Turnkey Wireless Development
September 4, 2015

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

```
RE: Notice of Exempt Modification
387 Shore Road, Old Lyme CT 06376
Longitude: -72.2583376
Latitude: 41.29652867
T-Mobile Site\#: CTNL804B_L700
```

Members of the Siting Council:
On behalf of T-Mobile, Northeast Site Solutions (NSS) is submitting an exempt modification application to the Connecticut Siting Council for modification of existing equipment at a tower facility located at 387 Shore Road, Old Lyme CT 06376.

The 387 Shore Road, Old Lyme, CT facility consists of an 80' Self Monopole Tower owned and operated by T-Mobile. In order to accommodate technological changes and enhance system performance in the State of Connecticut, T-Mobile plans to modify the equipment configurations at many of its existing cell sites. Please accept this letter and attachments as notification, pursuant to R.C.S.A. Section 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. Section 16-50j-72(b)(2). In compliance with R.C.S.A. Section 16-50j-73, a copy of this letter and attachments is being sent to the chief elected official of the municipality in which the affected cell site is located.

As part of T-Mobile's L700 Project, T-Mobile desires to upgrade their equipment to meet the new standards of 4G technology. The new equipment will allow customers to download files and browse the internet at a high rate of speed while also allowing their phones to be compatible with the latest 4G technology.

Attached is a summary of the planned modifications, including power density calculations reflecting the change in T-Mobile's operations at the site along with the required fee of $\$ 625$.

Turnkey Wireless Development

The changes to the facility do not constitute modifications as defined in Connecticut General Statutes significantly changed or altered. Rather, the planned changes to the facility fall squarely within those activities explicitly provided for in R.C.S.A. Section 16-50j-72(b)(2).

1. The overall height of the structure will be unaffected.
2. The proposed changes will not extend the site boundaries. There will be no effect on the site compound.
3. The proposed changes will not increase the noise levelat the existing facility by six decibels or more.
4. The changes in radio frequency power density will not increase the calculated "worst case" power density for the combined operations at the site to a level at or above the applicable standard for uncontrolled environments as calculated for a mixed frequency site.

For the foregoing reasons, Northeast Site Solutions (NSS) on behalf of T-Mobile, respectfully submits that the proposed changes at the referenced site constitute exempt modifications under R.C.S.A.Section 16-50j-72(b)(2).

Please feel free to call me at 860.209.4690 with any questions you may have concerning this matter.

Sincerely,

Denise Sabo

Mobile: 860-209-4690
Fax: 413-521-0558
Office: 199 Brickyard Rd, Farmington, CT 06032
Email: denise@northeastsitesolutions.com
CC. Old Lyme Memorial Town Hall, 52 Lyme Street, Old Lyme, CT 06371, Keith Rosenfeld, Zoning enforcement officer, Property Owner-Blue Sky Towers, LLC PO Box 191, Franklin, MA 02038, Reference: CT-5004 Benoit, Structure Owner-TMobile.

T-MOBILE USA, INC 12920 SE 38TH STREET BELLEVUE, WA 98006 (425) 378-4000

3176731 $9 / 2 / 2015$ 2000011160

Invoice Number	Inv. Date	Description	Deductions	Voucher Amount Paid	
CKSEE0101	$8 / 31 / 2015$	SR CTNL804B SITING COUNCIL FIL	0.00	1101588436	625.00

Exibit A

国: = Mobile:

T-MOBILE NORTHEAST LLC

 SITE \#: CTNL804BSITE NAME: AMTRAK_OLDLYME5
SITE ADDRESS:
387 SHORE ROAD
OLD LYME, CT 06376
WIRELESS BROADBAND FACILITY CONSTRUCTION DRAWINGS
(702CU CONFIGURATION)

	PROJECT SUMMERY
	T-MOBILE PROPOSES TO MODIFY THE EXIISTING WIRELESS TELECOMMUNCATIONS FACLITY AS FOLLOWS:

SITE NAME
CTNL8004B SITE NAME AMTRAK_OLDLYME5 STE ADDRESS
387 SHORE ROA

387 SHORE ROAD
OLD LYME, CT 06376

TITLE SHEET

CODE COMPLIANCE 2005 CONNECTICUT BULILONG COODE WTH 2013 AMENOMEN 2011 NATIONAL EIECTRCAL

 CONSTRUCTION TTPE: $2 B \quad$ USE GROUP: \quad N/A

 A. ReREPAEE AVD SUBMT SHOP DRaWNGS DAGRRMS ANO

 SPEEIFCATONS PROR TO PRCING OR MSTALLATOM

Lleann

1ESTS. INSEEGTON AND APPROVAL

SPECML REOUREMENTS

 SCHEDULED AT A TIME CONENENNT TO OWNER.

 B. EEITERCROR AOBCYC GROUND POWER CONOUTS TO BE

wes and cabies

 MRAPROVE

5. PRovide rk-1 TPE fusse, unless noted otherws.
 2. MRAANL FSUSE IN FUSIBEE DISCONNECT SWTCHES. FUSES

GENERAL NOTES:
1.

 AL HHE REQUREMENS

1. ATOREE

2. THE \qquad

CHANE ORDER PROCEDOUR

1. REER TO SECTON
Sernie Agremen for msa.

	REVIATIONS
${ }^{\text {AOJ }}$	ADSUSTABLE
${ }_{\alpha}^{\text {AGL }}$	${ }_{\text {AND }}^{\text {AbOE GROUND LINE }}$
${ }^{\text {APPROX }}$	${ }_{\text {a }}^{\text {aproximate }}$
${ }^{\text {Brs }}$	base transmision station
${ }_{\substack{\text { cab } \\ \text { cic } \\ \hline 16}}$	
CONC	CONCRETE
${ }_{\text {cont }}^{\text {CONOR }}$	Continuous
${ }_{\text {OWG }}$	ORAMINC
EA	EACH
$\underset{\substack{\text { ELEC } \\ \text { EIEV }}}{\text { ciey }}$	${ }_{\text {Electrical }}^{\text {Eleration }}$
EO	Eoval
Eaur	(equirment
${ }_{(E)}^{\text {EGB }}$	Existing
$\stackrel{\text { ExT }}{\text { Ex }}$	EXTERIOR
${ }_{\text {c }}$	CAUGE
${ }_{\text {GC }}^{\text {GALV }}$	GENERAL CONTRACTOR
GRND	GROUND
	${ }_{\text {Lenc }}^{\text {LeNGM }}$
	MECHANCAL
MW	MCCROWAVE DISH
MGB	master ground bar
M M	M M MMMM
(N)	NEW
NTC NTS	
${ }_{\text {OC }} \mathrm{OC}$	ON CENER CP
(0)	OPPosile
Pcs	${ }^{\text {PReSSONALL }}$ COMMUNICATION SYTTEM
${ }_{\text {SFP }}$	POWER Proiection Cabinet SUAARE FOOT
${ }_{\text {Stim }}^{\text {Stim }}$	Stiker
ss	STAMLESS Stel
STL	${ }_{\text {STEEL }}^{\text {Top }}$ O CONCREIEI
TOM	TOP OF MASONRY
TP	TpICAL
yon	UNLESS OTHERWSE NOTED
W/	WELDEO

	$\int_{\text {met-c. co ppe }}$	ϕ 	5	Tpe-mact-2023s

BURNDY GROUNDING DETAILS
scale: n.t.s

BURNDY GROUNDING PRODUCTS
scale: N.t.s

CADWELD GROUNDING CONNECTION PRODUCTS scale: n.t.s

GROUNDING TERMINATION MATRIX 7

NOTES:

1. ALL HAROWARE STAINLESS STEEL COAT ALL SURFACES WTH KOPR-SHHELD BEFORE MATINC

2. ALL HOLES ARE COUNTERSUNK γ_{66}."

TYPICAL GROUND BAR CONNECTIONS DETAIL

GROUND BAR DETAIL
scale : N.t.

lug notes:

1. ALL HARDWARE IS 18-8 STAINLESS STEEL, INCLUDING LOCK WASHERS. 2. ALL HARDWARE SHALL BE S.S. $3 / 8_{8} \varnothing$ 3. FOR GROUND BOND TO STEEL ONLY INSERT A DRAGON TOOTH WASHER INSERT ARAGON
BETWEEN LUG AND STEEL. COAT
SURFALCS WTH ANTIOXDIZATION SURFACES WITH ANTI-OXIDIZAI
COMPOUND PRIOR TO MATING.

R PRIOR TO MATING.
GROUND BAR

和: : Mobille
t-mobile northeast, ll

THIS SOCUMENT II THE CREATION,
ESSION. PROPERTY AND COPYRGGHT

CTNLE NAME
STEE NAME
AMTRAK_OLDLYME5
STE ADDRESS
387 SHORE ROAD
OLD LYME, CT 06376
SHEET TTLE
GROUNDING DETALLS

E-2

Exhibit B

T-Mobile Towers
12920 SE 38th Street
Bellevue, WA 98006

REVIEWED

By JACKIE DONAHUE at 10:09 am, Aug 28, 2015

GPD Engineering and Architecture Professional Corporation
Chris Scheks
520 South Main Street, Suite 2531
Akron, OH 44311
(614) 588-8973
cschecks@gpdgroup.com

GPD\# 2015791.16
August 28, 2015

STRUCTURAL ANALYSIS REPORT

T-MOBILE DESIGNATION:	Site Number:	CTNL804B
	Site Name:	AMTRAK_OldLyme5
	T-Mobile Project:	Network Modification
ANALYSIS CRITERIA:	Codes:	TIA/EIA-222-F, 2003 IBC \& 2005 CTBC
		$104-\mathrm{mph}$ fastest-mile (equivalent 120 mph 3 second gust) with 0 " ice
SITE DATA:		387 Shore Road, Old Lyme, CT 06371, New London County
		80' Sabre Monopole

Mr. John Warzecha,

GPD is pleased to submit this Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	51.9%	Pass
Foundation Ratio with Proposed Equipment:	48.6%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and T-Mobile Towers. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by T-Mobile Towers. This report was commissioned by Mr. John Warzecha of T-Mobile Towers.

The proposed coax shall be installed inside the monopole in order for the results of this analysis to be valid. Please see Appendix C for feedline plan.

TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Monopole	47.6%	Pass
Anchor Rods	31.2%	Pass
Base Plate	34.4%	Pass
Flange Plates	29.0%	Pass
Flange Bolts	51.9%	Pass
Foundation	48.6%	Pass

ANALYSIS METHOD

tnxTower (Version 6.1.4.1), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
Structrual Analysis Worksheet	CTNL804B TMO L700, dated 8/24/2015	T-Mobile
Tower Design	Sabre Job \#: 40204, dated 2/7/2011	T-Mobile
Foundation Design	Sabre Job \#: 40204, dated 2/7/2011	T-Mobile
Geotechnical Report	Terracon Project \#: J2105225, dated 11/11/2010	T-Mobile
Previous Structural Analysis	GPD Project \#: 2014790.25 Rev 2, dated 3/19/2014	GPD

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
9. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
10. The proposed loading is taken from the provided Structural Analysis Worksheet titled: CTNL804B TMO L700, dated $8 / 24 / 2015$, and is assumed to be accurate.
11. Appurtenance azimuths have not been provided and have been assumed.
12. The proposed coax shall be installed inside the monopole in order for the results of this analysis to be valid.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. All tower components have been assumed to only resist dead loads when no other loads are applied. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the feasibility of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the specified code recommended amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

General Info

Site Name	AMTRAK_OldLyme5
Site Number	CTNL804B
Proposed Carrier	T-Mobile
Date of Analysis	August 28,2015
Company Performing Analysis	GPD

The information contained in this summary report is not to be used independently from the PE stamped tower analysis

Tower Info	Description	Date
Tower Type (G, SST, MP)	MP	
Tower Height (top of steel AGL)	80^{\prime}	
Tower Manufacturer	Sabre	
Tower Model	n/a	
Tower Design	Sabre Job \#: 40204	2/7/2011
Foundation Design	Sabre Job \#: 40204	2/7/2011
Geotech Report	Terracon Project \#: J2105225	11/11/2010
Tower Mapping	n/a	
Previous Structural Analysis	GPD Project \#: 2014790.25 Rev 2	3/19/2014
Foundation Mapping	n/a	

Design Parameters
Design Code Used TIA/EIA-222-F, 2003 IBC \& 2005 CTBC
Location of Tower (County, State)
New London, CT
Basic Wind Speed (mph)
Ice Thickness (in)
Structure Classification (I, II, III)
Exposure Category (B, C, D)
Topographic Category (1 to 5)

Steel Yield Strength (ksi)

Pole	65
Base Plate	50
Anchor Rods	75
Flange Plate	60
Flange Bolts	A325

Existing / Reserved Loading

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \end{gathered}$	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int./Ext.
T-Mobile	77	77	3	Panel	Ericsson	AIR 21		3	Unknown	12' T-Arms	12	Unknown	7/8"	Internal
T-Mobile	77	77	3	Panel	Ericsson	AIR 33				on the existing mounts	1	Hybrid	1-5/8"	Internal
T-Mobile	77	77	1	COVP	Raycap	DC4-48-60-8-20F				on the existing mounts				
T-Mobile	77	77	1	Dish	Unknown	2' HP Dish				on the existing mounts				

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \end{gathered}$	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int./Ext.
T-Mobile	77	78	6	Panel	Ericsson	AIR 21		3	Unknown	12' T-Arms	12	Unknown	7/8"	Internal
T-Mobile	77	76	3	Panel	Commscope	LNX-6515DS-VTM				on the existing mounts	1	Hybrid	1-5/8"	Internal
T-Mobile	77	78	3	TMA	Ericsson	KRY11271				on the existing mounts				
T-Mobile	77	78	3	RRUS	Ericsson	RRUS 11 B12				on the existing mounts				

Note: The proposed coax shall be installed inside the monopole in order for the results of this analysis to be valid. Please see Appendix C for feedline plan.

APPENDIX B

tnxTower Output File

tnxTower GPD 520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-3709	Job CTNL804B AMTRAK_OldLyme5		$\text { Page } 1 \text { of } 4$
	Project	2015791.16	$\begin{aligned} & \text { Date } \\ & \text { 08:19:12 08/28/15 } \end{aligned}$
	Client	T-Mobile Towers	Designed by tbeltz

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in New London County, Connecticut.
Basic wind speed of 104 mph .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 38 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Area

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Allow Shield \& Component Type \& \begin{tabular}{l}
Placement \\
\(f t\)
\end{tabular} \& Total Number \& \& \(C_{A} A_{A}\)

$f t^{2} / f t$ \& | Weight |
| :--- |
| plf |

\hline \multirow[t]{5}{*}{Step Pegs} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{80.00-8.00} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.08 \& 2.72

\hline \& \& \& \& \& \& 1/2" Ice \& 0.18 \& 3.51

\hline \& \& \& \& \& \& 1" Ice \& 0.28 \& 4.92

\hline \& \& \& \& \& \& 2" Ice \& 0.48 \& 9.56

\hline \& \& \& \& \& \& 4" Ice \& 0.88 \& 26.18

\hline \multirow[t]{5}{*}{Safety Line (3/8")} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{80.00-8.00} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.04 \& 0.22

\hline \& \& \& \& \& \& 1/2" Ice \& 0.14 \& 0.75

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.24 \& 1.28

\hline \& \& \& \& \& \& 2" Ice \& 0.44 \& 2.34

\hline \& \& \& \& \& \& 4" Ice \& 0.84 \& 4.46

\hline \multirow[t]{5}{*}{LDF5-50A (7/8 FOAM)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{Inside Pole} \& \multirow[t]{5}{*}{77.00-8.00} \& \multirow[t]{5}{*}{12} \& No Ice \& 0.00 \& 0.33

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.33

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.33

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.33

\hline \& \& \& \& \& \& 4 " Ice \& 0.00 \& 0.33

\hline \multirow[t]{5}{*}{1-5/8" Hybrid Cable} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{Inside Pole} \& \multirow[t]{5}{*}{77.00-8.00} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 4" Ice \& 0.00 \& 0.82

\hline
\end{tabular}

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side

$f t^{2}$ \& Weight

$l b$

\hline \multirow[t]{2}{*}{12' T-Arm - Round (GPD)} \& A \& From Leg \& 2.00 \& 0.0000 \& 77.00 \& No Ice \& 4.70 \& 2.33 \& 333.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.33 \& 2.96 \& 400.00

\hline
\end{tabular}

tnxTower	CTNL804B AMTRAK _ OldLyme5		$\text { Page } 2 \text { of } 4$
GPD 520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-3709	Project	2015791.16	$\begin{aligned} & \text { Date } \\ & \text { 08:19:12 08/28/15 } \end{aligned}$
	Client	T-Mobile Towers	Designed by tbeltz

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or Leg
\end{tabular} \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline \multirow{7}{*}{12^{\prime} T-Arm - Round (GPD)} \& \multirow{7}{*}{B} \& \multirow{7}{*}{From Leg} \& 0.00 \& \multirow{6}{*}{0.0000} \& \multirow{6}{*}{77.00} \& 1" Ice \& 6.00 \& 3.60 \& 467.00

\hline \& \& \& \& \& \& 2" Ice \& 6.67 \& 4.87 \& 533.00

\hline \& \& \& \& \& \& 4" Ice \& 8.33 \& 7.41 \& 600.00

\hline \& \& \& 2.00 \& \& \& No Ice \& 4.70 \& 2.33 \& 333.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.33 \& 2.96 \& 400.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.00 \& 3.60 \& 467.00

\hline \& \& \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{77.00} \& 2" Ice \& 6.67 \& 4.87 \& 533.00

\hline \multirow{5}{*}{12^{\prime} T-Arm - Round (GPD)} \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \& \& 4" Ice \& 8.33 \& 7.41 \& 600.00

\hline \& \& \& 2.00 \& \& \& No Ice \& 4.70 \& 2.33 \& 333.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.33 \& 2.96 \& 400.00

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 6.00 \& 3.60 \& 467.00

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{77.00} \& 2" Ice \& 6.67 \& 4.87 \& 533.00

\hline \multirow{5}{*}{(2) AIR 21 w/ Mount Pipe} \& \& \& \& \& \& 4" Ice \& 8.33 \& 7.41 \& 600.00

\hline \& \& \& 4.00 \& \& \& No Ice \& 6.85 \& 5.78 \& 112.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 6.70 \& 170.69

\hline \& \& \& 1.00 \& \& \& 1 " Ice \& 7.94 \& 7.50 \& 235.28

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{77.00} \& 2" Ice \& 9.05 \& 9.14 \& 388.12

\hline \multirow{5}{*}{(2) AIR 21 w/ Mount Pipe} \& \& \& \& \& \& 4" Ice \& 11.38 \& 12.65 \& 819.05

\hline \& \& \& 4.00 \& \& \& No Ice \& 6.85 \& 5.78 \& 112.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 6.70 \& 170.69

\hline \& \& \& 1.00 \& \& \& 1 " Ice \& 7.94 \& 7.50 \& 235.28

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{77.00} \& 2" Ice \& 9.05 \& 9.14 \& 388.12

\hline \multirow{5}{*}{(2) AIR 21 w/ Mount Pipe} \& \& \& \& \& \& 4" Ice \& 11.38 \& 12.65 \& 819.05

\hline \& \& \& 4.00 \& \& \& No Ice \& 6.85 \& 5.78 \& 112.90

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.41 \& 6.70 \& 170.69

\hline \& \& \& 1.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 7.94 \& 7.50 \& 235.28

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{77.00} \& 2" Ice \& 9.05 \& 9.14 \& 388.12

\hline \& \& \& \& \& \& 4" Ice \& 11.38 \& 12.65 \& 819.05

\hline \multirow[t]{5}{*}{LNX-6515DS-VTM w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 11.64 \& 9.79 \& 82.54

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.34 \& 11.30 \& 171.68

\hline \& \& \& -1.00 \& \& \& 1 " Ice \& 13.04 \& 12.80 \& 270.74

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{77.00} \& 2" Ice \& 14.48 \& 15.12 \& 502.93

\hline \& \& \& \& \& \& 4" Ice \& 17.71 \& 19.94 \& 1143.89

\hline \multirow[t]{5}{*}{LNX-6515DS-VTM w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 11.64 \& 9.79 \& 82.54

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.34 \& 11.30 \& 171.68

\hline \& \& \& -1.00 \& \& \& 1" Ice \& 13.04 \& 12.80 \& 270.74

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{77.00} \& 2" Ice \& 14.48 \& 15.12 \& 502.93

\hline \& \& \& \& \& \& 4" Ice \& 17.71 \& 19.94 \& 1143.89

\hline \multirow[t]{5}{*}{LNX-6515DS-VTM w/ Mount Pipe} \& \& \& 4.00 \& \& \& No Ice \& 11.64 \& 9.79 \& 82.54

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.34 \& 11.30 \& 171.68

\hline \& \& \& -1.00 \& \& \& 1" Ice \& 13.04 \& 12.80 \& 270.74

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{77.00} \& 2" Ice \& 14.48 \& 15.12 \& $$
502.93
$$

\hline \& \& \& \& \& \& 4 " Ice \& 17.71 \& 19.94 \& 1143.89

\hline \multirow[t]{5}{*}{KRY 11271} \& \& \& 4.00 \& \& \& No Ice \& 0.68 \& 0.45 \& 13.20

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.80 \& 0.56 \& 18.38

\hline \& \& \& 1.00 \& \& \& 1" Ice \& 0.93 \& 0.68 \& 25.16

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{77.00} \& 2" Ice \& 1.22 \& 0.94 \& 44.33

\hline \& \& \& \& \& \& 4" Ice \& 1.90 \& 1.57 \& 110.52

\hline \multirow[t]{5}{*}{KRY 11271} \& \& \& 4.00 \& \& \& No Ice \& 0.68 \& 0.45 \& 13.20

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.80 \& 0.56 \& 18.38

\hline \& \& \& 1.00 \& \& \& 1" Ice \& 0.93 \& 0.68 \& 25.16

\hline \& \multirow{6}{*}{C} \& \multirow{6}{*}{From Leg} \& \& \multirow{6}{*}{0.0000} \& \multirow{6}{*}{77.00} \& 2" Ice \& 1.22 \& 0.94 \& 44.33

\hline \& \& \& \& \& \& 4" Ice \& 1.90 \& 1.57 \& 110.52

\hline \multirow[t]{4}{*}{KRY 11271} \& \& \& 4.00 \& \& \& No Ice \& 0.68 \& 0.45 \& 13.20

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.80 \& 0.56 \& 18.38

\hline \& \& \& 1.00 \& \& \& 1" Ice \& 0.93 \& 0.68 \& 25.16

\hline \& \& \& \& \& \& 2" Ice \& 1.22 \& 0.94 \& 44.33

\hline
\end{tabular}

tnxTower GPD 520 South Main Street, Suite 2531 Akron, OH 44311 Phone: (330) 572-2100 FAX: (330) 572-3709	Job \quad CTNL804B AMTRAK_OldLyme5		$\text { Page } 3 \text { of } 4$
	Project	2015791.16	$\begin{aligned} & \text { Date } \\ & \text { 08:19:12 08/28/15 } \\ & \hline \end{aligned}$
	Client	T-Mobile Towers	Designed by tbeltz

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \(f t\) \(f t\) ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
○
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front $f t^{2}$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

$l b$

\hline \multirow{6}{*}{RRUS 11 B12} \& \multirow{5}{*}{A} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{77.00} \& 4" Ice \& 1.90 \& 1.57 \& 110.52

\hline \& \& \& 4.00 \& \& \& No Ice \& 3.31 \& 1.36 \& 50.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.55 \& 1.54 \& 71.57

\hline \& \& \& 1.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 3.80 \& 1.73 \& 95.49

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{77.00} \& $2^{\prime \prime}$ Ice \& 4.33 \& 2.13 \& 153.24

\hline \& \multirow{4}{*}{B} \& \& \& \& \& 4 " Ice \& 5.50 \& 3.04 \& 313.85

\hline \multirow[t]{5}{*}{RRUS 11 B12} \& \& \& 4.00 \& \& \& No Ice \& 3.31 \& 1.36 \& 50.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.55 \& 1.54 \& 71.57

\hline \& \& \& 1.00 \& \& \& 1 " Ice \& 3.80 \& 1.73 \& 95.49

\hline \& \multirow{7}{*}{C} \& \multirow{7}{*}{From Leg} \& \& \multirow{7}{*}{0.0000} \& \multirow{7}{*}{77.00} \& $2{ }^{\prime \prime}$ Ice \& 4.33 \& 2.13 \& 153.24

\hline \& \& \& \& \& \& 4 " Ice \& 5.50 \& 3.04 \& 313.85

\hline \multirow[t]{5}{*}{RRUS 11 B12} \& \& \& 4.00 \& \& \& No Ice \& 3.31 \& 1.36 \& 50.70

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.55 \& 1.54 \& 71.57

\hline \& \& \& 1.00 \& \& \& 1" Ice \& 3.80 \& 1.73 \& $$
95.49
$$

\hline \& \& \& \& \& \& 2" Ice \& 4.33 \& 2.13 \& 153.24

\hline \& \& \& \& \& \& 4" Ice \& 5.50 \& 3.04 \& 313.85

\hline
\end{tabular}

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft		Appurtenance	Gov. Load Comb.	Deflection in	Tilt 。	Twist 。		Radius of Curvature ft	
77.00		12' T-Arm - Round (GPD)	35	4.128	0.4680		0.0001	34994	
Compression Checks									
Pole Design Data									
Section No.	Elevation $f t$	Size	L L_{u} $f t$ $f t$	$K l / r$	F_{a} ksi	A $i n^{2}$	$\begin{gathered} \text { Actual } \\ P \\ l b \end{gathered}$	$\begin{gathered} \text { Allow. } \\ P_{a} \\ l b \end{gathered}$	Ratio P P_{a}
$\begin{aligned} & \text { L1 } \\ & \text { L2 } \\ & \text { L3 } \end{aligned}$	$\begin{gathered} 80-55(1) \\ 55-43(2) \\ 43-1(3) \end{gathered}$	TP25.42x20x0.1875 TP28.03x25.42x0.1875 TP36.77x26.8938x0.3125	25.00 79.00 12.00 79.00 45.50 79.00	$\begin{gathered} 105.8 \\ 98.6 \\ 73.2 \end{gathered}$	$\begin{aligned} & 13.333 \\ & 15.358 \\ & 23.791 \end{aligned}$		$\begin{aligned} & -3226.59 \\ & -3766.74 \\ & -9275.65 \end{aligned}$	$\begin{aligned} & 200207.00 \\ & 247517.00 \\ & 860301.00 \end{aligned}$	$\begin{aligned} & 0.016 \\ & 0.015 \\ & 0.011 \end{aligned}$
Pole Bending Design Data									
Section No.	Elevation ft	Size	$\begin{gathered} \text { Actual } \\ M_{x} \\ l b-f t \end{gathered}$	Actual $f_{b x}$ ksi	Allow. Ratio $F_{b x}$ $f_{b x}$ $F_{b x}$	Actual M_{y} $l b-f t$	Actual $f_{b y}$ ksi	Allow. $F_{b y}$ ksi	Ratio $\frac{f_{b y}}{F_{b y}}$
L1	80-55 (1)	TP25.42x20x0.1875	143232.50	18.375	$39.000 \quad 0.471$	0.00	0.000	39.000	0.000
L2	55-43 (2)	TP28.03x25.42x0.1875	208588.33	23.219	$39.000 \quad 0.595$	0.00	0.000	39.000	0.000
L3	43-1 (3)	TP36.77x26.8938x0.3125	658614.17	24.312	$39.000 \quad 0.623$	0.00	0.000	39.000	0.000

| $\begin{array}{c}\text { tnxTOWPR } \\ \text { GPD }\end{array}$ | Job | PTNL804B AMTRAK_OIdLyme5 |
| :---: | :--- | :--- | :--- |$)$

Pole Shear Design Data

Section No.	Elevation $f t$	Size	Actual V $l b$	Actual f_{v} ksi	Allow. F_{v} ksi	$\begin{gathered} \hline \text { Ratio } \\ f_{v} \\ \hline F_{v} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Actual } \\ T \\ l b-f t \\ \hline \end{gathered}$	Actual $f_{v t}$ ksi	Allow. $F_{v t}$ ksi	$\begin{gathered} \hline \text { Ratio } \\ f_{v t} \\ \hline F_{v t} \\ \hline \end{gathered}$
L1	80-55 (1)	TP25.42x20x0.1875	7350.02	0.489	26.000	0.038	0.00	0.000	26.000	0.000
L2	55-43 (2)	TP28.03x25.42x0.1875	8030.56	0.498	26.000	0.038	0.00	0.000	26.000	0.000
L3	43-1 (3)	TP36.77x26.8938x0.3125	11865.70	0.328	26.000	0.025	0.00	0.000	26.000	0.000

Pole Interaction Design Data

Section Capacity Table

Section	Elevation	Component	Size	Critical Element	P No.	$f t$	Type

APPENDIX C

Tower Elevation Drawing

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION		
12' T-Arm - Round (GPD)	77	LNX-6515DS-VTM w/ Mount Pipe	77		
12' T-Arm - Round (GPD)	77	KRY 112 71	77		
12' T-Arm - Round (GPD)	77	KRY 112 71	77		
(2) AIR 21 w/ Mount Pipe	77	KRY 112 71	77		
(2) AIR 21 w/ Mount Pipe	77	RRUS 11 B12	77		
(2) AIR 21 w/ Mount Pipe	77	RRUS 11 B12	77		
LNX-6515DS-VTM w/ Mount Pipe	77	RRUS 11 B12	77		
LNX-6515DS-VTM w/ Mount Pipe	77				

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A572-65	65 ksi	80 ksi				

TOWER DESIGN NOTES

1. Tower is located in New London County, Connecticut.
2. Tower designed for a 104 mph basic wind in accordance with the TIA/EIA-222-F Standard.
3. Tower is also designed for a 38 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 50 mph wind.
5. TOWER RATING: 47.6%

TORQUE $43 \mathrm{lb}-\mathrm{ft}$ 38 mph WIND - 0.7500 in ICE

AXIAL

TORQUE $82 \mathrm{lb}-\mathrm{ft}$ REACTIONS - 104 mph WIND

GPD
520 South Main Street, Suite 2531
Akron, OH 44311
Phone: (330) 572-2100
FAX: (330) 572-3709
${ }^{\text {Dob: }}$ CTNL804B AMTRAK_OldLyme5 Project: 2015791.16

Client: T-Mobile Towers	Drawn by: tbeltz	App'd:
Code: TIA/EIA-222-F	Date: $08 / 28 / 15$	Scale: NTS
Path:		Dwg No. E-1

FEEDLINE PLAN
NOT TO SCALE

APPENDIX D

Flange Plate Analysis

Acceptable Stress Ratio	
	$=100.0 \%$

UpperStiffeners			
Configuration $=1 \quad$ None			

Lower Flange Plate	
Location =	External
Plate Strength $\left(\mathrm{F}_{\mathrm{y}}\right)=$	60 ksi
Plate Thickness =	1 in
Outer Diameter $=$	32.625 in
wcalc =	12.61 in
wmax =	18.77 in
w =	12.61 in
$S=$	2.10 in^3
$\mathrm{f}_{\mathrm{b}}=$	17.41 ksi
$\mathrm{F}_{\mathrm{b}}=$	60 ksi
LP Capacity =	29.0\% OK

Lower Stiffeners		
Configuration $=1 \quad$ None		

GPD Flange Plate Stress (Rev F) - V1.08

APPENDIX E

Anchor Rod \& Base Plate Analysis

GPD GROUP

GPD Unstiffened Square Base Plate Stress (Rev F) - V2.07

APPENDIX F

Foundation Analysis

Mat Foundation Analysis
CTNL804B AMTRAK _ Old Lyme5
2015791.16

General Info	
Code	TIA/EIA-222-F (ASD)
Bearing On	Soil
Foundation Type	Mono Pad
Pier Type	Round
Reinforcing Known	Yes
Max Capacity	1

Bearing Summary			Load Case
Qxmax	1.31	ksf	1D+1W
Qymax	1.31	ksf	1D+1W
Qmax @ 45	1.62	ksf	1D+1W
$\mathrm{Q}_{\text {(all) Gross }}$	3.34	ksf	
trolling Capacity	48.6\%	Pass	

Tower Reactions	
Moment, M	$658.61 \mathrm{k}-\mathrm{ft}$
Axial, P	9.28 k
Shear, V	11.86 k

Overturning Summary (Required $\mathbf{F S}=\mathbf{1 . 5}$)		Load Case		
$\mathrm{FS}(\mathrm{ot}) \mathrm{x}$	4.18	≥ 1.5	$1 \mathrm{D}+1 \mathrm{~W}$	
$\mathrm{FS}(\mathrm{ot}) \mathrm{y}$	4.18	≥ 1.5	$1 \mathrm{D}+1 \mathrm{~W}$	
Controlling Capacity	$\mathbf{3 5 . 9 \%}$	Pass		

Pad \& Pier Geometry		
Pier Diameter, \varnothing	5.5	ft
Pad Length, L	18.5	ft
Pad Width, W	18.5	ft
Pad Thickness, t	1.5	ft
Depth, D	5.6	ft
Height Above Grade, HG	1	ft

Pad \& Pier Reinforcing		
Rebar Fy	60	ksi
Concrete Fc'	4	ksi
Clear Cover	3	in
Reinforced Top \& Bottom?	Yes	
Pad Reinforcing Size	$\# 8$	
Pad Quantity Per Layer	20	
Pier Rebar Size	$\# 7$	
Pier Quantity of Rebar	30	

Soil Properties	
Soil Type	Granular
Soil Unit Weight	120 pcf
Angle of Friction, \varnothing	30°
Bearing Type	Net
Ultimate Bearing	6 ksf
Water Table Depth	99 ft
Frost Depth	3.5 ft

GPD Mat Foundation Analysis - V1.02

Base Foundation Reinforcement Check CTNL804B AMTRAK _ Old Lyme5
2015791.16

Tower Reactions	
Moment	$658.61 \mathrm{k}-\mathrm{ft}$
Axial	9.28 k
Shear	11.86 k

Pad \& Pier Geometry	
Height	5.6 ft
Height above Grade	1 ft
Pad Length, L	18.5 ft
Pad Width, W	18.5 ft
Pad Thickness	1.5 ft
Pier Shape	Round
Round Pier Diameter	5.5 ft

Pad \& Pier Reinforcing	
Reinforcing Known	Yes
$\mathrm{f}_{\mathrm{c}}{ }^{\prime}$	4 ksi
Clear Cover	3 in
Rebar Fy	60 ksi
Reinforced Top \& Bottom?	Yes
Pad Rebar Size	$\# 8$
Pad Rebar Quantity	20
Pier Rebar Size	$\# 7$
Pier Rebar Quantity	30

Unit Weights	
Concrete Unit Weight	150 pcf
Soil Unit Weight	120 pcf

Orthogonal Bearing	
$\mathrm{Q}_{\max }$	1.53 ksf
$\mathrm{Q}_{\min }$	0.01 ksf

Pad Moment Capacity		
$\mathrm{M}_{\mathrm{u}}=$	8.87	
$\phi \mathrm{M}_{\mathrm{n}}=$	49.47	
Moment Capacity	17.9\%	OK
One-Way (Wide-Beam) Shear		
$\mathrm{V}_{\mathrm{u}}=$	37.50	
$\phi V_{n}=$	284.32	
Shear Capacity	13.2\%	OK
Two-Way (Punching) Shear		
$\mathrm{V}_{\mathrm{u}}=$	196.15	
$\phi V_{n}=$	714.60	
Shear Capacity	27.4\%	OK
Pier Compression		
$\mathrm{P}_{\mathrm{u}}=$	12.06	
$\phi \mathrm{P}_{\mathrm{n}}=$	6578.45	
Compression Capacity	0.2\%	OK

Base Foundation Reinforcement - V1.09

Exhibit C

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTNL804B
Amtrak_Old Lyne 5
387 Shore Road
Old Lyme, CT 06376
August 31, 2015
EBI Project Number: 6215004564

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{7 . 8 3} \%$

August 31, 2015

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CTNL804B - Amtrak_Old Lyne 5

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{3 8 7}$ Shore Road, Old Lyme, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is approximately 467 $\mu \mathrm{W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 387 Shore Road, Old Lyme, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 UMTS channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
environmental | engineering | due diligence
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the Ericsson AIR21 (B4A/B2P \& B2A/B4P) for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 B4A/B2P \& B2A/B4P) have a maximum gain of 15.9 dBd at their main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of $14.6 \mathbf{d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is $\mathbf{7 6} \boldsymbol{\&} \mathbf{7 8}$ feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

NEBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \\ \hline \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	78	Height (AGL):	78	Height (AGL):	78
Frequency Bands	2100 MHz (AWS)	Frequency Bands	2100 MHz (AWS)	Frequency Bands	2100 MHz (AWS)
Channel Count	2	Channel Count	2	\# PCS Channels:	2
Total TX Power:	120	Total TX Power:	120	\# AWS Channels:	120
ERP (W):	4,668.54	ERP (W):	4,668.54	ERP (W):	4,668.54
Antenna A1 MPE\%	3.24	Antenna B1 MPE\%	3.24	Antenna C1 MPE\%	3.24
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B4A/B2P } \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	78	Height (AGL):	78	Height (AGL):	78
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz}(\mathrm{AWS}) \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power:	120	Total TX Power:	120	Total TX Power:	120
ERP (W):	4,668.54	ERP (W):	4,668.54	ERP (W):	4,668.54
Antenna A2 MPE\%	3.24	Antenna B2 MPE\%	3.24	Antenna C2 MPE\%	3.24
Antenna \#:	3	Antenna \#:	3	Antenna \#:	3
Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ \text { 6515DS-VTM } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ \text { 6515DS-VTM } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ 6515 \text { DS-VTM } \end{gathered}$
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	76	Height (AGL):	76	Height (AGL):	76
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A3 MPE\%	1.36	Antenna B3 MPE\%	1.36	Antenna C3 MPE\%	1.36
	Site Composite MPE\%			T-Mobile Sector 1 Total:	l: 7.83%
	Carrier	MPE\%		T-Mobile Sector 2 Total:	l: 7.83 \%
	T-Mobile (Per Sector Max)	7.83 \%		T-Mobile Sector 3 Total:	$1: 7.83 \%$
	Site Total MPE \%:	7.83 \%		Site Total:	l: 7.83 \%

T-Mobile _per sector	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	$\begin{aligned} & \text { Frequency } \\ & \text { (MHz) } \end{aligned}$	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
T-Mobile 2100 MHz (AWS) LTE	2	2334.27	78	32.38	2100	1000	3.24 \%
T-Mobile 700 MHz LTE	1	865.21	76	6.35	700	467	1.36 \%
T-Mobile 1900 MHz (PCS) UMTS	2	1167.14	78	16.19	1900	1000	1.62 \%
T-Mobile 2100 MHz (AWS) UMTS	2	1167.14	78	16.19	2100	1000	1.62 \%
						Total:	7.83\%

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	7.83%
Sector 2:	7.83%
Sector 3:	7.83%
T-Mobile Per Sector Maximum:	7.83%
Site Total:	7.83%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{7 . 8 3 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

