

Nov 22, 2022

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Request of DISH Wireless LLC for an Order to Approve the Shared Use of an Existing Tower 284 New Canaan Avenue Norwalk, CT 06850 Latitude: 41° 08' 08.0" N / Longitude: 73° 27' 23.8" W

Dear Ms. Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, DISH Wireless LLC ("DISH") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use by DISH of an existing telecommunication tower at 284 New Canaan Avenue in Norwalk (the "Property"). The existing 140ft – stealth monopole tower is owned by New Cingular Wireless PCS, LLC. The underlying property is owned by the Indian Hill RE, LLC. DISH requests that the Council find that the proposed shared use of the New Cingular Wireless, LLC tower satisfies the criteria of C.G.S. §16-50aa and issue an order approving the proposed shared use. This modification/proposal includes hardware that is both 4G(LTE) and 5G capable through remote software configuration and either or both services may be turned on or off at various times. A copy of this filing is being sent to Steven Kleppin, Director of Planning and Zoning – City of Norwalk, William Ireland, Chief Building Official – City of Norwalk and Robin Penna – Indian Hill RE.

Background

The existing New Cingular Wireless, LLC/Indian Hill RE (AT&T Towers), LLC facility consists of a 140ft - monopole tower within the existing compound. DISH is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. DISH, New Cingular Wireless, LLC (AT&T Towers) and Indian Hill RE, LLC have agreed to the proposed shared use of the 284 New Canaan Avenue tower pursuant to mutually acceptable terms and conditions. Likewise, DISH, New Cingular Wireless (AT&T Towers), LLC and Indian Hill RE, LLC have agreed to the proposed to the proposed installation of equipment cabinets on the ground

on the South side of the tower within the existing compound. AT&T Towers has authorized DISH to apply for all necessary permits and approvals that may be required to share the existing tower.

DISH proposes to install 3 antennas, 6 RRU radios, 1 OVP and 1 cable at the 117-foot level. In addition, DISH will install a ground equipment cabinet on a 5ft x 7ft steel equipment platform. Included in the Construction Drawings are DISH's project specifications for locations of all proposed site improvements. The Construction Drawings also contain specifications for DISH's proposed antennas and ground work.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 140-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 117-feet.

2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 1.3194% as evidenced by Exhibit F.

C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if

the Council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such a shared use." DISH respectfully submits that the shared use of the tower satisfies these criteria.

A. <u>Technical Feasibility.</u> The existing Indian Hill RE, LLC tower is structurally capable of supporting DISH's proposed improvements. The proposed shared use of this tower is, therefore, technically feasible. A Feasibility Structural Analysis Report ("Structural Report") prepared for this project confirms that this tower can support DISH's proposed loading. A copy of the Structural Report has been included in this application.

B. Legal Feasibility. Under C.G.S. § 16-50aa, the Council has been authorized to issue order

approving the shared use of an existing tower such as the Indian Hill RE, LLC tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to the other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.

C. <u>Environmental Feasibility.</u> The proposed shared use of the Indian Hill RE, LLC tower would have a minimal environmental effect for the following reasons:

1. The proposed installation will have no visual impact on the area of the tower. DISH's equipment cabinet would be installed within the existing facility compound. DISH's shared use of this tower therefore will not cause any significant change or alteration in the physical or environmental characteristics of the existing site.

2. Operation of DISH's antennas at this site would not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). Included in the EME report of this filing are the approximation tables that demonstrate that DISH's proposed facility will operate well within the FCC RF emissions safety standards.

3. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the Indian Hill RE, LLC facility other than periodic maintenance. The proposed shared use of the Indian Hill RE, LLC tower, would, therefore, have a minimal environmental effect, and is environmentally feasible.

D. <u>Economic Feasibility.</u> As previously mentioned, DISH has entered into an agreement with Indian Hill RE, LLC for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.

E. <u>Public Safety Concerns.</u> As discussed above, the tower is structurally capable of supporting DISH's full array of 3 antennas, 6 RRU radios, 1 OVP and 1 cable and all related equipment. DISH is not aware of any public safety concerns relative to the proposed sharing of the existing Indian Hill RE, LLC tower.

Conclusion

For the reasons discussed above, the proposed shared use of the existing Indian Hill RE, LLC tower at 284 New Canaan Avenue satisfies the criteria stated in C.G.S. §16-50aa and advances the General Assembly's and the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the proposed shared use.

Sincerely,

Michael Jones

President

M+K Development 140 Beach 137th St Rockaway Beach, NY 11694 Mobile: 732-677-8881 Email: mjones@mandkdevelopment.com

CC: Steven Kleppin, Director of Planning and Zoning – City of Norwalk, William Ireland, Chief Building Official – City of Norwalk Robin Penna – Indian Hill RE. Alison Skipper- AT&T Towers

Letter of Authorization

P Belle Harbor, NY P Atlanta, GA P Brick, NJ P Lewes, DE P Tampa, FL P Detroit, MI

Landlord Authorization

AT&T Towers hereby authorizes DISH Wireless, to make application for a wireless facility upgrade to be located on the property with the following address:

Address: 284 New Canaan Avenue, Norwalk, Fairfield County, CT

AT&T Site Name: Norwalk CT New Canaan Ave

AT&T FA#: 10113256

Authorization to make application for land use review and/or building permit shall not be construed to constitute an agreement to lease.

No construction shall commence before a lease is executed.

Sincerely,

Russell Baldwin

Principal – Client Services Proj/Prog Mgmt AT&T Towers/Rooftops/DAS Tenant Add/DAS Owner Payments

284 NEW CANAAN AVE

Location	284 NEW CANAAN AVE	Mblu	5/ 46/ 76/ 0/
Acct#	17508	Owner	INDIAN HILL RE LLC
Assessment	\$2,380,000	Appraisal	\$3,400,000
PID	17508	Building Count	2

Current Value

Appraisal					
Valuation Year Improvements Land Total					
2018	\$539,473	\$2,860,527	\$3,400,000		
	Assessment				
Valuation Year Improvements Land Total					
2018	\$377,626	\$2,002,374	\$2,380,000		

Owner of Record

Owner	INDIAN HILL RE LLC	Sale Price	\$0
Co-Owner		Certificate	
Address	46 INDIAN HILL RD	Book & Page	8594/111
		Sale Date	10/06/2017
	WESTPORT, CT 06880	Instrument	15

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
INDIAN HILL RE LLC	\$0		8594/111	15	10/06/2017
CONNECTICUT STATE OF	\$0		8504/140	19	03/23/2017
CONNECTICUT STATE OF	\$0		695/452		02/27/1968

Building Information

Building 1 : Section 1

Year Built:	1971
Living Area:	27,972
Replacement Cost:	\$3,605,570

Building Percent Good:

3

Replacement Cost

Less Depreciation:

Bu	ilding Attributes
Field	Description
Style:	Office Bldg
Model:	Commercial
Grade	C+
Stories:	2.00
Occupancy	1.00
Exterior Wall 1	Brick/Masonry
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar and Gravel
Interior Wall 1	Minimum
Interior Wall 2	
Interior Floor 1	Cork Tile
Interior Floor 2	
Heating Fuel	Electric
Heating Type	Radiant
AC Percent	0
Heat Percent	100
Bldg Use	State Bldg Com
Total Rooms	17
Bedrooms	0
Full Baths	2
Half Baths	3
Extra Fixtures	0
FBM Area	
Heat/AC	None
Frame	Fireproof Stl
Plumbing	Average
Foundation	Conc Block
Partitions	Average
Wall Height	10.00
% Sprinkler	0.00
# of Heat Systems	1
Insulation	Typical

Building 2 : Section 1

Building Photo

(https://images.vgsi.com/photos/NorwalkCTPhotos//G:\ASR\Assessor\/ 30-15/7-30-15%20024.jpg)

Building Layout

(ParcelSketch.ashx?pid=17508&bid=17508)

	Legend		
Code	Description	Gross Area	Living Area
BAS	First Floor	20,230	20,230
FUS	Finished Upper Story	7,742	7,742
FEP	Enclosed Porch	100	0
RBM	Raised Basement	3,024	0
		31,096	27,972

3,302 \$165,112

5

Building	Attributes : Bldg 2 of 2
Field	Description
Style:	Pre-Eng Garage
Model:	Commercial
Grade	C+
Stories:	1.00
Occupancy	1.00
Exterior Wall 1	Brick/Masonry
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar and Gravel
Interior Wall 1	Minimum
Interior Wall 2	
Interior Floor 1	Concrete
Interior Floor 2	Cork Tile
Heating Fuel	Electric
Heating Type	Radiant
AC Percent	0
Heat Percent	100
Bldg Use	State Bldg Com
Total Rooms	2
Bedrooms	0
Full Baths	0
Half Baths	1
Extra Fixtures	0
FBM Area	
Heat/AC	None
Frame	Masonry
Plumbing	Average
Foundation	Slab
Partitions	Average
Wall Height	14.00
% Sprinkler	0.00
# of Heat Systems	1
Insulation	Typical

(https://images.vgsi.com/photos/NorwalkCTPhotos//G:\ASR\Assessor\/ 30-15/7-30-15%20030.jpg.jpg)

Building Layout

(ParcelSketch.ashx?pid=17508&bid=50688)

	<u>Legend</u>		
Code	Description	Gross Area	Living Area
BAS	First Floor	3,302	3,302
		3,302	3,302

Extra Features

Legend

No Data for Extra Features

Land

Land Use		Land Line Valua	Land Line Valuation	
Use Code	201V	Size (Acres)	11.12	
Description	Commercial Improved	Frontage		
Zone	A3	Depth		
Neighborhood	C210	Assessed Value	\$2,002,374	
		Appraised Value	\$2,860,527	

Outbuildings

	Outbuildings					
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
PAV1	Paving Asph.			35000.00 S.F.	\$0	1
FN6	Fence 6'			1000.00 L.F.	\$0	1
CEL1	Cell Tower		Steel	1.00 UNITS	\$0	1

Valuation History

Appraisal						
Valuation Year	Improvements	Land	Total			
2021	\$539,473	\$2,860,527	\$3,400,000			
2020	\$539,473	\$2,860,527	\$3,400,000			
2019	\$594,223	\$2,805,777	\$3,400,000			

	Assessment										
Valuation Year Improvements Land Total											
2021	\$377,626	\$2,002,374	\$2,380,000								
2020	\$377,626	\$2,002,374	\$2,380,000								
2019	\$415,956	\$1,964,044	\$2,380,000								

(c) 2022 Vision Government Solutions, Inc. All rights reserved.

Vision	ÍD	17508				Pa	rcel Status	: Act	ive		E	8ldg #	1	of 2	Se	ec # 1	1 of	1	Card #	1 of 2		Print	Date 3	/28/2022	12:36:01 P
	C	URRENT	T OWNI	ER			TOPO		LITIES		/ ROAL		LAND I	INFL.				CURREN							
INDIAN	N HILL	RE LLC	;			3 Bel	ow Street			N 9 Pavec		u				scriptio	n	Code	Appr		As	sessed		Norw	alk, CT
								8	Septic	5 Heavy	/	\rightarrow			Commli			201V		539,473			,626		
								S	JPPLEI		ATA				Commli	mp-L		201V	2	,860,527		2,002	3/4		
46 IND		IILL RD				Alt Pa				Tax D #		- 100%	6												
						Assr I				Tax D #2															
WEST	PORT	г (СТ	0688	80	Surve Dev N		09		Mixed Us Grbge P	SE N	Inknow	'n												
						Minor				Sewer B				Sewe											
						Censu		6																	
						Gis ID	5-4	6-76-0		Associat	ed P									100.000		0.000	000		
	PI	CORD		NED	снір							SALE	DDICE					Total		,400,000 <mark>SSESSM</mark>	ENTS	2,380			
		RELLC		NEN				111	10-06-2		V/I	SALL	FRICE	0 15	Year	Use	I/F		ssessed	Outbu			Land	- 1	Fotal Value
		CUT STA					8504	140	03-23-2					0 15	2020	201V				-	0				
		CUT STA					695	452	02-27-		i			0	2020	201V 201V	I F		7626 5956	0			2002374 964044		2380000 2380000
															2013	201V 201V			5956	0	1		964044		2380000
															2017	201V	F		1760	1432			2175030		2450000
															2016	909	F	169	92170	306	30	4	106100)	5828900
			E		PTION									MÊNTS					nature ackn	owledges a	visit by a	a Data C	Collector (or Assesso	
Year	Co	de		Desc	ription		A	mount	Code	Descri	otion	Nun	nber	Amo	ount		mm Int								
																				APPRAL	SED V	ALUE	SUMM	ARY	
						т	otal	0.00	-									Apprais	ed Bldg. \	Value (Car	d)				539,473
							ASS	ESSING N		ORHOOD								Apprais	ed XF (B)	Value (Blo	dg)				0
		NBHD				NBHD) Name		Neig	hborhood				Nbh	d.				ed OB (B) Value (Bl	da)				0
		0001										C210		NEW	CANAA	N AVE		1	•	/alue (Bldg	0,				2,860,527
								NC	TES												<i>a)</i>				2,000,027
																		· · ·	Land Valu						0
																		Total Ap	ppraised F	Parcel Valu	ie				3,400,000
																		Valuatio	on Method						0
																		Exempt	ion						0
																		Adjustm							
																				_					
																		Total A	ppraised	Parcel Valu					3,400,000
Derres	:+ ID	Lanual	Data									Cmni	•				-1-	Def	ta		CHA				at/D a suit
Permi S20-55		Issue I	Date 2020 0	Ту	pe		escription		Cost 0	Asr. Insp Da		‰ Cmp 0	<u> </u>		Correcti	ommer ive Acti		Dat		Туре	IS	ID PK	Cd 84 C	ourt Stipu	st/Result
S16-49			2020 0 2018 C			1	ation of S1		ő			0			Modifica							PK		ourt Stipu	
																		12-26-2				SS	81 C	hange - H	earing
																		11-06-2						ap Mainte	
																		10-31-	2018			JV 120	86 C	ommercia ap Mainte	l Final Revi
																		12-11-2				120		O Proratio	
	r					_					AND LI	T 1	r	ON SEC	1	_	_								
B Us	e co	Descri	ption	Zon	ne D	Land	Land Typ	e Ur	its	Unit Price	Sz. A	S.A.	Ac Di	Inf. Fac	Nbhd.	Adj		Notes	Specia		cial Pric	ing cial Cal	00	4	Land Value
1 20)1V	Commer	cial I	A3	3 5	P	SITE	222.8	55 SF	8.02	1.000	C	1.000	0.50	C210	3.65	wetla	nds			Spec		65	1.000	2,805,777
		Commer		,		Ē	EXCESS	6.0	00 AC	25,000				0.10				LANDS B		Ő				1.000	54,750
		Commerc				P	SITE	418.0	00 FF		1.000			1.00		1.00				0				1.000	0
																1									
																1									
																1									
									10 10								 								0.000
						i otal Car	d Land Un	ts 11	12 AC	Parcel To	ital Land	Area:	11.12				1						I otal La	ind Value	2,860,527

	17508			'E Paro	cel Status	s: /	Active	Map ID	5/ 46		8ldg #	1 of 2	Bldg Name Valuation Method O 2 Sec # 1 of 1 Card # 1 of 2 Print Date 3/28/2022 12:36:01 P
		CTION DET						RUCTIO	N DET				
Element	t Cd	De	escrip	otion	Î	Elen	nent	Cd		D	escript	ion	
Style	18	Office Bldg											
Model	94	Commercial	I			# of Heat	t Svste	1					
Grade	09	C+	-			Insulation		2	Tvr	oical			
Stories:	2.00	01				moulation	1	1	יעין	noui			
					_								
Occupancy	1.00					<u> </u>	· ·		IXED (
Exterior Wall		Brick/Masor	nry		L	Code			cription			Percentage	BAS 10 4
Exterior Wall						201V	Comr	nercial In	proved			100	22 22 16 PU FUS
Roof Structu	ire 01	Flat										0	108 10
Roof Cover	04	Tar and Gra	vel									0	84
Interior Wall		Minimum					<u> </u>	ST/MA	RKFT				BAS
nterior Wall		iviii iii iii iii iii iii iii iii iii i			-	Adjusted				122.6			000
	2							late		122.0	1		
nterior Floor		Cork Tile				Section F							
nterior Floor						Net Othe							76 76 84 FUS PAS 6 4
Heating Fuel	04	Electric				Replacer	ment Co	ost					
Heating Type		Radiant				Actual Ye				1971			BAS 84
AC Percent	0					Effective				1953			BAS RBM
Heat Percen	-					Deprecia				VP			36 36 36
		Choke Dista	20177										44
Bldg Use	909	State Bldg C	JOW			Remodel							
Total Rooms						Year Rer		t					84 10 84
Bedrooms	0					Deprecia				66			<u>8 840</u>
Full Baths	2							lescence	;	30			
	3					External							
	Ő					Cost Tre				1			
		None						.01		AP			
Heat/AC	00					Conditior				AP			
Frame	06	Fireproof St	1		'	% Comp	lete			2			
Plumbing	02	Average								3			
Foundation	07	Conc Block				Deprec \	/alue			594,2	23		
Partitions	02	Average				Dep % C							
Wall Height	10.00	1.0000				Dep Ovr		≏nt					
% Sprinkler	0.00	1.0000				Misc Imp		on					
% Sprinkler	0.00												
						Misc Imp							
						Cost to C							
						Cost to C	Cure Ov	r Comme	ent				
	OB - OUT	BUILDING &	YAF	RD ITE	EMS(L) /	/ XF - Bl	JILDIN	G EXTR	A FEA	TURES	S(B)		
Code De	scription Su	Sub Type	L/B	Units	Unit Pri	ce Yea	r Pct	Depre	Cnd.	Qu	Qual	Apprais Va	
	ng Asph.	71	L	35,0		.60 197		0.00	3	3	1.00	0	
FN6 Fend								0.00	5		0.00		
			L	1,00						3	0.00	0	
CEL1 Cell	Tower	Steel	L	1	300000	0.0 199	0 50	0.00	5	3	1.00	0	
			DIN		B-AREA								
Subarea		scription			.iv./Leasa	able (Gross	Eff Ar	ea U	nit Cost	Und	leprec Value	
	rst Floor			i		,230	20,23			122.6		2,481,566	
	nclosed Porch				20,		10		60	73.6		7,360	
		Ston			-	740		3				1,000	
	nished Upper S				7,	,742	7,74			122.6		949,693	
RBM Ra	aised Basemer	nt				0	3,02	4 1,3	61	55.2	1	166,951	
1													
									1				
						1							
													the second s
													and the second sec
		tl Gross Liv / L	6256	Area	27	,972	31,09	6 29,3	93				

Prope Visio	erty Loo n ID	cation 1750		W CA	NAA	N A		rcel Status	: Ac		1ap ID	5/ 46/	76/0/ E	8ldg #	2	of 2	5	Bldg Na Sec # 1	ime of	1	Card #	2 of 2			n Metho t Date 3		O 12:36:02 P
	С	URR	ENT OWN	ER				ΤΟΡΟ		LITIE		STRT			LAND	INFL.			C	CURREN	T ASSES	SMENT					
INDI/	AN HIL	LREI	LC				3 Belo	ow Street				9 Paved		u				scriptior	ר ן	Code	Appra			sesse		Norw	alk, CT
							\square		8	Septic	; !	5 Heavy		\square			Comm			201V		539,473			7,626		
			_							IDDI			ΛΤΛ				Comm	Imp-L		201V	2	,860,527		2,002	2,374		
46 IN	IDIAN I	HILL F	RD				Alt Pa	rcel I	<u> </u>			Tax D #1		- 100%	6												
							Assr N	/lap 5N			-	Tax D #2	2	,													
WES	TPOR	т	СТ	068	80		Surve		09		ľ	Mixed Us	se N														
			•				Dev M Minor					Grbge P/ Sewer Bi				Sowo											
							Censu		6		`	Sewel D	1 01	io.oep		Sewe											
							Gis ID		6-76-0			Associat	od D														
																				Total	3	,400,000			0,000		
			RD OF OW	NER.	SHIP	,		1					<u> </u>	SALE	PRICE	E VC		1			VIOUS A	1		(HIST	,		
	AN HIL								111		6-2017					0 15	Year	Use	I/F		ssessed	Outbu	uilding	_	Land		Fotal Value
			STATE OF					8504 695	140 452		3-2017 7-1968					0 19 0	2020	201V			7626	C)		200237		2380000
	NECH	001	STATE OF					095	452	02-2	1-1900		·			0	2019	201V	F		5956				196404		2380000
																	2018 2017	201V 201V	F		5956 1760	143			196404 217503		2380000 2450000
																	2017	909	F		92170	306			410610		2450000 5828900
			E	XEM	PTIC	ONS	S	1					ΟΤΙ	IER A	SSESS	SMENT	S				nature ackno					-	
Yea	r Co	ode		Desc				A	mount	Co	de	Descri		Nur			ount	Con	nm Int			0	,				
																						APPRA	ISED V	ALUE	SUM	IARY	
																				Apprais	ed Bldg. V	/alue (Car	.d)				539,473
							T	otal	0.00 ESSING N												ed XF (B)						0
		NBH	<u>ר</u>				NBHD	Name			eighbo					Nbh	d.										0
		0001						Ttarrio			Jgnoo	11000				1101				Apprais	ed OB (B)) Value (B	ldg)				0
									NC	TES										Apprais	ed Land V	/alue (Bld	g)				2,860,527
																				Special	Land Valu	le					0
																				Total A	ppraised P	Parcel Valu	le				3,400,000
																					• •						
																				valuatio	on Method						0
																				Exempt	tion						0
																				Adjustn	nent						
																				Total A	ppraised I	Parcel Val					3,400,000
								BUI	LDING PE	RMIT	REC	ORD								1 Otdi 7	(ppraioca i		с Г/СНА	NGE	HISTO	RY	0,400,000
Per	mit ID	lss	ue Date	Ту	/pe	Т	De	scription				Insp Da	Asr. 9	% Cmp	t			commen	ts	Da	te	Туре	IS	ID	Cd		st/Result
			Ì			Ì					1												Ì				
																							1				
																							1				
														T	ľ	ION SE	1		1			Sne	cial Pric	ina			
BU	lse co	De	scription	Zor	ne	D	Land	Land Typ	e U	nits	Un	it Price	Sz. A	S.A.	Ac Di	Inf. Fa	c Nbhd	l. Adj		Notes	Specia			cial Ca	lcs		Land Value
2 2	201V	Comr	nercial I	A	3	5	Р	SITE	0.0	000 A	c	0	1.000	0	1.000	1.00		1.00	Ì			0				1.000	0
																1											
						Ц	tal Car	d Land Un	ite 0	.00 A		Parcel To	tal I and	Aree	11 12										Total	and Value	0
						10	nai Udl	u Lanu Un	0	.00 [P				a nied.					l						I Utal L	anu value	0

lision ID	17508		el Status: Active	Map ID	Bldg	# 2 of 2	Bldg Name Valuation Method O 2 Sec # 1 of 1 Card # 2 of 2 Print Date 3/28/2022 12:36:02
	CONSTRU	ICTION DETAIL	CONSTR	RUCTION	DETAIL (CONT	TINUED)	
Element	t Cd	Description	Element	Cd	Desc	ription	
style	51	Pre-Eng Garage					
lodel	94	Commercial	# of Heat Syste	1			
Grade	09	C+	Insulation	2	Typical		
tories:	1.00						
ccupancy	1.00			MIX	ED USE		BAS 84
xterior Wall		Brick/Masonry	Code	Descr		Percentage	
xterior Wall		Brickiwasoni y					
			201V Comn	nercial Impi	oved	100	
of Structu		Flat				0	
oof Cover	04	Tar and Gravel				0	
terior Wall		Minimum			KET VALUATIO	ON	
erior Wall			Adjusted Base R	late	50.00		38
erior Floor	r 1 03	Concrete	Section RCN				
erior Floor		Cork Tile	Net Other Adj				43
eating Fuel		Electric	Replacement Co	et			
		Radiant			1971		
eating Type			Actual Year Built				
Percent	0		Effective Year B		1963		
at Percent			Depreciation Co		P		
dg Use	909	State Bldg Com	Remodel Rating				62
tal Rooms			Year Remodeled				62
drooms	0		Depreciation %		56		5
II Baths	0		Functional Obso	lescence	80		22
	1		External Obsoles				
	o.		Cost Trend Fact		1		
at/AC	00	None	Condition	0	1		
	03						
ame	03	Masonry	% Complete		-		
umbing	02	Average			5		
oundation	02	Slab	Deprec Value		8,260		
artitions	02	Average	Dep % Ovr				
/all Height	14.00	1.7000	Dep Ovr Comme	ent			
Sprinkler	0.00		Misc Imp Ovr				
•			Misc Imp Ovr Co	omment			
			Cost to Cure Ov	r			
			Cost to Cure Ov				
		BUILDING & YARD ITE			EEATIIDES/R		
Code Des		Sub Type L/B Units		Depro	Cnd. Qu Qu	ual Apprais Va	
	scription 50		Unit Price Year PCL	Depre		iai Apprais va	
				OTION			
			-AREA SUMMARY SE				
ubarea		scription Li	v./Leasable Gross	Eff Area	Unit Cost	Indeprec Value	
S Fir	irst Floor		3,302 3,302	2 3,302	50.00	165,112	2
				1			
							The second
							and the second s
1				1	1		
			1				
		tl Gross Liv / Lease Area	3,302 3,302	2 3,302	<u>↓ </u>		

Construction Drawings

P Belle Harbor, NY P Atlanta, GA P Brick, NJ P Lewes, DE P Tampa, FL P Detroit, MI

DISH Wireless L.L.C. SITE ID:

NJJER02030A

DISH Wireless L.L.C. SITE ADDRESS:

284 NEW CANAAN AVE NORWALK, CT 06850

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES CODE 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS CODE TYPE BUILDING MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

DISH Wireless L.L.C. TEMPLATE VERSION 49 - 5/05/2022

	SHEET INDEX	
SHEET NO.	SHEET TITLE	
T-1	TITLE SHEET	48044
A-1	OVERALL AND ENLARGED SITE PLAN	
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE	7
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS	
A-4	EQUIPMENT DETAILS	
A-5	EQUIPMENT DETAILS	
A-6	EQUIPMENT DETAILS	
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES	
E-2	ELECTRICAL DETAILS	
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	
G-1	GROUNDING PLANS AND NOTES	UNDERGROUND SERVICE ALERT CBYD 811
G-2	GROUNDING DETAILS	(800) 922-4455
G-3	GROUNDING DETAILS	WWW.CBYD.COM
		CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION
RF-1	RF CABLE COLOR CODE	
GN-1	LEGEND AND ABBREVIATIONS	GENERAL NOTES
GN-2	RF SIGNAGE	
GN-3	GENERAL NOTES	THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED
GN-4	GENERAL NOTES	FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON
GN-5	GENERAL NOTES	DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.
		11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED
		CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

SCOPE C	OF WORK
---------	---------

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) • INSTALL (3) PROPOSED RRUs (1 PER SECTOR) INSTALL (12) PROPOSED 7/8" COAX LINES INSTALL (6) PROPOSED COMMSCOPE CDX623T-DS DIPLEXERS INSTALL (6) PROPOSED KAELUS BIAS-T INSTALL (1) PROPOSED CABLE CLAMP
- INSTALL (1) PROPOSED METAL PLATFORM INSTALL (1) PROPOSED EQUIPMENT CABINET INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT INSTALL (1) PROPOSED TELCO-FIBER BOX INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED) INSTALL (1) PROPOSED FIBER NID (IF REQUIRED) INSTALL (1) PROPOSED METER SOCKET

SITE PHOTO

SITE INF	ORMATION	PROJE	ECT DIRECTORY
PROPERTY OWNER: ADDRESS:	INDIAN HILL RE, L.L.C. 46 INDIAN HILL ROAD WESTPORT, CT 06880	APPLICANT:	DISH Wireless L.L.C. 5701 South Santa fe Drive Littleton, co 80120
TOWER TYPE:	CANISTER	TOWER OWNER:	NEW CINGULAR Wireless PCS, L.L.C.
TOWER CO SITE ID:	FA 10113256		
TOWER APP NUMBER:	TBD		
COUNTY:	FAIRFIELD COUNTY	SITE DESIGNER:	M+K DEVELOPMENT 140 BEACH 137TH STREET
LATITUDE (NAD 83):	41°08'09.8"N 41.136045N		ROCKAWAY, NY 11694
LONGITUDE (NAD 83):	73° 27' 22.6" W 73.456285 W	SITE ACQUISITION:	ALEXIS ELAGMI
ZONING JURISDICTION:	CT SITING COUNCIL		ALEXIS.ELAGMI@DISH.COM
ZONING DISTRICT:	TBD	CONSTRUCTION M	ANAGER: ARNALDO ARROYO ARNALDO.ARROYO O DISH.COM
PARCEL NUMBER:	5-46-76-0	RF ENGINEER:	SRI RAM GOTTUMUKKALA
OCCUPANCY GROUP:	U		SRIRAM.GOTTUMUKKALA@DISH.COM
CONSTRUCTION TYPE:	II—B		
POWER COMPANY:	TBD		
TELEPHONE COMPANY:	TBD		

DIRECTIONS

DIRECTIONS FROM 3 ADP:

GET ON 1-280 E FROM LIMINGSTON AVE, HEAD NORTHEAST TOWARD ADP BLVD, TURN LEFT, TURN LEFT TOWARD ADP BLVD, TURN LEFT TOWARD ADP BLVD, TURN LEFT ONTO ADP BLVD, TURN RIGHT TOWARD CHOCTAW WAY, SLIGHT RIGHT ONTO CHOCTAW WAY, USE THE LEFT LANE TO TURN RIGHT ONTO LIMINGSTON AVE, USE THE RIGHT LANE TO TAKE THE RAMP ONTO 1-280 E, CONTINUE ON 1-280 E. TAKE GARDEN STATE PKWY AND 1-287 E TO CT-15 S IN NORWALK, MERGE ONTO 1-280 E, TAKE EXIT 12 FOR GARDEN STATE PKWY N, KEEP LEFT, FOLLOW SIGNS FOR GARDEN STATE PARKWAY AND MERGE ONTO GARDEN STATE PKWY, CONTINUE ONTO NJ-444 N/GARDEN STATE PKWY, CONTINUE ONTO GARDEN STATE PARKWAY CONNECTOR, TAKE EXIT 14-1 TO MERGE ONTO 1-287 E/1-87 S, KEEP LEFT AT THE FORK TO CONTINUE ON 1-287 E, FOLLOW SIGNS FOR WHITE PLAINS/RYE, TAKE EXIT 9 S-N TOWARD HUTCHINSON PKWY/MERRITT PKWY, MERGE ONTO WESTCHESTER AVE, USE THE RIGHT LANE TO TAKE THE RAMP TO WESTCHESTER AVE/NORTH HUTCHINSON PKWY/MERRITT PKWY, MERGE ONTO HUTCHINSON RIVER PKWY N, KEEP RIGHT AT THE FORK TO STAY ON HUTCHINSON RIVER PKWY N, CONTINUE ONTO CT-15 N, USE THE LEFT 2 LANES TO TURN SHARPLY RIGHT TO STAY ON CT-15 N, TAKE EXIT 39B FOR US-7 N TOWARD DANBURY, KEEP RIGHT AT THE FORK TO CONTINUE ON EXIT 3, FOLLOW SIGNS FOR CT-15 S/N.Y. CITY AND MERGE ONTO CT-15 S.

VICINITY MAP

DISH Wireless L.L.C. TEMPLATE VERSION 49 - 5/05/2022

- EXISTING MAST

PROPOSED DISH Wireless L.L.C. FLUSH MOUNT

> 12"9"6"3"0 | = | -0

RRH			OVP
ACTURER - MODEL NUMBER	TECH	POS.	MANUFACTURER MODEL
J - TA08025-B604	5G	C1	
U — TA08025—B605	5G	C1	_
J - TA08025-B604	5G	C1	
U — TA08025-B605	5G	C1	_
J - TA08025-B604	5G	C1	
J - TA08025-B605	5G	C1	_

PCTEL				
GPSGL-TMG-S				
DIMENSIONS (DIAXH) MM/INCH	81x184mm 3.2"x7.25"			
WEIGHT W/ACCESSORIES	075 lbs			
CONNECTOR FREQUENCY RANGE	N-FEMALE 1590 ± 30MHz	TOP		
		^		
	BACK	SIDE		
	<u>GPS DETAIL</u>	NO SCALE	1	<u>GPS MII</u>
				COMMSCO
				UNISTRUT/SUPPORT
				WEIGHT
				PIPE CAP —
				WELDMENT P
				SUPPORT RA
				GALV. U—BOI
				BASE PLATE
	NOT USED	NO SCALE	4	
	NOT USED	NO SCALE	7	
	49 - 5/05/2022		1	

DISH Wireless L.L.C. TEMPLATE VERSION 49 - 5/05/2022

		JacobiaStatic </th
NO SCALE	3	T IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
NO SCALE	6	DRAWN BY: CHECKED BY: APPROVED BY: ION RFDS REV #: CONSTRUCTION DOCUMENTS SUBMITTALS
		REV DATE DESCRIPTION A 10/21/2022 ISSUED FOR REVIEW 0 11/03/2022 ISSUED FOR CONSTRUCTION A A A A A A A A A A A A A A A A A A A A A A A A A A B A A A A A A A B A A A B A B A B A B B A B B B B B B B B B B B B B B B B B B B
NO SCALE	9	

2

NO SCALE

					NOTES		
GENERATOR K GEN PLUG SERVICE CE		PROPOSED POWER PROTECTIVE CABINET 120/240V, 1 PH, SERVICE RATED, OVERALL UL LISTED POWER CENTER, N3R, 65K/10K AIC SERIES RATED. MAIN BREAKER WITH		DELTA NETWORK CABINET DELTA ELITE-X DC PLANT	THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS E THE ADJUSTMENT FACTOR OF 80% PER 2020 NEC TABLE 310.15 WIRE. (ALL WIRE AND TERMINATION HARDWARE TO BE RATED 75% #12 FOR 20A OCPD WIRE DERATING: 0.8 #8 FOR 40A OCPD WIRE DERATING: 0.8	5(C)(1) FOR UL1015 C) 5 x 25A = 20.0A	dish
0 VAC 200 65K A N SUPPRESSION 140KA MOV		200A INTERLOCKED GENERATOR J FEED, 200A 10K AIC	(2) PROPOSED 1.0" EMT CONDUIT		CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, A 1.0" CONDUIT – .3460 SQ. IN AREA 3.0" CONDUIT – 3.538 SQ. IN AREA	RTICLE 358.	5701 SOUTH SANTA FE DRIVE
SPACE SPACE SPACE SPACE SPACE SPACE SPACE SPACE SPACE SPACE SPACE	03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	PACE PĂCE PĂCE		→ FOR RECTIFIER 1 → FOR RECTIFIER 2 → FOR RECTIFIER 2	(2 CONDUIT): USING THWN-2, CU. RECTIFIER CONDUCTORS #8 - 0.0366 SQ. IN X 4 = 0.1464 SQ. #8 - 0.0366 SQ. IN X 1 = 0.0366 SQ. TOTAL = 0.1830 SQ. I RECTIFIER & GFCI CONDUCTORS #12 - 0.0133 SQ. IN X 2 = 0.0266 SQ. #8 - 0.0366 SQ. IN X 2 = 0.0732 SQ. #8 - 0.0366 SQ. IN X 1 = 0.0366 SQ. #8 - 0.0366 SQ. IN X 1 = 0.0366 SQ. TOTAL = 0.1364 SQ. I 1.0" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) MINCLUDING GROUND WIRE, AS INDICATED ABOVE.	IN <ground N IN IN IN IN <ground< td=""><td>LITTLETON, CO 80120</td></ground<></ground 	LITTLETON, CO 80120
SPĂCĔ CIRCUIT WIRING DNE-LINE DIAGF	S SUPPLYING RAM. CONTR/ OR EQUIVALI - SQUARE	PACE PROPOSED 2#12 G RECTIFIERS ARE TO BE RATED UL1015, 105° ACTOR MAY SUBSTITUTE UL1015 WIRE FOR TH ENT MANUFACTURER) D P/N:Q0240	C, 600V, AND PVC INSI WN—2 FOR CONVENIENC	→ FOR CONVENIENCE OUTLET	PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU. $ \frac{3/0 - 0.2679 \text{ SQ. IN X 3} = 0.8037 \text{ SQ.}}{\#6 - 0.0507 \text{ SQ. IN X 1} = 0.0507 \text{ SQ.}} $ $ \frac{\#6}{\text{TOTAL}} = 0.8544 \text{ SQ.} $ 3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL INCLUDING GROUND WIRE, AS INDICATED ABOVE. 1 OPTIONAL ALUMINUM SERVICE CONDUCTOR: $ \frac{4/0 \text{ AL } \#2 \text{ GRD MAY BE USED INSTEAD OF 3/0 CU + LENGTH OF THE CONDUCTOR SMUST BE 90°C TO CARRY THE FU} $ ALUMINUM CONDUCTORS MUST BE 90°C TO CARRY THE FU ALUMINUM TO COPPER BUSS CONNECTIONS MUST MEET AN BE UL LISTED. USE ANTI CORROSION CONDUCTIVE LUBRICA	IN <ground IN OF (4) WIRES, #6 GRD IF THE TOTAL THE TRANSFORMER. JUL 200A LOAD REQUIRE ID CONFORM TO ANSI /</ground 	
	PPC	<u>ONE-LINE DIAGRAM</u>				NO SCALE	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: ION RFDS REV #:
							- CONSTRUCTION
SURFACE/NEMA 3F 5,000 / 10,000 SER WIRE & CONDU SEE ONE LIN SEE ONE LIN SEE ONE LIN 9.4 kVA 9.4 kVA 9.4 kVA	RIES RATED UIT AMP POLE E 40/2						DOCUMENTS SUBMITTALS REV DATE DESCRIPTION A 10/21/2022 ISSUED FOR REVIEW 0 11/03/2022 ISSUED FOR CONSTRUCTION A 0 11/03/2022 ISSUED FOR CONSTRUCTION A A&E PROJECT NUMBER FA 10/113256 DISH Wireless L.L.C. PROJECT INFORMATION NJJER02030A 284 284 NEW CANAAN AVE NORWALK, CT 06850 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER
							E-3

		-
JRFACE/NEMA 3R		
,000 / 10,000 SERIES RATED		
WIRE & CONDUIT	AMPS POLES	
SEE ONE LINE	40/2	
SEE ONE LINE	40/2	╢
SEE ONE LINE	40/2	
		1
9.4 kVA	39 A	
9.4 kVA	39 A	┛
		_
NO	SCALE	

BOND ICE BRIDGE SUPPORT POSTS TO GROUND RING BOND(s) (TYP ALL POSTS)	ND		EXOTHERMIC CONNECTION MECHANICAL CONNECTION GROUND BUS BAR GROUND BUS BAR GROUND ROD GROUND ROD 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
RING (FIELD VERIFY)			 CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLIANCE WITH NEC SECTION 250 AND DISH Wire REQUIREMENTS AND MANUFACTURER'S SPECIFICATION ALL GROUND CONDUCTORS SHALL BE COPPER; NO A
			<u>GROUNDING K</u>
			A <u>Exterior ground ring:</u> #2 awg solid copper, burie Grade, or 6 inches below the frost line and app or footing.
			B <u>TOWER GROUND RING:</u> THE GROUND RING SYSTEM SHALL AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAV BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWE BUILDING RING GROUND SYSTEM USING MINIMUM # 2 AWO
EXISTING MONOPOLE	TOWER		C INTERIOR GROUND RING: #2 AWG STRANDED GREEN INSU PERIMETER OF THE EQUIPMENT AREA. ALL NON-TELECON WITHIN A SITE SHALL BE GROUNDED TO THE INTERIOR O INSULATED CONDUCTOR.
			D <u>Bond to interior ground ring:</u> #2 awg solid tinne Provided at least at four points on the interior Building.
	NO SCALE	1	E <u>GROUND ROD:</u> UL LISTED COPPER CLAD STEEL. MINIMU RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. (GROUND RING CONDUCTOR.
			F <u>CELL REFERENCE GROUND BAR:</u> POINT OF GROUND REF FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS I COPPER CONDUCTORS. BOND TO GROUND RING WITH (2
PROPOSED BULKHEAD (TYP)			G HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GR INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATI PRESENT, THE CRGB MUST BE CONNECTED TO THE HAT USING (2) TWO #2 AWG STRANDED GREEN INSULATED
PROPOSED ANTENNA (TYP)			H EXTERIOR CABLE ENTRY PORT GROUND BARS: LOCATED TO GROUND RING WITH A #2 AWG SOLID TINNED COPPE INSPECTION SLEEVE.
PROPOSED STEALTH CANISTER			TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE
			 FRAME BONDING: THE BONDING POINT FOR TELECOM EQ IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEW INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND IN OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STI INTERIOR GROUND RING.
EXISTING MAST			L <u>FENCE AND GATE GROUNDING:</u> METAL FENCES WITHIN 7 BONDED TO THE EXTERIOR GROUND RING SHALL BE BOI TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCE GATE POST AND ACROSS GATE OPENINGS.
			$(M) \frac{\text{EXTERIOR UNIT BONDS:}}{TO THE EXTERIOR GROUND RING. USING #2 TINNED SOL$
	AWG STRANDED PPER GREEN SULATED (TYP)		N <u>ICE BRIDGE SUPPORTS:</u> EACH ICE BRIDGE LEG SHALL BE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WEL GROUND RING.
ANTENNA GROUNDING			O DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTER INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQU CONDUCTOR FROM THE DC POWER SYSTEM COMMON RE REFERENCE GROUND BAR
ELEVATION			\bigcirc tower top collector buss bar is to be mechanic/
			REFER TO DISH Wireless L.L.C. GROUNDING NOTES.
	NO SCALE	2	<u>GROUNDING KEY NOTI</u>

TEST GROUND ROD WITH

INSPECTION SLEEVE

●T

DISH Wireless L.L.C. TEMPLATE VERSION 49 - 5/05/2022

 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO G BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BE THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	MIC LARGER. ES WITH IPOUND IDUCTOR DLTED ON TTOR.		EXTERNAL TOOTHED 3/8" DIA x1 1/2" S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT WASHER S/S BOLT (1 OF 2) 1/16" MINIMUM SPACE
TYPICAL GROUNDING NOTES	NO SCALE	1	<u>TYP</u>
2 HOLE LONG BARREL TINNED SOLID COPPER LUG (TYP)	WASHER (TYP) /ASHER (TYP) /ASHER (TYP)		FINIS SI SOLID TINNE COPPER CONDUCTOR EXTERIOR GROUND R
LUG DETAIL	NO SCALE	4	TYPICAL TEST
<u>NOT USED</u>	NO SCALE	7	

HYBRID/DISCREET CABLES			3/4" TAPE WI	DTHS W
		ALPHA RRH		BETA F
LOW-BAND RRH (600 MHz N71 BASEBAND) + (850 MHz N26 BAND) + (700 MHz N29 BAND) - OPTIONAL PER MARKET	PORT 1 POR + SLANT – SL	T 2 PORT 3 POR ANT + SLANT - SL		ORT 2 SLANT
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BAND)	RED	ED RED RE	ED BLUE E	BLUE
````	ORANGEORA	NGE RED RE	D ORANGE OF	RANGE
	(—) F	ORANGE ORA		VHITE ) PORT
MID-BAND RRH (AWS BANDS N66+N70)	RED	D RED RE	D BLUE E	BLUE
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	PURPLE PUR	PLE RED RE		JRPLE
	(—) F	DORT PURPLE PUR	PLE	VHITE ) PORT
		(—) H		
HYBRID/DISCREET CABLES	EXAMPLE 1	EXAMPLE 2	EXAMPLE 3 CA COAX#1 CO	NISTER AX #2
INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS.				LPHA)
EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS.	RED BLUE	RED BLUE	RED	RED
EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS.	GREEN	GREEN		RED
EXAMPLE 3 — MAIN COAX WITH GROUND MOUNTED RRHs.	ORANGE PURPLE	YELLOW		
FIBER JUMPERS TO RRHs	LOW BAND RRH	MID BAND RRH	LOW BAND RRH	MID
LOW—BAND HHR FIBER CABLES HAVE SECTOR STRIPE ONLY.	RED ORANGE	RED PURPLE	BLUE ORANGE	
POWER CABLES TO RRHs	LOW BAND RRH	MID BAND RRH	LOW BAND RRH	MID
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED ORANGE	RED PURPLE	BLUE ORANGE	
RET MOTORS AT ANTENNAS	ANTENNA 1 ANTEN MID BAND LOW		ANTENNA 1 ANT MID BAND LOW	
RET CONTROL IS HANDLED BY THE MID-BAND RRH WHEN ONE SET OF RET PORTS EXIST ON ANTENNA.			IN	IN
SEPARATE RET CABLES ARE USED WHEN ANTENNA PORTS PROVIDE INPUTS FOR BOTH LOW AND MID BANDS.	RED     RE       PURPLE     ORA			BLUE RANGE
MICROWAVE RADIO LINKS		UTH OF 0-120 DEGRE		
LINKS WILL HAVE A 1.5–2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO. MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S.	PRIMARY SECON WHITE WH RED RE WHITE WH RE WHITE WH	ITE D ITE D	BLUE E WHITE W	ONDARY VHITE BLUE VHITE BLUE VHITE

## RF CABLE COLOR CODES



AWS (N66+N70+H-BLOCK) PURPLE	
NEGATIVE SLANT PORT ON ANT/RRH WHITE TOR GAMMA SECTOR GREEN GREEN CONTRUCTION GREEN CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRUCTION CONTRU	
NO SCALE 2	ON, CTION 2,
NO SCALE 3 SUBMITTALS REV DATE DESCRIPTION A 10/21/2022 ISSUED FOR REVIEW 0 11/03/2022 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER FA 10113256 DISH Wireless L.L.C. PROJECT INFORMATION NJJER02030A 284 NEW CANAAN AV NORWALK, CT 06850 SHEET TITLE RF CABLE COLOR CODE SHEET NUMBER RF-1	E
NO SCALE 4	I

	AB
MECHANICAL CONNECTION	ABV AC
BUSS BAR INSULATOR	ADDL
CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	AFF
TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	AFG AGL
EXOTHERMIC WITH INSPECTION SLEEVE	AIC
GROUNDING BAR	ALUM
	ALT ANT
TEST GROUND ROD WITH INSPECTION SLEEVE	APPROX
SINGLE POLE SWITCH	ARCH ATS
	AWG BATT BLDC
DUPLEX GFCI RECEPTACLE	BLDG BLK BLKG
FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 48-T8	BM BTC
SMOKE DETECTION (DC)	BOF CAB
EMERGENCY LIGHTING (DC)	CANT CHG
SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW	CLG CLR
CHAIN LINK FENCE X X X X	COL
WOOD/WROUGHT IRON FENCE	COMM CONC
WALL STRUCTURE	CONSTR
LEASE AREA	DBL DC
PROPERTY LINE (PL)	DEPT
SETBACKS	DF
ICE BRIDGE	DIA DIAG
CABLE TRAY	DIM
WATER LINE W W W W W	DWG
UNDERGROUND POWER UGP UGP UGP UGP UGP	DWL EA
UNDERGROUND TELCO UGT UGT UGT UGT UGT	EC
OVERHEAD POWER OHP OHP OHP OHP OHP	EL.
OVERHEAD TELCO OHT OHT OHT OHT	ELEC EMT
UNDERGROUND TELCO/POWER UGT/P UGT/P UGT/P UGT/P	ENG
ABOVE GROUND POWER AGP AGP AGP AGP AGP AGP	EQ EXP
ABOVE GROUND TELCO AGT AGT AGT AGT AGT AGT	EXT
ABOVE GROUND TELCO/POWER AGT/P AGT/P AGT/P AGT/P	EW
WORKPOINT W.P.	FAB FF
SECTION REFERENCE	FG
	FIF
	FIN FLR
	FDN
	FOC
	FOM
	FOS FOW
	FS
	FT
	FTG GA
	GA GEN
	GFCI
	GLB
	GLV
	GPS GND
	GSM
	HDG
	HDR
	HGR
	HVAC HT
	IGR
LEGEND	

## DISH Wireless L.L.C. TEMPLATE VERSION 49 - 5/05/2022

## **ABBREVIATIONS**

ANCHOR BOLT	IN	INCH
ABOVE	INT	INTERIOR
ALTERNATING CURRENT	LB(S)	POUND(S)
ADDITIONAL	LF	LINEAR FEET
ABOVE FINISHED FLOOR ABOVE FINISHED GRADE	LTE	LONG TERM EVOLUTION
ABOVE FINISHED GRADE ABOVE GROUND LEVEL	MAS MAX	MASONRY MAXIMUM
AMPERAGE INTERRUPTION CAPACITY	MB	MACHINE BOLT
ALUMINUM	MECH	MECHANICAL
ALTERNATE	MFR	MANUFACTURER
ANTENNA	MGB	MASTER GROUND BAR
APPROXIMATE ARCHITECTURAL	MIN	
AUTOMATIC TRANSFER SWITCH	MISC MTL	MISCELLANEOUS METAL
AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
BATTERY	MW	MICROWAVE
BUILDING	NEC	NATIONAL ELECTRIC CODE
BLOCK	NM	NEWTON METERS
BLOCKING BEAM	NO.	NUMBER
BARE TINNED COPPER CONDUCTOR	# NTS	NUMBER NOT TO SCALE
BOTTOM OF FOOTING	NIS OC	ON-CENTER
CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
CANTILEVERED	OPNG	OPENING
CHARGING	P/C	PRECAST CONCRETE
CEILING	PCS	PERSONAL COMMUNICATION SERVICES
CLEAR COLUMN	PCU	PRIMARY CONTROL UNIT
COMMON	PRC	PRIMARY RADIO CABINET
CONCRETE	PP	POLARIZING PRESERVING
CONSTRUCTION	PSF PSI	POUNDS PER SQUARE FOOT POUNDS PER SQUARE INCH
DOUBLE	PSI PT	PRESSURE TREATED
DIRECT CURRENT	PWR	POWER CABINET
DEPARTMENT	QTY	QUANTITY
DOUGLAS FIR	RAD	RADIUS
DIAMETER DIAGONAL	RECT	RECTIFIER
DIMENSION	REF	REFERENCE
DRAWING	REINF	REINFORCEMENT
DOWEL	REQ'D	
EACH	ret Rf	REMOTE ELECTRIC TILT RADIO FREQUENCY
ELECTRICAL CONDUCTOR	RMC	RIGID METALLIC CONDUIT
ELEVATION	RRH	REMOTE RADIO HEAD
ELECTRICAL ELECTRICAL METALLIC TUBING	RRU	REMOTE RADIO UNIT
ENGINEER	RWY	RACEWAY
EQUAL	SCH	SCHEDULE
EXPANSION	SHT	SHEET
EXTERIOR	SIAD SIM	SMART INTEGRATED ACCESS DEVICE SIMILAR
EACH WAY	SPEC	SPECIFICATION
FABRICATION	SQ	SQUARE
FINISH FLOOR FINISH GRADE	SS	STAINLESS STEEL
FACILITY INTERFACE FRAME	STD	STANDARD
FINISH(ED)	STL	STEEL
FLOOR	TEMP	TEMPORARY
FOUNDATION	thk Tma	THICKNESS TOWER MOUNTED AMPLIFIER
FACE OF CONCRETE	TN	TOE NAIL
FACE OF MASONRY	TOA	TOP OF ANTENNA
FACE OF STUD	TOC	TOP OF CURB
FACE OF WALL FINISH SURFACE	TOF	TOP OF FOUNDATION
FOOT	TOP	TOP OF PLATE (PARAPET)
FOOTING	TOS	TOP OF STEEL
GAUGE	TOW	TOP OF WALL
GENERATOR	tvss typ	TRANSIENT VOLTAGE SURGE SUPPRESSION TYPICAL
GROUND FAULT CIRCUIT INTERRUPTER	UG	UNDERGROUND
GLUE LAMINATED BEAM	UL	UNDERWRITERS LABORATORY
GALVANIZED GLOBAL POSITIONING SYSTEM	UNO	UNLESS NOTED OTHERWISE
GROUND	UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
GLOBAL SYSTEM FOR MOBILE	UPS	UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
HOT DIPPED GALVANIZED	VIF	VERIFIED IN FIELD
HEADER	W	WIDE
HANGER	W/	WITH
HEAT/VENTILATION/AIR CONDITIONING	WD	WOOD
HEIGHT	WP WT	WEATHERPROOF WEIGHT
INTERIOR GROUND RING		



		SIGN TYPES
TYPE	COLOR	COLOR CODE PURPOSE
INFORMATION	GREEN	"INFORMATIONAL SIGN" TO NOTIFY OTHERS OF SITE OWNERSHIP & CONTACT NUMBER AN
NOTICE	BLUE	*NOTICE BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC GE POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDAN COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)
CAUTION	YELLOW	*CAUTION BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC O POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDAN COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)
WARNING	ORANGE/RED	<b>*WARNING BEYOND THIS POINT"</b> RF FIELDS AT THIS SITE EXCEED FCC RULES FOR HUM/ SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS COULD RESULT IN SER COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(

SIGN PLACEMENT:

- RF SIGNAGE PLACEMENT SHALL FOLLOW THE RECOMMENDATIONS OF AN EXISTING EME REPORT, CREATED BY A THIRD Wireless L.L.C.

- INFORMATION SIGN (GREEN) SHALL BE LOCATED ON EXISTING DISH Wireless L.L.C EQUIPMENT.

A) IF THE INFORMATION SIGN IS A STICKER, IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C EQUIPMENT B) IF THE INFORMATION SIGH IS A METAL SIGN IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C H-FRAMI IF FME REPORT IS NOT AVAILABLE AT THE TIME OF CREATION OF CONSTRUCTION DOCUMENTS: PLEASE CONTACT DISH

- IF EME REPORT IS NOT AVAILABLE AT THE TIME OF CREATION OF CONSTRUCTION DOCUMENTS; PLEASE CONTACT DISH FURTHER INSTRUCTION ON HOW TO PROCEED.

## NOTES:

- 1. FOR DISH Wireless L.L.C. LOGO, SEE DISH Wireless L.L.C. DESIGN SPECIFICATIONS (PROVIDED BY DISH Wireless L.L.C.)
- 2. SITE ID SHALL BE APPLIED TO SIGNS USING "LASER ENGRAVING" OR ANY OTHER WEATHER RESISTANT METHOD (DISH Wireless L.L.C. APPROVAL REQUIRED)
- 3. TEXT FOR SIGNAGE SHALL INDICATE CORRECT SITE NAME AND NUMBER AS PER DISH Wireless L.L.C. CONSTRUCTION MANAGER RECOMMENDATIONS.
- 4. CABINET/SHELTER MOUNTING APPLICATION REQUIRES ANOTHER PLATE APPLIED TO THE FACE OF THE CABINET WITH WATER PROOF POLYURETHANE ADHESIVE
- 5. ALL SIGNS WILL BE SECURED WITH EITHER STAINLESS STEEL ZIP TIES OR STAINLESS STEEL TECH SCREWS
- 6. ALL SIGNS TO BE 8.5"x11" AND MADE WITH 0.04" OF ALUMINUM MATERIAL

enna(s)	
anna(3)	
ields beyond this point MAY	S ONLY
igns and site guidelines for requency environments.	RENCE PURPOSES
eless L.L.C. NOC at 1-866-624-6874 eyond this point.	FOR REFERENCE
	SIGN IS
	requency environments. eless L.L.C. NOC at 1-866-624-6874

ND POTENTIAL RF EXPOSURE.
ENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL NCE WITH FEDERAL COMMUNICATIONS
GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL NCE WITH FEDERAL COMMUNICATIONS
AAN EXPOSURE. FAILURE TO OBEY ALL POSTED RIOUS INJURY. IN ACCORDANCE WITH FEDERAL 7(b)
PARTY PREVIOUSLY AUTHORIZED BY DISH
CABINET. E WITH A SECURE ATTACH METHOD.
I Wireless L.L.C. CONSTRUCTION MANAGER FOR
c)

## H Wireless L.L.C. APPROVAL REQUIRED) MANAGER RECOMMENDATIONS.

# INFORMAT

# This is an access point area with transmitting an

Obey all signs and barriers beyond t Call the DISH Wireless L.L.C. NOC at 1-8

Site ID:

THIS SIGN IS FOR REFERENCE PURPOSES ONLY





Transmitting Antenna(s)

Radio frequency fields beyond this point MAY *EXCEED* the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dish

THIS SIGN IS FOR REFERENCE PURPOSES ONLY





Transmitting Antenna(s)

Radio frequency fields beyond this po EXCEED the FCC Occupational expos

Obey all posted signs and site guideling working in radio frequency environment

Call the DISH Wireless L.L.C. NOC at ' prior to working beyond this point.

Site ID: _



<u>RF SIGNAGE</u>

	digital distribution of the second se		
t to an ntennas.	5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120		
this point. 866-624-6874	DEVELOPMENT 140 BEACH 137TH STREET ROCKAWAY, NY 11694		
ING	DE CONVE MAC MAC MAC MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MAC MURINI MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING MILLING M		
	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: ION RFDS REV #: CONSTRUCTION		
	DOCUMENTS SUBMITTALS		
	REV DATE DESCRIPTION		
	A         10/21/2022         ISSUED FOR REVIEW           0         11/03/2022         ISSUED FOR CONSTRUCTION		
oint S			
sure limit.			
	A&E PROJECT NUMBER FA 10113256		
ents.	DISH Wireless L.L.C. PROJECT INFORMATION		
24-0014 20 24-0014 20 24-0014	NJJER02030A 284 NEW CANAAN AVE NORWALK, CT 06850		
THIS SIGN	SHEET TITLE		
	SIGNAGE SHEET NUMBER		
	GN-2		

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

 CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
 THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES, ANY

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUC DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

## GENERAL NOTES:

## 1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.



CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE 17. AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. GRADE PVC CONDUIT. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 2. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION psf. OCCURS OR FLEXIBILITY IS NEEDED. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. SCREW FITTINGS ARE NOT ACCEPTABLE. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°f AT TIME OF PLACEMENT. 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE NEC. BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER. DESIGNED TO SWING OPEN DOWNWARDS 21. MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. (WIREMOLD SPECMATE WIREWAY). ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). 22. SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF #4 BARS AND SMALLER 40 ksi THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE #5 BARS AND LARGER 60 ksi MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT DRAWINGS: FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET • CONCRETE EXPOSED TO EARTH OR WEATHER: STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. • #6 BARS AND LARGER 2" METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR • #5 BARS AND SMALLER 1-1/2" EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR • CONCRETE NOT EXPOSED TO EARTH OR WEATHER: BETTER) FOR EXTERIOR LOCATIONS. SLAB AND WALLS 3/4" NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. BEAMS AND COLUMNS 1-1/2" THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, 27. TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. **ELECTRICAL INSTALLATION NOTES:** INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". 29. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 30. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED. WIRING. RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE. 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE 5. LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE. PHASE CONFIGURATION. WIRE CONFIGURATION. POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. TIE WRAPS ARE NOT ALLOWED. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) 9 WITH TYPE THHW. THWN. THWN-2. XHHW. XHHW-2. THW. THW-2. RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 10. TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS 11. OTHERWISE SPECIFIED. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE). RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND 14. NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.



## **GROUNDING NOTES:**

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. 9 USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY 10. SUPPORTED.

EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. 11.

ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. 13.

ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR.

APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND 18. CONDUCTOR.

GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR. SUCH AS METALLIC CONDUITS. METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.







## EXHIBIT D

Structural Analysis

P Belle Harbor, NY P Atlanta, GA P Brick, NJ P Lewes, DE P Tampa, FL P Detroit, MI





GPD# 2022723.01.105046.01 August 4, 2022

#### **COMPREHENSIVE STRUCTURAL ANALYSIS REPORT**

SITE DESIGNATION:	Dish Applicant Site #: AT&T USID #: AT&T Site FA #: AT&T Site Name:	NJJER02030A 105046 10113256 NORWALK CT NEW CANAAN AVE
ANALYSIS CRITERIA:	Codes:	TIA-222-H 117 mph (3-second gust) w/ 0" ice 50 mph (3-second gust) w/ 1" ice Ss = 0.246, S1 = 0.057
SITE DATA:		284 New Canaan Avenue, Norwalk, CT 6850, Fairfield County Latitude 41°08' 10.10" N, Longitude 73°27' 23.10" W Market: NEW ENGLAND 140' Stealth Monopole

To whom it may concern,

GPD is pleased to submit this Comprehensive Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

#### **Analysis Results**

-

Tower Stress Level with Proposed Equipment:	39.1%	Pass
Foundation Ratio with Proposed Equipment:	23.1%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and AT&T. If you have any questions or need further assistance on this or any other projects, please do not hesitate to call.

Respectfully submitted,



#### SUMMARY & RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT&T Mobility and commissioned by AT&T.

This analysis has been performed in accordance with the TIA-222-H Standard based upon a 3-second gust wind speed of 117 mph. Applicable Standard references and design criteria are listed in Appendices A & B.

#### The proposed feedlines shall be installed as shown in Appendices A & B for the analysis results to be valid.

Member	Capacity	Results
Monopole	28.5%	Pass
Anchor Rods	24.3%	Pass
Base Plate	39.1%	Pass
Foundation	23.1%	Pass

#### TOWER SUMMARY AND RESULTS

#### RECOMMENDATIONS

The tower and its foundation(s) have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

#### ANALYSIS METHOD

tnxTower (Version 8.1.1.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various load cases. Selected output from the analysis is included the report appendices. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information.

#### **DOCUMENTS PROVIDED**

Document	Remarks	Source
RF Data Sheet	RFDS Name: CT2200 Rev. 1, updated 5/27/2022	AT&T
AT&T Site Lease Application	Dish Applicant Site #: NJJER02030A, dated 9/29/2021	AT&T
Tower Design	Engineering Endeavors Project #: 17340, dated 10/13/2014	AT&T
Foundation Design	Engineering Endeavors Project #: 17340, dated 10/13/2014	AT&T
Geotechnical Report	Dewberry Site: National Guard Armory-SR1038, dated 4/7/2014	AT&T
Previous Tower Analysis	Not Provided	N/A
Tower Mapping	Not Provided	N/A

#### ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

- 1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
- 2. The appurtenance configuration is as supplied, determined from available photos, and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- 3. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
- 4. The soil parameters are as per data supplied or as assumed and stated in the calculations.
- 5. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
- 6. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
- 7. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
- 8. All prior structural modifications, if applicable, are assumed to be as per data supplied/available and to have been properly installed.
- 9. Loading interpreted from photos is accurate to ±5' AGL, antenna size accurate to ±3.3 sf, and coax equal to the number of existing antennas without reserve.
- 10. All existing and proposed loading has been taken from the available site photos as well as documents supplied to GPD at the time of generating this report. All such documents are listed in the Documents Provided Table and are assumed to be accurate. GPD is not responsible for loading scenarios outside those conveyed in the supplied documentation.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

#### DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Comprehensive Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

### **APPENDIX A**

Tower Analysis Summary Form

#### **Tower Analysis Summary Form**

#### General Info

Site Name	NORWALK CT NEW CANAAN AVE
Site Number	105046
FA Number	10113256
Date of Analysis	8/4/2022
Company Performing Analysis	GPD

Tower Info	Description	Date
Tower Type (G, SST, MP)	MP	
Tower Height (top of steel AGL)	140'	
Tower Manufacturer	n/a	
Tower Model	Stealth	
Tower Design	Engineering Endeavors Project #: 17340	10/13/2014
Foundation Design	Engineering Endeavors Project #: 17340	10/13/2014
Geotechnical Report	National Guard armory-SR1038	4/7/2014
Previous Tower Analysis	n/a	
Tower Mapping	n/a	

#### Design Parameters

Design Code Used	TIA-222-H
Location of Tower (County, State)	Fairfield, CT
Wind Speed (mph)	117 (3-second gust)
Ice Thickness (in)	1
Risk Category (I, II, III)	Ш
Exposure Category (B, C, D)	В
Topographic Category (1 to 5)	1

### The information contained in this summary report is not to be used independently from the PE stamped tower analysis.

# Analysis Results (% Maximum Usage) Existing/Reserved + Future + Proposed Condition Tower (%) 28.5% Tower Base (%) 39.1% Foundation (%) 23.1% Foundation Adequate? Yes

#### Existing / Reserved Loading

	Antenna							Mount				Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Int/Ext	
AT&T Mobility	134	134	3*	Panel	CCI	OPA-65R-LCUU-H8	30/150/270			Inside Canistrer	12	Unknown	7/8''	Internal	
AT&T Mobility	134	134	12*	Diplexer	Kaelus	DBC2055F1V1-2				Inside Canistrer					
AT&T Mobility	134	134	6	ТМА	CCI	TMABPD7823VG12A				Inside Canistrer					
AT&T Mobility	124	124	3*	Panel	CCI	OPA-65R-LCUU-H8	30/150/270			Inside Canistrer	12	Unknown	7/8''	Internal	
AT&T Mobility	124	124	6*	Diplexer	Kaelus	DBC2055F1V1-2				Inside Canistrer					
AT&T Mobility	124	124	6	Diplexer	Kaelus	DBC2055F1V1-2				Inside Canistrer					
AT&T Mobility	124	124	6*	ТМА	CCI	TMABPD7823VG12A				Inside Canistrer					

*Indicates equipment/feedline quantity to be removed.

#### Proposed Loading

	Antenna						Mount			Transmission Line				
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Int/Ext
Dish Wireless	117	117	3	Panel	Commscope	FFVV-65B-R3	80/200/300			Inside Canister	12	Unknown	7/8"	Internal
Dish Wireless	117	117	3	ТМА	Kaelus	SBT0003F1V2				Inside Canister	1	Hybrid	1.411"	Internal
Dish Wireless	117	177	3	Diplexer	Commscope	CDX623T-DS-T   E15V95P63				Inside Canister				

Note: The proposed loading shall be in addition to the remaining existing equipment at the same elevation.

Note: The proposed coax shall be installed inside the monopole in order for this analysis to be valid.

#### Future Loading

	Antenna							Mount			Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Туре	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Туре	Quantity	Model	Size	Attachment Int/Ext
AT&T Mobility	134	134	3	Panel	Commscope	NNHHS4-65A-R5	30/150/270			on the existing mounts				
AT&T Mobility	124	124	3	Panel	CCI	TPA65R-BU8DA-K	30/150/270			on the existing mounts				
AT&T Mobility	124	124	6	TMA	Commscope	TMAT192123B68-31				on the existing mounts				

### **APPENDIX B**

Tower Analysis Output File



#### DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Canister Load1	140	(2) TMAT192123B68-31	124
NNHHS4-65A-R5 w/ Mount Pipe	134	TPA-65R-BU8DA-K w/ Mount Pipe	124
NNHHS4-65A-R5 w/ Mount Pipe	134	TPA-65R-BU8DA-K w/ Mount Pipe	124
(2) TMABPD7823VG12A	134	FFVV-65B-R3-V1 w/ Mount Pipe	117
(2) TMABPD7823VG12A	134	SBT0003F1V2	117
(2) TMABPD7823VG12A	134	SBT0003F1V2	117
NNHHS4-65A-R5 w/ Mount Pipe	134	SBT0003F1V2	117
Canister Load2	130	CDX623T-DS-T   E15V95P63	117
TPA-65R-BU8DA-K w/ Mount Pipe	124	CDX623T-DS-T   E15V95P63	117
(2) DBC2055F1V1-2	124	CDX623T-DS-T   E15V95P63	117
(2) DBC2055F1V1-2	124	FFVV-65B-R3-V1 w/ Mount Pipe	117
(2) DBC2055F1V1-2	124	FFVV-65B-R3-V1 w/ Mount Pipe	117
(2) TMAT192123B68-31	124	Canister Load3	110
(2) TMAT192123B68-31	124	Canister Load4	90

#### **MATERIAL STRENGTH**

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-35	35 ksi	63 ksi	A572-65	65 ksi	80 ksi
A572-50	50 ksi	65 ksi			

#### **TOWER DESIGN NOTES**

1. Tower is located in Fairfield County, Connecticut.

Tower designed for Exposure B to the TIA-222-H Standard.
 Tower designed for a 117 mph basic wind in accordance with the TIA-222-H Standard.

4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.

Deflections are based upon a 60 mph wind.
 Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft

8. TOWER RATING: 28.5%



MOMENT

240 kip-ft

MOMENT

567 kip-ft

**GPD** 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101

^{Job:} Dish Applican	nt Site #: NJJER020	30A
Project: 2022723.01.10	5046.01	
Client: AT&T	Drawn by: jdross	App'd:
Code: TIA-222-H	Date: 08/04/22	Scale: NTS
Path:		Dwg No. E-1

### Feed Line Plan





tnxTower	Job	Dish Applicant Site #: NJJER02030A	Page 1 of 9
<b>GPD</b> 520 South Main Street Suite 2531	Project	2022723.01.105046.01	Date 08:33:59 08/04/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	AT&T	Designed by jdross

### **Tower Input Data**

The tower is a monopole.

This tower is designed using the TIA-222-H standard. The following design criteria apply: Tower is located in Fairfield County, Connecticut. Tower base elevation above sea level: 197.00 ft. Basic wind speed of 117 mph. Risk Category II. Exposure Category B. Simplified Topographic Factor Procedure for wind speed-up calculations is used. Topographic Category: 1. Crest Height: 0.00 ft. Nominal ice thickness of 1.0000 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

### **Options**

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification ↓ Use Code Stress Ratios ↓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends

SR Members Are Concentric

- Distribute Leg Loads As Uniform Assume Legs Pinned
- $\sqrt{\text{Assume Rigid Index Plate}}$
- $\sqrt{}$  Use Clear Spans For Wind Area
- $\sqrt{}$  Use Clear Spans For KL/r
- Retension Guys To Initial Tension
- $\sqrt{}$  Bypass Mast Stability Checks
- $\sqrt{}$  Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets
- √ Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

### **Tapered Pole Section Geometry**

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	

tran Tonu or	Job		Page
tnxTower		Dish Applicant Site #: NJJER02030A	2 of 9
GPD	Project		Date
520 South Main Street Suite 2531		2022723.01.105046.01	08:33:59 08/04/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	AT&T	Designed by jdross

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	140.00-130.00	10.00	0.00	Round	4.5000	4.5000	0.3150		A53-B-35
									(35 ksi)
L2	130.00-110.00	20.00	0.00	Round	6.0000	6.0000	3.0000		A572-50
									(50 ksi)
L3	110.00-90.00	20.00	0.00	Round	8.0000	8.0000	4.0000		A572-65
									(65 ksi)
L4	90.00-48.16	41.84	5.67	18	35.5000	41.3800	0.1875	0.7500	A572-65
									(65 ksi)
L5	48.16-1.00	52.83		18	40.2082	47.5000	0.2500	1.0000	A572-65
									(65 ksi)

## **Tapered Pole Properties**

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	$in^2$	$in^4$	in	in	in ³	$in^4$	$in^2$	in	
L1	4.5000	4.1415	9.1182	1.4838	2.2500	4.0525	18.2365	2.0695	0.0000	0
	4.5000	4.1415	9.1182	1.4838	2.2500	4.0525	18.2365	2.0695	0.0000	0
L2	6.0000	28.2743	63.6173	1.5000	3.0000	21.2058	127.2345	14.1287	0.0000	0
	6.0000	28.2743	63.6173	1.5000	3.0000	21.2058	127.2345	14.1287	0.0000	0
L3	8.0000	50.2655	201.0619	2.0000	4.0000	50.2655	402.1239	25.1177	0.0000	0
	8.0000	50.2655	201.0619	2.0000	4.0000	50.2655	402.1239	25.1177	0.0000	0
L4	36.0187	21.0154	3310.7855	12.5359	18.0340	183.5858	6625.9274	10.5097	5.9180	31.563
	41.9894	24.5147	5255.3313	14.6233	21.0210	250.0034	10517.5776	12.2597	6.9529	37.082
L5	41.5845	31.7068	6395.8896	14.1851	20.4257	313.1288	12800.1950	15.8564	6.6366	26.547
	48.1942	37.4929	10575.2300	16.7738	24.1300	438.2607	21164.3751	18.7500	7.9200	31.68

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor $A_f$	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
ft	$ft^2$	in					in	in	in
L1				1	0	1			
140.00-130.00									
L2				1	0	1			
130.00-110.00									
L3				1	0	1			
110.00-90.00									
L4 90.00-48.16				1	1	1			
L5 48.16-1.00				1	1	1			

# Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf
LDF5-50A(7/8")	С	No	No	Inside Pole	134.00 - 8.00	12	No Ice	0.00	0.33
· · · ·							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33
LDF5-50A(7/8")	С	No	No	Inside Pole	117.00 - 8.00	12	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33

tran Tonu on	Job		Page
tnxTower		Dish Applicant Site #: NJJER02030A	3 of 9
GPD	Project		Date
520 South Main Street Suite 2531		2022723.01.105046.01	08:33:59 08/04/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	AT&T	Designed by jdross

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg	Shiciu	Torque Calculation	Type	ft	Tuniber		ft²/ft	plf
1.411" Hybrid Cable	С	No	No	Inside Pole	117.00 - 8.00	1	No Ice	0.00	1.00
							1/2" Ice	0.00	1.00
	0			<b>.</b> .	124.00 0.00	10	1" Ice	0.00	1.00
LDF5-50A(7/8")	С	No	No	Inside Pole	124.00 - 8.00	12	No Ice 1/2" Ice	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.33 0.33
							1" Ice	0.00	0.33

### Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	$A_R$	$A_F$	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	-
	ft		$ft^2$	$ft^2$	$ft^2$	$ft^2$	K
L1	140.00-130.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.02
L2	130.00-110.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.17
L3	110.00-90.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.26
L4	90.00-48.16	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.54
L5	48.16-1.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.52

# Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	$A_R$	$A_F$	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	$ft^2$	$ft^2$	$ft^2$	$ft^2$	K
L1	140.00-130.00	А	1.151	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.02
L2	130.00-110.00	А	1.138	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.17
L3	110.00-90.00	А	1.117	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.26
L4	90.00-48.16	А	1.077	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.54
L5	48.16-1.00	Α	0.970	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.52

Areas Too an ora	Job		Page
tnxTower		Dish Applicant Site #: NJJER02030A	4 of 9
<b>GPD</b> 520 South Main Street Suite 2531	Project	2022723.01.105046.01	Date 08:33:59 08/04/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	AT&T	Designed by jdross

### Feed Line Center of Pressure

Section	Elevation	$CP_X$	$CP_Z$	$CP_X$	$CP_Z$
				Ice	Ice
	ft	in	in	in	in
L1	140.00-130.00	0.0000	0.0000	0.0000	0.0000
L2	130.00-110.00	0.0000	0.0000	0.0000	0.0000
L3	110.00-90.00	0.0000	0.0000	0.0000	0.0000
L4	90.00-48.16	0.0000	0.0000	0.0000	0.0000
L5	48.16-1.00	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

#### **Discrete Tower Loads** Description Offset Offsets: $C_A A_A$ $C_A A_A$ Weight Face Azimuth Placement orType Horz Adjustment Front Side Lateral Leg Vert ft ft $ft^2$ $ft^2$ K ft ft NNHHS4-65A-R5 w/ Mount 0.0000 0.00 134.00 No Ice 0.00 0.13 Α None 1/2" Ice 0.00 0.00 0.21 Pipe 1" Ice 0.29 0.00 0.00 NNHHS4-65A-R5 w/ Mount В None 0.0000 134.00 No Ice 0.00 0.00 0.13 1/2" Ice 0.00 0.00 0.21 Pipe 1" Ice 0.00 0.00 0.29 0.0000 NNHHS4-65A-R5 w/ Mount С 134.00 No Ice None 0.00 0.00 0.13 1/2" Ice 0.00 0.00 0.21 Pipe 1" Ice 0.29 0.00 0.00 (2) TMABPD7823VG12A None 0.0000 134.00 No Ice 0.00 0.00 0.03 Α 1/2" Ice 0.00 0.04 0.00 1" Ice 0.00 0.00 0.05 (2) TMABPD7823VG12A В 0.0000 134.00 0.00 0.03 None No Ice 0.00 1/2" Ice 0.00 0.00 0.04 1" Ice 0.05 0.00 0.00 (2) TMABPD7823VG12A С None 0.0000 134.00 No Ice 0.00 0.00 0.03 1/2" Ice 0.04 0.00 0.00 1" Ice 0.000.00 0.05 TPA-65R-BU8DA-K w/ 0.0000 Α None 124.00 No Ice 0.00 0.00 0.12 Mount Pipe 1/2" Ice 0.00 0.00 0.23 1" Ice 0.00 0.00 0.36 TPA-65R-BU8DA-K w/ 0.0000 В None 124.00 No Ice 0.000.00 0.12 1/2" Ice 0.00 0.00 0.23 Mount Pipe 1" Ice 0.00 0.00 0.36 No Ice TPA-65R-BU8DA-K w/ С 0.0000 124.00 0.00 0.00 0.12 None Mount Pipe 1/2" Ice 0.00 0.00 0.23 1" Ice 0.00 0.00 0.36 (2) DBC2055F1V1-2 А None 0.0000 124.00 No Ice 0.000.00 0.01 0.01 1/2" Ice 0.00 0.00 1" Ice 0.00 0.00 0.02 (2) DBC2055F1V1-2 0.0000 0.01 В None 124.00 No Ice 0.00 0.00 1/2" Ice 0.000.00 0.01 0.02 1" Ice 0.00 0.00 (2) DBC2055F1V1-2 С 0.0000 124.00 None No Ice 0.00 0.00 0.01

tnxTower	Job	Page	
that ower	Dish Ap	plicant Site #: NJJER02030A	5 of 9
GPD	Project		Date
520 South Main Street Suite 2531	2	2022723.01.105046.01	08:33:59 08/04/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	AT&T	Designed by jdross

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft ft	0	ft		ft ²	ft ²	K
						1/2" Ice	0.00	0.00	0.01
						1" Ice	0.00	0.00	0.02
(2) TMAT192123B68-31	А	None		0.0000	124.00	No Ice	0.00	0.00	0.02
						1/2" Ice	0.00	0.00	0.03
(2) TMAT102122D(8,21	р	N		0.0000	124.00	1" Ice	0.00	0.00	0.04
(2) TMAT192123B68-31	В	None		0.0000	124.00	No Ice 1/2" Ice	0.00	0.00	0.02
						1/2 Ice 1" Ice	$0.00 \\ 0.00$	$0.00 \\ 0.00$	0.03 0.04
(2) TMAT102122D69 21	С	Nona		0.0000	124.00	No Ice	0.00	0.00	0.04
(2) TMAT192123B68-31	C	None		0.0000	124.00	1/2" Ice	0.00	0.00	0.02
						172 ICe 1" Ice	0.00	0.00	0.03
FFVV-65B-R3-V1 w/ Mount	А	None		0.0000	117.00	No Ice	0.00	0.00	0.04
Pipe	А	None		0.0000	117.00	1/2" Ice	0.00	0.00	0.13
ripe						172 ICe 1" Ice	0.00	0.00	0.24
FFVV-65B-R3-V1 w/ Mount	В	None		0.0000	117.00	No Ice	0.00	0.00	0.13
Pipe	Б	None		0.0000	117.00	1/2" Ice	0.00	0.00	0.13
Tipe						1" Ice	0.00	0.00	0.24
FFVV-65B-R3-V1 w/ Mount	С	None		0.0000	117.00	No Ice	0.00	0.00	0.13
Pipe	C	None		0.0000	117.00	1/2" Ice	0.00	0.00	0.13
Tipe						1" Ice	0.00	0.00	0.36
SBT0003F1V2	А	None		0.0000	117.00	No Ice	0.00	0.00	0.00
55100051172		rtone		0.0000	117.00	1/2" Ice	0.00	0.00	0.00
						1" Ice	0.00	0.00	0.00
SBT0003F1V2	В	None		0.0000	117.00	No Ice	0.00	0.00	0.00
55100001112	Б	rtone		0.0000	117.00	1/2" Ice	0.00	0.00	0.00
						1" Ice	0.00	0.00	0.00
SBT0003F1V2	С	None		0.0000	117.00	No Ice	0.00	0.00	0.00
						1/2" Ice	0.00	0.00	0.00
						1" Ice	0.00	0.00	0.00
CDX623T-DS-T	А	None		0.0000	117.00	No Ice	0.00	0.00	0.01
E15V95P63						1/2" Ice	0.00	0.00	0.01
						1" Ice	0.00	0.00	0.02
CDX623T-DS-T	В	None		0.0000	117.00	No Ice	0.00	0.00	0.01
E15V95P63						1/2" Ice	0.00	0.00	0.01
						1" Ice	0.00	0.00	0.02
CDX623T-DS-T	С	None		0.0000	117.00	No Ice	0.00	0.00	0.01
E15V95P63						1/2" Ice	0.00	0.00	0.01
						1" Ice	0.00	0.00	0.02
Canister Load1	С	None		0.0000	140.00	No Ice	6.75	6.75	0.09
						1/2" Ice	16.96	16.96	0.21
						1" Ice	17.42	17.42	0.32
Canister Load2	С	None		0.0000	130.00	No Ice	20.25	20.25	0.76
						1/2" Ice	50.88	50.88	1.10
						1" Ice	52.25	52.25	1.44
Canister Load3	С	None		0.0000	110.00	No Ice	27.00	27.00	0.86
						1/2" Ice	67.83	67.83	1.30
						1" Ice	69.67	69.67	1.76
Canister Load4	С	None		0.0000	90.00	No Ice	13.50	13.50	0.67
						1/2" Ice	33.92	33.92	0.89
						1" Ice	34.83	34.83	1.12

*tnxTower* 

**GPD** 

520 South Main Street Suite 2531 Akron, Ohio 44311

Phone: (330) 572-2100

FAX: (330) 572-2101

Job

Project

Client

Dish Applicant Site #: NJJER02030A

AT&T

2022723.01.105046.01

e**signed by** jdross

### Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
12	0.9  Dead+1.0  Wind  150  deg - No Ice
13	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
10	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
10	0.9  Dead+1.0  Wind  240  deg -  No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
20	0.9 Dead+1.0 Wind 270 deg - No Ice
21	1.2 Dead+1.0 Wind 300 deg - No Ice
22	0.9 Dead+1.0 Wind 300 deg - No Ice
23 24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
20 27	1.2 Dead+1.0 Vind 0 deg+1.0 Ice+1.0 Temp
28	1.2  Dead+1.0  Wind 30 deg+1.0  Ice+1.0  Temp 1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
20 29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 200 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 0 deg - Service
40	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
42	Dead+Wind 120 deg - Service
43 44	6
44 45	Dead+Wind 150 deg - Service
	Dead+Wind 180 deg - Service
46 47	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49 50	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

### **Maximum Tower Deflections - Service Wind**

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0

tnxTower	Job Dis	h Applicant Site #: NJJER02030A	Page 7 of 9
<b>GPD</b> 520 South Main Street Suite 2531	Project	2022723.01.105046.01	Date 08:33:59 08/04/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	AT&T	Designed by jdross

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	140 - 130	9.320	42	0.9812	0.0000
L2	130 - 110	7.336	42	0.8772	0.0000
L3	110 - 90	4.142	39	0.5620	0.0000
L4	90 - 48.16	2.382	39	0.2279	0.0000
L5	53.83 - 1	0.920	39	0.1495	0.0000

### **Critical Deflections and Radius of Curvature - Service Wind**

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
140.00	Canister Load1	42	9.320	0.9812	0.0000	9979
134.00	NNHHS4-65A-R5 w/ Mount Pipe	42	8.114	0.9219	0.0000	8321
130.00	Canister Load2	42	7.336	0.8772	0.0000	5248
124.00	TPA-65R-BU8DA-K w/ Mount Pipe	39	6.241	0.7971	0.0000	4007
117.00	FFVV-65B-R3-V1 w/ Mount Pipe	39	5.101	0.6863	0.0000	3258
110.00	Canister Load3	39	4.142	0.5620	0.0000	2874
90.00	Canister Load4	39	2.382	0.2279	0.0000	7028

### **Maximum Tower Deflections - Design Wind**

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	140 - 130	40.325	8	4.2591	0.0000
L2	130 - 110	31.719	8	3.8118	0.0000
L3	110 - 90	17.847	8	2.4378	0.0000
L4	90 - 48.16	10.230	8	0.9808	0.0000
L5	53.83 - 1	3.948	8	0.6415	0.0000

### **Critical Deflections and Radius of Curvature - Design Wind**

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
140.00	Canister Load1	8	40.325	4.2591	0.0000	2339
134.00	NNHHS4-65A-R5 w/ Mount Pipe	8	35.095	4.0045	0.0000	1950
130.00	Canister Load2	8	31.719	3.8118	0.0000	1228
124.00	TPA-65R-BU8DA-K w/ Mount Pipe	8	26.963	3.4641	0.0000	931
117.00	FFVV-65B-R3-V1 w/ Mount Pipe	8	22.012	2.9809	0.0000	752
110.00	Canister Load3	8	17.847	2.4378	0.0000	660
90.00	Canister Load4	8	10.230	0.9808	0.0000	1615

**Compression Checks** 

**GPD** 

520 South Main Street Suite 2531 Akron, Ohio 44311

Phone: (330) 572-2100

FAX: (330) 572-2101

Job

Project

Client

### Pole Design Data

Section No.	Elevation	Size	L	$L_u$	Kl/r	Α	$P_u$	$\phi P_n$	Ratio P _u
	ft		ft	ft		$in^2$	Κ	K	$\phi P_n$
L1	140 - 130 (1)	TP4.5x4.5x0.315	10.00	0.00	0.0	4.1415	-0.97	130.46	0.007
L2	130 - 110 (2)	TP6x6x3	20.00	0.00	0.0	28.2743	-5.50	1272.35	0.004
L3	110 - 90 (3)	TP8x8x4	20.00	0.00	0.0	50.2655	-10.95	2940.53	0.004
L4	90 - 48.16 (4)	TP41.38x35.5x0.1875	41.84	0.00	0.0	24.0405	-15.62	1246.92	0.013
L5	48.16 - 1 (5)	TP47.5x40.2082x0.25	52.83	0.00	0.0	37.4929	-24.41	2129.38	0.011

### Pole Bending Design Data

Section No.	Elevation	Size	$M_{ux}$	$\phi M_{nx}$	Ratio M _{ux}	$M_{uy}$	$\phi M_{ny}$	Ratio M _{uy}
	ft		kip-ft	kip-ft	$\phi M_{nx}$	kip-ft	kip-ft	$\phi M_{ny}$
L1	140 - 130 (1)	TP4.5x4.5x0.315	3.00	14.51	0.207	0.00	14.51	0.000
L2	130 - 110 (2)	TP6x6x3	28.18	135.00	0.209	0.00	135.00	0.000
L3	110 - 90 (3)	TP8x8x4	74.49	416.00	0.179	0.00	416.00	0.000
L4	90 - 48.16 (4)	TP41.38x35.5x0.1875	215.56	1039.10	0.207	0.00	1039.10	0.000
L5	48.16 - 1 (5)	TP47.5x40.2082x0.25	567.15	2074.22	0.273	0.00	2074.22	0.000

### Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	$\phi V_n$	Ratio V _u	Actual T _u	$\phi T_n$	Ratio T _u
	ft		Κ	K	$\phi V_n$	kip-ft	kip-ft	$\phi T_n$
L1	140 - 130 (1)	TP4.5x4.5x0.315	0.33	39.14	0.009	0.00	14.40	0.000
L2	130 - 110 (2)	TP6x6x3	1.29	381.70	0.003	0.00	100.68	0.000
L3	110 - 90 (3)	TP8x8x4	2.25	882.16	0.003	0.00	310.23	0.000
L4	90 - 48.16 (4)	TP41.38x35.5x0.1875	5.08	421.91	0.012	0.00	1492.57	0.000
L5	48.16 - 1 (5)	TP47.5x40.2082x0.25	8.19	658.00	0.012	0.00	2722.75	0.000

### Pole Interaction Design Data

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	$\phi P_n$	$\phi M_{nx}$	$\phi M_{ny}$	$\phi V_n$	$\phi T_n$	Ratio	Ratio	
L1	140 - 130 (1)	0.007	0.207	0.000	0.009	0.000	0.214	1.000	4.8.2 🗸
L2	130 - 110 (2)	0.004	0.209	0.000	0.003	0.000	0.213	1.000	4.8.2 🗸
L3	110 - 90 (3)	0.004	0.179	0.000	0.003	0.000	0.183	1.000	4.8.2 🖌
L4	90 - 48.16 (4)	0.013	0.207	0.000	0.012	0.000	0.220	1.000	4.8.2 🖌

tnxTower	Job		Page
inx i ower		Dish Applicant Site #: NJJER02030A	9 of 9
GPD	Project		Date
520 South Main Street Suite 2531		2022723.01.105046.01	08:33:59 08/04/22
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	AT&T	Designed by jdross

Section No.	Elevation	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	$Ratio V_u$	Ratio $T_u$	Comb. Stress	Allow. Stress	Criteria
	ft	$\phi P_n$	$\phi M_{nx}$	$\phi M_{ny}$	$\phi V_n$	$\phi T_n$	Ratio	Ratio	
L5	48.16 - 1 (5)	0.011	0.273	0.000	0.012	0.000	0.285	1.000	4.8.2 🗸

# Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	${}^{\phi P_{allow}}_{K}$	% Capacity	Pass Fail
L1	140 - 130	Pole	TP4.5x4.5x0.315	1	-0.97	130.46	21.4	Pass
L2	130 - 110	Pole	TP6x6x3	2	-5.50	1272.35	21.3	Pass
L3	110 - 90	Pole	TP8x8x4	3	-10.95	2940.53	18.3	Pass
L4	90 - 48.16	Pole	TP41.38x35.5x0.1875	4	-15.62	1246.92	22.0	Pass
L5	48.16 - 1	Pole	TP47.5x40.2082x0.25	5	-24.41	2129.38	28.5	Pass
						Summary	ELC:	E+P
						Pole (L5)	28.5	Pass
						Rating =	28.5	Pass

### **APPENDIX C**

Additional Calculations

Coc	le	
Code:	TIA-222-H	
Ice Thickness:	1	in
Windspeed (V):	117	mph
Ice Wind Speed (V):	50	mph
Exposure Category:	В	
Topographic Feature:	N/A	
Risk Category:	II	
Tower Info	ormation	
Total Tower Height:	139	ft

Base Tower Height:	89	ft
Total Canister Length:	50	ft
Number of Canister Assembly		
Sections:	3	



Canister Section Number ¹ :	Canister Assembly Length (ft):	Canister Assembly Diameter (in):	Ventilated Canister:	<u>Manufacturer²:</u>	Number of Sides Canister Section	<u>Plate</u> <u>Type:</u>	Mating Flange Plate Thickness (in) ³ :	Mating Flange Plate Diameter (in):	Solidity Ratio	Plate Weight (Kip):	Canister Weight (Kip)	Vent Length (ft):
1	10	36	No		Round	1	1.75	37	0.45	0.480	0.188	0-0
2	20	36	No		Round	1	1.75	37	0.45	0.480	0.377	0-0
3	20	36	No		Round	1	1.75	37	0.45	0.480	0.377	0-0

¹ Sections are numbered from the top of the tower down

² Select manufacturer if available for vented canister. Leave blank to autocalculate Cf values.

 $^{\rm 3}$  Mating Flange Plate Thickness at the bottom of canister section

Flag on Tower: No

Truck Ball on Tower: No

Ge	eometry : Base	Tower + Spine		105046.eri <i>(last saved 08/0</i>	2 10:17 am)				
					Bottom	Wall			1
Pole Height Above	Section	Lap Splice			Diameter	Thickness	Bend	Pole	
Base (ft)	Length (ft)	Length (ft)	Number of Sides	Top Diameter (in)	(in)	(in)	Radius (in)	Material	Delet
139	10	0	Round	4.5	4.5	0.315	1.26	A53-B-35	[x]
129	20	0	Round	6	6	3	12	A572-50	[x]
109	20	0	Round	8	8	4	16	A572-65	[x]
89	41.84	5.67	18	35.5	41.38	0.1875	0.75	A572-65	[x]
52.83	52.83	0	18	40.208164	47.5	0.25	1	A572-65	[x]

	Discrete Loads : C _F A _F for Canister Assembly											
Canister Loading	Apply C _F A _F at Elevation(z) (ft)	C _F A _F No Ice (ft ² )	C _F A _F 1/2" Ice (ft ² )	C _F A _F 1" Ice (ft ² )	C _F A _F 2" Ice (ft ² )	C _F A _F 4" Ice (ft ² )	Canister Assembly Weight No Ice (Kip)	Canister Assembly Weight 1/2" Ice (Kip)				
Canister Load 1	139	6.750	16.958	17.417	18.333	20.167	0.094	0.206				
Canister Load 2	129	20.250	50.875	52.250	55.000	60.500	0.763	1.097				
Canister Load 3	109	27.000	67.833	69.667	73.333	80.667	0.857	1.303				
Canister Load 4	89	13.500	33.917	34.833	36.667	40.333	0.669	0.892				

Deflection Check Required:	Yes	Import Deflection Results	
3% Spine Deflection Check			
Allowable (3%) Horizontal Spine	Actual	Sufficient/ Insufficient	
Deflection (inches)	Deflection ¹		
	(inches)		
18.000			

¹ Relative deflection under service level wind speed



#### Anchor Rod and Base Plate Stresses, TIA-222-H-1 NJJER02030A 2022723.01.105046.01

Overturning Moment =	567.00	k*ft
Axial Force =	24.00	k
Shear Force =	8.00	k

Maximum Capacity	105%
Apply TIA-222-H Section 15.5?	No

Anchor Rods		
Number of Rods =	8	
Rod Yield Strength, F _y =	75	ksi
Rod Ultimate Strength, F _u =	100	ksi
Rod Circle =	54.75	in
Rod Diameter =	2.25	in
Rod Projection, I _{ar} =	2.25	in
Is grout present?	No	
Max Tension on Rod, $P_{ut} =$	59.08	k
Max Compression on Rod, $P_{uc}$ =	65.08	k
Shear on Rod, $V_u =$	1.00	k
Moment on Rod, $M_u =$	0.00	k-in
Tension Interaction =	5.9%	ОК
Compression Interaction =	24.3%	ОК

Stiffeners			
Configuration = None			
Configuration =	None		

Base Plate		
Location =	External	
Plate Strength, F _y =	50	ksi
φ =	0.9	
Outside Diameter =	60.75	in
Plate Thickness =	1.75	in
wcalc =	27.23	in
wmax =	17.50	in
W =	17.50	in
Z =	13.40	in ³
M _u =	235.93	k-in
φM _n =	602.93	k-in
BP Capacity =	39.1%	OK

Pole			
Pole Diameter =	47.5	in	
Number of Sides =	18		
Thickness =	0.25	in	
Pole Yield Strength =	65	ksi	

GPD Round Base Plate Stress (Rev H) - V1.2

#### **Drilled Pier Foundation**



Applied Loads			
	Comp.	Uplift	
Moment (kip-ft)	567		
Axial Force (kips)	24		
Shear Force (kips)	8		

Material Properties		
Concrete Strength, f'c:	4	ksi
Rebar Strength, Fy:	60	ksi
Tie Yield Strength, Fyt:	60	ksi

Groundwater Depth

	Pier De	esign Data		Rebar & Pier Optio
	Depth	20	ft	
	Ext. Above Grade	1	ft	Embedded Pole Ing
	Pier S	Section 1		Belled Pier Input
	From 1' above gra	ade to 20' below g	rade	
	Pier Diameter	6.5	ft	
-	Rebar Quantity	20		
	Rebar Size	11		
	Clear Cover to Ties	3	in	
	Tie Size	5		
_	Tie Spacing	12	in	

6

Report File:

Analysis Results		
Soil Lateral Check	Compression	Uplift
D _{v=0} (ft from TOC)	5.01	-
Soil Safety Factor	7.34	-
Max Moment (kip-ft)	600.22	-
Rating	18.1%	-
Soil Vertical Check	Compression	Uplift
Skin Friction (kips)	160.65	-
End Bearing (kips)	336.64	-
Weight of Concrete (kips)	90.63	-
Total Capacity (kips)	497.29	-
Axial (kips)	114.63	-
Rating	23.1%	-
Reinforced Concrete Flexure	Compression	Uplift
Critical Depth (ft from TOC)	4.88	-
Critical Moment (kip-ft)	600.18	-
Critical Moment Capacity	4660.28	-
Rating	12.9%	-
Reinforced Concrete Shear	Compression	Uplift
Critical Depth (ft from TOC)	13.82	-
Critical Shear (kip)	74.07	-
Critical Shear Capacity	649.83	-
Rating	11.4%	-
Structural Foundation Rating	10	9%

Check Limitation	
Apply TIA-222-H Section 15.5:	
N/A	
Additional Longitudinal Ret	bar
Input Effective Depths (else Actual):	
Shear Design Options	
Check Shear along Depth of Pier:	~
Utilize Shear-Friction Methodology:	
Override Critical Depth:	
Go to Soil Ca	lculations

Soil Profile	

23.1%

Soil Interaction Rating

4

# of Layers

Layer	Top (ft)	Bottom (ft)	Thickness (ft)	γ _{soil} (pcf)	γ _{concrete} (pcf)	Cohesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)	Calculated Ultimate Skin Friction Uplift (ksf)	Ultimate Skin Friction Comp Override (ksf)	I IIItimato Skin	Ult. Net Bearing Capacity (ksf)	SPT Blow Count	Soil Type
1	0	2	2	125	150			0.000	0.000					Cohesionless
2	2 2	6	4	125	150		37	0.615	0.615				26	Cohesionless
3	6 6	10	4	62.6	87.6		37	0.979	0.979				22	Cohesionless
4	10	20	10	52.6	87.6		30	0.412	0.412			12	5	Cohesionless







# Pinnacle Telecom Group

Professional and Technical Services

# ANTENNA SITE FCC RF Compliance Assessment and Report for Municipal Submission



### Prepared for:

Site ID: Site Address:

Latitude: Longitude: Structure type: Report date:

Compliance Conclusion:

### DISH Wireless, LLC

NJJERO2O3OA 284 New Canaan Avenue Norwalk, CT

N 41.136045 W 73.456285 Monopole October 25, 2022

DISH Wireless, LLC will be in compliance with the rules and regulations as described in OET Bulletin 65, following the implementation of the proposed mitigation as detailed in the report.

14 Ridgedale Avenue - Suite 260 • Cedar Knolls, NJ 07927 • 973-451-1630

# Contents

Introduction and Summary	3
Antenna and Transmission Data	5
Compliance Analysis	10
Compliance Conclusion	18

### Certification

Appendix A. Documents Used to Prepare the Analysis

Appendix B. Background on the FCC MPE Limit

Appendix C. Proposed Signage

Appendix D. Summary of Expert Qualifications

### Introduction and Summary

At the request of DISH Wireless, LLC ("DISH"), Pinnacle Telecom Group has performed an independent expert assessment of radiofrequency (RF) levels and related FCC compliance for proposed wireless base station antenna operations on an existing monopole located at 284 New Canaan Ave in Norwalk, CT. DISH refers to the antenna site by the code "NJJER02030A", and its proposed operation involves directional panel antennas and transmission in the 600 MHz, 2000 MHz and 2100 MHz frequency bands licensed to it by the FCC.

The FCC requires all wireless antenna operators to perform an assessment of potential human exposure to radiofrequency (RF) fields emanating from all the transmitting antennas at a site whenever antenna operations are added or modified, and to ensure compliance with the Maximum Permissible Exposure (MPE) limit in the FCC's regulations. In this case, the compliance assessment needs to take into account the RF effects of other existing antenna operations at the site by AT&T. Note that FCC regulations require any future antenna collocators to assess and assure continuing compliance based on the cumulative effects of all then-proposed and then-existing antennas at the site.

This report describes a mathematical analysis of RF levels resulting around the site in areas of unrestricted public access, that is, at street level around the site. The compliance analysis employs a standard FCC formula for calculating the effects of the antennas in a very conservative manner, in order to overstate the RF levels and to ensure "safe-side" conclusions regarding compliance with the FCC limit for safe continuous exposure of the general public.

The results of a compliance assessment can be described in layman's terms by expressing the calculated RF levels as simple percentages of the FCC MPE limit. If the normalized reference for that limit is 100 percent, then calculated RF levels higher than 100 percent indicate the MPE limit is exceeded and there is a need to mitigate the potential exposure. On the other hand, calculated RF levels consistently below 100 percent serve as a clear and sufficient demonstration of compliance with the MPE limit. We can (and will) also describe the overall worst-case result via the "plain-English" equivalent "times-below-the-limit" factor.

The result of the RF compliance assessment in this case is as follows:

- At street level, the conservatively calculated maximum RF level from the combination of proposed and existing antenna operations at the site is 1.3194 percent of the FCC general population MPE limit well below the 100-percent reference for compliance. In other words, the worst-case calculated RF level intentionally and significantly overstated by the calculations is still more than 75 times below the FCC limit for safe, continuous exposure of the general public.
- A supplemental analysis of the RF levels at the same height as the DISH antennas indicate that the FCC MPE limit is potentially exceeded.
   Therefore, it is recommended that three Caution signs and a NOC Information sign be installed at the base of the monopole.
- The results of the calculations, along with the proposed mitigation, combine to satisfy the FCC requirements and associated guidelines on RF compliance at street level around the site and on the subject roof. Moreover, because of the significant conservatism incorporated in the analysis, RF levels actually caused by the antennas will be lower than these calculations indicate.

The remainder of this report provides the following:

- relevant technical data on the proposed DISH antenna operations at the site, as well as on the other existing antenna operations;
- a description of the applicable FCC mathematical model for calculating RF levels, and application of the relevant technical data to that model;
- analysis of the results of the calculations against the FCC MPE limit, and the compliance conclusion for the site.

In addition, four Appendices are included. Appendix A provides information on the documents used to prepare the analysis. Appendix B provides background on the FCC MPE limit. Appendix C details the proposed mitigation to satisfy the FCC requirements and associated guidelines on RF compliance. Appendix D provides

a summary of the qualifications of the expert certifying FCC compliance for this site.

### ANTENNA AND TRANSMISSION DATA

The plan and elevation views that follow, extracted from the site drawings, illustrate the mounting positions of the DISH antennas at the site.

### <u>Plan View:</u>



### Elevation View:



The table that follows summarizes the relevant data for the proposed DISH antenna operations. Note that the "Z" height references the centerline of the antenna.

Ant. ID	Carrier	Antenna Manufacturer	Antenna Model	Туре	Freq (MHz)	Ant. Dim. (ft.)	Total Input Power (watts)	Total ERP (watts)	Z AGL (ft)	Ant. Gain (dBd)	B/W	Azimuth	EDT	MDT
0	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	117.0	12.16	71	60	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	8630	117.0	15.96	64	60	4	0
0	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	10739	117.0	16.26	64	60	4	0
0	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	117.0	12.16	71	180	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	8630	117.0	15.96	64	180	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	10739	117.0	16.26	64	180	2	0
₿	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	117.0	12.16	71	300	2	0
€	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	8630	117.0	15.96	64	300	2	0
₿	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	10739	117.0	16.26	64	300	2	0

The area below the antennas, at street level, is of interest in terms of potential "uncontrolled" exposure of the general public, so the antenna's vertical-plane emission characteristic is used in the calculations, as it is a key determinant of the relative amount of RF emissions in the "downward" direction.

By way of illustration, Figure 1 that follows shows the vertical-plane radiation pattern of the proposed antenna model in the 600 MHz frequency band. In this type of antenna radiation pattern diagram, the antenna is effectively pointed at the three o'clock position (the horizon) and the relative strength of the pattern at different angles is described using decibel units.

Note that the use of a decibel scale to describe the relative pattern at different angles actually serves to significantly understate the actual focusing effects of the antenna. Where the antenna pattern reads 20 dB the relative RF energy emitted at the corresponding downward angle is 1/100th of the maximum that occurs in the main beam (at 0 degrees); at 30 dB, the energy is only 1/1000th of the maximum.

Finally, note that the automatic pattern-scaling feature of our internal software may skew side-by-side visual comparisons of different antenna models, or even different parties' depictions of the same antenna model.



Figure 1. Commscope FVV-65B-R3 – 600 MHz Vertical-plane Pattern

As noted at the outset, there is an existing wireless antenna operation by AT&T to include in the compliance assessment and we will conservatively assume operation with maximum channel capacity and at maximum transmitter power per channel to be used in each of its FCC-licensed frequency bands.

The table that follows summarizes the relevant data for the collocated antenna operations.

Carrier	Antenna Manufacturer	Antenna Model	Туре	Freq (MHz)	Total ERP (watts)	Ant. Gain (dBd)	Azimuth
AT&T	Generic	Generic	Panel	700	4945	11.26	N/A
AT&T	Generic	Generic	Panel	850	2400	11.76	N/A
AT&T	Generic	Generic	Panel	1900	5756	15.56	N/A
AT&T	Generic	Generic	Panel	2100	5890	15.66	N/A
AT&T	Generic	Generic	Panel	2300	4131	16.16	N/A

### **COMPLIANCE ANALYSIS**

FCC Office of Engineering and Technology Bulletin 65 ("OET Bulletin 65") provides guidelines for mathematical models to calculate the RF levels at various points around transmitting antennas. Different models apply in different areas around antennas, with one model applying to street level around a site, and another applying to the rooftop near the antennas. We will address each area of interest in turn in the subsections that follow.

#### Street Level Analysis

At street-level around an antenna site (in what is called the "far field" of the antennas), the RF levels are directly proportional to the total antenna input power and the relative antenna gain in the downward direction of interest – and the levels are otherwise inversely proportional to the square of the straight-line distance to the antenna.

Conservative calculations also assume the potential RF exposure is enhanced by reflection of the RF energy from the intervening ground. Our calculations will assume a 100% "perfect", mirror-like reflection, which is the absolute worst-case scenario.

The formula for street-level compliance assessment for any given wireless antenna operation is as follows:

MPE% = (100 * Chans * TxPower * 10 (Gmax-Vdisc/10) * 4 ) / (MPE *  $4\pi$  * R² )

where

MPE%	=	RF level, expressed as a percentage of the MPE limit applicable to continuous exposure of the general public
100	=	factor to convert the raw result to a percentage
Chans	=	maximum number of RF channels per sector
TxPower	=	maximum transmitter power per channel, in milliwatts

10 (Gmax-Vdisc/10)	=	numeric equivalent of the relative antenna gain in the downward direction of interest; data on the antenna vertical-plane pattern is taken from manufacturer specifications
4	=	factor to account for a 100-percent-efficient energy reflection from the ground, and the squared relationship between RF field strength and power density $(2^2 = 4)$
MPE	=	FCC general population MPE limit
R	=	straight-line distance from the RF source to the point of interest, centimeters

The MPE% calculations are performed out to a distance of 500 feet from the facility to points 6.5 feet (approximately two meters, the FCC-recommended standing height) off the ground, as illustrated in Figure 2, below.



Figure 2. Street-level MPE% Calculation Geometry

It is popularly understood that the farther away one is from an antenna, the lower the RF level – which is generally but not universally correct. The results of MPE% calculations fairly close to the site will reflect the variations in the vertical-plane antenna pattern as well as the variation in straight-line distance to the antenna.

Therefore, RF levels may actually increase slightly with increasing distance within the range of zero to 500 feet from the site. As the distance approaches 500 feet and beyond, though, the antenna pattern factor becomes less significant, the RF levels become primarily distance-controlled and, as a result, the RF levels generally decrease with increasing distance. In any case, the RF levels more than 500 feet from a wireless antenna site are well understood to be sufficiently low to be comfortably in compliance.

According to the FCC, when directional antennas (such as panels) are used, compliance assessments are based on the RF effect of a single (facing) antenna sector, as the effects of directional antennas pointed away from the point(s) of interest are considered insignificant. If the different parameters apply in the different sectors, compliance is based on the worst-case parameters.

Street level FCC compliance for a collocated antenna site is assessed in the following manner. At each distance point along the ground, an MPE% calculation is made for each antenna operation (including each frequency band), and the sum of the individual MPE% contributions at each point is compared to 100 percent, the normalized reference for compliance with the MPE limit. We refer to the sum of the individual MPE% contributions as "total MPE%", and any calculated total MPE% result exceeding 100 percent is, by definition, higher than the FCC limit and represents non-compliance and a need to mitigate the potential exposure. If all results are consistently below 100 percent, on the other hand, that set of results serves as a clear and sufficient demonstration of compliance with the MPE limit.

Note that the following conservative methodology and assumptions are incorporated into the MPE% calculations on a general basis:

- 1. The antennas are assumed to be operating continuously at maximum power and maximum channel capacity.
- 2. The power-attenuation effects of shadowing or other obstructions to the line-of-sight path from the antenna to the point of interest are ignored.
- 3. The calculations intentionally minimize the distance factor (R) by assuming a 6'6" human and performing the calculations from the bottom (rather than

the centerline) of each operator's lowest-mounted antenna, as applicable.

- 4. The calculations also conservatively take into account, when applicable, the different technical characteristics and related RF effects of the use of multiple antennas for transmission in the same frequency band.
- 5. The RF exposure at ground level is assumed to be 100-percent enhanced (increased) via a "perfect" field reflection from the intervening ground.

The net result of these assumptions is to intentionally and significantly overstate the calculated RF levels relative to the levels that will actually result from the antenna operations – and the purpose of this conservatism is to allow very "safeside" conclusions about compliance.

The table that follows provides the results of the MPE% calculations for each antenna operation, with the overall worst-case calculated result highlighted in bold in the last column. Note that the transmission parameters for each DISH antenna sector are identical, and the calculations reflect the worst-case result for any/all sectors.

Ground Distance (ft)	DISH 600 MHz MPE%	DISH 2000 MHz MPE%	DISH 2100 MHz MPE%	AT&T MPE%	Total MPE%
0	0.0273	0.0084	0.0366	0.0797	0.1520
-					
20	0.0437	0.0013	0.0586	0.0901	0.1937
40	0.0281	0.0395	0.0223	0.1873	0.2772
60	0.0270	0.1298	0.0283	0.2985	0.4836
80	0.2334	0.0275	0.0772	0.4823	0.8204
100	0.3539	0.1084	0.1234	0.3721	0.9578
120	0.1634	0.0233	0.1613	0.1998	0.5478
140	0.0214	0.1504	0.0158	0.2826	0.4702
160	0.0475	0.1035	0.0974	0.5824	0.8308
180	0.1540	0.0459	0.0677	0.7975	1.0651
200	0.2075	0.0443	0.0606	0.8253	1.1377
220	0.2231	0.0010	0.0278	0.7128	0.9647
240	0.1989	0.0351	0.0071	0.5949	0.8360
260	0.1549	0.0498	0.0491	0.4953	0.7491
280	0.1278	0.0239	0.0425	0.3496	0.5438
300	0.1215	0.0022	0.0145	0.2325	0.3707
320	0.1332	0.0143	0.0129	0.1408	0.3012
340	0.1600	0.0213	0.0094	0.1049	0.2956
360	0.2012	0.0160	0.0016	0.1479	0.3667
380	0.2543	0.0103	0.0080	0.2502	0.5228
400	0.2312	0.0094	0.0073	0.3964	0.6443
420	0.2880	0.0178	0.0419	0.5564	0.9041
440	0.3502	0.0360	0.0933	0.5103	0.9898
460	0.3220	0.0331	0.0857	0.6507	1.0915
480	0.3825	0.0389	0.1112	0.7868	1.3194
500	0.3539	0.0360	0.1029	0.7284	1.2212

As indicated, the maximum calculated overall RF level is 1.3194 percent of the FCC MPE limit – well below the 100-percent reference for compliance.

A graph of the overall calculation results, shown below, perhaps provides a clearer *visual* illustration of the relative compliance of the calculated RF levels. The line representing the overall calculation results shows an obviously clear, consistent margin to the FCC MPE limit.



The graphic output for the areas at street level surrounding the site is reproduced on the next page.





#### Near-field Analysis

The compliance analysis for the same height as the antennas is performed using the RoofMaster program by Waterford Consultants.

RF levels in the near field of an antenna depend on the power input to the antenna, the antenna's length and horizontal beamwidth, the mounting height of the antenna above nearby roof, and one's position and distance from the antenna. RF levels in front of a directional antenna are higher than they are to the sides or rear, and in any given horizontal direction are inversely proportional to the straight-line distance to the antenna.

The RoofMaster graphic outputs for the same height as the DISH antennas are reproduced on the next page.





RoofMaster – Same Height as the Antennas – Alpha / Beta / Gamma sectors



RoofMaster – Same Height as the Antennas – Alpha / Beta / Gamma sectors

### **COMPLIANCE CONCLUSION**

According to the FCC, the MPE limit has been constructed in such a manner that continuous human exposure to RF fields up to and including 100 percent of the MPE limit is acceptable and safe.

The conservative analysis in this case shows that the maximum calculated RF level from the combination of proposed and existing antenna operations at street level around the site is 1.3194 percent of the FCC general population MPE limit. At the same height as the antennas, the analysis shows that the calculated RF levels potentially exceed the FCC MPE limit. Per DISH guidelines, and consistent with FCC guidance on compliance, it is recommended that three Caution signs and a NOC Information sign be installed at the base of the monopole.

The results of the calculations, along with the described RF mitigation, combine to satisfy the FCC's RF compliance requirements and associated guidelines on compliance.

Moreover, because of the extremely conservative calculation methodology and operational assumptions we applied in the analysis, RF levels actually caused by the antennas will be significantly lower than the calculation results here indicate.

## Certification

It is the policy of Pinnacle Telecom Group that all FCC RF compliance assessments are reviewed, approved, and signed by the firm's Chief Technical Officer who certifies as follows:

- 1. I have read and fully understand the FCC regulations concerning RF safety and the control of human exposure to RF fields (47 CFR 1.1301 *et seq*).
- 2. To the best of my knowledge, the statements and information disclosed in this report are true, complete and accurate.
- 3. The analysis of site RF compliance provided herein is consistent with the applicable FCC regulations, additional guidelines issued by the FCC, and industry practice.
- 4. The results of the analysis indicate that the subject antenna operations will be in compliance with the FCC regulations concerning the control of potential human exposure to the RF emissions from antennas.

Daniel J. Collins Chief Teennical Officer Pinnacle Telecom Group, LLC

10/25/22 Date

## Appendix A. Documents Used to Prepare the Analysis

**RFDS:** RFDS-NJJER02030A-Preliminary-20221019-v.1_20221019091831

**CD:** NJJER02030A_PrelimCD_20220912150958

#### Appendix B. Background on the FCC MPE Limit

As directed by the Telecommunications Act of 1996, the FCC has established limits for maximum continuous human exposure to RF fields.

The FCC maximum permissible exposure (MPE) limits represent the consensus of federal agencies and independent experts responsible for RF safety matters. Those agencies include the National Council on Radiation Protection and Measurements (NCRP), the Occupational Safety and Health Administration (OSHA), the National Institute for Occupational Safety and Health (NIOSH), the American National Standards Institute (ANSI), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA). In formulating its guidelines, the FCC also considered input from the public and technical community – notably the Institute of Electrical and Electronics Engineers (IEEE).

The FCC's RF exposure guidelines are incorporated in Section 1.301 *et seq* of its Rules and Regulations (47 CFR 1.1301-1.1310). Those guidelines specify MPE limits for both occupational and general population exposure.

The specified continuous exposure MPE limits are based on known variation of human body susceptibility in different frequency ranges, and a Specific Absorption Rate (SAR) of 4 watts per kilogram, which is universally considered to accurately represent human capacity to dissipate incident RF energy (in the form of heat). The occupational MPE guidelines incorporate a safety factor of 10 or greater with respect to RF levels known to represent a health hazard, and an additional safety factor of five is applied to the MPE limits for general population exposure. Thus, the general population MPE limit has a built-in safety factor of more than 50. The limits were constructed to appropriately protect humans of both sexes and all ages and sizes and under all conditions – and continuous exposure at levels equal to or below the applicable MPE limits is considered to result in no adverse health effects or even health risk.

The reason for *two* tiers of MPE limits is based on an understanding and assumption that members of the general public are unlikely to have had appropriate RF safety training and may not be aware of the exposures they receive; occupational exposure in controlled environments, on the other hand, is assumed to involve individuals who have had such training, are aware of the exposures, and know how to maintain a safe personal work environment.

The FCC's RF exposure limits are expressed in two equivalent forms, using alternative units of field strength (expressed in volts per meter, or V/m), and power density (expressed in milliwatts per square centimeter, or mW/cm²). The table on the next page lists the FCC limits for both occupational and general population exposures, using the mW/cm² reference, for the different radio frequency ranges.

Frequency Range (F) (MHz )	Occupational Exposure ( mW/cm²)	General Public Exposure ( mW/cm²)
0.3 - 1.34	100	100
1.34 - 3.0	100	180 / F ²
3.0 - 30	900 / F ²	180 / F ²
30 - 300	1.0	0.2
300 - 1,500	F / 300	F / 1500
1,500 - 100,000	5.0	1.0

The diagram below provides a graphical illustration of both the FCC's occupational and general population MPE limits.



Because the FCC's RF exposure limits are frequency-shaped, the exact MPE limits applicable to the instant situation depend on the frequency range used by the systems of interest.

The most appropriate method of determining RF compliance is to calculate the RF power density attributable to a particular system and compare that to the MPE limit applicable to the operating frequency in question. The result is usually expressed as a percentage of the MPE limit.

For potential exposure from multiple systems, the respective percentages of the MPE limits are added, and the total percentage compared to 100 (percent of the limit). If the result is less than 100, the total exposure is in compliance; if it is more than 100, exposure mitigation measures are necessary to achieve compliance.

Note that the FCC "categorically excludes" all "non-building-mounted" wireless antenna operations whose mounting heights are more than 10 meters (32.8 feet) from the routine requirement to demonstrate compliance with the MPE limit, because such operations "are deemed, individually and cumulatively, to have no significant effect on the human environment". The categorical exclusion also applies to *all* point-to-point antenna operations, regardless of the type of structure they're mounted on. Note that the FCC considers any facility qualifying for the categorical exclusion to be automatically in compliance.

In addition, FCC Rules and Regulations Section 1.1307(b)(3) describes a provision known in the industry as "the 5% rule". It describes that when a specific location – like a spot on a rooftop – is subject to an overall exposure level exceeding the applicable MPE limit, operators with antennas whose MPE% contributions at the point of interest are less than 5% are exempted from the obligation otherwise shared by all operators to bring the site into compliance, and those antennas are automatically deemed by the FCC to satisfy the rooftop compliance requirement.

#### FCC References on RF Compliance

47 CFR, FCC Rules and Regulations, Part 1 (Practice and Procedure), Section 1.1310 (Radiofrequency radiation exposure limits).

FCC Second Memorandum Opinion and Order and Notice of Proposed Rulemaking (FCC 97-303), In the Matter of Procedures for Reviewing Requests for Relief From State and Local Regulations Pursuant to Section 332(c)(7)(B)(v) of the Communications Act of 1934 (WT Docket 97-192), Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation (ET Docket 93-62), and Petition for Rulemaking of the Cellular Telecommunications Industry Association Concerning Amendment of the Commission's Rules to Preempt State and Local Regulation of Commercial Mobile Radio Service Transmitting Facilities, released August 25, 1997.

FCC First Memorandum Opinion and Order, ET Docket 93-62, *In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation*, released December 24, 1996.

FCC Report and Order, ET Docket 93-62, *In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation*, released August 1, 1996.

FCC Report and Order, Notice of Proposed Rulemaking, Memorandum Opinion and Order (FCC 19-126), Proposed Changes in the Commission's Rules Regarding Human Exposure to Radiofrequency Electromagnetic Fields; Reassessment of Federal Communications Commission Radiofrequency Exposure Limits and Policies, released December 4, 2019.

FCC Office of Engineering and Technology (OET) Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 97-01, August 1997.

FCC Office of Engineering and Technology (OET) Bulletin 56, "Questions and Answers About Biological Effects and Potential Hazards of RF Radiation", edition 4, August 1999.

## Appendix C. Proposed Signage

<u>Final</u> <u>Compliance</u> <u>Configuration</u>	CONTROL DE LA CONTROL DE	NOTICE	CALCULUE CALLURATION	Constraints of the second seco	INFORMATION The is an access point to an area with transmitting partners, where the source and the source is the source and the source and the source and the source and the source and the source and the source term of the source and the source and the source term of the source and the source and the source and the term of the source and the source and the source and the term of the source and the source and the source and the term of the source and the source and the source and the term of the source and the source and the source and the source and the term of the source and the source and the source and the source and the term of the source and the source and the source and the source and the term of the source and the source and the source and the source and the term of the source and the source and the source and the source and the term of the source and the term of the source and the sourc	strong of 11 mg	
	GUIDELINES	NOTICE	CAUTION	WARNING	NOC INFO	BARI	RIER/MARKER
Access Point(s)	0	0	0	0	1	0	dimensions
Alpha	0	0	1	0	0	0	dimensions
Beta	0	0	1	0	0	0	dimensions
Gamma	0	0	1	0	0	0	dimensions



# Appendix D. Summary of Expert Qualifications

Synopsis:	<ul> <li>40+ years of experience in all aspects of wireless system engineering, related regulation, and RF exposure</li> <li>Has performed or led RF exposure compliance assessments on more than 20,000 antenna sites since the latest FCC regulations went into effect in 1997</li> <li>Has provided testimony as an RF compliance expert more than 1,500 times since 1997</li> <li>Have been accepted as an FCC compliance expert in New York, New Jersey, Connecticut, Pennsylvania and more than 40 other states, as well as by the FCC</li> </ul>
Education:	<ul> <li>B.E.E., City College of New York (Sch. Of Eng.), 1971</li> <li>M.B.A., 1982, Fairleigh Dickinson University, 1982</li> <li>Bronx High School of Science, 1966</li> </ul>
Current Responsibilities:	• Leads all PTG staff work involving RF safety and FCC compliance, microwave and satellite system engineering, and consulting on wireless technology and regulation
Prior Experience:	<ul> <li>Edwards &amp; Kelcey, VP – RF Engineering and Chief Information Technology Officer, 1996-99</li> <li>Bellcore (a Bell Labs offshoot after AT&amp;T's 1984 divestiture), Executive Director – Regulation and Public Policy, 1983-96</li> <li>AT&amp;T (Corp. HQ), Division Manager – RF Engineering, and Director – Radio Spectrum Management, 1977-83</li> <li>AT&amp;T Long Lines, Group Supervisor – Microwave Radio System Design, 1972-77</li> </ul>
<i>Specific RF Safety / Compliance Experience:</i>	<ul> <li>Involved in RF exposure matters since 1972</li> <li>Have had lead corporate responsibility for RF safety and compliance at AT&amp;T, Bellcore, Edwards &amp; Kelcey, and PTG</li> <li>While at AT&amp;T, helped develop the mathematical models for calculating RF exposure levels</li> <li>Have been relied on for compliance by all major wireless carriers, as well as by the federal government, several state and local governments, equipment manufacturers, system integrators, and other consulting / engineering firms</li> </ul>
Other Background:	<ul> <li>Author, <i>Microwave System Engineering</i> (AT&amp;T, 1974)</li> <li>Co-author and executive editor, <i>A Guide to New Technologies and Services</i> (Bellcore, 1993)</li> <li>National Spectrum Management Association (NSMA) – former three-term President and Chairman of the Board of Directors; was founding member, twice-elected Vice President, long-time member of the Board, and was named an NSMA Fellow in 1991</li> <li>Have published more than 35 articles in industry magazines</li> </ul>





# **Proof of Notification**

P Belle Harbor, NY P Atlanta, GA P Brick, NJ P Lewes, DE P Tampa, FL P Detroit, MI



Dear Customer,

The following is the proof-of-delivery for tracking number: 770623523957

Delivery Information:			
Status:	Delivered	Delivered To:	Residence
Signed for by:	R.PENA	Delivery Location:	9 BRAYBOURNE DR
Service type:	FedEx 2Day AM		
Special Handling:	Deliver Weekday; Residential Delivery; Adult Signature Required		Norwalk, CT, 06855
	Addit Signature Required	Delivery date:	Nov 30, 2022 11:49
Shipping Information:			
Tracking number:	770623523957	Ship Date:	Nov 29, 2022
		Weight:	0.5 LB/0.23 KG
<b>Recipient:</b> Robin Penna, Indian Hill R 9 Braybourne Drive Norwalk, CT, US, 06855	E, LLC	<b>Shipper:</b> Michael Jones, 140 Beach 137th Street ROCKAWAY PARK, NY	
Reference	NJJER02030A		





Dear Customer,

The following is the proof-of-delivery for tracking number: 770623335197

Delivery Information:				
Status:	Delivered	Delivered To:	Receptionist/Front Desk	
Signed for by:	M.HICKMAN	Delivery Location:	125 EAST AVE	
Service type:	FedEx 2Day AM			
Special Handling:	Deliver Weekday		NORWALK, CT, 06851	
		Delivery date:	Nov 30, 2022 10:37	
Shipping Information:				
Tracking number:	770623335197	Ship Date:	Nov 29, 2022	
		Weight:	0.5 LB/0.23 KG	
<b>Recipient:</b> Att: William Ireland, Norwalk Building & Code Enforcement 125 East Ave Room 123 NORWALK, CT, US, 06851		<b>Shipper:</b> Michael Jones, 140 Beach 137th Street ROCKAWAY PARK, NY	′, US, 11694	
Reference	NJJER02030A			





Dear Customer,

The following is the proof-of-delivery for tracking number: 770623369162

Delivery Information:			
Status:	Delivered	Delivered To:	Receptionist/Front Desk
Signed for by:	M.HICKMAN	Delivery Location:	125 EAST AVE
Service type:	FedEx 2Day AM		
Special Handling:	Deliver Weekday; Adult Signature Required		NORWALK, CT, 06856
		Delivery date:	Nov 30, 2022 10:37
hipping Information:			
racking number:	770623369162	Ship Date:	Nov 29, 2022
		Weight:	0.5 LB/0.23 KG
<b>Recipient:</b> .tt: Steven Kleppin, Nor 25 East Ave. toom 129 IORWALK, CT, US, 068	walk Planning Department 56	<b>Shipper:</b> Michael Jones, 140 Beach 137th Street ROCKAWAY PARK, NY	
	NJJER02030A		

