

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

December 17, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 430 Middlesex Turnpike, Old Saybrook, CT 06475 Latitude: 41.313211 Longitude: -72.381108 Site# 876336_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 430 Middlesex Turnpike in Old Saybrook, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900/2100 MHz antenna and six (6) RRUs, at the 153-foot level of the existing 179.6-foot monopole tower, one (1) Fiber cables will also be installed as well as an antenna platform mount. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated December 8, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated May 21, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. This facility was approved by the Town of Old Saybrook planning and zoning commission on May 27, 1998. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Carl P. Fortuna, Jr., First Selectman for the Town of Old Saybrook, Christina M. Costa, Town Planner, CZEO, as well as the tower owner (Crown Castle) and property owner (Robert C Sorensen- C/O Sprint Sites CT 03XC102).

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 179.6-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 153-feet.

2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 1.480% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this tower in Old Saybrook. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 153-foot level of the existing 179.6-foot monopole tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing monopole. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Old Saybrook.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

54 Main Street Unit 3 | Sturbridge Ma 01566 | f: 413-521-0558 | www.northeastsitesolutions.com

Attachments cc:

Carl P. Fortuna, Jr., First Selectman 302 Main Street Old Saybrook, CT 06475

Christina M. Costa, Town Planner, CZEO 302 Main Street Old Saybrook, CT 06475

Robert C Sorensen (property owner) C/O Sprint Sites CT 03XC102 BOX 12913 Prop Tax Department Shawnee Mission, KS 66282

Crown Castle, Tower Owner (tower owner)

Exhibit A

Original Facility Approval

VOL. 0356 PAGE 0104

TOWN OF OLD SAYBROOK

ZONING DEPARTMENT 302 Main Street Old Saybrook, Connecticut 06475 Tel. (860) 395-3131 · Fax (860) 395-3125

MAY 27 :

TO:

Page 1 of 1

TOWN CLERK TOWN OF OLD SAYBROOK **302 MAIN STREET** OLD SAYBROOK, CT 06475

SPECIAL EXCEPTION PERMIT

Notice is hereby given that the Zoning Commission, Town of Old Saybrook, has granted a SPECIAL EXCEPTION PERMIT to Sprint Spectrum L.P. (Sprint PCS) following a Public Hearing completed on April 6, 1998.

Said SPECIAL EXCEPTION applies to application for 175' monopole, 187 s.f. building and 999 lin. ft. chain link fence, 430 Middlesex Turnpike, Map 52 & 57, Lot 57 & 41.

This SPECIAL EXCEPTION is required under Section 52 of the Old Saybrook Zoning Regulations.

Pursuant to Chapter 124, Section 8-3d, Statutes Governing Municipal Planning and Zoning, revised to January 1, 1995, this SPECIAL EXCEPTION shall be recorded in the Office of the Town Clerk.

Certified:

Carol Suits, Administrative Assistant Zoning Commission Town of Old Saybrook

Dated:

May 27, 1998

May 27, 1998 Rec'd for Record at 3:20 PM Recorded by Sarah V. Becker

Exhibit B

Property Card

430 MIDDLESEX TPKE

Location	430 MIDDLESEX TPKE	MBLU	057/ 41T/ / /
Acct#	00596650	Owner	SORENSEN ROBERT C
Assessment	\$574,900	Appraisal	\$821,200
PID	102712	Building Count	1

Current Value

Appraisal					
Valuation Year	Improvements	Land	Total		
2018	\$716,000	\$105,200	\$821,200		
Assessment					
Valuation Year	Improvements	Land	Total		
2018	\$501,200	\$73,700	\$574,900		

Owner of Record

Owner	SORENSEN ROBERT C	Sale Price	\$0
Co-Owner	C/O SPRINT SITES CT 03XC102	Certificate	
Address	BOX 12913 PROP TAX DEPT	Book & Page	0600/0597
	SHAWNEE MISSION, KS 66282-2913	Sale Date	12/05/2014

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Sale Date	
SORENSEN ROBERT C	\$0		0554/0096	11/18/2010	
SORENSEN ROBERT C & GEORGIANNA	\$0		0344/0075	05/12/1997	

Building Information

Building 1 : Section 1

Year Built:

Living Area:

Building Attributes		
Field	Description	
Style	Outbuildings	

0

Model	
Grade:	
Stories:	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Heat Fuel	
Heat Type:	
AC Type:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	
Bath Style:	
Kitchen Style:	
Num Kitchens	
Cndtn	
Usrfld 103	
Usrfld 104	
Usrfld 105	
Usrfld 106	
Usrfld 107	
Num Park	
Fireplaces	
Usrfld 108	
Usrfld 101	
Usrfld 102	
Usrfld 100	
Usrfld 300	
Usrfld 301	

Building Photo

(http://images.vgsi.com/photos/OldSaybrookCTPhotos//\00\01\37\47.jpg)

Building Layout

Building Layout

(http://images.vgsi.com/photos/OldSaybrookCTPhotos//Sketches/102712_

Building Sub-Areas (sq ft)	<u>Legend</u>
----------------------------	---------------

No Data for Building Sub-Areas

Extra Features

Land

Land Use		Land Line Valuation	
Use Code	0431	Size (Acres)	3
Description	TEL REL TW	Depth	
Zone	AA-1	Assessed Value	\$73,700
		Appraised Value	\$105,200

Outbuildings

Outbuildings					<u>Legend</u>	
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
FN3	FENCE-6' CHAIN			156.00 L.F.	\$1,100	1
PAV2	PAVING-CONC			600.00 S.F.	\$1,200	1
SHD6	COMM,MAS			216.00 S.F.	\$4,900	1
CELL	CELL TOWER			125.00 UNITS	\$101,300	1
MSC1	ARRAYS			3.00 UNIT	\$607,500	1

Valuation History

Appraisal					
Valuation Year	Improvements	Land	Total		
2018	\$716,000	\$105,200	\$821,200		
2016	\$7,600	\$239,800	\$247,400		
2015	\$7,600	\$239,800	\$247,400		

Assessment					
Valuation Year	Improvements	Land	Total		
2018	\$501,200	\$73,600	\$574,800		
2016	\$5,300	\$167,900	\$173,200		
2015	\$5,300	\$167,900	\$173,200		

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

^{Obed} Heights

Exhibit C

Construction Drawings

		SITE INF	ORMATION	
		PROPERTY OWNER: ADDRESS:	SORENSEN ROBERT C 430 MIDDLESEX TURNPIKE OLD SAYBROOK, CT 06475	4
		TOWER TYPE:	MONOPOLE	
		TOWER CO SITE ID:	876336	ד
	SCOPE OF WORK	TOWER APP NUMBER:	553289	
	THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE.	COUNTY:	MIDDLESEX	5
WIFEIESS	TM THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING: TOWER SCOPE OF WORK:	LATITUDE (NAD 83):	41° 18' 47.56" N 41.313211 N	
	INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) INSTALL PROPOSED T-ARM MOUNT (1 PER SECTOR) INSTALL PROPOSED JUMPERS	LONGITUDE (NAD 83):	-72 22 51.99 W -72.381108 W	
DISH WIRELESS, LLC. SITE ID:	INSTALL (6) PROPOSED RRUs (2 PER SECTOR) INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) INSTALL (1) PROPOSED HYBRID CABLE	ZONING JURISDICTION:	CONNECTICUT SITING COUNCIL	s
BOBDL00088A	GROUND SCOPE OF WORK: • INSTALL (1) PROPOSED METAL PLATFORM	ZONING DISTRICT:	M-1	0
	INSTALL (1) PROPOSED ICE BRIDGE INSTALL (1) PROPOSED PPC CABINET INSTALL (1) PROPOSED EQUIPMENT CABINET	PARCEL NUMBER:	102712	_
	INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT INSTALL (1) PROPOSED TELCO-FIBER BOX	CONSTRUCTION TYPE:	у-в	
430 MIDDLESEX TURNPIK	INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED) INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED)	POWER COMPANY:	NORTHEAST UTILITIES	
OLD SAYBROOK, CT 0647	• EXISTING METER SOCKET ON EXISTING H-FRAME TO BE UTILIZED	TELEPHONE COMPANY:	AT&T	
	SITE PHOTO			
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EI		DIRECTIONS FROM		
THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PL BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:	ANS IS TO	HEAD NORTHWEST ON C TURN RIGHT ONTO CT-1	HESTER AIRPORT TOWARDS CRO	SS F
CODE_TYPE CODE BUILDING 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS		TOWARDS OLD SAYBROO JUNCTION 2, HEAD RIGH ONTO CT-154 / MIDDL ARRIVE AT 430 MIDDLES	K, CONSTRUCTION ON CONSTRU IT ON THE RAMP FOR CT-154 SEX TFKE TOWARDS OLD SAYB EX TURNPIKE, OLD SAYBROOK,	CTION TOWA ROOK CT (
SHEET INDEX			VICINI	ΓY
SHEET NO. SHEET TITLE	A STATE OF THE STA	Pe	ond	
T-1 TITLE SHEET				
A-1 OVERALL AND ENLARGED SITE PLAN A-2 ELEVATION, ANTENNA LAYOUT AND SCHEDULE		kum Rd		
A-3 EQUIPMENT PLATEFROM AND H-FRAME DETAILS		(154)		
A-4 EQUIPMENT DETAILS A-5 EQUIPMENT DETAILS				
A-6 EQUIPMENT DETAILS A-7 FENCING DETAILS		2		Г
E-1 ELECTRICAL ROUTE PLAN AND NOTES		Aiddle		لر
E-3 ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE		sex Av		
G-1 GROUNDING PLANS AND NOTES G-2 GROUNDING DETAILS	(800) 922-4455 WWW.CBYD.COM	r Supply Co 😁	(
G-3 GROUNDING DETAILS	CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION	Delivery		
RF-1 RF CABLE COLOR CODE	GENERAL NOTES			
GN-1 LEGEND AND ABBREVIATIONS GN-2 GENERAL NOTES GN GENERAL NOTES	THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED			
GN-3 GENERAL NOTES GN-4 GENERAL NOTES	FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.	Plumbing supply st	154	
	11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED		Scott's Farm	n Sto
	CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE		3	
		NO SCALE		

PROJ	ECT DIRECTORY]		_	A	_
APPLICANT:	DISH WIRELESS, LLC. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120				žs wir	
TOWER OWNER:	CROWN CASTLE 2000 CORPORATE DRIVE CANONSBURG, PA 15317 (877) 486-9377			5701 SC LITTL	DUTH SANTA ETON, CO 80	FE DRIVE D120
SITE DESIGNER:	INFINIGY 2500 W. HIGGINS RD. STE. 500 HOFFMAN ESTATES, IL 60169 (847) 648–4068		C			
SITE ACQUISITION	: NICHOLAS CURRY NICHOLAS.CURRY@CROWNCASTLE.COM				INSBURG, PA	
CONSTRUCTION M	IANAGER: JAVIER SOTO		F R	OM Z	ERO TO I Ihe solutions	NFINIGY are endless
RF ENGINEER:	BOSSENER CHARLES		PHC	HOFF <i>N</i> NE: 847-6 W	AN ESTATES, IL 48-4068 FAX: WW.INFINIGY.C	60169 518-690-0793 DM
				SHUT	E SAKA	C. NOUE
TIONS]	111111	PR	34916	
s RD, turn Right WP on the Right Tion on ct-9 SB Owards old Saybf Dok / R R Statio	ONTO CT-145 / WINTHROP RD, FOR CT-9 SOUTH AND HEAD NEAR I-84, EXPECT DELAYS, AT ROOK / R R STATION, TURN RIGHT N. TURN LEFT ONTO OBED HEIGHTS.				S/ONAL E 1/2/9/202	21
T 06475			IT UNLE C	IS A VIOLAT SS THEY A DF A LICENS TO A	ION OF LAW FOR RE ACTING UNDEF SED PROFESSIONA LTER THIS DOCU	ANY PERSON, R THE DIRECTION L ENGINEER, MENT.
Y MAP		ר	DRAV	VN BY: (CHECKED BY:	APPROVED BY:
		4	RFD:	S REV #	: N/A	
		/		CON DC		FION TS
	Obed		REV	DATE	DESCRIPTIC)N
	Height		A 0	04/19/202 05/18/202	1 PRELIM CDS 1 FINAL CDS	
			1	12/08/202	1 FINAL CDS	
SITE LOCA	ATION					
				A&E	PROJECT NU	MBER
				10	39-Z555	5C
				DISH PRO	H WIRELESS, JECT INFORM	LLC. ATION
			43 0L[BC 0 MID 0 SAYI	BDL0008 DLESEX BROOK, (8A FURNPIKE CT 06475
				TI	SHEET TITLE TLE SHEI	ET
Store				S	HEET NUMBE	R
					T-1	
		- 1				

EXISTIN	IG MONOPOLE		CORPORATE DRIVE CANONSBURG, PA 15317 COC CORPORATE DRIVE CANONSBURG, PA 15317 CONSIGNER FROM ZERO TO INFINIGY HOFFMAN ESTATES, ILE 60169 PHONE: 847-648-4068 [FAX: 518-690-0793 WWW.INFINIGY.COM
B1			Adoption of Law For ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALIER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: RCD SS CJW
12" 6" 0 1' 3/4"=1'-0"	2' 3'	2	RFDS REV #: N/A CONSTRUCTION DOCUMENTS
TRANSMISSION CAB A RAD FEED LINE TYPE AND LENGTH 153'-0" (1) HIGH-CAPACI HYBRID CABLE (24 LONG)	LE Y 0'		SUBMITTALS REV DATE DESCRIPTION A 04/19/2021 PRELIM CDS 0 05/18/2021 FINAL CDS 1 12/08/2021 FINAL CDS - - - -
JST BE APPROVED AND REMAIN I	N		A&E PROJECT NUMBER 1039-Z5555C DISH WIRELESS, LLC. PROJECT INFORMATION PODDU COORSEA
CONSTRUCTION RFDS FOR ALL I CHANGE DUE TO EQUIPMENT INGES MUST BE APPROVED AND E PROPOSED DESIGN AND	RF		BOBDL00088A 430 MIDDLESEX TURNPIKE OLD SAYBROOK, CT 06475 SHEET TITLE
			ELEVATION, ANTENNA LAYOUT AND SCHEDULE SHEET NUMBER
	NO SCALE	3	A-2
	-	_	

ROSENBERGER GPSGLONASS-36-N-S DIMENSION (DIA × H) 69mm × 98.5mm WEIGHT (WITH ACCESSORIES) 515.74g CONNECTOR N-FEMALE FREQUENCY RANGE 1559 MHz ~ 1610.5MHz BACK GPS UNIT GPS UNIT GPS UNIT BRACKET UTO	DP GPS UNIT GROUNDING KIT BRACKET GPS UNIT GROUNDING KIT MOUNTING BRACKET	MINIMUM OF 75% OR 270' IN ANY DIRECTION GPS GPS UNIT BE BELOW 10' BE BELOW 10'		
GPS ANTENNA DETAIL	NO SCALE 1	GPS MINIMUM SKY VIEW REQUIREMENTS	NO SCALE 2	NOT USED
NOT_USED	no scale 4	NOT USED	NO SCALE 5	NOT USED
NOT_USED	no scale 7	NOT USED	NO SCALE 8	NOT USED

				_			
NOT_USED No sole 3 NOT_USED No sole 3						OUTH SANTA LETON, CO BU CORPORATE ONSBURG, P/	PE DRIVE DRIVE A 15317
NOT_USED No sone 6	NOT USED	NO SCALE	3		2500 W	the solutions HIGGINS RD. SU MAN ESTATES, IL	are endless
NOT_USED NO SCALE 6 SUBMITTALS REV DATE DESCRIPTION A 04/19/2021 PRELMICOS 0 0 05/18/2021 PRULICOS 1 1 12/08/2021 PRULICOS 1 A&E PROJECT NUMBER 1 0.39-Z5555C					× PROLUIT SEESSA DE COL	CHECKED BY: SS SS SS SS SS SS SS SS SS SS SS SS SS	APPROVED BY: CJW
REV DATE DESCRIPTION A 04/19/2021 PRELIL COS 0 05/18/2021 PRNL COS 1 12/08/2021 PRNL COS - - -	NOT USED	NO SCALE	6			SUBMITTALS	15
0 05/18/2021 FML COS 1 12/08/2021 FML COS A&E PROJECT NUMBER 10.39-Z5555C				REV	DATE	DESCRIPTIO	DN
A&E PROJECT NUMBER				0	05/18/20	21 FINAL COS	
A&E PROJECT NUMBER							
A&E PROJECT NUMBER 1039-Z5555C							
1039–Z5555C				-	A&E	PROJECT NU	MBER
					1	039–Z555	5C
DISH WIRELESS, LLC. PROJECT INFORMATION BOBDL00088A 430 MIDDLESEX TURNPIKE OLD SAYBROOK, CT 06475 SHEET TITLE EQUIPMENT DETAILS				43 OLI	DIS PRC B(0 MIE 0 SAY EQUI	H WIRELESS, DECT INFORM DBDL0008 DDLESEX 'BROOK, (SHEET TITLE PMENT DE	LLC. ATTON 8A TURNPIKE CT 06475 CTAILS

					UTH SANTA FE DRIVE ETON, CO 80120 CROWN CASSTLE DRPORATE DRIVE NSBURG, PA 15317
			F R	COM ZE	RO TO INFINIGY ne solutions are endless light s RD. SUITE 500 Information
	NO SCALE	3	PH	ONE: 847-64 WW	8-4068 FAX: 518-690-0793 /W.INFINIGY.COM
PER ASTM-F1083.					FCONNE
E 40 (GALVANIZED).					EISAKA
R ASTM-F1083.				SE	
BUCKLE.				* 0 *	
				PP.	34916
COIL SPRING WIRE, 7 GAUGE.					CENSED
D).				1,00	ONAL ENVIL
QUIREMENTS.]	(2/9/2021
:ED). (ED). ARM SHALL BE INCLINED OL	ITWARD AT AN A		П	IS A VIOLATIO	ON OF LAW FOR ANY PERSON,
				OF A LICENSE TO AL	D PROFESSIONAL ENGINEER, TER THIS DOCUMENT.
4 GAUGE MINIMUM STEEL WIRES	WITH 4 POINT I	ROUND	DRA	WN BY: C	HECKED BY: APPROVED BY
			_	RCD	SS CJW
			RFD	IS REV #:	N/A
N SPRING EVERY FIFTH COUPLING. PRESSED STEEL EXTENSION ARM GNED TO FIT OVER THE OUTSIDE STS.	, or one-piec of the posts	E AND		CON DO	STRUCTION CUMENTS
RRANGED FOR PADLOCKING WITH	THE PADLOCK		-	r _	SUBMITTALS
For securing and supporting	THE FREE END	OF	REV	DATE	DESCRIPTION PRELM CDS
EPERS SHALL BE MOUNTED ON 2 TE FOUNDATIONS.	7/8" O.D. PIP	E	Ō	05/18/2021	FINAL CDS
			1	12/08/2021	FINAL CDS
EMENT SHALL BE COMPLETED IF	REQUIRED.				
5NG. E.			s	A&E F	PROJECT NUMBER
_				10	39-Z5555C
				DISH PROJI	WIRELESS, LLC. ECT INFORMATION
				BO	BDL00088A
			43 OL	D SAYE	DLESEX TURNPIKE ROOK, CT 06475
			-	FENC	SHEET TITLE
			2	Sł	IEET NUMBER
					Δ_7
<u>N</u>	NO SCALE	8			<i>r</i> \~1
2					

<u>NOTES</u>								_
IAS PERFORMED ALL REQUIRED SH RATINGS FOR EACH DEVICE IS ADE CAL SYSTEM.	ORT CIRCUIT QUATE TO PROTECT	THE			•			
IAS PERFORMED ALL REQUIRED VO ICH CIRCUIT AND FEEDERS COMPLY 0.19(A)(1) FPN NO. 4.	LTAGE DROP (WITH THE NEC				Ľ	S	SN	
CURRENT CARRYING CONDUCTORS 80% PER 2014/17 NEC TABLE 3 1).	EACH, SHALL APPL 10.15(B)(3)(a) OR	Y			•	wir	eless	5
15A-20A/1P BREAKER: 0.8 x 37 25A-30A/2P BREAKER: 0.8 x 44 35A-40A/2P BREAKER: 0.8 x 57 1 45A-60A/2P BREAKER: 0.8 x 75	0A = 24.0A 0A = 32.0A 5A = 44.0A 5A = 60.0A			5701 S LITT	OUTH LETON	SANTA I, CO 8	FE DRIVE D120	
PER NEC CHAPTER 9, TABLE 4, .213 SQ. IN AREA .316 SQ. IN AREA .907 SQ. IN AREA	ARTICLE 358.		(7				N
T CONDUCTORS (1 CONDUIT): USIN	IG THWN—2, CU.			2000	CORR	ODATE		
0.0211 SQ. IN X 2 = 0.0422 SQ.	IN			2000 CAN	ONSB	URG, PA	A 15317	
0.0211 SQ. IN X 1 = 0.0211 SQ.	IN <ground< td=""><td></td><td>,</td><td></td><td>- 1 6</td><td>11/</td><td></td><td></td></ground<>		,		- 1 6	11/		
= 0.0633 SQ.	IN			INF	·//`	NI(フYと	5
JATE TO HANDLE THE TOTAL OF (3 INDICATED ABOVE	5) WIRES,		FR	ROMZ	ERC) TO I	NFINIG	Y
ONDUITS): USING THWN-2, CU.				2500 W. Hoff	HIGGI MAN ES	OIUTIONS NS RD. SL STATES, IL	are endles	55
0.0211 SQ. IN X 4 = 0.0844 SQ.	IN IN < GROUND		PH	DNE: 847- V	648-40 WWW.II	68 FAX IFINIGY.C	518-690-079 DM	93
= 0.1055 SQ.					,,,,,,,	CONA	111.	
JATE TO HANDLE THE TOTAL OF (5 S INDICATED ABOVE.	5) WIRES,				OF.	SAKA	N.C.	
CONDUIT): USING THWN, CU.				S.H.	· 5	E E		
0.2679 SQ. IN X 3 = 0.8037 SG 0.0507 SQ. IN X 1 = 0.0507 SG). IN <u>CROUND</u>		111	* 0	5		з П 🖈	=
= 0.8544 SC	. IN COROUND		11		2	1016	<u>R</u>	
S ADEQUATE TO HANDLE THE TOTA	L OF (4) WIRES				نۍ ۲۰٪.	HUID		
INDICATED ABOVE	\/ ////////////////////////////////			11,55	Sin	UNI F	NGIII	
				1	121	9/20		
	NO SCALE	1			1	-, -01		
			UNLI	IS A VIOLA ESS THEY A DF A LICEN TO	ition oi Are act Ised pf Alter	F LAW FOR TING UNDE ROFESSION/ THIS DOCU	R ANY PERSON, R THE DIRECTION L ENGINEER, MENT.	ÖN
			DRA	WN BY:	CHEC	KED BY:	APPROVED	BY:
				RCD		SS	CJW	
			RFD	s rev #	∦: I	N/A	•	
				~~`	JOT			
				D		JMEN	TS	
					SUB	MITTALS		
			REV	DATE	DE		DN .	
			0	05/18/20	21 PN	AL COS		
			1	12/08/20	21 FIN	AL COS		
					+			
				 ልጽ೯	PRO.	JECT NI	MBER	
				1	039-	-Z555	5C	
				DIS		ELESS,	LLC.	
				B	OBDI	L0008	8A	
			43	O MIC	DLE	SEX	TURNPIK	Έ
			OL	D SAY	BRC	юк, (CT 0647	75
			ELE			ET TITLE	NE, FAUI	LT
			C/	ALCS &				
					F	-3		
	NO SCALE	3			E	3		

TEST GROUND ROD WITH INSPECTION SLEEVE

---- #2 AWG STRANDED & INSULATED

- · - · - #2 AWG SOLID COPPER TINNED

ES NO SCALE 3

RF JUMPER COLOR CODING	3/4" TAPE WIDTHS WITH 3/4" SPACING		
LOW–BAND RRH – (600MHz N71 BASEBAND) + (850MHz N26 BAND) + (700MHz N29 BAND) – OPTIONAL PER MARKET	ALPHA RRH PORT 1 PORT 2 PORT 3 PORT 4 PORT 1 PORT 2 PORT 3 PORT 4 PORT 4 + SLANT		LOW BANDS (N71-N28) OPTIONAL - (N29) ORANGE
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	WHITE (1) PORT ORANGE ORANGE ORANGE ORANGE (1) PORT ORANGE ORANGE (1) PORT		CBRS IECH (3 GHz) YELLOW
MID-BAND RRH – (AWS BANDS N66+N70)	RED RED RED BLUE BLUE BLUE BLUE GREEN GREEN GREEN GREEN PURPLE PURPLE RED RED PURPLE BLUE BLUE BLUE GREEN GREEN GREEN GREEN GREEN		ALPHA SECTOR BETA SECTOR
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	WHILE (1) PORT PURPLE PURPLE PURPLE PURPLE PURPLE PURPLE WHITE (1) PORT (1) PORT (1) PORT (1) PORT (1) PORT (1) PORT		COLOR IDENTIFIER
HYBRID/DISCREET CABLES	EXAMPLE 1 EXAMPLE 2		
INCLUDE SECTOR BANDS BEING SUPPORTED AM	RED BLUE		
EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS	GREEN GREEN		
EXAMPLE 2 - HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS	ORANGE YELLOW PURPLE		
HYBRID/DISCREET CABLES	LOW BAND RRH HIGH BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH		
LOW-BAND RRH FIBER CABLES HAVE SECTOR STRIPE ONLY	RED BLUE BLUE GREEN PURPLE PURPLE PURPLE		
POWER CABLES TO RRHs	LOW BAND RRH HIGH BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH		
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED BLUE BLUE GREEN GREEN		
	PURPLE		NOT USED
RET MOTORS AT ANTENNAS	PORT 1/ PORT 1/ PORT 1/ ANTENNA 1 ANTENNA 1 ANTENNA 1 INITI INITIA		
	RED BLUE GREEN		
MICROWAVE RADIO LINKS	PRIMARY SECONDARY		
LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RAPIO	WHITE RED		
MICROWAVE CABINETS WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S.	WHITE WHITE RED WHITE		
	<u>KF GADLE GULUK GUDED</u>	NU SCALE	

AWS (N65+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANTRRH WHITE TOR GAMMA S	SECTOR EN	2	CONVErsion CONVErsion CONVErsion CONVERSION CONVER
			APPROVED BY: CHECKED BY: APPROVED BY: RCD SS CJW RFDS REV #: N/A
		2	DOCUMENTS
		,	REV DATE DESCRIPTION A 04/19/2021 PRELIM COS 0 05/18/2021 FINAL COS 1 12/08/2021 FINAL COS A&E PROJECT NUMBER 1039-Z5555C DISH WIRELESS, LLC. PROJECT INFORMATION BOBDLO0088A 430 MIDDLESEX TURNPIKE OLD SAYBROOK, CT 06475 SHEET TITLE RF CABLE COLOR CODES
	NO SCALE	4	RF-1

EXOTHERMIC CONNECTION	•	AB	ANCHOR BOLT
MECHANICAL CONNECTION	•	AC	ALTERNATING (
CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	θ	ADDL	
TEST CHEMICAL ELECTROLYTIC GROUNDING SYS	TEM 😝 T	AFG	ABOVE FINISHI
EXOTHERMIC WITH INSPECTION SLEEVE		AGL	ABOVE GROUN
GROUNDING BAR		AIC	AMPERAGE INT
GROUND ROD	—●	ALT	ALTERNATE
TEST GROUND ROD WITH INSPECTION SLEEVE		ANT	
	- Ч Ш -	ARCH	ARCHITECTURA
SINGLE POLE SWITCH	\$	ATS	AUTOMATIC TR
	Φ	AWG BATT	AMERICAN WIR BATTERY
)) (BLDG	BUILDING
DUPLEX GFCI RECEPTACLE	QTC)	BLK	BLOCKING
	rj	BM	BEAM
(2) TWO LAMPS 48-T8		BTC	BARE TINNED
	(SD)	CAB	CABINET
SMOKE DETECTION (DC)		CANT	CANTILEVERED
EMERGENCY LIGHTING (DC)	2B	CHG	CHARGING CFILING
		CLR	CLEAR
LED-1-25A400/51K-SR4-120-PE-DDBTXD		COL	COLUMN
CHAIN LINK FENCE	x x x x	CONC	CONCRETE
WOOD/WROUGHT IRON FENCE	-0000	CONSTR	CONSTRUCTION
WALL STRUCTURE	////////////////////////////////////</td <td>DBL</td> <td>DOUBLE DIRECT CURRE</td>	DBL	DOUBLE DIRECT CURRE
LEASE AREA		DEPT	DEPARTMENT
PROPERTY LINE (PL)		DF	DOUGLAS FIR
SETBACKS		DIAG	DIAGONAL
		DIM	DIMENSION
		DWG	DRAWING DOWEL
WATER LINE		EA	EACH
		EC EL	ELECTRICAL CO
		ELEC	ELECTRICAL
		EMT	ELECTRICAL MI
		ENG	EQUAL
OVERHEAD TELCO		EXP	EXPANSION
UNDERGROUND TELCO/POWER	—— UGT/P —— UGT/P —— UGT/P —— UGT/P ———	EXT EW	EXTERIOR EACH WAY
ABOVE GROUND POWER	AGP AGP AGP AGP	FAB	FABRICATION
ABOVE GROUND TELCO	—— AGT —— AGT —— AGT —— AGT ——	FF FC	FINISH FLOOR
ABOVE GROUND TELCO/POWER	AGT/P AGT/P AGT/P	FIF	FACILITY INTER
WORKPOINT	WP	FIN	FINISH(ED)
SECTION REFERENCE		FLR FDN	FLOOR
	x-x	FOC	FACE OF CON
DETAIL REFERENCE	$\left(\begin{array}{c} xx \\ x-x \end{array} \right)$	FOM	FACE OF MAS
	\bigcirc	FOS	FACE OF STUL
		FS	FINISH SURFAC
		FT FTG	FOOT
		GA	GAUGE
		GEN	GENERATOR
		GFCI	GROUND FAUL
		GLV	GALVANIZED
		GPS GND	GLOBAL POSITI GROUND
		GSM	GLOBAL SYSTE
		HDG	HOT DIPPED G
		HDR HGR	HANGER
		HVAC	HEAT/VENTILAT
		I	
		HT	HEIGHT

ANCHOR BOLT	IN	INCH
ABOVE	INT	INTERIOR
ALTERNATING CURRENT	LB(S)	POUND(S)
ADDITIONAL ABOVE FINISHED FLOOR		LINEAR FEET
ABOVE FINISHED GRADE	MAS	LONG TERM EVOLUTION MASONRY
ABOVE GROUND LEVEL	MAX	MAXIMUM
AMPERAGE INTERRUPTION CAPACITY	MB	MACHINE BOLT
ALUMINUM	MECH	MECHANICAL
ALTERNATE	MFR	MANUFACTURER
AN I ENNA APPROXIMATE	MGB	MASTER GROUND BAR
ARCHITECTURAL	MIN	MISCELLANFOUS
AUTOMATIC TRANSFER SWITCH	MTL	METAL
AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
BATTERY	MW	MICROWAVE
BUILDING	NEC	NATIONAL ELECTRIC CODE
BLOCK	NM	NEWTON METERS
BEAM	NU.	
BARE TINNED COPPER CONDUCTOR	T NTS	NOT TO SCALE
BOTTOM OF FOOTING	OC	ON-CENTER
CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
CANTILEVERED	OPNG	OPENING
	P/C	PRECAST CONCRETE
	PCS	PERSONAL COMMUNICATION SERVICES
COLUMN	PCU	PRIMARY CONTROL UNIT
COMMON	PRC	PRIMARY RADIO CABINET
CONCRETE	PP	PULARIZING PRESERVING
CONSTRUCTION	PSI	POUNDS PER SQUARE FOOT
DOUBLE	PT	PRESSURE TREATED
	PWR	POWER CABINET
DEPARTMENT	QTY	QUANTITY
DUGGLAS FIR	RAD	RADIUS
DIAGONAL	RECT	RECTIFIER
DIMENSION	REF	REFERENCE
DRAWING		REINFORCEMENT
DOWEL		
	REP 1	REMAILE FIFCIRGE IIII
EACH	RF	RADIO FREQUENCY
EACH ELECTRICAL CONDUCTOR	RF RMC	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL	RF RMC RRH	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL METALLIC TUBING	RF RMC RRH RRU	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER	REI RF RMC RRH RRU RWY	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL	RF RMC RRH RRU RWY SCH	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SUET
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION	RF RMC RRH RRU RWY SCH SHT SIAD	REMUTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SHEET SHART INTEGRATED ACCESS DEVICE
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR	rel RF RMC RRH RRU RWY SCH SHT SIAD SIM	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SHEET SHART INTEGRATED ACCESS DEVICE SIMILAR
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY EACH WAY	rel RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SWART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION EINISH ELOOR	rel RF RMC RRH RU RWY SCH SCH SHT SIAD SIM SPEC SQ	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR	rrei RF RMC RRH RRU RWY SCH SHT SIAD SIM SPEC SQ SS	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME	reli RF RMC RRH RRU SCH SCH SCH SCH SCH SCH SCH SCH SCH SCH	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED)	reli RF RMC RRH RRU RWY SCH SHT SAD SIM SPEC SQ SS STD STL TELE	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMEDORBY
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR	RELI RF RMC RRH RRU RWY SCH SHT SAD SIM SPEC SQ SS STD STL TEMP THK	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FLOOR FOUNDATION	reli RF RMC RRH RRU RWY SCH SHT SAD SIM SPEC SQ SS STD STL TEMP THK TMA	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCETE	reli RF RMC RRH RRU RWY SCH SHT SAD SM SPEC SQ SS STD STL TEMP THK TMA TN	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTENIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY EACE OF STUD	reli RF RMC RRH RRU RWY SCH SHT SAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF WALL	reli RF RMC RRH RRU RWY SCH SHT SAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOC	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASURY FACE OF WALL FINISH SURFACE	RELI RF RMC RRH RRU RWY SCH SHT SAD SIM SPEC SQ SS STD STL TEMP THK TMA TN TOA TOC TOF	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT	RELI RF RMC RRH RRU RWY SCH SHT SAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOC TOF TOP	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF PLATE (PARAPET)
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTENIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING	RELI RF RMC RRH RRU RWY SCH SHT SAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOF TOP TOS	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MASONRY FACE OF STUD FACE OF STUD FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE	RELI RF RMC RRH RRU RWY SCH SHT SAD SIM SPEC SQ SS STD STL TEMP THK TN TOA TOF TOP TOS TOP TOS TOS TOS	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STAINDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL TOP OF STEEL
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTENIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR	RELI RF RMC RRH RRU SCH SHT SAD SM SPEC SQ SS STD STL TEMP THK TN TOA TOF TOP TOS TOP TOS TYP	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FULATE (PARAPET) TOP OF STEEL TOP OF STEEL
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GUINE LOW AND	RELI RF RMC RRH RRU SCH SHT SAD SM SPEC SQ SS STD STL TEMP THK TN TOA TOF TOP TOS TOP TOS TOP TOS TOP UG	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTENIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GRUOND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GAUANIZED	RELI RF RMC RRH RRU SCH SHT SAD SHT SAD STD STL TEMP THK TN TOA TOF TOP TOS TOS TOS TOS TOS TOS TOS TOS TOS TOS	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STAINDARD STEEL TEMPORARY THICKNESS TOPE MOUNTED AMPLIFIER TOE NAIL TOP OF ANTENNA TOP OF CURB TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF MALL FINISH SURFACE FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM	RELI RF RMC RRH RRU SCH SHT SAD SM SPEC SQ SS STD STL TEMP THK TN TOA TOF TOP TOS TOP TOS TOP TOS TOP TOS TOP TOS TOP TOS TOP TOS TOP TOS TOP TOS TOP TOS	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STAINDARD STEEL TEMPORARY THICKNESS TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTENIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF CONCRETE FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND	RELI RF RMC RRH RRU SCH SHT SAD SM SPEC SQ SS STD STL TEMP THK TNA TOS TOF TOS TOP TOS TOS TOP TOS TOP TOS TOP TOS TOS TOP TOS TOS TOS TOS TOS TOS TOS TOS TOS TOS	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STAINLESS STEEL STAINDARD STEEL TEMPORARY THICKNESS TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF WALL TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTENIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF CONCRETE FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE	REL RF RMC RRH RRU SCH SMM SPEC SS SS SSD STL TEMP THKA TN TOA TOF TOS TVS STP UL UNO TS SS SS SSD STD TMP THA TOA TOF TOS TVS SPEC UL UNO SS SS SS SSD SS SSD SS SSD SSD SSD SS SS	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOF OF ANLENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL UNDERROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF CONCRETE FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED	RELI RF RMC RRH RRU SCH SHT SAM SPEC SS STD STL TEMP THKA TN TOA TOF TOS TOP TOS TVP UL UNO UNTS UPS VIF	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FLATE (PARAPET) TOP OF STEEL TOP OF STEEL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF GASONRY FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER	REL RF RMC RRH RRU SCH SMS SS SS SS SS SS SS SS SS SS SS SS SS	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STAINLESS STEEL STAINDARD STEEL TEMPORARY THICKNESS TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FULTE (PARAPET) TOP OF STEEL TOP OF STEEL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WITH
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF CONCRETE FACE OF GUALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GAUVANIZED GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADDER HANGER	REL RF RMC RRH RRU SCH SMS SQ SS STD STL FEMP THK TN TOA TOF TOS TVS SPEC SQ SS STD STL FEMP THK TN TOA TOF TOS TVS SPEC UL UNO UNTS VF W/ W W W W W	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOP OF ANTENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF FOUNDATION TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL UNDERGROUND UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNITH WOOD
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF CONCRETE FACE OF CONCRETE FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GALVANIZED GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER HEAT/VENTLATION/AIR CONDITIONING HEADER	REI RFC RRH RRU SCH SAD SIME SSQ SS STD TEMP THKA TN TOA COF TOS WING UL UNOTS VIF WING UN UNTS VIF WING WING VIF WING WING VIF	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOF OF ANLENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL UNDERWRITERS LABORATORY UNLESS NOTED OTHERWISE UNVERSAL MOBILE TELECOMMUNICATIONS SYSTEM UNTERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WIDE WITH WOOD WEATHERPROOF
EACH ELECTRICAL CONDUCTOR ELEVATION ELECTRICAL METALLIC TUBING ENGINEER EQUAL EXPANSION EXTERIOR EACH WAY FABRICATION FINISH FLOOR FINISH FLOOR FINISH FLOOR FINISH GRADE FACILITY INTERFACE FRAME FINISH(ED) FLOOR FOUNDATION FACE OF CONCRETE FACE OF CONCRETE FACE OF CONCRETE FACE OF CONCRETE FACE OF STUD FACE OF STUD FACE OF WALL FINISH SURFACE FOOT FOOTING GAUGE GENERATOR GROUND FAULT CIRCUIT INTERRUPTER GLUE LAMINATED BEAM GROUND GLOBAL POSITIONING SYSTEM GROUND GLOBAL SYSTEM FOR MOBILE HOT DIPPED GALVANIZED HEADER HANGER HEAT/VENTILATION/AIR CONDITIONING HEIGHT INTERIOR GROUND RING	REL RFC RRH RRU SCH SHT SAD SINCE SS STD STL TEMP THKA TN TOA COF POS WISS VIF W WW WW WW WW	REMOTE ELECTRIC TILT RADIO FREQUENCY RIGID METALLIC CONDUIT REMOTE RADIO HEAD REMOTE RADIO UNIT RACEWAY SCHEDULE SHEET SMART INTEGRATED ACCESS DEVICE SIMILAR SPECIFICATION SQUARE STAINLESS STEEL STAINLESS STEEL STANDARD STEEL TEMPORARY THICKNESS TOWER MOUNTED AMPLIFIER TOF OF ANLENNA TOP OF ANTENNA TOP OF FOUNDATION TOP OF PLATE (PARAPET) TOP OF STEEL TOP OF STEEL UNDERWRITERS LABORATORY UNDERWRITERS LABORATORY UNDERWRITERS LABORATORY UNTERRUPTIBLE POWER SYSTEM (DC POWER PLANT) VERIFIED IN FIELD WITH WOOD WEATHERPROOF

SITE_ACTIVITY_REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH WIRELESS, LLC. AND TOWER OWNER NOC & THE DISH WIRELESS, LLC. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH WIRELESS, LLC. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRELESS, LLC. AND DISH WIRELESS, LLC. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS, LLC. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, LLC. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH WIRELESS, LLC. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS, LLC. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, LLC. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH WIRELESS, LLC.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH WIRELESS, LLC. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (I'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO 3. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON 6. DRAWINGS:

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2¹

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

42 ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

8 TIE WRAPS ARE NOT ALLOWED.

ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 10 TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH 12 TYPE THHW. THWN. THWN-2, XHHW. XHHW-2, THW. THW-2, RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75" C (90" C IF AVAILABLE).

RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS.

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16.

17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/903 AND ALL APPROVED ABOVE GRADE PVC CONDUIT.

LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION 18. OCCURS OR FLEXIBILITY IS NEEDED.

CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET 19. SCREW FITTINGS ARE NOT ACCEPTABLE.

CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20. NEC.

21 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).

22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).

23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER, PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.

EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET 24. STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.

25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, LLC. AND 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.

THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28 WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.

- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH WIRELESS, LLC.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report

Date: May 21, 2021

Crown Castle 2000 Corporate Drive Canonsburg. PA 15317 (724) 416-2000

Subject:	Structural Analysis Report			
Carrier Designation:	<i>DISH Network</i> Co-Locate Site Number: Site Name:	BOBDL00088A CT-CCI-T-876336		
Crown Castle Designation:	BU Number: Site Name: JDE Job Number: Work Order Number: Order Number:	876336 OLD SAYBROOK 645179 1973705 553289 Rev. 2		
Engineering Firm Designation:	Crown Castle Project Number:	1973705		
Site Data:	430 Middlesex Turnpike, OLD SAYBROOK, MIDDLESEX County, CT Latitude <i>41° 18' 47.56''</i> , Longitude <i>-72° 22' 51.99''</i> 175 Foot - Monopole Tower			

Crown Castle is pleased to submit this "**Structural Analysis Report**" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity-86.9%

This analysis has been performed in accordance with the 2018 Connecticut State Building Code based upon an ultimate 3-second gust wind speed of 135 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception #5 of Section 1609.1.1. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Hayes Lei

Respectfully submitted by: Maham Barimani, P.E. Senior Project Engineer Digitally signed by Maham Date: 2021.05.23 08:59:40 Maham Barimani, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Table 5 - Tower Component Stresses vs. Capacity - LC7

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 175 ft Monopole tower designed by SUMMIT.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	135 mph
Exposure Category:	В
Topographic Factor:	1
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
153.0	153.0	3	jma wireless	MX08FRO665-20 w/ Mount Pipe	1	1-3/4
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
	178.0	1	rfs celwave	ALG6			
		3	alcatel lucent	TD-RRH8x20-25			
172.0	172.0	172.0	3	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe	3	1-1/4
172.0			172.0	3	rfs celwave	APXVTM14-C-120 w/ Mount Pipe	2
		1	tower mounts	Platform Mount [LP 712-1]			
	165.0 1 sinclair SC381-HL		~				
	170.0	3	alcatel lucent	PCS 1900MHz 4x45W-65MHz w/ Mount Pipe			
170.0 166.0		1	tower mounts	Side Arm Mount [SO 102-3]	-	-	
		3	alcatel lucent	800MHz 2X50W RRH W/FILTER			
95.0 95.0		1	HE2-105		1	E\000	
05.0	05.0	1	tower mounts	Pipe Mount [PM 601-1]		EVV90	
72.0	72.0	1	lucent	KS24019-L112A	1	1/0	
12.0	12.0	1	tower mounts	Side Arm Mount [SO 701-1]		1/2	

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	1531893	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	1614591	CCISITES
4-TOWER MANUFACTURER DRAWINGS	2264466	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	175 - 125.667	Pole	TP27.49x17.63x0.188	1	-8.04	975.46	67.8	Pass
L2	125.667 - 84.75	Pole	TP35.3x26.249x0.281	2	-13.42	1889.61	65.3	Pass
L3	84.75 - 38.75	Pole	TP43.94x33.687x0.344	3	-23.07	2879.09	67.0	Pass
L4	38.75 - 0	Pole	TP51x42.002x0.406	4	-36.63	4065.28	64.1	Pass
							Summary	
						Pole (L1)	67.8	Pass
						Rating =	67.8	Pass

Table 4 - Section Capacity (Summary)

 Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	55.0	Pass
1	Base Plate	0	34.3	Pass
1	Anchor Rod Concrete Breakout	0	86.9	Pass
1	Base Foundation (Structure)	0	21.7	Pass
1	Base Foundation (Soil Interaction)	0	48.8	Pass

Structure Rating (max from all components) =	86.9%
--	-------

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.
APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH								
GRADE	Fy	Fu	GRADE	Fy	Fu			
A572-65	65 ksi	80 ksi						

TOWER DESIGN NOTES

- Tower is located in Middlesex County, Connecticut.
 Tower designed for Exposure B to the TIA-222-H Standard.
- 3. Tower designed for a 135 mph basic wind in accordance with the TIA-222-H Standard. 4. Tower is also designed for a 50 mph basic wind with 1,50 in ice. Ice is considered to

increase in thickness with height.

5. Deflections are based upon a 60 mph wind.

Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 67.8%

ALL REACTIONS ARE FACTORED

TORQUE 0 kip-ft 50 mph WIND - 1.500 in ICE

TORQUE 2 kip-ft REACTIONS - 135 mph WIND

	Crown Castle	^{Job:} BU 876336		
CROWN	2000 Corporate Drive	Project:		
CASTLE	Canonsburg PA 15317	^{Client:} Crown Castle	^{Drawn by:} HLei	App'd:
The Pathway To Possible	Phone: (724) 416-2000	^{Code:} TIA-222-H	^{Date:} 05/21/21	Scale: NTS
ine r aanay re r eeeble	FAX:	Path: C:\Temporary Working Space - No One Drive\87	6336\WO 1973705 - SA\Prod\876336_RPA eri	Dwg No. E-

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply:

- Tower is located in Middlesex County, Connecticut.
- Tower base elevation above sea level: 143.32 ft.
- Basic wind speed of 135 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: K_{es}(F_w) = 0.95, K_{es}(t_i) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Distribute Leg Loads As Uniform Consider Moments - Legs Use ASCE 10 X-Brace Ly Rules Consider Moments - Horizontals Assume Legs Pinned Calculate Redundant Bracing Forces Consider Moments - Diagonals Assume Rigid Index Plate Ignore Redundant Members in FEA Use Moment Magnification Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable Use Code Safety Factors - Guys **Retension Guys To Initial Tension** Offset Girt At Foundation √ Consider Feed Line Torque Escalate Ice Bypass Mast Stability Checks Always Use Max Kz Use Azimuth Dish Coefficients Include Angle Block Shear Check Use Special Wind Profile Project Wind Area of Appurt. Use TIA-222-H Bracing Resist. Exemption Include Bolts In Member Capacity Use TIA-222-H Tension Splice Autocalc Torque Arm Areas Exemption Leg Bolts Are At Top Of Section Add IBC .6D+W Combination Poles √ Sort Capacity Reports By Component √ Include Shear-Torsion Interaction Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow SR Members Have Cut Ends Treat Feed Line Bundles As Cylinder

Use Ťop Mounted Sockets √ Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Ignore KL/ry For 60 Deg. Angle Legs

SR Members Are Concentric

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	175.00-125.67	49.33	4.333	12	17.630	27.490	0.188	0.750	A572-65 (65 ksi)
L2	125.67-84.75	45.25	5.250	12	26.249	35.300	0.281	1.125	A572-65
L3	84.75-38.75	51.25	6.250	12	33.687	43.940	0.344	1.375	A572-65
L4	38.75-0.00	45.00		12	42.002	51.000	0.406	1.625	(65 ksi) A572-65 (65 ksi)

Tapered Pole Properties

					-					
Section	Tip Dia.	Area	1	r	С	I/C	J	lt/Q	W	w/t
	in	in²	in⁴	in	in	in³	in⁴	in²	in	
L1	18.186	10.531	408.949	6.244	9.132	44.780	828.642	5.183	4.222	22.519
	28.394	16.484	1568.377	9.774	14.240	110.140	3177.956	8.113	6.865	36.612
L2	27.973	23.517	2024.106	9.296	13.597	148.865	4101.388	11.574	6.281	22.332
	36.446	31.714	4964.051	12.537	18.285	271.476	10058.514	15.609	8.707	30.957
L3	35.842	36.907	5237.487	11.937	17.450	300.141	10612.569	18.165	8.107	23.584
	45.369	48.256	11706.631	15.607	22.761	514.330	23720.808	23.750	10.855	31.577
L4	44.634	54.413	12016.769	14.891	21.757	552.314	24349.232	26.780	10.168	25.029
	52 656	66 183	21623 491	18 113	26 418	818 514	43815 055	32 573	12 579	30 964

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	ft²	in				in	in	in
L1 175.00-			1	1	1			
125.67								
L2 125.67-			1	1	1			
84.75								
L3 84.75-			1	1	1			
38.75								
L4 38.75-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Componen t	Placement	Total Number	Number Per Row	Start/En d	Width or Diamete	Perimete r	Weight
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	•
Safety										
Step Pegs (5/8" SR) 7-	С	No	Surface Ar	175.00 -	1	1	0.000	0.350		0.487
in. w/30" step			(CaAa)	0.00			0.000			
Safety Line 3/8	С	No	Surface Ar	175.00 -	1	1	0.000	0.375		0.220
			(CaAa)	0.00			0.000			
Detuner										
AM Detuner	Α	No	Surface Ar	113.00 -	1	1	0.500	0.280		1.000
			(CaAa)	4.00			0.500			
AM Detuner	Α	No	Surface Ar	113.00 -	1	1	-0.250	0.280		1.000
			(CaAa)	4.00			-0.250			
AM Detuner	В	No	Surface Ar	113.00 -	1	1	0.250	0.280		1.000
			(CaAa)	4.00			0.250			

**										
*										

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Туре	ft			ft²/ft	plf
172									
LDF5-50A(7/8)	В	No	No	Inside Pole	172.00 - 0.00	2	No Ice	0.00	0.330
()							1/2" Ice	0.00	0.330
							1" Ice	0.00	0.330
							2" Ice	0.00	0.330
HB114-1-08U4-	А	No	No	Inside Pole	172.00 - 0.00	3	No Ice	0.00	1.080
M5J(1-1/4)							1/2" Ice	0.00	1.080
							1" Ice	0.00	1.080
							2" Ice	0.00	1.080
HB114-21U3M12-	А	No	No	Inside Pole	172.00 - 0.00	1	No Ice	0.00	1.220
XXXF(1-1/4)							1/2" Ice	0.00	1.220
(<i>'</i>							1" Ice	0.00	1.220
							2" Ice	0.00	1.220
85									
EW90(ELLIPTICA	В	No	No	Inside Pole	85.00 - 0.00	1	No Ice	0.00	0.320
`L)							1/2" Ice	0.00	0.320
,							1" Ice	0.00	0.320
							2" Ice	0.00	0.320
72									
LDF4-50A(1/2)	А	No	No	Inside Pole	72.00 - 0.00	1	No Ice	0.00	0.150
. ,							1/2" Ice	0.00	0.150
							1" Ice	0.00	0.150
							2" Ice	0.00	0.150

CU12PSM6P4XXX	Α	No	No	Inside Pole	153.00 - 0.00	1	No Ice	0.00	2.720
(1-3/4)							1/2" Ice	0.00	2.720
. ,							1" Ice	0.00	2.720
							2" Ice	0.00	2.720

**									
*									

Feed Line/Linear Appurtenances - Entered As Area

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation				In Face	Out Face	
n	ft		ft²	ft²	ft²	ft ²	K
L1	175.00-125.67	А	0.000	0.000	0.000	0.000	0.28
		В	0.000	0.000	0.000	0.000	0.03
		С	0.000	0.000	3.577	0.000	0.03
L2	125.67-84.75	А	0.000	0.000	1.582	0.000	0.35
		В	0.000	0.000	0.791	0.000	0.06
		С	0.000	0.000	2.966	0.000	0.03
L3	84.75-38.75	А	0.000	0.000	2.576	0.000	0.43
		В	0.000	0.000	1.288	0.000	0.09
		С	0.000	0.000	3.335	0.000	0.03
L4	38.75-0.00	А	0.000	0.000	1.946	0.000	0.35
		В	0.000	0.000	0.973	0.000	0.07
		С	0.000	0.000	2.809	0.000	0.03

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	lce	A _R	A _F	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft²	ft²	ft²	K
L1	175.00-125.67	А	1.482	0.000	0.000	0.000	0.000	0.28
		В		0.000	0.000	0.000	0.000	0.03
		С		0.000	0.000	32.827	0.000	0.36
L2	125.67-84.75	Α	1.431	0.000	0.000	18.332	0.000	0.53
		В		0.000	0.000	9.166	0.000	0.15
		С		0.000	0.000	27.226	0.000	0.30
L3	84.75-38.75	Α	1.357	0.000	0.000	28.905	0.000	0.70
		В		0.000	0.000	14.452	0.000	0.23
		С		0.000	0.000	29.664	0.000	0.32
L4	38.75-0.00	А	1.206	0.000	0.000	20.806	0.000	0.54
		В		0.000	0.000	10.403	0.000	0.17
		С		0.000	0.000	23.840	0.000	0.25

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _x Ice	CPz Ice
	ft	in	in	in	in
L1	175.00-125.67	0.000	0.483	0.000	2.317
L2	125.67-84.75	0.000	0.343	0.000	1.411
L3	84.75-38.75	0.000	0.292	0.000	1.111
L4	38.75-0.00	0.000	0.315	0.000	1.272

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	lce
			Elev.		
L1	2	Step Pegs (5/8" SR) 7-in.	125.67 -	1.0000	1.0000
		w/30" step	175.00		
L1	3	Safety Line 3/8	125.67 -	1.0000	1.0000
			175.00		(
L2	2	Step Pegs (5/8" SR) 7-in.	84.75 -	1.0000	1.0000
		W/30" step	125.67	4 0000	1 0000
L2	3	Safety Line 3/8	84.75 -	1.0000	1.0000
1.2	12		125.07	1 0000	1 0000
LZ	13	Aivi Detuller	04.75 -	1.0000	1.0000
12	14		94.75	1 0000	1 0000
	14	Aivi Detuller	113.00	1.0000	1.0000
12	15	AM Detuner	84 75 -	1 0000	1 0000
	10		113.00	1.0000	1.0000
L3	2	Step Peas (5/8" SR) 7-in.	38.75 -	1.0000	1.0000
_		w/30" step	84.75		
L3	3	Safety Line 3/8	38.75 -	1.0000	1.0000
			84.75		
L3	13	AM Detuner	38.75 -	1.0000	1.0000
			84.75		
L3	14	AM Detuner	38.75 -	1.0000	1.0000
			84.75		
L3	15	AM Detuner	38.75 -	1.0000	1.0000
			84.75		(
L4	2	Step Pegs (5/8" SR) 7-in.	0.00 - 38.75	1.0000	1.0000
		W/30" step	0.00 20.75	1 0000	1 0000
	3	Salety Line 3/8	0.00 - 38.75	1.0000	1.0000
L4	13	Alvi Detuner	4.00 - 38.75	1.0000	1.0000

	Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
ſ	L4	14	AM Detuner	4.00 - 38.75	1.0000	1.0000
I	L4	15	AM Detuner	4.00 - 38.75	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
LR									
1/2" x 5' LRod	С	From Leg	0.00	0.000	175.00	No Ice	0.25	0.25	0.00
		U	0.000			1/2"	0.76	0.76	0.01
			2.500			lce	1.29	1.29	0.01
						1" Ice	1 92	1 92	0.04
						2" Ice			
172									
APXVSPP18-C-A20 w/	А	From	4.00	0.000	172.00	No Ice	4.60	4.01	0.10
Mount Pipe		Centroid-	0.000			1/2''	5.05	4.45	0.16
		Leg	0.000			lce	5.50	4.89	0.23
		0				1" Ice	6.44	5.82	0.42
						2" Ice	-		
APXVSPP18-C-A20 w/	В	From	4.00	0.000	172.00	No Ice	4.60	4.01	0.10
Mount Pipe		Centroid-	0.000			1/2"	5.05	4.45	0.16
		Lea	0.000			lce	5 50	4 89	0.23
		9	0.000			1" Ice	6 44	5.82	0.42
						2" Ice	0.11	0.02	0.12
APXVSPP18-C-A20 w/	С	From	4 00	0.000	172 00	No Ice	4 60	4 01	0 10
Mount Pine	0	Centroid-	0.000	0.000	172.00	1/2"	5.05	4.01	0.16
Would't pe			0.000				5.00	4 80	0.10
		Leg	0.000			1" 100	6.44	5.82	0.23
						2" Ice	0.44	5.62	0.42
ΔΡΧ\/TM14-C-120 w/	Δ	From	4 00	0 000	172 00	Nolce	4 09	2.86	0.08
Mount Pine	~	Centroid-	0.000	0.000	172.00	1/2"	4.03	2.00	0.00
Would't pe			0.000			1/2	4.40	3.25	0.10
		Ley	0.000			1" 100	4.00	3.01	0.19
						2" 100	5.71	4.40	0.55
APX\/TM14_C_120 w/	B	From	4 00	0.000	172 00	Nolco	1 00	2.86	0.08
Mount Dino	D	Controid	4.00	0.000	172.00	1/2"	4.03	2.00	0.00
Mount Pipe			0.000			1/2	4.40	3.23	0.13
		Leg	0.000			1" 100	4.00	3.01	0.19
							5.71	4.40	0.33
ADX/(TM14 C 120 w/	C	From	4.00	0.000	172.00		4.00	2.96	0.09
APAV INI 14-C-120 W/	C	FIOIII	4.00	0.000	172.00		4.09	2.00	0.00
Mount Pipe		Centrola-	0.000			1/2"	4.48	3.23	0.13
		Leg	0.000			ICe	4.88	3.01	0.19
							5.71	4.40	0.33
	C	From	4.00	0.000	172.00		2.65	0.65	0.04
ALGO	C	Controld	4.00	0.000	172.00	1/0"	2.00	2.00	0.04
			0.000			1/2	4.70	4.70	0.07
		Leg	0.000				5.20	5.∠0 6.20	0.11
							0.30	0.30	0.22
00204	~	Encire	4 00	0.000	170.00	∠ ICe	1 04	4.04	0.05
2030 I-HL	C	From	4.00	0.000	172.00	INO ICE	4.31	4.31	0.05
		Centroid-	0.000			1/2"	1.38	7.38	0.09
		Leg	-7.000			Ice	8.76	8.76	0.14
						1" Ice	10.39	10.39	0.27
		_			(=0.00	2" Ice		4 = 0	o o -
1D-RRH8x20-25	A	From	4.00	0.000	172.00	No Ice	4.05	1.53	0.07
		Centroid-	0.000			1/2"	4.30	1.71	0.10
		Lea	0.000			lce	4.56	1.90	0.13

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft²	ft²	К
						1" Ice	5.10	2.30	0.20
	B	From	4 00	0.000	172.00		4.05	1 53	0.07
1D-1(1(10x20-25	Б	Controid	4.00	0.000	172.00	1/2"	4.03	1.55	0.07
			0.000			lce	4.50	1.71	0.10
		Log	0.000			1" Ice	5.10	2.30	0.20
	<u> </u>	From	4 00	0.000	170.00		4.05	1 50	0.07
ID-RRH0X20-25	C	Controid	4.00	0.000	172.00	1/2"	4.05	1.55	0.07
			0.000			lce	4.50	1.71	0.10
		Leg	0.000			1" Ice	5 10	2.30	0.15
						2" Ice	0.10	2.00	0.20
2.4" Dia. x 6' Mount Pipe	А	From	4.00	0.000	172.00	No Ice	1.43	1.43	0.02
		Centroid-	0.000			1/2"	1.93	1.93	0.04
		Leg	0.000			Ice	2.32	2.32	0.06
		0				1" Ice	3.15	3.15	0.10
						2" Ice			
2.4" Dia. x 6' Mount Pipe	В	From	4.00	0.000	172.00	No Ice	1.43	1.43	0.02
		Centroid-	0.000			1/2''	1.93	1.93	0.04
		Leg	0.000			lce	2.32	2.32	0.06
						1" Ice	3.15	3.15	0.10
	•	_			(=0.00	2" Ice			
2.4" Dia. x 6' Mount Pipe	С	From	4.00	0.000	1/2.00	No Ice	1.43	1.43	0.02
		Centrold-	0.000			1/2"	1.93	1.93	0.04
		Leg	0.000			1" Ico	2.32	2.32	0.00
						2" Ice	5.15	5.15	0.10
Platform Mount [I P 712-1]	С	None		0 000	172 00	No Ice	24 56	24.56	1.34
· · · · · · · · · · · · · · · · · · ·	•			0.000		1/2"	27.92	27.92	1.91
						lce	31.27	31.27	2.55
						1" Ice	37.98	37.98	3.97
						2" Ice			
170					(=0.00			4.00	
800MHz 2X50W RRH	A	From Leg	1.00	0.000	170.00	No Ice	2.06	1.93	0.06
W/FILTER			4 000				2.24	2.11	0.09
			-4.000			1" Ice	2.43	2.29	0.11
						2" Ice	2.00	2.00	0.17
800MHz 2X50W RRH	В	From Leg	1.00	0.000	170.00	No Ice	2.06	1.93	0.06
W/FILTER		0	0.000			1/2"	2.24	2.11	0.09
			-4.000			Ice	2.43	2.29	0.11
						1" Ice	2.83	2.68	0.17
	•					2" Ice		4.00	
800MHz 2X50W RRH	С	From Leg	1.00	0.000	170.00	No Ice	2.06	1.93	0.06
W/FILTER			0.000			1/2"	2.24	2.11	0.09
			-4.000			1" Ico	2.43	2.29	0.11
						2" Ice	2.05	2.00	0.17
PCS 1900MHz 4x45W-	А	From Lea	1 00	0 000	170 00	No Ice	2 52	2 84	0.07
65MHz w/ Mount Pipe			0.000	0.000		1/2"	2.79	3.24	0.10
			0.000			lce	3.06	3.65	0.14
						1" Ice	3.65	4.53	0.23
						2" Ice			
PCS 1900MHz 4x45W-	В	From Leg	1.00	0.000	170.00	No Ice	2.52	2.84	0.07
65MHz w/ Mount Pipe			0.000			1/2"	2.79	3.24	0.10
			0.000			lce	3.06	3.65	0.14
							3.65	4.53	0.23
PCS 1900MH-7 1-15/1/	C	From Lec	1 00	0.000	170.00	∠ ice	2 52	2 8/	0.07
65MHz w/ Mount Pipe	0	i ioni Leg	0,000	0.000	170.00	1/2"	2.52	3 24	0.10
			0.000			lce	3.06	3.65	0.14
			0.000			1" Ice	3.65	4,53	0.23
						2" Ice			
Side Arm Mount [SO 102-	С	None		0.000	170.00	No Ice	3.60	3.60	0.07
3]						1/2"	4.18	4.18	0.11

tnxTower Report - version 8.0.9.0

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
						lce 1" lce 2" lce	4.75 5.90	4.75 5.90	0.14 0.20
132 MX08FRO665-20 w/ Mount Pipe	A	From Leg	4.00 0.000 0.000	0.000	153.00	No Ice 1/2" Ice 1" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.10 0.18 0.28 0.51
MX08FRO665-20 w/ Mount Pipe	В	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.10 0.18 0.28 0.51
MX08FRO665-20 w/ Mount Pipe	С	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	8.01 8.52 9.04 10.11	4.23 4.69 5.16 6.12	0.10 0.18 0.28 0.51
TA08025-B604	A	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B604	В	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B604	С	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	0.98 1.11 1.25 1.55	0.06 0.08 0.10 0.15
TA08025-B605	A	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
TA08025-B605	В	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
TA08025-B605	С	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	1.96 2.14 2.32 2.71	1.13 1.27 1.41 1.72	0.08 0.09 0.11 0.16
RDIDC-9181-PF-48	A	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	2.31 2.50 2.70 3.12	1.29 1.45 1.61 1.96	0.02 0.04 0.06 0.12
(2) 8' x 2" Mount Pipe	A	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
(2) 8' x 2" Mount Pipe	В	From Leg	4.00 0.000 0.000	0.000	153.00	2" Ice No Ice 1/2" Ice 1" Ice	1.90 2.73 3.40 4.40	1.90 2.73 3.40 4.40	0.03 0.04 0.06 0.12
(2) 8' x 2'' Mount Pipe	С	From Leg	4.00	0.000	153.00	2" Ice No Ice	1.90	1.90	0.03

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
			0.000			1/2"	2.73	2.73	0.04
			0.000			lce 1" lce	3.40	3.40	0.06
						2" Ice	4.40	4.40	0.12
Commscope MC-PK8-DSH	С	None		0.000	153.00	No Ice	34.24	34.24	1.75
						1/2"	62.95	62.95	2.10
						1" Ice	91.00 149.08	91.00 149.08	2.45
****						2" Ice			
85 Pipe Mount [PM 601-1]	C	From Face	0.50	0.000	85.00	No Ice	1 32	1 32	0.07
	C	FIOITFACE	0.00	0.000	85.00	1/2"	1.52	1.52	0.07
			0.000			lce	1.84	1.84	0.09
						1" Ice	2.40	2.40	0.13
72						2 ice			
KS24019-L112A	С	From Leg	3.00	0.000	72.00	No Ice	0.10	0.10	0.01
			0.000			1/2"	0.18	0.18	0.01
			0.000			Ice	0.26	0.26	0.01
						2" Ice	0.42	0.42	0.01
2.4" Dia x 18" Pipe	С	From Leg	3.00	0.000	72.00	No Ice	0.24	0.24	0.01
			0.000			1/2"	0.34	0.34	0.01
			0.000			lce	0.46	0.46	0.01
						2" Ice	0.70	0.70	0.03
Side Arm Mount [SO 701-	С	From Leg	1.50	0.000	72.00	No Ice	0.85	1.67	0.07
1]			0.000			1/2"	1.14	2.34	0.08
			0.000			lce	1.43	3.01	0.09
						2" Ice	2.01	4.35	0.12
****								. =.	
Detuner Brace 28"	A	From Leg	1.00	0.000	113.00	No Ice 1/2"	0.01	0.70	0.00
(1 23 X3/10)			0.000			lce	0.05	1.06	0.01
						1" Ice	0.13	1.45	0.03
Datas Datas 00"	-	F	4.00	0.000	110.00	2" Ice	0.04	0.70	0.00
(PL 3"x3/16")	В	From Leg	0.000	0.000	113.00	NO ICE 1/2"	0.01	0.70	0.00
(1 23 X3/10)			0.000			lce	0.06	1.06	0.01
						1" Ice	0.13	1.45	0.03
	0		4.00	0.000	440.00	2" Ice	0.04	0 70	0.00
(PL 3"v3/16")	C	From Leg	1.00	0.000	113.00	No Ice 1/2"	0.01	0.70	0.00
(1 23 X3/10)			0.000			lce	0.05	1.06	0.01
						1" Ice	0.13	1.45	0.03
Datas Datas 00"		F	4.00	0.000	1.00	2" Ice	0.04	0.70	0.00
(PL 3"v3/16")	A	From Leg	1.00	0.000	4.00	NO ICE	0.01	0.70	0.00
(1 23 X3/10)			0.000			lce	0.05	1.06	0.01
						1" Ice	0.13	1.45	0.03
Detunen Dress 20"			1.00	0.000	4.00	2" Ice	0.04	0.70	0.00
(PI 3"x3/16")	В	From Leg	0.000	0.000	4.00	1/2"	0.01	0.70 0.88	0.00
(1 20 x0,10)			0.000			lce	0.06	1.06	0.01
						1" Ice	0.13	1.45	0.03
Detunen Durses 00"	~	Frank Las	4.00	0.000	4.00	2" Ice	0.04	0.70	0.00
Detuner Brace 28" (PL3"y3/16")	C	From Leg	0.00	0.000	4.00	INO ICE 1/2"	0.01	0.70 0.88	0.00
			0.000			lce	0.06	1.06	0.01
						1" Ice	0.13	1.45	0.03
***						2" Ice			
**									

*

	Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	٥	۰	ft	ft		ft²	К
85											
HE2-105	С	Paraboloid	From	1.00	-9.000		85.00	2.00	No Ice	3.14	0.06
		w/Shroud (HP)	Face	0.000					1/2" Ice	3.41	0.07
		· · · ·		0.000					1" Ice	3.68	0.09
									2" Ice	4.21	0.12

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 lce+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 2/0 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service

Comb.	Description
No.	
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service
49 50	Dead+Wind 300 deg - Service Dead+Wind 330 deg - Service

Maximum Member Forces

n ft Type Load Comb. Moment K Moment kip-ft Moment kip-ft L1 175 - 125.667 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -18.86 1.54 -0.75 -0.12 Max. My 14 -8.04 0.32 -350.97 Max. My 14 -8.04 0.32 -350.97 Max. Vy 20 -11.98 350.16 -0.12 Max. Torque 13 -1.29 -129 -129 L2 125.667 - 84.75 Pole Max Tension 1 0.00 0.00 0.00 Max. Vy 20 -13.43 912.54 -0.12 Max. Wx 20 -16.17 915.09 Max. My 14 -13.42 0.40 -915.09 Max. Vy 2 -16.22 0.45 914.84 Max. My 14 -13.42 0.40 -915.09 Max. Vy 2 -23.08 1759.00 0.68	Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No. Comb. K kip-ft kip-ft kip-ft kip-ft kip-ft kip-ft L1 175 - 125.667 Pole Max Tension 1 0.00 0.00 0.00 Max. Mx 20 -8.05 350.16 -0.12 Max. Mx 20 -8.05 350.16 -0.12 Max. My 14 -8.04 0.32 -350.97 Max. Vy 20 -11.98 350.16 -0.12 Max. Torque 13 -1.29 -350.97 Max. Torque -1.29 L2 125.667 - 84.75 Pole Max Tension 1 0.00 0.00 0.00 Max. Xvx 14 -13.42 0.40 -915.09 Max. Wy 14 -13.43 912.54 -0.12 Max. My 14 -13.42 0.40 -915.09 Max. Wy 2 -16.22 0.45 914.84 L3 84.75 - 38.75 Pole Max Torque 25 1.15 Max. Knx 20	n	ft	Туре		Load		Moment	Moment
L1 175 - 125.667 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression Max. My 26 -18.86 1.54 -0.75 Max. My 14 -8.04 0.32 -350.97 Max. My 14 -8.04 0.32 -350.97 Max. Vy 20 -11.98 350.16 -0.12 Max. Vy 14 120.00 0.00 0.00 0.00 L2 125.667 - 84.75 Pole Max Tension 1 0.00 0.00 0.00 Max. Nx 20 -13.43 912.54 -0.12 Max. Nx 20 -13.43 912.54 -0.12 Max. My 14 -13.42 0.40 -915.09 Max. Nx 20 -16.17 912.54 -0.12 Max. Mx 20 -16.17 912.54 -0.12 Max. Nx 2 -16.22 0.45 914.84 Max. Torque 15	No.				Comb.	K	kip-ft	kip-ft
125.667 Max. Compression 26 -18.86 1.54 -0.75 Max. My 14 -8.05 350.16 -0.12 Max. My 14 -8.04 0.32 -350.97 Max. Vy 20 -11.98 350.16 -0.12 Max. Vy 20 -11.98 350.16 -0.12 Max. Vy 20 -11.98 350.16 -0.12 Max. Torque 13	L1	175 -	Pole	Max Tension	1	0.00	0.00	0.00
Max. Compression 26 -18.86 1.54 -0.75 Max. Mx 20 -8.05 350.16 -0.12 Max. My 14 -8.04 0.32 -350.97 Max. Vy 20 -11.98 350.16 -0.12 Max. Vy 20 -11.98 350.16 -0.12 Max. Vy 14 12.02 0.32 -350.97 Max. Torque 13 -1.29 -1.29 L2 125.667 - Pole Max Tension 1 0.00 0.00 84.75 Max. Compression 26 -27.18 1.79 -1.00 Max. Wx 20 -13.43 912.54 -0.12 Max. Wy 14 -13.42 0.40 -915.09 Max. Wy 14 -13.42 0.40 -915.09 Max. Wy 14 -13.42 0.40 -915.09 Max. Torque 25 - 1.15 - 0.38.75 - 0.00 0.00 0.00 Max. Mx <td></td> <td>125.667</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		125.667						
Max. Mx 20 -8.05 350.16 -0.12 Max. My 14 -8.04 0.32 -350.97 Max. Vy 20 -11.98 350.16 -0.12 Max. Torque 13 -1.29 -1.29 L2 125.667 - Pole Max Tension 1 0.00 0.00 84.75 Max. Compression 26 -27.18 1.79 -1.00 Max. My 14 -13.42 0.40 -915.09 Max. Vy 20 -16.17 912.54 -0.12 Max. Vy 20 -16.17 912.54 -0.12 Max. Torque 25 -115 -15 -0.00 -0.00 38.75 Pole Max Tension 1 0.00 0.00 -2.23 Max. Vy 8				Max. Compression	26	-18.86	1.54	-0.75
Max. My 14 -8.04 0.32 -350.97 Max. Vy 20 -11.98 350.16 -0.12 Max. Vx 14 12.02 0.32 -350.97 Max. Nax 13 -1.29 -1.29 L2 125.667 - Pole Max Compression 26 -27.18 1.79 -1.00 Max. Mx 20 -13.43 912.54 -0.12 Max. My 14 -13.42 0.40 -915.09 Max. Wy 14 -13.42 0.40 -915.09 Max. Vx 2 -16.22 0.45 914.84 Max. Torque 25 1.15 1.5 1.5 1.5 1.5 1.60 1.5 1.60 Max. Mx 20 -23.08 1759.00 0.68 1.82 1766.60 Max. My 2 -23.07 1.82 1766.60 1.60				Max. Mx	20	-8.05	350.16	-0.12
Max. Vy 20 -11.98 350.16 -0.12 Max. Vx 14 12.02 0.32 -350.97 Max. Torque 13 -1.29 -1.29 L2 125.667 - 84.75 Pole Max Tension 1 0.00 0.00 0.00 Max. Scompression 26 -27.18 1.79 -1.00 Max. Mx 20 -13.43 912.54 -0.12 Max. My 14 -13.42 0.40 -915.09 Max. Wy 20 -16.17 912.54 -0.12 Max. Vy 20 -16.617 912.54 -0.12 Max. Torque 25 1.15 1.5 L3 84.75 - Pole Max Compression 26 -40.66 2.50 -1.87 Max. My 2 -23.07 1.82 1766.60 1.60 -1.60 <td< td=""><td></td><td></td><td></td><td>Max. My</td><td>14</td><td>-8.04</td><td>0.32</td><td>-350.97</td></td<>				Max. My	14	-8.04	0.32	-350.97
L2 125.667 - 84.75 Pole Max. Torque Max Tension 13 12.02 0.32 -350.97 -1.29 L2 125.667 - 84.75 Pole Max Tension 1 0.00 0.00 0.00 Max. Sompression 26 -27.18 1.79 -1.00 Max. Mx 20 -13.43 912.54 -0.12 Max. My 14 -13.42 0.40 -915.09 Max. Vy 20 -16.17 912.54 -0.12 Max. Vy 20 -16.17 912.54 -0.12 Max. Vy 20 -16.17 912.54 -0.12 Max. Vy 2 -16.22 0.45 914.84 Max. Torque 25 1.15 1.15 L3 84.75 - Pole Max Compression 26 -40.66 2.50 -1.87 Max. Mx 20 -23.08 1759.00 0.68 Max. Ny 2 -21.37 1.82 1766.60 Max. My 2 -21.37				Max. Vy	20	-11.98	350.16	-0.12
L2 125.667 - 84.75 Pole Max Tension 1 0.00 0.00 0.00 Max. 70 que 13 -1.29 Max Tension 1 0.00 0.00 0.00 84.75 Max. Compression 26 -27.18 1.79 -1.00 Max. Mx 20 -13.43 912.54 -0.12 Max. My 14 -13.42 0.40 -915.09 Max. Vy 20 -16.17 912.54 -0.12 Max. Vx 2 -16.17 912.54 -0.12 Max. Vx 2 -16.17 912.54 -0.12 Max. Vx 2 -16.17 912.54 -0.12 Max. Torque 25 1.15 1.5 1.5 L3 84.75 - Pole Max Compression 26 -40.66 2.50 -1.87 Max. Mx 20 -23.08 1759.00 0.68 Max. My 2 -23.07 1.82 1766.60 Max. My 2 -21.				Max. Vx	14	12.02	0.32	-350.97
L2 125.667 - Pole Max Tension 1 0.00 0.00 0.00 84.75 Max. Compression 26 -27.18 1.79 -1.00 Max. Mx 20 -13.43 912.54 -0.12 Max. My 14 -13.42 0.40 -915.09 Max. Vy 20 -16.17 912.54 -0.12 Max. Vx 2 -16.22 0.45 914.84 Max. Torque 25 1.15 L3 84.75 - Pole Max Tension 1 0.00 0.00 0.00 38.75 Max. Compression 26 -40.66 2.50 -1.87 Max. Mx 20 -23.08 1759.00 0.68 Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1756.60 Max. Torque 13 - 1.60 Max. Torque 13 - 1.60 Max. Compression 26 -57.95 2.77 -1.98 Max. Mx 20 -36.63 3.27 2828.14 Max. Vy 8 25.62 -2812.47 -4.21 Max. Vy 8 25.62 -2812.47 -4.21				Max. Torque	13			-1.29
Max. Compression 26 -27.18 1.79 -1.00 Max. Mx 20 -13.43 912.54 -0.12 Max. My 14 -13.42 0.40 -915.09 Max. Vy 20 -16.17 912.54 -0.12 Max. Vy 20 -16.17 912.54 -0.12 Max. Vx 2 -16.22 0.45 914.84 Max. Torque 25 1.15 1.15 L3 84.75 - Pole Max Tension 1 0.00 0.00 0.00 38.75 Pole Max. Compression 26 -40.66 2.50 -1.87 Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 2 -21.37 1.82 1766.60 Max. Torque 13	L2	125.667 - 84.75	Pole	Max Tension	1	0.00	0.00	0.00
Max. Mx 20 -13.43 912.54 -0.12 Max. My 14 -13.42 0.40 -915.09 Max. Vy 20 -16.17 912.54 -0.12 Max. Vy 20 -16.17 912.54 -0.12 Max. Vx 2 -16.22 0.45 914.84 Max. Torque 25 1.15 15 L3 84.75 - Pole Max Tension 1 0.00 0.00 38.75 Pole Max. Compression 26 -40.66 2.50 -1.87 Max. Mx 20 -23.08 1759.00 0.68 Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vx 2 -21.37 1.82 1766.60 Max. Torque 13 -1.60 -1.60 -1.60 Max. Mx 20 -36.63				Max. Compression	26	-27.18	1.79	-1.00
Max. My 14 -13.42 0.40 -915.09 Max. Vy 20 -16.17 912.54 -0.12 Max. Vx 2 -16.22 0.45 914.84 Max. Torque 25 1.15 L3 84.75 - Pole Max. Torque 25 1.15 Max. Single Max. Compression 1 0.00 0.00 0.00 38.75 Pole Max. Compression 26 -40.66 2.50 -1.87 Max. Mx 20 -23.08 1759.00 0.68 Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1766.60 Max. Torque 13 -1.60 -1.60 Max. Compression 26 -57.95 2.77 -1.98 Max. Mx 20 -36.63 3.27 2828.14 <td></td> <td></td> <td></td> <td>Max. Mx</td> <td>20</td> <td>-13.43</td> <td>912.54</td> <td>-0.12</td>				Max. Mx	20	-13.43	912.54	-0.12
Max. Vý 20 -16.17 912.54 -0.12 Max. Vx 2 -16.22 0.45 914.84 Max. Torque 25 1.15 L3 84.75 - 38.75 Pole Max Tension 1 0.00 0.00 0.00 38.75 Pole Max Compression 26 -40.66 2.50 -1.87 Max. Mx 20 -23.08 1759.00 0.68 Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Compression 1 0.00 0.00 0.00 Max. Torque 13 -1.60 -1.60 -1.60 Max. Mx 20 -36.63 3.27 <td></td> <td></td> <td></td> <td>Max. My</td> <td>14</td> <td>-13.42</td> <td>0.40</td> <td>-915.09</td>				Max. My	14	-13.42	0.40	-915.09
L3 84.75 - 38.75 Pole Max. Torque Max Tension 25 -16.22 0.45 914.84 Max. Torque 38.75 Pole Max Tension 1 0.00 0.00 0.00 Max. Sompression 38.75 Pole Max Compression Max. Mx 20 -23.08 1759.00 0.68 Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Torque 13 -1.60 -1.60 -1.60 Max. Mx 20 -36.63 2.813.86 2.29 Max. Mx 20 -36.63 3.27 2828.14 Max. Vy 8 2				Max. Vy	20	-16.17	912.54	-0.12
L3 84.75 - 38.75 38.75 Hole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -40.66 2.50 -1.87 Max. Mx 20 -23.08 1759.00 0.68 Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vx 2 -21.37 1.82 1766.60 Max. Torque 13 -1.60 Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -57.95 2.77 -1.98 Max. Mx 20 -36.63 2813.86 2.29 Max. My 2 -36.63 3.27 2828.14 Max. Vy 8 25.62 -2812.47 -4.21 Max. Vx 2 -25.77 3.27 2828.14				Max. Vx	2	-16.22	0.45	914.84
L3 84.75 - 38.75 38.75 Bole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -40.66 2.50 -1.87 Max. Mx 20 -23.08 1759.00 0.68 Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vx 2 -21.37 1.82 1766.60 Max. Torque 13 -1.60 Max. Torque 13 -1.60 Max. Torque 13 -1.60 Max. Tension 1 0.00 0.00 0.00 Max. Compression 26 -57.95 2.77 -1.98 Max. Mx 20 -36.63 2813.86 2.29 Max. My 2 -36.63 3.27 2828.14 Max. Vy 8 25.62 -2812.47 -4.21 Max. Vx 2 -25.77 3.27 2828.14				Max. Torque	25			1.15
Max. Compression 26 -40.66 2.50 -1.87 Max. Mx 20 -23.08 1759.00 0.68 Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1766.60 Max. Torque 13 -1.60 Max. Torque 13 -1.60 Max. Compression 26 -57.95 2.77 -1.98 Max. Mx 20 -36.63 2813.86 2.29 Max. My 2 -36.63 3.27 2828.14 Max. Vy 8 25.62 -2812.47 -4.21 Max. Vx 2 -25.77 3.27 2828.14	L3	84.75 - 38 75	Pole	Max Tension	1	0.00	0.00	0.00
Max. Mx 20 -23.08 1759.00 0.68 Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vx 2 -21.37 1.82 1766.60 Max. Torque 13 -1.60 -1.60 Max. Torque 13 -1.60 0.00 0.00 Max. Compression 26 -57.95 2.77 -1.98 Max. Mx 20 -36.63 2813.86 2.29 Max. My 2 -36.63 3.27 2828.14 Max. Vy 8 25.62 -2812.47 -4.21 Max. Vx 2 -25.77 3.27 2828.14		00110		Max. Compression	26	-40.66	2.50	-1.87
Max. My 2 -23.07 1.82 1766.60 Max. Vy 8 21.23 -1757.60 -2.23 Max. Vx 2 -21.37 1.82 1766.60 Max. Vx 2 -21.37 1.82 1766.60 Max. Torque 13 -1.60 Max. Torque 13 -1.60 Max. Compression 26 -57.95 2.77 Max. Mx 20 -36.63 2813.86 2.29 Max. My 2 -36.63 3.27 2828.14 Max. Vx 2 -25.77 3.27 2828.14				Max. Mx	20	-23.08	1759.00	0.68
Max. Vý 8 21.23 -1757.60 -2.23 Max. Vx 2 -21.37 1.82 1766.60 Max. Torque 13 -1.60 L4 38.75 - 0 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -57.95 2.77 -1.98 Max. Mx 20 -36.63 2813.86 2.29 Max. My 2 -36.63 3.27 2828.14 Max. Vy 8 25.62 -2812.47 -4.21 Max. Vx 2 -25.77 3.27 2828.14				Max. My	2	-23.07	1.82	1766.60
Max. Vx 2 -21.37 1.82 1766.60 Max. Torque 13 -1.60 L4 38.75 - 0 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -57.95 2.77 -1.98 Max. Mx 20 -36.63 2813.86 2.29 Max. My 2 -36.63 3.27 2828.14 Max. Vy 8 25.62 -2812.47 -4.21 Max. Vx 2 -25.77 3.27 2828.14				Max. Vý	8	21.23	-1757.60	-2.23
L4 38.75 - 0 Pole Max. Torque 13 -1.60 L4 38.75 - 0 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -57.95 2.77 -1.98 Max. Mx 20 -36.63 2813.86 2.29 Max. My 2 -36.63 3.27 2828.14 Max. Vy 8 25.62 -2812.47 -4.21 Max. Vx 2 -25.77 3.27 2828.14				Max. Vx	2	-21.37	1.82	1766.60
L4 38.75 - 0 Pole Max Tension 1 0.00 0.00 0.00 Max. Compression 26 -57.95 2.77 -1.98 Max. Mx 20 -36.63 2813.86 2.29 Max. My 2 -36.63 3.27 2828.14 Max. Vy 8 25.62 -2812.47 -4.21 Max. Vx 2 -25.77 3.27 2828.14				Max. Torque	13			-1.60
Max. Compression26-57.952.77-1.98Max. Mx20-36.632813.862.29Max. My2-36.633.272828.14Max. Vy825.62-2812.47-4.21Max. Vx2-25.773.272828.14	L4	38.75 - 0	Pole	Max Tension	1	0.00	0.00	0.00
Max. Mx20-36.632813.862.29Max. My2-36.633.272828.14Max. Vy825.62-2812.47-4.21Max. Vx2-25.773.272828.14				Max. Compression	26	-57.95	2.77	-1.98
Max. My2-36.633.272828.14Max. Vy825.62-2812.47-4.21Max. Vx2-25.773.272828.14				Max. Mx	20	-36.63	2813.86	2.29
Max. Vy 8 25.62 -2812.47 -4.21 Max. Vx 2 -25.77 3.27 2828.14				Max. Mv	2	-36.63	3.27	2828.14
Max. Vx 2 -25.77 3.27 2828.14				Max. Vv	8	25.62	-2812.47	-4.21
				Max. Vx	2	-25.77	3.27	2828.14
Max. Torque 13 -1.59				Max. Torque	13			-1.59

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	33	57.95	-0.01	-5.82
	Max. H _x	21	27.48	25.59	0.03
	Max. H _z	2	36.65	0.03	25.74
	Max. M _x	2	2828.14	0.03	25.74
	Max. M _z	8	2812.47	-25.60	-0.05
	Max. Torsion	25	1.59	12.82	22.32
	Min. Vert	19	27.48	22.14	-12.86
	Min. H _x	9	27.48	-25.60	-0.05
	Min. H _z	14	36.65	-0.02	-25.71
	Min. M _x	14	-2826.00	-0.02	-25.71
	Min. M _z	20	-2813.86	25.59	0.03
	Min. Torsion	13	-1.59	-12.81	-22.28

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only 1.2 Dead+1.0 Wind 0 deg -	30.54 36.65	0.00 -0.03	0.00 -25.74	0.38 -2828.14	0.69 3.27	0.00 -1.38
0.9 Dead+1.0 Wind 0 deg - No Ice	27.48	-0.03	-25.74	-2794.22	3.02	-1.38
1.2 Dead+1.0 Wind 30 deg - No Ice	36.65	12.75	-22.30	-2449.83	-1402.08	-0.82
0.9 Dead+1.0 Wind 30 deg - No Ice	27.48	12.75	-22.30	-2420.46	-1385.39	-0.82
1.2 Dead+1.0 Wind 60 deg - No Ice	36.65	22.13	-12.88	-1414.50	-2432.50	0.01
0.9 Dead+1.0 Wind 60 deg - No Ice	27.48	22.13	-12.88	-1397.60	-2403.40	0.01
1.2 Dead+1.0 Wind 90 deg - No Ice	36.65	25.60	0.05	4.21	-2812.47	0.89
0.9 Dead+1.0 Wind 90 deg - No Ice	27.48	25.60	0.05	4.06	-2778.79	0.89
1.2 Dead+1.0 Wind 120 deg - No Ice	36.65	22.16	12.90	1417.57	-2434.82	1.40
0.9 Dead+1.0 Wind 120 deg - No Ice	27.48	22.16	12.90	1400.40	-2405.69	1.40
1.2 Dead+1.0 Wind 150 deg - No Ice	36.65	12.81	22.28	2448.83	-1406.47	1.59
- No Ice	27.48	12.81	22.28	2419.23	-1389.74	1.59
- No Ice	30.03	0.02	20.71	2020.00	-1.05	1.00
- No Ice	27.40	-12 75	20.71	2/91.00	-1.27	0.70
- No Ice	27.48	-12.75	22.21	2440.00	1386.48	0.79
- No Ice 1 2 Dead+1 0 Wind 240 deg	36.65	-22 14	12.27	1413 89	2435 18	-0.06
- No Ice 0.9 Dead+1.0 Wind 240 deg	27.48	-22.14	12.86	1396.74	2405.61	-0.06
- No Ice 1.2 Dead+1.0 Wind 270 deg	36.65	-25.59	-0.03	-2.29	2813.86	-0.87
- No Ice 0.9 Dead+1.0 Wind 270 deg	27.48	-25.59	-0.03	-2.39	2779.72	-0.87
- No Ice 1.2 Dead+1.0 Wind 300 deg	36.65	-22.16	-12.94	-1419.34	2436.81	-1.37
- No Ice 0.9 Dead+1.0 Wind 300 deg	27.48	-22.16	-12.94	-1402.39	2407.23	-1.37
- No Ice 1.2 Dead+1.0 Wind 330 deg	36.65	-12.82	-22.32	-2451.07	1409.06	-1.59
- No Ice 0.9 Dead+1.0 Wind 330 deg	27.48	-12.82	-22.32	-2421.69	1391.88	-1.59
- No Ice 1.2 Dead+1.0 Ice+1.0 Temp	57.95	-0.00	0.00	1.98	2.77	-0.00
1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	57.95	-0.01	-5.83	-699.29	3.45	-0.42
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	57.95	2.89	-5.05	-605.36	-345.63	-0.24
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	57.95	5.02	-2.91	-348.60	-601.50	0.01
deg+1.0 lce+1.0 Temp	57.95	5.80	0.01	2.86	-695.71	0.42
deg+1.0 lce+1.0 Temp	57.95	D.UJ	2.92	202.20 600.20	-002.07	0.43
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 180	57.95	2.91 0.01	5.00	702 86	-340.07 2 22	0.49
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 210	57.95	-2.89	5.04	608.99	351.35	0.24
deg+1.0 lce+1.0 Temp						

175 Ft Monopole Tower Structural Analysis Project Number 1973705, Order 553289, Revision 2

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M _x	Moment, Mz	
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 240	57.95	-5.02	2.91	352.43	607.42	-0.02
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 270	57.95	-5.80	-0.01	1.41	701.40	-0.26
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 300	57.95	-5.03	-2.93	-349.72	607.86	-0.42
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 330	57.95	-2.91	-5.05	-605.74	352.58	-0.49
deg+1.0 lce+1.0 Temp						
Dead+Wind 0 deg - Service	30.54	-0.01	-4.82	-527.90	1.18	-0.36
Dead+Wind 30 deg - Service	30.54	2.39	-4.17	-457.24	-261.32	-0.21
Dead+Wind 60 deg - Service	30.54	4.14	-2.41	-263.87	-453.77	0.00
Dead+Wind 90 deg - Service	30.54	4.79	0.01	1.09	-524.73	0.23
Dead+Wind 120 deg -	30.54	4.15	2.42	265.06	-454.20	0.37
Service						
Dead+Wind 150 deg -	30.54	2.40	4.17	457.68	-262.13	0.42
Service						
Dead+Wind 180 deg -	30.54	0.00	4.81	528.13	0.37	0.36
Service						
Dead+Wind 210 deg -	30.54	-2.39	4.17	457.53	262.74	0.21
Service						
Dead+Wind 240 deg -	30.54	-4.15	2.41	264.38	455.40	-0.01
Service						
Dead+Wind 270 deg -	30.54	-4.79	-0.01	-0.11	526.13	-0.22
Service						
Dead+Wind 300 deg -	30.54	-4.15	-2.42	-264.76	455.71	-0.36
Service						
Dead+Wind 330 deg -	30.54	-2.40	-4.18	-457.47	263.75	-0.42
Service						

Solution Summary

	Sun	n of Applied Force	es		Sum of Reactio	ns			
Load	PX	PY	PZ	PX	PY	PZ	% Error		
Comb.	K	K	K	K	K	K			
1	0.00	-30.54	0.00	0.00	30.54	0.00	0.000%		
2	-0.03	-36.65	-25.74	0.03	36.65	25.74	0.000%		
3	-0.03	-27.48	-25.74	0.03	27.48	25.74	0.000%		
4	12.75	-36.65	-22.30	-12.75	36.65	22.30	0.000%		
5	12.75	-27.48	-22.30	-12.75	27.48	22.30	0.000%		
6	22.13	-36.65	-12.88	-22.13	36.65	12.88	0.000%		
7	22.13	-27.48	-12.88	-22.13	27.48	12.88	0.000%		
8	25.60	-36.65	0.05	-25.60	36.65	-0.05	0.000%		
9	25.60	-27.48	0.05	-25.60	27.48	-0.05	0.000%		
10	22.16	-36.65	12.90	-22.16	36.65	-12.90	0.000%		
11	22.16	-27.48	12.90	-22.16	27.48	-12.90	0.000%		
12	12.81	-36.65	22.28	-12.81	36.65	-22.28	0.000%		
13	12.81	-27.48	22.28	-12.81	27.48	-22.28	0.000%		
14	0.02	-36.65	25.71	-0.02	36.65	-25.71	0.000%		
15	0.02	-27.48	25.71	-0.02	27.48	-25.71	0.000%		
16	-12.75	-36.65	22.27	12.75	36.65	-22.27	0.000%		
17	-12.75	-27.48	22.27	12.75	27.48	-22.27	0.000%		
18	-22.14	-36.65	12.86	22.14	36.65	-12.86	0.000%		
19	-22.14	-27.48	12.86	22.14	27.48	-12.86	0.000%		
20	-25.59	-36.65	-0.03	25.59	36.65	0.03	0.000%		
21	-25.59	-27.48	-0.03	25.59	27.48	0.03	0.000%		
22	-22.16	-36.65	-12.94	22.16	36.65	12.94	0.000%		
23	-22.16	-27.48	-12.94	22.16	27.48	12.94	0.000%		
24	-12.82	-36.65	-22.32	12.82	36.65	22.32	0.000%		
25	-12.82	-27.48	-22.32	12.82	27.48	22.32	0.000%		
26	0.00	-57.95	0.00	0.00	57.95	-0.00	0.000%		
27	-0.01	-57.95	-5.83	0.01	57.95	5.83	0.000%		
28	2.89	-57.95	-5.05	-2.89	57.95	5.05	0.000%		
29	5.02	-57.95	-2.91	-5.02	57.95	2.91	0.000%		
30	5.80	-57.95	0.01	-5.80	57.95	-0.01	0.000%		
31	5.03	-57.95	2.92	-5.03	57.95	-2.92	0.000%		
32	2.91	-57.95	5.05	-2.91	57.95	-5.05	0.000%		

175 Ft Monopole Tower Structural Analysis Project Number 1973705, Order 553289, Revision 2

	Sun	n of Applied Force	s		Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
33	0.01	-57.95	5.82	-0.01	57.95	-5.82	0.000%
34	-2.89	-57.95	5.04	2.89	57.95	-5.04	0.000%
35	-5.02	-57.95	2.91	5.02	57.95	-2.91	0.000%
36	-5.80	-57.95	-0.01	5.80	57.95	0.01	0.000%
37	-5.03	-57.95	-2.93	5.03	57.95	2.93	0.000%
38	-2.91	-57.95	-5.05	2.91	57.95	5.05	0.000%
39	-0.01	-30.54	-4.82	0.01	30.54	4.82	0.000%
40	2.39	-30.54	-4.17	-2.39	30.54	4.17	0.000%
41	4.14	-30.54	-2.41	-4.14	30.54	2.41	0.000%
42	4.79	-30.54	0.01	-4.79	30.54	-0.01	0.000%
43	4.15	-30.54	2.42	-4.15	30.54	-2.42	0.000%
44	2.40	-30.54	4.17	-2.40	30.54	-4.17	0.000%
45	0.00	-30.54	4.81	-0.00	30.54	-4.81	0.000%
46	-2.39	-30.54	4.17	2.39	30.54	-4.17	0.000%
47	-4.15	-30.54	2.41	4.15	30.54	-2.41	0.000%
48	-4.79	-30.54	-0.01	4.79	30.54	0.01	0.000%
49	-4.15	-30.54	-2.42	4.15	30.54	2.42	0.000%
50	-2.40	-30.54	-4.18	2.40	30.54	4.18	0.000%

		Non-Line	ear Converge	ence Results
Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.0000001
2	Yes	5	0.0000001	0.00009889
3	Yes	5	0.00000001	0.00004501
4	Yes	6	0.00000001	0.00012223
5	Yes	5	0.0000001	0.00090067
6	Yes	6	0.0000001	0.00012480
7	Yes	5	0.0000001	0.00092029
8	Yes	5	0.0000001	0.00005483
9	Yes	4	0.0000001	0.00067001
10	Yes	6	0.0000001	0.00012787
11	Yes	5	0.0000001	0.00094301
12	Yes	6	0.0000001	0.00012100
13	Yes	5	0.0000001	0.00089135
14	Yes	5	0.0000001	0.00009285
15	Yes	5	0.0000001	0.00004231
16	Yes	6	0.00000001	0.00012669
17	Yes	5	0.0000001	0.00093389
18	Yes	6	0.00000001	0.00012447
19	Yes	5	0.0000001	0.00091740
20	Yes	5	0.0000001	0.00004610
21	Yes	4	0.0000001	0.00059651
22	Yes	6	0.00000001	0.00012191
23	Yes	5	0.00000001	0.00089828
24	Yes	6	0.00000001	0.00012854
25	Yes	5	0.00000001	0.00094762
26	Yes	4	0.0000001	0.00004298
27	Yes	5	0.0000001	0.00057762
28	Yes	5	0.00000001	0.00078137
29	Yes	5	0.00000001	0.00078621
30	Yes	5	0.0000001	0.00057240
31	Yes	5	0.00000001	0.00080589
32	Yes	5	0.00000001	0.00078728
33	Yes	5	0.00000001	0.00058326
34	Yes	5	0.00000001	0.00081626
35	Yes	5	0.00000001	0.00080958
36	Yes	5	0.0000001	0.00058176
37	Yes	5	0.0000001	0.00079372
38	Yes	5	0.00000001	0.00081418
39	Yes	4	0.0000001	0.00011111
40	Yes	4	0.00000001	0.00030996
41	Yes	4	0.0000001	0.00033601
42	Yes	4	0.00000001	0.00007263

43	Yes	4	0.0000001	0.00038614
44	Yes	4	0.00000001	0.00030050
45	Yes	4	0.0000001	0.00011023
46	Yes	4	0.0000001	0.00037004
47	Yes	4	0.0000001	0.00033662
48	Yes	4	0.0000001	0.00007197
49	Yes	4	0.0000001	0.00030633
50	Yes	4	0.0000001	0.00039985

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	۰	٥
L1	175 - 125.667	26.229	45	1.410	0.009
L2	130 - 84.75	13.932	45	1.093	0.003
L3	90 - 38.75	6.335	45	0.696	0.001
L4	45 - 0	1.521	45	0.309	0.000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
175.00	1/2" x 5' LRod	45	26.229	1.410	0.009	42819
172.00	APXVSPP18-C-A20 w/ Mount	45	25.353	1.392	0.009	42819
	Pipe					
170.00	800MHz 2X50W RRH W/FILTER	45	24.770	1.379	0.008	42819
153.00	MX08FRO665-20 w/ Mount Pipe	45	19.901	1.270	0.006	9731
113.00	Detuner Brace 28" (PL3"x3/16")	45	10.277	0.931	0.002	5409
85.00	HE2-105	45	5.612	0.648	0.001	6561
72.00	KS24019-L112A	45	3.949	0.529	0.001	6382
4.00	Detuner Brace 28" (PL3"x3/16")	50	0.076	0.026	0.000	54355

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
NO.		Deflection	Load		
	ft	in	Comb.	0	٥
L1	175 - 125.667	139.801	14	7.494	0.033
L2	130 - 84.75	74.428	2	5.837	0.010
L3	90 - 38.75	33.885	2	3.723	0.004
L4	45 - 0	8.143	2	1.657	0.001

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	٥	ft
175.00	1/2'' x 5' LRod	14	139.801	7.494	0.033	8365
172.00	APXVSPP18-C-A20 w/ Mount	14	135.146	7.398	0.031	8365
	Pipe					
170.00	800MHz 2X50W RRH W/FILTER	14	132.046	7.334	0.030	8365
153.00	MX08FRO665-20 w/ Mount Pipe	2	106.175	6.765	0.020	1897
113.00	Detuner Brace 28" (PL3"x3/16")	2	54.944	4.973	0.006	1036
85.00	HE2-105	2	30.023	3.464	0.004	1235

Elevation	vation Appurtenance		Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	٥	0	ft
72.00	KS24019-L112A	2	21.132	2.827	0.003	1199
4.00	Detuner Brace 28" (PL3"x3/16")	2	0.408	0.141	0.000	10169

Compression Checks

	Pole Design Data										
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φ Ρ _n	Ratio P _u		
	ft		ft	ft		in²	K	K	ϕP_n		
L1	175 - 125.667 (1)	TP27.49x17.63x0.188	49.33	0.00	0.0	15.961	-8.04	929.01	0.009		
L2	125.667 - 84.75 (2)	TP35.3x26.249x0.281	45.25	0.00	0.0	30.763	-13.42	1799.63	0.007		
L3	84.75 - 38.75 (3)	TP43.94x33.687x0.344	51.25	0.00	0.0	46.872	-23.07	2741.99	0.008		
L4	38.75 - 0 (4)	TP51x42.002x0.406	45.00	0.00	0.0	66.183	-36.63	3871.70	0.009		

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	φ M _{nx}	Ratio M _{ux}	M _{uy}	φ M _{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	φ M _{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	175 - 125.667 (1)	TP27.49x17.63x0.188	350.97	500.76	0.701	0.00	500.76	0.000
L2	125.667 - 84.75 (2)	TP35.3x26.249x0.281	915.09	1351.86	0.677	0.00	1351.86	0.000
L3	84.75 - 38.75 (3)	TP43.94x33.687x0.344	1766.60	2542.50	0.695	0.00	2542.50	0.000
L4	38.75 - 0 (4)	TP51x42.002x0.406	2828.14	4265.40	0.663	0.00	4265.40	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	φVn	Ratio V _u	Actual T _u	ϕT_n	Ratio T _u
	ft		ĸ	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	175 - 125.667 (1)	TP27.49x17.63x0.188	12.02	280.12	0.043	1.11	651.39	0.002
L2	125.667 - 84.75 (2)	TP35.3x26.249x0.281	16.22	539.89	0.030	1.10	1613.18	0.001
L3	84.75 - 38.75 (3)	TP43.94x33.687x0.344	21.37	822.60	0.026	1.38	3064.07	0.000
L4	38.75 - 0 (4)	TP51x42.002x0.406	25.77	1161.51	0.022	1.38	5169.16	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	175 - 125.667 (1)	0.009	0.701	0.000	0.043	0.002	0.712	1.050	4.8.2
L2	125.667 - 84.75 (2)	0.007	0.677	0.000	0.030	0.001	0.685	1.050	4.8.2
L3	84.75 - 38.75 (3)	0.008	0.695	0.000	0.026	0.000	0.704	1.050	4.8.2
L4	38.75 - 0 (4)	0.009	0.663	0.000	0.022	0.000	0.673	1.050	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	175 - 125.667	Pole	TP27.49x17.63x0.188	1	-8.04	975.46	67.8	Pass
L2	125.667 - 84.75	Pole	TP35.3x26.249x0.281	2	-13.42	1889.61	65.3	Pass
L3	84.75 - 38.75	Pole	TP43.94x33.687x0.344	3	-23.07	2879.09	67.0	Pass
L4	38.75 - 0	Pole	TP51x42.002x0.406	4	-36.63	4065.28	64.1	Pass
							Summary	
						Pole (L1)	67.8	Pass
						RATING =	67.8	Pass

APPENDIX B

BASE LEVEL DRAWING

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Base Plate Connection

Site Info	
BU i	# 876336
Site Name	OLD SAYBROOK
Order	#

Analysis Considerations				
TIA-222 Revision	Н			
Grout Considered:	No			
l _{ar} (in)	1.75			

Applied Loads				
Moment (kip-ft)	2828.14			
Axial Force (kips)	36.63			
Shear Force (kips)	25.77			

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data

(16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 59.3" BC

Base Plate Data

65.3" OD x 2.75" Plate (S-128; Fy=60 ksi, Fu=80 ksi)

Stiffener Data

N/A

Pole Data

51" x 0.40625" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_t = 140.7	φPn_t = 243.75	Stress Rating
Vu = 1.61	φVn = 149.1	55.0%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	19.43	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	34.3%	Pass

Done By: HL Checked By: Date: 5/21/2021

Anchor Rod Concrete Breakout Strength

TIA-222-H

Description:

This sheet will determine a concrete breakout strength for a single anchor or for a group of anchors in the case that there is no existing rebar to transfer load into.

BU# WO	# 1973705 De # 1973705 CI De	one By: HL necked By: ate: 5/21/2021	(CROWN
1.	Inputs O Undercut Anchors O Torque-Controlled Anchors O Displacement-Controlled Anchor O Adhesive Anchor	O Cast-in O Post-installed	○ Cracked ● Uncracked	 ● Headed Rods ○ Non-Headed Rods
	 Single Anchor Concrete Breakou Group of Anchors Concrete Breakou 	ut Strength akout Strength		
	Concrete Compressive Strength:	f _c := 3000psi		
	Concrete Weight Modification Factor:	$\lambda := 1.0$		[ACI 318-14 25.4.2.4]
	Anchor Effective Embedment Depth:	h _{ef} := 58.5in		[ACI 318-14 17.4.2.3]
	Total Tension from Anchor Rods:	$T_n := 702.85 kip$		
	Projected Concrete Failure Area: (See Fig. R17.4.2.1(b))	$A_{Nc} := 306.78 \text{ft}^2$		[ACI 318-14 17.4.2.1]
	Eccentricity from Anchor Group Centroid to Tension Resultant: (<i>See Fig. R17.4.2.4</i>)	e _N := 2.35in		[ACI 318-14 17.5.2.4]
	Minimum Distance from Anchor to Edge of Concrete: (See Fig. R17.42.1)	c _{a_min} := 120.35in		[ACI 318-14 17.4.2.5]

BU# WO	* 876336 # 1973705	Done By: HL Checked By: Date: 5/21/2021	CROWN
2.	Maximum Projected Area of	f a Single Anchor	
	Projected Concrete Failure Area: (<i>See Fig. R17.4.2.1(a))</i>	$A_{\rm Nco} := 9 \cdot h_{\rm ef}^2 = 213.89 {\rm ft}^2$	[ACI 318-14 Eq. 17.4.2.1c]
3.	Breakout Strength of a Sing	le Anchor	
	Coefficient for Basic Concrete Breakout:	k _c = 24	[ACI 318-14 17.4.2.2]
Intern Intern	Breakout Strength:	$N_b := k_c \cdot \lambda \cdot \sqrt{f_c} \cdot h_{ef}^{1.5} = 588.17 \cdot kip$	[ACI 318-14 Eq. 17.4.2.2a]
4.	Breakout Strength of a Sing	le Headed Anchor	
	Breakout Strength:	$N_{\text{bv}} = 16 \cdot \lambda \cdot \sqrt{f_c} \cdot h_{ef}^{\frac{5}{3}} = 772.57 \cdot \text{kip}$	[ACI 318-14 Eq. 17.4.2.2b]
2 mil			
5.	Modification Factors		
	Modification Factor for Anchor Rod Groups Loaded Eccentrically:	$\psi_{ec_N} := \begin{vmatrix} \frac{1}{\left(1 + \frac{2 \cdot e_N}{3 \cdot h_{ef}}\right)} & \text{if } \frac{1}{\left(1 + \frac{2 \cdot e_N}{3 \cdot h_{ef}}\right)} \\ 1 & \text{otherwise} \end{vmatrix}$	$\frac{1}{\frac{e_{N}}{h_{ef}}} \leq 1$ [ACI 318-14 17.4.2.4]
		$\psi_{ec_N} = 0.97$	
	Modification Factor for Edge Effects	$\therefore \qquad \psi_{ed_N} := \begin{bmatrix} 0.7 + 0.3 \cdot \frac{c_{a_min}}{1.5 \cdot h_{ef}} & \text{if } c_{a_min} \end{bmatrix}$	$h_{in} < 1.5 \cdot h_{ef}$ [ACI 318-14 Eq. 17.4.2.5a 17.4.2.5b]
		1 otherwise	
1		$\psi_{ed_N} = 1$	
litu	Non-Cracked Effects:	$\psi_{c_N} = 1.25$	[ACI 318-14 17.4.2.6]

Done By: HL Checked By: Date: 5/21/2021

SUMMARY	
1. Inputs	
Concrete Compressive Strength:	$f_c = 3000 psi$
Concrete Weight Modification Factor:	$\lambda = 1$
Anchor Effective Embedment Depth:	$h_{ef} = 58.5 \cdot in$
Projected Concrete Failure Area:	$A_{Nc} = 306.78 \text{ ft}^2$
Eccentricity from Anchor Group Centroid to Tension Resultant:	$e_{N} = 2.35 \cdot in$
Minimum Distance from Anchor to Edge of Concrete:	$c_{a_min} = 120.35 \cdot in$
2. Maximum Projected Area of a Single Ancho)r
Projected Concrete Failure Area:	$A_{\rm Nco} = 213.89 {\rm ft}^2$
3. Breakout Strength of a Single Anchor	
Coefficient for Basic Concrete Breakout:	k _c = 24
Breakout Strength:	$N_{b1} = 588.17 \cdot kip$
4. Breakout Strength of a Single Headed Anche	or
Breakout Strength:	N _{b2} = 772.57·kip
5. Modification Factors	
Anchor Rod Groups Loaded Eccentrically:	$\psi_{ec_N} = 0.97$
Edge Effects:	$\psi_{ed_N} = 1$
Non-Cracked Effects:	$\psi_{c_N} = 1.25$
6. Post-Installed Anchors without Supplement	ary Reinforcement
Critical Edge Distance:	$c_{ac} = 9.75 \text{ ft}$
Modification Factor:	$\psi_{cp_N} = 1$
7. Concrete Breakout Strength	
Concrete Breakout Case:	Case = "Group of Anchors Concrete Breakout Strength"
Breakout Strength: $\phi N_{cb} = 770.26 \cdot kip$	Breakout Rating: $\frac{\text{Rating}}{1.05 \cdot \phi \text{N}_{cb}} = 86.9 \cdot \%$

CROWN

Pier and Pad Foundation

BU # :	876336
Site Name:	OLD SAYBROOK
App. Number:	553289, Rev 2

TIA-222 Revision: Н Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	7
Rectangular Pad?:	

Tower Type:

Superstructure Analysis Reactions					
Compression, P _{comp} :	36.65	kips			
Base Shear, Vu_comp:	25.74	kips			
Moment, M _u :	2828.14	ft-kips			
Tower Height, H :	175	ft			
BP Dist. Above Fdn, bp_{dist}:	4	in			
Bolt Circle / Bearing Plate Width, BC:	59.3	in			

Foundation Analysis Checks						
	Capacity	Demand	Rating*	Check		
Lateral (Sliding) (kips)	221.97	25.74	11.0%	Pass		
Bearing Pressure (ksf)	90.46	2.71	3.0%	Pass		
Overturning (kip*ft)	6105.97	2978.29	48.8%	Pass		
Pad Flexure (kip*ft)	5183.74	1182.49	21.7%	Pass		
Pad Shear - 1-way (kips)	1515.82	126.81	8.0%	Pass		
Pad Shear - 2-way (Comp) (ksi)	0.164	0.001	0.7%	Pass		
Flexural 2-way (Comp) (kip*ft)	6715.64	0.00	0.0%	Pass		

*Rating per TIA-222-H Section 15.5

10.0	
Soil Rating*:	48.8%
Structural Rating*:	21.7%

Pad Properties			
Depth, D:	5.1	ft	
Pad Width, W ₁ :	25	ft	
Pad Thickness, T :	5.5	ft	
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8		
Pad Rebar Quantity (Bottom dir. 2), mp2:	24		
Pad Clear Cover, cc_{pad}:	3	in	

Material Properties			
Rebar Grade, Fy :	60	ksi	
Concrete Compressive Strength, F'c:	3	ksi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties		
Total Soil Unit Weight, $m{\gamma}$:	120	pcf
Ultimate Net Bearing, Qnet:	120.000	ksf
Cohesion, Cu :	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	30	degrees
SPT Blow Count, N _{blows} :		
Base Friction, μ :		
Neglected Depth, N:		ft
Foundation Bearing on Rock?	Yes	
Groundwater Depth, gw :	N/A	ft

<--Toggle between Gross and Net

Location

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

Elevation: 143.32 ft (NAVD 88) Latitude: 41.313211 Longitude: -72.381108

Wind

Results:

Wind Speed:	132 Vmph
10-year MRI	79 Vmph
25-year MRI	89 Vmph
50-year MRI	97 Vmph
100-year MRI	107 Vmph

Date &ocessed:

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class:	D - Stiff Soil			
Results:				
S _s :	0.165	S _{DS} :	0.176	
S ₁ :	0.059	S _{D1} :	0.094	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.083	
S _{MS} :	0.264	PGA M :	0.133	
S _{M1} :	0.141	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Tue Mar 30 2021

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

....

Results:	
Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Mar 30 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Darcy Tarr **Crown Castle** 3530 Toringdon Way, Suite 300 Trylon Charlotte. NC 28277 1825 W. Walnut Hill Lane. (704) 405-6589 Suite 302 Irving, TX 75038 214-930-1730 Subject: Mount Replacement Analysis Report Carrier Designation: **Dish Network Equipment Change Out** Carrier Site Number: BOBDL00088A **Carrier Site Name:** CT-CCI-T-876336 Crown Castle Designation: Crown Castle BU Number: 876336 Crown Castle Site Name: Old Saybrook Crown Castle JDE Job Number: 645179 **Crown Castle Order Number:** 553289 Rev. 2 **Engineering Firm Designation: Trylon Report Designation:** 188197 Site Data: Latitude 41°18'47.56" Longitude -72°22'51.99" Structure Information: Tower Height & Type: 179.5 ft Monopole Mount Elevation: 153.0 ft Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Sufficient Platform *Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 135 mph as required by the 2015 International Building Code, Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Bryan P. Mawhinney

Respectfully Submitted by:

430 Middlesex Turnpike, Old Saybrook, Middlesex County, CT, 06475

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B Software Input Calculations

7) APPENDIX C Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code:	2015 IBC
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	135 mph
Exposure Category:	С
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Seismic S _s :	0.164
Seismic S ₁ :	0.059
Live Loading Wind Speed:	30 mph
Man Live Load at Mid/End-Points:	250 lb
Man Live Load at Mount Pipes:	500 lb

Table 1 - Proposed Equipment Configuration

Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details	
153.0			3	JMA WIRELESS	MX08FRO665-20	9.0 ft Diatform
	153.0	3	FUJITSU	TA08025-B604		
		3	FUJITSU	TA08025-B605		
		1	RAYCAP	RDIDC-9181-PF-48	FR6-DSH]	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	553289 Rev. 2	CCI Sites
Construction Drawings	Infinigy	Site ID: BOBDL00088A	TSA
Mount Manufacturer Drawings	Commscope	MC-PK8-DSH	TSA

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.6) Steel grades have been assumed as follows, unless noted otherwise:

el grades have been assumed as follows, unless noted otherwise:				
Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)			
HSS (Rectangular)	ASTM A500 (GR B-46)			
Pipe	ASTM A53 (GR 35)			
Connection Bolts	ASTM A325			

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1, 2	Mount Pipe(s)	MP4		39.7	Pass
	Horizontal(s)	H3	152.0	13.6	Pass
	Standoff(s)	M12	155.0	50.7	Pass
	Mount Connection(s)			21.0	Pass

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Structure Rating (max from all components) =	50.7%

Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

4.1) Recommendations

The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope MC-PK8-DSH.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

²⁾ Rating per TIA-222-H, Section 15.5
APPENDIX A

WIRE FRAME AND RENDERED MODELS

SK - 1	
MC-PK8-C July 23, 2021 at 2:24 PM	MC-PK8-C July 23, 2021 at 2:24 PM

APPENDIX B

SOFTWARE INPUT CALCULATIONS

ASCE 7 Hazards Report

Address: No Address at This Location Standard: ASCE/SEI 7-10 Risk Category: II Soil Class: Elevation: 143.32 ft (NAVD 88) Latitude: 41.313211 Longitude: -72.381108

lce

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Fri Jul 23 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT	Γ DATA
Job Code:	188197
Carrier Site ID:	BOBDL00088A
Carrier Site Name:	BOBDL00088A

CODES AND STANDARDS	
Building Code:	2015 IBC
Local Building Code:	0
Design Standard:	TIA-222-H

STRUCTURE	DETAILS	
Mount Type:	Platform	
Mount Elevation:	153.0	ft.
Number of Sectors:	3	
Structure Type:	Monopole	
Structure Height:	179.5	ft.

ANALYSIS CRITERIA		
Structure Risk Category:	II	
Exposure Category:	С	
Site Class:	D - Default	
Ground Elevation:	143	ft.

TOPOGRAPHIC DATA		
Topographic Category:	1.00	
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAMETERS		
Design Wind Speed:	135	mph
Wind Escalation Factor (K_s):	1.00	
Velocity Coefficient (Kz):	1.38	
Directionality Factor (K _d):	0.95	
Gust Effect Factor (Gh):	1.00	
Shielding Factor (K _a):	0.90	
Velocity Pressure (q _z):	61.03	psf

	TERS	
Design Ice Wind Speed:	50	mph
Design Ice Thickness (t _i):	1.50	in
Importance Factor (I _i):	1.00	
Ice Velocity Pressure (q _{zi}):	61.03	psf
Mount Ice Thickness (t _{iz}):	1.75	in

WIND STRUCTURE CALCULATIONS		
Flat Member Pressure:	109.86	psf
Round Member Pressure:	65.92	psf
Ice Wind Pressure:	7.62	psf

SEISMIC PARA	METERS	
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.16	g
1 Second Accel (S ₁):	0.06	g
Short Period Des. (S _{DS}):	0.17	g
1 Second Des. (S _{D1}):	0.09	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F_v):	2.40	
Response Coefficient (Cs):	0.09	
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	
<u>১১</u> 24	0.9DL + 10L = 300 AZI
25	
35	
36	1.2DL + 1DLI + 1WLI 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 2/0 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
00	(0.9-0.250s) + 1.0E 0 AZI
60	(0.9-0.250s) + 1.0E 30 AZI
60	(0.9-0.250s) + 1.0E 45 AZI
70	(0.9-0.250s) + 1.0E 00 AZI
70	
72	
72	$(0.9-0.2308) \pm 1.0E 135 AZI$
74	$(0.9 - 0.23 \text{ ds}) \neq 1.0 \text{ 130 AZ}$
75	(0.3-0.25 ds) + 1.0E 100 AZI
76	
70	(0.9 - 0.2305) + 1.00 - 223 AZI
//	(0.9-0.250S) + 1.0E 240 AZI
/8	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
32-88	1.2D + 1.5 Lv1

#	Description	#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1	121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1	122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1	123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1	124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1	125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1	126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1	127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1	128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1	129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1	130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1	131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1	132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1	133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1	134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1	135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1	136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2	137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2	138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2	139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2	140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2	141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2	142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2	143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2	144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2	145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2	146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2	147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2	148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2	149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2	150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2	151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2	152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

*This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-20	3	153	No Ice	8.01	3.21	82.50
MP1/MP4/MP7, 0/120/240			w/ Ice	9.63	4.63	290.51
TA08025-B604	3	153	No Ice	1.96	0.98	63.90
MP1/MP4/MP7, 0/120/240			w/ Ice	2.39	1.31	70.78
TA08025-B605	3	153	No Ice	1.96	1.13	75.00
MP1/MP4/MP7, 0/120/240			w/ Ice	2.39	1.48	75.39
RDIDC-9181-PF-48	1	153	No Ice	2.01	1.17	21.85
RRU1, 0			w/ Ice	2.45	1.53	74.31
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-20	3	153	1.00	1.38	0.95	1.75	61.03	8.37
TA08025-B604	3	153	1.00	1.38	0.95	1.75	61.03	8.37
TA08025-B605	3	153	1.00	1.38	0.95	1.75	61.03	8.37
RDIDC-9181-PF-48	1	153	1.00	1.38	0.95	1.75	61.03	8.37

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-20	3	No Ice	439.99	242.24	374.07	176.33	374.07	242.24
MP1/MP4/MP7, 0/120/240		w/ Ice	72.59	44.33	63.17	34.91	63.17	44.33
TA08025-B604	3	No Ice	107.86	67.38	94.36	53.89	94.36	67.38
MP1/MP4/MP7, 0/120/240	-	w/ Ice	18.03	11.94	16.00	9.91	16.00	11.94
TA08025-B605	3	No Ice	107.86	73.50	96.40	62.04	96.40	73.50
MP1/MP4/MP7, 0/120/240		w/ Ice	18.03	12.86	16.30	11.13	16.30	12.86
RDIDC-9181-PF-48	1	No Ice	110.51	75.75	98.93	64.17	98.93	75.75
RRU1, 0		w/ Ice	18.44	13.26	16.71	11.53	16.71	13.26
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
	_							
		INO ICE						
		w/ Ice						

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-20	3	153	82.5	8.66
TA08025-B604	3	153	63.9	6.71
TA08025-B605	3	153	75	7.87
RDIDC-9181-PF-48	1	153	21.85	2.29

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include W arping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in ²)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P - Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec ^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAC onnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AISIS100-12: LRFD
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	AC I 318-14
MaaanmyCada	ACLE20 12, Strongth

Masonry Code	ACI 530-13: Strength
Aluminum Code	AA ADM 1-10: LRFD - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base W eight?	Yes
CtX	.02
CtZ	.02
T X (sec)	Not Entered
TZ (sec)	Not Entered
RX	3
RZ	3
CtExp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	lorll
Drift Cat	Other
OmZ	1
Om X	1
CdZ	1
CdX	1
R ho Z	1
R ho X	1

Material Takeoff

	Material	Size	Pieces	Length[in]	Weight[K]
1	General				
2	R IG ID		19	75	0
3	Total General		19	75	0
4					
5	Hot Rolled Steel				
6	A36 Gr.36	C 3X 5	3	209.1	.087
7	A36 Gr.36	L6 5/8x4 7/16x3/16	3	126	.073
8	A36 Gr.36	L2x2x3	6	163.8	.034
9	A53 Gr.B	6.5"x0.37" Plate	3	126	.086
10	A53 Gr.B	PIPE 2.0	13	981	.284
11	A53 Gr B	PIPE 3.5	6	408	.289
12	Total HR Steel		34	2013.9	.852

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N 1	20.78461	0	-12	0	
2	N2	0	0	-24	0	
3	N3	55.425626	0	8	0	
4	N4	34.641016	0	-4	0	
5	N5	17.212813	0	26.186533	0	
6	N6	52.069219	0	-34.186533	0	
7	N7	65.925626	0	-10.186533	0	
8	N8	44.925626	0	26.186533	0	
9	N9	20.641016	0	20.248711	0	

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
10	N 10	48.641016	0	-28.248711	0	
11	N11	62.925626	0	-4.990381	0	
12	N 12	47.925626	0	20.990381	0	
13	N 13	-0.	0	-48	0	
14	N 15	-0.	0	-88	0	
15	N 16	-0.	0	-64	0	
16	N17	34.856406	0	-64	0	
17	N 18	-34.856406	0	-64	0	
18	N 19	-21	0	-88	0	
19	N20	21	0	-88	0	
20	N21	28	0	-64	0	
21	N22	-28	0	-64	0	
22	N23	-15	0	-88	0	
23	N24	15	0	-88	0	
24	N25	-20.78461	0	-12	0	
25	N27	-55.425626	0	8	0	
26	N28	-34.641016	0	-4	0	
27	N29	-52.069219	0	-34.186533	0	
28	N 30	-17.212813	0	26.186533	0	
29	N31	-44.925626	0	26.186533	0	
30	N32	-65.925626	0	-10.186533	0	
31	N33	-48.641016	0	-28.248711	0	
32	N34	-20.641016	0	20.248711	0	
33	N35	-47.925626	0	20.990381	0	
34	N36	-62.925626	0	-4.990381	0	
35	N44	-48.000126	0	26.186533	0	
36	N45	48.000126	0	26.186533	0	
37	N47	67.462876	0	-7.523938	0	
38	N48	19.46275	0	-90.662595	0	
39	N 50	-19.46275	0	-90.662595	0	
40	N51	-67.462876	0	-7.523938	0	
41	N41	65.925626	42	-10.186533	0	
42	N42	44.925626	42	26.186533	0	
43	N43	-21	42	-88	0	
44	N44A	21	42	-88	0	
45	N45A	-44.925626	42	26.186533	0	
46	N46	-65.925626	42	-10.186533	0	
47	N47A	-48.000126	42	26.186533	0	
48	N48A	48.000126	42	26.186533	0	
49	N49	67.462876	42	-7.523938	0	
50	N 50 A	19.46275	42	-90.662595	0	
51	N51A	-19.46275	42	-90.662595	0	
52	N52	-67.462876	42	-7.523938	0	
53	N53	0	42	26.186533	0	
54	N54	0	0	26.186533	0	
55	N 55	0	42	30.186533	0	
56	N 56	0	0	30.186533	0	
57	N57	0	48.625	30.186533	0	
58	N 58	0	-24.375	30.186533	0	
59	N 59	24	42	26.186533	0	
60	N60	24	0	26.186533	0	
61	N61	24	42	30.186533	0	
	-				-	1

Joint Coordinates and Temperatures (Continued)

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
62	N62	24	0	30.186533	0	
63	N63	24	48.625	30.186533	0	
64	N64	24	-24.375	30.186533	0	
65	N65	-24	42	26.186533	0	
66	N66	-24	0	26.186533	0	
67	N67	-24	42	30.186533	0	
68	N68	-24	0	30.186533	0	
69	N69	-24	48.625	30.186533	0	
70	N70	-24	-24.375	30.186533	0	
71	N72	43.462813	42	-49.093267	0	
72	N73	43.462813	0	-49.093267	0	
73	N74	46.926915	42	-51.093267	0	
74	N75	46.926915	0	-51.093267	0	
75	N76	46.926915	48.625	-51.093267	0	
76	N77	46.926915	-24.375	-51.093267	0	
77	N78	31.462813	42	-69.877876	0	
78	N79	31.462813	0	-69.877876	0	
79	N80	34.926915	42	-71.877876	0	
80	N81	34,926915	0	-71,877876	0	
81	N82	34,926915	48,625	-71,877876	0	
82	N83	34.926915	-24.375	-71.877876	0	
83	N84	55.462813	42	-28.308657	0	
84	N85	55.462813	0	-28.308657	0	
85	N86	58.926915	42	-30.308657	0	
86	N87	58.926915	0	-30.308657	0	
87	N88	58,926915	48.625	-30,308657	0	
88	N89	58.926915	-24.375	-30.308657	0	
89	N91	-43.462813	42	-49.093267	0	
90	N92	-43.462813	0	-49.093267	0	
91	N93	-46.926915	42	-51.093267	0	
92	N94	-46.926915	0	-51.093267	0	
93	N95	-46.926915	48.625	-51.093267	0	
94	N96	-46.926915	-24.375	-51.093267	0	
95	N97	-55.462813	42	-28.308657	0	
96	N98	-55.462813	0	-28.308657	0	
97	N99	-58,926915	42	-30,308657	0	
98	N 100	-58,926915	0	-30.308657	0	
99	N101	-58,926915	48,625	-30,308657	0	
100	N102	-58,926915	-24.375	-30.308657	0	
101	N 103	-31,462813	42	-69.877876	0	
102	N 104	-31.462813	0	-69.877876	0	
103	N 105	-34,926915	42	-71.877876	0	
104	N 106	-34,926915	0	-71.877876	0	
105	N 107	-34,926915	48.625	-71.877876	0	
106	N108	-34,926915	-24.375	-71.877876	0	
107	N107A	-31,176915	0	-6	0	
108	N108A	-32 676915	0	-8 598076	0	
109	N 109	-32 676915	18	-8 598076	0	
110	N110	-32,676915	-18	-8.598076	0	
		01.01.001.0		0.000010	• •	

Member Primary Data

	Label	I J oint	J Joint	K Joint	Rotate(de	Section/Shape	Туре	Design List	Material	Design Rul
1	M1	N5	N6			Standoff Bracing	Beam	Channel	A36 Gr.36	Typical
2	M2	N3	N1			Standoffs	Beam	Pipe	A53 Gr.B	Typical
3	M3	N9	N12		270	Grating Bracing	Beam	Single Angle	A36 Gr.36	Typical
4	M4	N 10	N11			Grating Bracing	Beam	Single Angle	A36 Gr.36	Typical
5	M5	N8	N7			Plates	Beam	RECT	A53 Gr.B	Typical
6	M6	N17	N 18			Standoff Bracing	Beam	Channel	A36 Gr.36	Typical
7	M7	N 15	N13			Standoffs	Beam	Pipe	A53 Gr.B	Typical
8	M8	N21	N24		270	Grating Bracing	Beam	Single Angle	A36 Gr.36	Typical
9	M9	N22	N23			Grating Bracing	Beam	Single Angle	A36 Gr.36	Typical
10	M10	N20	N 19			Plates	Beam	RECT	A53 Gr.B	Typical
11	M11	N29	N 30			Standoff Bracing	Beam	Channel	A36 Gr.36	Typical
12	M12	N27	N25			Standoffs	Beam	Pipe	A53 Gr.B	Typical
13	M13	N 33	N 36		270	Grating Bracing	Beam	Single Angle	A36 Gr.36	Typical
14	M14	N34	N 35			Grating Bracing	Beam	Single Angle	A36 Gr.36	Typical
15	M15	N32	N31			Plates	Beam	RECT	A53 Gr.B	Typical
16	H1	N44	N45			Horizontals	Beam	Pipe	A53 Gr B	Typical
17	H3	N47	N48			Horizontals	Beam	Pipe	A53 Gr.B	Typical
18	H2	N 50	N51			Horizontals	Beam	Pipe	A53 Gr.B	Typical
19	M19	N47A	N48A			Handrails	Beam	Pipe	A53 Gr.B	Typical
20	M20	N49	N50A			Handrails	Beam	Pipe	A53 Gr.B	Typical
21	M21	N51A	N52			Handrails	Beam	Pipe	A53 Gr.B	Typical
22	M22	N46	N45A		180	Handrail Corners	Beam	Single Angle	A36 Gr.36	Typical
23	M23	N42	N41		180	Handrail Corners	Beam	Single Angle	A36 Gr.36	Typical
24	M24	N44A	N43		180	Handrail Corners	Beam	Single Angle	A36 Gr.36	Typical
25	M25	N55	N53			RIGID	None	None	RIGID	Typical
26	M26	N56	N54			RIGID	None	None	RIGID	Typical
27	MP2	N57	N58			Mount Pines	Beam	Pine	A53 Gr.B	Typical
28	M28	N61	N59			RIGID	None	None	RIGID	Typical
29	M29	N62	N60			RIGID	None	None	RIGID	Typical
30	MP1	N63	N64			Mount Pines	Beam	Pine	A53 Gr.B	Typical
31	M31	N67	N65				None	None	RIGID	Typical
32	M32	N68	N66			RIGID	None	None	RIGID	Typical
33	MP3	N 60	N70			Mount Pines	Ream	Pine	A53 Gr B	Typical
34	M34	N74	N70				None	None		Typical
35	M35	N74	N72				Nono	None		Typical
36	MD8	N76	N73			Mount Rings	Roam	Ripo	A 53 Gr B	Typical
27		N 90	N 70				Nono	Nopo		Typical
20	M29	N 00	N70				None	None		Typical
20		NOT	NIO2			Mount Dinco	Ream	Pipe		Typical
39		N 02	N04				Nene	Nepe		Typical
40	N40		N 04				None	None		Typical
41						KIGID Mount Dinos	Recerc	Dine		Typical
42	MP9	N 88	N89				Beam	Pipe		Typical
43	M43	N93	N91				None	None		I ypical
44	M44	N 94	N92			RIGID	None	None		I ypical
45	MP5	N95	N96			Mount Pipes	Beam	Pipe	A53 Gr.B	I ypical
46	M46	N99	N9/			RIGID	None	None	RIGID	I ypical
47	M47	N100	N98			R IG ID	None	None	RIGID	Typical
48	MP4	N101	N102			Mount Pipes	Beam	Pipe	A53 Gr B	Typical
49	M49	N105	N103			R IG ID	None	None	RIGID	Typical
50	M50	N106	N104			R IG ID	None	None	RIGID	Typical
51	MP6	N107	N108			Mount Pipes	Beam	Pipe	A53 Gr.B	Typical

 RISA-3D Version 17.0.4
 [C:\...\..\..\..\..\..\...\...\Rev 1\RISA or TNX\WC-PK8-C_loaded.r3d]
 Page 5

Member Primary Data (Continued)

	Label	I J oint	J Joint	K Joint	Rotate(de	Section/Shape	Туре	Design List	Materia	Design Rul
52	M52	N107A	N108A			r ig id	None	None	RIGID	Typical
53	RRU1	N109	N110			Mount Pipes	Beam	Pipe	A53 Gr B	Typical

Member Advanced Data

	Label	I R eleas e	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
1	M1	BenPIN	BenPIN				Yes			None
2	M2						Yes			None
3	M3						Yes			None
4	M4						Yes			None
5	M5	0000X0	0000X0				Yes	Default		None
6	M6	BenPIN	BenPIN				Yes			None
7	M7						Yes			None
8	M8						Yes			None
9	M9						Yes			None
10	M10	0000X0	0000X0				Yes	Default		None
11	M11	BenPIN	BenPIN				Yes			None
12	M12						Yes			None
13	M13						Yes			None
14	M14						Yes			None
15	M15	0000X0	0000X0				Yes	Default		None
16	H1						Yes	Default		None
17	H3						Yes			None
18	H2						Yes			None
19	M19						Yes			None
20	M20						Yes			None
21	M21						Yes			None
22	M22						Yes			None
23	M23						Yes			None
24	M24						Yes			None
25	M25	000X00					Yes	** NA **		None
26	M26						Yes	** NA **		None
27	MP2						Yes			None
28	M28	000X00					Yes	** NA **		None
29	M29						Yes	** NA **		None
30	MP1						Yes			None
31	M31	000X00					Yes	** NA **		None
32	M32						Yes	** NA **		None
33	MP3						Yes			None
34	M34	000X00					Yes	** NA **		None
35	M35						Yes	** NA **		None
36	MP8						Yes			None
37	M37	000X00					Yes	** NA **		None
38	M38						Yes	** NA **		None
39	MP7						Yes			None
40	M40	000X00					Yes	** NA **		None
41	M41						Yes	** NA **		None
42	MP9						Yes			None
43	M43	000000					Yes	** NA **		None
44	M44						Yes	** NA **		None
45	MP5						Yes			None

Member Advanced Data (Continued)

	Label	l R eleas e	J Re l ease	Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
46	M46	000X00					Yes	** NA **		None
47	M47						Yes	** NA **		None
48	MP4						Yes			None
49	M49	000X00					Yes	** NA **		None
50	M50						Yes	** NA **		None
51	MP6						Yes			None
52	M52						Yes	** NA **		None
53	RRU1						Yes			None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torqu.	. Куу	Kzz	Cb	Function
1	M1	Standoff Br	69.713			Lbyy						Lateral
2	M2	Standoffs	40			Lbyy						Lateral
3	M3	Grating Bra	27.295			Lbyy						Latera
4	M4	Grating Bra	27.295			Lbyy						Lateral
5	M5	Plates	42			Lbyy						Lateral
6	M6	Standoff Br	69.713	28	28	28	28	28				Lateral
7	M7	Standoffs	40			Lbyy						Lateral
8	M8	Grating Bra	27.295			Lbyy						Lateral
9	M9	Grating Bra	27.295			Lbyy						Lateral
10	M10	Plates	42			Lbyy						Lateral
11	M11	Standoff Br	69.713			Lbyy						Lateral
12	M12	Standoffs	40			Lbyy						Lateral
13	M13	Grating Bra	27.295			Lbyy						Lateral
14	M14	Grating Bra	27.295			Lbyy						Lateral
15	M15	Plates	42			Lbyy						Lateral
16	H1	Horizontals	96			Lbyy						Lateral
17	H3	Horizontals	96			Lbyy						Lateral
18	H2	Horizontals	96			Lbyy						Lateral
19	M19	Handrails	96			Lbyy						Lateral
20	M20	Handrails	96			Lbyy						Lateral
21	M21	Handrails	96			Lbyy						Lateral
22	M22	Handrail Co	42			Lbyy						Lateral
23	M23	Handrail Co	42			Lbyy						Lateral
24	M24	Handrail Co	42			Lbyy						Lateral
25	MP2	MountPipes	73			Lbyy						Lateral
26	MP1	MountPipes	73			Lbyy						Lateral
27	MP3	MountPipes	73			Lbyy						Lateral
28	MP8	MountPipes	73			Lbyy						Lateral
29	MP7	MountPipes	73			Lbyy						Latera
30	MP9	MountPipes	73			Lbyy						Lateral
31	MP5	MountPipes	73			Lbyy						Lateral
32	MP4	MountPipes	73			Lbyy						Lateral
33	MP6	MountPipes	73			Lbyy						Lateral
34	RRU1	MountPipes	36			Lbyy						Lateral

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Bracing	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C 3X 5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Corners	L6 5/8x4 7/16x3/16	Beam	Single Angle	A36 Gr.36	Typical	2.039	3.593	9.575	.023
7	Horizontals	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
8	Mount Pipes	P IPE_2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25

Hot Rolled Steel Properties

	Label	E[ksi]	G [ksi]	Nu	Therm (/1E.	.Density[k/ft	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 G r.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Member Point Loads (BLC 1 : Self Weight)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP 1	Y	-41.25	0
2	MP1	Y	-41.25	72.8
3	MP 1	Y	-63.9	%25
4	MP1	Y	-75	%25
5	RRU1	Y	-21.85	%25
6	MP4	Y	-41.25	0
7	MP4	Y	-41.25	72.8
8	MP4	Y	-63.9	%25
9	MP4	Y	-75	%25
10	MP7	Y	-41.25	0
11	MP7	Y	-41.25	72.8
12	MP7	Y	-63.9	%25
13	MP7	Y	-75	%25

Member Point Loads (BLC 4 : Wind Load 0 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-219.995	0
2	MP1	Z	-219.995	72.8
3	MP1	Z	-107.855	%25
4	MP1	Z	-107.855	%25
5	RRU1	Z	-110.513	%25
6	MP4	Z	-121.121	0
7	MP4	Z	-121.121	72.8
8	MP4	Z	-67.384	%25
9	MP4	Z	-73.496	%25
10	MP7	Z	-121.121	0

Member Point Loads (BLC 4: Wind Load 0 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
11	MP7	Z	-121.121	72.8
12	MP7	Z	-67.384	%25
13	MP7	Z	-73.496	%25
14	MP1	X	0	0
15	MP1	Х	0	72.8
16	MP1	Х	0	%25
17	MP1	Х	0	%25
18	RRU1	Х	0	%25
19	MP4	Х	0	0
20	MP4	X	0	72.8
21	MP4	Х	0	%25
22	MP4	X	0	%25
23	MP7	Х	0	0
24	MP7	X	0	72.8
25	MP7	X	0	%25
26	MP7	X	0	%25

Member Point Loads (BLC 5: Wind Load 30 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-161.979	0
2	MP1	Z	-161.979	72.8
3	MP1	Z	-81.722	%25
4	MP1	Z	-83.487	%25
5	RRU1	Z	-85.673	%25
6	MP4	Z	-161.979	0
7	MP4	Z	-161.979	72.8
8	MP4	Z	-81.722	%25
9	MP4	Z	-83.487	%25
10	MP7	Z	-76.351	0
11	MP7	Z	-76.351	72.8
12	MP7	Z	-46.673	%25
13	MP7	Z	-53.73	%25
14	MP1	X	-93.519	0
15	MP1	X	-93.519	72.8
16	MP1	X	-47.182	%25
17	MP1	X	-48.201	%25
18	RRU1	Х	-49.463	%25
19	MP4	Х	-93.519	0
20	MP4	X	-93.519	72.8
21	MP4	Х	-47.182	%25
22	MP4	X	-48.201	%25
23	MP7	Х	-44.081	0
24	MP7	Х	-44.081	72.8
25	MP7	X	-26.947	%25
26	MP7	X	-31.021	%25

Member Point Loads (BLC 6 : Wind Load 45 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location[in,%]
1	MP1	Z	-108.95	0
2	MP1	Z	-108.95	72.8
3	MP1	Z	-57.187	%25

Member Point Loads (BLC 6: Wind Load 45 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
4	MP1	Z	-60.068	%25
5	RRU1	Z	-61.759	%25
6	MP4	Z	-149.316	0
7	MP4	Z	-149.316	72.8
8	MP4	Z	-73.709	%25
9	MP4	Z	-74.095	%25
10	MP7	Z	-68.585	0
11	MP7	Z	-68.585	72.8
12	MP7	Z	-40.664	%25
13	MP7	Z	-46.041	%25
14	MP1	Х	-108.95	0
15	MP1	Х	-108.95	72.8
16	MP1	X	-57.187	%25
17	MP1	Х	-60.068	%25
18	RRU1	Х	-61.759	%25
19	MP4	Х	-149.316	0
20	MP4	Х	-149.316	72.8
21	MP4	Х	-73.709	%25
22	MP4	Х	-74.095	%25
23	MP7	X	-68.585	0
24	MP7	X	-68.585	72.8
25	MP7	X	-40.664	%25
26	MP7	X	-46.041	%25

Member Point Loads (BLC 7 : Wind Load 60 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-60.56	0
2	MP1	Z	-60.56	72.8
3	MP1	Z	-33.692	%25
4	MP1	Z	-36.748	%25
5	RRU1	Z	-37.877	%25
6	MP4	Z	-109.998	0
7	MP4	Z	-109.998	72.8
8	MP4	Z	-53.928	%25
9	MP4	Z	-53.928	%25
10	MP7	Z	-60.56	0
11	MP7	Z	-60.56	72.8
12	MP7	Z	-33.692	%25
13	MP7	Z	-36.748	%25
14	MP1	Х	-104.894	0
15	MP1	Х	-104.894	72.8
16	MP1	Х	-58.356	%25
17	MP1	Х	-63.649	%25
18	RRU1	Х	-65.605	%25
19	MP4	Х	-190.521	0
20	MP4	Х	-190.521	72.8
21	MP4	Х	-93.405	%25
22	MP4	Х	-93.405	%25
23	MP7	X	-104.894	0
24	MP7	X	-104.894	72.8
25	MP7	X	-58.356	%25

Member Point Loads (BLC 7: Wind Load 60 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
26	MP7	Х	-63.649	%25

Member Point Loads (BLC 8 : Wind Load 90 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-5.398e-15	0
2	MP1	Z	-5.398e-15	72.8
3	MP1	Z	-3.3e-15	%25
4	MP1	Z	-3.799e-15	%25
5	RRU1	Z	-3.929e-15	%25
6	MP4	Z	-1.145e-14	0
7	MP4	Z	-1.145e-14	72.8
8	MP4	Z	-5.778e-15	%25
9	MP4	Z	-5.903e-15	%25
10	MP7	Z	-1.145e-14	0
11	MP7	Z	-1.145e-14	72.8
12	MP7	Z	-5.778e-15	%25
13	MP7	Z	-5.903e-15	%25
14	MP1	Х	-88.163	0
15	MP1	Х	-88.163	72.8
16	MP1	Х	-53.893	%25
17	MP1	Х	-62.043	%25
18	RRU1	Х	-64.169	%25
19	MP4	Х	-187.037	0
20	MP4	Х	-187.037	72.8
21	MP4	Х	-94.365	%25
22	MP4	X	-96.402	%25
23	MP7	X	-187.037	0
24	MP7	Х	-187.037	72.8
25	MP7	X	-94.365	%25
26	MP7	X	-96.402	%25

Member Point Loads (BLC 9: Wind Load 120 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location[in,%]
1	MP1	Z	60.56	0
2	MP1	Z	60.56	72.8
3	MP 1	Z	33.692	%25
4	MP1	Z	36.748	%25
5	RRU1	Z	37.877	%25
6	MP4	Z	60.56	0
7	MP4	Z	60.56	72.8
8	MP4	Z	33.692	%25
9	MP4	Z	36.748	%25
10	MP7	Z	109.998	0
11	MP7	Z	109.998	72.8
12	MP7	Z	53.928	%25
13	MP7	Z	53.928	%25
14	MP1	Х	-104.894	0
15	MP1	Х	-104.894	72.8
16	MP1	Х	-58.356	%25
17	MP1	Х	-63.649	%25
18	RRU1	Х	-65.605	%25

Member Point Loads (BLC 9 : Wind Load 120 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location [in, %]
19	MP4	Х	-104.894	0
20	MP4	Х	-104.894	72.8
21	MP4	Х	-58.356	%25
22	MP4	Х	-63.649	%25
23	MP7	Х	-190.521	0
24	MP7	Х	-190.521	72.8
25	MP7	Х	-93.405	%25
26	MP7	Х	-93.405	%25

Member Point Loads (BLC 10 : Wind Load 135 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	108.95	0
2	MP1	Z	108.95	72.8
3	MP1	Z	57.187	%25
4	MP1	Z	60.068	%25
5	RRU1	Z	61.759	%25
6	MP4	Z	68.585	0
7	MP4	Z	68.585	72.8
8	MP4	Z	40.664	%25
9	MP4	Z	46.041	%25
10	MP7	Z	149.316	0
11	MP7	Z	149.316	72.8
12	MP7	Z	73.709	%25
13	MP7	Z	74.095	%25
14	MP 1	Х	-108.95	0
15	MP1	Х	-108.95	72.8
16	MP1	Х	-57.187	%25
17	MP1	Х	-60.068	%25
18	RRU1	Х	-61.759	%25
19	MP4	Х	-68.585	0
20	MP4	Х	-68.585	72.8
21	MP4	Х	-40.664	%25
22	MP4	Х	-46.041	%25
23	MP7	Х	-149.316	0
24	MP7	Х	-149.316	72.8
25	MP7	Х	-73.709	%25
26	MP7	Х	-74.095	%25

Member Point Loads (BLC 11 : Wind Load 150 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	161.979	0
2	MP1	Z	161.979	72.8
3	MP1	Z	81.722	%25
4	MP1	Z	83.487	%25
5	RRU1	Z	85.673	%25
6	MP4	Z	76.351	0
7	MP4	Z	76.351	72.8
8	MP4	Z	46.673	%25
9	MP4	Z	53.73	%25
10	MP7	Z	161.979	0
11	MP7	Z	161.979	72.8

Member Point Loads (BLC 11 : Wind Load 150 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
12	MP7	Z	81.722	%25
13	MP7	Z	83.487	%25
14	MP1	Х	-93.519	0
15	MP1	Х	-93.519	72.8
16	MP1	Х	-47.182	%25
17	MP1	Х	-48.201	%25
18	RRU1	Х	-49.463	%25
19	MP4	Х	-44.081	0
20	MP4	Х	-44.081	72.8
21	MP4	Х	-26.947	%25
22	MP4	Х	-31.021	%25
23	MP7	Х	-93.519	0
24	MP7	X	-93.519	72.8
25	MP7	Х	-47.182	%25
26	MP7	Х	-48.201	%25

Member Point Loads (BLC 12 : ke Weight)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Y	-145.255	0
2	MP1	Y	-145.255	72.8
3	MP1	Y	-70.777	%25
4	MP1	Y	-75.391	%25
5	RRU1	Y	-74.305	%25
6	MP4	Y	-145.255	0
7	MP4	Y	-145.255	72.8
8	MP4	Y	-70.777	%25
9	MP4	Y	-75.391	%25
10	MP7	Y	-145.255	0
11	MP7	Y	-145.255	72.8
12	MP7	Y	-70.777	%25
13	MP7	Y	-75.391	%25

Member Point Loads (BLC 15 : ke Wind Load 0 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-36.293	0
2	MP1	Z	-36.293	72.8
3	MP1	Z	-18.027	%25
4	MP1	Z	-18.027	%25
5	RRU1	Z	-18.44	%25
6	MP4	Z	-22.163	0
7	MP4	Z	-22.163	72.8
8	MP4	Z	-11.936	%25
9	MP4	Z	-12.855	%25
10	MP7	Z	-22.163	0
11	MP7	Z	-22.163	72.8
12	MP7	Z	-11.936	%25
13	MP7	Z	-12.855	%25
14	MP1	Х	0	0
15	MP1	Х	0	72.8
16	MP1	Х	0	%25
17	MP1	Х	0	%25

Member Point Loads (BLC 15: ke Wind Load 0 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
18	RRU1	Х	0	%25
19	MP4	Х	0	0
20	MP4	Х	0	72.8
21	MP4	Х	0	%25
22	MP4	Х	0	%25
23	MP7	Х	0	0
24	MP7	Х	0	72.8
25	MP7	Х	0	%25
26	MP7	Х	0	%25

Member Point Loads (BLC 16 : Ice Wind Load 30 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-27.352	0
2	MP1	Z	-27.352	72.8
3	MP1	Z	-13.854	%25
4	MP1	Z	-14.119	%25
5	RRU1	Z	-14.473	%25
6	MP4	Z	-27.352	0
7	MP4	Z	-27.352	72.8
8	MP4	Z	-13.854	%25
9	MP4	Z	-14.119	%25
10	MP7	Z	-15.115	0
11	MP7	Z	-15.115	72.8
12	MP7	Z	-8.579	%25
13	MP7	Z	-9.64	%25
14	MP1	Х	-15.792	0
15	MP1	Х	-15.792	72.8
16	MP1	X	-7.998	%25
17	MP1	Х	-8.152	%25
18	RRU1	X	-8.356	%25
19	MP4	X	-15.792	0
20	MP4	X	-15.792	72.8
21	MP4	Х	-7.998	%25
22	MP4	Х	-8.152	%25
23	MP7	X	-8.727	0
24	MP7	Х	-8.727	72.8
25	MP7	X	-4.953	%25
26	MP7	Х	-5.566	%25

Member Point Loads (BLC 17 : Ice Wind Load 45 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-19.002	0
2	MP1	Z	-19.002	72.8
3	MP1	Z	-9.876	%25
4	MP1	Z	-10.309	%25
5	RRU1	Z	-10.595	%25
6	MP4	Z	-24.771	0
7	MP4	Z	-24.771	72.8
8	MP4	Z	-12.363	%25
9	MP4	Z	-12.421	%25
10	MP7	Z	-13.234	0

Member Point Loads (BLC 17 : ke Wind Load 45 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
11	MP7	Z	-13.234	72.8
12	MP7	Z	-7.389	%25
13	MP7	Z	-8.198	%25
14	MP1	Х	-19.002	0
15	MP1	Х	-19.002	72.8
16	MP1	Х	-9.876	%25
17	MP1	Х	-10.309	%25
18	RRU1	Х	-10.595	%25
19	MP4	Х	-24.771	0
20	MP4	Х	-24.771	72.8
21	MP4	Х	-12.363	%25
22	MP4	Х	-12.421	%25
23	MP7	Х	-13.234	0
24	MP7	Х	-13.234	72.8
25	MP7	X	-7.389	%25
26	MP7	X	-8.198	%25

Member Point Loads (BLC 18 : Ice Wind Load 60 AZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-11.082	0
2	MP1	Z	-11.082	72.8
3	MP1	Z	-5.968	%25
4	MP1	Z	-6.428	%25
5	RRU1	Z	-6.628	%25
6	MP4	Z	-18.146	0
7	MP4	Z	-18.146	72.8
8	MP4	Z	-9.014	%25
9	MP4	Z	-9.014	%25
10	MP7	Z	-11.082	0
11	MP7	Z	-11.082	72.8
12	MP7	Z	-5.968	%25
13	MP7	Z	-6.428	%25
14	MP1	X	-19.194	0
15	MP1	X	-19.194	72.8
16	MP1	X	-10.337	%25
17	MP1	X	-11.133	%25
18	RRU1	Х	-11.48	%25
19	MP4	Х	-31.431	0
20	MP4	Х	-31.431	72.8
21	MP4	Х	-15.612	%25
22	MP4	X	-15.612	%25
23	MP7	X	-19.194	0
24	MP7	Х	-19.194	72.8
25	MP7	Х	-10.337	%25
26	MP7	X	-11.133	%25

Member Point Loads (BLC 19 : ke Wind Load 90 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location[in,%]
1	MP1	Z	-1.069e-15	0
2	MP1	Z	-1.069e-15	72.8
3	MP1	Z	-6.066e-16	%25

Member Point Loads (BLC 19 : ke Wind Load 90 AZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
4	MP1	Z	-6.816e-16	%25
5	RRU1	Z	-7.059e-16	%25
6	MP4	Z	-1.934e-15	0
7	MP4	Z	-1.934e-15	72.8
8	MP4	Z	-9.795e-16	%25
9	MP4	Z	-9.983e-16	%25
10	MP7	Z	-1.934e-15	0
11	MP7	Z	-1.934e-15	72.8
12	MP7	Z	-9.795e-16	%25
13	MP7	Z	-9.983e-16	%25
14	MP1	X	-17.454	0
15	MP1	X	-17.454	72.8
16	MP1	X	-9.906	%25
17	MP1	Х	-11.131	%25
18	RRU1	X	-11.528	%25
19	MP4	Х	-31.583	0
20	MP4	Х	-31.583	72.8
21	MP4	Х	-15.997	%25
22	MP4	Х	-16.303	%25
23	MP7	X	-31.583	0
24	MP7	X	-31.583	72.8
25	MP7	X	-15.997	%25
26	MP7	X	-16.303	%25

Member Point Loads (BLC 20 : ke Wind Load 120 A ZI)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Z	11.082	0
2	MP1	Z	11.082	72.8
3	MP1	Z	5.968	%25
4	MP1	Z	6.428	%25
5	RRU1	Z	6.628	%25
6	MP4	Z	11.082	0
7	MP4	Z	11.082	72.8
8	MP4	Z	5.968	%25
9	MP4	Z	6.428	%25
10	MP7	Z	18.146	0
11	MP7	Z	18.146	72.8
12	MP7	Z	9.014	%25
13	MP7	Z	9.014	%25
14	MP 1	Х	-19.194	0
15	MP1	Х	-19.194	72.8
16	MP1	Х	-10.337	%25
17	MP1	Х	-11.133	%25
18	RRU1	Х	-11.48	%25
19	MP4	Х	-19.194	0
20	MP4	Х	-19.194	72.8
21	MP4	Х	-10.337	%25
22	MP4	Х	-11.133	%25
23	MP7	Х	-31.431	0
24	MP7	Х	-31.431	72.8
25	MP7	X	-15.612	%25

Member Point Loads (BLC 20 : Ice Wind Load 120 A ZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
26	MP7	Х	-15.612	%25

Member Point Loads (BLC 21 : Ice Wind Load 135 A ZI)

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP1	Z	19.002	0
2	MP1	Z	19.002	72.8
3	MP1	Z	9.876	%25
4	MP1	Z	10.309	%25
5	RRU1	Z	10.595	%25
6	MP4	Z	13.234	0
7	MP4	Z	13.234	72.8
8	MP4	Z	7.389	%25
9	MP4	Z	8.198	%25
10	MP7	Z	24.771	0
11	MP7	Z	24.771	72.8
12	MP7	Z	12.363	%25
13	MP7	Z	12.421	%25
14	MP1	X	-19.002	0
15	MP1	Х	-19.002	72.8
16	MP1	Х	-9.876	%25
17	MP1	Х	-10.309	%25
18	RRU1	Х	-10.595	%25
19	MP4	Х	-13.234	0
20	MP4	X	-13.234	72.8
21	MP4	Х	-7.389	%25
22	MP4	X	-8.198	%25
23	MP7	X	-24.771	0
24	MP7	X	-24.771	72.8
25	MP7	X	-12.363	%25
26	MP7	X	-12.421	%25

Member Point Loads (BLC 22 : Ice Wind Load 150 A ZI)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	27.352	0
2	MP1	Z	27.352	72.8
3	MP1	Z	13.854	%25
4	MP1	Z	14.119	%25
5	RRU1	Z	14.473	%25
6	MP4	Z	15.115	0
7	MP4	Z	15.115	72.8
8	MP4	Z	8.579	%25
9	MP4	Z	9.64	%25
10	MP7	Z	27.352	0
11	MP7	Z	27.352	72.8
12	MP7	Z	13.854	%25
13	MP7	Z	14.119	%25
14	MP1	Х	-15.792	0
15	MP1	Х	-15.792	72.8
16	MP1	Х	-7.998	%25
17	MP1	Х	-8.152	%25
18	RRU1	X	-8.356	%25

Member Point Loads (BLC 22 : Ice Wind Load 150 A ZI) (Continued)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
19	MP4	Х	-8.727	0
20	MP4	Х	-8.727	72.8
21	MP4	Х	-4.953	%25
22	MP4	Х	-5.566	%25
23	MP7	Х	-15.792	0
24	MP7	Х	-15.792	72.8
25	MP7	X	-7.998	%25
26	MP7	Х	-8.152	%25

Member Point Loads (BLC 23 : Seismic Load Z)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Z	-4.33	0
2	MP1	Z	-4.33	72.8
3	MP1	Z	-6.707	%25
4	MP1	Z	-7.872	%25
5	RRU1	Z	-2.293	%25
6	MP4	Z	-4.33	0
7	MP4	Z	-4.33	72.8
8	MP4	Z	-6.707	%25
9	MP4	Z	-7.872	%25
10	MP7	Z	-4.33	0
11	MP7	Z	-4.33	72.8
12	MP7	Z	-6.707	%25
13	MP7	Z	-7.872	%25

Member Point Loads (BLC 24 : Seismic Load X)

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	MP1	Х	-4.33	0
2	MP1	Х	-4.33	72.8
3	MP1	Х	-6.707	%25
4	MP1	Х	-7.872	%25
5	RRU1	Х	-2.293	%25
6	MP4	Х	-4.33	0
7	MP4	Х	-4.33	72.8
8	MP4	Х	-6.707	%25
9	MP4	Х	-7.872	%25
10	MP7	Х	-4.33	0
11	MP7	Х	-4.33	72.8
12	MP7	Х	-6.707	%25
13	MP7	Х	-7.872	%25

Member Point Loads (BLC 25 : Live Load 1 (Lv))

	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]
1	H1	Y	-250	0

Member Point Loads (BLC 26 : Live Load 2 (Lv))

	Member Label	Direction	Magnitude [lb,lb-ft]	Location [in, %]
1	H1	Y	-250	%50

Member Point Loads (BLC 27 : Live Load 3 (Lv))							
	Member Label	Direction	Magnitude [lb,lb-ft]	Location [in, %]			
1	H1	Y	-250	%100			
Member	PointLoads (BLC 2	8 : Live Load 4 (Lv)					
	Member Label	Direction	Magnitude [lb.lb-ft]	Location [in.%]			
1	H3	Y	-250	0			
Member	PointLoads (BLC 2	9 : Live Load 5 (Lv)					
	Member Label		Magnitude []b lb-ft]	Location [in %]			
1	H3	Y	-250	%50			
Member	PointLoads (BLC 3	0 : Live Load 6 (Lv)					
	Memberlabel	Direction	Magnitude [lb lb-ft]	Location [in %]			
1	H3	Y	-250	<u>%100</u>			
Member	PointLoads (BLC 3	1 : Live Load 7 (Lv))				
	MemberLabel	Direction	Magnitude [lb.lb-ft]	Location [in.%]			
1	H2	Y	-250	0			
Member	PointLoads (BLC 3	2 : Live Load 8 (Lv)))				
	Member Label	Direction	Magnitude [lb, lb-ft]	Location[in,%]			
1	H2	Y	-250	%50			
Member	PointLoads (BLC 3	3 : Live Load 9 (Lv),					
	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]			
1	H2	Y	-250	%100			
Member	PointLoads (BLC 3	4 : Maintenance Loa	ad 1 (Lm))				
	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]			
1	MP2	Y	-500	%50			
Member	PointLoads (BLC 3	5 : Maintenance Loa	ad 2 (Lm))				
	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]			
1	MP1	Y	-500	%50			
Member	PointLoads (BLC 3	6 : Maintenance Loa	ad 3 (Lm))				
	Member Label	Direction	Magnitude [lb,lb-ft]	Location [in, %]			
1	MP3	Y	-500	%50			
Member	PointLoads (BLC 3	7 : Maintenance Loa	ad 4 (Lm))				
	Memberlabel	Direction	Magnitude [lb lb_ft]	Location lin %1			
1	MP8	Y	-500	<u>%50</u>			
Mombor	Pointloado (PLC 2	9 : Maintonanaa la	d 5 (l m)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
wemper	FUIILLUAUS (BLU 3	o . Maintenance L 08	au υ (μ <i>πι))</i>				
	Member Label	Direction	Magnitude [lb,lb-ft]	Location[in,%]			
1	MP7	Y	-500	%50			

Mem	Member Point Loads (BLC 39 : Maintenance Load 6 (Lm))							
	Member Label	Direction	Magnitude[lb,lb-ft]	Location [in.%]				
1	MP9	Y	-500	%50				
Member Point Loads (BLC 40 : Maintenance Load 7 (Lm))								
	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]				
1	MP5	Y	-500	%50				
Member Point Loads (BLC 41 : Maintenance Load 8 (Lm))								
	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]				
1	MP4	Y	-500	%50				

Member Point Loads (BLC 42 : Maintenance Load 9 (Lm))

	Member Label	Direction	Magnitude[lb,lb-ft]	Location[in,%]
1	MP6	Y	-500	%50

Member Distributed Loads (BLC 2 : Structure Wind Z)

Ξ

	Member Label	Direction	Start Magnitude [lb/ft,	End Magnitude[Ib/ft,F	. Start Location [in, %]	End Location[in,%]
1	M1	SZ	-109.86	-109.86	0	%100
2	M2	SZ	-65.916	-65.916	0	%100
3	M3	SZ	-109.86	-109.86	0	%100
4	M4	SZ	-109.86	-109.86	0	%100
5	M5	SZ	-109.86	-109.86	0	%100
6	M6	SZ	-109.86	-109.86	0	%100
7	M7	SZ	-65.916	-65.916	0	%100
8	M8	SZ	-109.86	-109.86	0	%100
9	M9	SZ	-109.86	-109.86	0	%100
10	M10	SZ	-109.86	-109.86	0	%100
11	M11	SZ	-109.86	-109.86	0	%100
12	M12	SZ	-65.916	-65.916	0	%100
13	M13	SZ	-109.86	-109.86	0	%100
14	M14	SZ	-109.86	-109.86	0	%100
15	M15	SZ	-109.86	-109.86	0	%100
16	H1	SZ	-65.916	-65.916	0	%100
17	H3	SZ	-65.916	-65.916	0	%100
18	H2	SZ	-65.916	-65.916	0	%100
19	M19	SZ	-65.916	-65.916	0	%100
20	M20	SZ	-65.916	-65.916	0	%100
21	M21	SZ	-65.916	-65.916	0	%100
22	M22	SZ	-109.86	-109.86	0	%100
23	M23	SZ	-109.86	-109.86	0	%100
24	M24	SZ	-109.86	-109.86	0	%100
25	M25	SZ	-109.86	-109.86	0	%100
26	M26	SZ	-109.86	-109.86	0	%100
27	MP2	SZ	-65.916	-65.916	0	%100
28	M28	SZ	-109.86	-109.86	0	%100
29	M29	SZ	-109.86	-109.86	0	%100
30	MP1	SZ	-65.916	-65.916	0	%100
31	M31	SZ	-109.86	-109.86	0	%100
32	M32	SZ	-109.86	-109.86	0	%100
33	MP3	SZ	-65.916	-65.916	0	%100

R ISA-3D Version 17.0.4 [C:\...\..\..\..\..\..\...\...\Rev 1\R ISA or TNX\MC-PK8-C_loaded.r3d] Page 20

Member Distributed Loads (BLC 2: Structure Wind Z) (Continued)

	Member Label	Direction	Start Magnitude [lb/ft,	End Magnitude[lb/ft,F	. Start Location [in, %]	End Location[in,%]
34	M34	SZ	-109.86	-109.86	0	%100
35	M35	SZ	-109.86	-109.86	0	%100
36	MP8	SZ	-65.916	-65.916	0	%100
37	M37	SZ	-109.86	-109.86	0	%100
38	M38	SZ	-109.86	-109.86	0	%100
39	MP7	SZ	-65.916	-65.916	0	%100
40	M40	SZ	-109.86	-109.86	0	%100
41	M41	SZ	-109.86	-109.86	0	%100
42	MP9	SZ	-65.916	-65.916	0	%100
43	M43	SZ	-109.86	-109.86	0	%100
44	M44	SZ	-109.86	-109.86	0	%100
45	MP5	SZ	-65.916	-65.916	0	%100
46	M46	SZ	-109.86	-109.86	0	%100
47	M47	SZ	-109.86	-109.86	0	%100
48	MP4	SZ	-65.916	-65.916	0	%100
49	M49	SZ	-109.86	-109.86	0	%100
50	M50	SZ	-109.86	-109.86	0	%100
51	MP6	SZ	-65.916	-65.916	0	%100
52	M52	SZ	-109.86	-109.86	0	%100
53	RRU1	SZ	-65.916	-65.916	0	%100

Member Distributed Loads (BLC 3 : Structure Wind X)

	Member Label	Direction	Start Magnitude [lb/ft,	End Magnitude[Ib/ft,F	. Start Location [in,%]	End Location[in,%]
1	M1	SX	-109.86	-109.86	0	%100
2	M2	SX	-65.916	-65.916	0	%100
3	M3	SX	-109.86	-109.86	0	%100
4	M4	SX	-109.86	-109.86	0	%100
5	M5	SX	-109.86	-109.86	0	%100
6	M6	SX	-109.86	-109.86	0	%100
7	M7	SX	-65.916	-65.916	0	%100
8	M8	SX	-109.86	-109.86	0	%100
9	M9	SX	-109.86	-109.86	0	%100
10	M10	SX	-109.86	-109.86	0	%100
11	M11	SX	-109.86	-109.86	0	%100
12	M12	SX	-65.916	-65.916	0	%100
13	M13	SX	-109.86	-109.86	0	%100
14	M14	SX	-109.86	-109.86	0	%100
15	M15	SX	-109.86	-109.86	0	%100
16	H1	SX	-65.916	-65.916	0	%100
17	H3	SX	-65.916	-65.916	0	%100
18	H2	SX	-65.916	-65.916	0	%100
19	M19	SX	-65.916	-65.916	0	%100
20	M20	SX	-65.916	-65.916	0	%100
21	M21	SX	-65.916	-65.916	0	%100
22	M22	SX	-109.86	-109.86	0	%100
23	M23	SX	-109.86	-109.86	0	%100
24	M24	SX	-109.86	-109.86	0	%100
25	M25	SX	-109.86	-109.86	0	%100
26	M26	SX	-109.86	-109.86	0	%100
27	MP2	SX	-65.916	-65.916	0	%100
28	M28	SX	-109.86	-109.86	0	%100

Member Distributed Loads (BLC 3: Structure Wind X) (Continued)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[lb/ft,F	. Start Location [in,%]	End Location[in,%]
29	M29	SX	-109.86	-109.86	0	%100
30	MP1	SX	-65.916	-65.916	0	%100
31	M31	SX	-109.86	-109.86	0	%100
32	M32	SX	-109.86	-109.86	0	%100
33	MP3	SX	-65.916	-65.916	0	%100
34	M34	SX	-109.86	-109.86	0	%100
35	M35	SX	-109.86	-109.86	0	%100
36	MP8	SX	-65.916	-65.916	0	%100
37	M37	SX	-109.86	-109.86	0	%100
38	M38	SX	-109.86	-109.86	0	%100
39	MP7	SX	-65.916	-65.916	0	%100
40	M40	SX	-109.86	-109.86	0	%100
41	M41	SX	-109.86	-109.86	0	%100
42	MP9	SX	-65.916	-65.916	0	%100
43	M43	SX	-109.86	-109.86	0	%100
44	M44	SX	-109.86	-109.86	0	%100
45	MP5	SX	-65.916	-65.916	0	%100
46	M46	SX	-109.86	-109.86	0	%100
47	M47	SX	-109.86	-109.86	0	%100
48	MP4	SX	-65.916	-65.916	0	%100
49	M49	SX	-109.86	-109.86	0	%100
50	M50	SX	-109.86	-109.86	0	%100
51	MP6	SX	-65.916	-65.916	0	%100
52	M52	SX	-109.86	-109.86	0	%100
53	RRU1	SX	-65.916	-65.916	0	%100

Member Distributed Loads (BLC 12 : Ice Weight)

	Member Label	Direction	Start Magnitude [lb/ft,	End Magnitude[lb/ft,F	. Start Location [in,%]	End Location[in,%]
1	M1	Y	-10.902	-10.902	0	%100
2	M2	Y	-12.282	-12.282	0	%100
3	M3	Y	-9.779	-9.779	0	%100
4	M4	Y	-9.779	-9.779	0	%100
5	M5	Y	-17.645	-17.645	0	%100
6	M6	Y	-10.902	-10.902	0	%100
7	M7	Y	-12.282	-12.282	0	%100
8	M8	Y	-9.779	-9.779	0	%100
9	M9	Y	-9.779	-9.779	0	%100
10	M10	Y	-17.645	-17.645	0	%100
11	M11	Y	-10.902	-10.902	0	%100
12	M12	Y	-12.282	-12.282	0	%100
13	M13	Y	-9.779	-9.779	0	%100
14	M14	Y	-9.779	-9.779	0	%100
15	M15	Y	-17.645	-17.645	0	%100
16	H1	Y	-12.282	-12.282	0	%100
17	H3	Y	-12.282	-12.282	0	%100
18	H2	Y	-12.282	-12.282	0	%100
19	M19	Y	-8.81	-8.81	0	%100
20	M20	Y	-8.81	-8.81	0	%100
21	M21	Y	-8.81	-8.81	0	%100
22	M22	Y	-20.771	-20.771	0	%100
23	M23	Y	-20.771	-20.771	0	%100

Member Distributed Loads (BLC 12 : Ice Weight) (Continued)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[lb/ft,F	. Start Location [in, %]	End Location[in,%]
24	M24	Y	-20.771	-20.771	0	%100
25	M25	Y	0	0	0	%100
26	M26	Y	0	0	0	%100
27	MP2	Y	-8.81	-8.81	0	%100
28	M28	Y	0	0	0	%100
29	M29	Y	0	0	0	%100
30	MP1	Y	-8.81	-8.81	0	%100
31	M31	Y	0	0	0	%100
32	M32	Y	0	0	0	%100
33	MP3	Y	-8.81	-8.81	0	%100
34	M34	Y	0	0	0	%100
35	M35	Y	0	0	0	%100
36	MP8	Y	-8.81	-8.81	0	%100
37	M37	Y	0	0	0	%100
38	M38	Y	0	0	0	%100
39	MP7	Y	-8.81	-8.81	0	%100
40	M40	Y	0	0	0	%100
41	M41	Y	0	0	0	%100
42	MP9	Y	-8.81	-8.81	0	%100
43	M43	Y	0	0	0	%100
44	M44	Y	0	0	0	%100
45	MP5	Y	-8.81	-8.81	0	%100
46	M46	Y	0	0	0	%100
47	M47	Y	0	0	0	%100
48	MP4	Y	-8.81	-8.81	0	%100
49	M49	Y	0	0	0	%100
50	M50	Y	0	0	0	%100
51	MP6	Y	-8.81	-8.81	0	%100
52	M52	Y	0	0	0	%100
53	RRU1	Y	-8.81	-8.81	0	%100

Member Distributed Loads (BLC 13 : Ice Structure Wind Z)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[lb/ft,F	. Start Location [in,%]	End Location[in,%]
1	M1	SZ	-15.556	-15.556	0	%100
2	M2	SZ	-14.274	-14.274	0	%100
3	M3	SZ	-17.032	-17.032	0	%100
4	M4	SZ	-17.032	-17.032	0	%100
5	M5	SZ	-11.706	-11.706	0	%100
6	M6	SZ	-15.556	-15.556	0	%100
7	M7	SZ	-14.274	-14.274	0	%100
8	M8	SZ	-17.032	-17.032	0	%100
9	M9	SZ	-17.032	-17.032	0	%100
10	M10	SZ	-11.706	-11.706	0	%100
11	M11	SZ	-15.556	-15.556	0	%100
12	M12	SZ	-14.274	-14.274	0	%100
13	M13	SZ	-17.032	-17.032	0	%100
14	M14	SZ	-17.032	-17.032	0	%100
15	M15	SZ	-11.706	-11.706	0	%100
16	H1	SZ	-14.274	-14.274	0	%100
17	H3	SZ	-14.274	-14.274	0	%100
18	H2	SZ	-14.274	-14.274	0	%100

Member Distributed Loads (BLC 13 : Ice Structure Wind Z) (Continued)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[Ib/ft,F	. Start Location [in,%]	End Location[in,%]
19	M19	SZ	-18.83	-18.83	0	%100
20	M20	SZ	-18.83	-18.83	0	%100
21	M21	SZ	-18.83	-18.83	0	%100
22	M22	SZ	-10.956	-10.956	0	%100
23	M23	SZ	-10.956	-10.956	0	%100
24	M24	SZ	-10.956	-10.956	0	%100
25	M25	SZ	0	0	0	%100
26	M26	SZ	0	0	0	%100
27	MP2	SZ	-18.83	-18.83	0	%100
28	M28	SZ	0	0	0	%100
29	M29	SZ	0	0	0	%100
30	MP1	SZ	-18.83	-18.83	0	%100
31	M31	SZ	0	0	0	%100
32	M32	SZ	0	0	0	%100
33	MP3	SZ	-18.83	-18.83	0	%100
34	M34	SZ	0	0	0	%100
35	M35	SZ	0	0	0	%100
36	MP8	SZ	-18.83	-18.83	0	%100
37	M37	SZ	0	0	0	%100
38	M38	SZ	0	0	0	%100
39	MP7	SZ	-18.83	-18.83	0	%100
40	M40	SZ	0	0	0	%100
41	M41	SZ	0	0	0	%100
42	MP9	SZ	-18.83	-18.83	0	%100
43	M43	SZ	0	0	0	%100
44	M44	SZ	0	0	0	%100
45	MP5	SZ	-18.83	-18.83	0	%100
46	M46	SZ	0	0	0	%100
47	M47	SZ	0	0	0	%100
48	MP4	SZ	-18.83	-18.83	0	%100
49	M49	SZ	0	0	0	%100
50	M50	SZ	0	0	0	%100
51	MP6	SZ	-18.83	-18.83	0	%100
52	M52	SZ	0	0	0	%100
53	RRU1	SZ	-18.83	-18.83	0	%100

Member Distributed Loads (BLC 14 : Ice Structure Wind X)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[Ib/ft,F	. Start Location [in,%]	End Location[in,%]
1	M1	SX	-15.556	-15.556	0	%100
2	M2	SX	-14.274	-14.274	0	%100
3	M3	SX	-17.032	-17.032	0	%100
4	M4	SX	-17.032	-17.032	0	%100
5	M5	SX	-11.706	-11.706	0	%100
6	M6	SX	-15.556	-15.556	0	%100
7	M7	SX	-14.274	-14.274	0	%100
8	M8	SX	-17.032	-17.032	0	%100
9	M9	SX	-17.032	-17.032	0	%100
10	M10	SX	-11.706	-11.706	0	%100
11	M11	SX	-15.556	-15.556	0	%100
12	M12	SX	-14.274	-14.274	0	%100
13	M13	SX	-17.032	-17.032	0	%100

Member Distributed Loads (BLC 14 : Ice Structure Wind X) (Continued)

	Member Label	Direction	Start Magnitude [lb/ft,.	End Magnitude[lb/ft,F	Start Location [in, %]	End Location[in,%]
14	M14	SX	-17.032	-17.032	0	%100
15	M15	SX	-11.706	-11.706	0	%100
16	H1	SX	-14.274	-14.274	0	%100
17	H3	SX	-14.274	-14.274	0	%100
18	H2	SX	-14.274	-14.274	0	%100
19	M19	SX	-18.83	-18.83	0	%100
20	M20	SX	-18.83	-18.83	0	%100
21	M21	SX	-18.83	-18.83	0	%100
22	M22	SX	-10.956	-10.956	0	%100
23	M23	SX	-10.956	-10.956	0	%100
24	M24	SX	-10.956	-10.956	0	%100
25	M25	SX	0	0	0	%100
26	M26	SX	0	0	0	%100
27	MP2	SX	-18.83	-18.83	0	%100
28	M28	SX	0	0	0	%100
29	M29	SX	0	0	0	%100
30	MP1	SX	-18.83	-18.83	0	%100
31	M31	SX	0	0	0	%100
32	M32	SX	0	0	0	%100
33	MP3	SX	-18.83	-18.83	0	%100
34	M34	SX	0	0	0	%100
35	M35	SX	0	0	0	%100
36	MP8	SX	-18.83	-18.83	0	%100
37	M37	SX	0	0	0	%100
38	M38	SX	0	0	0	%100
39	MP7	SX	-18.83	-18.83	0	%100
40	M40	SX	0	0	0	%100
41	M41	SX	0	0	0	%100
42	MP9	SX	-18.83	-18.83	0	%100
43	M43	SX	0	0	0	%100
44	M44	SX	0	0	0	%100
45	MP5	SX	-18.83	-18.83	0	%100
46	M46	SX	0	0	0	%100
47	M47	SX	0	0	0	%100
48	MP4	SX	-18.83	-18.83	0	%100
49	M49	SX	0	0	0	%100
50	M50	SX	0	0	0	%100
51	MP6	SX	-18.83	-18.83	0	%100
52	M52	SX	0	0	0	%100
53	RRU1	SX	-18.83	-18.83	0	%100

Member Distributed Loads (BLC 43 : BLC 1 Transient Area Loads)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[I b/ft,F	. Start Location [in,%]	End Location[in,%]
1	M12	Y	-18.202	-18.202	0	23.596
2	M13	Y	-9.173	-9.173	3.828	27.295
3	M14	Y	-9.173	-9.173	3.828	27.295
4	M7	Y	-18.202	-18.202	0	23.596
5	M8	Y	-9.173	-9.173	3.828	27.295
6	M9	Y	-9.173	-9.173	3.828	27.295
7	M2	Y	-18.202	-18.202	0	23.596
8	M3	Y	-9.173	-9.173	3.828	27.295

Member Distributed Loads (BLC 43 : BLC 1 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[lb/ft,F	. Start Location [in,%]	End Location[in,%]
9	M4	Y	-9.173	-9.173	3.828	27.295

Member Distributed Loads (BLC 44 : BLC 12 Transient Area Loads)

	Member Label	Direction	Start Magnitude [lb/ft,	.End Magnitude[Ib/ft,F	. Start Location [in,%]	End Location[in,%]
1	M12	Y	-29.669	-29.669	0	23.596
2	M13	Y	-14.951	-14.951	3.828	27.295
3	M14	Y	-14.951	-14.951	3.828	27.295
4	M7	Y	-29.669	-29.669	0	23.596
5	M8	Y	-14.951	-14.951	3.828	27.295
6	M9	Y	-14.951	-14.951	3.828	27.295
7	M2	Y	-29.669	-29.669	0	23.596
8	M3	Y	-14.951	-14.951	3.828	27.295
9	M4	Y	-14.951	-14.951	3.828	27.295

Member Area Loads (BLC 1 : Self Weight)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude [psf]
1	N 35	N 36	N33	N 34	Y	Two Way	-10
2	N23	N24	N21	N22	Y	Two Way	-10
3	N11	N12	N9	N 10	Y	Two Way	-10

Member Area Loads (BLC 12 : Ice Weight)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude [psf]
1	N 35	N36	N33	N34	Y	Two Way	-16.3
2	N23	N24	N21	N22	Y	Two Way	-16.3
3	N11	N12	N9	N 10	Y	Two Way	-16.3

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	Area (Me	Surface(
1	Self Weight	DL		-1			13		3	
2	Structure Wind Z	WLZ						53		
3	Structure Wind X	WLX						53		
4	Wind Load 0 AZI	WLZ					26			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZI	None					26			
8	Wind Load 90 AZI	WLX					26			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	Ice Weight	OL1					13	53	3	
13	Ice Structure Wind Z	OL2						53		
14	Ice Structure Wind X	OL3						53		
15	Ice Wind Load 0 AZI	OL2					26			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					26			
20	Ice Wind Load 120 AZI	None					26			

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	Area (Me	Surface(
21	Ice Wind Load 135 AZI	None					26			
22	Ice Wind Load 150 AZI	None					26			
23	Seismic Load Z	ELZ			105		13			
24	Seismic Load X	ELX	105				13			
25	Live Load 1 (Lv)	None					1			
26	Live Load 2 (Lv)	None					1			
27	Live Load 3 (Lv)	None					1			
28	Live Load 4 (Lv)	None					1			
29	Live Load 5 (Lv)	None					1			
30	Live Load 6 (Lv)	None					1			
31	Live Load 7 (Lv)	None					1			
32	Live Load 8 (Lv)	None					1			
33	Live Load 9 (Lv)	None					1			
34	Maintenance Load 1 (Lm)	None					1			
35	Maintenance Load 2 (Lm)	None					1			
36	Maintenance Load 3 (Lm)	None					1			
37	Maintenance Load 4 (Lm)	None					1			
38	Maintenance Load 5 (Lm)	None					1			
39	Maintenance Load 6 (Lm)	None					1			
40	Maintenance Load 7 (Lm)	None					1			
41	Maintenance Load 8 (Lm)	None					1			
42	Maintenance Load 9 (Lm)	None					1			
43	BLC 1 Transient Area Loads	None						9		
44	BLC 12 Transient Area Loa	None						9		

Load Combinations

	Des cription	Solve	P De l ta	SRSS	BLC	FaB	Fa.	.В.	.Fact	В	Fa	.B	Fa	.B	Fa	.B	Fa	.B	Fa	В	.Fa	.B	.Fa
1	1.4DL	Yes	Y		DL	1.4																	
2	1.2DL +1WL 0 AZI	Yes	Y		DL	1.2 2	2 1	3		4	1												
3	1.2DL +1WL 30 AZI	Yes	Y		DL	1.2 2	<u>2</u> .866	3	.5	5	1												
4	1.2DL +1WL 45 AZI	Yes	Y		DL	1.2 2	2 .707	3	.707	6	1												
5	1.2DL +1WL 60 AZI	Yes	Y		DL	1.2 2	2 .5	3	.866	7	1												
6	1.2DL +1WL 90 AZI	Yes	Y		DL	1.2 2	2	3	1	8	1												
7	1.2DL + 1WL 120 AZI	Yes	Y		DL	1.2 2	25	3	.866	9	1												
8	1.2DL + 1WL 135 AZI	Yes	Y		DL	1.2 2	<u>2</u> 7.	.3	.707	10	1												
9	1.2DL + 1WL 150 AZI	Yes	Y		DL	1.2 2	<u>2</u> 8.	.3	.5	11	1												
10	1.2DL + 1WL 180 AZI	Yes	Y		DL	1.2 2	2 -1	3		4	-1												
11	1.2DL + 1WL 210 AZI	Yes	Y		DL	1.2 2	<u>2</u> 8.	3	5	5	-1												
12	1.2DL + 1WL 225 AZI	Yes	Y		DL	1.2 2	<u>2</u> 7.	.3	707	6	-1												
13	1.2DL + 1WL 240 AZI	Yes	Y		DL	1.2 2	25	3	866	7	-1												
14	1.2DL + 1WL 270 AZI	Yes	Y		DL	1.2 2	2	3	-1	8	-1												
15	1.2DL + 1WL 300 AZI	Yes	Y		DL	1.2 2	2 .5	3	866	9	-1												
16	1.2DL + 1WL 315 AZI	Yes	Y		DL	1.2 2	2.70	3	707	10	-1												
17	1.2DL + 1WL 330 AZI	Yes	Y		DL	1.2 2	<u>2</u> .866	3	5	11	-1												
18	0.9DL +1WL 0 AZI	Yes	Y		DL	.9 2	2 1	3		4	1												
19	0.9DL +1WL 30 AZI	Yes	Y		DL	.9 2	<u>2</u> .866	3	.5	5	1												
20	0.9DL + 1WL 45 AZI	Yes	Y		DL	.9 2	2.707	3	.707	6	1												
21	0.9DL +1WL 60 AZI	Yes	Y		DL	.9 2	2 .5	3	.866	7	1												
22	0.9DL +1WL 90 AZI	Yes	Y		DL	.9 2	2	3	1	8	1												
23	0.9DL + 1WL 120 AZI	Yes	Y		DL	.9 2	25	3	.866	9	1												

Load Combinations (Continued)

Ξ

24 0.9DL + 1WL 135 AZI Yes Y DL .9 2 -73 .707 10 1 25 0.9DL + 1WL 150 AZI Yes Y DL .9 2 -83 .5 11 1 26 0.9DL + 1WL 180 AZI Yes Y DL .9 2 -1 3 .4 -1	
25 0.9DL + 1WL 150 AZI Yes Y DL .9 2 -83 .5 11 1 26 0.9DL + 1WL 180 AZI Yes Y DI 9 2 -1 3 4 -1	
26 0.9DL + 1WL 180 AZI Yes Y DI 9 2 -1 3 4 -1	
27 0.9DL + 1WL 210 AZI Yes Y DL .9 28. 35 5 -1	
28 0.9DL + 1WL 225 AZI Yes Y DL .9 2 -73 -707 6 -1	
29 0.9DL + 1WL 240 AZI Yes Y DL .9 25 3866 7 -1	
30 0.9DL + 1WL 270 AZI Yes Y DL .9 2 3 -1 8 -1	
31 0.9DL + 1WL 300 AZI Yes Y DL .9 2 .5 3866 9 -1	
32 0.9DL + 1WL 315 AZI Yes Y DL 9 2 707 3 - 707 10 -1	
33 0.9DL + 1WL 330 AZI Yes Y DL 9 2 866 3 - 5 11 -1	
34 1.2DL + 1DLi + 1WLi 0 Yes Y DL 1.2 0 1 13 1 14 15 1	
35 1.2DL + 1DLi + 1WLi 30 Yes Y DL 1.20 1 13.866 14 .5 16 1	
36 1.2DL + 1DLi + 1W Li 45 Yes Y DL 1.2 0 1 13.707 14.707 17 1	
37 1.2DL + 1DLi + 1W Li 60 Yes Y DL 1.20 1 13 .5 14.86618 1	
38 1.2DL + 1DLi + 1W Li 90 Yes Y DL 1.2 0 1 13 14 1 19 1	
39 1.2DL + 1DLi + 1WLi 12 Yes Y DL 1.20 1 13 - 5 14.86620 1	
40 1.2DL + 1DLi + 1WLi 13 Yes Y DL 1.20 1 13707 14.707 21 1	
41 1.2DL + 1DLi + 1WLi 15 Yes Y DL 1.20 1 13866 14 .5 22 1	
42 1.2DL + 1DLi + 1WLi 18 Yes Y DL 1.201 13 -1 14 15 -1	
43 1.2DL + 1DLi + 1WLi 21 Yes Y DL 1.20 1 13866 145 16 -1	
44 1.2DL + 1DLi + 1WLi 22 Yes Y DL 1.20 1 13707 14717 -1	
45 1.2DL + 1DLi + 1WLi 24 Yes Y DL 1.20 1 13 - 5 14 - 818 -1	
46 1.2DL + 1DLi + 1WLi 27 Yes Y DL 1.20 1 13 14 -1 19 -1	
47 1.2DL + 1DLi + 1W Li 30 Yes Y DL 1.20 1 13 .5 14-820 -1	
48 1.2DL + 1DLi + 1W Li 31 Yes Y DL 1.20 1 13 707 14 - 721 -1	
49 1.2DL + 1DLi + 1WLi 33 Yes Y DL 1.20 1 13 866 14 - 5 22 -1	
50 (1.2+0.2Sds)DL + 1E 0 Yes Y DL 123 1 24	
51 (1.2+0.2Sds)DL + 1E 30 Yes Y DL 123.86624 .5	
52 (1.2+0.2Sds)DL + 1E 45 Yes Y DL 123.70724.707	
53 (1.2+0.2Sds)DL + 1E 60 Yes Y DL 123 .5 24.866	
54 (1.2+0.2Sds)DL + 1E 90 Yes Y DL 123 24 1	
55 (1.2+0.2Sds)DL + 1E 12 Yes Y DL 1235 24.866	
56 (1.2+0.2Sds)DL + 1E 13 Yes Y DL 123724.707	
57 (1.2+0.2Sds)DL + 1E 15 Yes Y DL 123824 .5	
58 (1.2+0.2Sds)DL + 1E 18 Yes Y DL 123 -1 24	
59 (1.2+0.2Sds)DL + 1E 21 Yes Y DL 1238245	
60 (1.2+0.2Sds)DL + 1E 22 Yes Y DL 123724707	
61 (1.2+0.2Sds)DL + 1E 24 Yes Y DL 1235 24866	
62 (1.2+0.2Sds)DL + 1E 27 Yes Y DL 123 24 -1	
63 (1.2+0.2Sds)DL + 1E 30 Yes Y DL 123 .5 24866	
64 (1.2+0.2Sds)DL + 1E 31 Yes Y DL 123.70724707	
65 (1.2+0.2Sds)DL + 1E 33 Yes Y DL 123.866245	
66 (0.9-0.2Sds)DL + 1E 0 A., Yes Y DL 86523 1 24	
67 (0.9-0.2Sds)DL + 1E 30 Yes Y DL 86523.86624 .5	
68 (0.9-0.2Sds)DL + 1E 45 Yes Y DL 86523.70724.707	
69 (0.9-0.2Sds)DL + 1E 60 Yes Y DL 86523 .5 24 .866	
70 (0.9-0.2Sds)DL + 1E 90 Yes Y DL 86523 24 1	
71 (0.9-0.2Sds)DL + 1E 12 Yes Y DL 86523524.866	
72 (0.9-0.2Sds)DL + 1E 13 Yes Y DL 86523724.707	
73 (0.9-0.2Sds)DL + 1E 15 Yes Y DL 86523824 .5	
74 (0.9-0.2Sds)DL + 1E 18 Yes Y DL 86523 -1 24	
75 (0.9-0.2Sds)DL + 1E 21 Yes Y DL 86523-8.245	

Load Combinations (Continued)

	Des cription	Solve	P Delta	SRSS	BLC	FaI	3 I	Fa	В	Fact	В	.Fa	В	Fa	BF	аВ	Fa.	В.	Fa	.B	Fa	В	Fa
76	(0.9-0.2Sds)DL + 1E 22	Yes	Y		DL	.865	23·	7	24	707													
77	(0.9-0.2Sds)DL + 1E 24	Yes	Y		DL	.865	23	5	24	866													
78	(0.9-0.2Sds)DL + 1E 27	Yes	Y		DL	.865	23		24	-1													
79	(0.9-0.2Sds)DL + 1E 30	Yes	Y		DL	.865	23	.5	24	866													
80	(0.9-0.2Sds)DL + 1E 31	Yes	Y		DL	.865	23.	.707	24	707													
81	(0.9-0.2Sds)DL + 1E 33	Yes	Y		DL	.865	23.	.866	24	5													
82	1 2DI + 1I v1	Yes	Y		DI	12	25	15															
83	1.2DL + 1Lv2	Yes	Ý		DI	12	26	1.5															
84	1.2DL + 1Lv3	Yes	Y		DI	12	27	1.5															
85	1 2DL + 11 v4	Yes	Y		DI	1.2	28	1.5										T					
86	$1.2DL + 1L_{VF}$	Ves	V			1.2	20	1.5															
87	1.2DL + 1Lv6	Ves	V			1.2	30	1.5										-					
88	1.2DL + 1Lv0	Ves	V			1.2	31	1.5															
80	1.2DL + 1LV7	Voc	V			1.2	22	1.5			_		-					-					
09	1.2DL + 1Lv0	Voc				1.2	22	1.5										-					
01	1.2DL + 1.5 m + 1Wm 0	Voc	V			1.2	24	1.5	2	040	2		1	049				-					
91	1.2DL + 1.5Lm + 1Wm 3	Vee				1.2	24	1.5	2	.049	2	025	4	040				-					
92	1.2DL + 1.5Lm + 1Wm 4	Vee	I V			1.2	24	1.5	2	.043	<u>い</u>	025	0	043			-	-					
93	1.2DL + 1.5Lm + 1Wm 6	· res	Y			1.2	24	1.5	2	.035	3	.033	0	049	_			-					
94	1.2DL + 1.5Lm + 1Wm 0.	· res	Y			1.2	34	1.5	2	.025	3	.043	/	049				-					
95	1.2DL + 1.5Lm + 1Wm 4	· Yes	Y			1.2	34	1.5	2	0.05	3	.049	8	.049				-			┝──┤		
96	1.2DL + 1.5Lm + 1Wm 1	· Yes	Y			1.2	34	1.5	2	025	3	.043	9	.049	_								
97	1.2DL + 1.5LM + 1Wm 1	· Yes	Y		DL	1.2	34	1.5	2	035	3	.035	10	.049			_	_					
98	1.2DL + 1.5Lm + 1Wm 1	· Yes	Y		DL	1.2	34	1.5	2	043	3	.025	11	.049									
99	1.2DL + 1.5Lm + 1Wm 1	· Yes	Y		DL	1.2	34	1.5	2	049	3		4	0			_	_			\vdash		
100	1.2DL + 1.5Lm + 1Wm 2	· Yes	Y		DL	1.2	34	1.5	2	043	3	0	.5	0									
101	1.2DL + 1.5Lm + 1Wm 2	·Yes	Y		DL	1.2	34	1.5	2	035	3	0	•6	0	_		_	-					
102	1.2DL + 1.5Lm + 1Wm 2	·Yes	Y		DL	1.2	34	1.5	2	025	3	0	.7	0									
103	1.2DL + 1.5Lm + 1Wm 2	· Yes	Y		DL	1.2	34	1.5	2		3	0	.8	0									
104	1.2DL + 1.5Lm + 1Wm 3	·Yes	Y		DL	1.2	34	1.5	2	.025	3	0	.9	0									
105	1.2DL + 1.5Lm + 1Wm 3	·Yes	Y		DL	1.2	34	1.5	2	.035	3	0	.10	0									
106	1.2DL + 1.5Lm + 1Wm 3	·Yes	Y		DL	1.2	34	1.5	2	.043	3	0	.11	0									
107	1.2DL + 1.5Lm + 1Wm 0	· Yes	Y		DL	1.2	35	1.5	2	.049	3		4	.049									
108	1.2DL + 1.5Lm + 1Wm 3	·Yes	Y		DL	1.2	35	1.5	2	.043	3	.025	5	.049									
109	1.2DL + 1.5Lm + 1Wm 4	·Yes	Y		DL	1.2	35	1.5	2	.035	3	.035	6	.049									
110	1.2DL + 1.5Lm + 1Wm 6	·Yes	Y		DL	1.2	35	1.5	2	.025	3	.043	7	.049									
111	1.2DL + 1.5Lm + 1Wm 9	·Yes	Y		DL	1.2	35	1.5	2		3	.049	8	.049									
112	1.2DL + 1.5Lm + 1Wm 1	· Yes	Y		DL	1.2	35	1.5	2	025	3	.043	9	.049									
113	1.2DL + 1.5Lm + 1Wm 1	· Yes	Y		DL	1.2	35	1.5	2	035	3	.035	10	.049									
114	1.2DL + 1.5Lm + 1Wm 1	· Yes	Y		DL	1.2	35	1.5	2	043	3	.025	11	.049									
115	1.2DL + 1.5Lm + 1Wm 1	·Yes	Y		DL	1.2	35	1.5	2	049	3		4	0									
116	1.2DL + 1.5Lm + 1Wm 2	· Yes	Y		DL	1.2	35	1.5	2	043	3	0	.5	0									
117	1.2DL + 1.5Lm + 1Wm 2	· Yes	Y		DL	1.2	35	1.5	2	035	3	0	.6	0									
118	1.2DL + 1.5Lm + 1Wm 2	·Yes	Y		DL	1.2	35	1.5	2	025	3	0	.7	0									
119	1.2DL + 1.5Lm + 1Wm 2	Yes	Y		DL	1.2	35	1.5	2		3	0	.8	0									
120	1.2DL + 1.5Lm + 1Wm 3	Yes	Y		DL	1.2	35	1.5	2	.025	3	0	.9	0									
121	1.2DL + 1.5Lm + 1Wm 3	Yes	Y		DI	12	35	1.5	2	.035	3	0	10	0									
122	1.2DL + 1.5Lm + 1Wm 3.	. Yes	Y		DI	1.2	35	1.5	2	043	3	0.	.11	0.									
123	1.2DL + 1.5Lm + 1Wm 0.	. Yes	Y			1.2	36	15	2	049	3		4	049									
124	1.2DL + 1.5Lm + 1Wm 3	. Yes	Y			1.2	36	1 5	2	043	3	.025	5	049									
125	1.2DL + 1.5Lm + 1Wm 4	. Yes	Y			1.2	36	1.5	2	035	3	.035	6	.049									
126	1.2DL + 1.5Lm + 1Wm 6	. Yes	V			1.2	36	1.5	2	025	2	.043	7	049									
120	12DL + 15Lm + 1Wm 9	Ves	V			1.2	36	1.5	2	.023	2	040	/ Q	040									
121		· 185	I			1.4	50	0.1	2		J	.073	0	573					1				

Load Combinations (Continued)

Description Solve	PDelta SRSS	BLC FaBFaBFactBFaBFaBFaBFaBFaBFaBFa
128 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2 36 1.5 2025 3 043 9 049
129 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2 36 1.5 2035 3 .035 10.049
130 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2 36 1.5 2043 3 .02511.049
131 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2 36 1.5 2049 3 40
132 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DL 1.2 36 1.5 2043 3050
133 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DL 1.2 36 1.5 2035 3060
134 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DL 1.2 36 1.5 2025 3070
135 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DL 1.2361.52 3 -08 -0
136 1.2DL + 1.5Lm + 1Wm 3 Yes	Y	DL 1.2361.52.0253-09-0
137 1.2DL + 1.5Lm + 1Wm 3 Yes	Y	DL 1.2361.52.0353-010-0
138 1.2DL + 1.5Lm + 1Wm 3 Yes	Y	DL 1.2 36 1.5 2 .043 30110
139 1.2DL + 1.5Lm + 1Wm 0 Yes	Y	DL 1.2 37 1.5 2 .049 3 4 .049
140 1.2DL + 1.5Lm + 1Wm 3 Yes	Y	DL 1.2 37 1.5 2 .043 3 .025 5 .049
141 1.2DL + 1.5Lm + 1Wm 4 Yes	Y	DL 1.2 37 1.5 2 .035 3 .035 6 .049
142 1.2DL + 1.5Lm + 1Wm 6 Yes	Y	DL 1.2 37 1.5 2 .025 3 .043 7 .049
143 1.2DL + 1.5Lm + 1Wm 9 Yes	Y	DL 1.2 37 1.5 2 3 049 8 049
144 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2 37 1.5 2025 3 .043 9 .049
145 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2 37 1.5 2035 3 .03510.049
146 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2371.52-0433-02511.049
147 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2 37 1.5 2 -049 3 4 -0
148 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DL 1.2 37 1.5 2 043 3 0 5 0
149 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DL 1.2 37 1.5 2035 30 60
150 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DL 1.2371.5 2025 3070
151 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DL 1.23/1.5 2 3 -08 -0
152 1.2DL + 1.5Lm + 1Wm 3 Yes	Y	DL 1.23/1.5 2 .025 3090
153 1.2DL + 1.5Lm + 1Wm 3 Yes	Y	DL 1.2371.5 2 .035 3 -0100
154 1.2DL + 1.5Lm + 1Wm 0 Vec	Y	DL 1.23/1.5 2 .043 3 -011-0
155 1.2DL + 1.5Lm + 1Wm 2. Yes	Y	DL 1.2381.5 2 .049 3 4 .049
150 1.2DL + 1.5Lm + 1Wm 4 Vec	Y	DL 1.2381.5 2.043 3.023 5.049
159 12DL + 15Lm + 1Wm 6 Voc	T V	DL 1 2 201.5 2 0.05 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
150 1.20L + 1.5Lm + 1Wm 9 Voo		DL 1220152 2040 000
$160 \ 1201 \ \pm 151 \ \text{m} \ \pm 100 \ \text{m} \ 1 \ \text{Vec}$	T V	
161 12DL + 15l m + 1Wm 1. Yes		DL 1 2 38 1 5 2 - 035 3 03510 049
162 12DL + 15Lm + 1Wm 1 Ves		DL 1 2381 5 2 -043 3 02511 049
163 12DL + 15Lm + 1Wm 1 Ves	V	DL 1 2 38 1 5 2 - 049 3 4 - 0
164 12DL + 15Lm + 1Wm 2 Ves	V	DL 1 2 38 1 5 2 - 043 3 - 0 5 - 0
165 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DL 1 2 38 1 5 2 -035 3 -06 -0
166 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DI 1238152-0253-07-0
167 1.2DL + 1.5Lm + 1Wm 2 Yes	Y	DI 1238152 3 -08 -0
168 1.2DL + 1.5Lm + 1Wm 3 Yes	Y	DL 1238152 0253-0-9-0-
169 1.2DL + 1.5Lm + 1Wm 3 Yes	Y	DL 1.2381.5 2 .035 30100
170 1.2DL + 1.5Lm + 1Wm 3 Yes	Y	DL 1.2381.5 2 .043 3 -011-0
171 1.2DL + 1.5Lm + 1Wm 0 Yes	Y	DL 1.2391.5 2 .049 3 4 .049
172 1.2DL + 1.5Lm + 1Wm 3 Yes	Y	DL 1.2391.5 2 .043 3 .025 5 .049
173 1.2DL + 1.5Lm + 1Wm 4 Yes	Y	DL 1.2391.5 2 .035 3 .035 6 .049
174 1.2DL + 1.5Lm + 1Wm 6 Yes	Y	DL 1.2391.5 2 .025 3 .043 7 .049
175 1.2DL + 1.5Lm + 1Wm 9 Yes	Y	DL 1.2391.52 3 0498 049
176 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2 39 1.5 2025 3 043 9 049
177 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2 39 1.5 2035 3 .035 10.049
178 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2 39 1.5 2043 3 025 11 049
179 1.2DL + 1.5Lm + 1Wm 1 Yes	Y	DL 1.2391.52-0493 4-0

RISA-3D Version 17.0.4 [C:\...\...\...\...\...\...\Rev 1\RISA or TNX\MC-PK8-C_loaded.r3d]

Load Combinations (Continued)

Des cription	Solve	P De l ta	SRSS	BLC Fa	BFa	.B	Fact	BI	FaB.	Fa	.BF	аВ.	FaE	3Fa.	BF	аВ.	Fa
180 1.2DL + 1.5Lm + 1Wn	1 2 Yes	Y		DL 1.	2 39 1.5	2	043	3 -	05	0							
181 1.2DL + 1.5Lm + 1Wn	1 2 Yes	Y		DL 1.	2 39 1.5	2	035	3 -	.06	0							
182 1.2DL + 1.5Lm + 1Wn	12. Yes	Y		DI 11	23915	2	025	3 -	.07	0							
183 12DL + 15Lm + 1Wn	12 Yes	V			2 30 1 5	2		3.	0 8	- 0							
194 12DL + 15Lm + 1Wn	12 Tes	V			2 20 1 5	2	025	2	.0.0	- 0							
185 120L + 15Lm + 1Wn	13 Tes				2 39 1.3	2	.025	ວ ວ	0.1	0	•						
185 1.2DL + 1.5Lm + 1Wm	13 Yes	Y Y		DL 1.		2	.035	3.	0	<u> </u>	•						
186 1.2DL + 1.5Lm + 1W	1 S Yes	Y Y		DL 1.	2391.5	2	.043	3.	0	10	•						-
187 1.2DL + 1.5Lm + 1VV	10 Yes	Y		DL 1.	2401.5	2	.049	3	4	.049							
188 1.2DL + 1.5Lm + 1V/n	13 Yes	Y		DL 1.	2401.5	2	.043	3.	025 5	.049							
189 1.2DL + 1.5Lm + 1Wn	14 Yes	Y		DL 1.	2 40 1.5	2	.035	3.	035 6	.049							
190 1.2DL + 1.5Lm + 1Wn	16 Yes	Y		DL 1.	2 40 1.5	2	.025	3.	043 7	.049							
191 1.2DL + 1.5Lm + 1Wn	n 9 Yes	Y		DL 1.2	2 40 1.5	2		3.	049 8	.049							
192 1.2DL + 1.5Lm + 1Wn	n 1 Yes	Y		DL 1.2	2 40 1.5	2	025	3.	043 9	.049							
193 1.2DL + 1.5Lm + 1Wn	n 1 Yes	Y		DL 1.2	2 40 1.5	2	035	3.	0351() .049							
194 1.2DL + 1.5Lm + 1Wn	1 1 Yes	Y		DL 1.	2 40 1.5	2	043	3.	025 1 [.]	1.049							
195 1.2DL + 1.5Lm + 1Wn	1 1 Yes	Y		DL 1.	2 40 1.5	2	049	3	4	0							
196 1.2DL + 1.5Lm + 1Wn	1 2 Yes	Y		DL 1.3	2 40 1.5	2	043	3 -	.05	0							
197 1.2DL + 1.5Lm + 1Wn	12 Yes	Y		DL 1.	2 40 1.5	2	035	3 -	.06	0							
198 1.2DL + 1.5Lm + 1Wn	12 Yes	Y		DL 1	24015	2	025	3 .	.07	0							
199 1.2DL + 1.5Lm + 1Wn	12Yes	Y		DI 11	24015	2		3.	.08	0							
200 1.2DL + 1.5Lm + 1Wn	13 Yes	Y		DI 11	24015	2	025	3.	.09	0							
201 12DI + 15Im + 1Wn	13 Yes	V			2401.5	2	035	<u>с</u> .	- 0 10	n -0	_						
202 12DL + 15Lm + 1Wn	13 Ves	V			2 40 1.5	2	043	3.	- 0 1	1-0							
202 12DL + 15Lm + 1Wn					2401.5	2	040	2		0/10							
203 1.20L + 1.5Lm + 1Wn		I V			2411.0	2	.049	っ っ	025 5	040							
204 1.20L + 1.5Lm + 1Wn		T V			2411.3	2	.043	ວ. ວ	025 0	.043							
205 1.2DL + 1.5Lm + 1Wn	14 Yes	Y		DL 1.		2	.035	3.	035 0	.049							
206 1.2DL + 1.5Lm + 1Wn		Y		DL L.		2	.025	3.	043 7	.049							
207 1.2DL + 1.5Lm + 1Wn	19 Yes	Y		DL 1.		2	0.05	3.	049 8	.049							
208 1.2DL + 1.5Lm + 1Wh	1 I Yes	Y		DL 1.	2411.5	2	025	3.	043 9	.049							
209 1.2DL + 1.5Lm + 1Wh	11Yes	Y		DL 1.	2411.5	2	035	3	0351().049							
210 1.2DL + 1.5Lm + 1Vvn	<u>11Yes</u>	Y		DL 1.	2411.5	2	043	3.	0251	1.049							
211 1.2DL + 1.5Lm + 1Wn	11Yes	Y		DL 1.	2 41 1.5	2	049	3	4	0							
212 1.2DL + 1.5Lm + 1Wn	1 2 Yes	Y		DL 1.	2 41 1.5	2	043	3 -	05	0							
213 1.2DL + 1.5Lm + 1Wn	1 2 Yes	Y		DL 1.	2 41 1.5	2	035	3 -	.06	0							
214 1.2DL + 1.5Lm + 1Wn	1 2 Yes	Y		DL 1.	2 41 1.5	2	025	3 -	07	0							
215 1.2DL + 1.5Lm + 1Wn	1 2 Yes	Y		DL 1.2	2411.5	2		3 -	08	0							
216 1.2DL + 1.5Lm + 1Wn	n 3 Yes	Y		DL 1.2	2 41 1.5	2	.025	3 -	09	0							
217 1.2DL + 1.5Lm + 1Wn	n 3 Yes	Y		DL 1.2	2411.5	2	.035	3 -	01() <mark>0</mark>							
218 1.2DL + 1.5Lm + 1Wn	n 3 Yes	Y		DL 1.2	2411.5	2	.043	3 -	0 <mark>.1</mark> '	10							
219 1.2DL + 1.5Lm + 1Wn	n 0 Yes	Y		DL 1.2	2 42 1.5	2	.049	3	4	.049							
220 1.2DL + 1.5Lm + 1Wn	1 3 Yes	Y		DL 1.	2 42 1.5	2	.043	3.	025 5	.049							
221 1.2DL + 1.5Lm + 1Wn	14 Yes	Y		DL 1.	2 42 1.5	2	.035	3.	035 6	.049							
222 1.2DL + 1.5Lm + 1Wn	16 Yes	Y		DL 1.	2 42 1.5	2	.025	3.	043 7	.049							
223 1.2DL + 1.5Lm + 1Wn	19 Yes	Y		DL 1.	2 4 2 1 .5	2		3.	049 8	.049							
224 1.2DL + 1.5Lm + 1Wn	1 1 Yes	Y		DI 1:	24215	2	025	3.	043 9	.049							
225 1.2DL + 1.5Lm + 1Wn	1 1 Yes	Y		DL 1	24215	2	035	3.	0351).049							
226 1.2DL + 1.5Lm + 1Wn	11Yes	Y		DI 1 1	24215	2	043	3.	0251	1.049							
227 1.2DL + 1.5Lm + 1Wn	1 1 Yes	Y		DI 11	24215	2	049	3	Δ	0							
228 1.2DI + 1.5Im + 1Wn	12. Ves	V			2 4 2 1 5	2	043	3.	.0 5	- 0							
220 $12DL + 15Lm + 1Wn$	12 Voc	V			2 1 2 1 . 5	2	- 0.35	2.	0 6	- 0							
230 12DL + 15Lm + 1Wm	12 Voc	V			2 1 2 1 . 5	2	- 025	3	.0.7	- 0							
231 12DL + 15Lm + 1Mm		I V			2421.0	2	.020	ວ. ວ	.0.0		•						
	· ies	1			<u> 2 42 1.0</u>	2		3	·····0	v	·						

RISA-3D Version 17.0.4 [C:\...\..\..\..\..\..\...\...\Rev 1\RISA or TNX\MC-PK8-C_loaded.r3d]

Load Combinations (Continued)

	Des cription	Solve	P De l ta	SRSS	BLC	FaI	BF	aE	3	Fact	В	Fa	В	Fa	BI	=а	.B	Fa.	В	.Fa	.B	.Fa	.B!	Fa
232	1.2DL + 1.5Lm + 1Wm 3	· Yes	Y		DL	1.2	421	.5	2	.025	3	0	.9	0										
233	1.2DL + 1.5Lm + 1Wm 3	· Yes	Y		DL	1.2	421	.5	2	.035	3	0	10	0										
234	1.2DL + 1.5Lm + 1Wm 3	Yes	Y		DL	1.2	421	.5	2	.043	3	0	11	0										

Envelope Joint Reactions

Ξ

	Joint		X [I b]	LC	Y [b]	LC	Z [İ b]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N25	max	1417.898	20	2096.531	39	2140.612	3	457.664	33	2507.353	19	401.557	31
2		min	-1423.023	12	-18.775	31	-2134.288	27	-2014.384	130	-2510.589	11	-3764.116	38
3	N1	max	1179.134	8	1956.535	45	2075.215	17	475.339	19	2390.637	25	3434.087	45
4		min	-1171.047	32	-49.988	21	-2073.888	25	-2251.761	43	-2393.683	17	-357.286	21
5	N 13	max	2108.51	22	1963.812	34	551.985	18	4096.584	34	2066.272	30	753.602	167
6		min	-2111.217	14	-75.952	26	-560.238	10	-510.809	26	-2069.45	6	-622.672	223
7	Totals:	max	4022.44	22	5703.633	42	4299.881	18						
8		min	-4022.44	30	1516.823	66	-4299.883	10						

Envelope A ISC 15th (360-16): LRFD Steel Code Checks

	Member	Shape	Code Che	Lo	LC	Shel	Lo		LC	phi*Pnc[lb]	phi*Pnt [lb]	phi*Mn y-y [lb.	phi*M Eqn_
1	M12	PPE_3.5	.532	40	39	.223	40		3	75262.68	78750	7953.75	7953H1-1b
2	M7	PPE_3.5	.516	40	34	.196	40		14	75262.68	78750	7953.75	7953H1 - 1b
3	M2	PIPE_3.5	.513	40	45	.210	40		9	75262.68	78750	7953.75	7953H1 - 1b
4	M11	C 3X 5	.431	34	6	.141	63ly	y	35	11202.931	47628	981.263	4104 H1-1b
5	MP4	PIPE_2.0	.417	47	11	.057	47		11	20616.322	32130	1871.625	1871H1 - 1b
6	MP1	PIPE_2.0	.417	47	16	.055	47		17	20616.322	32130	1871.625	1871H1-1b
7	M1	C 3X 5	.413	34	11	.140	63y	y	40	11202.931	47628	981.263	4104H1-1b
8	MP3	PIPE_2.0	.411	47	5	.038	47		10	20616.322	32130	1871.625	1871H1-1b
9	MP9	PIPE_2.0	.409	47	10	.037	47		3	20616.322	32130	1871.625	1871H1-1b
10	MP7	PIPE_2.0	.399	47	10	.046	47		6	20616.322	32130	1871.625	1871H1-1b
11	M6	C 3X 5	.396	34	34	.140	63	y	46	37027.882	47628	981.263	4020 1 H1-1b
12	MP8	PIPE_2.0	.395	47	10	.048	47		14	20616.322	32130	1871.625	1871H1-1b
13	MP2	PPE_2.0	.394	47	5	.0584	47		9	20616.322	32130	1871.625	1871H1-1b
14	MP6	PIPE_2.0	.377	47	15	.040	47		9	20616.322	32130	1871.625	1871H1-1b
15	MP5	PPE_2.0	.377	47	16	.060	47		3	20616.322	32130	1871.625	1871H1-1b
16	M10	6.5"x0.3	.311	21	2	.099	21	y	48	3513.807	75757.5	583.963	6338H1-1b
17	M15	6.5"x0.3	.306	21	7	.099	21	y	37	3513.807	75757.5	583.963	6321H1-1b
18	M5	6.5"x0.3	.294	21	13	.099	21	y	42	3513.807	75757.5	583.963	6364H1-1b
19	M13	L2x2x3	.242	0	6	.029	0	z	43	18051.765	23392.8	557.717	1239 H2-1
20	M3	L2x2x3	.221	0	11	.029	0	z	49	18051.765	23392.8	557.717	1239 H2-1
21	M8	L2x2x3	.209	0	17	.029	0	z	38	18051.765	23392.8	557.717	1239 H2-1
22	M22	L6 5/8x	.195	0	21	.038	42	z	4	15453.054	66065.641	1040.591	3031 H2-1
23	M4	L2x2x3	.192	0	13	.031	0	y	41	18051.765	23392.8	557.717	1239 H2-1
24	M23	L6 5/8x	.187	0	26	.037	42	y	17	15453.054	66065.641	1040.591	3031 H2-1
25	M21	PIPE_2.0	.178	72	5	.154	72		13	14916.036	32130	1871.625	1871H1-1b
26	M19	PIPE_2.0	.176	72	10	.158	72		2	14916.036	32130	1871.625	1871H1-1b
27	M9	L2x2x3	.172	0	2	.031	0	y	46	18051.765	23392.8	557.717	1239 H2-1
28	M20	PPE_2.0	.167	24	16	.153	72		8	14916.036	32130	1871.625	1871H1-1b
29	M24	L6 5/8x	.165	4.3	33	.035	42	y	6	15453.054	66065.641	1040.591	3031 H2-1
30	M14	L2x2x3	.155	0	8	.031	0	y	36	18051.765	23392.8	557.717	1239 H2-1
31	H3	PIPE_3.5	.143	31	10	.116	24		16	60666.044	78750	7953.75	7953H1-1b
32	H2	PIPE_3.5	.137	31	15	.109	24		5	60666.044	78750	7953.75	7953H1 - 1b

 R ISA-3D Version 17.0.4
 [C:\...\...\...\...\...\...\...\Rev 1\R ISA or TNX\MC-PK8-C_loaded.r3d]
 Page 32

Envelope A ISC 15th (360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code Che	.Lo	LC	SheLo	. LC	phi*Pnc[lb]	phi*Pnt [lb]	phi*Mn y-y [lb.	phi*M	Eqn
33	H1	PIPE_3.5	.136	31	5	.115 24	10	60666.044	78750	7953.75	7953	H1-1b
34	RRU1	PIPE_2.0	.053	18	10	.013 18	10	28843.414	32130	1871.625	1871	<mark>H1-</mark> 1b

APPENDIX D

ADDITIONAL CALCUATIONS

BOLT TOOL 1.5.2

Project Data						
Job Code:	188200					
Carrier Site ID:	BOBDL00091A					
Carrier Site Name:	BOBDL00091A					

Code							
Design Standard:	TIA-222-H						
Slip Check:	No						
Pretension Standard:	TIA-222-H						

Bolt Properties						
Connection Type:	Bolt					
Diameter:	0.625	in				
Grade:	A325					
Yield Strength (Fy):	92	ksi				
Ultimate Strength (Fu):	120	ksi				
Number of Bolts:	4					
Threads Included:	Yes					
Double Shear:	No					
Connection Pipe Size:	-	in				

Connection Description

Mount Standoff to Collar

Bolt Check*							
Tensile Capacity (φT _n):	20340.1	lbs					
Shear Capacity (φV _n):	13805.8	lbs					
Tension Force (T _u):	4475.5	lbs					
Shear Force (V _u):	1081.0	lbs					
Tension Usage:	21.0%						
Shear Usage:	7.5%						
Interaction:	21.0%	Pass					
Controlling Member:	M12						
Controlling LC:	5						

*Rating per TIA-222-H Section 15.5

APPENDIX E

SUPPLEMENTAL DRAWINGS

<u></u>	C #	<∟
REV. ECN REV. REV. ECN DATE REV. ECN DATE A DESCRPTON BY D DATE DATE A DATE DATE B 80000579 CHANGE NOSE CORNER BRIT, ADD GUB-1240 C 8000007579 NEW RINGMOUNT WELDMENT DESIGN R NJC 04/07/15		Production of the provided and strate provided memory and the
TIEM PART NO. 2 MCPK8CSB STEEL BUNDLE FOR NUB NOSE PLATFORM 1 402.64 LBS 3 MCPK8CHWK HARDWARE KIT FOR MC-PK8-C 1 404.27 LBS 3 MCPK8CHWK HARDWARE KIT FOR MC-PK8-C 1 543.22 LBS PIPE STEEL BUNDLE FOR MC-PK8-C 1 543.22 LBS FOR BOM ENTRY ONLY		NOTES: NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3.

Exhibit F

Power Density/RF Emissions Report

RF EMISSIONS COMPLIANCE REPORT

Crown Castle on behalf of Dish Wireless

Crown Castle Site Name: OLD SAYBROOK Crown Castle Site BU Number: 876336 Dish Wireless Site Name: CT-CCI-T-876336 Dish Wireless Site ID: BOBDL00088A Application ID: 553289 430 Middlesex Turnpike Old Saybrook, CT 5/27/2021

Report Status:

Dish Wireless is Compliant

Michael Fischer, P.E. Registered Professional Engineer (Electrical) Connecticut License Number 33928 Expires January 31, 2022

Signed 27 May 2021

Prepared By:

Site Safe, LLC

Vienna, VA 22182

Engineering Statement in Re: Electromagnetic Energy Analysis Crown Castle Old Saybrook, CT

My signature on the cover of this document indicates:

That I am registered as a Professional Engineer in the jurisdiction indicated; and

That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Site Safe, LLC in Vienna, Virginia; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Crown Castle on behalf of Dish Wireless (see attached Site Summary and Carrier documents) and that Dish Wireless' installation involves communications equipment, antennas and associated technical equipment at a location referred to as "OLD SAYBROOK" ("the site"); and

That Dish Wireless proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by Dish Wireless and shown on the worksheet and that worst-case 100% duty cycle has been assumed; and

That in addition to the emitters specified in the worksheet, there are additional collocated pointto-point microwave facilities on this structure, and the antennas used are highly directional and oriented at angles at or just below the horizontal, and that the energy present at ground level is typically so low as to be considered insignificant and has not been included in this analysis (a list of microwave antennas is included); and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radio frequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio frequency energy must utilize the standards set by the FCC, which is the federal agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," which defines situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and 2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of Dish Wireless' operating frequencies as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed T-Mobile operation is no more than 0.825% of the maximum permissible exposure limits in any accessible area on the ground; and

That it is understood per FCC Guidelines and OET 65 Appendix A, that regardless of the existent radio frequency environment, only those licensees whose contributions exceed 5% of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any non-compliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than 1.480% of the maximum in any accessible area up to two meters above the ground per OET 65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET 65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier(s) and frequency range(s) indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding radio frequency safety; and

In summary, it is stated here that the proposed operation at the site will not result in exposure of the public to excessive levels of radio frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307(b), and that Dish Wireless' proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals and approved contractor personnel trained in radio frequency safety and that this instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower or in the immediate proximity of the antennas.

Crown Castle OLD SAYBROOK Site Summary

Carrier	Area Maximum Percentage MPE
Dish Wireless (Proposed)	0.222 %
Dish Wireless (Proposed)	0.222 %
Dish Wireless (Proposed)	0.381 %
Sprint (T-Mobile)	0.182 %
Sprint (T-Mobile)	0.146 %
Sprint (T-Mobile)	0.146 %
Sprint (T-Mobile)	0.114 %
Town of Old Saybrook	0.067 %
Composite Site MPE:	1.480 %

Dish Wireless (Proposed) OLD SAYBROOK Carrier Summary

Frequency:	2100	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	2.22424	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.22242	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
JMA Wireless	MX08FRO665-20	153	0	6904	1.212438	0.121244	2.187241	0.218724
JMA Wireless	MX08FRO665-20	153	120	6904	1.212438	0.121244	2.187241	0.218724
JMA Wireless	MX08FRO665-20	153	240	6904	1.212438	0.121244	2.187241	0.218724

Dish Wireless (Proposed) OLD SAYBROOK Carrier Summary

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm ²
Maximum power density at ground level:	2.22424	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.22242	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
JMA Wireless	MX08FRO665-20	153	0	6904	1.212438	0.121244	2.187241	0.218724
JMA Wireless	MX08FRO665-20	153	120	6904	1.212438	0.121244	2.187241	0.218724
JMA Wireless	MX08FRO665-20	153	240	6904	1.212438	0.121244	2.187241	0.218724

Dish Wireless (Proposed) OLD SAYBROOK Carrier Summary

Frequency:	600	MHz
Maximum Permissible Exposure (MPE):	400	µW/cm²
Maximum power density at ground level:	1.52281	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.38070	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
JMA Wireless	MX08FRO665-20	153	0	3229	0.893843	0.223461	1.452612	0.363153
JMA Wireless	MX08FRO665-20	153	120	3229	0.893843	0.223461	1.452612	0.363153
JMA Wireless	MX08FRO665-20	153	240	3229	0.893843	0.223461	1.452612	0.363153

Frequency:	2500	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	1.82474	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.18247	%

					On Axis		Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
RFS	APXVTM14-C-I20	172	330	6168	0.735257	0.073526	1.413920	0.141392	
RFS	APXVTM14-C-I20	172	90	6168	0.735257	0.073526	1.413920	0.141392	
RFS	APXVTM14-C-I20	172	210	6168	0.735257	0.073526	1.413920	0.141392	

Frequency:	1990	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	1.46149	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.14615	%

					On Axis		Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
RFS	APXVSPP18-C-A20	172	350	3804	0.615435	0.061543	1.141838	0.114184	
RFS	APXVSPP18-C-A20	172	90	3804	0.615435	0.061543	1.141838	0.114184	
RFS	APXVSPP18-C-A20	172	190	3804	0.615435	0.061543	1.141838	0.114184	

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm²
Maximum power density at ground level:	1.46149	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.14615	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVSPP18-C-A20	172	350	3804	0.615435	0.061543	1.141838	0.114184
RFS	APXVSPP18-C-A20	172	90	3804	0.615435	0.061543	1.141838	0.114184
RFS	APXVSPP18-C-A20	172	190	3804	0.615435	0.061543	1.141838	0.114184

Frequency:	862	MHz
Maximum Permissible Exposure (MPE):	574.67	µW/cm ²
Maximum power density at ground level:	0.65781	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.11447	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE
RFS	APXVSPP18-C-A20	172	350	2168	0.516850	0.089939	0.530805	0.092368
RFS	APXVSPP18-C-A20	172	90	2168	0.516850	0.089939	0.530805	0.092368
RFS	APXVSPP18-C-A20	172	190	2168	0.516850	0.089939	0.530805	0.092368

Town of Old Saybrook OLD SAYBROOK Carrier Summary

Frequency:	450	MHz
Maximum Permissible Exposure (MPE):	300	µW/cm²
Maximum power density at ground level:	0.20062	µW/cm²
Highest percentage of Maximum Permissible Exposure:	0.06687	%

					On /	Axis	Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm²)	Percent of MPE	Max Power Density (μW/cm²)	Percent of MPE	
SINCLAIR	SC381-HL	165	300	100	0.068111	0.022704	0.068111	0.022704	
RFS	ALG6	178	359	100	0.186126	0.062042	0.186126	0.062042	

OLD SAYBROOK Composite Microwave Antenna Summary

Carrier Town of Old Saybrook Antenna Make/Model

Gabriel HE2-105

Height (feet)

85

Exhibit G

Letter of Authorization

3 Corporate Dr, Suite 101 Clifton Park, NY 12065 Phone: (201) 236-9224 Fax: (724) 416-6112 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Re: Tower Share Application Crown Castle telecommunications site at: 430 Middlesex Turnpike, OLD SAYBROOK, CT 06475

GLOBAL SIGNAL ACQUISITIONS II LLC ("Crown Castle") hereby authorizes DISH WIRELESS LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 876336/OLD SAYBROOK Customer Site ID: BOBDLooo88A/CT-CCI-T-876336 Site Address: 430 Middlesex Turnpike, OLD SAYBROOK, CT 06475

Crown Castle USA Inc.

By:

_____Date: _____5/13/21

Anne Marie Zsamba Project Manager – Site Acquisition

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

876336			
EARMINISTON			
FARMINGT (01/06/2022	210 MAIN ON, CT 06 800)275-8	ST 5032-9998 3777	08:43 AM
Product	Qty	Unit Price	Price
Prepaid Mail West Henrietta Weight: O 1b Acceptance Dat Thu 01/06/ Tracking #: 9405 5036	1 2.00 oz 2.202 2022 9930 010	86 7 6843 86	\$0.00
Prepaid Mail Old Saybrook, Weight: O lb Acceptance Dat Thu 01/06/ Tracking #: 9405 5036 s	1 CT 06475 7.00 oz e: 2022 9930 0107	' 6843 93	\$0.00
Prepaid Mail Old Saybrook, C Weight: O lb 7 Acceptance Date Thu 01/06/2 Tracking #: 9405 5036 9	1 27 06475 7.00 oz 9: 022 930 0107	6844 09	\$0.00
Prepaid Mail Overland Park, Weight: 0 lb 7 Acceptance Date Thu 01/06/20 Tracking #: 9405 5036 95	1 KS 66282 .00 oz : D22 2 930 0107	6844 16	\$0.00
Grand Total:			\$0.00