.07	9804.16	32235.90	0.304
T2	60 - 40	20.00	3.93	60.0	30.00	1.07	28528.90	32235.90	0.885
T3	40 - 20	20.03	3.94	62.0	30.00	1.93	36268.40	57810.00	0.627
T4	20 - 0	20.03	4.92	62.4	30.00	1.70	42964.70	51121.50	0.840

				nsion)	Data (Te	Design	agonal	Di		
atio P		Allow. Pa	Actual P	A	Fa	Kl/r	L_{u}	L	Elevation	Section No.
Pa	P	1b	lb	in^2	ksi		ft	ft	ft	
¥	0.225	6117.19	1378.11	0.21	29.00	74.1	2.77	6.01	80 - 60	T1
v	0.339	6117.19	2072.85	0.21	29.00	74.1	2.77	6.01	60 - 40	T2
V	0.185	6117.19	1133.69	0.21	29.00	95.8	3.61	7.45	40 - 20	T3
	0.232	6117.19	1418.60	0.21	29.00	124.3	4.71	9.63	20 - 0	T4

Top Girt Design Data (Tension)									
Section	Elevation	L	L_u	Kl/r	Fa	A	Actual	Allow.	Ratio
No.							P	P_a	P
	ft	ft	ft		ksi	in ²	Ib	lb	P_a
T1	80 - 60	4.54	4.13	112.0	29.00	0.21	87.34	6117.19	0.014

	Job	80ft ROHN SSV MOD DESIGN	Page 5 of 5
GROUP Atlantis Group, Inc. 1340 Centre Street, Suite 212	Project	CTHA110B	Date 11:38:38 09/15/14
Newton, MA 02459 Phone: (617) 965-0789 FAX: (671) 965-0103	Client	T-Mobile	Designed by AS

Section Capacity Table	Section	Capacity	Table
------------------------	---------	----------	--------------

Section No.	Elevation ft	Component Type	Critical Element	P Ib	SF*P _{allow} Ib	% Capacity	Pass Fail
T1	80 - 60	Leg	3	-10860.10	32547.99	33.4	Pass
T2	60 - 40	Leg	39	-30614.20	32547.99	94.1	Pass
T3	40 - 20	Leg	72	-40309.20	57449.50	70.2	Pass
T4	20 - 0	Leg	105	-49112.90	50671.19	96.9	Pass
T1	80 - 60	Diagonal	10	-1370.66	5322.19	25.8 49.6 (b)	Pass
T2	60 - 40	Diagonal	43	-2135.58	5322.19	40.1 74.6 (b)	Pass
T3	40 - 20	Diagonal	76	-1006.89	3343.35	30.1 40.8 (b)	Pass
T4	20 - 0	Diagonal	115	-1292.17	2145.86	60.2	Pass
T1	80 - 60	Top Girt	5	-96.23	2550.42	3.8	Pass
					Leg (T4)	Summary 96.9	Pass
					Diagonal (T2)	74.6	Pass
					Top Girt (T1)	3.8	Pass
					Bolt Checks	74.6	Pass
					RATING =	96.9	Pass

EXHIBIT C

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTHA110B

Plainville FD 77 West Main Street Plainville, CT 06062

September 25, 2014

EBI Project Number: 62145179

Site Compliand	ce Summary
Compliance Status:	COMPLIANT
Site total MPE% of FCC general public allowable limit:	28.02 %

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

September 25, 2014

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CTHA110B - Plainville FD

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **77 West Main Street**, **Plainville**, **CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 700 MHz Band is 467 μ W/cm², and the general population exposure limit for the PCS and AWS bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

21 B Street Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **77 West Main Street, Plainville, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
- 2) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
- 5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.

- 6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antennas used in this modeling are the RFS APX16DWV-16DWVS-E-A20 for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APX16DWV-16DWVS-E-A20 has a maximum gain of 16.3 dBd at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of 14.6 dBd at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antenna mounting height centerline of the proposed antennas is **77 feet** above ground level (AGL).
- 9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	C .
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	RFS APX16DWV- 16DWVS-E-A20	Make / Model:	RFS APX16DWV- 16DWVS-E-A20	Make / Model:	RFS APX16DWV- 16DWVS-E-A20
Gain:	16.3 dBd	Gain:	16.3 dBd	Gain:	16.3 dBd
Height (AGL):	77	Height (AGL):	77	Height (AGL):	77
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	6	Channel Count	6	# PCS Channels:	6
Total TX Power:	240	Total TX Power:	240	# AWS Channels:	240
EDD (ID)	3,833.82	ERP (W);	3,833.82	ERP (W):	3,833.82
ERP (W):	3,033.04				
Antenna A1 MPE%	7.30	Antenna B1 MPE%	7.30	Antenna C1 MPE%	7.30
					/
Antenna A1 MPE%	7.30	Antenna B1 MPE%	7.30	Antenna C1 MPE%	7.30
Antenna A1 MPE% Antenna #:	7.30 2 Commscope LNX-	Antenna B1 MPE% Antenna #:	7.30 2 Commscope LNX-	Antenna C1 MPE% Antenna #:	7.30 2 Commscope LNX-
Antenna A1 MPE% Antenna #: Make / Model:	7.30 2 Commscope LNX- 6515DS-VTM	Antenna B1 MPE% Antenna #: Make / Model:	7.30 2 Commscope LNX- 6515DS-VTM	Antenna C1 MPE% Antenna #: Make / Model:	7.30 2 Commscope LNX- 6515DS-VTM
Antenna A1 MPE% Antenna #: Make / Model: Gain:	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd	Antenna B1 MPE% Antenna #: Make / Model: Gain:	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd	Antenna C1 MPE% Antenna #: Make / Model: Gain:	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd
Antenna A1 MPE% Antenna #: Make / Model: Gain: Height (AGL):	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd 77	Antenna B1 MPE% Antenna #: Make / Model: Gain: Height (AGL):	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd 77	Antenna C1 MPE% Antenna #: Make / Model: Gain: Height (AGL):	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd 77
Antenna A1 MPE% Antenna #: Make / Model: Gain: Height (AGL): Frequency Bands	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd 77	Antenna B1 MPE% Antenna #: Make / Model: Gain: Height (AGL): Frequency Bands	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd 77	Antenna C1 MPE% Antenna #: Make / Model: Gain: Height (AGL): Frequency Bands	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd 77
Antenna A1 MPP% Antenna #: Make / Model: Gain: Height (AGL): Frequency Bands Channel Count	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd 77 700 Mhz 1	Antenna B1 MPE% Antenna #: Make / Model: Gain: Height (AGL): Frequency Bands Channel Count	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd 77 700 Mhz 1	Antenna C1 MPE% Antenna #: Make / Model: Gain: Height (AGL): Frequency Bands Channel Count	7.30 2 Commscope LNX- 6515DS-VTM 14.6 dBd 77 700 Mhz 1

Site Composite MPE%					
Carrier MPE%					
T-Mobile	25.87				
Various Town Antennas	2.15 %				
Site Total MPE %:	28.02 %				

T-Mobile Sector 1 Total:	8.62 %	
T-Mobile Sector 2 Total:	8.62 %	
T-Mobile Sector 3 Total:	8.62 %	
Site Total:	28.02 %	

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector 1:	8.62 %
Sector 2:	8.62 %
Sector 3 :	8.62 %
T-Mobile Total:	25.87 %
Site Total:	28.02 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **28.02%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan RF Engineering Director

EBI Consulting 21 B Street Burlington, MA 01803`