STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

October 15, 2012

Jennifer Palumbo Real Estate Consultant Sprint 48 Spruce Street Oakland, NJ 07436

RE: **EM-SPRINT-107-120925** – Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 700 Grassy Hill Road, Orange, Connecticut.

Dear Ms. Palumbo:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- Any deviation from the proposed modification as specified in this notice and supporting materials with Council shall render this acknowledgement invalid;
- Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- Not less than 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- The validity of this action shall expire one year from the date of this letter; and
- The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration;

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated September 19, 2012. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Very truly yours,

Linda Roberts
Executive Director

LR/CDM/laf

c: The Honorable James M. Zeoli, First Selectman, Town of Orange Paul Dinice, Zoning Enforcement Officer, Town of Orange Crown Castle USA, Inc.

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

September 27, 2012

The Honorable James M. Zeoli First Selectman Town of Orange Town Hall 617 Orange Center Road Orange, CT 06477-2423

RE: **EM-SPRINT-107-120925** – Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 700 Grassy Hill Road, Orange, Connecticut.

Dear First Selectman Zeoli:

The Connecticut Siting Council (Council) received this request to modify an existing telecommunications facility, pursuant to Regulations of Connecticut State Agencies Section 16-50j-72.

If you have any questions or comments regarding this proposal, please call me or inform the Council by October 11, 2012.

Thank you for your cooperation and consideration.

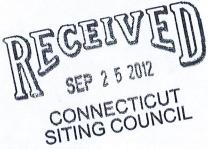
Very truly yours,

Linda Roberts
Executive Director

LR/laf

Enclosure: Notice of Intent

c: Paul Dinice, Zoning Enforcement Officer, Town of Orange



~ORIGINAL~

Together with Nextel

48 Spruce Street Oakland, NJ 07436 Phone: (845) 499-4712 Jennifer Palumbo

September 19, 2012

Hand Delivered

Ms. Linda Roberts Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Sprint Spectrum L.P. notice of intent to modify an existing telecommunications facility located at 700 Grassy Hill Road, Orange, CT 06477. Known to Sprint Spectrum L.P. as site CT23XC313.

Dear Ms. Roberts:

In order to accommodate technological changes, implement Code Division Multiple Access ("CDMA") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the state of Connecticut, Sprint Spectrum L.P. plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and its attachments is being sent to the chief elected official of the municipality in which affected cell site is located.

CDMA employs Spread-Spectrum technology and special coding scheme to allow multiple users to be multiplexed over the same physical channel. LTE is a new high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

As part of the project the new multi-mode 800/1900 antenna will replace existing antennas. These antennas will provide more flexibility for optimization by allowing fast and easy electrical tilt adjustment from remote location and will enable the transmission of multiple technologies from a single antenna. As Sprint Nextel's network evolves to meet the demands of its customers, it is essential for Sprint Nextel to install modern

equipment and antennas in order to provide reliable wireless voice and data services. The proposed equipment will include multi-mode radios that will allow Sprint Nextel to transmit at different frequencies using different technologies, including LTE technology. Likewise, the proposed antennas are quad-pole multi-band high gain antennas that will allow Sprint to operate using its multiple frequency bands and technologies, including LTE technology. The proposed equipment and antennas will improve the reliability, coverage and capacity of Sprint Nextel's voice and data networks across Sprint Nextel's various FCC licensed frequency bands and significantly increase the data speeds of Sprint Nextel's network by utilizing the latest LTE technology. Without the proposed modifications Sprint Nextel will be unable to provide reliable wireless voice and data service using the latest technologies.

Sprint Spectrum L.P. will have an interim (testing) period during the modification/installation prior to the final configuration. This antenna configuration is shown on the attached drawings of the planned modifications. Also included is the power density calculation reflecting the change in Sprint's operations at the site and documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modification as defined Connecticut General Statues ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for the R.C.S.A. Section 16-50j-72(b)(2).

1. The height of the overall structure will not be affected.

2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound.

3. The proposed changes will not increase the noise level at the existing facility

by 6 decibels or more.

4. Radio Frequency power density may increase due to the use of one or more CDMA transmissions. Moreover, LTE will utilize additional radio frequencies newly licensed by the FCC for cellular mobile communications. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons Sprint Spectrum L.P. respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (845)-499-4712 or email JPalumbo@Transcendwireless.com with questions concerning this matter. Thank you for your consideration.

Sincerely,

Jennifer Palumbo Real Estate Consultant

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Sprint Existing Facility

Site ID: CT23XC313

Orange / Rogers Property 700 Grassy Hill Road Orange, CT 06477

August 28, 2012

Tel: (781) 273.2500

August 28, 2012

Sprint Attn: RF Engineering Manager 1 International Boulevard, Suite 800 Mahwah, NJ 07495

Re: Emissions Values for Site CT23XC313 - Orange / Rogers Property

EBI Consulting was directed to analyze the proposed upgrades to the existing Sprint facility located at 700 Grassy Hill Road, Orange, CT, for the purpose of determining whether the emissions from the proposed Sprint equipment upgrades on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm2 calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the cellular band is approximately 567 μ W/cm², and the general population exposure limit for the PCS band is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed upgrades to the existing Sprint Wireless antenna facility located at 700 Grassy Hill Road, Orange, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario. Actual values seen from this site will be dramatically less than those shown in this report. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all emissions were calculated using the following assumptions:

- 1) 2 CDMA Carriers (1900 MHz) were considered for each sector of the proposed installation.
- 2) 1 CDMA Carrier (850 MHz) was considered for each sector of the proposed installation
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
- 5) The antenna used in this modeling is the RFS APXVSPP18-C-A20. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 15.9 dBd gain value at its main lobe at 1900 MHz and 13.4 dBd at its main lobe for 850 MHz. All calculations were performed assuming the main lobe of the antenna was focused at the base of the tower to present a worst case scenario.

- 6) The antenna mounting height centerline of the proposed antennas is **130 feet** above ground level (AGL)
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculation were done with respect to uncontrolled / general public threshold limits

Tel: (781) 273.2500

	Site ID Site Addresss	CT23XC313 700 Grassy F	CT23XC313 - Orange / Rogers Property 700 Grassy Hill Road, Orange, CT 06477	gers Property ge, CT 06477													
	Site Type		Monopole														
							Sector 1	r1									
Antenna Number	Antenna Number Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Power Out Per Channel (Watts)	Number of Channels	Number of Composite	Antenna Gain in direction of sample point (dBd)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss Additional	Additional	8 d	Power Density Value	Power Density
1a	RFS	1	RRH	1900 MHz	CDMA / LTE	20	2	40		130	100	1/2 "		0	174	100	3.24282%
1a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	130	124	1/2 "	0.5	0		9.117853	1.60809%
												Sector tota	al Power Der	Sector total Power Density Value:	4.851%		
							Sector 2	r 2									
Antenna	:) <u>.</u>		<u>.</u>		STURY - December 1997			Antenna	analysis		Cable Loss Additional	Additional			Power Density
2a 2a	Za RFS	Antenna Model APXVSPP18-C-A20	RRH RRH	1900 MHz	CDMA / LTE	(watts)	Channels 2	Power 40	15.9	130	neignt 124	Cable Size	(db)	SSOT	1386 9474	32 42818	3 24282%
2a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	130	124	1/2 "	0.5	0	389.96892	9.117853	1.60809%
												Sector tota	Sector total Power Density Value:	nsity Value:	4.851%		
							Sector 3	r3									
						Power Out Per			Antenna Gain in direction						C11000	Power	Power
Antenna Number	Antenna Number Antenna Make	Antenna Model	Radio Type	Frequency Band	Technology	Channel (Watts)	Number of Channels	Number of Composite Channels Power	of sample Antenna point (dBd) Height (ft)	Antenna Height (ft)	analysis height	Cable Size	Cable Loss Additional	Additional	ER		Density
3a	RFS	APXVSPP18-C-A20	RRH	1900 MHz	CDMA / LTE	20	2	40	15.9	130	124	1/2 "	0.5	0	74	00	3.24282%
3a	RFS	APXVSPP18-C-A20	RRH	850 MHz	CDMA / LTE	20	1	20	13.4	130	124	1/2 "	0.5	0	389.96892	9.117853	1.60809%
						STATE OF THE PARTY		STATE OF STREET	THE STATE OF THE PROPERTY.	ABSTRUM STORY COLOR	AND DESCRIPTION OF THE PERSON	Sortor tot	Sector total Power Descrity Va	-outel Value	A 0510/	STREET, STREET	SECURIOR SEC

Carrier Sprint AT&I AT&I Pocket Celenwire T-mobile	MPE % 14.553% 14.553% 6.810% 22.870% 1.130% 6.690%
Sprint AT&T AT&T Pocket Clearwire T-mobile	14.53% 14.590% 6.810% 22.870% 1.130% 6.690%
AT&T Pocket Verizon Wireless Clearwire T-mobile	14.590% 6.810% 22.870% 1.130% 6.690%
Pocket Verizon Wireless Clearwire T-mobile	6.810% 22.870% 1.130% 6.690%
Verizon Wireless Clearwire T-mobile	22.870% 1.130% 6.690%
Clearwire T-mobile	1.130%
T-mobile	%069.9
	TABLE TO SERVICE THE PARTY OF T
)0C8 J JJ
Total Cita MADE 9/	

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the Sprint facility are 14.553% (4.851% from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is **66.643%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government

Tel: (781) 273.2500

Fax: (781) 273.3311

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street

Burlington, MA 01803

Date: June 06, 2012

James Williams Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6521

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 (859) 624-8360 ncoomes@verticalstructures.com

Subject:

Structural Analysis Report

Carrier Designation:

Sprint PCS Co-Locate – Interim Load

Carrier Site Number:

CT23XC313

Carrier Site Name:

Crown Castle Designation:

Crown Castle BU Number:

881541

N/A

Crown Castle Site Name:

Rogers Property

Crown Castle JDE Job Number: Crown Castle Work Order Number:

189140 498950

Crown Castle Work Order Number:

151615 Rev. 3

Engineering Firm Designation:

Vertical Structures, Inc. Project Number:

2012-004-039a

Site Data:

Grassy Hill Road, Orange, CT, New Haven County Latitude 41° 17' 7.75", Longitude -73° 2' 33.27"

139.5 Foot - Monopole Tower

Dear James Williams,

Vertical Structures, Inc. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 468141.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

The analysis has been performed in accordance with the TIA/EIA-222-F standard and the 2005 Connecticut State Building Code based upon a wind speed of 85 mph fastest mile.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at *Vertical Structures, Inc.* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Nathan Coomes, P.E.

Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing and Reserved Antenna and Cable Information

Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity - LC7

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 139.5 ft Monopole tower designed by EEI in 2004. The tower was originally designed for a wind speed of 90 mph per TIA/EIA-222-F.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice and 50 mph under service loads. Also, per Crown Castle's direction and in accordance with ASCE-7-05 we have considered a fastest mile wind speed of 38 mph with an escalating 0.75 inch ice thickness.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	alcatel lucent	800 External Notch Filter			
130.0	130.0	9	celwave	ACU-A20-N Diplexer	3	1 1/4	
		3	celwave	APXVSPP18-C-A20 w/ Mount Pipe			
		1		Side Arm Mount [SO 102-3]			
128.0	128.0	3	alcatel lucent	1900MHz RRH (65MHz) TMA			
		3	alcatel lucent	800MHZ RRH TMA	-		

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna and Cable Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	ericsson	RRUS-11 BTS			
		3	kathrein	800 10121 w/ mount pipe			
136.0	140.0	6	powerwave technologies	LGP21401 TMA	2 1	3/8 5/8	1
130.0		3	powerwave technologies	P65-16-XLH-RR w/ Mount Pipe	6	1 5/8	'
		1	raycap	DC6-48-60-18-8F			
	136.0	1		T-Arm Mount [TA 702-3]			
person benjapa de de planskapi at pilag, aj prostante debitatajn	134.0	1	andrew	VHLP2-11			T
	a manual - ill	3	argus technologies	LLPX310R w/ Mount Pipe			
	132.0	1	dragonwave	A-ANT-23G-2-C	3	5/16	
130.0	.02.0	3	samsung telecommunications	FDD_R6_RRH TMA	3	1/2	1
		1		12' (4" Tube) T-Arm (3)			
	130.0	6	css	CSS-XS4-65-R w/ Mount Pipe			
124.0	124.0				6	1 5/8	1
\$ 12 M Ft 54 M Ft 64 Ft 64 Ft 7 Ft	4 4 7 5 4 1 mg 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		T-Arm Mount [TA 602-3] FD9R6004/2C-3L Dipleyer			1
		6	celwave	FD9R6004/2C-3L Diplexer			2
118.0	118.0	6	decibel	DB846F65ZAXY w/Mount Pipe	12 1 5/8		
		3	powerwave technologies	P65.16.XL.2 w/ Mount Pipe			1
		3	rymsa	MG D3-800Tx w/ Mount Pipe			
		3	ems wireless	RR90-17-02DP w/ Mount Pipe			
	109.0	6	ericsson	KRY 112 71 TMA			
108.0	109.0	3	rfs	APXV18-206516S-C-A20 w/ Mount Pipe	12	1 5/8	1
		3	w/ Mount Pipe				
	108.0	1		T-Arm Mount [TA 602-3]			1 2
100.0	100.0	3	celwave	APXV18-206517-C w/Mount Pipe	6	1 5/8	1
	77.0	1	lucent	KS24019-L112A			1 1 1
75.0	75.0	1		Side Arm Mount [SO 701- 1]	1	1/2	1

Notes:

Existing Equipment
 Reserved Equipment

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
140	140	12	dapa	48000		
140	140	1	eei	Low Profile Platform	•	
130	130	12	dapa	48000		
100	130	1	eei	Low Profile Platform		
120	120 120		dapa	48000		
120	120 120		eei	Low Profile Platform		
110	110 110		dapa	48000		
110	110	1	eei	Low Profile Platform		
100	100	12	dapa	48000		
100	100	1	eei	Low Profile Platform		
75	75	1		GPS		

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
Online Application	Sprint PCS Co-Locate Revision #3	151615	CCI iSite
Tower Drawing	EEI Drawing No. GS55077	2207700	CCI iSite
Foundation Drawing	EEI Drawing No. 12364-140	2208511	CCI iSite
Geotechnical Report	Clarence Welti Assoc., Inc. Report Dated 'February 16, 2004'	2245154	CCI iSite

3.1) Analysis Method

tnxTower (version 6.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. Crown Castle's CCIplate 1.5 analysis tool was used to evaluate the anchor bolts, base plate, and any flange splices.

3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. Vertical Structures, Inc. should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

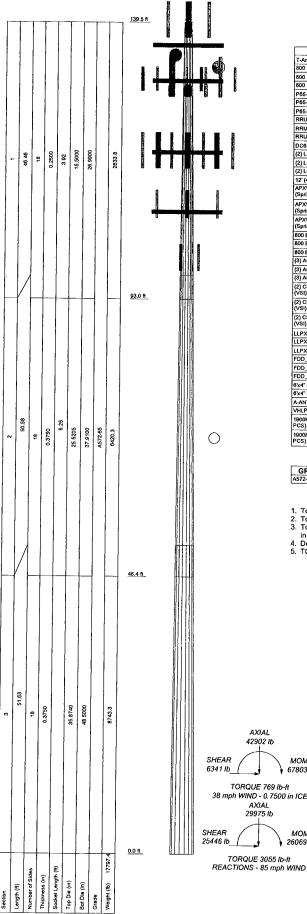
Section No.	Elevation (ft)	Component Type	Size	Critical Element	I Pan	SF*P_allow (lb)	% Capacity	Pass / Fail
L1	139.5 - 93.04	Pole	TP26.99x15.5x0.25	1	-7777.10	1063078.12	85.8	Pass
L2	93.04 - 46.38	Pole	TP37.91x25.5205x0.375	2	-16730.90	2242999.02	83.8	Pass
L3	46.38 - 0	Pole	TP48.5x35.874x0.375	3	-25566.90	2719293.23	89.8	Pass
No. Historica como			Company to the Company of the Compan				Summary	and a second
			The second secon			Pole (L3)	89.8	Pass
			The second secon			Rating =	89.8	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	69.4	Pass
1	Base Plate	0	94.1	Pass
1	Base Foundation Soil Interaction	0	80.1	Pass

	<u> </u>
Structure Rating (max from all components) =	94.1%
	1

Notes:


4.1) Recommendations

N/A

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity.

Capacities up to 105% are considered acceptable based on analysis methods used.

APPENDIX A TNXTOWER OUTPUT

DESIGNED APPURTENANCE LOADING

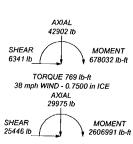
TYPE	ELEVATION	TYPE	ELEVATION
T-Arm Mount [TA 702-3]	136	800MHZ RRH TMA (Sprint PCS)	128
800 10121 w/ mount pipe	136	800MHZ RRH TMA (Sprint PCS)	128
800 10121 w/ mount pipe	136	800MHZ RRH TMA (Sprint PCS)	128
800 10121 w/ mount pipe	136	Side Arm Mount [SO 102-3] (Sprint	128
P65-16-XLH-RR w/ Mount Pipe	136	PCS)	<u></u>
P65-16-XLH-RR w/ Mount Pipe	136	1900MHz RRH (65MHz) TMA (Sprint	128
P65-16-XLH-RR w/ Mount Pipe	136	PCS)	
RRUS-11 BTS	136	(2) DB846F65ZAXY w/Mount Pipe	118
RRUS-11 BTS	136	(2) DB846F65ZAXY w/Mount Pipe	118
RRUS-11 BTS	136	MG D3-800Tx w/ Mount Pipe	118
DC6-48-60-18-8F	136	MG D3-800Tx w/ Mount Pipe	118
(2) LGP21401 TMA (VSI)	136	MG D3-800Tx w/ Mount Pipe	118
(2) LGP21401 TMA (VSI)	136	P65.16.XL.2 w/ Mount Pipe	118
(2) LGP21401 TMA (VSI)	136	P65.16.XL.2 w/ Mount Pipe	118
12' (4" Tube) T-Arm (3) (Sprint PCS)	130	P65.16.XL.2 w/ Mount Pipe	118
APXVSPP18-C-A20 w/ Mount Pipe	130	(2) FD9R6004/2C-3L Diplexer	118
(Sprint PCS)		(2) FD9R6004/2C-3L Diplexer	118
APXVSPP18-C-A20 w/ Mount Pipe	130	(2) FD9R6004/2C-3L Diplexer	118
(Sprint PCS)		T-Arm Mount [TA 602-3]	118
APXVSPP18-C-A20 w/ Mount Pipe	130	(2) DB846F65ZAXY w/Mount Pipe	118
(Sprint PCS)		RR90-17-02DP w/ Mount Pipe	108
800 External Notch Filler (Sprint PCS)		RR90-17-02DP w/ Mount Pipe	108
800 External Notch Filter (Sprint PCS)		APXV18-206516S-C-A20 w/ Mount	108
800 External Notch Filter (Sprint PCS)		Pipe	
(3) ACU-A20-N Diplexer (Sprint PCS)	130	APXV18-206516S-C-A20 w/ Mount Pipe	108
(3) ACU-A20-N Diplexer (Sprint PCS)	130		
(3) ACU-A20-N Diplexer (Sprint PCS)	130	APXV18-206516S-C-A20 w/ Mount	108
(2) CSS-XS4-65-R w/ Mount Pipe (VSI) (Sprint PCS)	130		
		(2) KRY 112 71 TMA (2) KRY 112 71 TMA	108
2) CSS-XS4-65-R w/ Mount Pipe VSI) (Sprint PCS)	130		
2) CSS-XS4-65-R w/ Mount Pipe	130	(2) KRY 112 71 TMA ATMAA1412D-1A20 TMA	108
VSI) (Sprint PCS)	100		108
LPX310R w/ Mount Pipe	130	ATMAA1412D-1A20 TMA	108
LPX310R w/ Mount Pipe	130	ATMAA1412D-1A20 TMA	108
LPX310R w/ Mount Pipe	130	(2) 7'x2" Antenna Mount Pipe	108
DD_R6_RRH TMA	130	(2) 7'x2" Antenna Mount Pipe	108
DD R6 RRH TMA	130	(2) 7'x2" Antenna Mount Pipe	108
DD R6 RRH TMA	130	T-Arm Mount (TA 602-3)	108
5'x4" Pipe Mount	130	RR90-17-02DP w/ Mount Pipe	108
3'x4" Pipe Mount	130	APXV18-206517-C w/Mount Pipe	100
A-ANT-23G-2-C (VSI)	130	APXV18-206517-C w/Mount Pipe	100
/HLP2-11	130	APXV18-206517-C w/Mount Pipe	100
	128	Side Arm Mount [SO 701-1]	75
PCS)	120	KS24019-L112A	75

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fv	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- I OWER DESIGN NOTES


 1. Tower is located in New Haven County, Connecticut.

 2. Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.

 3. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.

 4. Deflections are based upon a 50 mph wind.

 5. TOWER RATING: 89.8%

Vertical Structures, Inc. Rogers Property, CT BU#881541 309 Spangler Drive, Suite E Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369 Project: Vertical Structures Job No. 2012-004-039a

Client: Crown Castle Drawn by: ncoomes Appro Client: Crown Castle Code: TIA/EIA-222-F Date: 06/06/12 Scale: NTS

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475

Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	1 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039a	16:20:33 06/06/12
Client		Designed by
	Crown Castle	ncoomes

Tower Input Data

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Tower is located in New Haven County, Connecticut.

Basic wind speed of 85 mph.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 38 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.333.

Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys
- √ Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity
- √ Leg Bolts Are At Top Of Section
- ✓ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)

 Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.
- √ Autocalc Torque Arm Areas
- √ SR Members Have Cut Ends

 Sort Capacity Reports By Compa

 Compa

 Sort Capacity Reports By Compa

 Sort Capacity Reports
- Sort Capacity Reports By Component

 √ Triangulate Diamond Inner Bracing

- Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feedline Torque Include Angle Block Shear Check Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

Tapered Pole Section Geometry

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	139.50-93.04	46.46	3.92	18	15.5000	26.9900	0.2500	1.0000	A572-65
	02.04.46.20	50.50							(65 ksi)
L2	93.04-46.38	50.58	5.25	18	25.5205	37.9100	0.3750	1.5000	A572-65
L3	46.38-0.00	51.63		18	35.8740	48.5000	0.2750	1.5000	(65 ksi)
LJ	40.56-0.00	31.03		10	33.8740	48.3000	0.3750	1.5000	A572-65 (65 ksi)

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page		
	Rogers Property, CT BU#881541	2 of 12		
Project		Date		
	Vertical Structures Job No. 2012-004-039a	16:20:33 06/06/12		
Client		Designed by		
	Crown Castle	ncoomes		

Tapered Pole Properties

Section	Tip Dia.	Area	I _.	r	С	I/C	J	It/Q	w	w/t
	in	in²	<u>in</u> ⁴	in	in	in ³	in⁴	in ²	in	
Ll	15.7391	12.1009	355.5445	5.4138	7.8740	45.1542	711.5567	6.0516	2.2880	9.152
	27.4064	21.2182	1916.7638	9.4927	13.7109	139.7983	3836.0497	10.6111	4.3102	17.241
L2	26.8892	29.9295	2390.8862	8.9267	12.9644	184.4188	4784.9184	14.9676	3.8316	10.218
	38.4948	44.6760	7952.1562	13.3249	19.2583	412,9214	15914.7760	22.3423	6.0122	16.032
L3	37.7311	42.2527	6727.0540	12.6022	18.2240	369.1315	13462.9597	21.1304	5.6538	15.077
	49.2482	57.2808	16760.5346	17.0844	24.6380	680.2717	33543.1232	28.6458	7.8760	21.003

Tower Elevation ft	Gusset Area (per face) ft²	Gusset Thickness in	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in
L1 139.50- 93.04				1	1	1		
L2 93.04-46.38 L3 46.38-0.00				1 1	1 1	1		

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg			ft			ft²/ft	plf
LDF7-50A (1-5/8	В	No	Inside Pole	139.50 - 0.00	6	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
ED 1 00 000 11771 10 000	_					4" Ice	0.00	0.82
FB-L98-002-XXX (3/8")	В	No	Inside Pole	139.50 - 0.00	2	No Ice	0.00	0.10
						1/2" Ice	0.00	0.10
						1" Ice	0.00	0.10
						2" lce	0.00	0.10
UID TIGOTOR						4" Ice	0.00	0.10
WR-VG86ST-BRD	В	No	Inside Pole	139.50 - 0.00	1	No Ice	0.00	0.15
(Power Cable)						1/2" Ice	0.00	0.15
						1" Ice	0.00	0.15
						2" Ice	0.00	0.15
I DEL COL CLOSE DO LA CO	_					4" Ice	0.00	0.15
LDF4-50A (1/2 FOAM)	В	No	Inside Pole	132.00 - 0.00	1	No Ice	0.00	0.15
						1/2" Ice	0.00	0.15
						1" Ice	0.00	0.15
						2" Ice	0.00	0.15
						4" Ice	0.00	0.15
LDF4-50A (1/2 FOAM)	В	No	CaAa (Out Of	132.00 - 0.00	2	No Ice	0.00	0.15
			Face)			1/2" Ice	0.00	0.84
						1" Ice	0.00	2.14
						2" Ice	0.00	6.58
						4" Ice	0.00	22.78
9207(5/16")	В	No	Inside Pole	132.00 - 0.00	3	No Ice	0.00	0.06
						1/2" Ice	0.00	0.06
						l" Ice	0.00	0.06
						2" Ice	0.00	0.06
						4" Ice	0.00	0.06
2" Rigid Conduit	В	No	CaAa (Out Of	132.00 - 0.00	2	No Ice	0.10	2.80
			Face)			1/2" Ice	0.15	4.33

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	3 of 12
Project	Vertical Structures Job No. 2012-004-039a	Date 16:20:33 06/06/12
Client	Crown Castle	Designed by ncoomes

Description	Face or	Allow Shield	Component Type	Placement	Total Number	7.	C_AA_A	Weight
	Leg			ft			ft²/ft	plf
						1" Ice	0.20	6.47
						2" lce	0.30	12.57
						4" Ice	0.50	32.12
LDF6-50A (1-1/4	В	No	Inside Pole	130.00 - 0.00	6	No Ice	0.00	0.66
FOAM)						1/2" Ice	0.00	0.66
(Sprint PCS)						1" lce	0.00	0.66
						2" Ice	0.00	0.66
1173.1.4.4.004.014.3.4.3	_					4" Ice	0.00	0.66
HB114-1-0813U4-M5J	В	No	CaAa (Out Of	130.00 - 0.00	3	No Ice	0.05	0.66
(1-1/4")			Face)			1/2" Ice	0.08	1.91
(Sprint PCS)						1" Ice	0.12	3.76
						2" Ice	0.18	9.31
T 75 77 # # 0 1 // # /0	_					4" Ice	0.32	27.73
LDF7-50A (1-5/8	В	No	Inside Pole	124.00 - 0.00	6	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
561 (1.5/0.430)	_					4" Ice	0.00	0.82
561 (1-5/8 AIR)	В	No	Inside Pole	118.00 - 0.00	12	No Ice	0.00	1.35
						1/2" Ice	0.00	1.35
						1" lce	0.00	1.35
						2" lce	0.00	1.35
I DEST SOL II SIG	_					4" Ice	0.00	1.35
LDF7-50A (1-5/8	В	No	Inside Pole	109.00 - 0.00	12	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
I DET 504 (1 5/0						4" Ice	0.00	0.82
LDF7-50A (1-5/8	В	No	Inside Pole	100.00 - 0.00	6	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
LDEA FOA (1/2 FOARA)	ъ.					4" Ice	0.00	0.82
LDF4-50A (1/2 FOAM)	В	No	Inside Pole	77.00 - 0.00]	No Ice	0.00	0.15
						1/2" Ice	0.00	0.15
						I" Ice	0.00	0.15
						2" Ice	0.00	0.15
						4" Ice	0.00	0.15

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight	
	ft		ft^2	ft²	112	ft²	lb	
LI	139.50-93.04	A	0.000	0.000	0.000	0.000	0.00	
		В	0.000	0.000	0.000	13.483	1455.07	
		C	0.000	0.000	0.000	0.000	0.00	
L2	93.04-46.38	Α	0.000	0.000	0.000	0.000	0.00	
		В	0.000	0.000	0.000	16.517	2492.50	
		C	0.000	0.000	0.000	0.000	0.00	
L3	46.38-0.00	Α	0.000	0.000	0.000	0.000	0.00	
		В	0.000	0.000	0.000	16.418	2479.94	
		C	0.000	0.000	0.000	0.000	0.00	

Feed Line/Linear Appurtenances Section Areas - With Ice

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	4 of 12
Project	Vertical Structures Job No. 2012-004-039a	Date 16:20:33 06/06/12
Client	Crown Castle	Designed by ncoomes

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C₄A₄ In Face	C ₄ A _A Out Face	Weight
	ft	Leg	in	ft^2	ft²	ft ²	ft²	lb
L1	139.50-93.04	Α	0.871	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	26.707	2117.43
		C		0.000	0.000	0.000	0.000	0.00
L2	93.04-46.38	Α	0.819	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	32.771	3304.61
		C		0.000	0.000	0.000	0.000	0.00
L3	46.38-0.00	Α	0.750	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	31.619	3227.70
		С		0.000	0.000	0.000	0.000	0.00

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP _X Ice	CP _z Ice
	fi	in	in	in	in
L1	139.50-93.04	0.3396	0.1961	0.5568	0.3215
L2	93.04-46.38	0.4062	0.2345	0.6934	0.4003
L3	46.38-0.00	0.4184	0.2415	0.7204	0.4159

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _{.4} Front	C _A A _A Side	Weight
			ft ft ft	o	ft		.ft²	fi²	lb
T-Arm Mount [TA 702-3]	A	None		0.0000	136.00	No Ice 1/2" Ice 1" Ice 2" Ice	5.64 6.55 7.46 9.28	5.64 6.55 7.46 9.28	339.00 429.00 519.00 699.00
800 10121 w/ mount pipe	Α	From Centroid- Face	4.00 0.00 4.00	10.0000	136.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	12.92 5.80 6.34 6.86 7.94	12.92 4.71 5.56 6.28 7.81	1059.00 66.00 112.31 168.51 302.82
800 10121 w/ mount pipe	В	From Centroid- Face	4.00 0.00 4.00	0.0000	136.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	10.23 5.80 6.34 6.86 7.94 10.23	11.23 4.71 5.56 6.28 7.81 11.23	689.84 66.00 112.31 168.51 302.82 689.84
800 10121 w/ mount pipe	С	From Centroid- Face	4.00 0.00 4.00	-10.0000	136.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	5.80 6.34 6.86 7.94 10.23	4.71 5.56 6.28 7.81 11.23	66.00 112.31 168.51 302.82 689.84
P65-16-XLH-RR w/ Mount Pipe	Α	From Centroid- Face	4.00 0.00 4.00	30.0000	136.00	No Ice 1/2" Ice 1" Ice	8.88 9.63 10.36	6.60 7.88 9.00	82.20 147.36 225.21

Job		Page
	Rogers Property, CT BU#881541	5 of 12
Project	Vertical Structures Job No. 2012-004-039a	Date 16:20:22 06/06/42
Client	Vertical Circlates 300 No. 2012-004-0598	16:20:33 06/06/12
	Crown Castle	Designed by
	Crown Castle	ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	8		Vert ft	o	ft		ft²	ft²	lb
			ft ft						
		·		······································		2" Ice	11.75	10.93	408.26
Defeate way and the	_					4" lce	14.66	15.02	921.60
P65-16-XLH-RR w/ Mount	В	From	4.00	30.0000	136.00	No Ice	8.88	6.60	82.20
Pipe		Centroid-	0.00			1/2" Ice	9.63	7.88	147.36
		Face	4.00			1" Ice	10.36	9.00	225.21
						2" Ice 4" Ice	11.75 14.66	10.93	408.26
P65-16-XLH-RR w/ Mount	С	From	4.00	30.0000	136.00	No Ice	8.88	15.02 6.60	921.60 82.20
Pipe		Centroid-	0.00	50.0000	130.00	1/2" Ice	9.63	7.88	147.36
		Face	4.00			l" Ice	10.36	9.00	225.21
						2" lce	11.75	10.93	408.26
PRIM 11 PMG		_				4" Ice	14.66	15.02	921.60
RRUS-11 BTS	Α	From	4.00	30.0000	136.00	No Ice	4.42	1.19	55.00
		Centroid-	0.00			1/2" Ice	4.71	1.35	80.77
		Face	4.00			1" Ice	5.00	1.53	109.98
						2" Ice	5.61	1.90	179.45
RRUS-11 BTS	В	From	4.00	30.0000	136.00	4" Ice No Ice	6.94 4.42	2.75	368.09
		Centroid-	0.00	30.0000	130.00	1/2" Ice	4.42	1.19 1.35	55.00 80.77
		Face	4.00			1" Ice	5.00	1.53	109.98
						2" Ice	5.61	1.90	179.45
						4" Ice	6.94	2.75	368.09
RRUS-11 BTS	С	From	4.00	30.0000	136.00	No Ice	4.42	1.19	55.00
		Centroid-	0.00			1/2" Ice	4.71	1.35	80.77
		Face	4.00			1" Ice	5.00	1.53	109.98
						2" Ice	5.61	1.90	179.45
DC6-48-60-18-8F	C	From	4.00	30.0000	126.00	4" Ice No Ice	6.94	2.75	368.09
		Centroid-	0.00	30.0000	136.00	1/2" Ice	2.57 2.80	4.32 4.60	18.90
		Face	4.00			1" Ice	3.04	4.88	50.21 85.17
						2" Ice	3.54	5.49	166.87
						4" Ice	4.66	6.80	382.77
(2) LGP21401 TMA (VSI)	Α	From	4.00	10.0000	136.00	No Ice	1.29	0.36	14.10
		Centroid-	0.00			1/2" Ice	1.45	0.48	21.26
		Face	4.00			1" Ice	1.61	0.60	30.32
						2" Ice	1.97	0.87	54.89
(2) LGP21401 TMA (VSI)	В	From	4.00	0.0000	126.00	4" Ice	2.79	1.52	135.29
(2) 23121401 11111 (+31)	Ь	Centroid-	0.00	0.0000	136.00	No Ice 1/2" Ice	1.29 1.45	0.36	14.10
		Face	4.00			l" Ice	1.43	0.48 0.60	21.26 30.32
			7,00			2" Ice	1.97	0.87	54.89
						4" Ice	2.79	1.52	135.29
(2) LGP21401 TMA (VSI)	C	From	4.00	-10.0000	136.00	No Ice	1.29	0.36	14.10
		Centroid-	0.00			1/2" Ice	1.45	0.48	21.26
		Face	4.00			I" Ice	1.61	0.60	30.32
						2" lce	1.97	0.87	54.89
**						4" Ice	2.79	1.52	135.29
12' (4" Tube) T-Arm (3)	С	None		0.0000	120.00	N - 1	12.50	12.72	(00.00
(Sprint PCS)	-	HOIL		0.0000	130.00	No Ice 1/2" Ice	13.50 16.71	13.50	600.00
(-)						1/2 Ice	19.71	16.71 19.92	750.00
						2" Ice	26.34	26.34	900.00 1200.00
						4" lce	39.18	39.18	1800.00
APXVSPP18-C-A20 w/	Α	From	4.75	10.0000	130.00	No Ice	8.50	6.95	82.55
Mount Pipe		Centroid-	2.75			1/2" Ice	9.15	8.13	147.74
(Sprint PCS)		Face	0.00			t" Ice	9.77	9.02	224.90
						2" Ice	11.03	10.84	405.88

Job		Page
	Rogers Property, CT BU#881541	6 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039a	16:20:33 06/06/12
Client	Crawn Cookle	Designed by
	Crown Castle	ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement	170	C₁A₁ Front	C _A A _A Side	Weight
			Vert fi fi fi	0	fi		ft²	ft²	lb
APXVSPP18-C-A20 w/ Mount Pipe (Sprint PCS)	В	From Centroid- Face	4.75 2.75 0.00	20.0000	130.00	4" Ice No Ice 1/2" Ice	13.68 8.50 9.15	14.85 6.95 8.13	908.85 82.55 147.74
(1		1 400	0.00			1" Ice 2" Ice 4" Ice	9.77 11.03 13.68	9.02 10.84 14.85	224.90 405.88 908.85
APXVSPP18-C-A20 w/ Mount Pipe (Sprint PCS)	С	From Centroid- Face	4.75 2.75 0.00	-20.0000	130.00	No Ice 1/2" Ice 1" Ice 2" Ice	8.50 9.15 9.77 11.03	6.95 8.13 9.02 10.84	82.55 147.74 224.90 405.88
800 External Notch Filter (Sprint PCS)	A	From Centroid- Face	4.75 2.75 0.00	10.0000	130.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	13.68 0.77 0.89 1.02 1.30	14.85 0.37 0.46 0.56	908.85 11.00 16.81 24.26
800 External Notch Filter (Sprint PCS)	В	From Centroid- Face	4.75 2.75 0.00	20.0000	130.00	4" Ice No Ice 1/2" Ice 1" Ice	1.97 0.77 0.89 1.02	0.79 1.34 0.37 0.46 0.56	44.81 114.01 11.00 16.81 24.26
800 External Notch Filter (Sprint PCS)	С	From Centroid-	4.75 2.75	-20.0000	130.00	2" Ice 4" Ice No Ice 1/2" Ice	1.30 1.97 0.77 0.89	0.79 1.34 0.37 0.46	44.81 114.01 11.00 16.81
(3) ACU-A20-N Diplexer	A	Face From	0.00 4.75	10.0000	130.00	1" Ice 2" Ice 4" Ice No Ice	1.02 1.30 1.97 0.14	0.56 0.79 1.34 0.08	24.26 44.81 114.01 1.04
(Sprint PCS)		Centroid- Face	2.75 0.00	10.0000	150.00	1/2" Ice 1" Ice 2" Ice 4" Ice	0.14 0.19 0.25 0.40 0.80	0.12 0.17 0.30	2.32 4.41 11.80
(3) ACU-A20-N Diplexer (Sprint PCS)	В	From Centroid- Face	4.75 2.75 0.00	20.0000	130.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.14 0.19 0.25 0.40	0.67 0.08 0.12 0.17 0.30	44.85 1.04 2.32 4.41 11.80
(3) ACU-A20-N Diplexer (Sprint PCS)	С	From Centroid- Face	4.75 2.75 0.00	-20.0000	130.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	0.80 0.14 0.19 0.25 0.40	0.67 0.08 0.12 0.17 0.30	44.85 1.04 2.32 4.41 11.80
(2) CSS-XS4-65-R w/ Mount Pipe (VSI) (Sprint PCS)	A	From Centroid- Face	4.75 2.75 0.00	30.0000	130.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	0.80 3.38 3.78 4.21 5.11	0.67 3.32 3.92 4.54 5.83	44.85 19.60 50.48 89.72 186.96
(2) CSS-XS4-65-R w/ Mount Pipe (VSI) (Sprint PCS)	В	From Centroid- Face	4.75 2.75 0.00	30.0000	130.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	7.02 3.38 3.78 4.21 5.11	8.81 3.32 3.92 4.54 5.83	483.81 19.60 50.48 89.72 186.96
(2) CSS-XS4-65-R w/ Mount Pipe (VSI) (Sprint PCS)	С	From Centroid- Face	4.75 2.75 0.00	30.0000	130.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	7.02 3.38 3.78 4.21 5.11	8.81 3.32 3.92 4.54 5.83	483.81 19.60 50.48 89.72 186.96
LLPX310R w/ Mount Pipe	Α	From	4.75	40.0000	130.00	4" Ice No Ice	7.02 5.43	8.81 3.38	483.81 50.56

Job		Page
	Rogers Property, CT BU#881541	7 of 12
Project	Vertical Structures Job No. 2012-004-039a	Date 16:20:33 06/06/12
Client	Crown Castle	Designed by ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	8		Vert ft ft	٥	ft		ft²	ft²	lb
		Centroid-	<i>ft</i> 2.75		·	1/2" Ice	5.99	4.15	
		Face	2.00			172 Ice	5.99 6.51	4.15	89.99
						2" Ice	7.57	4.80 6.19	138.53 255.15
						4" Ice	9.86	9.25	597.35
LLPX310R w/ Mount Pipe	В	From	4.75	10.0000	130.00	No Ice	5.43	3.38	50.56
		Centroid-	2.75			1/2" Ice	5.99	4.15	89.99
		Face	2.00			1" Ice	6.51	4.80	138.53
						2" Ice	7.57	6.19	255.15
LI DV210D/M D	0	_				4" Ice	9.86	9.25	597.35
LLPX310R w/ Mount Pipe	С	From	4.75	0.0000	130.00	No Ice	5.43	3.38	50.56
		Centroid-	2.75			1/2" Ice	5.99	4.15	89.99
		Face	2.00			1" Ice	6.51	4.80	138.53
						2" Ice	7.57	6.19	255.15
FDD R6 RRH TMA	Α	From	4.75	40.0000	120.00	4" Ice	9.86	9.25	597.35
122_10_1001	А	Centroid-	4.75 2.75	40.0000	130.00	No Ice	1.79	0.78	33.00
		Face	2.73			1/2" Ice	1.97	0.92	44.50
		7 400	2.00			l" Ice	2.16	1.07	58.31
						2" lce 4" lce	2.57	1.39	93.60
FDD_R6 RRH TMA	В	From	4.75	10.0000	130.00	No Ice	3.49	2.14	200.35
		Centroid-	2.75	10.0000	130.00	1/2" Ice	1.79 1.97	0.78	33.00
		Face	2.00			l" Ice	2.16	0.92	44.50
						2" Ice	2.57	1.07 1.39	58.31
						4" Ice	3.49	2.14	93.60
FDD_R6_RRH TMA	C	From	4.75	0.0000	130.00	No Ice	1.79	0.78	200.35 33.00
		Centroid-	2.75			1/2" Ice	1.97	0.78	44.50
		Face	2.00			l" Ice	2.16	1.07	58.31
						2" Ice	2.57	1.39	93.60
Chall D' An .	_					4" Ice	3.49	2.14	200.35
6'x4" Pipe Mount	В	From	4.75	0.0000	130.00	No Ice	2.25	2.25	65.00
		Centroid-	2.75			1/2" Ice	2.62	2.62	84.10
		Face	0.00			1" Ice	3.00	3.00	107.47
						2" lce	3.78	3.78	167.65
6'x4" Pipe Mount	С	F	4.55	0.000		4" Ice	5.56	5.56	346.05
OA4 Tipe Mount	C	From Centroid-	4.75	0.0000	130.00	No Ice	2.25	2.25	65.00
		Face	2.75 0.00			1/2" Ice	2.62	2.62	84.10
		race	0.00			l" Ice	3.00	3.00	107.47
						2" Ice	3.78	3.78	167.65
**						4" Ice	5.56	5.56	346.05
Side Arm Mount [SO 102-3]	C	None		0.0000	128.00	No Ice	2.00	2.00	0.1.00
(Sprint PCS)				0.0000	120.00	1/2" Ice	3.00 3.48	3.00	81.00
						1" Ice	3.46	3.48	111.00
						2" Ice	4.92	3.96 4.92	141.00
						4" Ice	6.84	6.84	201.00 321.00
1900MHz RRH (65MHz)	Α	From	3.50	10.0000	128.00	No Ice	2.77	2.70	60.00
TMA		Centroid-	0.00			1/2" Ice	3.01	2.94	83.90
(Sprint PCS)		Face	0.00			1" Ice	3.26	3.18	111.08
						2" Ice	3.78	3.70	176.02
1000MHz DDH (Centre)		-				4" Ice	4.93	4.85	353.75
1900MHz RRH (65MHz)	В	From	3.50	20.0000	128.00	No Ice	2.77	2.70	60.00
TMA (Sprint PCS)		Centroid-	0.00			1/2" Ice	3.01	2.94	83.90
(Spriit PCS)		Face	0.00			l" Ice	3.26	3.18	111.08
						2" Ice	3.78	3.70	176.02
1900MHz RRH (65MHz)	С	From	2.50	20.0000	100.00	4" Ice	4.93	4.85	353.75
TMA		Centroid-	3.50 0.00	-20.0000	128.00	No Ice	2.77	2.70	60.00
-		COMOR-	0.00			1/2" Ice	3.01	2.94	83.90

Job		Page
	Rogers Property, CT BU#881541	8 of 12
Project	Vertical Structures Job No. 2012-004-039a	Date 16:20:33 06/06/12
Client	Crown Castle	Designed by

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C _A A _A Front	C₁A₁ Side	Weight
	Leg		Lateral Vert						
			ft ft ft	o	ft		ft²	ft²	lb
(Sprint PCS)		Face	0.00			1" Ice	3.26	3.18	111.08
						2" Ice	3.78	3.70	176.02
900MHZ DDH 2044		_				4" Ice	4.93	4.85	353.75
800MHZ RRH TMA	Α	From	3.50	10.0000	128.00	No Ice	2.49	2.07	53.00
(Sprint PCS)		Centroid-	0.00			1/2" Ice	2.71	2.27	74.19
		Face	0.00			l" Ice	2.93	2.48	98.39
						2" Ice	3.41	2.93	156.61
800MHZ RRH TMA	В	From	3.50	20,0000	120.00	4" Ice	4.46	3.93	317.77
(Sprint PCS)		Centroid-	0.00	20.0000	128.00	No Ice	2.49	2.07	53.00
()		Face	0.00			1/2" Ice 1" Ice	2.71	2.27	74.19
		1 400	0.00			2" Ice	2.93 3.41	2.48	98.39
						4" Ice	3.41 4.46	2.93	156.61
800MHZ RRH TMA	C	From	3.50	-20.0000	128.00	No Ice	2.49	3.93 2.07	317.77
(Sprint PCS)		Centroid-	0.00		120.00	1/2" Ice	2.71	2.07	53.00 74.19
		Face	0.00			l" Ice	2.93	2.48	98.39
						2" Ice	3.41	2.93	156.61
**						4" Ice	4.46	3.93	317.77
T-Arm Mount [TA 602-3]	C	None		0.0000	118.00	No Ice	11.59	11.59	774.30
						1/2" Ice	15.44	15.44	990.35
						l" Ice	19.29	19.29	1206.41
						2" Ice	26.99	26.99	1638.52
(2) DB846F65ZAXY		P				4" lce	42.39	42.39	2502.73
w/Mount Pipe	Α	From Centroid-	6.00	-40.0000	118.00	No Ice	7.27	7.82	46.55
wiviount i ipe		Face	0.00 0.00			1/2" Ice	7.88	9.01	111.10
		1 ace	0.00			1" Ice	8.48	9.91	187.61
						2" Ice	9.72	11.81	367.24
(2) DB846F65ZAXY	В	From	6.00	-20.0000	118.00	4" Ice No Ice	12.33 7.27	15.98	867.25
w/Mount Pipe		Centroid-	0.00	-20.0000	118.00	1/2" Ice	7.27	7.82 9.01	46.55
		Face	0.00			l" lce	8.48	9.01 9.9 1	111.10 187.61
						2" Ice	9.72	11.81	367.24
(2) 550						4" Ice	12.33	15.98	867.25
(2) DB846F65ZAXY	C	From	6.00	0.0000	118.00	No Ice	7.27	7.82	46.55
w/Mount Pipe		Centroid-	0.00			1/2" Ice	7.88	9.01	111.10
		Face	0.00			l" Ice	8.48	9.91	187.61
						2" Ice	9.72	11.81	367.24
MG D3-800Tx w/ Mount	Α	From	6.00	20.0000	110.00	4" Ice	12.33	15.98	867.25
Pipe	/1	Centroid-	0.00	-20.0000	118.00	No Ice	3.71	3.56	36.90
		Face	0.00			1/2" Ice 1" Ice	4.19	4.39	69.87
		1 400	0.00			OU 1	4.63	5.09	112.21
						2" Ice 4" Ice	5.65 7.82	6.54	217.21
MG D3-800Tx w/ Mount	В	From	6.00	-20.0000	118.00	No Ice	3.71	9.69 3.56	539.32
Pipe		Centroid-	0.00			1/2" Ice	4.19	4.39	36.90 69.87
		Face	0.00			1" Ice	4.63	5.09	112.21
						2" Ice	5.65	6.54	217.21
MC D1 000T / **	~	_				4" Ice	7.82	9.69	539.32
MG D3-800Tx w/ Mount	C	From	6.00	-10.0000	118.00	No Ice	3.71	3.56	36.90
Pipe		Centroid-	0.00			1/2" Ice	4.19	4.39	69.87
		Face	0.00			1" Ice	4.63	5.09	112.21
						2" Ice	5.65	6.54	217.21
P65.16.XL.2 w/ Mount Pipe	Α	From	6.00	-20.0000	110.00	4" Ice	7.82	9.69	539.32
	А	Centroid-	0.00	-20.0000	118.00	No Ice	8.88	6.02	62.20
		Face	0.00			1/2" Ice 1" Ice	9.63 10.36	7.29 8.41	124.60 199.63
		1 400	v.uu						

Job		Page
	Rogers Property, CT BU#881541	9 of 12
Project	Vertical Structures Job No. 2012-004-039a	Date 16:20:33 06/06/12
Client	Crown Castle	Designed by ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C₁A₁ Side	Weight
			Vert ft ft	o	ft		fi²	ft²	lb
			fi			2" Ice	11.75	10.32	276.05
DC5 16 30 0 104						4" Ice	14.66	14.36	376.85 877.75
P65.16.XL.2 w/ Mount Pipe	В	From	6.00	-20.0000	118.00	No Ice	8.88	6.02	62.20
		Centroid-	0.00			1/2" Ice	9.63	7.29	124.60
		Face	0.00			1" lce	10.36	8.41	199.63
						2" Ice	11.75	10.32	376.85
P65.16.XL.2 w/ Mount Pipe	С	From	6.00	20,0000	110.00	4" Ice	14.66	14.36	877.75
	C	Centroid-	0.00	-20.0000	118.00	No Ice	8.88	6.02	62.20
		Face	0.00			1/2" Ice	9.63	7.29	124.60
		· ucc	0.00			1" Ice 2" Ice	10.36	8.41	199.63
						4" Ice	11.75	10.32	376.85
(2) FD9R6004/2C-3L	Α	From	6.00	-40.0000	118.00	No Ice	14.66 0.37	14.36	877.75
Diplexer		Centroid-	0.00	10.0000	110.00	1/2" Ice	0.37	0.08	3.10
		Face	0.00			1" Ice	0.43	0.14 0.20	5.40
						2" Ice	0.75	0.20	8.79 19.61
(0) FD0D (00 (0 =						4" Ice	1.28	0.74	62.87
(2) FD9R6004/2C-3L	В	From	6.00	-20.0000	118.00	No Ice	0.37	0.08	3.10
Diplexer		Centroid-	0.00			1/2" Ice	0.45	0.14	5.40
		Face	0.00			l" Ice	0.54	0.20	8.79
						2" Ice	0.75	0.34	19.61
(2) FD9R6004/2C-3L	0	P				4" lce	1.28	0.74	62.87
Diplexer	С	From	6.00	0.0000	118.00	No Ice	0.37	0.08	3.10
Diploxer		Centroid- Face	0.00			1/2" Ice	0.45	0.14	5.40
		race	0.00			l" Ice	0.54	0.20	8.79
						2" Ice	0.75	0.34	19.61
**						4" Ice	1.28	0.74	62.87
T-Arm Mount [TA 602-3]	C	None		0.0000	108.00	No Ice	11.59	11.59	774.30
						1/2" Ice	15.44	15.44	990.35
						l" Ice	19.29	19.29	1206.41
						2" Ice	26.99	26.99	1638.52
RR90-17-02DP w/ Mount	٨	P				4" Ice	42.39	42.39	2502.73
Pipe	Α	From	6.00	0.0000	00.801	No Ice	4.59	3.32	34.18
1 ipc		Centroid- Face	0.00			1/2" Ice	5.09	4.09	69.33
		race	1.00			1" Ice	5.58	4.78	113.86
						2" Ice	6.59	6.23	223.79
RR90-17-02DP w/ Mount	В	From	6.00	0.0000	100.00	4" Ice	8.73	9.31	556.77
Pipe	_	Centroid-	0.00	0.0000	108.00	No Ice	4.59	3.32	34.18
•		Face	1.00			1/2" Ice 1" Ice	5.09	4.09	69.33
			7.00			2" Ice	5.58 6.59	4.78	113.86
						4" Ice	8.73	6.23	223.79
RR90-17-02DP w/ Mount	C	From	6.00	0.0000	108.00	No Ice	4.59	9.31 3.32	556.77
Pipe		Centroid-	0.00		100.00	1/2" Ice	5.09	3.32 4.09	34.18 69.33
		Face	1.00			1" Ice	5.58	4.78	113.86
						2" Ice	6.59	6.23	223.79
DVIII 20/51/0 G . co						4" Ice	8.73	9.31	556.77
APXV18-206516S-C-A20 w/	Α	From	6.00	0.0000	108.00	No Ice	3.76	3.20	36.95
Mount Pipe		Centroid-	0.00			1/2" Ice	4.14	3.83	68.28
		Face	1.00			1" Ice	4.57	4.47	108.25
						2" Ice	5.47	5.81	207.80
.PXV18-206516S-C-A20 w/	D	г.				4" Ice	7.40	8.74	512.65
Mount Pipe	В	From	6.00	0.0000	108.00	No Ice	3.76	3.20	36.95
wiount ripe		Centroid-	0.00			1/2" Ice	4.14	3.83	68.28
		Face	1.00			l" lce	4.57	4.47	108.25
						2" Ice	5.47	5.81	207.80

T		
Job	Deves During to OT BUILDING	Page
	Rogers Property, CT BU#881541	10 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039a	16:20:33 06/06/12
Client	0	Designed by
	Crown Castle	ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C_AA_A Front	C _A A _A Side	Weight
			vert fi ft fi	fi ° fi	fi		ft²	ft²	lb
APXV18-206516S-C-A20 w/ Mount Pipe	С	From Centroid- Face	6.00 0.00 1.00	0.0000	108.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	7.40 3.76 4.14 4.57 5.47	8.74 3.20 3.83 4.47 5.81	512.65 36.95 68.28 108.25 207.80
(2) KRY 112 71 TMA	Α	From Centroid- Face	6.00 0.00 1.00	0.0000	108.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	7.40 0.68 0.80 0.93 1.22	8.74 0.45 0.56 0.68 0.94	512.65 13.20 18.38 25.16 44.33
(2) KRY 112 71 TMA	В	From Centroid- Face	6.00 0.00 1.00	0.0000	108.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.90 0.68 0.80 0.93 1.22	1.57 0.45 0.56 0.68 0.94	110.52 13.20 18.38 25.16 44.33
(2) KRY 112 71 TMA	С	From Centroid- Face	6.00 0.00 1.00	0.0000	108.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	1.90 0.68 0.80 0.93 1.22	1.57 0.45 0.56 0.68 0.94	110.52 13.20 18.38 25.16 44.33
ATMAA1412D-1A20 TMA	A	From Centroid- Face	6.00 0.00 1.00	0.0000	108.00	4" Ice No Ice 1/2" Ice I" Ice 2" Ice	1.90 1.17 1.31 1.47 1.81	1.57 0.47 0.57 0.69 0.95	110.52 13.00 20.62 30.11 55.52
ATMAA1412D-1A20 TMA	В	From Centroid- Face	6.00 0.00 1.00	0.0000	108.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	2.58 1.17 1.31 1.47 1.81	1.57 0.47 0.57 0.69 0.95	137.44 13.00 20.62 30.11 55.52
ATMAA1412D-1A20 TMA	С	From Centroid- Face	6.00 0.00 1.00	0.0000	108.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	2.58 1.17 1.31 1.47 1.81	1.57 0.47 0.57 0.69 0.95	137.44 13.00 20.62 30.11 55.52
(2) 7'x2" Antenna Mount Pipe	A	From Centroid- Face	6.00 0.00 0.00	0.0000	108.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	2.58 1.66 2.39 2.83 3.71	1.57 1.66 2.39 2.83 3.71	137.44 26.00 38.58 55.84 104.97
2) 7'x2" Antenna Mount Pipe	В	From Centroid- Face	6.00 0.00 0.00	0.0000	108.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice	5.58 1.66 2.39 2.83 3.71	5.58 1.66 2.39 2.83 3.71	266.00 26.00 38.58 55.84 104.97
2) 7'x2" Antenna Mount Pipe **	С	From Centroid- Face	6.00 0.00 0.00	0.0000	108.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	5.58 1.66 2.39 2.83 3.71 5.58	5.58 1.66 2.39 2.83 3.71 5.58	266.00 26.00 38.58 55.84 104.97 266.00
APXV18-206517-C w/Mount Pipe	A	From Centroid- Face	1.75 1.00 0.00	30.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	3.95 4.42 4.90 5.93 8.12	3.43 4.25 4.95 6.40 9.51	48.30 81.62 124.33 230.17 554.31

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	11 of 12
Project	Vertical Of	Date
	Vertical Structures Job No. 2012-004-039a	16:20:33 06/06/12
Client	Crown Castle	Designed by
	Crown Castle	ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	o	fi		fit²	fi²	lb
APXV18-206517-C w/Mount Pipe	В	From Centroid- Face	1.75 1.00 0.00	30.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice	3.95 4.42 4.90 5.93	3.43 4.25 4.95 6.40	48.30 81.62 124.33 230.17
APXV18-206517-C w/Mount Pipe	С	From Centroid- Face	1.75 1.00 0.00	30.0000	100.00	4" Ice No Ice 1/2" Ice I" Ice 2" Ice 4" Ice	8.12 3.95 4.42 4.90 5.93 8.12	9.51 3.43 4.25 4.95 6.40 9.51	554.31 48.30 81.62 124.33 230.17 554.31
Side Arm Mount [SO 701-1]	С	From Centroid- Leg	2.75 0.00 0.00	0.0000	75.00	No Ice 1/2" Ice 1" Ice 2" Ice	0.85 1.14 1.43 2.01	1.67 2.34 3.01 4.35	65.00 79.00 93.00 121.00
KS24019-L112A	С	From Centroid- Leg	4.25 0.00 2.00	0.0000	75.00	4" Ice No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	3.17 0.10 0.18 0.26 0.42 0.74	7.03 0.10 0.18 0.26 0.42 0.74	177.00 5.00 6.50 8.00 11.00 17.00

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft		0	ft	ft		ft^2	lb
-ANT-23G-2-C	В	Paraboloid	From	4.75	10.0000		130.00	2.17	No Ice	3.72	12.30
(VSI)	w/Shroud (HP)		2.25					1/2" Ice	4.01	32.88	
			-Face	2.00					I" Ice	4.30	53.46
									2" Ice	4.88	94.62
VHLP2-11	0	D 1 1 1 1	_						4" Ice	6.04	176.94
V IIL 2-11	C	Paraboloid	From	4.75	-30.0000		130.00	2.17	No Ice	3.72	31.00
		w/Shroud (HP)	Centroid	2.25					1/2" Ice	4.01	51.56
			-Face	4.00					1" lce	4.30	72.12
									2" Ice	4.88	113.24
									4" Ice	6.04	195,48

Compression Checks

Pole Design Data

Job		Page
	Rogers Property, CT BU#881541	12 of 12
Project	Vertical Structures Job No. 2012-004-039a	Date 16:20:33 06/06/12
Client	Crown Castle	Designed by ncoomes

Section No.	Elevation	Size	L	L_{u}	Kl/r	F_a	Ä	Actual	Allow.	Ratio
	ft 120.5 02.04.00		ft	ft		ksi	in ²	lb	$rac{P_a}{lb}$.	$\frac{P}{P_a}$
L1 L2 L3	139.5 - 93.04 (1) 93.04 - 46.38 (2) 46.38 - 0 (3)	TP26.99x15.5x0.25 TP37.91x25.5205x0.375 TP48.5x35.874x0.375	46.46 50.58 51.63	0.00 0.00 0.00	0.0 0.0 0.0	39.000 39.000 39.000	20.4489 43.1454 52.3071	-7777.10 -16730.90 -25566.90	797508.00 1682670.00 2039980.00	0.010 0.010 0.013

		Pole Bending Design Data										
Section No.	Elevation ft	Size	Actual M _x lb-ft	Actual f _{bx} ksi	Allow. F _{bx} ksi	Ratio f _{bx} F _{bx}	Actual M _y lb-ft	Actual f _{by} ksi	Allow. F _{by} ksi	Ratio f _{by}		
LI	139.5 - 93.04 (1)	TP26.99x15.5x0.25	478506. 67	-44.238	39.000	1.134	0.00	0.000	39.000	$\frac{F_{by}}{0.000}$		
L2	93.04 - 46.38 (2)	TP37.91x25.5205x0.375	1385283	-43.180	39.000	1.107	0.00	0.000	39.000	0.000		
L3	46.38 - 0 (3)	TP48.5x35.874x0.375	2182650	-46.206	39.000	1.185	0.00	0.000	39.000	0.000		

	Pole Interaction Design Data										
Section No.	Elevation ft	Size	Ratio P	Ratio f _{bx}	Ratio f _{by}	Comb. Stress	Allow. Stress	Criteria			
1.1			P_a	F_{bx}	F_{by}	Ratio	Ratio				
L1	139.5 - 93.04 (1)	TP26.99x15.5x0.25	0.010	1.134	0.000	1.144	1.333	H1-3			
L2	93.04 - 46.38 (2)	TP37.91x25.5205x0.375	0.010	1.107	0.000	1.117 🗸	1.333	H1-3			
L3	46.38 - 0 (3)	TP48.5x35.874x0.375	0.013	1.185	0.000	1.197	1.333	H1-3			

	Section Capacity Table										
Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail			
L1	139.5 - 93.04	Pole	TP26.99x15.5x0.25	1	-7777.10	1063078.12	· · · · · · · · · · · · · · · · · · ·				
L2	93.04 - 46.38	Pole	TP37.91x25.5205x0.375	2			85.8	Pass			
L3	46.38 - 0			2	-16730.90	2242999.02	83.8	Pass			
LJ	40.36 - 0	Pole	TP48.5x35.874x0.375	3	- 25566.90	2719293.23	89.8	Pass			
							Summary				
						Pole (L3)	89.8	Pass			
						RATING =	89.8	Pass			

Hers Mrs DOV DOV Hers SHS MRS SOV Sensor y soldo moin súa color montanar 1/10/2/2 V

soldo moin súa color mointean 1/11/2 V

soldo DRAWN BY: VSG CHECKED BY: GPK DRAWING DATE: 25/02/08

(MSIALLED)
(1) 5/8" TO 136 FT LEVEL
(2) 3/8" TO 136 FT LEVEL
(6) 1-5/8" TO 136 FT LEVEL

(INSTALLED)
(1) 1/2" TO 75 FT LEVEL

(PROPOSED) (3) 1-1/4 TO 130 FT LEVEL (RSTALED) (6) 1-1/4 TO 130 FT LEVEL — (SPRINT PCS)

(INSTALLED) (12) 1-5/8" TO 108 FT LEVEL-

(INSTALLED) -(6) 1-5/8° TO 100 FT LEVEL

(NOT INSTALLED)
(NOT INSTALLED)
(NOTALLED)
(NOTALLED-EURIDED IN 2 CONDUIT)

10D

(INSTALLED) -(12) 1-5/8" TO 118 FT LEVEL

(ABANDONED) -(6) 1-5/8" TO 124 FT LEVEL

BUSINESS UNIT: 881541 TOWER ID: C_BASELEVEL

881544	SITE ADDRESS	NEW HAVEN, CT 06477	UNITED STATES COUNTY USA	BASE I FVE	
	3685				
PORT INFORMATION	LOCATION	E & W	5	E & W	
PORT IS	325	10"×30"	10"x30"	10"×30"	
	ELEY.	.0-,0t	2,-0-	3'-3"	

A1-0

300 1.

BUSINESS UNIT NUMB ROGERS PROPERTY

SITE NUMBER: SITE NAME: SITE NAME

BASE LEVEL DRAWING

SHOWER SERVICE THE PROPERTY OF THE SERVICE OWNS

Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

TIA Rev F

Site Data

BU#: 881541

Site Name: Rogers Property, CT App #: 151615, Rev. 3

Pole Manufacturer: Other

Reactions		
Moment:	2606.991	ft-kips
Axial:	29.975	kips
Shear:	25.446	kips

Anchor Rod Data								
Qty:	16							
Diam:	2.25	in						
Rod Material:	A615-J							
Strength (Fu):	100	ksi						
Yield (Fy):	75	ksi						
Bolt Circle:	57	in						

Plate Data								
Diam:	63	in						
Thick:	2	in in						
Grade:	60	ksi						
Single-Rod B-eff:	9.62	in						

Stiffener Data (Welding at both sides)				
Config:	0	*		
Weld Type:		1		
Groove Depth:		in **		
Groove Angle:		degrees		
Fillet H. Weld:		< Disregard		
Fillet V. Weld:		in		
Width:		in		
Height:		in		
Thick:		in		
Notch:		in		
Grade:		ksi		
Weld str.:		ksi		

Pole Data						
Diam:	48.5	in				
Thick:	0.375	in				
Grade:	65	ksi				
# of Sides:	18	"0" IF Round				
fu[80	ksi				
Reinf. Fillet Weld	0	"0" if None				

Stress	Factor		
ASIF:	1.333		

Axial:	29.975
Shear:	25.446

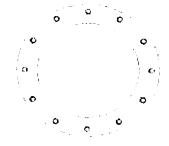
Anchor Rod Results		Rigid
Maximum Rod Tension:	135.3 Kips	Service, ASD
Allowable Tension:	195.0 Kips	Fty*ASIF
Anchor Rod Stress Ratio:	69.4% Pass	

If No stiffeners, Criteria; AISC ASD <-Only Applicable to Unstiffened Cases

Base Plate Results	Flexural Check
Base Plate Stress:	56.4 ksi
Allowable Plate Stress:	60.0 ksi
Base Plate Stress Ratio:	94.1% Pass

Rigid
Service ASD
0.75*Fy*ASIF
Y.L. Length:
29.95

<u>n/a</u>


Stiffener Results

Horizontal Weld: n/a Vertical Weld: n/a Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a Plate Comp. (AISC Bracket): n/a

Pole Results

Pole Punching Shear Check:

n/a

^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes

Overturning Calculation for Rectangular Mat Foundations (Eccentrically Loaded)

Customer: Site Name: Job Number: Tower Model: Date:	Crown Castle Rogers Property, CT BU#881541 2012-004-039a 140' EEI Monopole 6/6/2012					
Soil Ultimate Bearing	8	ksf				
Unit wt soil	0.125	kcf				
Unit wt concrete	0.15	kcf				
Mat Length (long dimension)	23	ft				
Mat Width (short dimension)	23	ft				
Mat Thickness	3	ft				
Depth of Soil Over Mat	4	ft				
Has Pedestals? (Y or N)	Υ					
Pedestal Round or Square? (R or S)	S					
Number of Pedestals	1					
Pedestal Height	5	ft				
Pedestal Diameter or Width	7	ft				
			Load Eccen	tricity on Pad		
Applied Shear	25.446	kip	distance fron		3.5	ft
Applied Axial Force	29.975	kip	distance fron	n short axis =	3.5	ft
Applied Moment	2606.991	k-ft				
wt. Concrete =	274.800	kip				
wt. Soil =	240.000	kip				
Shear Moment =	203.568	k-ft				
P*e =	104.913	k-ft	104.913	k-ft		
	(about long	axis)	(about short	axis)		
Allowable Bearing =	4	ksf				
Mat Width / 6 =	3.83	ft	3.83	ft		
e =	5.35	ft	5.35	ft		
t =	18.44	ft	18.44	ft		
Bearing =	1.44	ksf	2.57	ksf		
	BEARING A	DEQUATE				
x =	2.961	ft	2.961	ft		
Resisting Moment =	5458.446	k-ft	5458.446	k-ft		
SF =	1.872		1.872			
	OVERTURN	IING ADEQU	JATE			

Date: June 06, 2012

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 (859) 624-8360 ncoomes@verticalstructures.com

Subject:

Structural Analysis Report

Carrier Designation:

Sprint PCS Change-Out

Carrier Site Number:

CT23XC313 N/A

Carrier Site Name:

Crown Castle Designation:

Crown Castle BU Number:

881541

Crown Castle Site Name:

Rogers Property 189140

Crown Castle JDE Job Number: Crown Castle Work Order Number:

498950

Crown Castle Application Number:

151615 Rev. 3

Engineering Firm Designation:

Vertical Structures, Inc. Project Number:

2012-004-039b

Site Data:

Grassy Hill Road, Orange, CT, New Haven County Latitude 41° 17' 7.75", Longitude -73° 2' 33.27"

139.5 Foot - Monopole Tower

Dear James Williams,

Vertical Structures, Inc. is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 468141.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment

Sufficient Capacity

Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.

The analysis has been performed in accordance with the TIA/EIA-222-F standard and the 2005 Connecticut State Building Code based upon a wind speed of 85 mph fastest mile.

All modifications and equipment proposed in this report shall be installed in accordance with the attached drawings for the determined available structural capacity to be effective.

We at *Vertical Structures, Inc.* appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Nathan Coomes, P.E.

Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information

Table 2 - Existing and Reserved Antenna and Cable Information

Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity - LC7
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 139.5 ft Monopole tower designed by EEI in 2004. The tower was originally designed for a wind speed of 90 mph per TIA/EIA-222-F.

2) ANALYSIS CRITERIA

The structural analysis was performed for this tower in accordance with the requirements of TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 85 mph with no ice and 50 mph under service loads. Also, per Crown Castle's direction and in accordance with ASCE-7-05 we have considered a fastest mile wind speed of 38 mph with an escalating 0.75 inch ice thickness.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note			
		3	alcatel lucent	800 External Notch Filter						
130.0	130.0	9	celwave	ACU-A20-N Diplexer	3	3	3	3 1 1/4	1 1/4	
100.0	3	celwave	APXVSPP18-C-A20 w/ Mount Pipe		, ,,					
		1		Side Arm Mount [SO 102- 3]						
128.0	128.0	3	alcatel lucent	1900MHz RRH (65MHz) TMA						
		3	alcatel lucent	800MHZ RRH TMA	7					

Table 2 - Existing and Reserved Antenna and Cable Information

i able ∠ - E	ole 2 - Existing and Reserved Antenna and Cable Information						
Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	I Antonna Brodol I.		Feed Line Size (in)	Note
		3	ericsson	RRUS-11 BTS			
		3	kathrein	800 10121 w/ mount pipe			
136.0	140.0	6	powerwave technologies	LGP21401 TMA	2	3/8 5/8	4
130.0		3	powerwave technologies	P65-16-XLH-RR w/ Mount Pipe	1 6	1 5/8	1
		1	raycap	DC6-48-60-18-8F			
	136.0	1	and the first the state of the second contract of the second contrac	T-Arm Mount [TA 702-3]			
	134.0	1	andrew	VHLP2-11			
		3	argus technologies	LLPX310R w/ Mount Pipe			
	132.0	1	dragonwave	A-ANT-23G-2-C	3 3	5/16	1
130.0	102.0	3	samsung telecommunications	FDD_R6_RRH TMA	3	1/2	'
		1		12' (4" Tube) T-Arm (3)			
	130.0	6	CSS	css CSS-XS4-65-R w/ Mount Pipe		1 1/4	3
124.0	124.0		A TOURISM COMMENT OF A STATE OF THE STATE OF		6	1 5/8	1
. *************************************	***************************************	1		T-Arm Mount [TA 602-3]			1
		6	celwave	FD9R6004/2C-3L Diplexer			2
118.0 118.0		6	decibel	DB846F65ZAXY w/Mount Pipe			
		3	powerwave technologies	P65.16.XL.2 w/ Mount Pipe	12	1 5/8	1
		3	rymsa	MG D3-800Tx w/ Mount Pipe			
		3	ems wireless	RR90-17-02DP w/ Mount Pipe			
	109.0	6	ericsson	KRY 112 71 TMA			
108.0		3	rfs	APXV18-206516S-C-A20 w/ Mount Pipe	12	1 5/8	1
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	rfs	ATMAA1412D-1A20 TMA			
	108.0	1		T-Arm Mount [TA 602-3]			
100.0	100.0	3	ADV\/19.206517.C		6	1 5/8	1
	77.0	1	lucent	KS24019-L112A	electrical control engineering and engineery and engineering and		
75.0	75.0	1		Side Arm Mount [SO 701- 1]	1	1/2	1

Notes:

**Existing Equipment** 

1) 2) 3)

Reserved Equipment Equipment to be Removed

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
140	140	12	dapa	48000		
140	140	1	eei	Low Profile Platform		
130	130	12	dapa	48000		
100	100 100		eei	Low Profile Platform		
120	120	12	dapa	48000		
120	120	1	eei	Low Profile Platform		
110	110	12	dapa	48000		
110	110	1	eei	Low Profile Platform		
100	100	12	dapa	48000		
100 100		1 1	eei	Low Profile Platform		
75	75	1 1		GPS		

#### 3) ANALYSIS PROCEDURE

**Table 4 - Documents Provided** 

Document	Remarks	Reference	Source
Online Application	Sprint PCS Change-Out Revision #3	151615	CCI iSite
Tower Drawing	EEI Drawing No. GS55077	2207700	CCI iSite
Foundation Drawing	EEI Drawing No. 12364-140	2208511	CCI iSite
Geotechnical Report	Clarence Welti Assoc., Inc. Report Dated 'February 16, 2004'	2245154	CCI iSite

#### 3.1) Analysis Method

tnxTower (version 6.0.4.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. Crown Castle's CCIplate 1.5 analysis tool was used to evaluate the anchor bolts, base plate, and any flange splices.

#### 3.2) Assumptions

- 1) Tower and structures were built in accordance with the manufacturer's specifications.
- 2) The tower and structures have been maintained in accordance with the manufacturer's specification.
- 3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
- 4) When applicable, transmission cables are considered as structural components for calculating wind loads as allowed by TIA/EIA-222-F.

This analysis may be affected if any assumptions are not valid or have been made in error. Vertical Structures, Inc. should be notified to determine the effect on the structural integrity of the tower.

#### 4) ANALYSIS RESULTS

**Table 5 - Section Capacity (Summary)** 

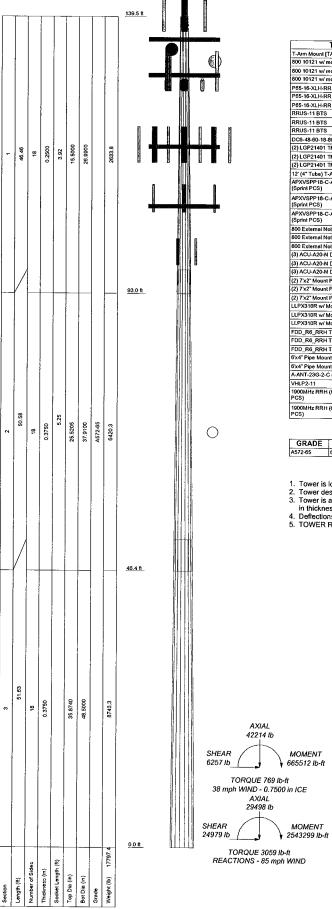
Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (lb)	SF*P_allow (lb)	% Capacity	Pass / Fail
L1	139.5 - 93.04	Pole	TP26.99x15.5x0.25	1	-7768.21	1063078.12	83.0	Pass
L2	93.04 - 46.38	Pole	TP37.91x25.5205x0.375	2	-16504.80	2242999.02	81.5	Pass
L3	46.38 - 0	Pole	TP48.5x35.874x0.375	3	-25775.00	2756230.66	87.5	Pass
		an ang managan an ang mangan an ang managan an ang mangan at ang managan at ang managan an ang managan an ang		***************************************			Summary	and the standard or the substantial and the standard the standard of the stand
** ***		The state of the control of the state of the control of the contro				Pole (L3)	87.5	Pass
THE RESERVE OF THE PROPERTY OF			A proposition of the second section of the section of the second section of the section of the second section of the second section of the	rajoriementen i encontrate meneral man		Rating =	87.5	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	67.7	Pass
1	Base Plate	0	91.8	Pass
1	Base Foundation Soil Interaction	0	78.3	Pass

Structure Deting (may from all company) =	04.00/
Structure Rating (max from all components) =	91.8%

Notes:


Capacities up to 105% are considered acceptable based on analysis methods used.

#### 4.1) Recommendations

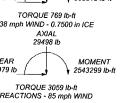
N/A

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity.

# APPENDIX A TNXTOWER OUTPUT



#### DESIGNED APPURTENANCE LOADING


TYPE	ELEVATION	TYPE	ELEVATION
T-Arm Mount [TA 702-3]	136	800MHZ RRH TMA (Sprint PCS)	128
800 10121 w/ mount pipe	136	800MHZ RRH TMA (Sprint PCS)	128
800 10121 w/ mount pipe	136	800MHZ RRH TMA (Sprint PCS)	128
800 10121 w/ mount pipe	136	Side Arm Mount [SO 102-3] (Sprint	128
P65-16-XLH-RR w/ Mount Pipe	136	PCS)	
P65-16-XLH-RR w/ Mount Pipe	136	1900MHz RRH (65MHz) TMA (Sprint	128
P65-16-XLH-RR w/ Mount Pipe	136	PCS)	
RRUS-11 BTS	136	(2) DB846F65ZAXY w/Mount Pipe	118
RRUS-11 BTS	136	(2) DB846F65ZAXY w/Mount Pipe	118
RRUS-11 BTS	136	MG D3-800Tx w/ Mount Pipe	118
DC6-48-60-18-8F	136	MG D3-800Tx w/ Mount Pipe	118
(2) LGP21401 TMA (VSI)	136	MG D3-800Tx w/ Mount Pipe	118
(2) LGP21401 TMA (VSI)	136	P65.16.XL.2 w/ Mount Pipe	118
(2) LGP21401 TMA (VSI)	136	P65.16.XL.2 w/ Mount Pipe	118
12' (4" Tube) T-Arm (3) (Sprint PCS)	130	P65.16.XL.2 w/ Mount Pipe	118
APXVSPP18-C-A20 w/ Mount Pipe	130	(2) FD9R6004/2C-3L Diplexer	118
(Sprint PCS)		(2) FD9R6004/2C-3L Diplexer	118
APXVSPP18-C-A20 w/ Mount Pipe	130	(2) FD9R6004/2C-3L Diplexer	118
(Sprint PCS)		T-Arm Mount [TA 602-3]	118
APXVSPP18-C-A20 w/ Mount Pipe	130	(2) DB846F65ZAXY w/Mount Pipe	118
(Sprint PCS)		RR90-17-02DP w/ Mount Pipe	108
800 External Notch Filter (Sprint PCS)	130	RR90-17-02DP w/ Mount Pipe	108
800 External Notch Filter (Sprint PCS)	130	APXV18-206516S-C-A20 w/ Mount	108
800 External Notch Filter (Sprint PCS)	130	Pipe	
(3) ACU-A20-N Diplexer (Sprint PCS)	130	APXV18-206516S-C-A20 w/ Mount	108
(3) ACU-A20-N Diplexer (Sprint PCS)	130	Pipe	
(3) ACU-A20-N Diplexer (Sprint PCS)	130	APXV18-206516S-C-A20 w/ Mount Pipe	108
(2) 7'x2" Mount Pipe	130	·	
(2) 7'x2" Mount Pipe	130	(2) KRY 112 71 TMA	108
(2) 7'x2" Mount Pipe	130	(2) KRY 112 71 TMA	108
LLPX310R w/ Mount Pipe	130	(2) KRY 112 71 TMA	108
LLPX310R w/ Mount Pipe	130	ATMAA1412D-1A20 TMA	108
LLPX310R w/ Mount Pipe	130	ATMAA1412D-1A20 TMA	108
FDD_R6_RRH TMA	130	ATMAA1412D-1A20 TMA	108
FDD_R6_RRH TMA	130	(2) 7'x2" Antenna Mount Pipe	108
FDD_R6_RRH TMA	130	(2) 7'x2" Antenna Mount Pipe	108
6'x4" Pipe Mount	130	(2) 7'x2" Antenna Mount Pipe	108
6'x4" Pipe Mount	130	T-Arm Mount [TA 602-3]	108
A-ANT-23G-2-C (VSI)	130	RR90-17-02DP w/ Mount Pipe	108
VHLP2-11	130	APXV18-206517-C w/Mount Pipe	100
1900MHz RRH (65MHz) TMA (Sprint	128	APXV18-206517-C w/Mount Pipe	100
PCS)		APXV18-206517-C w/Mount Pipe	100
1900MHz RRH (65MHz) TMA (Sprint	128	Side Arm Mount [SO 701-1]	75
PCS)		KS24019-L112A	75

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65		80 ksi			

#### **TOWER DESIGN NOTES**

- Tower is located in New Haven County, Connecticut.
   Tower designed for a 85 mph basic wind in accordance with the TIA/EIA-222-F Standard.
   Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with helght.
   Deflections are based upon a 50 mph wind.
   TOWER RATING: 87.5%





Rogers Proper	ty, CT BU#881541					
Project: Vertical Structures Job No. 2012-004-039b						
Client: Crown Castle	Drawn by: ncoomes	App'd:				
Code: TIA/EIA-222-F	Date: 06/06/12	Scale: NTS				
Path:		Dwo No. = 4				

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475

Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	1 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039b	16:39:08 06/06/12
Client		Designed by
	Crown Castle	ncoomes

#### **Tower Input Data**

There is a pole section.

This tower is designed using the TIA/EIA-222-F standard.

The following design criteria apply:

Tower is located in New Haven County, Connecticut.

Basic wind speed of 85 mph.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 38 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 50 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.333.

Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

#### **Options**

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- Use Code Stress Ratios
- Use Code Safety Factors Guys
- Escalate Ice Always Use Max Kz Use Special Wind Profile
- Include Bolts In Member Capacity
- Leg Bolts Are At Top Of Section
- Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Add IBC .6D+W Combination

Distribute Leg Loads As Uniform Assume Legs Pinned

- Assume Rigid Index Plate
- Use Clear Spans For Wind Area
- Use Clear Spans For KL/r Retension Guys To Initial Tension
- Bypass Mast Stability Checks
- Use Azimuth Dish Coefficients
- Project Wind Area of Appurt.
- Autocalc Torque Arm Areas
- SR Members Have Cut Ends Sort Capacity Reports By Component
- Triangulate Diamond Inner Bracing

- Treat Feedline Bundles As Cylinder Use ASCE 10 X-Brace Ly Rules
- Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- SR Leg Bolts Resist Compression
- All Leg Panels Have Same Allowable Offset Girt At Foundation
- Consider Feedline Torque Include Angle Block Shear Check

Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

#### **Tapered Pole Section Geometry**

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
LI	139.50-93.04	46.46	3.92	18	15.5000	26.9900	0.2500	1.0000	A572-65 (65 ksi)
L2	93.04-46.38	50.58	5.25	18	25.5205	37.9100	0.3750	1.5000	A572-65 (65 ksi)
L3	46.38-0.00	51.63		18	35.8740	48.5000	0.3750	1.5000	À572-65 (65 ksi)

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	2 of 12
Project	Vertical Structures Job No. 2012-004-039b	Date 16:39:08 06/06/12
Client	Crown Castle	Designed by ncoomes

## **Tapered Pole Properties**

Section	Tip Dia.	Area	I	r	С	I/C	J	It/Q	w	w/t
	in	in ²	in⁴	in	in	in ³	in⁴	in ²	in	
Ll	15.7391	12.1009	355.5445	5.4138	7.8740	45.1542	711.5567	6.0516	2.2880	9.152
	27.4064	21.2182	1916.7638	9.4927	13.7109	139.7983	3836.0497	10.6111	4.3102	17.241
L2	26.8892	29.9295	2390.8862	8.9267	12.9644	184.4188	4784.9184	14.9676	3.8316	10.218
	38.4948	44.6760	7952.1562	13.3249	19.2583	412.9214	15914.7760	22.3423	6.0122	16.032
L3	37.7311	42.2527	6727.0540	12.6022	18.2240	369.1315	13462.9597	21.1304	5.6538	15.077
	49.2482	57.2808	16760.5346	17.0844	24,6380	680.2717	33543.1232	28.6458	7.8760	21.003

Tower Elevation ft	Gusset Area (per face) ft²	Gusset Thickness in	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in
L1 139.50- 93.04				1	1	1		
L2 93.04-46.38 L3 46.38-0.00				1 1	1 1	1 1		

## Feed Line/Linear Appurtenances - Entered As Area

LDF7-50A (1-5/8 B No Inside Pole 139.50 - 0.00 6 No Ice 0.00 6 FOAM)  FOAM)  FOAM)  FB-L98-002-XXX (3/8") B No Inside Pole 139.50 - 0.00 2 No Ice 0.00 6 172" Ice 0.00 6 Ic	eight 'eight
FOAM)  FOAM)  FOAM)  FOAM)  FB-L98-002-XXX (3/8") B No Inside Pole 139.50 - 0.00 2 No Ice 0.00 (2" Ice 0.00 (1" Ice 0.00 (	plf
FB-L98-002-XXX (3/8") B No Inside Pole 139.50 - 0.00 2 No Ice 0.00 6 FB-L98-002-XXX (3/8") B No Inside Pole 139.50 - 0.00 2 No Ice 0.00 6 1/2"	0.82
FB-L98-002-XXX (3/8") B No Inside Pole 139.50 - 0.00 2 No Ice 0.00 6  WR-VG86ST-BRD (Power Cable) B No Inside Pole 139.50 - 0.00 1 No Ice 0.00 (Power Cable) 139.50 - 0.00 1 No Ice 0.00 (2" Ice 0.00 (2	0.82
FB-L98-002-XXX (3/8") B No Inside Pole 139.50 - 0.00 2 No Ice 0.00 6 1/2" Ice	0.82
FB-L98-002-XXX (3/8") B No Inside Pole 139.50 - 0.00 2 No Ice 0.00 (1/2" Ice 0.00	0.82
WR-VG86ST-BRD B No Inside Pole 139.50 - 0.00 1 No Ice 0.00 (Power Cable) 11 Ice 0.00 (Power Cable) 12 Ice 0.00 (Power Cable) 12 Ice 0.00 (Power Cable) 12 Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 14 Ice 0.00 (Power Cable) 15 Ice 0.00 (Power Cable) 17 Ice 0.00 (Power Cable) 17 Ice 0.00 (Power Cable) 18 Ice 0.00 (Power Cable) 19 Ice	0.82
WR-VG86ST-BRD B No Inside Pole 139.50 - 0.00 1 No Ice 0.00 (Power Cable) 139.50 - 0.00 1 No Ice 0.00 (Power Cable) 139.50 - 0.00 1 No Ice 0.00 (Power Cable) 12" Ice 0.00 (Power Cable) 14" Ice 0.00 (Power Cable) 14" Ice 0.00 (Power Cable) 15" Ice 0.00 (Power Cable)	0.10
WR-VG86ST-BRD B No Inside Pole 139.50 - 0.00 1 No Ice 0.00 (Power Cable) 139.50 - 0.00 1 No Ice 0.00 (Power Cable) 12" Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 (Power Cable) 132.00 - 0.00 1 No Ice 0.00 (Power Cable) 132.00 - 0.00 (Power Cable) 132	0.10
WR-VG86ST-BRD B No Inside Pole 139.50 - 0.00 1 No Ice 0.00 (Power Cable) 172" Ice 0.00 (Power Cable) 172" Ice 0.00 (Power Cable) 172" Ice 0.00 (Power Cable) 174" Ice 0.00 (Power Cable) 174" Ice 0.00 (Power Cable) 175 Ice 0.00 (Power Cabl	0.10
WR-VG86ST-BRD B No Inside Pole 139.50 - 0.00 1 No Ice 0.00 (Power Cable) 1/2" Ice 0.00 (I" I Ice 0.00 (I" I" Ice 0.00 (I" Ice 0.00 (ICe 0.00 (ICe 0.00 (I" Ice 0.00 (ICe 0.00	0.10
(Power Cable) 1/2" lce 0.00 (1" lce 0.00 (2" lce 0.00 (2" lce 0.00 (4"	0.10
1" Ice 0.00 (2" Ice 0.00 (2" Ice 0.00 (4" Ic	0.15
2" Ice 0.00 (4" Ic	0.15
LDF4-50A (1/2 FOAM) B No Inside Pole 132.00 - 0.00 1 No Ice 0.00 (	0.15
LDF4-50A (1/2 FOAM) B No Inside Pole 132.00 - 0.00 1 No Ice 0.00	0.15
1 110 100 0,00	0.15
1/201	0.15
1/2" lce 0.00	0.15
1" Ice 0.00	0.15
	0.15
	0.15
LDF4-50A (1/2 FOAM) B No CaAa (Out Of 132.00 - 0.00 2 No Ice 0.00	0.15
	0.84
	2.14
	5.58
	2.78
	0.06
	0.06
	0.06
	0.06
	0.06
AU D. 11 O. 11	2.80
0.10	4.33

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	3 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039b	16:39:08 06/06/12
Client		Designed by
	Crown Castle	ncoomes

Description	Face or	Allow Shield	Component Type	Placement	Total Number		$C_AA_A$	Weight
	Leg			ft			ft²/ft	plf
						1" Ice	0.20	6.47
						2" Ice	0.30	12.57
						4" Ice	0.50	32.12
HB114-1-0813U4-M5J	В	No	CaAa (Out Of	130.00 - 0.00	3	No Ice	0.05	0.66
(1-1/4")			Face)			1/2" Ice	0.08	1.91
(Sprint PCS)						1" Ice	0.12	3.76
						2" Ice	0.18	9.31
						4" Ice	0.32	27.73
LDF7-50A (1-5/8	В	No	Inside Pole	124.00 - 0.00	6	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
						4" Ice	0.00	0.82
561 (1-5/8 AIR)	В	No	Inside Pole	118.00 - 0.00	12	No Ice	0.00	1.35
						1/2" Ice	0.00	1.35
						1" Ice	0.00	1.35
						2" Ice	0.00	1.35
						4" Ice	0.00	1.35
LDF7-50A (1-5/8	В	No	Inside Pole	109.00 - 0.00	12	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
						l" Ice	0.00	0.82
						2" Ice	0.00	0.82
						4" Ice	0.00	0.82
LDF7-50A (1-5/8	В	No	Inside Pole	100.00 - 0.00	6	No Ice	0.00	0.82
FOAM)						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" lce	0.00	0.82
						4" Ice	0.00	0.82
LDF4-50A (1/2 FOAM)	В	No	Inside Pole	77.00 - 0.00	1	No Ice	0.00	0.15
						1/2" Ice	0.00	0.15
						1" Ice	0.00	0.15
						2" Ice	0.00	0.15
						4" Ice	0.00	0.15

## Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	$A_R$	$A_F$	C _A A _A In Face	$C_AA_A$ Out Face	Weight
	ft		ft²	ft²	fi²	$ft^2$	lb
L1	139.50-93.04	A	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	13.483	1308.71
		C	0.000	0.000	0.000	0.000	0.00
L2	93.04-46.38	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	16.517	2307.73
		C	0.000	0.000	0.000	0.000	0.00
L3	46.38-0.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	16.418	2296.27
	_	C	0.000	0.000	0.000	0.000	0.00

## Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	$A_R$	$A_F$	$C_4A_A$	$C_AA_A$	Weight
Section	Elevation	or.	Thickness	2	3	In Face	Out Face	Ü
		Leg	in	ft*	ft*	ft ²	ft ²	lb
Ll	139.50-93.04	Α	0.871	0.000	0.000	0.000	0.000	0.00

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	4 of 12
Project	Vertical Structures Job No. 2012-004-039b	Date 16:39:08 06/06/12
Client	Crown Castle	Designed by ncoomes

Tower Section	Tower Elevation	Face or	Ice Thickness	$A_R$	$A_F$	C _A A _A In Face	C _A A _A Out Face	Weight
	ft	Leg	in	ft²	ft ²	ft²	ft² lb	
		В		0.000	0.000	0.000	26.707	1971.06
		C		0.000	0.000	0.000	0.000	0.00
L2	93.04-46.38	Α	0.819	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	32,771	3119.84
		C		0.000	0.000	0.000	0.000	0.00
L3	46.38-0.00	Α	0.750	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	31.619	3044.03
		C		0.000	0.000	0.000	0.000	0.00

## Feed Line Center of Pressure

Section	Elevation	$CP_X$	$CP_Z$	$CP_X$	$CP_Z$
				Ice	Ice
	ft	in	in	in	in
L1	139.50-93.04	0.3396	0.1961	0.5568	0.3215
L2	93.04-46.38	0.4062	0.2345	0.6934	0.4003
L3	46.38-0.00	0.4184	0.2415	0.7204	0.4159

## **Discrete Tower Loads**

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	fi		ft²	fl²	lb
T-Arm Mount [TA 702-3]	A	None		0.0000	136.00	No Ice	5.64	5.64	339.00
						1/2" Ice	6.55	6.55	429.00
						1" Ice	7.46	7.46	519.00
						2" Ice	9.28	9.28	699.00
						4" Ice	12.92	12.92	1059.00
800 10121 w/ mount pipe	Α	From	4.00	10.0000	136.00	No Ice	5.80	4.71	66.00
		Centroid-	0.00			1/2" Ice	6.34	5.56	112.31
		Face	4.00			l" Ice	6.86	6.28	168.51
						2" Ice	7.94	7.81	302.82
						4" Ice	10.23	11.23	689.84
800 10121 w/ mount pipe	В	From	4.00	0.0000	136.00	No Ice	5.80	4.71	66.00
		Centroid-	0.00			1/2" Ice	6.34	5.56	112.31
		Face	4.00			i" Ice	6.86	6.28	168.51
						2" Ice	7.94	7.81	302.82
						4" Ice	10.23	11.23	689.84
800 10121 w/ mount pipe	C	From	4.00	-10.0000	136.00	No Ice	5.80	4.71	66.00
		Centroid-	0.00			1/2" Ice	6.34	5.56	112.31
		Face	4.00			1" Ice	6.86	6.28	168.51
						2" Ice	7.94	7.81	302.82
						4" Ice	10.23	11.23	689.84
P65-16-XLH-RR w/ Mount	Α	From	4.00	30.0000	136.00	No Ice	8.88	6.60	82.20
Pipe		Centroid-	0.00			1/2" Ice	9.63	7.88	147.36
		Face	4.00			1" Ice	10.36	9.00	225.21
						2" Ice	11.75	10.93	408.26
						4" Ice	14.66	15.02	921.60

Job		Page
	Rogers Property, CT BU#881541	5 of 12
Project	V : 10:	Date
	Vertical Structures Job No. 2012-004-039b	16:39:08 06/06/12
Client	0	Designed by
	Crown Castle	ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert fi fi fi	o	ft		fi²	ft²	lb
P65-16-XLH-RR w/ Mount Pipe	В	From Centroid- Face	4.00 0.00 4.00	30.0000	136.00	No Ice 1/2" Ice 1" Ice	8.88 9.63 10.36	6.60 7.88 9.00	82.20 147.36 225.21
						2" Ice 4" Ice	11.75 14.66	10.93 15.02	408.26 921.60
P65-16-XLH-RR w/ Mount Pipe	С	From Centroid- Face	4.00 0.00 4.00	30.0000	136.00	No Ice 1/2" Ice 1" Ice	8.88 9.63 10.36	6.60 7.88 9.00	82.20 147.36 225.21
		race	4.00			2" Ice 4" Ice	11.75 14.66	10.93 15.02	408.26 921.60
RRUS-11 BTS	Α	From Centroid- Face	4.00 0.00 4.00	30.0000	136.00	No Ice 1/2" Ice 1" Ice	4.42 4.71 5.00	1.19 1.35 1.53	55.00 80.77 109.98
		ruce				2" Ice 4" Ice	5.61 6.94	1.90 2.75	179.45 368.09
RRUS-11 BTS	В	From Centroid- Face	4.00 0.00 4.00	30.0000	136.00	No Ice 1/2" Ice 1" Ice	4.42 4.71 5.00	1.19 1.35 1.53	55.00 80.77 109.98
DDIJE 11 DTC				44 444		2" Ice 4" Ice	5.61 6.94	1.90 2.75	179.45 368.09
RRUS-11 BTS	С	From Centroid- Face	4.00 0.00 4.00	30.0000	136.00	No Ice 1/2" Ice 1" Ice 2" Ice	4.42 4.71 5.00 5.61	1.19 1.35 1.53 1.90	55.00 80.77 109.98 179.45
DC6-48-60-18-8F	С	From Centroid- Face	4.00 0.00 4.00	30.0000	136.00	4" Ice No Ice 1/2" Ice 1" Ice	6.94 2.57 2.80 3.04	2.75 4.32 4.60 4.88	368.09 18.90 50.21 85.17
(2) LGP21401 TMA (VSI)	A	From	4.00	10.0000	136.00	2" Ice 4" Ice	3.54 4.66	5.49 6.80	166.87 382.77
(2) EGI 21401 HMA (VSI)	A	Centroid- Face	0.00 4.00	10.0000	130.00	No Ice 1/2" Ice 1" Ice 2" Ice	1.29 1.45 1.61 1.97	0.36 0.48 0.60 0.87	14.10 21.26 30.32 54.89
(2) LGP21401 TMA (VSI)	В	From Centroid- Face	4.00 0.00 4.00	0.0000	136.00	4" Ice No Ice 1/2" Ice 1" Ice	2.79 1.29 1.45 1.61	1.52 0.36 0.48 0.60	135.29 14.10 21.26 30.32
(2) LGP21401 TMA (VSI)	С	From	4.00	-10.0000	136.00	2" Ice 4" Ice No Ice	1.97 2.79 1.29	0.87 1.52 0.36	54.89 135.29 14.10
		Centroid- Face	0.00 4.00			1/2" Ice 1" Ice 2" Ice 4" Ice	1.45 1.61 1.97 2.79	0.48 0.60 0.87 1.52	21.26 30.32 54.89 135.29
** 12' (4" Tube) T-Arm (3) (Sprint PCS)	С	None		0.0000	130.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	13.50 16.71 19.92 26.34	13.50 16.71 19.92 26.34	600.00 750.00 900.00 1200.00
APXVSPP18-C-A20 w/ Mount Pipe (Sprint PCS)	Α	From Centroid- Face	4.75 2.75 0.00	10.0000	130.00	No Ice 1/2" Ice 1" Ice 2" Ice	39.18 8.50 9.15 9.77 11.03	39.18 6.95 8.13 9.02 10.84	1800.00 82.55 147.74 224.90 405.88
APXVSPP18-C-A20 w/	В	From	4.75	20.0000	130.00	4" Ice No Ice	13.68 8.50	14.85 6.95	908.85 82.55

Job		Page
	Rogers Property, CT BU#881541	6 of 12
Project Client	Vertical Structures Job No. 2012-004-039b	Date 16:39:08 06/06/12
Cilent	Crown Castle	Designed by ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_AA_A$ Front	C₁A₁ Side	Weight
	J		Vert ft	٥	ft		ft²	02	
			ft ft		,71		Ji	ft²	lb
Mount Pipe		Centroid-	2.75		-	1/2" Ice	9.15	8.13	147.74
(Sprint PCS)		Face	0.00			1" Ice	9.77	9.02	224.90
						2" Ice	11.03	10.84	405.88
ADVISEDDIO C. 100	_	_				4" Ice	13.68	14.85	908.85
APXVSPP18-C-A20 w/	С	From	4.75	-20.0000	130.00	No Ice	8.50	6.95	82.55
Mount Pipe (Sprint PCS)		Centroid-	2.75			1/2" Ice	9.15	8.13	147.74
(Spriit PCS)		Face	0.00			1" Ice	9.77	9.02	224.90
						2" Ice	11.03	10.84	405.88
800 External Notch Filter	Α	Erone	4.76	10.0000		4" Ice	13.68	14.85	908.85
(Sprint PCS)	А	From	4.75	10.0000	130.00	No Ice	0.77	0.37	11.00
(opinit i es)		Centroid- Face	2.75			1/2" Ice	0.89	0.46	16.81
		race	0.00			1" Ice	1.02	0.56	24.26
						2" Ice	1.30	0.79	44.81
800 External Notch Filter	В	From	4.75	20.0000	120.00	4" Ice	1.97	1.34	114.01
(Sprint PCS)	Ь	Centroid-	2.75	20.0000	130.00	No Ice	0.77	0.37	11.00
. ,		Face	0.00			1/2" Ice	0.89	0.46	16.81
		- 400	0.00			l" Ice	1.02	0.56	24.26
						2" Ice 4" Ice	1.30	0.79	44.81
800 External Notch Filter	C	From	4.75	-20.0000	130.00	No Ice	1.97	1.34	114.01
(Sprint PCS)		Centroid-	2.75	20.0000	130.00	1/2" Ice	0.77 0.89	0.37	11.00
		Face	0.00			l" lce	1.02	0.46 0.56	16.81
						2" lce	1.30	0.36	24.26
(2)						4" Ice	1.97	1.34	44.81 114.01
(3) ACU-A20-N Diplexer	Α	From	4.75	10.0000	130.00	No Ice	0.14	0.08	1.04
(Sprint PCS)		Centroid-	2.75			1/2" Ice	0.19	0.12	2.32
		Face	0.00			1" Ice	0.25	0.17	4.41
						2" Ice	0.40	0.30	11.80
(2) ACII A20 N.D. I	_					4" Ice	0.80	0.67	44.85
(3) ACU-A20-N Diplexer	В	From	4.75	20.0000	130.00	No Ice	0.14	0.08	1.04
(Sprint PCS)		Centroid-	2.75			1/2" Ice	0.19	0.12	2.32
		Face	0.00			l" Ice	0.25	0.17	4.41
						2" Ice	0.40	0.30	11.80
(3) ACU-A20-N Diplexer	0	-				4" Ice	0.80	0.67	44.85
(Sprint PCS)	C	From	4.75	-20.0000	130.00	No Ice	0.14	0.08	1.04
(Spriit PCS)		Centroid-	2.75			1/2" Ice	0.19	0.12	2.32
		Face	0.00			l" Ice	0.25	0.17	4.41
						2" Ice	0.40	0.30	11.80
(2) 7'x2" Mount Pipe	Α	From	4.75	0.0000	120.00	4" Ice	0.80	0.67	44.85
, , , , , , , , , , , , , , , , , , , ,		Centroid-	2.75	0.0000	130.00	No Ice	1.66	1.66	26.00
		Face	0.00			1/2" Ice	2.39	2.39	38.58
		1 400	0.00			1" Ice	2.83	2.83	55.84
						2" Ice	3.71	3.71	104.97
(2) 7'x2" Mount Pipe	В	From	4.75	0.0000	130.00	4" Ice	5.58	5.58	266.00
•		Centroid-	2.75	0.0000	130.00	No Ice 1/2" Ice	1.66	1.66	26.00
		Face	0.00			1" Ice	2.39	2.39	38.58
		-				2" Ice	2.83 3.71	2.83	55.84
						4" Ice	5.58	3.71	104.97
(2) 7'x2" Mount Pipe	C	From	4.75	0.0000	130.00	No Ice	3.38 1.66	5.58	266.00
		Centroid-	2.75		150.00	1/2" Ice	2.39	1.66 2.39	26.00
		Face	0.00			l" Ice	2.83	2.39	38.58 55.84
						2" Ice	3.71	3.71	33.84 104.97
I Britains						4" Ice	5.58	5.58	266.00
LPX310R w/ Mount Pipe	Α	From	4.75	40.0000	130.00	No Ice	5.43	3.38	50.56
		Centroid-	2.75			1/2" Ice	5.99	4.15	89.99
		Face	2.00			I" Ice	6.51	4.80	07.77

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475

Richmond, KY 40475
Phone: (859) 624-8360
FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	7 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039b	16:39:08 06/06/12
Client	0 0 4	Designed by
	Crown Castle	ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	Leg		Vert ft ft	o	fi		ft²	fi²	lb
			ft			2" Ice	7.57	6.19	255.15
						4" Ice	9.86	9.25	597.35
LLPX310R w/ Mount Pipe	В	From	4.75	10.0000	130.00	No Ice	5.43	3.38	50.56
		Centroid-	2.75			1/2" Ice	5.99	4.15	89.99
		Face	2.00			1" Ice	6.51	4.80	138.53
						2" Ice	7.57	6.19	255.15
LLPX310R w/ Mount Pipe	С	Eram	175	0.0000	120.00	4" Ice	9.86	9.25	597.35
LEI X510K W/ Mount Fipe	C	From Centroid-	4.75 2.75	0.0000	130.00	No Ice	5.43	3.38	50.56
		Face	2.73			1/2" Ice 1" Ice	5.99 6.51	4.15 4.80	89.99
		race	2.00			2" Ice	7.57	6.19	138.53 255.15
						4" Ice	9.86	9.25	597.35
FDD_R6_RRH TMA	Α	From	4.75	40.0000	130.00	No Ice	1.79	0.78	33.00
		Centroid-	2.75			1/2" Ice	1.97	0.92	44.50
		Face	2.00			1" Ice	2.16	1.07	58.31
						2" Ice	2.57	1.39	93.60
EDD DC DDLLTMA	ъ					4" Ice	3.49	2.14	200.35
FDD_R6_RRH TMA	В	From	4.75	10.0000	130.00	No Ice	1.79	0.78	33.00
		Centroid- Face	2.75			1/2" Ice	1.97	0.92	44.50
		race	2.00			1" Ice 2" Ice	2.16	1.07	58.31
						4" Ice	2.57 3.49	1.39 2.14	93.60 200.35
FDD R6 RRH TMA	C	From	4.75	0.0000	130.00	No Ice	1.79	0.78	33.00
		Centroid-	2.75	0.0000	150.00	1/2" Ice	1.97	0.78	44.50
		Face	2.00			1" Ice	2.16	1.07	58.31
						2" Ice	2.57	1.39	93.60
						4" Ice	3.49	2.14	200.35
6'x4" Pipe Mount	В	From	4.75	0.0000	130.00	No Ice	2.25	2.25	65.00
		Centroid-	2.75			1/2" Ice	2.62	2.62	84.10
		Face	0.00			l" Ice	3.00	3.00	107.47
						2" Ice	3.78	3.78	167.65
6'x4" Pipe Mount	C	From	4.75	0.0000	130.00	4" Ice No Ice	5.56 2.25	5.56 2.25	346.05 65.00
on Tipe Mount		Centroid-	2.75	0.0000	130.00	1/2" Ice	2.62	2.62	84.10
		Face	0.00			l" Ice	3.00	3.00	107.47
						2" Ice	3.78	3.78	167.65
						4" Ice	5.56	5.56	346.05
**	_								
Side Arm Mount [SO 102-3]	С	None		0.0000	128.00	No Ice	3.00	3.00	81.00
(Sprint PCS)						1/2" Ice	3.48	3.48	111.00
						1" Ice	3.96	3.96	141.00
						2" Ice	4.92	4.92	201.00
1900MHz RRH (65MHz)	Α	From	3.50	10.0000	128.00	4" Ice No Ice	6.84 2.77	6.84 2.70	321.00 60.00
TMA		Centroid-	0.00	10.0000	128.00	1/2" Ice	3.01	2.70	83.90
(Sprint PCS)		Face	0.00			1" Ice	3.26	3.18	111.08
						2" Ice	3.78	3.70	176.02
						4" Ice	4.93	4.85	353.75
1900MHz RRH (65MHz)	В	From	3.50	20.0000	128.00	No Ice	2.77	2.70	60.00
TMA		Centroid-	0.00			1/2" Ice	3.01	2.94	83.90
(Sprint PCS)		Face	0.00			l" Ice	3.26	3.18	111.08
						2" Ice	3.78	3.70	176.02
1900MHz RRH (65MHz)	С	From	2 50	20,0000	120.00	4" Ice	4.93	4.85	353.75
TMA	C	Centroid-	3.50 0.00	-20.0000	128.00	No Ice 1/2" Ice	2.77	2.70	60.00
		Comola-	0.00			1/2 ice	3.01	2.94	83.90
(Sprint PCS)		Face	0.00			l" Ice	3.26	3.18	111.08

Job		Page
	Rogers Property, CT BU#881541	8 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039b	16:39:08 06/06/12
Client		Designed by
	Crown Castle	ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C₄A₄ Side	Weight
			Vert ft ft ft	٥	ft		ft²	ft²	lb
			······	·· •		4" Ice	4.93	4.85	353.75
800MHZ RRH TMA	Α	From	3.50	10.0000	128.00	No Ice	2.49	2.07	53.00
(Sprint PCS)		Centroid-	0.00			1/2" Ice	2.71	2.27	74.19
		Face	0.00			1" Ice	2.93	2.48	98.39
						2" Ice 4" Ice	3.41 4.46	2.93 3.93	156.61 317.77
800MHZ RRH TMA	В	From	3.50	20.0000	128.00	No Ice	2.49	2.07	53.00
(Sprint PCS)	5	Centroid-	0.00	20.0000	120.00	1/2" Ice	2.71	2.27	74.19
(- <b>F</b> )		Face	0.00			l" lce	2.93	2.48	98.39
			****			2" Ice	3.41	2.93	156.61
						4" Ice	4.46	3.93	317.77
800MHZ RRH TMA	C	From	3.50	-20.0000	128.00	No Ice	2,49	2.07	53.00
(Sprint PCS)		Centroid-	0.00			1/2" Ice	2.71	2.27	74.19
		Face	0.00			1" Ice	2.93	2.48	98.39
						2" Ice	3.41	2.93	156.61
**						4" Ice	4.46	3.93	317.77
T-Arm Mount [TA 602-3]	C	None		0.0000	118.00	No Ice	11.59	11.59	774.30
						1/2" Ice	15.44	15.44	990.35
						1" Ice	19.29	19.29	1206.41
						2" Ice	26.99	26.99	1638.52
(2) DD01/D/22 1111		_				4" Ice	42.39	42.39	2502.73
(2) DB846F65ZAXY	Α	From	6.00	-40.0000	118.00	No Ice	7.27	7.82	46.55
w/Mount Pipe		Centroid-	0.00			1/2" Ice	7.88	9.01	111.10
		Face	0.00			1" Ice	8.48	9.91	187.61
						2" Ice	9.72	11.81	367.24
(2) DB846F65ZAXY	В	From	6.00	20,0000	110.00	4" Ice	12.33	15.98	867.25
w/Mount Pipe	Б	Centroid-	6.00 0.00	-20.0000	118.00	No Ice 1/2" Ice	7.27	7.82	46.55
w/wount ripe		Face	0.00			l" Ice	7.88 8.48	9.01 9.91	111.10 187.61
		1 acc	0.00			2" Ice	9.72	11.81	367.24
						4" Ice	12.33	15.98	867.25
(2) DB846F65ZAXY	С	From	6.00	0.0000	118.00	No Ice	7.27	7.82	46.55
w/Mount Pipe	-	Centroid-	0.00	0.0000	710.00	1/2" Ice	7.88	9.01	111.10
•		Face	0.00			1" Ice	8.48	9.91	187.61
						2" Ice	9.72	11.81	367.24
						4" Ice	12.33	15.98	867.25
MG D3-800Tx w/ Mount	Α	From	6.00	-20.0000	118.00	No Ice	3.71	3.56	36.90
Pipe		Centroid-	0.00			1/2" Ice	4.19	4.39	69.87
		Face	0.00			1" Ice	4.63	5.09	112.21
						2" Ice	5.65	6.54	217.21
14G Da 000m - 414						4" Ice	7.82	9.69	539.32
MG D3-800Tx w/ Mount	В	From	6.00	-20.0000	118.00	No Ice	3.71	3.56	36.90
Pipe		Centroid-	0.00			1/2" Ice	4.19	4.39	69.87
		Face	0.00			l" Ice	4.63	5.09	112.21
						2" Ice	5.65	6.54	217.21
MG D3-800Tx w/ Mount	C	Enom	6.00	10.0000	110.00	4" Ice	7.82	9.69	539.32
Pipe	С	From Centroid-	6.00 0.00	-10.0000	118.00	No Ice 1/2" Ice	3.71	3.56	36.90
r ipe		Face	0.00			1/2" ice 1" Ice	4.19	4.39 5.09	69.87
		1 act	0.00			2" Ice	4.63 5.65	5.09 6.54	112.21 217.21
						4" Ice	5.65 7.82	9.69	539.32
65.16.XL.2 w/ Mount Pipe	Α	From	6.00	-20.0000	118.00	No Ice	7.82 8.88	6.02	62.20
	. 1	Centroid-	0.00	20.0000	110.00	1/2" Ice	9.63	7.29	124.60
		Face	0.00			l" Ice	10.36	8.41	199.63
			5.50			2" Ice	11.75	10.32	376.85
						4" Ice		. 0.52	2,0.03

Job	<del></del>	Page
	Rogers Property, CT BU#881541	9 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039b	16:39:08 06/06/12
Client		Designed by
	Crown Castle	ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft fi ft	۰	fi		fi²	fi²	lb
P65.16.XL.2 w/ Mount Pipe	<u>B</u>	From	6.00	-20.0000	118.00	No Ice	8.88	6.02	62.20
	_	Centroid-	0.00	20.0000	110.00	1/2" Ice	9.63	7.29	124.60
		Face	0.00			l" Ice	10.36	8.41	199.63
						2" Ice	11.75	10.32	376.85
						4" Ice	14.66	14.36	877.75
P65.16.XL.2 w/ Mount Pipe	C	From	6.00	-20.0000	118.00	No Ice	8.88	6.02	62.20
		Centroid-	0.00			1/2" Ice	9.63	7.29	124.60
		Face	0.00			l" Ice	10.36	8.41	199.63
						2" Ice	11.75	10.32	376.85
(4) 5500 600 600 600		_				4" Ice	14.66	14.36	877.75
(2) FD9R6004/2C-3L	Α	From	6.00	-40.0000	118.00	No Ice	0.37	0.08	3.10
Diplexer		Centroid-	0.00			1/2" Ice	0.45	0.14	5.40
		Face	0.00			1" Ice	0.54	0.20	8.79
						2" Ice	0.75	0.34	19.61
(2) FD0D (004/2C) 21	В			•• •••	440.00	4" Ice	1.28	0.74	62.87
(2) FD9R6004/2C-3L	В	From	6.00	-20.0000	118.00	No Ice	0.37	0.08	3.10
Diplexer		Centroid-	0.00			1/2" Ice	0.45	0.14	5.40
		Face	0.00			1" Ice	0.54	0.20	8.79
						2" Ice	0.75	0.34	19.61
(2) FD9R6004/2C-3L	С	From	6.00	0.0000	110.00	4" Ice No Ice	1.28	0.74	62.87
Diplexer	C	Centroid-	6.00 0.00	0.0000	118.00	1/2" Ice	0.37	0.08	3.10
Diplexel		Face	0.00			1" Ice	0.45 0.54	0.14 0.20	5.40 8.79
		race	0.00			2" Ice	0.34	0.20	19.61
						4" Ice	1.28	0.74	62.87
**						4 100	1.20	0.74	02.07
T-Arm Mount [TA 602-3]	С	None		0.0000	108.00	No Ice	11.59	11.59	774.30
	-			0.000	100.00	1/2" Ice	15.44	15.44	990.35
						l" Ice	19.29	19.29	1206.41
						2" Ice	26.99	26.99	1638.52
						4" Ice	42.39	42.39	2502.73
RR90-17-02DP w/ Mount	Α	From	6.00	0.0000	108.00	No Ice	4.59	3.32	34.18
Pipe		Centroid-	0.00			1/2" Ice	5.09	4.09	69.33
		Face	1.00			l" Ice	5.58	4.78	113.86
						2" Ice	6.59	6.23	223.79
						4" Ice	8.73	9.31	556.77
RR90-17-02DP w/ Mount	В	From	6.00	0.0000	108.00	No Ice	4.59	3.32	34.18
Pipe		Centroid-	0.00			1/2" Ice	5.09	4.09	69.33
		Face	1.00			l" Ice	5.58	4.78	113.86
						2" Ice	6.59	6.23	223.79
	_					4" Ice	8.73	9.31	556.77
RR90-17-02DP w/ Mount	C	From	6.00	0.0000	108.00	No Ice	4.59	3.32	34.18
Pipe		Centroid-	0.00			1/2" Ice	5.09	4.09	69.33
		Face	1.00			1" Ice	5.58	4.78	113.86
						2" Ice	6.59	6.23	223.79
A DVA VID 2005145 C. A 20. 4						4" Ice	8.73	9.31	556.77
APXV18-206516S-C-A20 w/	Α	From	6.00	0.0000	108.00	No Ice	3.76	3.20	36.95
Mount Pipe		Centroid-	0.00			1/2" Ice	4.14	3.83	68.28
		Face	1.00			1" Ice	4.57	4.47	108.25
						2" Ice	5.47	5.81	207.80
A DVV18 2065168 C A20/	D	Erom	6.00	0.0000	100.00	4" Ice	7.40	8.74	512.65
APXV18-206516S-C-A20 w/	В	From	6.00	0.0000	108.00	No Ice	3.76	3.20	36.95
Mount Pipe		Centroid-	0.00			1/2" Ice	4.14	3.83	68.28
		Face	1.00			1" Ice	4.57	4.47	108.25
						2" Ice	5.47	5.81	207.80
						4" Ice	7.40	8.74	512.65
APXV18-206516S-C-A20 w/	С	From	6.00	0.0000	108.00	No Ice	3.76	3.20	36.95

Job		Page
	Rogers Property, CT BU#881541	10 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039b	16:39:08 06/06/12
Client		Designed by
	Crown Castle	ncoomes

Mount Pipe	Leg		Lateral						
Mount Pipe			Vert ft	o	fi		ft²	ft²	lb
Mount Pipe			ft ft						
		Centroid-	0.00			1/2" Ice	4.14	3.83	68.28
		Face	1.00			l" Ice	4.57	4.47	108.25
						2" Ice	5.47	5.81	207.80
(0) *************		_				4" Ice	7.40	8.74	512.65
(2) KRY 112 71 TMA	Α	From	6.00	0.0000	108.00	No Ice	0.68	0.45	13.20
		Centroid-	0.00			1/2" Ice	0.80	0.56	18.38
		Face	1.00			1" Ice	0.93	0.68	25.16
						2" Ice 4" Ice	1.22 1.90	0.94 1.57	44.33 110.52
(2) KRY 112 71 TMA	В	From	6.00	0.0000	108.00	No Ice	0.68	0.45	13.20
,	_	Centroid-	0.00	0.0000	100.00	1/2" Ice	0.80	0.56	18.38
		Face	1.00			1" Ice	0.93	0.68	25.16
						2" Ice	1.22	0.94	44.33
						4" Ice	1.90	1.57	110.52
(2) KRY 112 71 TMA	C	From	6.00	0.0000	108.00	No Ice	0.68	0.45	13.20
		Centroid-	0.00			1/2" Ice	0.80	0.56	18.38
		Face	1.00			1" Ice	0.93	0.68	25.16
						2" Ice	1.22	0.94	44.33
ATMAA1412D-1A20 TMA	Α	From	6.00	0.0000	100.00	4" Ice	1.90	1.57	110.52
ATMAAT412D-TAZO TMA	Α	Centroid-	6.00 0.00	0.0000	108.00	No Ice 1/2" Ice	1.17 1.31	0.47	13.00
		Face	1.00			172 ICE	1.31	0.57 0.69	20.62 30.11
		7 400	1.00			2" Ice	1.47	0.09	55.52
						4" Ice	2.58	1.57	137.44
ATMAA1412D-1A20 TMA	В	From	6.00	0.0000	108.00	No Ice	1.17	0.47	13.00
		Centroid-	0.00			1/2" Ice	1.31	0.57	20.62
		Face	1.00			l" Ice	1.47	0.69	30.11
						2" Ice	1.81	0.95	55.52
ATMA A 1410D 1400 TD44						4" Ice	2.58	1.57	137.44
ATMAA1412D-1A20 TMA	C	From	6.00	0.0000	108.00	No Ice	1.17	0.47	13.00
		Centroid- Face	0.00 1.00			1/2" Ice	1.31	0.57	20.62
		race	1.00			1" Ice 2" Ice	1.47 1.81	0.69 0.95	30.11
						4" Ice	2.58	1.57	55.52 137.44
(2) 7'x2" Antenna Mount Pipe	Α	From	6.00	0.0000	108.00	No Ice	1.66	1.66	26.00
		Centroid-	0.00	3,000	.00.00	1/2" Ice	2.39	2.39	38.58
		Face	0.00			l" Ice	2.83	2.83	55.84
						2" Ice	3.71	3.71	104.97
	_					4" Ice	5.58	5.58	266.00
(2) 7'x2" Antenna Mount Pipe	В	From	6.00	0.0000	108.00	No Ice	1.66	1.66	26.00
		Centroid-	0.00			1/2" Ice	2.39	2.39	38.58
		Face	0.00			l" lce	2.83	2.83	55.84
						2" Ice	3.71	3.71	104.97
(2) 7'x2" Antenna Mount Pipe	С	From	6.00	0.0000	108.00	4" Ice No Ice	5.58 1.66	5.58 1.66	266.00 26.00
(=) / 112 1 International 11 (pe	C	Centroid-	0.00	0.0000	108.00	1/2" Ice	2.39	2.39	38.58
		Face	0.00			1" Ice	2.83	2.83	55.84
			****			2" Ice	3.71	3.71	104.97
						4" Ice	5.58	5.58	266.00
**							-		
APXV18-206517-C w/Mount	Α	From	1.75	30.0000	100.00	No Ice	3.95	3.43	48.30
Pipe		Centroid-	1.00			1/2" Ice	4.42	4.25	81.62
		Face	0.00			1" Ice	4.90	4.95	124.33
						2" Ice	5.93	6.40	230.17
APXV18-206517-C w/Mount	В	From	1 75	20,0000	100.00	4" Ice	8.12	9.51	554.31
Pipe	ט	Centroid-	1. <b>7</b> 5 1.00	30.0000	100.00	No Ice 1/2" Ice	3.95 4.42	3.43 4.25	48.30 81.62

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	11 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039b	16:39:08 06/06/12
Client		Designed by
	Crown Castle	ncoomes

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	o	fi		ft²	ft²	lb
	٠,	Face	0.00			l" Ice 2" Ice 4" Ice	4.90 5.93 8.12	4.95 6.40 9.51	124.33 230.17 554.31
APXV18-206517-C w/Mount Pipe	С	From Centroid- Face	1.75 1.00 0.00	30.0000	100.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	3.95 4.42 4.90 5.93 8.12	9.31 3.43 4.25 4.95 6.40 9.51	48.30 81.62 124.33 230.17 554.31
**						1 100	0.12	7.51	334.31
Side Arm Mount [SO 701-1]	С	From Centroid- Leg	2.75 0.00 0.00	0.0000	75.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.85 1.14 1.43 2.01 3.17	1.67 2.34 3.01 4.35 7.03	65.00 79.00 93.00 121.00 177.00
KS24019-L112A	С	From Centroid- Leg	4.25 0.00 2.00	0.0000	75.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	0.10 0.18 0.26 0.42 0.74	0.10 0.18 0.26 0.42 0.74	5.00 6.50 8.00 11.00 17.00

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	۰	0	fi	ft		ft²	lb
A-ANT-23G-2-C	В	Paraboloid	From	4.75	10.0000		130.00	2.17	No Ice	3.72	12.30
(VSI)		w/Shroud (HP)	Centroid	2.25					1/2" Ice	4.01	32.88
			-Face	2.00					1" Ice	4.30	53.46
									2" Ice	4.88	94.62
									4" Ice	6.04	176.94
VHLP2-11	C	Paraboloid	From	4.75	-30.0000		130.00	2.17	No Ice	3.72	31.00
		w/Shroud (HP)	Centroid	2.25					1/2" Ice	4.01	51.56
			-Face	4.00					1" Ice	4.30	72.12
									2" Ice	4.88	113.24
									4" Ice	6.04	195.48

## **Compression Checks**

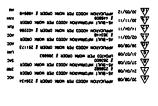
	Pole Design Data									
Section No.	Elevation	Size	L	$L_u$	Kl/r	$F_a$	A	Actual	Allow.	Ratio
	ft		ft	fi		ksi	in ²	lb	lb_	$\frac{P}{P_a}$

Vertical Structures, Inc. 309 Spangler Drive, Suite E Richmond, KY 40475 Phone: (859) 624-8360 FAX: (859) 624-8369

Job		Page
	Rogers Property, CT BU#881541	12 of 12
Project		Date
	Vertical Structures Job No. 2012-004-039b	16:39:08 06/06/12
Client		Designed by
	Crown Castle	ncoomes

Section No.	Elevation	Size	L	$L_u$	Kl/r	$F_a$	A	Actual P	Allow. P	Ratio P
	ft		ft	ft		ksi	in ²	lb	lb -	$P_a$
LI	139.5 - 93.04 (1)	TP26.99x15.5x0.25	46.46	0.00	0.0	39.000	20.4489	-7768.21	797508.00	0.010
L2	93.04 - 46.38 (2)	TP37.91x25.5205x0.375	50.58	0.00	0.0	39.000	43,1454	-16504.80	1682670.00	0.010
L3	46.38 - 0 (3)	TP48.5x35.874x0.375	51.63	0.00	0.0	39.000	53.0176	-25775.00	2067690.00	0.012

## Pole Bending Design Data


Section	Elevation	Size	Actual	Actual	Allow.	Ratio	Actual	Actual	Allow.	Ratio
No.			$M_x$	$f_{bx}$	$F_{bx}$	$f_{bx}$	$M_v$	$f_{by}$	$F_{by}$	$f_{by}$
	ft		lb-ft	ksi	ksi	$\overline{F_{bx}}$	lb-ft	ksi	ksi	$F_{bv}$
Ll	139.5 - 93.04 (1)	TP26.99x15.5x0.25	462485. 83	-42.757	39.000	1.096	0.00	0.000	39.000	0.000
L2	93.04 - 46.38 (2)	TP37.91x25.5205x0.375	1346683	-41.977	39.000	1.076	0.00	0.000	39.000	0.000
L3	46.38 - 0 (3)	TP48.5x35.874x0.375	2185275 .00	-45.025	39.000	1.154	0.00	0.000	39.000	0.000

#### **Pole Interaction Design Data**

Section No.	Elevation	Size	Ratio P	Ratio $f_{bx}$	Ratio f _{by}	Comb. Stress	Allow. Stress	Criteria
	fi		$P_a$	$\frac{f_{bx}}{F_{bx}}$	$F_{bv}$	Ratio	Ratio	
LI	139.5 - 93.04 (1)	TP26.99x15.5x0.25	0.010	1.096	0.000	1.106	1.333	H1-3
L2	93.04 - 46.38	TP37.91x25.5205x0.375	0.010	1.076	0.000	1.086	1.333	H1-3
L3	46.38 - 0 (3)	TP48.5x35.874x0.375	0.012	1.154	0.000	1.167	1.333	H1-3

## **Section Capacity Table**

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	SF*P _{allow} lb	% Capacity	Pass Fail
L1	139.5 - 93.04	Pole	TP26.99x15.5x0.25	1	-7768.21	1063078.12	83.0	Pass
L2	93.04 - 46.38	Pole	TP37.91x25.5205x0.375	2	-16504.80	2242999.02	81.5	Pass
L3	46.38 - 0	Pole	TP48.5x35.874x0.375	3	-25775.00	2756230.66	87.5	Pass
							Summary	
						Pole (L3)	87.5	Pass
						RATING =	87.5	Pass



(INSTALLED) (1) 5/8" TO 136 FT LEVEL (2) 3/8" TO 136 FT LEVEL —(6) 1-5/8" TO 136 FT LEVEL

(PROPOSED) (3) 1-174" TO 130 FT LEVEL (MSTALLED-TO BE REMOVED) (6) 1-1/4" TO 130 FT LEVEL— (SPRINT PCS)

(INSTALLED) (12) 1-5/8" TO 108 FT LEVEL-

(INSTALLED) (1) 1/2" TO 75 FT LEVEL

(INSTALLED) (6) 1-5/8" TO 100 FT LEVEL

(NOT WESTALED)
(1) 1/2" TO 130 FT LEVEL
(1) 1/2" TO 130 FT LEVEL
(1) 1/2" TO 130 FT LEVEL
(2) 5/4" TO 130 FT LEVEL
(3) 5/4" TO 130 FT LEVEL
(3) 5/4" TO 130 FT LEVEL

(INSTALLED) (12) 1-5/8" TO 118 FT LEVEL

(ABANDONED) (6) 1-5/8" TO 124 FT LEVEL

DRAWN BY: VSG CHECKED BY: GPK DRAWING DATE: 25/02/08

SITE NUMBER: SITE NAME: SITE NAME

BUSINESS UNIT NUMBER ROGERS PROPERTY

PORT INFORMATION

SITE ADDRESS
NEW HAVEN, CT 06477
NEW HAVEN
UNITED STATES COUNTY
USA

SHEET TITLE
BASE LEVEL

SHEET NUMBER STATUS

A1-0 South 1° - 1'-gr 1

HOCYLON	мұз	s	# 4 3
3215	_0£×_01	10"×30"	10"x30"
ELEY.	100*	7,-0"	3'-3"

BUSINESS UNIT: 881541 TOWER ID: C_BASELEVEL

BASE LEVEL DRAWING

*** * VENCLEATE SUCCESSION TO SUCCESSION SUC

#### Stiffened or Unstiffened, Ungrouted, Circular Base Plate - Any Rod Material

#### TIA Rev F

Site Data

BU#: 881541

Site Name: Rogers Property, CT

App #: 151615, Rev. 3

Pole Manufacturer: Other

Reactions		
Moment:	2543.299	ft-kips
Axial:	29.498	kips
Shear:	24.979	kips

An	Anchor Rod Data							
Qty:	16							
Diam:	2.25	in						
Rod Material:	A615-J							
Strength (Fu):	100	ksi						
Yield (Fy):	75	ksi						
Bolt Circle:	57	]in						

Plate Data		
Diam:	63	in
Thick:	2	in
Grade:	60	ksi
Single-Rod B-eff:	9.62	in

Stiffener Data (Welding at both sides)				
Config:	0	*		
Weld Type:				
Groove Depth:		in **		
Groove Angle:		degrees		
Fillet H. Weld:		< Disregard		
Fillet V. Weld:		in		
Width:		in		
Height:		in		
Thick:	-	in		
Notch:		in		
Grade:		ksi		
Weld str.:		ksi		

Pole Data				
Diam:	48.5	in		
Thick:	0.375	in		
Grade:	65	ksi		
# of Sides:	18	"0" IF Round		
Fu	80	ksi		
Reinf. Fillet Weld	0	"0" if None		

Stress	Increase I	actor
ASIF:	1.333	

	2543.299	1 '
Axial:	29.498	kips
Shear:	24.979	kips

Anchor Rod Results		

Maximum Rod Tension: 132.0 Kips Allowable Tension: 195.0 Kips

Anchor Rod Stress Ratio: 67.7% Pass

Base Plate Results	Flexural Check
Base Plate Stress:	55.0 ksi
Allowable Plate Stress:	60.0 ksi
Base Plate Stress Ratio:	91.8% Pass

Rigid	
Service ASD	
0.75*Fy*ASIF	
Y.L. Length:	
29.95	

Rigid

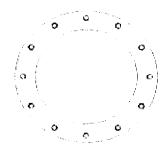
Service, ASD

Fty*ASIF

#### <u>n/a</u>

Stiffener Results

If No stiffeners, Criteria:


Horizontal Weld: n/a Vertical Weld: n/a Plate Flex+Shear, fb/Fb+(fv/Fv)^2: n/a Plate Tension+Shear, ft/Ft+(fv/Fv)^2: n/a Plate Comp. (AISC Bracket): n/a

#### **Pole Results**

Pole Punching Shear Check:

n/a

AISC ASD <-Only Applicable to Unstiffened Cases





Analysis Date: 6/6/2012

^{* 0 =} none, 1 = every bolt, 2 = every 2 bolts, 3 = 2 per bolt

^{**} Note: for complete joint penetration groove welds the groove depth must be exactly 1/2 the stiffener thickness for calculation purposes



# Overturning Calculation for Rectangular Mat Foundations (Eccentrically Loaded)

Customer: Site Name: Job Number: Tower Model: Date:	Crown Cast Rogers Pro 2012-004-0 140' EEI Mo 6/6/2012	perty, CT BU 39b	J#881541			
Soil Ultimate Bearing	8	ksf				
Unit wt soil	0.125	kcf				
Unit wt concrete	0.15	kcf				
Mat Length (long dimension)	23	ft				
Mat Width (short dimension)	23	ft				
Mat Thickness	3	ft				
Depth of Soil Over Mat	4	ft				
Has Pedestals? (Y or N)	Ý					
Pedestal Round or Square? (R or S)	Š					
Number of Pedestals	1					
Pedestal Height	5	ft				
Pedestal Diameter or Width	7	ft				
	•		Load Eccen	tricity on Pad		
Applied Shear	24.979	kip	distance from		3.5	ft
Applied Axial Force	29.498	kip		n short axis =	3.5	ft
Applied Moment	2543.299	k-ft	distance iron	ii siioit axis =	3.0	11
wt. Concrete =	274.800	kip				
wt. Soil =	240.000	kip				
Shear Moment =	199.832	k-ft				
P*e =	103.243	k-ft	103.243	k-ft		
	(about long	avie)	(about short	ovio)		
Allowable Bearing =	4	ksf	(about Short	axis)		
Mat Width / 6 =	3.83	ft	3.83	ft		
e =	5.23	ft	5.23	ft		
=	18.81	ft	18.81	ft		
Bearing =	1.41	ιι ksf	2.52			
2009	BEARING A		2.52	ksf		
	DEAINING A	DEQUATE				
x =	2.958	ft	2.958	ft		
Resisting Moment =	5454.372	k-ft	5454.372	k-ft		
SF =	1.916		1.916	-		
	OVERTURN	IING ADEQU				



APPRO	VALS	
711110	VILLO	APPROVED AS NOTED DISAPPROVED REVISE
SPRINT REPRESENTATIVES	DATE	
SPRINT RF ENGINEER	DATE	
SITE OWNER	DATE	
_	DATE	



SITE ID: CT23XC313

THE STRUCTURAL ENGINEERING CONCERNING THE STRUCTURAL STABILITY OF THE TOWER/POLE, FOUNDATION, ANTENNAS, MOUNTS AND ALL ASSOCIATED ANCILLARY RADIO EQUIPMENT IS BEING COMPLETED BY OTHERS. KMB DESIGN GROUP, LLC HAS NOT BEEN REQUESTED TO PERFORM ANY STRUCTURAL ANALYSIS SERVICES TO VERIFY THAT THE TOWER/POLE AND/OR FOUNDATION IS CAPABLE OF SUPPORTING THE PROPOSED EQUIPMENT DEPICTED ITHIN THESE SIGNED AND SEALED DRAWINGS. FURTHERMORE KMB DESIGN GROUP, LLC HAS NOT BEEN REQUESTED TO PHYSICALLY CONFIRM THE EXISTING MOUNT CONFIGURATION AND PERFORM A STRUCTURAL ANALYSIS TO VERIFY THAT THE EXISTING, INTERIM AND PROPOSED ANTENNAS, MOUNTS AND ALL ASSOCIATED ANCILLARY RADIO EQUIPMENT CAN BE SAFELY SUPPORTED. SIGNED AND SEALED DRAWINGS REVISED TO STATE "ISSUED FOR CONSTRUCTION" SHALL BE PROVIDED TO THE PROFESSIONAL ENGINEERS RESPONSIBLE FOR THE STRUCTURAL ANALYSIS OF THE TOWER/POLE, ANTENNAS, MOUNTS AND ALL ASSOCIATED ANCILLARY RADIO EQUIPMENT. KMB DESIGN GROUP, LLC SHALL BE NOTIFIED SHOULD THE STRUCTURAL ANALYSIS RESULT IN SOME ELEMENTS NOT BEING STRUCTURALLY CAPABLE OF SUPPORTING THE PROPOSED DESIGN DEPICTED. THE CONTRACTOR SHALL NOT COMMENCE CONSTRUCTION WITHOUT OBTAINING (A) A SIGNED AND SEALED COPY OF THE PLANS "ISSUED FOR SUPPORTING THE PROPOSED LOADING REFERENCING THE SIGNED AND SEALED PLANS BY KMB DESIGN GROUP, LLC; SITE NAME: ORANGE / ROGER'S PROPERTY(C) SPRINT PLATFORM ANALYSIS STATING THAT THE SPRINT PLATFORM IS CAPABLE OF SUPPORTING THE PROPOSED DESIGN AS REFERENCED WITHIN THE SIGNED AND SEALED PLANS BY KMB DESIGN GROUP, LLC.

# NETWORK VISION CONSTRUCTION DRAWINGS









# LOCATION MAP

	DRAWING INDEX	
DWG#	DRAWING TITLES	Thes
A01	COVER SHEET	
C01	GENERAL NOTES 1 OF 2	State
C01A	GENERAL NOTES 2 OF 2	
C02	COMPOUND PLAN	2003 2003
C02A	ELEVATION	2003
C03	EQUIPMENT PLANS	2003
C03A	EQUIPMENT & ANTENNA SPECIFICATIONS	2003
C04	EXISTING ANTENNA PLAN (ALL SECTORS)	2003
C04A	INTERIM ANTENNA PLAN (ALL SECTORS)	ICC//
C04B	FINAL ANTENNA PLAN (ALL SECTORS)	2005
C04C	RRH PLANS & DETAILS (ALL SECTORS)	2000
C05	SITE DETAILS	
C06	RF SCHEDULE	
C06A	RF DATA SHEET	1.
C07	AAV DRAWINGS - COVER SHEET	2.
C07A	AAV DRAWINGS - SITE PHOTOS	3.
C07B	AAV DRAWINGS - KEY & EQUIPMENT PLAN	4.
C07C	AAV DRAWINGS - DETAILS	5.
E01	ELECTRICAL NOTES	7.
E02	ELECTRIC & GROUNDING DETAILS	
		8.
		9.

ese documents are in compliance & all construction to be in accordance with the following codes & standards as applicable: ate Building Code: 2005 Connecticut Supplemen

**CODES & STANDARDS** 

03 International Building Code 03 International Residential Code 03 International Existing Building Code 03 International Mechanic Code

03 International Plumbing Code 03 International Energy Conservation Code (re-adopted with changes) C/ANSI A117.1-2003 Assessible and Usable Buildings and Facilities

TURN RIGHT AND TAKE RAMP ONTO NEW YORK STATE THRUWAY SOUTH (I-287 E, I-87 S) (PARTIAL TOLL ROAD). KEEP LEFT ONTO CROSS WESTCHESTER EXPY (I-287 E)

05 National Electrical Code (NFPA-70)

HEAD TOWARD MEADOW AVE ON 1ST ST.

AT EXIT #8 TOWARD WHITE PLAINS/RYE. TAKE EXIT #9S-N/HUTCHINSON PKWY/WHITESTONE BR/MERRITT PKWY ONTO WESTCHESTER AVE (CR-62 E).

TURN LEFT ONTO RAMAPO AVE.

BEAR RIGHT ONTO CHESTNUT ST. TURN RIGHT ONTO LAFAYETTE AVE (RT-59).

TURN LEFT ONTO N AIRMONT RD.

#### **DRIVING DIRECTIONS**

DEPART 1 INTERNATIONAL BLVD, MAHWAH, NJ 07495 10. TAKE EXIT #9N/HUTCHINSON PKWY NORTH/MERRITT PKWY ONTO HUTCHINSON RIVER PKY N. 11. CONTINUE ON MERRITT PKY (CT-15 N).

12. TAKE EXIT #56/CT-121/ORANGE.

13. TURN LEFT ONTO GRASSY HILL RD (CT-121).

#### SITE INFORMATION

BLOCK: 6 LOT: 1 ZONING CLASSIFICATION: R-1 ZONING JURISDICTION: TBD

#### PROJECT INFORMATION:

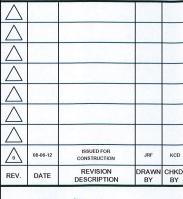
SITE ADDRESS 700 GRASSY HILL ROAD ORANGE, CT 06477 **NEW HAVEN COUNTY** COORDINATES:

LATITUDE: LONGITUDE: 73° 02' 33.27"

DATUM: NAD 83

STRUCTURE HEIGHT: ±140'-0" (TOP OF EXISTING MONOPOLE)

#### PROJECT DIRECTORY:


PROPERTY OWNER: JULIA ROGERS SCHEN, ELLEN ROGERS SAYLOR, & HARRIET ROGERS WOOD (401) 745-5728

APPLICANT: SPRINT-NEXTEL 6200 SPRINT PARKWAY OVERLAND PARK, KS 66251 **ENGINEER:** KMB DESIGN GROUP, LLC 1800 ROUTE 34, SUITE 209 WALL, NJ 07719 KEITH DRENNAN - PROJECT MANAGER

(732) 280-5623 POWER COMPANY: THE UNITED ILLUMINATING 157 CHURCH STREET NEW HAVEN, CT 06510 1-800-7-CALL-UI





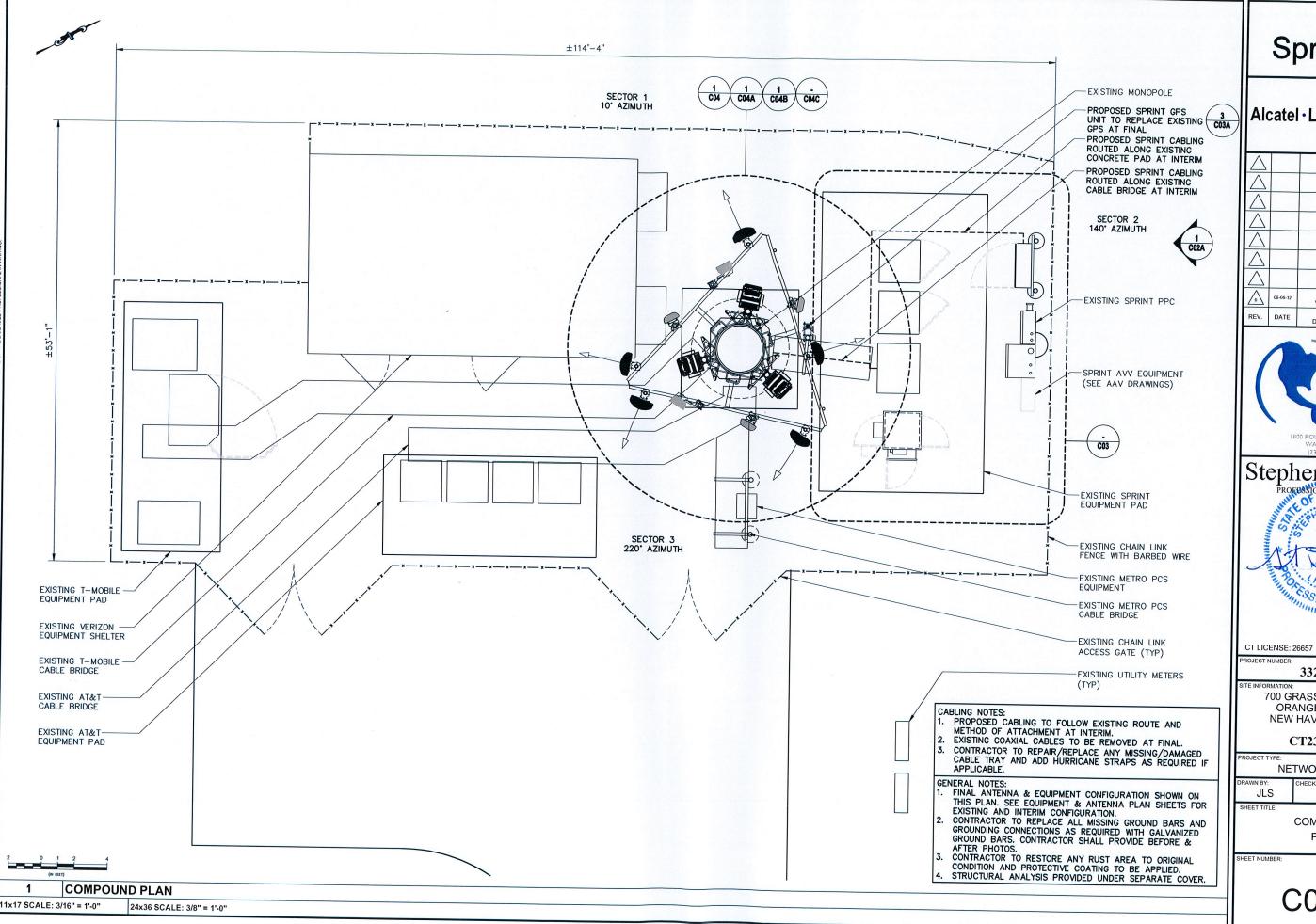






CT LICEN	ISE: 26657	8/8/12

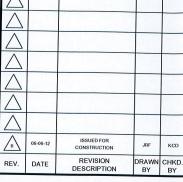
332.1481


700 GRASSY HILL ROAD ORANGE, CT 06477 **NEW HAVEN COUNTY** 

CT23XC313

NETWORK VISION		
DRAWN BY: JLS	CHECKED BY:	DATE: 03-14-12
SHEET TITLE:		

**COVER** SHEET


A01





Alcatel · Lucent







# Stephen A. Bray



332.1481

700 GRASSY HILL ROAD ORANGE, CT 06477 NEW HAVEN COUNTY

CT23XC313

**NETWORK VISION** 

03-14-12

COMPOUND **PLAN** 

C02

8/8/12

Sprint[®]

Alcatel · Lucent

REVISION DESCRIPTION DRAWN CHKD BY BY DATE



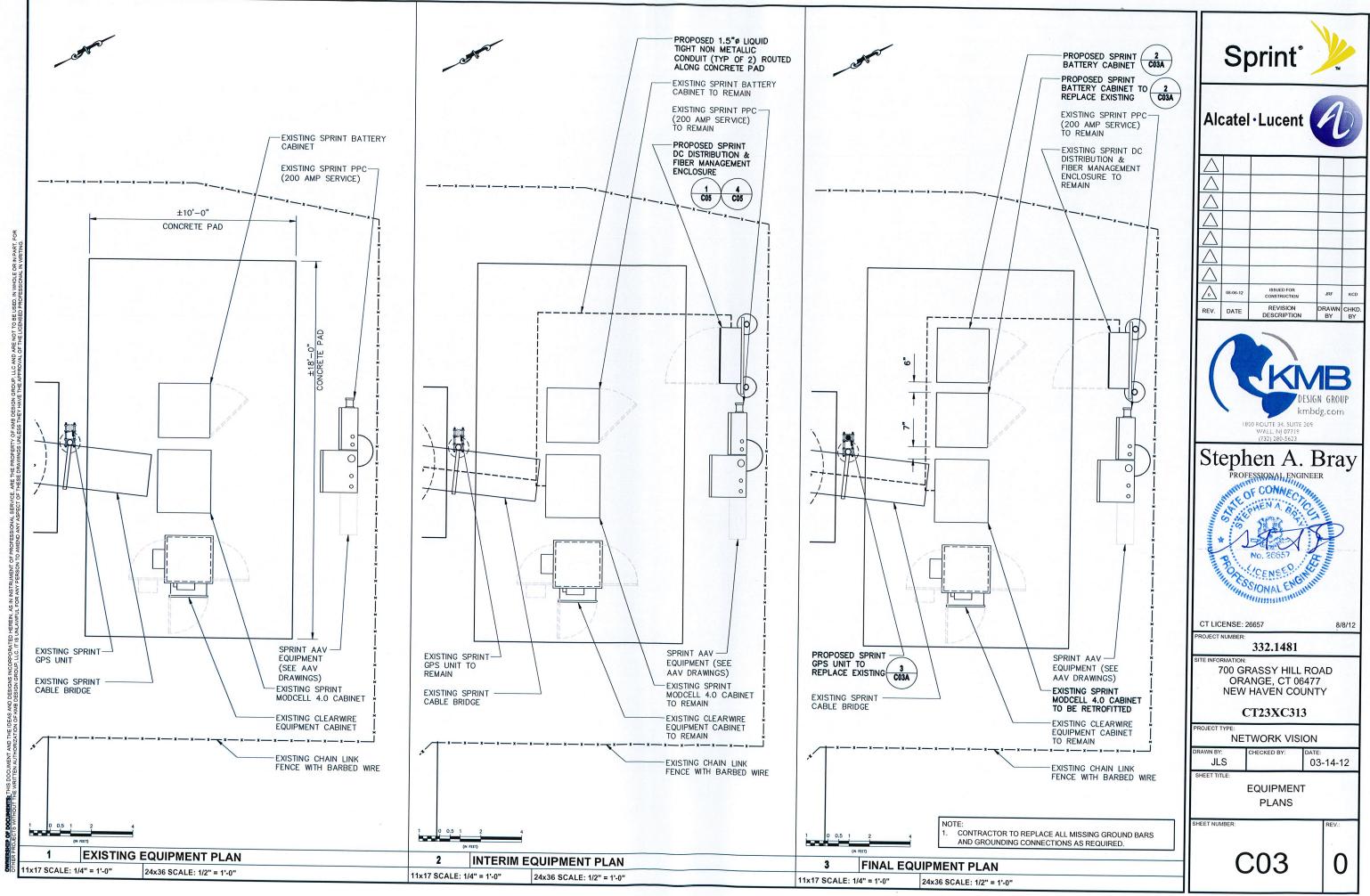
## Stephen A. Bray

CT LICENSE: 26657

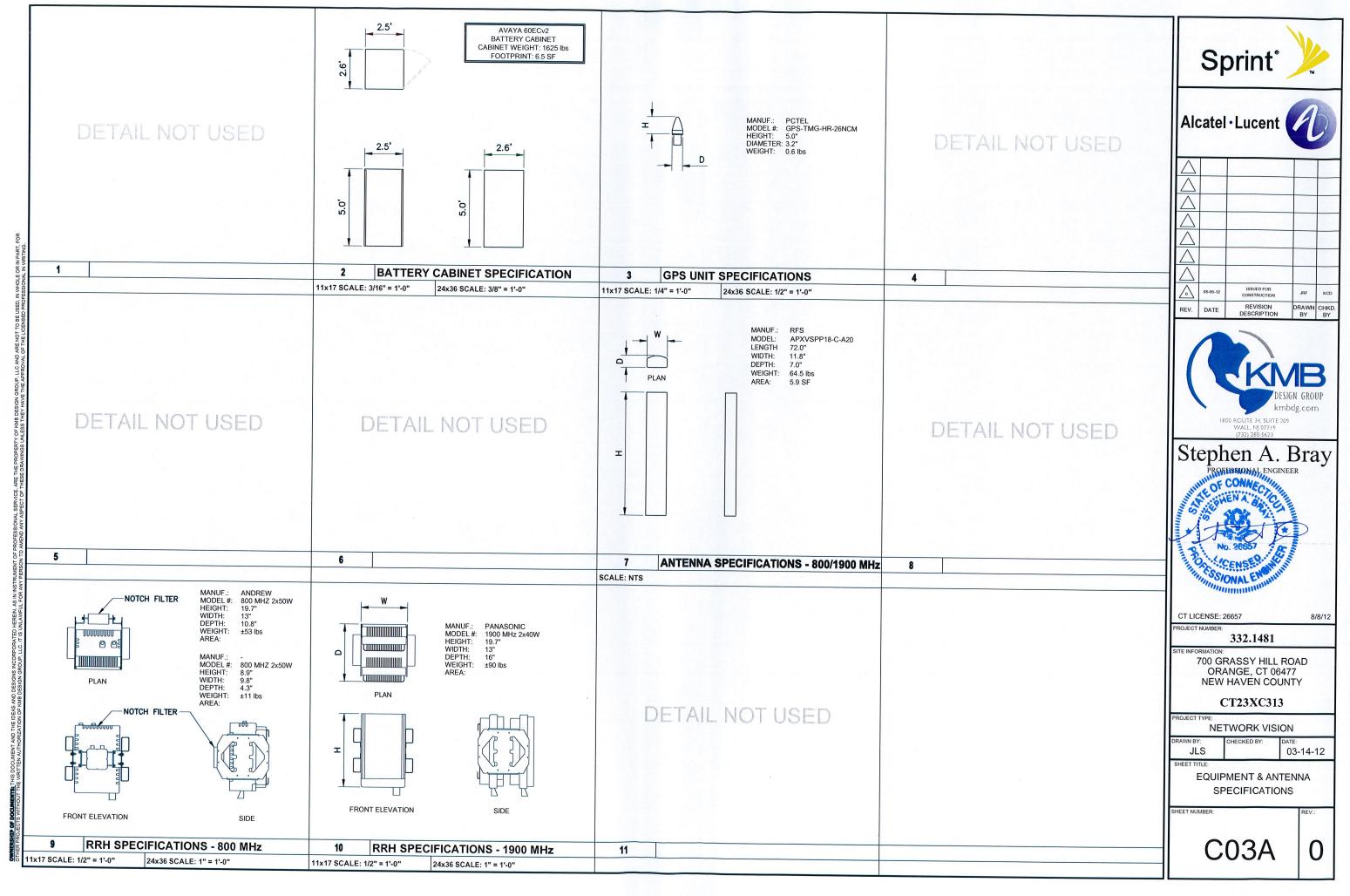
332.1481

700 GRASSY HILL ROAD ORANGE, CT 06477 **NEW HAVEN COUNTY** 

CT23XC313

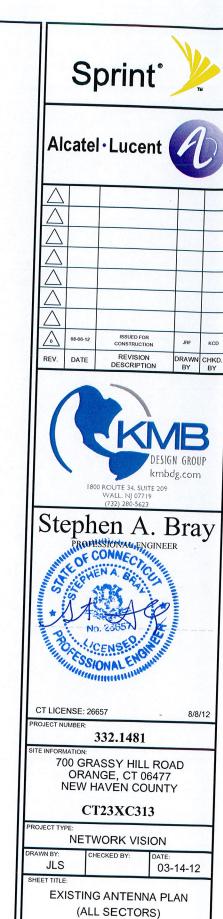

**NETWORK VISION** 

JLS 03-14-12


**ELEVATION** 

C₀₂A

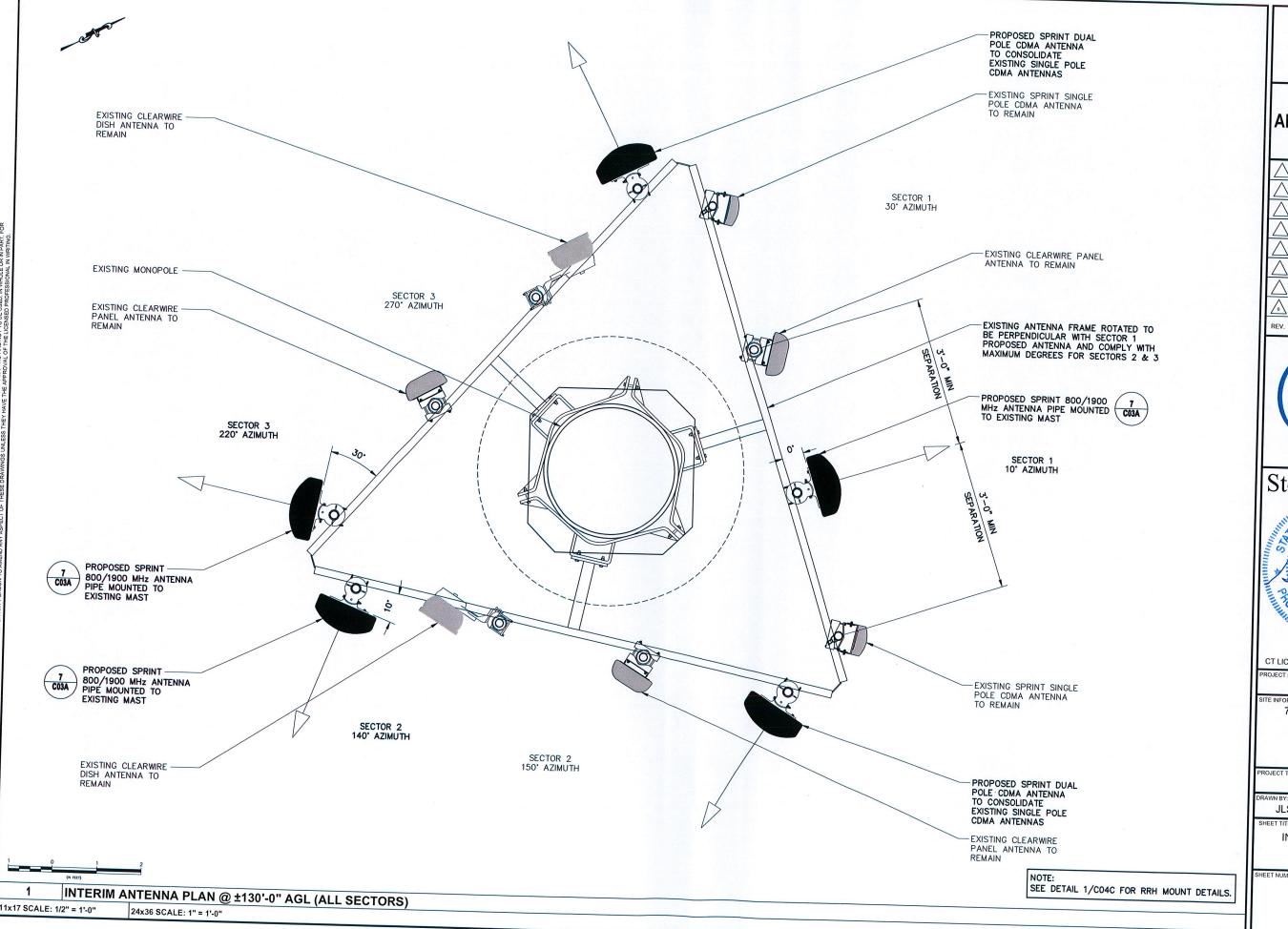
8/8/12



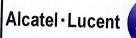

k:\332_Sprint_332.1000_Alcatel-Lucent\332.1481_CT23XC313_700 Grassy Hill Road\332.1481_CAD\332.1481_Construction\332.1481.C03.dwg, 8/8/2012 9:04:52 Am, jford

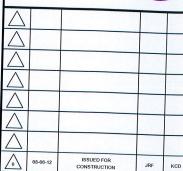


11x17 SCALE: 1/2" = 1'-0"


24x36 SCALE: 1" = 1'-0"




8/8/12


C04

SHEET NUMBER









REVISION DESCRIPTION

DATE

DRAWN CHKD. BY BY



## Stephen A. Bray

PROFESSIONAL ENGINEER

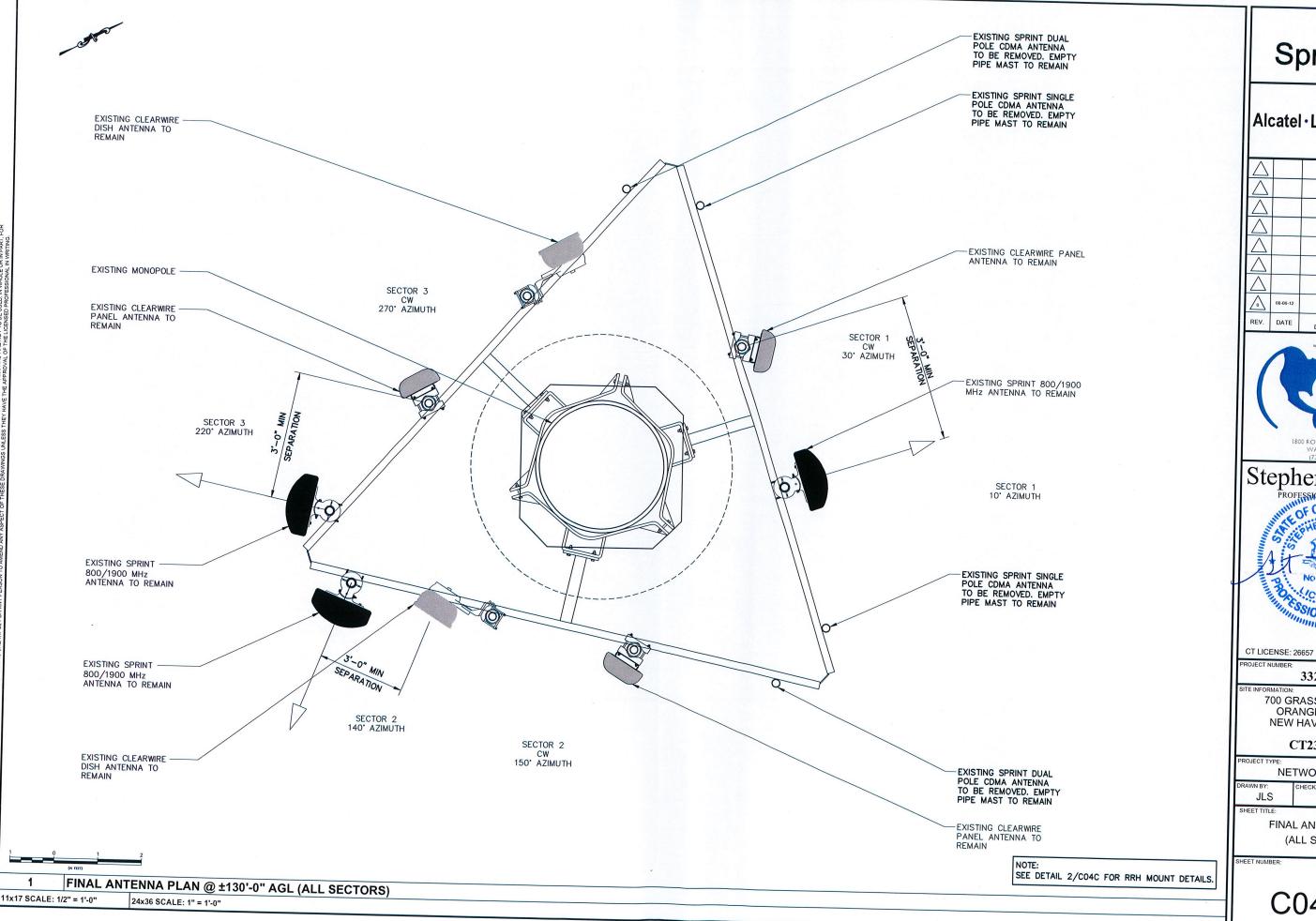
CT LICENSE: 26657

332.1481

700 GRASSY HILL ROAD ORANGE, CT 06477 NEW HAVEN COUNTY

#### CT23XC313

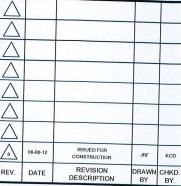
ROJECT TY NETWORK VISION


JLS

INTERIM ANTENNA PLAN (ALL SECTORS)

C04A

03-14-12


8/8/12





Alcatel · Lucent







Stephen A. Bray

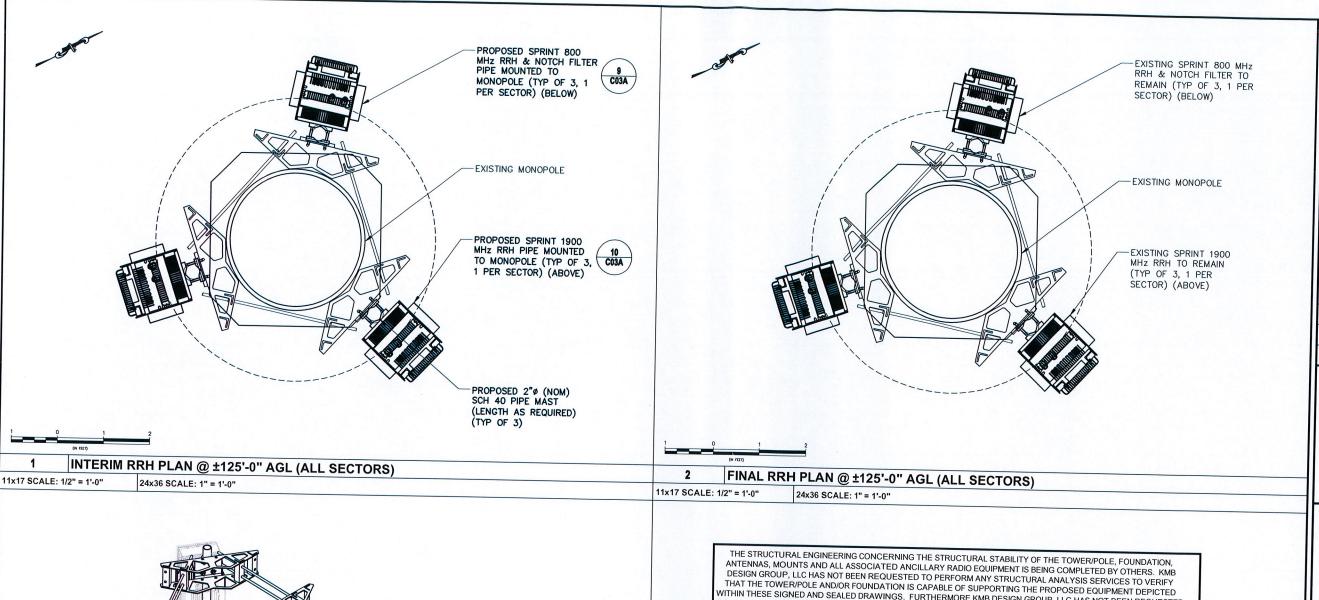


332.1481

700 GRASSY HILL ROAD ORANGE, CT 06477 NEW HAVEN COUNTY

CT23XC313

**NETWORK VISION** 


JLS

FINAL ANTENNA PLAN (ALL SECTORS)

C04B

03-14-12

8/8/12



PROPOSED RRHS MAY NOT MATCH RRH SHOWN. REFER TO SPECIFICATION SHEET FOR CORRECT RRH MODEL NUMBER.

THREE SECTOR DUAL RADIO RING MOUNT BY COMMSCOPE, PART # MC-551050-3 OR AN APPROVED EQUAL
KIT INCLUDES:
RING MOUNT, THREADED ROD,
HARDWARE AND (6) 2-3/8"

WITHIN THESE SIGNED AND SEALED DRAWINGS. FURTHERMORE KMB DESIGN GROUP, LLC HAS NOT BEEN REQUESTED TO PHYSICALLY CONFIRM THE EXISTING MOUNT CONFIGURATION AND PERFORM A STRUCTURAL ANALYSIS TO VERIFY THAT THE EXISTING, INTERIM AND PROPOSED ANTENNAS, MOUNTS AND ALL ASSOCIATED ANCILLARY RADIO THAT THE EXISTING, INTERIM AND PROPOSED ANTENNAS, MOUNTS AND ALL ASSOCIATED ANCILLARY RADIO EQUIPMENT CAN BE SAFELY SUPPORTED. SIGNED AND SEALED DRAWINGS REVISED TO STATE "ISSUED FOR CONSTRUCTION" SHALL BE PROVIDED TO THE PROFESSIONAL ENGINEERS RESPONSIBLE FOR THE STRUCTURAL ANALYSIS OF THE TOWER/POLE, ANTENNAS, MOUNTS AND ALL ASSOCIATED ANCILLARY RADIO EQUIPMENT. KIMB DESIGN GROUP, LLC SHALL BE NOTIFIED SHOULD THE STRUCTURAL ANALYSIS RESULT IN SOME ELEMENTS NOT BEING STRUCTURALLY CAPABLE OF SUPPORTING THE PROPOSED DESIGN DEPICTED. THE CONTRACTOR SHALL NOT COMMENCE CONSTRUCTION WITHOUT OBTAINING (A) A SIGNED AND SEALED COPY OF THE PLANS "ISSUED FOR CONSTRUCTION"; (B) STRUCTURAL ANALYSIS REPORT STATING THAT THE TOWER/POLE/FOUNDATION IS CAPABLE OF CONSTRUCTION; (B) STRUCTURAL ANALYSIS REPORT STATING THAT THE TOWER/POLE/F-OUNDATION IS CAPABLE OF SUPPORTING THE PROPOSED LOADING REFERENCING THE SIGNED AND SEALED PLANS BY KMB DESIGN GROUP, LLC; (C) SPRINT PLATFORM ANALYSIS STATING THAT THE SPRINT PLATFORM IS CAPABLE OF SUPPORTING THE PROPOSED DESIGN AS REFERENCED WITHIN THE SIGNED AND SEALED PLANS BY KMB DESIGN GROUP, LLC.

CONTRACTOR TO REPLACE ALL MISSING GROUND BARS AND GROUNDING CONNECTIONS AS REQUIRED WITH GALVANIZED GROUND BARS. CONTRACTOR SHALL PROVIDE BEFORE & AFTER PHOTOS.

Sprint[®]

Alcatel · Lucent



REVISION REV.



Stephen A. Bray



CT LICENSE: 26657

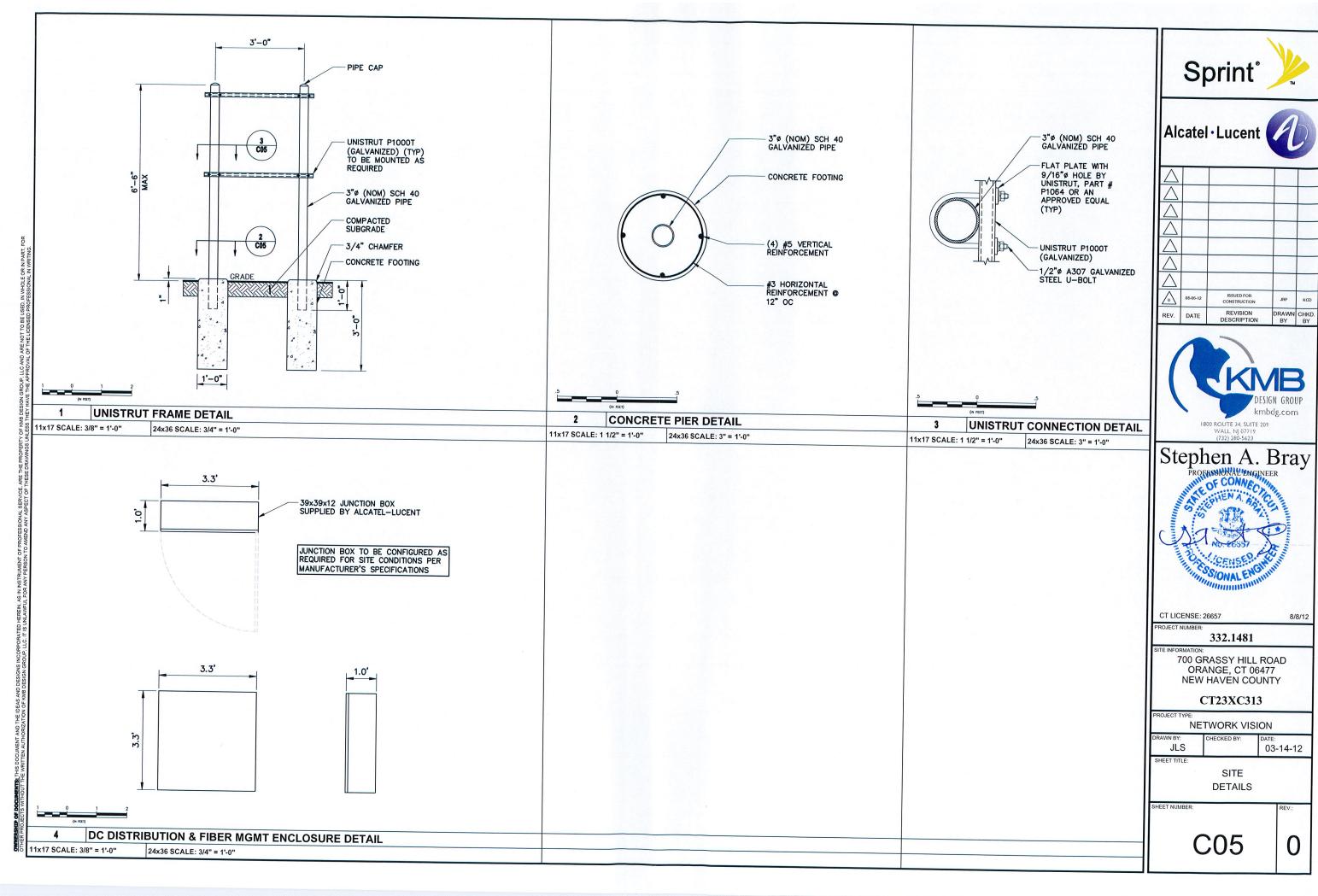
8/8/12

332.1481

700 GRASSY HILL ROAD ORANGE, CT 06477 NEW HAVEN COUNTY

CT23XC313

**NETWORK VISION** 


03-14-12

JLS

**RRH PLANS & DETAILS** (ALL SECTORS)

C04C

RRH MOUNT DETAIL SCALE: NTS



Sprint, 332.1000_Arcate1-ucent\332.1481_CT23XC313_700 Grassy HIII Road\333.1481_CAD\332.1481 Cnrstmrthm\339.1481 Crc Alius ent\332.1481 crc Alius ent\squares