

Northeast Site Solutions
Denise Sabo
4 Angela's Way, Burlington CT 06013
203-435-3640
denise@northeastsitesolutions.com

March 17, 2022

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Tower Share Application
85 Quaker Farms Road, Oxford, CT 06478
Latitude: 41.384000
Longitude: -73.137361
Site #: 845455_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 85 Quaker Farms Road, Oxford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 MHz 5G antennas and six (6) RRUs, at the 111-foot level of the existing 150-foot monopole, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within a 7' x 5' lease area within the existing fenced compound. Included are plans by Kimley Horn, dated March 3, 2022, Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated September 23, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the Connecticut Siting Council, Docket No. 261 on December 22, 2003. Please see attached.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to George R. Temple, First Selectman and Steven Macary, Zoning Enforcement Official for the Town of Oxford, as well as the tower owner (Crown Castle) and property owner (William & Elaine Schiavi).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the existing tower is 150-feet and the Dish Wireless LLC antennas will be located at a centerline height of 111-feet.
2. The proposed modifications will not result in an increase of the site boundary as depicted on the attached site plan.

Turnkey Wireless Development

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligible.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. The combined site operations will result in a total power density of 22.99% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully submits that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this monopole in Oxford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 111-foot level of the existing 150-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Oxford.

Sincerely,

Denise Sabo

Denise Sabo
Mobile: 203-435-3640
Fax: 413-521-0558
Office: 4 Angela's Way, Burlington CT 06013
Email: denise@northeastsitesolutions.com

Attachments

Cc: George R. Temple, First Selectman
Oxford Town Hall
486 Oxford Road
Oxford, CT 06478

Steven S. Macary-ZEO
Oxford Town Hall
486 Oxford Road
Oxford, CT 06478

William & Elaine Schiavi - Property Owners
85 Quaker Farms Road
Oxford, CT 06478

Crown Castle – Tower Owner

Exhibit A

Original Facility Approval

PLANNING & ZONING COMMISSION

TOWN OF OXFORD
486 Oxford Road
Oxford, CT 06478
(203) 888-2543

Z# 7-CS-116

Date Rec'd: 4-28-05

Date on Agenda:

65-Day Expiration:

ZONING PERMIT APPLICATION

(This permit is hereby applied for in accordance with the requirements of the Oxford Zoning Regulations)

Property Identification

Street Address: 85 QUAKER FARMS RD
Subdivision Name: Date Approved:
Map: 23 Block: 7 Lot: 8 Zoning district: R-A

Owner/Applicant

Owner Name: SCHIAVI
Owner Address: 85 QUAKER FARMS RD
Owner Telephone:

Applicant Name: NEW CINGULAR WIRELESS PCS, LLC
Applicant Address: 500 ENTERPRISE Dr., Rocky Hill
Applicant Telephone: 860-513-7636 CT 06067

Miscellaneous Information

* CT SITING COUNCIL CERTIFICATE
Special Exception: Article _____ Section _____ Yes B
Site Plan Approval: Article _____ Section _____ Yes B
Estimated Cost of Construction: \$150,000
Variance Granted: _____ Date Granted: _____

Signatures/Authorization

Application for Zoning Permit approval as described herein is hereby made. The Oxford Planning & Zoning Commission and its technical staff are authorized to enter the property for the purpose of evaluating this application.

Permit Void If: a) Work or activity not commenced within 1 year of the date of issuance or b) Authorized construction not completed within 2 years of the date of issuance.

This permit, if issued, is based upon the plot plan submitted. Falsification, by misrepresentation or omission, or failure to comply with the conditions of approval of this permit constitute a violation of the Oxford Zoning Regulations.

Permit for Cingular Wireless 4-28-05
Property Owner or Agent _____ Date _____

*Draw plot plan of proposed construction and attach. Plan must show property boundaries and dimensions; location of proposed buildings on property with respect to boundaries; location of existing buildings on property; outside dimensions of all buildings proposed or now existing; location of water supply; location of sewage system. All copies must have a complete sketch. Construction and use must be exactly as described in this application. If later changes from this plan are desired prior approval of an amended application is necessary.

Denied Approved By: *Douglas Velt*

Title: ZEC Date: 4-28-05

Reason for Denial _____

Purpose

- New Home
- Addition
- Garage
- Cottage Business
- Swimming Pool IG AG
- Sign
- Shed
- Barn
- Change of Use
- Excavating/Filling
- Trailer
- Other CELL SITE

Use

- Single-Family Residence
- Multi-Family Residence
- Commercial
- Industrial
- Residential/POD
- Other CELL SITE

Required Approvals and Dates

- Inland Wetlands _____
- P.D.D.H. _____
- Fire Marshal _____
- Z.B.A. _____
- W.P.C.A. _____
- Floodplain _____
- Copy of Deed _____
- Driveway existing _____
- Erosion Control Plan _____
- Plot Plan * 4-28-05
- Other _____

100.00 Town Fee
70.00 State Fee
130.00 Total Fee

ZPA-1

(Adopted 5/15/97)

DOCKET NO. 261 - AT&T Wireless PCS, LLC d/b/a AT&T } Connecticut
Wireless application for a Certificate of Environmental } Siting
Compatibility and Public Need for the construction, maintenance } Council
and operation of a wireless telecommunications facility at one of
two sites at 85 Quaker Farms Road, Oxford, Connecticut. }
December 22, 2003

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to AT&T Wireless PCS d/b/a AT&T Wireless for the construction, maintenance and operation of a wireless telecommunications facility at Site B, located at 85 Quaker Farms Road, Oxford, Connecticut. The Council denies certification of Site A, also located at 85 Quaker Farms Road, Oxford, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of AT&T and other entities, both public and private, but such tower shall not exceed a height of 153 feet above ground level, including appurtenances. Antennas installed on the monopole shall be flush mounted.
2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) color options for painting the tower, including the color option preferred by the Town of Oxford;
 - b) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, access road, utility line, and landscaping; and
 - c) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing. The Certificate Holder shall provide space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
6. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
7. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
8. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the Waterbury Republican-American.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The party to this proceeding is:

Applicant

AT&T Wireless PCS, LLC d/b/a AT&T Wireless (AT&T)

Its Representative

Christopher B. Fisher, Esq.

Cuddy & Feder LLP

90 Maple Avenue

White Plains, New York 10601

Exhibit B

Property Card

Town of Oxford
Property Listing Report

Parcel ID 23/57/8/CELL

Account 23578CELL

Property Information

Owner	AT&T
Address	85 QUAKER FARMS RD
Mailing Address	575 MOROSGO DR ATLANTA, GA 30324
Land Use	- Cell Tower
Land Class	I

Census Tract	
Neighborhood	090
Zoning	
Acreage	0
Utilities	
Lot Setting/ Desc	/

Photo

PARCEL VALUATIONS

(Assessed value = 70% of Appraised Value)

	Appraised	Assessed
Buildings	0	0
Outbuildings	655600	458900
Improvements	655600	458900
Extras	0	0
Land	0	0
Total	655600	458900
Previous		

Construction Details

Year Built	
Stories	
Building Style	
Building Use	
Building Condition	
Total Rooms	
Bedrooms	
Full Bathrooms	0
Half Bathrooms	
Bath Style	
Kitchen Style	
Roof Style	
Roof Cover	

EXTERIOR WALLS:

Primary

Secondary

INTERIOR WALLS:

Primary

Secondary

FLOORS:

Primary

Secondary

HEATING/AC:

Heating Type

Heating Fuel

AC Type

BUILDING AREA:

Effective Building Area

Gross Building Area

Total Living Area

SALES HISTORY:

Sale Date 10/1/2010

Sale Price 0

Book/ Page 000/ 000

Town of Oxford
Property Listing Report

Parcel ID 23/57/8

Account J0181100

Property Information

Owner	SCHIAVI WILLIAM & ELAINE W
Address	85 QUAKER FARMS RD
Mailing Address	85 QUAKER FARMS RD OXFORD, CT 06478
Land Use	- Res Dwelling
Land Class	R

Census Tract	L 6
Neighborhood	090
Zoning	RESA
Acreage	12.5
Utilities	
Lot Setting/ Desc	/ Clear

Photo

PARCEL VALUATIONS

(Assessed value = 70% of Appraised Value)

	Appraised	Assessed
Buildings	206200	144300
Outbuildings	41600	29200
Improvements	247800	173500
Extras	0	0
Land	388300	203000
Total	636100	376500
Previous		

Construction Details

Year Built	
Stories	2
Building Style	Colonial
Building Use	Residential
Building Condition	B-
Total Rooms	
Bedrooms	4 Bedrooms
Full Bathrooms	0
Half Bathrooms	
Bath Style	Average
Kitchen Style	Average
Roof Style	Gable
Roof Cover	Arch Shingles

EXTERIOR WALLS:

Primary	Clapboard
Secondary	Wood Shingle

INTERIOR WALLS:

Primary	Drywall
Secondary	

FLOORS:

Primary	Hardwood
Secondary	Carpet

HEATING/AC:

Heating Type	Hot Water
Heating Fuel	Oil
AC Type	None

BUILDING AREA:

Effective Building Area	
Gross Building Area	
Total Living Area	

SALES HISTORY:

Sale Date	4/1/1996
Sale Price	0
Book/ Page	187/ 390

Town of Oxford, Connecticut - Assessment Parcel Map

Parcel: 23-57-8

Location: 85 QUAKER FARMS RD

Approximate Scale: 1 inch = 200 feet

Map Produced: February 2020

Disclaimer: This map is for informational purposes only. All information is subject to verification by any user. The Town of Oxford and its mapping contractors assume no legal responsibility for the information contained herein.

A scale bar at the bottom of the map, consisting of a horizontal line with tick marks and numerical labels. The labels are 0, 100, 200, 300, and 400, with the word 'Feet' written at the end of the bar.

Exhibit C

Construction Drawings

DISH Wireless L.L.C. SITE ID:

BOHVN00159A

DISH Wireless L.L.C. SITE ADDRESS:

**85 QUAKER FARMS RD
OXFORD, CT 06478**

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES

CODE TYPE	CODE
BUILDING	2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS
MECHANICAL	2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
ELECTRICAL	2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

SHEET INDEX

SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK	
THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:	
TOWER SCOPE OF WORK:	
<ul style="list-style-type: none"> • INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) • INSTALL (1) PROPOSED ANTENNA PLATFORM MOUNT • INSTALL PROPOSED JUMPERS • INSTALL (6) PROPOSED RRUs (2 PER SECTOR) • INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) • INSTALL (1) PROPOSED HYBRID CABLE 	
GROUND SCOPE OF WORK:	
<ul style="list-style-type: none"> • INSTALL (1) PROPOSED METAL PLATFORM • INSTALL (1) PROPOSED ICE BRIDGE • INSTALL (1) PROPOSED PPC CABINET • INSTALL (1) PROPOSED EQUIPMENT CABINET • INSTALL (1) PROPOSED POWER CONDUIT • INSTALL (1) PROPOSED TELCO CONDUIT • INSTALL (1) PROPOSED TELCO-FIBER BOX • INSTALL (1) PROPOSED GPS UNIT • INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED) • INSTALL (1) PROPOSED FIBER NID (IF REQUIRED) • DISH Wireless, L.L.C. TO UTILIZE EXISTING OPEN METER SOCKET "F" 	

GENERAL NOTES	
THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE, NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.	
11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED	

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

SITE INFORMATION		PROJECT DIRECTORY	
PROPERTY OWNER:	JAMES W & ELAINE SCHIAVI	APPLICANT:	DISH WIRELESS, LLC.
ADDRESS:	85 QUAKER FARMS RD.		5701 SOUTH SANTA FE DRIVE
	OXFORD, CT 06478		LITTLETON, CO 80120
TOWER TYPE:	MONPOLE	TOWER OWNER:	CROWN CASTLE
			2000 CORPORATE DRIVE
			CANONSBURG, PA 15317
			(877) 486-9377
CROWN CASTLE	553377	SITE DESIGNER:	KIMLEY-HORN & ASSOCIATES
APP NUMBER:			3875 EMBASSY PKWY, SUITE 280
COUNTY:	NEW HAVEN		AKRON, OH 44333
LATITUDE (NAD 83):	41° 23' 2.36" N		(216) 505-7771
	41.383989° N		COA #: PEC.0000738
LONGITUDE (NAD 83):	73° 8' 14.54" W		
	73.137372° W		
ZONING JURISDICTION:	CONNECTICUT SITING COUNCIL	SITE ACQUISITION:	VICTOR NUNEZ
ZONING DISTRICT:	RESA		(917) 563-3682
PARCEL NUMBER:	0XFO-000000-000000-018110J	CONSTRUCTION MANAGER:	JAVIER SOTO
OCCUPANCY GROUP:	U		JAVIER.SOTO@DISH.COM
CONSTRUCTION TYPE:	II-B	RF ENGINEER:	SYED ZAIDI
POWER COMPANY:	NORTHEAST UTILITIES		SYED.ZAIDI@DISH.COM
TELEPHONE COMPANY:	TBD		

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS		
REV	DATE	DESCRIPTION
A	10/06/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCL-E-16708DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478SHEET TITLE
TITLE SHEETSHEET NUMBER
T-1

NOTES
1. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
2. ANTENNA AND MW DISH SPECIFICATIONS REFER TO ANTENNA SCHEDULE AND TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS
3. EXISTING EQUIPMENT AND FENCE OMITTED FOR CLARITY.
KIMLEY-HORN HAS NOT ANALYZED THE PROPOSED ANTENNA MOUNT(S) TO DETERMINE ADEQUATE STRUCTURAL CAPACITY FOR PROPOSED CARRIER LOADING. MOUNT ANALYSIS TO BE DONE BY OTHERS.

PROPOSED SOUTH ELEVATION
8' 4' 0 8' 16'
1/8"=1'-0"

1

1

ANTENNA SCHEDULE

NO SCALE

3

ANTENNA LAYOUT

12" 6" 0 1" 2" 3"
3/4"=1'-0"

2

SECTOR	POSITION	ANTENNA					TRANSMISSION CABLE
		EXISTING OR PROPOSED	MANUFACTURER - MODEL NUMBER	TECHNOLOGY	SIZE (HxW)	AZIMUTH	
ALPHA	A2	PROPOSED	JMA - MX08FR0665-21	5G	72.0" x 20.0"	0°	108'-0"
BETA	B2	PROPOSED	JMA - MX08FR0665-21	5G	72.0" x 20.0"	120°	108'-0"
GAMMA	G2	PROPOSED	JMA - MX08FR0665-21	5G	72.0" x 20.0"	240°	108'-0"

(1) HIGH-CAPACITY HYBRID CABLE (145'-0" LONG)

SECTOR	POSITION	RRH		NOTES
		MANUFACTURER - MODEL NUMBER	TECHNOLOGY	
ALPHA	A1	FUJITSU - TA08025-B604	5G	1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF DETAILS. 2. ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.
	A1	FUJITSU - TA08025-B605	5G	
BETA	B1	FUJITSU - TA08025-B604	5G	
	B1	FUJITSU - TA08025-B605	5G	
GAMMA	G1	FUJITSU - TA08025-B604	5G	
	G1	FUJITSU - TA08025-B605	5G	

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	10/08/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCLE-16708

DISH Wireless L.L.C.
PROJECT INFORMATION

BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
ELEVATION, ANTENNA
LAYOUT AND SCHEDULE

SHEET NUMBER

A-2

PCTEL GPSGL-TMG-SPI-40NCB	
DIMENSIONS (DIAXH) MM/INCH	81x184mm 3.2"x7.25"
WEIGHT W/ACCESSORIES	075 lbs
CONNECTOR	N-FEMALE
FREQUENCY RANGE	1590 ± 30MHz

BACK

TOP

SIDE

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.DRAWN BY: CHECKED BY: APPROVED BY: WJW MCK MCKRFDS REV #: **CONSTRUCTION DOCUMENTS**

SUBMITTALS		
REV	DATE	DESCRIPTION
A	10/06/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCLE-16708DISH Wireless LLC,
PROJECT INFORMATION
BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478SHEET TITLE
EQUIPMENT DETAILS

SHEET NUMBER

A-5

<u>GPS DETAIL</u>	NO SCALE	1	<u>GPS MINIMUM SKY VIEW REQUIREMENTS</u>	NO SCALE	2	<u>CABLES UNLIMITED HYBRID CABLE</u> MINIMUM BEND RADIUSES	NO SCALE	3
-------------------	----------	---	--	----------	---	---	----------	---

<u>NOT USED</u>	NO SCALE	4	<u>NOT USED</u>	NO SCALE	5	<u>NOT USED</u>	NO SCALE	6
-----------------	----------	---	-----------------	----------	---	-----------------	----------	---

<u>NOT USED</u>	NO SCALE	7	<u>NOT USED</u>	NO SCALE	8	<u>NOT USED</u>	NO SCALE	9
-----------------	----------	---	-----------------	----------	---	-----------------	----------	---

FUJITSU TRIPLE BAND TA08025-B605	
DIMENSIONS (HxWxD)	14.9" x 15.7" x 9"
WEIGHT	74.95 lbs
CONNECTOR TYPE	4.3-10 RF CONNECTOR
POWER SUPPLY	DC -58~36V

FRONT

FUJITSU DUAL BAND TA08025-B604	
DIMENSIONS (HxWxD)	14.9" x 15.7" x 7.8"
WEIGHT	63.9 lbs
CONNECTOR TYPE	4.3-10 RF CONNECTOR
POWER SUPPLY	DC -58~36V

SIDE

FRONT

SABRE DOUBLE Z-BRACKET C10123155	
DIMENSIONS (HxWxD) (1 BRACKET)	5" x 20" x 1-13/16"
WEIGHT (FULL ASSEMBLY)	35.79 lbs
PACKAGE QUANTITY	4

#	DESCRIPTION
1	PLATE, CHANNEL BRACKET
2	RRH Z BRACKET, 3/16"
3	THREADED ROD ASSEMBLY 1/2" x 12"

NOTE:
OR DISH Wireless LLC.
APPROVED EQUIVALENT

RRH DETAIL

NO SCALE

1

RRH DETAIL

NO SCALE

2

RRH MOUNT DETAIL

NO SCALE

3

JMA WIRELESS MX08FR0665-21 ANTENNA	
DIMENSIONS (HxWxD)	72.0" x 20.0" x 8.0"
TOTAL WEIGHT	82.5 LB
RF PORTS, CONNECTOR TYPE	8 x 4.3-10 FEMALE

PLAN

BACK

SIDE

FRONT

JMA ANTENNA MOUNTING BRACKET #91900318	
TOTAL WEIGHT (WITH BRACKETS)	18 lbs (8.18 Kg)
POLE DIAMETER RANGE	2.5 TO 4.5 INCHES

NOTE:
KIT #91900318: TOP AND BOTTOM BRACKETS
FOR 4-, 6-, AND 8-FOOT ANTENNAS
ANTENNA BRACKET NOT PART OF KIT

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	10/08/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCL-E-16708

DISH Wireless LLC.
PROJECT INFORMATION
BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
EQUIPMENT DETAILS

SHEET NUMBER

A-6

RAYCAP RDIDC-9181-PF-48 DC SURGE PROTECTION (OVP)	
DIMENSIONS (HxWxD)	18.98" x 14.39" x 8.15"
WEIGHT	21.82 LBS

SIDE

BACK

FRONT

COMMSCOPE XP-2040 CROSSOVER PLATE	
DIMENSIONS (HxW)	10" x 12"
WEIGHT	11 lbs

NOTE:
OR DISH Wireless LLC.
APPROVED EQUIVALENT

COMMSCOPE MC-PK8-DSH	
FACE WIDTH	96"
WEIGHT	1373.08 lbs

NOTE: 15" TO 38" O.D.

ANTENNA PLATFORM DETAIL

NO SCALE

9

SURGE SUPPRESSION DETAIL (OVP)

NO SCALE

7

RRH/OVP MOUNT DETAIL

NO SCALE

8

ANTENNA PLATFORM DETAIL

NO SCALE

9

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING +24V AND -48V CONDUCTORS. RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS SHALL IDENTIFY -48V.

1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
2. ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
9. INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250. THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES

NO SCALE

2

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	10/08/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCLE-16708

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
ELECTRICAL/FIBER ROUTE PLAN AND NOTES

SHEET NUMBER

E-1

CARLON EXPANSION FITTINGS				
COUPLING END PART#	MALE TERMINAL ADAPTER END PART#	SIZE	STD CTN QTY.	TRAVEL LENGTH
E945D	E945DX	1/2"	20	4"
E945E	E945EX	3/4"	15	4"
E945F	E945FX	1"	10	4"
E945G	E945GX	1 1/4"	5	4"
E945H	E945HX	1 1/2"	5	4"
E945J	E945JX	2"	15	8"
E945K	E945KX	2 1/2"	10	8"
E945L	E945LX	3"	10	8"
E945M	E945MX	3 1/2"	5	8"
E945N	E945NX	4"	5	8"
E945P	E945PX	5"	1	8"
E945R	E945RX	6"	1	8"

NOTE:
CONTRACTOR TO INSTALL EXPANSION FITTING
SLIP JOINT AT METER CENTER CONDUIT
TERMINATION, AS PER LOCAL UTILITY POLICY,
ORDINANCE AND/OR SPECIFIED REQUIREMENT.

TRENCHING NOTES

1. CONTRACTOR SHALL RESTORE THE TRENCH TO ITS ORIGINAL CONDITIONS BY EITHER SEEDING OR SODDING GRASS AREAS, OR REPLACING ASPHALT OR CONCRETE AREAS TO ITS ORIGINAL CROSS SECTION.
2. TRENCHING SAFETY; INCLUDING, BUT NOT LIMITED TO SOIL CLASSIFICATION, SLOPING, AND SHORING, SHALL BE GOVERNED BY THE CURRENT OSHA TRENCHING AND EXCAVATION SAFETY STANDARDS.
3. ALL CONDUITS SHALL BE INSTALLED IN COMPLIANCE WITH THE CURRENT NATIONAL ELECTRIC CODE (NEC) OR AS REQUIRED BY THE LOCAL JURISDICTION, WHICHEVER IS THE MOST STRINGENT.

EXPANSION JOINT DETAIL

NO SCALE 1

TYPICAL UNDERGROUND TRENCH DETAIL

NO SCALE 2

NOT USED

NO SCALE 3

LIT TELCO BOX - INTERIOR WIRING LAYOUT (OPTIONAL)

NO SCALE 4

NOT USED

NO SCALE 5

NOT USED

NO SCALE 6

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	10/06/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCLE-16708

DISH Wireless LLC.
PROJECT INFORMATION
BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
ELECTRICAL DETAILS

SHEET NUMBER

E-2

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	10/08/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCL-E-16708

DISH Wireless LLC,
PROJECT INFORMATION
BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
ELECTRICAL ONE-LINE, FAULT
CALCS & PANEL SCHEDULE

SHEET NUMBER

E-3

TYPICAL EQUIPMENT GROUNDING PLAN

NO SCALE 1

NOTES

1. ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE ONLY

TYPICAL ANTENNA GROUNDING PLAN

NO SCALE 2

GROUNDING KEY NOTES

● EXOTHERMIC CONNECTION	■ MECHANICAL CONNECTION
— GROUND BUS BAR	- - - #6 AWG STRANDED & INSULATED
○ GROUND ROD	- - - #2 AWG SOLID COPPER TINNED
▲ BUSS BAR INSULATOR	

GROUNDING LEGEND

1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
2. CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless LLC. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

(A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.

(B) TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.

(C) INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTOR EXTENDED AROUND THE PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECOMMUNICATIONS RELATED METALLIC OBJECTS FOUND WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR GROUND RING WITH #6 AWG STRANDED GREEN INSULATED CONDUCTOR.

(D) BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE BUILDING.

(E) GROUND ROD: UL LISTED COPPER CLAD STEEL MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.

(F) CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.

(G) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.

(H) EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING. BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.

(I) ITELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.

(J) FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENT'S METAL FRAMEWORK.

(K) INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITHIN THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING.

(L) FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.

(M) EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE

(N) ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING.

(O) DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR

(P) TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR. REFER TO DISH Wireless LLC. GROUNDING NOTES.

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #:

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	10/08/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCLC-16708

DISH Wireless LLC.
PROJECT INFORMATION

BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
GROUNDING PLANS
AND NOTES

SHEET NUMBER

G-1

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS		
REV	DATE	DESCRIPTION
A	10/08/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCLE-16708

DISH Wireless LLC, PROJECT INFORMATION
BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
GROUNDING DETAILS

SHEET NUMBER

G-2

1. EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GROUND BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERMIC WELD.
2. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR LARGER. ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING.
3. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COMPOUND BEFORE MATING.
4. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CONDUCTOR DOWN TO GROUNDING BUS.
5. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BOLTED ON THE BACK SIDE.
6. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACTOR.
7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AS REQUIRED.
8. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHINERS).

TYPICAL GROUNDING NOTES

NO SCALE

1

TYPICAL EXTERIOR TWO HOLE LUG

NO SCALE

2

TYPICAL INTERIOR TWO HOLE LUG

NO SCALE

3

LUG DETAIL

NO SCALE

4

NOT USED

NO SCALE

5

NOT USED

NO SCALE

6

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

WJW MCK MCK

RFDS REV #: ---

**CONSTRUCTION
DOCUMENTS**

SUBMITTALS

REV	DATE	DESCRIPTION
A	10/06/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCLC-16708

DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
GROUNDING DETAILS

SHEET NUMBER

G-3

NOT USED

NO SCALE

7

NOT USED

NO SCALE

8

NOT USED

NO SCALE

9

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley-Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH NC 27601

D8BEE252A3804C1...
IS A VIOLATION OF LAW FOR ANY PERSON,
LESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT

WN BY:	CHECKED BY:	APPROVED BY
W.IW	MCK	MCK

S REV #: ---
**CONSTRUCTION
DOCUMENTS**

SUBMITTALS	
DATE	DESCRIPTION
10/06/2021	ISSUED FOR REVIEW
03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

RHCLL-18708
DISH Wireless L.L.C.
PROJECT INFORMATION
BOHVN00159A

SHEET TITLE
RF

SHEET NUMBER

RF-1

RF-1

AB	ANCHOR BOLT	IN	INCH
ABV	ABOVE	INT	INTERIOR
AC	ALTERNATING CURRENT	LB(S)	POUND(S)
ADDL	ADDITIONAL	LF	LINEAR FEET
AFF	ABOVE FINISHED FLOOR	LTE	LONG TERM EVOLUTION
AFG	ABOVE FINISHED GRADE	MAS	MASONRY
AGL	ABOVE GROUND LEVEL	MAX	MAXIMUM
AIC	AMPERAGE INTERRUPTION CAPACITY	MB	MACHINE BOLT
ALUM	ALUMINUM	MECH	MECHANICAL
ALT	ALTERNATE	MFR	MANUFACTURER
ANT	ANTENNA	MGB	MASTER GROUND BAR
APPROX	APPROXIMATE	MIN	MINIMUM
ARCH	ARCHITECTURAL	MISC	MISCELLANEOUS
ATS	AUTOMATIC TRANSFER SWITCH	MTL	METAL
AWG	AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
BATT	BATTERY	MW	MICROWAVE
BLDG	BUILDING	NEC	NATIONAL ELECTRIC CODE
BLK	BLOCK	NM	NEWTON METERS
BLKG	BLOCKING	NO.	NUMBER
BM	BEAM	#	NUMBER
BTC	BARE TINNED COPPER CONDUCTOR	NTS	NOT TO SCALE
BOF	BOTTOM OF FOOTING	OC	ON-CENTER
CAB	CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
CANT	CANTILEVERED	OPNG	OPENING
CHG	CHARGING	P/C	PRECAST CONCRETE
CLG	CEILING	PCS	PERSONAL COMMUNICATION SERVICES
CLR	CLEAR	PCU	PRIMARY CONTROL UNIT
COL	COLUMN	PRC	PRIMARY RADIO CABINET
COMM	COMMON	PP	POLARIZING PRESERVING
CONC	CONCRETE	PSF	POUNDS PER SQUARE FOOT
CONSTR	CONSTRUCTION	PSI	POUNDS PER SQUARE INCH
DBL	DOUBLE	PT	PRESSURE TREATED
DC	DIRECT CURRENT	PWR	POWER CABINET
DEPT	DEPARTMENT	QTY	QUANTITY
DF	DOUGLAS FIR	RAD	RADIUS
DIA	DIAMETER	RECT	RECTIFIER
DIAG	DIAGONAL	REF	REFERENCE
DIM	DIMENSION	REINF	REINFORCEMENT
DWG	DRAWING	REQ'D	REQUIRED
DWL	DOWEL	RET	REMOTE ELECTRIC TILT
EA	EACH	RF	RADIO FREQUENCY
EC	ELECTRICAL CONDUCTOR	RMC	RIGID METALLIC CONDUIT
EL	ELEVATION	RRH	REMOTE RADIO HEAD
ELEC	ELECTRICAL	RRU	REMOTE RADIO UNIT
EMT	ELECTRICAL METALLIC TUBING	RWY	RACEWAY
ENG	ENGINEER	SCH	SCHEDULE
EQ	EQUAL	SHT	SHEET
EXP	EXPANSION	SIAD	SMART INTEGRATED ACCESS DEVICE
EXT	EXTERIOR	SIM	SIMILAR
EW	EACH WAY	SPEC	SPECIFICATION
FAB	FABRICATION	SQ	SQUARE
FF	FINISH FLOOR	SS	STAINLESS STEEL
FG	FINISH GRADE	STD	STANDARD
FIF	FACILITY INTERFACE FRAME	STL	STEEL
FIN	FINISH(ED)	TEMP	TEMPORARY
FLR	FLOOR	THK	THICKNESS
FDN	FOUNDATION	TMA	TOWER MOUNTED AMPLIFIER
FOC	FACE OF CONCRETE	TN	TOE NAIL
FOM	FACE OF MASONRY	TOA	TOP OF ANTENNA
FOS	FACE OF STUD	TOC	TOP OF CURB
FOW	FACE OF WALL	TOF	TOP OF FOUNDATION
FS	FINISH SURFACE	TOP	TOP OF PLATE (PARAPET)
FT	FOOT	TOS	TOP OF STEEL
FTG	FOOTING	TOW	TOP OF WALL
GA	GAUGE	TVSS	TRANSIENT VOLTAGE SURGE SUPPRESSION
GEN	GENERATOR	TYP	TYPICAL
GFCI	GROUND FAULT CIRCUIT INTERRUPTER	UG	UNDERGROUND
GLB	GLUE LAMINATED BEAM	UL	UNDERWRITERS LABORATORY
GLV	GALVANIZED	UNO	UNLESS NOTED OTHERWISE
GPS	GLOBAL POSITIONING SYSTEM	UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
GND	GROUND	UPS	UNINTERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
GSM	GLOBAL SYSTEM FOR MOBILE	VIF	VERIFIED IN FIELD
HDG	HOT DIPPED GALVANIZED	W	WIDE
HDR	HEADER	W/	WITH
HGR	HANGER	WD	WOOD
HVAC	HEAT/VENTILATION/AIR CONDITIONING	WP	WEATHERPROOF
HT	HEIGHT	WT	WEIGHT
IGR	INTERIOR GROUND RING		

LEGEND

ABBREVIATIONS

Kimley Horn
COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	10/08/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCL-E-16708

DISH Wireless LLC.
PROJECT INFORMATION
BOHVNO00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
LEGEND AND
ABBREVIATIONS

SHEET NUMBER

GN-1

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED – NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.
2. "LOOK UP" – DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:
THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.
3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH Wireless L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:
CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION
CARRIER:DISH Wireless L.L.C.
TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.
12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120
Kimley»Horn
COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

CONSTRUCTION DOCUMENTS

SUBMITTALS		
REV	DATE	DESCRIPTION
A	10/08/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCL-E-16708DISH Wireless L.L.C.
PROJECT INFORMATIONBOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478SHEET TITLE
GENERAL NOTES

SHEET NUMBER

GN-2

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.
- UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'_c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.
- CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (F_y) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:
 - #4 BARS AND SMALLER 40 ksi
 - #5 BARS AND LARGER 60 ksi
- THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
 - CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
 - CONCRETE EXPOSED TO EARTH OR WEATHER:
 - #6 BARS AND LARGER 2"
 - #5 BARS AND SMALLER 1-1/2"
 - CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
 - SLAB AND WALLS 3/4"
 - BEAMS AND COLUMNS 1-1/2"
- A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- TIE WRAPS ARE NOT ALLOWED.
- ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75°C (90°C IF AVAILABLE).
- RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNTOWARDS (WIREMOLD SPECMATE WIREWAY).
- SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

dish
wireless.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:

WJW MCK MCK

RFDS REV #:

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV	DATE	DESCRIPTION
A	10/06/2021	ISSUED FOR REVIEW
O	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCL-E-16708

DISH Wireless L.L.C.
PROJECT INFORMATION

BOHVNO00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
GENERAL NOTES

SHEET NUMBER

GN-3

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE
LITTLETON, CO 80120

Kimley»Horn

COA #: PEC.0000738
421 FAYETTEVILLE ST, SUITE 600
RALEIGH, NC 27601

IT IS A VIOLATION OF LAW FOR ANY PERSON,
UNLESS THEY ARE ACTING UNDER THE DIRECTION
OF A LICENSED PROFESSIONAL ENGINEER,
TO ALTER THIS DOCUMENT.

DRAWN BY: CHECKED BY: APPROVED BY:
WJW MCK MCK

RFDS REV #: ---

**CONSTRUCTION
DOCUMENTS**

SUBMITTALS

REV	DATE	DESCRIPTION
A	10/06/2021	ISSUED FOR REVIEW
0	03/03/2022	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER
KHCLE-16708

**DISH Wireless LLC,
PROJECT INFORMATION**

BOHVN00159A
85 QUAKER FARMS RD
OXFORD, CT 06478

SHEET TITLE
GENERAL NOTES

SHEET NUMBER

GN-4

Certificate Of Completion

Envelope Id: BBB7F67FE5924E7C8A5F29D59D1E0971

Status: Completed

Subject: Please DocuSign: BOHVN00159A_FCD_REV 0_03.03.22_sealed.pdf

Source Envelope:

Document Pages: 18 Signatures: 18

Envelope Originator:

Certificate Pages: 1 Initials: 0

Manuel JaraPerez

AutoNav: Enabled

401 Fayetteville St.

Enveloped Stamping: Enabled

Suite 600

Time Zone: (UTC-05:00) Eastern Time (US & Canada)

Raleigh, NC 27601

Manuel.JaraPerez@kimley-horn.com

IP Address: 208.127.231.172

Record Tracking

Status: Original

Holder: Manuel JaraPerez

Location: DocuSign

3/7/2022 10:56:50 AM

Manuel.JaraPerez@kimley-horn.com

Signer Events**Signature****Timestamp**

Kyle Freehart

Sent: 3/7/2022 11:00:18 AM

kyle.freehart@kimley-horn.com

Viewed: 3/7/2022 11:09:01 AM

Kimley-Horn

Signed: 3/7/2022 11:09:15 AM

Security Level: Email, Account Authentication
(None)Signature Adoption: Pre-selected Style
Using IP Address: 208.127.231.172**Electronic Record and Signature Disclosure:**

Not Offered via DocuSign

In Person Signer Events**Signature****Timestamp****Editor Delivery Events****Status****Timestamp****Agent Delivery Events****Status****Timestamp****Intermediary Delivery Events****Status****Timestamp****Certified Delivery Events****Status****Timestamp****Carbon Copy Events****Status****Timestamp****Witness Events****Signature****Timestamp****Notary Events****Signature****Timestamp****Envelope Summary Events****Status****Timestamps**

Envelope Sent

Hashed/Encrypted

3/7/2022 11:00:18 AM

Certified Delivered

Security Checked

3/7/2022 11:09:01 AM

Signing Complete

Security Checked

3/7/2022 11:09:15 AM

Completed

Security Checked

3/7/2022 11:09:15 AM

Payment Events**Status****Timestamps**

Exhibit D

Structural Analysis Report

Date: September 23, 2021

Crown Castle
2000 Corporate Drive
Canonsburg, PA 15317
724-416-2000

Subject:	Structural Analysis Report	
Carrier Designation:	DISH Network Co-Locate	
	Site Number:	BOHVN00159A
	Site Name:	CT-CCI-T-845455
Crown Castle Designation:	BU Number:	845455
	Site Name:	OXFORD-QUAKER FARMS
	JDE Job Number:	645152
	Work Order Number:	1964032
	Order Number:	553377 Rev. 1
Engineering Firm Designation:	Crown Castle Project Number:	1964032
Site Data:	85 QUAKER FARMS ROAD, OXFORD, NEW HAVEN County, CT Latitude 41° 23' 2.36", Longitude -73° 8' 14.54" 149 Foot - Monopole Tower	

Crown Castle is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity

This analysis has been performed in accordance with the 2018 Connecticut Building Code & the 2015 International Building Code based upon an ultimate 3-second gust wind speed of 125 mph. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Didi Rossmiller

Respectfully submitted by:

Maribel Dentinger
Maribel Dentinger, P.E.
Senior Project Engineer

Maribel
Dentinger

Digitally signed by
Maribel Dentinger
Date: 2021.09.23
17:02:00 -04'00'

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

- Table 1 - Proposed Equipment Configuration
- Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

- Table 3 - Documents Provided
- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

- Table 4 - Section Capacity (Summary)
- Table 5 - Tower Component Stresses vs. Capacity - LC7
- 4.1) Recommendations

5) APPENDIX A

- tnxTower Output

6) APPENDIX B

- Base Level Drawing

7) APPENDIX C

- Additional Calculations

1) INTRODUCTION

This tower is a 149 ft Monopole tower designed by PAUL J FORD.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	125 mph
Exposure Category:	C
Topographic Factor:	1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
111.0	111.0	3	fujitsu	TA08025-B604	1	1-1/2
		3	fujitsu	TA08025-B605		
		3	jma wireless	MX08FRO665-21 w/ Mount Pipe		
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
149.0	150.0	3	ericsson	RADIO 4415 B30	1	3/8
		3	ericsson	RRUS 4449 B5/B12		
		3	ericsson	RRUS 8843 B2/B66A		
		6	powerwave technologies	LGP21401		
		1	raycap	DC6-48-60-18-8F		
	149.0	1	raycap	DC9-48-60-24-PC16-EV		
		1	tower mounts	Pipe Mount [PM 501-3]		
	148.0	1	tower mounts	T-Arm Mount [TA 702-3]		
		3	cci antennas	DMP65R-BU6D w/ Mount Pipe		
		3	commscope	NNH4-65B-R6 w/ Mount Pipe		
144.0	148.0	3	ericsson	RRUS 12 B2	1	3/8
	145.0	3	ericsson	RRUS 11 B12		
	144.0	1	raycap	DC6-48-60-18-8F		
		1	tower mounts	Pipe Mount [PM 601-3]		
135.0	140.0	6	powerwave technologies	LGP13519	6	1 5/8
	135.0	3	powerwave technologies	RA21.7770.00 w/ Mount Pipe		
		1	tower mounts	Side Arm Mount [SO 104-3]		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
127.0	132.0	3	ericsson	AIR6449 B41_T-MOBILE w/ Mount Pipe	8	1-5/8 1-1/4
		3	ericsson	RADIO 4415 B66A_CCIV3		
		3	ericsson	RADIO 4424 B25_TMO		
		3	ericsson	RADIO 4449 B71 B85A_T-MOBILE		
		3	rfs celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe		
	127.0	3	rfs celwave	APXVAARR24_43-U-NA20 w/ Mount Pipe		
		1	tower mounts	Platform Mount [LP 301-1]		
122.0	123.0	2	raycap	RRFDC-3315-PF-48	2	1-1/4
118.0	121.0	3	alcatel lucent	RRH2X60-AWS	18	1-5/8
	120.0	6	andrew	SBNHH-1D65B w/ Mount Pipe		
		3	antel	BXA-80080/6CF w/ Mount Pipe		
	118.0	1	tower mounts	Side Arm Mount [SO 104-3]		
81.0	81.0	1	PCTEL	MPRC2449	3	1/2
		2	tower mounts	Pipe Mount [PM 601-1]		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	4546778	CCSITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	5113091	CCSITES
4-TOWER MANUFACTURER DRAWINGS	5110795	CCSITES

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail	
L1	149 - 111.5	Pole	TP29.487x23x0.1875	1	-9.94	1047.35	45.7	Pass	
L2	111.5 - 75.25	Pole	TP35.383x28.4633x0.2188	2	-18.48	1466.49	96.8	Pass	
L3	75.25 - 39.75	Pole	TP41.086x34.167x0.2813	3	-26.24	2187.66	98.9	Pass	
L4	39.75 - 0	Pole	TP47.4x39.6154x0.375	4	-40.04	3438.05	85.7	Pass	
							Summary		
							Pole (L3)	98.9	Pass
							Rating =	98.9	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	93.9	Pass
1	Base Plate	0	75.8	Pass
1	Base Foundation (Structure)	0	44.1	Pass
1	Base Foundation (Soil Interaction)	0	81.2	Pass

Structure Rating (max from all components) =

98.9%

Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A
TNXTOWER OUTPUT

GRADE		Fy	Fu	GRADE		Fy	Fu
A607-65		65 ksi	80 ksi				

TOWER DESIGN NOTES

1. Tower is located in New Haven County, Connecticut.
2. Tower designed for Exposure C to the TIA-222-H Standard.
3. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
4. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 98.9%

ALL REACTIONS
ARE FACORED

AXIAL
70 K

SHEAR
8 K

MOMENT
919 kip-ft

TORQUE 0 kip-ft
50 mph WIND - 1.5000 in ICE

AXIAL
40 K

SHEAR
31 K

MOMENT
3292 kip-ft

TORQUE 2 kip-ft
REACTIONS - 125 mph WIND

Crown Castle
2000 Corporate Drive
Canonsburg, PA 15317
The Pathway to Possible

Job: **BU# 845455**
Project:
Client: Crown Castle Drawn by: DRossmiller App'd:
Code: TIA-222-H Date: 09/23/21 Scale: NTS
Path: Dwg No. E-1

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in New Haven County, Connecticut.
- Tower base elevation above sea level: 607.00 ft.
- Basic wind speed of 125 mph.
- Risk Category II.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: $K_{es}(F_w) = 0.95$, $K_{es}(t_i) = 0.85$.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs	Distribute Leg Loads As Uniform	Use ASCE 10 X-Brace Ly Rules
Consider Moments - Horizontals	Assume Legs Pinned	Calculate Redundant Bracing Forces
Consider Moments - Diagonals	✓ Assume Rigid Index Plate	Ignore Redundant Members in FEA
Use Moment Magnification	✓ Use Clear Spans For Wind Area	SR Leg Bolts Resist Compression
✓ Use Code Stress Ratios	Use Clear Spans For KL/r	All Leg Panels Have Same Allowable
✓ Use Code Safety Factors - Guys	Retension Guys To Initial Tension	Offset Girt At Foundation
Escalate Ice	✓ Bypass Mast Stability Checks	✓ Consider Feed Line Torque
Always Use Max Kz	✓ Use Azimuth Dish Coefficients	Include Angle Block Shear Check
Use Special Wind Profile	✓ Project Wind Area of Appurt.	Use TIA-222-H Bracing Resist.
Include Bolts In Member Capacity	Autocalc Torque Arm Areas	Exemption
Leg Bolts Are At Top Of Section	Add IBC .6D+W Combination	Use TIA-222-H Tension Splice
Secondary Horizontal Braces Leg	✓ Sort Capacity Reports By Component	Exemption
Use Diamond Inner Bracing (4 Sided)	Triangulate Diamond Inner Bracing	Poles
SR Members Have Cut Ends	Treat Feed Line Bundles As Cylinder	✓ Include Shear-Torsion Interaction
SR Members Are Concentric	Ignore KL/ry For 60 Deg. Angle Legs	Always Use Sub-Critical Flow
		Use Top Mounted Sockets
		Pole Without Linear Attachments
		Pole With Shroud Or No
		Appurtenances
		Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	149.00-111.50	37.50	3.75	18	23.0000	29.4870	0.1875	0.7500	A607-65 (65 ksi)
L2	111.50-75.25	40.00	4.50	18	28.4633	35.3830	0.2188	0.8750	A607-65 (65 ksi)
L3	75.25-39.75	40.00	5.25	18	34.1670	41.0860	0.2813	1.1250	A607-65 (65 ksi)
L4	39.75-0.00	45.00		18	39.6154	47.4000	0.3750	1.5000	A607-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia. in	Area in ²	I in ⁴	r in	C in	I/C in ³	J in ⁴	It/Q in ²	w in	w/t
L1	23.3259	13.5763	892.6152	8.0984	11.6840	76.3964	1786.4050	6.7894	3.7180	19.829
	29.9130	17.4369	1891.1513	10.4013	14.9794	126.2502	3784.7910	8.7201	4.8597	25.918
L2	29.5274	19.6105	1976.4982	10.0268	14.4594	136.6934	3955.5970	9.8071	4.6245	21.141
	35.8951	24.4150	3814.1390	12.4833	17.9746	212.1965	7633.2967	12.2098	5.8424	26.708
L3	35.4411	30.2494	4388.2314	12.0295	17.3569	252.8241	8782.2369	15.1276	5.5184	19.621
	41.6764	36.4259	7662.4750	14.4857	20.8717	367.1229	15335.032	18.2164	6.7361	23.951
L4	41.0909	46.7059	9086.0569	13.9303	20.1246	451.4897	18184.069	23.3574	6.3123	16.833
	48.0734	55.9715	15637.310	16.6939	24.0792	649.4115	31295.196	27.9911	7.6824	20.486

Tower Elevation ft	Gusset Area (per face) ft ²	Gusset Thickness in	Gusset Grade		Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle		Double Angle	
			Adjust. Factor A _f	Factor A _r				Stitch Bolt Spacing Diagonals in	Stitch Bolt Spacing Horizontals in	Stitch Bolt Spacing Redundants in	
L1 149.00- 111.50					1	1	1				
L2 111.50- 75.25					1	1	1				
L3 75.25- 39.75					1	1	1				
L4 39.75-0.00					1	1	1				

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	Component Type	Placement ft	Total Number	Number Per Row	Start/End Position	Width or Diameter in	Perimeter in	Weight plf
** 122 + 118 **										
HB158-1-08U8- S8J18(1-5/8)	C	No	Surface Ar (CaAa)	118.00 - 0.00	8	6	-0.300 0.000	1.9800		1.30
HB158-1-08U8- S8J18(1-5/8)	C	No	Surface Ar (CaAa)	122.00 - 118.00	2	2	-0.100 0.000	1.9800		1.30
** 127 ft **										
AVA7-50(1-5/8)	B	No	Surface Ar (CaAa)	127.00 - 0.00	2	2	0.500 0.500	2.0100		0.70
HB114-U6S12-XXX- L(1-1/4)	B	No	Surface Ar (CaAa)	127.00 - 0.00	1	1	0.400 0.410	1.5400		1.70

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Total Number	CAA	Weight
							ft ² /ft	plf
** 80 ft **								
LDF4-50A(1/2)	A	No	No	Inside Pole	80.00 - 0.00	3	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00
** 135 **								
AVA7-50(1-5/8)	C	No	No	Inside Pole	135.00 - 0.00	6	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00
** 149 **								
LDF4-50A(1/2)	C	No	No	Inside Pole	149.00 - 0.00	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00
LDF7-50A(1-5/8)	C	No	No	Inside Pole	149.00 - 0.00	6	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00
FB-L98B-034-XXX(3/8)	C	No	No	Inside Pole	149.00 - 0.00	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00
WR-VG86ST-BRD(3/4)	C	No	No	Inside Pole	149.00 - 0.00	3	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00
FB-L98B-034-XXX(3/8)	C	No	No	Inside Pole	144.00 - 0.00	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00
WR-VG86ST-BRD(3/4)	C	No	No	Inside Pole	144.00 - 0.00	2	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00
2" Flex Conduit	C	No	No	Inside Pole	144.00 - 0.00	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00
CU12PSM9P6XXX (1-1/2)	A	No	No	Inside Pole	111.00 - 0.00	1	No Ice 1/2" Ice 1" Ice 2" Ice	0.00 0.00 0.00 0.00
** 111 **								

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation ft	Face	A_R ft ²	A_F ft ²	C_{AA} In Face ft ²	C_{AA} Out Face ft ²	Weight
							K
L1	149.00-111.50	A	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	8.618	0.000	0.12
		C	0.000	0.000	9.306	0.000	0.55
L2	111.50-75.25	A	0.000	0.000	0.000	0.000	0.09
		B	0.000	0.000	20.155	0.000	0.29
		C	0.000	0.000	43.065	0.000	1.19
L3	75.25-39.75	A	0.000	0.000	0.000	0.000	0.10
		B	0.000	0.000	19.738	0.000	0.28
		C	0.000	0.000	42.174	0.000	1.17
L4	39.75-0.00	A	0.000	0.000	0.000	0.000	0.11
		B	0.000	0.000	22.101	0.000	0.32
		C	0.000	0.000	47.223	0.000	1.31

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower Section	Tower Elevation ft	Face or Leg	Ice Thickness in	A_R ft ²	A_F ft ²	C_{AA} In Face ft ²	C_{AA} Out Face ft ²	Weight
								K
L1	149.00-111.50	A	1.462	0.000	0.000	0.000	0.000	0.00
		B	0.000	0.000	20.373	0.000	0.34	
		C	0.000	0.000	15.470	0.000	0.72	
L2	111.50-75.25	A	1.414	0.000	0.000	0.000	0.000	0.09
		B	0.000	0.000	47.646	0.000	0.80	
		C	0.000	0.000	67.080	0.000	1.97	
L3	75.25-39.75	A	1.347	0.000	0.000	0.000	0.000	0.10
		B	0.000	0.000	45.897	0.000	0.77	
		C	0.000	0.000	65.268	0.000	1.90	
L4	39.75-0.00	A	1.213	0.000	0.000	0.000	0.000	0.11
		B	0.000	0.000	50.197	0.000	0.82	
		C	0.000	0.000	72.418	0.000	2.09	

Feed Line Center of Pressure

Section	Elevation ft	CP_x in	CP_z in	CP_x Ice in	CP_z Ice in
L1	149.00-111.50	1.9919	2.5767	2.0878	2.2974
L2	111.50-75.25	4.0373	6.6223	3.8215	5.2463
L3	75.25-39.75	4.2935	7.0195	4.1298	5.6744
L4	39.75-0.00	4.5150	7.3630	4.3904	6.0545

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_a No Ice	K_a Ice
L1	4	HB158-1-08U8-S8J18(1-5/8)	111.50 - 118.00	1.0000	1.0000
L1	5	HB158-1-08U8-S8J18(1-5/8)	118.00 - 122.00	1.0000	1.0000
L1	8	AVA7-50(1-5/8)	111.50 - 127.00	1.0000	1.0000

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L1	10	HB114-U6S12-XXX-LI(1-1/4)	111.50 - 127.00	1.0000	1.0000
L2	4	HB158-1-08U8-S8J18(1-5/8)	75.25 - 111.50	1.0000	1.0000
L2	8	AVA7-50(1-5/8)	75.25 - 111.50	1.0000	1.0000
L2	10	HB114-U6S12-XXX-LI(1-1/4)	75.25 - 111.50	1.0000	1.0000
L3	4	HB158-1-08U8-S8J18(1-5/8)	39.75 - 75.25	1.0000	1.0000
L3	8	AVA7-50(1-5/8)	39.75 - 75.25	1.0000	1.0000
L3	10	HB114-U6S12-XXX-LI(1-1/4)	39.75 - 75.25	1.0000	1.0000
L4	4	HB158-1-08U8-S8J18(1-5/8)	0.00 - 39.75	1.0000	1.0000
L4	8	AVA7-50(1-5/8)	0.00 - 39.75	1.0000	1.0000
L4	10	HB114-U6S12-XXX-LI(1-1/4)	0.00 - 39.75	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment °	Placement ft
*** 149 - ATT ***					
T-Arm Mount [TA 702-3]	C	None		0.0000	149.00
Pipe Mount [PM 501-3]	C	None		0.0000	149.00
DMP65R-BU6D w/ Mount Pipe	A	From Leg	3.00 0.00 -1.00	0.0000	149.00
DMP65R-BU6D w/ Mount Pipe	B	From Leg	3.00 0.00 -1.00	0.0000	149.00
DMP65R-BU6D w/ Mount Pipe	C	From Leg	3.00 0.00 -1.00	0.0000	149.00
NNH4-65B-R6 w/ Mount Pipe	A	From Leg	3.00 0.00 -1.00	0.0000	149.00
NNH4-65B-R6 w/ Mount Pipe	B	From Leg	3.00 0.00 -1.00	0.0000	149.00
NNH4-65B-R6 w/ Mount Pipe	C	From Leg	3.00 0.00 -1.00	0.0000	149.00
RADIO 4415 B30	A	From Leg	1.00 0.00 1.00	0.0000	149.00
RADIO 4415 B30	B	From Leg	1.00 0.00 1.00	0.0000	149.00
RADIO 4415 B30	C	From Leg	1.00 0.00 1.00	0.0000	149.00
(2) LGP21401	A	From Leg	3.00 0.00 1.00	0.0000	149.00
(2) LGP21401	B	From Leg	3.00 0.00 1.00	0.0000	149.00

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment °	Placement ft
			0.00		
			1.00		
(2) LGP21401	C	From Leg	3.00	0.0000	149.00
			0.00		
			1.00		
RRUS 8843 B2/B66A	A	From Leg	1.00	0.0000	149.00
			0.00		
			1.00		
RRUS 8843 B2/B66A	B	From Leg	1.00	0.0000	149.00
			0.00		
			1.00		
RRUS 8843 B2/B66A	C	From Leg	1.00	0.0000	149.00
			0.00		
			1.00		
RRUS 4449 B5/B12	A	From Leg	1.00	0.0000	149.00
			0.00		
			1.00		
RRUS 4449 B5/B12	B	From Leg	1.00	0.0000	149.00
			0.00		
			1.00		
RRUS 4449 B5/B12	C	From Leg	1.00	0.0000	149.00
			0.00		
			1.00		
DC9-48-60-24-PC16-EV	A	From Leg	1.00	0.0000	149.00
			0.00		
			1.00		
DC6-48-60-18-8F	A	From Leg	1.00	0.0000	149.00
			0.00		
			1.00		
** 144 **					
RRUS 11 B12	A	From Leg	1.00	0.0000	144.00
			0.00		
			1.00		
RRUS 11 B12	B	From Leg	1.00	0.0000	144.00
			0.00		
			1.00		
RRUS 11 B12	C	From Leg	1.00	0.0000	144.00
			0.00		
			1.00		
RRUS 12 B2	A	From Leg	1.00	0.0000	144.00
			0.00		
			4.00		
RRUS 12 B2	B	From Leg	1.00	0.0000	144.00
			0.00		
			4.00		
RRUS 12 B2	C	From Leg	1.00	0.0000	144.00
			0.00		
			4.00		
DC6-48-60-18-8F	A	From Leg	1.00	0.0000	144.00
			0.00		
			0.00		
Pipe Mount [PM 601-3]	C	None		0.0000	144.00
** 135 - ATT **					
RA21.7770.00 w/ Mount Pipe	A	From Leg	1.00	0.0000	135.00
			0.00		
			0.00		
RA21.7770.00 w/ Mount Pipe	B	From Leg	1.00	0.0000	135.00
			0.00		
			0.00		
RA21.7770.00 w/ Mount Pipe	C	From Leg	1.00	0.0000	135.00
			0.00		
			0.00		
(2) LGP13519	A	From Leg	1.00	0.0000	135.00
			0.00		
			5.00		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment °	Placement ft
(2) LGP13519	B	From Leg	1.00 0.00 5.00	0.0000	135.00
(2) LGP13519	C	From Leg	1.00 0.00 5.00	0.0000	135.00
4.5' x 2" Mount Pipe	A	From Leg	1.00 0.00 0.00	0.0000	135.00
4.5' x 2" Mount Pipe	B	From Leg	1.00 0.00 0.00	0.0000	135.00
4.5' x 2" Mount Pipe	C	From Leg	1.00 0.00 0.00	0.0000	135.00
Side Arm Mount [SO 104-3] ** 127 - TMO **	C	None		0.0000	135.00
APXVAARR24_43-U-NA20 w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	127.00
APXVAARR24_43-U-NA20 w/ Mount Pipe	B	From Leg	4.00 0.00 0.00	0.0000	127.00
APXVAARR24_43-U-NA20 w/ Mount Pipe	C	From Leg	4.00 0.00 0.00	0.0000	127.00
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	A	From Leg	4.00 0.00 5.00	0.0000	127.00
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	B	From Leg	4.00 0.00 5.00	0.0000	127.00
APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	C	From Leg	4.00 0.00 5.00	0.0000	127.00
AIR6449 B41_T-MOBILE w/ Mount Pipe	A	From Leg	4.00 0.00 5.00	0.0000	127.00
AIR6449 B41_T-MOBILE w/ Mount Pipe	B	From Leg	4.00 0.00 5.00	0.0000	127.00
AIR6449 B41_T-MOBILE w/ Mount Pipe	C	From Leg	4.00 0.00 5.00	0.0000	127.00
RADIO 4415 B66A_CCIV3	A	From Leg	4.00 0.00 5.00	0.0000	127.00
RADIO 4415 B66A_CCIV3	B	From Leg	4.00 0.00 5.00	0.0000	127.00
RADIO 4415 B66A_CCIV3	C	From Leg	4.00 0.00 5.00	0.0000	127.00
RADIO 4449 B71 B85A_T-MOBILE	A	From Leg	4.00 0.00 5.00	0.0000	127.00
RADIO 4449 B71 B85A_T-MOBILE	B	From Leg	4.00 0.00 5.00	0.0000	127.00
RADIO 4449 B71 B85A_T-MOBILE	C	From Leg	4.00 0.00 5.00	0.0000	127.00
RADIO 4424 B25_TMO	A	From Leg	4.00 0.00 5.00	0.0000	127.00

Description	Face or Leg	Offset Type	Offsets: Horz ft Lateral ft Vert ft	Azimuth Adjustment °	Placement ft
RADIO 4424 B25_TMO	B	From Leg	4.00 0.00 5.00	0.0000	127.00
RADIO 4424 B25_TMO	C	From Leg	4.00 0.00 5.00	0.0000	127.00
Platform Mount [LP 301-1] ** 122 **	C	None		0.0000	127.00
(2) RRFDC-3315-PF-48	A	From Leg	4.00 0.00 1.00	0.0000	122.00
** 118 - VZW **					
(2) SBNHH-1D65B w/ Mount Pipe	A	From Leg	2.00 0.00 2.00	0.0000	118.00
(2) SBNHH-1D65B w/ Mount Pipe	B	From Leg	2.00 0.00 2.00	0.0000	118.00
(2) SBNHH-1D65B w/ Mount Pipe	C	From Leg	2.00 0.00 2.00	0.0000	118.00
BXA-80080/6CF w/ Mount Pipe	A	From Leg	2.00 0.00 2.00	0.0000	118.00
BXA-80080/6CF w/ Mount Pipe	B	From Leg	2.00 0.00 2.00	0.0000	118.00
BXA-80080/6CF w/ Mount Pipe	C	From Leg	2.00 0.00 2.00	0.0000	118.00
RRH2X60-AWS	A	From Leg	1.00 0.00 3.00	0.0000	118.00
RRH2X60-AWS	B	From Leg	1.00 0.00 3.00	0.0000	118.00
RRH2X60-AWS	C	From Leg	1.00 0.00 3.00	0.0000	118.00
(2) 4' x 2" Pipe Mount	A	From Leg	2.00 0.00 0.00	0.0000	118.00
(2) 4' x 2" Pipe Mount	B	From Leg	2.00 0.00 0.00	0.0000	118.00
(2) 4' x 2" Pipe Mount	C	From Leg	2.00 0.00 0.00	0.0000	118.00
(2) 6' x 2" Horizontal Mount Pipe	A	From Leg	2.00 0.00 0.00	0.0000	118.00
(2) 6' x 2" Horizontal Mount Pipe	B	From Leg	2.00 0.00 0.00	0.0000	118.00
(2) 6' x 2" Horizontal Mount Pipe	C	From Leg	2.00 0.00 0.00	0.0000	118.00
Side Arm Mount [SO 104-3] *** 111 - DISH ***	C	None		0.0000	118.00
MX08FRO665-21 w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	111.00
MX08FRO665-21 w/ Mount Pipe	B	From Leg	4.00 0.00 0.00	0.0000	111.00

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustment °	Placement ft
MX08FRO665-21 w/ Mount Pipe	C	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B604	A	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B604	B	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B604	C	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B605	A	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B605	B	From Leg	4.00 0.00 0.00	0.0000	111.00
TA08025-B605	C	From Leg	4.00 0.00 0.00	0.0000	111.00
RDIDC-9181-PF-48	A	From Leg	4.00 0.00 0.00	0.0000	111.00
(2) 8' x 2" Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	111.00
(2) 8' x 2" Mount Pipe	B	From Leg	4.00 0.00 0.00	0.0000	111.00
(2) 8' x 2" Mount Pipe	C	From Leg	4.00 0.00 0.00	0.0000	111.00
Commscope MC-PK8-DSH ** 81 - Seymour CT ** ANT150D	A	None		0.0000	111.00
6' x 2" Mount Pipe	B	From Leg	0.50 0.00 5.00	0.0000	81.00
6' x 2" Mount Pipe	A	From Leg	0.50 0.00 0.00	0.0000	81.00
Pipe Mount [PM 601-1]	A	From Leg	0.50 0.00 0.00	0.0000	81.00
6' x 2" Mount Pipe	A	From Leg	0.50 0.00 0.00	0.0000	81.00
Pipe Mount [PM 601-1]	A	From Leg	0.50 0.00 0.00	0.0000	81.00

Dishes

Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert ft	Azimuth Adjustment °	3 dB Beam Width °	Elevation ft	Outside Diameter ft
80 PCTEL MPRC2449	B	Paraboloid w/Radome	From Leg	1.00 0.00 0.00	0.0000		81.00	2.17

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	149 - 111.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-26.60	-0.37	1.90
			Max. Mx	8	-9.97	-295.54	0.34
			Max. My	2	-9.94	-0.06	298.66
			Max. Vy	20	-16.09	295.43	0.34
			Max. Vx	2	-16.26	-0.06	298.66
			Max. Torque	20			-1.46
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-41.55	-1.51	1.81
			Max. Mx	8	-18.56	-1046.36	0.30
L2	111.5 - 75.25	Pole	Max. My	2	-18.55	-0.28	1053.70
			Max. Vy	20	-23.76	1045.80	0.32
			Max. Vx	2	-23.75	-0.28	1053.70
			Max. Torque	20			-2.04
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-52.23	-2.38	0.32
			Max. Mx	20	-26.31	1927.46	-0.13
			Max. My	2	-26.31	0.21	1933.01
			Max. Vy	20	-26.86	1927.46	-0.13
			Max. Vx	2	-26.79	0.21	1933.01
L3	75.25 - 39.75	Pole	Max. Torque	20			-2.04
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-69.65	-3.59	-1.84
			Max. Mx	20	-40.04	3213.82	-0.88
			Max. My	2	-40.04	0.82	3215.22
			Max. Vy	20	-30.05	3213.82	-0.88
			Max. Vx	2	-29.97	0.82	3215.22
			Max. Torque	20			-2.03
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-3213.82	-3213.82	
L4	39.75 - 0	Pole	Max. Mx	20	-40.04	3213.82	-0.88
			Max. My	2	-40.04	0.82	3215.22
			Max. Vy	20	-30.05	3213.82	-0.88
			Max. Vx	2	-29.97	0.82	3215.22
			Max. Torque	20			-2.03
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-69.65	-3.59	-1.84
			Max. Mx	20	-40.04	3213.82	-0.88
			Max. My	2	-40.04	0.82	3215.22
			Max. Vy	20	-30.05	3213.82	-0.88
L5	0 - 0	Pole	Max. Vx	2	-29.97	0.82	3215.22
			Max. Torque	20			-2.03
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-69.65	-3.59	-1.84
			Max. Mx	20	-40.04	3213.82	-0.88
			Max. My	2	-40.04	0.82	3215.22
			Max. Vy	20	-30.05	3213.82	-0.88
			Max. Vx	2	-29.97	0.82	3215.22
			Max. Torque	20			-2.03
			Max Tension	1	0.00	0.00	0.00

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Pole	Max. Vert	33	69.65	0.00	-8.13
	Max. H _x	20	40.07	30.01	0.00
	Max. H _z	3	30.06	0.02	29.93
	Max. M _x	2	3215.22	0.02	29.93
	Max. M _z	8	3211.39	-29.96	-0.00
	Max. Torsion	8	2.02	-29.96	-0.00
	Min. Vert	11	30.06	-25.74	-14.97
	Min. H _x	8	40.07	-29.96	-0.00
	Min. H _z	15	30.06	0.01	-29.88
	Min. M _x	14	-3213.89	0.01	-29.88
Tower Mast	Min. M _z	20	-3213.82	30.01	0.00
	Min. Torsion	20	-2.02	30.01	0.00

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear _x K	Shear _z K	Overshadowing Moment, M _x kip-ft	Overshadowing Moment, M _z kip-ft	Torque kip-ft
Dead Only	33.40	0.00	0.00	1.00	-0.64	0.00
1.2 Dead+1.0 Wind 0 deg -	40.07	-0.02	-29.93	-3215.22	0.82	0.27
No Ice						

Load Combination	Vertical	Shear _x	Shear _z	Overshooting Moment, M _x kip-ft	Overshooting Moment, M _z kip-ft	Torque
	K	K	K			kip-ft
0.9 Dead+1.0 Wind 0 deg - No Ice	30.06	-0.02	-29.93	-3167.43	1.02	0.27
1.2 Dead+1.0 Wind 30 deg - No Ice	40.07	15.40	-26.91	-2855.93	-1634.01	-0.80
0.9 Dead+1.0 Wind 30 deg - No Ice	30.06	15.40	-26.91	-2813.85	-1609.57	-0.80
1.2 Dead+1.0 Wind 60 deg - No Ice	40.07	25.91	-15.07	-1617.10	-2778.44	-1.64
0.9 Dead+1.0 Wind 60 deg - No Ice	30.06	25.91	-15.07	-1593.25	-2736.77	-1.64
1.2 Dead+1.0 Wind 90 deg - No Ice	40.07	29.96	0.00	1.60	-3211.39	-2.02
0.9 Dead+1.0 Wind 90 deg - No Ice	30.06	29.96	0.00	1.27	-3163.28	-2.02
1.2 Dead+1.0 Wind 120 deg - No Ice	40.07	25.74	14.97	1609.90	-2762.53	-1.89
0.9 Dead+1.0 Wind 120 deg - No Ice	30.06	25.74	14.97	1585.54	-2721.06	-1.89
1.2 Dead+1.0 Wind 150 deg - No Ice	40.07	14.86	25.91	2785.92	-1594.77	-1.26
0.9 Dead+1.0 Wind 150 deg - No Ice	30.06	14.86	25.91	2743.98	-1570.74	-1.26
1.2 Dead+1.0 Wind 180 deg - No Ice	40.07	-0.01	29.88	3213.89	-0.35	-0.26
0.9 Dead+1.0 Wind 180 deg - No Ice	30.06	-0.01	29.88	3165.52	-0.14	-0.26
1.2 Dead+1.0 Wind 210 deg - No Ice	40.07	-15.44	26.89	2856.45	1635.71	0.79
0.9 Dead+1.0 Wind 210 deg - No Ice	30.06	-15.44	26.89	2813.77	1611.67	0.79
1.2 Dead+1.0 Wind 240 deg - No Ice	40.07	-25.96	15.07	1619.67	2781.09	1.62
0.9 Dead+1.0 Wind 240 deg - No Ice	30.06	-25.96	15.07	1595.18	2739.81	1.62
1.2 Dead+1.0 Wind 270 deg - No Ice	40.07	-30.01	-0.00	0.89	3213.82	2.02
0.9 Dead+1.0 Wind 270 deg - No Ice	30.06	-30.01	-0.00	0.57	3166.09	2.02
1.2 Dead+1.0 Wind 300 deg - No Ice	40.07	-25.77	-14.98	-1608.66	2763.11	1.90
0.9 Dead+1.0 Wind 300 deg - No Ice	30.06	-25.77	-14.98	-1584.91	2722.03	1.90
1.2 Dead+1.0 Wind 330 deg - No Ice	40.07	-14.88	-25.95	-2786.95	1595.23	1.27
0.9 Dead+1.0 Wind 330 deg - No Ice	30.06	-14.88	-25.95	-2745.59	1571.60	1.27
1.2 Dead+1.0 Ice+1.0 Temp	69.65	0.00	-0.00	1.84	-3.59	0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	69.65	-0.00	-8.14	-914.63	-3.45	0.07
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	69.65	4.05	-7.05	-791.43	-458.68	-0.18
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	69.65	7.01	-4.07	-456.07	-792.17	-0.38
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	69.65	8.10	0.00	1.95	-914.80	-0.48
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	69.65	7.02	4.07	460.21	-793.01	-0.46
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	69.65	4.05	7.05	795.42	-459.35	-0.31
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	69.65	-0.00	8.13	917.61	-3.69	-0.07
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	69.65	-4.05	7.04	794.79	451.79	0.18
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	69.65	-7.02	4.07	459.85	785.48	0.38
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	69.65	-8.11	-0.00	1.80	908.06	0.48
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	69.65	-7.03	-4.08	-456.71	785.89	0.46

Load Combination	Vertical	Shear _x	Shear _z	Overspinning Moment, M _x	Overspinning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	69.65	-4.06	-7.06	-792.38	452.20	0.31
Dead+Wind 0 deg - Service	33.40	-0.00	-6.50	-692.30	-0.32	0.06
Dead+Wind 30 deg - Service	33.40	3.34	-5.84	-614.92	-352.76	-0.18
Dead+Wind 60 deg - Service	33.40	5.62	-3.27	-347.82	-599.40	-0.37
Dead+Wind 90 deg - Service	33.40	6.50	0.00	1.09	-692.72	-0.45
Dead+Wind 120 deg - Service	33.40	5.59	3.25	347.75	-595.96	-0.42
Dead+Wind 150 deg - Service	33.40	3.23	5.62	601.26	-344.26	-0.28
Dead+Wind 180 deg - Service	33.40	-0.00	6.49	693.51	-0.58	-0.06
Dead+Wind 210 deg - Service	33.40	-3.35	5.84	616.54	352.13	0.18
Dead+Wind 240 deg - Service	33.40	-5.64	3.27	349.87	598.98	0.36
Dead+Wind 270 deg - Service	33.40	-6.51	-0.00	0.94	692.24	0.45
Dead+Wind 300 deg - Service	33.40	-5.59	-3.25	-345.99	595.08	0.42
Dead+Wind 330 deg - Service	33.40	-3.23	-5.63	-599.99	343.35	0.28

Solution Summary

Load Comb.	Sum of Applied Forces			Sum of Reactions			% Error
	PX K	PY K	PZ K	PX K	PY K	PZ K	
1	0.00	-33.40	0.00	0.00	33.40	0.00	0.000%
2	-0.02	-40.07	-29.93	0.02	40.07	29.93	0.000%
3	-0.02	-30.06	-29.93	0.02	30.06	29.93	0.000%
4	15.40	-40.07	-26.91	-15.40	40.07	26.91	0.000%
5	15.40	-30.06	-26.91	-15.40	30.06	26.91	0.000%
6	25.91	-40.07	-15.07	-25.91	40.07	15.07	0.000%
7	25.91	-30.06	-15.07	-25.91	30.06	15.07	0.000%
8	29.96	-40.07	0.00	-29.96	40.07	-0.00	0.000%
9	29.96	-30.06	0.00	-29.96	30.06	-0.00	0.000%
10	25.74	-40.07	14.97	-25.74	40.07	-14.97	0.000%
11	25.74	-30.06	14.97	-25.74	30.06	-14.97	0.000%
12	14.86	-40.07	25.91	-14.86	40.07	-25.91	0.000%
13	14.86	-30.06	25.91	-14.86	30.06	-25.91	0.000%
14	-0.01	-40.07	29.88	0.01	40.07	-29.88	0.000%
15	-0.01	-30.06	29.88	0.01	30.06	-29.88	0.000%
16	-15.44	-40.07	26.89	15.44	40.07	-26.89	0.000%
17	-15.44	-30.06	26.89	15.44	30.06	-26.89	0.000%
18	-25.96	-40.07	15.07	25.96	40.07	-15.07	0.000%
19	-25.96	-30.06	15.07	25.96	30.06	-15.07	0.000%
20	-30.01	-40.07	-0.00	30.01	40.07	0.00	0.000%
21	-30.01	-30.06	-0.00	30.01	30.06	0.00	0.000%
22	-25.77	-40.07	-14.98	25.77	40.07	14.98	0.000%
23	-25.77	-30.06	-14.98	25.77	30.06	14.98	0.000%
24	-14.88	-40.07	-25.95	14.88	40.07	25.95	0.000%
25	-14.88	-30.06	-25.95	14.88	30.06	25.95	0.000%
26	0.00	-69.65	0.00	-0.00	69.65	0.00	0.000%
27	-0.00	-69.65	-8.14	0.00	69.65	8.14	0.000%
28	4.05	-69.65	-7.05	-4.05	69.65	7.05	0.000%
29	7.01	-69.65	-4.07	-7.01	69.65	4.07	0.000%
30	8.10	-69.65	0.00	-8.10	69.65	-0.00	0.000%
31	7.02	-69.65	4.07	-7.02	69.65	-4.07	0.000%
32	4.05	-69.65	7.05	-4.05	69.65	-7.05	0.000%
33	-0.00	-69.65	8.13	0.00	69.65	-8.13	0.000%
34	-4.05	-69.65	7.04	4.05	69.65	-7.04	0.000%
35	-7.02	-69.65	4.07	7.02	69.65	-4.07	0.000%
36	-8.11	-69.65	-0.00	8.11	69.65	0.00	0.000%
37	-7.03	-69.65	-4.08	7.03	69.65	4.08	0.000%
38	-4.06	-69.65	-7.06	4.06	69.65	7.06	0.000%

Load Comb.	Sum of Applied Forces			Sum of Reactions			% Error
	PX K	PY K	PZ K	PX K	PY K	PZ K	
39	-0.00	-33.40	-6.50	0.00	33.40	6.50	0.000%
40	3.34	-33.40	-5.84	-3.34	33.40	5.84	0.000%
41	5.62	-33.40	-3.27	-5.62	33.40	3.27	0.000%
42	6.50	-33.40	0.00	-6.50	33.40	-0.00	0.000%
43	5.59	-33.40	3.25	-5.59	33.40	-3.25	0.000%
44	3.23	-33.40	5.62	-3.23	33.40	-5.62	0.000%
45	-0.00	-33.40	6.49	0.00	33.40	-6.49	0.000%
46	-3.35	-33.40	5.84	3.35	33.40	-5.84	0.000%
47	-5.64	-33.40	3.27	5.64	33.40	-3.27	0.000%
48	-6.51	-33.40	-0.00	6.51	33.40	0.00	0.000%
49	-5.59	-33.40	-3.25	5.59	33.40	3.25	0.000%
50	-3.23	-33.40	-5.63	3.23	33.40	5.63	0.000%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00004108
3	Yes	4	0.00000001	0.00069150
4	Yes	6	0.00000001	0.00044785
5	Yes	6	0.00000001	0.00012839
6	Yes	6	0.00000001	0.00045824
7	Yes	6	0.00000001	0.00013336
8	Yes	5	0.00000001	0.00029835
9	Yes	5	0.00000001	0.00013360
10	Yes	6	0.00000001	0.00043447
11	Yes	6	0.00000001	0.00012545
12	Yes	6	0.00000001	0.00045319
13	Yes	6	0.00000001	0.00013193
14	Yes	5	0.00000001	0.00004383
15	Yes	4	0.00000001	0.00070486
16	Yes	6	0.00000001	0.00045905
17	Yes	6	0.00000001	0.00013233
18	Yes	6	0.00000001	0.00043765
19	Yes	6	0.00000001	0.00012611
20	Yes	5	0.00000001	0.00030149
21	Yes	5	0.00000001	0.00013494
22	Yes	6	0.00000001	0.00045689
23	Yes	6	0.00000001	0.00013335
24	Yes	6	0.00000001	0.00043855
25	Yes	6	0.00000001	0.00012678
26	Yes	4	0.00000001	0.00003850
27	Yes	6	0.00000001	0.00021783
28	Yes	6	0.00000001	0.00039845
29	Yes	6	0.00000001	0.00040507
30	Yes	6	0.00000001	0.00021814
31	Yes	6	0.00000001	0.00039219
32	Yes	6	0.00000001	0.00040231
33	Yes	6	0.00000001	0.00021679
34	Yes	6	0.00000001	0.00039519
35	Yes	6	0.00000001	0.00038810
36	Yes	6	0.00000001	0.00021638
37	Yes	6	0.00000001	0.00040173
38	Yes	6	0.00000001	0.00039241
39	Yes	4	0.00000001	0.00015821
40	Yes	5	0.00000001	0.00010359
41	Yes	5	0.00000001	0.00011121
42	Yes	4	0.00000001	0.00031790
43	Yes	5	0.00000001	0.00009574
44	Yes	5	0.00000001	0.00010794
45	Yes	4	0.00000001	0.00015821
46	Yes	5	0.00000001	0.00011076
47	Yes	5	0.00000001	0.00009717
48	Yes	4	0.00000001	0.00031812
49	Yes	5	0.00000001	0.00011045
50	Yes	5	0.00000001	0.00009784

Maximum Tower Deflections - Service Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt °	Twist °
L1	149 - 111.5	31.087	40	1.7429	0.0043
L2	115.25 - 75.25	19.122	40	1.5862	0.0033
L3	79.75 - 39.75	8.921	46	1.0903	0.0015
L4	45 - 0	2.769	46	0.5629	0.0006

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt °	Twist °	Radius of Curvature ft
149.00	T-Arm Mount [TA 702-3]	40	31.087	1.7429	0.0043	39286
144.00	RRUS 11 B12	40	29.257	1.7310	0.0042	39286
135.00	RA21.7770.00 w/ Mount Pipe	40	25.989	1.7048	0.0039	14030
127.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	40	23.141	1.6701	0.0037	8928
122.00	(2) RRFDC-3315-PF-48	40	21.402	1.6401	0.0035	7274
118.00	(2) SBNHH-1D65B w/ Mount Pipe	40	20.040	1.6102	0.0034	6342
111.00	MX08FRO665-21 w/ Mount Pipe	40	17.732	1.5433	0.0031	5434
81.00	PCTEL MPRC2449	46	9.219	1.1104	0.0016	3697

Maximum Tower Deflections - Design Wind

Section No.	Elevation ft	Horz. Deflection in	Gov. Load Comb.	Tilt °	Twist °
L1	149 - 111.5	143.850	4	8.0873	0.0191
L2	115.25 - 75.25	88.605	4	7.3650	0.0147
L3	79.75 - 39.75	41.380	16	5.0648	0.0069
L4	45 - 0	12.846	16	2.6132	0.0026

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt °	Twist °	Radius of Curvature ft
149.00	T-Arm Mount [TA 702-3]	4	143.850	8.0873	0.0191	8814
144.00	RRUS 11 B12	4	135.407	8.0329	0.0186	8814
135.00	RA21.7770.00 w/ Mount Pipe	4	120.322	7.9124	0.0176	3145
127.00	APXVAARR24_43-U-NA20 w/ Mount Pipe	4	107.171	7.7525	0.0166	1999
122.00	(2) RRFDC-3315-PF-48	4	99.141	7.6140	0.0158	1627
118.00	(2) SBNHH-1D65B w/ Mount Pipe	4	92.850	7.4759	0.0152	1417
111.00	MX08FRO665-21 w/ Mount Pipe	4	82.183	7.1660	0.0138	1210
81.00	PCTEL MPRC2449	16	42.760	5.1581	0.0072	812

Compression Checks

Pole Design Data

Section No.	Elevation ft	Size	L ft	L _u ft	Kl/r in ²	A K	P _u K	ϕP _n K	Ratio P _u ϕP _n
L1	149 - 111.5 (1)	TP29.487x23x0.1875	37.50	0.00	0.0 8	17.050 8	-9.94	997.47	0.010
L2	111.5 - 75.25 (2)	TP35.383x28.4633x0.218 8	40.00	0.00	0.0 5	23.874 5	-18.48	1396.66	0.013
L3	75.25 - 39.75 (3)	TP41.086x34.167x0.2813 2	40.00	0.00	0.0 2	35.615 2	-26.24	2083.49	0.013
L4	39.75 - 0 (4)	TP47.4x39.6154x0.375 5	45.00	0.00	0.0 5	55.971 5	-40.04	3274.33	0.012

Pole Bending Design Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio $\frac{M_{ux}}{\phi M_{nx}}$	M_{uy}	ϕM_{ny}	Ratio $\frac{M_{uy}}{\phi M_{ny}}$
	ft		kip-ft	kip-ft		kip-ft	kip-ft	
L1	149 - 111.5 (1)	TP29.487x23x0.1875	298.66	639.10	0.467	0.00	639.10	0.000
L2	111.5 - 75.25 (2)	TP35.383x28.4633x0.218 8	1060.55	1060.37	1.000	0.00	1060.37	0.000
L3	75.25 - 39.75 (3)	TP41.086x34.167x0.2813	1963.47	1917.64	1.024	0.00	1917.64	0.000
L4	39.75 - 0 (4)	TP47.4x39.6154x0.375	3291.63	3714.79	0.886	0.00	3714.79	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_u	ϕV_n	Ratio $\frac{V_u}{\phi V_n}$	Actual T_u	ϕT_n	Ratio $\frac{T_u}{\phi T_n}$
	ft		K	K		kip-ft	kip-ft	
L1	149 - 111.5 (1)	TP29.487x23x0.1875	16.26	299.24	0.054	0.00	750.83	0.000
L2	111.5 - 75.25 (2)	TP35.383x28.4633x0.218 8	24.21	419.00	0.058	0.86	1261.74	0.001
L3	75.25 - 39.75 (3)	TP41.086x34.167x0.2813	27.65	625.05	0.044	0.81	2183.88	0.000
L4	39.75 - 0 (4)	TP47.4x39.6154x0.375	31.05	982.30	0.032	0.79	4045.32	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P_u	Ratio M_{ux}	Ratio M_{uy}	Ratio V_u	Ratio T_u	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	ft	$\frac{P_u}{\phi P_n}$	$\frac{M_{ux}}{\phi M_{nx}}$	$\frac{M_{uy}}{\phi M_{ny}}$	$\frac{V_u}{\phi V_n}$	$\frac{T_u}{\phi T_n}$			
L1	149 - 111.5 (1)	0.010	0.467	0.000	0.054	0.000	0.480	1.050	4.8.2
L2	111.5 - 75.25 (2)	0.013	1.000	0.000	0.058	0.001	1.017	1.050	4.8.2
L3	75.25 - 39.75 (3)	0.013	1.024	0.000	0.044	0.000	1.038	1.050	4.8.2
L4	39.75 - 0 (4)	0.012	0.886	0.000	0.032	0.000	0.899	1.050	4.8.2

Section Capacity Table

Section No.	Elevation	Component Type	Size	Critical Element	P	ϕP_{allow}	% Capacity	Pass Fail
	ft				K	K		
L1	149 - 111.5	Pole	TP29.487x23x0.1875	1	-9.94	1047.35	45.7	Pass
L2	111.5 - 75.25	Pole	TP35.383x28.4633x0.2188	2	-18.48	1466.49	96.8	Pass
L3	75.25 - 39.75	Pole	TP41.086x34.167x0.2813	3	-26.24	2187.66	98.9	Pass
L4	39.75 - 0	Pole	TP47.4x39.6154x0.375	4	-40.04	3438.05	85.7	Pass
							Summary	
							Pole (L3)	98.9
							RATING =	98.9
								Pass

APPENDIX B
BASE LEVEL DRAWING

APPENDIX C
ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

Site Info	
BU #	845455
Site Name	Oxford-Quaker Farms
Order #	

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
l_{ar} (in)	1

Applied Loads	
Moment (kip-ft)	3291.63
Axial Force (kips)	40.04
Shear Force (kips)	31.05

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(12) 2-1/4" ϕ bolts (A615-75 N; $F_y=75$ ksi, $F_u=100$ ksi) on 54" BC
Anchor Spacing: 4.5 in

Base Plate Data

53" W x 2.75" Plate (A572-60; $F_y=60$ ksi, $F_u=75$ ksi); Clip: 9 in

Stiffener Data

N/A

Pole Data

47.4" x 0.375" 18-sided pole (A607-65; $F_y=65$ ksi, $F_u=80$ ksi)

Analysis Results

Anchor Rod Summary

(units of kips, kip-in)		
$P_{u_t} = 240.32$	$\phi P_{n_t} = 243.75$	Stress Rating
$V_u = 2.59$	$\phi V_n = 149.1$	93.9%
$M_u = n/a$	$\phi M_n = n/a$	Pass

Base Plate Summary

Max Stress (ksi):	43	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	75.8%	Pass

Pier and Pad Foundation

BU # :	845455
Site Name:	Oxford-Quaker Far
App. Number:	

TIA-222 Revision:	H
Tower Type:	Monopole

Top & Bot. Pad Rein. Different?:	<input type="checkbox"/>
Block Foundation?:	<input type="checkbox"/>
Rectangular Pad?:	<input type="checkbox"/>

Superstructure Analysis Reactions		
Compression, P_{comp} :	40.07	kips
Base Shear, Vu_{comp} :	31.01	kips
Moment, M_u :	3291.63	ft-kips
Tower Height, H :	149	ft
BP Dist. Above Fdn, bp_{dist} :	3	in

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	285.92	31.01	10.3%	Pass
Bearing Pressure (ksf)	22.50	5.17	23.0%	Pass
Overturning (kip*ft)	4369.82	3547.46	81.2%	Pass
Pier Flexure (Comp.) (kip*ft)	7552.96	3431.18	43.3%	Pass
Pier Compression (kip)	23390.64	79.76	0.3%	Pass
Pad Flexure (kip*ft)	4295.05	1734.01	38.4%	Pass
Pad Shear - 1-way (kips)	731.44	338.81	44.1%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.000	0.0%	Pass
Flexural 2-way (Comp) (kip*ft)	7386.86	2058.71	26.5%	Pass

Pier Properties		
Pier Shape:	Square	
Pier Diameter, $dpier$:	7	ft
Ext. Above Grade, E :	0.5	ft
Pier Rebar Size, Sc :	11	
Pier Rebar Quantity, mc :	32	
Pier Tie/Spiral Size, St :	5	
Pier Tie/Spiral Quantity, mt :	10	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier} :	3	in

Pad Properties		
Depth, D :	7.5	ft
Pad Width, W_1 :	20	ft
Pad Thickness, T :	3.5	ft
Pad Rebar Size (Bottom dir. 2), Sp_2 :	10	
Pad Rebar Quantity (Bottom dir. 2), mp_2 :	21	
Pad Clear Cover, cc_{pad} :	3	in

Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, $F'c$:	3	ksi
Dry Concrete Density, δc :	150	pcf

Soil Properties		
Total Soil Unit Weight, γ :	125	pcf
Ultimate Gross Bearing, Q_{ult} :	30.000	ksf
Cohesion, C_u :	0.000	ksf
Friction Angle, φ :	36	degrees
SPT Blow Count, N_{blows} :	41	
Base Friction, μ :		
Neglected Depth, N :	3.50	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw :	none	ft

--Toggle between Gross and Net

ASCE 7 Hazards Report

Address:
No Address at This Location

Standard: ASCE/SEI 7-10
Risk Category: II
Soil Class: D - Stiff Soil

Elevation: 607.1 ft (NAVD 88)
Latitude: 41.383989
Longitude: -73.137372

Wind

Results:

Wind Speed:	125 Vmph per jurisdictional requirements
10-year MRI	76 Vmph
25-year MRI	86 Vmph
50-year MRI	92 Vmph
100-year MRI	99 Vmph

Data Source: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of March 12, 2014

Date Accessed: Mon Nov 16 2020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Seismic

Site Soil Class: D - Stiff Soil

Results:

S_s :	0.197	S_{DS} :	0.211
S_1 :	0.064	S_{D1} :	0.103
F_a :	1.6	T_L :	6
F_v :	2.4	PGA :	0.105
S_{MS} :	0.316	PGA _M :	0.166
S_{M1} :	0.154	F_{PGA} :	1.591
		I_e :	1

Seismic Design Category B

Data Accessed:

Mon Nov 16 2020

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Mon Nov 16 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: September 13, 2021

Kimley»Horn

Kimley-Horn and Associates, Inc.
421 Fayetteville Street, Suite 600
Raleigh, NC 27601
(919) 677-2000
CrownMounts@kimley-horn.com

Subject: Mount Analysis - Conditional Passing Report

Carrier Designation: Dish Equipment Change-Out

Carrier Site Number: BOHVN00159A
Carrier Site Name: CT-CCI-T-845455

Crown Castle Designation:

BU Number: 845455
Site Name: OXFORD-QUAKER FARMS
JDE Job Number: 645152
Order Number: 553377, Rev. 1

Engineering Firm Designation: Kimley-Horn Project Number: 019558056

Site Data: 85 Quaker Farms Road, Oxford, New Haven County, CT 06478
Latitude 41° 23' 2.36" Longitude -73° 8' 14.54"

Structure Information:

Tower Height & Type: 149 ft Monopole
Mount Elevation: 111 ft
Mount Type: 8 ft Platform w/ Support Rails

Kimley-Horn is pleased to submit this “Mount Analysis - Conditional Passing Report” to determine the structural integrity of Dish’s antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform w/ Support Rails

Sufficient

* See Section 4.1 for loading and structural modifications required for the mount to support the loading listed in Table 1.

This analysis utilizes an ultimate 3-second gust wind speed of 121 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by Elliot Ziebart, E.I. under supervision by Steven C. Ball, P.E., S.E.

9.14.21

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

The mounting configuration consists of a proposed 8 ft Platform w/ Support Rails designed by CommScope.

2) ANALYSIS CRITERIA

Building Code:	2018 Connecticut State Building Code
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	121 mph
Exposure Category:	C
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 – Proposed Equipment Configuration

Elevation (ft)		Antennas			Mount / Modification Details
Mount	Centerline	#	Manufacturer	Model	
111	111	3	Fujitsu	TA08025-B604	Proposed 8 ft Platform w/ Support Rails designed by CommScope
		3	Fujitsu	TA08025-B605	
		3	Jma wireless	MX08FRO665-21	
		1	Raycap	RDIDC-9181-PF-48	

3) ANALYSIS PROCEDURE

Table 2 – Documents Provided

Document	Remarks	Reference	Source
Structural Analysis	Crown Castle	9370628	CCISites
Tower Drawings	Paul J. Ford and Company	5110795	CCISites
Mount Drawings	Commscope	MC-PK8-DSH	On File

3.1) Analysis Method

RISA-3D (version 17.02.00), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A proprietary tool internally developed by Kimley-Horn was used to calculate wind loading on all appurtenances, dishes and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Mount Analysis* (Revision D).

3.2) Assumptions

- 1) The antenna mounting system (including any considered modifications) was properly fabricated, installed and maintained in good condition in accordance with its original design, TIA standards, and/or manufacturer specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the provided reference information.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members that could not be verified at this time.
- 5) Any referenced prior structural modifications to the tower mounting system are assumed to be installed as shown per available data unless noted otherwise.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
HSS (Rectangular)	ASTM A36 (Gr. 36)
Pipe	ASTM A53 (Gr. B-35)
Connection Bolts	ASTM A325
Threaded Rods	ASTM A36 (Gr. 36)

This analysis may be affected if any assumptions are not valid or have been made in error. Kimley-Horn should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 – Mount Component Stresses vs. Capacity

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1, 2	Connections	-	111	43%	Pass
1, 2	Bracing Members	M62A		29%	Pass
1, 2	Stand Off Horizontals	M92A		23%	Pass
1, 2	Mount Pipes	MP8		18%	Pass
1, 2	Corner Plates	M75		18%	Pass
1, 2	Face Horizontals	M48		10%	Pass
1, 2	Support Rails	M51		10%	Pass

Structure Rating (max from all components) =

43%

Notes:

- 1) See additional documentation in Appendix C and Appendix D for calculations supporting the % capacity consumed.
- 2) Rating per TIA-222-H, Section 15.5.

4.1) Recommendations

The mounting configuration will have sufficient design capacity to carry the referenced loading once the following modifications are completed:

- **Install proposed mount according to manufacturer specifications.**
 - (1) Commscope MC-PK8-DSH platform

No additional modifications are required at this time provided that the above-listed changes are completed.

APPENDIX A
WIRE FRAME AND RENDERED MODELS

Envelope Only Solution

Kimley-Horn and Associates, Inc.

EJZ

019558056

SK - 1

Sept 9, 2021 at 8:46 AM

845455.r3d

845455

Loads: LC 1, Summary: 1.0D + 1.0W
Envelope Only Solution

Kimley-Horn and Associates, Inc.

17

815

SK - 2

Sant 9 2021 at 8:17 AM

APPENDIX B
SOFTWARE INPUT CALCULATIONS

General Criteria	
TIA Standard	H
IBC Edition	2015
Structure Class	*
Risk Category	II

Wind Summary	
Basic Wind Speed w/o Ice, V_1 (mph)	121.00
Velocity Pressure Coeff., K_z	1.29
Velocity Pressure, q_z (w/o Ice) (psf)	45.06

Date	September 09, 2021
Client	Crown Castle
Site #	845455
Site Name	OXFORD-QUAKER FARMS
Project #	19558056

Site-Specific Criteria	
Exposure Category	C
Topographic Factor, K_{zt}	1.00
Structure Base Elev. (AMSL), z_b (ft)	607.00
Ground Effect Factor, K_g	0.98

Ice Load Summary	
Basic Wind Speed w/ Ice, V_1 (mph)	50.00
Design Ice Thick. (ASCE 7-10) , t_i (in)	0.75
Velocity Pressure, q_z (w/ Ice) (psf)	7.69
Escalated Ice Thick. @ Mount, t_{iz} (in)	1.69

Mount & Structure Criteria	
Mount Elevation (AGL) (ft)	111.00
Structure Height (ft)	149.00
Structure Type	Monopole

Seismic Load Summary	
Spectral Response (Short Periods), S_s	-
Spectral Response (1-Sec. Period), S_1	-
Site Class	D
Seismic Design Category	-
Seismic Risk Category	-

Constants	
Wind Direction Probability Factor, K_d	0.95
Gust Effect Factor, G_h	1
Shielding Factor, K_s (antenna)	0.9
Shielding Factor, K_s (mount)	0.9

Snow Load Summary	
Ground Snow Load, p_g (psf)	-
Snow Load on Flat Roofs, p_f (psf)	-

Antenna Name	Qty	Shape	Dimensions (in)			Weight (lb)	Joint Labels						EPA (ft ²)		Wind Force, F_A (lb)						
			H	W	D		Alpha		Beta		Gamma		Delta		Front	Side	No Ice		With Ice		
							A2T	A2B	B2T	B2B	G2T	G2B			Front	Side	Front	Side	Front	Side	
MX08FRO665-21	3	Flat	72	20	8	64.5	A2T	A2B	B2T	B2B	G2T	G2B			7.99	3.23	324.18	130.87	66.86	31.41	
TA08025-B605	3	Flat	15.8	15	9.1	75	A2R		B2R		G2R				0.59	1.96	24.09	79.64	6.87	20.26	
TA08025-B604	3	Flat	15.8	15	7.9	63.9	A2R		B2R		G2R				0.52	1.96	20.95	79.64	6.22	20.26	
RDIDC-9181-PF-48	1	Flat	16.6	14.6	8.5	21.9	DCU								2.01	1.17	81.6	47.38	20.68	13.64	

ASCE 7 Hazards Report

Address:
No Address at This Location

Standard: ASCE/SEI 7-10
Risk Category: II
Soil Class: D - Stiff Soil

Elevation: 607.1 ft (NAVD 88)
Latitude: 41.383989
Longitude: -73.137372

Wind

Results:

Wind Speed:	121 Vmph
10-year MRI	76 Vmph
25-year MRI	86 Vmph
50-year MRI	92 Vmph
100-year MRI	99 Vmph

Data Assessed: ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: D - Stiff Soil

Results:

S_s :	0.197	S_{DS} :	0.211
S_1 :	0.064	S_{D1} :	0.103
F_a :	1.6	T_L :	6
F_v :	2.4	PGA :	0.105
S_{MS} :	0.316	PGA _M :	0.166
S_{M1} :	0.154	F_{PGA} :	1.591
		I_e :	1

Seismic Design Category B

Data Accessed:

Thu Sep 09 2021

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Thu Sep 09 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C
SOFTWARE ANALYSIS OUTPUT

Company : Kimley-Horn and Associates, Inc.
 Designer : EJZ
 Job Number : 019558056
 Model Name : 845455

Sept 9, 2021
 8:47 AM
 Checked By: ZAM

Hot Rolled Steel Properties

Label	E [ksi]	G [ksi]	Nu	Therm (\(E/...)	Density[k/ft...]	Yield[ksi]	Ry	Fu[ksi]	Rt
1 A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2 A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3 A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4 A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5 A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6 A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7 A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8 A913 Gr.65	29000	11154	.3	.65	.49	65	1.1	80	1.1
9 A500 GR.C	29000	11154	.3	.65	.49	46	1.6	60	1.2
10 A529 Gr. 50	29000	11154	.3	.65	.49	50	1.1	65	1.1
11 A1011-33Ksi	29000	11154	.3	.65	.49	33	1.5	58	1.2
12 A1011 36 ksi	29000	11154	.3	.65	.49	36	1.5	58	1.2
13 A1018 50 ksi	29000	11154	.3	.65	.49	50	1.5	65	1.2

Hot Rolled Steel Section Sets

Label	Shape	Type	Design List	Material	Design Ru...	A [in ²]	Iyy [in ⁴]	Izz [in ⁴]	J [in ⁴]
1 6.5"x0.37" Plate	PL6.5x0.375	Beam	None	A1011 36 ksi	Typical	2.438	.029	8.582	.11
2 6"x0.37" Plate	Plate 6x.37	Beam	None	A1011 36 ksi	Typical	2.22	.025	6.66	.097
3 L 2"x2"x1/4"	L2x2x4	Beam	None	A529 Gr. 50	Typical	.944	.346	.346	.021
4 Face Pipes(3.5x.16)	Pipe3.5x0.165	Beam	None	A500 GR.C	Typical	1.729	2.409	2.409	4.819
5 Antenna Pipes	Pipe 2.875x0...	Beam	None	A500 GR.C	Typical	1.039	.987	.987	1.975
6 Channel(3.38x2.06)	C3.38x2.06x0...	Beam	None	A1011 36 ksi	Typical	1.75	.715	3.026	.034
7 Square Tubing	HSS4X4X6	Beam	None	A500 GR.C	Typical	4.78	10.3	10.3	17.5
8 Handrail Connector	L6.6x4.46x0.25	Beam	None	A1011 36 ksi	Typical	2.703	4.759	12.473	.055
9 Handrail	PIPE_2.0	Beam	None	A500 GR.C	Typical	1.02	.627	.627	1.25

Hot Rolled Steel Design Parameters

Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu...	Kyy	Kzz	Cb	Function
1 M3	L 2"x2"x1/4"	27.295			Lbyy						Lateral
2 M4	L 2"x2"x1/4"	27.295			Lbyy						Lateral
3 M5	6.5"x0.37" P...	42			Lbyy						Lateral
4 M7	Square Tubi...	49.75			Lbyy						Lateral
5 M8	L 2"x2"x1/4"	27.295			Lbyy						Lateral
6 M9	L 2"x2"x1/4"	27.295			Lbyy						Lateral
7 M10	6.5"x0.37" P...	42			Lbyy						Lateral
8 M13	L 2"x2"x1/4"	27.295			Lbyy						Lateral
9 M14	L 2"x2"x1/4"	27.295			Lbyy						Lateral
10 M15	6.5"x0.37" P...	42			Lbyy						Lateral
11 M18	Face Pipes(...	96			Lbyy						Lateral
12 MP9	Antenna Pip...	96			Lbyy						Lateral
13 MP7	Antenna Pip...	96			Lbyy						Lateral
14 M25	Handrail	96			Lbyy						Lateral
15 M28	Handrail Co...	42			Lbyy						Lateral
16 M29	Handrail Co...	42			Lbyy						Lateral
17 M30	Handrail Co...	42			Lbyy						Lateral
18 M61A	Channel(3.3...	33			Lbyy						Lateral
19 M63A	Channel(3.3...	33			Lbyy						Lateral
20 M60A	Channel(3.3...	33			Lbyy						Lateral
21 M61B	Channel(3.3...	33			Lbyy						Lateral
22 M62A	Channel(3.3...	33			Lbyy						Lateral
23 M63B	Channel(3.3...	33			Lbyy						Lateral
24 M75	PL 2.375x0.5	1.5									Lateral
25 MP8	Antenna Pip...	96			Lbyy						Lateral

Hot Rolled Steel Design Parameters (Continued)

Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu...	Kyy	Kzz	Cb	Function
26	M48	Face Pipes(...)	96		Lbyy						Lateral
27	MP3	Antenna Pip...	96		Lbyy						Lateral
28	MP1	Antenna Pip...	96		Lbyy						Lateral
29	M51	Handrail	96		Lbyy						Lateral
30	M62	Face Pipes(...)	96		Lbyy						Lateral
31	MP6	Antenna Pip...	96		Lbyy						Lateral
32	MP4	Antenna Pip...	96		Lbyy						Lateral
33	M65A	Handrail	96		Lbyy						Lateral
34	MP2	Antenna Pip...	96		Lbyy						Lateral
35	MP5	Antenna Pip...	96		Lbyy						Lateral
36	M92A	Square Tubi...	49.75		Lbyy						Lateral
37	M93A	Square Tubi...	49.75		Lbyy						Lateral

Basic Load Cases

BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed Area(Me...	Surface(...
1 Dead	DL			-1	13			
2 Dead of Ice	RL				13		37	
4 Structure Wind (0)	None						74	
5 Structure Wind (30)	None						74	
6 Structure Wind (45)	None						74	
7 Structure Wind (60)	None						74	
8 Structure Wind (90)	None						74	
9 Structure Wind (120)	None						74	
10 Structure Wind (135)	None						74	
11 Structure Wind (150)	None						74	
12 Structure Wind w/ Ice (0)	None						74	
13 Structure Wind w/ Ice (30)	None						74	
14 Structure Wind w/ Ice (45)	None						74	
15 Structure Wind w/ Ice (60)	None						74	
16 Structure Wind w/ Ice (90)	None						74	
17 Structure Wind w/ Ice (120)	None						74	
18 Structure Wind w/ Ice (135)	None						74	
19 Structure Wind w/ Ice (150)	None						74	
20 Antenna Wind (0)	None				26			
21 Antenna Wind (30)	None				26			
22 Antenna Wind (45)	None				26			
23 Antenna Wind (60)	None				26			
24 Antenna Wind (90)	None				26			
25 Antenna Wind (120)	None				26			
26 Antenna Wind (135)	None				26			
27 Antenna Wind (150)	None				26			
28 Antenna Wind w/ Ice (0)	None				26			
29 Antenna Wind w/ Ice (30)	None				26			
30 Antenna Wind w/ Ice (45)	None				26			
31 Antenna Wind w/ Ice (60)	None				26			
32 Antenna Wind w/ Ice (90)	None				26			
33 Antenna Wind w/ Ice (120)	None				26			
34 Antenna Wind w/ Ice (135)	None				26			
35 Antenna Wind w/ Ice (150)	None				26			
36 Maintenance Live Lm (1)	OL1				1			
37 Maintenance Live Lm (2)	OL2				1			
38 Maintenance Live Lm (3)	OL3				1			
41 Maintenance Live Lv (1)	OL6					1		
42 Maintenance Live Lv (2)	OL7					1		
43 Maintenance Live Lv (3)	OL8					1		

Company : Kimley-Horn and Associates, Inc.
Designer : EJZ
Job Number : 019558056
Model Name : 845455

Sept 9, 2021
8:47 AM
Checked By: ZAM

Load Combinations

	Description	Solve	P...	S...	BLCFac..										
1	Summary: 1.0D + 1...	Yes	Y		DL	1	20	1							
2	1.4D	Yes	Y		DL	1.4									
3	1.2D + 1.0W(0)	Yes	Y		DL	1.2	4	1	20	1					
4	1.2D + 1.0W(30)	Yes	Y		DL	1.2	5	1	21	1					
5	1.2D + 1.0W(45)	Yes	Y		DL	1.2	6	1	22	1					
6	1.2D + 1.0W(60)	Yes	Y		DL	1.2	7	1	23	1					
7	1.2D + 1.0W(90)	Yes	Y		DL	1.2	8	1	24	1					
8	1.2D + 1.0W(120)	Yes	Y		DL	1.2	9	1	25	1					
9	1.2D + 1.0W(135)	Yes	Y		DL	1.2	10	1	26	1					
10	1.2D + 1.0W(150)	Yes	Y		DL	1.2	11	1	27	1					
11	1.2D + 1.0W(180)	Yes	Y		DL	1.2	4	-1	20	-1					
12	1.2D + 1.0W(210)	Yes	Y		DL	1.2	5	-1	21	-1					
13	1.2D + 1.0W(225)	Yes	Y		DL	1.2	6	-1	22	-1					
14	1.2D + 1.0W(240)	Yes	Y		DL	1.2	7	-1	23	-1					
15	1.2D + 1.0W(270)	Yes	Y		DL	1.2	8	-1	24	-1					
16	1.2D + 1.0W(300)	Yes	Y		DL	1.2	9	-1	25	-1					
17	1.2D + 1.0W(315)	Yes	Y		DL	1.2	10	-1	26	-1					
18	1.2D + 1.0W(330)	Yes	Y		DL	1.2	11	-1	27	-1					
19	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	12	1	28	1			
20	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	13	1	29	1			
21	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	14	1	30	1			
22	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	15	1	31	1			
23	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	16	1	32	1			
24	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	17	1	33	1			
25	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	18	1	34	1			
26	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	19	1	35	1			
27	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	12	-1	28	-1			
28	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	13	-1	39	-1			
29	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	14	-1	30	-1			
30	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	15	-1	31	-1			
31	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	16	-1	32	-1			
32	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	17	-1	33	-1			
33	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	18	-1	34	-1			
34	1.2D + 1.0Di + 1.0...	Yes	Y		DL	1.2	RL	1	19	-1	35	-1			
35	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	4	.061	20	.061	OL1	1.5			
36	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	5	.061	21	.061	OL1	1.5			
37	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	6	.061	22	.061	OL1	1.5			
38	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	7	.061	23	.061	OL1	1.5			
39	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	8	.061	24	.061	OL1	1.5			
40	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	9	.061	25	.061	OL1	1.5			
41	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	10	.061	26	.061	OL1	1.5			
42	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	11	.061	27	.061	OL1	1.5			
43	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	4	-.061	20	-.061	OL1	1.5			
44	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	5	-.061	21	-.061	OL1	1.5			
45	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	6	-.061	22	-.061	OL1	1.5			
46	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	7	-.061	23	-.061	OL1	1.5			
47	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	8	-.061	24	-.061	OL1	1.5			
48	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	9	-.061	25	-.061	OL1	1.5			
49	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	10	-.061	26	-.061	OL1	1.5			
50	1.2D + 1.5Lm(1) + ...	Yes	Y		DL	1.2	11	-.061	27	-.061	OL1	1.5			
51	1.2D + 1.5Lm(2) + ...	Yes	Y		DL	1.2	4	.061	20	.061	OL2	1.5			
52	1.2D + 1.5Lm(2) + ...	Yes	Y		DL	1.2	5	.061	21	.061	OL2	1.5			
53	1.2D + 1.5Lm(2) + ...	Yes	Y		DL	1.2	6	.061	22	.061	OL2	1.5			
54	1.2D + 1.5Lm(2) + ...	Yes	Y		DL	1.2	7	.061	23	.061	OL2	1.5			
55	1.2D + 1.5Lm(2) + ...	Yes	Y		DL	1.2	8	.061	24	.061	OL2	1.5			
56	1.2D + 1.5Lm(2) + ...	Yes	Y		DL	1.2	9	.061	25	.061	OL2	1.5			

Load Combinations (Continued)

	Description	Solve	P...	S...	BLCFac..										
57	1.2D + 1.5Lm(2) + ...	Yes	Y		DL 1.2	10 .061	26 .061	OL2 1.5							
58	1.2D + 1.5Lm(2) + ...	Yes	Y		DL 1.2	11 .061	27 .061	OL2 1.5							
59	1.2D + 1.5Lm(2) + ...	Yes	Y		DL 1.2	4 -.061	20 -.061	OL2 1.5							
60	1.2D + 1.5Lm(2) + ...	Yes	Y		DL 1.2	5 -.061	21 -.061	OL2 1.5							
61	1.2D + 1.5Lm(2) + ...	Yes	Y		DL 1.2	6 -.061	22 -.061	OL2 1.5							
62	1.2D + 1.5Lm(2) + ...	Yes	Y		DL 1.2	7 -.061	23 -.061	OL2 1.5							
63	1.2D + 1.5Lm(2) + ...	Yes	Y		DL 1.2	8 -.061	24 -.061	OL2 1.5							
64	1.2D + 1.5Lm(2) + ...	Yes	Y		DL 1.2	9 -.061	25 -.061	OL2 1.5							
65	1.2D + 1.5Lm(2) + ...	Yes	Y		DL 1.2	10 -.061	26 -.061	OL2 1.5							
66	1.2D + 1.5Lm(2) + ...	Yes	Y		DL 1.2	11 -.061	27 -.061	OL2 1.5							
67	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	4 .061	20 .061	OL3 1.5							
68	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	5 .061	21 .061	OL3 1.5							
69	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	6 .061	22 .061	OL3 1.5							
70	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	7 .061	23 .061	OL3 1.5							
71	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	8 .061	24 .061	OL3 1.5							
72	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	9 .061	25 .061	OL3 1.5							
73	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	10 .061	26 .061	OL3 1.5							
74	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	11 .061	27 .061	OL3 1.5							
75	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	4 -.061	20 -.061	OL3 1.5							
76	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	5 -.061	21 -.061	OL3 1.5							
77	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	6 -.061	22 -.061	OL3 1.5							
78	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	7 -.061	23 -.061	OL3 1.5							
79	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	8 -.061	24 -.061	OL3 1.5							
80	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	9 -.061	25 -.061	OL3 1.5							
81	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	10 -.061	26 -.061	OL3 1.5							
82	1.2D + 1.5Lm(3) + ...	Yes	Y		DL 1.2	11 -.061	27 -.061	OL3 1.5							
83	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	4 .061	20 .061	OL6 1.5							
84	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	5 .061	21 .061	OL6 1.5							
85	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	6 .061	22 .061	OL6 1.5							
86	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	7 .061	23 .061	OL6 1.5							
87	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	8 .061	24 .061	OL6 1.5							
88	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	9 .061	25 .061	OL6 1.5							
89	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	10 .061	26 .061	OL6 1.5							
90	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	11 .061	27 .061	OL6 1.5							
91	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	4 -.061	20 -.061	OL6 1.5							
92	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	5 -.061	21 -.061	OL6 1.5							
93	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	6 -.061	22 -.061	OL6 1.5							
94	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	7 -.061	23 -.061	OL6 1.5							
95	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	8 -.061	24 -.061	OL6 1.5							
96	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	9 -.061	25 -.061	OL6 1.5							
97	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	10 -.061	26 -.061	OL6 1.5							
98	1.2D + 1.5Lv(1) + 1...	Yes	Y		DL 1.2	11 -.061	27 -.061	OL6 1.5							
99	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	4 .061	20 .061	OL7 1.5							
100	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	5 .061	21 .061	OL7 1.5							
101	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	6 .061	22 .061	OL7 1.5							
102	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	7 .061	23 .061	OL7 1.5							
103	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	8 .061	24 .061	OL7 1.5							
104	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	9 .061	25 .061	OL7 1.5							
105	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	10 .061	26 .061	OL7 1.5							
106	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	11 .061	27 .061	OL7 1.5							
107	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	4 -.061	20 -.061	OL7 1.5							
108	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	5 -.061	21 -.061	OL7 1.5							
109	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	6 -.061	22 -.061	OL7 1.5							
110	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	7 -.061	23 -.061	OL7 1.5							
111	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	8 -.061	24 -.061	OL7 1.5							
112	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	9 -.061	25 -.061	OL7 1.5							
113	1.2D + 1.5Lv(2) + 1...	Yes	Y		DL 1.2	10 -.061	26 -.061	OL7 1.5							

Load Combinations (Continued)

Description		Solve	P...	S...	BLCFac..									
114	1.2D + 1.5Lv(2) + 1..	Yes	Y	DL	1.2	11	-.061	27	-.061	OL7	1.5			
115	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	4	.061	20	.061	OL8	1.5			
116	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	5	.061	21	.061	OL8	1.5			
117	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	6	.061	22	.061	OL8	1.5			
118	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	7	.061	23	.061	OL8	1.5			
119	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	8	.061	24	.061	OL8	1.5			
120	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	9	.061	25	.061	OL8	1.5			
121	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	10	.061	26	.061	OL8	1.5			
122	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	11	.061	27	.061	OL8	1.5			
123	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	4	-.061	20	-.061	OL8	1.5			
124	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	5	-.061	21	-.061	OL8	1.5			
125	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	6	-.061	22	-.061	OL8	1.5			
126	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	7	-.061	23	-.061	OL8	1.5			
127	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	8	-.061	24	-.061	OL8	1.5			
128	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	9	-.061	25	-.061	OL8	1.5			
129	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	10	-.061	26	-.061	OL8	1.5			
130	1.2D + 1.5Lv(3) + 1..	Yes	Y	DL	1.2	11	-.061	27	-.061	OL8	1.5			

Envelope Joint Reactions

Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	P13	max	747.449	3	1403.532	15	1878.475	19	.381	126	4.972	19	2.214
2		min	-753.255	11	-1406.97	7	310.637	11	-.364	86	.305	11	-2.194
3	N176A	max	1203.437	3	872.082	16	1832.427	30	-.258	6	-.158	6	2.195
4		min	-1203.488	11	-874.886	8	297.394	6	-4.346	30	-3.163	78	-2.206
5	N178	max	1159.449	3	863.133	14	1733.993	24	4.047	24	-.111	16	2.087
6		min	-1153.591	11	-856.862	6	269.689	16	.208	16	-3.101	40	-2.096
7	Totals:	max	3110.335	3	3077.312	15	5192.419	26					
8		min	-3110.334	11	-3077.31	7	1639.579	1					

Envelope AISC 14th(360-10): LRFD Steel Code Checks

Member	Shape	Code	Che...	Loc[in]	LC	Shear Check	Loc[in]	Dir	LC	phi*Pnc	[...]	phi*Pnt	[...]	phi*Mn y...	phi*Mn z...	Cb	Eqn
1	M62A	C3.38x2.06x..	.306	0	29	.050	28.137	y	21	47760.074	56700	2.203	5.752	1...	H1-1b		
2	M61B	C3.38x2.06x..	.304	0	19	.052	28.137	y	27	47760.074	56700	2.203	5.752	1...	H1-1b		
3	M63B	C3.38x2.06x..	.301	0	30	.053	28.137	y	22	47760.074	56700	2.203	5.752	1...	H1-1b		
4	M60A	C3.38x2.06x..	.298	0	27	.051	28.137	y	27	47760.074	56700	2.203	5.752	1...	H1-1b		
5	M61A	C3.38x2.06x..	.295	0	24	.050	28.137	y	32	47760.074	56700	2.203	5.752	1...	H1-1b		
6	M63A	C3.38x2.06x..	.294	0	25	.053	28.137	y	33	47760.074	56700	2.203	5.752	1...	H1-1b		
7	M92A	HSS4X4X6	.245	49.75	27	.084	49.75	y	79	183177....	197892	22.046	22.046	2.2	H1-1b		
8	M7	HSS4X4X6	.243	49.75	22	.039	49.75	y	32	183177....	197892	22.046	22.046	2...	H1-1b		
9	M93A	HSS4X4X6	.227	49.75	22	.083	49.75	y	39	183177....	197892	22.046	22.046	2...	H1-1b		
10	MP8	Pipe 2.875x...	.189	42.442	4	.061	63.158		1222398.07342998.495		3.144	3.144	1...	H1-1b			
11	M75	PL 2.375x0.5	.184	1.5	11	.260	0	y	22	38256.871	38475	.401	1.904	2...	H1-1b		
12	MP2	Pipe 2.875x...	.184	42.442	7	.060	63.158		1522398.07342998.495		3.144	3.144	1...	H1-1b			
13	M15	PL6.5x0.375	.179	21	13	.099	5.968	y	67	3658.14	78975	.617	7.657	1...	H1-1b		
14	M10	PL6.5x0.375	.178	21	3	.080	36.032	y	14	3658.14	78975	.617	7.45	1...	H1-1b		
15	MP5	Pipe 2.875x...	.175	42.442	10	.061	42.442		1822398.07342998.495		3.144	3.144	2...	H1-1b			
16	M5	PL6.5x0.375	.170	21	8	.097	36.032	y	35	3658.14	78975	.617	7.45	1...	H1-1b		
17	M8	L2x2x4	.160	0	3	.017	0	y	27	29527.563	42480	.96	2.19	2...	H2-1		
18	M14	L2x2x4	.159	0	13	.017	0	z	21	29527.562	42480	.96	2.19	2...	H2-1		
19	M4	L2x2x4	.153	0	8	.016	0	z	32	29527.563	42480	.96	2.19	2...	H2-1		
20	M3	L2x2x4	.148	0	17	.017	0	y	33	29527.562	42480	.96	2.19	2...	H2-1		
21	M13	L2x2x4	.145	0	7	.017	0	y	23	29527.563	42480	.96	2.19	2...	H2-1		
22	M9	L2x2x4	.142	0	11	.017	0	z	27	29527.563	42480	.96	2.19	2...	H2-1		
23	MP4	Pipe 2.875x...	.123	42.442	10	.051	42.442		1222398.07342998.495		3.144	3.144	1...	H1-1b			

Envelope AISC 14th(360-10): LRFD Steel Code Checks (Continued)

Member	Shape	Code	Ch.	Loc	in	LC	Shear	Check	Loc	in	Dir	LC	phi*Pnc	[...]	phi*Mn y...	phi*Mn z...	Cb	Egn
24	MP3	Pipe 2.875x...	.123	42.442	7		.053		42.442		4	22398.07342998.495		3.144	3.144	2...	H1-1b	
25	MP6	Pipe 2.875x...	.119	42.442	18		.051		42.442		15	22398.07342998.495		3.144	3.144	1...	H1-1b	
26	MP7	Pipe 2.875x...	.119	42.442	4		.054		42.442		7	22398.07342998.495		3.144	3.144	2...	H1-1b	
27	MP9	Pipe 2.875x...	.113	42.442	12		.054		42.442		10	22398.07342998.495		3.144	3.144	2...	H1-1b	
28	MP1	Pipe 2.875x...	.113	42.442	15		.053		42.442		18	22398.07342998.495		3.144	3.144	1...	H1-1b	
29	M48	Pipe3.5x0.165	.106	48	63		.037		48		16	45873.009	71580.6	6.338	6.338	1...	H1-1b	
30	M51	PIPE 2.0	.105	89.937	7		.038		90.442		14	15369.683	42228	2.46	2.46	1...	H1-1b	
31	M65A	PIPE 2.0	.102	6.063	10		.040		90.442		9	15369.683	42228	2.46	2.46	1...	H1-1b	
32	M25	PIPE 2.0	.101	6.063	4		.036		5.558		13	15369.683	42228	2.46	2.46	1...	H1-1b	
33	M62	Pipe3.5x0.165	.094	64.674	8		.041		48		17	45873.009	71580.6	6.338	6.338	1...	H1-1b	
34	M18	Pipe3.5x0.165	.093	31.326	14		.035		64.168		30	45873.009	71580.6	6.338	6.338	1...	H1-1b	
35	M29	L6.6x4.46x0...	.086	41.779	18		.009		.221	z	4	50616.195	87561	2.465	7.125	1...	H2-1	
36	M28	L6.6x4.46x0...	.083	.221	10		.010		0	z	7	50616.195	87561	2.465	7.125	1...	H2-1	
37	M30	L6.6x4.46x0...	.077	41.779	7		.010		0	z	10	50616.195	87561	2.465	7.125	1...	H2-1	

APPENDIX D
ADDITIONAL CALCULATIONS

Square/Rectangular Flange Connection

TIA-222-H

Kimley»Horn

Site Number	845455
Job number	019558056
Code	TIA-222-H

Member/Node Under Consideration	M92A
Controlling Load Combination	27

Normalize usages per TIA-222-H, Sec. 15.5

REACTIONS	
Moment, M_u (kip-ft)	5.026
Axial, P_u (kips) - Negative for tension	0.669
Shear, V_u (kips)	1.832

About Y

BOLT CONFIGURATION	
Bolt Quantity, n_b	4
Bolt Diameter, d_b (in)	0.625
Bolt Grade	A325
Width between bolts, s (in)	7.00

BOLT USAGE	
Maximum Tension in Bolt, T_u (kip)	5.925
Nominal Tensile Strength, ϕR_{nt} (kip)	20.340
Tensile Usage (Section 4.9.6.1)	29%

PLATE CONFIGURATION	
Plate Grade	A36
Thickness of plate, t (in)	0.750
Width of plate, w (in)	9.00

PLATE USAGE	
Ultimate flexural load in plate, M_u (kip-in)	9.301
Factored flexural capacity, ϕM_{n} (kip-in)	20.470
Flexural Usage	45%

SUPPORT ARM CONFIGURATION	
Member Shape	Square
Member Grade	A500-46
Thickness of Member, t (in)	0.250
Width of member, w (in)	4.000

SUPPORT ARM USAGE	
Ultimate flexural load in member, M_u (kip-ft)	5.026
Factored flexural capacity, ϕM_{n} (kip-ft)	18.220
Flexural Usage	28%

Stiffeners present?

APPENDIX E
SUPPLEMENTAL DRAWINGS

PATENT PENDING

COMMSCOPE, INC. OF NORTH CAROLINA

SAP MATERIAL MASTER

MC-PK8-DSH

INITIAL RELEASE
HD41
03/08/2021

LOW PROFILE PLATFORM FACE

MC-PK8-DSH

REVISIONS

DATE

03/08/2021

NOTES:

1.0 GENERAL
1.1 ALL METRIC DIMENSIONS ARE IN BRACKETS

2.0 DESIGN NOTES
2.1 TORQUE U-BOLTS TO 44 FT-LBS

3.0 MANUFACTURING/SPECIAL REQUIREMENTS

4.0 TEST

5.0 PACKAGING

D

C

B

A

D

C

B

A

1

2

3

4

2

3

5

6

D

C

B

A

1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

ITEM	PART NO.	DESCRIPTION	QTY.
1	MC-RM1550-3	12" - 50" OD RINGMOUNT	1
2	MT300602	SECTOR WELDMENT FOR SNUB NOSE PLATFORM	3
3	MT195601	Corner Weldment Snub Nose Handrail	3
4	GB-0520A	5/8" X 2" GALV BOLT KIT (A325)	12
5	MT54796	3.50" OD X 9" GALV PIPE	3
6	MT546120	2.875" O.D. X 120" PIPE	3
7	GWF-04	1/2" GALV FLAT WASHER	12
8	GUB-4355	1/2" X 3-5/8" X 5" GALV U-BOLT	12
9	MT300618	Mounting Plate for MT-196	6
10	GB-042205	1/2" X 2" GALV BOLT KIT	12
11	MT-219MH	3.5" OD X 2-7/8" OD Clamp Bracket Assembly	9
12	GUB-4352	1/2" X 3" X 5-1/4" GALV U-BOLT	12
13	MT54696	2.875" O.D. X 96" PIPE	9
14	XP-25225	Crossover Plate Kit, 2-7/8 OD X 2-7/8 OD	9

SIZE	SCALE	DOCUMENT NO.	DRAWING		
C	1:32	MC-PK8-DSH	VERSION	STATUS	REVISION
			00	AD	A

© 2021 CommScope, Inc.

NOTES:

D

C

B

A

WITH ANTENNAS

DETAIL A
SCALE 1:4

DETAIL B
SCALE 1:4

DETAIL C
SCALE 1:4

DETAIL D
SCALE 1:4

COMMSCOPE, INC. OF NORTH CAROLINA

LOW PROFILE PLATFORM FACE

TITLE

MC-PK8-DSH

DRAWING

SIZE C SCALE 1:24 DOCUMENT NO. MC-PK8-DSH

VERSION 00 STATUS AD REVISION A

SHEET 3 OF 3

© 2021 CommScope, Inc.

1

2

3

4

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00159A

845455
85 Quaker Farms Road
Oxford, Connecticut 06478

November 19, 2021

EBI Project Number: 6221007196

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE% of FCC general population allowable limit:	22.99%

November 19, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00159A - 845455

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at **85 Quaker Farms Road in Oxford, Connecticut** for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu\text{W}/\text{cm}^2$). The number of $\mu\text{W}/\text{cm}^2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) – (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu\text{W}/\text{cm}^2$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 $\mu\text{W}/\text{cm}^2$ and 467 $\mu\text{W}/\text{cm}^2$, respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 $\mu\text{W}/\text{cm}^2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 85 Quaker Farms Road in Oxford, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) 4 n66 channels (AWS Band - 2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 5) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative

estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 6) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz / 2190 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antenna mounting height centerline of the proposed antennas is 111 feet above ground level (AGL).
- 8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 9) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665-20	Make / Model:	JMA MX08FRO665-20	Make / Model:	JMA MX08FRO665-20
Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz	Frequency Bands:	600 MHz / 1900 MHz / 2190 MHz
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd
Height (AGL):	111 feet	Height (AGL):	111 feet	Height (AGL):	111 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.31	ERP (W):	5,236.31	ERP (W):	5,236.31
Antenna A1 MPE %:	2.15%	Antenna B1 MPE %:	2.15%	Antenna C1 MPE %:	2.15%

Site Composite MPE %	
Carrier	MPE %
Dish Wireless (Max at Sector A):	2.15%
AT&T	3.6%
T-Mobile	14.13%
Verizon	3.11%
Site Total MPE % :	22.99%

Dish Wireless MPE % Per Sector	
Dish Wireless Sector A Total:	2.15%
Dish Wireless Sector B Total:	2.15%
Dish Wireless Sector C Total:	2.15%
Site Total MPE % :	22.99%

Dish Wireless Maximum MPE Power Values (Sector A)

Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu\text{W}/\text{cm}^2$)	Frequency (MHz)	Allowable MPE ($\mu\text{W}/\text{cm}^2$)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	111.0	2.92	600 MHz n71	400	0.73%
Dish Wireless 1900 MHz n70	4	542.70	111.0	7.08	1900 MHz n70	1000	0.71%
Dish Wireless 2190 MHz n66	4	542.70	111.0	7.08	2190 MHz n66	1000	0.71%
							Total: 2.15%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	2.15%
Sector B:	2.15%
Sector C:	2.15%
Dish Wireless Maximum MPE % (Sector A):	2.15%
Site Total:	22.99%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **22.99%** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320
West Henrietta, NY 14586

Phone: (585) 445-5896
Fax: (724) 416-4461
www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

Re: Tower Share Application
Crown Castle telecommunications site at:
85 QUAKER FARMS ROAD, OXFORD, CT 06478

CCATT LLC ("Crown Castle") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: **845455/OXFORD-QUAKER FARMS**
Customer Site ID: **BOHVN00159A/CT-CCI-T-845455**
Site Address: **85 QUAKER FARMS ROAD, OXFORD, CT 06478**

Crown Castle

By: Date: 3/14/2022

Richard Zajac
Site Acquisition Specialist

Exhibit H

Recipient Mailings

—X— *Cut on dotted line.*

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

USPS TRACKING #

9405 5036 9930 0196 0433 61

Electronic Rate Approved #038555749

Click-N-Ship® Label Record

USPS TRACKING # :
9405 5036 9930 0196 0433 61

Trans. #: 559091540
 Print Date: 03/17/2022
 Ship Date: 03/17/2022
 Expected Delivery Date: 03/21/2022

Priority Mail® Postage: **\$8.95**
 Total: **\$8.95**

From: DEBORAH CHASE
 NORTHEAST SITE SOLUTIONS
 420 MAIN ST
 STE 1
 STURBRIDGE MA 01566-1359
Ref#: DS-845455

To: RICH ZAJAC
 CROWN CASTLE
 4545 E RIVER RD
 STE 320
 W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Thank you for shipping with the United States Postal Service!

Check the status of your shipment on the USPS Tracking® page at usps.com

Cut on dotted line.

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #:
9405 5036 9930 0196 0433 85

Trans. #: 559091540
Print Date: 03/17/2022
Ship Date: 03/17/2022
Expected Delivery Date: 03/21/2022

Priority Mail® Postage: **\$8.95**
Total: **\$8.95**

From: DEBORAH CHASE
NORTHEAST SITE SOLUTIONS
420 MAIN ST
STE 1
STURBRIDGE MA 01566-1359

To: GEORGE TEMPLE
486 OXFORD RD
OXFORD CT 06478-1298

Ref#: DS-845455

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Thank you for shipping with the United States Postal Service!

Check the status of your shipment on the USPS Tracking® page at usps.com

Electronic Rate Approved #0385555749

9405 5036 9930 0196 0433 85

—X— *Cut on dotted line.*

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #:
9405 5036 9930 0196 0434 08

Trans. #:	559091540	Priority Mail® Postage:	\$8.95
Print Date:	03/17/2022	Total:	\$8.95
Ship Date:	03/17/2022		
Expected			
Delivery Date:	03/21/2022		

From:	DEBORAH CHASE NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 STURBRIDGE MA 01566-1359	Ref#: DS-845455
To:	STEVEN S MACARY ZONING ENFORCEMENT OFFICER 486 OXFORD RD OXFORD CT 06478-1298	

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Thank you for shipping with the United States Postal Service!

Check the status of your shipment on the USPS Tracking® page at usps.com

Electronic Rate Approved #038555749

9405 5036 9930 0196 0434 08

—X— *Cut on dotted line.*

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #:
9405 5036 9930 0196 0434 46

Trans. #:	559091540	Priority Mail® Postage:	\$8.95
Print Date:	03/17/2022	Total:	\$8.95
Ship Date:	03/17/2022		
Expected			
Delivery Date:	03/21/2022		

From:	DEBORAH CHASE NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 STURBRIDGE MA 01566-1359	Ref#: DS-845455
To:	WILLIAM AND ELAINE SCHIAVI 85 QUAKER FARMS RD OXFORD CT 06478-1706	

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Thank you for shipping with the United States Postal Service!

Check the status of your shipment on the USPS Tracking® page at usps.com

Electronic Rate Approved #038555749

9405 5036 9930 0196 0434 46

UNITED STATES
POSTAL SERVICE.

FARMINGTON
210 MAIN ST
FARMINGTON, CT 06032-9998
(800)275-8777

03/18/2022 03:19 PM

Product	Qty	Unit Price	Price
---------	-----	------------	-------

Prepaid Mail 1 \$0.00
 Oxford, CT 06478
 Weight: 0 lb 7.90 oz
 Acceptance Date:
 Fri 03/18/2022
 Tracking #:
 9405 5036 9930 0196 0433 85

Prepaid Mail 1 \$0.00
 Oxford, CT 06478
 Weight: 0 lb 7.90 oz
 Acceptance Date:
 Fri 03/18/2022
 Tracking #:
 9405 5036 9930 0196 0434 08

Prepaid Mail 1 \$0.00
 Oxford, CT 06478
 Weight: 0 lb 7.90 oz
 Acceptance Date:
 Fri 03/18/2022
 Tracking #:
 9405 5036 9930 0196 0434 46

Grand Total: \$0.00

 Every household in the U.S. is now
 eligible to receive a second set
 of 4 free test kits.
 Go to www.covidtests.gov

Preview your Mail
 Track your Packages
 Sign up for FREE @
<https://informeddelivery.usps.com>

All sales final on stamps and postage.
 Refunds for guaranteed services only.
 Thank you for your business.

Tell us about your experience.
 Go to: <https://postalexperience.com/Pos>
 or scan this code with your mobile device,

or call 1-800-410-7420.

845455 Crown Dush

FARMINGTON
210 MAIN ST
FARMINGTON, CT 06032-9998
(800)275-8777

03/18/2022 03:18 PM

Product	Qty	Unit Price	Price
---------	-----	------------	-------

Prepaid Mail 1 \$0.00
 West Henrietta, NY 14586
 Weight: 0 lb 1.90 oz
 Acceptance Date:
 Fri 03/18/2022
 Tracking #:
 9405 5036 9930 0196 0433 61

Grand Total: \$0.00

 Every household in the U.S. is now
 eligible to receive a second set
 of 4 free test kits.
 Go to www.covidtests.gov

Preview your Mail
 Track your Packages
 Sign up for FREE @
<https://informeddelivery.usps.com>

All sales final on stamps and postage.
 Refunds for guaranteed services only.
 Thank you for your business.

Tell us about your experience.
 Go to: <https://postalexperience.com/Pos>
 or scan this code with your mobile device,

or call 1-800-410-7420.

UFN: 082618-0132
 Receipt #: 840-50600020-1-4538585-1
 Clerk: 9