

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

March 17, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 85 Quaker Farms Road, Oxford, CT 06478 Latitude: 41.384000 Longitude: -73.137361 Site #: 845455_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 85 Quaker Farms Road, Oxford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 111-foot level of the existing 150foot monopole, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by Kimley Horn, dated March 3, 2022, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated September 23, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council, Docket No. 261 on December 22, 2003. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to George R. Temple, First Selectman and Steven Macary, Zoning Enforcement Official for the Town of Oxford, as well as the tower owner (Crown Castle) and property owner (William & Elaine Schiavi).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 150-feet and the Dish Wireless LLC antennas will be located at a centerline height of 111-feet.

2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 22.99% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole in Oxford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 111-foot level of the existing 150-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Oxford.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments

Cc: George R. Temple, First Selectman Oxford Town Hall 486 Oxford Road Oxford, CT 06478

> Steven S. Macary-ZEO Oxford Town Hall 486 Oxford Road Oxford, CT 06478

William & Elaine Schiavi - Property Owners 85 Quaker Farms Road Oxford, CT 06478

Crown Castle - Tower Owner

Exhibit A

Original Facility Approval

PLANNING & ZONING COMMISSION
TOWN OF OXFORD
486 Oxford Road
Oxford, CT 06478
(203) 888-2543

we want to a second

z :	2.	05-116
Date	Rec'd:	L1-28-CS
Date	on Agenda:	· · · · · · · · · · · · · · · · · · ·
65-D	ay Expirati	on:

ZOWING PERMIT APPLICATION

(This permit is hereby applied for in accordance with the requirements of the Oxford Zoning Regulations)

-		
Dwasawie w	Tdeets	
Property		ification

CE Durge Frank AD	
Street Address: 85 QUAKER FARMS RD Subdivision Name: Date Approved: Map: 23 Block: 7 Lot: 8 Zoning district: R-A	Purpose New Home
Subdivision Name: Date Approved;	Addition
Rap: <u>2</u> Block. <u>7</u> Loc. <u>7</u> Loning district. <u>7</u>	Garage
<u>Owner/Applicant</u>	Cottage Business
	Swimming Pool IG AG
Owner Name: SCHIAVI Owner Address: 85 QUAKEN FRANSKY	Sign
Owner Address: 85 QUAKEN FRANSKA	Shed
Owner Telephone:	Barn
	Change of Use
Applicant Name: NEW CINGULAN WINELESS PLS, LLC	Excavating/Filling
Applicant Address: 500 FUTE. LARISE DR., ROLMY HAL	Trailer
Applicant Name: NEW CINGULAR WINELESS PC5, LLC Applicant Address: 500 FUTELLARISE DR., ROLLY HAL Applicant Telephone: 860 -513 - 7636 CT 06067	Trailer CELL 5.75
	l i i i i i i i i i i i i i i i i i i i
Miscellaneous Information + CT SITING COUNCIL CERTIFICATE	<u>Use</u>
	arulto tomeri waaraanta
Special Exception: Article Section Yes 🛛 🖗 🛩	Multi-Family Residence
Site Plan Approval: Article Section Yes G	Commercial Industrial
Variance Granted: Date Granted:	Regidential / POD
Vallance Glanceu Date Glanceu.	Jother CELL SIJE
Signatures/Authorization	
organout op numeri alteren	Required Approvals and Dates
Application for Zoning Permit approval as described herein is hereby made. The	Inland Wetlands
Oxford Planning & Zoning Commission and its technical staff are authorized to	P.D.D.H.
enter the property for the purpose of evaluating this application.	Fire Marshal
	Z.B.A
<u>Permit Void If</u>: a) Work or activity not commenced within 1 year of the date	W.P.C.A.
of issuance or b) Authorized construction not completed within 2 years of the	Floodplain
date of issuance.	Copy of Deed
mble south the terms to be the term of the terms of terms of the terms of terms o	Driveway Cristing
This permit, if issued, is based upon the plot plan submitted. Falsification,	Erosion Control Plan
by misrepresentation or omission, or failure to comply with the conditions of	Plot Plan * 4 26 65
approval of this permit constitute a violation of the Oxford Zoning Regulations.	Other
1+0- in a state of the	106.00 Town Fee
Attin la Cingular Wheek 2-28-05	<u>Je. c.</u> State Pee
Property Owner or Agent') Date	136. Total Fee
Draw plot plan of proposed construction and attach. Plan must show property boundaries and dimensions; loc	
respect to boundaries; location of existing buildings on property; outside dimensions of all buildings propo	
supply; location of semage system. All copies must have a complete sketch. Construction and use must be ex	actly as described in this application. If
later changes from this plan are desired prior approval of an amended application is necessary.	

			area brear abbraint or	an anomara akkryogeran	i to necessari.		
Denied	Approved	By: Title:	ZEE	1 Vat	Date:	128.05	
Reason	for Denial						(Ade

ZPA-1 (Adopted 5/15/97)

White - P&Z Files / Yellow - Building Department / Pink - Applicant

DOCKET NO. 261 - AT&T Wireless PCS, LLC d/b/a AT&T	}	Connecticut
Wireless application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance	}	Siting
and operation of a wireless telecommunications facility at one of two sites at 85 Quaker Farms Road, Oxford, Connecticut.	}	Council
		December 22, 2003

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to AT&T Wireless PCS d/b/a AT&T Wireless for the construction, maintenance and operation of a wireless telecommunications facility at Site B, located at 85 Quaker Farms Road, Oxford, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T and other entities, both public and private, but such tower shall not exceed a height of 153 feet above ground level, including appurtenances. Antennas installed on the monopole shall be flush mounted.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) color options for painting the tower, including the color option preferred by the Town of Oxford;
 - b) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, access road, utility line, and landscaping; and
 - c) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and Sediment Control</u>, as amended.
- 3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

Docket No. 261 Decision & Order Page 2

- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing. The Certificate Holder shall provide space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
- 6. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 7. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 8. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the <u>Waterbury Republican-American</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The party to this proceeding is:

<u>Applicant</u>

AT&T Wireless PCS, LLC d/b/a AT&T Wireless (AT&T)

Its Representative

Christopher B. Fisher, Esq. Cuddy & Feder LLP 90 Maple Avenue White Plains, New York 10601

Exhibit B

Property Card

Parcel ID 23/57/8/CELL

Property Information

Owner	AT&T
Address	85 QUAKER FARMS RD
Mailing Address	575 MOROSGO DR
	ATLANTA , GA 30324
Land Use	- Cell Tower
Land Class	1

Census Tract	
Neighborhood	090
Zoning	
Acreage	0
Utilities	
Lot Setting/ Desc	I

Photo

PARCEL VALUATIONS (Assessed value = 70% of Appraised Value)

	Appraised	Assessed
Buildings	0	0
Outbuildings	655600	458900
Improvements	655600	458900
Extras	0	0
Land	0	0
Total	655600	458900
Previous		

Construction Details

Year Built	
Stories	
Building Style	
Building Use	
Building Condition	
Total Rooms	
Bedrooms	
Full Bathrooms	0
Half Bathrooms	
Bath Style	
Kitchen Style	
Roof Style	
Roof Cover	

EXTERIOR WALLS:

Primary	
Secondary	
INTERIOR WAL	LS:
Primary	
Secondary	
FLOORS:	
Primary	
Secondary	
HEATING/AC:	
Heating Type	
Heating Fuel	
АС Туре	

BUILDING AREA:	
Effective Building Area	
Gross Building Area	

Gross Building Area	
Total Living Area	

SALES HISTORY:

Sale Date	10/1/2010
Sale Price	0
Book/ Page	000/ 000

Parcel ID 23/57/8

Property Information

Owner	SCHIAVI WILLIAM & ELAINE W			
Address	85 QUAKER FARMS RD			
Mailing Address	85 QUAKER FARMS RD OXFORD CT 06478			
Land Use	, - Res Dwelling			
Land Class	R			

Census Tract	L 6
Neighborhood	090
Zoning	RESA
Acreage	12.5
Utilities	
Lot Setting/ Desc	/ Clear

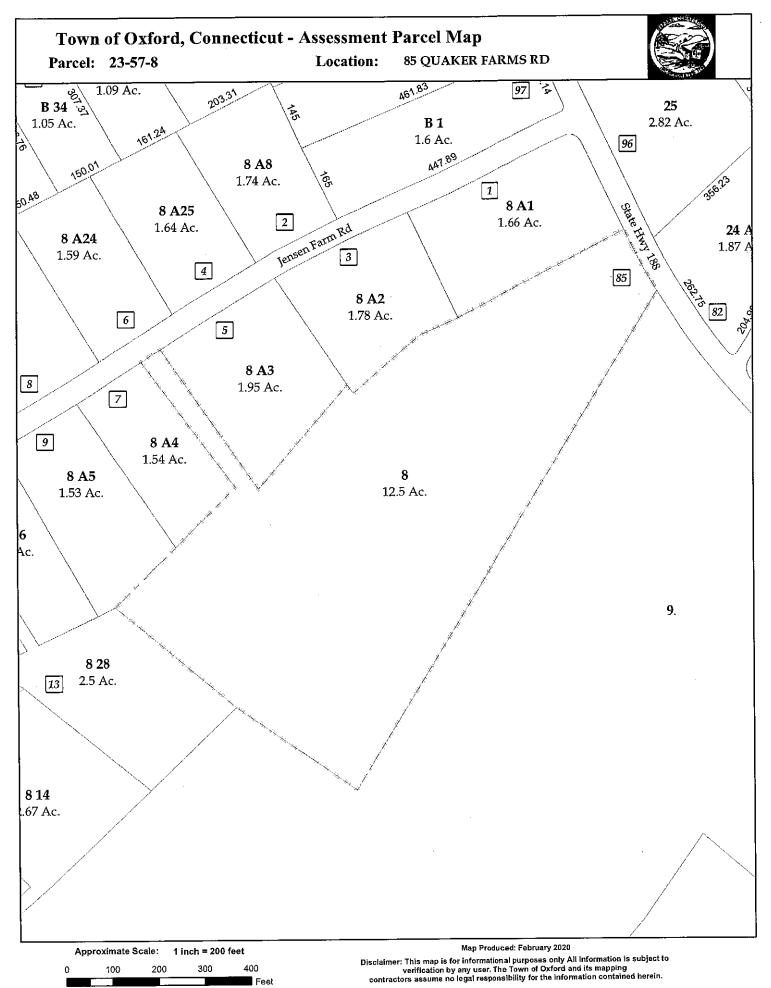
PARCEL VALUATIONS (Assessed value = 70% of Appraised Value)

	Appraised	Assessed
Buildings	206200	144300
Outbuildings	41600	29200
Improvements	247800	173500
Extras	0	0
Land	388300	203000
Total	636100	376500
Previous		

Construction Details

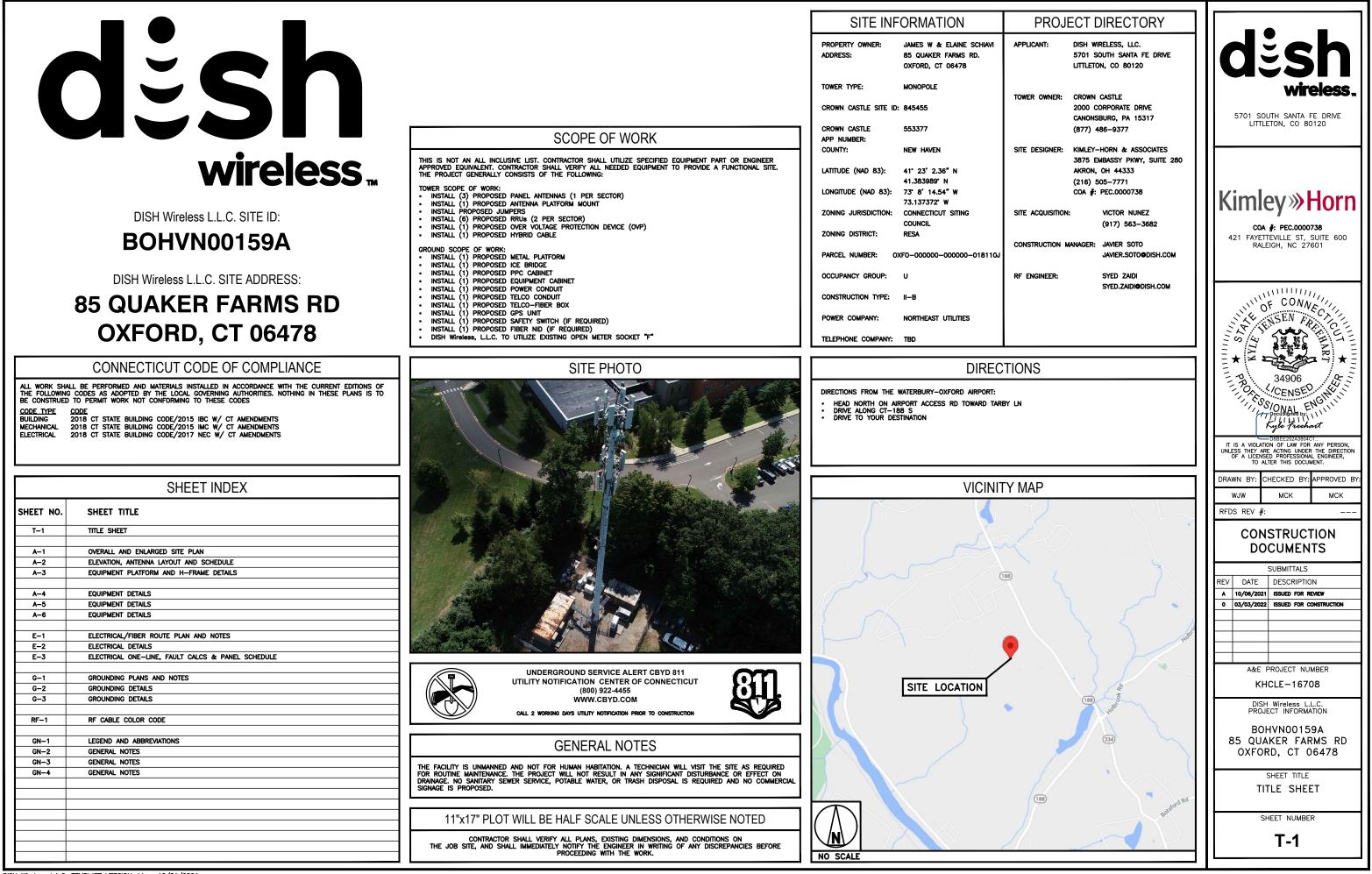
Year Built	
Stories	2
Building Style	Colonial
Building Use	Residential
Building Condition	В-
Total Rooms	
Bedrooms	4 Bedrooms
Full Bathrooms	0
Half Bathrooms	
Bath Style	Average
Kitchen Style	Average
Roof Style	Gable
Roof Cover	Arch Shingles

EXTERIOR WALLS:

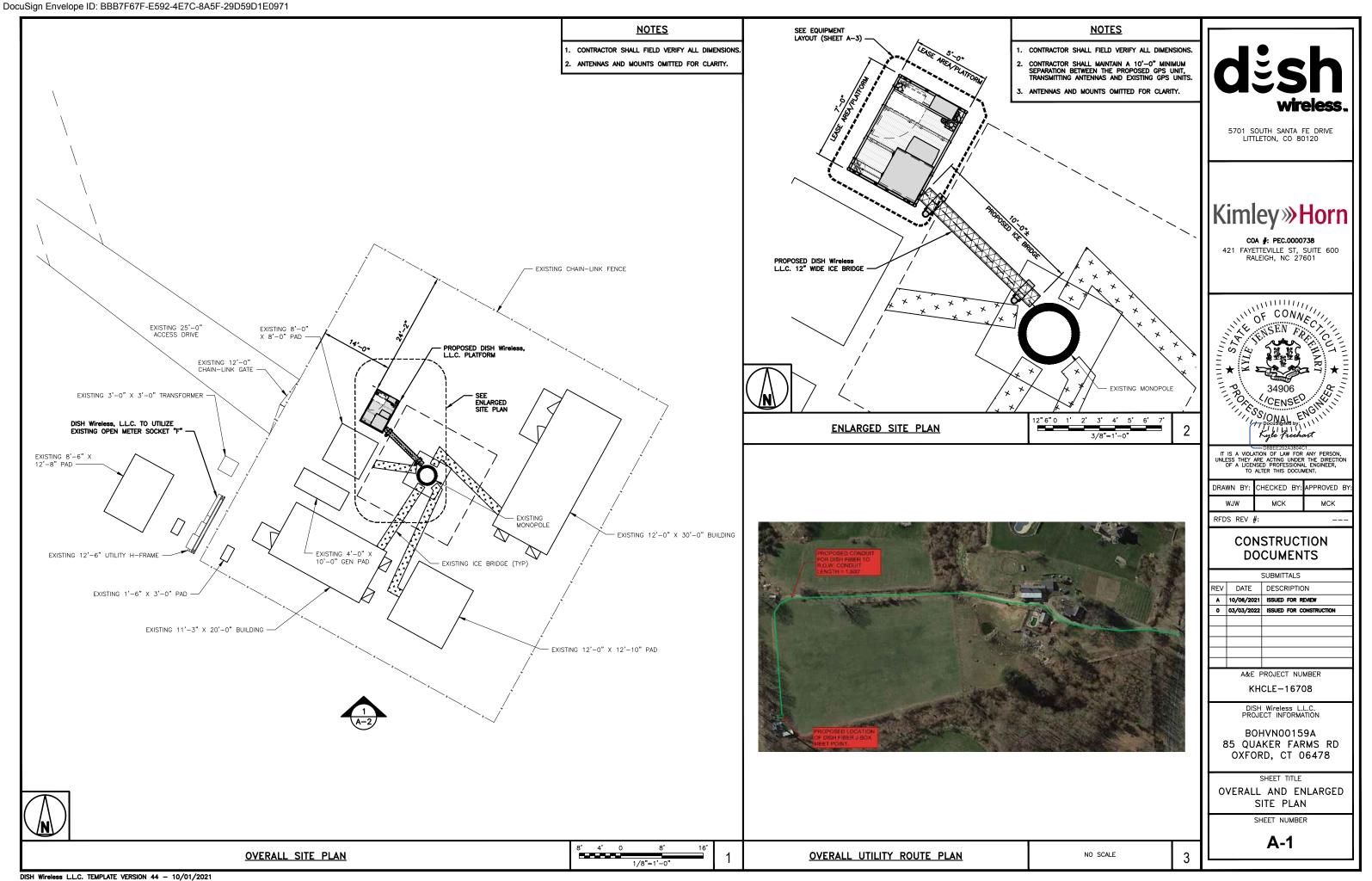

Primary	Clapboard			
Secondary	Wood Shingle			
INTERIOR WAL	LS:			
Primary	Drywall			
Secondary				
FLOORS:				
Primary	Hardwood			
Secondary	Carpet			
HEATING/AC:				
Heating Type	Hot Water			
Heating Fuel	Oil			
АС Туре	None			

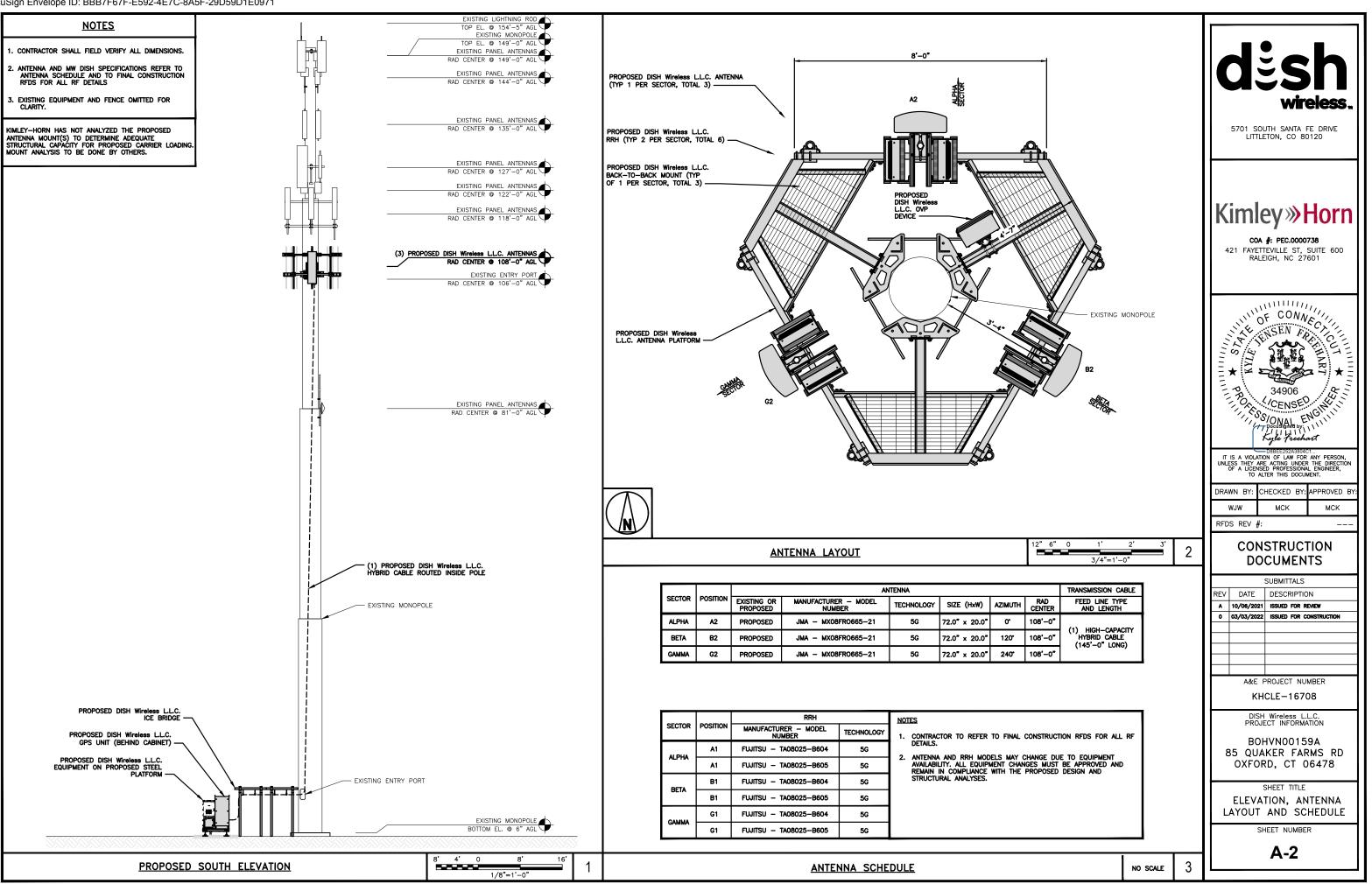
BUILDING AREA:	
Effective Building Area	
Gross Building Area	

Total Living Area

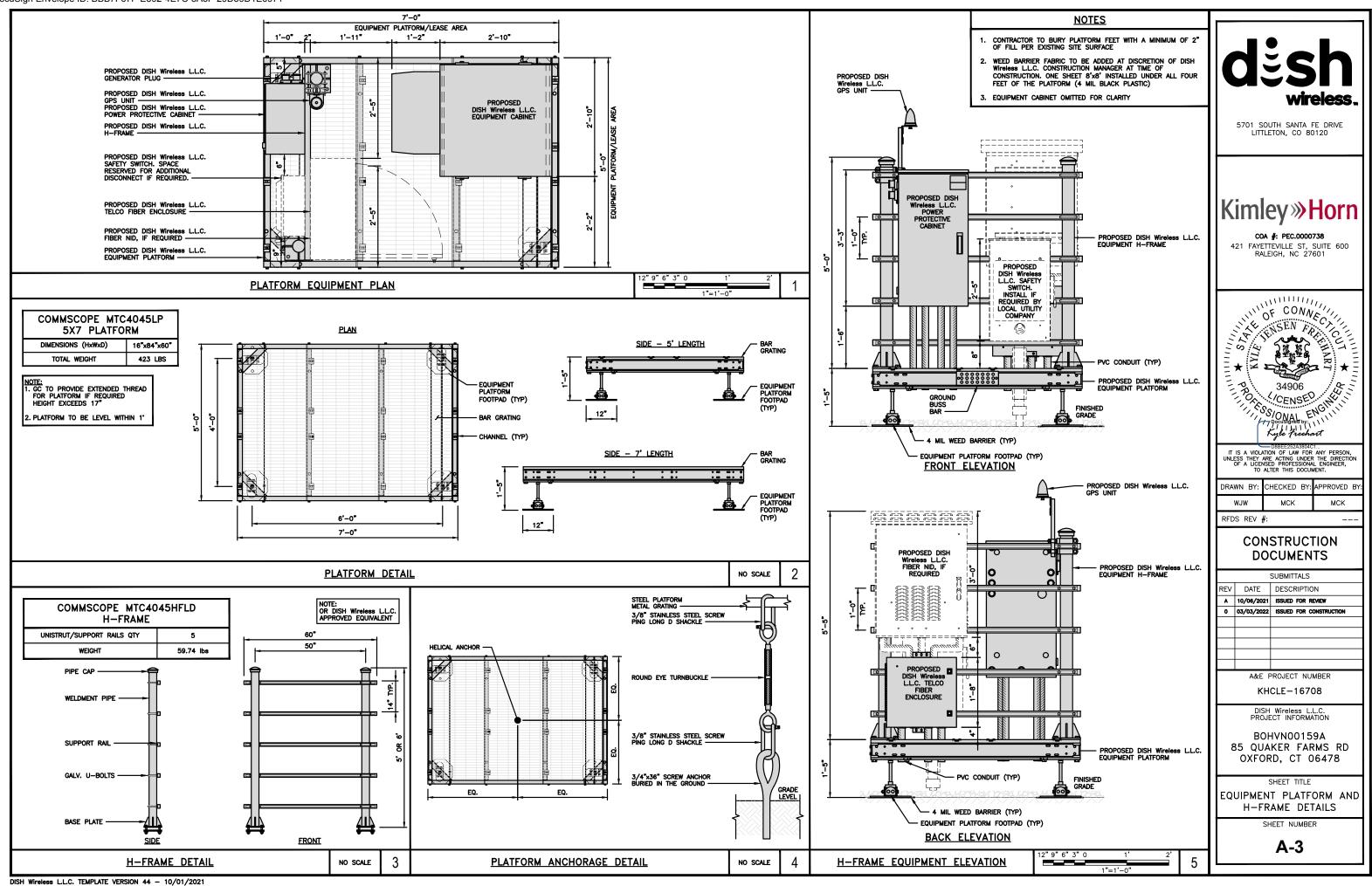

SALES HISTORY:

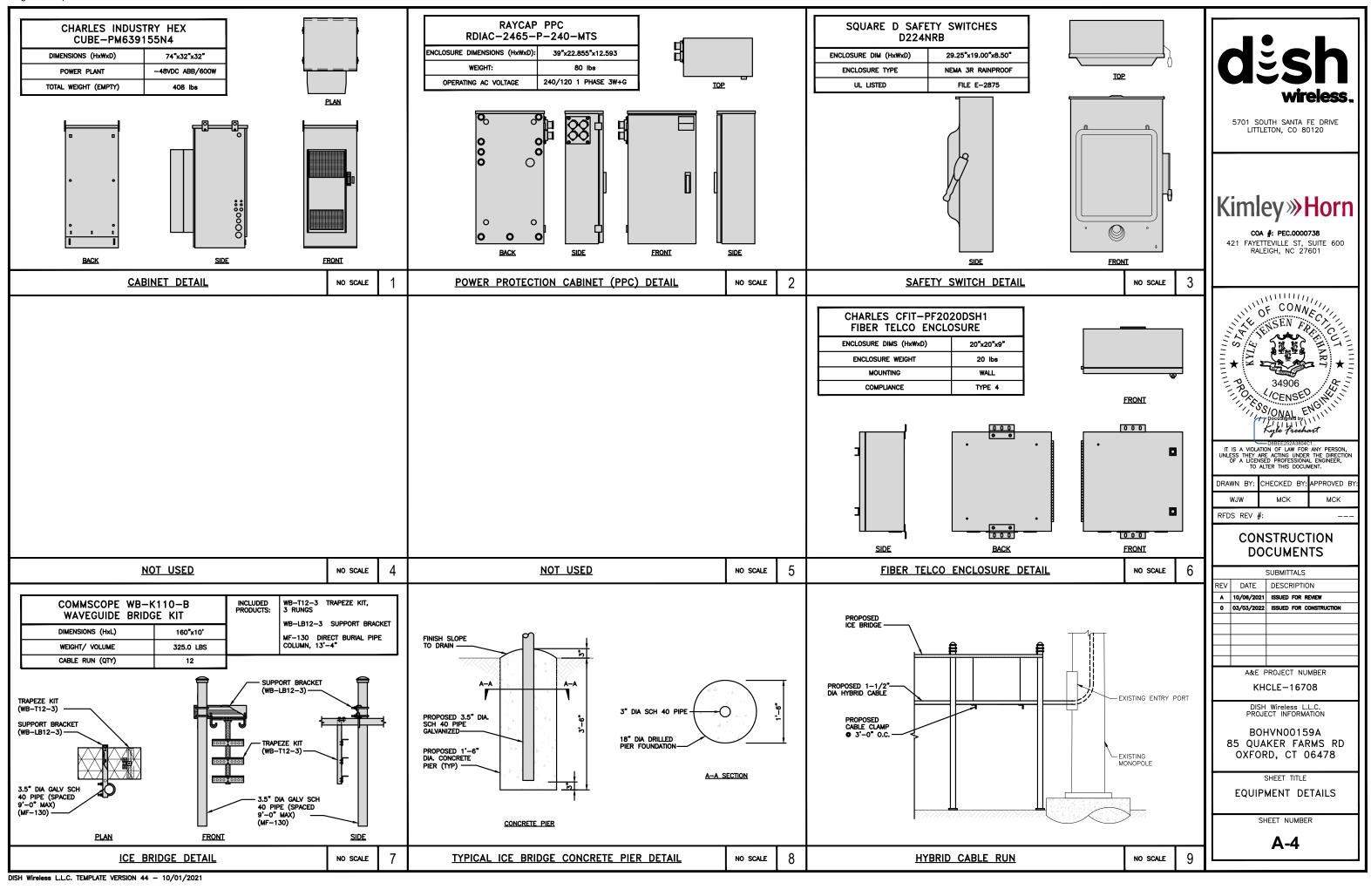
Sale Date	4/1/1996				
Sale Price	0				
Book/ Page	187/ 390				

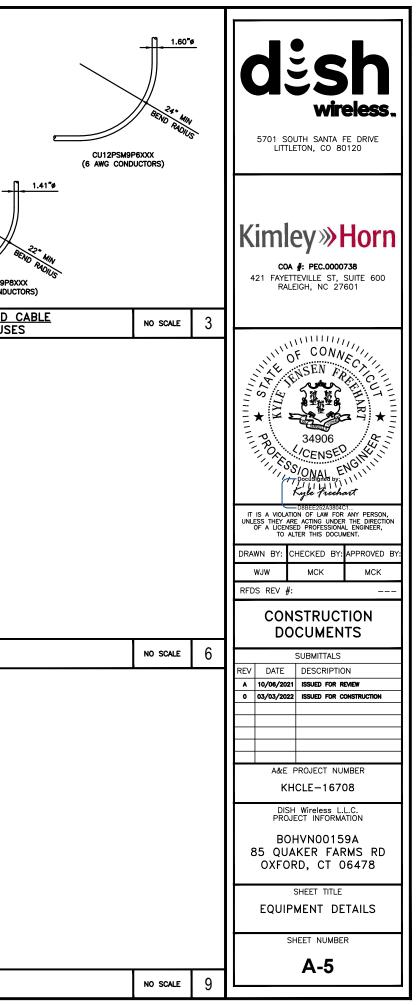


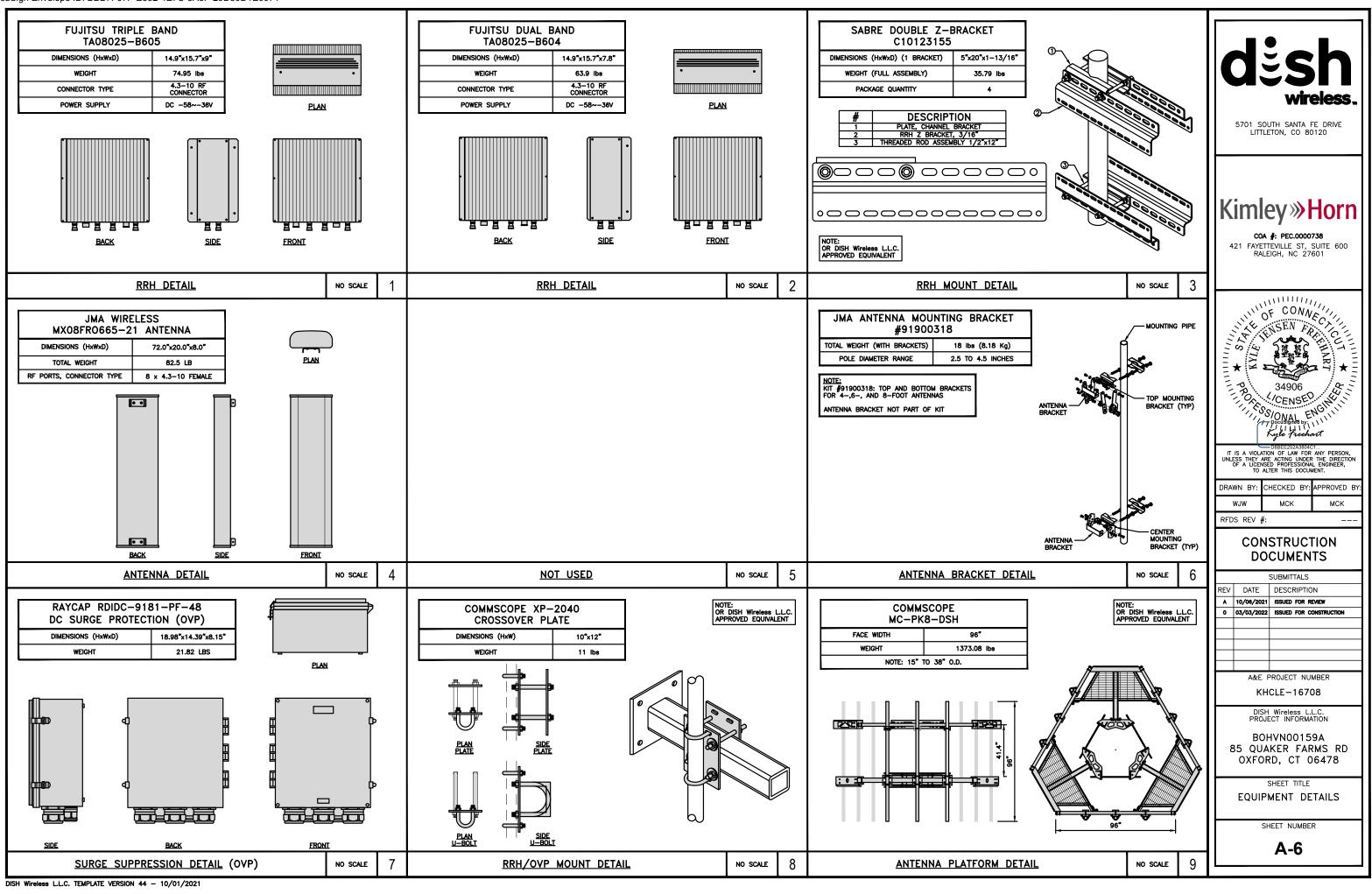

Exhibit C

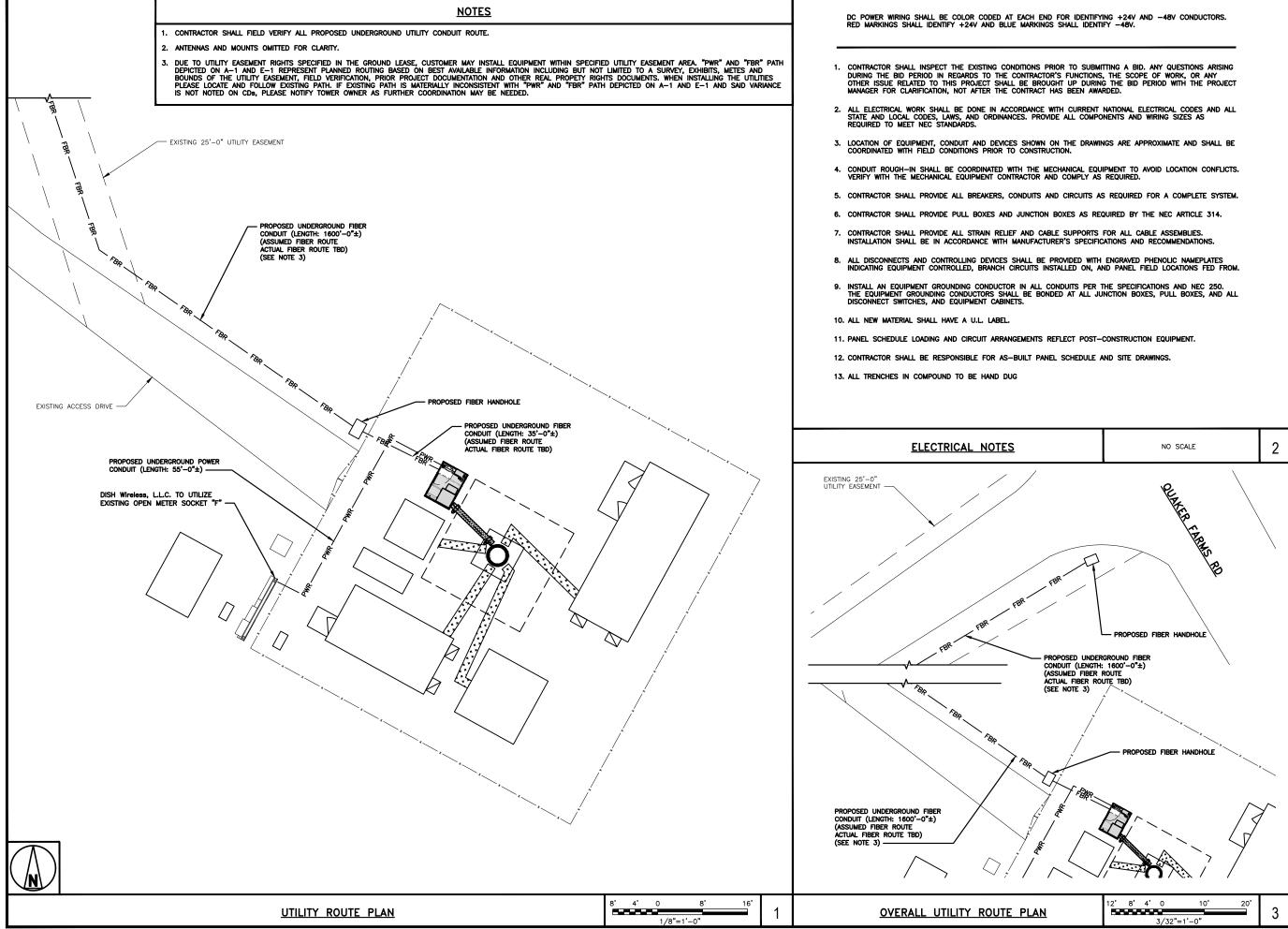
Construction Drawings

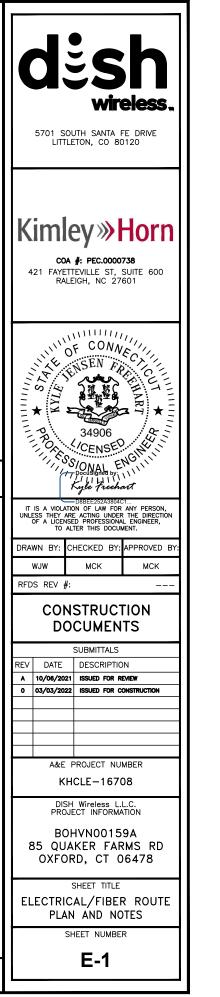


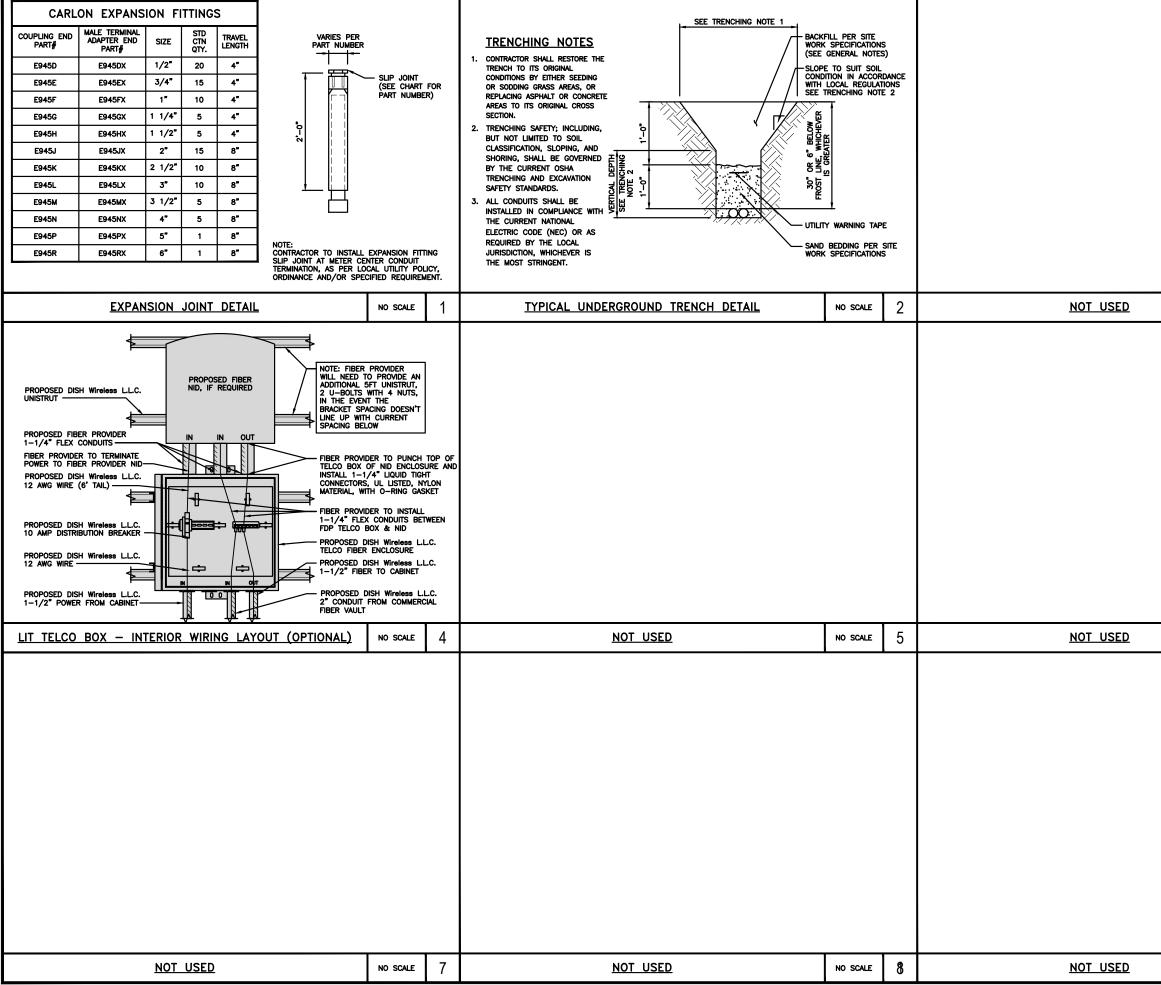

APPLICANT:	5701 S	RELESS, LLC. DUTH SANTA FE DRIVE N, CO 80120
OWER OWNER:	2000 C	CASTLE DRPORATE DRIVE BURG, PA 15317 86–9377
SITE DESIGNER:	3875 El AKRON, (216) 5	HORN & ASSOCIATES WBASSY PKWY, SUITE 280 OH 44333 05-7771 PEC.0000738
SITE ACQUISITION:		VICTOR NUNEZ (917) 563–3682
CONSTRUCTION M	ANAGER:	JAVIER SOTO JAVIER.SOTO©DISH.COM
RF ENGINEER:		SYED ZAIDI SYED.ZAIDI©DISH.COM


DocuSign Envelope ID: BBB7F67F-E592-4E7C-8A5F-29D59D1E0971

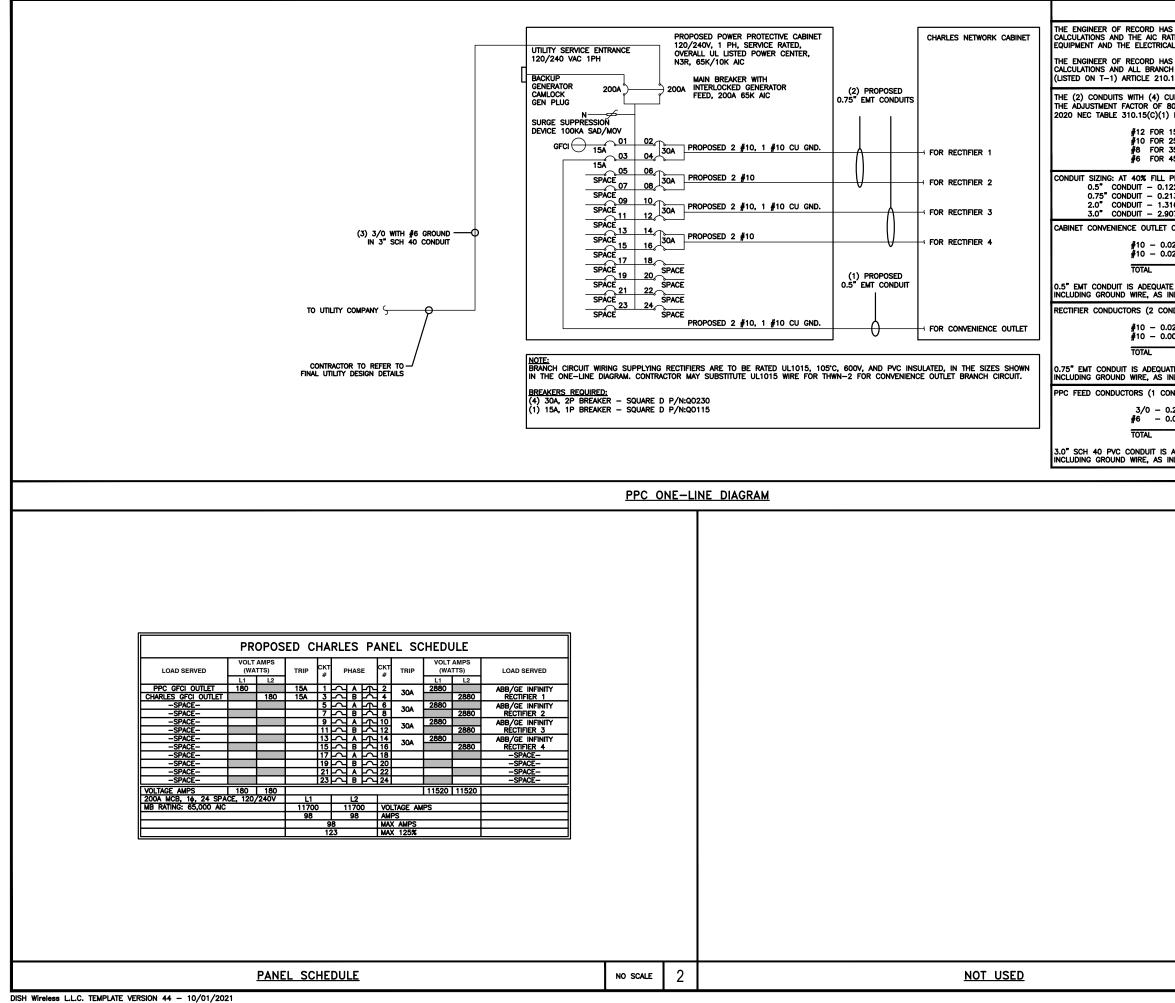



DocuSign Envelope ID: BBB7F67F-E592-4E7C-8A5F-29D59D1E0971

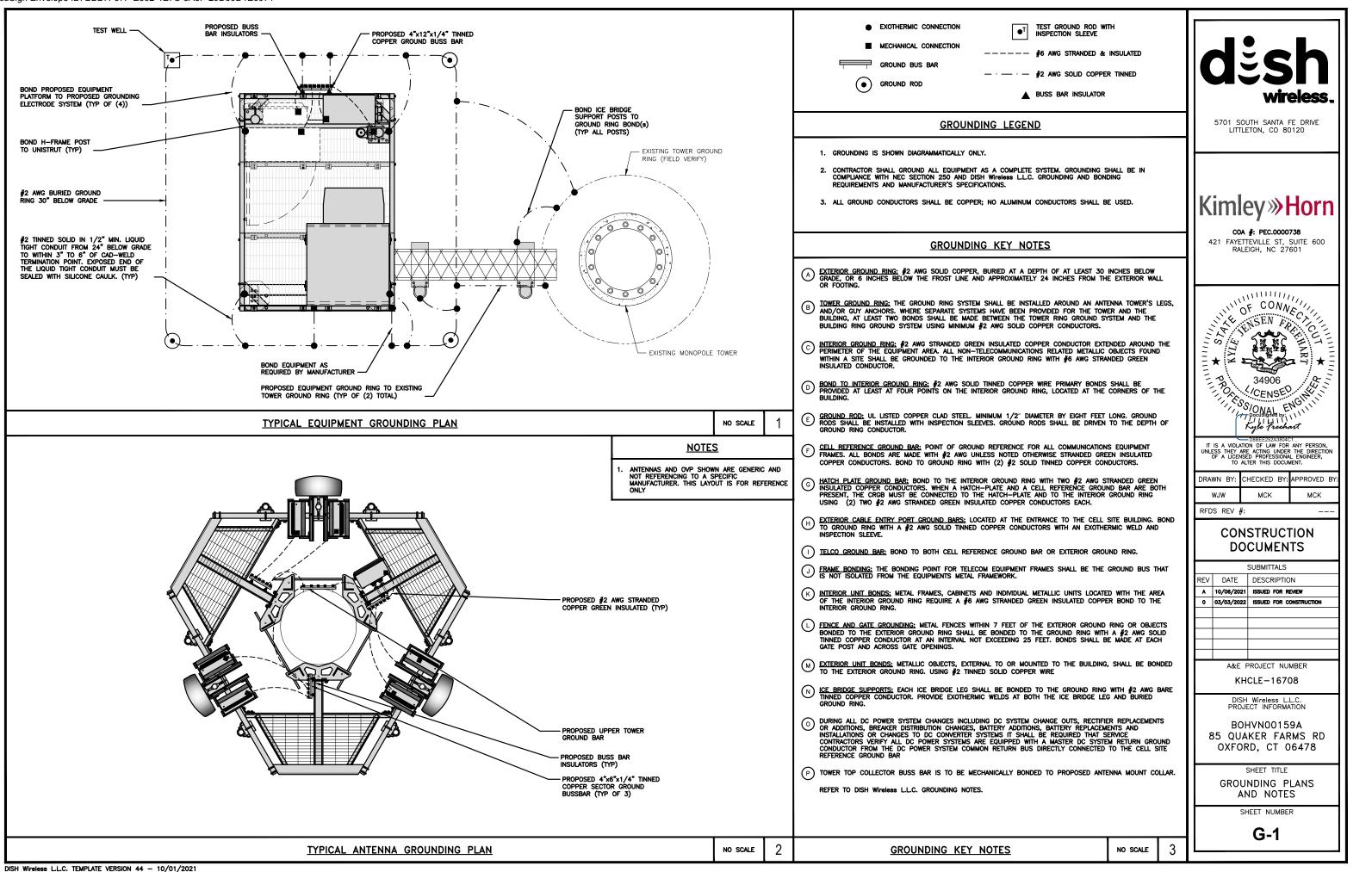

PCTEL GPSGL-TMG-SPI-40NCB DIMENSIONS (DIAXH) MM/INCH 81x184mm 3.2*x7.25" WEIGHT W/ACCESSORIES 075 lbs CONNECTOR N-FEMALE FREQUENCY RANGE 1590 ± 30MHz			MINIMUM OF 75% OR 270° IN ANY DIRECTION GPS GPS UNIT BE BELOW 10° 10°			CU12PSM6P4XXX (4 AWG CONDUCTORS)
<u>GPS_DETAIL</u>	NO SCALE	1	GPS MINIMUM SKY VIEW REQUIREMENTS	NO SCALE	2	CABLES UNLIMITED HYBRID MINIMUM BEND RADIUSE
NOT USED	NO SCALE	4	NOT USED	NO SCALE	5	NOT_USED
NOT USED	NO SCALE	7	NOT USED	NO SCALE	8	NOT USED
DISH Wireless L.L.C. TEMPLATE VERSION 44 - 10/01/2021		'				

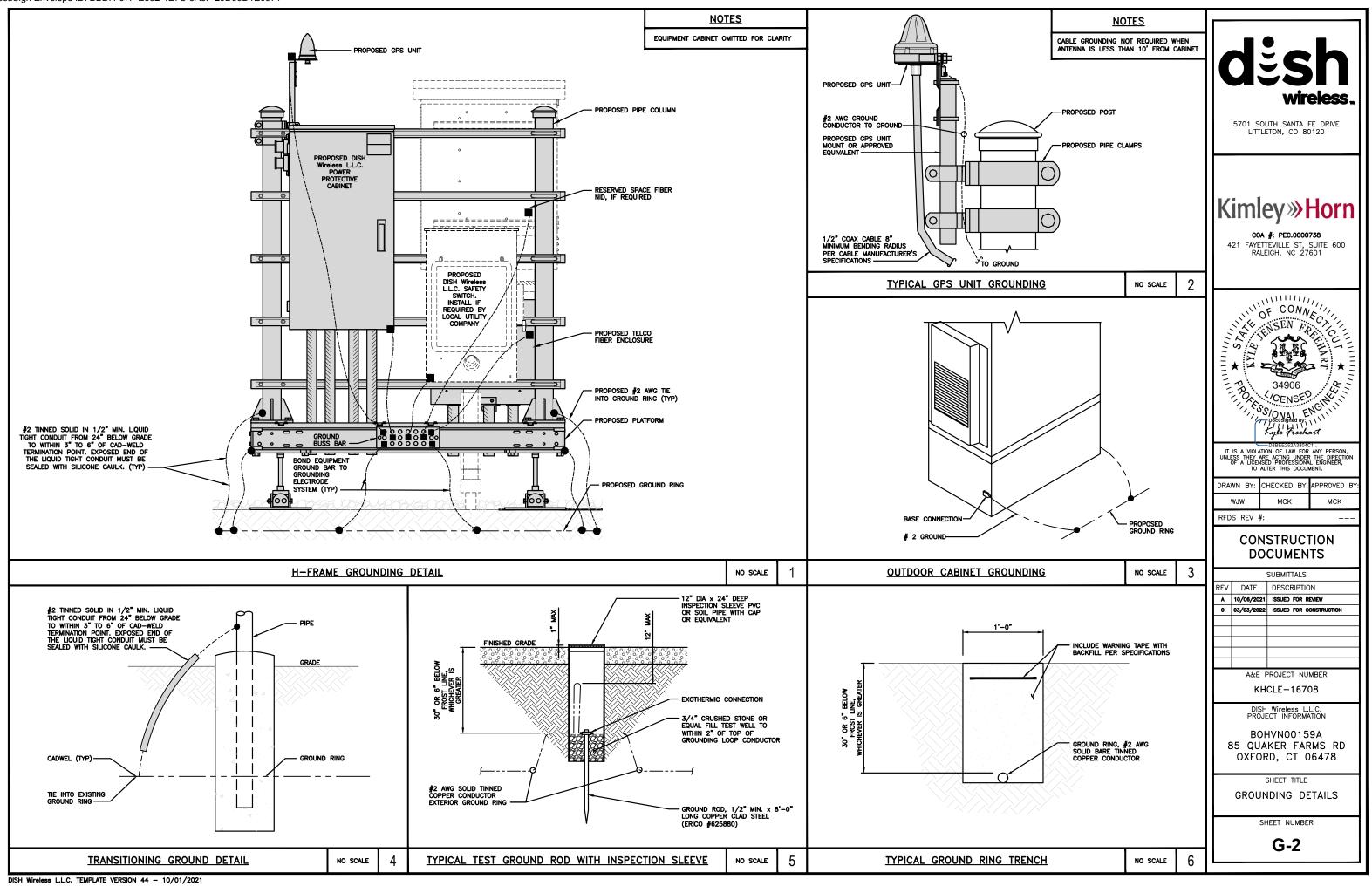


DocuSign Envelope ID: BBB7F67F-E592-4E7C-8A5F-29D59D1E0971

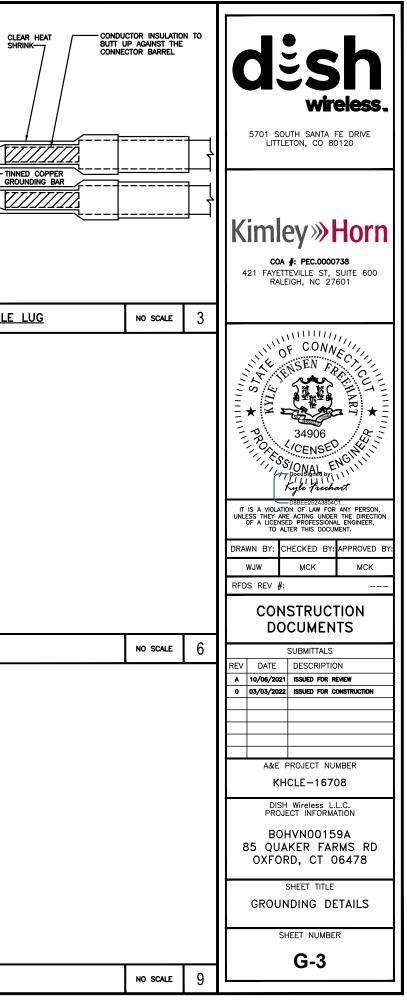


DocuSign Envelope ID: BBB7F67F-E592-4E7C-8A5F-29D59D1E0971




		desh wireless. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
		Kimley » Horn coa #: pec.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601
NO SCALE	3	Advance of a Licensed Professional Enconnection of a Licensed Professional Enconnect To alter This Document.
NO SCALE	6	SUBMITTALS REV DATE DESCRIPTION
		A 10/06/2021 ISSUED FOR REVIEW O 03/03/2022 ISSUED FOR CONSTRUCTION A A ISSUED FOR CONSTRUCTION A A ISSUED FOR CONSTRUCTION A A ISSUED FOR CONSTRUCTION BOHVNODISPA BOHVN00159A BOHVN00159A 85 QUAKER FARMS RD OXFORD, CT 06478 SHEET TITLE ELECTRICAL DETAILS SHEET NUMBER SHEET NUMBER
NO SCALE	9	E-2

HAS PERFORMED ALL REQUIRED SH RATINGS FOR EACH DEVICE IS ADE ICAL SYSTEM.	QUATE TO PROT	ect the	
HAS PERFORMED ALL REQUIRED VO NCH CIRCUIT AND FEEDERS COMPL 10.19(A)(1) FPN NO. 4.	LTAGE DROP Y WITH THE NEC	;	džsn
CURRENT CARRYING CONDUCTORS 80% PER 2014/17 NEC TABLE 3 1) FOR UL1015 WIRE.			wireless.,
R 15A-20A/1P BREAKER: 0.8 x 3 R 25A-30A/2P BREAKER: 0.8 x 4 R 35A-40A/2P BREAKER: 0.8 x 5 R 45A-60A/2P BREAKER: 0.8 x 7	0A = 32.0A 5A = 44.0A		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
L PER NEC CHAPTER 9, TABLE 4, 122 SQ. IN AREA .213 SQ. IN AREA .316 SQ. IN AREA .907 SQ. IN AREA	ARTICLE 358.		
T CONDUCTORS (1 CONDUIT): USIN	NG THWN-2, CU		Kimley Horn
0.0211 SQ. IN X 2 = 0.0422 SQ. 0.0211 SQ. IN X 1 = 0.0211 SQ.	in In <ground< td=""><td></td><td></td></ground<>		
= 0.0633 SQ.			COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600
ATE TO HANDLE THE TOTAL OF (3) INDICATED ABOVE.	WIRES,		RALEIGH, NC 27601
CONDUITS): USING UL1015, CU.			
0.0266 SQ. IN X 4 = 0.1064 SQ. 0.0082 SQ. IN X 1 = 0.0082 SQ.		UND	IN OF CONNECTION
= 0.1146 SQ.			OF CONNEC
UATE TO HANDLE THE TOTAL OF (5) INDICATED ABOVE.	5) WIRES,		IN OF CONVECT
CONDUIT): USING THWN, CU.			ALL STA
0.2679 SQ. IN X 3 = 0.8037 SC 0.0507 SQ. IN X 1 = 0.0507 SC			A VOLATION OF LAW FOR ANY PERSON, UNLESS AVOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION
= 0.8544 SC			34906 A
S ADEQUATE TO HANDLE THE TOTA INDICATED ABOVE.	L OF (4) WIRES	5 ,	CENSE NG
			T poculsigned by
	NO SCALE	1	hyle freehart
		· ·	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
			DRAWN BY: CHECKED BY: APPROVED BY:
			WJW MCK MCK
			RFDS REV #:
			CONSTRUCTION DOCUMENTS
			SUBMITTALS
			REV DATE DESCRIPTION A 10/06/2021 ISSUED FOR REVIEW
			A 10/06/2021 ISSUED FOR REVIEW 0 03/03/2022 ISSUED FOR CONSTRUCTION
			A&E PROJECT NUMBER
			KHCLE-16708
			DISH Wireless L.L.C. PROJECT INFORMATION
			BOHVN00159A
			85 QUAKER FARMS RD OXFORD, CT 06478
			SHEET TITLE
			ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
			SHEET NUMBER
			E-3
	NO SCALE	3	



Г

 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GA BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BC THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRAC' THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AN REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN) 	Larger. ES with IPOUND DUCTOR DUTED ON TOR. S		TOOTHED EXTERIOR TWO-HOLE SHRINK UV / BUTT	UCTOR INSULATIC UP AGAINST THE ECTOR BARREL	: 	EXTERNAL TOOTHED 3/8" DIA x1 1/2" S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING
TYPICAL GROUNDING NOTES	NO SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HO
	Masher (Typ) Asher (Typ) Asher (Typ)					
LUG DETAIL	NO SCALE	4	<u>NOT_USED</u>	NO SCALE	5	NOT USED
	L	1		I		
<u>NOT_USED</u>	NO SCALE	7	<u>NOT_USED</u>	NO SCALE	8	NOT USED

HYBRID/DISCREET CABLES		3/4" TAPE WIDTHS WITH 3/4"	SPACING]	OPTIONAL - (N29) ORANGE
LOW-BAND RRH (600 MHz N71 BASEBAND) + (850 MHz N26 BAND) + (700 MHz N29 BAND) - OPTIONAL PER MARKET ADD FREQUENCY COLOR TO SECTOR BAND	ALPHA RRH PORT 1 PORT 2 PORT 3 PORT 3 + SLANT - SLANT + SLANT - SI RED RED RED RED	ANT + SLANT - SLANT + SLANT -	GAMMA RRH ORT 4 PORT 1 PORT 2 PORT 3 PORT 4 SLANT - SLANT - SLANT - SLANT BLUE GREEN GREEN GREEN GREEN		CBRS TECH (3 GHz)
(CBRS WILL USE YELLOW BAND)	ORANGE ORANGE RED RE (NGE (_) PORT ORANGE O	BLUE ORANGE ORANGE GREEN RANGE (ALPHA SECTOR BETA SI
MID-BAND RRH (AWS BANDS N66+N70)	RED RED RED RED	D BLUE BLUE BLUE	BLUE GREEN GREEN GREEN GREEN		RED BLU
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	PURPLE PURPLE RED RE	D PURPLE PURPLE BLUE	BLUE PURPLE PURPLE GREEN GREEN		
	(_) ^{WHITE} PURPLE PURPLE PUR (_)		URPLE (_) PORT PURPLE PURPLE VITE (_) PORT		COLOR IDENTIFIER
HYBRID/DISCREET CABLES INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS.	EXAMPLE 1 EXAMPLE 2	EXAMPLE 3 CANISTER COAX#1 COAX #2 (ALPHA) (ALPHA)			
EXAMPLE 1 - HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS.	RED RED BLUE BLUE	RED RED			
EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS.	GREEN GREEN	RED			
EXAMPLE 3 - MAIN COAX WITH GROUND MOUNTED RRHS.	ORANGE YELLOW PURPLE				
FIBER JUMPERS TO RRHs	LOW BAND RRH MID BAND RRH	LOW BAND RRH MID BAND RRH	LOW BAND RRH MID BAND RRH	1	
LOW-BAND HHR FIBER CABLES HAVE SECTOR STRIPE ONLY.	RED RED ORANGE PURPLE	BLUE BLUE ORANGE PURPLE	GREEN GREEN ORANGE PURPLE		
POWER CABLES TO RRHs	LOW BAND RRH MID BAND RRH	LOW BAND RRH MID BAND RRH	LOW BAND RRH MID BAND RRH		
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED RED ORANGE PURPLE	BLUE BLUE ORANGE PURPLE	GREEN GREEN ORANGE PURPLE	-	NOT USED
RET MOTORS AT ANTENNAS	ANTENNA 1 ANTENNA 1 MID BAND LOW BAND	ANTENNA 1 ANTENNA 1 MID BAND LOW BAND	ANTENNA 1 ANTENNA 1 MID BAND LOW BAND		
RET CONTROL IS HANDLED BY THE MID-BAND RRH WHEN ONE SET OF RET PORTS EXIST ON ANTENNA.	IN IN	IN IN			
SEPARATE RET CABLES ARE USED WHEN ANTENNA PORTS PROVIDE INPUTS FOR BOTH LOW AND MID BANDS.	RED RED PURPLE ORANGE	BLUE BLUE PURPLE ORANGE	GREEN GREEN PURPLE ORANCE		
MICROWAVE RADIO LINKS	FORWARD AZIMUTH OF 0-120 DEGRE PRIMARY SECONDARY	ES FORWARD AZIMUTH OF 120-240 DE PRIMARY SECONDARY	GREES FORWARD AZIMUTH OF 240-359 DEGREES PRIMARY SECONDARY		
LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO.	WHITE WHITE RED RED	WHITE WHITE BLUE BLUE	WHITE WHITE GREEN GREEN		
MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID's.	WHITE WHITE RED WHITE	WHITE WHITE BLUE WHITE	WHITE WHITE CREEN WHITE		

AWS (N66+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANT/RRH WHITE		dissipation of the sentence of
TOR GAMMA SECTOR	-	COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALEIGH, NC 27601
	2	
		A STORE PORESSON UNDER THE DIRECTION TI IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LUCENSEE TI IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LUCENSEE THE AUGUSTICAL SUBJECT OF THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LUCENSEE THE AUGUSTICAL SUBJECT OF THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LUCENSEE THE AUGUSTICAL SUBJECT OF THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF LAW FOR ANY PERSON, DIRECTION OF LAW FOR ANY PERSON, DIREC
		UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER,
		TO ALTER THIS DOCUMENT.
		WJW МСК МСК
		RFDS REV #: CONSTRUCTION DOCUMENTS
	3	SUBMITTALS
		REV DATE DESCRIPTION A 10/06/2021 ISSUED FOR REVIEW 0 03/03/2022 ISSUED FOR CONSTRUCTION A ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER KHCLE-16708 DISH Wireless LLC. PROJECT INFORMATION BOHVN00159A 85 QUAKER FARMS RD OXFORD, CT 06478 SHEET TITLE RF CABLE COLOR CODES
		SHEET NUMBER
	4	RF-1

		BLKG	BLUCKING	NO.	NUMBER
FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS		BM	BEAM	#	NUMBER
	<u> </u>	BTC	BARE TINNED COPPER CONDUCTOR	NTS	NOT TO SCALE
SMOKE DETECTION (DC)	SD	BOF	BOTTOM OF FOOTING	oc	ON-CENTER
	\bigcirc	CAB	CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
EMERGENCY LIGHTING (DC)	and the second se	CANT	CANTILEVERED	OPNG	OPENING
		CHG	CHARGING	P/C	PRECAST CONCRETE
SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW		CLG	CEILING	PCS	PERSONAL COMMUNICATION SERVICES
LED-1-25A400/51K-SR4-120-PE-DDBTXD		CLR	CLEAR	PCU	PRIMARY CONTROL UNIT
CHAIN LINK FENCE	x x x x	COL	COLUMN COMMON	PRC	PRIMARY RADIO CABINET
WOOD/WROUGHT IRON FENCE	<u> </u>	COMM	CONCRETE	PP	POLARIZING PRESERVING
		CONSTR		PSF	POUNDS PER SQUARE FOOT
WALL STRUCTURE		DBL	DOUBLE	PSI	POUNDS PER SQUARE INCH
LEASE AREA		DC	DIRECT CURRENT	PT	PRESSURE TREATED
PROPERTY LINE (PL)		DEPT	DEPARTMENT	PWR	POWER CABINET
.,		DF	DOUGLAS FIR	QTY	QUANTITY
SETBACKS		DIA	DIAMETER	RAD	RADIUS
ICE BRIDGE		DIAG	DIAGONAL	RECT	RECTIFIER
CABLE TRAY		DIM	DIMENSION	REF	REFERENCE
WATER LINE	W W W W	DWG	DRAWING	REINF	REINFORCEMENT
		DWL	DOWEL	REQ'D	REQUIRED
UNDERGROUND POWER	UGP UGP UGP UGP	EA	EACH	RET	REMOTE ELECTRIC TILT
UNDERGROUND TELCO	UGT UGT UGT UGT	EC	ELECTRICAL CONDUCTOR	RF	RADIO FREQUENCY
OVERHEAD POWER	OHP OHP OHP	EL.	ELEVATION	RMC	RIGID METALLIC CONDUIT
		ELEC	ELECTRICAL	RRH RRU	REMOTE RADIO HEAD REMOTE RADIO UNIT
OVERHEAD TELCO	ОНТ ———— ОНТ ———— ОНТ ———— ОНТ ————	EMT	ELECTRICAL METALLIC TUBING	RWY	RACEWAY
UNDERGROUND TELCO/POWER	UGT/P UGT/P UGT/P	ENG	ENGINEER	SCH	SCHEDULE
ABOVE GROUND POWER	AGP AGP AGP AGP	EQ	EQUAL	SHT	SHEET
ABOVE GROUND TELCO	AGT AGT AGT AGT	EXP	EXPANSION	SIAD	SMART INTEGRATED ACCESS DEVICE
ABOVE GROUND TELCO		EXT	EXTERIOR	SIM	SIMILAR
ABOVE GROUND TELCO/POWER	—— AGT/P —— AGT/P —— AGT/P —— AGT/P ——	EW	EACH WAY	SPEC	SPECIFICATION
WORKPOINT	W. P.	FAB	FABRICATION	SQ	SQUARE
		FF	FINISH FLOOR	SS	STAINLESS STEEL
SECTION REFERENCE	$\left(\begin{array}{c} xx \\ x-x \end{array}\right)$	FG	FINISH GRADE	STD	STANDARD
		FIF	FACILITY INTERFACE FRAME	STL	STEEL
		FIN	FINISH(ED)	TEMP	TEMPORARY
	XX	FLR	FLOOR	ТНК	THICKNESS
DETAIL REFERENCE	$\left(\frac{xx}{x-x}\right)$	FDN		TMA	TOWER MOUNTED AMPLIFIER
	\bigcirc	FOC FOM	FACE OF CONCRETE FACE OF MASONRY	TN	TOE NAIL
		FOM	FACE OF STUD	TOA	TOP OF ANTENNA
		FOW	FACE OF WALL	TOC	TOP OF CURB
		FS	FINISH SURFACE	TOF	TOP OF FOUNDATION
		FT	FOOT	TOP	TOP OF PLATE (PARAPET)
		FTG	FOOTING	TOS	TOP OF STEEL
		GA	GAUGE	TOW	TOP OF WALL
		GEN	GENERATOR	TVSS	TRANSIENT VOLTAGE SURGE SUPPRESSION
		GFCI	GROUND FAULT CIRCUIT INTERRUPTER	TYP	TYPICAL
		GLB	GLUE LAMINATED BEAM	UG	
		GLV	GALVANIZED	UL	UNDERWRITERS LABORATORY
		GPS	GLOBAL POSITIONING SYSTEM	UNO	UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
		GND	GROUND	UMTS	
		GSM	GLOBAL SYSTEM FOR MOBILE	UPS	UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
		HDG	HOT DIPPED GALVANIZED	VIF W	VERIFIED IN FIELD
		HDR	HEADER		WIDE
		HGR	HANGER	W/	WITH
		HVAC	HEAT/VENTILATION/AIR CONDITIONING	WD	WOOD WEATHERPROOF
		HT	HEIGHT	WP WT	WEIGHT
		IGR	INTERIOR GROUND RING	ΨI	
	<u>LEGEND</u>				ABBREVIATIONS
DISH Wireless L.L.C. TEMPLATE VERSION 44 - 10/01/	/2021				

ANCHOR BOLT

ALTERNATING CURRENT

ABOVE FINISHED FLOOR

ABOVE FINISHED GRADE

ABOVE GROUND LEVEL

AMPERAGE INTERRUPTION CAPACITY

AUTOMATIC TRANSFER SWITCH

AMERICAN WIRE GAUGE

ABOVE

ADDITIONAL

ALUMINUM

ANTENNA

BATTERY

BUILDING

BLOCKING

BLOCK

APPROX APPROXIMATE

ALTERNATE

ARCHITECTURAL

AB

ABV

AC

ADDL

AFF

AFG

AGL

AIC

ALUM

ALT

ANT

ARCH

ATS

AWG

BATT

BLDG

BLK

BLKG

INCH

INTERIOR

POUND(S)

MASONRY

MAXIMUM

MINIMUM

METAL

MICROWAVE

NUMBER

MACHINE BOLT

MANUFACTURER

MISCELLANEOUS

NEWTON METERS

MASTER GROUND BAR

MANUAL TRANSFER SWITCH

NATIONAL ELECTRIC CODE

MECHANICAL

LINEAR FEET

LONG TERM EVOLUTION

IN

INT

LF

LTE

MAS

MAX

MB

MECH

MFR

MGB

MIN

MISC

MTL

MTS

MW

NEC

NM

NO.

LB(S)

EXOTHERMIC CONNECTION MECHANICAL CONNECTION

CHEMICAL ELECTROLYTIC GROUNDING SYSTEM

TEST GROUND ROD WITH INSPECTION SLEEVE

EXOTHERMIC WITH INSPECTION SLEEVE

TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM

BUSS BAR INSULATOR

GROUNDING BAR

SINGLE POLE SWITCH

DUPLEX RECEPTACLE

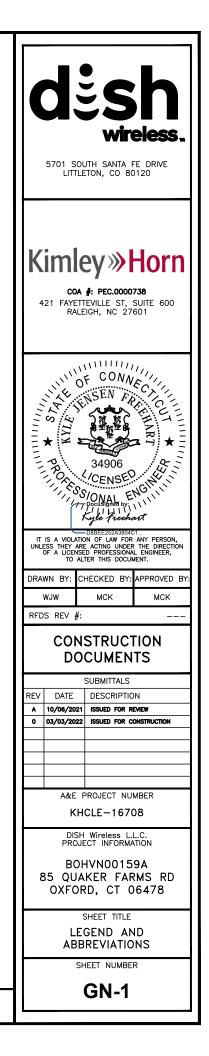
DUPLEX GFCI RECEPTACLE

GROUND ROD

DocuSign Envelope ID: BBB7F67F-E592-4E7C-8A5F-29D59D1E0971

۲

•


ŧ۲

ı**|-⊡**⊺

\$

Φ

•

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRERS LL.C. AND DISH WIREISS L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIREISS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELS LLC. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

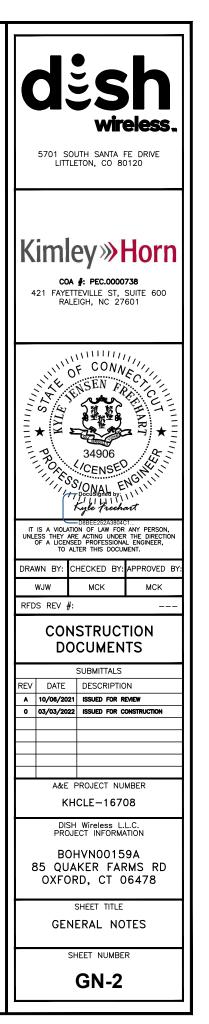
5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.


10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (I'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO 3. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON 6. DRAWINGS:

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2*

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

TIE WRAPS ARE NOT ALLOWED.

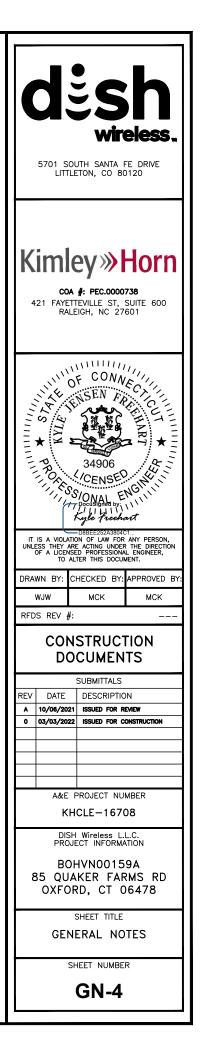
ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN- THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH 12 TYPE THHW. THWN. THWN-2, XHHW. XHHW-2, THW. THW-2, RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75" C (90" C IF AVAILABLE).


RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS.

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE Kimley »Horn COA #: PEC.0000738 421 FAYETTEVILLE ST, SUITE 600 RALFIGH, NC 27601 MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET NINGE CONNEO THE SEN FREE HART OF CONNECT METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND VEER 34906 THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE KICENSED. THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. SONAL ENG INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTIC OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY W.JW MCK MCK RFDS REV # ___ CONSTRUCTION DOCUMENTS SUBMITTALS RFV DATE DESCRIPTION A 10/06/2021 ISSUED FOR REVIEW 0 03/03/2022 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER KHCLE-16708 DISH Wireless L.L.C. PROJECT INFORMATION B0HVN00159A 85 QUAKER FARMS RD OXFORD, CT 06478 SHEET TITLE GENERAL NOTES SHEET NUMBER GN-3

16. 17. GRADE PVC CONDUIT. 18. OCCURS OR FLEXIBILITY IS NEEDED. 19. SCREW FITTINGS ARE NOT ACCEPTABLE. 20. NEC. 21 (WIREMOLD SPECMATE WIREWAY). 22. 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED 24. STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. 25. EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. 28 WITH 29. 30.

GROUNDING NOTES: ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS 5. WITH GREEN INSULATION. SIZED IN ACCORDANCE WITH THE NEC. SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED. 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. USE OF 90" BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45" BENDS CAN BE ADEQUATELY 10. SUPPORTED. 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. 13. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND 15. CONNECTIONS. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL. 16. 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND 18. CONDUCTOR. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED 19. THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT. 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL). BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE 21. TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM. THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

DocuSign

Certificate Of Completion

Envelope Id: BBB7F67FE5924E7C8A5F29D59D1E0971 Subject: Please DocuSign: BOHVN00159A_FCD_REV 0_03.03.22_sealed.pdf Source Envelope: Document Pages: 18 Signatures: 18 Certificate Pages: 1 Initials: 0 AutoNav: Enabled EnvelopeId Stamping: Enabled Time Zone: (UTC-05:00) Eastern Time (US & Canada)

Record Tracking

Status: Original 3/7/2022 10:56:50 AM

Signer Events

Kyle Freehart kyle.freehart@kimley-horn.com Kimley-Horn Security Level: Email, Account Authentication (None)

Electronic Record and Signature Disclosure: Not Offered via DocuSign Holder: Manuel JaraPerez Manuel.JaraPerez@kimley-horn.com

Signature

— DocuSigned by: Kyle Freehart — D8BEE252A3804C1...

Signature Adoption: Pre-selected Style Using IP Address: 208.127.231.172

Status: Completed

Envelope Originator: Manuel JaraPerez 401 Fayetteville St. Suite 600 Raleigh, NC 27601 Manuel.JaraPerez@kimley-horn.com IP Address: 208.127.231.172

Location: DocuSign

Timestamp

Sent: 3/7/2022 11:00:18 AM Viewed: 3/7/2022 11:09:01 AM Signed: 3/7/2022 11:09:15 AM

In Person Signer Events	Signature	Timestamp
Editor Delivery Events	Status	Timestamp
Agent Delivery Events	Status	Timestamp
Intermediary Delivery Events	Status	Timestamp
Certified Delivery Events	Status	Timestamp
Carbon Copy Events	Status	Timestamp
Witness Events	Signature	Timestamp
Notary Events	Signature	Timestamp
Notary Events Envelope Summary Events	Signature Status	Timestamp
-	-	
Envelope Summary Events	Status	Timestamps
Envelope Summary Events Envelope Sent	Status Hashed/Encrypted	Timestamps 3/7/2022 11:00:18 AM
Envelope Summary Events Envelope Sent Certified Delivered	Status Hashed/Encrypted Security Checked	Timestamps 3/7/2022 11:00:18 AM 3/7/2022 11:09:01 AM

Exhibit D

Structural Analysis Report

Date: September 23, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 724-416-2000

Subject:	Structural Analysis Report	
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number: Site Name:	BOHVN00159A CT-CCI-T-845455
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	845455 OXFORD-QUAKER FARMS 645152 1964032 553377 Rev. 1
Engineering Firm Designation:	Crown Castle Project Number:	1964032
Site Data:	85 QUAKER FARMS ROAD, OXF Latitude <i>41° 23' 2.36"</i> , Longitude 149 Foot - Monopole Tower	

Crown Castle is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity

This analysis has been performed in accordance with the 2018 Connecticut Building Code & the 2015 International Building Code based upon an ultimate 3-second gust wind speed of 125 mph. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Didi Rossmiller

Respectfully submitted by:

Maribel Dentinger

Maribel Dentinger, P.E. Senior Project Engineer

Maribel Dentinger Digitally signed by Maribel Dentinger Date: 2021.09.23 17:02:00 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC7 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 149 ft Monopole tower designed by PAUL J FORD.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	125 mph
Exposure Category:	C
Topographic Factor:	1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Elovation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
111.0	111.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	ericsson	RADIO 4415 B30		
		3	ericsson	RRUS 4449 B5/B12		
		3	ericsson	RRUS 8843 B2/B66A		
	150.0	6	powerwave technologies	LGP21401	1	3/8
149.0		1	raycap	DC6-48-60-18-8F	3 6	3/4
		1	raycap	DC9-48-60-24-PC16-EV	1	1-5/8 1/2
	149.0	1	tower mounts	Pipe Mount [PM 501-3]		
	149.0	1	tower mounts	T-Arm Mount [TA 702-3]		
	140.0	3	cci antennas	DMP65R-BU6D w/ Mount Pipe	1	
	148.0	3	commscope	NNH4-65B-R6 w/ Mount Pipe		
	148.0	3	ericsson	RRUS 12 B2		
1110	145.0	3	ericsson	RRUS 11 B12		3/8
144.0	1110	1	raycap	DC6-48-60-18-8F	2	3/4 conduit
	144.0	1	tower mounts	Pipe Mount [PM 601-3]		conduit
	140.0	6	powerwave technologies	LGP13519		
135.0	135.0	3	powerwave technologies	RA21.7770.00 w/ Mount Pipe	6	1 5/8
		1	tower mounts	Side Arm Mount [SO 104-3]		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)		
		3	ericsson	AIR6449 B41_T-MOBILE w/ Mount Pipe				
		3	ericsson	RADIO 4415 B66A_CCIV3				
	132.0	3	ericsson	RADIO 4424 B25_TMO				
127.0	3		3	3	ericsson	RADIO 4449 B71 B85A_T- MOBILE	8	1-5/8 1-1/4
				3	rfs celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe		1-1/4
			rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe				
			tower mounts	Platform Mount [LP 301-1]				
122.0	123.0	2	raycap	RRFDC-3315-PF-48	2	1-1/4		
	121.0	3	alcatel lucent	RRH2X60-AWS				
118.0	120.0	6	andrew	SBNHH-1D65B w/ Mount Pipe	18	1-5/8		
110.0	120.0	120.0	3	antel	BXA-80080/6CF w/ Mount Pipe	10	1-5/6	
	118.0 1		tower mounts	Side Arm Mount [SO 104-3]	<u> </u>			
81.0	81.0	1	PCTEL	MPRC2449	3	1/2		
01.0	01.0	2	tower mounts	Pipe Mount [PM 601-1]	3	1/2		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	4546778	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	5113091	CCISITES
4-TOWER MANUFACTURER DRAWINGS	5110795	CCISITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

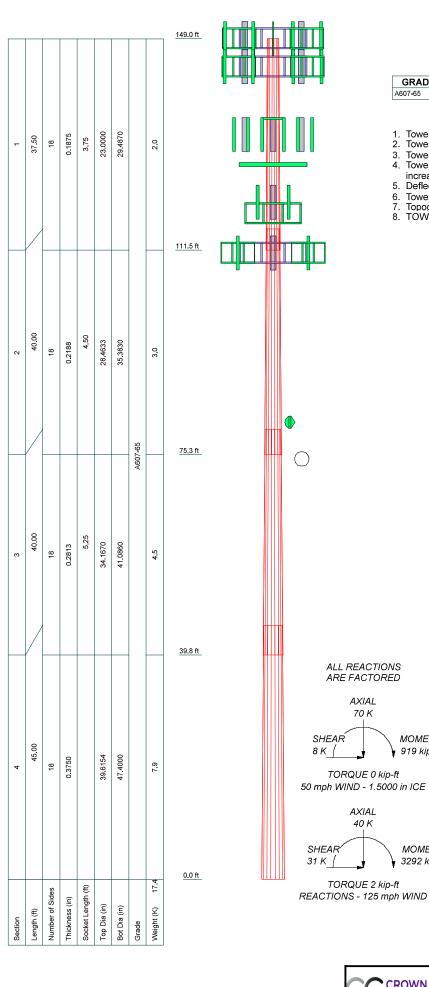
Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	149 - 111.5	Pole	TP29.487x23x0.1875	1	-9.94	1047.35	45.7	Pass
L2	111.5 - 75.25	Pole	TP35.383x28.4633x0.2188	2	-18.48	1466.49	96.8	Pass
L3	75.25 - 39.75	Pole	TP41.086x34.167x0.2813	3	-26.24	2187.66	98.9	Pass
L4	39.75 - 0	Pole	TP47.4x39.6154x0.375	4	-40.04	3438.05	85.7	Pass
							Summary	
						Pole (L3)	98.9	Pass
						Rating =	98.9	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	93.9	Pass
1	Base Plate	0	75.8	Pass
1	Base Foundation (Structure)	0	44.1	Pass
1	Base Foundation (Soil Interaction)	0	81.2	Pass

Structure Rating (max from all components) =	98.9%
--	-------

Notes:


1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

		MATERIAL	STRENGT	н	
GRADE	Fy	Fu	GRADE	Fy	Fu
A607-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
- Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to
- increase in thickness with height.

5. Deflections are based upon a 60 mph wind.

- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 98.9%

ALL REACTIONS ARE FACTORED

AXIAL 70 K

1

TORQUE 0 kip-ft

AXIAL 40 K

TORQUE 2 kip-ft

MOMENT

MOMENT 3292 kip-ft

919 kip-ft

	Crown Castle	^{Job:} BU# 845455		
CROWN	2000 Corporate Drive	Project:		
CASTLE	Canonsburg, PA 15317	Client: Crown Castle	Drawn by: DRossmiller	App'd:
The Pathway to Possible	Phone: 724-416-2000	^{Code:} TIA-222-H	Date: 09/23/21	Scale: NTS
ine i annay te i eccisio	FAX:	Path: C/Users/drossmiller/OneDrive - Crown Castle USA	Inc/Desktop/temporary/845455%WO 1964032 - SA/Prod/845455 RPA e	Dwg No. E-1

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Tower base elevation above sea level: 607.00 ft.
- Basic wind speed of 125 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity	$\checkmark \checkmark \checkmark \checkmark \checkmark$	Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks Use Azimuth Dish Coefficients Project Wind Area of Appurt. Autocalc Torque Arm Areas	\checkmark	Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice	
Leg Bolts Are At Top Of Section	,	Add IBC .6D+W Combination		Exemption Poles	
Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric	V	Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs	V	Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are	

Tapered Pole Section Geometry

Known

 $\sqrt{}$

149 Ft Monopole Tower Structural Analysis Project Number 1964032, Order 553377, Revision 1

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	149.00-111.50	37.50	3.75	18	23.0000	29.4870	0.1875	0.7500	A607-65 (65 ksi)
L2	111.50-75.25	40.00	4.50	18	28.4633	35.3830	0.2188	0.8750	A607-65 (65 ksi)
L3	75.25-39.75	40.00	5.25	18	34.1670	41.0860	0.2813	1.1250	A607-65 (65 ksi)
L4	39.75-0.00	45.00		18	39.6154	47.4000	0.3750	1.5000	À607-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	1	r	С	I/C	J	lt/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	23.3259	13.5763	892.6152	8.0984	11.6840	76.3964	1786.4050	6.7894	3.7180	19.829
	29.9130	17.4369	1891.1513	10.4013	14.9794	126.2502	3784.7910	8.7201	4.8597	25.918
L2	29.5274	19.6105	1976.4982	10.0268	14.4594	136.6934	3955.5970	9.8071	4.6245	21.141
	35.8951	24.4150	3814.1390	12.4833	17.9746	212.1965	7633.2967	12.2098	5.8424	26.708
L3	35.4411	30.2494	4388.2314	12.0295	17.3569	252.8241	8782.2369	15.1276	5.5184	19.621
	41.6764	36.4259	7662.4750	14.4857	20.8717	367.1229	15335.032	18.2164	6.7361	23.951
							4			
L4	41.0909	46.7059	9086.0569	13.9303	20.1246	451.4897	18184.069	23.3574	6.3123	16.833
							5			
	48.0734	55.9715	15637.310	16.6939	24.0792	649.4115	31295.196	27.9911	7.6824	20.486
			3				5			

Tower Elevation	Gusset Area	Gusset Thickness	Gusset GradeAdjust. Factor A _f	Adjust. Factor	Weight Mult.	Stitch Bolt	Double Angle Stitch Bolt	Stitch Bolt
	(per face)			Ar		Spacing Diagonals	Spacing Horizontals	Spacing Redundants
ft	ft²	in				in	in	in
L1 149.00-			1	1	1			
111.50								
L2 111.50-			1	1	1			
75.25								
L3 75.25-			1	1	1			
39.75								
L4 39 75-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector		Componen	Placement	Total	Number	Start/En		Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Туре	ft			Position	r		plf
		Calculation						in	in	
** 122 + 118 **										
HB158-1-08U8-	С	No	Surface Ar	118.00 -	8	6	-0.300	1.9800		1.30
S8J18(1-5/8)			(CaAa)	0.00			0.000			
HB158-1-08U8-	С	No	Surface Ar	122.00 -	2	2	-0.100	1.9800		1.30
S8J18(1-5/8) ** 127 ft **			(CaAa)	118.00			0.000			
AVA7-50(1-5/8)	В	No	Surface Ar	127.00 -	2	2	0.500	2.0100		0.70
()			(CaAa)	0.00			0.500			
HB114-U6S12-XXX-	В	No	Surface Ar	127.00 -	1	1	0.400	1.5400		1.70
L l (1-1/4)			(CaAa)	0.00			0.410			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Туре	ft			ft²/ft	plf
** 80 ft **									
LDF4-50A(1/2)	А	No	No	Inside Pole	80.00 - 0.00	3	No Ice	0.00	0.15
							1/2" Ice	0.00	0.15
							1" Ice	0.00	0.15
							2" Ice	0.00	0.15
LDF7-50A(1-5/8)	С	No	No	Inside Pole	118.00 - 0.00	12	No Ice	0.00	0.82
	•			11101010 1 010			1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	
	_				407.00 0.00	0			0.82
LDF7-50A(1-5/8)	В	No	No	Inside Pole	127.00 - 0.00	6	No Ice	0.00	0.82
							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" ce	0.00	0.82
** 135 **									
AVA7-50(1-5/8)	С	No	No	Inside Pole	135.00 - 0.00	6	No Ice	0.00	0.70
	-					-	1/2" Ice	0.00	0.70
							1" Ice	0.00	0.70
							2" Ice	0.00	0.70
** 149 **							2 100	0.00	0.70
	•				4 4 9 9 9 9 9 9 9			0.00	o 45
LDF4-50A(1/2)	С	No	No	Inside Pole	149.00 - 0.00	1	No Ice	0.00	0.15
							1/2" Ice	0.00	0.15
							1" Ice	0.00	0.15
							2" Ice	0.00	0.15
LDF7-50A(1-5/8)	С	No	No	Inside Pole	149.00 - 0.00	6	No Ice	0.00	0.82
()							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
FB-L98B-034-	С	No	No	Incido Dolo	149.00 - 0.00	1	No Ice	0.00	0.02
	C	INU	NU	Inside Fole	149.00 - 0.00	I			
XXX(3/8)							1/2" Ice	0.00	0.06
							1" Ice	0.00	0.06
							2" ce	0.00	0.06
WR-VG86ST-	С	No	No	Inside Pole	149.00 - 0.00	3	No Ice	0.00	0.58
BRD(3/4)							1/2" Ice	0.00	0.58
							1" Ice	0.00	0.58
							2" Ice	0.00	0.58
** 144 **									
FB-L98B-034-	С	No	No	Inside Pole	144.00 - 0.00	1	No Ice	0.00	0.06
XXX(3/8)	Ũ		110		11100 0100	•	1/2" Ice	0.00	0.06
////(0/0)							1" Ice	0.00	0.06
	~	N	N1 -	In alial a Dist	444.00 0.00	~	2" Ice	0.00	0.06
WR-VG86ST-	С	No	No	Inside Pole	144.00 - 0.00	2	No Ice	0.00	0.58
BRD(3/4)							1/2" Ice	0.00	0.58
							1" Ice	0.00	0.58
							2" Ice	0.00	0.58
2" Flex Conduit	С	No	No	Inside Pole	144.00 - 0.00	1	No Ice	0.00	0.36
	-					-	1/2" Ice	0.00	0.36
							1" Ice	0.00	0.36
							2" Ice	0.00	0.36
** 111 **							2 108	0.00	0.30
					444.00 0.00		NI I	0.00	0.05
U12PSM9P6XXX	А	No	No	Inside Pole	111.00 - 0.00	1	No Ice	0.00	2.35
(1-1/2)							1/2" Ice	0.00	2.35
							1" Ice	0.00	2.35
							2" Ice	0.00	2.35

Feed Line/Linear Appurtenances Section Areas

149 Ft Monopole Tower Structural Analysis Project Number 1964032, Order 553377, Revision 1

Tower Sectio	Tower Elevation	Face	A_R	AF	C _A A _A In Face	C _A A _A Out Face	Weight
п	ft		ft²	ft²	ft ²	ft²	ĸ
L1	149.00-111.50	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	8.618	0.000	0.12
		С	0.000	0.000	9.306	0.000	0.55
L2	111.50-75.25	A	0.000	0.000	0.000	0.000	0.09
		В	0.000	0.000	20.155	0.000	0.29
		С	0.000	0.000	43.065	0.000	1.19
L3	75.25-39.75	A	0.000	0.000	0.000	0.000	0.10
		В	0.000	0.000	19.738	0.000	0.28
		С	0.000	0.000	42.174	0.000	1.17
L4	39.75-0.00	А	0.000	0.000	0.000	0.000	0.11
		В	0.000	0.000	22.101	0.000	0.32
		С	0.000	0.000	47.223	0.000	1.31

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft	Leg	in	ft²	ft ²	ft ²	ft ²	к
 L1	149.00-111.50	 A	1.462	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	20.373	0.000	0.34
		С		0.000	0.000	15.470	0.000	0.72
L2	111.50-75.25	А	1.414	0.000	0.000	0.000	0.000	0.09
		В		0.000	0.000	47.646	0.000	0.80
		С		0.000	0.000	67.080	0.000	1.97
L3	75.25-39.75	А	1.347	0.000	0.000	0.000	0.000	0.10
		В		0.000	0.000	45.897	0.000	0.77
		С		0.000	0.000	65.268	0.000	1.90
L4	39.75-0.00	А	1.213	0.000	0.000	0.000	0.000	0.11
		В		0.000	0.000	50.197	0.000	0.82
		С		0.000	0.000	72.418	0.000	2.09

Feed Line Center of Pressure

Section	Elevation	CPx	CPz	CP _X	CPz
				lce	Ice
	ft	in	in	in	in
L1	149.00-111.50	1.9919	2.5767	2.0878	2.2974
L2	111.50-75.25	4.0373	6.6223	3.8215	5.2463
L3	75.25-39.75	4.2935	7.0195	4.1298	5.6744
L4	39.75-0.00	4.5150	7.3630	4.3904	6.0545

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

ſ	Tower Section	Feed Line Record No.	Description	Feed Line Segment	K _a No Ice	K₄ Ice
				Elev.		
ſ	L1	4	HB158-1-08U8-S8J18(1-	111.50 -	1.0000	1.0000
			5/8)	118.00		
	L1	5	HB158-1-08U8-S8J18(1-	118.00 -	1.0000	1.0000
			5/8)	122.00		
	L1	8	AVA7-50(1-5/8)	111.50 -	1.0000	1.0000
				127.00		

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	10	HB114-U6S12-XXX-LI(1-	111.50 -	1.0000	1.0000
		1/4)	127.00		
L2	4	HB158-1-08U8-S8J18(1-	75.25 -	1.0000	1.0000
		5/8)	111.50		
L2	8	AVA7-50(1-5/8)	75.25 -	1.0000	1.0000
			111.50		
L2	10	HB114-U6S12-XXX-LI(1-	75.25 -	1.0000	1.0000
		1/4)	111.50		
L3	4	HB158-1-08U8-S8J18(1-	39.75 -	1.0000	1.0000
		5/8)	75.25		
L3	8	AVA7-50(1-5/8)	39.75 -	1.0000	1.0000
			75 <u>.</u> 25		
L3	10	HB114-U6S12-XXX-LI(1-	39.75 -	1.0000	1.0000
		1/4)	75.25		
L4	4	HB158-1-08U8-S8J18(1-	0.00 - 39.75	1.0000	1.0000
		5/8)			
L4	8	AVA7-50(1-5/8)		1.0000	
L4	10	HB114-U6S12-XXX-LI(1-	0.00 - 39.75	1.0000	1.0000
		1/4)			

	Discr	ete Tower Lo	bads		
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement
			ft ft ft	o	ft
*** 149 - ATT ***	_				
T-Arm Mount [TA 702-3]	С	None		0.0000	149.00
Pipe Mount [PM 501-3] DMP65R-BU6D w/ Mount Pipe	C A	None From Leg	3.00 0.00 -1.00	0.0000 0.0000	149.00 149.00
DMP65R-BU6D w/ Mount Pipe	В	From Leg	3.00 0.00 -1.00	0.0000	149.00
DMP65R-BU6D w/ Mount Pipe	С	From Leg	3.00 0.00 -1.00	0.0000	149.00
NNH4-65B-R6 w/ Mount Pipe	A	From Leg	3.00 0.00 -1.00	0.0000	149.00
NNH4-65B-R6 w/ Mount Pipe	В	From Leg	3.00 0.00 -1.00	0.0000	149.00
NNH4-65B-R6 w/ Mount Pipe	С	From Leg	3.00 0.00 -1.00	0.0000	149.00
RADIO 4415 B30	A	From Leg	1.00 0.00 1.00	0.0000	149.00
RADIO 4415 B30	В	From Leg	1.00 0.00 1.00	0.0000	149.00
RADIO 4415 B30	С	From Leg	1.00 0.00 1.00	0.0000	149.00
(2) LGP21401	A	From Leg	3.00 0.00 1.00	0.0000	149.00
(2) LGP21401	В	From Leg	3.00	0.0000	149.00
xTower Report - version 8.1.1.0					

Description	Face	Offset	Offsets:	Azimuth	Placemen
	or Leg	Туре	Horz Lateral	Adjustment	
	LUG		Vert		
			ft	0	ft
			ft ft		
			0.00		
	_		1.00		
(2) LGP21401	С	From Leg	3.00	0.0000	149.00
			0.00 1.00		
RRUS 8843 B2/B66A	А	From Leg	1.00	0.0000	149.00
		-	0.00		
RRUS 8843 B2/B66A	В	From Leg	1.00 1.00	0.0000	149.00
RR03 8043 B2/B00A	Ь	T TOTT Leg	0.00	0.0000	149.00
			1.00		
RRUS 8843 B2/B66A	С	From Leg	1.00	0.0000	149.00
			0.00 1.00		
RRUS 4449 B5/B12	А	From Leg	1.00	0.0000	149.00
		0	0.00		
	5	F	1.00	0.0000	4.40.00
RRUS 4449 B5/B12	В	From Leg	1.00 0.00	0.0000	149.00
			1.00		
RRUS 4449 B5/B12	С	From Leg	1.00	0.0000	149.00
			0.00		
DC9-48-60-24-PC16-EV	А	From Leg	1.00 1.00	0.0000	149.00
DC3-48-00-24-FC10-EV	~	T TOIL Leg	0.00	0.0000	143.00
			1.00		
DC6-48-60-18-8F	A	From Leg	1.00	0.0000	149.00
			0.00 1.00		
** 144 **			1.00		
RRUS 11 B12	А	From Leg	1.00	0.0000	144.00
			0.00		
RRUS 11 B12	В	From Leg	1.00 1.00	0.0000	144.00
	D	1 Ioni Log	0.00	0.0000	111.00
	_		1.00		
RRUS 11 B12	С	From Leg	1.00 0.00	0.0000	144.00
			1.00		
RRUS 12 B2	А	From Leg	1.00	0.0000	144.00
		-	0.00		
RRUS 12 B2	В	From Leg	4.00 1.00	0.0000	144.00
	D	r totti Leg	0.00	0.0000	144.00
			4.00		
RRUS 12 B2	С	From Leg	1.00	0.0000	144.00
			0.00 4.00		
DC6-48-60-18-8F	А	From Leg	1.00	0.0000	144.00
		-	0.00		
Pipe Mount [PM 601-3]	С	None	0.00	0.0000	144.00
** 135 - ATT **	U	NOTE		0.0000	144.00
RA21.7770.00 w/ Mount Pipe	А	From Leg	1.00	0.0000	135.00
			0.00		
RA21.7770.00 w/ Mount Pipe	В	From Leg	0.00 1.00	0.0000	135.00
10-21.7770.00 W/ Mount Fipe	U U	r totti Leg	0.00	0.0000	135.00
			0.00		
RA21.7770.00 w/ Mount Pipe	С	From Leg	1.00	0.0000	135.00
			0.00 0.00		
(2) LGP13519	А	From Leg	1.00	0.0000	135.00
		3			
			0.00 5.00		

Description	Face	Offset	Offsets:	Azimuth	Placement
	or Leg	Туре	Horz Lateral	Adjustment	
	LUG		Vert		
			ft	٥	ft
			ft ft		
(2) LGP13519	В	From Leg	1.00	0.0000	135.00
		-	0.00		
(2) LGP13519	С	From Leg	5.00 1.00	0.0000	135.00
(2) LGF 13319	C	FIOIILEY	0.00	0.0000	133.00
			5.00		
4.5' x 2" Mount Pipe	А	From Leg	1.00	0.0000	135.00
			0.00 0.00		
4.5' x 2" Mount Pipe	В	From Leg	1.00	0.0000	135.00
	-		0.00		
			0.00		
4.5' x 2" Mount Pipe	С	From Leg	1.00	0.0000	135.00
			0.00 0.00		
Side Arm Mount [SO 104-3]	С	None	0.00	0.0000	135.00
** 127 - TMO **					
APXVAARR24_43-U-NA20 w/ Mount Pipe	А	From Leg	4.00	0.0000	127.00
			0.00 0.00		
APXVAARR24_43-U-NA20 w/ Mount Pipe	В	From Leg	4.00	0.0000	127.00
		5	0.00		
	-		0.00		
APXVAARR24_43-U-NA20 w/ Mount Pipe	С	From Leg	4.00	0.0000	127.00
			0.00 0.00		
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	А	From Leg	4.00	0.0000	127.00
		-	0.00		
	P	Ensue Las	5.00	0.0000	107.00
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	В	From Leg	4.00 0.00	0.0000	127.00
			5.00		
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	С	From Leg	4.00	0.0000	127.00
			0.00		
AIR6449 B41_T-MOBILE w/ Mount Pipe	А	From Leg	5.00 4.00	0.0000	127.00
	~	1 Iom Leg	0.00	0.0000	127.00
			5.00		
AIR6449 B41_T-MOBILE w/ Mount Pipe	В	From Leg	4.00	0.0000	127.00
			0.00		
AIR6449 B41_T-MOBILE w/ Mount Pipe	С	From Leg	5.00 4.00	0.0000	127.00
	0	1 tom Log	0.00		121100
			5.00		
RADIO 4415 B66A_CCIV3	A	From Leg	4.00	0.0000	127.00
			0.00 5.00		
RADIO 4415 B66A_CCIV3	В	From Leg	4.00	0.0000	127.00
-		-	0.00		
	0		5.00	0.0000	107.00
RADIO 4415 B66A_CCIV3	С	From Leg	4.00 0.00	0.0000	127.00
			5.00		
RADIO 4449 B71 B85A_T-MOBILE	А	From Leg	4.00	0.0000	127.00
			0.00		
RADIO 4449 B71 B85A_T-MOBILE	в	From Leg	5.00 4.00	0.0000	127.00
	U	r totti Leg	4.00 0.00	0.0000	121.00
			5.00		
RADIO 4449 B71 B85A_T-MOBILE	С	From Leg	4.00	0.0000	127.00
			0.00		
RADIO 4424 B25_TMO	А	From Leg	5.00 4.00	0.0000	127.00
	~	r totti Leg	0.00	0.0000	121.00
			5.00		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placemer
	209		Vert ft ft	o	ft
RADIO 4424 B25_TMO	В	From Leg	ft 4.00 0.00 5.00	0.0000	127.00
RADIO 4424 B25_TMO	С	From Leg	4.00 0.00 5.00	0.0000	127.00
Platform Mount [LP 301-1] ** 122 **	С	None	0.00	0.0000	127.00
(2) RRFDC-3315-PF-48	A	From Leg	4.00 0.00 1.00	0.0000	122.00
** 118 - VZW ** (2) SBNHH-1D65B w/ Mount Pipe	А	From Leg	2.00 0.00	0.0000	118.00
(2) SBNHH-1D65B w/ Mount Pipe	В	From Leg	2.00 2.00 0.00 2.00	0.0000	118.00
(2) SBNHH-1D65B w/ Mount Pipe	С	From Leg	2.00 2.00 0.00 2.00	0.0000	118.00
BXA-80080/6CF w/ Mount Pipe	A	From Leg	2.00 0.00 2.00	0.0000	118.00
BXA-80080/6CF w/ Mount Pipe	В	From Leg	2.00 0.00 2.00	0.0000	118.00
BXA-80080/6CF w/ Mount Pipe	С	From Leg	2.00 0.00 2.00	0.0000	118.00
RRH2X60-AWS	A	From Leg	1.00 0.00 3.00	0.0000	118.00
RRH2X60-AWS	В	From Leg	1.00 0.00 3.00	0.0000	118.00
RRH2X60-AWS	С	From Leg	1.00 0.00 3.00	0.0000	118.00
(2) 4' x 2" Pipe Mount	A	From Leg	2.00 0.00 0.00	0.0000	118.00
(2) 4' x 2" Pipe Mount	В	From Leg	2.00 0.00 0.00	0.0000	118.00
(2) 4' x 2" Pipe Mount	С	From Leg	2.00 0.00 0.00	0.0000	118.00
(2) 6' x 2" Horizontal Mount Pipe	A	From Leg	2.00 0.00 0.00	0.0000	118.00
(2) 6' x 2" Horizontal Mount Pipe	В	From Leg	2.00 0.00 0.00	0.0000	118.00
(2) 6' x 2" Horizontal Mount Pipe	С	From Leg	2.00 0.00 0.00	0.0000	118.00
Side Arm Mount [SO 104-3] *** 111 - DISH ***	С	None		0.0000	118.00
MX08FRO665-21 w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	111.00
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	111.00

149 Ft Monopole Tower Structural Analysis Project Number 1964032, Order 553377, Revision 1

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placemer
			ft ft ft	٥	ft
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B604	A	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B604	В	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B604	С	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B605	A	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B605	В	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B605	С	From Leg	4.00 0.00 0.00	0.0000	111.00
RDIDC-9181-PF-48	A	From Leg	4.00 0.00 0.00	0.0000	111.00
(2) 8' x 2" Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	111.00
(2) 8' x 2" Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	111.00
(2) 8' x 2" Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	111.00
Commscope MC-PK8-DSH ** 81 - Seymour CT **	А	None		0.0000	111.00
ANT150D	В	From Leg	0.50 0.00 5.00	0.0000	81.00
6' x 2" Mount Pipe	A	From Leg	0.50 0.00 0.00	0.0000	81.00
Pipe Mount [PM 601-1]	A	From Leg	0.50 0.00 0.00	0.0000	81.00
6' x 2" Mount Pipe	A	From Leg	0.50 0.00 0.00	0.0000	81.00
Pipe Mount [PM 601-1]	A	From Leg	0.50 0.00 0.00	0.0000	81.00
****			0.00		

Dishes

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter
				ft	0	0	ft	ft
80								
PCTEL MPRC2449	В	Paraboloid w/Radome	From	1.00	0.0000		81.00	2.17
			Leg	0.00				
				0.00				

Load Combinations

Comb.	Description
No.	·/
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0,9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 dea - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 lce+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axi
n	ft	Туре		Load		Moment	Moment
No.				Comb.	ĸ	kip-ft	kip-ft
L1	149 - 111.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-26.60	-0.37	1.90
			Max. Mx	8	-9.97	-295.54	0.34
			Max. My	2	-9.94	-0.06	298.66
			Max. Vy	20	-16.09	295.43	0.34
			Max. Vx	2	-16.26	-0.06	298.66
			Max. Torque	20			-1.46
L2 111.5 - 75.25	111.5 - 75.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-41.55	-1.51	1.81
			Max. Mx	8	-18.56	-1046.36	0.30
			Max. My	2	-18.55	-0.28	1053.70
			Max. Vy	20	-23.76	1045.80	0.32
			Max. Vx	2	-23.75	-0.28	1053.70
			Max. Torque	20			-2.04
L3	75.25 - 39.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-52.23	-2.38	0.32
			Max. Mx	20	-26.31	1927.46	-0.13
			Max. My	2	-26.31	0.21	1933.01
			Max. Vy	20	-26.86	1927.46	-0.13
			Max. Vx	2	-26.79	0.21	1933.01
			Max. Torque	20			-2.04
L4	39.75 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-69.65	-3.59	-1.84
			Max. Mx	20	-40.04	3213.82	-0.88
			Max. My	2	-40.04	0.82	3215.22
			Max. Vy	20	-30.05	3213.82	-0.88
			Max. Vx	2	-29.97	0.82	3215.22
			Max. Torque	20			-2.03

Maximum Member Forces

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	ĸ	K
		Comb.			
Pole	Max. Vert	33	69.65	0.00	-8.13
	Max. H _x	20	40.07	30.01	0.00
	Max. H _z	3	30.06	0.02	29.93
	Max. M _x	2	3215.22	0.02	29.93
	Max. M _z	8	3211.39	-29.96	-0.00
	Max. Torsion	8	2.02	-29.96	-0.00
	Min. Vert	11	30.06	-25.74	-14.97
	Min. H _x	8	40.07	-29.96	-0.00
	Min. H _z	15	30.06	0.01	-29.88
	Min. M _x	14	-3213.89	0.01	-29.88
	Min. M _z	20	-3213.82	30.01	0.00
	Min. Torsion	20	-2.02	30.01	0.00

Tower Mast Reaction Summary							
Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, M₂	Torque	
	К	К	К	kip-ft	kip-ft	kip-ft	
Dead Only	33.40	0.00	0.00	1.00	-0.64	0.00	
1.2 Dead+1.0 Wind 0 deg - No Ice	40.07	-0.02	-29.93	-3215.22	0.82	0.27	

Load Combination	Vertical K	Shear _x K	Shear _z K	Overturning Moment, M _x	Overturning Moment, Mz	Torque
0.9 Dead+1.0 Wind 0 deg -	30.06	-0.02	-29.93	<i>kip-ft</i> -3167.43	<i>kip-ft</i> 1.02	kip-ft 0.27
No Ice 1.2 Dead+1.0 Wind 30 deg -	40.07	15.40	-26.91	2955 02	-1634.01	-0.80
No Ice	40.07	15.40	-20.91	-2855.93	-1034.01	-0.60
0.9 Dead+1.0 Wind 30 deg -	30.06	15.40	-26.91	-2813.85	-1609.57	-0.80
No Ice 1.2 Dead+1.0 Wind 60 deg -	40.07	25.91	-15.07	-1617.10	-2778.44	-1.64
No Ice).9 Dead+1.0 Wind 60 deg -	30.06	25.91	-15.07	-1593.25	-2736.77	-1.64
No Ice 1.2 Dead+1.0 Wind 90 deg -	40.07	29.96	0.00	1.60	-3211.39	-2.02
No Ice).9 Dead+1.0 Wind 90 deg -	30.06	29.96	0.00	1.27	-3163.28	-2.02
No Ice 1.2 Dead+1.0 Wind 120 deg · No Ice	40.07	25.74	14.97	1609.90	-2762.53	-1.89
).9 Dead+1.0 Wind 120 deg	30.06	25.74	14.97	1585.54	-2721.06	-1.89
1.2 Dead+1.0 Wind 150 deg	40.07	14.86	25.91	2785.92	-1594.77	-1.26
0.9 Dead+1.0 Wind 150 deg	30.06	14.86	25.91	2743.98	-1570.74	-1.26
1.2 Dead+1.0 Wind 180 deg No Ice	40.07	-0.01	29.88	3213.89	-0.35	-0.26
).9 Dead+1.0 Wind 180 deg No Ice	30.06	-0.01	29.88	3165.52	-0.14	-0.26
1.2 Dead+1.0 Wind 210 deg	40.07	-15.44	26.89	2856.45	1635.71	0.79
).9 Dead+1.0 Wind 210 deg	30.06	-15.44	26.89	2813.77	1611.67	0.79
1.2 Dead+1.0 Wind 240 deg	40.07	-25.96	15.07	1619.67	2781.09	1.62
0.9 Dead+1.0 Wind 240 deg	30.06	-25.96	15.07	1595.18	2739.81	1.62
1.2 Dead+1.0 Wind 270 deg No Ice	40.07	-30.01	-0.00	0.89	3213.82	2.02
).9 Dead+1.0 Wind 270 deg · No Ice	30.06	-30.01	-0.00	0.57	3166.09	2.02
1.2 Dead+1.0 Wind 300 deg	40.07	-25.77	-14.98	-1608.66	2763.11	1.90
).9 Dead+1.0 Wind 300 deg No Ice	30.06	-25.77	-14.98	-1584.91	2722.03	1.90
1.2 Dead+1.0 Wind 330 deg	40.07	-14.88	-25.95	-2786.95	1595.23	1.27
0.9 Dead+1.0 Wind 330 deg	30.06	-14.88	-25.95	-2745.59	1571.60	1.27
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	69.65 69.65	0.00 -0.00	-0.00 -8.14	1.84 -914.63	-3.59 -3.45	0.00 0.07
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	69.65	4.05	-7.05	-791.43	-458.68	-0.18
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	69.65	7.01	-4.07	-456.07	-792.17	-0.38
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 90	69.65	8.10	0.00	1.95	-914.80	-0.48
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 120	69.65	7.02	4.07	460.21	-793.01	-0.46
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 150	69.65	4.05	7.05	795.42	-459.35	-0.31
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180	69.65	-0.00	8.13	917.61	-3.69	-0.07
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 210	69.65	-4.05	7.04	794.79	451.79	0.18
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 240	69.65	-7.02	4.07	459.85	785.48	0.38
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 270	69.65	-8.11	-0.00	1.80	908.06	0.48
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300	69.65	-7.03	-4.08	-456.71	785.89	0.46

149 Ft Monopole Tower Structural Analysis Project Number 1964032, Order 553377, Revision 1

Load Combination	Vertical	Shearx	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	ĸ	К	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 330	69.65	-4.06	-7.06	-792.38	452.20	0.31
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	33.40	-0.00	-6.50	-692.30	-0.32	0.06
Dead+Wind 30 deg - Service	33.40	3.34	-5.84	-614.92	-352.76	-0.18
Dead+Wind 60 deg - Service	33.40	5.62	-3.27	-347.82	-599.40	-0.37
Dead+Wind 90 deg - Service	33.40	6.50	0.00	1.09	-692.72	-0.45
Dead+Wind 120 deg - Service	33.40	5.59	3.25	347.75	-595.96	-0.42
Dead+Wind 150 deg - Service	33.40	3.23	5.62	601.26	-344.26	-0.28
Dead+Wind 180 deg - Service	33.40	-0.00	6.49	693.51	-0.58	-0.06
Dead+Wind 210 deg - Service	33.40	-3.35	5.84	616.54	352.13	0.18
Dead+Wind 240 deg - Service	33.40	-5.64	3.27	349.87	598.98	0.36
Dead+Wind 270 deg - Service	33.40	-6.51	-0.00	0.94	692.24	0.45
Dead+Wind 300 deg - Service	33.40	-5.59	-3.25	-345.99	595.08	0.42
Dead+Wind 330 deg - Service	33.40	-3.23	-5.63	-599.99	343.35	0.28

Solution Summary

	Sur	n of Applied Force			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Erroi
Comb.	K	K	K	K	K	K	
1	0.00	-33.40	0.00	0.00	33.40	0.00	0.000%
2	-0.02	-40.07	-29.93	0.02	40.07	29.93	0.000%
3	-0.02	-30.06	-29.93	0.02	30.06	29.93	0.000%
4	15.40	-40.07	-26.91	-15.40	40.07	26.91	0.000%
5	15.40	-30.06	-26.91	-15.40	30.06	26.91	0.000%
6	25.91	-40.07	-15.07	-25.91	40.07	15.07	0.000%
7	25.91	-30.06	-15.07	-25.91	30.06	15.07	0.000%
8	29.96	-40.07	0.00	-29.96	40.07	-0.00	0.000%
9	29.96	-30.06	0.00	-29.96	30.06	-0.00	0.000%
10	25.74	-40.07	14.97	-25.74	40.07	-14.97	0.000%
11	25.74	-30.06	14.97	-25.74	30.06	-14.97	0.000%
12	14.86	-40.07	25.91	-14.86	40.07	-25.91	0.000%
13	14.86	-30.06	25.91	-14.86	30.06	-25.91	0.000%
14	-0.01	-40.07	29.88	0.01	40.07	-29.88	0.000%
15	-0.01	-30.06	29.88	0.01	30.06	-29.88	0.000%
16	-15.44	-40.07	26.89	15.44	40.07	-26.89	0.000%
17	-15.44	-30.06	26.89	15.44	30.06	-26.89	0.000%
18	-25.96	-40.07	15.07	25.96	40.07	-15.07	0.000%
19	-25.96	-30.06	15.07	25.96	30.06	-15.07	0.000%
20	-30.01	-40.07	-0.00	30.01	40.07	0.00	0.000%
21	-30.01	-30.06	-0.00	30.01	30.06	0.00	0.000%
22	-25.77	-40.07	-14.98	25.77	40.07	14.98	0.000%
23	-25.77	-30.06	-14.98	25.77	30.06	14.98	0.000%
24	-14.88	-40.07	-25.95	14.88	40.07	25.95	0.000%
25	-14.88	-30.06	-25.95	14.88	30.06	25.95	0.000%
26	0.00	-69.65	0.00	-0.00	69,65	0.00	0.000%
27	-0.00	-69.65	-8.14	0.00	69.65	8.14	0.000%
28	4.05	-69.65	-7.05	-4.05	69,65	7.05	0.000%
29	7.01	-69.65	-4.07	-7.01	69.65	4.07	0.000%
30	8.10	-69.65	0.00	-8,10	69.65	-0.00	0.000%
31	7.02	-69.65	4.07	-7.02	69.65	-4.07	0.000%
32	4.05	-69.65	7.05	-4.05	69.65	-7.05	0.000%
33	-0.00	-69.65	8.13	0.00	69.65	-8.13	0.000%
34	-4.05	-69.65	7.04	4.05	69.65	-7.04	0.000%
35	-7.02	-69.65	4.07	7.02	69.65	-4.07	0.000%
36	-8.11	-69.65	-0.00	8.11	69.65	0.00	0.000%
37	-7.03	-69.65	-4.08	7.03	69.65	4.08	0.000%
38	-4.06	-69.65	-7.06	4.06	69.65	7.06	0.000%

	Sur	n of Applied Force	S		Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	ĸ	K	K	ĸ	K	K	
39	-0.00	-33.40	-6.50	0.00	33.40	6.50	0.000%
40	3.34	-33.40	-5.84	-3.34	33.40	5.84	0.000%
41	5.62	-33.40	-3.27	-5.62	33.40	3.27	0.000%
42	6.50	-33.40	0.00	-6.50	33.40	-0.00	0.000%
43	5.59	-33.40	3.25	-5.59	33.40	-3.25	0.000%
44	3.23	-33.40	5.62	-3.23	33.40	-5.62	0.000%
45	-0.00	-33.40	6.49	0.00	33.40	-6.49	0.000%
46	-3.35	-33.40	5.84	3.35	33.40	-5.84	0.000%
47	-5.64	-33.40	3.27	5.64	33.40	-3.27	0.000%
48	-6.51	-33.40	-0.00	6.51	33.40	0.00	0.000%
49	-5.59	-33.40	-3.25	5.59	33.40	3.25	0.000%
50	3.23	-33.40	-5.63	3.23	33.40	5.63	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	•	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.0000001
2	Yes	5	0.00000001	0.00004108
3	Yes	4	0.0000001	0.00069150
4	Yes	6	0.00000001	0.00044785
5	Yes	6	0.00000001	0.00012839
6	Yes	6	0.00000001	0.00045824
7	Yes	6	0.00000001	0.00013336
8	Yes	5	0.00000001	0.00029835
9	Yes	5	0.00000001	0.00013360
10	Yes	6	0.00000001	0.00043447
11	Yes	6	0.00000001	0.00012545
12	Yes	6	0.00000001	0.00045319
13	Yes	6	0.00000001	0.00013193
14	Yes	5	0.00000001	0.00004383
15	Yes	4	0.00000001	0.00070486
16	Yes	6	0.00000001	0.00045905
10	Yes	6	0.00000001	0.00013233
18	Yes	6	0.00000001	0.00043765
19	Yes	6	0.00000001	0.00012611
20	Yes	5	0.00000001	0.00030149
20	Yes	5	0.00000001	0.00013494
22	Yes	6	0.00000001	0.00045689
22	Yes	6	0.00000001	0.00013335
23	Yes	6	0.00000001	0.00043855
25	Yes	6	0.00000001	0.00012678
25	Yes	4	0.00000001	0.00003850
20	Yes	6	0.00000001	0.00021783
28	Yes	6	0.00000001	0.00039845
29	Yes	6	0.00000001	0.00040507
30	Yes	6	0.00000001	0.00021814
31	Yes	6	0.00000001	0.00039219
32	Yes	6	0.00000001	0.00040231
33	Yes	6	0.00000001	0.00021679
34	Yes	6	0.00000001	0.00039519
35	Yes	6	0.00000001	0.00038810
36	Yes	6	0.00000001	0.00021638
37	Yes	6	0.00000001	0.00040173
38	Yes	6	0.00000001	0.00039241
39	Yes	4	0.00000001	0.00015821
40	Yes	4 5	0.00000001	0.00010359
40	Yes	5	0.00000001	0.00010359
41	Yes	5 4	0.00000001	0.00031790
42	Yes	4 5	0.00000001	0.000031790
43	Yes	5	0.00000001	0.00010794
44	Yes	4	0.00000001	0.00015821
45	Yes	4 5	0.00000001	0.00015821
40	Yes	5	0.00000001	0.00009717
47	Yes	5	0.00000001	0.00031812
48 49	Yes	4 5	0.00000001	0.00031812
49 50	Yes	5	0.00000001	0.00009784
	1 69	J	0.0000001	0.00003704

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	o	o
L1	149 - 111.5	31.087	40	1.7429	0.0043
L2	115.25 - 75.25	19.122	40	1.5862	0.0033
L3	79.75 - 39.75	8.921	46	1.0903	0.0015
L4	45 - 0	2.769	46	0.5629	0.0006

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
149.00	T-Arm Mount [TA 702-3]	40	31.087	1.7429	0.0043	39286
144.00	RRUS 11 B12	40	29.257	1.7310	0.0042	39286
135.00	RA21.7770.00 w/ Mount Pipe	40	25.989	1.7048	0.0039	14030
127.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	40	23.141	1.6701	0.0037	8928
122.00	(2) RRFDC-3315-PF-48	40	21.402	1.6401	0.0035	7274
118.00	(2) SBNHH-1D65B w/ Mount Pipe	40	20.040	1.6102	0.0034	6342
111.00	MX08FRO665-21 w/ Mount Pipe	40	17.732	1.5433	0.0031	5434
81.00	PCTEL MPRC2449	46	9.219	1.1104	0.0016	3697

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L1	149 - 111.5	143.850	4	8.0873	0.0191
L2	115.25 - 75.25	88.605	4	7.3650	0.0147
L3	79.75 - 39.75	41.380	16	5.0648	0.0069
L4	45 - 0	12.846	16	2.6132	0.0026

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	0	ft
149.00	T-Arm Mount [TA 702-3]	4	143.850	8.0873	0.0191	8814
144.00	RRUS 11 B12	4	135.407	8.0329	0.0186	8814
135.00	RA21.7770.00 w/ Mount Pipe	4	120.322	7.9124	0.0176	3145
127.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	4	107.171	7.7525	0.0166	1999
122.00	(2) RRFDC-3315-PF-48	4	99.141	7.6140	0.0158	1627
118.00	(2) SBNHH-1D65B w/ Mount Pipe	4	92.850	7.4759	0.0152	1417
111.00	MX08FRO665-21 w/ Mount Pipe	4	82.183	7.1660	0.0138	1210
81.00	PCTEL MPRC2449	16	42.760	5.1581	0.0072	812

Compression Checks

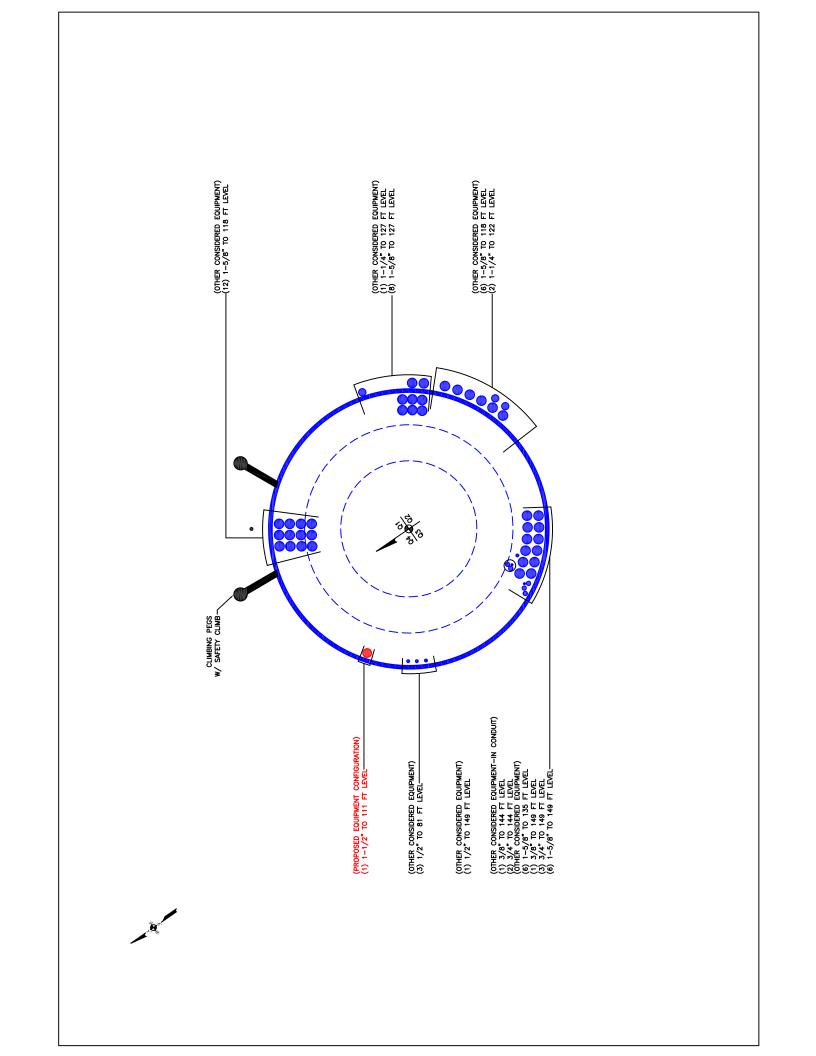
Pole Design Data									
Section No.	Elevation	Size	L	Lu	Kl/r	A	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	к	ϕP_n
L1	149 - 111.5 (1)	TP29.487x23x0.1875	37.50	0.00	0.0	17.050 8	-9.94	997.47	0.010
L2	111.5 [°] - 75.25 (2)	TP35.383x28.4633x0.218 8	40.00	0.00	0.0	23.874 5	-18.48	1396.66	0.013
L3	75.25 - 39.75 (3)	TP41.086x34.167x0.2813	40.00	0.00	0.0	35.615 2	-26.24	2083.49	0.013
L4	39.75 - 0 (4)	TP47.4x39.6154x0.375	45.00	0.00	0.0	55.971 5	-40.04	3274.33	0.012

Pole Bending Design Data								
Section No.	Elevation	Size	Mux	φ M _{nx}	Ratio M _{ux}	M _{uy}	φM _{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	φM _{nx}	kip-ft	kip-ft	φM _{ny}
L1	149 - 111.5 (1)	TP29.487x23x0.1875	298.66	639.10	0.467	0.00	639.10	0.000
L2	111.5 - 75.25 (2)	TP35.383x28.4633x0.218 8	1060.55	1060.37	1.000	0.00	1060.37	0.000
L3	75.25 - 39.75 (3)	TP41.086x34.167x0.2813	1963.47	1917.64	1.024	0.00	1917.64	0.000
L4	39.75 - 0 (4)	TP47.4x39.6154x0.375	3291.63	3714.79	0.886	0.00	3714.79	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V _u	Actual T _u	ϕT_n	Ratio T _u
	ft		K	ĸ	φVn	kip-ft	kip-ft	ϕT_n
L1	149 - 111.5 (1)	TP29.487x23x0.1875	16.26	299.24	0.054	0.00	750.83	0.000
L2	111.5 - 75.25 (2)	TP35.383x28.4633x0.218 8	24.21	419.00	0.058	0.86	1261.74	0.001
L3	75.25 - 39.75 (3)	TP41.086x34.167x0.2813	27.65	625.05	0.044	0.81	2183.88	0.000
L4	39.75 - 0 (4)	TP47.4x39.6154x0.375	31.05	982.30	0.032	0.79	4045.32	0.000

Pole Interaction Design Data


Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φMnx	φM _{ny}	φVn	ϕT_n	Ratio	Ratio	
L1	149 - 111.5 (1)	0.010	0.467	0.000	0.054	0.000	0.480	1.050	4.8.2
L2	111.5 - 75.25 (2)	0.013	1.000	0.000	0.058	0.001	1.017	1.050	4.8.2
L3	75.25 - 39.75 (3)	0.013	1.024	0.000	0.044	0.000	1.038	1.050	4.8.2
L4	39.75 - 0 (4)	0.012	0.886	0.000	0.032	0.000	0.899	1.050	4.8.2

Section Capacity Table

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	ĸ	K	Capacity	Fail
L1	149 - 111.5	Pole	TP29.487x23x0.1875	1	-9.94	1047.35	45.7	Pass
L2	111.5 - 75.25	Pole	TP35.383x28.4633x0.2188	2	-18.48	1466.49	96.8	Pass
L3	75.25 - 39.75	Pole	TP41.086x34.167x0.2813	3	-26.24	2187.66	98.9	Pass
L4	39.75 - 0	Pole	TP47.4x39.6154x0.375	4	-40.04	3438.05	85.7	Pass
							Summary	
						Pole (L3)	98.9	Pass
						RATING =	98.9	Pass

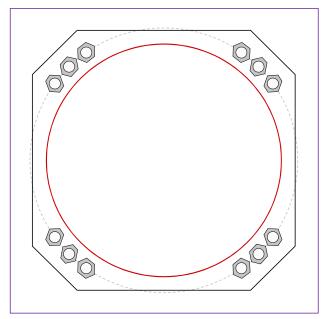
APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	
BU #	845455
Site Name	Oxford-Quaker Farms
Order #	

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
l _{ar} (in)	1

Applied Loads	
Moment (kip-ft)	3291.63
Axial Force (kips)	40.04
Shear Force (kips)	31.05
* TIA 222 11 Castian 15 5 Ann	lind

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 54" BC Anchor Spacing: 4.5 in

Base Plate Data

53" W x 2.75" Plate (A572-60; Fy=60 ksi, Fu=75 ksi); Clip: 9 in

Stiffener Data

N/A

Pole Data

47.4" x 0.375" 18-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 240.32	φPn_t = 243.75	Stress Rating
Vu = 2.59	φVn = 149.1	93.9%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	43	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	75.8%	Pass

CROWN

Pier and Pad Foundation

BU # : 845455 Site Name: Oxford-Quaker Far App. Number:

TIA-222 Revision: Н /lonopole

Tower Type:	M

Tower Type:	N
Tower Type:	N

Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions					
Compression, P _{comp} :	40 <u>.</u> 07	kips			
Base Shear, Vu_comp:	31.01	kips			
Moment, M _u :	3291.63	ft-kips			
Tower Height, H:	149	ft			
BP Dist. Above Fdn, bp_{dist} :	3	in			

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier :	7	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc :	11	
Pier Rebar Quantity, mc :	32	
Pier Tie/Spiral Size, St :	5	
Pier Tie/Spiral Quantity, mt:	10	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	3	in

Pad Properties		
Depth, D:	7.5	ft
Pad Width, W ₁ :	20	ft
Pad Thickness, T :	3.5	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	10	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	21	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δc :	150	pcf

Soil Properties		
Total Soil Unit Weight, $oldsymbol{\gamma}$:	125	pcf
Ultimate Gross Bearing, Qult:	30.000	ksf
Cohesion, Cu :	0.000	ksf
Friction Angle, φ :	36	degrees
SPT Blow Count, N_{blows}:	41	
Base Friction, μ :		
Neglected Depth, N:	3.50	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw :	none	ft

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	285.92	31.01	10.3%	Pass
Bearing Pressure (ksf)	22.50	5.17	23.0%	Pass
Overturning (kip*ft)	4369.82	3547.46	81.2%	Pass
Pier Flexure (Comp.) (kip*ft)	7552.96	3431.18	43.3%	Pass
Pier Compression (kip)	23390.64	79.76	0.3%	Pass
Pad Flexure (kip*ft)	4295.05	1734 <u>.</u> 01	38.4%	Pass
Pad Shear - 1-way (kips)	731 <u>.</u> 44	338.81	44.1%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.000	0.0%	Pass
Flexural 2-way (Comp) (kip*ft)	7386.86	2058.71	26.5%	Pass

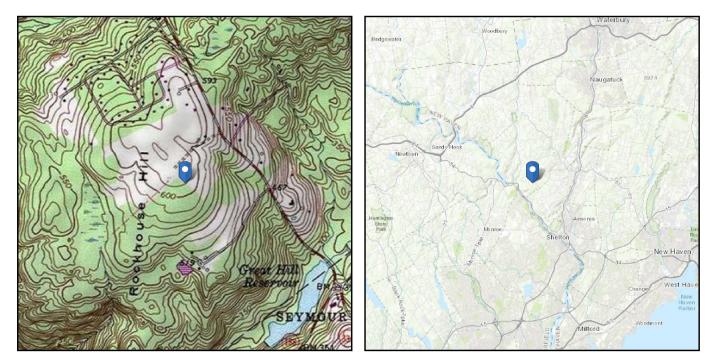
*Rating per TIA-222-H Section
15.5

Structural Rating*:	44.1%
Soil Rating*:	81.2%

<--Toggle between Gross and Net

No Address at This

Location


ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 607.1 ft (NAVD 88)

 Latitude:
 41.383989

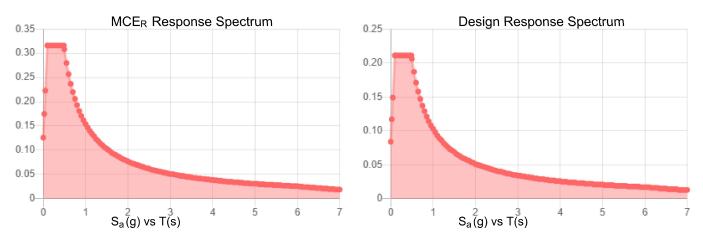
 Longitude:
 -73.137372

Wind

Results:

Wind Speed:	125 Vmph per jurisdictional requirements
10-year MRI	76 Vmph
25-year MRI	86 Vmph
50-year MRI	92 Vmph
100-year MRI	99 Vmph
Data Source:	ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014
Date Accessed:	Mon Nov 16 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.197	S _{DS} :	0.211	
S ₁ :	0.064	S _{D1} :	0.103	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.105	
S _{MS} :	0.316	PGA M :	0.166	
S _{M1} :	0.154	F _{PGA} :	1.591	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Mon Nov 16 2020

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Mon Nov 16 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Kimley »Horn

Kimley-Horn and Associates, Inc. 421 Fayetteville Street, Suite 600 Raleigh, NC 27601 (919) 677-2000 CrownMounts@kimley-horn.com

Subject:	Mount Analysis - Conditional Passing Report	
Carrier Designation:	Dish Equipment Change-Out Carrier Site Number: Carrier Site Name:	BOHVN00159A CT-CCI-T-845455
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Order Number:	845455 OXFORD-QUAKER FARMS 645152 553377, Rev. 1
Engineering Firm Designation:	Kimley-Horn Project Number:	019558056
Site Data:	85 Quaker Farms Road, Oxford Latitude 41° 23' 2.36" Longitu	
Structure Information:	Tower Height & Type: 149 ft Monopole Mount Elevation: 111 ft Mount Type: 8 ft Platform w/ Support Rails	

Kimley-Horn is pleased to submit this "**Mount Analysis - Conditional Passing Report**" to determine the structural integrity of Dish's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform w/ Support Rails

Sufficient

* See Section 4.1 for loading and structural modifications required for the mount to support the loading listed in Table 1.

This analysis utilizes an ultimate 3-second gust wind speed of 121 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by Elliot Ziebart, E.I. under supervision by Steven C. Ball, P.E., S.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

The mounting configuration consists of a proposed 8 ft Platform w/ Support Rails designed by CommScope.

2) ANALYSIS CRITERIA

Building Code:	2018 Connecticut State Building Code
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	121 mph
Exposure Category:	С
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 – Proposed Equipment Configuration

Elevation (ft)		Antennas			Mount / Modification
Mount	Centerline	#	Manufacturer	Model	Details
111	111	3	Fujitsu	TA08025-B604	Dran agod 0 ft Diatforms w/
		3	Fujitsu	TA08025-B605	Proposed 8 ft Platform w/
		3	Jma wireless	MX08FRO665-21	Support Rails designed by CommScope
		1	Raycap	RDIDC-9181-PF-48	CommScope

3) ANALYSIS PROCEDURE

Table 2 – Documents Provided

Document	Remarks	Reference	Source
Structural Analysis	Crown Castle	9370628	CCISites
Tower Drawings	Paul J. Ford and Company	5110795	CCISites
Mount Drawings	Commscope	MC-PK8-DSH	On File

3.1) Analysis Method

RISA-3D (version 17.02.00), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A proprietary tool internally developed by Kimley-Horn was used to calculate wind loading on all appurtenances, dishes and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Mount Analysis* (Revision D).

3.2) Assumptions

- The antenna mounting system (including any considered modifications) was properly fabricated, installed and maintained in good condition in accordance with its original design, TIA standards, and/or manufacturer specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the provided reference information.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members that could not be verified at this time.
- 5) Any referenced prior structural modifications to the tower mounting system are assumed to be installed as shown per available data unless noted otherwise.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
HSS (Rectangular)	ASTM A36 (Gr. 36)
Pipe	ASTM A53 (Gr. B-35)
Connection Bolts	ASTM A325
Threaded Rods	ASTM A36 (Gr. 36)

This analysis may be affected if any assumptions are not valid or have been made in error. Kimley-Horn should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1, 2	Connections	-		43%	Pass
1, 2	Bracing Members	M62A		29%	Pass
1, 2	Stand Off Horizontals	M92A		23%	Pass
1, 2	Mount Pipes	MP8	111	18%	Pass
1, 2	Corner Plates	M75		18%	Pass
1, 2	Face Horizontals	M48		10%	Pass
1, 2	Support Rails	M51		10%	Pass

Table 3 – Mount Component Stresses vs. Capacity

Structure Rating (max from all components) =	43%	
--	-----	--

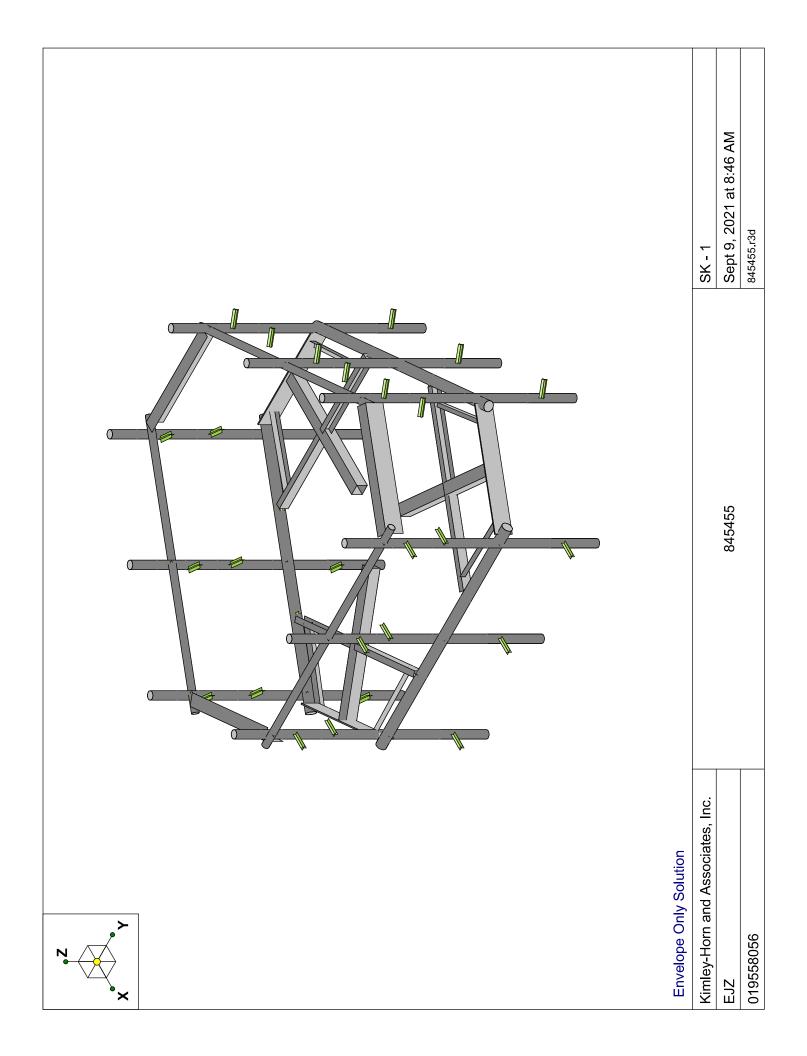
Notes:

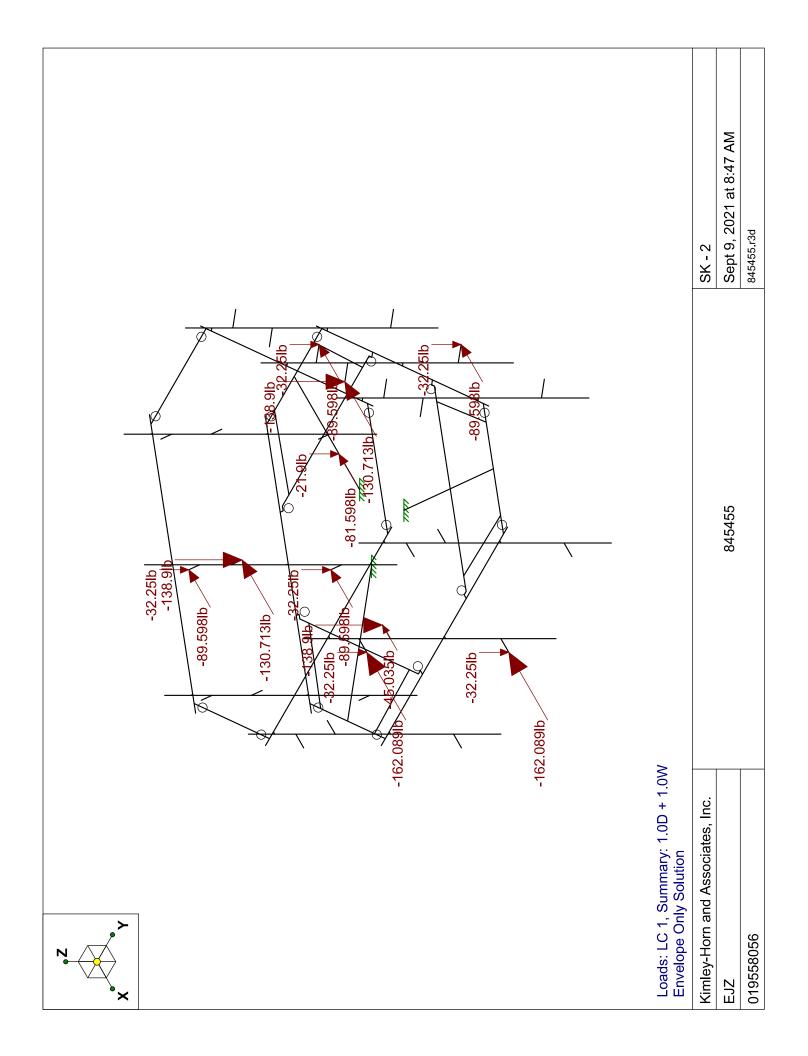
1) See additional documentation in Appendix C and Appendix D for calculations supporting the % capacity consumed.

2) Rating per TIA-222-H, Section 15.5.

4.1) Recommendations

The mounting configuration will have sufficient design capacity to carry the referenced loading once the following modifications are completed:


Install proposed mount according to manufacturer specifications.


• (1) Commscope MC-PK8-DSH platform

No additional modifications are required at this time provided that the above-listed changes are completed.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

APPENDIX B

SOFTWARE INPUT CALCULATIONS

General Criteria						
TIA Standard	Н					
IBC Edition	2015					
Structure Class	-					
Risk Category	=					

Site-Specific Criteria	
Exposure Category	С
Topographic Factor, K _{zt}	1.00
Structure Base Elev. (AMSL), z _s (ft)	607.00
Ground Effect Factor, Ke	0.98

Mount & Structure Criteria						
Mount Elevation (AGL) (ft)	111.00				
Structure Height (149.00					
Structure Type	Monopole					

Constants	
Wind Direction Probability Factor, \mathbf{K}_{d}	0,95
Gust Effect Factor, Gh	1
Shielding Factor, K _a (antenna)	0,9
Shielding Factor, K _a (mount)	0.9

	Wind Summary	
	Basic Wind Speed w/o Ice, V (mph)	121.00
	Velocity Pressure Coeff., Kz	1,29
	Velocity Pressure, q _z (w/o Ice) (psf)	45.06
_		

Basic Wind Speed w/ Ice, V _i (mph)	50.00
Design Ice Thick. (ASCE 7-10) , \mathbf{t}_{i} (in)	0.75
Velocity Pressure, q_z (w/ Ice) (psf)	7,69
Escalated Ice Thick. @ Mount, t_{iz} (in)	1,69

Seismic Load Summary	
Spectral Response (Short Periods), $\mathbf{S}_{\mathbf{s}}$	-
Spectral Response (1-Sec. Period), S1	-
Site Class	D
Seismic Design Category	-
Seismic Risk Category	-

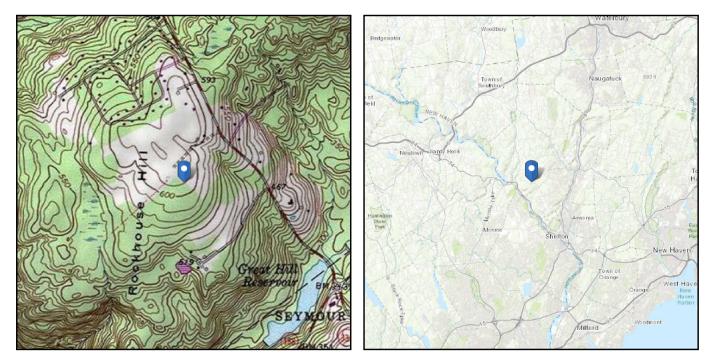
Snow Load Summary	
Ground Snow Load, p_g (psf)	
Snow Load on Flat Roofs, pf (psf)	

Kimlow Horn	Date	September 09, 2021
Kimley Wheeler	Client	Crown Castle
1	Site #	845455
	Site Name	OXFORD-QUAKER FARMS
	Project #	19558056

Antenna Name	Qty		Dim	onsions	(in)	Wainht	t Joint Labels EPA (ft ²			EPA (ft²)					/ind For	ce, F _A (Ik	b)			
		Shape	Dimensions (in)			(in) Weight (Ib)					EFA	(11-)	No	lce	With	n Ice				
			н	W	D		Al	oha	Be	eta	Gar	nma	De	lta	Front	Side	Front	Side	Front	Side
MX08FRO665-21	3	Flat	72	20	8	64.5	A2T	A2B	B2T	B2B	G2T	G2B			7.99	3,23	324.18	130.87	66.86	31.41
TA08025-B605	3	Flat	15.8	15	9.1	75	A2R		B2R		G2R				0.59	1.96	24.09	79.64	6.87	20.26
TA08025-B604	3	Flat	15.8	15	7.9	63.9	A2R		B2R		G2R				0.52	1.96	20.95	79.64	6.22	20.26
RDIDC-9181-PF-48	1	Flat	16.6	14.6	8.5	21.9	DCU								2.01	1.17	81.6	47.38	20.68	13.64

No Address at This

Location


ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 607.1 ft (NAVD 88)

 Latitude:
 41.383989

 Longitude:
 -73.137372

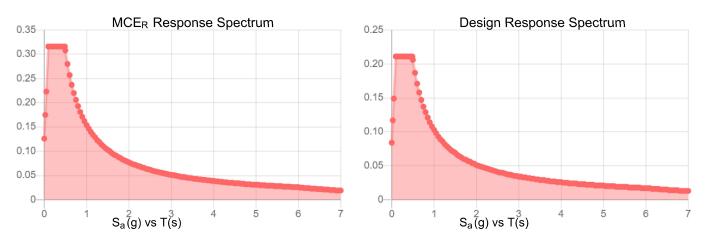
Wind

Results:

Wind Speed:	121 Vmph
10-year MRI	76 Vmph
25-year MRI	86 Vmph
50-year MRI	92 Vmph
100-year MRI	99 Vmph

Date Socressed:

ABCE#9E1972002,1Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _S :	0.197	S _{DS} :	0.211	
S ₁ :	0.064	S _{D1} :	0.103	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.105	
S _{MS} :	0.316	PGA M :	0.166	
S _{M1} :	0.154	F _{PGA} :	1.591	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Thu Sep 09 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Thu Sep 09 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8	A913 Gr.65	29000	11154	.3	.65	.49	65	1.1	80	1.1
9	A500 GR.C	29000	11154	.3	.65	.49	46	1.6	60	1.2
10	A529 Gr. 50	29000	11154	.3	.65	.49	50	1.1	65	1.1
11	A1011-33Ksi	29000	11154	.3	.65	.49	33	1.5	58	1.2
12	A1011 36 Ksi	29000	11154	.3	.65	.49	36	1.5	58	1.2
13	A1018 50 Ksi	29000	11154	.3	.65	.49	50	1.5	65	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Materia	Design Ru	A [in2]	lyy [in4]	zz [in4]	J [in4]
1	6.5"x0.37" Plate	PL6.5x0.375	Beam	None	A1011 36 Ksi	Typical	2.438	.029	8.582	11
2	6"x0.37" Plate	Plate 6x.37	Beam	None	A1011 36 Ksi	Typical	2.22	.025	6.66	.097
3	L 2"x2"x1/4"	L2x2x4	Beam	None	A529 Gr. 50	Typical	.944	.346	.346	.021
4	Face Pipes(3.5x.16)	Pipe3.5x0.165	Beam	None	A500 GR.C	Typical	1.729	2.409	2.409	4.819
5	Antenna Pipes	Pipe 2.875x0	Beam	None	A500 GR.C	Typical	1.039	.987	.987	1.975
6	Channel(3.38x2.06)	C3.38x2.06x0	Beam	None	A1011 36 Ksi	Typical	1.75	.715	3.026	.034
7	Square Tubing	HSS4X4X6	Beam	None	A500 GR.C	Typical	4.78	10.3	10.3	17.5
8	Handrail Connector	L6.6x4.46x0.25	Beam	None	A1011 36 Ksi	Typical	2.703	4.759	12.473	.055
9	Handrail	PIPE_2.0	Beam	None	A500 GR.C	Typical	1.02	.627	.627	1.25

Hot Rolled Steel Design Parameters

	Labe	Shape	Length[in]	Lbyy[in]	Lbzz[in]	_Lcomp top[in] Lcomp bot[in] L-tore	qu Kyy	Kzz	Cb	Function
1	M3	L 2"x2"x1/4"	27.295			Lbyy				Lateral
2	M4	L 2"x2"x1/4"	27.295			Lbyy				Lateral
3	M5	6.5"x0.37" P	42			Lbyy				Lateral
4	M7	Square Tubi	49.75			Lbyy				Lateral
5	M8	L 2"x2"x1/4"	27.295			Lbyy				Lateral
6	M9	L 2"x2"x1/4"	27.295			Lbyy				Lateral
7	M10	6.5"x0.37" P	· 42			Lbyy				Lateral
8	M13	L 2"x2"x1/4"	27.295			Lbyy				Lateral
9	M14	L 2"x2"x1/4"	27.295			Lbyy				Lateral
10	M15	6.5"x0.37" P	. 42			Lbyy				Lateral
11	M18	Face Pipes(96			Lbyy				Lateral
12	MP9	Antenna Pip	96			Lbyy				Lateral
13	MP7	Antenna Pip	96			Lbyy				Lateral
14	M25	Handrail	96			Lbyy				Lateral
15	M28	Handrail Co	42			Lbyy				Lateral
16	M29	Handrail Co	42			Lbyy				Lateral
17	M30	Handrail Co	42			Lbyy				Lateral
18	M61A	Channel(3.3	33			Lbyy				Lateral
19	M63A	Channel(3.3	. 33			Lbyy				Lateral
20	M60A	Channel(3.3	33			Lbyy				Lateral
21	M61B	Channel(3.3				Lbyy				Lateral
22	M62A	Channel(3.3				Lbyy				Lateral
23	M63B	Channel(3.3	. 33			Lbyy				Lateral
24	M75	PL 2.375x0.5								Lateral
25	MP8	Antenna Pip	96			Lbyy				Lateral

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in] Lcomp bot[ir]L-torgu	Kyy	Kzz	Cb	Function
26	M48	Face Pipes(96			Lbyy					Lateral
27	MP3	Antenna Pip	96			Lbyy					Lateral
28	MP1	Antenna Pip	96			Lbyy					Lateral
29	M51	Handrail	96			Lbyy					Lateral
30	M62	Face Pipes(96			Lbyy					Lateral
31	MP6	Antenna Pip	96			Lbyy					Lateral
32	MP4	Antenna Pip	96			Lbyy					Lateral
33	M65A	Handrail	96			Lbyy					Lateral
34	MP2	Antenna Pip	96			Lbyy					Lateral
35	MP5	Antenna Pip	96			Lbyy					Lateral
36	M92A	Square Tubi	49.75			Lbyy					Lateral
37	M93A	Square Tubi	49.75			Lbyy					Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area(Me	.Surface(
1	Dead	DL			-1	13				
2	Dead of Ice	RL				13		37		
4	Structure Wind (0)	None						74		
5	Structure Wind (30)	None						74		
6	Structure Wind (45)	None						74		
7	Structure Wind (60)	None						74		
8	Structure Wind (90)	None						74		
9	Structure Wind (120)	None						74		
10	Structure Wind (135)	None						74		
11	Structure Wind (150)	None						74		
12	Structure Wind w/ Ice (0)	None						74		
13	Structure Wind w/ Ice (30)	None						74		
14	Structure Wind w/ Ice (45)	None						74		
15	Structure Wind w/ Ice (60)	None						74		
16	Structure Wind w/ Ice (90)	None						74		
17	Structure Wind w/ Ice (120)	None						74		
18	Structure Wind w/ Ice (135)	None						74		
19	Structure Wind w/ Ice (150)	None						74		
20	Antenna Wind (0)	None				26				
21	Antenna Wind (30)	None				26				
22	Antenna Wind (45)	None				26				
23	Antenna Wind (60)	None				26				
24	Antenna Wind (90)	None				26				
25	Antenna Wind (120)	None				26				
26	Antenna Wind (135)	None				26				
27	Antenna Wind (150)	None				26				
28	Antenna Wind w/ Ice (0)	None				26				
29	Antenna Wind w/ Ice (30)	None				26				
30	Antenna Wind w/ Ice (45)	None				26				
31	Antenna Wind w/ Ice (60)	None				26				
32	Antenna Wind w/ Ice (90)	None				26				
33	Antenna Wind w/ Ice (120)	None				26				
34	Antenna Wind w/ Ice (135)	None				26				
35	Antenna Wind w/ Ice (150)	None				26				
36	Maintenance Live Lm (1)	OL1				1				
37	Maintenance Live Lm (2)	OL2				1				
	Maintenance Live Lm (3)	OL3				1				
41	Maintenance Live Lv (1)	OL6					1			
42	Maintenance Live Lv (2)	OL7					1			
	Maintenance Live Lv (3)	OL8					1			
				•					•	·

Load Combinations

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				_	0 01 0	-		-		-		-		-		. –					-		_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	Description							BLC	<u>⊦ac</u>	BLC	Fac	BLC	Fac	BLC	;⊢ac	;⊢ac	BLC	;⊢ac		Fac	BLC	⊦ac.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2				1 1		20															<u> </u>	
							4	1	20	1													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										1													
6 1.20 + 1.0W(60) Yes Y DL 12 1 24 1 8 120 + 1.0W(120) Yes Y DL 12 1 26 1 9 120 + 1.0W(130) Yes Y DL 12 1 26 1 10 120 + 1.0W(130) Yes Y DL 12 1 26 1 11 120 + 1.0W(130) Yes Y DL 12 4 -1 26 1 12 120 + 1.0W(130) Yes Y DL 12 5 -1 1 13 120 + 1.0W(240) Yes Y DL 12 6 -1 22 -1 14 120 + 1.0W(240) Yes Y DL 12 12 25 -1 1 15 120 + 1.0W(315) Yes Y DL 12 12 12 12 14 13 12 1 24 14 30 1 12 12 12 12 12 12 12 12 12 12 12 12 12 12																							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					i i																		
8 1.20 + 1.0W(130) Yes Y DL 12 10 1 26 1 DL 10 1.20 + 1.0W(150) Yes Y DL 12 11 1 27 1 DL DL 11 1.20 + 1.0W(120) Yes Y DL 12 12 1 - 1 20 - 1 DL DL 13 1.20 + 1.0W(120) Yes Y DL 12 1 6 - 1 22 - 1 DL DL DL DL 14 1.20 + 1.0W(120) Yes Y DL 12 1 6 - 1 22 - 1 DL DL <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td>					<u> </u>																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																				_			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					i																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1 1																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_	1 1																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																						$ \longrightarrow $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13			_	DL																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					DL		_																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15		Yes		DL			-1															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16		Yes	Y	DL	1.2	9	-1	25	-1													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17		Yes		DL			-1															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Yes	Y	DL	1.2	11	-1	27	-1													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	1.2D + 1.0Di + 1.0	Yes	Υ	DL	1.2	RL	1	12	1	28	1											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Yes	Y	DL			1		1		1											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	1.2D + 1.0Di + 1.0	Yes	Y	DL	1.2	RL	1	14	1	30	1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Yes	Y	DL	1.2	RL	1	15	1	31	1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	1.2D + 1.0Di + 1.0	Yes	Y	DL	1.2	RL	1	16	1	32	1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	1.2D + 1.0Di + 1.0	Yes	Y	DL	1.2	RL	1	17	1	33	1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	1.2D + 1.0Di + 1.0	Yes	Y	DL	1.2	RL	1	18		34	1											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	1.2D + 1.0Di + 1.0	Yes	Y	DL			1	19	1		1											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	1.2D + 1.0Di + 1.0	Yes	Y	DL	1.2	RL	1	12	-1	28	-1											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	1.2D + 1.0Di + 1.0	Yes	Y	DL			1															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29	1.2D + 1.0Di + 1.0		Y	DL			1	14														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30	1.2D + 1.0Di + 1.0		Y	DL			1				-1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.2D + 1.0Di + 1.0			DL																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	1.2D + 1.0Di + 1.0			<u>i i i</u>																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.2D + 1.0Di + 1.0		Y	DL																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.2D + 1.0Di + 1.0		Y	DL			1				-1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.2D + 1.5Lm(1) +		Y	1 1			.061															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																							
39 1.2D + 1.5Lm(1) + Yes Y DL 1.2 8 .061 24 .061 0.1 1.5 40 1.2D + 1.5Lm(1) + Yes Y DL 1.2 9 .061 25 .061 0.1 1.5 41 1.2D + 1.5Lm(1) + Yes Y DL 1.2 10 .061 26 .061 0.1 1.5 42 1.2D + 1.5Lm(1) + Yes Y DL 1.2 11 .061 27 .061 0.1 1.5 43 1.2D + 1.5Lm(1) + Yes Y DL 1.2 5 .061 0.1 1.5		1.2D + 1.5Lm(1) +		_	ii																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					DL																		
41 1.2D + 1.5Lm(1) + Yes Y DL 1.2 10 .061 26 .061 DL 1.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.061</td> <td></td>								.061															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	1						
43 1.2D + 1.5Lm(1) + Yes Y DL 1.2 4 061 20 061 0L1 1.5																							
44 1.2D + 1.5Lm(1) + Yes Y DL 1.2 5 .061 Q1 .061 Q1 1.5 <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				_																			
45 1.2D + 1.5Lm(1) + Yes Y DL 1.2 6 061 22 061 OL 1.5 <																							
46 1.2D + 1.5Lm(1) + Yes Y DL 1.2 7 061 23 061 DL 1.5 Image: Constraint of the stress of th					<u> </u>																		
47 1.2D + 1.5Lm(1) + Yes Y DL 1.2 8 061 0.1 1.5 <td></td>																							
48 1.2D + 1.5Lm(1) + Yes Y DL 1.2 9 061 25 061 0L1 1.5																							
49 1.2D + 1.5Lm(1) + Yes Y DL 1.2 10 .061 26 .061 OL 1.5 <t< td=""><td></td><td></td><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					1 1																		
50 1.2D + 1.5Lm(1) + Yes Y DL 1.2 11 061 27 061 OL1 1.5							_																
51 1.2D + 1.5Lm(2) + Yes Y DL 1.2 4 .061 20 .061 OL2 1.5 Image: Constraint of the con																							
52 1.2D + 1.5Lm(2) + Yes Y DL 1.2 5 .061 OL2 1.5 <td></td>																							
53 1.2D + 1.5Lm(2) + Yes Y DL 1.2 6 .061 22 .061 OL2 1.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
54 1.2D + 1.5Lm(2) + Yes Y DL 1.2 7 .061 23 .061 OL2 1.5 Image: Second sec																							
55 1.2D + 1.5Lm(2) + Yes Y DL 1.2 8 .061 Q4 .061 OL2 1.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
RISA-3D Version 17.0.2 [____\Crown\845455\KHRAL-15055 (MAR)\Model\845455 r3d] Page 3																							

Load Combinations (Continued)

Lout		01001	10110																			
	Description	Solve	PS	BLCF	ac B	BLCF	ac I	BI CEac	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac	BI C	Fac
57	1.2D + 1.5Lm(2) +		Y					26 .061						1 00		1 00				1 00		<u> </u>
					.2		061	07 061	012	1.5											\vdash	
	1.2D + 1.5Lm(2) +		Y					27 .061														
	1.2D + 1.5Lm(2) +		Y	DL 1				20061														
60	1.2D + 1.5Lm(2) +	Yes	Y	DL 1	.2	5 -	.061	21061	OL2	1.5												
	1.2D + 1.5Lm(2) +		Ý					22061														
	1.2D + 1.5Lm(2) +																				\vdash	
			Y					23061														
	1.2D + 1.5Lm(2) +		Y					24061														
64	1.2D + 1.5Lm(2) +	Yes	Y	DL 1	.2	9 -	.061	25061	OL2	1.5												
	1.2D + 1.5Lm(2) +		Ý					26061														
	1.2D + 1.5Lm(2) +																					
			Y	DL 1				27061														
	1.2D + 1.5Lm(3) +		Y					20 .061													\square	
	1.2D + 1.5Lm(3) +		Y	DL 1	.2	5 .	061	21 .061	OL3	1.5												
69	1.2D + 1.5Lm(3) +	Yes	Y	DL 1	.2	6.	061	22 .061	OL3	1.5												
	1.2D + 1.5Lm(3) +		Ý					23 .061														
	1.2D + 1.5Lm(3) +																					
			Y					24 .061													\vdash	
	1.2D + 1.5Lm(3) +		Y		.2	9.	061	25 .061	OL3	1.5												
73	1.2D + 1.5Lm(3) +	Yes	Y	DL 1	.2	10	061	26 .061	OL3	1.5												
74	1.2D + 1.5Lm(3) +	Yes	Y	DL 1				27 .061														
	1.2D + 1.5Lm(3) +		Ý					20061						-								
				DL 1																	\vdash	
	1.2D + 1.5Lm(3) +		Y					21061														
	1.2D + 1.5Lm(3) +		Y	DL 1	.2	6 -	.061	22061	OL3	1.5												
78	1.2D + 1.5Lm(3) +	Yes	Y	DL 1	.2	7 -	.061	23061	OL3	1.5												
	1.2D + 1.5Lm(3) +		Ý	DL 1				24061														
	1.2D + 1.5Lm(3) +							25061														
			Y																			
	1.2D + 1.5Lm(3) +		Y					26061														
82	1.2D + 1.5Lm(3) +	· Yes	Y	DL 1	.2	11ŀ-	.061	27061	OL3	1.5												
83	1.2D + 1.5Lv(1) + 1.	Yes	Y	DL 1	.2	4.	061	20 .061	OL6	15												
	1.2D + 1.5Lv(1) + 1.		Ý	DL 1				21 .061														
	1 2D + 1 5Lv(1) + 1.												_									
			Y					22 .061													\square	
	1.2D + 1.5Lv(1) + 1.		Y					23 .061														
87	1.2D + 1.5Lv(1) + 1.	Yes	Y	DL 1	.2	8	061	24 .061	OL6	1.5											1	
	1.2D + 1.5Lv(1) + 1.		Y					25 .061														
	1.2D + 1.5Lv(1) + 1.1		Ý					26 .061														
																					\vdash	
	1.2D + 1.5Lv(1) + 1.		Y	DL 1				27 .061														
91	1.2D + 1.5Lv(1) + 1.	Yes	Y	DL 1	.2	4 -	.061	20061	OL6	1.5												
92	1.2D + 1.5Lv(1) + 1	Yes	Y	DL 1	.2	5 -	.061	21061	OL6	1.5												
	1.2D + 1.5Lv(1) + 1.		Ý					22061														
																					\vdash	
	1.2D + 1.5Lv(1) + 1.		Y					23061														
	1.2D + 1.5Lv(1) + 1.		Y	DL 1				24061														
96	1.2D + 1.5Lv(1) + 1.	Yes	Y	DL 1	.2	9 -	.061	25061	OL6	1.5												
	1.2D + 1.5Lv(1) + 1		Ý		2	10-	.061	26061	OL6	15												
	1.2D + 1.5Lv(1) + 1.1		Y		2	11	061	27061		1.5												
	1.2D + 1.5Lv(2) + 1		Y					20 .061													\vdash	
	1.2D + 1.5Lv(2) + 1.		Y					21 .061														
101	1.2D + 1.5Lv(2) + 1.	Yes	Y	DL 1	.2	6.	061	22 .061	OL7	1.5											I T	
	1.2D + 1.5Lv(2) + 1		Ý	DL 1				23 .061														
	1.2D + 1.5Lv(2) + 1.5Lv(2)																					
		1	Y	DL 1				24 .061													\vdash	
	1.2D + 1.5Lv(2) + 1.		Y					25 .061														
<u>1</u> 05	1.2D + 1.5Lv(2) + 1.	Yes	Y		.2	<u>10</u> .	061	26 .061	OL7	1.5												
	1.2D + 1.5Lv(2) + 1.		Y					27 .061														
	1.2D + 1.5Lv(2) + 1.5Lv(2)		Ý					20061	_													
	1.2D + 1.5Lv(2) + 1.		Y			5 -	.001	21061	UL/	1.5												
109	1.2D + 1.5Lv(2) + 1.	Yes	Y	DL 1				22061														
110	1.2D + 1.5Lv(2) + 1.	Yes	Y	DL 1	.2	7 -	.061	23061	OL7	1.5												
	1.2D + 1.5Lv(2) + 1.		Ý	DL 1				24061											1			
	1.2D + 1.5Lv(2) + 1					-			_													
			Y					25061														
113	1.2D + 1.5Lv(2) + 1.	Yes	Y		.2	<u>10</u> -	.061	26061	UL7	1.5												

RISA-3D Version 17.0.2 [\...\...\Crown\845455\KHRAL-15055 (MAR)\Model\845455.r3d]

Load Combinations (Continued)

Description	Solve	P	S	BLCFac	BLC	CFac.	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac	BLC	Fac.	BLC	Fac
114 1.2D + 1.5Lv(2) + 1	Yes	Y		DL 1.2	11	061	27	061	OL7	1.5												
115 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	: 4	.061	20	.061	OL8	1.5												
116 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	5	.061	21	.061	OL8	1.5												
117 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	6	.061	22	.061	OL8	1.5												
118 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	7	.061	23	.061	OL8	1.5												
119 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	8	.061	24	.061	OL8	1.5												
120 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	9	.061	25	.061	OL8	1.5												
121 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	10	.061	26	.061	OL8	1.5												
122 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	11	.061	27	.061	OL8	1.5												
123 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	4	061	20	061	OL8	1.5												
124 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	5	061	21	061	OL8	1.5												
125 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	6	061	22	061	OL8	1.5												
126 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	2 7	061	23	061	OL8	1.5												
127 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	8	061	24	061	OL8	1.5												
128 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	9	061	25	061	OL8	1.5												
129 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	10	061	26	061	OL8	1.5												
130 1.2D + 1.5Lv(3) + 1	Yes	Y		DL 1.2	11	061	27	061	OL8	1.5												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [l b]	LC	Z [l b]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	P13	max	747.449	3	1403.532	15	1878.475	19	.381	126	4.972	19	2.214	7
2		min	-753.255	11	-1406.97	7	310.637	11	364	86	.305	11	-2.194	15
3	N176A	max	1203.437	3	872.082	16	1832.427	30	258	6	158	6	2.195	18
4		min	-1203.488	11	-874.886	8	297.394	6	-4.346	30	-3.163	78	-2.206	10
5	N178	max	1159.449	3	863.133	14	1733.993	24	4.047	24	111	16	2.087	12
6		min	-1153.591	11	-856.862	6	269.689	16	.208	16	-3.101	40	-2.096	4
7	Totals:	max	3110.335	3	3077.312	15	5192.419	26						
8		min	-3110.334	11	-3077.31	7	1639.579	1						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Che	.Loc[in] LC	Shear Check	Loc[in] Dir LC pl	hi*Pnc [p	ohi*Pnt [l	phi*Mn y	.phi*Mn z	.Cb Eqn
1	M62A	C3.38x2.06x	.306	0 29	.050	28.137 y 2147	7760.074	56700	2.203	5.752	1H1-1b
2	M61B	C3.38x2.06x	.304	0 19	.052	28.137 y 2747	7760.074	56700	2.203	5.752	1H1-1b
3	M63B	C3.38x2.06x	.301	0 30	.053	28.137 y 224	7760.074	56700	2.203	5.752	1H1-1b
4	M60A	C3.38x2.06x	.298	0 27	.051	28.137 y 2747	7760.074	56700	2.203	5.752	1H1-1b
5	M61A	C3.38x2.06x	.295	0 24	.050	28.137 y 3247	7760.074	56700	2.203	5.752	1H1-1b
6	M63A	C3.38x2.06x	.294	0 25	.053	28.137 y 3347	7760.074	56700	2.203	5.752	1H1-1b
7	M92A	HSS4X4X6	.245	49.75 27	.084	49.75 y 79 18	83177	197892	22.046	22.046	2.2 H1-1b
8	M7	HSS4X4X6	.243	49.75 22	.039	49.75 y 32 18	83177	197892	22.046	22.046	2H1-1b
9	M93A	HSS4X4X6	.227	49.75 22	.083	49.75 y 39 18	83177	197892	22.046	22.046	2H1-1b
10	MP8	Pipe 2.875x	.189	42.442 4	.061	63.158 12 22	2398.0734	2998.495	3.144	3.144	1H1-1b
11	M75	PL 2.375x0.5	.184	1.5 11	.260	0 y 22 ³⁸	8256.871	38475	.401	1.904	2H1-1b
12	MP2	Pipe 2.875x	.184	42.442 7	.060	63.158 15 22	2398.0734	2998.495	3.144	3.144	1H1-1b
13	M15	PL6.5x0.375	.179	21 13	.099	5.968 y 67 3	658.14	78975	.617	7.657	1H1-1b
14	M10	PL6.5x0.375	.178	21 3	.080	36.032 y 14 3	658.14	78975	.617	7.45	1H1-1b
15	MP5	Pipe 2.875x	.175	42.442 10	.061	42.442 1822	2398.0734	2998.495	3.144	3.144	2H1-1b
16	M5	PL6.5x0.375	.170	21 8	.097	36.032 y 35 3	658.14	78975	.617	7.45	1H1-1b
17	M8	L2x2x4	.160	0 3	.017	0 y 2729	9527.563	42480	.96	2.19	2 H2-1
18	M14	L2x2x4	.159	0 13	.017	0 z 2129	9527.562	42480	.96	2.19	2 H2-1
19	M4	L2x2x4	.153	0 8	.016	0 z 3229	9527.563	42480	.96	2.19	2 H2-1
20	M3	L2x2x4	.148	0 17	.017	0 y 3329	9527.562	42480	.96	2.19	2 H2-1
21	M13	L2x2x4	.145	0 7	.017	0 y 2329	9527.563	42480	.96	2.19	2 H2-1
22	M9	L2x2x4	.142	0 11	.017		9527.563	42480	.96	2.19	2 H2-1
23	MP4	Pipe 2.875x	.123	42.442 10	.051	42.442 1222	2398.0734	2998.495	3.144	3.144	1, H1-1 b

Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Che	.Loc[in] LC	Shear Check	Loc[in] [)ir LC	phi*Pnc [.phi*Pnt [l	.phi*Mn y	.phi*Mn zCb E	gn
24	MP3	Pipe 2.875x	.123	42.442 7	.053	42.442	4	22398.073	42998.495	3.144	3.144 2H1	1-1b
25	MP6	Pipe 2.875x	.119	42.442 18	.051	42.442	15	22398.073	42998.495	3.144	3.144 1H1	1-1b
26	MP7	Pipe 2.875x	.119	42.442 4	.054	42.442	7	22398.073	42998.495	3.144	3.144 2H1	1-1b
27	MP9	Pipe 2.875x	.113	42.442 12	.054	42.442	10	22398.073	42998 <mark>.</mark> 495	3.144	3.144 2H1	1-1b
28	MP1	Pipe 2.875x	.113	42.442 15	.053	42.442	18	22398.073	42998.495	3.144	3.144 1H1	1-1b
29	M48	Pipe3.5x0.165	.106	48 63	.037	48	16	45873.009	71580.6	6.338	6.338 1H1	1-1b
30	M51	PIPE 2.0	.105	89.937 7	.038	90.442	14	15369.683	42228	2.46	2.46 1H1	1-1b
31	M65A	PIPE 2.0	.102	6.063 10	.040	90.442	9	15369.683	42228	2.46	2.46 1H1	1-1b
32	M25	PIPE 2.0	.101	6.063 4	.036	5.558	13	15369.683	42228	2.46	2.46 1H1	1-1b
33	M62	Pipe3.5x0.165	.094	64.674 8	.041	48	17	45873.009	71580.6	6.338	6.338 1H1	1-1b
34	M18	Pipe3.5x0.165	.093	31.326 1 4	.035	64.168	30	45873.009	71580.6	6.338	6.338 1H1	1-1b
35	M29	L6.6x4.46x0	.086	41.779 <mark>18</mark>	.009	.221	z 4	50616.195	87561	2.465	7.125 1 H	2-1
36	M28	L6.6x4.46x0	.083	.221 10	.010	0	z 7	50616.195	87561	2.465	7.125 1 H	2-1
37	M30	L6.6x4.46x0	077	41.779 7	.010	0	z 10	50616.195	87561	2.465	7.125 1 H	2-1

APPENDIX D

ADDITIONAL CALCULATIONS

Square/Rectangular Flange Connection

Site Number	845455
Job number	019558056
Code	TIA-222-H

REACTIONS		
Moment, Mu (kip-ft)	5.026	About Y
Axial, Pu (kips) - Negative for tension	0.669	
Shear, Vu (kips)	1.832	

BOLT CONFIGURATION		
Bolt Quantity, n _b	4	
Bolt Diameter, d _b (in)	0.625	
Bolt Grade	A325	
Width between bolts, s (in)	7.00	

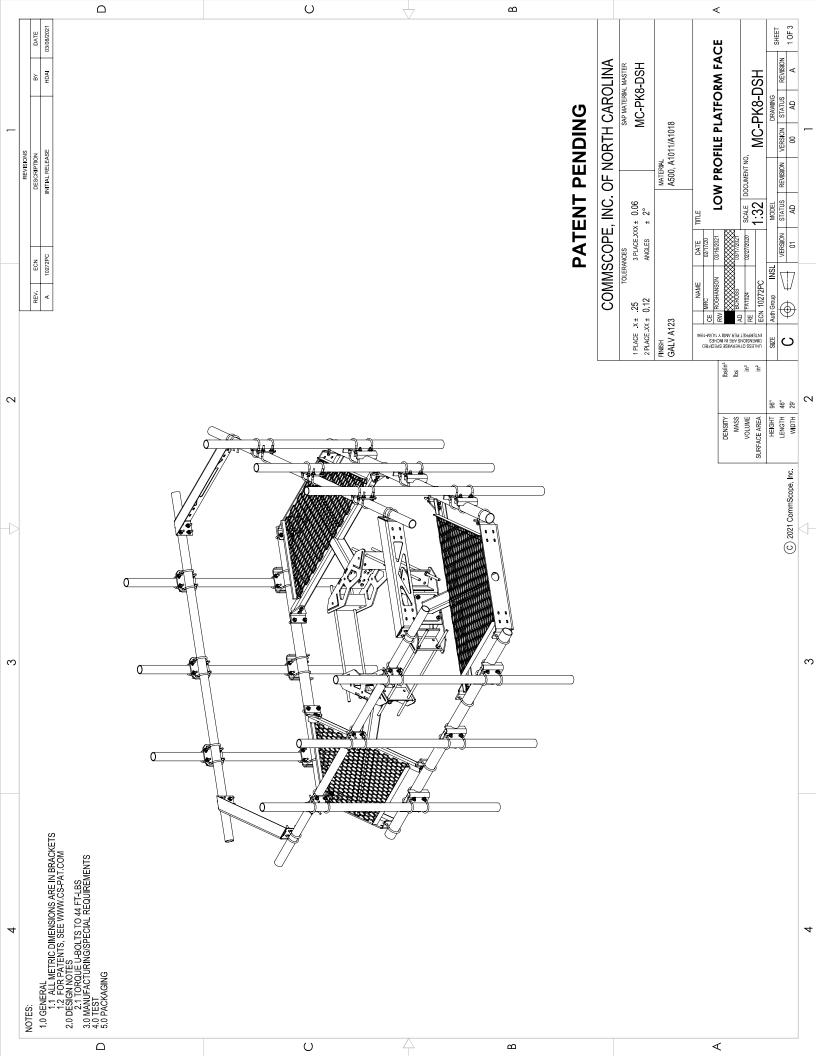
PLATE CONFIGURATION		
Plate Grade	A36	
Thickness of plate, t (in)	0.750	
Width of plate, w (in)	9.00	

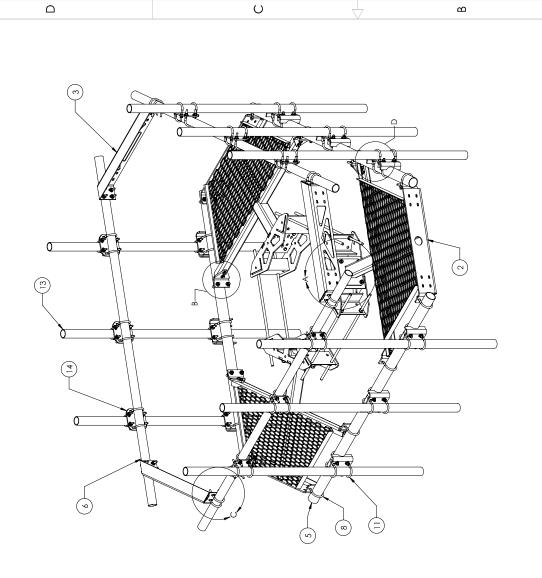
SUPPORT ARM CONFIGURATION		
Member Shape	Square	
Member Grade	A500-46	
Thickness of Member, t (in)	0.250	
Width of member, w (in)	4.000	

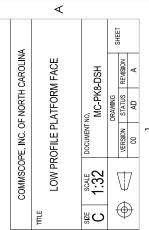
Stiffeners present?

Kimley **»Horn**

Member/Node Under Consideration	M92A
Controlling Load Combination	27
Normalize usages per TIA-222-H, Sec. 15.5	


BOLT USAGE	
Maximum Tension in Bolt, Tub (kip)	5.925
Nominal Tensile Strength, φ Rnt (kip)	20.340
Tensile Usage (Section 4.9.6.1)	29%


PLATE USAGE		
Ultimate flexural load in plate, Mu (kip-in) 9.301		
Factored flexural capacity, ϕ Mn (kip-in)	20.470	
Flexural Usage	45%	


SUPPORT ARM USAGE		
Ultimate flexural load in member, Mu (kip-ft)	5.026	
Factored flexural capacity, ϕ Mn (kip-ft)	18.220	
Flexural Usage	28%	

APPENDIX E

SUPPLEMENTAL DRAWINGS

C 2021 CommScope, Inc.

2

ო

 ITEM
 PART NO.
 DESCRIPTION
 QTV.

 1
 MC-RN1550-3
 12° - 50° OD RINGMOUNI
 1

 2
 MIC-300602
 SECTOR WELDMENT FOR SNUB NOSE PLATFORM
 3

 3
 MIT95001
 SCORN WELDMENT FOR SNUB NOSE PLATFORM
 3

 5
 MIT95001
 SCORN WELDMENT FOR SNUB NOSE PLATFORM
 3

 5
 MIT9501
 SCORN WELDMENT FOR SNUB NOSE PLATFORM
 3

 6
 MIT9501
 3.50° OD X 90° GALV PIPE
 3
 3

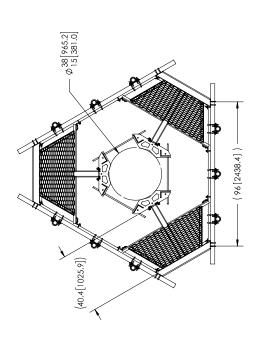
 7
 GWF-04
 1/2° CALV HEAI WASHER
 12

 9
 MIC300618
 1/2° X3° GALV HEAI WASHER
 12

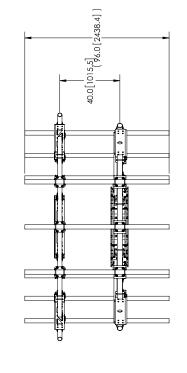
 9
 MIC300618
 1/2″ X3° 5/8″ X5° GALV U-BOLT
 12

 10
 MIC300618
 1/2″ X3° 5/8″ X5° GALV U-BOLT
 12

 11
 MIC219MLH
 3.5° OD X 75° 1/4″ GALV U-BOLT
 12


 11
 MIC230618
 1/2″ X3° X5° 1/4″ GALV U-BOLT
 12

 12
 GUB-4352
 1/2″ X3° X5° 1/4″ GALV U-BOLT
 12

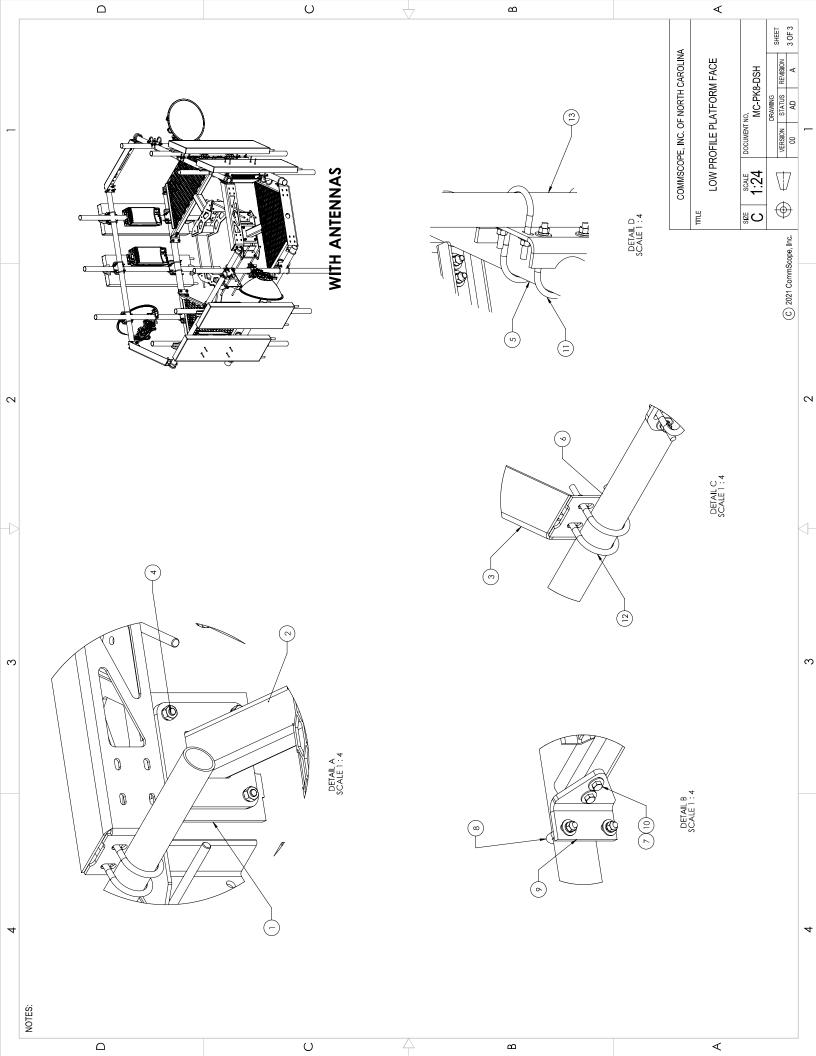

 13
 MIC3496
 0.00 X3° 7/8 OD X3° 7/8 OD X2° 7/8 OD
 9

 13
 MIC34966</t

∢

υ

മ


NOTES:

 \Box

4

2

ო

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00159A

845455 85 Quaker Farms Road Oxford, Connecticut 06478

November 19, 2021

EBI Project Number: 6221007196

Site Compliance Summary		
Compliance Status:	COMPLIANT	
Site total MPE% of FCC general population allowable limit:	22.99 %	

environmental | engineering | due diligence

November 19, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00159A - 845455

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **85 Quaker Farms Road** in **Oxford, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 85 Quaker Farms Road in Oxford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 111 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	А	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	Ι
Make / Model:	JMA MX08FRO665-	Make / Model:	JMA MX08FRO665-	Make / Model:	JMA MX08FRO665-
Tiake / Tiodel.	20	Tiake / Tiodel.	20	Tiake / Tiodel.	20
Frequency Bands:	600 MHz / 1900	Frequency Bands:	600 MHz / 1900	Frequency Bands:	600 MHz / 1900
riequency bands.	MHz / 2190 MHz	riequency bands.	MHz / 2190 MHz	rrequency bands.	MHz / 2190 MHz
Gain:	17.45 dBd / 22.65	Gain:	17.45 dBd / 22.65	Gain:	17.45 dBd / 22.65
Gain.	dBd / 22.65 dBd	Gam.	dBd / 22.65 dBd	Gain.	dBd / 22.65 dBd
Height (AGL):	III feet	Height (AGL):	III feet	Height (AGL):	III feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (VV):	5,236.31	ERP (VV):	5,236.31	ERP (VV):	5,236.31
Antenna AI MPE %:	2.15%	Antenna BI MPE %:	2.15%	Antenna CI MPE %:	2.15%

environmental | engineering | due diligence

Site Composite MPE %			
Carrier	MPE %		
Dish Wireless (Max at Sector A):	2.15%		
AT&T	3.6%		
T-Mobile	14.13%		
Verizon	3.11%		
Site Total MPE % :	22.99%		

Dish Wireless MPE % Per Sector					
Dish Wireless Sector A Total:	2.15%				
Dish Wireless Sector B Total:	2.15%				
Dish Wireless Sector C Total:	2.15%				
Site Total MPE % :	22.99%				

Dish Wireless Maximum MPE Power Values (Sector A)								
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm²)	Calculated % MPE	
Dish Wireless 600 MHz n71	4	223.68	111.0	2.92	600 MHz n71	400	0.73%	
Dish Wireless 1900 MHz n70	4	542.70	111.0	7.08	1900 MHz n70	1000	0.71%	
Dish Wireless 2190 MHz n66	4	542.70	111.0	7.08	2190 MHz n66	1000	0.71%	
						Total:	2.15%	

• NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	2.15%
Sector B:	2.15%
Sector C:	2.15%
Dish Wireless Maximum MPE % (Sector A):	2.15%
Site Total:	22.99%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **22.99%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586 Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

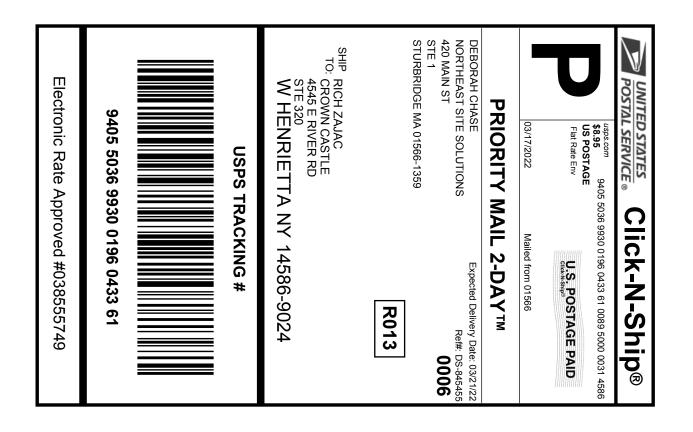
Re: Tower Share Application Crown Castle telecommunications site at: 85 QUAKER FARMS ROAD, OXFORD, CT 06478

CCATT LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: Customer Site ID: Site Address:

845455/OXFORD-QUAKER FARMS BOHVN00159A/CT-CCI-T-845455 85 QUAKER FARMS ROAD, OXFORD, CT 06478

Crown Castle

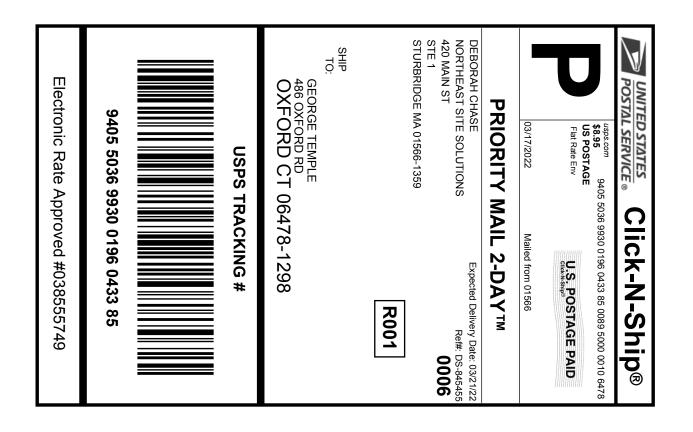

By:

3/14/2022 Date:

Richard Zajac Site Acquisition Specialist

Exhibit H

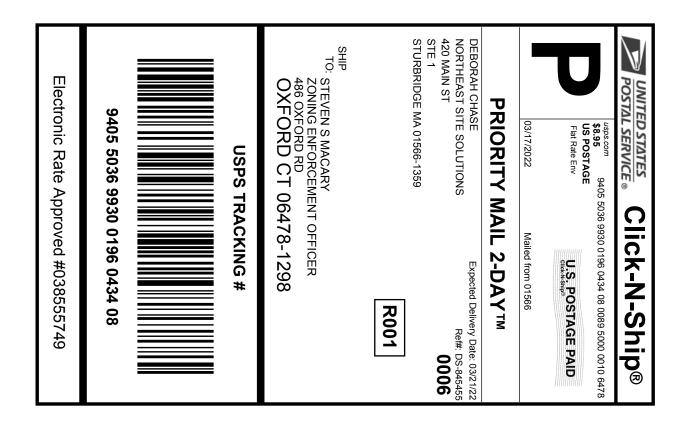
Recipient Mailings



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

845455	00	M	
FA	RMINGTO		TES VICE.
21 FARMINGTON (80	10 MAIN 1, CT 06	ST 1032-9998 1777	
03/18/2022			03.10 DM
	Qty		Price
Prepaid Mail Oxford, CT 0647 Weight: O 1b 7 Acceptance Date Fri 03/18/2 Tracking #: 9405 5036 9	1 8 .90 oz 	6 0433 8	\$0.00
Prepaid Mail Oxford, CT 0647 Weight: O 1b 7 Acceptance Date Fri 03/18/2 Tracking #: 9405 5036 9	.90 oz : 022	6 0434 08	\$0.00
Prepaid Mail Oxford, CT 0647 Weight: 0 lb 7 Acceptance Date Fri 03/18/2 Tracking #: 9405 5036 9	.90 oz : 022 930 019		
Grand Total:			\$0.00
**************************************	d in the aceive a ae test .covidte	e U.S. is a second kits. ests.gov	s now set
Track yo) for FA	kages REE 0	com
All sales final c Refunds for guara Thank you fo	anteed s	services	onlv.
Tell us about Go to: https://pos or scan this code w	stalexpe	enience.c	om/Pos
	أتكفلا		

or call 1-800-410-7420.

5455 Grown Dush UNITED STATES POSTAL SERVICE FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777 03/18/2022 03:18 PM -----____ Product Qty Unit Price Price Prepaid Mail 1 \$0.00 West Henrietta, NY 14586 Weight: O lb 1.90 oz Acceptance Date: Fri 03/18/2022 Tracking #: 9405 5036 9930 0196 0433 61 ____ Grand Total: \$0.00 -----------Every household in the U.S. is now eligible to receive a second set of 4 free test kits. Go to www.covidtests.gov Preview your Mail Track your Packages Sign up for FREE @ https://informeddelivery.usps.com All sales final on stamps and postage. Refunds for guaranteed services only. Thank you for your business. Tell us about your experience. Go to: https://postalexperience.com/Pos or scan this code with your mobile device, or call 1-800-410-7420.

UFN: 082618-0132 Receipt #: 840-50600020-1-4538585-1 Clerk: 9

UFN: 082618-0132 Receipt #: 840-50600020-1-4538593-1 Clerk: 9