RACHEL A. SCHWARTZMAN

Please Reply To: Bridgeport Writer's Direct Dial: <u>(203) 337-4110</u> E-Mail: rschwartzman@cohenandwolf.com

September 8, 2014

Attorney Melanie Bachman Acting Executive Director Connecticut Siting Council Ten Franklin Square New Britain, CT 06501

Re: Notice of Exempt Modification Wireless Solutions IV, LLC/T-Mobile co-location T-Mobile Site ID CT11636A 72 Boggy Hole Road, Old Lyme, Connecticut

Dear Attorney Bachman:

This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, Wireless Solutions IV, LLC owns the existing monopole telecommunications tower and related facility at 72 Boggy Hole Road in Old Lyme (41.322153/-72.307466). T-Mobile proposes to install three (3) new antennas and related equipment at this existing telecommunications facility in Old Lyme ("Old Lyme Facility"). Please accept this letter as notification, pursuant to R.C.S.A. §16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the First Selectwoman, Bonnie Reemsnyder, and the property owner, Michael Sanders.

The existing Old Lyme Facility consists of a 175-foot monopole tower.¹ T-Mobile plans to install three (3) antennas at a centerline of 175 feet. (See the plans revised to September 8, 2014 attached hereto as **Exhibit A**). T-Mobile will also mount three (3) remote radio units on the existing mast and install quad poles. The existing Old Lyme Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated August 28, 2014, and attached hereto as **Exhibit B**.

The planned modifications to the Old Lyme Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

¹ The Old Lyme Facility was approved at a height of 175 feet (Docket No. 209), which is consistent with this filing.

September 8, 2014 CT11636A Page 2

1. The proposed modification will not increase the height of the tower. T-Mobile's existing antennas are at a centerline of 175 feet; the replacement antennas will be installed at the same 175 foot level. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.

2. The proposed modifications will not require an extension on the site boundaries or lease area, as depicted on Sheet 2 of Exhibit A. T-Mobile's equipment will be located entirely within the existing compound area.

3. The proposed modification to the Facility will not increase the noise levels at the existing facility by six decibels or more.

4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated September 4, 2014, T-Mobile's operations would add 4.23% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 37.21% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed replacement antennas and equipment at the Old Lyme Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement of this exempt modification, T-Mobile shall commence construction approximately sixty days from the receipt of the Council's decision.

Sincerely,

Rachel A. Schwartzman, Esq.

cc: First Selectwoman Bonnie Reemsnyder, Town of Old Lyme
 Wireless Solutions IV, LLC
 Michael Sanders
 Sheldon J. Freincle, Northeast Site Solutions

1115 BROAD STREET P.O. BOX 1821 BRIDGEPORT, CT 06601-1821 TEL: (203) 368-0211 FAX: (203) 394-9901 158 DEER HILL AVENUE DANBURY, CT 06810 TEL: (203) 792-2771 FAX: (203) 791-8149 320 POST ROAD WEST WESTPORT, CT 06880 TEL: (203) 222-1034 FAX: (203) 227-1373 657 ORANGE CENTER ROAD ORANGE, CT 06477 TEL: (203) 298-4066 FAX: (203) 298-4068

EXHIBIT A

EXHIBIT B

STRUCTURAL ANALYSIS REPORT MONOPOLE TOWER

Site ID: CT11636A Site Name: Wireless Solutions Old Lyme 72 Boggy Hole Rd, Old Lyme, CT

Prepared By: Atlantis Group, Inc. 1340 Centre Street, Suite 212 Newton, Massachusetts 02459 Phone: 617-965-0789, Fax: 617-965-0103

CT11636A–Structural Analysis

CONTENTS

1.0 - SUBJECT AND REFERENCES

2.0 - PROPOSED ADDITION

3.0 - CODES AND LOADING

4.0 - STANDARD CONDITIONS FOR ENGINEERING SERVICES ON EXISTING STRUCTURES

5.0 - ANALYSIS AND ASSUMPTIONS

6.0 - RESULTS AND CONCLUSION

APPENDIX

A – CALCULATIONS

CT11636A–Structural Analysis

1.0 SUBJECT AND REFERENCES

The purpose of this analysis is to evaluate the structural capacity of the existing 175 feet monopole tower, located at 72 Boggy Hole Rd, Old Lyme, CT, for the alteration and addition of wireless telecommunication appurtenances proposed by T-Mobile.

The structural analysis of the site is based on the following documents provided to us:

1. Structural Analysis Report prepared by Centek Engineering, Inc., Centek project No. 12001, dated September 21, 2012.

- 2. Structural Analysis Report by Atlantis Group dated February 2014.
- 3. Existing and proposed antenna information provided by T-Mobile.

1.1 <u>STRUCTURE</u>

The subject tower is a 175 foot monopole consisting of 5 polygon, tubular sections manufactured by Engineer Endeavors, Inc. Please refer to the tower elevation drawing in Appendix A for details about the tower geometry and analyzed antenna loading.

2.0 EXISTING AND PROPOSED CONFIGURATION

Antennas and Appurtenances:

The analysis is based on the following existing and proposed appurtenances:

CT11636A-Structural Analysis

Existing Configuration of T-MOBILE Appurtenances:

	RAD				
Sector	Center	Antenr	Mount	Feed Lines	
	(ft.)				
Alpha	175	GSM/UMTS Antenna	(1) AIR21 B2A/B4P	Low	(12) 1 5/8"
		LTE Antenna	(1) AIR21 B4A/B2P (1)	Profile	+
		TMA	ddB4	platform	(1) 1 5/8"
Beta		GSM/UMTS Antenna	(1) AIR21 B2A/B4P		Hybrid cable
		LTE Antenna	(1) AIR21 B4A/B2P (1)		
		ТМА	ddB4		
Gamma		GSM/UMTS Antenna	(1) AIR21 B2A/B4P		
		LTE Antenna	(1) AIR21 B4A/B2P (1)		
		ТМА	ddB4		

Proposed Configuration of T-MOBILE Appurtenances:

Sector	RAD Center	Antenna &	ТМА	Mount	Feed Lines
Alpha	(rt.) 175	GSM/UMTS Antenna LTE Antenna TMA Commscope Quad Pole RRU	 (1) AIR21 B2A/B4P (1) AIR21 B4A/B2P (1) ddB4 (1) SBNHH-1D65C (1)RRUS-11 	Low Profile platform	(12) 1 5/8" + (1) 1 5/8" Hybrid cable
Beta		GSM/UMTS Antenna LTE Antenna TMA Commscope Quad Pole RRU	(1) AIR21 B2A/B4P (1) AIR21 B4A/B2P (1) ddB4 (1) SBNHH-1D65C (1)RRUS-11		
Gamma		GSM/UMTS Antenna LTE Antenna TMA Commscope Quad Pole RRU	 (1) AIR21 B2A/B4P (1) AIR21 B4A/B2P (1) ddB4 (1) SBNHH-1D65C (1)RRUS-11 		

Note that the existing and proposed lines are to be installed inside the tower.

1340 Centre Street, Suite 212 Newton, Massachusetts 02459 Phone: 617-965-0789 Fax: 617-965-0103

CT11636A-Structural Analysis

3.0 CODES AND LOADING

The tower was analyzed per ANSI/TIA-222-F as referenced by the 2005 Connecticut Building Code with 2013 Supplement, which is the adopted building code. The following wind loading was used in compliance with the standard for New London County, CT.

- Basic wind speed 90 mph (W) without ice [fastest-mile speed equivalent to 105 mph 3-second gust].
- Basic wind speed 78 mph (W_i) with 1/2" radial and escalating ice.
- The site is north of Interstate 95.

The following load combinations were used with wind blowing at 0°, 60° and 90°, measured from a line normal to the face of the tower.

- D + Dg + W
- D + Dg + I + W_i + 1.0Ti

D: Dead Load of structure and appurtenances, except guy wires W: Wind Load, without ice W_i: Wind Load with ice I: Ice Gravity Load Dg: Dead Load of guy assemblies

4.0 STANDARD CONDITIONS FOR ENGINEERING SERVICES ON EXISTING STRUCTURES

The analysis is based on the information provided to Atlantis Group and is assumed to be current and correct. Unless otherwise noted, the structure and the foundation system are assumed to be in good condition, free of defects and can achieve theoretical strength.

It is assumed that the structure has been maintained and shall be maintained during its service. The superstructure and the foundation system are assumed to be designed with proper engineering practice and fabricated, constructed and erected in accordance with the design documents. Atlantis Group will accept no liability which may arise due to any existing deficiency in design, material, fabrication, erection, construction, etc. or lack of maintenance.

Contractor should inspect the condition of the existing structure, mounts and connections and notify Atlantis Group for any discrepancies and deficiencies before proceeding with the construction.

1340 Centre Street, Suite 212 Newton, Massachusetts 02459 Phone: 617-965-0789 Fax: 617-965-0103

CT11636A-Structural Analysis

The evaluation results presented in this report are only applicable for the previously mentioned existing and proposed additions and alterations. Any deviation of the proposed equipment and placement, etc., will require Atlantis Group to generate an additional structural evaluation.

5.0 ANALYSIS and ASSUMPTIONS

The tower was analyzed by utilizing tnx-Tower, a non-linear 3-Dimensional finite element software, a product of Tower Numerics, Inc. Software output for this analysis is provided in Appendix-A of this report.

6.0 RESULTS and CONCLUSION

Based on an analysis per ANSI/TIA-222-F, the existing tower is found to have **adequate** structural capacity for the proposed changes by T-Mobile. For the aforementioned load combinations and as a maximum, the tower will be stressed to **99%** of capacity. The tower foundation system was found to have **adequate** structural strength.

Reactions:

Maximums	Atlantis Analysis	Design
Base Shear (kips)	36.6	54.5
Overturning Moment (ft-kips)	4435	7558

Therefore, the proposed additions and alterations by T-Mobile can be implemented with the conditions outlined in this report.

Should you have any questions or need any clarifications about this report, please contact us at (617) 965-0789.

Sincerely, Atlantis Group, Inc.

1340 Centre Street, Suite 212 Newton, Massachusetts 02459 Phone: 617-965-0789 Fax: 617-965-0103 **APPENDIX A**

CALCULATIONS

	Atlantis Group	^{Job:} 175' EEI MONC	POLE ANALY	SIS
A	1340 Centre St, Ste 212	Project: CT11636A - Ola	Lyme	
GROUP	Newton, MA 02459	Client: T-Mobile	Drawn by: PB	App'd:
	Phone: (617)965-0789	Code: TIA/EIA-222-F	Date: 08/28/14	Scale: NTS
	FAX: (617)213-5056	Path: Y:\Atlantis GrouphT-Mobile\CT11536	Al2014-08 Analysis/tmcCalcs\175MP.e	Dwg No. E-1

	Atlantis Group	^{Job:} 175' EEI MONC	POLE ANALY	SIS
Λ	1340 Centre St. Ste 212	Project: CT11636A - Old	Lyme	
G R O U P	Newton MA 02459	Client: T-Mobile	Drawn by: PB	App'd:
	Phone: (617)965-0789	Code: TIA/EIA-222-F	Date: 08/28/14	Scale: NTS
	FAX: (617)213-5056	Path: Y:VAtlantis Group/T-Mobile/CT11636.	Al2014-08 AnalysisltnxCalcs\175MP.e	Dwg No. E-7

Λ	Job		Page
G R O U P		175' EEI MONOPOLE ANALYSIS	1 of 5
Atlantis Group	Project		Date
1340 Centre St, Suite 212		CT11636A - Old Lyme	08:32:37 08/28/14
Newton, MA 02459	Client		Designed by
Phone: (617)965-0789 FAX: (617)213-3123		T-Mobile	PB

	Load Comb	pinations
a i		
Comb.	Description	
<u>NO.</u>	D 101	and a good a
1	Dead Only	
2	Dead+wind 0 deg - No Ice	
3	Dead+wind 30 deg - No Ice	
4	Dead+Wind 00 deg - No Ice	
5	Dead+Wind 90 deg - No Ice	
7	Dead+Wind 120 deg - No Ice	
0	Dead+Wind 180 deg No lee	
0	Dead+Wind 210 deg No Ice	
10	Dead+Wind 240 deg - No Ice	
11	Dead+Wind 270 deg - No Ice	
12	Dead+Wind 300 deg - No Ice	
13	Dead+Wind 330 deg - No Ice	
14	Dead+Ice+Temp	
15	Dead+Wind 0 deg+Ice+Temp	
16	Dead+Wind 30 deg+Ice+Temp	
17	Dead+Wind 60 deg+Ice+Temp	
18	Dead+Wind 90 deg+Ice+Temp	
19	Dead+Wind 120 deg+Ice+Temp	
20	Dead+Wind 150 deg+Ice+Temp	
21	Dead+Wind 180 deg+Ice+Temp	
22	Dead+Wind 210 deg+Ice+Temp	
23	Dead+Wind 240 deg+Ice+Temp	
24	Dead+Wind 270 deg+Ice+Temp	
25	Dead+Wind 300 deg+Ice+Temp	
26	Dead+Wind 330 deg+Ice+Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 30 deg - Service	
29	Dead+Wind 60 deg - Service	
30	Dead+Wind 90 deg - Service	
31	Dead+Wind 120 deg - Service	
32	Dead+Wind 150 deg - Service	
33	Dead+Wind 180 deg - Service	
34	Dead+Wind 210 deg - Service	
35	Dead+Wind 240 deg - Service	
36	Dead+Wind 270 deg - Service	
37	Dead+Wind 300 deg - Service	
38	Dead+Wind 330 deg - Service	

Maximum Reactions

Location	Condition	Gov. Load Comb.	Vertical Ib	Horizontal, X lb	Horizontal, 2 lb
Pole	Max. Vert	21	73039.31	0.00	-30555.32
	Max. H _x	11	63958.97	36652.99	-0.00
	Max. Hz	2	63958.97	-0.00	36652.97
	Max. M _x	2	4432.00	-0.00	36652.97
	Max. Mz	5	4433.74	-36652.99	-0.00
	Max. Torsion	23	1.56	26461.70	-15277.66
	Min. Vert	1	63958.97	0.00	0.00
	Min. H _x	5	63958.97	-36652.99	-0.00
	Min. Hz	8	63958.97	-0.00	-36652.97

G R O U P	Job 175' EEI MONOPOLE ANALYSIS	Page 2 of 5
Atlantis Group 1340 Centre St, Suite 212	Project CT11636A - Old Lyme	Date 08:32:37 08/28/14
Newton, MA 02459 Phone: (617)965-0789 FAX: (617)213-3123	Client T-Mobile	Designed by PB

Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
	Load	Ib	Ib	Ib
	Comb.			
Min. M _x	8	-4435.01	-0.00	-36652.97
Min. Mz	11	-4433.30	36652.99	-0.00
Min. Torsion	17	-1.56	-26461.70	15277.66
	Condition Min. M _x Min. M _z Min. Torsion	Condition Gov. Load Min. M _x 8 Min. M _z 11 Min. Torsion 17	Condition Gov. Vertical Load Ib Comb. Ib Min. M _x 8 -4435.01 Min. M _z 11 -4433.30 Min. Torsion 17 -1.56	Condition Gov. Vertical Horizontal, X Load Ib Ib Ib Comb. Nin. Mx 8 -4435.01 -0.00 Min. Mz 11 -4433.30 36652.99 Min. Torsion 17 -1.56 -26461.70

Tower Mast Reaction Summary

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	lb	lb	ТЬ	kip-ft	kip-ft	kip-ft
Dead Only	63958.97	0.00	0.00	1.45	-0.22	0.00
Dead+Wind 0 deg - No Ice	63958.97	0.00	-36652.97	-4432.00	-0.22	0.38
Dead+Wind 30 deg - No Ice	63958.97	18326.49	-31742.40	-3838.02	-2216.98	1.08
Dead+Wind 60 deg - No Ice	63958.97	31742.42	-18326.49	-2215.25	-3839.76	1.49
Dead+Wind 90 deg - No Ice	63958.97	36652.99	0.00	1.51	-4433.74	1.50
Dead+Wind 120 deg - No Ice	63958.97	31742.42	18326.49	2218.26	-3839.76	1.11
Dead+Wind 150 deg - No Ice	63958.97	18326.49	31742.40	3841.04	-2216,98	0.42
Dead+Wind 180 deg - No Ice	63958.97	0.00	36652.97	4435.01	-0.22	-0.38
Dead+Wind 210 deg - No Ice	63958.97	-18326.49	31742.40	3841.04	2216.54	-1.08
Dead+Wind 240 deg - No Ice	63958.97	-31742.42	18326.49	2218.26	3839.32	-1.49
Dead+Wind 270 deg - No Ice	63958.97	-36652.99	0.00	1.51	4433.30	-1.50
Dead+Wind 300 deg - No Ice	63958.97	-31742.42	-18326.49	-2215.25	3839.32	-1.11
Dead+Wind 330 deg - No Ice	63958.97	-18326.49	-31742.40	-3838.02	2216.54	-0.42
Dead+Ice+Temp	73039.31	0.00	0.00	2.18	-0.62	0.00
Dead+Wind 0 deg+Ice+Temp	73039.31	-0.00	-30555.32	-3789.45	-0.64	0.43
Dead+Wind 30 deg+Ice+Temp	73039.31	15277.67	-26461.69	-3281.45	-1896.51	1.15
Dead+Wind 60 deg+Ice+Temp	73039.31	26461.70	-15277.66	-1893.58	-3284.38	1.56
Dead+Wind 90 deg+Ice+Temp	73039.31	30555.34	-0.00	2.28	-3792.38	1.55
Dead+Wind 120 deg+Ice+Temp	73039.31	26461.70	15277.66	1898.15	-3284.38	1.12
Dead+Wind 150 deg+Ice+Temp	73039.31	15277.67	26461.69	3286.02	-1896.51	0.40
Dead+Wind 180 deg+Ice+Temp	73039.31	-0.00	30555.32	3794.01	-0.64	-0.43
Dead+Wind 210 deg+Ice+Temp	73039.31	-15277.67	26461.69	3286.02	1895.23	-1.15
Dead+Wind 240 deg+Ice+Temp	73039.31	-26461.70	15277.66	1898.15	3283.11	-1.56
Dead+Wind 270 deg+Ice+Temp	73039.31	-30555.34	-0.00	2.28	3791.10	-1.55
Dead+Wind 300 deg+Ice+Temp	73039.31	-26461.70	-15277.66	-1893.58	3283.11	-1.12
Dead+Wind 330 deg+Ice+Temp	73039.31	-15277.67	-26461.69	-3281.45	1895.23	-0.40
Dead+Wind 0 deg - Service	63958.97	0.00	-16290.21	-1969.70	-0.22	0.17
Dead+Wind 30 deg - Service	63958.97	8145.11	-14107.74	-1705.61	-985.83	0.48
Dead+Wind 60 deg - Service	63958.97	14107.74	-8145.11	-984 09	-1707 35	0.66
Dead+Wind 90 deg - Service	63958.97	16290.22	0.00	1.51	-1971 44	0.67
Dead+Wind 120 deg - Service	63958.97	14107.74	8145.11	987.12	-1707.35	0.49
Dead+Wind 150 deg - Service	63958.97	8145.11	14107.74	1708.63	-985.83	0.19
Dead+Wind 180 deg - Service	63958.97	0.00	16290 21	1972.72	-0.22	-0.17
Dead+Wind 210 deg - Service	63958.97	-8145.11	14107 74	1708 63	985 39	-0.48
Dead+Wind 240 deg - Service	63958.97	-14107 74	8145 11	987 12	1706 90	-0.66
Dead+Wind 270 deg - Service	63958.97	-16290 22	0.00	1 51	1970 99	-0.00
Dead+Wind 300 deg - Service	63958.97	-14107 74	-8145 11	-984 09	1706.90	-0.07
Dead+Wind 330 deg - Service	63958.97	-8145.11	-14107.74	-1705.61	985.39	-0.19

Maximum Tower Deflections - Service Wind

	JOB 175' EELMONOPOLE ANALYSIS	Page 3 of 5
GROUP		
Atlantis Group	Project	Date
1340 Centre St, Suite 212	CT11636A - Old Lyme	08:32:37 08/28/14
Newton, MA 02459	Client	Designed by
FAX: (617)213-3123	I-Mobile	PB

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	٥	0
L1	175 - 154.87	29.242	33	1.5722	0.0050
L2	159.12 - 116.289	24.106	33	1.4922	0.0025
L3	121.708 - 74.1693	13.618	33	1.1251	0.0010
L4	80.8281 - 33.3281	5.740	33	0.6895	0.0004
L5	41,1589 - 0	1.461	33	0.3191	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	o	0	ft
175'	(2) Ericsson AIR21 w. Mtg Pipe	33	29.242	1.5722	0.0050	24450
165'	(2) LPA-80080-4CF-EDIN-x w.	33	25.983	1.5263	0.0033	12225
	Mtg PIpe					
155'	(2) APXV18-206516S-C w.	33	22.821	1.4632	0.0021	7237
	MtgPipe					
145'	(2) DUO1417-8686 w/Mount Pipe	33	19.823	1.3764	0.0014	6315
143'6"	TT19-08BP111-001 TMA	33	19.389	1.3618	0.0014	6197
142'	TT19-08BP111-001 TMA	33	18.959	1.3469	0.0013	6083

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
_	ft	in	Comb.	o	0
L1	175 - 154.87	65.650	8	3.5228	0.0112
L2	159.12 - 116.289	54.138	8	3.3489	0.0058
L3	121.708 - 74.1693	30.598	8	2.5274	0.0024
L4	80.8281 - 33.3281	12.901	8	1.5494	0.0010
L5	41.1589 - 0	3.284	8	0.7172	0.0004

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	o	ft
175'	(2) Ericsson AIR21 w. Mtg Pipe	8	65.650	3.5228	0.0112	11112
165'	(2) LPA-80080-4CF-EDIN-x w. Mtg PIpe	8	58.345	3.4235	0.0076	5555
155'	(2) APXV18-206516S-C w. MtgPipe	8	51.256	3.2846	0.0048	3279
145'	(2) DUO1417-8686 w/Mount Pipe	8	44.529	3.0913	0.0033	2846
143'6"	TT19-08BP111-001 TMA	8	43.555	3.0586	0.0031	2791
142'	TT19-08BP111-001 TMA	8	42.591	3.0251	0.0030	2738

G R O U P	Job Project 2 Client	175' EEI MONOPOLE ANALYSIS	Page 4 of 5	
Atlantis Group 1340 Centre St, Suite 212	Project	CT11636A - Old Lyme	Date 08:32:37 08/28/14	
Newton, MA 02459 Phone: (617)965-0789 FAX: (617)213-3123	Client	T-Mobile	Designed by PB	

Base Plate Design Data

Plate	Number	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling	Ratio
Thickness	of Anchor Bolts	Size	Allowable Ratio Bolt	Allowable Ratio Bolt	Allowable Ratio Plate	Allowable Ratio Stiffener	Condition	
			Tension	Compression	Stress	Stress		
in		in	1Ъ	Ib	ksi	ksi		
2.5000	32	2,2500	86701.87	90698.67	59.870		Plate	1.33
			131210.58	217809.56	45.000			1
			0.66	0.42	1.33			

Compression Checks

	Pole Design Data									
Section No.	Elevation	L	Lu	Kl/r	F_a	A	Actual P	Allow. Pa	Ratio P	
	ft	ft	ft		ksi	in ²	lb	1b ·	P_a	
L1	175 - 154.87 (1)	20'1-9/16'	175'	210.4	3.374	16,7330	-7186.34	56451.20	0.127	
L2	154.87 - 116,289 (2)	42'9-31/3 2"	175'	159.0	5.905	44.2770	-14297.50	261473.00	0.055	
L3	116.289 - 74.1693 (3)	47'6-15/3 2"	175'	126.2	9.373	74.3740	-26385.10	697074.00	0.038	
L4	74.1693 - 33.3281 (4)	47'6"	175'	105.6	13.397	100.0340	-42493.80	1340150.00	0.032	
L5	33.3281 - 0 (5)	41'1-29/3 2"	175'	90.4	18.191	129.8440	-63948.80	2362020.00	0.027	

Pole Bending Design Data

Section No.	Elevation	Actual M _x	Actual fbx	Allow. F_{bx}	Ratio f _{bx}	Actual My	Actual f _{by}	Allow. F_{by}	Ratio f _{by}
	ft	kip-ft	ksi	ksi	F_{bx}	kip-ft	ksi	ksi	F_{by}
L1	175 - 154.87 (1)	113.91	-11.760	39.000	0.302	0.00	0.000	39.000	0.000
L2	154.87 - 116.289 (2)	817.92	-24.202	39.000	0.621	0.00	0.000	39.000	0.000
L3	116.289 - 74.1693 (3)	1835.89	-25.686	39.000	0.659	0.00	0.000	39.000	0.000
L4	74.1693 - 33.3281 (4)	3018.43	-26.246	39.000	0.673	0.00	0.000	39.000	0.000
L5	33.3281 - 0 (5)	4435.02	-25.420	39.000	0.652	0.00	0.000	39.000	0.000

Pole Interaction Design Data

G R O U P	dof	175' EEI MONOPOLE ANALYSIS	Page 5 of 5
Atlantis Group 1340 Centre St, Suite 212	Project	CT11636A - Old Lyme	Date 08:32:37 08/28/14
Newton, MA 02459 Phone: (617)965-0789 FAX: (617)213-3123	Client	T-Mobile	Designed by PB

Section Elevation No.		Ratio P	Ratio fbr	Ratio f _{by}	Comb. Stress	Allow. Stress	Criteria
ft	Pa	F _{bx}	F _{bv}	Ratio	Ratio		
L1	175 - 154.87 (1)	0.127	0.302	0.000	0.429	1.333	H1-3 🖌
L2	154.87 - 116.289 (2)	0.055	0.621	0.000	0.675	1.333	Н1-3 🖌
L3	116.289 - 74.1693 (3)	0.038	0.659	0.000	0.696	1.333	H1-3 🖌
L4	74.1693 - 33.3281 (4)	0.032	0.673	0.000	0.705	1.333	н1-3 🗸
L5	33.3281 - 0 (5)	0.027	0.652	0.000	0.679	1.333	H1-3 🖌

Section Capacity Table

Section No.	Elevation ft	Component Type	Critical Element	P Ib	SF*P _{allow} Ib	% Capacity	Pass Fail
L1	175 - 154.87	Pole	1	-7186.34	75249.45	32.2	Pass
L2	154.87 - 116.289	Pole	2	-14297.50	348543.49	50.7	Pass
L3	116.289 - 74.1693	Pole	3	-26385.10	929199.60	52.2	Pass
L4	74.1693 - 33.3281	Pole	4	-42493.80	1786419.88	52.9	Pass
L5	33.3281 - 0	Pole	5	-63948.80	3148572.53	50.9	Pass
						Summary	
					Pole (L4)	52.9	Pass
					Base Plate	99.8	Pass
					RATING =	99.8	Pass

Check Foundations

Design OTM: 7803 ft-kip

Proposed OTM: 4435 ft-kip

Foundations are OK

EXHIBIT C

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CT11636A

Wireless Solutions Old Lyme 72 Boggy Hole Road Old Lyme, CT 06371

September 4, 2014

EBI Project Number: 62140922

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general public allowable limit:	37.21 %			

September 4, 2014

T-Mobile USA Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 06002

Emissions Analysis for Site: CT11636A - Wireless Solutions Old Lyme

EBI Consulting was directed to analyze the proposed T-Mobile facility located at **72 Boggy Hole Road**, **Old Lyme**, **CT**, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limit for the 700 MHz Band is 467 μ W/cm², and the general population exposure limit for the PCS and AWS bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at **72 Boggy Hole Road, Old Lyme, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 GSM channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
- 2) 2 UMTS channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 3) 2 LTE channels (AWS Band 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
- 5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.

- 6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 7) The antennas used in this modeling are the Ericsson AIR21 B4A/B2P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR21 B4A/B2P has a maximum gain of 15.9 dBd at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of 14.6 dBd at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antenna mounting height centerline of the proposed antennas is **175 feet** above ground level (AGL).
- Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	В	Sector:	C
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	175	Height (AGL):	175	Height (AGL):	175
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	2	Channel Count	2	# PCS Channels:	2
Total TX Power:	120	Total TX Power:	120	# AWS Channels:	120
ERP (W):	1,906.06	ERP (W):	1,906.06	ERP (W):	1,906.06
Antenna A1 MPE%	0.59	Antenna B1 MPE%	0.59	Antenna C1 MPE%	0.59
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P	Make / Model:	Ericsson AIR21 B4A/B2P
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	175	Height (AGL):	175	Height (AGL):	175
Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)	Frequency Bands	1900 MHz(PCS) / 2100 MHz (AWS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power:	120	Total TX Power:	120	Total TX Power:	120
ERP (W):	1,906.06	ERP (W):	1,906.06	ERP (W):	1,906.06
Antenna A2 MPE%	0.59	Antenna B2 MPE%	0.59	Antenna C2 MPE%	0.59
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	175	Height (AGL):	175	Height (AGL):	175
Frequency Bands	700 Mhz	Frequency Bands	700 Mhz	Frequency Bands	700 Mhz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	445.37	ERP (W):	445.37	ERP (W):	445.37
Antenna A3 MPE%	0.23	Antenna B3 MPE%	0.23	Antenna C3 MPE%	0.23

Site Composite MPE%				
Carrier	MPE%			
T-Mobile	4.23			
Nextel	3.27 %			
AT&T	17.87 %			
Verizon Wireless	11.84 %			
Site Total MPE %:	37.21 %			

T-Mobile Sector 1 Total:	1.41 %
T-Mobile Sector 2 Total:	1.41 %
T-Mobile Sector 3 Total:	1.41 %
Site Total:	37.21 %

21 B Street ' Burlington, MA 01803 Tel: (781) 273.2500 Fax: (781) 273.3311

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)
Sector 1:	1.41 %
Sector 2:	1.41 %
Sector 3 :	1.41 %
T-Mobile Total:	4.23 %
Site Total:	37.21 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **37.21%** of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

let - M

Scott Heffernan RF Engineering Director

EBI Consulting 21 B Street Burlington, MA 01803`