Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

June 11, 2024

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 2 Tindall Avenue, Norwalk, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas on an existing tower and related equipment on the ground, near the base of the tower. The original tower was approved by the City of Norwalk ("City") in June of 2015 the Siting Council (the "Council") approved Petition No. 1156, a proposal by Eversource to extend the height of its existing tower from 120 feet to 150 feet in height. Construction of these improvements was completed on June 25, 2016. Cellco's shared use of the tower was approved by the Council in February of 2020 (TS-VER-103-200128). A copy of the original tower approval, Petition No. 1156 approval and staff report and Cellco's TS-VER-103-200128 approval are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by installing three (3) new antennas and six (6) new interference mitigation filters ("Filters") on its existing antenna platform and mounting assemblies. A set of project plans showing Cellco's proposed facility modifications and the specifications for Cellco's new antenna and Filters are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Norwalk's Chief Elected Official and Land Use Officer. A copy of this letter is being sent to Eversource, the owner of the Property.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

28512270-v1

Boston | Hartford | New York | Washington, DC | Providence | Miami | Stamford | Wilmington | Philadelphia | Los Angeles | Albany | rc.com

Robinson+Cole

Melanie A. Bachman, Esq. June 11, 2024 Page 2

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's new antennas and Filters will be installed at the same height on the tower.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Included in <u>Attachment 3</u> is a Calculated Radio Frequency Emissions Report demonstrating that the proposed modified facility will comply with the FCC safety standards. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis Report ("MA"), the existing tower, tower foundation and antenna mounts can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely,

Kunie Mu

Kenneth C. Baldwin

Enclosures Copy to: Harry Rilling, Mayor Steven Kleppin, Director Planning and Zoning Eversource, Property Owner Aleksey Tyurin

ATTACHMENT 1

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950

E-Mail: siting.council@ct.gov www.ct.gov/csc

CERTIFIED MAIL RETURN RECEIPT REQUESTED

June 15, 2015

John R. Morissette Manager, Transmission Siting & Permitting Eversource Energy P.O. Box 270 Hartford, CT 06141-0270

RE: **PETITION NO. 1156** – Eversource Energy petition for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the proposed replacement of an existing 120-foot tall telecommunications facility with a new 150-foot telecommunications facility located at property owned by Eversource Energy used as a service center and maintenance yard, 2 Tindall Avenue, Norwalk, Connecticut.

Dear Mr. Morissette:

At a public meeting held on June 11, 2015, the Connecticut Siting Council (Council) considered and ruled that the above-referenced proposal would not have a substantial adverse environmental effect, and pursuant to Connecticut General Statutes § 16-50k, would not require a Certificate of Environmental Compatibility and Public Need with the following conditions:

- Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed within three years from the date of the mailing of the Council's decision, this decision shall be void, and the facility owner/operator shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The facility owner/operator shall provide written notice to the Executive Director of any schedule changes as soon as is practicable;
- Any request for extension of the time period to fully construct the facility shall be filed with the Council not later than 60 days prior to the expiration date of this decision and shall be served on all parties and intervenors, if applicable, and the City of Norwalk;
- Unless otherwise approved by the Council, the existing tower shall be removed within 180 days of the installation and operation of the new lattice tower;
- The Council shall be notified in writing when the existing tower is removed and the new tower is operational;
- The final structural design drawings of the tower and foundation shall be submitted prior to construction;
- Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;

- The facility owner/operator shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v;
- This Declaratory Ruling may be transferred, provided the facility owner/operator/transferor is current with payments to the Council for annual assessments and invoices under Conn. Gen. Stat. §16-50v and the transferee provides written confirmation that the transferee agrees to comply with the terms, limitations and conditions contained in the Declaratory Ruling, including timely payments to the Council for annual assessments and invoices under Conn. Gen. Stat. §16-50v and the transferee agrees to the Council for annual assessments and conditions contained in the Declaratory Ruling, including timely payments to the Council for annual assessments and invoices under Conn. Gen. Stat. §16-50v; and
- If the facility owner/operator is a wholly owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the facility within 30 days of the sale and/or transfer.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the petition dated April 23, 2015.

Enclosed for your information is a copy of the staff report on this project.

Very truly yours, Robert Stein MAB

Robert Stein Chairman RS/MP/lm

Enclosure: Staff Report dated June 11, 2015

c: The Honorable Harry W. Rilling, Mayor, City of Norwalk Michael Greene, Director of Planning and Zoning, City of Norwalk

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

Petition No. 1156

Eversource

Tower Replacement

2 Tindall Avenue, Norwalk

Staff Report

June 11, 2015

On April 28, 2015, the Connecticut Siting Council (Council) received a petition (Petition) from The Connecticut Light and Power Company d/b/a Eversource Energy (Eversource) for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the proposed replacement of an existing telecommunications facility located in the City of Norwalk.

This Petition was field reviewed by Council member Dr. Barbara Bell and Michael Perrone of the Council staff on June 3, 2015. The following Eversource representatives also attended the field review: John Morissette, Project Manager, Transmission Siting; and Steven Florio, IT Telcom Engineer.; and Michael Libertine, Director of Siting & Permitting, All-Points Technology Corporation (representing Eversource).

Eversource currently owns and operates a 120-foot self-supporting lattice tower at 2 Tindall Avenue, Norwalk. This subject property is owned by Eversource and is currently used as a service center and maintenance yard. The existing tower (constructed in roughly the late 1960s) is currently used to operate two Eversource radio communications antennas.

Eversource is in the process of consolidating its service centers throughout the State of Connecticut, which requires the reconfiguration of its communications system. In Norwalk, this reconfiguration includes relocating five existing Eversource antennas currently located on the roof of the building at the NRG Norwalk Harbor Generating Station, a facility is that is now closed. These antennas are all currently located at 150-foot above ground level (agl). In addition, two Yankee Gas Service Company (i.e. part of Eversource Energy) antennas located at 9 Harbor Avenue, Norwalk would be relocated. Eversource's existing tower is not structurally cable of handling the new configuration. It is also not practical to reinforce the existing tower.

Thus, to accommodate this reconfiguration, Eversource seeks to remove the existing 120-foot self-supporting lattice tower and replace it with a new 150-foot self-supporting lattice tower approximately 325 feet to the east and on the same subject property. The proposed tower would be re-located to the eastern portion of the subject property to reduce the visual impact on the abutting property owned by the Clocktower Condominiums. The new location would also not disrupt the maintenance yard which can be quite active during a storm outage event. Furthermore, the existing tower has to remain until the new tower is installed and operational in order to maintain continuity of service.

Eversource would swap out its existing antennas and install new antennas and coaxial cables on the new tower to meet its needs for radio communications with field crews, paging services for local employees, and load management. Omni antennas would be installed at antenna centerline locations of 159-foot, 156-foot, 144-foot, 139-foot, 130-foot, 129-foot, 123-foot, and 121-foot levels of the tower to meet Eversource's

needs. The total height with appurtenances (or height to the top of the highest proposed antenna) would be 170 feet agl.

The proposed replacement tower would also serve as a microwave hub in the future to provide backhaul for a number of remote locations for Eversource. Accordingly, the preliminary microwave hub design is for a total of two six-foot diameter microwave dishes to be installed on the tower in the future. Eversource would file a Notice of Exempt Modification with the details of the microwave dish installation in the future.

To the north of the subject property is the State of Connecticut Metro-North Railroad (MNRR) right-of-way (ROW), and commercial properties are located on the opposite side of the tracks. The land use west of the subject property is commercial. Areas south and east of the subject property are residential.

The tower would be located within an irregular shaped compound in the northeast corner of the subject property adjacent to the MNRR ROW. In the unlikely event of a tower failure, the tower is designed to collapse upon itself and maintain the setback radius on the subject property and away from the abutting MNRR line.

The tower would be designed to accommodate up to four additional carriers. Eversource consulted with the City of Norwalk (City) regarding possible co-location of emergency services antennas on the proposed tower; however, the City does not plan to co-locate at this time. Eversource also offered space on the tower to MNRR. MNRR has not expressed an interest in co-locating at this time. The Council provided notice to the wireless telecommunications carriers to see if any are interested in co-locating at this time. On June 3, 2015, T-Mobile Northeast LLC indicated that it would not seek to co-locate on the facility in the foreseeable future. On June 4, 2015, Cellco Partnership d/b/a Verizon Wireless (Cellco) indicated that, while it does not have a lease in place with Eversource at this time, it is interested in co-locating on the tower. A preliminary analysis shows that the 110-foot level of the tower would be suitable for Cellco. No other wireless carriers have expressed an interest in co-locating at this time.

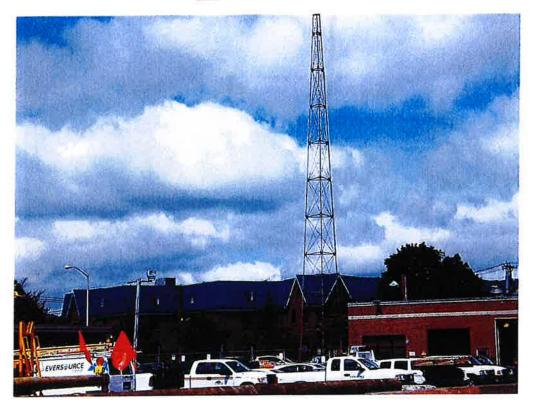
A Professional Engineer duly licensed in the State of Connecticut has certified that the proposed replacement tower would be structurally adequate to support the proposed loading. The maximum worst-case power density would be 19.5 percent of the applicable limit. This takes into account all of the proposed omni antennas.

The tower compound would have a seven-foot tall chain link fence without barbed wire. The chain link size would be the same or comparable to the existing fence on the subject property. Smaller anti-climb mesh and/or barbed wire would not be necessary for the tower compound because the subject property perimeter is already securely fenced. No new access would be necessary because the site is paved and has existing access already. Electric, telephone, and gas utilities would be trenched underground from the southern corner of the subject property to the fenced compound. The tower would have a 100-kW natural gas-fueled backup generator. The backup generator is sized to accommodate the needs of all future carriers as well as Eversource's needs. A natural gas-fueled generator is pipeline supplied, so it has virtually unlimited possible run time in an emergency.

The tower would be visible from about 91 acres within a two-mile radius. This is generally consistent with the existing site conditions associated with the existing tower. The majority of the views of the tower would occur from the areas within the immediate vicinity of the subject property, extending about 0.25 miles to the south and east and up to nearly 0.5 miles to the north and west. The new tower would be 30 feet taller than the existing tower and considerably more bulky, because it needs to support greater loading. The increase in the visual impact will be mitigated, however, by the commercial/industrial character of the area surrounding the tower site and the railroad ROW, especially along the approaches to the site from Main Street (north-south) and New Canaan Ave. (east-west).

No school or commercial child day care facilities are located within 250 feet of the subject property. The nearest school (Tracey Elementary School) is located at 20 Camp Street approximately 0.4 miles to the east. The nearest commercial child day care facility (Carousel Preschool Day Nursery) is located at 20 France Street, approximately 0.6 miles to the east. Neither of these locations would have views of the proposed facility. The only historic site on the National Register of Historic Places within a 0.5-mile radius is the Loth Joseph Company Building at 25 Grand Street. However, the new tower location would increase the distance from this property.

The site is paved and offers no significant wildlife habitat. The site is also just outside of the limits of the shaded area of the DEEP natural diversity database. The nearest Important Bird Area is Cove Island Park in Stamford, approximately six miles to the southwest. Further, the design of the tower would comply with the United States Fish and Wildlife Guidelines for Minimizing Impacts to Migratory Birds. The tower would not be lit or marked. No notice to the Federal Aviation administration would be required.


Notice was provided to the City of Norwalk and abutting property owners on or about the time of filing with the Council. No comments have been received.

Construction would begin as soon as possible and would be less than eight months in duration. Disassembly and removal of the existing tower would be completed as soon as practical following the completion of installation of all antenna systems on the replacement tower.

Staff recommends approval with the following conditions:

- Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed within three years from the date of the mailing of the Council's decision, this decision shall be void, and the facility owner/operator shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The facility owner/operator shall provide written notice to the Executive Director of any schedule changes as soon as is practicable;
- Any request for extension of the time period to fully construct the facility shall be filed with the Council not later than 60 days prior to the expiration date of this decision and shall be served on all parties and intervenors, if applicable, and the City of Norwalk;
- Unless otherwise approved by the Council, the existing tower shall be removed within 180 days of the installation and operation of the new lattice tower;
- The Council shall be notified in writing when the existing tower is removed and the new tower is operational;
- The final structural design drawings of the tower and foundation shall be submitted prior to construction; and
- Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function.

Existing Tower Location

Proposed Tower Location

Photo-simulation of Proposed Tower

Site with Existing and Proposed Tower Locations

STATE OF CONNECTICUT *CONNECTICUT SITING COUNCIL* Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950

E-Mail: siting.council@ct.gov www.ct.gov/csc

February 28, 2020

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **TS-VER-103-200128**- Cellco Partnership d/b/a Verizon Wireless request for an order to approve tower sharing at an existing telecommunications facility located at 2 Tindall Avenue, Norwalk, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on February 27, 2020, the Connecticut Siting Council (Council) ruled that the shared use of this existing tower site is technically, legally, environmentally, and economically feasible and meets public safety concerns, and therefore, in compliance with General Statutes § 16-50aa, the Council has ordered the shared use of this facility to avoid the unnecessary proliferation of tower structures with the following conditions:

- 1. Approval of any minor changes be delegated to Council staff;
- 2. Any deviation from the proposed installation as specified in the original tower share request and supporting materials with the Council shall render this decision invalid;
- 3. Any material changes to the proposed installation as specified in the original tower share request and supporting materials filed with the Council shall require an explicit request for modification to the Council pursuant to Connecticut General Statutes § 16-50aa, including all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65;
- 4. Not less than 45 days after completion of the proposed installation, the Council shall be notified in writing that the installation has been completed;
- 5. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by Verizon shall be removed within 60 days of the date the antenna ceased to function.
- 6. The validity of this action shall expire one year from the date of this letter; and
- 7. The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

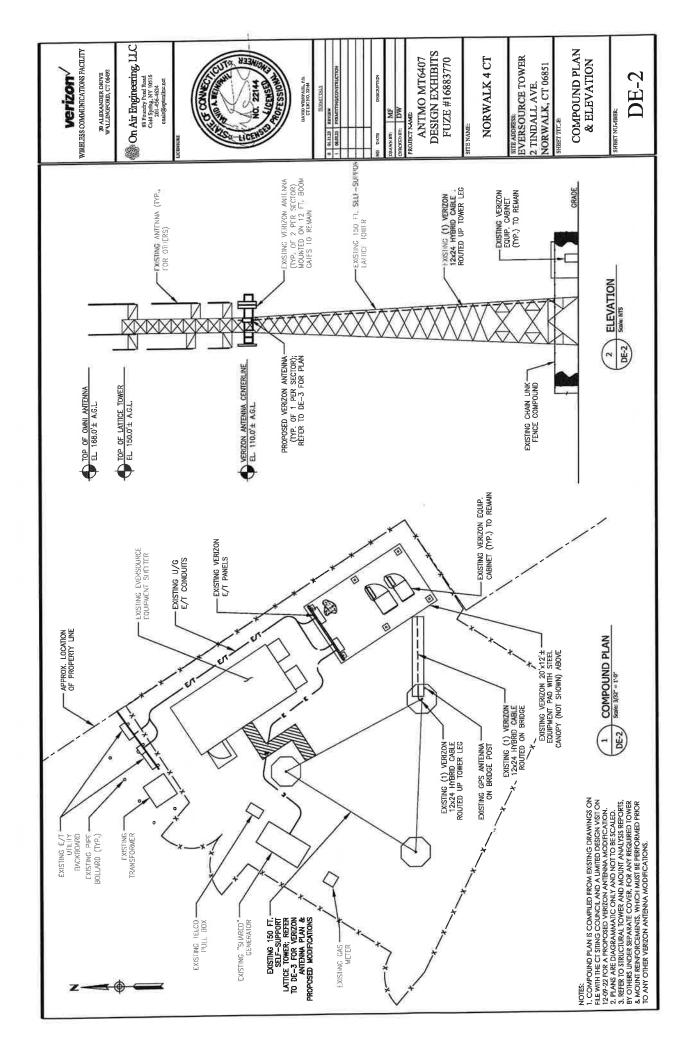
This decision is under the exclusive jurisdiction of the Council and applies only to this request for tower sharing dated January 27, 2020. This facility has been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower. Any deviation from the approved tower sharing request is enforceable under the provisions of Connecticut General Statutes § 16-50u.

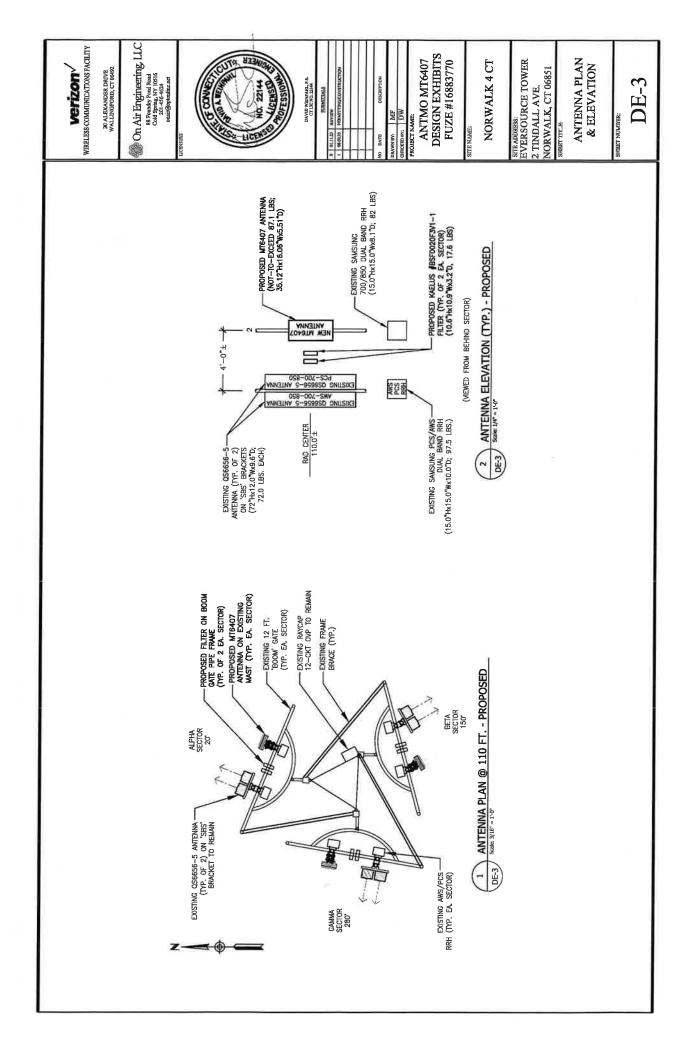
The proposed shared use is to be implemented as specified in your letter dated January 27, 2020, including the placement of all necessary equipment and shelters within the tower compound.

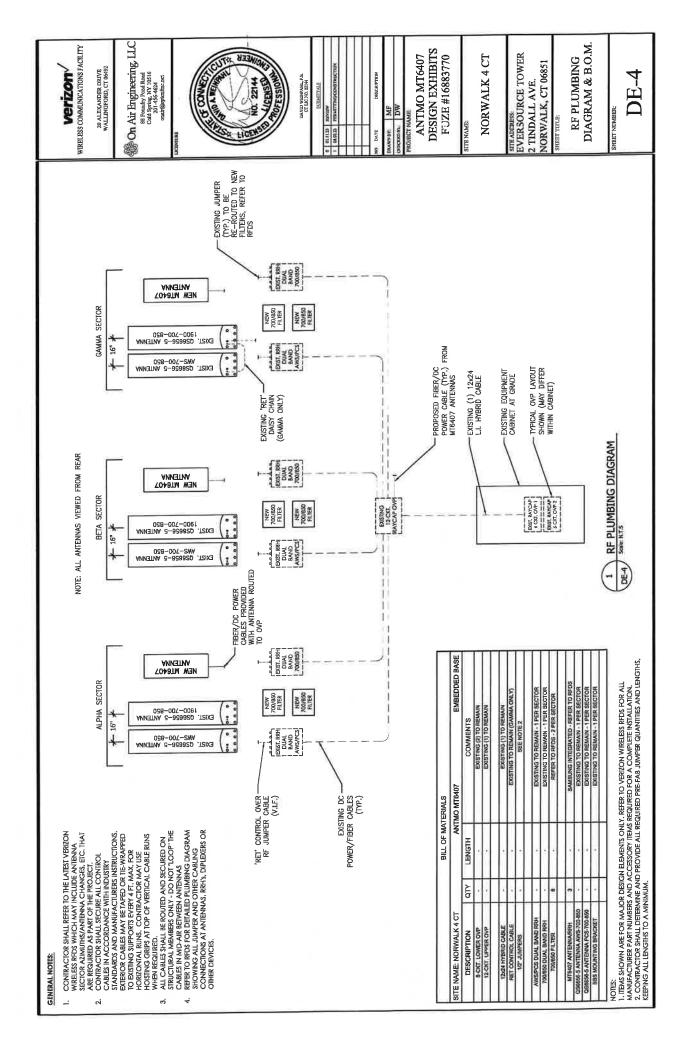
Please be advised that the validity of this action shall expire one year from the date of this letter.

Thank you for your attention and cooperation.

Sincerely,


Melanie Bachman Executive Director


MAB/IN/emr


c: The Honorable Harry W. Rilling, Mayor, City of Norwalk Steven Kleppin, Director of Planning & Zoning, City of Norwalk Eversource Energy, Tower and Property Owner

ATTACHMENT 2

VERIZON WRELESS COMACUNICATIONS FACILITY 22 ALEXANDER DRIVE WALLANGROUD, CT 06422	On Air Engineering LLC Strems, rvt 1016 Cald Spream, rvt 1016 2014 Sec.40A out Spryceller art LEDRAGE	The second	AC Z144 BALLERSED CERSES CE		MO DATHE DESCRIPTION DEALWHUNN MF CHROKED INY DW	PROJECT NAME ANTMO MT6407 DESIGN FYHTIBITS	FUZE #16883770	SITE NAME:	NORWALK 4 CT	EVERSOURCE TOWER 2 TINDALL AVE	NORWALK, CT 06851	TITLE SHEET	stret number.
	ILITY				SHEET INDEX	DE-1 TITLE SHEET DE-2 COMPOUND PLAN & ELEVATION		DE-4 RF PLUMBING DIAGRAM & B.O.M. DE-5 GENERAL CONSTRUCTION NOTES					
verizon	WIRELESS COMMUNICATIONS FACILITY	SITE NAME: NORWALK 4 CT	EVERSOURCE TOWER 2 TINDALL AVE. NORWALK, CT 06851	ANTENNA MODIFICATION	AERIAL MAP		でするというという		SITE				
	WIRELE					2 TINDALL AVE. NORWALK, CT 06651	CONN. LIGHT & POWER CO. 107 SELDEN ST.			41° 07' 31.10" N 73° 25' 17.61" W 57 FT.	WALTER CHARCZYNSKI (880) 306-1806	ALEX TYURIN (860) 550-3195	
		x			PR.	SITE ADDRESS:	PROPERTY OWNER:	TOWER OWNER/MGMT:	PARCEL ID:	COORDINATES: AMSL:	VERIZON CONSTRUCTION:	VERIZON REAL ESTATE:	

GENERAL CONSTRUCTION NOTES:		
1. CONTRACTOR SHALL NOT COMMENCE ANY WORK UNTIL HE OBTAINS, AT HIS OWN BRPENSE, ALL INSURBANCE REQUIRED BY <i>CELLCO PARIVERSHIP of DID</i> VERZON, THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMFANY.	TT. ERECTION SHALL BE DONE IN A WORKMANLIKE MANNER BY COMPETENT EXPERIENCED WORKMEN IN ACCORDANCE WITH APPLICABLE CODES AND THE BEYACCEPTED PRACTICE. ALL MBERS SHALL BE LAID PLUMB AND TRUE AS INDICATED ON THE DRAWINGS.	VETIZON WIRHLESS COMMUNICATIONS FACILITY
2. ALL WORK SHALL BE DONE IN ACCORDANCE WITH ALL APPLICABLE CODES AND REGULATIONS AND ALL LOCAL LAWS AND REGULATIONS, CURRENT EDITIONS.		ZO ALEXANDER DRIVE WALLINGFORD, CT 06492
 CONTRACTOR SHALL VISIT THE JOB SITE AND FAMILIARZE HIMSELF WITH ALL CONDITIONS AFFECTION THE REPORTSED WORK AND MARE REOVISIONS AS TO THE CONTRIDENCE CONTRACTOR SUM IN SERVICING FEED SAMINIA DAMACHIVERE 	AFFECTED BY THE WORK UNDER THIS CONTRACT, WORK SHALL CONFORM TO ALL O.S.H.A. REQUIREMENTS.	On Air Engineering, LLC
WITH ALL CONTRACT DOCUMENTS, FELD CONDITIONS AND DIMENSIONS INVESTIGATED INVESTIGAT	19. CONTRACTOR SHALL COORDINATE HIS WORK AND SCHEDULE HIS ACTIVITIES AND WORKING HOURS IN ACCORDANCE WITH THE REQUIREMENTS OF THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY.	88 Foruidy Fond Road Cold Sprog, NY 1016 201-156-4024 onair@optionline.net
4. CONTRACTOR SHALL FLEDONLER'S NON-NO THE COMMUNICACEMENT OF THORS. 4. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXSTING CONDITIONS AT THE STE FRIOR TO FABRICATION AND/OR INSTALLATION	20. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING HIS WORK WITH THE WORK OF OTHERS AS IT MAY RELATE TO RADIO EQUIPMENT, ANTIENINAS AND ANY OTHER PORTIONS OF THE WORK.	Deterior
OF ANY WORK IN THE CONINGCE AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS. SIGCONTRACTOR IS TO REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET, CONTRACTOR SHALL COORDINATE ALL WORK	2). CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN SPECTRORANCE WITH MANUFACTURERS RECOMMENDATIONS UNLESS SPECTICALLY INDICATED OR WHERE LOCAL CODES OR REGULATIONS MAY TAKE PRECEDENCE.	
SHOWN IN THESE OF DRAWINGS. CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALISUB-CONTRACTORS AND ALL RELATED PARTIES. THE DISE-CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SFECTFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.	22. CONIRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING SURFACES, EQUIPMENT, IMPROVEMENTS, PIPING, ANTENNA, AND ANTENNA, CABLES AND REPAIR ANY DAMAGE THAT OCCURS DUR NG CONSTRUCTION.	E NO. ZIH H
 CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL AND ELECTRICAL COMPONENTS AND PROVIDE ALL TIENS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECHICATIONS. 	23. CONTRACTOR SHALL REPAIR ALL EXSTING SURFACES DAMAGED DURING CONSTRUCTION SUCH THAT THEY MATCH AND BLEND WITH ADJACENT SURFACES.	LAVED WHATERAAL, F.A.
7. CONTRACTOR SHALL FURNISH ALL MATERIAL LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.	24. CONTRACTOR SHALL KEP CONTRACT AREA CLEAN, HAZARD FREE AND PROPOSE OF ALL DEBRIS AND VOID WABIN TO THE PROPINATION TO THE PROPERTY OF THE OWNERS SHALL BE REMOVED. LEAVE REMAINING ON THE PROPERTY OF THE OWNERS SHALL BE REMOVED. LEAVE PROMEES IN CLEAN CONTRIDUCTION AND FREE RIOM PARTY FORG, DUST, OR PROMEES OF CLEAN CONTRIDUCTION AND FREE RIOM PARTY SPORE, DUST, OR	ULICON 2014
8. CONTRACTOR SHALL OBTAIN AT HIS OWN EXPENSE ALL PERMITS AND ALL INSPECTIONS REQUIRED FROM FEDERAL AND STATE GOVERNMENTS, COUNTIES, MUNCIPATINES AND OTHER REGULATORY AGENCIES WHICH MAY BE REQUIRED FOR THE PROJECT.	MANTAINING ALLI TENSU DURING CONTRACTOR STATUE DE RESPONSELE DAR MANTAINING ALLI TENSU JUNIL COMPETEIONO STATUE REMOVE 25. BEFORE FINAL ACCEPTANCE OF THE WORK, CONTRACTOR SHALL REMOVE BALL BOUPMENT, THEOPOLARY VORKS, UNUSED AND USELESS MATERIALS,	
10. DETAILS ARE INTENDED TO SHOW END RESULT OF DESIGN. MINOR MODIFICATIONS MAY BE REGUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK.		PRANNEY: MG CHECKEDRY, DW FROJECT NAME:
 All MATERIAL PROVIDED BY CELLCO PARTNERSHIP (J/b/) VERIZON IS TO BE REVERVED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTOR RAIOR TO INSTILATION ANY DEFICIENCIES TO PROVIDED MATERIALS SHALL BE BROLIGHT TO THE CONSTRUCTION MANAGERS ATTENTION IMMEDIATELY. 		ANTMO MT6407 DESIGN EXHIBITS FUZE #16883770
12. THE MATERIALS INSTALLED IN THE WORK SHALL MEET THE REQUIREMENTS OF THE CONTRACT DOCUMENTS. NO SUBSTITUTIONS ARE ALLOWED.		SITE NAME
13. CONTRACTOR IS SOLELY RESPONSIBLE FOR THE MEANS AND METHODS OF CONTRUCTION, FOR SEQUENCISE AND PROCEDUREST OF BUED, AND TO ENSURE THE SAFETY OF THE EXERTING BUILDING AND ITS COMPONENT DURING. CONSTRUCTION. THIS INCLUDES I HE ADDITION OF WHATEVER SHORING, BRACING, INCREDIMINIC FIT, "MAX NEE INCREMENT,"		NORWALK 4 CT Steaddress: Eversolince towfr
14. CONTRACTOR SHALL COORDINATE ALL CIVIL, STRUCTURAL AND ELECTRICAL DRAWINGS FOR THE LOCATION OF ALL OPENINGS, RECESSES, BUILT-IN WORK, FIC.		2 TINDALL AVE. NORWALK, CT 06851
15. CONTRACTOR SHALL RECEVE CLARIFICATION IN WRITING AND SHALL RECEVE IN WRITING AUTHORZATION TO PROCEED BEFORE STARTING WORK ON ANY TEMS NOT CLEARLY DEFINED OR LIDENTIFIED BY THE CONTRACT DOCUMENTS.		BHEET TITLE: GENERAL CONSTRUCTION
14. CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ALL PRODUCTS OR ITEMS NOTED AS "EXISTING" WHICH ARE NOT FOUND TO BE IN THE FIELD.		NOTES
		SHRET NUMBRE. DE-5

I

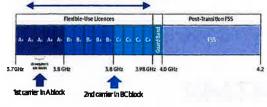
SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code: MT6407-77A



Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

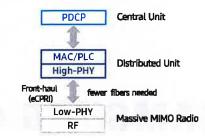
C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz/200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

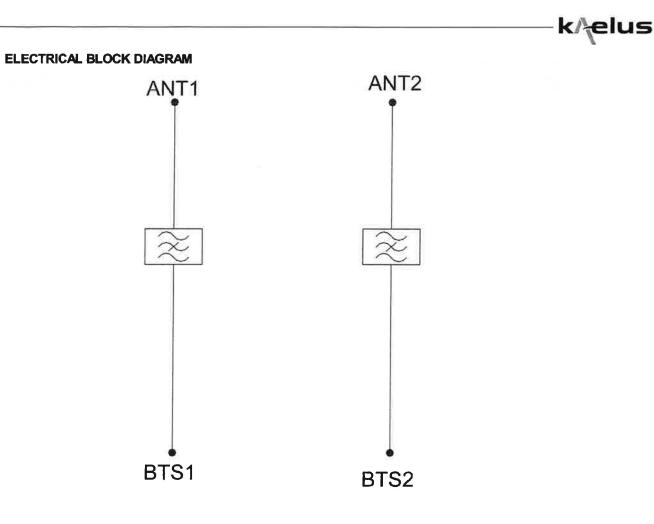
BSF0020F3V1-1

TWIN BANDSTOP 900MHZ INTERFERENCE MITIGATION FILTER

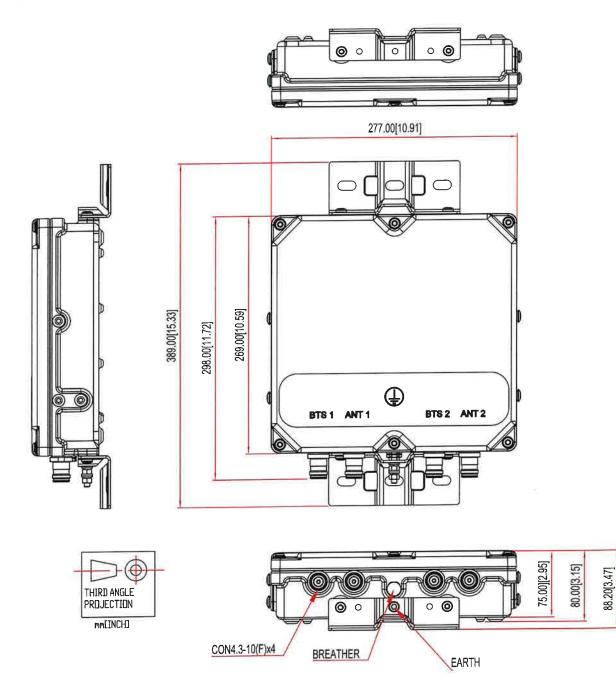
The BSF0020 is ideal for co-located 700, 850 and 900 networks. Utilising a 2,6MHz guardband the BSF0020 provides rejection of the 900 UL band while passing 700/850 UL and DL bands. Capable of being used in an outdoor environment the BSF0020 contains two identical bandstop filters, suitable for 2x2 MIMO configuration, offering excellent insertion loss, group delay and rejection.

FEATURES

- · Passes full 700 and 850 bands
- Low insertion loss
- Rejection of 900MHz uplink
- DC/AISG pass
- Twin unit
- · Dual twin mounting available


TECHNICAL SPECIFICATIONS

BAND NAME	700 PATH / 850 UPLINK PATH	850 DOWNLINK PATH					
Passband	698 - 849MHz	869 - 891.5MHz					
Insertion loss	0.1dB typical / 0.3dB maximum	0.5dB typical, 1.45dB maximum					
Return loss	24dB typical,	18dB minimum					
Maximum input power (Per Port)	100W average	200W average and 66W per 5MHz					
Rejection	53dB minimum @	894 1 - 896 5MHz					
ELECTRICAL							
Impedance	50C	hms					
Intermodulation products		g 20MHz Signal), with 2 x 43dBm carriers m with 2 x 43dBm					
DC / AISG							
Passband	0 - 1:	3MHz					
Insertion loss	0.3dB n	naximum					
Return loss	15dB n	nimum					
Input voltage range	33V						
DC current rating	2A continuo	2A continuous, 4A peak					
Compliance	3GPP TS	5 25 461					
ENVIRONMENTAL	- 100 million	an all making the second second					
For further details of environmental co	ompliance, please contact Kaelus,						
Temperature range	-20°C to +60°C	-4°F to +140°F					
Ingress protection	IP	67					
Altitude	2600m	8530ft					
Lightning protection	RF port: ±5kA maximum (8/20us), IEC 61000-4-5 - Unit n	nust be terminated with some lightning protection circuits.					
MTBF	>1,000,0	00 hours					
Compliance	ETSI EN 300 019 class 4.1H,	RoHS, NEBS GR-487-CORE					
MECHANICAL							
Dimensions H x D x W	269 x 277 x 80mm 10.60 x 10.90 x 3.1	5in (Excluding brackets and connectors)					
Weight	8.0 kg 17.6 lb	os (no bracket)					
Finish	Powder coated, lig	ht grey (RAL7035)					
Connectors	RF: 4.3-1	0 (F) x 4					
Mounting	Optional pole/wall bracket supplied with two metal clamps 4 inform						


ORDERING INFORMATION

PART NUMBER	CONFIGURATION	OPTIONAL FEATURES	CONNECTORS
BSF0020F3V1	TWIN, 2 in / 2 out	DC/AISG PASS NO BRACKET	4.3-10 (F)
BSF0020F3V1-1	TWIN, 2 in / 2 out	DC/AISG PASS	4.3-10 (F)
BSF0020F3V1-2	QUAD, 4 in / 4 out	DC/AISG PASS	4.3-10 (F)

MECHANICAL BLOCK DIAGRAM

ATTACHMENT 3

C Squared Systems, LLC 65 Dartmouth Drive Auburn, NH 03032 (603) 644-2800 support@csquaredsystems.com

Calculated Radio Frequency Emissions Report

Norwalk 4 CT

2 Tindall Ave, Norwalk, CT 06851

December 13, 2023

Table of Contents

1.	Introduction1							
	FCC Guidelines for Evaluating RF Radiation Exposure Limits							
3.	RF Exposure Prediction Methods							
	Antenna Inventory							
	Calculation Results							
6.	Conclusion							
7.	Statement of Certification							
At	tachment A: References							
	Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)8							
At	tachment C: Verizon Antenna Model Data Sheets and Electrical Patterns							

List of Figures

Figure 1: Graph of General Population % MPE vs. Distance	4
Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)	9

List of Tables

Table 1: Proposed Antenna Inventory	\$
Table 2: Maximum Percent of General Population Exposure Values	5
Table 3: FCC Limits for Maximum Permissible Exposure 8	3

1. Introduction

The purpose of this report is to investigate compliance with applicable FCC regulations for the proposed modification of Verizon's antenna arrays to be mounted at 110' AGL on an existing self-support tower located at 2 Tindall Ave in Norwalk, CT. The coordinates of the self-support tower are 41° 7' 31.1" N, 73° 25' 17.61" W.

Verizon is proposing the following:

- 1) Retain six (6) multi-band antennas, two (2) per sector to support its commercial LTE network.
- 2) Install three (3) C-Band antenna, one (1) per sector.

This report considers the proposed antenna configuration for Verizon¹ as well as existing antenna configuration² for VHF and UHF antennas to derive the resulting % MPE of its proposed modification.

2. FCC Guidelines for Evaluating RF Radiation Exposure Limits

In 1985, the FCC established rules to regulate radio frequency (RF) exposure from FCC licensed antenna facilities. In 1996, the FCC updated these rules, which were further amended in August 1997 by OET Bulletin 65 Edition 97-01. These new rules include Maximum Permissible Exposure (MPE) limits for transmitters operating between 300 kHz and 100 GHz. The FCC MPE limits are based upon those recommended by the National Council on Radiation Protection and Measurements (NCRP), developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI).

The FCC general population/uncontrolled limits set the maximum exposure to which most people may be subjected. General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

Public exposure to radio frequencies is regulated and enforced in units of milliwatts per square centimeter (mW/cm²). The general population exposure limits for the various frequency ranges are defined in the attached "FCC Limits for Maximum Permissible Exposure (MPE)" in Attachment C of this report.

Higher exposure limits are permitted under the occupational/controlled exposure category, but only for persons who are exposed as a consequence of their employment and who have been made fully aware of the potential for exposure, and they must be able to exercise control over their exposure. General population/uncontrolled limits are five times more stringent than the levels that are acceptable for occupational, or radio frequency trained individuals. Attachment C contains excerpts from OET Bulletin 65 and defines the Maximum Exposure Limit.

Finally, it should be noted that the MPE limits adopted by the FCC for both general population/uncontrolled exposure and for occupational/controlled exposure incorporate a substantial margin of safety and have been established to be well below levels generally accepted as having the potential to cause adverse health effects.

As referenced to Verizon's Radio Frequency Design Sheet updated 01/26/2023.

² As referenced to Eversource's filing for Connecticut Siting Council - Notice of Exempt Modification, dated June 25, 2020

3. RF Exposure Prediction Methods

The emission field calculation results displayed in the following figures were generated using the following formula as outlined in FCC bulletin OET 65:

Power Density =
$$\left(\frac{\text{GRF}^2 \times 1.64 \times \text{ERP}}{4\pi \times R^2}\right)$$
 X Off Beam Loss

Where:

EIRP = Effective Isotropic Radiated Power

R = Radial Distance =
$$\sqrt{(H^2 + V^2)}$$

H = Horizontal Distance from antenna in meters

V = Vertical Distance from radiation center of antenna in meters

Off Beam Loss is determined by the selected antenna patterns

Ground reflection factor (GRF) of 1.6

These calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings, etc.) that would normally attenuate the signal are not taken into account. The calculations assume even terrain in the area of study and do not take into account actual terrain elevations which could attenuate the signal. As a result, the predicted signal levels reported below are much higher than the actual signal levels will be from the final installations.

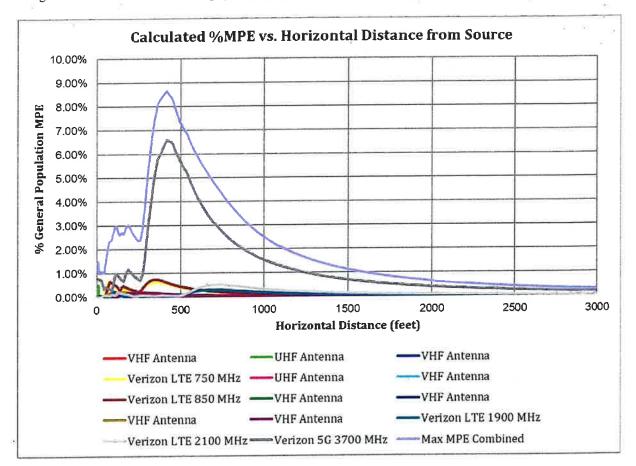
4. Antenna Inventory

Table 1 below outlines Verizon's proposed antenna configuration for the site. The associated data sheets and antenna patterns for these specific antenna models are included in Attachments C.

Operator	Sector / Call Sign	TX Freq (MHz)	Power at Antenna (Watts)	Ant Gain (dBi)	Power EIRP (Watts)	Antenna Model	Beam Width (degree)	Mech. Tilt	Length (ft)	Antenna Centerline Height (ft)
		700	160	13.3	3421	-	67			
	Alpha / 20°	850	160	13.8	3838	Q\$6656-5	63	0	6	110
		1900	160	17.2	8397	Q30020-2	67	U		110
		2100	240	18.0	15143		60			
		3700	200	25.5	70963	MT6407-77A	142	0	2.92	110
	Beta / 150°	700	160	13.3	3421		67		6	
		850	160	13.8	3838	QS6656-5	63	0		110
Verizon		1900	160	17.2	8397	Q30050-5	67	0		110
		2100	240	18.0	15143		60			
		3700	200	25.5	70963	MT6407-77A		0	2.92	110
	Gamma /	700	160	13.3	3421		67		6	
		850	160	13.8	3838	086656.5	63	0		110
		1900	160	17.2	8397	QS6656-5	67	0		110
	280°	2100	240	18.0	15143		60			
		3700	200	25.5	70963	MT6407-77A	÷	0	2.92	110

Table 1: Proposed Antenna Inventory³⁴

. - 24


³ Antenna heights are in reference to Verizon's Radio Frequency Design Sheet updated 01/26/2023.

⁴ Transmit power assumes 0 dB of cable loss.

5. Calculation Results

The calculated power density results are shown in Figure 1 below. For completeness, the calculations for this analysis range from 0 feet horizontal distance (directly below the antennas) to a value of 3,000 feet horizontal distance from the site. In addition to the other worst-case scenario considerations that were previously mentioned, the power density calculations to each horizontal distance point away from the antennas was completed using a local maximum off beam antenna gain (within \pm 5 degrees of the true mathematical angle) to incorporate a realistic worst-case scenario.

Figure 1: Graph of General Population % MPE vs. Distance

The highest percent of MPE (8.64% of the General Population limit) is calculated to occur at a horizontal distance of 417 feet from antennas. Please note that the percent of MPE calculations close to the site take into account off beam loss, which is determined from the vertical pattern of the antennas used. Therefore, RF power density levels may increase as the distance from the site increases. At distances of approximately 1500 feet and beyond, one would now be in the main beam of the antenna pattern and off beam loss is no longer considered. Beyond this point, RF levels become calculated solely on distance from the site and the percent of MPE decreases significantly as distance from the site increases.

Table 2 below lists percent of MPE values as well as the associated parameters that were included in the calculations. The highest percent of MPE value was calculated to occur at a horizontal distance of 417 feet from the site (reference Figure 1).

As stated in Section 3, all calculations assume that the antennas are operating at 100 percent capacity, that all antenna channels are transmitting simultaneously, and that the radio transmitters are operating at full power. Obstructions (trees, buildings etc.) that would normally attenuate the signal are not taken into account. In addition, a six foot height offset was considered in this analysis to account for average human height. As a result, the predicted signal levels are significantly higher than the actual signal levels will be from the final configuration. The results presented in Figure 1 and Table 2 assume level ground elevation from the base of the tower out to the horizontal distances calculated.

Carrier	Number of Transmitters	Power out of Base Station Per Transmitter (Watts)	Antenna Height (Feet)	Distance to the Base of Antennas (Feet)	Power Density (mW/cm ²)	Limit (mW/cm ²)	% MPE
UHF Antenna	1	100.0	158.0	417	0.000163	0.600	0.03%
UHF Antenna	1	100.0	151.5	417	0.000046	0.300	0.02%
Verizon 5G 3700 MHz	1	200.0	110.0	417	0.065948	1.000	6.59%
Verizon LTE 1900 MHz	1	160.0	110.0	417	0.000155	1.000	0.02%
Verizon LTE 2100 MHz	1	240.0	110.0	417	0.000622	1.000	0.06%
Verizon LTE 750 MHz	1	160.0	110.0	417	0.002829	0.500	0.57%
Verizon LTE 850 MHz	1	160.0	110.0	417	0.003537	0.567	0.62%
VHF Antenna	1	100.0	160.0	417	0.000211	0.200	0.11%
VHF Antenna	1	100.0	154.0	417	0.000222	0.200	0.11%
VHF Antenna	1	100.0	138.0	417	0.000251	0.200	0.13%
VHF Antenna	1	100.0	132.0	417	0.000166	0.200	0.08%
VHF Antenna	1	100.0	126.0	417	0.000170	0.200	0.09%
VHF Antenna	1	100.0	122.0	417	0.000173	0.200	0.09%
VHF Antenna	1	100.0	120.0	417	0.000282	0.200	0.14%
						Total	8.64%

Table 2: Maximum Percent of General Population Exposure Values⁵

⁵ In the case where pattern data was unavailable from the manufacturer, vertical patterns with similar specifications were used

6. Conclusion

The above analysis verifies that RF exposure levels from the site with Verizon's proposed antenna configuration will be well below the maximum permissible levels as outlined by the FCC in the OET Bulletin 65 Ed. 97-01. Using the conservative calculation methods and parameters detailed above, the maximum cumulative percent of MPE in consideration of all transmitters is calculated to be **8.64% of the FCC limit (General Population/Uncontrolled).** This maximum cumulative percent of MPE value is calculated to occur 417 feet away from the site.

7. Statement of Certification

I certify to the best of my knowledge that the statements in this report are true and accurate. The calculations follow guidelines set forth in ANSI/IEEE Std. C95.3, ANSI/IEEE Std. C95.1 and FCC OET Bulletin 65 Edition 97-01.

Report Prepared By:

Ram Acharya RF Engineer 1 C Squared Systems, LLC

Mait f Fan

Reviewed/Approved By:

Martin Lavin Senior RF Engineer C Squared Systems, LLC December 13, 2023 Date

December 13, 2023 Date

Attachment A: References

OET Bulletin 65 - Edition 97-01 - August 1997 Federal Communications Commission Office of Engineering & Technology

IEEE C95.1-2005, IEEE Standard Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz IEEE-SA Standards Board

IEEE C95.3-2002 (R2008), IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz-300 GHz IEEE-SA Standards Board

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minute
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500	22	-	f/300	6
000 1000			_	(
1500-100,000 nits for Gener	- al Population/U	- Jncontrolled Expo	5 osure ⁷	6
,	- ral Population/U Electric Field	Magnetic Field	osure ⁷	
nits for Gener Frequency Range	Electric Field Strength (E)	Magnetic Field Strength (E)	Power Density (S)	Averaging Time E ² , H ² or S (minutes
nits for Gener Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes
nits for Gener Frequency Range	Electric Field Strength (E)	Magnetic Field Strength (E) (A/m) 1.63	Power Density (S) (mW/cm ²) (100)*	Averaging Time $ E ^2$, $ H ^2$ or S (minutes 30)
nits for Gener Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (E) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes
requency Range (MHz) 0.3-1.34	Electric Field Strength (E) (V/m) 614	Magnetic Field Strength (E) (A/m) 1.63	Power Density (S) (mW/cm ²) (100)*	Averaging Time $ E ^2$, $ H ^2$ or S (minutes 30)
Frequency Range (MHz) 0.3-1.34 1.34-30	Electric Field Strength (E) (V/m) 614 824/f	Magnetic Field Strength (E) (A/m) 1.63 2.19/f	Power Density (S) (mW/cm ²) (100)* (180/f ²)*	Averaging Time $ E ^2$, $ H ^2$ or S (minutes 30 30

Attachment B: FCC Limits for Maximum Permissible Exposure (MPE)

f = frequency in MHz * Plane-wave equivalent power density

Table 3: FCC Limits for Maximum Permissible Exposure

⁶ Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

⁷ General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

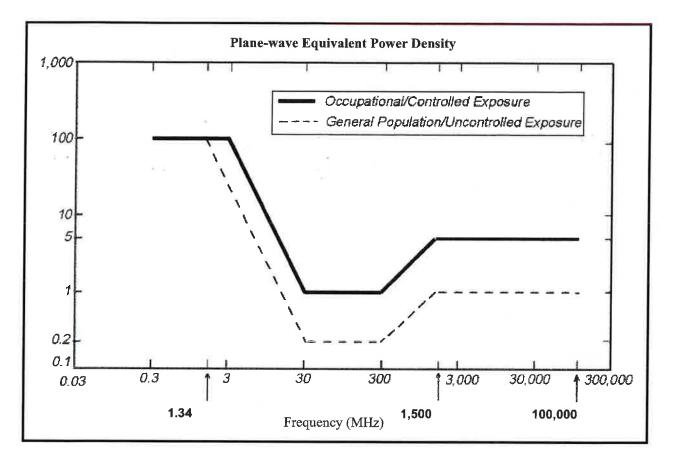


Figure 2: Graph of FCC Limits for Maximum Permissible Exposure (MPE)

739 MHz Manufacturer: Model #: Frequency Band: Gain: Vertical Beamwidth: Horizontal Beamwidth: Polarization: Size L x W x D:	QS6656-5 698-806 MHz 13.3 dBi 12.5° 67°	
Vertical Beamwidth: Horizontal Beamwidth: Polarization:	QS6656-5 814 - 894 MHz 13.8 dBi 10.5° 63°	

Attachment C: Verizon Antenna Model Data Sheets and Electrical Patterns

Model #: Frequency Band:	17.2 dBi 5.8° 67° ±45°	
Frequency Band:	QS6656-5 2110-2180 MHz 18.0 dBi 5.2° 60° ±45°	

ATTACHMENT 4

Report Date:	January 16, 2023
Client:	On Air Engineering, LLC ATTN: David Weinpahl, P.E. 88 Foundry Pond Road Cold Spring, NY, 10516 Phone: (201) 456-4624 Email: dweinpahl@onaireng.com

Structure:	150ft Self Support Tower
Site Name:	Norwalk 4 CT
Site Address:	2 Tindall Ave
City, County, State:	Norwalk, Fairfield County, CT
Latitude, Longitude:	41.125392, -73.421578

PJF Project Number: 42923-0001.001.8700

Paul J. Ford and Company is pleased to submit this Structural Analysis Report to determine the tower stress level.

Analysis Criteria:

This analysis has been performed in accordance with the 2022 Connecticut Building Code based upon an ultimate 3-second gust wind speed of 128 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Proposed Appurtenance Loads:

The structure was analyzed with the proposed loading configuration shown in Table 1 combined with the other considered equipment shown in Table 2 of this report.

Summary of Analysis Results:

Existing Structure:	Pass	61.1%
Existing Foundation:	Pass	49.4%

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and On Air Engineering, LLC. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted By: Paul J. Ford and Company

Chris Sandlin, P.E. **Project Engineer 2** csandlin@pauljford.com

250 E Broad St, Suite 600 Columbus, OH 43215 Phone 614.221.6679

www.PaulJFord.com

1/16/2023 Page 2

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

 Table 3 - Documents Provided
 3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs Capacity Table 6 - Microwave Dish Tilt (Sway) Results for 60 mph Rev H Service Wind Table 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This is a 150ft Self Support Tower designed by Rohn in July of 2014.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	111
Wind Speed:	128 mph
Exposure Category:	С
Topographic Factor:	1
Ice Thickness:	1 in
Ice Wind Speed:	50 mph
Service Wind Speed:	60 mph

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		3	armor tower engineering	12-Ft Arch Frame			
		6	kaelus	BSF0020F3V1-1			-
		6	quintel technology	QS6656-5 w/ Mount Pipe			
440.0	110.0	1	гаусар	OVP	1	1-5/8	
110.0	110.0	3	samsung telecommunications	MT6407-77A	-	Hybrid	
		3	samsung telecommunications	RFV01U-D1A			
		3	samsung telecommunications	RFV01U-D2A			

Table 1 - Proposed Equipment Configuration

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note	
	· · · · · · · · · · · · · · · · · · ·	1	dbspectra	DS9A09F36D-N				
	159.0	1	telewave	ANT150F6	4	1-5/8	1	
149.0	156.6	1	rfs celwave	1151-3	-	1-5/0		
	149.0	3	tower mounts	Rohn 6' Side-Arm(1)				
	143.5	1	telewave	ANT150F2	2	1-5/8	1	
141.0	143.2	1	telewave	ANT220F2				
	141.0	2	tower mounts	Rohn 6' Side-Arm(1)				
		1	rfs celwave	PAL6-59	1	E65	2	
135.0	135.0	1	tower mounts	6'x2" Pipe Mount		E03		
	138.0	1	kreco	CO-36A	4	1-5/8	1	
132.0	132.0	1	tower mounts	Rohn 6' Side-Arm(1)				
	126.5	1	telewave	ANT150F2	1	1-5/8	1	
124.0	124.0	1	tower mounts	Rohn 6' Side-Arm(1)		1-5/0		

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 4

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
122.0	129.0	1	kreco	CO-36A		1-5/8	
123.0 123.0	123.0	1	tower mounts	Rohn 6' Side-Arm(1)	1		1
120.0	120,0	1	rfs celwave	PAL6-59	4	FOR	_
120.0	120.0	1	tower mounts	6'x2" Pipe Mount	1	E65	2
	124.0	1	kreco	CO-36A			
118.0	120.2	1	telewave	ANT220F2	2	1-5/8	1
	118.0	2	tower mounts	Rohn 6' Side-Arm(1)	1		
		9	alcatel lucent	RRH2X40-AWS	32	1-5/8 1-5/8 Fiber	2
	100.0	6	antel	BXA-171063-12CF- EDIN-X w/ Mount Pipe			
100.0		6	antel	BXA-70063-6CF-EDIN- 0 w/ Mount Pipe			
		1	rfs celwave	DB-T1-6Z-8AB-0Z			
	1	3	tower mounts	Pirod 12' T-Frame Sector Mount (1)			
		3	alcatel lucent	FD-RRH-2x50-800	3 3	1-5/8 1-5/8 Fiber	2
90.0	90.0	3	rfs celwave	APXVSPP18-C w/ Mount Pipe			
		3	tower mounts	Pirod 12' T-Frame Sector Mount (1)			
		6	ericsson	AIR 21			
80.0	80.0	3	ericsson	KRY 112 144/1	6	1-5/8	2
50.0	80.0	3	tower mounts	Pirod 12' T-Frame Sector Mount (1)	2	1-5/8 Fiber	Ĺ

Notes: 1) 2)

Existing Equipment Reserved Equipment

1

3) ANALYSIS PROCEDURE

Document	Remarks	Reference	
Tower Drawings	Rohn, 7/14/2014	210856-01-D1	
Tower Design	Rohn, 7/11/2014	210856	
Foundation Drawings	Rohn, 7/14/2014	210856-01-F1	
Geotechincal Report	Doctor Clarence Welti Geotechnical Engineering, 4/21/2014		

Table 3 - Documents Provided

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 standard.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4)	ANA	ALYSI	S RES	ULTS
----	-----	-------	-------	------

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
T1	150 - 130	Leg	2 1/4" solid	3	-18.50	110.31	16.8	Pass
T2	130 - 110	Leg	2 1/2" solid	39	-68.09	150.69	45.2	Pass
T3	110 - 94	Leg	2 3/4" solid	70	-112.06	196.26	57.1	Pass
T4	94 - 90	Leg	2 3/4" solid	97	-122.30	255.20	47.9	Pass
T5	90 - 80	Leg	3 1/4" solid	109	-148.19	262.72	56.4	Pass
T6	80 - 70	Leg	3 1/4" solid	124	-174.82	352.52	49.6	Pass
T7	70 - 55	Leg	3 3/4" solid	145	-211.55	386.40	54.7	Pass
T8	55 - 50	Leg	3 3/4" solid	166	-222.85	482.32	46.2	Pass
T9	50 - 30	Leg	4 1/4" solid	178	-266.61	530.47	50.3	Pass
T10	30 - 10	Leg	4 1/2" solid	205	-302.53	609.93	49.6	Pass
T11	10 - 0	Leg	4 1/2" solid	220	-313.30	609.93	51.4	Pass
T1	150 - 130	Diagonal	L 1.5 x 1.5 x 3/16	9	-4.45	11.88	37.5 48.0 (b)	Pass
T2	130 - 110	Diagonal	L 1.75 x 1.75 x 3/16	42	-9.14	18.19	50.3	Pass
Т3	110 - 94	Diagonal	L 2 x 2 x 3/16	76	-7.72	18.03	42.8 59.8 (b)	Pass
T4	94 - 90	Diagonal	L 2 x 2 x 3/16	102	-7.60	16.80	45.2 55.2 (b)	Pass
Т5	90 - 80	Diagonal	L 2.5 x 2.5 x 3/16	114	-8.10	23.02	35.2 58.6 (b)	Pass
Т6	80 - 70	Diagonal	L 2.5 x 2.5 x 3/16	129	-8.44	20.03	42.1 61.1 (b)	Pass
T7	70 - 55	Diagonal	L 2.5 x 2.5 x 1/4	150	-7.98	20.57	38.8 40.5 (b)	Pass

Table 4 - Section Capacity (Summary)

On Air Engineering, LLC Norwalk 4 CT

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
Т8	55 - 50	Diagonal	L 2.5 x 2.5 x 1/4	171	-8.17	18.93	43.1	Pass
Т9	50 - 30	Diagonal	L 3 x 3 x 3/16	186	-7.95	18.95	41.9 44.9 (b)	Pass
T10	30 - 10	Diagonal	L 3.5 x 3.5 x 1/4	213	-9.94	48.93	20.3 34.3 (b)	Pass
T11	10 - 0	Diagonal	L 3.5 x 3.5 x 1/4	241	-13.18	29.35	44.9 45.5 (b)	Pass
T11	10 - 0	Horizontal	L 3.5 x 3.5 x 1/4	237	-8.00	34.91	22.9 27.6 (b)	Pass
T4	94 - 90	Secondary Horizontal	L 2 x 2 x 1/4	108	-2.12	25.27	8.4 14.6 (b)	Pass
Т6	80 - 70	Secondary Horizontal	L 2.5 x 2.5 x 3/16	135	-3.03	23.35	13.0 20.9 (b)	Pass
Т8	55 - 50	Secondary Horizontal	L 2.5 x 2.5 x 1/4	177	-3.86	24.60	15.7 19.8 (b)	Pass
T1	150 - 130	Top Girt	L 1.5 x 1.5 x 3/16	5	-0.22	5.47	4.1	Pass
T11	10 - 0	Redund Horz 1 Bracing	L 2.5 x 2.5 x 1/4	225	-5.43	35.87	15.1 37.5 (b)	Pass
T11	10 - 0	Redund Diag 1 Bracing	L 2.5 x 2.5 x 1/4	226	-4.45	20.55	21.7 30.7 (b)	Pass
T11	10 - 0	Inner Bracing	L 3 x 3 x 1/4	246	-0.01	19.09	0.2	Pass
							Summary	
						Leg (T3)	57.1	Pass
						Diagonal (T6)	61.1	Pass
						Horizontal (T11)	27.6	Pass
						Secondary Horizontal (T6)	20.9	Pass
						Top Girt (T1)	4.1	Pass
						Redund Horz 1 Bracing (T11)	37.5	Pass
						Redund Diag 1 Bracing (T11)	30.7	Pass
						Inner Bracing (T11)	0.2	Pass
						Bolt Checks	61.1	Pass
						Rating =	61.1	Pass

Table 5 - Tower Component	Stresses vs	Capacity
---------------------------	-------------	----------

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	31.9	Pass
1	Base Foundation (Structure)	0	22.5	Pass
1	Base Foundation (Soil Interaction)	0	49.4	Pass

	64 10/
Structure Rating (max from all components) =	61.1%

Notes:

All structural ratings are per TIA-222-H Section 15.5 See additional documentation in "Appendix B – Additional Calculations" for calculations supporting the % capacity • 1) consumed.

Table 6 - Microwave Dish Tilt (Swav) Results for 60 mph Rev H Service Wind Table

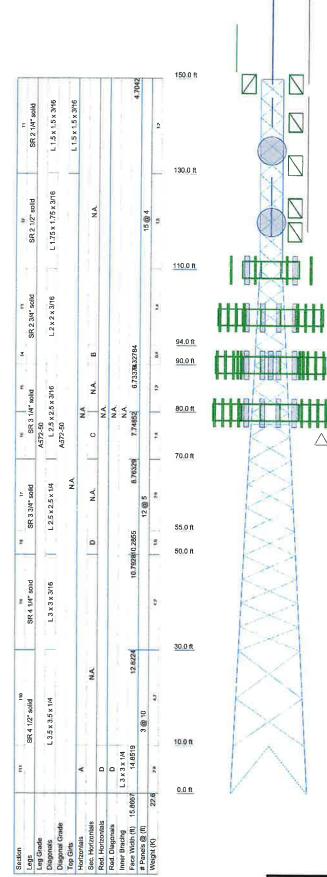
Dish Elevation ft	Dish	Dish Diameter ft	Dish Frequency GHz	-	Analysis Results Twist at Service Wind deg	Note
135.0	PAL6-59	6	7 4	0.1868	0.1653	1
120.0	PAL6-59	6		0.1702	0.1364	1

Notes:

Reserved Equipment 1)

4.1) Recommendations

The tower and its foundation(s) have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.


STANDARD CONDITIONS FOR FURNISHING OF PROFESSIONAL ENGINEERING SERVICES ON EXISTING STRUCTURES BY PAUL J. FORD AND COMPANY

- 1) Paul J. Ford and Company has not made a field inspection to verify the tower member sizes or the antenna/coax loading. If the existing conditions are not as represented on these sketches, we should be contacted immediately to reevaluate any conclusions stated in this report.
- 2) No allowance was made for any damaged, missing, or rusted materials. The analysis of this structure assumes that no physical deterioration has occurred in any of the structural components of the tower and that all the structural members have the same load carrying capacity as the day the tower was erected.
- 3) It is not possible to have all the detailed information to perform a thorough analysis of every structural sub-component of an existing structure. The structural analysis provided by Paul J. Ford and Company verifies the adequacy of the main structural members of the tower. Paul J. Ford and Company provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc.

On Air Engineering, LLC Norwalk 4 CT 1/16/2023 Page 9

APPENDIX A

TNXTOWER OUTPUT

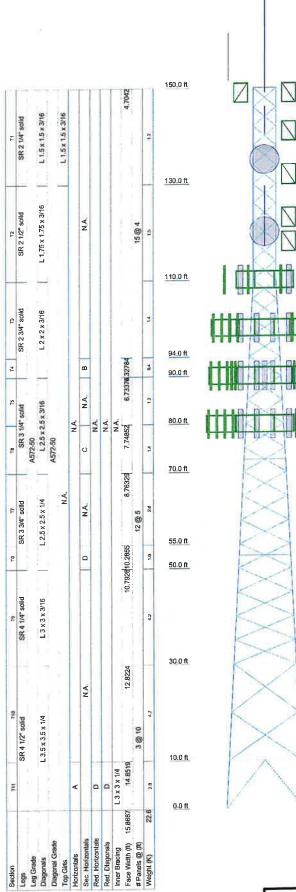
DESIGNED A	PPURTENANCE	LOADING
------------	-------------	---------

TYPE	ELEVATION	TYPE	ELEVATION
ANT150F6	149	(2) 8XA-171063-12CF-EDIN-X w/	100
DS9A09F36D-N	149	Mount Pipe	
1151-3	149	(2) BXA-171063-12CF-EDIN-X w/ Mount Pipe	100
Rohn 6' Side-Arm(1)	149		
Rohn 6' Side-Arm(1)	149	(2) BXA-171063-12CF-EDIN-X w/ Mount Pipe	100
Rohn 6' Side-Arm(1)	149	(3) RRH2X40-AWS	100
ANT220F2	141	(3) RRH2X40-AWS	100
ANT150F2	141	(3) RRH2X40-AWS	100
Rohn & Side-Arm(1)	141	DB-T1-6Z-8AB-0Z	100
Rohn 6' Side-Arm(1)	141	Pirod 12' T-Frame Sector Mount (1)	100
6'x2" Pipe Mount	135	Pirod 12 T-Frame Sector Mount (1)	100
PAL6-59	135	and the second sec	
Rohn 6' Side-Arm(1)	132	Pirod 12 T-Frame Sector Mount (1)	100
CO-36A	132	(2) BXA-70063-6CF-EDIN-0 w/ Mount Pipe	100
Rohn 6' Side-Arm(1)	124	(2) BXA-70063-6CF-EDIN-0 w/ Mount	100
ANT150F2	124	Pipe	(T. M. W.)
Rohn 6' Side-Arm(1)	123	APXVSPP18-C_TIA w/ Mount Pipe	90
CO-36A	123	FD-RRH-2x50-800	90
6'x2" Pipe Mount	120	FD-RRH-2x50-800	90
PAL6-59	120	FD-RRH-2x50-800	90
Rohn 6' Side-Arm(1)	118	Pirod 12' T-Frame Sector Mount (1)	90
Rohn 6' Side-Arm(1)	118	Pirod 12' T-Frame Sector Mount (1)	90
ANT220F2	118	Pirod 12' T-Frame Sector Mount (1)	90
CO-36A	118	APXVSPP18-C TIA w/ Mount Pipe	90
(2) QS6656-5 TIA w/ Mount Pipe	110	APXVSPP18-C T/A w/ Mount Pipe	90
REV01U-D1A VZW CED	110	(2) AIR 21	80
RFV01U-D1A VZW CFD	110	KRY 112 144/1	80
RFV01U-D1A_VZW CFD	110	KRY 112 144/1	80
REV01U-D2A VZW CED	110	KRY 112 144/1	80
REV01U-D2A VZW CED	110	Pirod 12' T-Frame Sector Mount (1)	80
REV01U-D2A VZW CED	110	Pirod 12' T-Frame Sector Mount (1)	80
RVZDC-6627-PF-48_VZW CFD	110	Pirod 12' T-Frame Sector Mount (1)	80
MT6407-77A VZW CFD	110	(2) AIR 21	80
MT6407-77A_VZW CFD	110	(2) AIR 21	80
MT6407-77A VZW CFD	110	Secondarty Members 30'-20'	25
2) BSF0020F3V1-1	110	Secondarty Members 30-20'	25
2) BSF0020F3V1-1	110	Secondarty Members 30-20	25
2) BSF0020F3V1-1	110	Secondarity Members 20'-10'	15
3) Armor Tower Engineering 12-Ft	110	Secondarty Members 20-10 Secondarty Members 20'-10'	15
Arch Frame		Secondarty Members 20-10 Secondarty Members 20-10	15
2) QS6656-5_TIA w/ Mount Pipe	110	Service and Michigan 20-10	15
2) QS6656-5_TIA w/ Mount Pipe	110	•••	
2) BXA-70063-6CF-EDIN-0 w/ Mount Pipe	100		

SYMBOL LIST

MARK	SIZE	MARK		SIZE
A	L 3.5 x 3.5 x 1/4	C	L 2.5 x 2.5 x 3/16	
в	L2x2x1/4	D	L25x25x1/4	

MATERIAL STRENGTH


GRADE	i y	Fu	GRADE	Fy	Fu
A572-50	50 ksl	65 ksl			

TOWER DESIGN NOTES

Tower is located in Fairfield County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
 Tower designed for a 128 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
 Deflections are based upon a 60 mph wind.
 Tower Bick Cabaret III.

Tower Risk Category III.
 Topographic Category 1 with Crest Height of 57.00 ft

	Paul J. Ford and Company	150-Ft Self-Suppo	rt Tower: Norwa	alk 4: Norwalk, C
	Columbus, Ohio	Client: On-Air Engineering	Drawn by: csandlin	App'd:
PJFLogo		Code: TIA-222-H	Date: 01/16/23	Scale: NTS
	FAX:	Path:	and a statement in the same statement in	Dwg No. E-1

SYMBOL LIST					
MARK		SIZE	MARK	SIZE	
	135x35x1/4		G	1 2.5 x 2.5 x 3/16	
В	L2x2x1/4		D	L 2.5 x 2.5 x 1/4	

MATERIAL STRENGTH

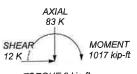
GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi			

TOWER DESIGN NOTES

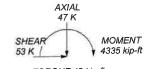
Tower is located in Fairfield County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
 Tower designed for a 128 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase

in thickness with height.

5. Deflections are based upon a 60 mph wind.


Tower Risk Category III.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 61.1%

ALL REACTIONS ARE FACTORED


 \triangle

MAX. CORNER REACTIONS AT BASE: DOWN: 331 K SHEAR: 31 K

UPLIFT: -294 K SHEAR: 29 K

TORQUE 9 kip-ft 50 mph WIND - 0.7500 in ICE

TORQUE 42 kip-ft REACTIONS - 128 mph WIND

BIP	Paul J. Ford and Company 250 East Broad Street, STE 600	^{lob:} 150-Ft Self-Support Tower: Norwalk 4: Norwalk, C Project: 42923-0001.001.8700				
	250 East Broad Street, STE 000	Client: On-Air Engineering	Drawn by: csandlin	App'd:		
	Columbus, Onio	Code: TIA-222-H	Date: 01/16/23	Scale: NTS		
PJFLogo	FLogo Phone: 614-221-6679 FAX:	Path: 9 Ioninian or Information Contraction	Dwg No. E-1			

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 10

Tower Input Data

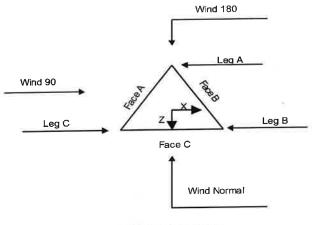
The main tower is a 3x free standing tower with an overall height of 150.00 ft above the ground line. The base of the tower is set at an elevation of 0.00 ft above the ground line.

- The face width of the tower is 4.70 ft at the top and 15.87 ft at the base.
- This tower is designed using the TIA-222-H standard.

This lower is designed using the TIA-222-H standard

The following design criteria apply:

- Tower is located in Fairfield County, Connecticut.
- Tower base elevation above sea level: 57.00 ft.
- Basic wind speed of 128 mph.
- Risk Category III.
- Exposure Category C.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.00 ft.
- Nominal ice thickness of 0.7500 in.
- Ice thickness is considered to increase with height.
- Ice density of 56 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in tower member design is 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.


			Options		
Ą	Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile	44	Distribute Leg Loads As Uniform Assume Legs Pinned Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension Bypass Mast Stability Checks Use Azimuth Dish Coefficients Project Wind Area of Appurt.	* *	Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption
\checkmark	Include Bolts In Member Capacity	\checkmark	Autocalc Torque Arm Areas		Use TIA-222-H Tension Splice Exemption
7 7	Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric	\checkmark	Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs		Poles Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments

Founded in 1965

Pole With Shroud Or No Appurtenances

Known

Outside and Inside Corner Radii Are

Triangular Tower

	Tower Section Geometry									
Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length				
	ft			ft		ft				
T1	150.00-130.00			4.70	1	20.00				
T2	130.00-110.00			4.70	1	20.00				
T3	110.00-94.00			4.70	1	16.00				
	94.00-90.00			6.33	1	4.00				
T4				6.73	1	10.00				
Т5	90.00-80.00			7.75	1	10.00				
T6	80.00-70.00			8.76	4	15.00				
T 7	70.00-55.00			10.29		5.00				
Т8	55.00-50.00					20.00				
Т9	50.00-30.00			10.79	3					
T10	30.00-10.00			12.82	ſ	20.00				
T11	10.00-0.00			14.85	1	10.00				

	Tower Section Geometry (cont'd)											
Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girt Offset					
	ft	ft		Panels		in	in					
T1	150.00-130.00	4.00	X Brace	No	No	0.0000	0.0000					
	130.00-110.00	4.00	X Brace	No	No	0.0000	0.0000					
T2	110.00-94.00	4.00	X Brace	No	No	0.0000	0.0000					
T3	94.00-90.00	4.00	X Brace	No	Yes	0.0000	0.0000					
T4	90.00-80.00	5.00	X Brace	No	No	0.0000	0.0000					
T5		5.00	X Brace	No	Yes	0.0000	0.0000					
T6	80.00-70.00	5.00	X Brace	No	No	0.0000	0.0000					
Τ7	70.00-55.00		X Brace	No	Yes	0.0000	0.0000					
Т8	55.00-50.00	5.00		No	No	0.0000	0.0000					
Т9	50.00-30.00	5.00	X Brace		No	0.0000	0.0000					
T10	30.00-10.00	10.00	X Brace	No	03039.000	0.0000	0.0000					
T11	10.00-0.00	10.00	K1 Down	No	Yes	0.0000	0.0000					

		Tower Se	ction Ge	ometry (c	conťd)	
Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 150.00- 130.00	Solid Round	2 1/4" solid	A572-50 (50 ksi)	Single Angle	L 1.5 x 1.5 x 3/16	A572-50 (50 ksi)
T2 130.00- 110.00	Solid Round	2 1/2" solid	A572-50 (50 ksi)	Single Angle	L 1.75 x 1.75 x 3/16	A572-50 (50 ksi)
T3 110.00- 94.00	Solid Round	2 3/4" solid	A572-50 (50 ksi)	Single Angle	L 2 x 2 x 3/16	A572-50 (50 ksi)
T4 94.00-90.00	Solid Round	2 3/4" solid	A572-50 (50 ksi)	Single Angle	L 2 x 2 x 3/16	A572-50 (50 ksi)
T5 90.00-80.00	Solid Round	3 1/4" solid	A572-50 (50 ksi)	Single Angle	L 2.5 x 2.5 x 3/16	A572-50 (50 ksi)
F6 80.00-70.00	Solid Round	3 1/4" solid	A572-50 (50 ksi)	Single Angle	L 2.5 x 2.5 x 3/16	A572-50 (50 ksi)
77 70.00-55.00	Solid Round	3 3/4" solid	A572-50 (50 ksi)	Single Angle	L 2.5 x 2.5 x 1/4	A572-50 (50 ksi)
T8 55.00-50.00	Solid Round	3 3/4" solid	A572-50 (50 ksi)	Single Angle	L 2.5 x 2.5 x 1/4	A572-50 (50 ksi)
T9 50.00-30.00	Solid Round	4 1/4" solid	A572-50 (50 ksi)	Single Angle	L 3 x 3 x 3/16	À572-50
T10 30.00- 10.00	Solid Round	4 1/2" solid	(50 ksi) A572-50 (50 ksi)	Single Angle	L 3.5 x 3.5 x 1/4	(50 ksi) A572-50
Г11 10.00-0.00	Solid Round	4 1/2" solid	(50 ksi) A572-50 (50 ksi)	Single Angle	L 3.5 x 3.5 x 1/4	(50 ksi) A572-50 (50 ksi)

Tower Section Geometry (cont'd)									
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade			
11 150.00- 130.00	Single Angle	L 1.5 x 1.5 x 3/16	A572-50 (50 ksi)	Single Angle		A36 (36 ksi)			

	Tower Section Geometry (cont'd)									
Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade			
ft T11 10.00-0.00	Girts None	Flat Bar		A36	Single Angle	L 3.5 x 3.5 x 1/4	A572-50			
in the second second				(36 ksi)	enigio / inglo	2 0.0 X 0.0 X 114	(50 ksi)			

Tower Section Geometry (cont'd)										
Tower Elevation ft	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade				
T4 94.00-90.00	Single Angle	L 2 x 2 x 1/4	A572-50	Single Angle		A572-50				
T6 80.00-70.00	Single Angle	L 2.5 x 2.5 x 3/16	(50 ksi) A572-50	Single Angle		(50 ksi) A572-50				
Founded in 19	965		www.PaulJ	Ford.com		100% Employee Ov	vneo			

1/16/2023 Page 13

Tower Elevation	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
ft						(50 ksi)
T8 55.00-50.00	Single Angle	L 2.5 x 2.5 x 1/4	(50 ksi) A572-50 (50 ksi)	Single Angle		A572-50 (50 ksi)
T11 10.00-0.00	Solid Round		A572-50 (50 ksi)	Single Angle	L 3 x 3 x 1/4	A572-50 (50 ksi)

Tower Section Geometry (cont'd)

Tower Redundant Elevation Bracing Grade			Redundant Type	Redundant Size	t K Factor	
ft						
T11 10.00-	A572-50	Horizontal (1)	Single Angle	L 2.5 x 2.5 x 1/4	1	
0.00	(50 ksi)	Diagonal (1)	Single Angle	L 2.5 x 2.5 x 1/4	1	

Tower Section Geometry (cont'd)

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle		Double Angle
Elevation	Area (per face)	Thickness		Ar	Factor A _r		Stitch Bolt Spacing Diagonals in	Stitch Bolt Spacing Horizontals in	Stitch Bolt Spacing Redundants in
ft	ft ²	in				4.05		36.0000	36.0000
T1 150.00-	0.00	0.2500	A36	1.03	1	1.05	36.0000	36.0000	30.0000
130.00			(36 ksi)			4.05	00.0000	36,0000	36.0000
T2 130.00-	0.00	0.3750	A36	1.03	1	1.05	36.0000	36.0000	30.0000
110.00			(36 ksi)					00 0000	26,0000
T3 110.00-	0.00	0.3750	A36	1.03	1	1.05	36.0000	36.0000	36.0000
94.00			(36 ksi)					00.0000	36.0000
T4 94.00-	0.00	0.3750	A36	1.03	1	1.05	36.0000	36.0000	36.0000
90.00			(36 ksi)						20.000
T5 90.00-	0.00	0.3750	A36	1.03	1	1.05	36.0000	36.0000	36.0000
80.00			(36 ksi)		45			00 0000	20,000
T6 80.00-	0.00	0.3750	A36	1.03	1	1.05	36.0000	36.0000	36.0000
70.00			(36 ksi)						26.0000
T7 70.00-	0.00	0.3750	A36	1.03	1	1.05	36.0000	36.0000	36.0000
55.00			(36 ksi)		22			~~ ~~~~	00,0000
T8 55.00-	0.00	0.3750	A36	1.03	1	1.05	36.0000	36.0000	36.0000
50.00			(36 ksi)						26.0000
T9 50.00-	0.00	0.3750	A36	1.03	1	1.05	36.0000	36.0000	36.0000
30.00			(36 ksi)		22				0000
T10 30.00-	0.00	0.3750	A36	1.03	1	1.05	36.0000	36.0000	36.0000
10.00			(36 ksi)		~				20,0000
T11 10.00-	0.00	0.3750	A36	1.03	1	1.05	36.0000	36.0000	36,0000
0.00			(36 ksi)						

Tower Section Geometry (cont'd)

						K Fac	ctors ¹			
Tower Elevation	Calc K Single	Calc K Solid	Legs	X Brace Diags	K Brace Diags	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Angles	Rounds		X	X	X	X	X Y	X Y	X Y
ft				1		4	1	1	1	1
T1 150.00- 130.00	Yes	No	1	1	1	1	1	1	i	1

		2				K Fac	ctors ¹			
Tower Elevation	Calc K Single Angles	Calc K Solid Rounds	Legs	X Brace Diags X	K Brace Diags X	Single Diags X	Girts X	Horiz. X	Sec. Horiz. X	Inner Brace X
ft				Y	Ŷ	Y	Ŷ	Ŷ	X Y	Ŷ
T2 130.00-	Yes	No	1	1	1	1	1	1	1	1
110.00				1	Ĩ	1	1	1	1	1
T3 110.00-	Yes	No	1	1	1	1	1	1	1	1
94.00				1	1	1	1	1	1	1
T4 94.00-	Yes	No	1	1	1	1	1	1	1	1
90.00				1	1	1	1	1	0.5	1
T5 90.00-	Yes	No	1	1	1	1	1	1	1	1
80.00				1	1	1	1	1	1	1
T6 80.00-	Yes	No	1	1	1	1	1	1	1	1
70.00				1	1	1	1	1	0.5	1
T7 70.00-	Yes	No	1	1	1	1	1	1	1	1
55.00				1	1	1	1	1	1	1
T8 55.00-	Yes	No	1	1	1	1	1	1	1	1
50.00				1	1	1	1	1	0.5	1
T9 50.00-	Yes	No	1	1	1	1	1	1	1	1
30.00				1	1	1	1	1	1	1
T10 30.00-	Yes	No	0.5	0.5	1	1	1	1	1	1
10.00				1	1	1	1	1	1	1
T11 10.00-	Yes	No	1	1	1	1	1	1	1	1
0.00			11	1	1	1	1		1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-ofplane direction applied to the overall length.

				Γow	er Sec	tio	n Geo	met	ry (co	nťd)				
Tower Elevation ft	Leg		Diago	onal	Top G	Girt	Bottor	n Girt	Mid	Girt	Long Ho	rizontal	Short Ho	orizontal
	Net Width Deduct in	U	Net Width Deduct In	U	Net Width Deduct in	U	Net Width Deduct In	U	Net Width Deduct	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 150.00- 130.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 130.00- 110.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 110.00- 94.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 94.00- 90.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 90.00- 80.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 80.00- 70.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T7 70.00- 55.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 55.00- 50.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T9 50.00- 30.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T10 30.00- 10.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T11 10.00- 0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 15

Tower Elevation	Redun Horizo		Redun Diago		Redundar Diago		Redunda Horizo		Redui Vert		Redund	ant Hip	Redunda Diago	onal
ft	Net Width Deduct in	U	Net Width Deduct In	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct īn	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 150.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
130.00 T2 130.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
110.00 T3 110.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
94.00 T4 94.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
90.00 T5 90.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
80.00 T6 80.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
70.00 T7 70.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
55.00 T8 55.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
50.00 T9 50.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
30.00 T10 30.00-	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
10.00 T11 10.00- 0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower Elevation	Leg Connection	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori:	zontal	Shor Horizor	-
ft	Туре	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
		in Boil Size	140.	in	140.	in	,	in		in		in		in	_
74 450 00	Flores	0.8750	4	0.5000	1	0.5000	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0
T1 150.00-	Flange	A325N	-	A325N		A325N		A325N		A325N		A325N	1	A325N	
130.00	Flange	1.0000	5	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
T2 130.00- 110.00	Flange	A325N	5	A325N	-	A325N		A325N		A325N		A325N		A325N	
T3 110.00-	Flange	1.0000	0	0.6250	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
94.00	Flange	A325N	v	A325N		A325N		A325N		A325N		A325N		A325N	
94.00 T4 94.00-	Flange	1.0000	5	0.6250	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	1
90.00	Flange	A325N	Ũ	A325N		A325N		A325N		A325N		A325N		A325N	
50.00 T5 90.00-	Flange	1.0000	0	0.6250	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
80.00	riange	A325N	Ū	-A325N		A325N		A325N		A325N		A325N		A325N	
T6 80.00-	Flange	1.0000	7	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	1
70.00	Thungo	A325N	·	A325N		A325N		A325N		A325N		A325N		A325N	-
T7 70:00-	Flange	1.5000	0	0.7500	1	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
55.00	riange	A325N	-	A325N		A325N		A325N		A325N		A325N		A325N	
T8 55.00-	Flange	1.5000	5	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.7500	0	0.7500	1
50.00	i lange	A325N		A325N		A325N		A325N		A325N		A325N	_	A325N	~
T9 50.00-	Flange	1.5000	5	0.7500	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
30.00	, ange	A325N		A325N		A325N		A325N		A325N		A325N	-	A325N	~
T10 30.00-	Flange	1.5000	0	0.6250	2	0.6250	0	0.0000	0	0.6250	0	0.6250	0	0.6250	0
10.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	•
T11 10.00-	Flange	1.5000	0	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
0.00		F1554-		A325N		A325N		A325N		A325N		A325N		A325N	
0.00		105									-	1		-	-

Tower Section Geometry (cont'd)

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 16

Tower Elevation ft	Redund Horizo		Reduno Diagoi		Redundar Diagoi		Redunda Horizo		Redur Verti		Redunda	ant Hip	Redunda Diago	
	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
	in		în		in		in		în		in		în	
T1 150.00-	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
130.00	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T2 130.00-	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
110.00	A325N		A325N		A325N		A325N		A325N		A325N		A325N	•
T3 110.00-	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
94.00	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4 94.00-	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
90.00	A325N		A325N		A325N		A325N		A325N		A325N		A325N	-
T5 90.00-	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
80.00	A325N		A325N		A325N		A325N		A325N		A325N		A325N	-
T6 80.00-	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
70.00	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T7 70.00-	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
55.00	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T8 55.00-	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
50.00	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9 50.00-	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
30.00	A325N		A325N		A325N		A325N		A325N		A325N		A325N	-
T10 30.00-	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
10.00	A325N		A325N		A325N		A325N		A325N	-	A325N	-	A325N	Ŭ
T11 10.00-	0.6250	1	0.6250	1	0.6250	0	0.6250	0	0.6250	0	0.6250	0	0.6250	0
0.00	A325N		A325N		A325N	÷ 1	A325N	-	A325N		A325N	Ŭ	A325N	U

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque	Componen t Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacin g	Width or Diameter in	Perimete r	Weight plf
			Calculation				. ,			in		in	F
1.5" flat Cable Ladder Rail	В	No	No	Af (CaAa)	150.00 - 0.00	0.0000	-0.3	2	2	30.000 0 1.5000	1.5000	-	1.80
LDF7-50A (1 5/8" foam)	в	No	No	Ar (CaAa)	149.00 - 141.00	0.0000	-0.3	4	4	1.0000	1.9800		0.92
LDF7-50A (1 5/8" foam)	в	No	No	Ar (CaAa)	141.00 - 132.00	0.0000	-0.3	6	6	1.0000	1.9800		0.92
EP65(ELLIP TICAL)	В	No	No	Ar (CaAa)	135.00 - 0.00	0.0000	-0.25	1	1	2.0000	2.0000		0.67
LDF7-50A (1 5/8" foam)	в	No	No	Ar (CaAa)	132.00 - 124.00	0.0000	-0.3	7	7	1.0000 0.5000	1.9800		0.92
LDF7-50A (1 5/8" foam)	В	No	No	Ar (CaAa)	124.00 - 123.00	0.0000	-0.3	8	8	1.0000	1.9800		0.92
LDF7-50A (1 5/8" foam)	В	No	No	Ar (CaAa)	123.00 - 118.00	0.0000	-0.3	9	9	1.0000 0.5000	1.9800		0.92
EP65(ELLIP TICAL)	В	No	No	Ar (CaAa)	120.00 - 0.00	0.0000	-0.23	1	1	2.0000	2.0000		0.67
LDF7-50A (1 5/8" foam)	В	No	No	Ar (CaAa)	118.00 - 0.00	0.0000	-0.3	11	11	1.0000 0.5000	1.9800		0.92
T-Brackets (Af)	в	No	No	Af (CaAa)	110.00 - 0.00	6.0000	0.4	1	1	1.0000	1.0000		8.40
HB158-1- 08U8- S8F18(1 5/8")	В	No	No	Ar (CaAa)	110.00 - 0.00	6.0000	0.4	1	1	1.0000	1.9800		1.70
1.5" flat Cable Ladder Rail	С	No	No	Af (CaAa)	100.00 - 0.00	0.0000	-0.3	2	2	30.000 0	1.5000		1.80
LDF7-50A (1 5/8" foam)	С	No	No	Ar (CaAa)	100.00 - 0.00	0.0000	-0.3	5	5	1.5000 1.0000 0.5000	1.9800		0.92

Founded in 1965

www.PaulJFord.com

100% Employee Owned

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 17

Description	Eago	Allow	Exclude	Componen	Placement	Face	Lateral	#	#	Clear	Width or	Perimete	Weight
Description	or Leg	Shield	From Torque	t Type	ft	Offset in	Offset (Frac FW)		Per Row	Spacin g	Diameter in		plf
	Log		Calculation						_	in		in	
1.5" flat	С	No	No	Af (CaAa)	90.00 -	0.0000	0.3	2	2	30.000 0	1.5000		1.80
Cable Ladder					0.00					1.5000			
Rail LDF7-50A (1 5/8" foam)	С	No	No	Ar (CaAa)	90.00 - 0.00	0.0000	0.3	6	6	1.0000 0.5000	1.9800		0.92
*** 1.5" flat Cable Ladder	А	No	No	Af (CaAa)	80.00 - 0.00	0.0000	-0.3	2	2	30.000 0	1.5000		1.80
Rail LDF7-50A (1 5/8" foam)	А	No	No	Ar (CaAa)	80.00 - 0.00	0.0000	-0.3	8	8	1.5000 1.0000 0.5000	1.9800		0.92

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A _R	AF	CAAA	CAAA	Weight
Sectio	Elevation		255	520	In Face	Out Face	12
п	ft		ft ²	ft ²	ft ²	ft²	K
T1	150.00-130.00	A	0.000	0.000	0.000	0.000	0.00
		в	0.000	0.000	30.800	0.000	0.17
		С	0.000	0.000	0.000	0.000	0.00
T2	130.00-110.00	Α	0.000	0.000	0.000	0.000	0.00
		в	0.000	0.000	52.234	0.000	0.26
		С	0.000	0.000	0.000	0.000	0.00
Т3	110.00-94.00	А	0.000	0.000	0.000	0.000	0.00
		в	0.000	0.000	55.083	0.000	0.40
		С	0.000	0.000	8.940	0.000	0.05
Τ4	94.00-90.00	А	0.000	0.000	0.000	0.000	0.00
	•	в	0.000	0.000	13.771	0.000	0.10
		C	0.000	0.000	5.960	0.000	0.03
Т5	90.00-80.00	А	0.000	0.000	0.000	0.000	0.00
10	00.00 00.00	в	0.000	0.000	34.427	0.000	0.25
		Ċ	0.000	0.000	31.780	0.000	0.17
T 6	80.00-70.00	А	0.000	0.000	20.840	0.000	0.11
10	00.00 10.00	В	0.000	0.000	34.427	0.000	0.25
		ē	0.000	0.000	31.780	0.000	0.17
Т7	70.00-55.00	A	0.000	0.000	31.260	0.000	0.16
	10.00 00.00	В	0.000	0.000	51.640	0.000	0.38
		ē	0.000	0.000	47.670	0.000	0.26
Т8	55.00-50.00	Ă	0.000	0.000	10.420	0.000	0.05
10	00.00 00.00	в	0.000	0.000	17.213	0.000	0.13
		ē	0.000	0.000	15.890	0.000	0.09
Т9	50.00-30.00	Ā	0.000	0.000	41.680	0.000	0.22
19	00.00 00.00	В	0.000	0.000	68.853	0.000	0.50
		č	0.000	0.000	63.560	0.000	0.35
T10	30.00-10.00	Ă	0.000	0.000	41.680	0.000	0.22
ΠU	00.00-10.00	В	0.000	0.000	68.853	0.000	0.50
		č	0.000	0.000	63.560	0.000	0.35
T11	10.00-0.00	Ă	0.000	0.000	20.840	0.000	0.11
111	10.00-0.00	В	0.000	0.000	34.427	0.000	0.25
		c	0.000	0.000	31.780	0.000	0.17

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	lce	A _R	A _F	C₄A₄ In Face	C _A A _A Out Face	Weigh
Sectio	Elevation #	or Leg	Thickness in	ft ²	ft ²	ft ²	ft ²	ĸ
T4	150.00-130.00	A	0.997	0.000	0.000	0.000	0.000	0.00
11	150.00-150.00	B	0.001	0.000	0.000	60.731	0.000	0.68
		D C		0.000	0.000	0.000	0.000	0.00
T2	130.00-110.00	A	0.981	0.000	0.000	0.000	0.000	0.00

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 18

Tower	Tower	Face	lce	A _R	AF	CAAA	C _A A _A	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft²	ft ²	ft ²	ft ²	ĸ
		В		0.000	0.000	101.021	0.000	1.14
-		С		0.000	0.000	0.000	0.000	0.00
тз	110.00-94.00	Α	0.966	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	106.647	0.000	1.32
		С		0.000	0.000	17.548	0.000	0.19
Т4	94.00-90.00	Α	0.956	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	26.603	0.000	0.33
		С		0.000	0.000	11.671	0.000	0.13
T5	90.00-80.00	A	0.948	0.000	0.000	0.000	0.000	0.00
		в		0.000	0.000	66.397	0.000	0.82
		С		0.000	0.000	61.881	0.000	0.68
Т6	80.00-70.00	A	0.936	0.000	0.000	40.009	0.000	0.44
		в		0.000	0.000	66.223	0.000	0.81
		С		0.000	0.000	61.716	0.000	0.67
Т7	70.00-55.00	A	0.919	0.000	0.000	59.840	0.000	0.65
		в		0.000	0.000	98.959	0.000	1.20
		С		0.000	0.000	92.220	0.000	1.00
Т8	55.00-50.00	A	0.903	0.000	0.000	19.892	0.000	0.22
		В		0.000	0.000	32.869	0.000	0.40
		С		0.000	0.000	30.629	0.000	0.33
Т9	50.00-30.00	А	0.879	0.000	0.000	79.236	0.000	0.85
		В		0.000	0.000	130.761	0.000	1.55
		С		0.000	0.000	121.839	0.000	1.29
T10	30.00-10.00	А	0.820	0.000	0.000	78.431	0.000	0.81
		B C		0.000	0.000	129.023	0.000	1.49
				0.000	0.000	120.197	0.000	1.23
T11	10.00-0.00	A	0.714	0.000	0.000	38.490	0.000	0.37
		В		0.000	0.000	62.945	0.000	0.69
	And a summer of the local division of the lo	C		0.000	0.000	58.620	0.000	0.56

		Feed	Line Ce	nter of P	ressure	
Section	Elevation	CPx	CPz	CPx	CPz	
	ft	in	in	lce in	lce in	
T1	150.00-130.00	1.8791	-8,7076	1,9409	-9.0107	
T2	130.00-110.00	2.5001	-11.1961	2.6008	-11.5825	
тз	110.00-94.00	5.4429	-10.7154	6.5832	-10.3756	
T4	94.00-90.00	7.0986	-9.7516	8.7170	-9.2793	
T5	90.00-80.00	2.5716	-9.2788	2.8882	-8.3030	
Т6	80.00-70.00	-1.9914	-5.5815	-1.4283	-4.8693	
T7	70.00-55.00	-2.3939	-6.7084	-1.6848	-5.8269	
T8	55.00-50.00	-2.2701	-6.4387	-1.6480	-5.7741	
Т9	50.00-30.00	-2.5655	-7.2807	-1.8729	-6.6307	
T10	30.00-10.00	-3.1745	-8.9980	-2.3272	-8.3112	
T11	10.00-0.00	-2.9688	-8.5151	-2.3372	-8.3593	

		SI	hielding	Factor	Ka
Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K₂ No Ice	K₄ Ice
T1	1	1.5" flat Cable Ladder Rail	130.00 - 150.00	0.6000	0.6000
T1	2	LDF7-50A (1 5/8" foam)	141.00 - 149.00	0.6000	0.6000
T1	3	LDF7-50A (1 5/8" foam)	132.00 - 141.00	0.6000	0.6000

Founded in 1965

www.PaulJFord.com

On Air Engineering, LLC Norwalk 4 CT

www.PaulJFord.com

1/16/2023 Page 19

Tower	Feed Line	Description	Feed Line	Ka	K _a
Section	Record No.		Segment Elev.	No Ice	lce
T1	4	EP65(ELLIPTICAL)	130.00 -	0.6000	0.6000
T1	5	LDF7-50A (1 5/8" foam)	135.00 130.00 - 132.00	0.6000	0.6000
T2	1	1.5" flat Cable Ladder Rail	110.00 -	0.6000	0.6000
Т2	4	EP65(ELLIPTICAL)	130.00 110.00 - 130.00	0.6000	0.6000
Т2	5	LDF7-50A (1 5/8" foam)	130.00 124.00 - 130.00	0.6000	0.6000
Т2	6	LDF7-50A (1 5/8" foam)	123.00 - 124.00	0.6000	0.6000
T2	7	LDF7-50A (1 5/8" foam)	118.00 - 123.00	0.6000	0.6000
Т2	8	EP65(ELLIPTICAL)	110.00 - 120.00	0.6000	0.6000
Т2	9	LDF7-50A (1 5/8" foam)	110.00 - 118.00	0.6000	0.6000
тз	1	1.5" flat Cable Ladder Rail	94.00 - 110.00	0.6000	0.6000
тз	4	EP65(ELLIPTICAL)	94.00 - 110.00	0.6000	0.6000
тз	8	EP65(ELLIPTICAL)	94.00 - 110.00	0.6000	0.6000
тз	9	LDF7-50A (1 5/8" foam)	94.00 - 110.00	0.6000	0.6000
тз	11	T-Brackets (Af)	94.00 - 110.00	0.6000	0.6000
тз	12	HB158-1-08U8-S8F18(1 5/8")	94.00 - 110.00	0.6000	0.6000
тз	14	1.5" flat Cable Ladder Rail	94.00 - 100.00	0.6000	0.6000
ТЗ	15	LDF7-50A (1 5/8" foam)	94.00 - 100.00	0.6000	0.6000
Т4	1	1.5" flat Cable Ladder Rail	90.00 - 94.00	0.6000	0.6000
Т4	4	EP65(ELLIPTICAL)	90.00 - 94.00	0.6000	0.6000
Т4	8	EP65(ELLIPTICAL)	90.00 - 94.00	0.6000	0.6000
Т4	9	LDF7-50A (1 5/8" foam)	90.00 - 94.00	0.6000	0.6000
T4	11	T-Brackets (Af)	90.00 - 94.00	0.6000	0.6000
T4	12	HB158-1-08U8-S8F18(1 5/8")	90.00 - 94.00	0.6000	0.6000
T4	14	1.5" flat Cable Ladder Rail	90.00 - 94.00	0.6000	0.6000
Т4	15	LDF7-50A (1 5/8" foam)	90.00 - 94.00	0.6000	0.6000
Т5		1.5" flat Cable Ladder Rail	80.00 - 90.00	0.6000	0.6000
Т5		EP65(ELLIPTICAL)	80.00 - 90.00	0.6000	0.6000
Т5		EP65(ELLIPTICAL)	80.00 - 90.00	0.6000	0.6000
Т5		LDF7-50A (1 5/8" foam)	80.00 - 90.00	0.6000	0.6000
Т5		T-Brackets (Af)	80.00 - 90.00	0.6000	0.6000
Т5		HB158-1-08U8-S8F18(1 5/8")	80.00 - 90.00	0.6000 0.6000	0.6000
Т5		1.5" flat Cable Ladder Rail	80.00 - 90.00	0.6000	0.6000
Т5		LDF7-50A (1 5/8" foam)	80.00 - 90.00		0.6000
Т5	17	1.5" flat Cable Ladder Rail	- 80.00 90.00	0.6000	0.0000

Founded in 1965

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 20

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	lce
Т5	18	LDF7-50A (1 5/8" foam)	80.00 -	0.6000	0.6000
Т6	1	1.5" flat Cable Ladder Rail	90.00 - 70.00 80.00	0.6000	0.6000
Т6	4	EP65(ELLIPTICAL)	70.00 - 80.00	0.6000	0.6000
Т6	8	EP65(ELLIPTICAL)	70.00 - 80.00	0.6000	0.6000
Т6	9	LDF7-50A (1 5/8" foam)	70.00 - 80.00	0.6000	0.6000
Т6	11	T-Brackets (Af)	70.00 - 80.00	0.6000	0.6000
Т6	12	HB158-1-08U8-S8F18(1 5/8")	70.00 - 80.00	0.6000	0.6000
Т6	14	1.5" flat Cable Ladder Rail	70.00 - 80.00	0.6000	0.6000
Т6	15	LDF7-50A (1 5/8" foam)	70.00 - 80.00	0.6000	0.6000
Т6	17	1.5" flat Cable Ladder Rail	70.00 - 80.00	0.6000	0.6000
T6	18	LDF7-50A (1 5/8" foam)	70.00 - 80.00	0.6000	0.6000
T6	20	1.5" flat Cable Ladder Rail	70.00 - 80.00	0.6000	0.6000
Т6 т7	21	LDF7-50A (1 5/8" foam)	70.00 - 80.00	0.6000	0.6000
T7	1	1.5" flat Cable Ladder Rail	55.00 - 70.00	0.6000	0.6000
77	4	EP65(ELLIPTICAL)	55.00 - 70.00	0.6000	0.6000
17	8	EP65(ELLIPTICAL)	55.00 - 70.00	0.6000	0.6000
T7	9	LDF7-50A (1 5/8" foam)	55.00 - 70.00	0.6000	0.6000
17	11	T-Brackets (Af)	55.00 - 70.00	0.6000	0.6000
Т7 Т7	12 14	HB158-1-08U8-S8F18(1 5/8")	55.00 - 70.00	0.6000	0.6000
т7	14	1.5" flat Cable Ladder Rail LDF7-50A (1 5/8" foam)	55.00 - 70.00	0.6000	0.6000
т7	13	1.5" flat Cable Ladder Rail	55.00 - 70.00	0.6000	0.6000
т7	18	LDF7-50A (1 5/8" foam)	55.00 - 70.00	0.6000	0.6000
т7	20	1.5" flat Cable Ladder Rail	55.00 - 70.00	0.6000 0.6000	0.6000
т7	20	LDF7-50A (1 5/8" foam)	55.00 - 70.00		0.6000
T8	21	1.5" flat Cable Ladder Rail	55.00 - 70.00	0.6000	0.6000
T8	4	EP65(ELLIPTICAL)	50.00 - 55.00 50.00 -	0.6000	0.6000
тв	4	EP65(ELLIPTICAL)	50.00 - 55.00	0.6000	0.6000
тв	9	LDF7-50A (1 5/8" foam)	50.00 - 55.00	0.6000	0.6000
тв	11	T-Brackets (Af)	50.00 - 55.00 50.00 -	0.6000	0.6000
тв	12	HB158-1-08U8-S8F18(1	55.00 50.00 -	0.6000	0.6000
тв	14	1.5" flat Cable Ladder Rail	55.00 50.00 -		0.6000
тв	14	LDF7-50A (1 5/8" foam)	55.00 50.00 -	0.6000	0.6000
тв	17	1.5" flat Cable Ladder Rail	55.00 50.00 -	0.6000	0.6000
			55.00	0.0000	0.0000

Founded in 1965

www.PaulJFord.com

100% Employee Owned

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 21

a,

Tower	Feed Line	Description	Feed Line	Ka	K,
Section	Record No.		Segment Elev.	No Ice	lce
Т8	18	LDF7-50A (1 5/8" foam)	50.00 - 55.00	0.6000	0.6000
т8	20	1.5" flat Cable Ladder Rail	50.00 - 55.00	0.6000	0.6000
тв	21	LDF7-50A (1 5/8" foam)	50.00 - 55.00	0.6000	0.6000
Т9	1	1.5" flat Cable Ladder Rail	30.00 - 50.00	0.6000	0.6000
Т9	4	EP65(ELLIPTICAL)	30.00 - 50.00	0.6000	0.6000
т9	8	EP65(ELLIPTICAL)	30.00 - 50.00	0.6000	0.6000
Т9	9	LDF7-50A (1 5/8" foam)	30.00 - 50.00	0.6000	0.6000
Т9	11	T-Brackets (Af)	30.00 - 50.00	0.6000	0.6000
Т9	12	HB158-1-08U8-S8F18(1 5/8")	30.00 - 50.00	0.6000	0.6000
Т9	14	1.5" flat Cable Ladder Rail	30.00 - 50.00	0.6000	0.6000
Т9	15	LDF7-50A (1 5/8" foam)	30.00 - 50.00	0.6000	0.6000
т9	17	1.5" flat Cable Ladder Rail	30.00 - 50.00	0.6000	0.6000
Т9	18	LDF7-50A (1 5/8" foam)	30.00 - 50.00	0.6000	0.6000
Т9	20	1.5" flat Cable Ladder Rail	30.00 - 50.00	0.6000	0.6000
Т9	21	LDF7-50A (1 5/8" foam)	30.00 - 50.00	0.6000	0.6000
т10	্	1.5" flat Cable Ladder Rail	10.00 - 30.00	0.6000	0.6000
т10	4	EP65(ELLIPTICAL)	10.00 - 30.00	0.6000	0.6000
т10	8	EP65(ELLIPTICAL)	10.00 - 30.00	0.6000	0.6000
Т10	9	LDF7-50A (1 5/8" foam)	10.00 - 30.00	0.6000	0.6000
т10	11	T-Brackets (Af)	10.00 - 30.00	0.6000	0.6000
т10	12	HB158-1-08U8-S8F18(1 5/8")	10.00 - 30.00	0.6000	0.6000
т10	14	1.5" flat Cable Ladder Rail	10.00 - 30.00	0.6000	0.6000
T10	15	LDF7-50A (1 5/8" foam)	10.00 - 30.00	0.6000	0.6000
T10	17	1.5" flat Cable Ladder Rail	10.00 - 30.00	0.6000	0.6000
т10	18	LDF7-50A (1 5/8" foam)	10.00 - 30.00	0.6000	0.6000
Т10	20	1.5" flat Cable Ladder Rail	10.00 - 30.00	0.6000	0.6000
Т10	21	LDF7-50A (1 5/8" foam)	10.00 - 30.00	0.6000	0.6000
Т11	1	1.5" flat Cable Ladder Rail	0.00 - 10.00	0.6000	0.6000
T11	4	EP65(ELLIPTICAL)	0.00 - 10.00	0.6000	0.6000
T11	8	EP65(ELLIPTICAL)	0.00 - 10.00 0.00 - 10.00	0.6000	0.6000
T11	9 11	LDF7-50A (1 5/8" foam) T-Brackets (Af)	0.00 - 10.00	0.6000	0.6000
T11 T11	12	HB158-1-08U8-S8F18(1	0.00 - 10.00	0.6000	0.6000
T11	14	5/8") 1.5" flat Cable Ladder Rail	0.00 - 10.00	0.6000	0.6000
T11	15	LDF7-50A (1 5/8" foam)	0.00 - 10.00	0.6000	0.6000
T11	17	1.5" flat Cable Ladder Rail	0.00 - 10.00	0.6000	0.6000
T11	18	LDF7-50A (1 5/8" foam)	0.00 - 10.00	0.6000	0.6000
T11	20	1.5" flat Cable Ladder Rail	0.00 - 10.00	0.6000 0.6000	0.6000
T11	21	LDF7-50A (1 5/8" foam)	0.00 - 10.00	0.0000	0.0000

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
5		Â.	ft ft ft		ft		ft²	ft²	ĸ
ANT150F6	A	From Leg	6.00	0.0000	149.00	No Ice	4.80	4.80	0.03
			0.00			1/2"	6.83	6.83	0.07
			10.00			ice 1" ice	8.87	8.87	0.11
D\$9A09F36D-N	В	From Leg	6.00	0.0000	149.00	No lce	5.76	5.76	0.05
			0.00			1/2"	7.71	7.71	0.09
			10.00			Ice 1" Ice	9.68	9.68	0.14
1151-3	С	From Leg	6.00	0.0000	149.00	No Ice	4.18	4.18	0.02
			0.00			1/2"	5,73	5.73	0.05
			7.60			lce	7.30	7.30	0.09
						1" Ice	1.00	1.00	0.00
Rohn 6' Side-Arm(1)	А	From Leg	3.00	0.0000	149.00	No Ice	10.60	10,60	0.14
			0.00	0.0000	140.00	1/2"	15.40	15.40	0.14
			0.00			lce	20.20	20.20	0.21
			0.00			1" Ice	20.20	20.20	0.20
Rohn 6' Side-Arm(1)	в	From Leg	3.00	0.0000	149.00	No Ice	10.60	10.60	0.14
	-		0.00	0.0000	143.00	1/2"	15.40	15.40	0.14
			0.00			lce	20.20	20.20	0.21
			0.00			1" Ice	20.20	20.20	0.20
Rohn 6' Side-Arm(1)	С	From Leg	3.00	0.0000	149.00	No Ice	10.60	10.60	0.14
(-/	-		0.00	0.0000	140.00	1/2"	15.40	15.40	0.14
			0.00			lce	20.20	20.20	0.21
•••			0.00			1" Ice	20.20	20.20	0.20
ANT220F2	^	Erom Los	e 00	0.0000	444.00		4.00	4	
ANIZZUEZ	A	From Leg	6.00	0.0000	141.00	No Ice	1.03	1.03	0.01
			0.00			1/2"	1.29	1.29	0.02
			2.20			Ice	1.56	1.56	0.03
ANT150F2	в	From Leg	6.00	0.0000	141.00	1" Ice	1 00	1 00	0.04
THE COLE	U	. Tom Ley	0.00	0.0000	141.00	No Ice 1/2"	1.29 1.60	1.29 1.60	0.01 0.02
			2.50						
			2.00			lce 1" loo	1.91	1.91	0.04
Rohn 6' Side-Arm(1)	А	From Leg	3.00	0.0000	141.00	1" ice	10 60	10 60	0.14
	~	. Tom Ley	0.00	0.0000	141.00	No Ice 1/2"	10.60 15.40	10.60 15.40	0.14 0.21
			0.00				20.20		
			0.00			lce 1" lce	20.20	20.20	0.28
Rohn 6' Side-Arm(1)	в	From Leg	3.00	0.0000	141.00		10.60	10.60	0.14
	2	. tom Ley	0.00	0.0000	141.00	No Ice 1/2"	15.40	15.40	0.14
			0.00			lce	20.20	20.20	0.21
			0.00			1" Ice	20.20	20.20	0.20
****						108			
6'x2" Pipe Mount	А	From Leg	1.00	0.0000	135.00	No lee	1.20	1.20	0.07
one ripolitount	~	. Tom Ley	0.00	0.0000	133.00	No Ice 1/2"	1.20	1.80	0.07
			0.00			lce	2.17	2.17	0.08
			0.00			1" Ice	2.17	4 . 17	0.08
****						100			
CO-36A	в	From Leg	6.00	0.0000	132.00	No Ice	0.75	0.75	0.01
	5	on Loy	0.00	0.0000	132.00	1/2"	1.96	1.96	0.01
			6.00			ice	3.19	3.19	0.02
			0.00			1" Ice	0.19	5.15	0.04
Rohn 6' Side-Arm(1)	в	From Leg	3.00	0.0000	132.00	No lce	10.60	10.60	0.14
	2	. Tom Log	0.00	0.0000	102.00	1/2"	15.40	15.40	0.14
			0.00						
			0.00			lce 1" lce	20.20	20.20	0.28

Founded in 1965

100% Employee Owned

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 23

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
	-		Vert ft ft ft	•	ft		ft²	ft²	к
ANT150F2	A	From Leg	6.00 0.00 2.50	0.0000	124.00	No Ice 1/2" Ice 1" Ice	1.29 1.60 1.91	1.29 1.60 1.91	0.01 0.02 0.04
Rohn 6' Side-Arm(1)	A	From Leg	3.00 0.00 0.00	0.0000	124.00	No Ice 1/2" Ice 1" Ice	10.60 15.40 20.20	10.60 15.40 20.20	0.14 0.21 0.28
со-36А	В	From Leg	6.00 0.00 6.00	0.0000	123.00	No Ice 1/2" Ice 1" Ice	0.75 1.96 3.19	0.75 1.96 3.19	0.01 0.02 0.04
Rohn 6' Side-Arm(1)	В	From Leg	3.00 0.00 0.00	0.0000	123.00	No Ice 1/2" Ice 1" Ice	10.60 15.40 20.20	10.60 15.40 20.20	0.14 0.21 0.28
**** 6'x2'' Pipe Mount	A	From Leg	1.00 0.00 0.00	0.0000	120.00	No ice 1/2" ice 1" ice	1.20 1.80 2.17	1.20 1.80 2.17	0.07 0.08 0.09
ANT220F2	A	From Leg	6.00 0.00 2.20	0.0000	118.00	No Ice 1/2" Ice 1" Ice	1.03 1.29 1.56	1.03 1.29 1.56	0.01 0.02 0.03
CO-36A	В	From Leg	6.00 0.00 6.00	0.0000	118.00	No Ice 1/2" Ice 1" Ice	0.75 1.96 3.19	0.75 1.96 3.19	0.01 0.02 0.04
Rohn 6' Side-Arm(1)	A	From Leg	3.00 0.00 0.00	0.0000	118.00	No Ice 1/2" Ice 1" Ice	10.60 15.40 20.20	10.60 15.40 20.20	0.14 0.21 0.28
Rohn 6' Side-Arm(1)	В	From Leg	3.00 0.00 0.00	0.0000	118.00	No Ice 1/2" Ice 1" Ice	10.60 15.40 20.20	10.60 15.40 20.20	0.14 0.21 0.28
**** (2) QS6656-5_TIA w/ Mount Pipe	A	From Leg	4.00 0.00 0.00	0.0000	110.00	No Ice 1/2" Ice	8.37 8.93 9.46	8.46 9.66 10.55	0.09 0.17 0.25
(2) QS6656-5_TIA w/ Mount Pipe	В	From Leg	4.00 0.00 0.00	0.0000	110.00	1" Ice No Ice 1/2" Ice 1" Ice	8.37 8.93 9.46	8.46 9.66 10.55	0.09 0.17 0.25
(2) QS6656-5_TIA w/ Mount Pipe	С	From Leg	4.00 0.00 0.00	0.0000	110.00	No ice 1/2" ice 1" ice	8.37 8.93 9.46	8.46 9.66 10.55	0.09 0.17 0.25
RFV01U-D1A_VZW CFD	A	From Leg	4.00 0.00 0.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice	1.55 2.39 2.59	1.04 1.62 1.80	0.08 0.10 0.12
RFV01U-D1A_VZW CFD	В	From Leg	4.00 0.00 0.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice	1.55 2.39 2.59	1.04 1.62 1.80	0.08 0.10 0.12
RFV01U-D1A_VZW CFD	С	From Leg	4.00 0.00 0.00	0.0000	110.00	No Ice 1/2" Ice 1" Ice	1.55 2.39 2.59	1.04 1.62 1.80	0.08 0.10 0.12

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 24

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C₄A₄ Front	$C_A A_A$ Side	Weight
			ft ft	0	ft		ft²	ft ²	К
RFV01U-D2A VZW CFD	A	From Leg	ft 	0.0000	140.00	N1	4.55		
	A	FIOIII Leg	4.00 0.00	0.0000	110.00	No Ice 1/2"	1.55 2.39	0.85 1.34	0.07
			0.00			lce	2.59	1.50	0.09 0.11
RFV01U-D2A_VZW CFD	в	From Leg	4.00	0.0000	110.00	1" lce No lce	1.55	0.85	0.07
	2	110m Log	0.00	0.0000	110.00	1/2"	2.39	1.34	0.07
			0.00			lce	2.59	1.50	0.09
						1" Ice			
RFV01U-D2A_VZW CFD	С	From Leg	4.00	0.0000	110.00	No Ice	1.55	0.85	0.07
			0.00			1/2"	2.39	1.34	0.09
			0.00			Ice	2.59	1.50	0.11
RVZDC-6627-PF-48_VZW	А	From Leg	0.50	0.0000	110.00	1" Ice	0.47	0.44	0.00
CFD	~	FIOIDLeg	0.00	0.0000	110.00	No Ice 1/2"	3.17	2.41	0.03
0.0			0.00			lce	4.72	3.16	0.06
			0.00			1" Ice	5.02	3.43	0.10
MT6407-77A_VZW CFD	А	From Leg	4.00	0.0000	110.00	No Ice	3.92	1.35	0.08
		Ũ	0.00	_		1/2"	5.81	2.15	0.11
			0.00			ice	6.15	2.42	0.14
	_	_				1" ice			
MT6407-77A_VZW CFD	в	From Leg	4.00	0.0000	110.00	No Ice	3.92	1.35	0.08
			0.00			1/2"	5.81	2.15	0.11
			0.00			Ice	6.15	2.42	0.14
MT6407-77A_VZW CFD	С	From Leg	4.00	0.0000	110.00	1" Ice	2.02	1 95	0.00
	0	r ioni Leg	0.00	0.0000	110.00	No Ice 1/2"	3.92 5.81	1.35 2.15	0.08
			0.00			lce	6.15	2.15	0.11 0.14
						1" Ice	0.10	2.72	0.14
(2) BSF0020F3V1-1	А	From Leg	4.00	0.0000	110.00	No Ice	0.96	0.29	0.02
			0.00			1/2"	1.09	0.36	0.02
			0.00			lce	1.22	0.45	0.03
(2) BSF0020F3V1-1	в		4.00	0.0000		1" Ice			
(2) B3F0020F3V 1-1	D	From Leg	4.00 0.00	0.0000	110.00	No Ice	0.96	0.29	0.02
			0.00			1/2"	1.09	0.36	0.02
			0.00			lce 1" lce	1.22	0.45	0.03
(2) BSF0020F3V1-1	С	From Leg	4.00	0.0000	110.00	No ice	0.96	0.29	0.02
		0	0.00			1/2"	1.09	0.36	0.02
			0.00			Ice	1.22	0.45	0.03
						1" Ice			
(3) Armor Tower	А	None		0.0000	110.00	No Ice	24.41	24.41	0.93
Engineering 12-Ft Arch Frame						1/2"	31.39	31.39	1.36
Tane						lce 1" lce	38.37	38.37	1.79
****						I ICE			
2) BXA-70063-6CF-EDIN-	А	From Leg	4.00	0.0000	100.00	No Ice	7.81	5.80	0.04
0_TIA w/ Mount Pipe			0.00			1/2"	8.36	6.95	0.10
			0.00			Ice	8.87	7.82	0.17
	_	_				1" lce			
2) BXA-70063-6CF-EDIN-	в	From Leg	4.00	0.0000	100.00	No Ice	7.81	5.80	0.04
0_TIA w/ Mount Pipe			0.00			1/2"	8.36	6.95	0.10
			0.00			lce 1" loo	8.87	7.82	0.17
2) BXA-70063-6CF-EDIN-	С	From Leg	4.00	0.0000	100.00	1" Ice No Ice	7.81	5.80	0.04
0_TIA w/ Mount Pipe	-	Eog	0.00	0.0000	100.00	1/2"	8.36	5.80 6.95	0.04
			0.00			lce	8.87	7.82	0.17
						1" Ice			
(2) BXA-171063-12CF-	А	From Leg	4.00	0.0000	100.00	No Ice	5.04	5.30	0.05
DIN-X_TIA w/ Mount Pipe			0.00			1/2"	5.59	6.47	0.09
			0.00			lce	6.11	7.36	0.15
(2) BYA-171062 120E	в	From Las	4.00	0.0000	100.55	1" Ice			
(2) BXA-171063-12CF- DIN-X TIA w/ Mount Pipe	в	From Leg	4.00 0.00	0.0000	100.00	No Ice 1/2"	5.04	5.30	0.05
			11111					6/1/	0.00
bint-x_nx w/ mount i pe			0.00			lce	5.59 6.11	6.47 7.36	0.09 0.15

Founded in 1965

www.PaulJFord.com

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 25

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C₄A₄ Front	C₄A₄ Side	Weigh
			Vert ft ft		ft		ft²	ft²	К
			ft						
	0	Energy Lee	4.00	0.0000	100.00	1" Ice No Ice	5.04	5.30	0.05
(2) BXA-171063-12CF-	С	From Leg	4.00 0.00	0.0000	100.00	1/2"	5.59	6.47	0.09
EDIN-X_TIA w/ Mount Pipe			0.00			lce 1" lce	6.11	7.36	0.15
(3) RRH2X40-AWS	А	From Leg	4.00	0.0000	100.00	No Ice	2.16	1.42	0.04
(3) 1112/40-2003	A	Tion Log	0.00			1/2" Ice	2.36 2.57	1.59 1.77	0.06 0.08
	_		4.00	0.0000	100.00	1" Ice	2.16	1.42	0.04
(3) RRH2X40-AWS	В	From Leg	4.00	0.0000	100.00	No Ice 1/2"	2.16	1.42	0.04
			0.00 0.00			lce 1" lce	2.50	1.77	0.08
	С	From Leg	4.00	0.0000	100.00	No Ice	2.16	1.42	0.04
(3) RRH2X40-AWS	C	nom Leg	0.00	0.0000		1/2"	2.36	1.59	0.06
			0.00			ice 1" ice	2.57	1.77	0.08
DB-T1-6Z-8AB-0Z	А	From Leg	4.00	0.0000	100.00	No Ice	4.80	2.00	0.04
		3	0.00 0.00			1/2" Ice	5.07 5.35	2.19 2.39	0.08 0.12
			0.00	0.0000	100.00	1" Ice	13.60	13.60	0.47
Pirod 12' T-Frame Sector	Α	From Leg	0.00	0.0000	100.00	No Ice 1/2"	18.40	18.40	0.47
Mount (1)			0.00 0.00			ice 1" ice	23.20	23.20	0.73
Pirod 12' T-Frame Sector	в	None		0.0000	100.00	No Ice	13.60	13.60	0.47
Mount (1)	D	None		0.0000		1/2'' Ice	18.40 23.20	18.40 23.20	0.60 0.73
						1" Ice	40.00	40.00	0.47
Pirod 12' T-Frame Sector	С	None		0.0000	100.00	No Ice	13.60	13.60	0.47
Mount (1)						1/2" Ice 1" Ice	18.40 23.20	18.40 23.20	0.60 0.73

APXVSPP18-C_TIA w/	А	From Leg	4.00	0.0000	90.00	No ice	8.26	7.47	0.09
Mount Pipe		_	0.00 0.00			1/2" Ice	8.82 9.35	8.66 9.56	0.16 0.24
	-		4.00	0.0000	90.00	1" ice No ice	8.26	7.47	0.09
APXVSPP18-C_TIA w/	в	From Leg	4.00 0.00	0.0000	90.00	1/2"	8.82	8.66	0.05
Mount Pipe			0.00			lce 1" lce	9.35	9.56	0.24
APXVSPP18-C_TIA w/	С	From Leg	4.00	0.0000	90.00	No Ice	8.26	7.47	0.09
Mount Pipe	.	e.ii Log	0.00			1/2"	8.82	8.66	0.16
Mount ipo			0.00			lce 1" ice	9.35	9.56	0.24
FD-RRH-2x50-800	А	From Leg	4.00	0.0000	90.00	No Ice	1.36	3.01	0.05
			0.00 0.00			1/2" Ice 1" Ice	1.52 1.68	3.22 3.45	0.08 0.10
	P	From Loc	4.00	0.0000	90.00	No Ice	1.36	3.01	0.05
FD-RRH-2x50-800	в	From Leg	0.00	0.0000	00.00	1/2"	1.52	3.22	0.08
			0.00			lce 1" lce	1.68	3.45	0.10
FD-RRH-2x50-800	С	From Leg	4.00	0.0000	90.00	No Ice	1.36	3.01	0.05
		5	0.00 0.00			1/2" Ice 1" Ico	1.52 1.68	3.22 3.45	0.08 0.10
		Easter 1	0.00	0.0000	90.00	1" lce No lce	13.60	13.60	0.47
Pirod 12' T-Frame Sector Mount (1)	A	From Leg	0.00 0.00 0.00	0.0000	90.00	No Ice 1/2" Ice	18.40 23.20	18.40 23.20	0.47 0.60 0.73
						1" Ice			
Pirod 12' T-Frame Sector Mount (1)	В	None		0.0000	90.00	No Ice	13.60 18.40	13.60 18.40	0.47 0.60

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 26

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			ft ft	•	ft		ft²	ft²	к
			ft			1/2" Ice	23.20	23,20	0.73
						1" Ice			
Pirod 12' T-Frame Sector	С	None		0.0000	90.00	No Ice	13.60	13.60	0.47
Mount (1)						1/2"	18.40	18.40	0.60
						lce	23.20	23.20	0.73
****						1" Ice			
(2) AIR 21	А	From Face	4.00	0.0000	80.00	No Ice	3.19	1.98	0.10
()			0.00	0.0000	00.00	1/2"	3.52	2.28	0.14
			0.00			lce	3.85	2.59	0.18
						1" lce			
(2) AIR 21	в	From Face	4.00	0.0000	80.00	No Ice	3.19	1.98	0.10
			0.00			1/2"	3.52	2.28	0.14
			0.00			Ice	3.85	2.59	0.18
	~	FF				1" Ice			
(2) AIR 21	С	From Face	4.00	0.0000	80.00	No Ice	3.19	1.98	0.10
			0.00			1/2"	3.52	2.28	0.14
			0.00			lce 1" lce	3.85	2.59	0.18
KRY 112 144/1	А	From Face	4.00	0.0000	80.00	No Ice	0.35	0.17	0.01
		i ioni i doc	0.00	0.0000	00.00	1/2"	0.33	0.23	0.01
			0.00			Ice	0.51	0.30	0.02
						1" Ice			
KRY 112 144/1	в	From Face	4.00	0.0000	80.00	No Ice	0.35	0.17	0.01
			0.00			1/2"	0.43	0.23	0.01
			0.00			lce	0.51	0.30	0.02
						1" Ice			
KRY 112 144/1	С	From Face	4.00	0.0000	80.00	No Ice	0.35	0.17	0.01
			0.00 0.00			1/2"	0.43 0.51	0.23	0.01
			0.00			lce 1" lce	0.51	0.30	0.02
Pirod 12' T-Frame Sector	А	From Leg	0.00	0.0000	80.00	No Ice	13.60	13.60	0.47
Mount (1)		em Log	0.00	0.0000	00.00	1/2"	18.40	18.40	0.60
			0.00			lce	23.20	23.20	0.73
						1" ice			
Pirod 12' T-Frame Sector	в	None		0.0000	80.00	No Ice	13.60	13.60	0.47
Mount (1)						1/2"	18.40	18.40	0.60
						lce	23.20	23.20	0.73
Pirod 12' T-Frame Sector	С	Nese		0.0000	00.00	1" Ice	40.00	10.00	0.47
Mount (1)	C	None		0.0000	80.00	No Ice 1/2"	13.60	13.60	0.47
mount (1)						lce	18.40 23.20	18.40 23.20	0.60 0.73
						1" Ice	20.20	20.20	0.70

Secondarty Members 30'-	А	None		0.0000	25.00	No Ice	9.58	9.58	0.09
20'						1/2"	14.03	14.03	0.13
						Ice	18.48	18.48	0.18
Deserved and Manufactor 201						1" Ice			
Secondarty Members 30'- 20'	в	None		0.0000	25.00	No Ice	9.58	9.58	0.09
20						1/2"	14.03	14.03	0.13
						lce 1" loo	18.48	18.48	0.18
Secondarty Members 30'-	с	None		0.0000	25.00	1" Ice No Ice	9.58	9.58	0.09
20'	0			0.0000	20.00	1/2"	9.56	9.56	0.09
						lce	18.48	18.48	0.18
						1" Ice	10.10		0.70
Secondarty Members 20'-	А	None		0.0000	15.00	No Ice	9.88	9.88	0.09
10'						1/2"	14.46	14.46	0.14
						lce	19.04	19.04	0.19
And the March Cont						1" Ice			
Secondarty Members 20'-	в	None		0.0000	15.00	No Ice	9.88	9.88	0.09
10'						1/2" Ice	14.46 19.04	14.46 19.04	0.14 0.19

www.PaulJFord.com

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 27

		Lateral	t			Front	Side	
		Vert ft ft ft	٠	ft		ft²	ff ²	к
с	None		0.0000	15.00	1" Ice No ice 1/2"	9.88 14.46	9.88 14.46 19.04	0.09 0.14 0.19
	с	C None	ft ft	ft ***	# * #	ft * ft 1" Ice C None 0.0000 15.00 No ice	ft * 1" Ice C None 0.0000 15.00 No ice 9.88 1/2" 14.46 Ice 19.04	ft * ft 1" Ice C None 0.0000 15.00 No Ice 9.88 9.88 1/2" 14.46 14.46 14.46 19.04 19.04

					Dish	es					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weigh
				ft	o	0	ft	ft		ft ²	ĸ
PAL6-59	A	Paraboloid w/o Radome	From Leg	1.00 0.00	Worst		135.00	6.00	No Ice 1/2" Ice 1" Ice	28.27 29.07 29.86	0.19 0.33 0.48
****				0.00					I ICe	29.00	0.40
PAL6-59	A	Paraboloid w/o Radome	From Leg	1.00 0.00 0.00	Worst		120.00	6.00	No Ice 1/2" Ice 1" Ice	28.27 29.07 29.86	0.19 0.33 0.48

Load Combinations

No. 1 Dead Only 2 1.2 Dead+1.0 Wind 0 deg - No Ice 3 0.9 Dead+1.0 Wind 30 deg - No Ice 4 1.2 Dead+1.0 Wind 30 deg - No Ice 5 0.9 Dead+1.0 Wind 30 deg - No Ice 6 1.2 Dead+1.0 Wind 60 deg - No Ice 7 0.9 Dead+1.0 Wind 60 deg - No Ice 8 1.2 Dead+1.0 Wind 90 deg - No Ice 9 0.9 Dead+1.0 Wind 120 deg - No Ice 11 0.9 Dead+1.0 Wind 120 deg - No Ice 12 1.2 Dead+1.0 Wind 120 deg - No Ice 13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 150 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 180 deg - No Ice 17 0.9 Dead+1.0 Wind 180 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 21 1.2 Dead+1.0 Wind 270 deg - No Ice 21 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 300 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9	Comb.		Description	
2 1.2 Dead+1.0 Wind 0 deg - No Ice 3 0.9 Dead+1.0 Wind 30 deg - No Ice 4 1.2 Dead+1.0 Wind 30 deg - No Ice 5 0.9 Dead+1.0 Wind 30 deg - No Ice 6 1.2 Dead+1.0 Wind 60 deg - No Ice 7 0.9 Dead+1.0 Wind 60 deg - No Ice 8 1.2 Dead+1.0 Wind 60 deg - No Ice 9 0.9 Dead+1.0 Wind 90 deg - No Ice 10 1.2 Dead+1.0 Wind 90 deg - No Ice 11 0.9 Dead+1.0 Wind 120 deg - No Ice 12 1.2 Dead+1.0 Wind 120 deg - No Ice 13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 180 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 180 deg - No Ice 17 0.9 Dead+1.0 Wind 180 deg - No Ice 18 1.2 Dead+1.0 Wind 210 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 270 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 W	No.	Devid Only		
3 0.9 Dead+1.0 Wind 30 deg - No Ice 4 1.2 Dead+1.0 Wind 30 deg - No Ice 5 0.9 Dead+1.0 Wind 60 deg - No Ice 6 1.2 Dead+1.0 Wind 60 deg - No Ice 7 0.9 Dead+1.0 Wind 90 deg - No Ice 8 1.2 Dead+1.0 Wind 90 deg - No Ice 9 0.9 Dead+1.0 Wind 90 deg - No Ice 10 1.2 Dead+1.0 Wind 120 deg - No Ice 11 0.9 Dead+1.0 Wind 120 deg - No Ice 12 1.2 Dead+1.0 Wind 120 deg - No Ice 13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 150 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 180 deg - No Ice 17 0.9 Dead+1.0 Wind 180 deg - No Ice 18 1.2 Dead+1.0 Wind 210 deg - No Ice 19 0.9 Dead+1.0 Wind 210 deg - No Ice 19 0.9 Dead+1.0 Wind 270 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1				
4 1.2 Dead+1.0 Wind 30 deg - No lce 5 0.9 Dead+1.0 Wind 60 deg - No lce 6 1.2 Dead+1.0 Wind 60 deg - No lce 7 0.9 Dead+1.0 Wind 60 deg - No lce 8 1.2 Dead+1.0 Wind 90 deg - No lce 9 0.9 Dead+1.0 Wind 90 deg - No lce 10 1.2 Dead+1.0 Wind 120 deg - No lce 10 1.2 Dead+1.0 Wind 120 deg - No lce 11 0.9 Dead+1.0 Wind 150 deg - No lce 12 1.2 Dead+1.0 Wind 150 deg - No lce 13 0.9 Dead+1.0 Wind 150 deg - No lce 14 1.2 Dead+1.0 Wind 150 deg - No lce 15 0.9 Dead+1.0 Wind 180 deg - No lce 16 1.2 Dead+1.0 Wind 180 deg - No lce 17 0.9 Dead+1.0 Wind 180 deg - No lce 18 1.2 Dead+1.0 Wind 210 deg - No lce 19 0.9 Dead+1.0 Wind 210 deg - No lce 19 0.9 Dead+1.0 Wind 270 deg - No lce 20 1.2 Dead+1.0 Wind 270 deg - No lce 21 1.2 Dead+1.0 Wind 300 deg - No lce 22 1.2 Dead+1.0 Wind 300 deg - No lce 23 0.9 Dead+1.0 Wind 300 deg - No lce 24 1.2 Dead+1.0 Wind 300 deg - No lce 25 0.9 Dead		1.2 Dead+1.0 Wind 0 deg - No ice		
5 0.9 Dead+1.0 Wind 30 deg - No Ice 6 1.2 Dead+1.0 Wind 60 deg - No Ice 7 0.9 Dead+1.0 Wind 90 deg - No Ice 8 1.2 Dead+1.0 Wind 90 deg - No Ice 9 0.9 Dead+1.0 Wind 90 deg - No Ice 10 1.2 Dead+1.0 Wind 120 deg - No Ice 11 0.9 Dead+1.0 Wind 120 deg - No Ice 12 1.2 Dead+1.0 Wind 150 deg - No Ice 13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 180 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 210 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 300 deg - No Ice 25 0.9 Dead+1.0 Wind 300 deg - No Ice 26 1.2 Dead+1.0 Wind 300 deg - No Ice 27 1.2 De				
6 1.2 Dead+1.0 Wind 60 deg - No lce 7 0.9 Dead+1.0 Wind 90 deg - No lce 8 1.2 Dead+1.0 Wind 90 deg - No lce 9 0.9 Dead+1.0 Wind 120 deg - No lce 10 1.2 Dead+1.0 Wind 120 deg - No lce 11 0.9 Dead+1.0 Wind 120 deg - No lce 12 1.2 Dead+1.0 Wind 120 deg - No lce 13 0.9 Dead+1.0 Wind 150 deg - No lce 14 1.2 Dead+1.0 Wind 180 deg - No lce 15 0.9 Dead+1.0 Wind 180 deg - No lce 16 1.2 Dead+1.0 Wind 210 deg - No lce 17 0.9 Dead+1.0 Wind 210 deg - No lce 18 1.2 Dead+1.0 Wind 240 deg - No lce 19 0.9 Dead+1.0 Wind 240 deg - No lce 20 1.2 Dead+1.0 Wind 270 deg - No lce 21 0.9 Dead+1.0 Wind 270 deg - No lce 22 1.2 Dead+1.0 Wind 300 deg - No lce 23 0.9 Dead+1.0 Wind 300 deg - No lce 23 0.9 Dead+1.0 Wind 330 deg - No lce 24 1.2 Dead+1.0 Wind 330 deg - No lce 25 0.9 Dead+1.0 Wind 330 deg - No lce 26 0.9 Dead+1.0 Wind 330 deg - No lce 27 1.2 Dead+1.0 Wind 330 deg - No lce 28 0.9				
7 0.9 Dead+1.0 Wind 60 deg - No Ice 8 1.2 Dead+1.0 Wind 90 deg - No Ice 9 0.9 Dead+1.0 Wind 120 deg - No Ice 10 1.2 Dead+1.0 Wind 120 deg - No Ice 11 0.9 Dead+1.0 Wind 120 deg - No Ice 12 1.2 Dead+1.0 Wind 150 deg - No Ice 13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 150 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 300 deg - No Ice 25 0.9 Dead+1.0 Wind 300 deg - No Ice 26 1.2 Dead+1.0 Wind 300 deg - No Ice 27 1.2 Dead+1.0 Wind 300 deg - No Ice 28 0.9 Dead+1.0 Wind 300 deg - No Ice 29 0.9 Dead+1.0 Wind 300 deg - No Ice 20 0				
8 1.2 Dead+1.0 Wind 90 deg - No Ice 9 0.9 Dead+1.0 Wind 120 deg - No Ice 10 1.2 Dead+1.0 Wind 120 deg - No Ice 11 0.9 Dead+1.0 Wind 120 deg - No Ice 12 1.2 Dead+1.0 Wind 150 deg - No Ice 13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 180 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 300 deg - No Ice 25 0.9 Dead+1.0 Wind 300 deg - No Ice 26 1.2 Dead+1.0 Wind 300 deg - No Ice 27 1.2 Dead+1.0 Wind 300 deg - No Ice 28 1.2 Dead+1.0 Wind 300 deg + No Ice 29 <td< td=""><td>7</td><td></td><td></td><td></td></td<>	7			
9 0.9 Dead+1.0 Wind 90 deg - No Ice 10 1.2 Dead+1.0 Wind 120 deg - No Ice 11 0.9 Dead+1.0 Wind 120 deg - No Ice 12 1.2 Dead+1.0 Wind 150 deg - No Ice 13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 180 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 270 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Wind 330 deg - No Ice 27 1.2 Dead+1.0 Wind 330 deg - No Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice 27 1.2 Dead+1.0 Wind 30 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice 29 1.2		1.2 Dead+1.0 Wind 90 deg - No loc		
10 1.2 Dead+1.0 Wind 120 deg - No Ice 11 0.9 Dead+1.0 Wind 150 deg - No Ice 12 1.2 Dead+1.0 Wind 150 deg - No Ice 13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 180 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 270 deg - No Ice 23 0.9 Dead+1.0 Wind 270 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Wind 330 deg - No Ice 27 1.2 Dead+1.0 Wind 330 deg - No Ice 28 1.2 Dead+1.0 Wind 300 deg+1.0 Ice 29 1.2 Dead+1.0 Wind 30 deg+1.0 Ice 21 1.2 Dead+1.0 Wind 30 deg+1.0 Ice		0.9 Dead+1.0 Wind 90 deg - No lce		
11 0.9 Dead+1.0 Wind 120 deg - No Ice 12 1.2 Dead+1.0 Wind 150 deg - No Ice 13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 180 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 270 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 300 deg - No Ice 25 0.9 Dead+1.0 Wind 300 deg - No Ice 26 1.2 Dead+1.0 Wind 300 deg - No Ice 27 1.2 Dead+1.0 Wind 300 deg - No Ice 28 1.2 Dead+1.0 Wind 300 deg - No Ice 27 1.2 Dead+1.0 Wind 300 deg - No Ice 28 1.2 Dead+1.0 Wind 0 deg+1.0 Ice		1.2 Dead+1.0 Wind 120 deg - No Ice		
12 1.2 Dead+1.0 Wind 150 deg - No Ice 13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 180 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Wind 330 deg - No Ice 27 1.2 Dead+1.0 Wind 330 deg - No Ice 28 1.2 Dead+1.0 Wind 300 deg + No Ice 29 1.2 Dead+1.0 Wind 300 deg + No Ice 21 1.2 Dead+1.0 Wind 300 deg + No Ice 23 1.2 Dead+1.0 Wind 300 deg + No Ice 24 1.2 Dead+1.0 Wind 300 deg + No Ice 27 1.2 Dead+1.0 Wind 300 deg + No Ice 28 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 29 <td< td=""><td>. –</td><td>0.9 Dead+1.0 Wind 120 deg - No Ice</td><td></td><td></td></td<>	. –	0.9 Dead+1.0 Wind 120 deg - No Ice		
13 0.9 Dead+1.0 Wind 150 deg - No Ice 14 1.2 Dead+1.0 Wind 180 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Wind 330 deg - No Ice 27 1.2 Dead+1.0 Wind 330 deg - No Ice 28 1.2 Dead+1.0 Wind 330 deg - No Ice 29 1.2 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Wind 330 deg - No Ice 27 1.2 Dead+1.0 Wind 330 deg - No Ice 28 1.2 Dead+1.0 Wind 330 deg + 1.0 Ice				
14 1.2 Dead+1.0 Wind 180 deg - No Ice 15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 270 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 300 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Wind 330 deg - No Ice 27 1.2 Dead+1.0 Wind 330 deg - No Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice 27 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice				
15 0.9 Dead+1.0 Wind 180 deg - No Ice 16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Wind 330 deg - No Ice 27 1.2 Dead+1.0 Wind 300 deg - No Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice				
16 1.2 Dead+1.0 Wind 210 deg - No Ice 17 0.9 Dead+1.0 Wind 210 deg - No Ice 18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 270 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Wind 330 deg - No Ice 27 1.2 Dead+1.0 Wind 330 deg - No Ice 28 1.2 Dead+1.0 Wind 300 deg+1.0 Ice 29 1.2 Dead+1.0 Wind 30 deg+1.0 Ice		0.9 Dead+1.0 Wind 180 deg - No Ice		
18 1.2 Dead+1.0 Wind 240 deg - No Ice 19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Wind 330 deg - No Ice 27 1.2 Dead+1.0 Ice 27 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice	16			
19 0.9 Dead+1.0 Wind 240 deg - No Ice 20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Ice 27 1.2 Dead+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice	17	0.9 Dead+1.0 Wind 210 deg - No Ice		
20 1.2 Dead+1.0 Wind 270 deg - No Ice 21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Ice 27 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice	18			
21 0.9 Dead+1.0 Wind 270 deg - No Ice 22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Ice 27 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice	19			
22 1.2 Dead+1.0 Wind 300 deg - No Ice 23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Ice 27 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice				
23 0.9 Dead+1.0 Wind 300 deg - No Ice 24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Ice 27 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice		•		
24 1.2 Dead+1.0 Wind 330 deg - No Ice 25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Ice 27 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice				
25 0.9 Dead+1.0 Wind 330 deg - No Ice 26 1.2 Dead+1.0 Ice 27 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice		0.9 Dead+1.0 Wind 300 deg - No Ice		
26 1.2 Dead+1.0 Ice 27 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice				
27 1.2 Dead+1.0 Wind 0 deg+1.0 Ice 28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice				
28 1.2 Dead+1.0 Wind 30 deg+1.0 Ice				
28 1.2 Dead+1.0 Wind 30 deg+1.0 ice 29 1.2 Dead+1.0 Wind 60 deg+1.0 ice		1.2 Dead+1.0 Wind 0 deg+1.0 ICe		
		1.2 Dead+1.0 Wind 30 deg+1.0 ice		
30 1.2 Dead+1.0 Wind 90 deg+1.0 Ice		1.2 Dead+1.0 Wind 60 deg+1.0 ice		

2

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 28

Comb.		Description	
No.			
31	1.2 Dead+1.0 Wind 120 deg+1.0 lce		
32	1.2 Dead+1.0 Wind 150 deg+1.0 lce		
33	1.2 Dead+1.0 Wind 180 deg+1.0 lce		
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice		
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice		
36	1.2 Dead+1.0 Wind 270 deg+1.0 lce		
37	1.2 Dead+1.0 Wind 300 deg+1.0 lce		
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice		
39	Dead+Wind 0 deg - Service		
40	Dead+Wind 30 deg - Service		
41	Dead+Wind 60 deg - Service		
42	Dead+Wind 90 deg - Service		
43	Dead+Wind 120 deg - Service		
44	Dead+Wind 150 deg - Service		
45	Dead+Wind 180 deg - Service		
46	Dead+Wind 210 deg - Service		
47	Dead+Wind 240 deg - Service		
48	Dead+Wind 270 deg - Service		
49	Dead+Wind 300 deg - Service		
50	Dead+Wind 330 deg - Service		

			Maximum	Reactions	
Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, Z K
Leg C	Max. Vert	18	331.25	26.81	-16.48
	Max. H _x	18	331.25	26.81	-16.48
	Max. H _z	7	-293.90	-24.41	15.17
	Min. Vert	7	-293.90	-24.41	15.17
	Min. H _x	7	-293.90	-24.41	15.17
	Min. Hz	18	331.25	26.81	-16.48
Leg B	Max. Vert	10	320.68	-25.98	-15.93
	Max. H _x	23	-281.83	23.55	14.58
	Max. H _z	23	-281.83	23.55	14.58
	Min. Vert	23	-281.83	23.55	14.58
	Min. H _x	10	320.68	-25.98	-15.93
	Min. Hz	10	320.68	-25.98	-15.93
Leg A	Max. Vert	2	324.30	0.30	30.80
	Max. H _x	21	12.28	5.61	0.73
	Max. Hz	2	324.30	0.30	30.80
	Min. Vert	15	-284.56	-0.30	-28.02
	Min. H _x	9	12.27	-5.60	0.73
	Min. Hz	15	-284.56	-0.30	-28.02

Tower Mast Reaction Summary

Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque	
	ĸ	к	ĸ	kip-ft	kip-ft	kip-ft	
Dead Only	39.36	-0.00	0.00	-7.16	-5.69	-0.00	
1.2 Dead+1.0 Wind 0 deg - No Ice	47.23	0.00	-51.50	-4239.92	-6.86	8.36	
0.9 Dead+1.0 Wind 0 deg - No Ice	35.42	0.00	-51.50	-4234.68	-5.15	8.35	
1.2 Dead+1.0 Wind 30 deg - No Ice	47.23	25.46	-44.20	-3696.83	-2130.52	-0.74	
0.9 Dead+1.0 Wind 30 deg - No Ice	35.42	25.47	-44.21	-3691.97	-2127.26	-0.74	
1.2 Dead+1.0 Wind 60 deg - No Ice	47.23	43.52	-25.18	-2110.92	-3638.34	-24.72	

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 29

Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, M _z	Torque
	к	к	К	kip-ft	kip-ft	kip-ft -24.71
0.9 Dead+1.0 Wind 60 deg -	35.42	43.52	-25.18	-2107.22	-3633.96	-24.71
No Ice 1.2 Dead+1.0 Wind 90 deg -	47.23	49.20	0.00	-8.57	-4145.68	-42.23
No Ice		10.00	0.00	-6.41	-4140.91	-42.20
0.9 Dead+1.0 Wind 90 deg -	35.42	49.20	0.00	-0.41	-4140.31	-42,20
No Ice 1.2 Dead+1.0 Wind 120 deg	47.23	44.06	25.49	2089.78	-3631.87	-22.76
- No Ice	25.42	44.07	25.50	2090.41	-3627.51	-22.73
0.9 Dead+1.0 Wind 120 deg - No Ice	35.42	44.07	20.00	2000.41	0021101	
1.2 Dead+1.0 Wind 150 deg	47.23	23.55	40.88	3363.55	-1948.34	-3.53
- No ice	35.42	23.55	40.89	3363.26	-1945.20	-3.50
0.9 Dead+1.0 Wind 150 deg - No Ice	55.42	20.00				0.00
1.2 Dead+1.0 Wind 180 deg	47.23	-0.00	49.15	4073.14	-7.02	-8.36
- No Ice	35.42	0.00	49.15	4072.32	-5.29	-8.34
0.9 Dead+1.0 Wind 180 deg - No ice	55.42	0.00				0.74
1.2 Dead+1.0 Wind 210 deg	47.23	-25.47	44.20	3679.47	2116.96	0.74
- No Ice 0.9 Dead+1.0 Wind 210 deg	35.42	-25.47	44.20	3678.95	2117.14	0.74
- No Ice			00.0 5	0400.00	2754 20	24.72
1.2 Dead+1.0 Wind 240 deg	47.23	-45.55	26.35	2168.28	3754.20	24.72
- No Ice 0.9 Dead+1.0 Wind 240 deg	35.42	-45.55	26.36	2168.88	3753.19	24.71
- No Ice	17.00	40.00	0.00	-8,67	4131.98	42.23
1.2 Dead+1.0 Wind 270 deg - No ice	47.23	-49.20	0.00	-0.07	4101.00	12.20
0.9 Dead+1.0 Wind 270 deg	35.42	-49.20	0.00	-6.48	4130.65	42.21
- No Ice	47.00	-42.03	-24.32	-2032.45	3488.58	22.76
1.2 Dead+1.0 Wind 300 deg - No Ice	47.23	-42.05	-24.02	2002.10		
0.9 Dead+1.0 Wind 300 deg	35.42	-42.03	-24.32	-2028.80	3487.74	22.73
- No Ice	47.23	-23.55	-40.88	-3380.94	1934.43	3.53
1.2 Dead+1.0 Wind 330 deg - No Ice	47.20	20.00			1001 70	0.50
0.9 Dead+1.0 Wind 330 deg	35.42	-23.55	-40.89	-3376.32	1934.73	3.50
- No ice 1.2 Dead+1.0 ice	83.04	-0.00	0.00	-20.34	-7.60	0.00
1.2 Dead+1.0 Wind 0	83.04	-0.00	-11.65	-990.35	-7.62	3.16
deg+1.0 lce	87.04	5.85	-10.15	-878.38	-501.85	1.24
1.2 Dead+1.0 Wind 30 deg+1.0 Ice	83.04	5.65	-10.15	010.00		
1.2 Dead+1.0 Wind 60	83.04	10.22	-5.91	-521.28	-873.23	-5.52
deg+1.0 lce	83.04	11.30	0.00	-20.41	-971.15	-8.66
1.2 Dead+1.0 Wind 90 deg+1.0 Ice	05.04	11.00	0.000			
1.2 Dead+1.0 Wind 120	83.04	9.86	5.70	456.31	-831.45	-4.21
deg+1.0 lce 1.2 Dead+1.0 Wind 150	83.04	5.43	9.42	767.12	-461.24	-1.46
deg+1.0 ice				222.25	7.07	-3.16
1.2 Dead+1.0 Wind 180	83.04	-0.00	11.34	929.95	-7.67	-3.10
deg+1.0 Ice 1.2 Dead+1.0 Wind 210	83.04	-5.85	10.15	837.52	486.58	-1.24
deg+1.0 Ice		10.10	c 0 7	490.20	874.90	5.52
1.2 Dead+1.0 Wind 240	83.04	-10.49	6.07	490.20	074.30	0.02
deg+1.0 lce 1.2 Dead+1.0 Wind 270	83.04	-11.30	0.00	-20.42	955.91	8.66
deg+1.0 lce		0.59	-5.54	-487.40	799.23	4.21
1.2 Dead+1.0 Wind 300	83.04	-9.58	-0.04		, 00.20	
deg+1.0 Ice 1.2 Dead+1.0 Wind 330	83.04	-5.43	-9.42	-807.98	445.95	1.46
deg+1.0 lce	20.26	-0.00	-11.34	-937.13	-5.71	1,84
Dead+Wind 0 deg - Service	39.36 39.36	-0.00 5.61	-9.73	-817.75	-472.44	-0.13
Dead+Wind 30 deg - Service	39.30	9,58	-5.54	-469.23	-803.83	-5.43
Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service	39.36	10.83	0.00	-7.17	-915.34	-9.27

42923-0001.001.8700 150ft Self Support Tower

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 30

Load	Vertical	Shearx	Shearz	Overturning	Overturning	Torque
Combination	к	ĸ	к	Moment, M _x kip-ft	Moment, Mz kip-ft	kip-ft
Dead+Wind 120 deg - Service	39.36	9.70	5.61	453.99	-802.41	-5.00
Dead+Wind 150 deg - Service	39.36	5.18	9.00	733.98	-432.40	-0.77
Dead+Wind 180 deg - Service	39.36	-0.00	10.82	889.92	-5.72	-1.84
Dead+Wind 210 deg - Service	39.36	-5.61	9.73	803.36	461.04	0.16
Dead+Wind 240 deg - Service	39.36	-10.03	5.80	471.23	820.87	5.43
Dead+Wind 270 deg - Service	39.36	-10.83	0.00	-7.19	903.93	9.27
Dead+Wind 300 deg - Service	39.36	-9.25	-5.35	-451.99	762.54	5.00
Dead+Wind 330 deg - Service	39.36	-5.18	-9.00	-748.37	420.98	0.77

Solution Summary

11		n of Applied Forc			Sum of Reactio	ns	
Load Comb.	PX	PY	PZ	PX	PY	PZ	% Error
	κ	К	<u> </u>	ĸ	ĸ	к	
1	0.00	-39.36	0.00	0.00	39.36	-0.00	0.000%
2	-0.00	-47.23	-51.51	-0.00	47.23	51.50	0.018%
3	-0.00	-35.42	-51.51	-0.00	35.42	51.50	0.014%
4	25.47	-47.23	-44.21	-25.46	47.23	44.20	0.019%
5	25.47	-35.42	-44.21	-25.47	35.42	44.21	0.016%
6	43.53	-47.23	-25.19	-43.52	47.23	25.18	0.020%
7	43.53	-35.42	-25.19	-43.52	35.42	25.18	0.017%
8	49.21	-47.23	0.00	-49.20	47.23	-0.00	0.019%
9	49.21	-35.42	0.00	-49.20	35.42	-0.00	0.016%
10	44.07	-47.23	25.50	-44.06	47.23	-25.49	0.018%
11	44.07	-35.42	25.50	-44.07	- 35.42	-25.50	0.015%
12	23.55	-47.23	40.89	-23.55	47.23	-40.88	0.018%
13	23.55	-35.42	40.89	-23.55	35.42	-40.89	0.015%
14	-0.00	-47.23	49.16	0.00	47.23	-49.15	0.019%
15	-0.00	-35.42	49.16	-0.00	35.42	-49.15	0.013%
16	-25.47	-47.23	44.21	25.47	47.23	-44.20	0.017 %
17	-25.47	-35.42	44.21	25.47	35.42	-44.20	0.015%
18	-45.56	-47.23	26.36	45.55	47.23	-26.35	0.018%
19	-45.56	-35.42	26.36	45.55	35.42	-26.35	0.018%
20	-49.21	-47.23	0.00	49.20	47.23	-20.38	0.014%
21	-49.21	-35.42	0.00	49.20	35.42	-0.00	0.019%
22	-42.04	-47.23	-24.33	49.20	47.23	24.32	0.016%
23	-42.04	-35.42	-24.33	42.03	35.42	24.32	0.020%
24	-23.55	-47.23	-40.89	23.55	47.23		
25	-23.55	-35.42	-40.89	23.55	35.42	40.88	0.018%
26	0.00	-83.04	0.00	0.00	35.42 83.04	40.89	0.015%
27	0.00	-83.04	-11.66	0.00		-0.00	0.000%
28	5.85	-83.04	-10.15		83.04	11.65	0.007%
29	10.22	-83.04	-10.15 -5.91	-5.85 -10.22	83.04	10.15	0.008%
30	11.31	-83.04	0.00	-10.22	83.04	5.91	0.008%
31	9.86	-83.04	5.70		83.04	-0.00	0.007%
32	5.43	-83.04	9.42	-9.86	83.04	-5.70	0.007%
33	0.00	-83.04		-5.43	83.04	-9.42	0.006%
34	-5.85	-83.04	11.34	0.00	83.04	-11.34	0.006%
35	-10.49		10.15	5.85	83.04	-10.15	0.007%
36	-11.31	-83.04	6.07	10.49	83.04	-6.07	0.007%
30	-9.59	-83.04	0.00	11.30	83.04	-0.00	0.007%
38	-9.59 -5.43	-83.04	-5.55	9.58	83.04	5.54	0.007%
39	-5.43	-83.04	-9.42	5.43	83.04	9.42	0.007%
39 40		-39.36	-11.34	0.00	39.36	11.34	0.006%
40 41	5.61	-39.36	-9.73	-5.61	39.36	9.73	0.015%
	9.58	-39.36	-5.54	-9.58	39.36	5.54	0.006%
42	10.83	-39.36	0.00	-10.83	39.36	-0.00	0.006%
43	9.70	-39.36	5.61	-9.70	39.36	-5.61	0.006%

42923-0001.001.8700 150ft Self Support Tower

On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 31

	Sun	of Applied Force	s		Sum of Reactio	ns	
Load Comb.	PX	PY K	PZ K	PX K	PY K	PZ K	% Error
44	5.19	-39.36	9.00	-5.18	39,36	-9.00	0.005%
45	0.00	-39.36	10.82	0.00	39.36	-10.82	0.006%
46	-5.61	-39.36	9.73	5.61	39.36	-9.73	0.006%
47	-10.03	-39.36	5.80	10.03	39.36	-5.80	0.006%
47 48	-10.83	-39.36	0.00	10.83	39.36	-0.00	0.006%
40 49	-9.25	-39.36	-5.36	9.25	39.36	5.35	0.006%
49 50	-5.19	-39.36	-9.00	5.18	39.36	9.00	0.006%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.0000001	0.00002845
2	Yes	4	0.00024265	0.00050752
3	Yes	4	0.00017810	0.00037329
4	Yes	4	0.00025414	0.00053108
5	Yes	4	0.00018974	0.00039728
6	Yes	4	0.00026706	0.00055783
7	Yes	4	0.00020224	0.00042325
8	Yes	4	0.00025782	0.00053939
9	Yes	4	0.00019256	0.00040368
10	Yes	4	0.00024555	0.00051365
10	Yes	4	0.00018034	0.00037807
12	Yes	4	0.00025685	0.00053633
	Yes	4	0.00019197	0.00040181
13	Yes	4	0.00026664	0.00055618
14	Yes	4	0.00020190	0.00042212
15		4	0.00025403	0.00053010
16	Yes	4	0.00018973	0.00039683
17	Yes	4	0.00024218	0.00050604
18	Yes	•	0.00017770	0.00037219
19	Yes	4 4	0.00025810	0.00053935
20	Yes	-	0.00019284	0.00040391
21	Yes	4	0.00026969	0.00056285
22	Yes	4	0.00020909	0.00042708
23	Yes	4		0.00053667
24	Yes	4	0.00025694	0.00040200
25	Yes	4	0.00019202	0.00011671
26	Yes	4	0.00000001	
27	Yes	4	0.00048971	0.00092179
28	Yes	4	0.00049092	0.00093128
29	Yes	4	0.00049511	0.00094025
30	Yes	4	0.00049621	0.00093352
31	Yes	4	0.00049301	0.00091507
32	Yes	4	0.00000001	0.00089453
33	Yes	4	0.00000001	0.00089276
34	Yes	4	0.00000001	0.00088821
35	Yes	4	0.00048474	0.00089426
36	Yes	4	0.00049426	0.00090954
37	Yes	4	0.00049897	0.00091880
38	Yes	4	0.00049500	0.00091451
39	Yes	4	0.00000001	0.00042877
40	Yes	4	0.00000001	0.00043673
41	Yes	4	0.00000001	0.00044055
41	Yes	4	0.00000001	0.00043878
42	Yes	4	0.00000001	0.00043194
43	Yes	4	0.00000001	0.00043202
	Yes	4	0.00000001	0.00043499
45	Yes	4	0.00000001	0.00042869
46	Yes	4	0.00000001	0.00042500
47		4	0.00000001	0.00043585
48	Yes	4	0.00000001	0.0004415
49 50	Yes Yes	4	0.00000001	0.00043401

			Wei Dei		Service Wind
Section	Elevation	Horz,	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	9	9
T1	150 - 130	3.112	40	0.1906	0.1714
T2	130 - 110	2.311	40	0.1831	0.1588
Т3	110 - 94	1.571	40	0.1522	0.1082
T4	94 - 90	1.096	40	0.1178	0.0689
T5	90 - 80	0.996	40	0.1088	0.0613
T6	80 - 70	0.772	40	0.0919	0.0477
T7	70 - 55	0.583	40	0.0744	0.0360
Т8	55 - 50	0.364	47	0.0544	0.0251
Т9	50 - 30	0.304	47	0.0477	0.0218
T10	30 - 10	0.114	47	0.0273	0.0094
T11	10 - 0	0.018	47	0.0089	0.0039

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load				Curvature
		Comb.	in	P .		ft
149.00	ANT150F6	40	3.072	0.1905	0.1712	449215
141.00	ANT220F2	40	2.749	0.1892	0.1693	249563
135.00	PAL6-59	40	2.509	0.1868	0.1653	149738
132.00	CO-36A	40	2.390	0.1848	0.1618	121747
124.00	ANT150F2	40	2.078	0.1762	0,1466	54813
123.00	CO-36A	40	2.040	0.1748	0.1441	50469
120.00	PAL6-59	40	1.926	0.1702	0.1364	40775
118.00	ANT220F2	40	1.852	0.1669	0.1309	36147
110.00	(2) QS6656-5_TIA w/ Mount Pipe	40	1.571	0.1522	0.1082	25757
100.00	(2) BXA-70063-6CF-EDIN-0_TIA w/ Mount Pipe	40	1.260	0.1314	0.0823	25576
90.00	APXVSPP18-C_TIA w/ Mount Pipe	40	0.996	0.1088	0.0613	29869
80.00	(2) AIR 21	40	0.772	0.0919	0.0477	36218
25.00	Secondarty Members 30'-20'	47	0.081	0.0227	0.0076	48168
15.00	Secondarty Members 20'-10'	47	0.033	0.0135	0.0052	52211

Maximum Tower Deflections - Design Wind

Section No	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
-	ft	in	Comb.	0	0
T 1	150 - 130	13.837	19	0.8373	0,7807
T2	130 - 110	10.340	19	0.8059	0.7236
тз	110 - 94	7.083	19	0.6735	0.4929
T4	94 - 90	4.973	18	0.5243	0.3141
T5	90 - 80	4.525	18	0.4849	0.2791
T6	80 - 70	3.522	18	0.4115	0.2172
T7	70 - 55	2.667	18	0.3351	0.1641
T8	55 - 50	1.664	18	0.2460	0.1142
Т9	50 - 30	1.391	18	0.2161	0.0995
T10	30 - 10	0.519	18	0.1244	0.0427
T11	10 - 0	0.080	19	0.0407	0.0177

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
#		Comb.	in	ø	D	ft
149.00	ANT150F6	19	13.661	0.8369	0.7801	111135
149.00	ANT220F2	19	12.254	0.8316	0.7716	61741
135.00	PAL6-59	19	11.205	0.8215	0.7530	37045
135.00	CO-36A	19	10.685	0.8130	0.7372	30047
	ANT150F2	19	9.316	0.7764	0.6678	13047
124.00	CO-36A	19	9.148	0.7705	0.6567	11982
123.00		19	8.651	0.7511	0.6214	9623
120.00	PAL6-59	19	8.325	0.7370	0.5964	8507
118.00	ANT220F2		7.083	0.6735	0.4929	6016
110.00	(2) QS6656-5_TIA w/ Mount Pipe	19		0.5835	0.3749	5890
100.00	(2) BXA-70063-6CF-EDIN-0_TIA w/ Mount Pipe	18	5.704	0.0600		
90.00	APXVSPP18-C_TIA w/ Mount	18	4.525	0.4849	0.2791	6792
	Pipe	10	0.500	0.4115	0.2172	8284
80.00	(2) AIR 21	18	3.522	0.4115		10525
25.00	Secondarty Members 30'-20'	18	0.368	0.1036	0.0346	11533
15.00	Secondarty Members 20'-10'	18	0.150	0.0616	0.0237	11533

				Bol	t Des	ign Da	ta			
Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load per Bolt K	Ratio Load Allowable	Allowable Ratio	Criteria
T1	150	Leg	A325N	0.8750	4	4.22	41.56	0.101 🖌	1.05	Bolt Tension
		Diagonal	A325N	0.5000	1	4.45	8.84	0.504 🖌	1.05	Bolt Shear
		Top Girt	A325N	0.5000	1	0.22	8.84	0.025 🖌	1.05	Bolt Shear
Т2	130	Leg	A325N	1.0000	5	13.03	54.52	0.239	1.05	Bolt Tension
12		Diagonal	A325N	0.6250	2	4.41	8.80	0.501	1.05	Member Block Shear
тз	110	Diagonal	A325N	0.6250	1	7.89	12.57	0.628 🖌	1.05	Member Block Shear
Т4	94	Leg	A325N	1.0000	5	22.70	54.52	0.416 🖌	1.05	Bolt Tension
		Diagonal	A325N	0.6250	1	7.29	12.57	0.580 🖌	1.05	Member Block Shear
		Secondary	A325N	0.6250	1	2.12	13.81	0,154 🖌	1.05	Bolt Shear
Т5	90	Horizontal Diagonal	A325N	0.6250	1	8.50	13.81	0.616	1.05	Bolt Shear
T6	80	Leg	A325N	1.0000	7	22.79	54.52	0.418	1.05	Bolt Tension
10	00	Diagonal	A325N	0.6250	1	8.86	13.81	0.642	1.05	Bolt Shear
		Secondary	A325N	0.6250	1	3.03	13.81	0.220	1.05	Bolt Shear
T7	70	Horizontal Diagonal	A325N	0.7500	1	7.91	18.59	0.425 🖌	1.05	Member Block Shear
Т8	55	Leg	A325N	1.5000	5	40.43	126.47	0.320 🖌	1.05	Bolt Tension
10	55	Diagonal	A325N	0.7500	1	7.67	18.59	0.413	1.05	Member Block Shear
		Secondary	A325N	0.7500	1	3.86	18.59	0.208 🖌	1.05	Member Block Shear
Т9	50	Horizontal Leg	A325N	1.5000	5	48.01	126.47	0,380 🖌	1.05	Bolt Tension
10		Diagonal	A325N	0.7500	1	7.75	16.45	0.471	1.05	Member Bearing
T10	30	Diagonal	A325N	0.6250	2	4.97	13.81	0,360 🖌	1.05	Bolt Shear
T11	10	Diagonal	A325N	0.6250	2	6.59	13.81	0.477	1.05	Bolt Shear
		Horizontal	A325N	0.6250	2	4.00	13.81	0.290	1.05	Bolt Shear

42923-0001.001.8700 150ft Self Support Tower

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt K	per Bolt K	Allowable		
		Redund Horz 1 Bracing	A325N	0.6250	1	5.43	13.81	0.394 🖌	1.05	Bolt Shea
		Redund Diag 1 Bracing	A325N	0.6250	1	4.45	13.81	0.322 🖌	1.05	Bolt Shea

Compression Checks

		Leg D	esign D)ata (Comp	ressic	on)		
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio Pu
	ft		ft	ft		in²	κ	к	φP _n
T1	150 - 130	2 1/4" solid	20.00	4.00	85.3 K=1.00	3.9761	-18.50	105.06	0.176 '
T2	130 - 110	2 1/2" solid	20.00	4.00	76.8 K=1.00	4.9087	-68.09	143.51	0.474 ¹
Т3	110 - 94	2 3/4" solid	16.03	4.01	69.9 K=1.00	5.9396	-112.06	186.92	0.600 1
Τ4	94 - 90	2 3/4" solid	4.01	2.07	36.1 K=1.00	5.9396	-122.30	243.04	0.503 ¹
T5	90 - 80	3 1/4'' solid	10.02	5.01	74.0 K=1.00	8.2958	-148.19	250.21	0.592 1
T6	80 - 70	3 1/4" solid	10.02	2.58	38.1 K=1.00	8.2958	-174.82	335.74	0.521 ¹
Τ7	70 - 55	3 3/4'' solid	15.03	5.01	64.1 K=1.00	11.044 7	-211.55	368.00	0.575 ¹
Т8	55 - 50	3 3/4" solid	5.01	2.56	32.8 K=1.00	11.044 7	-222.85	459.35	0.485 ¹
Т9	50 - 30	4 1/4'' solid	20.03	5.01	56.6 K=1.00	14.186 3	-266.61	505.21	0.528 ¹
T10	30 - 10	4 1/2" solid	20.03	10.02	53.4 K=0.50	15.904 3	-302.53	580.89	0.521 ¹
T11	10 - 0	4 1/2'' solid	10.02	5.01	53.4 K=1.00	15.904 3	-313.30	580.89	0.539 1

¹ P_u / ϕP_n controls

	Diagonal Design Data (Compression)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio Pu	
	ft		ft	ft		in ²	к	к	¢Pa	
T1	150 - 130	L 1.5 x 1.5 x 3/16	6.17	2.79	115.5 K=1.01	0.5273	-4.45	11.31	0.393 1	
T2	130 - 110	L 1.75 x 1.75 x 3/16	6.17	2.70	100.6 K=1.07	0.62 11	-9.14	17.32	0.528 ¹	
Т3	110 - 94	L 2 x 2 x 3/16	7.32	3.47	109.2 K=1.03	0.7150	-7.72	17.17	0.450 ¹	
T4	94 - 90	L 2 x 2 x 3/16	7.66	3.64	113.1 K=1.02	0.7150	-7.60	16.00	0.475 ¹	

42923-0001.001.8700 150ft Self Support Tower On Air Engineering, LLC Norwalk 4 CT 1/16/2023 Page 35

Section	Elevation	Size	L	Lu	Kl/r	A	Pu	φ P n	Ratio Pu
No.	ft		ft	ft		in²	к	к	φP _n
T5	90 - 80	L 2.5 x 2.5 x 3/16	9.01	4.32	108.5 K=1.04	0.9020	-8.10	21.93	0.370 1
Т6	80 - 70	L 2.5 x 2.5 x 3/16	9.87	4.75	116.3 K=1.01	0.9020	-8.44	19.08	0.442 1
Т7	70 - 55	L 2.5 x 2.5 x 1/4	11.21	5.39	131.9 K=1.00	1.1900	-7.98	19.59	0.407 1
Т8	55 - 50	L 2.5 x 2.5 x 1/4	11.67	5.62	137.4 K=1.00	1.1900	-8.17	18.03	0.453
Т9	50 - 30	L 3 x 3 x 3/16	13.53	6.53	131.5 K=1.00	1.0898	-7.95	18.05	0.440
T10	30 - 10	L 3.5 x 3.5 x 1/4	17.49	8.57	100.7 K=1.07	1.6900	-9.94	46.60	0.213
T11	10 - 0	L 3.5 x 3.5 x 1/4	12.77	11.96	131.6 K=1.00	1.6900	-13.18	27.95	0.472

¹ P_{u} / ϕP_{a} controls

Horizontal Design Data (Compression)										
Section	Elevation	Size	L	Ĺu	Kl/r	A	Pu	φP _n	Ratio P _u	
No.	ft		ft	ft		in²	К	к	φP _n	
T11	10 - 0	L 3.5 x 3.5 x 1/4	14.85	6.98	120.6 K=1.00	1.6900	-8.00	33.25	0.241	

¹ P_u / ϕP_n controls

Section	Elevation	Size	L	Lu	Kl/r	А	Pu	φP _n	Ratio Pu
No.	ft		ft	ft		in²	к	К	φP _n
T4	94 - 90	L 2 x 2 x 1/4	6.52	2.97	105.6 K=1.16	0.9380	-2.12	24.07	0.088 1
Т6	80 - 70	L 2.5 x 2.5 x 3/16	8.50	3.94	107.7 K=1.13	0.9020	-3.03	22.24	0.136 1
Т8	55 - 50	L 2.5 x 2.5 x 1/4	10.53	4.93	120.6 K=1.00	1.1900	-3.86	23.43	0.165 1

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)										
Section	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio Pu	
No.	ft		ft	ft		in ²	к	ĸ	φP _n	
T 1	150 - 130	L 1.5 x 1.5 x 3/16	4.70	4.16	170.3 K=1.00	0.5273	-0.22	5.21	0.043	

¹ P_u / ϕP_n controls

	Redundant Horizontal (1) Design Data (Compression)											
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio			
	ft		ft	ft		in²	κ	к	dPr			
T11	10 - 0	L 2.5 x 2.5 x 1/4	3.71	3.17	98.8 K=1.27	1.1900	-5.43	34.16	0.159 '			

¹ P_u / ϕP_n controls

	Redundant Diagonal (1) Design Data (Compression)											
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φPn	Ratio			
	ft		ft	ft		in ²	κ	κ	 			
T11	10 - 0	L 2.5 x 2.5 x 1/4	6.08	5.40	131.9 K=1.00	1.1900	-4.45	19.57	0.227 1			

¹ P_{μ} / ϕP_n controls

	Inner Bracing Design Data (Compression)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio	
	ft		ft	ft		in²	к	к		
T11	10 - 0	L 3 x 3 x 1/4	7.43	7.43	150.4 K=1.00	1.4375	-0.01	18.18	0.001 1	

¹ P_u / ϕP_n controls

Tension Checks

		Leç	g Desig	n Dat	a (Tei	nsion)			
Section No.	Elevation	Size	L	Lu	KI/r	A	Pu	φP _n	Ratio Pu
	ft		ft	ft		in ²	κ	κ	φ <i>P</i> _n
T1	150 - 130	2 1/4" solid	20.00	4.00	85.3	3.9761	16.86	178.92	0.094
T2	130 - 110	2 1/2" solid	20.00	4.00	76.8	4.9087	65.13	220.89	0.295 1
Т3	110 - 94	2 3/4'' solid	16.03	4.01	69.9	5.9396	103.95	267.28	0.389 1
Τ4	94 - 90	2 3/4" solid	4.01	1.94	33.9	5.9396	113.54	267.28	0.425 1
Т5	90 - 80	3 1/4" solid	10.02	5.01	74.0	8.2958	136.53	373.31	0.366 1

42923-0001.001.8700 150ft Self Support Tower On Air Engineering, LLC Norwalk 4 CT 1/16/2023 Page 37

Section	Elevation	Size	L	Lu	KJ/r	А	Pu	φP _n	Ratio Pu
No.	ft		ft	ft		in ²	ĸ	к	φP _n
T6	80 - 70	3 1/4" solid	10.02	2.43	35.9	8.2958	159.66	373.31	0.428
Т7	70 - 55	3 3/4'' solid	15.03	5.01	64.1	11.044 7	192.40	497 .01	0.387
T8	55 - 50	3 3/4'' solid	5.01	2.44	31.3	11.044 7	202.29	497.01	0.407
Т9	50 - 30	4 1/4'' solid	20.03	5.01	56.6	14.186 3	240.07	638.38	0.376
T10	30 - 10	4 1/2'' solid	20.03	10.02	106.8	15.904 3	270.39	715.69	0.378
T11	10 - 0	4 1/2'' solid	10.02	5.01	53.4	15.904 3	277.7 7	715.69	0.388

¹ P_u / ϕP_n controls

	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio
Section No.	ft	0/26	- ft	_u ft		in ²	к	ĸ	<u> </u>
T 1	150 - 130	L 1.5 x 1.5 x 3/16	6.17	2.79	77.9	0.3076	4.43	15.00	0.295 1
T2	130 - 110	L 1.75 x 1.75 x 3/16	6.17	2.70	65.9	0.3604	8.82	17.57	0.502 ¹
тз	110 - 94	L 2 x 2 x 3/16	7.32	3.47	70.8	0.4308	7.89	21.00	0.376 1
Т4	94 - 90	L 2 x 2 x 3/16	7.66	3.64	74.2	0.4308	7.29	21.00	0.347 1
Т5	90 - 80	L 2.5 x 2.5 x 3/16	8.59	4.11	66.1	0.5710	8.23	27.84	0.296 ¹
т6	80 - 70	L 2.5 x 2.5 x 3/16	9.44	4.53	72.6	0.5710	8.46	27.84	0.304 ¹
Т7	70 - 55	L 2.5 x 2.5 x 1/4	10.31	4.95	80.0	0.7284	7.91	35.51	0.223 1
Т8	55 - 50	L 2.5 x 2.5 x 1/4	11.67	5.62	90.6	0.7284	7.67	35.51	0.216 ¹
Т9	50 - 30	L 3 x 3 x 3/16	13.06	6.30	82.7	0.6943	7.75	33.85	0.229 1
T10	30 - 10	L 3.5 x 3.5 x 1/4	17.49	8.57	97.1	1.1269	9.24	54.94	0.168 1
T1 1	10 - 0	L 3.5 x 3.5 x 1/4	12.7 7	11.96	137.2	1.1269	12.78	54.94	0.233 1

¹ P , 7 ϕP_n controls

		Horizoi	ntal De	sign l	Data	Tensio	on)		_
Section	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio Pu
No.	ft		ft	ft		in²	ĸ	К	φP _n
T11	10 - 0	L 3.5 x 3.5 x 1/4	14.85	6.98	79.6	1.1269	7.97	54.94	0.145

On Air Engineering, LLC Norwalk 4 CT

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio Pu
	ft		ft	ft		in²	к	κ	φP _n
Τ4	94 - 90	L 2 x 2 x 1/4	6.52	2.97	124.0	0.5629	2.12	27.44	0.077 1
T6	80 - 70	L 2.5 x 2.5 x 3/16	7.99	3.68	119.0	0.5710	3.03	27.84	0.109 1
Т8	55 - 50	L 2.5 x 2.5 x 1/4	10.53	4.93	159.6	0.7284	3.86	35.51	0.109 1

¹ P_u / ϕP_n controls

		Top G	irt Des	ign D	ata (1	Tensio	1)		
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio
	ft		ft	ft		in ²	к	к	
T 1	150 - 130	L 1.5 x 1.5 x 3/16	4.70	4.16	118.7	0.3076	0.20	15.00	0.014

¹ P_{μ} / ϕP_n controls

	F	Redundant Ho	rizonta	al (1) [Desig	n Data	(Tensi	on)	
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φP _n	Ratio
	ft		ft	ft		in²	ĸ	κ	
T11	10 - 0	L 2.5 x 2.5 x 1/4	3.71	3.17	55.0	0.7519	5.43	36.65	0.148

¹ P J / ϕP_n controls

		Redundant Di	agona	l (1) D	esigr	n Data	(Tensio	on)	
Section No.	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio
	ft		ft	ft		in²	к	к	
T11	10 - 0	L 2.5 x 2.5 x 1/4	6.08	5.40	89.8	0.7519	4.45	36.65	0.121

¹ P_u / ϕP_n controls

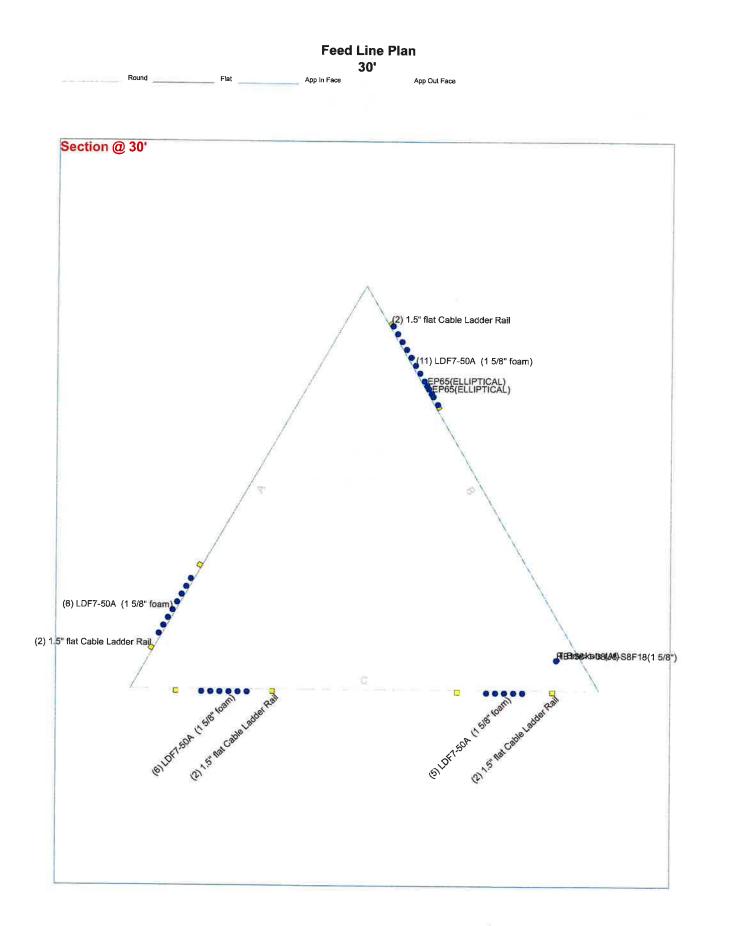
Inner Bracing Design Data (Tension)

	001.001.8700 f Support Tower			Enginee orwalk 4		С			1/16/202 Page 3	
Section	Elevation	Size	L	Lu	Kl/r	A	Pu	φPn	Ratio Pu	
No.	ft		ft	ft		in ²	ĸ	к	φ <i>P</i> _n	
T11	10 - 0	L 3 x 3 x 1/4	7.43	7.43	95.8	1.4375	0.01	64.69	0.000 1	

¹ P_u / ϕP_n controls

			Section Capac	ity rab				
Section	Elevation ft	Component Type	Size	Critical Element	Р К	øP _{allow} K	% Capacity	Pass Fail
No.	150 - 130	Leg	2 1/4" solid	3	-18.50	110.31	16.8	Pass
T1		-	2 1/2" solid	39	-68.09	150.69	45.2	Pass
T2	130 - 110	Leg	2 3/4" solid	70	-112.06	196.26	57.1	Pass
Т3	110 - 94	Leg	2 3/4" solid	97	-122.30	255.20	47.9	Pass
T4	94 - 90	Leg	3 1/4" solid	109	-148.19	262.72	56.4	Pass
T5	90 - 80	Leg	3 1/4" solid	124	-174.82	352.52	49.6	Pass
Т6	80 - 70	Leg	3 3/4" solid	145	-211.55	386.40	54.7	Pass
T7	70 - 55	Leg	3 3/4" solid	166	-222.85	482.32	46.2	Pass
Т8	55 - 50	Leg	4 1/4" solid	178	-266.61	530.47	50.3	Pass
Т9	50 - 30	Leg	4 1/2" solid	205	-302.53	609.93	49.6	Pass
T10	30 - 10	Leg	4 1/2" solid	220	-313.30	609.93	51.4	Pass
T11	10 - 0	Leg		9	-4.45	11.88	37.5	Pass
T1	150 - 130	Diagonal	L 1.5 x 1.5 x 3/16				48.0 (b)	
T2	130 - 110	Diagonal	L 1.75 x 1.75 x 3/16	42	-9.14	18.19	50.3	Pass
T3	110 - 94	Diagonal	L 2 x 2 x 3/16	76	-7.72	18.03	42.8 59.8 (b)	Pass
T4	94 - 90	Diagonal	L 2 x 2 x 3/16	102	-7.60	16.80	45.2 55.2 (b)	Pass
Т5	90 - 80	Diagonal	L 2.5 x 2.5 x 3/16	114	-8.10	23.02	35.2 58.6 (b)	Pass
Т6	80 - 70	Diagonal	L 2.5 x 2.5 x 3/16	129	-8.44	20.03	42.1 61.1 (b)	Pass
T 7	70 - 55	Diagonal	L 2.5 x 2.5 x 1/4	150	-7.98	20.57	38.8 40.5 (b)	Pass
				474	-8.17	18.93	43.1	Pass
T8	55 - 50	Diagonal	L 2.5 x 2.5 x 1/4	171	-7.95	18.95	41.9	Pass
Т9	50 - 30	Diagonal	L 3 x 3 x 3/16	186			44.9 (b)	
T10	30 - 10	Diagonal	L 3.5 x 3.5 x 1/4	213	-9.94	48.93	20.3 34.3 (b)	Pass
T11	10 - 0	Diagonal	L 3.5 x 3.5 x 1/4	241	-13.18	29.35	44.9 45.5 (b)	Pass
T11	10 - 0	Horizontal	L 3.5 x 3.5 x 1/4	237	-8.00	34.91	22.9 27.6 (b)	Pass
T4	94 - 90	Secondary	L 2 x 2 x 1/4	108	-2.12	25.27	8.4 14.6 (b)	Pass
Т6	80 - 70	Horizontal Secondary	L 2.5 x 2.5 x 3/16	135	-3.03	23.35	13.0 20.9 (b)	Pass
Т8	55 - 50	Horizontal Secondary	L 2.5 x 2.5 x 1/4	177	-3.86	24.60	15.7 19.8 (b)	Pass
		Horizontal	1 4 5 4 5 0/40	5	-0.22	5.47	4.1	Pass
T1	150 - 130	Top Girt	L 1.5 x 1.5 x 3/16		-0.22 -5.43	35.87	15.1	Pass
T11	10 - 0	Redund Horz 1 Bracing	L 2.5 x 2.5 x 1/4	225			37.5 (b)	
T11	10 - 0	Redund Diag 1 Bracing	L 2.5 x 2.5 x 1/4	226	-4.45	20.55	21.7 30.7 (b)	Pass -
T11	10 - 0	Inner Bracing	L 3 x 3 x 1/4	246	-0.01	19.09	0.2 Summary	Pass
						Leg (T3)	57.1	Pass
						Diagonal (T6)	61.1	Pass
						Horizontal (T11)	27.6	Pass

42923-0001.001.8700 150ft Self Support Tower


On Air Engineering, LLC Norwalk 4 CT

1/16/2023 Page 40

Section	Elevation	Component	Síze	Critical	Р	ØP _{allow}	%	Pass
No.	ft	Туре		Element	ĸ	ĸ	Capacity	Fail
						Secondary	20.9	Pass
						Horizontal		
						(T6)		
						Top Girt	4.1	Pass
						(T1)		
						Redund	37.5	Pass
						Horz 1		
						Bracing		
						(T11)		
	10					Redund	30.7	Pass
						Diag 1		
						Bracing		
		A				(T11)		
						Inner	0.2	Pass
						Bracing		
						(T11)		
						Bolt	61.1	Pass
						Checks		_
a sylam acress			The second s			RATING =	61.1	Pass

APPENDIX B BASE LEVEL DRAWING

42923-0001.001.8700 150ft Self Support Tower On Air Engineering, LLC Norwalk 4 CT 1/16/2023 Page 41

	Paul J. Ford and Company	^{105:} 150-Ft Self-Suppo	rt Tower: Norwa	alk 4: Norwalk, C
	250 East Broad Street, STE 600	Project: 42923-0001.001.870	10	
	Columbus, Ohio	Client: On-Air Engineering	Drawn by csandlin	App'd:
PJFLogo	Phone: 614-221-6679	Code: TIA-222-H	Date: 01/16/23	Scale: NTS
	FAX:	Path:	and a PT advert table pair land \$1	Dwg No. E-7

On Air Engineering, LLC Norwalk 4 CT 1/16/2023 Page 42

APPENDIX C

ADDITIONAL CALCULATIONS

100% Employee Owned

PAUL J. FORD & COMPANY 250 E Broad St, Ste 600 • Columbus, OH 43215 Phone 614.221.6679 www.pauliford.com

1/16/2023 <u>-</u> 42923-0001.001.8700 of Date CRS 5 Page By Project #

Self-Support Tower Anchor Rod Capacity - TIA-H

	Ten. M. :	D Contraction
Code: TIA-H Maximum Ratio: 1.00 Grout frc ≥ 5000 psi: No	u: 1.5 inches 30.23 k-in 0.90 0.75 0.90 579.84 kips 350.69 k-in 1168.97 kips 526.04 kips	Control Contro
e 5	$\begin{split} I_{ar}: & \\ Comp, M_u: \\ \varphi_r & \\ \varphi_r R_{nv}: \\ \varphi_e R_{nv}: \\ \varphi_e R_{nve}: \\ \\ \varphi_e R_{nve}: \\ \end{split}$	Contrato
Tension : 294 kips Ten.Shear : 29 kips	1 1/2 in 7 7 F1554 Gr. 105 F155 ksi 6 1.41 1.41 0.75 922.19 0.319	B Concrete
Loads Compression: <u>331</u> kips Comp. Shear : <u>31</u> kips Existing Anchor Rods	Anchor Rod ø : Anchor Rod Quantity : Anchor Rod Grade : F _y : F _u : Net Tensile Area \$\phi_R_nt : Anchor Rod Ratio :	Contract of the second

28.28 k-in

Grout Detail Type (c) 7.0.55 SECTION C-C All and Concrete-Detail Type (b) 7 - 0-70 SECTION B-B Conster 1978

> Detail Type (a) २^{२-०.२०} SECTION A-A

Detail Type (d) (See Note 1 below) 7: 0.5 d

SECTION D-D

SST Unit Base Foundation

Site Name: Norwalk 4 CT

TIA-222 Revision:

Top & Bot. Pad Rein. Different?:	
Tower Centroid Offset?:	1
Block Foundation?:	
Rectangular Pad?:	

actions	
4335.37	ft-kips
47.23	kips
52.62	kips
331.25	kips
31.47	kips
293.9	kips
28.74	kips
150	ft
15.87	ft
3	in
	47.23 52.62 331.25 31.47 293.9 28.74 150 15.87

		Pier Properties
	Circular	Pier Shape:
ft	4.5	Pier Diameter, dpier:
ft	0.50	Ext. Above Grade, E:
	9	Pier Rebar Size, Sc:
	18	Pier Rebar Quantity, mc:
	4	Pier Tie/Spiral Size, St:
	16	Pier Tie/Spiral Quantity, mt:
	Tie	Pier Reinforcement Type:
in	3	Pier Clear Cover, cc _{pier} :

	Pad Properties
.00 ft	Depth, D:
0.00 ft	Pad Width, W1:
.75 ft	Pad Thickness, T:
9	Pad Rebar Size (Bottom dir, 2), Sp2:
52	Pad Rebar Quantity (Bottom dir, 2), mp2:
3 in	Pad Clear Cover, ccpad:

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	4.5	ksi
Dry Concrete Density, δ c :	150	pcf

Soil Properties		
Total Soil Unit Weight, γ :	125	pcf
Ultimate Gross Bearing, Qult:	8.000	ksf
Cohesion, Cu:	0.000	ksf
Friction Angle, φ :	34	degrees
SPT Blow Count, N _{blows} :	46	
Base Friction, μ :	0.3	
Neglected Depth, N:	3.5	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	25	ft

	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	276.83	52.62	18.1%	Pass
Bearing Pressure (ksf)	6.00	1.80	28.5%	Pass
Overturning (kip*ft)	9762.44	4827.02	49.4%	Pass
Pier Flexure (Comp.) (kip*ft)	2237.33	118.01	5.0%	Pass
Pier Flexure (Tension) (kip*ft)	1339.57	107.78	7.7%	Pass
Pier Compression (kip)	11388.12	341.99	2.9%	Pass
Pad Flexure (kip*ft)	6358.97	542.06	8.1%	Pass
Pad Shear - 1-way (kips)	1025.44	112.29	10.4%	Pass
Pad Shear - Comp 2-way (ksi)	0.201	0.048	22.5%	Pass
Flexural 2-way (Comp) (kip*ft)	5408.14	70.81	1.2%	Pass
Pad Shear - Tension 2-way (ksi)	0.201	0.045	21.1%	Pass
Flexural 2-way (Tension) (kip*ft)	5408.14	64.67	1.1%	Pass

*Rating per TIA-222-H Section 15.5

Structural Rating*:	22.5%
Soil Rating*:	49.4%

<-- Toggle between Gross and Net

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IIISoil Class:D - Stiff Soil

Latitude: 41.125392 Longitude: -73.421578 Elevation: 57.3 ft (NAVD 88)

Wind

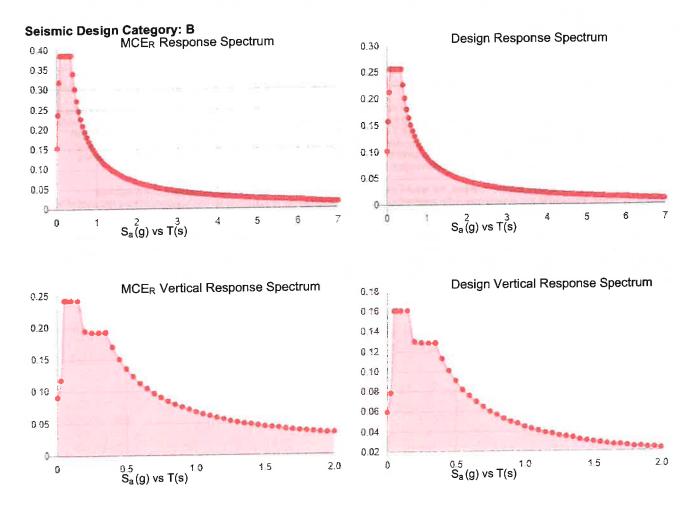
Results:

Wind Speed	128 Vmph	
10-year MRI	75 Vmph	
25-year MRI	85 Vmph	
50-year MRI	90 Vmph	
100-year MRI	97 Vmph	

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1C and Figs. CC.2-1-CC.2-4, and Section 26.5.2
Date Accessed:	Fri Jan 13 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (annual exceedance probability = 0.000588, MRI = 1,700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.



D - Stiff Soil

Site Soil Class:

Results:

S _s :	0.241	S _{D1} :	0.091
S ₁ :	0.057	T _L :	6
Fa :	1.6	PGA :	0.142
F _v :	2.4	PGA M	0.216
S _{MS} :	0.386	F _{PGA} :	1.515
S _{M1} :	0.136	l _e :	1.25
S _{DS} :	0.257	C _v :	0.783
- 53			

Data Accessed:

Fri Jan 13 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Fri Jan 13 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Colliers Engineering & Design, Architecture, Landscape Architecture, Surveying, CT P.C. 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis-VZW

SMART Tool Project #: 10216880 Colliers Engineering & Design Project #: 22777352 (Rev. 1)

January 4, 2024

Site Information

Site ID: Site Name: Carrier Name: Address: 5000386718-VZW / NORWALK 4 CT - NU Tindall Ave NORWALK 4 CT - NU Tindall Ave Verizon Wireless 2 Tindall Ave Norwalk, Connecticut 06851 Fairfield County 41.12530556° -73.42155833°

Structure Information

Tower Type: Mount Type:

Latitude:

Longitude:

Self-Support 12.00-Ft Sector Frame

FUZE ID # 16883770

Analysis Results

Sector Frame: 77.8% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

<u>***Contractor PMI Requirements:</u> Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com

For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Madison Shell

Mount Structural Analysis Report (3) 12.00-Ft Sector Frames

January 4, 2024 Site ID: 5000386718-VZW / NORWALK 4 CT - NU Tindall Ave Page | 2

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 2242416, dated October 4, 2022 (Rev3_01.26.2023)
Desktop Mount Mapping Form	Colliers Engineering & Design, Project #: 22777352A, dated October 24, 2022

Analysis Criteria:

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H 2022 Connecticut State Building Code (CSBC),	Effective October 1, 2022
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), VULT: Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, Ke:	120 mph 50 mph 1.00 in II C 1 N/A N/A 0.998
Seismic Parameters:	Ss: S1:	0.240 g 0.056 g
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Load, Lv: Maintenance Load, Lm:	30 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V20)	

Mount Structural Analysis Report (3) 12.00-Ft Sector Frames

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status
		6	Quintel	Q\$6656-5	
	3 Samsung	Samsung	B2/B66A RRH-BR049	Retained	
		3	Samsung	B5/B13 RRH-BR04C	Retained
109.50	110.00	1	Raycap	OVP*	
		3	Samsung	MT6407-77A	Added
			KAelus	BSF0020F3V1-1	

* Equipment is flush mounted directly to the Self Support. They are not mounted on Sector Frames and are not included in this mount analysis.

Any proposed antennas not currently installed should be mounted such that the centerline of the antennas does not exceed 6 inches vertically from the center of the antenna mounts.

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Colliers Engineering & Design and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design to verify deviation will not adversely impact the analysis.
- Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.

Mount Structural Analysis Report (3) 12.00-Ft Sector Frames

- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.
- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

0	Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
0	HSS (Rectangular)	ASTM 500 (Gr. B-46)
0	Pipe	ASTM A53 (Gr. B-35)
0	Threaded Rod	F1554 (Gr. 36)
0	Bolts	ASTM À325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design.

Analysis Results:

Component	Utilization %	Pass/Fail
Tieback	29.5%	Pass
Plate	25.2%	Pass
HSS Standoff	32.5%	Pass
HSS Standoff Support	20.6%	Pass
Mast Pipe	44.8%	Pass
Antenna Pipe	30.8%	Pass
Vertical Pipe	40.5%	Pass
Standoff Vertical	46.0%	Pass
Horizontal Face	77.8%	Pass
Circular Standoff	74.0%	Pass
Mount Connection	20.9%	Pass

Structure Rating - (Controlling Utilization of all Components)

77.8%

Mount Connection Envelope Reactions:

Connection Description	Elev.		E	nvelope V	Vind React	ions	Envelope Wind + Ice Reactions					
	AGL (Ft)	Node Label	Axial (Lbs)	Lateral (Lbs)	Moment (K-Ft)	Torsion (K-Ft)	Axial (Lbs)	Lateral (Lbs)	Moment (K-Ft)	Torsion (K-Ft)		
Top Standoff	111.4	N261	534	1891	0.161	0.000	935	1933	0.296	0.000		
Bottom Standoff	107.6	N261A	529	1774	0.174	0.000	922	1907	0.296	0.000		

Notes:

- Axial loads act along the axis of the tower leg

- Lateral reactions act perpendicular to the tower leg

- Moment loads introduce bending moment to the tower leg

- Torsion loads introduce twisting moment to the tower leg

- Batch solutions by individual load cases are included at the end of this document

	Mount Pipe	s Excluded	Mount Pipe	es Included
Ice Thickness (In)	Front (EPA)a Side (EPA)a (Sq. Ft.) (Sq. Ft.)		Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)
0	17.8	10.8	22.4	15.3
0.5	26.2	16.2	32.7	22.7
1	33.3	20.5	41.7	28.9

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

Notes:

- (EPA)a values listed above may be used in the absence of more precise information

- (EPA)a values in the table above include 1 sector(s).

Ka factors included in (EPA)a calculations

Requirements:

The existing mounts are SUFFICIENT for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

Contractor shall record all dimensions and member sizes requested in the Mount Geometry Verification Requirements section of the Mount Analysis report. Contractor shall provide the requested information to Colliers Engineering & Design for structural verification while on site. Contact EOR if these documents are not available to the general contractor.

Contractor shall inspect climbing facilities and safety climb, if present, and ensure they are in good condition. Contractor shall install safety climb wire rope guides in locations where wire rope is rubbing against the mount or mount-to-tower connection steel. Wire brush clean any observed corrosion and protect with two (2) coats of cold galvanization (Zinga or Zinc Kote). Contractor shall provide photos of wire rope guide installation as part of PMI documents. Contact EOR if additional guidance is required.

Contractor shall install the proposed filter units on new Site Pro 1 Dual Swivel Mount Kit (Part #: RRUDSM or EOR approved equivalent) in the location shown in the placement diagrams.

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Desktop Mount Mapping Form (for reference only)
- 5. Analysis Calculations

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading. Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u>. For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000386718 SMART Project #: 10216880 Fuze Project ID: 16883770

<u>**Purpose**</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - o Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- <u>Photos taken at Mount Elevation</u>
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.

- Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.
 - These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

 The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.

□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

OR

□ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

Special Instructions / Validation as required from the MA or any other information the contractor deems necessary to share that was identified:

Issue:

Contractor shall record all dimensions and member sizes requested in the Mount Geometry Verification Requirements section of the Mount Analysis report. Contractor shall provide the requested information to Colliers Engineering & Design for structural verification while on site. Contact EOR if these documents are not available to the general contractor.

Contractor shall inspect climbing facilities and safety climb, if present, and ensure they are in good condition. Contractor shall install safety climb wire rope guides in locations where wire rope is rubbing against the mount or mount-to-tower connection steel. Wire brush clean any observed corrosion and protect with two (2) coats of cold galvanization (Zinga or Zinc Kote). Contractor shall provide photos of wire rope guide installation as part of PMI documents. Contact EOR if additional guidance is required.

Contractor shall install the proposed filter units on new Site Pro 1 Dual Swivel Mount Kit (Part #: RRUDSM or EOR approved equivalent) in the location shown in the placement diagrams.

Response:

Special Instruction Confirmation:

 $\hfill\square$ The contractor has read and acknowledges the above special instructions.

□ All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.

□ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.

UR

□ The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.

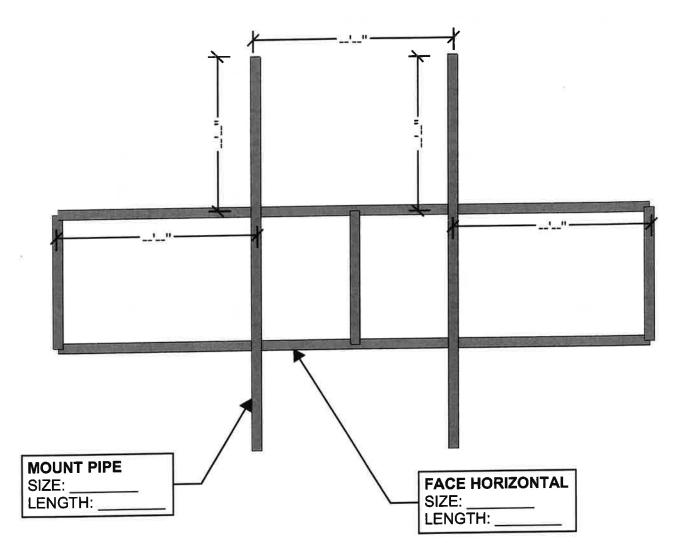
Comments:

Contractor certifies that the climbing fac	cility / safety	climb was not	damaged	prior to	starting work:

🗆 Yes 🛛 🗆 No

Contractor certifies no new damage created during the current installation:

Contractor to certify the condition of the safety climb and verify no damage when leaving the site:


□ Safety Climb in Good Condition

□ Safety Climb Damaged

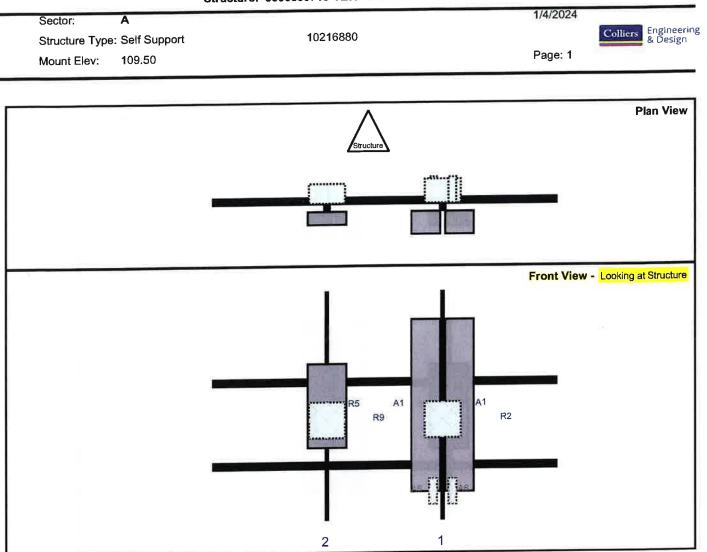
Certifying Individual:

Company:	
Employee Name:	
Contact Phone:	
Email:	
Date:	

MOUNT GEOMETRY VERIFICATION

MOUNT FRONT ELEVATION VIEW (TYP. ALL SECTORS)

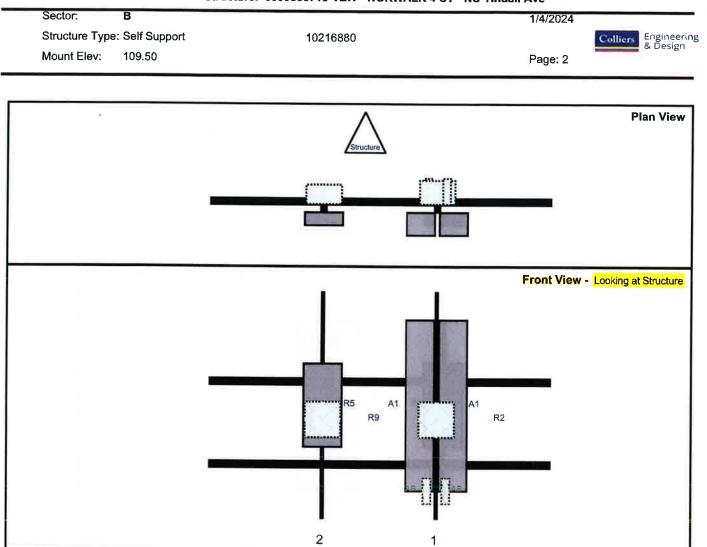
N.T.S.


TOWER GEOMETRY VERIFICATION

CONTRACTOR SHALL MEASURE ALL DIMENSIONS AND MEMBER SIZES REQUESTED ON THIS SKETCH. RECORD VIA PHOTOS AND MARKUPS ON THIS PAGE. PROVIDE PHOTOS AND MARKED-UP SKETCH TO THE EOR FOR EVALUATION.

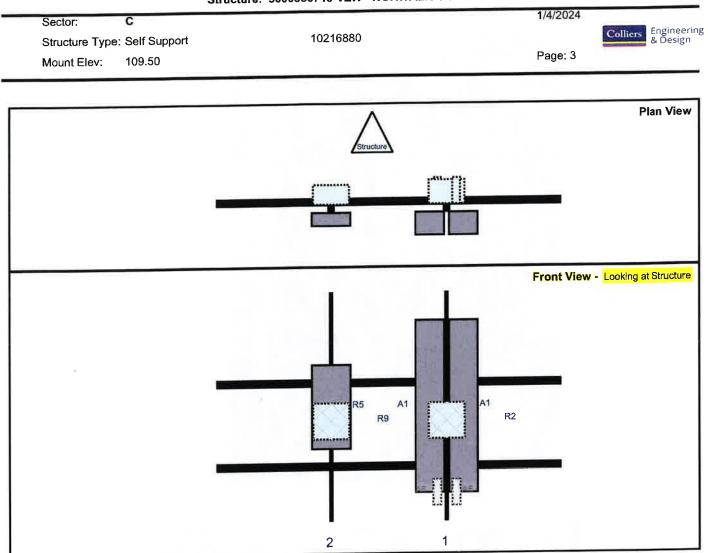
MOUNT GEOMETRY VERIFICATION

	STANDARI	PIPE DIM	ENSIONS	
		וד	HICKNESS (IN.))
PIPE SIZE	O.D. (IN.)	STD	XSTR	XXSTR
P1 1/2	1.900	0.145	0.200	0.400
P2	2.375	0.154	0.218	0.436
P2 1/2	2.875	0.203	0.276	0.552
P3	3.500	0.216	0.300	0.600
P3 1/2	4.000	0.226	0.318	0.636
P4	4.500	0.237	0.337	0.674
P4 1/2	5.000	0.247	0.355	0.710
P5	5.563	0.258	0.375	0.750
P6	6.625	0.280	0.432	0.864


CONTRACTOR SHALL USE MEMBER SIZES AND DETAILS TO FACILITATE GEOMETRY VERIFICATION. CONTACT EOR FOR ADDITIONAL CLARIFICATION IF NEEDED

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A1	QS6656-5	72	12	96	1	а	Front	48	7	Retained	
A1	QS6656-5	72	12	96	1	b	Front	48	-7	Retained	
R2	B2/B66A RRH-BR049	15	15	96	1	а	Behind	54	0	Retained	
A6	BSF0020F3V1-1	10.6	3.2	96	1	а	Behind	84	4	Added	
A6	BSF0020F3V1-1	10.6	3.2	96	1	b	Behind	84	-4	Added	
R5	MT6407-77A	35.1	16.1	48	2	а	Front	48	0	Added	
R9	B5/B13 RRH-BR04C	15	15	48	2	8	Behind	54	0	Retained	

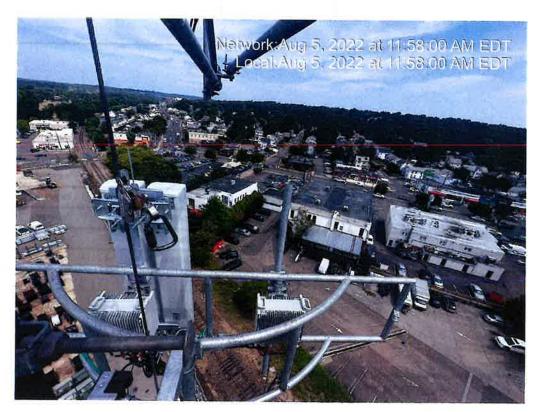
Copyright 2019 by Tower Engineering Solutions, LLC. All Rights Reserved


Structure: 5000386718-VZW - NORWALK 4 CT - NU Tindall Ave

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Fm L.	#	Pos V	Pos	Frm T _{er}	H Off	Status	Validation
A1	QS6656-5	72	12	96	1	а	Front	48	7	Retained	
A1	QS6656-5	72	12	96	1	b	Front	48	-7	Retained	
R2	B2/B66A RRH-BR049	15	15	96	1	а	Behind	54	0	Retained	
A6	BSF0020F3V1-1	10.6	3.2	96	1	а	Behind	84	4	Added	
A6	BSF0020F3V1-1	10.6	3.2	96	1	b	Behind	84	-4	Added	
R5	MT6407-77A	35.1	16.1	48	2	8	Front	48	0	Added	3. 4
R9	B5/B13 RRH-BR04C	15	15	48	2	а	Behind	54	0	Retained	
			_	_	-		_		and the second second		1

Structure: 5000386718-VZW - NORWALK 4 CT - NU Tindall Ave

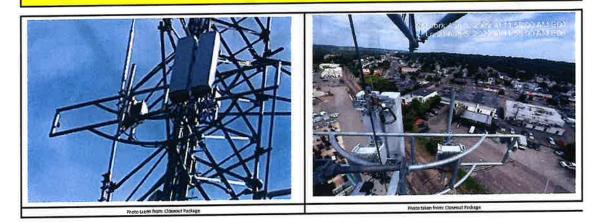
Copyright 2019 by Tower Engineering Solutions, LLC. All Rights Reserved



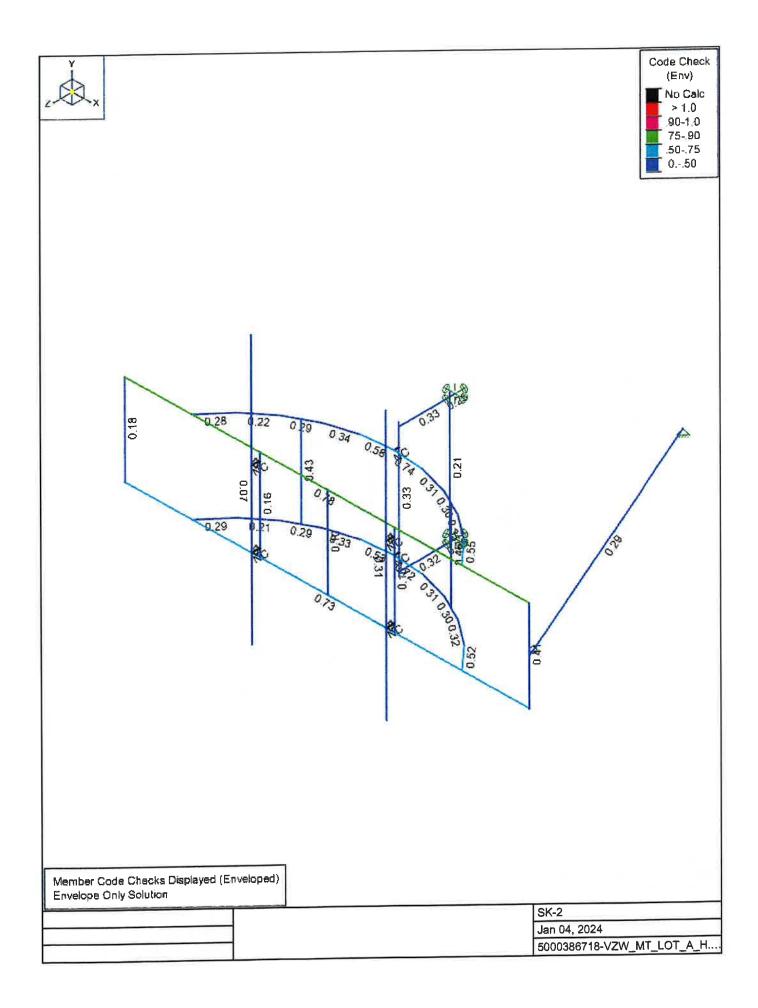
		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Fm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
A1	QS6656-5	72	12	96	1	а	Front	48	7	Retained	
A1	QS6656-5	72	12	96	1	b	Front	48	-7	Retained	
R2	B2/B66A RRH-BR049	15	15	96	1	а	Behind	54	0	Retained	
A6	BSF0020F3V1-1	10.6	3.2	96	1	а	Behind	84	4	Added	
A6	BSF0020F3V1-1	10.6	3.2	96	1	b	Behind	84	-4	Added	
R5	MT6407-77A	35.1	16.1	48	2	а	Front	48	0	Added	
R9	B5/B13 RRH-BR04C	15	15	48	2	a	Behind	54	0	Retained	

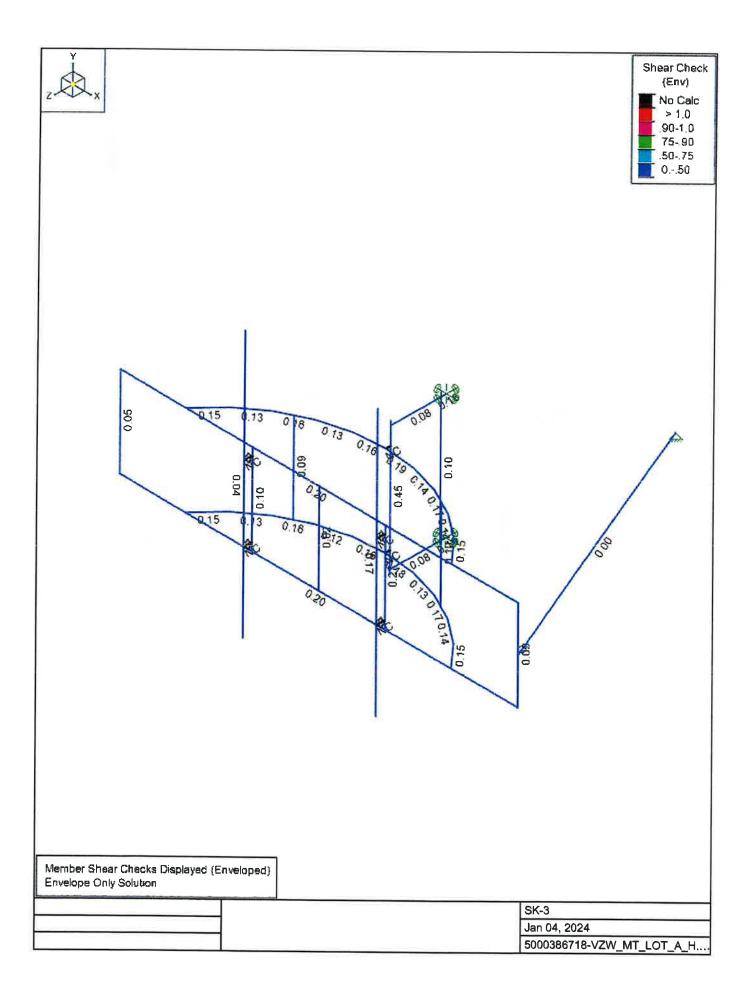
Structure: 5000386718-VZW - NORWALK 4 CT - NU Tindall Ave

Copyright 2019 by Tower Engineering Solutions, LLC. All Rights Reserved



	Engineering & Design	Desktop Mount Mapping Form					
Colliers		Site Name:	NORWALK 4 CT	Tower Type:	Monapale		
		Site ID:	469549	Tower Owner:			
		FUZE Project ID:	16883770	Tower Height (Ft.):			
		Customer: Verizon Wireless		Mount Elevation (FL):			
		Colliers Project No.	22777352A	Date:	10/24/2022		


The information contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication, mobilication or discussive by any method is prohibited except by express written permission of Colliers Engineering & Design.


Document Type	Provided? (Yes/No)	Source Name	Project No.	Dated	Comments/Remarks
Previous Mount Mapping	No				
Previous Mapping Photos	No				
Previous Mount Analysis	No				
Previous Mount Modifications	No		_		
Previous Structural Analysis	No				
Construction Drawings	No				
Closeout Package	No				
Closeout Photos	Yes	Closeout Photos	-	8/8/2022	Closeout photos show standard Armored Tower Arch Sector frames
Handover Package	No				
New Build 445 Documentation	No				and the second s
Other	No			and the second	
Previous PMI	No		The second second		and a second

The desktop mount mapping is based on the engineering review of the available site documents in FUZE, as listed above, in place of a full mount mapping. It is assumed that the information provided in the documents listed above, provide an accurate representation of the existing mount. EOR reserves the right and will typically require additional clarification and verification as will be included in the PMI requirements. During the Post Modification inspection (PMI) process, the GC on site will be required to confirm all questions, confirmations, and validations as posed by the EOR. The engineering review for this desktop mount mapping was performed in accordance to the ANSI/TIA-222-H requirements and Verizon's NSTD446 standard.

Envelope Only Solution	
	SK-1 Jan 04, 2024
	5000386718-VZW_MT_LOT_A_H

	c Load Cases BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Point	Distributed
	Antenna D	None			And All	36	12-12-1-
2	Antenna Di	None				36	
	Antenna Wo (0 Deg)	None			(control)	36	The second second
	Antenna Wo (30 Deg)	None				36	
	Antenna Wo (60 Deg)	None				36	in provide the
	Antenna Wo (90 Deg)	None				36	
<u>}</u>	Antenna Wo (120 Deg)	None			And a second	36	New York and D
3	Antenna Wo (150 Deg)	None				36	
	Antenna Wo (180 Deg)	None				36	the state of the s
0	Antenna Wo (210 Deg)	None				36	
1	Antenna Wo (240 Deg)	None			2.20	36	
2	Antenna Wo (270 Deg)	None				36	-
3	Antenna Wo (300 Deg)	None			CHIEF CHIEF	36	
4	Antenna Wo (330 Deg)	None				36	
5	Antenna Wi (0 Deg)	None			10000	36	and the second second
6	Antenna Wi (30 Deg)	None				36	
7	Antenna Wi (60 Deg)	None			phuse 1	36	
18	Antenna Wi (90 Deg)	None				36	
9	Antenna Wi (120 Deg)	None				36	New York The Com
20	Antenna Wi (150 Deg)	None				36	
21	Antenna Wi (180 Deg)	None				36	
22	Antenna Wi (210 Deg)	None				36	
23	Antenna Wi (240 Deg)	None				36	
24	Antenna Wi (270 Deg)	None				36	
25	Antenna Wi (300 Deg)	None			and the second	36	
26	Antenna Wi (330 Deg)	None				36	-
27	Antenna Wm (0 Deg)	None			and the second second	36	al contraction of the
28	Antenna Wm (30 Deg)	None				36	-
29	Antenna Wm (60 Deg)	None	102.1		and the second second	36	
30	Antenna Wm (90 Deg)	None				36	-
31	Antenna Wm (120 Deg)	None		2 - 10 - 10		36	
32	Antenna Wm (150 Deg)	None				36	-
33	Antenna Wm (180 Deg)	None			and the second second	36	_
34	Antenna Wm (210 Deg)	None				36	
35	Antenna Wm (240 Deg)	None		and the second second		36	
36	Antenna Wm (270 Deg)	None				36	-
37	Antenna Wm (300 Deg)	None		2225 C		36	
38	Antenna Wm (330 Deg)	None				36	
39	Structure D	None		-1			20
40	Structure Di	None					38
41	Structure Wo (0 Deg)	None		152			76
42	Structure Wo (30 Deg)	None					76
43	Structure Wo (60 Deg)	None					
43 44 45	Structure Wo (90 Deg)	None				1	76
45	Structure Wo (120 Deg)	None		mater and he	a second second second		76
46	Structure Wo (150 Deg)	None				-	76
46 47	Structure Wo (180 Deg)	None					76
48	Structure Wo (210 Deg)	None					76
19	Structure Wo (240 Deg)	None		1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second	76
49 50	Structure Wo (270 Deg)	None					76
51	Structure Wo (300 Deg)	None				and the second	76
52	Structure Wo (330 Deg)	None					76
53	Structure Wi (0 Deg)	None				a dim and the	76
54	Structure Wi (30 Deg)	None					76
55	Structure Wi (60 Deg)	None				and the second second	10

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Point	Distributed
56 57	Structure Wi (90 Deg)	None					76
57	Structure Wi (120 Deg)	None					76
58	Structure Wi (150 Deg)	None					76
59	Structure Wi (180 Deg)	None				and the second	76
60	Structure Wi (210 Deg)	None					76
61	Structure Wi (240 Deg)	None				Last the sta	76
62	Structure Wi (270 Deg)	None					76
63	Structure Wi (300 Deg)	None			144-18 C	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	76
64	Structure Wi (330 Deg)	None					76
65	Structure Wm (0 Deg)	None					76
66	Structure Wm (30 Deg)	None					76
67	Structure Wm (60 Deg)	None					76
68	Structure Wm (90 Deg)	None					76
69	Structure Wm (120 Deg)	None					76
70	Structure Wm (150 Deg)	None					76
71	Structure Wm (180 Deg)	None					76
72	Structure Wm (210 Deg)	None					76
73	Structure Wm (240 Deg)	None			Contain The Contain		76
74	Structure Wm (270 Dea)	None					76
75	Structure Wm (300 Deg)	None				1	76
76	Structure Wm (330 Deg)	None				and the second second	76
77	Lm1	None				1.0	10
78	Lm2	None	×				
79	Lv1	None				V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80	Lv2	Nono				1	and the second s
81	Antenna Ev	None				36	
82	Antenna Eh (0 Deg)	None				24	
83	Antenna Eh (90 Deg)	None				24	
84	Structure Ev	ELY		-0.051		64	
85	Structure Eh (0 Deg)	ELZ		0.001	-0,128	And the second second	
86	Structure Eh (90 Deg)	ELX	0.128		-0.120	Children and Child	

Load Combinations

	Description	Solve	P-Delt	aBLC	Facto	BLC	Facto	BLC	Facto	rBLC	Facto	rBLC	Facto	rBI C	Facto	rBI C	Facto	RLC	Factor
1	1.2D+1.0Wo (0 Deg)	Yes	Y	1	1.2	39	1.2	3	1	41	1	T		T	- 4010	T		T	1 40101
2	1.2D+1.0Wo (30 Deg)	Yes	Y	1	1.2	39	1.2	4	1	42	1			1		-	-	1	
3	1.2D+1.0Wo (60 Deg)	Yes	Y	1	1.2	39	1.2	5	1	43	1		-					1000	
4	1.2D+1.0Wo (90 Deg)	Yes	Y	1	1.2	39	1.2	6	1	44	1			1		-		-	
5	1.2D+1.0Wo (120 Deg)	Yes	Y	1	1.2	39	1.2	7	1	45	1		a -	1				+	
6	1.2D+1.0Wo (150 Deg)	Yes	Y	1	1.2	39	1.2	8	1	46	1					-		1	
7	1.2D+1.0Wo (180 Deg)	Yes	Y	1	1.2	39	12	9	1	47	1			1	1010				
8	1.2D+1.0Wo (210 Deg)	Yes	Y	1	1.2	39	1.2	10	1	48	1							-	
9	1.2D+1.0Wo (240 Deg)	Yes	Y	1	1.2	39	1.2	11	1	49	-	1 - 0		-		-			
10	1.2D+1.0Wo (270 Deg)	Yes	Y	11	1.2	39	1.2	12	1	50	1					-	-	-	-
11	1.2D+1.0Wo (300 Deg)	Yes	Y	1	12	39	12	13	1	51	1			1	100			1-1	
12	1.2D+1.0Wo (330 Deg)	Yes	Y	1	1.2	39	12	14	1	52	1		-			1			
13	1.2D + 1.0Di + 1.0Wi (0 Deg)	Yes	Y	1	1.2	39	12	2	1	40	1	15	4	53	1			1000	
14	1.2D + 1.0Di + 1.0Wi (30 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	1	16	1	54	1	-	-		
15	1.2D + 1.0Di + 1.0Wi (60 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	1	17	1	55	1		-		
16	1.2D + 1.0Di + 1.0Wi (90 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	1	18	1	56	1		-		
17	1.2D + 1.0Di + 1.0Wi (120 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	1	19	1	57	1	N.	1000		
18	1.2D + 1.0Di + 1.0Wi (150 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	1	20	1	58	1	-			
19	1.2D + 1.0Di + 1.0Wi (180 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	1	21	1	59	1				
20	1.2D + 1.0Di + 1.0Wi (210 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	1	22	1	60	4	-			
21	1.2D + 1.0Di + 1.0Wi (240 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	1	23	1	61	1		14.3		

Load Combinations (Continued)

Load Combinations (Continued)		The second second	- North Date					-	-			-		Fastar	DI CI	Factor		actor
Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Facto	rBLC	- actor	BLC	- actor	BLU	Factor	BLU	actor	BLUI	actor
22 1.2D + 1.0Di + 1.0Wi (270 Deg)	Yes	Y	1	1.2	39	1.2	2	_ 1	40	1	24	1	62	1		_	-	
23 1.2D + 1.0Di + 1.0Wi (300 Deg)	Yes	Y	1	1.2	39	1.2	2	1	40	1	25	1	63	1				
24 1.2D + 1.0Di + 1.0Wi (330 Deg)		Y	1	1.2	39		2	1	40	1	26	1	64	1				
25 1.2D + 1.5Lm1 + 1.0Wm (0 Deg)	Vas	Ý	1	1.2	39	1.2	77	1.5	27	1	65	1						
25 1.2D + 1.5Lm1 + 1.0Will (0 Deg)	Vee	Ŷ	1	1.2	39	1.2	77	1.5	28	1	66	1						
26 1.2D + 1.5Lm1 + 1.0Wm (30 Deg)	Ves	Y	1	1.2	39	1.2	77	1.5	29	1	67	1						
27 1.2D + 1.5Lm1 + 1.0Wm (60 Deg)	Yes		_		39		77	1.5	30	1	68	1		-				
28 1.2D + 1.5Lm1 + 1.0Wm (90 Deg)	Yes	Y	1	1.2			77	1.5	31	1	69	1		-				
29 1.2D + 1.5Lm1 + 1.0Wm (120 Deg)	Yes	Y	1	1.2	39					1	70	1		_		_		
30 1.2D + 1.5Lm1 + 1.0Wm (150 Deg)	Yes	Y	1	1.2	39	1.2	77	1.5	32				-	-		-		
31 1.2D + 1.5Lm1 + 1.0Wm (180 Deg)	Yes	Y	1	1.2	39		77	1.5	33	1	71	1				_		
32 1.2D + 1.5Lm1 + 1.0Wm (210 Deg)	Yes	Y	1	1.2	39	1.2	77	1.5	34	1	72	1						
33 1.2D + 1.5Lm1 + 1.0Wm (240 Deg)	Yes	Y	1	1.2	39	1.2	77	1.5	35	1	73	1				12	-	_
34 1.2D + 1.5Lm1 + 1.0Wm (270 Deg)	Yes	Y	1	1.2	39	1.2	77	1.5	36	1	74	1						
35 1.2D + 1.5Lm1 + 1.0Wm (300 Deg)	Yes	Y	1	1.2	39	1.2	77	1.5	37	1	75	1				5014		-
36 1.2D + 1.5Lm1 + 1.0Wm (330 Deg)	Ves	Y	1	1.2	39	1.2	77	1.5	38	1	76	1						
36 1.2D + 1.5Lin1 + 1.0Win (550 Deg)	Vea	Y	1	1.2	39	1.2	78	1.5	27	1	65	1						
37 1.2D + 1.5Lm2 + 1.0Wm (0 Deg)	Tes	Y	1	1.2	39	1.2	78	1.5	28	1	66	1						
38 1.2D + 1.5Lm2 + 1.0Wm (30 Deg)	Yes					1.2	78	1.5	29	1	67	1		-				
39 1.2D + 1.5Lm2 + 1.0Wm (60 Deg)	Yes	Y	1	1.2	39				30	1	68	1	_					
40 1.2D + 1.5Lm2 + 1.0Wm (90 Deg)	Yes	Y	1	1.2	39	1.2	78	1.5		_		1		-				
41 1.2D + 1.5Lm2 + 1.0Wm (120 Deg)	Yes	Y	1	1.2	39	1.2	78	1.5	31	1	69			-				
42 1.2D + 1.5Lm2 + 1.0Wm (150 Deg)	Yes	Y	1	1.2	39	1.2	78	1.5	32	1	70	1			-	-		-
43 1.2D + 1.5Lm2 + 1.0Wm (180 Deg)	Yes	Y	1	1.2	39	1.2	78	1.5	33	1	71	1	<u> </u>					
44 1.2D + 1.5Lm2 + 1.0Wm (210 Deg)	Yes	Y	1	1.2	39	1.2	78	1.5	34	1	72	1						
45 1.2D + 1.5Lm2 + 1.0Wm (240 Deg)	Yes	Y	1	1.2	39	1.2	78	1.5	35	1	73	1	1.11	-				
46 1.2D + 1.5Lm2 + 1.0Wm (270 Deg)	Yes	Y	1	1.2	39	1.2	78	1.5	36	1	74	1						
46 1.2D + 1.5Lm2 + 1.0Wm (200 Deg)	Vec	Y	1	1.2	39	1.2	78	1.5	37	1	75	1						
4/1.20 + 1.5Lm2 + 1.0Wm (300 Deg)	Ves	Y	1	1.2	39	1.2	78	1.5	38	1	76	1						
48 1.2D + 1.5Lm2 + 1.0Wm (330 Deg)		Y	1	1.2	39	1.2	79	1.5			1		-					
49 1.2D + 1.5Lv1	Yes				39	1.2	80	1.5	1									
50 1.2D + 1.5Lv2	Yes	Y	1	1.2			00	1.5		-	-		1.00					
51 1.4D	Yes	Y	1	1.4	39	1.4	04	4	ELY	1	82	1	83		ELZ	1	ELX	
52 1.2D + 1.0Ev + 1.0Eh (0 Deg)	Yes	Y	1	1.2	39	1.2		1			02	0.866	00					0.5
53 1.2D + 1.0Ev + 1.0Eh (30 Deg)	Yes	Y	1	1.2	39	1.2	81		ELY				03	0.866	E	0.000	EIX	0.966
54 1.2D + 1.0Ev + 1.0Eh (60 Deg)	Yes	Y	1	1.2	39	1.2	81	1	ELY	1	82	0.5					ELX	
55 1.2D + 1.0Ev + 1.0Eh (90 Deg)	Yes	Y	1	1.2	39	1.2	81		ELY		82		83		ELZ			
56 1.2D + 1.0Ev + 1.0Eh (120 Deg)	Yes	Y	1	1.2	39	1.2	81	1	ELY		82	-0.5	83	0.866	<u>E-14</u>	-0.5	ELA	0.866
57 1.2D + 1.0Ev + 1.0Eh (150 Deg)		Y	1	1.2	39	1.2	81	1	ELY	1	82	-0.866		0.5	ELZ	-0.866	ELX	0.5
58 1.2D + 1.0Ev + 1.0Eh (180 Deg)	Yes	Y	1	1.2	39	1.2	81	1	ELY	1	82	-1	83			-1		
59 1.2D + 1.0Ev + 1.0Eh (210 Deg)	Ves	Ŷ	1	1.2	39	1.2	81	1	ELY	1	82	-0.866	83	-0.5	ELZ	-0.866	ELX	-0.5
59 1.20 + 1.0EV + 1.0Eh (210 Deg)	Vec		1	1.2	39	1.2	81	1	ELY	1	82	-0.5	83	-0.866	泪LZ	-0.5	ELX	-0.866
60 1.2D + 1.0Ev + 1.0Eh (240 Deg)	Vec	Y	1	1.2		1.2	81		ELY		82		83	-1	ELZ		ELX	-1
61 1.2D + 1.0Ev + 1.0Eh (270 Deg)	Tes			1.2	39	1.2	81	1	ELY		82	0.5	83	-0.866	走LZ	0.5	ELX	-0.866
62 1.2D + 1.0Ev + 1.0Eh (300 Deg)	Yes	Y	1				81	1	ELY		82	0.866	83	-05	FIZ	0 866	ELX	-0.5
63 1.2D + 1.0Ev + 1.0Eh (330 Deg)	Yes	Y	1	1.2	39	1.2			ELY		82	1	83	0.0	ELZ		ELX	
64 0.9D - 1.0Ev + 1.0Eh (0 Deg)	Yes	<u>Y</u>	1	0.9	39	0.9					02	0.866	03	0.5				05
65 0.9D - 1.0Ev + 1.0Eh (30 Deg)	Yes	Y	1	0.9		0.9	-		ELY		82	0.5	03	0.0	톱띜	0.000	計分	0.866
66 0.9D - 1.0Ev + 1.0Eh (60 Deg)	Yes	Y	1	0.9	39	0.9	81	-1	ELY			0.5	83	0.800	E L4	0.5	ELX	1
67 0.9D - 1.0Ev + 1.0Eh (90 Deg)	Yes	Y	1	0.9	39	0.9	81			-1	82	1000	83	1	EL4			
68 0.9D - 1.0Ev + 1.0Eh (120 Deg)	Yes	Y	1	0.9	39	0.9	81		ELY		82	-0.5	83	0.866	ELZ	-0.5	탄스	0.866
69 0.9D - 1.0Ev + 1.0Eh (150 Deg)	Yes		1	0.9	39	0.9	81	-1	ELY	-1	82	-0.866	83	0.5	ELZ	-0,866	ELX	0.5
TO 0.00 105+ 105 (190 Dec)	Yes		1	0.9				-1	ELY	-1	82	-1	83		ELZ	-1	ELX	
70 0.9D - 1.0Ev + 1.0Eh (180 Deg)	Vac		1						ELY		82	-0.866	83	-0.5	ELZ	-0.866	ELX	-0.5
71 0.9D - 1.0Ev + 1.0Eh (210 Deg)	Ves		1	0.9					ELY		82	-0.5	83	-0.866	非LZ	-0.5	ELX	-0.866
72 0.9D - 1.0Ev + 1.0Eh (240 Deg)	Yes								ELY		82		83	-1	ELZ		ELX	-1
73 0.9D - 1.0Ev + 1.0Eh (270 Deg)	Yes	Y	1	0.9							02	0.5	82	-0.866	=17	0.5	ELX	-0.866
74 0.9D - 1.0Ev + 1.0Eh (300 Deg)	Yes	Y	1	0.9		0.9					02	0.0	03	OF	F1 7	0.866	FIX	-0.5
75 0.9D - 1.0Ev + 1.0Eh (330 Deg)	Yes	Y	1	0.9	39	0.9	181	•	ELY	-1	02	10.000	03	-0.5	per hadan	0.000	- her V	0.0

Node Coordinates

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
1	N2	9.999999	-0.03125	0.000002	
2	<u>N3</u>	9.378213	-0.03125	-0.686144	
3	N4	8.640565	-0.03125	-1.245868	
4	N5	7.812355	-0.03125	-1.659973	
5	N6	6.921988	-0.03125	-1.914257	
6	N7	5.999999	-0.03125	-1.999998	
7	N8	5.078011	-0.03125	-1.914257	
8	N9	4.187643	-0.03125	-1.659973	
9	N10	3.359433	-0.03125	-1.245868	
10	N11	2.621786	-0.03125	-0.686144	
11	N12	1.999999	-0.03125	0.000002	the second s
12	N24	-0.000001	-0.03125	0.000002	
13	N14	11.999999	-0.03125	0.000002	and the second sec
14	N15	9.999999	2.6875	0.000002	
15	N16	9.378213	2.6875	-0.686144	and the Manual state of the
16	N17	8.640565	2.6875	-1.245868	
17	N18	7.812355	2.6875	-1.659973	A REAL PLACE AND A REAL PLACE AND A REAL PLACE
18	N19	6.921988	2.6875	-1.914257	
19	N20	5.999999	2.6875	-1.999998	
20	N21	5.078011	2.6875	-1.914257	
21	N22	4.187643	2.6875	-1.659973	and the second shares and the
22	N23	3.359433	2.6875	-1.245868	
22	N24A	2.621786	2.6875	-0.686144	a superior to the second state of the second
24	N25	1.999999	2.6875	0.000002	
25	N26	-0.000001	2.6875	0.000002	A Development of the second second second
26	N27	11.999999	2.6875	0.000002	
27	N28	3.773538	-0.03125	-1.452921	
28	N29	8.22646	-0.03125	-1.452921	
29	N30	3.773538	2.6875	-1.452921	The second s
30	N31	8.22646	2.6875	-1.452921	
31	N32	5.999999	-0.03125	-2.145832	and the second
32	N33	5.999999	2.6875	-2.145832	
33	N34	5.999999	3.34375	-2.145832	
34	N35	5.999999	-0.65625	-2.145832	
35	N36	3.999999	-0.03125	0	T TOTAL CONTRACTOR OF THE OWNER
36	N37	3.999999	2.6875	0.000002	
37	N38	5.999999	-0.03125	0.000002	
38	N39	5.999999	2.6875	0.000002	
39	N40	7.999999	-0.03125	0.000002	
40	N41	7.999999	2.6875	0.000002	
41	N48	3.999999	2.46875	0.000002	
12	N49	3.999999	0.21875	0.000002	
13	N50	3.999999	2.46875	0.250002	
14	N51	3.999999	0.21875	0.250002	
44 45	N52	3.999999	5.84375	0.250002	
16	N53	3.999999	-2.15625	0.250002	C CARLES AND DELLA MARKED UND
17	N54	7.999999	2.46875	0.000002	
18	N55	7.999999	0.21875	0.000002	
19	N56	7.999999	2.46875	0.250002	
50	N57	7.999999	0.21875	0.250002	
51	N58	7.999999	5.84375	0.250002	
2	N59	7.999999	-2.15625	0.250002	
3	N67	5.999999	3.34375	-3.646165	CONTRACTOR OF SHARE SHARE
4	N68	5.999999	-0.65625	-3.646165	
5	N248	5.999999	3.21875	-2.145832	The second se

	Сотрапу	:
	Designer	:
IIRISA	Job Number	:
A NEWETSCHEK COMPANY	Model Name	:

Node Coordinates (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Detach From Diaphragm
56	N249	5.999999	3.21875	-3.646165	
57	N254A	5.999999	-0.53125	-2.145832	
58	N255A	5.999999	-0.53125	-3.646165	
59	N261	5.999999	3.21875	-3.812832	
60	N261A	5.999999	-0.53125	-3.812832	
61	N77	11.999999	1.328125	0.000002	
62	N68A	8.499999	1.328125	-8.142959	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rule	Area [in ²	llyy [inf]	Izz [in⁴]	
1	Antenna Pipe	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	0.627	0.627	1.25
2		PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	0.627	0.627	1.25
3	Cicular Standoff	PIPE 2.0	Beam	Pipe	A53 Gr. B	Typical	1.02	0.627	0.627	1.25
-	Standoff Vertical	PIPE 2.0	Beam		A53 Gr. B	Typical	1.02	0.627	0.627	1.25
4	Vertical Pipe	PIPE 2.0	Beam		A53 Gr. B	Typical	1.02	0.627	0.627	1.25
6	Mast Pipe	PIPE 2.5X	Beam		A53 Gr. B	Typical	2.1	1.83	1.83	3.66
7	HSS Standoff	HSS3X3X3	Beam		A500 Gr. B 46	Typical	1.89	2.46	2.46	4.03
0	Plate	PL1/2X7 HRA	Beam		A36 Gr.36	Typical	3.5	0.073	14.292	0.279
8	HSS Standoff Support	PIPE 1.5	Beam		A53 Gr. B	Typical	0.749	0.293	0.293	0.586
		SR 0.75	Beam		A36 Gr.36	Typical	0.442	0.016	0.016	0.031
10		PIPE 1.5	Beam		A36 Gr.36	Typical	0.749	0.293	0.293	0.586

Hot Rolled Steel Properties

Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. [1e ^{se} F ⁻¹]	Density [k/ft3]	Yield [ksi]	Ry	Fu [ksi]	Rt
1 A36 Gr.36	29000	11154	0.3	0.65	0.49	36	1.5	58	1.2
2 A53 Gr. B	29000	11154	0.3	0,65	0.49	35	1.5	60	1.2
A572 Gr.50	29000	11154	0.3	0,65	0.49	50	1.1	65	1.1
A992	29000	11154	0.3	0.65	0.49	50	1.1	65	1.1
A500 Gr. B 42	29000	11154	0.3	0.65	0.49	42	1.4	58	1.3
A500 Gr. B 46	29000	11154	0.3	0.65	0.49	46	1.4	58	1.3

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
1	M1	N12	N11		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
2	M2	N11	N10		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
3	M3	N10	N9		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
4	M4	N9	N8		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
5	M5	N8	N7		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
6	M6	N7	N6		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
7	M7	N6	N5		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
	M8	N5	N4		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
8	M9	N4	N3	1	Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
9		N3	N2		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
10	M10 M11	N24	N14	1	Horizontal Face	Beam	Pipe	A53 Gr. B	Typical
11		N25	N24A		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
12	M12		N23	The second second	Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
13	M13	N24A	N22		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
14	M14	N23 N22	N21		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
15	M15		N20	1	Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
16	M16	N21	N19		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
17	M17	N20	N19 N18		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
18 19	M18 M19	N19 N18	N18		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical

Member Primary Data (Continued)

	Label	Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
20	M20	N17	N16		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
21	M21	N16	N15		Cicular Standoff	Beam	Pipe	A53 Gr. B	Typical
22	M22	N26	N27		Horizontal Face	Beam	Pipe	A53 Gr. B	Typical
23	M23	N29	N31		Standoff Vertical	Beam	Pipe	A53 Gr. B	Typical
24	M24	N28	N30		Standoff Vertical	Beam	Pipe	A53 Gr. B	Typical
25	M25	N20	N33		RIGID	None	None	RIGID	Typical
26	M26	N7	N32		RIGID	None	None	RIGID	Typical
27	M27	N24	N26		Vertical Pipe	Beam	Pipe	A53 Gr. B	Typical
28	M28	N14	N27		Vertical Pipe	Beam	Pipe	A53 Gr. B	Typical
29	P2A	N36	N37		Vertical Pipe	Beam	Pipe	A53 Gr. B	Typical
30	M30	N38	N39		Vertical Pipe	Beam	Pipe	A53 Gr. B	Typical
31	P1A	N40	N41		Vertical Pipe	Beam	Pipe	A53 Gr. B	Typical
32	M35	N50	N48		RIGID	None	None	RIGID	Typical
33	M36	N51	N49	Garden and Sala	RIGID	None	None	RIGID	Typical
34	MP2A	N52	N53		Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
35	M38	N56	N54		RIGID	None	None	RIGID	Typical
36	M39	N57	N55		RIGID	None	None	RIGID	Typical
37	MP1A	N58	N59		Antenna Pipe	Beam	Pipe	A53 Gr. B	Typical
38	M44	N35	N34		Mast Pipe	Beam	Pipe	A53 Gr. B	Typical
39	M50	N68	N67		HSS Standoff Support	Beam	Pipe	A53 Gr. B	Typical
40	M166A	N248	N249		HSS Standoff	Beam	Tube	A500 Gr. B 46	Typical
41	M167A	N254A	N255A		HSS Standoff	Beam	Tube	A500 Gr. B 46	Typical
42	M172	N249	N261	90	Plate	Beam	RECT	A36 Gr.36	Typical
43	M172A	N255A	N261A	90	Plate	Beam	RECT	A36 Gr.36	Typical
44	M57	N77	N68A		Tleback	Beam	BAR	A36 Gr.36	Typical

Hot Rolled Steel Design Parameters

	Label	Shape	Length [ft]	Lcomp top [ft]	Channel Conn.	a [ft]	Function
1	M1	Cicular Standoff	0.926	Lbvv	N/A	N/A	Lateral
2	M2	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
3	M3	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
4	M4	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
5	M5	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
6	M6	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
7	M7	Cicular Standoff	0.926	Lbvy	N/A	N/A	Lateral
8	M8	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
9	M9	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
10	M10	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
11	M11	Horizontal Face	12	Lbvv	N/A	N/A	Lateral
12	M12	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
13	M13	Cicular Standoff	0.926	Lbvy	N/A	N/A	Lateral
14	M14	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
15	M15	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
16	M16	Cicular Standoff	0.926	Lbvv	N/A	N/A	Lateral
17	M17	Cicular Standoff	0.926	Lbvv	N/A	N/A	Lateral
18	M18	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
19	M19	Cicular Standoff	0.926	Lbvy	N/A	N/A	Lateral
20	M20	Cicular Standoff	0.926	Lbyy	N/A	N/A	Lateral
21	M21	Cicular Standoff	0.926	Lbvy	N/A	N/A	Lateral
22	M22	Horizontal Face	12	Lbvy	N/A	N/A	Lateral
23	M23	Standoff Vertical	2.719	Lbyy	N/A	N/A	Lateral
24	M24	Standoff Vertical	2.719	Lbvy	N/A	N/A	Lateral
25	M27	Vertical Pipe	2.719	Lbvv	N/A	N/A	Lateral
26	M28	Vertical Pipe	2.719	Lbvy	N/A	N/A	Lateral
27	P2A	Vertical Pipe	2.719	Lbyy	N/A	N/A	Lateral

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length [ft]	Lcomp top [ft]	Channel Conn.	a [ft]	Function
	The second second	Vertical Pipe	2,719	Lbyy	N/A	N/A	Lateral
28	M30		2.719	Lbyy	N/A	N/A	Lateral
29	P1A	Vertical Pipe	8	Lbvv	N/A	N/A	Lateral
30	MP2A	Antenna Pipe		Lbvv	N/A	N/A	Lateral
31	MP1A	Antenna Pipe	8		N/A	N/A	Lateral
32	M44	Mast Pipe	4	Lbyy	N/A	N/A	Lateral
33	M50	HSS Standoff Support	4	Lbyy	N/A	N/A	Lateral
34	M166A	HSS Standoff	1.5	Lbyy		N/A	Lateral
35	M167A	HSS Standoff	1.5	Lbyy	N/A	N/A	Lateral
36	M172	Plate	0.167	Lbyy	N/A		Lateral
37	M172A	Plate	0.167	Lbyy	N/A	N/A	
38	M57	Tieback	8.863	Lbyy	N/A	N/A	Lateral

Member Point Loads (BLC 1 : Antenna D)

Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1 MP1A	Y	-32.5	2
2 MP1A	My	-0.027	2
MP1A	Mz	0.019	2
4 MP1A	Y	-32.5	6
5 MP1A	My	-0.027	6
6 MP1A	Mz	0.019	6
7 MP1A	Y	-32.5	2
8 MP1A	My	-0.027	2
9 MP1A	Mz	-0.019	2
IO MP1A	Y	-32.5	6
11 MP1A	My	-0.027	6
12 MP1A	Mz	-0.019	6
13 MP2A	Y	-43.55	3
14 MP2A	My	-0.036	3
15 MP2A	Mz	0	3
16 MP2A	Y	-43.55	5
MP2A	My	-0.036	5
18 MP2A	Mz	0	5
19 MP1A	Y	-8.8	6.5
20 MP1A	My	0.009	6.5
20 MP1A 21 MP1A	Mz	0.003	6.5
22 MP1A	Y	-8.8	7.5
22 MP1A 23 MP1A	My	0.009	7.5
24 MP1A	Mz	0.003	7.5
24 MP1A 25 MP1A	Y	-8.8	6,5
26 MP1A	My	0.009	6.5
26 MP1A 27 MP1A	Mz	-0.003	6.5
28 MP1A	Y	-8.8	7.5
28 MP1A 29 MP1A	My	0.009	7.5
30 MP1A	Mz	-0.003	7.5
31 P1A	Y	-84.4	1
32 P1A	My	0.042	11
33 P1A	Mz	0	1
34 P2A	Y	-70.3	1
34 P2A 35 P2A 36 P2A	My	0.035	1.
36 P2A	Mz	0	1

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	Y	-67.185	2
2	MP1A	My	-0.056	2
3	MP1A	Mz	0.039	2
4	MP1A	Y	-67.185	6
5	MP1A	My	-0.056	6
6	MP1A	Mz	0.039	6
7	MP1A	Y	-67.185	2
8	MP1A	My	-0.056	2
9	MP1A	Mz	-0.039	2
10	MP1A	Y	-67.185	6
11	MP1A	My	-0.056	6
12	MP1A	Mz	-0.039	6
13	MP2A	Y	-34.702	3
4	MP2A	My	-0.029	3
15	MP2A	Mz	0	3
6	MP2A	Y	-34.702	5
7	MP2A	My	-0.029	5
8	MP2A	Mz	0	5
9	MP1A	Y	-8.431	6.5
20	MP1A	My	0.008	6.5
1	MP1A	Mz	0.003	6.5
2	MP1A	Y	-8.431	7.5
3	MP1A	My	0.008	7.5
4	MP1A	Mz	0.003	7.5
5	MP1A	Y	-8.431	6.5
6	MP1A	My	0.008	6.5
7	MP1A	Mz	-0.003	6.5
8	MP1A	Y	-8.431	7.5
9	MP1A	My	0.008	7.5
0	MP1A	Mz	-0.003	7.5
1	P1A	Y	-43.735	1.5
2	P1A	My	0.022	1
3	P1A	Mz	0	
4	P2A	Y	-39.324	1
5	P2A	My	0.02	
6	P2A	Mz	0	1

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	0	2
2	MP1A	Z	-164.941	2
3	MP1A	Mx	-0.096	2
4	MP1A	X	0	6
5	MP1A	Z	-164.941	6
6	MP1A	Mx	-0.096	6
7	MP1A	X	0	2
8	MP1A	Z	-164.941	2
9	MP1A	Mx	0.096	2
10	MP1A	X	0	6
11	MP1A	Z	-164.941	6
12	MP1A	Mx	0.096	6
13	MP2A	X	0	3
14	MP2A	Z	-79.529	3
15	MP2A	Mx	0	3

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
	X	0	5
	Z	-79.529	5
	Mx	0	5
18 MP2A	X	0	6.5
19 MP1A	Z	-5.884	6.5
20 MP1A	Mx	-0.002	6.5
21 MP1A	X	0	7.5
22 MP1A	Z	-5.884	7.5
23 MP1A	Mx	-0.002	7.5
24 MP1A	X	0	6.5
25 MP1A		-5.884	6.5
26 MP1A	L	0.002	6.5
27 MP1A	Mx	0	7.5
28 MP1A 29 MP1A	X	-5.884	7.5
29 MP1A	Z	0.002	7.5
30 MP1A	Mx	0.002	1
30 MP1A 31 P1A 32 P1A 33 P1A	X		1 1
32 P1A	Z	-62.893	1
33 P1A	Mx	0	1
34 P2A	X	0	
34 P2A 35 P2A	Z	-62.893	1
36 P2A	Mx	0	

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	79.098	2
2	MP1A	Z	-137.001	2
3	MP1A	Mx	-0.146	2
4	MP1A	X	79.098	6
5	MP1A	Z	-137.001	6
6	MP1A	Mx	-0.146	6
7	MP1A	X	79.098	2
8	MP1A	Z	-137.001	2
9	MP1A	Mx	0.014	2
10	MP1A	X	79.098	6
11	MP1A	Z	-137.001	6
12	MP1A	Mx	0.014	6
13	MP2A	X	33.247	3
14	MP2A MP2A	Z	-57.585	3
15	MP2A	Mx	-0.028	3
16	MP2A MP2A	X	33.247	5
17	MP2A	Z	-57,585	5
18	MP2A	Mx	-0.028	5
19	MP1A	X	4.648	6.5
19	MP1A	Ž	-8.051	6.5
20	MP1A MP1A	Mx	0.002	6.5
21	MP1A	X	4.648	7.5
22 23 24	MP1A MP1A	Z	-8.051	7.5
23	MP1A	Mx	0.002	7.5
24		X	4.648	6.5
25 26 27	MP1A	Z	-8.051	6.5
20	MP1A	Mx	0.007	6.5
2/	MP1A MP1A	X	4.648	7.5
28		ź	-8.051	7.5
28 29 30	MP1A	Mx	0.007	7.5
30	MP1A P1A	X	28.86	1

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
32	P1A	Z	-49.986	1
33	P1A	Mx	0.014	
34	P2A	X	27,896	1
35	P2A	Z	-48.317	1
36	P2A	Mx	0.014	1

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	125.317	2
2	MP1A	X Z	-72.352	2
3	MP1A	Mx	-0.147	2
4	MP1A	X	125.317	6
5	MP1A	Z	-72.352	6
6	MP1A	Mx	-0.147	6
7	MP1A	X	125.317	2
3	MP1A	Z	-72.352	2
9	MP1A	Mx	-0.062	2
0	MP1A	X	125.317	6
1	MP1A	Z	-72.352	6
2	MP1A	Mx	-0.062	6
3	MP2A	X	35.008	3
4	MP2A	Z	-20.212	3
5	MP2A	Mx	-0.029	3
6	MP2A	X	35.008	5
7	MP2A	Z	-20.212	5
8	MP2A	Mx	-0.029	5
9	MP1A	X	13.961	6.5
0	MP1A	Z	-8.061	6.5
1	MP1A	Mx	0.011	6.5
2	MP1A	X	13.961	7.5
3	MP1A	Z	-8.061	7.5
4	MP1A	Mx	0.011	7.5
5	MP1A	X	13.961	6.5
6	MP1A	Z	-8.061	6.5
7	MP1A	Mx	0.017	6.5
3	MP1A	X	13.961	7.5
9	MP1A	Z	-8.061	7.5
	MP1A	Mx	0.017	7.5
	P1A	X	41.026	1.5
2	P1A	Z	-23.686	1
3	P1A	Mx	0.021	
4	P2A	X	36.018	1
5	P2A	Z	-20,795	
6	P2A	Mx	0.018	1

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	137.958	2
2	MP1A	Z	0	2
3	MP1A	Mx	-0.115	2
4	MP1A	X	137.958	6
5	MP1A	Z	0	0
6	MP1A	Mx	-0.115	6

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

Member Labe	sector and the sector	Magnitude [lb, k-ft]	Location [(ft, %)]
7 MP1A	X	137.958	2
MPIA MPIA	Z	0	2
	Mx	-0.115	2
MP1A	X	137.958	6
MP1A	Z	0	6
1 MP1A	Mx	-0.115	6
2 MP1A	X	27.389	3
3 MP2A	Z	0	3
4 MP2A	Mx	-0.023	3
5 MP2A	X	27.389	5
6 MP2A	ź	0	5
7 MP2A	Mx	-0.023	5
8 MP2A	X	19.534	6.5
9 MP1A	z	0	6.5
0 MP1A	Mx	0.02	6.5
1 MP1A	X	19.534	7.5
2 MP1A 3 MP1A 4 MP1A	Z	0	7.5
3 MP1A	Mx	0.02	7.5
4 MP1A	X	19.534	6.5
5 MP1A	Z	0	6.5
6 MP1A		0.02	6.5
25 MP1A 26 MP1A 27 MP1A 28 MP1A 29 MP1A	Mx	19.534	7.5
8 MP1A	x	0	7.5
9 MP1A	Z	0.02	7.5
0 MP1A 11 P1A 32 P1A	Mx	42.199	1
1 P1A	X	42.155	1
2 P1A	Z	0.021	1
3 P1A	Mx	34.49	1
4 <u>P2A</u>	X	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P2A 35 P2A 36 P2A	Z	0.017	1
36 P2A	Mx	0.017	

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

Mamber Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
Member Label	X	125.317	2
1 MP1A	Z	72.352	2
2 MP1A		-0.062	2
3 MP1A	Mx	125.317	6
4 <u>MP1A</u>	X		6
5 MP1A	Z	72.352	6
6 MP1A	Mx	-0.062	2
7 MP1A	X	125.317	2
8 MP1A	Z	72.352	2
9 MP1A	Mx	-0.147	
IO MP1A	X	125.317	6
MP1A	Z	72.352	6
12 MP1A	Mx	-0.147	6
I MP2A	X	35.008	3
I3 MP2A I4 MP2A	Z	20.212	3
A MP2A	Mx	-0.029	3
15 MP2A	X	35.008	5
16 MP2A 17 MP2A	Z	20.212	5
17 MP2A	Mx	-0.029	5
18 MP2A		13.961	6.5
I9 MP1A	X	8.061	6.5
20 MP1A	Z	0.017	6.5
MP2A 19 MP1A 20 MP1A 21 MP1A	Mx	13.961	7.5
22 MP1A	X	13.901	

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
23	MP1A	Z	8.061	7.5
24	MP1A	Mx	0.017	7.5
25	MP1A	X	13.961	6.5
26	MP1A	Z	8.061	6.5
27	MP1A	Mx	0.011	6.5
28	MP1A	X	13.961	7.5
29	MP1A	Z	8.061	
30	MP1A	Mx	0.011	7.5
1	P1A	X	41.026	7.5
2	P1A	Z	23.686	
33	P1A	Mx	0.021	
4	P2A	X	36.018	
35	P2A	7	20.795	
6	P2A	Mx	0.018	1

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	79.098	2
2	MP1A	Z	137.001	2
3	MP1A	Mx	0.014	2
4	MP1A	X	79.098	6
5	MP1A	Z	137.001	6
6	MP1A	Mx	0.014	6
7	MP1A	X	79.098	2
8	MP1A	Z	137.001	2
9	MP1A	Mx	-0.146	2
0	MP1A	X	79.098	6
1	MP1A	Z	137.001	6
2	MP1A	Mx	-0.146	6
3	MP2A	X	33.247	3
4	MP2A	Z	57.585	3
5	MP2A	Mx	-0.028	3
6	MP2A	X	33.247	5
7	MP2A	Z	57.585	5
8	MP2A	Mx	-0.028	
9	MP1A	X	4.648	5
20	MP1A	Z	8.051	
1	MP1A	Mx	0.007	6.5
2	MP1A	X	4.648	6.5
3	MP1A	Z	8.051	7.5
4	MP1A	Mx	0.007	7.5
5	MP1A	X	4.648	7.5
6	MP1A	Z	8.051	6.5
7	MP1A	Mx		6.5
8	MP1A	X	0.002 4.648	6.5
9	MP1A	Ż		7.5
0	MP1A	Mx	8.051	7.5
1	P1A	X	0.002	7.5
2	P1A	z	28.86	
3	P1A	Mx	49.986	1
4	P2A	X	0.014	a la contra de la 1 de comercia de la
5	P2A	Z	27.896	1
6	P2A	Mx	48.317	
91			0.014	1

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1 MP1A	X	0	2
2 MP1A	Z	164.941	2
2 MP1A 3 MP1A	Mx	0.096	2
4 MP1A	X	0	6
4 MP1A 5 MP1A	Z	164.941	6
6 MP1A	Mx	0.096	6
7 MP1A	X	0	2
8 MP1A	Z	164.941	2
8 MP1A 9 MP1A	Mx	-0.096	2
10 MP1A	x	0	6
11 MP1A	Z	164.941	6
12 MP1A	Mx	-0.096	6
13 MP2A	X	0	3
	Z	79.529	3
14 MP2A 15 MP2A	Mx	0	3
16 MP2A	X	0	5
17 MP2A	Z	79.529	5
18 MP2A	Mx	0	5
19 MP1A	X	0	6.5
20 MP1A	Z	5.884	6.5
20 MP1A 21 MP1A	Mx	0.002	6.5
22 MP1A	X	0	7.5
MP1A 23 MP1A 24 MP1A 25 MP1A 26 MP1A	Z	5.884	7.5
23 MP1A	Mx	0.002	7.5
25 MP1A	X	0	6.5
26 MP1A	Z	5.884	6.5
27 MP1A	Mx	-0.002	6.5
27 MP1A 28 MP1A	X	0	7.5
28 MP1A 29 MP1A 30 MP1A	Z	5.884	7.5
30 MP1A	Mx	-0.002	7.5
30 MPTA 31 P1A	X	0	1
	Z	62.893	1
	Mx	0	1
33 P1A	X	0	1
34 P2A	ź	62.893	1
35 P2A	Mx	0	1
36 P2A			

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
	Direction Y	-79.098	2
1 MP1A		137.001	2
2 MP1A	2		2
3 MP1A	Mx	0.146	6
4 MP1A	X	-79.098	the second se
5 MP1A	Z	137.001	6
	Mx	0.146	6
	X	-79.098	2
WIE LA		137.001	2
8 MP1A	L	-0.014	2
9 MP1A	Mx		6
IO MP1A	X	-79.098	
11 MP1A	Z	137.001	6
	Mx	-0.014	6
	X	-33.247	3
13 MP2A	- 7	57.585	3
14 MP2A			3
15 MP2A	Mx	0.028	

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
16 17	MP2A	X	-33.247	5
	MP2A	Z	57.585	5
18	MP2A	Mx	0.028	5
19	MP1A	X	-4,648	6.5
20	MP1A	Z	8.051	6.5
21	MP1A	Mx	-0.002	6.5
22	MP1A	X	-4.648	7.5
23	MP1A	Z	8.051	7.5
24	MP1A	Mx	-0.002	7.5
25	MP1A	X	-4.648	6.5
26	MP1A	Z	8.051	6.5
27	MP1A	Mx	-0.007	
28	MP1A	X	-4.648	6.5
29	MP1A	7	8.051	7.5
30	MP1A	Mx	-0.007	7.5
31	P1A	X	-28.86	7.5
32	P1A	Z	49.986	
33	P1A	Mx	-0.014	1
34	P2A	X	-27.896	
35	P2A	Z	48.317	1
36	P2A	Mx	-0.014	1

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1 MP1A	X	-125.317	2
2 MP1A	Z	72.352	2
3 MP1A	Mx	0.147	2
4 MP1A	X	-125.317	6
5 MP1A	Z	72.352	6
6 MP1A	Mx	0.147	6
7 MP1A	X	-125.317	2
8 MP1A	Z	72.352	2
9 MP1A	Mx	0.062	2
0 MP1A	X	-125.317	6
1 MP1A	Z	72.352	6
2 MP1A	Mx	0.062	6
3 MP2A	X	-35.008	3
4 MP2A	Z	20.212	3
5 MP2A	Mx	0.029	3
6 MP2A	X	-35.008	5
7 MP2A	Z	20.212	5
8 MP2A	Mx	0.029	5
9 MP1A	X	-13.961	6.5
MP1A	Z	8.061	6.5
MP1A	Mx	-0.011	6.5
2 MP1A	X	-13.961	7.5
3 MP1A	Z	8.061	7.5
A MP1A	Mx	-0.011	7.5
MP1A	X	-13.961	6.5
MP1A	Z	8.061	6.5
7 MP1A	Mx	-0.017	6.5
8 MP1A	X	-13.961	7.5
9 MP1A	Z	8.061	7.5
MP1A	Mx	-0.017	7.5
P1A	X	-41.026	1.5

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
	P1A	7	23.686	1
32	P1A	Mx	-0.021	
34	P2A	X	-36.018	1
35	P2A	Z	20.795	1
36	P2A	Mx	-0.018	1

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1 MP1A	X	-137.958	2
2 MP1A	Z	0	2
3 MP1A	Mx	0.115	2
4 MP1A	X	-137.958	6
5 MP1A	Z	0	6
6 MP1A	Mx	0.115	6
7 MP1A	X	-137.958	2
8 MP1A	Z	0	2
9 MP1A	Mx	0.115	2
10 MP1A	X	-137.958	6
11 MP1A	Z	0	6
	Mx	0.115	6
12 MP1A 13 MP2A	X	-27.389	3
14 MP2A	Z	0	3
15 MP2A	Mx	0.023	3
16 MP2A	X	-27.389	5
17 MP2A	Z	0	5
18 MP2A	Mx	0.023	5
19 MP1A	X	-19.534	6.5
20 MP1A	Z	0	6.5
20 MP1A 21 MP1A	Mx	-0.02	6.5
22 MP1A	X	-19.534	7.5
23 MP1A	Z	0	7.5
24 MP1A	Mx	-0.02	7.5
25 MP1A	X	-19.534	6.5
26 MP1A	Z	0	6.5
26 MPTA 27 MP1A	Mx	-0.02	6.5
28 MP1A	X	-19.534	7.5
22 MP1A 23 MP1A 24 MP1A 25 MP1A 26 MP1A 27 MP1A 28 MP1A 29 MP1A 30 MP1A 31 P1A	Z	0	7.5
30 MP1A	Mx	-0.02	7.5
30 MP1A 31 P1A	X	-42.199	1
31 P1A 32 P1A	Z	0	1
32 P1A	Mx	-0.021	1
33 P1A	X	-34.49	1
34 P2A	Z	0	- 1
34 P2A 35 P2A 36 P2A	Mx	-0.017	1
36 P2A		01011	

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

Memberlabol	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
	X	-125.317	2
	7		2
	Mx		2
	X	-125.317	6
	7		6
	Mx	0.062	6
	Member Label MP1A MP1A MP1A MP1A MP1A MP1A	Member LabelDirectionMP1AXMP1AZMP1AMxMP1AXMP1AXMP1AZ	Member Label Direction Magnitude [lb, k-ft] MP1A X -125.317 MP1A Z -72.352 MP1A Mx 0.062 MP1A X -125.317 MP1A Mx 0.062 MP1A X -125.317 MP1A X -125.317 MP1A Z -72.352

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
7	MP1A	X	-125.317	2
8	MP1A	Z	-72.352	2
9	MP1A	Mx	0.147	2
10	MP1A	X	-125.317	6
11	MP1A	Z	-72.352	6
12	MP1A	Mx	0.147	6
13	MP2A	X	-35.008	3
14	MP2A	Z	-20.212	3
15	MP2A	Mx	0.029	3
16	MP2A	X	-35.008	5
17	MP2A	Z	-20.212	5
8	MP2A	Mx	0.029	5
9	MP1A	X	-13.961	6.5
20	MP1A	Z	-8.061	6.5
21	MP1A	Mx	-0.017	6.5
22	MP1A	X	-13.961	7.5
22	MP1A	Z	-8.061	7.5
4	MP1A	Mx	-0.017	7.5
5	MP1A	X	-13.961	6.5
6	MP1A	Z	-8.061	6.5
7	MP1A	Mx	-0.011	6.5
8	MP1A	X	-13.961	7.5
9	MP1A	Z	-8.061	7.5
1	MP1A	Mx	-0.011	7.5
1	P1A	X	-41.026	1
2	P1A	Z	-23.686	1
3	P1A	Mx	-0.021	
4	P2A	X	-36.018	1
5	P2A	Z	-20.795	
6	P2A	Mx	-0.018	1

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	-79.098	2
2	MP1A	Z	-137.001	2
3	MP1A	Mx	-0.014	2
4	MP1A	X	-79.098	6
5	MP1A	Z	-137.001	6
6	MP1A	Mx	-0.014	6
7	MP1A	X	-79.098	2
8	MP1A	Z	-137.001	2
9	MP1A	Mx	0.146	2
10	MP1A	X	-79.098	6
11	MP1A	7	-137.001	6
12	MP1A	Mx	0.146	6
13	MP2A	X	-33.247	3
14	MP2A	Z	-57.585	3
15	MP2A	Mx	0.028	3
16	MP2A	X	-33.247	5
17	MP2A	Z	-57.585	
18	MP2A	Mx	0.028	5
9	MP1A	X	-4,648	
20	MP1A	Z	-4.048	6.5
21	MP1A	Mx		6.5
22	MP1A	X	-0.007	6.5
			-4.648	7.5

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Lobel	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
	Member Label	7	-8.051	7.5
23	MP1A		-0.007	7.5
24	MP1A	Mx		6.5
25	MP1A	X	-4.648	6.5
25 26	MP1A	Z	-8.051	
27	MP1A	Mx	-0.002	6.5
28	MP1A	X	-4.648	7.5
29	MP1A	Z	-8.051	7.5
30	MP1A	Mx	-0.002	7.5
31	P1A	X	-28.86	1
	P1A	Z	-49.986	1
32	PIA	Mx	-0.014	1
33	P2A	X	-27.896	1
34		7	-48.317	1
35 36	P2A P2A	Mx	-0.014	1

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1 MP1A	X	0	2
2 MP1A	Z	-31.521	2
3 MP1A	Mx	-0.018	2
4 <u>MP1A</u>	X	0	6
5 MP1A	Z	-31.521	6
	Mx	-0.018	6
6 MP1A 7 MP1A	X	0	2
	Z	-31.521	2
8 MP1A 9 MP1A	Mx	0.018	2
	X	0	6
	Z	-31.521	6
	Mx	0.018	6
12 MP1A 13 MP2A	X	0	3
	Z	-18.651	3
	Mx	0	3
	X	0	5
	Z	-18.651	5
17 MP2A 18 MP2A	Mx	0	5
18 MP2A	X	0	6.5
19 MP1A	Z	-1.615	6.5
20 MP1A	Mx	-0.000538	6.5
21 MP1A	X	0	7.5
22 MP1A	Ž	-1.615	7.5
23 MP1A	Mx	-0.000538	7.5
24 MP1A	X	0	6.5
25 MP1A	Z	-1.615	6.5
26 MP1A 27 MP1A	Mx	0.000538	6.5
27 MP1A	X	0	7.5
28 MP1A	Z	-1.615	7.5
29 MP1A	Mx	0.000538	7.5
30 MP1A	X	0.000000	1
31 P1A	Z	-15.699	1
32 P1A		0	1
33 P1A	Mx	0	1
34 P2A 35 P2A 36 P2A	X	-15.699	
35 P2A		0	1
36 P2A	Mx	U	

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	15.163	2
2	MP1A	Z	-26.263	2
3	MP1A	Mx	-0.028	2
4	MP1A	X	15.163	6
5	MP1A	Z	-26.263	6
6	MP1A	Mx	-0.028	6
7	MP1A	X	15.163	2
8	MP1A	Z	-26.263	2
9	MP1A	Mx	0.003	2
10	MP1A	X	15.163	6
11	MP1A	Z	-26.263	6
12	MP1A	Mx	0.003	6
13	MP2A	X	7.985	3
14	MP2A	Z	-13.831	3
15	MP2A	Mx	-0.007	3
16	MP2A	X	7.985	5
17	MP2A	Z	-13.831	5
18	MP2A	Mx	-0.007	5
19	MP1A	X	1.144	6.5
20	MP1A	Z	-1.982	6.5
21	MP1A	Mx	0.000483	6.5
22	MP1A	X	1,144	7.5
23	MP1A	Z	-1.982	7.5
24	MP1A	Mx	0.000483	7.5
25	MP1A	X	1.144	6.5
26	MP1A	Z	-1.982	6.5
27	MP1A	Mx	0.002	6.5
28	MP1A	X	1.144	7.5
29	MP1A	Z	-1.982	7.5
30	MP1A	Mx	0.002	7.5
31	P1A	X	7.251	1
32	P1A	Z	-12.559	
33	P1A	Mx	0.004	
34	P2A	X	7.023	1
35	P2A	Z	-12.165	
36	P2A	Mx	0.004	

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	24.193	2
2	MP1A	Z	-13.968	2
3	MP1A	Mx	-0.028	2
4	MP1A	X	24.193	6
5	MP1A	Z	-13.968	6
6	MP1A	Mx	-0.028	6
7	MP1A	X	24.193	2
8	MP1A	Z	-13,968	2
9	MP1A	Mx	-0.012	2
10	MP1A	X	24,193	6
11	MP1A	Z	-13.968	6
12	MP1A	Mx	-0.012	6
13	MP2A	X	9.188	3
14	MP2A	7	-5.305	
15	MP2A	Mx	-0.008	3

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

Membe	ar Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
	2A	X	9.188	5
	2A	Z	-5.305	5
	and the second se	Mx	-0.008	5
	2A 21A	X	3.148	6.5
19 MP	21A	Z	-1.818	6.5
	21A	Mx	0.003	6.5
	21A	X	3.148	7.5
	P1A	Z	-1.818	7.5
	21A	Mx	0.003	7.5
24 MF		X	3.148	6.5
	P1A	7	-1.818	6.5
26 MP	21A	Mx	0.004	6.5
2/ MP	21A	X	3.148	7.5
	21A	Z	-1.818	7.5
29 MF	21A	Mx	0.004	7.5
30 MF	21A	X	10.485	1
31 P	1A	Z	-6.054	1
	1A	Mx	0.005	
33 P	1A	X	9.303	1
	2A	Z	-5.371	1
	2A	Mx	0.005	1
36 P2	2A	IVIX	0.000	<u>.</u>

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

Member Point Loads (BLC 10 Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1 MP1A	X	26.74	2
2 MP1A	Z	0	2
3 MP1A	Mx	-0.022	2
	X	26.74	6
	Z	0	6
	Mx	-0.022	6
6 MP1A 7 MP1A	X	26.74	2
	Z	0	2
	Mx	-0.022	2
	X	26.74	6
	Z	0	6
11 MP1A	Mx	-0.022	6
12 MP1A	X	7.929	3
13 MP2A	Z	0	3
14 MP2A 15 MP2A	Mx	-0.007	3
15 MP2A	X	7.929	5
16 MP2A 17 MP2A	7	0	5
17 MP2A		-0.007	5
18 MP2A 19 MP1A	Mx	4.308	6.5
19 MP1A	X Z	0	6.5
20 MP1A		0.004	6.5
21 MP1A	Mx	4.308	7.5
22 MP1A	X	4.306	7.5
23 MP1A	Z	0.004	7.5
24 MP1A	Mx		6.5
25 MP1A	X	4.308	6.5
26 MP1A	Z	0	6.5
27 MP1A	Mx	0.004	7.5
28 MP1A	X	4.308	7.5
29 MP1A	Z	0	
24 MP1A 25 MP1A 26 MP1A 27 MP1A 28 MP1A 29 MP1A 30 MP1A 31 P1A	Mx	0.004	7.5
31 P1A	X	10.91	

Member Point Loads (BLC 18 : Antenna W	i (90 Deg))	(Continued)
--	-------------	-------------

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
32	P1A	Z	0	1
33	P1A	Mx	0.005	
34	P2A	X	9.09	1
35	P2A	Z	0	
36	P2A	Mx	0.005	

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	24.193	2
2	MP1A	Z	13.968	2
3	MP1A	Mx	-0.012	2
4	MP1A	X	24.193	6
5	MP1A	Z	13.968	6
6	MP1A	Mx	-0.012	6
7	MP1A	X	24.193	2
8	MP1A	Z	13.968	2
9	MP1A	Mx	-0.028	2
0	MP1A	X	24.193	6
1	MP1A	Z	13.968	6
2	MP1A	Mx	-0.028	6
3	MP2A	X	9.188	3
4	MP2A	Z	5.305	3
5	MP2A	Mx	-0.008	3
6	MP2A	X	9.188	5
7	MP2A	Z	5.305	5
8	MP2A	Mx	-0.008	5
9	MP1A	X	3.148	6.5
0	MP1A	Z	1.818	6.5
1	MP1A	Mx	0.004	6.5
2	MP1A	X	3.148	7.5
3	MP1A	Z	1.818	7.5
4	MP1A	Mx	0.004	7.5
5	MP1A	X	3.148	6.5
6	MP1A	Z	1.818	6.5
7	MP1A	Mx	0.003	6.5
8	MP1A	X	3.148	7.5
9	MP1A	Z	1.818	7.5
0	MP1A	Mx	0.003	7.5
1	P1A	X	10.485	1
2	P1A	Z	6.054	1
3	P1A	Mx	0.005	
4	P2A	X	9.303	1
5	P2A	Z	5.371	
5	P2A	Mx	0.005	1

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	15.163	2
2	MP1A	Z	26.263	2
3	MP1A	Mx	0,003	2
4	MP1A	X	15.163	6
5	MP1A	Z	26.263	6
6	MP1A	Mx	0.003	6

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

Member La	bel Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
7 MP1A	X	15.163	2
8 MP1A	Z	26.263	2
9 MP1A	Mx	-0.028	2
10 MP1A	X	15.163	6
11 MP1A	Z	26.263	6
12 MP1A	Mx	-0.028	6
13 MP2A	X	7.985	3
14 MP2A	Z	13.831	3
15 MP2A	Mx	-0.007	3
16 MP2A	X	7.985	5
17 MP2A	Z	13.831	5
18 MP2A	Mx	-0.007	5
19 MP1A	X	1.144	6.5
20 MP1A	Z	1.982	6.5
20 MP1A 21 MP1A	Mx	0.002	6.5
22 MP1A	X	1.144	7.5
23 MP1A	Z	1.982	7.5
24 MP1A	Mx	0.002	7.5
25 MP1A	X	1.144	6.5
26 MP1A	Z	1.982	6.5
27 MP1A	Mx	0.000483	6.5
28 MP1A	X	1.144	7.5
28 MP1A 29 MP1A	Z	1.982	7.5
30 MP1A	Mx	0.000483	7.5
31 P1A	X	7.251	1
32 P1A	Z	12.559	1
33 P1A	Mx	0.004	1.4
34 P2A	X	7.023	11
34 P2A 35 P2A	Z	12.165	
36 P2A	Mx	0.004	1

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	0	2
2	MP1A	Z	31.521	2
3	MP1A	Mx	0.018	2
4	MP1A	X	0	6
5	MP1A	Z	31.521	6
6	MP1A	Mx	0.018	6
7	MP1A	X	0	2
8	MP1A	Z	31.521	2
9	MP1A	Mx	-0.018	2
10	MP1A	X	0	6
11	MP1A	Z	31.521	6
12	MP1A	Mx	-0.018	6
13	MP2A	X	0	3
14	MP2A	Z	18.651	3
15	MP2A	Mx	0	3
16	MP2A	X	0	5
17	MP2A	Z	18.651	5
18	MP2A	Mx	0	5
19	MP1A	X	0	6.5
20	MP1A MP1A	Z	1.615	6.5
20 21	MP1A	Mx	0.000538	6.5
22	MP1A	X	0	7.5

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
23	MP1A	Z	1.615	7.5
23 24 25	MP1A	Mx	0.000538	7.5
25	MP1A	X	0	6.5
26	MP1A	Z	1.615	6.5
27	MP1A	Mx	-0.000538	6.5
28	MP1A	X	0	7.5
28 29	MP1A	Z	1.615	7.5
30	MP1A	Mx	-0.000538	7.5
31	P1A	X	0	1
32	P1A	Z	15.699	1
33	P1A	Mx	0	
34	P2A	X	0	1
35	P2A	Z	15.699	
36	P2A	Mx	0	

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	-15.163	2
2	MP1A	Z	26.263	2
3	MP1A	Mx	0.028	2
4	MP1A	X	-15.163	6
5	MP1A	Z	26.263	6
6	MP1A	Mx	0.028	6
7	MP1A	X	-15.163	2
8	MP1A	Z	26.263	2
9	MP1A	Mx	-0.003	2
10	MP1A	X	-15.163	6
11	MP1A	Z	26.263	6
12	MP1A	Mx	-0.003	6
13	MP2A	X	-7.985	3
14	MP2A	Z	13.831	3
15	MP2A	Mx	0.007	3
6	MP2A	X	-7.985	5
7	MP2A	Z	13.831	5
8	MP2A	Mx	0.007	5
19	MP1A	X	-1.144	6.5
20	MP1A	Z	1.982	6.5
21	MP1A	Mx	-0.000483	6.5
22	MP1A	X	-1.144	7.5
3	MP1A	Z	1.982	7.5
4	MP1A	Mx	-0.000483	7.5
5	MP1A	X	-1.144	6.5
:6	MP1A	Z	1.982	6.5
7	MP1A	Mx	-0.002	6.5
8	MP1A	X	-1.144	7.5
9	MP1A	Z	1.982	7.5
0	MP1A	Mx	-0.002	7.5
1	P1A	X	-7.251	1
2	P1A	Z	12.559	1
3	P1A	Mx	-0.004	
4	P2A	X	-7.023	1
5	P2A	Z	12.165	Provide the second s
36	P2A	Mx	-0.004	1

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	-24.193	2
2	MP1A	X Z	13.968	2
3	MP1A	Mx	0.028	2
4	MP1A	X	-24.193	6
5	MP1A	Z	13.968	6
6	MP1A	Mx	0.028	6
7	MP1A	X	-24.193	2
8	MP1A	Z	13.968	2
9	MP1A	Mx	0.012	2
10	MP1A	X	-24.193	6
11	MP1A	Z	13.968	6
12	MP1A	Mx	0.012	6
13	MP2A	X	-9.188	3
14	MP2A	Z	5.305	3
15	MP2A	Mx	0.008	3
16	MP2A	X	-9.188	5
17	MP2A	Z	5.305	5
18	MP2A MP2A	Mx	0.008	5
19	MP1A	X	-3.148	6.5
20	MP1A	Z	1.818	6.5
	MP1A	Mx	-0.003	6.5
21	MP1A	X	-3.148	7.5
22	MP1A	Z	1.818	7.5
23	MP1A MP1A	Mx	-0.003	7.5
24	MP1A MP1A	X	-3.148	6.5
25	MP1A MP1A	Z	1.818	6.5
25 26 27	MP1A MP1A	Mx	-0.004	6.5
2/	MP1A MP1A	X	-3.148	7.5
28		ź	1.818	7.5
29	MP1A	Mx	-0.004	7.5
30	MP1A	X	-10.485	1
31	P1A	Z	6.054	1
32 33	P1A	Mx	-0.005	
33	P1A	X	-9.303	1
34 35	P2A	z	5.371	4
35 36	P2A P2A	Mx	-0.005	1

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
4		X	-26.74	2
1	MP1A		0	2
2	MP1A	4	0.022	2
3	MP1A	Mx		6
4	MP1A	X	-26.74	
5	MP1A	Z	0	6
6	MP1A	Mx	0.022	6
7	MP1A	X	-26.74	2
/		7	0	2
8	MP1A	Mx	0.022	2
9	MP1A		-26.74	6
10	MP1A		0	6
11	MP1A	L		6
12	MP1A	Mx	0.022	
12	MP2A	X	-7.929	3
14	MP2A	Z	0	3
15	MP2A	Mx	0.007	3

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
16 17	MP2A	X	-7.929	5
17	MP2A	Z	0	5
18 19	MP2A	Mx	0.007	5
	MP1A	X	-4.308	6.5
20	MP1A	Z	0	6.5
21	MP1A	Mx	-0.004	6.5
22	MP1A	X	-4.308	7.5
23	MP1A	Z	0	7.5
24	MP1A	Mx	-0.004	7.5
25	MP1A	X	-4.308	6.5
26	MP1A	Z	0	6.5
27	MP1A	Mx	-0.004	6.5
28	MP1A	X	-4.308	7.5
29	MP1A	Z	-4.508	7.5
30	MP1A	Mx	-0.004	7.5
31	P1A	X	-10.91	1.5
32	P1A	Z	0	4
33	P1A	Mx	-0.005	
34	P2A	X	-9.09	1
35	P2A	Z	0	
36	P2A	Mx	-0.005	1

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	-24.193	2
2	MP1A	Z	-13.968	2
3	MP1A	Mx	0.012	2
4	MP1A	X	-24.193	6
5	MP1A	Z	-13.968	6
6	MP1A	Mx	0.012	6
7	MP1A	X	-24,193	2
8	MP1A	Z	-13.968	2
9	MP1A	Mx	0.028	2
10	MP1A	X	-24.193	6
11	MP1A	Z	-13.968	6
12	MP1A	Mx	0.028	6
13	MP2A	X	-9.188	3
14	MP2A	Z	-5.305	3
15	MP2A	Mx	0.008	3
16	MP2A	X	-9.188	5
17	MP2A	Z	-5.305	5
18	MP2A	Mx	0.008	5
19	MP1A	X	-3.148	6.5
20	MP1A	Z	-1.818	6.5
21	MP1A	Mx	-0.004	6.5
22	MP1A	X	-3.148	7.5
23	MP1A	Z	-1.818	7.5
4	MP1A	Mx	-0.004	7.5
25	MP1A	X	-3.148	6.5
26	MP1A	Z	-1.818	6.5
27	MP1A	Mx	-0.003	6.5
28	MP1A	X	-3.148	7.5
28	MP1A	Z	-1.818	7.5
30	MP1A	Mx	-0.003	7.5
30 1	P1A	X	-10.485	1.5

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
32	P1A	Z	-6.054	1
33	P1A	Mx	-0.005	1.
34	P2A	X	-9.303	1
5	P2A	Z	-5.371	
36	P2A	Mx	-0.005	1

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1 2 3	MP1A	X	-15.163	2
	MP1A	Z	-26.263	2
3	MP1A	Mx	-0.003	2
4	MP1A	X	-15.163	6
5	MP1A	Z	-26.263	6
5 6	MP1A	Mx	-0.003	6
7	MP1A	X	-15.163	2
8	MP1A	Z	-26.263	2
9	MP1A	Mx	0.028	2
0	MP1A	X	-15.163	6
1	MP1A	Z	-26.263	6
2	MP1A	Mx	0.028	6
3	MP2A	X	-7.985	3
4	MP2A	Z	-13.831	3
5	MP2A	Mx	0.007	3
6	MP2A	X	-7.985	5
7	MP2A	Z	-13.831	5
8	MP2A	Mx	0.007	5
9	MP1A	X	-1.144	6.5
	MP1A	Z	-1.982	6.5
0 1	MP1A	Mx	-0.002	6.5
2	MP1A	X	-1.144	7.5
3	MP1A	Z	-1.982	7.5
4	MP1A	Mx	-0.002	7.5
4 5 6	MP1A	X	-1.144	6.5
6	MP1A	Z	-1.982	6.5
7	MP1A	Mx	-0.000483	6.5
8	MP1A	X	-1.144	7.5
	MP1A	Z	-1.982	7.5
28 29 30	MP1A	Mx	-0.000483	7.5
1	P1A	X	-7.251	
2	P1A	Z	-12.559	1
3	P1A	Mx	-0.004	
4	P2A	X	-7.023	1
14	P2A	Z	-12.165	
36	P2A P2A	Mx	-0.004	1

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

1	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	0	2
2	MP1A	Z	-10.309	2
3	MP1A	Mx	-0.006	2
4	MP1A	X	0	6
5	MP1A	Z	-10.309	6
é l	MP1A	Mx	-0.006	6

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
7	MP1A	X	0	2
8	MP1A	Z	-10.309	2
9	MP1A	Mx	0.006	2
10	MP1A	X	0	6
11	MP1A	Z	-10.309	6
12	MP1A	Mx	0.006	6
13	MP2A	X	0	3
14	MP2A	Z	-4.971	3
15	MP2A	Mx	0	3
16	MP2A	X	0	5
17	MP2A	Z	-4.971	5
18	MP2A	Mx	0	5
19	MP1A	X	0	6.5
20	MP1A	Z	-0.368	6.5
21	MP1A	Mx	-0.000123	6.5
22 23	MP1A	X	0	7.5
23	MP1A	Z	-0.368	7.5
24	MP1A	Mx	-0.000123	7.5
25	MP1A	X	0	6.5
26	MP1A	Z	-0.368	6.5
27	MP1A	Mx	0.000123	6.5
28	MP1A	X	0	7.5
29	MP1A	Z	-0.368	7.5
30	MP1A	Mx	0.000123	7.5
31	P1A	X	0	1
32	P1A	Z	-3.931	1
33	P1A	Mx	0	1
34	P2A	X	0	1
35 36	P2A	Z	-3.931	1
36	P2A	Mx	0	1

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	4.944	2
2	MP1A	Z	-8.563	2
3	MP1A	Mx	-0.009	2
4	MP1A	X	4.944	6
5	MP1A	Z	-8.563	6
6	MP1A	Mx	-0.009	6
7	MP1A	X	4.944	2
8	MP1A	Z	-8.563	2
9	MP1A	Mx	0.000875	2
10	MP1A	X	4,944	6
11	MP1A	Z	-8.563	6
12	MP1A	Mx	0.000875	6
13	MP2A	X	2.078	3
14	MP2A	Z	-3.599	3
15	MP2A	Mx	-0.002	3
16	MP2A	X	2.078	5
17	MP2A	Ž	-3.599	5
18	MP2A	Mx	-0.002	5
19	MP1A	X	0.291	6.5
20	MP1A	7	-0.503	6.5
21	MP1A	Mx	0.000123	
22	MP1A	X	0.291	6.5 7.5

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
23	MP1A	7	-0.503	7.5
23	MP1A	Mx	0.000123	7.5
25	MP1A	X	0.291	6.5
26	MP1A	Z	-0.503	6.5
27	MP1A	Mx	0.000459	6.5
28	MP1A	X	0.291	7.5
29	MP1A	Z	-0.503	7.5
30	MP1A	Mx	0.000459	7.5
31	P1A	X	1.804	1
32	P1A	Z	-3.124	11
33	P1A	Mx	0.000902	1
34	P2A	X	1.743	1
35	P2A	Z	-3.02	1
36	P2A	Mx	0.000872	11

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

bel Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
X	7.832	2
Z		2
Mx	-0.009	2
	7.832	6
Z		6
		6
	7.832	2
Z	-4.522	2
	-0.004	2
	7.832	6
Z	-4.522	6
	-0.004	6
	2.188	3
Z	-1.263	3
		3
X		5
7		5
		5
X	0.873	6.5
		6.5
		6.5
		7.5
7		7.5
		7.5
		6.5
7		6.5
		6.5
		7.5
		7.5
		7.5
	-1.48	1
		1
	-13	
		1
	X	X 7.832 Z 4.522 Mx -0.009 X 7.832 Z 4.522 Mx -0.009 X 7.832 Z 4.522 Mx -0.009 X 7.832 Z 4.522 Mx -0.004 X 2.188 Z -1.263 Mx -0.002 X 0.873 Z -0.504 Mx 0.000705 X 0.873 Z -0.504 Mx 0.001 X 0.873 Z -0.504 Mx 0.001 <

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	8.622	2
2	MP1A	Z	0	2
3	MP1A	Mx	-0.007	2
4	MP1A	X	8.622	6
5	MP1A	Z	0	6
5	MP1A	Mx	-0.007	6
7	MP1A	X	8.622	2
3	MP1A	Z	0	2
3	MP1A	Mx	-0.007	2
0	MP1A	X	8.622	6
1	MP1A	Z	0	6
2	MP1A	Mx	-0.007	6
3	MP2A	X	1.712	3
4	MP2A	Z	0	3
5	MP2A	Mx	-0.001	3
6	MP2A	X	1.712	5
7	MP2A	Z	0	5
8	MP2A	Mx	-0.001	5
9	MP1A	X	1.221	6.5
0	MP1A	Z	0	6.5
1	MP1A	Mx	0.001	6.5
2	MP1A	X	1.221	7.5
3	MP1A	Z	0	7.5
4	MP1A	Mx	0.001	7.5
5	MP1A	X	1.221	6.5
6	MP1A	Z	0	6.5
7	MP1A	Mx	0.001	6.5
8	MP1A	X	1.221	7.5
9	MP1A	Z	9	7.5
	MP1A	Mx	0.001	7.5
1	P1A	X	2.637	1
2	P1A	Z	0	1
3	PIA	Mx	0.001	1
4	P2A	X	2.156	1
5	P2A	Z	0	1
6	P2A	Mx	0.001	1

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	7.832	2
2	MP1A	Z	4.522	2
3	MP1A	Mx	-0.004	2
4	MP1A	X	7.832	6
5	MP1A	Z	4,522	6
6	MP1A	Mx	-0.004	6
7	MP1A	X	7.832	2
8	MP1A	Z	4.522	2
9	MP1A	Mx	-0.009	2
0	MP1A	X	7.832	6
11	MP1A	Z	4.522	6
12	MP1A	Mx	-0.009	6
3	MP2A	X	2.188	3
14	MP2A	Z	1.263	3
5	MP2A	Mx	-0.002	3

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
16	MP2A	X	2.188	5
16 17	MP2A	Z	1.263	5
	MP2A	Mx	-0.002	5
18 19	MP1A	X	0.873	6.5
20	MP1A	Z	0.504	6.5
21	MP1A	Mx	0.001	6.5
22	MP1A	X	0.873	7.5
23	MP1A	Z	0.504	7.5
24	MP1A	Mx	0.001	7.5
25	MP1A	X	0.873	6.5
	MP1A	Z	0.504	6.5
26	MP1A	Mx	0.000705	6.5
20	MP1A	X	0.873	7.5
28 29	MP1A	Z	0.504	7.5
30	MP1A	Mx	0.000705	7.5
31	PIA	X	2.564	1
20	PIA	Z	1.48	1
32 33	P1A	Mx	0.001	1
34	P2A	X	2.251	11
26	P2A	Z	1.3	1
35 36	P2A	Mx	0.001	1

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	4.944	2
2	MP1A	Z	8.563	2
3	MP1A	Mx	0.000875	2
4	MP1A	X	4.944	6
5	MP1A	Z	8.563	6
6	MP1A	Mx	0.000875	6
7	MP1A	X	4.944	2
8	MP1A	Z	8.563	2
9	MP1A	Mx	-0.009	2
10	MP1A	X	4.944	6
11	MP1A	7	8.563	6
12	MP1A MP1A	Mx	-0.009	6
13	MP2A	X	2.078	3
13	MP2A MP2A	Z	3.599	3
14	MP2A MP2A	Mx	-0.002	3
16	MP2A MP2A	X	2.078	5
17	MP2A MP2A	Z	3.599	5
1/	MP2A MP2A	Mx	-0.002	5
18 19	MP1A	X	0.291	6.5
19	MP1A MP1A	Z	0.503	6.5
20	MP1A MP1A	Mx	0.000459	6.5
21	MP1A MP1A	X	0.291	7.5
22 23		7	0.503	7.5
23	MP1A	Mx	0.000459	7.5
24 25	MP1A	X	0.291	6.5
20	MP1A	Z	0.503	6.5
26	MP1A	Mx	0.000123	6.5
2/	MP1A	X	0.291	7.5
28 29	MP1A	Z	0.503	7.5
29	MP1A	Mx	0.000123	7.5
30 31	MP1A P1A	X	1.804	1

_

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
32	P1A	Z	3,124	1
33	P1A	Mx	0.000902	1
34	P2A	X	1.743	1
35	P2A	Z	3.02	1
36	P2A	Mx	0.000872	1

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X Z	0	2
2	MP1A	Z	10.309	2
3	MP1A	Mx	0.006	2
4	MP1A	X	0	6
5	MP1A	Z	10.309	6
6	MP1A	Mx	0.006	6
7	MP1A	X	0	2
8	MP1A	Z	10.309	2
9	MP1A	Mx	-0.006	2
10	MP1A	X	0	6
11	MP1A	Z	10.309	6
12	MP1A	Mx	-0.006	6
13	MP2A	X	0	3
14	MP2A	Z	4.971	3
15	MP2A	Mx	0	3
16	MP2A	X	0	5
17	MP2A	Z	4.971	5
18	MP2A	Mx	0	5
19	MP1A	X	Ő	6.5
20	MP1A	Z	0.368	6.5
21	MP1A	Mx	0.000123	6.5
22	MP1A	X	0	7.5
23	MP1A	Z	0.368	7.5
24	MP1A	Mx	0.000123	7.5
25	MP1A	X	0	6.5
26	MP1A	Z	0.368	6.5
27	MP1A	Mx	-0.000123	6.5
28	MP1A	X	0	7.5
29	MP1A	Z	0.368	7.5
30	MP1A	Mx	-0.000123	7.5
31	P1A	X	0	1.5
32	P1A	Z	3.931	1
33	P1A	Mx	0	The second se
34	P2A	X	0	1
35	P2A	Z	3.931	
36	P2A	Mx	0	1

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	-4.944	2
2	MP1A	Z	8.563	2
3	MP1A	Mx	0.009	2
4	MP1A	X	-4.944	6
5	MP1A	Z	8.563	6
6	MP1A	Mx	0.009	6

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

N	lember Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
7	MP1A	X	-4.944	2
8	MP1A	Z	8.563	2
9	MP1A	Mx	-0.000875	2
10	MP1A	X	-4.944	6
11	MP1A	Z	8.563	6
12	MP1A	Mx	-0.000875	6
13	MP2A	X	-2.078	3
14	MP2A	Z	3.599	3
15	MP2A	Mx	0.002	3
16	MP2A	X	-2.078	5
17	MP2A	Z	3.599	5
18	MP2A	Mx	0.002	5
19	MP1A	X	-0.291	6.5
20	MP1A	Z	0.503	6.5
21	MP1A	Mx	-0.000123	6.5
22	MP1A	X	-0.291	7.5
23	MP1A	Z	0.503	7.5
24	MP1A	Mx	-0.000123	7.5
25	MP1A	X	-0.291	6.5
26	MP1A	Z	0.503	6.5
27	MP1A	Mx	-0.000459	6.5
28	MP1A	X	-0.291	7.5
29	MP1A	Z	0.503	7.5
30	MP1A	Mx	-0.000459	7.5
31	P1A	X	-1.804	1
32	P1A	Z	3.124	1
33	P1A	Mx	-0.000902	1
34	P2A	X	-1.743	1
35	P2A	Z	3.02	1
36	P2A	Mx	-0.000872	11

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	-7.832	2
2	MP1A	Z	4.522	2
3	MP1A	Mx	0.009	2
4	MP1A	X	-7.832	6
5	MP1A	Z	4.522	6
6	MP1A	Mx	0.009	6
7	MP1A	X	-7.832	2
8	MP1A	Z	4.522	2
9	MP1A	Mx	0.004	2
10	MP1A	X	-7.832	6
11	MP1A	Z	4.522	6
12	MP1A	Mx	0.004	6
13	MP2A	X	-2.188	3
14	MP2A	Z	1.263	3
15	MP2A	Mx	0.002	3
16	MP2A MP2A	X	-2.188	5
17	MP2A	Ž	1.263	5
18	MP2A	Mx	0.002	5
19	MP1A	X	-0.873	6.5
20	MP1A	7	0.504	6.5
20	MP1A	Mx	-0.000705	6.5
22	MP1A MP1A	X	-0,873	7.5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
23	MP1A	Z	0.504	7.5
24	MP1A	Mx	-0.000705	7.5
25	MP1A	X	-0.873	6.5
26 27	MP1A	Z	0.504	6.5
27	MP1A	Mx	-0.001	6.5
28	MP1A	X	-0.873	7.5
29	MP1A	Z	0.504	7.5
30	MP1A	Mx	-0.001	7.5
31	P1A	X	-2.564	1
32	P1A	Z	1.48	1
33	P1A	Mx	-0.001	1
34	P2A	X	-2.251	1
35	P2A	Z	1.3	1
36	P2A	Mx	-0.001	1

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	-8.622	2
2	MP1A	Z	0	2
3	MP1A	Mx	0.007	2
4	MP1A	X	-8.622	6
5	MP1A	Z	0	6
6	MP1A	Mx	0.007	6
7	MP1A	X	-8.622	2
8	MP1A	Z	0	2
9	MP1A	Mx	0.007	2
0	MP1A	X	-8.622	6
1	MP1A	Z	0	6
2	MP1A	Mx	0.007	6
3	MP2A	X	-1.712	3
4	MP2A	Z	0	3
5	MP2A	Mx	0.001	3
6	MP2A	X	-1.712	5
7	MP2A	Z	0	5
8	MP2A	Mx	0.001	5
9	MP1A	X	-1.221	6.5
0	MP1A	Z	0	6.5
1	MP1A	Mx	-0.001	6.5
2	MP1A	X	-1.221	7.5
3	MP1A	Z	0	7.5
4	MP1A	Mx	-0.001	7.5
5	MP1A	X	-1.221	6.5
6	MP1A	Z	0	6.5
7	MP1A	Mx	-0.001	6.5
8	MP1A	X	-1.221	7.5
9	MP1A	Z	0	7.5
0	MP1A	Mx	-0.001	7.5
1	P1A	X	-2.637	1
2	P1A	Z	0	1
3	P1A	Mx	-0.001	
4	P2A	X	-2.156	1
5	P2A	Z	0	and the second second second second
6	P2A	Mx	-0.001	1

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1 MP1A	X	-7.832	2
2 MP1A 3 MP1A	Z	-4.522	2
3 MP1A	Mx	0.004	2
4 MP1A	X	-7.832	6
5 MP1A	Z	-4.522	6
6 MP1A	Mx	0.004	6
7 MP1A	X	-7.832	2
8 MP1A	Z	-4.522	2
9 MP1A	Mx	0.009	2
MP1A	X	-7.832	6
MP1A	Z	-4.522	6
12 MP1A	Mx	0.009	6
I3 MP2A	X	-2.188	3
4 MP2A	Z	-1.263	3
5 MP2A	Mx	0.002	3
6 MP2A	X	-2.188	5
7 MP2A	Z	-1.263	5
8 MP2A	Mx	0.002	5
9 MP1A	X	-0.873	6.5
20 MP1A	Z	-0.504	6.5
MP1A	Mx	-0.001	6.5
MP1A	X	-0.873	7.5
MP1A	Z	-0.504	7.5
MP1A	Mx	-0.001	7.5
MP1A	X	-0.873	6.5
MP1A	Z	-0.504	6.5
MP1A	Mx	-0.000705	6.5
MP1A	X	-0.873	7.5
9 MP1A	Z	-0.504	7.5
0 MP1A	Mx	-0.000705	7.5
P1A	X	-2.564	States Training and
32 P1A	Z	-1.48	1
33 P1A	Mx	-0.001	1
34 P2A	X	-2.251	1
95 P2A	Z	-1.3	and a second at a first all a fair a second as a second
36 P2A	Mx	-0.001	1

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	-4.944	2
2	MP1A	Z	-8.563	2
3	MP1A	Mx	-0.000875	2
4	MP1A	X	-4.944	6
5	MP1A	Z	-8.563	6
6	MP1A	Mx	-0.000875	6
7	MP1A	X	-4.944	2
8	MP1A	Z	-8.563	2
9	MP1A	Mx	0.009	2
10	MP1A	X	-4.944	6
11	MP1A	Z	-8.563	6
12	MP1A	Mx	0.009	6
13	MP2A	X	-2.078	3
14	MP2A	Z	-3.599	3
15	MP2A	Mx	0.002	3

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
16	MP2A	X	-2.078	5
17	MP2A	Z	-3.599	5
18	MP2A	Mx	0.002	5
19	MP1A	X	-0.291	6.5
20	MP1A	Z	-0.503	6.5
21	MP1A	Mx	-0.000459	6.5
22 23	MP1A	X	-0.291	7.5
23	MP1A	Z	-0.503	7.5
24	MP1A	Mx	-0.000459	7.5
25	MP1A	X	-0.291	6.5
26	MP1A	Z	-0.503	6.5
27	MP1A	Mx	-0.000123	6.5
28	MP1A	X	-0.291	7.5
29	MP1A	Z	-0.503	7.5
30	MP1A	Mx	-0.000123	7.5
31	P1A	X	-1.804	21=-
32	P1A	Z	-3.124	1
33	P1A	Mx	-0.000902	67 Files
34	P2A	X	-1.743	1
34 35	P2A	Z	-3.02	1
36	P2A	Mx	-0.000872	1

Member Point Loads (BLC 77 : Lm1)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	M11	Y	-500	%67

Member Point Loads (BLC 78 : Lm2)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	M11	Y	-500	%33

Member Point Loads (BLC 79 : Lv1)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	M11	Y	-250	0

Member Point Loads (BLC 80 : Lv2)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	M11	Y	-250	%50

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	Y	-1.664	2
2	MP1A	My	-0.001	2
3	MP1A	Mz	0.000971	2
4	MP1A	Y	-1.664	6
5	MP1A	My	-0.001	6
6	MP1A	Mz	0.000971	6
7	MP1A	Y	-1.664	2
8	MP1A	My	-0.001	2
9	MP1A	Mz	-0.000971	2

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
10 MP1A	Y	-1.664	6
11 MP1A	My	-0.001	6
	Mz	-0.000971	6
12 MP1A 13 MP2A	Y	-2.23	3
14 MP2A	My	-0.002	3
15 MP2A	Mz	0	3
16 MP2A	Y	-2.23	5
17 MP2A	My	-0.002	5
18 MP2A	Mź	0	5
19 MP1A	Y	-0.451	6.5
20 MP1A	My	0.000451	6.5
21 MP1A	Mz	0.00015	6.5
22 MP1A	Y	-0.451	7.5
23 MP1A	My	0.000451	7.5
24 MP1A	Mz	0.00015	7.5
25 MP1A	Y	-0.451	6.5
26 MP1A	My	0.000451	6.5
26 MP1A 27 MP1A	Mz	-0.00015	6.5
28 MP1A	Y	-0.451	7.5
29 MP1A	My	0.000451	7.5
30 MP1A	Mz	-0.00015	7.5
31 P1A	Y	-4.321	1
32 P1A	My	0.002	1
33 P1A	Mz	0	1
34 P2A	Y	-3.599	11
35 P2A	My	0.002	1
36 P2A	Mz	0	1

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1 MP1A	Z	-4.16	2
2 MP1A	Mx	-0.002	2
3 MP1A	Z	-4.16	6
4 MP1A	Mx	-0.002	6
5 MP1A	Z	-4.16	2
6 MP1A	Mx	0.002	2
7 MP1A	Z	-4.16	6
8 MP1A	Mx	0.002	66
9 MP2A	Z	-5.574	3
10 MP2A	Mx	0	33
11 MP2A	Z	-5.574	5
12 MP2A	Mx	0	5
13 MP1A	Z	-1.126	6.5
14 MP1A	Mx	-0.000375	6.5
15 MP1A	Z	-1.126	7.5
16 MP1A	Mx	-0.000375	7.5
17 MP1A	Z	-1.126	6.5
18 MP1A	Mx	0.000375	6.5
19 MP1A	Z	-1.126	7.5
20 MP1A	Mx	0.000375	7.5
20 MP1A 21 P1A	Z	-10.803	the second s
22 P1A	Mx	0	1
22 P1A 23 P2A	Z	-8.998	THE A T SHIERS WHERE
24 P2A	Mx	0	1

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude [lb, k-ft]	Location [(ft, %)]
1	MP1A	X	4.16	2
2	MP1A	Mx	-0.003	2
3	MP1A	X	4,16	6
4	MP1A	Mx	-0.003	6
5	MP1A	X	4.16	2
6	MP1A	Mx	-0.003	2
7	MP1A	X	4.16	6
8	MP1A	Mx	-0.003	6
9	MP2A	X	5.574	3
0	MP2A	Mx	-0.005	3
1	MP2A	X	5.574	5
2	MP2A	Mx	-0.005	5
3	MP1A	X	1.126	6.5
4	MP1A	Mx	0.001	6.5
5	MP1A	X	1,126	7.5
6	MP1A	Mx	0.001	7.5
7	MP1A	X	1.126	6.5
8	MP1A	Mx	0.001	6.5
9	MP1A	X	1.126	7.5
20	MP1A	Mx	0.001	7.5
1	P1A	X	10.803	1
2	P1A	Mx	0.005	1
3	P2A	X	8,998	1
4	P2A	Mx	0.004	1

Member Area Loads

No Data to Print...

Envelope Node Reactions

Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1 N261	max	815.343	9	935.092	18	210.039	12	-0.099	74	I Ó I	75	0.151	34
2	min	-959.072	3	314.435	75	-1902.643	18	-0.288	18	0	1	-0.158	49
3 N261A	max	883.06	10	921.753	24	1878.883	24	-0.098	69	0	75	0.155	27
4	min	-751.666	4	311.84	69	-64.221	6	-0.287	24	0	1	-0.162	49
5 N68A	max	517.065	3	33.504	21	1260.516	3	0	75	0	75	0	75
6	min	-500.265	9	9.459	67	-1276.461	9	0	1	0	1	0	1
7 Totals:	max	1243.251	10	1844.104	19	1664.444	1				1		
8	min	-1243.25	4	645.768	64	-1664.445	7						

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

-	Member	Shape	Code Chec	kLoc[f	t]LC	Shear Cheo	kLoc[ft]	DirLCphi*Pnc [lb])	phi*Pnt [lb	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft]	Cb	Egn
1	M1	PIPE 2.0	0.287	0	44	0.147	0.926	4531801.387	32130	1.872	1.872	1	H1-1b
2	M2	PIPE 2.0	0.208	0.926	612	0.131	0.926	4531801.387	32130	1.872	1.872	1	H1-1b
3	M3	PIPE 2.0	0.289	0.463	3 49	0,161	0.463	3931801.387	32130	1.872	1.872	1	H1-1b
4	M4	PIPE 2.0	0.326	0.926	63	0.119	0.926	1331801.387	32130	1.872	1.872	1	H1-1b
5	M5	PIPE 2.0	0.526	0.928	62	0.155	0.926	37 31801.387	32130	1.872	1.872	1	H1-1b
6	M6	PIPE 2.0	0.721	0	111	0.18	0	2331801.387	32130	1.872	1.872	1	H1-1b
7	M7	PIPE 2.0	0.313	0	11	0.132	0	2331801.387	32130	1.872	1.872	1	H1-1b
8	M8	PIPE 2.0	0.302	0.463	325	0.168	0.463	2731801.387	32130	1.872	1.872	1	H1-1b
9	M9	PIPE 2.0	0.318	0.926	62	0.136	0	2831801.387	32130	1.872	1.872	1	H1-1b
10	M10	PIPE 2.0	0.521	0.926	59	0.152	0	3331801.387	32130	1.872	1.872	1	H1-1b
11	M11	PIPE 2.0	0.734	10	9	0.195	12	9 6830.971	32130	1.872	1.872	1	H1-1b

M y:

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks (Continued)

Member	Shape	Code Chec	kLoc[ft]	LCS	Shear Cheo	kLoc[ft]	DirL	Cphi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [k-ft]	phi*Mn z-z [k-ft]	Cb	Eqn
12 M12	PIPE 2.0	0.284	0	2	0.146	0.926		031801.387	32130	1.872	1.872	1	H1-11
13 M13	PIPE 2.0	0.216	0.926	6	0.131	0.926	4	031801.387	32130	1.872	1.872	1	H1-1
14 M14	PIPE 2.0	0.289	0.463	49	0.161	0.463	4	431801.387	32130	1.872	1.872	1	H1-1
15 M15	PIPE 2.0	0.341	0.926	9	0.125	0.926	1	931801.387	32130	1.872	1.872	1	H1-11
16 M16	PIPE 2.0	0.582	0.926	8	0.159	0.926	1	931801.387	32130	1.872	1.872	1	H1-1
17 M17	PIPE 2.0	0.74	0	5	0.186	0	1	831801.387	32130	1.872	1.872	1	H1-11
18 M18	PIPE 2.0	0.308	0	5	0.137	0	1	831801.387	32130	1.872	1.872	1	H1-1
19 M19	PIPE 2.0	0.3	0.463	31	0.169	0.463	3	231801.387	32130	1.872	1.872	1	H1-11
20 M20	PIPE 2.0	0.349	0.926		0.136	0	3	331801.387	32130	1.872	1.872	1	H1-18
21 M21	PIPE 2.0	0.548	0.926	2	0.151	0	2	931801.387	32130	1.872	1.872	1	H1-11
22 M22	PIPE 2.0	0.778	10	3	0.196	12	1	3 6830.971	32130	1.872	1.872	1	H1-1
23 M23	PIPE 2.0	0.46	0	34	0.101	2.719	1	929405.041	32130	1.872	1.872	1	H1-1t
24 M24	PIPE 2.0	0.428	2.719	45	0.089	2.719	4	329405.041	32130	1.872	1.872	1	H1-1
25 M27	PIPE 2.0	0.184	2,719		0.047	2.719	4	929405.041	32130	1.872	1.872	1	H1-1t
26 M28	PIPE 2.0	0.405	1.359	_	0.089	1.359		3 29405.041	32130	1.872	1.872	1	H1-1
27 P2A	PIPE 2.0	0.162	0	33	0.099	2.719	6	3 29405.041	32130	1.872	1.872	1	H1-1
28 M30	PIPE 2.0	0.101	0	33	0.024	0	2	529405.041	32130	1.872	1.872	1	H1-1
29 P1A	PIPE 2.0	0.165	2.719	10	0.267	2.719	1	029405.041	32130	1.872	1.872	1	H3-6
30 MP2A	PIPE 2.0	0.069	3.417	7	0.039	5.083	2	014916.096	32130	1.872	1.872	1	H1-11
31 MP1A	PIPE 2.0	0.308	3.417	7	0.17	3.333	4	14916.096	32130	1.872	1.872	1	H1-1
32 M44	PIPE 2.5X	0.332	3.875	5	0.448	3.875	4	\$ 57777.695	66150	4.646	4.646	1	H3-6
33 M50	PIPE 1.5	0.206	0.125	13	0.103	3.875	4	917453.177	23593.5	1.105	1.105	1	H1-11
34 M166A	HSS3X3X3	0.325	0	4	0.076	1.5	y 3	276946.124	78246	6.797	6.797		H1-11
35 M167A	HSS3X3X3	0.325	0	10	0.076	1.5	y 2	676946.124	78246	6.797	6.797		H1-1
	PL1/2X7 HRA		0.167	18	0.185	0.167	y 4	9112259.562	113400	1.181	16.538		H1-1
	PL1/2X7 HRA		0.167		0.189	0.167	y 4	9112259.562	113400	1.181	16.538	1.667	H1-1
38 M57	PIPE 1.5	0.295	4.432	3	0.005	8.863	9	9 5851.344	24267.6	1.137	1.137	1	H1-1a

NJ_NN/	Client:	Verizon Wireless	Date: 1/4/2024
VzW	Site Name:	NORWALK 4 CT - NU Tindall Ave	
SMART Tool [©]	MDG #:	5000386718	
Vendor	Fuze ID #:	16883770	Page: 1

Version 2.00

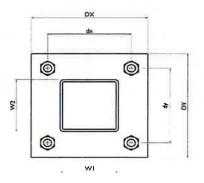
I. Mount-to-Tower Connection Check

Nodes (labeled per Risa)	Orientation (per graphic of typical platform)
N261	0
N261A	0
time to a state of	

Tower Connection Bolt Checks

Bolt Orientation

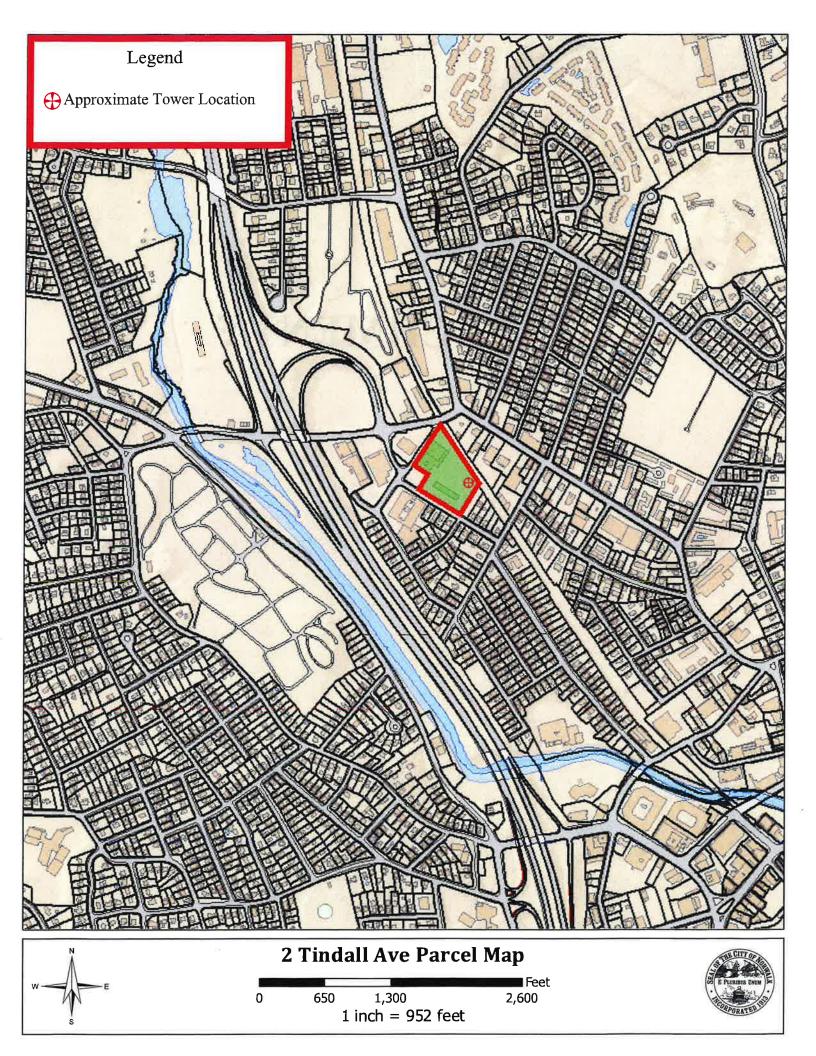
Bolt Quantity per Reaction: d_x (in) (*Delta X of typ. bolt config. sketch*): d_y (in) (*Delta Y of typ. bolt config. sketch*): Bolt Type: Bolt Diameter (in): Required Tensile Strength / bolt (kips): Required Shear Strength / bolt (kips): Tensile Capacity / bolt (kips): Shear Capacity / bolt (kips): Bolt Overall Utilization:


3.5 2 A36 0.5 1.3 0.3 6.4 3.8 20.9%

No

Yes

Parallel


4

Tower Connection Baseplate Checks

Tower Connection Weld Checks

ATTACHMENT 5

2 TINDALL AVE

Location	2 TINDALL AVE	Mblu	1/92/13/0/
Acct#	3712	Owner	CONN LIGHT & POWER CO
Assessment	\$5,009,670	Appraisal	\$7,156,670
PID	3712	Building Count	1

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Total
2018	\$4,043,250	\$3,113,420	\$7,156,670
	Assessment		
Valuation Year	Improvements	Land	Total
2018	\$2,830,280	\$2,179,390	\$5,009,670

Owner of Record

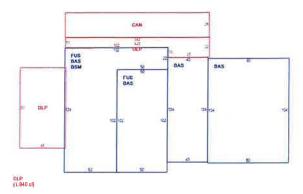
Owner	CONN LIGHT & POWER CO	Sale Price	\$0
Co-Owner	ATTN TAX DIVISION	Certificate	
Address	107 SELDEN ST	Book & Page	1189/110
	BERLIN, CT 06037-0000	Sale Date	12/26/1978

Ownership History

	Ownershi	p History		
Owner	Sale Price	Certificate	Book & Page	Sale Date
CONN LIGHT & POWER CO	\$0		1189/110	12/26/1978

Building Information

Building 1 : Section 1


		escription
E	Building Attributes	
Less Depreciation:	\$3,125,260	
Replacement Cost		
Good:		11
Building Percent	72	
Replacement Cost:	\$4,340,633	
Living Area:	37,776	
Year Built:	1929	

Building Photo

Building Photo (http://images.vgsi.com/photos/NorwalkCTPhotos//24)

STYLE	Office/Warehs
MODEL	Industrial
Grade	В
Stories:	2.00
Occupancy	1.00
Exterior Wall 1	Brick/Masonry
Exterior Wall 2	Concrete
Roof Structure	Flat
Roof Cover	Tar and Gravel
Interior Wall 1	Plastered
Interior Wall 2	
Interior Floor 1	Carpet
Interior Floor 2	Concrete
Heating Fuel	Gas
Heating Type	Forced Air
AC Percent	48
Heat Percent	100
Bldg Use	Utility
Total Rooms	0
Bedrooms	0
Full Baths	0
Half Baths	9
Extra Fixtures	0
FBM Area	
Heat/AC	Heat/AC Pkg
Frame	Masonry
Plumbing	Average
Foundation	Poured Conc
Partitions	Average
Wall Height	12.00
% Sprinkler	0.00

Building Layout

(ParcelSketch.ashx?pid=3712&bid=3712)

	Building Sub-Areas (sq	ft)	<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	25,128	25,128
FUS	Finished Upper Story	12,648	12,648
BSM	Basement	7,548	0
CAN	Canopy	3,575	0
CLP	Covered Loading Platform	1,840	0
OLP	Loading Platform	5,491	0
		56,230	37,776

Extra Features

Extra Features Leg						
Code	Description	Size	Value	Bidg #		
A/C	Air Conditioning	37776.00 S.F.	\$75,550	1		

Land

Land Use		Land Line Valu	ation
Use Code	401	Size (Acres)	4

DescriptionUtilityZoneB2NeighborhoodC120

Frontage Depth Assessed Value \$2,179,390 Appraised Value \$3,113,420

Outbuildings

	Outbuildings					
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
PAV1	Paving Asph.	FR		125000.00 S.F.	\$243,750	1
PAV1	Paving Asph.			10000.00 S.F.	\$19,500	1
SHD1	Shed	FR	Frame	96.00 S.F.	\$890	1
FN6	Fence 6'			5000.00 L.F.	\$68,180	1
GAR8	Industrial	BR	Masonry	8080.00 S.F.	\$466,620	1
CNP	Canopy		Loading Dock	3480.00 S.F.	\$43,500	1

Valuation History

Appraisal						
Valuation Year	Improvements	Land	Total			
2018	\$4,043,250	\$3,113,420	\$7,156,670			
2017	\$2,291,190	\$2,506,970	\$4,798,160			
2016	\$2,291,190	\$2,506,970	\$4,798,160			

Assessment						
Valuation Year	Improvements	Land	Total			
2018	\$2,830,280	\$2,179,390	\$5,009,670			
2017	\$1,603,840	\$1,754,880	\$3,358,720			
2016	\$1,603,840	\$1,754,880	\$3,358,720			

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

ATTACHMENT 6

Verizon/Norwalk 4 Certificate of Mailing — Firm	duodient	CORRECTION IM \$003.34 ¹ 0511 043/052206619 043/052206619 043/052206619	Special Handling Parcel Airlift			JSPO	OLD S	(Ser and a ser and a ser a	
	Affix Stamp Here Postmark with Date of Receipt.		Postage Fee					851199	
	TOTAL NO. TOTAL NO. Affitx Affit Aff	Postmaster, per (name of receiving employee)	ddress , State, and ZIP Code™)	Harry Rilling, Mayor City of Norwalk 125 East Avenue Norwalk CT 06856	TELCI	Norwalk, C1 U00500 Eversource Attm: Christopher Gelinas, Senior Real Estate Specialist 107 Selden Street 107 Selden Street	Berlin, CT 06037		
POSTAL SERVICE ®	Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford CT 06103		USPS® Tracking Number Firm-specific Identifier	1,	2.	З.	4.	ň	ij