

#### Crown Castle

3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

December 9, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

**RE:** Notice of Exempt Modification for T-Mobile:

857012 - T-Mobile Site ID: CT11378G

335 South Washington Street, Plainville, CT 06062 Latitude: 41° 39′ 11.03″ / Longitude: -72° 52′ 36.90″

Dear Ms. Bachman:

T-Mobile currently maintains six (6) antennas at the 98-foot mount on the existing 121-foot Monopole Tower, located at 335 South Washington Street, Plainfield, CT. The tower is owned by Crown Castle and the property is owned by Display Properties LLC. T-Mobile now intends to replace six (6) existing antennas with three (3) new 1900 MHz antennas, three (3) new 600/700/2100 MHz antennas, and three (3) new 2500 MHz antennas. The new antennas will be installed at the 98-ft level of the tower. Three of the new antennas proposed will be 5G enabled. T-Mobile is also proposing mount modifications pursuant to the enclosed Mount Analysis Report.

#### **Planned Modifications:**

#### Tower:

#### Remove and Replace:

- (3) AIR21\_B2P\_B4A Antenna **(REMOVE)** (3) RFS-APXVAALL24\_43-U-NA20 Antenna 600/700/1900 MHz **(5G) (REPLACE)**
- (3) AIR21 B2P B4P Antenna (**REMOVE**) (3) AIR6449 B41 Antenna 2500 MHz (**REPLACE**)

#### Install New:

- (3) Diplexer
- (3) Radio 4415 B25
- (3) AIR32 B66A B2A Antenna 1900 MHz
- (3) 1 5/8" Hybrid Fiber Line

## Existing to Remain:

- (3) Twin Style TMA
- (3) Radio 4449 B71+B85
- (6) 1 5/8" Coax

#### **Ground:**

Upgrade to existing ground cabinet. (Internally)
Install new 6160 SSC Cabinet and B160 Battery Cabinet.

The Foundation for a Wireless World.

CrownCastle.com

Page 2

The facility was approved by the Connecticut Siting Council in Docket No. 281 on June 23, 2004. This approval included conditions which this exempt modification follows.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Robert E. Lee, Town Manager for the Town of Plainville, Garrett Daigle, Town Planner, Display Properties LLC as the property owner and Crown Castle is the tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,

Anne Marie Zsamba Site Acquisition Specialist 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065 (201) 236-9224 AnneMarie.Zsamba@crowncastle.com

#### Attachments

cc:

Robert E. Lee, Town Manager Plainville Municipal Center 1 Central Square Plainville, CT 06062

# Melanie A. Bachman

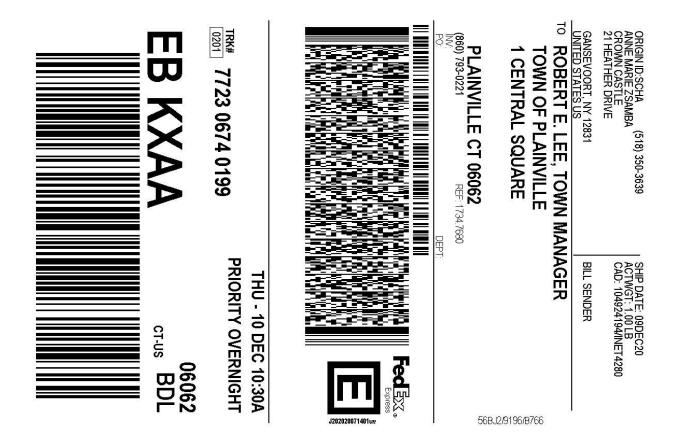
# Page 3

860-793-0221

Garrett Daigle, Town Planner Plainville Municipal Center 1 Central Square – Room 100 Plainville, CT 06062 860-793-0221

Display Properties LLC 335 S Washington Street Plainville, CT 06062

Crown Castle, Tower Owner

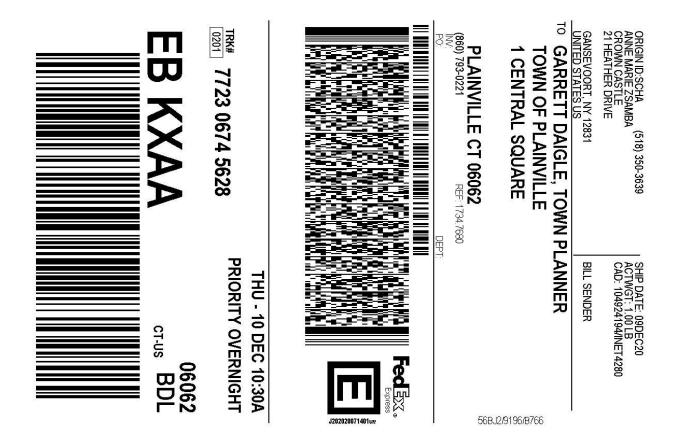



## After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.




## After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.



## After printing this label:

- 1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

# Exhibit A

**Original Facility Approval** 

# Connecticut Siting Council

CT.gov Home (/) Connecticut Siting Council (/CSC) DO 281 Plainville Decision

| Decisions (/CSC/Decisions/Decisions)                                                   | >           |
|----------------------------------------------------------------------------------------|-------------|
| Meetings and Minutes (/CSC/Common-Elements/v4-template/Council-Activity)               | >           |
| Pending Matters (/CSC/1_Dockets-and-Other-Pending-Matters/Pending-Matters)             | >           |
| Sign Up for E-mail Alerts (https://confirmsubscription.com/h/j/C214111A631B4BB8)       | >           |
| About Us (/CSC/Common-Elements/Common-Elements/Connecticut-Siting-Council Description) | <b>&gt;</b> |
| Contact Us (/CSC/Common-Elements/Common-Elements/Contact-Us)                           | >           |
| Search Connecticut Siting Council                                                      |             |
|                                                                                        | <u> </u>    |
|                                                                                        |             |

**DOCKET NO. 281** – New Cingular Wireless PCS, LLC Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a telecommunications facility at 355 South Washington Street, Plainville, Connecticut.

} Connecticut

} Siting

} Council

June 23, 2004

lication and therefore directs that a Certificate of

vided by General Statutes § 16-50k, be issued to

# **Decision and Order**

effects, and

Environmen

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects wher

Next

AT&T Wireless PCS d/b/a AT&T Wireless for the construction, maintenance and operation of a wireless telecommunications facility at Site B, 355 South Washington Street, Plainville, Connecticut. The Council denies certification of Site A, located off of Town Line Road, Plainville, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be designed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T Wireless PCS LLC, Omnipoint Communications Inc. d/b/a T-Mobile, Cellco partnership d/b/a Verizon Wireless and other entities, both public and private, but such tower shall not exceed a total height of 120 feet above ground level. The height at the top of the antennas shall not exceed a height of 123 feet above ground level.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Plainville and all parties and intervenors, as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction. The D&M shall include:
- a. a detailed site development plan that depicts the location of the access road, compound, tower, utility line, erosion and sedimentation control features, and landscaping;
- b. specifications for the tower, tower foundation, antennas, equipment building, and security fence; and
- c. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base,

consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision

and Order.

4. Upon the frequencies standards.

ral radio frequency standards applicable to shall be brought into compliance with such

- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
- 7. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 9. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. Any request for extensions of the period shall be filed with the Council not later than sixty days prior to expiration date of the Certificate and shall be served on all parties and intervenors, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the <u>Hartford Courant</u> and the <u>Bristol Press</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:



| <u>Intervenor</u>                           | <u>Its Representative</u>                                                                               |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Omnipoint Communications Inc d/b/a T-Mobile | Stephen J. Humes LeBoeuf, Lamb, Greene & MacRae, LLP Goodwin Square 25 Asylum Street Hartford, CT 06103 |
| Intervenor                                  | <u>Its Representative</u>                                                                               |
| Cellco Partnership d/b/a Verizon Wireless   | Kenneth C. Baldwin, Esq. Robinson & Cole, LLP 280 Trumbull Street Hartford, CT 06103-3597               |
| <u>Party</u>                                |                                                                                                         |
| Robert S. Bocwinski                         |                                                                                                         |
| 1785 St. Andrews Place                      |                                                                                                         |
| New Richmond, WI 54017-6050                 |                                                                                                         |
|                                             |                                                                                                         |



| Add "N" Alt Business                                                                                           | BUILDING PERMIT 793-0221                                                                                                                                     | DATE: 35717<br>DATE: 10/03<br>RECEIPT: 0456              | 3/05             |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------|
| ESTIMATED COST: 78,00                                                                                          | 0.00                                                                                                                                                         |                                                          |                  |
| PERMIT FEE: 1,17                                                                                               | 5.00                                                                                                                                                         |                                                          |                  |
| CERT OF OCCUP FEE:                                                                                             | .00                                                                                                                                                          | #CO:                                                     | 00000            |
| ZONING CERT:                                                                                                   | .00                                                                                                                                                          | #ZP:                                                     | 00000            |
| STATE FEE: 1                                                                                                   | 2.48                                                                                                                                                         |                                                          |                  |
| TOTAL FEE: 1,18                                                                                                | 7.48                                                                                                                                                         |                                                          |                  |
| MISCELLANEOUS INCOME                                                                                           | .00                                                                                                                                                          |                                                          |                  |
| Lot#: Location: 335 S<br>OWNER: Display Properties LLC<br>335 S. Washington Stre<br>Plainville, CT<br>747-9110 | eet 500                                                                                                                                                      | Cingular Wireless PCS<br>Enterprise Drive<br>ky Hill, CT | 06067            |
| to make this application as an authorize                                                                       | is authorized by the owner of record and t<br>d agent and we agree to conform to all of<br>Town of Plainville and to notify the Buil<br>the permit is asked. | the requirements of the laws of the                      | State            |
| Applicant                                                                                                      | Approved By                                                                                                                                                  | Nun Vun                                                  | 10/20/03<br>Date |
|                                                                                                                |                                                                                                                                                              |                                                          |                  |
|                                                                                                                |                                                                                                                                                              |                                                          |                  |
|                                                                                                                |                                                                                                                                                              |                                                          |                  |

# Exhibit B

**Property Card** 

#### Plainville, CT: Assessor Database Property Search: Alternate ID: Parcel ID: Owner 1 Name: Street Number: Street Name: Search Reset **Property Detail:** Parcel ID: Alternate ID/Map Block Lot: Card: Card: Street Name: Street Number: Zoning: LUC: 42-A-03 R05380 S WASHINGTON ST 335 RI Manufacturing Warehouse Facilities 8.00 1 Owner Information: **Property Images:** Owner 1 Name: DISPLAY PROPERTIES LLC Picture: There is no picture available. Owner 2 Name: Street 1: 335 S WASHINGTON ST Sketch: Street 2: 135 135 PLAINVILLE City: State: СТ 06062 Zip: MULTI-USE OFFICE WAREHOUSE 374 Volume: WAREHOUSE MULTI USE STORAGE MULTI-USE OFFICE PAVING ASPHALT PARK LIGHT - MER - POLE & TOWER CELLULAR DOCK LEVELERS CORDINATE OF CASC WEST Page: 357 Deed Date: 0000-00-00 SPRINKLER SYS WET OVERHEAD DR-WOOD OVERHEAD DR-WOOD **Building Information: Building Number:** 1 233 Units: Structure Type: WAREHOUSE Grade: B-300 Е 300 **Identical Units:** 1 Year Built: 1989 Valuation: Appraised Land: \$467,600.00 Appraised Bldg: \$3,284,900.00 Appraised Total: \$3,752,500.00 \$2,626,750.00 В D Sales History: Sale Date: Price: Validity: Sale Type: Book Page: 374 357 03/27/2001 1,953,261 В 2 418 05/07/1963 130 271 261 09/14/1988 261 313 09/14/1988 357 03/27/2001 374 Out-Buildings: Units: Year Built: Grade: Condition: Code: Description: Size1: Size2: Area: PA1 PAVING ASPHALT PARKING 1989 9200 9200 С NORMAL (Comm) LIGHT - MER - POLE & BRK 0 LT5 2006 0 1 C NORMAL (Comm) TOWER CELLULAR С NORMAL (Comm) TT4 2000 1 120 120 **Building Interior/Exterior Information:** Floor From: Floor To: Area: Use Type: Exterior Walls: Contruction Type: Heating: A/C: Plumbing: Functional Ut 01 01 39140 WAREHOUSE METAL, SANDWICH FIRE RESISTANT UNIT HEATERS NONE NORMAL 3 01 01 34279 WAREHOUSE METAL, SANDWICH FIRE RESISTANT UNIT HEATERS NONE NORMAL 3 01 01 7584 MULTI-USE OFFICE METAL, SANDWICH FIRE RESISTANT HOT AIR CENTRAL NORMAL М1 2179 MULTI USE STORAGE METAL, SANDWICH FIRE RESISTANT HOT ATR NONE М1 NONE

M2 M2 429 MULTI-USE OFFICE METAL, SANDWICH FIRE RESISTANT HOT AIR CENTRAL NORMAL 3

The information delivered through this on-line database is provided in the spirit of open access to government information and is intended as an enhanced service and convenience for citizens of Plainville, CT. The providers of this database: Tyler CLT, Big Room Studios, and Plainville, CT assume no liability for any error or omission in the information provided here.

Comments regarding this service should be directed to: heering@plainville-ct.gov

Sun. August 2, 2020 : 12:34 PM : 0.17s : 10mb

# **Town of Plainville, Connecticut - Assessment Parcel Map**

Parcel: 42-A-03 Address: 335 S WASHINGTON ST





0 50 100 150 200 Feet Approximate Scale: 1 inch = 150 feet

Map Produced July 2020

# Exhibit C

**Construction Drawings** 

# - Mobile - -

T-MOBILE SITE NUMBER: CT11378G

T-MOBILE SITE NAME:

CT378/ATT FT PLAINVILLE2 SITE ADDRESS:

SITE TYPE:

MONOPOLE

TOWER HEIGHT:

121'-0''

BUSINESS UNIT #:857012

**LOCATION MAP** 

CT378/ATT FT PLAI... X

**APPROVAL** 

335 WASHINGTON ST PLAINVILLE, CT 06062

**COUNTY:** 

**HARTFORD** 

JURISDICTION: HARTFORD COUNTY

# T-MOBILE ANCHOR SITE CONFIGURATION: 67D5997DB\_2xAIR+10P

Cronin St

ast Bristol Dolphin Rd

Ronzo Rd Ronz

# SITE INFORMATION

HARTFORD

42-A-03

**EXISTING** 

41.653100°

-72.876900°

NAD83

PLAINEVILLE SOUTH

CROWN CASTLE USA INC.

SITE NAME:

SITE ADDRESS: 335 WASHINGTON ST PLAINVILLE, CT 06062

**COUNTY:** 

AREA OF CONSTRUCTION: LATITUDE: LONGITUDE: LAT/LONG TYPE:

GROUND ELEVATION: **CURRENT ZONING:** 

OCCUPANCY CLASSIFICATION: U TYPE OF CONSTRUCTION:

A.D.A. COMPLIANCE:

PROPERTY OWNER:

TOWER OWNER:

CROWN CASTLE USA INC 2000 CORPORATE DRIVE CANONSBURG, PA 15317

HARTFORD COUNTY

HUMAN HABITATION

DISPLAY PROPERTIES LLC

FACILITY IS UNMANNED AND NOT FOR

CARRIER/APPLICANT:

T-MOBILE 4 SYLVAN WAY PARSIPPANY, NJ 07054

**ELECTRIC PROVIDER:** 

NOT PROVIDED

TELCO PROVIDER:

NOT PROVIDED

# PROJECT TEAM

A&E FIRM:

2000 CORPORATE DRIVE CANONSBURG, PA 15317

CROWN CASTLE USA INC.

CROWNAE.APPROVAL@CROWNCASTLE.COM

**CROWN CASTLE** USA INC. DISTRICT CONTACTS:

3530 TORINGDON WAY, SUITE 300 CHARLOTTE, NC 28277

| SHEET # | SHEET DESCRIPTION                     |
|---------|---------------------------------------|
| T-1     | TITLE SHEET                           |
| T-2     | GENERAL NOTES                         |
| C-1.1   | OVERALL SITE PLAN                     |
| C-1.2   | SITE PLAN & ENLARGED SITE PLAN        |
| C-2     | FINAL ELEVATION & ANTENNA PLANS       |
| C-3     | ANTENNA & CABLE SCHEDULE              |
| C-4     | PLUMBING DIAGRAM                      |
| C-5     | EQUIPMENT SPECS                       |
| E-1     | AC PANEL SCHEDULES & ONE LINE DIAGRAM |
| G-1     | ANTENNA GROUNDING DIAGRAM             |
| G-2     | GROUNDING DETAILS                     |
| G-3     | GROUNDING DETAILS                     |
|         |                                       |
|         |                                       |
|         |                                       |
|         |                                       |

ALL DRAWINGS CONTAINED HEREIN ARE FORMATTED FOR 24X36. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

# PROJECT DESCRIPTION

THE PURPOSE OF THIS PROJECT IS TO ENHANCE BROADBAND CONNECTIVITY AND CAPACITY TO THE EXISTING ELIGIBLE WIRELESS FACILITY.

TOWER SCOPE OF WORK:

- REMOVE (6) ANTENNAS
- REMOVE (6) COAX CABLES
- RELOCATE (3) TMAs
- INSTALL (6) ANTENNAS • INSTALL (3) RADIOS
- INSTALL (3) 6x12 HCS CABLES
- INSTALL (3) DIPLEXERS
- INSTALL (1) SITE PRO1 HRK 14 SUPPORT RAIL KIT

# GROUND SCOPE OF WORK:

- INSTALL (1) 6160 CABINET
- INSTALL (1) B160 BATTERY
- INSTALL (2) BB 6630s
- INSTALL (1) BB 6648 • INSTALL (1) PSU 4813

PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE CROWN NOC AT (800) 788-7011 & CROWN CONSTRUCTION MANAGER

# NO SCALE APPLICABLE CODES/REFERENCE **DOCUMENTS**

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

CODE TYPE BUILDING **MECHANICAL** 

2018 BUILDING CODE OF CONNECTICUT 2018 BUILDING CODE OF CONNECTICUT 2017 NEC

Red Oak Dr

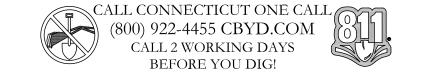
Garden Dr

REFERENCE DOCUMENTS:

ELECTRICAL

STRUCTURAL ANALYSIS: BY OTHERS DATED:

MOUNT ANALYSIS: BY OTHERS


DATED:

RFDS REVISION: 4

DATED: 9/23/20

ORDER ID: 479830

REVISION: 1



# **APPROVALS**

SIGNATURE

DATE

PROPERTY OWNER OR REP. LAND USE PLANNER T-MOBILE **OPERATIONS** NETWORK BACKHAUL CONSTRUCTION MANAGER

THE PARTIES ABOVE HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL CONSTRUCTION DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AND ANY CHANGES AND MODIFICATIONS THEY MAY IMPOSE.

# T - Mobile - -

PARSIPPANY, NJ 07054



CHARLOTTE, NC 28277



T-MOBILE SITE NUMBER: CT11378G

BU #: **857012** PLAINEVILLE SOUTH

335 WASHINGTON ST PLAINVILLE, CT 06062

EXISTING 121'-0" MONOPOLE

|     | ISSUED FOR: |      |              |         |  |  |  |
|-----|-------------|------|--------------|---------|--|--|--|
| REV | DATE        | DRWN | DESCRIPTION  | DES./QA |  |  |  |
| 0   | 8/1/19      | MLC  | CONSTRUCTION | RMC     |  |  |  |
| 1   | 11/7/20     | JTS  | CONSTRUCTION | MTJ     |  |  |  |
| 2   | 11/25/20    | JTS  | CONSTRUCTION | MTJ     |  |  |  |
| 3   | 12/1/20     | JTS  | CONSTRUCTION | MTJ     |  |  |  |
|     |             |      |              |         |  |  |  |



B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, INLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

**SHEET NUMBER:** 

2. "LOOK UP" - CROWN CASTLE USA INC. SAFETY CLIMB REQUIREMENT: THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR CROWN CASTLE USA INC. POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS

ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND CROWN CASTLE USA INC STANDARD CED-STD-10253, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH QAS-STD-10068 "INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON CROWN CASTLE USA INC. TOWER SITE," CED-STD-10294 "STANDARD FOR INSTALLATION OF MOUNTS AND APPURTENANCES," AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS.

IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS. THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY CROWN CASTLE USA INC. PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS. ORDINANCES. RULES. REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK. SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, TOWER OWNER, CROWN CASTLE USA INC., AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED URFACE APPLICATION

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER. EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT

EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS. 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

# GENERAL NOTES:

FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR: GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION CARRIER: T-MOBILE

TOWER OWNER: CROWN CASTLE USA INC.

THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR

MISCELLANEOUS WORK NOT EXPLICITLY SHOWN. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES. SEQUENCES. AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO. BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQU<mark>IREMENTS, SHALL GOVER</mark>N. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CROWN CASTLE

ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS

UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND CROWN CASTLE PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

CONTRACTOR IS TO PERFORM A SITE INVESTIGATION AND IS TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF CROWN CASTLE USA INC. 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

# CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

DESIGNATED LOCATION.

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°f AT TIME OF

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi #5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM. CONCRETE COVER SHALL BE. PROVIDED. FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:

CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH CONCRETE EXPOSED TO EARTH OR WEATHER:

BEAMS AND COLUMNS

#6 BARS AND LARGER #5 BARS AND SMALLER 1-1/2" CONCRETE NOT EXPOSED TO EARTH OR WEATHER: SLAB AND WALLS 3/4"

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

# GREENFIELD GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR. 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR. 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY).

# ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

WIRING. RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERYIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS 8. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES

9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIÉD.

11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED

12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TO CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75°C (90°C IF AVAILABLE). 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE

15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

16. ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE

18. LIQUID—TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID—TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.

19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE. 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND

21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS

(WIREMOLD SPECMATE WIREWAY).

SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL) 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE. MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED

MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3R (OR

METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR CROWN CASTLE USA INC.

BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.

APWA UNIFORM COLOR CODE:

PROPOSED EXCAVATION

GASEOUS MATERIALS

POTABLE WATER

SLURRY LINES

TEMPORARY SURVEY MARKINGS

LECTRIC POWER LINES, CABLES,

GAS, OIL, STEAM, PETROLEUM, OR

RECLAIMED WATER, IRRIGATION, AND

SEWERS AND DRAIN LINES

COMMUNICATION, ALARM OR SIGNAL LINES, CABLES, OR CONDUIT AND TRAFFIC LOOPS

CONDUIT, AND LIGHTING CABLES

29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "T-MOBILE". 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

| COND         | CONDUCTOR COLOR CODE |                  |  |  |  |  |  |
|--------------|----------------------|------------------|--|--|--|--|--|
| SYSTEM       | CONDUCTOR            | COLOR            |  |  |  |  |  |
|              | A PHASE              | BLACK            |  |  |  |  |  |
| 120/240V, 1Ø | B PHASE              | RED              |  |  |  |  |  |
| 120/2400, 10 | NEUTRAL              | WHITE            |  |  |  |  |  |
|              | GROUND               | GREEN            |  |  |  |  |  |
|              | A PHASE              | BLACK            |  |  |  |  |  |
|              | B PHASE              | RED              |  |  |  |  |  |
| 120/208V, 3Ø | C PHASE              | BLUE             |  |  |  |  |  |
|              | NEUTRAL              | WHITE            |  |  |  |  |  |
|              | GROUND               | GREEN            |  |  |  |  |  |
|              | A PHASE              | BROWN            |  |  |  |  |  |
|              | B PHASE              | ORANGE OR PURPLE |  |  |  |  |  |
| 277/480V, 3Ø | C PHASE              | YELLOW           |  |  |  |  |  |
|              | NEUTRAL              | GREY             |  |  |  |  |  |
|              | GROUND               | GREEN            |  |  |  |  |  |
| DC VOLTAGE   | POS (+)              | RED**            |  |  |  |  |  |
| DC VOLIAGE   | NEG (-)              | BLACK**          |  |  |  |  |  |

\* SEE NEC 210.5(C)(1) AND (2) \*\* POLARITY MARKED AT TERMINATION

# ABBREVIATIONS

ANTENNA EXISTING FACILITY INTERFACE FRAME GEN GENERATOR

GPS GLOBAL POSITIONING SYSTEM GSM GLOBAL SYSTEM FOR MOBILE LONG TERM EVOLUTION

MGB MASTER GROUND BAR MW MICROWAVE

QTY

W.P.

NATIONAL ELECTRIC CODE PROPOSED POWER PLANT

QUANTITY

RECT RECTIFIER RADIO BASE STATION RBS RET REMOTE ELECTRIC TILT RFDS RADIO FREQUENCY DATA SHEET

REMOTE RADIO HEAD RRU REMOTE RADIO UNIT SIAD SMART INTEGRATED DEVICE

WORK POINT

TOWER MOUNTED AMPLIFIER TYP **TYPICAL** UMTS UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM

4 SYLVAN WAY PARSIPPANY, NJ 07054





T-MOBILE SITE NUMBER: CT11378G

TULSA, OK 74119

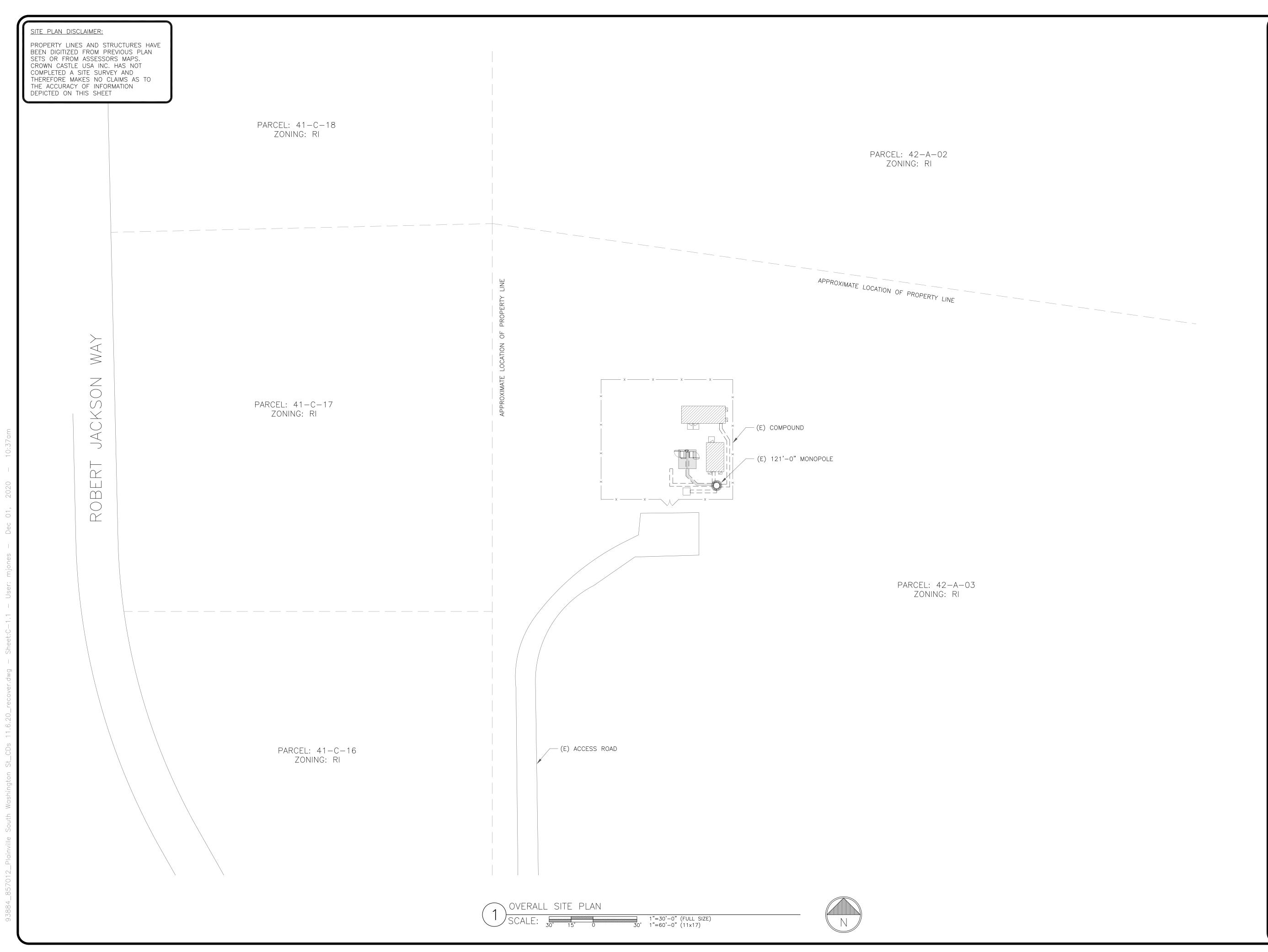
PH: (918) 587-4630

www.btgrp.com

BU #: **857012** PLAINEVILLE SOUTH

335 WASHINGTON ST PLAINVILLE, CT 06062

> EXISTING 121'-0" MONOPOLE


| _           |          |      |              |        |  |  |
|-------------|----------|------|--------------|--------|--|--|
| ISSUED FOR: |          |      |              |        |  |  |
| REV         | DATE     | DRWN | DESCRIPTION  | DES./Q |  |  |
| 0           | 8/1/19   | MLC  | CONSTRUCTION | RMC    |  |  |
| 1           | 11/7/20  | JTS  | CONSTRUCTION | MTJ    |  |  |
| 2           | 11/25/20 | JTS  | CONSTRUCTION | MTJ    |  |  |
| 3           | 12/1/20  | JTS  | CONSTRUCTION | MTJ    |  |  |
|             |          |      |              |        |  |  |



B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:



T - Mobile - - -

4 SYLVAN WAY PARSIPPANY, NJ 07054



3530 TORINGDON WAY, SUITE 300 CHARLOTTE, NC 28277



B+T GRP

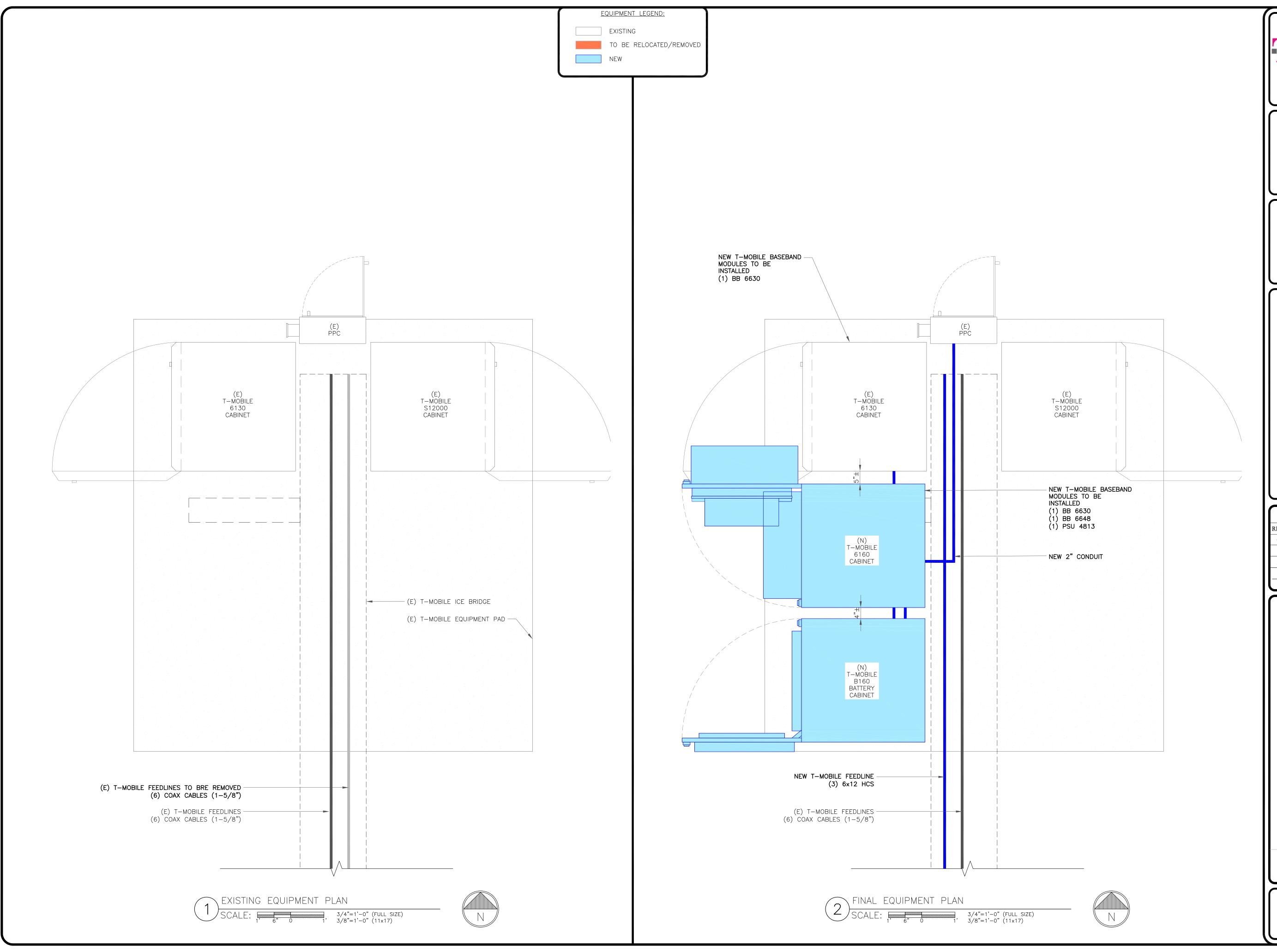
1717 S. BOULDER
SUITE 300
TULSA, OK 74119
PH: (918) 587-4630
www.btgrp.com

T-MOBILE SITE NUMBER: **CT11378G** 

BU #: **857012 PLAINEVILLE SOUTH** 

335 WASHINGTON ST PLAINVILLE, CT 06062

EXISTING 121'-0" MONOPOLE


| ISSUED FOR: |          |      |              |         |  |  |  |
|-------------|----------|------|--------------|---------|--|--|--|
| REV         | DATE     | DRWN | DESCRIPTION  | DES./QA |  |  |  |
| 0           | 8/1/19   | MLC  | CONSTRUCTION | RMC     |  |  |  |
| 1           | 11/7/20  | JTS  | CONSTRUCTION | MTJ     |  |  |  |
| 2           | 11/25/20 | JTS  | CONSTRUCTION | MTJ     |  |  |  |
| 3           | 12/1/20  | JTS  | CONSTRUCTION | MTJ     |  |  |  |
|             |          |      |              |         |  |  |  |



B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

SHEET NUMBER:




T - Mobile - - -

4 SYLVAN WAY PARSIPPANY, NJ 07054



3530 TORINGDON WAY, SUITE 300 CHARLOTTE, NC 28277



B+T GRP

1717 S. BOULDER
SUITE 300
TULSA, OK 74119
PH: (918) 587-4630

www.btgrp.com

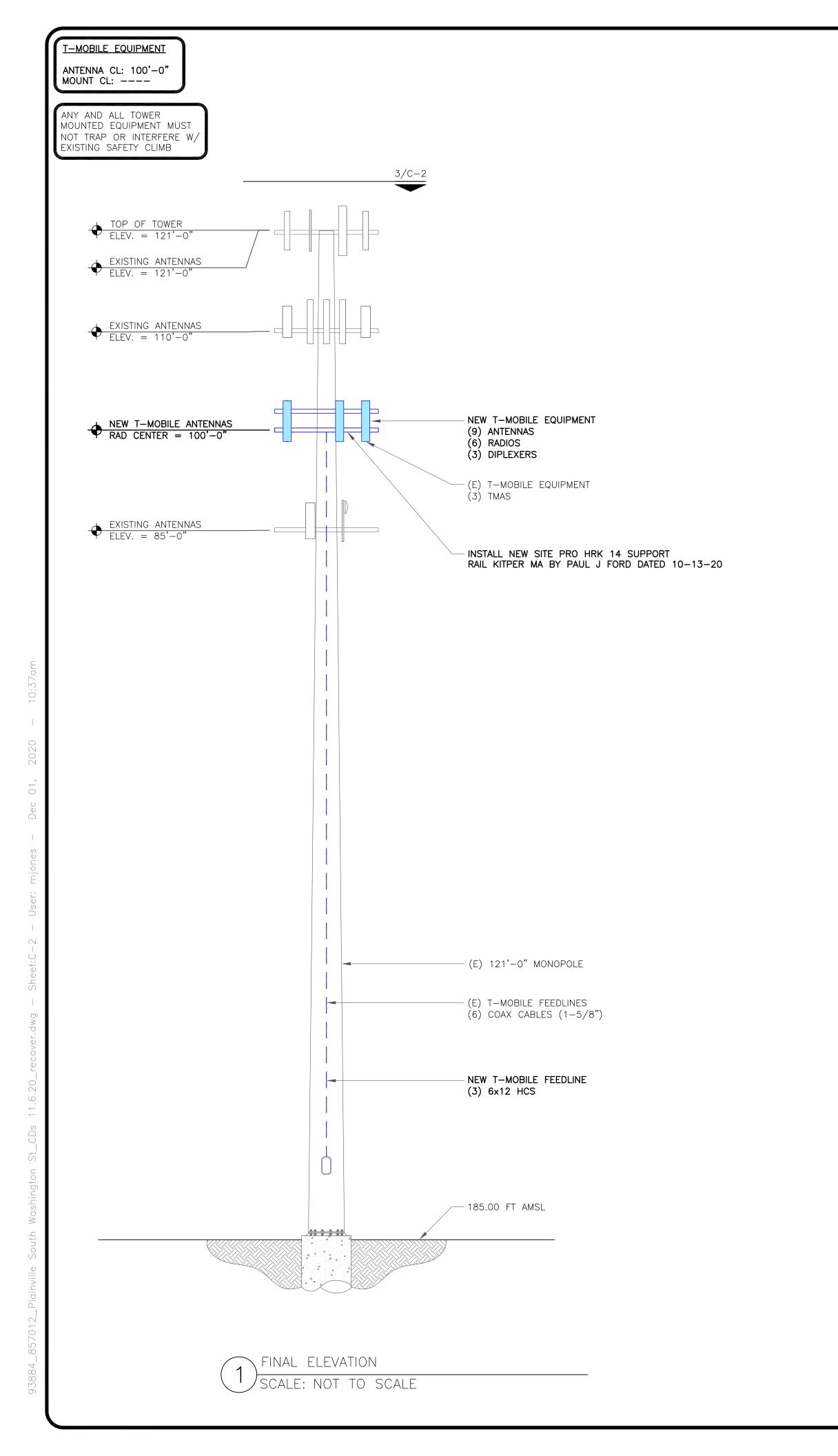
T-MOBILE SITE NUMBER: **CT11378G** 

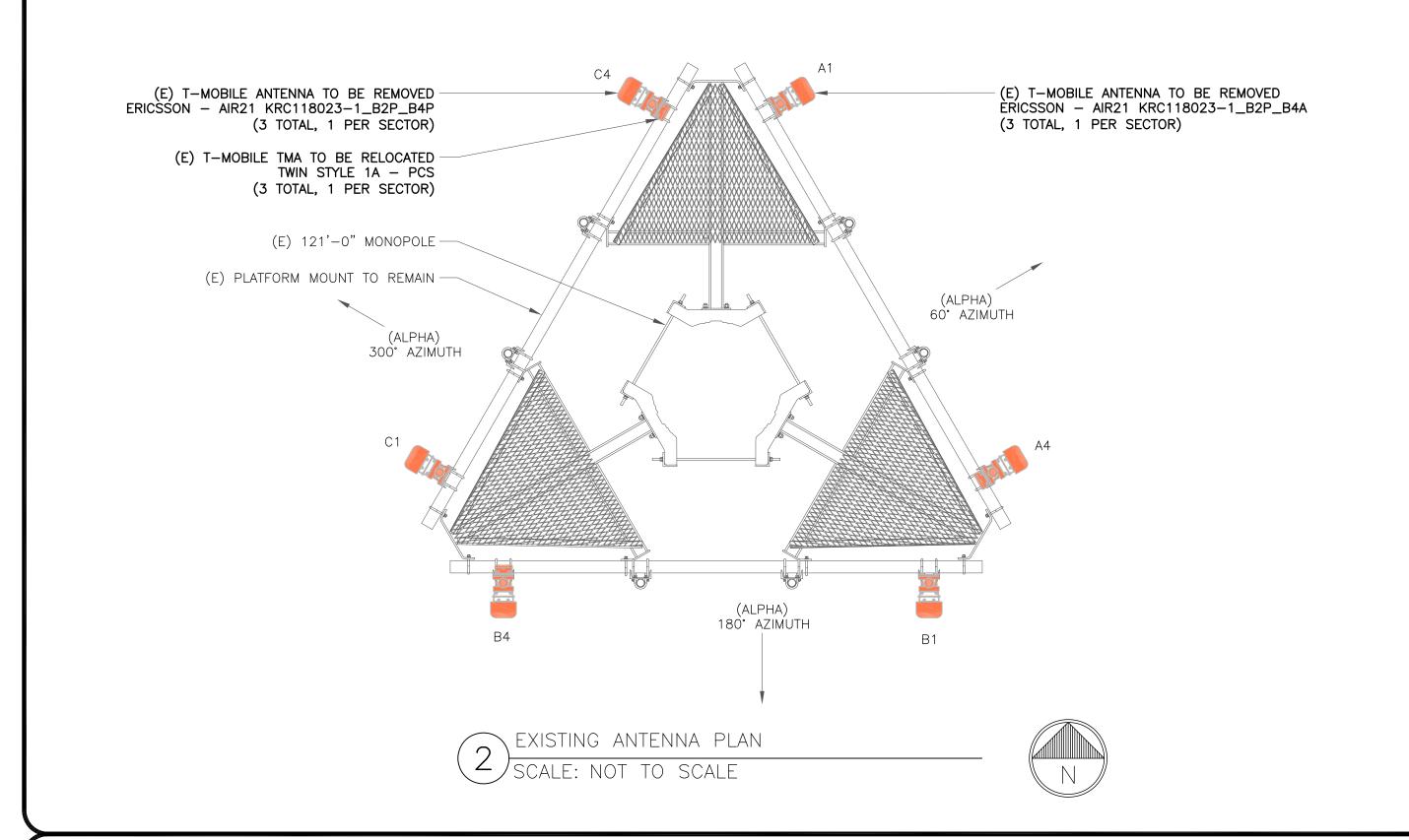
BU #: **857012 PLAINEVILLE SOUTH** 

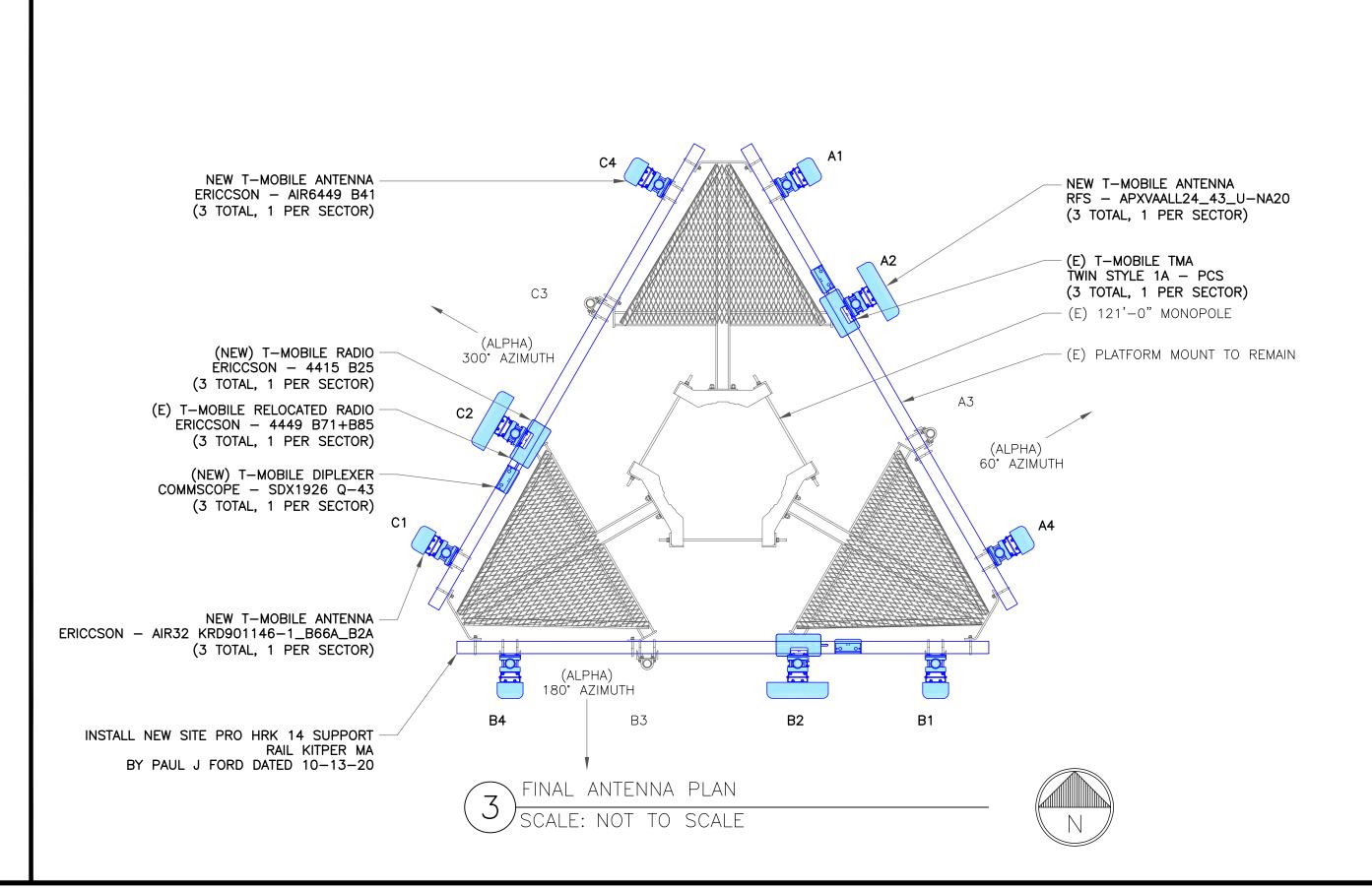
335 WASHINGTON ST PLAINVILLE, CT 06062

EXISTING 121'-0" MONOPOLE

|     | ISSUED FOR: |      |              |         |  |  |  |
|-----|-------------|------|--------------|---------|--|--|--|
| REV | DATE        | DRWN | DESCRIPTION  | DES./QA |  |  |  |
| 0   | 8/1/19      | MLC  | CONSTRUCTION | RMC     |  |  |  |
| 1   | 11/7/20     | JTS  | CONSTRUCTION | MTJ     |  |  |  |
| 2   | 11/25/20    | JTS  | CONSTRUCTION | MTJ     |  |  |  |
| 3   | 12/1/20     | JTS  | CONSTRUCTION | MTJ     |  |  |  |
|     |             |      |              |         |  |  |  |





B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

BER: REVISION: 3









4 SYLVAN WAY PARSIPPANY, NJ 07054



3530 TORINGDON WAY, SUITE 300 CHARLOTTE, NC 28277



B+T GRP

1717 S. BOULDER
SUITE 300
TULSA, OK 74119
PH: (918) 587-4630
www.btgrp.com

T-MOBILE SITE NUMBER: CT11378G

BU #: **857012 PLAINEVILLE SOUTH** 

335 WASHINGTON ST PLAINVILLE, CT 06062

EXISTING 121'-0" MONOPOLE

| -   |             |      |              |         |  |  |  |
|-----|-------------|------|--------------|---------|--|--|--|
|     | ISSUED FOR: |      |              |         |  |  |  |
| REV | DATE        | DRWN | DESCRIPTION  | DES./QA |  |  |  |
| 0   | 8/1/19      | MLC  | CONSTRUCTION | RMC     |  |  |  |
| 1   | 11/7/20     | JTS  | CONSTRUCTION | MTJ     |  |  |  |
| 2   | 11/25/20    | JTS  | CONSTRUCTION | MTJ     |  |  |  |
| 3   | 12/1/20     | JTS  | CONSTRUCTION | MTJ     |  |  |  |
|     |             |      |              |         |  |  |  |



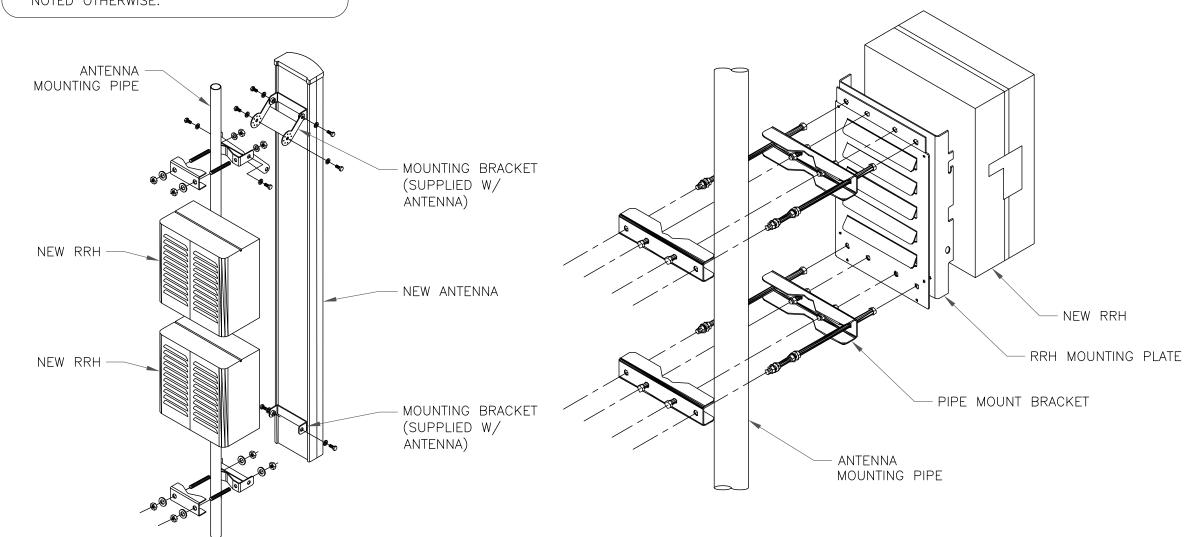
B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION:

C-2


|        | RF SYSTEM SCHEDULE |                                      |              |                               |         |        |             |               |                                     |                       |                   |                 |
|--------|--------------------|--------------------------------------|--------------|-------------------------------|---------|--------|-------------|---------------|-------------------------------------|-----------------------|-------------------|-----------------|
| SECTOR | ANTENNA            | TECH                                 | MANUFACTURER | ANTENNA MODEL                 | AZIMUTH | M-TILT | E-TILT      | RAD<br>CENTER | TMA/RRU                             | CABLE<br>TYPE         | CABLE<br>DIAMETER | CABLE<br>LENGTH |
|        | A-1                | L2100/ <b>G1900/</b><br><b>L4900</b> | ERICSSON     | AIR32<br>KRD901146-1_B66A_B2A | 60°     | 0.     | 2./5./5./5. |               | -                                   | (1) FIBER             | 6x12<br>HYBRID    |                 |
| ALPHA  | A-2                | L700/L600/<br>N600/L1900/<br>U2100   | RFS          | APXVAALL24_43-U-NA20          | 60°     | 0.     | 2./2.       | 100'-0"       | TMA 1A-PCS/4449<br>B71+B85/4415 B25 | (2) COAX<br>(2 FIBER) | 1 5/8"            |                 |
|        | A-3                | L2500/N2500                          | ERICSSON     | AIR6449 B41                   | 60°     | 0°     | 2*/2*       | 100'-0"       | _                                   | (1) FIBER             | 6x12<br>HYBRID    |                 |
|        | B-1                | L2100/ <b>G1900/</b><br><b>L4900</b> | ERICSSON     | AIR32<br>KRD901146-1_B66A_B2A | 180°    | 0.     | 2./5./5./5. | 100'-0"       | _                                   | (1) FIBER             | 6x12<br>HYBRID    |                 |
| ВЕТА   | B-2                | L700/L600/<br>N600/L1900/<br>U2100   | RFS          | APXVAALL24_43-U-NA20          | 180°    | 0.     | 2./2.       | 100'-0"       | TMA 1A-PCS/4449<br>B71+B85/4415 B25 | (2) COAX<br>(2 FIBER) | 1 5/8"            | 110'            |
|        | B-3                | L2500/N2500                          | ERICSSON     | AIR6449 B41                   | 180°    | 0.     | 2*/2*       | 100'-0"       | _                                   | (1) FIBER             | 6x12<br>HYBRID    |                 |
|        | C-1                | L2100/ <b>G1900/</b><br><b>L4900</b> | ERICSSON     | AIR32<br>KRD901146-1_B66A_B2A | 300°    | 0,     | 2./5./5./5. | 100'-0"       | _                                   | (1) FIBER             | 6x12<br>HYBRID    |                 |
| GAMMA  | C-2                | L700/L600/<br>N600/L1900/<br>U2100   | RFS          | APXVAALL24_43-U-NA20          | 300°    | 0.     | 2*/2*       | 100'-0"       | TMA 1A-PCS/4449<br>B71+B85/4415 B25 |                       | 1 5/8"            |                 |
|        | B-3                | L2500/N2500                          | ERICSSON     | AIR6449 B41                   | 300°    | 0.     | 2*/2*       | 100'-0"       | _                                   | (1) FIBER             | 6x12<br>HYBRID    |                 |

ANTENNA & FEEDLINE SCHEDULE

SCALE: NOT TO SCALE



- 1. COMPLY WITH MANUFACTURERS
  INSTRUCTIONS TO ENSURE THAT ALL RRHS
  RECEIVE ELECTRICAL POWER WITHIN 24
  HOURS OF BEING REMOVED FROM THE
  MANUFACTURER'S PACKAGING.
- 2. DO NOT OPEN RRH PACKAGES IN THE RAIN.
  3. ALL PIPES, BRACKETS, AND MISCELLANEOUS HARDWARE TO BE GALVANIZED UNLESS NOTED OTHERWISE.



ANTENNA WITH RRHS MOUNTING DETAIL

SCALE: NOT TO SCALE

T - Mobile - - -

4 SYLVAN WAY PARSIPPANY, NJ 07054





www.btgrp.com

3530 TORINGDON WAY, SUITE 300 CHARLOTTE, NC 28277

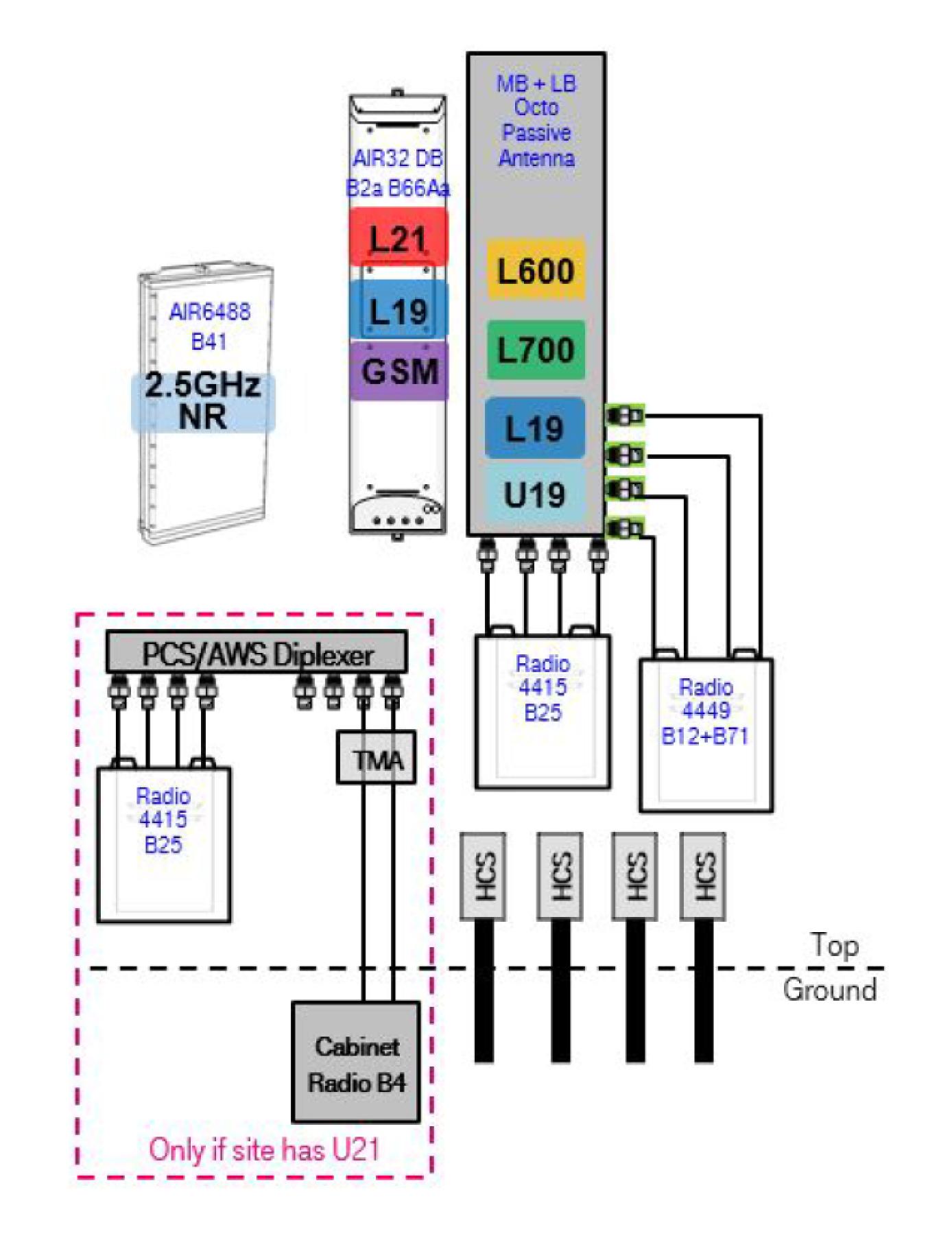
T-MOBILE SITE NUMBER: **CT11378G** 

BU #: **857012 PLAINEVILLE SOUTH** 

335 WASHINGTON ST PLAINVILLE, CT 06062

EXISTING 121'-0" MONOPOLE

|     | ISSUED FOR: |      |              |         |  |  |  |  |
|-----|-------------|------|--------------|---------|--|--|--|--|
| REV | DATE        | DRWN | DESCRIPTION  | DES./QA |  |  |  |  |
| 0   | 8/1/19      | MLC  | CONSTRUCTION | RMC     |  |  |  |  |
| 1   | 11/7/20     | JTS  | CONSTRUCTION | MTJ     |  |  |  |  |
| 2   | 11/25/20    | JTS  | CONSTRUCTION | MTJ     |  |  |  |  |
| 3   | 12/1/20     | JTS  | CONSTRUCTION | MTJ     |  |  |  |  |
|     |             |      |              |         |  |  |  |  |




B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

SHEET NUMBER:

3





4 SYLVAN WAY PARSIPPANY, NJ 07054



3530 TORINGDON WAY, SUITE 300 CHARLOTTE, NC 28277



B+T GRP

1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btgrp.com

T-MOBILE SITE NUMBER: **CT11378G** 

BU #: **857012 PLAINEVILLE SOUTH** 

335 WASHINGTON ST PLAINVILLE, CT 06062

> EXISTING 121'-0" MONOPOLE

|                                   | ISSUED FOR: |     |              |     |  |  |  |  |
|-----------------------------------|-------------|-----|--------------|-----|--|--|--|--|
| REV DATE DRWN DESCRIPTION DES./QA |             |     |              |     |  |  |  |  |
| 0                                 | 8/1/19      | MLC | CONSTRUCTION | RMC |  |  |  |  |
| 1                                 | 11/7/20     | JTS | CONSTRUCTION | MTJ |  |  |  |  |
| 2                                 | 11/25/20    | JTS | CONSTRUCTION | MTJ |  |  |  |  |
| 3                                 | 12/1/20     | JTS | CONSTRUCTION | MTJ |  |  |  |  |
|                                   |             |     |              |     |  |  |  |  |

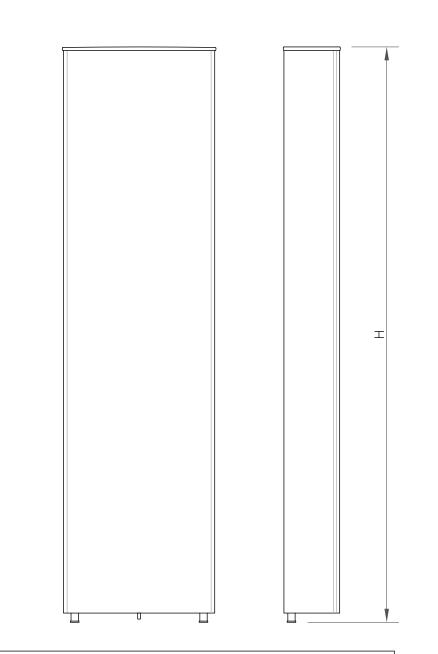


B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

TO ALTER THIS DOCUMENT.

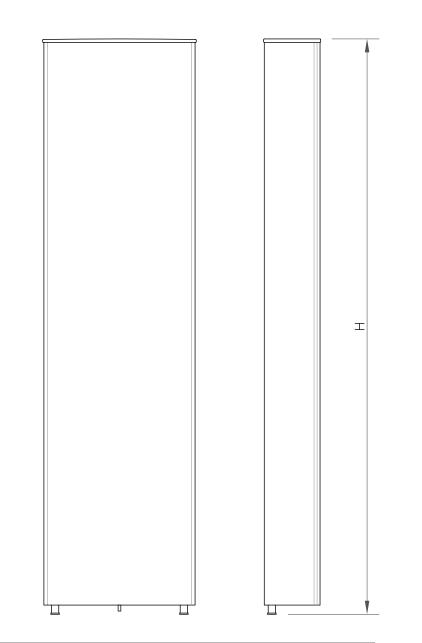
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER,

**REVISION:** 


SHEET NUMBER:

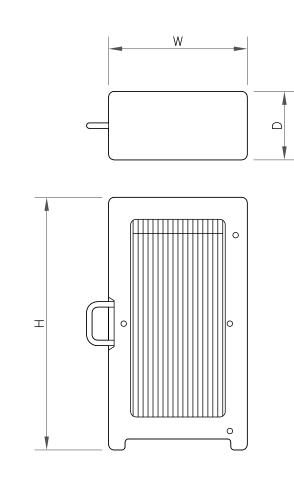
 $C_{-4}$ 




| ANTENNA SPECS |             |  |  |  |  |  |  |  |
|---------------|-------------|--|--|--|--|--|--|--|
| MANUFACTURER  | ERRICSSON   |  |  |  |  |  |  |  |
| MODEL #       | AIR6449 B41 |  |  |  |  |  |  |  |
| WIDTH         | 20.51"      |  |  |  |  |  |  |  |
| DEPTH         | 8.54"       |  |  |  |  |  |  |  |
| HEIGHT        | 33.11"      |  |  |  |  |  |  |  |
| WEIGHT        | 114.63 LBS  |  |  |  |  |  |  |  |

ANTENNA SPECS
SCALE: NOT TO SCALE




| ANTENNA SPECS |                      |  |  |  |  |  |  |  |
|---------------|----------------------|--|--|--|--|--|--|--|
| MANUFACTURER  | RFS                  |  |  |  |  |  |  |  |
| MODEL #       | APXVAARR24_43-U-NA20 |  |  |  |  |  |  |  |
| WIDTH         | 24.00"               |  |  |  |  |  |  |  |
| DEPTH         | 8.70"                |  |  |  |  |  |  |  |
| HEIGHT        | 95.90"               |  |  |  |  |  |  |  |
| WEIGHT        | 128.00 LBS           |  |  |  |  |  |  |  |

2 ANTENNA SPECS
SCALE: NOT TO SCALE



| ANTENNA SPECS |                 |  |  |  |  |  |  |
|---------------|-----------------|--|--|--|--|--|--|
| MANUFACTURER  | ERICCSON        |  |  |  |  |  |  |
| MODEL #       | AIR32 B2A B66AA |  |  |  |  |  |  |
| WIDTH         | 12.87"          |  |  |  |  |  |  |
| DEPTH         | 8.70"           |  |  |  |  |  |  |
| HEIGHT        | 59.95           |  |  |  |  |  |  |
| WEIGHT        | 171.96 LBS      |  |  |  |  |  |  |

3 ANTENNA SPECS
SCALE: NOT TO SCALE



# RRU SPECIFICATIONS

| MANUFACTURER | ERICSSON |
|--------------|----------|
| MODEL #      | 4424 B25 |
| WIDTH        | 14.40"   |
| DEPTH        | 11.30"   |
| HEIGHT       | 17.10"   |
| WEIGHT       | 86.0 LBS |

RRU SPECS
SCALE: NOT TO SCALE





T-MOBILE SITE NUMBER: **CT11378G** 

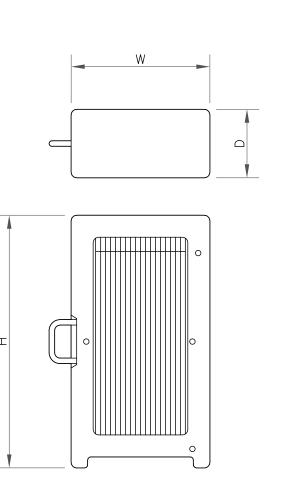
BU #: **857012 PLAINEVILLE SOUTH** 

335 WASHINGTON ST PLAINVILLE, CT 06062

EXISTING 121'-0" MONOPOLE

| ISSUED FOR: |          |      |              |        |  |  |  |  |  |  |
|-------------|----------|------|--------------|--------|--|--|--|--|--|--|
| REV         | DATE     | DRWN | DESCRIPTION  | DES./Q |  |  |  |  |  |  |
| 0           | 8/1/19   | MLC  | CONSTRUCTION | RMC    |  |  |  |  |  |  |
| 1           | 11/7/20  | JTS  | CONSTRUCTION | MTJ    |  |  |  |  |  |  |
| 2           | 11/25/20 | JTS  | CONSTRUCTION | MTJ    |  |  |  |  |  |  |
| 3           | 12/1/20  | JTS  | CONSTRUCTION | MTJ    |  |  |  |  |  |  |
|             |          |      |              |        |  |  |  |  |  |  |
|             |          |      |              |        |  |  |  |  |  |  |




B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

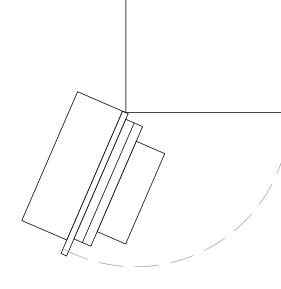
SHEET NUMBER:

5 | 3

**REVISION:** 



| RRU SPECIFICATIONS |           |  |  |  |  |  |  |  |
|--------------------|-----------|--|--|--|--|--|--|--|
| MANUFACTURER       | ERICSSON  |  |  |  |  |  |  |  |
| MODEL #            | 4415 B66A |  |  |  |  |  |  |  |
| WIDTH              | 13.19     |  |  |  |  |  |  |  |
| DEPTH              | 5.39"     |  |  |  |  |  |  |  |
| HEIGHT             | 14.96"    |  |  |  |  |  |  |  |
| WEIGHT             | 44.0 LBS  |  |  |  |  |  |  |  |


(5) RRU SPECS SCALE: 5



| DIPLEXER       |             |  |  |  |  |  |
|----------------|-------------|--|--|--|--|--|
| SPECIFICATIONS |             |  |  |  |  |  |
| MANUFACTURER   | COMMSCOPE   |  |  |  |  |  |
| MODEL #        | SDX1926Q-43 |  |  |  |  |  |
| WIDTH          | 6.93"       |  |  |  |  |  |
| DEPTH          | 2.91"       |  |  |  |  |  |
| HEIGHT         | 4.17"       |  |  |  |  |  |
| WEIGHT         | 6.17 LBS    |  |  |  |  |  |

6 DIPLEXER SPECS
SCALE: NOT TO SCALE





| / / \ | ERICSSON  |        |       |
|-------|-----------|--------|-------|
|       | SCALE: NO | T TO S | SCALE |



| BATTERY CABINET SPECIFICATIONS |          |  |  |  |  |  |  |
|--------------------------------|----------|--|--|--|--|--|--|
| MODEL#                         | B160     |  |  |  |  |  |  |
| MANUF.                         | ERICSSON |  |  |  |  |  |  |
| HEIGHT                         | 63"      |  |  |  |  |  |  |
| WIDTH                          | 26"      |  |  |  |  |  |  |
| DEPTH                          | 26"      |  |  |  |  |  |  |
| WEIGHT                         |          |  |  |  |  |  |  |

8 ERICSSON B160 BATTERY CABINET SCALE: NOT TO SCALE

|                                                     |        | FINAL  | PANE                     | L SCH               | IEDULE   |        |                             |                   |  |
|-----------------------------------------------------|--------|--------|--------------------------|---------------------|----------|--------|-----------------------------|-------------------|--|
| LOAD                                                | DOLEC  | AMPS   | BUS                      |                     | AMDC     | DOLEC  |                             | LOAD              |  |
| LOAD                                                | POLES  |        | L1                       | L2                  | AMPS     | POLES  | LOAD                        |                   |  |
| SURGE                                               | 2      | 60A    | 1                        | 2                   | 20A      | 1      |                             | REC               |  |
| 301.02                                              |        |        | 3                        | 4                   | 100A     | 2      | 6160 CABINET                |                   |  |
| BTS 1                                               | 2      | 60A    | 5                        | 6                   | TOUA     |        |                             | 6160 CABINET      |  |
| 013 1                                               |        |        | 7                        | 8                   | 20A      | 1      |                             | 6160 GFCI         |  |
| SPOTLIGHT                                           | 1      | 20A    | 9                        | 10                  |          |        |                             |                   |  |
| RATED VOLTAGE: ■120/240 □ 1                         | PHASE, | 3 WIRE | BRANC                    | H PO                | LES: □12 | □24 ■3 | 30 🗆 42                     | APPROVED MF'RS    |  |
| RATED AMPS: □100 ■200 □400 □                        |        |        | CABINET: ■SURFACE □FLUSH |                     |          | □FLUSH | NEMA □1 ■3R □4X             |                   |  |
| MAIN LUGS ONLY MAIN 200 AMPS ■BREAKER □FUSED SWITCH |        |        | HING                     | ED D                | 00R      |        |                             | ■KEYED DOOR LATCH |  |
| FLICED - OLDOLLIT DDEALED DDANOLL DEVICE            |        |        |                          | TO DE OFOL DDEALEDO |          |        | FULL MELITON DUC COCUND DAD |                   |  |

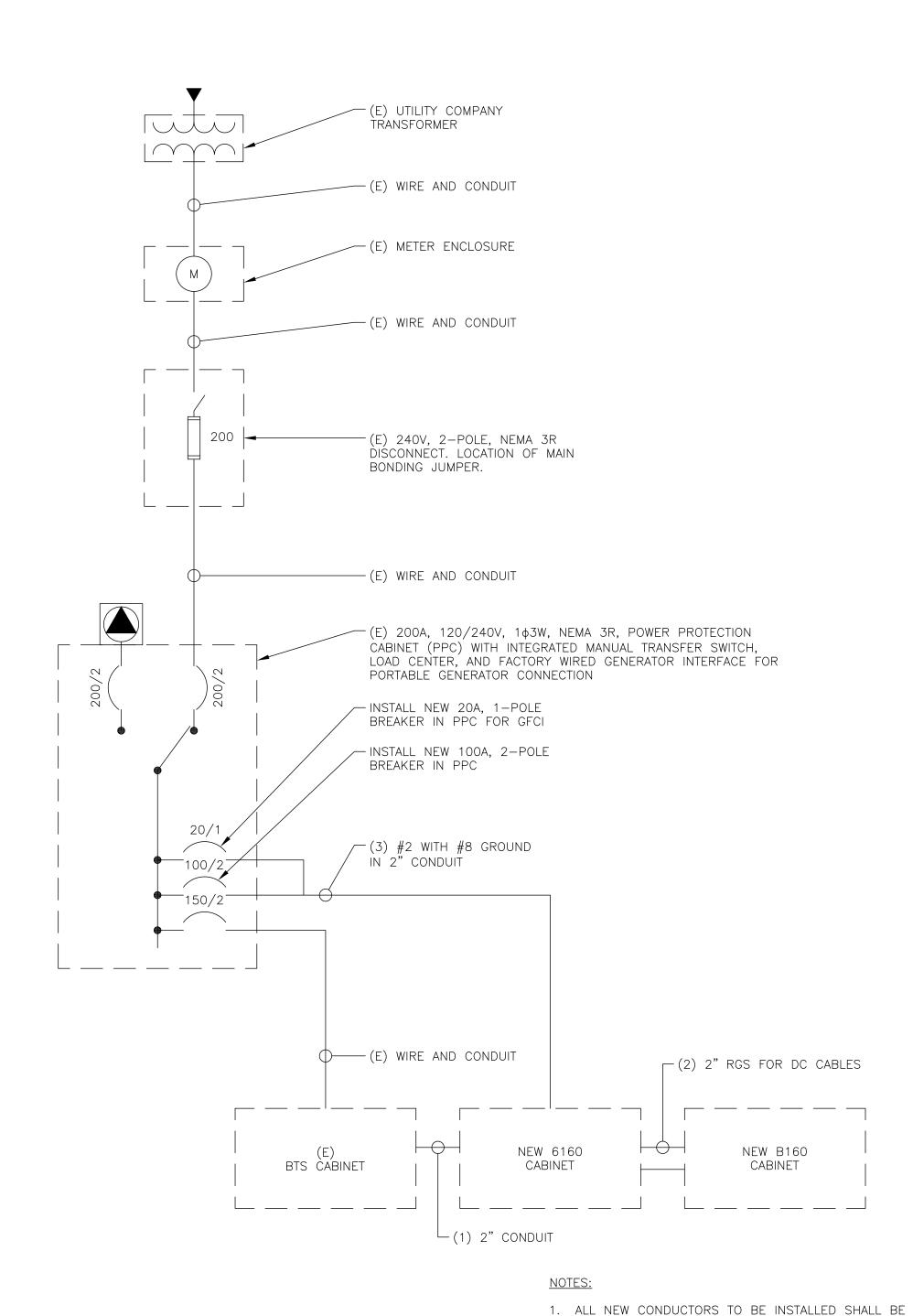
MAIN LUGS ONLY MAIN 200 AMPS ■ BREAKER □ FUSED SWITCH ■ HINGED DOOR ■ KEYED DOOR LATCH

FUSED ■ CIRCUIT BREAKER BRANCH DEVICES □ \_\_\_\_\_\_ TO BE GFCI BREAKERS FULL NEUTRAL BUS GROUND BAR

ALL BREAKERS MUST BE RATED TO INTERRUPT A SHORT CIRCUIT ISC OF 10,000 AMPS SYMMETRICAL

REPLACE EXISTING BREAKER IN POSITION 4 AND 6 WITH A NEW 2P 100A BREAKER REPLACE EXISTING BREAKER IN POSITION 8 WITH A NEW 1P 20A BREAKER

REPLACE EXISTING WIRES FOR EXISTING 6201 CABINET WITH (3) 1/0 AWG THWN (COPPER) AND (1) #6G AWG. MINIMUM CONDUIT SIZE TO BE 2".


IF 100A BREAKER WILL NOT PROPERLY FIT IN EXISTING PANEL, REPLACE (E) PANEL WITH SQUARE D PANEL QO12040M200RB (OR APPROVED EQUAL).

UPGRADE FEEDER WIRES TO MEET AMPACITY IF NEW PANEL IS REQUIRED.

FINAL PANEL DESIGN AND CALCULATIONS FOR WIRE SIZE WERE BASED OFF OF EXISTING PHOTOS

# FINAL T-MOBILE PANEL DETAIL

SCALE: NOT TO SCALE



# T - Mobile - -

4 SYLVAN WAY PARSIPPANY, NJ 07054



3530 TORINGDON WAY, SUITE 300 CHARLOTTE, NC 28277



B+T GRP 1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630

www.btgrp.com

T-MOBILE SITE NUMBER: **CT11378G** 

BU #: **857012 PLAINEVILLE SOUTH** 

335 WASHINGTON ST PLAINVILLE, CT 06062

EXISTING 121'-0" MONOPOLE

| 4           |          |      |              |         |  |  |  |
|-------------|----------|------|--------------|---------|--|--|--|
| ISSUED FOR: |          |      |              |         |  |  |  |
| REV         | DATE     | DRWN | DESCRIPTION  | DES./QA |  |  |  |
| 0           | 8/1/19   | MLC  | CONSTRUCTION | RMC     |  |  |  |
| 1           | 11/7/20  | JTS  | CONSTRUCTION | MTJ     |  |  |  |
| 2           | 11/25/20 | JTS  | CONSTRUCTION | MTJ     |  |  |  |
| 3           | 12/1/20  | JTS  | CONSTRUCTION | MTJ     |  |  |  |
|             |          |      |              |         |  |  |  |



B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

SHEET NUMBER:

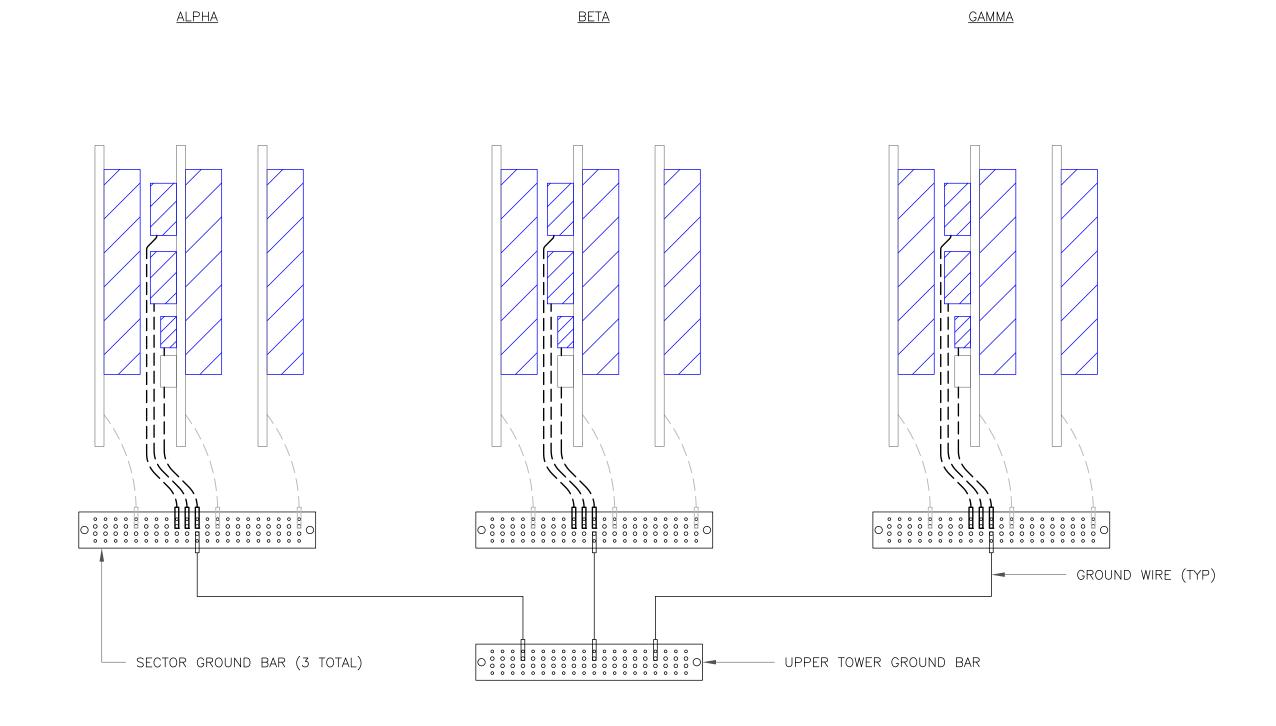
REVISION:

ONE LINE DIAGRAM

SCALE: NOT TO SCALE

COPPER. ALL CONDUCTORS SHALL BE THHW, THWN,

2. CONTRACTOR IS TO FIELD VERIFY ALL EXISTING ITEMS


THE ENGINEER OF ANY DISCREPANCIES.

3. ALL GROUNDING AND BONDING PER THE NEC.

UNLESS NOTED OTHERWISE.

THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2

SHOWN ON THE ELECTRICAL ONE-LINE DIAGRAM AND NOTIFY



NOTE:

ALL NEW GROUNDS TO BE #6 STRANDED COPPER WITH GREEN INSULATION UNLESS NOTED OTHERWISE.





4 SYLVAN WAY PARSIPPANY, NJ 07054



3530 TORINGDON WAY, SUITE 300 CHARLOTTE, NC 28277



T-MOBILE SITE NUMBER: **CT11378G** 

BU #: **857012 PLAINEVILLE SOUTH** 

335 WASHINGTON ST PLAINVILLE, CT 06062

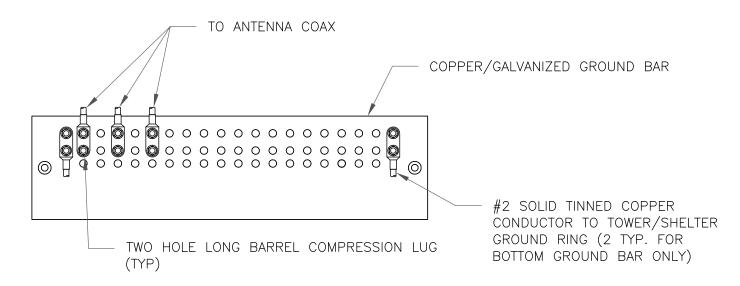
EXISTING 121'-0" MONOPOLE

| ISSUED FOR: |          |      |              |         |  |  |
|-------------|----------|------|--------------|---------|--|--|
| REV         | DATE     | DRWN | DESCRIPTION  | DES./QA |  |  |
| 0           | 8/1/19   | MLC  | CONSTRUCTION | RMC     |  |  |
| 1           | 11/7/20  | JTS  | CONSTRUCTION | MTJ     |  |  |
| 2           | 11/25/20 | JTS  | CONSTRUCTION | MTJ     |  |  |
| 3           | 12/1/20  | JTS  | CONSTRUCTION | MTJ     |  |  |
|             |          |      |              |         |  |  |



B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

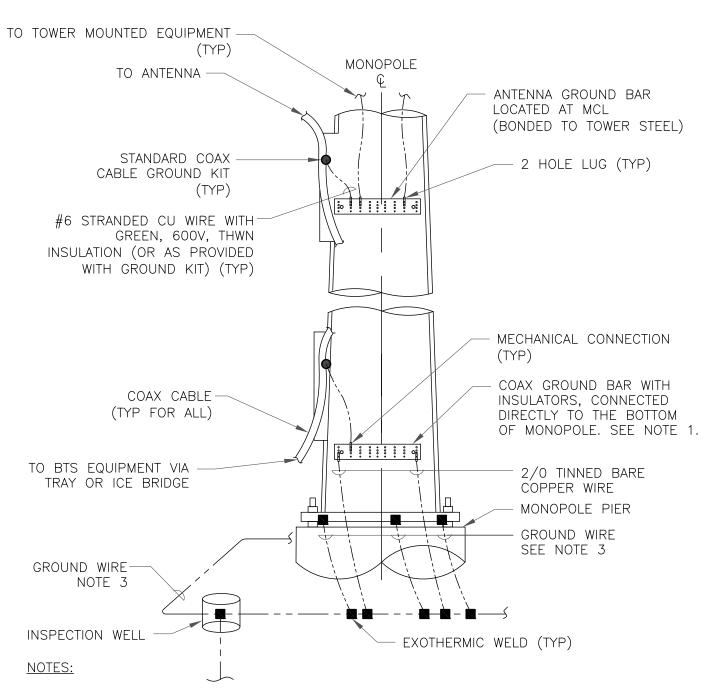
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.


SHEET NUMBER:

G-1

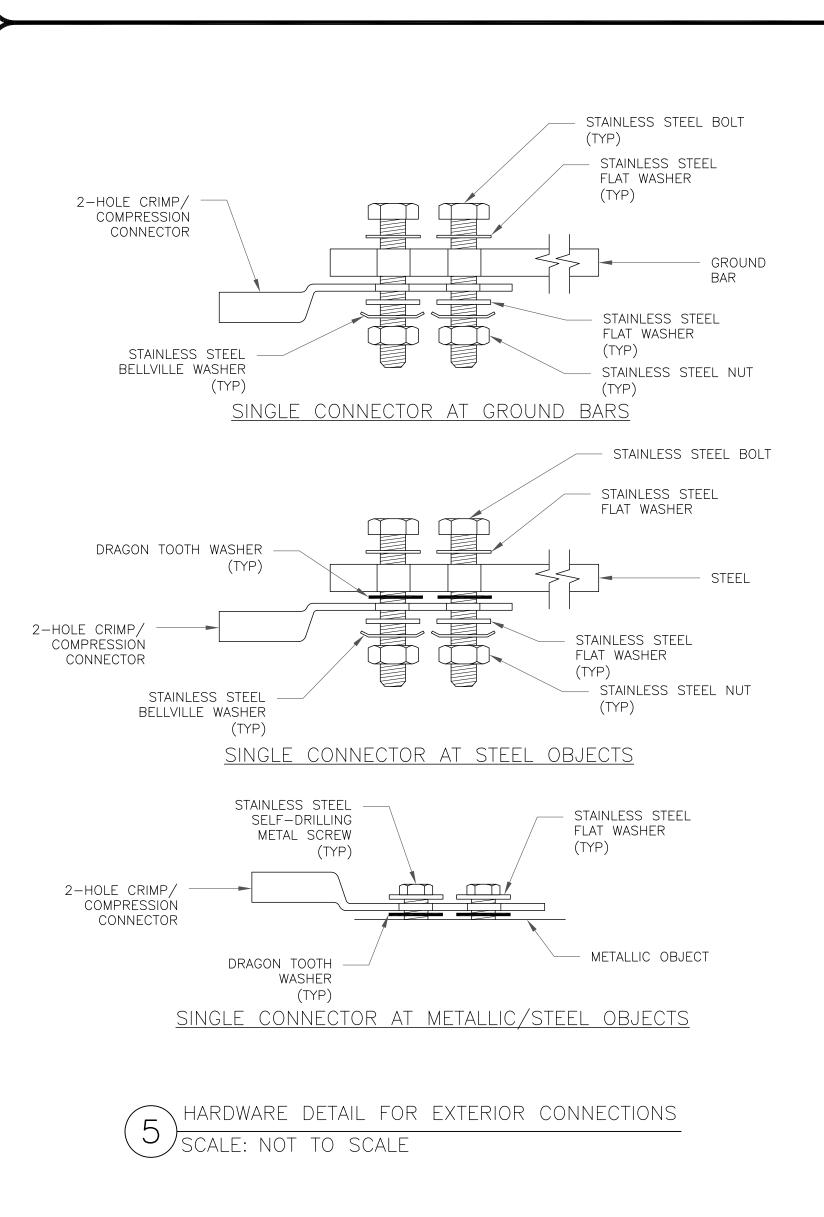
# NOTES:

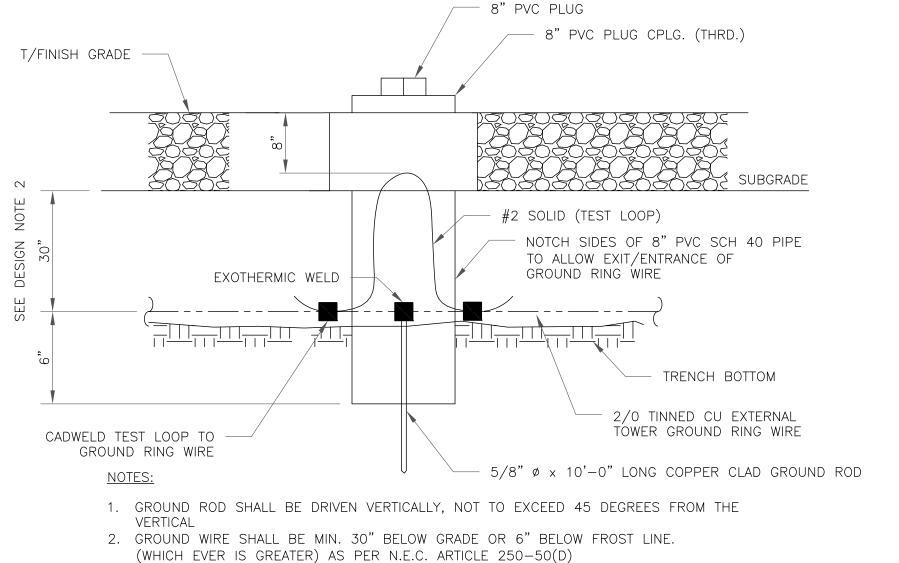
- 1. DOUBLING UP "OR STACKING" OF CONNECTIONS IS NOT PERMITTED.
- 2. EXTERIOR ANTIOXIDANT JOINT COMPOUND TO BE USED ON ALL EXTERIOR CONNECTIONS.
- 3. GROUND BAR SHALL NOT BE ISOLATED FROM TOWER. MOUNT DIRECTLY TO ANTENNA MOUNT STEEL.


# ANTENNA SECTOR GROUND BAR DETAIL SCALE: NOT TO SCALE

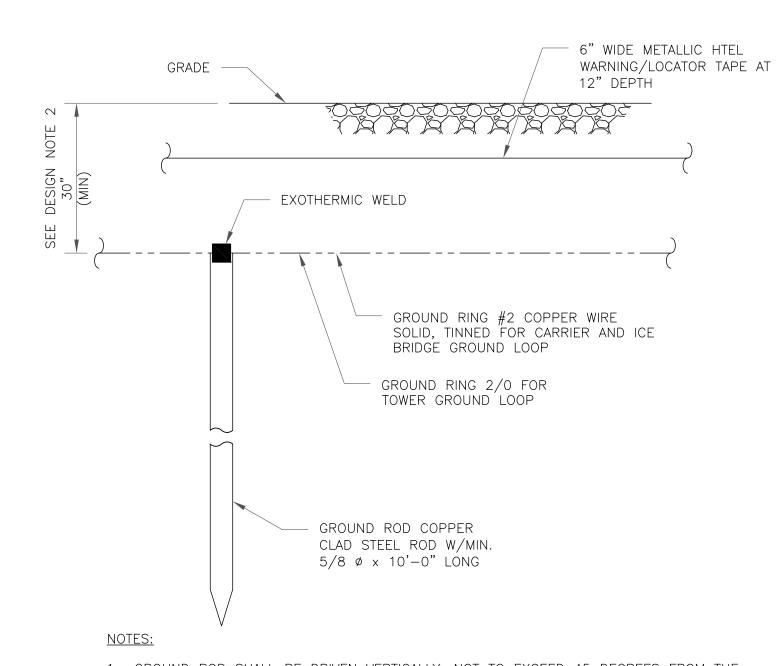


# NOTES:


- 1. EXTERIOR ANTIOXIDANT JOINT COMPOUND TO BE USED ON ALL EXTERIOR CONNECTIONS.
- 2. GROUND BAR SHALL NOT BE ISOLATED FROM TOWER. MOUNT DIRECTLY TO TOWER STEEL (TOWER ONLY).
- 3. GROUND BAR SHALL BE ISOLATED FROM BUILDING OR SHELTER.







- 1. NUMBER OF GROUNDING BARS MAY VARY DEPENDING ON THE TYPE OF TOWER, ANTENNA LOCATIONS AND CONNECTION ORIENTATION. COAXIAL CABLES EXCEEDING 200 FEET ON THE TOWER SHALL HAVE GROUND KITS AT THE MIDPOINT. PROVIDE AS REQUIRED.
- 2. ONLY MECHANICAL CONNECTIONS ARE ALLOWED TO BE MADE TO CROWN CASTLE USA INC. TOWERS. ALL MECHANICAL CONNECTIONS SHALL BE TREATED WITH AN ANTI-OXIDANT COATING.
- 3. ALL TOWER GROUNDING SYSTEMS SHALL COMPLY WITH THE REQUIREMENTS OF THE RECOGNIZED EDITION OF ANSI/TIA 222 AND NFPA 780.











- 1. GROUND ROD SHALL BE DRIVEN VERTICALLY, NOT TO EXCEED 45 DEGREES FROM THE VERTICAL
- 2. GROUND WIRE SHALL BE MIN. 30" BELOW GRADE OR 6" BELOW FROST LINE. (WHICH EVER IS GREATER) AS PER N.E.C. ARTICLE 250-50(D)









CHARLOTTE, NC 28277

1717 S. BOULDER SUITE 300 TULSA, OK 74119 PH: (918) 587-4630 www.btgrp.com

T-MOBILE SITE NUMBER: **CT11378G** 

BU #: **857012 PLAINEVILLE SOUTH** 

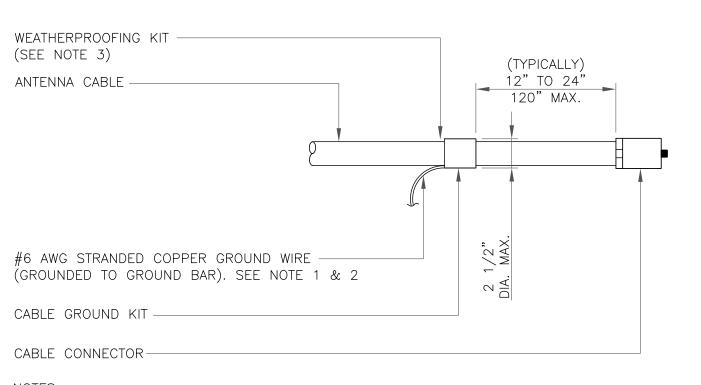
335 WASHINGTON ST PLAINVILLE, CT 06062

EXISTING 121'-0" MONOPOLE

| ISSUED FOR: |                                  |     |              |     |  |  |  |
|-------------|----------------------------------|-----|--------------|-----|--|--|--|
| REV         | REV DATE DRWN DESCRIPTION DES./Q |     |              |     |  |  |  |
| 0           | 8/1/19                           | MLC | CONSTRUCTION | RMC |  |  |  |
| 1           | 11/7/20                          | JTS | CONSTRUCTION | MTJ |  |  |  |
| 2           | 11/25/20                         | JTS | CONSTRUCTION | MTJ |  |  |  |
| 3           | 12/1/20                          | JTS | CONSTRUCTION | MTJ |  |  |  |
|             |                                  |     |              |     |  |  |  |



B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:


# NOTE:

- 1. ERICO EXOTHERMIC "MOLD TYPES" SHOWN HERE ARE EXAMPLES. CONSULT WITH CONSTRUCTION MANAGER FOR SPECIFIC
- MOLDS TO BE USED FOR THIS PROJECT. 2. MOLD TYPE ONLY TO BE USED BELOW GRADE WHEN CONNECTING GROUND RING TO GROUND ROD.

CADWELD GROUNDING CONNECTIONS SCALE: NOT TO SCALE



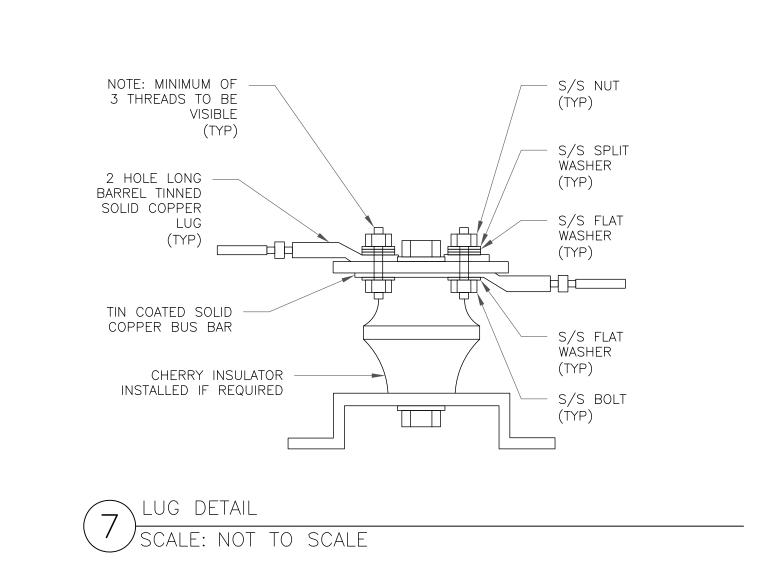
- 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- GROUNDING KIT SHALL BE TYPE AND PART NUMBER AS SUPPLIED OR RECOMMENDED BY CABLE MANUFACTURER.
- WEATHER PROOFING SHALL BE TWO-PART TAPE KIT, COLD SHRINK SHALL NOT
- CABLE GROUND KIT CONNECTION SCALE: NOT TO SCALE

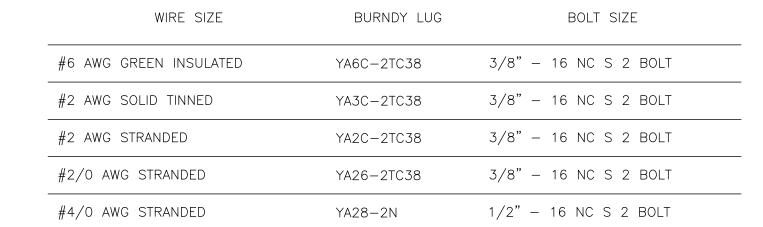


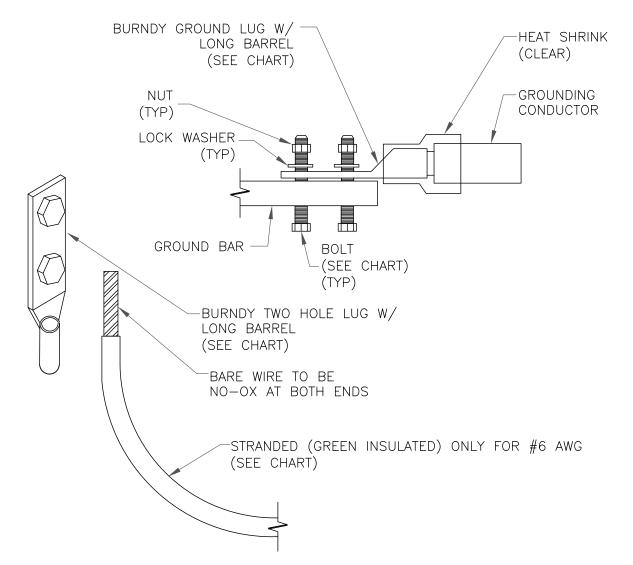
MODIFICATION OR DRILLING TO TOWER STEEL IS ALLOWED IN ANY FORM OR FASHION,

CAD-WELDING ON THE TOWER AND/OR IN THE AIR ARE NOT PERMITTED.

USE INSULATORS WHEN ATTACHING TO BUILDING OR SHELTERS.


GROUND BAR DETAIL

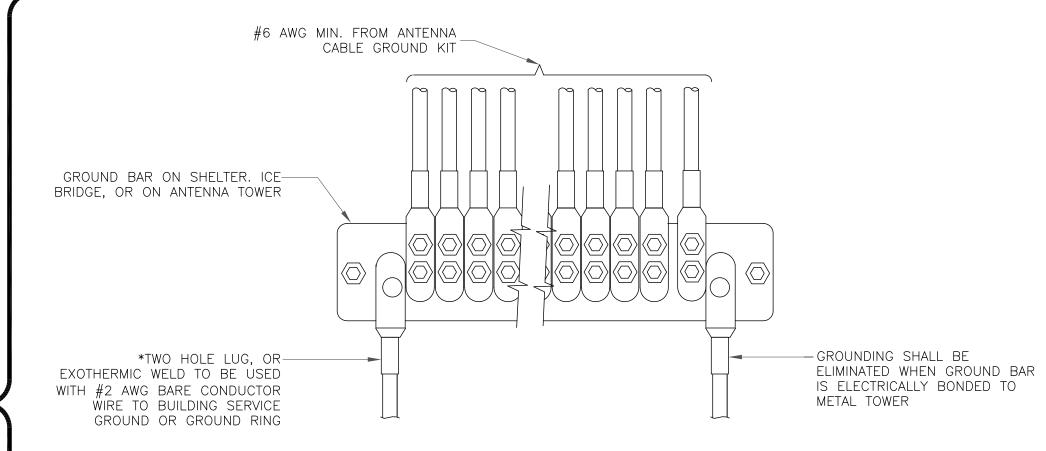

SCALE: NOT TO SCALE


2. OMIT INSULATOR WHEN MOUNTING TO TOWER STEEL OR PLATFORM STEEL

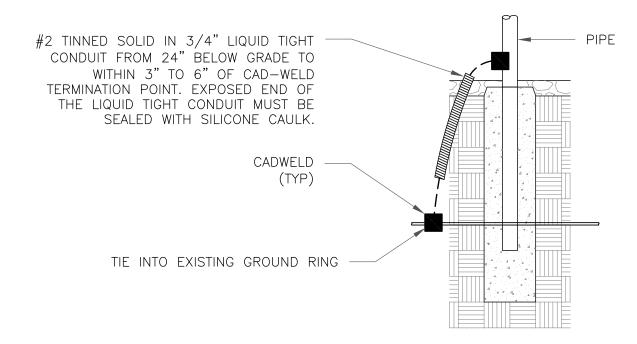
TO ANTENNAS WEATHERPROOFING TX1/RX1 (TYP) GROUND KIT COAX JUMPER (TYP.) -(TYP) CONNECTOR -#6 AWG WEATHERPROOFING KIT (TYP. SEE NOTE 2) - COPPER/GALVANIZED COAX GROUND BAR BONDED DIRECTLY TOWER ANTENNA CABLE-TO BTS EQUIPMENT (TYP.)

- 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO ANTENNA GROUND BAR.
- 2. WEATHER PROOFING SHALL BE TWO-PART TAPE KIT. COLD SHRINK SHALL NOT BE
- GROUND CABLE CONNECTION SCALE: NOT TO SCALE









# NOTES:

1. ALL GROUNDING LUGS ARE TO BE INSTALLED PER MANUFACTURER'S SPECIFICATIONS. ALL HARDWARE BOLTS, NUTS, LOCK WASHERS SHALL BE STAINLESS STEEL. ALL HARDWARE ARE TO BE AS FOLLOWS: BOLT, FLAT WASHER, GROUND BAR, GROUND LUG, FLAT WASHER AND NUT.

MECHANICAL LUG CONNECTION SCALE: NOT TO SCALE



GROUNDWIRE INSTALLATION SCALE: NOT TO SCALE



TRANSITIONING GROUND DETAIL SCALE: NOT TO SCALE

4 SYLVAN WAY



3530 TORINGDON WAY, SUITE 300

CHARLOTTE, NC 28277

PARSIPPANY, NJ 07054



PH: (918) 587-4630

www.btgrp.com

T-MOBILE SITE NUMBER: CT11378G

BU #: **857012** PLAINEVILLE SOUTH

335 WASHINGTON ST PLAINVILLE, CT 06062

EXISTING 121'-0" MONOPOLE

| ISSUED FOR: |          |      |              |         |  |  |
|-------------|----------|------|--------------|---------|--|--|
| REV         | DATE     | DRWN | DESCRIPTION  | DES./QA |  |  |
| 0           | 8/1/19   | MLC  | CONSTRUCTION | RMC     |  |  |
| 1           | 11/7/20  | JTS  | CONSTRUCTION | MTJ     |  |  |
| 2           | 11/25/20 | JTS  | CONSTRUCTION | MTJ     |  |  |
| 3           | 12/1/20  | JTS  | CONSTRUCTION | MTJ     |  |  |
|             |          |      |              |         |  |  |



B&T ENGINEERING, INC. PEC.0001564 Expires 2/10/21

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

**SHEET NUMBER:** 

# Exhibit D

**Structural Analysis Report** 

Date: October 16, 2020

Denice Nicholson Crown Castle 3 Corporate Dr Clifton Park, NY 12065



Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject: Structural Analysis Report

Carrier Designation: T-Mobile Co-Locate

Carrier Site Number: CT11378G

Carrier Site Name: CT378/ATT FT Plainville2

Crown Castle Designation: Crown Castle BU Number: 857012

Crown Castle Site Name: PLAINVILLE SOUTH WASHINGTON ST

Crown Castle JDE Job Number: 559287 Crown Castle Work Order Number: 1891036 Crown Castle Order Number: 479830 Rev. 1

Engineering Firm Designation: Crown Castle Project Number: 1891036

Site Data: 335 SOUTH WASHINGTON STREET, PLAINVILLE, Hartford County, CT

Latitude 41° 39' 11.03", Longitude -72° 52' 36.9"

119 Foot - Monopole Tower

Dear Denice Nicholson,

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

**Sufficient Capacity-96.8%** 

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable standard references and design criteria are listed in "Section 2 - Analysis Criteria."

Structural analysis prepared by: Abigail Ruiz /AM

Respectfully submitted by:

Maham Barimani, P.E. Senior Project Engineer



# **TABLE OF CONTENTS**

# 1) INTRODUCTION

# 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

# 3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

# 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC7
4.1) Recommendations

#### 5) APPENDIX A

tnxTower Output

#### 6) APPENDIX B

**Base Level Drawing** 

# 7) APPENDIX C

**Additional Calculations** 

# 1) INTRODUCTION

This tower is a 119 ft Monopole tower designed by ENGINEERED ENDEAVORS, INC..

# 2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:
Wind Speed:
125
Exposure Category:
C
Topographic Factor:
1ce Thickness:
2 in
Wind Speed with Ice:
50 mph
Service Wind Speed:
60 mph

**Table 1 - Proposed Equipment Configuration** 

| Mounting<br>Level (ft) | Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna Model                              | Number<br>of Feed<br>Lines | Feed<br>Line<br>Size (in) |  |  |
|------------------------|-------------------------------------|--------------------------|-------------------------|--------------------------------------------|----------------------------|---------------------------|--|--|
|                        |                                     | 3                        | andrew                  | ONEBASE TWIN DUAL DUPLEX TMA               |                            |                           |  |  |
|                        |                                     | 3                        | commscope               | SDX1926Q-43                                |                            | 1-5/8                     |  |  |
|                        | 100.0                               | 3                        | ericsson                | AIR 32 B2A B66AA_T-MOBILE<br>w/ Mount Pipe |                            |                           |  |  |
|                        |                                     | 3                        | ericsson                | AIR6449 B41_T-MOBILE<br>w/ Mount Pipe      |                            |                           |  |  |
| 98.0                   |                                     | 3                        | ericsson                | RADIO 4449 B71 B85A_T-<br>MOBILE           | 10                         |                           |  |  |
|                        |                                     | 3                        |                         | 3                                          | ericsson                   | RRUS 4415 B25             |  |  |
|                        |                                     |                          | rfs celwave             | APXVAARR24_43-U-NA20<br>w/ Mount Pipe      |                            |                           |  |  |
|                        |                                     | 1                        | SitePro1                | HRK14                                      | _                          |                           |  |  |
|                        | 98.0                                | 1                        | SitePro1                | PRK-1245                                   |                            |                           |  |  |
|                        |                                     | 1                        | tower mounts            | Platform Mount [LP 601-1]                  |                            |                           |  |  |

**Table 2 - Other Considered Equipment** 

| Mounting<br>Level (ft) | Center<br>Center<br>Line<br>Elevation<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer                   | Antenna Model                          | Number<br>of Feed<br>Lines            | Feed<br>Line<br>Size (in) |       |
|------------------------|-----------------------------------------------|--------------------------|-------------------------------------------|----------------------------------------|---------------------------------------|---------------------------|-------|
|                        | 122.0                                         | 1                        | raycap                                    | DC6-48-60-18-8F                        |                                       |                           |       |
|                        |                                               | 3                        | cci antennas HPA-65R-BUU-H6 w/ Mount Pipe |                                        |                                       |                           |       |
|                        |                                               | 3                        | ericsson                                  | RRUS 11 B12                            |                                       |                           |       |
|                        |                                               | 3                        | ericsson                                  | RRUS 32 B2                             |                                       |                           |       |
|                        |                                               | 3                        | ericsson                                  | RRUS 32 B30                            |                                       |                           |       |
|                        |                                               | 3                        | ericsson                                  | RRUS 4426 B66                          |                                       |                           |       |
|                        |                                               | 3                        | ericsson                                  | RRUS 4478 B14                          |                                       |                           |       |
|                        |                                               | 3                        | ericsson                                  | RRUS 4478 B5                           |                                       |                           |       |
|                        |                                               | 3                        | kaelus                                    | DBC0061F1V51-2                         | 12                                    | 1-5/8                     |       |
|                        |                                               | 6                        | kaelus                                    | DBCT108F1V92-1                         | 6                                     | 3/4                       |       |
| 121.0                  | 121.0                                         | 3                        | kathrein                                  | 80010965 w/ Mount Pipe                 | 2                                     | 3/8<br>Conduit            |       |
|                        |                                               | 6                        | powerwave technologies                    | 7020.00                                | 2                                     |                           |       |
|                        |                                               | 6                        | powerwave technologies                    | LGP21401                               |                                       |                           |       |
|                        |                                               | 3                        | powerwave technologies                    | RA21.7770.00 w/ Mount Pipe             |                                       |                           |       |
|                        |                                               | 3                        | quintel technology                        | QS66512-2 w/ Mount Pipe                |                                       |                           |       |
|                        |                                               | 2                        | raycap                                    | DC6-48-60-18-8C                        |                                       |                           |       |
|                        |                                               | 1                        | tower mounts                              | 13.667 ft Platform with Support Rails  |                                       |                           |       |
|                        |                                               | 3                        | ericsson                                  | B13 RRH 4X30                           |                                       |                           |       |
|                        | 112.0                                         | 3                        |                                           | ericsson                               | B4 RRH2X60-4R                         | -                         | 4.5/0 |
|                        |                                               | 2                        | amphenol                                  | BXA-70063-6CF-EDIN-X<br>w/ Mount Pipe  |                                       |                           |       |
| 110.0                  |                                               | 6                        | andrew                                    | SBNHH-1D65B w/ Mount Pipe              | 10                                    |                           |       |
| 110.0                  |                                               |                          | 6                                         | antel                                  | LPA-80063-4CF-EDIN-5 w/<br>Mount Pipe | 19                        | 1-5/8 |
|                        |                                               | 1                        | kathrein                                  | 800 10735V01 w/ Mount Pipe             |                                       |                           |       |
|                        |                                               | 1 raycap                 |                                           | RRFDC-3315-PF-48                       |                                       |                           |       |
|                        | 110.0                                         | 1                        | tower mounts                              | Platform Mount [LP 1201-1]             |                                       |                           |       |
|                        |                                               | 3                        | alcatel lucent                            | PCS 1900MHZ 4X45W-65MHZ                |                                       |                           |       |
|                        |                                               | 1                        | andrew                                    | VHLP2.5-18                             |                                       |                           |       |
|                        | 88.0                                          | 3                        | argus technologies                        | LLPX310R-V1 w/ Mount Pipe              |                                       |                           |       |
|                        |                                               | 3                        | commscope                                 | NNVV-65B-R4 w/ Mount Pipe              | 6                                     | 5/16                      |       |
| 86.0                   |                                               | 3                        | dragonwave                                | HORIZON DUO                            | 3                                     | 1-5/8                     |       |
|                        |                                               | 3                        | nokia                                     | AHCC                                   | 1                                     | 1/4                       |       |
|                        |                                               | 3                        | samsung<br>telecommunications             | URAS-FLEXIBLE                          | 1                                     | Conduit                   |       |
|                        | 86.0                                          | 1                        | tower mounts                              | Platform Mount<br>[LP 303-1_KCKR-HR-1] |                                       |                           |       |

#### 3) ANALYSIS PROCEDURE

**Table 3 - Documents Provided** 

| Document                                 | Remarks  | Reference | Source   |
|------------------------------------------|----------|-----------|----------|
| 4-GEOTECHNICAL REPORTS                   | Tectonic | 4566990   | CCISITES |
| 4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS | EEI      | 4566996   | CCISITES |
| 4-TOWER MANUFACTURER DRAWINGS            | EEI      | 5121623   | CCISITES |

#### 3.1) Analysis Method

tnxTower (version 8.0.7.5), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 Standard.

# 3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

#### 4) ANALYSIS RESULTS

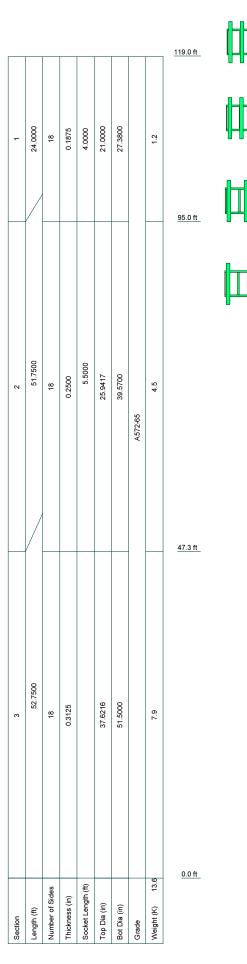
Table 4 - Section Capacity (Summary)

| Section<br>No. | Elevation (ft) | Component<br>Type | Size                  | Critical<br>Element | P (K)    | SF*P_allow<br>(K) | %<br>Capacity | Pass / Fail |
|----------------|----------------|-------------------|-----------------------|---------------------|----------|-------------------|---------------|-------------|
| L1             | 119 - 95       | Pole              | TP27.38x21x0.1875     | 1                   | -9.3122  | 955.1661          | 48.4          | Pass        |
| L2             | 95 - 47.25     | Pole              | TP39.57x25.9417x0.25  | 2                   | -25.1228 | 1845.8894         | 96.8          | Pass        |
| L3             | 47.25 - 0      | Pole              | TP51.5x37.6216x0.3125 | 3                   | -40.4403 | 3118.6469         | 92.7          | Pass        |
|                |                |                   |                       |                     |          |                   | Summary       |             |
|                |                |                   |                       |                     |          | Pole (L2)         | 96.8          | Pass        |
|                |                |                   |                       |                     |          | Rating =          | 96.8          | Pass        |

Table 5 - Tower Component Stresses vs. Capacity - LC7

| Notes | Component                          | Elevation (ft) | % Capacity | Pass / Fail |
|-------|------------------------------------|----------------|------------|-------------|
| 1     | Anchor Rods                        | 0              | 56.9       | Pass        |
| 1     | Base Plate                         | 0              | 72.4       | Pass        |
| 1     | Base Foundation (Structure)        | 0              | 69.4       | Pass        |
| 1     | Base Foundation (Soil Interaction) | 0              | 36.1       | Pass        |

| • | Structure Rating (max from all components) = | 96.8% |
|---|----------------------------------------------|-------|
|   | . , ,                                        |       |

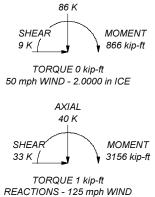

Notes:

# 4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

<sup>1)</sup> See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed.

# APPENDIX A TNXTOWER OUTPUT




#### **MATERIAL STRENGTH**

|         |        |        | -     |    |    |
|---------|--------|--------|-------|----|----|
| GRADE   | Fy     | Fu     | GRADE | Fy | Fu |
| Δ572-65 | 65 kei | 80 kei |       |    |    |

#### **TOWER DESIGN NOTES**

- 1. Tower is located in Hartford County, Connecticut.
- 2. Tower designed for Exposure C to the TIA-222-H Standard.
- 3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- Tower is also designed for a 50 mph basic wind with 2.00 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60 mph wind.
- Tower Risk Category II.
   Topographic Category 1 with Crest Height of 0.0000 ft
   TOWER RATING: 96.8%



ALL REACTIONS ARE FACTORED

AXIAL

Crown Castle CROWN 2000 Corporate Drive CASTLE Canonsburg, PA 15317 Phone: (724) 416-2000 The Pathway to Possible FAX:

| <sup>Job:</sup> BU# 857012                 |                                    |             |
|--------------------------------------------|------------------------------------|-------------|
| Project:                                   |                                    |             |
| Client: Crown Castle                       | abruiz                             | App'd:      |
| Code: TIA-222-H                            |                                    | Scale: NTS  |
| Path:<br>C:\Users\AbRuiz\Desktop\857012\WC | ) 1891036 - SA\Prod\857012 RPA.eri | Dwg No. E-1 |

## **Tower Input Data**

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- 3) Tower is located in Hartford County, Connecticut.
- 4) Tower base elevation above sea level: 181.0000 ft.
- 5) Basic wind speed of 125 mph.
- 6) Risk Category II.
- 7) Exposure Category C.
- 8) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 9) Topographic Category: 1.
- 10) Crest Height: 0.0000 ft.
- 11) Nominal ice thickness of 2.0000 in.
- 12) Ice thickness is considered to increase with height.
- 13) Ice density of 56.0000 pcf.
- 14) A wind speed of 50 mph is used in combination with ice.
- 15) Temperature drop of 50.0000 °F.
- 16) Deflections calculated using a wind speed of 60 mph.
- 17) A non-linear (P-delta) analysis was used.
- 18) Pressures are calculated at each section.
- 19) Stress ratio used in pole design is 1.05.
- 20) Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used:  $K_{es}(F_w) = 0.95$ ,  $K_{es}(t_i) = 0.85$ .
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

## **Options**

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz

Always Use Max Kz
Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- Use Clear Špans For Wind Area
  Use Clear Spans For KL/r
  Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

√ Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing
Treat Feed Line Bundles As Cylinder
Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

#### Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

## **Tapered Pole Section Geometry**

| Section | Elevation<br>ft      | Section<br>Length<br>ft | Splice<br>Length<br>ft | Number<br>of<br>Sides | Top<br>Diameter<br>in | Bottom<br>Diameter<br>in | Wall<br>Thickness<br>in | Bend<br>Radius<br>in | Pole Grade          |
|---------|----------------------|-------------------------|------------------------|-----------------------|-----------------------|--------------------------|-------------------------|----------------------|---------------------|
| L1      | 119.0000-<br>95.0000 | 24.0000                 | 4.0000                 | 18                    | 21.0000               | 27.3800                  | 0.1875                  | 0.7500               | A572-65<br>(65 ksi) |

| Section | Elevation           | Section | Splice | Number | Тор      | Bottom   | Wall      | Bend   | Pole Grade          |
|---------|---------------------|---------|--------|--------|----------|----------|-----------|--------|---------------------|
|         |                     | Length  | Length | of     | Diameter | Diameter | Thickness | Radius |                     |
|         | ft                  | ft      | ft     | Sides  | in       | in       | in        | in     |                     |
| L2      | 95.0000-<br>47.2500 | 51.7500 | 5.5000 | 18     | 25.9417  | 39.5700  | 0.2500    | 1.0000 | A572-65<br>(65 ksi) |
| L3      | 47.2500-<br>0.0000  | 52.7500 |        | 18     | 37.6216  | 51.5000  | 0.3125    | 1.2500 | A572-65<br>(65 ksi) |

| Tapered Pole Properties |
|-------------------------|
|-------------------------|

| Section | Tip Dia. | Area    | 1              | r       | С       | I/C      | J              | It/Q    | W      | w/t    |
|---------|----------|---------|----------------|---------|---------|----------|----------------|---------|--------|--------|
|         | in       | in²     | in⁴            | in      | in      | in³      | in⁴            | in²     | in     |        |
| L1      | 21.2950  | 12.3860 | 677.8263       | 7.3884  | 10.6680 | 63.5383  | 1356.5444      | 6.1942  | 3.3660 | 17.952 |
|         | 27.7735  | 16.1829 | 1511.7955      | 9.6533  | 13.9090 | 108.6916 | 3025.5803      | 8.0930  | 4.4889 | 23.941 |
| L2      | 27.3729  | 20.3863 | 1700.0482      | 9.1205  | 13.1784 | 129.0030 | 3402.3334      | 10.1951 | 4.1257 | 16.503 |
|         | 40.1419  | 31.2004 | 6094.3152      | 13.9586 | 20.1016 | 303.1762 | 12196.649<br>4 | 15.6032 | 6.5243 | 26.097 |
| L3      | 39.6231  | 37.0059 | 6507.8561      | 13.2447 | 19.1118 | 340.5158 | 13024.275<br>5 | 18.5065 | 6.0714 | 19.428 |
|         | 52.2463  | 50.7716 | 16806.843<br>3 | 18.1716 | 26.1620 | 642.4143 | 33635.801<br>5 | 25.3906 | 8.5140 | 27.245 |

| Tower<br>Elevation | Gusset<br>Area<br>(per face) | Gusset<br>Thickness | Gusset Grade Adjust. Factor<br>A <sub>f</sub> | Adjust.<br>Factor<br>A <sub>r</sub> | Weight Mult. | Double Angle<br>Stitch Bolt<br>Spacing<br>Diagonals | Double Angle<br>Stitch Bolt<br>Spacing<br>Horizontals | Double Angle<br>Stitch Bolt<br>Spacing<br>Redundants |
|--------------------|------------------------------|---------------------|-----------------------------------------------|-------------------------------------|--------------|-----------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| ft                 | ft <sup>2</sup>              | in                  |                                               |                                     |              | in                                                  | in                                                    | in                                                   |
| L1 119.0000-       |                              |                     | 1                                             | 1                                   | 1            |                                                     |                                                       |                                                      |
| 95.0000            |                              |                     |                                               |                                     |              |                                                     |                                                       |                                                      |
| L2 95.0000-        |                              |                     | 1                                             | 1                                   | 1            |                                                     |                                                       |                                                      |
| 47.2500            |                              |                     |                                               |                                     |              |                                                     |                                                       |                                                      |
| L3 47.2500-        |                              |                     | 1                                             | 1                                   | 1            |                                                     |                                                       |                                                      |
| 0.0000             |                              |                     |                                               |                                     |              |                                                     |                                                       |                                                      |

# Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description      | Sector | Exclude<br>From | Componen<br>t        | Placement            | Total<br>Number | Number<br>Per Row | Start/En<br>d    | Width or<br>Diamete | Perimete<br>r | Weight |
|------------------|--------|-----------------|----------------------|----------------------|-----------------|-------------------|------------------|---------------------|---------------|--------|
|                  |        | Torque          | Type                 | ft                   |                 |                   | Position         | r                   |               | plf    |
|                  |        | Calculation     |                      |                      |                 |                   |                  | in                  | in            |        |
| LDF7-50A(1-5/8)  | В      | No              | Surface Ar<br>(CaAa) | 110.0000 -<br>0.0000 | 7               | 6                 | -0.200<br>0.000  | 1.9800              |               | 0.8200 |
| LDF7-50A(1-5/8") | Α      | No              | Surface Ar<br>(CaAa) | 98.0000 -<br>0.0000  | 3               | 3                 | -0.250<br>-0.125 | 1.9800              |               | 0.8200 |
| *********        |        |                 |                      |                      |                 |                   |                  |                     |               |        |
| ******           |        |                 |                      |                      |                 |                   |                  |                     |               |        |
| ******           |        |                 |                      |                      |                 |                   |                  |                     |               |        |

# Feed Line/Linear Appurtenances - Entered As Area

| Description     | Face<br>or | Allow<br>Shield | Exclude<br>From | Componen<br>t | Placement  | Total<br>Number |          | C <sub>A</sub> A <sub>A</sub> | Weight |
|-----------------|------------|-----------------|-----------------|---------------|------------|-----------------|----------|-------------------------------|--------|
|                 | Leg        | Ornora          | Torque          | Туре          | ft         | rvarribor       |          | ft²/ft                        | plf    |
|                 |            |                 | Calculation     | 1             |            |                 |          |                               |        |
| LDF7-50A(1-5/8) | Α          | No              | No              | Inside Pole   | 119.0000 - | 12              | No Ice   | 0.0000                        | 0.8200 |
|                 |            |                 |                 |               | 0.0000     |                 | 1/2" Ice | 0.0000                        | 0.8200 |
|                 |            |                 |                 |               |            |                 | 1" Ice   | 0.0000                        | 0.8200 |
|                 |            |                 |                 |               |            |                 | 2" Ice   | 0.0000                        | 0.8200 |
| WR-VG86ST-      | Α          | No              | No              | Inside Pole   | 119.0000 - | 6               | No Ice   | 0.0000                        | 0.5840 |

| Description      | Face<br>or | Allow<br>Shield | Exclude<br>From       | Componen<br>t | Placement  | Total<br>Number |          | $C_AA_A$ | Weight |
|------------------|------------|-----------------|-----------------------|---------------|------------|-----------------|----------|----------|--------|
|                  | Leg        |                 | Torque<br>Calculation | Туре          | ft         |                 |          | ft²/ft   | plf    |
| BRD(3/4)         |            |                 |                       |               | 0.0000     |                 | 1/2" Ice | 0.0000   | 0.5840 |
| ` ,              |            |                 |                       |               |            |                 | 1" Ice   | 0.0000   | 0.5840 |
|                  |            |                 |                       |               |            |                 | 2" Ice   | 0.0000   | 0.5840 |
| FB-L98B-034-     | Α          | No              | No                    | Inside Pole   | 119.0000 - | 2               | No Ice   | 0.0000   | 0.0570 |
| XXX(3/8)         |            |                 |                       |               | 0.0000     |                 | 1/2" Ice | 0.0000   | 0.0570 |
| , ,              |            |                 |                       |               |            |                 | 1" Ice   | 0.0000   | 0.0570 |
|                  |            |                 |                       |               |            |                 | 2" Ice   | 0.0000   | 0.0570 |
| 2" Rigid Conduit | Α          | No              | No                    | Inside Pole   | 119.0000 - | 2               | No Ice   | 0.0000   | 2.8000 |
| <b>J</b>         |            |                 |                       |               | 0.0000     |                 | 1/2" Ice | 0.0000   | 2.8000 |
|                  |            |                 |                       |               |            |                 | 1" Ice   | 0.0000   | 2.8000 |
|                  |            |                 |                       |               |            |                 | 2" Ice   | 0.0000   | 2.8000 |
| **               |            |                 |                       |               |            |                 |          |          |        |
| LDF7-50A(1-5/8)  | В          | No              | No                    | Inside Pole   | 110.0000 - | 12              | No Ice   | 0.0000   | 0.8200 |
|                  | _          |                 |                       |               | 0.0000     |                 | 1/2" Ice | 0.0000   | 0.8200 |
|                  |            |                 |                       |               |            |                 | 1" Ice   | 0.0000   | 0.8200 |
|                  |            |                 |                       |               |            |                 | 2" Ice   | 0.0000   | 0.8200 |
| **               |            |                 |                       |               |            |                 |          |          |        |
| MLE Hybrid       | Α          | No              | No                    | Inside Pole   | 98.0000 -  | 7               | No Ice   | 0.0000   | 1.0700 |
| 9Power/18Fiber   |            |                 |                       |               | 0.0000     |                 | 1/2" Ice | 0.0000   | 1.0700 |
| RL 2(1-5/8")     |            |                 |                       |               |            |                 | 1" Ice   | 0.0000   | 1.0700 |
| ( /              |            |                 |                       |               |            |                 | 2" Ice   | 0.0000   | 1.0700 |
| **               |            |                 |                       |               |            |                 |          |          |        |
| HB158-21U6M48-   | С          | No              | No                    | Inside Pole   | 86.0000 -  | 3               | No Ice   | 0.0000   | 2.3900 |
| 30F(1-5/8)       |            |                 |                       |               | 0.0000     |                 | 1/2" Ice | 0.0000   | 2.3900 |
| ,                |            |                 |                       |               |            |                 | 1" Ice   | 0.0000   | 2.3900 |
|                  |            |                 |                       |               |            |                 | 2" Ice   | 0.0000   | 2.3900 |
| 9207(5/16)       | С          | No              | No                    | Inside Pole   | 86.0000 -  | 6               | No Ice   | 0.0000   | 0.6000 |
| ` '              |            |                 |                       |               | 0.0000     |                 | 1/2" Ice | 0.0000   | 0.6000 |
|                  |            |                 |                       |               |            |                 | 1" Ice   | 0.0000   | 0.6000 |
|                  |            |                 |                       |               |            |                 | 2" Ice   | 0.0000   | 0.6000 |
| CAT5E(1/4)       | С          | No              | No                    | Inside Pole   | 86.0000 -  | 1               | No Ice   | 0.0000   | 0.0410 |
| , ,              |            |                 |                       |               | 0.0000     |                 | 1/2" Ice | 0.0000   | 0.0410 |
|                  |            |                 |                       |               |            |                 | 1" Ice   | 0.0000   | 0.0410 |
|                  |            |                 |                       |               |            |                 | 2" Ice   | 0.0000   | 0.0410 |
| 2" Rigid Conduit | С          | No              | No                    | Inside Pole   | 86.0000 -  | 1               | No Ice   | 0.0000   | 2.8000 |
| •                |            |                 |                       |               | 0.0000     |                 | 1/2" Ice | 0.0000   | 2.8000 |
|                  |            |                 |                       |               |            |                 | 1" Ice   | 0.0000   | 2.8000 |
|                  |            |                 |                       |               |            |                 | 2" Ice   | 0.0000   | 2.8000 |
| ******           |            |                 |                       |               |            |                 |          |          |        |
| ******           |            |                 |                       |               |            |                 |          |          |        |
| *******          |            |                 |                       |               |            |                 |          |          |        |
| ******           |            |                 |                       |               |            |                 |          |          |        |

# Feed Line/Linear Appurtenances Section Areas

| Tower<br>Sectio | Tower<br>Elevation | Face | A <sub>R</sub> | $A_F$           | C <sub>A</sub> A <sub>A</sub><br>In Face | C <sub>A</sub> A <sub>A</sub><br>Out Face | Weight |
|-----------------|--------------------|------|----------------|-----------------|------------------------------------------|-------------------------------------------|--------|
| n               | ft                 |      | ft²            | ft <sup>2</sup> | ft²                                      | ft <sup>2</sup>                           | K      |
| L1              | 119.0000-          | Α    | 0.000          | 0.000           | 1.782                                    | 0.000                                     | 0.4872 |
|                 | 95.0000            | В    | 0.000          | 0.000           | 17.820                                   | 0.000                                     | 0.2337 |
|                 |                    | С    | 0.000          | 0.000           | 0.000                                    | 0.000                                     | 0.0000 |
| L2              | 95.0000-47.2500    | Α    | 0.000          | 0.000           | 28.363                                   | 0.000                                     | 1.3851 |
|                 |                    | В    | 0.000          | 0.000           | 56.727                                   | 0.000                                     | 0.7439 |
|                 |                    | С    | 0.000          | 0.000           | 0.000                                    | 0.000                                     | 0.5274 |
| L3              | 47.2500-0.0000     | Α    | 0.000          | 0.000           | 28.067                                   | 0.000                                     | 1.3706 |
|                 |                    | В    | 0.000          | 0.000           | 56.133                                   | 0.000                                     | 0.7362 |
|                 |                    | С    | 0.000          | 0.000           | 0.000                                    | 0.000                                     | 0.6431 |

# Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower<br>Sectio | Tower<br>Elevation | Face<br>or | Ice<br>Thickness | $A_R$ | A <sub>F</sub> | C <sub>A</sub> A <sub>A</sub><br>In Face | C <sub>A</sub> A <sub>A</sub><br>Out Face | Weight |
|-----------------|--------------------|------------|------------------|-------|----------------|------------------------------------------|-------------------------------------------|--------|
|                 | ft                 |            |                  | ft²   | ft²            | ft <sup>2</sup>                          | ft <sup>2</sup>                           | K      |
| n               |                    | Leg        | in               |       |                |                                          |                                           |        |
| L1              | 119.0000-          | Α          | 1.911            | 0.000 | 0.000          | 3.661                                    | 0.000                                     | 0.5341 |
|                 | 95.0000            | В          |                  | 0.000 | 0.000          | 29.442                                   | 0.000                                     | 0.6541 |
|                 |                    | С          |                  | 0.000 | 0.000          | 0.000                                    | 0.000                                     | 0.0000 |
| L2              | 95.0000-47.2500    | Α          | 1.833            | 0.000 | 0.000          | 58.270                                   | 0.000                                     | 2.1313 |
|                 |                    | В          |                  | 0.000 | 0.000          | 93.724                                   | 0.000                                     | 2.0821 |
|                 |                    | С          |                  | 0.000 | 0.000          | 0.000                                    | 0.000                                     | 0.5274 |
| L3              | 47.2500-0.0000     | Α          | 1.644            | 0.000 | 0.000          | 56.734                                   | 0.000                                     | 2.0717 |
|                 |                    | В          |                  | 0.000 | 0.000          | 91.817                                   | 0.000                                     | 2.0018 |
|                 |                    | С          |                  | 0.000 | 0.000          | 0.000                                    | 0.000                                     | 0.6431 |

## **Feed Line Center of Pressure**

| Section | Elevation        | CP <sub>X</sub> | CPz     | $CP_X$ | CPz     |
|---------|------------------|-----------------|---------|--------|---------|
|         |                  |                 |         | Ice    | Ice     |
|         | ft               | in              | in      | in     | in      |
| L1      | 119.0000-95.0000 | 3.0445          | -3.2177 | 2.3507 | -2.5915 |
| L2      | 95.0000-47.2500  | 1.5790          | -4.2157 | 0.6961 | -3.2551 |
| L3      | 47.2500-0.0000   | 1.7089          | -4.6773 | 0.7833 | -3.7688 |

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

# **Shielding Factor Ka**

| Tower   | Feed Line  | Description      | Feed Line                | Ka     | Ka     |
|---------|------------|------------------|--------------------------|--------|--------|
| Section | Record No. |                  | Segment<br>Elev.         | No Ice | Ice    |
| L1      | 7          | LDF7-50A(1-5/8)  | 95.00 <b>-</b><br>110.00 | 1.0000 | 1.0000 |
| L1      | 10         | LDF7-50A(1-5/8") | 95.00 -<br>98.00         | 1.0000 | 1.0000 |
| L2      | 7          | LDF7-50A(1-5/8)  | 47.25 -<br>95.00         | 1.0000 | 1.0000 |
| L2      | 10         | LDF7-50A(1-5/8") | 47.25 -<br>95.00         | 1.0000 | 1.0000 |
| L3      | 7          | LDF7-50A(1-5/8)  | 0.00 - 47.25             | 1.0000 | 1.0000 |
| L3      | 10         | LDF7-50A(1-5/8") | 0.00 - 47.25             | 1.0000 | 1.0000 |

## **Discrete Tower Loads**

| Description                   | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                                           | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight                               |
|-------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|-------------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------|
|                               |                   |                | Vert<br>ft<br>ft<br>ft      | 0                         | ft        |                                           | ft²                                    | ft²                                   | Κ                                    |
| RA21.7770.00 w/ Mount<br>Pipe | Α                 | From Leg       | 4.0000<br>0.0000<br>0.0000  | 0.0000                    | 121.0000  | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 4.1400<br>4.5700<br>5.0100<br>5.9300   | 2.4600<br>2.8700<br>3.2900<br>4.1500  | 0.0629<br>0.1110<br>0.1687<br>0.3141 |

| Description             | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                  | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight           |
|-------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|------------------|----------------------------------------|---------------------------------------|------------------|
|                         |                   |                | Vert<br>ft<br>ft<br>ft      | ۰                         | ft        |                  | ft²                                    | ft²                                   | K                |
| RA21.7770.00 w/ Mount   | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 4.1400                                 | 2.4600                                | 0.0629           |
| Pipe                    |                   | _              | 0.0000                      |                           |           | 1/2"             | 4.5700                                 | 2.8700                                | 0.1110           |
|                         |                   |                | 0.0000                      |                           |           | Ice              | 5.0100                                 | 3.2900                                | 0.1687           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 5.9300                                 | 4.1500                                | 0.3141           |
| RA21.7770.00 w/ Mount   | С                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 4.1400                                 | 2.4600                                | 0.0629           |
| Pipe                    | •                 |                | 0.0000                      | 0.000                     |           | 1/2"             | 4.5700                                 | 2.8700                                | 0.1110           |
| ·                       |                   |                | 0.0000                      |                           |           | Ice              | 5.0100                                 | 3.2900                                | 0.1687           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 5.9300                                 | 4.1500                                | 0.3141           |
| HPA-65R-BUU-H6 w/       | Α                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 9.2200                                 | 6.2500                                | 0.0736           |
| Mount Pipe              | ,,                | 1 10111 209    | 0.0000                      | 0.0000                    | 121.0000  | 1/2"             | 9.9800                                 | 6.9600                                | 0.1434           |
|                         |                   |                | 0.0000                      |                           |           | Ice              | 10.7600                                | 7.7000                                | 0.2242           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 12.3600                                | 9.2200                                | 0.4201           |
| HPA-65R-BUU-H6 w/       | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 9.2200                                 | 6.2500                                | 0.0736           |
| Mount Pipe              |                   |                | 0.0000                      |                           |           | 1/2"             | 9.9800                                 | 6.9600                                | 0.1434           |
|                         |                   |                | 0.0000                      |                           |           | lce              | 10.7600                                | 7.7000                                | 0.2242           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 12.3600                                | 9.2200                                | 0.4201           |
| HPA-65R-BUU-H6 w/       | С                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 9.2200                                 | 6.2500                                | 0.0736           |
| Mount Pipe              | _                 |                | 0.0000                      |                           |           | 1/2"             | 9.9800                                 | 6.9600                                | 0.1434           |
| ·                       |                   |                | 0.0000                      |                           |           | Ice              | 10.7600                                | 7.7000                                | 0.2242           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 12.3600                                | 9.2200                                | 0.4201           |
| 80010965 w/ Mount Pipe  | Α                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 12.2600                                | 5.7900                                | 0.1362           |
|                         |                   |                | 0.0000                      |                           |           | 1/2"             | 13.0300                                | 6.4700                                | 0.2262           |
|                         |                   |                | 0.0000                      |                           |           | lce              | 13.8000                                | 7.1700                                | 0.3282           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 15.4100                                | 8.6000                                | 0.5697           |
| 80010965 w/ Mount Pipe  | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 12.2600                                | 5.7900                                | 0.1362           |
| ·                       |                   | ū              | 0.0000                      |                           |           | 1/2"             | 13.0300                                | 6.4700                                | 0.2262           |
|                         |                   |                | 0.0000                      |                           |           | Ice              | 13.8000                                | 7.1700                                | 0.3282           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 15.4100                                | 8.6000                                | 0.5697           |
| 80010965 w/ Mount Pipe  | С                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 12.2600                                | 5.7900                                | 0.1362           |
|                         |                   |                | 0.0000<br>0.0000            |                           |           | 1/2"<br>Ice      | 13.0300<br>13.8000                     | 6.4700<br>7.1700                      | 0.2262<br>0.3282 |
|                         |                   |                | 0.0000                      |                           |           | 1" Ice           | 15.4100                                | 8.6000                                | 0.5697           |
|                         |                   |                |                             |                           |           | 2" Ice           | 10.4100                                | 0.0000                                | 0.0007           |
| QS66512-2 w/ Mount Pipe | Α                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 4.0400                                 | 4.1800                                | 0.1366           |
|                         |                   |                | 0.0000                      |                           |           | 1/2"             | 4.4200                                 | 4.5700                                | 0.2062           |
|                         |                   |                | 0.0000                      |                           |           | Ice              | 4.8200                                 | 4.9700                                | 0.2868           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 5.6300                                 | 5.7900                                | 0.4821           |
| QS66512-2 w/ Mount Pipe | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 4.0400                                 | 4.1800                                | 0.1366           |
|                         |                   |                | 0.0000                      |                           |           | 1/2"             | 4.4200                                 | 4.5700                                | 0.2062           |
|                         |                   |                | 0.0000                      |                           |           | Ice              | 4.8200                                 | 4.9700                                | 0.2868           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 5.6300                                 | 5.7900                                | 0.4821           |
| QS66512-2 w/ Mount Pipe | С                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 4.0400                                 | 4.1800                                | 0.1366           |
|                         |                   | _              | 0.0000                      |                           |           | 1/2"             | 4.4200                                 | 4.5700                                | 0.2062           |
|                         |                   |                | 0.0000                      |                           |           | Ice              | 4.8200                                 | 4.9700                                | 0.2868           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 5.6300                                 | 5.7900                                | 0.4821           |
| RRUS 11 B12             | Α                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 2.8333                                 | 1.1821                                | 0.0507           |
|                         |                   | 3              | 0.0000                      |                           |           | 1/2"             | 3.0426                                 | 1.3299                                | 0.0716           |
|                         |                   |                | 0.0000                      |                           |           | Ice              | 3.2593                                 | 1.4848                                | 0.0955           |
|                         |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 3.7148                                 | 1.8259                                | 0.1532           |
| RRUS 11 B12             | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice           | 2.8333                                 | 1.1821                                | 0.0507           |
|                         |                   | J              | 0.0000                      |                           |           | 1/2"             | 3.0426                                 | 1.3299                                | 0.0716           |
|                         |                   |                | 0.0000                      |                           |           | Ice              | 3.2593                                 | 1.4848                                | 0.0955           |
|                         |                   |                |                             |                           |           | 1" Ice           | 3.7148                                 | 1.8259                                | 0.1532           |
|                         |                   |                |                             |                           |           | 2" Ice           |                                        |                                       |                  |

| Description   | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                          | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight                     |
|---------------|-------------------|----------------|-----------------------------|---------------------------|-----------|--------------------------|----------------------------------------|---------------------------------------|----------------------------|
|               |                   |                | Vert<br>ft<br>ft<br>ft      | ۰                         | ft        |                          | ft²                                    | ft²                                   | κ                          |
| RRUS 11 B12   | С                 | From Leg       | 4.0000<br>0.0000            | 0.0000                    | 121.0000  | No Ice<br>1/2"           | 2.8333<br>3.0426                       | 1.1821<br>1.3299                      | 0.0507<br>0.0716           |
|               |                   |                | 0.0000                      |                           |           | Ice<br>1" Ice<br>2" Ice  | 3.2593<br>3.7148                       | 1.4848<br>1.8259                      | 0.0955<br>0.1532           |
| RRUS 32 B2    | Α                 | From Leg       | 4.0000<br>0.0000            | 0.0000                    | 121.0000  | No Ice<br>1/2"           | 2.7313<br>2.9531                       | 1.6681<br>1.8552                      | 0.0529<br>0.0740           |
|               |                   |                | 0.0000                      |                           |           | Ice<br>1" Ice<br>2" Ice  | 3.1823<br>3.6628                       | 2.0493<br>2.4585                      | 0.0982<br>0.1571           |
| RRUS 32 B2    | В                 | From Leg       | 4.0000<br>0.0000            | 0.0000                    | 121.0000  | No Ice<br>1/2"           | 2.7313<br>2.9531                       | 1.6681<br>1.8552                      | 0.0529<br>0.0740           |
|               |                   |                | 0.0000                      |                           |           | Ice<br>1" Ice<br>2" Ice  | 3.1823<br>3.6628                       | 2.0493<br>2.4585                      | 0.0982<br>0.1571           |
| RRUS 32 B2    | С                 | From Leg       | 4.0000<br>0.0000            | 0.0000                    | 121.0000  | No Ice<br>1/2"           | 2.7313<br>2.9531                       | 1.6681<br>1.8552                      | 0.0529<br>0.0740           |
|               |                   |                | 0.0000                      |                           |           | Ice<br>1" Ice<br>2" Ice  | 3.1823<br>3.6628                       | 2.0493<br>2.4585                      | 0.0982<br>0.1571           |
| RRUS 32 B30   | Α                 | From Leg       | 4.0000<br>0.0000            | 0.0000                    | 121.0000  | No Ice<br>1/2"           | 2.6923<br>2.9115                       | 1.5727<br>1.7556                      | 0.0600<br>0.0804           |
|               |                   |                | 0.0000                      |                           |           | Ice<br>1" Ice            | 3.1382<br>3.6137                       | 1.9455<br>2.3462                      | 0.1039<br>0.1612           |
| RRUS 32 B30   | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | 2" Ice<br>No Ice         | 2.6923                                 | 1.5727                                | 0.0600                     |
|               |                   |                | 0.0000<br>0.0000            |                           |           | 1/2"<br>Ice              | 2.9115<br>3.1382                       | 1.7556<br>1.9455                      | 0.0804<br>0.1039           |
| DDI 10 00 D00 | 0                 | <b>5</b>       | 4 0000                      | 0.0000                    | 404 0000  | 1" Ice<br>2" Ice         | 3.6137                                 | 2.3462                                | 0.1612                     |
| RRUS 32 B30   | С                 | From Leg       | 4.0000<br>0.0000<br>0.0000  | 0.0000                    | 121.0000  | No Ice<br>1/2"<br>Ice    | 2.6923<br>2.9115<br>3.1382             | 1.5727<br>1.7556<br>1.9455            | 0.0600<br>0.0804<br>0.1039 |
|               |                   |                |                             |                           |           | 1" Ice<br>2" Ice         | 3.6137                                 | 2.3462                                | 0.1612                     |
| RRUS 4426 B66 | Α                 | From Leg       | 4.0000<br>0.0000            | 0.0000                    | 121.0000  | No Ice<br>1/2"           | 1.6444<br>1.8044                       | 0.7252<br>0.8421                      | 0.0484<br>0.0612           |
|               |                   |                | 0.0000                      |                           |           | Ice<br>1" Ice<br>2" Ice  | 1.9719<br>2.3292                       | 0.9685<br>1.2437                      | 0.0764<br>0.1148           |
| RRUS 4426 B66 | В                 | From Leg       | 4.0000<br>0.0000            | 0.0000                    | 121.0000  | No Ice<br>1/2"           | 1.6444<br>1.8044                       | 0.7252<br>0.8421                      | 0.0484<br>0.0612           |
|               |                   |                | 0.0000                      |                           |           | Ice<br>1" Ice            | 1.9719<br>2.3292                       | 0.9685<br>1.2437                      | 0.0764<br>0.1148           |
| RRUS 4426 B66 | С                 | From Leg       | 4.0000<br>0.0000            | 0.0000                    | 121.0000  | 2" Ice<br>No Ice<br>1/2" | 1.6444<br>1.8044                       | 0.7252<br>0.8421                      | 0.0484<br>0.0612           |
|               |                   |                | 0.0000                      |                           |           | Ice<br>1" Ice            | 1.9719<br>2.3292                       | 0.9685<br>1.2437                      | 0.0764<br>0.1148           |
| RRUS 4478 B14 | Α                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | 2" Ice<br>No Ice         | 1.8425                                 | 1.0588                                | 0.0599                     |
|               |                   |                | 0.0000                      |                           |           | 1/2"<br>Ice<br>1" Ice    | 2.0123<br>2.1895<br>2.5662             | 1.1969<br>1.3425<br>1.6558            | 0.0758<br>0.0943<br>0.1400 |
| RRUS 4478 B14 | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | 2" Ice<br>No Ice         | 1.8425                                 | 1.0588                                | 0.0599                     |
|               |                   |                | 0.0000                      |                           |           | 1/2"<br>Ice<br>1" Ice    | 2.0123<br>2.1895<br>2.5662             | 1.1969<br>1.3425<br>1.6558            | 0.0758<br>0.0943<br>0.1400 |
| RRUS 4478 B14 | С                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | 2" Ice<br>No Ice         | 1.8425                                 | 1.0588                                | 0.0599                     |
|               |                   |                | 0.0000                      |                           |           | 1/2"<br>Ice              | 2.0123<br>2.1895                       | 1.1969<br>1.3425                      | 0.0758<br>0.0943           |
|               |                   |                |                             |                           |           | 1" Ice<br>2" Ice         | 2.5662                                 | 1.6558                                | 0.1400                     |

| Description           | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                         | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight           |
|-----------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|-------------------------|----------------------------------------|---------------------------------------|------------------|
|                       |                   |                | Vert<br>ft<br>ft<br>ft      | ۰                         | ft        |                         | ft²                                    | ft²                                   | K                |
| RRUS 4478 B5          | Α                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice                  | 1.8425                                 | 1.0588                                | 0.0599           |
|                       |                   |                | 0.0000                      |                           |           | 1/2"                    | 2.0123                                 | 1.1969                                | 0.0758           |
|                       |                   |                | 0.0000                      |                           |           | Ice                     | 2.1895                                 | 1.3425                                | 0.0943           |
|                       |                   |                |                             |                           |           | 1" Ice<br>2" Ice        | 2.5662                                 | 1.6558                                | 0.1400           |
| RRUS 4478 B5          | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice                  | 1.8425                                 | 1.0588                                | 0.0599           |
|                       |                   | 3              | 0.0000                      |                           |           | 1/2"                    | 2.0123                                 | 1.1969                                | 0.0758           |
|                       |                   |                | 0.0000                      |                           |           | Ice                     | 2.1895                                 | 1.3425                                | 0.0943           |
|                       |                   |                |                             |                           |           | 1" Ice                  | 2.5662                                 | 1.6558                                | 0.1400           |
| RRUS 4478 B5          | С                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | 2" Ice<br>No Ice        | 1.8425                                 | 1.0588                                | 0.0599           |
| 11100 4470 83         | O                 | 1 Tolli Log    | 0.0000                      | 0.0000                    | 121.0000  | 1/2"                    | 2.0123                                 | 1.1969                                | 0.0758           |
|                       |                   |                | 0.0000                      |                           |           | lce                     | 2.1895                                 | 1.3425                                | 0.0943           |
|                       |                   |                |                             |                           |           | 1" Ice<br>2" Ice        | 2.5662                                 | 1.6558                                | 0.1400           |
| DBC0061F1V51-2        | Α                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice                  | 0.4133                                 | 0.4333                                | 0.0254           |
|                       |                   |                | 0.0000                      |                           |           | 1/2"                    | 0.4959                                 | 0.5176                                | 0.0307           |
|                       |                   |                | 0.0000                      |                           |           | Ice<br>1" Ice           | 0.5859<br>0.7881                       | 0.6093                                | 0.0375           |
|                       |                   |                |                             |                           |           | 2" Ice                  | 0.7001                                 | 0.8148                                | 0.0566           |
| DBC0061F1V51-2        | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice                  | 0.4133                                 | 0.4333                                | 0.0254           |
|                       |                   | ū              | 0.0000                      |                           |           | 1/2"                    | 0.4959                                 | 0.5176                                | 0.0307           |
|                       |                   |                | 0.0000                      |                           |           | Ice                     | 0.5859                                 | 0.6093                                | 0.0375           |
|                       |                   |                |                             |                           |           | 1" Ice<br>2" Ice        | 0.7881                                 | 0.8148                                | 0.0566           |
| DBC0061F1V51-2        | С                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice                  | 0.4133                                 | 0.4333                                | 0.0254           |
|                       |                   |                | 0.0000<br>0.0000            |                           |           | 1/2"<br>Ice             | 0.4959<br>0.5859                       | 0.5176<br>0.6093                      | 0.0307<br>0.0375 |
|                       |                   |                | 0.0000                      |                           |           | 1" Ice                  | 0.7881                                 | 0.8148                                | 0.0576           |
|                       |                   |                |                             |                           |           | 2" Ice                  |                                        |                                       |                  |
| (2) DBCT108F1V92-1    | Α                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice                  | 0.3205                                 | 0.6372                                | 0.0287           |
|                       |                   |                | 0.0000                      |                           |           | 1/2"                    | 0.4001                                 | 0.7401                                | 0.0339           |
|                       |                   |                | 0.0000                      |                           |           | Ice<br>1" Ice<br>2" Ice | 0.4871<br>0.6896                       | 0.8504<br>1.0932                      | 0.0407<br>0.0599 |
| (2) DBCT108F1V92-1    | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice                  | 0.3205                                 | 0.6372                                | 0.0287           |
| (2) 5501 1001 1102 1  |                   | i ioni Log     | 0.0000                      | 0.0000                    | 121.0000  | 1/2"                    | 0.4001                                 | 0.7401                                | 0.0339           |
|                       |                   |                | 0.0000                      |                           |           | Ice                     | 0.4871                                 | 0.8504                                | 0.0407           |
|                       |                   |                |                             |                           |           | 1" Ice                  | 0.6896                                 | 1.0932                                | 0.0599           |
| (2) DBCT108F1V92-1    | С                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | 2" Ice<br>No Ice        | 0.3205                                 | 0.6372                                | 0.0287           |
| (2) DBC1 100F 1 V92-1 | C                 | Fioni Leg      | 0.0000                      | 0.0000                    | 121.0000  | 1/2"                    | 0.3203                                 | 0.0372                                | 0.0287           |
|                       |                   |                | 0.0000                      |                           |           | Ice                     | 0.4871                                 | 0.8504                                | 0.0407           |
|                       |                   |                |                             |                           |           | 1" Ice                  | 0.6896                                 | 1.0932                                | 0.0599           |
| (0) 7000 00           |                   | <b></b>        | 4.0000                      | 0.0000                    | 404 0000  | 2" Ice                  | 0.4004                                 | 0.4750                                | 0.0000           |
| (2) 7020.00           | Α                 | From Leg       | 4.0000<br>0.0000            | 0.0000                    | 121.0000  | No Ice<br>1/2"          | 0.1021<br>0.1469                       | 0.1750<br>0.2393                      | 0.0022<br>0.0052 |
|                       |                   |                | 0.0000                      |                           |           | Ice                     | 0.1403                                 | 0.2393                                | 0.0032           |
|                       |                   |                | 0.0000                      |                           |           | 1" Ice                  | 0.3258                                 | 0.4765                                | 0.0221           |
|                       |                   |                |                             |                           |           | 2" Ice                  |                                        |                                       |                  |
| (2) 7020.00           | В                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice                  | 0.1021                                 | 0.1750                                | 0.0022           |
|                       |                   |                | 0.0000<br>0.0000            |                           |           | 1/2"<br>Ice             | 0.1469<br>0.1991                       | 0.2393<br>0.3109                      | 0.0052<br>0.0093 |
|                       |                   |                | 0.0000                      |                           |           | 1" Ice                  | 0.1991                                 | 0.3109                                | 0.0093           |
|                       |                   |                |                             |                           |           | 2" Ice                  |                                        |                                       |                  |
| (2) 7020.00           | С                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice                  | 0.1021                                 | 0.1750                                | 0.0022           |
|                       |                   |                | 0.0000                      |                           |           | 1/2"                    | 0.1469                                 | 0.2393                                | 0.0052           |
|                       |                   |                | 0.0000                      |                           |           | lce<br>1" lce           | 0.1991<br>0.3258                       | 0.3109<br>0.4765                      | 0.0093<br>0.0221 |
|                       |                   |                |                             |                           |           | 2" Ice                  | 0.0200                                 | 0.4700                                | 0.0221           |
| (2) LGP21401          | Α                 | From Leg       | 4.0000                      | 0.0000                    | 121.0000  | No Ice                  | 1.1040                                 | 0.2070                                | 0.0141           |
|                       |                   | -              | 0.0000                      |                           |           | 1/2"                    | 1.2388                                 | 0.2738                                | 0.0213           |
|                       |                   |                | 0.0000                      |                           |           | Ice                     | 1.3810                                 | 0.3475                                | 0.0303           |
|                       |                   |                |                             |                           |           | 1" Ice<br>2" Ice        | 1.6877                                 | 0.5208                                | 0.0549           |
|                       |                   |                |                             |                           |           | Z 100                   |                                        |                                       |                  |

| Description                                | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                                           | C <sub>A</sub> A <sub>A</sub><br>Front  | C <sub>A</sub> A <sub>A</sub><br>Side   | Weight                               |
|--------------------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|-------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|
|                                            |                   |                | Vert<br>ft<br>ft<br>ft      | •                         | ft        |                                           | ft²                                     | ft²                                     | К                                    |
| (2) LGP21401                               | В                 | From Leg       | 4.0000<br>0.0000<br>0.0000  | 0.0000                    | 121.0000  | No Ice<br>1/2"<br>Ice<br>1" Ice           | 1.1040<br>1.2388<br>1.3810<br>1.6877    | 0.2070<br>0.2738<br>0.3475<br>0.5208    | 0.0141<br>0.0213<br>0.0303<br>0.0549 |
| (2) LGP21401                               | С                 | From Leg       | 4.0000<br>0.0000<br>0.0000  | 0.0000                    | 121.0000  | 2" Ice<br>No Ice<br>1/2"<br>Ice           | 1.1040<br>1.2388<br>1.3810              | 0.2070<br>0.2738<br>0.3475              | 0.0141<br>0.0213<br>0.0303           |
| DC6-48-60-18-8C                            | Α                 | From Leg       | 4.0000<br>0.0000<br>0.0000  | 0.0000                    | 121.0000  | 1" Ice<br>2" Ice<br>No Ice<br>1/2"<br>Ice | 1.6877<br>1.1450<br>1.7924<br>2.0024    | 0.5208<br>1.1450<br>1.7924<br>2.0024    | 0.0549<br>0.0262<br>0.0466<br>0.0698 |
| DC6-48-60-18-8C                            | В                 | From Leg       | 4.0000<br>0.0000<br>0.0000  | 0.0000                    | 121.0000  | 1" Ice<br>2" Ice<br>No Ice<br>1/2"<br>Ice | 2.4512<br>1.1450<br>1.7924<br>2.0024    | 2.4512<br>1.1450<br>1.7924<br>2.0024    | 0.1251<br>0.0262<br>0.0466<br>0.0698 |
| DC6-48-60-18-8F                            | С                 | From Leg       | 4.0000<br>0.0000<br>1.0000  | 0.0000                    | 121.0000  | 1" Ice<br>2" Ice<br>No Ice<br>1/2"<br>Ice | 2.4512<br>1.2117<br>1.8924<br>2.1051    | 2.4512<br>1.2117<br>1.8924<br>2.1051    | 0.1251<br>0.0200<br>0.0420<br>0.0668 |
| Platform Mount [LP 601-<br>1_KCKR]         | С                 | None           |                             | 0.0000                    | 121.0000  | 1" Ice<br>2" Ice<br>No Ice<br>1/2"<br>Ice | 2.5703<br>39.7300<br>45.9100<br>52.2600 | 2.5703<br>39.7300<br>45.9100<br>52.2600 | 0.1256<br>1.3970<br>2.0924<br>2.8798 |
| Miscellaneous [NA 507-1]                   | С                 | None           |                             | 0.0000                    | 121.0000  | 1" Ice<br>2" Ice<br>No Ice<br>1/2"        | 65.4800<br>4.5600<br>6.3900             | 65.4800<br>4.5600<br>6.3900             | 4.7377<br>0.2450<br>0.3114           |
| **                                         |                   |                |                             |                           |           | Ice<br>1" Ice<br>2" Ice                   | 8.1800<br>11.6600                       | 8.1800<br>11.6600                       | 0.4019<br>0.6570                     |
| (2) LPA-80063-4CF-EDIN-<br>5 w/ Mount Pipe | Α                 | From Leg       | 4.0000<br>0.0000<br>2.0000  | 0.0000                    | 110.0000  | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 6.3790<br>6.7781<br>7.1861<br>8.0285    | 6.5644<br>7.1921<br>7.8358<br>9.1719    | 0.0381<br>0.1036<br>0.1758<br>0.3426 |
| (2) LPA-80063-4CF-EDIN-<br>5 w/ Mount Pipe | В                 | From Leg       | 4.0000<br>0.0000<br>2.0000  | 0.0000                    | 110.0000  | No Ice<br>1/2"<br>Ice<br>1" Ice           | 6.3790<br>6.7781<br>7.1861<br>8.0285    | 6.5644<br>7.1921<br>7.8358<br>9.1719    | 0.0381<br>0.1036<br>0.1758<br>0.3426 |
| (2) LPA-80063-4CF-EDIN-<br>5 w/ Mount Pipe | С                 | From Leg       | 4.0000<br>0.0000<br>2.0000  | 0.0000                    | 110.0000  | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 6.3790<br>6.7781<br>7.1861<br>8.0285    | 6.5644<br>7.1921<br>7.8358<br>9.1719    | 0.0381<br>0.1036<br>0.1758<br>0.3426 |
| (2) SBNHH-1D65B w/<br>Mount Pipe           | Α                 | From Leg       | 4.0000<br>0.0000<br>2.0000  | 0.0000                    | 110.0000  | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 4.0900<br>4.4900<br>4.8900<br>5.7200    | 3.3000<br>3.6800<br>4.0700<br>4.8700    | 0.0665<br>0.1297<br>0.2037<br>0.3859 |
| (2) SBNHH-1D65B w/<br>Mount Pipe           | В                 | From Leg       | 4.0000<br>0.0000<br>2.0000  | 0.0000                    | 110.0000  | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 4.0900<br>4.4900<br>4.8900<br>5.7200    | 3.3000<br>3.6800<br>4.0700<br>4.8700    | 0.0665<br>0.1297<br>0.2037<br>0.3859 |
| (2) SBNHH-1D65B w/<br>Mount Pipe           | С                 | From Leg       | 4.0000<br>0.0000<br>2.0000  | 0.0000                    | 110.0000  | 2" Ice<br>No Ice<br>1/2"<br>Ice<br>1" Ice | 4.0900<br>4.4900<br>4.8900<br>5.7200    | 3.3000<br>3.6800<br>4.0700<br>4.8700    | 0.0665<br>0.1297<br>0.2037<br>0.3859 |

|                                             | Leg |             | Lateral                    | t      |          |                                 | Front                                | Side                                 |                                      |
|---------------------------------------------|-----|-------------|----------------------------|--------|----------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                                             |     |             | Vert<br>ft<br>ft           | •      | ft       |                                 | ft²                                  | ft²                                  | κ                                    |
| 000 4000 100                                |     |             | ft                         |        |          |                                 |                                      |                                      |                                      |
| 800 10735V01 w/ Mount<br>Pipe               | Α   | From Leg    | 4.0000                     | 0.0000 | 110.0000 | 2" Ice<br>No Ice<br>1/2"        | 8.8727<br>9.4550                     | 5.4888<br>6.7103                     | 0.0577<br>0.1206                     |
|                                             |     |             | 2.0000                     |        |          | Ice<br>1" Ice<br>2" Ice         | 10.0100<br>11.1272                   | 7.6880<br>9.5633                     | 0.1915<br>0.3615                     |
| BXA-70063-6CF-EDIN-X<br>w/ Mount Pipe       | В   | From Leg    | 4.0000<br>0.0000<br>2.0000 | 0.0000 | 110.0000 | No Ice<br>1/2"<br>Ice           | 7.4000<br>8.1400<br>8.9000           | 5.3900<br>6.1000<br>6.8300           | 0.0583<br>0.1131<br>0.1783           |
| BXA-70063-6CF-EDIN-X                        | С   | From Leg    | 4.0000                     | 0.0000 | 110.0000 | 1" Ice<br>2" Ice<br>No Ice      | 10.4600<br>7.4000                    | 8.3400<br>5.3900                     | 0.3417<br>0.0583                     |
| w/ Mount Pipe                               | C   | r ioiii Leg | 0.0000<br>2.0000           | 0.0000 | 110.0000 | 1/2"<br>Ice<br>1" Ice           | 8.1400<br>8.9000<br>10.4600          | 6.1000<br>6.8300<br>8.3400           | 0.0383<br>0.1131<br>0.1783<br>0.3417 |
| B4 RRH2X60-4R                               | Α   | From Leg    | 4.0000                     | 0.0000 | 110.0000 | 2" Ice<br>No Ice                | 0.0000                               | 2.0048                               | 0.0550                               |
|                                             |     |             | 0.0000<br>2.0000           |        |          | 1/2"<br>Ice<br>1" Ice<br>2" Ice | 0.0000<br>0.0000<br>0.0000           | 2.2369<br>2.4759<br>2.9750           | 0.0782<br>0.1049<br>0.1702           |
| B4 RRH2X60-4R                               | В   | From Leg    | 4.0000<br>0.0000<br>2.0000 | 0.0000 | 110.0000 | No Ice<br>1/2"<br>Ice           | 0.0000<br>0.0000<br>0.0000           | 2.0048<br>2.2369<br>2.4759           | 0.0550<br>0.0782<br>0.1049           |
| DA DDUOVEO AD                               | С   | From Log    |                            | 0.0000 | 110 0000 | 1" Ice<br>2" Ice<br>No Ice      | 0.0000                               | 2.9750                               | 0.1702                               |
| B4 RRH2X60-4R                               | C   | From Leg    | 4.0000<br>0.0000<br>2.0000 | 0.0000 | 110.0000 | 1/2"<br>Ice<br>1" Ice           | 0.0000<br>0.0000<br>0.0000<br>0.0000 | 2.0048<br>2.2369<br>2.4759<br>2.9750 | 0.0550<br>0.0782<br>0.1049<br>0.1702 |
| B13 RRH 4X30                                | Α   | From Leg    | 4.0000<br>0.0000<br>2.0000 | 0.0000 | 110.0000 | 2" Ice<br>No Ice<br>1/2"<br>Ice | 0.0000<br>0.0000<br>0.0000           | 1.3201<br>1.4754<br>1.6377           | 0.0560<br>0.0729<br>0.0930           |
| D40 DDU 4V00                                |     | F           | 4 0000                     | 0.0000 | 440,0000 | 1" Ice<br>2" Ice                | 0.0000                               | 1.9966                               | 0.1423                               |
| B13 RRH 4X30                                | В   | From Leg    | 4.0000<br>0.0000<br>2.0000 | 0.0000 | 110.0000 | No Ice<br>1/2"<br>Ice<br>1" Ice | 0.0000<br>0.0000<br>0.0000<br>0.0000 | 1.3201<br>1.4754<br>1.6377<br>1.9966 | 0.0560<br>0.0729<br>0.0930<br>0.1423 |
| B13 RRH 4X30                                | С   | From Leg    | 4.0000<br>0.0000           | 0.0000 | 110.0000 | 2" Ice<br>No Ice<br>1/2"        | 0.0000<br>0.0000                     | 1.3201<br>1.4754                     | 0.0560<br>0.0729                     |
|                                             |     |             | 2.0000                     |        |          | Ice<br>1" Ice<br>2" Ice         | 0.0000<br>0.0000                     | 1.6377<br>1.9966                     | 0.0930<br>0.1423                     |
| RRFDC-3315-PF-48                            | Α   | From Leg    | 1.0000<br>0.0000<br>2.0000 | 0.0000 | 110.0000 | No Ice<br>1/2"<br>Ice<br>1" Ice | 3.3636<br>3.5972<br>3.8383<br>4.3426 | 2.1921<br>2.3950<br>2.6056<br>3.0491 | 0.0320<br>0.0605<br>0.0926<br>0.1682 |
| Platform Mount [LP 1201-                    | С   | None        |                            | 0.0000 | 110.0000 | 2" Ice<br>No Ice                | 18.3800                              | 18.3800                              | 2.1000                               |
| 1]                                          |     |             |                            |        |          | 1/2"<br>Ice<br>1" Ice<br>2" Ice | 22.1100<br>25.8700<br>33.4700        | 22.1100<br>25.8700<br>33.4700        | 2.6519<br>3.2630<br>4.6624           |
| **                                          |     |             |                            |        |          | 2 100                           |                                      |                                      |                                      |
| AIR 32 B2A B66AA_T-<br>MOBILE w/ Mount Pipe | Α   | From Leg    | 4.0000<br>0.0000<br>2.0000 | 0.0000 | 98.0000  | No Ice<br>1/2"<br>Ice<br>1" Ice | 7.0872<br>7.5606<br>8.0206<br>8.9662 | 6.3915<br>7.2487<br>7.9915<br>9.5258 | 0.1936<br>0.2571<br>0.3276<br>0.4932 |
| AIR 32 B2A B66AA_T-<br>MOBILE w/ Mount Pipe | В   | From Leg    | 4.0000<br>0.0000<br>2.0000 | 0.0000 | 98.0000  | 2" Ice<br>No Ice<br>1/2"        | 7.0872<br>7.5606<br>8.0206           | 9.5256<br>6.3915<br>7.2487<br>7.9915 | 0.4932<br>0.1936<br>0.2571<br>0.3276 |

| Description            | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                  | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight           |
|------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|------------------|----------------------------------------|---------------------------------------|------------------|
|                        |                   |                | Vert<br>ft<br>ft<br>ft      | ۰                         | ft        |                  | ft²                                    | ft²                                   | K                |
|                        |                   |                | -                           |                           |           | 1" Ice<br>2" Ice | 8.9662                                 | 9.5258                                | 0.4932           |
| AIR 32 B2A B66AA_T-    | С                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 7.0872                                 | 6.3915                                | 0.1936           |
| MOBILE w/ Mount Pipe   | O                 | 1 Tolli Log    | 0.0000                      | 0.0000                    | 30.0000   | 1/2"             | 7.5606                                 | 7.2487                                | 0.2571           |
| oz.zz,oapo             |                   |                | 2.0000                      |                           |           | lce              | 8.0206                                 | 7.9915                                | 0.3276           |
|                        |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 8.9662                                 | 9.5258                                | 0.4932           |
| APXVAARR24_43-U-NA20   | Α                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 14.6900                                | 6.8700                                | 0.1862           |
| w/ Mount Pipe          |                   |                | 0.0000                      |                           |           | 1/2"             | 15.4600                                | 7.5500                                | 0.3147           |
|                        |                   |                | 2.0000                      |                           |           | lce              | 16.2300                                | 8.2500                                | 0.4577           |
|                        |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 17.8200                                | 9.6700                                | 0.7882           |
| APXVAARR24_43-U-NA20   | В                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 14.6900                                | 6.8700                                | 0.1862           |
| w/ Mount Pipe          | Ь                 | 1 Tolli Log    | 0.0000                      | 0.0000                    | 30.0000   | 1/2"             | 15.4600                                | 7.5500                                | 0.3147           |
| m meant ipe            |                   |                | 2.0000                      |                           |           | lce              | 16.2300                                | 8.2500                                | 0.4577           |
|                        |                   |                |                             |                           |           | 1" Ice           | 17.8200                                | 9.6700                                | 0.7882           |
|                        |                   |                |                             |                           |           | 2" Ice           |                                        |                                       |                  |
| APXVAARR24_43-U-NA20   | С                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 14.6900                                | 6.8700                                | 0.1862           |
| w/ Mount Pipe          |                   |                | 0.0000                      |                           |           | 1/2"             | 15.4600                                | 7.5500                                | 0.3147           |
|                        |                   |                | 2.0000                      |                           |           | Ice<br>1" Ice    | 16.2300<br>17.8200                     | 8.2500<br>9.6700                      | 0.4577<br>0.7882 |
|                        |                   |                |                             |                           |           | 2" Ice           | 17.0200                                | 9.0700                                | 0.7002           |
| AIR6449 B41_T-MOBILE   | Α                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 5.8701                                 | 3.2700                                | 0.1284           |
| w/ Mount Pipe          |                   |                | 0.0000                      |                           |           | 1/2"             | 6.2332                                 | 3.7282                                | 0.1773           |
| ·                      |                   |                | 2.0000                      |                           |           | Ice              | 6.6061                                 | 4.2026                                | 0.2317           |
|                        |                   |                |                             |                           |           | 1" lce<br>2" lce | 7.3816                                 | 5.2001                                | 0.3593           |
| AIR6449 B41_T-MOBILE   | В                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 5.8701                                 | 3.2700                                | 0.1284           |
| w/ Mount Pipe          |                   |                | 0.0000                      |                           |           | 1/2"             | 6.2332                                 | 3.7282                                | 0.1773           |
|                        |                   |                | 2.0000                      |                           |           | lce              | 6.6061                                 | 4.2026                                | 0.2317           |
|                        |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 7.3816                                 | 5.2001                                | 0.3593           |
| AIR6449 B41_T-MOBILE   | С                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 5.8701                                 | 3.2700                                | 0.1284           |
| w/ Mount Pipe          |                   |                | 0.0000                      |                           |           | 1/2"             | 6.2332                                 | 3.7282                                | 0.1773           |
|                        |                   |                | 2.0000                      |                           |           | lce              | 6.6061                                 | 4.2026                                | 0.2317           |
|                        |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 7.3816                                 | 5.2001                                | 0.3593           |
| SDX1926Q-43            | Α                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 0.2410                                 | 0.1013                                | 0.0062           |
|                        |                   |                | 0.0000                      |                           |           | 1/2"             | 0.3063                                 | 0.1444                                | 0.0086           |
|                        |                   |                | 2.0000                      |                           |           | Ice              | 0.3791                                 | 0.1948                                | 0.0122           |
|                        |                   |                |                             |                           |           | 1" Ice           | 0.5469                                 | 0.3180                                | 0.0235           |
| 000/40000 40           | -                 |                | 4.0000                      | 0.0000                    | 00 0000   | 2" Ice           | 0.0440                                 | 0.4040                                | 0.0000           |
| SDX1926Q-43            | В                 | From Leg       | 4.0000<br>0.0000            | 0.0000                    | 98.0000   | No Ice<br>1/2"   | 0.2410<br>0.3063                       | 0.1013<br>0.1444                      | 0.0062<br>0.0086 |
|                        |                   |                | 2.0000                      |                           |           | lce              | 0.3003                                 | 0.1948                                | 0.0080           |
|                        |                   |                | 2.0000                      |                           |           | 1" Ice           | 0.5469                                 | 0.3180                                | 0.0235           |
|                        |                   |                |                             |                           |           | 2" Ice           |                                        |                                       |                  |
| SDX1926Q-43            | С                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 0.2410                                 | 0.1013                                | 0.0062           |
|                        |                   |                | 0.0000                      |                           |           | 1/2"             | 0.3063                                 | 0.1444                                | 0.0086           |
|                        |                   |                | 2.0000                      |                           |           | Ice              | 0.3791                                 | 0.1948                                | 0.0122           |
|                        |                   |                |                             |                           |           | 1" Ice<br>2" Ice | 0.5469                                 | 0.3180                                | 0.0235           |
| RADIO 4449 B71 B85A_T- | Α                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 1.9701                                 | 1.5865                                | 0.0732           |
| MOBILE                 |                   |                | 0.0000                      |                           |           | 1/2"             | 2.1466                                 | 1.7488                                | 0.0930           |
|                        |                   |                | 2.0000                      |                           |           | Ice              | 2.3306                                 | 1.9185                                | 0.1156           |
|                        |                   |                |                             |                           |           | 1" Ice           | 2.7207                                 | 2.2800                                | 0.1704           |
| RADIO 4449 B71 B85A_T- | В                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | 2" Ice<br>No Ice | 1.9701                                 | 1.5865                                | 0.0732           |
| MOBILE                 | D                 | i ioni Leg     | 0.0000                      | 0.0000                    | 55.0000   | 1/2"             | 2.1466                                 | 1.7488                                | 0.0732           |
|                        |                   |                | 2.0000                      |                           |           | lce              | 2.3306                                 | 1.9185                                | 0.1156           |
|                        |                   |                |                             |                           |           | 1" Ice           | 2.7207                                 | 2.2800                                | 0.1704           |
|                        |                   |                |                             |                           |           | 2" Ice           |                                        |                                       |                  |
| RADIO 4449 B71 B85A_T- | С                 | From Leg       | 4.0000                      | 0.0000                    | 98.0000   | No Ice           | 1.9701                                 | 1.5865                                | 0.0732           |
| MOBILE                 |                   |                | 0.0000                      |                           |           | 1/2"             | 2.1466                                 | 1.7488                                | 0.0930           |
|                        |                   |                | 2.0000                      |                           |           | Ice              | 2.3306                                 | 1.9185                                | 0.1156           |
|                        |                   |                |                             |                           |           |                  |                                        |                                       |                  |

| Description              | Face<br>or | Offset<br>Type | Offsets:<br>Horz | Azimuth<br>Adjustmen | Placement |                  | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight           |
|--------------------------|------------|----------------|------------------|----------------------|-----------|------------------|----------------------------------------|---------------------------------------|------------------|
|                          | Leg        | <i>,</i> ,     | Lateral          | t                    |           |                  |                                        |                                       |                  |
|                          |            |                | Vert<br>ft       |                      | ft        |                  | ft²                                    | ft²                                   | K                |
|                          |            |                | ft<br>ft         | ۰                    | "         |                  | n                                      | n                                     | K                |
|                          |            |                | п                |                      |           | 1" Ice           | 2.7207                                 | 2.2800                                | 0.1704           |
| RRUS 4415 B25            | Α          | From Leg       | 4.0000           | 0.0000               | 98.0000   | 2" Ice<br>No Ice | 1.6444                                 | 0.6788                                | 0.0440           |
| 11100 44 15 B25          |            | 1 Tolli Leg    | 0.0000           | 0.0000               | 90.0000   | 1/2"             | 1.8044                                 | 0.7911                                | 0.0564           |
|                          |            |                | 2.0000           |                      |           | lce              | 1.9719                                 | 0.9129                                | 0.0712           |
|                          |            |                |                  |                      |           | 1" Ice<br>2" Ice | 2.3292                                 | 1.1834                                | 0.1087           |
| RRUS 4415 B25            | В          | From Leg       | 4.0000           | 0.0000               | 98.0000   | No Ice           | 1.6444                                 | 0.6788                                | 0.0440           |
|                          |            |                | 0.0000           |                      |           | 1/2"             | 1.8044                                 | 0.7911                                | 0.0564           |
|                          |            |                | 2.0000           |                      |           | Ice              | 1.9719                                 | 0.9129                                | 0.0712           |
|                          |            |                |                  |                      |           | 1" Ice<br>2" Ice | 2.3292                                 | 1.1834                                | 0.1087           |
| RRUS 4415 B25            | С          | From Leg       | 4.0000           | 0.0000               | 98.0000   | No Ice           | 1.6444                                 | 0.6788                                | 0.0440           |
| 11100 44 10 020          | O          | 1 Tolli Log    | 0.0000           | 0.0000               | 30.0000   | 1/2"             | 1.8044                                 | 0.7911                                | 0.0564           |
|                          |            |                | 2.0000           |                      |           | Ice              | 1.9719                                 | 0.9129                                | 0.0712           |
|                          |            |                |                  |                      |           | 1" Ice           | 2.3292                                 | 1.1834                                | 0.1087           |
|                          |            | _              |                  |                      |           | 2" Ice           |                                        |                                       |                  |
| ONEBASE TWIN DUAL        | Α          | From Leg       | 4.0000           | 0.0000               | 98.0000   | No Ice           | 0.5775                                 | 0.2632                                | 0.0110           |
| DUPLEX TMA               |            |                | 0.0000<br>2.0000 |                      |           | 1/2"<br>Ice      | 0.6740<br>0.7779                       | 0.3356<br>0.4162                      | 0.0158<br>0.0222 |
|                          |            |                | 2.0000           |                      |           | 1" Ice           | 1.0079                                 | 0.4102                                | 0.0222           |
|                          |            |                |                  |                      |           | 2" Ice           | 1.0073                                 | 0.0000                                | 0.0401           |
| ONEBASE TWIN DUAL        | В          | From Leg       | 4.0000           | 0.0000               | 98.0000   | No Ice           | 0.5775                                 | 0.2632                                | 0.0110           |
| DUPLEX TMA               |            | _              | 0.0000           |                      |           | 1/2"             | 0.6740                                 | 0.3356                                | 0.0158           |
|                          |            |                | 2.0000           |                      |           | Ice              | 0.7779                                 | 0.4162                                | 0.0222           |
|                          |            |                |                  |                      |           | 1" Ice<br>2" Ice | 1.0079                                 | 0.5995                                | 0.0401           |
| ONEBASE TWIN DUAL        | С          | From Leg       | 4.0000           | 0.0000               | 98.0000   | No Ice           | 0.5775                                 | 0.2632                                | 0.0110           |
| DUPLEX TMA               |            | 3              | 0.0000           |                      |           | 1/2"             | 0.6740                                 | 0.3356                                | 0.0158           |
|                          |            |                | 2.0000           |                      |           | Ice              | 0.7779                                 | 0.4162                                | 0.0222           |
|                          |            |                |                  |                      |           | 1" Ice           | 1.0079                                 | 0.5995                                | 0.0401           |
| GL v O'' Mount Ding      | ۸          | From Log       | 4.0000           | 0.0000               | 00 0000   | 2" Ice           | 1 1050                                 | 1 1050                                | 0.0000           |
| 6' x 2" Mount Pipe       | Α          | From Leg       | 4.0000<br>0.0000 | 0.0000               | 98.0000   | No Ice<br>1/2"   | 1.4250<br>1.9250                       | 1.4250<br>1.9250                      | 0.0220<br>0.0328 |
|                          |            |                | 0.0000           |                      |           | lce              | 2.2939                                 | 2.2939                                | 0.0320           |
|                          |            |                | 0.0000           |                      |           | 1" Ice           | 3.0596                                 | 3.0596                                | 0.0903           |
|                          |            |                |                  |                      |           | 2" Ice           |                                        |                                       |                  |
| 6' x 2" Mount Pipe       | В          | From Leg       | 4.0000           | 0.0000               | 98.0000   | No Ice           | 1.4250                                 | 1.4250                                | 0.0220           |
|                          |            |                | 0.0000           |                      |           | 1/2"             | 1.9250                                 | 1.9250                                | 0.0328           |
|                          |            |                | 0.0000           |                      |           | Ice<br>1" Ice    | 2.2939<br>3.0596                       | 2.2939<br>3.0596                      | 0.0477<br>0.0903 |
|                          |            |                |                  |                      |           | 2" Ice           | 3.0330                                 | 3.0390                                | 0.0903           |
| 6' x 2" Mount Pipe       | С          | From Leg       | 4.0000           | 0.0000               | 98.0000   | No Ice           | 1.4250                                 | 1.4250                                | 0.0220           |
| ·                        |            | _              | 0.0000           |                      |           | 1/2"             | 1.9250                                 | 1.9250                                | 0.0328           |
|                          |            |                | 0.0000           |                      |           | Ice              | 2.2939                                 | 2.2939                                | 0.0477           |
|                          |            |                |                  |                      |           | 1" Ice           | 3.0596                                 | 3.0596                                | 0.0903           |
| Platform Mount [LP 601-  | С          | None           |                  | 0.0000               | 98.0000   | 2" Ice<br>No Ice | 39.7300                                | 39.7300                               | 1.3970           |
| 1 KCKR]                  | C          | None           |                  | 0.0000               | 90.0000   | 1/2"             | 45.9100                                | 45.9100                               | 2.0924           |
| 1_1.0.1.1.1              |            |                |                  |                      |           | lce              | 52.2600                                | 52.2600                               | 2.8798           |
|                          |            |                |                  |                      |           | 1" Ice           | 65.4800                                | 65.4800                               | 4.7377           |
|                          |            |                |                  |                      |           | 2" Ice           |                                        |                                       |                  |
| Miscellaneous [NA 510-1] | С          | None           |                  | 0.0000               | 98.0000   | No Ice           | 6.3600                                 | 6.3600                                | 0.2557           |
|                          |            |                |                  |                      |           | 1/2"             | 8.5200<br>10.6200                      | 8.5200<br>10.6200                     | 0.3438<br>0.4587 |
|                          |            |                |                  |                      |           | Ice<br>1" Ice    | 14.6400                                | 14.6400                               | 0.4367           |
|                          |            |                |                  |                      |           | 2" Ice           | 1 1.0 100                              | 11.0100                               | 0.7000           |
| **                       |            |                |                  |                      |           |                  | _                                      |                                       |                  |
| NNVV-65B-R4 w/ Mount     | Α          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice           | 7.5500                                 | 4.2300                                | 0.1102           |
| Pipe                     |            |                | 0.0000<br>2.0000 |                      |           | 1/2"             | 8.0400<br>8.5300                       | 4.6700<br>5.1200                      | 0.1975<br>0.2961 |
|                          |            |                | 2.0000           |                      |           | Ice<br>1" Ice    | 9.5600                                 | 6.0500                                | 0.2961           |
|                          |            |                |                  |                      |           | 2" Ice           | 0.000                                  | 0.000                                 | 0.0200           |
| NNVV-65B-R4 w/ Mount     | В          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice           | 7.5500                                 | 4.2300                                | 0.1102           |
| Pipe                     |            |                | 0.0000           |                      |           | 1/2"             | 8.0400                                 | 4.6700                                | 0.1975           |
|                          |            |                |                  |                      |           |                  |                                        |                                       |                  |

| Description                 | Face<br>or | Offset<br>Type | Offsets:<br>Horz | Azimuth<br>Adjustmen | Placement |                         | C <sub>A</sub> A <sub>A</sub><br>Front | C <sub>A</sub> A <sub>A</sub><br>Side | Weight           |
|-----------------------------|------------|----------------|------------------|----------------------|-----------|-------------------------|----------------------------------------|---------------------------------------|------------------|
|                             | Leg        | ,,,,,          | Lateral<br>Vert  | t                    |           |                         | 770711                                 | 0,00                                  |                  |
|                             |            |                | ft<br>ft         | 0                    | ft        |                         | ft²                                    | ft²                                   | K                |
|                             |            |                | ft               |                      |           |                         | 0.5000                                 | F 4000                                | 0.0004           |
|                             |            |                | 2.0000           |                      |           | Ice<br>1" Ice<br>2" Ice | 8.5300<br>9.5600                       | 5.1200<br>6.0500                      | 0.2961<br>0.5290 |
| NNVV-65B-R4 w/ Mount        | С          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 7.5500                                 | 4.2300                                | 0.1102           |
| Pipe                        |            | 5              | 0.0000           |                      |           | 1/2"                    | 8.0400                                 | 4.6700                                | 0.1975           |
|                             |            |                | 2.0000           |                      |           | Ice                     | 8.5300                                 | 5.1200                                | 0.2961           |
|                             |            |                |                  |                      |           | 1" Ice<br>2" Ice        | 9.5600                                 | 6.0500                                | 0.5290           |
| LLPX310R-V1 w/ Mount        | Α          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 3.8800                                 | 2.3600                                | 0.0573           |
| Pipe                        |            |                | 0.0000           |                      |           | 1/2"                    | 4.2900                                 | 2.7300                                | 0.0913           |
|                             |            |                | 2.0000           |                      |           | Ice                     | 4.7200                                 | 3.1200                                | 0.1325           |
|                             |            |                |                  |                      |           | 1" Ice<br>2" Ice        | 5.6100                                 | 3.9400                                | 0.2376           |
| LLPX310R-V1 w/ Mount        | В          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 3.8800                                 | 2.3600                                | 0.0573           |
| Pipe                        |            | 1 10m 20g      | 0.0000           | 0.0000               | 00.0000   | 1/2"                    | 4.2900                                 | 2.7300                                | 0.0913           |
| ·                           |            |                | 2.0000           |                      |           | Ice                     | 4.7200                                 | 3.1200                                | 0.1325           |
|                             |            |                |                  |                      |           | 1" Ice<br>2" Ice        | 5.6100                                 | 3.9400                                | 0.2376           |
| LLPX310R-V1 w/ Mount        | С          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 3.8800                                 | 2.3600                                | 0.0573           |
| Pipe                        |            |                | 0.0000           |                      |           | 1/2"                    | 4.2900                                 | 2.7300                                | 0.0913           |
|                             |            |                | 2.0000           |                      |           | Ice<br>1" Ice           | 4.7200                                 | 3.1200                                | 0.1325           |
|                             |            |                |                  |                      |           | 2" Ice                  | 5.6100                                 | 3.9400                                | 0.2376           |
| AHCC                        | Α          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 1.6283                                 | 1.1388                                | 0.0452           |
| ,                           |            |                | 0.0000           | 0.000                | 00.000    | 1/2"                    | 1.7900                                 | 1.2811                                | 0.0602           |
|                             |            |                | 2.0000           |                      |           | Ice                     | 1.9591                                 | 1.4309                                | 0.0778           |
|                             |            |                |                  |                      |           | 1" Ice<br>2" Ice        | 2.3196                                 | 1.7525                                | 0.1215           |
| (2) AHCC                    | С          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 1.6283                                 | 1.1388                                | 0.0452           |
|                             |            |                | 0.0000           |                      |           | 1/2"                    | 1.7900                                 | 1.2811                                | 0.0602           |
|                             |            |                | 2.0000           |                      |           | Ice                     | 1.9591                                 | 1.4309                                | 0.0778           |
|                             |            |                |                  |                      |           | 1" Ice<br>2" Ice        | 2.3196                                 | 1.7525                                | 0.1215           |
| URAS-FLEXIBLE               | Α          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 1.5467                                 | 0.6840                                | 0.0330           |
| OT TO TELXIBLE              | ,,         | 1 Tom Log      | 0.0000           | 0.0000               | 00.0000   | 1/2"                    | 1.7037                                 | 0.7999                                | 0.0446           |
|                             |            |                | 2.0000           |                      |           | Ice                     | 1.8681                                 | 0.9228                                | 0.0585           |
|                             |            |                |                  |                      |           | 1" Ice<br>2" Ice        | 2.2193                                 | 1.1926                                | 0.0939           |
| (2) URAS-FLEXIBLE           | В          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 1.5467                                 | 0.6840                                | 0.0330           |
| ( )                         |            | J              | 0.0000           |                      |           | 1/2"                    | 1.7037                                 | 0.7999                                | 0.0446           |
|                             |            |                | 2.0000           |                      |           | Ice                     | 1.8681                                 | 0.9228                                | 0.0585           |
|                             |            |                |                  |                      |           | 1" Ice                  | 2.2193                                 | 1.1926                                | 0.0939           |
| DCC 1000MUZ 4V4EW           | ۸          | From Leg       | 4.0000           | 0.0000               | 86.0000   | 2" Ice                  | 0.2040                                 | 0.0004                                | 0.0600           |
| PCS 1900MHZ 4X45W-<br>65MHZ | Α          | From Leg       | 4.0000<br>0.0000 | 0.0000               | 86.0000   | No Ice<br>1/2"          | 2.3218<br>2.5266                       | 2.2381<br>2.4407                      | 0.0600<br>0.0831 |
| OOWI IZ                     |            |                | 2.0000           |                      |           | Ice                     | 2.7388                                 | 2.6507                                | 0.1095           |
|                             |            |                |                  |                      |           | 1" Ice                  | 3.1855                                 | 3.0929                                | 0.1727           |
|                             |            |                |                  |                      |           | 2" Ice                  |                                        |                                       |                  |
| (2) PCS 1900MHZ 4X45W-      | В          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 2.3218                                 | 2.2381                                | 0.0600           |
| 65MHZ                       |            |                | 0.0000           |                      |           | 1/2"                    | 2.5266                                 | 2.4407                                | 0.0831           |
|                             |            |                | 2.0000           |                      |           | Ice                     | 2.7388                                 | 2.6507                                | 0.1095<br>0.1727 |
|                             |            |                |                  |                      |           | 1" Ice<br>2" Ice        | 3.1855                                 | 3.0929                                | 0.1727           |
| HORIZON DUO                 | Α          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 0.4688                                 | 0.2938                                | 0.0070           |
|                             |            |                | 0.0000           |                      |           | 1/2"                    | 0.5558                                 | 0.3652                                | 0.0118           |
|                             |            |                | 2.0000           |                      |           | Ice                     | 0.6502                                 | 0.4441                                | 0.0180           |
|                             |            |                |                  |                      |           | 1" Ice<br>2" Ice        | 0.8613                                 | 0.6241                                | 0.0357           |
| HORIZON DUO                 | В          | From Leg       | 4.0000           | 0.0000               | 86.0000   | No Ice                  | 0.4688                                 | 0.2938                                | 0.0070           |
|                             |            | -              | 0.0000           |                      |           | 1/2"                    | 0.5558                                 | 0.3652                                | 0.0118           |
|                             |            |                | 2.0000           |                      |           | Ice                     | 0.6502                                 | 0.4441                                | 0.0180           |
|                             |            |                |                  |                      |           | 1" Ice                  | 0.8613                                 | 0.6241                                | 0.0357           |
| HORIZON DUO                 | С          | From Leg       | 4.0000           | 0.0000               | 86.0000   | 2" Ice<br>No Ice        | 0.4688                                 | 0.2938                                | 0.0070           |
| HOMEON DOO                  | U          | i ioiii Leg    | 0.0000           | 0.0000               | 00.0000   | 1/2"                    | 0.4000                                 | 0.2936                                | 0.0070           |
|                             |            |                |                  |                      |           | . –                     |                                        |                                       | · · <del>-</del> |

| Description                             | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral | Azimuth<br>Adjustmen<br>t | Placement |                                           | C <sub>A</sub> A <sub>A</sub><br>Front   | C <sub>A</sub> A <sub>A</sub><br>Side    | Weight                               |
|-----------------------------------------|-------------------|----------------|-----------------------------|---------------------------|-----------|-------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------|
|                                         |                   |                | Vert<br>ft<br>ft<br>ft      | ۰                         | ft        |                                           | ft²                                      | ft²                                      | К                                    |
|                                         |                   |                | 2.0000                      |                           |           | Ice<br>1" Ice<br>2" Ice                   | 0.6502<br>0.8613                         | 0.4441<br>0.6241                         | 0.0180<br>0.0357                     |
| Platform Mount [LP 303-<br>1_KCKR-HR-1] | С                 | None           |                             | 0.0000                    | 86.0000   | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 28.3100<br>35.6900<br>43.1100<br>58.2100 | 28.3100<br>35.6900<br>43.1100<br>58.2100 | 1.7700<br>2.2974<br>2.9434<br>4.6027 |
| 6' x 2" Mount Pipe                      | Α                 | From Leg       | 4.0000<br>0.0000<br>0.0000  | 0.0000                    | 86.0000   | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 1.4250<br>1.9250<br>2.2939<br>3.0596     | 1.4250<br>1.9250<br>2.2939<br>3.0596     | 0.0220<br>0.0328<br>0.0477<br>0.0903 |
| 6' x 2" Mount Pipe                      | В                 | From Leg       | 4.0000<br>0.0000<br>0.0000  | 0.0000                    | 86.0000   | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 1.4250<br>1.9250<br>2.2939<br>3.0596     | 1.4250<br>1.9250<br>2.2939<br>3.0596     | 0.0220<br>0.0328<br>0.0477<br>0.0903 |
| 6' x 2" Mount Pipe                      | С                 | From Leg       | 4.0000<br>0.0000<br>0.0000  | 0.0000                    | 86.0000   | No Ice<br>1/2"<br>Ice<br>1" Ice<br>2" Ice | 1.4250<br>1.9250<br>2.2939<br>3.0596     | 1.4250<br>1.9250<br>2.2939<br>3.0596     | 0.0220<br>0.0328<br>0.0477<br>0.0903 |
| **  ***************  *****************  |                   |                |                             |                           |           |                                           |                                          |                                          |                                      |

|             | Dishes            |               |                |                                     |                       |                       |           |                     |          |                  |        |
|-------------|-------------------|---------------|----------------|-------------------------------------|-----------------------|-----------------------|-----------|---------------------|----------|------------------|--------|
| Description | Face<br>or<br>Leg | Dish<br>Type  | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | 3 dB<br>Beam<br>Width | Elevation | Outside<br>Diameter |          | Aperture<br>Area | Weigh  |
|             |                   |               |                | ft                                  | ۰                     | ۰                     | ft        | ft                  |          | ft <sup>2</sup>  | K      |
| VHLP2.5-18  | Α                 | Paraboloid    | From           | 1.0000                              | 0.0000                |                       | 86.0000   | 2.5000              | No Ice   | 6.6800           | 0.0480 |
|             |                   | w/Shroud (HP) | Leg            | 0.0000                              |                       |                       |           |                     | 1/2" Ice | 7.0600           | 0.0510 |
|             |                   | , ,           | •              | 2.0000                              |                       |                       |           |                     | 1" Ice   | 7.4600           | 0.0600 |
| **          |                   |               |                |                                     |                       |                       |           |                     | 2" Ice   | 8.2900           | 0.097  |

## **Load Combinations**

| Comb. |                                   | Description |  |
|-------|-----------------------------------|-------------|--|
| No.   |                                   |             |  |
| 1     | Dead Only                         |             |  |
| 2     | 1.2 Dead+1.0 Wind 0 deg - No Ice  |             |  |
| 3     | 0.9 Dead+1.0 Wind 0 deg - No Ice  |             |  |
| 4     | 1.2 Dead+1.0 Wind 30 deg - No Ice |             |  |
| 5     | 0.9 Dead+1.0 Wind 30 deg - No Ice |             |  |
| 6     | 1.2 Dead+1.0 Wind 60 deg - No Ice |             |  |

| Comb.      | Description                                                              |
|------------|--------------------------------------------------------------------------|
| <u>No.</u> |                                                                          |
| 7          | 0.9 Dead+1.0 Wind 60 deg - No Ice                                        |
| 8          | 1.2 Dead+1.0 Wind 90 deg - No Ice                                        |
| 9          | 0.9 Dead+1.0 Wind 90 deg - No Ice                                        |
| 10         | 1.2 Dead+1.0 Wind 120 deg - No Ice                                       |
| 11<br>12   | 0.9 Dead+1.0 Wind 120 deg - No Ice                                       |
| 13         | 1.2 Dead+1.0 Wind 150 deg - No Ice                                       |
| 14         | 0.9 Dead+1.0 Wind 150 deg - No Ice                                       |
| 15         | 1.2 Dead+1.0 Wind 180 deg - No Ice<br>0.9 Dead+1.0 Wind 180 deg - No Ice |
| 16         | 1.2 Dead+1.0 Wind 210 deg - No Ice                                       |
| 17         | 0.9 Dead+1.0 Wind 210 deg - No Ice                                       |
| 18         | 1.2 Dead+1.0 Wind 240 deg - No Ice                                       |
| 19         | 0.9 Dead+1.0 Wind 240 deg - No Ice                                       |
| 20         | 1.2 Dead+1.0 Wind 270 deg - No Ice                                       |
| 21         | 0.9 Dead+1.0 Wind 270 deg - No Ice                                       |
| 22         | 1.2 Dead+1.0 Wind 300 deg - No Ice                                       |
| 23         | 0.9 Dead+1.0 Wind 300 deg - No Ice                                       |
| 24         | 1.2 Dead+1.0 Wind 330 deg - No Ice                                       |
| 25         | 0.9 Dead+1.0 Wind 330 deg - No Ice                                       |
| 26         | 1.2 Dead+1.0 Ice+1.0 Temp                                                |
| 27         | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp                                 |
| 28         | 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp                                |
| 29         | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp                                |
| 30         | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp                                |
| 31         | 1.2 Dead+1.0 Wind 120 deg+1.0 lce+1.0 Temp                               |
| 32         | 1.2 Dead+1.0 Wind 150 deg+1.0 lce+1.0 Temp                               |
| 33         | 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp                               |
| 34         | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp                               |
| 35         | 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp                               |
| 36         | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp                               |
| 37         | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp                               |
| 38         | 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp                               |
| 39         | Dead+Wind 0 deg - Service                                                |
| 40         | Dead+Wind 30 deg - Service                                               |
| 41         | Dead+Wind 60 deg - Service                                               |
| 42<br>43   | Dead+Wind 90 deg - Service                                               |
| 43<br>44   | Dead+Wind 120 deg - Service Dead+Wind 150 deg - Service                  |
| 44<br>45   | Dead+Wind 180 deg - Service  Dead+Wind 180 deg - Service                 |
| 45<br>46   | Dead+Wind 210 deg - Service  Dead+Wind 210 deg - Service                 |
| 47         | Dead+Wind 240 deg - Service  Dead+Wind 240 deg - Service                 |
| 48         | Dead+Wind 270 deg - Service                                              |
| 49         | Dead+Wind 300 deg - Service                                              |
| 50         | Dead+Wind 330 deg - Service                                              |
|            | Dodd Trind 000 dog Corrido                                               |

# **Maximum Member Forces**

| Sectio<br>n | Elevation<br>ft | Component<br>Type | Condition        | Gov.<br>Load | Axial    | Major Axis<br>Moment | Minor Axis<br>Moment |
|-------------|-----------------|-------------------|------------------|--------------|----------|----------------------|----------------------|
| No.         |                 |                   |                  | Comb.        | K        | kip-ft               | kip-ft               |
| L1          | 119 - 95        | Pole              | Max Tension      | 1            | 0.0000   | 0.0000               | 0.0000               |
|             |                 |                   | Max. Compression | 26           | -30.1620 | -0.5367              | 0.8503               |
|             |                 |                   | Max. Mx          | 8            | -9.3347  | -271.6356            | 0.1608               |
|             |                 |                   | Max. My          | 2            | -9.3122  | -0.1364              | 273.1149             |
|             |                 |                   | Max. Vy          | 8            | 15.4137  | -271.6356            | 0.1608               |
|             |                 |                   | Max. Vx          | 2            | -15.5251 | -0.1364              | 273.1149             |
|             |                 |                   | Max. Torque      | 9            |          |                      | 0.1848               |
| L2          | 95 - 47.25      | Pole              | Max Tension      | 1            | 0.0000   | 0.0000               | 0.0000               |
|             |                 |                   | Max. Compression | 26           | -64.6678 | -3.3764              | 3.2986               |
|             |                 |                   | Max. Mx          | 8            | -25.1678 | -                    | 1.3864               |
|             |                 |                   |                  |              |          | 1476.7944            |                      |
|             |                 |                   | Max. My          | 14           | -25.1372 | -1.5055              | -                    |
|             |                 |                   | •                |              |          |                      | 1489.4399            |
|             |                 |                   | Max. Vy          | 8            | 28.8925  | -                    | 1.3864               |
|             |                 |                   | •                |              |          | 1476.7944            |                      |
|             |                 |                   | Max. Vx          | 14           | 29.2151  | -1.5055              | -                    |
|             |                 |                   |                  | -            |          |                      | 1489.4399            |

| Sectio | Elevation | Component | Condition                             | Gov.  | Axial    | Major Axis | Minor Axis |
|--------|-----------|-----------|---------------------------------------|-------|----------|------------|------------|
| n      | ft        | Type      |                                       | Load  |          | Moment     | Moment     |
| No.    |           |           |                                       | Comb. | K        | kip-ft     | kip-ft     |
|        |           |           | Max. Torque                           | 22    |          |            | -0.8638    |
| L3     | 47.25 - 0 | Pole      | Max Tension                           | 1     | 0.0000   | 0.0000     | 0.0000     |
|        |           |           | Max. Compression                      | 26    | -86.1429 | -4.9854    | 6.0807     |
|        |           |           | Max. Mx                               | 8     | -40.4414 | -          | 3.0056     |
|        |           |           |                                       |       |          | 3114.0516  |            |
|        |           |           | Max. My                               | 14    | -40.4407 | -2.7302    | -          |
|        |           |           | · · · · · · · · · · · · · · · · · · · |       |          |            | 3142.5861  |
|        |           |           | Max. Vy                               | 8     | 32.9706  | -          | 3.0056     |
|        |           |           | •                                     |       |          | 3114.0516  |            |
|        |           |           | Max. Vx                               | 14    | 33.2819  | -2.7302    | -          |
|        |           |           |                                       |       |          |            | 3142.5861  |
|        |           |           | Max. Torque                           | 22    |          |            | -0.8582    |
|        |           |           | •                                     |       |          |            |            |

# **Maximum Reactions**

| Location | Condition           | Gov.<br>Load | Vertical<br>K | Horizontal, X<br>K | Horizontal, Z<br>K |
|----------|---------------------|--------------|---------------|--------------------|--------------------|
|          |                     | Comb.        | K             | K                  | K                  |
| Pole     | Max. Vert           | 27           | 86.1429       | 0.0029             | 8.5844             |
|          | Max. H <sub>x</sub> | 21           | 30.3596       | 32.9239            | 0.0509             |
|          | Max. H <sub>z</sub> | 2            | 40.4795       | 0.0154             | 33.1548            |
|          | Max. M <sub>x</sub> | 2            | 3137.6160     | 0.0154             | 33.1548            |
|          | $Max. M_z$          | 8            | 3114.0516     | -32.9239           | 0.0201             |
|          | Max. Torsion        | 12           | 0.7638        | -16.5698           | -29.0358           |
|          | Min. Vert           | 19           | 30.3596       | 28.4487            | -16.7061           |
|          | Min. H <sub>x</sub> | 9            | 30.3596       | -32.9239           | 0.0201             |
|          | Min. H <sub>z</sub> | 15           | 30.3596       | -0.0154            | -33.2347           |
|          | Min. M <sub>x</sub> | 14           | -3142.5861    | -0.0154            | -33.2347           |
|          | Min. $M_z$          | 20           | -3111.4086    | 32.9239            | 0.0509             |
|          | Min. Torsion        | 22           | -0.8560       | 28.6471            | 16.7491            |

# **Tower Mast Reaction Summary**

| Load<br>Combination                   | Vertical | Shear <sub>x</sub> | Shearz   | Overturning<br>Moment, M <sub>x</sub> | Overturning<br>Moment, Mz | Torque  |
|---------------------------------------|----------|--------------------|----------|---------------------------------------|---------------------------|---------|
|                                       | K        | K                  | K        | kip-ft                                | kip-ft                    | kip-ft  |
| Dead Only                             | 33.7329  | 0.0000             | 0.0000   | -0.9298                               | -1.0447                   | 0.0000  |
| 1.2 Dead+1.0 Wind 0 deg -<br>No Ice   | 40.4795  | -0.0154            | -33.1548 | -3137.6160                            | 0.0850                    | 0.6145  |
| 0.9 Dead+1.0 Wind 0 deg -<br>No Ice   | 30.3596  | -0.0154            | -33.1548 | -3100.6092                            | 0.4165                    | 0.6119  |
| 1.2 Dead+1.0 Wind 30 deg -<br>No Ice  | 40.4795  | 16.4042            | -28.7304 | -2719.0514                            | -1552.3739                | 0.2724  |
| 0.9 Dead+1.0 Wind 30 deg -<br>No Ice  | 30.3596  | 16.4042            | -28.7304 | -2686.9313                            | -1533.8595                | 0.2709  |
| 1.2 Dead+1.0 Wind 60 deg -<br>No Ice  | 40.4795  | 28.4715            | -16.6300 | -1574.2527                            | -2693.2224                | -0.2408 |
| 0.9 Dead+1.0 Wind 60 deg -<br>No Ice  | 30.3596  | 28.4715            | -16.6300 | -1555.5392                            | -2661.3506                | -0.2407 |
| 1.2 Dead+1.0 Wind 90 deg -<br>No Ice  | 40.4795  | 32.9239            | -0.0201  | -3.0054                               | -3114.0516                | -0.7114 |
| 0.9 Dead+1.0 Wind 90 deg -<br>No Ice  | 30.3596  | 32.9239            | -0.0201  | -2.6841                               | -3077.2522                | -0.7096 |
| 1.2 Dead+1.0 Wind 120 deg - No Ice    | 40.4795  | 28.6242            | 16.8252  | 1587.9826                             | -2704.0818                | -0.7397 |
| 0.9 Dead+1.0 Wind 120 deg<br>- No Ice | 30.3596  | 28.6242            | 16.8252  | 1569.7233                             | -2672.1211                | -0.7365 |
| 1.2 Dead+1.0 Wind 150 deg<br>- No Ice | 40.4795  | 16.5698            | 29.0358  | 2740.7775                             | -1565.2767                | -0.7638 |
| 0.9 Dead+1.0 Wind 150 deg<br>- No Ice | 30.3596  | 16.5698            | 29.0358  | 2709.0450                             | -1546.6461                | -0.7604 |

| Load<br>Combination                                   | Vertical           | Shear <sub>x</sub> | Shear <sub>z</sub> | Overturning<br>Moment, M <sub>x</sub> | Overturning<br>Moment, Mz | Torque            |
|-------------------------------------------------------|--------------------|--------------------|--------------------|---------------------------------------|---------------------------|-------------------|
|                                                       | K                  | K                  | K                  | kip-ft                                | kip-ft                    | kip-ft            |
| 1.2 Dead+1.0 Wind 180 deg<br>- No Ice                 | 40.4795            | 0.0154             | 33.2347            | 3142.5861                             | -2.7300                   | -0.6151           |
| - No Ice<br>0.9 Dead+1.0 Wind 180 deg<br>- No Ice     | 30.3596            | 0.0154             | 33.2347            | 3106.0919                             | -2.3697                   | -0.6126           |
| 1.2 Dead+1.0 Wind 210 deg<br>- No Ice                 | 40.4795            | -16.4232           | 28.8128            | 2724.2379                             | 1551.4569                 | -0.3014           |
| 0.9 Dead+1.0 Wind 210 deg<br>- No Ice                 | 30.3596            | -16.4232           | 28.8128            | 2692.6474                             | 1533.6169                 | -0.3003           |
| 1.2 Dead+1.0 Wind 240 deg<br>- No Ice                 | 40.4795            | -28.4487           | 16.7061            | 1578.8798                             | 2688.4845                 | 0.1251            |
| 0.9 Dead+1.0 Wind 240 deg<br>- No Ice                 | 30.3596            | -28.4487           | 16.7061            | 1560.7007                             | 2657.3258                 | 0.1245            |
| 1.2 Dead+1.0 Wind 270 deg<br>- No Ice                 | 40.4795            | -32.9239           | -0.0509            | -5.8205                               | 3111.4086                 | 0.7121            |
| 0.9 Dead+1.0 Wind 270 deg<br>- No Ice                 | 30.3596            | -32.9239           | -0.0509            | -5.4703                               | 3075.3003                 | 0.7103            |
| 1.2 Dead+1.0 Wind 300 deg<br>- No Ice                 | 40.4795            | -28.6471           | -16.7491           | -1583.3577                            | 2703.5329                 | 0.8560            |
| 0.9 Dead+1.0 Wind 300 deg<br>- No Ice                 | 30.3596            | -28.6471           | -16.7491           | -1564.5632                            | 2672.2415                 | 0.8533            |
| 1.2 Dead+1.0 Wind 330 deg<br>- No Ice                 | 40.4795            | -16.5508           | -28.9534           | -2735.5933                            | 1560.9049                 | 0.7922            |
| 0.9 Dead+1.0 Wind 330 deg<br>- No Ice                 | 30.3596            | -16.5508           | -28.9534           | -2703.3304                            | 1542.9832                 | 0.7891            |
| 1.2 Dead+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 0      | 86.1429<br>86.1429 | 0.0000<br>-0.0029  | -0.0000<br>-8.5844 | -6.0807<br>-865.4655                  | -4.9854<br>-4.7906        | 0.0000<br>0.1405  |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 30          | 86.1429            | 4.2658             | -7.4376            | -750.7269                             | -432.0858                 | 0.0510            |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 60          | 86.1429            | 7.4000             | -4.3025            | -436.8708                             | -745.7952                 | -0.0706           |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 90          | 86.1429            | 8.5543             | -0.0040            | -6.5839                               | -861.2491                 | -0.1762           |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 120         | 86.1429            | 7.3985             | 4.3225             | 426.4523                              | -745.6456                 | -0.1702           |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 150         | 86.1429            | 4.2746             | 7.4567             | 740.2196                              | -432.9518                 | -0.1831           |
| deg+1.0 Ice+1.0 Temp<br>1.2 Dead+1.0 Wind 180         | 86.1429            | 0.0029             | 8.6001             | 854.6222                              | -5.3676                   | -0.1651           |
| deg+1.0 Ice+1.0 Temp                                  |                    |                    | 7.4538             |                                       |                           |                   |
| 1.2 Dead+1.0 Wind 210<br>deg+1.0 Ice+1.0 Temp         | 86.1429            | -4.2695            |                    | 739.9322                              | 422.2938                  | -0.0602           |
| 1.2 Dead+1.0 Wind 240<br>deg+1.0 Ice+1.0 Temp         | 86.1429            | -7.3955            | 4.3174             | 425.9536                              | 735.2000                  | 0.0436            |
| 1.2 Dead+1.0 Wind 270<br>deg+1.0 Ice+1.0 Temp         | 86.1429            | -8.5543            | -0.0099            | -7.1609                               | 851.0932                  | 0.1763            |
| 1.2 Dead+1.0 Wind 300<br>deg+1.0 Ice+1.0 Temp         | 86.1429            | -7.4029            | -4.3076            | -437.3715                             | 735.9264                  | 0.2112            |
| 1.2 Dead+1.0 Wind 330<br>deg+1.0 Ice+1.0 Temp         | 86.1429            | -4.2709            | -7.4405            | -751.0164                             | 422.4271                  | 0.1925            |
| Dead+Wind 0 deg - Service                             | 33.7329            | -0.0033            | -7.1945            | -677.5810                             | -0.7952                   | 0.1347            |
| Dead+Wind 30 deg - Service                            | 33.7329            | 3.5597<br>6.1782   | -6.2344<br>-3.6087 | -587.2773                             | -335.6937                 | 0.0578<br>-0.0549 |
| Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service | 33.7329<br>33.7329 | 7.1444             | -0.0044            | -340.3151<br>-1.3678                  | -581.7910<br>-672.5680    | -0.0549           |
| Dead+Wind 120 deg - Service  Dead+Wind 120 deg -      | 33.7329            | 6.2114             | 3.6510             | 341.8468                              | -584.1456                 | -0.1600           |
| Service<br>Dead+Wind 150 deg -                        | 33.7329            | 3.5956             | 6.3007             | 590.5484                              | -338.4896                 | -0.1656           |
| Service<br>Dead+Wind 180 deg -                        | 33.7329            | 0.0033             | 7.2118             | 677.2171                              | -1.4028                   | -0.1347           |
| Service<br>Dead+Wind 210 deg -                        | 33.7329            | -3.5638            | 6.2523             | 586.9636                              | 333.8712                  | -0.0678           |
| Service<br>Dead+Wind 240 deg -                        | 33.7329            | -6.1733            | 3.6252             | 339.8764                              | 579.1423                  | 0.0253            |
| Service<br>Dead+Wind 270 deg -                        | 33.7329            | -7.1444            | -0.0110            | -1.9754                               | 670.3701                  | 0.1565            |
| Service<br>Dead+Wind 300 deg -                        | 33.7329            | -6.2163            | -3.6345            | -342.2870                             | 582.4010                  | 0.1897            |
| Service<br>Dead+Wind 330 deg -                        | 33.7329            | -3.5915            | -6.2828            | -590.8597                             | 335.9148                  | 0.1755            |

| Solution | <b>Summary</b> |
|----------|----------------|
|----------|----------------|

|          | Sun                  | n of Applied Force   | es                 |                  | Sum of Reactio     | ns               |          |
|----------|----------------------|----------------------|--------------------|------------------|--------------------|------------------|----------|
| Load     | PX                   | PY                   | PZ                 | PX               | PY                 | PZ               | % Error  |
| Comb.    | K                    | K                    | K                  | K                | K                  | ĸ                | , o = o. |
| 1        | 0.0000               | -33.7329             | 0.0000             | 0.0000           | 33.7329            | 0.0000           | 0.000%   |
| 2        | -0.0154              | -40.4795             | -33.1548           | 0.0154           | 40.4795            | 33.1548          | 0.000%   |
| 3        | -0.0154              | -30.3596             | -33.1548           | 0.0154           | 30.3596            | 33.1548          | 0.000%   |
| 4        | 16.4042              | -40.4795             | -28.7304           | -16.4042         | 40.4795            | 28.7304          | 0.000%   |
| 5        | 16.4042              | -30.3596             | -28.7304           | -16.4042         | 30.3596            | 28.7304          | 0.000%   |
| 6        | 28.4715              | -40.4795             | -16.6300           | -28.4715         | 40.4795            | 16.6300          | 0.000%   |
| 7        | 28.4715              | -30.3596             | -16.6300           | -28.4715         | 30.3596            | 16.6300          | 0.000%   |
| 8        | 32.9239              | -40.4795             | -0.0201            | -32.9239         | 40.4795            | 0.0201           | 0.000%   |
| 9        | 32.9239              | -30.3596             | -0.0201            | -32.9239         | 30.3596            | 0.0201           | 0.000%   |
| 10       | 28.6242              | -40.4795             | 16.8252            | -28.6242         | 40.4795            | -16.8252         | 0.000%   |
| 11       | 28.6242              | -30.3596             | 16.8252            | -28.6242         | 30.3596            | -16.8252         | 0.000%   |
| 12       | 16.5698              | -40.4795             | 29.0358            | -16.5698         | 40.4795            | -29.0358         | 0.000%   |
| 13       | 16.5698              | -30.3596             | 29.0358            | -16.5698         | 30.3596            | -29.0358         | 0.000%   |
| 14       | 0.0154               | -40.4795             | 33.2347            | -0.0154          | 40.4795            | -33.2347         | 0.000%   |
| 15       | 0.0154               | -30.3596             | 33.2347            | -0.0154          | 30.3596            | -33.2347         | 0.000%   |
| 16       | -16.4232             | -40.4795             | 28.8128            | 16.4232          | 40.4795            | -28.8128         | 0.000%   |
| 17       | -16.4232             | -30.3596             | 28.8128            | 16.4232          | 30.3596            | -28.8128         | 0.000%   |
| 18       | -28.4487             | -40.4795             | 16.7061            | 28.4487          | 40.4795            | -16.7061         | 0.000%   |
| 19       | -28.4487             | -30.3596             | 16.7061            | 28.4487          | 30.3596            | -16.7061         | 0.000%   |
| 20       | -32.9239             | -30.3390<br>-40.4795 | -0.0509            | 32.9239          | 40.4795            | 0.0509           | 0.000%   |
| 21       | -32.9239             | -30.3596             | -0.0509            | 32.9239          | 30.3596            | 0.0509           | 0.000%   |
| 22       | -32.9239<br>-28.6471 | -30.3390<br>-40.4795 | -16.7491           | 28.6471          | 40.4795            | 16.7491          | 0.000%   |
| 23       | -28.6471             | -30.3596             | -16.7491           | 28.6471          | 30.3596            | 16.7491          | 0.000%   |
| 24       | -16.5508             | -40.4795             | -28.9534           | 16.5508          | 40.4795            | 28.9534          | 0.000%   |
| 25       | -16.5508             | -30.3596             | -28.9534           | 16.5508          | 30.3596            | 28.9534          | 0.000%   |
| 26       | 0.0000               | -86.1429             | 0.0000             | -0.0000          | 86.1429            | 0.0000           | 0.000%   |
| 27       | -0.0029              | -86.1429             | -8.5841            | 0.0029           | 86.1429            | 8.5844           | 0.000%   |
| 28       | 4.2658               | -86.1429             | -7.4375            | -4.2658          | 86.1429            | 7.4376           | 0.000%   |
| 29       | 7.4000               | -86.1429             | -4.3025            | -7.4000          | 86.1429            | 4.3025           | 0.000%   |
| 30       | 8.5541               | -86.1429             | -0.0040            | -8.5543          | 86.1429            | 0.0040           | 0.000%   |
| 31       | 7.3984               | -86.1429             | 4.3225             | -7.3985          | 86.1429            | -4.3225          | 0.000%   |
| 32       | 4.2746               | -86.1429             | 7.4567             | -4.2746          | 86.1429            | -7.4567          | 0.000%   |
| 33       | 0.0029               | -86.1429             | 8.5998             | -0.0029          | 86.1429            | -8.6001          | 0.000%   |
| 34       | -4.2695              | -86.1429             | 7.4537             | 4.2695           | 86.1429            | -7.4538          | 0.000%   |
| 35       | -7.3955              | -86.1429             | 4.3174             | 7.3955           | 86.1429            | -4.3174          | 0.000%   |
| 36       | -8.5541              | -86.1429             | -0.0099            | 8.5543           | 86.1429            | 0.0099           | 0.000%   |
| 37       | -7.4029              | -86.1429             | -4.3076            | 7.4029           | 86.1429            | 4.3076           | 0.000%   |
| 38       | -4.2709              | -86.1429             | -7.4405            | 4.2709           | 86.1429            | 7.4405           | 0.000%   |
| 39       | -0.0033              | -33.7329             | -7.1945            | 0.0033           | 33.7329            | 7.1945           | 0.000%   |
| 40       | 3.5597               | -33.7329             | -6.2344            | -3.5597          | 33.7329            | 6.2344           | 0.000%   |
| 41       | 6.1782               | -33.7329             | -3.6087            | -6.1782          | 33.7329            | 3.6087           | 0.000%   |
| 42       | 7.1444               | -33.7329             | -0.0044            | -7.1444          | 33.7329            | 0.0044           | 0.000%   |
| 43       | 6.2114               | -33.7329             | 3.6510             | -6.2114          | 33.7329            | -3.6510          | 0.000%   |
| 44       | 3.5956               | -33.7329             | 6.3007             | -3.5956          | 33.7329            | -6.3007          | 0.000%   |
| 45       | 0.0033               | -33.7329             | 7.2118             | -0.0033          | 33.7329            | -7.2118          | 0.000%   |
| 46       | -3.5638              | -33.7329             | 6.2523             | 3.5638           | 33.7329            | -6.2523          | 0.000%   |
| 47       | -6.1733              | -33.7329             | 3.6252             | 6.1733           | 33.7329            | -3.6252          | 0.000%   |
| 48       | -7.1444              | -33.7329             | -0.0110            | 7.1444           | 33.7329            | 0.0110           | 0.000%   |
| 49       | -6.2163              | -33.7329             | -3.6345            | 6.2163           | 33.7329            | 3.6345           | 0.000%   |
|          |                      |                      |                    |                  |                    |                  |          |
| 49<br>50 | -6.2163<br>-3.5915   | -33.7329<br>-33.7329 | -3.6345<br>-6.2828 | 6.2163<br>3.5915 | 33.7329<br>33.7329 | 3.6345<br>6.2828 | 0.000%   |

# **Non-Linear Convergence Results**

| Load<br>Combination | Converged? | Number<br>of Cycles | Displacement<br>Tolerance | Force<br>Tolerance |
|---------------------|------------|---------------------|---------------------------|--------------------|
| 1                   | Yes        | 4                   | 0.0000001                 | 0.0000001          |
| 2                   | Yes        | 4                   | 0.0000001                 | 0.00090379         |
| 3                   | Yes        | 4                   | 0.0000001                 | 0.00046390         |
| 4                   | Yes        | 6                   | 0.0000001                 | 0.00016808         |

| 5  | Yes | 6 | 0.0000001 | 0.00004908 |
|----|-----|---|-----------|------------|
| 6  | Yes | 6 | 0.0000001 | 0.00016885 |
| 7  | Yes | 6 | 0.0000001 | 0.00004933 |
| 8  | Yes | 5 | 0.0000001 | 0.00006414 |
| 9  | Yes | 4 | 0.0000001 | 0.00073211 |
| 10 | Yes | 6 | 0.0000001 | 0.00016700 |
| 11 | Yes | 6 | 0.0000001 | 0.00004854 |
| 12 | Yes | 6 | 0.0000001 | 0.00017031 |
| 13 | Yes | 6 | 0.0000001 | 0.00004968 |
| 14 | Yes | 5 | 0.0000001 | 0.00004762 |
| 15 | Yes | 4 | 0.0000001 | 0.00053648 |
| 16 | Yes | 6 | 0.0000001 | 0.00016704 |
| 17 | Yes | 6 | 0.0000001 | 0.00004874 |
| 18 | Yes | 6 | 0.0000001 | 0.00016736 |
| 19 | Yes | 6 | 0.0000001 | 0.00004884 |
| 20 | Yes | 5 | 0.0000001 | 0.00007080 |
| 21 | Yes | 4 | 0.0000001 | 0.00080635 |
| 22 | Yes | 6 | 0.0000001 | 0.00017046 |
| 23 | Yes | 6 | 0.0000001 | 0.00004981 |
| 24 | Yes | 6 | 0.0000001 | 0.00016637 |
| 25 | Yes | 6 | 0.0000001 | 0.00004838 |
| 26 | Yes | 4 | 0.0000001 | 0.00006349 |
| 27 | Yes | 5 | 0.0000001 | 0.00087864 |
| 28 | Yes | 6 | 0.0000001 | 0.00027770 |
| 29 | Yes | 6 | 0.0000001 | 0.00027902 |
| 30 | Yes | 5 | 0.0000001 | 0.00087704 |
| 31 | Yes | 6 | 0.0000001 | 0.00026912 |
| 32 | Yes | 6 | 0.0000001 | 0.00027428 |
| 33 | Yes | 5 | 0.0000001 | 0.00086624 |
| 34 | Yes | 6 | 0.0000001 | 0.00026465 |
| 35 | Yes | 6 | 0.0000001 | 0.00026430 |
| 36 | Yes | 5 | 0.0000001 | 0.00086377 |
| 37 | Yes | 6 | 0.0000001 | 0.00027464 |
| 38 | Yes | 6 | 0.0000001 | 0.00026854 |
| 39 | Yes | 4 | 0.0000001 | 0.00007770 |
| 40 | Yes | 4 | 0.0000001 | 0.00098036 |
| 41 | Yes | 4 | 0.0000001 | 0.00098905 |
| 42 | Yes | 4 | 0.0000001 | 0.00009147 |
| 43 | Yes | 4 | 0.0000001 | 0.00095098 |
| 44 | Yes | 5 | 0.0000001 | 0.00005083 |
| 45 | Yes | 4 | 0.0000001 | 0.00007862 |
| 46 | Yes | 4 | 0.0000001 | 0.00095320 |
| 47 | Yes | 4 | 0.0000001 | 0.00095263 |
| 48 | Yes | 4 | 0.0000001 | 0.00009227 |
| 49 | Yes | 5 | 0.0000001 | 0.00005072 |
| 50 | Yes | 4 | 0.0000001 | 0.00094492 |

## **Maximum Tower Deflections - Service Wind**

| Section | Elevation  | Horz.      | Gov.  | Tilt   | Twist  |
|---------|------------|------------|-------|--------|--------|
| No.     |            | Deflection | Load  |        |        |
|         | ft         | in         | Comb. | ۰      | ٥      |
| L1      | 119 - 95   | 19.4053    | 44    | 1.4718 | 0.0012 |
| L2      | 99 - 47.25 | 13.4758    | 44    | 1.3223 | 0.0011 |
| L3      | 52.75 - 0  | 3.6165     | 44    | 0.6461 | 0.0003 |

## Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance                              | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|-------------------------------------------|--------------|------------|--------|--------|------------------------|
| ft        |                                           | Comb.        | in         | ۰      | ۰      | ft                     |
| 121.0000  | RA21.7770.00 w/ Mount Pipe                | 44           | 19.4053    | 1.4718 | 0.0012 | 19571                  |
| 110.0000  | (2) LPA-80063-4CF-EDIN-5 w/<br>Mount Pipe | 44           | 16.6786    | 1.4136 | 0.0011 | 10872                  |

| Elevation | Appurtenance                               | Gov.          | Deflection | Tilt   | Twist  | Radius of       |
|-----------|--------------------------------------------|---------------|------------|--------|--------|-----------------|
| ft        |                                            | Load<br>Comb. | in         | ٥      | ۰      | Curvature<br>ft |
| 98.0000   | AIR 32 B2A B66AA_T-MOBILE<br>w/ Mount Pipe | 44            | 13.1968    | 1.3121 | 0.0011 | 4914            |
| 88.0000   | VHLP2.5-18                                 | 44            | 10.5479    | 1.1919 | 0.0009 | 4326            |
| 86.0000   | NNVV-65B-R4 w/ Mount Pipe                  | 44            | 10.0504    | 1.1645 | 0.0009 | 4237            |

## **Maximum Tower Deflections - Design Wind**

| Section<br>No. | Elevation  | Horz.<br>Deflection | Gov.<br>Load | Tilt   | Twist  |
|----------------|------------|---------------------|--------------|--------|--------|
|                | ft         | in                  | Comb.        | ۰      | ۰      |
| L1             | 119 - 95   | 89.8874             | 12           | 6.8326 | 0.0057 |
| L2             | 99 - 47.25 | 62.4584             | 12           | 6.1398 | 0.0051 |
| L3             | 52.75 - 0  | 16.7771             | 12           | 2.9994 | 0.0015 |

# Critical Deflections and Radius of Curvature - Design Wind

| Elevation | Appurtenance                | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|-----------------------------|--------------|------------|--------|--------|------------------------|
| ft        |                             | Comb.        | in         | ۰      | •      | ft                     |
| 121.0000  | RA21.7770.00 w/ Mount Pipe  | 12           | 89.8874    | 6.8326 | 0.0057 | 4337                   |
| 110.0000  | (2) LPA-80063-4CF-EDIN-5 w/ | 12           | 77.2762    | 6.5631 | 0.0055 | 2408                   |
|           | Mount Pipe                  |              |            |        |        |                        |
| 98.0000   | AIR 32 B2A B66AA_T-MOBILE   | 12           | 61.1673    | 6.0925 | 0.0050 | 1085                   |
|           | w/ Mount Pipe               |              |            |        |        |                        |
| 88.0000   | VHLP2.5-18                  | 12           | 48.9034    | 5.5343 | 0.0044 | 951                    |
| 86.0000   | NNVV-65B-R4 w/ Mount Pipe   | 12           | 46.5991    | 5.4069 | 0.0042 | 930                    |

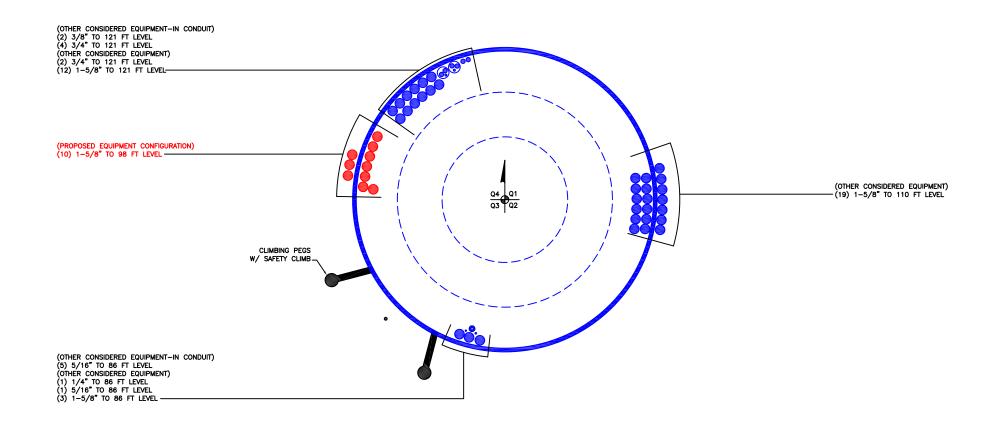
## **Compression Checks**

## Pole Design Data

| Section<br>No. | Elevation      | Size                  | L      | Lu     | KI/r | Α      | Pu       | $\phi P_n$ | Ratio<br>Pu                     |
|----------------|----------------|-----------------------|--------|--------|------|--------|----------|------------|---------------------------------|
|                | ft             |                       | ft     | ft     |      | in²    | K        | K          | <u></u> φ <b>P</b> <sub>n</sub> |
| L1             | 119 - 95 (1)   | TP27.38x21x0.1875     | 24.000 | 0.0000 | 0.0  | 15.550 | -9.3122  | 909.6820   | 0.010                           |
|                |                |                       | 0      |        |      | 1      |          |            |                                 |
| L2             | 95 - 47.25 (2) | TP39.57x25.9417x0.25  | 51.750 | 0.0000 | 0.0  | 30.051 | -25.1228 | 1757.9900  | 0.014                           |
|                |                |                       | 0      |        |      | 1      |          |            |                                 |
| L3             | 47.25 - 0 (3)  | TP51.5x37.6216x0.3125 | 52.750 | 0.0000 | 0.0  | 50.771 | -40.4403 | 2970.1400  | 0.014                           |
|                |                |                       | 0      |        |      | 6      |          |            |                                 |

## **Pole Bending Design Data**

| Section | Elevation      | Size                  | Mux       | φ <b>M</b> <sub>nx</sub> | Ratio                        | Muy    | φ <b>M</b> ny | Ratio                        |
|---------|----------------|-----------------------|-----------|--------------------------|------------------------------|--------|---------------|------------------------------|
| No.     | ft             |                       | kip-ft    | kip-ft                   | $\frac{M_{ux}}{\phi M_{nx}}$ | kip-ft | kip-ft        | $\frac{M_{uy}}{\phi M_{ny}}$ |
| L1      | 119 - 95 (1)   | TP27.38x21x0.1875     | 273.1150  | 552.1708                 | 0.495                        | 0.0000 | 552.1708      | 0.000                        |
| L2      | 95 - 47.25 (2) | TP39.57x25.9417x0.25  | 1492.4250 | 1494.5583                | 0.999                        | 0.0000 | 1494.5583     | 0.000                        |
| L3      | 47.25 - 0 (3)  | TP51.5x37.6216x0.3125 | 3156.2583 | 3291.7833                | 0.959                        | 0.0000 | 3291.7833     | 0.000                        |


|         | Pole Shear Design Data |                       |         |            |            |        |                 |            |
|---------|------------------------|-----------------------|---------|------------|------------|--------|-----------------|------------|
| Section | Elevation              | Size                  | Actual  | $\phi V_n$ | Ratio      | Actual | φΤ <sub>n</sub> | Ratio      |
| No.     |                        |                       | $V_u$   | '          | $V_u$      | $T_u$  |                 | $T_u$      |
|         | ft                     |                       | K       | K          | $\phi V_n$ | kip-ft | kip-ft          | $\phi T_n$ |
| L1      | 119 - 95 (1)           | TP27.38x21x0.1875     | 15.5251 | 272.9050   | 0.057      | 0.0118 | 624.4767        | 0.000      |
| L2      | 95 - 47.25 (2)         | TP39.57x25.9417x0.25  | 29.3856 | 527.3970   | 0.056      | 0.7662 | 1749.1667       | 0.000      |
| L3      | 47.25 - 0 (3)          | TP51.5x37.6216x0.3125 | 33.4785 | 891.0420   | 0.038      | 0.7638 | 3994.3083       | 0.000      |

| Pole Interaction Design Data |                |             |                          |                          |                         |                                 |                 |                  |          |
|------------------------------|----------------|-------------|--------------------------|--------------------------|-------------------------|---------------------------------|-----------------|------------------|----------|
| Section<br>No.               | Elevation      | Ratio<br>Pu | Ratio<br>M <sub>ux</sub> | Ratio<br>Muy             | Ratio<br>V <sub>u</sub> | Ratio<br>T <sub>u</sub>         | Comb.<br>Stress | Allow.<br>Stress | Criteria |
|                              | ft             | $\phi P_n$  | φ <i>M</i> <sub>nx</sub> | φ <i>M</i> <sub>ny</sub> | $\overline{\phi V_n}$   | <u></u> φ <i>T</i> <sub>n</sub> | Ratio           | Ratio            |          |
| L1                           | 119 - 95 (1)   | 0.010       | 0.495                    | 0.000                    | 0.057                   | 0.000                           | 0.508           | 1.050            | 4.8.2    |
| L2                           | 95 - 47.25 (2) | 0.014       | 0.999                    | 0.000                    | 0.056                   | 0.000                           | 1.016           | 1.050            | 4.8.2    |
| L3                           | 47.25 - 0 (3)  | 0.014       | 0.959                    | 0.000                    | 0.038                   | 0.000                           | 0.974           | 1.050            | 4.8.2    |

|                | Section Capacity Table |                   |                       |                     |          |                     |               |              |  |  |
|----------------|------------------------|-------------------|-----------------------|---------------------|----------|---------------------|---------------|--------------|--|--|
| Section<br>No. | Elevation<br>ft        | Component<br>Type | Size                  | Critical<br>Element | P<br>K   | øP <sub>allow</sub> | %<br>Capacity | Pass<br>Fail |  |  |
| L1             | 119 - 95               | Pole              | TP27.38x21x0.1875     | 1                   | -9.3122  | 955.1661            | 48.4          | Pass         |  |  |
| L2             | 95 - 47.25             | Pole              | TP39.57x25.9417x0.25  | 2                   | -25.1228 | 1845.8894           | 96.8          | Pass         |  |  |
| L3             | 47.25 - 0              | Pole              | TP51.5x37.6216x0.3125 | 3                   | -40.4403 | 3118.6469           | 92.7          | Pass         |  |  |
|                |                        |                   |                       |                     |          |                     | Summary       |              |  |  |
|                |                        |                   |                       |                     |          | Pole (L2)           | 96.8          | Pass         |  |  |
|                |                        |                   |                       |                     |          | RATING =            | 96.8          | Pass         |  |  |

# APPENDIX B BASE LEVEL DRAWING





# APPENDIX C ADDITIONAL CALCULATIONS

## **Monopole Base Plate Connection**

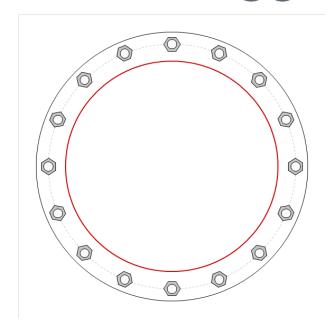


**Stress Rating** 

56.9%

Pass

(Flexural)


Pass

| Site Info |           |                    |
|-----------|-----------|--------------------|
|           | BU#       | 857012             |
|           | Site Name | ILLE SOUTH WASHING |
|           | Order#    | 479830 rev.1       |

| Analysis Considerations |      |  |  |  |  |  |
|-------------------------|------|--|--|--|--|--|
| TIA-222 Revision        | Н    |  |  |  |  |  |
| Grout Considered:       | No   |  |  |  |  |  |
| I <sub>ar</sub> (in)    | 2.25 |  |  |  |  |  |

| Applied Loads      |         |
|--------------------|---------|
| Moment (kip-ft)    | 3156.26 |
| Axial Force (kips) | 40.44   |
| Shear Force (kips) | 33.48   |

51.5" x 0.3125" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)



#### **Connection Properties Analysis Results Anchor Rod Data Anchor Rod Summary** (units of kips, kip-in) (16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 60" BC Pu\_c = 160.25 $\phi$ Pn\_c = 268.39 Vu = 2.09 φVn = 120.77 **Base Plate Data** Mu = n/a φMn = n/a 66" OD x 2" Plate (A572-60; Fy=60 ksi, Fu=75 ksi) **Base Plate Summary** Stiffener Data Max Stress (ksi): 41.06 N/A Allowable Stress (ksi): 54 Stress Rating: 72.4% Pole Data

CCIplate - Version 3.7.2 Analysis Date: 10/16/2020

<sup>\*</sup>TIA-222-H Section 15.5 Applied

## **Drilled Pier Foundation**

BU #: 857012 Site Name: PLAINVILLE SOUTH V Order Number: 479830 rev.1

TIA-222 Revison: Tower Type: Monopole

| Applied Loads      |         |  |  |  |  |  |  |
|--------------------|---------|--|--|--|--|--|--|
| Comp. Upli         |         |  |  |  |  |  |  |
| Moment (kip-ft)    | 3156.26 |  |  |  |  |  |  |
| Axial Force (kips) | 40.48   |  |  |  |  |  |  |
| Shear Force (kips) | 33.43   |  |  |  |  |  |  |

| Material Properties      |    |     |  |  |  |  |  |
|--------------------------|----|-----|--|--|--|--|--|
| Concrete Strength, f'c:  | 4  | ksi |  |  |  |  |  |
| Rebar Strength, Fy:      | 60 | ksi |  |  |  |  |  |
| Tie Yield Strength, Fyt: | 40 | ksi |  |  |  |  |  |

|   | Pier Design Data    |                |       |  |  |  |  |  |
|---|---------------------|----------------|-------|--|--|--|--|--|
|   | Depth               | 37             | ft    |  |  |  |  |  |
|   | Ext. Above Grade    | 1              | ft    |  |  |  |  |  |
|   | Pier Se             | ction 1        |       |  |  |  |  |  |
|   | From 1' above grade | to 37' below g | grade |  |  |  |  |  |
|   | Pier Diameter       | 7              | ft    |  |  |  |  |  |
| - | Rebar Quantity      | 18             |       |  |  |  |  |  |
|   | Rebar Size          | 11             |       |  |  |  |  |  |
|   | Clear Cover to Ties | 4              | in    |  |  |  |  |  |
|   | Tie Size            | 5              |       |  |  |  |  |  |
| _ | Tie Spacing         |                | in    |  |  |  |  |  |

Rebar & Pier Options Embedded Pole Inputs **Belled Pier Inputs** 

| Analysis Results               |             |        |  |  |  |  |
|--------------------------------|-------------|--------|--|--|--|--|
| Soil Lateral Check             | Compression | Uplift |  |  |  |  |
| D <sub>v=0</sub> (ft from TOC) | 8.76        | -      |  |  |  |  |
| Soil Safety Factor             | 5.09        | -      |  |  |  |  |
| Max Moment (kip-ft)            | 3397.60     | -      |  |  |  |  |
| Rating*                        | 24.9%       | -      |  |  |  |  |
| Soil Vertical Check            | Compression | Uplift |  |  |  |  |
| Skin Friction (kips)           | 314.36      | -      |  |  |  |  |
| End Bearing (kips)             | 235.67      | -      |  |  |  |  |
| Weight of Concrete (kips)      | 168.13      | -      |  |  |  |  |
| Total Capacity (kips)          | 550.03      | -      |  |  |  |  |
| Axial (kips)                   | 208.61      | -      |  |  |  |  |
| Rating*                        | 36.1%       | -      |  |  |  |  |
| Reinforced Concrete Flexure    | Compression | Uplift |  |  |  |  |
| Critical Depth (ft from TOC)   | 8.57        | -      |  |  |  |  |
| Critical Moment (kip-ft)       | 3397.42     | -      |  |  |  |  |
| Critical Moment Capacity       | 4661.20     | -      |  |  |  |  |
| Rating*                        | 69.4%       | -      |  |  |  |  |
| Reinforced Concrete Shear      | Compression | Uplift |  |  |  |  |
| Critical Depth (ft from TOC)   | 25.95       | -      |  |  |  |  |
| Critical Shear (kip)           | 244.30      | -      |  |  |  |  |
| Critical Shear Capacity        | 536.96      | -      |  |  |  |  |
| Rating*                        | 43.3%       | -      |  |  |  |  |
|                                |             |        |  |  |  |  |

| Soil Interaction Rating*      | 36.1% |
|-------------------------------|-------|
| Structural Foundation Rating* | 69.4% |

<sup>\*</sup>Rating per TIA-222-H Section 15.5

| Analysis Results             |             |        |  |  |  |  |
|------------------------------|-------------|--------|--|--|--|--|
| Soil Lateral Check           | Compression | Uplift |  |  |  |  |
| $D_{v=0}$ (ft from TOC)      | 8.76        | -      |  |  |  |  |
| Soil Safety Factor           | 5.09        | -      |  |  |  |  |
| Max Moment (kip-ft)          | 3397.60     | -      |  |  |  |  |
| Rating*                      | 24.9%       | -      |  |  |  |  |
| Soil Vertical Check          | Compression | Uplift |  |  |  |  |
| Skin Friction (kips)         | 314.36      | -      |  |  |  |  |
| End Bearing (kips)           | 235.67      | -      |  |  |  |  |
| Weight of Concrete (kips)    | 168.13      | -      |  |  |  |  |
| Total Capacity (kips)        | 550.03      | -      |  |  |  |  |
| Axial (kips)                 | 208.61      | -      |  |  |  |  |
| Rating*                      | 36.1%       | -      |  |  |  |  |
| Reinforced Concrete Flexure  | Compression | Uplift |  |  |  |  |
| Critical Depth (ft from TOC) | 8.57        | -      |  |  |  |  |
| Critical Moment (kip-ft)     | 3397.42     | -      |  |  |  |  |
| Critical Moment Capacity     | 4661.20     | -      |  |  |  |  |
| Rating*                      | 69.4%       | -      |  |  |  |  |
| Reinforced Concrete Shear    | Compression | Uplift |  |  |  |  |
| Critical Depth (ft from TOC) | 25.95       | -      |  |  |  |  |
| Critical Shear (kip)         | 244.30      | -      |  |  |  |  |
| Critical Shear Capacity      | 536.96      | -      |  |  |  |  |
| Pating*                      | 12 20/      |        |  |  |  |  |

**Check Limitation** Apply TIA-222-H Section 15.5:

**Shear Design Options** Check Shear along Depth of Pier: Utilize Shear-Friction Methodology:

✓

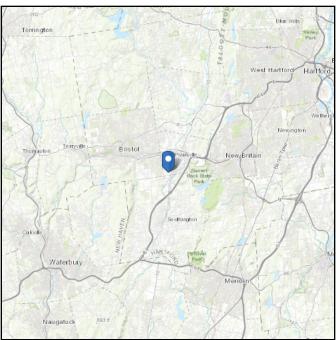
Go to Soil Calculations

|          | Soil Profile |                |                   |                            |                             |                   |                                   |                                                       |                                                         |                                                     |                  |          |                   |              |
|----------|--------------|----------------|-------------------|----------------------------|-----------------------------|-------------------|-----------------------------------|-------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|------------------|----------|-------------------|--------------|
| Groundwa | iter Depth   | 4              |                   |                            |                             | # of Layers       | 7                                 |                                                       |                                                         |                                                     |                  |          |                   |              |
| Layer    | Top<br>(ft)  | Bottom<br>(ft) | Thickness<br>(ft) | Y <sub>soil</sub><br>(pcf) | Y <sub>concrete</sub> (pcf) | Cohesion<br>(ksf) | Angle of<br>Friction<br>(degrees) | Calculated<br>Ultimate Skin<br>Friction Comp<br>(ksf) | Calculated<br>Ultimate Skin<br>Friction Uplift<br>(ksf) | Ultimate Skin<br>Friction Comp<br>Override<br>(ksf) | I IIItimate Skin | Canacity | SPT Blow<br>Count | Soil Type    |
| 1        | 0            | 3.5            | 3.5               | 117.4                      | 150                         | 0                 | 0                                 | 0.000                                                 | 0.000                                                   | 0.00                                                | 0.00             |          |                   | Cohesionless |
| 2        | 3.5          | 4              | 0.5               | 117.4                      | 150                         | 0                 | 33                                | 0.000                                                 | 0.000                                                   | 0.32                                                | 0.32             |          |                   | Cohesionless |
| 3        | 4            | 13             | 9                 | 55                         | 87.6                        | 0                 | 33                                | 0.000                                                 | 0.000                                                   | 0.32                                                | 0.32             |          |                   | Cohesionless |
| 4        | 13           | 15             | 2                 | 45                         | 87.6                        | 0                 | 28                                | 0.000                                                 | 0.000                                                   | 0.50                                                | 0.50             |          |                   | Cohesionless |
| 5        | 15           | 19             | 4                 | 45                         | 87.6                        | 0                 | 28                                | 0.000                                                 | 0.000                                                   | 0.56                                                | 0.56             |          |                   | Cohesionless |
| 6        | 19           | 23             | 4                 | 55                         | 87.6                        | 0                 | 33                                | 0.000                                                 | 0.000                                                   | 0.64                                                | 0.64             |          |                   | Cohesionless |
| 7        | 23           | 37             | 14                | 40                         | 87.6                        | 0                 | 28                                | 0.00                                                  | 0.00                                                    | 0.73                                                | 0.73             | 8.165    |                   | Cohesionless |





#### Address:


No Address at This Location

# **ASCE 7 Hazards Report**

Standard: ASCE/SEI 7-10 Elevation: 181.15 ft (NAVD 88)

Risk Category: || Latitude: 41.653064 Soil Class: D - Stiff Soil Longitude: -72.876917





## Wind

#### Results:

Wind Speed: 121 Vmph
10-year MRI 76 Vmph
25-year MRI 86 Vmph
50-year MRI 92 Vmph
100-year MRI 99 Vmph

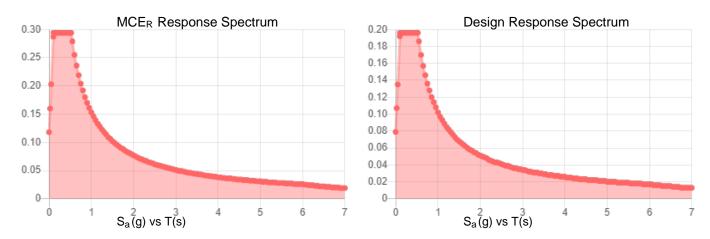
Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of

March 12, 2014

Date Accessed: Wed Oct 14 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.



## Seismic

| Site Soil Class:<br>Results: | D - Stiff Soil |                    |       |  |
|------------------------------|----------------|--------------------|-------|--|
| S <sub>S</sub> :             | 0.184          | S <sub>DS</sub> :  | 0.196 |  |
| $S_1$ :                      | 0.064          | S <sub>D1</sub> :  | 0.102 |  |
| F <sub>a</sub> :             | 1.6            | $T_L$ :            | 6     |  |
| $F_{v}$ :                    | 2.4            | PGA:               | 0.094 |  |
| $S_{MS}$ :                   | 0.294          | PGA <sub>M</sub> : | 0.15  |  |
| S <sub>M1</sub> :            | 0.153          | F <sub>PGA</sub> : | 1.6   |  |
|                              |                | 1 :                | 1     |  |

## Seismic Design Category B



Data Accessed: Wed Oct 14 2020

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.



#### **Ice**

Results:

Ice Thickness:1.00 in.Concurrent Temperature:5 F

Gust Speed: 50 mph

**Data Source:** Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Oct 14 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

# Exhibit E

**Mount Analysis** 



Date: October 13, 2020

Darcy Tarr Crown Castle 6325 Ardrey Kell Road

Charlotte, NC 28277

Paul J Ford and Company 250 E. Broad Street, Suite 600 Columbus, OH 43215

614.221.6679

Subject: Mount Analysis Report

Carrier Designation: T-Mobile Equipment Change-out

Carrier Site Number: CT11378G
Carrier Site Name: CT378/ATT FT
Plainville2

Crown Castle Designation: Crown Castle BU Number: 857012

Crown Castle Site Name: PLAINVILLE SOUTH WASHINGTON ST

Crown Castle JDE Job Number:559287Crown Castle Purchase Order Number:1576211Crown Castle Order Number:479830 Rev. 1

Engineering Firm Designation: Paul J Ford and Company Project Number: A37520-2224.001.7190

Site Data: 335 South Washington Street, Plainville, Hartford County, CT 06062

Latitude 41.653064°, Longitude -72.876917°

Structure Information: Tower Height & Type: 119 Foot Monopole

Mount Elevation: 98 Foot

Mount Type: (3)-Sector 13.3 Foot Platform

Dear Darcy Tarr,

Paul J Ford and Company is pleased to submit this "Mount Analysis Report" to determine the structural integrity of the T-Mobile antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

13.3' Platform SUFFICIENT\*

\*The mount has sufficient capacity once the modifications, as described in Section 4.1 Recommendations of this report, are completed.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Respectfully submitted by:

Angela Sage, E.I. Structural Designer asage@pauliford.com

AMI

Dustin T. Kline 2020.10.15 No. 30301 2:02:26-04'00'

#### **TABLE OF CONTENTS**

## 1) INTRODUCTION

## 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

## 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

## 4) ANALYSIS RESULTS

Table 3 - Mount Component Capacity

4.1) Recommendations

## 5) STANDARD CONDITIONS

## 6) APPENDIX A

SOFTWARE INPUT CALCULATIONS

#### 7) APPENDIX B

SOFTWARE ANALYSIS OUTPUT

## 8) APPENDIX C

ADDITIONAL CALCULATIONS

## 1) INTRODUCTION

The existing mount under consideration is a (3)-Sector 13.3' Platform mount, mapped by P-SEC on 4/11/2019.

## 2) ANALYSIS CRITERIA

**TIA-222 Revision:** TIA-222-H **Risk Category:** Ш **Ultimate Wind Speed:** 125 mph **Exposure Category:** С **Topographic Factor at Base:** 1.00 **Topographic Factor at Mount:** 1.00 Ice Thickness: 2.0 in Wind Speed with Ice: 50 mph Seismic S<sub>s</sub>: 0.184 Seismic S<sub>1</sub>: 0.064 **Maintenance Loading Wind Speed:** 30 mph Maintenance Load at Mid/End-Points, Lv: 250 lb Maintenance Load at Mount Pipes, L<sub>m</sub>: 500 lb

**Table 1 - Proposed Equipment Configuration** 

| Mount<br>Centerline<br>(ft) | Antenna<br>Centerline<br>(ft) | Number<br>of<br>Antennas | Antenna<br>Manufacturer | Antenna<br>Model                | Mount /<br>Modification<br>Details |
|-----------------------------|-------------------------------|--------------------------|-------------------------|---------------------------------|------------------------------------|
|                             |                               | 3                        | ERICSSON                | AIR 32 B2A B66AA_T-<br>MOBILE   |                                    |
|                             |                               | 3                        | ERICSSON                | AIR6449 B41_T-MOBILE            |                                    |
|                             |                               | 3                        | RFS<br>CELWAVE          | APXVAARR24_43-U-<br>NA20        | (3)-SECTOR                         |
| 98                          | 100                           | 3                        | ANDREW                  | ONEBASE TWIN DUAL DUPLEX TMA    | 13.3'<br>MOUNT                     |
|                             |                               | 3                        | COMMSCOPE               | SDX1926Q-43                     |                                    |
|                             |                               | 3                        | ERICSSON                | RADIO 4449 B71<br>B85A_T-MOBILE |                                    |
|                             |                               | 3                        | ERICSSON                | RRUS 4415 B25                   |                                    |

#### 3) ANALYSIS PROCEDURE

**Table 2 - Documents Provided** 

| Document                    | Remarks                                            | Reference | Source       |
|-----------------------------|----------------------------------------------------|-----------|--------------|
| Mount Mapping               | P-Sec, 19651-01<br>Dated: 4/11/2019                | 8339499   | CCISites     |
| Previous Mount Modification | FDH, 19BMAH1400 Rev 0<br>Dated: 6/7/2019           | 8459958   | CCISites     |
| Photos                      | Dated: 9/28/2020                                   | -         | CCISites     |
| Order                       | ID: 479830 Rev. 1<br>Dated: 5/24/2019              | -         | CCISites     |
| Radio Frequency Data Sheet  | RFDS ID #: CT11378G Version 8,<br>Dated: 9/23/2020 | -         | Crown Castle |

#### 3.1) Analysis Method

RISA-3D (version 17.0.3), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Paul J. Ford and Company was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision C).

#### 3.2) Assumptions

- 1) The analysis of the existing tower or the effect of the mount attachment to the tower is not within the current scope of work.
- 2) The antenna mounting system was properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications and all bolts are tightened as specified by the manufacturer and AISC requirements.
- 3) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1.
- 4) All member connections have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report. All U-Bolt connections have been properly tightened. This analysis will be required to be revised if the existing conditions in the field differ from those shown in the above referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Steel grades are as follows, unless noted otherwise:

a) Channel, Solid Round, Angle, Plate, Unistrut ASTM A36 (GR 36)
b) Pipe ASTM A53 (GR 35)
c) HSS (Rectangular) ASTM 500 (GR B-46)
d) HSS (Round) ASTM 500 (GR B-42)
e) Threaded Rods ASTM A36 (GR 36)
f) Connection Bolts ASTM A325
g) U-Bolts SAE J429 (GR 2)

- 6) Proposed equipment is to be installed in the locations specified in Appendix A. Any changes to the proposed equipment locations will render this report invalid.
- 7) Mount will be modified in conformance with the proposed modification drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J Ford and Company should be notified to determine the effect on the structural integrity of the mount.

#### 4) ANALYSIS RESULTS

**Table 3- Mount Component Capacity** 

| Notes | Component                 | Elevation (ft) | % Capacity | Pass / Fail |
|-------|---------------------------|----------------|------------|-------------|
| 1,2   | Face Horizontals          |                | 32.1       | Pass        |
| 1,2   | Support Rails             |                | 65.8       | Pass        |
| 1,2   | Grating Support Members   |                | 83.9       | Pass        |
| 1,2   | Standoff Members          | 98             | 27.7       | Pass        |
| 1,2   | Kick-Brace                | 90             | 38.8       | Pass        |
| 1,2   | Corner Plates             |                | 53.3       | Pass        |
| 1,2   | Mount Pipes               |                | 21.4       | Pass        |
| 1,2   | Mount to Tower Connection |                | 31.3       | Pass        |

| Mount Rating (max from all components) = | 83.9% |
|------------------------------------------|-------|
|------------------------------------------|-------|

Notes:

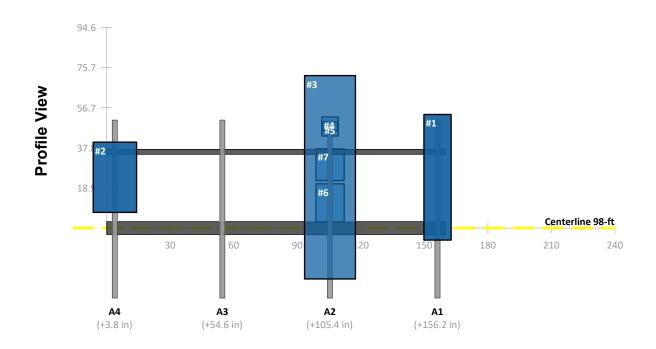
#### 4.1) Recommendations

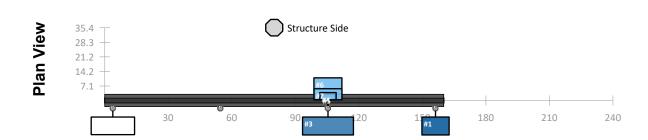
The mount will have sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, modification listed below must be completed.

- All modifications designed by FDH (Project #: 19BMAH1400, dated 6/7/2019) must be installed prior to installation of the proposed loading.
  - Install SitePro1 HRK14 support rail kit or EOR approved equivalent.
  - o Install Sitepro1 PRK-1245 Platform Reinforcing Kit or EOR approved equivalent.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

<sup>1)</sup> See additional documentation in "Appendix B – Software Analysis Output" for calculations supporting the % capacity consumed.


<sup>2)</sup> Rating per TIA-222-H, Section 15.5


# STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING MOUNTS BY PAUL J. FORD AND COMPANY

- 1) It is the responsibility of the client to ensure that the information provided to Paul J. Ford and Company is accurate and complete. Paul J. Ford and Company will rely on the accuracy and completeness of such information in performing or furnishing services under this project.
- 2) If the existing conditions are not as represented on the referenced drawings and/or documents, Paul J. Ford and Company should be contacted immediately to evaluate the significance of the deviation.
- 3) The mount has been analyzed according to the minimum design loads recommended by the Reference Standard. If additional design loads are required, Paul J. Ford and Company should be made aware of this prior to the start of the project.
- 4) The standard of care for all Professional Engineering Services performed or furnished by Paul J. Ford and Company under this project will be the skill and care used by members of the Consultant's profession practicing under similar circumstances at the same time and in the same locality.
- 5) All Services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Paul J. Ford and Company is not responsible for the conclusions, opinions and/or recommendations made by others based on the information supplied herein.

# APPENDIX A SOFTWARE INPUT CALCULATION

### **ALL SECTORS TYPICAL**





| Ref<br>ID | Туре    | Manufacturer | Model                        | Height<br>(in) | Width<br>(in) | Depth<br>(in) | Center<br>Line<br>(ft) | Mount<br>Pipe | Tangential<br>Offset<br>(in) | Normal<br>Offset<br>(in) |
|-----------|---------|--------------|------------------------------|----------------|---------------|---------------|------------------------|---------------|------------------------------|--------------------------|
| #1        | Antenna | ERICSSON     | AIR 32 B2A B66AA_T-MOBILE    | 59.25          | 12.87         | 8.70          | 100.00                 | A1            | 0.00                         | 3.00                     |
| #2        | Antenna | ERICSSON     | AIR6449 B41_T-MOBILE         | 33.11          | 20.51         | 8.54          | 100.00                 | A4            | 0.00                         | 3.00                     |
| #3        | Antenna | RFS CELWAVE  | APXVAARR24_43-U-NA20         | 95.90          | 24.00         | 8.70          | 100.00                 | A2            | 0.00                         | 3.00                     |
| #4        | TME/RRH | ANDREW       | ONEBASE TWIN DUAL DUPLEX TMA | 9.00           | 7.70          | 3.50          | 102.00                 | A2            | 0.00                         | -3.00                    |
| #5        | TME/RRH | COMMSCOPE    | SDX1926Q-43                  | 4.17           | 6.93          | 2.91          | 102.00                 | A2            | 0.00                         | -3.00                    |
| #6        | TME/RRH | ERICSSON     | RADIO 4449 B71 B85A_T-MOBILE | 17.91          | 13.20         | 10.63         | 99.00                  | A2            | 0.00                         | -3.00                    |
| #7        | TME/RRH | ERICSSON     | RRUS 4415 B25                | 14.96          | 13.19         | 5.39          | 100.50                 | A2            | 0.00                         | -3.00                    |

- 1. A 6" tolerance for proposed equipment is acceptable.
- 2. Contractor to verify location of existing equipment prior to installation of proposed equipment. Notify for any deviations.
- 3. Install shall not cause harm to the structure, climbing facility, safety climb, or any system installed on the structure

Date: 10/13/2020

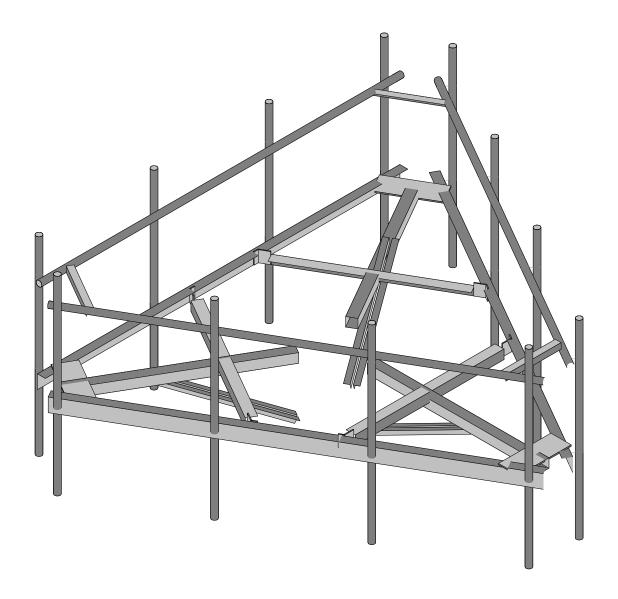
#### Mount Loading per TIA-222-H (Version v3.0 - Effective 9/14/2020)

| Structure & Wind Speed                                                            |                                                                                                                                                    | Topography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Velocity Pressure Coefficients                                                                                                                                                                 | Ice Loading                                                              |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Structure Type =                                                                  | Ultimate Wind Speed = 125 mph loe Wind Speed = 50 mph Service Wind Speed = 30 mph Non-Op Wind Speed = mph Op Wind Speed = mph loe Thickness = 2 in | Risk Category =   II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{aligned} z_{ij} &= & & & & & & & & & & & \\ \sigma' &= & & & & & & & & & \\ K_z &= & & & & & & & & & \\ K_z &= & & & & & & & & & \\ & & & & & & & & $                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                    |
| Analysis Settings  Analysis Scope = Clien Analysis Wind Direction Increment = 30° | File Suffix =Client.r3d                                                                                                                            | Maintenance Point Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K <sub>x</sub> = 1.00 (Section 2.6.6.2.1) K <sub>x</sub> = 0.95 (Section 16.6) K <sub>x</sub> = 0.99 (Section 2.6.8) G <sub>h</sub> = 1.00 (Section 16.6) K <sub>x</sub> = 1.00 (Section 16.6) | W <sub>i</sub> = 15.07 psf (Grating Ice Weight)  Wind Pressure  Override |
| EPA Calculation Method = TIA  Construction Duration =                             |                                                                                                                                                    | Color   Colo | q= 47.58 psf (Section 2.6.11.8)                                                                                                                                                                |                                                                          |

Risa3D Source: G:\TOWER\375\_Crown\_Castle\2020\37520-2224\_857012\_PLAINVILLE SOUTH WASHIN\37520-2224.001.7190\_MA\37520-2224.001.7190.r3d

( 45 Total Populated Members )

#### <u>Antennas</u>


| ltem | Include<br>Loading | Status   | Mounting<br>Location | Manufacturer | Antenna                      | Height<br>(in) | Width<br>(in) | Depth<br>(in) | Flat<br>or<br>Round | Weight<br>(lbs) | Sector /<br>Face | Position | Quantity | Orientation | Use<br>tnxTower<br>C <sub>a</sub> A <sub>a</sub><br>(CFD) | Top/Bottom<br>Mounting<br>Point<br>Spacing | Override<br>Spacing<br>(in) | Max Antenna<br>C/L (ft) | Min Antenna<br>C/L (ft) | Antenna<br>C/L (ft) | Antenna Top<br>Mount Location<br>from Mount Pipe<br>Bottom (in) |       | Top<br>Antenna | Override<br>Bottom<br>Antenna<br>Mounting<br>Location<br>(in) |         | Transverse<br>Wind Force<br>per Antenna<br>(Ibs) |
|------|--------------------|----------|----------------------|--------------|------------------------------|----------------|---------------|---------------|---------------------|-----------------|------------------|----------|----------|-------------|-----------------------------------------------------------|--------------------------------------------|-----------------------------|-------------------------|-------------------------|---------------------|-----------------------------------------------------------------|-------|----------------|---------------------------------------------------------------|---------|--------------------------------------------------|
| 1    | Yes                | Proposed | Mount                | ERICSSON     | AIR 32 B2A B66AA_T-MOBILE    | 59.25          | 12.87         | 8.7           | Flat                | 171.96          | Α                | 1        | 1        | Normal      | No                                                        | 53.25                                      |                             | 100.031                 | 97.469                  | 100                 | 83.63                                                           | 30.38 |                |                                                               | 293.296 | 213.298                                          |
| 2    | Yes                | Proposed | Mount                | ERICSSON     | AIR 32 B2A B66AA_T-MOBILE    | 59.25          | 12.87         | 8.7           | Flat                | 171.96          | В                | 1        | 1        | Normal      | No                                                        | 53.25                                      |                             | 100.031                 | 97.469                  | 100                 | 83.63                                                           | 30.38 |                |                                                               | 293.296 | 213.298                                          |
| 3    | Yes                | Proposed | Mount                | ERICSSON     | AIR 32 B2A B66AA_T-MOBILE    | 59.25          | 12.87         | 8.7           | Flat                | 171.96          | O                | 1        | 1        | Normal      | No                                                        | 53.25                                      |                             | 100.031                 | 97.469                  | 100                 | 83.63                                                           | 30.38 |                |                                                               | 293.296 | 213.298                                          |
| 4    | Yes                | Proposed | Mount                | ERICSSON     | AIR6449 B41_T-MOBILE         | 33.11          | 20.51         | 8.54          | Flat                | 114.63          | Α                | 4        | 1        | Normal      | No                                                        | 27.11                                      |                             | 101.120                 | 96.380                  | 100                 | 70.56                                                           | 43.45 |                |                                                               | 242.315 | 106.041                                          |
| 5    | Yes                | Proposed | Mount                | ERICSSON     | AIR6449 B41_T-MOBILE         | 33.11          | 20.51         | 8.54          | Flat                | 114.63          | В                | 4        | 1        | Normal      | No                                                        | 27.11                                      |                             | 101.120                 | 96.380                  | 100                 | 70.56                                                           | 43.45 |                |                                                               | 242.315 | 106.041                                          |
| 6    | Yes                | Proposed | Mount                | ERICSSON     | AIR6449 B41_T-MOBILE         | 33.11          | 20.51         | 8.54          | Flat                | 114.63          | С                | 4        | 1        | Normal      | No                                                        | 27.11                                      |                             | 101.120                 | 96.380                  | 100                 | 70.56                                                           | 43.45 |                |                                                               | 242.315 | 106.041                                          |
| 7    | Yes                | Proposed | Mount                | RFS CELWAVE  | APXVAARR24_43-U-NA20_CCI CFD | 95.9           | 24            | 8.7           | Flat                | 153.3           | Α                | 2        | 1        | Normal      | Yes                                                       | 89.90                                      | 50                          | 100.167                 | 97.333                  | 100                 | 82.00                                                           | 32.00 |                |                                                               | 628.154 | 227.797                                          |
| 8    | Yes                | Proposed | Mount                | RFS CELWAVE  | APXVAARR24_43-U-NA20_CCI CFD | 95.9           | 24            | 8.7           | Flat                | 153.3           | В                | 2        | 1        | Normal      | Yes                                                       | 89.90                                      | 50                          | 100.167                 | 97.333                  | 100                 | 82.00                                                           | 32.00 |                |                                                               | 628.154 | 227.797                                          |
| 9    | Yes                | Proposed | Mount                | RFS CELWAVE  | APXVAARR24_43-U-NA20_CCI CFD | 95.9           | 24            | 8.7           | Flat                | 153.3           | С                | 2        | 1        | Normal      | Yes                                                       | 89.90                                      | 50                          | 100.167                 | 97.333                  | 100                 | 82.00                                                           | 32.00 |                |                                                               | 628.154 | 227.797                                          |
| 10   | Yes                | Existing | Mount                | ANDREW       | ONEBASE TWIN DUAL DUPLEX TMA | 9              | 7.7           | 3.5           | Flat                | 11              | Α                | 2        | 1        | Normal      | No                                                        | 3.00                                       |                             | 102.125                 | 95.375                  | 102                 | 82.50                                                           | 79.50 |                |                                                               | 24.728  | 11.270                                           |
| 11   | Yes                | Existing | Mount                | ANDREW       | ONEBASE TWIN DUAL DUPLEX TMA | 9              | 7.7           | 3.5           | Flat                | 11              | В                | 2        | 1        | Normal      | No                                                        | 3.00                                       |                             | 102.125                 | 95.375                  | 102                 | 82.50                                                           | 79.50 |                |                                                               | 24.728  | 11.270                                           |
| 12   | Yes                | Existing | Mount                | ANDREW       | ONEBASE TWIN DUAL DUPLEX TMA | 9              | 7.7           | 3.5           | Flat                | 11              | С                | 2        | 1        | Normal      | No                                                        | 3.00                                       |                             | 102.125                 | 95.375                  | 102                 | 82.50                                                           | 79.50 |                |                                                               | 24.728  | 11.270                                           |
| 13   | Yes                | Proposed | Mount                | COMMSCOPE    | SDX1926Q-43                  | 4.173          | 6.929         | 2.913         | Flat                | 6.17            | Α                | 2        | 1        | Normal      | No                                                        | 1.00                                       |                             | 102.208                 | 95.292                  | 102                 | 81.50                                                           | 80.50 |                |                                                               | 10.317  | 4.338                                            |
| 14   | Yes                | Proposed | Mount                | COMMSCOPE    | SDX1926Q-43                  | 4.173          | 6.929         | 2.913         | Flat                | 6.17            | В                | 2        | 1        | Normal      | No                                                        | 1.00                                       |                             | 102.208                 | 95.292                  | 102                 | 81.50                                                           | 80.50 |                |                                                               | 10.317  | 4.338                                            |
| 15   | Yes                | Proposed | Mount                | COMMSCOPE    | SDX1926Q-43                  | 4.173          | 6.929         | 2.913         | Flat                | 6.17            | O                | 2        | 1        | Normal      | No                                                        | 1.00                                       |                             | 102.208                 | 95.292                  | 102                 | 81.50                                                           | 80.50 |                |                                                               | 10.317  | 4.338                                            |
| 16   | Yes                | Proposed | Mount                | ERICSSON     | RADIO 4449 B71 B85A_T-MOBILE | 17.91          | 13.2          | 10.63         | Flat                | 73.21           | Α                | 2        | 1        | Normal      | No                                                        | 11.91                                      |                             | 101.754                 | 95.746                  | 99                  | 50.96                                                           | 39.05 |                |                                                               | 84.358  | 67.933                                           |
| 17   | Yes                | Proposed | Mount                | ERICSSON     | RADIO 4449 B71 B85A_T-MOBILE | 17.91          | 13.2          | 10.63         | Flat                | 73.21           | В                | 2        | 1        | Normal      | No                                                        | 11.91                                      |                             | 101.754                 | 95.746                  | 99                  | 50.96                                                           | 39.05 |                |                                                               | 84.358  | 67.933                                           |
| 18   | Yes                | Proposed | Mount                | ERICSSON     | RADIO 4449 B71 B85A_T-MOBILE | 17.91          | 13.2          | 10.63         | Flat                | 73.21           | С                | 2        | 1        | Normal      | No                                                        | 11.91                                      |                             | 101.754                 | 95.746                  | 99                  | 50.96                                                           | 39.05 |                |                                                               | 84.358  | 67.933                                           |
| 19   | Yes                | Proposed | Mount                | ERICSSON     | RRUS 4415 B25                | 14.96          | 13.19         | 5.39          | Flat                | 44              | Α                | 2        | 1        | Normal      | No                                                        | 8.96                                       |                             | 101.877                 | 95.623                  | 100.5               | 67.48                                                           | 58.52 |                |                                                               | 70.410  | 29.066                                           |
| 20   | Yes                | Proposed | Mount                | ERICSSON     | RRUS 4415 B25                | 14.96          | 13.19         | 5.39          | Flat                | 44              | В                | 2        | 1        | Normal      | No                                                        | 8.96                                       |                             | 101.877                 | 95.623                  | 100.5               | 67.48                                                           | 58.52 |                |                                                               | 70.410  | 29.066                                           |
| 21   | Yes                | Proposed | Mount                | ERICSSON     | RRUS 4415 B25                | 14.96          | 13.19         | 5.39          | Flat                | 44              | С                | 2        | 1        | Normal      | No                                                        | 8.96                                       |                             | 101.877                 | 95.623                  | 100.5               | 67.48                                                           | 58.52 |                |                                                               | 70.410  | 29.066                                           |

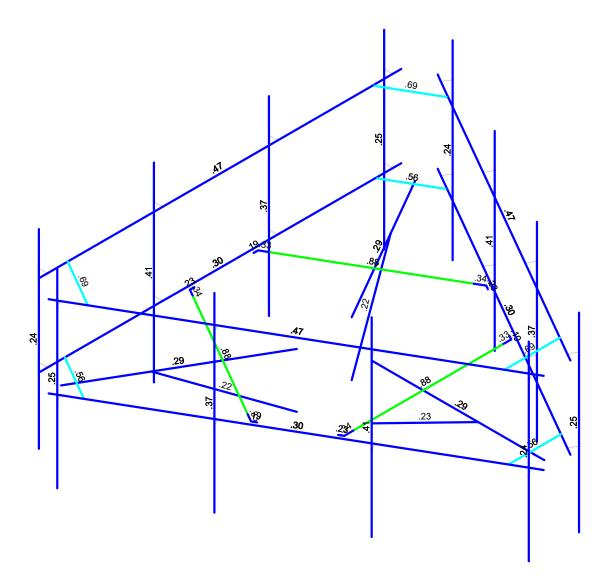
#### Dishes

| Ite | em Incl | lude : | Status | Mounting<br>Location | Manufacturer | Microwave Dish | Dia<br>(in) | Dish Type | Weight<br>(lbs) | Sector /<br>Face | Position | Top/Bottom<br>Mounting<br>Point<br>Spacing | Override<br>Spacing<br>(in) | Max<br>Dish<br>C/L (ft) | Min<br>Dish<br>C/L (ft) | Dish C/L<br>(ft) | Dish Top Mount<br>Location from<br>Mount Pipe<br>Bottom | Dish Bottom<br>Mount Location<br>from Mount Pipe<br>Bottom | Override Top<br>Dish Mounting<br>Location (in) | Override Bottom Dish Mounting Location (in) |  |
|-----|---------|--------|--------|----------------------|--------------|----------------|-------------|-----------|-----------------|------------------|----------|--------------------------------------------|-----------------------------|-------------------------|-------------------------|------------------|---------------------------------------------------------|------------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|
|-----|---------|--------|--------|----------------------|--------------|----------------|-------------|-----------|-----------------|------------------|----------|--------------------------------------------|-----------------------------|-------------------------|-------------------------|------------------|---------------------------------------------------------|------------------------------------------------------------|------------------------------------------------|---------------------------------------------|--|

# APPENDIX B SOFTWARE ANALYSIS OUTPUT






**Envelope Only Solution** 

| Paul J. Ford and Company |
|--------------------------|
| AMS                      |
| 37520-2224.001.7190      |

| S | K | _ | 1 |  |
|---|---|---|---|--|
|   |   |   |   |  |







Member Code Checks Displayed (Enveloped) Envelope Only Solution

| Paul J. Ford and Company |                                         | SK - 2                         |
|--------------------------|-----------------------------------------|--------------------------------|
| AMS                      | 857012 - Plainville South Washington St | Oct 13, 2020 at 3:02 PM        |
| 37520-2224.001.7190      |                                         | 37520-2224.001.7190_Client.r3d |







Member Shear Checks Displayed (Enveloped) Envelope Only Solution

| Paul J. Ford and Company |                                         | SK - 3                         |  |
|--------------------------|-----------------------------------------|--------------------------------|--|
| AMS                      | 857012 - Plainville South Washington St | Oct 13, 2020 at 3:02 PM        |  |
| 37520-2224.001.7190      |                                         | 37520-2224.001.7190_Client.r3d |  |



Oct 13, 2020 3:03 PM Checked By:\_

#### (Global) Model Settings

| 5                  |
|--------------------|
| -                  |
| 97                 |
| Yes                |
| Yes                |
| Yes                |
| Yes                |
| 144                |
| .12                |
| 0.50%              |
| Yes                |
| No                 |
| 3                  |
| 386.4              |
| 12                 |
| 4                  |
| Υ                  |
| XZ                 |
| Sparse Accelerated |
| Accelerated Solver |
|                    |

| Hot Rolled Steel Code  | AISC 15th(360-16): LRFD |  |  |  |  |
|------------------------|-------------------------|--|--|--|--|
| Adjust Stiffness?      | Yes(Iterative)          |  |  |  |  |
| RISAConnection Code    | None                    |  |  |  |  |
| Cold Formed Steel Code | None                    |  |  |  |  |
| Wood Code              | None                    |  |  |  |  |
| Wood Temperature       | < 100F                  |  |  |  |  |
| Concrete Code          | None                    |  |  |  |  |
| Masonry Code           | None                    |  |  |  |  |
| Aluminum Code          | None - Building         |  |  |  |  |
| Stainless Steel Code   | None                    |  |  |  |  |

| Number of Shear Regions       | 4                  |
|-------------------------------|--------------------|
| Region Spacing Increment (in) | 4                  |
| Biaxial Column Method         | Exact Integration  |
| Parme Beta Factor (PCA)       | .65                |
| Concrete Stress Block         | Rectangular        |
| Use Cracked Sections?         | Yes                |
| Use Cracked Sections Slab?    | Yes                |
| Bad Framing Warnings?         | No                 |
| Unused Force Warnings?        | Yes                |
| Min 1 Bar Diam. Spacing?      | No                 |
| Concrete Rebar Set            | REBAR_SET_ASTMA615 |
| Min % Steel for Column        | 1                  |
| Max % Steel for Column        | 8                  |

Oct 13, 2020 3:03 PM Checked By:\_

#### (Global) Model Settings, Continued

| Seismic Code                | ASCE 7-05   |
|-----------------------------|-------------|
| Seismic Base Elevation (in) | Not Entered |
| Add Base Weight?            | Yes         |
| Ct X                        | .02         |
| Ct Z                        | .02         |
| TX (sec)                    | Not Entered |
| T Z (sec)                   | Not Entered |
| RX                          | 3           |
| RZ                          | 3           |
| Ct Exp. X                   | .75         |
| Ct Exp. Z                   | .75         |
| SD1                         | 1           |
| SDS                         | 1           |
| S1                          | 1           |
| TL (sec)                    | 5           |
| Occupancy Cat               | l or II     |
| Drift Cat                   | Other       |
| Om Z                        | 1           |
| Om X                        | 1           |
| Cd Z                        | 4           |
| Cd X                        | 4           |
| Rho Z                       | 1           |
| Rho X                       | 1           |
|                             |             |

**Hot Rolled Steel Properties** 

|   | Label              | E [ksi] | G [ksi] | Nu | Therm (/1E. | Density[k/ft | Yield[ksi] | Ry  | Fu[ksi] | Rt  |
|---|--------------------|---------|---------|----|-------------|--------------|------------|-----|---------|-----|
| 1 | A53 Gr. B (35 ksi) | 29000   | 11154   | .3 | .65         | .49          | 35         | 1.5 | 60      | 1.2 |
| 2 | A500 Gr. B (46ksi) | 29000   | 11154   | .3 | .65         | .49          | 46         | 1.5 | 58      | 1.2 |
| 3 | A36 (36ksi)        | 29000   | 11154   | 3  | 65          | 49           | 36         | 1.5 | 58      | 12  |

#### **Member Primary Data**

|    | Label | I Joint | J Joint | K Joint | Rotate(deg) | Section/Shape | Type | Design List | Material        | Design Rules                |
|----|-------|---------|---------|---------|-------------|---------------|------|-------------|-----------------|-----------------------------|
| 1  | C4    | N112    | N111    |         | , ,         | PIPE 2.0      | None | None        | A53 Gr. B (35   | Typical                     |
| 2  | CBC1  | B2      | B1      |         | 180         | L6X3.5X5      | None | None        | A36 (36ksi)     | Typical                     |
| 3  | CBB1  | N42     | N41     |         | 180         | L6X3.5X5      | None | None        | A36 (36ksi)     | Typical                     |
| 4  | CBA1  | N70     | N69     |         | 180         | L6X3.5X5      | None | None        | A36 (36ksi)     | Typical                     |
| 5  | CBC2  | N76     | N77     |         | 90          | PIPE 2.0      | None | None        | A53 Gr. B (35   | Typical                     |
| 6  | CBB2  | N43     | N44     |         | 90          | PIPE 2.0      | None | None        | A53 Gr. B (35   | Typical                     |
| 7  | CBA2  | N71     | N72     |         | 90          | PIPE 2.0      | None | None        | A53 Gr. B (35   | Typical                     |
| 8  | M19   | N100A   | N84     |         |             | HSS4X4X3      | None | None        | A500 Gr. B (46. | <ul> <li>Typical</li> </ul> |
| 9  | M20   | N74A    | N118    |         |             | PL5X3/8       | None | None        | A36 (36ksi)     | Typical                     |
| 10 | M22   | N80     | N79     |         | 90          | PL 9"x1/2"    | None | None        | A36 (36ksi)     | Typical                     |
| 11 | M23   | N62A    | N64A    |         | 90          | L2.5x2.5x4    | None | None        | A36 (36ksi)     | Typical                     |
| 12 | M24   | N61A    | N66A    |         | 90          | L2.5x2.5x4    | None | None        | A36 (36ksi)     | Typical                     |
| 13 | M25   | N63A    | N65A    |         | 90          | L2.5x2.5x4    | None | None        | A36 (36ksi)     | Typical                     |
| 14 | M28   | N146    | N110    |         |             | RIGID         | None | None        | RIGID           | Typical                     |
| 15 | M29   | N145    | N108    |         |             | RIGID         | None | None        | RIGID           | Typical                     |
| 16 | M58   | N156A   | N155A   |         | 90          | PL 9"x1/2"    | None | None        | A36 (36ksi)     | Typical                     |
| 17 | M61   | N161A   | N160A   |         | 90          | PL 9"x1/2"    | None | None        | A36 (36ksi)     | Typical                     |
| 18 | C3    | N78     | N77A    |         |             | PIPE 2.0      | None | None        | A53 Gr. B (35   | Typical                     |
| 19 | M26   | N145A   | N76A    |         |             | RIGĪD         | None | None        | RIGID           | Typical                     |
| 20 | M27   | N136A   | N75     |         |             | RIGID         | None | None        | RIGID           | Typical                     |
| 21 | C2    | N85     | N84A    |         |             | PIPE 2.0      | None | None        | A53 Gr. B (35   | Typical                     |
| 22 | M29A  | N142A   | N83     |         |             | RIGID         | None | None        | RIGID           | Typical                     |
| 23 | M30   | N67A    | N82     |         |             | RIGID         | None | None        | RIGID           | Typical                     |



Oct 13, 2020 3:03 PM Checked By:\_

#### **Member Primary Data (Continued)**

| 266   M33   N139   N86   RIGID   None   None   RIGID   Typice   Typice   N35   N139   N86   RIGID   None   None   A53 Gr. B (35   Typice   N35   N114   N89A   RIGID   None   None   None   A53 Gr. B (35   Typice   N36   N114A   N88A   RIGID   None   None   None   RIGID   Typice   N36   N114A   N88A   RIGID   None   None   None   RIGID   Typice   N36   N114A   N88A   RIGID   None   None   None   RIGID   Typice   Name   None   None   RIGID   Typice   None   None   RIGID   Typice   None   None   None   RIGID   Typice   None |    | Label     | I Joint | J Joint | K Joint | Rotate(deg | ) Section/Shape | Type | Design List | Material      | Design Rules                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|---------|---------|---------|------------|-----------------|------|-------------|---------------|-----------------------------|
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 | <u>C1</u> | N89     | N88     |         |            | PIPE_2.0        | None | None        | A53 Gr. B (35 |                             |
| Pipe    |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               |                             |
| 30 B3 N102A N101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 31   M38   N125A   N100   RIGID   None   None   RIGID   Typica   |    |           |         |         |         |            |                 |      |             |               |                             |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               |                             |
| 33   B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               |                             |
| ABS   ABS  |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 38   M45   N112A   N108A   RIGID   None   None   RIGID   Typica   38   M45   N111A   N107   RIGID   None   None   RIGID   Typica   39   A4   N115A   N114   PIPE 2.0   None   None   RIGID   Typica   40   M47   N155   N113   RIGID   None   None   RIGID   Typica   41   M48   N154   N112B   RIGID   None   None   RIGID   Typica   42   A3   N126   N125   PIPE 2.0   None   None   RIGID   Typica   42   A3   N126   N124   RIGID   None   None   RIGID   Typica   43   M50   N165A   N124   RIGID   None   None   RIGID   Typica   44   M51   N156   N123   RIGID   None   None   RIGID   Typica   45   A2   N130A   N129   PIPE 2.0   None   None   RIGID   Typica   46   M53   N153   N128   RIGID   None   None   RIGID   Typica   47   M54   N130   N127   RIGID   None   None   RIGID   Typica   48   A1   N134   N133   PIPE 2.0   None   None   RIGID   Typica   49   M56   N152   N132   RIGID   None   None   RIGID   Typica   49   M56   N152   N132   RIGID   None   None   RIGID   Typica   49   M56   N152   N132   RIGID   None   None   RIGID   Typica   49   M56   N152   N132   RIGID   None   None   RIGID   Typica   50   M57   N151   N131   RIGID   None   None   RIGID   Typica   51   M56A   N113B   N102   RIGID   None   None   RIGID   Typica   52   M57A   N114B   N163   RIGID   None   None   RIGID   Typica   52   M57A   N114B   N163   RIGID   None   None   RIGID   Typica   54   M59   N119   N151B   RIGID   None   None   RIGID   Typica   55   M60   N120   N164   RIGID   None   None   RIGID   Typica   56   M61   N122   N121   HSSAYAX3   None   None   RIGID   Typica   57   M62   N125B   N154A   RIGID   None   None   RIGID   Typica   58   M63   N126A   N1165   RIGID   None   None   RIGID   Typica   59   M59A   N119   N121A   90   L4X4X4   None   None   RIGID   Typica   60   M60A   N118   N117   PL5X3/8   None   None   RIGID   Typica   61   M61B   N119A   N120A   RIGID   None   None   RIGID   Typica   61   M61B   N124A   N125C   RIGID   None   None   RIGID   Typica   61   M61B   N124A   N125C   RIGID   None   None   RIGID   Typica   61   M61B    |    |           |         |         |         |            |                 |      |             |               |                             |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               |                             |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| M48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| M48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |           |         |         |         |            |                 |      |             |               |                             |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 43         M50         N1656         N123         RIGID         None         None         RIGID         Typica           44         M51         N156         N123         RIGID         None         None         A83 Gr. B (35) Typica           45         A2         N130A         N129         PIPE 2.0         None         None         RIGID         Typica           47         M54         N130         N127         RIGID         None         None         RIGID         Typica           48         A1         N134         N133         PIPE 2.0         None         None         RIGID         Typica           50         M56         N152         N132         RIGID         None         None         RIGID         Typica           51         M56A         N151         N131         RIGID         None         None         RIGID         Typica           52         M57A         N116B         N163         RIGID         None         None         RIGID         Typica           53         M58A         N116A         N115B         HSS4X4X3         None         None         RIGID         Typica           54         M59         N119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 44         M51         N156         N123         RIGID         None         None         A33 Gr. B (35).         Typica           45         A2         N130A         N129         PIPE 2.0         None         None         A33 Gr. B (35).         Typica           46         M53         N153         N128         RIGID         None         None         RIGID         Typica           47         M54         N130         N127         RIGID         None         None </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |           |         |         |         |            |                 |      |             |               |                             |
| A55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 47         M54         N130         N127         RIGID         None         None         RIGID         Typica           48         A1         N134         N133         PIPE 2.0         None         None         A53 Gr. 8 (35)         Typica           50         M57         N151         N131         RIGID         None         None         RIGID         Typica           51         M56A         N113B         N102         RIGID         None         None         RIGID         Typica           52         M57A         N114B         N163         RIGID         None         None         RIGID         Typica           53         M58A         N116A         N115B         HSS4X4X3         None         None         RIGID         Typica           54         M59         N119         N151B         RIGID         None         None         RIGID         Typica           55         M60         N120         N164         RIGID         None         None         RIGID         Typica           56         M61A         N122         N154A         RIGID         None         None         RIGID         Typica           57         M62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |           |         |         |         |            |                 |      |             |               |                             |
| 48         A1         N134         N133         PIPE 2.0         None         None         A53 Gr. B (35         Typica           49         M56         N152         N132         RIGID         None         None         RIGID         Typica           50         M57         N151         N131         RIGID         None         None         RIGID         Typica           51         M56A         N113B         N102         RIGID         None         None         RIGID         Typica           52         M57A         N114B         N163         RIGID         None         None         None         RIGID         Typica           53         M58A         N114B         N115B         HSS4XAX3         None         None         A500 Gr. B (46         Typica           54         M59         N119         N151B         RIGID         None         None         RIGID         Typica           55         M60         N120         N146         RIGID         None         None         RIGID         Typica           57         M62         N125B         N154A         RIGID         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 49         M56         N152         N132         RIGID         None         None         RIGID         Typica           50         M57         N151         N131         RIGID         None         None         RIGID         Typica           51         M56A         N113B         N102         RIGID         None         None         RIGID         Typica           52         M57A         N114B         N163         RIGID         None         None         None         RIGID         Typica           54         M59         N119         N151B         RIGID         None         None         None         RIGID         Typica           55         M60         N120         N164         RIGID         None         None         RIGID         Typica           57         M62         N125B         N154A         RIGID         None         None         RIGID         Typica           58         M63         N126A         N165         RIGID         None         None         RIGID         Typica           59         M59A         N117         N121A         90         L4X4X4         None         None         A36 (36ksi)         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| S0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               |                             |
| 51         M56A         N113B         N102         RIGID         None         None         RIGID         Typica           52         M57A         N114B         N163         RIGID         None         None         RIGID         Typica           53         M58A         N116A         N115B         HSS4X4X3         None         None         RIGID         Typica           54         M59         N119         N151B         RIGID         None         None         None         RIGID         Typica           55         M60         N120         N164         RIGID         None         None         RIGID         Typica           56         M61A         N122         N121         HSS4X4X3         None         None         A500 Gr. B (46.         Typica           57         M62         N125B         N154A         RIGID         None         None         RIGID         Typica           58         M63         N126A         N165         RIGID         None         None         RIGID         Typica           69         M60A         N118         N117         PL5X3/8         None         None         A36 (36ksi)         Typica           61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49 |           |         |         |         |            | RIGID           |      | None        | RIGID         | Typical                     |
| 52         M57A         N114B         N163         RIGID         None         None         RIGID         Typica           53         M58A         N116A         N115B         HSS4X4X3         None         None         RIGID         Typica           54         M59         N119         N151B         RIGID         None         None         RIGID         Typica           55         M60         N120         N164         RIGID         None         None         RIGID         Typica           56         M61A         N122         N121         HSS4X4X3         None         None         A500 Gr. B (46.         Typica           57         M62         N125B         N154A         RIGID         None         None         RIGID         Typica           58         M63         N126A         N165         RIGID         None         None         RIGID         Typica           59         M59A         N117         N121A         90         L4X4X4         None         None         A36 (36ksi)         Typica           60         M60A         N118         N117         PL5X3/8         None         None         RIGID         Typica           62<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 | M57       | N151    | N131    |         |            | RIGID           | None | None        | RIGID         | Typical                     |
| 53         M58A         N116A         N115B         HSS4X4X3         None         None         A500 Gr. B (46         Typica           54         M59         N119         N151B         RIGID         None         None         RIGID         Typica           55         M60         N120         N164         RIGID         None         None         RIGID         Typica           56         M61A         N122         N121         HSS4X4X3         None         None         A500 Gr. B (46         Typica           57         M62         N125B         N154A         RIGID         None         None         None         RIGID         Typica           58         M63         N126A         N165         RIGID         None         None         RIGID         Typica           59         M59A         N117         N121A         90         L4X4X4         None         None         A36 (36ksi)         Typica           60         M60A         N118         N117         PL5X3/8         None         None         A36 (36ksi)         Typica           61         M61B         N119A         N120A         RIGID         None         None         None         A36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | M56A      | N113B   | N102    |         |            | RIGID           | None | None        |               | Typical                     |
| 54         M59         N119         N151B         RIGID         None         None         RIGID         Typica           55         M60         N120         N164         RIGID         None         None         RIGID         Typica           56         M61A         N122         N121         HSS4X4X3         None         None         A500 Gr. B (46         Typica           57         M62         N125B         N154A         RIGID         None         None         None         RIGID         Typica           58         M63         N126A         N165         RIGID         None         None         RIGID         Typica           69         M59A         N117         N121A         90         L4X4X4         None         None         A36 (36ksi)         Typica           60         M60A         N118         N117         PL5X3/8         None         None         RIGID         Typica           61         M61B         N119A         N120A         RIGID         None         None         RIGID         Typica           62         M62A         N121B         N123A         PL5X3/8         None         None         A36 (36ksi)         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52 |           |         |         |         |            |                 |      |             |               | Typical                     |
| 55         M60         N120         N164         RIGID         None         None         A500 Gr. B (46         Typica           56         M61A         N122         N121         HSS4X4X3         None         None         A500 Gr. B (46         Typica           57         M62         N125B         N154A         RIGID         None         None         None         RIGID         Typica           58         M63         N126A         N165         RIGID         None         None         RIGID         Typica           59         M59A         N117         N121A         90         L4X4X4         None         None         A36 (36ksi)         Typica           60         M60A         N118         N117         PL5X3/8         None         None         A36 (36ksi)         Typica           61         M61B         N119A         N120A         RIGID         None         None         A36 (36ksi)         Typica           62         M62A         N121B         N121A         PL5X3/8         None         None         A36 (36ksi)         Typica           63         M64         N124A         N125C         RIGID         None         None         A36 (36ksi) <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |           |         |         |         |            |                 |      |             |               |                             |
| 56         M61A         N122         N121         HSS4X4X3         None         None         A500 Gr. B (46         Typica           57         M62         N125B         N154A         RIGID         None         None         RIGID         Typica           58         M63         N126A         N165         RIGID         None         None         RIGID         Typica           59         M59A         N117         N121A         90         L4X4X4         None         None         A36 (36ksi)         Typica           60         M60A         N118         N117         PL5X3/8         None         None         A36 (36ksi)         Typica           61         M61B         N119A         N120A         RIGID         None         None         RIGID         Typica           62         M62A         N121B         N123A         PL5X3/8         None         None         A36 (36ksi)         Typica           63         M63A         N123A         N125C         RIGID         None         None         A36 (36ksi)         Typica           64         M64         N124A         N125D         N127A         PL5X3/8         None         None         A36 (36ksi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 57         M62         N125B         N154A         RIGID         None         None         RIGID         Typica           58         M63         N126A         N165         RIGID         None         None         RIGID         Typica           59         M59A         N117         N121A         90         L4X4X4         None         None         A36 (36ksi)         Typica           60         M60A         N118         N117         PL5X3/8         None         None         A36 (36ksi)         Typica           61         M61B         N119A         N120A         RIGID         None         None         RIGID         Typica           62         M62A         N121B         N123A         PL5X3/8         None         None         A36 (36ksi)         Typica           63         M63A         N123A         N121A         PL5X3/8         None         None         A36 (36ksi)         Typica           64         M64         N124A         N125C         RIGID         None         None         RIGID         Typica           65         M65         N125D         N127A         PL5X3/8         None         None         A36 (36ksi)         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 58         M63         N126A         N165         RIGID         None         None         RIGID         Typica           59         M59A         N117         N121A         90         L4X4X4         None         None         A36 (36ksi)         Typica           60         M60A         N118         N117         PL5X3/8         None         None         A36 (36ksi)         Typica           61         M61B         N119A         N120A         RIGID         None         None         RIGID         Typica           62         M62A         N121B         N123A         PL5X3/8         None         None         A36 (36ksi)         Typica           63         M63A         N123A         N121A         PL5X3/8         None         None         A36 (36ksi)         Typica           64         M64         N124A         N125C         RIGID         None         None         RIGID         Typica           65         M65         N125D         N127A         PL5X3/8         None         None         A36 (36ksi)         Typica           67         M67         N127A         N126B         PL5X3/8         None         None         A36 (36ksi)         Typica </td <td></td> <td><ul> <li>Typical</li> </ul></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |           |         |         |         |            |                 |      |             |               | <ul> <li>Typical</li> </ul> |
| 59         M59A         N117         N121A         90         L4X4X4         None         None         A36 (36ksi)         Typica           60         M60A         N118         N117         PL5X3/8         None         None         A36 (36ksi)         Typica           61         M61B         N119A         N120A         RIGID         None         None         RIGID         Typica           62         M62A         N121B         N123A         PL5X3/8         None         None         A36 (36ksi)         Typica           63         M63A         N123A         N121A         PL5X3/8         None         None         A36 (36ksi)         Typica           64         M64         N124A         N125C         RIGID         None         None         RIGID         Typica           65         M65         N125D         N127A         PL5X3/8         None         None         A36 (36ksi)         Typica           67         M67         N127A         N126B         PL5X3/8         None         None         A36 (36ksi)         Typica           68         M68         N128A         N129A         RIGID         None         None         RIGID         Typica     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57 |           |         |         |         |            |                 |      | None        |               | Typical                     |
| 60         M60A         N118         N117         PL5X3/8         None         None         A36 (36ksi)         Typica           61         M61B         N119A         N120A         RIGID         None         None         RIGID         Typica           62         M62A         N121B         N123A         PL5X3/8         None         None         A36 (36ksi)         Typica           63         M63A         N123A         N121A         PL5X3/8         None         None         A36 (36ksi)         Typica           64         M64         N124A         N125C         RIGID         None         None         None         None         None         A36 (36ksi)         Typica           65         M65         N125D         N127A         PL5X3/8         None         None         A36 (36ksi)         Typica           66         M66         N126B         N130B         90         L4X4X4         None         None         A36 (36ksi)         Typica           68         M68         N128A         N129A         RIGID         None         None         RIGID         Typica           69         M69         N131A         N132A         PL5X3/8         None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 61         M61B         N119A         N120A         RIGID         None         None         RIGID         Typica           62         M62A         N121B         N123A         PL5X3/8         None         None         A36 (36ksi)         Typica           63         M63A         N123A         N121A         PL5X3/8         None         None         A36 (36ksi)         Typica           64         M64         N124A         N125C         RIGID         None         None         RIGID         Typica           65         M65         N125D         N127A         PL5X3/8         None         None         A36 (36ksi)         Typica           66         M66         N126B         N130B         90         L4X4X4         None         None         A36 (36ksi)         Typica           68         M68         N128A         N129A         RIGID         None         None         RIGID         Typica           69         M69         N131A         N132A         PL5X3/8         None         None         A36 (36ksi)         Typica           70         M70         N132A         N130B         PL5X3/8         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |           |         | N121A   |         | 90         |                 |      |             |               | Typical                     |
| 62         M62A         N121B         N123A         PL5X3/8         None         None         A36 (36ksi)         Typica           63         M63A         N123A         N121A         PL5X3/8         None         None         A36 (36ksi)         Typica           64         M64         N124A         N125C         RIGID         None         None         RIGID         Typica           65         M65         N125D         N127A         PL5X3/8         None         None         A36 (36ksi)         Typica           66         M66         N126B         N126B         PL5X3/8         None         None         A36 (36ksi)         Typica           67         M67         N127A         N126B         PL5X3/8         None         None         A36 (36ksi)         Typica           68         M68         N128A         N129A         RIGID         None         None         RIGID         Typica           69         M69         N131A         N132A         PL5X3/8         None         None         A36 (36ksi)         Typica           70         M70         N132A         N130B         PL5X3/8         None         None         A36 (36ksi)         Typica <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>None</td><td></td><td></td><td>Typical</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |           |         |         |         |            |                 | None |             |               | Typical                     |
| 63         M63A         N123A         N121A         PL5X3/8         None         None         A36 (36ksi)         Typica           64         M64         N124A         N125C         RIGID         None         None         RIGID         Typica           65         M65         N125D         N127A         PL5X3/8         None         None         A36 (36ksi)         Typica           66         M66         N126B         N130B         90         L4X4X4         None         None         A36 (36ksi)         Typica           67         M67         N127A         N126B         PL5X3/8         None         None         A36 (36ksi)         Typica           68         M68         N128A         N129A         RIGID         None         None         RIGID         Typica           69         M69         N131A         N132A         PL5X3/8         None         None         A36 (36ksi)         Typica           70         M70         N132A         N130B         PL5X3/8         None         None         A36 (36ksi)         Typica           71         M71         N133         N134         RIGID         None         None         None         A36 (36ksi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 64         M64         N124A         N125C         RIGID         None         None         RIGID         Typica           65         M65         N125D         N127A         PL5X3/8         None         None         A36 (36ksi)         Typica           66         M66         N126B         N130B         90         L4X4X4         None         None         A36 (36ksi)         Typica           67         M67         N127A         N126B         PL5X3/8         None         None         A36 (36ksi)         Typica           68         M68         N128A         N129A         RIGID         None         None         RIGID         Typica           69         M69         N131A         N132A         PL5X3/8         None         None         A36 (36ksi)         Typica           70         M70         N132A         N130B         PL5X3/8         None         None         A36 (36ksi)         Typica           71         M71         N133A         N134A         RIGID         None         None         RIGID         Typica           73         M73         N136         N140         90         L4X4X4         None         None         A36 (36ksi)         Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62 |           |         |         |         |            |                 |      | None        |               | Typical                     |
| 65         M65         N125D         N127A         PL5X3/8         None         None         A36 (36ksi)         Typica           66         M66         N126B         N130B         90         L4X4X4         None         None         A36 (36ksi)         Typica           67         M67         N127A         N126B         PL5X3/8         None         None         A36 (36ksi)         Typica           68         M68         N128A         N129A         RIGID         None         None         RIGID         Typica           69         M69         N131A         N132A         PL5X3/8         None         None         A36 (36ksi)         Typica           70         M70         N132A         N130B         PL5X3/8         None         None         A36 (36ksi)         Typica           71         M71         N133A         N134A         RIGID         None         None         RIGID         Typica           72         M72         N135         N137         PL5X3/8         None         None         A36 (36ksi)         Typica           74         M74         N137         N136         PL5X3/8         None         None         A36 (36ksi)         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 66         M66         N126B         N130B         90         L4X4X4         None         None         A36 (36ksi)         Typica           67         M67         N127A         N126B         PL5X3/8         None         None         A36 (36ksi)         Typica           68         M68         N128A         N129A         RIGID         None         None         RIGID         Typica           69         M69         N131A         N132A         PL5X3/8         None         None         A36 (36ksi)         Typica           70         M70         N132A         N130B         PL5X3/8         None         None         A36 (36ksi)         Typica           71         M71         N133A         N134A         RIGID         None         None         RIGID         Typica           72         M72         N135         N137         PL5X3/8         None         None         A36 (36ksi)         Typica           73         M73         N136         N140         90         L4X4X4         None         None         A36 (36ksi)         Typica           75         M75         N138         N139A         RIGID         None         None         None         A36 (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 67         M67         N127A         N126B         PL5X3/8         None         None         A36 (36ksi)         Typica           68         M68         N128A         N129A         RIGID         None         None         RIGID         Typica           69         M69         N131A         N132A         PL5X3/8         None         None         A36 (36ksi)         Typica           70         M70         N132A         N130B         PL5X3/8         None         None         A36 (36ksi)         Typica           71         M71         N133A         N134A         RIGID         None         None         RIGID         Typica           72         M72         N135         N137         PL5X3/8         None         None         A36 (36ksi)         Typica           73         M73         N136         N140         90         L4X4X4         None         None         A36 (36ksi)         Typica           74         M74         N137         N136         PL5X3/8         None         None         RIGID         Typica           75         M75         N138         N139A         RIGID         None         None         A36 (36ksi)         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 68         M68         N128A         N129A         RIGID         None         None         RIGID         Typica           69         M69         N131A         N132A         PL5X3/8         None         None         A36 (36ksi)         Typica           70         M70         N132A         N130B         PL5X3/8         None         None         A36 (36ksi)         Typica           71         M71         N133A         N134A         RIGID         None         None         RIGID         Typica           72         M72         N135         N137         PL5X3/8         None         None         A36 (36ksi)         Typica           73         M73         N136         N140         90         L4X4X4         None         None         A36 (36ksi)         Typica           74         M74         N137         N136         PL5X3/8         None         None         A36 (36ksi)         Typica           75         M75         N138         N139A         RIGID         None         None         A36 (36ksi)         Typica           76         M76         N141         N142         PL5X3/8         None         None         A36 (36ksi)         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |           |         |         |         | 90         |                 |      |             |               | Typical                     |
| 69         M69         N131A         N132A         PL5X3/8         None         None         A36 (36ksi)         Typica           70         M70         N132A         N130B         PL5X3/8         None         None         A36 (36ksi)         Typica           71         M71         N133A         N134A         RIGID         None         None         RIGID         Typica           72         M72         N135         N137         PL5X3/8         None         None         A36 (36ksi)         Typica           73         M73         N136         N140         90         L4X4X4         None         None         A36 (36ksi)         Typica           74         M74         N137         N136         PL5X3/8         None         None         A36 (36ksi)         Typica           75         M75         N138         N139A         RIGID         None         None         RIGID         Typica           76         M76         N141         N142         PL5X3/8         None         None         A36 (36ksi)         Typica           78         M78         N143         N144         RIGID         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 70         M70         N132A         N130B         PL5X3/8         None         None         A36 (36ksi)         Typica           71         M71         N133A         N134A         RIGID         None         None         RIGID         Typica           72         M72         N135         N137         PL5X3/8         None         None         A36 (36ksi)         Typica           73         M73         N136         N140         90         L4X4X4         None         None         A36 (36ksi)         Typica           74         M74         N137         N136         PL5X3/8         None         None         A36 (36ksi)         Typica           75         M75         N138         N139A         RIGID         None         None         RIGID         Typica           76         M76         N141         N142         PL5X3/8         None         None         A36 (36ksi)         Typica           77         M77         N142         N140         PL5X3/8         None         None         A36 (36ksi)         Typica           78         M78         N143         N144         RIGID         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 71         M71         N133A         N134A         RIGID         None         RIGID         Typica           72         M72         N135         N137         PL5X3/8         None         None         A36 (36ksi)         Typica           73         M73         N136         N140         90         L4X4X4         None         None         A36 (36ksi)         Typica           74         M74         N137         N136         PL5X3/8         None         None         A36 (36ksi)         Typica           75         M75         N138         N139A         RIGID         None         None         RIGID         Typica           76         M76         N141         N142         PL5X3/8         None         None         A36 (36ksi)         Typica           77         M77         N142         N140         PL5X3/8         None         None         A36 (36ksi)         Typica           78         M78         N143         N144         RIGID         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 72         M72         N135         N137         PL5X3/8         None         None         A36 (36ksi)         Typica           73         M73         N136         N140         90         L4X4X4         None         None         A36 (36ksi)         Typica           74         M74         N137         N136         PL5X3/8         None         None         A36 (36ksi)         Typica           75         M75         N138         N139A         RIGID         None         None         RIGID         Typica           76         M76         N141         N142         PL5X3/8         None         None         A36 (36ksi)         Typica           77         M77         N142         N140         PL5X3/8         None         None         A36 (36ksi)         Typica           78         M78         N143         N144         RIGID         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 73         M73         N136         N140         90         L4X4X4         None         None         A36 (36ksi)         Typica           74         M74         N137         N136         PL5X3/8         None         None         A36 (36ksi)         Typica           75         M75         N138         N139A         RIGID         None         None         RIGID         Typica           76         M76         N141         N142         PL5X3/8         None         None         A36 (36ksi)         Typica           77         M77         N142         N140         PL5X3/8         None         None         A36 (36ksi)         Typica           78         M78         N143         N144         RIGID         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 74         M74         N137         N136         PL5X3/8         None         None         A36 (36ksi)         Typica           75         M75         N138         N139A         RIGID         None         None         RIGID         Typica           76         M76         N141         N142         PL5X3/8         None         None         A36 (36ksi)         Typica           77         M77         N142         N140         PL5X3/8         None         None         A36 (36ksi)         Typica           78         M78         N143         N144         RIGID         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 75         M75         N138         N139A         RIGID         None         None         RIGID         Typica           76         M76         N141         N142         PL5X3/8         None         None         A36 (36ksi)         Typica           77         M77         N142         N140         PL5X3/8         None         None         A36 (36ksi)         Typica           78         M78         N143         N144         RIGID         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |           |         |         |         | 90         |                 |      |             |               | Typical                     |
| 76         M76         N141         N142         PL5X3/8         None         None         A36 (36ksi)         Typica           77         M77         N142         N140         PL5X3/8         None         None         A36 (36ksi)         Typica           78         M78         N143         N144         RIGID         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 77         M77         N142         N140         PL5X3/8         None         None         A36 (36ksi)         Typica           78         M78         N143         N144         RIGID         None         None         RIGID         Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |           |         |         |         |            |                 |      |             |               | Typical                     |
| 78 M78 N143 N144 RIGID None None RIGID Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |           |         |         |         |            |                 |      |             |               | Typical                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |           |         |         |         |            |                 |      | None        |               | Typical                     |
| 70   M70   N145P   N146A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |           |         |         |         |            |                 |      |             |               | Typical                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79 | M79       | N145B   | N146A   |         |            | LL2.5x2.5x3x3   | None | None        | A36 (36ksi)   | Typical                     |
| 80 M80 N147 N148 LL2.5x2.5x3x3 None None A36 (36ksi) Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80 | M80       | N147    | N148    |         |            | LL2.5x2.5x3x3   | None | None        | A36 (36ksi)   | Typical                     |



Oct 13, 2020 3:03 PM Checked By:\_

#### Member Primary Data (Continued)

|    | Label | I Joint | J Joint | K Joint | Rotate(deg) Section/Shape | Type | Design List | Material    | Design Rules |
|----|-------|---------|---------|---------|---------------------------|------|-------------|-------------|--------------|
| 81 | M81   | N149    | N150    |         | LL2.5x2.5x3x3             | None | None        | A36 (36ksi) | Typical      |

#### Member Advanced Data

|    | Label            | l Release | J Release | I Offset[in] | J Offset[in] | T/C Only | Physical   | Defl RatAnalysis   | Inactive     | Seismic |
|----|------------------|-----------|-----------|--------------|--------------|----------|------------|--------------------|--------------|---------|
| 1  | C4               |           |           | ,            |              | •        | Yes        | ** NA **           |              | None    |
| 2  | CBC1             |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 3  | CBB1             |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 4  | CBA1             |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 5  | CBC2             |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 6  | CBB2             |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 7  | CBA2             |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 8  | M19              |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 9  | M20              |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 10 | M22              |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 11 | M23              |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 12 | M24              |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 13 | M25              |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 14 | M28              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 15 | M29              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 16 | M58              |           |           |              |              |          | Yes        | ** NA **           | LXOIGGE      | None    |
| 17 | M61              |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 18 | C3               |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 19 | M26              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 20 | M27              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 21 | C2               |           |           |              |              |          | Yes        | ** NA **           | LAGIGGE      | None    |
| 22 | M29A             |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 23 | M30              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 24 | C1               |           |           |              |              |          | Yes        | ** NA **           | LAGIGGE      | None    |
| 25 | M32              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 26 | M33              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 27 | B4               |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 28 | M35              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 29 | M36              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 30 | B3               |           |           |              |              |          | Yes        | ** NA **           | LACIUUE      | None    |
| 31 | M38              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 32 | M39              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 33 | B2               |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 34 | M41              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 35 | M42              |           |           |              |              |          | Yes        | ** NA **           |              | None    |
| 36 | B1               |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 37 | <u>Бі</u><br>М44 |           |           |              |              |          | Yes        | ** NA **           | Evoludo      |         |
|    |                  |           |           |              |              |          |            | ** NA **           | Exclude      | None    |
| 38 | M45              |           |           |              |              |          | Yes<br>Yes | ** NA **           | Exclude      | None    |
| 39 | A4               |           |           |              |              |          |            | ** NA **           | Evaluate     | None    |
| 40 | M47              |           |           |              |              |          | Yes        |                    | Exclude      | None    |
| 41 | M48              |           |           |              |              |          | Yes        | ** NA **  ** NA ** | Exclude      | None    |
| 42 | A3               |           |           |              |              |          | Yes        | ** NA **           | Fyaluals     | None    |
| 43 | M50              |           |           |              |              |          | Yes        |                    | Exclude      | None    |
| 44 | <u>M51</u>       |           |           |              |              |          | Yes        | ** NA **  ** NA ** | Exclude      | None    |
| 45 | A2               |           |           |              |              |          | Yes        |                    | Excellent.   | None    |
| 46 | M53              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 47 | <u>M54</u>       |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 48 | A1               |           |           |              |              |          | Yes        | ** NA **           | Executive le | None    |
| 49 | M56              |           |           |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 50 | M57              |           | DanDIN    |              |              |          | Yes        | ** NA **           | Exclude      | None    |
| 51 | M56A             | <u> </u>  | BenPIN    |              |              |          | Yes        | ** NA **           |              | None    |

Oct 13, 2020 3:03 PM Checked By:\_

#### **Member Advanced Data (Continued)**

|    | Label | I Release | J Release | I Offset[in] | J Offset[in] | T/C Only | Physical | Defl RatAnalysis | Inactive | Seismic |
|----|-------|-----------|-----------|--------------|--------------|----------|----------|------------------|----------|---------|
| 52 | M57A  |           | BenPIN    |              |              |          | Yes      | ** NA **         |          | None    |
| 53 | M58A  |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 54 | M59   |           | BenPIN    |              |              |          | Yes      | ** NA **         |          | None    |
| 55 | M60   |           | BenPIN    |              |              |          | Yes      | ** NA **         |          | None    |
| 56 | M61A  |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 57 | M62   |           | BenPIN    |              |              |          | Yes      | ** NA **         |          | None    |
| 58 | M63   |           | BenPIN    |              |              |          | Yes      | ** NA **         |          | None    |
| 59 | M59A  |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 60 | M60A  |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 61 | M61B  |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 62 | M62A  |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 63 | M63A  |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 64 | M64   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 65 | M65   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 66 | M66   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 67 | M67   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 68 | M68   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 69 | M69   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 70 | M70   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 71 | M71   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 72 | M72   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 73 | M73   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 74 | M74   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 75 | M75   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 76 | M76   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 77 | M77   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 78 | M78   |           |           |              |              |          | Yes      | ** NA **         |          | None    |
| 79 | M79   | BenPIN    |           |              |              |          | Yes      | ** NA **         |          | None    |
| 80 | M80   | BenPIN    |           |              |              |          | Yes      | ** NA **         |          | None    |
| 81 | M81   | BenPIN    |           |              |              |          | Yes      | ** NA **         |          | None    |

#### Hot Rolled Steel Design Parameters

|    | Label | Shape      | Length[in] | Lbyy[in] | Lbzz[in] | Lcomp top[in] | Lcomp bot[in]L-torqu | Куу | Kzz | Cb | Function |
|----|-------|------------|------------|----------|----------|---------------|----------------------|-----|-----|----|----------|
| 1  | C4    | PIPE 2.0   | 84         |          |          |               |                      |     |     |    | Lateral  |
| 2  | CBC1  | L6X3.5X5   | 160        |          |          | Lbyy          |                      |     |     |    | Lateral  |
| 3  | CBB1  | L6X3.5X5   | 160        |          |          | Lbyy          |                      |     |     |    | Lateral  |
| 4  | CBA1  | L6X3.5X5   | 160        |          |          | Lbyy          |                      |     |     |    | Lateral  |
| 5  | CBC2  | PIPE 2.0   | 160        |          |          | Lbyy          |                      |     |     |    | Lateral  |
| 6  | CBB2  | PIPE 2.0   | 160        |          |          | Lbyy          |                      |     |     |    | Lateral  |
| 7  | CBA2  | PIPE 2.0   | 160        |          |          | Lbyy          |                      |     |     |    | Lateral  |
| 8  | M19   | HSS4X4X3   | 76.148     |          |          |               |                      |     |     |    | Lateral  |
| 9  | M20   | PL5X3/8    | 2          |          |          |               |                      |     |     |    | Lateral  |
| 10 | M22   | PL 9"x1/2" | 23.165     |          |          |               |                      |     |     |    | Lateral  |
| 11 | M23   | L2.5x2.5x4 | 24.444     |          |          |               |                      |     |     |    | Lateral  |
| 12 | M24   | L2.5x2.5x4 | 24.444     |          |          |               |                      |     |     |    | Lateral  |
| 13 | M25   | L2.5x2.5x4 | 24.444     |          |          |               |                      |     |     |    | Lateral  |
| 14 | M58   | PL 9"x1/2" | 23.165     |          |          |               |                      |     |     |    | Lateral  |
| 15 | M61   | PL 9"x1/2" | 23.165     |          |          |               |                      |     |     |    | Lateral  |
| 16 | C3    | PIPE 2.0   | 84         |          |          |               |                      |     |     |    | Lateral  |
| 17 | C2    | PIPE 2.0   | 84         |          |          |               |                      |     |     |    | Lateral  |
| 18 | C1    | PIPE 2.0   | 84         |          |          |               |                      |     |     |    | Lateral  |
| 19 | B4    | PIPE 2.0   | 84         |          |          |               |                      |     |     |    | Lateral  |
| 20 | В3    | PIPE 2.0   | 84         |          |          |               |                      |     |     |    | Lateral  |
| 21 | B2    | PIPE 2.0   | 84         |          |          |               |                      |     |     |    | Lateral  |
| 22 | B1    | PIPE_2.0   | 84         |          |          |               |                      |     |     |    | Lateral  |

Oct 13, 2020 3:03 PM Checked By:\_

#### Hot Rolled Steel Design Parameters (Continued)

|    | Label | Shape       | Length[in] | Lbyy[in] | Lbzz[in] | Lcomp top[in] | Lcomp bot[in] | L-torqu | . Kyy | Kzz | Cb | Function |
|----|-------|-------------|------------|----------|----------|---------------|---------------|---------|-------|-----|----|----------|
| 23 | A4    | PIPE 2.0    | 84         | 77.      |          |               |               | ·       |       |     |    | Lateral  |
| 24 | A3    | PIPE 2.0    | 84         |          |          |               |               |         |       |     |    | Lateral  |
| 25 | A2    | PIPE 2.0    | 84         |          |          |               |               |         |       |     |    | Lateral  |
| 26 | A1    | PIPE 2.0    | 84         |          |          |               |               |         |       |     |    | Lateral  |
| 27 | M58A  | HSS4X4X3    | 76.148     |          |          |               |               |         |       |     |    | Lateral  |
| 28 | M61A  | HSS4X4X3    | 76.148     |          |          |               |               |         |       |     |    | Lateral  |
| 29 | M59A  | L4X4X4      | 65.677     |          |          |               |               |         |       |     |    | Lateral  |
| 30 | M60A  | PL5X3/8     | 4          |          |          |               |               |         |       |     |    | Lateral  |
| 31 | M62A  | PL5X3/8     | 2          |          |          |               |               |         |       |     |    | Lateral  |
| 32 | M63A  | PL5X3/8     | 4          |          |          |               |               |         |       |     |    | Lateral  |
| 33 | M65   | PL5X3/8     | 2          |          |          |               |               |         |       |     |    | Lateral  |
| 34 | M66   | L4X4X4      | 65.677     |          |          |               |               |         |       |     |    | Lateral  |
| 35 | M67   | PL5X3/8     | 4          |          |          |               |               |         |       |     |    | Lateral  |
| 36 | M69   | PL5X3/8     | 2          |          |          |               |               |         |       |     |    | Lateral  |
| 37 | M70   | PL5X3/8     | 4          |          |          |               |               |         |       |     |    | Lateral  |
| 38 | M72   | PL5X3/8     | 2          |          |          |               |               |         |       |     |    | Lateral  |
| 39 | M73   | L4X4X4      | 65.677     |          |          |               |               |         |       |     |    | Lateral  |
| 40 | M74   | PL5X3/8     | 4          |          |          |               |               |         |       |     |    | Lateral  |
| 41 | M76   | PL5X3/8     | 2          |          |          |               |               |         |       |     |    | Lateral  |
| 42 | M77   | PL5X3/8     | 4          |          |          |               |               |         |       |     |    | Lateral  |
| 43 | M79   | LL2.5x2.5x3 |            |          |          |               |               |         |       |     |    | Lateral  |
| 44 | M80   | LL2.5x2.5x3 |            |          |          |               |               |         |       |     |    | Lateral  |
| 45 | M81   | LL2.5x2.5x3 | -52.773    |          |          |               |               |         |       |     |    | Lateral  |

#### **Basic Load Cases**

|    | BLC Description            | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distribut | .Area(Me. | .Surface( |
|----|----------------------------|----------|-----------|-----------|-----------|-------|-------|-----------|-----------|-----------|
| 1  | Dead                       | None     | •         | -1.1      |           |       | 42    |           | 3         | , i       |
| 2  | Wind 0                     | None     |           |           |           |       | 84    | 90        |           |           |
| 3  | Wind 30                    | None     |           |           |           |       | 84    | 90        |           |           |
| 4  | Wind 60                    | None     |           |           |           |       | 84    | 90        |           |           |
| 5  | Wind 90                    | None     |           |           |           |       | 84    | 90        |           |           |
| 6  | Wind 120                   | None     |           |           |           |       | 84    | 90        |           |           |
| 7  | Wind 150                   | None     |           |           |           |       | 84    | 90        |           |           |
| 8  | Ice Load                   | None     |           |           |           |       | 42    | 45        | 3         |           |
| 9  | Ice 0                      | None     |           |           |           |       | 84    | 90        |           |           |
| 10 | Ice 30                     | None     |           |           |           |       | 84    | 90        |           |           |
| 11 | Ice 60                     | None     |           |           |           |       | 84    | 90        |           |           |
| 12 | Ice 90                     | None     |           |           |           |       | 84    | 90        |           |           |
| 13 | Ice 120                    | None     |           |           |           |       | 84    | 90        |           |           |
| 14 | Ice 150                    | None     |           |           |           |       | 84    | 90        |           |           |
| 15 | Lm1                        | None     |           |           |           | 1     |       |           |           |           |
| 16 | Lm2                        | None     |           |           |           | 1     |       |           |           |           |
| 17 | Lm3                        | None     |           |           |           | 1     |       |           |           |           |
| 18 | Lm4                        | None     |           |           |           | 1     |       |           |           |           |
| 19 | Lv1                        | None     |           |           |           | 1     |       |           |           |           |
| 20 | Lv2                        | None     |           |           |           | 1     |       |           |           |           |
| 21 | Lv3                        | None     |           |           |           | 1     |       |           |           |           |
| 22 | Lv4                        | None     |           |           |           | 1     |       |           |           |           |
| 23 | BLC 1 Transient Area Loads | None     |           |           |           |       |       | 69        |           |           |
| 24 | BLC 8 Transient Area Loads | None     |           |           |           |       |       | 69        |           |           |



Oct 13, 2020 3:03 PM Checked By:\_

#### **Load Combinations**

|          | Description                                                    | S P S. | B | FaE | 3  | Fa  | В  | Fa         | В | Fa | В | Fa | В | Fa | В | Fa | В | Fa | .В | Fa | В      | Fa        |
|----------|----------------------------------------------------------------|--------|---|-----|----|-----|----|------------|---|----|---|----|---|----|---|----|---|----|----|----|--------|-----------|
| 1        | 1.4 D                                                          | Yes Y  |   | 1.4 |    |     |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 2        | 1.2 D + 1.0 Wo @ 0                                             | Yes Y  |   | 1.2 | 2  | 1   |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 3        | 1.2 D + 1.0 Wo @ 30                                            | Yes Y  |   |     | 3  | 1   |    |            |   |    |   |    |   |    |   |    |   |    |    |    | П      |           |
| 4        | 1.2 D + 1.0 Wo @ 60                                            | Yes Y  |   | 1.2 |    | 1   |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 5        | 1.2 D + 1.0 Wo @ 90                                            | Yes Y  | 1 | 1.2 | 5  | 1   |    |            |   |    |   |    |   |    |   |    |   |    |    |    | $\Box$ |           |
| 6        | 1.2 D + 1.0 Wo @ 120                                           | Yes Y  | 1 | 1.2 | 6  | 1   |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 7        | 1.2 D + 1.0 Wo @ 150                                           | Yes Y  |   |     | 7  | 1   |    |            |   |    |   |    |   |    |   |    |   |    |    |    | $\Box$ |           |
| 8        | 1.2 D + 1.0 Wo @ 180                                           | Yes Y  |   | 1.2 | 2  | -1  |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 9        | 1.2 D + 1.0 Wo @ 210                                           | Yes Y  | 1 | 1.2 | 3  | -1  |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 10       | 1.2 D + 1.0 Wo @ 240                                           | Yes Y  | 1 | 1.2 | 4  | -1  |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 11       | 1.2 D + 1.0 Wo @ 270                                           | Yes Y  | 1 | 1.2 | 5  | -1  |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 12       | 1.2 D + 1.0 Wo @ 300                                           | Yes Y  | 1 | 1.2 | 6  | -1  |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 13       | 1.2 D + 1.0 Wo @ 330                                           | Yes Y  |   |     | 7  | -1  |    |            |   |    |   |    |   |    |   |    |   |    |    |    | Ш      | $\square$ |
| 14       |                                                                | Yes Y  |   |     | 8  | 1   | 9  | 1          |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 15       | 1.2 D + 1.0 Di + 1.0 Wi @ 30                                   | Yes Y  |   |     | 8  |     | 10 |            |   |    |   |    |   |    |   |    |   |    |    |    | ш      | $\Box$    |
| 16       |                                                                | Yes Y  |   |     | 8  | 1   | 11 | 1          |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 17       |                                                                | Yes Y  | 1 | 1.2 | 8  | 1_  | 12 | 1          |   |    |   |    |   |    |   |    |   |    |    |    | ш      | $\sqcup$  |
| 18       | 1.2 D + 1.0 Di + 1.0 Wi @ 120                                  |        |   |     | 8  | 1   | 13 |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
|          | 1.2 D + 1.0 Di + 1.0 Wi @ 150                                  |        |   |     | 8  | 1_  | 14 |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 20       | 1.2 D + 1.0 Di + 1.0 Wi @ 180                                  |        |   |     | 8  | 1   | 9  | -1         |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 21       | 1.2 D + 1.0 Di + 1.0 Wi @ 210                                  |        |   |     | 8  | 1   | 10 |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 22       | 1.2 D + 1.0 Di + 1.0 Wi @ 240                                  |        | 1 | 1.2 | 8  | 1_  | 11 | -1         |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 23       | 1.2 D + 1.0 Di + 1.0 Wi @ 270                                  |        | 1 | 1.2 | 8  | 1_  | 12 |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 24       | 1.2 D + 1.0 Di + 1.0 Wi @ 300                                  |        |   | 1.2 |    |     | 13 |            |   |    |   |    |   |    |   |    |   |    |    |    |        | $\vdash$  |
| 25       | 1.2 D + 1.0 Di + 1.0 Wi @ 330                                  |        |   |     | 8  | 1_  | 14 | -1<br>.058 |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
|          | 1.2 D + 1.5 Lm1 + 1.0 Wm @ 0                                   |        |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        | $\vdash$  |
| 27       | 1.2 D + 1.5 Lm1 + 1.0 Wm @ 30<br>1.2 D + 1.5 Lm1 + 1.0 Wm @ 60 | Yes Y  |   | 1.2 |    | 1.5 |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 28<br>29 | 1.2 D + 1.5 Lm1 + 1.0 Wm @ 90                                  | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 30       | 1.2 D + 1.5 Lm1 + 1.0 Wm @ 120                                 | Yes Y  |   | 1.2 |    |     | _  | .058       | _ |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 31       | 1.2 D + 1.5 Lm1 + 1.0 Wm @ 150                                 | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 32       | 1.2 D + 1.5 Lm1 + 1.0 Wm @ 180                                 | Yes Y  |   |     |    | 1.5 |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 33       |                                                                | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 34       |                                                                | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 35       | 1.2 D + 1.5 Lm1 + 1.0 Wm @ 270                                 | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 36       | 1.2 D + 1.5 Lm1 + 1.0 Wm @ 300                                 | Yes Y  |   | 1.2 |    |     |    | .058       | _ |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 37       |                                                                | Yes Y  |   |     |    | 1.5 |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    | $\Box$ |           |
|          | 1.2 D + 1.5 Lm2 + 1.0 Wm @ 0                                   |        |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 39       |                                                                | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 40       | 1.2 D + 1.5 Lm2 + 1.0 Wm @ 60                                  | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 41       | 1.2 D + 1.5 Lm2 + 1.0 Wm @ 90                                  | Yes Y  | 1 | 1.2 | 16 | 1.5 | 5  |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 42       |                                                                | Yes Y  | 1 | 1.2 | 16 | 1.5 | 6  | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 43       |                                                                | Yes Y  | 1 | 1.2 | 16 | 1.5 | 7  | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 44       |                                                                | Yes Y  |   | 1.2 |    |     |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 45       | 1.2 D + 1.5 Lm2 + 1.0 Wm @ 210                                 | Yes Y  |   | 1.2 |    |     |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 46       | 1.2 D + 1.5 Lm2 + 1.0 Wm @ 240                                 | Yes Y  |   | 1.2 |    |     |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 47       | 1.2 D + 1.5 Lm2 + 1.0 Wm @ 270                                 | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 48       |                                                                | Yes Y  |   | 1.2 |    |     |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 49       |                                                                | Yes Y  |   | 1.2 |    |     |    | .058       | _ |    |   |    |   |    |   |    |   |    |    |    |        | $\square$ |
| 50       | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 0                                   |        |   | 1.2 |    |     |    | .058       | _ |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 51       | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 30                                  | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 52       | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 60                                  | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 53       | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 90                                  | Yes Y  |   | 1.2 |    |     |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 54       |                                                                | Yes Y  |   | 1.2 |    |     |    |            |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 55       | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 150                                 | Yes Y  |   | 1.2 |    |     |    | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |
| 56       | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 180                                 | Yes Y  | 1 | 1.2 | 17 | 1.5 | 2  | .058       |   |    |   |    |   |    |   |    |   |    |    |    |        |           |



Company Designer Job Number Model Name

: Paul J. Ford and Company : AMS

: 37520-2224.001.7190

: 857012 - Plainville South Washington St

Oct 13, 2020 3:03 PM Checked By:\_

#### **Load Combinations (Continued)**

|    | Description                    |     |   | SB | Fa  | В  | .Fa | В | Fa   | В | Fa | В | Fa | В | Fa | В | Fa | .В | Fa | В | Fa | B | <u>Fa</u> |
|----|--------------------------------|-----|---|----|-----|----|-----|---|------|---|----|---|----|---|----|---|----|----|----|---|----|---|-----------|
| 57 | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 210 | Yes |   | 1  | 1.2 | 17 | 1.5 | 3 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 58 | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 240 | Yes |   | 1  | 1.2 | 17 | 1.5 | 4 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 59 | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 270 | Yes | Υ | 1  | 1.2 | 17 | 1.5 | 5 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 60 | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 300 | Yes |   | 1  | 1.2 | 17 | 1.5 | 6 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 61 | 1.2 D + 1.5 Lm3 + 1.0 Wm @ 330 | Yes |   | 1  | 1.2 | 17 | 1.5 | 7 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 62 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 0   | Yes | Υ | 1  | 1.2 | 18 | 1.5 | 2 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 63 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 30  | Yes |   | 1  | 1.2 | 18 | 1.5 | 3 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 64 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 60  | Yes | Υ | 1  | 1.2 | 18 | 1.5 | 4 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 65 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 90  | Yes |   | 1  | 1.2 | 18 | 1.5 | 5 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 66 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 120 | Yes |   | 1  | 1.2 | 18 | 1.5 | 6 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 67 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 150 | Yes |   | 1  | 1.2 | 18 | 1.5 | 7 | .058 |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 68 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 180 | Yes | Υ | 1  | 1.2 | 18 | 1.5 | 2 | 0    |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 69 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 210 | Yes |   | 1  | 1.2 | 18 | 1.5 | 3 | 0    |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 70 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 240 | Yes |   | 1  | 1.2 | 18 | 1.5 | 4 | 0    |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 71 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 270 | Yes | Υ | 1  | 1.2 | 18 | 1.5 | 5 | 0    |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 72 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 300 | Yes | Υ | 1  | 1.2 | 18 | 1.5 | 6 | 0    |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 73 | 1.2 D + 1.5 Lm4 + 1.0 Wm @ 330 | Yes | Υ | 1  | 1.2 | 18 | 1.5 | 7 | 0    |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 74 | 1.2 D + 1.5 Lv1                | Yes | Υ | 1  | 1.2 | 19 | 1.5 |   |      |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 75 | 1.2 D + 1.5 Lv2                | Yes | Υ | 1  | 1.2 | 20 | 1.5 |   |      |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 76 | 1.2 D + 1.5 Lv3                | Yes | Υ | 1  | 1.2 | 21 | 1.5 |   |      |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 77 | 1.2 D + 1.5 Lv4                | Yes | Υ | 1  | 1.2 | 22 | 1.5 |   |      |   |    |   |    |   |    |   |    |    |    |   |    |   |           |
| 78 | 1.0 D                          | Yes | Υ | 1  | 1   |    |     |   |      |   | ĺ  |   |    |   |    |   |    |    |    |   |    |   |           |

#### **Envelope Joint Reactions**

|    | Joint   |     | X [lb]    | LC | Y [lb]    | LC | Z [lb]    | LC | MX [k-ft] | LC | MY [k-ft] | LC | MZ [k-ft] | LC |
|----|---------|-----|-----------|----|-----------|----|-----------|----|-----------|----|-----------|----|-----------|----|
| 1  | N84     | max | 4240.003  | 11 | 375.769   | 23 | 1591.379  | 2  | .237      | 2  | 2.453     | 8  | .48       | 24 |
| 2  |         | min | -5478.263 | 5  | -105.741  | 5  | -1553.776 | 8  | 231       | 8  | -2.397    | 2  | 015       | 6  |
| 3  | N115B   | max | 2618.114  | 13 | 375.857   | 19 | 4811.915  | 13 | .406      | 19 | 2.453     | 4  | .154      | 4  |
| 4  |         | min | -1966.474 | 7  | -138.989  | 73 | -3762.547 | 7  | 072       | 62 | -2.398    | 10 | 285       | 10 |
| 5  | N121    | max | 2858.776  | 9  | 375.495   | 15 | 3583.713  | 3  | .067      | 11 | 2.453     | 12 | .125      | 6  |
| 6  |         | min | -2274.553 | 3  | -132.345  | 31 | -4673.879 | 9  | 433       | 17 | -2.398    | 6  | 258       | 24 |
| 7  | N146A   | max | 7939.4    | 17 | 4120.5    | 17 | 33.272    | 2  | 0         | 78 | 0         | 78 | 0         | 78 |
| 8  |         | min | 285.445   | 11 | 149.603   | 11 | -32.789   | 8  | 0         | 1  | 0         | 1  | 0         | 1  |
| 9  | N148    | max | -141.973  | 7  | 4117.683  | 25 | -245.918  | 7  | 0         | 78 | 0         | 78 | 0         | 78 |
| 10 |         | min | -3965.289 | 25 | 148.843   | 7  | -6871.88  | 25 | 0         | 1  | 0         | 1  | 0         | 1  |
| 11 | N150    | max | -142.366  | 3  | 4118.995  | 21 | 6872.213  | 21 | 0         | 78 | 0         | 78 | 0         | 78 |
| 12 |         | min | -3969.867 | 21 | 149.232   | 3  | 246.57    | 3  | 0         | 1  | 0         | 1  | 0         | 1  |
| 13 | Totals: | max | 5645.457  | 11 | 12363.973 | 19 | 5645.288  | 2  |           |    |           |    |           |    |
| 14 |         | min | -5645.448 | 5  | 3414.043  | 78 | -5645.28  | 8  |           |    |           |    |           |    |

#### Envelope AISC 15th(360-16): LRFD Steel Code Checks

|    | Member | Shape      | Code Check | Loc[in]LC | Shear Check | Loc[in][ | Dir L | _C phi*Pnc         | phi*Pnt [ | .phi*Mn y | .phi*Mn zCb Eqn |
|----|--------|------------|------------|-----------|-------------|----------|-------|--------------------|-----------|-----------|-----------------|
| 1  | M73    | L4X4X4     | .881       | 32.83820  |             | 32.838   | $z^2$ | <u>22</u> 41767.21 | 62532     | 3.138     | 6.124 1 H2-1    |
| 2  | M59A   | L4X4X4     | .881       | 32.83816  | .060        | 32.838   | z ′   | 18 41767.21        | 62532     | 3.138     | 6.124 1 H2-1    |
| 3  | M66    | L4X4X4     | .880       | 32.83924  | .060        | 32.839   | z ′   | 14 41767.21        | 62532     | 3.138     | 6.124 1 H2-1    |
| 4  | M23    | L2.5x2.5x4 | .691       | 0 11      | .098        | 0        | y ľ   | 11 33673.5         | 38556     | 1.114     | 2.537 1 H2-1    |
| 5  | M24    | L2.5x2.5x4 | .691       | 0 3       | .098        | 0        | y     | 3 33673.5          | 38556     | 1.114     | 2.537 1 H2-1    |
| 6  | M25    | L2.5x2.5x4 | .691       | 0 7       | .098        | 0        | У     | 7   33673.5        | 38556     | 1.114     | 2.537 1 H2-1    |
| 7  | M61    | PL 9"x1/2" | .561       | 11.58221  | .138        | 11.582   | y 1   | 12 39468.3         | 145800    | 1.519     | 27.338 1H1-1b   |
| 8  | M22    | PL 9"x1/2" | .560       | 11.582 17 | .138        | 0        | У     | 8 39468.3          | 145800    | 1.519     | 27.338 1H1-1b   |
| 9  | M58    | PL 9"x1/2" | .560       | 11.58225  | .138        | 0        | y     | 4 39468.3          | 145800    | 1.519     | 27.338 1H1-1b   |
| 10 | CBC2   | PIPE 2.0   | .471       | 53.33311  | .248        | 13.333   | •     | 11 5533.086        | 32130     | 1.872     | 1.872 2 H3-6    |
| 11 | CBA2   | PIPE 2.0   | .471       | 53.333 3  | .248        | 13.333   |       | 3 5533.086         | 32130     | 1.872     | 1.872 2 H3-6    |
| 12 | CBB2   | PIPE_2.0   | .471       | 53.333 7  | .248        | 13.333   |       | 7 5533.086         | 32130     | 1.872     | 1.872 2 H3-6    |

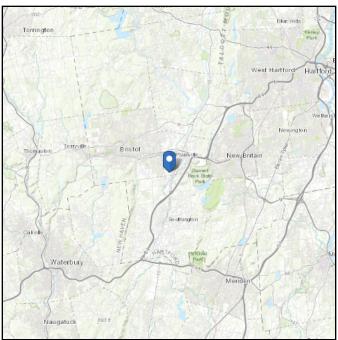
Oct 13, 2020 3:03 PM Checked By:\_

#### Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

|    | Member | Shape       | Code Check | Loc[in]LC | Shear Check | Loc[in] | Dir | LC phi*Pnc        | phi*Pnt [ | phi*Mn y | .phi*Mn zCb Eqn |
|----|--------|-------------|------------|-----------|-------------|---------|-----|-------------------|-----------|----------|-----------------|
| 13 | C2     | PIPE 2.0    | .407       | 33.25 2   | .140        | 33.25   |     | 4 17855.0         | 32130     | 1.872    | 1.872 1H1-1b    |
| 14 | A2     | PIPE 2.0    | .407       | 33.25 6   | .139        | 33.25   |     | 8 17855.0         | 32130     | 1.872    | 1.872 1H1-1b    |
| 15 | B2     | PIPE 2.0    | .407       | 33.25 10  | .140        | 33.25   |     | 12 17855.0        | 32130     | 1.872    | 1.872 2H1-1b    |
| 16 | В3     | PIPE 2.0    | .368       | 33.25 10  | .167        | 33.25   |     | 8 17855.0         | 32130     | 1.872    | 1.872 1H1-1b    |
| 17 | A3     | PIPE 2.0    | .368       | 33.25 6   | .167        | 33.25   |     | 4 17855.0         | 32130     | 1.872    | 1.872 1H1-1b    |
| 18 | C3     | PIPE 2.0    | .368       | 33.25 2   | .167        | 33.25   |     | 12 17855.0        | 32130     | 1.872    | 1.872 2H1-1b    |
| 19 | M77    | PL5X3/8     | .343       | 4 22      | .042        | 4       | У   | 21 56536.8        | 60750     | .475     | 6.328 1H1-1b    |
| 20 | M63A   | PL5X3/8     | .342       | 4 18      | .042        | 4       | ٧   | 17 56536.8        | 60750     | .475     | 6.328 1H1-1b    |
| 21 | M70    | PL5X3/8     | .342       | 4 14      | .042        | 4       | У   | <b>25</b> 56536.8 | 60750     | .475     | 6.328 1H1-1b    |
| 22 | M74    | PL5X3/8     | .333       | 4 19      | .043        | 4       | У   | 22 56536.7        | 60750     | .475     | 6.328 1H1-1b    |
| 23 | M60A   | PL5X3/8     | .333       | 4 15      | .043        | 4       | У   | 18 56536.7        | 60750     | .475     | 6.328 1H1-1b    |
| 24 | M67    | PL5X3/8     | .332       | 4 23      | .043        | 4       | У   | 14 56536.7        | 60750     | .475     | 6.328 1H1-1b    |
| 25 | CBB1   | L6X3.5X5    | .296       | 105 24    | .335        | 150     | У   | 16 15003.3        | 93636     | 3.396    | 10.611 2 H2-1   |
| 26 | CBA1   | L6X3.5X5    | .296       | 105 20    | .335        | 150     | У   | 24 15003.3        | 93636     | 3.396    | 10.592 2 H2-1   |
| 27 | CBC1   | L6X3.5X5    | .296       | 105 16    | .337        | 150     | У   | 20 15003.3        | 93636     | 3.396    | 10.584 2 H2-1   |
| 28 | M19    | HSS4X4X3    | .291       | 28.55516  | .075        | 76.148  | Z   | 2 90832.7         | 106812    | 12.662   | 12.662 2H1-1b   |
| 29 | M61A   | HSS4X4X3    | .290       | 28.55520  | .075        | 76.148  | Z   | 6 90832.7         | 106812    | 12.662   | 12.662 2H1-1b   |
| 30 | M58A   | HSS4X4X3    | .290       | 28.55524  | .075        | 76.148  | Z   | 10 90832.7        | 106812    | 12.662   | 12.662 2H1-1b   |
| 31 | C4     | PIPE 2.0    | .253       | 33.25 8   | .162        | 33.25   |     | 4 17855.0         | 32130     | 1.872    | 1.872 2H1-1b    |
| 32 | A4     | PIPE 2.0    | .253       | 33.25 12  | .162        | 33.25   |     | 8 17855.0         | 32130     | 1.872    | 1.872 2H1-1b    |
| 33 | B4     | PIPE 2.0    | .253       | 33.25 4   | .162        | 33.25   |     | 12 17855.0        | 32130     | 1.872    | 1.872 2H1-1b    |
| 34 | B1     | PIPE 2.0    | .241       | 33.25 4   | .186        | 68.25   |     | 7 17855.0         | 32130     | 1.872    | 1.872 2H1-1b    |
| 35 | A1     | PIPE 2.0    | .241       | 33.25 12  | .186        | 68.25   |     | 3 17855.0         | 32130     | 1.872    | 1.872 2H1-1b    |
| 36 | C1     | PIPE 2.0    | .241       | 33.25 8   | .186        | 68.25   |     | 11 17855.0        | 32130     | 1.872    | 1.872 2H1-1b    |
| 37 | M76    | PL5X3/8     | .234       | 1 11      | .511        | 2       | У   | 11 59668.1        | 60750     | .475     | 6.328 1H1-1b    |
| 38 | M62A   | PL5X3/8     | .234       | 1 7       | .511        | 2       | У   | 7 59668.1         | 60750     | .475     | 6.328 1H1-1b    |
| 39 | M69    | PL5X3/8     | .234       | 1 3       | .511        | 2       | y   | 3 59668.1         | 60750     | .475     | 6.328 1H1-1b    |
| 40 | M79    | LL2.5x2.5x3 | .225       | 26.38717  | .003        | 52.773  | У   | <b>17</b> 44475.9 | 58320     | 3.954    | 2.55 1 H1-1a    |
| 41 | M81    | LL2.5x2.5x3 | 225        | 26.38721  | .003        | 0       | ý   | 21 44475.9        | 58320     | 3.954    | 2.55 1 H1-1a    |
| 42 | M80    | LL2.5x2.5x3 | .225       | 26.38725  | .003        | 52.773  | У   | 25 44475.9        | 58320     | 3.954    | 2.55 1 H1-1a    |
| 43 | M20    | PL5X3/8     | .193       | 1 15      | .450        | 2       | У   | 3 59668.1         | 60750     | .475     | 6.328 2H1-1b    |
| 44 | M72    | PL5X3/8     | .193       | 1 19      | .450        | 2       | У   | 7 59668.1         | 60750     | .475     | 6.328 2H1-1b    |
| 45 | M65    | PL5X3/8     | .193       | 1 23      | .450        | 2       | ٧   | 11 59668.1        | 60750     | .475     | 6.328 2H1-1b    |



#### Address:


No Address at This Location

## **ASCE 7 Hazards Report**

Standard: ASCE/SEI 7-10 Elevation: 181.15 ft (NAVD 88)

Risk Category: || Latitude: 41.653064 Soil Class: D - Stiff Soil Longitude: -72.876917





#### Wind

#### Results:

Wind Speed: 121 Vmph
10-year MRI 76 Vmph
25-year MRI 86 Vmph
50-year MRI 92 Vmph
100-year MRI 99 Vmph

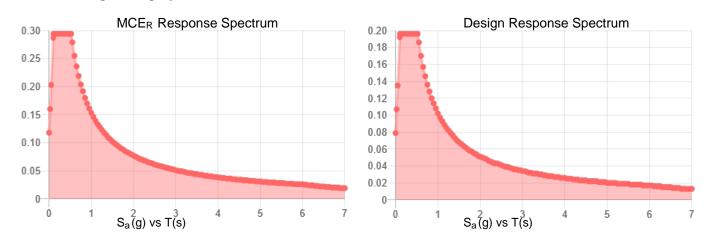
Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of

March 12, 2014

Date Accessed: Wed Oct 07 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.



#### **Seismic**

| Site Soil Class:<br>Results: | D - Stiff Soil |                    |       |  |
|------------------------------|----------------|--------------------|-------|--|
| S <sub>s</sub> :             | 0.184          | S <sub>DS</sub> :  | 0.196 |  |
| $S_1$ :                      | 0.064          | S <sub>D1</sub> :  | 0.102 |  |
| Fa:                          | 1.6            | $T_L$ :            | 6     |  |
| F <sub>v</sub> :             | 2.4            | PGA:               | 0.094 |  |
| S <sub>MS</sub> :            | 0.294          | PGA <sub>M</sub> : | 0.15  |  |
| S <sub>M1</sub> :            | 0.153          | F <sub>PGA</sub> : | 1.6   |  |
|                              |                | 1. •               | 1     |  |

#### Seismic Design Category B



Data Accessed: Wed Oct 07 2020

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

Wed Oct 07 2020

ASCE/SEI 7-10 Ch. 21 are available from USGS.



#### **Ice**

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 5 F

Gust Speed: 50 mph

**Data Source:** Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Wed Oct 07 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

# APPENDIX C ADDITIONAL CALCULATIONS



Project # 37520-2224.001.7190

By **AMS** 

Date: 10/13/20 v3.6, Effective 08/10/2020

## **MOUNT TO TOWER CONNECTION CHECKS-LRFD**

| TIA Rev.   | H-15.5   | AISC   | 15th                     |
|------------|----------|--------|--------------------------|
| Mount Type | 3-Sector | Checks | <b>Bolts &amp; Welds</b> |

|      | REACTIONS FROM RISA-3D |                         |                    |                          |                                           |                                         |               |
|------|------------------------|-------------------------|--------------------|--------------------------|-------------------------------------------|-----------------------------------------|---------------|
| NODE | LC                     | Horizontal<br>Shear (k) | Vertical Shear (k) | Axial along<br>member(k) | Moment about<br>horizontal axis<br>(ft-k) | Moment about<br>Vertical axis<br>(ft-k) | Torque (ft-k) |
| N84  | Envelope               | 1.59                    | 0.38               | 5.48                     | 0.48                                      | 2.45                                    | 0.24          |

| Bolt<br>Information | Tuno  | Dia (in)  | Quantity | Vertical Bolt spacing | Horizontal Bolt  |
|---------------------|-------|-----------|----------|-----------------------|------------------|
|                     | Type  | Dia (III) | Quantity | (D) (in)              | spacing (B) (in) |
|                     | A325N | 0.625     | 4        | 6                     | 6                |

| CHECKS      | Forces | Strength | Rating |
|-------------|--------|----------|--------|
| TENSION (K) | 4.30   | 20.7     | 20.8%  |
|             | Reduce | -        |        |
| SHEAR (k)   | 0.58   | 12.4     | 4.6%   |

Note: Tension reduction not required if tension or shear capacity < 30%

|   |       | 1 |   |
|---|-------|---|---|
|   |       | 3 | D |
| X | <br>Z |   | X |

| Standoff | Туре      | Width (b) (in) | Depth (d) (in) | thickness (in) | Weld Size | Weld Assumed? | Stiffeners present |
|----------|-----------|----------------|----------------|----------------|-----------|---------------|--------------------|
| Member   | Rectangle | 4              | 4              | 0.1875         | 0.1875    | yes           | No                 |

| WELDS CHECKS  | Resultant (k) | Strength (k) | Rating |
|---------------|---------------|--------------|--------|
| WEED'S CHECKS | 1.37          | 4.18         | 32.8%  |

| Controlling Rating per TIA-222-H Section 15.5: | 31.3%  |
|------------------------------------------------|--------|
|                                                | 02.070 |

# Exhibit F

**Power Density/RF Emissions Report** 



## RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11378G

CT378/ATT FT Plainville2 335 S. Washington Street Plainville, Connecticut 06062

October 28, 2020

EBI Project Number: 6220005611

| Site Compliance Summary                                    |           |  |
|------------------------------------------------------------|-----------|--|
| Compliance Status:                                         | COMPLIANT |  |
| Site total MPE% of FCC general population allowable limit: | 33.05%    |  |



October 28, 2020

T-Mobile Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, Connecticut 06002

Emissions Analysis for Site: CT11378G - CT378/ATT FT Plainville2

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **335 S. Washington Street** in **Plainville, Connecticut** for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ( $\mu$ W/cm²). The number of  $\mu$ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ( $\mu$ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400  $\mu$ W/cm² and 467  $\mu$ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000  $\mu$ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.



Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

#### **CALCULATIONS**

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 335 S. Washington Street in Plainville, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) 2 LTE channels (700 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 4 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 4 LTE channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.



- 6) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 7) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 8) 2 LTE channels (BRS Band 2500 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 9) 2 NR channels (BRS Band 2500 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 10) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 11) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 12) The antennas used in this modeling are the Ericsson AIR 32 for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the RFS APXVAALL24\_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz channel(s) in Sector A, the Ericsson AIR 32 for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the RFS APXVAALL24\_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz channel(s) in Sector B, the Ericsson AIR 32 for the 1900 MHz / 1900 MHz / 2100 MHz channel(s), the RFS APXVAALL24\_43-U-NA20 for the 600 MHz / 600 MHz / 700 MHz / 1900 MHz / 2100 MHz channel(s), the Ericsson AIR 6449 for the 2500 MHz / 2500 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative



estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 13) The antenna mounting height centerline of the proposed antennas is 100 feet above ground level (AGL).
- 14) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 15) All calculations were done with respect to uncontrolled / general population threshold limits.



## **T-Mobile Site Inventory and Power Data**

| Sector:             | A                                    | Sector:             | В                                    | Sector:             | С                                    |
|---------------------|--------------------------------------|---------------------|--------------------------------------|---------------------|--------------------------------------|
| Antenna #:          | ı                                    | Antenna #:          | ı                                    | Antenna #:          | I                                    |
| Make / Model:       | Ericsson AIR 32                      | Make / Model:       | Ericsson AIR 32                      | Make / Model:       | Ericsson AIR 32                      |
|                     | 1900 MHz / 1900 MHz /                |                     | 1900 MHz / 1900 MHz /                |                     | 1900 MHz / 1900 MHz /                |
| Frequency Bands:    | 2100 MHz                             | Frequency Bands:    | 2100 MHz                             | Frequency Bands:    | 2100 MHz                             |
| Gain:               | 15.35 dBd / 15.35 dBd /              | Gain:               | 15.35 dBd / 15.35 dBd /              | Gain:               | 15.35 dBd / 15.35 dBd /              |
|                     | 15.85 dBd                            |                     | 15.85 dBd                            |                     | 15.85 dBd                            |
| Height (AGL):       | 100 feet                             | Height (AGL):       | 100 feet                             | Height (AGL):       | 100 feet                             |
| Channel Count:      | 8                                    | Channel Count:      | 8                                    | Channel Count:      | 8                                    |
| Total TX Power (W): | 360 Watts                            | Total TX Power (W): | 360 Watts                            | Total TX Power (W): | 360 Watts                            |
| ERP (W):            | 12,841.53                            | ERP (W):            | 12,841.53                            | ERP (W):            | 12,841.53                            |
| Antenna A1 MPE %:   | 4.62%                                | Antenna B1 MPE %:   | 4.62%                                | Antenna CI MPE %:   | 4.62%                                |
| Antenna #:          | 2                                    | Antenna #:          | 2                                    | Antenna #:          | 2                                    |
| Make / Model:       | RFS APXVAALL24_43-U-<br>NA20         | Make / Model:       | RFS APXVAALL24_43-U-<br>NA20         | Make / Model:       | RFS APXVAALL24_43-U-<br>NA20         |
|                     | 600 MHz / 600 MHz / 700              |                     | 600 MHz / 600 MHz / 700              |                     | 600 MHz / 600 MHz / 700              |
| Frequency Bands:    | MHz / 1900 MHz / 2100                | Frequency Bands:    | MHz / 1900 MHz / 2100                | Frequency Bands:    | MHz / 1900 MHz / 2100                |
| . ,                 | MHz                                  | . ,                 | MHz                                  | . ,                 | MHz                                  |
|                     | 12.95 dBd / 12.95 dBd /              |                     | 12.95 dBd / 12.95 dBd /              |                     | 12.95 dBd / 12.95 dBd /              |
| Gain:               | 13.65 dBd / 15.45 dBd /<br>16.45 dBd | Gain:               | 13.65 dBd / 15.45 dBd /<br>16.45 dBd | Gain:               | 13.65 dBd / 15.45 dBd /<br>16.45 dBd |
| Height (AGL):       | 10.43 dbd                            | Height (AGL):       | 100 feet                             | Height (AGL):       | 100 feet                             |
| Channel Count:      | 9                                    | Channel Count:      | 9                                    | Channel Count:      | 9                                    |
| Total TX Power (W): | 380 Watts                            | Total TX Power (W): | 380 Watts                            | Total TX Power (W): | 380 Watts                            |
| ERP (W):            | 11,010.27                            | ERP (W):            | 11.010.27                            | ERP (W):            | 11,010.27                            |
| Antenna A2 MPE %:   | 6.02%                                | Antenna B2 MPE %:   | 6.02%                                | Antenna C2 MPE %:   | 6.02%                                |
|                     | 3                                    |                     | 3                                    |                     | 3                                    |
| Antenna #:          | <del>-</del>                         | Antenna #:          |                                      | Antenna #:          | -                                    |
| Make / Model:       | Ericsson AIR 6449                    | Make / Model:       | Ericsson AIR 6449                    | Make / Model:       | Ericsson AIR 6449                    |
| Frequency Bands:    | 2500 MHz / 2500 MHz                  | Frequency Bands:    | 2500 MHz / 2500 MHz                  | Frequency Bands:    | 2500 MHz / 2500 MHz                  |
| Gain:               | 22.05 dBd / 22.05 dBd                | Gain:               | 22.05 dBd / 22.05 dBd                | Gain:               | 22.05 dBd / 22.05 dBd                |
| Height (AGL):       | 100 feet                             | Height (AGL):       | 100 feet                             | Height (AGL):       | 100 feet                             |
| Channel Count:      | 4                                    | Channel Count:      | 4                                    | Channel Count:      | 4                                    |
| Total TX Power (W): | 160 Watts                            | Total TX Power (W): | 160 Watts                            | Total TX Power (W): | 160 Watts                            |
| ERP (W):            | 25,651.93                            | ERP (W):            | 25,651.93                            | ERP (W):            | 25,651.93                            |
| Antenna A3 MPE %:   | 9.22%                                | Antenna B3 MPE %:   | 9.22%                                | Antenna C3 MPE %:   | 9.22%                                |

| Site Composite MPE %        |        |  |  |  |
|-----------------------------|--------|--|--|--|
| Carrier                     | MPE %  |  |  |  |
| T-Mobile (Max at Sector A): | 19.86% |  |  |  |
| AT&T                        | 5.59%  |  |  |  |
| Verizon                     | 4.84%  |  |  |  |
| Clearwire                   | 0.28%  |  |  |  |
| Metro PCS                   | 2.48%  |  |  |  |
| Site Total MPE % :          | 33.05% |  |  |  |

| T-Mobile MPE % Per Sector |        |  |  |  |
|---------------------------|--------|--|--|--|
| T-Mobile Sector A Total:  | 19.86% |  |  |  |
| T-Mobile Sector B Total:  | 19.86% |  |  |  |
| T-Mobile Sector C Total:  | 19.86% |  |  |  |
|                           |        |  |  |  |
| Site Total MPE % :        | 33.05% |  |  |  |

| T-Mobile Maximum MPE Power Values (Sector A)          |               |                               |                  |                              |                    |                           |                  |
|-------------------------------------------------------|---------------|-------------------------------|------------------|------------------------------|--------------------|---------------------------|------------------|
| T-Mobile Frequency Band /<br>Technology<br>(Sector A) | #<br>Channels | Watts ERP<br>(Per<br>Channel) | Height<br>(feet) | Total Power Density (µW/cm²) | Frequency<br>(MHz) | Allowable MPE<br>(µW/cm²) | Calculated % MPE |
| T-Mobile 1900 MHz GSM                                 | 4             | 1028.30                       | 100.0            | 14.79                        | 1900 MHz GSM       | 1000                      | 1.48%            |
| T-Mobile 1900 MHz LTE                                 | 2             | 2056.61                       | 100.0            | 14.79                        | 1900 MHz LTE       | 1000                      | 1.48%            |
| T-Mobile 2100 MHz LTE                                 | 2             | 2307.55                       | 100.0            | 16.59                        | 2100 MHz LTE       | 1000                      | 1.66%            |
| T-Mobile 600 MHz LTE                                  | 2             | 591.73                        | 100.0            | 4.25                         | 600 MHz LTE        | 400                       | 1.06%            |
| T-Mobile 600 MHz NR                                   | I             | 1577.94                       | 100.0            | 5.67                         | 600 MHz NR         | 400                       | 1.42%            |
| T-Mobile 700 MHz LTE                                  | 2             | 695.22                        | 100.0            | 5.00                         | 700 MHz LTE        | 467                       | 1.07%            |
| T-Mobile 1900 MHz LTE                                 | 2             | 2104.51                       | 100.0            | 15.13                        | 1900 MHz LTE       | 1000                      | 1.51%            |
| T-Mobile 2100 MHz UMTS                                | 2             | 1324.71                       | 100.0            | 9.53                         | 2100 MHz UMTS      | 1000                      | 0.95%            |
| T-Mobile 2500 MHz LTE                                 | 2             | 6412.98                       | 100.0            | 46.11                        | 2500 MHz LTE       | 1000                      | 4.61%            |
| T-Mobile 2500 MHz LTE                                 | 2             | 6412.98                       | 100.0            | 46.11                        | 2500 MHz LTE       | 1000                      | 4.61%            |
|                                                       | •             | <u>'</u>                      | •                | <u>'</u>                     |                    | Total:                    | 19.86%           |

<sup>•</sup> NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.



#### **Summary**

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

| T-Mobile Sector         | Power Density Value (%) |  |  |
|-------------------------|-------------------------|--|--|
| Sector A:               | 19.86%                  |  |  |
| Sector B:               | 19.86%                  |  |  |
| Sector C:               | 19.86%                  |  |  |
| T-Mobile Maximum        | 19.86%                  |  |  |
| MPE % (Sector A):       | 17.00%                  |  |  |
|                         |                         |  |  |
| Site Total:             | 33.05%                  |  |  |
|                         |                         |  |  |
| Site Compliance Status: | COMPLIANT               |  |  |

The anticipated composite MPE value for this site assuming all carriers present is **33.05**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.