Centek Engineering, Inc.

3-2 North Branford Road Branford, Connecticut 06405
Phone: (203) 488-0580
Fax: (203) 488-8587
Steven L. Levine
Real Estate Consultant

HAND DELIVERED

January 6, 2014

Attorney Melanie Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, Connecticut 06051

Re: New Cingular Wireless PCS, LLC notice of intent to modify an existing telecommunications facility located at 1363 Boston Post Road, Old Saybrook (owner, AT\&T)

CT-CING-106-131114
AMENDED Notice of Exempt Modification
Dear Ms. Bachman:
On November 14, 2013 New Cingular Wireless PCS, LLC ("AT\&T") submitted a Notice of Exempt Modification for the referenced telecommunications facility. Very shortly thereafter, AT\&T revised its design for the modification, and the Siting Council kindly agreed to delay its decision pending submission of the revised plan and structural analysis, without payment of a second filing fee. (See attached email exchange.) This Amended Notice of Exempt Modification is intended to replace the original filing in its entirety.

In order to accommodate technological changes, implement Uniform Mobile
Telecommunications System ("UMTS") and/or Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, AT\&T plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the chief elected official of the municipality in which the affected cell site is located.

UMTS technology offers services to mobile computer and phone users anywhere in the world. Based on the Global System for Mobile ("GSM") communication standard, UMTS is the planned worldwide standard for mobile users. UMTS, fully implemented, gives computer and phone users high-speed access to the Internet as they travel. They have the same capabilities
even when they roam, through both terrestrial wireless and satellite transmissions.
LTE is a high-performance air interface for cellular mobile communications. It is designed to increase the capacity and speed of mobile telephone networks.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in AT\&T's operations at the site. Also included is documentation of the structural sufficiency of the tower to accommodate the revised antenna configuration.

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes ("C.G.S.") Section 16-50i(d) because the general physical characteristics of the facility will not be significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

1. The height of the overall structure will be unaffected.
2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound other than some enlarged equipment pads as may be noted in the attachments.
3. The proposed changes will not increase the noise level at the existing facility by six decibels or more.
4. Radio frequency power density may increase due to use of one or more GSM channel for UMTS transmissions. Moreover, LTE will utilize additional radio frequencies newlylicensed by the FCC for cellular mobile communications. However, the changes will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons, AT\&T respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A. Section 16-50j-72(b)(2).

Please feel free to call me at (860) 830-0380 with questions concerning this matter. Thank you for your consideration.

Sincerely,

Steven L. Levine
Real Estate Consultant
cc: Carl P. Fortuna, $1^{\text {st }}$ Selectman, Town of Old Saybrook
Attachments

NEW CINGULAR WIRELESS PCS, LLC
 Equipment Modification

1363 Boston Post Road, Old Saybrook, CT
Site Number 1284
Prior Decisions: Docket 411

Tower Owner/Manager: AT\&T

Equipment configuration: Monopole

Current and/or approved: Three T-arm mounts @ 97 ft
Nine KMW AM-X-CD-16-65-00T-RET antennas @ $97 \mathrm{ft} \mathrm{c.l}$.
Six CCI TMA's @ 97 ft
Twelve lines $15 / 8$ inch coax
Equipment shelter
Proposed modifications: Remove all T-arms, antennas, and TMA's from 97 ft level. Remove six lines $15 / 8$ inch coax.
Install one Commscope MTC3607 antenna platform @ 97 ft level. Re-install three KMW AM-X-CD-16-65-00T-RET antennas (a) 97 ftc .l.

Install nine CCI HPA-65R-BUU-H6 antennas @ 97 ft c.1. Install three TMA's @ 97 ft .
Install 18 remote radio heads and six associated A2 modules @ 95 ft .
Install one collar mount @ 95 ft level.
Install three Raycap DC6-48-60-18-8F surge arrestors @ 95 ft .
Install one fiber cable and six DC control cables.

Power Density:

Calculations for AT\&T's current operations at the site indicate a radio frequency electromagnetic radiation power density, measured at the tower base, of approximately 12.6% of the standard adopted by the FCC. As depicted in the second table below, the total radio frequency electromagnetic radiation power density for AT\&T's planned operations would be approximately 16.3% of the standard.

Existing

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Standard Limits ($\mathrm{mW} / \mathrm{cm}^{2}$)	Percent of Limit
Other Users *	4athestem	St	20	Timat	24,	*	0.00
AT\&T GSM*	97	880-894	3	296	0.0339	0.5867	5.78
AT\&TGSM*	97	1900 Band	1	427	0.0163	1.0000	1.63
AT\&T UMTS *	97	880-894	1	500	0.0191	0.5867	3.26
AT\&T UMTS *	97	1900 Band	1	500	0.0191	1.0000	1.91
Total		citattu	Hix	\%	W0.	,	4.126\%\%

[^0]
Proposed

Company	Centerline Ht (feet)	Frequency (MHz)	Number of Channels	Power Per Channel (Watts)	Power Density $\left(\mathbf{m W} / \mathrm{cm}^{2}\right)$	Standard Limits ($\mathrm{mW} / \mathrm{cm}^{2}$)	Percent of Limit
Other Users *	-	-	2rymer	-3xas	- x^{2}	3 5ex	0.00
AT\&TLTE	97	700 Band	1	500	0.0191	0.4667	4.09
AT\&TLTE	97	1900 Band	1	500	0.0191	1.0000	1.91
AT\&TLTE	97	2300 Band	1	500	0.0191	1.0000	1.91
AT\&TUMTS	97	880-894	2	500	0.0382	0.5867	6.51
AT\&TUMTS	97	1900 Band	1	500	0.0191	1.0000	1.91
9. Stotal		\%rark	5mamix	\%em	Laxmer	WWeme	16,3\%

* Per CSC records

Structural information:

The attached structural analysis (GPD Group, 12/11/13) demonstrates that the tower and foundation are adequate to accommodate the proposed equipment modifications.

27 Northwestern Drive
Salem, NH 03079
(603) 560-7049

GPD\# 2013723.13.105130.02
December 11, 2013

STRUCTURAL ANAIYSIS REPORT

AT\&T DESIGNATION:

ANALYSIS CRITERIA:

SITE DATA:

Site USID:	105130
Site FA:	10133875
Client \#:	CT1284
Site Name:	OLD SAYBROOK BOSTON POST RD
AT\&T Project:	MOD: LTE Add $9 / 16 / 2013$

Codes:

TIA/EIA-222-F, ASCE 7-05 \& 2005 CTBC
85-mph (fastest-mile) with $0^{\prime \prime}$ ice
38-mph (fastest-mile) with $0.75^{\prime \prime}$ ice
1363 Boston Post Road, Old Saybrook, CT 06475, Middlesex County Latitude $41^{\circ} 17^{\prime} 23.201^{\prime \prime} \mathrm{N}$, Longitude $72^{\circ} 24{ }^{\circ} 21.398^{\prime \prime} \mathrm{W}$
Market: New England
99' Sabre Monopole

GPD is pleased to submit this Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	54.2%	Pass
Foundation Ratio with Proposed Equipment:	45.3%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and SAI Communications. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

John N. Kabak, P.E.
Connecticut \#: 28336

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT\&T Mobility to SAI Communications. This report was commissioned by Mr. Edward Onessimo of SAl Communications.

The proposed coax shall be installed internal to the monopole for the analysis results to be valid.
TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Monopole	54.2%	Pass
Anchor Rods	45.1%	Pass
Base Plate	52.2%	Pass
Foundation	45.3%	Pass

ANALYSIS METHOD

tnxTower (Version 6.1.3.1), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

4. ${ }^{\text {a }}$ Document	Remarks	Source
Equipment Modification Form	AT\&T Internal Loading Document, dated 12/11/2013	Siterra
Construction Drawings	ProTerra Job \#: 11-023, dated 10/15/2013	SAI
Tower Design	Sabre Job \#: 49722, dated 9/22/2011	Siterra
Foundation Design	Sabre Job \#: 49722, dated 9/22/2011	Siterra
Geotechnical Report	Dr. Clarence Welti, P.E., P.C., dated 6/1/2011	Siterra

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
9. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
10. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
11. All existing loading was obtained from site photos, the provided EMF and CDs and is assumed to be accurate.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD Group should be allowed to review any new information to determine its effect on the structural integrity of the tower.

Tower Analysis Summary Form

\section*{| The information contained in this summary report is not to be used |
| :---: |
| independently from the PE stamped tower analysis. |
 }

DESIGNED APPURTENANGE LOADING

TYPE	ELEVAMON	TYPE	ELEVATION
MTC3607 Platform w/Rails	97	(2) RRUS 12	97
AM-X-CD-16-65-001-RET w/ Mount Pipe	97	RRUS E2	97
		PRUS E2	97
AM-X-CD-16-65-00T-RET w/ Mount Pipe	97	RPUSE2	97
		RRUS 32	97
AM-X-CD-16-65-00T-RET w/ Mount Pipe	97	RRUS 32	97
(3) HPA-65R-BUU-H6 w/ Mount Pipe		RHUS 32	97
(3) HPA-65R-BUU-46 wi Mount Pipe	97	(2) SPC $16+286-1$ (A2 Module)	97
(3) HRA=65R-BUU-H6w/ Moun Pipe	97	(2) MRC 161 286-1 (A2 Module)	97
DIMABP7619VG12A	97	(2) KRG 612861 (A2 Module)	97
OTMABP7819VG12A	97	Collar Mount.	95
BTMABP7819VGI2A	97	DC6-48-60-18-8F Surge Suppression Unit	95
(2) RRUS 11	97	DE6-48-60-18-8F Surge Suppression	95
(2) RRUS 11	97		
(2) RRUS 11	97	OC6-48-60-18-8F Surge Suppression	95
(2) RRUS 12	97		-
(2) RAUS 12	97		

MATERIAL STBENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572:65	65 ksi	80 ksi			

TOWER DESIGNNOTES

1. Tower is located in Midelesex County Conheoticut
2. Tower designed for a 85 mph basic wind in aceonance with the IA/SIA-222-F Standard
3. Tower is also designed for a 38 mph basie wifiel with 0,75 inice lee s constderedto
increase in thickness with height:
4. Deflections are based upen a 50 mph wind
5. TOWER RATING: 54.2%

TORQUE $62 \mathrm{lb}-\mathrm{ft}$
38 mph WIND - 0.7500 in ICE
AXIAL
15412 lb
SHEAR
15003 lb

MOMENT
1145266 lb-f
TORQUE $57 \mathrm{lb-ft}$
REACTIONS - 85 mph WIND

GPD GROUP
520 S, Main St., Suite 2531
Akron, OH 44311
Phome: (614) 210-0751
FAX: (614) 210-0752

CF1284 (105130) OLO SAYBROOK BOSTONPOST RE Project 201372313105130 .02		
Cilient SA	Drawneby kidavis	Appid
Code: TIA/EIA-222-F	Bale $12 / 11 / 13$	Sciale NTS
:		

From: "Bachman, Melanie" Melanie.Bachman@ct.gov
To: 'Steve Levine' sllevine@snet.net
Cc: "Martin, David C." David.C.Martin@ct.gov; Carl Aquilina Carl.Aquilina@SAI-Comm.com; Carlo F. Centore cfcentore@centekeng.com; "Mulcahy, Carriann" Carriann.Mulcahy@ct.gov; "Fontaine, Lisa" Lisa.Fontaine@ct.gov
Sent: Wednesday, November 20, 2013 1:33 PM
Subject: RE: CT-CING-106-131114
Good afternoon, Steve.

Thank you for the information. We will place the exempt modification request on hold pending receipt of the updated information and apply the fee already paid to the resubmission. Please indicate in the cover letter for the updated information the above-referenced control number and a brief statement describing the resubmission.

Thanks.

Melanie A. Bachman
Staff Attorney/Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
860-827-2951

CONFIDENTIAL INFORMATION:

From: Steve Levine [mailto:sllevine@snet.net]
Sent: Wednesday, November 20, 2013 1:26 PM
To: Bachman, Melanie
Cc: Martin, David C.; Carl Aquilina; Carlo F. Centore
Subject: CT-CING-106-131114
Dear Ms. Bachman,
AT\&T is revising its proposed LTE upgrade design for 1363 Boston Post Road, Old Saybrook. We submitted an exempt mod Notice and fee for the upgrade on 11/14 using the original design. Dave Martin informs me that the EM has not yet gone out to Council members on a weekend summary.

We respectfully request that the Notice be placed on hold pending receipt of an updated equipment inventory, drawings, and structural analysis. We also respectfully request
that the $\$ 625$ fee already paid to the Council for the original submission be applied to the re-submission.

Thank you for your consideration in this matter.
Sincerely,
Steve Levine, for AT\&T Mobility 860-232-7835

Centek Engineering, Inc.

3-2 North Branford Road
Branford, Connecticut 06405
Phone: (203) 488-0580
Fax: (203) 488-8587
Steven L. Levine
Real Estate Consultant

January 6, 2014
Honorable Carl P. Fortuna
$1^{\text {st }}$ Selectman, Town of Old Saybrook
Town Hall 302 Main Street
Old Saybrook, CT 06475

Amended Notice of Exempt Modification: Existing Telecommunications Facility - 1363 Boston Post Road, Old Saybrook

Dear Mr. Fortuna:
On November 14, 2013 you were mailed a copy of an AT\&T Notice of Exempt Modification to the Connecticut Siting Council for the referenced telecommunications facility. Shortly thereafter, AT\&T revised its design for the modification, and the Siting Council agreed to delay its decision pending submission of the revised plan and structural analysis. This Amended Notice of Exempt Modification is intended to replace the original filing in its entirety.

In order to accommodate technological changes, implement Uniform Mobile Telecommunications System ("UMTS") and Long Term Evolution ("LTE") capabilities, and enhance system performance in the State of Connecticut, New Cingular Wireless PCS, LLC ("AT\&T") will be changing its equipment configuration at certain cell sites.

As required by Regulations of Connecticut State Agencies ("R.C.S.A.") Section 16-50j-73, the Connecticut Siting Council has been notified of the changes and will review AT\&T's proposal. Please accept this letter as notification under Section 16-50j-73 of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2).

The enclosed Notice fully sets forth the AT\&T proposal. However, if you have any questions or require any further information on the plans for the site or the Siting Council's procedures, please contact the undersigned at 860-830-0380 or Ms. Melanie Bachman, Acting Executive Director, Connecticut Siting Council at (860) 827-2935.

Sincerely,

Steven L. Levine
Real Estate Consultant

Enclosure

Kevin Clements
502 S. Main St., Suite 2531
Akron, Ohio 44311
(330) 572-2100
kclements@gpdgroup.com

GPD\# 2013723.13.105130.01
October 29, 2013

STRUCTURAL ANALYSIS REPORT

AT\&T DESIGNATION:	Site USID:	105130
	Site FA:	10133875
	Client \#:	CT1284
	Site Name:	OLD SAYBROOK BOSTON POST RD
	AT\&T Project:	MOD: LTE Add 9/16/2013
ANALYSIS CRITERIA:	Codes:	TIA/EIA-222-F, ASCE 7-05 \& 2005 CTBC
		85-mph (fastest-mile) with $0^{\prime \prime}$ ice
		38-mph (fastest-mile) with 0.75 " ice
SITE DATA:		1363 Boston Post Road, Old Saybrook, CT 06475, Middlesex County
		Market: New England
		99' Sabre Monopole

Mr. Edward Onessimo ,

GPD is pleased to submit this Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	46.7%	Pass
Foundation Ratio with Proposed Equipment:	42.1%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and SAI Communications. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

John N. Kabak, P.E.
Connecticut \#: 28336

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT\&T Mobility to SAI Communications. This report was commissioned by Mr. Edward Onessimo of SAI Communications.

The proposed coax shall be installed internal to the monopole for the analysis results to be valid.
TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Monopole	46.7%	Pass
Anchor Rods	38.7%	Pass
Base Plate	44.9%	Pass
Foundation	42.1%	Pass

ANALYSIS METHOD

tnxTower (Version 6.1.3.1), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
Equipment Modification Form	AT\&T Internal Loading Document, dated 10/9/2013	Siterra
Construction Drawings	ProTerra Job \#: 11-023, dated 10/15/2013	SAI
Tower Design	Sabre Job \#: 49722, dated 9/22/2011	Siterra
Foundation Design	Sabre Job \#: 49722, dated 9/22/2011	Siterra
Geotechnical Report	Dr. Clarence Welti, P.E., P.C., dated 6/1/2011	Siterra

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
9. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
10. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
11. All existing loading was obtained from site photos, the provided EMF and CDs and is assumed to be accurate.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD Group should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the specified code recommended amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form
General Info

Site Name	OLD SAYBROOK BOSTON POST RD
Site Number	105130
FA Number	10133875
Date of Analysis	October 29,2013
Company Performing Analysis	GPD

The information contained in this summary report is not to be used

 independently from the PE stamped tower analysis.| Tower Info | Description | Date |
| :---: | :---: | :---: |
| Tower Type (G, SST, MP) | MP | |
| Tower Height (top of steel AGL) | 99' | |
| Tower Manufacturer | Sabre | |
| Tower Model | n/a | |
| Tower Design | Sabre Job \#: 49722 | 9/22/2011 |
| Foundation Design | Sabre Job \#: 49722 | 9/22/2011 |
| Geotech Report | Dr. Clarence Welti, P.E., P.C. | 6/1/2011 |
| Tower Mapping | n/a | |
| Previous Structural Analysis | n/a | |
| Foundation Mapping | n/a | |

Design Parameters

Design Code Used	TIA/EIA-222-F
	ASCE 7-05 \& 2005 CTBC
Location of Tower (County, State)	Middlesex, CT
Basic Wind Speed (mph)	85 (fastest-mile)
Ice Thickness (in)	0.75
Structure Classification (I, III, III)	
Exposure Category (B, C, D)	
Topographic Category (1 to 5)	

Steel Yield Strength (ksi)

Pole	65
Tower Base	50
Anchor Rods	75

Existing / Reserved Loading

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \end{gathered}$	$\begin{gathered} \text { Antenna } \\ \text { CL (ft) } \end{gathered}$	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int./Ext.
AT\&T Mobility	97	97	9	Panel	kmw	AM-X-CD-16-65-00T-RET	40/150/270	3	unknown	10' T-Arms	12	unknown	1-5/8"	Internal
AT\&T Mobility	97	97	6	TMA	cci	DTMABP7819VG12A				on same mounts				

Note: (6) antennas, (3) TMAs and the mounts at 97 ' shall be removed prior to the installation of the proposed loading. The remaining equipment shall be relocated to the proposed mount

Antenna								Mount			Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int./Ext.
AT\&T Mobility	97	97	3	Panel	cci antennas	HPA-65R-BUU-H6		1	Valmont	ULP12-496				
AT\&T Mobility	97	97	6	Panel	ericsson	KRC 118 055/1				on same mount				
AT\&T Mobility	95	95	12	RRU	ericsson	RRUS 11		1	unknown	collar mount	6	DC Power	15.4 mm	Internal
AT\&T Mobility	95	95	3	Surge	raycap	DC6-48-60-18-8F				on same mount	1	Fiber Cable	10 mm	Internal

Note: The proposed loading shall be in addition to the remaining existing loading being relocated to the proposed mount.
Note: The proposed coax shall be installed internal to the monopole for the analysis results to be valid

Antenna								Mount			Transmission Line			
Antenna Owner	Mount Height (ft) Height (ft)	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int./Ext.

APPENDIX B

tnxTower Output File

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Middlesex County, Connecticut.
Basic wind speed of 85 mph .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 38 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.
Feed Line/Linear Appurtenances - Entered As Area

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& Allow Shield \& Component Type \& Placement
ft \& \multicolumn{2}{|l|}{Total Number} \& $C_{A} A_{A}$

$f t^{2} / f t$ \& Weight
plf

\hline \multirow[t]{5}{*}{5/8" Step Bolts} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{99.00-8.00} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.04 \& 1.00

\hline \& \& \& \& \& \& 1/2" Ice \& 0.14 \& 1.56

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.24 \& 2.73

\hline \& \& \& \& \& \& 2 " Ice \& 0.44 \& 6.91

\hline \& \& \& \& \& \& 4 " Ice \& 0.84 \& 22.58

\hline \multirow[t]{5}{*}{Safety Line (3/8")} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{99.00-8.00} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.04 \& 0.22

\hline \& \& \& \& \& \& 1/2" Ice \& 0.14 \& 0.75

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.24 \& 1.28

\hline \& \& \& \& \& \& 2 " Ice \& 0.44 \& 2.34

\hline \& \& \& \& \& \& 4 " Ice \& 0.84 \& 4.46

\hline \multirow[t]{5}{*}{$$
\begin{gathered}
\text { LDF7-50A (1-5/8 } \\
\text { FOAM) }
\end{gathered}
$$} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{Inside Pole} \& \multirow[t]{5}{*}{97.00-8.00} \& \multirow[t]{5}{*}{12} \& No Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 1/2' Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 4 " Ice \& 0.00 \& 0.82

\hline \multirow[t]{5}{*}{15.4mm DC Power} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{Inside Pole} \& \multirow[t]{5}{*}{95.00-8.00} \& \multirow[t]{5}{*}{6} \& No Ice \& 0.00 \& 0.50

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.50

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.50

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.50

\hline \& \& \& \& \& \& 4 " Ice \& 0.00 \& 0.50

\hline \multirow[t]{5}{*}{10mm Fiber Cable} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{Inside Pole} \& \multirow[t]{5}{*}{95.00-8.00} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.00 \& 0.10

\hline \& \& \& \& \& \& 1/2' Ice \& 0.00 \& 0.10

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.10

\hline \& \& \& \& \& \& 2 " Ice \& 0.00 \& 0.10

\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 0.10

\hline
\end{tabular}

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline \multirow[t]{5}{*}{ULP12-496} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{97.00} \& No Ice \& 14.66 \& 14.66 \& 1250.00

\hline \& \& \& \& \& \& 1/2" Ice \& 18.87 \& 18.87 \& 1481.33

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 23.08 \& 23.08 \& 1712.66

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 31.50 \& 31.50 \& 2175.32

\hline \& \& \& \& \& \& 4" Ice \& 48.34 \& 48.34 \& 3100.64

\hline \multirow[t]{5}{*}{AM-X-CD-16-65-00T-RET w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{97.00} \& No Ice \& 8.55 \& 6.65 \& 89.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.18 \& 7.68 \& 157.32

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.79 \& 8.56 \& 234.42

\hline \& \& \& \& \& \& 2" Ice \& 11.06 \& 10.38 \& 413.07

\hline \& \& \& \& \& \& 4" Ice \& 13.71 \& 14.23 \& 912.41

\hline \multirow[t]{5}{*}{AM-X-CD-16-65-00T-RET w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{97.00} \& No Ice \& 8.55 \& 6.65 \& 89.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.18 \& 7.68 \& 157.32

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.79 \& 8.56 \& 234.42

\hline \& \& \& \& \& \& 2" Ice \& 11.06 \& 10.38 \& 413.07

\hline \& \& \& \& \& \& 4" Ice \& 13.71 \& 14.23 \& 912.41

\hline \multirow[t]{5}{*}{AM-X-CD-16-65-00T-RET w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{97.00} \& No Ice \& 8.55 \& 6.65 \& 89.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.18 \& 7.68 \& 157.32

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 9.79 \& 8.56 \& 234.42

\hline \& \& \& \& \& \& 2" Ice \& 11.06 \& 10.38 \& 413.07

\hline \& \& \& \& \& \& 4" Ice \& 13.71 \& 14.23 \& 912.41

\hline \multirow[t]{5}{*}{HPA-65R-BUU-H6 w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{97.00} \& No Ice \& 10.60 \& 8.11 \& 76.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 11.27 \& 9.30 \& 158.03

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 11.91 \& 10.21 \& 247.79

\hline \& \& \& \& \& \& 2" Ice \& 13.21 \& 12.17 \& 455.80

\hline \& \& \& \& \& \& 4" Ice \& 15.93 \& 16.35 \& 1019.77

\hline \multirow[t]{5}{*}{HPA-65R-BUU-H6 w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{97.00} \& No Ice \& 10.60 \& 8.11 \& 76.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 11.27 \& 9.30 \& 158.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 11.91 \& 10.21 \& 247.79

\hline \& \& \& \& \& \& 2" Ice \& 13.21 \& 12.17 \& 455.80

\hline \& \& \& \& \& \& 4" Ice \& 15.93 \& 16.35 \& 1019.77

\hline \multirow[t]{5}{*}{HPA-65R-BUU-H6 w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{97.00} \& No Ice \& 10.60 \& 8.11 \& 76.55

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 11.27 \& 9.30 \& 158.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 11.91 \& 10.21 \& 247.79

\hline \& \& \& \& \& \& 2" Ice \& 13.21 \& 12.17 \& 455.80

\hline \& \& \& \& \& \& 4" Ice \& 15.93 \& 16.35 \& 1019.77

\hline \multirow[t]{5}{*}{(2) KRC 118 055/1 w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{97.00} \& No Ice \& 11.46 \& 8.62 \& 137.38

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.17 \& 9.90 \& 223.76

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 12.86 \& 10.95 \& 318.90

\hline \& \& \& \& \& \& 2" Ice \& 14.24 \& 12.92 \& 539.23

\hline \& \& \& \& \& \& 4" Ice \& 17.12 \& 17.32 \& 1135.84

\hline \multirow[t]{5}{*}{(2) KRC 118 055/1 w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{97.00} \& No Ice \& 11.46 \& 8.62 \& 137.38

\hline \& \& \& $$
0.00
$$ \& \& \& 1/2" Ice \& 12.17 \& 9.90 \& 223.76

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 12.86 \& 10.95 \& 318.90

\hline \& \& \& \& \& \& 2" Ice \& 14.24 \& 12.92 \& 539.23

\hline \& \& \& \& \& \& 4" Ice \& 17.12 \& 17.32 \& 1135.84

\hline \multirow[t]{5}{*}{(2) KRC 118 055/1 w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{97.00} \& No Ice \& 11.46 \& 8.62 \& 137.38

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.17 \& 9.90 \& 223.76

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 12.86 \& 10.95 \& 318.90

\hline \& \& \& \& \& \& 2" Ice \& 14.24 \& 12.92 \& 539.23

\hline \& \& \& \& \& \& 4" Ice \& 17.12 \& 17.32 \& 1135.84

\hline \multirow[t]{4}{*}{DTMABP7819VG12A} \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Leg} \& 4.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{97.00} \& No Ice \& 1.17 \& 0.44 \& 19.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.32 \& 0.56 \& 26.12

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.48 \& 0.69 \& 35.11

\hline \& \& \& \& \& \& 2" Ice \& 1.83 \& 0.97 \& 59.49

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets:
Horz
Lateral
Vert
\(f t\)
\(f t\)
\(f t\) \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\) Side
\[
f t^{2}
\] \& Weight

$l b$

\hline \multirow{6}{*}{DTMABP7819VG12A} \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{97.00} \& 4" Ice \& 2.62 \& 1.63 \& 139.29

\hline \& \& \& 4.00 \& \& \& No Ice \& 1.17 \& 0.44 \& 19.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.32 \& 0.56 \& 26.12

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.48 \& 0.69 \& 35.11

\hline \& \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{97.00} \& $2{ }^{\prime \prime}$ Ice \& 1.83 \& 0.97 \& 59.49

\hline \& \multirow{5}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \& \& 4" Ice \& 2.62 \& 1.63 \& 139.29

\hline \multirow[t]{5}{*}{DTMABP7819VG12A} \& \& \& 4.00 \& \& \& No Ice \& 1.17 \& 0.44 \& 19.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.32 \& 0.56 \& 26.12

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.48 \& 0.69 \& 35.11

\hline \& \& \multirow{6}{*}{None} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{95.00} \& $2^{\prime \prime}$ Ice \& 1.83 \& 0.97 \& 59.49

\hline \& \multirow{4}{*}{C} \& \& \& \& \& 4 " Ice \& 2.62 \& 1.63 \& 139.29

\hline \multirow[t]{5}{*}{Collar Mount} \& \& \& \& \& \& No Ice \& 1.40 \& 1.40 \& 20.00

\hline \& \& \& \& \& \& 1/2" Ice \& 2.40 \& 2.40 \& 35.00

\hline \& \& \& \& \& \& 1" Ice \& 3.40 \& 3.40 \& 50.00

\hline \& \multirow{5}{*}{A} \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{95.00} \& $2^{\prime \prime}$ Ice \& 5.40 \& 5.40 \& 80.00

\hline \& \& \multirow{4}{*}{From Leg} \& \& \& \& 4 " Ice \& 9.40 \& 9.40 \& 140.00

\hline \multirow[t]{5}{*}{(4) RRUS 11} \& \& \& 1.00 \& \& \& No Ice \& 3.25 \& 1.37 \& 50.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 71.50

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.74 \& 1.74 \& 95.33

\hline \& \multirow{6}{*}{B} \& \multirow{6}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{95.00} \& $2^{\prime \prime}$ Ice \& 4.27 \& 2.14 \& 152.89

\hline \& \& \& \& \& \& 4 " Ice \& 5.43 \& 3.04 \& 312.97

\hline \multirow[t]{5}{*}{(4) RRUS 11} \& \& \& 1.00 \& \& \& No Ice \& 3.25 \& 1.37 \& 50.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 71.50

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 3.74 \& 1.74 \& 95.33

\hline \& \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{95.00} \& 2" Ice \& 4.27 \& 2.14 \& 152.89

\hline \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \& \& 4" Ice \& 5.43 \& 3.04 \& 312.97

\hline \multirow[t]{5}{*}{(4) RRUS 11} \& \& \& 1.00 \& \& \& No Ice \& 3.25 \& 1.37 \& 50.70

\hline \& \& \& $$
0.00
$$ \& \& \& 1/2" Ice \& 3.49 \& 1.55 \& 71.50

\hline \& \& \& \& \& \& 1" Ice \& 3.74 \& 1.74 \& $$
95.33
$$

\hline \& \multirow{6}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{95.00} \& 2" Ice \& 4.27 \& 2.14 \& 152.89

\hline \& \& \& \& \& \& 4 " Ice \& 5.43 \& 3.04 \& 312.97

\hline \multirow[t]{5}{*}{DC6-48-60-18-8F Surge Suppression Unit} \& \& \& 1.00 \& \& \& No Ice \& 1.47 \& 1.47 \& 18.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.67 \& 1.67 \& 36.62

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.88 \& 1.88 \& 56.82

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{95.00} \& $2^{\prime \prime}$ Ice \& 2.33 \& 2.33 \& 105.34

\hline \& \multirow{4}{*}{B} \& \& \& \& \& 4 " Ice \& 3.38 \& 3.38 \& 239.02

\hline \multirow[t]{5}{*}{DC6-48-60-18-8F Surge Suppression Unit} \& \& \& 1.00 \& \& \& No Ice \& 1.47 \& 1.47 \& 18.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.67 \& 1.67 \& 36.62

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.88 \& 1.88 \& 56.82

\hline \& \multirow{7}{*}{C} \& \multirow{7}{*}{From Leg} \& \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{95.00} \& 2" Ice \& 2.33 \& 2.33 \& 105.34

\hline \& \& \& \& \& \& 4" Ice \& 3.38 \& 3.38 \& 239.02

\hline \multirow[t]{5}{*}{DC6-48-60-18-8F Surge Suppression Unit} \& \& \& 1.00 \& \& \& No Ice \& 1.47 \& 1.47 \& 18.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.67 \& 1.67 \& 36.62

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.88 \& 1.88 \& 56.82

\hline \& \& \& \& \& \& 2" Ice \& 2.33 \& 2.33 \& 105.34

\hline \& \& \& \& \& \& 4" Ice \& 3.38 \& 3.38 \& 239.02

\hline
\end{tabular}

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
97.00	ULP12-496	35	8.460	0.7425	0.0001	42237
95.00	Collar Mount	35	8.152	0.7301	0.0001	42237

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L1	99-48.5	Pole	TP34.15x22.14x0.25	1	-7079.42	1351835.23	40.8	Pass
L2	48.5-0	Pole	TP45.2x32.5203x0.3125	2	-15293.80	2314607.77	46.7	Pass
						Summary	ELC:	Existing + Proposed + Future
						Pole (L2)	46.7	Pass
						Rating =	46.7	Pass

APPENDIX C

Tower Elevation Drawings

Feed Line Distribution Chart
\qquad Round \qquad Flat \qquad App In Face \qquad App Out Face \qquad Truss Leg

\qquad Flat \qquad App In Face

APPENDIX D

Base Plate \& Anchor Rod Calculations

GPD GROUP
Anchor Rod and Base Plate Stresses
CT1284 (105130) OLD SAYBROOK BOSTON POST RD 2013723.13.105130.01

Base Plate		
Plate Strength (Fy) =	50	ksi
Plate Thickness $=$	2.5	in
Plate Width =	49.75	in
Est. Dist. b/w ea. Rod $=$	6	in
$\mathrm{w}_{\text {calc }}=$	36.917	in
$\mathrm{w}_{\text {max }}=$	25.157	in
W =	25.16	in
$\mathrm{S}=$	26.21	in^{3}
$\mathrm{fb}=$	22.46	ksi
$\mathrm{Fb}=$	50	ksi
Base Plate Capacity =	44.9\%	OK

GPD Unstiffened Square Base Plate Stress (Rev F) - V2.07

APPENDIX E

Foundation Analysis

Mat Foundation Analysis
CT1284 (105130) OLD SAYBROOK BOSTON POST RD
2013723.13.105130.01

General Info	
Code	TIA/EIA-222-F (ASD)
Bearing On	Soil
Foundation Type	Mono Pad
Pier Type	Square
Reinforcing Known	Yes
Max Capacity	1.05

Tower Reactions	
Moment, M	$984.263 \mathrm{k}-\mathrm{ft}$
Axial, P	15.301 k
Shear, V	13.402 k

Pad \& Pier Geometry		
Pier Width, \varnothing	6	ft
Pad Length, L	20.5	ft
Pad Width, W	20.5	ft
Pad Thickness, t	1.5	ft
Depth, D	6	ft
Height Above Grade, HG	0.5	ft

Pad \& Pier Reinforcing		
Rebar Fy	60	ksi
Concrete Fc'	4.5	ksi
Clear Cover	3	in
Reinforced Top \& Bottom?	Yes	
Pad Reinforcing Size	$\# 8$	
Pad Quantity Per Layer	26	
Pier Rebar Size	$\# 8$	
Pier Quantity of Rebar	26	

Soil Properties	
Soil Type	Granular
Soil Unit Weight	125 pcf
Angle of Friction, \varnothing	34°
Bearing Type	Gross
Ultimate Bearing	8 ksf
Water Table Depth	5 ft
Frost Depth	3.5 ft

GPD Mat Foundation Analysis - V1.02

Bearing Summary		Load Case	
Qxmax	1.34	ksf	$1 \mathrm{D}+1 \mathrm{~W}$
Qymax	1.34	ksf	$1 \mathrm{D}+1 \mathrm{~W}$
Qmax @ 45	1.68	ksf	$1 \mathrm{D}+1 \mathrm{~W}$
$\mathrm{Q}_{\text {(all) Gross }}$	4.00	ksf	
	Pass		
Controlling Capacity	$\mathbf{4 2 . 1 \%}$		

Overturning Summary (Required FS=1.5)		Load Case	
FS(ot)x	4.15	≥ 1.5	$1 \mathrm{D}+1 \mathrm{~W}$
FS(ot)y	4.15	≥ 1.5	$1 \mathrm{D}+1 \mathrm{~W}$
Controlling Capacity		$\mathbf{3 6 . 2 \%}$	Pass

[^0]: * Per CSC records

