

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 denise@northeastsitesolutions.com

October 20, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 1363 Boston Post Rd, Old Saybrook, CT 06475 Latitude: 41.2898 N Longitude: -72.4059 W Site# BOBDL00113A_Dish_Old Saybrook_TS_Zoning

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 1363 Boston Post Rd, Old Saybrook, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/19005G MHz antenna and six (6) RRUs, at the 75-foot level of the existing 99-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated September 23, 2021, Exhibit C. Also included is a structural analysis prepared by GPD Engineering and Architecture Professional Corporation, dated September 21, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. This facility was approved by the Connecticut Siting Council, Docket No. 411 on April 28, 2018. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to Carl P. Fortuna, Jr., First Selectman for the Town of Old Saybrook, Christine M. Coste, Town Planner and Zoning Enforcement Officer, Land Use for the Town of Old Saybrook, as well as the property owner Octagon Towers, LLC and Blue Sky Tower Management, tower owner.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modifications will not result in an increase in the height of the existing structure. The top of the tower is 99-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 75-feet.

2. The proposed modification will not result in the increase of the site boundary as depicted on the attached site plan.

3. The proposed modification will not increase the noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

1053 FARMINGTON AVE, UNIT G | FARMINGTON CT 06032 | WWW.NORTHEASTSITESOLUTIONS.COM

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total density of 25.61% as evidenced by Exhibit F.

Connecticut General Statutes 16-50-aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included in Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this Monople tower in Old Saybrook. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 75-foot level of the existing 99-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower share application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Old Saybrook.

Sincerely,

Deníse Sabo

Denise Sabo Mobile: 203-435-3640 Fax: 413-521-0558 Office: Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

1053 FARMINGTON AVE, UNIT G | FARMINGTON CT 06032 | WWW.NORTHEASTSITESOLUTIONS.COM

Attachments Cc: <u>C</u>arl P. Fortuna, Jr., First Selectman Town of Old Saybrook Town Hall 302 Main Street Old Saybrook, CT 06475

Christina M. Costa Town Planner and Zoning Enforcement Officer, Land Use Town of Old Saybrook Town Hall 302 Main Street Old Saybrook, CT 06475

Octagon Towers, LLC 57 E. Washington Street Chagrin Falls, Ohio 44022

Blue Sky Tower Management, Tower Owner

Exhibit A

Original Facility Approval

DOCKET NO. 411 - New Cingular Wireless PCS, LLC	}	Connecticut
application for a Certificate of Environmental Compatibility and		
Public Need for the construction, maintenance and operation of a	}	Siting
telecommunications facility located at 1363 Boston Post Road,		
Old Saybrook, Connecticut.	}	Council
•	ŕ	

Decision and Order

April 28, 2011

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to New Cingular Wireless PCS, LLC, hereinafter referred to as the Certificate Holder, for a telecommunications facility at 1363 Boston Post Road, Old Saybrook, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of New Cingular Wireless PCS, LLC and other entities, both public and private, but such tower shall not exceed a height of 100 feet above ground level.
- 2. The location of the telecommunications facility's compound shall be moved from the location shown on the site plans included in the Certificate application to the south and west by a distance sufficient to eliminate the need to clear trees for the development of the approved facility.
- 3. Antennas shall be installed on the tower using T-arm or flush mounts.

- 4. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of Old Saybrook for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line, and landscaping; and
 - b) construction plans for site clearing, grading, landscaping, water drainage, and erosion and sedimentation controls consistent with the <u>2002 Connecticut Guidelines for Soil</u> <u>Erosion and Sediment Control</u>, as amended.
- 5. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 6. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 7. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 8. The Certificate Holder shall provide reasonable space on the tower for no compensation for any Town of Old Saybrook public safety services (police, fire and medical services), provided such use can be accommodated and is compatible with the structural integrity of the tower.
- 9. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.

- 10. Any request for extension of the time period referred to in Condition 9 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of Old Saybrook. Any proposed modifications to this Decision and Order shall likewise be so served.
- 11. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 12. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 13. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.
- 14. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.
- 15. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.
- 16. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 17. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.

Pursuant to General Statutes § 16-50p, the Council hereby directs that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the <u>Hartford Courant</u>.

Docket 411: Old Saybrook Decision and Order Page 4

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant

New Cingular Wireless PCS, LLC

Its Representative

Christopher B Fisher, Esq. Daniel M. Laub, Esq. Cuddy & Feder LLP 445 Hamilton Avenue, 14th Floor White Plains, NY 10601

Michele Briggs AT&T 500 Enterprise Drive Rocky Hill, CT 06067-3900

Exhibit B

Property Card

1363 BOSTON POST RD

Location	1363 BOSTON POST RD	MBLU	027/ 023/ / /
Acct#	00366000	Owner	WILCOX FAMILY LLC
Assessment	\$1,455,700	Appraisal	\$2,079,600
PID	809	Building Count	4

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2018	\$1,412,300	\$667,300	\$2,079,600
Assessment			
Valuation Year	Improvements	Land	Total
2018	\$988,700	\$467,000	\$1,455,700

Owner of Record

Owner	WILCOX FAMILY LLC	Sale Price	\$0
Co-Owner		Certificate	
Address	26 QUARRY ST	Book & Page	0487/0320
	OLD SAYBROOK, CT 06475	Sale Date	08/16/2005

Ownership History

	Ownership History			
Owner	Sale Price	Certificate	Book & Page	Sale Date
WILCOX FAMILY LTD PARTNERSHIPS	\$450,000		0340/0791	12/31/1996

Building Information

Building 1 : Section 1

Year Built: Living Area:	1994 3,500		
	Building Attributes		
	Field	Description	
STYLE		Commercial	
MODEL		Commercial	

Grade	Below Avg
Stories:	1
Occupancy	1.00
Exterior Wall 1	Pre-finsh Metl
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Metal/Tin
Interior Wall 1	Drywall/Sheet
Interior Wall 2	
Interior Floor 1	Vinyl/Asphalt
Interior Floor 2	
Heating Fuel	Gas
Heating Type	Hot Water
АС Туре	Central
Struct Class	
Bldg Use	STORE/SHOP
Total Rooms	
Total Bedrms	00
Total Baths	0
Usrfld 218	
Usrfld 219	
1st Floor Use:	0321
Heat/AC	HEAT/AC PKGS
Frame Type	STEEL
Baths/Plumbing	AVERAGE
Ceiling/Wall	CEILING ONLY
Rooms/Prtns	AVERAGE
Wall Height	14.00
% Comn Wall	0.00

Building 2 : Section 1

Year Built:	1950	
Living Area:	3,330	
	Building Attrib	utes : Bldg 2 of 4
F	ield	Description
STYLE		Store
MODEL		Commercial
Grade		Below Avg
Stories:		1
Occupancy		2.00
Exterior Wall 1		Vinyl Siding

Building Photo

(http://images.vgsi.com/photos/OldSaybrookCTPhotos//\00\01\04\84.jpg)

Building Layout

(http://images.vgsi.com/photos/OldSaybrookCTPhotos//Sketches/809_809

Building Sub-Areas (sq ft)			<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	3,500	3,500
		3,500	3,500

Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar & Gravel
Interior Wall 1	Drywall/Sheet
Interior Wall 2	
Interior Floor 1	Carpet
Interior Floor 2	Concr-Finished
Heating Fuel	Gas
Heating Type	Forced Air-Duc
АС Туре	Central
Struct Class	
Bldg Use	STORE/SHOP
Total Rooms	
Total Bedrms	00
Total Baths	0
Usrfld 218	
Usrfld 219	
1st Floor Use:	0321
Heat/AC	HEAT/AC PKGS
Frame Type	MASONRY
Baths/Plumbing	AVERAGE
Ceiling/Wall	CEIL & WALLS
Rooms/Prtns	AVERAGE
Wall Height	10.00
% Comn Wall	0.00

Building Photo

(http://images.vgsi.com/photos/OldSaybrookCTPhotos//default.jpg)

Building Layout

(http://images.vgsi.com/photos/OldSaybrookCTPhotos//Sketches/809_100

	Building Sub-Areas (sq ft)		
Code	Description	Gross Area	Living Area
BAS	First Floor	3,330	3,330
UOP	Porch, Open, Unfinished	712	0
		4,042	3,330

Building 3 : Section 1

Year Built:	1945	
Living Area:	1,446	
	Building Attribu	ites : Bldg 3 of 4
	Field	Description
Style		Ranch
Model		Residential
Grade:		Average +10
Stories:		1 Story
Occupancy		1

Exterior Wall 1	Brick Veneer
Exterior Wall 2	
Roof Structure:	Gable/Hip
Roof Cover	Asph/F Gls/Cmp
Interior Wall 1	Plastered
Interior Wall 2	
Interior Flr 1	Hardwood
Interior FIr 2	
Heat Fuel	Oil
Heat Type:	Forced Air-Duc
АС Туре:	None
Total Bedrooms:	2 Bedrooms
Total Bthrms:	1
Total Half Baths:	0
Total Xtra Fixtrs:	
Total Rooms:	5 Rooms
Bath Style:	Average
Kitchen Style:	Modern
Num Kitchens	01
Cndtn	
Usrfld 103	
Usrfld 104	
Usrfld 105	
Usrfld 106	
Usrfld 107	
Num Park	
Fireplaces	
Usrfld 108	
Usrfld 101	
Usrfld 102	
Usrfld 100	
Usrfld 300	
Usrfld 301	

Building 4 : Section 1

Year Built:	1999
Living Area:	17,000
Building Attributes : Bldg 4 of 4	
Field	Description
STYLE	Pre-Eng Warehs
MODEL	Ind/Lg Com

Building Photo

(http://images.vgsi.com/photos/OldSaybrookCTPhotos//default.jpg)

Building Layout

(http://images.vgsi.com/photos/OldSaybrookCTPhotos//Sketches/809_100

	Building Sub-Areas (sq ft)		
Code	Description	Gross Area	Living Area
BAS	First Floor	1,446	1,446
FEP	Porch, Enclosed,Framed	288	0
UBM	Basement, Unfinished	1,446	0
UEP	Porch, Enclosed, Unfinished	189	0
		3,369	1,446

Grade	Average
Stories:	1
Occupancy	4.00
Exterior Wall 1	Pre-finsh Metl
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Metal/Tin
Interior Wall 1	Drywall/Sheet
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	Carpet
Heating Fuel	Gas
Heating Type	Forced Air-Duc
АС Туре	Central
Struct Class	
Bldg Use	STORE/SHOP MDL-95/96
Total Rooms	6
Total Bedrms	00
Total Baths	0
Usrfld 218	
Usrfld 219	
1st Floor Use:	0321
Heat/AC	HEAT/AC SPLIT
Frame Type	STEEL
Baths/Plumbing	ABOVE AVERAGE
Ceiling/Wall	NONE
Rooms/Prtns	ABOVE AVERAGE
Wall Height	12.00
% Comn Wall	

Building Photo

(http://images.vgsi.com/photos/OldSaybrookCTPhotos//default.jpg)

Building Layout

(http://images.vgsi.com/photos/OldSaybrookCTPhotos//Sketches/809_101

Building Sub-Areas (sq ft)			<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	12,000	12,000
SDA	Store Display Area	5,000	5,000
		17,000	17,000
	•	· ·	

∢

Extra Features

	E	xtra Features		<u>Legend</u>
Code	Description	Size	Value	Bldg #
FPL1	FIREPLACE 1 ST	1.00 UNITS	\$2,400	3
OHD1	Over Head Dr 1	100.00 S.F.	\$1,700	4
OHD1	Over Head Dr 1	100.00 S.F.	\$1,700	4
OHD1	Over Head Dr 1	100.00 S.F.	\$1,700	4
OHD1	Over Head Dr 1	100.00 S.F.	\$1,700	4
A/C	AIR CONDITION	5000.00 UNITS	\$14,100	4

OHD2 Over Head Dr 2	108.00 S.F.	\$2,100	1
---------------------	-------------	---------	---

Land

Land Use		Land Line Valua	tion
Use Code	0322	Size (Acres)	7.28
Description	STORE/SHOP	Depth	0
Zone	B-4	Assessed Value	\$467,000
		Appraised Value	\$667,300

Outbuildings

		C	Outbuildings			<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
PAV1	PAVING-ASPHALT			7500.00 S.F.	\$16,900	1
SHD1	SHED FRAME			100.00 S.F.	\$1,500	2
SHD4	COMM,METAL			560.00 S.F.	\$9,200	1
SHD4	COMM,METAL			168.00 S.F.	\$2,800	1
SHD1	SHED FRAME			140.00 S.F.	\$2,100	1
SHD1	SHED FRAME			80.00 S.F.	\$1,200	1
FGR1	GARAGE-AVE			288.00 S.F.	\$8,600	1

Valuation History

Appraisal				
Valuation Year	Improvements	Land	Total	
2020	\$1,412,300	\$667,300	\$2,079,600	
2018	\$1,412,300	\$667,300	\$2,079,600	
2016	\$845,400	\$1,105,300	\$1,950,700	

Assessment			
Valuation Year	Improvements	Land	Total
2020	\$988,700	\$467,000	\$1,455,700
2018	\$988,700	\$467,200	\$1,455,900
2016	\$592,000	\$773,700	\$1,365,700

(c) 2021 Vision Government Solutions, Inc. All rights reserved.

Property ID	027/023-0000
Location	1363 BOSTON POST RD
Owner	WILCOX FAMILY LLC

MAP FOR REFERENCE ONLY NOT A LEGAL DOCUMENT

Town of Old Saybrook, CT makes no claims and no warranties, expressed or implied, concerning the validity or accuracy of the GIS data presented on this map.

Geometry updated 8/30/2021 Data updated 2021 Print map scale is approximate. Critical layout or measurement activities should not be done using this resource.

Exhibit C

Construction Drawings

<section-header><section-header><section-header></section-header></section-header></section-header>					
<section-header><section-header><section-header></section-header></section-header></section-header>			SITE INF	ORMATION	Р
<section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>			PROPERTY OWNER:	WILCOX FAMILY LLC	APPLICAN
<section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header>			neenedd.	OLD SAYBROOK, CT 06475	
<section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header>			TOWER TYPE:	MONOPOLE	
<section-header><section-header></section-header></section-header>			TOWER CO SITE ID:	B0BDL00113A	TOWER O
<section-header></section-header>		SCOPE OF WORK	TOWER APP NUMBER:	TBD	
<section-header></section-header>		THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT, CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE.	COUNTY:	OLD SAYBROOK	SITE DES
<text><text><text><text><text></text></text></text></text></text>	wireless	THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING: TOWER SCOPE OF WORK:	LATITUDE (NAD 83):	41° 17' 23.2" N 41.2898 N	
<section-header></section-header>		INSTALL (3) PROPOSED PAREL ANIENNAS (1 PER SECTOR) INSTALL (1) PROPOSED FUTFORM INSTALL PROPOSED JUMPERS	LONGITUDE (NAD 83):	-72°24′21.2″W -72.4059 W	
<section-header></section-header>	DISH Wireless L.L.C. SITE ID:	INSTALL (6) PROPOSED RRUs (2 PER SECTOR) INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) INSTALL (1) PROPOSED HYBRID CABLE	ZONING JURISDICTION:	IBD	SITE ACC
<section-header><section-header></section-header></section-header>	BOBDL00113A	GROUND SCOPE OF WORK: • INSTALL (1) PROPOSED METAL PLATFORM		027-023	CONSTRU
<section-header></section-header>		INSTALL (1) PROPOSED ICE BRIDGE INSTALL (1) PROPOSED PPC CABINET INSTALL (1) PROPOSED EQUIPMENT CABINET		11	RE ENGI
<section-header></section-header>		INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT INSTALL (1) PROPOSED TELCO-FIBER BOX	CONSTRUCTION TYPE:	у_в	
	1363 BOSTON POST RD	INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED) INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED)	POWER COMPANY:	EVERSOURCE	
	OLD SAYBROOK, CT 06475	INSTALL (1) PROPOSED METER SOCKET	TELEPHONE COMPANY:	AT&T	
		SITE PHOTO			
	ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF		DIRECTIONS FROM	CHESTER CHARTER, INC.	. AIRPORT
	THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:		HEAD NORTHWEST ON O WINTHROP RD, TURN R	CHESTER AIRPORT TOWARD CT-1	45 / WINTHI WINTHROP
	CODE TYPE CODE BUILDING 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS		AT EXIT 66, HEAD RIGH POINTS, TURN RIGHT O	TON THE RAMP ON THE LEFT FOR TON THE RAMP FOR CT-166 1 NTO CT-166 / SPENCER PLAIN	TOWARD LYNI RD TOWARD
	ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS		POINTS, TURN LEFT ON ARRIVE AT, 1363 BOST	TO US-1 N / BOSTON POST RI ON POST RD, OLD SAYBROOK, C), TURN LEF)T 06475.
SHEET NO. SHEET TITLE 1-1 TITLE SHEET A-1 OVERNLIK NO ENARGED SITE FUNN A-2 ELADNOW, MUTTAND SONEDALE A-3 EQUIMENT DOULS A-4 EQUIMENT DOULS A-4 EQUIMENT DOULS A-5 EQUIMENT DOULS A-4 EQUIMENT DOULS A-5 EQUIMENT DOULS A-5 EQUIMENT DOULS A-5 EQUIMENT DOULS C-1 ECOTION AND H-FANKE BUTLE C-1 ECOTION AND H-FANKE MUTTALS C-2 ELOTTOOL OF LANS C-3 GROUNDON DERVISE GROUNDON DERVISE ELOTTOOL OF LANS C-1 GROUNDON DERVISE ELOTTOOL OF LANS FANEL SOMEDULE C-3 GROUNDON DERVISE RF-4 DECORDON DOR RF-2 ELOTTOOL OF LANS GORDANDO EVALUE GORDANDO EVALUE GORDANDO EVALUE GROUNDONS EVALUE GROUNDONS EVALUE GROUNDONS EVALUE GROUNDONS EVALUE	SHEET INDEX			VICINI	ry Map
Image: High Control of C	SHEET NO. SHEET TITLE		-		
A-1 OVERALL NO ELANGED SITE PLAN A-2 ELANTON, MITORY MOD H-FRANE DEFAUS A-3 EQUIFIENT FAITORN AND H-FRAME DEFAUS A-4 EQUIFIENT FAITORN AND H-FRAME DEFAUS A-5 ECONFIENT DEFAUS A-6 ECONFIENT DEFAUS E-1 ELECTRON, UNCLAND DA AND NOTES E-2 ELECTRON, UNCLAND DA AND NOTES E-3 ELECTRON, UNCLAND DA AND NOTES C-2 GROUNDING PEAUS C-3 GROUNDING PEAUS RF-1 IF CABLE COLOR CODE RF-1 IF CABLE COLOR CODE RF-2 GROUNDING PEAUS ON-4 GROUNDING PEAUS ON-4 <th>T-1 TITLE SHEET</th> <th></th> <th></th> <th></th> <th></th>	T-1 TITLE SHEET				
A-3 EQUIMENT PLATORU AND H-FRAME DETAILS A-4 EQUIMENT DETAILS A-5 EQUIMENT DETAILS C-1 ELECTRON_/FIGER ROUTE PLANA AND HOTES C-2 ELECTRON_/FIGER ROUTE PLANA AND HOTES C-3 ELECTRON_/FIGER ROUTE PLANA AND HOTES C-4 GROUNDING DETAILS 0-1 OROUNDING DETAILS 0-2 GROUNDING DETAILS 0-3 GROUNDING DETAILS 0+-1 LEGEDREAL NOTES 0+-2 GROUNDING DETAILS 0-1 OROUNDING DETAILS 0-2 GROUNDING DETAILS 0-3 GROUNDING DETAILS 0+-1 LEGENRAL NOTES 0+-2 GROUNDING DETAILS 0+-1 LEGENRAL NOTES 0+-1 LEGENRAL NOTES 0+-3 GRONNA DETAILS 0+-4 GRONNA DETES 0+-4 GRONNA NOTES 0+-5 GRONNA NOTES 0+-6 GRONNA NOTES 0+-7 GRONNA NOTES 0+-7 GRONNA NOTES 0+-7 GRONNA NOTES 0+-7 GRONNA NOTES	A-1 OVERALL AND ENLARGED SITE PLAN A-2 ELEVATION, ANTENNA LAYOUT AND SCHEDULE				
A-4 EQUIPERT DETALS A-5 EQUIPERT DETALS E-1 ELECTROL/PIER ROUTE FLAN AND NOTES E-2 ELECTROL ONE -LINE, FAULT CALCS & PANEL SCHEDULE G-1 GROUNDING FLANS, MD NOTES G-2 GROUNDING FLANS, MD NOTES G-3 ELECTROL ONE -LINE, FAULT CALCS & PANEL SCHEDULE M-4 LUCTROL ONE -LINE, FAULT CALCS & PANEL SCHEDULE G-1 GROUNDING FLANS, MD NOTES G-3 GROUNDING DETALS M-7 RF CABLE COLOR CODE RF-2 RF FLUMBING DUGGAM GENERAL NOTES CLUB SCHEDULE M-1 LEGENTROL NOTES GENERAL NOTES DETALS M-1 GENERAL NOTES GENERAL NOTES DETALS M-1 LEGENTROL NOTES M-1 GENERAL NOTES M-3 GENERAL NOTES M-4 DETALS M-5 GENERAL NOTES M-6 DETALS M-1 LEGENA NOTES M-1 LEGENA NOTES M-1 LEGENA NOTES M-1 LEGENA NOTES M-1 LEGEN	A-3 EQUIPMENT PLATFORM AND H-FRAME DETAILS		17		
	A-4 EQUIPMENT DETAILS A-5 EQUIPMENT DETAILS		~	CubeConst Cal	If Charman C
E-1 ELECTRICAL/FREE ROUTE PLAN AND NOTES E-3 ELECTRICAL ORE-LINE, FAULT CALOS & PANEL SCHEDULE G-1 GROUNDING PLANS AND NOTES G-2 GROUNDING DETALLS G-3 GROUNDING DETALLS G-3 GROUNDING DETALLS G-3 GROUNDING DETALLS G-4 GROUNDING DETALLS GROUNDING DETALLS WWX (SEV DL COM GH-1 LEGEND AND ABBREVATIONS GH-2 GROUNDING NTES GH-3 GENERAL NOTES GH-4 GENERAL NOTES MH-4 GENERAL NOTES MH	A-6 EQUIPMENT DETAILS			Cubesman ser	I Storage
E-3 ELECTRICAL ONE-LINE, FAULT CALCS & PAREL SCHEDULE 0-1 GROUNDING DETAILS 0-2 GROUNDING DETAILS 0-3 GROUNDING DETAILS 0-3 GROUNDING DETAILS 0-1 RF-1 RF-2 RF PLUKBING DIAGRAM 0N-1 LEGEND AND ABBREVATIONS 0N-2 GENERAL NOTES 0N-4 GENERAL NOTES 0NONGE IS PROPOSED. SANTATY SEWER SERVICE,	E-1 ELECTRICAL/FIBER ROUTE PLAN AND NOTES E-2 ELECTRICAL DETAILS				
C-1 GROUNDING PLANS AND NOTES C-2 GROUNDING DETAILS RF-2 RF CABLE COLOR CODE RF-2 RF PLUMBING DIAGRAM GN-3 GENERAL NOTES GN-4 GENERAL NOTES GN-4 GENERAL NOTES GN-4 GENERAL NOTES Image: Construction of the construction of the product will visit the stre AS REQUIRED on the product will visit the stre AS REQUIRED on the product will visit the product will not result in any signment of the product will not result with the work. 11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE DITER OF ANY DISCREPANCIES BEFO	E-3 ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	UNDERGROUND SERVICE ALERT CBYD 811		/	
G-3 GROUNDING DETAILS RF-1 RF CABLE COLOR CODE RF-2 RF PLUMBING DIAGRAM GN-1 LEGEND AND ABBREVIATIONS GN-2 GENERAL NOTES GN-3 GENERAL NOTES GN-4 GENERAL NOTES GN-4 GENERAL NOTES Image: Signade is proposed. The FACILITY IS UNMANNED AND TOR THAN INABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED AND NO COMMERCIAL SIGNADE IS PROPOSED. 11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED 11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED ITHE JOB SITE, AND SHALL WENTY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENSINES NOTES ITHE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENSINES NOTES OF ANY DISCREPANCIES BEFORE	G-1 GROUNDING PLANS AND NOTES G-2 GROUNDING DETAILS	UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455	SITE	LOCATION	
RF-1 RF CABLE COLOR CODE RF-1 RF CABLE COLOR CODE RF-2 RF PLUMBING DIAGRAM GN-1 LEGEND AND ABBREVATIONS GN-2 GENERAL NOTES GN-3 GENERAL NOTES GN-4 GENERAL NOTES GN-4 GENERAL NOTES Image: Comparison of the properties of	G-3 GROUNDING DETAILS	WWW.CBYD.COM CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION	-		
GN-1 LEGEND AND ABBREVIATIONS GN-2 GENERAL NOTES GN-3 GENERAL NOTES GN-4 GENERAL NOTES Image: Contractor shall verify all plans, existing dimensions, and conditions on the york. Image: Contractor shall verify all plans, existing dimensions, and conditions on the york.	RF-1 RF CABLE COLOR CODE RF-2 RF PLUMBING DIAGRAM			Dongweck	k Engraving
GN-2 GENERAL NOTES GN-3 GENERAL NOTES GN-4 GENERAL NOTES GN-4 GENERAL NOTES Image: Contract of the state state of the state of th	GN-1 LEGEND AND ABBREVIATIONS	GENERAL NOTES		e Electrical	Wholesalers
GN-4 GENERAL NOTES DOWNAGE: NO SAWMANT SEWEN SERVICE, POINDLE WATEN, OK THOSH DISPOSAL IS NEQUINED AND NO COMMENCIAL SIGNAGE IS PROPOSED. 11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.	GN-2 GENERAL NOTES GN-3 GENERAL NOTES	THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE, NO SANITARY SERVER SERVICE POTABLE WATER OF TASLI DISPOSAL IS REQUIRED AND NO COMMERCIAL		Authentic	Tequila's c Mexican
11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.	GN-4 GENERAL NOTES	SIGNAGE IS PROPOSED.	+ C		Takeout
CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.		11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED	he Tea Ke Takeout - Deli	ttle T	Tak
PROCEEDING WITH THE WORK. NO SCALE		CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES REFORE		(142) hotel	Da Tal
		PROCEEDING WITH THE WORK.	NO SCALE		

PROJE		DIRECTORY	
PPLICANT:	dish Wi 5701 Si Littletc	reless LLC. OUTH SANTA FE DRIVE DN, CO 80120	
OWER OWNER:	OCTAGO 57 E W Chagrin	N TOWERS LLC lashington Street Falls, OH 44022	
ite designer:	INFINIGY 1033 W ALBANY, (518) 6	, Atervliet shaker RD , Ny 12205 590–0790	
ITE ACQUISITION:		JEANNE CONTTRELL (203) 927–4317	
ONSTRUCTION M	ANAGER:	JAVIER SOTO (617) 839–6514	
F ENGINEER:		JARED ROBINSON (978) 855–5870	
			1

RPORT:

/ WINTHROP RD, TURN LEFT ONTO CT-145 / JTHROP RD, TURN LEFT ONTO CT-145 / 5 NORTH AND HEAD TOWARD NEW LONDON ARD LYNDE POINT / OLD SAYBROOK / SHORE TOWARD LYNDE POINT / OLD SAYBROOK / SHORE URN LEFT ONTO TOMPKINS RD 6475.

NOTES		
1. CONTRACTOR SHALL FIFLD VERIFY ALL DIMEN	SIONS.	
2. CONTRACTOR SHALL MAINTAIN A 10'-0" MINI SERAPATION BETWEEN THE PROPOSED CPS I		
TRANSMITTING ANTENNAS AND EXISTING GPS	UNITS.	
3. ANTENNAS AND MOUNTS UMITED FOR CLARI		wireless
		5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
		,
		(((±)))
		NGC NORTHEAST
		SITE SOLUTIONS Turnkey Wireless Development
		FROM ZERO TO INFINIGY
		the solutions are endless 2500 W. HIGGINS RO. SUITE 500 HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 FAX: 518-690-0793 WWW.INFINIGY.COM
		WINGE CONNECTION
		KH EI SAKA C
		T the state of the
10" 6" 0 1' 2' 3' 4' 5'		CENSED
1/2"=1'-0"	2	9/24/2627/0/NAL
		IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
		DRAWN BY: CHECKED BY: APPROVED BY:
		RCD SS CJW
		RFDS REV #: N/A
3		CONSTRUCTION DOCUMENTS
LOCATION 12'-0" TY EASEMENT		SUBMITTALS
In the second seco		REV DATE DESCRIPTION 0 09/23/21 ISSUED FOR PERMIT
भ		
00		
BCH		
RAN STRAN		A&E PROJECT NUMBER
		1197-F0001-C
OAD		DISH Wireless L.L.C. PROJECT INFORMATION
Carlos Andre State		BOBDL00113A 1363 BOSTON POST RD
		OLD SAYBROOK, CT 06475
		SHEET TITLE
		OVERALL AND ENLARGED SITE PLAN
		SHEET NUMBER
200' 100' 0 200' 400'		A-1
1"=200'	3	

	i	TOP .					
DIME	ROSENBERGER GPSGLONASS-36-N-S MENSION (DIA x H) 69mm x 98.5mm T (WITH ACCESSORIES) 515.74g CONNECTOR N-FEMALE REQUENCY RANGE 1559 MHz ~ 1610.5MHz BACK GPS UNIT GROUNDING KIT MOUNTING BRACKET		S UNIT DUNDING NCKET S UNIT DUNDING NCKET	MINIMUM OF 75% OR 270' IN ANY DIRECTION GPS GPS UNIT BE BELOW 10' BE BELOW 10'			CU12PSM6P4XXX (4 AWG CONDUCTORS)
	GPS ANTENNA DETAIL	NO SCALE	1	GPS MINIMUM SKY VIEW REQUIREMENTS	NO SCALE	2	CABLES UNLIMITED HYBRID MINIMUM BEND RADIUS
	<u>NOT USED</u>	NO SCALE	4	<u>NOT_USED</u>	NO SCALE	5	<u>NOT_USED</u>
	NOT USED	NO SCALE	7	NOT USED	NO SCALE	8	NOT USED

	2

NOTES						
NUTES			—			
CURRENT CARRYING CONDUCTORS 80% PER 2014/17 NEC TABLE 3) FOR UL1015 WIRE.	EACH, SHALL A 10.15(B)(3)(a)	PPLY OR			•	
15A-20A/1P BREAKER: 0.8 × 3 25A-30A/2P BREAKER: 0.8 × 4 35A-40A/2P BREAKER: 0.8 × 5 45A-60A/2P BREAKER: 0.8 × 7	0A = 24.0A 0A = 32.0A 5A = 44.0A 5A = 60.0A					
PER NEC CHAPTER 9, TABLE 4, 122 SQ. IN AREA 213 SQ. IN AREA 516 SQ. IN AREA 507 SQ. IN AREA	ARTICLE 358.			5701 S LIT	OUTH SANTA	FE DRIVE
CONDUCTORS (1 CONDUIT): USI	NG THWN—2, CU	•				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	IN IN <ground< th=""><th></th><th>(((</th><th>1)))</th><th></th><th></th></ground<>		(((1)))		
TE TO HANDLE THE TOTAL OF (3) INDICATED ABOVE.) WIRES,		ľ	S	S NOR	THE ST SOLUTIONS
NDUITS): USING ULTUTS, CU.	INI		h		Turnkey W	ireless Development
$\frac{1}{2} = 0.1146 \text{ Sq.}$	IN <bare gro<="" th=""><th>UND</th><th>FI</th><th>NF ROM Z</th><th>INIC Zero to i</th><th>ר Y 🏅 NFINIGY</th></bare>	UND	FI	NF ROM Z	INIC Zero to i	ר Y 🏅 NFINIGY
ate to handle the total of (! Indicated above. Onduit): Using thwn, cu.	5) WIRES,		РН	2500 W HOFF ONE: 847-	the solutions . HIGGINS RD. SU MAN ESTATES, IL 648-4068 FAX: www.infinigy.c	are endless ITE 500 . 60169 518-690-0793 OM
0.2679 SQ. IN X 3 = 0.8037 SC	2. IN				muun	
$\frac{0.0507 \text{ SQ. IN X 1} = 0.0507 \text{ SQ}}{= 0.8544 \text{ SQ}}$. IN <ground< th=""><th></th><th></th><th>11/11</th><th>OF CONN</th><th>C</th></ground<>			11/11	OF CONN	C
ADEQUATE TO HANDLE THE TOTA INDICATED ABOVE.	L OF (4) WIRES	; .	11.	N. N. H.	TELSARA	
			Ē	y la	5	3 11:*=
			1.	PP.	34916	EX.
				1.00 1.1.7 K	CENSE	
			9/2	4/2021	SONAL E	1111
	NO SCALE	1	5,2	. r, 202 I		
			IT UNL	IS A VIOL ESS THEY OF A LICEI TO	ATION OF LAW FOR ARE ACTING UNDED NSED PROFESSION ALTER THIS DOCU	R ANY PERSON, R THE DIRECTION AL ENGINEER, MENT.
			DRA	WN BY:	CHECKED BY:	APPROVED BY:
				RCD	SS	CJW
			RFE	S REV	#: N/A	
				CO D	NSTRUC [.] OCUMEN	TION ITS
					SUBMITTALS	
			REV	DATE	DESCRIPTIO	DN FRMIT
			Ľ	00/20/2		
				A&E 1 1	PROJECT NU	MBER -C
				DI	SH Wireless L	L.C.
				B	OBDL0011	3A
			0L	363 D SA1	BOSTON P BROOK, (OST RD CT 06475
			\vdash		SHEET TITLE	
			ELI C,	ALCS	AL ONE-LI & PANEL S	NE, FAULT SCHEDULE
					SHEET NUMBE	R
	NO SCALE	3			E-3	
	INO JUALE	5				

ES NO SCALE 3

	 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GI BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHERI WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BC THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	ROUND MIC ES WITH IPOUND IDUCTOR DLTED ON TOR. S ERS).		EXTERNAL TOOTHED S/S DIA x1 1/2 S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT UIT UIT UIT UIT UIT UIT UIT UI	CTOR INSULATIO		EXTERNAL INSPECTION WINDOW IN BARREL, REQUIRED FOR ALL INTERIOR TWO-HOLE CONNECTORS S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING
Ī	TYPICAL GROUNDING NOTES	NO SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HO
	NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) 2 HOLE LONG BARREL TINNED SOLID COPPER LUG (TYP) TIN COATED SOLID COPPER BUS BAR COPPER BUS BAR COPPER BUS BAR COPPER BUS BAR COPPER BUS BAR	Typ) Washer (typ) Vasher (typ) Vasher (typ) Yp)					
ľ	LUG DETAIL	NO SCALE	4		NO SCALE	5	NOT USED
ſ	NOT USED	NO SCALE	7	NOT USED	NO SCALE	8	NOT USED

RF JUMPER COLOR CODING	3/4" TAPE WIDTHS WITH 3/4" SPACING		
LOW–BAND RRH – (600MHz N71 BASEBAND) + (850MHz N26 BAND) + (700MHz N29 BAND) – OPTIONAL PER MARKET	ALPHA RRH BETA RRH PORT 1 PORT 2 PORT 3 PORT 4 + SLANT + SLANT + SLANT + SLANT + SLANT RED RED RED RED RED RED		LOW BANDS (N71-N28) OPTIONAL - (N29) ORANGE
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	ORANGE ORANGE RED RED ORANGE ORANGE BLUE BLUE ORANGE ORANGE GREEN WHITE (1) PORT ORANGE <		CBRS TECH (3 GHz) YELLOW
MID-BAND RRH – (AWS BANDS N66+N70)	RED RED RED RED BLUE BLUE BLUE BLUE GREEN GREEN GREEN GREEN PURPLE PURPLE RED RED PURPLE PURPLE BLUE BLUE BLUE PURPLE PURPLE GREEN GREEN GREEN		ALPHA SECTOR BETA SECTOR
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	WHITE (1)_PORT PURPLE PURPLE WHITE (1)_PORT PURPLE PURPLE WHITE (1)_PORT PURPLE		COLOR_IDENTIFIER
HYBRID/DISCREET CABLES	EXAMPLE 1 EXAMPLE 2		
INCLUDE SECTOR BANDS BEING SUPPORTED AM	RED RED BLUE BLUE		
EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS	GREEN GREEN		
EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS	ORANGE YELLOW PURPLE		
HYBRID/DISCREET CABLES	LOW BAND RRH HIGH BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH		
LOW-BAND RRH FIBER CABLES HAVE SECTOR STRIPE ONLY	RED BLUE BLUE GREEN PURPLE PURPLE PURPLE		
POWER CABLES TO RRHs	LOW BAND RRH HIGH BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH		
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED BLUE BLUE GREEN GREEN		
	PURPLE PURPLE PURPLE		NOT_USED
RET MOTORS AT ANTENNAS	PORT 1/ PORT 1/ ANTENNA 1 ANTENNA 1 "N" "N"		
	RED BLUE GREEN		
MICROWAVE RADIO LINKS	PRIMARY SECONDARY		
LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO.	WHITE WHITE RED RED		
MICROWAVE CABINETS WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S.	WHILE WHILE RED WHITE WHITE		
		· · · ·	
	RF CABLE COLOR CODES	NO SCALE 1	NOT USED

NO SCALE 2 NO SCALE 2 PROM ZERO TO INFINIGY Construction MO SCALE PROM ZERO TO INFINIGY Provide the information construction MO SCALE PROM ZERO TO INFINIGY Provide the information construction Provide the information construction MO SCALE NO SCALE NO SCALE NO SCALE Provide the information construction Provide the information construction Provide the information Provide the information	AWS (N65+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANTRRH WHITE STOR GAMMA SECTOR	dissh wireless. 5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120 ((((;)))) NSS NORTHESST SITE SOLUTIONS Turnkey Wireless Development
NO SCALE 3 NO SCALE 3 NO SCALE 3	NO SCALE	FROM ZERO TO INFINIGY the solutions are encless 2500 w. Hisdins RD. suite 500 HOFFMAN ESTATES, IL 60169 PHONE - BATLAGE LIGAS - LEAV. 5146-600.0783
NO SCALE 3 T IS A MOLATION OF LAW FOR ANY PERSON, UNLESS THEY AFF. AFTING THE INTERNO TO ATTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: RCD SS CJW RFDS REV #: N/A CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION 0 09/23/21 ISSUED FOR PERMIT A&E PROJECT NUMBER 1197-F0001-C DISH WIRELS, LLC, PROJECT INFORMATION BOBDL00113A 1363 BOSTON POST RD OLD SAYBROOK, CT 06475 SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER RF-1		9/24/2021
NO SCALE 3 NO SCALE 3 NO SCALE 3 NO SCALE 4 DRAWN BY: CHECKED BY: APPROVED BY: RCD SS CJW RFDS REV #: N/A CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION 0 00/23/21 SSUED FOR PERMIT A&E PROJECT NUMBER 1197-F0001-C DISH Wireless LLC. PROJECT INFORMATION BOBDLOO113A 1363 BOSTON POST RD OLD SAYBROOK, CT 06475 SHEET NUMBER RF CABLE COLOR CODES SHEET NUMBER RF-1		IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTINE UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
NO SCALE 3 NO SCALE 4		DRAWN BY: CHECKED BY: APPROVED BY: RCD SS CJW RFDS REV #: N/A
NO SCALE 3 NO SCALE 3 SUBMITTALS REV DATE DESCRIPTION 0 09/23/21 ISSUED FOR PERMIT 1 1 1 1 1 1 2 1 1 3 A&E PROJECT NUMBER 1197-F0001-C DISH Wireless LL.C. PROJECT INFORMATION BOBDL00113A 1363 BOSTON POST RD 0LD SAYBROOK, CT 06475 SHEET TITLE RF CABLE COLOR CODES SHEET NUMBER RF-1		CONSTRUCTION DOCUMENTS
NO SCALE 4	NO SCALE	
	NO SCALE 4	0 09/23/21 ISSUED FOR PERMIT Image: Constraint of the second

EXOTHERMIC CONNECTION	•
MECHANICAL CONNECTION	•
BUSS BAR INSULATOR	
CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	•
TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTE	EM 😝 T
EXOTHERMIC WITH INSPECTION SLEEVE	
GROUNDING BAR	
GROUND ROD	●
TEST GROUND ROD WITH INSPECTION SLEEVE	ı│ <mark>├──●</mark> ⊤
SINGLE POLE SWITCH	\$
DUPLEX RECEPTACLE	\oplus
DUPLEX GFCI RECEPTACLE	(FP)
FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 48-T8	
SMOKE DETECTION (DC)	
EMERGENCY LIGHTING (DC)	
Security Light W/Photocell Lithonia AlxW Led-1-25A400/51K-SR4-120-PE-DDBTXD	
CHAIN LINK FENCE	x x x x
WOOD/WROUGHT IRON FENCE	-ooooo
WALL STRUCTURE	
LEASE AREA	
PROPERTY LINE (PL)	
SETBACKS	
ICE BRIDGE	
CABLE TRAY	
WATER LINE	w w w w w
UNDERGROUND POWER	UGP UGP UGP
UNDERGROUND TELCO	UGT UGT UGT UGT
OVERHEAD POWER	OHP OHP OHP
OVERHEAD TELCO	ОНТ ОНТ ОНТ ОНТ
UNDERGROUND TELCO/POWER	UGT/P UGT/P UGT/P
ABOVE GROUND POWER	AGP AGP AGP AGP
ABOVE GROUND TELCO	AGT AGT AGT AGT
ABOVE GROUND TELCO/POWER	AGT/P AGT/P AGT/P
WORKPOINT	
SECTION REFERENCE	W.P.
DETAIL REFERENCE	XX X-X

AR	ANCHOR BOLT	IN	INCH
ARV	ABOVE	INT	INTER
AC			
	ADDITIONAL		POUNL
ADUL	ADDITIONAL	LF	LINEAR
AFF	ABOVE FINISHED FLOOR	LTE	LONG
AFG	ABOVE FINISHED GRADE	MAS	MASON
AGL	ABOVE GROUND LEVEL	MAX	MAXIM
AIC	AMPERAGE INTERRUPTION CAPACITY	MB	MACHI
ALUM	ALUMINUM	MECH	MECHA
ALT	ALTERNATE	MFR	MANUF
ANT	ANTENNA	MGB	MASTE
APPROX	APPROXIMATE	MIN	MINIM
ARCH	ARCHITECTURAL	MISC	MISCEI
ATS	AUTOMATIC TRANSFER SWITCH	MIGC	MISCEL
AWC		MIL	METAL
AWG	AMERICAN WIRE GAUGE	MTS	MANUA
BALL	BAILERY	MW	MICRO
BLDG	BUILDING	NEC	NATION
BLK	BLOCK	NM	NEWTO
BLKG	BLOCKING	NO.	NUMBE
BM	BEAM	#	NUMBE
BTC	BARE TINNED COPPER CONDUCTOR	NTS	NOT T
BOF	BOTTOM OF FOOTING	00	
CAB	CABINET		
CANT	CANTILEVERED	OSHA	OCCOF
CHG	CHARGING	UPNG	UPENI
0.0	CELING	P/C	PRECA
		PCS	PERSO
		PCU	PRIMA
COL	COLUMN	PRC	PRIMA
COMM	COMMON	PP	POLAR
CONC	CONCRETE	PSF	POUND
CONSTR	CONSTRUCTION	PSI	POUND
DBL	DOUBLE	PT	DRESS
DC	DIRECT CURRENT		DOWER
DEPT	DEPARTMENT	PWR	POWER
DF	DOUGLAS FIR	QIY	QUANT
DIA	DIAMETER	RAD	RADIUS
DIAG	DIAGONAL	RECT	RECTIF
DIM	DIMENSION	REF	REFER
DWO	DIMENSION	REINF	REINFO
DWG	DRAWING	REQ'D	REQUI
DWL	DOWEL	RET	REMOT
EA	EACH	RF	RADIO
EC	ELECTRICAL CONDUCTOR	RMC	RIGID
EL.	ELEVATION		DEMOT
ELEC	ELECTRICAL		DEMOT
EMT	ELECTRICAL METALLIC TUBING	RRU	REMOT
ENG	ENGINEER	RWY	RACEW
EQ	EQUAL	SCH	SCHED
EXP	EXPANSION	SHT	SHEET
FYT	EXTERIOR	SIAD	SMART
EW		SIM	SIMILA
	EACH WAT	SPEC	SPECIF
FAD	FABRICATION	SQ	SQUAR
**	FINISH FLOOR	SS	STAINL
FG	FINISH GRADE	STD	STAND
FIF	FACILITY INTERFACE FRAME	STI	STEEL
FIN	FINISH(ED)	TEND	TEMPO
FLR	FLOOR	TEMP	TEMPO
FDN	FOUNDATION		THICK
FOC	FACE OF CONCRETE	IMA	TOWER
FOM	FACE OF MASONRY	TN	TOE N
FOS		TOA	TOP 0
F03		TOC	TOP 0
FU#	FACE OF WALL	TOF	TOP 0
15	FINISH SURFACE	TOP	TOP 0
FT	FOOT	TOS	TOP 0
FTG	FOOTING	TOW	TOP 0
GA	GAUGE	22/1	TRANS
GEN	GENERATOR	TVD	TYPIC
GFCI	GROUND FAULT CIRCUIT INTERRUPTER	116	UNDER
GLB	GLUE LAMINATED BEAM	UG	UNDER
GLV	GALVANIZED	UL	UNDER
GPS	GLOBAL POSITIONING SYSTEM	UNO	UNLES
GND	GROUND	UMTS	UNIVER
CCM	CLOBAL SYSTEM FOR MORILE	UPS	UNITER
		VIF	VERIFI
		w	WIDF
		w/	WITH
HGR	HANGER	**/	WIIT
HVAC	HEAT/VENTILATION/AIR CONDITIONING	WD	WOOD
HT	HEIGHT	WP	WEATH
IGR	INTERIOR GROUND RING	WT	WEIGH
	···· -·····		

IOR D(S) R FEET TERM EVOLUTION NRY UM INE BOLT ANICAL FACTURER ER GROUND BAR IM LLANEOUS JAL TRANSFER SWITCH WAVE NAL ELECTRIC CODE ON METERS BER ER TO SCALE ENTER PATIONAL SAFETY AND HEALTH ADMINISTRATION ING CAST CONCRETE ONAL COMMUNICATION SERVICES ARY CONTROL UNIT ARY RADIO CABINET RIZING PRESERVING NDS PER SQUARE FOOT NDS PER SQUARE INCH SURE TREATED CABINET TITY IFIER RENCE ORCEMENT RED DTE ELECTRIC TILT FREQUENCY METALLIC CONDUIT DTE RADIO HEAD DTE RADIO UNIT WAY DULE INTEGRATED ACCESS DEVICE FICATION RE LESS STEEL DARD ORARY NESS MOUNTED AMPLIFIER AIL OF ANTENNA OF CURB OF FOUNDATION OF PLATE (PARAPET) OF STEEL OF WALL SIENT VOLTAGE SURGE SUPPRESSION CAL RGROUND RWRITERS LABORATORY SS NOTED OTHERWISE ERSAL MOBILE TELECOMMUNICATIONS SYSTEM RRUPTIBLE POWER SYSTEM (DC POWER PLANT) FIED IN FIELD IERPROOF

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRE SL.C. AND DISH WIRE SL.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELS LL.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.

UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (I'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO 3. MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT.

CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON 6. DRAWINGS:

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- · CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2*

A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.

CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.

- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3.
- ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.

ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.

ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.

EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.

ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).

7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.

TIE WRAPS ARE NOT ALLOWED.

ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH 12 TYPE THHW. THWN. THWN-2. XHHW. XHHW-2. THW. THW-2. RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.

ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND 13 BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75" C (90" C IF AVAILABLE).

RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR 15 EXPOSED INDOOR LOCATIONS.

ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16.

17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.

LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION 18. OCCURS OR FLEXIBILITY IS NEEDED.

CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET 19. SCREW FITTINGS ARE NOT ACCEPTABLE.

CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE 20. NEC.

21 WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).

22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).

23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.

EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET 24. STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.

25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.

THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND 27 TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.

THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE 28. WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.

- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report

Blue Sky Towers

Blue Sky Tower Management 325 Park Street, Suite 106 North Reading, MA 01864

Dan Palkovic 520 South Main Street, Suite 2531 Akron, OH 44311 (216) 927-8663 dpalkovic@gpdgroup.com

GPD# 2021723.34

September 21, 2021

COMPREHENSIVE STRUCTURAL ANALYSIS REPORT

SITE DESIGNATION:	Dish Site #: Client #: Site Name:	BOBDL00113A CT-1263 Old Saybrook, Boston Post Road
ANALYSIS CRITERIA:	Codes:	TIA-222-H 125 mph (3-second gust) w/ 0" ice 50 mph (3-second gust) w/ 1" ice
SITE DATA:		1363 Boston Post Road, Old Saybrook, CT 06475, Middlesex County Latitude 41° 17' 23.27" N, Longitude 72° 24' 21.398" W 99' Sabre Monopole

To whom it may concern,

GPD is pleased to submit this Comprehensive Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	54.4%	Pass
Foundation Ratio with Proposed Equipment:	76.1%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and Blue Sky Tower Management. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted, Christopher J. Scheks, P.E. Connecticut #: 0030026 9/21/2021

SUMMARY & RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT&T Mobility and commissioned by Blue Sky Tower Management.

This analysis has been performed in accordance with the TIA-222-H Standard based upon a 3-second gust wind speed of 125 mph. Applicable Standard references and design criteria are listed in Appendices A & B.

Seismic loads were determined from spreadsheet calculations. It was concluded from these calculations that the wind loads control the maximum loading on the structure. The seismic loading case will not control.

The proposed feedlines shall be installed as shown in Appendices A & B for the analysis results to be valid.

Member	Capacity	Results
Monopole	54.4%	Pass
Anchor Rods	42.4%	Pass
Base Plate	48.5%	Pass
Foundation	76.1%	Pass

TOWER SUMMARY AND RESULTS

RECOMMENDATIONS

The tower and its foundation have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

ANALYSIS METHOD

tnxTower (Version 8.1.1.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various load cases. Selected output from the analysis is included the report appendices. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information.

DOCUMENTS PROVIDED

Document	Remarks	Source
Collocation Application	Site #: CT-1263	Blue Sky Tower
Collocation Application	Sile #: 01-1200	Management
Tower Design	Sabre Job #: 49722, dated 9/22/2011	GPD
Foundation Design	Sabre Job #: 49722, dated 9/22/2011	GPD
Geotechnical Report	Dr. Clarence Welti, P.E., P.C., dated 6/1/2011	GPD
Previous Tower Analysis	GPD Job #: 2013723.13.105130.02, dated 12/11/2013	GPD
Previous Tower Analysis	FDH Project #: 17QBDY1400, 4/25/2017	GPD

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

- 1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
- 2. The appurtenance configuration is as supplied, determined from available photos, and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- 3. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
- 4. The soil parameters are as per data supplied or as assumed and stated in the calculations.
- 5. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
- 6. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
- 7. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
- 8. All prior structural modifications, if applicable, are assumed to be as per data supplied/available and to have been properly installed.
- 9. Loading interpreted from photos is accurate to ±5' AGL, antenna size accurate to ±3.3 sf, and coax equal to the number of existing antennas without reserve.
- 10. All existing and proposed loading has been taken from the available site photos as well as documents supplied to GPD at the time of generating this report. All such documents are listed in the Documents Provided Table and are assumed to be accurate. GPD is not responsible for loading scenarios outside those conveyed in the supplied documentation.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Comprehensive Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

General Info

Site Name	Old Saybrook, Boston Post Road (CT-1263)
Site Number	BOBDL00113A
FA Number	10133875
Date of Analysis	9/21/2021
Company Performing Analysis	GPD

Tower Info	Description	Date
Tower Type (G, SST, MP)	MP	
Tower Height (top of steel AGL)	99'	
Tower Manufacturer	Sabre	
Tower Model	n/a	
Tower Design	Sabre Job #: 49722	9/22/2011
Foundation Design	Sabre Job #: 49722	9/22/2011
Geotechnical Report	Dr. Clarence Welti, P.E., P.C.	6/1/2011
Previous Tower Analysis	GPD Job #: 2013723.13.105130.02	12/11/2013

Design Parameters Design Code Used TIA-222-H Location of Tower (County, State) Middlesex, CT Wind Speed (mph) 125 (3-second gust) Ice Thickness (in) 1 Risk Category (I, II, III) II Exposure Category (B, C, D) B Topographic Category (1 to 5) 1

The information contained in this summary report is not to be used independently from the PE stamped tower analysis.

Analysis Results (% Max	Analysis Results (% Maximum Usage)								
Existing/Reserved + Future + Proposed Condition									
Tower (%)	54.4%								
Tower Base (%)	48.5%								
Foundation (%)	76.1%								
Foundation Adequate?	Yes								

Existing / Reserved Loading

				Antenna						Mount		Transm	ission Line	
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Int/Ext
AT&T Mobility	97	97	3	Panel	KMW	AM-X-CD-16-65-00T-RET	40/150/270	6	Site Pro	12.5' T-Arms	6	Unknown	1-5/8"	Internal
AT&T Mobility	97	97	9	Panel	CCI Antennas	HPA-65R-BUU-H6	40/150/270			on the same mount	6	DC Cable	15.4 mm	Internal
AT&T Mobility	97	97	3	TMA	CCI	DTMABP7819VG12A				on the same mount	1	Fiber Cable	10 mm	Internal
AT&T Mobility	97	97	6	RRH	Ericsson	RRUS 11				on the same mount				
AT&T Mobility	97	97	6	RRH	Ericsson	RRUS 12				on the same mount				
AT&T Mobility	97	97	3	RRH	Ericsson	RRUS E2				on the same mount				
AT&T Mobility	97	97	3	RRH	Ericsson	RRUS 32				on the same mount				
AT&T Mobility	97	97	6	RRH	Ericsson	KRC 161 286-1 (A2 Module)				on the same mount				
AT&T Mobility	97	97	3	Surge	Raycap	DC6-48-60-18-8F				on the same mount				
Verizon	85	85	3	Panel	Commscope	LNX-6515DS-VTM	30/150/270	1	EEI	K10994A Platform	2	Unknown	1-5/8"	Internal
Verizon	85	85	6	Panel	Commscope	SBNHH-1D65B	30/150/270			on the same mount				
Verizon	85	85	3	RRH	ALU	RRH4x30-4R				on the same mount				
Verizon	85	85	3	RRH	ALU	RH_60W-PCS				on the same mount				
Verizon	85	85	3	RRH	ALU	B66A RRH4x45				on the same mount				
Verizon	85	85	2	Fiber Box	RFS	DB-T1-6Z-8AB-0Z				on the same mount				

Proposed Loading

	Mount Height (ft) Antenna CL (ft) Quantity Type Manufacturer Model 75 75 3 Panel IMA MX08ER0665-20. V0E I/I								Mount		Transm	ission Line		
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Int/Ext
Dish Wireless	75	75	3	Panel	JMA	MX08FRO665-20_V0F	0/120/240	1	Valmont	SNP8HR-396	1	Hybrid	1.60"	Internal
Dish Wireless	75	75	6	RRH	Fujitsu	TA08025-B605				on the same mounts				T
Dish Wireless	75	75	1	Surge	Raycap	RDIDC-9181-PF-48				on the same mounts				

Note: The proposed coax shall be installed inside the monopole in order for this analysis to be valid.

Future Loading

	a Owner Height (ft) CL (ft) Quantity Type Manufacturer Model							Mount		Transm	ission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Int/Ext
AT&T Mobility	97	97				0 sq. in Future Loading Area				on the existing mounts				

APPENDIX B

Tower Analysis Output File

GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Path:

^{ob:} CT1284 / OLD SAYBROOK BOSTON POST R Project: 2021704.34 ^{Client:} Blue Sky Tower Management ^{Drawn by:} clifke App'd: Code: TIA-222-H Scale: NTS Date: 09/21/21 Dwg No. E-1

Feed Line Distribution Chart 0' - 99'

Flat _____ App In Face _____ App Out Face _____ Truss Leg

Round

Feed Line Plan

GPD

Job	
	CT1284 / OLD SAYBROOK BOSTON POST RD

Date

Project

Client

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101 2021704.34

Blue Sky Tower Management

Designed by clifke

09:18:37 09/21/21

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Middlesex County, Connecticut.
- Tower base elevation above sea level: 8.00 ft.
- Basic wind speed of 125 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 1.0000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

- Consider Moments Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric
- Distribute Leg Loads As Uniform
- Assume Legs Pinned
- √ Assume Rigid Index Plate
 √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
- Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- $\sqrt{}$ Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
- √ Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Top	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	

tnxTower	Job CT1284 / OLD SAYBROOK BOSTON POST RD	Page 2 of 10
GPD 520 South Main Street Suite 2531	Project 2021704.34	Date 09:18:37 09/21/21
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client Blue Sky Tower Management	Designed by Clifke

Ì	Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
			Length	Length	of	Diameter	Diameter	Thickness	Radius	
		ft	ft	ft	Sides	in	in	in	in	
Ì	L1	99.00-48.50	50.50	4.75	18	22.1400	34.1500	0.2500	1.0000	A572-65
										(65 ksi)
	L2	48.50-0.00	53.25		18	32.5203	45.2000	0.3125	1.2500	A572-65
										(65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in ³	in^4	in^2	in	
L1	22.4430	17.3697	1051.5300	7.7710	11.2471	93.4933	2104.4436	8.6865	3.4566	13.827
	34.6383	26.8996	3905.5615	12.0345	17.3482	225.1278	7816.2619	13.4524	5.5704	22.282
L2	34.1223	31.9462	4186.7736	11.4338	16.5203	253.4315	8379.0563	15.9761	5.1736	16.555
	45.8491	44.5228	11333.6722	15.9351	22.9616	493.5924	22682.2576	22.2656	7.4052	23.697

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_{f}	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
	_						Diagonals	Horizontals	Redundants
ft	ft^2	in					in	in	in
L1 99.00-48.50				1	1	1			
L2 48.50-0.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weight
		Torque	~	ft				in	in	plf
		Calculation								
5/8" Step Bolts	С	No	Surface Ar	99.00 - 8.00	1	1	0.000	0.4167		1.00
			(CaAa)				0.000			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face	Allow	Exclude	Component	Placement	Total Number		$C_A A_A$	Weight
	Leg	Snieiu	Torque Calculation	Туре	ft	number		ft²/ft	plf
Safety Line (3/8")	С	No	No	CaAa (Out Of Face)	99.00 - 8.00	1	No Ice 1/2" Ice 1" Ice	0.04 0.14 0.24	0.22 0.75 1.28
LDF7-50A (1-5/8 FOAM)	А	No	No	Inside Pole	97.00 - 8.00	6	No Ice 1/2" Ice 1" Ice	$0.00 \\ 0.00 \\ 0.00$	0.82 0.82 0.82
15.4mm DC Power	А	No	No	Inside Pole	95.00 - 8.00	6	No Ice 1/2" Ice	0.00 0.00	0.50 0.50
10mm Fiber Cable	А	No	No	Inside Pole	95.00 - 8.00	1	1" Ice No Ice 1/2" Ice	$0.00 \\ 0.00 \\ 0.00$	0.50 0.10 0.10

<i>tnxTower</i>	Job CT1284 / OLD SAYBROOK BOSTON POST RD	Page 3 of 10
GPD 520 South Main Street Suite 2531	Project 2021704.34	Date 09:18:37 09/21/21
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client Blue Sky Tower Management	Designed by clifke

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf
****							1" Ice	0.00	0.10
LDF7-50A (1-5/8 FOAM) ****	В	No	No	Inside Pole	85.00 - 8.00	2	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	0.82 0.82 0.82
1.60" Hybrid	В	No	No	Inside Pole	75.00 - 8.00	1	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	0.85 0.85 0.85

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Flevation	Face	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
beenon	ft		ft^2	ft^2	ft^2	ft^2	Κ
L1	99.00-48.50	А	0.000	0.000	0.000	0.000	0.38
		В	0.000	0.000	0.000	0.000	0.08
		С	0.000	0.000	2.104	1.894	0.06
L2	48.50-0.00	А	0.000	0.000	0.000	0.000	0.32
		В	0.000	0.000	0.000	0.000	0.10
		С	0.000	0.000	1.687	1.519	0.05

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	Κ
L1	99.00-48.50	А	1.082	0.000	0.000	0.000	0.000	0.38
		В		0.000	0.000	0.000	0.000	0.08
		С		0.000	0.000	13.032	12.822	0.22
L2	48.50-0.00	А	0.966	0.000	0.000	0.000	0.000	0.32
		В		0.000	0.000	0.000	0.000	0.10
		С		0.000	0.000	10.452	10.283	0.18

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	99.00-48.50	-0.2897	0.5444	-0.9302	1.6449
L2	48.50-0.00	-0.2409	0.4515	-0.8272	1.4589

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

GPD

Job		Page
	CT1284 / OLD SAYBROOK BOSTON POST RD	4 of 10
Project		Date

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Blue Sky Tower Management

Designed by clifke

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
L1	1	5/8" Step Bolts	48.50 - 99.00	1.0000	1.0000
L2	1	5/8" Step Bolts	8.00 - 48.50	1.0000	1.0000

Client

Discrete Tower Loads

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg		Laterat Vert ft ft	o	ft		ft ²	ft ²	K
T Arm Mount [TA 602 2]	٨	Nona	Ji	0.0000	07.00	No Iso	12.40	12.40	0.77
1-Ann Mount [1A 002-5]	A	None		0.0000	97.00	1/2" Ice	15.40	15.40	1.00
						1/2 ICC	10.44	10.44	1.00
T-Arm Mount [TA 602-3]	Δ	None		0.0000	93.00	No Ice	13.70	13.70	0.77
1-Ann Mount [1A 002-5]	А	None		0.0000	75.00	1/2" Ice	16.44	16.44	1.00
						1/2 ICC	10.44	10.44	1.00
AM V CD 16 65 00T PET	٨	Erom Ecoo	4.00	0.0000	07.00	No Ice	8 21	6.65	0.00
W/ Mount Pine	А	FIOIII Face	4.00	0.0000	97.00	1/2" Ice	0.31 8 85	0.05	0.09
w/ Would Tipe			3.00			1/2 100	0.03	7.08 8.56	0.10
AM V CD 16 65 00T PET	D	Erom Ecco	-3.00	0.0000	07.00	I ICC	9.37	6.50	0.23
AWI-A-CD-10-03-001-KE1	D	FIOIII Face	4.00	0.0000	97.00	1/2" Loo	0.51	0.03	0.09
w/ Would Fipe			2.00			1/2 ice	0.03	7.00 9.56	0.10
AM Y CD 16 65 00T DET	C	Erom Ecco	-5.00	0.0000	07.00	I ICe	9.57	8.30 6.65	0.25
AWI-A-CD-10-03-001-KE1	C	FIOIII Face	4.00	0.0000	97.00	1/2" Lee	0.51	0.03	0.09
w/ Would Pipe			2.00			1/2 ICe	0.03	7.00	0.10
		E	-5.00	0.0000	07.00	I ICe	9.57	0.30	0.25
(5) HPA-05K-BUU-H0 W/	А	From Face	4.00	0.0000	97.00		9.90	8.11	0.08
Mount Pipe			0.00			1/2 Ice	10.47	9.30	0.16
	D	г г	-3.00	0.0000	07.00	1 Ice	11.01	10.21	0.25
(3) HPA-65R-BUU-H6 W/	В	From Face	4.00	0.0000	97.00	NO ICE	9.90	8.11	0.08
Mount Pipe			0.00			$1/2^{-1}$ Ice	10.47	9.30	0.16
	C		-3.00	0.0000	07.00	1 Ice	11.01	10.21	0.25
(3) HPA-65R-BUU-H6 W/	C	From Face	4.00	0.0000	97.00	No Ice	9.90	8.11	0.08
Mount Pipe			0.00			1/2" Ice	10.47	9.30	0.16
			-3.00	0.0000	07.00	I" Ice	11.01	10.21	0.25
DTMABP/819VG12A	A	From Face	4.00	0.0000	97.00	No Ice	1.00	0.41	0.02
			0.00			1/2" Ice	1.13	0.51	0.03
	D		-3.00	0.0000	07.00	I" Ice	1.27	0.61	0.04
DIMABP/819VG12A	В	From Face	4.00	0.0000	97.00	No Ice	1.00	0.41	0.02
			0.00			1/2" Ice	1.13	0.51	0.03
	a		-3.00	0.0000		I" Ice	1.27	0.61	0.04
DTMABP7819VG12A	С	From Face	4.00	0.0000	97.00	No Ice	1.00	0.41	0.02
			0.00			1/2" Ice	1.13	0.51	0.03
			-3.00			1" Ice	1.27	0.61	0.04
(2) RRUS 11	А	From Face	4.00	0.0000	97.00	No Ice	2.78	1.19	0.05
			0.00			1/2" Ice	2.99	1.33	0.07
	-		-3.00	0.0000		1" Ice	3.21	1.49	0.10
(2) RRUS 11	В	From Face	4.00	0.0000	97.00	No Ice	2.78	1.19	0.05
			0.00			1/2" Ice	2.99	1.33	0.07

Job CT1284 / OLD SAYBROOK BOSTON POST RD

Page 5 of 10

Date

GPD

Project

Client

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Blue Sky Tower Management

2021704.34

Designed by clifke

09:18:37 09/21/21

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft	o	ft		ft ²	ft ²	K
			-3.00			1" Ice	3.21	1.49	0.10
(2) RRUS 11	С	From Face	4.00	0.0000	97.00	No Ice	2.78	1.19	0.05
			0.00			1/2" Ice	2.99	1.33	0.07
			-3.00			1" Ice	3.21	1.49	0.10
(2) RRUS 12	А	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
			-3.00			1" Ice	3.59	1.60	0.11
(2) RRUS 12	В	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
			-3.00			1" Ice	3.59	1.60	0.11
(2) RRUS 12	С	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
			-3.00			1" Ice	3.59	1.60	0.11
RRUS E2	А	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
			-3.00			1" Ice	3.59	1.60	0.11
RRUS E2	В	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
	~		-3.00			1" Ice	3.59	1.60	0.11
RRUS E2	С	From Face	4.00	0.0000	97.00	No Ice	3.15	1.29	0.06
			0.00			1/2" Ice	3.36	1.44	0.08
DDUG 22			-3.00	0.0000	07.00	I" Ice	3.59	1.60	0.11
RRUS 32	А	From Face	4.00	0.0000	97.00	No Ice	3.31	2.42	0.08
			0.00			$1/2^{n}$ Ice	3.50	2.64	0.10
DDUG 22	р	Energy Error	-3.00	0.0000	07.00	I Ice	3.81	2.80	0.14
RRUS 32	В	From Face	4.00	0.0000	97.00	INO ICE	3.31	2.42	0.08
			2.00			1/2 ICe	2.20	2.04	0.10
DDUS 22	C	Erom Ecco	-5.00	0.0000	07.00	I ICe	5.61 2.21	2.80	0.14
KK03 32	C	FIOIII Face	4.00	0.0000	97.00	1/2" Loo	2.56	2.42	0.08
			3.00			1/2 ICe	3.50	2.04	0.10
(2) KPC 161 286 1 (A2	٨	From Face	-3.00	0.0000	97.00	No Ice	1.87	0.43	0.14
(2) KKC 101 280-1 (A2 Module)	А	110III Face	4.00	0.0000	97.00	1/2'' Ice	2.05	0.43	0.02
wiodule)			-3.00			1" Ice	2.05	0.54	0.03
(2) KRC 161 286-1 (A2	в	From Face	4.00	0.0000	97.00	No Ice	1.87	0.00	0.04
Module)	D	1 Iom I acc	0.00	0.0000	77.00	1/2" Ice	2.05	0.43	0.02
module)			-3.00			1" Ice	2.03	0.66	0.03
(2) KRC 161 286-1 (A2	С	From Face	4.00	0.0000	97.00	No Ice	1.87	0.43	0.02
Module)	č		0.00	0.0000	27.00	1/2" Ice	2.05	0.54	0.03
(filodule)			-3.00			1" Ice	2.24	0.66	0.04
DC6-48-60-18-8F Surge	А	From Face	1.00	0.0000	95.00	No Ice	0.92	0.92	0.02
Suppression Unit		1101111400	0.00	0.0000	20100	1/2" Ice	1.46	1.46	0.04
~~FF			0.00			1" Ice	1.64	1.64	0.06
DC6-48-60-18-8F Surge	В	From Face	1.00	0.0000	95.00	No Ice	0.92	0.92	0.02
Suppression Unit			0.00			1/2" Ice	1.46	1.46	0.04
11			0.00			1" Ice	1.64	1.64	0.06
DC6-48-60-18-8F Surge	С	From Face	1.00	0.0000	95.00	No Ice	0.92	0.92	0.02
Suppression Unit			0.00			1/2" Ice	1.46	1.46	0.04
			0.00			1" Ice	1.64	1.64	0.06

EEI K10994A [LP 302-1]	А	None		0.0000	85.00	No Ice	26.56	26.56	1.71
						1/2" Ice	33.67	33.67	2.26
						1" Ice	40.39	40.39	2.95
LNX-6515DS-VTM	А	From	4.00	0.0000	85.00	No Ice	11.45	7.70	0.05
		Centroid-Fa	0.00			1/2" Ice	12.06	8.29	0.12
		ce	0.00			1" Ice	12.69	8.89	0.19
I NX-6515DS-VTM	В	From	4.00	0.0000	85.00	No Ice	11.45	7.70	0.05

tnxTower

Job

Project

Client

CT1284 / OLD SAYBROOK BOSTON POST RD

Page 6 of 10

Date

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Blue Sky Tower Management

2021704.34

Designed by clifke

09:18:37 09/21/21

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
	Leg		Lateral Vert ft	o	ft		ft ²	ft ²	K
			ft G		5-		5-	5-	
		Centroid-Fa	$\frac{\pi}{0.00}$			1/2" Ice	12.06	8.29	0.12
		ce	0.00			1" Ice	12.69	8.89	0.19
LNX-6515DS-VTM	С	From	4.00	0.0000	85.00	No Ice	11.45	7.70	0.05
		Centroid-Fa	0.00			1/2" Ice	12.06	8.29	0.12
		ce	0.00	0.0000	05.00	1" Ice	12.69	8.89	0.19
(2) SBNHH-1D65B	А	From Control I Fo	4.00	0.0000	85.00	No Ice	8.16	5.40	0.04
		Centrold-Fa	0.00			1/2 Ice	8.02 0.00	5.85	0.09
(2) SBNHH-1D65B	в	From	4.00	0.0000	85.00	No Ice	9.09 8.16	0.32 5.40	0.13
(2) 3010111-10030	Ъ	Centroid-Fa	4.00 0.00	0.0000	05.00	1/2" Ice	8.62	5.85	0.04
		ce	0.00			1" Ice	9.09	6.32	0.15
(2) SBNHH-1D65B	С	From	4.00	0.0000	85.00	No Ice	8.16	5.40	0.04
		Centroid-Fa	0.00			1/2" Ice	8.62	5.85	0.09
		ce	0.00			1" Ice	9.09	6.32	0.15
RRH4x30-4R	А	From	4.00	0.0000	85.00	No Ice	2.14	1.31	0.05
		Centroid-Fa	0.00			1/2" Ice	2.33	1.46	0.07
		ce	0.00	0.0000	07.00	1" Ice	2.53	1.63	0.09
RRH4x30-4R	В	From	4.00	0.0000	85.00	No Ice	2.14	1.31	0.05
		Centroid-Fa	0.00			1/2" Ice	2.33	1.46	0.07
$\mathbf{P}\mathbf{P}\mathbf{H}4\mathbf{v}20\mathbf{A}\mathbf{P}$	C	ce From	0.00	0.0000	85.00	I lce	2.53	1.03	0.09
KKH4X30-4K	C	Centroid-Fa	4.00	0.0000	85.00	1/2" Ice	2.14	1.31	0.03
		centrolu-ra	0.00			1" Ice	2.55	1.40	0.07
RH 60W-PCS	А	From	4 00	0.0000	85.00	No Ice	2.20	1.36	0.05
		Centroid-Fa	0.00	0.0000	00100	1/2" Ice	2.39	1.52	0.07
		ce	0.00			1" Ice	2.59	1.68	0.09
RH_60W-PCS	В	From	4.00	0.0000	85.00	No Ice	2.20	1.36	0.06
		Centroid-Fa	0.00			1/2" Ice	2.39	1.52	0.07
		ce	0.00			1" Ice	2.59	1.68	0.09
RH_60W-PCS	С	From	4.00	0.0000	85.00	No Ice	2.20	1.36	0.06
		Centroid-Fa	0.00			1/2" Ice	2.39	1.52	0.07
DCCA DDUANAS		ce	0.00	0.0000	05.00	1" Ice	2.59	1.68	0.09
B66A RRH4X45	А	From Control I Fo	4.00	0.0000	85.00	No Ice	2.54	1.61	0.06
		Centrold-Fa	0.00			1/2 Ice	2.75	1.79	0.08
B664 RRH4X45	R	From	4.00	0.0000	85.00	No Ice	2.97	1.98	0.10
BOOA KKII4A45	Б	Centroid-Fa	4.00	0.0000	85.00	1/2" Ice	2.54	1.01	0.00
		ce	0.00			1" Ice	2.97	1.98	0.10
B66A RRH4X45	С	From	4.00	0.0000	85.00	No Ice	2.54	1.61	0.06
		Centroid-Fa	0.00			1/2" Ice	2.75	1.79	0.08
		ce	0.00			1" Ice	2.97	1.98	0.10
DB-T1-6Z-8AB-0Z	Α	From	4.00	0.0000	85.00	No Ice	4.80	2.00	0.04
		Centroid-Fa	0.00			1/2" Ice	5.07	2.19	0.08
		ce	0.00			1" Ice	5.35	2.39	0.12
DB-T1-6Z-8AB-0Z	В	From	4.00	0.0000	85.00	No Ice	4.80	2.00	0.04
		Centroid-Fa	0.00			$1/2^{n}$ Ice	5.07	2.19	0.08
***		ce	0.00			1" Ice	5.35	2.39	0.12
SNIP8HR_306 [] D 717 11	٨	None		0.0000	75.00	No Ice	19/2	18.40	1.24
SIN 811K-590 [L1 /17-1]	А	None		0.0000	75.00	1/2" Ice	22.01	20.72	1.24
						1" Ice	24.63	23.72	2.06
(3) 8' x 2.375" Mount Pipe	А	From	3.00	0.0000	75.00	No Ice	1.90	1.90	0.04
, ,	-	Centroid-Fa	0.00		*	1/2" Ice	2.73	2.73	0.05
		ce	0.00			1" Ice	3.40	3.40	0.07
(3) 8' x 2.375" Mount Pipe	В	From	3.00	0.0000	75.00	No Ice	1.90	1.90	0.04
-		Centroid-Fa	0.00			1/2" Ice	2.73	2.73	0.05
		ce	0.00			1" Ice	3.40	3.40	0.07

Job CT1284 / OLD SAYBROOK BOSTON POST RD

Page 7 of 10

Date

GPD

Project

Client

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Blue Sky Tower Management

2021704.34

Designed by clifke

09:18:37 09/21/21

Description	Face	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Eront	$C_A A_A$ Side	Weight
	Lea	Туре	Lateral	пазиятени			110111	Sille	
	Les		Vert						
			ft	0	ft		ft^2	ft^2	K
			ft		<i>J</i>		<i>Ji</i>	<i>J</i> •	
			ft						
(3) 8' x 2.375" Mount Pipe	С	From	3.00	0.0000	75.00	No Ice	1.90	1.90	0.04
1		Centroid-Fa	0.00			1/2" Ice	2.73	2.73	0.05
		ce	0.00			1" Ice	3.40	3.40	0.07
MX08FRO665-20_V0F w/	А	From	3.00	0.0000	75.00	No Ice	12.96	7.77	0.08
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	13.67	9.05	0.18
I I		ce	0.00			1" Ice	14.34	10.19	0.28
MX08FRO665-20_V0F w/	В	From	3.00	0.0000	75.00	No Ice	12.96	7.77	0.08
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	13.67	9.05	0.18
-		ce	0.00			1" Ice	14.34	10.19	0.28
MX08FRO665-20_V0F w/	С	From	3.00	0.0000	75.00	No Ice	12.96	7.77	0.08
Mount Pipe		Centroid-Fa	0.00			1/2" Ice	13.67	9.05	0.18
		ce	0.00			1" Ice	14.34	10.19	0.28
(2) TA08025-B605	Α	From	3.00	0.0000	75.00	No Ice	1.96	1.13	0.08
		Centroid-Fa	0.00			1/2" Ice	2.14	1.27	0.09
		ce	0.00			1" Ice	2.32	1.41	0.11
(2) TA08025-B605	В	From	3.00	0.0000	75.00	No Ice	1.96	1.13	0.08
		Centroid-Fa	0.00			1/2" Ice	2.14	1.27	0.09
		ce	0.00			1" Ice	2.32	1.41	0.11
(2) TA08025-B605	С	From	3.00	0.0000	75.00	No Ice	1.96	1.13	0.08
		Centroid-Fa	0.00			1/2" Ice	2.14	1.27	0.09
		ce	0.00			1" Ice	2.32	1.41	0.11
RDIDC-9181-PF-48	А	From	3.00	0.0000	75.00	No Ice	2.56	1.34	0.02
		Centroid-Fa	0.00			1/2" Ice	2.76	1.49	0.04
		ce	0.00			1" Ice	2.97	1.66	0.07

Load Combinations

Com	b. Description
No	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice

<i>tnxTower</i>

Job

Client

Page 8 of 10 CT1284 / OLD SAYBROOK BOSTON POST RD Project Date

GPD

520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

Blue Sky Tower Management

2021704.34

Designed by clifke

09:18:37 09/21/21

Comb.	Description
No.	
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	99 - 48.5	7.316	48	0.5919	0.0005
L2	53.25 - 0	2.254	48	0.3889	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load Comb.	in	0	0	Curvature ft
97.00	T-Arm Mount [TA 602-3]	48	7.063	0.5844	0.0005	53041
95.00	DC6-48-60-18-8F Surge	48	6.811	0.5768	0.0004	53041
	Suppression Unit					
93.00	T-Arm Mount [TA 602-3]	48	6.559	0.5692	0.0004	44201
85.00	EEI K10994A [LP 302-1]	48	5.567	0.5382	0.0004	18943
75.00	SNP8HR-396 [LP 717-1]	48	4.386	0.4969	0.0003	11050

Maximum Tower Deflections - Design Wind

two	Job	Page
lnxlower	CT1284 / OLD SAYBROOK BOSTON POST RD	9 of 10
CPD	Project	Date
520 South Main Street Suite 2531	2021704.34	09:18:37 09/21/21
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client Blue Sky Tower Management	Designed by clifke

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	99 - 48.5	35.602	20	2.8817	0.0023
L2	53.25 - 0	10.967	20	1.8927	0.0009

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load Comb.	in	0	0	Curvature ft
97.00	T-Arm Mount [TA 602-3]	20	34.371	2.8449	0.0022	10940
95.00	DC6-48-60-18-8F Surge	20	33.143	2.8080	0.0022	10940
	Suppression Unit					
93.00	T-Arm Mount [TA 602-3]	20	31.918	2.7710	0.0021	9117
85.00	EEI K10994A [LP 302-1]	20	27.088	2.6199	0.0018	3906
75.00	SNP8HR-396 [LP 717-1]	20	21.342	2.4189	0.0015	2278

Compression Checks

			Ро	le Des	sign l	Data			
Section No.	Elevation	Size	L	L _u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	Κ	ϕP_n
L1	99 - 48.5 (1)	TP34.15x22.14x0.25	50.50	0.00	0.0	26.0033	-14.77	1521.19	0.010
L2	48.5 - 0 (2)	TP45.2x32.5203x0.3125	53.25	0.00	0.0	44.5228	-24.74	2604.58	0.009

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{nv}	Ratio
No.					M_{ux}		• •	M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	99 - 48.5 (1)	TP34.15x22.14x0.25	511.19	1184.53	0.432	0.00	1184.53	0.000
L2	48.5 - 0 (2)	TP45.2x32.5203x0.3125	1431.94	2683.70	0.534	0.00	2683.70	0.000

Pole Shear Design Data								
Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	99 - 48.5 (1)	TP34.15x22.14x0.25	15.83	456.36	0.035	0.28	1309.68	0.000
L2	48.5 - 0 (2)	TP45.2x32.5203x0.3125	18.75	781.38	0.024	0.24	3071.60	0.000

tnxTower	Job	CT1284 / OLD SAYBROOK BOSTON POST RD	Page 10 of
GPD 520 South Main Street Suite 2531	Project	2021704.34	Date 09:18:37 0
Akron, Ohio 44311 Phone: (330) 572-2100	Client	Blue Sky Tower Management	Designed by

FAX: (330) 572-2101

Pole Interaction Design Data

10 of 10

09:18:37 09/21/21

clifke

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	$Ratio V_u$	Ratio T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	99 - 48.5 (1)	0.010	0.432	0.000	0.035	0.000	0.442	1.000	4.8.2 🖌
L2	48.5 - 0 (2)	0.009	0.534	0.000	0.024	0.000	0.544	1.000	4.8.2 🖌

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
L1	99 - 48.5	Pole	TP34.15x22.14x0.25	1	-14.77	1521.19	44.2	Pass
L2	48.5 - 0	Pole	TP45.2x32.5203x0.3125	2	-24.74	2604.58	54.4	Pass
						Summary	ELC:	Existing + Proposed
						Pole (L2) Rating =	54.4 54.4	Pass Pass

APPENDIX C

Additional Calculations

Anchor Rod and Base Plate Stresses, TIA-222-H-1 Old Saybrook, Boston Post Road (CT-1263) 2021723.34

Overturning Moment =	1432.00	k*ft
Axial Force =	25.00	k
Shear Force =	19.00	k

Maximum Capacity	105%
Apply TIA-222-H Section 15.5?	No

Anchor Ro	ods	
Pole Diameter =	45.2	in
Number of Rods =	12	
Rod Yield Strength, $F_y =$	75	ksi
Rod Ultimate Strength, F _u =	100	ksi
Rod Circle =	51.25	in
Rod Diameter =	2.25	in
Rod Projection, I _{ar} =	2.25	in
Is grout present?	No	
Max Tension on Rod, P _{ut} =	109.57	k
Max Compression on Rod, P _{uc} =	113.74	k
Shear on Rod, V_u =	1.58	k
Moment on Rod, M_u =	0.00	k-in
Tension Interaction =	20.2%	OK
Compression Interaction =	42.4%	OK

Base Plate			
Plate Yield Strength, F _y =	50	ksi	
φ =	0.9		
Plate Thickness =	2.5	in	
Plate Width =	49.75	in	
Est. Dist. b/w ea. Rod =	6	in	
w _{calc} =	36.92	in	
w _{max} =	25.16	in	
w =	25.16	in	
Z =	39.31	in ³	
M _u =	858.19	k-in	
φM _n =	1768.86	k-in	
Base Plate Capacity =	48.5%	OK	

GPD Unstiffened Square Base Plate Stress (Rev H) - V1.1

Pier and Pad Foundation

Site # :	CT1284
Site Name:	OLD SAYBROOK E

Н

TIA-222 Revision: Tower Type: Monopole

Top & Bot. Pad Rein. Different?:	
Block Foundation?:	
Rectangular Pad?:	

Superstructure Analysis Reactions		
Compression, P_{comp} :	25	kips
Base Shear, Vu_comp:	19	kips
Moment, M _u :	1432	ft-kips
Tower Height, H :	99	ft
BP Dist. Above Fdn, bp_{dist}:	3	in

		Pier Properties
	Square	Pier Shape:
ft	6	Pier Diameter, dpier :
ft	0.5	Ext. Above Grade, E:
	8	Pier Rebar Size, Sc :
	26	Pier Rebar Quantity, mc :
	4	Pier Tie/Spiral Size, St :
		Pier Tie/Spiral Quantity, mt:
	Tie	Pier Reinforcement Type:
in	3	Pier Clear Cover, cc _{pier} :

Pad Properties		
Depth, D:	6	ft
Pad Width, W ₁ :	20.5	ft
Pad Thickness, T :	1.5	ft
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8	
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	26	
Pad Clear Cover, cc_{pad}:	3	in

Material Properties		
Rebar Grade, Fy :	60	ksi
Concrete Compressive Strength, F'c:	4.5	ksi
Dry Concrete Density, δ c :	150	pcf

Soil Properties		
Total Soil Unit Weight, $m{\gamma}$:	125	pcf
Ultimate Gross Bearing, Qult:	8.000	ksf
Cohesion, Cu :		ksf
Friction Angle, φ :	34	degrees
SPT Blow Count, N _{blows} :		
Base Friction, μ :		
Neglected Depth, N:	3.50	ft
Foundation Bearing on Rock?		
Groundwater Depth, gw:	5	ft

Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	153.47	19.00	12.4%	Pass
Bearing Pressure (ksf)	6.00	2.21	36.9%	Pass
Overturning (kip*ft)	2920.22	1560.25	53.4%	Pass
Pier Flexure (Comp.) (kip*ft)	2915.71	1527.00	52.4%	Pass
Pier Compression (kip)	25777.44	57.40	0.2%	Pass
Pad Flexure (kip*ft)	1187.28	522.89	44.0%	Pass
Pad Shear - 1-way (kips)	334.17	111.49	33.4%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.201	0.065	32.1%	Pass
Flexural 2-way (Comp) (kip*ft)	1204.34	916.20	76.1%	Pass

Structural Rating:	76.1%
Soil Rating:	53.4%

<--Toggle between Gross and Net

Exhibit E

Mount Analysis

FROM ZERO TO INFINIGY the solutions are endless

1033 WATERVLIET SHAKER RD, ALBANY, NY 12205

Mount Analysis Report

August 5, 2021

Dish Wireless Site Number	BOBDL00113A
Job Number	2039-Z5555C
Client	Crown Castle
Carrier	Dish Wireless
	1363 Boston Post Road,
Site Location	Old Saybrook, CT 06475
Site Location	41.2898 N NAD 83
	72.4059 W NAD 83
Mount Centerline EL.	70 ft
Mount Classification	Platform
Structural Usage Ratio	76%
Overall Result	Pass

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA and ASCE code requirements. The proposed platform for the proposed carrier is therefore deemed **adequate** to support the final loading configuration as listed in this report.

Contents

Introduction	3
Supporting Documentation	3
Analysis Code Requirements	3
Conclusion	3
Final Configuration Loading	4
Structure Usages	4
Assumptions and Limitations	4
Calculations	Appended

August 5, 2021

Introduction

Infinigy Engineering has been requested to perform a mount analysis of proposed antenna platform from the Dish Wireless equipment. All supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using RISA-3D Version 19.0.1 analysis software.

Supporting Documentation

Platform Drawings SitePro1 Assembly Drawings No. SNP8HR-396				
Construction Drawings	Infinigy Engineering PLLC, Job No. 2039-Z5555C, dated July 08, 2021			
RF Design Sheet	Dish Wireless, dated February 19, 2021			

Analysis Code Requirements

Wind Speed	135 mph (3-second Gust, Vult.)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 0.75" ice
TIA Revision	ANSI/TIA-222-G
Adopted IBC	2018 Connecticut State Building Code (2015 IBC)
Structure Class	II
Exposure Category	С
Topographic Method	Method 1
Topographic Category	1
Spectral Response	Ss=0.164, S ₁ =0.059
Site Class	D – Stiff Soil (Assumed)
HMSL	8.58 ft.

Conclusion

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The proposed platform is therefore deemed adequate to support the final loading configuration as listed in this report.

If you have any questions, require additional information, or actual conditions differ from those as detailed in this report please contact me via the information below:

Dmitriy Albul, P.E. Professional Engineer | Engineering Consultant to Infinigy 1033 Watervliet Shaker Road, A4lbany, NY 12205 (O) (518) 690-0790 | (M) (518) 699-4428 www.infinigy.com

BOBDL00113A

Mount Analysis Report

August 5, 2021

Final Configuration Loading

Mount CL (ft)	Rad. HT (ft)	Vert. O/S (ft)	Horiz. O/S (ft)*	Qty	Appurtenance	Carrier
()	()	()	7.33	3	JMA MX08FRO665-20 V0F	
70.0	70.0		7.33	3	Fujitsu TA08025-B605	Dish
70.0 70.0	-	7.33	3	Fujitsu TA08025-B604	Wireless	
			-	1	Raycap RDIDC-9181-PF-48	

*Horizontal Offset is defined as the distance from the left most edge of the mount face horizontal when viewed facing the tower.

Structure Usages

Plates	76%	Pass
Cross Arms	63%	Pass
Arms	45%	Pass
Mount Pipes	63%	Pass
Angle	39%	Pass
Handrails	26%	Pass
Frame Rails	21%	Pass
Rating	<u>76%</u>	Pass

Assumptions and Limitations

Our structural calculations are completed assuming all information provided to Infinigy Engineering is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition of "like new" and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report Infinigy Engineering should be notified immediately to complete a revised evaluation.

Our evaluation is completed using standard TIA, AISC, ACI, and ASCE methods and procedures. Our structural results are proprietary and should not be used by others as their own. Infinigy Engineering is not responsible for decisions made by others that are or are not based on our supplied assumptions and conclusions.

This report is an evaluation of the proposed carriers mount structure only and does not reflect adequacy of the existing tower, other mounts, or coax mounting attachments. These elements are assumed to be adequate for the purposes of this analysis and are assumed to have been installed per their manufacturer requirements.

INFINIGY8 FROM ZERO TO INFINIGY the solutions are endless

Date:	8/5/2021	
Site Name:	BOBDL00113A	
Project Engineer:	DVA	
Project No:	2039-Z5555C	
Customer:	Crown Castle	
Carrier:	Dish Wireless	
Building Code:	2015	
ASCE Standard:	ASCE 7-10	
TIA Standard:	G	
Mount Type:	Platform	
	Proposed	
Mount Centerline:	70	ft
Superstructure Height:	100	ft
Structure Type:	Tower	

Structure Type:	Tower	
	Factors	
Gh:	1.000	
K _{zmin} :	0.850	
K _z :	1.174	
K _d :	0.950	
K _{zt} :	1.000	
Ka:	0.900	
I wind:	1.000	
l ice:	1.000	

31.22 0.00

psf

psf

Site Information	1	
Exposure Category:	С	
Risk Category:	11	
Ultimate Wind Speed:	135	mph
Design Wind Speed:	105	mph
Ice Thickness:	0.75	in
Ice Wind Speed:	50.0	mph
Escalated Ice Thickness:	1.62	in
Topographic Method:	1	
Topographic Category:	1	

Run Seismic?

Site Soil:

Short-Period Accel. (Ss):

1-Second Accel. (S1): Short-Period Design (SDS):

1-Second Design (SD1): Short-Period Coeff. (Fa): 1-Second Coeff. (Fv): Cs

Cs min Amplification Factor (ap): Response Mod. (Rp): Overstrength (Ωo):

Service Wind:

Lm (man live load) = Lv (man live load) =

Yes

D (Default)

0.1640

0.1760

0.0940 1.6000

1.0000 2.4000 0.0880 0.0300 1.00 2.50 1.00

30.0

500.0 250.0

mph

lb lb

ELEVATION VIEW

PLAN VIEW

Table 1. Equipment Specifications and Wind Pressure

Manufacturer	Model	Elevation	Pipe Label	Weight (lb)	Height (in)	Width (in)	Depth (in)	EPA _N	ΕΡΑ _τ	EPA N w/ ice	EPA T w/ ice	q_z :	q _{zice} :	q _{z live} :
JMA WIRELESS	MX08FRO665-20_V0F	70	35, 121, 110	54.00	72	20	8	12.49	5.87	14.96	8.14	31.22	7.14	2.57
Fujitsu	TA08025-B605	70	35, 121, 110	74.95	15.75	14.96	9.06	1.86	1.16	2.72	1.88	31.22	7.14	2.57
Fujitsu	TA08025-B604	70	35, 121, 110	63.93	15.75	14.96	7.87	1.86	1.01	2.72	1.71	31.22	7.14	2.57
Raycap	RDIDC-9181-PF-48	70	104	21.85	16	14	8	1.77	1.05	2.62	1.75	31.22	7.14	2.57

Table 2. Equipment Wind and Seismic Loads

q_z: Surface Wind Pressure:

Manufacturer	Model	Wind Load (F _A), lb		Wind	Load Ice Case (I	F _A), lb	Wind Load S	Seismic	
JMA WIRELESS	MX08FRO665-20_V0F	351	165	96	52	281	29	14	4.8
Fujitsu	TA08025-B605	52	32	17	12	51	4	3	6.6
Fujitsu	TA08025-B604	52	28	17	11	49	4	2	5.6
Raycap	RDIDC-9181-PF-48	50	29	17	11	48	4	2	1.9

Table 3. Member Capaciti	es							
Member Name	Member Shape	Wind load (plf)	Wind Load Ice (plf)	Weight Ice (plf)	Bending Check	Shear Check	Total Capacity	Controlling Capacity
Arm	HSS4x4x4	20.82	4.76	1.22	45%	22%	45%	
Arm 2	HSS4.5x4.5x3	23.42	5.35	1.30	8%	20%	20%	
Cross Arm	L4x4x4	20.82	4.76	1.22	63%	15%	63%	
Frame Rail	PIPE_3.0	10.93	2.50	1.13	13%	21%	21%	76%
Handrail	PIPE_2.5	8.99	2.06	1.03	26%	26%	26%	10%
Mount Pipe	PIPE_2.0	7.43	1.70	0.94	63%	27%	63%	
Plate	6"x0.375" Plate	31.22	7.14	1.55	71%	76%	76%	
Angle	L3x3x3	15.61	3.57	1.05	39%	5%	39%	

		SK-1
	BOBELUUTISA	Aug 04, 2021
2039-Z5555C	Proposed Configuration Model	BOBDL00113A.R3D

Model Settings

Solution	
Members	[r
Number of Reported Sections	5
Number of Internal Sections	
Member Area Load Mesh Size (In)	144 Maa
Consider Shear Deformation	Yes
Consider Torsional Warping	Yes
Wall Panels	
Approximate Mesh Size (in)	12
Transfer Forces Between Intersecting Wood Walls	Yes
Increase Wood Wall Nailing Capacity for Wind Loads	Yes
Include P-Delta for Walls	Yes
Optimize Masonry and Wood Walls	Yes
Maximum Number of Iterations	3
Processor Core Utilization	
Single	No
Multiple (Optimum)	Yes
Maximum	No
Axis Vertical Global Axis Global Axis corresponding to vertical direction	Y
Convert Existing Data	Ves
Default Member Orientation	
Plate Axis	
Plate Local Axis Orientation	Nodal
Codes	
Hot Rolled Steel	AISC 14th (360-10): LRFD
Stiffness Adjustment	Yes (Iterative)
Notional Annex	None
Connections	AISC 14th (360-10): LRFD
Cold Formed Steel	AISI S100-12: LRFD
Stiffness Adjustment	Yes (Iterative)
Wood	AWC NDS-12: ASD
Temperature	< 100F
Concrete	ACI 318-11
Masonry	ACI 530-11: Strength
Aluminum	AA ADM1-10: LRFD
Structure Type	Building
Stiffness Adjustment	Yes (Iterative)
Stainless	AISC 14th (360-10): LRFD
Stiffness Adjustment	Yes (Iterative)
Concepto	

Concrete

Column Design

Analysis Methodology	Exact Integration Method
Parme Beta Factor	0.65
Compression Stress Block	Rectangular Stress Block
Analyze using Cracked Sections	Yes
Leave room for horizontal rebar splices (2*d bar spacing)	No

Model Settings (Continued)

List forces which were ignored for design in the Detail Report	Yes

Rebar	
Column Min Steel	1
Column Max Steel	8
Rebar Material Spec	ASTM A615
Warn if beam-column framing arrangement is not understood	No

Shear Reinforcement	
Number of Shear Regions	4
Region 2 & 3 Spacing Increase Increment (in)	4

Seismic

RISA-3D Seismic Load Options

Code	ASCE 7-10
Risk Category	l or ll
Drift Cat	Other
Base Elevation (ft)	
Include the weight of the structure in base shear calcs	Yes

Site Parameters

S ₁ (g)	1
SD ₁ (g)	1
SD _s (g)	1
T _L (sec)	5

Structure Characteristics

T Z (sec)	
T X (sec)	
C _t X	0.02
CtExp. Z	0.75
C _t Exp. X	0.75
RZ	3
RX	3
$\Omega_0 Z$	1
$\Omega_0 X$	1
C _d Z	4
C _d X	4
ρΖ	1
ρΧ	1
Company : Infinigy Engineering, PLLC Designer : DVA the solutions are endless Model Name : BOBDL00113A

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	_Design List	Material	Design Rule
1	M1	N1	N2		Arm	Beam	Tube	A500 Gr.B Rect	Typical
2	M2	N5	N6		Frame Rail	Beam	Pipe	A53 Gr.B	Typical
3	M3	N7	N8		Handrail	HBrace	Pipe	A53 Gr.B	Typical
4	M4	N10	N11		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
5	M5	N4	N3		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
6	M6	N15	N35	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
7	M7	N33	N13	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
8	M8	N12	N34	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
9	M9	N36	N14	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
10	M10	N18	N20		Plate	Beam	BAR	A36 Gr.36	Typical
11	M11	N17	N19		Plate	Beam	BAR	A36 Gr.36	Typical
12	M12	N21	N22		Plate	Beam	BAR	A36 Gr.36	Typical
13	M13	N23	N24		Plate	Beam	BAR	A36 Gr.36	Typical
14	M14	N28	N25	90	Angle	HBrace	Sinale Anale	A36 Gr.36	Typical
15	M15	N26	N27		Plate	Beam	BAR	A36 Gr.36	Typical
16	M16	N29	N30		Plate	Beam	BAR	A36 Gr.36	Typical
17	M17	N31	N9		RIGID	None	None	RIGID	Typical
18	M18	N32	N16		RIGID	None	None	RIGID	Typical
19	M19	N4	N35		RIGID	None	None	RIGID	Typical
20	M20	N4	N33		RIGID	None	None	RIGID	Typical
21	M21	N3	N34		RIGID	None	None	RIGID	Typical
22	M22	N36	N3		RIGID	None	None	RIGID	Typical
23	M23	N19	N37		Plate	Beam	BAR	A36 Gr.36	Typical
24	M24	N22	N38		Plate	Beam	BAR	A36 Gr.36	Typical
25	M25	N39	N41		RIGID	None	None	RIGID	Typical
26	M26	N40	N42		RIGID	None	None	RIGID	Typical
27	M27	N27	N43		Plate	Beam	BAR	A36 Gr.36	Typical
28	M28	N44	N45		RIGID	None	None	RIGID	Typical
29	M29	N20	N46		Plate	Beam	BAR	A36 Gr.36	Typical
30	M30	N24	N47		Plate	Beam	BAR	A36 Gr.36	Typical
31	M31	N48	N50		RIGID	None	None	RIGID	Typical
32	M32	N49	N51		RIGID	None	None	RIGID	Typical
33	M33	N30	N52		Plate	Beam	BAR	A36 Gr.36	Typical
34	M34	N53	N54		RIGID	None	None	RIGID	Typical
35	M35	N56	N57		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
36	M36	N59	N55		RIGID	None	None	RIGID	Typical
37	M37	N60	N58		RIGID	None	None	RIGID	Typical
38	M38	N62	N63		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
39	M39	N65	N61		RIGID	None	None	RIGID	Typical
40	M40	N66	N64		RIGID	None	None	RIGID	Typical
41	M41	N67	N68		Arm	Beam	Tube	A500 Gr.B Rect	Typical
42	M42	N70	N69		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
43	M43	N74	N91	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
44	M44	N89	N72	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
45	M45	N71	N90	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
46	M46	N92	N73	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
47	M47	N76	N78		Plate	Beam	BAR	A36 Gr.36	Typical
48	M48	N75	N77		Plate	Beam	BAR	A36 Gr.36	Typical
49	M49	N79	N80		Plate	Beam	BAR	A36 Gr.36	Typical
50	M50	N81	N82		Plate	Beam	BAR	A36 Gr.36	Typical
51	M51	N86	N83	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical
52	M52	N84	N85		Plate	Beam	BAR	A36 Gr.36	Typical
53	M53	N87	N88		Plate	Beam	BAR	A36 Gr.36	Typical
54	M54	N70	N91		RIGID	None	None	RIGID	Typical
55	M55	N70	N89		RIGID	None	None	RIGID	Typical
56	M56	N69	N90		RIGID	None	None	RIGID	Typical
57	M57	N92	N69		RIGID	None	None	RIGID	Typical
58	M58	N77	N93		Plate	Beam	BAR	A36 Gr.36	Typical

Member Primary Data (Continued)

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
59	M59	N80	N94		Plate	Beam	BAR	A36 Gr.36	Typical
60	M60	N95	N97		RIGID	None	None	RIGID	Typical
61	M61	N96	N98		RIGID	None	None	RIGID	Typical
62	M62	N85	N99		Plate	Beam	BAR	A36 Gr.36	Typical
63	M63	N100	N101		RIGID	None	None	RIGID	Typical
64	M64	N78	N102		Plate	Beam	BAR	A36 Gr.36	Typical
65	M65	N82	N103		Plate	Beam	BAR	A36 Gr.36	Typical
66	M66	N104	N106		RIGID	None	None	RIGID	Typical
67	M67	N105	N107		RIGID	None	None	RIGID	Typical
68	M68	N88	N108		Plate	Beam	BAR	A36 Gr.36	Typical
69	M69	N109	N110		RIGID	None	None	RIGID	Typical
70	M70	N111	N112		Arm	Beam	Tube	A500 Gr.B Rect	Typical
71	M71	N114	N113		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
72	M72	N118	N135	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
73	M73	N133	N116	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
74	M74	N115	N134	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
75	M75	N136	N117	90	Cross Arm	Beam	Single Angle	A36 Gr.36	Typical
76	M76	N120	N122		Plate	Beam	BAR	A36 Gr.36	Typical
77	M77	N119	N121		Plate	Beam	BAR	A36 Gr.36	Typical
78	M78	N123	N124		Plate	Beam	BAR	A36 Gr 36	Typical
79	M79	N125	N126		Plate	Beam	BAR	A36 Gr.36	Typical
80	M80	N130	N127	90	Angle	HBrace	Single Angle	A36 Gr.36	Typical
81	M81	N128	N129		Plate	Beam	BAR	A36 Gr.36	Typical
82	M82	N131	N132		Plate	Beam	BAR	A36 Gr.36	Typical
83	M83	N114	N135		RIGID	None	None	RIGID	Typical
84	M84	N114	N133		RIGID	None	None	RIGID	Typical
85	M85	N113	N134		RIGID	None	None	RIGID	Typical
86	M86	N136	N113		RIGID	None	None	RIGID	Typical
87	M87	N121	N137		Plate	Beam	BAR	A36 Gr.36	Typical
88	M88	N124	N138		Plate	Beam	BAR	A36 Gr.36	Typical
89	M89	N139	N141		RIGID	None	None	RIGID	Typical
90	M90	N140	N142		RIGID	None	None	RIGID	Typical
91	M91	N129	N143		Plate	Beam	BAR	A36 Gr.36	Typical
92	M92	N144	N145		RIGID	None	None	RIGID	Typical
93	M93	N122	N146	_	Plate	Beam	BAR	A36 Gr.36	Typical
94	M94	N126	N147		Plate	Beam	BAR	A36 Gr.36	Typical
95	M95	N148	N150		RIGID	None	None	RIGID	Typical
96	M96	N149	N151		RIGID	None	None	RIGID	Typical
97	M97	N132	N152		Plate	Beam	BAR	A36 Gr.36	Typical
98	M98	N153	N154		RIGID	None	None	RIGID	Typical
99	M99	N156	N155		RIGID	None	None	RIGID	Typical
100	M100	N157	N158		RIGID	None	None	RIGID	Typical
101	M101	N159	N157		RIGID	None	None	RIGID	Typical
102	M102	N158	N160		RIGID	None	None	RIGID	Typical
103	M103	N159	N161		RIGID	None	None	RIGID	Typical
104	M104	N162	N163		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
105	M105	N164	N165		Frame Rail	Beam	Pipe	A53 Gr.B	Typical
106	M106	N166	N167		Handrail	HBrace	Pipe	A53 Gr.B	Typical
107	M107	N169	N170		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
108	M108	N172	N168		RIGID	None	None	RIGID	Typical
109	M109	N173	N171		RIGID	None	None	RIGID	Typical
110	M110	N175	N176		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
111	M111	N178	N174		RIGID	None	None	RIGID	Typical
112	M112	N179	N177		RIGID	None	None	RIGID	Typical
113	M113	N181	N182		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
114	M114	N184	N180		RIGID	None	None	RIGID	Typical
115	M115	N185	N183		RIGID	None	None	RIGID	Typical
116	M116	N156	N186		Frame Rail	Beam	Pipe	A53 Gr.B	Typical

Member Primary Data (Continued)

8

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
117	M117	N187	N188		Handrail	HBrace	Pipe	A53 Gr.B	Typical
118	M118	N190	N191		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
119	M119	N193	N189		RIGID	None	None	RIGID	Typical
120	M120	N194	N192		RIGID	None	None	RIGID	Typical
121	M121	N196	N197		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
122	M122	N199	N195		RIGID	None	None	RIGID	Typical
123	M123	N200	N198		RIGID	None	None	RIGID	Typical
124	M124	N202	N203		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
125	M125	N205	N201		RIGID	None	None	RIGID	Typical
126	M126	N206	N204		RIGID	None	None	RIGID	Typical

Material Take-Off

INFINIG

	Material	Size	Pieces	Length[in]	Weight[LB]
1	General Members				
2	RIGID		53	126.7	0
3	Total General		53	126.7	0
4					
5	Hot Rolled Steel				
6	A36 Gr.36	6"x0.375" Plate	36	144	91.875
7	A36 Gr.36	L4X4X4	12	363	198.663
8	A36 Gr.36	L3X3X3	3	165	50.999
9	A500 Gr.B Rect	HSS4.5X4.5X3	3	60	53.615
10	A500 Gr.B Rect	HSS4X4X4	3	115.4	118.563
11	A53 Gr.B	PIPE_2.0	10	912	263.783
12	A53 Gr.B	PIPE_2.5	3	288	131.483
13	A53 Gr.B	PIPE_3.0	3	288	169.05
14	Total HR Steel		73	2335.4	1078.032

Basic Load Cases

BLC Description		Category	X Gravity	Y Gravity	Z Gravity	Point	Distributed	Area(Member)
1	Self Weight	DL		-1		20		3
2	Wind Load AZI 0	WLX				40	260	
3	Wind Load AZI 30	None				40	260	
4	Wind Load AZI 60	None				40	260	
5	Wind Load AZI 90	WLZ				40	260	
6	Wind Load AZI 120	None				40	260	
7	Wind Load AZI 150	None				40	260	
8	Wind Load AZI 180	None				40	260	
9	Wind Load AZI 210	None				40	260	
10	Wind Load AZI 240	None				40	260	
11	Wind Load AZI 270	None				40	260	
12	Wind Load AZI 300	None				40	260	
13	Wind Load AZI 330	None				40	260	
14	Ice Weight	OL1				20	126	3
15	Ice Wind Load AZI 0	OL2				40	260	
16	Ice Wind Load AZI 30	None				40	260	
17	Ice Wind Load AZI 60	None				40	260	
18	Ice Wind Load AZI 90	OL3				40	260	
19	Ice Wind Load AZI 120	None				40	260	
20	Ice Wind Load AZI 150	None				40	260	
21	Ice Wind Load AZI 180	None				40	260	
22	Ice Wind Load AZI 210	None				40	260	
23	Ice Wind Load AZI 240	None				40	260	
24	Ice Wind Load AZI 270	None				40	260	
25	Ice Wind Load AZI 300	None				40	260	
26	Ice Wind Load AZI 330	None				40	260	
27	Seismic Load X	ELX			-0.088	20		

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Point	Distributed	Area(Member)
28	Seismic Load Z	ELZ	-0.088			20		
29	Service Live Loads	LL						
30	Maintenance Load 1	LL				1		
31	Maintenance Load 2	LL				1		
32	Maintenance Load 3	LL				1		
33	Maintenance Load 4	LL				1		
34	Maintenance Load 5	LL				1		
35	Maintenance Load 6	LL				1		
36	Maintenance Load 7	LL				1		
37	Maintenance Load 8	LL				1		
38	Maintenance Load 9	LL				1		
39	Maintenance Load 10	LL				1		
40	Maintenance Load 11	LL				1		
41	Maintenance Load 12	LL				1		
42	Maintenance Load 13	LL				1		
43	Maintenance Load 14	LL				1		
44	Maintenance Load 15	LL				1		
45	Maintenance Load 16	LL				1		
46	Maintenance Load 17	LL				1		
47	Maintenance Load 18	LL				1		
52	BLC 1 Transient Area Loads	None					141	
53	BLC 14 Transient Area Loads	None					141	

Load Combinations

	Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4DL	Yes	Y	1	1.4				
2	1.2DL + 1.6WL AZI 0	Yes	Y	1	1.2	2	1.6		
3	1.2DL + 1.6WL AZI 30	Yes	Y	1	1.2	3	1.6		
4	1.2DL + 1.6WL AZI 60	Yes	Y	1	1.2	4	1.6		
5	1.2DL + 1.6WL AZI 90	Yes	Y	1	1.2	5	1.6		
6	1.2DL + 1.6WL AZI 120	Yes	Y	1	1.2	6	1.6		
7	1.2DL + 1.6WL AZI 150	Yes	Y	1	1.2	7	1.6		
8	1.2DL + 1.6WL AZI 180	Yes	Y	1	1.2	8	1.6		
9	1.2DL + 1.6WL AZI 210	Yes	Y	1	1.2	9	1.6		
10	1.2DL + 1.6WL AZI 240	Yes	Y	1	1.2	10	1.6		
11	1.2DL + 1.6WL AZI 270	Yes	Y	1	1.2	11	1.6		
12	1.2DL + 1.6WL AZI 300	Yes	Y	1	1.2	12	1.6		
13	1.2DL + 1.6WL AZI 330	Yes	Y	1	1.2	13	1.6		
14	0.9DL + 1.6WL AZI 0	Yes	Y	1	0.9	2	1.6		
15	0.9DL + 1.6WL AZI 30	Yes	Y	1	0.9	3	1.6		
16	0.9DL + 1.6WL AZI 60	Yes	Y	1	0.9	4	1.6		
17	0.9DL + 1.6WL AZI 90	Yes	Y	1	0.9	5	1.6		
18	0.9DL + 1.6WL AZI 120	Yes	Y	1	0.9	6	1.6		
19	0.9DL + 1.6WL AZI 150	Yes	Y	1	0.9	7	1.6		
20	0.9DL + 1.6WL AZI 180	Yes	Y	1	0.9	8	1.6		
21	0.9DL + 1.6WL AZI 210	Yes	Y	1	0.9	9	1.6		
22	0.9DL + 1.6WL AZI 240	Yes	Y	1	0.9	10	1.6		
23	0.9DL + 1.6WL AZI 270	Yes	Y	1	0.9	11	1.6		
24	0.9DL + 1.6WL AZI 300	Yes	Y	1	0.9	12	1.6		
25	0.9DL + 1.6WL AZI 330	Yes	Y	1	0.9	13	1.6		
26	1.2D + 1.0Di	Yes	Y	1	1.2	14	1		
27	1.2D + 1.0Di +1.0Wi AZI 0	Yes	Y	1	1.2	14	1	15	1
28	1.2D + 1.0Di +1.0Wi AZI 30	Yes	Y	1	1.2	14	1	16	1
29	1.2D + 1.0Di +1.0Wi AZI 60	Yes	Y	1	1.2	14	1	17	1
30	1.2D + 1.0Di +1.0Wi AZI 90	Yes	Y	1	1.2	14	1	18	1
31	1.2D + 1.0Di +1.0Wi AZI 120	Yes	Y	1	1.2	14	1	19	1
32	1.2D + 1.0Di +1.0Wi AZI 150	Yes	Y	1	1.2	14	1	20	1
33	1.2D + 1.0Di +1.0Wi AZI 180	Yes	Y	1	1.2	14	1	21	1

	Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
34	1.2D + 1.0Di +1.0Wi AZI 210	Yes	Y	1	1.2	14	1	22	1
35	1.2D + 1.0Di +1.0Wi AZI 240	Yes	Y	1	1.2	14	1	23	1
36	1.2D + 1.0Di +1.0Wi AZI 270	Yes	Y	1	1.2	14	1	24	1
37	1.2D + 1.0Di +1.0Wi AZI 300	Yes	Y	1	1.2	14	1	25	1
38	1.2D + 1.0Di +1.0Wi AZI 330	Yes	Y	1	1.2	14	1	26	1
39	(1.2 + 0.2Sds)DL + 1.0E AZI 0	Yes	Y	1	1.235	27	1	28	
40	(1.2 + 0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	1.235	27	0.866	28	0.5
41	(1.2 + 0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	1.235	27	0.5	28	0.866
42	(1.2 + 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	1.235	27		28	1
43	(1.2 + 0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	1.235	27	-0.5	28	0.866
44	(1.2 + 0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	1.235	27	-0.866	28	0.5
45	(1.2 + 0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	1.235	27	-1	28	
46	(1.2 + 0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	1.235	27	-0.866	28	-0.5
47	(1.2 + 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	1.235	27	-0.5	28	-0.866
48	(1.2 + 0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	1.235	27		28	-1
49	(1.2 + 0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	1.235	27	0.5	28	-0.866
50	(1.2 + 0.2Sds)DL + 1.0E AZI 330	Yes	Y	1	1.235	27	0.866	28	-0.5
51	(0.9 - 0.2Sds)DL + 1.0E AZI 0	Yes	Y	1	0.865	27	1	28	
52	(0.9 - 0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	0.865	27	0.866	28	0.5
53	(0.9 - 0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	0.865	27	0.5	28	0.866
54	(0.9 - 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	0.865	27		28	1
55	(0.9 - 0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	0.865	27	-0.5	28	0.866
56	(0.9 - 0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	0.865	27	-0.866	28	0.5
57	(0.9 - 0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	0.865	27	-1	28	
58	(0.9 - 0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	0.865	27	-0.866	28	-0.5
59	(0.9 - 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	0.865	27	-0.5	28	-0.866
60	(0.9 - 0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	0.865	27		28	-1
61	(0.9 - 0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	0.865	27	0.5	28	-0.866
62	(0.9 - 0.2Sds)DL + 1.0E AZI 330	Yes	Y	1	0.865	27	0.866	28	-0.5
63	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 0	Yes	Y	1	1	2	0.082	29	1.5
64	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 30	Yes	Y	1	1	3	0.082	29	1.5
65	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 60	Yes	Y	1	1	4	0.082	29	1.5
66	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 90	Yes	Y	1	1	5	0.082	29	1.5
67	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 120	Yes	Y	1	1	6	0.082	29	1.5
68	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 150	Yes	Y	1	1	7	0.082	29	1.5
69	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 180	Yes	Y	1	1	8	0.082	29	1.5
70	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 210	Yes	Y	1	1	9	0.082	29	1.5
71	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 240	Yes	Y	1	1	10	0.082	29	1.5
72	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 270	Yes	Y	1	1	11	0.082	29	1.5
73	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 300	Yes	Y	1	1	12	0.082	29	1.5
74	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 330	Yes	Y	1	1	13	0.082	29	1.5
75	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	34	1.5	2	0.132
76	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	34	1.5	3	0.132
77	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 60	Yes	Ý	1	1.2	34	1.5	4	0.132
78	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	34	1.5	5	0.132
79	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	34	1.5	6	0.132
80	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	34	1.5	7	0.132
81	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 180	Yes	Ý	1	1.2	34	1.5	8	0.132
82	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZL210	Yes	Y	1	1.2	34	1.5	9	0.132
83	1.2DI + 1.5IM1 + 1.6SWI (30 mph) AZI 240	Yes	Y	1	12	34	1.5	10	0.132
84	1.2DL + 1.5IM1 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	12	34	1.5	11	0.132
85	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZL300	Yes	Y	1	12	34	1.5	12	0.132
86	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	12	34	1.5	13	0.132
87	1.201 + 1.51 M2 + 1.68 W1 (30 mph) AZI 0	Yes	Y	1	12	35	1.5	2	0.132
88	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	12	35	1.5	3	0.132
89	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	12	35	1.5	4	0.132
90	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 00	Yes	Y	1	12	35	1.5	5	0.132
91	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	35	1.5	6	0.132
		100			1.2	00	1.0	0	0.102

	Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
92 1.2DL +	1.5LM2 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	35	1.5	7	0.132
93 1.2DL +	1.5LM2 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	35	1.5	8	0.132
94 1.2DL +	1.5LM2 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	35	1.5	9	0.132
95 1.2DL +	1.5LM2 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	35	1.5	10	0.132
96 1.2DL +	1.5LM2 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	35	1.5	11	0.132
97 1.2DL +	1.5LM2 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	35	1.5	12	0.132
98 1.2DL +	1.5LM2 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	35	1.5	13	0.132
99 1.2DL +	- 1.5LM3 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	36	1.5	2	0.132
100 1.2DL +	1.5LM3 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	36	1.5	3	0.132
101 1.2DL +	1.5LM3 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	36	1.5	4	0.132
102 1.2DL +	1.5LM3 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	36	1.5	5	0.132
103 1.2DL +	1.5LM3 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	36	1.5	6	0.132
104 1.2DL +	1.51 M3 + 1.6 SWL (30 mph) AZI 150	Yes	Y	1	1.2	36	1.5	7	0.132
105 1.2DL +	1.51 M3 + 1.6 SWL (30 mph) AZI 180	Yes	Ý	1	1.2	36	1.5	8	0.132
106 1 2DL +	1.51 M3 + 1.6 SWL (30 mph) AZI 210	Yes	Y	1	12	36	1.5	9	0.132
107 1.2DL +	1.51 M3 + 1.6 SWL (30 mph) AZI 240	Yes	Y	1	1.2	36	1.5	10	0.132
108 1 2DL +	1.51 M3 + 1.6 SWL (30 mph) AZI 270	Yes	Y	1	12	36	1.5	11	0.132
109 1 2DL +	1.51 M3 + 1.6 SWL (30 mph) AZI 300	Yes	Y	1	12	36	1.5	12	0.132
110 1 2DL +	1.51 M3 + 1.6 SWL (30 mph) AZI 330	Yes	Y	1	12	36	1.5	13	0.132
111 1 2DL +	1.51 M4 + 1.68 WL (30 mph) AZI 0	Yes	Y	1	12	37	1.0	2	0.132
112 1 2DL +	1.51 M4 + 1.6 SWL (30 mph) AZI 30	Yes	Y	1	1.2	37	1.5	3	0.132
113 1 2DL +	1.51 M4 + 1.68 W1 (30 mph) AZI 60	Yes	Y	1	12	37	1.5	4	0.132
114 1 2DL +	1.51 M4 + 1.68 WL (30 mph) AZI 90	Yes	Y	1	1.2	37	1.5	5	0.132
115 1 2DL +	1.51 M4 + 1.65 W1 (30 mph) AZI 30	Yes	Y	1	1.2	37	1.5	6	0.132
116 1 2DL +	1.51 M4 + 1.65 WL (30 mph) AZI 150	Yes	Y	1	1.2	37	1.5	7	0.132
117 1 2DL +	1.51 M4 + 1.65 WL (30 mph) AZI 180	Ves	V	1	1.2	37	1.5	8	0.132
118 1 2DL +	1.51 M4 + 1.65WL (30 mph) AZI 210	Ves	V	1	1.2	37	1.5	9	0.132
110 1.2DL +	$1.51 M_{4} + 1.65 W_{1} (30 mph) AZI 210$	Ves		1	1.2	37	1.5	10	0.132
120 1 2DL +	1.51M4 + 1.65WL (30 mph) AZI 240	Ves		1	1.2	37	1.5	11	0.132
120 1.2DL +	1.51 M4 + 1.65 WL (30 mph) AZI 270	Vec	V	1	1.2	37	1.5	12	0.132
121 1.2DL +	1.51 M4 + 1.65WL (30 mph) AZI 330	Ves	V	1	1.2	37	1.5	13	0.132
122 1.2DL +	1.51 M5 + 1.65 WL (30 mph) AZI 0.000	Vec	V	1	1.2	38	1.5	2	0.132
123 1.2DL +	1.51 M5 + 1.68 WL (30 mph) AZI 30	Ves	V	1	1.2	38	1.5	- 2	0.132
124 1.2DL +	1.51M5 + 1.65WL (30 mph) AZI 50	Vee		1	1.2	20	1.5		0.132
120 1.2DL +	1.5LW5 + 1.6SWL (30 mph) AZI 00	Voo	T V	1	1.2	20	1.5	- 4	0.132
120 1.2DL +	$1.5 \pm 1.65 \pm 1.05 \pm 1.05 \pm 1.05 \pm 1.05 \pm 1.05 \pm 1$	Vee	I V	1	1.2	20	1.5	6	0.132
127 1.2DL +	$1.5 \pm 1.65 \pm 1.05 \pm 1$	Vos	T V	1	1.2	30	1.5	7	0.132
120 1.2DL +	$1.5 \pm 1.05 \pm 1.65 \pm 1.05 \pm 1$	Vee	I V	1	1.2	20	1.5	0	0.132
129 1.2DL +	1.5LWS + 1.6SWL (30 mph) AZI 1801.5LM5 + 1.6SWL (30 mph) AZI 210	Vos	T V	1	1.2	30	1.5	0	0.132
130 1.2DL +	$1.5 \pm 1.05 \pm 1.65 \pm 1.05 \pm 1$	Vee	T V	- 1	1.2	20	1.5	9	0.132
131 1.2DL +	1.5LW5 + 1.6SWL (30 mph) AZI 240	Voo	T V	1	1.2	20	1.5	10	0.132
132 1.2DL +	$1.5 \pm 1.05 \pm 1.65 \pm 1.05 \pm 1$	Vee	I V	1	1.2	20	1.5	12	0.132
133 1.2DL +	1.5 LWS + 1.65WL (30 mph) AZI 300	Vee	I V	1	1.2	20	1.5	12	0.132
134 1.2DL +	$1.5 \pm 1.6 $	Vec	I V	1	1.2	30	1.5	13	0.132
135 1.2DL T	1.5LWO + 1.05WL (30 mph) AZI 0	Vee	I V	1	1.2	39	1.5	2	0.132
130 1.2DL +	1.5LW0 + 1.6SWL (30 mph) AZI 30	Yes	ř V	1	1.2	39	1.5	3	0.132
137 1.2DL +	1.5LIVIO + 1.6SVVL (30 mph) AZI 60	Yes	ř	1	1.2	39	1.5	4	0.132
138 1.2DL +	1.5LIVI0 + 1.6SVVL (30 mph) AZI 90	Yes	Y V	1	1.2	39	1.5	5	0.132
139 1.2DL +	1.5LIVIO + 1.05VVL (30 mpn) AZI 120	Yes	Y V	1	1.2	39	1.5	0	0.132
140 1.2DL +	1.5LIVI6 + 1.6SVVL (30 mph) AZI 150	res	Ý V	1	1.2	39	1.5	/	0.132
141 1.2DL +	1.5LIVID + 1.6SVVL (30 mph) AZI 180	Yes	Y	1	1.2	39	1.5	8	0.132
142 1.2DL + 1	1.5 LIVID + 1.0 SVVL (30 mph) AZI 210	Yes	Y	1	1.2	39	1.5	9	0.132
143 1.2DL +	1.5LIVIO + 1.6SVVL (30 mph) AZI 240	Yes	Y	1	1.2	39	1.5	10	0.132
144 1.2DL + 1	1.5 LIVID + 1.0 SVVL (30 mph) AZ12/0	Yes	Y	1	1.2	39	1.5	11	0.132
145 1.2DL +	1.5LIVI6 + 1.6SVVL (30 mph) AZI 300	Yes	Y	1	1.2	39	1.5	12	0.132
146 1.2DL +	1.5LM6 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	39	1.5	13	0.132
14/ 1.2DL +	1.5LM7 + 1.6SVVL (30 mph) AZI 0	Yes	Y	1	1.2	40	1.5	2	0.132
148 1.2DL +	1.5LM7 + 1.6SVVL (30 mph) AZI 30	Yes	Y	1	1.2	40	1.5	3	0.132
149 1.2DL +	1.5LM7 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	40	1.5	4	0.132

Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
150 1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	40	1.5	5	0.132
151 1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	40	1.5	6	0.132
152 1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	40	1.5	7	0.132
153 1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	40	1.5	8	0.132
154 1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	40	1.5	9	0.132
155 1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	40	1.5	10	0.132
156 1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	40	1.5	11	0.132
157 1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	40	1.5	12	0.132
158 1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	40	1.5	13	0.132
159 1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	41	1.5	2	0.132
160 1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	41	1.5	3	0.132
161 1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	41	1.5	4	0.132
162 1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	41	1.5	5	0.132
163 1.2DI + 1.5I M8 + 1.6SWI (30 mph) A7I 120	Yes	Y	1	1.2	41	1.5	6	0.132
164 1 2DL + 1 5LM8 + 1 6SWL (30 mph) AZL 150	Yes	Y	1	12	41	1.5	7	0.132
165 + 1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 180	Yes	Ý	1	1.2	41	1.5	8	0.132
166 + 1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	12	41	1.5	9	0.132
167 + 1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	12	41	1.0	10	0.132
168 + 1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	41	1.5	11	0.132
169 + 1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 300	Ves	V	1	1.2		1.0	12	0.132
170 + 1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	41	1.5	13	0.132
170 + 12DL + 15LMQ + 16SWL (30 mph) AZLO	Ves	V	1	1.2	/2	1.0	2	0.132
172 + 1.201 + 1.51 MQ + 1.65WL (30 mph) AZI 30	Ves		1	1.2	12	1.5	- 2	0.132
172 + 1.2DL + 1.5LW3 + 1.6SWL (30 mph) AZI 50	Ves		1	1.2	42	1.5		0.132
173 1.20L + 1.5LM9 + 1.6SWL (30 mph) AZI 00	Voc	V	1	1.2	42	1.5	5	0.132
174 1.2DL + 1.5LM9 + 1.6SWE (30 mph) AZI 30	Vos		1	1.2	42	1.5	6	0.132
175 $1.2DL + 1.5LW9 + 1.03WL (30 mph) AZI 120$	Vos		1	1.2	42	1.5	7	0.132
170 1.2DL + 1.5LW9 + 1.6SWL (30 mph) AZI 150	Vee		1	1.2	42	1.5	0	0.132
177 1.2DL + 1.5LW9 + 1.6SWL (30 mph) AZI 100	Vos	I V	1	1.2	42	1.5	0	0.132
170 $1.2DL + 1.5LW9 + 1.05WL (30 mph) AZI 210$	Vee		1	1.2	42	1.5	10	0.132
179 1.2DL + 1.5LW9 + 1.6SWL (30 mph) AZI 240	Vos		1	1.2	42	1.5	10	0.132
130 + 1.201 + 1.51 M0 + 1.65 WL (30 mph) AZI 270	Vee		1	1.2	42	1.5	10	0.132
101 1.2DL + 1.5LW9 + 1.05WL (30 mph) AZI 300 192 1.2DL + 1.5LW9 + 1.6SWL (30 mph) AZI 320	Voo	I V	1	1.2	42	1.5	12	0.132
102 + 1.2DL + 1.5LW9 + 1.03WL (30 mph) AZI 350	Vee		1	1.2	42	1.5		0.132
$\frac{103}{120L} + 1.5LW10 + 1.05WL (30 mph) AZI 0$	Vee	ľ V	1	1.2	43	1.5	2	0.132
104 + 1.2DL + 1.5LW10 + 1.6SWL (30 mph) AZI 50	Vee	I V	1	1.2	43	1.5		0.132
$\frac{103}{1.2} + \frac{1.3}{1.2} + $	Vee	ľ V	1	1.2	43	1.5	<u> </u>	0.132
100 1.2DL + 1.5LW10 + 1.6SWL (30 mph) AZI 90	Vec	ľ V	1	1.2	43	1.5	5	0.132
107 1.2DL + 1.5LW10 + 1.6SWL (30 mph) AZI 120	Yes	ř V	1	1.2	43	1.0	- 0 - 7	0.132
100 1.2DL + 1.5LW10 + 1.6SWL (30 mph) AZI 150	Yes	ř V	1	1.2	43	1.5		0.132
189 1.2DL + 1.5LW10 + 1.6SWL (30 mpn) AZI 180	Yes	Ý	1	1.2	43	1.5	8	0.132
190 1.2DL + 1.5LW10 + 1.6SWL (30 mph) AZI 210	Yes	ř V	1	1.2	43	1.5	9	0.132
191 1.2DL + 1.5LM10 + 1.6SWL (30 mpn) AZI 240	res	Ý V	1	1.2	43	1.5	10	0.132
192 1.2DL + 1.5LW10 + 1.6SWL (30 mpn) AZI 270	Yes	Ý V	1	1.2	43	1.5	10	0.132
193 1.2DL + 1.5LW10 + 1.6SWL (30 mph) AZI 300	Yes	ľ V	1	1.2	43	1.5	12	0.132
194 1.2DL + 1.5LW10 + 1.6SWL (30 mpn) AZI 330	Yes	Y	1	1.2	43	1.5	13	0.132
$\frac{195}{1.2DL} + 1.5LWIII + 1.6SWL (30 mpn) AZI 0$	res	Ý V	1	1.2	44	1.5	<u> </u>	0.132
196 1.2DL + 1.5LM11 + 1.6SVVL (30 mpn) AZI 30	Yes	Y	1	1.2	44	1.5	3	0.132
197 1.2DL + 1.5LW11 + 1.6SVVL (30 mpn) AZI 60	res	Y Y	1	1.2	44	1.5	4	0.132
198 1.2DL + 1.5LM11 + 1.6SVVL (30 mph) AZI 90	Yes	Y	1	1.2	44	1.5	5	0.132
199 1.2DL + 1.5LM11 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	44	1.5	6	0.132
200 1.2DL + 1.5LM11 + 1.6SWL (30 mph) AZI 150	Yes	Y Y	1	1.2	44	1.5	1	0.132
201 1.2DL + 1.5LM11 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	44	1.5	8	0.132
202 1.2DL + 1.5LM11 + 1.6SWL (30 mph) AZI 210	Yes	Υ Υ	1	1.2	44	1.5	9	0.132
203 1.2DL + 1.5LM11 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	44	1.5	10	0.132
204 1.2DL + 1.5LM11 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	44	1.5	11	0.132
205 1.2DL + 1.5LM11 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	44	1.5	12	0.132
206 1.2DL + 1.5LM11 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	44	1.5	13	0.132
207 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	45	1.5	2	0.132

Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
208 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	45	1.5	3	0.132
209 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	45	1.5	4	0.132
210 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	45	1.5	5	0.132
211 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	45	1.5	6	0.132
212 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	45	1.5	7	0.132
213 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	45	1.5	8	0.132
214 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	45	1.5	9	0.132
215 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	45	1.5	10	0.132
216 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	45	1.5	11	0.132
217 1 2DL + 1 5L M12 + 1 6SWL (30 mph) AZL 300	Yes	Y	1	12	45	1.5	12	0.132
218 + 1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	12	45	1.5	13	0.132
219 + 1.2DI + 1.5I M13 + 1.6SWI (30 mph) AZI 0	Yes	Y	1	12	46	1.5	2	0.132
$220 \pm 1201 \pm 151 \text{ M13} \pm 16\text{ SWL}$ (30 mph) AZL30	Yes	Y	1	12	46	1.5	3	0.132
221 + 1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	12	46	1.5	4	0.132
222 + 1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	12	46	1.5	5	0.132
223 + 2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	12	46	1.5	6	0.132
224 1 2DL + 1 5LM13 + 1 6SWL (30 mph) AZI 150	Yes	Y	1	12	46	1.5	7	0.132
225 1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 180	Yes	Ý	1	1.2	46	1.5	8	0.132
226 1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 210	Yes	Ý	1	1.2	46	1.5	9	0.132
227 1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 240	Yes	Ý	1	1.2	46	1.5	10	0.132
228 1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 270	Yes	Ý	1	1.2	46	1.5	11	0.132
229 1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 300	Yes	Ý	1	1.2	46	1.5	12	0.132
230 1.2DL + 1.5LM13 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	46	1.5	13	0.132
231 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	47	1.5	2	0.132
232 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	47	1.5	3	0.132
233 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	47	1.5	4	0.132
234 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	47	1.5	5	0.132
235 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	47	1.5	6	0.132
236 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	47	1.5	7	0.132
237 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	47	1.5	8	0.132
238 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	47	1.5	9	0.132
239 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	47	1.5	10	0.132
240 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	47	1.5	11	0.132
241 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	47	1.5	12	0.132
242 1.2DL + 1.5LM14 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	47	1.5	13	0.132
243 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	48	1.5	2	0.132
244 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	48	1.5	3	0.132
245 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	48	1.5	4	0.132
246 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	48	1.5	5	0.132
247 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	48	1.5	6	0.132
248 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	48	1.5	7	0.132
249 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	48	1.5	8	0.132
250 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	48	1.5	9	0.132
251 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	48	1.5	10	0.132
252 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	48	1.5	11	0.132
253 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	48	1.5	12	0.132
254 1.2DL + 1.5LM15 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	48	1.5	13	0.132
255 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	49	1.5	2	0.132
256 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	49	1.5	3	0.132
257 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	49	1.5	4	0.132
258 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	49	1.5	5	0.132
259 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	49	1.5	6	0.132
260 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	49	1.5	7	0.132
261 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	49	1.5	8	0.132
262 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	49	1.5	9	0.132
263 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	49	1.5	10	0.132
264 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	49	1.5	11	0.132
[265] 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	49	1.5	12	0.132

Description	Solve	PDelta	BLC	Factor	BLC	Factor	BLC	Factor
266 1.2DL + 1.5LM16 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	49	1.5	13	0.132
267 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	50	1.5	2	0.132
268 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	50	1.5	3	0.132
269 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	50	1.5	4	0.132
270 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	50	1.5	5	0.132
271 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	50	1.5	6	0.132
272 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	50	1.5	7	0.132
273 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	50	1.5	8	0.132
274 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	50	1.5	9	0.132
275 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	50	1.5	10	0.132
276 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	50	1.5	11	0.132
277 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	50	1.5	12	0.132
278 1.2DL + 1.5LM17 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	50	1.5	13	0.132
279 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	51	1.5	2	0.132
280 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	51	1.5	3	0.132
281 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	51	1.5	4	0.132
282 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	51	1.5	5	0.132
283 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	51	1.5	6	0.132
284 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	51	1.5	7	0.132
285 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	51	1.5	8	0.132
286 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	51	1.5	9	0.132
287 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	51	1.5	10	0.132
288 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	51	1.5	11	0.132
289 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	51	1.5	12	0.132
290 1.2DL + 1.5LM18 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	51	1.5	13	0.132

Envelope Node Reactions

I	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-in]	LC	MY [lb-in]	LC	MZ [lb-in]	LC
1	N1	max	1506.716	14	1683.906	2	1570.698	4	28674.172	108	33672.988	4	27940.483	20
2		min	-1657.392	8	-337.378	20	-1577.453	22	-16814.25	90	-33937.445	10	-74236.356	2
3	N67	max	1645.089	2	1724.695	10	1862.459	6	22150.848	16	39858.715	13	33243.878	12
4		min	-1559.821	20	-303.163	16	-1774.841	24	-67977.013	10	-35306.834	6	-17825.492	16
5	N111	max	1938.225	2	1682.817	6	1325.539	17	63344.986	127	33868.531	8	42662.24	4
6		min	-1871.801	20	-357.468	24	-1606.797	12	-27494.168	24	-34125.793	2	-10701.354	24
7	Totals:	max	5069.721	2	4253.117	35	4442.911	17						
8		min	-5069.71	20	1685.887	52	-4660.453	24						

Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks

	Member	Shape	Code Check	<loc[in]< th=""><th>LC</th><th>Shear Check</th><th>Loc[in]</th><th>Dir</th><th>LC</th><th>phi*Pnc [lb]</th><th>phi*Pnt [lb]</th><th>phi*Mn y-y [lb-in]</th><th>phi*Mn z-z [lb-in]</th><th>Cb</th><th>Eqn</th></loc[in]<>	LC	Shear Check	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-in]	phi*Mn z-z [lb-in]	Cb	Eqn
1	M1	HSS4X4X4	0.437	0	4	0.217	0	у	109	133649.326	139518	194166	194166	1.684	H1-1b
2	M2	PIPE_3.0	0.116	8	4	0.193	8		10	60482.561	65205	68985	68985	1	H1-1b
3	M3	PIPE_2.5	0.248	8	4	0.257	8		10	30038.461	50715	43155	43155	1.666	H3-6
4	M4	PIPE_2.0	0.386	30	12	0.242	30		10	14916.096	32130	22459.5	22459.5	2.522	H1-1b
5	M5	HSS4.5X4.5X3	0.081	20	2	0.201	8.958	у	109	120246.398	121302	194994	194994	1.492	H1-1b
6	M6	L4X4X4	0.445	24.375	89	0.131	0	Ζ	10	54411.715	62532	37651.159	80578.632	1.5	H2-1
7	M7	L4X4X4	0.634	0	110	0.152	0	Ζ	109	54411.715	62532	37651.159	80578.632	1.5	H2-1
8	M8	L4X4X4	0.331	36.125	9	0.062	36.125	Ζ	109	51466.784	62532	37651.159	82764.473	1.5	H2-1
9	M9	L4X4X4	0.359	0	35	0.047	0	Ζ	35	51466.784	62532	37651.159	80578.632	1.5	H2-1
10	M10	6"x0.375" Plate	0.396	2.036	8	0.33	2.036	У	81	62591.251	72900	6836.4	109350	2.237	H1-1b
11	M11	6"x0.375" Plate	0.425	2.036	6	0.291	2.036	у	117	62591.251	72900	6836.4	109350	2.218	H1-1b
12	M12	6"x0.375" Plate	0.688	2.036	13	0.757	2.036	У	110	62591.251	72900	6836.4	109350	2.666	H1-1b
13	M13	6"x0.375" Plate	0.707	2.036	2	0.551	2.036	у	87	62591.251	72900	6836.4	109350	2.453	H1-1b
14	M14	L3X3X3	0.384	27.5	8	0.049	0	У	12	21109.581	35316	15841.16	29019.456	1.016	H2-1
15	M15	6"x0.375" Plate	0.647	1.557	2	0.026	5.75	Ζ	8	62591.251	72900	6836.4	109350	1.773	H1-1b
16	M16	6"x0.375" Plate	0.648	1.557	2	0.024	5.75	Ζ	2	62591.251	72900	6836.4	109350	2.952	H1-1b
17	M23	6"x0.375" Plate	0.179	0	8	0.141	0	у	118	71087.487	72900	6836.4	109350	1.351	H1-1b
18	M24	6"x0.375" Plate	0.356	0	2	0.398	0	y	110	71087.487	72900	6836.4	109350	1.354	H1-1b

Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks (Continued)

	Membei	Shape	Code Chec	kLoc[in] LC S	Shear Check	k Loc[in]	Dir	LC	phi*Pnc [lb]	ohi*Pnt [lb]	phi*Mn y-y [lb-in]	phi*Mn z-z [lb-in]	Cb Eqn
19	M27	6"x0.375" Plate	0.163	0 2	0.018	0	Ζ	2	71087.487	72900	6836.4	109350	1.334H1-1b
20	M29	6"x0.375" Plate	0.18	0 8	0.156	0	y	81	71087.487	72900	6836.4	109350	1.35 H1-1b
21	M30	6"x0.375" Plate	0.349	0 2	0.284	0	V	87	71087.487	72900	6836.4	109350	1.352H1-1b
22	M33	6"x0.375" Plate	0.163	0 2	0.018	0	Z	2	71087.487	72900	6836.4	109350	1.363H1-1b
23	M35	PIPE 2.0	0.58	30 4	0.245	38		11	14916.096	32130	22459.5	22459.5	3 H1-1b
24	M38	PIPE 2.0	0.546	30 10	0.263	30		4	14916.096	32130	22459.5	22459.5	3 H1-1b
25	M41	HSS4X4X4	0.452	0 12	0.167	12.017	Z	7	133649.326	139518	194166	194166	1.696H1-1b
26	M42	HSS4.5X4.5X3	0.081	20 10	0.154	8.958	٧	33	120246.398	121302	194994	194994	1.492H1-1b
27	M43	L4X4X4	0.344	24.375 6	0.13	0	Z	6	54411.715	62532	37651.159	80578.632	1.425 H2-1
28	M44	L4X4X4	0.523	0 8	0.135	0	Z	8	54411.715	62532	37651.159	80578.632	1.45 H2-1
29	M45	L4X4X4	0.331	36.125 6	0.049	36.125	٧	6	51466.784	62532	37651.159	82764.473	1.5 H2-1
30	M46	L4X4X4	0.358	0 31	0.047	0	Z	31	51466.784	62532	37651.159	80578.632	1.5 H2-1
31	M47	6"x0.375" Plate	0.397	2.036 4	0.323	2.036	٧	29	62591.251	72900	6836.4	109350	2.238H1-1b
32	M48	6"x0.375" Plate	0.428	2.036 2	0.291	2.036	V	77	62591.251	72900	6836.4	109350	2.218H1-1b
33	M49	6"x0.375" Plate	0.671	2.036 10	0.701	2.036	v	10	62591.251	72900	6836.4	109350	2.595H1-1b
34	M50	6"x0.375" Plate	0.7	2.036 10	0.507	5.75	v	4	62591.251	72900	6836.4	109350	2.452H1-1b
35	M51	L3X3X3	0.384	27.5 4	0.05	0	Z	7	21109.581	35316	15841.16	29019.542	1.016 H2-1
36	M52	6"x0.375" Plate	0.646	1.557 10	0.026	5.75	Z	4	62591.251	72900	6836.4	109350	1.772H1-1b
37	M53	6"x0.375" Plate	0.647	1.557 10	0.024	5.75	Z	10	62591.251	72900	6836.4	109350	2.95 H1-1b
38	M58	6"x0.375" Plate	0.179	0 4	0.142	0	v	77	71087.487	72900	6836.4	109350	1.351H1-1b
39	M59	6"x0.375" Plate	0.357	0 10	0.365	0	V	10	71087.487	72900	6836.4	109350	1.354H1-1b
40	M62	6"x0.375" Plate	0.163	0 10	0.018	0	7	10	71087.487	72900	6836.4	109350	1.334H1-1b
41	M64	6"x0.375" Plate	0.181	0 4	0.148	0	v	29	71087,487	72900	6836.4	109350	1.35 H1-1b
42	M65	6"x0.375" Plate	0.345	0 10	0.264	1,125	y V	4	71087.487	72900	6836.4	109350	1.352H1-1b
43	M68	6"x0.375" Plate	0 163	0 10	0.018	0	7	10	71087 487	72900	6836.4	109350	1.363H1-1b
44	M70	HSS4X4X4	0.438	0 8	0.167	0	7	3	133649.326	139518	194166	194166	1.684H1-1b
45	M71	HSS4.5X4.5X3	0.082	20 6	0 155	8 958	7	3	120246 398	121302	194994	194994	1.492H1-1b
46	M72	1 4X4X4	0.445	24.375129	0.133	0.000	7	13	54411 715	62532	37651 159	80578 632	1.5 H2-1
47	M73	1 4X4X4	0.522	0 4	0.135	0	7	4	54411,715	62532	37651,159	80578.632	1.451 H2-1
48	M74	14X4X4	0.36	36 125 13	0.049	36 125	v	2	51466 784	62532	37651 159	82764 473	1.5 H2-1
49	M75	1 4X4X4	0.359	0 27	0.047	0	7	27	51466,784	62532	37651,159	80578.632	1.5 H2-1
50	M76	6"x0.375" Plate	0.432	2.036 13	0.33	2.036	V	121	62591.251	72900	6836.4	109350	2.172H1-1b
51	M77	6"x0.375" Plate	0.432	2.036 10	0.241	2.036	v	133	62591.251	72900	6836.4	109350	2.22 H1-1b
52	M78	6"x0.375" Plate	0.664	2.036 6	0.702	2.036	v	6	62591,251	72900	6836.4	109350	2.593H1-1b
53	M79	6"x0.375" Plate	0.709	2.036 6	0.551	2.036	v	127	62591,251	72900	6836.4	109350	2.453H1-1b
54	M80	1 3X3X3	0.39	27.5 12	0.05	0	7	3	21109.581	35316	15841.16	29017.45	1.016 H2-1
55	M81	6"x0.375" Plate	0.647	1.557 6	0.026	5.75	Z	12	62591.251	72900	6836.4	109350	1.775H1-1b
56	M82	6"x0.375" Plate	0.647	1.557 6	0.024	5.75	7	6	62591.251	72900	6836.4	109350	2.961H1-1b
57	M87	6"x0.375" Plate	0.18	0 12	0.113	0	V	134	71087.487	72900	6836.4	109350	1.351H1-1b
58	M88	6"x0.375" Plate	0.353	0 6	0.365	0	v	6	71087.487	72900	6836.4	109350	1.354H1-1b
59	M91	6"x0.375" Plate	0.163	0 6	0.018	0	Z	6	71087.487	72900	6836.4	109350	1.334 H1-1b
60	M93	6"x0.375" Plate	0.18	0 12	0.156	0	V	121	71087.487	72900	6836.4	109350	1.35 H1-1b
61	M94	6"x0.375" Plate	0.35	0 6	0.288	1.125	v	13	71087.487	72900	6836.4	109350	1.352H1-1b
62	M97	6"x0.375" Plate	0.163	0 6	0.018	0	Z	6	71087.487	72900	6836.4	109350	1.362H1-1b
63	M104	PIPE 2.0	0.047	18 13	0.005	38	_	13	26521.424	32130	22459.5	22459.5	1.981H1-1b
64	M105	PIPE 3.0	0.125	8 13	0.205	88		13	60482.561	65205	68985	68985	1 H1-1b
65	M106	PIPE 2.5	0.264	8 13	0.262	8		13	30038.461	50715	43155	43155	1.684 H3-6
66	M107	PIPE 2.0	0.422	30 13	0.256	30		13	14916.096	32130	22459.5	22459.5	3 H1-1b
67	M110	PIPE 2.0	0.625	30 13	0.269	38		13	14916.096	32130	22459.5	22459.5	1.817H1-1b
68	M113	PIPE 2.0	0.597	30 13	0.266	30		13	14916.096	32130	22459.5	22459.5	3 H1-1b
69	M116	PIPE 3.0	0.116	8 8	0.193	8		2	60482.561	65205	68985	68985	1 H1-1b
70	M117	PIPE 2.5	0.248	8 8	0.257	8		2	30038.461	50715	43155	43155	1.666 H3-6
71	M118	PIPE 2.0	0.377	30 4	0.242	30		2	14916.096	32130	22459.5	22459.5	3 H1-1b
72	M121	PIPE 2.0	0.58	30 8	0.252	38		3	14916.096	32130	22459.5	22459.5	3 H1-1b
73	M124	PIPE 2.0	0.547	30 2	0.263	30		8	14916.096	32130	22459.5	22459.5	1.477H1-1b

INFINIG

INFINIGY8

FROM ZERO TO INFINIGY the solutions are endless

BOLT CONNECTION CALCULATION

BOLT PROPERTIES

Date:	8/4/2021
Site:	BOBDL00113A
Engineer:	DVA
Project No:	2039-Z5555C
Connection Location:	Arm to Collar

TIA-222-G	
Steel	
5/8	in
11	
A325	
120	ksi
Ν	
1	
0.226	in ²
0.307	in ²
20340	lbs
12425	lbs
	TIA-222-G Steel 5/8 11 A325 120 N 1 0.226 0.307 20340 12425

INFINIGY8

FROM ZERO TO INFINIGY

the solutions are endless

BOLT CONNECTION CALCULATION

BOLT GROUP CHECK

Date:	8/4/2021
Contractor:	Infinigy Engineering, PLLC
Site:	BOBDL00113A
Engineer:	DVA
Project No:	2039-Z5555C
Connection Location:	Arm to Collar

Loads Properties									
Controlling LC:	4								
Load Point Number:	N1								
X-Coordinate (in.)	4.00								
Y-Coordinate (in.)	4.00								
Z-Coordinate (in.)	0.00								
Shear Load, Px (lbs)	1571.000	0	0	0	0				
Shear Load, Py (lbs)	-1220.000	0	0	0	0				
Axial Load, Pz (lbs)	995.000	0	0	0	0				
Moment, Mx (Ib-in)	-50428.000	0	0	0	0				
Moment, My (Ib-in)	-33673.000	0	0	0	0				
Moment, Mz (lb-in)	8630.000	0	0	0	0				

Member Properties						
	Х	Y				
Start Coordinates:	0.0	0.0				
Dimentions:	8.0	8.0				

4

Number of Bolts

	Bolt	Group Pa	attern	
8.0				
7.0			•	
6.0				
5.0				
4.0		Ж		
3.0				
2.0				
1.0				
0.0				
0.0	2.0	4.0	6.0	8.0

<u></u>		Bolt Coordinates		Во	It Loads	Steel Bolt Usage			
No.	Bolt Type	Xo (in)	Yo (in)	Axial (lbs)	Shear (lbs)	Tension	Shear	Combined	Max. Capacity
1	Main Type	1.00	1.00	1645.00	63.87	8.1%	0.5%	8.1%	8.1%
2	Main Type	7.00	1.00	7257.17	665.41	35.7%	5.4%	35.7%	35.7%
3	Main Type	1.00	7.0	-6759.67	754.31	0.0%	6.1%	6.1%	6.1%
4	Main Type	7.00	7.0	-1147.50	1003.83	0.0%	8.1%	8.1%	8.1%

	Bolt Group Properties:									
Xc =	4.00	in.								
Yc =	4.00	in.								
lc.y =	11.04	in.^2								
lc.x =	11.04	in.^2								
lc.xy =	22.09	in.^2								

Loads at Center of Gravity of Bolt Group:

Pz =	995.00	lbs
Px =	1571.00	lbs
Py =	-1220.00	lbs
Mx =	-50428.00	lb-in
My =	-33673.00	lb-in
Mz =	8630.00	lb-in

Total Capacity of Bolt Group:

35.7%

U-bolt Connection

No

Exhibit F

Power Density/RF Emissions Report

Radio Frequency Emissions Analysis Report

Site ID: BOBDL00113A

OCT - BOSTON POST RD 1363 Boston Post Road Old Saybrook, CT 06475

October 11, 2021

Fox Hill Telecom Project Number: 210617

Site Compliance Summary			
Compliance Status:	COMPLIANT		
Site total MPE% of FCC general population allowable limit:	25.61 %		

October 11, 2021

Dish Wireless 5701 South Santa Fe Drive Littleton, CO 80120

Emissions Analysis for Site: BOBDL00113A - OCT - BOSTON POST RD

Fox Hill Telecom, Inc ("Fox Hill") was directed to analyze the proposed radio installation for Dish Wireless, LLC (Dish) facility located at **1363 Boston Post Road, Old Saybrook, CT**, for the purpose of determining whether the emissions from the Proposed Dish radio and antenna installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz & 700 MHz bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed radio system installation for **Dish** on the subject site located at **1363 Boston Post Road**, **Old Saybrook**, **CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since **Dish** is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
5G	600 MHz	4	61.5
5G	1900 MHz (PCS)	4	40
5G	2100 MHz (AWS)	4	40

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	JMA MX08FRO665-21	75
В	1	JMA MX08FRO665-21	75
С	1	JMA MX08FRO665-21	75

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed **Dish** configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total TX		
Antenna	Antenna Make /		Antenna Gain	Channel	Power		
ID	Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
		600 MHz /					
Antenna	JMA	1900 MHz (PCS) /	11.45 / 16.15 /				
A1	MX08FRO665-21	2100 MHz (AWS)	16.65	12	566	17,426.72	17.05
	Sector A Composite MPE%					17.05	
		600 MHz /					
Antenna	JMA	1900 MHz (PCS) /	11.45 / 16.15 /				
B1	MX08FRO665-21	2100 MHz (AWS)	16.65	12	566	17,426.72	17.05
				Se	ector B Com	posite MPE%	17.05
		600 MHz /					
Antenna	JMA	1900 MHz (PCS) /	11.45 / 16.15 /				
C1	MX08FRO665-21	2100 MHz (AWS)	16.65	12	566	17,426.72	17.05
Sector C Composite MPE%							17.05

Table 3: Dish Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum **Dish** MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 5* below shows a summary for each **Dish** Sector as well as the composite MPE value for the site.

Site Composite MPE%			
Carrier	MPE%		
Dish – Max Per Sector Value	17.05 %		
AT&T	6.70 %		
Verizon Wireless	1.86 %		
Site Total MPE %:	25.61 %		

Table 4: All Carrier MPE Contributions

Dish Sector A Total:	17.05 %
Dish Sector B Total:	17.05 %
Dish Sector C Total:	17.05 %
Site Total:	25.61 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated **Dish** sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

Dish _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
Dish 600 MHz 5G	4	858.77	75	25.94	600 MHz	400	6.48%
Dish 1900 MHz (PCS) 5G	4	1,648.39	75	49.79	1900 MHz (PCS)	1000	4.98%
Dish 2100 MHz (AWS) 5G	4	1,849.52	75	55.86	2100 MHz (AWS)	1000	5.59%
						Total:	17.05%

Table 6: Dish Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Sector	Power Density Value (%)
Sector A:	17.05 %
Sector B:	17.05 %
Sector C:	17.05 %
Dish Maximum Total (per sector):	17.05 %
Site Total:	25.61 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **25.61** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

let M

Scott Heffernan Principal RF Engineer Fox Hill Telecom, Inc Holden, MA 01520 (978)660-3998

Exhibit G

Letter of Authorization

SRR Towers, LLC - Letter of Authorization

CT - CONNECTICUT SITING COUNCIL Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Tower Share Application SRR Towers, LLC - telecommunications site at: 1363 BOSTON POST RD, OLD SAYBROOK, CT 06475

SRR Towers, LLC, a Delaware Limited Liability Company ("SRR") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

SRR ID/Name: CT-1263 Old Saybrook, Boston Post Road
Customer Site ID: BOBDL00113A/OCT - BOSTON POST RD
Site Address: 1363 BOSTON POST RD, OLD SAYBROOK, CT 06475

SRR Towers, LLC

By: Actor Date:		9//2021
Name: James M. BURGERS Title: VICE PESSIONT - REAL	ESMATE	

Exhibit H

Recipient Mailings

BOBDL00113A

	NITED OSTAL	STAT SERV	<u>es</u> . Ice.
	UNIONVILL 24 MILL S	E T	
UNIONVI	(LLE, CT 06 (800)275-8	085-9998 777	
10/21/2021			04:09 PM
Product	Qty	Unit Price	Price
Prepaid Mail North Readin Weight: 0 H Acceptance I Thu 10/2 Tracking #: 9405 503	1 ng, MA 0186 5 2.00 oz Date: 21/2021 36 9930 003	4 19 7091 40	\$0.00
Prepaid Mail Chagrin Fal Weight: O 1 Acceptance Thu 10/ Tracking #: 9405 50	1 1s, 0H 4402 b 9.70 oz Date: 21/2021 36 9930 003	2 89 7091 26	\$0.00
Prepaid Mail Old Saybroo Weight: O l Acceptance Thu 10/ Tracking #: 9405 50	1 k, CT 06475 b 9.80 oz Date: 21/2021 36 9930 003	5 39 7090 89	\$0.00
Prepaid Mail Old Saybroo Weight: O l Acceptance Thu 10/ Tracking #: 9405 50	1 k, CT 06475 b 9.80 oz Date: 21/2021 36 9930 003	5 39 7091 0:	\$0.00 2
Grand Total:			\$0,00

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING # : 9405 5036 9930 0039 7091 26					
Trans, #: Print Date: Ship Date: Expected Delivery Dat	546529351 10/21/2021 10/21/2021 te: 10/25/2021	Priority Mail® Postage: Total:	\$8.70 \$8.70		
From: D N 42 S S	EBORAH CHASE ORTHEAST SITE \$ 20 MAIN ST TE 1 TURBRIDGE MA 0	SOLUTIONS 1566-1359			
To: 0 5 C	CTAGON TOWER: 7 E WASHINGTON HAGRIN FALLS OI	S, LLC S⊤ H 44022-3044			
* Retail Pricing on Priority Mail unused postag	Priority Mail rates app I service with use of thi e paid labels can be re	ly. There is no fee for USPS T s electronic rate shipping label squested online 30 days from th	racking® service . Refunds for ne print date.		

UNITED STATES FOSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

	USPS TRACKING # : 9405 5036 9930 0039 7091 40					
Trans, #: Print Date Ship Date Expected Delivery	546529351 a: 10/21/2021 a: 10/21/2021 Date: 10/22/2021	Priority Mail® Postage: Total:	\$8.70 \$8.70			
From:	DEBORAH CHASE NORTHEAST SITE S 420 MAIN ST STE 1 STURBRIDGE MA 0 ⁻	SOLUTIONS 1566-1359				
То:	BLUE SKY TOWER 1 352 PARK ST STE 106 NORTH READING M	MANAGEMENT IA 01864-2157				
* Retail Pric on Priority I unused pos	ing Priority Mail rates appl Mail service with use of this tage paid labels can be re	y. There is no fee for USPS To s electronic rate shipping label, quested online 30 days from th	racking® service Refunds for te print date.			

Thank you for shipping with the United States Postal Service!

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

BOBDLOOUZA

Click-N-Ship® Label Record

	USPS TRACKING # : 9405 5036 9930 0039 7090 89			
	Trans. #: Print Dat Ship Dat Expected Delivery	546529351 e: 10/21/2021 e: 10/21/2021 d Date: 10/25/2021	Priority Mail® Postage: Total:	\$8.70 \$8.70
From: DEBORAH CHASE NORTHEAST SITE SOLUTIONS 420 MAIN ST STE 1 STURBRIDGE MA 01566-1359 To: CARL P FORTUNA, JR. TOWN OF OLD SAYBROOK 302 MAIN ST OLD SAYBROOK CT 06475-2384				
	* Retail Pricing Priority Mall rates apply. There is no fee for USPS Tracking® servi on Priority Mail service with use of this electronic rate shipping label. Refunds for upused notices paid labels can be requested online 30 days from the priori date			

UNITED STATES POSTAL SERVICE Thank you for shipping with the United States Postal Service! Check the status of your shipment on the USPS Tracking® page at usps.com

10/21/2,

Cut on dotted line.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- Mail your package on the "Ship Date" you selected when creating this label.

