November 23rd, 2020
Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile:
 881541 - T-Mobile Site ID: CT11083Q
 700 Grassy Hill Road, Orange, CT 06477

Dear Ms. Bachman:
T-Mobile currently maintains nine (9) total antennas at the 110 -foot mount on the existing 140foot Monopole Tower, located at 700 Grassy Hill Road, Orange, CT. The tower is owned by Crown Castle and the property is owned by the Town of Orange. T-Mobile now intends to replace three (3) existing antennas with three (3) new $600 / 700 \mathrm{MHz}$ antennas. T-Mobile is also proposing tower mount modifications as shown on the enclosed mount analysis.

Planned Modifications:
Tower:
Remove and Replace:
(3) LNX 6516DS-A1M Antenna (REMOVE) - (3) RFS-APXVAARR24_43-U-NA20 Antenna 600/700 MHz (REPLACE)
(3) RRUS11 B12 (REMOVE) - (3) Radio 4449 B71/B12 (REPLACE)

Install New:
(3) $15 / 8 "$ Hybrid Fiber Line

Existing to Remain:
(7) $15 / 8$ " Coax
(3) AIR21 KRC118023-1_B2P_B4A Antenna 1900/2100 MHz
(3) TMA

Ground:
Upgrade: Internal upgrade to existing ground cabinet.

Page 2

The facility was approved by the Connecticut Siting Council in Docket No. 262 on January 12,2004 . This approval included conditions which this proposed exempt modification complies with.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16$50 \mathrm{j}-73$, for construction that constitutes an exempt modification pursuant to R.C.S.A. § $16-50 \mathrm{j}-72(\mathrm{~b})(2)$. In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to James Zeoli, First Selectman, Town of Orange, as the municipality as well as the property owner, and the Zoning Administrator and Enforcement Officer, Jack Demirjian. Crown Castle is the tower owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Richard Zajac
Site Acquisition Specialist
4545 East River Road, Suite 320
Rochester, NY 14586
585-445-5896
richard.zajac@crowncastle.com
Attachments

Melanie A. Bachman

Page 3
cc:
James M. Zeoli, First Selectman
Town of Orange
Town Hall - Selectman's Office
617 Orange Center Road
Orange, CT 06477
203.891.4737

Jack Demirjian, ZEO
Town of Orange
Town Hall - Plan \& Zoning Dept.
617 Orange Center Road
Orange, CT 06477
203.891.4746

Crown Castle, Tower Owner

From:	$\underline{\text { Zajac, Richard }}$
To:	$\underline{\text { jzeoli@orange-ct.gov }}$
Subject:	Connecticut Siting Council exempt modification application notification
Date:	Monday, November 23, 2020 11:38:00 AM
Attachments:	Exempt Modification Application 700 Grassy Hill Rd.pdf.

Good morning Mr. Zeoli,
Please see the attached application to the Connecticut Siting Council regarding antenna work on the existing cell tower located at 700 Grassy Hill Road in Orange.

Should you have any questions/comments/concerns regarding this application, please do not hesitate to contact me.

Thank you,
RICH ZAJAC
Site Acquisition Specialist
T: (585) 445-5896 M: (607) 346-7212
F: (724) 416-4461
CROWN CASTLE
4545 East River Road, Suite 320
West Henrietta, NY 14586

From:	$\underline{\text { Zajac, Richard }}$
To:	"jdemirjian@orange-ct.gov"
Subject:	Connecticut Siting Council exempt modification application notification
Date:	Monday, November 23, 2020 11:42:00 AM
Attachments:	Exempt Modification Application 700 Grassy Hill Rd.pdf.

Good morning Mr. Demirjian,
Please see the attached application to the Connecticut Siting Council regarding antenna work on the existing cell tower located at 700 Grassy Hill Road in Orange.

Should you have any questions/comments/concerns regarding this application, please do not hesitate to contact me.

Thank you,
RICH ZAJAC
Site Acquisition Specialist
T: (585) 445-5896 M: (607) 346-7212
F: (724) 416-4461
CROWN CASTLE
4545 East River Road, Suite 320
West Henrietta, NY 14586

Exhibit A

Original Facility Approval

Connecticut Siting Council Decisions

\author{
DOCKET NO. 262 - Sprint Spectrum, L.P. d/b/a Sprint \} Connecticut
 PCS application for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance and operation of a wireless telecommunications facility at 707 Cranberry Lane or off of Grassy Hill Road, Orange, Connecticut.
 Siting Council
 January 12, 2004
 \section*{Decision and Order}

}

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a wireless telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes $\S 16-50 \mathrm{k}$, be issued to Sprint Spectrum, L.P. d/b/a Sprint PCS (Sprint) for the construction, maintenance and operation of a wireless telecommunications facility at Site C off of Grassy Hill Road, Orange, Connecticut. The Council denies certification of Site A located at 707 Cranberry Lane and Site B located off of Grassy Hill Road, Orange, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of Sprint and other entities, both public and private, but such tower shall not exceed a height of 140 feet above ground level, with a total overall height of 143 feet above ground level including appurtenances. Antennas to be installed on the tower shall be on a T-bar antenna platform or flush mounted.
2. The Certificate Holder shall prepare a D\&M Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D\&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include:
a) a final site plan(s) of site development to include specifications for the tower, tower location, tower foundation, antennas, equipment building, access road, provisions for underground utilities, utility line, and landscaping; and
b) construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended.
3. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power densities of all proposed entities'
antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall provide a recalculated report of electromagnetic radio frequency power density if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
5. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
6. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
7. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antenna becomes obsolete and ceases to function.
8. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in The New Haven Register, the Amity Observer and The Bulletin (Orange).

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant

Sprint Spectrum, L.P. d/b/a Sprint PCS

Intervenor

AT\&T Wireless PCS, LLC d/b/a AT\&T Wireless

Its Representative

Thomas J. Regan, Esquire
Brown Rudnick Berlack Israels LLP
CityPlace I, $38^{\text {th }}$ Floor
185 Asylum Street
Hartford, CT 06103-3402
Its Representative
Christopher B. Fisher, Esq.
Cuddy \& Feder LLP
90 Maple Avenue
White Plains, NY 10601

Intervenor

Cellco Partnership d/b/a Verison Wireless

Its Representative

Kenneth C. Baldwin, Esq.
Robinson \& Cole LLP
280 Trumbull Street
Hartford, CT 06103-3597

700 GRASSY HILL RD

Location	700 GRASSY HILL RD	Mblu	$60 / 6 / 1 \mathrm{~A} / /$
Acct\#	00182505	Owner	TOWN OF ORANGE
Assessment	$\$ 119,300$	Appraisal	$\$ 170,400$
PID 5703	Building Count	1	

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2017	\$13,500	\$156,900	\$170,400
Assessment			
Valuation Year	Improvements	Land	Total
2017	\$9,500	\$109,800	\$119,300

Owner of Record

Owner	TOWN OF ORANGE	Sale Price	$\$ 25,000$
Co-Owner		Certificate	
Address	617 ORANGE CENTER ROAD	Book \& Page	$520 / 156$
	ORANGE, CT 06477	Sale Date	$05 / 28 / 2004$
		Instrument	00

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Instrument	Sale Date
TOWN OF ORANGE	\$25,000		520/156	00	05/28/2004
SCHEN JULIA ROGERS \& SAYLOR ELLEN \&	\$0				

Building Information

Building 1 : Section 1

Year Built:	
Living Area:	0
Replacement Cost Less Depreciation:	$\$ 0$
	Building Attributes

Building Photo
Building Photo
(http://images.vgsi.com/photos/OrangeCTPhotos/^00101170/98.JPG)
Building Layout

	Field
Style	Description
Model	
Stories	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Floor 1	
Interior Floor 2	
Heat Fuel	
Heat Type	
AC Type	
Bedrooms	
Full Baths	
Half Baths	
Extra Fixtures	
Total Rooms	
Stacks	
Fireplace(s)	
Gasement Floor	
Attic	
Frame	
Traffic	

Building Layout
(http://images.vgsi.com/photos/OrangeCTPhotos//Sketches/5703_5703.jps

Building Sub-Areas (sq ft)	Legend
No Data for Building Sub-Areas	

Extra Features

Extra Features	Legend
No Data for Extra Features	

Land

Use Code	510 E	Size (Acres)	0.62
Description	Exempt Vac	Frontage	
Zone	RES	Depth	
Neighborhood	010	Assessed Value	$\$ 109,800$
Alt Land Appr	No	Appraised Value	$\$ 156,900$
Category			

Outbuildings

Outbuildings									Legend	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#				
SHD7	Cell Shed			240 UNITS	$\$ 13,500$					

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2019	\$13,500	\$156,900	\$170,400
2018	\$13,500	\$156,900	\$170,400
2017	\$13,500	\$156,900	\$170,400

Assessment					
	Valuation Year	Improvements	Land		
2019		$\$ 9,500$	$\$ 109,800$	Total	
2018		$\$ 9,500$	$\$ 109,800$		
2017	$\$ 9,500$	$\$ 109,800$	$\$ 119,300$		

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

Google Maps 700 Grassy Hill Rd

Imagery ©2020 Maxar Technologies, New York GIS, USDA Farm Service Agency, Map data ©2020 200 ft

700 Grassy Hill Rd

Orange, CT 06477
Building

Directions

Save

Nearby

Send to your phone

Exhibit C

Construction Drawings

T. "Mobile".

T-MOBILE SITE NUMBER: CT11083Q
 T-MOBILE SITE NAME: CT083/SPRINT/GRASSY HILL
 T-MOBILE PROJECT:

BUSINESS UNIT \#: SITE ADDRESS: COUNTY: SITE TYPE:
TOWER HEIGHT:

881541 700 GRASSY HLLL RD
ORANGE, CT 06477 NEW HAVEN MONOPOLE 140'-0"

SITE INFORMATION	
crown castle usa inc. Stit name:	rogers property
SITE ADDRESS:	700 GRASSY HILL RD
county:	new haven
MAP/PARCEL \#:	N/A
area of Construction:	Existing
Lattitude:	$41^{19177.75 "}$
longitude:	-730933.27"
Lat/Long type:	NAD83
ground elevation:	$87.0{ }^{\text {² }}$
Current zoning:	town of orange
jurisdiction:	Ct-Connecticut sitting council
occupancy classification:	U
tYpe of Construction:	IIB
a.d.a. Compliance:	FACILITY IS UNMANNED AND NOT FOR human habitation
PROPERTY OWNER:	$\begin{aligned} & \text { N/A } \\ & \text { N } / A \\ & N / A \end{aligned}$
Tower owner:	CROWN CASTLE 2000 CORPORATE DRIVE CANONSBURG, PA 15317
Carrier/Applicant:	T-MOBILE 12920 SE 38TH STREET bellevue, Wa 98006
Electric provider:	${ }_{800-722-5584}^{\text {UNITED }}$.
telco provider:	AT\&т Moblity NONE

PROJECT DESCRIPTION
 BROADBAND CONNECTVITY AND CAPA
EXISTING ELIGIBLE WTRELESS FACIITTY.
TOWER SCOPE OF WORK:

GROUND SCOPE OF WORK:

- REMOVE (1) DUS41
- RMOVE (1) XMU
- $\operatorname{INSTALLL}$ (2) BB 6 630

CROWN CASTLE corporate park drive, sutite 101
 Kimley")Horn

T-MOBILE SITE NUMBER: CT11083Q
BU \#: 881541
BU \#: 881541
ROGERS PROPERTY
700 GRASSY HILL RD ORANGE, CT 06477

Existing 140'-0" MONOPOLE
ISSUED FOR:

SHEET NUMBER:	
$\square-1$	0
REVIION:	

crown caste UsA nc. Ste Acturr reourewens.

为
 Nom and为
 and

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

Hooks, UNLESS NOTED OTHERMSE. YELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE

R EARTH OR WEATHER:

Exhibit D

Structural Analysis Report

Date: June 14, 2019
Heather Simeone
Crown Castle
3530 Toringdon Way Suite 300
Charlotte, NC 28277

Subject:
Carrier Designation:

Engineering Firm Designation:

Site Data:

Structural Analysis Report

T-Mobile Co-Locate Carrier Site Number: Carrier Site Name:

CT11083Q CT083/Sprint/Grassy Hill

Crown Castle BU Number: 881541

Crown Castle Site Name: Crown Castle JDE Job Number:

ROGERS PROPERTY 559347
Crown Castle Work Order Number: 1755309 Crown Castle Order Number: 479806 Rev. 0

Destek Engineering, LLC. Project Number: 1902113
700 Grassy Hill Road, Orange, New Haven County, CT Latitude $41^{\circ} 17^{\prime} 7.75 "$ ", Longitude $-73^{\circ} 2^{\prime} 33.27 "$
139.5 Foot - Monopole Tower

Dear Heather Simeone,
Destek Engineering, LLC. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration
Sufficient Capacity, 79.3\%
This analysis utilizes an ultimate 3 -second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Mehmet Ali Zeytun
Respectfully submitted by:

Ahmet Colakoglu, PE
President

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 -Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 139.5 ft Monopole tower designed by Engineered Endeavors, Inc. The tower has been modified per reinforcement drawing prepared by B+T Group, in October of 2013. Reinforcement consist of addition of base plate stiffeners.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor: Ice Thickness (Ultimate):
Wind Speed with Ice:
Service Wind Speed:

TIA-222-H
II
125 mph
C
1
1.5 in

50 mph
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
110.0	110.0	3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	10	1-5/8
		3	ericsson	ERICSSON AIR 21 B4A B2P w/ Mount Pipe		
		3	ericsson	KRY 112 144/1		
		3	ericsson	RADIO 4449 B12/B71		
		3	rfs celwave	APXVAARR24_43-UNA20 w/ Mount Pipe		
		1	site pro 1	PRK-SFS		
		1	perfect 10	PV-PKPB-M		
		1	tower mounts	T-Arm Mount [TA 602-3]		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Antennas } \end{aligned}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
136.0	140.0	3	ericsson	RRUS 11 B12	216	$\begin{gathered} 3 / 8 \\ 5 / 8 \\ 1-5 / 8 \end{gathered}$
		3	ericsson	RRUS12/RRUS A2		
		6	powerwave technologies	LGP21401		
		1	raycap	DC6-48-60-18-8F		
	139.0	3	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe		
		3	kathrein	80010121 w/ Mount Pipe		
	136.0	1	tower mounts	T-Arm Mount [TA 702-3]		
132.0	132.0	3	alcatel lucent	1900MHZ RRH (65MHZ)	-	-
		3	alcatel lucent	800MHZ RRH		
		1	tower mounts	Side Arm Mount [SO 102-3]		

Mounting Level (ft)	Center Line Elevation (ft)	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}\right\|$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	
130.0	134.0	1	andrew	VHLP2-11	433	$\begin{gathered} 1-1 / 4 \\ 5 / 16 \\ 7983 A \end{gathered}$
	132.0	1	dragonwave	A-ANT-23G-2-C		
		3	argus technologies	LLPX310R w/ Mount Pipe		
	130.0	3	alcatel lucent	800 EXTERNAL NOTCH FILTER		
		3	alcatel lucent	TD-RRH8X20-25		
		9	rfs celwave	ACU-A20-N		
		3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe		
		3	rfs celwave	APXVTM14-ALU-I20 w/ Mount Pipe		
		3	samsung telecommunications	FDD_R6_RRH		
		1	tower mounts	Sector Mount [SM 901-3]		
119.0	119.0	3	alcatel lucent	RRH2X40-AWS	112	$\begin{aligned} & 1-1 / 4 \\ & 1-5 / 8 \end{aligned}$
		3	antel	$\begin{gathered} \text { BXA-171063-8BF-EDIN-0 } \\ \text { w/ Mount Pipe } \end{gathered}$		
		3	antel	$\begin{aligned} & \text { BXA-70063-6CF-EDIN-0 } \\ & \text { w/ Mount Pipe } \end{aligned}$		
		6	decibel	DB846F65ZAXY w/ Mount Pipe		
		3	rymsa wireless	MG D3-800TX w/ Mount Pipe		
		1	tower mounts	T-Arm Mount [TA 602-3]		
100.0	100.0	3	rfs celwave	APXV18-206517S-C w/ Mount Pipe	6	1-5/8
75.0	77.0	1	lucent	KS24019-L112A	1	1/2
	75.0	1	tower mounts	Side Arm Mount [SO 701-1]		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-GEOTECHNICAL REPORTS	Dr. Clarence Welti, P.E., P.C., dated 2/16/2004	2245154	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Engineered Endeavors Incorporated, Proj.\# 12364, dated 8/9/2004	2208511	CCISITES
4-TOWER MANUFACTURER	Engineered Endeavors DRAWINGS	Incorporated, Proj.\# 12364, dated 8/9/2004	2207700
4-MOUNT REINFORCEMENT DESIGN/DRAWINGS/DATA	MasTec Network Solutions, Proj.\# 18545-MOD1, dated 04/26/2019	8447364	CCISITES
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	B+T GRP, WO\# 661413, dated 10/24/2013	4024239	CCISITES
4-POST-MODIFICATION INSPECTION	SGS, Proj.\# 130629, dated 2/6/2014	4432995	CCISITES
4-TOWER STRUCTURAL	Jacobs Engineering Group, Inc., ANALYSIS REPORTS	6928837	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
This analysis may be affected if any assumptions are not valid or have been made in error. Destek Engineering, LLC. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	\% Capacity	Pass / Fail
L1	$139.5-93.04$	Pole	TP26.99x15.5x0.25	1	-12.43	1256.07	68.5	Pass
L2	$93.04-46.38$	Pole	TP37.91x25.5205x0.375	2	-23.49	2650.21	68.2	Pass
L3	$46.38-0$	Pole	TP48.5x35.874x0.375	3	-39.74	3518.48	79.3	Pass
							Summary	
						Pole (L3)	79.3	Pass
					Rating $=$	79.3	Pass	

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Anchor Rods	0	66.1	Pass
1	Base Plate	0	69.0	Pass
1	Base Foundation	0	42.6	Pass
1	Base Foundation Soil Interaction	0	43.5	Pass

Structure Rating (max from all components) =

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.
2) Capacity per TIA-222-H, Section 15.5.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

TNXTOWER OUTPUT

Destek Engineering, LLC. 1281 Kennestone Cir. Suite 100		${ }^{\text {Job: }} 881541$ - ROGERS PROPOERTY		
		Project: 1902113		
		Client: Crown Castle	Drawn by:	App'd:
	Phone: (770) 693-0835	Code: TIA-222-H	Date: 06/14/19	Scale: NTS
	FAX:			Dwg No. E-1

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:

1) Tower is located in New Haven County, Connecticut.
2) Tower base elevation above sea level: 91.00 ft .
3) Basic wind speed of 125 mph .
4) Risk Category II.
5) Exposure Category C.
6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
7) Topographic Category: 1.
8) Crest Height: 0.00 ft .
9) Nominal ice thickness of 1.5000 in.
10) Ice thickness is considered to increase with height.
11) Ice density of 56 pcf.
12) A wind speed of 50 mph is used in combination with ice.
13) Temperature drop of $50^{\circ} \mathrm{F}$.
14) Deflections calculated using a wind speed of 60 mph .
15) TIA-222-H Annex S.
16) A non-linear (P-delta) analysis was used.
17) Pressures are calculated at each section.
18) Stress ratio used in pole design is 1.05 .
19) Tower analysis based on target reliabilities in accordance with Annex S.
20) Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95$, $\mathrm{K}_{\mathrm{es}}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
21) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
\checkmark Assume Rigid Index Plate
\checkmark Use Clear Spans For Wind Area
Use Clear Spans For KL/r
Retension Guys To Initial Tension
\checkmark Bypass Mast Stability Checks
\checkmark Use Azimuth Dish Coefficients
\checkmark Project Wind Area of Appurt.
Autocalc Torque Arm Areas
Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
\checkmark Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist.
Exemption
Use TIA-222-H Tension Splice
Exemption

Poles

$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No
Appurtenances
Outside and Inside Corner Radii Are
Known

Tapered Pole Section Geometry

Section	Elevation	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	$139.50-93.04$	46.46	3.92	18	15.5000	26.9900	0.2500	0.3750	A572-65
									(65 ksi)

139.5 Ft Monopole Tower Structural Analysis

Project Number 1902113, Order 479806, Revision 0

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L2	93.04-46.38	50.58	5.25	18	25.5205	37.9100	0.3750	0.5625	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L3	46.38-0.00	51.63		18	35.8740	48.5000	0.3750	0.5625	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia. in	Area $i n^{2}$	l $i n^{4}$	r in	C $i n$	I / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w $i n$	w / t
L1	15.7198	12.1009	355.5445	5.4138	7.8740	45.1542	711.5567	6.0516	2.5080	10.032
	27.3871	21.2182	1916.7638	9.4927	13.7109	139.7983	3836.0497	10.6111	4.5302	18.121
L2	26.8603	29.9295	2390.8862	8.9267	12.9644	184.4188	4784.9184	14.9676	4.1616	11.098
	38.4659	44.6760	7952.1562	13.3249	19.2583	412.9214	15914.776	22.3423	6.3422	16.912
							0			
L3	37.7022	42.2527	6727.0540	12.6022	18.2240	369.1315	13462.959	21.1304	5.9838	15.957
							7			
	49.2193	57.2808	16760.534	17.0844	24.6380	680.2717	33543.123	28.6458	8.2060	21.883
			6				2			

Tower Elevation	Gusset	Gusset	Gusset Grade Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Double Angle Double Angle		
	Area (per face)	Thickness				Stitch Bolt Spacing	Stitch Bolt Spacing	Stitch Bolt Spacing
ft	$f t^{2}$	in				Diagonals in	Horizontals in	Redundants in
L1 139.50-			1	1	1			
93.04								
L2 93.04-			1	1	1			
46.38								
L3 46.38-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From Torque Calculation	Componen t Type	Placement ft	Total Number	Number Per Row	Start/En d Position	Width or Diamete r in	Perimete r in	Weight plf
$\begin{gathered} \text { HB114-21U3M12- } \\ \text { XXF(1-1/4) } \end{gathered}$	A	No	Surface Ar (CaAa)	$\begin{gathered} 130.00- \\ 0.00 \end{gathered}$	1	1	$\begin{aligned} & 0.490 \\ & 0.490 \end{aligned}$	1.5400		1.22
7983A(ELLIPTICAL)	A	No	Surface Ar (CaAa)	$\begin{gathered} 130.00- \\ 0.00 \end{gathered}$	1	1	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	0.0000		0.08
7983A(ELLIPTICAL)	A	No	$\begin{aligned} & \text { Surface Ar } \\ & (\mathrm{CaAa}) \end{aligned}$	$\begin{gathered} 130.00- \\ 0.00 \end{gathered}$	2	2	$\begin{aligned} & 0.200 \\ & 0.230 \end{aligned}$	0.5730		0.08
2" Rigid Conduit	A	No	Surface Ar (CaAa)	$\begin{gathered} 130.00- \\ 0.00 \end{gathered}$	2	2	$\begin{aligned} & 0.150 \\ & 0.200 \end{aligned}$	2.0000		2.80
$\begin{gathered} \text { HCS } \underset{* * *}{5 / 8)} 12 \text { 4AWG(1- } \end{gathered}$	B	No	Surface Ar (CaAa)	$\begin{gathered} 110.00- \\ 0.00 \end{gathered}$	4	4	$\begin{aligned} & 0.050 \\ & 0.200 \end{aligned}$	1.6600		2.40

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf
Safety Line 3/8	C	No	No	CaAa (Out Of Face)	139.50-0.00	1	No Ice 1/2" Ice 1" Ice	$\begin{aligned} & 0.04 \\ & 0.14 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.75 \\ & 1.28 \end{aligned}$

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	$\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf
							2" Ice	0.44	2.34
136'									
LDF7-50A(1-5/8)							1/2" Ice	0.00	0.82
							1" Ice	0.00	0.82
							2" Ice	0.00	0.82
$\begin{aligned} & \text { FB-L98B-002- } \\ & 75000(3 / 8) \end{aligned}$	B	No	No	Inside Pole	136.00-0.00	2	No Ice	0.00	0.06
							$1 / 2 \text { " Ice }$	0.00	0.06
							1 " Ice	0.00	0.06
							2 " Ice	0.00	0.06
WR-VG82STBRDA(5/8)	B	No	No	Inside Pole	136.00-0.00	1	No Ice	0.00	0.31
							1/2" Ice	0.00	0.31
							1 " Ice	0.00	0.31
							2" Ice	0.00	0.31
2" Rigid Conduit	B	No	No	Inside Pole	136.00-0.00	1	No Ice	0.00	2.80
							1/2" Ice	0.00	2.80
							1 " Ice	0.00	2.80
							2 Ice	0.00	2.80
***130' ***									
$\begin{gathered} \text { HB114-1-0813U4- } \\ \text { M5J(1-1/4) } \end{gathered}$	A	No	No	Inside Pole	130.00-0.00	3	No Ice	0.00	1.20
							1/2" Ice	0.00	1.20
							1 " Ice	0.00	1.20
							2" Ice	0.00	1.20
9207(5/16)	A	No	No	Inside Pole	130.00-0.00	3	No Ice	0.00	0.06
							1/2" Ice	0.00	0.06
							1 " Ice	0.00	0.06
							2 Ice	0.00	0.06
***119' **									
561(1-5/8)	A	No	No	Inside Pole	119.00-0.00	12	No Ice	0.00	1.35
							1/2" Ice	0.00	1.35
							1" Ice	0.00	1.35
							2" Ice	0.00	1.35
LDF6-50A(1-1/4)	A	No	No	Inside Pole	119.00-0.00	1	No lce	0.00	0.60
							$1 / 2 \text { " Ice }$	0.00	0.60
							1 " Ice	0.00	0.60
							2" Ice	0.00	0.60
LDF7-50A(1-5/8)	B	No	No	Inside Pole	110.00-0.00	6			0.82
							$1 / 2^{\prime \prime} \text { Ice }$	0.00	0.82
							1 " Ice	0.00	0.82
							2" Ice	0.00	0.82
***100' *** 0									
CR 50 1873(1-5/8)	B	No	No	Inside Pole	100.00-0.00	6		0.00	0.83
							$1 / 2^{\prime \prime} \text { Ice }$	0.00	0.83
							1 " Ice	0.00	0.83
							2 ' Ice	0.00	0.83
***75 **									
LDF4-50A(1/2)	B	No	No	Inside Pole	75.00-0.00	1		0.00	0.15
							1/2" Ice	0.00	0.15
							1 " Ice	0.00	0.15
							2 " Ice	0.00	0.15

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation n	ft		A_{R}	A_{F}	$C_{A} A_{A}$ In Face $f t^{2}$	$C_{A} A_{A}$ Out Face
L1	$139.50-93.04$	A	0.000	0.000	24.711	0.000	Weight
		B	0.000	0.000	11.261	0.000	0.84
		C	0.000	0.000	0.000	1.742	0.63
L2	$93.04-46.38$	A	0.000	0.000	31.197	0.000	1.29
		B	0.000	0.000	30.982	0.000	1.29

tnxTower Report - version 8.0.5.0

Tower Sectio	Tower Elevation n	Ftace	A_{R}	A_{F}	$C_{A} A_{A}$ In Face	$C_{A} A_{A}$ Out Face	Weight
			$f t^{2}$	$f t^{2}$	$f t^{2}$	$f t^{2}$	K
		C	0.000	0.000	0.000	1.750	0.01
	$46.38-0.00$	A	0.000	0.000	31.010	0.000	1.28
		B	0.000	0.000	30.796	0.000	1.29
		C	0.000	0.000	0.000	1.739	0.01

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower Sectio \\
n
\end{tabular} \& Tower Elevation ft \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Ice Thickness in \& AR

$f t^{2}$ \& AF

$f t^{2}$ \& $C_{A} A_{A}$ In Face f^{2} \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
{f t^{2}}^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{139.50-93.04} \& A \& \multirow[t]{3}{*}{1.444} \& 0.000 \& 0.000 \& 77.493 \& 0.000 \& 1.60

\hline \& \& B \& \& 0.000 \& 0.000 \& 20.199 \& 0.000 \& 0.83

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 15.158 \& 0.08

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{93.04-46.38} \& A \& \multirow[t]{3}{*}{1.372} \& 0.000 \& 0.000 \& 97.831 \& 0.000 \& 2.26

\hline \& \& B \& \& 0.000 \& 0.000 \& 55.570 \& 0.000 \& 1.84

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 15.223 \& 0.08

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{46.38-0.00} \& A \& \multirow[t]{3}{*}{1.231} \& 0.000 \& 0.000 \& 94.250 \& 0.000 \& 2.17

\hline \& \& B \& \& 0.000 \& 0.000 \& 54.405 \& 0.000 \& 1.80

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 14.467 \& 0.08

\hline
\end{tabular}

		Feed Line Center of Pressure				
	Elevation	$C P_{x}$	$C P_{z}$	$C P_{x}$	$C P_{z}$	
Section	ft	in	in	$I c e$	in	
	ine					
	$139.50-93.04$	-0.1420	-2.8203	-1.2857	-2.6359	
L1	$93.04-46.38$	1.4657	-3.5960	-0.3604	-3.4911	
L2	$46.38-0.00$	1.6093	-3.9516	-0.3808	-4.0499	
L3						

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	Ka No lce	$\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$
L1	9	HB114-21U3M12-XXXF(1- 1/4)	$\begin{aligned} & 93.04- \\ & 130.00 \end{aligned}$	1.0000	1.0000
L1	11	7983A(ELLIPTICAL)	$\begin{aligned} & 93.04- \\ & 130.00 \end{aligned}$	1.0000	1.0000
L1	12	7983A(ELLIPTICAL)	$\begin{aligned} & 93.04- \\ & 130.00 \end{aligned}$	1.0000	1.0000
L1	13	2" Rigid Conduit	$\begin{aligned} & 93.04- \\ & 130.00 \end{aligned}$	1.0000	1.0000
L1	20	HCS 6X12 4AWG(1-5/8)	$\begin{aligned} & 93.04- \\ & 110.00 \end{aligned}$	1.0000	1.0000
L2	9	HB114-21U3M12-XXXF(1- 1/4)	$\begin{array}{r} 46.38- \\ 93.04 \end{array}$	1.0000	1.0000
L2	11	7983A(ELLIPTICAL)	$\begin{array}{r} 46.38- \\ 93.04 \end{array}$	1.0000	1.0000
L2	12	7983A(ELLIPTICAL)	$\begin{array}{r} 46.38- \\ 93.04 \end{array}$	1.0000	1.0000
L2	13	2" Rigid Conduit	$\begin{array}{r} 46.38- \\ 93.04 \end{array}$	1.0000	1.0000

tnxTower Report - version 8.0.5.0
139.5 Ft Monopole Tower Structural Analysis

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K_{a} No Ice	K_{a} Ice
L2	20	HCS 6X12 4AWG(1-5/8)	$46.38-$ 93.04	1.0000	1.0000

Discrete Tower Loads

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
***136' ***									
80010121 w/ Mount Pipe	A	From Leg	4.00	0.0000	136.00	No Ice	5.39	4.60	0.07
			0.00			1/2"	5.81	5.35	0.11
			3.00			Ice	6.23	6.05	0.17
						1" Ice 2" Ice	7.10	7.48	0.30
80010121 w/ Mount Pipe	B	From Leg	4.00	0.0000	136.00	No Ice	5.39	4.60	0.07
			0.00			1/2"	5.81	5.35	0.11
			3.00			Ice	6.23	6.05	0.17
						1" Ice	7.10	7.48	0.30
						2" Ice			
80010121 w/ Mount Pipe	C	From Leg	4.00	0.0000	136.00	No Ice	5.39	4.60	0.07
			0.00			1/2"	5.81	5.35	0.11
			3.00			Ice	6.23	6.05	0.17
						1" Ice	7.10	7.48	0.30
						2" Ice			
HPA-65R-BUU-H6 w/ Mount Pipe	A	From Leg	4.00	0.0000	136.00	No Ice	9.22	6.25	0.07
			0.00			1/2"	9.98	6.96	0.14
			3.00			Ice	10.76	7.70	0.22
						1" Ice	12.36	9.22	0.42
						2" Ice			
HPA-65R-BUU-H6 w/ Mount Pipe	B	From Leg	4.00	0.0000	136.00	No Ice	9.22	6.25	0.07
			0.00			1/2"	9.98	6.96	0.14
			3.00			Ice	10.76	7.70	0.22
						1" Ice	12.36	9.22	0.42
						2" Ice			
HPA-65R-BUU-H6 w/ Mount Pipe	C	From Leg	4.00	0.0000	136.00	No Ice	9.22	6.25	0.07
			0.00			1/2"	9.98	6.96	0.14
			3.00			Ice	10.76	7.70	0.22
						1" Ice	12.36	9.22	0.42
						2" Ice			
(2) LGP21401	A	From Leg	4.00	0.0000	136.00	No Ice	1.10	0.21	0.01
			0.00			1/2"	1.24	0.27	0.02
			4.00			Ice	1.38	0.35	0.03
						1" Ice	1.69	0.52	0.05
						2" Ice			
(2) LGP21401	B	From Leg	4.00	0.0000	136.00	No Ice	1.10	0.21	0.01
			0.00			1/2"	1.24	0.27	0.02
			4.00			Ice	1.38	0.35	0.03
						1" Ice	1.69	0.52	0.05
						2" Ice			
(2) LGP21401	C	From Leg	4.00	0.0000	136.00	No Ice	1.10	0.21	0.01
			0.00			1/2"	1.24	0.27	0.02
			4.00			Ice	1.38	0.35	0.03
						1" Ice	1.69	0.52	0.05
						2" Ice			
RRUS 11 B12	A	From Leg	4.00	0.0000	136.00	No Ice	2.83	1.18	0.05
			0.00			1/2"	3.04	1.33	0.07
			4.00			Ice	3.26	1.48	0.10
						1" Ice	3.71	1.83	0.15
						2" Ice			

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert ft ft ft
\end{tabular} \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

K

\hline \multirow[t]{4}{*}{RRUS 11 B12} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{136.00} \& No Ice \& 2.83 \& 1.18 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.04 \& 1.33 \& 0.07

\hline \& \& \& \multirow[t]{2}{*}{4.00} \& \& \& Ice \& 3.26 \& 1.48 \& 0.10

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 3.71 \& 1.83 \& 0.15

\hline \multirow[t]{4}{*}{RRUS 11 B12} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{136.00} \& No Ice \& 2.83 \& 1.18 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.04 \& 1.33 \& 0.07

\hline \& \& \& \multirow[t]{2}{*}{4.00} \& \& \& Ice \& 3.26 \& 1.48 \& 0.10

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 3.71 \& 1.83 \& 0.15

\hline \multirow[t]{5}{*}{RRUS12/RRUS A2} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{136.00} \& No Ice \& 3.14 \& 1.84 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.36 \& 2.01 \& 0.10

\hline \& \& \& \multirow[t]{3}{*}{4.00} \& \& \& Ice \& 3.59 \& 2.20 \& 0.13

\hline \& \& \& \& \& \& 1" Ice \& 4.07 \& 2.59 \& 0.20

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RRUS12/RRUS A2} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{136.00} \& No Ice \& 3.14 \& 1.84 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.36 \& 2.01 \& 0.10

\hline \& \& \& \multirow[t]{3}{*}{4.00} \& \& \& Ice \& 3.59 \& 2.20 \& 0.13

\hline \& \& \& \& \& \& 1" Ice \& 4.07 \& 2.59 \& 0.20

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RRUS12/RRUS A2} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{136.00} \& No Ice \& 3.14 \& 1.84 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" \& 3.36 \& 2.01 \& 0.10

\hline \& \& \& \multirow[t]{3}{*}{4.00} \& \& \& Ice \& 3.59 \& 2.20 \& 0.13

\hline \& \& \& \& \& \& 1" Ice \& 4.07 \& 2.59 \& 0.20

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{DC6-48-60-18-8F} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{136.00} \& No Ice \& 0.79 \& 0.79 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.27 \& 1.27 \& 0.03

\hline \& \& \& \multirow[t]{8}{*}{4.00} \& \& \& Ice \& 1.45 \& 1.45 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 1.83 \& 1.83 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{T-Arm Mount [TA 702-3]} \& \multirow[t]{6}{*}{C} \& \multirow[t]{6}{*}{None} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{136.00} \& No Ice \& 5.64 \& 5.64 \& 0.34

\hline \& \& \& \& \& \& 1/2" \& 6.55 \& 6.55 \& 0.43

\hline \& \& \& \& \& \& Ice \& 7.46 \& 7.46 \& 0.52

\hline \& \& \& \& \& \& \& 9.28 \& 9.28 \& 0.70

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline ***132' *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{1900MHZ RRH (65MHZ)} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{132.00} \& No Ice \& 2.32 \& 2.24 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.53 \& 2.44 \& 0.08

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 2.74 \& 2.65 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& 3.19 \& 3.09 \& 0.17

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{1900MHZ RRH (65MHZ)} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{132.00} \& No Ice \& 2.32 \& 2.24 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.53 \& 2.44 \& 0.08

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 2.74 \& 2.65 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& 3.19 \& 3.09 \& 0.17

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{1900MHZ RRH (65MHZ)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{132.00} \& No Ice \& 2.32 \& 2.24 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.53 \& 2.44 \& 0.08

\hline \& \& \& 0.00 \& \& \& Ice \& 2.74 \& 2.65 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& 3.19 \& 3.09 \& 0.17

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{800MHZ RRH} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{132.00} \& No Ice \& 2.13 \& 1.77 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.32 \& 1.95 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 2.51 \& 2.13 \& 0.10

\hline \& \& \& \& \& \& 1" Ice \& 2.92 \& 2.51 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{800MHZ RRH} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{132.00} \& No Ice \& 2.13 \& 1.77 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.32 \& 1.95 \& 0.07

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 2.51 \& 2.13 \& 0.10

\hline \& \& \& \& \& \& 1" Ice \& 2.92 \& 2.51 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{4}{*}{800MHZ RRH} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 2.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{132.00} \& No Ice \& 2.13 \& 1.77 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.32 \& 1.95 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 2.51 \& 2.13 \& 0.10

\hline \& \& \& \& \& \& 1" Ice \& 2.92 \& 2.51 \& 0.16

\hline
\end{tabular}

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert ft ft ft	Azimuth Adjustmen t	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
(2) DB846F65ZAXY w/ Mount Pipe	B	From Leg	0.00	0.0000	119.00	1/2"	8.35	9.91	0.19
						Ice	9.40	11.73	0.37
						$\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \end{aligned}$			
			4.00			No Ice	7.27	7.82	0.05
			0.00			1/2"	7.83	9.01	0.11
			0.00			Ice	8.35	9.91	0.19
(2) DB846F65ZAXY w/ Mount Pipe	C	From Leg		0.0000	119.00	1" Ice	9.40	11.73	0.37
						2" Ice			
			4.00			No Ice	7.27	7.82	0.05
			0.00			1/2"	7.83	9.01	0.11
			0.00			Ice	8.35	9.91	0.19
	A	From Leg		0.0000	119.00	1" Ice	9.40	11.73	0.37
BXA-171063-8BF-EDIN-0 w/ Mount Pipe						2" Ice			
			4.00			No Ice	3.18	3.35	0.03
			0.00			1/2"	3.56	3.97	0.06
			0.00			Ice	3.93	4.60	0.10
	B	From Leg		0.0000	119.00	1" Ice	4.69	5.89	0.19
BXA-171063-8BF-EDIN-0 w/ Mount Pipe						2" Ice			
			4.00			No Ice	3.18	3.35	0.03
			0.00			1/2"	3.56	3.97	0.06
			0.00			Ice	3.93	4.60	0.10
	C	From Leg		0.0000	119.00	1" Ice	4.69	5.89	0.19
BXA-171063-8BF-EDIN-0 w/ Mount Pipe						2" Ice			
			4.00			No Ice	3.18	3.35	0.03
			0.00			1/2"	3.56	3.97	0.06
			0.00			Ice	3.93	4.60	0.10
	A	From Leg		0.0000	119.00	1" Ice	4.69	5.89	0.19
BXA-70063-6CF-EDIN-0 w/ Mount Pipe						2" Ice			
			4.00			No lce	7.81	5.80	0.04
			0.00			1/2"	8.36	6.95	0.10
			0.00			Ice	8.87	7.82	0.17
	B	From Leg		0.0000	119.00	1" Ice	9.93	9.60	0.34
BXA-70063-6CF-EDIN-0 w/ Mount Pipe						2" Ice			
			4.00			No Ice	7.81	5.80	0.04
			0.00			1/2"	8.36	6.95	0.10
			0.00			Ice	8.87	7.82	0.17
	C	From Leg		0.0000	119.00	1" Ice	9.93	9.60	0.34
BXA-70063-6CF-EDIN-0 w/ Mount Pipe						2" Ice			
			4.00			No Ice	7.81	5.80	0.04
			0.00			1/2"	8.36	6.95	0.10
			0.00			Ice	8.87	7.82	0.17
	A	From Leg		0.0000	119.00	1" Ice	9.93	9.60	0.34
MG D3-800TX w/ Mount Pipe						2" Ice			
			4.00			No Ice	3.57	3.42	0.03
			0.00			1/2"	3.98	4.12	0.07
			0.00			Ice	4.39	4.78	0.11
MG D3-800TX w/ Mount Pipe	B	From Leg		0.0000		1" Ice	5.20	6.16	0.21
					119.00	2" Ice			
			4.00			No Ice	3.57	3.42	0.03
			0.00			1/2"	3.98	4.12	0.07
			0.00			Ice	4.39	4.78	0.11
MG D3-800TX w/ Mount Pipe	C	From Leg		0.0000	119.00	1" Ice	5.20	6.16	0.21
						2" Ice			
			4.00			No Ice	3.57	3.42	0.03
			0.00			1/2"	3.98	4.12	0.07
			0.00			Ice	4.39	4.78	0.11
RRH2X40-AWS	A	From Leg		0.0000	119.00	1" Ice	5.20	6.16	0.21
						2" Ice			
			4.00			No Ice	2.16	1.42	0.04
			0.00			1/2"	2.36	1.59	0.06
			0.00			Ice	2.57	1.77	0.08
						1" Ice	3.00	2.14	0.13
						2" Ice			
RRH2X40-AWS	B	From Leg	4.00	0.0000	119.00	No Ice	2.16	1.42	0.04

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side $f t^{2}$ \& Weight

K

\hline \multirow{7}{*}{RRH2X40-AWS} \& \multirow{6}{*}{C} \& \multirow{6}{*}{From Leg} \& 0.00 \& \multirow{6}{*}{0.0000} \& \multirow{6}{*}{119.00} \& 1/2" \& 2.36 \& 1.59 \& 0.06

\hline \& \& \& \multirow[t]{2}{*}{0.00} \& \& \& Ice \& 2.57 \& 1.77 \& 0.08

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 3.00 \& 2.14 \& 0.13

\hline \& \& \& 4.00 \& \& \& No Ice \& 2.16 \& 1.42 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" \& 2.36 \& 1.59 \& 0.06

\hline \& \& \& 0.00 \& \& \& Ice \& 2.57 \& 1.77 \& 0.08

\hline \& \multirow{7}{*}{C} \& \multirow{7}{*}{None} \& \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{119.00} \& 1 " Ice \& 3.00 \& 2.14 \& 0.13

\hline \multirow{6}{*}{T-Arm Mount [TA 602-3]} \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \& \& \& \& \& \& No Ice \& 13.04 \& 13.04 \& 0.87

\hline \& \& \& \& \& \& 1/2" \& 17.37 \& 17.37 \& 1.11

\hline \& \& \& \& \& \& Ice \& 21.70 \& 21.70 \& 1.36

\hline \& \& \& \& \& \& 1 " Ice \& 30.36 \& 30.36 \& 1.84

\hline \& \& \& \& \& \& 2 " Ice \& \& \&

\hline \multicolumn{10}{|l|}{***110' ***}

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B2A
B4P w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 6.33 \& 5.64 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.78 \& 6.43 \& 0.17

\hline \& \& \& 0.00 \& \& \& Ice \& 7.21 \& 7.13 \& 0.23

\hline \& \& \& \& \& \& 1 " Ice \& 8.12 \& 8.59 \& 0.38

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B2A B4P w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 6.33 \& 5.64 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.78 \& 6.43 \& 0.17

\hline \& \& \& 0.00 \& \& \& Ice \& 7.21 \& 7.13 \& 0.23

\hline \& \& \& \& \& \& 1 " Ice \& 8.12 \& 8.59 \& 0.38

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B2A B4P w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 6.33 \& 5.64 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.78 \& 6.43 \& 0.17

\hline \& \& \& 0.00 \& \& \& Ice \& 7.21 \& 7.13 \& 0.23

\hline \& \& \& \& \& \& 1 " Ice \& 8.12 \& 8.59 \& 0.38

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B4A B2P w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 6.32 \& 5.63 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.76 \& 6.41 \& 0.17

\hline \& \& \& 0.00 \& \& \& Ice \& 7.20 \& 7.12 \& 0.23

\hline \& \& \& \& \& \& 1 " Ice \& 8.10 \& 8.57 \& 0.38

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B4A B2P w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& $$
4.00
$$ \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 6.32 \& 5.63 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.76 \& 6.41 \& 0.17

\hline \& \& \& 0.00 \& \& \& Ice \& 7.20 \& 7.12 \& 0.23

\hline \& \& \& \& \& \& 1 " Ice \& 8.10 \& 8.57 \& 0.38

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{ERICSSON AIR 21 B4A B2P w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& $$
4.00
$$ \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 6.32 \& 5.63 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" \& 6.76 \& 6.41 \& 0.17

\hline \& \& \& 0.00 \& \& \& Ice \& 7.20 \& 7.12 \& 0.23

\hline \& \& \& \& \& \& 1 " Ice \& 8.10 \& 8.57 \& 0.38

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{APXVAARR24_43-U-NA20 w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 20.48 \& 11.02 \& 0.16

\hline \& \& \& 0.00 \& \& \& 1/2" \& 21.23 \& 12.55 \& 0.30

\hline \& \& \& 0.00 \& \& \& Ice \& 21.99 \& 14.10 \& 0.44

\hline \& \& \& \& \& \& 1 " Ice \& 23.44 \& 16.45 \& 0.78

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{APXVAARR24_43-U-NA20 w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& $$
4.00
$$ \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 20.48 \& 11.02 \& 0.16

\hline \& \& \& 0.00 \& \& \& 1/2" \& 21.23 \& 12.55 \& 0.30

\hline \& \& \& 0.00 \& \& \& Ice \& 21.99 \& 14.10 \& 0.44

\hline \& \& \& \& \& \& 1 " Ice \& 23.44 \& 16.45 \& 0.78

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{APXVAARR24_43-U-NA20 w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& $$
4.00
$$ \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 20.48 \& 11.02 \& 0.16

\hline \& \& \& 0.00 \& \& \& 1/2" \& 21.23 \& 12.55 \& 0.30

\hline \& \& \& 0.00 \& \& \& Ice \& 21.99 \& 14.10 \& 0.44

\hline \& \& \& \& \& \& 1 " Ice \& 23.44 \& 16.45 \& 0.78

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{KRY 112 144/1} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 0.35 \& 0.17 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.43 \& 0.23 \& 0.01

\hline \& \& \& 0.00 \& \& \& Ice \& 0.51 \& 0.30 \& 0.02

\hline \& \& \& \& \& \& 1" Ice \& 0.70 \& 0.46 \& 0.03

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\hline \text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen \(t\) \& Placement

ft \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

K

\hline \multirow[t]{4}{*}{KRY 112 144/1} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{110.00} \& No Ice \& 0.35 \& 0.17 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.43 \& 0.23 \& 0.01

\hline \& \& \& \multirow[t]{2}{*}{0.00} \& \& \& Ice \& 0.51 \& 0.30 \& 0.02

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 0.70 \& 0.46 \& 0.03

\hline \multirow[t]{4}{*}{KRY 112 144/1} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{110.00} \& No Ice \& 0.35 \& 0.17 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" \& 0.43 \& 0.23 \& 0.01

\hline \& \& \& \multirow[t]{2}{*}{0.00} \& \& \& Ice \& 0.51 \& 0.30 \& 0.02

\hline \& \& \& \& \& \& $$
\begin{aligned}
& \text { 1" Ice } \\
& \text { 2" Ice }
\end{aligned}
$$ \& 0.70 \& 0.46 \& 0.03

\hline \multirow[t]{5}{*}{RADIO 4449 B12/B71} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 1.65 \& 1.30 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.81 \& 1.44 \& 0.09

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 1.98 \& 1.60 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& 2.34 \& 1.92 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RADIO 4449 B12/B71} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 1.65 \& 1.30 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.81 \& 1.44 \& 0.09

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 1.98 \& 1.60 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& 2.34 \& 1.92 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{RADIO 4449 B12/B71} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 1.65 \& 1.30 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.81 \& 1.44 \& 0.09

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 1.98 \& 1.60 \& 0.11

\hline \& \& \& \& \& \& 1" Ice \& 2.34 \& 1.92 \& 0.16

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{6'-P2x0. 154} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{6'-P2x0.154} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& $$
4.00
$$ \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{6'-P2x0.154} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 1.43 \& 1.43 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" \& 1.92 \& 1.92 \& 0.03

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 2.29 \& 2.29 \& 0.05

\hline \& \& \& \& \& \& 1" Ice \& 3.06 \& 3.06 \& 0.09

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{13.25'-P2x0.154 H} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 3.15 \& 0.01 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.50 \& 0.11 \& 0.07

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& Ice \& 5.87 \& 0.21 \& 0.10

\hline \& \& \& \& \& \& 1" Ice \& 8.66 \& 0.40 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{13.25'-P2x0.154 H} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 3.15 \& 0.01 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.50 \& 0.11 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 5.87 \& 0.21 \& 0.10

\hline \& \& \& \& \& \& 1" Ice \& 8.66 \& 0.40 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{13.25'-P2x0.154 H} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 3.15 \& 0.01 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" \& 4.50 \& 0.11 \& 0.07

\hline \& \& \& 0.00 \& \& \& Ice \& 5.87 \& 0.21 \& 0.10

\hline \& \& \& \& \& \& 1" Ice \& 8.66 \& 0.40 \& 0.19

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{PRK-SFS} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 13.13 \& 13.13 \& 0.25

\hline \& \& \& \& \& \& 1/2" \& 17.83 \& 17.83 \& 0.27

\hline \& \& \& \& \& \& Ice \& 22.54 \& 22.54 \& 0.28

\hline \& \& \& \& \& \& 1" Ice \& 31.96 \& 31.96 \& 0.32

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline \multirow[t]{5}{*}{Miscellaneous [NA 509-3]} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 11.84 \& 11.84 \& 0.28

\hline \& \& \& \& \& \& 1/2" \& 16.96 \& 16.96 \& 0.30

\hline \& \& \& \& \& \& Ice \& 22.08 \& 22.08 \& 0.32

\hline \& \& \& \& \& \& 1" Ice \& 32.32 \& 32.32 \& 0.36

\hline \& \& \& \& \& \& 2" Ice \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets: Horz Lateral Vert ft ft ft \& Azimuth Adjustmen \(t\) \& \begin{tabular}{l}
Placement \\
ft
\end{tabular} \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(f t^{2}\)
\end{tabular} \& \begin{tabular}{l}
\(C_{A} A_{A}\) Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline T-Arm Mount [TA 602-3] \& C \& None \& \& 0.0000 \& 110.00 \& $$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
\text { 1" Ice } \\
\text { 2" Ice }
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 12.88 \\
& 17.16 \\
& 21.43 \\
& 29.99
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12.88 \\
& 17.16 \\
& 21.43 \\
& 29.99
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.86 \\
& 1.10 \\
& 1.34 \\
& 1.82
\end{aligned}
$$
\]

\hline $$
\begin{gathered}
* * * 1000^{* * *} \\
\text { APXV18-206517S-C w/ } \\
\text { Mount Pipe }
\end{gathered}
$$ \& A \& From Leg \& \[

$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 100.00 \& \[

$$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
\text { 1" Ice } \\
\text { 2" Ice }
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 3.79 \\
& 4.38 \\
& 4.99 \\
& 6.25
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.16 \\
& 3.75 \\
& 4.35 \\
& 5.59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.09 \\
& 0.15 \\
& 0.28
\end{aligned}
$$
\]

\hline APXV18-206517S-C w/ Mount Pipe \& B \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 3.79 \\
& 4.38 \\
& 4.99 \\
& 6.25
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.16 \\
& 3.75 \\
& 4.35 \\
& 5.59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.09 \\
& 0.15 \\
& 0.28
\end{aligned}
$$
\]

\hline APXV18-206517S-C w/ Mount Pipe \& C \& From Leg \& $$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 100.00 \& No Ice 1/2" Ice 1" Ice 2" Ice \& \[

$$
\begin{aligned}
& 3.79 \\
& 4.38 \\
& 4.99 \\
& 6.25
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.16 \\
& 3.75 \\
& 4.35 \\
& 5.59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.09 \\
& 0.15 \\
& 0.28
\end{aligned}
$$
\]

\hline $$
\begin{gathered}
* * * 75^{\prime * * *} \\
\text { KS24019-L112A }
\end{gathered}
$$ \& C \& From Leg \& \[

$$
\begin{aligned}
& 4.00 \\
& 0.00 \\
& 2.00
\end{aligned}
$$

\] \& 0.0000 \& 75.00 \& | No Ice |
| :--- |
| 1/2" |
| Ice |
| 1" Ice |
| 2" Ice | \& \[

$$
\begin{aligned}
& 0.14 \\
& 0.20 \\
& 0.26 \\
& 0.41
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.14 \\
& 0.20 \\
& 0.26 \\
& 0.41
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.01 \\
& 0.01 \\
& 0.01 \\
& 0.02
\end{aligned}
$$
\]

\hline Side Arm Mount [SO 7011] \& C \& None \& \& 0.0000 \& 75.00 \& $$
\begin{gathered}
\text { No Ice } \\
\text { 1/2" } \\
\text { Ice } \\
\text { 1" Ice } \\
\text { 2" Ice }
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 0.85 \\
& 1.14 \\
& 1.43 \\
& 2.01
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.67 \\
& 2.34 \\
& 3.01 \\
& 4.35
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.07 \\
& 0.08 \\
& 0.09 \\
& 0.12
\end{aligned}
$$
\]

\hline
\end{tabular}

Dishes

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Dish \\
Type
\end{tabular} \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert ft
\end{tabular} \& Azimuth Adjustment \& \(3 d B\) Beam Width \& Elevation

ft \& | Outside Diameter |
| :--- |
| ft | \& \& Aperture Area

$$
f t^{2}
$$ \& Weight

\hline \multirow[t]{4}{*}{A-ANT-23G-2-C} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{Paraboloid w/Shroud (HP)} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{10.0000} \& \& \multirow[t]{4}{*}{130.00} \& \multirow[t]{4}{*}{2.17} \& No Ice \& 3.72 \& 0.03

\hline \& \& \& \& 0.00 \& \& \& \& \& 1/2" Ice \& 4.01 \& 0.05

\hline \& \& \& \& \multirow[t]{2}{*}{2.00} \& \& \& \& \& $1{ }^{1 /}$ Ice \& 4.30 \& 0.07

\hline \& \& \& \& \& \& \& \& \& 2" Ice \& 4.88 \& 0.11

\hline \multirow[t]{4}{*}{VHLP2-11} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{Paraboloid w/Shroud (HP)} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{-20.0000} \& \& \multirow[t]{4}{*}{130.00} \& \multirow[t]{4}{*}{2.17} \& No Ice \& 3.72 \& 0.03

\hline \& \& \& \& 0.00 \& \& \& \& \& 1/2" Ice \& 4.01 \& 0.05

\hline \& \& \& \& 4.00 \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.30 \& 0.07

\hline \& \& \& \& \& \& \& \& \& 2" Ice \& 4.88 \& 0.11

\hline
\end{tabular}

Load Combinations

Comb.	Description	
No.	Dead Only	
2	1.2 Dead+1.0 Wind 0 deg - No Ice	
3	0.9 Dead +1.0 Wind 0 deg - No Ice	

tnxTower Report - version 8.0.5.0

Comb. No.	Description
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind $120 \mathrm{deg}+1.0$ Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind $210 \mathrm{deg}+1.0$ Ice+1.0 Temp
35	1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind $330 \mathrm{deg}+1.0$ Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	$\begin{gathered} 139.5- \\ 93.04 \end{gathered}$	Pole	Max Tension	14	0.00	-0.00	0.00
			Max. Compression	26	-30.88	0.64	0.32
			Max. Mx	20	-12.44	553.56	0.41
			Max. My	2	-12.43	0.64	554.68
			Max. Vy	20	-22.67	553.56	0.41
			Max. Vx	2	-22.70	0.64	554.68
			Max. Torque	3			0.59
L2	$\begin{gathered} 93.04- \\ 46.38 \end{gathered}$	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-45.25	1.20	1.93
			Max. Mx	20	-23.49	1672.86	1.67
			Max. My	2	-23.49	1.56	1676.03
			Max. Vy	20	-26.74	1672.86	1.67

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L3	46.38-0	Pole	Max. Vx	2	-26.77	1.56	1676.03
			Max. Torque	11			-0.63
			Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-65.53	1.74	4.20
			Max. Mx	20	-39.74	3158.24	3.34
			Max. My	2	-39.74	2.46	3164.07
			Max. Vy	20	-30.58	3158.24	3.34
			Max. Vx	2	-30.60	2.46	3164.07
			Max. Torque	13			-0.74

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, X } \\ K \end{gathered}$	$\begin{gathered} \text { Horizontal, Z } \\ K \end{gathered}$
Pole	Max. Vert	27	65.53	0.00	8.05
	Max. H_{x}	20	39.78	30.53	0.01
	Max. Hz_{z}	2	39.78	0.02	30.56
	Max. M_{x}	2	3164.07	0.02	30.56
	Max. M_{z}	8	3157.06	-30.52	0.04
	Max. Torsion	23	0.69	26.46	15.25
	Min. Vert	7	29.83	-26.46	15.26
	Min. H_{x}	8	39.78	-30.52	0.04
	Min. H_{z}	14	39.78	-0.01	-30.49
	Min. M_{x}	14	-3151.33	-0.01	-30.49
	Min. M_{z}	20	-3158.24	30.53	0.01
	Min. Torsion	13	-0.74	-15.22	-26.42

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear ${ }_{x}$ K	Shearz K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	33.15	0.00	0.00	-1.31	-0.20	0.00
1.2 Dead+1.0 Wind 0 deg No Ice	39.78	-0.02	-30.56	-3164.07	2.46	-0.43
0.9 Dead+1.0 Wind 0 deg No Ice	29.83	-0.02	-30.56	-3123.83	2.48	-0.43
1.2 Dead+1.0 Wind 30 deg No Ice	39.78	15.26	-26.45	-2738.30	-1578.88	0.01
0.9 Dead+1.0 Wind 30 deg No Ice	29.83	15.26	-26.45	-2703.41	-1558.94	0.01
1.2 Dead+1.0 Wind 60 deg No Ice	39.78	26.46	-15.26	-1580.46	-2737.99	0.25
0.9 Dead+1.0 Wind 60 deg No Ice	29.83	26.46	-15.26	-1560.15	-2703.45	0.25
1.2 Dead+1.0 Wind 90 deg No Ice	39.78	30.52	-0.04	-7.82	-3157.06	0.24
0.9 Dead+1.0 Wind 90 deg No Ice	29.83	30.52	-0.04	-7.30	-3117.26	0.24
1.2 Dead+1.0 Wind 120 deg - No Ice	39.78	26.41	15.23	1572.03	-2731.15	0.74
0.9 Dead+1.0 Wind 120 deg - No Ice	29.83	26.41	15.23	1552.65	-2696.70	0.74
1.2 Dead+1.0 Wind 150 deg - No Ice	39.78	15.22	26.42	2730.59	-1573.32	0.74
0.9 Dead+1.0 Wind 150 deg - No Ice	29.83	15.22	26.42	2696.60	-1553.46	0.74
1.2 Dead+1.0 Wind 180 deg - No Ice	39.78	0.01	30.49	3151.33	-0.96	0.35

Load Combination	Vertical K	Shear K	Shearz $_{2}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
0.9 Dead+1.0 Wind 180 deg	29.83	0.01	30.49	3112.07	-0.89	0.35
- No Ice						
1.2 Dead+1.0 Wind 210 deg	39.78	-15.22	26.42	2731.02	1572.51	-0.11
- No Ice						
0.9 Dead+1.0 Wind 210 deg	29.83	-15.22	26.42	2697.03	1552.78	-0.11
- No Ice						
1.2 Dead+1.0 Wind 240 deg	39.78	-26.43	15.20	1568.24	2733.81	-0.24
- No Ice						
0.9 Dead+1.0 Wind 240 deg	29.83	-26.43	15.20	1548.91	2699.44	-0.24
- No Ice						
1.2 Dead+1.0 Wind 270 deg	39.78	-30.53	-0.01	-3.34	3158.24	-0.34
- No Ice						
0.9 Dead+1.0 Wind 270 deg	29.83	-30.53	-0.01	-2.89	3118.54	-0.34
- No Ice						
1.2 Dead+1.0 Wind 300 deg	39.78	-26.46	-15.25	-1578.84	2737.88	-0.69
- No Ice						
0.9 Dead+1.0 Wind 300 deg	29.83	-26.46	-15.25	-1558.55	2703.46	-0.69
- No lce						
1.2 Dead+1.0 Wind 330 deg	39.78	-15.23	-26.47	-2741.17	1574.59	-0.66
- No Ice						
0.9 Dead+1.0 Wind 330 deg	29.83	-15.23	-26.47	-2706.24	1554.83	-0.66
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	65.53	-0.00	-0.00	-4.20	1.74	0.00
1.2 Dead+1.0 Wind 0	65.53	-0.00	-8.05	-850.04	2.37	-0.40
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30	65.53	4.02	-6.97	-736.29	-420.49	-0.18
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60	65.53	6.97	-4.02	-426.69	-730.35	0.05
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90	65.53	8.04	-0.01	-5.65	-842.69	0.23
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	65.53	6.96	4.01	416.89	-728.91	0.46
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	65.53	4.01	6.96	726.64	-419.32	0.51
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	65.53	0.00	8.04	839.33	1.66	0.38
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	65.53	-4.01	6.96	726.73	422.87	0.15
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	65.53	-6.96	4.01	416.10	733.19	-0.05
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	65.53	-8.04	-0.00	-4.71	846.66	-0.25
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	65.53	-6.97	-4.02	-426.35	734.05	-0.45
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	65.53	-4.02	-6.97	-736.89	423.31	-0.49
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	33.15	-0.00	-6.63	-683.61	0.38	-0.10
Dead+Wind 30 deg - Service	33.15	3.31	-5.74	-591.75	-340.77	0.00
Dead+Wind 60 deg - Service	33.15	5.74	-3.31	-341.96	-590.83	0.06
Dead+Wind 90 deg - Service	33.15	6.62	-0.01	-2.69	-681.23	0.05
Dead+Wind 120 deg -	33.15	5.73	3.30	338.13	-589.34	0.16
Service						
Dead+Wind 150 deg -	33.15	3.30	5.73	588.07	-339.56	0.16
Service						
Dead+Wind 180 deg -	33.15	0.00	6.62	678.84	-0.35	0.08
Service						
Dead+Wind 210 deg -	33.15	-3.30	5.73	588.16	339.09	-0.03
Service						
Dead+Wind 240 deg -	33.15	-5.74	3.30	337.31	589.62	-0.05
Service						
Dead+Wind 270 deg -	33.15	-6.62	-0.00	-1.72	681.19	-0.07
Service						
Dead+Wind 300 deg -	33.15	-5.74	-3.31	-341.61	590.51	-0.15
Service						
Dead+Wind 330 deg -	33.15	-3.31	-5.74	-592.37	339.55	-0.15
Service						

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	$P X$	PY	PZ	PX	PY	$P Z$	
Comb.	K	K	K	K	K	K	
1	0.00	-33.15	0.00	0.00	33.15	0.00	0.000\%
2	-0.02	-39.78	-30.56	0.02	39.78	30.56	0.000\%
3	-0.02	-29.83	-30.56	0.02	29.83	30.56	0.000\%
4	15.26	-39.78	-26.45	-15.26	39.78	26.45	0.000\%
5	15.26	-29.83	-26.45	-15.26	29.83	26.45	0.000\%
6	26.46	-39.78	-15.26	-26.46	39.78	15.26	0.000\%
7	26.46	-29.83	-15.26	-26.46	29.83	15.26	0.000\%
8	30.52	-39.78	-0.04	-30.52	39.78	0.04	0.000\%
9	30.52	-29.83	-0.04	-30.52	29.83	0.04	0.000\%
10	26.41	-39.78	15.23	-26.41	39.78	-15.23	0.000\%
11	26.41	-29.83	15.23	-26.41	29.83	-15.23	0.000\%
12	15.22	-39.78	26.42	-15.22	39.78	-26.42	0.000\%
13	15.22	-29.83	26.42	-15.22	29.83	-26.42	0.000\%
14	0.01	-39.78	30.49	-0.01	39.78	-30.49	0.000\%
15	0.01	-29.83	30.49	-0.01	29.83	-30.49	0.000\%
16	-15.22	-39.78	26.42	15.22	39.78	-26.42	0.000\%
17	-15.22	-29.83	26.42	15.22	29.83	-26.42	0.000\%
18	-26.43	-39.78	15.20	26.43	39.78	-15.20	0.000\%
19	-26.43	-29.83	15.20	26.43	29.83	-15.20	0.000\%
20	-30.53	-39.78	-0.01	30.53	39.78	0.01	0.000\%
21	-30.53	-29.83	-0.01	30.53	29.83	0.01	0.000\%
22	-26.46	-39.78	-15.25	26.46	39.78	15.25	0.000\%
23	-26.46	-29.83	-15.25	26.46	29.83	15.25	0.000\%
24	-15.23	-39.78	-26.47	15.23	39.78	26.47	0.000\%
25	-15.23	-29.83	-26.47	15.23	29.83	26.47	0.000\%
26	0.00	-65.53	0.00	0.00	65.53	0.00	0.000\%
27	-0.00	-65.53	-8.05	0.00	65.53	8.05	0.000\%
28	4.02	-65.53	-6.97	-4.02	65.53	6.97	0.000\%
29	6.97	-65.53	-4.02	-6.97	65.53	4.02	0.000\%
30	8.04	-65.53	-0.01	-8.04	65.53	0.01	0.000\%
31	6.96	-65.53	4.01	-6.96	65.53	-4.01	0.000\%
32	4.01	-65.53	6.96	-4.01	65.53	-6.96	0.000\%
33	0.00	-65.53	8.04	-0.00	65.53	-8.04	0.000\%
34	-4.01	-65.53	6.96	4.01	65.53	-6.96	0.000\%
35	-6.96	-65.53	4.01	6.96	65.53	-4.01	0.000\%
36	-8.04	-65.53	-0.00	8.04	65.53	0.00	0.000\%
37	-6.97	-65.53	-4.02	6.97	65.53	4.02	0.000\%
38	-4.02	-65.53	-6.97	4.02	65.53	6.97	0.000\%
39	-0.00	-33.15	-6.63	0.00	33.15	6.63	0.000\%
40	3.31	-33.15	-5.74	-3.31	33.15	5.74	0.000\%
41	5.74	-33.15	-3.31	-5.74	33.15	3.31	0.000\%
42	6.62	-33.15	-0.01	-6.62	33.15	0.01	0.000\%
43	5.73	-33.15	3.30	-5.73	33.15	-3.30	0.000\%
44	3.30	-33.15	5.73	-3.30	33.15	-5.73	0.000\%
45	0.00	-33.15	6.62	-0.00	33.15	-6.62	0.000\%
46	-3.30	-33.15	5.73	3.30	33.15	-5.73	0.000\%
47	-5.74	-33.15	3.30	5.74	33.15	-3.30	0.000\%
48	-6.62	-33.15	-0.00	6.62	33.15	0.00	0.000\%
49	-5.74	-33.15	-3.31	5.74	33.15	3.31	0.000\%
50	-3.31	-33.15	-5.74	3.31	33.15	5.74	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00095638
3	Yes	4	0.00000001	0.00030590
4	Yes	6	0.00000001	0.00007887
5	Yes	5	0.00000001	0.00060854
6	Yes	6	0.00000001	0.00007840
7	Yes	5	0.00000001	0.00060480
8	Yes	4	0.00000001	0.00091710
9	Yes	4	0.00000001	0.00025798
10	Yes	6	0.00000001	0.00007925
11	Yes	5	0.00000001	0.00061191
12	Yes	6	0.00000001	0.00007761
13	Yes	5	0.00000001	0.00059877
14	Yes	4	0.00000001	0.00092148
15	Yes	4	0.00000001	0.00026751
16	Yes	6	0.00000001	0.00007810
17	Yes	5	0.00000001	0.00060278
18	Yes	6	0.00000001	0.00007870
19	Yes	5	0.00000001	0.00060752
20	Yes	4	0.00000001	0.00092022
21	Yes	4	0.00000001	0.00026529
22	Yes	6	0.00000001	0.00007795
23	Yes	5	0.00000001	0.00060122
24	Yes	6	0.00000001	0.00007939
25	Yes	5	0.00000001	0.00061268
26	Yes	4	0.00000001	0.00001548
27	Yes	5	0.00000001	0.00037070
28	Yes	5	0.00000001	0.00057174
29	Yes	5	0.00000001	0.00057337
30	Yes	5	0.00000001	0.00036711
31	Yes	5	0.00000001	0.00056948
32	Yes	5	0.00000001	0.00056025
33	Yes	5	0.00000001	0.00036650
34	Yes	5	0.00000001	0.00057035
35	Yes	5	0.00000001	0.00056900
36	Yes	5	0.00000001	0.00036941
37	Yes	5	0.00000001	0.00057362
38	Yes	5	0.00000001	0.00058246
39	Yes	4	0.00000001	0.00005412
40	Yes	4	0.00000001	0.00044582
41	Yes	4	0.00000001	0.00043854
42	Yes	4	0.00000001	0.00005192
43	Yes	4	0.00000001	0.00045111
44	Yes	4	0.00000001	0.00042464
45	Yes	4	0.00000001	0.00005235
46	Yes	4	0.00000001	0.00043253
47	Yes	4	0.00000001	0.00044217
48	Yes	4	0.00000001	0.00005273
49	Yes	4	0.00000001	0.00043169
50	Yes	4	0.00000001	0.00045483

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	Twist
	ft	$139.5-93.04$	27.266	39	1.7532
L1	$96.96-46.38$	12.952	39	1.3103	0
L2	$51.63-0$	3.548	39	0.6512	0.0022
L3					0.00003

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
136.00	80010121 w/ Mount Pipe	39	26.002	1.7208	0.0020	29128
134.00	VHLP2-11	39	25.281	1.7023	0.0020	26480
132.00	A-ANT-23G-2-C	39	24.562	1.6837	0.0019	19419
130.00	APXVSPP18-C-A20 w/ Mount Pipe	39	23.845	1.6649	0.0018	15330
119.00	(2) DB846F65ZAXY w/ Mount Pipe	39	19.976	1.5583	0.0014	7104
110.00	ERICSSON AIR 21 B2A B4P w/ Mount Pipe	39	16.959	1.4641	0.0011	4936
100.00	APXV18-206517S-C w/ Mount Pipe	39	13.839	1.3483	0.0008	3690
75.00	KS24019-L112A	39	7.500	1.0000	0.0004	3438

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	o

Critical Deflections and Radius of Curvature - Design Wind

$\left.\begin{array}{ccccccc}\hline \text { Elevation } & \text { Appurtenance } & \begin{array}{c}\text { Gov. } \\ \text { Load } \\ \text { Comb. }\end{array} & \text { Deflection } & \text { in } & \text { Tilt } & \text { Twist }\end{array} \begin{array}{c}\text { Radius of } \\ \text { Curvature } \\ \mathrm{ft}\end{array}\right)$

Compression Checks

Pole Design Data

Section No.	Elevation ft	Size	L ft	$\begin{gathered} L_{u} \\ f t \end{gathered}$	K//r	A $i n^{2}$	$\begin{gathered} P_{u} \\ K \end{gathered}$	$\begin{gathered} \phi P_{n} \\ K \end{gathered}$	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
L1	139.5-93.04 (1)	TP26.99x15.5×0.25	46.46	0.00	0.0	$\begin{gathered} 20.448 \\ 9 \end{gathered}$	-12.43	1196.26	0.010
L2	$93.04-46.38$ (2)	TP37.91x25.5205x0.375	50.58	0.00	0.0	$\begin{gathered} 43.145 \\ 4 \end{gathered}$	-23.49	2524.01	0.009
L3	46.38-0 (3)	TP48.5x35.874×0.375	51.63	0.00	0.0	$\begin{gathered} 57.280 \\ 8 \end{gathered}$	-39.74	3350.93	0.012

tnxTower Report - version 8.0.5.0

Pole Bending Design Data								
Section No.	Elevation	Size	$M_{u x}$ kip-ft	$\phi M_{n x}$	$\begin{aligned} & \text { Ratio } \\ & M_{u x} \\ & \hline \end{aligned}$	$M_{u y}$ kip-ft	$\phi M_{n y}$	$\begin{aligned} & \text { Ratio } \\ & M_{u y} \\ & \hline \end{aligned}$
	ft				$\phi M_{n x}$	kip-ft		$\phi M_{n y}$
L1	139.5-93.04 (1)	TP26.99x15.5×0.25	554.68	787.46	0.704	0.00	787.46	0.000
L2	$93.04-46.38$ (2)	TP37.91×25.5205x0.375	1676.03	2373.92	0.706	0.00	2373.92	0.000
L3	46.38-0 (3)	TP48.5×35.874×0.375	3164.07	3860.34	0.820	0.00	3860.34	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \end{gathered}$	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$
$f t$			K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	139.5-93.04 (1)	TP26.99x15.5×0.25	22.70	358.88	0.063	0.21	809.94	0.000
L2	$93.04-46.38$ (2)	TP37.91x25.5205x0.375	26.77	757.20	0.035	0.32	2403.74	0.000
L3	46.38-0 (3)	TP48.5x35.874×0.375	30.60	1005.28	0.030	0.43	4236.79	0.000

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ M u y \end{gathered}$	$\begin{gathered} \text { Ratio } \\ V_{u} \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
$f t$		ϕP_{n}	$\phi M_{n x}$	$\phi M_{\text {ny }}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	139.5-93.04 (1)	0.010	0.704	0.000	0.063	0.000	0.719	1.050	4.8.2
L2	$93.04-46.38$ (2)	0.009	0.706	0.000	0.035	0.000	0.717	1.050	4.8.2
L3	46.38-0 (3)	0.012	0.820	0.000	0.030	0.000	0.832	1.050	4.8.2

Section Capacity Table

Section No.	$\begin{aligned} & \text { Elevation } \\ & \text { ft } \end{aligned}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \varnothing P_{\text {allow }} \\ K \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { Capacity } \end{gathered}$	Pass Fail
L1	139.5-93.04	Pole	TP26.99x15.5×0.25	1	-12.43	1256.07	68.5	Pass
L2	93.04-46.38	Pole	TP37.91×25.5205x0.375	2	-23.49	2650.21	68.2	Pass
L3	46.38-0	Pole	TP48.5×35.874×0.375	3	-39.74	3518.48	79.3	Pass
						Pole (L3) RATING $=$	$\begin{gathered} \text { Summary } \\ 79.3 \\ 79.3 \end{gathered}$	Pass Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

Site Info	
BU \#	
Site Name	ROGERS PROPERTY
Order \#	479806 Rev.0

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
I_{ar} (in)	1

$|$| Applied Loads | |
| ---: | :---: |
| Moment (kip-ft) | 3164.07 |
| Axial Force (kips) | 39.74 |
| Shear Force (kips) | |
| *TIA-222-H Section 15.5 Applied | |

Connection Properties

Analysis Results

Anchor Rod Data

(16) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 57" BC

Base Plate Data
63 " OD x 2" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data
(16) 15 "H x 6"W x 0.75"T, Notch: 0.75 "
plate: $F y=50 \mathrm{ksi}$; weld: $\mathrm{Fy}=70 \mathrm{ksi}$
horiz. weld: $0.375^{\prime \prime}$ groove, $45^{\circ} \mathrm{dbl}$ bevel, $0.3125^{\prime \prime}$ fillet vert. weld: $0.3125^{\prime \prime}$ fillet

Pole Data
$48.5^{\prime \prime} \times 0.375$ " 18 -sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Anchor Rod Summary		(units of kips, kip-in)
Pu_c $=168.91$	$\phi P n _c=243.75$	Stress Rating
$\mathrm{Vu}=1.91$	$\phi \mathrm{Vn}=73.13$	$\mathbf{6 6 . 1 \%}$
$\mathrm{Mu}=\mathrm{n} / \mathrm{a}$	$\phi \mathrm{Mn}=\mathrm{n} / \mathrm{a}$	Pass

Base Plate Summary		
Max Stress (ksi):	29.13	(Roark's Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	$\mathbf{5 1 . 4 \%}$	Pass
Stiffener Summary	$\mathbf{6 2 . 4 \%}$	Pass
Horizontal Weld:	$\mathbf{5 8 . 4 \%}$	Pass
Vertical Weld:	$\mathbf{2 2 . 7 \%}$	Pass
Plate Flexure+Shear:	$\mathbf{6 3 . 1 \%}$	Pass
Plate Tension+Shear:	$\mathbf{6 9 . 0 \%}$	Pass
Plate Compression:		
Pole Summary	$\mathbf{1 5 . 0 \%}$	Pass

Pier and Pad Foundation

BU \#: 881541
Site Name: ROGERS PROPE
App. Number: 479806 Rev. 0

	TIA-222 Revision:
Tower Type:	Monopole

Superstructure Analysis Reactions

Compression, $\mathbf{P}_{\text {comp }}:$	39	kips
Base Shear, Vu_comp:	30	kips
Moment, $\mathbf{M}_{\mathbf{u}}:$	2090	ft :kips
Tower Height, $\mathbf{H}:$	139.5	ft
BP Dist. Above Fdn, bp $_{\text {dist }}:$	3.25	in

Pier Properties			
Pier Shape:	Square		
Pier Diameter, dpier:	6.5	ft	
Ext. Above Grade, E:	1	ft	
Pier Rebar Size, Sc:	11		
Pier Rebar Quantity, mc:	22		
Pier Tie/Spiral Size, St:	5		
Pier Tie/Spiral Quantity, mt:	11		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, cc pier: 2	4	in	

Pad Properties

Pad Properties		
Depth, D:	7	ft
Pad Width, $\mathbf{W}:$	23	ft
Pad Thickness, T:	3	ft
Pad Rebar Size (Bottom), Sp:	8	
Pad Rebar Quantity (Bottom), mp:	45	
Pad Clear Cover, $\mathbf{c c}_{\text {pad }}:$	3	in

Material Properties
Rebar Grade, Fy:

Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	4	ksi
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf

Soil Properties		
Total Soil Unit Weight, $\gamma:$	125	pcf
Ultimate Net Bearing, Qnet:	8.000	ksf
Cohesion, $\mathbf{C u}:$	0.000	ksf
Friction Angle, $\varphi:$	34	degrees
SPT Blow Count, $\mathbf{N}_{\text {blows: }}:$		
Base Friction, $\mu:$	0.6	
Neglected Depth, N:	3.50	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	7	ft

ry Concrete Density, $\delta \mathbf{c}$
Soil Properties

Goundwater Depth, gw: ft

Top \& Bot. Pad Rein. Different?:	Γ
Block Foundation?:	Γ

Foundation Analysis Checks				
	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	350.86	30.00	$\mathbf{8 . 1} \%$	Pass
Bearing Pressure (ksf)	6.66	2.04	$\mathbf{2 9 . 2 \%}$	Pass
Overturning (kip*ft)	5370.99	2338.13	$\mathbf{4 3 . 5 \%}$	Pass
Pier Flexure (Comp.) (kip*ft)	5006.11	2240.00	$\mathbf{4 2 . 6 \%}$	Pass
Pier Compression (kip)	26891.28	77.03	$\mathbf{0 . 3} \%$	Pass
Pad Flexure (kip*ft)	4857.40	763.13	$\mathbf{1 5 . 0 \%}$	Pass
Pad Shear - 1-way (kips)	824.79	125.33	$\mathbf{1 4 . 5 \%}$	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.026	$\mathbf{1 3 . 0} \%$	Pass
Flexural 2-way (Comp) (kip*ft)	6567.23	1344.00	$\mathbf{1 9 . 5 \%}$	Pass

*Rating per TIA-222-H Section 15.5

Soil Rating*: 43.5\%
Structural Rating* 42.6\%
<--Toggle between Gross and Net
Drilled Pier Foundation

BU \# :	881541
Site Name:	ROGERS PROPERTY
Order Number:	479806 Rev.0
TIA-222 Revison:	$\begin{aligned} & H \\ \text { Tower Type: } & \text { Monopole } \\ & \end{aligned}$

	$\left\|\begin{array}{l} \operatorname{lon} \\ m \end{array}\right\|$	$\stackrel{10}{\sim}$	$\stackrel{\square}{\square}$
	\mid	N	앗
은	\bigcirc	$\stackrel{1}{n}$	
$\stackrel{\text { ® }}{\text { ® }}$		N	

ASCE 7 Hazards Report

Standard:	ASCE/SEI 7-10	Elevation: 91.22 ft (NAVD 88)
Risk Category:	II	Latitude: 41.285486
Soil Class:	D - Stiff Soil	Longitude: -73.042575

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class: D-Stiff Soil

Results:

$\mathrm{S}_{\mathrm{S}}:$	0.193
$\mathrm{~S}_{1}:$	0.063
$\mathrm{~F}_{\mathrm{a}}:$	1.6
$\mathrm{~F}_{\mathrm{V}}:$	2.4
$\mathrm{~S}_{\mathrm{Ms}}:$	0.309
$\mathrm{~S}_{\mathrm{M} 1}:$	0.152

$\mathrm{S}_{\mathrm{DS}}:$	0.206
$\mathrm{~S}_{\mathrm{D} 1}:$	0.101
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.102
$\mathrm{PGA}_{\mathrm{M}}:$	0.163
$\mathrm{~F}_{\mathrm{PGA}}:$	1.596
$\mathrm{I}_{\mathrm{e}}:$	1

Seismic Design Category
 B

Data Accessed:
Date Source:

Fri Jun 142019
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Ice

Results

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
0.75 in .

15 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Fri Jun 142019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Charles McGuirt
Crown Castle
3530 Torringdon Way Suite 300
Charlotte, NC 28277

Subject:
Carrier Designation:

Crown Castle Designation:

Engineering Firm Designation:
Site Data:

Structure Information

Mount Modification Analysis

T-Mobile Equipment Change-Out Carrier Site Number: Carrier Site Name:

Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Number: Crown Castle Order Number:

Mastec Network Solutions
507 Airport Blvd, Suite 111
Morrisville, NC 27560
(919) 674-5895

Mastec Network Solutions Project Number: 18545-MOD1
700 Grassy Hill Road, Orange, New Haven County, CT, 06477
Latitude: 41¹7' 7.74" Longitude: $-73^{\circ} \mathbf{2}^{\prime} 33.27^{\prime \prime}$
Tower Height \& Type: Mount Elevation:
Mount Width \& Type:
139.5 ft Monopole

110 ft
13'-4" ft T-Arm Mount W/ Modifications

CT11083Q CT083/Sprint/Grassy Hill

881541
Rogers Property
559347
479806 Revision 0

Dear Charles McGuirt,
Mastec Network Solutions is pleased to submit this "Mount Modification Analysis Report" to determine the structural integrity of T-Mobile's antenna mounting system with the proposed appurtenance and equipment addition on the above mentioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

T-Arm Mount W/ Modifications Sufficient
This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Noah Noxon
Respectfully Submitted by:

Raphael Mohamed, PE, Peng
Senior Director of Engineering CT PE License No. 25112

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration Information

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

> 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Modification Drawings

1) INTRODUCTION

This is a $13^{\prime}-4$ " ft T-Arm Mount mapped by P-Sec in April of 2019. It is installed at the 110 ft elevation of a 139.5 ft Monopole.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category
an ultimate:
Exposure Category:
Topographic Category:
Ice Thickness:
Wind Speed with Ice:
Seismic Ss:
Seismic S1:
Live Loading Wind Speed:
Live Loading at Mid/End-Points:
Man Live Loading at Mount Pipes

TIA-222-H
II
125 mph
C
1
1.5 in

50 mph
0.193
0.063

30 mph
500 lb
250 lb

Table 1 - Proposed Loading Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	$\begin{array}{\|l\|} \hline \text { Number } \\ \text { of } \\ \text { Antennas } \\ \hline \end{array}$	Antenna Manufacturer	Antenna Model	Mount / Modification Details
110.0	110.0	3	ericsson	Air 21 B2A B4P	(3) 13'-4" T-Arm W/ Modifications
		3	ericsson	Air 21 B4A B2P	
		3	rfs celwave	APXVAARR24-43-U-NA20	
		3	ericsson	KRY 112 144/1	
		3	ericsson	RADIO 4449 B12/B71	

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
4-MOUNT MAPPING	P-Sec	8347381	CCIsites
4-MOUNT ANALYSIS REPORT	Mastec	8366040	CCIsites
4-MOUNT REINFORCEMENT DESIGN DRAWINGS	Mastec	-	On File
4-ORDER INFORMATION	CROWN CASTLE	$\begin{gathered} \text { ORDER NO. } \\ \text { 479806, REV } \\ 0 \end{gathered}$	CCIsites

3.1) Analysis Method

RISA-3D (Version No. 17.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision C).

3.2) Assumptions

1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
2) The configuration of antennas, mounts, and other appurtenances are as specified in Tables 1 and the referenced drawings.
3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
4) Steel grades have been assumed as follows, unless noted otherwise:
```
Channel, Solid Round, Angle, Plate
    ASTM A36 (GR 36)
    HSS (Rectangular) ASTM 500 (GR B-46)
    Pipe
    Connection Bolts
    ASTM A53 (GR B-35)
    ASTM A325
```

This analysis may be affected if any assumptions are not valid or have been made in error. Mastec should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 4 - Mount Component Stresses vs. Capacity (T-Arm Mount, All Sectors)

Notes	Component	Beam No.	Centerline (ft)	\% Capacity	Pass / Fail
1,2	Standoff	--	110	23.6	Pass
1,2	Support Pipe	--	110	0.1	Pass
1,2	Face Horizontal	--	110	44.2	Pass
1,2	Mount Pipes	--	110	43.7	Pass
1,2	PRK-SFS	--	110	49.7	Pass
1,2	P2174	--	110	38.8	Pass
1,2	PV-PKBK-M	--	110	26.1	Pass
1,2	Mount to Tower Connection Plate		110	30.9	Pass
1,2	Mount to Tower Connection Bolts		-	16.8	Pass

	Structure Rating (max from all components) $=$	49.7%
Notes: 1)	See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the \% capacity consumed. All sectors are typical	

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the structural modifications listed below must be completed.

1. Site Pro PRK-SFS
2. PV- PKPB-M

Engineering Detail Drawings have been provided in Appendix E- Mount Modification Drawings. Connection from the mount to the tower and local stresses on the tower are sufficient.

APPENDIX A

WIRE FRAME AND RENDERED MODELS

Mastec		Render
NDN		881541 Rogers Property

Mastec		Member Labels
NDN	881541 Rogers Property	June 3, 2019 at 3:59 PM
18545-MOD1		T-Arm.r3d

Mastec		Joint Labels
NDN	881541 Rogers Property	June 3, 2019 at 3:59 PM
18545-MOD1		T-Arm.3d

Mastec		Shapes
NDN	881541 Rogers Property	June 3, 2019 at 3:59 PM
18545-MOD1		T-Arm.r3d

Mastec	881541 Rogers Property	Unity Bending Check
NDN		June 3, 2019 at 5:03 PM
18545-MOD1		T-Arm.r3d

Mastec		Shear Check
NDN		881541 Rogers Property
18545-MOD1		June 3, 2019 at 5:03 PM

APPENDIX B

SOFTWARE INPUT CALCULATIONS

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (11E.	Density[k/ft.	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	3	. 65	49	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	3	65	49	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	3	65	49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	3	. 65	. 527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	3	65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	3	65	49	35	1.6	60	1.2
7	A1085	29000	11154	3	. 65	49	50	1.4	65	1.3

Hot Rolled Steel Section Sets

Label		Shape	Type	Design List	Material	Design R	A [in2]	Iyy [in4] Izz [in4]		$\frac{J \text { [in4] }}{12.8}$
1	Standoff	HSS4X4X4	Beam	Tube	A500 Gr..	Typical	3.37	7.8	7.8	
2	Support Pipe	PIPE 4.0	Beam	Pipe	A53 Gr.B	Typical	2.96	6.82	6.82	13.6
3	Face Horizontal	PIPE 3.0	Beam	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
4	Mount Pipes	PIPE_2.0X	Beam	Pipe	A53 Gr.B	Typical	1.4	827	827	1.65
5	Position 3 Mount Pipe	PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
6	SFS-H	L2.5×2.5×3	Beam	Single Angle	A36 Gr. 36	Typical	901	535	535	011
7	P2174	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	627	627	1.25
8	PKBK	LL3x3x3x3	Beam	Double Angle (3..	A53 Gr.B	Typical	2.18	4.09	1.9	027

Joint Coordinates and Temperatures

	Label	$\mathrm{X}[\mathrm{ft}]$	$\mathrm{Y}[\mathrm{ft}]$	$\mathrm{Z}[\mathrm{ft}]$	Temp [F]	Detach From Diap..
1	N1	0	0	0	0	
2	N2	0	0	2.916667	0	
3	N3	0	75	2.916667	0	
4	N4	0	-. 75	2.916667	0	
5	N5	0	0	3.104167	0	
6	N6	6.666667	0	3.104167	0	
7	N7	-6.666667	0	3.104167	0	
8	N8	-6	0	3.104167	0	
9	N9	6	0	3.104167	0	
10	N10	-1.083333	0	3.104167	0	
11	N11	2	0	3.104167	0	
12	N12	-1.083333	4.416667	3.354167	0	
13	N13	-1.083333	-3.583333	3.354167	0	
14	N14	-1.083333	0	3.354167	0	
15	N15	-6	0	3.354167	0	
16	N16	6	0	3.354167	0	
17	N17	2	0	3.354167	0	
18	N18	-6	2.916667	3.354167	0	
19	N19	6	2.916667	3.354167	0	
20	N20	2	2.916667	3.354167	0	
21	N21	-6	-3.083333	3.354167	0	
22	N22	6	-3.083333	3.354167	0	
23	N23	2	-3.083333	3.354167	0	
24	N24	0	2	0	0	
25	N25	6.666667	2	3.104167	0	
26	N26	-6.666667	2	3.104167	0	
27	N27	-6	2	3.104167	0	
28	N28	6	2	3.104167	0	
29	N29	-1.083333	2	3.104167	0	
30	N30	2	2	3.104167	0	
31	N31	-1.083333	2	3.354167	0	
32	N32	-6	2	3.354167	0	

Joint Coordinates and Temperatures (Continued)

Label								X[ft]	$\mathrm{Y}[\mathrm{ft}]$	$\mathrm{Z}[\mathrm{ft}]$	Temp [F]	Detach From Diap...
33	N33	6	2	3.354167	0							
34	N34	2	2	3.354167	0							
35	N35	-0.333333	2	0	0							
36	N36	0.333333	2	0	0							
37	N37	-3.416667	2	3.104167	0							
38	N38	3.416667	2	3.104167	0							
39	N39	0	0	2.416667	0							
40	N40	0	-3.1875	0	0							

Joint Boundary Conditions

	int Lab	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N24	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N35						
4	N36						
5	N40	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Primary Data

	Label	1 Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rules
1	M1	N2	N1			Standoff	Beam	Tube	A500 Gr.B..	Typical
2	M2	N3	N4			Support Pipe	Beam	Pipe	A53 Gr.B	Typical
3	M3	N7	N6			Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
4	M4	N5	N2			RIGID	None	None	RIGID	Typical
5	MP3	N12	N13			Position 3 Mou.	Beam	Pipe	A53 Gr.B	Typical
6	M6	N15	N8			RIGID	None	None	RIGID	Typical
7	M7	N14	N10			RIGID	None	None	RIGID	Typical
8	M8	N17	N11			RIGID	None	None	RIGID	Typical
9	M9	N16	N9			RIGID	None	None	RIGID	Typical
10	MP4	N18	N21			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical
11	MP2	N20	N23			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical
12	MP1	N19	N22			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical
13	M13	N26	N25			P2174	Beam	Pipe	A53 Gr.B	Typical
14	M14	N32	N27			RIGID	None	None	RIGID	Typical
15	M15	N31	N29			RIGID	None	None	RIGID	Typical
16	M16	N34	N30			RIGID	None	None	RIGID	Typical
17	M17	N33	N28			RIGID	None	None	RIGID	Typical
18	M18	N35	N36			RIGID	None	None	RIGID	Typical
19	M19	N37	N35		90	SFS-H	Beam	Sinqle Anqle	A36 Gr. 36	Typical
20	M20	N38	N36		180	SFS-H	Beam	Single Angle	A36 Gr. 36	Typical
21	M21	N39	N40			PKBK	Beam	Double Angle (..	A53 Gr.B	Typical

Joint Loads and Enforced Displacements (BLC 42 : Man 1 (500 Ibs))

Joint Label			L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f...
1	N9	L	Y	-.5	

Joint Loads and Enforced Displacements (BLC 43 : Man 2 (500 lbs))

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f..
1	N28	L	Y	-. 5

Joint Loads and Enforced Displacements (BLC 44 : Man 3 (500 lbs))

Joint Loads and Enforced Displacements (BLC 44 : Man 3 (500 Ibs)) (Continued)

	Joint Label	L,D,M	Direction	Magnitude[(k,k-ft), (in,rad), (k*s^2/f.
1	N10	L	Y	-. 5

Joint Loads and Enforced Displacements (BLC 45: Man 4 (250 lbs))

Joint Label	L.D.M	Direction	Magnitude[(k,k-ft). (in, rad). (k**^2/f...	
1	N29	L	Y	-.25

Joint Loads and Enforced Displacements (BLC 46 : Man 5 (250 Ibs))

	Joint Label	L.D.M	Direction	Magnitude[(k,k-ft), (in,rad), ($\mathrm{k}^{*} \mathrm{~s}^{\wedge} 2 / \mathrm{f}$.
1	N8	L	Y	-. 25

Joint Loads and Enforced Displacements (BLC 47 : Man 6 (250 Ibs))

| Joint Label | L,D,M | Direction | Magnitude[(k,k-ft), (in, rad), (k*s^2/f... | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N 27 | L | Y | -.25 |

Member Point Loads (BLC 1 : Dead)

Member Label							Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$	Location[ft,\%]
1	MP1	Y	-.092	$\% 50$					
2	MP1	Y	-.011	$\% 50$					
3	MP3	Y	-.128	$\% 50$					
4	MP4	Y	-.092	$\% 50$					
5	MP4	Y	-.075	$\% 50$					

Member Point Loads (BLC 2 : Ice Dead)

Member Label						Direction	Magnitude $[\mathrm{k}, \mathrm{k}-\mathrm{ft}]$	Location[ft,\%]
1	MP1	Y	-.156	$\% 50$				
2	MP1	Y	-.01	$\% 50$				
3	MP3	Y	-.45	$\% 50$				
4	MP4	Y	-.155	$\% 50$				
5	MP4	Y	-.046	$\% 50$				

Member Point Loads (BLC 3 : Full Wind Antenna (0 Deg))

Member Label						Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	MP1	Z	-.134	$\% 11.1$				
2	MP3	Z	-.447	$\% .1$				
3	MP4	Z	-.134	$\% 11.2$				
4	MP4	Z	-.007	$\% 50$				
5	MP1	Z	-.134	$\% 88.9$				
6	MP3	Z	-.447	$\% 99.9$				
7	MP4	Z	-.134	$\% 88.8$				

Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg))

Member Label				
1	MP1	Direction	Magnitude[k,k-ft]	Location[ft,\%]
2	MP3	Z	-.108	$\% 11.1$
3	MP4	Z	-.333	$\% .1$
4	MP4	Z	-.108	$\% 11.2$
5	MP1	Z	-.006	$\% 80$
6	MP3	Z	-.108	$\% 99.9$
7	MP4	Z	-.333	$\% 88.8$
8	MP1	X	-.108	$\% 11.1$
9	MP1	X	.062	$\% 45.1$
10	MP3	X	0	$\% .1$

Location[ft,\%]
\%11.2
\%50
\%88.9
\%54.9
\%99.9
\%88.8

Member Point Loads (BLC 5 : Full Wind Antenna (60 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	MP1	Z	-. 052	\%11.1
2	MP3	Z	-. 129	\%. 1
3	MP4	Z	-. 052	\%11.2
4	MP4	Z	-. 003	\%50
5	MP1	Z	-. 052	\%88.9
6	MP3	Z	-. 129	\%99.9
7	MP4	Z	-. 052	\%88.8
8	MP1	X	091	\%11.1
9	MP1	X	003	\%45.1
10	MP3	X	224	\%. 1
11	MP4	X	091	\%11.2
12	MP4	X	035	\%50
13	MP1	X	091	\%88.9
14	MP1	X	003	\%54.9
15	MP3	X	224	\%99.9
16	MP4	X	091	\%88.8

Member Point Loads (BLC 6 : Full Wind Antenna (90 Deg))

	Member Label	Direction	Magnitude[k.k-ft]	Location[ft, \%]
1	MP1	Z	0	\%11.1
2	MP3	Z	0	\%. 1
3	MP4	Z	0	\%11.2
4	MP4	Z	0	\%50
5	MP1	Z	0	\%88.9
6	MP3	Z	0	\%99.9
7	MP4	Z	0	\%88.8
8	MP1	X	095	\%11.1
9	MP1	X	004	\%45.1
10	MP3	X	196	\%. 1
11	MP4	X	. 095	\%11.2
12	MP4	X	. 051	\%50
13	MP1	X	095	\%88.9
14	MP1	X	004	\%54.9
15	MP3	X	196	\%99.9
16	MP4	X	095	\%88.8

Member Point Loads (BLC 7 : Full Wind Antenna (120 Deg))							
Member Label					Direction	Magnitude[k,k-ft]	Location[ft.\%]
1							

Location[ft,\%]
$\% 45.1$
$\% .1$
$\% 11.2$
$\% 50$
$\% 88.9$
$\% 54.9$
$\% 99.9$
888.8

Member Point Loads (BLC 8 : Full Wind Antenna (150 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	MP1	Z	108	\%11.1
2	MP3	Z	333	\%. 1
3	MP4	Z	108	\%11.2
4	MP4	Z	006	\%50
5	MP1	Z	108	\%88.9
6	MP3	Z	333	\%99.9
7	MP4	Z	108	\%88.8
8	MP1	X	062	\%11.1
9	MP1	X	0	\%45.1
10	MP3	X	192	\%. 1
11	MP4	X	062	\%11.2
12	MP4	X	009	\%50
13	MP1	X	062	\%88.9
14	MP1	X	0	\%54.9
15	MP3	X	192	\%99.9
16	MP4	X	062	\%88.8

Member Point Loads (BLC 15 : Ice Wind Antenna (0 Deg))

Member Label						Direction	Lagnitude[k,k-ft]	Location[ft,\%]
1	MP1	Z	-.028	$\% 11.1$				
2	MP3	Z	-.083	$\% .1$				
3	MP4	Z	-.028	$\% 11.2$				
4	MP4	Z	-.002	$\% 50$				
5	MP1	Z	-.028	$\% 88.9$				
6	MP3	Z	-.083	$\% 99.9$				
7	MP4	Z	-.028	$\% 88.8$				

Member Point Loads (BLC 16 : Ice Wind Antenna (30 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	MP1	Z	-. 023	\%11.1
2	MP3	Z	-. 063	\%. 1
3	MP4	Z	-. 023	\%11.2
4	MP4	Z	-. 001	\%50
5	MP1	Z	-. 023	\%88.9
6	MP3	Z	-. 063	\%99.9
7	MP4	Z	-. 023	\%88.8
8	MP1	X	. 013	\%11.1
9	MP1	X	0	\%45.1
10	MP3	X	037	\%. 1
11	MP4	X	. 013	\%11.2
12	MP4	X	. 002	\%50
13	MP1	X	013	\%88.9
14	MP1	X	0	\%54.9
15	MP3	X	. 037	\%99.9

Location[ft,\%] \%88.8

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	MP1	Z	-. 012	\%11.1
2	MP3	Z	-. 026	\%. 1
3	MP4	Z	-. 012	\%11.2
4	MP4	Z	-. 001	\%50
5	MP1	Z	-. 012	\%88.9
6	MP3	Z	-. 026	\%99.9
7	MP4	Z	-. 012	\%88.8
8	MP1	X	. 02	\%11.1
9	MP1	X	. 001	\%45.1
10	MP3	X	. 046	\%. 1
11	MP4	X	. 02	\%11.2
12	MP4	X	. 009	\%50
13	MP1	X	. 02	\%88.9
14	MP1	X	. 001	\%54.9
15	MP3	X	. 046	\%99.9
16	MP4	X	. 02	\%88.8

Member Point Loads (BLC 18 : Ice Wind Antenna (90 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	MP1	Z	0	\%11.1
2	MP3	Z	0	\%. 1
3	MP4	Z	0	\%11.2
4	MP4	Z	0	\%50
5	MP1	Z	0	\%88.9
6	MP3	Z	0	\%99.9
7	MP4	Z	0	\%88.8
8	MP1	X	. 022	\%11.1
9	MP1	X	. 002	\%45.1
10	MP3	X	. 042	\%. 1
11	MP4	X	. 022	\%11.2
12	MP4	X	. 014	\%50
13	MP1	X	022	\%88.9
14	MP1	X	. 002	\%54.9
15	MP3	X	. 042	\%99.9
16	MP4	X	. 022	\%88.8

Member Point Loads (BLC 19 : Ice Wind Antenna (120 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	MP1	Z	. 012	\%11.1
2	MP3	Z	026	\%. 1
3	MP4	Z	. 012	\%11.2
4	MP4	Z	001	\%50
5	MP1	Z	012	\%88.9
6	MP3	Z	. 026	\%99.9
7	MP4	Z	. 012	\%88.8
8	MP1	X	02	\%11.1
9	MP1	X	. 001	\%45.1
10	MP3	X	. 046	\%. 1
11	MP4	X	. 02	\%11.2
12	MP4	X	. 009	\%50
13	MP1	X	02	\%88.9

Member Point Loads (BLC 19 : Ice Wind Antenna (120 Deg)) (Continued)

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,\%]	
14	MP1	X	.001	$\% 54.9$
15	MP3	X	.046	$\% 99.9$
16	MP4	X	.02	$\% 88.8$

Member Point Loads (BLC 20 : Ice Wind Antenna (150 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft, \%]
1	MP1	Z	. 023	\%11.1
2	MP3	Z	026	\%. 1
3	MP4	Z	. 012	\%11.2
4	MP4	Z	001	\%50
5	MP1	Z	023	\%88.9
6	MP3	Z	. 026	\%99.9
7	MP4	Z	012	\%88.8
8	MP1	X	. 013	\%11.1
9	MP1	X	. 001	\%45.1
10	MP3	X	. 046	\%. 1
11	MP4	X	. 02	\%11.2
12	MP4	X	. 009	\%50
13	MP1	X	. 013	\%88.9
14	MP1	X	. 001	\%54.9
15	MP3	X	. 046	\%99.9
16	MP4	X	. 02	\%88.8

Member Point Loads (BLC 27 : Seismic Antenna (0 Deg))

Member Label						Direction	Magnitude[k,k-ft]	Location[ft,\%]
1	MP1	Z	-.009	$\% 50$				
2	MP1	Z	-.001	$\% 50$				
3	MP3	Z	-.013	$\% 50$				
4	MP4	Z	-.009	$\% 50$				

Member Point Loads (BLC 28 : Seismic Antenna (90 Deg))

Member Label	Direction	Magnitude[k,k-ft]	Location[ft.\%]	
1	MP1	X	.009	$\% 50$
2	MP1	X	.001	$\% 50$
3	MP3	X	.013	$\% 50$
4	MP4	X	.009	$\% 50$
5	MP4	X	.008	$\% 50$

Member Point Loads (BLC 41 : Seismic Vertical Antennas)

Member Label							Direction	Magnitude[k,k-ft]	Location[ft,\%]
1	MP1	Y	-.018	$\% 50$					
2	MP1	Y	-.002	$\% 50$					
3	MP3	Y	-.026	$\% 50$					
4	MP4	Y	-.018	$\% 50$					
5	MP4	Y	-.015	$\% 50$					

Member Distributed Loads (BLC 2 : Ice Dead)

Member Label			Direction		Start Magnitude[k/ft,F,ksf]	
1	M 1	Y	-.015	-.015	0	$\%$
2	M	Y	-.013	-.013	0	$\% 100$
3	M 3	Y	-.011	-.011	0	$\% 100$
4	M 4	Y	-.003	-.003	0	$\% 100$

Member Distributed Loads (BLC 2 : Ice Dead) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft,...	End Location[ft, \%]
5	MP3	Y	-. 009	-. 009	0	\%100
6	M6	Y	-. 003	-. 003	0	\%100
7	M7	Y	-. 003	-. 003	0	\%100
8	M8	Y	-. 003	-. 003	0	\%100
9	M9	Y	-. 003	-. 003	0	\%100
10	MP4	Y	-. 008	-. 008	0	\%100
11	MP2	Y	-. 008	-. 008	0	\%100
12	MP1	Y	-. 008	-. 008	0	\%100
13	M13	Y	-. 008	-. 008	0	\%100
14	M14	Y	-. 003	-. 003	0	\%100
15	M15	Y	-. 003	-. 003	0	\%100
16	M16	Y	-. 003	-. 003	0	\%100
17	M17	Y	-. 003	-. 003	0	\%100
18	M18	Y	-. 003	-. 003	0	\%100
19	M19	Y	-. 011	-. 011	0	\%100
20	M20	Y	-. 011	-. 011	0	\%100
21	M21	Y	-. 012	-. 012	0	\%100

Member Distributed Loads (BLC 9 : Full Wind Members (0 Deg))

	Member La	Direction	Start Magnitude[kft. F. .ksf]	End Magnitude[kft.F.ksf]	Start Locationfft,	End Location[ft.\%]
1	M1	Z	0	0	0	\%100
2	M2	Z	-. 02	-. 02	0	\%100
3	M3	Z	-. 015	-. 015	0	\%100
4	MP3	Z	-. 013	-. 013	0	\%. 1
5	MP4	Z	-. 011	-. 011	0	\%11.2
6	MP2	Z	-. 011	-. 011	0	\%100
7	MP1	Z	-. 011	-. 011	0	\%11.1
8	M13	Z	-. 011	-. 011	0	\%100
9	M19	Z	-. 009	-. 009	0	\%100
10	M20	Z	-. 009	-. 009	0	\%100
11	M21	Z	-. 018	-. 018	0	\%100
12	MP3	Z	-. 013	-. 013	\%99.9	\%100
13	MP4	Z	-. 011	-. 011	\%88.8	\%100
14	MP1	Z	-. 011	-. 011	\%88.9	\%100
15	M1	X	0	0	0	\%100
16	M2	X	0	0	0	\%100
17	M3	X	0	0	0	\%100
18	MP3	X	0	0	0	\%100
19	MP4	X	0	0	0	\%100
20	MP2	X	0	0	0	\%100
21	MP1	X	0	0	0	\%100
22	M13	X	0	0	0	\%100
23	M19	X	0	0	0	\%100
24	M20	X	0	0	0	\%100
25	M21	X	0	0	0	\%100

Member Distributed Loads (BLC 10 : Full Wind Members (30 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F.ksf]	Start Location[ft,	End Location[ft,\%]
1	M1	Z	-. 006	-. 006	0	\%100
2	M2	Z	-. 017	-. 017	0	\%100
3	M3	Z	-. 01	-. 01	0	\%100
4	MP3	Z	-. 011	-. 011	0	\%. 1
5	MP4	Z	-. 009	-. 009	0	\%11.2
6	MP2	Z	-. 009	-. 009	0	\%100
7	MP1	Z	-. 009	-. 009	0	\%11.1
8	M13	Z	-. 007	-. 007	0	\%100

Member Distributed Loads (BLC 10 : Full Wind Members (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft,..	End Location[ft, \%]
9	M19	Z	-. 001	-. 001	0	\%100
10	M20	Z	-. 015	-. 015	0	\%100
11	M21	Z	-. 016	-. 016	0	\%100
12	MP3	Z	-. 011	-. 011	\%99.9	\%100
13	MP4	Z	-. 009	-. 009	\%88.8	\%100
14	MP1	Z	-. 009	-. 009	\%88.9	\%100
15	M1	X	004	004	0	\%100
16	M2	X	01	01	0	\%100
17	M3	X	006	006	0	\%100
18	MP3	X	. 006	006	0	\%100
19	MP4	X	005	005	0	\%100
20	MP2	X	005	005	0	\%100
21	MP1	X	005	. 005	0	\%100
22	M13	X	004	004	0	\%100
23	M19	X	001	. 001	0	\%100
24	M20	X	. 009	. 009	0	\%100
25	M21	X	. 009	. 009	0	\%100

Member Distributed Loads (BLC 11 : Full Wind Members (60 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F.ksf]	Start Location[ft,	End Location[ft, \%]
1	M1	Z	-. 011	-. 011	0	\%100
2	M2	Z	-. 01	-. 01	0	\%100
3	M3	Z	-. 002	-. 002	0	\%100
4	MP3	Z	-. 006	-. 006	0	\%. 1
5	MP4	Z	-. 005	-. 005	0	\%11.2
6	MP2	Z	-. 005	-. 005	0	\%100
7	MP1	Z	-. 005	-. 005	0	\%11.1
8	M13	Z	-. 001	-. 0001	0	\%100
9	M19	Z	-. 001	-. 001	0	\%100
10	M20	Z	-. 009	-. 009	0	\%100
11	M21	Z	-. 01	-. 01	0	\%100
12	MP3	Z	-. 006	-. 006	\%99.9	\%100
13	MP4	Z	-. 005	-. 005	\%88.8	\%100
14	MP1	Z	-. 005	-. 005	\%88.9	\%100
15	M1	X	. 019	. 019	0	\%100
16	M2	X	. 017	. 017	0	\%100
17	M3	X	. 003	. 003	0	\%100
18	MP3	X	. 011	. 011	0	\%100
19	MP4	X	. 009	. 009	0	\%100
20	MP2	X	. 009	. 009	0	\%100
21	MP1	X	. 009	. 009	0	\%100
22	M13	X	. 002	. 002	0	\%100
23	M19	X	. 001	. 001	0	\%100
24	M20	X	. 015	. 015	0	\%100
25	M21	X	. 018	. 018	0	\%100

Member Distributed Loads (BLC 12 : Full Wind Members (90 Deg))

	Member Label	Direction	Start Magnitude[[/ft,F,ksf]	End Magnitude[[k/ft,F.ksf]	Start Location[ft,	End Location[ft,\%]
1	M1	Z	0	0	0	\%100
2	M2	Z	0	0	0	\%100
3	M3	Z	0	0	0	\%100
4	MP3	Z	0	0	0	\%. 1
5	MP4	Z	0	0	0	\%11.2
6	MP2	Z	0	0	0	\%100
7	MP1	Z	0	0	0	\%11.1
8	M13	Z	0	0	0	\%100

Member Distributed Loads (BLC 12 : Full Wind Members (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft	.End Location[ft, \%]
9	M19	Z	0	0	0	\%100
10	M20	Z	0	0	0	\%100
11	M21	Z	0	0	0	\%100
12	MP3	Z	0	0	\%99.9	\%100
13	MP4	Z	0	0	\%88.8	\%100
14	MP1	Z	0	0	\%88.9	\%100
15	M1	X	029	029	0	\%100
16	M2	X	02	. 02	0	\%100
17	M3	X	0	0	0	\%100
18	MP3	X	013	. 013	0	\%100
19	MP4	X	011	. 011	0	\%100
20	MP2	X	011	011	0	\%100
21	MP1	X	011	011	0	\%100
22	M13	X	0	0	0	\%100
23	M19	X	. 009	. 009	0	\%100
24	M20	X	009	009	0	\%100
25	M21	X	. 022	. 022	0	\%100

Member Distributed Loads (BLC 13 : Full Wind Members (120 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F.ksf]	End Magnitude[k/ft,F.ksf]	Start Location [ft	End Location[ft, \%]
1	M1	Z	. 011	. 011	0	\%100
2	M2	Z	01	01	0	\%100
3	M3	Z	002	002	0	\%100
4	MP3	Z	006	006	0	\%. 1
5	MP4	Z	005	005	0	\%11.2
6	MP2	Z	005	005	0	\%100
7	MP1	Z	005	005	0	\%11.1
8	M13	Z	001	. 001	0	\%100
9	M19	Z	009	009	0	\%100
10	M20	Z	001	. 001	0	\%100
11	M21	Z	01	01	0	\%100
12	MP3	Z	006	006	\%99.9	\%100
13	MP4	Z	005	005	\%88.8	\%100
14	MP1	Z	005	005	\%88.9	\%100
15	M1	X	019	019	0	\%100
16	M2	X	017	017	0	\%100
17	M3	X	003	003	0	\%100
18	MP3	X	011	. 011	0	\%100
19	MP4	X	009	009	0	\%100
20	MP2	X	009	009	0	\%100
21	MP1	X	009	009	0	\%100
22	M13	X	002	002	0	\%100
23	M19	X	015	015	0	\%100
24	M20	X	001	. 001	0	\%100
25	M21	X	. 018	018	0	\%100

Member Distributed Loads (BLC 14 : Full Wind Members (150 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F, ksf]	Start Location[ft,	End Location[ft, \%]
1	M1	Z	. 006	006	0	\%100
2	M2	Z	017	017	0	\%100
3	M3	Z	01	01	0	\%100
4	MP3	Z	011	011	0	\%. 1
5	MP4	Z	009	009	0	\%11.2
6	MP2	Z	009	009	0	\%100
7	MP1	Z	009	009	0	\%11.1
8	M13	Z	007	007	0	\%100

Member Distributed Loads (BLC 14 : Full Wind Members (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft	End Location[ft, \%]
9	M19	Z	015	015	0	\%100
10	M20	Z	. 001	001	0	\%100
11	M21	Z	016	016	0	\%100
12	MP3	Z	011	011	\%99.9	\%100
13	MP4	Z	009	009	\%88.8	\%100
14	MP1	Z	009	. 009	\%88.9	\%100
15	M1	X	004	004	0	\%100
16	M2	X	01	01	0	\%100
17	M3	X	006	. 006	0	\%100
18	MP3	X	006	006	0	\%100
19	MP4	X	005	005	0	\%100
20	MP2	X	005	005	0	\%100
21	MP1	X	005	005	0	\%100
22	M13	X	004	004	0	\%100
23	M19	X	009	. 009	0	\%100
24	M20	X	001	. 001	0	\%100
25	M21	X	. 009	. 009	0	\%100

Member Distributed Loads (BLC 21 : Ice Wind Members (O Deg))

	Member Label	Direction	Start Magnitude[k/ft,F.ksf]	End Magnitude[k/ft,F.ksf]	Start Location[ft	End Location[ft, \%]
1	M1	Z	0	0	0	\%100
2	M2	Z	-. 008	-. 008	0	\%100
3	M3	Z	-. 005	-. 005	0	\%100
4	M4	Z	0	0	0	\%100
5	MP3	Z	-. 005	-. 005	0	\%. 1
6	M6	Z	0	0	0	\%100
7	M7	Z	0	0	0	\%100
8	M8	Z	0	0	0	\%100
9	M9	Z	0	0	0	\%100
10	MP4	Z	-. 004	-. 004	0	\%11.2
11	MP2	Z	-. 004	-. 004	0	\%100
12	MP1	Z	-. 004	-. 004	0	\%11.1
13	M13	Z	-. 004	-. 004	0	\%100
14	M14	Z	0	0	0	\%100
15	M15	Z	0	0	0	\%100
16	M16	Z	0	0	0	\%100
17	M17	Z	0	0	0	\%100
18	M18	Z	-. 003	-. 003	0	\%100
19	M19	Z	-. 003	-. 003	0	\%100
20	M20	Z	-. 003	-. 003	0	\%100
21	M21	Z	-. 005	-. 005	0	\%100
22	MP3	Z	-. 005	-. 005	\%99.9	\%100
23	MP4	Z	-. 004	-. 004	\%88.8	\%100
24	MP1	Z	-. 004	-. 004	\%88.9	\%100
25	M1	X	0	0	0	\%100
26	M2	X	0	0	0	\%100
27	M3	X	0	0	0	\%100
28	M4	X	0	0	0	\%100
29	MP3	X	0	0	0	\%100
30	M6	X	0	0	0	\%100
31	M7	X	0	0	0	\%100
32	M8	X	0	0	0	\%100
33	M9	X	0	0	0	\%100
34	MP4	X	0	0	0	\%100
35	MP2	X	0	0	0	\%100
36	MP1	X	0	0	0	\%100

Company

Member Distributed Loads (BLC 21 : Ice Wind Members (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location[ft,	End Location[ft, \%]
37	M13	X	0	0	0	\%100
38	M14	X	0	0	0	\%100
39	M15	X	0	0	0	\%100
40	M16	X	0	0	0	\%100
41	M17	X	0	0	0	\%100
42	M18	X	0	0	0	\%100
43	M19	X	0	0	0	\%100
44	M20	X	0	0	0	\%100
45	M21	X	0	0	0	\%100

Member Distributed Loads (BLC 22 : Ice Wind Members (30 Deg))

	Member Label	Direction	Start Magnitude[k/ft.F. . ksf]	End Magnitude[k/ft.F. . ksf]	Start Locationff	.End Location[ft.\%]
1	M1	Z	-. 001	-. 001	0	\%100
2	M2	Z	-. 007	-. 007	0	\%100
3	M3	Z	-. 004	-. 004	0	\%100
4	M4	Z	0	0	0	\%100
5	MP3	Z	-. 004	-. 004	0	\%. 1
6	M6	Z	0	0	0	\%100
7	M7	Z	0	0	0	\%100
8	M8	Z	0	0	0	\%100
9	M9	Z	0	0	0	\%100
10	MP4	Z	-. 004	-. 004	0	\%11.2
11	MP2	Z	-. 004	-. 004	0	\%100
12	MP1	Z	-. 004	-. 004	0	\%11.1
13	M13	Z	-. 003	-. 003	0	\%100
14	M14	Z	0	0	0	\%100
15	M15	Z	0	0	0	\%100
16	M16	Z	0	0	0	\%100
17	M17	Z	0	0	0	\%100
18	M18	Z	-. 003	-. 003	0	\%100
19	M19	Z	-. 001	-. 001	0	\%100
20	M20	Z	-. 004	-. 004	0	\%100
21	M21	Z	-. 005	-. 005	0	\%100
22	MP3	Z	-. 004	-. 004	\%99.9	\%100
23	MP4	Z	-. 004	-. 004	\%88.8	\%100
24	MP1	Z	-. 004	-. 004	\%88.9	\%100
25	M1	X	. 001	. 001	0	\%100
26	M2	X	. 004	. 004	0	\%100
27	M3	X	. 002	. 002	0	\%100
28	M4	X	0	0	0	\%100
-29	MP3	X	. 002	. 002	0	\%100
30	M6	X	0	0	0	\%100
31	M7	X	0	0	0	\%100
32	M8	X	0	0	0	\%100
33	M9	X	0	0	0	\%100
34	MP4	X	. 002	002	0	\%100
35	MP2	X	. 002	. 002	0	\%100
36	MP1	X	. 002	. 002	0	\%100
-37	M13	X	. 002	002	0	\%100
38	M14	X	0	0	0	\%100
39	M15	X	0	0	0	\%100
40	M16	X	0	0	0	\%100
41	M17	X	0	0	0	\%100
42	M18	X	. 002	. 002	0	\%100
43	M19	X	. 001	. 001	0	\%100
44	M20	X	. 002	. 002	0	\%100

Member Distributed Loads (BLC 22 : Ice Wind Members (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[kfft,F, ksf]	End Magnitude[k/ft,F.,.ksf	Start Locationft)
45	M21	X	003	003	0	\%100

Member Distributed Loads (BLC 23 : Ice Wind Members (60 Deg))

	Member Label	Direction	Start Magnitude[k/ft.F. . ksf]	End Magnitude[k/ft.F.ksf]	Start Locationft	End Location[t. \%]
1	M1	Z	-. 002	-. 002	0	\%100
2	M2	Z	-. 004	-. 004	0	\%100
3	M3	Z	-. 002	-. 002	0	\%100
4	M4	Z	0	0	0	\%100
5	MP3	Z	-. 002	-. 002	0	\%. 1
6	M6	Z	0	0	0	\%100
7	M7	Z	0	0	0	\%100
8	M8	Z	0	0	0	\%100
9	M9	Z	0	0	0	\%100
10	MP4	Z	-. 002	-. 002	0	\%11.2
11	MP2	Z	-. 002	-. 002	0	\%100
12	MP1	Z	-. 002	-. 002	0	\%11.1
13	M13	Z	-. 001	-. 001	0	\%100
14	M14	Z	0	0	0	\%100
15	M15	Z	0	0	0	\%100
16	M16	Z	0	0	0	\%100
17	M17	Z	0	0	0	\%100
18	M18	Z	-. 002	-. 002	0	\%100
19	M19	Z	-. 001	-. 001	0	\%100
20	M20	Z	-. 002	-. 002	0	\%100
21	M21	Z	-. 003	-. 003	0	\%100
22	MP3	Z	-. 002	-. 002	\%99.9	\%100
23	MP4	Z	-. 002	-. 002	\%88.8	\%100
24	MP1	Z	-. 002	-. 002	\%88.9	\%100
25	M1	X	. 003	. 003	0	\%100
26	M2	X	. 007	. 007	0	\%100
27	M3	X	003	. 003	0	\%100
28	M4	X	0	0	0	\%100
29	MP3	X	. 004	004	0	\%100
30	M6	X	0	0	0	\%100
31	M7	X	0	0	0	\%100
32	M8	X	0	0	0	\%100
33	M9	X	0	0	0	\%100
34	MP4	X	. 004	. 004	0	\%100
35	MP2	X	. 004	. 004	0	\%100
36	MP1	X	. 004	004	0	\%100
37	M13	X	. 003	. 003	0	\%100
38	M14	X	0	0	0	\%100
39	M15	X	0	0	0	\%100
40	M16	X	0	0	0	\%100
41	M17	X	0	0	0	\%100
42	M18	X	. 003	. 003	0	\%100
43	M19	X	001	001	0	\%100
44	M20	X	. 004	. 004	0	\%100
45	M21	X	. 005	005	0	\%100

Member Distributed Loads (BLC 24 : Ice Wind Members (90 Deg))

	Member Label	Direction	Start Magnitude[k/ft.F.ksf]	End Magnitude[k/ft.F.ksf]	Start Location [ft.	End Location[ft.\%]
1	M1	Z	0	0	0	\%100
2	M2	Z	0	0	0	\%100
3	M3	Z	0	0	0	\%100
4	M4	Z	0	0	0	\%100

Company

Member Distributed Loads (BLC 24 : Ice Wind Members (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location [ft,..	End Location[ft, \%]
5	MP3	Z	0	0	0	\%. 1
6	M6	Z	0	0	0	\%100
7	M7	Z	0	0	0	\%100
8	M8	Z	0	0	0	\%100
9	M9	Z	0	0	0	\%100
10	MP4	Z	0	0	0	\%11.2
11	MP2	Z	0	0	0	\%100
12	MP1	Z	0	0	0	\%11.1
13	M13	Z	0	0	0	\%100
14	M14	Z	0	0	0	\%100
15	M15	Z	0	0	0	\%100
16	M16	Z	0	0	0	\%100
17	M17	Z	0	0	0	\%100
18	M18	Z	0	0	0	\%100
19	M19	Z	0	0	0	\%100
20	M20	Z	0	0	0	\%100
21	M21	Z	0	0	0	\%100
22	MP3	Z	0	0	\%99.9	\%100
23	MP4	Z	0	0	\%88.8	\%100
24	MP1	Z	0	0	\%88.9	\%100
25	M1	X	. 005	005	0	\%100
26	M2	X	. 008	. 008	0	\%100
27	M3	X	. 002	. 002	0	\%100
28	M4	X	0	0	0	\%100
29	MP3	X	. 005	. 005	0	\%100
30	M6	X	0	0	0	\%100
31	M7	X	0	0	0	\%100
32	M8	X	0	0	0	\%100
33	M9	X	0	0	0	\%100
34	MP4	X	. 004	. 004	0	\%100
35	MP2	X	. 004	. 004	0	\%100
36	MP1	X	. 004	. 004	0	\%100
37	M13	X	. 002	. 002	0	\%100
38	M14	X	0	0	0	\%100
39	M15	X	0	0	0	\%100
40	M16	X	0	0	0	\%100
41	M17	X	0	0	0	\%100
42	M18	X	. 003	003	0	\%100
43	M19	X	003	003	0	\%100
44	M20	X	003	003	0	\%100
45	M21	X	. 007	007	0	\%100

Member Distributed Loads (BLC 25 : Ice Wind Members (120 Deg))

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F.ksf]	Start Location[ft,	End Location[ft, \%]
1	M1	Z	. 002	002	0	\%100
2	M2	Z	004	004	0	\%100
3	M3	Z	002	002	0	\%100
4	M4	Z	0	0	0	\%100
5	MP3	Z	002	002	0	\%. 1
6	M6	Z	0	0	0	\%100
7	M7	Z	0	0	0	\%100
8	M8	Z	0	0	0	\%100
9	M9	Z	0	0	0	\%100
10	MP4	Z	. 002	. 002	0	\%11.2
11	MP2	Z	. 002	002	0	\%100
12	MP1	Z	002	. 002	0	\%11.1

Company

Member Distributed Loads (BLC 25 : Ice Wind Members (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location [ft,	End Location[ft, \%]
13	M13	Z	. 001	. 001	0	\%100
14	M14	Z	0	0	0	\%100
15	M15	Z	0	0	0	\%100
16	M16	Z	0	0	0	\%100
17	M17	Z	0	0	0	\%100
18	M18	Z	002	002	0	\%100
19	M19	Z	002	002	0	\%100
20	M20	Z	. 001	. 001	0	\%100
21	M21	Z	003	003	0	\%100
22	MP3	Z	002	002	\%99.9	\%100
23	MP4	Z	002	002	\%88.8	\%100
24	MP1	Z	002	002	\%88.9	\%100
25	M1	X	. 003	. 003	0	\%100
26	M2	X	007	007	0	\%100
27	M3	X	003	003	0	\%100
28	M4	X	0	0	0	\%100
29	MP3	X	. 004	004	0	\%100
30	M6	X	0	0	0	\%100
31	M7	X	0	0	0	\%100
32	M8	X	0	0	0	\%100
33	M9	X	0	0	0	\%100
34	MP4	X	004	004	0	\%100
35	MP2	X	. 004	004	0	\%100
36	MP1	X	. 004	. 004	0	\%100
37	M13	X	. 003	. 003	0	\%100
38	M14	X	0	0	0	\%100
39	M15	X	0	0	0	\%100
40	M16	X	0	0	0	\%100
41	M17	X	0	0	0	\%100
42	M18	X	. 003	. 003	0	\%100
43	M19	X	. 004	004	0	\%100
44	M20	X	. 001	. 001	0	\%100
45	M21	X	. 005	005	0	\%100

Member Distributed Loads (BLC 26 : Ice Wind Members (150 Deg))

	Member Label	Direction	Start Magnitude[k/ft.F. .ksf]	End Magnitude[k/ft.F. . ksf]	Start Locationfft.	.End Location[ft.\%]
1	M1	Z	. 001	. 001	0	\%100
2	M2	Z	. 007	. 007	0	\%100
3	M3	Z	004	004	0	\%100
4	M4	Z	0	0	0	\%100
5	MP3	Z	. 004	. 004	0	\%. 1
6	M6	Z	0	0	0	\%100
7	M7	Z	0	0	0	\%100
8	M8	Z	0	0	0	\%100
9	M9	Z	0	0	0	\%100
10	MP4	Z	. 004	. 004	0	\%11.2
11	MP2	Z	. 004	. 004	0	\%100
12	MP1	Z	. 004	. 004	0	\%11.1
13	M13	Z	003	003	0	\%100
14	M14	Z	0	0	0	\%100
15	M15	Z	0	0	0	\%100
16	M16	Z	0	0	0	\%100
17	M17	Z	0	0	0	\%100
18	M18	Z	. 003	. 003	0	\%100
19	M19	Z	. 004	. 004	0	\%100
20	M20	Z	. 001	001	0	\%100

Company

Member Distributed Loads (BLC 26 : Ice Wind Members (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[k/ft,F,ksf]	End Magnitude[k/ft,F,ksf]	Start Location [ft,	End Location[ft, \%]
21	M21	Z	. 005	. 005	0	\%100
22	MP3	Z	004	004	\%99.9	\%100
23	MP4	Z	004	004	\%88.8	\%100
24	MP1	Z	004	004	\%88.9	\%100
25	M1	X	001	001	0	\%100
26	M2	X	004	004	0	\%100
27	M3	X	002	002	0	\%100
28	M4	X	0	0	0	\%100
29	MP3	X	002	002	0	\%100
30	M6	X	0	0	0	\%100
31	M7	X	0	0	0	\%100
32	M8	X	0	0	0	\%100
33	M9	X	0	0	0	\%100
34	MP4	X	002	002	0	\%100
35	MP2	X	002	. 002	0	\%100
36	MP1	X	002	. 002	0	\%100
37	M13	X	002	. 002	0	\%100
38	M14	X	0	0	0	\%100
39	M15	X	0	0	0	\%100
40	M16	X	0	0	0	\%100
41	M17	X	0	0	0	\%100
42	M18	X	002	. 002	0	\%100
43	M19	X	002	. 002	0	\%100
44	M20	X	001	. 001	0	\%100
45	M21	X	. 003	. 003	0	\%100

Member Area Loads
Joint A Joint B
Joint C
Joint D
Direction
Distribution Magnitude[ksf] No Data to Print ...

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut.	Area(Me...	Surface(...
1	Dead	None		-1			5			
2	Ice Dead	None					5	21		
3	Full Wind Antenna (0 Deq)	None					7			
4	Full Wind Antenna (30 Deg)	None					16			
5	Full Wind Antenna (60 Deg)	None					16			
6	Full Wind Antenna (90 Deg)	None					16			
7	Full Wind Antenna (120 Deg)	None					16			
8	Full Wind Antenna (150 Deg)	None					16			
9	Full Wind Members (0 Deg)	None						25		
10	Full Wind Members (30 Deg)	None						25		
11	Full Wind Members (60 Deg)	None						25		
12	Full Wind Members (90 Deg)	None						25		
13	Full Wind Members (120 Deg)	None						25		
14	Full Wind Members (150 Deg)	None						25		
15	Ice Wind Antenna (0 Deq)	None					7			
16	Ice Wind Antenna (30 Deg)	None					16			
17	Ice Wind Antenna (60 Deg)	None					16			
18	Ice Wind Antenna (90 Deg)	None					16			
19	Ice Wind Antenna (120 Deg)	None					16			
20	Ice Wind Antenna (150 Deg)	None					16			
21	Ice Wind Members (0 Deq)	None						45		
22	Ice Wind Members (30 Deg)	None						45		

Company

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut..	Area(Me...	Surface(...
23	Ice Wind Members (60 Deg)	None						45		
24	Ice Wind Members (90 Deg)	None						45		
25	Ice Wind Members (120 Deg)	None						45		
26	Ice Wind Members (150 Deg)	None						45		
27	Seismic Antenna (0 Deq)	None					5			
28	Seismic Antenna (90 Deg)	None					5			
29	Seismic Members (0 Deq)	None		-. 041	-. 103					
30	Seismic Members (30 Deg)	None	051	-. 041	-. 089					
31	Seismic Members (60 Deq)	None	089	-. 041	-. 051					
32	Seismic Members (90 Deg)	None	103	-. 041						
33	Seismic Members (120 Deg)	None	089	-. 041	051					
34	Seismic Members (150 Deg)	None	051	-. 041	089					
35	Seismic Members (180 Deg)	None		-. 041	103					
36	Seismic Members (210 Deg)	None	-. 051	-. 041	089					
37	Seismic Members (240 Deg)	None	-. 089	-. 041	051					
38	Seismic Members (270 Deg)	None	-. 103	-. 041						
39	Seismic Members (300 Deg)	None	-. 089	-. 041	-. 051					
40	Seismic Members (330 Deg)	None	-. 051	-. 041	-. 089					
41	Seismic Vertical Antennas	None					5			
42	Man 1 (500 lbs)	None				1				
43	Man 2 (500 lbs)	None				1				
44	Man 3 (500 lbs)	None				1				
45	Man 4 (250 lbs)	None				1				
46	Man 5 (250 lbs)	None				1				
47	Man 6 (250 lbs)	None				1				

Load Combinations

	Description S			B...	Fa..																	B... Fa...
1	1.4D			1	1.4																	
2	$1.2 \mathrm{D}+1.0 \mathrm{~W} 0^{\circ}$	Yes	Y	1	1.2	3	1	9	1													
3	$1.2 \mathrm{D}+1.0 \mathrm{~W} \mathrm{30}$		Y	1	1.2	4	1	10	1													
4	$1.2 \mathrm{D}+1.0 \mathrm{~W} 60^{\circ}$	Yes	Y	1	1.2	5	1	11	1													
5	$1.2 \mathrm{D}+1.0 \mathrm{~W} \mathrm{90}$ -		Y	1	1.2	6	1	12	1													
6	$1.2 \mathrm{D}+1.0 \mathrm{~W} 120^{\circ}$		Y	1	1.2	7	1	13	1													
7	$1.2 \mathrm{D}+1.0 \mathrm{~W} 150^{\circ}$		Y	1	1.2	8	1	14	1													
8	$1.2 \mathrm{D}+1.0 \mathrm{~W} 180^{\circ}$		Y	1	1.2	3	-1	9	-1													
9	$1.2 \mathrm{D}+1.0 \mathrm{~W} 210^{\circ}$	Yes	Y	1	1.2	4	-1	10	-1													
10	$1.2 \mathrm{D}+1.0 \mathrm{~W} 240^{\circ}$	Yes	-	1	1.2	5	-1	11	-1													
11	$1.2 \mathrm{D}+1.0 \mathrm{~W} 270^{\circ}$	Yes	Y	1	1.2	6	-1	12	-1													
12	$1.2 \mathrm{D}+1.0 \mathrm{~W} 300^{\circ}$	Yes		1	1.2	7	-1	13	-1													
13	$1.2 \mathrm{D}+1.0 \mathrm{~W} 330^{\circ}$	Yes	Y	1	1.2	8	-1	14	-1													
14	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 0^{\circ}$	Yes	-	1	1.2	2	1	15	1	21	1											
15	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} \mathrm{30}$ -	Yes		1	1.2	2	1	16	1	22	1											
16	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 60^{\circ}$	Yes	Y	1	1.2	2	1	17	1	23	1											
17	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 90^{\circ}$	Yes	Y	1	1.2	2	1	18	1	24	1											
18	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 120^{\circ}$	Yes	-	1	1.2	2	1	19	1	25	1											
19	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 150^{\circ}$			1	1.2	2	1	20	1	26	1											
20	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 180^{\circ} \mathrm{Y}$	Yes	Y	1	1.2	2	1	15	-1	21	-1											
21	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 210^{\circ} \mathrm{Y}$		Y	1	1.2	2	1	16	-1	22	-1											
22	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 240^{\circ} \mathrm{Y}$			1	1.2	2	1	17	-1	23	-1											
23	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 270^{\circ} \mathrm{Y}$		Y	1	1.2	2	1	18	-1	24	-1											
24	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} 300^{\circ}$		V	1	1.2	2	1	19	-1	25	-1											
25	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi} \mathrm{330}$	Yes	Y	1	1.2	2	1	20	-1	26	-1											
26	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} \mathrm{0}{ }^{\circ}$	Yes	Y	1	1.2	3	. 059	9	. 059	42	1.5											
27	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 30^{\circ}$	Yes	Y	1	1.2	4	. 059	10	. 059	42	1.5											

Load Combinations (Continued)

	De				B											Fa...	B..	Fa..	B...	Fa..	B..	Fa..	B... Fa...
28	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _1 + $1.0 \mathrm{Wm} 60^{\circ}$	Yes	Y		1	1.2	5	. 059	11.	. 059	42	1.5											
29	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 90^{\circ}$	Yes	Y		1	1.2	6	059	12	. 059	42	1.5											
30	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $1+1.0 \mathrm{Wm} 120^{\circ}$	Yes	Y		1	1.2	7	059	13	. 059	42	1.5											
31	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _1 + $1.0 \mathrm{Wm} 150^{\circ}$	Yes	Y		1	1.2	8	059	14	. 059	42	1.5											
32	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $1+1.0 \mathrm{Wm} 180^{\circ}$	Yes	Y		1	1.2	3	-.0...	9	-.0...	42	1.5											
33	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} \mathrm{210}{ }^{\circ}$	Yes	Y		1	1.2	4	-.0...	10	-.0...	42	1.5											
34	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $1+1.0 \mathrm{Wm} 240^{\circ}$	Yes	Y		1	1.2	5	-.0...	11	-.0..	42	1.5											
35	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $1+1.0 \mathrm{Wm} \mathrm{270}$	Yes	Y		1	1.2	6	-.0...	12-	-.0..	42	1.5											
36	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $1+1.0 \mathrm{Wm} 300^{\circ}$	Yes	Y		1	1.2	7	-.0...	13	-.0...	42	1.5											
37	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _1+1.0 \mathrm{Wm} 330^{\circ}$	Yes	Y		1	1.2	8	-.0...	14	-.0..	42	1.5											
38	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 0^{\circ}$	Yes	Y		1	1.2	3	. 059	9	. 059	43	1.5											
39	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 30^{\circ}$	Yes	Y		1	1.2	4	. 059	10	. 059	43	1.5											
40	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 60^{\circ}$	Yes	Y		1	1.2	5	059	11	. 059	43	1.5											
41	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 90^{\circ}$	Yes	Y		1	1.2	6	. 059	12	. 059	43	1.5											
42	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $2+1.0 \mathrm{Wm} 120^{\circ}$	Yes	Y		1	1.2	7	059	13	. 059	43	1.5											
43	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $2+1.0 \mathrm{Wm} 150^{\circ}$	Yes	Y		1	1.2	8	. 059	14	. 059	43	1.5											
44	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} \mathrm{180}{ }^{\circ}$	Yes	Y		1	1.2	3	-.0...	9	-.0...	43	1.5											
45	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} \mathrm{210}{ }^{\circ}$	Yes	Y		1	1.2	4	-.0...	10	-.0..	43	1.5											
46	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 240^{\circ}$	Yes	Y		1	1.2	5	-.0...	11	-.0...	43	1.5											
47	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} 270^{\circ}$	Yes	Y		1	1.2	6	-.0...	12	-.0...	43	1.5											
48	$1.2 \mathrm{D}+1.5 \mathrm{Lm} 2+1.0 \mathrm{Wm} 300^{\circ}$	Yes	Y		1	1.2	7	-.0...	13	-.0..	43	1.5											
49	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _2+1.0 \mathrm{Wm} \mathrm{330}$	Yes	Y		1	1.2	8	-.0...	14	-.0...	43	1.5											
50	$1.2 \mathrm{D}+1.5 \mathrm{Lm} _3+1.0 \mathrm{Wm} 0^{\circ}$	Yes	Y		1	1.2	3	. 059	9	. 059	44	1.5											
51	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $3+1.0 \mathrm{Wm} 30^{\circ}$	Yes	Y		1	1.2	4	059	10	. 059	44	1.5											
52	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $3+1.0 \mathrm{Wm} 60^{\circ}$	Yes	Y		1	1.2	5	. 059	11.	. 059	44	1.5											
53	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _3 + 1.0Wm 90°	Yes	Y		1	1.2	6	. 059	12	. 059	44	1.5											
54	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _3 + $1.0 \mathrm{Wm} 120^{\circ}$	Yes	Y		1	1.2	7	. 059	13	. 059	44	1.5											
55	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _3 + $1.0 \mathrm{Wm} 150^{\circ}$	Yes	Y		1	1.2	8	. 059	14	. 059	44	1.5											
56	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $3+1.0 \mathrm{Wm} 180^{\circ}$	Yes	Y		1	1.2	3	-.0...	9	-.0...	44	1.5											
57	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _3 $+1.0 \mathrm{Wm} 210^{\circ}$	Yes	Y		1	1.2	4	-.0...	10	-.0...	44	1.5											
58	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _ $3+1.0 \mathrm{Wm} 240^{\circ}$	Yes	Y		1	1.2	5	-.0...	11	-.0...	44	1.5											
59	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _3 $+1.0 \mathrm{Wm} 270^{\circ}$	Yes	Y		1	1.2	6	-.0...	12	-.0...	44	1.5											
60	$1.2 \mathrm{D}+1.5 \mathrm{Lm}$ _3 + $1.0 \mathrm{Wm} 300^{\circ}$	Yes	Y		1	1.2	7	-.0...	13	-.0...	44	1.5											
61	1.2D + 1.5Lm_3 + $1.0 \mathrm{Wm} 330^{\circ}$	Yes	Y		1	1.2	8	-.0...	14	-.0..	44	1.5											
62	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 10^{\circ}$	Yes	Y		1	1.2	45	1.5															
63	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 10^{\circ}$	Yes	Y		1	1.2	45	1.5															
64	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$-1 60°	Yes	Y		1	1.2	45	1.5															
65	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-190^{\circ}$	Yes	Y		1	1.2	45	1.5															
66	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-1120^{\circ}$	Yes	Y		1	1.2	45	1.5															
67	$1.2 \mathrm{D}+1.5 \mathrm{LV} 1{ }^{-150}$	Yes	Y		1	1.2	45	1.5															
68	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-1180^{\circ}$	Yes	Y		1	1.2	45	1.5															
69	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-1210^{\circ}$	Yes	Y		1	1.2	45	1.5															
70	$1.2 \mathrm{D}+1.5 \mathrm{Lv}$ - 1240°	Yes	Y		1	1.2	45	1.5															
71	$1.2 \mathrm{D}+1.5 \mathrm{LV}-1270^{\circ}$	Yes	Y		1	1.2	45	1.5															
72	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 1{ }^{\text {d }} 300^{\circ}$	Yes	Y		1	1.2	45	1.5															
73	$1.2 \mathrm{D}+1.5 \mathrm{Lv}{ }^{-1330}$	Yes	Y		1	1.2	45	1.5															
74	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 20^{\circ}$	Yes	Y		1	1.2	46	1.5															
75	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 230^{\circ}$	Yes	Y		1	1.2	46	1.5															
76	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 260^{\circ}$	Yes	Y		1	1.2	46	1.5															
77	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 290^{\circ}$	Yes	Y		1	1.2	46	1.5															
78	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 2120^{\circ}$	Yes	Y		1	1.2	46	1.5															
79	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 2150^{\circ}$	Yes	Y		1	1.2	46	1.5															
80	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 2180^{\circ}$	Yes	Y		1	1.2	46	1.5															
81	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 2210^{\circ}$	Yes	Y		1	1.2	46	1.5															
82	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 2240^{\circ}$	Yes	Y		1	1.2	46	1.5															
83	$1.2 \mathrm{D}+1.5 \mathrm{LV} 2270^{\circ}$	Yes	Y		1	1.2	46	1.5															
84	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 2300^{\circ}$	Yes	Y		1	1.2	46	1.5															

Company
Designer
Job Number

Load Combinations (Continued)

	Description			S... B	Fa								. Fa...						Fa..			B... Fa...
85	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 2330^{\circ}$	Yes	Y	1	1.2	46	1.5															
86	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 30^{\circ}$	Yes	Y	1	1.2	47	1.5															
87	$1.2 \mathrm{D}+1.5 \mathrm{Lv}-30^{\circ}$	Yes	Y	1	1.2	47	1.5															
88	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 360^{\circ}$	Yes	Y	1	1.2	47	1.5															
89	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 390^{\circ}$	Yes	Y	1	1.2	47	1.5															
90	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3120^{\circ}$	Yes	Y	1	1.2	47	1.5															
91	$1.2 \mathrm{D}+1.5 \mathrm{LV}-3150^{\circ}$	Yes	Y	1	1.2	47	1.5															
92	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3180^{\circ}$	Yes	Y	1	1.2	47	1.5															
93	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3210^{\circ}$	Yes	Y	1	1.2	47	1.5															
94	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3240^{\circ}$	Yes	Y	1	1.2	47	1.5															
95	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3270^{\circ}$	Yes	Y	1	1.2	47	1.5															
96	$1.2 \mathrm{D}+1.5 \mathrm{Lv} 3300^{\circ}$	Yes	Y	1	1.2	47	1.5															
97	$1.2 \mathrm{D}+1.5 \mathrm{LV}-3330^{\circ}$	Yes	Y	1	1.2	47	1.5															
98	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 0^{\circ}$	Yes	Y	1	1.2	27	1	28		29	1	40	1									
99	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 30^{\circ}$	Yes	Y	1	1.2	27	. 866	28	. 5	30	1	40	- 1									
100	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 60^{\circ}$	Yes	Y	1	1.2	27	. 5	28	. 866	31	1	40	1									
101	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} \mathrm{90}$	Yes	Y	1	1.2	27		28	1	32	1	40	1									
102	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 120^{\circ}$	Yes	Y	1	1.2	27	-. 5	28	. 866	33	1	40	1									
103	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 150^{\circ}$	Yes	Y	1	1.2	27	-.8.	28	. 5	34	1	40	1									
104	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 180^{\circ}$	Yes	Y	1	1.2	27	-1	28		35	1	40	1									
105	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 210^{\circ}$	Yes	Y	1	1.2	27	-.8..	28	-. 5	36	1	40	- 1									
106	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 240^{\circ}$	Yes	Y	1	1.2	27	-. 5	28	-.8..	37	1	40	1									
107	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 270^{\circ}$	Yes	Y	1	1.2	27		28	-1	38	1	40	1									
108	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 300^{\circ}$	Yes	Y	1	1.2	27	. 5	28	-.8..	39	1	40	- 1									
109	$1.2 \mathrm{D}+1.0 \mathrm{EV}+1.0 \mathrm{EH} 330^{\circ}$	Yes	Y	1	1.2	27	. 866	28	-. 5	40	1	40	1									

Envelope Joint Reactions

Joint			X [k]	LC Y [k]		LC Z [k]		LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	$\begin{array}{\|c} \text { LC } \\ \hline 39 \end{array}$
1	N1	max	1.167	12	477	8	-. 454	2	. 665	2	3.453	12	. 997	
2		min	-1.216	6	-1.028	2	-2.22	20	-. 382	8	-3.548	6	-. 716	86
3	N24	max	462	85	13	19	1.006	2	-. 051	13	752	13	. 688	43
4		min	-. 624	27	-. 014	13	-1.13	8	-. 243	43	-. 713	43	-. 516	86
5	N40	max	485	47	3.243	14	2.437	14	0	109	. 421	48	. 658	6
6		min	-. 343	86	384	8	242	8	0	1	-. 501	6	-. 553	48
7	Totals:	max	1.414	11	2.433	15	2.06	2						
8		min	-1.414	5	93	9	-2.06	8						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Mem.	Shape	Code Check	Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi* ...phi*...phi*...phi*.	Cb	Eqn
1	M1	HSS4X4X4	. 236	2.917	12	184	. 486	V	31	119...139...16.1..16.1.	.1.725	H1.
2	M2	PIPE_4.0	. 001	75	11	001	. 75		11	92.5..93.24 10.6..10.6.	1.562	H1.
3	M3	PIPE 3.0	442	6.667	27	240	6.667		8	22.8...65.2..5.7495.749	1.748	H1.
4	MP3	PIPE_2.5	460	4.417	8	116	2.417		8	31.9..50.7..3.5963.596	2.36	H1.
5	MP4	PIPE 2.0X	331	2.875	97	072	938		97	26.1..44.1 2.5312 .531	4.304	H1.
6	MP2	PIPE_2.0X	. 346	2.875	37	115	2.875		45	26.1..44.12.5312.531	1	H1..
7	MP1	PIPE 2.0X	437	2.875	47	101	2.875		49	26.1..44.12.5312.531	1	H1.
8	M13	PIPE 2.0	388	12.639	47	140	3.333		8	18.3.32.131.8721.872	1	H1.
9	M19	L2.5x2.5x3	360	4.375	97	. 025	4.375	z	97	15.5..29.1...8731.863	1.689	H2.
10	M20	L2.5x2.5x3	497	4.375	43	. 036	4.375	y	43	15.5..29.1... 8731.918	2.015	H2.
11	M21	LL3x3x3x3	. 261	0	40	. 026	4	z	48	45.5..68.675.3893.647	2.175	H1..

APPENDIX D

ADDITIONAL CALCUATIONS

Bolt Calcuations:

Bolt Size:	$5 / 8$	in
\# Bolts:	4	
Plate Width:	10	in
Plate Height:	10	in
Bolt H Gap:	7	in
Bolt V Gap:	7	in
Plate T:	0.625	in
Bolt Grade: $_{\text {Fu }}^{\text {bolt }}$	A 325 N	
$\mathrm{r}:$	120	ksi
J:	4.950	in $^{\text {Jolt Area, Normal }:}$
Bolt Area, Net Tensile:	0.307	$\mathrm{in}^{4} / \mathrm{in}^{2}$
	0.226	in^{2}

Allowable Shear:	12.4	kip
Allowable Tension:	20.3	kip

Tension Capacity:	16.8%
Shear Capacity:	7.9%
Combined Capacity:	2.9%

Bolt Capacity:	16.8%

Plate Calculations:

Horizontal Member Height:	4	in
Horizontal Member Width:	4	in
Plate Grade:	A36	
Plate Fy:	36	ksi

$\mathrm{Mx}=$	9.783	k^{*} in
$\mathrm{Mz}=$	2.834	k^{*} in

$\mathrm{Zx}=$	0.977	in^{3}
$\mathrm{Zz}=$	0.977	in^{3}

$\varnothing \mathrm{Mpy}(\mathrm{X})=$	31.641	$\mathrm{k}-\mathrm{in}$
$\varnothing \mathrm{Mpx}(\mathrm{X})=$	31.641	$\mathrm{k}-\mathrm{in}$

APPENDIX E

MODIFICATION DRAWINGS

-
RECOMMENDATIONS:
THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO
ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING A MI REPORT: - IT IS SUGGESTED THAT THE GC PROVIDE A MINIMUM OF 5 BUSINESS DAYS
NOTICE, PREFERABLY 10, TO THE MIINSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MI TO BE CONDUCTED.

- THE GC AND MI INSPECTOR COORDINATE CLOSELY THROUGHOUT THE
ENTIRE PROJECT. - ENTIRE PROJECT.
- WHEN POSSIBLE IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR
ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING OPERATIONS.
- IT MAY BE BENEFICIAL TO INSTALL ALL TOWER MODIFICATIONS PRIOR TO
CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW FOUNDATION - IT MAY BE BENEFICIAL TO INSTALL ALL TOWER MODIFICATIONS PRIOR
CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW FOUNDATION
AND MI INSPECTION(S) TO COMMENCE WITH ONE SITE VISIT.
- WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MI INSPECTOR
ON-SITE DURING THE MIT IO HAE ANY DEFICIENCIES CORRECTED DURING
THE INITAL MI, THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE
MI CAREFULLY TO ENSURE ALL CONSTRUCTION FACULTIES ARE AT THEIR DISPOSAL WHEN THE MI INSPECTOR IS ON SITE.
CANCELLATION OR DELAYS IN SCHEDULED MI: IF THE GC AND MI INSPECTOR AGREE TO A DATE ON WHICH THE MI WILL BE

MODIFICATION INSPECTION NOTES:

EACH PARTY WILL BE PROACTIVE IN REACHING OUT TO THE OTHER PARTY. IF
CONTACT INFORMATION IS NOT KNOWN, CONTACT YOUR POINT OF CONTACT
(POC).
MI INSPECTOR:

1. THE MI INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A
PO FOR THE MI TO AT AINIMUM
OR THE MI TO, AT A MINIMUM
REVIEW THE REQUIREMENTS OF THE MI CHECKLIST WORK WITH THE GC
TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE INSPECTIONS,
2. THE MI IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTORS (GC)
THE MI IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTORS (GC)
INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR
ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING THE IN-FIELD
INSPECTIONS AND SUBMITTING THE MI REPORT. GENERAL CONTRACTOR:
3. THE GC IS REQUIRED TO CONTA
PO FOR THE MODIFICATION IN
4. THE GC IS REQUIRED TO CONTACT THE MI INSPECTOR AS SOON AS RECEIVING A
PO FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO, AT A
MINIMUM:

- REVIEW THE REQUIREMENTS OF THE MI CHECKLIST.
- WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT
WORK WITH THE MI INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT
ON-SITE MI INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS.
- ON-SITE MIINSPECTIONS, INCLUDING FOUNDATIONINSPECTIONS.

2. THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN
ACCORDANCE WITH THE REQUIREMENTS OF THE MI CHECKLIST.
MI VERIFICATION INSPECTIONS:
VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT FIRM AFTER
A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE OF AN ACCEPTED
"PASSING MI" OR "PASS AS NOTED MI" REPORT FOR THE ORIGINAL PROJECT. REQUIRED PHOTOS:
BETWEEN THE GC AND THE MI INSPECTOR THE FOLLOWING PHOTOGRAPHS, AT A
MINIMUM, ARE TO BE TAKEN AND INCLUDED IN THE MI REPORT:
PRE-CONSTRUCTION GENERAL SITE CONDITION
PHOTOGRACIO
CONSTRUCTION/ERECTIONS AND INSPECTION:
RAW MATERIALS
RAW MATERIALS
PHOTOS OF ALL CR
FOUNDATION MOD
PHOTOS OF ALL CRITICAL DETAILS
FOUNDATION MODIFICATIONS
BELT INSTALLATION AND TORQUE
SURFACE COATING REPAIR

- POST CONSTRUCTION PHOTOGRAPHS
- FINAL INFIELD CONDITIONS
PHOTOS OF ELEVATED MODIFICATION TAKEN FR
PHOTOS OF ELEVATED MODIFICATION TAKEN FROM THE GROUND SHALL BE
CONSIDERED INADEQUATE.

MI CHECKLIST	
CONSTRUCTIONINSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY EOR)	REPORT ITEM
PRE-CONSTRUCTION	
X	MI CHECKLIST DRAWING
N/A	EOR APPROVAL
X	FABRICATION INSPECTION
N/A	FABRICATOR CERTIFIED WELD INSPECTION
X	MATERIAL TEST REPORT (MTR)
N/A	FABRICATOR NDE INSPECTION
N/A	NDE REPORT OF BASE PLATE
X	PACKING SLIPS
ADDITIONAL TESTING AND INSPECTIONS:	
CONSTRUCTION	
X	CONSTRUCTION INSPECTIONS
N/A	CONTINUOUS FOUNDATION INSPECTIONS
N/A	CONCRETE COMP. STRENGTH AND SLUMP TESTS
N/A	GROUT COMP. STRENGTH (ASTM C109)
N/A	POST INSTALLED ANCHOR ROD VERIFICATION
N/A	BASE PLATE GROUT VERIFICATION
N/A	CONTRACTOR'S CERTIFIED WELD INSPECTION AND NDE REPORTS
N/A	EARTHWORK: LIFT AND DENSITY
X	ON SITE COLD GALVANIZING VERIFICATION
N/A	GUY WIRE TENSION REPORT
X	GC AS-BUILT DOCUMENTS
ADDITIONAL TESTING AND INSPECTIONS:	
POST-CONSTRUCTION	
X	MI INSPECTOR REDLINE OR RECORD DRAWING(S)
N/A	POST INSTALLED ANCHOR ROD PULL-OUT TESTING
X	PHOTOGRAPHS
ADDITIONAL TESTING AND I	SPECTIONS:

NOTE: X DENOTES A DOCUMENT NEEDED FOR THE PMI REPORT
N/A DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE PMI REPORT

\qquad

GENERAL NOTES:
ALL WORK PRESENTED IN THESE DRAWINGS MUST BE COMPLETED BY
THE CONTRACTOR UNLESS OTHERWIIE SPECIFIED.
THE CONTRACTOR MUST HAVE A MINIMUM OF 5 YEARS OF
EXPERINCE IN TOWER ERECTION AND RETROFIT SIMILAR TO THAT
DESCRIBED HEREIN.

 STANARDS TO ACCEPT THIS WORK, BY ACCEPTING THIS PROJEC
TTE CONTRACORII ATESTIG THATHE HASUFFICIET
EXPERIENCE, ABIITY, AND KNO WLEDGE OF THE WORK NO BE

THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYYNG ALL

 E WITHOUTA PREFABRICATION MAPPINGIS DONE AT THE RISK OF THE CONTRACTOR AND/OR FABACACNST
 DRAL MATERILLS AND EQUIPMENT USED IN THE INSTALLATON OF THESE
DRAWINGS SHALL BE IN NEW OR GOOD WORKING QUALTY. FREE
 ACCEPTANCEDATE. 8. THE CONTRACTOR IS RESPONSIBLE FOR COORDINATING ALL
 APPLCABLE, THE CONTRACTOR MUST NOTIFY THE APPLION 9. THE CONTRACTOR IS RESPONSIBLL FOR ALL CONSTRUCTION MEANS

$\begin{aligned} & \text { MEMBER USING CHANNEL BRACKETS } \\ & \text { INCLUDED IN THE REINFORCEMENT KIT. }\end{aligned}$
(TYP.)

[^0]\square

Product Info

A valmont \mathbb{V} COMPANY

Pxxx: Bulk Pipe

Features:

- Factory cut end, hot-dip galvanized pipe

Construction:

- ASTM A53 Grade B
- Schedule 40

Design Criteria:

- ASTM A53 Grade B (Yield Fy = 35 ksi [240 MPa] / Tensile Fu $=60$ ksi [415 MPa])
- Hot dip galvanized in accordance with ASTM A123 requirements

Part \#	Length	OD x Length (in)
P263	$5^{\prime}-3^{\prime \prime}$	$2-3 / 8^{\prime \prime} \times 63^{\prime \prime}$
P272	$6^{\prime}-0^{\prime \prime}$	$2-3 / 8^{\prime \prime} \times 72^{\prime \prime}$
P284	$7^{\prime}-0^{\prime \prime}$	$2-3 / 8^{\prime \prime} \times 84^{\prime \prime}$
P296	$8^{\prime}-0^{\prime \prime}$	$2-3 / 8^{\prime \prime} \times 96^{\prime \prime}$
P2120	$10^{\prime}-0^{\prime \prime}$	$2-3 / 8^{\prime \prime} \times 120^{\prime \prime}$
P2126	$10^{\prime}-6^{\prime \prime}$	$2-3 / 8^{\prime \prime} \times 126^{\prime \prime}$
P2150	$12^{\prime}-6^{\prime \prime}$	$2-3 / 8^{\prime \prime} \times 150^{\prime \prime}$
P2174	$14^{\prime}-6^{\prime \prime}$	$2-3 / 8^{\prime \prime} \times 174^{\prime \prime}$
P3084	$7^{\prime}-0^{\prime \prime}$	$2-7 / 8^{\prime \prime} \times 84^{\prime \prime}$
P3096	$8^{\prime}-0^{\prime \prime}$	$2-7 / 8^{\prime \prime} \times 96^{\prime \prime}$
P30120	$10^{\prime}-0^{\prime \prime}$	$2-7 / 8^{\prime \prime} \times 120^{\prime \prime}$
P30126	$10^{\prime}-6^{\prime \prime}$	$2-7 / 8^{\prime \prime} \times 126^{\prime \prime}$
P30150	$12^{\prime}-6^{\prime \prime}$	$2-7 / 8^{\prime \prime} \times 150^{\prime \prime}$
P30174	$14^{\prime}-6^{\prime \prime}$	$2-7 / 8^{\prime \prime} \times 174^{\prime \prime}$
P360	$5^{\prime}-0^{\prime \prime}$	$3-1 / 2^{\prime \prime} \times 60^{\prime \prime}$
P372	$6^{\prime}-0^{\prime \prime}$	$3-1 / 2^{\prime \prime} \times 72^{\prime \prime}$
P396	$8^{\prime}-0^{\prime \prime}$	$3-1 / 2^{\prime \prime} \times 96^{\prime \prime}$
P3150	$12^{\prime}-6^{\prime \prime}$	$3-1 / 2^{\prime \prime} \times 150 \prime \prime$
P3160	$13^{\prime}-4 \prime \prime$	$3-1 / 2^{\prime \prime} \times 160^{\prime \prime}$
P3174	$14^{\prime}-6^{\prime \prime}$	$3-1 / 2^{\prime \prime} \times 174^{\prime \prime}$
P3216	$18^{\prime}-0^{\prime \prime}$	$3-1 / 2^{\prime \prime} \times 216^{\prime \prime}$
P4126	$6^{\prime}-0^{\prime \prime}$	$4-1 / 2^{\prime \prime} \times 72^{\prime \prime}$
$10^{\prime}-6^{\prime \prime}$	$4-1 / 2^{\prime \prime} \times 126^{\prime \prime}$	

Exhibit F

Power Density/RF Emissions Report

Transcom Engineering, Inc.

Radio Frequency Emissions Analysis Report

T-MOBILE Existing Facility

Site ID: CT11083Q

CT083/Sprint/Grassy Hill
700 Grassy Hill Road
Orange, CT 06477

July 16, 2019

Transcom Engineering Project Number: 737001-0010

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 4 . 4 8} \%$

Transcom Engineering, Inc.

July 16, 2019
T-MOBILE
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 6009

Emissions Analysis for Site: CT11083Q - CT083/Sprint/Grassy Hill

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the TMOBILE facility located at $\mathbf{7 0 0}$ Grassy Hill Road, Orange, CT, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the $600 \& 700 \mathrm{MHz}$ bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Transcom Engineering, Inc.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Transcom Engineering, Inc.

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at $\mathbf{7 0 0}$
Grassy Hill Road, Orange, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	1900 MHz (PCS)	1	40
GSM	1900 MHz (PCS)	1	15
LTE	$2100 \mathrm{MHz}($ AWS $)$	2	60
LTE $/ 5 \mathrm{G} \mathrm{NR}$	600 MHz	2	20
LTE	700 MHz	2	40

Table 1: Channel Data Table

Transcom Engineering, Inc.

The following antennas listed in Table 2 were used in the modeling for transmission in the $600,700 \mathrm{MHz}$, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	Ericsson AIR21 B2A/B4P	110
A	2	Ericsson AIR21 B4A/B2P	110
A	3	RFS APXVAARR24_43-U-NA20	110
B	1	Ericsson AIR21 B2A/B4P	110
B	2	Ericsson AIR21 B4A/B2P	110
B	3	RFS APXVAARR24_43-U-NA20	110
C	1	Ericsson AIR21 B2A/B4P	110
C	2	Ericsson AIR21 B4A/B2P	110
C	3	RFS APXVAARR24_43-U-NA20	110

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all $\mathbf{2 1 0 0} \mathbf{~ M H z}$ UMTS radios are ground mounted the following cable loss values were used. For each ground mounted $2100 \mathbf{M H z}$ (AWS) UMTS radio there was $\mathbf{1 . 8 0} \mathbf{~ d B}$ of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for 170 feet of $\mathbf{1 - 5 / 8}$ " coax

Transcom Engineering, Inc.

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

$\begin{gathered} \text { Antenna } \\ \text { ID } \\ \hline \end{gathered}$	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	Ericsson AIR21 B2A/B4P	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	15.9	3	95	3,167.91	1.05
Antenna A2	$\begin{gathered} \text { Ericsson } \\ \text { AIR21 B4A/B2P } \end{gathered}$	2100 MHz (AWS)	15.9	2	120	4,668.54	1.55
Antenna A3	$\begin{gathered} \text { RFS } \\ \text { APXVAARR24_43-U-NA20 } \\ \hline \end{gathered}$	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	12.95 / 13.35	4	120	2,443.03	1.95
Sector A Composite MPE\%							4.55
$\begin{gathered} \text { Antenna } \\ \text { B1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { Ericsson } \\ \text { AIR21 B2A/B4P } \end{gathered}$	1900 MHz (PCS) / 2100 MHz (AWS)	15.9	3	95	3,167.91	1.05
$\begin{aligned} & \text { Antenna } \\ & \text { B2 } \end{aligned}$	$\begin{gathered} \text { Ericsson } \\ \text { AIR21 B4A/B2P } \end{gathered}$	2100 MHz (AWS)	15.9	2	120	4,668.54	1.55
Antenna B3	RFS APXVAARR24_43-U-NA20	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	12.95 / 13.35	4	120	2,443.03	1.93
Sector B Composite MPE\%							4.53
Antenna $\mathrm{C} 1$	$\begin{gathered} \text { Ericsson } \\ \text { AIR21 B2A/B4P } \\ \hline \end{gathered}$	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \\ & \hline \end{aligned}$	15.9	3	95	3,167.91	1.05
Antenna C2	Ericsson AIR21 B4A/B2P	2100 MHz (AWS)	15.9	2	120	4,668.54	1.55
Antenna $\mathrm{C} 3$	RFS APXVAARR24_43-U-NA20	$600 \mathrm{MHz} / 700 \mathrm{MHz}$	12.95 / 13.35	4	120	2,443.03	1.93
Sector C Composite MPE\%							4.53

Table 3: T-MOBILE Emissions Levels

Transcom Engineering, Inc.

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE \%	
Carrier	MPE \%
T-MOBILE - Max Per Sector Value	$\mathbf{4 . 5 5} \%$
Sprint	3.85%
Verizon Wireless	2.75%
MetroPCS	0.77%
Clearwire	0.12%
AT\&T	2.44%
Site Total MPE \%:	$\mathbf{1 4 . 4 8} \%$

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	4.55%
T-MOBILE Sector B Total:	4.53%
T-MOBILE Sector C Total:	4.53%
Site Total:	

Table 5: Site MPE Summary

Transcom Engineering, Inc.

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

T-MOBILE _ Frequency Band/ Technology Max Power Values (Per Sector)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
T-Mobile 1900 MHz (PCS) UMTS	1	583.57	110	1.94	1900 MHz (PCS)	1000	0.19\%
T-Mobile 1900 MHz (PCS) GSM	1	1,556.18	110	5.17	1900 MHz (PCS)	1000	0.52\%
T-Mobile 2100 MHz (AWS) UMTS	1	1,028.16	110	3.42	2100 MHz (AWS)	1000	0.34\%
T-Mobile 2100 MHz (AWS) LTE	2	2,334.27	110	15.52	2100 MHz (AWS)	1000	1.55\%
T-Mobile 600 MHz LTE / 5G NR	2	788.97	110	5.33	600 MHz	400	1.33\%
T-Mobile 700 MHz LTE	2	432.54	110	2.88	700 MHz	467	0.62\%
						Total:	4.55\%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Transcom Engineering, Inc.

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (\%)
Sector A:	4.55%
Sector B:	4.53%
Sector C:	4.53%
T-MOBILE Maximum	
Total (per sector):	4.55%
Site Total:	14.48%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 4 . 4 8} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Transcom Engineering, Inc
PO Box 1048
Sterling, MA 01564

[^0]: CONTRACTOR TO FIILL V VERIFY THE REQUIRED LENGTH OF THE NEW FACE
 HORRZOTTALSPIPES AND MAY CUTENDS RAS REQUIRED TO AVOID
 UNNECESSARY OVERHANG AND OVERLAP.
 Z
 $\div \quad$ ~

