Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

March 10, 2023

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: EM-VER-106-221005 – Cellco Partnership d/b/a Verizon Wireless – 1363 Boston Post Road, Old Saybrook, Connecticut

Dear Attorney Bachman:

Pursuant to Condition No. 2 of the Siting Council's EM-VER-106-221005 approval, enclosed is a revised Comprehensive Structural Analysis Report referencing the recently revised Connecticut State Building Code, effective October 1, 2022.

Pursuant to Condition No. 3, also enclosed is a Calculated Radio Frequency (RF) Report, prepared by C-Squared Systems presenting a cumulative far-field analysis for all carriers on the tower. This RF report demonstrates that the modified facility will operate well within the FCC's Maximum Permissible Exposure limits.

Please contact me if you have any questions regarding this proposal.

Sincerely,

King mu

Kenneth C. Baldwin

Attachments

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | **rc.com** Robinson & Cole LLP

BST Management, LLC 325 Park Street, Suite 106 North Reading, MA 01864

GPD# 2022703.54

June 28, 2022

COMPREHENSIVE STRUCTURAL ANALYSIS REPORT

SITE DESIGNATION:	BST Site #: BST Site Name: Verizon Site #: Verizon Site Name:	CT-1263 Old Saybrook, Boston Post Road 467406 Old Saybrook 2 CT
ANALYSIS CRITERIA:	Codes:	TIA-222-H & 2022 Connecticut State Building Code 125 mph (3-second gust) w/ 0" ice 50 mph (3-second gust) w/ 1" ice
SITE DATA:		1363 Boston Post Road, Old Saybrook, CT 06475, Middlesex County Latitude 41° 17' 23.27" N, Longitude 72° 24' 21.398" W 99' Sabre Monopole

To whom it may concern,

GPD is pleased to submit this Comprehensive Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	52.7%	Pass
Foundation Ratio with Proposed Equipment:	73.6%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and BST Management, LLC. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

SUMMARY & RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by Verizon Wireless and commissioned by BST Management, LLC.

This analysis has been performed in accordance with the TIA-222-H Standard based upon a 3-second gust wind speed of 125 mph. Applicable Standard references and design criteria are listed in Appendices A & B.

The proposed feedlines shall be installed as shown in Appendices A & B for the analysis results to be valid.

Member	Capacity	Results
Monopole	52.7%	Pass
Anchor Rods	41.1%	Pass
Base Plate	47.0%	Pass
Foundation	73.6%	Pass

TOWER SUMMARY AND RESULTS

RECOMMENDATIONS

The tower and its foundation(s) have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

ANALYSIS METHOD

tnxTower (Version 8.1.1.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various load cases. Selected output from the analysis is included the report appendices. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information.

DOCUMENTS PROVIDED

Document	Remarks	Source
Colocation Application	CT-1263 VZW Colocation Application, dated 5/25/2022	BST
• • • • • • • • • • • • • • • • • • •		Management
Tower Design	Sabre Job #: 49722, dated 9/22/2011	GPD
Foundation Design	Sabre Job #: 49722, dated 9/22/2011	GPD
Geotechnical Report	Dr. Clarence Welti, P.E., P.C., dated 6/1/2011	GPD
Previous Tower Analysis	GPD Job #: 2022701.78, dated 2/1/2022	GPD

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

- 1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
- 2. The appurtenance configuration is as supplied, determined from available photos, and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- 3. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
- 4. The soil parameters are as per data supplied or as assumed and stated in the calculations.
- 5. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
- 6. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
- 7. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
- 8. All prior structural modifications, if applicable, are assumed to be as per data supplied/available and to have been properly installed.
- 9. Loading interpreted from photos is accurate to ±5' AGL, antenna size accurate to ±3.3 sf, and coax equal to the number of existing antennas without reserve.
- 10. All existing and proposed loading has been taken from the available site photos as well as documents supplied to GPD at the time of generating this report. All such documents are listed in the Documents Provided Table and are assumed to be accurate. GPD is not responsible for loading scenarios outside those conveyed in the supplied documentation.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Comprehensive Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

General Info

Site Name	Old Saybrook, Boston Post Road (CT-1263)
Site Number	105130
FA Number	10133875
Date of Analysis	6/28/2022
Company Performing Analysis	GPD

Tower Info	Description	Date	
Tower Type (G, SST, MP)	MP		
Tower Height (top of steel AGL)	99'		
Tower Manufacturer	n/a		
Tower Model	n/a		
Tower Design	Sabre Job #: 49722	9/22/2011	
Foundation Design	Sabre Job #: 49722	9/22/2011	
Geotechnical Report	Dr. Clarence Welti, P.E., P.C.	6/1/2011	
Previous Tower Analysis	GPD Job #: 2022701.78	2/1/2022	

Design Parameters Design Code Used TIA-222-H Location of Tower (County, State) Middlesex, CT Wind Speed (mph) 125 (3-second gust) Ice Thickness (in) 1 Risk Category (I, II, III) II Exposure Category (B, C, D) B Topographic Category (1 to 5) 1

The information contained in this summary report is not to be used independently from the PE stamped tower analysis.

Analysis Results (% Maximum Usage)				
Existing/Reserved + Future + Proposed Condition				
Tower (%)	52.7%			
Tower Base (%)	47.0%			
Foundation (%)	73.6%			
Foundation Adequate?	Yes			

Existing / Reserved Loading

					Antenna				Mount			Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Int/Ext	
AT&T Mobility	97	97	3	Panel	KMW	AM-X-CD-16-65-00T-RET	40/150/270	6	Site Pro	12.5' T-Arms	6	Unknown	1-5/8"	Internal	
AT&T Mobility	97	97	9	Panel	CCI Antennas	HPA-65R-BUU-H6	40/150/270			on the same mount	6	DC Cable	15.4 mm	Internal	
AT&T Mobility	97	97	3	TMA	CCI	DTMABP7819VG12A				on the same mount	1	Fiber Cable	10 mm	Internal	
AT&T Mobility	97	97	6	RRH	Ericsson	RRUS 11				on the same mount					
AT&T Mobility	97	97	6	RRH	Ericsson	RRUS 12				on the same mount					
AT&T Mobility	97	97	3	RRH	Ericsson	RRUS E2				on the same mount					
AT&T Mobility	97	97	3	RRH	Ericsson	RRUS 32				on the same mount					
AT&T Mobility	97	97	6	RRH	Ericsson	KRC 161 286-1 (A2 Module)				on the same mount					
AT&T Mobility	97	97	3	Surge	Raycap	DC6-48-60-18-8F				on the same mount					
Verizon	85	85	3*	Panel	Commscope	LNX-6513DS-VTM	30/150/270	1	Unknown	14.33' Platform	2	Unknown	1-5/8"	Internal	
Verizon	85	85	6*	Panel	Commscope	SBNHH-1D65B	30/150/270	3*	Commscope	BSAMNT-SBS-1-2					
Verizon	85	85	3*	RRH	Nokia	UHBA B13 RRH 4x30				on the same mount					
Verizon	85	85	3*	RRH	Nokia	UHIE B66A RRH 4x45				on the same mount					
Verizon	85	85	2	Surge	RFS	DB-B1-6C-12AB-0Z				on the same mount					
Dish Wireless	75	75	3	Panel	JMA	MX08FRO665-20_V0F	0/120/240	3	Commscope	MC-K6M-9-96	1	Hybrid	1.60"	Internal	
Dish Wireless	75	75	6	RRH	Fujitsu	TA08025-B605				on the same mounts					
Dish Wireless	75	75	1	Surge	Raycap	RDIDC-9181-PF-48				on the same mounts					

*Indicates equipment/feedline quantity to be removed.

Proposed Loading

	Antenna								N	lount		Transmi	ssion Line	
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Int/Ext
Verizon	85	85	6	Panel	Andrew	JAHH-65B-R3B	30/150/270	3	Commscope	BSAMNT-SBS-2-2				
Verizon	85	85	3	Panel	Samsung	MT6407-77A	30/150/270	1	VZWSMART	PLK5 Kicker Kit				
Verizon	85	85	3	Diplexer	Commscope	CBC78T-DS-43-2X		1	VZWSMART	PLK7 Collar Mount				
Verizon	85	85	3	RRH	Samsung	B2/B66A RRH-BR049 (RFV01U-D2A)		3	Unknown	Support Rail				
Verizon	85	85	3	RRH	Samsung	B5/B13 RRH-BR04C (RFV01U-D2A)		3	Unknown	Support Rail Bracing				

Note: The proposed loading shall be in addition to the remaining existing equipment at the same elevation.

APPENDIX B

Tower Analysis Output File

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

At Suite 2531 Project: 2022703.54 Client: BST Management, LLC Drawn by: clifke App'd: Code: TIA-222-H Date: 06/28/22 Scale: NTS 2100 Patt:: TMTandT10513006 2022703 54 BST SAI5 Structure100 Rev 003 Modeling105130 eff

Feed Line Distribution Chart 0' - 99'

Flat _____ App In Face _____ App Out Face _____ Truss Leg

Round

	^{Job:} CT1263 / OLD SAYBROC	K BOSTON PO	ST RD
1	Project: 2022703.54		
	^{Client:} BST Management, LLC	Drawn by: clifke	App'd:
	^{Code:} TIA-222-H	Date: 06/28/22	Scale: NTS
	Path:	100 D. 000 N. 1 F. 1105400	Dwg No. F-7

Feed Line Plan

GPD

520 South Main Street Suite 2531

Akron, Ohio 44311

Phone: (330) 572-2100

FAX: (330) 572-2101

Job	
	CT1263 / OLD SAYBROOK BOSTON POST RD

Date

Project

Client

2022703.54

BST Management, LLC

10:06:50 06/28/22 Designed by clifke

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Middlesex County, Connecticut. Tower base elevation above sea level: 8.00 ft. Basic wind speed of 125 mph. Risk Category II. Exposure Category B. Simplified Topographic Factor Procedure for wind speed-up calculations is used. Topographic Category: 1. Crest Height: 0.00 ft. Nominal ice thickness of 1.0000 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Consider Moments - Horizontals Assume Legs Pinned Consider Moments - Diagonals Assume Rigid Index Plate Ignore Redundant Members in FEA Use Moment Magnification Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable Retension Guys To Initial Tension Use Code Safety Factors - Guys Offset Girt At Foundation Bypass Mast Stability Checks Consider Feed Line Torque Escalate Ice Use Azimuth Dish Coefficients Always Use Max Kz Include Angle Block Shear Check Use Special Wind Profile Project Wind Area of Appurt. Use TIA-222-H Bracing Resist. Exemption Autocalc Torque Arm Areas Use TIA-222-H Tension Splice Exemption Include Bolts In Member Capacity Add IBC .6D+W Combination Leg Bolts Are At Top Of Section Poles Secondary Horizontal Braces Leg Sort Capacity Reports By Component Include Shear-Torsion Interaction Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow SR Members Have Cut Ends Treat Feed Line Bundles As Cylinder Use Top Mounted Sockets SR Members Are Concentric Ignore KL/ry For 60 Deg. Angle Legs $\sqrt{}$ Pole Without Linear Attachments Pole With Shroud Or No Appurtenances

Tapered Pole Section Geometry

Outside and Inside Corner Radii Are

Known

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	99.00-48.50	50.50	4.75	18	22.1400	34.1500	0.2500	1.0000	A572-65

tnxTower	Job CT1263 / OLD SAYBROOK BOSTON POST RD	Page 2 of 10
GPD 520 South Main Street Suite 2531	Project 2022703.54	Date 10:06:50 06/28/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client BST Management, LLC	Designed by clifke

Section	Elevation	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L2	48.50-0.00	53.25	<u>j</u> t	18	32.5203	45.2000	0.3125	1.2500	(65 ksi) A572-65 (65 ksi)

	Tapered Pole Properties										
Section	Tip Dia. in	Area in ²	I in ⁴	r in	C in	I/C in ³	J in^4	It/Q in^2	w in		_
	22.4430 34.6383	17.3697 26.8996	1051.530 3905.561	0 7.7710	11.2471 17.3482	93.4933 225.1278	2104.4436 7816.2619	8.6865 13.4524	3.45 5.57	66 13.827	
L2	34.1223 45.8491	31.9462 44.5228	4186.773	6 11.4338	16.5203 22.9616	253.4315 493.5924	8379.0563 22682.2576	15.9761 22.2656	5.17 7.40	36 16.555	5
	43.8491	44.3220	11555.072	22 15.9551	22.9010	493.3924	22082.2370	22.2030	7.40	52 25.07	<u> </u>
Tower	Gus	set	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mı	ılt. Double	e Angle	Double Angle	Double Angle
Elevation			hickness		A_f	Factor	0		h Bolt	Stitch Bolt	Stitch Bolt
	(per f	uce)				A_r		1	cing onals	Spacing Horizontals	Spacing Redundants
ft	ft	2	in					i	n	in	in
1 99.00-48.	.50				1	1	1				

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf
5/8" Step Bolts	С	No	No	CaAa (Out	99.00 - 8.00	1	No Ice	0.04	1.00
1				Of Face)			1/2" Ice	0.14	1.56
				,			1" Ice	0.24	2.73
Safety Line (3/8")	С	No	No	CaAa (Out	99.00 - 8.00	1	No Ice	0.04	0.22
5				Of Face)			1/2" Ice	0.14	0.75
****				,			1" Ice	0.24	1.28
LDF7-50A (1-5/8	А	No	No	Inside Pole	97.00 - 8.00	6	No Ice	0.00	0.82
FOAM)							1/2" Ice	0.00	0.82
,							1" Ice	0.00	0.82
5.4mm DC Power	А	No	No	Inside Pole	95.00 - 8.00	6	No Ice	0.00	0.50
							1/2" Ice	0.00	0.50
							1" Ice	0.00	0.50
10mm Fiber Cable	А	No	No	Inside Pole	95.00 - 8.00	1	No Ice	0.00	0.10
							1/2" Ice	0.00	0.10
****							1" Ice	0.00	0.10
LDF7-50A (1-5/8	в	No	No	Inside Pole	85.00 - 8.00	2	No Ice	0.00	0.82
FOAM)	_					_	1/2" Ice	0.00	0.82
****							1" Ice	0.00	0.82
1.60" Hybrid	В	No	No	Inside Pole	75.00 - 8.00	1	No Ice	0.00	0.85
1.00 Hyond	5	110	110	monae i ole	, 5.00 0.00	1	1/2" Ice	0.00	0.85
							172 Icc 1" Ice	0.00	0.85

1 1 1

L2 48.50-0.00

Job

Client

Job		Page
	CT1263 / OLD SAYBROOK BOSTON POST RD	3 of 10
Project		Date
	2022703.54	10:06:50 06/28/2

GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

BST Management, LLC)
---------------------	---

10:06:50 06/28/22 Designed by clifke

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
	ft		ft^2	ft^2	ft^2	ft^2	Κ
L1	99.00-48.50	А	0.000	0.000	0.000	0.000	0.38
		В	0.000	0.000	0.000	0.000	0.08
		С	0.000	0.000	0.000	3.998	0.06
L2	48.50-0.00	А	0.000	0.000	0.000	0.000	0.32
		В	0.000	0.000	0.000	0.000	0.10
		С	0.000	0.000	0.000	3.206	0.05

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	Κ
L1	99.00-48.50	А	1.082	0.000	0.000	0.000	0.000	0.38
		В		0.000	0.000	0.000	0.000	0.08
		С		0.000	0.000	0.000	25.854	0.22
L2	48.50-0.00	А	0.966	0.000	0.000	0.000	0.000	0.32
		В		0.000	0.000	0.000	0.000	0.10
		С		0.000	0.000	0.000	20.735	0.18

Feed Line Center of Pressure

	Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
					Ice	Ice
_		ft	in	in	in	in
	L1	99.00-48.50	-0.6116	0.3531	-1.8756	1.0829
	L2	48.50-0.00	-0.5086	0.2936	-1.6680	0.9630

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Discrete Tower Loads									
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft ²	ft^2	K
-Arm Mount [TA 602-3]	А	None	¥	0.0000	97.00	No Ice 1/2" Ice	13.40 16.44	13.40 16.44	0.77 1.00

Job CT1263 / OLD SAYBROOK BOSTON POST RD

Date

Project

Client

GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

BST Management, LLC

2022703.54

Designed by clifke

10:06:50 06/28/22

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigl
	-0		Vert ft ft	o	ft		ft^2	ft ²	K
			ft			1" Ice	19.70	19.70	1.29
T-Arm Mount [TA 602-3]	А	None		0.0000	93.00	No Ice	13.40	13.40	0.77
1-Aim Would [1A 002-5]	А	None		0.0000	75.00	1/2" Ice	16.44	16.44	1.00
						172 Ice	19.70	19.70	1.00
AM-X-CD-16-65-00T-RET	А	From Face	4.00	0.0000	97.00	No Ice	8.31	6.65	0.09
w/ Mount Pipe	А	1101111 acc	0.00	0.0000	97.00	1/2" Ice	8.85	7.68	0.16
w/ Would Tipe			-3.00			1" Ice	9.37	8.56	0.23
AM-X-CD-16-65-00T-RET	В	From Face	4.00	0.0000	97.00	No Ice	8.31	6.65	0.09
w/ Mount Pipe	Б	1 10111 1 400	0.00	0.0000	27.00	1/2" Ice	8.85	7.68	0.16
w/ Would Tipe			-3.00			1" Ice	9.37	8.56	0.10
AM-X-CD-16-65-00T-RET	С	From Face	4.00	0.0000	97.00	No Ice	8.31	6.65	0.25
w/ Mount Pipe	C	1101111 acc	0.00	0.0000	97.00	1/2" Ice	8.85	7.68	0.16
w/ Would Tipe			-3.00			1" Ice	9.37	8.56	0.10
(3) HPA-65R-BUU-H6 w/	А	From Face	4.00	0.0000	97.00	No Ice	9.90	8.11	0.23
Mount Pipe	11	1 10111 1 400	0.00	0.0000	27.00	1/2" Ice	10.47	9.30	0.00
Would Tipe			-3.00			1" Ice	11.01	10.21	0.10
(3) HPA-65R-BUU-H6 w/	в	From Face	4.00	0.0000	97.00	No Ice	9.90	8.11	0.23
Mount Pipe	Б	1101111 acc	0.00	0.0000	97.00	1/2" Ice	10.47	9.30	0.00
Would Tipe			-3.00			1" Ice	11.01	10.21	0.10
(3) HPA-65R-BUU-H6 w/	С	From Face	4.00	0.0000	97.00	No Ice	9.90	8.11	0.23
Mount Pipe	C	FIOIITFace	4.00 0.00	0.0000	97.00	1/2" Ice	9.90 10.47	9.30	0.08
Would Tipe			-3.00			172 Ice	11.01	10.21	0.10
DTMABP7819VG12A	А	From Face	4.00	0.0000	97.00	No Ice	1.00	0.41	0.23
DIMABE /819 VOIZA	A	FIOIII Face	4.00 0.00	0.0000	97.00	1/2" Ice	1.00	0.41	0.02
			-3.00			172 Ice	1.13	0.51	0.03
DTMABP7819VG12A	В	From Face	4.00	0.0000	97.00	No Ice	1.27	0.01	0.04
DIMABE /819 VOIZA	Б	FIOIII Face	4.00 0.00	0.0000	97.00	1/2" Ice	1.13	0.41	0.02
			-3.00			172 Ice	1.13	0.61	0.03
DTMABP7819VG12A	С	From Face	4.00	0.0000	97.00	No Ice	1.27	0.01	0.04
DIMABI /819 VOIZA	C	110111 Face	0.00	0.0000	97.00	1/2" Ice	1.13	0.41	0.02
			-3.00			172 Ice	1.13	0.51	0.03
(2) RRUS 11	А	From Face	4.00	0.0000	97.00	No Ice	2.78	1.19	0.04
(2) KK05 11	A	Profil Pace	0.00	0.0000	97.00	1/2" Ice	2.78	1.33	0.03
			-3.00			172 Icc 1" Ice	3.21	1.33	0.07
(2) RRUS 11	В	From Face	4.00	0.0000	97.00	No Ice	2.78	1.49	0.10
(2) KKUS 11	Б	FIOIII Face	4.00 0.00	0.0000	97.00	1/2" Ice	2.78	1.19	0.03
			-3.00			172 Icc 1" Ice	3.21	1.33	0.07
(2) RRUS 11	С	From Face	4.00	0.0000	97.00	No Ice	2.78	1.49	0.10
(2) KK05 11	C	1101111 acc	0.00	0.0000	97.00	1/2" Ice	2.99	1.33	0.03
			-3.00			172 Icc 1" Ice	3.21	1.33	0.07
(2) RRUS 12	۸	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.10
(2) KK03 12	А	Profil Pace	0.00	0.0000	97.00	1/2" Ice	3.36	1.44	0.00
			-3.00			1" Ice	3.59	1.60	0.00
(2) RRUS 12	В	From Face	4.00	0.0000	97.00	No Ice	3.15	1.00	0.06
(2) KK05 12	Б	1101111 acc	0.00	0.0000	97.00	1/2" Ice	3.36	1.44	0.00
			-3.00			172 Ice	3.59	1.60	0.00
(2) RRUS 12	С	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.06
(2) KK05 12	C	1101111 acc	0.00	0.0000	97.00	1/2" Ice	3.36	1.44	0.00
			-3.00			172 Ice	3.59	1.60	0.08
RRUS E2	А	From Face	-3.00	0.0000	97.00	No Ice	3.15	1.00	0.11
KKUB EZ	Α	From Face	4.00 0.00	0.0000	97.00	1/2" Ice	3.36	1.29	0.08
			-3.00			172 Ice 1" Ice	3.59	1.44	0.08
RRUS E2	В	From Face	4.00	0.0000	97.00	No Ice	3.15	1.00	0.11
KKOJ EZ	Ъ	r tom race	4.00 0.00	0.0000	27.00	1/2" Ice	3.36	1.29	0.00
			-3.00			172 Ice 1" Ice	3.59	1.44	0.08
RRUS E2	С	From Face	4.00	0.0000	97.00	No Ice	3.15	1.00	0.11

Job CT1263 / OLD SAYBROOK BOSTON POST RD

Date

Project

Client

GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

BST Management, LLC

2022703.54

Designed by clifke

10:06:50 06/28/22

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg	~1	Lateral						
			Vert ft	0	ft		ft ²	ft^2	K
			ft		Ji		Ji	Ji	A
						1" Ice	3.59	1.60	0.11
RRUS 32	А	From Face	4.00	0.0000	97.00	No Ice	3.31	2.42	0.08
			0.00			1/2" Ice	3.56	2.64	0.10
			-3.00			1" Ice	3.81	2.86	0.14
RRUS 32	В	From Face	4.00	0.0000	97.00	No Ice	3.31	2.42	0.08
			0.00			1/2" Ice	3.56	2.64	0.10
			-3.00			1" Ice	3.81	2.86	0.14
RRUS 32	С	From Face	4.00	0.0000	97.00	No Ice	3.31	2.42	0.08
			0.00			1/2" Ice	3.56	2.64	0.10
			-3.00			1" Ice	3.81	2.86	0.14
(2) KRC 161 286-1 (A2	А	From Face	4.00	0.0000	97.00	No Ice	1.87	0.43	0.02
Module)			0.00			1/2" Ice	2.05	0.54	0.03
			-3.00			1" Ice	2.24	0.66	0.04
(2) KRC 161 286-1 (A2	В	From Face	4.00	0.0000	97.00	No Ice	1.87	0.43	0.02
Module)			0.00			1/2" Ice	2.05	0.54	0.03
			-3.00			1" Ice	2.24	0.66	0.04
(2) KRC 161 286-1 (A2	С	From Face	4.00	0.0000	97.00	No Ice	1.87	0.43	0.02
Module)			0.00			1/2" Ice	2.05	0.54	0.03
			-3.00	0.0000	05.00	1" Ice	2.24	0.66	0.04
DC6-48-60-18-8F Surge	Α	From Face	1.00	0.0000	95.00	No Ice	0.92	0.92	0.02
Suppression Unit			0.00			1/2" Ice	1.46	1.46	0.04
DC(48 (0.18 PE Same a	р	EE.	0.00	0.0000	05.00	1" Ice	1.64	1.64	0.06
DC6-48-60-18-8F Surge	В	From Face	$1.00 \\ 0.00$	0.0000	95.00	No Ice 1/2" Ice	0.92 1.46	0.92	0.02 0.04
Suppression Unit			0.00			1/2 Ice 1" Ice	1.40	1.46 1.64	0.04
DC6-48-60-18-8F Surge	С	From Face	1.00	0.0000	95.00	No Ice	0.92	0.92	0.00
Suppression Unit	C	FIOIII Face	0.00	0.0000	95.00	1/2" Ice	1.46	1.46	0.02
Suppression Onit			0.00			1" Ice	1.64	1.64	0.04
****			0.00			1 100	1.04	1.04	0.00
14.33' Platform [LP	А	None		0.0000	85.00	No Ice	37.79	37.79	1.98
302-1_KCKR]		110110		0.0000	00100	1/2" Ice	47.89	47.89	2.68
_ 1						1" Ice	57.78	57.78	3.55
(2) JAHH-65B-R3B	А	From	4.00	0.0000	85.00	No Ice	9.11	5.98	0.06
()		Centroid-Fa	0.00			1/2" Ice	9.58	6.44	0.12
		ce	0.00			1" Ice	10.05	6.91	0.18
(2) JAHH-65B-R3B	В	From	4.00	0.0000	85.00	No Ice	9.11	5.98	0.06
		Centroid-Fa	0.00			1/2" Ice	9.58	6.44	0.12
		ce	0.00			1" Ice	10.05	6.91	0.18
(2) JAHH-65B-R3B	С	From	4.00	0.0000	85.00	No Ice	9.11	5.98	0.06
		Centroid-Fa	0.00			1/2" Ice	9.58	6.44	0.12
		ce	0.00			1" Ice	10.05	6.91	0.18
MT6407-77A	Α	From	4.00	0.0000	85.00	No Ice	4.69	1.84	0.08
		Centroid-Fa	0.00			1/2" Ice	4.98	2.06	0.11
		ce	0.00			1" Ice	5.28	2.29	0.14
MT6407-77A	В	From	4.00	0.0000	85.00	No Ice	4.69	1.84	0.08
		Centroid-Fa	0.00			1/2" Ice	4.98	2.06	0.11
	~	ce	0.00	0.0000	05.00	1" Ice	5.28	2.29	0.14
MT6407-77A	С	From	4.00	0.0000	85.00	No Ice	4.69	1.84	0.08
		Centroid-Fa	0.00			1/2" Ice	4.98	2.06	0.11
DO/D/CA DDU DD040		ce	0.00	0.0000	05.00	1" Ice	5.28	2.29	0.14
B2/B66A RRH-BR049	Α	From	4.00	0.0000	85.00	No Ice	1.88	1.25	0.08
		Centroid-Fa	0.00			1/2" Ice	2.05	1.39	0.10
DO/D/CA DDU DD040	р	ce	0.00	0.0000	05.00	1" Ice	2.22	1.54	0.12
B2/B66A RRH-BR049	В	From Contraid Ea	4.00	0.0000	85.00	No Ice	1.88	1.25	0.08
		Centroid-Fa	0.00			1/2" Ice	2.05	1.39	0.10
B2/B66A RRH-BR049	С	ce From	$\begin{array}{c} 0.00 \\ 4.00 \end{array}$	0.0000	85.00	1" Ice No Ice	2.22 1.88	1.54 1.25	0.12 0.08
$D_{1}D_{1}D_{1}D_{1}A$ KKU-DKU49	U	From	4.00	0.0000	05.00	INO ICE	1.00	1.23	0.08

<i>tnxTower</i>

Job CT1263 / OLD SAYBROOK BOSTON POST RD

Date

GPD

Project

Client

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

BST Management, LLC

2022703.54

Designed by clifke

10:06:50 06/28/22

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	Leg		Lateral Vert						
			ft	0	ft		ft^2	ft^2	K
			ft ft		-		-	-	
		Centroid-Fa	0.00			1/2" Ice	2.05	1.39	0.10
		ce	0.00			1" Ice	2.22	1.54	0.12
B5/B13 RRH-BR04C	А	From	4.00	0.0000	85.00	No Ice	1.88	1.01	0.07
		Centroid-Fa	0.00			1/2" Ice	2.05	1.14	0.09
B5/B13 RRH-BR04C	В	ce From	$\begin{array}{c} 0.00 \\ 4.00 \end{array}$	0.0000	85.00	1" Ice No Ice	2.22 1.88	1.28 1.01	0.11 0.07
B3/B13 KKII-BK04C	Б	Centroid-Fa	0.00	0.0000	85.00	1/2" Ice	2.05	1.14	0.07
		centrola-ra	0.00			172 Icc 1" Ice	2.03	1.14	0.09
B5/B13 RRH-BR04C	С	From	4.00	0.0000	85.00	No Ice	1.88	1.01	0.07
Do, DTo Rati Dico re	e	Centroid-Fa	0.00	0.0000	05.00	1/2" Ice	2.05	1.14	0.09
		ce	0.00			1" Ice	2.22	1.28	0.11
CBC78T-DS-43-2X	А	From	4.00	0.0000	85.00	No Ice	0.37	0.51	0.02
		Centroid-Fa	0.00			1/2" Ice	0.45	0.60	0.03
		ce	0.00			1" Ice	0.53	0.70	0.04
CBC78T-DS-43-2X	В	From	4.00	0.0000	85.00	No Ice	0.37	0.51	0.02
		Centroid-Fa	0.00			1/2" Ice	0.45	0.60	0.03
		ce	0.00			1" Ice	0.53	0.70	0.04
CBC78T-DS-43-2X	С	From	4.00	0.0000	85.00	No Ice	0.37	0.51	0.02
		Centroid-Fa	0.00			1/2" Ice	0.45	0.60	0.03
		ce	0.00			1" Ice	0.53	0.70	0.04
DB-T1-6Z-8AB-0Z	А	From	4.00	0.0000	85.00	No Ice	4.80	2.00	0.04
		Centroid-Fa	0.00			1/2" Ice	5.07	2.19	0.08
		ce	0.00			1" Ice	5.35	2.39	0.12
DB-T1-6Z-8AB-0Z	В	From	4.00	0.0000	85.00	No Ice	4.80	2.00	0.04
		Centroid-Fa	0.00			1/2" Ice	5.07	2.19	0.08
****		ce	0.00			1" Ice	5.35	2.39	0.12
MC-K6M-9-96	А	None		0.0000	75.00	No Ice	12.56	12.56	0.73
WIC-K0W-9-90	A	None		0.0000	75.00	1/2" Ice	12.30	15.36	0.94
						1" Ice	18.04	18.04	1.21
(2) 8' x 2.375" Mount Pipe	А	From	3.00	0.0000	75.00	No Ice	1.90	1.90	0.04
(2) 0 11 210 / 0 1110 and 1 1 po		Centroid-Fa	0.00	0.0000	70100	1/2" Ice	2.73	2.73	0.05
		ce	0.00			1" Ice	3.40	3.40	0.07
(2) 8' x 2.375" Mount Pipe	В	From	3.00	0.0000	75.00	No Ice	1.90	1.90	0.04
1		Centroid-Fa	0.00			1/2" Ice	2.73	2.73	0.05
		ce	0.00			1" Ice	3.40	3.40	0.07
(2) 8' x 2.375" Mount Pipe	С	From	3.00	0.0000	75.00	No Ice	1.90	1.90	0.04
		Centroid-Fa	0.00			1/2" Ice	2.73	2.73	0.05
		ce	0.00			1" Ice	3.40	3.40	0.07
MX08FRO665-20_V0F w/	А	From	3.00	0.0000	75.00	No Ice	12.96	7.77	0.08
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	13.67	9.05	0.18
		ce	0.00			1" Ice	14.34	10.19	0.28
MX08FRO665-20_V0F w/	В	From	3.00	0.0000	75.00	No Ice	12.96	7.77	0.08
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	13.67	9.05	0.18
		ce	0.00			1" Ice	14.34	10.19	0.28
MX08FRO665-20_V0F w/	С	From	3.00	0.0000	75.00	No Ice	12.96	7.77	0.08
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	13.67	9.05	0.18
		ce	0.00	0.0000	75.00	1" Ice	14.34	10.19	0.28
(2) TA08025-B605	А	From	3.00	0.0000	75.00	No Ice	1.96	1.13	0.08
		Centroid-Fa	0.00			1/2" Ice	2.14	1.27	0.09
(2) TA02025 DC05	п	ce	0.00	0.0000	75.00	1" Ice	2.32	1.41	0.11
(2) TA08025-B605	В	From Controld Fo	3.00	0.0000	75.00	No Ice	1.96	1.13	0.08
		Centroid-Fa	0.00			1/2" Ice	2.14	1.27	0.09
(2) TA08025-B605	С	ce From	0.00	0.0000	75.00	1" Ice No Ice	2.32	1.41	0.11 0.08
(Z) IAU00Z3-B003	C	From	3.00	0.0000	/ 5.00		1.96	1.13	
()		Centroid-Fa	0.00			1/2" Ice	2.14	1.27	0.09

tnxTower	Job	Page
lix I ower	CT1263 / OLD SAYBROOK BOSTON POST RD	7 of 10
GPD	Project	Date
520 South Main Street Suite 2531	2022703.54	10:06:50 06/28/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client BST Management, LLC	Designed by clifke

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft ft	o	ft		ft²	ft²	Κ
RDIDC-9181-PF-48	А	From Centroid-Fa	3.00 0.00	0.0000	75.00	No Ice 1/2" Ice	2.56 2.76	1.34 1.49	0.02 0.04
****		ce	0.00			1" Ice	2.97	1.66	0.07

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34 35	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
33 36	6 1
30 37	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
38 39	Dead+Wind 0 deg - Service
39 40	Dead+Wind 30 deg - Service
40 41	Dead+Wind 50 deg - Service
41	Dead+Wind 60 deg - Service
72	Deat wind Do deg - Service

A	Job	Page
tnxTower	CT1263 / OLD SAYBROOK BOSTON PO	ST RD 8 of 10
GPD 520 South Main Street Suite 2531	Project 2022703.54	Date 10:06:50 06/28/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client BST Management, LLC	Designed by clifke

Comb.	Description
No.	Description
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	99 - 48.5	7.102	48	0.5761	0.0005
L2	53.25 - 0	2.184	48	0.3768	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
97.00	T-Arm Mount [TA 602-3]	48	6.856	0.5687	0.0005	54502
95.00	DC6-48-60-18-8F Surge	48	6.611	0.5612	0.0004	54502
	Suppression Unit					
93.00	T-Arm Mount [TA 602-3]	48	6.366	0.5537	0.0004	45418
85.00	14.33' Platform [LP 302-1_KCKR]	48	5.402	0.5231	0.0004	19465
75.00	MC-K6M-9-96	48	4.255	0.4825	0.0003	11354

		Maximum	Tower	Deflection	s - Design Wind
Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	99 - 48.5	34.548	20	2.8038	0.0023
L2	53.25 - 0	10.623	20	1.8335	0.0010

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
97.00	T-Arm Mount [TA 602-3]	20	33.353	2.7675	0.0022	11243
95.00	DC6-48-60-18-8F Surge	20	32.160	2.7311	0.0022	11243
	Suppression Unit					
93.00	T-Arm Mount [TA 602-3]	20	30.970	2.6945	0.0021	9369
85.00	14.33' Platform [LP 302-1_KCKR]	20	26.278	2.5456	0.0018	4014

tnxTower	Job CT1263 / OLD SAYBROOK BOSTON POST RD	Page 9 of 10
GPD 520 South Main Street Suite 2531	Project 2022703.54	Date 10:06:50 06/28/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client BST Management, LLC	Designed by clifke

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
75.00	MC-K6M-9-96	20	20.697	2.3479	0.0016	2341

Compression Checks

			Ро	le Des	sign l	Data			
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	Κ	Κ	ϕP_n
L1 L2	99 - 48.5 (1) 48.5 - 0 (2)	TP34.15x22.14x0.25 TP45.2x32.5203x0.3125	50.50 53.25	0.00 0.00	0.0 0.0	26.0033 44.5228	-14.63 -24.56	1521.19 2604.58	0.010 0.009

		Po	ole Beno	ding De	sign I	Data		
Section No.	Elevation	Size	M _{ux}	ϕM_{nx}	Ratio M _{ux}	M _{uy}	ϕM_{ny}	Ratio M_{uy}
	ft		kip-ft	kip-ft	$\frac{M_{ux}}{\phi M_{nx}}$	kip-ft	kip-ft	ϕM_{ny}
L1 L2	99 - 48.5 (1) 48.5 - 0 (2)	TP34.15x22.14x0.25 TP45.2x32.5203x0.3125	496.26 1387.50	1184.53 2683.70	0.419 0.517	0.00 0.00	1184.53 2683.70	$0.000 \\ 0.000$

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	99 - 48.5 (1)	TP34.15x22.14x0.25	15.24	456.36	0.033	0.24	1309.68	0.000
L2	48.5 - 0 (2)	TP45.2x32.5203x0.3125	18.23	781.38	0.023	0.15	3071.60	0.000

			F	Pole Int	eractio	on Des	ign Da	ta	
Section No.	Elevation	Ratio P_u	Ratio M _{ux}	Ratio M _{uy}	Ratio V_u	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{nv}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	99 - 48.5 (1)	0.010	0.419	0.000	0.033	0.000	0.430	1.000	4.8.2 🗸
L2	48.5 - 0 (2)	0.009	0.517	0.000	0.023	0.000	0.527	1.000	4.8.2 🗸

GPD

Client		Designed by
	2022703.54	10:06:50 06/28/22
Project		Date
	CT1263 / OLD SAYBROOK BOSTON POST RD	10 of 10
Job		Page

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

BST Management, LLC

Designed by clifke

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${{{\mathscr I}\! {P}}_{allow}} \over K$	% Capacity	Pass Fail
L1	99 - 48.5	Pole	TP34.15x22.14x0.25	1	-14.63	1521.19	43.0	Pass
L2	48.5 - 0	Pole	TP45.2x32.5203x0.3125	2	-24.56	2604.58	52.7	Pass
						Summary	ELC:	Existing + Proposed
						Pole (L2) Rating =	52.7 52.7	Pass Pass

APPENDIX C

Additional Calculations

Anchor Rod and Base Plate Stresses, TIA-222-H-1 CT1263 / OLD SAYBROOK BOSTON POST RD 2022703.54

Overturning Moment =	1387.00	k*ft
Axial Force =	25.00	k
Shear Force =	18.00	k

Maximum Capacity	105%
Apply TIA-222-H Section 15.5?	No

Anchor Ro	ods	
Pole Diameter =	45.2	in
Number of Rods =	12	
Rod Yield Strength, F _y =	75	ksi
Rod Ultimate Strength, $F_u =$	100	ksi
Rod Circle =	51.25	in
Rod Diameter =	2.25	in
Rod Projection, I _{ar} =	2.25	in
Is grout present?	No	
Max Tension on Rod, P _{ut} =	106.07	k
Max Compression on Rod, P_{uc} =	110.23	k
Shear on Rod, V_u =	1.50	k
Moment on Rod, M_u =	0.00	k-in
Tension Interaction =	18.9%	ОК
Compression Interaction =	41.1%	ОК

Base Plate			
Plate Yield Strength, F _y =	50	ksi	
φ =	0.9		
Plate Thickness =	2.5	in	
Plate Width =	49.75	in	
Est. Dist. b/w ea. Rod =	6	in	
w _{calc} =	36.92	in	
w _{max} =	25.16	in	
w =	25.16		
Z =	39.31	in³	
M _u =	831.73	k-in	
φM _n =	1768.86	k-in	
Base Plate Capacity =	47.0%	ОК	

GPD Unstiffened Square Base Plate Stress (Rev H) - V1.1

Pier and Pad Foundation

	CT1284
Site Name:	OLD SAYBROOK E

TIA-222 Revision: H Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions Compression, P_{comp}: 25 kips Base Shear, Vu_comp: 18 kips Moment, Mu 1387 ft-kips Tower Height, H: 99 ft BP Dist. Above Fdn, bp_{dist}: 3 in

Pier Properties		
Pier Shape:	Square	
Pier Diameter, dpier :	6	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc :	8	
Pier Rebar Quantity, mc:	26	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt:		
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	3	in

Pad Properties		
Depth, D:	6	ft
Pad Width, W ₁ :	20.5	ft
Pad Thickness, T:	1.5	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	26	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties			
Rebar Grade, Fy :	60	ksi	
Concrete Compressive Strength, F'c:	4.5	ksi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties		
Total Soil Unit Weight, $m{\gamma}$:	125	pcf
Ultimate Gross Bearing, Qult:	8.000	ksf
Cohesion, Cu :		ksf
Friction Angle, φ :	34	degrees
SPT Blow Count, N _{blows} :		
Base Friction, μ :		
Neglected Depth, N:	3.50	ft
Foundation Bearing on Rock?		
Groundwater Depth, gw:	5	ft

Foundation Analysis Checks Capacity Demand Rating Check Lateral (Sliding) (kips) 153.47 18.00 11.7% Pass Bearing Pressure (ksf) 6.00 2.15 35.8% Pass Overturning (kip*ft) 2919.69 1508.50 51.7% Pass Pier Flexure (Comp.) (kip*ft) 50.7% 1477.00 2915.71 Pass Pier Compression (kip) 25777.44 57.40 0.2% Pass Pad Flexure (kip*ft) 1187.28 499.18 42.0% Pass Pad Shear - 1-way (kips) 106.64 31.9% 334.17 Pass Pad Shear - 2-way (Comp) (ksi) 0.201 0.063 31.3% Pass Flexural 2-way (Comp) (kip*ft) 1204.34 886.20 73.6% Pass

Structural Rating:	73.6%
Soil Rating:	51.7%

<--Toggle between Gross and Net

C Squared Systems, LLC 65 Dartmouth Drive Auburn, NH 03032 (603) 644-2800 support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

Old Saybrook 2 1363 Boston Post Rd, Old Saybrook, CT 06475

February 28, 2023

Table of Contents

1.	Introduction	1
2.	FCC Guidelines for Evaluating RF Radiation Exposure Limits	1
3.	RF Exposure Prediction Methods	2
4.	Antenna Inventory	3
5.	Calculation Results	4
6.	Conclusion	6
7.	Statement of Certification	6
Att	achment A: References	7
Att	achment B: FCC Limits for Maximum Permissible Exposure (MPE)	8
Att	achment C: Verizon Antenna Model Data Sheets and Electrical Patterns	10

List of Figures

Figure 1: Graph of General Population % MPE vs. Distance	4
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)	9

List of Tables

Table 1: Proposed Antenna Inventory	.3
Table 2: Maximum Percent of General Population Exposure Values	.5
Table 3: FCC Limits for Maximum Permissible Exposure	.8

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modification of Verizon's antenna arrays to be mounted at 85' AGL on an existing monopole tower located at 1363 Boston Post Rd in Old Saybrook, CT. The coordinates of the monopole tower are 41° 17' 23.2008" N, 72° 24' 21.3984" W.

Verizon is proposing the following:

1) Install nine (9) multi-band antennas (three (3) per sector) to support its commercial LTE network.

This report considers the planned antenna configuration for Verizon¹ and the existing antennas for AT&T and Dish Network to derive the resulting % MPE of its proposed installation.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

¹ As referenced to Verizon's Radio Frequency Design Sheet updated 7/20/2022.

3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

PowerDensity=
$$\left(\frac{EIRP}{\pi \times R^2}\right) \times Off BeamLoss$$

Where:

EIRP = Effective Isotropic Radiated Power

R = Radial Distance =
$$\sqrt{(H^2 + V^2)}$$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor of 1.6

These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

4. Antenna Inventory

Table 1 below outlines Verizon's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachments C.

Operator	Sector / Call Sign	TX Freq (MHz)	Power at Antenna (Watts)	Ant Gain (dBi)	Power EIRP (Watts)	Antenna Model	Beam Width	Mech. Tilt	Length (ft)	Antenna Centerline Height (ft)
		700	160	14.5	4509		67			
	A1.1 /	850	160	15.8	6083	JAHH-65B-R3B	65	0	5.99	85
	Alpha / 30°	1900	160	18.4	11069	JATHI-05D-K5D	65	0	3.99	65
	50	2100	240	18.5	16990		68			
		3700	200	23.35	43254	MT6407-77A	-	0	2.92	85
		700	160	14.5	4509		67			
	D . /	850	160	15.8	6083		65	0	5.99	85
Verizon	Beta / 150°	1900	160	18.4	11069	JAHH-65B-R3B	65	0	5.99	65
	150	2100	240	18.5	16990		68			
		3700	200	23.35	43254	MT6407-77A	-	0	2.92	85
		700	160	14.5	4509		67			
		850	160	15.8	6083	IALUL (5D D2D	65		5.00	85
	Gamma / 270°	1900	160	18.4	11069	JAHH-65B-R3B	65	0	5.99	65
	210	2100	240	18.5	16990		68			
		3700	200	23.35	43254	MT6407-77A	-	0	2.92	85

Table 1: Proposed Antenna Inventory^{2 3}

² Antenna heights are in reference to Verizon's Radio Frequency Design Sheet updated 7/20/2022.

³ Transmit power assumes 0 dB of cable loss.

5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within \pm 5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (15.95% of the General Population limit) is calculated to occur at a horizontal distance of 342 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 1500 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 342 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

Carrier	Number of Transmitters	Power out of Base Station Per Transmitter (Watts)	Antenna Height (Feet)	Distance to the Base of Antennas (Feet)	Power Density (mW/cm ²)	Limit (mW/cm ²)	% MPE
AT&T LTE 1900 MHz	1	160.0	97.0	342	0.000206	1.000	0.02%
AT&T LTE 2100 MHz	1	240.0	97.0	342	0.002452	1.000	0.25%
AT&T LTE 2300 MHz	1	160.0	97.0	342	0.002635	1.000	0.26%
AT&T LTE 719 MHz	1	160.0	97.0	342	0.001053	0.479	0.22%
AT&T LTE 763 MHz	1	160.0	97.0	342	0.002555	0.509	0.50%
AT&T LTE 885 MHz	1	160.0	97.0	342	0.002681	0.590	0.45%
Dish 600 MHz	1	246.0	75.0	342	0.007249	0.421	1.72%
Dish LTE 1900 MHz	1	160.0	75.0	342	0.001818	1.000	0.18%
Dish LTE 2100 MHz	1	160.0	75.0	342	0.001475	1.000	0.15%
Verizon 3700 MHz	1	200.0	85.0	342	0.107112	1.000	10.71%
Verizon LTE 1900 MHz	1	160.0	85.0	342	0.000521	1.000	0.05%
Verizon LTE 2100 MHz	1	240.0	85.0	342	0.001025	1.000	0.10%
Verizon LTE 750 MHz	1	160.0	85.0	342	0.003161	0.497	0.64%
Verizon LTE 885 MHz	1	160.0	85.0	342	0.004092	0.590	0.69%
			•			Total	15.95%

Table 2: Maximum Percent of General Population Exposure Values⁴⁵

⁴ Antenna information for DISH was taken from Fox Hill Telecom, Inc, Radio Frequency Emissions Analysis Report, dated 10/11/2022

⁵ Antenna information for AT&T was taken from Connecticut Siting Council Notice of Exempt Modification – Facility Modification 1363 Boston Post Road, Old Saybrook, Connecticut, dated 10/04/2022

6. Conclusion

The above analysis verifies that RF exposure levels from the site with Verizon's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be **15.95% of the FCC limit (General Population/Uncontrolled)**. This maximum cumulative percent of MPE value is calculated to occur 342 feet away from the site.

7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Ram Bebanya

Report Prepared By:

Ram Acharya RF Engineer 1 C Squared Systems, LLC February 27, 2023 Date

Marth of Fand

Reviewed/Approved By:

Martin J. Lavin Senior RF Engineer C Squared Systems, LLC February 28, 2023 Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)^*$	6
30-300	61.4	0.163	1.0	6
300-1500	-	-	f/300	6
1500-100,000	-	-	5	6
mits for Gener	ral Population/U	Incontrolled Expo	osure ⁷	
imits for Gener Frequency Range (MHz)	ral Population/U Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes
Frequency Range	Electric Field Strength (E)	Magnetic Field Strength (E)	Power Density (S)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes 30)

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

27.5

f = frequency in MHz * Plane-wave equivalent power density

30-300

300-1500

1500-100,000

Table 3: FCC Limits for Maximum Permissible Exposure

0.2

f/1500

1.0

30

30

30

0.073

⁶ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

⁷ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

