June 15, 2020

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

## RE: Notice of Exempt Modification for AT\&T - Crown BU 823529 <br> 38 Hatchetts Hill Road, Old Lyme, CT 06371 <br> Latitude: $41^{\circ} 19^{\prime} 3.26^{\prime \prime} /$ Longitude: $-72^{\circ} 16^{\prime} 11.87^{\prime \prime}$

Dear Ms. Bachman:
AT\&T currently maintains three (3) antennas at the 190 -foot mount on the existing 190 -foot Monopole Tower, located at 38 Hatchetts Hill Road, Old Lyme, CT. The tower is owned by Crown Castle and the property is owned by Hatchetts Hill LLC. AT\&T now intends to replace six (6) existing antennas with three (3) new 850 MHz antennas and three (3) new 1900 MHz antennas. The new antennas will be installed at the $190-\mathrm{ft}$ level of the tower. AT\&T is also proposing tower mount modifications, as shown on the enclosed mount analysis.

The facility was approved by the Town of Old Lyme Zoning Commission on January 14, 1999. The approval was given without conditions.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Timothy Griswold, First Selectman for the Town of Old Lyme, Dan Bourret, Land Use Administrator, Crown Castle as the tower owner, and Hatchetts Hill LLC, the property owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

Melanie A. Bachman

Page 2

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,
Anne Marie Zsamba
Site Acquisition Specialist
3 Corporate Park Drive, Suite 101
Clifton Park, NY 12065
(201) 236-9224

AnneMarie.Zsamba@crowncastle.com

Attachments<br>cc:<br>Timothy Griswold, First Selectman<br>Town of Old Lyme<br>Town Hall - Selectwoman's Office<br>52 Lyme Street<br>Old Lyme, CT 06371<br>860-434-1605<br>Dan Bourret, Land Use Coordinator<br>Town of Old Lyme<br>Town Hall<br>52 Lyme Street<br>Old Lyme, CT 06371<br>860-434-1605<br>Hatchetts Hill LLC, Property Owner<br>38 Hatchetts Hill Road<br>Old Lyme, CT 06371<br>Crown Castle, Tower Owner



## After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.


## After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.


## After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

## Exhibit A

## Original Facility Approval



## CERTIFICATE OF DECISION

## SPECIAL EXCEPTION

Application of: Omnipoint Communication, Inc. at 36 Hatchetts Hill Road, Old Lyme, CT., Map \#19, Lot \#22 in a LI-80 zone.

Request for a Special Exception Approval/Site Development Plan Approval for a proposed telecommunications tower. The Public Hearing was held on November 12, 1998.

Commission Members Present and Voting: Jeff Flower, Alan Bayreuther, Connie Kastelowitz, Robert McCarthy and Steven Ross.

Decision on January 14, 1999.
In this application the Commission members voted unanimously to approve the Site Development Plan/Special Exception as shown on the plan dated September 10, 1998 revised through December 9, 1998 with the following conditions:

1. Paragraph 13 be amended in accordance with Attorney Mattern's letter of January 13, 1999.

The Planning Commission concluded that this proposal, as approved, will not adversely affect the public health, safety, welfare or property values of the Town of Old Lyme.

This Certificate of Decision must be recorded in the land records of the Town of Old Lyme, Connecticut. The Town Clerk shall index the same in the grantor's index under the name of the record owner's, and the record owner shall pay the fees for such recording.

Dated at Old Lyme, Connecticut this $28^{\text {th }}$ day of January 1999.



## Exhibit B

## Property Card

## 38 HATCHETTS HILL RD

| Location | 38 HATCHETTS HILL RD | Mblu $19 / / 22 / 2 /$ |  |
| ---: | :--- | ---: | :--- |
| Acct\# | 00080200 | Owner | HATCHETTS HILL LLC |
| Assessment $\$ 319,400$ | Appraisal $\$ 456,400$ |  |  |
| PID 891 | Building Count | 1 |  |

## Current Value

| Appraisal |  |  |  |
| :---: | :---: | :---: | :---: |
| Valuation Year | Improvements | Land | Total |
| 2019 | \$0 | \$456,400 | \$456,400 |
| Assessment |  |  |  |
| Valuation Year | Improvements | Land | Total |
| 2019 | \$0 | \$319,400 | \$319,400 |

## Owner of Record

$\left.\begin{array}{llll}\hline \begin{array}{ll}\text { Owner } \\ \text { Co-Owner }\end{array} & \text { HATCHETTS HILL LLC } & \text { Sale Price } & \$ 0 \\ \text { Address } & 38 \text { HATCHETTS HILL RD } & \begin{array}{l}\text { Certificate }\end{array} & \text { Book \& Page }\end{array}\right) 0220 / 0677$

## Ownership History

| Ownership History |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Owner | Sale Price | Certificate | Book \& Page | Sale Date |
| HATCHETTS HILL LLC | \$0 |  | 0220/0677 | 08/02/1994 |

## Building Information

Building 1 : Section 1

Year Built:
Living Area: 0
Replacement Cost: \$0
Building Percent Good:
Replacement Cost
Less Depreciation:
\$0

| Field | Description |
| :---: | :---: |
| Style | Outbuildings |
| Model |  |
| Grade: |  |
| Stories: |  |
| Occupancy |  |
| Exterior Wall 1 |  |
| Exterior Wall 2 |  |
| Roof Structure: |  |
| Roof Cover |  |
| Interior Wall 1 |  |
| Interior Wall 2 |  |
| Interior Flr 1 |  |
| Interior Flr 2 |  |
| Heat Fuel |  |
| Heat Type: |  |
| AC Type: |  |
| Total Bedrooms: |  |
| Total Bthrms: |  |
| Total Half Baths: |  |
| Total Xtra Fixtrs: |  |
| Total Rooms: |  |
| Bath Style: |  |
| Kitchen Style: |  |
| Num Kitchens |  |
| Cndtn |  |
| Usrffld 103 |  |
| Usffld 104 |  |
| Usrffld 105 |  |
| Usrffld 106 |  |
| Usrffld 107 |  |
| Num Park |  |
| Fireplaces |  |
| Usrffld 108 |  |
| Usffld 101 |  |
| Usffld 102 |  |
| Usrffld 100 |  |
| Usrffld 300 |  |
| Usrffld 301 |  |

## Building Photo


(http://images.vgsi.com/photos/OldLymeCTPhotos//default.jpg)
Building Layout
Building Layout
(http://images.vgsi.com/photos/OldLymeCTPhotos//Sketches/891_891.jpg)

| Building Sub-Areas (sq ft) | Legend |
| :---: | :---: |
| No Data for Building Sub-Areas |  |

## No Data for Extra Features

Land

| Land Use |  |  | Land Line Valuation |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| Use Code | 4410 |  | Size (Acres) | 6.88 |
| Description | IND LD PO | LI80 | Frontage | 0 |
| Zone | Depth | 0 |  |  |
| Neighborhood | IND | Assessed Value | $\$ 319,400$ |  |
| Alt Land Appr | No | Appraised Value | $\$ 456,400$ |  |

## Outbuildings

|  | Outbuildings |
| :--- | :--- |
| No Data for Outbuildings | Legend |

## Valuation History

| Appraisal |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | :---: | :---: |
|  | Valuation Year | Improvements |  |  |  |  |
| 2020 |  | $\$ 0$ | Land | Total |  |  |
| 2019 | $\$ 0$ | $\$ 456,400$ |  |  |  |  |
| 2018 | $\$ 0$ | $\$ 380,300$ | $\$ 456,400$ |  |  |  |


| Assessment |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | :---: |
|  | Valuation Year | Improvements | Land |  |  |
| 2020 |  | $\$ 0$ | Total |  |  |
| 2019 |  | $\$ 0$ | $\$ 319,400$ |  |  |
| 2018 | $\$ 0$ | $\$ 266,200$ | $\$ 319,400$ |  |  |

(c) 2020 Vision Government Solutions, Inc. All rights reserved.


## Exhibit C

## Construction Drawings















## Exhibit D

## Structural Analysis Report

Date: May 13, 2020
Cheryl Schultz

> Paul J. Ford and Company
> 250 E. Broad St., Ste 600
> Columbus, OH 43215
> $614-221-6679$

Crown Castle
6325 Ardrey Kell RddSuite 600
Charlotte, NC 28277

## Subject:

Carrier Designation:

## Crown Castle Designation:

Engineering Firm Designation:
Site Data:

Structural Analysis Report
AT\&T Mobility Co-Locate
Carrier Site Number:
Carrier Site Name:
Crown Castle BU Number: 823529
Crown Castle Site Name:
Crown Castle JDE Job Number:
Crown Castle Work Order Number:
Crown Castle Order Number:
65079

605374
1845310

OLD LYME HATCHETTS HILL

CT038/EastLyme/ I-95/ X72

517072 Rev. 0
Paul J. Ford and Company Project Number: 37520-0839.001.7805
38 Hatchets Hill Road, Old Lyme, New London County, CT Latitude $41^{\circ} 19^{\prime} 3.26$ ", Longitude - $72^{\circ} 16^{\prime} 11.87$ "
190 Foot - Monopole Tower

Dear Cheryl Schultz,
Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

## LC7: Proposed Equipment Configuration <br> Sufficient Capacity - 87.3\%

This analysis utilizes an ultimate 3-second gust wind speed of 135 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 Analysis Criteria.

Respectfully submitted by:


Steven Coz, El
Structural Designer spozz@pauljford.com


## TABLE OF CONTENTS

## 1) INTRODUCTION

## 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

## 3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

## 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

## 5) APPENDIX A

tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

## 1) INTRODUCTION

This tower is a 190 ft Monopole tower designed by PIROD MANUFACTURES INC. in December of 1998.
The tower has been modified per reinforcement drawings prepared by TEP. Reinforcement consist of shaft reinforcing and bolted flange jumps.

## 2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor: Ice Thickness:
Wind Speed with Ice: Service Wind Speed:

TIA-222-H
II
135 mph
B
1
1.5 in

50 mph
60 mph

Table 1 - Proposed Equipment Configuration

| Mounting Level (ft) | Center Line Elevation (ft) | $\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}\right.$ | Antenna Manufacturer | Antenna Model | Number of Feed Lines | Feed Line Size (in) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 165.0 | 167.0 | 1 | raycap | DC6-48-60-18-8F | $\begin{aligned} & 6 \\ & 2 \\ & 5 \\ & 1 \end{aligned}$ | $\begin{gathered} 1-1 / 4 \\ 3 / 8 \\ 3 / 4 \\ 2 \text { 2" Cond. } \end{gathered}$ |
|  | 165.0 | 3 | andrew | SBNHH-1D65A w/ Mount Pipe |  |  |
|  |  | 3 | cci antennas | DMP65R-BU4D w/ Mount Pipe |  |  |
|  |  | 3 | cci antennas | OPA65R-BU4D w/ Mount Pipe |  |  |
|  |  | 3 | ericsson | RRUS 4449 B5/B12 |  |  |
|  |  | 3 | ericsson | RRUS 4478 B14 |  |  |
|  |  | 3 | ericsson | RRUS 8843 B2/B66A |  |  |
|  |  | 3 | powerwave technologies | TT19-08BP111-001 |  |  |
|  |  | 1 | raycap | DC9-48-60-24-8C-EV |  |  |
|  |  | 1 | tower mounts | Platform Mount [LP 712-1] |  |  |
|  |  | 1 | sitepro1 | PRK-1245 |  |  |
|  |  | 1 | sitepro1 | HRK12-3HD |  |  |

Table 2 - Other Considered Equipment

| Mounting Level (ft) | Center Line Elevation (ft) | $\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}\right\|$ | Antenna Manufacturer | Antenna Model | Number of Feed Lines |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 190.0 | 192.0 | 3 | ericsson | AIR 32 B2A/B66AA w/ Mount Pipe | 3 | 1-3/8 |
|  |  | 3 | ericsson | RADIO 2217 B2 |  |  |
|  |  | 3 | ericsson | RADIO 4449 B12/B71 |  |  |
|  |  | 3 | rfs celwave | APXVAARR24_43-U-NA20 w/ Mount Pipe |  |  |
|  |  | 1 | tower mounts | Platform Mount [LP 405-1_HR-1] |  |  |
| 173.0 | 175.0 | 3 | alcatel lucent | B13 RRH 4X30 | $\begin{gathered} 14 \\ 1 \end{gathered}$ | $\begin{gathered} 1-5 / 8 \\ 1 / 2 \end{gathered}$ |
|  |  | 3 | alcatel lucent | B25 RRH4X30 |  |  |
|  |  | 3 | alcatel lucent | RRH4X45-AWS4 B66 |  |  |
|  |  | 6 | andrew | SBNHH-1D65B w/ Mount Pipe |  |  |
|  |  | 6 | ante\| | LPA-80080/4CF w/ Mount Pipe |  |  |
|  |  | 1 | gps | GPS_A |  |  |
|  |  | 2 | raycap | RRFDC-3315-PF-48 |  |  |
|  |  | 6 | rfs celwave | FD9R6004/2C-3L |  |  |
|  | 173.0 | 1 | tower mounts | Platform Mount [LP 403-1] |  |  |

## 3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

| Document | Remarks | Reference | Source |
| :---: | :---: | :---: | :---: |
| 4-GEOTECHNICAL REPORTS | FDH, 1423191600, 03/27/2014 | 3500965 | CCISITES |
| 4-TOWER FOUNDATION <br> DRAWINGS/DESIGN/SPECS | Pirod, A-115008-Q-77682, <br> 12/09/1998 | 3505479 | CCISITES |
| 4-TOWER MANUFACTURER <br> DRAWINGS | Pirod, A-115008-Q-77682, <br> $12 / 09 / 1998$ | 3500968 | CCISITES |
| 4-TOWER REINFORCEMENT <br> DESIGN/DRAWINGS/DATA | TEP, 100010.20, 10/24/2011 | 3771952 | CCISITES |
| 4-POST-MODIFICATION INSPECTION | PJF, 32912-0003, 01/09/2012 | 3826084 | CCISITES |

## 3.1) Analysis Method

$\operatorname{tnx}$ Tower (version 8.0.5.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

## 3.2) Assumptions

1) Tower and structures were maintained in accordance with the TIA-222 standard.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
3) In accordance with discussions with CCI Corporate Engineering: Based on the assumption that the monopole manufacturer (PiRod) has designed the flange plates at splices to adequately develop the full capacity of the unreinforced shaft section using unpublished and/or proprietary methodologies, we are assuming that if our analysis shows that both the existing shaft and the existing flange bolts are at a usage capacity of $100 \%$ or less, then the existing flange plates are at a usage capacity of $100 \%$ or less and no additional analysis of the flange plate is required.
4) The monopole is sufficient without the shaft reinforcements; therefore, the shaft reinforcements were excluded from the analysis, and the PiRod assumption mentioned above (Assumption \#3) was used for all flanges in this analysis.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

## 4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

| Section No. | Elevation (ft) | Component Type | Size | Critical Element | P (K) | $\underset{(\mathbf{K})}{S_{F}^{*} \mathrm{P}_{\text {allow }}}$ |  | Pass / Fail |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 190-160 | Pole | P24x0.375 | 1 | -13.94 | 1104.67 | 45.6 | Pass |
| L2 | 160-140 | Pole | 30 " $\times 0.375 "$ | 2 | -17.52 | 1376.61 | 66.8 | Pass |
| L3 | 140-120 | Pole | 36 " $\times 0.375 "$ | 3 | -21.72 | 1564.60 | 75.9 | Pass |
| L4 | 120-100 | Pole | 42 " $\times 0.375$ " | 4 | -27.99 | 1752.31 | 80.1 | Pass |
| L5 | 100-80 | Pole | $\mathrm{P} 48 \times 0.375$ | 5 | -34.34 | 1939.86 | 82.1 | Pass |
| L6 | 80-60 | Pole | P54x3/8 | 6 | -41.42 | 2127.30 | 82.8 | Pass |
| L7 | 60-40 | Pole | P60x3/8 | 7 | -49.09 | 2314.65 | 83.0 | Pass |
| L8 | 40-20 | Pole | P60x1/2 | 8 | -57.94 | 3281.97 | 72.5 | Pass |
| L9 | 20-0 | Pole | P60x5/8 | 9 | -68.46 | 4346.11 | 66.5 | Pass |
|  |  |  |  |  |  |  | Summary |  |
|  |  |  |  |  |  | Pole (L7) | 83.0 | Pass |
|  |  |  |  |  |  | Rating = | 83.0 | Pass |

Table 5 - Tower Component Stresses vs. Capacity - LC7

| Notes | Component | Elevation (ft) | \% Capacity | Pass / Fail |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Flange Bolts | 160 | 43.5 | Pass |
| 1, 2 | Flange Plates | 160 | 45.6 | Pass |
| 1 | Flange Bolts | 140 | 67.4 | Pass |
| 1, 2 | Flange Plates | 140 | 66.8 | Pass |
| 1 | Flange Bolts | 120 | 78.8 | Pass |
| 1, 2 | Flange Plates | 120 | 75.9 | Pass |
| 1 | Flange Bolts | 100 | 84.4 | Pass |
| 1, 2, 3 | Flange Plates | 100 | 80.1 | Pass |
| 1 | Flange Bolts | 80 | 87.3 | Pass |
| 1, 2, 3 | Flange Plates | 80 | 82.1 | Pass |
| 1 | Flange Bolts | 60 | 73.9 | Pass |
| 1, 2, 3 | Flange Plates | 60 | 82.8 | Pass |
| 1 | Flange Bolts | 40 | 58.6 | Pass |
| 1, 2, 3 | Flange Plates | 40 | 83.0 | Pass |
| 1 | Flange Bolts | 20 | 70.1 | Pass |
| 1,2, 3 | Flange Plates | 20 | 72.5 | Pass |
| 1 | Anchor Rods | 0 | 51.0 | Pass |
| 1, 2 | Base Plate | 0 | 66.5 | Pass |
| 1 | Base Foundation Steel | 0 | 54.3 | Pass |
| 1 | Base Foundation Soil Interaction | 0 | 85.5 | Pass |


| Structure Rating (max from all components) $=$ | $87.3 \%$ |
| :--- | :--- |

## Notes:

- All structural ratings are per TIA-222-H Section 15.5.

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.
2) See assumption \#3.
3) See assumption \#4.

## 4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

## APPENDIX A

TNXTOWER OUTPUT


MATERIAL STRENGTH

| GRADE | Fy | Fu | GRADE | Fy | Fu |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| A53-B-42 | 42 ksi | 63 ksi |  |  |  |  |

## TOWER DESIGN NOTES

1. Tower is located in New London County, Connecticut.
2. Tower designed for Exposure B to the TiA-222-H Standard.
3. Tower designed for a 135.00 mph basic wind in accordance with the TIA-222-H Standard
4. Tower is also designed for a 50.00 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60.00 mph wind.
. Tower Risk Category II.
6. Topographic Category 1 with Crest Height of 0.0000 ft
7. TIA-222-H Annex S
8. TOWER RATING: $83 \%$

## Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:

1) Tower is located in New London County, Connecticut.
2) Tower base elevation above sea level: 168.0000 ft .
3) Basic wind speed of 135.00 mph .
4) Risk Category II.
5) Exposure Category B.
6) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
7) Topographic Category: 1.
8) Crest Height: 0.0000 ft .
9) Nominal ice thickness of 1.5000 in.
10) Ice thickness is considered to increase with height.
11) Ice density of 56.00 pcf.
12) A wind speed of 50.00 mph is used in combination with ice.
13) Temperature drop of $50.00^{\circ} \mathrm{F}$.
14) Deflections calculated using a wind speed of 60.00 mph .
15) TIA-222-H Annex S.
16) A non-linear (P-delta) analysis was used.
17) Pressures are calculated at each section.
18) Stress ratio used in pole design is 1.05 .
19) Tower analysis based on target reliabilities in accordance with Annex $S$.
20) Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95$, $\mathrm{K}_{\mathrm{es}}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
21) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

## Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys

## Escalate Ice

Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform
Assume Legs Pinned
$\checkmark$ Assume Rigid Index Plate
$\checkmark$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\checkmark$ Bypass Mast Stability Checks
$\checkmark$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
Autocalc Torque Arm Areas
Add IBC .6D+W Combination
Sort Capacity Reports By Component
Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\checkmark$ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist.
Exemption
Use TIA-222-H Tension Splice
Exemption

## Poles

Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No
Appurtenances
Outside and Inside Corner Radii Are
Known

## Pole Section Geometry

| Section | Elevation <br> $f t$ | Section <br> Length <br> $f t$ | Pole <br> Size | Pole <br> Grade | Socket Length <br> $f t$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | $190.0000-$ | 30.0000 | P24x0.375 | A53-B-42 |  |
| L2 | 160.0000 |  |  |  | $(42 \mathrm{ksi})$ |
|  | $160.0000-$ | 20.0000 | $30^{\prime \prime} \times 0.375^{\prime \prime}$ | A53-B-42 |  |
| L3 | 140.0000 |  |  | $(42 \mathrm{ksi})$ |  |
|  | $140.0000-$ | 20.0000 | $36^{\prime \prime} \times 0.375^{\prime \prime}$ | A53-B-42 |  |
| L4 | 120.0000 |  |  | $42^{\prime \prime} \times 0.375^{\prime \prime}$ | A53-B-42 |
|  | $120.0000-$ | 20.0000 |  | $(42 \mathrm{ksi})$ |  |

tnxTower Report - version 8.0.5.0

| Section | Elevation $f t$ | Section Length ft | Pole Size | Pole Grade | Socket Length ft |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L5 | $\begin{gathered} 100.0000- \\ 80.0000 \end{gathered}$ | 20.0000 | P48x0.375 | $\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$ |  |
| L6 | 80.0000-60.0000 | 20.0000 | P54x3/8 | $\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$ |  |
| L7 | 60.0000-40.0000 | 20.0000 | P60x3/8 | $\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$ |  |
| L8 | 40.0000-20.0000 | 20.0000 | P60x1/2 | $\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$ |  |
| L9 | 20.0000-0.0000 | 20.0000 | P60x5/8 | $\begin{gathered} \text { A53-B-42 } \\ (42 \mathrm{ksi}) \end{gathered}$ |  |



## Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description | Sector | Exclude From Torque Calculation | $\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$ | $\underset{f t}{\text { Placement }}$ | Total Number | Number Per Row | $\begin{gathered} \text { Start/En } \\ d \\ \text { Position } \end{gathered}$ | Width or Diamete $r$ $i n$ in | Perimete in | Weight plf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline 3 / 4 \text { " ladd rung (12" } \\ & \text { long 12" oc) } \\ & * * * * * * * * * * * * * * * * * * * ~ \end{aligned}$ | C | No | Surface Ar (CaAa) | $\begin{gathered} 190.0000- \\ 10.0000 \end{gathered}$ | 1 | 1 | $\begin{aligned} & -0.167 \\ & -0.167 \end{aligned}$ | 0.7500 |  | 1.50 |
| ************************ |  |  |  |  |  |  |  |  |  |  |
| CCI-045100 (L) | A | No | Surface Af (CaAa) | $\begin{array}{r} 23.5000- \\ 17.2500 \end{array}$ | 1 | 1 | $\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$ | 4.5000 | 11.0000 | 15.31 |
| CCI-045100 (L) | B | No | Surface Af (CaAa) | $\begin{gathered} 23.5000- \\ 17.2500 \end{gathered}$ | 1 | 1 | $\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$ | 4.5000 | 11.0000 | 15.31 |
| CCI-045100 (L) | C | No | Surface Af (CaAa) | $\begin{gathered} 23.5000- \\ 17.2500 \end{gathered}$ | 1 | 1 | $\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$ | 4.5000 | 11.0000 | 15.31 |
| CCI-045100 (L) | A | No | Surface Af (CaAa) | $\begin{aligned} & 90.5000- \\ & 36.7500 \end{aligned}$ | 1 | 1 | $\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$ | 4.5000 | 11.0000 | 15.31 |
| CCI-045100 (L) | B | No | Surface Af (CaAa) | $\begin{gathered} 90.5000- \\ 36.7500 \end{gathered}$ | 1 | 1 | $\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$ | 4.5000 | 11.0000 | 15.31 |
| CCI-045100 (L) | C | No | Surface Af (CaAa) | $\begin{gathered} 90.5000- \\ 36.7500 \end{gathered}$ | 1 | 1 | $\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$ | 4.5000 | 11.0000 | 15.31 |
| FP $4 \times 4.5$ | A | No | Surface Af (CaAa) | $\begin{gathered} 106.7500- \\ 98.2500 \end{gathered}$ | 1 | 1 | $\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$ | 4.0000 | 17.0000 | 61.25 |
| FP $4 \times 4.5$ | B | No | Surface Af (CaAa) | $\begin{gathered} 106.7500- \\ 98.2500 \end{gathered}$ | 1 | 1 | $\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$ | 4.0000 | 17.0000 | 61.25 |
| FP $4 \times 4.5$ | C | No | Surface Af (CaAa) | $\begin{gathered} 106.7500- \\ 98.2500 \end{gathered}$ | 1 | 1 | $\begin{aligned} & -0.250 \\ & -0.250 \end{aligned}$ | 4.0000 | 17.0000 | 61.25 |

Feed Line/Linear Appurtenances - Entered As Area

| Description | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | Allow Shield | Exclude From Torque Calculation | $\begin{gathered} \text { Componen } \\ t \\ \text { Type } \end{gathered}$ | Placement ft | Total Number |  | $C_{A} A_{A}$ $f t^{2} / f t$ | Weight plf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ********************* ************* |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} \text { HCS 6X12 } \\ \text { 6AWG(1-3/8) } \end{gathered}$ | C | No | No | Inside Pole | $\begin{gathered} 190.0000- \\ 0.0000 \end{gathered}$ | 3 | No Ice 1/2" Ice 1" Ice 2" Ice | $\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0000 \\ & 0.0000 \end{aligned}$ | $\begin{aligned} & 1.70 \\ & 1.70 \\ & 1.70 \\ & 1.70 \end{aligned}$ |
| LDF4-50A(1/2) | C | No | No | Inside Pole | $\begin{gathered} 173.0000- \\ 0.0000 \end{gathered}$ | 1 | No Ice 1/2" Ice 1" Ice 2" Ice | $\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0000 \\ & 0.0000 \end{aligned}$ | $\begin{aligned} & 0.15 \\ & 0.15 \\ & 0.15 \\ & 0.15 \end{aligned}$ |
| LDF7-50A(1-5/8) | C | No | No | Inside Pole | $\begin{gathered} 173.0000- \\ 0.0000 \end{gathered}$ | 12 | No Ice 1/2" Ice 1 " Ice 2" Ice | $\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0000 \\ & 0.0000 \end{aligned}$ | $\begin{aligned} & 0.82 \\ & 0.82 \\ & 0.82 \\ & 0.82 \end{aligned}$ |
| $\begin{aligned} & \text { HB158-1-08U8- } \\ & \text { S8J18(1-5/8) } \end{aligned}$ | C | No | No | Inside Pole | $\begin{gathered} 173.0000- \\ 0.0000 \end{gathered}$ | 2 | No Ice 1/2" Ice 1 " Ice 2" Ice | $\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0000 \\ & 0.0000 \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 1.30 \\ & 1.30 \\ & 1.30 \end{aligned}$ |
| $\begin{gathered} \text { FB-L98B-034- } \\ \text { XXX(3/8) } \end{gathered}$ | C | No | No | Inside Pole | $\begin{gathered} 165.0000- \\ 0.0000 \end{gathered}$ | 2 | No Ice 1/2" Ice 1" Ice 2" Ice | $\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0000 \\ & 0.0000 \end{aligned}$ | $\begin{aligned} & 0.06 \\ & 0.06 \\ & 0.06 \\ & 0.06 \end{aligned}$ |
| WR-VG86STBRD(3/4) | C | No | No | Inside Pole | $\begin{gathered} 165.0000- \\ 0.0000 \end{gathered}$ | 5 | No Ice 1/2" Ice 1" Ice 2" Ice | $\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0000 \\ & 0.0000 \end{aligned}$ | $\begin{aligned} & 0.58 \\ & 0.58 \\ & 0.58 \\ & 0.58 \end{aligned}$ |
| LDF6-50A(1-1/4) | C | No | No | Inside Pole | $\begin{gathered} 165.0000- \\ 0.0000 \end{gathered}$ | 6 | No Ice 1/2" Ice 1" Ice 2" Ice | $\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0000 \\ & 0.0000 \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 0.60 \\ & 0.60 \\ & 0.60 \end{aligned}$ |
| 2" (Nominal) Conduit | C | No | No | Inside Pole | $\begin{gathered} 165.0000- \\ 0.0000 \end{gathered}$ | 1 | No Ice 1/2" Ice 1" Ice 2" Ice | $\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0000 \\ & 0.0000 \end{aligned}$ | $\begin{aligned} & 0.72 \\ & 0.72 \\ & 0.72 \\ & 0.72 \end{aligned}$ |

Feed Line/Linear Appurtenances Section Areas

| Tower Sectio n | Tower Elevation ft | Face | $\begin{gathered} A_{R} \\ f t^{2} \end{gathered}$ | $\begin{gathered} A_{F} \\ {f t^{2}}^{2} \end{gathered}$ | $\begin{gathered} \mathrm{C}_{A} A_{A} \\ \text { In Face } \\ \mathrm{ft}^{2} \\ \hline \end{gathered}$ | $\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ f t^{2} \\ \hline \end{gathered}$ | Weight K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 190.0000- | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  | 160.0000 | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 2.250 | 0.000 | 0.40 |
| L2 | 160.0000- | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  | 140.0000 | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 1.500 | 0.000 | 0.53 |
| L3 | 140.0000- | A | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  | 120.0000 | B | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C | 0.000 | 0.000 | 1.500 | 0.000 | 0.53 |
| L4 | 120.0000- | A | 0.000 | 0.000 | 3.896 | 0.000 | 0.41 |
|  | 100.0000 | B | 0.000 | 0.000 | 3.896 | 0.000 | 0.41 |
|  |  | C | 0.000 | 0.000 | 5.396 | 0.000 | 0.94 |
| L5 | 100.0000- | A | 0.000 | 0.000 | 8.885 | 0.000 | 0.27 |
|  | 80.0000 | B | 0.000 | 0.000 | 8.885 | 0.000 | 0.27 |
|  |  | C | 0.000 | 0.000 | 10.385 | 0.000 | 0.80 |
| L6 | 80.0000-60.0000 | A | 0.000 | 0.000 | 15.000 | 0.000 | 0.31 |
|  |  | B | 0.000 | 0.000 | 15.000 | 0.000 | 0.31 |
|  |  | C | 0.000 | 0.000 | 16.500 | 0.000 | 0.84 |
| L7 | 60.0000-40.0000 | A | 0.000 | 0.000 | 15.000 | 0.000 | 0.31 |
|  |  | B | 0.000 | 0.000 | 15.000 | 0.000 | 0.31 |
|  |  | C | 0.000 | 0.000 | 16.500 | 0.000 | 0.84 |


| Tower Sectio n | Tower Elevation ft | Face | $\begin{gathered} A_{R} \\ f t^{2} \end{gathered}$ | $\begin{gathered} A_{F} \\ f t^{2} \end{gathered}$ | $C_{A} A_{A}$ <br> In Face $f t^{2}$ | $\begin{gathered} C_{A} A_{A} \\ \text { Out Face } \\ {f t^{2}}^{2} \end{gathered}$ | Weight K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L8 | 40.0000-20.0000 | A | 0.000 | 0.000 | 4.681 | 0.000 | 0.10 |
|  |  | B | 0.000 | 0.000 | 4.681 | 0.000 | 0.10 |
|  |  | C | 0.000 | 0.000 | 6.181 | 0.000 | 0.63 |
| L9 | 20.0000-0.0000 | A | 0.000 | 0.000 | 1.762 | 0.000 | 0.04 |
|  |  | B | 0.000 | 0.000 | 1.762 | 0.000 | 0.04 |
|  |  | C | 0.000 | 0.000 | 2.512 | 0.000 | 0.56 |

Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower Sectio $n$ | Tower Elevation ft | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | Ice Thickness in | $\begin{gathered} A_{R} \\ {f t^{2}}^{2} \end{gathered}$ | $\begin{aligned} & A_{F} \\ & \mathrm{ft}^{2} \end{aligned}$ | $\begin{gathered} C_{A} A_{A} \\ \text { In Face } \\ f t^{2} \end{gathered}$ | $\begin{gathered} \mathrm{C}_{A} A_{A} \\ \text { Out Face } \\ \text { ft }^{2} \\ \hline \end{gathered}$ | Weight K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 190.0000- | A | 1.506 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  | 160.0000 | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 11.289 | 0.000 | 0.52 |
| L2 | 160.0000- | A | 1.483 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  | 140.0000 | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 7.434 | 0.000 | 0.61 |
| L3 | 140.0000- | A | 1.462 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  | 120.0000 | B |  | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
|  |  | C |  | 0.000 | 0.000 | 7.349 | 0.000 | 0.61 |
| L4 | 120.0000- | A | 1.438 | 0.000 | 0.000 | 5.073 | 0.000 | 0.50 |
|  | 100.0000 | B |  | 0.000 | 0.000 | 5.073 | 0.000 | 0.50 |
|  |  | C |  | 0.000 | 0.000 | 12.326 | 0.000 | 1.11 |
| L5 | 100.0000- | A | 1.410 | 0.000 | 0.000 | 12.145 | 0.000 | 0.38 |
|  | 80.0000 | B |  | 0.000 | 0.000 | 12.145 | 0.000 | 0.38 |
|  |  | C |  | 0.000 | 0.000 | 19.283 | 0.000 | 0.99 |
| L6 | 80.0000-60.0000 | A | 1.375 | 0.000 | 0.000 | 20.498 | 0.000 | 0.48 |
|  |  | B |  | 0.000 | 0.000 | 20.498 | 0.000 | 0.48 |
|  |  | C |  | 0.000 | 0.000 | 27.497 | 0.000 | 1.08 |
| L7 | 60.0000-40.0000 | A | 1.329 | 0.000 | 0.000 | 20.316 | 0.000 | 0.47 |
|  |  | B |  | 0.000 | 0.000 | 20.316 | 0.000 | 0.47 |
|  |  | C |  | 0.000 | 0.000 | 27.133 | 0.000 | 1.07 |
| L8 | 40.0000-20.0000 | A | 1.263 | 0.000 | 0.000 | 5.975 | 0.000 | 0.16 |
|  |  | B |  | 0.000 | 0.000 | 5.975 | 0.000 | 0.16 |
|  |  | C |  | 0.000 | 0.000 | 12.527 | 0.000 | 0.75 |
| L9 | 20.0000-0.0000 | A | 1.132 | 0.000 | 0.000 | 2.097 | 0.000 | 0.06 |
|  |  | B |  | 0.000 | 0.000 | 2.097 | 0.000 | 0.06 |
|  |  | C |  | 0.000 | 0.000 | 5.110 | 0.000 | 0.60 |


|  | Feed Line Center of Pressure |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Section | Elevation <br> ft | $C P_{X}$ <br> in | $C P_{Z}$ <br> in | $C P_{X}$ <br> lce <br> in | $C P_{z}$ <br> $l c e$ <br> in |
| L1 | $190.0000-$ | 0.2490 | 0.6840 | 0.5176 | 1.4218 |
| L2 | 160.0000 | 0.2505 | 0.6880 | 0.5329 | 1.4638 |
|  | $160.0000-$ |  |  |  |  |
| L3 | 140.0000 | $140.0000-$ | 0.2514 | 0.6907 | 0.5422 |
| L4 | 120.0000 |  |  | 1.4894 |  |
|  | $120.0000-$ | 0.1987 | 0.5459 | 0.4725 | 1.2980 |
| L5 | $100.0000-8000000$ | 0.1642 | 0.4511 | 0.4099 | 1.1259 |
| L6 | $80.0000-60.0000$ | 0.1398 | 0.3839 | 0.3601 | 0.9892 |
| L7 | $60.0000-40.0000$ | 0.1464 | 0.4020 | 0.3668 | 1.0076 |
| L8 | $40.0000-20.0000$ | 0.2063 | 0.5668 | 0.4553 | 1.2506 |
| $20.0000-0.0000$ | 0.1180 | 0.3242 | 0.2339 | 0.6426 |  |

Note: For pole sections, center of pressure calculations do not consider feed line shielding.
Shielding Factor Ka

| Tower Section | Feed Line Record No. | Description | Feed Line Segment Elev. | $\begin{gathered} K_{a} \\ \text { No lce } \end{gathered}$ | $\begin{aligned} & K_{a} \\ & \text { Ice } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 1 | 3/4" ladder rung (12" long 12" oc) | $\begin{array}{r} 160.00- \\ 190.00 \end{array}$ | 1.0000 | 1.0000 |
| L2 | 1 | $3 / 4$ " ladder rung (12" long 12" oc) | $\begin{array}{r} 140.00- \\ 160.00 \end{array}$ | 1.0000 | 1.0000 |
| L3 | 1 | 3/4" ladder rung (12" long 12" oc) | $\begin{array}{r} 120.00- \\ 140.00 \end{array}$ | 1.0000 | 1.0000 |
| L4 | 1 | $3 / 4$ " ladder rung (12" long ${ }^{12 \mathrm{\prime} \text { oc) }}$ ( | $\begin{array}{r} 100.00- \\ 120.00 \end{array}$ | 1.0000 | 1.0000 |
| L4 | 24 | FP $4 \times 4.5$ | $\begin{array}{r} 100.00- \\ 106.75 \end{array}$ | 1.0000 | 1.0000 |
| L4 | 25 | FP $4 \times 4.5$ | $\begin{array}{r} 100.00- \\ 106.75 \end{array}$ | 1.0000 | 1.0000 |
| L4 | 26 | FP $4 \times 4.5$ | $\begin{array}{r} 100.00- \\ 106.75 \end{array}$ | 1.0000 | 1.0000 |
| L5 | 1 | 3/4" ladder rung (12" long ${ }^{12 \text { " oc) }}$ ( | $\begin{aligned} & 80.00- \\ & 100.00 \end{aligned}$ | 1.0000 | 1.0000 |
| L5 | 21 | CCI-045100 (L) | $\begin{array}{r} 80.00- \\ 90.50 \end{array}$ | 1.0000 | 1.0000 |
| L5 | 22 | CCI-045100 (L) | $\begin{array}{r} 80.00- \\ 90.50 \end{array}$ | 1.0000 | 1.0000 |
| L5 | 23 | CCI-045100 (L) | $\begin{array}{r} 80.00- \\ 90.50 \end{array}$ | 1.0000 | 1.0000 |
| L5 | 24 | FP $4 \times 4.5$ | $\begin{aligned} & 98.25- \\ & 100.00 \end{aligned}$ | 1.0000 | 1.0000 |
| L5 | 25 | FP $4 \times 4.5$ | $\begin{aligned} & 98.25- \\ & 100.00 \end{aligned}$ | 1.0000 | 1.0000 |
| L5 | 26 | FP $4 \times 4.5$ | $\begin{aligned} & 98.25- \\ & 100.00 \end{aligned}$ | 1.0000 | 1.0000 |
| L6 | 1 | 3/4" ladder rung (12" long 12 oc ( ${ }^{\text {(12) }}$ | $\begin{array}{r} 60.00- \\ 80.00 \end{array}$ | 1.0000 | 1.0000 |
| L6 | 21 | CCI-045100 (L) | $\begin{array}{r} 60.00- \\ 80.00 \end{array}$ | 1.0000 | 1.0000 |
| L6 | 22 | CCI-045100 (L) | $\begin{array}{r} 60.00- \\ 80.00 \end{array}$ | 1.0000 | 1.0000 |
| L6 | 23 | CCI-045100 (L) | $\begin{array}{r} 60.00- \\ 80.00 \end{array}$ | 1.0000 | 1.0000 |
| L7 | 1 | 3/4" ladder rung (12" long 12" oc) | $\begin{array}{r} 40.00- \\ 60.00 \end{array}$ | 1.0000 | 1.0000 |
| L7 | 21 | CCI-045100 (L) | $\begin{array}{r} 40.00- \\ 60.00 \end{array}$ | 1.0000 | 1.0000 |
| L7 | 22 | CCI-045100 (L) | $\begin{array}{r} 40.00- \\ 60.00 \end{array}$ | 1.0000 | 1.0000 |
| L7 | 23 | CCI-045100 (L) | $\begin{array}{r} 40.00- \\ 60.00 \end{array}$ | 1.0000 | 1.0000 |
| L8 | 1 | 3/4" ladder rung (12" long 12" oc) | $\begin{array}{r} 20.00- \\ 40.00 \end{array}$ | 1.0000 | 1.0000 |
| L8 | 18 | $\mathrm{CCl}-045100$ (L) | $\begin{array}{r} 20.00- \\ 23.50 \end{array}$ | 1.0000 | 1.0000 |
| L8 | 19 | CCI-045100 (L) | $\begin{array}{r} 20.00- \\ 23.50 \end{array}$ | 1.0000 | 1.0000 |
| L8 | 20 | CCI-045100 (L) | $\begin{array}{r} 20.00- \\ 23.50 \end{array}$ | 1.0000 | 1.0000 |
| L8 | 21 | CCI-045100 (L) | $\begin{array}{r} 36.75- \\ 40.00 \end{array}$ | 1.0000 | 1.0000 |
| L8 | 22 | CCI-045100 (L) | $\begin{array}{r} 36.75- \\ 40.00 \end{array}$ | 1.0000 | 1.0000 |
| L8 | 23 | CCI-045100 (L) | $36.75-$ 40.00 | 1.0000 | 1.0000 |
| L9 | 1 | 3/4" ladder rung (12" long 12" oc) | $\begin{array}{r} 10.00- \\ 20.00 \end{array}$ | 1.0000 | 1.0000 |
| L9 | 18 | CCl-045100 (L) | $\begin{array}{r} 17.25- \\ 20.00 \end{array}$ | 1.0000 | 1.0000 |
| L9 | 19 | CCI-045100 (L) | $\begin{array}{r} 17.25- \\ 20.00 \end{array}$ | 1.0000 | 1.0000 |
| L9 | 20 | CCI-045100 (L) | $\begin{array}{r} 17.25- \\ 20.00 \end{array}$ | 1.0000 | 1.0000 |


| Description | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | Offset <br> Type | Offsets: Horz Lateral Vert ft ft ft | Azimuth Adjustmen $t$ | Placement ft |  | $C_{A} A_{A}$ Front $f t^{2}$ | $C_{A} A_{A}$ Side $f t^{2}$ | Weight K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIR 32 B2A/B66AA w/ Mount Pipe | A | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | $\begin{gathered} \text { No Ice } \\ \text { 1/2" } \\ \text { Ice } \\ 1 " \text { Ice } \\ 2 \text { " Ice } \end{gathered}$ | $\begin{aligned} & 6.7474 \\ & 7.2017 \\ & 7.6475 \\ & 8.5651 \end{aligned}$ | $\begin{aligned} & 6.0700 \\ & 6.8671 \\ & 7.5828 \\ & 9.0629 \end{aligned}$ | $\begin{aligned} & 0.15 \\ & 0.21 \\ & 0.28 \\ & 0.44 \end{aligned}$ |
| AIR 32 B2A/B66AA w/ Mount Pipe | B | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | $\begin{aligned} & 6.7474 \\ & 7.2017 \\ & 7.6475 \\ & 8.5651 \end{aligned}$ | $\begin{aligned} & 6.0700 \\ & 6.8671 \\ & 7.5828 \\ & 9.0629 \end{aligned}$ | $\begin{aligned} & 0.15 \\ & 0.21 \\ & 0.28 \\ & 0.44 \end{aligned}$ |
| AIR 32 B2A/B66AA w/ Mount Pipe | C | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | $\begin{aligned} & 6.7474 \\ & 7.2017 \\ & 7.6475 \\ & 8.5651 \end{aligned}$ | $\begin{aligned} & 6.0700 \\ & 6.8671 \\ & 7.5828 \\ & 9.0629 \end{aligned}$ | $\begin{aligned} & 0.15 \\ & 0.21 \\ & 0.28 \\ & 0.44 \end{aligned}$ |
| APXVAARR24_43-U-NA20 w/ Mount Pipe | A | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | $\begin{aligned} & 14.6900 \\ & 15.4600 \\ & 16.2300 \\ & 17.8200 \end{aligned}$ | $\begin{aligned} & 6.8700 \\ & 7.5500 \\ & 8.2500 \\ & 9.6700 \end{aligned}$ | $\begin{aligned} & 0.19 \\ & 0.31 \\ & 0.46 \\ & 0.79 \end{aligned}$ |
| APXVAARR24_43-U-NA20 w/ Mount Pipe | B | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | $\begin{aligned} & 14.6900 \\ & 15.4600 \\ & 16.2300 \\ & 17.8200 \end{aligned}$ | $\begin{aligned} & 6.8700 \\ & 7.5500 \\ & 8.2500 \\ & 9.6700 \end{aligned}$ | $\begin{aligned} & 0.19 \\ & 0.31 \\ & 0.46 \\ & 0.79 \end{aligned}$ |
| APXVAARR24_43-U-NA20 w/ Mount Pipe | C | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | $\begin{aligned} & 14.6900 \\ & 15.4600 \\ & 16.2300 \\ & 17.8200 \end{aligned}$ | $\begin{aligned} & 6.8700 \\ & 7.5500 \\ & 8.2500 \\ & 9.6700 \end{aligned}$ | $\begin{aligned} & 0.19 \\ & 0.31 \\ & 0.46 \\ & 0.79 \end{aligned}$ |
| RADIO 2217 B2 | A | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | $\begin{aligned} & 1.3509 \\ & 1.4966 \\ & 1.6496 \\ & 1.9779 \end{aligned}$ | $\begin{aligned} & 0.5856 \\ & 0.6899 \\ & 0.8048 \\ & 1.0588 \end{aligned}$ | $\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.05 \\ & 0.08 \end{aligned}$ |
| RADIO 2217 B2 | B | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | $\begin{aligned} & 1.3509 \\ & 1.4966 \\ & 1.6496 \\ & 1.9779 \end{aligned}$ | $\begin{aligned} & 0.5856 \\ & 0.6899 \\ & 0.8048 \\ & 1.0588 \end{aligned}$ | $\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.05 \\ & 0.08 \end{aligned}$ |
| RADIO 2217 B2 | C | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | $\begin{aligned} & 1.3509 \\ & 1.4966 \\ & 1.6496 \\ & 1.9779 \end{aligned}$ | $\begin{aligned} & 0.5856 \\ & 0.6899 \\ & 0.8048 \\ & 1.0588 \end{aligned}$ | $\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.05 \\ & 0.08 \end{aligned}$ |
| RADIO 4449 B12/B71 | A | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | $\begin{aligned} & 1.6500 \\ & 1.8104 \\ & 1.9781 \\ & 2.3359 \end{aligned}$ | $\begin{aligned} & 1.1625 \\ & 1.3012 \\ & 1.4473 \\ & 1.7618 \end{aligned}$ | $\begin{aligned} & 0.07 \\ & 0.09 \\ & 0.11 \\ & 0.16 \end{aligned}$ |
| RADIO 4449 B12/B71 | B | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | $\begin{aligned} & 1.6500 \\ & 1.8104 \\ & 1.9781 \\ & 2.3359 \end{aligned}$ | $\begin{aligned} & 1.1625 \\ & 1.3012 \\ & 1.4473 \\ & 1.7618 \end{aligned}$ | $\begin{aligned} & 0.07 \\ & 0.09 \\ & 0.11 \\ & 0.16 \end{aligned}$ |
| RADIO 4449 B12/B71 | C | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 2.00 \end{gathered}$ | 0.0000 | 190.0000 | No Ice <br> 1/2" <br> Ice <br> 1" Ice <br> 2" Ice | 1.6500 1.8104 1.9781 2.3359 | $\begin{aligned} & 1.1625 \\ & 1.3012 \\ & 1.4473 \\ & 1.7618 \end{aligned}$ | $\begin{aligned} & 0.07 \\ & 0.09 \\ & 0.11 \\ & 0.16 \end{aligned}$ |
| 2.375" OD x 6' Mount Pipe | A | From Leg | $\begin{gathered} 4.0000 \\ 0.00 \\ 0.00 \end{gathered}$ | 0.0000 | 190.0000 | $\begin{gathered} \text { No Ice } \\ \text { 1/2" } \\ \text { Ice } \\ 1 " \text { Ice } \end{gathered}$ | $\begin{aligned} & 1.4250 \\ & 1.9250 \\ & 2.2939 \\ & 3.0596 \end{aligned}$ | $\begin{aligned} & 1.4250 \\ & 1.9250 \\ & 2.2939 \\ & 3.0596 \end{aligned}$ | $\begin{aligned} & 0.03 \\ & 0.04 \\ & 0.05 \\ & 0.09 \end{aligned}$ |


| Description | $\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$ | Offset <br> Type | Offsets: Horz Lateral Vert ft ft ft | Azimuth Adjustmen $t$ | Placement ft |  | $C_{A} A_{A}$ Front $f t^{2}$ | $C_{A} A_{A}$ Side $f t^{2}$ | Weight K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.375" OD x 6' Mount Pipe | B | From Leg |  | 0.0000 | 190.0000 | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 1.4250 | 1.4250 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" | 1.9250 | 1.9250 | 0.04 |
|  |  |  | 0.00 |  |  | Ice | 2.2939 | 2.2939 | 0.05 |
|  |  |  |  |  |  | 1" Ice <br> 2" Ice | 3.0596 | 3.0596 | 0.09 |
| 2.375" OD x 6' Mount Pipe | C | From Leg | 4.0000 | 0.0000 | 190.0000 | No Ice | 1.4250 | 1.4250 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" | 1.9250 | 1.9250 | 0.04 |
|  |  |  | 0.00 |  |  | Ice | 2.2939 | 2.2939 | 0.05 |
|  |  |  |  |  |  | 1" Ice <br> 2" Ice | 3.0596 | 3.0596 | 0.09 |
| Platform Mount [LP 405-1_HR-1] | C | None |  | 0.0000 | 190.0000 | No Ice | 25.3300 | 25.3300 | 2.06 |
|  |  |  |  |  |  | 1/2" | 33.7900 | 33.7900 | 2.63 |
|  |  |  |  |  |  | Ice | 42.1600 | 42.1600 | 3.36 |
|  |  |  |  |  |  | 1 " Ice | 58.7700 | 58.7700 | 5.25 |
|  |  |  |  |  |  | 2 " Ice |  |  |  |
| *** |  |  |  |  |  |  |  |  |  |
| (2) SBNHH-1D65B w/ Mount Pipe | A | From Leg | 4.0000 | 0.0000 | 173.0000 | No Ice | 4.0900 | 3.3000 | 0.07 |
|  |  |  | 0.00 |  |  | 1/2" | 4.4900 | 3.6800 | 0.13 |
|  |  |  | 2.00 |  |  | Ice | 4.8900 | 4.0700 | 0.20 |
|  |  |  |  |  |  | 1" Ice | 5.7200 | 4.8700 | 0.39 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
| (2) SBNHH-1D65B w/ Mount Pipe | B | From Leg | 4.0000 | 0.0000 | 173.0000 | No Ice | 4.0900 | 3.3000 | 0.07 |
|  |  |  | 0.00 |  |  | 1/2" | 4.4900 | 3.6800 | 0.13 |
|  |  |  | 2.00 |  |  | Ice | 4.8900 | 4.0700 | 0.20 |
|  |  |  |  |  |  | 1 " Ice | 5.7200 | 4.8700 | 0.39 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
| (2) SBNHH-1D65B w/ Mount Pipe | C | From Leg | 4.0000 | 0.0000 | 173.0000 | No Ice | 4.0900 | 3.3000 | 0.07 |
|  |  |  | 0.00 |  |  | 1/2" | 4.4900 | 3.6800 | 0.13 |
|  |  |  | 2.00 |  |  | Ice | 4.8900 | 4.0700 | 0.20 |
|  |  |  |  |  |  | 1 " Ice | 5.7200 | 4.8700 | 0.39 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
| (2) LPA-80080/4CF w/ Mount Pipe | A | From Leg | 4.0000 | 0.0000 | 173.0000 | No Ice | 2.8561 | 6.5689 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" | 3.2195 | 7.1948 | 0.08 |
|  |  |  | 2.00 |  |  | Ice | 3.5922 | 7.8369 | 0.13 |
|  |  |  |  |  |  | 1 " Ice | 4.3374 | 9.1700 | 0.25 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
| (2) LPA-80080/4CF w/ Mount Pipe | B | From Leg | 4.0000 | 0.0000 | 173.0000 | No Ice | 2.8561 | 6.5689 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" | 3.2195 | 7.1948 | 0.08 |
|  |  |  | 2.00 |  |  | Ice | 3.5922 | 7.8369 | 0.13 |
|  |  |  |  |  |  | 1 " Ice | 4.3374 | 9.1700 | 0.25 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
| (2) LPA-80080/4CF w/ Mount Pipe | C | From Leg | 4.0000 | 0.0000 | 173.0000 | No Ice | 2.8561 | 6.5689 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" | 3.2195 | 7.1948 | 0.08 |
|  |  |  | 2.00 |  |  | Ice | 3.5922 | 7.8369 | 0.13 |
|  |  |  |  |  |  | 1 " Ice | 4.3374 | 9.1700 | 0.25 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
| GPS_A | B | From Leg | 4.0000 | 0.0000 | 173.0000 | No Ice | 0.2550 | 0.2550 | 0.00 |
|  |  |  | 0.00 |  |  | 1/2" | 0.3205 | 0.3205 | 0.00 |
|  |  |  | 2.00 |  |  | Ice | 0.3934 | 0.3934 | 0.01 |
|  |  |  |  |  |  | 1 " Ice | 0.5614 | 0.5614 | 0.02 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
| (2) FD9R6004/2C-3L | A | From Leg | 4.0000 | 0.0000 | 173.0000 | No Ice | 0.3142 | 0.0762 | 0.00 |
|  |  |  | 0.00 |  |  | 1/2" | 0.3862 | 0.1189 | 0.01 |
|  |  |  | 2.00 |  |  | Ice | 0.4656 | 0.1685 | 0.01 |
|  |  |  |  |  |  | 1 " Ice | 0.6468 | 0.2940 | 0.02 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
| (2) FD9R6004/2C-3L | B | From Leg | 4.0000 | 0.0000 | 173.0000 | No Ice | 0.3142 | 0.0762 | 0.00 |
|  |  |  | 0.00 |  |  | 1/2" | 0.3862 | 0.1189 | 0.01 |
|  |  |  | 2.00 |  |  | Ice | 0.4656 | 0.1685 | 0.01 |
|  |  |  |  |  |  | 1 " Ice | 0.6468 | 0.2940 | 0.02 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
| (2) FD9R6004/2C-3L | C | From Leg | 4.0000 | 0.0000 | 173.0000 | No Ice | 0.3142 | 0.0762 | 0.00 |
|  |  |  | 0.00 |  |  | 1/2" | 0.3862 | 0.1189 | 0.01 |
|  |  |  | 2.00 |  |  | Ice | 0.4656 | 0.1685 | 0.01 |



| Description | Face or Leg | Offset <br> Type | Offsets: Horz Lateral Vert ft ft ft | Azimuth Adjustmen $t$ | Placement ft |  | $C_{A} A_{A}$ <br> Front $f t^{2}$ | $C_{A} A_{A}$ Side $f t^{2}$ | Weight K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SBNHH-1D65A w/ Mount Pipe | C | From Leg | 0.00 | 0.0000 | 165.0000 | 1/2" | 3.6500 | 3.0500 | 0.16 |
|  |  |  |  |  |  | $\begin{gathered} \text { Ice } \\ \text { 1" Ice } \\ \text { 2" Ice } \end{gathered}$ | 4.3100 | 3.6800 | 0.31 |
|  |  |  | $\begin{gathered} 4.0000 \\ 0.00 \end{gathered}$ |  |  | No Ice | 3.0400 3.3400 3.6500 | 2.4500 2.7500 3.0500 | $\begin{aligned} & 0.05 \\ & 0.10 \end{aligned}$ |
|  |  |  | 0.00 |  |  | Ice | 3.6500 | 3.0500 | 0.16 |
|  | A | From Leg |  | 0.0000 | 165.0000 | $\begin{aligned} & \text { 1" Ice } \\ & 2 " \text { Ice } \end{aligned}$ | 4.3100 | 3.6800 | 0.31 |
| DMP65R-BU4D w/ Mount Pipe |  |  | 4.0000 |  |  | No Ice | 7.5300 | 3.7900 | 0.09 |
|  |  |  | 0.00 |  |  | 1/2" | 8.0400 | 4.2300 | 0.16 |
|  |  |  | 0.00 |  |  | Ice | 8.5700 | 4.6800 | 0.22 |
|  | B | From Leg |  | 0.0000 | 165.0000 | $\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \end{aligned}$ | 9.6800 | 5.6300 | 0.39 |
| DMP65R-BU4D w/ Mount Pipe |  |  | 4.0000 |  |  | No Ice | 7.5300 | 3.7900 | 0.09 |
|  |  |  | 0.00 |  |  | 1/2" | 8.0400 | 4.2300 | 0.16 |
|  |  |  | 0.00 |  |  | Ice | 8.5700 | 4.6800 | 0.22 |
|  | C | From Leg |  | 0.0000 | 165.0000 | $\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \end{aligned}$ | 9.6800 | 5.6300 | 0.39 |
| DMP65R-BU4D w/ Mount Pipe |  |  | 4.0000 |  |  | No Ice | 7.5300 | 3.7900 | 0.09 |
|  |  |  | 0.00 |  |  | 1/2" | 8.0400 | 4.2300 | 0.16 |
|  |  |  | 0.00 |  |  | Ice | 8.5700 | 4.6800 | 0.22 |
|  |  | From Leg |  | 0.0000 | 165.0000 | $1{ }^{1 /}$ Ice | 9.6800 | 5.6300 | 0.39 |
| OPA65R-BU4D w/ Mount Pipe | A |  |  |  |  | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 8.1000 | 4.0300 | 0.08 |
|  |  |  | 0.00 |  |  | 1/2" | 8.6500 | 4.5000 | 0.14 |
|  |  |  | 0.00 |  |  | Ice | 9.2100 | 4.9800 | 0.21 |
|  | B | From Leg |  | 0.0000 | 165.0000 | $\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \end{aligned}$ | 10.3900 | 5.9800 | 0.38 |
| OPA65R-BU4D w/ Mount Pipe |  |  | 4.0000 |  |  | No Ice | 8.1000 | 4.0300 | 0.08 |
|  |  |  | 0.00 |  |  | 1/2" | 8.6500 | 4.5000 | 0.14 |
|  |  |  | 0.00 |  |  | Ice | 9.2100 | 4.9800 | 0.21 |
|  | C | From Leg |  | 0.0000 | 165.0000 | $1{ }^{1 \prime}$ Ice | 10.3900 | 5.9800 | 0.38 |
| OPA65R-BU4D w/ Mount Pipe |  |  |  |  |  | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 8.1000 | 4.0300 | 0.08 |
|  |  |  | 0.00 |  |  | 1/2" | 8.6500 | 4.5000 | 0.14 |
|  |  |  | 0.00 |  |  | Ice | 9.2100 | 4.9800 | 0.21 |
| (2) TT19-08BP111-001 | B | From Leg |  | 0.0000 | 165.0000 | 1 " Ice | 10.3900 | 5.9800 | 0.38 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 0.5527 | 0.4455 | 0.02 |
|  |  |  | 0.00 |  |  | 1/2" | 0.6487 | 0.5342 | 0.02 |
|  |  |  | 0.00 |  |  | Ice | 0.7520 | 0.6303 | 0.03 |
| TT19-08BP111-001 | C | From Leg |  | 0.0000 | 165.0000 | 1 " Ice | 0.9809 | 0.8448 | 0.05 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 0.5527 | 0.4455 | 0.02 |
|  |  |  | 0.00 |  |  | 1/2" | 0.6487 | 0.5342 | 0.02 |
|  |  |  | 0.00 |  |  | Ice | 0.7520 | 0.6303 | 0.03 |
| DC6-48-60-18-8F | A | From Leg |  | 0.0000 | 165.0000 | 1 " Ice | 0.9809 | 0.8448 | 0.05 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 1.2117 | 1.2117 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" | 1.8924 | 1.8924 | 0.05 |
|  |  |  | 2.00 |  |  | Ice | 2.1051 | 2.1051 | 0.08 |
| (3) RRUS 4478 B14 | A | From Leg |  | 0.0000 | 165.0000 | 1" Ice | 2.5703 | 2.5703 | 0.14 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 2.0212 | 1.2459 | 0.06 |
|  |  |  | 0.00 |  |  | 1/2" | 2.1999 | 1.3960 | 0.08 |
|  |  |  | 0.00 |  |  | Ice | 2.3860 | 1.5536 | 0.10 |
| DC9-48-60-24-8C-EV | A | From Leg |  | 0.0000 | 165.0000 | 1" Ice | 2.7804 | 1.8909 | 0.15 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 2.7366 | 4.7848 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" | 2.9630 | 5.0645 | 0.06 |
|  |  |  | 0.00 |  |  | Ice | 3.1964 | 5.3517 | 0.10 |
|  |  |  |  |  |  | 1" Ice | 3.6842 | 5.9483 | 0.20 |
|  |  |  |  |  |  | 2" Ice |  |  |  |
| RRUS 8843 B2/B66A | A | From Leg | 4.0000 | 0.0000 | 165.0000 | No Ice | 1.6390 | 1.3534 | 0.07 |


| Description | Face or Leg | Offset <br> Type | Offsets: Horz Lateral Vert ft ft ft | Azimuth Adjustmen $t$ | Placement ft |  | $C_{A} A_{A}$ Front $f t^{2}$ | $C_{A} A_{A}$ Side $f t^{2}$ | Weight K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RRUS 8843 B2/B66A | B | From Leg | 0.00 | 0.0000 | 165.0000 | 1/2" | 1.7988 | 1.5005 | 0.09 |
|  |  |  | 0.00 |  |  | Ice | 1.9660 | 1.6549 | 0.11 |
|  |  |  |  |  |  | 2" Ice | 2.3227 | 1.9860 | 0.16 |
|  |  |  | 4.0000 |  |  | No Ice | 1.6390 | 1.3534 | 0.07 |
|  |  |  | 0.00 |  |  | 1/2" | 1.7988 | 1.5005 | 0.09 |
|  |  |  | 0.00 |  |  | Ice | 1.9660 | 1.6549 | 0.11 |
| RRUS 8843 B2/B66A | C | From Leg |  | 0.0000 | 165.0000 | 1" Ice <br> 2" Ice | 2.3227 | 1.9860 | 0.16 |
|  |  |  | 4.0000 |  |  | No Ice | 1.6390 | 1.3534 | 0.07 |
|  |  |  | 0.00 |  |  | 1/2" | 1.7988 | 1.5005 | 0.09 |
|  |  |  | 0.00 |  |  | Ice | 1.9660 | 1.6549 | 0.11 |
| (3) RRUS 4449 B5/B12 | B | From Leg |  | 0.0000 | 165.0000 | $\begin{aligned} & 1 " \text { Ice } \\ & 2 " \text { Ice } \end{aligned}$ | 2.3227 | 1.9860 | 0.16 |
|  |  |  | 4.0000 |  |  | No Ice | 1.9675 | 1.4081 | 0.07 |
|  |  |  | 0.00 |  |  | 1/2" | 2.1439 | 1.5637 | 0.09 |
|  |  |  | 0.00 |  |  | Ice | 2.3278 | 1.7267 | 0.11 |
| Platform Mount [LP 7121_KCKR] | C | None |  | 0.0000 | 165.0000 | $\begin{aligned} & 1 " \text { Ice } \\ & 2 " \text { Ice } \end{aligned}$ | 2.7177 | 2.0749 | 0.16 |
|  |  |  |  |  |  | No Ice | 35.7800 | 35.7800 | 1.61 |
|  |  |  |  |  |  | 1/2" | 42.1400 | 42.1400 | 2.33 |
|  |  |  |  |  |  | Ice | 48.6600 | 48.6600 | 3.15 |
|  |  |  |  |  | 165.0000 | 1" Ice | 62.2300 | 62.2300 | 5.06 |
| Miscellaneous [NA 507-1] | C | None |  | 0.0000 |  | 2" Ice |  |  |  |
|  |  |  |  |  |  | No Ice | 4.5600 | 4.5600 | 0.25 |
|  |  |  |  |  |  | 1/2" | 6.3900 | 6.3900 | 0.31 |
|  |  |  |  |  |  | Ice | 8.1800 | 8.1800 | 0.40 |
|  |  |  |  | 0.0000 | 165.0000 | 1" Ice | 11.6600 | 11.6600 | 0.66 |
| 2.375" OD x 6' Mount Pipe | A | From Leg |  |  |  | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 1.4250 | 1.4250 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" | 1.9250 | 1.9250 | 0.04 |
|  |  |  | 0.00 |  |  | Ice | 2.2939 | 2.2939 | 0.05 |
|  |  | From Leg |  | 0.0000 | 165.0000 | 1" Ice | 3.0596 | 3.0596 | 0.09 |
| 2.375" OD x 6' Mount Pipe | B |  |  |  |  | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 1.4250 | 1.4250 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" | 1.9250 | 1.9250 | 0.04 |
|  |  |  | 0.00 |  |  | Ice | 2.2939 | 2.2939 | 0.05 |
|  | C | From Leg |  | 0.0000 |  | 1" Ice | 3.0596 | 3.0596 | 0.09 |
| 2.375" OD x 6' Mount Pipe |  |  |  |  | 165.0000 | 2" Ice |  |  |  |
|  |  |  | 4.0000 |  |  | No Ice | 1.4250 | 1.4250 | 0.03 |
|  |  |  | 0.00 |  |  | 1/2" | 1.9250 | 1.9250 | 0.04 |
|  |  |  | 0.00 |  |  | Ice | 2.2939 | 2.2939 | 0.05 |
|  |  |  |  |  |  | 1" Ice 2" Ice | 3.0596 | 3.0596 | 0.09 |

## Tower Pressures - No Ice

## $G_{H}=1.100$

| $\begin{gathered} \text { Section } \\ \text { Elevation } \\ \mathrm{ft} \end{gathered}$ | ft | $K_{z}$ | $\stackrel{q_{z}}{p s f}$ | $A_{G}$ $f t^{2}$ | $F$ <br> $a$ <br> $c$ <br> $e$ | $A_{F}$ $f t^{2}$ | AR $f t^{2}$ | $\begin{gathered} A_{l e g} \\ f_{12} \end{gathered}$ | $\begin{gathered} \hline \mathrm{Leg} \\ \% \end{gathered}$ | $\begin{gathered} \hline C_{A} A_{A} \\ \text { In } \\ \text { Face } \\ f^{2}{ }^{2} \\ \hline \end{gathered}$ | $C_{A} A_{A}$ Out Face $\mathrm{ft}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r\|} \hline \text { L1 } 190.0000- \\ 160.0000 \end{array}$ | 175.0000 | 1.16 | 48.53 | 60.000 | ABCA | A 0.000 | 60.000 | 60.000 | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  |  | 0.000 | 60.000 |  | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  |  | 0.000 | 60.000 |  | 100.00 | 2.250 | 0.000 |
| $\begin{array}{r} \text { L2 } 160.0000- \\ 140.0000 \end{array}$ | 150.0000 | 1.11 | 46.44 | 50.000 | A | 0.000 | 50.000 | 50.000 | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  | B | 0.000 | 50.000 |  | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  | C | 0.000 | 50.000 |  | 100.00 | 1.500 | 0.000 |
| $\begin{array}{r} \text { L3 } 140.0000- \\ 120.0000 \end{array}$ | 130.0000 | 1.065 | 44.58 | 60.000 | A | 0.000 | 60.000 | 60.000 | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  | B | 0.000 | 60.000 |  | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  | C | 0.000 | 60.000 |  | 100.00 | 1.500 | 0.000 |
| L4 120.0000- | 110.0000 | 1.016 | 42.50 | 70.000 | A | 0.000 | 70.000 | 70.000 | 100.00 | 3.896 | 0.000 |
| 100.0000 |  |  |  |  | B | 0.000 | 70.000 |  | 100.00 | 3.896 | 0.000 |

[^0]| Section Elevation ft | $\begin{aligned} & z \\ & f t \end{aligned}$ | $K_{z}$ | $\begin{gathered} q_{z} \\ p s f \end{gathered}$ | $\begin{aligned} & A_{G} \\ & {f t^{2}}^{2} \end{aligned}$ | $F$ $a$ $c$ $e$ | $\begin{aligned} & A_{F} \\ & f t^{2} \end{aligned}$ | $A_{R}$ $f t^{2}$ | $\begin{gathered} \overline{A_{l e g}} \\ f t^{2} \end{gathered}$ | $\begin{gathered} \mathrm{Leg} \\ \% \end{gathered}$ | $\begin{gathered} \mathrm{C}_{A} A_{A} \\ \operatorname{In} \\ \text { Face } \\ {f t^{2}}^{2} \end{gathered}$ | $C_{A} A_{A}$ Out Face $f t^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { L5 } 100.0000- \\ 80.0000 \end{array}$ | 90.0000 | 0.959 | 40.13 | 80.000 | C | 0.000 | 70.000 | 80.000 | 100.00 | 5.396 | 0.000 |
|  |  |  |  |  | A | 0.000 | 80.000 |  | 100.00 | 8.885 | 0.000 |
|  |  |  |  |  | B | 0.000 | 80.000 |  | 100.00 | 8.885 | 0.000 |
|  |  | 0.892 | 37.35 | 90.000 | C | 0.000 | 80.000 | 90.000 | 100.00 | 10.385 | 0.000 |
| $\begin{array}{r} \text { L6 80.0000- } \\ 60.0000 \end{array}$ | 70.0000 |  |  |  | A | 0.000 | 90.000 |  | 100.00 | 15.000 | 0.000 |
|  |  |  |  |  | B | 0.000 | 90.000 |  | 100.00 | 15.000 | 0.000 |
|  | 50.0000 | 0.811 | 33.93 | $\begin{array}{r} 100.00 \\ 0 \end{array}$ | C | 0.000 | 90.000 | 100.000 | 100.00 | 16.500 | 0.000 |
| $\begin{array}{r} \text { L7 } 60.0000- \\ 40.0000 \end{array}$ |  |  |  |  | A | 0.000 | 100.000 |  | 100.00 | 15.000 | 0.000 |
|  |  |  |  |  | B | 0.000 | 100.000 |  | 100.00 | 15.000 | 0.000 |
|  | 30.0000 | 0.701 | 29.32 |  | C | 0.000 | 100.000 | 100.000 | 100.00 | 16.500 | 0.000 |
| L8 40.0000- |  |  |  | $\begin{array}{r} 100.00 \\ 0 \end{array}$ | A | 0.000 | 100.000 |  | 100.00 | 4.681 | 0.000 |
| 20.0000 |  |  |  |  | B | 0.000 | 100.000 |  | 100.00 | 4.681 | 0.000 |
|  | 10.0000 | 0.7 | 29.30 |  | C | 0.000 | 100.000 | 100.000 | 100.00 | 6.181 | 0.000 |
| L9 20.0000- |  |  |  | 100.00 | A | 0.000 | 100.000 |  | 100.00 | 1.762 | 0.000 |
| 0.0000 |  |  |  | 0 | B | 0.000 | 100.000 |  | 100.00 | 1.762 | 0.000 |
|  |  |  |  |  | C | 0.000 | 100.000 |  | 100.00 | 2.512 | 0.000 |

## Tower Pressure - With Ice

## $G_{H}=1.100$

| Section Elevation ft | $\begin{aligned} & z \\ & f t \end{aligned}$ | $K_{z}$ | $\begin{gathered} q_{z} \\ p s f \end{gathered}$ | $\begin{aligned} & t_{z} \\ & i n \end{aligned}$ | $A_{G}$ $f t^{2}$ | F $a$ $c$ $e$ | $\begin{aligned} & A_{F} \\ & f t^{2} \end{aligned}$ | $\begin{aligned} & A_{R} \\ & {f t^{2}}^{2} \end{aligned}$ | $\begin{gathered} A_{l e g} \\ f t^{2} \end{gathered}$ | $\begin{gathered} \mathrm{Leg} \\ \% \end{gathered}$ | $\begin{gathered} C_{A} A_{A} \\ \operatorname{In} \\ \text { Face } \\ {f t^{2}}^{2} \end{gathered}$ | $C_{A} A_{A}$ <br> Out <br> Face <br> ft ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \hline \text { L1 } 190.0000- \\ 160.0000 \end{array}$ | 175.0000 | 1.16 | 6.66 | 1.5065 | 67.532 |  | A 0.000 | 67.532 | 67.532 | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  |  | B | 0.000 | 67.532 |  | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  |  | C | 0.000 | 67.532 |  | 100.00 | 11.289 | 0.000 |
| $\begin{array}{r} \text { L2 } 160.0000- \\ 140.0000 \end{array}$ | 150.0000 | 1.11 | 6.37 | 1.4834 | 54.945 | A | 0.000 | 54.945 | 54.945 | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  |  | B | 0.000 | 54.945 |  | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  |  | C | 0.000 | 54.945 |  | 100.00 | 7.434 | 0.000 |
| $\begin{array}{r} \text { L3 } 140.0000- \\ 120.0000 \end{array}$ | 130.0000 | 1.065 | 6.12 | 1.4624 | 64.875 | A | 0.000 | 64.875 | 64.875 | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  |  | B | 0.000 | 64.875 |  | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  |  | C | 0.000 | 64.875 |  | 100.00 | 7.349 | 0.000 |
| $\begin{array}{r} \text { L4 } 120.0000- \\ 100.0000 \end{array}$ | 110.0000 | 1.016 | 5.83 | 1.4381 | 74.794 | A | 0.000 | 74.794 | 74.794 | 100.00 | 5.073 | 0.000 |
|  |  |  |  |  |  | B | 0.000 | 74.794 |  | 100.00 | 5.073 | 0.000 |
|  |  |  |  |  |  | C | 0.000 | 74.794 |  | 100.00 | 12.326 | 0.000 |
| $\begin{array}{r} \text { L5 } 100.0000- \\ 80.0000 \end{array}$ | 90.0000 | 0.959 | 5.51 | 1.4096 | 84.699 | A | 0.000 | 84.699 | 84.699 | 100.00 | 12.145 | 0.000 |
|  |  |  |  |  |  | B | 0.000 | 84.699 |  | 100.00 | 12.145 | 0.000 |
|  |  |  |  |  |  | C | 0.000 | 84.699 |  | 100.00 | 19.283 | 0.000 |
| $\begin{array}{r} \text { L6 80.0000- } \\ 60.0000 \end{array}$ | 70.0000 | 0.892 | 5.12 | 1.3746 | 94.582 | A | 0.000 | 94.582 | 94.582 | 100.00 | 20.498 | 0.000 |
|  |  |  |  |  |  | B | 0.000 | 94.582 |  | 100.00 | 20.498 | 0.000 |
|  |  |  |  |  |  | C | 0.000 | 94.582 |  | 100.00 | 27.497 | 0.000 |
| $\begin{array}{r} \text { L7 60.0000- } \\ 40.0000 \end{array}$ | 50.0000 | 0.811 | 4.65 | 1.3291 | 104.430 | A | 0.000 | 104.430 | 104.430 | 100.00 | 20.316 | 0.000 |
|  |  |  |  |  |  | B | 0.000 | 104.430 |  | 100.00 | 20.316 | 0.000 |
|  |  |  |  |  |  | C | 0.000 | 104.430 |  | 100.00 | 27.133 | 0.000 |
| $\begin{array}{r} \text { L8 40.0000- } \\ 20.0000 \end{array}$ | 30.0000 | 0.701 | 4.02 | 1.2629 | 104.210 | A | 0.000 | 104.210 | 104.210 | 100.00 | 5.975 | 0.000 |
|  |  |  |  |  |  | B | 0.000 | 104.210 |  | 100.00 | 5.975 | 0.000 |
|  |  |  |  |  |  | C | 0.000 | 104.210 |  | 100.00 | 12.527 | 0.000 |
| L9 20.0000- | 10.0000 | 0.7 | 4.02 | 1.1315 | 103.772 | A | 0.000 | 103.772 | 103.772 | 100.00 | 2.097 | 0.000 |
| 0.0000 |  |  |  |  |  | B | 0.000 | 103.772 |  | 100.00 | 2.097 | 0.000 |
|  |  |  |  |  |  | C | 0.000 | 103.772 |  | 100.00 | 5.110 | 0.000 |

## Tower Pressure - Service

| Section Elevation ft | $\begin{aligned} & z \\ & f t \end{aligned}$ | $K_{z}$ | $\begin{gathered} q_{z} \\ p s f \end{gathered}$ | $\begin{aligned} & A_{G} \\ & f t^{2} \end{aligned}$ | F $a$ $c$ $e$ | $\begin{aligned} & A_{F} \\ & f t^{2} \end{aligned}$ | $\begin{aligned} & \hline A_{R} \\ & f t^{2} \end{aligned}$ | $\begin{gathered} A_{l e g} \\ f t^{2} \end{gathered}$ | $\begin{gathered} \mathrm{Leg} \\ \% \end{gathered}$ | $\begin{gathered} C_{A} A_{A} \\ \ln \\ \text { Face } \\ {f t^{2}}^{2} \end{gathered}$ | $\begin{gathered} C_{A} A_{A} \\ \text { Out } \\ \text { Face } \\ {f t^{2}}^{2} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \hline \text { L1 } 190.0000- \\ 160.0000 \end{array}$ | 175.0000 | 1.16 | 9.03 | 60.000 | A | 0.000 | 60.000 | 60.000 | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  | B | 0.000 | 60.000 |  | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  | C | 0.000 | 60.000 |  | 100.00 | 2.250 | 0.000 |
| L2 160.0000- | 150.0000 | 1.11 | 8.64 | 50.000 | A | 0.000 | 50.000 | 50.000 | 100.00 | 0.000 | 0.000 |
| 140.0000 |  |  |  |  | B | 0.000 | 50.000 |  | 100.00 | 0.000 | 0.000 |


| Section Elevation ft | $\begin{aligned} & z \\ & f t \end{aligned}$ | $K_{z}$ | $\begin{gathered} q_{z} \\ p s f \end{gathered}$ | $\begin{aligned} & A_{G} \\ & {f t^{2}}^{2} \end{aligned}$ | $F$ $a$ $c$ $e$ | $\begin{aligned} & A_{F} \\ & f t^{2} \end{aligned}$ | $A_{R}$ $f t^{2}$ | $\begin{gathered} A_{l e g} \\ f t^{2} \end{gathered}$ | $\begin{gathered} \mathrm{Leg} \\ \% \end{gathered}$ | $C_{A} A_{A}$ <br> In <br> Face $f t^{2}$ | $C_{A} A_{A}$ Out Face $f t^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { L3 } 140.0000- \\ 120.0000 \end{array}$ | 130.0000 | 1.065 | 8.29 | 60.000 | C | 0.000 | 50.000 | 60.000 | 100.00 | 1.500 | 0.000 |
|  |  |  |  |  | A | 0.000 | 60.000 |  | 100.00 | 0.000 | 0.000 |
|  |  |  |  |  | B | 0.000 | 60.000 |  | 100.00 | 0.000 | 0.000 |
|  |  | 1.016 | 7.91 | 70.000 | C | 0.000 | 60.000 |  | 100.00 | 1.500 | 0.000 |
| $\begin{array}{r} \text { L4 } 120.0000- \\ 100.0000 \end{array}$ | 110.0000 |  |  |  | A | 0.000 | 70.000 | 70.000 | 100.00 | 3.896 | 0.000 |
|  |  |  |  |  | B | 0.000 | 70.000 |  | 100.00 | 3.896 | 0.000 |
|  | 90.0000 | 0.959 | 7.47 | 80.000 | C | 0.000 | 70.000 |  | 100.00 | 5.396 | 0.000 |
| $\begin{array}{r} \text { L5 } 100.0000- \\ 80.0000 \end{array}$ |  |  |  |  | A | 0.000 | 80.000 | 80.000 | 100.00 | 8.885 | 0.000 |
|  |  |  |  |  | B | 0.000 | 80.000 |  | 100.00 | 8.885 | 0.000 |
|  | 70.0000 | 0.892 | 6.95 | 90.000 | C | 0.000 | 80.000 |  | 100.00 | 10.385 | 0.000 |
| $\begin{array}{r} \text { L6 80.0000- } \\ 60.0000 \end{array}$ |  |  |  |  | A | 0.000 | 90.000 | 90.000 | 100.00 | 15.000 | 0.000 |
|  |  |  |  |  | B | 0.000 | 90.000 |  | 100.00 | 15.000 | 0.000 |
|  | 50.0000 | 0.811 | 6.31 | $\begin{array}{r} 100.00 \\ 0 \end{array}$ | C | 0.000 | 90.000 | 100.000 | 100.00 | 16.500 | 0.000 |
| $\begin{array}{r} \text { L7 60.0000- } \\ 40.0000 \end{array}$ |  |  |  |  | A | 0.000 | 100.000 |  | 100.00 | 15.000 | 0.000 |
|  |  |  |  |  | B | 0.000 | 100.000 |  | 100.00 | 15.000 | 0.000 |
|  |  |  |  |  | C | 0.000 | 100.000 | 100.000 | 100.00 | 16.500 | 0.000 |
| $\begin{array}{r} \text { L8 } 40.0000- \\ 20.0000 \end{array}$ | 30.0000 | 0.701 | 5.45 | $\begin{array}{r} 100.00 \\ 0 \end{array}$ | A | 0.000 | 100.000 |  | 100.00 | 4.681 | 0.000 |
|  |  |  |  |  | B | 0.000 | 100.000 |  | 100.00 | 4.681 | 0.000 |
|  | 10.0000 | 0.7 | 5.45 |  | C | 0.000 | 100.000 | 100.000 | 100.00 | 6.181 | 0.000 |
| L9 20.0000- |  |  |  | 100.00 | A | 0.000 | 100.000 |  | 100.00 | 1.762 | 0.000 |
| 0.0000 |  |  |  | 0 | B | 0.000 | 100.000 |  | 100.00 | 1.762 | 0.000 |
|  |  |  |  |  | C | 0.000 | 100.000 |  | 100.00 | 2.512 | 0.000 |

## Load Combinations

| Comb. No. | Description |
| :---: | :---: |
| 1 | Dead Only |
| 2 | 1.2 Dead+1.0 Wind 0 deg - No Ice |
| 3 | 0.9 Dead+1.0 Wind 0 deg - No Ice |
| 4 | 1.2 Dead+1.0 Wind 30 deg - No Ice |
| 5 | 0.9 Dead+1.0 Wind 30 deg - No Ice |
| 6 | 1.2 Dead+1.0 Wind 60 deg - No Ice |
| 7 | 0.9 Dead+1.0 Wind 60 deg - No Ice |
| 8 | 1.2 Dead+1.0 Wind 90 deg - No Ice |
| 9 | 0.9 Dead+1.0 Wind 90 deg - No Ice |
| 10 | 1.2 Dead+1.0 Wind 120 deg - No Ice |
| 11 | 0.9 Dead+1.0 Wind 120 deg - No Ice |
| 12 | 1.2 Dead+1.0 Wind 150 deg - No Ice |
| 13 | 0.9 Dead+1.0 Wind 150 deg - No Ice |
| 14 | 1.2 Dead+1.0 Wind 180 deg - No Ice |
| 15 | 0.9 Dead+1.0 Wind 180 deg - No Ice |
| 16 | 1.2 Dead+1.0 Wind 210 deg - No Ice |
| 17 | 0.9 Dead+1.0 Wind 210 deg - No Ice |
| 18 | 1.2 Dead+1.0 Wind 240 deg - No Ice |
| 19 | 0.9 Dead+1.0 Wind 240 deg - No Ice |
| 20 | 1.2 Dead+1.0 Wind 270 deg - No Ice |
| 21 | 0.9 Dead+1.0 Wind 270 deg - No Ice |
| 22 | 1.2 Dead+1.0 Wind 300 deg - No Ice |
| 23 | 0.9 Dead+1.0 Wind 300 deg - No Ice |
| 24 | 1.2 Dead+1.0 Wind 330 deg - No Ice |
| 25 | 0.9 Dead+1.0 Wind 330 deg - No Ice |
| 26 | 1.2 Dead+1.0 Ice+1.0 Temp |
| 27 | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp |
| 28 | 1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0 \mathrm{Ice}+1.0$ Temp |
| 29 | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp |
| 30 | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp |
| 31 | 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp |
| 32 | 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp |
| 33 | 1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp |
| 34 | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp |
| 35 | 1.2 Dead+1.0 Wind $240 \mathrm{deg}+1.0$ Ice+1.0 Temp |
| 36 | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp |
| 37 | 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp |
| 38 | 1.2 Dead+1.0 Wind $330 \mathrm{deg}+1.0$ Ice+1.0 Temp |
| 39 | Dead+Wind 0 deg - Service |
| 40 | Dead+Wind 30 deg - Service |


| Comb. |  | Description |
| :---: | :--- | :--- |
| No. |  |  |
| 41 | Dead+Wind 60 deg - Service |  |
| 42 | Dead+Wind 90 deg - Service |  |
| 43 | Dead+Wind 120 deg - Service |  |
| 44 | Dead+Wind 150 deg - Service |  |
| 45 | Dead+Wind 180 deg - Service |  |
| 46 | Dead+Wind 210 deg - Service |  |
| 47 | Dead+Wind 240 deg - Service |  |
| 48 | Dead+Wind 270 deg - Service |  |
| 49 | Dead+Wind 300 deg - Service |  |
| 50 | Dead+Wind 330 deg - Service |  |

Maximum Member Forces

| Sectio $n$ No. | $\begin{aligned} & \text { Elevation } \\ & \quad f t \end{aligned}$ | Component Type | Condition | Gov. Load Comb. | Axial K | Major Axis Moment kip-ft | Minor Axis Moment kip-ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 190-160 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 |
|  |  |  | Max. Compression | 26 | -31.77 | -3.55 | 1.03 |
|  |  |  | Max. Mx | 8 | -13.95 | -288.32 | -0.54 |
|  |  |  | Max. My | 2 | -13.96 | -0.56 | 286.23 |
|  |  |  | Max. Vy | 8 | 17.18 | -288.32 | -0.54 |
|  |  |  | Max. Vx | 2 | -17.10 | -0.56 | 286.23 |
|  |  |  | Max. Torque | 25 |  |  | -1.93 |
| L2 | 160-140 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 |
|  |  |  | Max. Compression | 26 | -36.48 | -3.69 | 0.90 |
|  |  |  | Max. Mx | 8 | -17.53 | -648.19 | -2.17 |
|  |  |  | Max. My | 2 | -17.54 | 0.98 | 644.37 |
|  |  |  | Max. Vy | 8 | 18.78 | -648.19 | -2.17 |
|  |  |  | Max. Vx | 2 | -18.70 | 0.98 | 644.37 |
|  |  |  | Max. Torque | 25 |  |  | -1.93 |
| L3 | 140-120 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 |
|  |  |  | Max. Compression | 26 | -41.97 | -3.78 | 0.73 |
|  |  |  | Max. Mx | 8 | -21.72 | -1041.68 | -3.82 |
|  |  |  | Max. My | 2 | -21.73 | 2.55 | 1036.14 |
|  |  |  | Max. Vy | 8 | 20.55 | -1041.68 | -3.82 |
|  |  |  | Max. Vx | 2 | -20.47 | 2.55 | 1036.14 |
|  |  |  | Max. Torque | 25 |  |  | -1.92 |
| L4 | 120-100 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 |
|  |  |  | Max. Compression | 26 | -49.95 | -3.77 | 0.53 |
|  |  |  | Max. Mx | 8 | -28.00 | -1472.65 | -5.48 |
|  |  |  | Max. My | 2 | -28.01 | 4.13 | 1465.39 |
|  |  |  | Max. Vy | 8 | 22.53 | -1472.65 | -5.48 |
|  |  |  | Max. Vx | 2 | -22.45 | 4.13 | 1465.39 |
|  |  |  | Max. Torque | 25 |  |  | -1.92 |
| L5 | 100-80 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 |
|  |  |  | Max. Compression | 26 | -58.26 | -3.75 | 0.30 |
|  |  |  | Max. Mx | 8 | -34.34 | -1943.63 | -7.15 |
|  |  |  | Max. My | 2 | -34.35 | 5.71 | 1934.65 |
|  |  |  | Max. Vy | 8 | 24.56 | -1943.63 | -7.15 |
|  |  |  | Max. Vx | 2 | -24.48 | 5.71 | $1934.65$ |
|  |  |  | Max. Torque | 25 |  |  | $-1.92$ |
| L6 | 80-60 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 |
|  |  |  | Max. Compression | 26 | -67.61 | -3.73 | 0.06 |
|  |  |  | Max. Mx | 8 | -41.42 | -2455.39 | -8.83 |
|  |  |  | Max. My | 2 | -41.43 | 7.28 | 2444.71 |
|  |  |  | Max. Vy | 8 | 26.62 | -2455.39 | -8.83 |
|  |  |  | Max. Vx | 2 | -26.53 | 7.28 | 2444.71 |
|  |  |  | Max. Torque | 25 |  |  | -1.92 |
| L7 | 60-40 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 |
|  |  |  | Max. Compression | 26 | -77.64 | -3.71 | -0.21 |
|  |  |  | Max. Mx | 8 | -49.09 | -3007.61 | -10.49 |
|  |  |  | Max. My | 14 | -49.10 | -12.11 | -2995.25 |
|  |  |  | Max. Vy | 8 | 28.61 | -3007.61 | -10.49 |
|  |  |  | Max. Vx | 14 | 28.53 | -12.11 | -2995.25 |
|  |  |  | Max. Torque | 25 |  |  | -1.92 |
| L8 | 40-20 | Pole | Max Tension | 1 | 0.00 | 0.00 | 0.00 |
|  |  |  | Max. Compression | 26 | -88.39 | -3.69 | -0.46 |
|  |  |  | Max. Mx | 8 | -57.95 | -3595.89 | -12.14 |
|  |  |  | Max. My | 14 | -57.95 | -13.67 | -3582.04 |

tnxTower Report - version 8.0.5.0

| Sectio | Elevation <br> $n$ | $f t$ | Component |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type |  |  |  |

## Maximum Reactions

| Location | Condition | Gov. <br> Load <br> Comb. | Vertical K | $\begin{gathered} \text { Horizontal, X } \\ K \end{gathered}$ | $\begin{gathered} \text { Horizontal, Z } \\ K \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pole | Max. Vert | 26 | 100.46 | 0.00 | -0.00 |
|  | Max. $\mathrm{H}_{\mathrm{x}}$ | 20 | 68.47 | 31.70 | 0.08 |
|  | Max. $\mathrm{Hz}_{\mathrm{z}}$ | 3 | 51.35 | 0.08 | 31.62 |
|  | Max. $\mathrm{M}_{\mathrm{x}}$ | 2 | 4199.60 | 0.08 | 31.62 |
|  | Max. $\mathrm{M}_{\mathrm{z}}$ | 8 | 4215.25 | -31.70 | -0.08 |
|  | Max. Torsion | 13 | 1.91 | -15.92 | -27.42 |
|  | Min. Vert | 9 | 51.35 | -31.70 | -0.08 |
|  | Min. $\mathrm{H}_{\mathrm{x}}$ | 9 | 51.35 | -31.70 | -0.08 |
|  | Min. $\mathrm{H}_{\mathrm{z}}$ | 15 | 51.35 | -0.08 | -31.62 |
|  | Min. $\mathrm{M}_{\mathrm{x}}$ | 14 | -4199.89 | -0.08 | -31.62 |
|  | Min. $\mathrm{M}_{\mathrm{z}}$ | 20 | -4212.50 | 31.70 | 0.08 |
|  | Min. Torsion | 25 | -1.92 | 15.92 | 27.42 |

## Tower Mast Reaction Summary

| Load Combination | Vertical K | Shear ${ }_{x}$ $K$ | Shear $_{z}$ K | Overturning Moment, $M_{x}$ kip-ft | Overturning Moment, $M_{z}$ kip-ft | Torque kip-ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dead Only | 57.06 | -0.00 | 0.00 | 0.13 | -1.25 | 0.00 |
| 1.2 Dead+1.0 Wind 0 deg - | 68.47 | -0.08 | -31.62 | -4199.60 | 11.93 | 1.65 |
| No lce 0.9 Dead+1.0 Wind 0 deg - | 51.35 | -0.08 | -31.62 | -4152.73 | 12.20 | 1.66 |
| No lce |  |  |  |  |  |  |
| 1.2 Dead+1.0 Wind 30 deg No Ice | 68.47 | 15.79 | -27.35 | -3630.65 | -2097.26 | 0.96 |
| 0.9 Dead+1.0 Wind 30 deg No Ice | 51.35 | 15.79 | -27.35 | -3589.97 | -2073.33 | 0.96 |
| 1.2 Dead+1.0 Wind 60 deg No Ice | 68.47 | 27.42 | -15.75 | -2088.25 | -3644.92 | 0.00 |
| 0.9 Dead+1.0 Wind 60 deg No Ice | 51.35 | 27.42 | -15.75 | -2064.88 | -3603.62 | 0.01 |
| 1.2 Dead+1.0 Wind 90 deg No Ice | 68.47 | 31.70 | 0.08 | 13.72 | -4215.25 | -0.95 |
| 0.9 Dead+1.0 Wind 90 deg No Ice | 51.35 | 31.70 | 0.08 | 13.52 | -4167.91 | -0.95 |
| 1.2 Dead+1.0 Wind 120 deg <br> - No Ice | 68.47 | 27.49 | 15.88 | 2112.03 | -3658.44 | -1.64 |
| 0.9 Dead+1.0 Wind 120 deg <br> - No Ice | 51.35 | 27.49 | 15.88 | 2088.30 | -3616.97 | -1.65 |
| 1.2 Dead+1.0 Wind 150 deg <br> - No Ice | 68.47 | 15.92 | 27.42 | 3644.47 | -2120.73 | -1.90 |
| 0.9 Dead+1.0 Wind 150 deg <br> - No Ice | 51.35 | 15.92 | 27.42 | 3603.57 | -2096.52 | -1.91 |
| 1.2 Dead+1.0 Wind 180 deg <br> - No Ice | 68.47 | 0.08 | 31.62 | 4199.89 | -15.20 | -1.64 |
| 0.9 Dead+1.0 Wind 180 deg <br> - No Ice | 51.35 | 0.08 | 31.62 | 4152.96 | -14.60 | -1.66 |


| Load Combination | Vertical K | Shear ${ }_{x}$ K | Shear $_{z}$ K | Overturning Moment, $M_{x}$ kip-ft | Overturning Moment, $M_{z}$ kip-ft | Torque kip-ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.2 Dead+1.0 Wind 210 deg - No Ice | 68.47 | -15.79 | 27.35 | 3630.94 | 2093.98 | -0.96 |
| 0.9 Dead+1.0 Wind 210 deg <br> - No Ice | 51.35 | -15.79 | 27.35 | 3590.20 | 2070.92 | -0.96 |
| 1.2 Dead+1.0 Wind 240 deg <br> - No Ice | 68.47 | -27.42 | 15.75 | 2088.55 | 3641.63 | -0.01 |
| 0.9 Dead+1.0 Wind 240 deg <br> - No Ice | 51.35 | -27.42 | 15.75 | 2065.11 | 3601.21 | -0.01 |
| 1.2 Dead+1.0 Wind 270 deg <br> - No Ice | 68.47 | -31.70 | -0.08 | -13.41 | 4212.50 | 0.94 |
| 0.9 Dead+1.0 Wind 270 deg <br> - No Ice | 51.35 | -31.70 | -0.08 | -13.28 | 4165.50 | 0.94 |
| 1.2 Dead+1.0 Wind 300 deg <br> - No Ice | 68.47 | -27.49 | -15.88 | -2111.72 | 3655.17 | 1.64 |
| 0.9 Dead+1.0 Wind 300 deg <br> - No Ice | 51.35 | -27.49 | -15.88 | -2088.07 | 3614.59 | 1.65 |
| 1.2 Dead+1.0 Wind 330 deg <br> - No Ice | 68.47 | -15.92 | -27.42 | -3644.17 | 2117.47 | 1.90 |
| 0.9 Dead+1.0 Wind 330 deg <br> - No Ice | 51.35 | -15.92 | -27.42 | -3603.33 | 2094.12 | 1.92 |
| 1.2 Dead+1.0 Ice+1.0 Temp | 100.46 | -0.00 | 0.00 | 0.57 | -3.67 | 0.00 |
| 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp | 100.46 | -0.01 | -8.11 | -1062.31 | -1.63 | 0.33 |
| 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp | 100.46 | 4.05 | -7.02 | -918.70 | -534.68 | 0.21 |
| 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp | 100.46 | 7.03 | -4.05 | -528.77 | -925.54 | 0.04 |
| 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp | 100.46 | 8.13 | 0.01 | 2.99 | -1069.50 | -0.14 |
| 1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp | 100.46 | 7.05 | 4.07 | 534.10 | -927.97 | -0.29 |
| 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp | 100.46 | 4.08 | 7.03 | 922.25 | -538.89 | -0.36 |
| 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp | 100.46 | 0.01 | 8.11 | 1063.43 | -6.50 | -0.33 |
| 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp | 100.46 | -4.05 | 7.02 | 919.82 | 526.54 | -0.21 |
| 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp | 100.46 | -7.03 | 4.05 | 529.89 | 917.40 | -0.04 |
| 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp | 100.46 | -8.13 | -0.01 | -1.87 | 1061.36 | 0.14 |
| 1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp | 100.46 | -7.05 | -4.07 | -532.98 | 919.84 | 0.29 |
| 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp | 100.46 | -4.08 | -7.03 | -921.13 | 530.75 | 0.36 |
| Dead+Wind 0 deg - Service | 57.06 | -0.01 | -5.88 | -776.00 | 1.15 | 0.31 |
| Dead+Wind 30 deg - Service | 57.06 | 2.94 | -5.09 | -670.76 | -388.58 | 0.18 |
| Dead+Wind 60 deg - Service | 57.06 | 5.10 | -2.93 | -385.77 | -674.55 | 0.00 |
| Dead+Wind 90 deg - Service | 57.06 | 5.90 | 0.01 | 2.63 | -780.14 | -0.18 |
| Dead+Wind 120 deg - | 57.06 | 5.11 | 2.95 | 390.35 | -677.06 | -0.31 |
| Service Dead+Wind 150 deg - | 57.06 | 2.96 | 5.10 | 673.51 | -392.92 | -0.36 |
| Service <br> Dead+Wind 180 deg Service | 57.06 | 0.01 | 5.88 | 776.24 | -3.87 | -0.31 |
| Dead+Wind 210 deg Service | 57.06 | -2.94 | 5.09 | 671.01 | 385.86 | -0.18 |
| Dead+Wind 240 deg Service | 57.06 | -5.10 | 2.93 | 386.01 | 671.83 | -0.00 |
| Dead+Wind 270 deg Service | 57.06 | -5.90 | -0.01 | -2.38 | 777.42 | 0.18 |
| Dead+Wind 300 deg Service | 57.06 | -5.11 | -2.95 | -390.11 | 674.34 | 0.31 |
| Dead+Wind 330 deg Service | 57.06 | -2.96 | -5.10 | -673.27 | 390.20 | 0.36 |

## Solution Summary

|  | Sum of Applied Forces |  |  | Sum of Reactions |  |  | \% Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Load | $P X$ | PY | $P Z$ | $P X$ | PY | $P Z$ |  |
| Comb. | K | K | K | K | K | K |  |
| 1 | 0.00 | -57.06 | 0.00 | 0.00 | 57.06 | -0.00 | 0.000\% |
| 2 | -0.08 | -68.47 | -31.62 | 0.08 | 68.47 | 31.62 | 0.005\% |
| 3 | -0.08 | -51.35 | -31.62 | 0.08 | 51.35 | 31.62 | 0.004\% |
| 4 | 15.79 | -68.47 | -27.35 | -15.79 | 68.47 | 27.35 | 0.000\% |
| 5 | 15.79 | -51.35 | -27.35 | -15.79 | 51.35 | 27.35 | 0.000\% |
| 6 | 27.42 | -68.47 | -15.75 | -27.42 | 68.47 | 15.75 | 0.000\% |
| 7 | 27.42 | -51.35 | -15.75 | -27.42 | 51.35 | 15.75 | 0.000\% |
| 8 | 31.70 | -68.47 | 0.08 | -31.70 | 68.47 | -0.08 | 0.010\% |
| 9 | 31.70 | -51.35 | 0.08 | -31.70 | 51.35 | -0.08 | 0.008\% |
| 10 | 27.49 | -68.47 | 15.88 | -27.49 | 68.47 | -15.88 | 0.000\% |
| 11 | 27.49 | -51.35 | 15.88 | -27.49 | 51.35 | -15.88 | 0.000\% |
| 12 | 15.92 | -68.47 | 27.42 | -15.92 | 68.47 | -27.42 | 0.000\% |
| 13 | 15.92 | -51.35 | 27.42 | -15.92 | 51.35 | -27.42 | 0.000\% |
| 14 | 0.08 | -68.47 | 31.62 | -0.08 | 68.47 | -31.62 | 0.005\% |
| 15 | 0.08 | -51.35 | 31.62 | -0.08 | 51.35 | -31.62 | 0.004\% |
| 16 | -15.79 | -68.47 | 27.35 | 15.79 | 68.47 | -27.35 | 0.000\% |
| 17 | -15.79 | -51.35 | 27.35 | 15.79 | 51.35 | -27.35 | 0.000\% |
| 18 | -27.42 | -68.47 | 15.75 | 27.42 | 68.47 | -15.75 | 0.000\% |
| 19 | -27.42 | -51.35 | 15.75 | 27.42 | 51.35 | -15.75 | 0.000\% |
| 20 | -31.70 | -68.47 | -0.08 | 31.70 | 68.47 | 0.08 | 0.005\% |
| 21 | -31.70 | -51.35 | -0.08 | 31.70 | 51.35 | 0.08 | 0.008\% |
| 22 | -27.49 | -68.47 | -15.88 | 27.49 | 68.47 | 15.88 | 0.000\% |
| 23 | -27.49 | -51.35 | -15.88 | 27.49 | 51.35 | 15.88 | 0.000\% |
| 24 | -15.92 | -68.47 | -27.42 | 15.92 | 68.47 | 27.42 | 0.000\% |
| 25 | -15.92 | -51.35 | -27.42 | 15.92 | 51.35 | 27.42 | 0.000\% |
| 26 | 0.00 | -100.46 | 0.00 | 0.00 | 100.46 | -0.00 | 0.001\% |
| 27 | -0.01 | -100.46 | -8.12 | 0.01 | 100.46 | 8.11 | 0.000\% |
| 28 | 4.05 | -100.46 | -7.02 | -4.05 | 100.46 | 7.02 | 0.000\% |
| 29 | 7.03 | -100.46 | -4.05 | -7.03 | 100.46 | 4.05 | 0.000\% |
| 30 | 8.13 | -100.46 | 0.01 | -8.13 | 100.46 | -0.01 | 0.000\% |
| 31 | 7.05 | -100.46 | 4.07 | -7.05 | 100.46 | -4.07 | 0.000\% |
| 32 | 4.08 | -100.46 | 7.03 | -4.08 | 100.46 | -7.03 | 0.000\% |
| 33 | 0.01 | -100.46 | 8.12 | -0.01 | 100.46 | -8.11 | 0.000\% |
| 34 | -4.05 | -100.46 | 7.02 | 4.05 | 100.46 | -7.02 | 0.000\% |
| 35 | -7.03 | -100.46 | 4.05 | 7.03 | 100.46 | -4.05 | 0.000\% |
| 36 | -8.13 | -100.46 | -0.01 | 8.13 | 100.46 | 0.01 | 0.000\% |
| 37 | -7.05 | -100.46 | -4.07 | 7.05 | 100.46 | 4.07 | 0.000\% |
| 38 | -4.08 | -100.46 | -7.03 | 4.08 | 100.46 | 7.03 | 0.000\% |
| 39 | -0.01 | -57.06 | -5.88 | 0.01 | 57.06 | 5.88 | 0.002\% |
| 40 | 2.94 | -57.06 | -5.09 | -2.94 | 57.06 | 5.09 | 0.002\% |
| 41 | 5.10 | -57.06 | -2.93 | -5.10 | 57.06 | 2.93 | 0.002\% |
| 42 | 5.90 | -57.06 | 0.01 | -5.90 | 57.06 | -0.01 | 0.002\% |
| 43 | 5.12 | -57.06 | 2.95 | -5.11 | 57.06 | -2.95 | 0.002\% |
| 44 | 2.96 | -57.06 | 5.10 | -2.96 | 57.06 | -5.10 | 0.002\% |
| 45 | 0.01 | -57.06 | 5.88 | -0.01 | 57.06 | -5.88 | 0.002\% |
| 46 | -2.94 | -57.06 | 5.09 | 2.94 | 57.06 | -5.09 | 0.002\% |
| 47 | -5.10 | -57.06 | 2.93 | 5.10 | 57.06 | -2.93 | 0.002\% |
| 48 | -5.90 | -57.06 | -0.01 | 5.90 | 57.06 | 0.01 | 0.002\% |
| 49 | -5.12 | -57.06 | -2.95 | 5.11 | 57.06 | 2.95 | 0.002\% |
| 50 | -2.96 | -57.06 | -5.10 | 2.96 | 57.06 | 5.10 | 0.002\% |

## Non-Linear Convergence Results

| Load Combination | Converged? | Number of Cycles | Displacement Tolerance | Force Tolerance |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Yes | 6 | 0.00000001 | 0.00003115 |
| 2 | Yes | 17 | 0.00006447 | 0.00010775 |
| 3 | Yes | 17 | 0.00004330 | 0.00009206 |
| 4 | Yes | 22 | 0.00000001 | 0.00009909 |
| 5 | Yes | 21 | 0.00000001 | 0.00014861 |
| 6 | Yes | 22 | 0.00000001 | 0.00009780 |
| 7 | Yes | 21 | 0.00000001 | 0.00014654 |
| 8 | Yes | 16 | 0.00012375 | 0.00010090 |
| 9 | Yes | 16 | 0.00008428 | 0.00009291 |
| 10 | Yes | 22 | 0.00000001 | 0.00009751 |
| 11 | Yes | 21 | 0.00000001 | 0.00014588 |
| 12 | Yes | 22 | 0.00000001 | 0.00010247 |
| 13 | Yes | 22 | 0.00000001 | 0.00007702 |
| 14 | Yes | 17 | 0.00006447 | 0.00014847 |
| 15 | Yes | 17 | 0.00004330 | 0.00012471 |
| 16 | Yes | 22 | 0.00000001 | 0.00009591 |
| 17 | Yes | 21 | 0.00000001 | 0.00014379 |
| 18 | Yes | 22 | 0.00000001 | 0.00009744 |
| 19 | Yes | 21 | 0.00000001 | 0.00014616 |
| 20 | Yes | 17 | 0.00006445 | 0.00009380 |
| 21 | Yes | 16 | 0.00008429 | 0.00014836 |
| 22 | Yes | 22 | 0.00000001 | 0.00010192 |
| 23 | Yes | 22 | 0.00000001 | 0.00007664 |
| 24 | Yes | 22 | 0.00000001 | 0.00009672 |
| 25 | Yes | 21 | 0.00000001 | 0.00014483 |
| 26 | Yes | 10 | 0.00000001 | 0.00003478 |
| 27 | Yes | 19 | 0.00000001 | 0.00013037 |
| 28 | Yes | 19 | 0.00000001 | 0.00014584 |
| 29 | Yes | 19 | 0.00000001 | 0.00014600 |
| 30 | Yes | 19 | 0.00000001 | 0.00013179 |
| 31 | Yes | 19 | 0.00000001 | 0.00014652 |
| 32 | Yes | 19 | 0.00000001 | 0.00014660 |
| 33 | Yes | 19 | 0.00000001 | 0.00013013 |
| 34 | Yes | 19 | 0.00000001 | 0.00014319 |
| 35 | Yes | 19 | 0.00000001 | 0.00014333 |
| 36 | Yes | 19 | 0.00000001 | 0.00012932 |
| 37 | Yes | 19 | 0.00000001 | 0.00014461 |
| 38 | Yes | 19 | 0.00000001 | 0.00014425 |
| 39 | Yes | 16 | 0.00010065 | 0.00001467 |
| 40 | Yes | 16 | 0.00010063 | 0.00003380 |
| 41 | Yes | 16 | 0.00010065 | 0.00003081 |
| 42 | Yes | 16 | 0.00010070 | 0.00001276 |
| 43 | Yes | 16 | 0.00010064 | 0.00002761 |
| 44 | Yes | 16 | 0.00010061 | 0.00003780 |
| 45 | Yes | 16 | 0.00010062 | 0.00001498 |
| 46 | Yes | 16 | 0.00010055 | 0.00002762 |
| 47 | Yes | 16 | 0.00010053 | 0.00003024 |
| 48 | Yes | 16 | 0.00010058 | 0.00001287 |
| 49 | Yes | 16 | 0.00010055 | 0.00003645 |
| 50 | Yes | 16 | 0.00010058 | 0.00002669 |

## Maximum Tower Deflections - Service Wind

| Section <br> No. | Elevation <br> ft | Horz. <br> Deflection <br> in | Gov. <br> Load <br> Comb. | Tilt <br> 0 | Twist <br> o |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | $190-160$ | 18.817 | 43 | 0.9506 | 0.0023 |
| L2 | $160-140$ | 13.021 | 43 | 0.8578 | 0.0018 |
| L3 | $140-120$ | 9.664 | 43 | 0.7290 | 0.0011 |
| L4 | $120-100$ | 6.868 | 43 | 0.5956 | 0.0007 |
| L5 | $100-80$ | 4.619 | 43 | 0.4711 | 0.0005 |
| L6 | $80-60$ | 2.871 | 43 | 0.3582 | 0.0003 |
| L7 | $60-40$ | 1.576 | 43 | 0.2563 | 0.0002 |
| L8 | $40-20$ | 0.689 | 43 | 0.1642 | 0.0001 |
| L9 | $20-0$ | 0.172 | 43 | 0.0801 | 0.0001 |

## Critical Deflections and Radius of Curvature - Service Wind

| Elevation ft | Appurtenance | Gov. Load Comb. | Deflection in | Tilt | Twist | Radius of Curvature ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 190.0000 | AIR 32 B2A/B66AA w/ Mount Pipe | 43 | 18.817 | 0.9506 | 0.0023 | 58628 |
| 173.0000 | (2) SBNHH-1D65B w/ Mount Pipe | 43 | 15.462 | 0.9100 | 0.0021 | 17243 |
| 165.0000 | SBNHH-1D65A w/ Mount Pipe | 43 | 13.941 | 0.8812 | 0.0019 | 11725 |

## Maximum Tower Deflections - Design Wind

| Section <br> No. | Elevation <br> $f t$ | Horz. <br> Deflection <br> in | Gov. <br> Load <br> Comb. | Tilt <br> $\circ$ | Twist <br> $\circ$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | $190-160$ | 101.615 | 10 | 5.1349 | 0.0121 |
| L2 | $160-140$ | 70.375 | 10 | 4.6362 | 0.0096 |
| L3 | $140-120$ | 52.250 | 10 | 3.9434 | 0.0060 |
| L4 | $120-100$ | 37.142 | 10 | 3.2224 | 0.0039 |
| L5 | $100-80$ | 24.983 | 10 | 2.5492 | 0.0026 |
| L6 | $80-60$ | 15.530 | 10 | 1.9380 | 0.0017 |
| L7 | $60-40$ | 8.525 | 10 | 1.3865 | 0.0011 |
| L8 | $40-20$ | 3.727 | 10 | 0.8880 | 0.0006 |
| L9 | $20-0$ | 0.931 | 10 | 0.4332 | 0.0003 |

## Critical Deflections and Radius of Curvature - Design Wind

| Elevation ft | Appurtenance | Gov. <br> Load <br> Comb. | Deflection in | Tilt | Twist | Radius of Curvature ft |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 190.0000 | AIR 32 B2A/B66AA w/ Mount Pipe | 10 | 101.615 | 5.1349 | 0.0121 | 11126 |
| 173.0000 | (2) SBNHH-1D65B w/ Mount Pipe | 10 | 83.535 | 4.9164 | 0.0111 | 3270 |
| 165.0000 | SBNHH-1D65A w/ Mount Pipe | 10 | 75.332 | 4.7617 | 0.0103 | 2222 |

## Compression Checks Pole Design Data

| Section No. | Elevation <br> ft | Size | $\begin{aligned} & L \\ & f t \end{aligned}$ | $\begin{aligned} & L_{u} \\ & f t \end{aligned}$ | K//r | $\begin{gathered} A \\ i n^{2} \end{gathered}$ | $\begin{gathered} P_{u} \\ K \end{gathered}$ | $\begin{gathered} \phi P_{n} \\ K \end{gathered}$ | $\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | $\phi P_{n}$ |
| L1 | 190-160 (1) | P24x0.375 | $\begin{gathered} 30.000 \\ 0 \end{gathered}$ | 0.0000 | 0.0 | $\begin{gathered} 27.832 \\ 5 \end{gathered}$ | -13.94 | 1052.07 | 0.013 |
| L2 | 160-140 (2) | 30 " $0.375{ }^{\prime \prime}$ | $\begin{gathered} 20.000 \\ 0 \end{gathered}$ | 0.0000 | 0.0 | $\begin{gathered} 34.901 \\ 1 \end{gathered}$ | -17.52 | 1311.06 | 0.013 |
| L3 | 140-120 (3) | $36 " \times 0.375{ }^{\prime \prime}$ | $\begin{gathered} 20.000 \\ 0 \end{gathered}$ | 0.0000 | 0.0 | $\begin{gathered} 41.969 \\ 7 \end{gathered}$ | -21.72 | 1490.10 | 0.015 |
| L4 | 120-100 (4) | $42^{\prime \prime} \times 0.375{ }^{\prime \prime}$ | $\begin{gathered} 20.000 \\ 0 \end{gathered}$ | 0.0000 | 0.0 | $\begin{gathered} 49.038 \\ 3 \end{gathered}$ | -27.99 | 1668.87 | 0.017 |
| L5 | 100-80 (5) | P48x0.375 | $\begin{gathered} 20.000 \\ 0 \end{gathered}$ | 0.0000 | 0.0 | $\begin{gathered} 56.106 \\ 9 \end{gathered}$ | -34.34 | 1847.49 | 0.019 |
| L6 | 80-60 (6) | P54×3/8 | $\begin{gathered} 20.000 \\ 0 \end{gathered}$ | 0.0000 | 0.0 | $\begin{gathered} 63.175 \\ 5 \end{gathered}$ | -41.42 | 2026.00 | 0.020 |
| L7 | 60-40 (7) | P60x3/8 | $\begin{gathered} 20.000 \\ 0 \end{gathered}$ | 0.0000 | 0.0 | $\begin{gathered} 70.244 \\ 0 \end{gathered}$ | -49.09 | 2204.43 | 0.022 |
| L8 | 40-20 (8) | P60x1/2 | $\begin{gathered} 20.000 \\ 0 \end{gathered}$ | 0.0000 | 0.0 | $\begin{gathered} 93.462 \\ 4 \end{gathered}$ | -57.94 | 3125.69 | 0.019 |
| L9 | 20-0 (9) | P60x5/8 | $\begin{gathered} 20.000 \\ 0 \end{gathered}$ | 0.0000 | 0.0 | $\begin{gathered} 116.58 \\ 30 \end{gathered}$ | -68.46 | 4139.15 | 0.017 |

## Pole Bending Design Data

| Section <br> No. | Elevation <br> $f t$ | Size | $M_{u x}$ <br> $k i p-f t$ | $\phi M_{n x}$ <br> $k i p-f t$ | Ratio <br> $M_{u x}$ | $M_{u y}$ <br> $k i p-f t$ | $\phi M_{n y}$ <br> $k i p-f t$ | Ratio <br> $M_{u y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Pole Shear Design Data

| Section No. | Elevation ft | Size | Actual $V_{u}$ K | $\begin{gathered} \phi V_{n} \\ K \end{gathered}$ | Ratio $V_{u}$ $\phi V_{n}$ | Actual $T_{u}$ kip-ft | $\begin{gathered} \phi T_{n} \\ \text { kip-ft } \end{gathered}$ | Ratio $T_{u}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 190-160 (1) | P24x0.375 | 17.24 | 315.62 | 0.055 | 1.65 | 655.57 | 0.003 |
| L2 | 160-140 (2) | 30" $\times 0.375^{\prime \prime}$ | 18.84 | 395.78 | 0.048 | 1.65 | 994.73 | 0.002 |
| L3 | 140-120 (3) | $36 " \times 0.375^{\prime \prime}$ | 20.61 | 454.19 | 0.045 | 1.65 | 1094.28 | 0.002 |
| L4 | 120-100 (4) | 42" x 0.375" | 22.58 | 421.13 | 0.054 | 1.65 | 1185.51 | 0.001 |
| L5 | 100-80 (5) | P48x0.375 | 24.61 | 394.81 | 0.062 | 1.64 | 1270.83 | 0.001 |
| L6 | 80-60 (6) | P54x3/8 | 26.66 | 406.96 | 0.066 | 1.64 | 1474.98 | 0.001 |
| L7 | 60-40 (7) | P60x3/8 | 28.66 | 418.12 | 0.069 | 1.64 | 1684.97 | 0.001 |
| L8 | 40-20 (8) | P60x1/2 | 30.27 | 797.08 | 0.038 | 1.64 | 3205.39 | 0.001 |
| L9 | 20-0 (9) | P60x5/8 | 31.76 | 1314.11 | 0.024 | 1.64 | 5273.53 | 0.000 |

## Pole Interaction Design Data

| No. | Elevation ft | Ratio $P_{u}$ | Ratio $M_{u x}$ | Ratio $M_{u y}$ | Ratio $V_{u}$ | Ratio $T_{u}$ | Comb. Stress | Allow. Stress | Criteria |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\phi P_{n}$ | $\phi M_{n x}$ | $\phi M_{n y}$ | $\phi V_{n}$ | $\phi T_{n}$ | Ratio | Ratio |  |
| L1 | 190-160 (1) | 0.013 | 0.463 | 0.000 | 0.055 | 0.003 | 0.479 | 1.050 | 4.8 .2 |
| L2 | 160-140 (2) | 0.013 | 0.685 | 0.000 | 0.048 | 0.002 | 0.701 | 1.050 | 4.8.2 |
| L3 | 140-120 (3) | 0.015 | 0.780 | 0.000 | 0.045 | 0.002 | 0.797 | 1.050 | 4.8 .2 |
| L4 | 120-100 (4) | 0.017 | 0.822 | 0.000 | 0.054 | 0.001 | 0.841 | 1.050 | 4.8 .2 |
| L5 | 100-80 (5) | 0.019 | 0.839 | 0.000 | 0.062 | 0.001 | 0.862 | 1.050 | 4.8 .2 |
| L6 | 80-60 (6) | 0.020 | 0.845 | 0.000 | 0.066 | 0.001 | 0.870 | 1.050 | 4.8 .2 |
| L7 | 60-40 (7) | 0.022 | 0.844 | 0.000 | 0.069 | 0.001 | 0.871 | 1.050 | 4.8 .2 |
| L8 | 40-20 (8) | 0.019 | 0.741 | 0.000 | 0.038 | 0.001 | 0.761 | 1.050 | 4.8 .2 |
| L9 | 20-0 (9) | 0.017 | 0.682 | 0.000 | 0.024 | 0.000 | 0.699 | 1.050 | 4.8 .2 |

## Section Capacity Table

| Section No. | Elevation ft | Component Type | Size | Critical Element | $\begin{aligned} & P \\ & K \end{aligned}$ | $\begin{gathered} \varnothing P_{\text {allow }} \\ K \end{gathered}$ | \% <br> Capacity | Pass Fail |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L1 | 190-160 | Pole | P24x0.375 | 1 | -13.94 | 1104.67 | 45.6 | Pass |
| L2 | 160-140 | Pole | $30^{\prime \prime} \times 0.375^{\prime \prime}$ | 2 | -17.52 | 1376.61 | 66.8 | Pass |
| L3 | 140-120 | Pole | $36 " \times 0.375^{\prime \prime}$ | 3 | -21.72 | 1564.60 | 75.9 | Pass |
| L4 | 120-100 | Pole | 42" $\times 0.375^{\prime \prime}$ | 4 | -27.99 | 1752.31 | 80.1 | Pass |
| L5 | 100-80 | Pole | P48x0.375 | 5 | -34.34 | 1939.86 | 82.1 | Pass |
| L6 | 80-60 | Pole | P54x3/8 | 6 | -41.42 | 2127.30 | 82.8 | Pass |
| L7 | 60-40 | Pole | P60x3/8 | 7 | -49.09 | 2314.65 | 83.0 | Pass |
| L8 | 40-20 | Pole | P60x1/2 | 8 | -57.94 | 3281.97 | 72.5 | Pass |
| L9 | 20-0 | Pole | P60x5/8 | 9 | -68.46 | 4346.11 | 66.5 | Pass |
|  |  |  |  |  |  | Pole (L7) RATING = | $\begin{gathered} \text { Summary } \\ 83.0 \\ 83.0 \end{gathered}$ | Pass Pass |

## APPENDIX B

## BASE LEVEL DRAWING

(FROPOSED EQUPMENT CONFGUKATON-M
$\begin{array}{llll}\text { (1) } 3 / /^{\prime \prime} & \text { TO } & 165 & \text { FI LEVEL } \\ \text { (2) } & 3 / 4^{-} & 70 & 165 \\ \text { FI } & \text { LEVEL }\end{array}$
(PROPOSDD ECUIFMENT CONHSURATON-517072)
(1) $3 / g^{\circ}$ TD 165 FT LEVEL
(3) $3 / 4$ " 10
(5) $1-1 / 4^{*}$ To 165 FI LEVEL-


## APPENDIX C

## ADDITIONAL CALCULATIONS

Elevation = 160 ft .

| Applied Loads |  |
| ---: | :---: |
| Moment (kip-ft) | 288.48 |
| Axial Force (kips) | 13.94 |
| Shear Force (kips) | 17.24 |

*TIA-222-H Section 15.5 Applied

| BU \# | 823529 |
| ---: | :---: |
| Site Name | 038/EastLyme/ I-95/X |
| Order \# | 517072 Rev. 0 |


| TIA-222 Revision | H |
| ---: | :---: |

Top Plate - External



| Connection Properties |  |  |  |
| :---: | :---: | :---: | :---: |
| Bolt Data |  |  |  |
| (20) 1" $\varnothing$ bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 27" BC |  |  |  |
| Top Plate Data |  | Bottom Plate Data |  |
| 30" OD x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi) |  | 24" ID x 1.25" Plate (A36; F | u=58 ksi) |
| Top Stiffener Data |  | Bottom Stiffener Data |  |
| N/A |  | N/A |  |
| Top Pole Data |  | Bottom Pole Data |  |
| $24 " \times 0.375$ " round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi) |  | 30 " x 0.375" round pole (A | $\mathrm{y}=42 \mathrm{ksi}, \mathrm{F}$ |
| Analysis Results |  |  |  |
| Bolt Capacity |  |  |  |
| Max Load (kips) | 24.93 |  |  |
| Allowable (kips) | 54.52 |  |  |
| Stress Rating: | 43.5\% | Pass |  |
| Top Plate Capacity |  | Bottom Plate Capacity |  |
| Max Stress (ksi): |  | Max Stress (ksi): | - |
| Allowable Stress (ksi): |  | Allowable Stress (ksi): | - |
| Stress Rating: Pirod OK |  | Stress Rating: | Pirod OK |
| Tension Side Stress Rating: Pirod OK |  | Tension Side Stress Rating: | Pirod OK |

Elevation $=140 \mathrm{ft}$.

| Applied Loads |  |
| ---: | :---: |
| Moment (kip-ft) | 649.40 |
| Axial Force (kips) | 17.52 |
| Shear Force (kips) | 18.84 |

*TIA-222-H Section 15.5 Applied
Bottom Plate - Internal



Elevation $=120 \mathrm{ft}$.

| Applied Loads |  |
| ---: | :---: |
| Moment (kip-ft) | 1043.98 |
| Axial Force (kips) | 21.72 |
| Shear Force (kips) | 20.61 |

*TIA-222-H Section 15.5 Applied

| Top Plate Capacity |  |  | Bottom Plate Capacity |  |
| :--- | :---: | :--- | :--- | :--- |
| Max Stress (ksi): | - |  | Max Stress (ksi): | - |
| Allowable Stress (ksi): | - |  | Allowable Stress (ksi): | Pirod OK |
| Stress Rating: | Pirod OK | Pirod OK |  | Stress Rating: |

Elevation = 100 ft .

| Applied Loads |  |
| ---: | :---: |
| Moment (kip-ft) | 1476.08 |
| Axial Force (kips) | 27.99 |
| Shear Force (kips) | 22.58 |

*TIA-222-H Section 15.5 Applied


Top Plate - External


Bottom Plate - Internal


## Connection Properties

Bolt Data
(32) 1" $\varnothing$ bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 45" BC

Top Plate Data
48 " OD x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data
(16) 5"H x 3"W x 0.625"T, Notch: 0.5"
plate: $\mathrm{Fy}=36 \mathrm{ksi}$; weld: $\mathrm{Fy}=70 \mathrm{ksi}$
horiz. weld: $0.3125^{\prime \prime}$ fillet
vert. weld: $0.3125^{\prime \prime}$ fillet

Top Pole Data
42 " $\times 0.375$ " round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Bottom Plate Data
42" ID x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data
(16) 5"H x 3"W x 0.625"T, Notch: 0.5"
plate: $\mathrm{Fy}=36 \mathrm{ksi}$; weld: $\mathrm{Fy}=70 \mathrm{ksi}$
horiz. weld: $0.3125^{\prime \prime}$ fillet
vert. weld: $0.3125^{\prime \prime}$ fillet

Bottom Pole Data
$48 " \times 0.375 "$ round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

| Analysis Results |  |  |  |
| :--- | :--- | :--- | :--- |
| Bolt Capacity |  |  |  |
|  | Max Load (kips) | 48.32 |  |
| Allowable (kips) | 54.53 |  |  |
| Stress Rating: | 84.4\% Pass |  |  |


| Top Plate Capacity |  |
| :--- | :---: |
| Max Stress (ksi): | - |
| Allowable Stress (ksi): | - |
| Stress Rating: | Pirod OK |
| Tension Side Stress Rating: | Pirod OK |
|  |  |
| Top Stiffener Capacity |  |
| Horizontal Weld: | Pirod OK |
| Vertical Weld: | Pirod OK |
| Plate Flexure+Shear: | Pirod OK |
| Plate Tension+Shear: | Pirod OK |
| Plate Compression: |  |
| Top Pole Capacity |  |
| Punching Shear: |  |


| Bottom Plate Capacity |  |
| :--- | :---: |
| Max Stress (ksi): | - |
| Allowable Stress (ksi): | - |
| Stress Rating: | Pirod OK |
| Tension Side Stress Rating: |  |
|  |  |
| Bottom Stiffener Capacity |  |
| Horizontal Weld: | Pirod OK |
| Vertical Weld: | Pirod OK |
| Plate Flexure+Shear: | Pirod OK <br> Plate Tension+Shear: <br> Plate Compression: |
| Bottom Pole Capacity |  |
| Punching Shear: |  |

Elevation $=80 \mathrm{ft}$.

| Applied Loads |  |
| ---: | :---: |
| Moment (kip-ft) | 1948.19 |
| Axial Force (kips) | 34.34 |
| Shear Force (kips) |  |

*TIA-222-H Section 15.5 Applied


Elevation $=60 \mathrm{ft}$.

| Applied Loads |  |
| ---: | :---: |
| Moment (kip-ft) | 2461.09 |
| Axial Force (kips) | 41.42 |
| Shear Force (kips) | 26.66 |

*TIA-222-H Section 15.5 Applied

| BU \# | 823529 |
| ---: | :---: |
| Site Name | 038/EastLyme/ I-95/X |
| Order \# | 517072 Rev. 0 |
| TIA-222 Revision | H |



Bottom Plate - Internal


| Connection Properties |
| :---: | :---: |
| Bolt Data |

(48) 1" $\varnothing$ bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 57" BC
Top Plate Data
60 " OD x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Top Stiffener Data
(48) 5"H x 3"W x 0.625"T, Notch: 0.5"
plate: $\mathrm{Fy}=36 \mathrm{ksi}$; weld: $\mathrm{Fy}=70 \mathrm{ksi}$
horiz. weld: $0.3125^{\prime \prime}$ fillet
vert. weld: $0.3125^{\prime \prime}$ fillet

Top Pole Data
$54 " \times 0.375 "$ round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

Bottom Plate Data
54" ID x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi)

Bottom Stiffener Data
(48) 5"H x 3"W x 0.625"T, Notch: 0.5"
plate: $\mathrm{Fy}=36 \mathrm{ksi}$; weld: $\mathrm{Fy}=70 \mathrm{ksi}$
horiz. weld: $0.3125^{\prime \prime}$ fillet
vert. weld: $0.3125^{\prime \prime}$ fillet

Bottom Pole Data
60 " x 0.375" round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi)

| Analysis Results |  |  |  |
| :--- | :--- | :--- | :--- |
| Bolt Capacity |  |  |  |
|  | Max Load (kips) | 42.31 |  |
|  | Allowable (kips) | 54.53 |  |
|  | Stress Rating: | 73.9\% | Pass |


| Top Plate Capacity |  |
| :--- | :---: |
| Max Stress (ksi): | - |
| Allowable Stress (ksi): | - |
| Stress Rating: | Pirod OK |
| Tension Side Stress Rating: | Pirod OK |
|  |  |
| Top Stiffener Capacity | Pirod OK |
| Horizontal Weld: | Pirod OK |
| Vertical Weld: | Pirod OK |
| Plate Flexure+Shear: | Pirod OK |
| Plate Tension+Shear: | Pirod OK |
| Plate Compression: |  |
| Top Pole Capacity |  |
| Punching Shear: |  |


| Bottom Plate Capacity |  |
| :--- | :---: |
| Max Stress (ksi): | - |
| Allowable Stress (ksi): | Pirod OK |
| Stress Rating: | Pirod OK |
| Tension Side Stress Rating: |  |
|  |  |
| Bottom Stiffener Capacity | Pirod OK |
| Horizontal Weld: | Pirod OK |
| Vertical Weld: | Pirod OK |
| Plate Flexure+Shear: | Pirod OK |
| Plate Tension+Shear: |  |
| Plate Compression: |  |
| Bottom Pole Capacity |  |

Elevation $=40 \mathrm{ft}$.

| Applied Loads |  |
| ---: | :---: |
| Moment (kip-ft) | 3014.46 |
| Axial Force (kips) | 49.09 |
| Shear Force (kips) |  |
| *TIA-222-H Section 15.5 Applied |  |

[^1]| BU \# | 823529 |
| ---: | :---: |
| Site Name | 038/EastLyme/ I-95/X |
| Order \# | 517072 Rev. 0 |
| TIA-222 Revision | H |

Top Plate - Internal


Bottom Plate - Internal


## Connection Properties

Bolt Data
GROUP 1: (32) 1-1/4" $\varnothing$ bolts (A490 N; Fy=130 ksi, Fu=150 ksi) on 47" BC
GROUP 2: (32) 1-1/4" $\varnothing$ bolts (A325 N; Fy=81 ksi, Fu=105 ksi) on 53" BC

| Top Plate Data |  |  |  | Bottom Plate Data |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 44 " ID x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi) |  |  |  | 44" ID x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi) |  |
| Top Stiffener Data |  |  |  | Bottom Stiffener Data |  |
| (32) 10 " H x 7"W x 0.625"T, plate: $\mathrm{Fy}=36 \mathrm{ksi}$; weld: Fy horiz. weld: $0.375^{\prime \prime}$ fillet vert. weld: $0.375^{\prime \prime}$ fillet |  |  |  | (32) $10 \mathrm{H} \mathrm{H} \times 7$ "W $\times 0.625 \mathrm{~T}$, plate: $\mathrm{Fy}=36 \mathrm{ksi}$; weld: Fy horiz. weld: 0.375 f fillet vert. weld: 0.375 " fillet |  |
| Top Pole Data |  |  |  | Bottom Pole Data |  |
| 60 " $\times 0.375$ " round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi) |  |  |  | 60 " 0.5 " round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi) |  |
| Analysis Results |  |  |  |  |  |
| Bolt Capacity |  |  |  |  |  |
|  |  | Max Load (kips) Allowable (kips) Stress Rating: | $\begin{aligned} & \hline 46.98 \\ & 76.31 \\ & \mathbf{5 8 . 6 \%} \end{aligned}$ | Pass |  |
| Top Plate Capacity |  |  |  | Bottom Plate Capacity |  |
| Max Stress (ksi): | - |  |  | Max Stress (ksi): | - |
| Allowable Stress (ksi): | - |  |  | Allowable Stress (ksi): | - |
| Stress Rating: | Pirod OK |  |  | Stress Rating: | Pirod OK |
| Tension Side Stress Rating: | Pirod OK |  |  | Tension Side Stress Rating: | Pirod OK |
| Top Stiffener Capacity |  |  |  | Bottom Stiffener Capacity |  |
| Horizontal Weld: | Pirod OK |  |  | Horizontal Weld: | Pirod OK |
| Vertical Weld: | Pirod OK |  |  | Vertical Weld: | Pirod OK |
| Plate Flexure+Shear: | Pirod OK |  |  | Plate Flexure+Shear: | Pirod OK |
| Plate Tension+Shear: | Pirod OK |  |  | Plate Tension+Shear: | Pirod OK |
| Plate Compression: | Pirod OK |  |  | Plate Compression: | Pirod OK |
| Top Pole Capacity |  |  |  | Bottom Pole Capacity |  |
| Punching Shear: | Pirod OK |  |  | Punching Shear: | Pirod OK |

Elevation $=20 \mathrm{ft}$.

| Applied Loads |  |
| ---: | :---: |
| Moment (kip-ft) | 3603.86 |
| Axial Force (kips) | 57.94 |
| Shear Force (kips) | 30.27 |

*TIA-222-H Section 15.5 Applied

| BU \# | 823529 |
| ---: | :---: |
| Site Name | 038/EastLyme/ I-95/X |
| Order \# | 517072 Rev. 0 |
| TIA-222 Revision | H |

Top Plate - Internal



## Connection Properties

Bolt Data
GROUP 1: (32) 1-1/4" $\varnothing$ bolts (A325 N; Fy=81 ksi, Fu=105 ksi) on 47" BC
GROUP 2: (32) $1-1 / 4 " \varnothing$ bolts (A325 N; Fy=81 ksi, Fu=105 ksi) on 53 " BC


| Site Info |  |
| ---: | :---: |
| BU \# | 823529 |
| Site Name | 038/EastLyme/ I-95/X |
| Order \# | 517072 Rev. 0 |


| Analysis Considerations |  |
| ---: | :---: |
| TIA-222 Revision | H |
| Grout Considered: | No |
| $\mathrm{I}_{\mathrm{ar}}$ (in) | 1.75 |


| Applied Loads |  |
| :--- | :---: |
| Moment (kip-ft) | 4224.32 |
| Axial Force (kips) | 68.46 |
| Shear Force (kips) | 31.76 |



| Connection Properties | Analysis Results |  |  |
| :---: | :---: | :---: | :---: |
| Anchor Rod Data | Anchor Rod Summary | (units of kips, kip-in) |  |
| (52) 1-1/4" $\varnothing$ bolts (F1554-105 N; Fy=105 ksi, Fu=125 ksi) on 67" BC | Pu_c = 59.51 | $\phi$ Pn_c = 115.97 | Stress Rating |
|  | $\mathrm{Vu}=0.61$ | $\phi V n=52.19$ | 51.0\% |
| Base Plate Data | $\mathrm{Mu}=0.69$ | $\phi M n=30.76$ | Pass |
| 70" OD x 1.25" Plate (A36; Fy=36 ksi, Fu=58 ksi) |  |  |  |
|  | Base Plate Summary |  |  |
| Stiffener Data | Max Stress (ksi): | - |  |
| (52) 8"H x 4.5"W x 0.625"T, Notch: 0.5" | Allowable Stress (ksi): | - |  |
| plate: $\mathrm{Fy}=36 \mathrm{ksi}$; weld: $\mathrm{Fy}=70 \mathrm{ksi}$ | Stress Rating: | Pirod OK |  |
| horiz. weld: 0.375 " fillet |  |  |  |
| vert. weld: $0.375{ }^{\prime \prime}$ fillet | Stiffener Summary |  |  |
|  | Horizontal Weld: | Pirod OK |  |
| Pole Data | Vertical Weld: | Pirod OK |  |
| 60" $\times 0.625$ " round pole (A53-B-42; Fy=42 ksi, Fu=63 ksi) | Plate Flexure+Shear: | Pirod OK |  |
|  | Plate Tension+Shear: | Pirod OK |  |
|  | Plate Compression: | Pirod OK |  |
|  | Pole Summary |  |  |
|  | Punching Shear: | Pirod OK |  |



## Flexible Foundation Analysis

Applied Reactions for RISA-3D

| TNX Moment = | 4224 |
| :---: | :---: |
| TNX Axial = | 68 |
| TNX Shear = | 32 |
| Total Unfactored Axial = | 56.7 |
| TIA Standard = | H |

Passive Pressure on Pad/Mat
Horiz Subgr Modulus =
Plate Width =
Depth to Ignore =
Pad Thickness =
k (side) $=$
k (corner) $=$

| 10 | $k$ |
| :---: | :---: |
| 0.5 | ft |
| 0.5 | ft |
| 3.8 | ft |
| 1.35 | $\mathrm{k} / \mathrm{in}$ |
| 0.68 | $\mathrm{k} / \mathrm{in}$ |

## Pad/Mat \& Pier Input

Pier Number Sides =
Pier Width/Diameter =
Pier Height =
Ht Above Grade =

| Round |  |
| :---: | :---: |
|  | ft |
|  | ft |
|  | ft (Pier or Pad) |

Pad Thickness =
Pad Width =
Pad Length =

| 3.75 | ft |
| :---: | :---: |
| 14 | ft |
| 14 | ft |

Concrete Density =
Concrete f'c =
$\beta 1=$

| 150 |
| :---: |
| 3 | pcf ksi

Rebar Fy =

ksi

Location =
Top Bar Quantity =
Top Bar Size \#
Top Clear Cover $=$

| Width | Length |
| :---: | :---: |
| 19 |  |
| 8 |  |
| 12 |  |

Bottom Bar Quantity =
Bottom Bar Size \#
Bottom Clear Cover $=$

| 19 |
| :---: |
| 8 |
| 3 |

As, $\min =$
Use Comp Side Rebar?

$\mathrm{Mu}(\mathrm{Comp} \mathrm{Top})=$
$\mathrm{Mu}(\mathrm{Comp} \mathrm{Bot})=$


Pad/Mat Analysis

| Location | Comp Side | c, in | d , in | $\varepsilon \mathrm{ct}, \mathrm{in} / \mathrm{in}$ | $\mathrm{Mu}, \mathrm{k}$-ft | $\Phi$ | $\Phi M n, \mathrm{k}$-ft | Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Width | Top | 2.65 | 40.50 | -0.043 | 1573.0 | 0.90 | 2761.1 | $54.3 \%$ |
| Width | Bot | 2.65 | 31.50 | -0.033 | 260.3 | 0.90 | 2153.2 | $11.5 \%$ |

## Soil Weight

Soil Unit Weight=
Apply Soil Weight $=$
Volume =
Weight =
Weight per $\mathrm{Sq} \mathrm{Ft}=$


Soil Modulus bv Laver

| Layer | Start, ft | End, ft | Vert, pci | Horiz, pci |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0 |  |  |  |
| 2 |  |  |  |  |
| 3 |  |  |  |  |
| 4 |  |  |  |  |
| 5 |  |  |  |  |
| 6 |  |  |  |  |
| 7 |  |  |  |  |
| 8 |  |  |  |  |
| 9 |  |  |  |  |

## Bearing Check

| Max Bearing Load = | 6.73 | kip |
| :---: | :---: | :---: |
| Plate Width = | 0.5 | ft |
| Plate Length = | 0.5 | ft |
| Design Brg Capacity = | 40 | ksf $=$ Фqn |
| Bearing Pressure = | 26.9 | ksf |
| Ratio $=$ | 85.5\% | OK |

## Subgrade Modulus Conversion

| 3600 |
| :---: |
| 6220.8 |pci



| Paul J. Ford \& Company |  | SK -1 |
| :--- | :---: | :--- |
| STP | BU 823529 | CT038/EastLyme/ I-95/ X72 |



## Member Code Checks Displayed

Loads: LC 1, 1.2 Dead + Wind 0
Results for LC 1, 1.2 Dead + Wind 0
Y-direction Reaction Units are k and k -ft

| Paul J. Ford \& Company |  | SK - 2 |
| :--- | :---: | :--- |
| STP | BU 823529 | CT038/EastLyme/ I-95/ X72 |



## Member Code Checks Displayed

Loads: LC 3, 1.2 Dead + Wind 45
Results for LC 3, 1.2 Dead + Wind 45
Y-direction Reaction Units are k and k -ft

| Paul J. Ford \& Company |  | SK - 3 |
| :--- | :---: | :--- |
| STP | BU 823529 | CT038/EastLyme/ I-95/ X72 |

$\qquad$
$\qquad$
(Global) Model Settings

| Display Sections for Member Calcs | 5 |
| :--- | :--- |
| Max Internal Sections for Member Calcs | 97 |
| Include Shear Deformation? | Yes |
| Increase Nailing Capacity for Wind? | Yes |
| Include Warping? | Yes |
| Trans Load Btwn Intersecting Wood Wall? | Yes |
| Area Load Mesh (in^2) | 144 |
| Merge Tolerance (in) | .12 |
| P-Delta Analysis Tolerance | $0.50 \%$ |
| Include P-Delta for Walls? | Yes |
| Automatically Iterate Stiffness for Walls? | Yes |
| Max Iterations for Wall Stiffness | 3 |
| Gravity Acceleration (ft/sec^2) | 32.2 |
| Wall Mesh Size (in) | 24 |
| Eigensolution Convergence Tol. (1.E-) | 4 |
| Vertical Axis | Y |
| Global Member Orientation Plane | XZ |
| Static Solver | Sparse Accelerated |
| Dynamic Solver | Accelerated Solver |


| Hot Rolled Steel Code | AISC 15th(360-16): LRFD |
| :--- | :--- |
| Adjust Stiffness? | Yes(lterative) |
| RISAConnection Code | None |
| Cold Formed Steel Code | None |
| Wood Code | None |
| Wood Temperature | < 100F |
| Concrete Code | ACl 318-14 |
| Masonry Code | None |
| Aluminum Code | None - Building |
| Stainless Steel Code | None |


| Number of Shear Regions | 4 |
| :--- | :--- |
| Region Spacing Increment (in) | 4 |
| Biaxial Column Method | Exact Integration |
| Parme Beta Factor (PCA) | .65 |
| Concrete Stress Block | Rectangular |
| Use Cracked Sections? | Yes |
| Use Cracked Sections Slab? | Yes |
| Bad Framing Warnings? | No |
| Unused Force Warnings? | Yes |
| Min 1 Bar Diam. Spacing? | No |
| Concrete Rebar Set | REBAR_SET_ASTMA615 |
| Min \% Steel for Column | 1 |
| Max \% Steel for Column | 8 |

$\qquad$
(Global) Model Settings, Continued

| Seismic Code | ASCE 7-10 |
| :--- | :--- |
| Seismic Base Elevation (ft) | Not Entered |
| Add Base Weight? | Yes |
| Ct X | .02 |
| Ct Z | .02 |
| T X (sec) | Not Entered |
| T Z (sec) | Not Entered |
| R X | 3 |
| R Z | 3 |
| Ct Exp. X | .75 |
| Ct Exp. Z | .75 |
| SD1 | 1 |
| SDS | 1 |
| S1 | 1 |
| TL (sec) | 5 |
| Risk Cat | $I$ |
| Drift Cat | Other |
| Om Z | 1 |
| Om X | 1 |
| Cd Z | 4 |
| Cd X | 4 |
| Rho Z | 1 |
| Rho X | 1 |
|  |  |

## Basic Load Cases

|  | BLC Description | Category | X Gravity | Y Gravity | Z Gravity | Joint | Point | Distributed | Area(Me... | Surface(P.. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Dead | None |  | -1 |  | 1 |  |  |  |  |
| 2 | Wind 0 | None |  |  |  | 2 |  |  |  |  |
| 3 | Wind 45 | None |  |  |  | 4 |  |  |  |  |
| 4 | Wind 90 | None |  |  |  | 2 |  |  |  |  |
| 5 | Wind 135 | None |  |  |  | 4 |  |  |  |  |

## Load Combinations


$\qquad$
ANEMETSCHEK COMPANY

Joint Loads and Enforced Displacements (BLC 1 : Dead)

| Joint Label |
| :--- |
| C |
| CENTER |

## Joint Loads and Enforced Displacements (BLC 3 : Wind 45)

| Joint Label |  | L.D.M | Direction | Magnitude[(k,k-ft). (in, rad). ( $\mathrm{k}^{*} \mathrm{~s}^{\wedge} 2 / \mathrm{ft}$. . |
| :---: | :---: | :---: | :---: | :---: |
| 1 | CENTER | L | Mz | 2986.819 |
| 2 | CENTER | L | Mx | 2986.819 |
| 3 | CENTER | L | X | -22.627 |
| 4 | CENTER | L | Z | 22.627 |

## Joint Loads and Enforced Displacements (BLC 4 : Wind 90)

|  | Joint Label | L.D.M | Direction | Magnitude[ $\mathrm{k}, \mathrm{k}-\mathrm{ft}$ ), (in, rad), ( $\mathrm{k}^{*} s^{\wedge} 2 / \mathrm{ft}$. |
| :---: | :---: | :---: | :---: | :---: |
| 1 | CENTER | L | Mz | 4224 |
| 2 | CENTER | L | X | -32 |

Joint Loads and Enforced Displacements (BLC 5 : Wind 135)

| Joint Label | L,D,M | Direction | Magnitude[(k,k-ft), (in, rad), ( $\mathrm{k}^{*} \mathrm{~s}^{\wedge} 2 / \mathrm{ft} . \mathrm{M}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | CENTER | L | Mz | 2986.819 |
| 2 | CENTER | L | Mx | -2986.819 |
| 3 | CENTER | L | X | -22.627 |
| 4 | CENTER | L | Z | -22.627 |

## Concrete Properties

|  | Label | E [ksi] | G [ksi] | Nu | Therm (/1E. | Density[k/ft. | $\mathrm{f}^{\prime}$ [ksi] | Lambda | Flex Steel[.. | Shear Stee. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Conc3000NW | 3156 | 1372 | . 15 | . 6 | 145 | 3 | 1 | 60 | 60 |
| 2 | Conc3500NW | 3409 | 1482 | . 15 | 6 | . 145 | 3.5 | 1 | 60 | 60 |
| 3 | Conc4000NW | 3644 | 1584 | . 15 | 6 | 145 | 4 | 1 | 60 | 60 |
| 4 | Conc3000LW | 2085 | 907 | . 15 | . 6 | 11 | 3 | 75 | 60 | 60 |
| 5 | Conc3500LW | 2252 | 979 | . 15 | . 6 | 11 | 3.5 | 75 | 60 | 60 |
| 6 | Conc4000LW | 2408 | 1047 | . 15 | 6 | 11 | 4 | 75 | 60 | 60 |

Concrete Column Design Parameters
Label Shape Length[ft] Lu-yy[ft] Lu-zz[ft] Cm-yy Cm-zz Kyy Kzz y sway z sway Icr Fac...Flexur... Shear . No Data to Print .. $\qquad$

## Envelope Concrete Column Desian Results

Column Shape UC M... Loc[ft] UC LC Shear... LC Loc[ft] Dir Phi used Pn[k] Mny[k-ft] Mnz[k-ft] Vny[k] Vnz[k] No Data to Print ...

## Envelope Joint Displacements

| Joint |  |  | X [in] | LC | Y [in] | LC | Z [in] | LC X Rotation |  |  | Y Rotation ... L |  | Z Rotation [... LC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ANCHOR1 | max | 11.765 | 14 | 1 | 4 | 11.765 | 2 | 1.143e-3 | 2 | 0 | 16 | $1.143 \mathrm{e}-3$ | 6 |
| 2 |  | min | -11.765 | 5 | -. 019 | 11 | -11.765 | 9 | -9.63e-4 | 10 | 0 | 1 | -9.63e-4 | 14 |
| 3 | ANCHOR2 | max | 11.765 | 14 | . 088 | 2 | 11.765 | 2 | $1.191 \mathrm{e}-3$ | 2 | 0 | 16 | $1.097 \mathrm{e}-3$ | 6 |

$\qquad$
—

## Envelope Joint Displacements (Continued)

| Joint |  |  | ${ }_{\text {X }}^{\text {[in] }}$ | LC |  | LC z [in] |  | $\text { LC } \times \text { Rotation. }$ |  | LC | $\frac{\text { Rotation }}{0}$ | LC Z Rotation I...LC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 |  | min |  | 5 | -. 007 | 9 | -11.765 |  |  | 1 |  | -1.097e-3 | 14 |
| 5 | ANCHOR3 | max | 11.765 | 14 | 1 | 16 | 11.765 | 2 | 1.143e-3 |  | 2 | 0 | 16 | 9.63e-4 | 6 |
| 6 |  | min | -11.765 | 5 | -. 019 | 7 | -11.765 | 9 | -9.63e-4 | 10 | 0 | 1 | -1.143e-3 | 14 |
| 7 | ANCHOR4 | max | 11.765 | 14 | 088 | 14 | 11.765 | 2 | 1.097e-3 | 2 | 0 | 16 | 1.007e-3 | 6 |
| 8 |  | min | -11.765 | 5 | -. 007 | 5 | -11.765 | 9 | -1.097e-3 | 10 | 0 | 1 | -1.191e-3 | 14 |
| 9 | ANCHOR5 | max | 11.765 | 14 | . 088 | 6 | 11.765 | 2 | 1.097e-3 | 2 | 0 | 16 | 1.191e-3 | 6 |
| 10 |  | min | -11.765 | 5 | -. 007 | 13 | -11.765 | 9 | -1.097e-3 | 10 | 0 | 1 | -1.007e-3 | 14 |
| 11 | ANCHOR6 | max | 11.765 | 14 | . 1 | 8 | 11.765 | 2 | $9.63 \mathrm{e}-4$ | 2 | 0 | 16 | $1.143 \mathrm{e}-3$ | 6 |
| 12 |  | min | -11.765 | 5 | -. 019 | 15 | -11.765 | 9 | -1.143e-3 | 10 | 0 | 1 | -9.63e-4 | 14 |
| 13 | ANCHOR7 | max | 11.765 | 14 | 088 | 10 | 11.765 | 2 | 1.007e-3 | 2 | 0 | 16 | 1.097e-3 | 6 |
| 14 |  | min | -11.765 | 5 | -. 007 | 1 | -11.765 |  | -1.191e-3 | 10 | 0 | 1 | -1.097e-3 | 14 |
| 15 | ANCHOR8 | max | 11.765 | 14 | 1 | 12 | 11.765 | 2 | $9.63 \mathrm{e}-4$ | 2 | 0 | 16 | 9.63e-4 | 6 |
| 16 |  | min | -11.765 | 5 | -. 019 | 3 | -11.765 | 9 | -1.143e-3 | 10 | 0 | 1 | -1.143e-3 | 14 |
| 17 | N1 | max | 11.765 | 14 | 167 | 8 | 11.765 | 2 | 9.128e-4 | 2 | 0 | 16 | $1.139 \mathrm{e}-3$ | 6 |
| 18 |  | min | -11.765 | 5 | -. 058 | 16 | -11.765 | 9 | -1.139e-3 | 10 | 0 | 1 | -9.128e-4 | 14 |
| 19 | N2 | max | 11.765 | 14 | 167 | 12 | 11.765 | 2 | 9.128e-4 | 2 | 0 | 16 | 9.128e-4 | 6 |
| 20 |  | min | -11.765 | 5 | -. 058 | 4 | -11.765 | , | -1.139e-3 | 10 | 0 | 1 | -1.139e-3 | 14 |
| 21 | N3 | max | 11.765 | 14 | 167 | 16 | 11.765 | 2 | 1.139e-3 | 2 | 0 | 16 | 9.128e-4 | 6 |
| 22 |  | min | -11.765 | 5 | -. 058 | 8 | -11.765 | 9 | -9.128e-4 | 10 | 0 | 1 | -1.139e-3 | 14 |
| 23 | N4 | max | 11.765 | 14 | 167 | 4 | 11.765 | 2 | 1.139e-3 | 2 | 0 | 16 | 1.139e-3 | 6 |
| 24 |  | min | -11.765 | 5 | -. 058 | 12 | -11.765 | 9 | -9.128e-4 | 10 | 0 | 1 | -9.128e-4 | 14 |
| 25 | N5 | max | 11.765 | 14 | 162 | 4 | 11.765 | 2 | 1.139e-3 | 2 | 0 | 16 | 1.139e-3 | 6 |
| 26 |  | min | -11.765 | 5 | -. 055 | 12 | -11.765 | 9 | -9.124e-4 | 10 | 0 | 1 | -9.132e-4 | 14 |
| 27 | N6 | max | 11.765 | 14 | 157 | 4 | 11.765 |  | 1.14e-3 | 2 | 0 | 16 | 1.139e-3 | 6 |
| 28 |  | min | -11.765 | 5 | -. 052 | 12 | -11.765 | 9 | -9.122e-4 | 10 | 0 | 1 | -9.145e-4 | 14 |
| 29 | N7 | max | 11.765 | 14 | 152 | 4 | 11.765 | 2 | $1.141 \mathrm{e}-3$ | 2 | 0 | 16 | 1.138e-3 | 6 |
| 30 |  | min | -11.765 | 5 | -. 049 | 12 | -11.765 | 9 | -9.125e-4 | 10 | 0 | 1 | -9.174e-4 | 14 |
| 31 | N8 | max | 11.765 | 14 | 148 | 4 | 11.765 | 2 | $1.143 \mathrm{e}-3$ | 2 | 0 | 16 | 1.137e-3 | 6 |
| 32 |  | min | -11.765 | 5 | -. 047 | 12 | -11.765 | 9 | -9.132e-4 | 10 | 0 | 1 | -9.224e-4 | 14 |
| 33 | N9 | max | 11.765 | 14 | 143 | 4 | 11.765 | 2 | $1.145 \mathrm{e}-3$ | 2 | 0 | 16 | 1.134e-3 | 6 |
| 34 |  | min | -11.765 | 5 | -. 044 | 12 | -11.765 | 9 | -9.143e-4 | 10 | 0 | 1 | -9.297e-4 | 14 |
| 35 | N10 | max | 11.765 | 14 | 138 | 4 | 11.765 |  | 1.147e-3 | 2 | 0 | 16 | 1.131e-3 | 6 |
| 36 |  | min | -11.765 | 5 | -. 042 | 12 | -11.765 | - | -9.156e-4 | 10 | 0 | 1 | -9.393e-4 | 14 |
| 37 | N11 | max | 11.765 | 14 | 136 | 2 | 11.765 |  | $1.15 \mathrm{e}-3$ | 2 | 0 | 16 | 1.126e-3 | - |
| 38 |  | min | -11.765 | 5 | -. 04 | 10 | -11.765 | , | -9.17e-4 | 10 | 0 | 1 | -9.511e-4 | 14 |
| 39 | N12 | max | 11.765 | 14 | 136 | 2 | 11.765 |  | 1.152e-3 | 2 | 0 | 16 | 1.12e-3 | , |
| 40 |  | min | -11.765 | 5 | -. 041 | 10 | -11.765 | 9 | -9.186e-4 | 10 | 0 | 1 | -9.648e-4 | 14 |
| 41 | N13 | max | 11.765 | 14 | . 136 | 2 | 11.765 | 2 | $1.155 \mathrm{e}-3$ | 2 | 0 | 16 | 1.113e-3 | 6 |
| 42 |  | min | -11.765 | 5 | -. 041 | 10 | -11.765 | 9 | -9.201e-4 | 10 | 0 | 1 | -9.8e-4 | 14 |
| 43 | N14 | max | 11.765 | 14 | 137 | 2 | 11.765 | 2 | $1.157 \mathrm{e}-3$ | 2 | 0 | 16 | 1.105e-3 | 6 |
| 44 |  | min | -11.765 | 5 | -. 041 | 10 | -11.765 | 9 | -9.215e-4 | 10 | 0 | 1 | -9.96e-4 | 14 |
| 45 | N15 | max | 11.765 | 14 | 137 | 2 | 11.765 | 2 | $1.158 \mathrm{e}-3$ | 2 | 0 | 16 | 1.096e-3 | 6 |
| 46 |  | min | -11.765 | 5 | -. 041 | 10 | -11.765 | 9 | -9.227e-4 | 10 | 0 | 1 | -1.012e-3 | 14 |
| 47 | N16 | max | 11.765 | 14 | . 137 | 2 | 11.765 | 2 | $1.16 \mathrm{e}-3$ | 2 | 0 | 16 | 1.085e-3 | 6 |
| 48 |  | min | -11.765 | 5 | -. 042 | 10 | -11.765 | 9 | -9.236e-4 | 10 | 0 | 1 | -1.029e-3 | 14 |
| 49 | N17 | max | 11.765 | 14 | . 137 | 2 | 11.765 |  | 1.16e-3 | 2 | 0 | 16 | 1.073e-3 | - |
| 50 |  | min | -11.765 | 5 | -. 042 | 10 | -11.765 | 9 | -9.242e-4 | 10 | 0 | 1 | -1.045e-3 | 14 |
| 51 | N18 | max | 11.765 | 14 | . 137 | 2 | 11.765 | 2 | 1.161e-3 | 2 | 0 | 16 | 1.059e-3 | 6 |
| 52 |  | min | -11.765 | 5 | -. 042 | 10 | -11.765 | 9 | -9.244e-4 | 10 | 0 | 1 | -1.059e-3 | 14 |
| 53 | N19 | max | 11.765 | 14 | 137 | 2 | 11.765 | 2 | $1.16 \mathrm{e}-3$ | 2 | 0 | 16 | 1.045e-3 | - |
| 54 |  | min | -11.765 | 5 | -. 042 | 10 | -11.765 | 9 | -9.242e-4 | 10 | 0 | 1 | -1.073e-3 | 14 |
| 55 | N20 | max | 11.765 | 14 | 137 | 2 | 11.765 | 2 | 1.16e-3 | 2 | 0 | 16 | $1.029 \mathrm{e}-3$ | 6 |
| 56 |  | min | -11.765 | 5 | -. 042 | 10 | -11.765 | 9 | -9.236e-4 | 10 | 0 | 1 | -1.085e-3 | 14 |
| 57 | N21 | max | 11.765 | 14 | 137 | 2 | 11.765 |  | $1.158 \mathrm{e}-3$ | 2 | 0 | 16 | 1.012e-3 | 6 |
| 58 |  | min | -11.765 | 5 | -. 041 | 10 | -11.765 | 9 | -9.227e-4 | 10 | 0 | 1 | -1.096e-3 | 14 |
| 59 | N22 | max | 11.765 | 14 | 137 | 2 | 11.765 | 2 | $1.157 \mathrm{e}-3$ | 2 | 0 | 16 | 9.96e-4 | 6 |
| 60 |  | min | -11.765 | 5 | -. 041 | 10 | -11.765 | 9 | -9.215e-4 | 10 | 0 | 1 | -1.105e-3 | 14 |

$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | ${ }_{1} \mathrm{X}$ [in] | LC |  | LC |  | LC XRotation |  | $\begin{array}{\|l\|} \hline L C \\ \hline 2 \end{array}$ | $\begin{gathered} \text { Y Rotation } . \\ \hline 0 \\ \hline \end{gathered}$ | LC Z Rotation [...LC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 61 | N23 | max |  | 14 | 136 | 2 | 11.765 | 2 | $1.155 \mathrm{e}-3$ |  |  | 16 | 9.8e-4 | 6 |
| 62 |  | min | -11.765 | 5 | -. 041 | 10 | -11.765 | 9 | -9.201e-4 | 10 | 0 | 1 | -1.113e-3 | 14 |
| 63 | N24 | max | 11.765 | 14 | 136 | 2 | 11.765 | 2 | 1.152e-3 | 2 | 0 | 16 | $9.648 \mathrm{e}-4$ | 6 |
| 64 |  | min | -11.765 | 5 | -. 041 | 10 | -11.765 | 9 | -9.186e-4 | 10 | 0 | 1 | -1.12e-3 | 14 |
| 65 | N25 | max | 11.765 | 14 | . 136 | 2 | 11.765 | 2 | 1.15e-3 | 2 | 0 | 16 | $9.511 \mathrm{e}-4$ | 6 |
| 66 |  | min | -11.765 | 5 | -. 04 | 10 | -11.765 | 9 | -9.17e-4 | 10 | 0 | 1 | -1.126e-3 | 14 |
| 67 | N26 | max | 11.765 | 14 | 138 | 16 | 11.765 | 2 | $1.147 \mathrm{e}-3$ | 2 | 0 | 16 | 9.393e-4 | 6 |
| 68 |  | min | -11.765 | 5 | -. 042 | 8 | -11.765 | 9 | -9.156e-4 | 10 | 0 | 1 | -1.131e- | 14 |
| 69 | N27 | max | 11.765 | 14 | 143 | 16 | 11.765 | 2 | 1.145e-3 | 2 | 0 | 16 | 9.297e-4 | 6 |
| 70 |  | min | -11.765 | 5 | -. 044 | 8 | -11.765 | 9 | -9.143e-4 | 10 | 0 | 1 | -1.134e-3 | 14 |
| 71 | N28 | max | 11.765 | 14 | 148 | 16 | 11.765 | 2 | $1.143 \mathrm{e}-3$ | 2 | 0 | 16 | 9.224e-4 | 6 |
| 72 |  | min | -11.765 | 5 | -. 047 | 8 | -11.765 | 9 | -9.132e-4 | 10 | 0 | 1 | -1.137e-3 | 14 |
| 73 | N29 | max | 11.765 | 14 | 152 | 16 | 11.765 | 2 | $1.141 \mathrm{e}-3$ | 2 | 0 | 16 | 9.174e-4 | 6 |
| 74 |  | min | -11.765 | 5 | -. 049 | 8 | -11.765 | 9 | -9.125e-4 | 10 | 0 | 1 | -1.138e-3 | 14 |
| 75 | N30 | max | 11.765 | 14 | . 157 | 16 | 11.765 | 2 | $1.14 \mathrm{e}-3$ | 2 | 0 | 16 | 9.145e-4 | 6 |
| 76 |  | min | -11.765 | 5 | -. 052 | 8 | -11.765 | 9 | -9.122e-4 | 10 | 0 | 1 | -1.139e-3 | 14 |
| 77 | N31 | max | 11.765 | 14 | . 162 | 16 | 11.765 | 2 | $1.139 \mathrm{e}-3$ | 2 | 0 | 16 | 9.132e-4 | 6 |
| 78 |  | min | -11.765 | 5 | -. 055 | 8 | -11.765 | 9 | -9.124e-4 | 10 | 0 | 1 | -1.139e-3 | 14 |
| 79 | N32 | max | 11.765 | 14 | 162 | 16 | 11.765 | 2 | $1.139 \mathrm{e}-3$ | 2 | 0 | 16 | 9.124e-4 | 6 |
| 80 |  | min | -11.765 | 5 | -. 055 | 8 | -11.765 | 9 | -9.132e-4 | 10 | 0 | 1 | $-1.139 \mathrm{e}-3$ | 14 |
| 81 | N33 | max | 11.765 | 14 | 157 | 16 | 11.765 | 2 | $1.139 \mathrm{e}-3$ | 2 | 0 | 16 | 9.122e-4 | 6 |
| 82 |  | min | -11.765 | 5 | -. 052 | 8 | -11.765 | 9 | -9.145e-4 | 10 | 0 | 1 | -1.14e-3 | 14 |
| 83 | N34 | max | 11.765 | 14 | 152 | 16 | 11.765 | 2 | 1.138e-3 | 2 | 0 | 16 | $9.125 \mathrm{e}-4$ | 6 |
| 84 |  | min | -11.765 | 5 | -. 049 | 8 | -11.765 | 9 | -9.174e-4 | 10 | 0 | 1 | -1.141e-3 | 14 |
| 85 | N35 | max | 11.765 | 14 | 148 | 16 | 11.765 | 2 | 1.137e-3 | 2 | 0 | 16 | 9.132e-4 | 6 |
| 86 |  | min | -11.765 | 5 | -. 047 | 8 | -11.765 | 9 | -9.224e-4 | 10 | 0 | 1 | -1.143e- | 14 |
| 87 | N36 | max | 11.765 | 14 | 143 | 16 | 11.765 | 2 | $1.134 \mathrm{e}-3$ | 2 | 0 | 16 | 9.143e-4 | 6 |
| 88 |  | min | -11.765 | 5 | -. 044 | 8 | -11.765 | 9 | -9.297e-4 | 10 | 0 | 1 | -1.145e-3 | 14 |
| 89 | N37 | max | 11.765 | 14 | 138 | 16 | 11.765 | 2 | 1.131e-3 | 2 | 0 | 16 | 9.156e-4 | 6 |
| 90 |  | min | -11.765 | 5 | -. 042 | 8 | -11.765 | 9 | -9.393e-4 | 10 | 0 | 1 | -1.147e-3 | 14 |
| 91 | N38 | max | 11.765 | 14 | 136 | 14 | 11.765 | 2 | $1.126 \mathrm{e}-3$ | 2 | 0 | 16 | $9.17 \mathrm{e}-4$ | 6 |
| 92 |  | min | -11.765 | 5 | -. 04 | 6 | -11.765 | 9 | -9.511e-4 | 10 | 0 | 1 | -1.15e-3 | 14 |
| 93 | N39 | max | 11.765 | 14 | 136 | 14 | 11.765 | 2 | 1.12e-3 | 2 | 0 | 16 | 9.186e-4 | 6 |
| 94 |  | min | -11.765 | 5 | -. 041 | 6 | -11.765 | 9 | -9.648e-4 | 10 | 0 | 1 | -1.152e-3 | 14 |
| 95 | N40 | max | 11.765 | 14 | 136 | 14 | 11.765 | 2 | $1.113 \mathrm{e}-3$ | 2 | 0 | 16 | 9.201e-4 | 6 |
| 96 |  | min | -11.765 | 5 | -. 041 | 6 | -11.765 | 9 | -9.8e-4 | 10 | 0 | 1 | -1.155e-3 | 14 |
| 97 | N41 | max | 11.765 | 14 | . 137 | 14 | 11.765 | 2 | 1.105e-3 | 2 | 0 | 16 | 9.215e-4 | 6 |
| 98 |  | min | -11.765 | 5 | -. 041 | 6 | -11.765 | 9 | -9.96e-4 | 10 | 0 | 1 | -1.157e-3 | 14 |
| 99 | N42 | max | 11.765 | 14 | 137 | 14 | 11.765 | 2 | $1.096 e^{-3}$ | 2 | 0 | 16 | 9.227e-4 | 6 |
| 100 |  | min | -11.765 | 5 | -. 041 | 6 | -11.765 | 9 | -1.012e-3 | 10 | 0 | 1 | -1.158e-3 | 14 |
| 101 | N43 | max | 11.765 | 14 | . 137 | 14 | 11.765 | 2 | $1.085 \mathrm{e}-3$ | 2 | 0 | 16 | 9.236e-4 | 6 |
| 102 |  | min | -11.765 | 5 | -. 042 | 6 | -11.765 | 9 | -1.029e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 103 | N44 | max | 11.765 | 14 | . 137 | 14 | 11.765 | 2 | $1.073 \mathrm{e}-3$ | 2 | 0 | 16 | $9.242 \mathrm{e}-4$ | 6 |
| 104 |  | min | -11.765 | 5 | -. 042 | 6 | -11.765 | 9 | -1.045e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 105 | N45 | max | 11.765 | 14 | . 137 | 14 | 11.765 | 2 | $1.059 \mathrm{e}-3$ | 2 | 0 | 16 | 9.244e-4 | 6 |
| 106 |  | min | -11.765 | 5 | -. 042 | 6 | -11.765 | 9 | -1.059e-3 | 10 | 0 | 1 | -1.161e-3 | 14 |
| 107 | N46 | max | 11.765 | 14 | . 137 | 14 | 11.765 | 2 | $1.045 \mathrm{e}-3$ | 2 | 0 | 16 | 9.242e-4 | 6 |
| 108 |  | min | -11.765 | 5 | -. 042 | 6 | -11.765 | 9 | -1.073e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 109 | N47 | max | 11.765 | 14 | 137 | 14 | 11.765 | 2 | 1.029e-3 | 2 | 0 | 16 | 9.236e-4 | 6 |
| 110 |  | min | -11.765 | 5 | -. 042 | 6 | -11.765 | 9 | -1.085e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 111 | N48 | max | 11.765 | 14 | 137 | 14 | 11.765 | 2 | 1.012e-3 | 2 | 0 | 16 | 9.227e-4 | 6 |
| 112 |  | min | -11.765 | 5 | -. 041 | 6 | -11.765 | 9 | -1.096e-3 | 10 | 0 | 1 | -1.158e-3 | 14 |
| 113 | N49 | max | 11.765 | 14 | 137 | 14 | 11.765 | 2 | 9.96e-4 | 2 | 0 | 16 | 9.215e-4 | 6 |
| 114 |  | min | -11.765 | 5 | -. 041 | 6 | -11.765 | 9 | -1.105e-3 | 10 | 0 | 1 | -1.157e-3 | 14 |
| 115 | N50 | max | 11.765 | 14 | . 136 | 14 | 11.765 | 2 | 9.8e-4 | 2 | 0 | 16 | 9.201e-4 | 6 |
| 116 |  | min | -11.765 | 5 | -. 041 | 6 | -11.765 | 9 | -1.113e-3 | 10 | 0 | 1 | -1.155e-3 | 14 |
| 117 | N51 | max | 11.765 | 14 | . 136 | 14 | 11.765 | 2 | 9.648e-4 | 2 |  | 16 | 9.186e-4 | 6 |

$\qquad$
$\square$

## Envelope Joint Displacements (Continued)


$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | x [in] |  |  | Z [in] |  | $\begin{array}{\|c\|c} \hline \text { LC } & \text { Rotation... } \\ \hline 2 & 9.156 \mathrm{e}-4 \\ \hline \end{array}$ |  | $\begin{gathered} \mathrm{LC} \\ \hline 2 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Rotation } \\ 0 \\ \hline \end{gathered}$ | LC Z Rotation [...LC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 175 | N80 | max | 11.765 | 14 | 138 | 8 | 11.765 |  |  | $16$ |  | $1.131 \mathrm{e}-3$ | 6 |
| 176 |  | min | -11.765 | 5 | -. 042 | 16 | -11.765 | 9 | -1.147e-3 |  | 10 | 0 | 1 | -9.393e-4 | 14 |
| 177 | N81 | ax | 11.765 | 14 | 143 | 8 | 11.765 | 2 | 9.143e-4 | 2 | 0 | 16 | 1.134e-3 | 6 |
| 178 |  | min | -11.765 | 5 | -. 044 | 16 | -11.765 | 9 | -1.145e-3 | 10 | 0 | 1 | -9.297e-4 | 14 |
| 179 | N82 | max | 11.765 | 14 | 148 | 8 | 11.765 | 2 | 9.132e-4 | 2 | 0 | 16 | $1.137 \mathrm{e}-3$ | 6 |
| 180 |  | min | -11.765 | 5 | -. 047 | 16 | -11.765 | 9 | -1.143e-3 | 10 | 0 | 1 | -9.224e-4 | 14 |
| 181 | N83 | max | 11.765 | 14 | . 152 | 8 | 11.765 | 2 | 9.125e-4 | 2 | 0 | 16 | $1.138 \mathrm{e}-3$ | 6 |
| 182 |  | min | -11.765 | 5 | -. 049 | 16 | -11.765 | 9 | -1.141e-3 | 10 | 0 | 1 | -9.174e-4 | 14 |
| 183 | N84 | max | 11.765 | 14 | 157 | 8 | 11.765 | 2 | 9.122e-4 | 2 | 0 | 16 | 1.139e-3 | 6 |
| 184 |  | min | -11.765 | 5 | -. 052 | 16 | -11.765 | 9 | -1.14e-3 | 10 | 0 | 1 | -9.145e-4 | 14 |
| 185 | N85 | max | 11.765 | 14 | . 162 | 8 | 11.765 | 2 | 9.124e-4 | 2 | 0 | 16 | 1.139e-3 | 6 |
| 186 |  | min | -11.765 | 5 | -. 055 | 16 | -11.765 | 9 | -1.139e-3 | 10 | 0 | 1 | -9.132e-4 | 14 |
| 187 | N86 | max | 11.765 | 14 | 162 | 8 | 11.765 | 2 | 9.132e-4 | 2 | 0 | 16 | $1.139 \mathrm{e}-3$ | 6 |
| 188 |  | min | -11.765 | 5 | -. 055 | 16 | -11.765 | 9 | -1.139e-3 | 10 | 0 | 1 | -9.124e-4 | 14 |
| 189 | N87 | max | 11.765 | 14 | 157 | 8 | 11.765 | 2 | 9.145e-4 | 2 | 0 | 16 | $1.14 \mathrm{e}-3$ | 6 |
| 190 |  | min | -11.765 | 5 | -. 052 | 16 | -11.765 | 9 | -1.139e-3 | 10 | 0 | 1 | -9.122e-4 | 14 |
| 191 | N88 | max | 11.765 | 14 | 152 | 8 | 11.765 | 2 | 9.174e-4 | 2 | , | 16 | 1.141e-3 | 6 |
| 192 |  | min | -11.765 | 5 | -. 049 | 16 | -11.765 | 9 | -1.138e-3 | 10 | 0 | 1 | -9.125e-4 | 14 |
| 193 | N89 | max | 11.765 | 14 | . 148 | 8 | 11.765 | 2 | 9.224e-4 | 2 | 0 | 16 | 1.143e-3 | 6 |
| 194 |  | min | -11.765 | 5 | -. 047 | 16 | -11.765 | 9 | -1.137e-3 | 10 | 0 | 1 | -9.132e-4 | 14 |
| 195 | N90 | max | 11.765 | 14 | 143 | 8 | 11.765 | 2 | 9.297e-4 | 2 | , | 16 | $1.145 \mathrm{e}-3$ | 6 |
| 196 |  | min | -11.765 | 5 | -. 044 | 16 | -11.765 | 9 | -1.134e-3 | 10 | 0 | 1 | -9.143e-4 | 14 |
| 197 | N91 | max | 11.765 | 14 | 138 | 8 | 11.765 | 2 | 9.393e-4 | 2 | 0 | 16 | 1.147e-3 | 6 |
| 198 |  | min | -11.765 | 5 | -. 042 | 16 | -11.765 | 9 | -1.131e-3 | 10 | , | 1 | -9.156e-4 | 14 |
| 199 | N92 | max | 11.765 | 14 | 136 | 6 | 11.765 | 2 | 9.511e-4 | 2 | 0 | 16 | $1.15 \mathrm{e}-3$ | 6 |
| 200 |  | min | -11.765 | 5 | -. 04 | 14 | -11.765 | 9 | -1.126e-3 | 10 |  | 1 | -9.17e-4 | 14 |
| 201 | N93 | max | 11.765 | 14 | 136 | 6 | 11.765 | 2 | 9.648e-4 | 2 | 0 | 16 | $1.152 \mathrm{e}-3$ | 6 |
| 202 |  | min | -11.765 | 5 | -. 041 | 14 | -11.765 | 9 | -1.12e-3 | 10 | 0 | 1 | -9.186e-4 | 14 |
| 203 | N94 | max | 11.765 | 14 | . 136 | 6 | 11.765 | 2 | 9.8e-4 | 2 | , | 16 | $1.155 \mathrm{e}-3$ | 6 |
| 204 |  | min | -11.765 | 5 | -. 041 | 14 | -11.765 | 9 | -1.113e-3 | 10 | 0 | 1 | -9.201e-4 | 14 |
| 205 | N95 | max | 11.765 | 14 | 137 | 6 | 11.765 | 2 | 9.96e-4 | 2 | 0 | 16 | $1.157 \mathrm{e}-3$ | 6 |
| 206 |  | min | -11.765 | 5 | -. 041 | 14 | -11.765 | 9 | -1.105e-3 | 10 | 0 | 1 | -9.215e-4 | 14 |
| 207 | N96 | max | 11.765 | 14 | 137 | 6 | 11.765 | 2 | 1.012e-3 | 2 | 0 | 16 | $1.158 \mathrm{e}-3$ | 6 |
| 208 |  | min | -11.765 | 5 | -. 041 | 14 | -11.765 | 9 | -1.096e-3 | 10 | , | 1 | -9.227e-4 | 14 |
| 209 | N97 | max | 11.765 | 14 | 137 | 6 | 11.765 | 2 | 1.029e-3 | 2 | - | 16 | 1.16e-3 | 6 |
| 210 |  | min | -11.765 | 5 | -. 042 | 14 | -11.765 | 9 | -1.085e-3 | 10 | , | 1 | -9.236e-4 | 14 |
| 211 | N98 | max | 11.765 | 14 | 137 | 6 | 11.765 | 2 | 1.045e-3 | , | , | 16 | $1.16 \mathrm{e}-3$ | 6 |
| 212 |  | min | -11.765 | 5 | -. 042 | 14 | -11.765 | 9 | -1.073e-3 | 10 | 0 | 1 | -9.242e-4 | 14 |
| 213 | N99 | max | 11.765 | 14 | . 137 | 6 | 11.765 | 2 | $1.059 \mathrm{e}-3$ | 2 | 0 | 16 | $1.161 \mathrm{e}-3$ | 6 |
| 214 |  | min | -11.765 | 5 | -. 042 | 14 | -11.765 | 9 | -1.059e-3 | 10 | 0 | 1 | -9.244e-4 | 14 |
| 215 | N100 | max | 11.765 | 14 | . 137 | 6 | 11.765 | 2 | $1.073 \mathrm{e}-3$ | 2 | - | 16 | 1.16e-3 | 6 |
| 216 |  | min | -11.765 | 5 | -. 042 | 14 | -11.765 | 9 | -1.045e-3 | 10 | 0 | 1 | -9.242e-4 | 14 |
| 217 | N101 | max | 11.765 | 14 | . 137 | 6 | 11.765 | 2 | $1.085 \mathrm{e}-3$ | 2 | , | 16 | 1.16e-3 | 6 |
| 218 |  | min | -11.765 | 5 | -. 042 | 14 | -11.765 | 9 | -1.029e-3 | 10 | O | 1 | -9.236e-4 | 14 |
| 219 | N102 | max | 11.765 | 14 | . 137 | 6 | 11.765 | 2 | 1.096e-3 | 2 | , | 16 | $1.158 \mathrm{e}-3$ | 6 |
| 220 |  | min | -11.765 | 5 | -. 041 | 14 | -11.765 | 9 | -1.012e-3 | 10 | , | 1 | -9.227e-4 | 14 |
| 221 | N103 | max | 11.765 | 14 | . 137 | 6 | 11.765 | 2 | 1.105e-3 | 2 | 0 | 16 | 1.157e-3 | 6 |
| 222 |  | min | -11.765 | 5 | -. 041 | 14 | -11.765 | 9 | -9.96e-4 | 10 | 0 | 1 | -9.215e-4 | 14 |
| 223 | N104 | max | 11.765 | 14 | . 136 | 6 | 11.765 | 2 | $1.113 \mathrm{e}-3$ | 2 | 0 | 16 | $1.155 \mathrm{e}-3$ | 6 |
| 224 |  | min | -11.765 | 5 | -. 041 | 14 | -11.765 | 9 | -9.8e-4 | 10 | 0 | 1 | -9.201e-4 | 14 |
| 225 | N105 | max | 11.765 | 14 | 136 | 6 | 11.765 | 2 | 1.12e-3 | 2 | 0 | 16 | $1.152 \mathrm{e}-3$ | 6 |
| 226 |  | min | -11.765 | 5 | -. 041 | 14 | -11.765 | 9 | -9.648e-4 | 10 | 0 | 1 | -9.186e-4 | 14 |
| 227 | N106 | max | 11.765 | 14 | 136 | 6 | 11.765 | 2 | $1.126 \mathrm{e}-3$ | 2 | 0 | 16 | $1.15 \mathrm{e}-3$ | 6 |
| 228 |  | min | -11.765 | 5 | -. 04 | 14 | -11.765 | 9 | -9.511e-4 | 10 | 0 | 1 | -9.17e-4 | 14 |
| 229 | N107 | max | 11.765 | 14 | 138 | 4 | 11.765 | 2 | 1.131e-3 | 2 | 0 | 16 | 1.147e-3 | 6 |
| 230 |  | min | -11.765 | 5 | -. 042 | 12 | -11.765 | 9 | -9.393e-4 | 10 | 0 | 1 | -9.156e-4 | 14 |
| 231 | N108 | max | 11.765 | 14 | . 143 | 4 | 11.765 | 2 | 1.134e-3 | 2 | 0 | 16 | $1.145 \mathrm{e}-3$ | 6 |

$\qquad$
—

## Envelope Joint Displacements (Continued)

| Joint |  |  | $X[$ in] LC $\quad \mathrm{Y}$ [in] |  |  | $\begin{array}{\|l\|} \hline \mathrm{LC} \\ \hline 12 \\ \hline \end{array}$ | $\begin{gathered} Z[\text { [in }] \\ \hline-11.765 \\ \hline \end{gathered}$ | LC X Rotation ... LC Y Rotation... LC Z Rotation [... LC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 232 |  | min | -11.765 | 5 | -. 044 |  |  | 9 | -9.297e-4 | 10 | - | 1 | -9.143e-4 | 14 |
| 233 | N109 | max | 11.765 | 14 | 148 | 4 | 11.765 | 2 | 1.137e-3 | 2 | 0 | 16 | $1.143 \mathrm{e}-3$ | 6 |
| 234 |  | min | -11.765 | 5 | -. 047 | 12 | -11.765 | 9 | -9.224e-4 | 10 | 0 | 1 | -9.132e-4 | 14 |
| 235 | N110 | max | 11.765 | 14 | 152 | 4 | 11.765 | 2 | $1.138 \mathrm{e}-3$ | 2 | 0 | 16 | 1.141e-3 | 6 |
| 236 |  | min | -11.765 | 5 | -. 049 | 12 | -11.765 | 9 | -9.174e-4 | 10 | 0 | 1 | -9.125e-4 | 14 |
| 237 | N111 | max | 11.765 | 14 | 157 | 4 | 11.765 | 2 | 1.139e-3 | 2 | 0 | 16 | $1.14 \mathrm{e}-3$ | 6 |
| 238 |  | min | -11.765 | 5 | -. 052 | 12 | -11.765 | 9 | -9.145e-4 | 10 | 0 | 1 | -9.122e-4 | 14 |
| 239 | N112 | max | 11.765 | 14 | 162 | 4 | 11.765 | 2 | 1.139e-3 | 2 | 0 | 16 | $1.139 \mathrm{e}-3$ | 6 |
| 240 |  | min | -11.765 | 5 | -. 055 | 12 | -11.765 | 9 | -9.132e-4 | 10 | 0 | 1 | -9.124e-4 | 14 |
| 241 | N113 | max | 11.765 | 14 | 157 | 4 | 11.765 | 2 | $1.139 \mathrm{e}-3$ | 2 | 0 | 16 | $1.139 \mathrm{e}-3$ | 6 |
| 242 |  | min | -11.765 | 5 | -. 052 | 12 | -11.765 | 9 | -9.126e-4 | 10 | 0 | 1 | -9.126e-4 | 14 |
| 243 | N114 | max | 11.765 | 14 | 152 | 4 | 11.765 | 2 | 1.139e-3 | 2 | 0 | 16 | 1.14e-3 | 6 |
| 244 |  | min | -11.765 | 5 | -. 049 | 12 | -11.765 | 9 | -9.136e-4 | 10 | 0 | 1 | -9.124e-4 | 14 |
| 245 | N115 | max | 11.765 | 14 | 148 | 4 | 11.765 | 2 | $1.138 \mathrm{e}-3$ | 2 | 0 | 16 | $1.141 \mathrm{e}-3$ | 6 |
| 246 |  | min | -11.765 | 5 | -. 046 | 12 | -11.765 | 9 | -9.162e-4 | 10 | 0 | 1 | -9.127e-4 | 14 |
| 247 | N116 | max | 11.765 | 14 | 143 | 4 | 11.765 | 2 | $1.136 \mathrm{e}-3$ | 2 | 0 | 16 | $1.143 \mathrm{e}-3$ | 6 |
| 248 |  | min | -11.765 | 5 | -. 044 | 12 | -11.765 | 9 | -9.209e-4 | 10 | 0 | 1 | -9.133e-4 | 14 |
| 249 | N117 | max | 11.765 | 14 | 138 | 4 | 11.765 | 2 | $1.133 \mathrm{e}-3$ | 2 | 0 | 16 | $1.145 \mathrm{e}-3$ | 6 |
| 250 |  | min | -11.765 | 5 | -. 041 | 12 | -11.765 | 9 | -9.279e-4 | 10 | 0 | 1 | -9.143e-4 | 14 |
| 251 | N118 | max | 11.765 | 14 | 134 | 4 | 11.765 | 2 | $1.129 \mathrm{e}-3$ | 2 | 0 | 16 | $1.147 \mathrm{e}-3$ | 6 |
| 252 |  | min | -11.765 | 5 | -. 038 | 12 | -11.765 | 9 | -9.373e-4 | 10 | 0 | 1 | -9.155e-4 | 14 |
| 253 | N119 | max | 11.765 | 14 | 129 | 6 | 11.765 | 2 | 1.125e-3 | 2 | 0 | 16 | $1.15 \mathrm{e}-3$ | 6 |
| 254 |  | min | -11.765 | 5 | -. 036 | 12 | -11.765 | 9 | -9.49e-4 | 10 | 0 | 1 | -9.169e-4 | 14 |
| 255 | N120 | max | 11.765 | 14 | 129 | 6 | 11.765 | 2 | $1.119 \mathrm{e}-3$ | 2 | 0 | 16 | $1.152 \mathrm{e}-3$ | 6 |
| 256 |  | min | -11.765 | 5 | -. 035 | 14 | -11.765 | 9 | -9.626e-4 | 10 | 0 | 1 | -9.183e-4 | 14 |
| 257 | N121 | max | 11.765 | 14 | 129 | 6 | 11.765 | 2 | 1.112e-3 | 2 | 0 | 16 | $1.154 \mathrm{e}-3$ | 6 |
| 258 |  | min | -11.765 | 5 | -. 035 | 14 | -11.765 | 9 | -9.777e-4 | 10 | 0 | 1 | -9.196e-4 | 14 |
| 259 | N122 | max | 11.765 | 14 | 13 | 6 | 11.765 | 2 | 1.104e-3 | 2 | 0 | 16 | $1.156 \mathrm{e}-3$ | 6 |
| 260 |  | min | -11.765 | 5 | -. 036 | 14 | -11.765 | 9 | -9.937e-4 | 10 | 0 | 1 | -9.209e-4 | 14 |
| 261 | N123 | max | 11.765 | 14 | 13 | 6 | 11.765 | 2 | 1.094e-3 | 2 | 0 | 16 | $1.158 \mathrm{e}-3$ | 6 |
| 262 |  | min | -11.765 | 5 | -. 036 | 14 | -11.765 | 9 | -1.01e-3 | 10 | 0 | 1 | -9.221e-4 | 14 |
| 263 | N124 | max | 11.765 | 14 | 13 | 6 | 11.765 | 2 | $1.083 \mathrm{e}-3$ | 2 | 0 | 16 | 1.159e-3 | 6 |
| 264 |  | min | -11.765 | 5 | -. 036 | 14 | -11.765 | 9 | -1.027e-3 | 10 | 0 | 1 | -9.229e-4 | 14 |
| 265 | N125 | max | 11.765 | 14 | 13 | 6 | 11.765 | 2 | $1.071 \mathrm{e}-3$ | 2 | 0 | 16 | $1.16 \mathrm{e}-3$ | 6 |
| 266 |  | min | -11.765 | 5 | -. 036 | 14 | -11.765 | 9 | -1.042e-3 | 10 | 0 | 1 | -9.235e-4 | 14 |
| 267 | N126 | max | 11.765 | 14 | 13 | 6 | 11.765 | 2 | 1.057e-3 | 2 | 0 | 16 | 1.16e-3 | 6 |
| 268 |  | min | -11.765 | 5 | -. 036 | 14 | -11.765 | 9 | -1.057e-3 | 10 | 0 | 1 | -9.237e-4 | 14 |
| 269 | N127 | max | 11.765 | 14 | 13 | 6 | 11.765 | 2 | 1.042e-3 | 2 | 0 | 16 | $1.16 \mathrm{e}-3$ | 6 |
| 270 |  | min | -11.765 | 5 | -. 036 | 14 | -11.765 | 9 | -1.071e-3 | 10 | 0 | 1 | -9.235e-4 | 14 |
| 271 | N128 | max | 11.765 | 14 | 13 | 6 | 11.765 | 2 | 1.027e-3 | 2 | 0 | 16 | $1.159 \mathrm{e}-3$ | 6 |
| 272 |  | min | -11.765 | 5 | -. 036 | 14 | -11.765 | 9 | -1.083e-3 | 10 | 0 | 1 | -9.229e-4 | 14 |
| 273 | N129 | max | 11.765 | 14 | 13 | 6 | 11.765 | 2 | 1.01e-3 | 2 | 0 | 16 | $1.158 \mathrm{e}-3$ | 6 |
| 274 |  | min | -11.765 | 5 | -. 036 | 14 | -11.765 | 9 | -1.094e-3 | 10 |  | 1 | -9.221e-4 | 14 |
| 275 | N130 | max | 11.765 | 14 | 13 | 6 | 11.765 | 2 | 9.937e-4 | 2 | 0 | 16 | $1.156 \mathrm{e}-3$ | 6 |
| 276 |  | min | -11.765 | 5 | -. 036 | 14 | -11.765 | 9 | -1.104e-3 | 10 | 0 | 1 | -9.209e-4 | 14 |
| 277 | N131 | max | 11.765 | 14 | . 129 | 6 | 11.765 | 2 | 9.777e-4 | 2 | 0 | 16 | $1.154 \mathrm{e}-3$ | 6 |
| 278 |  | min | -11.765 | 5 | -. 035 | 14 | -11.765 | 9 | -1.112e-3 | 10 | 0 | 1 | -9.196e-4 | 14 |
| 279 | N132 | max | 11.765 | 14 | 129 | 6 | 11.765 | 2 | $9.626 \mathrm{e}-4$ | 2 | 0 | 16 | $1.152 \mathrm{e}-3$ | 6 |
| 280 |  | min | -11.765 | 5 | -. 035 | 14 | -11.765 | 9 | -1.119e-3 | 10 | 0 | 1 | -9.183e-4 | 14 |
| 281 | N133 | max | 11.765 | 14 | 129 | 6 | 11.765 | 2 | $9.49 \mathrm{e}-4$ | 2 | 0 | 16 | $1.15 \mathrm{e}-3$ | 6 |
| 282 |  | min | -11.765 | 5 | -. 036 | 16 | -11.765 | 9 | -1.125e-3 | 10 | 0 | 1 | -9.169e-4 | 14 |
| 283 | N134 | max | 11.765 | 14 | 134 | 8 | 11.765 | 2 | 9.373e-4 | 2 | 0 | 16 | 1.147e-3 | 6 |
| 284 |  | min | -11.765 | 5 | -. 038 | 16 | -11.765 | 9 | -1.129e-3 | 10 | 0 | 1 | -9.155e-4 | 14 |
| 285 | N135 | max | 11.765 | 14 | 138 | 8 | 11.765 | 2 | $9.279 \mathrm{e}-4$ | 2 | 0 | 16 | $1.145 \mathrm{e}-3$ | 6 |
| 286 |  | min | -11.765 | 5 | -. 041 | 16 | -11.765 | 9 | -1.133e-3 | 10 | 0 | 1 | -9.143e-4 | 14 |
| 287 | N136 | max | 11.765 | 14 | 143 | 8 | 11.765 | 2 | $9.209 \mathrm{e}-4$ | 2 | 0 | 16 | 1.143e-3 | 6 |
| 288 |  | min | -11.765 | 5 | -. 044 | 16 | -11.765 | 9 | -1.136e-3 | 10 | 0 | 1 | -9.133e-4 | 14 |

$\qquad$

## Envelope Joint Displacements (Continued)


$\qquad$
$\square$

## Envelope Joint Displacements (Continued)

| Joint |  |  | $X$ [in] LC $\quad$ [ in] |  |  | $\begin{array}{\|c\|c\|} \hline \text { LC } & Z \text { [inl } \\ \hline 16 & -11.765 \\ \hline \end{array}$ |  | LC X Rotation .... |  |  | Ratio | LC Z Rotation I... LC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 346 |  | min | -11.765 | 5 | -. 046 |  |  | 10 | 0 | 1 | -9.134e-4 | 14 |
| 347 | N166 | max | 11.765 | 14 | 152 | 8 | 11.765 |  |  | 2 | $9.124 \mathrm{e}-4$ | 2 | 0 | 16 | 1.139e-3 | 6 |
| 348 |  | min | -11.765 | 5 | -. 049 | 16 | -11.765 | 9 | -1.14e-3 | 10 | 0 | 1 | -9.136e-4 | 14 |
| 349 | N167 | max | 11.765 | 14 | 148 | 4 | 11.765 | 2 | $1.141 \mathrm{e}-3$ | 2 | 0 | 16 | 1.138e-3 | 6 |
| 350 |  | min | -11.765 | 5 | -. 046 | 12 | -11.765 | 9 | -9.127e-4 | 10 | 0 | 1 | -9.162e-4 | 14 |
| 351 | N168 | max | 11.765 | 14 | 143 | 4 | 11.765 | 2 | 1.141e-3 | 2 | 0 | 16 | $1.138 \mathrm{e}-3$ | 6 |
| 352 |  | min | -11.765 | 5 | -. 044 | 12 | -11.765 | 9 | -9.137e-4 | 10 | 0 | 1 | -9.16e-4 | 14 |
| 353 | N169 | max | 11.765 | 14 | 138 | 4 | 11.765 | 2 | 1.14e-3 | 2 | 0 | 16 | 1.14e-3 | 6 |
| 354 |  | min | -11.765 | 5 | -. 041 | 12 | -11.765 | 9 | -9.163e-4 | 10 | 0 | 1 | -9.163e-4 | 14 |
| 355 | N170 | max | 11.765 | 14 | 134 | 4 | 11.765 | 2 | $1.138 \mathrm{e}-3$ | 2 | 0 | 16 | $1.142 \mathrm{e}-3$ | 6 |
| 356 |  | min | -11.765 | 5 | -. 038 | 12 | -11.765 | 9 | -9.209e-4 | 10 | 0 | 1 | -9.17e-4 | 14 |
| 357 | N171 | max | 11.765 | 14 | 129 | 4 | 11.765 | 2 | 1.135e-3 | 2 | 0 | 16 | 1.144e-3 | 6 |
| 358 |  | min | -11.765 | 5 | -. 035 | 12 | -11.765 | 9 | -9.281e-4 | 10 | 0 | 1 | -9.181e-4 | 14 |
| 359 | N172 | max | 11.765 | 14 | 124 | 4 | 11.765 | 2 | $1.132 \mathrm{e}-3$ | 2 | 0 | 16 | $1.147 \mathrm{e}-3$ | 6 |
| 360 |  | min | -11.765 | 5 | -. 033 | 12 | -11.765 | 9 | -9.377e-4 | 10 | 0 | 1 | -9.193e-4 | 14 |
| 361 | N173 | max | 11.765 | 14 | 12 | 4 | 11.765 | 2 | 1.127e-3 | 2 | 0 | 16 | $1.15 \mathrm{e}-3$ | 6 |
| 362 |  | min | -11.765 | 5 | -. 03 | 11 | -11.765 | 9 | -9.498e-4 | 10 | 0 | 1 | -9.208e-4 | 14 |
| 363 | N174 | max | 11.765 | 14 | 115 | 6 | 11.765 | 2 | 1.121e-3 | 2 | 0 | 16 | 1.152e-3 | 6 |
| 364 |  | min | -11.765 | 5 | -. 027 | 11 | -11.765 | 9 | -9.639e-4 | 10 | 0 | 1 | -9.223e-4 | 14 |
| 365 | N175 | max | 11.765 | 14 | 116 | 6 | 11.765 | 2 | 1.114e-3 | 2 | 0 | 16 | 1.154e-3 | 6 |
| 366 |  | min | -11.765 | 5 | -. 025 | 13 | -11.765 | 9 | -9.795e-4 | 10 | 0 | 1 | -9.238e-4 | 14 |
| 367 | N176 | max | 11.765 | 14 | . 116 | 6 | 11.765 | 2 | 1.107e-3 | 2 | 0 | 16 | $1.156 \mathrm{e}-3$ | 6 |
| 368 |  | min | -11.765 | 5 | -. 026 | 13 | -11.765 | 9 | -9.961e-4 | 10 | 0 | 1 | -9.253e-4 | 14 |
| 369 | N177 | max | 11.765 | 14 | 116 | 6 | 11.765 | 2 | 1.098e-3 | 2 | 0 | 16 | $1.158 \mathrm{e}-3$ | 6 |
| 370 |  | min | -11.765 | 5 | -. 026 | 13 | -11.765 | 9 | -1.013e-3 | 10 | 0 | 1 | -9.267e-4 | 14 |
| 371 | N178 | max | 11.765 | 14 | 116 | 6 | 11.765 | 2 | 1.087e-3 | 2 | 0 | 16 | $1.16 \mathrm{e}-3$ | 6 |
| 372 |  | min | -11.765 | 5 | -. 026 | 13 | -11.765 | 9 | -1.03e-3 | 10 | 0 | 1 | -9.278e-4 | 14 |
| 373 | N179 | max | 11.765 | 14 | 116 | 6 | 11.765 | 2 | $1.075 \mathrm{e}-3$ | 2 | 0 | 16 | 1.161e-3 | 6 |
| 374 |  | min | -11.765 | 5 | -. 026 | 13 | -11.765 | 9 | -1.046e-3 | 10 | 0 | 1 | -9.285e-4 | 14 |
| 375 | N180 | max | 11.765 | 14 | 116 | 6 | 11.765 | 2 | $1.061 \mathrm{e}-3$ | 2 | 0 | 16 | 1.161e-3 | 6 |
| 376 |  | min | -11.765 | 5 | -. 026 | 13 | -11.765 | 9 | -1.061e-3 | 10 | 0 | 1 | -9.287e-4 | 14 |
| 377 | N181 | max | 11.765 | 14 | 116 | 6 | 11.765 | 2 | $1.046 \mathrm{e}-3$ | 2 | 0 | 16 | 1.161e-3 | 6 |
| 378 |  | min | -11.765 | 5 | -. 026 | 13 | -11.765 | 9 | -1.075e-3 | 10 | 0 | 1 | -9.285e-4 | 14 |
| 379 | N182 | max | 11.765 | 14 | 116 | 6 | 11.765 | 2 | $1.03 \mathrm{e}-3$ | 2 | 0 | 16 | 1.16e-3 | 6 |
| 380 |  | min | -11.765 | 5 | -. 026 | 13 | -11.765 | 9 | -1.087e-3 | 10 | 0 | 1 | -9.278e-4 | 14 |
| 381 | N183 | max | 11.765 | 14 | 116 | 6 | 11.765 | 2 | $1.013 \mathrm{e}-3$ | 2 | 0 | 16 | $1.158 \mathrm{e}-3$ | 6 |
| 382 |  | min | -11.765 | 5 | -. 026 | 13 | -11.765 | 9 | -1.098e-3 | 10 | 0 | 1 | -9.267e-4 | 14 |
| 383 | N184 | max | 11.765 | 14 | 116 | 6 | 11.765 | 2 | 9.961e-4 | 2 | 0 | 16 | $1.156 \mathrm{e}-3$ | 6 |
| 384 |  | min | -11.765 | 5 | -. 026 | 13 | -11.765 | 9 | -1.107e-3 | 10 | 0 | 1 | -9.253e-4 | 14 |
| 385 | N185 | max | 11.765 | 14 | . 116 | 6 | 11.765 | 2 | 9.795e-4 | 2 | 0 | 16 | 1.154e-3 | 6 |
| 386 |  | min | -11.765 | 5 | -. 025 | 13 | -11.765 | 9 | -1.114e-3 | 10 | 0 | 1 | -9.238e-4 | 14 |
| 387 | N186 | max | 11.765 | 14 | 115 | 6 | 11.765 | 2 | $9.639 \mathrm{e}-4$ | 2 | 0 | 16 | 1.152e-3 | 6 |
| 388 |  | min | -11.765 | 5 | -. 027 | 15 | -11.765 | 9 | -1.121e-3 | 10 | 0 | 1 | -9.223e-4 | 14 |
| 389 | N187 | max | 11.765 | 14 | 12 | 8 | 11.765 | 2 | $9.498 \mathrm{e}-4$ | 2 | 0 | 16 | $1.15 \mathrm{e}-3$ | 6 |
| 390 |  | min | -11.765 | 5 | -. 03 | 15 | -11.765 | 9 | -1.127e-3 | 10 | 0 | 1 | -9.208e-4 | 14 |
| 391 | N188 | max | 11.765 | 14 | 124 | 8 | 11.765 | 2 | 9.377e-4 | 2 | 0 | 16 | 1.147e-3 | 6 |
| 392 |  | min | -11.765 | 5 | -. 033 | 16 | -11.765 | 9 | -1.132e-3 | 10 | 0 | 1 | -9.193e-4 | 14 |
| 393 | N189 | max | 11.765 | 14 | . 129 | 8 | 11.765 | 2 | 9.281e-4 | 2 | 0 | 16 | $1.144 \mathrm{e}-3$ | 6 |
| 394 |  | min | -11.765 | 5 | -. 035 | 16 | -11.765 | 9 | -1.135e-3 | 10 | 0 | 1 | -9.181e-4 | 14 |
| 395 | N190 | max | 11.765 | 14 | 134 | 8 | 11.765 | 2 | 9.209e-4 | 2 | 0 | 16 | $1.142 \mathrm{e}-3$ | 6 |
| 396 |  | min | -11.765 | 5 | -. 038 | 16 | -11.765 | 9 | -1.138e-3 | 10 | 0 | 1 | -9.17e-4 | 14 |
| 397 | N191 | max | 11.765 | 14 | 138 | 8 | 11.765 | 2 | $9.163 \mathrm{e}-4$ | 2 | 0 | 16 | $1.14 \mathrm{e}-3$ | 6 |
| 398 |  | min | -11.765 | 5 | -. 041 | 16 | -11.765 | 9 | -1.14e-3 | 10 | 0 | 1 | -9.163e-4 | 14 |
| 399 | N192 | max | 11.765 | 14 | 143 | 8 | 11.765 | 2 | 9.137e-4 | 2 | 0 | 16 | $1.138 \mathrm{e}-3$ | 6 |
| 400 |  | min | -11.765 | 5 | -. 044 | 16 | -11.765 | 9 | -1.141e-3 | 10 | 0 | 1 | -9.16e-4 | 14 |
| 401 | N193 | max | 11.765 | 14 | 148 | 8 | 11.765 | 2 | 9.127e-4 | 2 | 0 | 16 | $1.138 \mathrm{e}-3$ | 6 |
| 402 |  | min | -11.765 | 5 | -. 046 | 16 | -11.765 | 9 | -1.141e-3 | 10 | 0 | 1 | -9.162e-4 | 14 |

$\qquad$

## Envelope Joint Displacements (Continued)


$\qquad$
—

## Envelope Joint Displacements (Continued)


$\qquad$

## Envelope Joint Displacements (Continued)


$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] | LC | $\begin{array}{r} \mathrm{Y}_{\text {[in] }}-.024 \\ \hline \end{array}$ | LC | $\begin{gathered} \mathrm{Z}[\mathrm{in}] \\ \hline-11.765 \\ \hline \end{gathered}$ | LC | $\begin{aligned} & \text { X Rotation ... } \\ & \hline-9.353 \mathrm{e}-4 \\ & \hline \end{aligned}$ | LC | $\frac{\text { Rotation }}{0}$ | $\begin{array}{c\|c\|} \text { LC } & \text { Z Rotation [... } \\ \hline 1 & -9.546 \mathrm{e}-4 \\ \hline \end{array}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 574 |  | min | -11.765 |  |  |  |  |  |  |  |  |  |  |  |
| 575 | N280 | max | 11.765 | 14 | 105 | 4 | 11.765 | 2 | $1.148 \mathrm{e}-3$ | 2 | 0 | 16 | $1.138 \mathrm{e}-3$ | 6 |
| 576 |  | min | -11.765 | 5 | -. 022 | 11 | -11.765 | 9 | -9.475e-4 | 10 | 0 | 1 | -9.583e-4 | 14 |
| 577 | N282 | max | 11.765 | 14 | . 096 | 4 | 11.765 | 2 | $1.139 \mathrm{e}-3$ | 2 | 0 | 16 | $1.15 \mathrm{e}-3$ | 6 |
| 578 |  | min | -11.765 | 5 | -. 016 | 11 | -11.765 | 9 | -9.812e-4 | 10 | 0 | 1 | -9.689e-4 | 14 |
| 579 | N283 | max | 11.765 | 14 | . 092 | 4 | 11.765 | 2 | 1.137e-3 | 2 | 0 | 16 | $1.158 \mathrm{e}-3$ | 6 |
| 580 |  | min | -11.765 | 5 | -. 013 | 11 | -11.765 | 9 | -1.001e-3 | 10 | 0 | 1 | -9.759e-4 | 14 |
| 581 | N284 | max | 11.765 | 14 | . 089 | 6 | 11.765 | 2 | 1.134e-3 | 2 | 0 | 16 | $1.166 \mathrm{e}-3$ | 6 |
| 582 |  | min | -11.765 | 5 | -. 01 | 11 | -11.765 | 9 | -1.022e-3 | 10 | 0 | 1 | -9.84e-4 | 14 |
| 583 | N285 | max | 11.765 | 14 | . 089 | 6 | 11.765 | 2 | 1.129e-3 | 2 | 0 | 16 | $1.175 \mathrm{e}-3$ | 6 |
| 584 |  | min | -11.765 | 5 | -. 007 | 11 | -11.765 | 9 | -1.043e-3 | 10 | 0 | 1 | -9.924e-4 | 14 |
| 585 | N286 | max | 11.765 | 14 | . 089 | 6 | 11.765 | 2 | 1.122e-3 | 2 | 0 | 16 | $1.183 \mathrm{e}-3$ | 6 |
| 586 |  | min | -11.765 | 5 | -. 006 | 13 | -11.765 | 9 | -1.062e-3 | 10 | 0 | 1 | -1.e-3 | 14 |
| 587 | N287 | max | 11.765 | 14 | . 089 | 6 | 11.765 | 2 | 1.112e-3 | 2 | 0 | 16 | 1.189e-3 | 6 |
| 588 |  | min | -11.765 | 5 | -. 007 | 13 | -11.765 | 9 | -1.08e-3 | 10 | 0 | 1 | -1.005e-3 | 14 |
| 589 | N289 | max | 11.765 | 14 | 089 | 6 | 11.765 | 2 | $1.08 \mathrm{e}-3$ | 2 | 0 | 16 | $1.189 \mathrm{e}-3$ | 6 |
| 590 |  | min | -11.765 | 5 | -. 007 | 13 | -11.765 | 9 | -1.112e-3 | 10 | 0 | 1 | -1.005e-3 | 14 |
| 591 | N290 | max | 11.765 | 14 | . 089 | 6 | 11.765 | 2 | 1.062e-3 | 2 | 0 | 16 | $1.183 \mathrm{e}-3$ | 6 |
| 592 |  | min | -11.765 | 5 | -. 006 | 13 | -11.765 | 9 | -1.122e-3 | 10 | 0 | 1 | -1.e-3 | 14 |
| 593 | N291 | max | 11.765 | 14 | . 089 | 6 | 11.765 | 2 | $1.043 \mathrm{e}-3$ | 2 | 0 | 16 | $1.175 \mathrm{e}-3$ | 6 |
| 594 |  | min | -11.765 | 5 | -. 007 | 15 | -11.765 | 9 | -1.129e-3 | 10 | 0 | 1 | -9.924e-4 | 14 |
| 595 | N292 | max | 11.765 | 14 | 089 | 6 | 11.765 | 2 | $1.022 \mathrm{e}-3$ | 2 | 0 | 16 | $1.166 \mathrm{e}-3$ | 6 |
| 596 |  | min | -11.765 | 5 | -. 01 | 15 | -11.765 | 9 | -1.134e-3 | 10 | 0 | 1 | -9.84e-4 | 14 |
| 597 | N293 | max | 11.765 | 14 | . 092 | 8 | 11.765 | 2 | 1.001e-3 | 2 | 0 | 16 | $1.158 \mathrm{e}-3$ | 6 |
| 598 |  | min | -11.765 | 5 | -. 013 | 15 | -11.765 | 9 | -1.137e-3 | 10 | 0 | 1 | -9.759e-4 | 14 |
| 599 | N294 | max | 11.765 | 14 | 096 | 8 | 11.765 | 2 | 9.812e-4 | 2 | 0 | 16 | $1.15 \mathrm{e}-3$ | 6 |
| 600 |  | min | -11.765 | 5 | -. 016 | 15 | -11.765 | 9 | -1.139e-3 | 10 | 0 | 1 | -9.689e-4 | 14 |
| 601 | N296 | max | 11.765 | 14 | 105 | 8 | 11.765 | 2 | 9.475e-4 | , | 0 | 16 | $1.138 \mathrm{e}-3$ | 6 |
| 602 |  | min | -11.765 | 5 | -. 022 | 15 | -11.765 | 9 | -1.148e-3 | 10 | 0 | 1 | -9.583e-4 | 14 |
| 603 | N297 | max | 11.765 | 14 | 11 | 8 | 11.765 | 2 | 9.353e-4 | 2 | 0 | 16 | $1.133 \mathrm{e}-3$ | 6 |
| 604 |  | min | -11.765 | 5 | -. 024 | 15 | -11.765 | 9 | -1.149e-3 | 10 | 0 | 1 | -9.546e-4 | 14 |
| 605 | N298 | max | 11.765 | 14 | 115 | 8 | 11.765 | 2 | 9.264e-4 | 2 | 0 | 16 | $1.13 \mathrm{e}-3$ | 6 |
| 606 |  | min | -11.765 | 5 | -. 027 | 15 | -11.765 | 9 | -1.149e-3 | 10 | 0 | 1 | -9.518e-4 | 14 |
| 607 | N299 | max | 11.765 | 14 | 12 | 8 | 11.765 | 2 | 9.208e-4 | 2 | 0 | 16 | $1.127 \mathrm{e}-3$ | 6 |
| 608 |  | min | -11.765 | 5 | -. 03 | 15 | -11.765 | 9 | -1.15e-3 | 10 | 0 | 1 | -9.498e-4 | 14 |
| 609 | N300 | max | 11.765 | 14 | 124 | 8 | 11.765 | 2 | 9.178e-4 | 2 | 0 | 16 | $1.125 \mathrm{e}-3$ | 6 |
| 610 |  | min | -11.765 | 5 | -. 033 | 16 | -11.765 | 9 | -1.15e-3 | 10 | 0 | 1 | -9.487e-4 | 14 |
| 611 | N30 | max | 11.765 | 14 | 129 | 10 | 11.765 | 2 | 9.169e-4 | 2 | 0 | 16 | $1.125 \mathrm{e}-3$ | 6 |
| 612 |  | min | -11.765 | 5 | -. 036 | 16 | -11.765 | 9 | -1.15e-3 | 10 | 0 | 1 | -9.49e-4 | 14 |
| 613 | N302 | max | 11.765 | 14 | . 129 | 2 | 11.765 | 2 | 1.152e-3 | 2 | 0 | 16 | 1.119e-3 | 6 |
| 614 |  | min | -11.765 | 5 | -. 035 | 10 | -11.765 | 9 | -9.183e-4 | 10 | 0 | 1 | -9.626e-4 | 14 |
| 615 | N303 | max | 11.765 | 14 | . 122 | 2 | 11.765 | 2 | 1.152e-3 | 2 | 0 | 16 | 1.119e-3 | 6 |
| 616 |  | min | -11.765 | 5 | -. 03 | 11 | -11.765 | 9 | -9.192e-4 | 10 | 0 | 1 | -9.625e-4 | 14 |
| 617 | N304 | max | 11.765 | 14 | 115 | 2 | 11.765 | 2 | 1.152e-3 | 2 | 0 | 16 | $1.121 \mathrm{e}-3$ | 6 |
| 618 |  | min | -11.765 | 5 | -. 027 | 11 | -11.765 | 9 | -9.223e-4 | 10 | 0 | 1 | -9.639e-4 | 14 |
| 619 | N305 | max | 11.765 | 14 | 11 | 4 | 11.765 | 2 | $1.152 \mathrm{e}-3$ | 2 | 0 | 16 | $1.124 \mathrm{e}-3$ | 6 |
| 620 |  | min | -11.765 | 5 | -. 025 | 11 | -11.765 | 9 | -9.284e-4 | 10 | 0 | 1 | -9.664e-4 | 14 |
| 621 | N306 | max | 11.765 | 14 | 106 | 4 | 11.765 | 2 | 1.152e-3 | 2 | 0 | 16 | $1.128 \mathrm{e}-3$ | 6 |
| 622 |  | min | -11.765 | 5 | -. 022 | 11 | -11.765 | 9 | -9.381e-4 | 10 | 0 | 1 | -9.7e-4 | 14 |
| 623 | N307 | max | 11.765 | 14 | . 101 | 4 | 11.765 | 2 | 1.152e-3 | 2 | 0 | 16 | $1.133 \mathrm{e}-3$ | 6 |
| 624 |  | min | -11.765 | 5 | -. 019 | 11 | -11.765 | 9 | -9.516e-4 | 10 | 0 | 1 | -9.749e-4 | 14 |
| 625 | N308 | max | 11.765 | 14 | 096 | 4 | 11.765 | 2 | $1.15 \mathrm{e}-3$ | 2 | 0 | 16 | $1.139 \mathrm{e}-3$ | 6 |
| 626 |  | min | -11.765 | 5 | -. 016 | 11 | -11.765 | 9 | -9.689e-4 | 10 | 0 | 1 | -9.812e-4 | 14 |
| 627 | N309 | max | 11.765 | 14 | 092 | 4 | 11.765 | 2 | $1.149 \mathrm{e}-3$ | 2 | 0 | 16 | $1.149 \mathrm{e}-3$ | 6 |
| 628 |  | min | -11.765 | 5 | -. 013 | 11 | -11.765 | 9 | -9.894e-4 | 10 | 0 | 1 | -9.894e-4 | 14 |
| 629 | N310 | max | 11.765 | 14 | . 088 | 4 | 11.765 | 2 | $1.148 \mathrm{e}-3$ | 2 | 0 | 16 | $1.16 \mathrm{e}-3$ | 6 |
| 630 |  | min | -11.765 | 5 | -. 01 | 11 | -11.765 | 9 | -1.012e-3 | 10 | 0 | 1 | -9.997e-4 | 14 |

$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | x [in] | LC Y [in |  | LC |  | LC X Rotation... |  | LC | $\begin{gathered} \text { Y Rotation .... } \\ \hline 0 \\ \hline \end{gathered}$ | LC Z Rotation [... LC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 631 | N311 | max | 11.765 | 14 | 083 | 4 | 11.765 |  |  | $16$ |  | $1.174 \mathrm{e}-3$ | 6 |
| 632 |  | min | -11.765 | 5 | -. 007 | 11 | -11.765 | - | -1.036e-3 |  | 10 | 0 | 1 | -1.012e-3 | 14 |
| 633 | N312 | max | 11.765 | 14 | 082 | 6 | 11.765 | 2 | $1.145 \mathrm{e}-3$ | 2 | 0 | 16 | $1.188 \mathrm{e}-3$ | 6 |
| 634 |  | min | -11.765 | 5 | -. 004 | 11 | -11.765 | 9 | -1.059e-3 | 10 | 0 | 1 | -1.026e-3 | 14 |
| 635 | N313 | max | 11.765 | 14 | . 082 | 6 | 11.765 | 2 | $1.14 \mathrm{e}-3$ | 2 | 0 | 16 | $1.201 \mathrm{e}-3$ | 6 |
| 636 |  | min | -11.765 | 5 | -. 001 | 13 | -11.765 | 9 | -1.08e-3 | 10 | 0 | 1 | -1.039e-3 | 14 |
| 637 | N31 | max | 11.765 | 14 | 082 | 6 | 11.765 | 2 | $1.13 \mathrm{e}-3$ | 2 | 0 | 16 | $1.21 \mathrm{e}-3$ | 6 |
| 638 |  | min | -11.765 | 5 | -. 002 | 13 | -11.765 | 9 | -1.099e-3 | 10 | 0 | 1 | -1.049e-3 | 14 |
| 639 | N315 | max | 11.765 | 14 | 082 | 6 | 11.765 | 2 | 1.116e-3 | 2 | 0 | 16 | $1.213 \mathrm{e}-3$ | 6 |
| 640 |  | min | -11.765 | 5 | -. 002 | 13 | -11.765 | 9 | -1.116e-3 | 10 | 0 | 1 | -1.052e-3 | 14 |
| 641 | N316 | max | 11.765 | 14 | 082 | 6 | 11.765 | 2 | 1.099e-3 | 2 | 0 | 16 | 1.21e-3 | 6 |
| 642 |  | min | -11.765 | 5 | -. 002 | 13 | -11.765 | 9 | -1.13e-3 | 10 | 0 | 1 | -1.049e-3 | 14 |
| 643 | N317 | max | 11.765 | 14 | 082 | 6 | 11.765 | 2 | $1.08 \mathrm{e}-3$ | 2 | 0 | 16 | $1.201 \mathrm{e}-3$ | 6 |
| 644 |  | min | -11.765 | 5 | -. 001 | 13 | -11.765 | 9 | -1.14e-3 | 10 | 0 | 1 | -1.039e-3 | 14 |
| 645 | N318 | max | 11.765 | 14 | . 082 | 6 | 11.765 | 2 | $1.059 \mathrm{e}-3$ | 2 | 0 | 16 | $1.188 \mathrm{e}-3$ | 6 |
| 646 |  | min | -11.765 | 5 | -. 004 | 15 | -11.765 | 9 | -1.145e-3 | 10 | 0 | 1 | -1.026e-3 | 14 |
| 647 | N31 | max | 11.765 | 14 | . 083 | 8 | 11.765 | 2 | $1.036 \mathrm{e}-3$ | 2 | 0 | 16 | $1.174 \mathrm{e}-3$ | 6 |
| 648 |  | min | -11.765 | 5 | -. 007 | 15 | -11.765 | 9 | -1.148e-3 | 10 | 0 | 1 | -1.012e-3 | 14 |
| 649 | N320 | max | 11.765 | 14 | . 088 | 8 | 11.765 | 2 | $1.012 \mathrm{e}-3$ | 2 | 0 | 16 | 1.16e-3 | 6 |
| 650 |  | min | -11.765 | 5 | -. 01 | 15 | -11.765 | 9 | -1.148e-3 | 10 | 0 | 1 | -9.997e-4 | 14 |
| 651 | N321 | max | 11.765 | 14 | 092 | 8 | 11.765 | , | $9.894 \mathrm{e}-4$ | 2 | 0 | 16 | $1.149 \mathrm{e}-3$ | 6 |
| 652 |  | min | -11.765 | 5 | -. 013 | 15 | -11.765 | 9 | -1.149e-3 | 10 | 0 | 1 | -9.894e-4 | 14 |
| 653 | N322 | max | 11.765 | 14 | 096 | 8 | 11.765 | 2 | 9.689e-4 | 2 | 0 | 16 | $1.139 \mathrm{e}-3$ | 6 |
| 654 |  | min | -11.765 | 5 | -. 016 | 15 | -11.765 | 9 | -1.15e-3 | 10 | 0 | 1 | -9.812e-4 | 14 |
| 655 | N323 | max | 11.765 | 14 | 101 | 8 | 11.765 | 2 | $9.516 \mathrm{e}-4$ | 2 | 0 | 16 | $1.133 \mathrm{e}-3$ | 6 |
| 656 |  | min | -11.765 | 5 | -. 019 | 15 | -11.765 | 9 | -1.152e-3 | 10 | 0 | 1 | -9.749e-4 | 14 |
| 657 | N324 | max | 11.765 | 14 | 106 | 8 | 11.765 | 2 | 9.381e-4 | 2 | 0 | 16 | $1.128 \mathrm{e}-3$ | 6 |
| 658 |  | min | -11.765 | 5 | -. 022 | 15 | -11.765 | 9 | -1.152e-3 | 10 | 0 | 16 | -9.7e-4 | 14 |
| 659 | N325 | max | 11.765 | 14 | 11 | 8 | 11.765 | 2 | 9.284e-4 | 2 | 0 | 16 | $1.124 \mathrm{e}-3$ | 6 |
| 660 |  | min | -11.765 | 5 | -. 025 | 15 | -11.765 | 9 | -1.152e-3 | 10 | 0 | , | -9.664e-4 | 14 |
| 661 | N326 | max | 11.765 | 14 | 115 | 10 | 11.765 | 2 | 9.223e-4 | 2 | 0 | 16 | $1.121 \mathrm{e}-3$ | 6 |
| 662 |  | min | -11.765 | 5 | -. 027 | 15 | -11.765 | - | -1.152e-3 | 10 | 0 | 1 | -9.639e-4 | 14 |
| 663 | N327 | max | 11.765 | 14 | . 122 | 10 | 11.765 | 2 | 9.192e-4 | 2 | 0 | 16 | $1.119 \mathrm{e}-3$ | 6 |
| 664 |  | min | -11.765 | 5 | -. 03 | 15 | -11.765 | 9 | -1.152e-3 | 10 | 0 | 1 | -9.625e-4 | 14 |
| 665 | N32 | max | 11.765 | 14 | 129 | 10 | 11.765 | 2 | 9.183e-4 | , | 0 | 16 | $1.119 \mathrm{e}-3$ | 6 |
| 666 |  | min | -11.765 | 5 | -. 035 | 2 | -11.765 | 9 | -1.152e-3 | 10 | 0 | 1 | -9.626e-4 | 14 |
| 667 | N329 | max | 11.765 | 14 | . 129 | 2 | 11.765 | 2 | 1.154e-3 | 2 | 0 | 16 | 1.112e-3 | 6 |
| 668 |  | min | -11.765 | 5 | -. 035 | 10 | -11.765 | 9 | -9.196e-4 | 10 | 0 | 1 | -9.777e-4 | 14 |
| 669 | N330 | max | 11.765 | 14 | 123 | 2 | 11.765 | 2 | $1.154 \mathrm{e}-3$ | 2 | 0 | 16 | $1.112 \mathrm{e}-3$ | 6 |
| 670 |  | min | -11.765 | 5 | -. 03 | 9 | -11.765 | 9 | -9.205e-4 | 10 | 0 | 1 | -9.778e-4 | 14 |
| 671 | N331 | max | 11.765 | 14 | 116 | 2 | 11.765 | 2 | 1.154e-3 | 2 | 0 | 16 | $1.114 \mathrm{e}-3$ | 6 |
| 672 |  | min | -11.765 | 5 | -. 025 | 9 | -11.765 | 9 | -9.238e-4 | 10 | 0 | 1 | -9.795e-4 | 14 |
| 673 | N332 | max | 11.765 | 14 | . 109 | 2 | 11.765 | 2 | 1.155e-3 | 2 | 0 | 16 | $1.118 \mathrm{e}-3$ | 6 |
| 674 |  | min | -11.765 | 5 | -. 022 | 11 | -11.765 | 9 | -9.305e-4 | 10 | 0 | 1 | -9.826e-4 | 14 |
| 675 | N33 | max | 11.765 | 14 | . 102 | 2 | 11.765 | 2 | 1.155e-3 | 2 | 0 | 16 | $1.122 \mathrm{e}-3$ | 6 |
| 676 |  | min | -11.765 | 5 | -. 019 | 11 | -11.765 | 9 | -9.411e-4 | 10 | O | 1 | -9.871e-4 | 14 |
| 677 | N334 | max | 11.765 | 14 | . 096 | 4 | 11.765 | 2 | 1.156e-3 | 2 | 0 | 16 | 1.128e-3 | 6 |
| 678 |  | min | -11.765 | 5 | -. 016 | 11 | -11.765 | 9 | -9.563e-4 | 10 |  | 1 | -9.931e-4 | 14 |
| 679 | N335 | max | 11.765 | 14 | 092 | 4 | 11.765 | 2 | $1.158 \mathrm{e}-3$ | 2 | 0 | 16 | $1.137 \mathrm{e}-3$ | 6 |
| 680 |  | min | -11.765 | 5 | -. 013 | 11 | -11.765 | 9 | -9.759e-4 | 10 | 0 | 1 | -1.001e-3 | 14 |
| 681 | N336 | max | 11.765 | 14 | 088 | 4 | 11.765 | 2 | 1.16e-3 | 2 | 0 | 16 | $1.148 \mathrm{e}-3$ | 6 |
| 682 |  | min | -11.765 | 5 | -. 01 | 11 | -11.765 | 9 | -9.997e-4 | 10 | 0 | 1 | -1.012e-3 | 14 |
| 683 | N337 | max | 11.765 | 14 | 083 | 4 | 11.765 | 2 | 1.164e-3 | 2 | 0 | 16 | 1.164e-3 | 6 |
| 684 |  | min | -11.765 | 5 | -. 007 | 11 | -11.765 | , | -1.026e-3 | 10 | 0 | 1 | -1.026e-3 | 14 |
| 685 | N338 | max | 11.765 | 14 | . 079 | 4 | 11.765 | 2 | 1.167e-3 | 2 | 0 | 16 | 1.183e-3 | 6 |
| 686 |  | min | -11.765 | 5 | -. 004 | 11 | -11.765 | 9 | -1.055e-3 | 10 | 0 | , | -1.045e-3 | 14 |
| 687 | N339 | max | 11.765 | 14 | . 075 | 6 | 11.765 | 2 | 1.168e-3 | 2 | 0 | 16 | $1.206 \mathrm{e}-3$ | 6 |

$\qquad$
$\square$

## Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] | LC | $\frac{Y \text { [in] }}{-.001}$ | LC | $\begin{gathered} \mathrm{Z}[\operatorname{lin}] \\ \hline-11.765 \\ \hline \end{gathered}$ | 9 | $\frac{\text { X Rotation ... }}{-1.082 e-3}$ | LC | $\begin{gathered} \text { Rotation } \\ 0 \end{gathered}$ | LC Z Rotation .... LC1 $-1.067 e-3$ 14 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 688 |  | min | -11.765 |  |  |  |  |  |  |  |  |  |  |  |
| 689 | N340 | max | 11.765 | 14 | . 076 | 6 | 11.765 | 2 | $1.165 \mathrm{e}-3$ | 2 | 0 | 16 | 1.229e-3 | 6 |
| 690 |  | min | -11.765 | 5 | . 002 | 11 | -11.765 | 9 | -1.106e-3 | 10 | 0 | 1 | -1.09e-3 | 14 |
| 691 | N341 | max | 11.765 | 14 | 076 | 6 | 11.765 | 2 | $1.157 \mathrm{e}-3$ | 2 | 0 | 16 | $1.246 \mathrm{e}-3$ | 6 |
| 692 |  | min | -11.765 | 5 | 004 | 13 | -11.765 | 9 | -1.127e-3 | 10 | 0 | 1 | -1.108e-3 | 14 |
| 693 | N342 | max | 11.765 | 14 | . 076 | 6 | 11.765 | 2 | 1.144e-3 | 2 | 0 | 16 | 1.252e-3 | 6 |
| 694 |  | min | -11.765 | 5 | . 003 | 13 | -11.765 | 9 | -1.144e-3 | 10 | 0 | 1 | -1.114e-3 | 14 |
| 695 | N343 | max | 11.765 | 14 | . 076 | 6 | 11.765 | 2 | 1.127e-3 | 2 | 0 | 16 | $1.246 \mathrm{e}-3$ | 6 |
| 696 |  | min | -11.765 | 5 | . 004 | 13 | -11.765 | 9 | -1.157e-3 | 10 | 0 | 1 | -1.108e-3 | 14 |
| 697 | N344 | max | 11.765 | 14 | . 076 | 6 | 11.765 | 2 | 1.106e-3 | 2 | 0 | 16 | 1.229e-3 | 6 |
| 698 |  | min | -11.765 | 5 | . 002 | 15 | -11.765 | 9 | -1.165e-3 | 10 | 0 | 1 | -1.09e-3 | 14 |
| 699 | N345 | max | 11.765 | 14 | . 075 | 6 | 11.765 | 2 | 1.082e-3 | 2 | 0 | 16 | 1.206e-3 | 6 |
| 700 |  | min | -11.765 | 5 | -. 001 | 15 | -11.765 | 9 | -1.168e-3 | 10 | 0 | 1 | -1.067e-3 | 14 |
| 701 | N346 | max | 11.765 | 14 | 079 | 8 | 11.765 | 2 | 1.055e-3 | 2 | 0 | 16 | $1.183 \mathrm{e}-3$ | 6 |
| 702 |  | min | -11.765 | 5 | -. 004 | 15 | -11.765 | 9 | -1.167e-3 | 10 | 0 | 1 | -1.045e-3 | 14 |
| 703 | N347 | max | 11.765 | 14 | 083 | 8 | 11.765 | 2 | 1.026e-3 | 2 | 0 | 16 | 1.164e-3 | 6 |
| 704 |  | min | -11.765 | 5 | -. 007 | 15 | -11.765 | 9 | -1.164e-3 | 10 | 0 | 1 | -1.026e-3 | 14 |
| 705 | N348 | max | 11.765 | 14 | . 088 | 8 | 11.765 | 2 | 9.997e-4 | 2 | 0 | 16 | $1.148 \mathrm{e}-3$ | 6 |
| 706 |  | min | -11.765 | 5 | -. 01 | 15 | -11.765 | 9 | -1.16e-3 | 10 | 0 | 1 | -1.012e-3 | 14 |
| 707 | N34 | max | 11.765 | 14 | 092 | 8 | 11.765 | 2 | 9.759e-4 | 2 | 0 | 16 | $1.137 \mathrm{e}-3$ | 6 |
| 708 |  | min | -11.765 | 5 | -. 013 | 15 | -11.765 | 9 | -1.158e-3 | 10 | 0 | 1 | -1.001e-3 | 14 |
| 709 | N350 | max | 11.765 | 14 | 096 | 8 | 11.765 | 2 | 9.563e-4 | 2 | 0 | 16 | $1.128 \mathrm{e}-3$ | 6 |
| 710 |  | min | -11.765 | 5 | -. 016 | 15 | -11.765 | 9 | -1.156e-3 | 10 | 0 | 1 | -9.931e-4 | 14 |
| 711 | N351 | max | 11.765 | 14 | 102 | 10 | 11.765 | 2 | 9.411e-4 | 2 | 0 | 16 | 1.122e-3 | 6 |
| 712 |  | min | -11.765 | 5 | -. 019 | 15 | -11.765 | 9 | -1.155e-3 | 10 | 0 | 1 | -9.871e-4 | 14 |
| 713 | N352 | max | 11.765 | 14 | 109 | 10 | 11.765 | 2 | 9.305e-4 | 2 | 0 | 16 | $1.118 \mathrm{e}-3$ | 6 |
| 714 |  | min | -11.765 | 5 | -. 022 | 15 | -11.765 | 9 | -1.155e-3 | 10 | 0 | 1 | -9.826e-4 | 14 |
| 715 | N353 | max | 11.765 | 14 | 116 | 10 | 11.765 | 2 | 9.238e-4 | 2 | 0 | 16 | 1.114e-3 | 6 |
| 716 |  | min | -11.765 | 5 | -. 025 | 1 | -11.765 | 9 | -1.154e-3 | 10 | 0 | 1 | -9.795e-4 | 14 |
| 717 | N35 | max | 11.765 | 14 | 123 | 10 | 11.765 | 2 | 9.205e-4 | 2 | 0 | 16 | 1.112e-3 | 6 |
| 718 |  | min | -11.765 | 5 | -. 03 | 1 | -11.765 |  | -1.154e-3 | 10 | 0 | 1 | -9.778e-4 | 14 |
| 719 | N355 | max | 11.765 | 14 | 129 | 10 | 11.765 | 2 | 9.196e-4 | 2 | 0 | 16 | 1.112e-3 | 6 |
| 720 |  | min | -11.765 | 5 | -. 035 | 2 | -11.765 | 9 | -1.154e-3 | 10 | 0 | 1 | -9.777e-4 | 14 |
| 721 | N356 | max | 11.765 | 14 | 13 | 2 | 11.765 | 2 | $1.156 \mathrm{e}-3$ | 2 | 0 | 16 | $1.104 \mathrm{e}-3$ | 6 |
| 722 |  | min | -11.765 | 5 | -. 036 | 10 | -11.765 |  | -9.209e-4 | 10 | 0 | 1 | -9.937e-4 | 14 |
| 723 | N357 | max | 11.765 | 14 | 123 | 2 | 11.765 | 2 | 1.156e-3 | 2 | 0 | 16 | 1.104e-3 | , |
| 724 |  | min | -11.765 | 5 | -. 031 | 9 | -11.765 | 9 | -9.218e-4 | 10 | 0 | 1 | -9.94e-4 | 14 |
| 725 | N35 | max | 11.765 | 14 | 116 | 2 | 11.765 | 2 | 1.156e-3 | 2 | 0 | 16 | 1.107e-3 | 6 |
| 726 |  | min | -11.765 | 5 | -. 026 | 9 | -11.765 | - | -9.253e-4 | 10 | 0 | 1 | -9.961e-4 | 14 |
| 727 | N359 | max | 11.765 | 14 | . 109 | 2 | 11.765 | 2 | 1.157e-3 | 2 | 0 | 16 | 1.111e-3 | 6 |
| 728 |  | min | -11.765 | 5 | -. 021 | 9 | -11.765 | 9 | -9.326e-4 | 10 | 0 | 1 | -9.998e-4 | 14 |
| 729 | N360 | max | 11.765 | 14 | 102 | 2 | 11.765 | 2 | 1.159e-3 | 2 | 0 | 16 | 1.116e-3 | 6 |
| 730 |  | min | -11.765 | 5 | -. 016 | 11 | -11.765 | 9 | -9.443e-4 | 10 |  | 1 | -1.005e-3 | 14 |
| 731 | N361 | max | 11.765 | 14 | . 095 | 2 | 11.765 | 2 | 1.162e-3 | 2 | 0 | 16 | $1.123 \mathrm{e}-3$ | 6 |
| 732 |  | min | -11.765 | 5 | -. 013 | 11 | -11.765 | 9 | -9.613e-4 | 10 | 0 | 1 | -1.012e-3 | 14 |
| 733 | N362 | max | 11.765 | 14 | 089 | 2 | 11.765 | 2 | 1.166e-3 | 2 | 0 | 16 | 1.134e-3 | 6 |
| 734 |  | min | -11.765 | 5 | -. 01 | 11 | -11.765 | - | -9.84e-4 | 10 | 0 | 1 | -1.022e-3 | 14 |
| 735 | N363 | max | 11.765 | 14 | 083 | 4 | 11.765 | 2 | 1.174e-3 | 2 |  | 16 | 1.148e-3 | 6 |
| 736 |  | min | -11.765 | 5 | -. 007 | 11 | -11.765 | - | -1.012e-3 | 10 | 0 | 1 | -1.036e-3 | 14 |
| 737 | N364 | max | 11.765 | 14 | . 079 | 4 | 11.765 | 2 | $1.183 \mathrm{e}-3$ | 2 | 0 | 16 | 1.167e-3 | 6 |
| 738 |  | min | -11.765 | 5 | -. 004 | 11 | -11.765 | 9 | -1.045e-3 | 10 | 0 | 1 | -1.055e-3 | 14 |
| 739 | N365 | max | 11.765 | 14 | 074 | 4 | 11.765 | 2 | 1.194e-3 | 2 | 0 | 16 | 1.194e-3 | 6 |
| 740 |  | min | -11.765 | 5 | -. 001 | 11 | -11.765 | 9 | -1.081e-3 | 10 | 0 | 1 | -1.081e-3 | 14 |
| 741 | N366 | max | 11.765 | 14 | . 07 | 4 | 11.765 | 2 | 1.202e-3 | 2 | 0 | 16 | $1.229 \mathrm{e}-3$ | 6 |
| 742 |  | min | -11.765 | 5 | . 002 | 11 | -11.765 | 9 | -1.115e-3 | 10 | 0 | 1 | -1.115e-3 | 14 |
| 743 | N367 | max | 11.765 | 14 | 069 | 6 | 11.765 | 2 | 1.205e-3 | 2 | 0 | 16 | $1.268 \mathrm{e}-3$ | 6 |
| 744 |  | min | -11.765 | 5 | . 006 | 11 | -11.765 | 9 | -1.146e-3 | 10 | 0 | 1 | -1.154e-3 | 14 |

$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | ${ }_{1} \mathrm{X}$ [in] | LC |  | LC |  | LC X Rotation ... |  | LC | $\begin{gathered} \text { Y Rotation } . \\ \hline 0 \\ \hline \end{gathered}$ | LC Z Rotation [... LC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 745 | N368 | max |  | 14 | . 069 | 6 | 11.765 |  |  | $16$ |  | $1.301 e-3$ | 6 |
| 746 |  | min | -11.765 | 5 | 009 | 13 | -11.765 | 9 | -1.169e-3 |  | 10 | 0 | 1 | -1.187e-3 | 14 |
| 747 | N369 | max | 11.765 | 14 | 069 | 6 | 11.765 | 2 | 1.187e-3 | 2 | 0 | 16 | $1.314 \mathrm{e}-3$ | 6 |
| 748 |  | min | -11.765 | 5 | 009 | 13 | -11.765 | 9 | -1.187e-3 | 10 | 0 | 1 | -1.2e-3 | 14 |
| 749 | N370 | max | 11.765 | 14 | . 069 | 6 | 11.765 | 2 | 1.169e-3 | 2 | 0 | 16 | 1.301e-3 | 6 |
| 750 |  | min | -11.765 | 5 | 009 | 13 | -11.765 | 9 | -1.199e-3 | 10 | 0 | 1 | -1.187e-3 | 14 |
| 751 | N37 | max | 11.765 | 14 | 069 | 6 | 11.765 | 2 | 1.146e-3 | 2 | 0 | 16 | $1.268 \mathrm{e}-3$ | 6 |
| 752 |  | min | -11.765 | 5 | . 006 | 15 | -11.765 | 9 | -1.205e-3 | 10 | 0 | 1 | -1.154e-3 | 14 |
| 753 | N372 | max | 11.765 | 14 | . 07 | 8 | 11.765 | 2 | 1.115e-3 | 2 | 0 | 16 | $1.229 \mathrm{e}-3$ | 6 |
| 754 |  | min | -11.765 | 5 | 002 | 15 | -11.765 | 9 | -1.202e-3 | 10 | 0 | 1 | -1.115e-3 | 14 |
| 755 | N373 | max | 11.765 | 14 | . 074 | 8 | 11.765 | 2 | $1.081 \mathrm{e}-3$ | 2 | 0 | 16 | 1.194e-3 | 6 |
| 756 |  | min | -11.765 | 5 | -. 001 | 15 | -11.765 | 9 | -1.194e-3 | 10 | 0 | 1 | -1.081e-3 | 14 |
| 757 | N374 | max | 11.765 | 14 | . 079 | 8 | 11.765 | 2 | $1.045 \mathrm{e}-3$ | 2 | 0 | 16 | 1.167e-3 | 6 |
| 758 |  | min | -11.765 | 5 | -. 004 | 15 | -11.765 | 9 | -1.183e-3 | 10 | 0 | 1 | -1.055e-3 | 14 |
| 759 | N375 | max | 11.765 | 14 | . 083 | 8 | 11.765 | 2 | 1.012e-3 | 2 | 0 | 16 | 1.148e-3 | 6 |
| 760 |  | min | -11.765 | 5 | -. 007 | 15 | -11.765 | 9 | -1.174e-3 | 10 | 0 | 1 | -1.036e-3 | 14 |
| 761 | N376 | max | 11.765 | 14 | . 089 | 10 | 11.765 | 2 | $9.84 \mathrm{e}-4$ | 2 | 0 | 16 | $1.134 \mathrm{e}-3$ | 6 |
| 762 |  | min | -11.765 | 5 | -. 01 | 15 | -11.765 | 9 | -1.166e-3 | 10 | 0 | 1 | -1.022e-3 | 14 |
| 763 | N377 | max | 11.765 | 14 | . 095 | 10 | 11.765 | 2 | 9.613e-4 | 2 | 0 | 16 | 1.123e-3 | 6 |
| 764 |  | min | -11.765 | 5 | -. 013 | 15 | -11.765 | 9 | -1.162e-3 | 10 | 0 | 1 | -1.012e-3 | 14 |
| 765 | N378 | max | 11.765 | 14 | 102 | 10 | 11.765 | 2 | 9.443e-4 | 2 | 0 | 16 | $1.116 \mathrm{e}-3$ | 6 |
| 766 |  | min | -11.765 | 5 | -. 016 | 15 | -11.765 | 9 | -1.159e-3 | 10 | 0 | 1 | -1.005e-3 | 14 |
| 767 | N379 | max | 11.765 | 14 | 109 | 10 | 11.765 | 2 | 9.326e-4 | 2 | 0 | 16 | 1.111e-3 | 6 |
| 768 |  | min | -11.765 | 5 | -. 021 | 1 | -11.765 | 9 | -1.157e-3 | 10 | 0 | 1 | -9.998e-4 | 14 |
| 769 | N380 | max | 11.765 | 14 | 116 | 10 | 11.765 | 2 | 9.253e-4 | 2 | 0 | 16 | 1.107e-3 | 6 |
| 770 |  | min | -11.765 | 5 | -. 026 | 1 | -11.765 | 9 | -1.156e-3 | 10 | 0 | 1 | -9.961e-4 | 14 |
| 771 | N381 | max | 11.765 | 14 | . 123 | 10 | 11.765 | 2 | 9.218e-4 | 2 | 0 | 16 | 1.104e-3 | 6 |
| 772 |  | min | -11.765 | 5 | -. 031 | 1 | -11.765 | 9 | -1.156e-3 | 10 | 0 | 1 | -9.94e-4 | 14 |
| 773 | N382 | max | 11.765 | 14 | 13 | 10 | 11.765 | 2 | 9.209e-4 | 2 | 0 | 16 | 1.104e-3 | 6 |
| 774 |  | min | -11.765 | 5 | -. 036 | 2 | -11.765 | 9 | -1.156e-3 | 10 | 0 | 1 | -9.937e-4 | 14 |
| 775 | N383 | max | 11.765 | 14 | 13 | 2 | 11.765 | 2 | $1.158 \mathrm{e}-3$ | 2 | 0 | 16 | 1.094e-3 | 6 |
| 776 |  | min | -11.765 | 5 | -. 036 | 10 | -11.765 | 9 | -9.221e-4 | 10 | 0 | 1 | -1.01e-3 | 14 |
| 777 | N384 | max | 11.765 | 14 | . 123 | 2 | 11.765 | 2 | $1.158 \mathrm{e}-3$ | 2 | 0 | 16 | 1.095e-3 | 6 |
| 778 |  | min | -11.765 | 5 | -. 031 | 9 | -11.765 | 9 | -9.229e-4 | 10 | 0 | 1 | -1.011e-3 | 14 |
| 779 | N38 | max | 11.765 | 14 | 116 | 2 | 11.765 | 2 | $1.158 \mathrm{e}-3$ | , | 0 | 16 | 1.098e-3 | 6 |
| 780 |  | min | -11.765 | 5 | -. 026 | 9 | -11.765 | 9 | -9.267e-4 | 10 | 0 | 1 | -1.013e-3 | 14 |
| 781 | N386 | max | 11.765 | 14 | . 109 | 2 | 11.765 | 2 | 1.16e-3 | 2 | 0 | 16 | 1.102e-3 | 6 |
| 782 |  | min | -11.765 | 5 | -. 021 | 9 | -11.765 | 9 | -9.345e-4 | 10 | 0 | 1 | -1.017e-3 | 14 |
| 783 | N387 | max | 11.765 | 14 | . 102 | 2 | 11.765 | 2 | $1.163 \mathrm{e}-3$ | 2 | 0 | 16 | $1.109 \mathrm{e}-3$ | 6 |
| 784 |  | min | -11.765 | 5 | -. 016 | 9 | -11.765 | 9 | -9.474e-4 | 10 | 0 | 1 | -1.023e-3 | 14 |
| 785 | N388 | max | 11.765 | 14 | . 096 | 2 | 11.765 | 2 | 1.167e-3 | 2 | 0 | 16 | 1.117e-3 | 6 |
| 786 |  | min | -11.765 | 5 | -. 011 | 9 | -11.765 | 9 | -9.664e-4 | 10 | 0 | 16 | -1.031e-3 | 14 |
| 787 | N38 | max | 11.765 | 14 | . 089 | 2 | 11.765 | 2 | $1.175 \mathrm{e}-3$ | 2 | 0 | 16 | $1.129 \mathrm{e}-3$ | 6 |
| 788 |  | min | -11.765 | 5 | -. 007 | 11 | -11.765 | 9 | -9.924e-4 | 10 | 0 | 1 | -1.043e-3 | 14 |
| 789 | N390 | max | 11.765 | 14 | . 082 | 2 | 11.765 | 2 | $1.188 \mathrm{e}-3$ | 2 | 0 | 16 | 1.145e-3 | 6 |
| 790 |  | min | -11.765 | 5 | -. 004 | 11 | -11.765 | 9 | -1.026e-3 | 10 | 0 | 1 | -1.059e-3 | 14 |
| 791 | N391 | max | 11.765 | 14 | . 075 | 2 | 11.765 | 2 | 1.206e-3 | 2 | 0 | 16 | 1.168e-3 | 6 |
| 792 |  | min | -11.765 | 5 | -. 001 | 11 | -11.765 | 9 | -1.067e-3 | 10 | 0 | 1 | -1.082e-3 | 14 |
| 793 | N392 | max | 11.765 | 14 | 07 | 4 | 11.765 | 2 | 1.229e-3 | 2 | 0 | 16 | $1.202 \mathrm{e}-3$ | 6 |
| 794 |  | min | -11.765 | 5 | . 002 | 11 | -11.765 | 9 | -1.115e-3 | 10 | 0 | 1 | -1.115e-3 | 14 |
| 795 | N393 | max | 11.765 | 14 | . 065 | 4 | 11.765 | 2 | $1.253 \mathrm{e}-3$ | 2 | 0 | 16 | $1.253 \mathrm{e}-3$ | 6 |
| 796 |  | min | -11.765 | 5 | . 006 | 11 | -11.765 | 9 | -1.166e-3 | 10 | 0 | 1 | -1.166e-3 | 14 |
| 797 | N394 | max | 11.765 | 14 | . 062 | 6 | 11.765 | 2 | 1.267e-3 | 2 | 0 | 16 | $1.32 \mathrm{e}-3$ | 6 |
| 798 |  | min | -11.765 | 5 | 009 | 11 | -11.765 | 9 | -1.208e-3 | 10 | 0 | 1 | -1.232e-3 | 14 |
| 799 | N395 | max | 11.765 | 14 | . 062 | 6 | 11.765 | 2 | 1.27e-3 | 2 | 0 | 16 | $1.385 \mathrm{e}-3$ | 6 |
| 800 |  | min | -11.765 | 5 | 013 | 11 | -11.765 | 9 | -1.24e-3 | 10 | 0 | 1 | -1.297e-3 | 14 |
| 801 | N396 | max | 11.765 | 14 | . 063 | 6 | 11.765 | 2 | $1.258 \mathrm{e}-3$ | 2 |  | 16 | $1.413 \mathrm{e}-3$ | 6 |

$\qquad$
$\square$

## Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] | LC | $\begin{aligned} & Y \text { [in] } \\ & .015 \\ & \hline \end{aligned}$ | LC | $\begin{gathered} \mathrm{Z} \text { [inl } \\ -11.765 \\ \hline \end{gathered}$ | LC | $\frac{\mathrm{X} \text { Rotation ... }}{-1.258 \mathrm{e}-3}$ | LC | $\frac{\text { Rotation }}{0}$ | $\begin{array}{c\|c} \text { LC } & \text { Z Rotation [... } \\ \hline 1 & -1.325 e-3 \\ \hline \end{array}$ |  | LC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 802 |  | min | -11.765 |  |  |  |  |  |  |  |  |  |  |  |
| 803 | N397 | max | 11.765 | 14 | 062 | 6 | 11.765 | 2 | $1.24 \mathrm{e}-3$ | 2 | 0 | 16 | $1.385 \mathrm{e}-3$ | 6 |
| 804 |  | min | -11.765 | 5 | 013 | 15 | -11.765 | 9 | -1.27e-3 | 10 | 0 | 1 | -1.297e-3 | 14 |
| 805 | N398 | max | 11.765 | 14 | 062 | 6 | 11.765 | 2 | $1.208 \mathrm{e}-3$ | 2 | 0 | 16 | $1.32 \mathrm{e}-3$ | 6 |
| 806 |  | min | -11.765 | 5 | 009 | 15 | -11.765 | 9 | -1.267e-3 | 10 | 0 | 1 | -1.232e-3 | 14 |
| 807 | N399 | max | 11.765 | 14 | 065 | 8 | 11.765 | 2 | $1.166 \mathrm{e}-3$ | 2 | 0 | 16 | $1.253 \mathrm{e}-3$ | 6 |
| 808 |  | min | -11.765 | 5 | 006 | 15 | -11.765 | 9 | -1.253e-3 | 10 | 0 | 1 | -1.166e-3 | 14 |
| 809 | N400 | max | 11.765 | 14 | . 07 | 8 | 11.765 |  | $1.115 \mathrm{e}-3$ | 2 | 0 | 16 | $1.202 \mathrm{e}-3$ | 6 |
| 810 |  | min | -11.765 | 5 | 002 | 15 | -11.765 | 9 | -1.229e-3 | 10 | 0 | 1 | -1.115e-3 | 14 |
| 811 | N401 | max | 11.765 | 14 | 075 | 10 | 11.765 | 2 | $1.067 \mathrm{e}-3$ | 2 | 0 | 16 | $1.168 \mathrm{e}-3$ | 6 |
| 812 |  | min | -11.765 | 5 | -. 001 | 15 | -11.765 | 9 | -1.206e-3 | 10 | 0 | 1 | -1.082e-3 | 14 |
| 813 | N402 | max | 11.765 | 14 | 082 | 10 | 11.765 | 2 | $1.026 \mathrm{e}-3$ | 2 | 0 | 16 | $1.145 \mathrm{e}-3$ | 6 |
| 814 |  | min | -11.765 | 5 | -. 004 | 15 | -11.765 | 9 | -1.188e-3 | 10 | 0 | 1 | -1.059e-3 | 14 |
| 815 | N403 | max | 11.765 | 14 | 089 | 10 | 11.765 | 2 | $9.924 \mathrm{e}-4$ | 2 | 0 | 16 | $1.129 \mathrm{e}-3$ | 6 |
| 816 |  | min | -11.765 | 5 | -. 007 | 15 | -11.765 | 9 | -1.175e-3 | 10 | 0 | 1 | -1.043e-3 | 14 |
| 817 | N404 | max | 11.765 | 14 | 096 | 10 | 11.765 | 2 | $9.664 \mathrm{e}-4$ | 2 | 0 | 16 | $1.117 \mathrm{e}-3$ | 6 |
| 818 |  | min | -11.765 | 5 | -. 011 | 1 | -11.765 | 9 | -1.167e-3 | 10 | 0 | 1 | -1.031e-3 | 14 |
| 819 | N405 | max | 11.765 | 14 | 102 | 10 | 11.765 | 2 | 9.474e-4 | 2 | 0 | 16 | $1.109 \mathrm{e}-3$ | 6 |
| 820 |  | min | -11.765 | 5 | -. 016 | 1 | -11.765 | 9 | -1.163e-3 | 10 | 0 | 1 | -1.023e-3 | 14 |
| 821 | N406 | max | 11.765 | 14 | 109 | 10 | 11.765 | 2 | 9.345e-4 | 2 | 0 | 16 | 1.102e-3 | 6 |
| 822 |  | min | -11.765 | 5 | -. 021 | 1 | -11.765 | 9 | -1.16e-3 | 10 | 0 | 1 | -1.017e-3 | 14 |
| 823 | N407 | max | 11.765 | 14 | 116 | 10 | 11.765 | 2 | 9.267e-4 | , | 0 | 16 | $1.098 \mathrm{e}-3$ | 6 |
| 824 |  | min | -11.765 | 5 | -. 026 | 1 | -11.765 | 9 | -1.158e-3 | 10 | 0 | 1 | -1.013e-3 | 14 |
| 825 | N408 | max | 11.765 | 14 | 123 | 10 | 11.765 | 2 | $9.229 \mathrm{e}-4$ | 2 | 0 | 16 | $1.095 \mathrm{e}-3$ | , |
| 826 |  | min | -11.765 | 5 | -. 031 | 1 | -11.765 | 9 | -1.158e-3 | 10 | 0 | 1 | -1.011e-3 | 14 |
| 827 | N409 | max | 11.765 | 14 | 13 | 10 | 11.765 | 2 | 9.221e-4 | 2 | 0 | 16 | $1.094 \mathrm{e}-3$ | 6 |
| 828 |  | min | -11.765 | 5 | -. 036 | 2 | -11.765 | 9 | -1.158e-3 | 10 | 0 | 1 | -1.01e-3 | 14 |
| 829 | N410 | max | 11.765 | 14 | 13 | 2 | 11.765 | 2 | $1.159 \mathrm{e}-3$ | 2 | 0 | 16 | $1.083 \mathrm{e}-3$ | 6 |
| 830 |  | min | -11.765 | 5 | -. 036 | 10 | -11.765 | 9 | -9.229e-4 | 10 | 0 | 1 | -1.027e-3 | 14 |
| 831 | N411 | max | 11.765 | 14 | 123 | 2 | 11.765 |  | $1.159 \mathrm{e}-3$ | 2 | 0 | 16 | 1.084e-3 | 6 |
| 832 |  | min | -11.765 | 5 | -. 031 | 9 | -11.765 | - | -9.238e-4 | 10 | 0 | 1 | -1.027e-3 | 14 |
| 833 | N412 | max | 11.765 | 14 | 116 | 2 | 11.765 | 2 | $1.16 \mathrm{e}-3$ | 2 | 0 | 16 | $1.087 \mathrm{e}-3$ | 6 |
| 834 |  | min | -11.765 | 5 | -. 026 | 9 | -11.765 | 9 | -9.278e-4 | 10 | 0 | 1 | -1.03e-3 | 14 |
| 835 | N413 | max | 11.765 | 14 | 109 | 2 | 11.765 | 2 | $1.162 \mathrm{e}-3$ | 2 | 0 | 16 | $1.092 \mathrm{e}-3$ | 6 |
| 836 |  | min | -11.765 | 5 | -. 021 | 9 | -11.765 | 9 | -9.361e-4 | 10 | 0 | 1 | -1.034e-3 | 14 |
| 837 | N414 | max | 11.765 | 14 | 102 | 2 | 11.765 | 2 | $1.166 \mathrm{e}-3$ | 2 | 0 | 16 | $1.099 \mathrm{e}-3$ | 6 |
| 838 |  | min | -11.765 | 5 | -. 016 | 9 | -11.765 | 9 | -9.5e-4 | 10 | 0 | 1 | -1.041e-3 | 14 |
| 839 | N41 | max | 11.765 | 14 | 096 | 2 | 11.765 | 2 | $1.173 \mathrm{e}-3$ | , | 0 | 16 | $1.109 \mathrm{e}-3$ | 6 |
| 840 |  | min | -11.765 | 5 | -. 011 | 9 | -11.765 | 9 | -9.709e-4 | 10 | 0 | 1 | -1.05e-3 | 14 |
| 841 | N416 | max | 11.765 | 14 | . 089 | 2 | 11.765 | 2 | $1.183 \mathrm{e}-3$ | 2 | 0 | 16 | $1.122 \mathrm{e}-3$ | 6 |
| 842 |  | min | -11.765 | 5 | -. 006 | 9 | -11.765 | , | -1.e-3 | 10 | 0 | 1 | -1.062e-3 | 14 |
| 843 | N417 | max | 11.765 | 14 | . 082 | 2 | 11.765 | 2 | 1.201e-3 | 2 | 0 | 16 | $1.14 \mathrm{e}-3$ | 6 |
| 844 |  | min | -11.765 | 5 | -. 001 | 9 | -11.765 | 9 | -1.039e-3 | 10 | 0 | 1 | -1.08e-3 | 14 |
| 845 | N418 | max | 11.765 | 14 | 076 | 2 | 11.765 | 2 | $1.229 \mathrm{e}-3$ | 2 | 0 | 16 | $1.165 \mathrm{e}-3$ | 6 |
| 846 |  | min | -11.765 | 5 | 002 | 11 | -11.765 | 9 | -1.09e-3 | 10 | 0 | 1 | -1.106e-3 | 14 |
| 847 | N419 | max | 11.765 | 14 | 069 | 2 | 11.765 | 2 | $1.268 \mathrm{e}-3$ | 2 | 0 | 16 | $1.205 \mathrm{e}-3$ | 6 |
| 848 |  | min | -11.765 | 5 | 006 | 11 | -11.765 | 9 | -1.154e-3 | 10 | 0 | 1 | -1.146e-3 | 14 |
| 849 | N420 | max | 11.765 | 14 | 062 | 2 | 11.765 | 2 | $1.32 \mathrm{e}-3$ | 2 | 0 | 16 | 1.267e-3 | 6 |
| 850 |  | min | -11.765 | 5 | 009 | 11 | -11.765 | - | -1.232e-3 | 10 | 0 | 1 | -1.208e-3 | 14 |
| 851 | N421 | max | 11.765 | 14 | 056 | 4 | 11.765 | 2 | $1.374 \mathrm{e}-3$ | 2 | 0 | 16 | $1.374 \mathrm{e}-3$ | 6 |
| 852 |  | min | -11.765 | 5 | 013 | 11 | -11.765 | , | -1.315e-3 | 10 | 0 | 1 | -1.315e-3 | 14 |
| 853 | N422 | max | 11.765 | 14 | 055 | 6 | 11.765 | 2 | $1.389 \mathrm{e}-3$ | 2 | 0 | 16 | 1.511e-3 | 6 |
| 854 |  | min | -11.765 | 5 | 017 | 11 | -11.765 | 9 | -1.358e-3 | 10 | 0 | 1 | -1.451e-3 | 14 |
| 855 | N423 | max | 11.765 | 14 | 056 | 6 | 11.765 | 2 | 1.395e-3 | 2 | 0 | 16 | $1.579 \mathrm{e}-3$ | 6 |
| 856 |  | min | -11.765 | 5 | 021 | 13 | -11.765 | 9 | -1.395e-3 | 10 | 0 | 1 | -1.518e-3 | 14 |
| 857 | N424 | max | 11.765 | 14 | 055 | 6 | 11.765 | 2 | $1.358 \mathrm{e}-3$ | 2 | 0 | 16 | 1.511e-3 | 6 |
| 858 |  | min | -11.765 | 5 | 017 | 15 | -11.765 | 9 | -1.389e-3 | 10 | 0 | 1 | -1.451e-3 | 14 |

$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] |  |  | LC | Z [ [ n$]$ | LC $\times$ Rotation |  | LC Y Rotation. |  | LC Z Rotation [... LC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 859 | N425 | max | 11.765 | 14 | . 056 | 8 |  | 2 | $1.315 \mathrm{e}-3$ | 2 | 0 | 16 | $1.374 \mathrm{e}-3$ | 6 |
| 860 |  | min | -11.765 | 5 | 013 | 15 | -11.765 | 9 | -1.374e-3 | 10 | 0 | 1 | -1.315e-3 | 14 |
| 861 | N426 | max | 11.765 | 14 | 062 | 10 | 11.765 | 2 | $1.232 \mathrm{e}-3$ | 2 | 0 | 16 | 1.267e-3 | 6 |
| 862 |  | min | -11.765 | 5 | 009 | 15 | -11.765 | 9 | -1.32e-3 | 10 | 0 | 1 | -1.208e-3 | 14 |
| 863 | N427 | max | 11.765 | 14 | 069 | 10 | 11.765 | 2 | 1.154e-3 | 2 | 0 | 16 | 1.205e-3 | 6 |
| 864 |  | min | -11.765 | 5 | . 006 | 15 | -11.765 | 9 | -1.268e-3 | 10 | 0 | 1 | -1.146e-3 | 14 |
| 865 | N428 | max | 11.765 | 14 | 076 | 10 | 11.765 | 2 | $1.09 \mathrm{e}-3$ | 2 | 0 | 16 | $1.165 \mathrm{e}-3$ | 6 |
| 866 |  | min | -11.765 | 5 | 002 | 15 | -11.765 | 9 | -1.229e-3 | 10 | 0 | 1 | -1.106e-3 | 14 |
| 867 | N429 | max | 11.765 | 14 | . 082 | 10 | 11.765 | 2 | $1.039 \mathrm{e}-3$ | 2 | 0 | 16 | 1.14e-3 | 6 |
| 868 |  | min | -11.765 | 5 | -. 001 | 1 | -11.765 | 9 | -1.201e-3 | 10 | 0 | 1 | -1.08e-3 | 14 |
| 869 | N430 | max | 11.765 | 14 | . 089 | 10 | 11.765 | 2 | 1.e-3 | 2 | 0 | 16 | $1.122 \mathrm{e}-3$ | 6 |
| 870 |  | min | -11.765 | 5 | -. 006 | 1 | -11.765 | 9 | -1.183e-3 | 10 | 0 | 1 | -1.062e-3 | 14 |
| 871 | N431 | max | 11.765 | 14 | . 096 | 10 | 11.765 | 2 | 9.709e-4 | 2 | 0 | 16 | $1.109 \mathrm{e}-3$ | 6 |
| 872 |  | min | -11.765 | 5 | -. 011 | 1 | -11.765 | 9 | -1.173e-3 | 10 | 0 | 1 | -1.05e-3 | 14 |
| 873 | N432 | max | 11.765 | 14 | 102 | 10 | 11.765 | 2 | 9.5e-4 | 2 | 0 | 16 | 1.099e-3 | 6 |
| 874 |  | min | -11.765 | 5 | -. 016 | 1 | -11.765 | 9 | -1.166e-3 | 10 | 0 | 1 | -1.041e-3 | 14 |
| 875 | N433 | max | 11.765 | 14 | 109 | 10 | 11.765 | 2 | 9.361e-4 |  | 0 | 16 | 1.092e-3 | 6 |
| 876 |  | min | -11.765 | 5 | -. 021 | 1 | -11.765 | 9 | -1.162e-3 | 10 | 0 | 1 | -1.034e-3 | 14 |
| 877 | N434 | max | 11.765 | 14 | 116 | 10 | 11.765 | 2 | 9.278e-4 | 2 | 0 | 16 | 1.087e-3 | 6 |
| 878 |  | min | -11.765 | 5 | -. 026 | 1 | -11.765 | 9 | -1.16e-3 | 10 | 0 | 1 | -1.03e-3 | 14 |
| 879 | N435 | max | 11.765 | 14 | 123 | 10 | 11.765 | 2 | 9.238e-4 | 2 | 0 | 16 | $1.084 \mathrm{e}-3$ | 6 |
| 880 |  | min | -11.765 | 5 | -. 031 | 1 | -11.765 | 9 | -1.159e-3 | 10 | 0 | 1 | -1.027e-3 | 14 |
| 881 | N436 | max | 11.765 | 14 | 13 | 10 | 11.765 | 2 | 9.229e-4 | 2 | 0 | 16 | $1.083 \mathrm{e}-3$ | 6 |
| 882 |  | min | -11.765 | 5 | -. 036 | 2 | -11.765 | 9 | -1.159e-3 | 10 | 0 | 1 | -1.027e-3 | 14 |
| 883 | N437 | max | 11.765 | 14 | 13 | 2 | 11.765 | 2 | 1.16e-3 | 2 | 0 | 16 | $1.071 \mathrm{e}-3$ | 6 |
| 884 |  | min | -11.765 | 5 | -. 036 | 10 | -11.765 | 9 | -9.235e-4 | 10 | 0 | 1 | -1.042e-3 | 14 |
| 885 | N438 | max | 11.765 | 14 | 123 | 2 | 11.765 | 2 | 1.16e-3 | 2 | 0 | 16 | 1.072e-3 | 6 |
| 886 |  | min | -11.765 | 5 | -. 031 | 9 | -11.765 | 9 | -9.244e-4 | 10 | 0 | 1 | -1.043e-3 | 14 |
| 887 | N439 | max | 11.765 | 14 | 116 | 2 | 11.765 | 2 | 1.161e-3 | 2 | 0 | 16 | $1.075 \mathrm{e}-3$ | 6 |
| 888 |  | min | -11.765 | 5 | -. 026 | 9 | -11.765 | 9 | -9.285e-4 | 10 | 0 | 1 | -1.046e-3 | 14 |
| 889 | N440 | max | 11.765 | 14 | 109 | 2 | 11.765 | 2 | 1.164e-3 | 2 | 0 | 16 | $1.08 \mathrm{e}-3$ | 6 |
| 890 |  | min | -11.765 | 5 | -. 021 | 9 | -11.765 | 9 | -9.371e-4 | 10 | 0 | 1 | -1.051e-3 | 14 |
| 891 | N441 | max | 11.765 | 14 | 103 | 2 | 11.765 | 2 | 1.169e-3 | 2 | 0 | 16 | $1.088 \mathrm{e}-3$ | 6 |
| 892 |  | min | -11.765 | 5 | -. 016 | 9 | -11.765 | 9 | -9.518e-4 | 10 | 0 | 1 | -1.058e-3 | 14 |
| 893 | N442 | max | 11.765 | 14 | . 096 | 2 | 11.765 | 2 | 1.177e-3 | , | 0 | 16 | $1.098 \mathrm{e}-3$ | 6 |
| 894 |  | min | -11.765 | 5 | -. 012 | 9 | -11.765 | 9 | -9.739e-4 | 10 | 0 | 1 | -1.067e-3 | 14 |
| 895 | N443 | max | 11.765 | 14 | . 089 | 2 | 11.765 | 2 | 1.189e-3 | 2 | 0 | 16 | 1.112e-3 | 6 |
| 896 |  | min | -11.765 | 5 | -. 007 | 9 | -11.765 | 9 | -1.005e-3 | 10 | 0 | 1 | -1.08e-3 | 14 |
| 897 | N444 | max | 11.765 | 14 | . 082 | 2 | 11.765 | 2 | $1.21 \mathrm{e}-3$ | 2 | 0 | 16 | $1.13 \mathrm{e}-3$ | 6 |
| 898 |  | min | -11.765 | 5 | -. 002 | 9 | -11.765 | 9 | -1.049e-3 | 10 | 0 | 1 | -1.099e-3 | 14 |
| 899 | N445 | max | 11.765 | 14 | . 076 | 2 | 11.765 | 2 | 1.246e-3 | 2 | 0 | 16 | 1.157e-3 | 6 |
| 900 |  | min | -11.765 | 5 | . 004 | 9 | -11.765 | 9 | -1.108e-3 | 10 | 0 | 1 | -1.127e-3 | 14 |
| 901 | N446 | max | 11.765 | 14 | . 069 | 2 | 11.765 | 2 | 1.301e-3 | 2 | 0 | 16 | $1.199 \mathrm{e}-3$ | 6 |
| 902 |  | min | -11.765 | 5 | . 009 | 9 | -11.765 | 9 | -1.187e-3 | 10 | 0 | 1 | -1.169e-3 | 14 |
| 903 | N447 | max | 11.765 | 14 | . 062 | 2 | 11.765 | 2 | $1.385 \mathrm{e}-3$ | 2 | 0 | 16 | 1.27e-3 | 6 |
| 904 |  | min | -11.765 | 5 | 013 | 11 | -11.765 | 9 | -1.297e-3 | 10 | 0 | 1 | -1.24e-3 | 14 |
| 905 | N448 | max | 11.765 | 14 | 055 | 2 | 11.765 | 2 | 1.511e-3 | 2 | 0 | 16 | 1.389e-3 | 6 |
| 906 |  | min | -11.765 | 5 | 017 | 11 | -11.765 | 9 | -1.451e-3 | 10 | 0 | 1 | -1.358e-3 | 14 |
| 907 | N449 | max | 11.765 | 14 | . 048 | 6 | 11.765 | 2 | $1.678 \mathrm{e}-3$ | 2 | 0 | 16 | $1.678 \mathrm{e}-3$ | 6 |
| 908 |  | min | -11.765 | 5 | 021 | 11 | -11.765 | 9 | -1.647e-3 | 10 | 0 | 1 | -1.647e-3 | 14 |
| 909 | N450 | max | 11.765 | 14 | 048 | 6 | 11.765 | 2 | $1.62 \mathrm{e}-3$ | 2 | 0 | 16 | $1.922 \mathrm{e}-3$ | 6 |
| 910 |  | min | -11.765 | 5 | 026 | 11 | -11.765 | 9 | -1.62e-3 | 10 | 0 | 1 | -1.889e-3 | 14 |
| 911 | N451 | max | 11.765 | 14 | . 048 | 10 | 11.765 | 2 | $1.647 \mathrm{e}-3$ | 2 | 0 | 16 | $1.678 \mathrm{e}-3$ | 6 |
| 912 |  | min | -11.765 | 5 | . 021 | 15 | -11.765 | 9 | -1.678e-3 | 10 | 0 | 1 | -1.647e-3 | 14 |
| 913 | N452 | max | 11.765 | 14 | . 055 | 10 | 11.765 | 2 | $1.451 \mathrm{e}-3$ |  | 0 | 16 | $1.389 \mathrm{e}-3$ | 6 |
| 914 |  | min | -11.765 | 5 | . 017 | 15 | -11.765 | 9 | -1.511e-3 | 10 | 0 | 1 | -1.358e-3 | 14 |
| 915 | N453 | max | 11.765 | 14 | 062 | 10 | 11.765 | 2 | 1.297e-3 | 2 | 0 | 16 | 1.27e-3 | 6 |

$\qquad$
$\square$

## Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] | $\begin{array}{\|c\|} \hline \text { LC } \\ \hline \end{array}$ | $\begin{aligned} & Y_{\text {[in] }} \\ & .013 \end{aligned}$ | $\begin{aligned} & \mathrm{LC} \\ & \hline 15 \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{Z} \text { [in] } \\ \hline-11.765 \\ \hline \end{gathered}$ | LC X Rotation ... LC Y Rotation ... LC Z Rotation I... LC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 916 |  | min | -11.765 |  |  |  |  | , | -1.385e-3 | 10 | 0 | 1 | -1.24e-3 | 14 |
| 917 | N454 | max | 11.765 | 14 | 069 | 10 | 11.765 | 2 | 1.187e-3 | 2 | 0 | 16 | $1.199 \mathrm{e}-3$ | 6 |
| 918 |  | min | -11.765 | 5 | . 009 | 1 | -11.765 | 9 | -1.301e-3 | 10 | 0 | 1 | -1.169e-3 | 14 |
| 919 | N455 | max | 11.765 | 14 | 076 | 10 | 11.765 | 2 | $1.108 \mathrm{e}-3$ | 2 | 0 | 16 | 1.157e-3 | 6 |
| 920 |  | min | -11.765 | 5 | 004 | 1 | -11.765 | 9 | -1.246e-3 | 10 | 0 | 1 | -1.127e-3 | 14 |
| 921 | N456 | max | 11.765 | 14 | . 082 | 10 | 11.765 | 2 | $1.049 \mathrm{e}-3$ | 2 | 0 | 16 | $1.13 \mathrm{e}-3$ | 6 |
| 922 |  | min | -11.765 | 5 | -. 002 | 1 | -11.765 | 9 | -1.21e-3 | 10 | 0 | 1 | -1.099e-3 | 14 |
| 923 | N457 | max | 11.765 | 14 | . 089 | 10 | 11.765 | 2 | 1.005e-3 | 2 | 0 | 16 | 1.112e-3 | 6 |
| 924 |  | min | -11.765 | 5 | -. 007 | 1 | -11.765 | 9 | -1.189e-3 | 10 | 0 | 1 | -1.08e-3 | 14 |
| 925 | N458 | max | 11.765 | 14 | 096 | 10 | 11.765 | 2 | $9.739 \mathrm{e}-4$ | 2 | 0 | 16 | $1.098 \mathrm{e}-3$ | 6 |
| 926 |  | min | -11.765 | 5 | -. 012 | 1 | -11.765 | 9 | -1.177e-3 | 10 | 0 | 1 | -1.067e-3 | 14 |
| 927 | N459 | max | 11.765 | 14 | . 103 | 10 | 11.765 | 2 | $9.518 \mathrm{e}-4$ | 2 | 0 | 16 | $1.088 \mathrm{e}-3$ | 6 |
| 928 |  | min | -11.765 | 5 | -. 016 | 1 | -11.765 | 9 | -1.169e-3 | 10 | 0 | 1 | -1.058e-3 | 14 |
| 929 | N460 | max | 11.765 | 14 | 109 | 10 | 11.765 | 2 | $9.371 \mathrm{e}-4$ | 2 | 0 | 16 | $1.08 \mathrm{e}-3$ | 6 |
| 930 |  | min | -11.765 | 5 | -. 021 | 1 | -11.765 | 9 | -1.164e-3 | 10 | 0 | 1 | -1.051e-3 | 14 |
| 931 | N461 | max | 11.765 | 14 | 116 | 10 | 11.765 | 2 | 9.285e-4 | 2 | 0 | 16 | $1.075 \mathrm{e}-3$ | 6 |
| 932 |  | min | -11.765 | 5 | -. 026 | 1 | -11.765 | 9 | -1.161e-3 | 10 | 0 | 1 | -1.046e-3 | 14 |
| 933 | N462 | max | 11.765 | 14 | 123 | 10 | 11.765 | 2 | 9.244e-4 | 2 | 0 | 16 | 1.072e-3 | 6 |
| 934 |  | min | -11.765 | 5 | -. 031 | 1 | -11.765 | 9 | -1.16e-3 | 10 | O | 1 | -1.043e-3 | 14 |
| 935 | N463 | max | 11.765 | 14 | 13 | 10 | 11.765 | 2 | 9.235e-4 | 2 | 0 | 16 | $1.071 \mathrm{e}-3$ | 6 |
| 936 |  | min | -11.765 | 5 | -. 036 | 2 | -11.765 | 9 | -1.16e-3 | 10 | 0 | 1 | -1.042e-3 | 14 |
| 937 | N464 | max | 11.765 | 14 | 13 | 2 | 11.765 | 2 | $1.16 \mathrm{e}-3$ | 2 | 0 | 16 | $1.057 \mathrm{e}-3$ | 6 |
| 938 |  | min | -11.765 | 5 | -. 036 | 10 | -11.765 | 9 | -9.237e-4 | 10 | 0 | 1 | -1.057e-3 | 14 |
| 939 | N465 | max | 11.765 | 14 | 123 | 2 | 11.765 | 2 | 1.16e-3 | 2 | 0 | 16 | $1.058 \mathrm{e}-3$ | 6 |
| 940 |  | min | -11.765 | 5 | -. 031 | 9 | -11.765 | 9 | -9.246e-4 | 10 | 0 | 1 | -1.058e-3 | 14 |
| 941 | N466 | max | 11.765 | 14 | 116 | 2 | 11.765 | 2 | 1.161e-3 | 2 | 0 | 16 | 1.061e-3 | 6 |
| 942 |  | min | -11.765 | 5 | -. 026 | 9 | -11.765 | 9 | -9.287e-4 | 10 |  | 1 | -1.061e-3 | 14 |
| 943 | N467 | max | 11.765 | 14 | 109 | 2 | 11.765 | 2 | 1.164e-3 | 2 | 0 | 16 | $1.066 \mathrm{e}-3$ | 6 |
| 944 |  | min | -11.765 | 5 | -. 021 | 9 | -11.765 | 9 | -9.375e-4 | 10 | 0 | 1 | -1.066e-3 | 14 |
| 945 | N468 | max | 11.765 | 14 | . 103 | 2 | 11.765 | 2 | 1.17e-3 | 2 | 0 | 16 | $1.074 \mathrm{e}-3$ | 6 |
| 946 |  | in | -11.765 | 5 | -. 016 | 9 | -11.765 | 9 | -9.524e-4 | 10 | 0 | 1 | -1.074e-3 | 14 |
| 947 | N469 | max | 11.765 | 14 | . 096 | 2 | 11.765 | 2 | 1.179e-3 | 2 | 0 | 16 | $1.084 \mathrm{e}-3$ | 6 |
| 948 |  | min | -11.765 | 5 | -. 012 | 9 | -11.765 | 9 | -9.75e-4 | 10 | 0 | 1 | -1.084e-3 | 14 |
| 949 | N471 | max | 11.765 | 14 | . 082 | 2 | 11.765 | 2 | 1.213e-3 | 2 |  | 16 | $1.116 \mathrm{e}-3$ | 6 |
| 950 |  | min | -11.765 | 5 | -. 002 | 9 | -11.765 | 9 | -1.052e-3 | 10 | 0 | 1 | -1.116e-3 | 14 |
| 951 | N472 | max | 11.765 | 14 | . 076 | 2 | 11.765 | 2 | 1.252e-3 | 2 | 0 | 16 | $1.144 \mathrm{e}-3$ | 6 |
| 952 |  | min | -11.765 | 5 | . 003 | 9 | -11.765 | 9 | -1.114e-3 | 10 | 0 | 1 | -1.144e-3 | 14 |
| 953 | N473 | max | 11.765 | 14 | . 069 | 2 | 11.765 | 2 | $1.314 \mathrm{e}-3$ | 2 | 0 | 16 | 1.187e-3 | 6 |
| 954 |  | min | -11.765 | 5 | . 009 | 9 | -11.765 | 9 | -1.2e-3 | 10 | 0 | 1 | -1.187e-3 | 14 |
| 955 | N474 | max | 11.765 | 14 | . 063 | 2 | 11.765 | 2 | $1.413 \mathrm{e}-3$ | 2 | 0 | 16 | $1.258 \mathrm{e}-3$ | 6 |
| 956 |  | min | -11.765 | 5 | . 015 | 9 | -11.765 | 9 | -1.325e-3 | 10 | 0 | 1 | -1.258e-3 | 14 |
| 957 | N475 | max | 11.765 | 14 | . 056 | 2 | 11.765 | 2 | $1.579 \mathrm{e}-3$ | 2 | 0 | 16 | $1.395 \mathrm{e}-3$ | 6 |
| 958 |  | min | -11.765 | 5 | . 021 | 9 | -11.765 | 9 | -1.518e-3 | 10 | 0 | 1 | -1.395e-3 | 14 |
| 959 | N476 | max | 11.765 | 14 | . 048 | 2 | 11.765 | 2 | $1.922 \mathrm{e}-3$ | 2 | 0 | 16 | 1.62e-3 | 6 |
| 960 |  | min | -11.765 | 5 | . 026 | 7 | -11.765 | 9 | -1.889e-3 | 10 |  | 1 | -1.62e-3 | 14 |
| 961 | CENTER | max | 11.765 | 14 | 039 | 14 | 11.765 | 2 | 2.912e-3 | 2 | 0 | 16 | 2.912e-3 | 6 |
| 962 |  | min | -11.765 | 5 | . 031 | 3 | -11.765 | 9 | -2.912e-3 | 10 | 0 | 1 | -2.912e-3 | 14 |
| 963 | N478 | max | 11.765 | 14 | 048 | 10 | 11.765 | 2 | $1.889 \mathrm{e}-3$ | 2 | 0 | 16 | $1.62 \mathrm{e}-3$ | 6 |
| 964 |  | min | -11.765 | 5 | . 026 | 3 | -11.765 |  | -1.922e-3 | 10 | 0 | 1 | -1.62e-3 | 14 |
| 965 | N479 | max | 11.765 | 14 | . 056 | 10 | 11.765 | 2 | $1.518 \mathrm{e}-3$ | 2 | 0 | 16 | $1.395 \mathrm{e}-3$ | 6 |
| 966 |  | min | -11.765 | 5 | 021 | 1 | -11.765 | - | -1.579e-3 | 10 | 0 | 1 | -1.395e-3 | 14 |
| 967 | N480 | max | 11.765 | 14 | . 063 | 10 | 11.765 | 2 | $1.325 \mathrm{e}-3$ | 2 | 0 | 16 | $1.258 \mathrm{e}-3$ | 6 |
| 968 |  | min | -11.765 | 5 | . 015 | 1 | -11.765 | 9 | -1.413e-3 | 10 | 0 | 1 | -1.258e-3 | 14 |
| 969 | N481 | max | 11.765 | 14 | . 069 | 10 | 11.765 | 2 | 1.2e-3 | 2 | 0 | 16 | 1.187e-3 | 6 |
| 970 |  | min | -11.765 | 5 | 009 | 1 | -11.765 | 9 | -1.314e-3 | 10 | 0 | 1 | -1.187e-3 | 14 |
| 971 | N482 | max | 11.765 | 14 | . 076 | 10 | 11.765 | 2 | $1.114 \mathrm{e}-3$ | 2 | 0 | 16 | $1.144 \mathrm{e}-3$ | 6 |
| 972 |  | min | -11.765 | 5 | . 003 | 1 | -11.765 | 9 | -1.252e-3 | 10 | 0 | 1 | -1.144e-3 | 14 |

$\qquad$
$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] |  |  | LC Z [in] |  | LC $\times$ Rotation...$\begin{array}{\|l\|l\|} \hline 2 & 1.052 e-3 \\ \hline \end{array}$ |  | $\begin{array}{r} \mathrm{LC} \\ \hline 2 \\ \hline \end{array}$ | $\begin{gathered} \text { Y Rotation. } \\ \hline \\ \hline \end{gathered}$ | LC Z Rotation [... LC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 973 | N483 | max | 11.765 | 14 | . 082 | 10 | 11.765 |  |  | $16$ |  | $1.116 \mathrm{e}-3$ | 6 |
| 974 |  | min | -11.765 | 5 | -. 002 | 1 | -11.765 | 9 | -1.213e-3 |  | 10 | 0 | 1 | -1.116e-3 | 14 |
| 975 | N485 | max | 11.765 | 14 | . 096 | 10 | 11.765 | 2 | $9.75 \mathrm{e}-4$ | 2 | 0 | 16 | 1.084e-3 | 6 |
| 976 |  | min | -11.765 | 5 | -. 012 | 1 | -11.765 | 9 | -1.179e-3 | 10 | 0 | 1 | -1.084e-3 | 14 |
| 977 | N486 | max | 11.765 | 14 | . 103 | 10 | 11.765 | 2 | 9.524e-4 | 2 | 0 | 16 | $1.074 \mathrm{e}-3$ | 6 |
| 978 |  | min | -11.765 | 5 | -. 016 | 1 | -11.765 |  | -1.17e-3 | 10 | 0 | 1 | -1.074e-3 | 14 |
| 979 | N48 | max | 11.765 | 14 | 109 | 10 | 11.765 | 2 | 9.375e-4 | 2 | 0 | 16 | $1.066 \mathrm{e}-3$ | 6 |
| 980 |  | min | -11.765 | 5 | -. 021 | 1 | -11.765 | 9 | -1.164e-3 | 10 | 0 | 1 | -1.066e-3 | 14 |
| 981 | N488 | max | 11.765 | 14 | 116 | 10 | 11.765 | 2 | 9.287e-4 | 2 | 0 | 16 | 1.061e-3 | 6 |
| 982 |  | min | -11.765 | 5 | -. 026 | 1 | -11.765 |  | -1.161e-3 | 10 | 0 | 1 | -1.061e-3 | 14 |
| 983 | N489 | max | 11.765 | 14 | 123 | 10 | 11.765 | 2 | 9.246e-4 | 2 | 0 | 16 | $1.058 \mathrm{e}-3$ | 6 |
| 984 |  | min | -11.765 | 5 | -. 031 | 1 | -11.765 | 9 | -1.16e-3 | 10 | 0 | 1 | -1.058e-3 | 14 |
| 985 | N490 | max | 11.765 | 14 | 13 | 10 | 11.765 | 2 | 9.237e-4 | 2 | 0 | 16 | 1.057e-3 | 6 |
| 986 |  | min | -11.765 | 5 | -. 036 | 2 | -11.765 |  | -1.16e-3 | 10 | 0 | 1 | -1.057e-3 | 14 |
| 987 | N491 | max | 11.765 | 14 | 13 | 2 | 11.765 | 2 | 1.16e-3 | 2 | 0 | 16 | 1.042e-3 | 6 |
| 988 |  | min | -11.765 | 5 | -. 036 | 10 | -11.765 | 9 | -9.235e-4 | 10 | 0 | 1 | -1.071e-3 | 14 |
| 989 | N49 | max | 11.765 | 14 | 123 | 2 | 11.765 | 2 | 1.16e-3 | , | 0 | 16 | 1.043e-3 | 6 |
| 990 |  | min | -11.765 | 5 | -. 031 | 9 | -11.765 | 9 | -9.244e-4 | 10 | 0 | 1 | -1.072e-3 | 14 |
| 991 | N493 | max | 11.765 | 14 | 116 | 2 | 11.765 | 2 | 1.161e-3 | 2 | 0 | 16 | 1.046e-3 | 6 |
| 992 |  | min | -11.765 | 5 | -. 026 | 9 | -11.765 | 9 | -9.285e-4 | 10 | 0 | 1 | -1.075e-3 | 14 |
| 993 | N494 | max | 11.765 | 14 | 109 | 2 | 11.765 | 2 | $1.164 \mathrm{e}-3$ | 2 | 0 | 16 | 1.051e-3 | 6 |
| 994 |  | min | -11.765 | 5 | -. 021 | 9 | -11.765 | 9 | -9.371e-4 | 10 | 0 | 1 | -1.08e-3 | 14 |
| 995 | N495 | max | 11.765 | 14 | 103 | 2 | 11.765 | 2 | 1.169e-3 | 2 | 0 | 16 | 1.058e-3 | 6 |
| 996 |  | min | -11.765 | 5 | -. 016 | 9 | -11.765 | 9 | -9.518e-4 | 10 | 0 | 1 | -1.088e-3 | 14 |
| 997 | N496 | max | 11.765 | 14 | . 096 | 2 | 11.765 | 2 | 1.177e-3 | 2 | 0 | 16 | $1.067 \mathrm{e}-3$ | 6 |
| 998 |  | min | -11.765 | 5 | -. 012 | 9 | -11.765 | 9 | -9.739e-4 | 10 | 0 | 1 | -1.098e-3 | 14 |
| 999 | N49 | max | 11.765 | 14 | . 089 | 2 | 11.765 | 2 | 1.189e-3 | 2 | 0 | 16 | $1.08 \mathrm{e}-3$ | 6 |
| 1000 |  | min | -11.765 | 5 | -. 007 | 9 | -11.765 | 9 | -1.005e-3 | 10 | 0 | 1 | -1.112e-3 | 14 |
| 1001 | N498 | max | 11.765 | 14 | . 082 | 2 | 11.765 | 2 | 1.21e-3 | 2 | 0 | 16 | 1.099e-3 | 6 |
| 1002 |  | min | -11.765 | 5 | -. 002 | 9 | -11.765 | 9 | -1.049e-3 | 10 | 0 | 1 | -1.13e-3 | 14 |
| 1003 | N499 | max | 11.765 | 14 | . 076 | 2 | 11.765 | 2 | 1.246e-3 | 2 | 0 | 16 | 1.127e-3 | 6 |
| 1004 |  | min | -11.765 | 5 | 004 | 9 | -11.765 | 9 | -1.108e-3 | 10 | 0 | 1 | -1.157e-3 | 14 |
| 1005 | N500 | ax | 11.765 | 14 | . 069 | 2 | 11.765 | 2 | 1.301e-3 | 2 | 0 | 16 | 1.169e-3 | - |
| 1006 |  | min | -11.765 | 5 | 009 | 9 | -11.765 | 9 | -1.187e-3 | 10 |  | 16 | -1.199e-3 | 14 |
| 1007 | N50 | max | 11.765 | 14 | . 062 | 2 | 11.765 | 2 | $1.385 \mathrm{e}-3$ | 2 | 0 | 16 | $1.24 \mathrm{e}-3$ | 6 |
| 1008 |  | min | -11.765 | 5 | 013 | 7 | -11.765 | 9 | -1.297e-3 | 10 | 0 | 1 | -1.27e-3 | 14 |
| 1009 | N50 | max | 11.765 | 14 | . 055 | 2 | 11.765 | 2 | 1.511e-3 | 2 | 0 | 16 | $1.358 \mathrm{e}-3$ | 6 |
| 1010 |  | min | -11.765 | 5 | . 017 | 7 | -11.765 | 9 | -1.451e-3 | 10 | 0 | 1 | -1.389e-3 | 14 |
| 1011 | N503 | max | 11.765 | 14 | 048 | 14 | 11.765 | 2 | $1.678 \mathrm{e}-3$ | 2 | 0 | 16 | $1.647 \mathrm{e}-3$ | 6 |
| 1012 |  | min | -11.765 | 5 | . 021 | 7 | -11.765 | 9 | -1.647e-3 | 10 |  | 1 | -1.678e-3 | 14 |
| 1013 | N504 | max | 11.765 | 14 | . 048 | 14 | 11.765 | 2 | $1.62 \mathrm{e}-3$ | 2 | 0 | 16 | $1.889 \mathrm{e}-3$ | 6 |
| 1014 |  | min | -11.765 | 5 | 026 | 3 | -11.765 | 9 | -1.62e-3 | 10 | 0 | 1 | -1.922e-3 | 14 |
| 1015 | N505 | max | 11.765 | 14 | . 048 | 14 | 11.765 | 2 | 1.647e-3 | 2 | 0 | 16 | 1.647e-3 | 6 |
| 1016 |  | min | -11.765 | 5 | 021 | 3 | -11.765 | 9 | -1.678e-3 | 10 | 0 | 1 | -1.678e-3 | 14 |
| 1017 | N50 | max | 11.765 | 14 | 055 | 10 | 11.765 | 2 | 1.451e-3 | 2 | 0 | 16 | $1.358 \mathrm{e}-3$ | 6 |
| 1018 |  | min | -11.765 | 5 | 017 | 3 | -11.765 | 9 | -1.511e-3 | 10 | 0 | 1 | -1.389e-3 | 14 |
| 1019 | N507 | max | 11.765 | 14 | . 062 | 10 | 11.765 | 2 | 1.297e-3 | 2 | 0 | 16 | 1.24e-3 | 6 |
| 1020 |  | min | -11.765 | 5 | 013 | 3 | -11.765 | 9 | -1.385e-3 | 10 | 0 | 1 | -1.27e-3 | 14 |
| 1021 | N508 | max | 11.765 | 14 | 069 | 10 | 11.765 | 2 | 1.187e-3 | 2 |  | 16 | 1.169e-3 | 6 |
| 1022 |  | min | -11.765 | 5 | 009 | 1 | -11.765 | 9 | -1.301e-3 | 10 | 0 | 1 | -1.199e-3 | 14 |
| 1023 | N509 | max | 11.765 | 14 | 076 | 10 | 11.765 | 2 | $1.108 \mathrm{e}-3$ | 2 | 0 | 16 | $1.127 \mathrm{e}-3$ | 6 |
| 1024 |  | min | -11.765 | 5 | . 004 | 1 | -11.765 | 9 | -1.246e-3 | 10 | 0 | 1 | -1.157e-3 | 14 |
| 1025 | N510 | max | 11.765 | 14 | 082 | 10 | 11.765 | 2 | 1.049e-3 | 2 | 0 | 16 | $1.099 \mathrm{e}-3$ | 6 |
| 1026 |  | min | -11.765 | 5 | -. 002 | 1 | -11.765 | 9 | -1.21e-3 | 10 | 0 | 1 | -1.13e-3 | 14 |
| 1027 | N511 | max | 11.765 | 14 | 089 | 10 | 11.765 | 2 | $1.005 \mathrm{e}-3$ | 2 | 0 | 16 | $1.08 \mathrm{e}-3$ | 6 |
| 1028 |  | min | -11.765 | 5 | -. 007 | 1 | -11.765 | 9 | -1.189e-3 | 10 | 0 | 1 | -1.112e-3 | 14 |
| 1029 | N512 | max | 11.765 | 14 | 096 | 10 | 11.765 | 2 | 9.739e-4 | 2 | 0 | 16 | 1.067e-3 | 6 |

$\qquad$
——

## Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] LC $\quad \mathrm{Y}$ [in |  |  | LC z [in] |  | 9 | $\begin{gathered} \text { X Rotation... } \\ \hline-1.177 e-3 \\ \hline \end{gathered}$ | LC | Rotation... LC Z Rotation I... |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1030 |  | min | -11.765 | 5 | -. 012 | 1 | -11.765 |  |  |  | $0$ | $1$ | $-1.098 e-3$ | 1 |
| 1031 | N513 | max | 11.765 | 14 | 103 | 10 | 11.765 | 2 | $9.518 \mathrm{e}-4$ | 2 | 0 | 16 | $1.058 \mathrm{e}-3$ | 6 |
| 1032 |  | min | -11.765 | 5 | -. 016 | 1 | -11.765 | 9 | -1.169e-3 | 10 | 0 | 1 | -1.088e-3 | 14 |
| 1033 | N514 | max | 11.765 | 14 | 109 | 10 | 11.765 | 2 | $9.371 \mathrm{e}-4$ | 2 | 0 | 16 | 1.051e-3 | 6 |
| 1034 |  | min | -11.765 | 5 | -. 021 | 1 | -11.765 |  | -1.164e-3 | 10 | 0 | 1 | -1.08e-3 | 14 |
| 1035 | N515 | max | 11.765 | 14 | 116 | 10 | 11.765 | 2 | 9.285e-4 | 2 | 0 | 16 | $1.046 \mathrm{e}-3$ | 6 |
| 1036 |  | min | -11.765 | 5 | -. 026 | 1 | -11.765 | 9 | -1.161e-3 | 10 | 0 | 1 | -1.075e-3 | 14 |
| 1037 | N516 | max | 11.765 | 14 | 123 | 10 | 11.765 | 2 | 9.244e-4 | 2 | 0 | 16 | $1.043 \mathrm{e}-3$ | 6 |
| 1038 |  | min | -11.765 | 5 | -. 031 | 1 | -11.765 | 9 | -1.16e-3 | 10 | 0 | 1 | -1.072e-3 | 14 |
| 1039 | N517 | max | 11.765 | 14 | 13 | 10 | 11.765 | 2 | 9.235e-4 | 2 | 0 | 16 | $1.042 \mathrm{e}-3$ | , |
| 1040 |  | min | -11.765 | 5 | -. 036 | , | -11.765 | 9 | -1.16e-3 | 10 | 0 | 1 | -1.071e-3 | 14 |
| 1041 | N518 | max | 11.765 | 14 | 13 | 2 | 11.765 | 2 | 1.159e-3 | 2 | 0 | 16 | $1.027 \mathrm{e}-3$ | 6 |
| 1042 |  | min | -11.765 | 5 | -. 036 | 10 | -11.765 | 9 | -9.229e-4 | 10 | 0 | 1 | -1.083e-3 | 14 |
| 1043 | N519 | max | 11.765 | 14 | 123 | 2 | 11.765 | 2 | $1.159 \mathrm{e}-3$ | 2 | 0 | 16 | $1.027 \mathrm{e}-3$ | 6 |
| 1044 |  | min | -11.765 | 5 | -. 031 |  | -11.765 | 9 | -9.238e-4 | 10 | 0 | 1 | -1.084e-3 | 14 |
| 1045 | N520 | max | 11.765 | 14 | 116 | 2 | 11.765 | 2 | 1.16e-3 | 2 | 0 | 16 | $1.03 \mathrm{e}-3$ | 6 |
| 1046 |  | min | -11.765 | 5 | -. 026 | 9 | -11.765 | 9 | -9.278e-4 | 10 | 0 | 1 | -1.087e-3 | 14 |
| 1047 | N521 | max | 11.765 | 14 | 109 | 2 | 11.765 | 2 | 1.162e-3 | 2 | 0 | 16 | $1.034 \mathrm{e}-3$ | 6 |
| 1048 |  | min | -11.765 | 5 | -. 021 | 9 | -11.765 | 9 | -9.361e-4 | 10 | 0 | 1 | -1.092e-3 | 14 |
| 1049 | N522 | max | 11.765 | 14 | 102 | , | 11.765 | 2 | $1.166 \mathrm{e}-3$ | , | 0 | 16 | $1.041 \mathrm{e}-3$ | 6 |
| 1050 |  | min | -11.765 | 5 | -. 016 | 9 | -11.765 | 9 | -9.5e-4 | 10 | 0 | 1 | -1.099e-3 | 14 |
| 1051 | N523 | max | 11.765 | 14 | 096 | 2 | 11.765 | 2 | $1.173 \mathrm{e}-3$ | 2 | 0 | 16 | 1.05e-3 | 6 |
| 1052 |  | min | -11.765 | 5 | -. 011 | 9 | -11.765 | 9 | -9.709e-4 | 10 | 0 | 1 | -1.109e-3 | 14 |
| 1053 | N524 | max | 11.765 | 14 | 089 | 2 | 11.765 | 2 | $1.183 \mathrm{e}-3$ | 2 | 0 | 16 | $1.062 \mathrm{e}-3$ | 6 |
| 1054 |  | min | -11.765 | 5 | -. 006 | 9 | -11.765 | 9 | -1.e-3 | 10 | 0 | 1 | -1.122e-3 | 14 |
| 1055 | N525 | max | 11.765 | 14 | 082 | 2 | 11.765 | 2 | $1.201 \mathrm{e}-3$ | 2 | 0 | 16 | $1.08 \mathrm{e}-3$ | 6 |
| 1056 |  | min | -11.765 | 5 | -. 001 | 9 | -11.765 | 9 | -1.039e-3 | 10 | 0 | 1 | -1.14e-3 | 14 |
| 1057 | N526 | max | 11.765 | 14 | 076 | 2 | 11.765 | 2 | $1.229 \mathrm{e}-3$ | 2 | 0 | 16 | $1.106 \mathrm{e}-3$ | 6 |
| 1058 |  | min | -11.765 | 5 | 002 | 7 | -11.765 | , | -1.09e-3 | 10 | 0 | 1 | -1.165e-3 | 14 |
| 1059 | N527 | max | 11.765 | 14 | 069 | 2 | 11.765 | 2 | $1.268 \mathrm{e}-3$ | 2 | 0 | 16 | 1.146e-3 | 6 |
| 1060 |  | min | -11.765 | 5 | 006 | 7 | -11.765 | 9 | -1.154e-3 | 10 | 0 | 1 | -1.205e-3 | 14 |
| 1061 | N528 | max | 11.765 | 14 | 062 | 2 | 11.765 | 2 | $1.32 \mathrm{e}-3$ | 2 | 0 | 16 | $1.208 \mathrm{e}-3$ | 6 |
| 1062 |  | min | -11.765 | 5 | 009 | 7 | -11.765 | 9 | -1.232e-3 | 10 | 0 | 1 | -1.267e-3 | 14 |
| 1063 | N529 | max | 11.765 | 14 | 056 | 16 | 11.765 | 2 | $1.374 \mathrm{e}-3$ | 2 | 0 | 16 | $1.315 \mathrm{e}-3$ | 6 |
| 1064 |  | min | -11.765 | 5 | 013 | 7 | -11.765 | 9 | -1.315e-3 | 10 | 0 | 1 | -1.374e-3 | 14 |
| 1065 | N530 | max | 11.765 | 14 | 055 | 14 | 11.765 | 2 | 1.389e-3 | 2 | 0 | 16 | 1.451e-3 | 6 |
| 1066 |  | min | -11.765 | 5 | 017 | 7 | -11.765 | 9 | -1.358e-3 | 10 | 0 | 1 | -1.511e-3 | 14 |
| 1067 | N53 | max | 11.765 | 14 | 056 | 14 | 11.765 | 2 | 1.395e-3 | 2 | 0 | 16 | $1.518 \mathrm{e}-3$ | 6 |
| 1068 |  | min | -11.765 | 5 | 021 | 5 | -11.765 | 9 | -1.395e-3 | 10 | 0 | 1 | -1.579e-3 | 14 |
| 1069 | N532 | max | 11.765 | 14 | 055 | 14 | 11.765 | 2 | $1.358 \mathrm{e}-3$ | 2 | 0 | 16 | 1.451e-3 | 6 |
| 1070 |  | min | -11.765 | 5 | 017 | 3 | -11.765 | 9 | -1.389e-3 | 10 | 0 | 1 | -1.511e-3 | 14 |
| 1071 | N533 | max | 11.765 | 14 | 056 | 12 | 11.765 | 2 | $1.315 \mathrm{e}-3$ | 2 | 0 | 16 | $1.315 \mathrm{e}-3$ | 6 |
| 1072 |  | min | -11.765 | 5 | 013 | 3 | -11.765 | 9 | -1.374e-3 | 10 | 0 | 1 | -1.374e-3 | 14 |
| 1073 | N534 | max | 11.765 | 14 | 062 | 10 | 11.765 | 2 | $1.232 \mathrm{e}-3$ | 2 | 0 | 16 | $1.208 \mathrm{e}-3$ | 6 |
| 1074 |  | min | -11.765 | 5 | 009 | 3 | -11.765 | 9 | -1.32e-3 | 10 | 0 | 1 | -1.267e-3 | 14 |
| 1075 | N535 | max | 11.765 | 14 | 069 | 10 | 11.765 | 2 | $1.154 \mathrm{e}-3$ | 2 | 0 | 16 | $1.146 \mathrm{e}-3$ | 6 |
| 1076 |  | min | -11.765 | 5 | 006 | 3 | -11.765 | 9 | -1.268e-3 | 10 | 0 | 1 | -1.205e-3 | 14 |
| 1077 | N536 | max | 11.765 | 14 | . 076 | 10 | 11.765 |  | $1.09 \mathrm{e}-3$ | 2 | 0 | 16 | 1.106e-3 | 6 |
| 1078 |  | min | -11.765 | 5 | 002 | 3 | -11.765 | 9 | -1.229e-3 | 10 | 0 | 1 | -1.165e-3 | 14 |
| 1079 | N537 | max | 11.765 | 14 | 082 | 10 | 11.765 | 2 | $1.039 \mathrm{e}-3$ | 2 | 0 | 16 | $1.08 \mathrm{e}-3$ | 6 |
| 1080 |  | min | -11.765 | 5 | -. 001 | 1 | -11.765 | 9 | -1.201e-3 | 10 | 0 | 1 | -1.14e-3 | 14 |
| 1081 | N538 | max | 11.765 | 14 | 089 | 10 | 11.765 | 2 | 1.e-3 | 2 | 0 | 16 | $1.062 \mathrm{e}-3$ | 6 |
| 1082 |  | min | -11.765 | 5 | -. 006 | 1 | -11.765 | 9 | -1.183e-3 | 10 | 0 | 1 | -1.122e-3 | 14 |
| 1083 | N539 | max | 11.765 | 14 | 096 | 10 | 11.765 | 2 | 9.709e-4 | 2 | 0 | 16 | $1.05 \mathrm{e}-3$ | 6 |
| 1084 |  | min | -11.765 | 5 | -. 011 | 1 | -11.765 | 9 | -1.173e-3 | 10 | 0 | 1 | -1.109e-3 | 14 |
| 1085 | N540 | max | 11.765 | 14 | 102 | 10 | 11.765 | 2 | 9.5e-4 | 2 | 0 | 16 | $1.041 \mathrm{e}-3$ | 6 |
| 1086 |  | min | -11.765 | 5 | -. 016 | 1 | -11.765 | 9 | -1.166e-3 | 10 | 0 | 1 | -1.099e-3 | 14 |

$\qquad$
$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | x [in] |  |  | z [in] |  | 2 | $\begin{gathered} \text { X Rotation .. } \\ 9.361 \mathrm{e}-4 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { LC } \\ \hline 2 \\ \hline \end{array}$ | $\begin{gathered} \text { YRotation } . \\ \hline 0 \\ \hline \end{gathered}$ | LC Z Rotation [... LC |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1087 | N541 | max | 11.765 | 14 | 109 | 10 | 11.765 |  |  |  |  | $16$ | $1.034 \mathrm{e}-3$ |  |
| 1088 |  | min | -11.765 | 5 | -. 021 | 1 | -11.765 | 9 | -1.162e-3 | 10 | 0 | 1 | -1.092e-3 | 14 |
| 1089 | N542 | x | 11.765 | 14 | 116 | 10 | 11.765 | 2 | 9.278e-4 | 2 | 0 | 16 | $1.03 \mathrm{e}-3$ | 6 |
| 1090 |  | min | -11.765 | 5 | -. 026 | 1 | -11.765 | 9 | -1.16e-3 | 10 | 0 | 1 | -1.087e-3 | 14 |
| 1091 | N543 | max | 11.765 | 14 | 123 | 10 | 11.765 | 2 | $9.238 \mathrm{e}-4$ | 2 | 0 | 16 | $1.027 \mathrm{e}-3$ | 6 |
| 1092 |  | min | -11.765 | 5 | -. 031 | 1 | -11.765 | 9 | -1.159e-3 | 10 | 0 | 1 | -1.084e-3 | 14 |
| 1093 | N544 | max | 11.765 | 14 | . 13 | 10 | 11.765 | 2 | 9.229e-4 | 2 | 0 | 16 | $1.027 \mathrm{e}-3$ | 6 |
| 1094 |  | min | -11.765 | 5 | -. 036 | 2 | -11.765 | 9 | -1.159e-3 | 10 | 0 | 1 | -1.083e-3 | 14 |
| 1095 | N545 | max | 11.765 | 14 | 13 | 2 | 11.765 | 2 | $1.158 \mathrm{e}-3$ | 2 | 0 | 16 | $1.01 \mathrm{e}-3$ | , |
| 1096 |  | min | -11.765 | 5 | -. 036 | 10 | -11.765 | 9 | -9.221e-4 | 10 | 0 | 1 | -1.094e-3 | 14 |
| 1097 | N546 | max | 11.765 | 14 | 123 | 2 | 11.765 | 2 | $1.158 \mathrm{e}-3$ | 2 | 0 | 16 | 1.011e-3 | 6 |
| 1098 |  | min | -11.765 | 5 | -. 031 | 9 | -11.765 | 9 | -9.229e-4 | 10 | 0 | 1 | -1.095e-3 | 14 |
| 1099 | N547 | max | 11.765 | 14 | 116 | 2 | 11.765 | 2 | $1.158 \mathrm{e}-3$ | 2 | 0 | 16 | $1.013 \mathrm{e}-3$ | 6 |
| 1100 |  | min | -11.765 | 5 | -. 026 | 9 | -11.765 | 9 | -9.267e-4 | 10 | 0 | 1 | -1.098e-3 | 14 |
| 1101 | N548 | max | 11.765 | 14 | 109 |  | 11.765 | 2 | $1.16 \mathrm{e}-3$ | 2 | 0 | 16 | 1.017e-3 | 6 |
| 1102 |  | min | -11.765 | 5 | -. 021 |  | -11.765 | 9 | -9.345e-4 | 10 | 0 | 1 | -1.102e-3 | 14 |
| 1103 | N549 | max | 11.765 | 14 | 102 | 2 | 11.765 | 2 | 1.163e-3 | 2 | 0 | 16 | $1.023 \mathrm{e}-3$ | 6 |
| 1104 |  | min | -11.765 | 5 | -. 016 |  | -11.765 | 9 | -9.474e-4 | 10 | 0 | 1 | -1.109e-3 | 14 |
| 1105 | N550 | max | 11.765 | 14 | 096 | 2 | 11.765 | 2 | 1.167e-3 | 2 | 0 | 16 | 1.031e-3 | 6 |
| 1106 |  | min | -11.765 | 5 | -. 011 | 9 | -11.765 | 9 | -9.664e-4 | 10 | 0 | 1 | -1.117e-3 | 14 |
| 1107 | N551 | max | 11.765 | 14 | . 089 | 2 | 11.765 | 2 | 1.175e-3 | 2 | 0 | 16 | $1.043 \mathrm{e}-3$ | 6 |
| 1108 |  | min | -11.765 | 5 | -. 007 | 7 | -11.765 | 9 | -9.924e-4 | 10 | 0 | 1 | -1.129e-3 | 14 |
| 1109 | N552 | max | 11.765 | 14 | 082 | 2 | 11.765 | 2 | $1.188 \mathrm{e}-3$ | 2 | 0 | 16 | $1.059 \mathrm{e}-3$ | 6 |
| 1110 |  | min | -11.765 | 5 | -. 004 | 7 | -11.765 | 9 | -1.026e-3 | 10 | 0 | 1 | -1.145e-3 | 14 |
| 1111 | N553 | max | 11.765 | 14 | 075 | 2 | 11.765 | 2 | $1.206 \mathrm{e}-3$ | 2 | 0 | 16 | $1.082 \mathrm{e}-3$ | 6 |
| 1112 |  | min | -11.765 | 5 | -. 001 | 7 | -11.765 | 9 | -1.067e-3 | 10 | 0 | 1 | -1.168e-3 | 14 |
| 1113 | N554 | max | 11.765 | 14 | . 07 | 16 | 11.765 | 2 | $1.229 \mathrm{e}-3$ | 2 | 0 | 16 | $1.115 \mathrm{e}-3$ | 6 |
| 1114 |  | min | -11.765 | 5 | 002 | 7 | -11.765 | 9 | -1.115e-3 | 10 | 0 | 1 | -1.202e-3 | 14 |
| 1115 | N555 | max | 11.765 | 14 | 065 | 16 | 11.765 | 2 | 1.253e-3 | 2 | 0 | 16 | $1.166 \mathrm{e}-3$ | 6 |
| 1116 |  | min | -11.765 | 5 | 006 | 7 | -11.765 | 9 | -1.166e-3 | 10 | 0 | 1 | -1.253e-3 | 14 |
| 1117 | N556 | max | 11.765 | 14 | 062 | 14 | 11.765 | 2 | $1.267 \mathrm{e}-3$ | 2 | 0 | 16 | $1.232 \mathrm{e}-3$ | 6 |
| 1118 |  | min | -11.765 | 5 | 009 | 7 | -11.765 | 9 | -1.208e-3 | 10 | 0 | 1 | -1.32e-3 | 14 |
| 1119 | N557 | max | 11.765 | 14 | 062 | 14 | 11.765 | 2 | $1.27 \mathrm{e}-3$ | 2 | 0 | 16 | $1.297 \mathrm{e}-3$ | 6 |
| 1120 |  | min | -11.765 | 5 | 013 | 7 | -11.765 | 9 | -1.24e-3 | 10 | 0 | 1 | -1.385e-3 | 14 |
| 1121 | N558 | max | 11.765 | 14 | 063 | 14 | 11.765 | 2 | $1.258 \mathrm{e}-3$ | 2 | 0 | 16 | $1.325 \mathrm{e}-3$ | 6 |
| 1122 |  | min | -11.765 | 5 | 015 | 5 | -11.765 | 9 | -1.258e-3 | 10 | 0 | 1 | -1.413e-3 | 14 |
| 1123 | N55 | max | 11.765 | 14 | 062 | 14 | 11.765 | 2 | $1.24 \mathrm{e}-3$ | 2 | 0 | 16 | 1.297e-3 | 6 |
| 1124 |  | min | -11.765 | 5 | 013 | 3 | -11.765 | 9 | -1.27e-3 | 10 | 0 | 1 | -1.385e-3 | 14 |
| 1125 | N560 | max | 11.765 | 14 | 062 | 14 | 11.765 | 2 | $1.208 \mathrm{e}-3$ | 2 | 0 | 16 | 1.232e-3 | 6 |
| 1126 |  | min | -11.765 | 5 | 009 | 3 | -11.765 | 9 | -1.267e-3 | 10 | 0 | 16 | -1.32e-3 | 14 |
| 1127 | N561 | max | 11.765 | 14 | 065 | 12 | 11.765 | 2 | 1.166e-3 | 2 | 0 | 16 | $1.166 \mathrm{e}-3$ | 6 |
| 1128 |  | min | -11.765 | 5 | 006 | 3 | -11.765 | 9 | -1.253e-3 | 10 | 0 | 1 | -1.253e-3 | 14 |
| 1129 | N562 | max | 11.765 | 14 | . 07 | 12 | 11.765 | 2 | $1.115 \mathrm{e}-3$ | 2 | 0 | 16 | $1.115 \mathrm{e}-3$ | 6 |
| 1130 |  | min | -11.765 | 5 | 002 | 3 | -11.765 | 9 | -1.229e-3 | 10 | 0 | 1 | -1.202e-3 | 14 |
| 1131 | N56 | max | 11.765 | 14 | . 075 | 10 | 11.765 | 2 | $1.067 \mathrm{e}-3$ | 2 | 0 | 16 | 1.082e-3 | 6 |
| 1132 |  | min | -11.765 | 5 | -. 001 | 3 | -11.765 | 9 | -1.206e-3 | 10 | 0 | 1 | -1.168e-3 | 14 |
| 1133 | N56 | max | 11.765 | 14 | . 082 | 10 | 11.765 | 2 | 1.026e-3 | 2 | 0 | 16 | $1.059 \mathrm{e}-3$ | 6 |
| 1134 |  | min | -11.765 | 5 | -. 004 | 3 | -11.765 | 9 | -1.188e-3 | 10 | 0 | 1 | -1.145e-3 | 14 |
| 1135 | N565 | max | 11.765 | 14 | . 089 | 10 | 11.765 | 2 | 9.924e-4 | 2 | 0 | 16 | 1.043e-3 | 6 |
| 1136 |  | min | -11.765 | 5 | -. 007 | 3 | -11.765 | 9 | -1.175e-3 | 10 | 0 | 1 | -1.129e-3 | 14 |
| 1137 | N566 | max | 11.765 | 14 | 096 | 10 | 11.765 | 2 | $9.664 \mathrm{e}-4$ | 2 | 0 | 16 | 1.031e-3 | 6 |
| 1138 |  | min | -11.765 | 5 | -. 011 | 1 | -11.765 | 9 | -1.167e-3 | 10 | 0 | 1 | -1.117e-3 | 14 |
| 1139 | N567 | max | 11.765 | 14 | 102 | 10 | 11.765 | 2 | 9.474e-4 | 2 | 0 | 16 | $1.023 \mathrm{e}-3$ | 6 |
| 1140 |  | min | -11.765 | 5 | -. 016 | 1 | -11.765 | 9 | -1.163e-3 | 10 | 0 | 1 | -1.109e-3 | 14 |
| 1141 | N568 | max | 11.765 | 14 | 109 | 10 | 11.765 | 2 | $9.345 \mathrm{e}-4$ | 2 | 0 | 16 | 1.017e-3 | 6 |
| 1142 |  | min | -11.765 | 5 | -. 021 | 1 | -11.765 | - | -1.16e-3 | 10 | 0 | 1 | -1.102e-3 | 14 |
| 1143 | N569 | max | 11.765 | 14 | 116 | 10 | 11.765 | 2 | $9.267 \mathrm{e}-4$ | 2 | 0 | 16 | $1.013 \mathrm{e}-3$ | 6 |

$\qquad$
-

## Envelope Joint Displacements (Continued)

| Joint |  |  | X 1 in] | LC Y $\mathrm{lin}^{\text {l }}$ |  | LC | $\begin{gathered} \frac{\mathrm{z} \text { [inl }}{-11.765} \\ \hline \end{gathered}$ | LC X Rotation ... LC Y Rotation... LC Z Rotation [... LC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1144 |  | min | -11.765 | $5$ | $-.026$ |  |  | 9 | -1.158e-3 | 10 | - | 1 | -1.098e-3 | 14 |
| 1145 | N570 | max | 11.765 | 14 | 123 | 10 | 11.765 | 2 | 9.229e-4 | 2 | 0 | 16 | 1.011e-3 | 6 |
| 1146 |  | min | -11.765 | 5 | -. 031 | 1 | -11.765 | 9 | -1.158e-3 | 10 | 0 | 1 | -1.095e-3 | 14 |
| 1147 | N571 | x | 11.765 | 14 | 13 | 10 | 11.765 | 2 | 9.221e-4 | 2 | 0 | 16 | 1.01e-3 | 6 |
| 1148 |  | min | -11.765 | 5 | -. 036 | 2 | -11.765 |  | -1.158e-3 | 10 | 0 | 1 | -1.094e-3 | 14 |
| 1149 | N572 | max | 11.765 | 14 | 13 | 2 | 11.765 | 2 | $1.156 \mathrm{e}-3$ | 2 | 0 | 16 | 9.937e-4 | 6 |
| 1150 |  | min | -11.765 | 5 | -. 036 | 10 | -11.765 | 9 | -9.209e-4 | 10 | 0 | 1 | -1.104e-3 | 14 |
| 1151 | N573 | max | 11.765 | 14 | 123 | 2 | 11.765 | 2 | 1.156e-3 | 2 | 0 | 16 | $9.94 \mathrm{e}-4$ | 6 |
| 1152 |  | min | -11.765 | 5 | -. 031 | 9 | -11.765 | 9 | -9.218e-4 | 10 | 0 | 1 | -1.104e-3 | 14 |
| 1153 | N574 | max | 11.765 | 14 | 116 | 2 | 11.765 | 2 | $1.156 \mathrm{e}-3$ | 2 | 0 | 16 | 9.961e-4 | 6 |
| 1154 |  | min | -11.765 | 5 | -. 026 | 9 | -11.765 | 9 | -9.253e-4 | 10 | 0 | 1 | -1.107e-3 | 14 |
| 1155 | N575 | max | 11.765 | 14 | 109 |  | 11.765 | 2 | $1.157 \mathrm{e}-3$ | 2 | 0 | 16 | 9.998e-4 | 6 |
| 1156 |  | min | -11.765 | 5 | -. 021 | 9 | -11.765 | 9 | -9.326e-4 | 10 | 0 | 1 | -1.111e-3 | 14 |
| 1157 | N576 | max | 11.765 | 14 | 102 | 2 | 11.765 | 2 | $1.159 \mathrm{e}-3$ | 2 | 0 | 16 | $1.005 \mathrm{e}-3$ | 6 |
| 1158 |  | min | -11.765 | 5 | -. 016 | 7 | -11.765 | 9 | -9.443e-4 | 10 | 0 | 1 | -1.116e-3 | 14 |
| 1159 | N577 | max | 11.765 | 14 | 095 | 7 | 11.765 | 2 | $1.162 \mathrm{e}-3$ | 2 | 0 | 16 | $1.012 \mathrm{e}-3$ | 6 |
| 1160 |  | min | -11.765 | 5 | -. 013 | 7 | -11.765 | 9 | -9.613e-4 | 10 | 0 | 1 | -1.123e-3 | 14 |
| 1161 | N578 | max | 11.765 | 14 | 089 | 2 | 11.765 | 2 | $1.166 \mathrm{e}-3$ | 2 | 0 | 16 | $1.022 \mathrm{e}-3$ | 6 |
| 1162 |  | min | -11.765 | 5 | -. 01 | 7 | -11.765 | 9 | -9.84e-4 | 10 | 0 | 1 | -1.134e-3 | 14 |
| 1163 | N579 | max | 11.765 | 14 | . 083 | 16 | 11.765 | 2 | $1.174 \mathrm{e}-3$ | 2 | 0 | 16 | $1.036 \mathrm{e}-3$ | 6 |
| 1164 |  | max | -11.765 | 5 | -. 0007 | 7 | -11.765 | 9 | -1.012e-3 | 10 | 0 | 16 | -1.148e-3 | 14 |
| 1165 | N580 | max | 11.765 | 14 | . 079 | 16 | 11.765 | 2 | $1.183 \mathrm{e}-3$ | 2 | 0 | 16 | $1.055 \mathrm{e}-3$ | 6 |
| 1166 |  | min | -11.765 | 5 | -. 004 | 7 | -11.765 | 9 | -1.045e-3 | 10 | 0 | 1 | -1.167e-3 | 14 |
| 1167 | N581 | max | 11.765 | 14 | 074 | 16 | 11.765 | 2 | $1.194 \mathrm{e}-3$ | 2 | 0 | 16 | 1.081e-3 | 6 |
| 1168 |  | min | -11.765 | 5 | -. 001 | 7 | -11.765 | 9 | -1.081e-3 | 10 | 0 | 1 | -1.194e-3 | 14 |
| 1169 | N582 | max | 11.765 | 14 | . 07 | 16 | 11.765 | 2 | 1.202e-3 | 2 | 0 | 16 | $1.115 \mathrm{e}-3$ | 6 |
| 1170 |  | min | -11.765 | 5 | 002 | 7 | -11.765 | 9 | -1.115e-3 | 10 | 0 | 1 | -1.229e-3 | 14 |
| 1171 | N583 | max | 11.765 | 14 | 069 | 14 | 11.765 | 2 | 1.205e-3 | 2 | 0 | 16 | $1.154 \mathrm{e}-3$ | 6 |
| 1172 |  | min | -11.765 | 5 | 006 | 7 | -11.765 | 9 | -1.146e-3 | 10 | 0 | 1 | -1.268e-3 | 14 |
| 1173 | N584 | max | 11.765 | 14 | 069 | 14 | 11.765 | 2 | 1.199e-3 | 2 | 0 | 16 | $1.187 \mathrm{e}-3$ | 6 |
| 1174 |  | min | -11.765 | 5 | 009 | 5 | -11.765 | 9 | -1.169e-3 | 10 | 0 | 16 | -1.301e-3 | 14 |
| 1175 | N585 | ax | 11.765 | 14 | 069 | 14 | 11.765 | 2 | $1.187 \mathrm{e}-3$ | 2 | 0 | 16 | $1.2 \mathrm{e}-3$ | 6 |
| 1176 |  | min | -11.765 | 5 | 009 | 5 | -11.765 | 9 | -1.187e-3 | 10 | 0 | , | -1.314e-3 | 14 |
| 1177 | N586 | max | 11.765 | 14 | 069 | 14 | 11.765 | 2 | $1.169 \mathrm{e}-3$ | 2 | 0 | 16 | 1.187e-3 | 6 |
| 1178 |  | min | -11.765 | 5 | 009 | 5 | -11.765 | 9 | -1.199e-3 | 10 | 0 | 1 | -1.301e-3 | 14 |
| 1179 | N587 | max | 11.765 | 14 | 069 | 14 | 11.765 | 2 | 1.146e-3 | 2 | 0 | 16 | $1.154 \mathrm{e}-3$ | 6 |
| 1180 |  | min | -11.765 | 5 | 006 | 3 | -11.765 | 9 | -1.205e-3 | 10 | 0 | 1 | -1.268e-3 | 14 |
| 1181 | N588 | max | 11.765 | 14 | . 07 | 12 | 11.765 | 2 | 1.115e-3 | 2 | 0 | 16 | $1.115 \mathrm{e}-3$ | 6 |
| 1182 |  | min | -11.765 | 5 | 002 | 3 | -11.765 | 9 | -1.202e-3 | 10 | 0 | 1 | -1.229e-3 | 14 |
| 1183 | N589 | max | 11.765 | 14 | 074 | 12 | 11.765 | 2 | 1.081e-3 | 2 | 0 | 16 | 1.081e-3 | 6 |
| 1184 |  | min | -11.765 | 5 | -. 001 | 3 | -11.765 | 9 | -1.194e-3 | 10 | 0 | 1 | -1.194e-3 | 14 |
| 1185 | N590 | max | 11.765 | 14 | 079 | 12 | 11.765 | 2 | 1.045e-3 | 2 | 0 | 16 | 1.055e-3 | 6 |
| 1186 |  | min | -11.765 | 5 | -. 004 | 3 | -11.765 | 9 | -1.183e-3 | 10 | 0 | 1 | -1.167e-3 | 14 |
| 1187 | N591 | max | 11.765 | 14 | 083 | 12 | 11.765 | 2 | $1.012 \mathrm{e}-3$ | 2 | 0 | 16 | $1.036 \mathrm{e}-3$ | 6 |
| 1188 |  | min | -11.765 | 5 | -. 007 | 3 | -11.765 | 9 | -1.174e-3 | 10 | 0 | 1 | -1.148e-3 | 14 |
| 1189 | N592 | max | 11.765 | 14 | 089 | 10 | 11.765 | 2 | $9.84 \mathrm{e}-4$ | 2 | 0 | 16 | $1.022 \mathrm{e}-3$ | 6 |
| 1190 |  | min | -11.765 | 5 | -. 01 | 3 | -11.765 |  | -1.166e-3 | 10 | 0 | 1 | -1.134e-3 | 14 |
| 1191 | N593 | max | 11.765 | 14 | . 095 | 10 | 11.765 | 2 | 9.613e-4 | 2 | O | 16 | $1.012 \mathrm{e}-3$ | 6 |
| 1192 |  | min | -11.765 | 5 | -. 013 | 3 | -11.765 | 9 | -1.162e-3 | 10 | 0 | 1 | -1.123e-3 | 14 |
| 1193 | N594 | max | 11.765 | 14 | 102 | 10 | 11.765 | 2 | 9.443e-4 | 2 | 0 | 16 | $1.005 \mathrm{e}-3$ | 6 |
| 1194 |  | min | -11.765 | 5 | -. 016 | 3 | -11.765 | 9 | -1.159e-3 | 10 | 0 | 1 | -1.116e-3 | 14 |
| 1195 | N595 | max | 11.765 | 14 | . 109 | 10 | 11.765 | 2 | 9.326e-4 | 2 | 0 | 16 | $9.998 \mathrm{e}-4$ | 6 |
| 1196 |  | min | -11.765 | 5 | -. 021 | 1 | -11.765 | 9 | -1.157e-3 | 10 | 0 | 1 | -1.111e-3 | 14 |
| 1197 | N596 | max | 11.765 | 14 | 116 | 10 | 11.765 | 2 | 9.253e-4 | 2 | 0 | 16 | 9.961e-4 | 6 |
| 1198 |  | min | -11.765 | 5 | -. 026 | 1 | -11.765 | 9 | -1.156e-3 | 10 | 0 | 1 | -1.107e-3 | 14 |
| 1199 | N597 | max | 11.765 | 14 | 123 | 10 | 11.765 | 2 | 9.218e-4 | 10 | 0 | 16 | $9.94 \mathrm{e}-4$ | 14 |
| 1200 |  | min | -11.765 | 5 | -. 031 | 1 | -11.765 | 9 | -1.156e-3 | 10 | 0 | 1 | -1.104e-3 | 14 |

$\qquad$

## Envelope Joint Displacements (Continued)


$\qquad$
——

## Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] | LC | $\frac{Y_{\text {[in }]}}{-.035}$ | LC | $\frac{\mathrm{z} \operatorname{lin} 1}{117 a 5}$ | LC | $\begin{aligned} & \text { X Rotation... } \\ & \hline-9.183 e-4 \\ & \hline \end{aligned}$ | LC | $\begin{gathered} \text { Rotation } \\ 0 \end{gathered}$ | LC Z Rotation I... LC$\begin{array}{l\|l\|l\|} \hline 1 & -1.119 e-3 & 14 \\ \hline \end{array}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1258 |  | min | -11.765 |  |  |  |  |  |  |  |  |  |  |  |
| 1259 | N627 | max | 11.765 | 14 | 122 | 2 | 11.765 | 2 | 1.152e-3 | 2 | 0 | 16 | 9.625e-4 | 6 |
| 1260 |  | min | -11.765 | 5 | -. 03 | 7 | -11.765 | 9 | -9.192e-4 | 10 | 0 | 1 | -1.119e-3 | 14 |
| 1261 | N628 | max | 11.765 | 14 | 115 | 2 | 11.765 | 2 | $1.152 \mathrm{e}-3$ | 2 | 0 | 16 | 9.639e-4 | 6 |
| 1262 |  | min | -11.765 | 5 | -. 027 | 7 | -11.765 | - | -9.223e-4 | 10 | 0 | 1 | -1.121e-3 | 14 |
| 1263 | N629 | max | 11.765 | 14 | 11 | 16 | 11.765 | 2 | 1.152e-3 | 2 | 0 | 16 | 9.664e-4 | 6 |
| 1264 |  | min | -11.765 | 5 | -. 025 | 7 | -11.765 | 9 | -9.284e-4 | 10 | 0 | 1 | -1.124e-3 | 14 |
| 1265 | N630 | max | 11.765 | 14 | . 106 | 16 | 11.765 | 2 | 1.152e-3 | 2 | 0 | 16 | 9.7e-4 | 6 |
| 1266 |  | min | -11.765 | 5 | -. 022 | 7 | -11.765 | - | -9.381e-4 | 10 | 0 | 1 | -1.128e-3 | 14 |
| 1267 | N631 | max | 11.765 | 14 | 101 | 16 | 11.765 | 2 | 1.152e-3 | 2 | 0 | 16 | 9.749e-4 | 6 |
| 1268 |  | min | -11.765 | 5 | -. 019 | 7 | -11.765 | 9 | -9.516e-4 | 10 | 0 | 1 | -1.133e-3 | 14 |
| 1269 | N632 | max | 11.765 | 14 | 096 | 16 | 11.765 | 2 | $1.15 \mathrm{e}-3$ | 2 | 0 | 16 | 9.812e-4 | 6 |
| 1270 |  | min | -11.765 | 5 | -. 016 | 7 | -11.765 | 9 | -9.689e-4 | 10 | 0 | 1 | -1.139e-3 | 14 |
| 1271 | N633 | max | 11.765 | 14 | 092 | 16 | 11.765 |  | 1.149e-3 | 2 | 0 | 16 | 9.894e-4 | 6 |
| 1272 |  | min | -11.765 | 5 | -. 013 | 7 | -11.765 | 9 | -9.894e-4 | 10 | 0 | 1 | -1.149e-3 | 14 |
| 1273 | N634 | ax | 11.765 | 14 | 088 | 16 | 11.765 | 2 | $1.148 \mathrm{e}-3$ | 2 | 0 | 16 | 9.997e-4 | 6 |
| 1274 |  | min | -11.765 | 5 | -. 01 | 7 | -11.765 | 9 | -1.012e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 1275 | N635 | max | 11.765 | 14 | . 083 | 16 | 11.765 | 2 | $1.148 \mathrm{e}-3$ | 2 | 0 | 16 | 1.012e-3 | 6 |
| 1276 |  | min | -11.765 | 5 | -. 007 | 7 | -11.765 | 9 | -1.036e-3 | 10 | 0 | 1 | -1.174e-3 | 14 |
| 1277 | N636 | max | 11.765 | 14 | 082 | 14 | 11.765 | 2 | $1.145 \mathrm{e}-3$ | 2 | 0 | 16 | 1.026e-3 | 6 |
| 1278 |  | min | -11.765 | 5 | -. 004 | 7 | -11.765 | 9 | -1.059e-3 | 10 | 0 | 1 | -1.188e-3 | 14 |
| 1279 | N637 | max | 11.765 | 14 | 082 | 14 | 11.765 | 2 | $1.14 \mathrm{e}-3$ | 2 | 0 | 16 | $1.039 \mathrm{e}-3$ | 6 |
| 1280 |  | min | -11.765 | 5 | -. 001 | 5 | -11.765 | 9 | -1.08e-3 | 10 | 0 | 1 | -1.201e-3 | 14 |
| 1281 | N638 | max | 11.765 | 14 | 082 | 14 | 11.765 | 2 | $1.13 \mathrm{e}-3$ | 2 | 0 | 16 | 1.049e-3 | 6 |
| 1282 |  | min | -11.765 | 5 | -. 002 | 5 | -11.765 | 9 | -1.099e-3 | 10 | 0 | 1 | -1.21e-3 | 14 |
| 1283 | N639 | max | 11.765 | 14 | 082 | 14 | 11.765 |  | 1.116e-3 | 2 | 0 | 16 | 1.052e-3 | 6 |
| 1284 |  | min | -11.765 | 5 | -. 002 | 5 | -11.765 | 9 | -1.116e-3 | 10 | 0 | 1 | -1.213e-3 | 14 |
| 1285 | N640 | max | 11.765 | 14 | . 082 | 14 | 11.765 | 2 | 1.099e-3 | 2 | 0 | 16 | $1.049 \mathrm{e}-3$ | 6 |
| 1286 |  | min | -11.765 | 5 | -. 002 | 5 | -11.765 | 9 | -1.13e-3 | 10 | 0 | 1 | -1.21e-3 | 14 |
| 1287 | N641 | max | 11.765 | 14 | . 082 | 14 | 11.765 | 2 | $1.08 \mathrm{e}-3$ | 2 | 0 | 16 | $1.039 \mathrm{e}-3$ | 6 |
| 1288 |  | min | -11.765 | 5 | -. 001 | 5 | -11.765 | 9 | $-1.14 \mathrm{e}-3$ | 10 | 0 | 1 | -1.201e-3 | 14 |
| 1289 | N642 | max | 11.765 | 14 | . 082 | 14 | 11.765 | 2 | $1.059 \mathrm{e}-3$ | 2 | 0 | 16 | $1.026 \mathrm{e}-3$ | , |
| 1290 |  | min | -11.765 | 5 | -. 004 | 3 | -11.765 | 9 | -1.145e-3 | 10 | 0 | 1 | -1.188e-3 | 14 |
| 1291 | N643 | max | 11.765 | 14 | 083 | 12 | 11.765 | 2 | 1.036e-3 | 2 | 0 | 16 | 1.012e-3 | 6 |
| 1292 |  | min | -11.765 | 5 | -. 007 | 3 | -11.765 |  | -1.148e-3 | 10 | 0 | 1 | -1.174e-3 | 14 |
| 1293 | N644 | max | 11.765 | 14 | 088 | 12 | 11.765 | 2 | 1.012e-3 | 2 | 0 | 16 | 9.997e-4 | 6 |
| 1294 |  | min | -11.765 | 5 | -. 01 | 3 | -11.765 | 9 | -1.148e-3 | 10 |  | 1 | -1.16e-3 | 14 |
| 1295 | N64 | max | 11.765 | 14 | 092 | 12 | 11.765 | 2 | 9.894e-4 | 2 | 0 | 16 | 9.894e-4 | 6 |
| 1296 |  | min | -11.765 | 5 | -. 013 | 3 | -11.765 | 9 | -1.149e-3 | 10 | 0 | 1 | -1.149e-3 | 14 |
| 1297 | N646 | max | 11.765 | 14 | . 096 | 12 | 11.765 | 2 | 9.689e-4 | 2 | 0 | 16 | 9.812e-4 | 6 |
| 1298 |  | min | -11.765 | 5 | -. 016 | 3 | -11.765 | 9 | -1.15e-3 | 10 | 0 | 1 | -1.139e-3 | 14 |
| 1299 | N647 | max | 11.765 | 14 | 101 | 12 | 11.765 | 2 | 9.516e-4 | 2 | 0 | 16 | 9.749e-4 | 6 |
| 1300 |  | min | -11.765 | 5 | -. 019 | 3 | -11.765 | 9 | -1.152e-3 | 10 |  | 1 | -1.133e-3 | 14 |
| 1301 | N648 | max | 11.765 | 14 | 106 | 12 | 11.765 | 2 | 9.381e-4 | 2 | 0 | 16 | 9.7e-4 | 6 |
| 1302 |  | min | -11.765 | 5 | -. 022 | 3 | -11.765 | 9 | -1.152e-3 | 10 | 0 | 1 | -1.128e-3 | 14 |
| 1303 | N649 | max | 11.765 | 14 | . 11 | 12 | 11.765 | 2 | 9.284e-4 | 2 | 0 | 16 | 9.664e-4 | 6 |
| 1304 |  | min | -11.765 | 5 | -. 025 | 3 | -11.765 | - | -1.152e-3 | 10 | 0 | 1 | -1.124e-3 | 14 |
| 1305 | N650 | max | 11.765 | 14 | 115 | 10 | 11.765 | 2 | 9.223e-4 | 2 |  | 16 | 9.639e-4 | 6 |
| 1306 |  | min | -11.765 | 5 | -. 027 | 3 | -11.765 | - | -1.152e-3 | 10 | 0 | 1 | -1.121e-3 | 14 |
| 1307 | N651 | max | 11.765 | 14 | . 122 | 10 | 11.765 | 2 | 9.192e-4 | 2 | O | 16 | 9.625e-4 | 6 |
| 1308 |  | min | -11.765 | 5 | -. 03 | , | -11.765 | 9 | -1.152e-3 | 10 | 0 | 1 | -1.119e-3 | 14 |
| 1309 | N652 | max | 11.765 | 14 | . 129 | 10 | 11.765 | 2 | 9.183e-4 | 2 | 0 | 16 | $9.626 \mathrm{e}-4$ | 6 |
| 1310 |  | min | -11.765 | 5 | -. 035 | 2 | -11.765 | 9 | -1.152e-3 | 10 | 0 | 1 | -1.119e-3 | 14 |
| 1311 | N653 | max | 11.765 | 14 | . 129 | 2 | 11.765 | 2 | $1.15 \mathrm{e}-3$ | 2 | 0 | 16 | $9.49 \mathrm{e}-4$ | 6 |
| 1312 |  | min | -11.765 | 5 | -. 036 | 8 | -11.765 | 9 | -9.169e-4 | 10 | 0 | 1 | -1.125e-3 | 14 |
| 1313 | N654 | max | 11.765 | 14 | 124 | 16 | 11.765 | 2 | $1.15 \mathrm{e}-3$ | 2 | 0 | 16 | 9.487e-4 | 6 |
| 1314 |  | min | -11.765 | 5 | -. 033 | 8 | -11.765 | 9 | -9.178e-4 | 10 | 0 | 1 | -1.125e-3 | 14 |

$\qquad$

## Envelope Joint Displacements (Continued)


$\qquad$
$\square$

## Envelope Joint Displacements (Continued)

| Joint |  |  | X lin] $^{11765}$ | LC Y 5 [in] |  | $\begin{gathered} \text { LC } \\ \hline 7 \end{gathered}$ | $\begin{gathered} \mathrm{Z} \text { [inl } \\ -11.765 \\ \hline \end{gathered}$ | LC X Rotation ... LC Y Rotation... LC Z Rotation [... LC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1372 |  | min |  | 5 | $-.022$ |  |  | 9 | -9.583e-4 | 10 | - | 1 | -1.148e-3 | 14 |
| 1373 | N687 | max | 11.765 | 14 | 101 | 16 | 11.765 | 2 | $1.133 \mathrm{e}-3$ | 2 | 0 | 16 | 9.516e-4 | 6 |
| 1374 |  | mi | -11.765 | 5 | -. 019 | 7 | -11.765 | 9 | -9.749e-4 | 10 | 0 | 1 | -1.152e-3 | 14 |
| 1375 | N688 | max | 11.765 | 14 | . 096 | 16 | 11.765 | 2 | $1.128 \mathrm{e}-3$ | 2 | 0 | 16 | 9.563e-4 | 6 |
| 1376 |  | min | -11.765 | 5 | -. 016 | 7 | -11.765 | 9 | -9.931e-4 | 10 | 0 | 1 | -1.156e-3 | 14 |
| 1377 | N689 | max | 11.765 | 14 | . 095 | 14 | 11.765 | 2 | $1.123 \mathrm{e}-3$ | 2 | 0 | 16 | 9.613e-4 | 6 |
| 1378 |  | min | -11.765 | 5 | -. 013 | 7 | -11.765 | 9 | -1.012e-3 | 10 | 0 | 1 | -1.162e-3 | 14 |
| 1379 | N690 | max | 11.765 | 14 | . 096 | 14 | 11.765 | 2 | 1.117e-3 | 2 | 0 | 16 | 9.664e-4 | 6 |
| 1380 |  | min | -11.765 | 5 | -. 011 | 5 | -11.765 | 9 | -1.031e-3 | 10 | 0 | 1 | -1.167e-3 | 14 |
| 1381 | N691 | max | 11.765 | 14 | 096 | 14 | 11.765 | 2 | $1.109 \mathrm{e}-3$ | 2 | 0 | 16 | 9.709e-4 | 6 |
| 1382 |  | min | -11.765 | 5 | -. 011 | 5 | -11.765 | 9 | -1.05e-3 | 10 | 0 | 1 | -1.173e-3 | 14 |
| 1383 | N692 | max | 11.765 | 14 | . 096 | 14 | 11.765 | 2 | 1.098e-3 | 2 | 0 | 16 | 9.739e-4 | 6 |
| 1384 |  | min | -11.765 | 5 | -. 012 | 5 | -11.765 | 9 | -1.067e-3 | 10 | 0 | 1 | -1.177e-3 | 14 |
| 1385 | N693 | max | 11.765 | 14 | 096 | 14 | 11.765 | 2 | 1.084e-3 | 2 | 0 | 16 | $9.75 \mathrm{e}-4$ | 6 |
| 1386 |  | min | -11.765 | 5 | -. 012 | 5 | -11.765 | 9 | -1.084e-3 | 10 | 0 | 1 | -1.179e-3 | 14 |
| 1387 | N694 | max | 11.765 | 14 | 096 | 14 | 11.765 | 2 | 1.067e-3 | 2 | 0 | 16 | 9.739e-4 | 6 |
| 1388 |  | min | -11.765 | 5 | -. 012 | 5 | -11.765 | 9 | -1.098e-3 | 10 | 0 | 1 | -1.177e-3 | 14 |
| 1389 | N695 | max | 11.765 | 14 | . 096 | 14 | 11.765 | 2 | $1.05 \mathrm{e}-3$ | 2 | 0 | 16 | 9.709e-4 | 6 |
| 1390 |  | min | -11.765 | 5 | -. 011 | 5 | -11.765 | 9 | -1.109e-3 | 10 | 0 | 1 | -1.173e-3 | 14 |
| 1391 | N696 | max | 11.765 | 14 | 096 | 14 | 11.765 | 2 | 1.031e-3 |  | 0 | 16 | 9.664e-4 | 6 |
| 1392 |  | min | -11.765 | 5 | -. 011 | 5 | -11.765 | 9 | -1.117e-3 | 10 | 0 | 1 | -1.167e-3 | 14 |
| 1393 | N697 | max | 11.765 | 14 | 095 | 14 | 11.765 | 2 | $1.012 \mathrm{e}-3$ | 2 | 0 | 16 | 9.613e-4 | 6 |
| 1394 |  | min | -11.765 | 5 | -. 013 | 3 | -11.765 | 9 | -1.123e-3 | 10 | 0 | 1 | -1.162e-3 | 14 |
| 1395 | N698 | max | 11.765 | 14 | 096 | 12 | 11.765 | 2 | $9.931 \mathrm{e}-4$ | 2 | 0 | 16 | 9.563e-4 | 6 |
| 1396 |  | min | -11.765 | 5 | -. 016 | 3 | -11.765 | 9 | -1.128e-3 | 10 | 0 | 1 | -1.156e-3 | 14 |
| 1397 | N699 | max | 11.765 | 14 | 101 | 12 | 11.765 | 2 | $9.749 \mathrm{e}-4$ | 2 | 0 | 16 | 9.516e-4 | 6 |
| 1398 |  | min | -11.765 | 5 | -. 019 | 3 | -11.765 | 9 | -1.133e-3 | 10 | 0 | 1 | -1.152e-3 | 14 |
| 1399 | N700 | max | 11.765 | 14 | 105 | 12 | 11.765 | 2 | 9.583e-4 | 2 | 0 | 16 | 9.475e-4 | 6 |
| 1400 |  | min | -11.765 | 5 | -. 022 | 3 | -11.765 | 9 | -1.138e-3 | 10 | 0 | 1 | -1.148e-3 | 14 |
| 1401 | N70 | max | 11.765 | 14 | 11 | 12 | 11.765 | 2 | 9.442e-4 | 2 | 0 | 16 | $9.442 \mathrm{e}-4$ | 6 |
| 1402 |  | min | -11.765 | 5 | -. 024 | 3 | -11.765 | 9 | -1.142e-3 | 10 | 0 | 1 | -1.142e-3 | 14 |
| 1403 | N702 | max | 11.765 | 14 | 115 | 12 | 11.765 | 2 | 9.329e-4 | 2 | 0 | 16 | 9.414e-4 | 6 |
| 1404 |  | min | -11.765 | 5 | -. 027 | 3 | -11.765 | 9 | -1.145e-3 | 10 | 0 | 1 | -1.138e-3 | 14 |
| 1405 | N703 | max | 11.765 | 14 | 12 | 12 | 11.765 | 2 | 9.247e-4 | 2 | 0 | 16 | 9.392e-4 | 6 |
| 1406 |  | min | -11.765 | 5 | -. 03 | 3 | -11.765 | 9 | -1.146e-3 | 10 | 0 | 1 | -1.134e-3 | 14 |
| 1407 | N704 | max | 11.765 | 14 | 124 | 12 | 11.765 | 2 | 9.193e-4 | 2 | 0 | 16 | 9.377e-4 | 6 |
| 1408 |  | min | -11.765 | 5 | -. 033 | 4 | -11.765 | 9 | -1.147e-3 | 10 | 0 | 1 | -1.132e-3 | 14 |
| 1409 | N705 | max | 11.765 | 14 | 129 | 12 | 11.765 | 2 | 9.165e-4 | 2 | 0 | 16 | 9.369e-4 | 6 |
| 1410 |  | min | -11.765 | 5 | -. 035 | 4 | -11.765 | 9 | -1.147e-3 | 10 | 0 | 1 | -1.13e-3 | 14 |
| 1411 | N706 | max | 11.765 | 14 | . 134 | 12 | 11.765 | 2 | 9.155e-4 | 2 | 0 | 16 | 9.373e-4 | 6 |
| 1412 |  | min | -11.765 | 5 | -. 038 | 4 | -11.765 | 9 | -1.147e-3 | 10 | 0 | 1 | -1.129e-3 | 14 |
| 1413 | N707 | max | 11.765 | 14 | 138 | 16 | 11.765 | 2 | $1.145 \mathrm{e}-3$ | 2 | 0 | 16 | 9.279e-4 | 6 |
| 1414 |  | min | -11.765 | 5 | -. 041 | 8 | -11.765 | 9 | -9.143e-4 | 10 | 0 | 1 | -1.133e-3 | 14 |
| 1415 | N708 | max | 11.765 | 14 | 134 | 16 | 11.765 | 2 | 1.145e-3 | 2 | 0 | 16 | 9.275e-4 | 6 |
| 1416 |  | min | -11.765 | 5 | -. 038 | 8 | -11.765 | 9 | -9.153e-4 | 10 | 0 | 1 | -1.134e-3 | 14 |
| 1417 | N709 | max | 11.765 | 14 | 129 | 16 | 11.765 | 2 | 1.144e-3 | 2 | 0 | 16 | 9.281e-4 | 6 |
| 1418 |  | min | -11.765 | 5 | -. 035 | 8 | -11.765 | 9 | -9.181e-4 | 10 | 0 | 1 | -1.135e-3 | 14 |
| 1419 | N710 | max | 11.765 | 14 | 124 | 16 | 11.765 | 2 | $1.143 \mathrm{e}-3$ | 2 | 0 | 16 | 9.292e-4 | 6 |
| 1420 |  | min | -11.765 | 5 | -. 032 | 8 | -11.765 | 9 | -9.231e-4 | 10 | 0 | 1 | -1.138e-3 | 14 |
| 1421 | N711 | max | 11.765 | 14 | . 12 | 16 | 11.765 | 2 | 1.141e-3 | 2 | 0 | 16 | 9.308e-4 | 6 |
| 1422 |  | min | -11.765 | 5 | -. 03 | 7 | -11.765 | 9 | -9.308e-4 | 10 | 0 | 1 | -1.141e-3 | 14 |
| 1423 | N712 | max | 11.765 | 14 | 115 | 16 | 11.765 | 2 | $1.138 \mathrm{e}-3$ | 2 | 0 | 16 | 9.329e-4 | 6 |
| 1424 |  | min | -11.765 | 5 | -. 027 | 7 | -11.765 | 9 | -9.414e-4 | 10 | 0 | 1 | -1.145e-3 | 14 |
| 1425 | N713 | max | 11.765 | 14 | 11 | 16 | 11.765 | 2 | $1.133 \mathrm{e}-3$ | 2 | 0 | 16 | 9.353e-4 | 6 |
| 1426 |  | min | -11.765 | 5 | -. 024 | 7 | -11.765 | 9 | -9.546e-4 | 10 | 0 | 1 | -1.149e-3 | 14 |
| 1427 | N714 | max | 11.765 | 14 | 106 | 16 | 11.765 | 2 | $1.128 \mathrm{e}-3$ | 2 | 0 | 16 | $9.381 \mathrm{e}-4$ | 6 |
| 1428 |  | min | -11.765 | 5 | -. 022 | 7 | -11.765 | 9 | -9.7e-4 | 10 | 0 | 1 | -1.152e-3 | 14 |

$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] |  |  |  |  | LC X Rotation ... LC Y Rotation ... LC Z Rotation [... LC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1429 | N715 | max | 11.765 | 14 | 102 | 14 | 11.765 | 2 | $1.122 \mathrm{e}-3$ | 2 | 0 | 16 | 9.411e-4 | 6 |
| 1430 |  | min | -11.765 | 5 | -. 019 | 7 | -11.765 | 9 | -9.871e-4 | 10 | 0 | 1 | -1.155e-3 | 14 |
| 1431 | N716 | max | 11.765 | 14 | 102 | 14 | 11.765 | 2 | $1.116 \mathrm{e}-3$ | 2 | 0 | 16 | $9.443 \mathrm{e}-4$ | 6 |
| 1432 |  | min | -11.765 | 5 | -. 016 | 7 | -11.765 | 9 | -1.005e-3 | 10 | 0 | 1 | -1.159e-3 | 14 |
| 1433 | N717 | max | 11.765 | 14 | 102 | 14 | 11.765 | 2 | $1.109 \mathrm{e}-3$ | 2 | 0 | 16 | $9.474 \mathrm{e}-4$ | 6 |
| 1434 |  | min | -11.765 | 5 | -. 016 | 5 | -11.765 | 9 | -1.023e-3 | 10 | 0 | 1 | -1.163e-3 | 14 |
| 1435 | N718 | max | 11.765 | 14 | 102 | 14 | 11.765 | 2 | $1.099 \mathrm{e}-3$ | 2 | 0 | 16 | 9.5e-4 | 6 |
| 1436 |  | min | -11.765 | 5 | -. 016 | 5 | -11.765 | 9 | -1.041e-3 | 10 | 0 | 1 | -1.166e-3 | 14 |
| 1437 | N719 | max | 11.765 | 14 | . 103 | 14 | 11.765 | 2 | $1.088 \mathrm{e}-3$ | 2 | 0 | 16 | 9.518e-4 | 6 |
| 1438 |  | min | -11.765 | 5 | -. 016 | 5 | -11.765 | 9 | -1.058e-3 | 10 | 0 | 1 | -1.169e-3 | 14 |
| 1439 | N720 | max | 11.765 | 14 | 103 | 14 | 11.765 | 2 | $1.074 \mathrm{e}-3$ | 2 | 0 | 16 | $9.524 \mathrm{e}-4$ | 6 |
| 1440 |  | min | -11.765 | 5 | -. 016 | 5 | -11.765 | 9 | -1.074e-3 | 10 | 0 | 1 | -1.17e-3 | 14 |
| 1441 | N721 | max | 11.765 | 14 | 103 | 14 | 11.765 | 2 | $1.058 \mathrm{e}-3$ | 2 | 0 | 16 | $9.518 \mathrm{e}-4$ | 6 |
| 1442 |  | min | -11.765 | 5 | -. 016 | 5 | -11.765 | 9 | -1.088e-3 | 10 | 0 | 1 | -1.169e-3 | 14 |
| 1443 | N722 | max | 11.765 | 14 | 102 | 14 | 11.765 | 2 | $1.041 \mathrm{e}-3$ | 2 | 0 | 16 | 9.5e-4 | 6 |
| 1444 |  | min | -11.765 | 5 | -. 016 | 5 | -11.765 | 9 | -1.099e-3 | 10 | 0 | 1 | -1.166e-3 | 14 |
| 1445 | N723 | max | 11.765 | 14 | 102 | 14 | 11.765 | 2 | $1.023 \mathrm{e}-3$ | 2 | 0 | 16 | 9.474e-4 | 6 |
| 1446 |  | min | -11.765 | 5 | -. 016 | 5 | -11.765 | 9 | -1.109e-3 | 10 | 0 | 1 | -1.163e-3 | 14 |
| 1447 | N724 | max | 11.765 | 14 | 102 | 14 | 11.765 | 2 | $1.005 \mathrm{e}-3$ | 2 | 0 | 16 | 9.443e-4 | 6 |
| 1448 |  | min | -11.765 | 5 | -. 016 | 3 | -11.765 | 9 | -1.116e-3 | 10 | 0 | 1 | -1.159e-3 | 14 |
| 1449 | N725 | max | 11.765 | 14 | 102 | 14 | 11.765 | 2 | 9.871e-4 | 2 | 0 | 16 | 9.411e-4 | 6 |
| 1450 |  | min | -11.765 | 5 | -. 019 | 3 | -11.765 | 9 | -1.122e-3 | 10 | 0 | 1 | -1.155e-3 | 14 |
| 1451 | N726 | max | 11.765 | 14 | 106 | 12 | 11.765 | 2 | 9.7e-4 | 2 |  | 16 | 9.381e-4 | 6 |
| 1452 |  | min | -11.765 | 5 | -. 022 | 3 | -11.765 | 9 | -1.128e-3 | 10 | 0 | 1 | -1.152e-3 | 14 |
| 1453 | N727 | max | 11.765 | 14 | 11 | 12 | 11.765 | 2 | 9.546e-4 | 2 | 0 | 16 | $9.353 \mathrm{e}-4$ | 6 |
| 1454 |  | min | -11.765 | 5 | -. 024 | 3 | -11.765 | 9 | -1.133e-3 | 10 | 0 | 1 | -1.149e-3 | 14 |
| 1455 | N728 | max | 11.765 | 14 | 115 | 12 | 11.765 | 2 | 9.414e-4 | 2 | 0 | 16 | 9.329e-4 | 6 |
| 1456 |  | min | -11.765 | 5 | -. 027 | 3 | -11.765 | 9 | -1.138e-3 | 10 | 0 | 1 | -1.145e-3 | 14 |
| 1457 | N729 | max | 11.765 | 14 | 12 | 12 | 11.765 | 2 | $9.308 \mathrm{e}-4$ | 2 | 0 | 16 | 9.308e-4 | 6 |
| 1458 |  | min | -11.765 | 5 | -. 03 | 3 | -11.765 | 9 | -1.141e-3 | 10 | 0 | 1 | -1.141e-3 | 14 |
| 1459 | N730 | max | 11.765 | 14 | 124 | 12 | 11.765 | 2 | 9.231e-4 | 2 | 0 | 16 | 9.292e-4 | 6 |
| 1460 |  | min | -11.765 | 5 | -. 032 | 4 | -11.765 | 9 | -1.143e-3 | 10 | 0 | 1 | -1.138e-3 | 14 |
| 1461 | N731 | max | 11.765 | 14 | 129 | 12 | 11.765 | 2 | 9.181e-4 | 2 | 0 | 16 | 9.281e-4 | 6 |
| 1462 |  | min | -11.765 | 5 | -. 035 | 4 | -11.765 | 9 | -1.144e-3 | 10 | 0 | 1 | -1.135e-3 | 14 |
| 1463 | N732 | max | 11.765 | 14 | 134 | 12 | 11.765 | 2 | 9.153e-4 | 2 | 0 | 16 | 9.275e-4 | 6 |
| 1464 |  | min | -11.765 | 5 | -. 038 | 4 | -11.765 | 9 | -1.145e-3 | 10 | 0 | 1 | -1.134e-3 | 14 |
| 1465 | N733 | max | 11.765 | 14 | 138 | 12 | 11.765 | 2 | 9.143e-4 | 2 | 0 | 16 | 9.279e-4 | 6 |
| 1466 |  | min | -11.765 | 5 | -. 041 | 4 | -11.765 | 9 | -1.145e-3 | 10 | 0 | 1 | -1.133e-3 | 14 |
| 1467 | N734 | max | 11.765 | 14 | 143 | 16 | 11.765 | 2 | $1.143 \mathrm{e}-3$ | 2 | 0 | 16 | $9.209 \mathrm{e}-4$ | 6 |
| 1468 |  | min | -11.765 | 5 | -. 044 | 8 | -11.765 | 9 | -9.133e-4 | 10 | 0 | 1 | -1.136e-3 | 14 |
| 1469 | N735 | max | 11.765 | 14 | . 138 | 16 | 11.765 | 2 | $1.143 \mathrm{e}-3$ | 2 | 0 | 16 | 9.205e-4 | 6 |
| 1470 |  | min | -11.765 | 5 | -. 041 | 8 | -11.765 | 9 | -9.144e-4 | 10 | 0 | 1 | -1.136e-3 | 14 |
| 1471 | N736 | max | 11.765 | 14 | . 134 | 16 | 11.765 | 2 | 1.142e-3 | 2 | 0 | 16 | 9.209e-4 | 6 |
| 1472 |  | min | -11.765 | 5 | -. 038 | 8 | -11.765 | 9 | -9.17e-4 | 10 | 0 | 1 | -1.138e-3 | 14 |
| 1473 | N737 | max | 11.765 | 14 | 129 | 16 | 11.765 | 2 | 1.14e-3 | 2 | 0 | 16 | 9.218e-4 | 6 |
| 1474 |  | min | -11.765 | 5 | -. 035 | 8 | -11.765 | 9 | -9.218e-4 | 10 | 0 | 1 | -1.14e-3 | 14 |
| 1475 | N738 | max | 11.765 | 14 | . 124 | 16 | 11.765 | 2 | $1.138 \mathrm{e}-3$ | 2 | 0 | 16 | 9.231e-4 | 6 |
| 1476 |  | min | -11.765 | 5 | -. 032 | 8 | -11.765 | 9 | -9.292e-4 | 10 | 0 | 16 | -1.143e-3 | 14 |
| 1477 | N739 | max | 11.765 | 14 | 12 | 16 | 11.765 | 2 | $1.134 \mathrm{e}-3$ | 2 | 0 | 16 | 9.247e-4 | 6 |
| 1478 |  | min | -11.765 | 5 | -. 03 | 7 | -11.765 | 9 | -9.392e-4 | 10 | O | 1 | -1.146e-3 | 14 |
| 1479 | N740 | max | 11.765 | 14 | . 115 | 16 | 11.765 | 2 | $1.13 \mathrm{e}-3$ | 2 | 0 | 16 | 9.264e-4 | 6 |
| 1480 |  | min | -11.765 | 5 | -. 027 | 7 | -11.765 | 9 | -9.518e-4 | 10 | 0 | 1 | -1.149e-3 | 14 |
| 1481 | N741 | max | 11.765 | 14 | 11 | 16 | 11.765 | 2 | $1.124 \mathrm{e}-3$ | 2 | 0 | 16 | $9.284 \mathrm{e}-4$ | 6 |
| 1482 |  | min | -11.765 | 5 | -. 025 | 7 | -11.765 | 9 | -9.664e-4 | 10 | 0 | 1 | -1.152e-3 | 14 |
| 1483 | N742 | max | 11.765 | 14 | 109 | 14 | 11.765 | 2 | $1.118 \mathrm{e}-3$ | 2 | 0 | 16 | 9.305e-4 | 6 |
| 1484 |  | min | -11.765 | 5 | -. 022 | 7 | -11.765 | 9 | -9.826e-4 | 10 | 0 | 1 | -1.155e-3 | 14 |
| 1485 | N743 | max | 11.765 | 14 | 109 | 14 | 11.765 | 2 | 1.111e-3 | 2 | 0 | 16 | 9.326e-4 | 6 |

$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | ${ }^{11}$ [in] | LC | $\begin{array}{r} Y \text { [in] } \\ -.021 \\ \hline \end{array}$ | LC | $\begin{gathered} z[\operatorname{lin}] \\ \hline-11.765 \\ \hline \end{gathered}$ | LC X Rotation ... LC Y Rotation ... LC Z Rotation I...LC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1486 |  | min |  |  |  |  |  | 9 | -9.998e-4 | 10 | 0 | 1 | -1.157e-3 | 14 |
| 1487 | N744 | max | 11.765 | 14 | 109 | 14 | 11.765 | 2 | 1.102e-3 | 2 | 0 | 16 | 9.345e-4 | 6 |
| 1488 |  | min | -11.765 | 5 | -. 021 | 5 | -11.765 | 9 | -1.017e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 1489 | N745 | max | 11.765 | 14 | 109 | 14 | 11.765 | 2 | $1.092 \mathrm{e}-3$ | 2 | 0 | 16 | 9.361e-4 | 6 |
| 1490 |  | min | -11.765 | 5 | -. 021 | 5 | -11.765 | - | -1.034e-3 | 10 | 0 | 1 | -1.162e-3 | 14 |
| 1491 | N746 | max | 11.765 | 14 | 109 | 14 | 11.765 | 2 | $1.08 \mathrm{e}-3$ | 2 | 0 | 16 | 9.371 e-4 | 6 |
| 1492 |  | min | -11.765 | 5 | -. 021 | 5 | -11.765 | 9 | -1.051e-3 | 10 | 0 | 1 | -1.164e-3 | 14 |
| 1493 | N747 | max | 11.765 | 14 | . 109 | 14 | 11.765 | 2 | 1.066e-3 | 2 | 0 | 16 | 9.375e-4 | 6 |
| 1494 |  | min | -11.765 | 5 | -. 021 | 5 | -11.765 | - | -1.066e-3 | 10 | 0 | 1 | -1.164e-3 | 14 |
| 1495 | N748 | max | 11.765 | 14 | 109 | 14 | 11.765 | 2 | 1.051e-3 | 2 | 0 | 16 | 9.371e-4 | 6 |
| 1496 |  | min | -11.765 | 5 | -. 021 | 5 | -11.765 | 9 | -1.08e-3 | 10 | 0 | 1 | -1.164e-3 | 14 |
| 1497 | N749 | max | 11.765 | 14 | 109 | 14 | 11.765 | 2 | 1.034e-3 | 2 | 0 | 16 | 9.361e-4 | 6 |
| 1498 |  | min | -11.765 | 5 | -. 021 | 5 | -11.765 | 9 | -1.092e-3 | 10 | 0 | 1 | -1.162e-3 | 14 |
| 1499 | N750 | max | 11.765 | 14 | 109 | 14 | 11.765 | 2 | 1.017e-3 | 2 | 0 | 16 | $9.345 \mathrm{e}-4$ | 6 |
| 1500 |  | min | -11.765 | 5 | -. 021 | 5 | -11.765 | 9 | -1.102e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 1501 | N751 | max | 11.765 | 14 | 109 | 14 | 11.765 | 2 | 9.998e-4 | 2 | 0 | 16 | 9.326e-4 | 6 |
| 1502 |  | min | -11.765 | 5 | -. 021 | 5 | -11.765 |  | -1.111e-3 | 10 | 0 | 1 | -1.157e-3 | 14 |
| 1503 | N752 | max | 11.765 | 14 | 109 | 14 | 11.765 | 2 | 9.826e-4 | 2 | 0 | 16 | 9.305e-4 | 6 |
| 1504 |  | min | -11.765 | 5 | -. 022 | 3 | -11.765 | 9 | -1.118e-3 | 10 | 0 | 1 | -1.155e-3 | 14 |
| 1505 | N753 | max | 11.765 | 14 | 11 | 12 | 11.765 | 2 | 9.664e-4 | 2 | 0 | 16 | 9.284e-4 | 6 |
| 1506 |  | min | -11.765 | 5 | -. 025 | , | -11.765 | 9 | -1.124e-3 | 10 | 0 | 1 | -1.152e-3 | 14 |
| 1507 | N754 | max | 11.765 | 14 | 115 | 12 | 11.765 | 2 | 9.518e-4 | 2 | 0 | 16 | 9.264e-4 | - |
| 1508 |  | in | -11.765 | 5 | -. 027 | 1 | -11.765 | 9 | -1.13e-3 | 10 | 0 | 1 | -1.149e-3 | 14 |
| 1509 | N755 | max | 11.765 | 14 | 12 | 12 | 11.765 | 2 | 9.392e-4 | 2 | 0 | 16 | 9.247e-4 | 6 |
| 1510 |  | min | -11.765 | 5 | -. 03 | 3 | -11.765 | 9 | -1.134e-3 | 10 | 0 | 1 | -1.146e-3 | 14 |
| 1511 | N756 | max | 11.765 | 14 | 124 | 12 | 11.765 | 2 | 9.292e-4 | 2 | 0 | 16 | 9.231e-4 | 6 |
| 1512 |  | min | -11.765 | 5 | -. 032 | 4 | -11.765 | 9 | -1.138e-3 | 10 | 0 | 1 | -1.143e-3 | 14 |
| 1513 | N757 | max | 11.765 | 14 | . 129 | 12 | 11.765 | 2 | 9.218e-4 | 2 | 0 | 16 | $9.218 \mathrm{e}-4$ | 6 |
| 1514 |  | min | -11.765 | 5 | -. 035 | 4 | -11.765 | 9 | -1.14e-3 | 10 | 0 | 1 | -1.14e-3 | 14 |
| 1515 | N75 | max | 11.765 | 14 | 134 | 12 | 11.765 | 2 | 9.17e-4 | 2 | 0 | 16 | 9.209e-4 | 6 |
| 1516 |  | min | -11.765 | 5 | -. 038 | 4 | -11.765 | 9 | -1.142e-3 | 10 | 0 | 1 | -1.138e-3 | 14 |
| 1517 | N759 | max | 11.765 | 14 | 138 | 12 | 11.765 | 2 | 9.144e-4 | 2 | 0 | 16 | $9.205 \mathrm{e}-4$ | 14 |
| 1518 |  | min | -11.765 | 5 | -. 041 | 4 | -11.765 | - | -1.143e-3 | 10 | 0 | 1 | -1.136e-3 | 14 |
| 1519 | N760 | max | 11.765 | 14 | 143 | 12 | 11.765 | 2 | 9.133e-4 | 2 | 0 | 16 | 9.209e-4 | - |
| 1520 |  | min | -11.765 | 5 | -. 044 | 4 | -11.765 |  | -1.143e-3 | 10 | 0 | 1 | -1.136e-3 | 14 |
| 1521 | N761 | ax | 11.765 | 14 | 148 | 16 | 11.765 | 2 | 1.141e-3 | 2 | 0 | 16 | 9.162e-4 | 6 |
| 1522 |  | min | -11.765 | 5 | -. 046 | 8 | -11.765 | 9 | -9.127e-4 | 10 | 0 | 1 | -1.138e-3 | 14 |
| 1523 | N762 | max | 11.765 | 14 | 143 | 16 | 11.765 | 2 | 1.141e-3 | 2 | 0 | 16 | $9.16 \mathrm{e}-4$ | 6 |
| 1524 |  | min | -11.765 | 5 | -. 044 | 8 | -11.765 | 9 | -9.137e-4 | 10 | 0 | 1 | -1.138e-3 | 14 |
| 1525 | N763 | max | 11.765 | 14 | . 138 | 16 | 11.765 | 2 | 1.14e-3 | 2 | 0 | 16 | 9.163e-4 | 6 |
| 1526 |  | min | -11.765 | 5 | -. 041 | 8 | -11.765 | 9 | -9.163e-4 | 10 | 0 | 1 | -1.14e-3 | 14 |
| 1527 | N764 | max | 11.765 | 14 | 134 | 16 | 11.765 | 2 | $1.138 \mathrm{e}-3$ | 2 | 0 | 16 | 9.17e-4 | 6 |
| 1528 |  | min | -11.765 | 5 | -. 038 | 8 | -11.765 | 9 | -9.209e-4 | 10 | 0 | 1 | -1.142e-3 | 14 |
| 1529 | N765 | max | 11.765 | 14 | 129 | 16 | 11.765 | 2 | $1.135 \mathrm{e}-3$ | 2 | 0 | 16 | 9.181e-4 | 6 |
| 1530 |  | min | -11.765 | 5 | -. 035 | 8 | -11.765 | 9 | -9.281e-4 | 10 | 0 | 1 | -1.144e-3 | 14 |
| 1531 | N766 | max | 11.765 | 14 | 124 | 16 | 11.765 | 2 | 1.132e-3 | 2 | 0 | 16 | 9.193e-4 | - |
| 1532 |  | min | -11.765 | 5 | -. 033 | 8 | -11.765 | 9 | -9.377e-4 | 10 | 0 | 1 | -1.147e-3 | 14 |
| 1533 | N767 | max | 11.765 | 14 | . 12 | 16 | 11.765 | 2 | 1.127e-3 | 2 | 0 | 16 | 9.208e-4 | 6 |
| 1534 |  | min | -11.765 | 5 | -. 03 | 7 | -11.765 | - | -9.498e-4 | 10 | 0 | 1 | -1.15e-3 | 14 |
| 1535 | N768 | max | 11.765 | 14 | . 115 | 14 | 11.765 | 2 | $1.121 \mathrm{e}-3$ | 2 | 0 | 16 | 9.223e-4 | 6 |
| 1536 |  | min | -11.765 | 5 | -. 027 | 7 | -11.765 | 9 | -9.639e-4 | 10 | 0 | 1 | -1.152e-3 | 14 |
| 1537 | N769 | max | 11.765 | 14 | . 116 | 14 | 11.765 | 2 | 1.114e-3 | 2 | 0 | 16 | $9.238 \mathrm{e}-4$ | 6 |
| 1538 |  | min | -11.765 | 5 | -. 025 | 5 | -11.765 | 9 | -9.795e-4 | 10 | 0 | 1 | -1.154e-3 | 14 |
| 1539 | N770 | max | 11.765 | 14 | 116 | 14 | 11.765 | 2 | 1.107e-3 | 2 | 0 | 16 | 9.253e-4 | 6 |
| 1540 |  | min | -11.765 | 5 | -. 026 | 5 | -11.765 | 9 | -9.961e-4 | 10 | 0 | 1 | -1.156e-3 | 14 |
| 1541 | N771 | max | 11.765 | 14 | 116 | 14 | 11.765 | 2 | 1.098e-3 | 2 | 0 | 16 | 9.267e-4 | - |
| 1542 |  | min | -11.765 | 5 | -. 026 | 5 | -11.765 | 9 | -1.013e-3 | 10 | 0 | 1 | -1.158e-3 | 14 |

$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | x [in] |  |  | z [in] |  | LC X Rotation..$\begin{array}{\|l\|l\|} \hline 2 & 1.087 e-3 \\ \hline \end{array}$ |  | LC | $\begin{gathered} \text { Rotation } \\ 0 \end{gathered}$ | LC Z Rotation [... |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1543 | N772 | max | 11.765 | 14 | 116 | 14 | 11.765 |  |  | $16$ |  | $9.278 \mathrm{e}-4$ | 6 |
| 1544 |  | min | -11.765 | 5 | -. 026 | 5 | -11.765 | 9 | -1.03e-3 |  | 10 | 0 | 1 | -1.16e-3 | 14 |
| 1545 | N773 | x | 11.765 | 14 | 116 | 14 | 11.765 | 2 | $1.075 \mathrm{e}-3$ | 2 | 0 | 16 | 9.285e-4 | 6 |
| 1546 |  | min | -11.765 | 5 | -. 026 | 5 | -11.765 | 9 | -1.046e-3 | 10 | 0 | 1 | -1.161e-3 | 14 |
| 1547 | N774 | max | 11.765 | 14 | 116 | 14 | 11.765 | 2 | 1.061e-3 | 2 | 0 | 16 | 9.287e-4 | 6 |
| 1548 |  | min | -11.765 | 5 | -. 026 | 5 | -11.765 | 9 | -1.061e-3 | 10 | 0 | 1 | -1.161e-3 | 14 |
| 1549 | N775 | max | 11.765 | 14 | 116 | 14 | 11.765 | 2 | $1.046 \mathrm{e}-3$ | 2 | 0 | 16 | 9.285e-4 | 6 |
| 1550 |  | min | -11.765 | 5 | -. 026 | 5 | -11.765 | 9 | -1.075e-3 | 10 | 0 | 1 | -1.161e-3 | 14 |
| 1551 | N776 | max | 11.765 | 14 | 116 | 14 | 11.765 | 2 | $1.03 \mathrm{e}-3$ | 2 | 0 | 16 | 9.278e-4 | 6 |
| 1552 |  | min | -11.765 | 5 | -. 026 | 5 | -11.765 | 9 | -1.087e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 1553 | N777 | max | 11.765 | 14 | 116 | 14 | 11.765 | 2 | $1.013 \mathrm{e}-3$ | 2 | 0 | 16 | 9.267e-4 | 6 |
| 1554 |  | min | -11.765 | 5 | -. 026 | 5 | -11.765 | 9 | -1.098e-3 | 10 | 0 | 1 | -1.158e-3 | 14 |
| 1555 | N778 | max | 11.765 | 14 | 116 | 14 | 11.765 | 2 | $9.961 \mathrm{e}-4$ | 2 | 0 | 16 | 9.253e-4 | 6 |
| 1556 |  | min | -11.765 | 5 | -. 026 | 5 | -11.765 | 9 | -1.107e-3 | 10 | 0 | 1 | -1.156e-3 | 14 |
| 1557 | N779 | max | 11.765 | 14 | 116 | 14 | 11.765 | 2 | 9.795e-4 | 2 | 0 | 16 | 9.238e-4 | 6 |
| 1558 |  | min | -11.765 | 5 | -. 025 | 5 | -11.765 | 9 | -1.114e-3 | 10 | 0 | 1 | -1.154e-3 | 14 |
| 1559 | N780 | max | 11.765 | 14 | 115 | 14 | 11.765 | 2 | 9.639e-4 | 2 | 0 | 16 | 9.223e-4 | 6 |
| 1560 |  | min | -11.765 | 5 | -. 027 | 3 | -11.765 | 9 | -1.121e-3 | 10 | 0 | 1 | -1.152e-3 | 14 |
| 1561 | N781 | max | 11.765 | 14 | 12 | 12 | 11.765 | 2 | 9.498e-4 | 2 | 0 | 16 | 9.208e-4 | 6 |
| 1562 |  | min | -11.765 | 5 | -. 03 | 3 | -11.765 | 9 | -1.127e-3 | 10 | 0 | 1 | -1.15e-3 | 14 |
| 1563 | N782 | max | 11.765 | 14 | 124 | 12 | 11.765 | 2 | 9.377e-4 | , | 0 | 16 | 9.193e-4 | 6 |
| 1564 |  | min | -11.765 | 5 | -. 033 | 4 | -11.765 | 9 | -1.132e-3 | 10 | 0 | 1 | -1.147e-3 | 14 |
| 1565 | N783 | max | 11.765 | 14 | 129 | 12 | 11.765 | 2 | 9.281e-4 | 2 | 0 | 16 | 9.181e-4 | 6 |
| 1566 |  | min | -11.765 | 5 | -. 035 | 4 | -11.765 | 9 | -1.135e-3 | 10 | 0 | 1 | -1.144e-3 | 14 |
| 1567 | N784 | max | 11.765 | 14 | 134 | 12 | 11.765 | 2 | 9.209e-4 | 2 | 0 | 16 | 9.17e-4 | 6 |
| 1568 |  | min | -11.765 | 5 | -. 038 | 4 | -11.765 | 9 | -1.138e-3 | 10 | 0 | 1 | -1.142e-3 | 14 |
| 1569 | N785 | max | 11.765 | 14 | 138 | 12 | 11.765 | 2 | 9.163e-4 | 2 | 0 | 16 | 9.163e-4 | 6 |
| 1570 |  | min | -11.765 | 5 | -. 041 | 4 | -11.765 | 9 | -1.14e-3 | 10 | 0 | 1 | -1.14e-3 | 14 |
| 1571 | N786 | max | 11.765 | 14 | 143 | 12 | 11.765 | 2 | 9.137e-4 | 2 | 0 | 16 | 9.16e-4 | 6 |
| 1572 |  | min | -11.765 | 5 | -. 044 |  | -11.765 | 9 | -1.141e-3 | 10 | 0 | 1 | -1.138e-3 | 14 |
| 1573 | N787 | max | 11.765 | 14 | 148 | 12 | 11.765 | 2 | 9.127e-4 | 2 | 0 | 16 | 9.162e-4 | 6 |
| 1574 |  | min | -11.765 | 5 | -. 046 | 4 | -11.765 | 9 | -1.141e-3 | 10 | 0 | 1 | -1.138e-3 | 14 |
| 1575 | N788 | max | 11.765 | 14 | 152 | 16 | 11.765 | 2 | 1.14e-3 | 2 | 0 | 16 | 9.136e-4 | 6 |
| 1576 |  | min | -11.765 | 5 | -. 049 | 8 | -11.765 | 9 | -9.124e-4 | 10 | 0 | 1 | $-1.139 \mathrm{e}-3$ | 14 |
| 1577 | N789 | max | 11.765 | 14 | 148 | 16 | 11.765 | 2 | 1.139e-3 | 2 | 0 | 16 | 9.134e-4 | 6 |
| 1578 |  | min | -11.765 | 5 | -. 046 | 8 | -11.765 | 9 | -9.134e-4 | 10 | 0 | 1 | $-1.139 \mathrm{e}-3$ | 14 |
| 1579 | N79 | max | 11.765 | 14 | 143 | 16 | 11.765 | 2 | $1.138 \mathrm{e}-3$ | 2 | 0 | 16 | 9.137e-4 | 6 |
| 1580 |  | min | -11.765 | 5 | -. 044 | 8 | -11.765 | 9 | -9.16e-4 | 10 | 0 | 1 | -1.141e-3 | 14 |
| 1581 | N791 | max | 11.765 | 14 | . 138 | 16 | 11.765 | 2 | $1.136 \mathrm{e}-3$ | 2 | 0 | 16 | 9.144e-4 | 6 |
| 1582 |  | min | -11.765 | 5 | -. 041 | 8 | -11.765 | 9 | -9.205e-4 | 10 | 0 | 1 | -1.143e-3 | 14 |
| 1583 | N792 | max | 11.765 | 14 | 134 | 16 | 11.765 | 2 | $1.134 \mathrm{e}-3$ | 2 | 0 | 16 | 9.153e-4 | 6 |
| 1584 |  | min | -11.765 | 5 | -. 038 | 8 | -11.765 | 9 | -9.275e-4 | 10 | 0 | 1 | -1.145e-3 | 14 |
| 1585 | N793 | max | 11.765 | 14 | . 129 | 16 | 11.765 | 2 | 1.13e-3 | 2 | 0 | 16 | 9.165e-4 | 6 |
| 1586 |  | min | -11.765 | 5 | -. 035 | 8 | -11.765 | 9 | -9.369e-4 | 10 | 0 | 1 | -1.147e-3 | 14 |
| 1587 | N794 | max | 11.765 | 14 | . 124 | 16 | 11.765 | 2 | $1.125 \mathrm{e}-3$ | 2 | 0 | 16 | 9.178e-4 | 6 |
| 1588 |  | min | -11.765 | 5 | -. 033 | 8 | -11.765 | 9 | -9.487e-4 | 10 | 0 | 1 | -1.15e-3 | 14 |
| 1589 | N795 | max | 11.765 | 14 | 122 | 14 | 11.765 | 2 | 1.119e-3 | , | 0 | 16 | 9.192e-4 | , |
| 1590 |  | min | -11.765 | 5 | -. 03 | 7 | -11.765 | 9 | -9.625e-4 | 10 | 0 | 1 | -1.152e-3 | 14 |
| 1591 | N796 | max | 11.765 | 14 | 123 | 14 | 11.765 | 2 | $1.112 \mathrm{e}-3$ | 2 | 0 | 16 | 9.205e-4 | 6 |
| 1592 |  | min | -11.765 | 5 | -. 03 | 5 | -11.765 | 9 | -9.778e-4 | 10 | 0 | 1 | -1.154e-3 | 14 |
| 1593 | N797 | max | 11.765 | 14 | 123 | 14 | 11.765 | 2 | $1.104 \mathrm{e}-3$ | 2 | 0 | 16 | 9.218e-4 | , |
| 1594 |  | min | -11.765 | 5 | -. 031 | 5 | -11.765 | 9 | -9.94e-4 | 10 | 0 | 1 | -1.156e-3 | 14 |
| 1595 | N798 | max | 11.765 | 14 | 123 | 14 | 11.765 | 2 | 1.095e-3 | 2 | 0 | 16 | 9.229e-4 | 6 |
| 1596 |  | min | -11.765 | 5 | -. 031 | 5 | -11.765 | 9 | -1.011e-3 | 10 | 0 | 1 | -1.158e-3 | 14 |
| 1597 | N799 | max | 11.765 | 14 | 123 | 14 | 11.765 | 2 | $1.084 \mathrm{e}-3$ | 2 | 0 | 16 | 9.238e-4 | 6 |
| 1598 |  | min | -11.765 | 5 | -. 031 | 5 | -11.765 | 9 | -1.027e-3 | 10 | 0 | 1 | -1.159e-3 | 14 |
| 1599 | N800 | max | 11.765 | 14 | 123 | 14 | 11.765 | 2 | $1.072 \mathrm{e}-3$ | 2 | 0 | 16 | 9.244e-4 | 6 |

$\qquad$

## Envelope Joint Displacements (Continued)

| Joint |  |  | X [in] | $\begin{aligned} & \text { LC } \\ & 5 \end{aligned}$ | $\frac{\mathrm{Y} \text { [in] }}{-.031}$ | LC | $\begin{gathered} \mathrm{Z}[\mathrm{in}] \\ \hline-11.765 \\ \hline \end{gathered}$ | LC X Rotation ... LC Y Rotation ... LC Z Rotation I... LC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1600 |  | min | -11.765 |  |  |  |  | , | -1.043e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 1601 | N801 | max | 11.765 | 14 | 123 | 14 | 11.765 | 2 | $1.058 \mathrm{e}-3$ | 2 | 0 | 16 | 9.246e-4 | 6 |
| 1602 |  | min | -11.765 | 5 | -. 031 | 5 | -11.765 | 9 | -1.058e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 1603 | N802 | max | 11.765 | 14 | 123 | 14 | 11.765 | 2 | $1.043 \mathrm{e}-3$ | 2 | 0 | 16 | 9.244e-4 | 6 |
| 1604 |  | min | -11.765 | 5 | -. 031 | 5 | -11.765 | 9 | -1.072e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 1605 | N803 | max | 11.765 | 14 | 123 | 14 | 11.765 | 2 | 1.027e-3 | 2 | 0 | 16 | $9.238 \mathrm{e}-4$ | 6 |
| 1606 |  | min | -11.765 | 5 | -. 031 | 5 | -11.765 | 9 | -1.084e-3 | 10 | 0 | 1 | -1.159e-3 | 14 |
| 1607 | N804 | max | 11.765 | 14 | 123 | 14 | 11.765 | 2 | 1.011e-3 | 2 | 0 | 16 | 9.229e-4 | 6 |
| 1608 |  | min | -11.765 | 5 | -. 031 | 5 | -11.765 | 9 | -1.095e-3 | 10 | 0 | 1 | -1.158e-3 | 14 |
| 1609 | N805 | max | 11.765 | 14 | 123 | 14 | 11.765 | 2 | 9.94e-4 | 2 | 0 | 16 | 9.218e-4 | 6 |
| 1610 |  | min | -11.765 | 5 | -. 031 | 5 | -11.765 | 9 | -1.104e-3 | 10 | 0 | 1 | -1.156e-3 | 14 |
| 1611 | N806 | max | 11.765 | 14 | . 123 | 14 | 11.765 | 2 | $9.778 \mathrm{e}-4$ | 2 | 0 | 16 | 9.205e-4 | 6 |
| 1612 |  | min | -11.765 | 5 | -. 03 | 5 | -11.765 | 9 | -1.112e-3 | 10 | 0 | 1 | -1.154e-3 | 14 |
| 1613 | N807 | max | 11.765 | 14 | 122 | 14 | 11.765 | 2 | $9.625 \mathrm{e}-4$ | 2 | 0 | 16 | 9.192e-4 | 6 |
| 1614 |  | min | -11.765 | 5 | -. 03 | 3 | -11.765 | 9 | -1.119e-3 | 10 | 0 | 1 | -1.152e-3 | 14 |
| 1615 | N808 | max | 11.765 | 14 | 124 | 12 | 11.765 | 2 | 9.487e-4 | 2 | 0 | 16 | 9.178e-4 | 6 |
| 1616 |  | min | -11.765 | 5 | -. 033 | 4 | -11.765 | 9 | -1.125e-3 | 10 | 0 | 1 | -1.15e-3 | 14 |
| 1617 | N809 | max | 11.765 | 14 | 129 | 12 | 11.765 | 2 | $9.369 \mathrm{e}-4$ | 2 | , | 16 | $9.165 \mathrm{e}-4$ | 6 |
| 1618 |  | min | -11.765 | 5 | -. 035 | 4 | -11.765 | 9 | -1.13e-3 | 10 | 0 | 1 | -1.147e-3 | 14 |
| 1619 | N810 | max | 11.765 | 14 | 134 | 12 | 11.765 | 2 | 9.275e-4 | 2 | 0 | 16 | 9.153e-4 | 6 |
| 1620 |  | min | -11.765 | 5 | -. 038 | 4 | -11.765 | 9 | -1.134e-3 | 10 | 0 | 1 | -1.145e-3 | 14 |
| 1621 | N811 | max | 11.765 | 14 | 138 | 12 | 11.765 | 2 | 9.205e-4 | 2 | 0 | 16 | 9.144e-4 | 6 |
| 1622 |  | min | -11.765 | 5 | -. 041 | 4 | -11.765 | 9 | -1.136e-3 | 10 | 0 | 1 | -1.143e-3 | 14 |
| 1623 | N812 | max | 11.765 | 14 | 143 | 12 | 11.765 | 2 | $9.16 \mathrm{e}-4$ | 2 | 0 | 16 | 9.137e-4 | 6 |
| 1624 |  | min | -11.765 | 5 | -. 044 | 4 | -11.765 | 9 | -1.138e-3 | 10 | 0 | 1 | -1.141e-3 | 14 |
| 1625 | N813 | max | 11.765 | 14 | 148 | 12 | 11.765 | 2 | 9.134e-4 | 2 | 0 | 16 | 9.134e-4 | 6 |
| 1626 |  | min | -11.765 | 5 | -. 046 | 4 | -11.765 | 9 | -1.139e-3 | 10 |  | 1 | -1.139e-3 | 14 |
| 1627 | N814 | max | 11.765 | 14 | 152 | 12 | 11.765 | 2 | 9.124e-4 | 2 | 0 | 16 | 9.136e-4 | 6 |
| 1628 |  | min | -11.765 | 5 | -. 049 | 4 | -11.765 | 9 | -1.14e-3 | 10 | 0 | 1 | -1.139e-3 | 14 |
| 1629 | N815 | max | 11.765 | 14 | 157 | 16 | 11.765 | 2 | $1.139 \mathrm{e}-3$ | 2 | 0 | 16 | 9.126e-4 | 6 |
| 1630 |  | min | -11.765 | 5 | -. 052 | 8 | -11.765 | 9 | -9.126e-4 | 10 | 0 | 1 | -1.139e-3 | 14 |
| 1631 | N816 | max | 11.765 | 14 | . 152 | 16 | 11.765 | 2 | $1.139 \mathrm{e}-3$ | 2 | 0 | 16 | 9.124e-4 | 6 |
| 1632 |  | min | -11.765 | 5 | -. 049 | 8 | -11.765 | 9 | -9.136e-4 | 10 | 0 | 1 | -1.14e-3 | 14 |
| 1633 | N817 | max | 11.765 | 14 | 148 | 16 | 11.765 |  | $1.138 \mathrm{e}-3$ | 2 | 0 | 16 | 9.127e-4 | 6 |
| 1634 |  | min | -11.765 | 5 | -. 046 | 8 | -11.765 | 9 | -9.162e-4 | 10 | 0 | 1 | -1.141e-3 | 14 |
| 1635 | N818 | max | 11.765 | 14 | 143 | 16 | 11.765 | 2 | $1.136 \mathrm{e}-3$ | 2 | 0 | 16 | 9.133e-4 | 6 |
| 1636 |  | min | -11.765 | 5 | -. 044 | 8 | -11.765 | 9 | -9.209e-4 | 10 | 0 | 1 | -1.143e-3 | 14 |
| 1637 | N819 | max | 11.765 | 14 | 138 | 16 | 11.765 | 2 | 1.133e-3 | 2 | 0 | 16 | 9.143e-4 | 6 |
| 1638 |  | min | -11.765 | 5 | -. 041 | 8 | -11.765 |  | -9.279e-4 | 10 | 0 | 1 | -1.145e-3 | 14 |
| 1639 | N820 | max | 11.765 | 14 | . 134 | 16 | 11.765 | 2 | 1.129e-3 | 2 | 0 | 16 | 9.155e-4 | 6 |
| 1640 |  | min | -11.765 | 5 | -. 038 | 8 | -11.765 | 9 | -9.373e-4 | 10 | 0 | 1 | -1.147e-3 | 14 |
| 1641 | N821 | max | 11.765 | 14 | . 129 | 14 | 11.765 | 2 | 1.125e-3 | 2 | 0 | 16 | 9.169e-4 | 6 |
| 1642 |  | min | -11.765 | 5 | -. 036 | 8 | -11.765 | 9 | -9.49e-4 | 10 | 0 | 1 | -1.15e-3 | 14 |
| 1643 | N822 | max | 11.765 | 14 | . 129 | 14 | 11.765 | 2 | $1.119 \mathrm{e}-3$ | 2 | 0 | 16 | 9.183e-4 | 6 |
| 1644 |  | min | -11.765 | 5 | -. 035 | 6 | -11.765 | 9 | -9.626e-4 | 10 |  | 1 | -1.152e-3 | 14 |
| 1645 | N823 | max | 11.765 | 14 | . 129 | 14 | 11.765 | 2 | 1.112e-3 | 2 | 0 | 16 | 9.196e-4 | 6 |
| 1646 |  | min | -11.765 | 5 | -. 035 | 6 | -11.765 | 9 | -9.777e-4 | 10 | 0 | 1 | -1.154e-3 | 14 |
| 1647 | N824 | max | 11.765 | 14 | 13 | 14 | 11.765 | 2 | 1.104e-3 | 2 | 0 | 16 | 9.209e-4 | 6 |
| 1648 |  | min | -11.765 | 5 | -. 036 | 6 | -11.765 | 9 | -9.937e-4 | 10 | 0 | 1 | -1.156e-3 | 14 |
| 1649 | N825 | max | 11.765 | 14 | . 13 | 14 | 11.765 | 2 | 1.094e-3 | 2 | 0 | 16 | 9.221e-4 | 6 |
| 1650 |  | min | -11.765 | 5 | -. 036 | 6 | -11.765 |  | -1.01e-3 | 10 | 0 | 1 | -1.158e-3 | 14 |
| 1651 | N826 | max | 11.765 | 14 | 13 | 14 | 11.765 | 2 | $1.083 \mathrm{e}-3$ | 2 | 0 | 16 | $9.229 \mathrm{e}-4$ | 6 |
| 1652 |  | min | -11.765 | 5 | -. 036 | 6 | -11.765 | 9 | -1.027e-3 | 10 | 0 | 1 | -1.159e-3 | 14 |
| 1653 | N827 | max | 11.765 | 14 | 13 | 14 | 11.765 | 2 | 1.071e-3 | 2 | 0 | 16 | 9.235e-4 | 6 |
| 1654 |  | min | -11.765 | 5 | -. 036 | 6 | -11.765 | 9 | -1.042e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |
| 1655 | N828 | max | 11.765 | 14 | 13 | 14 | 11.765 | 2 | 1.057e-3 | 2 | 0 | 16 | 9.237e-4 | 6 |
| 1656 |  | min | -11.765 | 5 | -. 036 | 6 | -11.765 | 9 | -1.057e-3 | 10 | 0 | 1 | -1.16e-3 | 14 |

$\qquad$

Envelope Joint Displacements (Continued)


Address:
No Address at This Location

## ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 168.4 ft (NAVD 88)<br>Risk Category: II<br>Soil Class: D-Stiff Soil<br>Latitude: 41.317572<br>Longitude: -72.269964



## Seismic

Site Soil Class:
D - Stiff Soil

Results:

| $\mathrm{S}_{\mathrm{S}}:$ | 0.163 |
| :--- | :--- |
| $\mathrm{~S}_{1}:$ | 0.058 |
| $\mathrm{~F}_{\mathrm{a}}:$ | 1.6 |
| $\mathrm{~F}_{\mathrm{V}}:$ | 2.4 |
| $\mathrm{~S}_{\mathrm{MS}}:$ | 0.26 |
| $\mathrm{~S}_{\mathrm{M} 1}:$ | 0.14 |


| $\mathrm{S}_{\mathrm{DS}}:$ | 0.173 |
| :--- | :--- |
| $\mathrm{~S}_{\mathrm{D} 1}:$ | 0.093 |
| $\mathrm{~T}_{\mathrm{L}}:$ | 6 |
| $\mathrm{PGA}:$ | 0.081 |
| $\mathrm{PGA}_{\mathrm{M}}:$ | 0.13 |
| $\mathrm{~F}_{\mathrm{PGA}}:$ | 1.6 |
| $\mathrm{I}_{\mathrm{e}}:$ | 1 |

## Seismic Design Category <br> B




## Data Accessed:

Date Source:

Mon Apr 292019
USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

## Results

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
0.75 in .

15 F
50 mph
Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Mon Apr 292019

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

## Exhibit E

## Mount Analysis

Tower Engineering Professionals 326 Tryon Road<br>Raleigh, NC 27603<br>(919) 661-6351<br>Structures@tepgroup.net

| Subject: | Mount Modification Analysis |  |
| :---: | :---: | :---: |
| Carrier Designation: | AT\&T Mobility Reconfiguration Client Site Number: <br> Client Site Name: <br> FA Location Code: | $65079$ <br> Old Lyme Hatchetts Hill 10035302 |
| Crown Castle Designation: | Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number: Crown Castle Order Number: | $\begin{aligned} & 823529 \\ & \text { CT038/EastLyme/ I-95/ X72 } \\ & 605374 \\ & 517072 \text { Rev. } 0 \end{aligned}$ |
| Engineering Firm Designation: | TEP Project Number: | 248058.408525 |
| Site Data: | 38 Hatchetts Hill Road, Old Lyme, New London County, CT 06371 Latitude $41^{\circ} 19^{\prime} 3.26^{\prime \prime}$, Longitude - $72^{\circ} 16^{\prime} 11.87^{\prime \prime}$ |  |
| Structure Information: | Tower Height \& Type: <br> Mount Elevation: <br> Mount Width \& Type: | ```190\pm ft Monopole 165 ft 12.5 ft Platform w/ Support Rail``` |

Dear Darcy Tarr,
Tower Engineering Professionals is pleased to submit this "Mount Modification Analysis" to determine the structural integrity of AT\&T Mobility's antenna mounting system with proposed appurtenance and equipment addition on the above mentioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis, we have determined the mount stress level to be:

## Platform w/ Support Rail

## Sufficient Capacity

The analysis has been performed in accordance with the 2018 International Building Code based upon an ultimate 3 -second gust wind speed of 135 mph . Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Pedro Lopez / GHM
Respectfully submitted by:

Aaron T. Rucker, P.E.
Structural Division Manager


## TABLE OF CONTENTS

## 1) INTRODUCTION

## 2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
3) ANALYSIS PROCEDURE

Table 2 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity
Table 4 - Tieback Connection Data Table
4.1) Recommendations

## 5) APPENDIX A

Wire Frame and Rendered Models
6) APPENDIX B

Software Input Calculations
7) APPENDIX C

Software Analysis Output
8) APPENDIX D

Additional Calculations

## 9) APPENDIX D

Mount Modification Design Drawings (MDD)

## 1) INTRODUCTION

The mount is an existing 12.5 - ft Platform w/ Support Rail mount.

## 2) ANALYSIS CRITERIA

| Building Code: | 2018 IBC |
| :--- | :--- |
| TIA-222 Revision: | TIA-222-H |
| Risk Category: | II |
| Ultimate Wind Speed: | 135 mph |
| Exposure Category: | B |
| Topographic Category at Base: | 1 |
| Topographic Category at Mount: | 1 |
| Ice Thickness: | 1.00 in |
| Wind Speed with Ice: | 50 mph |
| Seismic Design Category: | B |
| Seismic Ss: | 0.164 |
| Seismic S: | 0.059 |
| Live Loading Wind Speed: | 30 mph |
| Live Loading at Mid/End-Points: | 250 lb |
| Man Live Loading at Mount Pipes: | 500 lb |

Table 1 - Proposed Equipment Configuration

| Mount Centerline (ft) | Antenna Centerline (ft) | Number <br> of <br> Antennas | Antenna Manufacturer | Antenna Model | Mount / Modification Details |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 165 | 165 | 3 | Andrew | SBNHH-1D65A | Platform w/ Support Rail Mount |
|  |  | 3 | CCI Antennas | DMP65R-BU4D |  |
|  |  | 3 | CCI Antennas | OPA65R-BU4D |  |
|  |  | 3 | Ericsson | RRUS 4449 B5/B12 |  |
|  |  | 3 | Ericsson | RRUS 4478 B14 |  |
|  |  | 3 | Ericsson | RRUS 8843 B2/B66A |  |
|  |  | 3 | Powerwave | TT19-08BP111-001 |  |
|  |  | 1 | Raycap | DC6-48-60-18-8F |  |
|  |  | 1 | Raycap | DC9-48-60-24-8C-EV |  |

## 3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

| Document | Remarks | Reference | Source |
| :---: | :---: | :---: | :---: |
| Loading Application | AT\&T Mobility | Order 517072 Rev. 0 | CCIsites |
| Previous Mount Analysis | Tower Engineering Professionals | 9035303 | CCIsites |

## 3.1) Analysis Method

RISA-3D (Version 17.0.2), a commercially available analysis software package, was used to create a three-dimensional model of the mount and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A and Appendix C.

TEP Mount Analysis Tool, a tool internally developed by TEP using Microsoft Excel, was used to calculate member loading for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 Tower Mount Analysis (Revision C).

In addition, this analysis is in accordance with AT\&T's Mount Technical Guidance - Revision 15

## 3.2) Assumptions

1) The mount was built in accordance with the manufacturer's specifications.
2) The mount has been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, mounts and other appurtenances are as specified in Table 1. All mount components have been assumed to be in sufficient condition to carry their full design capacity for this analysis. Refer to the issued mapping for any structural and/or maintenance issues found during our site visit if applicable.
4) All mount components are in sufficient condition to carry their full design capacity.
5) TEP did not analyze the collar mount connection to the pole and assumes it to have sufficient structural capacity to transfer the applied forces from the mount to the tower.
6) All material grades used for this analysis, unless verified by mount manufacturer design, were assumed per AISC Table 2-4, $15^{\text {th }}$ Edition. See RISA-3D output for confirmation on grades used in this analysis.

This analysis may be affected if any assumptions are not valid or have been made in error. Tower Engineering Professionals should be notified to determine the effect on the structural integrity of the antenna mounting system.

## 4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform w/ Support Rail Mount)

| Notes | Component | Critical <br> Member | Mount <br> Centerline (ft) | \% Capacity | Pass / Fail |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Face Horizontals | SF1-TH | 165 | 61.7 | Pass |
| 1 | Support Rails | FF-HR | 165 | 18.7 | Pass |
| 1 | Support Arms | SA-1 | 165 | 31.9 | Pass |
| 1 | Internals | GSI-1 | 165 | 72.4 | Pass |
| 1 | Mount Pipes | MP-2 | 165 | 44.3 | Pass |
| - | Kickers | K1 | 165 | 11.7 | Pass |
| 2 | Connection Bolts | - | 165 | 12.5 | Pass |
| 2 | Connection Plate | - | 165 | 32.7 | Pass |


| Structure Rating (max from all components) $=$ | $\mathbf{7 2 . 4} \%$ |
| :--- | :--- |

Notes:

1) See additional documentation in "Appendix C - Analysis Output" for calculations supporting the \% capacity listed.
2) See additional documentation in "Appendix D-Additional Calculations" for calculations supporting the \% capacity listed.

Table 4 - Tieback Connection Data Table

| Tower Connection Node No. | Existing/ Proposed | Resultant End Reaction (Ib) | Connected Member Type | Connected Member Size | Member Compressive Capacity (lb) | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - |

Notes:

1) Tieback connection point is within $25 \%$ of either end of the connected tower member.
2) Tower connection point is NOT within $25 \%$ of either end of the connected tower member.
3) Reduced member compressive capacity according to CED-STD-10294 Standard for Installation of Mounts and Appurtenances.

## 4.1) Recommendations

1) If the load differs from that described in Table 1 of this report or the provisions of this analysis are found to be invalid, another structural analysis should be performed.
2) The modifications depicted in "Appendix E - Mount Modification Design Drawings" shall be installed and, upon completion, inspected. The mount has sufficient capacity to support the proposed loading configuration once the proposed modifications listed below are completed.
a) (1) SitePro PRK-1245 Platform Reinforcement Kit, or approved equivalent
b) (1) SitePro HRK12-3HD Handrail Reinforcement Kit, or approved equivalent

## APPENDIX A

WIRE FRAME AND RENDERED MODELS


Envelope Only Solution

| Tower Engineering Profes... |  | SK -1 |
| :--- | :---: | :--- |
| PAL | CCI BU No. 823529 | Apr 27, 2020 at 4:39 PM |
| TEP No. 248058.408525 |  | CCI BU No. 823529.r3d |




Member Code Checks Displayed (Enveloped)
Envelope Only Solution

| Tower Engineering Profes... |  | SK -3 |
| :--- | :---: | :--- |
| PAL | CCI BU No. 823529 | Apr 27, 2020 at $4: 40$ PM |
| TEP No. 248058.408525 |  | CCI BU No. 823529.r3d |



Envelope Only Solution

| Tower Engineering Profes... |  | SK -4 |
| :--- | :---: | :--- |
| PAL | CCI BU No. 823529 | Apr 27, 2020 at $4: 40$ PM |
| TEP No. 248058.408525 |  | CCI BU No. 823529.r3d |



Envelope Only Solution

| Tower Engineering Profes... |  | SK -5 |
| :--- | :---: | :--- |
| PAL | CCI BU No. 823529 | Apr 27, 2020 at 4:41 PM |
| TEP No. 248058.408525 |  | CCI BU No. 823529.r3d |

## APPENDIX B

SOFTWARE INPUT CALCULATIONS

TEP No. 248058.408525
Analysis By: PAL 4/27/2020
Checked By: GHM 4/27/2020

| Code Revisions: | TIA-222-H | IBC 2018 |
| ---: | :---: | :---: |
| Tower Type: | Monopole |  |
|  |  |  |

Wind Inputs:

| Ult. Wind Velocity: | 135.0 | mph |
| ---: | :---: | :--- | :--- |
| Live Load Velocity: | 30.0 | mph |
| Ice Wind Velocity: | 50.0 | mph |
| Base Ice Thickness: | 1.00 | inches |
| Mount Centerline: | 165.0 | ft |
| Antenna Centerline: | 165.0 | ft |
| Exposure Category: | B |  |
| Topo Category: | 1 |  |
| Risk Category: | II |  |
| Ground Elevation: | 168.4 | ft |


| Wind Calculations: |  |  |
| ---: | :--- | :--- |
| $\mathbf{K}_{\mathrm{zt}}:$ | $\mathbf{1 . 0 0 0}$ | Section 2.6.6 |
| $\mathrm{K}_{\mathrm{d}}:$ | 0.950 |  |
| $\mathrm{~K}_{\mathrm{z}-\text { Mount }}:$ | 1.140 | Section 2.6.5.2 |
| $\mathrm{K}_{\mathrm{z} \text {-Antenna }}:$ | 1.140 | Section 2.6.5.2 |
| $\mathrm{K}_{\mathrm{iz}}:$ | 1.175 | Section 2.6.10 |
| Ice Thickness: | 1.175 | inches - Section 2.6.10 |


| Without Ice - (psf) |  | With Ice - (psf) |  |
| :---: | :---: | :---: | :---: |
| $\left(q_{\mathbf{z}} G_{h}\right)_{\text {Mount }}:$ | 50.23 | $\left(q_{\mathbf{z}} G_{h}\right)_{\text {Mount }}:$ | 6.89 |
| $\left(q_{z} G_{h}\right)_{\text {Antenna }}:$ | 50.23 | $\left(q_{z} G_{h}\right)_{\text {Antenna }}:$ | 6.89 |

( TOOWER
Antenna Loads are Calculated in Accordance with TIA-222-H
Azimuth is the absolute angle measured clockwise from RISA-3D global X-axis.


CCI BU No. 823529
TOWER
ENGINEERING ROFESSIONALS

TEP No. 248058.408525
Analysis By: PAL 4/27/2020
Checked By: GHM 4/27/2020

Member Forces are Calculated in Accordance with TIA-222-H

| Member Name | Wind Proj. (in) | Length (in) | Shape | $\theta\left({ }^{\circ}\right)$ | Perimeter (in) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CP-1 | 0.500 | 9.00 | Flat | 30.00 | 10.00 |
| CP-2 | 0.500 | 9.00 | Flat | -30.00 | 10.00 |
| CP-3 | 0.500 | 9.00 | Flat | 90.00 | 10.00 |
| FF-HR | 2.875 | 150.00 | Round | 90.00 | 9.03 |
| FFTH | 6.000 | 150.00 | Flat | 90.00 | 18.00 |
| GSI-1 | 3.000 | 67.00 | Flat | 30.00 | 12.00 |
| GSI-2 | 3.000 | 67.00 | Flat | -30.00 | 12.00 |
| GSI-3 | 3.000 | 67.00 | Flat | 90.00 | 12.00 |
| HRB1 | 2.375 | 58.00 | Round | 30.00 | 7.46 |
| HRB2 | 2.375 | 58.00 | Round | -30.00 | 7.46 |
| HRB3 | 2.375 | 58.00 | Round | 90.00 | 7.46 |
| K1 | 2.500 | 50.91 | Flat |  | 15.00 |
| K2 | 2.500 | 50.91 | Flat |  | 15.00 |
| K3 | 2.500 | 50.91 | Flat |  | 15.00 |
| MP-1 | 2.375 | 84.00 | Round |  | 7.46 |
| MP-2 | 2.375 | 84.00 | Round |  | 7.46 |
| MP-3 | 2.375 | 84.00 | Round |  | 7.46 |
| MP-4 | 2.375 | 72.00 | Round |  | 7.46 |
| MP-5 | 2.375 | 84.00 | Round |  | 7.46 |
| MP-6 | 2.375 | 84.00 | Round |  | 7.46 |
| MP-7 | 2.375 | 84.00 | Round |  | 7.46 |
| MP-8 | 2.375 | 72.00 | Round |  | 7.46 |
| MP-9 | 2.375 | 84.00 | Round |  | 7.46 |
| MP-10 | 2.375 | 84.00 | Round |  | 7.46 |
| MP-11 | 2.375 | 72.00 | Round |  | 7.46 |
| MP-12 | 2.375 | 84.00 | Round |  | 7.46 |
| MP-13 | 2.375 | 72.00 | Round |  | 7.46 |
| SA-1 | 4.000 | 75.00 | Flat | -60.00 | 16.00 |
| SA-2 | 4.000 | 75.00 | Flat | 60.00 | 16.00 |
| SA-3 | 4.000 | 75.00 | Flat | 0.00 | 16.00 |
| SF1-HR | 2.875 | 150.00 | Round | -30.00 | 9.03 |
| SF1-TH | 6.000 | 150.00 | Flat | 30.00 | 18.00 |
| SF2-HR | 2.875 | 150.00 | Round | 30.00 | 9.03 |
| SF2-TH | 6.000 | 150.00 | Flat | -30.00 | 18.00 |
| TRCP-1 | 2.500 | 9.00 | Flat | 30.00 | 10.00 |
| TRCP-2 | 2.500 | 9.00 | Flat | -30.00 | 10.00 |
| TRCP-3 | 2.500 | 9.00 | Flat | 90.00 | 10.00 |

Address:
No Address at This Location

## ASCE 7 Hazards Report



## Wind

## Results:

| Wind Speed: | 126 Vmph |
| :--- | :--- |
| 10 -year MRI | 76 Vmph |
| 25 -year MRI | 86 Vmph |
| 50 -year MRI | 97 Vmph |
| 100 -year MRI | 103 Vmph |

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4
Tue Apr 142020

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a $7 \%$ probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

AMERICAN SOCIETY OF CIVIL ENGINEERS

## Seismic

Site Soil Class:
D - Stiff Soil

## Results:

| $\mathrm{S}_{\mathrm{S}}:$ | 0.198 |
| :--- | :--- |
| $\mathrm{~S}_{1}:$ | 0.053 |
| $\mathrm{~F}_{\mathrm{a}}:$ | 1.6 |
| $\mathrm{~F}_{\mathrm{V}}:$ | 2.4 |
| $\mathrm{~S}_{\mathrm{Ms}}:$ | 0.317 |
| $\mathrm{~S}_{\mathrm{M} 1}:$ | 0.127 |
| $\mathrm{~S}_{\mathrm{DS}}:$ | 0.211 |


| $\mathrm{S}_{\mathrm{D} 1}:$ | 0.085 |
| :--- | :--- |
| $\mathrm{~T}_{\mathrm{L}}:$ | 6 |
| $\mathrm{PGA}:$ | 0.11 |
| $\mathrm{PGA}_{\mathrm{M}}:$ | 0.174 |
| $\mathrm{~F}_{\mathrm{PGA}}:$ | 1.58 |
| $\mathrm{I}_{\mathrm{e}}:$ | 1 |
| $\mathrm{C}_{\mathrm{V}}:$ | 0.7 |

## Seismic Design Category <br> B






Data Accessed:
Date Source:

Tue Apr 142020
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16
Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

## Results

Ice Thickness:
Concurrent Temperature:
Gust Speed:
Data Source:
Date Accessed:
1.00 in .

15 F
50 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Tue Apr 142020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

## APPENDIX C





RISA-3D Version 17.0.2 [G:I...............IRISA-3DICCI BU No. 823529.r3d]




|  |  |  | Engineering <br> 248058.40 <br> No. 823529 | Professiona <br> 8525 | s, Inc. |  |  |  | Apr 27, 2020 4:41 PM Checked By: GHM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basic Load Cases (Continued) |  |  |  |  |  |  |  |  |  |  |
|  | BLC Description | Catecory | $X$ Gravity | $Y$ Gravity | Z Gravity | Joint | Point | Distribute | Area(Me... | Surface(P.. |
| 14 | 270 Wind - No Ice | None |  |  |  |  | 30 | 37 |  |  |
| 15 | 300 Wind - No Ice | None |  |  |  |  | 60 | 74 |  |  |
| 16 | 315 Wind - No Ice | None |  |  |  |  | 60 | 74 |  |  |
| 17 | 330 Wind - No Ice | None |  |  |  |  | 60 | 74 |  |  |
| 18 | Ice Weight | None |  |  |  |  | 30 | 37 | 3 |  |
| 19 | 0 Wind - Ice | None |  |  |  |  | 30 | 37 |  |  |
| 20 | 30 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 21 | 45 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 22 | 60 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 23 | 90 Wind - Ice | None |  |  |  |  | 30 | 37 |  |  |
| 24 | 120 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 25 | 135 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 26 | 150 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 27 | 180 Wind - Ice | None |  |  |  |  | 30 | 37 |  |  |
| 28 | 210 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 29 | 225 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 30 | 240 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 31 | 270 Wind - Ice | None |  |  |  |  | 30 | 37 |  |  |
| 32 | 300 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 33 | 315 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 34 | 330 Wind - Ice | None |  |  |  |  | 60 | 74 |  |  |
| 35 | Lm | None |  |  |  | 1 |  |  |  |  |
| 36 | Lv | None |  |  |  | , |  |  |  |  |
| 37 | BLC 1 Transient Area.. | None |  |  |  |  |  | 42 |  |  |
| 38 | BLC 18 Transient Are.. | None |  |  |  |  |  | 42 |  |  |





Cold Formed Steel Design Parameters





Member Point Loads (BLC 1 : Dead)


Tower Engineering Professionals, Inc.
PAL
TEP No. 248058.408525



PAL
TEP No. 248058.408525
CCI BU No. 823529
signer
b Number
odel Name

IIRISA


| \|IRISA | Company Designer Job Number Model Name | Tower Engineering Professionals, Inc. PAL <br> TEP No. 248058.408525 CCI BU No. 823529 | Apr 27, 2020 4:41 PM Checked By: GHM |
| :---: | :---: | :---: | :---: |


Member Point Loads (BLC 8: 135 Wind - No Ice)



##  <br> Job Number Model Name


 Member Point Loads (BLC 9: 150 Wind -No Ice)







Member Point Loads (B



|  | Company Designer Job Number Model Name | Tower Engineering Professionals, Inc. PAL <br> TEP No. 248058.408525 <br> CCI BU No. 823529 | Apr 27, 2020 4:41 PM Checked By: GHM |
| :---: | :---: | :---: | :---: |



Member Point Loads (BLC 18 : Ice Weight)(Continued)

Member Point Loads (BLC 19:0 Wind - Ice)




 | 53 | Member Label | Direction | Magnitudelk,$k-f+1]$ | -.005 |
| :---: | :---: | :---: | :---: | :---: |
| 54 | MP-2 | $Z$ | -.013 | 5 |
| 55 | MP-4 | Z | -.006 | 5 |
| 56 | MP-5 | Z | -.004 | 5 |
| 57 | MP-6 | Z | -007 | 5 |
| 58 | MP-8 | Z | -.012 | 5 |
| 59 | MP-10 | $Z$ | -.005 | 5 |
| 60 | MP-13 | Z | -.013 | 5 | Member Point Loads (BLC 21: 45 Wind - Ice)





[^2](0ग) -






$\stackrel{5}{6}$


 Member Point Loads

 PAL
TEP No. 248058.408525
CCI BU No. 823529
(03)
IRISA


## 





Member Distributed Loads (BLC 4:45 Wind - No Ice)




ANEMEтSCHЕК СомрамV



## Apr 27, 2020 4:4 PM Checked By: GHM PAL No. 248058.408525 TEP No. No. 823529 CCI BU

 -

Member Distributed Loads (BLC 6:90 Wind - No Ice)
RISA-3D Version 17.0.2 [G:I..............\RISA-3DICCI BU No. 823529.r3d] Page 45
Member Distributed Loads (BLC 5:60 Wind - No Ice)(Continued)





 Member Distributed Loads (BLC 9:150 Wind - No Ice)








## 'oul <br> 

Member Distributed Loads (BLC 12:225 Wind - No lce)(Continued)
 001\%
$001 \%$
$001 \%$
$001 \%$
$001 \%$
$001 \%$


 | 1 | CP-1 | $X$ | .001 |
| :--- | :--- | :--- | :--- |
| 2 | $C P-2$ | 00069 |  |



## Apr 27, 2020 4:41 PM Checked By: GHM

 $\longrightarrow$

Member Distributed Loads (BLC 15:300 Wind - No Ice)

| Member Label Direction Start Magnitude[k/ftw... End Magnitude[k/ft, F.... Start Location[ft,\%] End Location[ft,\%] |
| :--- | :--- | :--- | :--- |




|  | Member Label | Direction | Start Magnitudelk/t.t. | End Magnitudelk/ft.F.. | Start Location[ft,\%] | End Location[ft.\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42 | FFTH | Z | . 02 | . 02 | 0 | \%100 |
| 43 | GSI-1 | Z | . 009 | . 009 | 0 | \%100 |
| 44 | GSI-2 | Z | . 018 | . 018 | 0 | \%100 |
| 45 | GSI-3 | Z | . 009 | . 009 | 0 | \%100 |
| 46 | HRB1 | Z | . 004 | . 004 | 0 | \%100 |
| 47 | HRB2 | Z | . 009 | . 009 | 0 | \%100 |
| 48 | HRB3 | Z | . 005 | . 005 | 0 | \%100 |
| 49 | K1 | Z | . 015 | . 015 | 0 | \%100 |
| 50 | K2 | Z | . 015 | . 015 | 0 | \%100 |
| 51 | K3 | Z | . 015 | . 015 | 0 | \%100 |
| 52 | MP-1 | Z | . 009 | . 009 | 0 | \%100 |
| 53 | MP-2 | Z | . 009 | . 009 | 0 | \%100 |
| 54 | MP-3 | Z | . 009 | . 009 | 0 | \%100 |
| 55 | MP-4 | Z | . 009 | . 009 | 0 | \%100 |
| 56 | MP-5 | Z | . 009 | . 009 | 0 | \%100 |
| 57 | MP-6 | Z | . 009 | . 009 | 0 | \%100 |
| 58 | MP-7 | Z | . 009 | . 009 | 0 | \%100 |
| 59 | MP-8 | Z | . 009 | . 009 | 0 | \%100 |
| 60 | MP-9 | Z | . 009 | . 009 | 0 | \%100 |
| 61 | MP-10 | Z | . 009 | . 009 | 0 | \%100 |
| 62 | MP-11 | Z | . 009 | . 009 | 0 | \%100 |
| 63 | MP-12 | Z | . 009 | . 009 | 0 | \%100 |
| 64 | MP-13 | Z | . 009 | . 009 | 0 | \%100 |
| 65 | SA-1 | Z | . 017 | . 017 | 0 | \%100 |
| 66 | SA-2 | Z | 0 | 0 | 0 | \%100 |
| 67 | SA-3 | Z | . 02 | . 02 | 0 | \%100 |
| 68 | SF1-HR | Z | . 01 | . 01 | 0 | \%100 |
| 69 | SF1-TH | Z | . 018 | . 018 | 0 | \%100 |
| 70 | SF2-HR | Z | . 005 | . 005 | 0 | \%100 |
| 71 | SF2-TH | Z | . 037 | . 037 | 0 | \%100 |
| 72 | TRCP-1 | Z | . 005 | . 005 | 0 | \%100 |
| 73 | TRCP-2 | Z | . 01 | . 01 | 0 | \%100 |
| 74 | TRCP-3 | Z | . 005 | . 005 | 0 | \%100 |

[^3]
Member Distributed Loads (BLC 18 : Ice Weight)



Member Label Direction Start Magnitudelk/ft... End Magnitudelk/tt.F.... Start Location[ft.\%] End Location[ft.\%]









(











[^4]
## 'oul EP No. 248058.408525 Cl BU No. 823529 <br> asigner ob Number odel Name <br> IIRISA

 .

Apr 27, 2020
4:41 PM
Checked By: GHM
$\square$


Member Distributed Loads (BLC 33:315 Wind - Ice)
Member Label Direction Start Magnitudef[k/tt.... End Magnitude [k/ft, F.... Start Location[ft.\%] End Location[ft,\%]



| Member Distributed Loads (BLC 34:330 Wind - Ice)(Continued) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Member Label | Direction | Start Magnitudelk/t... | End Magnitudefk/tt, F. | Start Location[ft.\%] | End Locationift\%] |
| 58 | MP-7 | Z | . 001 | . 001 | 0 | \%100 |
| 59 | MP-8 | Z | . 001 | . 001 | 0 | \%100 |
| 60 | MP-9 | Z | . 001 | . 001 | 0 | \%100 |
| 61 | MP-10 | Z | . 001 | . 001 | 0 | \%100 |
| 62 | MP-11 | Z | . 001 | . 001 | 0 | \%100 |
| 63 | MP-12 | Z | . 001 | . 001 | 0 | \%100 |
| 64 | MP-13 | Z | . 001 | . 001 | 0 | \%100 |
| 65 | SA-1 | Z | . 002 | . 002 | 0 | \%100 |
| 66 | SA-2 | Z | . 001 | . 001 | 0 | \%100 |
| 67 | SA-3 | Z | . 001 | . 001 | 0 | \%100 |
| 68 | SF1-HR | Z | . 001 | . 001 | 0 | \%100 |
| 69 | SF1-TH | Z | 0 | 0 | 0 | \%100 |
| 70 | SF2-HR | Z | 0 | 0 | 0 | \%100 |
| 71 | SF2-TH | Z | . 003 | . 003 | 0 | \%100 |
| 72 | TRCP-1 | Z | 0 | 0 | 0 | \%100 |
| 73 | TRCP-2 | Z | . 002 | . 002 | 0 | \%100 |
| 74 | TRCP-3 | Z | . 001 | . 001 | 0 | \%100 |


RISA-3D Version 17.0.2 [G:I...............IRISA-3DICCI BU No. 823529.r3d] Page 80

## Apr 27, 2020 4:41 PM Checked By: GHM

 ——om - [\% म ग
 0000000000000000000000000000000000000000000000

|  | $\begin{array}{l}\text { Company } \\ \text { Designer } \\ \text { Job Number }\end{array}$ | $\vdots$ Tower Engineering Professionals, Inc. |
| :--- | :--- | :--- |
| OAL | TEP No. 248058.408525 | Apr 27, 2020 |
| Model Name | $\vdots$ CCl BU No. 823529 | 4:41 PM |


| Member Area Loads (BLC 1 : Dead) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Joint A | Joint B | Joint C | Joint D | Direction | Distribution | Magnitude[ksf] |
| 1 | N43 | GSI1 | GSI4 | N49 | Y | Two Way | -. 012 |
| 2 | GSI2 | N41 | N47 | GSI5 | Y | Two Way | -. 012 |
| 3 | GSI3 | GSI6 | N45 | N51 | Y | Two Way | -. 012 |
| Member Area Loads (BLC 18 : Ice Weight) |  |  |  |  |  |  |  |
|  | Joint A | Joint B | Joint C | Joint D | Direction | Distribution | Magnitude[ksf] |
| 1 | N43 | GSI1 | GSI4 | N49 | Y | Two Wav | -. 005 |
| 2 | GSI2 | N41 | N47 | GSI5 | Y | Two Way | -. 005 |
| 3 | GSI3 | GSI6 | N45 | N51 | Y | Two Way | -. 005 |





## APPENDIX D

## ADDITIONAL CALCULATIONS

## Moment Bolt Group - Support Arm



| Bolt Grade: | A325N |  |
| ---: | :---: | :--- |
| Fu $_{\text {bolt }}:$ | 120 | ksi |
| $\mathrm{r}:$ | 6.5407 | in |
| $\mathrm{J}:$ | 171.13 | $\mathrm{in}^{4} / \mathrm{in}^{2}$ |
| Bolt $_{\text {Area }}:$ | 0.307 | $\mathrm{in}^{2}$ |
| Bolt $_{\text {Area, Net Tensile }}:$ | 0.226 | $\mathrm{in}^{2}$ |
| Pretension: | 19 | $\mathrm{kips}^{\text {Slotted Holes: }}$ |
| So |  |  |

## Plate Bending

Horizontal Member height: 4 in
Horizontal Member width: 4 in

$$
\begin{array}{lll}
\mathrm{My}= & 10.1172 & \mathrm{k}-\mathrm{in} \\
\mathrm{Mz}= & 11.8898 & \mathrm{k}-\mathrm{in}
\end{array}
$$

$Z_{y}=1.123 \mathrm{in}^{3}$
Plate Fy: 36 ksi
$Z_{z}=1.123 \mathrm{in}^{3}$
$S_{y}=0.749 \mathrm{in}^{3}$
$S_{z}=0.749 \mathrm{in}^{3}$

| $\varnothing M p_{y}(Z):$ | 36.387 | $k-$ in |
| :--- | :--- | :--- |
| $\varnothing M p_{y}(S):$ | 38.813 | $k-$ in |
| $\varnothing M p_{z}(Z):$ | 36.387 | $k-$ in |
| $\varnothing M p_{z}(S):$ | 38.813 | $k-$ in |

## APPENDIX E

 MOUNT MODIFICATION DESIGN DRAWINGS


Envelope Only Solution

| Tower Engineering Profes... | CCI BU No. 823529 | ELEVATION VIEW E-2 |
| :---: | :---: | :---: |
| PAL |  | Apr 27, 2020 at 4:43 PM |
| TEP No. 248058.408525 |  | CCI BU No. 823529.r3d |






## Exhibit F

## Power Density/RF Emissions Report

# RF EMISSIONS COMPLIANCE REPORT 

# Crown Castle on behalf of AT\&T Mobility, LLC 

Crown Castle Site Name: CT038/EastLyme/ I-95/ X72
Crown Castle Site BU: 823529
Order ID: 517072
AT\&T Mobility, LLC FA \#: 10035302
38 Hatchetts Hill Road
Old Lyme, CT
6/10/2020

## Report Status:

## AT\&T Mobility, LLC is Compliant



Michael Fischer, P.E.
Registered Professional Engineer (Electrical)
Connecticut License Number 33928
Expires January 31, 2021

Signed 11 June 2020
Prepared By:
Site Safe, LLC

Engineering Statement in Re:<br>Electromagnetic Energy Analysis<br>Crown Castle<br>Old Lyme, CT

My signature on the cover of this document indicates:
That I am registered as a Professional Engineer in the jurisdiction indicated; and
That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Site Safe, LLC in Vienna, Virginia; and
That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Crown Castle on behalf of AT\&T Mobility, LLC (see attached Site Summary and Carrier documents) and that AT\&T Mobility, LLC's installation involves communications equipment, antennas and associated technical equipment at a location referred to as "CT038/EastLyme/ I-95/ X72" ("the site"); and

That AT\&T Mobility, LLC proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by AT\&T Mobility, LLC and shown on the worksheet and that worst-case $100 \%$ duty cycle has been assumed; and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radio frequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio frequency energy must utilize the standards set by the FCC, which is the federal agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," which defines situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and 2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and

That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of AT\&T Mobility, LLC's operating frequencies as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed AT\&T Mobility, LLC operation is no more than $1.274 \%$ of the maximum permissible exposure limits in any accessible area on the ground; and

That it is understood per FCC Guidelines and OET 65 Appendix A, that regardless of the existent radio frequency environment, only those licensees whose contributions exceed $5 \%$ of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any noncompliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than $3.519 \%$ of the maximum in any accessible area up to two meters above the ground per OET 65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET 65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier(s) and frequency range(s) indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding radio frequency safety; and

In summary, it is stated here that the proposed operation at the site will not result in exposure of the public to excessive levels of radio frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307 (b), and that AT\&T Mobility, LLC's proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals and approved contractor personnel trained in radio frequency safety and that this instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower or in the immediate proximity of the antennas.

# Crown Castle <br> CT038/EastLyme/ I-95/ X72 <br> Site Summary 

| Carrier | Area Maximum Percentage MPE |
| :---: | :---: |
| AT\&T Mobility, LLC | $0.058 \%$ |
| AT\&T Mobility, LLC (Proposed) | $0.344 \%$ |
| AT\&T Mobility, LLC (Proposed) | $0.139 \%$ |
| AT\&T Mobility, LLC (Proposed) | $0.159 \%$ |
| AT\&T Mobility, LLC (Proposed) | $0.378 \%$ |
| AT\&T Mobility, LLC (Proposed) | $0.196 \%$ |
| T-Mobile | $0.367 \%$ |
| T-Mobile | $0.182 \%$ |
| T-Mobile | $0.207 \%$ |
| T-Mobile | $0.175 \%$ |
| Verizon Wireless | $0.418 \%$ |
| Verizon Wireless | $0.364 \%$ |
| Verizon Wireless | $0.296 \%$ |
| Verizon Wireless | $0.236 \%$ |
|  |  |
| Composite Site MPE: | $3.519 \%$ |

## AT\&T Mobility, LLC

## CT038/EastLyme/ I-95/ X72

## Carrier Summary

| Frequency: | 850 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 566.67 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 0.33136 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.05848 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE | Max Power Density $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$ | Percent of MPE |
| ANDREW | SBNHH-1D65A | 165 | 23 | 560 | 0.219213 | 0.038685 | 0.310434 | 0.054782 |
| ANDREW | SBNHH-1D65A | 165 | 143 | 560 | 0.219213 | 0.038685 | 0.310434 | 0.054782 |
| ANDREW | SBNHH-1D65A | 165 | 263 | 560 | 0.219213 | 0.038685 | 0.310434 | 0.054782 |

## AT\&T Mobility, LLC (Proposed) CT038/EastLyme/ I-95/ X72 <br> Carrier Summary

| Frequency: | 1900 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 3.44276 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.34428 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | On Axis |  |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right.$ ) | Percent of MPE | Max Power Density $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right.$ ) | Percent of MPE |
| CCI Antennas | DMP65R-BU4D | 165 | 23 | 3541 | 2.651721 | 0.265172 | 3.402207 | 0.340221 |
| CCI Antennas | DMP65R-BU4D | 165 | 143 | 3541 | 2.651721 | 0.265172 | 3.402207 | 0.340221 |
| CCI Antennas | DMP65R-BU4D | 165 | 263 | 3541 | 2.651721 | 0.265172 | 3.402207 | 0.340221 |

# AT\&T Mobility, LLC (Proposed) CT038/EastLyme/ I-95/ X72 <br> Carrier Summary 

| Frequency: | 850 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 566.67 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 0.78852 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.13915 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | On Axis |  |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$ | Percent of MPE | Max Power Density $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$ | Percent of MPE |
| CCI Antennas | DMP65R-BU4D | 165 | 23 | 1695 | 0.747885 | 0.131980 | 0.783413 | 0.138249 |
| CCI Antennas | DMP65R-BU4D | 165 | 143 | 1695 | 0.747885 | 0.131980 | 0.783413 | 0.138249 |
| CCI Antennas | DMP65R-BU4D | 165 | 263 | 1695 | 0.747885 | 0.131980 | 0.783413 | 0.138249 |

## AT\&T Mobility, LLC (Proposed) CT038/EastLyme/ I-95/ X72 <br> Carrier Summary

| Frequency: | 737 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 491.33 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 0.77971 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.15869 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | On Axis |  |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE |
| CCI Antennas | DMP65R-BU4D | 165 | 23 | 1582 | 0.742792 | 0.151179 | 0.771593 | 0.157041 |
| CCI Antennas | DMP65R-BU4D | 165 | 143 | 1582 | 0.742792 | 0.151179 | 0.771593 | 0.157041 |
| CCI Antennas | DMP65R-BU4D | 165 | 263 | 1582 | 0.742792 | 0.151179 | 0.771593 | 0.157041 |

## AT\&T Mobility, LLC (Proposed) CT038/EastLyme/ I-95/ X72 <br> Carrier Summary

| Frequency: | 2100 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 3.78483 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.37848 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) |  | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | $\begin{aligned} & \text { Percent of } \\ & \text { MPE } \end{aligned}$ |
| CCI | OPA65R-BU4D | 165 | 23 | 4066 | 3.007760 | 0.300776 | 3.738060 | 0.373806 |
| CCI | OPA65R-BU4D | 165 | 143 | 4066 | 3.007760 | 0.300776 | 3.738060 | 0.373806 |
| CCI | OPA65R-BU4D | 165 | 263 | 4066 | 3.007760 | 0.300776 | 3.738060 | 0.373806 |

# AT\&T Mobility, LLC (Proposed) CT038/EastLyme/ I-95/ X72 <br> Carrier Summary 

| Frequency: | 763 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 508.67 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 0.99774 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.19615 | $\%$ |


| Antenna Make | Model | Height (feet) | Orientation (degrees true) | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE |
| CCl | OPA65R-BU4D | 165 | 23 | 1775 | 0.933240 | 0.183468 | 0.984206 | 0.193487 |
| CCl | OPA65R-BU4D | 165 | 143 | 1775 | 0.933240 | 0.183468 | 0.984206 | 0.193487 |
| CCl | OPA65R-BU4D | 165 | 263 | 1775 | 0.933240 | 0.183468 | 0.984206 | 0.193487 |

# T-Mobile <br> CT038/EastLyme/ I-95/ X72 <br> Carrier Summary 

| Frequency: | 2100 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 3.66926 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.36693 | $\%$ |


| Antenna Make | Model |  |  |  | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Height (feet) | Orientation (degrees true) | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE | Max Power Density $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$ | Percent of MPE |
| Ericsson | AIR 32 B2A B66AA | 192 | 50 | 4626 | 2.563841 | 0.256384 | 2.563841 | 0.256384 |
| Ericsson | AIR 32 B2A B66AA | 192 | 150 | 4626 | 2.563841 | 0.256384 | 2.563841 | 0.256384 |
| Ericsson | AIR 32 B2A B66AA | 192 | 270 | 4626 | 2.563841 | 0.256384 | 2.563841 | 0.256384 |

## T-Mobile <br> CT038/EastLyme/ I-95/ X72 <br> Carrier Summary

| Frequency: | 1900 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 1.81639 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.18164 | $\%$ |


| Antenna Make | Model | Height <br> (feet) | Orientation <br> (degrees true) | ERP <br> $(\mathbf{W a t t s )}$ | Max Power <br> Density <br> $\left(\mu W / \mathbf{c m}^{2}\right)$ | Percent of <br> MPE | Max Power <br> Density <br> $\left(\mu W / \mathbf{c m}^{2}\right)$ | Percent of <br> MPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RFS | APXVAARR24_43-U-NA20 | 192 | 50 | 2472 | 0.461188 | 0.046119 | 0.851298 | 0.085130 |
| Ericsson | AIR 32 B2A B66AA | 192 | 50 | 4626 | 0.594392 | 0.059439 | 0.678997 | 0.067900 |
| RFS | APXVAARR24_43-U-NA20 | 192 | 150 | 2472 | 0.461188 | 0.046119 | 0.851298 | 0.085130 |
| Ericsson | AIR 32 B2A B66AA | 192 | 150 | 4626 | 0.594392 | 0.059439 | 0.678997 | 0.067900 |
| RFS | APXVAARR24_43-U-NA20 | 192 | 270 | 2472 | 0.461188 | 0.046119 | 0.851298 | 0.085130 |
| Ericsson | AIR 32 B2A B66AA | 192 | 270 | 4626 | 0.594392 | 0.059439 | 0.678997 | 0.067900 |

## T-Mobile <br> CT038/EastLymel I-95I X72 <br> Carrier Summary

| Frequency: | 700 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 466.67 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 0.96641 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.20709 | $\%$ |


| Antenna Make | Model | Height <br> (feet) $)$ | Orientation <br> (degrees true) $)$ | ERP <br> $($ Watts $)$ | Max Power <br> Density <br> $(\boldsymbol{\mu W / c m})$ | Percent of <br> MPE | Max Power <br> Density <br> $\left(\boldsymbol{\mu W W} / \mathbf{c m}^{2}\right)$ | Percent of <br> MPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RFS | APXVAARR24_43-U-NA20 | 192 | 50 | 3484 | 0.595709 | 0.127652 | 0.622776 | 0.133452 |
| RFS | APXVAARR24_43-U-NA20 | 192 | 150 | 3484 | 0.595709 | 0.127652 | 0.622776 | 0.133452 |
| RFS | APXVAARR24_43-U-NA20 | 192 | 270 | 3484 | 0.595709 | 0.127652 | 0.622776 | 0.133452 |

## T-Mobile <br> CT038/EastLyme/ I-95/ X72 <br> Carrier Summary

| Frequency: | 600 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 400 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 0.69877 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.17469 | $\%$ |


| Antenna Make | Model | Height <br> (feet) $)$ | Orientation <br> (degrees true) $)$ | ERP <br> $($ Watts $)$ | Max Power <br> Density <br> $(\boldsymbol{\mu W / c m})$ | Percent of <br> MPE | Max Power <br> Density <br> $\left(\boldsymbol{\mu W W} / \mathbf{c m}^{2}\right)$ | Percent of <br> MPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RFS | APXVAARR24_43-U-NA20 | 192 | 50 | 2501 | 0.460768 | 0.115192 | 0.471663 | 0.117916 |
| RFS | APXVAARR24_43-U-NA20 | 192 | 150 | 2501 | 0.460768 | 0.115192 | 0.471663 | 0.117916 |
| RFS | APXVAARR24_43-U-NA20 | 192 | 270 | 2501 | 0.460768 | 0.115192 | 0.471663 | 0.117916 |

# Verizon Wireless <br> CT038/EastLymel I-95I X72 <br> Carrier Summary 

| Frequency: | 2100 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 4.18306 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.41831 | $\%$ |


| Antenna Make | Model |  |  |  | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Height (feet) | Orientation (degrees true) | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE |
| ANDREW | SBNHH-1D65B | 175 | 10 | 7732 | 2.169846 | 0.216985 | 3.292009 | 0.329201 |
| ANDREW | SBNHH-1D65B | 175 | 160 | 7732 | 2.169846 | 0.216985 | 3.292009 | 0.329201 |
| ANDREW | SBNHH-1D65B | 175 | 280 | 7732 | 2.169846 | 0.216985 | 3.292009 | 0.329201 |

# Verizon Wireless <br> CT038/EastLyme/ I-95/ X72 <br> Carrier Summary 

| Frequency: | 1900 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 1000 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 3.64114 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.36411 | $\%$ |


| Antenna Make | Model |  |  |  | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Height (feet) | Orientation (degrees true) | $\begin{aligned} & \text { ERP } \\ & \text { (Watts) } \end{aligned}$ | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE |
| ANDREW | SBNHH-1D65B | 175 | 10 | 4583 | 2.577670 | 0.257767 | 3.289129 | 0.328913 |
| ANDREW | SBNHH-1D65B | 175 | 160 | 4583 | 2.577670 | 0.257767 | 3.289129 | 0.328913 |
| ANDREW | SBNHH-1D65B | 175 | 280 | 4583 | 2.577670 | 0.257767 | 3.289129 | 0.328913 |

# Verizon Wireless <br> CT038/EastLymel I-95/ X72 <br> Carrier Summary 

| Frequency: | 751 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 500.67 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 1.48268 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.29614 | $\%$ |


| Antenna Make | Model |  |  |  | On Axis |  | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Height (feet) | Orientation (degrees true) | ERP (Watts) | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE | Max Power Density ( $\mu \mathrm{W} / \mathrm{cm}^{2}$ ) | Percent of MPE |
| ANDREW | SBNHH-1D65B | 175 | 10 | 2043 | 0.463551 | 0.092587 | 0.769871 | 0.153769 |
| ANDREW | SBNHH-1D65B | 175 | 160 | 2043 | 0.463551 | 0.092587 | 0.769871 | 0.153769 |
| ANDREW | SBNHH-1D65B | 175 | 280 | 2043 | 0.463551 | 0.092587 | 0.769871 | 0.153769 |

# Verizon Wireless <br> CT038/EastLymel I-95/ X72 <br> Carrier Summary 

| Frequency: | 850 | MHz |
| :--- | :---: | :--- |
| Maximum Permissible Exposure (MPE): | 566.67 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Maximum power density at ground level: | 1.33919 | $\mu \mathrm{~W} / \mathrm{cm}^{2}$ |
| Highest percentage of Maximum Permissible Exposure: | 0.23633 | $\%$ |


| Antenna Make | Model | Height <br> (feet) | Orientation <br> (degrees true) | ERP <br> $($ Watts $)$ | Max Power <br> Density <br> $\left(\boldsymbol{\mu W} / \mathbf{c m}^{2}\right)$ | Percent of <br> MPE | Max Power <br> Density <br> $\left(\boldsymbol{\mu W} / \mathbf{c m}^{2}\right)$ | Percent of <br> MPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Antel | LPA-80080-4CF | 175 | 10 | 1423 | 0.933901 | 0.164806 | 0.976653 | 0.172351 |
| Antel | LPA-80080-4CF | 175 | 40 | 1423 | 0.933901 | 0.164806 | 0.976653 | 0.172351 |
| Antel | LPA-80080-4CF | 175 | 160 | 1423 | 0.933901 | 0.164806 | 0.976653 | 0.172351 |
| Antel | LPA-80080-4CF | 175 | 160 | 1423 | 0.933901 | 0.164806 | 0.976653 | 0.172351 |
| Antel | LPA-80080-4CF | 175 | 280 | 1423 | 0.933901 | 0.164806 | 0.976653 | 0.172351 |
| Antel | LPA-80080-4CF | 175 | 280 | 1423 | 0.933901 | 0.164806 | 0.976653 | 0.172351 |


[^0]:    tnxTower Report - version 8.0.5.0

[^1]:    *TIA-222-H Section 15.5 Applied

[^2]:    
    PAL
    TEP No. 248058.408525
    CCI BU No. 823529

[^3]:    
    

[^4]:    | Member Label | Direction | Start Magnitude[k/ftt,... End Magnitude[kftr,F,... Start Location[ft,\%] | End Location[ft,\%] |
    | :---: | :---: | :---: | :---: |
    | RISA-3D Version 17.0.2 | $[\mathrm{G}: 1 \ldots . . . . . . . . . . . \mid$ IRISA-3DICCI BU No. 823529.r3d] | Page 78 |  |

