Nov 22, 2022

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: \quad Request of DISH Wireless LLC for an Order to Approve the Shared Use of an Existing Tower 284 New Canaan Avenue
Norwalk, CT 06850
Latitude: $41^{\circ} 08^{\prime} 08.0^{\prime \prime} \mathrm{N} /$ Longitude: $73^{\circ} 27^{\prime} 23.8^{\prime \prime}$ W

Dear Ms. Bachman:
Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, DISH Wireless LLC ("DISH") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use by DISH of an existing telecommunication tower at 284 New Canaan Avenue in Norwalk (the "Property"). The existing 140ft - stealth monopole tower is owned by New Cingular Wireless PCS, LLC. The underlying property is owned by the Indian Hill RE, LLC. DISH requests that the Council find that the proposed shared use of the New Cingular Wireless, LLC tower satisfies the criteria of C.G.S. §16-50aa and issue an order approving the proposed shared use. This modification/proposal includes hardware that is both $4 \mathrm{G}(\mathrm{LTE})$ and 5 G capable through remote software configuration and either or both services may be turned on or off at various times. A copy of this filing is being sent to Steven Kleppin, Director of Planning and Zoning - City of Norwalk, William Ireland, Chief Building Official - City of Norwalk and Robin Penna - Indian Hill RE.

Background

The existing New Cingular Wireless, LLC/Indian Hill RE (AT\&T Towers), LLC facility consists of a $140 f t$ - monopole tower within the existing compound. DISH is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. DISH, New Cingular Wireless, LLC (AT\&T Towers) and Indian Hill RE, LLC have agreed to the proposed shared use of the 284 New Canaan Avenue tower pursuant to mutually acceptable terms and conditions. Likewise, DISH, New Cingular Wireless (AT\&T Towers), LLC and Indian Hill RE, LLC have agreed to the proposed installation of equipment cabinets on the ground
on the South side of the tower within the existing compound. AT\&T Towers has authorized DISH to apply for all necessary permits and approvals that may be required to share the existing tower.

DISH proposes to install 3 antennas, 6 RRU radios, 1 OVP and 1 cable at the 117-foot level. In addition, DISH will install a ground equipment cabinet on a $5 \mathrm{ft} \times 7 \mathrm{ft} \mathrm{steel} \mathrm{equipment} \mathrm{platform}$. Included in the Construction Drawings are DISH's project specifications for locations of all proposed site improvements. The Construction Drawings also contain specifications for DISH's proposed antennas and ground work.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 140 -feet; Dish Wireless LLC proposed antennas will be located at a center line height of 117 -feet.
2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent
4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 1.3194% as evidenced by Exhibit F.
C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if
the Council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such a shared use." DISH respectfully submits that the shared use of the tower satisfies these criteria.
A. Technical Feasibility. The existing Indian Hill RE, LLC tower is structurally capable of supporting DISH's proposed improvements. The proposed shared use of this tower is, therefore, technically feasible. A Feasibility Structural Analysis Report ("Structural Report") prepared for this project confirms that this tower can support DISH's proposed loading. A copy of the Structural Report has been included in this application.
B. Legal Feasibility. Under C.G.S. § 16-50aa, the Council has been authorized to issue order

DEVELOPMENT

approving the shared use of an existing tower such as the Indian Hill RE, LLC tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to the other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.
C. Environmental Feasibility. The proposed shared use of the Indian Hill RE, LLC tower would have a minimal environmental effect for the following reasons:

1. The proposed installation will have no visual impact on the area of the tower. DISH's equipment cabinet would be installed within the existing facility compound. DISH's shared use of this tower therefore will not cause any significant change or alteration in the physical or environmental characteristics of the existing site.
2. Operation of DISH's antennas at this site would not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). Included in the EME report of this filing are the approximation tables that demonstrate that DISH's proposed facility will operate well within the FCC RF emissions safety standards.
3. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the Indian Hill RE, LLC facility other than periodic maintenance. The proposed shared use of the Indian Hill RE, LLC tower, would, therefore, have a minimal environmental effect, and is environmentally feasible.
D. Economic Feasibility. As previously mentioned, DISH has entered into an agreement with Indian Hill RE, LLC for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.
E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting DISH's full array of 3 antennas, 6 RRU radios, 1 OVP and 1 cable and all related equipment. DISH is not aware of any public safety concerns relative to the proposed sharing of the existing Indian Hill RE, LLC tower.

Conclusion

For the reasons discussed above, the proposed shared use of the existing Indian Hill RE, LLC tower at 284 New Canaan Avenue satisfies the criteria stated in C.G.S. §16-50aa and advances the General Assembly's and the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the proposed shared use.

Sincerely,

Michael Jones

President
M+K Development
140 Beach $137^{\text {th }}$ St
Rockaway Beach, NY 11694
Mobile: 732-677-8881
Email: mjones@mandkdevelopment.com

CC:
Steven Kleppin, Director of Planning and Zoning - City of Norwalk, William Ireland, Chief Building Official - City of Norwalk
Robin Penna - Indian Hill RE.
Alison Skipper- AT\&T Towers

EXHIBIT A

Letter of Authorization

Landlord Authorization

AT\&T Towers hereby authorizes DISH Wireless, to make application for a wireless facility upgrade to be located on the property with the following address:

Address: 284 New Canaan Avenue, Norwalk, Fairfield County, CT
AT\&T Site Name: Norwalk CT New Canaan Ave
AT\&T FA\#: 10113256

Authorization to make application for land use review and/or building permit shall not be construed to constitute an agreement to lease.

No construction shall commence before a lease is executed.

Sincerely,

Russell Baldwin

Principal - Client Services Proj/Prog Mgmt
AT\&T Towers/Rooftops/DAS Tenant Add/DAS Owner Payments

EXHIBIT B

Property Card

284 NEW CANAAN AVE

Location	284 NEW CANAAN AVE	Mblu	5/46/76/0/
Acct\#	17508	Owner	INDIAN HILL RE LLC
Assessment	$\$ 2,380,000$	Appraisal	$\$ 3,400,000$
PID	17508	Building Count	2

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2018	\$539,473	\$2,860,527	\$3,400,000
Assessment			
Valuation Year	Improvements	Land	Total
2018	\$377,626	\$2,002,374	\$2,380,000

Owner of Record

Owner INDIAN HILL RE LLC
Co-Owner
Address 46 INDIAN HILL RD

WESTPORT, CT 06880

Sale Price
 \$0

Certificate

Book \& Page 8594/111
Sale Date 10/06/2017
Instrument 15

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Instrument	Sale Date
INDIAN HILL RE LLC	\$0		8594/111	15	10/06/2017
CONNECTICUT STATE OF	\$0		8504/140	19	03/23/2017
CONNECTICUT STATE OF	\$0		695/452		02/27/1968

Building Information

Building 1 : Section 1

Year Built:	1971
Living Area:	27,972
Replacement Cost:	$\$ 3,605,570$

Building Percent Good: 3

Replacement Cost
Less Depreciation: \$594,223

Building Attributes	
Field	Description
Style:	Office Bldg
Model:	Commercial
Grade	C+
Stories:	2.00
Occupancy	1.00
Exterior Wall 1	Brick/Masonry
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar and Gravel
Interior Wall 1	Minimum
Interior Wall 2	
Interior Floor 1	Cork Tile
Interior Floor 2	
Heating Fuel	Electric
Heating Type	Radiant
AC Percent	0
Heat Percent	100
Bldg Use	State Bldg Com
Total Rooms	17
Bedrooms	0
Full Baths	2
Half Baths	3
Extra Fixtures	0
FBM Area	
Heat/AC	None
Frame	Fireproof Stl
Plumbing	Average
Foundation	Conc Block
Partitions	Average
Wall Height	10.00
\% Sprinkler	0.00
\# of Heat Systems	1
Insulation	Typical

Building Photo

Building Photo

(https://images.vgsi.com/photos/NorwalkCTPhotos//G:\ASR\Assessor\} 30-15/7-30-15\%20024.jpg)

Building Layout

(ParcelSketch.ashx?pid=17508\&bid=17508)

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	20,230	20,230
FUS	Finished Upper Story	7,742	7,742
FEP	Enclosed Porch	100	0
RBM	Raised Basement	3,024	0
		31,096	27,972

Building 2 : Section 1

Living Area:	3,302
Replacement Cost:	$\$ 165,112$
Building Percent Good: Replacement Cost Less Depreciation:	5

Building Attributes: Bldg 2 of 2

Field	Description
Style:	Pre-Eng Garage
Model:	Commercial
Grade	C+
Stories:	1.00
Occupancy	1.00
Exterior Wall 1	Brick/Masonry
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar and Gravel
Interior Wall 1	Minimum
Interior Wall 2	
Interior Floor 1	Concrete
Interior Floor 2	Cork Tile
Heating Fuel	Electric
Heating Type	Radiant
AC Percent	0
Heat Percent	100
Bldg Use	State Bldg Com
Total Rooms	2
Bedrooms	0
Full Baths	0
Half Baths	1
Extra Fixtures	0
FBM Area	
Heat/AC	None
Frame	Masonry
Plumbing	Average
Foundation	Slab
Partitions	Average
Wall Height	14.00
\% Sprinkler	0.00
\# of Heat Systems	1
Insulation	Typical

Building Photo
(https://images.vgsi.com/photos/NorwalkCTPhotos//G:\ASR\AssessorV 30-15/7-30-15\%20030.jpg.jpg)

Building Layout

(ParcelSketch.ashx?pid=17508\&bid=50688)

Building Sub-Areas (sq ft)			Legend
Code	Description	Gross Area	Living Area
BAS	First Floor	3,302	3,302
		3,302	3,302

Extra Features

Extra Features	Legend
No Data for Extra Features	

Land

Land Use		Land Line Valuation	
Use Code	201 V		Size (Acres)
Description	Commercial Improved	Frontage	
Zone	A3	Depth	
Neighborhood	C210	Assessed Value	$\$ 2,002,374$
		Appraised Value	$\$ 2,860,527$

Outbuildings

Outbuildings Legend						
Code	Description	Sub Code	Sub Description	Size	Value	Bldg \#
PAV1	Paving Asph.			35000.00 S.F.	\$0	1
FN6	Fence 6'			1000.00 L.F.	\$0	1
CEL1	Cell Tower		Steel	1.00 UNITS	\$0	1

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2021	\$539,473	\$2,860,527	\$3,400,000
2020	\$539,473	\$2,860,527	\$3,400,000
2019	\$594,223	\$2,805,777	\$3,400,000

Assessment					
	Valuation Year	Improvements	Land		
2021	$\$ 377,626$	$\$ 2,002,374$	Total		
2020	$\$ 377,626$	$\$ 2,002,374$	$\$ 2,380,000$		
2019	$\$ 415,956$	$\$ 1,964,044$	$\$ 2,380,000$		

EXHIBIT C

Construction Drawings

4. Do not instril cial g ground ki at aben and alwars direct ground connuctor
5. NuT \& watchir shall be placed on the front side of the grouno bar and bolted on
6. ALL Grounolng parts and equipment to be suppled and installed er contracter
7. The countractor shall be responsile for instalng adomonal ground bar as
8. ENSURE THE WRE INSULTON TERMMMATON IS WTHIN $1 / 8^{\text {" of }}$ of THE EARREL (No shiners).

no scale $\quad 3$
No sCale
s / s Botit (TP)
(TMP)

No scale
LUG DETAIL
$\frac{\text { dish }}{\text { MK }}$
DEVELOPMENT


```
|
    *)
    \allol
    *)
SINN PACEMENT:
```



```
    M,
```



```
M, IV,
    1. FOR DISH Wrreless LLLC. LOCO, SEE DISH Wroless LLLC. DESINN SPECIFCATONS (PRovoED EY DISH Wrroless LLLC.)
```



```
    3. TET FOR SIGNGEE SHALL NOICAIE CORRECT SIE NNME AND NUMBER AS PER DISH WTrIOSS LLC.C. CONSTRUCTON MANGGER RECOMMENOATONS. 
    5. AL SIINS WL BE SECURED WTH ETHER STANLESS STEEL ZIP TES OR STANLESS STEL TECH SCREWS
    6. AL SIINS TO EE 8.5**1" AND MMDE WTH 0.04" of AlUMINUMMATRRNL
6. AL SIINS To EE \(8.5^{5} \times 11^{\circ}\) ANO MADE WTH \(0.044^{\text {of }}\) ALUMINUM MATERL
```


INFORMATION

This is an access point to an area with transmitting antennas.

Obey all signs and barriers beyond this point. Call the DISH Wireless L.L.C. NOC at 1-866-624-6874

5701 SOUTH SANTA FE RDVE
LITLETON, CO 80120

Site ID: \qquad

 \begin{tabular}{|l|l|}
\hline DRAWN BY: \& CHECKED By:

\hline

\hline ION \& --- \& ---

\hline
\end{tabular} RFDS REV \#:

CONSTRUCTION
DOCUMENTS

Transmitting Antenna(s)

Radio frequency fields beyond this point MAY EXCEED the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Radio frequency fields beyond this point EXCEED the FCC Occupational exposure limit.
bey all posted signs and site guidelines for working in radio frequency environments.

A\&E PROJECT NUMBER
FA 10113256

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point prior to working beyond this poin

Site ID:
dish
Site ID:
dish
ROUECT NFOFRMATIO
NJJERO2030A 284 NEW CANAAN AVE
NORWALK, CT 06850
SHEET TTLL
RF
SIGNAGE
GN-2

SITE ACTVITY REQUIREMENTS:

1. NOTTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEINING A WRITIEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE STEE YOU MUST
L.L.C. AND TOWER OWNER NOC \& THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTON MANAGER.
2. "LOOK UP" - DISH Wireless LLL.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRIT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACLITY SHALL BE CONSIDERED DURING ALL STAGES
OF DESIGN, INSTALLTION, AND INSPECTION. TOWER MODIFCATON, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALATIONS SHALL

 ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFET CLIMB, INCLUDING EXISTING
CONOITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wiress LLC. AND DISH Wireless LL.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

4. AL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMTED TO, ERECTION PLANS, RIGGING PLANS, CLIMBBING
PLANS, AND RESCUE PLANS SHALL BE THE RESPONSBILITT OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF
 PLANS SHALL ADHERE TO ANSI/ASSE A1O.48 (LLTTEST EDITION) AND DISH Wireless LLL.C. AND TOWER OWNER STANDARDS. INCLUDING
THE REQURED INVOLVEMENT OF A QUALIIED ENGINER FOR CLASS IV CONSTRUCTON, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN THE REQULRED INVOLVEMENT OF A QUALIFED ENGINE
ACCORDANCE WTH ANSI/TA- 322 (LAAEST EDTION).
5. ALL SITE WORK TO COMPLY WTH DISH Wireless LL..C. AND TOWER OWNER INSTALATION STANDARDS FOR CONSTRUCTION
ACTVMTIEL ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSSION OF ANSI/TAA-1019-A-2012 "STANDARD FOR

6. IF THE SPECIFED EQUPMENT CAN NOT BE INSTALED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE
AN ALTIRNATVE NSTALATON FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEDDN WTH ANY SUCH
CHANE OF INSTALATION. AN ALTERNATIVE INLTALLAA.
CHANGE OF INTALLATION.
7. AL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLCABLE CODES, REGLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTTH ALL LAWS, ORDINANCES, RULESS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES,
REGLLTONS AND
RAW

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS
9. THE CONTRACTOR Shall CONtact utlitr locating services including private locates services prior to the start
OF construction.

 FALL PROTECTIO
PROCEDURES.
11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS,
LATEST APPROVED REVISION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULTING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF
THE WORK. IF NECESARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND THE WORK. IF NECESSAAK
DISPOSED OF LEEALY.
13. ALL Existing inactive sewer, water, gas, electric and other utilties, which interfere with the execution of the WORK, SHAL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHCICH WLL NOT INTEREERE WTH
THE EXECUTION OF THE WORK, SUBUECT TO THE APPROVAL OF DISH Wireless LLL.C. AND TOWER OWNER, AND/OR LOCAL UTLITIES.

15. the site shall be graded to cause surface water to flow away from the carrier's equipment and tower areas. 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
APPLCATIN. 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUPMENT OR
DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILZED TO PREVENT EROSION AS SPECIFED ON THE CONSTRUCTION DRAWINGS AND/OR PROUECT SPECIFICATIONS
18. CONRACTOR SHALL MINIIZE DISTURBANCE TT EXIISTING SITE DURING CONSTTUCTION. EROSION CONTROL MEASURES, IF
REQURED DURING CONSTRUCTNO, SHALL BE IN CONFORMANCE WITH THE LOCAL GUDELINES FOR EROSION AND SEDMENS CONTRLL
19. THE CONTRACTOR SHALL PROTECT EXIITTNG IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY
19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAR
DAMAGED PART SHALL BE REPARED AT CONTRACTOR'S EXPENSE TO THE SATISFACTON OF OWNER.
20. CONTRACTOR SHALL LEGALYY AND PROPERLY DISPOSE OF ALL SCRAP MATERILLS SUCH AS COAAIAL CABLES AND OTHER TTEMS
REMOVED FROM THE EXISTING FACLILTY. ANTENNAS AND RADIOS REMOVED SHALL BE RETUNED TO THE OWNER'S DESIGNATED 20. CONTRACTOR SHALL LEGALY AND PROPERLY DISPPSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHE
REMOVED FROM THE EXXTSTNG FACLILTY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
21. CONTRACTOR SHALL LeAve premises in clean condition. trash and debris should be removed from site on a dally
basis
22. NO FILL OR EMBANKMEN MATERILL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERILLS, SNOW OR ICE SHALL NOT
BE PLACED IN ANY FILL OR EMBANKMENT.

general notes

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION
CARRIER:DISH Wireless L.L.C.
TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALY
EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINERS IN THIS OR SIMIAR LOCALTIES. IT IS ASSUMED THAT THE WORK DEPICTED WLLL BE PERFORMED BY AN EXPERENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE
OF THE APPLCABLE CODE STANDRDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTCE. AS NOT EEER OF THE AP LLCALEMENT IS (OR CAN BE) EXPLCITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTE CONDTION OR ELEMENT II (OR CAN BE EXPLCITLY SHOON ON THESE DRAWIN.
STANDRDD GOOD PRACTICE FOR MISELLAEOUS WORK NOT EXPLICTLY SHOWN.
THESE DRAWINGS RERRESENT THE FINSHED STRUCTURE THEY DO NOT INDICATE THE MEANS OR METHODS OF
CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBE FOR THE CONSTRUCTON MEANS, MEEHODS, TECHNIQEES, SEOUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND
 SITE VISTTS BY THE ENGINEER OR HIS REPRESENT
OBSERVATON OF THE FINIHED STRUCTURE ONLY.
NOTES AND DETALL IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TTPICAL DEEALLS
4.
ITRE
 THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETALLS, GENERAL NOTESS AND SPECIICATIONS,
GREATER, MORE STRICT REQUREMENTS, SHALL GOVERN. IF FURTHER CLARFICATION IS REQURED CONACT THE ENGINEER OF GREATER,
RECORD.
SUSSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SELE RESPONSIBILTT OF THE CONTRACTOR TO
 DISCREPANCIES AND/OR CONFLCTS WTHT THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS Possibe.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTH ALL APPLCABLE CODES, REGULTIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANGES, RULES, AND
REGULATIONS AND LAWFUL ORDERS OF ANY PULLIC AUTHORITY REGARIING THE PERFORMANCE OF THE WORK. ALL WORK CARRIE
 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MAI
NECESSARY TO COMPLLTE ALL INSTALATIONS AS INDICATED ON THE DRAWINGS.

9ULESS THE CONTRACTOR SHALLICLINSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATON
10. IF THE SPECIFED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATVE
OF INSTALATION
11. CONTRACTOR IS TO PERFORM A SITE INESTIGATION, BEEFRE SUBMITING BIDS, TO DETERMINE THE BEST ROUTING OF ALL
CONOTS FOR POWER, AND TELCO AND FOR GROUNIING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNING PLAN

DRAWINGS.
12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY
13. CONTRACTOR SHALL IEGALY AND PROPERIY DISPOSE OF AL SCRAP MATERIALS SUCH AS COAXIAL CABIES AND OTHER ITEES 13. CONTRACTOR SHALL LEGGLY AND PROPERLY DISPOSE OF ALL SCRAP MATERALS SUCH AS COAAIIL CABLES AND O
REMOVED FROM THE EXISTILG FACLLITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGATTED LOCATION. 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DALL

5701 SOUTH SANTA FE DRVE
LTILETON, C CO 80120

DEVELOROMEMENT

 \begin{tabular}{|l|l|}
\hline DRAWN BY: \& CHECKED By:

\hline

\hline ION \& --- \& ---

\hline REDS REV \&

\hline
\end{tabular}

CONSTRUCTION DOCUMENTS

SUBMITALS		
ReV	DATE	DESCRPPTION
\wedge	10/21/2022	SSSUE Por remem
-	11/03/2022	Sssub for consmuctov
A\&E PROJECT NUMBER		

FA 10113256
DISSH Wireless L.L.C.
PROCOT NTORAGTION
NJJERO2030A
284 NEW CANAAN AVE
NORWALK, CT 06850
SHEET TTLE
general notes
GN-3

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL

1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WTTH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN
AND CONSTRUCTION SPECIFCATION FOR CAST-IN-PLACE CONCRETE.
2. UNLESS NOTED OTHERWIS, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO be 1000
psf.
pes.
3. ALL CONCRETE SHALL HAVE A MINMUM COMPRESSIVE STRENGTH (f'c) OF 3000 Psi AT 28 DAYS, UNLESS NOTED OTHERWISEE, NO
MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TMME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TIME OF P PACE
TEMPERATURE OF CONCREEE SHALL NOT EXCEED 90° AT TIME OF PLACEMENT
CONCRETE EXPOSED TO FREEZE-THAW CYCLLES SHALL CONTAN AIR ENTRANNN ADMIXTURES. AMOUNT OF AR ENTRANMENT TO BE BASED ON SIZE OF AGGREATE AND F3 CLASS EXPQ.
MAXIMUM WATER-TO-CEMENT RATO (W / C) OF 0.45.
4. aLl steel reinforcing shall conform to astm a615. all welded wire fabric (wwf) shall conform to astm alb5. all SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, SPLILES SHALL BE CLASS "B" TENSION SSLICES, UNLESS NOTTED OTHERWISE. ALL HOOKS SHALL BE
ULESS NOTED OTHERWISE. YELD STRENTH (Fy) OF STANDARD DEFRMMED AARS ARE AS FOLLOW:
\#4 BARS AND SMALLER 40 ks
\#5 BARS AND LARGER 60 ksi
${ }^{6}{ }_{\text {DRAWINGS: }}^{\text {THE }}$
Loming minmum concrete cover shall be provided for reinforcing steel unless shown otherwise on

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH $3^{\prime \prime}$

CONCRETE EXPOSED TO EARTH OR WEATHER:

- \#6 BARS AND LARGER $2^{\prime \prime}$
- \#5 bars and smaller 1-1/2"
- CONcrete not exposed to earth or weather:

SLAB AND walls $3 / 4^{\circ}$
beams and columns $1-1 / 2^{n}$
7. A TOOLED EDGE or a $3 / 4^{\circ}$ " chamfer shall be provided at all exposed edges of concrete, unless noted otherwise,

ELECTRICAL INSTALATION NOTES:

1. ALL ELECTTICAL WORK SHALL BE PERFORMED IN ACCORDANCE WTTH THE PROUECT SPECIFICATIONS, NEC AND ALL APPLCABLE
2. CONDUIT ROUTINGS ARE SCHEMATC. CONTRACTOR SHALL INSTALL CONDUTS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
AND
HARARD ARE ELIMINATED.
3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WTH THE REQUIREMENTS OF THE NEC.
4. all circuits shall be segregated and maintain minmum cable separation as required by the nec.
4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRTERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF
THE NATIONAL ELECTRICAL CODE.
 CURRENT TO WHCH THEY ARE SUBJECTED, 22,000 AIC MNIMUM. VERIFY AVALLABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED TH
RATING OF ELECTRICAL EQUPMENT IN ACCORDANCE WTH ARTILE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
5. EACH END OF EVERY POWER PHASE CONDCTTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELLD WITH COLOR-CODED INSULATION OR ELECTTICAL TAPE (3M BRAND,
EQUAL). THE IDENTIFCATION METHOD SHALL CONFORM WITH NEC AND OSHA.
6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE
CONFIGURTION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT config
iD's).
7. PANEL boards (ID NUMBERS) SHALL be CLEARLY LABELED with pLASTIC LABELS
8. TIE WRAPS ARE NOT ALLOWED.
9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBBNG OR CONDUIT SHALL BE SINGLE COPPER CONDCTOR (\#14 OR LARGER)
WTTH TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATIN UNLESS OTHERWISE SPECFIED. SUPPLEMENTAL EQUIPMENT GROUND WRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (\#6 OR LARGER) WTTH
TVPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE EPECIFED. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULT-CONDUCTOR, TTPE SOOW CORD (\#14 OR LARGER) UNLESS
OTHERWISE SPECIFIED.
POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (\#14 OR LARGER), WITH
TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, 0 RHW-2 $\operatorname{INSULATON~UNLESS~OTHERWISE~SPECIFED.~}$ POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TPPE TC CABLE (\#14 OR L
TPPE THHW, THWN, THWN-2, XHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSUATION UNLESS OTHERWISE SPECIFED. 13. AL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STLLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND
BETS (OR EOUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR PPERATLON NOT ESSS THAN $75^{\circ} \mathrm{C}$ ($90^{\circ} \mathrm{C}$ IF AVAIIABLE).
10. RACEWAY AND CABLE TRAY SHALL be LSted or labeled for electrical use in accordance with nema, ul, ansi/IEEE and 15. ELLCTRICAL METALILC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUT (RMC) SHALL BE USED FOR
EXPOSED INDOOR LCCATIONS.
11. SCHEDULE 40 PVC UNDERGROUND ON STRAGHTS AND SCHEDULE 80 PVC FOR ALL ELBows/90s AND ALL APPROVED ABOVE
GRADE PVC CONDUIT.
12. LIQUID-TIGHT FLEEXBLE MEEALLIC CONDUT (LLQUID-TTIE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION
OCCURS OR FLEXBILITTIS NEEDED. 19. CONDUUT AND tubing fitings shall be threaded or compression-țpe and approved for the location used. set 20. CAbinets, boxes and wire ways shall be labeled for electrical use in accordance with nema, ul, ansi/ieee and the 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD (WIREMOLD SPECMATE WIREWAY).
13. SLOTED Wiring duct shall be pvc and include cover (panduit tppe e or equal).
14. CONDUTS SHALL BE FASTENED SECURELY IN PLACE WTH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSVE
DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WIL NOT BE PERMITED. CLOSELY FOLLOW THE LINES DEVICES (i.e. POWDER-ACTUATED FOR ATTACHING HANGERS TO STRUCTURE WIL NOT BE PERMITED. CLOSELY FOLLOW THE LINES OF

 malleable IRON LOCKNUT ON OUTSIDE AND INSIDE.
15. EQUPMENT CABNETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET
STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETER) FOR STEELL SHALL MEET
EXTERIOR LOCATONS.
16. METAL RECEPTACLE, SWTCCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORROING; SHALL MEET OR
EXCEED UL $514 A$ AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR EXCEED UL 514 A AND NEMA OS
BETER) FOR EXTERIOR LOCATIONS.
17. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETER) FOR ITTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETIER) FOR EXTERIOR LOCATIONS.
27 THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND
18. THE CONTRACTOR SHALL PROVDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRBUTION PANELS IN ACCORDANCE
WTTH THE APPLCABLL CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
19. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
20. ALL EmpTY/SPARE CONDUits that are installed are to have a metered mule tape pull cord installed.

5701 SOUTH SANTA FE DRVE
LTILETON, C Co 80120

DEVELOPMENT
${ }^{40}$ ROCEAWHYY, NY 11694

DRAWN BY: $:$ CHECKED BY: \mid APPROVED BY

IoN
RFDS REV \#:

CONSTRUCTION

	SUBMITALS
Date	DESCRIPTION
10/21/2022	SSULP Por remen

GROUNDING NOTES

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNNNG PROTECTION AND AC POWER GES'S) SHALL
BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WTTH THE NEC.
2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR

GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALI FURNISH AND INSTALI SUPPIEMENTAL GROU (PER IEEE 1100 AND 81) FOR
hive a test result of 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUT INSTALLATION AS
PREVENT ANY LOSS OF CONTINUTY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUT AND PROVIDE TESTING RESULTS.
4. METAL CONDUIT AND TRAY SHAL BE GROUNDED AND MADE ELECTRICALY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY
BONDING ACROSS THE DISCONTINUITY WTH \# $\# 6$ COPPER WIRE UL APPROVED GROUNDING TTPE CONDUIT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQURED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS
WTH GREEN NSULTION, SIZED IN ACCORDANCE WTTH THE NEC, SHALL BE FURNISHED AND INSTALED WTH THE POWER CIRCUTTS TO BTS
EQUPMENT
6. EACH CABINET FRAME SHALL BE DIRECTY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL
EQUPMENT GROUND WIRES, \#6 STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLD TINNED COPPER FOR OUTDOOR BTS.
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED.

OF THE GROUND BUS ARE PERMITIED.
8. ALL EXTERIOR Ground conductors between equipment/ground bars and the ground ring shall be \#2 solid tinned
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS,
10. USE OF 90° bends in the protection grounding conductors shall be avoided when 45° bends can be adequately
Supported.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND
15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTVE GEL OR PASTE) SHALL be USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERILL
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND
18. Bond all metallic objects within 6 ft of main ground ring with (1) \#2 bare solid tinned copper ground
19. GROUND CONDOCTORS USED FOR THE FACILTY GROUNOING AND LIGHTNING PROTECTION SYTEEMS SHALL NOT BE ROUTED
THROUGH METALLC OBUECTS THAT FORM A RING AROUND THE CONOUCTOR, SUCH AS METALLC CONDUTS, METAL SUPORT CLIPS
 SLEEVES THROUGH WALLS OR FLLORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUREMENTS OR LOCAL
CONOTTIONS, NON-METALIC MATERAL SUCH AS PVC CONOUT SHALL BE USED. WHERE USE OF MEAL CONDUTT IS UNAVOIDABLE (i.e., NONMETALLC CONDUIT PROHBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE \#2 BARE SOLD TINNED COPPER IN $3 / 4^{\prime \prime}$

21. BUILDNGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQURED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE
 SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALER THAN $2 / 0$ COPPER. ROOFTOP GROUNDING RING SHAL BE BONDED TO THE EXIITING GROUNDING SYSTEM, THE BULDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILING
(FERROUS OR NONERROUS METAL PIPING ONLY). DO NOT ATACH GROUNDING TO FIRE SPRINLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRVE
LITLTON, CO 80120 ine

DEVELOPMENT

EXHIBIT D

Structural Analysis

AT\&T
2180 Lake Blvd, 5th Floor (5B13)
Brookhaven, GA 30319

Mac Risley
520 South Main Street, Suite 2531
Akron, OH 44311
(678) 781-5067
mrisley@gpdgroup.com
GPD\# 2022723.01.105046.01
August 4, 2022

COMPREHENSIVE STRUCTURAL ANALYSIS REPORT

SITE DESIGNATION:	Dish Applicant Site \#: AT\&T USID \#: AT\&T Site FA \#: AT\&T Site Name:	$\begin{aligned} & \text { NJJER02030A } \\ & 105046 \\ & 10113256 \\ & \text { NORWALK CT NEW CANAAN AVE } \end{aligned}$
ANALYSIS CRITERIA:	Codes:	TIA-222-H 117 mph (3-second gust) w/ 0 " ice 50 mph (3-second gust) w/ 1" ice $\text { Ss }=0.246, \text { S1 }=0.057$
SITE DATA:		284 New Canaan Avenue, Norwalk, CT 6850, Fairfield County Latitude $41^{\circ} 08^{\prime} 10.10^{\prime \prime} \mathrm{N}$, Longitude $73^{\circ} 27^{\prime} 23.10^{\prime \prime} \mathrm{W}$ Market: NEW ENGLAND 140' Stealth Monopole

To whom it may concern,
GPD is pleased to submit this Comprehensive Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

| Tower Stress Level with Proposed Equipment: | 39.1% | Pass |
| :--- | :--- | :--- | :--- |
| Foundation Ratio with Proposed Equipment: | 23.1% | Pass |

We at GPD appreciate the opportunity of providing our continuing professional services to you and AT\&T. If you have any questions or need further assistance on this or any other projects, please do not hesitate to call.

Respectfully submitted,

Christopher J. Scheks, P.E. Connecticut \#: 0030026

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT\&T Mobility and commissioned by AT\&T.

This analysis has been performed in accordance with the TIA-222-H Standard based upon a 3 -second gust wind speed of 117 mph. Applicable Standard references and design criteria are listed in Appendices A \& B.

The proposed feedlines shall be installed as shown in Appendices A \& B for the analysis results to be valid.
TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Monopole	28.5%	Pass
Anchor Rods	24.3%	Pass
Base Plate	39.1%	Pass
Foundation	23.1%	Pass

RECOMMENDATIONS

The tower and its foundation(s) have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

ANALYSIS METHOD

tnxTower (Version 8.1.1.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various load cases. Selected output from the analysis is included the report appendices. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information.

DOCUMENTS PROVIDED

Document	Remarks	Source
RF Data Sheet	RFDS Name: CT2200 Rev. 1, updated 5/27/2022	AT\&T
AT\&T Site Lease Application	Dish Applicant Site \#: NJJER02030A, dated 9/29/2021	AT\&T
Tower Design	Engineering Endeavors Project \#: 17340, dated 10/13/2014	AT\&T
Foundation Design	Engineering Endeavors Project \#: 17340, dated 10/13/2014	AT\&T
Geotechnical Report	Dewberry Site: National Guard Armory-SR1038, dated 4/7/2014	AT\&T
Previous Tower Analysis	Not Provided	N/A
Tower Mapping	Not Provided	N/A

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The appurtenance configuration is as supplied, determined from available photos, and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
4. The soil parameters are as per data supplied or as assumed and stated in the calculations.
5. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
6. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
7. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
8. All prior structural modifications, if applicable, are assumed to be as per data supplied/available and to have been properly installed.
9. Loading interpreted from photos is accurate to $\pm 5^{\prime}$ AGL, antenna size accurate to ± 3.3 sf, and coax equal to the number of existing antennas without reserve.
10. All existing and proposed loading has been taken from the available site photos as well as documents supplied to GPD at the time of generating this report. All such documents are listed in the Documents Provided Table and are assumed to be accurate. GPD is not responsible for loading scenarios outside those conveyed in the supplied documentation.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Comprehensive Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a timedomain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

General Info	
Site Name	NORWALK CT NEW CANAAN AVE
Site Number	105046
FA Number	10113256
Date of Analysis	$8 / 4 / 2022$
Company Performing Analysis	GPD

The information contained in this summary report is not to be used ormation contained in this summary report is not to be
independently from the PE stamped tower analysis.

Design Parameters
Design Code Used TIA-222-H Location of Tower (County, State) Fairfield, CT Wind Speed (mph) 117 (3-second gust) IC Thickness (in) 1 Risk Category (IIIII) II Exposure Category (B, C, D) B Topographic Category (1 to 5) 1

Tower Info	Description	Date
Tower Type (G, SST, MP)	MP	
Tower Height (top of steel AGL)	140^{\prime}	
Tower Manufacturer	n/a	
Tower Model	Stealth	
Tower Design	Engineering Endeavors Project \#: 17340	10/13/2014
Foundation Design	Engineering Endeavors Project \#: 17340	10/13/2014
Geotechnical Report	National Guard armory-SR1038	4/7/2014
Previous Tower Analysis	n/a	
Tower Mapping	n/a	

Existing / Reserved Loading

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \end{gathered}$	Antenna $\mathrm{CL}(\mathrm{ft})$	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int/Ext
AT\&T Mobility	134	134	3^{*}	Panel	CCI	OPA-65R-LCUU-H8	30/150/270			Inside Canistrer	12	Unknown	718"	Internal
AT\&T Mobility	134	134	12^{*}	Diplexer	Kaelus	DBC2055F1V1-2				Inside Canistrer				
AT\&T Mobility	134	134	6	TMA	CCI	TMABPD7823VG12A				Inside Canistrer				
AT\&T Mobility	124	124	3^{*}	Panel	CCI	OPA-65R-LCUU-H8	30/150/270			Inside Canistrer	12	Unknown	$7 / 8{ }^{\prime \prime}$	Internal
AT\&T Mobility	124	124	6^{*}	Diplexer	Kaelus	DBC2055F1V1-2				Inside Canistrer				
AT\&T Mobility	124	124	6	Diplexer	Kaelus	DBC2055F1V1-2				Inside Canistrer				
AT\&T Mobility	124	124	6^{*}	TMA	CCI	TMABPD7823VG12A				Inside Canistrer				

*Indicates equipment/feedline quantity to be removed

PoposedLoading

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \end{gathered}$	Antenna CL (tt)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int/Ext
Dish Wireless	117	117	3	Panel	Commscope	FFVV-65B-R3	80/200/300			Inside Canister	12	Unknown	$7 / 8^{\prime \prime}$	Internal
Dish Wireless	117	117	3	TMA	Kaelus	SBT0003F1V2				Inside Canister	1	Hybrid	1.411"	Internal
Dish Wireless	117	177	3	Diplexer	Commscope	CDX623T-DS-T \| E15V95P63				Inside Canister				

Note: The proposed loading shall be in addition to the remaining existing equipment at the same elevation.
Note: The proposed coax shall be installed inside the monopole in order for this analysis to be valid.

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{array}{\|c\|} \hline \text { Mount } \\ \text { Height (ft) } \\ \hline \end{array}$	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Int/Ext
AT\&T Mobility	134	134	3	Panel	Commscope	NNHHS4-65A-R5	30/150/270			on the existing mounts				
AT\&T Mobility	124	124	3	Panel	CCI	TPA65R-BU8DA-K	30/150/270			on the existing mounts				
AT\&T Mobility	124	124	6	TMA	Commscope	TMAT192123868-31				on the existing mounts				

APPENDIX B

Tower Analysis Output File
140.0 ft

ALL REACTIONS ARE FACTORED

50 mph WIND - 1.0000 in ICE

REACTIONS - 117 mph WIND

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Canister Load1	140	(2) TMAT192123B68-31	124
NNHHS4-65A-R5 w/ Mount Pipe	134	TPA-65R-BU8DA-K w/ Mount Pipe	124
NNHHS4-65A-R5 w/ Mount Pipe	134	TPA-65R-BU8DA-K w/ Mount Pipe	124
(2) TMABPD7823VG12A	134	FFVV-65B-R3-V1 w/ Mount Pipe	117
(2) TMABPD7823VG12A	134	SBT0003F1V2	117
(2) TMABPD7823VG12A	134	SBT0003F1V2	117
NNHHS4-65A-R5 w/ Mount Pipe	134	SBT0003F1V2	117
Canister Load2	CDX623T-DS-T / E15V95P63	117	
TPA-65R-BU8DA-K w/ Mount Pipe	124	CDX623T-DS-T / E15V95P63	117
(2) DBC2055F1V1-2	124	CDX623T-DS-T E15V95P63	117
(2) DBC2055F1V1-2	124	FFVV-65B-R3-V1 w/ Mount Pipe	117
(2) DBC2055F1V1-2	124	FFVV-65B-R3-V1 w/ Mount Pipe	117
(2) TMAT192123B68-31	124	Canister Load3	110
(2) TMAT192123B68-31	124	Canister Load4	90

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu	
A53-B-35	35 ksi	63 ksi	A572-65	65 ksi	80 ksi	
A572-50	50 ksi	65 ksi				

TOWER DESIGN NOTES

1. Tower is located in Fairfield County, Connecticut.
2. Tower designed for Exposure B to the TIA-222-H Standard.
3. Tower designed for a 117 mph basic wind in accordance with the TIA-222-H Standard.
4. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
5. Deflections are based upon a 60 mph wind.
6. Tower Risk Category II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 28.5%

GPD

520 South Main Street Suite 2531
Akron, Ohio 44311
Phone: (330) 572-2100
FAX: (330) 572-2101
Pob: Dish Applicant Site \#: NJJER02030A

Project: $\mathbf{2 0 2 2 7 2 3 . 0 1 . 1 0 5 0 4 6 . 0 1}$
Client: AT\&T
Code: TIA-222-H
Path:

\qquad Flat \qquad App In Face

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Job	Dish Applicant Site \#: NJJER02030A	$\begin{array}{ll} \text { Page } \\ & 1 \text { of } 9 \end{array}$
	Project	2022723.01.105046.01	$\begin{aligned} & \text { Date } \\ & \text { 08:33:59 08/04/22 } \end{aligned}$
	Client	AT\&T	Designed by jdross

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower is located in Fairfield County, Connecticut.
Tower base elevation above sea level: 197.00 ft .
Basic wind speed of 117 mph .
Risk Category II.
Exposure Category B.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^0]Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

[^1]
Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Top	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	$f t$	$f t$	$f t$	Sides	in	in	in	in	

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Job	Dish Applicant Site \#: NJJER02030A	$\text { Page } 2 \text { of } 9$
	Project	2022723.01.105046.01	$\begin{aligned} & \text { Date } \\ & \text { 08:33:59 08/04/22 } \end{aligned}$
	Client	AT\&T	Designed by jdross

Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	140.00-130.00	10.00	0.00	Round	4.5000	4.5000	0.3150		$\begin{gathered} \text { A53-B-35 } \\ (35 \mathrm{ksi}) \end{gathered}$
L2	130.00-110.00	20.00	0.00	Round	6.0000	6.0000	3.0000		$\begin{gathered} \text { A572-50 } \\ (50 \mathrm{ksi}) \end{gathered}$
L3	110.00-90.00	20.00	0.00	Round	8.0000	8.0000	4.0000		$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L4	90.00-48.16	41.84	5.67	18	35.5000	41.3800	0.1875	0.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L5	48.16-1.00	52.83		18	40.2082	47.5000	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia.	Area in	in 2	I in 4	r in	C in	I / C $i n^{3}$	J in 4	It/Q in 2	w in
L1	4.5000	4.1415	9.1182	1.4838	2.2500	4.0525	18.2365	2.0695	0.0000	w / t
	4.5000	4.1415	9.1182	1.4838	2.2500	4.0525	18.2365	2.0695	0.0000	
L2	6.0000	28.2743	63.6173	1.5000	3.0000	21.2058	127.2345	14.1287	0.0000	0
	6.0000	28.2743	63.6173	1.5000	3.0000	21.2058	127.2345	14.1287	0.0000	0
L3	8.0000	50.2655	201.0619	2.0000	4.0000	50.2655	402.1239	25.1177	0.0000	0
	8.0000	50.2655	201.0619	2.0000	4.0000	50.2655	402.1239	25.1177	0.0000	0
L4	36.0187	21.0154	3310.7855	12.5359	18.0340	183.5858	6625.9274	10.5097	5.9180	31.563
	41.9894	24.5147	5255.3313	14.6233	21.0210	250.0034	10517.5776	12.2597	6.9529	37.082
L5	41.5845	31.7068	6395.8896	14.1851	20.4257	313.1288	12800.1950	15.8564	6.6366	26.547
	48.1942	37.4929	10575.2300	16.7738	24.1300	438.2607	21164.3751	18.7500	7.9200	31.68

Tower Elevation ft	Gusset Area (perface) \qquad $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	0	1			
140.00-130.00									
L2				1	0	1			
130.00-110.00									
L3				1	0	1			
110.00-90.00									
L4 90.00-48.16				1	1	1			
L5 48.16-1.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Total Number		$C_{A} A_{A}$ $f t^{2} / f t$	Weight plf
LDF5-50A(7/8")	C	No	No	Inside Pole	134.00-8.00	12	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							$1{ }^{\prime \prime}$ Ice	0.00	0.33
LDF5-50A(7/8")	C	No	No	Inside Pole	$117.00-8.00$	12	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							$1{ }^{\prime \prime}$ Ice	0.00	0.33

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Job	Dish Applicant Site \#: NJJER02030A	$\begin{aligned} & \text { Page } \\ & \\ & \end{aligned}$
	Project	2022723.01.105046.01	$\begin{aligned} & \text { Date } \\ & \text { 08:33:59 08/04/22 } \end{aligned}$
	Client	AT\&T	Designed by jdross

Description	Face or Leg	Allow Shield	Exclude From Torque	Component Type	Placement	Total Calculation		$f t$		$C_{A} A_{A}$

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)
\(f t^{2}\) \& \(A_{F}\)

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{140.00-130.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{130.00-110.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.17

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{110.00-90.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.26

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{90.00-48.16} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.54

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{48.16-1.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.52

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation ft \& $$
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
$$ \& Ice
Thickness
in \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{140.00-130.00} \& A \& \multirow[t]{3}{*}{1.151} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.02

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{130.00-110.00} \& A \& \multirow[t]{3}{*}{1.138} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.17

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{110.00-90.00} \& A \& \multirow[t]{3}{*}{1.117} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.26

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{90.00-48.16} \& A \& \multirow[t]{3}{*}{1.077} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.54

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{48.16-1.00} \& A \& \multirow[t]{3}{*}{0.970} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.52

\hline
\end{tabular}

tnxTower GPD 520 South Main Street Suite 2531	Job	Dish Applicant Site \#: NJJER02030A	$\text { Page } 4 \text { of } 9$
	Project	2022723.01.105046.01	$\begin{array}{\|l\|} \text { Date } \\ \text { 08:33:59 08/04/22 } \end{array}$
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	AT\&T	Designed by jdross

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$
			Ice	Ice	
	$f t$	in	in	in	in
L1	$140.00-130.00$	0.0000	0.0000	0.0000	0.0000
L2	$130.00-110.00$	0.0000	0.0000	0.0000	0.0000
L3	$110.00-90.00$	0.0000	0.0000	0.0000	0.0000
L4	$90.00-48.16$	0.0000	0.0000	0.0000	0.0000
L5	$48.16-1.00$	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

\hline \multirow[t]{3}{*}{NNHHS4-65A-R5 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{134.00} \& No Ice \& 0.00 \& 0.00 \& 0.13

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.21

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.29

\hline \multirow[t]{3}{*}{NNHHS4-65A-R5 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{134.00} \& No Ice \& 0.00 \& 0.00 \& 0.13

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.21

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.29

\hline \multirow[t]{3}{*}{NNHHS4-65A-R5 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{134.00} \& No Ice \& 0.00 \& 0.00 \& 0.13

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.21

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.29

\hline \multirow[t]{3}{*}{(2) TMABPD7823VG12A} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{134.00} \& No Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.04

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.05

\hline \multirow[t]{3}{*}{(2) TMABPD7823VG12A} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{134.00} \& No Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& $$
1 / 2^{1} \text { Ice }
$$ \& 0.00 \& 0.00 \& 0.04

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.05

\hline \multirow[t]{3}{*}{(2) TMABPD7823VG12A} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{134.00} \& No Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.04

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.05

\hline \multirow[t]{3}{*}{TPA-65R-BU8DA-K w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{124.00} \& No Ice \& 0.00 \& 0.00 \& 0.12

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.23

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.36

\hline \multirow[t]{3}{*}{TPA-65R-BU8DA-K w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{124.00} \& No Ice \& 0.00 \& 0.00 \& 0.12

\hline \& \& \& \& \& \& $$
1 / 2^{2} \text { Ice }
$$ \& 0.00 \& 0.00 \& 0.23

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.36

\hline \multirow[t]{3}{*}{TPA-65R-BU8DA-K w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{124.00} \& No Ice \& 0.00 \& 0.00 \& 0.12

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.23

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.36

\hline \multirow[t]{3}{*}{(2) DBC2055F1V1-2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{124.00} \& No Ice \& 0.00 \& 0.00 \& 0.01

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.01

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.02

\hline \multirow[t]{3}{*}{(2) DBC2055F1V1-2} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{124.00} \& No Ice \& 0.00 \& 0.00 \& 0.01

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.01

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.02

\hline (2) DBC2055F1V1-2 \& C \& None \& \& 0.0000 \& 124.00 \& No Ice \& 0.00 \& 0.00 \& 0.01

\hline
\end{tabular}

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Job	Dish Applicant Site \#: NJJER02030A	$\begin{aligned} & \text { Page } \\ & \\ & 5 \text { of } 9 \end{aligned}$
	Project	2022723.01.105046.01	$\begin{aligned} & \hline \text { Date } \\ & \text { 08:33:59 08/04/22 } \end{aligned}$
	Client	AT\&T	Designed by jdross

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ ft	Azimuth Adjustment	Placement $f t$		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight K
(2) TMAT192123B68-31	A	None		0.0000	124.00	1/2" Ice	0.00	0.00	0.01
						$1^{\prime \prime}$ Ice	0.00	0.00	0.02
						No Ice	0.00	0.00	0.02
						1/2" Ice	0.00	0.00	0.03
					124.00	$1{ }^{\prime \prime}$ Ice	0.00	0.00	0.04
(2) TMAT192123B68-31	B	None		0.0000		No Ice	0.00	0.00	0.02
						1/2" Ice	0.00	0.00	0.03
(2) TMAT192123B68-31	C	None		0.0000	124.00	$1{ }^{\prime \prime}$ Ice	0.00	0.00	0.04
						No Ice	0.00	0.00	0.02
						1/2" Ice	0.00	0.00	0.03
FFVV-65B-R3-V1 w/ Mount Pipe	A	None		0.0000	117.00	$1{ }^{\prime \prime}$ Ice	0.00	0.00	0.04
						No Ice	0.00	0.00	0.13
						1/2" Ice	0.00	0.00	0.24
	B	None		0.0000	117.00	1" Ice	0.00	0.00	0.36
FFVV-65B-R3-V1 w/ Mount Pipe						No Ice	0.00	0.00	0.13
						1/2" Ice	0.00	0.00	0.24
	C	None		0.0000	117.00	$1{ }^{\prime \prime}$ Ice	0.00	0.00	0.36
FFVV-65B-R3-V1 w/ Mount Pipe						No Ice	0.00	0.00	0.13
						1/2" Ice	0.00	0.00	0.24
	A	None		0.0000	117.00	$1{ }^{\prime \prime}$ Ice	0.00	0.00	0.36
SBT0003F1V2						No Ice	0.00	0.00	0.00
						1/2" Ice	0.00	0.00	0.00
	B	None		0.0000	117.00	1 " Ice	0.00	0.00	0.00
SBT0003F1V2						No Ice	0.00	0.00	0.00
						1/2" Ice	0.00	0.00	0.00
	C	None		0.0000	117.00	$1{ }^{\prime \prime}$ Ice	0.00	0.00	0.00
SBT0003F1V2						No Ice	0.00	0.00	0.00
						$1 / 2^{\prime \prime} \text { Ice }$	0.00	0.00	0.00
	A	None		0.0000	117.00	1" Ice	0.00	0.00	0.00
$\begin{gathered} \text { CDX623T-DS-T I } \\ \text { E15V95P63 } \end{gathered}$						No Ice	0.00	0.00	0.01
						1/2" Ice	0.00	0.00	0.01
						$1{ }^{\prime \prime}$ Ice	0.00	0.00	0.02
$\begin{gathered} \text { CDX623T-DS-T I } \\ \text { E15V95P63 } \end{gathered}$	B	None		0.0000	117.00	No Ice	0.00	0.00	0.01
						1/2" Ice	0.00	0.00	0.01
						$1^{\prime \prime}$ Ice	0.00	0.00	0.02
$\begin{gathered} \text { CDX623T-DS-T I } \\ \text { E15V95P63 } \end{gathered}$	C	None		0.0000	117.00	No Ice	0.00	0.00	0.01
						1/2" Ice	0.00	0.00	0.01
						1" Ice	0.00	0.00	0.02
Canister Load1	C	None		0.0000	140.00	No Ice	6.75	6.75	0.09
						1/2" Ice	16.96	16.96	0.21
						$1^{\prime \prime}$ Ice	17.42	17.42	0.32
Canister Load2	C	None		0.0000	130.00	No Ice	20.25	20.25	0.76
						1/2" Ice	50.88	50.88	1.10
						$1{ }^{\prime \prime}$ Ice	52.25	52.25	1.44
Canister Load3	C	None		0.0000	110.00	No Ice	27.00	27.00	0.86
						1/2" Ice	67.83	67.83	1.30
						$1^{\prime \prime}$ Ice	69.67	69.67	1.76
Canister Load4	C	None		0.0000	90.00	No Ice	13.50	13.50	0.67
						1/2" Ice	33.92	33.92	0.89
						1" Ice	34.83	34.83	1.12

tnxTower GPD 520 South Main Street Suite 2531	Job	Dish Applicant Site \#: NJJER02030A	$\text { Page } 6 \text { of } 9$
	Project	2022723.01.105046.01	$\begin{aligned} & \text { Date } \\ & \text { 08:33:59 08/04/22 } \end{aligned}$
Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Client	AT\&T	Designed by jdross

Load Combinations

Comb. No.	Description
,	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
	0.9 Dead+1.0 Wind 0 deg - No Ice
	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	\circ	\circ

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	o

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
$f t$		Comb.	in	${ }^{\text {in }}$		${ }^{\text {Ct }}$

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	Ratio P_{u}
	$f t$		$f t$	$f t$		$i n^{2}$	K	K	ϕP_{n}
L1	140-130 (1)	TP4.5x4.5x0.315	10.00	0.00	0.0	4.1415	-0.97	130.46	0.007
L2	130-110 (2)	TP6x6x3	20.00	0.00	0.0	28.2743	-5.50	1272.35	0.004
L3	110-90 (3)	TP8x8x4	20.00	0.00	0.0	50.2655	-10.95	2940.53	0.004
L4	90-48.16 (4)	TP41.38x35.5x0.1875	41.84	0.00	0.0	24.0405	-15.62	1246.92	0.013
L5	48.16-1 (5)	TP47.5x40.2082x0.25	52.83	0.00	0.0	37.4929	-24.41	2129.38	0.011

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio $M_{u x}$	$M_{u y}$	$\phi M_{n y}$	Ratio $M_{u y}$
	$f t$		kip-ft	kip-ft	$\phi M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
L1	140-130 (1)	TP4.5x4.5x0.315	3.00	14.51	0.207	0.00	14.51	0.000
L2	130-110 (2)	TP6x6x3	28.18	135.00	0.209	0.00	135.00	0.000
L3	110-90 (3)	TP8x8x4	74.49	416.00	0.179	0.00	416.00	0.000
L4	90-48.16 (4)	TP41.38x35.5x0.1875	215.56	1039.10	0.207	0.00	1039.10	0.000
L5	48.16-1 (5)	TP47.5x40.2082x0.25	567.15	2074.22	0.273	0.00	2074.22	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	Actual T_{u}	ϕT_{n}	Ratio T_{u}
$f t$			K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	140-130 (1)	TP4.5x4.5x0.315	0.33	39.14	0.009	0.00	14.40	0.000
L2	130-110 (2)	TP6x6x3	1.29	381.70	0.003	0.00	100.68	0.000
L3	110-90 (3)	TP8x8x4	2.25	882.16	0.003	0.00	310.23	0.000
L4	90-48.16 (4)	TP41.38x 35.5 x 0.1875	5.08	421.91	0.012	0.00	1492.57	0.000
L5	48.16-1 (5)	TP47.5x40.2082x0.25	8.19	658.00	0.012	0.00	2722.75	0.000

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$	Ratio $M_{u x}$	Ratio $M_{u y}$	Ratio V_{u}	$\begin{gathered} \text { Ratio } \\ T_{u} \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
$f t$		ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	140-130 (1)	0.007	0.207	0.000	0.009	0.000	0.214	1.000	4.8.2
L2	130-110(2)	0.004	0.209	0.000	0.003	0.000	0.213	1.000	2
L3	110-90(3)	0.004	0.179	0.000	0.003	0.000	0.183	1.000	8.2
L4	90-48.16 (4)	0.013	0.207	0.000	0.012	0.000	0.220	1.000	4.8.2

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2100 FAX: (330) 572-2101	Job	Dish Applicant Site \#: NJJER02030A	$\text { Page } \quad 9 \text { of } 9$
	Project	2022723.01.105046.01	$\begin{array}{\|l\|} \hline \text { Date } \\ 08: 33: 59 ~ 08 / 04 / 22 \end{array}$
	Client	AT\&T	Designed by jdross

Section No.	Elevation ft	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \phi P_{n} \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Ratio } \\ M_{u x} \end{array} \\ \hline \phi M_{n x} \end{gathered}$	Ratio $M_{u y}$ $\phi M_{n y}$	$\begin{gathered} \text { Ratio } \\ V_{u} \\ \hline \phi V_{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \phi T_{n} \\ \hline \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L5	48.16-1 (5)	0.011	0.273	0.000	0.012	0.000	0.285	1.000	4.8.2

Section Capacity Table

Section	Elevation	Component	Size		Critical	P	$\phi P_{\text {allow }}$ No.	$f t$

APPENDIX C

Additional Calculations

Code	
Code: Ice Thickness: Windspeed (V): Ice Wind Speed (V): Exposure Category: Topographic Feature: Risk Category:	$\begin{array}{rl} \hline \text { TIA-222-H } \\ 1 & \mathrm{in} \\ 117 \mathrm{mph} \\ 50 \mathrm{mph} \\ \text { B } \\ \text { N/A } \\ \text { II } \\ \hline \end{array}$
Tower Information	
Total Tower Height: Base Tower Height: Total Canister Length: Number of Canister Assembly Sections:	139 ft 89 ft 50 ft 3

Canister Section Number ${ }^{1}$:	Canister Assembly Length (ft):	Canister Assembly Diameter (in):	Ventilated Canister:	Manufacturer ${ }^{2}$:	Number of Sides Canister Section	Plate Type:	Mating Flange Plate Thickness $(\text { in })^{3}:$	Mating Flange Plate Diameter (in):	Solidity Ratio	Plate Weight (Kip):	Canister Weight (Kip)	$\left\lvert\, \begin{gathered} \text { Vent } \\ \text { Length }(\mathrm{ft}): \end{gathered}\right.$
1	10	36	No		Round	1	1.75	37	0.45	0.480	0.188	0-0
2	20	36	No		Round	1	1.75	37	0.45	0.480	0.377	0-0
3	20	36	No		Round	1	1.75	37	0.45	0.480	0.377	0-0

${ }^{2}$ Select manufacturer if available for vented canister. Leave blank to autocalculate Cf values.
${ }^{3}$ Mating Flange Plate Thickness at the bottom of canister section

Flag on Tower:		No						
Truck Ball on Tower:		No						
Geometry: Base Tower + Spine				105046.eri (last saved 08/02 10:17 am)				
Pole Height Above Base (ft)	Section Length (ft)	Lap Splice Length (ft)	Number of Sides	Top Diameter (in)	Bottom Diameter (in)	Wall Thickness (in)	Bend Radius (in)	Pole Material
139	10	0	Round	4.5	4.5	0.315	1.26	A53-B-35
129	20	0	Round	6	6	3	12	A572-50
109	20	0	Round	8	8	4	16	A572-65
89	41.84	5.67	18	35.5	41.38	0.1875	0.75	A572-65
52.83	52.83	0	18	40.208164	47.5	0.25	1	A572-65

Discrete Loads : $\mathrm{C}_{\mathrm{F}} \mathrm{A}_{\mathrm{F}}$ for Canister Assembly								
Canister Loading	Apply $\mathrm{C}_{\mathrm{F}} \mathrm{A}_{\mathrm{F}}$ at Elevation(z) (ft)	$\mathrm{C}_{\mathrm{F}} \mathrm{A}_{\mathrm{F}}$ No Ice (ft^{2})	$\begin{gathered} C_{F} A_{F} \\ 1 / 2^{"} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\mathrm{C}_{\mathrm{F}} \mathrm{A}_{\mathrm{F}} 1{ }^{\text {I }}$ Ice $\left(\mathrm{ft}^{2}\right)$	$\begin{gathered} \mathrm{C}_{\mathrm{F}} \mathrm{~A}_{\mathrm{F}} \\ 2^{2} \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{F}} \mathrm{~A}_{\mathrm{F}} \\ 4 \text { Ice }\left(\mathrm{ft}^{2}\right) \end{gathered}$	Canister Assembly Weight No Ice (Kip)	Canister Assembly Weight 1/2" Ice (Kip)
Canister Load 1	139	6.750	16.958	17.417	18.333	20.167	0.094	0.206
Canister Load 2	129	20.250	50.875	52.250	55.000	60.500	0.763	1.097
Canister Load 3	109	27.000	67.833	69.667	73.333	80.667	0.857	1.303
Canister Load 4	89	13.500	33.917	34.833	36.667	40.333	0.669	0.892

Deflection Check Required:	Yes	Import Deflection Results
3\% Spine Deflection Check		
Allowable (3\%) Horizontal Spine Deflection (inches)	Actual Deflection ${ }^{1}$ (inches)	Sufficient/ Insufficient
18.000		

${ }^{1}$ Relative deflection under service level wind speed
NJJER02030A
2022723.01.105046.01

Overturning Moment $=$	567.00
$k^{*} \mathrm{ft}$	
Axial Force $=$	24.00
k	
Shear Force $=$	8.00
k	

Anchor Rod and Base Plate Stresses, TIA-222-H-1

Maximum Capacity	105%
Apply TIA-222-H Section 15.5?	No

Anchor Rods		
Number of Rods $=$Rod Yield Strength, $\mathrm{F}_{\mathrm{y}}=$Rod Ultimate Strength, $\mathrm{F}_{\mathrm{u}}=$Rod Circle $=$Rod Diameter $=$Rod Projection, $\mathrm{I}_{\mathrm{ar}}=$Is grout present?Max Tension on Rod, $\mathrm{P}_{\mathrm{ut}}=$Max Compression on Rod, $\mathrm{P}_{\mathrm{uc}}=$Shear on Rod, $\mathrm{V}_{\mathrm{u}}=$Moment on Rod, $\mathrm{M}_{\mathrm{u}}=$	8	ksiksiininin$k$$k$$k$
	75	
	100	
	54.75	
	2.25	
	2.25	
	No	
	59.08	
	65.08	
	1.00	
	0.00	
Tension Interaction =	5.9\%	OK
Compression Interaction $=$	24.3\%	OK

Base Plate		
Location =	External	
Plate Strength, $\mathrm{F}_{\mathrm{y}}=$	50	ksi
$\phi=$	0.9	
Outside Diameter $=$	60.75	in
Plate Thickness =	1.75	in
wcalc $=$	27.23	in
wmax $=$	17.50	in
W =	17.50	in
Z =	13.40	in^{3}
$\mathrm{M}_{\mathrm{u}}=$	235.93	k-in
$\varphi \mathrm{M}_{\mathrm{n}}=$	602.93	k-in
BP Capacity =	39.1\%	OK

Stiffeners		
Configuration $=$		
	None	

Pole	
Pole Diameter =	47.5 in
Number of Sides $=$	18
Thickness =	0.25 in
Pole Yield Strength $=$	65 ksi

Drilled Pier Foundation

Report File: \qquad

Rebar \& Pier Options

Pier Section 1
mbedded Pole Input
Belled Pier Inputs

Check Limitation Apply TIA-222-H Section 15.5: $\quad \square$
Additional Longitudinal Rebar
Input Effective Depths (else Actual): $\quad \square$ Shear Design Options
 Utilize Shear-Friction Methodology:

Override Critical Depth:
Go to Soil Calculations

Soil Profile														
Groundwater Depth		6	\# of Layers				4							
Layer	Top (ft)	Bottom (ft)	Thickness (ft)	$\begin{aligned} & V_{\text {soil }} \\ & (p c f) \end{aligned}$	$\mathbf{Y}_{\text {concrete }}$ (pcf)	Cohesion (ksf)	Angle of Friction (degrees)	Calculated Ultimate Skin Friction Comp (ksf)	Calculated Ultimate Skin Friction Uplift (ksf)	Ultimate Skin Friction Comp Override (ksf)	Ultimate Skin Friction Uplift Override (ksf)	Ult. Net Bearing Capacity (ksf)	SPT Blow Count	Soil Type
1	0	2	2	125	150			0.000	0.000					Cohesionless
2	2	6	4	125	150		37	0.615	0.615				26	Cohesionless
3	6	10	4	62.6	87.6		37	0.979	0.979				22	Cohesionless
4	10	20	10	52.6	87.6		30	0.412	0.412			12	5	Cohesionless

EXHIBIT E

NIERS Study

Pinnacle Telecom Group

Antenna Site FCC RF Compliance Assessment and Report for Municipal Submission

Prepared for:
Site ID:
Site Address:

Latitude:
Longitude:
Structure type:
Report date:
Compliance Conclusion:

DISH Wireless, LLC
NJJER02030A
284 New Canaan Avenue Norwalk, CT

N 41.136045
W 73.456285
Monopole
October 25, 2022
DISH Wireless, LLC will be in compliance with the rules and requlations as described in OET Bulletin 65, Following the implementation of the proposed mitiqation as detailed in the report.

14 Ridqedale Avenue - Suite 260 • Cedar Knolls, NJ 07927 • 973-451-1630

Contents

Introduction and Summary 3
Antenna and Transmission Data 5
Compliance Analysis 10
Compliance Conclusion 18
Certification
Appendix A. Documents Used to Prepare the Analysis
Appendix B. Background on the FCC MPE Limit
Appendix C. Proposed Siqnaqe
Appendix D. Summary of Expert Qualifications

Introduction and Summary

At the request of DISH Wireless, LLC ("DISH"), Pinnacle Telecom Group has performed an independent expert assessment of radiofrequency (RF) levels and related FCC compliance for proposed wireless base station antenna operations on an existing monopole located at 284 New Canaan Ave in Norwalk, CT. DISH refers to the antenna site by the code "NJJER02030A", and its proposed operation involves directional panel antennas and transmission in the $600 \mathrm{MHz}, 2000 \mathrm{MHz}$ and 2100 MHz frequency bands licensed to it by the FCC.

The FCC requires all wireless antenna operators to perform an assessment of potential human exposure to radiofrequency (RF) fields emanating from all the transmitting antennas at a site whenever antenna operations are added or modified, and to ensure compliance with the Maximum Permissible Exposure (MPE) limit in the FCC's regulations. In this case, the compliance assessment needs to take into account the RF effects of other existing antenna operations at the site by AT\&T. Note that FCC regulations require any future antenna collocators to assess and assure continuing compliance based on the cumulative effects of all then-proposed and then-existing antennas at the site.

This report describes a mathematical analysis of RF levels resulting around the site in areas of unrestricted public access, that is, at street level around the site. The compliance analysis employs a standard FCC formula for calculating the effects of the antennas in a very conservative manner, in order to overstate the RF levels and to ensure "safe-side" conclusions regarding compliance with the FCC limit for safe continuous exposure of the general public.

The results of a compliance assessment can be described in layman's terms by expressing the calculated RF levels as simple percentages of the FCC MPE limit. If the normalized reference for that limit is 100 percent, then calculated RF levels higher than 100 percent indicate the MPE limit is exceeded and there is a need to mitigate the potential exposure. On the other hand, calculated RF levels consistently below 100 percent serve as a clear and sufficient demonstration of compliance with the MPE limit. We can (and will) also describe the overall worstcase result via the "plain-English" equivalent "times-below-the-limit" factor.

The result of the RF compliance assessment in this case is as follows:

- At street level, the conservatively calculated maximum RF level from the combination of proposed and existing antenna operations at the site is 1.3194 percent of the FCC general population MPE limit - well below the 100-percent reference for compliance. In other words, the worst-case calculated RF level - intentionally and significantly overstated by the calculations - is still more than 75 times below the FCC limit for safe, continuous exposure of the general public.
- A supplemental analysis of the RF levels at the same height as the DISH antennas indicate that the FCC MPE limit is potentially exceeded. Therefore, it is recommended that three Caution signs and a NOC Information sign be installed at the base of the monopole.
- The results of the calculations, along with the proposed mitigation, combine to satisfy the FCC requirements and associated guidelines on RF compliance at street level around the site and on the subject roof. Moreover, because of the significant conservatism incorporated in the analysis, RF levels actually caused by the antennas will be lower than these calculations indicate.

The remainder of this report provides the following:

- relevant technical data on the proposed DISH antenna operations at the site, as well as on the other existing antenna operations;
- a description of the applicable FCC mathematical model for calculating RF levels, and application of the relevant technical data to that model;
- analysis of the results of the calculations against the FCC MPE limit, and the compliance conclusion for the site.

In addition, four Appendices are included. Appendix A provides information on the documents used to prepare the analysis. Appendix B provides background on the FCC MPE limit. Appendix C details the proposed mitigation to satisfy the FCC requirements and associated guidelines on RF compliance. Appendix D provides
a summary of the qualifications of the expert certifying FCC compliance for this site.

Antenna and Transmission Data

The plan and elevation views that follow, extracted from the site drawings, illustrate the mounting positions of the DISH antennas at the site.

Plan View:

Elevation View:

The table that follows summarizes the relevant data for the proposed DISH antenna operations. Note that the " Z " height references the centerline of the antenna.

$\begin{gathered} \text { Ant. } \\ \text { ID } \end{gathered}$	Carrier	Antenna Manufacturer	Antenna Model	Type	$\begin{gathered} \text { Freq } \\ (\mathrm{MHz}) \end{gathered}$	Ant. Dim. (ft.)	Total Input Power (watts)	Total ERP (watts)	$\underset{\substack{A G L \\(f t)}}{Z}$	Ant. Gain (dBd)	B / W	Azimuth	EDT	MDT
©	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	117.0	12.16	71	60	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	8630	117.0	15.96	64	60	4	0
0	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	10739	117.0	16.26	64	60	4	0
2	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	117.0	12.16	71	180	2	0
2	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	8630	117.0	15.96	64	180	2	0
2	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	10739	117.0	16.26	64	180	2	0
3	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	117.0	12.16	71	300	2	0
3	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	8630	117.0	15.96	64	300	2	0
3	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	10739	117.0	16.26	64	300	2	0

The area below the antennas, at street level, is of interest in terms of potential "uncontrolled" exposure of the general public, so the antenna's vertical-plane emission characteristic is used in the calculations, as it is a key determinant of the relative amount of RF emissions in the "downward" direction.

By way of illustration, Figure 1 that follows shows the vertical-plane radiation pattern of the proposed antenna model in the 600 MHz frequency band. In this type of antenna radiation pattern diagram, the antenna is effectively pointed at the three o'clock position (the horizon) and the relative strength of the pattern at different angles is described using decibel units.

Note that the use of a decibel scale to describe the relative pattern at different angles actually serves to significantly understate the actual focusing effects of the antenna. Where the antenna pattern reads 20 dB the relative RF energy emitted at the corresponding downward angle is $1 / 100^{\text {th }}$ of the maximum that occurs in the main beam (at 0 degrees); at 30 dB , the energy is only $1 / 1000^{\text {th }}$ of the maximum.

Finally, note that the automatic pattern-scaling feature of our internal software may skew side-by-side visual comparisons of different antenna models, or even different parties' depictions of the same antenna model.

Figure 1. Commscope FVV-65B-R3 - 600 MHz Vertical-plane Pattern

As noted at the outset, there is an existing wireless antenna operation by AT\&T to include in the compliance assessment and we will conservatively assume operation with maximum channel capacity and at maximum transmitter power per channel to be used in each of its FCC-licensed frequency bands.

The table that follows summarizes the relevant data for the collocated antenna operations.

Carrier	Antenna Manufacturer	Antenna Model	Type	Freq $(\mathbf{M H z})$	Total ERP $($ watts $)$	Ant. Gain $(\boldsymbol{d B d})$	Azimuth
AT\&T	Generic	Generic	Panel	700	4945	11.26	N/A
AT\&T	Generic	Generic	Panel	850	2400	11.76	N/A
AT\&T	Generic	Generic	Panel	1900	5756	15.56	N/A
AT\&T	Generic	Generic	Panel	2100	5890	15.66	N/A
AT\&T	Generic	Generic	Panel	2300	4131	16.16	N/A

Compliance Analysis

FCC Office of Engineering and Technology Bulletin 65 ("OET Bulletin 65 ") provides guidelines for mathematical models to calculate the RF levels at various points around transmitting antennas. Different models apply in different areas around antennas, with one model applying to street level around a site, and another applying to the rooftop near the antennas. We will address each area of interest in turn in the subsections that follow.

Street Level Analysis

At street-level around an antenna site (in what is called the "far field" of the antennas), the RF levels are directly proportional to the total antenna input power and the relative antenna gain in the downward direction of interest - and the levels are otherwise inversely proportional to the square of the straight-line distance to the antenna.

Conservative calculations also assume the potential RF exposure is enhanced by reflection of the RF energy from the intervening ground. Our calculations will assume a 100% "perfect", mirror-like reflection, which is the absolute worst-case scenario.

The formula for street-level compliance assessment for any given wireless antenna operation is as follows:

$$
\text { MPE } \%=\left(100 \text { * Chans * TxPower * } 10(\text { Gmax-Vdisc/10) * } 4) /\left(\text { MPE * } 4 \pi \text { * } R^{2}\right)\right.
$$

where
\(\left.$$
\begin{array}{ll}\text { MPE\% }= & \begin{array}{l}\text { RF level, expressed as a percentage of the MPE limit } \\
\text { applicable to continuous exposure of the general } \\
\text { public }\end{array}
$$

100= \& factor to convert the raw result to a percentage

Chans= \& maximum number of RF channels per sector\end{array}\right\}\)| TxPower = maximum transmitter power per channel, in milliwatts |
| :--- |

10 (Gmax-Vdisc/10) = | numeric equivalent of the relative antenna gain in the |
| :--- |
| downward direction of interest; data on the antenna |
| vertical-plane pattern is taken from manufacturer |
| specifications |

$4=$| factor to account for a 100-percent-efficient energy |
| :--- |
| reflection from the ground, and the squared |
| relationship between RF field strength and power |
| density $\left(2^{2}=4\right)$ |

MPE = FCC general population MPE limit

R = \quad| straight-line distance from the RF source to the point |
| :--- |
| of interest, centimeters |

The MPE\% calculations are performed out to a distance of 500 feet from the facility to points 6.5 feet (approximately two meters, the FCC-recommended standing height) off the ground, as illustrated in Figure 2, below.

Figure 2. Street-level MPE\% Calculation Geometry

It is popularly understood that the farther away one is from an antenna, the lower the RF level - which is generally but not universally correct. The results of MPE\% calculations fairly close to the site will reflect the variations in the vertical-plane antenna pattern as well as the variation in straight-line distance to the antenna.

Therefore, RF levels may actually increase slightly with increasing distance within the range of zero to 500 feet from the site. As the distance approaches 500 feet and beyond, though, the antenna pattern factor becomes less significant, the RF levels become primarily distance-controlled and, as a result, the RF levels generally decrease with increasing distance. In any case, the RF levels more than 500 feet from a wireless antenna site are well understood to be sufficiently low to be comfortably in compliance.

According to the FCC, when directional antennas (such as panels) are used, compliance assessments are based on the RF effect of a single (facing) antenna sector, as the effects of directional antennas pointed away from the point(s) of interest are considered insignificant. If the different parameters apply in the different sectors, compliance is based on the worst-case parameters.

Street level FCC compliance for a collocated antenna site is assessed in the following manner. At each distance point along the ground, an MPE\% calculation is made for each antenna operation (including each frequency band), and the sum of the individual MPE\% contributions at each point is compared to 100 percent, the normalized reference for compliance with the MPE limit. We refer to the sum of the individual MPE\% contributions as "total MPE\%", and any calculated total MPE\% result exceeding 100 percent is, by definition, higher than the FCC limit and represents non-compliance and a need to mitigate the potential exposure. If all results are consistently below 100 percent, on the other hand, that set of results serves as a clear and sufficient demonstration of compliance with the MPE limit.

Note that the following conservative methodology and assumptions are incorporated into the MPE\% calculations on a general basis:

1. The antennas are assumed to be operating continuously at maximum power and maximum channel capacity.
2. The power-attenuation effects of shadowing or other obstructions to the line-of-sight path from the antenna to the point of interest are ignored.
3. The calculations intentionally minimize the distance factor (R) by assuming a 6'6" human and performing the calculations from the bottom (rather than
the centerline) of each operator's lowest-mounted antenna, as applicable.
4. The calculations also conservatively take into account, when applicable, the different technical characteristics and related RF effects of the use of multiple antennas for transmission in the same frequency band.
5. The RF exposure at ground level is assumed to be 100-percent enhanced (increased) via a "perfect" field reflection from the intervening ground.

The net result of these assumptions is to intentionally and significantly overstate the calculated RF levels relative to the levels that will actually result from the antenna operations - and the purpose of this conservatism is to allow very "safeside" conclusions about compliance.

The table that follows provides the results of the MPE\% calculations for each antenna operation, with the overall worst-case calculated result highlighted in bold in the last column. Note that the transmission parameters for each DISH antenna sector are identical, and the calculations reflect the worst-case result for any/all sectors.

Ground Distance (ft)	DISH $\mathbf{6 0 0} \mathbf{M H z}$ MPE\%	DISH $\mathbf{2 0 0 0} \mathbf{M H z}$ MPE\%	DISH $\mathbf{2 1 0 0 ~ M H z ~}$ MPE\%	AT\&T MPE\%	Total MPE\%
0	0.0273	0.0084	0.0366	0.0797	0.1520
20	0.0437	0.0013	0.0586	0.0901	0.1937
40	0.0281	0.0395	0.0223	0.1873	0.2772
60	0.0270	0.1298	0.0283	0.2985	0.4836
80	0.2334	0.0275	0.0772	0.4823	0.8204
100	0.3539	0.1084	0.1234	0.3721	0.9578
120	0.1634	0.0233	0.1613	0.1998	0.5478
140	0.0214	0.1504	0.0158	0.2826	0.4702
160	0.0475	0.1035	0.0974	0.5824	0.8308
180	0.1540	0.0459	0.0677	0.7975	1.0651
200	0.2075	0.0443	0.0606	0.8253	1.1377
220	0.2231	0.0010	0.0278	0.7128	0.9647
240	0.1989	0.0351	0.0071	0.5949	0.8360
260	0.1549	0.0498	0.0491	0.4953	0.7491
280	0.1278	0.0239	0.0425	0.3496	0.5438
300	0.1215	0.0022	0.0145	0.2325	0.3707
320	0.1332	0.0143	0.0129	0.1408	0.3012
340	0.1600	0.0213	0.0094	0.1049	0.2956
360	0.2012	0.0160	0.0016	0.1479	0.3667
380	0.2543	0.0103	0.0080	0.2502	0.5228
400	0.2312	0.0094	0.0073	0.3964	0.6443
420	0.2880	0.0178	0.0419	0.5564	0.9041
440	0.3502	0.0360	0.0933	0.5103	0.9898
460	0.3220	0.0331	0.0857	0.6507	1.0915
480	$\mathbf{0 . 3 8 2 5}$	$\mathbf{0 . 0 3 8 9}$	$\mathbf{0 . 1 1 1 2}$	$\mathbf{0 . 7 8 6 8}$	$\mathbf{1 . 3 1 9 4}$
500	0.3539	0.0360	0.1029	0.7284	1.2212

As indicated, the maximum calculated overall RF level is 1.3194 percent of the FCC MPE limit - well below the 100-percent reference for compliance.

A graph of the overall calculation results, shown below, perhaps provides a clearer visual illustration of the relative compliance of the calculated RF levels. The line representing the overall calculation results shows an obviously clear, consistent margin to the FCC MPE limit.

The graphic output for the areas at street level surrounding the site is reproduced on the next page.

4

Percent MPE Legend
0% - 100\%
$\square 100 \% \cdot 500 \%$
500\% - 5000\%
5000\% +
General Population Limits
Farfield
10 foot grid size
(Avg: 0 to 6 Feet]
Carrier Color Code
DISH

Near-field Analysis

The compliance analysis for the same height as the antennas is performed using the RoofMaster program by Waterford Consultants.

RF levels in the near field of an antenna depend on the power input to the antenna, the antenna's length and horizontal beamwidth, the mounting height of the antenna above nearby roof, and one's position and distance from the antenna. RF levels in front of a directional antenna are higher than they are to the sides or rear, and in any given horizontal direction are inversely proportional to the straight-line distance to the antenna.

The RoofMaster graphic outputs for the same height as the DISH antennas are reproduced on the next page.

Percent MPE Legend

0\% - 100\%
100\% - 500\%
500\% - 5000\%
5000\% +

General Population Limits
Farfield
10 foot grid size
(Avg: 0 to 6 Feet)
Carrier Color Code
DISH

RoofMaster - Same Height as the Antennas -
Alpha / Beta / Gamma sectors

RoofMaster - Same Height as the Antennas Alpha / Beta / Gamma sectors

Compliance Conclusion

According to the FCC, the MPE limit has been constructed in such a manner that continuous human exposure to RF fields up to and including 100 percent of the MPE limit is acceptable and safe.

The conservative analysis in this case shows that the maximum calculated RF level from the combination of proposed and existing antenna operations at street level around the site is 1.3194 percent of the FCC general population MPE limit. At the same height as the antennas, the analysis shows that the calculated RF levels potentially exceed the FCC MPE limit. Per DISH guidelines, and consistent with FCC guidance on compliance, it is recommended that three Caution signs and a NOC Information sign be installed at the base of the monopole.

The results of the calculations, along with the described RF mitigation, combine to satisfy the FCC's RF compliance requirements and associated guidelines on compliance.

Moreover, because of the extremely conservative calculation methodology and operational assumptions we applied in the analysis, RF levels actually caused by the antennas will be significantly lower than the calculation results here indicate.

Certification

It is the policy of Pinnacle Telecom Group that all FCC RF compliance assessments are reviewed, approved, and signed by the firm's Chief Technical Officer who certifies as follows:

1. I have read and fully understand the FCC regulations concerning RF safety and the control of human exposure to RF fields (47 CFR 1.1301 et seq).
2. To the best of my knowledge, the statements and information disclosed in this report are true, complete and accurate.
3. The analysis of site RF compliance provided herein is consistent with the applicable FCC regulations, additional guidelines issued by the FCC, and industry practice.
4. The results of the analysis indicate that the subject antenna operations will be in compliance with the FCC regulations concerning the control of potential human exposure to the RF emissions from antennas.

Appendix A. Documents Used to Prepare the Analysis

RFDS: RFDS-NJJER02030A-Preliminary-20221019-v.1_20221019091831
CD: NJJER02030A_PrelimCD_20220912150958

Appendix B. Backqround on the FCC MPE Limit

As directed by the Telecommunications Act of 1996, the FCC has established limits for maximum continuous human exposure to RF fields.

The FCC maximum permissible exposure (MPE) limits represent the consensus of federal agencies and independent experts responsible for RF safety matters. Those agencies include the National Council on Radiation Protection and Measurements (NCRP), the Occupational Safety and Health Administration (OSHA), the National Institute for Occupational Safety and Health (NIOSH), the American National Standards Institute (ANSI), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA). In formulating its guidelines, the FCC also considered input from the public and technical community - notably the Institute of Electrical and Electronics Engineers (IEEE).

The FCC's RF exposure guidelines are incorporated in Section 1.301 et seq of its Rules and Regulations (47 CFR 1.1301-1.1310). Those guidelines specify MPE limits for both occupational and general population exposure.

The specified continuous exposure MPE limits are based on known variation of human body susceptibility in different frequency ranges, and a Specific Absorption Rate (SAR) of 4 watts per kilogram, which is universally considered to accurately represent human capacity to dissipate incident RF energy (in the form of heat). The occupational MPE guidelines incorporate a safety factor of 10 or greater with respect to RF levels known to represent a health hazard, and an additional safety factor of five is applied to the MPE limits for general population exposure. Thus, the general population MPE limit has a built-in safety factor of more than 50 . The limits were constructed to appropriately protect humans of both sexes and all ages and sizes and under all conditions - and continuous exposure at levels equal to or below the applicable MPE limits is considered to result in no adverse health effects or even health risk.

The reason for two tiers of MPE limits is based on an understanding and assumption that members of the general public are unlikely to have had appropriate RF safety training and may not be aware of the exposures they receive; occupational exposure in controlled environments, on the other hand, is assumed to involve individuals who have had such training, are aware of the exposures, and know how to maintain a safe personal work environment.

The FCC's RF exposure limits are expressed in two equivalent forms, using alternative units of field strength (expressed in volts per meter, or V / m), and power density (expressed in milliwatts per square centimeter, or $\mathrm{mW} / \mathrm{cm}^{2}$). The table on the next page lists the FCC limits for both occupational and general population exposures, using the $\mathrm{mW} / \mathrm{cm}^{2}$ reference, for the different radio frequency ranges.

Frequency Range (F)
(MHz)
0.3-1.34
1.34-3.0
3.0-30

30-300
300-1,500
1,500-100,000

Occupational Exposure
($\mathrm{mW} / \mathrm{cm}^{2}$)

100
100
$900 / F^{2}$
1.0

F/300
5.0

General Public Exposure ($\mathrm{mW} / \mathrm{cm}^{2}$)

100
$180 / F^{2}$
$180 / F^{2}$
0.2

F/ 1500
1.0

The diagram below provides a graphical illustration of both the FCC's occupational and general population MPE limits.

Because the FCC's RF exposure limits are frequency-shaped, the exact MPE limits applicable to the instant situation depend on the frequency range used by the systems of interest.

The most appropriate method of determining RF compliance is to calculate the RF power density attributable to a particular system and compare that to the MPE limit applicable to the operating frequency in question. The result is usually expressed as a percentage of the MPE limit.

For potential exposure from multiple systems, the respective percentages of the MPE limits are added, and the total percentage compared to 100 (percent of the limit). If the result is less than 100, the total exposure is in compliance; if it is more than 100, exposure mitigation measures are necessary to achieve compliance.

Note that the FCC "categorically excludes" all "non-building-mounted" wireless antenna operations whose mounting heights are more than 10 meters (32.8 feet) from the routine requirement to demonstrate compliance with the MPE limit, because such operations "are deemed, individually and cumulatively, to have no significant effect on the human environment". The categorical exclusion also applies to all point-to-point antenna operations, regardless of the type of structure they're mounted on. Note that the FCC considers any facility qualifying for the categorical exclusion to be automatically in compliance.

In addition, FCC Rules and Regulations Section 1.1307(b)(3) describes a provision known in the industry as "the 5% rule". It describes that when a specific location - like a spot on a rooftop - is subject to an overall exposure level exceeding the applicable MPE limit, operators with antennas whose MPE\% contributions at the point of interest are less than 5% are exempted from the obligation otherwise shared by all operators to bring the site into compliance, and those antennas are automatically deemed by the FCC to satisfy the rooftop compliance requirement.

FCC References on RF Compliance

47 CFR, FCC Rules and Regulations, Part 1 (Practice and Procedure), Section 1.1310 (Radiofrequency radiation exposure limits).

FCC Second Memorandum Opinion and Order and Notice of Proposed Rulemaking (FCC 97-303), In the Matter of Procedures for Reviewing Requests for Relief From State and Local Regulations Pursuant to Section 332(c)(7)(B)(v) of the Communications Act of 1934 (WT Docket 97-192), Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation (ET Docket 93-62), and Petition for Rulemaking of the Cellular Telecommunications Industry Association Concerning Amendment of the Commission's Rules to Preempt State and Local Regulation of Commercial Mobile Radio Service Transmitting Facilities, released August 25, 1997.

FCC First Memorandum Opinion and Order, ET Docket 93-62, In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, released December 24, 1996.

FCC Report and Order, ET Docket 93-62, In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, released August 1, 1996.

FCC Report and Order, Notice of Proposed Rulemaking, Memorandum Opinion and Order (FCC 19-126), Proposed Changes in the Commission's Rules Regarding Human Exposure to Radiofrequency Electromagnetic Fields; Reassessment of Federal Communications Commission Radiofrequency Exposure Limits and Policies, released December 4, 2019.

FCC Office of Engineering and Technology (OET) Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 97-01, August 1997.

FCC Office of Engineering and Technology (OET) Bulletin 56, "Questions and Answers About Biological Effects and Potential Hazards of RF Radiation", edition 4, August 1999.

Appendix C. Proposed Siqnage

$\begin{gathered} \frac{\text { Final }}{\text { Compliance }} \\ \text { Configuration } \end{gathered}$					(1)		
	GUIDELINES	NOTICE	CAUTION	WARNING	$\begin{aligned} & \text { NOC } \\ & \text { INFO } \end{aligned}$	BARRIER/MARKER	
Access Point(s)	0	0	0	0	1	0	dimensions
Alpha	0	0	1	0	0	0	dimensions
Beta	0	0	1	0	0	0	dimensions
Gamma	0	0	1	0	0	0	dimensions

Appendix D. Summary of Expert Qualifications

Daniel J. Collins, Chief Technical Officer, Pinnacle Telecom Group, LLC

Synopsis:	- 40+ years of experience in all aspects of wireless system engineering, related regulation, and RF exposure - Has performed or led RF exposure compliance assessments on more than 20,000 antenna sites since the latest FCC regulations went into effect in 1997 - Has provided testimony as an RF compliance expert more than 1,500 times since 1997 - Have been accepted as an FCC compliance expert in New York, New Jersey, Connecticut, Pennsylvania and more than 40 other states, as well as by the FCC
Education:	- B.E.E., City College of New York (Sch. Of Eng.), 1971 - M.B.A., 1982, Fairleigh Dickinson University, 1982 - Bronx High School of Science, 1966
Current Responsibilities:	- Leads all PTG staff work involving RF safety and FCC compliance, microwave and satellite system engineering, and consulting on wireless technology and regulation
Prior Experience:	- Edwards \& Kelcey, VP - RF Engineering and Chief Information Technology Officer, 1996-99 - Bellcore (a Bell Labs offshoot after AT\&T's 1984 divestiture), Executive Director - Regulation and Public Policy, 1983-96 - AT\&T (Corp. HQ), Division Manager - RF Engineering, and Director - Radio Spectrum Management, 1977-83 - AT\&T Long Lines, Group Supervisor - Microwave Radio System Design, 1972-77
Specific RF Safety/ Compliance Experience:	- Involved in RF exposure matters since 1972 - Have had lead corporate responsibility for RF safety and compliance at AT\&T, Bellcore, Edwards \& Kelcey, and PTG - While at AT\&T, helped develop the mathematical models for calculating RF exposure levels - Have been relied on for compliance by all major wireless carriers, as well as by the federal government, several state and local governments, equipment manufacturers, system integrators, and other consulting / engineering firms
Other Background:	- Author, Microwave System Engineering (AT\&T, 1974) - Co-author and executive editor, A Guide to New Technologies and Services (Bellcore, 1993) - National Spectrum Management Association (NSMA) former three-term President and Chairman of the Board of Directors; was founding member, twice-elected Vice President, long-time member of the Board, and was named an NSMA Fellow in 1991 - Have published more than 35 articles in industry magazines

EXHIBIT F

Proof of Notification

Dear Customer,

The following is the proof-of-delivery for tracking number: 770623523957

Delivery Information:			
Status:	Delivered	Delivered To:	Residence
Signed for by: R.PENA	Delivery Location:	9 BRAYBOURNE DR	
Service type:	FedEx 2Day AM		Norwalk, CT, 06855
Special Handling:	Deliver Weekday; Residential Delivery; Adult Signature Required	Delivery date:	Nov 30, 2022 11:49

[^2]

Dear Customer,

The following is the proof-of-delivery for tracking number: 770623335197

Delivery Information:			
Status:	Delivered	Delivered To:	Receptionist/Front Desk
Signed for by:	M.HICKMAN	Delivery Location:	125 EAST AVE
Service type:	FedEx 2Day AM		
Special Handling:	Deliver Weekday		NORWALK, CT, 06851
		Delivery date:	Nov 30, 2022 10:37

Shipping Information:

Tracking number:	770623335197	Ship Date:	Nov 29, 2022
	Weight:	0.5 LB/0.23 KG	

Recipient:

Att: William Ireland, Norwalk Building \& Code Enforcement 125 East Ave
Room 123
NORWALK, CT, US, 06851

Shipper:

Michael Jones,
140 Beach 137th Street
ROCKAWAY PARK, NY, US, 11694

Reference

Dear Customer,

The following is the proof-of-delivery for tracking number: 770623369162

Delivery Information:			
Status:	Delivered	Delivered To:	Receptionist/Front Desk
Signed for by:	M.HICKMAN	Delivery Location:	125 EAST AVE
Service type:	FedEx 2Day AM		NORWALK, CT, 06856
Special Handling:	Deliver Weekday; Adult Signature Required	Delivery date:	Nov 30, 2022 10:37

Shipping Information:

Tracking number:	770623369162	Ship Date:	Nov 29, 2022
	Weight:	$0.5 \mathrm{LB} / 0.23 \mathrm{KG}$	

Recipient:

Att: Steven Kleppin, Norwalk Planning Department
125 East Ave.
Room 129
NORWALK, CT, US, 06856

Shipper:

Michael Jones,
140 Beach 137th Street
ROCKAWAY PARK, NY, US, 11694

Reference

[^0]: Consider Moments - Legs
 Consider Moments - Horizontals
 Consider Moments - Diagonals
 Use Moment Magnification
 $\sqrt{ }$ Use Code Stress Ratios
 $\sqrt{ }$ Use Code Safety Factors - Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
 Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

[^1]: Use ASCE 10 X-Brace Ly Rules
 Calculate Redundant Bracing Forces
 Ignore Redundant Members in FEA
 SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
 $\sqrt{ }$ Consider Feed Line Torque
 Include Angle Block Shear Check
 Use TIA-222-H Bracing Resist. Exemption
 Use TIA-222-H Tension Splice Exemption Poles
 $\sqrt{ }$ Include Shear-Torsion Interaction
 Always Use Sub-Critical Flow Use Top Mounted Sockets
 $\sqrt{ }$ Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

[^2]: Reference

