Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

May 23, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 267 Norwich Westerly Road, North Stonington, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a tower and associated equipment on the ground near the base of the tower. The tower was approved by the Town of North Stonington ("Town") in May of 2005. Cellco's use of the tower were approved by the Siting Council ("Council") in July of 2007 (EM-VER-102-050707). A copy of the Town's approval of the tower and the Council's approval of Cellco's shared use of the tower are included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by removing nine (9) existing antennas and installing three (3) new MT6407-77A antennas and six (6) JAHH-65B-R3B antennas on its existing antenna platform. Cellco also intends to remove three (3) remote radio heads ("RRHs") and install six (6) new RRHs behind its antennas. A set of project plans showing Cellco's proposed facility modifications and new antennas and RRH specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to North Stonington's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. May 23, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing tower. The replacement antennas will be installed on Cellco's existing antenna platform.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna platform with certain modifications can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. May 23, 2022 Page 3

Sincerely,

Kunig mm

Kenneth C. Baldwin

Enclosures

Copy to:

Robert Carlson, North Stonington First Selectman Nathan Reichert, Planning, Development and Zoning Official North Stonington Volunteer Fire Company Inc., Property Owner Alex Tyurin, Verizon Wireless

ATTACHMENT 1

VUL 126 PAGE 741

Town of

NORTH STONINGTON, CT.

PLANNING & ZONING COMMISSION

May 13, 1999

CERTIFIED MAIL SBA Inc. 125 Shaw Street Suite 116 New London, Connecticut 06320

NOTICE OF DECISION

At the Special Meeting of the North Stonington Planning & Zoning Commission held on Thursday, May 6, 1999, at the New Town Hall located at 40 Main Street, North Stonington, Connecticut, the Commission acted as follows:

SP#99-031 Application of SBA Inc., of 125 Shaw Street, Suite 116, New London, Connecticut and Sprint Spectrum, LP (Sprint PCS) of 9 Barnes Industrial Road, Wallingford, Connecticut to allow a Special Permit for a 150' multi-tenant monopole and related equipment on land located at the intersection of Route 2/Rocky Hollow Road at 267 Norwich-Westerly Road (a.k.a. Route 2) land is owned by North Stonington Volunteer Fire Co. Inc., Tax map #221, Lot #1.01, was approved with the following conditions applied:

1). Iron Pins shall be set before signing and the proper symbol shall be shown on Sheet S-1, enlarged view.

2). Note shall be amended to the site plan indicating that no more than 4 antenna support platforms each holding no more than 12 panel antennas, are approved; and the installation of additional support platforms and/or antennas shall require an approved site plan modification.

 Note symbols #8 through #10 on Sheet C-2 shall be removed from the site plan or labeled as "omitted".

4). SE&SC narrative note #17 on Sheet C-4 shall be moved to under note #10 and renumbered.

5). The words "with topsoil added" shall be inserted into note #13 on Sheet C-4 after the word "roughened."

6). A description of the lightening suppression system shall be added to the site plan.

July 21, 2005

Kenneth C. Baldwin, Esq. Robinson and Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **EM-VER-102-050707** – Cellco Partnership d/b/a Verizon Wireless notice of intent to modify an existing telecommunications facility located at 267 Norwich-Westerly Road, North Stonington, Connecticut.

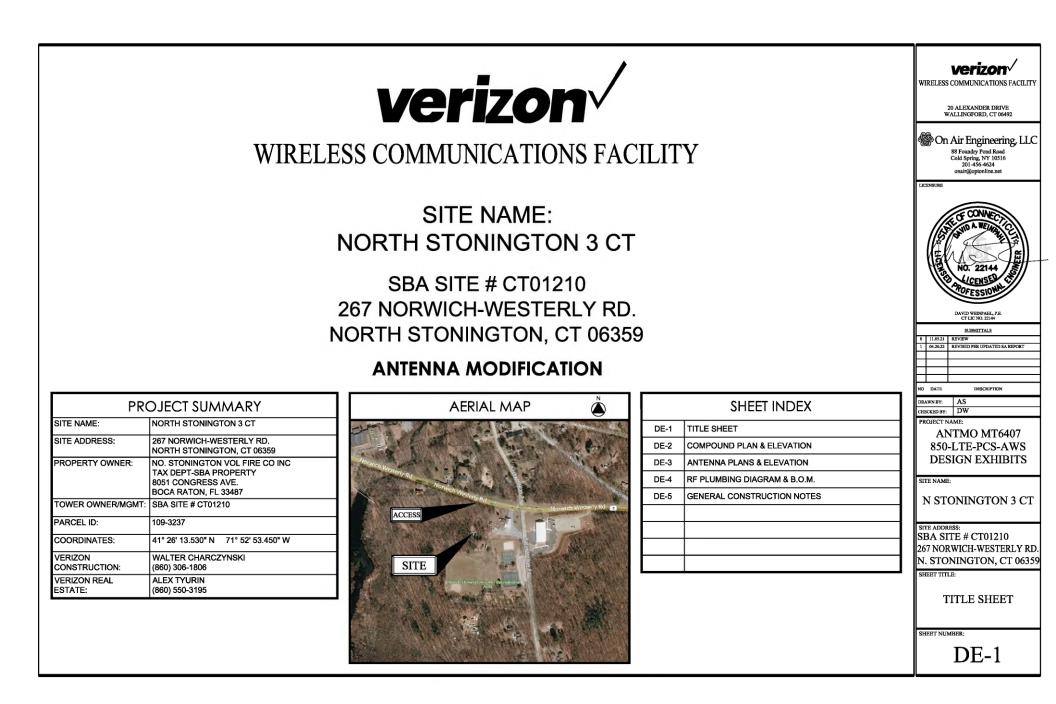
Dear Attorney Baldwin:

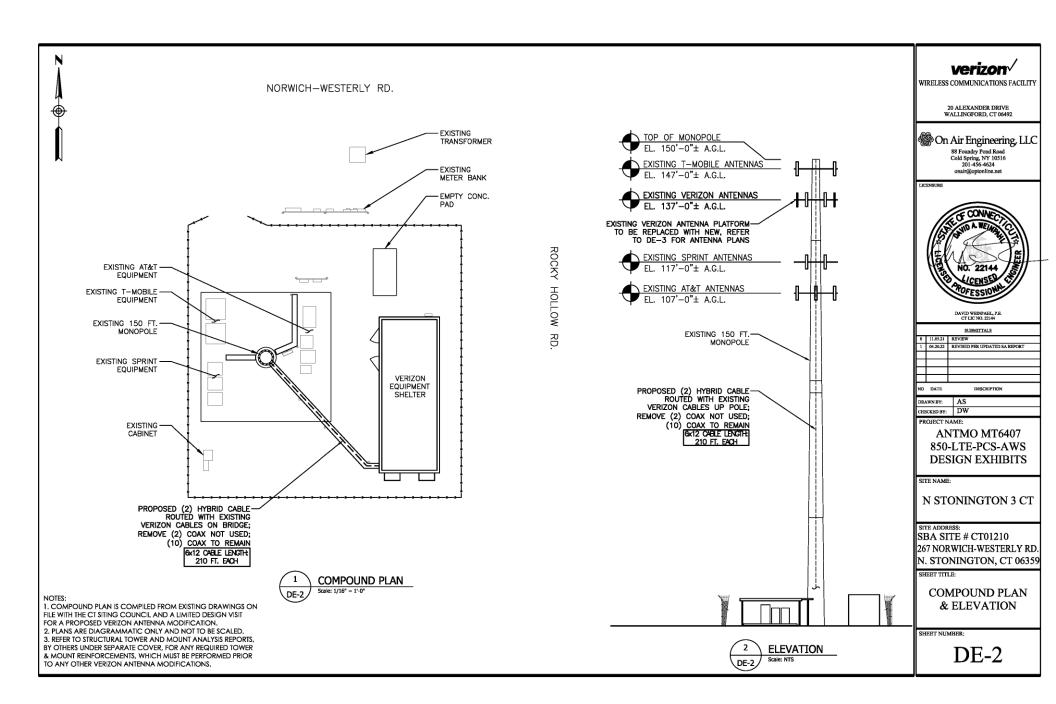
At a public meeting held on July 20, 2005, the Connecticut Siting Council (Council) acknowledged your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies.

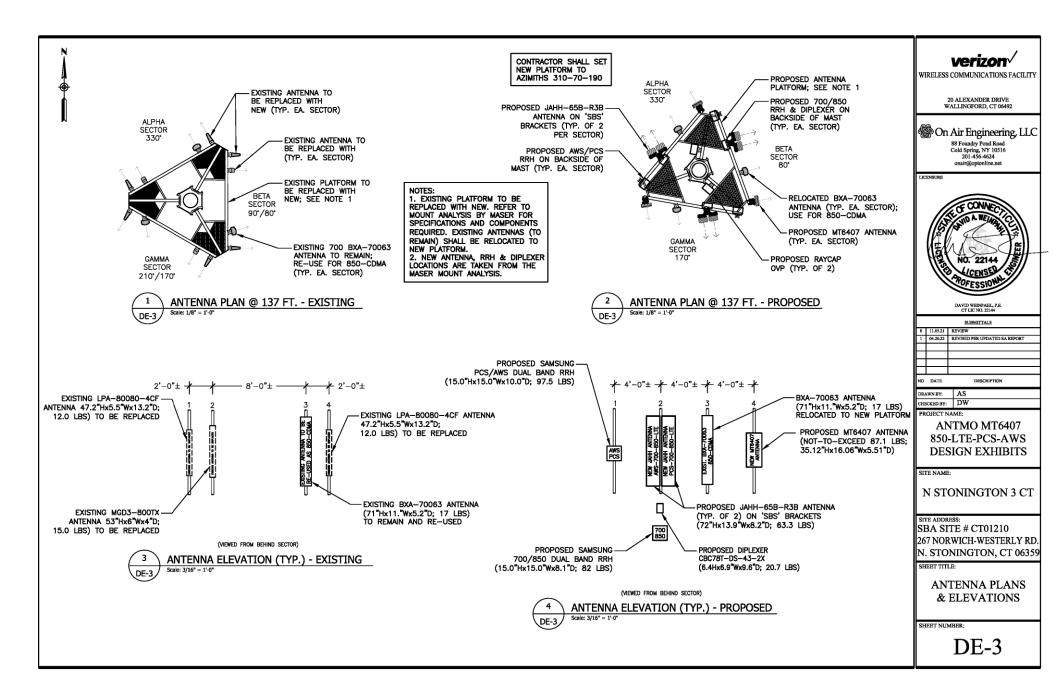
The proposed modifications are to be implemented as specified here and in your notice dated July 7, 2005, including the placement of all necessary equipment and shelters within the tower compound. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site, increase noise levels at the tower site boundary by six decibels, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on this tower.

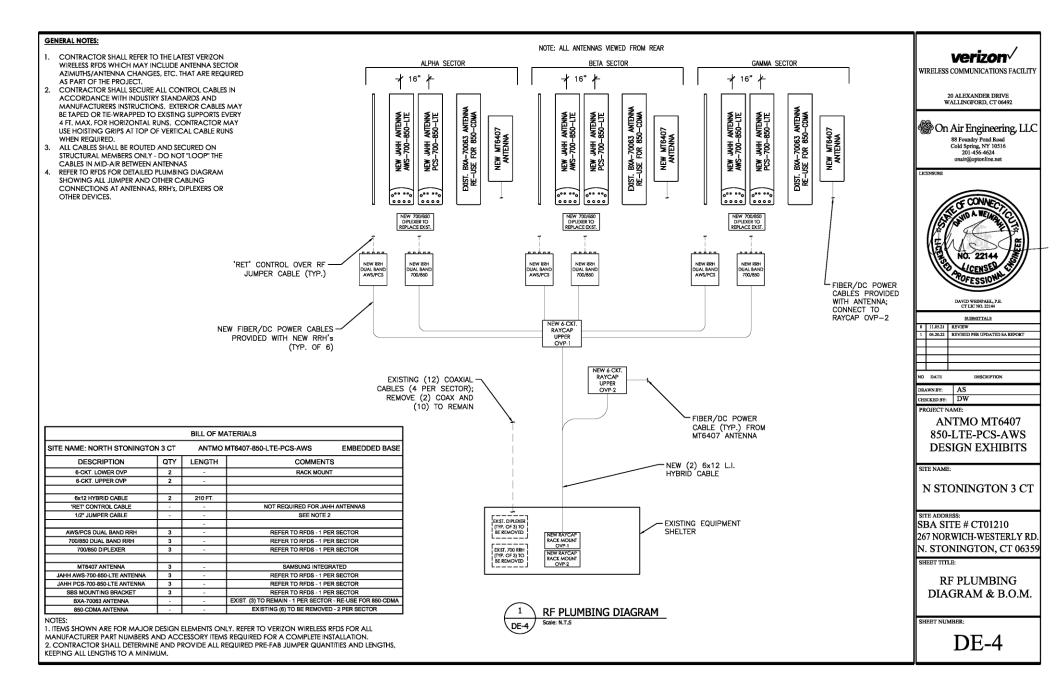
This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.


Very truly yours,


Pamela B. Katz, P.E. Chairman


PBK/jkl


 c: The Honorable Nicholas H. Mullane, II, First Selectman, Town of North Stonington Craig Grimord, Senior Planning & Zoning Official, Town of North Stonington SBA Communications, Inc. Christine Farrell, T-Mobile Thomas J. Regan, Esq., Brown Rudnick Berlack Israels LLP Christopher B. Fisher, Esq., Cuddy & Feder LLP
 C:Users\mayo\AppData\Local\Microsoft\Windows\INetCache\Content.Outlook\HEOZMF4\dc072005.DOC

ATTACHMENT 2

GENERAL CONSTRUCTION NOTES:

1. CONTRACTOR SHALL NOT COMMENCE ANY WORK UNTIL HE OBTAINS, AT HIS OWN EXPENSE, ALL INSURANCE REQUIRED BY CELLCO PARTNERSHIP d/b/a VERIZON. THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY,

2. ALL WORK SHALL BE DONE IN ACCORDANCE WITH ALL APPLICABLE CODES AND REGULATIONS AND ALL LOCAL LAWS AND REGULATIONS, CURRENT EDITIONS.

3. CONTRACTOR SHALL VISIT THE JOB SITE AND FAMILIARIZE HIMSELF WITH ALL CONDITIONS AFFECTING THE PROPOSED WORK AND MAKE PROVISIONS AS TO THE COST THEREOF. CONTRACT OR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS AND CONFIRMING THAT THE WORK MAY BE ACCOMPLISHED AS SHOWN PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO THE COMMENCEMENT OF WORK.

4. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS.

5. CONTRACTOR IS TO REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET, CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB-CONTRACTORS AND ALL RELATED PARTIES. THE SUB-CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.

6. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECIFICATIONS.

7. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.

8. CONTRACTOR SHALL OBTAIN AT HIS OWN EXPENSE ALL PERMITS AND ALL INSPECTIONS REQUIRED FROM FEDERAL AND STATE GOVERNMENTS, COUNTIES, MUNICIPALITIES AND OTHER REGULATORY AGENCIES WHICH MAY BE REQUIRED FOR THE PROJECT.

10. DETAILS ARE INTENDED TO SHOW END RESULT OF DESIGN. MINOR MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK.

11. ALL MATERIAL PROVIDED BY CELLCO PARTNERSHIP d/b/a VERIZON IS TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTOR PRIOR TO INSTALLATION. ANY DEFICIENCIES TO PROVIDED MATERIALS SHALL BE BROUGHT TO THE CONSTRUCTION MANAGERS ATTENTION IMMEDIATELY.

12. THE MATERIALS INSTALLED IN THE WORK SHALL MEET THE REQUIREMENTS OF THE CONTRACT DOCUMENTS. NO SUBSTITUTIONS ARE ALLOWED.

13. CONTRACTOR IS SOLELY RESPONSIBLE FOR THE MEANS AND METHODS OF CONSTRUCTION, FOR SEQUENCES AND PROCEDURES TO BE USED, AND TO ENSURE THE SAFETY OF THE EXISTING BUILDING AND ITS COMPONENT DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.

14. CONTRACTOR SHALL COORDINATE ALL CIVIL, STRUCTURAL AND ELECTRICAL DRAWINGS FOR THE LOCATION OF ALL OPENINGS, RECESSES, BUILT-IN WORK, ETC.

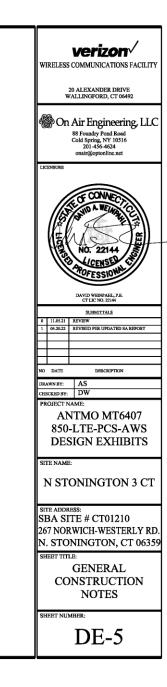
15. CONTRACTOR SHALL RECEIVE CLARIFICATION IN WRITING AND SHALL RECEIVE IN WRITING AUTHORIZATION TO PROCEED BEFORE STARTING WORK ON ANY ITEMS NOT CLEARLY DEFINED OR IDENTIFIED BY THE CONTRACT DOCUMENTS.

16. CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ALL PRODUCTS OR ITEMS NOTED AS "EXISTING" WHICH ARE NOT FOUND TO BE IN THE FIELD. 17. ERECTION SHALL BE DONE IN A WORKMANLIKE MANNER BY COMPETENT EXPERIENCED WORKMEN IN ACCORDANCE WITH APPLICABLE CODES AND THE BEST-ACCEPTED PRACTICE. ALL MEMBERS SHALL BE LAID PLUMB AND TRUE AS INDICATED ON THE DRAWINGS.

18. CONTRACTOR SHALL BE RESPONSIBLE FOR THE SAFETY OF THE WORK AREA, ADJACENT AREAS, AND BUILDING OCCUPANTS THAT ARE LIKELY TO BE AFFECTED BY THE WORK UNDER THIS CONTRACT. WORK SHALL CONFORM TO ALL O.S.H.A REQUIREMENTS.

19. CONTRACTOR SHALL COORDINATE HIS WORK AND SCHEDULE HIS ACTIVITIES AND WORKING HOURS IN ACCORDANCE WITH THE REQUIREMENTS OF THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY.

20, CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING HIS WORK WITH THE WORK OF OTHERS AS IT MAY RELATE TO RADIO EQUIPMENT, ANTENNAS AND ANY OTHER PORTIONS OF THE WORK.


21. CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY INDICATED OR WHERE LOCAL CODES OR REGULATIONS MAY TAKE PRECEIPENCE.

22. CONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING SURFACES, EQUIPMENT, IMPROVEMENTS, PIPING, ANTENNA AND ANTENNA CABLES AND REPAR ANY DAMAGE THAT OCCURS DURING CONSTRUCTION.

23. CONTRACTOR SHALL REPAIR ALL EXISTING SURFACES DAMAGED DURING CONSTRUCTION SUCH THAT THEY MATCH AND BLEND WITH ADJACENT SURFACES.

24. CONTRACTOR SHALL KEEP CONTRACT AREA CLEAN, HAZARD FREE AND DISPOSE OF ALL DEBRIS AND RUBBISH. EQUIPMENT NOT SPECIFIED AS REMAINING ON THE ROPERTY OF THE OWNER SHALL BE REMOVED. LEAVE PREMISES IN CLEAN CONDITIONS AND FREE FROM PAINT SPOTS. DUST, OR SMUDGES OF ANY NATURE. CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING ALL ITEMS UNTIL COMPLETION OF CONSTRUCTION.

25. BEFORE FINAL ACCEPTANCE OF THE WORK, CONTRACTOR SHALL REMOVE ALL EQUIPMENT, TEMPORARY WORKS, UNUSED AND USELESS MATERIALS, RUBBISH AND TEMPORARY STRUCTURES.

Dual-Band Radio Unit 700/850MHz (B13/B5) RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L) Weight: 31.9kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

Dual-Band Radio Unit AWS/PCS (B66/B2) RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

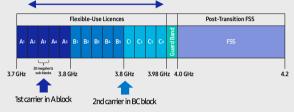
Duplex Type: FDD Operating Frequencies: B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz) Instantaneous Bandwidth: 70MHz(B66) + 60MHz(B2) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 255mm (36.8L) Weight: 38.3kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A


Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

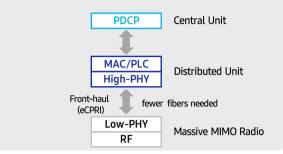
C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

8-port sector antenna, 2x 698–787, 2x 824-894 and 4x 1695–2360 MHz, 65° HPBW, 3x RET and low bands have diplexers. Internal SBT's on first LB(Port 1) and first HB(Port 5).

- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- One RET for 700MHz, one RET for 850MHz, and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO
- Internal filter on low band and interleaved dipole technology providing for attractive, low wind load mechanical package
- Separate RS-485 RET input/output for low and high band

General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Effective Projective Area (EPA), frontal	0.28 m ² 3.014 ft ²
Effective Projective Area (EPA), lateral	0.24 m ² 2.583 ft ²
Grounding Type	RF connector body grounded to reflector and mounting bracket
Performance Note	Outdoor usage Wind loading figures are validated by wind tunnel measurements described in white paper WP-112534-EN
Radome Material	Fiberglass, UV resistant
Radiator Material	Aluminum Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	4.3-10 Female
RF Connector Location	Bottom
RF Connector Quantity, high band	4
RF Connector Quantity, low band	4
RF Connector Quantity, total	8

Remote Electrical Tilt (RET) Information, General

RET Interface	8-pin DIN Female 8-pin DIN Male
RET Interface, quantity	2 female 2 male

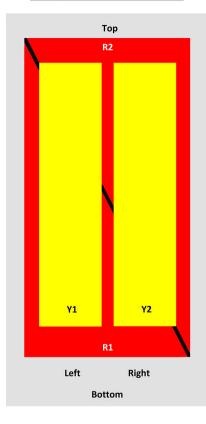
Dimensions

Width

350 mm | 13.78 in

Page 1 of 4

©2020 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: April 30, 2020



Length

Depth

Array Layout

JAHH-65A-R3B JAHH-65B-R3B JAHH-65C-R3B

View from the front of the antenna

(Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance	50 ohm
Operating Frequency Band	1695 – 2360 MHz 698 – 787 MHz 824 – 894 MHz
Polarization	±45°

2 W

Remote Electrical Tilt (RET) Information, Electrical

Protocol

3GPP/AISG 2.0 (Single RET)

Power Consumption, idle state, maximum

Page 2 of 4

©2020 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: April 30, 2020

COMMSCOPE[®]

1828 mm | 71.969 in 208 mm | 8.189 in

AISG RET UID

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX

RET (SRET)

Conns

Freq (MHz)

Power Consumption, normal conditions, maximum	13 W
Input Voltage	10–30 Vdc
Internal Bias Tee	Port 1 Port 5
Internal RET	High band (1) Low band (2)

Electrical Specifications

Frequency Band, MHz	698–787	824–894	1695–1880	1850–1990	1920–2200	2300–2360
Gain, dBi	14.5	15.8	18	18.4	18.5	18.8
Beamwidth, Horizontal, degrees	67	65	63	63	65	68
Beamwidth, Vertical, degrees	12.4	10.5	5.7	5.2	4.9	4.4
Beam Tilt, degrees	2–14	2–14	0–10	0–10	0–10	0–10
USLS (First Lobe), dB	18	18	20	20	21	23
Front-to-Back Ratio at 180°, dB	32	34	31	35	36	38
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	30	30	30	30	30	30
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50° C, maximum, watts	200	200	300	300	300	250

Electrical Specifications, BASTA

Frequency Band, MHz	698–787	824–894	1695–1880	1850–1990	1920–2200	2300–2360
Gain by all Beam Tilts, average, dBi	14.3	14.9	17.6	18.1	18.2	18.5
Gain by all Beam Tilts Tolerance, dB	±0.3	±0.5	±0.6	±0.4	±0.5	±0.6
Gain by Beam Tilt, average, dBi	2 ° 14.3 8 ° 14.3 14 ° 14.3	2 ° 15.0 8 ° 14.9 14 ° 15.4	0 ° 17.2 5 ° 17.6 10 ° 17.6	0 ° 17.6 5 ° 18.2 10 ° 18.2	0 ° 17.7 5 ° 18.3 10 ° 18.3	0 ° 17.9 5 ° 18.7 10 ° 18.7
Beamwidth, Horizontal Tolerance, degrees	±1.2	±1.4	±4	±2.4	±2.9	±2.7
Beamwidth, Vertical Tolerance, degrees	±0.9	±0.5	±0.3	±0.2	±0.3	±0.1
USLS, beampeak to 20° above beampeak, dB	18	17	17	18	19	18
Front-to-Back Total Power at 180° ± 30°, dB	25	24	26	29	27	29
CPR at Boresight, dB	22	23	20	21	21	24

Page 3 of 4

©2020 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: April 30, 2020

COMMSCOPE°

CPR at Sector, dB	11	12	11	11	11	8
Mechanical Specific	cations					
Wind Loading at Velocity, frontal301.0 N @ 150 km/h67.7 lbf @ 150 km/h						
Wind Loading at Velocity, la	teral		254.0 N @ 150	km/h 57.1	lbf @ 150 km/h	
Wind Loading at Velocity, m	aximum		143.4 lbf @ 15	0 km/h 638	.0 N @ 150 km/h	
Wind Speed, maximum			241 km/h 1	49.75 mph		

Packaging and Weights

Width, packed	456 mm 17.953 in
Depth, packed	357 mm 14.055 in
Length, packed	1975 mm 77.756 in
Net Weight, without mounting kit	29.2 kg 64.375 lb
Weight, gross	42.5 kg 93.696 lb

Regulatory Compliance/Certifications

Agency	Classification
CHINA-ROHS	Above maximum concentration value
ISO 9001:2015	Designed, manufactured and/or distributed under this quality management system
ROHS	Compliant/Exempted

Included Products

BSAMNT- ____ Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Severe environmental conditions may degrade optimum performance **Performance Note**

Page 4 of 4

ATTACHMENT 3

	General	Power	Density					
Site Name: North Stonington 3								
Tower Height: Verizon @ 137ft								
CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	FREQ.	CALC. POWER DENS	MAX. PERMISS.EXP.	FRACTION MPE	Total
*DISH	4	224	127	600	0.0220	0.4000	0.55%	
*DISH	4	543	127	1900	0.0533	1.0000	0.53%	
*DISH	4	543	127	2190	0.0533	1.0000	0.53%	
*Sprint	1	377	120.3	850	0.0104	0.5667	0.18%	
*Sprint	2	942	120.3	850	0.0519	0.5667	0.92%	
*Sprint	5	512	120.3	1900	0.0705	1.0000	0.70%	
*Sprint	2	1280	120.3	1900	0.0705	1.0000	0.70%	
*Sprint	8	778	120.3	2500	0.1713	1.0000	1.71%	
*AT&T	1	1475	107	700	0.0520	0.4667	1.11%	
*AT&T	1	1523	107	850	0.0537	0.5667	0.95%	
*AT&T	1	3837	107	2100	0.1353	1.0000	1.35%	
*AT&T	1	1000	107	850	0.0353	0.5667	0.62%	
*AT&T	1	2951	107	700	0.104	0.4667	2.23%	
*AT&T	1	3664	107	1900	0.1292	1	1.29%	
*AT&T	1	1000	107	850	0.0353	0.5667	0.62%	
*T-Mobile	1	1556	147	1900	0.0281	1	0.28%	
*T-Mobile	1	584	147	1900	0.0106	1.0000	0.11%	
*T-Mobile	2	2334	147	2100	0.0844	1.0000	0.84%	
*T-Mobile	2	789	147	600	0.0285	0.4000	0.71%	
*T-Mobile	2	433	147	700	0.0157	0.4667	0.34%	
VZW 700	4	470	137	751	0.0036	0.5007	0.72%	
VZW CDMA	2	384	137	877.26	0.0015	0.5848	0.25%	
VZW Cellular	4	538	137	874	0.0041	0.5827	0.71%	
VZW PCS	4	1181	137	1977.5	0.0091	1.0000	0.91%	
VZW AWS	4	1211	137	2120	0.0093	1.0000	0.93%	
VZW CBAND	2	13335	137	3730.08	0.0511	1.0000	5.11%	
								24.89%
* Source: Siting Council								

ATTACHMENT 4

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 150 ft Valmont Monopole Customer Name: SBA Communications Corp Customer Site Number: CT01210-S Customer Site Name: North Stonington Carrier Name: Verizon (App#: 173225, v2) Carrier Site ID / Name: NLN-2051 / North Stonington 3 CT Site Location: 267 Norwich Westerly Road N. Stonington, Connecticut New London County Latitude: 41.437066 Longitude: -71.881488

Analysis Result:

Max Structural Usage: 96.8% [Pass] Max Foundation Usage: 90.9% [Pass] Additional Usage Caused by New Mount: +2.50% Report Prepared By: Walter Velez

("曲») ES

Tower Engineering Solutions Phone (972) 483-0607, Fax (972) 975-9615 1320 Greenway Drive, Suite 600, Irving, Texas 75038

Structural Analysis Report

Existing 150 ft Valmont Monopole Customer Name: SBA Communications Corp Customer Site Number: CT01210-S Customer Site Name: North Stonington Carrier Name: Verizon (App#: 173225, v2) Carrier Site ID / Name: NLN-2051 / North Stonington 3 CT Site Location: 267 Norwich Westerly Road N. Stonington, Connecticut New London County Latitude: 41.437066 Longitude: -71.881488

<u>Analysis Result:</u> Max Structural Usage: 96.8% [Pass] Max Foundation Usage: 90.9% [Pass] Additional Usage Caused by New Mount: +2.50% Report Prepared By: Walter Velez

Introduction

The purpose of this report is to summarize the analysis results on the 150 ft Valmont Monopole to support the proposed antennas and transmission lines in addition to those currently installed.

The pending modification by **TES** listed under Sources of Information was also considered completed and was included in this analysis.

Sources of Information

Tower Drawings	Original structural design report prepared by Valmont. Dated 08-31-1999. Order No 18771-
	99.
	Previous structural report prepared by Tower Engineering Solutions. Dated 03-02-2022.
	TES Project No 125083.
Foundation Drawing	Original foundation drawings prepared by Valmont. Dated 07-15-1999. Order No 18771-
	99.
	Project No 2856. Drawing No 2856-F.
Geotechnical Report	Geotechnical report prepared by Jaworski Geotech, Inc. Dated 06-08-1999. Project No
	99128G.
Mount Analysis	New/Replacement antenna mount analysis report and PMI requirements prepared by
	Master Consuting Connecticut. Dated 10-28-2021. Project No 21781080A.
Modification Drawings	N/A
Pending Modification	Tower Engineering Solutions Pending Job # 123611.

Analysis Criteria

The rigorous analysis was performed in accordance with the requirements and stipulations of the TIA-222-G-2. In accordance with this standard, the structure was analyzed using **TESPoles**, a proprietary analysis software. The program considers the structure as an elastic 3-D model with second-order effects and temperature effects incorporated in the analysis. The analysis was performed using multiple wind directions.

Wind Speed Used in the Analysis:	Ultimate Design Wind Speed V _{ult} = 135.0 mph (3-Sec. Gust)
(Based on IBC 2015)	Nominal Design Wind Speed V _{asd} = 105.0 mph (3-Sec. Gust)
Wind Speed with Ice:	50 mph (3-Sec. Gust) with 3/4" radial ice concurrent
Operational Wind Speed:	60 mph + 0" Radial ice
Standard/Codes:	TIA-222-G-2, 2015 IBC & 2018 Connecticut State Building Code
Exposure Category:	C
Structure Class:	II
Topographic Category:	1
Crest Height:	0 ft
Seismic Parameters:	$S_{\rm S} = 0.162, S_1 = 0.058$

This structural analysis is based upon the tower being classified as a Structure Class II; however, if a different classification is required subsequent to the date hereof, the tower classification will be changed to meet such requirement and a new structural analysis will be run.

Existing Antennas, Mounts and Transmission Lines

The table below summarizes the antennas, mounts and transmission lines that were considered in the analysis as existing on the tower.

ltems	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner	
1		3	Ericsson AIR6449 B41 - Panel	(1) Low Profile			
2		3	Commscope VV-65A-R1 - Panel	w/ Handrail Kit and Tie Back Kit			
3	147.0	3	RFS APXVAALL24-43-U-NA20 - Panel	(Commscope MT-195-14 & VSR-MS-B),	(7) 1 5/8" Coax:	T-Mobile	
4	147.0	3	Ericsson KRY 112 144/1 TMA's	(1) Platform Reinforcement Kit	(4) 1.90'' Fiber	T-MODIle	
5		3	Ericsson 4449 B71 + B85 RRU's	(Sitepro PRK-1245L), (1) V-Brace Kit			
6	3		Ericsson 4460 B25 + B66 RRU's	(Sitepro PRK-SFS-L)			
7		3	Antel BXA-70063/6CF - Panel				
8		6	Antel LPA-80080/4CF - Panel				
9	137.0	3	Rymsa MGD5-800T2 - Panel	Low Profile Platform	(12) 1 5/8"	Verizon	
10		6	RFS FD9R6004/2C-3L Diplexers				
11		2	Cleargain 850/1900 TMA's				
12		3	JMA Wireless MX08FRO665-21 - Panel	Platform w/HRK			
13	127.0	3	Fujitsu TA08025-B605 RRU's	(Commscope	(1) 1.6" Hybrid	Dish	
14		3	Fujitsu TA08025-B604 RRU's	MC-PK8-DSH)	(_,	Wireless	
15		1	Raycap RDIDC-9181-PF-48 COVP	,			
16	120.0	3	Commscope NNVV-65B-R4 - Panel				
17		3	RFS APXVTM14-C-I20 - Panel	Platform w/ Handrail		Sprint	
18	117.0	3	ALU 1900 Mhz	(Sitepro RMQP-496-HK)	(4) 1-1/4" Fiber	Nextel	
19		6	ALU 800 Mhz				
20		3	ALU TD-RRH8x20-25				
21		3	Kathrein 7770		(12) 1 5/8"		
22		6	Cci DMP65R-BU8DA		(3) 3" Conduit		
23		6	Powerwave LGP21401 TMA		{Conduit 1: [(1) 1/2" Fiber		
24	107.0	3	Ericsson RRUS 4449 B5/B12	Low Profile Platform	+ (2) 3/4" DC]	AT&T	
25	20,10	3	Ericsson RRUS 4478 B14	w/Site Pro 1 HRK14	Conduit 2: [(1) 1/2" Fiber +		
26		3	Ericsson RRUS 8843 B2 B66A		(2) 1" DC]		
27		1	Raycap DC6-48-60-18-8F		Conduit 3: [(1) 1" DC]}		
28		1	Raycap DC9-48-60-24-8C-EV		I DC]}		

Proposed Carrier's Final Configuration of Antennas, Mounts and Transmission Lines

Information pertaining to the proposed carrier's final configuration of antennas and transmission lines was provided by SBA Communications Corp. The proposed antennas and lines are listed below.

Items	Elevation (ft)	Qty.	Antenna Descriptions	Mount Type & Qty.	Transmission Lines	Owner
29		3	Antel BXA-70063-6CF - Panel			
30		3	Samsung MT6407-77A - Panel	Low Profile Platform		
31		6	Andrew JAHH-65B-R3B - Panel	(Site Pro1 RMQP-44)	(10) 1 5/8"	
32	137.0	3	Commscope CBC78T-DS-43-2X Diplexers	w/ Handrail Kit (Site Pro1 HRK12),	Coax; (2) 1 5/8'' Hybrid;	Verizon
33		3	Nokia B2/B66A RRH BR049 RRU's	w/ (3) Antenna Mount Kit (Commscope	(1) 1/2" Coax	
34		3	Nokia B5/B13 RRH-BR04C RRU's	BSAMNT-SBS-2-2)	(1) 1/2 COax	
35		2	RFS DB-B1-6C-12AB-0Z OVP's	00-10111-000-2-2)		

Please see the attached coax layout for the line placement considered in the analysis.

Analysis Results

The results of the structural analysis, performed for the wind and ice loading and antenna equipment as defined above, are summarized as the following:

	Pole shafts	Anchor Bolts	Base Plate	Flange Connection
Max. Usage:	96.8%	92.9%	77.5%	48.9%
Pass/Fail	Pass	Pass	Pass	Pass

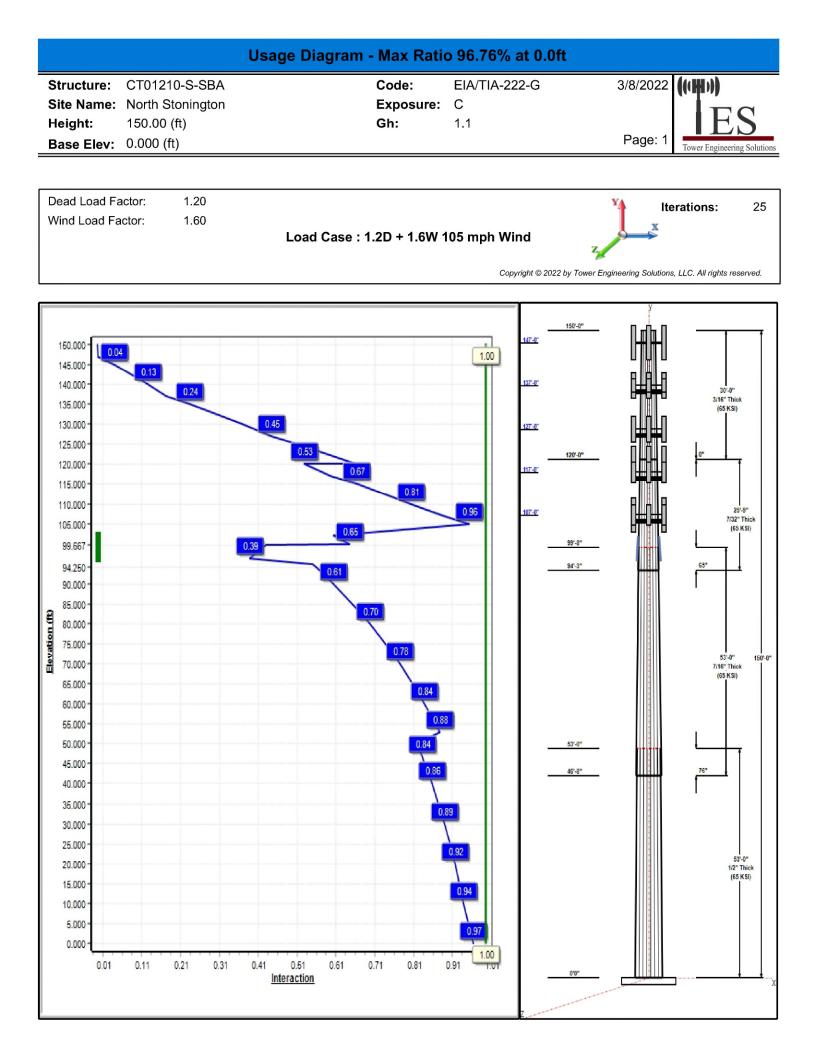
Foundations

	Moment (Kip-Ft)	Shear (Kips)	Axial (Kips)
Original Design Reactions	4272.0	28.1	55.1
Analysis Reactions	5634.5	49.9	59.4

The foundation has been investigated using the supplied documents and soils report and was found adequate. Therefore, no modification to the foundation will be required.

Operational Condition (Rigidity):

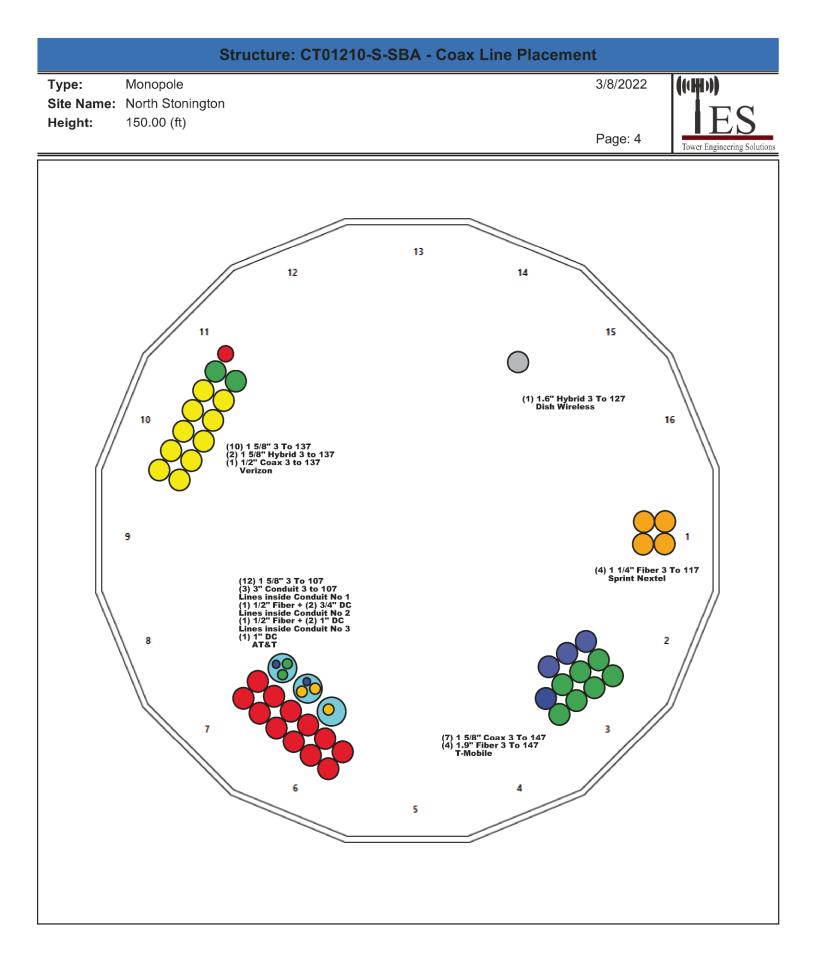
Operational characteristics of the tower are found to be within the limits prescribed by TIA-222 for the installed antennas. The maximum twist/sway at the elevation of the proposed equipment is 1.6929 degrees under the operational wind speed as specified in the Analysis Criteria.


Conclusions

Based on the analysis results, the structure and its foundation will be adequate to safely support the existing and proposed equipment and meet the minimum requirements per the TIA-222-G-2 Standard, the 2015 IBC and the 2018 Connecticut State Building Code after the following pending modification is successfully completed.

- Pending modification design drawing by **TES** Job # **123611**.

Standard Conditions


- 1. This analysis was performed based on the information supplied to **(TES) Tower Engineering Solutions**, **LLC.** Verification of the information provided was not included in the Scope of Work for **TES**. The accuracy of the analysis is dependent on the accuracy of the information provided.
- 2. The structural analysis was performance based upon the evidence available at the time of this report. All information provided by the client is considered to be accurate.
- 3. The analyses will be performed based on the codes as specified by the client or based on the best knowledge of the engineering staff of **TES**. In the absence of information to the contrary, all work will be performed in accordance with the latest relevant revision of ANSI/TIA-222. If wind speed and/or ice loads are different from the minimum values recommended by the ANSI/TIA-222 standard or other codes, **TES** should be notified in writing and the applicable minimum values provided by the client.
- 4. The configuration of the existing mounts, antennas, coax and other appurtenances were supplied by the customer for the current structural analysis. **TES** has not visited the tower site to verify the adequacy of the information provided. If there is any discrepancy found in the report regarding the existing conditions, **TES** should be notified immediately to evaluate the effect of the discrepancy on the analysis results.
- 5. The client will assume responsibility for rework associated with the differences in initially provided information, including tower and foundation information, existing and/or proposed equipment and transmission lines.
- 6. If a feasibility analysis was performed, final acceptance of changed conditions shall be based upon a rigorous structural analysis.

							СТ0121				A
Type:		Taperec	1			Base	e Shape:	16 S	ided	3/8/2022	(((円)))
Site N	lame:	North St	tonington	1			Taper:	0.18	000		
Heigh	nt:	150.00 ((ft)								
Base	Elev:	0.00 (ft)								Page: 2	Tower Engineering Soluti
				Proper	ties					Y	
	Length	Тор	Bottom	Thick	Joint	-	Grade	147'-0"	150'-0"	Ο πία Ο	tt
Seq	(ft)	(in)	(in)	(in)	Туре	Taper	(ksi)	147 -0			
1 2	53.00 53.00	40.46 32.93	50.00 42.47	0.500 0.438	Clin	0.18000 0.18000	65 65				
2 3	25.75	29.71	34.35	0.438	Slip Slip	0.18000	65	137'-0"		6446446	
4	30.00	24.31	29.71	0.188	Butt	0.18000	65				30'-0" 3/16" Thick
			screte A	nnurte	nances	•					(65 K SI)
Attach	For			ppunc	mances			127'-0"		╽╋╫╻╫╾╽	.
Elev (ft			/ Descri	otion		Carrier			120'-0"	ο μάμ ο	0"
150.00			1 Lightnin					117"-0"			T T I
147.00				n AIR6449		T-Mobile					
147.00			3 Comms 3 RFS	cope VV-	ooA-R1	T-Mobile T-Mobile				BUAUB	
147.00			3 RFS 3 Ericsso	n KRY 11	2 144/1	T-Mobile		107'-0"			25'-9" 7/32" Thick
147.00				n 4449 B7		T-Mobile					(65 KSI)
147.00				n 4460 B2		T-Mobile			99'-8"	*******	•
147.00				n w/ Hand		T-Mobile			94'-3"		65"
147.00) 147	.00	1 Tie Bac	k Kit (Con	nmscope	T-Mobile					
147.00) 147	.00	1 Rreinfor	rcement K	it (Sitepro	T-Mobile					
147.00			1 V-Brace			T-Mobile					
137.00				XA-70063		Verizon					
137.00				ng MT640		Verizon					
137.00			6 Andrew 3 Comms		B-R3B	Verizon Verizon					53'-0" 150'-
137.00				2/B66A R	RH	Verizon					7/16" Thick
137.00					H-BR04C	Verizon					(65 K SI)
137.00			2 RFS DE			Verizon					
137.00				ofile Platfo		Verizon					
137.00) 137	.00	1 Handra	il Kit (Site	Pro1	Verizon					- 1 I
137.00			3 Mount k		scope	Verizon			53'-0"		
127.00			3 JMA Wi			Dish Wireless					
127.00			3 Fujitsu			Dish Wireless			46'-8"		76"
127.00			3 Fujitsu		B604	Dish Wireless					
127.00			1 Raycap	n w/HRK		Dish Wireless Dish Wireless					
117.00			3 ALU 19			Sprint Nextel					
117.00			6 ALU 80			Sprint Nextel					
117.00			3 ALU TE		0-25	Sprint Nextel					
117.00				RMQP-49		Sprint Nextel					53'-0" 1/2" Thick
117.00) 117	.00	3 RFS AF	XVTM14	-C-I20	Sprint Nextel					(65 K SI)
117.00			3 Comms			Sprint Nextel					
107.00			3 Ericsso			AT&T					
107.00			3 Ericsso			AT&T					
107.00			3 Ericsso		866A	AT&T					
107.00			1 Raycap 1 Site Pro			AT&T AT&T					
107.00			6 Cci DM		3DA	AT&T			0'0"		
107.00				DC6-48-6		AT&T					
107.00			3 Powerw			AT&T					
107.00			6 Powerw			AT&T		Ζ	1. mar.		
107.00) 107	.00	1 Low Pro	ofile Platfo	rm	AT&T					
		Li	inear A	opurter	nances						
Elev	Elev										

 $\label{eq:copyright} Copyright @ 2022 \ by \ Tower \ Engineering \ Solutions, \ LLC. \ All \ rights \ reserved.$

				Structu	re: CT0121	0-S-SBA		
Type:	Тар	ered		E	Base Shape:	16 Sided	3/8/2022	(((H)))
Site N	lame: Nor	th Stonin	aton		Taper:	0.18000		
Heigh		.00 (ft)	5.0.1					
-		• •					Page: 3	
Base	Elev: 0.00) (IL)						Tower Engi
3.00	147.00	Inside	1 5/8" Coax	T-Mobile				
3.00	147.00	Inside	1.90" Fiber	T-Mobile				
3.00	137.00	Inside	1 5/8" Coax	Verizon				
3.00	137.00	Inside	1 5/8" Hybrid	Verizon				
3.00	137.00	Inside	1/2" Coax	Verizon				
3.00	127.00	Inside	1.6" Hybrid	Dish Wire	eless			
3.00	117.00	Inside	1-1/4" Fiber	Sprint Ne				
94.25	109.25	Outside	6"x1" Link Plate	TES				
3.00	107.00	Inside	1 5/8" Coax	AT&T				
3.00	107.00	Inside	1" DC	AT&T				
3.00	107.00	Inside	1/2" Fiber Cable	AT&T				
3.00	107.00	Inside	3" Coax	AT&T				
3.00	107.00	Inside	3/4" DC	AT&T				
		A	Anchor Bolts					
		Gra						
-	Specification			nt				
20	2.25" 18J	75.						
			Base Plate					
Thickne	ess Specif	ications	Grade					
(in)	(in)	(ksi) Ge	ometry				
) 6	4.3	60.0 P	olygon				
2.7500								
2.7500			Reactions					
2.7500			Reactions Moment	Shear	Axial			
.oad Ca	ise			(Kips)	Axial (Kips)			
.oad Ca		Wind	Moment					
.oad Ca .2D + 1.6	ise		Moment (FT-Kips)	(Kips)	(Kips)			
.oad Ca .2D + 1.6 .9D + 1.6	ase 6W 105 mph \	Nind	Moment (FT-Kips) 5634.5 5555.0	(Kips) 49.9	(Kips) 59.4			
.oad Ca 1.2D + 1.6).9D + 1.6 1.2D + 1.0	ise 6W 105 mph \ 6W 105 mph \ 0Di + 1.0Wi 5	Nind	Moment (FT-Kips) 5634.5 5555.0 d 1393.6 152.8	(Kips) 49.9 49.8 12.0 1.3	(Kips) 59.4 44.5			
_oad Ca 1.2D + 1.6).9D + 1.6	150 6W 105 mph \ 6W 105 mph \ 0Di + 1.0Wi 50 0E	Nind	Moment (FT-Kips) 5634.5 5555.0 d 1393.6	(Kips) 49.9 49.8 12.0	(Kips) 59.4 44.5 90.3			

	Shaft Properties												
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022							
Site Name:	North Stonington			Exposure:	С		de uterste						
Height:	150.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock								
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 5	Tower Engineering Solutions						

Sec. No.	Shape	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Overlap (in)	Weight (Ib)
1	16	53.000	0.5000	65		0.00	12,867
2	16	53.000	0.4375	65	Slip	76.00	9,380
3	16	25.750	0.2188	65	Slip	65.00	1,945
4	16	30.000	0.1875	65	Flange	0.00	1,638
					Total Sha	Fotal Shaft Weight:	

			Bo	ottom									
Sec. No.	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (sqin)	lx (in^4)	W/t Ratio	D/t Ratio	Taper
1	50.00	0.00	78.95	24439.41	18.30	100.00	40.46	53.00	63.74	12857.1	14.50	80.92	0.180003
2	42.47	46.67	58.67	13097.52	17.72	97.09	32.93	99.67	45.35	6050.90	13.38	75.28	0.180003
3	34.35	94.25	23.82	3504.31	29.64	157.02	29.71	120.00	20.58	2261.65	25.43	135.8	0.180003
4	29.71	120.0	17.66	1944.73	29.93	158.46	24.31	150.00	14.43	1060.92	24.20	129.6	0.180003

<u>Additi</u>	onal S	iteel										
Elev	Elev						Intermediate	Connectors –	Termina	tion Conne	ctors -	
From	То			Fy	Fu	Offset		Spacing		Spacing	Lower	Upper
(ft)	(ft)	Qty	Description	(ksi)	(ksi)	(in)	Description	(in)	Description	(in)	Qty	Qty
96.38	102.1	3	LNP LP6X100-G-10TT	65	80	0.00	5/8" Hollo Bolt	24.00	5/8" Hollo Bolt	3.00	9	9

			Lo	ad Summary	,		
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.000.5X
Site Name:	North Stonington			Exposure:	С		((din b))
Height:	150.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 6	Tower Engineering Solutions

Discrete Appurtenances

			No Ice			Ice			
Description	Qty	Weight (Ib)	CaAa (sf)	CaAa Factor	Weight (Ib)	CaAa (sf)	CaAa Factor	Hor. Ecc. (ft)	Vert Ecc (ft)
Lightning Rod	1	35.00	1.05	1.00	66.41	3.424	1.00	0.00	3.50
Ericsson AIR6449 B41	3	103.00	5.65	0.71	239.84	6.599	0.71	0.00	0.00
Commscope VV-65A-R1	3	23.81	5.92	0.73	162.88	6.998	0.73	0.00	0.00
RFS APXVAALL24-43-U-NA20	3	122.80	20.24	0.72	549.53	22.136	0.72	0.00	0.00
Ericsson KRY 112 144/1 TMA's	3	11.02	0.35	0.60	21.80	0.755	0.60	0.00	0.00
Ericsson 4449 B71 + B85 RRU's	3	75.00	1.95	0.67	156.29	2.538	0.67	0.00	0.00
Ericsson 4460 B25 + B66 RRU's	3	104.00	2.14	0.67	172.47	2.645	0.67	0.00	0.00
Platform w/ Hand Rail	1	2000.00	40.00	1.00	4090.03	60.900	1.00	0.00	0.00
Tie Back Kit (Commscope	1	123.10	4.17	1.00	243.17	9.399	1.00	0.00	0.00
Rreinforcement Kit (Sitepro	1	517.00	9.50	1.00	877.18	19.428	1.00	0.00	0.00
V-Brace Kit (Sitepro PRK-SFS-L)	1	642.00	6.30	1.00	1536.53	12.884	1.00	0.00	0.00
Antel BXA-70063-6CF	3	17.00	7.57	0.78	163.96	10.309	0.78	0.00	0.00
Samsung MT6407-77A	3	79.40	4.69	0.70	197.39	5.610	0.70	0.00	0.00
Andrew JAHH-65B-R3B	6	64.37	9.10	0.62	231.93	10.428	0.62	0.00	0.00
Commscope CBC78T-DS-43-2X	3	20.72	0.56	0.60	50.32	0.894	0.60	0.00	0.00
Nokia B2/B66A RRH BR049 RRU's	3	38.30	1.88	0.67	75.66	2.374	0.67	0.00	0.00
Nokia B5/B13 RRH-BR04C RRU's	3	31.90	1.88	0.67	63.02	2.374	0.67	0.00	0.00
RFS DB-B1-6C-12AB-0Z OVP's	2	32.00	3.79	0.67	82.30	8.580	0.67	0.00	0.00
Low Profile Platform (Site Pro1	1	1671.87	33.60	1.00	3175.42	54.520	1.00	0.00	0.00
Handrail Kit (Site Pro1 HRK12)	1	272.43	6.75	1.00	592.82	13.287	1.00	0.00	0.00
Mount Kit (Commscope	3	67.46	0.09	0.50	114.13	0.152	0.50	0.00	0.00
JMA Wireless MX08FRO665-21	3	64.50	12.49	0.74	350.57	13.931	0.74	0.00	0.00
Fujitsu TA08025-B605 RRU's	3	74.95	1.96	0.67	126.36	2.512	0.67	0.00	0.00
Fujitsu TA08025-B604 RRU's	3	63.93	1.96	0.67	113.75	2.512	0.67	0.00	0.00
Raycap RDIDC-9181-PF-48 COVP	1	21.85	2.01	0.67	74.10	2.569	0.67	0.00	0.00
Platform w/HRK (Commscope	1	1727.00	37.59	1.00	3386.97	84.044	1.00	0.00	0.00
ALU 1900 Mhz	3	60.00	2.77	0.67	141.39	4.007	0.67	0.00	0.00
ALU 800 Mhz	6	53.00	2.49	0.67	125.15	3.606	0.67	0.00	0.00
ALU TD-RRH8x20-25	3	70.00	4.05	0.67	177.20	4.842	0.67	0.00	0.00
Sitepro RMQP-496-HK	1	2449.00	46.00	1.00	4950.49	77.324	1.00	0.00	0.00
RFS APXVTM14-C-I20	3	56.20	6.34	0.77	211.90	7.424	0.77	0.00	0.00
Commscope NNVV-65B-R4	3	77.40	12.27	0.80	355.95	13.690	0.80	0.00	3.00
Ericsson 4449 B5/B12	3	70.00	1.65	0.67	135.42	2.168	0.67	0.00	0.00
Ericsson RRUS 4478 B14	3	59.90	1.84	0.67	105.34	2.349	0.67	0.00	0.00
Ericsson 8843 B2 B66A	3	75.00	1.65	0.67	146.63	2.168	0.67	0.00	0.00
Raycap DC9-48-60-18-8C-EV	1	16.00	4.78	0.67	135.62	5.635	0.67	0.00	0.00
Site Pro HRK14	1	302.36	8.13	1.00	649.27	15.812	1.00	0.00	0.00
Cci DMP65R-BU8DA	6	39.00	13.49	1.00	376.28	36.369	1.00	0.00	0.00
Raycap DC6-48-60-18-8F	1	31.80	0.92	0.67	91.57	1.343	0.67	0.00	0.00
Powerwave 7770	3	35.00	5.50	0.73	164.70	6.527	0.73	0.00	0.00
Powerwave/LGP21401	6	5.50	0.27	0.60	13.65	0.654	0.60	0.00	0.00
Low Profile Platform	1	1500.00	22.00	1.00	2765.43	39.075	1.00	0.00	0.00
Po Po	owerwave 7770 owerwave/LGP21401	werwave 77703owerwave/LGP214016ow Profile Platform1	werwave 7770 3 35.00 owerwave/LGP21401 6 5.50 ow Profile Platform 1 1500.00	werwave 7770 3 35.00 5.50 owerwave/LGP21401 6 5.50 0.27 ow Profile Platform 1 1500.00 22.00	werwave 7770 3 35.00 5.50 0.73 owerwave/LGP21401 6 5.50 0.27 0.60 ow Profile Platform 1 1500.00 22.00 1.00	werwave 7770335.005.500.73164.70owerwave/LGP2140165.500.270.6013.65ow Profile Platform11500.0022.001.002765.43	werwave 7770 3 35.00 5.50 0.73 164.70 6.527 owerwave/LGP21401 6 5.50 0.27 0.60 13.65 0.654 ow Profile Platform 1 1500.00 22.00 1.00 2765.43 39.075	werwave 7770 3 35.00 5.50 0.73 164.70 6.527 0.73 owerwave/LGP21401 6 5.50 0.27 0.60 13.65 0.654 0.60 ow Profile Platform 1 1500.00 22.00 1.00 2765.43 39.075 1.00	werwave 7770 3 35.00 5.50 0.73 164.70 6.527 0.73 0.00 owerwave/LGP21401 6 5.50 0.27 0.60 13.65 0.654 0.60 0.00 ow Profile Platform 1 1500.00 22.00 1.00 2765.43 39.075 1.00 0.00

Linear Appurtenances

Discrete Appurtenances

					No Ice			lce			
Ele No. (ft		Description	Qty	Weight (Ib)	CaAa (sf)	CaAa Factor	Weight (Ib)	CaAa (sf)	CaAa Factor	Hor. Ecc. (ft)	Vert Ecc (ft)
Bottom Elev. (ft)	Top Elev. (ft)	Description		Expose Width		Exposed					
3.00	147.00	(7) 1 5/8" Coax		0.0	00	Inside					
3.00	147.00	(4) 1.90" Fiber		0.0	00	Inside					
3.00	137.00	(10) 1 5/8" Coax		0.0	00	Inside					
3.00	137.00	(2) 1 5/8" Hybrid		0.0	00	Inside					
3.00	137.00	(1) 1/2" Coax		0.0	00	Inside					
3.00	127.00	(1) 1.6" Hybrid		0.0	00	Inside					
3.00	117.00	(4) 1-1/4" Fiber		0.0	00	Inside					
94.25	109.25	(3) 6"x1" Link Plate		1.0	00	Outside					
3.00	107.00	(12) 1 5/8" Coax		0.0	00	Inside					
3.00	107.00	(3) 1" DC		0.0	00	Inside					
3.00	107.00	(2) 1/2" Fiber Cable		0.0	00	Inside					
3.00	107.00	(3) 3" Coax		0.0	00	Inside					
3.00	107.00	(2) 3/4" DC		0.0	00	Inside					

Struct	ure: CT01210-S	-SBA			Co	ode:	Г	-IA-22	22-G		3/8/2	2022	(IIII))	
Site Na	ame: North Stoni	ngton			Ex	posure	e: (2					(#))	
Height	t: 150.00 (ft)				Cr	est Hei	ight: (0.00						C
Base B	. ,					te Clas	-		mnete	ent Rock				
		-							mpen		_		ower Engineer	ring Solution
Gh:	1.1		pograpł	iy: 1	St	ruct Cl	ass:	l			Pag	e: 8		
ncreme	nt Length: 5 (ft)											Deleteret	
Elev		Thisk	Flat Dia	A	lx	W/t	D/t		Fb	Walabé			Reinforci	
(ft)	Description	Thick (in)	(in)	Area (in^2)	(in^4)	Ratio	Ratio	Fy (ksi)	(ksi)	Weight (lb)	Area (in^2)	lxp (in^4)	lyp (in^4)	Weight (Ib)
0.00		0.5000	50.000	78.953	24439.4	18.30	100.00	65	82	0.0	(/	()	()	(/
5.00		0.5000	49.100	77.517	23130.4	17.94	98.20	65	82	1331.1				
10.00		0.5000	48.200	76.081	21869.0	17.58	96.40	65	83	1306.7				
15.00		0.5000	47.300	74.646	20654.3	17.23	94.60	65	83	1282.2				
20.00		0.5000	46.400	73.210	19485.5	16.87	92.80	65	83	1257.8				
25.00		0.5000	45.500	71.775	18361.6	16.51	91.00	65	83	1233.4				
30.00		0.5000	44.600	70.339	17281.8	16.15	89.20	65	83	1209.0				
35.00		0.5000	43.700	68.904	16245.1	15.79	87.40	65	83	1184.5				
40.00		0.5000	42.800	67.468	15250.8	15.44	85.60	65	83	1160.1				
45.00			41.900		14297.9	15.08		65		1135.7				
	Dat Oration 0	0.5000		66.033			83.80		83					
46.67	Bot - Section 2	0.5000	41.600	65.554	13989.3	14.96	83.20	65	83	373.1				
50.00		0.5000	41.000	64.597	13385.5	14.72	82.00	65	83	1398.8				
53.00	Top - Section 1	0.4375	41.335	57.077	12060.6	17.20	94.48	65	83	1241.5				
55.00		0.4375	40.975	56.575	11744.9	17.04	93.66	65	83	386.7				
60.00		0.4375	40.075	55.319	10979.8	16.63	91.60	65	83	951.9				
65.00		0.4375	39.175	54.063	10248.7	16.22	89.54	65	83	930.5				
70.00		0.4375	38.275	52.807	9550.9	15.81	87.49	65	83	909.1				
75.00		0.4375	37.375	51.551	8885.4	15.40	85.43	65	83	887.8				
80.00		0.4375	36.475	50.294	8251.6	14.99	83.37	65	83	866.4				
85.00		0.4375	35.575	49.038	7648.7	14.58	81.31	65	83	845.0				
90.00		0.4375	34.675	47.782	7075.8	14.17	79.26	65	83	823.6				
94.25	Bot - Section 3	0.4375	33.910	46.715	6612.0	13.83	77.51	65	83	683.3				
95.00		0.4375	33.775	46.526	6532.4	13.76	77.20	65	83	179.6				
96.38	RB1	0.4375	33.526	46.180	6387.4	13.65	76.63	65	83	328.6	18.00	3154.4	2385.9	84.
99.67	Top - Section 2	0.2188	33.372	23.135	3212.5	28.75	152.56	65	70	772.9	18.00	3049.4	2306.7	201.
100.00	100 - 0601011 2	0.2188	33.312	23.093	3195.1	28.70	152.28	65	70	26.2	18.00	3038.9	2292.4	201
102.13	RT1	0.2188	32.929	23.093	3085.3	28.70	152.28	65	70	166.4	18.00	2971.9		130.
											10.00	2971.9	2242.1	130.
105.00		0.2188	32.412	22.465	2941.4	27.88	148.17	65	71	221.2				
107.00		0.2188	32.052	22.214	2843.8	27.55	146.52	65	71	152.0				
110.00		0.2188	31.512	21.837	2701.5	27.06	144.06	65	72	224.8				
115.00		0.2188	30.612	21.209	2475.1	26.24	139.94	65	73	366.2				
117.00		0.2188	30.252	20.958	2388.2	25.92	138.30	65	73	143.5				
120.00	Top - Section 3	0.2188	29.712	20.581	2261.7	25.43	135.83	65	74	212.0				
120.00	Bot - Section 4	0.1875	29.712	17.659	1944.7	29.66	158.46	65	69					
125.00		0.1875	28.812	17.121	1772.2	28.97	153.66	65	70	295.9				
27.00		0.1875	28.452	16.906	1706.2	28.59	151.74	65	70	115.8				
130.00		0.1875	27.912	16.583	1610.3	28.02	148.86	65	71	170.9				
135.00		0.1875	27.012	16.044	1458.5	27.06	144.06	65	72	277.6				
137.00		0.1875	26.652	15.829	1400.6	26.68	142.14	65	72	108.5				
140.00		0.1875	26.112	15.506	1316.6	26.11	139.26	65	73	159.9				
145.00		0.1875	25.212	14.968	1184.1	25.16	134.46	65	74	259.2				
147.00		0.1875	24.852	14.752	1133.8	24.77	132.54	65	75	101.1				
										101.1				
150.00		0.1875	24.312	14.429	1060.9	24.20	129.66	65	75	148.9				

Wind Loading - Shaft								
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.000.53	
Site Name:	North Stonington			Exposure:	С		((H)))	
Height:	150.00 (ft)			Crest Height:	0.00		EC	
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock			
Gh:	1.1	Topography:	1	Struct Class:	11	Page: 9	Tower Engineering Solutions	

Load Case: 1.2D + 1.6W 105 mph Wind Dead Load Factor 1.20

Wind Load Factor 1.60

¥	Iterations
×	
2	

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.85	22.791	25.07	411.26	0.750	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.85	22.791	25.07	403.85	0.750	0.000	5.00	21.050	15.79	633.3	0.0	1597.3
10.00		1.00	0.85	22.791	25.07	396.45	0.750	0.000		20.668	15.50	621.8	0.0	1568.0
15.00		1.00	0.85	22.791	25.07	389.05	0.750	0.000	5.00	20.286	15.21	610.3	0.0	1538.7
20.00		1.00	0.90	24.182	26.60	393.12	0.750	0.000	5.00	19.903	14.93	635.3	0.0	1509.4
25.00		1.00	0.95	25.345	27.88	394.66	0.750	0.000	5.00	19.521	14.64	653.1	0.0	1480.1
30.00		1.00	0.98	26.337	28.97	394.35	0.750	0.000	5.00	19.139	14.35	665.3	0.0	1450.7
35.00		1.00	1.01	27.206	29.93	392.71	0.750	0.000		18.756	14.07	673.6	0.0	1421.4
40.00		1.00	1.04	27.981	30.78	390.07	0.750	0.000	5.00	18.374	13.78	678.6	0.0	1392.1
45.00		1.00	1.07	28.684	31.55	386.63	0.750	0.000	5.00	17.991	13.49	681.2	0.0	1362.8
46.67 Bot -	Section 2	1.00	1.08	28.904	31.79	385.33	0.750	0.000	1.67	5.912	4.43	225.6	0.0	447.8
50.00		1.00		29.327	32.26	382.54	0.750	0.000		11.945	8.96	462.4	0.0	1678.6
53.00 Top	- Section 1	1.00		29.689	32.66	379.83	0.750	0.000		10.605	7.95	415.6	0.0	1489.9
55.00		1.00		29.922	32.91	386.16	0.750	0.000	2.00	6.994	5.25	276.2		464.1
60.00		1.00	1.14	30.475	33.52	381.16	0.750	0.000	5.00	17.216	12.91	692.5	0.0	1142.2
65.00		1.00	1.16	30.993	34.09	375.75	0.750	0.000	5.00	16.834	12.63	688.7	0.0	1116.6
70.00		1.00	1.17	31.480	34.63	369.99	0.750	0.000	5.00	16.451	12.34	683.6	0.0	1091.0
75.00		1.00	1.19	31.941	35.13	363.93	0.750	0.000	5.00	16.069	12.05	677.5	0.0	1065.3
80.00		1.00	1.21	32.377	35.62	357.58	0.750	0.000	5.00	15.687	11.77	670.4	0.0	1039.7
85.00		1.00	1.22	32.793	36.07	350.99	0.750	0.000	5.00	15.304	11.48	662.5	0.0	1014.0
90.00		1.00	1.24	33.190	36.51	344.18	0.750	0.000	5.00	14.922	11.19	653.8	0.0	988.4
94.25 Bot -	Section 3	1.00	1.25	33.514	36.87	338.22	0.750	0.000	4.25	12.383	9.29	547.8	0.0	820.0
95.00		1.00	1.25	33.570	36.93	337.16	0.750	0.000	0.75	2.184	1.64	96.8	0.0	215.6
96.38 RB1		1.00	1.26	33.672	37.04	335.19	0.750	0.000	1.38	3.997	3.00	177.7	0.0	394.4
99.67 Top	- Section 2	1.00	1.26	33.911	37.30	330.44	0.750	0.000	3.29	9.402	7.05	420.9	0.0	927.5
00.00		1.00	1.27	33.935	37.33	334.34	0.750	0.000	0.33	0.944	0.71	42.3	0.0	31.5
02.13 RT1		1.00	1.27	34.086	37.49	331.23	0.750	0.000	2.13	5.994	4.50	269.7	0.0	199.7
05.00		1.00	1.28	34.285	37.71	326.98	0.750	0.000	2.87	7.967	5.98	360.5	0.0	265.4
07.00 Appı	urtenance(s)	1.00	1.28	34.422	37.86	323.99	0.750	0.000	2.00	5.477	4.11	248.9	0.0	182.4
10.00		1.00	1.29	34.623	38.08	319.46	0.750	0.000	3.00	8.101	6.08	370.2	0.0	269.8
15.00		1.00	1.30	34.948	38.44	311.79	0.750	0.000	5.00	13.196	9.90	608.8	0.0	439.4
17.00 Appı	urtenance(s)	1.00	1.31	35.075	38.58	308.69	0.750	0.000	2.00	5.171	3.88	239.4	0.0	172.2
20.00 Top	- Section 3	1.00	1.32	35.263	38.79	303.99	0.750	0.000	3.00	7.642	5.73	355.7	0.0	254.4
25.00		1.00	1.33	35.567	39.12	296.05	0.750	0.000	5.00	12.431	9.32	583.6	0.0	355.1
27.00 Appt	urtenance(s)	1.00	1.33	35.686	39.25	292.84	0.750	0.000	2.00	4.866	3.65	229.2	0.0	138.9
30.00		1.00	1.34	35.862	39.45	287.99	0.750	0.000	3.00	7.184	5.39	340.1	0.0	205.1
35.00		1.00	1.35	36.148	39.76	279.81	0.750	0.000	5.00	11.667	8.75	556.7	0.0	333.1
37.00 Appı	urtenance(s)	1.00	1.35	36.260	39.89	276.51	0.750	0.000	2.00	4.560	3.42	218.2	0.0	130.2
40.00		1.00	1.36	36.426	40.07	271.52	0.750	0.000	3.00	6.725	5.04	323.3	0.0	191.9
45.00		1.00	1.37	36.696	40.37	263.14	0.750	0.000	5.00	10.902	8.18	528.1	0.0	311.1
47.00 Appt	urtenance(s)	1.00	1.37	36.802	40.48	259.75	0.750	0.000	2.00	4.254	3.19	206.6	0.0	121.4
50.00 Appu	urtenance(s)	1.00	1.38	36.959	40.65	254.65	0.750	0.000	3.00	6.266	4.70	305.7	0.0	178.7
								Totals:	150.00	-		18,991.5	 i	30,995.6

Discrete Appurtenance Forces

				•••			
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.000.53
Site Name:	North Stonington			Exposure:	С		(«Ħ»)
Height:	150.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 10	Tower Engineering Solutions

Load Case: 1.2D + 1.6W 105 mph Wind

Dead Load Factor1.20Wind Load Factor1.60

¥	Iterations	25
X		
2		

Elev (ft)	Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (lb)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (Ib)	Mom Y (Ib-ft)	Mom Z (Ib-ft)
						2. C. S. S.	1 /					· /	240.21
										* * * * * *			0.00
		3			0.55	0.75	9.72	85.72	0.000	0.000	629.81	0.00	0.00
		3			0.54	0.75	32.79	442.08	0.000	0.000	2123.77	0.00	0.00
147.00	Ericsson KRY 112 144/1	3	36.802	40.482	0.45	0.75	0.47	39.67	0.000	0.000	30.60	0.00	0.00
147.00	Ericsson AIR6449 B41	3	36.802	40.482	0.53	0.75	9.03	370.80	0.000	0.000	584.62	0.00	0.00
147.00	Platform w/ Hand Rail	1	36.802	40.482	1.00	1.00	40.00	2400.00	0.000	0.000	2590.85	0.00	0.00
147.00	Tie Back Kit (Commscope	1	36.802	40.482	1.00	1.00	4.17	147.72	0.000	0.000	270.10	0.00	0.00
147.00	Rreinforcement Kit	1	36.802	40.482	1.00	1.00	9.50	620.40	0.000	0.000	615.33	0.00	0.00
147.00	V-Brace Kit (Sitepro	1	36.802	40.482	1.00	1.00	6.30	770.40	0.000	0.000	408.06	0.00	0.00
147.00	Ericsson 4460 B25 + B66	3	36.802	40.482	0.50	0.75	3.23	374.40	0.000	0.000	208.96	0.00	0.00
137.00	Nokia B2/B66A RRH	3	36.260	39.886	0.50	0.75	2.83	137.88	0.000	0.000	180.87	0.00	0.00
137.00	Antel BXA-70063-6CF	3	36.260	39.886	0.58	0.75	13.29	61.20	0.000	0.000	847.84	0.00	0.00
137.00	Samsung MT6407-77A	3	36.260	39.886	0.52	0.75	7.39	285.84	0.000	0.000	471.41	0.00	0.00
137.00	Andrew JAHH-65B-R3B	6	36.260	39.886	0.46	0.75	25.39	463.46	0.000	0.000	1620.27	0.00	0.00
137.00	Commscope	3	36.260	39.886	0.45	0.75	0.76	74.59	0.000	0.000	48.25	0.00	0.00
137.00	Low Profile Platform (Site	1	36.260	39.886	1.00	1.00	33.60	2006.24	0.000	0.000	2144.27	0.00	0.00
137.00	Nokia B5/B13	3	36.260	39.886	0.50	0.75	2.83	114.84	0.000	0.000	180.87	0.00	0.00
137.00	RFS DB-B1-6C-12AB-0Z	2	36.260	39.886	0.50	0.75	3.81	76.80	0.000	0.000	243.08	0.00	0.00
137.00	Handrail Kit (Site Pro1	1	36.260	39.886	1.00	1.00	6.75	326.92	0.000	0.000	430.77	0.00	0.00
137.00	Mount Kit (Commscope	3	36.260	39.886	0.38	0.75	0.10	242.86	0.000	0.000	6.46	0.00	0.00
127.00	Platform w/HRK	1	35.686	39.255	1.00	1.00	37.59	2072.40	0.000	0.000	2360.93	0.00	0.00
127.00	Fujitsu TA08025-B604	3	35.686	39.255	0.50	0.75	2.95	230.15	0.000	0.000	185.58	0.00	0.00
127.00	Fujitsu TA08025-B605	3	35.686	39.255	0.50	0.75	2.95	269.82	0.000	0.000	185.58	0.00	0.00
127.00	JMA Wireless	3	35.686	39.255	0.55	0.75	20.80	232.20	0.000	0.000	1306.13	0.00	0.00
127.00	Raycap	1			0.50	0.75	1.01	26.22	0.000	0.000	63.44	0.00	0.00
117.00	ALU TD-RRH8x20-25	3	35.075	38.583	0.50	0.75	6.11	252.00	0.000	0.000	376.90	0.00	0.00
117.00	ALU 800 Mhz	6	35.075	38.583	0.50	0.75	7.51	381.60	0.000	0.000	463.45	0.00	0.00
117.00	ALU 1900 Mhz	3	35.075	38.583	0.50	0.75	4.18	216.00	0.000	0.000	257.78	0.00	0.00
117.00	RFS APXVTM14-C-I20	3	35.075	38.583	0.58	0.75	10.98	202.32	0.000	0.000	678.07	0.00	0.00
	•	3	35.263	38.789	0.60	0.75	22.09	278.64	0.000	3.000	1370.71	0.00	4112.12
117.00	Sitepro RMQP-496-HK	1	35.075	38.583	1.00	1.00	46.00	2938.80	0.000	0.000	2839.69	0.00	0.00
107.00	Site Pro HRK14	1	34.422	37.864	1.00	1.00	8.13	362.83	0.000	0.000	492.53	0.00	0.00
107.00	Ericsson 4449 B5/B12	3	34.422	37.864	0.50	0.75	2.49	252.00	0.000	0.000	150.69	0.00	0.00
107.00	Ericsson RRUS 4478 B14	3	34.422	37.864	0.50	0.75	2.77	215.64	0.000	0.000	168.04	0.00	0.00
107.00	Ericsson 8843 B2 B66A	3	34.422	37.864	0.50	0.75	2.49	270.00	0.000	0.000	150.69	0.00	0.00
107.00	Raycap	1	34.422	37.864	0.50	0.75	2.40	19.20	0.000	0.000	145.51	0.00	0.00
107.00	Raycap DC6-48-60-18-8F	1	34.422	37.864	0.50	0.75	0.46	38.16	0.000	0.000	28.01	0.00	0.00
107.00	Cci DMP65R-BU8DA	6	34.422	37.864	0.75	0.75	60.70	280.80	0.000	0.000	3677.63	0.00	0.00
107.00	Powerwave 7770	3	34.422	37.864	0.55	0.75	9.03	126.00	0.000	0.000	547.28	0.00	0.00
107.00	Powerwave/LGP21401	6	34.422	37.864	0.45	0.75	0.73	39.60	0.000	0.000	44.16	0.00	0.00
107.00	Low Profile Platform	1	34.422	37.864	1.00	1.00	22.00	1800.00	0.000	0.000	1332.80	0.00	0.00
	147.00 147.00 147.00 147.00 147.00 147.00 147.00 147.00 147.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 137.00 107.00 117.00 117.00 107.00 107.00 107.00 107.00 107.00 107.00 107.00 107.00 107.00	150.00 Lightning Rod 147.00 Ericsson 4449 B71 + B85 147.00 Commscope VV-65A-R1 147.00 Ericsson KRY 112 144/1 147.00 Ericsson AIR6449 B41 147.00 Platform w/ Hand Rail 147.00 Platform w/ Hand Rail 147.00 Rreinforcement Kit 147.00 Kreinforcement Kit 147.00 V-Brace Kit (Sitepro 147.00 Kreinforcement Kit 147.00 Samsung MT6407-77A 137.00 Andrew JAHH-65B-R3B 137.00 Commscope 137.00 Kow Profile Platform (Site 137.00 Hadrail Kit (Site Profile 137.00 <	147.00 Ericsson 4449 B71 + B85 3 147.00 Commscope VV-65A-R1 3 147.00 Ericsson KRY 112 144/1 3 147.00 Ericsson AIR6449 B41 3 147.00 Platform w/ Hand Rail 1 147.00 Reisson AIR6449 B41 3 147.00 Platform w/ Hand Rail 1 147.00 Reinforcement Kit 1 147.00 Rreinforcement Kit 1 147.00 Ericsson 4460 B25 + B66 3 137.00 Nokia B2/B66A RRH 3 137.00 Antel BXA-70063-6CF 3 137.00 Samsung MT6407-77A 3 137.00 Commscope 3 137.00 Commscope 3 137.00 Commscope 3 137.00 Nokia B5/B13 3 137.00 Res DB-B1-6C-12AB-0Z 2 137.00 Hadrail Kit (Site Pro1 1 137.00 Platform w/HRK 1 127.00 Fujitsu TA08025-B604 3 127.00 Fujitsu TA08025-B605 3	147.00 Ericsson 4449 B71 + B85 3 36.802 147.00 Commscope VV-65A-R1 3 36.802 147.00 Ericsson KRY 112 144/1 3 36.802 147.00 Ericsson AIR6449 B41 3 36.802 147.00 Ericsson AIR6449 B41 3 36.802 147.00 Platform w/ Hand Rail 1 36.802 147.00 Rieinforcement Kit 1 36.802 147.00 Rreinforcement Kit 1 36.802 147.00 V-Brace Kit (Sitepro 1 36.802 147.00 Ericsson 4460 B25 + B66 3 36.260 137.00 Nokia B2/B66A RRH 3 36.260 137.00 Antel BXA-70063-6CF 3 36.260 137.00 Samsung MT6407-77A 3 36.260 137.00 Commscope 3 36.260 137.00 Commscope 3 36.260 137.00 Low Profile Platform (Site 1 36.260 137.00 Res 2B-B1-6C-12AB-0Z 2 36.260 137.00 Mount Kit (Commscope 3 </td <td>147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 147.00 Commscope VV-65A-R1 3 36.802 40.482 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 147.00 Ericsson AIR6449 B41 3 36.802 40.482 147.00 Ericsson AIR6449 B41 3 36.802 40.482 147.00 Tie Back Kit (Commscope 1 36.802 40.482 147.00 Reinforcement Kit 1 36.802 40.482 147.00 Reinforcement Kit 1 36.802 40.482 147.00 Reinson 4460 B25 + B66 3 36.260 39.886 137.00 Nokia B2/B66A RRH 3 36.260 39.886 137.00 Samsung MT6407-77A 3 36.260 39.886 137.00 Low Profile Platform (Site 1 36.260 39.886 137.00 Low Profile Platform (Site 1 36.260 39.886 137.00 Nokia B5/B13 3 36.260 39.886 137.00 Nokia B5/B14 3 35.686</td> <td>147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.55 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.54 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.53 147.00 Ericsson AIR6449 B41 3 36.802 40.482 0.53 147.00 Platform w/ Hand Rail 1 36.802 40.482 1.00 147.00 Rreinforcement Kit 1 36.802 40.482 1.00 147.00 Rreinforcement Kit 1 36.802 40.482 1.00 147.00 Rreinforcement Kit 1 36.802 40.482 1.00 147.00 Reinscope 3 36.260 39.886 0.50 137.00 Nokia B2/B66A RRH 3 36.260 39.886 0.50 137.00 Andrew JAHH-65B-R3B 6 36.260 39.886 0.46 137.00 Commscope 3 36.260 39.886 0.50 137.00 Nokia B5/B13 3 36.260 39.886 0.50</td> <td>147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.50 0.75 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.54 0.75 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.53 0.75 147.00 Ericsson AR6449 B41 3 36.802 40.482 1.00 1.00 147.00 Flatform w/ Hand Rail 1 36.802 40.482 1.00 1.00 147.00 Tie Back Kit (Commscope 1 36.802 40.482 1.00 1.00 147.00 Freinforcement Kit 1 36.802 40.482 1.00 1.00 147.00 Feinforcement Kit 36.260 39.886 0.50 0.75 137.00 Nokia B2/B66A RRH 3 36.260 39.886 0.52 0.75 137.00 Anterew JAHH-65B-R3B 6 36.260 39.886 0.46 0.75 137.00 Commscope 3 36.260 39.886 0.50 0.75 137.00 Nokia B5/B13 3 36.260 <</td> <td>147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.50 0.75 2.94 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.55 0.75 9.72 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.54 0.75 9.07 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 1.00 1.00 40.00 147.00 Ericsson AIR6449 B41 3 36.802 40.482 1.00 1.00 40.00 147.00 Tie Back Kit (Commscope 1 36.802 40.482 1.00 1.00 6.30 147.00 V-Brace Kit (Sitepro 1 36.802 40.482 1.00 1.00 6.30 147.00 Carcisson 4460 B25 + B66 3 36.260 39.886 0.58 0.75 2.83 137.00 Samsung MT6407-7A 3 36.260 39.886 0.46 0.75 2.83 137.00 Commscope 3 36.260 39.886 0.50 0.75 2.83 137.00 Res Di-B1-6C</td> <td>147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.55 0.75 9.72 85.72 147.00 RFS 3 36.802 40.482 0.55 0.75 9.72 85.72 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.53 0.75 9.03 370.80 147.00 Ericsson AlR6449 B41 3 36.802 40.482 1.00 1.00 40.02 240.00 1.00 40.77 39.67 147.00 Tie Back Kit (Commscope 1 36.802 40.482 1.00 1.00 40.70 240.00 240.402 1.00 1.00 40.77 147.72 147.00 Reinforcement Kit 1 36.802 40.482 1.00 1.00 6.02 770.40 147.00 Ericsson 4460 B25 + B66 3 36.260 39.886 0.50 0.75 2.83 137.88 137.00 Nokia B2/B66 A RPH 3 36.260 39.886 0.45 0.75 0.76 74.59 137.00 Commrscope 3 36.260 39.886</td> <td>147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.55 0.75 2.94 270.00 0.000 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.55 0.75 9.72 85.72 0.000 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.45 0.75 0.47 39.67 0.000 147.00 Ericsson ARR449 B41 3 36.802 40.482 1.00 1.00 4.00 2400.00 0.000 147.00 Tidform wi Hand Raii 1 36.802 40.482 1.00 1.00 4.17 147.72 0.000 147.00 Reinforcement Kit 1 36.802 40.482 1.00 1.00 4.17 147.72 0.000 137.00 Natia BZ/366A RRH 3 36.260 39.886 0.50 0.75 3.23 374.40 0.000 137.00 Antel BXA-70063-6CF 3 36.260 39.886 0.50 0.75 2.539 46.3.46 0.000 137.00 Commscope 3 36.260 39.8</td> <td>147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.50 0.75 2.94 270.00 0.000 0.000 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.54 0.75 9.72 84.72 0.000 0.000 147.00 Ericsson KPV 112 144/1 3 36.802 40.482 0.45 0.75 9.47 39.67 0.000 0.000 147.00 Ericsson AlR6449 B41 3 36.802 40.482 1.00 1.00 40.00 240.000 0.000 0.000 147.00 Teirorement Kit 1 36.802 40.482 1.00 1.00 4.53 0.776 0.000 0.000 147.00 Firsce Kit (Sitepro 1 36.802 40.482 1.00 1.00 6.53 0.75 3.23 374.40 0.000 0.000 147.00 Firsce Kit (Sitepro 1 36.260 39.86 0.55 0.75 7.39 285.44 0.000 0.000 137.00 Anter MJAH-65B-R3B 6 36.260 39.86 0.57 7.59</td> <td>147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.50 0.75 2.94 270.00 0.000 190.40 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.55 0.75 3.77 85.72 0.000 0.000 628.81 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.45 0.75 9.03 370.80 0.000 0.000 2590.85 147.00 Fickson AIR6449 B41 3 36.802 40.482 1.00 1.00 40.00 240.00 0.000 0.000 2590.85 147.00 Tiedform wi Hand Raii 1 36.802 40.482 1.00 1.00 4.17 147.72 0.000 0.000 60.00 270.10 147.00 Prichorement Kit 1 36.802 40.482 1.00 1.00 6.30 770.40 0.000 0.000 61.53 31.73 80.200 0.000 160.87 7.39 285.44 0.000 0.000 408.06 1.07 1.02 1.03 1.02 1.00 1.00 3.02 <</td> <td>147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.55 0.75 9.72 85.72 0.000 0.000 629.81 0.001 147.00 PFS 13 36.802 40.482 0.55 0.75 9.72 85.72 0.000 0.000 629.81 0.001 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.53 0.75 9.03 0.000 0.000 2590.85 0.000 147.00 Ficsson KR449 B41 3 6.802 40.482 1.00 1.00 40.00 2400.00 0.000 2590.85 0.001 147.00 Ficsson K460 B25 H61 3 6.802 40.482 1.00 1.00 40.00 0.000 0.000 2590.85 0.001 147.00 Ficsson K460 B25 H66 3 6.802 40.482 1.00 1.00 6.30 770.40 0.000 0.000 480.80 0.001 137.00 A40 0.000 0.000 480.47 0.001 137.00 A40 0.000 0.000 48.47 0.001 137.00 A40.425<!--</td--></td>	147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 147.00 Commscope VV-65A-R1 3 36.802 40.482 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 147.00 Ericsson AIR6449 B41 3 36.802 40.482 147.00 Ericsson AIR6449 B41 3 36.802 40.482 147.00 Tie Back Kit (Commscope 1 36.802 40.482 147.00 Reinforcement Kit 1 36.802 40.482 147.00 Reinforcement Kit 1 36.802 40.482 147.00 Reinson 4460 B25 + B66 3 36.260 39.886 137.00 Nokia B2/B66A RRH 3 36.260 39.886 137.00 Samsung MT6407-77A 3 36.260 39.886 137.00 Low Profile Platform (Site 1 36.260 39.886 137.00 Low Profile Platform (Site 1 36.260 39.886 137.00 Nokia B5/B13 3 36.260 39.886 137.00 Nokia B5/B14 3 35.686	147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.55 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.54 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.53 147.00 Ericsson AIR6449 B41 3 36.802 40.482 0.53 147.00 Platform w/ Hand Rail 1 36.802 40.482 1.00 147.00 Rreinforcement Kit 1 36.802 40.482 1.00 147.00 Rreinforcement Kit 1 36.802 40.482 1.00 147.00 Rreinforcement Kit 1 36.802 40.482 1.00 147.00 Reinscope 3 36.260 39.886 0.50 137.00 Nokia B2/B66A RRH 3 36.260 39.886 0.50 137.00 Andrew JAHH-65B-R3B 6 36.260 39.886 0.46 137.00 Commscope 3 36.260 39.886 0.50 137.00 Nokia B5/B13 3 36.260 39.886 0.50	147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.50 0.75 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.54 0.75 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.53 0.75 147.00 Ericsson AR6449 B41 3 36.802 40.482 1.00 1.00 147.00 Flatform w/ Hand Rail 1 36.802 40.482 1.00 1.00 147.00 Tie Back Kit (Commscope 1 36.802 40.482 1.00 1.00 147.00 Freinforcement Kit 1 36.802 40.482 1.00 1.00 147.00 Feinforcement Kit 36.260 39.886 0.50 0.75 137.00 Nokia B2/B66A RRH 3 36.260 39.886 0.52 0.75 137.00 Anterew JAHH-65B-R3B 6 36.260 39.886 0.46 0.75 137.00 Commscope 3 36.260 39.886 0.50 0.75 137.00 Nokia B5/B13 3 36.260 <	147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.50 0.75 2.94 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.55 0.75 9.72 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.54 0.75 9.07 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 1.00 1.00 40.00 147.00 Ericsson AIR6449 B41 3 36.802 40.482 1.00 1.00 40.00 147.00 Tie Back Kit (Commscope 1 36.802 40.482 1.00 1.00 6.30 147.00 V-Brace Kit (Sitepro 1 36.802 40.482 1.00 1.00 6.30 147.00 Carcisson 4460 B25 + B66 3 36.260 39.886 0.58 0.75 2.83 137.00 Samsung MT6407-7A 3 36.260 39.886 0.46 0.75 2.83 137.00 Commscope 3 36.260 39.886 0.50 0.75 2.83 137.00 Res Di-B1-6C	147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.55 0.75 9.72 85.72 147.00 RFS 3 36.802 40.482 0.55 0.75 9.72 85.72 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.53 0.75 9.03 370.80 147.00 Ericsson AlR6449 B41 3 36.802 40.482 1.00 1.00 40.02 240.00 1.00 40.77 39.67 147.00 Tie Back Kit (Commscope 1 36.802 40.482 1.00 1.00 40.70 240.00 240.402 1.00 1.00 40.77 147.72 147.00 Reinforcement Kit 1 36.802 40.482 1.00 1.00 6.02 770.40 147.00 Ericsson 4460 B25 + B66 3 36.260 39.886 0.50 0.75 2.83 137.88 137.00 Nokia B2/B66 A RPH 3 36.260 39.886 0.45 0.75 0.76 74.59 137.00 Commrscope 3 36.260 39.886	147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.55 0.75 2.94 270.00 0.000 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.55 0.75 9.72 85.72 0.000 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.45 0.75 0.47 39.67 0.000 147.00 Ericsson ARR449 B41 3 36.802 40.482 1.00 1.00 4.00 2400.00 0.000 147.00 Tidform wi Hand Raii 1 36.802 40.482 1.00 1.00 4.17 147.72 0.000 147.00 Reinforcement Kit 1 36.802 40.482 1.00 1.00 4.17 147.72 0.000 137.00 Natia BZ/366A RRH 3 36.260 39.886 0.50 0.75 3.23 374.40 0.000 137.00 Antel BXA-70063-6CF 3 36.260 39.886 0.50 0.75 2.539 46.3.46 0.000 137.00 Commscope 3 36.260 39.8	147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.50 0.75 2.94 270.00 0.000 0.000 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.54 0.75 9.72 84.72 0.000 0.000 147.00 Ericsson KPV 112 144/1 3 36.802 40.482 0.45 0.75 9.47 39.67 0.000 0.000 147.00 Ericsson AlR6449 B41 3 36.802 40.482 1.00 1.00 40.00 240.000 0.000 0.000 147.00 Teirorement Kit 1 36.802 40.482 1.00 1.00 4.53 0.776 0.000 0.000 147.00 Firsce Kit (Sitepro 1 36.802 40.482 1.00 1.00 6.53 0.75 3.23 374.40 0.000 0.000 147.00 Firsce Kit (Sitepro 1 36.260 39.86 0.55 0.75 7.39 285.44 0.000 0.000 137.00 Anter MJAH-65B-R3B 6 36.260 39.86 0.57 7.59	147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.50 0.75 2.94 270.00 0.000 190.40 147.00 Commscope VV-65A-R1 3 36.802 40.482 0.55 0.75 3.77 85.72 0.000 0.000 628.81 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.45 0.75 9.03 370.80 0.000 0.000 2590.85 147.00 Fickson AIR6449 B41 3 36.802 40.482 1.00 1.00 40.00 240.00 0.000 0.000 2590.85 147.00 Tiedform wi Hand Raii 1 36.802 40.482 1.00 1.00 4.17 147.72 0.000 0.000 60.00 270.10 147.00 Prichorement Kit 1 36.802 40.482 1.00 1.00 6.30 770.40 0.000 0.000 61.53 31.73 80.200 0.000 160.87 7.39 285.44 0.000 0.000 408.06 1.07 1.02 1.03 1.02 1.00 1.00 3.02 <	147.00 Ericsson 4449 B71 + B85 3 36.802 40.482 0.55 0.75 9.72 85.72 0.000 0.000 629.81 0.001 147.00 PFS 13 36.802 40.482 0.55 0.75 9.72 85.72 0.000 0.000 629.81 0.001 147.00 Ericsson KRY 112 144/1 3 36.802 40.482 0.53 0.75 9.03 0.000 0.000 2590.85 0.000 147.00 Ficsson KR449 B41 3 6.802 40.482 1.00 1.00 40.00 2400.00 0.000 2590.85 0.001 147.00 Ficsson K460 B25 H61 3 6.802 40.482 1.00 1.00 40.00 0.000 0.000 2590.85 0.001 147.00 Ficsson K460 B25 H66 3 6.802 40.482 1.00 1.00 6.30 770.40 0.000 0.000 480.80 0.001 137.00 A40 0.000 0.000 480.47 0.001 137.00 A40 0.000 0.000 48.47 0.001 137.00 A40.425 </td

Total Applied Force Summary							
01210-S-SBA	Code:	TIA-222-G	3/8/2022				
rth Stonington	Exposure:	С	((th))				

Structure:	CT01210-S-SBA
Site Name:	North Stonington
Height:	150.00 (ft)
Base Elev:	0.000 (ft)
Gh:	1.1

Crest Height: 0.00 Site Class:

Topography: 1 Struct Class: ||

X

B - Competent Rock

Iterations 25

Tower Engineering Solutions

Load Case: 1.2D + 1.6W 105 mph Wind

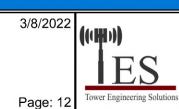
Dead Load Factor Wind Load Factor

1.20 1.60

Elev (ft)	Description	Lateral FX (-) (Ib)	Axial FY (-) (Ib)	Torsion MY (lb-ft)	Moment MZ (lb-ft)
0.00		0.00	0.00	0.00	0.00
5.00		633.28	1722.13	0.00	0.00
10.00		621.77	1880.08	0.00	0.00
15.00		610.27	1850.77	0.00	0.00
20.00		635.32	1821.46	0.00	0.00
25.00		653.08	1792.15	0.00	0.00
30.00		665.35	1762.85	0.00	0.00
35.00		673.56	1733.54	0.00	0.00
40.00		678.64	1704.23	0.00	0.00
45.00		681.21	1674.92	0.00	0.00
46.67		225.57	551.79	0.00	0.00
50.00		462.40	1886.66	0.00	0.00
53.00		402.40	1677.11	0.00	0.00
55.00		276.22	588.92	0.00	0.00
60.00		692.55	1454.34	0.00	0.00
					0.00
65.00		688.67	1428.70	0.00	
70.00		683.62	1403.05	0.00	0.00
75.00		677.50	1377.41	0.00	0.00
80.00		670.42	1351.76	0.00	0.00
85.00		662.48	1326.12	0.00	0.00
90.00		653.75	1300.47	0.00	0.00
94.25		547.81	1085.24	0.00	0.00
95.00		96.80	317.51	0.00	0.00
96.38		177.65	581.96	0.00	0.00
99.67		420.85	1374.23	0.00	0.00
100.00		42.30	76.77	0.00	0.00
102.13		269.69	489.22	0.00	0.00
105.00		360.55	655.51	0.00	0.00
107.00	(28) attachments	6986.23	3858.53	0.00	0.00
110.00		370.24	543.49	0.00	0.00
115.00		608.76	619.88	0.00	0.00
117.00	(19) attachments	6226.02	4513.72	0.00	4112.12
120.00		355.73	348.96	0.00	0.00
125.00		583.63	512.61	0.00	0.00
127.00	(11) attachments	4330.85	3032.75	0.00	0.00
130.00		340.05	293.10	0.00	0.00
135.00		556.68	479.71	0.00	0.00
137.00	(28) attachments	6392.31	3979.44	0.00	0.00
140.00	()	323.34	233.98	0.00	0.00
145.00		528.08	381.17	0.00	0.00
147.00	(22) attachments	7859.14	5670.58	0.00	0.00
150.00	(1) attachments	374.32	220.74	0.00	240.21
100.00					
	Totals:	49,712.30	59,557.57	0.00	4,352.33

Linear Appurtenance Segment Forces (Factored)

 Structure:
 CT01210-S-SBA


 Site Name:
 North Stonington

 Height:
 150.00 (ft)

 Base Elev:
 0.000 (ft)

 Gh:
 1.1

t) Topography: 1 Code:TIA-222-GExposure:CCrest Height:0.00Site Class:B - Competent RockStruct Class:II

25

Load Case: 1.2D + 1.6W 105 mph Wind

Dead Load Factor Wind Load Factor

ictor 1.20 ictor 1.60

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)
95.00	6"x1" Link Plate	Yes	0.75	0.000	1.00	0.06	0.00	0.029	0.000	33.570	0.00	55.13
96.38	6"x1" Link Plate	Yes	1.38	0.000	1.00	0.11	0.00	0.029	0.000	33.672	0.00	101.45
99.67	6"x1" Link Plate	Yes	3.29	0.000	1.00	0.27	0.00	0.030	0.000	33.911	0.00	241.61
100.00	6"x1" Link Plate	Yes	0.33	0.000	1.00	0.03	0.00	0.029	0.000	33.935	0.00	24.50
102.13	6"x1" Link Plate	Yes	2.13	0.000	1.00	0.18	0.00	0.030	0.000	34.086	0.00	156.58
105.00	6"x1" Link Plate	Yes	2.87	0.000	1.00	0.24	0.00	0.030	0.000	34.285	0.00	210.98
107.00	6"x1" Link Plate	Yes	2.00	0.000	1.00	0.17	0.00	0.030	0.000	34.422	0.00	147.02
110.00	6"x1" Link Plate	Yes	2.25	0.000	1.00	0.19	0.00	0.023	0.000	34.623	0.00	165.40
									То	tals:	0.0	1,102.7

						Calc	ulated Fo	orces						
Struc	ture:	CT012	210-S-5	SBA			Code:	TIA	-222-G		3/	8/2022		
	Name:		Stoning				Exposure		0		0,1		((H))	
				JUII			-		^			ľ		C
Heigh		150.00					Crest Heig							S
Base	Elev:	0.000	(ft)				Site Class		Compet	ent Rock				
Gh:		1.1		То	pography	: 1	Struct Cla	ss: II			Pa	age: 13	Tower Engineer	ing Solutions
Load			+ 1.6W I Facto	/ 105 mp r 1.2							ľ	lte	erations	25
	Win	d Load	l Facto	r 1.6	60					Z				
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-59.41	-49.88	0.00	-5634.4	0.00	5634.49	5817.07	2908.54	11858.0	5886.84	0.00	0.000	0.000	0.968
5.00	-57.42	-49.57	0.00	-5385.0	0.00	5385.08	5739.57	2869.78	11485.2	5701.74	0.17	-0.321	0.000	0.955
10.00	-55.26	-49.24	0.00	-5137.2	0.00	5137.25	5652.47	2826.24	11099.3	5510.17	0.68	-0.644	0.000	0.942
15.00	-53.14	-48.91	0.00	-4891.0	0.00	4891.03	5545.82	2772.91	10682.2	5303.14	1.53	-0.970	0.000	0.932
20.00 25.00	-51.06 -49.00	-48.54 -48.12	0.00	-4646.4 -4403.8	0.00	4646.48 4403.81	5439.17 5332.51	2719.58 2666.26	10273.2 9872.18	5100.07 4900.97	2.72 4.26	-1.299 -1.629	0.000 0.000	0.921 0.908
30.00	-46.99	-47.67	0.00	-4403.8	0.00	4163.21	5225.86	2612.93	9479.11	4900.97	6.14	-1.961	0.000	0.908
35.00	-45.01	-47.20	0.00	-3924.8	0.00	3924.85	5119.21	2559.60	9094.03	4514.66	8.38	-2.294	0.000	0.878
40.00	-43.06	-46.70	0.00	-3688.8	0.00	3688.86	5012.56	2506.28	8716.92	4327.45	10.96	-2.627	0.000	0.861
45.00	-41.24	-46.10	0.00	-3455.3	0.00	3455.37	4905.90	2452.95	8347.81	4144.20	13.89	-2.960	0.000	0.843
46.67	-40.57	-45.96	0.00	-3378.5	0.00	3378.55	4870.35	2435.18	8226.55	4084.00	14.94	-3.074	0.000	0.836
50.00	-38.54	-45.54	0.00	-3225.3	0.00	3225.34	4799.25	2399.63	7986.68	3964.92	17.16	-3.298	0.000	0.822
53.00	-36.76	-45.13	0.00	-3088.7	0.00	3088.73	4240.56	2120.28	7137.82	3543.51	19.30	-3.499	0.000	0.881
55.00 60.00	-36.00 -34.33	-44.97 -44.39	0.00	-2998.4 -2773.6	0.00	2998.47 2773.60	4203.23 4109.91	2101.62 2054.96	7012.05 6702.51	3481.07 3327.41	20.79 24.79	-3.634 -3.983	0.000 0.000	0.870 0.842
65.00	-32.69	-43.80	0.00	-2551.6	0.00	2551.63	4016.59	2004.30	6399.97	3177.21	29.14	-4.328	0.000	0.812
70.00	-31.09	-43.19	0.00	-2332.6	0.00	2332.64	3923.27	1961.63	6104.41	3030.48	33.85	-4.667	0.000	0.778
75.00	-29.53	-42.57	0.00	-2116.6	0.00	2116.68	3829.95	1914.97	5815.84	2887.23	38.91	-4.998	0.000	0.741
80.00	-28.02	-41.94	0.00	-1903.8	0.00	1903.84	3736.63	1868.31	5534.25	2747.44	44.31	-5.320	0.000	0.701
85.00	-26.54	-41.29	0.00	-1694.1	0.00	1694.17	3643.31	1821.65	5259.66	2611.12	50.04	-5.630	0.000	0.657
90.00	-25.13	-40.63	0.00	-1487.7	0.00	1487.72	3549.99	1774.99	4992.05	2478.26	56.09	-5.926	0.000	0.608
94.25	-24.01	-40.03	0.00	-1315.0	0.00	1315.06	3470.66	1735.33	4770.08	2368.07	61.47	-6.166	0.000	0.563
95.00	-23.66	-39.92	0.00	-1285.0	0.00	1285.05	3456.66	1728.33		2348.88	62.44	-6.208	0.000	0.554
96.38	-23.03	-39.72	0.00	-1229.9	0.00	1229.96	3430.91	1715.45 729.12	4660.73 1997.89	2313.78	64.24	-6.283	0.000	0.392
99.67 100.00	-21.67 -21.55	-39.17 -39.15	0.00	-1099.4 -1086.3	0.00	1099.42 1086.36	1458.24 1456.89	729.12	1997.89	991.83 989.11	68.60 69.05	-6.407 -6.420	0.000 0.000	0.434 0.650
102.13	-21.00	-38.87	0.00	-1000.9	0.00	1000.97	1448.11	724.06	1957.30	971.68	71.94	-6.535	0.000	0.608
102.13	-21.01	-38.87	0.00	-1002.9	0.00	1002.97	1448.11	724.06	1957.30	971.68	71.94	-6.535	0.000	0.608
105.00	-20.29	-38.50	0.00	-891.41	0.00	891.41	1435.99	717.99	1910.05	948.23	75.90	-6.680	0.000	0.957
107.00	-17.18	-31.16	0.00	-814.42	0.00	814.42	1427.33	713.67	1877.17	931.90	78.73	-6.845	0.000	0.888
110.00	-16.53	-30.81	0.00	-720.93	0.00	720.93	1414.04	707.02	1827.92	907.46	83.10	-7.075	0.000	0.808
115.00	-15.87		0.00	-566.87	0.00	566.87	1391.05	695.52	1746.12	866.85	90.68	-7.414	0.000	0.667
117.00	-12.15	-23.46	0.00	-502.37	0.00	502.37	1381.56	690.78	1713.52	850.66	93.80	-7.538	0.000	0.601
120.00	-11.76		0.00	-431.98	0.00	431.98	1367.01	683.50 545.00	1664.77	826.46	98.58	-7.705	0.000	0.532
120.00 125.00	-11.76 -11.27	-23.11 -22.49	0.00	-431.98 -316.45	0.00	431.98 316.45	1091.99 1075.35	545.99 537.67	1332.66 1272.10	661.59 631.52	98.58 106.76	-7.705 -7.940	0.000 0.000	0.666 0.513
125.00	-8.84		0.00	-271.47	0.00	271.45	1075.35	534.20	1247.88	619.50	110.10	-7.940	0.000	0.513
130.00	-8.55	-17.80	0.00	-218.08	0.00	211.47	1057.66	528.83	1211.58	601.48	115.17	-8.157	0.000	0.448
135.00	-8.13	-16.83	0.00	-130.88	0.00	130.88	1038.92	519.46	1151.22	571.51	123.77	-8.311	0.000	0.238
137.00	-5.11	-9.94	0.00	-97.21	0.00	97.21	1031.13	515.57	1127.15	559.57	127.25	-8.356	0.000	0.179
140.00	-4.92	-9.59	0.00	-67.40	0.00	67.40	1019.14	509.57	1091.15	541.69	132.50	-8.406	0.000	0.130
145.00	-4.62	-9.01	0.00	-19.47	0.00	19.47	998.31	499.16	1031.47	512.07	141.30	-8.453	0.000	0.043
147.00	-0.16	-0.40	0.00	-1.45	0.00	1.45	989.69	494.84	1007.74	500.29	144.84	-8.458	0.000	0.003
150.00	0.00	-0.37	0.00	-0.24	0.00	0.24	976.44	488.22	972.32	482.70	150.13	-8.458	0.000	0.000

			Wind	Loading - SI	naft		
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	4
Site Name:	North Stonington			Exposure:	С		((Th))
Height:	150.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		LS
Gh:	1.1	Topography:	1	Struct Class:	11	Page: 14	Tower Engineering Solutions

Load Case: 0.9D + 1.6W 105 mph Wind Dead Load Factor 0.90

Wind Load Factor 1.60

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.85	22.791	25.07	411.26	0.750	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.85	22.791	25.07	403.85	0.750	0.000	5.00	21.050	15.79	633.3	0.0	1198.0
10.00		1.00	0.85	22.791	25.07	396.45	0.750	0.000	5.00	20.668	15.50	621.8	0.0	1176.0
15.00		1.00	0.85	22.791	25.07	389.05	0.750	0.000	5.00	20.286	15.21	610.3	0.0	1154.0
20.00		1.00	0.90	24.182	26.60	393.12	0.750	0.000	5.00	19.903	14.93	635.3	0.0	1132.0
25.00		1.00	0.95	25.345	27.88	394.66	0.750	0.000	5.00	19.521	14.64	653.1	0.0	1110.0
30.00		1.00	0.98	26.337	28.97	394.35	0.750	0.000	5.00	19.139	14.35	665.3	0.0	1088.1
35.00		1.00	1.01	27.206	29.93	392.71	0.750	0.000	5.00	18.756	14.07	673.6	0.0	1066.1
40.00		1.00	1.04	27.981	30.78	390.07	0.750	0.000	5.00	18.374	13.78	678.6	0.0	1044.1
45.00		1.00	1.07	28.684	31.55	386.63	0.750	0.000	5.00	17.991	13.49	681.2	0.0	1022.1
46.67 Bo	ot - Section 2	1.00	1.08	28.904	31.79	385.33	0.750	0.000	1.67	5.912	4.43	225.6	0.0	335.8
50.00		1.00	1.09	29.327	32.26	382.54	0.750	0.000	3.33	11.945	8.96	462.4	0.0	1258.9
53.00 To	p - Section 1	1.00	1.11	29.689	32.66	379.83	0.750	0.000	3.00	10.605	7.95	415.6	0.0	1117.4
55.00		1.00	1.12	29.922	32.91	386.16	0.750	0.000	2.00	6.994	5.25	276.2	0.0	348.1
60.00		1.00	1.14	30.475	33.52	381.16	0.750	0.000	5.00	17.216	12.91	692.5	0.0	856.7
65.00		1.00	1.16	30.993	34.09	375.75	0.750	0.000	5.00	16.834	12.63	688.7	0.0	837.5
70.00		1.00	1.17	31.480	34.63	369.99	0.750	0.000	5.00	16.451	12.34	683.6	0.0	818.2
75.00		1.00	1.19	31.941	35.13	363.93	0.750	0.000	5.00	16.069	12.05	677.5	0.0	799.0
80.00		1.00	1.21	32.377	35.62	357.58	0.750	0.000	5.00	15.687	11.77	670.4	0.0	779.8
85.00		1.00	1.22	32.793	36.07	350.99	0.750	0.000	5.00	15.304	11.48	662.5	0.0	760.5
90.00		1.00	1.24	33.190	36.51	344.18	0.750	0.000	5.00	14.922	11.19	653.8	0.0	741.3
94.25 Bo	ot - Section 3	1.00	1.25	33.514	36.87	338.22	0.750	0.000	4.25	12.383	9.29	547.8	0.0	615.0
95.00		1.00	1.25	33.570	36.93	337.16	0.750	0.000	0.75	2.184	1.64	96.8	0.0	161.7
96.38 RI	B1	1.00	1.26	33.672	37.04	335.19	0.750	0.000	1.38	3.997	3.00	177.7	0.0	295.8
99.67 To	p - Section 2	1.00	1.26	33.911	37.30	330.44	0.750	0.000	3.29	9.402	7.05	420.9	0.0	695.6
00.00		1.00	1.27	33.935	37.33	334.34	0.750	0.000	0.33	0.944	0.71	42.3	0.0	23.6
02.13 R	T1	1.00	1.27	34.086	37.49	331.23	0.750	0.000	2.13	5.994	4.50	269.7	0.0	149.8
05.00		1.00	1.28	34.285	37.71	326.98	0.750	0.000	2.87	7.967	5.98	360.5	0.0	199.0
07.00 Ap	purtenance(s)	1.00	1.28	34.422	37.86	323.99	0.750	0.000	2.00	5.477	4.11	248.9	0.0	136.8
10.00	,	1.00	1.29	34.623	38.08	319.46	0.750	0.000	3.00	8.101	6.08	370.2	0.0	202.4
15.00		1.00	1.30	34.948	38.44	311.79	0.750	0.000	5.00	13.196	9.90	608.8	0.0	329.6
17.00 Ap	purtenance(s)	1.00	1.31	35.075	38.58	308.69	0.750	0.000	2.00	5.171	3.88	239.4	0.0	129.1
20.00 To	p - Section 3	1.00	1.32	35.263	38.79	303.99	0.750	0.000	3.00	7.642	5.73	355.7	0.0	190.8
25.00		1.00	1.33	35.567	39.12	296.05	0.750	0.000	5.00	12.431	9.32	583.6	0.0	266.3
27.00 Ap	purtenance(s)	1.00	1.33	35.686	39.25	292.84	0.750	0.000	2.00	4.866	3.65	229.2	0.0	104.2
30.00		1.00	1.34	35.862	39.45	287.99	0.750	0.000	3.00	7.184	5.39	340.1	0.0	153.8
35.00		1.00		36.148	39.76	279.81	0.750	0.000		11.667	8.75	556.7	0.0	249.8
37.00 Ap	purtenance(s)	1.00		36.260	39.89	276.51	0.750	0.000	2.00	4.560	3.42	218.2	0.0	97.6
40.00		1.00		36.426	40.07	271.52	0.750	0.000	3.00	6.725	5.04	323.3		143.9
45.00		1.00		36.696	40.37	263.14	0.750	0.000		10.902	8.18	528.1	0.0	233.3
	purtenance(s)	1.00	1.37		40.48	259.75	0.750	0.000	2.00	4.254	3.19	206.6		91.0
	purtenance(s)	1.00	1.38	36.959	40.65	254.65	0.750	0.000	3.00	6.266	4.70	305.7	0.0	134.1
								Totals:	150.00	-		18,991.5		23,246.7

Discrete Appurtenance Forces

				• •			
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.000.5X
Site Name:	North Stonington			Exposure:	С		((e冉))
Height:	150.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 15	Tower Engineering Solutions

Load Case: 0.9D + 1.6W 105 mph Wind

Dead Load Factor0.90Wind Load Factor1.60

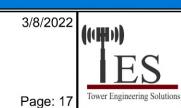
No.	Elev (ft)	Description	Qty	qz (pef)	qzGh	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (Ib)	Horiz Ecc (ft)	Vert Ecc	Wind FX (Ib)	Mom Y (Ib-ft)	Mom Z (Ib-ft)
-				(psf)	(psf)						(ft)			
1		Lightning Rod	1	37.139	40.852	1.00	1.00	1.05	31.50	0.000	3.500	68.63	0.00	240.21
2		Ericsson 4449 B71 + B85	3		40.482	0.50	0.75	2.94	202.50	0.000	0.000	190.40	0.00	0.00
3		Commscope VV-65A-R1	3		40.482	0.55	0.75	9.72	64.29	0.000	0.000	629.81	0.00	0.00
4 5	147.00	Ericsson KRY 112 144/1	3		40.482	0.54 0.45	0.75	32.79 0.47	331.56	0.000	0.000	2123.77 30.60	0.00	0.00
5 6		Ericsson AIR6449 B41	3		40.482	0.45	0.75	9.03	29.75 278.10	0.000 0.000	0.000	584.62	0.00	0.00
7			3		40.482		0.75		1800.00	0.000	0.000		0.00	0.00
		Platform w/ Hand Rail				1.00	1.00	40.00				2590.85		0.00
8		Tie Back Kit (Commscope	1		40.482	1.00	1.00	4.17	110.79	0.000	0.000	270.10	0.00	0.00
9		Rreinforcement Kit	1		40.482	1.00	1.00	9.50	465.30	0.000	0.000	615.33	0.00	0.00
10		V-Brace Kit (Sitepro	1		40.482	1.00	1.00	6.30	577.80	0.000	0.000	408.06	0.00	0.00
11		Ericsson 4460 B25 + B66	3		40.482	0.50	0.75	3.23	280.80	0.000	0.000	208.96	0.00	0.00
12		Nokia B2/B66A RRH	3	36.260	39.886	0.50	0.75	2.83	103.41	0.000	0.000	180.87	0.00	0.00
13		Antel BXA-70063-6CF	3	36.260		0.58	0.75	13.29	45.90	0.000	0.000	847.84	0.00	0.00
14		Samsung MT6407-77A	3	36.260	39.886	0.52	0.75	7.39	214.38	0.000	0.000	471.41	0.00	0.00
15		Andrew JAHH-65B-R3B	6	36.260	39.886	0.46	0.75	25.39	347.60	0.000	0.000	1620.27	0.00	0.00
16		Commscope	3	36.260	39.886	0.45	0.75	0.76	55.94	0.000	0.000	48.25	0.00	0.00
17		Low Profile Platform (Site	1	36.260	39.886	1.00	1.00	33.60	1504.68	0.000	0.000	2144.27	0.00	0.00
18		Nokia B5/B13	3		39.886	0.50	0.75	2.83	86.13	0.000	0.000	180.87	0.00	0.00
19		RFS DB-B1-6C-12AB-0Z	2	36.260	39.886	0.50	0.75	3.81	57.60	0.000	0.000	243.08	0.00	0.00
20	137.00	Handrail Kit (Site Pro1	1	36.260	39.886	1.00	1.00	6.75	245.19	0.000	0.000	430.77	0.00	0.00
21	137.00	Mount Kit (Commscope	3	36.260	39.886	0.38	0.75	0.10	182.14	0.000	0.000	6.46	0.00	0.00
22	127.00	Platform w/HRK	1	35.686	39.255	1.00	1.00	37.59	1554.30	0.000	0.000	2360.93	0.00	0.00
23	127.00	Fujitsu TA08025-B604	3	35.686	39.255	0.50	0.75	2.95	172.61	0.000	0.000	185.58	0.00	0.00
24	127.00	Fujitsu TA08025-B605	3	35.686	39.255	0.50	0.75	2.95	202.37	0.000	0.000	185.58	0.00	0.00
25	127.00	JMA Wireless	3	35.686	39.255	0.55	0.75	20.80	174.15	0.000	0.000	1306.13	0.00	0.00
26	127.00	Raycap	1	35.686	39.255	0.50	0.75	1.01	19.67	0.000	0.000	63.44	0.00	0.00
27	117.00	ALU TD-RRH8x20-25	3	35.075	38.583	0.50	0.75	6.11	189.00	0.000	0.000	376.90	0.00	0.00
28	117.00	ALU 800 Mhz	6	35.075	38.583	0.50	0.75	7.51	286.20	0.000	0.000	463.45	0.00	0.00
29	117.00	ALU 1900 Mhz	3	35.075	38.583	0.50	0.75	4.18	162.00	0.000	0.000	257.78	0.00	0.00
30	117.00	RFS APXVTM14-C-I20	3	35.075	38.583	0.58	0.75	10.98	151.74	0.000	0.000	678.07	0.00	0.00
31	117.00	Commscope	3	35.263	38.789	0.60	0.75	22.09	208.98	0.000	3.000	1370.71	0.00	4112.12
32	117.00	Sitepro RMQP-496-HK	1	35.075	38.583	1.00	1.00	46.00	2204.10	0.000	0.000	2839.69	0.00	0.00
33	107.00	Site Pro HRK14	1	34.422	37.864	1.00	1.00	8.13	272.12	0.000	0.000	492.53	0.00	0.00
34	107.00	Ericsson 4449 B5/B12	3	34,422	37.864	0.50	0.75	2.49	189.00	0.000	0.000	150.69	0.00	0.00
35		Ericsson RRUS 4478 B14	3	34,422	37.864	0.50	0.75	2.77	161.73	0.000	0.000	168.04	0.00	0.00
36		Ericsson 8843 B2 B66A	3		37.864	0.50	0.75	2.49	202.50	0.000	0.000	150.69	0.00	0.00
37		Raycap	1		37.864	0.50	0.75	2.40	14.40	0.000	0.000	145.51	0.00	0.00
38		Raycap DC6-48-60-18-8F	1		37.864	0.50	0.75	0.46	28.62	0.000	0.000	28.01	0.00	0.00
39		Cci DMP65R-BU8DA	6		37.864	0.75	0.75	60.70	210.60	0.000	0.000	3677.63	0.00	0.00
40		Powerwave 7770	3		37.864	0.55	0.75	9.03	94.50	0.000	0.000	547.28	0.00	0.00
41		Powerwave/LGP21401	6		37.864	0.45	0.75	0.73	29.70	0.000	0.000	44.16	0.00	0.00
42		Low Profile Platform	1		37.864	1.00	1.00	22.00	1350.00	0.000	0.000	1332.80	0.00	0.00
44	107.00		I	J4.422	57.004	1.00	1.00	:	14,893.65	0.000	0.000	1002.00	0.00	0.00

Total Applied Force Summary														
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	4							
Site Name:	North Stonington			Exposure:	С		(«₩»)							
Height:	150.00 (ft)			Crest Height:	0.00		EC							
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		I E S							
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 16	Tower Engineering Solutions							

Load Case: 0.9D + 1.6W 105 mph Wind

Dead Load Factor Wind Load Factor

0.90 1.60


Elev		Lateral FX (-)	Axial FY (-)	Torsion MY	Moment MZ
(ft)	Description	(Ib)	(lb)	(lb-ft)	(lb-ft)
0.00	•	0.00	0.00	0.00	0.00
5.00		633.28	1291.60	0.00	0.00
10.00		621.77	1410.06	0.00	0.00
15.00		610.27	1388.08	0.00	0.00
20.00		635.32	1366.10	0.00	0.00
25.00		653.08	1344.12	0.00	0.00
30.00			1322.13	0.00	0.00
		665.35		0.00	
35.00		673.56	1300.15		0.00
40.00		678.64	1278.17	0.00	0.00
45.00		681.21	1256.19	0.00	0.00
46.67		225.57	413.85	0.00	0.00
50.00		462.40	1414.99	0.00	0.00
53.00		415.61	1257.83	0.00	0.00
55.00		276.22	441.69	0.00	0.00
60.00		692.55	1090.76	0.00	0.00
65.00		688.67	1071.52	0.00	0.00
70.00		683.62	1052.29	0.00	0.00
75.00		677.50	1033.06	0.00	0.00
80.00		670.42	1013.82	0.00	0.00
85.00		662.48	994.59	0.00	0.00
90.00		653.75	975.36	0.00	0.00
94.25		547.81	813.93	0.00	0.00
95.00		96.80	238.14	0.00	0.00
96.38		177.65	436.47	0.00	0.00
99.67		420.85	1030.67	0.00	0.00
100.00		42.30	57.58	0.00	0.00
102.13		269.69		0.00	
			366.92		0.00
105.00		360.55	491.63	0.00	0.00
107.00	(28) attachments	6986.23	2893.90	0.00	0.00
110.00		370.24	407.61	0.00	0.00
115.00		608.76	464.91	0.00	0.00
117.00	(19) attachments	6226.02	3385.29	0.00	4112.12
120.00		355.73	261.72	0.00	0.00
125.00		583.63	384.46	0.00	0.00
127.00	(11) attachments	4330.85	2274.57	0.00	0.00
130.00		340.05	219.83	0.00	0.00
135.00		556.68	359.78	0.00	0.00
137.00	(28) attachments	6392.31	2984.58	0.00	0.00
140.00		323.34	175.48	0.00	0.00
145.00		528.08	285.88	0.00	0.00
147.00	(22) attachments	7859.14	4252.93	0.00	0.00
150.00	(1) attachments	374.32	165.55	0.00	240.21
	Totals:	49,712.30	44,668.18	0.00	4,352.33

Linear Appurtenance Segment Forces (Factored)

Structure:	CT01210-S-SBA	
Site Name:	North Stonington	
Height:	150.00 (ft)	
Base Elev:	0.000 (ft)	
Gh:	1.1	т

Topography: 1

Code:TIA-222-GExposure:CCrest Height:0.00Site Class:B - Competent RockStruct Class:II

24

Load Case: 0.9D + 1.6W 105 mph Wind

Dead Load Factor Wind Load Factor

actor 0.90 actor 1.60

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)
95.00	6"x1" Link Plate	Yes	0.75	0.000	1.00	0.06	0.00	0.029	0.000	33.570	0.00	41.35
96.38	6"x1" Link Plate	Yes	1.38	0.000	1.00	0.11	0.00	0.029	0.000	33.672	0.00	76.08
99.67	6"x1" Link Plate	Yes	3.29	0.000	1.00	0.27	0.00	0.030	0.000	33.911	0.00	181.21
100.00	6"x1" Link Plate	Yes	0.33	0.000	1.00	0.03	0.00	0.029	0.000	33.935	0.00	18.38
102.13	6"x1" Link Plate	Yes	2.13	0.000	1.00	0.18	0.00	0.030	0.000	34.086	0.00	117.44
105.00	6"x1" Link Plate	Yes	2.87	0.000	1.00	0.24	0.00	0.030	0.000	34.285	0.00	158.23
107.00	6"x1" Link Plate	Yes	2.00	0.000	1.00	0.17	0.00	0.030	0.000	34.422	0.00	110.27
110.00	6"x1" Link Plate	Yes	2.25	0.000	1.00	0.19	0.00	0.023	0.000	34.623	0.00	124.05
									То	tals:	0.0	827.0

						Calc	ulated Fo	orces						
Struc Site N Heigh	lame:	North 150.00					Code: Exposure: Crest Heig	: C ght: 0.0	-222-G 0		3/	8/2022	((H))	S
Base	Elev:	0.000	(ft)				Site Class	: В-	Compete	ent Rock				D
Gh:		1.1		То	pography:	: 1	Struct Cla	ss: II			Pa	age: 18	Tower Engineer	ing Solutions
Load	Dea	d Load	+ 1.6W d Facto d Facto		0					Z	ľ	ite	erations	24
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-)	Tu MY (-) (ft-kips)	Mu MZ	Mu MX	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-44.53	-49.84	0.00	-5555.0	0.00	5555.03	5817.07	2908.54	11858.0	5886.84	0.00	0.000	0.000	0.952
5.00	-42.96	-49.44	0.00	-5305.8	0.00	5305.85		2869.78	11485.2	5701.74	0.17	-0.316	0.000	0.938
10.00	-41.29	-49.04	0.00	-5058.6	0.00	5058.66		2826.24	11099.3	5510.17	0.67	-0.635	0.000	0.926
15.00	-39.63 -38.01	-48.63	0.00	-4813.4	0.00	4813.49		2772.91	10682.2	5303.14	1.51	-0.956	0.000	0.915
20.00 25.00	-36.41	-48.18 -47.71	0.00	-4570.3 -4329.4	0.00	4570.34 4329.42		2719.58 2666.26	10273.2 9872.18	5100.07 4900.97	2.68 4.20	-1.279 -1.604	0.000 0.000	0.903 0.891
30.00	-34.84	-47.20	0.00	-4090.9	0.00	4090.90	5225.86	2612.93	9479.11	4705.83	6.05	-1.930	0.000	0.876
35.00	-33.30	-46.67	0.00	-3854.9	0.00	3854.91	5119.21	2559.60	9094.03	4514.66	8.25	-2.257	0.000	0.861
40.00	-31.79	-46.12	0.00	-3621.5	0.00	3621.57	5012.56	2506.28	8716.92	4327.45	10.79	-2.584	0.000	0.844
45.00	-30.40	-45.49	0.00	-3390.9	0.00	3390.97	4905.90	2452.95	8347.81	4144.20	13.67	-2.911	0.000	0.825
46.67	-29.86	-45.33	0.00	-3315.1	0.00	3315.15		2435.18	8226.55	4084.00	14.70	-3.023	0.000	0.818
50.00	-28.31	-44.90	0.00	-3164.0	0.00	3164.04		2399.63	7986.68	3964.92	16.89	-3.242	0.000	0.804
53.00 55.00	-26.95 -26.34	-44.49 -44.30	0.00	-3029.3 -2940.3	0.00	3029.34 2940.37	4240.56 4203.23	2120.28 2101.62	7137.82 7012.05	3543.51 3481.07	18.99 20.46	-3.440 -3.572	0.000 0.000	0.862 0.851
60.00	-25.04	-43.68	0.00	-2718.8	0.00	2718.89		2054.96	6702.51	3327.41	24.38	-3.915	0.000	0.824
65.00	-23.77	-43.06	0.00	-2500.4	0.00	2500.48		2008.29	6399.97	3177.21	28.66	-4.253	0.000	0.793
70.00	-22.53	-42.43	0.00	-2285.1	0.00	2285.19	3923.27	1961.63	6104.41	3030.48	33.29	-4.585	0.000	0.760
75.00	-21.32	-41.79	0.00	-2073.0	0.00	2073.06		1914.97	5815.84	2887.23	38.26	-4.909	0.000	0.724
80.00	-20.15	-41.14	0.00	-1864.1	0.00	1864.13		1868.31	5534.25	2747.44	43.57	-5.224	0.000	0.684
85.00	-19.01	-40.48	0.00	-1658.4	0.00	1658.45		1821.65	5259.66	2611.12	49.19	-5.528	0.000	0.641
90.00 94.25	-17.93 -17.08	-39.82 -39.23	0.00	-1456.0 -1286.8	0.00	1456.03 1286.80	3549.99 3470.66	1774.99 1735.33	4992.05 4770.08	2478.26 2368.07	55.13 60.41	-5.818 -6.052	0.000 0.000	0.593 0.549
94.25 95.00		-39.23		-1257.3	0.00	1257.38			4731.43	2348.88	61.36	-6.093	0.000	0.549
96.38	-16.33	-38.93		-1207.3	0.00	1207.30		1715.45	4660.73	2313.78	63.13	-6.167	0.000	0.382
99.67	-15.31	-38.42	0.00	-1075.4	0.00	1075.43		729.12	1997.89	991.83	67.41	-6.288	0.000	0.423
100.00	-15.22	-38.39	0.00	-1062.6	0.00	1062.63	1456.89	728.44	1992.39	989.11	67.85	-6.301	0.000	0.633
102.13	-14.80	-38.11	0.00	-980.87	0.00	980.87		724.06	1957.30	971.68	70.68	-6.413	0.000	0.592
102.13	-14.80	-38.11	0.00	-980.87	0.00	980.87		724.06	1957.30	971.68	70.68	-6.413	0.000	0.592
105.00	-14.25	-37.74	0.00	-871.49	0.00	871.49		717.99	1910.05	948.23	74.58	-6.555	0.000	0.932
107.00 110.00	-12.08	-30.50 -30.14	0.00 0.00	-796.02 -704.51	0.00	796.02 704.51		713.67 707.02	1877.17 1827.92	931.90 907.46	77.35 81.64	-6.716 -6.941	0.000 0.000	0.864 0.786
115.00	-11.07		0.00	-553.79	0.00	553.79		695.52	1746.12	866.85	89.07	-7.273	0.000	0.649
117.00	-8.45		0.00	-490.63	0.00	490.63		690.78	1713.52	850.66	92.14	-7.393	0.000	0.584
120.00	-8.16	-22.58	0.00	-421.81	0.00	421.81		683.50	1664.77	826.46	96.83	-7.556	0.000	0.517
120.00	-8.16	-22.58	0.00	-421.81	0.00	421.81	1091.99	545.99	1332.66	661.59	96.83	-7.556	0.000	0.647
125.00	-7.79	-21.97	0.00	-308.91	0.00	308.91		537.67	1272.10	631.52	104.85	-7.786	0.000	0.498
127.00	-6.10	-17.38	0.00	-264.97	0.00	264.97		534.20	1247.88	619.50	108.12	-7.878	0.000	0.434
130.00	-5.89	-17.03	0.00	-212.82	0.00	212.82 127.67		528.83	1211.58 1151.22	601.48	113.10	-7.998	0.000	0.360
135.00 137.00	-5.58 -3.53	-16.44 -9.69	0.00	-127.67 -94.79	0.00	94.79		519.46 515.57	1151.22	571.51 559.57	121.53 124.94	-8.148 -8.192	0.000 0.000	0.230 0.173
140.00	-3.40	-9.35	0.00	-65.73	0.00	65.73		509.57	1091.15	541.69	130.09	-8.240	0.000	0.175
145.00	-3.19	-8.78	0.00	-18.99	0.00	18.99		499.16	1031.47	512.07	138.72	-8.286	0.000	0.041
147.00	-0.11	-0.39		-1.42	0.00	1.42		494.84	1007.74	500.29	142.18	-8.291	0.000	0.003
150.00	0.00	-0.37	0.00	-0.24	0.00	0.24	976.44	488.22	972.32	482.70	147.37	-8.292	0.000	0.000

			Wind	Loading - SI	naft		
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.000.53
Site Name:	North Stonington			Exposure:	С		((H))
Height:	150.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		LS
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 19	Tower Engineering Solutions

Load Case: 1.2D +	1.0Di +	1.0Wi 50	mph Wind
Dead Load F	actor	1.20	
Wind Load F	actor	1.00	

Elev (ft) De	escription	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.85	5.168	5.68	0.00	1.200	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.85	5.168	5.68	0.00	1.200	1.242	5.00	22.085	26.50	150.7	395.3	1992.5
10.00		1.00	0.85	5.168	5.68	0.00	1.200	1.331	5.00	21.777	26.13	148.6	416.8	1984.8
15.00		1.00	0.85	5.168	5.68	0.00	1.200	1.386	5.00	21.441	25.73	146.3	426.6	1965.3
20.00		1.00	0.90	5.483	6.03	0.00	1.200	1.427	5.00	21.092	25.31	152.7	431.3	1940.7
25.00		1.00	0.95	5.747	6.32	0.00	1.200	1.459	5.00	20.737	24.88	157.3	433.0	1913.1
30.00		1.00	0.98	5.972	6.57	0.00	1.200	1.486	5.00	20.377	24.45	160.6	432.8	1883.5
35.00		1.00	1.01	6.169	6.79	0.00	1.200	1.509	5.00	20.014	24.02	163.0	431.1	1852.6
40.00		1.00	1.04	6.345	6.98	0.00	1.200	1.529	5.00	19.648	23.58	164.6	428.4	1820.5
45.00		1.00	1.07	6.504	7.15	0.00	1.200	1.547	5.00	19.281	23.14	165.5	424.9	1787.7
46.67 Bot - Se	ection 2	1.00	1.08	6.554	7.21	0.00	1.200	1.553	1.67		7.61	54.9	141.2	588.9
50.00		1.00	1.09	6.650	7.32	0.00	1.200	1.564		12.813	15.38	112.5	286.2	1964.8
53.00 Top - Se	ection 1	1.00	1.11	6.732	7.41	0.00	1.200	1.573		11.391	13.67	101.2	255.9	1745.7
55.00		1.00	1.12	6.785	7.46	0.00	1.200	1.579	2.00	7.520	9.02	67.3	169.8	633.9
60.00		1.00	1.14	6.910	7.60	0.00	1.200	1.592		18.543	22.25	169.1	419.3	1561.6
65.00		1.00	1.16	7.028	7.73	0.00	1.200	1.605	5.00	18.171	21.81	168.6	413.7	1530.3
70.00		1.00	1.17	7.138	7.85	0.00	1.200	1.617	5.00	17.799	21.36	167.7	407.7	1498.6
75.00		1.00	1.19	7.243	7.97	0.00	1.200	1.628	5.00	17.426	20.91	166.6	401.3	1466.6
80.00		1.00	1.21	7.342	8.08	0.00	1.200	1.639	5.00	17.052	20.46	165.3	394.7	1434.4
85.00		1.00	1.22	7.436	8.18	0.00	1.200	1.649	5.00	16.678	20.01	163.7	387.8	1401.9
90.00		1.00	1.24	7.526	8.28	0.00	1.200	1.658	5.00	16.304	19.56	162.0	380.7	1369.1
94.25 Bot - Se	ection 3	1.00	1.25	7.600	8.36	0.00	1.200	1.666	4.25	13.563	16.28	136.1	318.3	1138.3
95.00		1.00	1.25	7.612	8.37	0.00	1.200	1.667	0.75	2.393	2.87	24.0	56.7	272.3
96.38 RB1		1.00	1.26	7.635	8.40	0.00	1.200	1.670	1.38	4.381	5.26	44.2	103.8	498.1
99.67 Top - Se	ection 2	1.00	1.26	7.690	8.46	0.00	1.200	1.675	3.29	10.320	12.38	104.7	243.9	1171.3
100.00		1.00	1.27	7.695	8.46	0.00	1.200	1.676	0.33	1.037	1.24	10.5	24.7	56.2
02.13 RT1		1.00	1.27	7.729	8.50	0.00	1.200	1.679	2.13	6.590	7.91	67.2	156.4	356.1
05.00		1.00	1.28	7.774	8.55	0.00	1.200	1.684	2.87	8.772	10.53	90.0	208.2	473.6
107.00 Appurte	nance(s)	1.00	1.28	7.805	8.59	0.00	1.200	1.687	2.00	6.040	7.25	62.2	143.9	326.3
110.00		1.00	1.29	7.851	8.64	0.00	1.200	1.692	3.00	8.947	10.74	92.7	213.0	482.8
115.00		1.00	1.30	7.925	8.72	0.00	1.200	1.699	5.00	14.612	17.53	152.9	346.9	786.4
117.00 Appurte	nance(s)	1.00	1.31	7.954	8.75	0.00	1.200	1.702	2.00	5.739	6.89	60.3	137.5	309.7
20.00 Top - Se	ection 3	1.00	1.32	7.996	8.80	0.00	1.200	1.707	3.00	8.496	10.19	89.7	203.3	457.7
25.00		1.00	1.33	8.065	8.87	0.00	1.200	1.714	5.00	13.859	16.63	147.5	330.5	685.5
27.00 Appurte	nance(s)	1.00	1.33	8.092	8.90	0.00	1.200	1.716	2.00	5.438	6.53	58.1	130.8	269.8
30.00		1.00	1.34	8.132	8.95	0.00	1.200	1.720	3.00	8.044	9.65	86.3	193.2	398.3
35.00		1.00	1.35	8.197	9.02	0.00	1.200	1.727	5.00	13.106	15.73	141.8	313.5	646.6
37.00 Appurte	nance(s)	1.00	1.35	8.222	9.04	0.00	1.200	1.729	2.00	5.136	6.16	55.7	124.0	254.2
40.00		1.00	1.36	8.260	9.09	0.00	1.200	1.733	3.00	7.591	9.11	82.8	182.9	374.8
45.00		1.00	1.37	8.321	9.15	0.00	1.200	1.739	5.00	12.351	14.82	135.7	296.1	607.2
47.00 Appurte	nance(s)	1.00	1.37	8.345	9.18	0.00	1.200	1.742	2.00	4.834	5.80	53.3	117.0	238.4
150.00 Appurte	nance(s)	1.00	1.38	8.381	9.22	0.00	1.200	1.745	3.00	7.139	8.57	79.0	172.3	351.1
								Totals:	150.00	-		4,682.8		42,491.0

Discrete Appurtenance Forces

				• •			
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.000.53
Site Name:	North Stonington			Exposure:	С		((chin))
Height:	150.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		LS
Gh:	1.1	Topography:	1	Struct Class:	П	Page: 20	Tower Engineering Solutions

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind

Dead Load Factor1.20Wind Load Factor1.00

No.	Elev (ft) Description	Qty	qz (psf)	qzGh (psf)	Orient Factor x Ka	Ka	Total CaAa (sf)	Dead Load (lb)	Horiz Ecc (ft)	Vert Ecc (ft)	Wind FX (lb)	Mom Y (lb-ft)	Mom Z (Ib-ft)
1	150.00 Lightning Rod	1	8.421	9.264	1.00	1.00	3.42	64.41	0.000	3.500	31.71	0.00	111.00
2	147.00 Ericsson 4449 B71 + B85	3	8.345	9.180	0.50	0.75	3.83	513.88	0.000	0.000	35.12	0.00	0.00
3	147.00 Commscope VV-65A-R1	3	8.345	9.180	0.55	0.75	11.49	502.93	0.000	0.000	105.52	0.00	0.00
4	147.00 RFS	3	8.345	9.180	0.54	0.75	35.86	1722.28	0.000	0.000	329.19	0.00	0.00
5	147.00 Ericsson KRY 112 144/1	3	8.345	9.180	0.45	0.75	1.02	62.77	0.000	0.000	9.35	0.00	0.00
6	147.00 Ericsson AIR6449 B41	3	8.345	9.180	0.53	0.75	10.54	686.23	0.000	0.000	96.77	0.00	0.00
7	147.00 Platform w/ Hand Rail	1	8.345	9.180	1.00	1.00	60.90	3890.03	0.000	0.000	559.04	0.00	0.00
8	147.00 Tie Back Kit (Commscope	e 1	8.345	9.180	1.00	1.00	9.40	230.89	0.000	0.000	86.28	0.00	0.00
9	147.00 Rreinforcement Kit	1	8.345	9.180	1.00	1.00	19.43	937.58	0.000	0.000	178.34	0.00	0.00
10	147.00 V-Brace Kit (Sitepro	1	8.345	9.180	1.00	1.00	12.88	2022.93	0.000	0.000	118.27	0.00	0.00
11	147.00 Ericsson 4460 B25 + B66	i 3	8.345	9.180	0.50	0.75	3.99	513.81	0.000	0.000	36.61	0.00	0.00
12	137.00 Nokia B2/B66A RRH	3	8.222	9.044	0.50	0.75	3.58	144.66	0.000	0.000	32.37	0.00	0.00
13	137.00 Antel BXA-70063-6CF	3	8.222	9.044	0.58	0.75	18.09	374.57	0.000	0.000	163.63	0.00	0.00
14	137.00 Samsung MT6407-77A	3	8.222	9.044	0.52	0.75	8.84	639.81	0.000	0.000	79.91	0.00	0.00
15	137.00 Andrew JAHH-65B-R3B	6	8.222	9.044	0.46	0.75	29.09	1468.81	0.000	0.000	263.14	0.00	0.00
16	137.00 Commscope	3	8.222	9.044	0.45	0.75	1.21	163.38	0.000	0.000	10.92	0.00	0.00
17	137.00 Low Profile Platform (Site	• 1	8.222	9.044	1.00	1.00	54.52	3106.66	0.000	0.000	493.10	0.00	0.00
18	137.00 Nokia B5/B13	3	8.222	9.044	0.50	0.75	3.58	83.69	0.000	0.000	32.37	0.00	0.00
19	137.00 RFS DB-B1-6C-12AB-0Z	2	8.222	9.044	0.50	0.75	8.62	147.59	0.000	0.000	77.99	0.00	0.00
20	137.00 Handrail Kit (Site Pro1	1	8.222	9.044	1.00	1.00	13.29	919.73	0.000	0.000	120.18	0.00	0.00
21	137.00 Mount Kit (Commscope	3	8.222	9.044	0.38	0.75	0.17	330.24	0.000	0.000	1.55	0.00	0.00
22	127.00 Platform w/HRK	1	8.092	8.901	1.00	1.00	84.04	3359.37	0.000	0.000	748.10	0.00	0.00
23	127.00 Fujitsu TA08025-B604	3	8.092	8.901	0.50	0.75	3.79	343.39	0.000	0.000	33.70	0.00	0.00
24	127.00 Fujitsu TA08025-B605	3	8.092	8.901	0.50	0.75	3.79	386.09	0.000	0.000	33.70	0.00	0.00
25	127.00 JMA Wireless	3	8.092	8.901	0.55	0.75	23.19	888.81	0.000	0.000	206.46	0.00	0.00
26	127.00 Raycap	1	8.092	8.901	0.50	0.75	1.29	65.72	0.000	0.000	11.49	0.00	0.00
27	117.00 ALU TD-RRH8x20-25	3	7.954	8.749	0.50	0.75	7.30	573.60	0.000	0.000	63.86	0.00	0.00
28	117.00 ALU 800 Mhz	6	7.954	8.749	0.50	0.75	10.87	687.87	0.000	0.000	95.11	0.00	0.00
29	117.00 ALU 1900 Mhz	3	7.954	8.749	0.50	0.75	6.04	388.46	0.000	0.000	52.85	0.00	0.00
30	117.00 RFS APXVTM14-C-I20	3	7.954	8.749	0.58	0.75	12.86	669.42	0.000	0.000	112.53	0.00	0.00
31	117.00 Commscope	3	7.996	8.796	0.60	0.75	24.64	916.89	0.000	3.000	216.75	0.00	650.25
32	117.00 Sitepro RMQP-496-HK	1	7.954	8.749	1.00	1.00	77.32	4650.29	0.000	0.000	676.50	0.00	0.00
33	107.00 Site Pro HRK14	1	7.805	8.586	1.00	1.00	15.81	1012.10	0.000	0.000	135.76	0.00	0.00
34	107.00 Ericsson 4449 B5/B12	3	7.805	8.586	0.50	0.75	3.27	448.25	0.000	0.000	28.06	0.00	0.00
35	107.00 Ericsson RRUS 4478 B14	4 3	7.805	8.586	0.50	0.75	3.54	316.86	0.000	0.000	30.41	0.00	0.00
36	107.00 Ericsson 8843 B2 B66A	3	7.805	8.586	0.50	0.75	3.27	484.90	0.000	0.000	28.06	0.00	0.00
37	107.00 Raycap	1	7.805	8.586	0.50	0.75	2.83	109.02	0.000	0.000	24.31	0.00	0.00
38	107.00 Raycap DC6-48-60-18-8F	- 1	7.805	8.586	0.50	0.75	0.68	80.23	0.000	0.000	5.80	0.00	0.00
39	107.00 Cci DMP65R-BU8DA	6	7.805	8.586	0.75	0.75	163.66	1704.47	0.000	0.000	1405.18	0.00	0.00
40	107.00 Powerwave 7770	3	7.805	8.586	0.55	0.75	10.72	515.09	0.000	0.000	92.05	0.00	0.00
41	107.00 Powerwave/LGP21401	6	7.805	8.586	0.45	0.75	1.77	74.09	0.000	0.000	15.17	0.00	0.00
42	107.00 Low Profile Platform	1	7.805	8.586	1.00	1.00	39.07	2765.43	0.000	0.000	335.49	0.00	0.00
						Totals	5:	38,967.24			7,212.71		

|--|

Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.000.5X
Site Name:	North Stonington			Exposure:	С		(((井)))
Height:	150.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 21	Tower Engineering Solutions

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind Dead Load Factor 1.20

Wind Load Factor 1.00

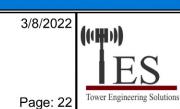
Elev		Lateral FX (-)	Axial FY (-)	Torsion MY	Moment MZ
(ft)	Description	(lb)	(lb)	(lb-ft)	(lb-ft)
0.00		0.00	0.00	0.00	0.00
5.00		150.66	2117.38	0.00	0.00
10.00		148.56	2296.86	0.00	0.00
15.00		146.26	2277.38	0.00	0.00
20.00		152.67	2252.76	0.00	0.00
25.00		157.31	2225.17	0.00	0.00
30.00		160.63	2195.62	0.00	0.00
35.00		162.97	2164.66	0.00	0.00
40.00		164.56	2132.64	0.00	0.00
45.00		165.54	2099.77	0.00	0.00
46.67		54.88	692.96	0.00	0.00
50.00		112.48	2172.84	0.00	0.00
53.00		101.23	1933.01	0.00	0.00
55.00		67.35	758.73	0.00	0.00
60.00		169.14	1873.66	0.00	0.00
65.00		168.57	1842.38	0.00	0.00
70.00		167.71	1810.72	0.00	0.00
75.00		166.60	1778.75	0.00	0.00
80.00		165.26	1746.48	0.00	0.00
85.00				0.00	0.00
		163.71	1713.95		
90.00		161.97	1681.19	0.00	0.00
94.25		136.06	1403.56	0.00	0.00
95.00		24.04	379.86	0.00	0.00
96.38		44.15	696.14	0.00	0.00
99.67		104.75	1643.03	0.00	0.00
100.00		10.54	104.00	0.00	0.00
102.13		67.24	661.88	0.00	0.00
105.00		90.02	885.69	0.00	0.00
107.00	(28) attachments	2162.52	8123.94	0.00	0.00
110.00		92.72	773.77	0.00	0.00
115.00		152.85	966.81	0.00	0.00
117.00	(19) attachments	1277.86	8268.37	0.00	650.25
120.00		89.67	552.22	0.00	0.00
125.00		147.55	843.09	0.00	0.00
127.00	(11) attachments	1091.54	5376.20	0.00	0.00
130.00		86.34	486.33	0.00	0.00
135.00		141.80	793.22	0.00	0.00
137.00	(28) attachments	1330.91	7691.98	0.00	0.00
140.00	()	82.77	416.89	0.00	0.00
145.00		135.67	677.26	0.00	0.00
147.00	(22) attachments	1607.73	11349.74	0.00	0.00
150.00	(1) attachments	110.68	415.49	0.00	111.00
100.00					
	Totals:	11,895.49	90,276.38	0.00	761.25

Linear Appurtenance Segment Forces (Factored)

 Structure:
 CT01210-S-SBA

 Site Name:
 North Stonington

 Height:
 150.00 (ft)


 Base Elev:
 0.000 (ft)

 Gh:
 1.1
 1

ington Topography: 1

1.00

Code:TIA-222-GExposure:CCrest Height:0.00Site Class:B - Competent RockStruct Class:II

Load Case: 1.2D + 1.0Di + 1.0Wi 50 mph Wind Dead Load Factor 1.20

Wind Load Factor

Iterations

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (lb)	Dead Load (Ib)
95.00	6"x1" Link Plate	Yes	0.75	0.000	1.00	0.27	0.00	0.029	0.000	7.612	0.00	60.79
96.38	6"x1" Link Plate	Yes	1.38	0.000	1.00	0.50	0.00	0.029	0.000	7.635	0.00	111.87
99.67	6"x1" Link Plate	Yes	3.29	0.000	1.00	1.19	0.00	0.030	0.000	7.690	0.00	266.55
00.00	6"x1" Link Plate	Yes	0.33	0.000	1.00	0.12	0.00	0.029	0.000	7.695	0.00	27.03
02.13	6"x1" Link Plate	Yes	2.13	0.000	1.00	0.77	0.00	0.030	0.000	7.729	0.00	172.80
05.00	6"x1" Link Plate	Yes	2.87	0.000	1.00	1.04	0.00	0.030	0.000	7.774	0.00	232.92
07.00	6"x1" Link Plate	Yes	2.00	0.000	1.00	0.73	0.00	0.030	0.000	7.805	0.00	162.35
10.00	6"x1" Link Plate	Yes	2.25	0.000	1.00	0.82	0.00	0.023	0.000	7.851	0.00	182.72
									Tot	als:	0.0	1,217.0

			Calc	ulated Force	s		
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.000.b)
Site Name:	North Stonington			Exposure:	С		de ult ob
Height:	150.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		
Gh:	1.1	Topography: 1		Struct Class:	П	Page: 23	Tower Engineering Solutions

Load Case:	1.2D	+ 1.0Di +	1.0Wi	50	mph	Wind
				•••		

Dead Load Factor 1.20

Wind Load Factor 1.00

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-90.27	-11.96	0.00	-1393.6	0.00	1393.62	5817.07	2908.54	11858.0	5886.84	0.00	0.000	0.000	0.252
5.00	-88.13	-11.93	0.00	-1333.8	0.00	1333.83	5739.57	2869.78	11485.2	5701.74	0.04	-0.079	0.000	0.249
10.00	-85.82	-11.90	0.00	-1274.1	0.00	1274.19	5652.47	2826.24	11099.3	5510.17	0.17	-0.160	0.000	0.246
15.00	-83.53	-11.86	0.00	-1214.7	0.00	1214.71	5545.82	2772.91	10682.2	5303.14	0.38	-0.241	0.000	0.244
20.00	-81.26	-11.81	0.00	-1155.4	0.00	1155.40	5439.17	2719.58	10273.2	5100.07	0.67	-0.322	0.000	0.242
25.00	-79.02	-11.76	0.00	-1096.3	0.00	1096.34	5332.51	2666.26	9872.18	4900.97	1.06	-0.404	0.000	0.239
30.00	-76.81	-11.69	0.00	-1037.5	0.00	1037.56	5225.86	2612.93	9479.11	4705.83	1.52	-0.487	0.000	0.235
35.00	-74.63	-11.61	0.00	-979.11	0.00	979.11	5119.21	2559.60	9094.03	4514.66	2.08	-0.570	0.000	0.231
40.00	-72.48	-11.53	0.00	-921.04	0.00	921.04	5012.56	2506.28	8716.92	4327.45	2.72	-0.653	0.000	0.227
45.00	-70.37	-11.41	0.00	-863.38	0.00	863.38	4905.90	2452.95	8347.81	4144.20	3.45	-0.736	0.000	0.223
46.67	-69.67	-11.40	0.00	-844.37	0.00	844.37	4870.35	2435.18	8226.55	4084.00	3.71	-0.765	0.000	0.221
50.00	-67.49	-11.32	0.00	-806.38	0.00	806.38	4799.25	2399.63	7986.68	3964.92	4.26	-0.821	0.000	0.217
53.00	-65.55	-11.24	0.00	-772.43	0.00	772.43	4240.56	2120.28	7137.82	3543.51	4.80	-0.871	0.000	0.233
55.00	-64.78	-11.23	0.00	-749.96	0.00	749.96	4203.23	2101.62	7012.05	3481.07	5.17	-0.905	0.000	0.231
60.00	-62.89	-11.12	0.00	-693.84	0.00	693.84	4109.91	2054.96	6702.51	3327.41	6.16	-0.992	0.000	0.224
65.00	-61.04	-11.01	0.00	-638.24	0.00	638.24	4016.59	2008.29	6399.97	3177.21	7.25	-1.078	0.000	0.216
70.00	-59.21	-10.89	0.00	-583.19	0.00	583.19	3923.27	1961.63	6104.41	3030.48	8.42	-1.163	0.000	0.208
75.00	-57.42	-10.77	0.00	-528.73	0.00	528.73	3829.95	1914.97	5815.84	2887.23	9.69	-1.246	0.000	0.198
80.00	-55.67	-10.64	0.00	-474.87	0.00	474.87	3736.63	1868.31	5534.25	2747.44	11.04	-1.326	0.000	0.188
85.00	-53.94	-10.51	0.00	-421.66	0.00	421.66	3643.31	1821.65	5259.66	2611.12	12.47	-1.404	0.000	0.176
90.00	-52.25	-10.37	0.00	-369.11	0.00	369.11	3549.99	1774.99	4992.05	2478.26	13.98	-1.477	0.000	0.164
94.25	-50.85	-10.22	0.00	-325.06	0.00	325.06	3470.66	1735.33	4770.08	2368.07	15.32	-1.536	0.000	0.152
95.00	-50.47	-10.20	0.00	-317.39	0.00	317.39	3456.66	1728.33	4731.43	2348.88	15.56	-1.547	0.000	0.150
96.38	-49.77	-10.16	0.00	-303.31	0.00	303.31	3430.91	1715.45	4660.73	2313.78	16.01	-1.565	0.000	0.106
99.67	-48.13	-10.02	0.00	-269.92	0.00	269.92	1458.24	729.12	1997.89	991.83	17.10	-1.596	0.000	0.117
100.00	-48.02	-10.02	0.00	-266.58	0.00	266.58	1456.89	728.44	1992.39	989.11	17.21	-1.599	0.000	0.175
102.13	-47.35	-9.96	0.00	-245.23	0.00	245.23	1448.11	724.06	1957.30	971.68	17.93	-1.627	0.000	0.164
102.13	-47.35	-9.96	0.00	-245.23	0.00	245.23	1448.11	724.06	1957.30	971.68	17.93	-1.627	0.000	0.164
105.00	-46.46	-9.88	0.00	-216.63	0.00	216.63	1435.99	717.99	1910.05	948.23	18.92	-1.663	0.000	0.261
107.00	-38.40	-7.51	0.00	-196.87	0.00	196.87	1427.33	713.67	1877.17	931.90	19.63	-1.703	0.000	0.238
110.00	-37.62	-7.44	0.00	-174.33	0.00	174.33	1414.04	707.02	1827.92	907.46	20.71	-1.758	0.000	0.219
115.00	-36.65	-7.29	0.00	-137.13	0.00	137.13	1391.05	695.52	1746.12	866.85	22.60	-1.840	0.000	0.185
117.00	-28.43	-5.77	0.00	-121.89	0.00	121.89	1381.56	690.78	1713.52	850.66	23.38	-1.870	0.000	0.164
120.00	-27.87	-5.68	0.00	-104.59	0.00	104.59	1367.01	683.50	1664.77	826.46	24.57	-1.911	0.000	0.147
120.00	-27.87	-5.68	0.00	-104.59	0.00	104.59	1091.99	545.99	1332.66	661.59	24.57	-1.911	0.000	0.184
125.00	-27.03	-5.52	0.00	-76.18	0.00	76.18	1075.35	537.67	1272.10	631.52	26.60	-1.967	0.000	0.146
127.00	-21.70	-4.26	0.00	-65.13	0.00	65.13	1068.40	534.20	1247.88	619.50	27.43	-1.990	0.000	0.126
130.00	-21.21	-4.17	0.00	-52.36	0.00	52.36	1057.66	528.83	1211.58	601.48	28.69	-2.020	0.000	0.107
135.00	-20.42	-4.01	0.00	-31.52	0.00	31.52	1038.92	519.46	1151.22	571.51	30.83	-2.057	0.000	0.075
137.00	-12.78	-2.40	0.00	-23.51	0.00	23.51	1031.13	515.57	1127.15	559.57	31.69	-2.067	0.000	0.054
140.00	-12.37	-2.31	0.00	-16.31	0.00	16.31	1019.14	509.57	1091.15	541.69	32.99	-2.079	0.000	0.042
145.00	-11.69	-2.15	0.00	-4.78	0.00	4.78	998.31	499.16	1031.47	512.07	35.18	-2.091	0.000	0.021
147.00	-0.41	-0.13	0.00	-0.49	0.00	0.49	989.69	494.84	1007.74	500.29	36.05	-2.092	0.000	0.001
150.00	0.00	-0.11	0.00	-0.11	0.00	0.11	976.44	488.22	972.32	482.70	37.37	-2.092	0.000	0.000

		Seismic Seg	ımen	t For	rces	(Facto	red)		
Struc	ture: CT01210-S-SBA		Co	de:		TIA-222	2-G	3/8/2022	
Site N	North Stonington		Exp	osure	e:	С		((\#))	
Heigh	nt: 150.00 (ft)		Cre	st He	ight:	0.00			S
Base	Elev: 0.000 (ft)		Site	e Clas	s:	B - Cor	npeten	t Rock	2
Gh:	1.1	Topography: 1	Str	uct Cl	ass:			Page: 24	ng Solutions
Load	d Case: 1.2D + 1.0E							V Iterations	21
	ust Response Factor	1.10				Sds	0.11	Ss	0.16
	Dead Load Factor	1.20 Seismic Load F	actor		1.00	Sd1	0.04	2 S1	0.06
	Wind Load Factor	0.00 Structure Frequ	iency	(f1)	0.29	SA	0.01	Seismic Importance Factor	1.00
Тор						Late			
Elev (ft)	Description	Wz (lb)	а	b	с	Fs (Ib		F	R: 1.50
0.00	Decemption	0.00	0.00	0.00	0.00		.00		
5.00		1331.0	0.00	0.00	0.00		.52		
10.00		1306.6	0.01	0.05	0.03	24			
15.00		1282.2	0.02	0.06	0.04	26	.83		
20.00		1257.8	0.03	0.07	0.04	27			
25.00		1233.3	0.05	0.07	0.04		.93		
30.00 35.00		1208.9 1184.5	0.08 0.10	0.07 0.07	0.04		.05 .22		
40.00		1160.1	0.13	0.07	0.04		.44		
45.00		1135.6	0.17	0.07	0.03		.58		
46.67	Bot - Section 2	373.13	0.18	0.06	0.03	9	.45		
50.00		1398.8	0.21	0.06	0.02		.65		
53.00	Top - Section 1	1241.5	0.24	0.06	0.02		.46		
55.00 60.00		386.73 951.87	0.25 0.30	0.05 0.04	0.02	9 21	.67		
65.00		930.50	0.35	0.04	0.01		.09 .15		
70.00		909.13	0.41	0.01	0.01		.47		
75.00		887.76	0.47	-0.01	0.01	-0	.64		
80.00		866.39	0.54	-0.03	0.01	-10			
85.00		845.02	0.61	-0.06	0.02	-18			
90.00 94.25	Bot - Section 3	823.65 683.30		-0.08 -0.10	0.03	-22 -20			
95.00	Bot - Section 5	179.64	0.76	-0.10	0.04		.33		
96.38	RB1	328.65	0.78	-0.11	0.05		.74		
99.67	Top - Section 2	772.89	0.83	-0.12	0.06	-22	.11		
100.00		26.22	0.84		0.07		.75		
102.13	RT1	166.41	0.88	-0.12	0.08		.50		
105.00 107.00	Appurtenance(s)	221.15 2988.8	0.93 0.96	-0.12 -0.12	0.10 0.11	-5 -65	.39 .68		
110.00		224.84	1.02	-0.12	0.14		.96		
115.00		366.19	1.11	-0.06	0.19		.03		
117.00	Appurtenance(s)	3701.2	1.15	-0.04	0.22	-14	.12		
120.00	Top - Section 3	212.02	1.21	0.01	0.26		.78		
125.00	Appurtopopoo(s)	295.88	1.31	0.14	0.35		.41		
127.00 130.00	Appurtenance(s)	2474.7 170.93	1.35 1.42	0.20 0.32	0.39 0.45		.63 .09		
135.00		277.56	1.53	0.58	0.58		.50		
137.00	Appurtenance(s)	3267.3	1.58	0.71	0.64	211			
140.00		159.94	1.65	0.93	0.73		.63		
145.00		259.24	1.77	1.39	0.92		.23		
147.00	Appurtenance(s)	4702.1	1.82	1.61	1.00	547			
150.00	Appurtenance(s)	183.95	1.89	1.98	1.14		.69	Total Mind. 40.744	
		Totals: 42,378.2				1,07	ð.J	Total Wind: 49,712	2.3

						Calc	ulated F	orces						
Struc	ture:	CT012	210-S-S	SBA			Code:	TL	A-222	2-G		3/8/2022		
	Name:		Stoning				Exposure					0,0,2022	((Ħ))	
Heigh		150.00					Crest Hei		იი					C
-								-			ant Deel			S
Base	Elev:	0.000	(π)				Site Class		- Cor	npete	ent Rock		Tower Engineer	ring Solutions
Gh:		1.1		Торо	ography	: 1	Struct Cla	ass: II				Page: 25	Tower Enginee.	ing solutions
Load	d Case:	1.2D	+ 1.0E									¥) Ite	erations	21
G	ust Res	sponse	e Facto	r 1.10					Sds	0.1	1	×	Ss	0.16
	Dea	d Loac	l Facto	r 1.20	Seism	ic Load Fac	ctor	1.00	Sd1	0.0	4 7		S1	0.06
	Win	d Load	d Facto	r 0.00	Struct	ure Freque	ncy (f1)	0.29	SA	0.0	1 Seis	mic Importance	Factor	1.00
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	n	hi	phi	Total Rotation	Rotation	
Elev (ft)	FY (-) (kips)	FX (-)	MY (-) (ft-kips)	MZ	MX ft-kips)	Moment (ft-kips)	Pn (kips)	Vn (kips)	ī	ſn kips)	Mn (ft-kips)	Deflect Sway (in) (deg)	Twist (deg)	Stress Ratio
0.00	-59.56	-1.29	0.00	-152.79	0.00	152.79	5817.07	2908.54		858.0	5886.84	0.00	0.00	0.036
5.00	-57.84	-1.28	0.00	-146.35	0.00	146.35	5739.57	2869.78		185.2	5701.74	0.00	-0.01	0.036
10.00 15.00	-55.95 -54.10	-1.26	0.00	-139.95 -133.64	0.00	139.95 133.64	5652.47 5545.82	2826.24		99.3 82.2	5510.17 5303.14	0.02	-0.02 -0.03	0.035
20.00	-52.28	-1.24	0.00	-127.42	0.00	127.42	5439.17	2719.58		273.2	5100.07	0.07	-0.03	0.035
25.00	-50.49	-1.20	0.00	-121.30	0.00	121.30	5332.51	2666.26		2.18	4900.97	0.12	-0.04	0.034
30.00	-48.73	-1.18	0.00	-115.29	0.00	115.29	5225.86	2612.93	947	79.11	4705.83	0.17	-0.05	0.034
35.00	-46.99	-1.16	0.00	-109.39	0.00	109.39	5119.21	2559.60		4.03	4514.66	0.23	-0.06	0.033
40.00	-45.29	-1.14	0.00	-103.59	0.00	103.59	5012.56	2506.28		6.92	4327.45	0.30	-0.07	0.033
45.00 46.67	-43.61 -43.06	-1.11 -1.10	0.00	-97.92 -96.07	0.00 0.00	97.92 96.07	4905.90 4870.35	2452.95 2435.18		7.81	4144.20 4084.00	0.38 0.41	-0.08 -0.08	0.033
40.07	-43.00	-1.10	0.00	-96.07	0.00	96.07	4870.35	2399.63		86.68	4064.00 3964.92	0.41	-0.08	0.032
53.00	-39.50	-1.04	0.00	-89.19	0.00	89.19	4240.56	2120.28		87.82	3543.51	0.53	-0.10	0.034
55.00	-38.91	-1.03	0.00	-87.11	0.00	87.11	4203.23	2101.62	2 701	2.05	3481.07	0.57	-0.10	0.034
60.00	-37.45	-1.01	0.00	-81.96	0.00	81.96	4109.91	2054.96		2.51	3327.41	0.68	-0.11	0.034
65.00	-36.03	-1.00	0.00	-76.89	0.00	76.89	4016.59	2008.29		9.97	3177.21	0.80	-0.12	0.033
70.00 75.00	-34.62 -33.24	-0.99 -1.00	0.00	-71.89 -66.92	0.00 0.00	71.89 66.92	3923.27 3829.95	1961.63 1914.97)4.41 5.84	3030.48 2887.23	0.94 1.08	-0.13 -0.14	0.033 0.032
80.00	-31.89	-1.00	0.00	-61.93	0.00	61.93	3736.63	1868.31		34.25	2747.44	1.23	-0.14	0.032
85.00	-30.57	-1.00	0.00	-56.94	0.00	56.94	3643.31	1821.65		9.66	2611.12	1.40	-0.16	0.030
90.00	-29.27	-1.00	0.00	-51.93	0.00	51.93	3549.99	1774.99	499	2.05	2478.26	1.58	-0.17	0.029
94.25	-28.18	-1.00	0.00	-47.68	0.00	47.68	3470.66				2368.07	1.73	-0.18	0.028
95.00	-27.86	-1.00	0.00	-46.93	0.00	46.93	3456.66	1728.33		31.43	2348.88	1.76	-0.18	0.028
96.38	-27.28 -25.91	-1.00		-45.54	0.00	45.54	3430.91 1458.24	1715.45 729.12		0.73	2313.78	1.82	-0.19 -0.19	0.020
99.67 100.00	-25.91	-1.00 -1.00	0.00	-42.25 -41.92	0.00 0.00	42.25 41.92	1456.24	729.12)7.89)2.39	991.83 989.11	1.94 1.96	-0.19	0.023 0.035
102.13	-25.34	-1.00	0.00	-39.80	0.00	39.80	1448.11	724.06		57.30	971.68	2.04	-0.20	0.033
102.13	-25.34	-1.00	0.00	-39.80	0.00	39.80	1448.11	724.06		57.30	971.68	2.04	-0.20	0.033
105.00	-24.69	-1.00		-36.93	0.00	36.93	1435.99	717.99		0.05	948.23	2.16	-0.20	0.056
107.00	-20.83	-0.99		-34.93	0.00	34.93	1427.33	713.67		7.17	931.90	2.25	-0.21	0.052
110.00 115.00	-20.28 -19.66	-0.99 -0.99	0.00	-31.96 -27.00	0.00 0.00	31.96 27.00	1414.04 1391.05	707.02 695.52		27.92	907.46 866.85	2.38 2.62	-0.22 -0.23	0.050 0.045
117.00	-19.66	-0.99	0.00	-27.00	0.00	27.00	1391.05	695.52		3.52	850.66	2.02	-0.23	0.045
120.00	-14.80	-0.98	0.00	-22.02	0.00	22.09	1367.01	683.50		5.52 64.77	826.46	2.87	-0.24	0.040
120.00	-14.80	-0.98	0.00	-22.09	0.00	22.09	1091.99	545.99		32.66	661.59	2.87	-0.25	0.047
125.00	-14.29	-0.97	0.00	-17.20	0.00	17.20	1075.35	537.67		2.10	631.52	3.14	-0.26	0.041
127.00	-11.25	-0.90	0.00	-15.26	0.00	15.26	1068.40	534.20		7.88	619.50	3.25	-0.27	0.035
130.00	-10.96	-0.89	0.00	-12.57	0.00	12.57	1057.66	528.83		1.58	601.48	3.42	-0.27	0.031
135.00 137.00	-10.48 -6.50	-0.87 -0.64	0.00	-8.11 -6.36	0.00 0.00	8.11 6.36	1038.92 1031.13	519.46 515.57		51.22 27.15	571.51 559.57	3.71 3.83	-0.28 -0.28	0.024 0.018
140.00	-6.27	-0.63	0.00	-4.43	0.00	4.43	1019.14	509.57		1.15	541.69	4.01	-0.28	0.018
145.00	-5.89	-0.60	0.00	-1.28	0.00	1.28	998.31	499.16		31.47	512.07	4.31	-0.29	0.008
147.00	-0.22	-0.03	0.00	-0.08	0.00	0.08	989.69	494.84		7.74	500.29	4.43	-0.29	0.000
150.00	0.00	-0.02	0.00	0.00	0.00	0.00	976.44	488.22	97	2.32	482.70	4.62	-0.29	0.000

		Seismic Seg	gmen	t For	rces	(Facto	red)		
Struc	ture: CT01210-S-SBA		Co	de:		TIA-222	2-G	3/8/2022	
Site N	North Stonington		Exp	osure	e:	С		((\#))	
Heigh	nt: 150.00 (ft)		Cre	st He	ight:	0.00			C
Base	Elev: 0.000 (ft)		Site	e Clas	s:	B - Con	npeten	t Rock	<u> </u>
Gh:	1.1	Topography: 1	Str	uct Cl	ass:			Page: 26	ng Solutions
Load	d Case: 0.9D + 1.0E							V Iterations	21
	ust Response Factor	1.10				Sds	0.11	Ss	0.16
	Dead Load Factor	0.90 Seismic Load F	actor		1.00	Sd1	0.04	31 S1	0.06
	Wind Load Factor	0.00 Structure Frequencies	uency	(f1)	0.29	SA	0.01	Seismic Importance Factor	1.00
Тор						Late	ral		
Elev (ft)	Description	Wz (lb)	а	b	с	Fs (Ib		F	R: 1.50
	Description								X. 1.50
0.00 5.00		0.00 1331.0	0.00	0.00	0.00		.00 .52		
10.00		1306.6	0.00	0.05	0.02	24			
15.00		1282.2	0.02	0.06	0.04	26			
20.00		1257.8	0.03	0.07	0.04	27	.68		
25.00		1233.3	0.05	0.07	0.04	27			
30.00		1208.9	0.08	0.07	0.04	28			
35.00 40.00		1184.5 1160.1	0.10 0.13	0.07 0.07	0.04	28	.22		
45.00		1135.6	0.13	0.07	0.03	28			
46.67	Bot - Section 2	373.13	0.18	0.06	0.03		.45		
50.00		1398.8	0.21	0.06	0.02	35	.65		
53.00	Top - Section 1	1241.5	0.24	0.06	0.02		.46		
55.00		386.73	0.25	0.05	0.02		.67		
60.00 65.00		951.87 930.50	0.30 0.35	0.04	0.01 0.01	21	.89 .15		
70.00		909.13	0.33	0.03	0.01		.47		
75.00		887.76	0.47	-0.01	0.01		.64		
80.00		866.39	0.54	-0.03	0.01	-10	.87		
85.00		845.02	0.61	-0.06	0.02	-18			
90.00	Det Cestien 0	823.65		-0.08		-22			
94.25 95.00	Bot - Section 3	683.30 179.64	0.75	-0.10 -0.10	0.04 0.04	-20	.22 .33		
96.38	RB1	328.65	0.78	-0.11	0.04		.74		
99.67	Top - Section 2	772.89	0.83	-0.12	0.06	-22			
100.00		26.22	0.84		0.07	-0	.75		
102.13	RT1	166.41	0.88	-0.12	0.08		.50		
105.00	Appurtopassa	221.15	0.93		0.10		.39		
107.00 110.00	Appurtenance(s)	2988.8 224.84	0.96	-0.12 -0.11	0.11 0.14	-65 -3	.68 .96		
115.00		366.19	1.11	-0.06	0.14		.03		
117.00	Appurtenance(s)	3701.2	1.15	-0.04	0.22	-14			
120.00	Top - Section 3	212.02	1.21	0.01	0.26		.78		
125.00		295.88	1.31	0.14	0.35		.41		
127.00	Appurtenance(s)	2474.7	1.35	0.20	0.39	61			
130.00 135.00		170.93 277.56	1.42 1.53	0.32 0.58	0.45 0.58	15	.09 50		
137.00	Appurtenance(s)	3267.3	1.58	0.58	0.58	211			
140.00		159.94	1.65	0.93	0.73	12			
145.00		259.24	1.77	1.39	0.92	27	.23		
147.00	Appurtenance(s)	4702.1	1.82	1.61	1.00	547			
150.00	Appurtenance(s)	183.95	1.89	1.98	1.14		.69		
		Totals: 42,378.2				1,07	8.3	Total Wind: 49,712	2.3

						Calc	ulated F	orces						
Struc	ture:	CT012	210-S-S	BA			Code:	TL	A-222	2-G		3/8/2022		
	lame:		Stoning				Exposure						((Ħ))	
Heigh		150.00		,			Crest Hei		იი					C
-		0.000					Site Class	-		anot	ont Book	,		S
Base	Elev:		(11)						- Con	npete	ent Rock		Tower Engineer	ring Solutions
Gh:		1.1		Торс	ography	: 1	Struct Cla	ass: II				Page: 27	To not Engineer	ing beranene
Load	Case:	0.9D	+ 1.0E									¥) Ite	erations	21
G	ust Res	sponse	e Facto	r 1.10					Sds	0.1	1	×	Ss	0.16
	Dea	d Loac	l Facto	r 0.90	Seism	ic Load Fac	tor	1.00	Sd1	0.0	4 7		S1	0.06
	Win	d Load	l Facto	r 0.00	Struct	ure Freque	ncy (f1)	0.29	SA	0.0	1 Seis	mic Importance	Factor	1.00
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	phi	phi	D	hi	phi	Total Rotation	Rotation	
Elev (ft)	FY (-) (kips)	FX (-)	MY (-) (ft-kips)	MZ	MX ft-kips)	Moment (ft-kips)	Pn (kips)	Vn (kips)	Ť	n (ips)	Mn (ft-kips)	Deflect Sway (in) (deg)	Twist (deg)	Stress Ratio
0.00	-44.67	-1.29	0.00	-150.46	0.00	150.46	5817.07	2908.54		58.0	5886.84	0.00	0.00	0.033
5.00	-43.38	-1.28	0.00	-144.02	0.00	144.02	5739.57	2869.78		85.2	5701.74	0.00	-0.01	0.033
10.00	-41.97	-1.26	0.00	-137.64	0.00	137.64	5652.47	2826.24		99.3	5510.17	0.02	-0.02	0.032
15.00 20.00	-40.58 -39.21	-1.24 -1.21	0.00	-131.35 -125.17	0.00 0.00	131.35 125.17	5545.82 5439.17	2772.91 2719.58		82.2 73.2	5303.14 5100.07	0.04 0.07	-0.03 -0.03	0.032 0.032
25.00	-37.87	-1.19	0.00	-119.10	0.00	119.10	5332.51	2666.26		2.18	4900.97	0.11	-0.03	0.032
30.00	-36.54	-1.17	0.00	-113.14	0.00	113.14	5225.86	2612.93		9.11	4705.83	0.16	-0.05	0.031
35.00	-35.24	-1.14	0.00	-107.31	0.00	107.31	5119.21	2559.60		4.03	4514.66	0.22	-0.06	0.031
40.00	-33.97	-1.12	0.00	-101.59	0.00	101.59	5012.56	2506.28		6.92	4327.45	0.29	-0.07	0.030
45.00	-32.71	-1.09	0.00	-95.99	0.00	95.99	4905.90	2452.95	5 834	7.81	4144.20	0.37	-0.08	0.030
46.67	-32.30	-1.09	0.00	-94.17	0.00	94.17	4870.35	2435.18		6.55	4084.00	0.40	-0.08	0.030
50.00	-30.88	-1.05	0.00	-90.55	0.00	90.55	4799.25	2399.63		6.68	3964.92	0.46	-0.09	0.029
53.00	-29.62	-1.02	0.00	-87.40	0.00	87.40	4240.56	2120.28		7.82	3543.51	0.52	-0.10	0.032
55.00 60.00	-29.18 -28.09	-1.01 -0.99	0.00	-85.36 -80.30	0.00 0.00	85.36 80.30	4203.23 4109.91	2101.62 2054.96		2.05 2.51	3481.07 3327.41	0.56 0.67	-0.10 -0.11	0.031 0.031
65.00	-27.02	-0.98	0.00	-75.33	0.00	75.33	4016.59	2004.90		9.97	3177.21	0.79	-0.12	0.030
70.00	-25.97	-0.97	0.00	-70.43	0.00	70.43	3923.27	1961.63		4.41	3030.48	0.92	-0.13	0.030
75.00	-24.93	-0.97	0.00	-65.57	0.00	65.57	3829.95	1914.97		5.84	2887.23	1.06	-0.14	0.029
80.00	-23.92	-0.98	0.00	-60.70	0.00	60.70	3736.63	1868.31	553	4.25	2747.44	1.21	-0.15	0.028
85.00	-22.92	-0.98	0.00	-55.82	0.00	55.82	3643.31	1821.65	525	9.66	2611.12	1.37	-0.16	0.028
90.00	-21.95	-0.98	0.00	-50.93	0.00	50.93	3549.99					1.55	-0.17	0.027
94.25	-21.13	-0.98		-46.78	0.00	46.78	3470.66				2368.07	1.70	-0.18	0.026
95.00	-20.90	-0.98	0.00	-46.04	0.00	46.04	3456.66	1728.33		1.43 0.73	2348.88	1.73	-0.18 -0.18	0.026
96.38 99.67	-20.46 -19.43	-0.98 -0.97	0.00	-44.69 -41.48	0.00 0.00	44.69 41.48	3430.91 1458.24	1715.45 729.12			2313.78 991.83	1.78 1.91	-0.18	0.018 0.021
100.00	-19.43	-0.97	0.00	-41.46	0.00	41.46	1456.89	729.12		2.39	991.83	1.91	-0.19	0.021
102.13	-19.00	-0.98	0.00	-39.08	0.00	39.08	1448.11	724.06		7.30	971.68	2.01	-0.19	0.031
102.13	-19.00	-0.98	0.00	-39.08	0.00	39.08	1448.11	724.06		7.30	971.68	2.01	-0.19	0.031
105.00	-18.51	-0.98	0.00	-36.28	0.00	36.28	1435.99	717.99		0.05	948.23	2.12	-0.20	0.051
107.00	-15.62	-0.97	0.00	-34.32	0.00	34.32	1427.33	713.67		7.17	931.90	2.21	-0.20	0.048
110.00	-15.21	-0.97	0.00	-31.42	0.00	31.42	1414.04	707.02			907.46	2.34	-0.21	0.045
115.00	-14.75	-0.97	0.00	-26.56	0.00	26.56	1391.05	695.52			866.85	2.57	-0.23	0.041
117.00 120.00	-11.36 -11.10	-0.96 -0.96	0.00	-24.62 -21.74	0.00 0.00	24.62 21.74	1381.56 1367.01	690.78 683.50		3.52 4.77	850.66 826.46	2.67 2.82	-0.24 -0.24	0.037 0.034
120.00	-11.10	-0.96	0.00	-21.74	0.00	21.74	1091.99	545.99		2.66	661.59	2.82	-0.24	0.034
125.00	-10.71	-0.95	0.00	-16.95	0.00	16.95	1075.35	537.67		2.10	631.52	3.08	-0.24	0.037
127.00	-8.44	-0.88	0.00	-15.04	0.00	15.04	1068.40	534.20			619.50	3.19	-0.26	0.032
130.00	-8.22	-0.88	0.00	-12.39	0.00	12.39	1057.66	528.83		1.58	601.48	3.36	-0.27	0.028
135.00	-7.86	-0.86	0.00	-8.00	0.00	8.00	1038.92	519.46	5 115	1.22	571.51	3.64	-0.28	0.022
137.00	-4.88	-0.64	0.00	-6.28	0.00	6.28	1031.13	515.57		7.15	559.57	3.76	-0.28	0.016
140.00	-4.70	-0.62	0.00	-4.37	0.00	4.37	1019.14	509.57		1.15	541.69	3.93	-0.28	0.013
145.00	-4.42	-0.59	0.00	-1.26	0.00	1.26	998.31	499.16		1.47	512.07	4.23	-0.29	0.007
147.00	-0.17	-0.03	0.00	-0.08	0.00	0.08	989.69	494.84		7.74	500.29	4.35	-0.29	0.000
150.00	0.00	-0.02	0.00	0.00	0.00	0.00	976.44	488.22	. 97	2.32	482.70	4.53	-0.29	0.000

			Wind	Loading - SI	naft		
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.000.53
Site Name:	North Stonington			Exposure:	С		((H)))
Height:	150.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		
Gh:	1.1	Topography:	1	Struct Class:	Ш	Page: 28	Tower Engineering Solutions

Load Case: 1.0D + 1.0W 60 mph Wind Dead Load Factor 1.00

Wind Load Factor 1.00

¥	Iterations
Z X	

Elev (ft)	Description	Kzt	Kz	qz (psf)	qzGh (psf)	C (mph-ft)	Cf	lce Thick (in)	Tributary (ft)	Aa (sf)	CfAa (sf)	Wind Force X (Ib)	Dead Load Ice (Ib)	Tot Dead Load (Ib)
0.00		1.00	0.85	7.442	8.19	235.00	0.750	0.000	0.00	0.000	0.00	0.0	0.0	0.0
5.00		1.00	0.85	7.442	8.19	230.77	0.750	0.000	5.00	21.050	15.79	129.2	0.0	1331.1
10.00		1.00	0.85	7.442	8.19	226.54	0.750	0.000		20.668	15.50	126.9	0.0	1306.7
15.00		1.00	0.85	7.442	8.19	222.31	0.750	0.000	5.00	20.286	15.21	124.5	0.0	1282.2
20.00		1.00	0.90	7.896	8.69	224.64	0.750	0.000	5.00	19.903	14.93	129.7	0.0	1257.8
25.00		1.00	0.95	8.276	9.10	225.52	0.750	0.000	5.00	19.521	14.64	133.3	0.0	1233.4
30.00		1.00	0.98	8.600	9.46	225.34	0.750	0.000	5.00	19.139	14.35	135.8	0.0	1209.0
35.00		1.00	1.01	8.883	9.77	224.41	0.750	0.000	5.00	18.756	14.07	137.5	0.0	1184.5
40.00		1.00	1.04	9.137	10.05	222.90	0.750	0.000	5.00	18.374	13.78	138.5	0.0	1160.1
45.00		1.00	1.07	9.366	10.30	220.93	0.750	0.000	5.00	17.991	13.49	139.0	0.0	1135.7
46.67 Bot	- Section 2	1.00	1.08	9.438	10.38	220.19	0.750	0.000	1.67	5.912	4.43	46.0	0.0	373.1
50.00		1.00	1.09	9.576	10.53	218.60	0.750	0.000	3.33	11.945	8.96	94.4	0.0	1398.8
	- Section 1	1.00	1.11	9.694	10.66	217.04	0.750	0.000	3.00	10.605	7.95	84.8	0.0	1241.5
55.00		1.00	1.12	9.770	10.75	220.67	0.750	0.000	2.00	6.994	5.25	56.4	0.0	386.7
60.00		1.00	1.14	9.951	10.95	217.80	0.750	0.000	5.00	17.216	12.91	141.3	0.0	951.9
65.00		1.00	1.16	10.120	11.13	214.71	0.750	0.000	5.00	16.834	12.63	140.5	0.0	930.5
70.00		1.00	1.17	10.279	11.31	211.42	0.750	0.000	5.00	16.451	12.34	139.5	0.0	909.1
75.00		1.00	1.19	10.430	11.47	207.96	0.750	0.000	5.00	16.069	12.05	138.3	0.0	887.8
80.00		1.00	1.21	10.572	11.63	204.33	0.750	0.000	5.00	15.687	11.77	136.8	0.0	866.4
85.00		1.00	1.22	10.708	11.78	200.57	0.750	0.000	5.00	15.304	11.48	135.2	0.0	845.0
90.00		1.00	1.24	10.838	11.92	196.67	0.750	0.000	5.00	14.922	11.19	133.4	0.0	823.6
94.25 Bot	- Section 3	1.00	1.25	10.943	12.04	193.27	0.750	0.000	4.25	12.383	9.29	111.8	0.0	683.3
95.00		1.00	1.25	10.962	12.06	192.66	0.750	0.000	0.75	2.184	1.64	19.8	0.0	179.6
96.38 RB	1	1.00	1.26	10.995	12.09	191.53	0.750	0.000	1.38	3.997	3.00	36.3	0.0	328.6
99.67 Top	- Section 2	1.00	1.26	11.073	12.18	188.82	0.750	0.000	3.29	9.402	7.05	85.9	0.0	772.9
00.00		1.00	1.27	11.081	12.19	191.05	0.750	0.000	0.33	0.944	0.71	8.6	0.0	26.2
02.13 RT	1	1.00	1.27	11.130	12.24	189.27	0.750	0.000	2.13	5.994	4.50	55.0	0.0	166.4
05.00		1.00	1.28	11.195	12.31	186.85	0.750	0.000	2.87	7.967	5.98	73.6	0.0	221.2
07.00 App	urtenance(s)	1.00	1.28	11.240	12.36	185.14	0.750	0.000	2.00	5.477	4.11	50.8	0.0	152.0
10.00		1.00	1.29	11.305	12.44	182.55	0.750	0.000	3.00	8.101	6.08	75.6	0.0	224.8
15.00		1.00	1.30	11.412	12.55	178.17	0.750	0.000	5.00	13.196	9.90	124.2	0.0	366.2
17.00 App	urtenance(s)	1.00	1.31	11.453	12.60	176.39	0.750	0.000	2.00	5.171	3.88	48.9	0.0	143.5
20.00 Top	- Section 3	1.00	1.32	11.514	12.67	173.71	0.750	0.000	3.00	7.642	5.73	72.6	0.0	212.0
25.00		1.00	1.33	11.614	12.78	169.17	0.750	0.000	5.00	12.431	9.32	119.1	0.0	295.9
27.00 App	urtenance(s)	1.00	1.33	11.653	12.82	167.34	0.750	0.000	2.00	4.866	3.65	46.8	0.0	115.8
30.00		1.00	1.34	11.710	12.88	164.56	0.750	0.000	3.00	7.184	5.39	69.4	0.0	170.9
35.00		1.00	1.35	11.803	12.98	159.89	0.750	0.000	5.00	11.667	8.75	113.6	0.0	277.6
37.00 App	urtenance(s)	1.00	1.35	11.840	13.02	158.00	0.750	0.000	2.00	4.560	3.42	44.5	0.0	108.5
40.00		1.00	1.36	11.894	13.08	155.16	0.750	0.000	3.00	6.725	5.04	66.0	0.0	159.9
45.00		1.00	1.37	11.982	13.18	150.36	0.750	0.000	5.00	10.902	8.18	107.8	0.0	259.2
47.00 App	urtenance(s)	1.00	1.37	12.017	13.22	148.43	0.750	0.000	2.00	4.254	3.19	42.2	0.0	101.1
50.00 App	urtenance(s)	1.00	1.38	12.068	13.27	145.51	0.750	0.000	3.00	6.266	4.70	62.4	0.0	148.9
								Totals:	150.00	-		3,875.8		25,829.7

Discrete Appurtenance Forces

				•••			
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.000.53
Site Name:	North Stonington			Exposure:	С		(«Ħ»)
Height:	150.00 (ft)			Crest Height:	0.00		EC
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 29	Tower Engineering Solutions

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor1.00Wind Load Factor1.00

No.	Elev	Description	05	qz	qzGh	Orient Factor	Ke	Total CaAa	Dead Load	Horiz Ecc	Vert Ecc	Wind FX	Mom Y	Mom Z
	(ft)	Description	Qty	(psf)	(psf)	x Ka	Ka	(sf)	(lb)	(ft)	(ft)	(lb)	(lb-ft)	(lb-ft)
1		Lightning Rod	1	12.127	13.340	1.00	1.00	1.05	35.00	0.000	3.500	14.01	0.00	49.02
2		Ericsson 4449 B71 + B85	3		13.219	0.50	0.75	2.94	225.00	0.000	0.000	38.86	0.00	0.00
3		Commscope VV-65A-R1	3		13.219	0.55	0.75	9.72	71.43	0.000	0.000	128.53	0.00	0.00
4 5	147.00		3 3		13.219 13.219	0.54	0.75	32.79	368.40	0.000	0.000	433.42	0.00	0.00
-		Ericsson KRY 112 144/1	-			0.45	0.75	0.47	33.06	0.000	0.000	6.25	0.00	0.00
6 7		Ericsson AIR6449 B41 Platform w/ Hand Rail	3 1		13.219	0.53 1.00	0.75	9.03	309.00	0.000	0.000	119.31	0.00	0.00
7 8			1		13.219 13.219		1.00	40.00	2000.00	0.000	0.000	528.75 55.12	0.00	0.00
-		Tie Back Kit (Commscope	1			1.00	1.00	4.17	123.10	0.000				0.00
9		Rreinforcement Kit			13.219 13.219	1.00	1.00	9.50	517.00	0.000	0.000	125.58 83.28	0.00	0.00
10		V-Brace Kit (Sitepro	1			1.00	1.00	6.30	642.00	0.000	0.000		0.00	0.00
11		Ericsson 4460 B25 + B66	3		13.219	0.50	0.75	3.23	312.00	0.000	0.000	42.64	0.00	0.00
12		Nokia B2/B66A RRH	3		13.024	0.50	0.75	2.83	114.90	0.000	0.000	36.91	0.00	0.00
13		Antel BXA-70063-6CF	3		13.024	0.58	0.75	13.29	51.00	0.000	0.000	173.03	0.00	0.00
14		Samsung MT6407-77A	3		13.024	0.52	0.75	7.39	238.20	0.000	0.000	96.21	0.00	0.00
15		Andrew JAHH-65B-R3B	6		13.024	0.46	0.75	25.39	386.22	0.000	0.000	330.67	0.00	0.00
16		Commscope	3		13.024	0.45	0.75	0.76	62.16	0.000	0.000	9.85	0.00	0.00
17		Low Profile Platform (Site	1		13.024	1.00	1.00	33.60	1671.87	0.000	0.000	437.61	0.00	0.00
18		Nokia B5/B13	3		13.024	0.50	0.75	2.83	95.70	0.000	0.000	36.91	0.00	0.00
19		RFS DB-B1-6C-12AB-0Z	2		13.024	0.50	0.75	3.81	64.00	0.000	0.000	49.61	0.00	0.00
20		Handrail Kit (Site Pro1	1		13.024	1.00	1.00	6.75	272.43	0.000	0.000	87.91	0.00	0.00
21		Mount Kit (Commscope	3		13.024	0.38	0.75	0.10	202.38	0.000	0.000	1.32	0.00	0.00
22		Platform w/HRK	1		12.818	1.00	1.00	37.59	1727.00	0.000	0.000	481.82	0.00	0.00
23		Fujitsu TA08025-B604	3		12.818	0.50	0.75	2.95	191.79	0.000	0.000	37.87	0.00	0.00
24		Fujitsu TA08025-B605	3		12.818	0.50	0.75	2.95	224.85	0.000	0.000	37.87	0.00	0.00
25		JMA Wireless	3		12.818	0.55	0.75	20.80	193.50	0.000	0.000	266.56	0.00	0.00
26		Raycap	1		12.818	0.50	0.75	1.01	21.85	0.000	0.000	12.95	0.00	0.00
27	117.00	ALU TD-RRH8x20-25	3		12.598	0.50	0.75	6.11	210.00	0.000	0.000	76.92	0.00	0.00
28		ALU 800 Mhz	6		12.598	0.50	0.75	7.51	318.00	0.000	0.000	94.58	0.00	0.00
29		ALU 1900 Mhz	3		12.598	0.50	0.75	4.18	180.00	0.000	0.000	52.61	0.00	0.00
30	117.00	RFS APXVTM14-C-I20	3		12.598	0.58	0.75	10.98	168.60	0.000	0.000	138.38	0.00	0.00
31		Commscope	3		12.666	0.60	0.75	22.09	232.20	0.000	3.000	279.74	0.00	839.21
32	117.00	Sitepro RMQP-496-HK	1		12.598	1.00	1.00	46.00	2449.00	0.000	0.000	579.53	0.00	0.00
33		Site Pro HRK14	1		12.364	1.00	1.00	8.13	302.36	0.000	0.000	100.52	0.00	0.00
34	107.00	Ericsson 4449 B5/B12	3	11.240	12.364	0.50	0.75	2.49	210.00	0.000	0.000	30.75	0.00	0.00
35		Ericsson RRUS 4478 B14	3		12.364	0.50	0.75	2.77	179.70	0.000	0.000	34.29	0.00	0.00
36	107.00	Ericsson 8843 B2 B66A	3	11.240	12.364	0.50	0.75	2.49	225.00	0.000	0.000	30.75	0.00	0.00
37	107.00	Raycap	1	11.240	12.364	0.50	0.75	2.40	16.00	0.000	0.000	29.70	0.00	0.00
38	107.00	Raycap DC6-48-60-18-8F	1	11.240	12.364	0.50	0.75	0.46	31.80	0.000	0.000	5.72	0.00	0.00
39	107.00	Cci DMP65R-BU8DA	6	11.240	12.364	0.75	0.75	60.70	234.00	0.000	0.000	750.54	0.00	0.00
40	107.00	Powerwave 7770	3	11.240	12.364	0.55	0.75	9.03	105.00	0.000	0.000	111.69	0.00	0.00
41	107.00	Powerwave/LGP21401	6	11.240	12.364	0.45	0.75	0.73	33.00	0.000	0.000	9.01	0.00	0.00
42	107.00	Low Profile Platform	1	11.240	12.364	1.00	1.00	22.00	1500.00	0.000	0.000	272.00	0.00	0.00

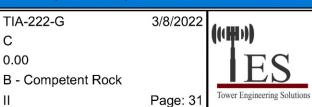
		Total	Applied Force Su	ummary		
Structure:	CT01210-S-SBA		Code:	TIA-222-G	3/8/2022	
Site Name:	North Stonington		Exposure:	С		(afa)))
Height:	150.00 (ft)		Crest Height:	0.00		EC
Base Elev:	0.000 (ft)		Site Class:	B - Competent Rock		I L S
Gh:	1.1	Topography: 1	Struct Class:	Ш	Page: 30	Fower Engineering Solutions

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor Wind Load Factor

1.00 1.00

Elev		Lateral FX (-)	Axial FY (-)	Torsion MY	Moment MZ
(ft)	Description	(lb)	(lb)	(lb-ft)	(lb-ft)
0.00		0.00	0.00	0.00	0.00
5.00		129.24	1435.11	0.00	0.00
10.00		126.89	1566.73	0.00	0.00
15.00		124.55	1542.31	0.00	0.00
20.00		129.66	1517.89	0.00	0.00
25.00		133.28	1493.46	0.00	0.00
30.00		135.79	1469.04	0.00	0.00
35.00		137.46	1444.61	0.00	0.00
40.00		138.50	1420.19	0.00	0.00
45.00		139.02	1395.77	0.00	0.00
46.67		46.04	459.83	0.00	0.00
50.00		94.37	1572.22	0.00	0.00
53.00		84.82	1397.59	0.00	0.00
55.00		56.37	490.77	0.00	0.00
		141.34	490.77 1211.95	0.00	0.00
60.00					
65.00		140.55	1190.58	0.00	0.00
70.00		139.51	1169.21	0.00	0.00
75.00		138.26	1147.84	0.00	0.00
80.00		136.82	1126.47	0.00	0.00
85.00		135.20	1105.10	0.00	0.00
90.00		133.42	1083.73	0.00	0.00
94.25		111.80	904.37	0.00	0.00
95.00		19.75	264.59	0.00	0.00
96.38		36.26	484.97	0.00	0.00
99.67		85.89	1145.19	0.00	0.00
100.00		8.63	63.98	0.00	0.00
102.13		55.04	407.68	0.00	0.00
105.00		73.58	546.25	0.00	0.00
107.00	(28) attachments	1425.76	3215.44	0.00	0.00
110.00		75.56	452.90	0.00	0.00
115.00		124.24	516.57	0.00	0.00
117.00	(19) attachments	1270.62	3761.44	0.00	839.21
120.00		72.60	290.80	0.00	0.00
125.00		119.11	427.18	0.00	0.00
127.00	(11) attachments	883.85	2527.30	0.00	0.00
130.00		69.40	244.25	0.00	0.00
135.00		113.61	399.76	0.00	0.00
137.00	(28) attachments	1304.55	3316.20	0.00	0.00
140.00		65.99	194.98	0.00	0.00
145.00		107.77	317.64	0.00	0.00
147.00	(22) attachments	1603.91	4725.48	0.00	0.00
150.00	(1) attachments	76.39	183.95	0.00	49.02
	Totals:	10,145.37	49,631.31	0.00	888.23


Linear Appurtenance Segment Forces (Factored)

TIA-222-G

С

Structure: CT01210-S-SBA Site Name: North Stonington Height: 150.00 (ft) Base Elev: 0.000 (ft) Gh: 1.1

Code: Exposure: Crest Height: 0.00 Site Class: Topography: 1 Struct Class: ||

23

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor Wind Load Factor

1.00 1.00

Top Elev (ft)	Description	Wind Exposed	Length (ft)	Ca	Exposed Width (in)	Area (sqft)	CaAa (sqft)	Ra	Cf Adjust Factor	qz (psf)	F X (Ib)	Dead Load (Ib)
95.00	6"x1" Link Plate	Yes	0.75	0.000	1.00	0.06	0.00	0.029	0.000	10.962	0.00	45.95
96.38	6"x1" Link Plate	Yes	1.38	0.000	1.00	0.11	0.00	0.029	0.000	10.995	0.00	84.54
99.67	6"x1" Link Plate	Yes	3.29	0.000	1.00	0.27	0.00	0.030	0.000	11.073	0.00	201.34
100.00	6"x1" Link Plate	Yes	0.33	0.000	1.00	0.03	0.00	0.029	0.000	11.081	0.00	20.42
102.13	6"x1" Link Plate	Yes	2.13	0.000	1.00	0.18	0.00	0.030	0.000	11.130	0.00	130.48
105.00	6"x1" Link Plate	Yes	2.87	0.000	1.00	0.24	0.00	0.030	0.000	11.195	0.00	175.82
107.00	6"x1" Link Plate	Yes	2.00	0.000	1.00	0.17	0.00	0.030	0.000	11.240	0.00	122.52
110.00	6"x1" Link Plate	Yes	2.25	0.000	1.00	0.19	0.00	0.023	0.000	11.305	0.00	137.84
									To	tals:	0.0	918.9

	Calculated Forces											
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	44.00.53					
Site Name:	North Stonington			Exposure:	С		((cHr))					
Height:	150.00 (ft)			Crest Height:	0.00		EC					
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock							
Gh:	1.1	Topography:	1	Struct Class:	11	Page: 32	Tower Engineering Solutions					

Load Case: 1.0D + 1.0W 60 mph Wind

Dead Load Factor1.00Wind Load Factor1.00

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation Sway (deg)	Rotation Twist (deg)	Stress Ratio
0.00	-49.63	-10.17	0.00	-1142.5	0.00	1142.56	5817.07	2908.54	11858.0	5886.84	0.00	0.000	0.000	0.203
5.00	-48.18	-10.10	0.00	-1091.7	0.00	1091.70	5739.57	2869.78	11485.2	5701.74	0.03	-0.065	0.000	0.200
10.00	-46.60	-10.02	0.00	-1041.2	0.00	1041.21	5652.47	2826.24	11099.3	5510.17	0.14	-0.131	0.000	0.197
15.00	-45.05	-9.95	0.00	-991.10	0.00	991.10	5545.82	2772.91	10682.2	5303.14	0.31	-0.197	0.000	0.195
20.00	-43.52	-9.86	0.00	-941.38	0.00	941.38	5439.17	2719.58	10273.2	5100.07	0.55	-0.263	0.000	0.193
25.00	-42.01	-9.77	0.00	-892.07	0.00	892.07	5332.51	2666.26	9872.18	4900.97	0.86	-0.330	0.000	0.190
30.00	-40.54	-9.67	0.00	-843.23	0.00	843.23	5225.86	2612.93	9479.11	4705.83	1.25	-0.397	0.000	0.187
35.00	-39.08	-9.57	0.00	-794.88	0.00	794.88	5119.21	2559.60	9094.03	4514.66	1.70	-0.465	0.000	0.184
40.00	-37.65	-9.46	0.00	-747.04	0.00	747.04	5012.56	2506.28	8716.92	4327.45	2.22	-0.532	0.000	0.180
45.00	-36.25	-9.34	0.00	-699.73	0.00	699.73	4905.90	2452.95	8347.81	4144.20	2.81	-0.600	0.000	0.176
46.67	-35.78	-9.31	0.00	-684.17	0.00	684.17	4870.35	2435.18	8226.55	4084.00	3.03	-0.623	0.000	0.175
50.00	-34.21	-9.22	0.00	-653.14	0.00	653.14	4799.25	2399.63	7986.68	3964.92	3.48	-0.668	0.000	0.172
53.00	-32.80	-9.14	0.00	-625.47	0.00	625.47	4240.56	2120.28	7137.82	3543.51	3.91	-0.709	0.000	0.184
55.00	-32.31	-9.10	0.00	-607.20	0.00	607.20	4203.23	2101.62	7012.05	3481.07	4.22	-0.736	0.000	0.182
60.00	-31.09	-8.99	0.00	-561.67	0.00	561.67	4109.91	2054.96	6702.51	3327.41	5.02	-0.807	0.000	0.176
65.00	-29.89	-8.86	0.00	-516.75	0.00	516.75	4016.59	2008.29	6399.97	3177.21	5.91	-0.877	0.000	0.170
70.00	-28.71	-8.74	0.00	-472.43	0.00	472.43	3923.27	1961.63	6104.41	3030.48	6.86	-0.945	0.000	0.163
75.00	-27.55	-8.61	0.00	-428.73	0.00	428.73	3829.95	1914.97	5815.84	2887.23	7.89	-1.013	0.000	0.156
80.00	-26.42	-8.49	0.00	-385.66	0.00	385.66	3736.63	1868.31	5534.25	2747.44	8.98	-1.078	0.000	0.147
85.00	-25.31	-8.36	0.00	-343.24	0.00	343.24	3643.31	1821.65	5259.66	2611.12	10.15	-1.141	0.000	0.138
90.00	-24.22	-8.22	0.00	-301.46	0.00	301.46	3549.99	1774.99	4992.05	2478.26	11.37	-1.200	0.000	0.128
94.25	-23.31	-8.10	0.00	-266.51	0.00	266.51	3470.66	1735.33	4770.08	2368.07	12.46	-1.249	0.000	0.119
95.00	-23.05	-8.08	0.00	-260.43	0.00	260.43	3456.66	1728.33	4731.43	2348.88	12.66	-1.258	0.000	0.118
96.38	-22.56	-8.04	0.00	-249.27	0.00	249.27	3430.91	1715.45	4660.73	2313.78	13.03	-1.273	0.000	0.083
99.67	-21.42	-7.94	0.00	-222.84	0.00	222.84	1458.24	729.12	1997.89	991.83	13.91	-1.298	0.000	0.092
100.00	-21.35	-7.93	0.00	-220.19	0.00	220.19	1456.89	728.44	1992.39	989.11	14.00	-1.300	0.000	0.138
102.13	-20.94	-7.88	0.00	-203.29	0.00	203.29	1448.11	724.06	1957.30	971.68	14.59	-1.324	0.000	0.129
102.13	-20.94	-7.88	0.00	-203.29	0.00	203.29	1448.11	724.06	1957.30	971.68	14.59	-1.324	0.000	0.129
105.00	-20.39	-7.80	0.00	-180.68	0.00	180.68	1435.99	717.99	1910.05	948.23	15.39	-1.353	0.000	0.205
107.00	-17.21	-6.31	0.00	-165.08	0.00	165.08	1427.33	713.67	1877.17	931.90	15.97	-1.387	0.000	0.189
110.00	-16.75	-6.24	0.00	-146.14	0.00	146.14	1414.04	707.02	1827.92	907.46	16.86	-1.433	0.000	0.173
115.00	-16.23	-6.12	0.00	-114.93	0.00	114.93	1391.05	695.52	1746.12	866.85	18.40	-1.502	0.000	0.144
117.00	-12.50	-4.76	0.00	-101.85	0.00	101.85	1381.56	690.78	1713.52	850.66	19.03	-1.527	0.000	0.129
120.00	-12.21	-4.68	0.00	-87.58	0.00	87.58	1367.01	683.50	1664.77	826.46	20.00	-1.561	0.000	0.115
120.00	-12.21	-4.68	0.00	-87.58	0.00	87.58	1091.99	545.99	1332.66	661.59	20.00	-1.561	0.000	0.144
125.00	-11.79	-4.56	0.00	-64.16	0.00	64.16	1075.35	537.67	1272.10	631.52	21.66	-1.609	0.000	0.113
127.00	-9.28	-3.61	0.00	-55.04	0.00	55.04	1068.40	534.20	1247.88	619.50	22.34	-1.628	0.000	0.098
130.00	-9.04	-3.54	0.00	-44.22	0.00	44.22	1057.66	528.83	1211.58	601.48	23.37	-1.653	0.000	0.082
135.00	-8.64	-3.41	0.00	-26.53	0.00	26.53	1038.92	519.46	1151.22	571.51	25.12	-1.684	0.000	0.055
137.00	-5.36	-2.01	0.00	-19.70	0.00	19.70	1031.13	515.57	1127.15	559.57	25.83	-1.693	0.000	0.040
140.00	-5.17	-1.94	0.00	-13.66	0.00	13.66	1019.14	509.57	1091.15	541.69	26.90	-1.703	0.000	0.030
145.00	-4.86	-1.83	0.00	-3.95	0.00	3.95	998.31	499.16	1031.47	512.07	28.69	-1.713	0.000	0.013
147.00	-0.18	-0.08	0.00	-0.29	0.00	0.29	989.69	494.84	1007.74	500.29	29.40	-1.714	0.000	0.001
150.00	0.00	-0.08	0.00	-0.05	0.00	0.05	976.44	488.22	972.32	482.70	30.48	-1.714	0.000	0.000

	Final Analysis Summary												
Structure:	CT01210-S-SBA			Code:	TIA-222-G	3/8/2022	4						
Site Name:	North Stonington			Exposure:	С		((HI))						
Height:	150.00 (ft)			Crest Height:	0.00		EC						
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock								
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 33	Tower Engineering Solutions						

Reactions

Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)
1.2D + 1.6W 105 mph Wind	49.9	0.00	59.41	0.00	0.00	5634.49
0.9D + 1.6W 105 mph Wind	49.8	0.00	44.53	0.00	0.00	5555.03
1.2D + 1.0Di + 1.0Wi 50 mph Wind	12.0	0.00	90.27	0.00	0.00	1393.62
1.2D + 1.0E	1.3	0.00	59.56	0.00	0.00	152.79
0.9D + 1.0E	1.3	0.00	44.67	0.00	0.00	150.46
1.0D + 1.0W 60 mph Wind	10.2	0.00	49.63	0.00	0.00	1142.56

Max Stresses

Load Case	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (-) (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	t phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Elev (ft)	Stress Ratio
1.2D + 1.6W 105 mph Wind	-59.41	-49.88	0.00	-5634.4	0.00	-5634.4	5817.07	2908.5	11858.0	5886.84	0.00	0.968
0.9D + 1.6W 105 mph Wind	-44.53	-49.84	0.00	-5555.0	0.00	-5555.0	5817.07	2908.5	11858.0	5886.84	0.00	0.952
1.2D + 1.0Di + 1.0Wi 50 mph Wind	-46.46	-9.88	0.00	-216.63	0.00	-216.63	1435.99	717.99	1910.05	948.23	105.00	0.261
1.2D + 1.0E	-24.69	-1.00	0.00	-36.93	0.00	-36.93	1435.99	717.99	1910.05	948.23	105.00	0.056
0.9D + 1.0E	-18.51	-0.98	0.00	-36.28	0.00	-36.28	1435.99	717.99	1910.05	948.23	105.00	0.051
1.0D + 1.0W 60 mph Wind	-20.39	-7.80	0.00	-180.68	0.00	-180.68	1435.99	717.99	1910.05	948.23	105.00	0.205

Additional Steel Summary

<u>/ ta'ant</u>	ona	<u>oteer ourmary</u>		ermedia		Lov	ver Te	rminat	ion	Up	per Te	rminat	ion	Γ	Max Me	mber	
Elev	Elev				phi		phi				phi				phi	phi	
From	То		VQ/I	Vu	Vn	MQ/I	Vn	Num	Num	MQ/I	Vn	Num	Num	Pu	Pn	Tn	
(ft)	(ft)	Member	(lb/in)	(kips)	(kips)	(kips)	(kips)	Reqd	Actual	(kips)	(kips)	Reqd	Actual	(kips)	(kips)	(kips)	Ratio
96.4	102.1	(3) LNP-LP6X100-G-10TT	716.1	17.19	25.3	172.5	25.3	7	9	221.7	25.3	9	9	235.82	297.8 2	288.75	0.817

	Base Plate Summary											
Structure:	CT01210-S-SB			Code:	TIA-222-G	3/8/2022	4					
Site Name:	North Stonington			Exposure:	С		((H))					
Height:	150.00 (ft)			Crest Height:	0.00		EC					
Base Elev:	0.000 (ft)			Site Class:	B - Competent Rock		LS					
Gh:	1.1	Topography:	1	Struct Class:	II	Page: 34	Tower Engineering Solutions					

Reaction	ıs	Base Pla	ate	Anchor Bolts			
Original De	sign	Yield (ksi):	60.00	Bolt Circle:	58.26		
Moment (kip-ft):	4272.00	Width (in):	64.26	Number Bolts:	20.00		
Axial (kip):	55.10	Style:	Polygon	Bolt Type:	2.25" 18J		
Shear (kip):	28.10	Polygon Sides:	16.00	Bolt Diameter (in):	2.25		
Analysis (1.2D	+ 1.6W	Clip Length (in):	0.00	Yield (ksi):	75.00		
Moment (kip-ft):	5634.49	Effective Len (in):	12.35	Ultimate (ksi):	100.00		
Axial (kip):	59.41	Moment (kip-in):	977.26	Arrangement:	Radial		
Shear (kip):	49.88	Allow Stress (ksi): 81.00		Cluster Dist (in):	0.00		
		Applied Stress (ksi):	62.37	Start Angle (deg):	0.00		
		Stress Ratio:	0.77	Compress	sion		
				Force (kip):	236.62		
				Allowable (kip):	260.00		
				Ratio:	0.93		
				Tensior	ı		
				Force (kip):	227.60		
				Allowable (kip):	260.00		
				Ratio:	0.89		

(((用)))		Monop	ole N	lat	Foundatio	n Design		Dai 3/2/2	
		- Customer Name:	SBA Co	mumu	inication Corp	EIA/TIA Stand	lard:	EIA-2	
		Site Name:	North St			Structure Hei		15	
		Site Number:	CT0121			Engineer Nan	• • •	W.V	/elez
Tower Engineering Soluti	0115	Engr. Number:	125544			Engineer Log			
Foundation Info Obtained from:	C	Prawings/Calculations				K			
Structure Type:		Monopole				K			-
Analysis or Design?		Analysis			-0.5'			_i_	
Base Reactions (Factored):						• • •	* ~ •	- +	<i></i> '
Axial Load (Kips):	59.4	Shear Force (Kips):	49.9				20) #	8
Uplift Force (Kips):	0.0	Moment (Kips-ft):	5634.5		99'				5'
							•	<u> </u>	
Foundation Geometries:							16	; #	8
		Mods required -Yes/No ?:	No		16	# 8	16	5 #	8
Anchor Bolt Circle (ft.):	4.86	Depth of Base BG (ft.):	5.50						
Thickness of Pad (ft):	5.00					25'		-	
Length of Pad (ft.):	25	Width of Pad (ft.):	25						
Final Length of pad (ft)	25.0	Final width of pad (ft):	25.0		\land				
						Bolt Circle 4.855 f	£+		
Material Dura seties and Darky Isfa						Bolt Circle 4.855			
Material Properties and Reabr Info:									
Concrete Strongth (nei).	2000	Steel Electic Medulue	20000	kai	W 25.0				
Concrete Strength (psi):	3000 60	Steel Elastic Modulus:	29000	ksi	25.0	* • •			
Pad Rebar Yield (Ksi): Pad Steel Rebar Size (#):	8	Tie Spacing (in):	12.0						
Concrete Cover (in.):	3	Unit Weight of Concrete:	150.0	pcf					
Rebar at the bottom of the concrete		offit weight of concrete.	150.0	per					
Qty. of Rebar in Pad (L):	20	Qty. of Rebar in Pad (W):	20			25.0	L		
Rebar at the top of the concrete pad			20		₭			\rightarrow	
, Qty. of Rebar in Pad (L):	16	Qty. of Rebar in Pad (W):	16						
Apply 1.35 factor for e/w Per G:		., .,							
Soil Design Parameters:									
Water Table B.G.S. (ft):	99.0	Unit Weight of Water:	62.4	pcf	Angle from Top of	Pad:	30		
Ultimate Bearing Pressure (psf):	18000	Ultimate Skin Friction:		Psf	0		25		
Consider Friction for O.T.M. (Y/N):	No	Consider Friction for beari	ng (Y/N):	No	Angle from Bottm	of Pad:	25		
Consider soil hor. resist. for OTM.:	Yes	Reduction factor on the ma	aximum so	oil bear	ing pressure: 1.	00			
Foundation Analysis and Design:	Liplift Str	angth Paduction Factory	0.75	Comr	procession Strongth Por	duction Factor	0.75		
Total Dry Soil Volume (cu. Ft.):	opint str	ength Reduction Factor:	301.24		pression Strength Red Dry Soil Weight (Kip:		0.75 30.12		
Total Buoyant Soil Volume (cu. Ft.).	t.):		0.00		Buoyant Soil Weight		0.00		
Total Effective Soil Weight (Kips)			30.12		ht from the Concrete	/	0.00		
Total Dry Concrete Volume (cu.					Dry Concrete Weigh		468.75		
Total Buoyant Concrete Volume			0.00		Buoyant Concrete W		0.00		
Total Effective Concrete Weight	(Kips):		468.75	rotal	Vertical Load on Bas	e (Kips):	558.28	Load/	
Check Soil Capacities:								Capacity Ratio	
Calculated Maxium Net Soil Pressure	e under th	e base (psf):	5003	<	Allowable Factore	d Soil Bearing (psf):	13500	0.37	OK!
Allowable Foundation Overturning R			6355.0	>	Design Factored N	÷	5779	0.91	OK!
				OK!					

	TES Engr. Number:	125544		Page 2/2	Date:	3/2/2022		
Check the capacities of Reinforceing Concrete	<u>:</u>							
Strength reduction factor (Flexure and axial ter	ision):	0.90	Streng	th reduction factor (S	Shear):	0.75		
Strength reduction factor (Axial compresion):			Wind	Load Factor on Concr	ete Design:	1.00		
Concrete Pad:								
One-Way Design Shear Capacity	L-Direction, Kips):	1392.6	>	One-Way Factored	Shear (L-D. Kips):	333.1	0.24	OK!
One-Way Design Shear Capacity	W-Direction, Kips):	1392.6	>	One-Way Factored	Shear (W-D., Kips)	333.1	0.24	OK!
One-Way Design Shear Capacity	Corner-Corner. Kips):	1671.1	>	One-Way Factored	Shear (C-C, Kips):	827.6	0.50	OK!
Lower Steel Pad Reinforcement R	atio (L-Direct.):	0.0009	OK!	Lower Steel Pad Rei	nf. Ratio (W-Dired	0.0009		
Lower Steel Pad Moment Capacit	y (L-Direction. Kips-ft):	3973.1	>	Moment at Bottom	(L-Direct. K-Ft):	851.8	0.21	OK!
Lower Steel Pad Moment Capacit	y (W-Direction. Kips-ft):	3973.1	>	Moment at Bottom	(W-Direct. K-Ft):	851.8	0.21	OK!
Lower Steel Pad Moment Capacit	y (Corner-Corner,K-ft):	5607.7	>	Moment at Bottom	(C-C Dir. K-Ft):	1204.7	0.21	OK!
Upper Steel Pad Reinforcement F	latio (L-Direct.):	0.0007	OK!	Upper Steel Reinf. R	Ratio (W-Direct.):	0.0007		
Upper Steel Pad Moment Capacit	y (L-Direction. Kips-ft):	3185.5	>	Moment at the top	(L-Dir Kips-Ft):	357.6	0.11	OK!
Upper Steel Pad Moment Capacit	y (W-Direction. Kips-ft):	3185.5	>	Moment at the top	(W-Dir Kips-Ft):	357.6	0.11	OK!
Upper Steel Pad Moment Capacit	y (Corner-Corner. K-ft):	4497.9	>	Moment at the top	(C-C Direc. K-Ft):	818.5	0.18	OK!

Maser Consulting Connecticut 2000 Midlantic Drive, Suite 100 Mt. Laurel, NJ 08054 (856) 797-0412 peter.albano@colliersengineering.com

New/Replacement Antenna Mount Analysis Report and PMI Requirements

Mount Analysis-R

SMART Tool Project #: 10112964 Maser Consulting Connecticut Project #: 21781080A

October 27, 2021

Site Information

Site ID: Site Name: Carrier Name: Address: 468327-VZW / NORTH STONINGTON 3 CT NORTH STONINGTON 3 CT Verizon Wireless 267 Norwich Westerly Rd Stonington, Connecticut 06359 New London County 41.436967° -71.881972°

Latitude: Longitude:

Structure Information

Tower Type: Mount Type: Monopole 12.50-Ft Platform

FUZE ID # 16142489

Analysis Results

Platform: 42.3% Pass

<u>***Contractor PMI Requirements:</u> Included at the end of this MA report Available & Submitted via portal at https://pmi.vzwsmart.com Contractor - Please Review Specific Site PMI Requirements Upon Award Requirements may also be Noted on A & E drawings For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Conner Hoge

Executive Summary:

The objective of this report is to determine the capacity of the proposed antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. The proposed mount was assumed to be installed properly to the existing tower per the manufacturer's instructions. Maser Consulting cannot verify that the proposed mount will fit properly and is not liable for any fit-up issues during installation.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks
Radio Frequency Data Sheet (RFDS)	Verizon RFDS, Site ID: 324537, dated September 27, 2021
Mount Mapping Report	HighTower Solutions Inc, Site #: CT01210, dated April 28, 2020
Previous Mount Analysis Report	Maser Consulting, Project #: 21781080A (Rev. 1), dated September 30, 2021
Specification Drawing	Site Pro 1, Part #: RMQP-484
Specification Drawing	Site Pro 1, Part #: HRK12

Analysis Criteria:

Codes and Standards:	ANSI/TIA-222-H	
Wind Parameters:	Basic Wind Speed (Ultimate 3-sec. Gust), V _{ULT} : Ice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, K _e :	127 mph 50 mph 1.00 in II C 1 N/A N/A 0.999
Seismic Parameters:	Ss: S1:	0.186 0.052
Maintenance Parameters:	Wind Speed (3-sec. Gust): Maintenance Live Load, Lv: Maintenance Live Load, Lm:	30 mph 250 lbs. 500 lbs.
Analysis Software:	RISA-3D (V17)	

Final Loading Configuration:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status				
		3	Samsung	MT6407-77A					
		6	Andrew	JAHH-65B-R3B					
	5 137.00	137.00	137.00	137.00		3	Samsung	B2/B66A RRH-BR049	Added
136.75					3	Samsung	B5/B13 RRH-BR04C	Added	
		3	Commscope	CBC78T-DS-43-2X]				
		2	RFS	DB-B1-6C-12AB-0Z					
		3	Antel	BXA-70063-6CF	Retained				

The following equipment has been considered for the analysis of the mount:

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

BASELINE mount weight per SBA agreement: 1945.0 lbs

Increase in mount weight due to Verizon loading change per SBA agreement: 745.0 lbs.

The weights listed above include 3 sectors.

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Maser Consulting Connecticut to verify deviation will not adversely impact the analysis.
- 2. Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 4. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 5. The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.
- 6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.

- 7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:
 - Channel, Solid Round, Angle, Plate
 - HSS (Rectangular)
 - Pipe
 - o Threaded Rod
 - Bolts

ASTM A36 (Gr. 36) ASTM 500 (Gr. B-46) ASTM A53 (Gr. B-35) F1554 (Gr. 36) ASTM A325

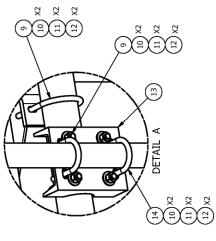
Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

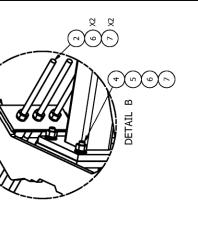
Analysis Results:

Component	Utilization %	Pass/Fail
Face Horizontal	11.7 %	Pass
Standoff Horizontal	32.4 %	Pass
Platform Crossmember	16.2 %	Pass
Mount Pipe	37.1 %	Pass
Dual Mount Pipe	31.8 %	Pass
Corner Plate	17.3 %	Pass
Grating Support	19.5 %	Pass
Cross Arm Plate	34.4 %	Pass
Support Rail	19.4 %	Pass
Support Rail Corner Angle	25.2 %	Pass
Connection	42.3 %	Pass

Structure Rating – (Controlling Utilization of all Components)	42.3%
--	-------

Recommendation:

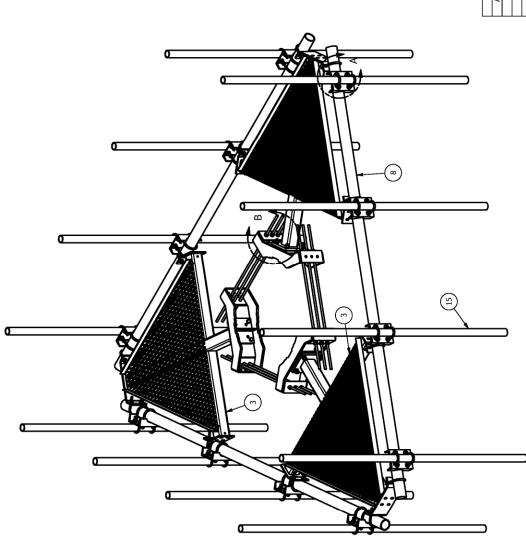

The proposed antenna mount is **SUFFICIENT** for the final loading configuration once it has been installed in accordance with the notes list in the Post Modification Inspections Report Requirement

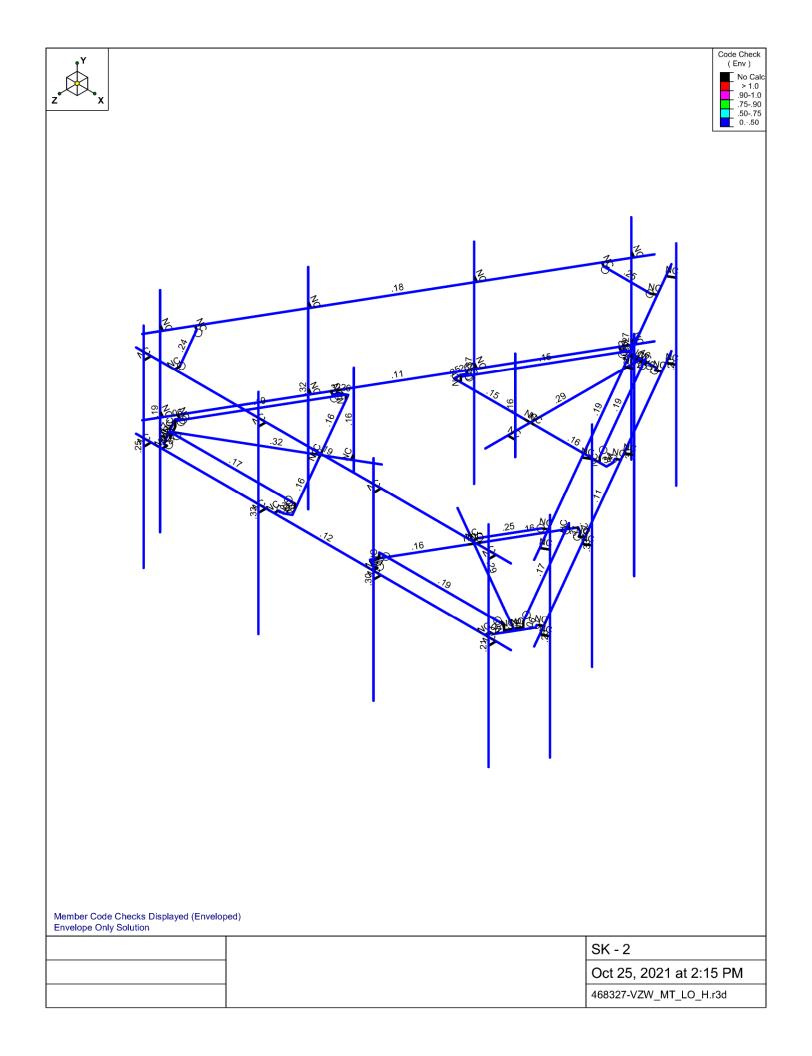

ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other, if required. Separate review fees will apply.

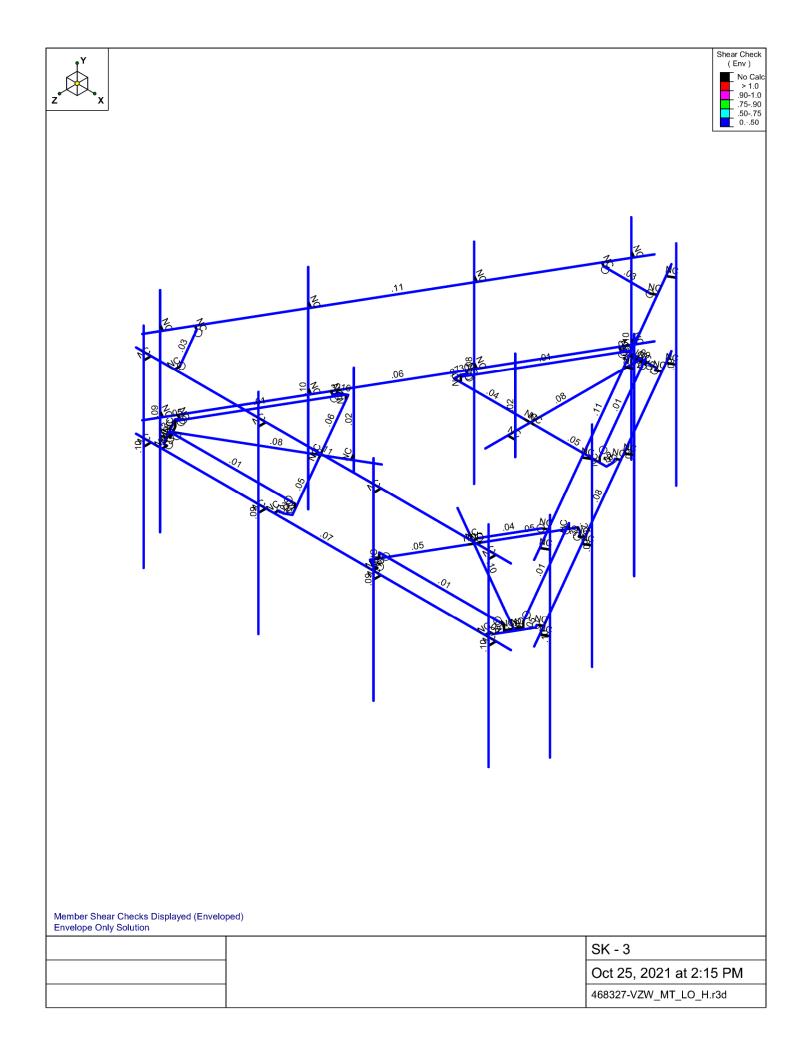
Attachments:

- 1. Mount Specification Drawing
- 2. Analysis Calculations
- 3. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 4. Antenna Placement Diagrams

I QTV PART NO. 3 X-LWRM 5/8' 9 G58R-48 5/8' 9 G58R-24 5/8' 12 A58234 5/8' 12 A5824 5/8' 30 G58R-46 5/8' 31 X-SV196 LOW 33 A5824 5/8' 30 G58LW 5 30 A58UUT 3-1/2'' 30 A58UUT 1/2''X 30 G51LW 1/2''X 310 G51LW 1/2''X 32 P3150 1/2''X 33 P3150 1/2''X 34 C12LW 1 120 G12LW 1/2''X 24 X-UB1212 1/2'''X	PARTS LIST			
3 X-LWRM 9 G58R-48 9 G58R-24 9 G58R-24 3 X-SV196 12 A58234 12 A58234 30 A5824 30 A5824 30 A5824 30 A5824 30 A5810 30 A5810 30 A5810 30 A58NU 310 A58NU 32 C512W 120 G12PW 120 G12VU 120 G12VU 120 G12VU 120 G12VU 120 G12VU 12 X-SP219 12 X-SP219 12 X-SP213		LENGTH	UNIT WT.	NET WT.
9 G58R-48 9 G58R-24 3 X-SV196 12 A58234 12 A58LW 30 A58LW 30 A58LW 31 P3150 36 X-UB1306 12 G12FW 120 G12FW 120 G12LW 120 G12LW 120 G12LW 120 G12LW	UNT WELDMENT		68.81	206.42
9 G58R-24 3 X-5V196 12 A58234 12 A58EW 30 G58LW 30 G58LW 31 P3150 36 X-UB1306 12 G12FW 120 G12FW 120 G12LW 120 G12LW 12 X-5P219 12 X-5P219 12 X-5P219	READED ROD (HDG.)		0.40	3.59
3 X-SV196 12 A58234 12 A58EW 30 A58LW 30 A58LUT 30 A58UUT 30 A58UUT 30 A58UUT 30 A58UUT 30 A58UUT 31 A58UUT 32 A58UUT 33 X-UB1306 120 G12LW 120 G12LW 120 G12LW 12 X-SP219 24 X-UB1212	READED ROD (HDG.)		0.40	3.59
12 A58234 12 A58FW 30 658LW 30 658LW 30 658LW 30 A58NUT 30 A58NUT 33 A58NUT 33 A58NUT 34 A58NUT 35 X-UB1306 120 G12LW 120 G12LW 120 G12LW 12 X-SP219 24 X-UB1212	E PLATFORM CORNER		212.10	636.31
12 A58FW 30 G58LW 30 G58LW 30 G58LW 31 P3150 32 P3150 36 A58NUT 33 A58NUT 33 P3150 36 G512W 120 G12W 120 G12W 12 X-SP219 24 X-UB1212		2.75	0.36	4.27
30 G58LW 30 A58NUT 3 A58NUT 3 A58NUT 3 X-UB1306 120 G12FW 120 G12FW 12 X-SP219 24 X-UB1212	325 FLATWASHER		0.03	0.41
30 A58NUT 3 P3150 36 X-UB1306 120 G12FW 120 G12LW 120 G12LW 120 G12LW 120 G12LW 120 G12LW 120 G12LW 12 X-SP219 24 X-UB1212	3 LOCKWASHER		0.03	0.78
3 P3150 36 X-UB1306 120 G12FW 120 G12LW 12 X-SP219 24 X-UB1212	3 A325 HEX NUT		0.13	3.90
36 X-UB1306 120 G12FW 120 G12LW 120 G12LW 120 G12LW 120 G12LW 24 X-UB1212		150.000 in	94.80	284.40
120 G12FW 120 G12LW 120 G12LW 120 G12NUT 12 X-SP219 24 X-UB1212	6" X 3" U-BOLT (HDG.)		0.26	9.25
120 G12LW 120 G12NUT 12 X-SP219 24 X-UB1212	JSS FLATWASHER		0.03	4.09
120 G12NUT 12 X-5P219 24 X-UB1212	3 LOCKWASHER		0.01	1.67
12 X-SP219 24 X-UB1212	IEAVY 2H HEX NUT		0.07	8.60
24 X-UB1212		8.250 in	8.61	103.33
4	1/2" X 2" U-BOLT (HDG.)		0.26	6.17
15 12 B ANTENNA MOUNTING	ANTENNA MOUNTING PIPE	υ	D	ш




(-)


		2-3/8" O.D. VER	TICAL MOUNTING PIPES		
ASSEMBLY NO. "A"	PART NO. "B"	LENGTH, "C"	LENGTH, "C" UNIT WEIGHT, "D"	NET WEIGHT, "E"	TOTAL WEIGHT
RMQP-463	P263	63"	20.18	242.16	1591.11
RMQP-472	P272	72"	23.07	276.84	1625.79
RMQP-484	P284	84"	26.91	322.92	1671.87
RMQP-496	P296	-96	30.76	369.12	1718.07
RMQP-4126	P2126	126"	40.75	489.00	1837.95

TOLERANCE NOTE TOLERANCE NOTE Description TOLERANCE SON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: LOW PROFILE CO-LOCATION PLATFORM Engineering New York, NA TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: LOW PROFILE CO-LOCATION PLATFORM Engineering New York, NA TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: Saweb, SHEAKED AND GAS OUT EDGES (0.0307) LOW PROFILE CO-LOCATION PLATFORM Engineering New York, NA TOLERANCE AND GAS OUT EDGES AND HOLES (1.0307) FOR 12 a NTENNAS WITH 12'6' FACE WIDTH TOLERANCE Animoti Vaciona Cantonic (0.0307) RENDS ARE 12 TO FORE - ALL OTHER MACHINING (2.0307) DO CONING OF HOLES DAMONTING PIPES Animoti Vaciona DAMONTING PIPES Animoti Vaciona DAMONTING PIPES Animoti Vaciona DAMONTING PIPES Animoti Vaciona DAMONTING PIPES DAMONTING PIPES </th <th></th> <th>°A0</th> <th>BE F 2</th> <th>2</th>		°A0	BE F 2	2
TOLERANCE NOTE TOLERANCE NOTE TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: DESCRIPTION TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: LOW PROFILE CO-LOCATION SAWED, SHEARED AND GAS CUT EDGES (# 0.030") LOW PROFILE CO-LOCATION SAWED, SHEARED AND GAS CUT EDGES (# 0.030") LOW PROFILE CO-LOCATION DRILLED AND GAS CUT HOLES (# 0.030") FOR 12 ANTENNAS WITH 12'' DRILLED AND GAS CUT HOLES (# 0.030") FOR 12'' - 38'' DIAMETER BENDRIS ARE #12 DEGREE AUL OTHER MACHINING (# 0.030") PROPRILE CO-LOCATION ALL OTHER ASSEMBLY (# 0.060") DEALE CEK 1/20/2012 CPD 00 OLD BY DAILE TRE AND ANDER DIECK 1/20/2012 Semble ONS CPD BY DAILE TRE ANTOLY NOTE ENDRIFERANCE REFERENTIVE ORIGINATION ENDROVAL BNC ONS DAILE TRE ANTOLY PROFILE AND ANDER ENDRIFERANCE REFERENTIVE ORIGINATION ENDROVAL BNC	ITE Engineering Buppertram: suppertram: 1888-753-7446 Imont V communication SFE ASSFMRI V NO	1		
TOLERANCE NOTE TOLERANCE NOTE DECLERANCE NOTE TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (# 0.030") DOTE TOLERANCES AND HOLES (# 0.030") DOTE DOTE DOTE SAWED, SHEARED AND GAS CUT HOLES (# 0.030") DOTE DOTE DRILLED AND GAS CUT HOLES (# 0.030") DOTE DOTE DRILLED AND GAS CUT HOLES (# 0.030") NO CONING OF HOLES DOTE DRILLED AND GAS CUT HOLES (# 0.030") NO CONING OF HOLES DOTE DRINCARE ALL OTHER ASSEMBLY (# 0.060") DOTE DORA OC D D D OC D D D D HISTORY THEARMA AND TREAMED AND CAST CONTINUE OF DOMETANT MICHARDARE ENDART AND TREAMED AND CAST CONTINUE OF DOMETANT MICHARDARIA	TION PLATFORM TION PLATFORM TI2' 6" FACE WIDTH ETER POLES PRAWING USAGE	CUSI UNER		-
TOLERANCE NOTE TOLERANCE NOTE DECLEMANCE NOTE TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (# 0.030") DOTE TOLERANCES AND HOLES (# 0.030") DOTE DOTE DOTE SAWED, SHEARED AND GAS CUT HOLES (# 0.030") NO CONING OF HOLES DOTE DRILLED AND GAS CUT HOLES (# 0.030") NO CONING OF HOLES DOTE DRILLED AND GAS CUT HOLES (# 0.030") NO CONING OF HOLES DOM DRILLED AND GAS CUT HOLES (# 0.030") NO CONING OF HOLES DOM DRIN ALL OTHER ASSEMBLY (# 0.060") DOM DOM OC D D DAT DAM ALL OTHER ASSEMBLY (# 0.060") TEGNARE AND MORE REPEARANCE ON THE MACHINING (# 0.030") DOM OD D DATE THEANA AND TECHNOLES ON THATE HAR DOMENTANCE FOR TARKING AND TECHNOLOGY DOM ONS CPD B' DATE DATE A HISTORY THE ONDER ON THREEMER AND CORRECT AND CONNEL ON THREEMA THRUE DAMENTANCE ENGLIFICATION	CO-LOCA S WITH 1 8" DIAME CPD NO.	sellip	CHEC	BM
I CEK 7/9/2015	ESCRIPTION LOW PROFILE C FOR 12 ANTENNA FOR 12 - 3 FOR		ENG. APPROVAL	
ONS CPD BY DATE	TOLERANCE NOTE OLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOT AWED, SHEARED AND GAS CUT EDGES (‡ 0.030°) RILLED AND GAS CUT HOLES (‡ 0.030°) - NO CONING OF SIER EUT EDGERE - ALL OTHER MACHINING (‡ 0.03 LU OTHER ASSEMBLY (± 0.060°)	PROPRIETARY NOTE	TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORM	I I RIES ANU CUNSILEREU A I RADE SECREI. ANT USE UR LISCEUSURI F VALMONT INDUSTRIES IS STRICTLY PROHIBITED.
ONS CPD BY			THE DATA AND	THE CONSENT OF
I HISTORY		7/9/2015	DATE THEDATA AND	THE CONSENT O
ADDED 10' 6" ANTENNA MOUNTING PIPES	<u> </u>	CEK 7/9/2015	DATE	THE CONSENT O
וכו ו	F & D D & 3	CEK 7/9/2015	DATE	THE CONSENT O

Envelope Only Solution	SK - 1
	Oct 25, 2021 at 2:15 PM 468327-VZW_MT_LO_H.r3d

Basic Load Cases

	BLC Description	Category	X Gravi.	Y Gravi.	.Z Gravity	Joint	Point	Distrib	Area(M.	.Surfac.
1	Antenna D	None					105			
2	Antenna Di	None					105			
3	Antenna Wo (0 Deg)	None					105			
4	Antenna Wo (30 Deg)	None					105			
5	Antenna Wo (60 Deg)	None					105			
6	Antenna Wo (90 Deg)	None					105			
7	Antenna Wo (120 Deg)	None					105			
8	Antenna Wo (150 Deg)	None					105			
9	Antenna Wo (180 Deg)	None					105			
10	Antenna Wo (210 Deg)	None					105			
11	Antenna Wo (240 Deg)	None					105			
12	Antenna Wo (270 Deg)	None					105			
13	Antenna Wo (300 Deg)	None					105			
14	Antenna Wo (330 Deg)	None					105			
15	Antenna Wi (0 Deg)	None					105			
16	Antenna Wi (30 Deg)	None					105			
17	Antenna Wi (60 Deg)	None					105	-		
18	Antenna Wi (00 Deg)	None					105			
19	Antenna Wi (120 Deg)	None					105			
20	Antenna Wi (120 Deg)	None					105			
20	Antenna Wi (180 Deg)						105			
		None					105			
22	Antenna Wi (210 Deg)	None								
23	Antenna Wi (240 Deg)	None					105			
24	Antenna Wi (270 Deg)	None					105			
25	Antenna Wi (300 Deg)	None					105			
26	Antenna Wi (330 Deg)	None					105			
27	Antenna Wm (0 Deg)	None					105			
28	Antenna Wm (30 Deg)	None					105			
29	Antenna Wm (60 Deg)	None					105			
30	Antenna Wm (90 Deg)	None					105			
31	Antenna Wm (120 Deg)	None					105			
32	Antenna Wm (150 Deg)	None					105			
33	Antenna Wm (180 Deg)	None					105			
34	Antenna Wm (210 Deg)	None					105			
35	Antenna Wm (240 Deg)	None					105			
36	Antenna Wm (270 Deg)	None					105			
37	Antenna Wm (300 Deg)	None					105			
38	Antenna Wm (330 Deg)	None					105			
39	Structure D	None		-1					3	
40	Structure Di	None						59	3	
41	Structure Wo (0 Deg)	None						118		
42	Structure Wo (30 Deg)	None						118		
43	Structure Wo (60 Deg)	None						118		
44	Structure Wo (90 Deg)	None						118		
45	Structure Wo (120 Deg)	None						118		
46	Structure Wo (150 Deg)	None						118		
47	Structure Wo (180 Deg)	None						118		
48	Structure Wo (210 Deg)	None						118		
49	Structure Wo (240 Deg)	None						118		
50	Structure Wo (270 Deg)	None						118		
51	Structure Wo (300 Deg)	None						118		
52	Structure Wo (330 Deg)	None						118		
53	Structure Wi (0 Deg)	None						118		
54	Structure Wi (30 Deg)	None						118		
55	Structure Wi (60 Deg)	None						118		
56	Structure Wi (90 Deg)	None						118		
	$\sim 3D$ Version 17.0.4 [R:\ \			•					•	ane 1

Basic Load Cases (Continued)

	BLC Description	Category	X Gravi	Y Gravi.	Z Gravity	Joint	Point	Distrib	Area(M	.Surfac
57	Structure Wi (120 Deg)	None						118		
58	Structure Wi (150 Deg)	None						118		
59	Structure Wi (180 Deg)	None						118		
60	Structure Wi (210 Deg)	None						118		
61	Structure Wi (240 Deg)	None						118		
62	Structure Wi (270 Deg)	None						118		
63	Structure Wi (300 Deg)	None						118		
64	Structure Wi (330 Deg)	None						118		
65	Structure Wm (0 Deg)	None						118		
66	Structure Wm (30 Deg)	None						118		
67	Structure Wm (60 Deg)	None						118		
68	Structure Wm (90 Deg)	None						118		
69	Structure Wm (120 Deg)	None						118		
70	Structure Wm (150 Deg)	None						118		
71	Structure Wm (180 Deg)	None						118		
72	Structure Wm (210 Deg)	None						118		
73	Structure Wm (240 Deg)	None						118		
74	Structure Wm (270 Deg)	None						118		
75	Structure Wm (300 Deg)	None						118		
76	Structure Wm (330 Deg)	None						118		
77	Lm1	None					1			
78	Lm2	None					1			
79	Lv1	None					1			
80	Lv2	None					1			
81	Antenna Ev	None					105			
82	Antenna Eh (0 Deg)	None					70			
83	Antenna Eh (90 Deg)	None					70			
84	Structure Ev	ELY		04						
85	Structure Eh (0 Deg)	ELZ	099							
86	Structure Eh (90 Deg)	ELX			.099					
87	BLC 39 Transient Area Loads	None						30		
88	BLC 40 Transient Area Loads	None						30		

Load Combinations

	Description	S	PDelta	S	В	Fa	BLC	Fa	BLC	Fa	.B	Fa	.B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.2D+1.0Wo (0 Deg)				1	1.2	39	1.2	3	1	41	1												
2	1.2D+1.0Wo (30 Deg)				1	1.2	39	1.2	4	1	42	1												
3	1.2D+1.0Wo (60 Deg)				1	1.2	39	1.2	5	1	43	1												
4	1.2D+1.0Wo (90 Deg)				1	1.2	39	1.2	6	1	44	1												
5	1.2D+1.0Wo (120 D	Yes	Y		1	1.2	39	1.2	7	1	45	1												
6	1.2D+1.0Wo (150 D	Yes	Y		1	1.2	39	1.2	8	1	46	1												
7	1.2D+1.0Wo (180 D				1	1.2	39	1.2	9	1	47	1												
8	1.2D+1.0Wo (210 D	Yes	Y		1	1.2	39	1.2	10	1	48	1												
	1.2D+1.0Wo (240 D				1	1.2	39	1.2	11	1	49	1												
10	1.2D+1.0Wo (270 D	Yes	Y		1	1.2	39	1.2	12	1	50	1												
11	1.2D+1.0Wo (300 D				1	1.2	39	1.2	13	1	51	1												
12	1.2D+1.0Wo (330 D	Yes	Y		1	1.2	39	1.2	14	1	52	1												
13	1.2D + 1.0Di + 1.0Wi	Yes	Y		1	1.2	39	1.2	2	1	40	1	15	1	53	1								
14	1.2D + 1.0Di + 1.0Wi	Yes.	Y		1	1.2	39	1.2	2	1	40	1	16	1	54	1								
	1.2D + 1.0Di + 1.0Wi				1	1.2	39	1.2	2	1	40	1	17	1	55	1								
16	1.2D + 1.0Di + 1.0Wi	Yes.	Y		1	1.2	39	1.2	2	1	40	1	18	1	56	1								
17	1.2D + 1.0Di + 1.0Wi	Yes	Y		1	1.2	39	1.2	2	1	40	1	19	1	57	1								
18	1.2D + 1.0Di + 1.0Wi	Yes	Y		1	1.2	39	1.2	2	1	40	1	20	1	58	1								
19	1.2D + 1.0Di + 1.0Wi	Yes	Y		1	1.2	39	1.2	2	1	40	1	21	1	59	1								
20	1.2D + 1.0Di + 1.0Wi	Yes.	Y		1	1.2	39	1.2	2	1	40	1	22	1	60	1								

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Load Combinations (Continued)

	Description	S	PDelta	S	в	Fa	BLC	Fa	BLC	Fa	в	Fa	в	Fa	в	Fa	в	Fa	в	Fa	в	Fa	в	Fa
21	1.2D + 1.0Di + 1.0Wi.		Y	0		1.2	39	1.2	2	1	40		23		61	1	<u> </u>		<u> </u>	1 0	<u> </u>			
22	1.2D + 1.0Di + 1.0Wi	Yes	Y		1	1.2	39	1.2	2	1	40		24	1	62	1								
23	1.2D + 1.0Di + 1.0Wi	Yes	Ý		1	1.2	39	1.2	2	1	40		25	1	63	1								
24	1.2D + 1.0Di + 1.0Wi	Yes	Y		1	1.2	39	1.2	2	1	40		26	1	64									
25	1.2D + 1.5Lm1 + 1.0	.Yes	Ý		1	1.2	39	1.2	77	1.5		1	65	1	-									
26	1.2D + 1.5Lm1 + 1.0	.Yes	Y		1	1.2	39	1.2	77		28	1	66	1										
27	1.2D + 1.5Lm1 + 1.0	.Yes	Y		1	1.2	39	1.2	77		29		67	1										
28	1.2D + 1.5Lm1 + 1.0	.Yes	Y		1	1.2	39	1.2	77		30		68	1										
29	1.2D + 1.5Lm1 + 1.0	.Yes	Y		1	1.2	39	1.2	77	1.5	31	1	69	1										
30	1.2D + 1.5Lm1 + 1.0	.Yes	Y		1	1.2	39	1.2	77	1.5		1	70	1										
31	1.2D + 1.5Lm1 + 1.0	.Yes	Y		1	1.2	39	1.2	77	1.5	33	1	71	1										
32	1.2D + 1.5Lm1 + 1.0	.Yes	Y		1	1.2	39	1.2	77	1.5			72	1										
33	1.2D + 1.5Lm1 + 1.0	.Yes	Y		1	1.2	39	1.2	77		35		73	1										
34	1.2D + 1.5Lm1 + 1.0	.Yes	Y		1	1.2	39	1.2	77		36		74	1										
	1.2D + 1.5Lm1 + 1.0		Y		1	1.2	39	1.2	77	1.5		1	75	1										
	1.2D + 1.5Lm1 + 1.0		Y		1	1.2	39	1.2	77		38	1	76	1										
37	1.2D + 1.5Lm2 + 1.0		Y		1	1.2	39	1.2	78	1.5	27	1	65	1										
38	1.2D + 1.5Lm2 + 1.0	.Yes	Y		1	1.2	39	1.2	78		28	1	66	1										
39	1.2D + 1.5Lm2 + 1.0	.Yes	Y		1	1.2	39	1.2	78	1.5	29	1	67	1										
	1.2D + 1.5Lm2 + 1.0		Y		1	1.2	39	1.2	78	1.5	30		68	1										
	1.2D + 1.5Lm2 + 1.0		Y		1	1.2	39	1.2	78	1.5		1	69	1										
	1.2D + 1.5Lm2 + 1.0		Y		1	1.2	39	1.2	78	1.5	32	1	70	1										
	1.2D + 1.5Lm2 + 1.0		Y		1	1.2	39	1.2	78		33		71	1										
44	1.2D + 1.5Lm2 + 1.0	.Yes	Y		1	1.2	39	1.2	78		34		72	1										
	1.2D + 1.5Lm2 + 1.0		Y		1	1.2	39	1.2	78		35		73	1										
46	1.2D + 1.5Lm2 + 1.0	.Yes	Y		1	1.2	39	1.2	78	1.5	36	1	74	1										
47	1.2D + 1.5Lm2 + 1.0	.Yes	Y		1	1.2	39	1.2	78	1.5	37	1	75	1										
48	1.2D + 1.5Lm2 + 1.0	.Yes	Y		1	1.2	39	1.2	78		38	1	76	1										
49	HED HOLT	Yes	Y		1	1.2	39	1.2	79	1.5														
50	1.2D + 1.5Lv2	Yes	Y		1	1.2	39	1.2	80	1.5														
51	1.4D	Yes	Y		1	1.4	39	1.4																
	1.2D + 1.0Ev + 1.0E		Y		1	1.2	39	1.2	81	1	E	1	82	1	83		E		E					
53	1.2D + 1.0Ev + 1.0E		Y		1	1.2	39	1.2	81	1	E	1		.866				.866						
	1.2D + 1.0Ev + 1.0E		Y		1	1.2	39	1.2	81		E	1	82			.866		.5	E					
	1.2D + 1.0Ev + 1.0E		Y		1	1.2	39	1.2	81	1	E	1	82		83	<u> </u>	E		E	1				
	1.2D + 1.0Ev + 1.0E		Y		1	1.2	39	1.2	81	1	E	1						5						
57	1.2D + 1.0Ev + 1.0E		Y		1	1.2	39	1.2	81	1	E	1		8		.5		8		.5				
	1.2D + 1.0Ev + 1.0E	_	Y		1	1.2	39	1.2	81	1	E	1		-1			E		E					
	1.2D + 1.0Ev + 1.0E		Y		1	1.2	39	1.2	81	1	E	1			83	5	É	8	E	5				
00	1.2D + 1.0Ev + 1.0E		Y		1	1.2	39	1.2	81	_	E	1								8	-			
• •	1.2D + 1.0Ev + 1.0E		Y			1.2		1.2	81		E		82	-	83	-1	E			-1				
	1.2D + 1.0Ev + 1.0E		Y			1.2	39	1.2	81		E									8				
	1.2D + 1.0Ev + 1.0E		Y		1	1.2	39	1.2	81		E	1								5				
	0.9D - 1.0Ev + 1.0Eh.		Y		1	.9	39	.9	81		E						E		E					
	0.9D - 1.0Ev + 1.0Eh.		Y		1	.9	39	.9	81		E	-1						.866						
	0.9D - 1.0Ev + 1.0Eh.		Y		1	.9	39	.9	81		E		82	.5						.866				
	0.9D - 1.0Ev + 1.0Eh.		Y		1	.9	39	.9	81		E	-1		-	83		E		E	· ·				
	0.9D - 1.0Ev + 1.0Eh.		Y		1	.9	39	.9	81				82											
	0.9D - 1.0Ev + 1.0Eh.		Y		1	.9	39	.9	81		E		82					8						
	0.9D - 1.0Ev + 1.0Eh.		Y		1	.9	39	.9	81				82					-1						
	0.9D - 1.0Ev + 1.0Eh.		Y		1	.9	39	.9	81		E		82											
	0.9D - 1.0Ev + 1.0Eh.		Y		1	.9	39	.9	81		E			5						8				
	0.9D - 1.0Ev + 1.0Eh.		Y		1	.9	39	.9	81		E	-1		-		-1			E					
	0.9D - 1.0Ev + 1.0Eh.		-		1	.9	39	.9	81				82								•			
75	0.9D - 1.0Ev + 1.0Eh.	.res	Y		1	.9	39	.9	81	-1	E	-1	82	.866	83	5	E	.866	E	5				

Joint Coordinates and Temperatures

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diaphragm
3 N3 -0. 0 -1.458333 0 6 N8 2.315104 0.166667 -2.958333 0 7 N8 5.75 0 3.935523 0 9 N10 -5.75 0 3.935523 0 10 N11 -5.75 0 3.935523 0 11 N12 1.916667 0 3.935523 0 12 N13 1.916667 0 3.935523 0 13 N14 -1.916667 0 4.95523 0 14 N15 -1.916667 0 4.95523 0 14 N16 -1.916667 -3.5 4.185523 0 16 N17 -1.91667 -3.5 4.185523 0 17 N18 -5.75 -3.5 4.185523 0 18 N19 -5.75 -3.5 4.185523 0 - 20 N21 1.916667 -3.5 4.185523 0 - 21 N22 5.76	1	N1	6.25	0	3.935523	0	
4 N5 -2541670 0 -295833 0 6 N7 -2315104 0.166667 -295833 0 7 N8 5.75 0 3.95523 0 9 N10 -5.75 0 3.95523 0 10 N11 -5.75 0 4.185523 0 11 N12 1.916667 0 3.95523 0 12 N13 1.916667 0 4.185523 0 13 N14 -1.916667 0 4.185523 0 14 N15 -1.916667 -3.5 4.185523 0 15 N16 -1.916667 -3.5 4.185523 0 16 N17 -1.916667 -3.5 4.185523 0 19 N20 1.916667 -3.5 4.185523 0 21 N22 5.75 -3.5 4.185523 0 22 N23 5.75 -3.5 4.185523 0 23 N24 -0. 0 -2.956333<	2	N2	-6.25	0	3.935523	0	
4 N5 -2541670 0 -295833 0 6 N7 -2315104 0.166667 -295833 0 7 N8 5.75 0 3.95523 0 9 N10 -5.75 0 3.95523 0 10 N11 -5.75 0 4.185523 0 11 N12 1.916667 0 3.95523 0 12 N13 1.916667 0 4.185523 0 13 N14 -1.916667 0 4.185523 0 14 N15 -1.916667 -3.5 4.185523 0 15 N16 -1.916667 -3.5 4.185523 0 16 N17 -1.916667 -3.5 4.185523 0 19 N20 1.916667 -3.5 4.185523 0 21 N22 5.75 -3.5 4.185523 0 22 N23 5.75 -3.5 4.185523 0 23 N24 -0. 0 -2.956333<	3	N3	-0.	0	-1.458333	0	
5 N6 2.315104 0.166667 -2.958333 0 7 N8 5.75 0 3.935523 0 9 N10 -5.75 0 3.935523 0 9 N10 -5.75 0 3.935523 0 10 N111 -5.75 0 3.935523 0 11 N12 1.916667 0 3.935523 0 12 N13 1.916667 0 3.935523 0 13 N14 -1.916667 0 3.935523 0 14 N15 1.916667 0 3.935523 0 15 N16 -1.916667 3.5 4.185523 0 16 N17 -1.916667 -3.5 4.185523 0 20 N21 1.916667 -3.5 4.185523 0 21 N22 5.75 -3.5 4.185523 0 22 N23 5.76 -3.5 4.185523 0 23 N24 -0. 0 -2.98333	4		-2.541667	0			
6 N7 -2.315104 0.16667 -2.988333 0 7 N8 5.75 0 4.185523 0 9 N10 5.75 0 4.185523 0 10 N11 -5.75 0 4.185523 0 11 N12 1.916667 0 3.935523 0 12 N13 1.916667 0 3.935523 0 13 N14 -1.916667 0 4.185523 0 15 N16 -1.916667 3.5 4.185523 0 16 N17 +1.916667 3.5 4.185523 0 18 N19 -5.75 -3.5 4.185523 0 20 N21 1.916667 3.5 4.185523 0 21 N22 5.75 -3.5 4.185523 0 22 N23 5.75 -3.5 4.185523 0 22 N23 5.75 -3.5 <td>5</td> <td>N6</td> <td></td> <td>0.166667</td> <td></td> <td>0</td> <td></td>	5	N6		0.166667		0	
7 N8 5.75 0 3.935523 0 9 N10 -5.75 0 3.935523 0 10 N11 -5.75 0 3.935523 0 11 N12 1.916667 0 3.935523 0 12 N13 1.916667 0 3.935523 0 13 N14 -1.916667 0 3.935523 0 14 N15 -1.916667 3.5 4.185523 0 15 N16 -1.916667 3.5 4.185523 0 17 N18 -5.75 3.5 4.185523 0 21 N20 1.916667 3.5 4.185523 0 21 N21 1.916667 3.5 4.185523 0 22 N23 5.75 3.5 4.185523 0 23 N24 -0 0 -2.958333 0 24 N27 -0 0 -2.958333 0 25 CP		N7				0	
8 N9 5.75 0 4.18523 0 10 N11 -5.75 0 4.18523 0 11 N12 1916667 0 4.935523 0 12 N13 1.916667 0 4.935523 0 13 N14 -1.916667 0 4.935523 0 14 N15 -1.916667 3.5 4.185523 0 16 N16 -1.916667 3.5 4.185523 0 17 N18 -5.75 -3.5 4.185523 0 18 N19 -5.75 -3.5 4.185523 0 20 N21 1.916667 3.5 4.185523 0 21 N22 5.75 -3.5 4.185523 0 22 N23 5.75 3.5 4.185523 0 22 N23 5.75 -3.5 4.185523 0 23 N24	7	N8	5.75	0		0	
9 N10 -5.75 0 3.935523 0 10 N11 -5.75 0 4.185523 0 12 N13 1.916667 0 3.935523 0 14 N15 -1.916667 0 4.185523 0 14 N15 -1.916667 3.5 4.185523 0 15 N16 -1.916667 -3.5 4.185523 0 16 N17 -1.916667 -3.5 4.185523 0 19 N20 1.916667 -3.5 4.185523 0 20 N21 1.916667 -3.5 4.185523 0 21 N22 5.75 -3.5 4.185523 0 23 N24 -0 0 0 0 24 N27 -0 0 6.645833 0 25 CP 0 0 2.986333 0 26 N29	8	N9	5.75			0	
10N11 -5.75 04.18523011N121.91666703.935523013N14-1.91666703.935523014N15-1.91666704.185523015N16-1.9166673.54.185523016N17-1.9166673.54.185523017N18-5.75-3.54.185523018N19-5.75-3.54.185523020N211.916667-3.54.185523021N225.75-3.54.185523022N235.75-3.54.185523023N24-00-2.968333024N2700-2.968333025C.P00-2.968333026N292.3151040-2.968333027N30-2.3151040-2.968333033N1312.5416670-3.177083034N1052.5416670-3.177083035N144-2.458330-3.32433036N148-0.5716150-6.54857037N86A2.5646290-3.394338038N86B-2.546670-3.34738039N86B-0.516250-6.648533034N1350.566250	9	N10		0		0	
12N131.91666704.185523013N14-1.91666704.185523014N15-1.916667-3.54.185523015N16-1.9166673.54.185523016N17-1.9166673.54.185523017N18-5.75-3.54.185523018N19-5.753.54.185523020N211.916667-3.54.185523021N225.75-3.54.185523022N235.75-3.54.185523023N24-002.958333024N27-00-6.645833025CP000026N292.3151040-2.958333027N30-2.3151040-2.958333028N1012.5416670-3.177083030N103A0.1666670-2.958333031N104A-2.5416670-3.177083032N1052.5416670-3.177083033N1312.458330-3.321421036N144-0.516250-6.548857037N86A2.5646290-3.394338038N866-0.5156250-6.645833039N866-0.5156250<	10	N11	-5.75	0		0	
12N131.91666704.185523013N14-1.91666704.185523014N15-1.916667-3.54.185523015N16-1.9166673.54.185523016N17-1.9166673.54.185523017N18-5.75-3.54.185523018N19-5.753.54.185523020N211.916667-3.54.185523021N225.75-3.54.185523022N235.75-3.54.185523023N24-002.958333024N27-00-6.645833025CP000026N292.3151040-2.958333027N30-2.3151040-2.958333028N1012.5416670-3.177083030N103A0.1666670-2.958333031N104A-2.5416670-3.177083032N1052.5416670-3.177083033N1312.458330-3.321421036N144-0.516250-6.548857037N86A2.5646290-3.394338038N866-0.5156250-6.645833039N866-0.5156250<	11	N12	1.916667	0	3.935523	0	
14N15-1.91666704.185523015N16-1.9166673.54.185523016N17-1.9166673.54.185523017N18-5.753.54.185523018N19-5.753.54.185523020N211.9166673.54.185523021N225.753.54.185523022N235.753.54.185523023N24-0.0-2.958333024N27-0.0-6.648033025CP000026N292.3151040-2.958333027N30-2.3151040-2.958333028N1012.5416670-2.958333029N102-0.1666670-2.958333030N103A0.1666670-3.177083031N104A-2.5416670-3.177083032N144-2.4583330-3.321421033N1312.4583330-3.321421034N1350.5716150-6.548657035N144-2.4584330-3.34338036N148-0.5716150-6.648833037N86A2.5846290-3.39438038N66B-2.584250<	12	N13	1.916667	0	4.185523	0	
14N15-1.91666704.185523015N16-1.9166673.54.185523016N17-1.9166673.54.185523017N18-5.753.54.185523018N19-5.753.54.185523020N211.9166673.54.185523021N225.753.54.185523022N235.753.54.185523023N24-0.0-2.958333024N27-0.0-6.648033025CP000026N292.3151040-2.958333027N30-2.3151040-2.958333028N1012.5416670-2.958333029N102-0.1666670-2.958333030N103A0.1666670-3.177083031N104A-2.5416670-3.177083032N144-2.4583330-3.321421033N1312.4583330-3.321421034N1350.5716150-6.548657035N144-2.4584330-3.34338036N148-0.5716150-6.648833037N86A2.5846290-3.39438038N66B-2.584250<	13	N14	-1.916667	0	3.935523	0	
16N17-1.9166673.54.185523017N18-5.75-3.54.185523018N19-5.75-3.54.185523020N211.916667-3.54.185523021N225.75-3.54.185523022N235.75-3.54.185523023N24-00-2.958333024N27-00-6.64863025CP000026N292.3151040-2.958333027N30-2.3151040-2.958333028N1012.5416670-2.958333029N102-0.16666670-2.958333030N103A0.1666670-2.958333031N104A-2.5416670-3.177083032N1052.5416670-3.177083033N1312.4583330-3.321421034N1350.5716150-6.54857035N144-2.4583330-3.321421036N148-0.5716150-6.645833037N86A2.5846290-3.39438038N86E-0.7154290-6.631888041N80C0.2342380.166667-6.5625042N86E0.715429 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
16N17-1.9166673.54.185523017N18-5.75-3.54.185523018N19-5.75-3.54.185523020N211.916667-3.54.185523021N225.75-3.54.185523022N235.75-3.54.185523023N24-00-2.958333024N27-00-6.64863025CP000026N292.3151040-2.958333027N30-2.3151040-2.958333028N1012.5416670-2.958333029N102-0.16666670-2.958333030N103A0.1666670-2.958333031N104A-2.5416670-3.177083032N1052.5416670-3.177083033N1312.4583330-3.321421034N1350.5716150-6.54857035N144-2.4583330-3.321421036N148-0.5716150-6.645833037N86A2.5846290-3.39438038N86E-0.7154290-6.631888041N80C0.2342380.166667-6.5625042N86E0.715429 <td>15</td> <td>N16</td> <td></td> <td>-3.5</td> <td></td> <td>0</td> <td></td>	15	N16		-3.5		0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
18N19 -5.75 3.5 4.185523 0 19N20 1.916667 3.5 4.185523 0 20N21 1.916667 3.5 4.185523 0 21N22 5.75 3.5 4.185523 0 22N23 5.75 3.5 4.185523 0 23N24 -0 0 2.958333 0 24N27 -0 0 4.6645833 0 25CP 0 0 0 0 26N29 2.315104 0 -2.958333 0 27N30 -2.315104 0 -2.958333 0 28N101 2.541667 0 -2.958333 0 30N102 -0.166667 0 -2.958333 0 31N104A -2.541667 0 -3.177083 0 32N105 0.5716167 0 -3.3221421 0 33N131 2.458333 0 -3.321421 0 34N135 0.571615 0 -6.548857 0 37N86A -2.584629 0 -3.394338 0 38N86B -2.584629 0 -3.394338 0 39N86C -0.515625 0 -6.642833 0 41N86D 0.715429 0 -6.631888 0 42N86E -0.715429 0 -6.631888 0 43N88A -0 0 <td< td=""><td></td><td>N18</td><td></td><td>-3.5</td><td>4.185523</td><td>0</td><td></td></td<>		N18		-3.5	4.185523	0	
19N201.916667 $\cdot \cdot $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
21 N22 5.75 3.5 4.185523 0 22 N23 5.75 3.5 4.185523 0 23 N24 $-0.$ 0 -2.958333 0 24 N27 $-0.$ 0 -6.645833 0 25 CP 0 0 0 0 26 N29 2.315104 0 -2.958333 0 27 N30 -2.315104 0 -2.958333 0 28 N101 2.541667 0 -2.958333 0 30 N103A 0.166667 0 -2.958333 0 31 N104A -2.541667 0 -3.177083 0 32 N105 2.541667 0 -3.177083 0 33 N131 2.458333 0 -3.321421 0 34 N135 0.571615 0 -6.548657 0 37 N86A 2.584629 0 -3.394338 0 38 N86B							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.315104		-2.958333		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
29N102 -0.166667 0 -2.958333 030N103A0.1666670 -2.958333 031N104A -2.541667 0 -3.177083 032N1052.5416670 -3.177083 033N1312.4583330 -3.321421 034N1350.5716150 -6.548857 035N144 -2.458333 0 -3.321421 036N148 -0.571615 0 -6.548857 037N86A2.5846290 -3.394338 038N86B -2.584629 0 -3.394338 039N86C -0.515625 0 -6.645833 040N87A0.5156250 -6.631888 041N86D0.7154290 -6.631888 042N86E -0.715429 0 -6.5625 044N87C0.2342380.166667 -6.5625 045N86G0.2342380 -6.5625 046N87B -0.234238 0 -6.5625 047N88C -0.234238 0 -6.5625 048N87D -1.262954 0 0.729167 049N88B -1.291158 0 3.680315 050N89 -3.719544 0 0.6225772 051N90 -1.40444 0 3.424106 052N91 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				÷		÷	
45 N86G 0.234238 0 -6.5625 0 46 N87B -0.234238 0.166667 -6.5625 0 47 N88C -0.234238 0 -6.5625 0 48 N87D -1.262954 0 0.729167 0 49 N88B -1.291158 0 3.680315 0 50 N89 -3.719544 0.166667 -0.525772 0 51 N90 -1.40444 0.166667 3.484106 0 52 N91 -2.561992 0 1.479167 0 53 N92 -5.75546 0 3.322917 0 54 N93 -3.719544 0 -0.525772 0 55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0				-			
46 N87B -0.234238 0.166667 -6.5625 0 47 N88C -0.234238 0 -6.5625 0 48 N87D -1.262954 0 0.729167 0 49 N88B -1.291158 0 3.680315 0 50 N89 -3.719544 0.166667 -0.525772 0 51 N90 -1.40444 0.166667 3.484106 0 52 N91 -2.561992 0 1.479167 0 53 N92 -5.75546 0 3.322917 0 54 N93 -3.719544 0 -0.525772 0 55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0							
47 N88C -0.234238 0 -6.5625 0 48 N87D -1.262954 0 0.729167 0 49 N88B -1.291158 0 3.680315 0 50 N89 -3.719544 0.166667 -0.525772 0 51 N90 -1.40444 0.166667 3.484106 0 52 N91 -2.561992 0 1.479167 0 53 N92 -5.75546 0 3.322917 0 54 N93 -3.719544 0 -0.525772 0 55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0							
48 N87D -1.262954 0 0.729167 0 49 N88B -1.291158 0 3.680315 0 50 N89 -3.719544 0.166667 -0.525772 0 51 N90 -1.40444 0.166667 3.484106 0 52 N91 -2.561992 0 1.479167 0 53 N92 -5.75546 0 3.322917 0 54 N93 -3.719544 0 -0.525772 0 55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0							
49 N88B -1.291158 0 3.680315 0 50 N89 -3.719544 0.166667 -0.525772 0 51 N90 -1.40444 0.166667 3.484106 0 52 N91 -2.561992 0 1.479167 0 53 N92 -5.75546 0 3.322917 0 54 N93 -3.719544 0 -0.525772 0 55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0							
50 N89 -3.719544 0.166667 -0.525772 0 51 N90 -1.40444 0.166667 3.484106 0 52 N91 -2.561992 0 1.479167 0 53 N92 -5.75546 0 3.322917 0 54 N93 -3.719544 0 -0.525772 0 55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0							
51 N90 -1.40444 0.166667 3.484106 0 52 N91 -2.561992 0 1.479167 0 53 N92 -5.75546 0 3.322917 0 54 N93 -3.719544 0 -0.525772 0 55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0				-			
52 N91 -2.561992 0 1.479167 0 53 N92 -5.75546 0 3.322917 0 54 N93 -3.719544 0 -0.525772 0 55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0							
53 N92 -5.75546 0 3.322917 0 54 N93 -3.719544 0 -0.525772 0 55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0				-			
54 N93 -3.719544 0 -0.525772 0 55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0							
55 N94 -1.40444 0 3.484106 0 56 N95 -3.832825 0 -0.721981 0							
56 N95 -3.832825 0 -0.721981 0				+			
				+		+	
				-		-	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diaphragm
57	N96	-2.478658	0	1.623504	0	
58	N97	-2.645325	0	1.334829	0	
59	N98	-1.480602	0	3.78969	0	
60	N99	-4.022268	0	-0.612606	0	
61	N100	-4.105602	0	-0.468269	0	
62	N101A	-5.957283	0	2.779396	0	
63	N102A	-1.647268	0	3.78969	0	
64	N103	-5.385669	0	3.769461	0	
65	N104	-4.231897	0	-0.541185	0	
66	N105A	-1.647268	0	3.935523	0	
67	N106	-5.497648	0	3.769461	0	
68	N107	-6.013273	0	2.876372	0	
69	N108	-6.101098	0	2.696364	0	
70	N109	-5.385669	0	3.935523	0	
71	N110	-5.683292	0	3.28125	0	
72	N111	-5.80041	0.166667	3.078394	0	
73	N112	-5.80041	0	3.078394	0	
74	N113	-5.566173	0.166667	3.484106	0	
75	N114	-5.566173	0	3.484106	0	
76	N115	1.262954	0	0.729167	0	
77	N116	3.832825	0	-0.721981	0	
78	N117	1.40444	0.166667	3.484106	0	
79	N118	3.719544	0.166667	-0.525772	0	
80	N119	2.561992	0	1.479167	0	
81	N120	5.75546	0	3.322917	0	
82	N121	1.40444	0	3.484106	0	
83	N122	3.719544	0	-0.525772	0	
84	N123	1.291158	0	3.680315	0	
85	N124	2.645325	0	1.334829	0	
86	N125	2.478658	0	1.623504	0	
87	N126	4.022268	0	-0.612606	0	
88	N127	1.480602	0	3.78969	0	
89	N128	1.647268	0	3.78969	0	
90	N129	5.385669	0	3.769461	0	
91	N130	4.105602	0	-0.468269	0	
92	N131A	5.957283	0	2.779396	0	
93	N132	1.647268	0	3.935523	0	
94	N133	4.231897	0	-0.541186	0	
95	N134	6.013273	0	2.876372	0	
96	N135A	5.497648	0	3.769461	0	
97	N136	5.385669	0	3.935523	0	
98	N137	6.101098	0	2.696364	0	
99	N138	5.683292	0	3.28125	0	
100	N139	5.566173	0.166667	3.484106	0	
101	N140	5.566173	0	3.484106	0	
102	N141	5.80041	0.166667	3.078394	Ő	
103	N142	5.80041	0	3.078394	Ő	
104	N104B	0.283263	Ő	-7.38042	Ő	
105	N105B	6.533263	0	3.444897	0 0	
106	N124A	-6.533263	Ő	3.444897	Ő	
107	N125A	-0.283263	0	-7.38042	0 0	
108	N140B	6.25	2.5	3.935523	Ő	
109	N141A	-6.25	2.5	3.935523	0 0	
110	N142A	5.75	2.5	3.935523	0	
111	N143	5.75	2.5	4.185523	0 0	
112	N144A	-5.75	2.5	3.935523	0	
113	N145	-5.75	2.5	4.185523	0	
						1

Joint Coordinates and Temperatures (Continued)

				ommucuj		
	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diaphragm
114	N146	1.916667	2.5	3.935523	0	
115	N147	1.916667	2.5	4.185523	0	
116	N148A	-1.916667	2.5	3.935523	0	
117	N149	-1.916667	2.5	4.185523	0	
118	N150	0.283263	2.5	-7.38042	0	
119	N151	6.533263	2.5	3.444897	0	
120	N160	-6.533263	2.5	3.444897	0	
121	N161	-0.283263	2.5	-7.38042	0	
122	N170	-4.966506	2.5	3.935523	0	
123	N171	4.966506	2.5	3.935523	0	
124	N172	5.891516	2.5	2.333359	0	
125	N173	0.92501	2.5	-6.268882	0	
126	N174	-0.92501	2.5	-6.268882	0	
127	N175	-5.891516	2.5	2.333359	0	
128	N176	-4.966506	2.5	3.768857	0	
129	N177	4.966506	2.5	3.768857	0	
130	N180	5.747179	2.5	2.416692	0	
131	N181	0.780672	2.5	-6.185549	0	
132	N184	-0.780672	2.5	-6.185549	0	
133	N185	-5.747179	2.5	2.416692	0	
134	N182	-0.	0	-2.208333	Ő	
135	N183	.25	0	-2.208333	0	
136	N184A	.25	5	-2.208333	0	
137	N185A	.25	2.5	-2.208333	0	
138	N138A	0.533263	0	-6.947408	0	
139	N139A	0.749769	0	-7.072408	0	
140	N140A	6.283263	0	3.011884	0	
141	N141B	6.499769	0	2.886884	0	
142	N142B	2.44993	0	-3.627644	0	
143	N143A	2.666436	0	-3.752644	0	
144	N144B	4.366596	0	-0.30788	0	
145	N145A	4.583103	0	-0.43288	0	
146	N146A	4.583103	-3.5	-0.43288	0	
147	N147A	4.583103	3.5	-0.43288	0	
148	N148B	6.499769	-3.5	2.886884	0	
149	N149A	6.499769	3.5	2.886884	0	
150	N150A	2.666436	-3.5	-3.752644	0	
151	N151A	2.666436	3.5	-3.752644	0	
152	N152	0.749769	-3.5	-7.072408	0	
153	N153	0.749769	3.5	-7.072408	0	
154	N154	0.533263	2.5	-6.947408	0	
155	N155	0.749769	2.5	-7.072408	0	
156	N156	6.283263	2.5	3.011884	0	
157	N157	6.499769	2.5	2.886884	0	
					0	
158	N158	2.44993	2.5	-3.627644		
159	N159	2.666436	2.5	-3.752644	0	
160	N160A	4.366596	2.5	-0.30788	0	
161	<u>N161A</u>	4.583103	2.5	-0.43288	0	
162	N162	-6.283263	0	3.011884	0	
163	N163	-6.499769	0	2.886884	0	
164	N164	-0.533263	0	-6.947408	0	
165	N165	-0.749769	0	-7.072408	0	
166	N166	-4.47485	0	-0.12038	0	
167	N167	-4.691356	0	-0.24538	0	
168	N168	-2.44993	0	-3.627644	0	
169	N169	-2.666436	0	-3.752644	0	
170	N170A	-2.666436	-3.5	-3.752644	0	
				,	- Ý	

Joint Coordinates and Temperatures (Continued)

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diaphragm
171	N171A	-2.666436	3.5	-3.752644	0	
172	N172A	-0.749769	-3.5	-7.072408	0	
173	N173A	-0.749769	3.5	-7.072408	0	
174	N174A	-4.691356	-3.5	-0.24538	0	
175	N175A	-4.691356	3.5	-0.24538	0	
176	N176A	-6.499769	-3.5	2.886884	0	
177	N177A	-6.499769	3.5	2.886884	0	
178	N178	-6.283263	2.5	3.011884	0	
179	N179	-6.499769	2.5	2.886884	0	
180	N180A	-0.533263	2.5	-6.947408	0	
181	N181A	-0.749769	2.5	-7.072408	0	
182	N182A	-4.47485	2.5	-0.12038	0	
183	N183A	-4.691356	2.5	-0.24538	0	
184	N184B	-2.44993	2.5	-3.627644	0	
185	N185B	-2.666436	2.5	-3.752644	0	
186	N186	-1.912473	0	1.104167	0	
187	N187	-2.037473	0	0.88766	0	
188	N188	-2.037473	5	0.88766	0	
189	N189	-2.037473	2.5	0.88766	0	

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Face Horizontal	PIPE 3.0	Beam	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
2	Standoff Horizontal	HSS4X4X4	Beam	SquareTube	A500 Gr.B	Typical	3.37	7.8	7.8	12.8
3	Corner Plate	PL1/2x6	Beam	BAR	A36 Gr.36	Typical	3	.063	9	.237
4	Platform Crossmember	HSS4X4X4	Beam	SquareTube	A500 Gr.B	Typical	3.37	7.8	7.8	12.8
5	Grating Support	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
6	Mount Pipe	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
7	Dual Mount Pipe	PIPE 2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
8	Support Rail	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
9	Support Rail Corner An	L2.5x2.5x4	Column	Single Angle	A36 Gr.36	Typical	1.19	.692	.692	.026
10	Cross Arm Plate	PL3/8x6	Column	RECT	A36 Gr.36	Typical	2.25	.026	6.75	.101

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/	.Density[k/ft	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8	Q235	29000	11154	.3	.65	.49	35	1.5	58	1.2

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(de	. Section/Shape	Туре	Design List	Material	Design Rules
1	M1	N1	N2		,	Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
2	M4	N3	N27			Standoff Horizontal	Beam	SquareTube	A500 Gr	Typical
3	M10	N101	N103A			Platform Crossmember	Beam	SquareTube	A500 Gr	Typical
4	M19	N8	N9			RIGID	None	None	RIGID	Typical
5	M20	N10	N11			RIGID	None	None	RIGID	Typical
6	M21	N12	N13			RIGID	None	None	RIGID	Typical

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(de	. Section/Shape	Type	Design List	Material	Design Rules
7	M22	N14	N15			RIGID	None	None	RIGID	Typical
8	MP3A	N17	N16			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
9	MP4A	N19	N18			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
10	MP2A	N21	N20			Dual Mount Pipe	Column	Pipe	A53 Gr.B	Typical
11	MP1A	N23	N22			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
12	M43	N102	N5			Platform Crossmember	Beam	SquareTube	A500 Gr	Typical
13	M46	N86C	N87A			Corner Plate	Beam	BAR	A36 Gr.36	
14	M35A	N7	N30			RIGID	None	None	RIGID	Typical
15	<u>M36A</u>	N6	N29			RIGID	None	None	RIGID	Typical
16	M51B	N87C	N6			Grating Support	Beam	Single Angle	A36 Gr.36	
17	M52B	N7	N87B			Grating Support	Beam		A36 Gr.36	
18	M52	N87B	N88C			RIGID	None	None	RIGID	Typical
19	<u>M58</u>	N102	N24			RIGID	None	None	RIGID	Typical
20	M59	N24	N103A			RIGID	None	None	RIGID	Typical
21	<u>M76</u>	N101	N105			Cross Arm Plate	Column	RECT	A36 Gr.36	
22	M77	N105	N131			Cross Arm Plate	Column	RECT	A36 Gr.36	
23	M79	N131	N86A			RIGID	None	None	RIGID	Typical
24	<u>M80</u>	N87A	N135			Corner Plate	Beam	BAR	A36 Gr.36	
25	M83	N135	N86D			RIGID	None	None	RIGID	Typical
26	M84	N5	N104A			Cross Arm Plate	Column	RECT	A36 Gr.36	
27	M85	N104A	N144			Cross Arm Plate	Column	RECT	A36 Gr.36	
28	M88	N144	N86B			RIGID	None	None	RIGID	Typical
29	M91	N86C	N148			Corner Plate	Beam	BAR	A36 Gr.36	
30	M92	N148	N86E			RIGID	None	None	RIGID	Typical
31	M50	N88C	N88A			RIGID	None	None	RIGID	Typical
32	M51	N88A	N86G			RIGID	None	None	RIGID	Typical
33	M51A	N87C	N86G			RIGID	None	None	RIGID	Typical
34	M52A	N87D	N92			Standoff Horizontal	Beam	SquareTube	A500 Gr A500 Gr	Typical
35	M53	N95	N97			Platform Crossmember Platform Crossmember	Beam	SquareTube SquareTube	A500 Gr	Typical
36	M54	N96	N88B				Beam		A36 Gr.36	Typical
37 38	M55	N106	N107 N94			Corner Plate	Beam	BAR	RIGID	
38	<u>M56</u> M57	N90 N89	N94 N93			RIGID RIGID	None	None None	RIGID	Typical Typical
40	M58A	N111	N89			Grating Support	None Beam		A36 Gr.36	Typical
40	M59A	N90	N113			Grating Support	Beam		A36 Gr.36	
41	M60	N113	N114			RIGID	None	None	RIGID	Typical
42	M61	N96	N91			RIGID	None	None	RIGID	Typical
43	M62	N90	N97			RIGID	None		RIGID	Typical
44	M63	N95	N97			Cross Arm Plate	Column	None RECT	A36 Gr.36	
45	M64	N95	N100			Cross Arm Plate	Column	RECT	A36 Gr.36	
40	M65	N100	N104			RIGID	None	None	RIGID	Typical
48	M66	N107	N101A			Corner Plate	Beam	BAR	A36 Gr.36	
49	M67	N101A	N108			RIGID	None	None	RIGID	Typical
50	M68	N88B	N98			Cross Arm Plate	Column	RECT	A36 Gr.36	
51	M69	N98	N102A			Cross Arm Plate	Column	RECT	A36 Gr.36	
52	M70	N102A	N105A			RIGID	None	None	RIGID	Typical
53	M70	N102A	N103			Corner Plate	Beam	BAR	A36 Gr.36	Typical
54	M72	N103	N109			RIGID	None	None	RIGID	Typical
55	M73	N114	N110			RIGID	None	None	RIGID	Typical
56	M74	N110	N112			RIGID	None	None	RIGID	Typical
57	M75	N111	N112			RIGID	None	None	RIGID	Typical
58	M76A	N115	N120			Standoff Horizontal	Beam		A500 Gr	Typical
59	M77A	N123	N125			Platform Crossmember	Beam	SquareTube	A500 Gr	Typical
60	M78	N124	N116			Platform Crossmember	Beam		A500 Gr	Typical
61	M79A	N134	N135A			Corner Plate	Beam	BAR	A36 Gr.36	
62	M80A	N118	N122			RIGID	None	None	RIGID	Typical
63	M81	N117	N121			RIGID	None	None	RIGID	Typical
	A-3D Versio	• •				RISA\468327-\/7\// M				Page 8

Member Primary Data (Continued)

	l abal		Ligint	K loint	Detete/de	Section/Shane	Turne	Design List	Motorial	Design Dulas
64	Label M82	I Joint N139	J Joint N117	K Joint	Rotate(de	. Section/Shape Grating Support	Type Beam	Design List Single Angle	Material A36 Gr.36	Design Rules Typical
65	M83A	N118	N141			Grating Support	Beam		A36 Gr.36	Typical
66	M84A	N141	N142			RIGID	None	None	RIGID	Typical
67	M85A	N124	N119			RIGID	None	None	RIGID	Typical
68	M86	N119	N125			RIGID	None	None	RIGID	Typical
69	M87	N123	N127			Cross Arm Plate	Column	RECT	A36 Gr.36	Typical
70	M88A	N127	N128			Cross Arm Plate	Column	RECT	A36 Gr.36	Typical
70	M89	N128	N132			RIGID	None	None	RIGID	Typical
72	M90	N135A	N129			Corner Plate	Beam	BAR	A36 Gr.36	Typical
73	M91A	N129	N136			RIGID	None	None	RIGID	Typical
74	M92A	N116	N126			Cross Arm Plate	Column	RECT	A36 Gr.36	Typical
75	M93	N126	N130			Cross Arm Plate	Column	RECT	A36 Gr.36	Typical
76	M94	N130	N133			RIGID	None	None	RIGID	Typical
77	M95	N134	N131A			Corner Plate	Beam	BAR	A36 Gr.36	Typical
78	M96	N131A	N137			RIGID	None	None	RIGID	Typical
79	M97	N142	N138			RIGID	None	None	RIGID	Typical
80	M98	N138	N140			RIGID	None	None	RIGID	Typical
81	M99	N139	N140			RIGID	None	None	RIGID	Typical
82	M82A	N104B	N105B			Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
83	M91B	N124A	N125A			Face Horizontal	Beam	Pipe	A53 Gr.B	Typical
84	M100	N140B	N141A			Support Rail	Column	Pipe	A53 Gr.B	Typical
85	M101	N142A	N143			RIGID	None	None	RIGID	Typical
86	M102	N144A	N145			RIGID	None	None	RIGID	Typical
87	M102	N146	N147			RIGID	None	None	RIGID	Typical
88	M104	N148A	N149			RIGID	None	None	RIGID	Typical
89	M105	N150	N151			Support Rail	Column	Pipe	A53 Gr.B	Typical
90	M110	N160	N161			Support Rail	Column	Pipe	A53 Gr.B	Typical
91	M115	N176	N170			RIGID	None	None	RIGID	Typical
92	M116	N177	N171			RIGID	None	None	RIGID	Typical
93	M117	N180	N172			RIGID	None	None	RIGID	Typical
94	M118	N181	N173			RIGID	None	None	RIGID	Typical
95	M119	N184	N174			RIGID	None	None	RIGID	Typical
96	M120	N185	N175			RIGID	None	None	RIGID	Typical
97	M120	N176	N185		180	Support Rail Corner Angle		Single Angle	A36 Gr.36	Typical
98	M122	N180	N177			Support Rail Corner Angle			A36 Gr.36	Typical
99	M123	N184	N181			Support Rail Corner Angle			A36 Gr.36	Typical
100	M120	N182	N183		100	RIGID	None	None	RIGID	Typical
101	OVP1	N185A	N184A			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
102	M102A	N138A	N139A			RIGID	None	None	RIGID	Typical
102	M102A	N140A	N141B			RIGID	None	None	RIGID	Typical
103	M103A	N140A	N143A			RIGID	None	None	RIGID	Typical
105	M105A	N144B	N145A			RIGID	None	None	RIGID	Typical
106	MP3C	N147A	N146A			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
107	MP4C	N149A	N148B			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
107	MP2C	N151A	N150A			Dual Mount Pipe	Column	Pipe	A53 Gr.B	Typical
109	MP1C	N153	N152			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
110	M110A	N154	N155			RIGID	None	None	RIGID	Typical
111	M111	N156	N157			RIGID	None	None	RIGID	Typical
112	M112	N158	N159			RIGID	None	None	RIGID	Typical
113	M112 M113	N160A	N161A			RIGID	None	None	RIGID	Typical
114	M113 M114	N162	N163			RIGID	None	None	RIGID	Typical
115	M115A	N164	N165			RIGID	None	None	RIGID	Typical
116	M116A	N166	N167			RIGID	None	None	RIGID	Typical
117	M117A	N168	N169			RIGID	None	None	RIGID	Typical
118	MP3B	N171A	N170A			Mount Pipe	Column	Pipe	A53 Gr.B	Typical
119	MP3B MP4B	N173A	N170A			Mount Pipe	Column	Pipe	A53 Gr.B	
120	MP4B MP2B	N175A	N172A			Dual Mount Pipe	Column	Pipe	A53 Gr.B	Typical Typical
			•						1100 01.0	
DIC	4-3D Version	. 17 0 1	(D)/ /	1 1 1 1		RISA\468327-\/7\// M		1 *2 41		Page 9

Member Primary Data (Continued)

	Label	I Joint	J Joint	K Joint	Rotate(de	. Section/Shape	Туре	Design List	Material	Design Rules
121	MP1B	N177A	N176A		, , , , , , , , , , , , , , , , , , ,	Mount Pipe	Column	Pipe	A53 Gr.B	Typical
122	M122A	N178	N179			RIGID	None	None	RIGID	Typical
123	M123A	N180A	N181A			RIGID	None	None	RIGID	Typical
124	M124A	N182A	N183A			RIGID	None	None	RIGID	Typical
125	M125	N184B	N185B			RIGID	None	None	RIGID	Typical
126	M126	N186	N187			RIGID	None	None	RIGID	Typical
127	OVP2	N189	N188			Mount Pipe	Column	Pipe	A53 Gr.B	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
1	M1					-	Yes	Default		None
2	M4						Yes			None
3	M10						Yes	Default		None
4	M19						Yes	** NA **		None
5	M20						Yes	** NA **		None
6	M21						Yes	** NA **		None
7	M22						Yes	** NA **		None
8	MP3A						Yes	** NA **		None
9	MP4A						Yes	** NA **		None
10	MP2A						Yes	** NA **		None
11	MP1A						Yes	** NA **		None
12	M43						Yes	Default		None
13	M46						Yes	Default		None
14	M35A						Yes	** NA **		None
15	M36A						Yes	** NA **		None
16	M51B	00000X	00000X				Yes	Default		None
17	M52B		00000X				Yes	Default		None
18	M52	000000	000000				Yes	** NA **		None
19	M58						Yes	** NA **		None
20	M59						Yes	** NA **		None
21	M76						Yes	** NA **		None
22	M77						Yes	** NA **		None
23	M79		BenPIN				Yes	** NA **		None
24	M80		Denning				Yes			None
25	M83		BenPIN				Yes	** NA **		None
26	M84		Dennin				Yes	** NA **		None
27	M85						Yes	** NA **		None
28	M88		BenPIN				Yes	** NA **		None
29	M91		Denina				Yes			None
30	M92		BenPIN				Yes	** NA **		None
31	M50		Deni in				Yes	** NA **		None
32	M51						Yes	** NA **		None
33	M51A						Yes	** NA **		None
34	M52A						Yes			None
35	M53						Yes	Default		None
36	M54						Yes	Default		None
37	M55						Yes	Default		None
38	M56						Yes	** NA **		None
39	M57						Yes	** NA **		None
40	M58A	00000	00000X				Yes	Default		None
40	M59A		00000X				Yes	Default		None
41	M60	500000	50000X				Yes	** NA **		None
42	M61						Yes	** NA **		None
43	M62						Yes	** NA **		None
44	M63						Yes	** NA **		None
40	IVIOS	1					162	IN/A		INUTE

Member Advanced Data (Continued)

	Label	I Release	I Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Rat	Analysis	Inactive	Seismic
46	M64		JIVEIEd3E	TOnsequin	JOnsequin		Yes	** NA **		macuve	None
47	M65		BenPIN				Yes	** NA **			None
48	M66		Donning				Yes				None
49	M67		BenPIN				Yes	** NA **			None
50	M68		201111				Yes	** NA **			None
51	M69						Yes	** NA **			None
52	M70		BenPIN				Yes	** NA **			None
53	M71		-				Yes				None
54	M72		BenPIN				Yes	** NA **			None
55	M73						Yes	** NA **			None
56	M74						Yes	** NA **			None
57	M75						Yes	** NA **			None
58	M76A						Yes				None
59	M77A						Yes	Default			None
60	M78						Yes	Default			None
61	M79A						Yes	Default			None
62	M80A						Yes	** NA **			None
63	M81						Yes	** NA **			None
64	M82	00000X (Yes	Default			None
65	M83A	00000X (X0000C				Yes	Default			None
66	M84A						Yes	** NA **			None
67	M85A						Yes	** NA **			None
68	M86						Yes	** NA **			None
69	M87						Yes	** NA **			None
70	M88A						Yes	** NA **			None
71	M89		BenPIN				Yes	** NA **			None
72	M90						Yes				None
73	M91A		BenPIN				Yes	** NA **			None
74	M92A						Yes	** NA **			None
75 76	M93		DepDIN				Yes	** NA ** ** NA **			None
70	M94 M95		BenPIN				Yes Yes	INA			None
78	M96		BenPIN				Yes	** NA **			None None
79	M97		Denrin				Yes	** NA **			None
80	M98						Yes	** NA **			None
81	M99						Yes	** NA **			None
82	M82A						Yes	Default			None
83	M91B						Yes	Default			None
84	M100						Yes	** NA **			None
85	M101						Yes	** NA **			None
86	M102						Yes	** NA **			None
87	M103						Yes	** NA **			None
88	M104						Yes	** NA **			None
89	M105						Yes	** NA **			None
90	M110						Yes	** NA **			None
91	M115		000000				Yes	** NA **			None
92	M116		000000				Yes	** NA **			None
93	M117		000000				Yes	** NA **			None
94	M118		000000				Yes	** NA **			None
95	M119		000000				Yes	** NA **			None
96	M120		000000				Yes	** NA **			None
97	M121						Yes	** NA **			None
98	M122						Yes	** NA **			None
99	M123						Yes	** NA **			None
100	M124						Yes	** NA **			None
101	OVP1						Yes	** NA **			None
102	M102A						Yes	** NA **			None
DIO		ion 17 0 4			ev ()\RISA)	400007.			0.11		ane 11

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
103	M103A					, i i i i i i i i i i i i i i i i i i i	Yes	** NA **		None
104	M104A						Yes	** NA **		None
105	M105A						Yes	** NA **		None
106	MP3C						Yes	** NA **		None
107	MP4C						Yes	** NA **		None
108	MP2C						Yes	** NA **		None
109	MP1C						Yes	** NA **		None
110	M110A						Yes	** NA **		None
111	M111						Yes	** NA **		None
112	M112						Yes	** NA **		None
113	M113						Yes	** NA **		None
114	M114						Yes	** NA **		None
115	M115A						Yes	** NA **		None
116	M116A						Yes	** NA **		None
117	M117A						Yes	** NA **		None
118	MP3B						Yes	** NA **		None
119	MP4B						Yes	** NA **		None
120	MP2B						Yes	** NA **		None
121	MP1B						Yes	** NA **		None
122	M122A						Yes	** NA **		None
123	M123A						Yes	** NA **		None
124	M124A						Yes	** NA **		None
125	M125						Yes	** NA **		None
126	M126						Yes	** NA **		None
127	OVP2						Yes	** NA **		None

Member Point Loads (BLC 1 : Antenna D)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Y	-43.55	2
2	MP4A	My	021	2
3	MP4A	Mz	.004	2
4	MP4A	Y	-43.55	4
5	MP4A	My	021	4
6	MP4A	Mz	.004	4
7	MP4B	Y	-43.55	2
8	MP4B	My	004	2
9	MP4B	Mz	021	2
10	MP4B	Y	-43.55	4
11	MP4B	My	004	4
12	MP4B	Mz	021	4
13	MP4C	Y	-43.55	2
14	MP4C	My	.011	2
15	MP4C	Mz	.019	2
16	MP4C	Y	-43.55	4
17	MP4C	My	.011	4
18	MP4C	Mz	.019	4
19	MP2A	Y	-31.65	1
20	MP2A	My	012	1
21	MP2A	Mz	.021	1
22	MP2A	Y	-31.65	5
23	MP2A	My	012	5
24	MP2A	Mz	.021	5
25	MP2B	Y	-31.65	1
26	MP2B	My	021	1
27	MP2B	Mz	012	1

Member Point Loads (BLC 1 : Antenna D) (Continued)

r	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
28	MP2B	Y	-31.65	5
29	MP2B	My	021	5
30	MP2B	Mz	012	5
31	MP2C	Y	-31.65	1
32	MP2C	My	.024	1
33	MP2C	Mz	.004	1
34	MP2C	Y	-31.65	5
35	MP2C	My	.024	5
36	MP2C	Mz	.004	5
37	MP2A	Y	-31.65	1
38	MP2A	My	019	1
39	MP2A	Mz	015	1
40	MP2A	Y	-31.65	5
41	MP2A	My	019	5
42	MP2A	Mz	015	5
43	MP2B	Y	-31.65	1
44	MP2B	My	.015	1
45	MP2B	Mz	019	1
46	MP2B	Y	-31.65	5
47	MP2B	My	.015	5
48	MP2B	Mz	019	5
49	MP2C	Y	-31.65	1
50	MP2C	My	008	1
51	MP2C	Mz	.023	1
52	MP2C	Y	-31.65	5
53	MP2C	My	008	5
54	MP2C	Mz	.023	5
55	MP1A	Y	-84.4	2
56	MP1A	My	.042	2
57	MP1A	Mz	007	2
58	MP1B	Y	-84.4	2
59	MP1B	My	.007	2
60	MP1B	Mz	.042	2
61	MP1C	Y	-84.4	2
62	MP1C	My	021	2
63	MP1C	Mz	021	2
64	MP2A	Y	-70.3	2
65	MP2A	My	.035	2
66	MP2A	Mz	006	2
67	MP2B	Y	-70.3	2
68	MP2B MP2B	My	.006	2
69	MP2B MP2B	Mz	.006	2
70	MP2D MP2C	Y	-70.3	2
70	MP2C	My	018	2
71	MP2C MP2C	Mz	018	2
72	MP2C MP2A	VIZ	-20.8	4
73	MP2A MP2A	My	.01	4 4
			002	
75 76	MP2A	Mz Y	002 -20.8	4 4
76	MP2B MP2B	My	.002	4 4
			.002	
78	MP2B	Mz		4
79	MP2C	Y	-20.8	4
80	MP2C	My	005	4
81	MP2C	Mz	009	4
82	OVP1	Y	-32	1
00				
83 84	OVP1 OVP1	My Mz	0	1

Member Point Loads (BLC 1 : Antenna D) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
85	MP3A	Y	-8.5	1
86	MP3A	My	004	1
87	MP3A	Mz	.000738	1
88	MP3A	Y	-8.5	5
89	MP3A	My	004	5
90	MP3A	Mz	.000738	5
91	MP3B	Y	-8.5	1
92	MP3B	My	000738	1
93	MP3B	Mz	004	1
94	MP3B	Y	-8.5	5
95	MP3B	My	000738	5
96	MP3B	Mz	004	5
97	MP3C	Y	-8.5	1
98	MP3C	My	.002	1
99	MP3C	Mz	.004	1
100	MP3C	Y	-8.5	5
101	MP3C	My	.002	5
102	MP3C	Mz	.004	5
103	OVP2	Y	-32	1
104	OVP2	My	0	1
105	OVP2	Mz	0	1

Member Point Loads (BLC 2 : Antenna Di)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Y	-35.571	2
2	MP4A	My	018	2
3	MP4A	Mz	.003	2
4	MP4A	Y	-35.571	4
5	MP4A	My	018	4
6	MP4A	Mz	.003	4
7	MP4B	Y	-35.571	2
8	MP4B	My	003	2
9	MP4B	Mz	018	2
10	MP4B	Y	-35.571	4
11	MP4B	My	003	4
12	MP4B	Mz	018	4
13	MP4C	Y	-35.571	2
14	MP4C	My	.009	2
15	MP4C	Mz	.015	2
16	MP4C	Y	-35.571	4
17	MP4C	My	.009	4
18	MP4C	Mz	.015	4
19	MP2A	Y	-69.866	1
20	MP2A	My	027	1
21	MP2A	Mz	.046	1
22	MP2A	Y	-69.866	5
23	MP2A	My	027	5
24	MP2A	Mz	.046	5
25	MP2B	Y	-69.866	1
26	MP2B	My	046	1
27	MP2B	Mz	027	1
28	MP2B	Y	-69.866	5
29	MP2B	My	046	5
30	MP2B	Mz	027	5
31	MP2C	Y	-69.866	1
32	MP2C	My	.053	1

Member Point Loads (BLC 2 : Antenna Di) (Continued)

00	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP2C	Mz Y	.01	1
34	MP2C		-69.866	5
35	MP2C	My Ma	.053	5
36	MP2C	Mz	.01	5
37	MP2A	Y	-69.866	<u> </u>
38	MP2A	My	041	
39	MP2A	Mz	034	1
40	MP2A	Y	-69.866	5
41	MP2A	My	041	5
42	MP2A	Mz	034	5
43	MP2B	Y	-69.866	1
44	MP2B	My	.034	
45	MP2B	Mz	041	1
46	MP2B	Y	-69.866	5
47	MP2B	My	.034	5
48	MP2B	Mz	041	5
49	MP2C	Y	-69.866	1
50	MP2C	My	018	1
51	MP2C	Mz	.051	1
52	MP2C	Y	-69.866	5
53	MP2C	My	018	5
54	MP2C	Mz	.051	5
55	MP1A	Y	-44.846	2
56	MP1A	My	.022	2
57	MP1A	Mz	004	2
58	MP1B	Y	-44.846	2
59	MP1B	My	.004	2
60	MP1B	Mz	.022	2
61	MP1C	Y	-44.846	2
62	MP1C	My	011	2
63	MP1C	Mz	019	2
64	MP2A	Y	-40.33	2
65	MP2A	My	.02	2
66	MP2A	Mz	004	2
67	MP2B	Y	-40.33	2
68	MP2B	My	.004	2
69	MP2B	Mz	.02	2
70	MP2C	Y	-40.33	2
71	MP2C	My	01	2
72	MP2C	Mz	017	2
73	MP2A	Y	-10.726	4
74	MP2A	My	.005	4
75	MP2A	Mz	000931	4
76	MP2B	Y	-10.726	4
77	MP2B	My	.000931	4
78	MP2B	Mz	.005	4
79	MP2C	Y	-10.726	4
80	MP2C	My	003	4
81	MP2C	Mz	005	4
82	OVP1	Y	-75.86	1
83	OVP1	My	0	1
84	OVP1	Mz	0	1
85	MP3A	Y	-51.692	1
86	MP3A	My	025	1
87	MP3A	Mz	.004	1
88	MP3A	Y	-51.692	5
89	MP3A	My	025	5
~ ~				

RISA-3D Version 17.0.4 [R:\...\...\...\Rev 0\RISA\468327-VZW_MT_LO_H.r3d]

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
90	MP3A	Mz	.004	5
91	MP3B	Y	-51.692	1
92	MP3B	My	004	1
93	MP3B	Mz	025	1
94	MP3B	Y	-51.692	5
95	MP3B	My	004	5
96	MP3B	Mz	025	5
97	MP3C	Y	-51.692	1
98	MP3C	My	.013	1
99	MP3C	Mz	.022	1
100	MP3C	Y	-51.692	5
101	MP3C	My	.013	5
102	MP3C	Mz	.022	5
103	OVP2	Y	-75.86	1
104	OVP2	Му	0	1
105	OVP2	Mz	0	1

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	2
2	MP4A	Z	-110.025	2
3	MP4A	Mx	01	2
4	MP4A	X	0	4
5	MP4A	Z	-110.025	4
6	MP4A	Mx	01	4
7	MP4B	X	0	2
8	MP4B	Z	-45.936	2
9	MP4B	Mx	.023	2
10	MP4B	Х	0	4
11	MP4B	Z	-45.936	4
12	MP4B	Mx	.023	4
13	MP4C	X	0	2
14	MP4C	Z	-60.93	2
15	MP4C	Mx	026	2
16	MP4C	Х	0	4
17	MP4C	Z	-60.93	4
18	MP4C	Mx	026	4
19	MP2A	X Z	0	1
20	MP2A	Z	-214.999	1
21	MP2A	Mx	142	1
22	MP2A	X	0	5
23	MP2A	Z	-214.999	5
24	MP2A	Mx	142	5
25	MP2B	X	0	1
26	MP2B	Z	-144.934	1
27	MP2B	Mx	.057	1
28	MP2B	Х	0	5
29	MP2B	Z	-144.934	5
30	MP2B	Mx	.057	5
31	MP2C	Х	0	1
32	MP2C	Z	-161.326	1
33	MP2C	Mx	023	1
34	MP2C	Х	0	5
35	MP2C	Z	-161.326	5
36	MP2C	Mx	023	5
37	MP2A	Х	0	1

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
38	MP2A	Z	-214.999	1
39	MP2A	Mx	.105	1
10	MP2A	X	0	5
11	MP2A	Z	-214.999	5
12	MP2A	Mx	.105	5
13	MP2B	X	0	1
14	MP2B	Z	-144.934	1
15	MP2B	Mx	.086	1
16	MP2B	X	0	5
17	MP2B	Z	-144.934	5
18	MP2B	Mx	.086	5
19	MP2C	X	0	1
50	MP2C	Z	-161.326	1
				1
51	MP2C	Mx V	117	
52	MP2C	X Z	0	5
53	MP2C		-161.326	5
54	MP2C	Mx	117	5
55	MP1A	X	0	2
56	MP1A	Z	-88.297	2
57	MP1A	Mx	.008	2
58	MP1B	X	0	2
59	MP1B	Z	-60.509	2
50	MP1B	Mx	03	2
61	MP1C	X	0	2
62	MP1C	Z	-67.01	2
63	MP1C	Mx	.029	2
64	MP2A	X	0	2
55	MP2A	Z	-87.955	2
6	MP2A	Mx	.008	2
67	MP2B	X	0	2
58	MP2B	Z	-49.524	2
59	MP2B	Mx	024	2
70	MP2C	X	0	2
71	MP2C	Z	-58.515	2
72				2
	MP2C	Mx	.025	
73	MP2A	X	0	4
74	MP2A	Z	-17.483	4
75	MP2A	Mx	.002	4
76	MP2B	Χ	0	4
7	MP2B	Z	-12.374	4
'8	MP2B	Mx	006	4
'9	MP2C	X	0	4
80	MP2C	Z	-13.569	4
31	MP2C	Mx	.006	4
32	OVP1	X	0	1
3	OVP1	Z	-119.65	1
34	OVP1	Mx	0	1
5	MP3A	X	0	1
6	MP3A	Z	-178.069	1
37	MP3A	Mx	015	1
8	MP3A	X	0	5
9 9	MP3A MP3A	Z	-178.069	5
	MP3A MP3A			5
90		Mx X	015	
91	MP3B	X	0	1
2	MP3B	Z	-101.612	1
93	MP3B	Mx	.05	1
94	MP3B	X	0	5

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
95	MP3B	Z	-101.612	5
96	MP3B	Mx	.05	5
97	MP3C	Х	0	1
98	MP3C	Z	-119.5	1
99	MP3C	Mx	052	1
100	MP3C	X	0	5
101	MP3C	Z	-119.5	5
102	MP3C	Mx	052	5
103	OVP2	Х	0	1
104	OVP2	Z	-119.65	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	41.951	2
2	MP4A	Z	-72.661	2
3	MP4A	Mx	027	2
4	MP4A	Х	41.951	4
5	MP4A	Z	-72.661	4
6	MP4A	Mx	027	4
7	MP4B	Х	36.03	2
8	MP4B	Z	-62.405	2
9	MP4B	Mx	.028	2
10	MP4B	Х	36.03	4
11	MP4B	Z	-62.405	4
12	MP4B	Mx	.028	4
13	MP4C	X	47.516	2
14	MP4C	Z	-82.299	2
15	MP4C	Mx	024	2
16	MP4C	Х	47.516	4
17	MP4C	Z	-82.299	4
18	MP4C	Mx	024	4
19	MP2A	Х	93.22	1
20	MP2A	Z	-161.462	1
21	MP2A	Mx	143	1
22	MP2A	Х	93.22	5
23	MP2A	Z	-161.462	5
24	MP2A	Mx	143	5
25	MP2B	X	86.746	1
26	MP2B	Z	-150.249	1
27	MP2B	Mx	.001	1
28	MP2B	Х	86.746	5
29	MP2B	Z	-150.249	5
30	MP2B	Mx	.001	5
31	MP2C	X Z	99.303	1
32	MP2C	Z	-171.998	1
33	MP2C	Mx	.051	1
34	MP2C	Х	99.303	5
35	MP2C	Z	-171.998	5
36	MP2C	Mx	.051	5
37	MP2A	X	93.22	1
38	MP2A	Z	-161.462	1
39	MP2A	Mx	.023	1
40	MP2A	X	93.22	5
41	MP2A	Z	-161.462	5
42	MP2A	Mx	.023	5

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

43	LIDOD	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	MP2B	Χ	86.746	1
44	MP2B	Z	-150.249	1
45	MP2B	Mx	.132	1
46	MP2B	X	86.746	5
47	MP2B	Z	-150.249	5
48	MP2B	Mx	.132	5
49	MP2C	<u> </u>	99.303	1
50	MP2C	Z	-171.998	1
51	MP2C	Mx	15	1
52	MP2C	<u> </u>	99.303	5
53	MP2C	Z	-171.998	5
54	MP2C	Mx	15	5
55	MP1A	<u> </u>	38.485	2
56	MP1A	Z	-66.658	2
57	MP1A	Mx	.025	2
58	MP1B	<u> </u>	35.918	2
59	MP1B	Z	-62.211	2
60	MP1B	Mx	028	2
61	MP1C	<u> </u>	40.898	2
62	MP1C	Z	-70.837	2
63	MP1C	Mx	.02	2
64	MP2A	X	36.145	2
65	MP2A	Z	-62.605	2
66	MP2A	Mx	.023	2
67	MP2B	<u> </u>	32.594	2
68	MP2B	Z	-56.455	2
69	MP2B	Mx	025	2
70	MP2C	X	39.482	2
71	MP2C	Z	-68.385	2
72	MP2C	Mx	.02	2
73	MP2A	X	7.7	4
74	MP2A	Z	-13.337	4
75	MP2A	Mx	.005	4
76	MP2B	X	7.228	4
77	MP2B	Z	-12.519	4
78	MP2B	Mx	006	4
79	MP2C	Х	8.144	4
80	MP2C	Z	-14.105	4
81	MP2C	Mx	.004	4
82	OVP1	X	67.464	1
83	OVP1	Z	-116.851	1
84	OVP1	Mx	0	1
85	MP3A	X	73.453	1
86	MP3A	Z	-127.224	1
87	MP3A	Mx	047	1
88	MP3A	X	73.453	5
89	MP3A	Z	-127.224	5
90	MP3A	Mx	047	5
91	MP3B	<u> </u>	66.388	1
92	MP3B	Z	-114.988	1
93	MP3B	Mx	.051	1
94	MP3B	Х	66.388	5
95	MP3B	Z	-114.988	5
	MP3B	Mx	.051	5
96		N/	80.091	1
97	MP3C	X		
	MP3C MP3C	X Z	-138.721	1

RISA-3D Version 17.0.4 [R:\...\...\...\Rev 0\RISA\468327-VZW_MT_LO_H.r3d]

Member Point Loads (BLC 4 : Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
100	MP3C	Х	80.091	5
101	MP3C	Z	-138.721	5
102	MP3C	Mx	04	5
103	OVP2	Х	67.464	1
104	OVP2	Z	-116.851	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	44.91	2
2	MP4A	Z	-25.929	2
3	MP4A	Mx	024	2
4	MP4A	Х	44.91	4
5	MP4A	Z	-25.929	4
6	MP4A	Mx	024	4
7	MP4B	Х	90.156	2
8	MP4B	Z	-52.052	2
9	MP4B	Mx	.018	2
10	MP4B	X	90.156	4
11	MP4B	Z	-52.052	4
12	MP4B	Mx	.018	4
13	MP4C	X	97.065	2
14	MP4C	Z	-56.041	2
15	MP4C	Mx	0	2
16	MP4C	Х	97.065	4
17	MP4C	Z	-56.041	4
18	MP4C	Mx	0	4
19	MP2A		131.123	1
20	MP2A	X Z	-75.704	1
21	MP2A	Mx	101	1
22	MP2A	X	131.123	5
23	MP2A	Z	-75.704	5
24	MP2A	Mx	101	5
25	MP2B	X	180.588	1
26	MP2B	Z	-104.263	1
27	MP2B	Mx	079	1
28	MP2B	X	180.588	5
29	MP2B	Z	-104.263	5
30	MP2B	Mx	079	5
31	MP2C	X	188.142	1
32	MP2C	Z	-108.624	1
33	MP2C	Mx	.127	1
34	MP2C	X	188.142	5
35	MP2C	Z	-108.624	5
36	MP2C	Mx	.127	5
37	MP2A	X	131.123	1
38	MP2A	Z	-75.704	1
39	MP2A	Mx	041	1
40	MP2A	X	131.123	5
41	MP2A	Z	-75.704	<u>5</u> 5
42	MP2A	Mx	041	5
43	MP2B	X Z	180.588	1
44	MP2B		-104.263	1
45	MP2B	Mx	.15	1
46	MP2B	X	180.588	5
47	MP2B	Z	-104.263	5

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
18	MP2B	Mx	.15	5
19	MP2C	<u> </u>	188.142	1
50	MP2C	Z	-108.624	1
51	MP2C	Mx	127	1
52	MP2C	Х	188.142	5
53	MP2C	Z	-108.624	5
54	MP2C	Mx	127	5
55	MP1A	X	54.626	2
56	MP1A	Z	-31.538	2
57	MP1A	Mx	.03	2
58	MP1B	X	74.244	2
59	MP1B	Z	-42.865	2
50	MP1B	Mx	015	2
51	MP1C	X	77.239	2
52	MP1C	Z	-44.594	2
53	MP1C	Mx	0	2
54	MP2A	X	45.964	2
55	MP2A	Z	-26.537	2
56	MP2A	Mx	.025	2
57	MP2A MP2B	X	73.096	2
	MP2B MP2B			
<u>88</u>			-42.202	2
<u>59</u>	MP2B	Mx	014	2
70	MP2C	<u> </u>	77.239	2
71	MP2C	Z	-44.594	2
72	MP2C	Mx	0	2
73	MP2A	Х	11.125	4
74	MP2A	Z	-6.423	4
75	MP2A	Mx	.006	4
76	MP2B	X	14.732	4
77	MP2B	Z	-8.505	4
78	MP2B	Mx	003	4
79	MP2C	X	15.283	4
30	MP2C	Z	-8.823	4
31	MP2C	Mx	0	4
32	OVP1	X	143.313	1
33	OVP1	Z	-82.742	1
34	OVP1	Mx	0	1
35	MP3A	X	94.117	1
36	MP3A	Z	-54.338	1
37	MP3A	Mx	051	1
	MP3A		94.117	
38 39	MP3A MP3A	X Z		<u> </u>
			-54.338	
0	MP3A	<u> </u>	051	5
91	MP3B	<u> </u>	148.095	1
2	MP3B	Z	-85.502	1
)3	MP3B	Mx	.029	1
94	MP3B	X	148.095	5
95	MP3B	Z	-85.502	5
96	MP3B	Mx	.029	5
97	MP3C	X	156.337	1
98	MP3C	Z	-90.261	1
99	MP3C	Mx	0	1
00	MP3C	X	156.337	5
01	MP3C	Z	-90.261	5
02	MP3C	Mx	0	5
03	OVP2	X	143.313	1
04	OVP2	7	-82.742	1
νT		_	02.172	

Member Point Loads (BLC 5 : Antenna Wo (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
105	OVP2	Mx	0	1

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	45.936	2
2	MP4A	Z	0	2
3	MP4A	Mx	023	2
4	MP4A	Х	45.936	4
5	MP4A	Z	0	4
6	MP4A	Mx	023	4
7	MP4B	X	110.025	2
8	MP4B	Z	0	2
9	MP4B	Mx	01	2
10	MP4B	X	110.025	4
11	MP4B	Z	0	4
12	MP4B	Mx	01	4
13	MP4C	X Z	95.031	2
14	MP4C		0	2
15	MP4C	Mx	.024	2
16	MP4C	X	95.031	4
17	MP4C	Z	0	4
18	MP4C	Mx	.024	4
19	MP2A	Х	144.934	1
20	MP2A	Z	0	1
21	MP2A	Mx	057	1
22	MP2A	X	144.934	5
23	MP2A	Z	0	5
24	MP2A	Mx	057	5
25	MP2B	Х	214.999	1
26	MP2B	Z	0	1
27	MP2B	Mx	142	1
28	MP2B	X	214.999	5
29	MP2B	Z	0	5
30	MP2B	Mx	142	5
31	MP2C	X	198.607	1
32	MP2C	Z	0	1
33	MP2C	Mx	.15	1
34	MP2C	X	198.607	5
35	MP2C	Z	0	5
36	MP2C	Mx	.15	5
37	MP2A	X	144.934	1
38	MP2A	Z	0	1
39	MP2A	Mx	086	1
40	MP2A	X	144.934	5
41	MP2A	Z	0	5
42	MP2A	Mx	086	5
43	MP2B		214.999	1
44	MP2B	X Z	0	1
45	MP2B	Mx	.105	1
46	MP2B	X	214.999	5
47	MP2B	Z	0	5
48	MP2B	Mx	.105	5
49	MP2C	X	198.607	1
50	MP2C	Z	0	1
51	MP2C	Mx	051	1
52	MP2C	X	198.607	5

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
53	MP2C	Z	0	5
54	MP2C	Mx	051	5
55	MP1A	X	60.509	2
56	MP1A	Z	0	2
57	MP1A	Mx	.03	2
58	MP1B	X	88.297	2
59	MP1B	Z	0	2
60	MP1B	Mx	.008	2
61	MP1C	X	81.796	2
62	MP1C	Z	0	2
63	MP1C	Mx	02	2
64	MP2A	Х	49.524	2
65	MP2A	Z	0	2
66	MP2A	Mx	.024	2
67	MP2B	X	87.955	2
68	MP2B	Z	0	2
69	MP2B	Mx	.008	2
70	MP2C	X	78.964	2
71	MP2C	Z	0	2
72	MP2C	Mx	02	2
73	MP2A	X	12.374	4
74	MP2A	Z	0	4
75	MP2A	Mx	.006	4
76	MP2B	X	17.483	4
77	MP2B	Z	0	4
78	MP2B	Mx	.002	4
79	MP2C	Х	16.288	4
80	MP2C	Z	0	4
81	MP2C	Mx	004	4
82	OVP1	Х	180.761	1
83	OVP1	Z	0	1
84	OVP1	Mx	0	1
85	MP3A	Χ	101.612	1
86	MP3A	Z	0	1
87	MP3A	Mx	05	1
88	MP3A	X	101.612	5
89	MP3A	Z	0	5
90	MP3A	Mx	05	5
91	MP3B	X	178.069	11
92	MP3B	Z	0	1
93	MP3B	Mx	015	1
94	MP3B	X	178.069	5
95	MP3B	Z	0	5
96	MP3B	Mx	015	5
97	MP3C	X Z	160.182	1
98	MP3C		0	1
99	MP3C	Mx	.04	1
100	MP3C	X	160.182	5
101	MP3C	Z	0	5
102	MP3C	Mx	.04	5
103	OVP2	X	180.761	1
104	OVP2	Z	0	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

Member Label

Direction

Magnitude[lb,k-ft]

Location[ft,%]

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

1 MP4A X 62 405 2 3 MP4A X 62 405 4 5 MP4A X 62 405 4 6 MP4A Z 36 03 4 6 MP4A X 62 405 4 7 MP4B X 72 661 2 9 MP4B X 72 661 4 11 MP4B X 72 661 4 12 MP4B Mx -027 2 10 MP4B X 72 661 4 12 MP4C X 52 767 2 14 MP4C X 52 767 4 17 MP4C X 52 767 4 13 MP4C Mx .026 4 19 MP4C X 150 249 1 20 MP2A Z 86 746 1 21 MP2A Z 86		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3 MP4A Mx 028 2 4 MP4A X $62,405$ 4 5 MP4A Z $36,03$ 4 6 MP4A Mx 028 4 7 MP4B X $72,661$ 2 9 MP4B X $72,661$ 4 11 MP4B X $72,661$ 4 12 MP4B X $72,661$ 4 13 MP4C X $52,767$ 2 14 MP4C X $52,767$ 4 15 MP4C X $52,767$ 4 16 MP4C X $50,249$ 1 19 MP2A Z $66,746$ 1 21 MP2A Z $66,746$ 1 22 MP2A X $150,249$ 5 23 MP2A Z $66,746$ 5 24 MP2A <td></td> <td></td> <td>X</td> <td></td> <td></td>			X		
6 MP4A Mx 028 4 7 MP4B X 72.661 2 8 MP4B Mx 027 2 10 MP4B Mx 027 2 11 MP4B X 72.661 4 12 MP4B X 027 4 13 MP4C X 52.767 2 14 MP4C X 52.767 2 16 MP4C X 52.767 4 17 MP4C X 52.767 4 18 MP4C X 1026 4 19 MP2A Z 80.746 1 21 MP2A Z 80.746 1 22 MP2A Z 93.22 1 23 MP2A Z 93.22 1 24 MP2A X 161.462 5 29 MP2B Z			X		
7 MP4B X 72.661 2 9 MP4B Mx -0.07 2 10 MP4B X 72.661 4 11 MP4B X 72.661 4 12 MP4B Mx -0.07 4 13 MP4C X 52.767 2 14 MP4C Z 30.465 2 15 MP4C Mx 0.226 2 16 MP4C X 52.767 4 19 MP4C X 50.249 1 20 MP2A Z 86.746 1 21 MP2A Z 86.746 5 24 MP2A Z 86.746 5 24 MP2A Z 93.22 1 26 MP2B Z 93.22 5 30 MP2B X 161.462 1 28 MP2B X					
8 MP4B Z 41,951 2 9 MP4B Mx -027 2 10 MP4B X 72,661 4 11 MP4B Z 41,951 4 12 MP4B Mx -027 4 13 MP4C X 52,767 2 14 MP4C X 52,767 2 15 MP4C X 52,767 4 17 MP4C X 52,767 4 18 MP4C X 52,767 4 19 MP4C X 52,767 4 20 MP2A Z 86,746 1 21 MP2A X 150,249 5 23 MP2A Z 86,746 5 24 MP2A Mx -161,462 5 25 MP2B Z 93,22 1 1 26 MP2B					
9 MP4B Mx -027 2 10 MP4B X 72.661 4 11 MP4B X 72.661 4 13 MP4C X 52.767 2 14 MP4C Z 30.465 2 15 MP4C Z 30.465 4 16 MP4C X 52.767 4 16 MP4C Z 30.465 4 19 MP2A X 150.249 1 20 MP2A Z 86.746 1 21 MP2A X 150.249 1 22 MP2A Z 86.746 5 24 MP2A X 161.462 1 26 MP2B Z 93.22 1 27 MP2B X 161.462 5 28 MP2B X 161.462 1 29 MP2B X			<u> </u>		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
12 MP4B Mx 027 4 13 MP4C X 52.767 2 14 MP4C Z 30.465 2 15 MP4C X 52.767 4 16 MP4C X 52.767 4 17 MP4C X 52.767 4 18 MP4C X 52.767 4 19 MP4C X 50.249 1 20 MP2A Z 86.746 1 21 MP2A Z 86.746 5 23 MP2A X 150.249 5 23 MP2A X 161.462 1 26 MP2B X 161.462 1 1 28 MP2B X 161.462 5 5 30 MP2B X 190.712 1 1 32 MP2C X 139.712 5 5					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
14 MP4C Z 30.465 2 16 MP4C X 52.767 4 17 MP4C Z 30.465 4 18 MP4C Mx .026 4 19 MP2A X 150.249 1 20 MP2A Z 86.746 1 21 MP2A X 150.249 5 23 MP2A Z 86.746 5 24 MP2A X 161.462 1 25 MP2B X 161.462 1 26 MP2B Z 93.22 5 30 MP2B Z 93.22 5 30 MP2B Z 93.22 5 30 MP2B Z 93.22 5 31 MP2C X 139.712 1 32 MP2C X 139.712 1 33 MP2C X					
15 MP4C Mx 026 2 16 MP4C X 52.767 4 17 MP4C Z 30.465 4 18 MP4C Mx 0.26 4 19 MP2A X 150.249 1 20 MP2A Z 86.746 1 21 MP2A X 150.249 5 23 MP2A Z 86.746 5 24 MP2A X 161.462 1 26 MP2B X 161.462 5 26 MP2B X 161.462 5 29 MP2B X 161.462 5 30 MP2B Mx 143 5 31 MP2C X 139.712 1 32 MP2C X 139.712 1 33 MP2C X 139.712 1 34 MP2A Z			X		
16 MP4C X 52.767 4 17 MP4C Z 30.465 4 18 MP4C Mx 0.026 4 19 MP2A X 150.249 1 20 MP2A Z 86.746 1 21 MP2A X 150.249 5 23 MP2A Z 86.746 5 24 MP2A Mx 001 5 25 MP2B X 161.462 1 26 MP2B Z 93.22 1 28 MP2B X 161.462 5 30 MP2B Z 93.22 5 30 MP2C X 139.712 1 33 MP2C X 139.712 1 33 MP2C X 139.712 1 34 MP2C X 139.712 1 35 MP2C X	14			30.465	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
18 MP4C Mx 026 4 19 MP2A X 150.249 1 20 MP2A Z 86.746 1 21 MP2A X 150.249 5 23 MP2A Z 86.746 5 24 MP2A Z 9.322 1 26 MP2B Z 93.22 5 30 MP2B Z 93.22 5 30 MP2C X 139.712 1 32 MP2C Z 80.663 1 33 MP2C X 139.712 5 35 MP2C Z 80.663 5 36 MP2C X 150.249 1 37 MP2A X					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
22 MP2A X 150,249 5 23 MP2A Z 86,746 5 24 MP2A Mx 001 5 25 MP2B X 161,462 1 26 MP2B Z 93,22 1 27 MP2B X 161,462 5 29 MP2B Z 93,22 5 30 MP2B X 161,462 5 30 MP2B X 161,462 5 31 MP2C X 139,712 1 32 MP2C Z 80,663 1 33 MP2C Mx 117 1 34 MP2C X 139,712 5 35 MP2C Z 80,663 5 36 MP2C X 150,249 1 38 MP2A Z 86,746 5 41 MP2A Z					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
24 MP2A Mx -001 5 25 MP2B X 161.462 1 26 MP2B Z 93.22 1 27 MP2B Mx 143 1 28 MP2B X 161.462 5 29 MP2B Z 93.22 5 30 MP2B Mx 143 5 31 MP2C X 139.712 1 32 MP2C Z 80.663 1 34 MP2C X 139.712 5 35 MP2C Z 80.663 5 36 MP2C X 139.712 5 37 MP2A X 160.249 1 38 MP2A Z 86.746 1 39 MP2A Z 86.746 5 41 MP2A Z 86.746 5 42 MP2A Z </td <td></td> <td></td> <td></td> <td></td> <td></td>					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
35MP2CZ 80.663 5 36 MP2CMx.117 5 37 MP2AX 150.249 1 38 MP2AZ 86.746 1 39 MP2AX 150.249 5 41 MP2AX 150.249 5 41 MP2AZ 86.746 5 42 MP2AX 150.249 5 43 MP2BZ 86.746 5 43 MP2BX 161.462 1 44 MP2BZ 93.22 1 45 MP2BX 161.462 5 47 MP2BZ 93.22 5 48 MP2BX 161.462 5 49 MP2CX 139.712 1 50 MP2CZ 80.663 1 51 MP2CX 139.712 1 52 MP2CX 139.712 5 53 MP2CX 139.712 5 54 MP2CX 023 5 54 MP2CMx $.023$ 5 54 MP2CMx $.023$ 5 56 MP1AX 62.211 2 57 MP1AMx $.028$ 2					
36 MP2C Mx .117 5 37 MP2A X 150.249 1 38 MP2A Z 86.746 1 39 MP2A X 132 1 40 MP2A X 150.249 5 41 MP2A X 150.249 5 41 MP2A Z 86.746 5 42 MP2A Z 86.746 5 42 MP2A Z 86.746 5 43 MP2B Z 93.22 1 44 MP2B Z 93.22 1 45 MP2B X 161.462 5 46 MP2B X 161.462 5 47 MP2B Z 93.22 5 48 MP2B Mx .023 5 49 MP2C X 139.712 1 50 MP2C X					
37 MP2A X 150.249 1 38 MP2A Z 86.746 1 39 MP2A Mx 132 1 40 MP2A X 150.249 5 41 MP2A Z 86.746 5 42 MP2A Z 86.746 5 43 MP2B Z 93.22 1 44 MP2B Z 93.22 1 45 MP2B X 161.462 5 46 MP2B Z 93.22 1 46 MP2B Z 93.22 5 47 MP2B Z 93.22 5 48 MP2B X 161.462 5 49 MP2C X 161.462 5 49 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C X					
38 MP2A Z 86.746 1 39 MP2A Mx 132 1 40 MP2A X 150.249 5 41 MP2A Z 86.746 5 42 MP2A Mx 132 5 43 MP2B X 161.462 1 44 MP2B Z 93.22 1 45 MP2B X 161.462 5 47 MP2B Z 93.22 1 46 MP2B X 161.462 5 47 MP2B Z 93.22 5 48 MP2B X 161.462 5 49 MP2C X 139.712 1 50 MP2C X 139.712 1 51 MP2C X 139.712 5 53 MP2C X 139.712 5 53 MP2C X					
39 MP2A Mx 132 1 40 MP2A X 150.249 5 41 MP2A Z 86.746 5 42 MP2A Mx 132 5 43 MP2B X 161.462 1 44 MP2B Z 93.22 1 45 MP2B Mx .023 1 46 MP2B Z 93.22 5 48 MP2B Z 93.22 5 49 MP2C X 161.462 5 49 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C Mx .023 1 52 MP2C Z <t< td=""><td></td><td></td><td></td><td></td><td>1</td></t<>					1
40 MP2A X 150.249 5 41 MP2A Z 86.746 5 42 MP2A Mx 132 5 43 MP2B X 161.462 1 44 MP2B Z 93.22 1 45 MP2B Mx .023 1 46 MP2B Z 93.22 5 47 MP2B Z 93.22 5 48 MP2B Z 93.22 5 49 MP2C X 161.462 5 50 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C X 139.712 5 53 MP2C Z <					1
41 MP2A Z 86.746 5 42 MP2A Mx 132 5 43 MP2B X 161.462 1 44 MP2B Z 93.22 1 45 MP2B Mx .023 1 46 MP2B X 161.462 5 47 MP2B Z 93.22 5 48 MP2B Z 93.22 5 48 MP2B Z 93.22 5 48 MP2B X 161.462 5 49 M2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C X 139.712 5 53 MP2C Z 80.663 5 54 MP2C X 139.712 5 55 MP1A X 62.211 2 56 MP1A X					5
42 MP2A Mx 132 5 43 MP2B X 161.462 1 44 MP2B Z 93.22 1 45 MP2B X 161.462 5 46 MP2B X 161.462 5 47 MP2B X 161.462 5 47 MP2B Z 93.22 5 48 MP2B Z 93.22 5 48 MP2B X 161.462 5 50 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C X 139.712 5 53 MP2C X 139.712 5 53 MP2C Z 80.663 5 54 MP2C X 139.712 5 55 MP1A X 62.211 2 56 MP1A Z					
43 MP2B X 161.462 1 44 MP2B Z 93.22 1 45 MP2B Mx .023 1 46 MP2B X 161.462 5 47 MP2B X 161.462 5 48 MP2B Z 93.22 5 48 MP2B Mx .023 5 49 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C X 139.712 5 53 MP2C Z 80.663 5 54 MP2C X 023 5 55 MP1A X 62.211 2 56 MP1A Z					
44 MP2B Z 93.22 1 45 MP2B Mx .023 1 46 MP2B X 161.462 5 47 MP2B Z 93.22 5 48 MP2B X 161.462 5 49 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C X 139.712 5 52 MP2C X 139.712 5 53 MP2C X 139.712 5 54 MP2C X 139.712 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx <td></td> <td></td> <td></td> <td></td> <td></td>					
45 MP2B Mx .023 1 46 MP2B X 161.462 5 47 MP2B Z 93.22 5 48 MP2B Mx .023 5 49 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C Mx .023 1 52 MP2C X 139.712 5 53 MP2C X 139.712 5 54 MP2C X 139.712 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2			7		
46 MP2B X 161.462 5 47 MP2B Z 93.22 5 48 MP2B Mx .023 5 49 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C Mx .023 5 52 MP2C X 139.712 5 53 MP2C X 139.712 5 54 MP2C X 139.712 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2					
47 MP2B Z 93.22 5 48 MP2B Mx .023 5 49 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C X 139.712 5 52 MP2C X 139.712 5 53 MP2C X 139.712 5 53 MP2C Z 80.663 5 54 MP2C Z 80.663 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2					
48 MP2B Mx .023 5 49 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C Mx .023 1 52 MP2C X 139.712 5 53 MP2C X 139.712 5 53 MP2C Z 80.663 5 54 MP2C Mx .023 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2					
49 MP2C X 139.712 1 50 MP2C Z 80.663 1 51 MP2C Mx .023 1 52 MP2C X 139.712 5 53 MP2C Z 80.663 5 54 MP2C Mx .023 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2					
50 MP2C Z 80.663 1 51 MP2C Mx .023 1 52 MP2C X 139.712 5 53 MP2C Z 80.663 5 54 MP2C Mx .023 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2					
51 MP2C Mx .023 1 52 MP2C X 139.712 5 53 MP2C Z 80.663 5 54 MP2C Mx .023 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2			7		•
52 MP2C X 139.712 5 53 MP2C Z 80.663 5 54 MP2C Mx .023 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2					
53 MP2C Z 80.663 5 54 MP2C Mx .023 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2					
54 MP2C Mx .023 5 55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2					5
55 MP1A X 62.211 2 56 MP1A Z 35.918 2 57 MP1A Mx .028 2					
56 MP1A Z 35.918 2 57 MP1A Mx .028 2					
57 MP1A Mx .028 2			7		2
			·		

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP1B	X	66.658	2
59	MP1B	Z	38.485	2
60	MP1B	Mx	.025	2
61	MP1C	X	58.033	2
62	MP1C	Z	33.505	2
63	MP1C	Mx	029	2
64	MP2A	X	56.455	2
65	MP2A	Z	32.594	2
66	MP2A	Mx	.025	2
67	MP2B	X	62.605	2
68	MP2B	Z	36.145	2
69	MP2B	Mx	.023	2
70	MP2C	X	50.675	2
71	MP2C	Z	29.257	2
72	MP2C	Mx	025	2
73	MP2A	X	12.519	4
74	MP2A	Z	7.228	4
75	MP2A	Mx	.006	4
76	MP2B	Х	13.337	4
77	MP2B	Z	7.7	4
78	MP2B	Mx	.005	4
79	MP2C	Х	11.751	4
80	MP2C	Z	6.785	4
81	MP2C	Mx	006	4
82	OVP1	X	143.313	1
83	OVP1	Z	82.742	1
84	OVP1	Mx	0	1
85	MP3A	X	114.988	1
86	MP3A	Z	66.388	1
87	MP3A	Mx	051	1
88	MP3A	X	114.988	5
89	MP3A	Z	66.388	5
90	MP3A	Mx	051	5
91	MP3B	Х	127.224	1
92	MP3B	Z	73.453	1
93	MP3B	Mx	047	1
94	MP3B	Х	127.224	5
95	MP3B	Z	73.453	5
96	MP3B	Mx	047	5
97	MP3C	X	103.49	1
98	MP3C	Z	59.75	1
99	MP3C	Mx	.052	1
100	MP3C	X	103.49	5
101	MP3C	Z	59.75	5
102	MP3C	Mx	.052	5
103	OVP2	X	143.313	1
104	OVP2	Z	82.742	1
105	OVP2	Mx	0	1
00	UVPZ		U	I

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	52.052	2
2	MP4A	Z	90.156	2
3	MP4A	Mx	018	2
4	MP4A	Х	52.052	4
5	MP4A	Z	90.156	4

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	018	4
7	MP4B	<u> </u>	25.929	2
8	MP4B	Z	44.91	2
9	MP4B	Mx	024	2
10	MP4B	X	25.929	4
11	MP4B	Z	44.91	4
12	MP4B	Mx	024	4
13	MP4C	X	21.94	2
14	MP4C	Z	38.001	2
15	MP4C	Mx	.022	2
16	MP4C	Х	21.94	4
17	MP4C	Z	38.001	4
18	MP4C	Mx	.022	4
19	MP2A	X	104.263	1
20	MP2A	Z	180.588	1
21	MP2A	Mx	.079	1
22	MP2A	X	104.263	5
23	MP2A	Z	180.588	5
				5
24	MP2A	Mx	.079	
25	MP2B	<u> </u>	75.704	1
26	MP2B	Z	131.123	
27	MP2B	Mx	101	1
28	MP2B	X	75.704	5
29	MP2B	Z	131.123	5
30	MP2B	Mx	101	5
31	MP2C	X	71.343	1
32	MP2C	Z	123.569	1
33	MP2C	Mx	.071	1
34	MP2C	Х	71.343	5
35	MP2C	Z	123.569	5
36	MP2C	Mx	.071	5
37	MP2A	X	104.263	1
38	MP2A	Z	180.588	1
39	MP2A	Mx	15	1
40	MP2A	X	104.263	5
41	MP2A	Z	180.588	5
42	MP2A	Mx	15	5
43	MP2B	X	75.704	1
43		Z		1
44 45	MP2B		131.123	
	MP2B	Mx	041	1
46	MP2B	X 7	75.704	5
47	MP2B	Z	131.123	5
48	MP2B	Mx	041	5
49	MP2C	<u> </u>	71.343	1
50	MP2C	Z	123.569	1
51	MP2C	Mx	.071	1
52	MP2C	X	71.343	5
53	MP2C	Z	123.569	5
54	MP2C	Mx	.071	5
55	MP1A	Х	42.865	2
56	MP1A	Z	74.244	2
57	MP1A	Mx	.015	2
58	MP1B	X	31.538	2
59	MP1B	Z	54.626	2
60	MP1B	Mx	.03	2
61	MP1C	X	29.809	2
62	MP1C MP1C	7	51.631	2
02	IVIE IC	L 2	01.031	2

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP1C	Mx	03	2
64	MP2A	X Z	42.202	2
65	MP2A	Z	73.096	2
66	MP2A	Mx	.014	2
67	MP2B	X	26.537	2
68	MP2B	Z	45.964	2
69	MP2B	Mx	.025	2
70	MP2C	X	24.145	2
71	MP2C	Z	41.821	2
72	MP2C	Mx	024	2
73	MP2A	X	8.505	4
74	MP2A	Z	14.732	4
75	MP2A	Mx	.003	4
76	MP2B	X	6.423	4
77	MP2B	Z	11.125	4
78	MP2B	Mx	.006	4
79	MP2C	X	6.105	4
80	MP2C	Z	10.574	4
81	MP2C	Mx	006	4
82	OVP1	Х	67.464	1
83	OVP1	Z	116.851	1
84	OVP1	Mx	0	1
85	MP3A	X	85.502	1
86	MP3A	Z	148.095	1
87	MP3A	Mx	029	1
88	MP3A	X	85.502	5
89	MP3A	Z	148.095	5
90	MP3A	Mx	029	5
91	MP3B	Х	54.338	1
92	MP3B	Z	94.117	1
93	MP3B	Mx	051	1
94	MP3B	Х	54.338	5
95	MP3B	Z	94.117	5
96	MP3B	Mx	051	5
97	MP3C	X	49.579	1
98	MP3C	Z	85.874	1
99	MP3C	Mx	.05	1
100	MP3C	Х	49.579	5
101	MP3C	Z	85.874	5
102	MP3C	Mx	.05	5
103	OVP2	X	67.464	1
104	OVP2	Z	116.851	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	2
2	MP4A	Z	110.025	2
3	MP4A	Mx	.01	2
4	MP4A	Х	0	4
5	MP4A	Z	110.025	4
6	MP4A	Mx	.01	4
7	MP4B	Х	0	2
8	MP4B	Z	45.936	2
9	MP4B	Mx	023	2
10	MP4B	X	0	4

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
11	MP4B	Z	45.936	4
12	MP4B	Mx	023	4
13	MP4C	X	0	2
14	MP4C	Z	60.93	2
15	MP4C	Mx	.026	2
16	MP4C	X	0	4
17	MP4C	Ζ	60.93	4
18	MP4C	Mx	.026	4
19	MP2A	X	0	1
20	MP2A	Z	214.999	1
21	MP2A	Mx	.142	1
22	MP2A	X	0	5
23	MP2A	Z	214.999	5
24	MP2A	Mx	.142	5
25	MP2B	X	0	1
26	MP2B	Z	144.934	1
27	MP2B	Mx	057	1
28	MP2B	Х	0	5
29	MP2B	Z	144.934	5
30	MP2B	Mx	057	5
31	MP2C	Х	0	1
32	MP2C	Z	161.326	1
33	MP2C	Mx	.023	1
34	MP2C	X	0	5
35	MP2C	Z	161.326	5
36	MP2C	Mx	.023	5
37	MP2A	X	0	1
38	MP2A	Z	214.999	1
39	MP2A	Mx	105	1
40	MP2A	X	0	5
41	MP2A	Z	214.999	5
42	MP2A	Mx	105	5
43	MP2B	X	0	1
43	MP2B	Z	144.934	1
44	MP2B	Mx	086	1
45	MP2B	X	0	5
40	MP2B	Z	÷	5
			144.934	
48	MP2B	Mx	086	5
49	MP2C	Z	0	1
50	MP2C		161.326	1
51	MP2C	Mx X	.117	1
52	MP2C	X 7	0	5
53	MP2C		161.326	5
54	MP2C	Mx V	.117	5
55	MP1A	X 7	0	2
56	MP1A	Z	88.297	2
57	MP1A	Mx X	008	2
58	MP1B	<u> </u>	0	2
59	MP1B	Z	60.509	2
60	MP1B	Mx	.03	2
61	MP1C	<u> </u>	0	2
62	MP1C	Z	67.01	2
63	MP1C	Mx	029	2
64	MP2A	<u> </u>	0	2
65	MP2A	Z	87.955	2
66	MP2A	Mx	008	2
67	MP2B	X	0	2
			68327-VZW_MT_LO_H_r3d1	Page 28

Member Point Loads (BLC 9 : Antenna Wo (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2B	Z	49.524	2
69	MP2B	Mx	.024	2
70	MP2C	Х	0	2
71	MP2C	Z	58.515	2
72	MP2C	Mx	025	2
73	MP2A	Х	0	4
74	MP2A	Z	17.483	4
75	MP2A	Mx	002	4
76	MP2B	Х	0	4
77	MP2B	Z	12.374	4
78	MP2B	Mx	.006	4
79	MP2C	X	0	4
80	MP2C	Z	13.569	4
81	MP2C	Mx	006	4
82	OVP1	Х	0	1
83	OVP1	Z	119.65	1
84	OVP1	Mx	0	1
85	MP3A	Х	0	1
86	MP3A	Z	178.069	1
87	MP3A	Mx	.015	1
88	MP3A	Х	0	5
89	MP3A	Z	178.069	5
90	MP3A	Mx	.015	5
91	MP3B	Х	0	1
92	MP3B	Z	101.612	1
93	MP3B	Mx	05	1
94	MP3B	Х	0	5
95	MP3B	Z	101.612	5
96	MP3B	Mx	05	5
97	MP3C	Х	0	1
98	MP3C	Z	119.5	1
99	MP3C	Mx	.052	1
100	MP3C	Х	0	5
101	MP3C	Z	119.5	5
102	MP3C	Mx	.052	5
103	OVP2	Х	0	1
104	OVP2	Z	119.65	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-41.951	2
2	MP4A	Z	72.661	2
3	MP4A	Mx	.027	2
4	MP4A	Х	-41.951	4
5	MP4A	Z	72.661	4
6	MP4A	Mx	.027	4
7	MP4B	Х	-36.03	2
8	MP4B	Z	62.405	2
9	MP4B	Mx	028	2
10	MP4B	Х	-36.03	4
11	MP4B	Z	62.405	4
12	MP4B	Mx	028	4
13	MP4C	Х	-47.516	2
14	MP4C	Z	82.299	2
15	MP4C	Mx	.024	2

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP4C	X	-47.516	4
17	MP4C	Z	82.299	4
18	MP4C	Mx	.024	4
19	MP2A	X	-93.22	1
20	MP2A	Z	161.462	1
21	MP2A	M×	.143	1
22	MP2A	X	-93.22	5
23	MP2A	Z	161.462	5
24	MP2A	Mx	.143	5
25	MP2B	Χ	-86.746	11
26	MP2B	Z	150.249	1
27	MP2B	Mx	001	1
28	MP2B	X	-86.746	5
29	MP2B	Z	150.249	5
30	MP2B	Mx	001	5
31	MP2C	X	-99.303	1
32	MP2C	Z	171.998	1
33	MP2C	Mx	051	1
34	MP2C	X	-99.303	5
35	MP2C	Z	171.998	5
36	MP2C	Mx	051	5
37	MP2A	X	-93.22	1
38	MP2A	Z	161.462	1
39	MP2A	Mx	023	1
40	MP2A	X	-93.22	5
41	MP2A	Z	161.462	5
42	MP2A	Mx	023	5
43	MP2B	X	-86.746	1
44	MP2B	Z	150.249	1
45	MP2B	Mx	132	1
46	MP2B	X	-86.746	5
47	MP2B	Z	150.249	5
48	MP2B	Mx	132	5
49	MP2C	X	-99.303	1
50	MP2C	Z	171.998	1
51	MP2C	Mx	.15	1
52	MP2C	X	-99.303	5
53	MP2C	Z	171.998	5
54	MP2C	Mx	.15	5
55	MP1A	X	-38.485	2
56	MP1A	Z	66.658	2
57	MP1A	Mx	025	2
58	MP1B	Х	-35.918	2
59	MP1B	Z	62.211	2
60	MP1B	Mx	.028	2
61	MP1C	X	-40.898	2
62	MP1C	Z	70.837	2
63	MP1C	Mx	02	2
64	MP2A	X	-36.145	2
65	MP2A	Z	62.605	2
66	MP2A	Mx	023	2
67	MP2B	X	-32.594	2
68	MP2B	Z	56.455	2
69	MP2B	Mx	.025	2
70	MP2C	X	-39.482	2
71	MP2C	Z	68.385	2
72	MP2C	Mx	02	2
			168327-VZW_MT_LO_H_r3d1	Page 30

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
73	MP2A	Х	-7.7	4
74	MP2A	Z	13.337	4
75	MP2A	Mx	005	4
76	MP2B	Х	-7.228	4
77	MP2B	Z	12.519	4
78	MP2B	Mx	.006	4
79	MP2C	Х	-8.144	4
80	MP2C	Z	14.105	4
81	MP2C	Mx	004	4
82	OVP1	Х	-67.464	1
83	OVP1	Z	116.851	1
84	OVP1	Mx	0	1
85	MP3A	Х	-73.453	1
86	MP3A	Z	127.224	1
87	MP3A	Mx	.047	1
88	MP3A	Х	-73.453	5
89	MP3A	Z	127.224	5
90	MP3A	Mx	.047	5
91	MP3B	Х	-66.388	1
92	MP3B	Z	114.988	1
93	MP3B	Mx	051	1
94	MP3B	Х	-66.388	5
95	MP3B	Z	114.988	5
96	MP3B	Mx	051	5
97	MP3C	Х	-80.091	1
98	MP3C	Z	138.721	1
99	MP3C	Mx	.04	1
100	MP3C	Х	-80.091	5
101	MP3C	Z	138.721	5
102	MP3C	Mx	.04	5
103	OVP2	Х	-67.464	1
104	OVP2	Z	116.851	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-44.91	2
2	MP4A	Z	25.929	2
3	MP4A	Mx	.024	2
4	MP4A	Х	-44.91	4
5	MP4A	Z	25.929	4
6	MP4A	Mx	.024	4
7	MP4B	Х	-90.156	2
8	MP4B	Z	52.052	2
9	MP4B	Mx	018	2
10	MP4B	Х	-90.156	4
11	MP4B	Z	52.052	4
12	MP4B	Mx	018	4
13	MP4C	Х	-97.065	2
14	MP4C	Z	56.041	2
15	MP4C	Mx	0	2
16	MP4C	X	-97.065	4
17	MP4C	Z	56.041	4
18	MP4C	Mx	0	4
19	MP2A	Х	-131.123	1
20	MP2A	Z	75.704	1

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

22 MP2A X -131.123 4 23 MP2A Z 75.704 4 24 MP2A Mx .101 4 25 MP2B X -180.588 -1	1 5 5 1 1	
23 MP2A Z 75.704 24 24 MP2A Mx .101 25 25 MP2B X -180.588 7	5 5 1 1	
24 MP2A Mx .101 <th .10<="" td=""><td>5 1 1</td></th>	<td>5 1 1</td>	5 1 1
25 MP2B X -180.588	1	
	1	
	1	
	5	
	5	
	5	
	1	
	1	
33 MP2C Mx127	-	
	5	
	5	
	1	
	1	
	1	
	5	
	5	
	5	
	1	
	1	
	1	
	5	
	5	
	5	
	1	
	1	
	1	
	ō	
	5	
54 MP2C Mx .127	5	
	2	
	2	
	2	
	2	
	2	
	2	
	2	
	2	
	2	
	2	
	2	
	2	
	2	
	2	
69 MP2B Mx .014 2 70 MP2C X -77.239 2	<u>2</u> 2	
	<u>2</u> 2	
	<u>2</u> 1	
	+ 1	
	+ 1	
	+ 1	
	, 1	
RISA-3D Version 17.0.4 IR:\ \ \ \ \ \ \ \ \ Rev 0\RISA\468327-\/Z\W MT I O H r3d] H H \ \ \	Page 32	

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP2B	Mx	.003	4
79	MP2C	Х	-15.283	4
80	MP2C	Z	8.823	4
81	MP2C	Mx	0	4
82	OVP1	Х	-143.313	1
83	OVP1	Z	82.742	1
84	OVP1	Mx	0	1
85	MP3A	Х	-94.117	1
86	MP3A	Z	54.338	1
87	MP3A	Mx	.051	1
88	MP3A	Х	-94.117	5
89	MP3A	Z	54.338	5
90	MP3A	Mx	.051	5
91	MP3B	Х	-148.095	1
92	MP3B	Z	85.502	1
93	MP3B	Mx	029	1
94	MP3B	Х	-148.095	5
95	MP3B	Z	85.502	5
96	MP3B	Mx	029	5
97	MP3C	Х	-156.337	1
98	MP3C	Z	90.261	1
99	MP3C	Mx	0	1
100	MP3C	Х	-156.337	5
101	MP3C	Z	90.261	5
102	MP3C	Mx	0	5
103	OVP2	Х	-143.313	1
104	OVP2	Z	82.742	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-45.936	2
2	MP4A	Z	0	2
3	MP4A	Mx	.023	2
4	MP4A	Х	-45.936	4
5	MP4A	Z	0	4
6	MP4A	Mx	.023	4
7	MP4B	Х	-110.025	2
8	MP4B	Z	0	2
9	MP4B	Mx	.01	2
10	MP4B	Х	-110.025	4
11	MP4B	Z	0	4
12	MP4B	Mx	.01	4
13	MP4C	Х	-95.031	2
14	MP4C	Z	0	2
15	MP4C	Mx	024	2
16	MP4C	Х	-95.031	4
17	MP4C	Z	0	4
18	MP4C	Mx	024	4
19	MP2A	Х	-144.934	1
20	MP2A	Z	0	1
21	MP2A	Mx	.057	1
22	MP2A	Х	-144.934	5
23	MP2A	Z	0	5
24	MP2A	Mx	.057	5
25	MP2B	Х	-214.999	1

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

00	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
26	MP2B	Z	0	1
27	MP2B	Mx	.142	1
28	MP2B	X 7	-214.999	5
29	MP2B	Z	0	5
30	MP2B	Mx	.142	5
31	MP2C	X 7	-198.607	1
32	MP2C	Z	0	1
33	MP2C	Mx	15	1
34	MP2C	X 7	-198.607	5
35	MP2C	Z	0	5
36	MP2C	Mx	15	5
37	MP2A	X	-144.934	1
38	MP2A	Z	0	1
39	MP2A	Mx	.086	1
40	MP2A	X	-144.934	5
41	MP2A	Z	0	5
42	MP2A	Mx	.086	5
43	MP2B	<u> </u>	-214.999	1
44	MP2B	Z	0	1
45	MP2B	Mx	105	1
46	MP2B	X	-214.999	5
47	MP2B	Z	0	5
48	MP2B	Mx	105	5
49	MP2C	<u> </u>	-198.607	1
50	MP2C	Z	0	1
51	MP2C	Mx	.051	1
52	MP2C	X	-198.607	5
53	MP2C	Z	0	5
54	MP2C	Mx	.051	5
55	MP1A	<u> </u>	-60.509	2
56	MP1A	Z	0	2
57	MP1A	Mx	03	2
58	MP1B	X	-88.297	2
59	MP1B	Z	0	2
60	MP1B	Mx	008	2
61	MP1C	X	-81.796	2
62	MP1C	Z	0	2
63	MP1C	Mx	.02	2
64	MP2A	X	-49.524	2
65	MP2A	Z	0	2
66	MP2A	Mx	024	2
67	MP2B	<u> </u>	-87.955	2
68	MP2B	Z	0	2
69	MP2B	Mx	008	2
70	MP2C	<u> </u>	-78.964	2
71	MP2C	Z	0	2
72	MP2C	Mx	.02	2
73	MP2A	<u> </u>	-12.374	4
74	MP2A	Z	0	4
75	MP2A	Mx	006	4
76	MP2B	X	-17.483	4
77	MP2B	Z	0	4
78	MP2B	Mx	002	4
79	MP2C	X	-16.288	4
80	MP2C	Z	0	4
81	MP2C	Mx	.004	4
82	OVP1	X	-180.761	1

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
83	OVP1	Z	0	1
84	OVP1	Mx	0	1
85	MP3A	Х	-101.612	1
86	MP3A	Z	0	1
87	MP3A	Mx	.05	1
88	MP3A	X	-101.612	5
89	MP3A	Z	0	5
90	MP3A	Mx	.05	5
91	MP3B	Х	-178.069	1
92	MP3B	Z	0	1
93	MP3B	Mx	.015	1
94	MP3B	Х	-178.069	5
95	MP3B	Z	0	5
96	MP3B	Mx	.015	5
97	MP3C	Х	-160.182	1
98	MP3C	Z	0	1
99	MP3C	Mx	04	1
100	MP3C	Х	-160.182	5
101	MP3C	Z	0	5
102	MP3C	Mx	04	5
103	OVP2	Х	-180.761	1
104	OVP2	Z	0	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-62.405	2
2	MP4A	Z	-36.03	2
3	MP4A	Mx	.028	2
4	MP4A	Х	-62.405	4
5	MP4A	Z	-36.03	4
6	MP4A	Mx	.028	4
7	MP4B	Х	-72.661	2
8	MP4B	Z	-41.951	2
9	MP4B	Mx	.027	2
10	MP4B	Х	-72.661	4
11	MP4B	Z	-41.951	4
12	MP4B	Mx	.027	4
13	MP4C	Х	-52.767	2
14	MP4C	Z	-30.465	2
15	MP4C	Mx	026	2
16	MP4C	Х	-52.767	4
17	MP4C	Z	-30.465	4
18	MP4C	Mx	026	4
19	MP2A	Х	-150.249	1
20	MP2A	Z	-86.746	1
21	MP2A	Mx	.001	1
22	MP2A	Х	-150.249	5
23	MP2A	Z	-86.746	5
24	MP2A	Mx	.001	5
25	MP2B	Х	-161.462	1
26	MP2B	Z	-93.22	1
27	MP2B	Mx	.143	1
28	MP2B	Х	-161.462	5
29	MP2B	Z	-93.22	5
30	MP2B	Mx	.143	5

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP2C	X	-139.712	1
32	MP2C	Z	-80.663	1
33	MP2C	Mx	117	1
34	MP2C	X	-139.712	5
35	MP2C	Z	-80.663	5
36	MP2C	Mx	117	5
37	MP2A	X	-150.249	1
38	MP2A	Z	-86.746	1
39	MP2A	Mx	.132	1
40	MP2A	X	-150.249	5
41	MP2A	Z	-86.746	5
42	MP2A	Mx	.132	5
43	MP2B	X	-161.462	1
44	MP2B	Z	-93.22	1
45	MP2B	Mx	023	1
46	MP2B	X	-161.462	5
47	MP2B	Z	-93.22	5
48	MP2B	Mx	023	5
49	MP2C	X	-139.712	1
50	MP2C	Z	-80.663	1
51	MP2C	Mx	023	1
52	MP2C	X	-139.712	5
53	MP2C	Z	-80.663	5
54	MP2C	Mx	023	5
55	MP1A	X	-62.211	2
56	MP1A		-35.918	2
	MP1A			2
57		Mx	028	2
58	MP1B	X 7	-66.658	
59	MP1B	Z	-38.485	2
60	MP1B	Mx	025	
61	MP1C	X Z	-58.033	2
62	MP1C		-33.505	
63	MP1C	Mx	.029	2
64	MP2A	X Z	-56.455	2
65	MP2A		-32.594	2
66	MP2A	Mx	025	2
67	MP2B	<u> </u>	-62.605	2
68	MP2B	Z	-36.145	2
69	MP2B	Mx	023	2
70	MP2C	<u> </u>	-50.675	2
71	MP2C	Z	-29.257	2
72	MP2C	Mx	.025	2
73	MP2A	<u> </u>	-12.519	4
74	MP2A	Z	-7.228	4
75	MP2A	Mx	006	4
76	MP2B	X	-13.337	4
77	MP2B	Z	-7.7	4
78	MP2B	Mx	005	4
79	MP2C	X	-11.751	4
80	MP2C	Z	-6.785	4
81	MP2C	Mx	.006	4
82	OVP1	X	-143.313	1
83	OVP1	Z	-82.742	1
84	OVP1	Mx	0	1
85	MP3A	X	-114.988	1
86	MP3A	Z	-66.388	1
87	MP3A	Mx	.051	1
	\/		68327-VZW MT LO Hr3dl	Page 36

Member Point Loads (BLC 13 : Antenna Wo (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
88	MP3A	Х	-114.988	5
89	MP3A	Z	-66.388	5
90	MP3A	Mx	.051	5
91	MP3B	Х	-127.224	1
92	MP3B	Z	-73.453	1
93	MP3B	Mx	.047	1
94	MP3B	Х	-127.224	5
95	MP3B	Z	-73.453	5
96	MP3B	Mx	.047	5
97	MP3C	Х	-103.49	1
98	MP3C	Z	-59.75	1
99	MP3C	Mx	052	1
100	MP3C	Х	-103.49	5
101	MP3C	Z	-59.75	5
102	MP3C	Mx	052	5
103	OVP2	Х	-143.313	1
104	OVP2	Z	-82.742	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-52.052	2
2	MP4A	Z	-90.156	2
3	MP4A	Mx	.018	2
4	MP4A	X	-52.052	4
5	MP4A	Z	-90.156	4
6	MP4A	Mx	.018	4
7	MP4B	Х	-25.929	2
8	MP4B	Z	-44.91	2
9	MP4B	Mx	.024	2
10	MP4B	Х	-25.929	4
11	MP4B	Z	-44.91	4
12	MP4B	Mx	.024	4
13	MP4C	X	-21.94	2
14	MP4C	Z	-38.001	2
15	MP4C	Mx	022	2
16	MP4C	Х	-21.94	4
17	MP4C	Z	-38.001	4
18	MP4C	Mx	022	4
19	MP2A	Х	-104.263	1
20	MP2A	Z	-180.588	1
21	MP2A	Mx	079	1
22	MP2A	Х	-104.263	5
23	MP2A	Z	-180.588	5
24	MP2A	Mx	079	5
25	MP2B	X	-75.704	1
26	MP2B	Z	-131.123	1
27	MP2B	Mx	.101	1
28	MP2B	X	-75.704	5
29	MP2B	Z	-131.123	5
30	MP2B	Mx	.101	5
31	MP2C	Х	-71.343	1
32	MP2C	Z	-123.569	1
33	MP2C	Mx	071	1
34	MP2C	X	-71.343	5
35	MP2C	Z	-123.569	5
				*

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
36	MP2C	Mx	071	5
37	MP2A	X	-104.263	1
38	MP2A	Z	-180.588	1
39	MP2A	Mx	.15	1
40	MP2A	X	-104.263	5
41	MP2A	Z	-180.588	5
42	MP2A	Mx	.15	5
43	MP2B	X	-75.704	1
44	MP2B	Z	-131.123	1
45	MP2B	Mx	.041	1
46	MP2B	X	-75.704	5
47	MP2B	Z	-131.123	5
48	MP2B	Mx	.041	5
49	MP2C	X	-71.343	1
50	MP2C	Z	-123.569	1
51	MP2C	Mx	071	1
52	MP2C	X	-71.343	5
53	MP2C	Z	-123.569	5
54	MP2C	Mx	071	5
55	MP1A	X	-42.865	2
56	MP1A	Z	-74.244	2
57	MP1A	Mx	015	2
58	MP1B	X	-31.538	2
59	MP1B	Z	-54.626	2
60	MP1B	Mx	03	2
61	MP1C	X	-29.809	2
62	MP1C	Z	-51.631	2
63	MP1C	Mx	.03	2
64	MP10 MP2A		-42.202	2
65	MP2A MP2A	X Z	-42.202	2
66	MP2A MP2A	Mx	014	2
				2
67 68	MP2B	X Z	-26.537	2
	MP2B		-45.964	
69	MP2B	Mx	025	2
70	MP2C	X	-24.145	
71	MP2C	Z	-41.821	2
72	MP2C	Mx	.024	2
73	MP2A	<u> </u>	-8.505	4
74	MP2A	Z	-14.732	4
75	MP2A	Mx	003	4
76	MP2B	X 7	-6.423	4
77	MP2B	Z	-11.125	4
78	MP2B	Mx	006	4
79	MP2C	X	-6.105	4
80	MP2C	Z	-10.574	4
81	MP2C	Mx	.006	4
82	OVP1	X	-67.464	1
83	OVP1	Z	-116.851	1
84	OVP1	Mx	0	1
85	MP3A	<u> </u>	-85.502	1
86	MP3A	Z	-148.095	1
87	MP3A	Mx	.029	1
88	MP3A	X	-85.502	5
89	MP3A	Z	-148.095	5
90	MP3A	Mx	.029	5
91	MP3B	Х	-54.338	1
92	MP3B	Z	-94.117	1
			168327-VZW MT LO H r3d1	Page 38

Member Point Loads (BLC 14 : Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
93	MP3B	Mx	.051	1
94	MP3B	Х	-54.338	5
95	MP3B	Z	-94.117	5
96	MP3B	Mx	.051	5
97	MP3C	Х	-49.579	1
98	MP3C	Z	-85.874	1
99	MP3C	Mx	05	1
100	MP3C	Х	-49.579	5
101	MP3C	Z	-85.874	5
102	MP3C	Mx	05	5
103	OVP2	Х	-67.464	1
104	OVP2	Z	-116.851	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	2
2	MP4A	Z	-19.284	2
3	MP4A	Mx	002	2
4	MP4A	X	0	4
5	MP4A	Z	-19.284	4
6	MP4A	Mx	002	4
7	MP4B	Х	0	2
8	MP4B	Z	-8.698	2
9	MP4B	Mx	.004	2
10	MP4B	Х	0	4
11	MP4B	Z	-8.698	4
12	MP4B	Mx	.004	4
13	MP4C	Х	0	2
14	MP4C	Z	-11.174	2
15	MP4C	Mx	005	2
16	MP4C	Х	0	4
17	MP4C	Z	-11.174	4
18	MP4C	Mx	005	4
19	MP2A	Х	0	1
20	MP2A	Z	-36.543	1
21	MP2A	Mx	024	1
22	MP2A	Х	0	5
23	MP2A	Z	-36.543	5
24	MP2A	Mx	024	5
25	MP2B	Х	0	1
26	MP2B	Z	-25.521	1
27	MP2B	Mx	.01	1
28	MP2B	X	0	5
29	MP2B	Z	-25.521	5
30	MP2B	Mx	.01	5
31	MP2C	X	0	1
32	MP2C	Z	-28.1	1
33	MP2C	Mx	004	1
34	MP2C	X	0	5
35	MP2C	Z	-28.1	5
36	MP2C	Mx	004	5
37	MP2A	Х	0	1
38	MP2A	Z	-36.543	1
39	MP2A	Mx	.018	1
40	MP2A	X	0	5
			· · ·	

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
41	MP2A	Z	-36.543	5
42	MP2A	Mx	.018	5
43	MP2B	X	0	1
44	MP2B	Z	-25.521	1
45	MP2B	Mx	.015	1
46	MP2B	X	0	5
47	MP2B	Z	-25.521	5
48	MP2B	Mx	.015	5
49	MP2C	X	0	1
50	MP2C	Z	-28.1	1
51	MP2C	Mx	02	1
52	MP2C	X	0	5
53	MP2C	Z	-28.1	5
54	MP2C	Mx	02	5
55	MP1A	X	0	2
56	MP1A	Z	-16.386	2
57	MP1A	Mx	.001	2
58	MP1B	X	0	2
59	MP1B MP1B	Z	-11.655	2
60	MP1B MP1B	Mx	006	2
61	MP1D MP1C	X	000	2
		Z		2
62	MP1C		-12.762	
63	MP1C	Mx X	.006	2
64	MP2A	X 7	0	2
65	MP2A	Z	-16.328	2
66	MP2A	Mx	.001	2
67	MP2B	<u> </u>	0	2
68	MP2B	Z	-9.799	2
69	MP2B	Mx	005	2
70	MP2C	X	0	2
71	MP2C	Z	-11.327	2
72	MP2C	Mx	.005	2
73	MP2A	X	0	4
74	MP2A	Z	-3.983	4
75	MP2A	Mx	.000346	4
76	MP2B	Х	0	4
77	MP2B	Z	-3.042	4
78	MP2B	Mx	001	4
79	MP2C	X	0	4
80	MP2C	Z	-3.262	4
81	MP2C	Mx	.001	4
82	OVP1	Х	0	1
83	OVP1	Z	-21.777	1
84	OVP1	Mx	0	1
85	MP3A	X	0	1
86	MP3A	Z	-30.59	1
87	MP3A	Mx	003	1
88	MP3A	X	0	5
89	MP3A	Z	-30.59	5
90	MP3A	Mx	003	5
91	MP3B	X	0	1
92	MP3B	Z	-18.531	1
93	MP3B	Mx	.009	1
94	MP3B	X	0	5
95	MP3B	Z	-18.531	5
96	MP3B	Mx	.009	5
97	MP3C	X	0	1
			~	the second se

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
98	MP3C	Z	-21.352	1
99	MP3C	Mx	009	1
100	MP3C	Х	0	5
101	MP3C	Z	-21.352	5
102	MP3C	Mx	009	5
103	OVP2	Х	0	1
104	OVP2	Z	-21.777	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X X	7.484	2
2	MP4A	Z	-12.963	2
3	MP4A	Mx	005	2
4	MP4A	X	7.484	4
5	MP4A	Z	-12.963	4
6	MP4A	Mx	005	4
7	MP4B	X	6.506	2
8	MP4B	Z	-11.269	2
9	MP4B	Mx	.005	2
10	MP4B	X	6.506	4
11	MP4B	Z	-11.269	4
12	MP4B	Mx	.005	4
13	MP4C	X	8.404	2
14	MP4C	Z	-14.555	2
15	MP4C	Mx	004	2
16	MP4C	Х	8.404	4
17	MP4C	Z	-14.555	4
18	MP4C	Mx	004	4
19	MP2A	X	16.025	1
20	MP2A	Z	-27.756	1
21	MP2A	Mx	025	1
22	MP2A		16.025	5
23	MP2A	X Z	-27.756	5
24	MP2A	Mx	025	5
25	MP2B		15.007	1
26	MP2B	X Z	-25.993	1
27	MP2B	Mx	.000242	1
28	MP2B	X	15.007	5
29	MP2B	Z	-25.993	5
30	MP2B	Mx	.000242	5
31	MP2C	X	16.982	1
32	MP2C	Z	-29.414	1
33	MP2C	Mx	.009	1
34	MP2C	X	16.982	5
35	MP2C	Z	-29.414	5
36	MP2C	Mx	.009	5
37	MP2A	X	16.025	1
38	MP2A	Z	-27.756	1
39	MP2A	Mx	.004	1
40	MP2A	X	16.025	5
41	MP2A	Z	-27.756	5
42	MP2A	Mx	.004	5
43	MP2B	X	15.007	1
44	MP2B	Z	-25.993	1
45	MP2B	Mx	.023	1
				· ·

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

46 MP2B X 15.07 5 47 MP2B Z -25.993 5 48 MP2C X 16.982 1 50 MP2C Z -29.414 1 51 MP2C X 16.982 5 53 MP2C Z -29.414 5 54 MP2C MX -0.26 5 55 MP4A X 7.29 2 56 MP1A X 7.29 2 56 MP1A X 6.792 2 57 MP1B X 6.792 2 60 MP1B X 7.64 2 61 MP1C X 7.64 2 62 MP1C MX 0.04 2 64 MP2A X 6.834 2 66 MP2A X 6.23 2 66 MP2A X 6.23<		Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
48 MY2B Mx 0.03 5 49 MP2C X 16.982 1 50 MP2C Z -29.414 1 51 MP2C X 16.982 5 53 MP2C Z -29.414 5 54 MP2C Z -29.414 5 54 MP2C Z -29.414 5 56 MP1A X 7.229 2 56 MP1A X 7.2551 2 57 MP1A MX -0.05 2 58 MP1B X 6.792 2 59 MP1C Z -11.763 2 61 MP1C X 7.64 2 62 MP1C Z -13.322 2 2 64 MP2A X 6.834 2 2 65 MP2A X 7.4 2 71 <td< td=""><td>46</td><td></td><td></td><td></td><td></td></td<>	46				
49 MP2C X 16.982 1 50 MP2C Z -29.414 1 51 MP2C X 16.982 5 53 MP2C Z -29.414 5 54 MP2C X 16.982 5 55 MP1A X -026 5 56 MP1A X -025 2 56 MP1A X -025 2 58 MP1B Z -11.763 2 59 MP1B Z -11.763 2 61 MP1C X 7.64 2 62 MP1C MX -004 2 64 MP2A Z -11.836 2 65 MP2A Z -11.836 2 66 MP2A Z -11.836 2 70 MP2B X 6.23 2 71 MP2C					5
50 MP2C Z -29.414 1 51 MP2C X 16.982 5 53 MP2C Z -026 5 54 MP2C Mx -026 5 55 MP1A X 7.229 2 56 MP1A Z -12.521 2 56 MP1A Z -11.763 2 58 MP1B X 6.792 2 59 MP1B X 6.792 2 60 MP1B Mx -0.05 2 61 MP1C X 7.64 2 62 MP1C Z -11.336 2 64 MP2A X 6.834 2 65 MP2A X 6.23 2 66 MP2A X 7.4 2 70 MP2B Z -10.791 2 71 MP2C Z -1					5
51 MP2C Nx 026 1 52 MP2C X 16.982 5 53 MP2C Z -29.414 5 54 MP2C X -026 5 56 MP1A X -026 5 56 MP1A X -026 2 57 MP1A MX -005 2 58 MP1B Z -11.763 2 60 MP1B X -0.05 2 61 MP1C X 7.64 2 62 MP1C X 6.834 2 64 MP2A Z -11.836 2 65 MP2A Z -11.836 2 66 MP2A Z -11.836 2 67 MP2B X 6.23 2 70 MP2B X 7.4 2 71 MP2C			X		1
52 MP2C X 16,982 5 53 MP2C Z -29,414 5 54 MP2C Mx -026 5 56 MP1A X 7.29 2 56 MP1A Z -12,521 2 57 MP1B Mx 0.055 2 58 MP1B X 6,792 2 59 MP1B Mx -0.05 2 60 MP1C Z -11,836 2 61 MP1C X 6,834 2 62 MP1C Z -11,836 2 64 MP2A X 6,623 2 66 MP2A Mx -0.06 2 70 MP2C Z -12,816 2 71 MP2C Z -12,816 2 72 MP2A X 1,8 4 74 MP2A Z					1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Mx		
54 MP2C Mx -0.26 5 55 MP1A X 7.229 2 56 MP1A Z -12.521 2 57 MP1A Mx 0.05 2 58 MP1B X 6.792 2 59 MP1B Mx -0.05 2 60 MP1B Mx -0.05 2 61 MP1C Z -11.336 2 62 MP1C X 7.64 2 63 MP1C Z -11.836 2 64 MP2A X 6.334 2 65 MP2A Z -11.836 2 66 MP2B X 6.23 2 70 MP2B X 7.4 2 71 MP2C Z -12.818 2 72 MP2A Z -3.117 4 74 MP2A <td>52</td> <td>MP2C</td> <td></td> <td>16.982</td> <td>5</td>	52	MP2C		16.982	5
55 MP1A X 7,229 2 56 MP1A Z -12,521 2 57 MP1B X 6,792 2 58 MP1B Z -11,763 2 59 MP1B Z -11,763 2 60 MP1B Mx -005 2 61 MP1C X 7,64 2 63 MP1C Mx 0.04 2 64 MP2A Z -11,836 2 65 MP2A Z -11,836 2 66 MP2A Z -10,791 2 67 MP2B X 6,623 2 68 MP2B Z -10,791 2 70 MP2C X 7,4 2 71 MP2C Mx 0.004 2 73 MP2A Z -3,117 4 74 MP2A Z	53	MP2C	Z	-29.414	5
56 MP1A Z -12.521 2 57 MP1A Mx .005 2 58 MP1B X .6.792 2 59 MP1B Mx .005 2 60 MP1B Mx .005 2 61 MP1C Z .1.763 2 62 MP1C Z .1.3232 2 63 MP1C X .6.834 2 64 MP2A X .6.834 2 65 MP2A X .6.23 2 66 MP2B X .6.23 2 70 MP2B Mx .005 2 71 MP2C Z .12.818 2 72 MP2A X 1.73 4 74 MP2A Z .3.117 4 75 MP2A X 1.73 4 76 MP2B X <t< td=""><td></td><td>MP2C</td><td></td><td></td><td></td></t<>		MP2C			
57 MP1A Mx .005 2 58 MP1B X 6.792 2 59 MP1B Z -11.763 2 60 MP1B Mx 005 2 61 MP1C X 7.64 2 62 MP1C Mx .004 2 64 MP2A X 6.834 2 65 MP2A Z -11.836 2 66 MP2A Mx .004 2 67 MP2B Z -10.791 2 68 MP2B Z -10.791 2 70 MP2C X 7.4 2 71 MP2C X 1.8 4 74 MP2A Z -3.117 4 74 MP2A Z -3.267 4 74 MP2A Z -3.259 4 74 MP2B Z -2	55	MP1A	X	7.229	
58 MP1B X 6.792 2 59 MP1B Z -11.763 2 60 MP1C X 7.64 2 61 MP1C Z -13.232 2 63 MP1C Z -13.232 2 64 MP2A X 6.834 2 66 MP2A X 6.834 2 66 MP2A Mx 0.04 2 67 MP2B X 6.23 2 68 MP2B Z -10.791 2 69 MP2B Mx -0.05 2 71 MP2C Z -12.818 2 72 MP2A X 1.8 4 74 MP2A Z -2.967 4 74 MP2B Z -2.967 4 76 MP2B X 1.713 4 77 MP2B Z	56	MP1A	Z	-12.521	2
58 MP1B X 6.792 2 59 MP1B Z -11.763 2 60 MP1C X 7.64 2 61 MP1C Z -13.232 2 63 MP1C Z -13.232 2 64 MP2A X 6.834 2 66 MP2A X 6.834 2 66 MP2A Mx 0.04 2 67 MP2B X 6.23 2 68 MP2B Z -10.791 2 69 MP2B Mx -0.05 2 71 MP2C Z -12.818 2 72 MP2A X 1.8 4 74 MP2A Z -2.967 4 74 MP2B Z -2.967 4 76 MP2B X 1.713 4 77 MP2B Z	57	MP1A	Mx	.005	2
60 MP1B Mx 005 2 61 MP1C X 7.64 2 62 MP1C Z -13.232 2 63 MP1C Mx .004 2 64 MP2A X 6.834 2 65 MP2A Z -11.836 2 66 MP2A X 6.23 2 67 MP2B X 6.23 2 68 MP2B X 6.23 2 70 MP2B Mx -005 2 71 MP2C Z -12.818 2 72 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A Z -3.299 4 76 MP2B X 1.713 4 77 MP2B X 1.713 4 78 MP2A Z -2.296	58	MP1B	X	6.792	
60 MP1B Mx 005 2 61 MP1C X 7.64 2 62 MP1C Z -13.232 2 63 MP1C Mx .004 2 64 MP2A X 6.834 2 65 MP2A Z -11.836 2 66 MP2A X 6.23 2 67 MP2B X 6.23 2 68 MP2B Z -10.791 2 69 MP2B Mx -005 2 70 MP2C Z -12.818 2 71 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A X 1.713 4 76 MP2B X 1.713 4 77 MP2B X 1.81 4 80 MP2C X 1.82<	59	MP1B	Z	-11.763	2
62 MP1C Z -13.232 2 63 MP1C Mx .004 2 64 MP2A X .6.834 2 65 MP2A Z .11.836 2 66 MP2A Mx .004 2 67 MP2B Z .10.791 2 68 MP2B Z .10.791 2 69 M2B MX .005 2 70 MP2C Z .12.818 2 71 MP2C Z .13.81 4 73 MP2A X 1.8 4 74 MP2A Z .3.117 4 75 MP2A X 1.8 4 76 MP2B X 1.713 4 77 MP2B X 1.713 4 76 MP2B X 1.713 4 78 MP2B Mx	60	MP1B	Mx		2
63 MP1C Mx .004 2 64 MP2A X 6.834 2 65 MP2A Z -11.836 2 66 MP2A X 6.23 2 67 MP2B X 6.23 2 68 MP2B X -005 2 69 MP2B X 7.4 2 70 MP2C X 7.4 2 71 MP2C X 1.8 4 71 MP2C X 1.8 4 71 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A Mx .001 4 76 MP2B X 1.13 4 77 MP2B Z -2.967 4 78 MP2B Mx .001 4 80 MP2A X 1.2837	61	MP1C	X	7.64	2
64 MP2A X 6.834 2 65 MP2A Z -11.836 2 66 MP2A Mx .004 2 67 MP2B X 6.23 2 68 MP2B Z -10.791 2 69 MP2B X 7.4 2 70 MP2C X 7.4 2 71 MP2C Z -12.818 2 72 MP2A X 1.8 4 74 MP2A X 1.8 4 75 MP2A Z -3.117 4 76 MP2B Z -2.967 4 78 MP2B Z -2.967 4 80 MP2C X 1.881 4 80 MP2C X 1.881 4 80 MP2C X 1.81 4 81 MP2A MX 00094	62	MP1C	Z	-13.232	2
64 MP2A X 6.834 2 65 MP2A Z -11.836 2 66 MP2A Mx .004 2 67 MP2B X 6.23 2 68 MP2B Z -10.791 2 69 MP2B X 7.4 2 70 MP2C X 7.4 2 71 MP2C Z -12.818 2 72 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A Z -2.967 4 76 MP2B X 1.713 4 77 MP2B X 1.713 4 78 MP2C X 1.881 4 80 MP2C X 1.821 4 81 MP2C X 1.81 4 82 OVP1 X 12.146<	63	MP1C	Mx	.004	2
65 MP2A Z -11.836 2 66 MP2A Mx .004 2 67 MP2B X 6.23 2 68 MP2B Z -10.791 2 69 MP2B Mx -0.055 2 70 MP2C X 7.4 2 71 MP2C Z -12.818 2 72 MP2C Mx .004 2 73 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A X 1.7.13 4 76 MP2B Z -2.967 4 78 MP2B X 1.7.13 4 79 MP2C X 1.881 4 80 MP2C Z -3.259 4 81 MP2C Mx .000941 4 82 OVP1 X		MP2A	X	6.834	
66 MP2A Mx 004 2 67 MP2B X 6.23 2 68 MP2B Z -10.791 2 69 MP2B Mx 005 2 70 MP2C X 7.4 2 71 MP2C Z -12.818 2 73 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A X 1.713 4 76 MP2B X 1.713 4 77 MP2B X 1.713 4 78 MP2B Mx -001 4 79 MP2C X 1.881 4 81 MP2C X 1.1713 4 82 OVP1 X 12.146 1 83 OVP1 X 12.146 1 84 OVP1 Mx 0.08<	65	MP2A	Z	-11.836	2
68 MP2B Z -10.791 2 69 MP2B Mx 005 2 70 MP2C X 7.4 2 71 MP2C X 7.4 2 71 MP2C X 7.4 2 73 MP2A X 1.8 4 74 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A X 1.713 4 76 MP2B X 1.713 4 77 MP2B Z -2.967 4 78 MP2B MX -0.01 4 80 MP2C X 1.881 4 81 MP2C MX 1009941 4 82 OVP1 Z -2.1038 1 84 OVP1 X 12.146 1 83 MP3A Z -22.35<			Mx		2
68 MP2B Z -10.791 2 69 MP2B Mx 005 2 70 MP2C X 7.4 2 71 MP2C X 7.4 2 71 MP2C X 7.4 2 73 MP2A X 1.8 4 74 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A X 1.713 4 76 MP2B X 1.713 4 77 MP2B Z -2.967 4 78 MP2B MX -0.01 4 80 MP2C X 1.881 4 81 MP2C MX 1009941 4 82 OVP1 Z -2.1038 1 84 OVP1 X 12.146 1 83 MP3A Z -22.35<	67	MP2B	X	6.23	2
70 MP2C X 7.4 2 71 MP2C Z -12.818 2 72 MP2C Mx .004 2 73 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A Z -3.117 4 76 MP2B Z -2.967 4 77 MP2B Z -2.967 4 79 MP2C X 1.881 4 80 MP2C Z -3.259 4 81 MP2C Mx .000941 4 82 OVP1 X 12.146 1 83 OVP1 Z -21.038 1 84 OVP1 Mx 0 1 85 MP3A Z -22.235 1 87 MP3A MX 008 1 88 MP3A Z	68	MP2B	Z	-10.791	
70 MP2C X 7.4 2 71 MP2C Z -12.818 2 72 MP2C Mx .004 2 73 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A Z -3.117 4 76 MP2B Z -2.967 4 77 MP2B Z -2.967 4 79 MP2C X 1.881 4 80 MP2C Z -3.259 4 81 MP2C Mx .000941 4 82 OVP1 X 12.146 1 83 OVP1 Z -21.038 1 84 OVP1 Mx 0 1 85 MP3A Z -22.235 1 87 MP3A MX 008 1 88 MP3A Z	69	MP2B	Mx	005	2
72 MP2C Mx .004 2 73 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A Mx .001 4 76 MP2B X 1.713 4 77 MP2B Z -2.967 4 78 MP2B Mx 001 4 79 MP2C X 1.881 4 80 MP2C Z -3.259 4 81 MP2C Mx .000941 4 82 OVP1 X 12.146 1 84 OVP1 X 12.837 1 85 MP3A Z -22.235 1 88 MP3A Z -22.235 5 90 MP3A Z -22.305 1 91 MP3B X 11.723 1 92 MP3B X	70	MP2C	X	7.4	2
72 MP2C Mx .004 2 73 MP2A X 1.8 4 74 MP2A Z -3.117 4 75 MP2A Mx .001 4 76 MP2B X 1.713 4 77 MP2B Z -2.967 4 78 MP2B Mx 001 4 80 MP2C X 1.881 4 80 MP2C Z -3.259 4 81 MP2C Mx .000941 4 82 OVP1 X 12.146 1 83 OVP1 Z -2.1.038 1 84 OVP1 Mx 0 1 85 MP3A Z -22.235 1 87 MP3A X 12.837 5 90 MP3A X 1.1.723 1 91 MP3B X <t< td=""><td>71</td><td>MP2C</td><td>Z</td><td>-12.818</td><td>2</td></t<>	71	MP2C	Z	-12.818	2
74 MP2A Z -3.117 4 75 MP2A Mx .001 .4 76 MP2B X 1.713 .4 77 MP2B Z -2.967 .4 78 MP2B Mx 001 .4 79 MP2C X 1.81 .4 80 MP2C Z -3.259 .4 81 MP2C X 1.881 .4 82 OVP1 X 12.146 .1 83 OVP1 Z -21.038 .1 84 OVP1 Mx .0 .1 85 MP3A X .12.837 .1 86 MP3A Z -22.235 .1 87 MP3A Mx .008 .1 88 MP3A X .12.837 .5 90 MP3A Mx .008 .5 91 MP3B X </td <td>72</td> <td>MP2C</td> <td>Mx</td> <td>.004</td> <td></td>	72	MP2C	Mx	.004	
74 MP2A Z -3.117 4 75 MP2A Mx .001 .4 76 MP2B X 1.713 .4 77 MP2B Z -2.967 .4 78 MP2B Mx 001 .4 79 MP2C X 1.81 .4 80 MP2C Z -3.259 .4 81 MP2C X 1.881 .4 82 OVP1 X 12.146 .1 83 OVP1 Z -21.038 .1 84 OVP1 Mx .0 .1 85 MP3A X .12.837 .1 86 MP3A Z -22.235 .1 87 MP3A Mx .008 .1 88 MP3A X .12.837 .5 90 MP3A Mx .008 .5 91 MP3B X </td <td>73</td> <td>MP2A</td> <td>X</td> <td>1.8</td> <td>4</td>	73	MP2A	X	1.8	4
75 MP2A Mx .001 4 76 MP2B X 1.713 4 77 MP2B Z -2.967 4 78 MP2B Mx 001 4 79 MP2C X 1.881 4 80 MP2C Z -3.259 4 81 MP2C Mx .000941 4 82 OVP1 X 12.146 1 83 OVP1 X 12.837 1 84 OVP1 Mx 0 1 85 MP3A X 12.837 1 86 MP3A Z -22.235 5 90 MP3A Z -22.235 5 90 MP3A Z -22.305 1 91 MP3B X 11.723 1 92 MP3B X 11.723 5 93 MP3B X			Z	-3.117	
76 MP2B X 1.713 4 77 MP2B Z -2.967 4 78 MP2B Mx 001 4 79 MP2C X 1.881 4 80 MP2C Z -3.259 4 81 MP2C X 12.146 1 82 OVP1 X 12.146 1 83 OVP1 Z -21.038 1 84 OVP1 Mx 0 1 85 MP3A X 12.837 1 84 OVP1 Mx -008 1 87 MP3A X 12.837 5 99 MP3A X 12.837 5 90 MP3A X 12.837 5 90 MP3A X 12.837 5 91 MP3B X 11.723 1 <t< td=""><td></td><td></td><td>Mx</td><td>.001</td><td>4</td></t<>			Mx	.001	4
77 MP2B Z -2.967 4 78 MP2B Mx 001 4 79 MP2C X 1.881 4 80 MP2C Z -3.259 4 81 MP2C Mx $.000941$ 4 82 OVP1 X 12.146 1 83 OVP1 Z -21.038 1 84 OVP1 Mx 0 1 85 MP3A X 12.837 1 86 MP3A X 12.837 5 89 MP3A X 12.837 5 89 MP3A Z -22.235 5 90 MP3A Z -20.305 1 91 MP3B X 11.723 1 92 MP3B Z -20.305 1 93 MP3B X 11.723 5 95 MP3B				1.713	4
79MP2CX 1.881 480MP2CZ -3.259 481MP2CMx $.000941$ 482OVP1X 12.146 183OVP1Z -21.038 184OVP1Mx0185MP3AX 12.837 186MP3AZ -22.235 187MP3AX 12.837 589MP3AZ -22.235 590MP3AZ -22.235 591MP3BX 11.723 192MP3BX 11.723 193MP3BX 11.723 595MP3BX 11.723 596MP3BX 11.723 597MP3CX 13.884 198MP3CX 13.884 199MP3CX 13.884 5101MP3CZ -24.048 5	77	MP2B	Z	-2.967	4
80MP2CZ -3.259 481MP2CMx.000941482OVP1X12.146183OVP1Z-21.038184OVP1Mx0185MP3AX12.837186MP3AZ-22.235187MP3AMx008188MP3AZ-22.235590MP3AZ-22.235591MP3BX11.723192MP3BZ-20.305193MP3BX11.723595MP3BZ-20.305596MP3BX11.723597MP3BZ-20.009597MP3CX13.884198MP3CX13.884199MP3CX13.8845101MP3CZ-24.0485	78	MP2B	Mx	001	4
81MP2CMx.0009414 82 OVP1X12.1461 83 OVP1Z-21.0381 84 OVP1Mx01 85 MP3AX12.8371 86 MP3AZ-22.2351 87 MP3AMx0081 88 MP3AZ-22.2355 90 MP3AZ-22.2355 91 MP3AZ-22.3555 91 MP3AZ-22.3051 92 MP3BX11.7231 93 MP3BZ-20.3051 94 MP3BZ-20.3055 96 MP3BZ-20.3055 97 MP3CX11.7235 99 MP3BZ-20.3055 96 MP3BX11.7235 97 MP3CX13.8841 99 MP3CZ-24.0481 99 MP3CX13.8845 101 MP3CZ-24.0485	79	MP2C	X	1.881	4
82OVP1X12.146183OVP1Z-21.038184OVP1Mx0185MP3AX12.837186MP3AZ-22.235187MP3AMx008188MP3AZ-22.235590MP3AZ-22.235590MP3AZ-22.235591MP3BZ-22.235592MP3BX11.723193MP3BZ-20.305194MP3BX11.723595MP3BZ-20.305596MP3BMx.009597MP3CX13.884198MP3CX13.8845100MP3CX13.8845101MP3CZ-24.0485	80	MP2C	Z	-3.259	4
83OVP1Z-21.038184OVP1Mx0185MP3AX12.837186MP3AZ-22.235187MP3AMx008188MP3AZ-22.235590MP3AZ-22.235591MP3BX11.723192MP3BZ-20.305193MP3BX11.723595MP3BZ-20.305596MP3BX11.723597MP3BX11.723598MP3BX11.723199MP3CZ-20.305596MP3BMx.009597MP3CX13.884198MP3CZ-24.048199MP3CX13.8845101MP3CZ-24.0485	81	MP2C	Mx	.000941	4
84 OVP1 Mx 0 1 85 MP3A X 12.837 1 86 MP3A Z -22.235 1 87 MP3A Mx 008 1 88 MP3A X 12.837 5 89 MP3A X 12.837 5 90 MP3A Z -22.235 5 90 MP3A Z -22.235 5 90 MP3A X 11.723 1 91 MP3B X 11.723 1 92 MP3B X 11.723 1 92 MP3B X 11.723 5 93 MP3B X 11.723 5 94 MP3B X 11.723 5 95 MP3B Z -20.305 5 96 MP3B X 13.884 1 98 MP3C Z	82	OVP1	X	12.146	1
85 MP3A X 12.837 1 86 MP3A Z -22.235 1 87 MP3A Mx 008 1 88 MP3A X 12.837 5 89 MP3A X 12.837 5 90 MP3A Z -22.235 5 90 MP3A Mx 008 5 91 MP3B Z -22.035 1 92 MP3B X 11.723 1 92 MP3B Z -20.305 1 93 MP3B X 11.723 5 94 MP3B X 11.723 5 95 MP3B Z -20.305 5 96 MP3B Z -20.305 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C Z	83	OVP1	Z	-21.038	1
86 MP3A Z -22.235 1 87 MP3A Mx 008 1 88 MP3A X 12.837 5 89 MP3A Z -22.235 5 90 MP3A Z -22.235 5 90 MP3A Mx 008 5 91 MP3B X 11.723 1 92 MP3B Z -20.305 1 93 MP3B X 11.723 5 94 MP3B X 11.723 5 95 MP3B Z -20.305 5 96 MP3B X 11.723 5 96 MP3B X 11.723 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C X 13.884 5 101 MP3C Z	84	OVP1	Mx	0	1
87 MP3A Mx 008 1 88 MP3A X 12.837 5 89 MP3A Z -22.235 5 90 MP3A Mx 008 5 91 MP3B X 11.723 1 92 MP3B Z -20.305 1 93 MP3B MX .009 1 94 MP3B X 11.723 5 95 MP3B X 11.723 5 96 MP3B X 11.723 5 96 MP3B Z -20.305 5 97 MP3B X 11.723 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C X 13.884 5 101 MP3C Z -24.048 5	85	MP3A		12.837	1
88 MP3A X 12.837 5 89 MP3A Z -22.235 5 90 MP3A Mx 008 5 91 MP3B X 11.723 1 92 MP3B Z -20.305 1 93 MP3B Mx .009 1 94 MP3B X 11.723 5 95 MP3B Z -20.305 5 96 MP3B X 11.723 5 96 MP3B Z -20.305 5 96 MP3B X 11.723 5 97 MP3B Z -20.305 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C X 13.884 5 101 MP3C Z -24.048 5	86		Z		1
89 MP3A Z -22.235 5 90 MP3A Mx 008 5 91 MP3B X 11.723 1 92 MP3B Z -20.305 1 93 MP3B Mx .009 1 94 MP3B X 11.723 5 95 MP3B X 11.723 5 96 MP3B Z -20.305 5 96 MP3B Z -20.305 5 97 MP3B Z -20.305 5 97 MP3B X 11.723 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C X 13.884 5 101 MP3C Z -24.048 5	87		Mx		
89 MP3A Z -22.235 5 90 MP3A Mx 008 5 91 MP3B X 11.723 1 92 MP3B Z -20.305 1 93 MP3B Mx .009 1 94 MP3B X 11.723 5 95 MP3B X 11.723 5 95 MP3B Z -20.305 5 96 MP3B Z -20.305 5 96 MP3B Z -20.305 5 97 MP3B X 11.723 5 96 MP3B X 10.099 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C X 13.884 5 101 MP3C Z -24.048 5	88				
90 MP3A Mx 008 5 91 MP3B X 11.723 1 92 MP3B Z -20.305 1 93 MP3B Mx .009 1 94 MP3B X 11.723 5 95 MP3B X 11.723 5 96 MP3B Z -20.305 5 96 MP3B Z -20.305 5 96 MP3B Z -20.305 5 97 MP3B X 10.09 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C X 13.884 5 101 MP3C Z -24.048 5			Z		
92 MP3B Z -20.305 1 93 MP3B Mx .009 1 94 MP3B X 11.723 5 95 MP3B Z -20.305 5 96 MP3B Z -20.305 5 96 MP3B Mx .009 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C X 13.884 5 100 MP3C X 13.884 5 101 MP3C Z -24.048 5	90				
92 MP3B Z -20.305 1 93 MP3B Mx .009 1 94 MP3B X 11.723 5 95 MP3B Z -20.305 5 96 MP3B Z -20.305 5 96 MP3B Mx .009 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C X 13.884 5 100 MP3C X 13.884 5 101 MP3C Z -24.048 5			X		1
93 MP3B Mx .009 1 94 MP3B X 11.723 5 95 MP3B Z -20.305 5 96 MP3B Mx .009 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C Mx 007 1 100 MP3C X 13.884 5 101 MP3C Z -24.048 5			Z		1
94 MP3B X 11.723 5 95 MP3B Z -20.305 5 96 MP3B Mx .009 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C Mx 007 1 100 MP3C X 13.884 5 101 MP3C Z -24.048 5					
95 MP3B Z -20.305 5 96 MP3B Mx .009 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C Mx 007 1 100 MP3C X 13.884 5 101 MP3C Z -24.048 5	94	MP3B	X		
96 MP3B Mx .009 5 97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C Mx 007 1 100 MP3C X 13.884 5 101 MP3C Z -24.048 5	95	MP3B	Z	-20.305	5
97 MP3C X 13.884 1 98 MP3C Z -24.048 1 99 MP3C Mx 007 1 100 MP3C X 13.884 5 101 MP3C Z -24.048 5					
98 MP3C Z -24.048 1 99 MP3C Mx 007 1 100 MP3C X 13.884 5 101 MP3C Z -24.048 5					
99 MP3C Mx 007 1 100 MP3C X 13.884 5 101 MP3C Z -24.048 5			Z		1
100 MP3C X 13.884 5 101 MP3C Z -24.048 5					
101 MP3C Z -24.048 5			X		5
			Z		
	102		Mx		

Member Point Loads (BLC 16 : Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
103	OVP2	Х	12.146	1
104	OVP2	Z	-21.038	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	8.38	2
2	MP4A	Z	-4.838	2
3	MP4A	Mx	005	2
4	MP4A	X	8.38	4
5	MP4A	Z	-4.838	4
6	MP4A	Mx	005	4
7	MP4B	X	15.853	2
8	MP4B	Z	-9.153	2
9	MP4B	Mx	.003	2
10	MP4B	X	15.853	4
11	MP4B	Z	-9.153	4
12	MP4B	Mx	.003	4
13	MP4C	Х	16.994	2
14	MP4C	Z	-9.812	2
15	MP4C	Mx	0	2
16	MP4C	X	16.994	4
17	MP4C	Z	-9.812	4
18	MP4C	Mx	0	4
19	MP2A	X	22.984	1
20	MP2A	Z	-13.27	1
21	MP2A	Mx	018	1
22	MP2A	X	22.984	5
23	MP2A	Z	-13.27	5
24	MP2A	Mx	018	5
25	MP2B	X	30.765	1
26	MP2B	Z	-17.762	1
27	MP2B	Mx	013	1
28	MP2B	X	30.765	5
29	MP2B	Z	-17.762	5
30	MP2B	Mx	013	5
31	MP2C	X	31.953	1
32	MP2C	Z	-18.448	1
33	MP2C	Mx	.022	1
34	MP2C	X	31.953	5
35	MP2C	Z	-18.448	5
36	MP2C	Mx	.022	5
37	MP2A	X Z	22.984	
38	MP2A		-13.27	
<u>39</u> 40	MP2A	Mx	007	5
	MP2A MP2A	X	22.984	
41 42	MP2A MP2A	Z Mx	-13.27 007	5
42	MP2A MP2B		30.765	0
43	MP2B MP2B	X Z	-17.762	1
44	MP2B MP2B	Mx	.026	1
45	MP2B MP2B	X	30.765	5
40	MP2B MP2B	Z	-17.762	5
47	MP2B	Mx	.026	5
40	MP2C		31.953	1
50	MP2C	X Z	-18.448	1
- 00	IVII 20	∠	-10.440	

Member Point Loads (BLC 17 : Antenna Wi (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
51	MP2C	Mx	022	1
52	MP2C	X	31.953	5
53	MP2C	Z	-18.448	5
54	MP2C	Mx	022	5
55	MP1A	X	10.472	2
56	MP1A	Z	-6.046	2
57	MP1A	Mx	.006	2
58	MP1B	X	13.812	2
59	MP1B	Z	-7.974	2
60	MP1B	Mx	003	2
61	MP1C	<u> </u>	14.322	2
62	MP1C	Z	-8.269	2
63	MP1C	Mx	0	2
64	MP2A	X 7	9.009	2
65	MP2A	Z	-5.201	2
66	MP2A	Mx	.005	2
67 68	MP2B MP2B	X Z	<u>13.618</u> -7.863	2 2
69				
70	MP2B MP2C	Mx X	003 14.322	2 2
70	MP2C	Z	-8.269	2
72	MP2C	Mx	-0.209	2
73	MP2C MP2A	X	2.71	4
74	MP2A MP2A	Z	-1.564	4
75	MP2A	Mx	.001	4
76	MP2B	X	3.374	4
77	MP2B	Z	-1.948	4
78	MP2B	Mx	000666	4
79	MP2C	X	3.476	4
80	MP2C	Z	-2.007	4
81	MP2C	Mx	0	4
82	OVP1	X	25.394	1
83	OVP1	Z	-14.661	1
84	OVP1	Mx	0	1
85	MP3A	X	17.013	1
86	MP3A	Z	-9.823	1
87	MP3A	Mx	009	1
88	MP3A	X	17.013	5
89	MP3A	Z	-9.823	5
90	MP3A	Mx	009	5
91	MP3B	X Z	25.526	1
92	MP3B		-14.738	1
93	MP3B	Mx	.005	1
94	MP3B	X	25.526	5
95	MP3B	Z	-14.738	5
96	MP3B	Mx	.005	5
97	MP3C	<u> </u>	26.826	1
98	MP3C	Z	-15.488	1
99	MP3C	Mx	0	1
100	MP3C	X	26.826	5
101	MP3C	Z	-15.488	5
102	MP3C	Mx	0	5
103	OVP2	X 7	25.394	1
104	OVP2	Z	-14.661	1
105	OVP2	Mx	0	

Member Point Loads (BLC 18 : Antenna Wi (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	8.698	2
2	MP4A	Z	0	2
3	MP4A	Mx	004	2
4	MP4A	X	8.698	4
5	MP4A	Z	0	4
6	MP4A	Mx	004	4
7	MP4B	X	19.284	2
8	MP4B	Z	0	2
9	MP4B	Mx	002	2
10	MP4B	X	19.284	4
11	MP4B	Z	0	4
12	MP4B	Mx	002	4
13	MP4C	X	16.807	2
14	MP4C	Z	0	2
15	MP4C	Mx	.004	2
16	MP4C	X	16.807	4
17	MP4C	Z	0	4
18	MP4C	Mx	.004	4
19	MP2A	X	25.521	1
20	MP2A	Z	0	1
20	MP2A	Mx	01	1
22	MP2A	X	25.521	5
23	MP2A	Z	0	5
23	MP2A MP2A	Mx	01	5
25	MP2B	X	36.543	1
26	MP2B	Z	0	1
20			024	1
	MP2B	Mx X		· · · · · · · · · · · · · · · · · · ·
28	MP2B	X 7	36.543	5
29	MP2B	Z	0	5
30	MP2B	Mx	024	5
31	MP2C	<u> </u>	33.964	1
32	MP2C	Z	0	1
33	MP2C	Mx	.026	1
34	MP2C	X	33.964	5
35	MP2C	Z	0	5
36	MP2C	Mx	.026	5
37	MP2A	Χ	25.521	1
38	MP2A	Z	0	1
39	MP2A	Mx	015	1
40	MP2A	X	25.521	5
41	MP2A	Z	0	5
42	MP2A	Mx	015	5
43	MP2B	X	36.543	1
44	MP2B	Z	0	1
45	MP2B	Mx	.018	1
46	MP2B	X	36.543	5
47	MP2B	Z	0	5
48	MP2B	Mx	.018	5
49	MP2C	X	33.964	1
50	MP2C	Z	0	1
51	MP2C	Mx	009	1
52	MP2C	X	33.964	5
53	MP2C	Z	0	5
54	MP2C	Mx	009	5
55	MP1A	X	11.655	2
56	MP1A	Z	0	2
57	MP1A	Mx	.006	2
			68327-VZW MT LO H r3d1	Page 45

Member Point Loads (BLC 18 : Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP1B	X	16.386	2
59	MP1B	Z	0	2
60	MP1B	Mx	.001	2
61	MP1C	X	15.279	2
62	MP1C	Z	0	2
63	MP1C	Mx	004	2
64	MP2A	X	9.799	2
65	MP2A	Z	0	2
66	MP2A	Mx	.005	2
67	MP2B	X	16.328	2
68	MP2B	Z	0	2
69	MP2B	Mx	.001	2
70	MP2C	X	14.801	2
71	MP2C	Z	0	2
72	MP2C	Mx	004	2
73	MP2A	X	3.042	4
74	MP2A	Z	0	4
75	MP2A	Mx	.001	4
76	MP2B	X	3.983	4
77	MP2B	Z	0	4
78	MP2B	Mx	.000346	4
79	MP2C	X	3.763	4
80	MP2C	Z	0	4
81	MP2C	Mx	000941	4
82	OVP1	X	31.838	1
83	OVP1	Z	0	1
84	OVP1	Mx	0	1
85	MP3A	X	18.531	1
86	MP3A	Z	0	1
87	MP3A	Mx	009	1
88	MP3A	X	18.531	5
89	MP3A	Z	0	5
90	MP3A	Mx	009	5
91	MP3B	X	30.59	1
92	MP3B	Z	0	1
93	MP3B	Mx	003	1
94	MP3B	X	30.59	5
95	MP3B	Z	0	5
96	MP3B	Mx	003	5
97	MP3C	X	27.768	1
98	MP3C	Z	0	1
99	MP3C	Mx	.007	1
100	MP3C	X	27.768	5
101	MP3C	Z	0	5
102	MP3C	Mx	.007	5
103	OVP2	X	31.838	1
104	OVP2	Z	0	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	11.269	2
2	MP4A	Z	6.506	2
3	MP4A	Mx	005	2
4	MP4A	Х	11.269	4
5	MP4A	Z	6.506	4

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	005	4
7	MP4B	<u> </u>	12.963	2
8	MP4B	Z	7.484	2
9	MP4B	Mx	005	2
10	MP4B	<u> </u>	12.963	4
11	MP4B	Z	7.484	4
12	MP4B	Mx	005	4
13	MP4C	X	9.677	2
14	MP4C	Z	5.587	2
15	MP4C	Mx	.005	2
16	MP4C	X	9.677	4
17	MP4C	Z	5.587	4
18	MP4C	Mx	.005	4
19	MP2A		25.993	1
20	MP2A	X Z	15.007	1
21	MP2A	Mx	000242	1
22	MP2A	X	25.993	5
23	MP2A	Z	15.007	5
24	MP2A	Mx	000242	5
25	MP2B	X	27.756	
26	MP2B	Z	16.025	1
27	MP2B	Mx		1
			025	
28	MP2B	X 7	27.756	5
29	MP2B	Z	16.025	5
30	MP2B	Mx	025	5
31	MP2C	<u> </u>	24.335	1
32	MP2C	Z	14.05	1
33	MP2C	Mx	.02	11
34	MP2C	X	24.335	5
35	MP2C	Z	14.05	5
36	MP2C	Mx	.02	5
37	MP2A	X	25.993	1
38	MP2A	Z	15.007	1
39	MP2A	Mx	023	1
40	MP2A	Х	25.993	5
41	MP2A	Z	15.007	5
42	MP2A	Mx	023	5
43	MP2B	X	27.756	1
44	MP2B	Z	16.025	1
45	MP2B	Mx	.004	1
46	MP2B		27.756	· · · · · · · · · · · · · · · · · · ·
40		Z		5
	MP2B		16.025	5
48	MP2B	Mx	.004	5
49	MP2C	<u> </u>	24.335	1
50	MP2C	Z	14.05	1
51	MP2C	Mx	.004	1
52	MP2C	X	24.335	5
53	MP2C	Z	14.05	5
54	MP2C	Mx	.004	5
55	MP1A	X	11.763	2
56	MP1A	Z	6.792	2
57	MP1A	Mx	.005	2
58	MP1B	X	12.521	2
59	MP1B	Z	7.229	2
60	MP1B	Mx	.005	2
61	MP1C	X	11.052	2
62	MP1C	Z	6.381	2
V2		4	0.001	4

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP1C	Mx	006	2
64	MP2A	X	10.791	2
65	MP2A	Z	6.23	2
66	MP2A	Mx	.005	2
67	MP2B	X	11.836	2
68	MP2B	Z	6.834	2
69	MP2B	Mx	.004	2
70	MP2C	X	9.809	2
71	MP2C	Z	5.663	2
72	MP2C	Mx	005	2
73	MP2A	Х	2.967	4
74	MP2A	Z	1.713	4
75	MP2A	Mx	.001	4
76	MP2B	X	3.117	4
77	MP2B	Z	1.8	4
78	MP2B	Mx	.001	4
79	MP2C	X	2.825	4
80	MP2C	Z	1.631	4
81	MP2C	Mx	001	4
82	OVP1	X	25.394	1
83	OVP1	Z	14.661	1
84	OVP1	Mx	0	1
85	MP3A	X	20.305	1
86	MP3A	Z	11.723	1
87	MP3A	Mx	009	1
88	MP3A	X	20.305	5
89	MP3A	Z	11.723	5
90	MP3A	Mx	009	5
91	MP3B	Х	22.235	1
92	MP3B	Z	12.837	1
93	MP3B	Mx	008	1
94	MP3B	Х	22.235	5
95	MP3B	Z	12.837	5
96	MP3B	Mx	008	5
97	MP3C	X	18.492	1
98	MP3C	Z	10.676	1
99	MP3C	Mx	.009	1
100	MP3C	X	18.492	5
101	MP3C	Z	10.676	5
102	MP3C	Mx	.009	5
103	OVP2	X	25.394	1
104	OVP2	Z	14.661	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	9.153	2
2	MP4A	Z	15.853	2
3	MP4A	Mx	003	2
4	MP4A	Х	9.153	4
5	MP4A	Z	15.853	4
6	MP4A	Mx	003	4
7	MP4B	Х	4.838	2
8	MP4B	Z	8.38	2
9	MP4B	Mx	005	2
10	MP4B	X	4.838	4

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
11	MP4B	Z	8.38	4
12	MP4B	Mx	005	4
13	MP4C	X	4.179	2
14	MP4C	Z	7.238	2
15	MP4C	Mx	.004	2
16	MP4C	X	4.179	4
17	MP4C	Z	7.238	4
18	MP4C	Mx	.004	4
19	MP2A	X	17.762	1
20	MP2A	Z	30.765	1
21	MP2A	Mx	.013	1
22	MP2A	Х	17.762	5
23	MP2A	Z	30.765	5
24	MP2A	Mx	.013	5
25	MP2B	X	13.27	1
26	MP2B	Z	22.984	1
27	MP2B	Mx	018	1
28	MP2B	X	13.27	5
29	MP2B	Z	22.984	5
30	MP2B	Mx	018	5
31	MP2C	Х	12.584	1
32	MP2C	Z	21.796	1
33	MP2C	Mx	.013	1
34	MP2C	X	12.584	5
35	MP2C	Z	21.796	5
36	MP2C	Mx	.013	5
37	MP2A	X	17.762	1
38	MP2A	Z	30.765	1
39	MP2A	Mx	026	1
40	MP2A	X	17.762	5
41	MP2A	Z	30.765	5
42	MP2A	Mx	026	5
43	MP2B	X	13.27	1
44	MP2B	Z	22.984	1
45	MP2B	Mx	007	1
46	MP2B	X	13.27	5
47	MP2B	Z	22.984	5
48	MP2B	Mx	007	5
49	MP2C	X	12.584	1
50	MP2C	Z	21.796	1
51	MP2C	Mx	.013	1
52	MP2C	X	12.584	5
53	MP2C	Z	21.796	5
54	MP2C	Mx	.013	5
55	MP1A	X	7.974	2
56	MP1A	Z	13.812	2
57	MP1A	Mx	.003	2
58	MP1B	X	6.046	2
59	MP1B	Z	10.472	2
60	MP1B	Mx	.006	2
61	MP1C	X	5.752	2
62	MP1C	Z	9.962	2
63	MP1C	Mx	006	2
64	MP2A	X	7.863	2
65	MP2A	Z	13.618	2
66	MP2A	Mx	.003	2
67	MP2B	Х	5.201	2
			168327-V/ZW MT I O H r3d1	Page 49

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2B	Z	9.009	2
69	MP2B	Mx	.005	2
70	MP2C	Х	4.795	2
71	MP2C	Z	8.305	2
72	MP2C	Mx	005	2
73	MP2A	Х	1.948	4
74	MP2A	Z	3.374	4
75	MP2A	Mx	.000666	4
76	MP2B	Х	1.564	4
77	MP2B	Z	2.71	4
78	MP2B	Mx	.001	4
79	MP2C	X	1.506	4
80	MP2C	Z	2.608	4
81	MP2C	Mx	002	4
82	OVP1	Х	12.146	1
83	OVP1	Z	21.038	1
84	OVP1	Mx	0	1
85	MP3A	Х	14.738	1
86	MP3A	Z	25.526	1
87	MP3A	Mx	005	1
88	MP3A	Х	14.738	5
89	MP3A	Z	25.526	5
90	MP3A	Mx	005	5
91	MP3B	X Z	9.823	1
92	MP3B	Z	17.013	1
93	MP3B	Mx	009	1
94	MP3B	Х	9.823	5
95	MP3B	Z	17.013	5
96	MP3B	Mx	009	5
97	MP3C	Х	9.072	1
98	MP3C	Z	15.713	1
99	MP3C	Mx	.009	1
100	MP3C	Х	9.072	5
101	MP3C	Z	15.713	5
102	MP3C	Mx	.009	5
103	OVP2	Х	12.146	1
104	OVP2	Z	21.038	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	2
2	MP4A	Z	19.284	2
3	MP4A	Mx	.002	2
4	MP4A	Х	0	4
5	MP4A	Z	19.284	4
6	MP4A	Mx	.002	4
7	MP4B	Х	0	2
8	MP4B	Z	8.698	2
9	MP4B	Mx	004	2
10	MP4B	X	0	4
11	MP4B	Z	8.698	4
12	MP4B	Mx	004	4
13	MP4C	Х	0	2
14	MP4C	Z	11.174	2
15	MP4C	Mx	.005	2

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

6	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4C	X 7	0	4
7	MP4C	Z	11.174	4
8	MP4C	Mx	.005	4
9	MP2A	<u> </u>	0	1
0	MP2A	Z	36.543	1
1	MP2A	Mx	.024	1
2	MP2A	X	0	5
3	MP2A	Z	36.543	5
4	MP2A	Mx	.024	5
5	MP2B	X	0	1
6	MP2B	Z	25.521	1
7	MP2B	Mx	01	11
8	MP2B	X	0	5
9	MP2B	Z	25.521	5
0	MP2B	Mx	01	5
1	MP2C	X	0	1
2	MP2C	Z	28.1	1
3	MP2C	Mx	.004	11
4	MP2C	X	0	5
5	MP2C	Z	28.1	5
6	MP2C	Mx	.004	5
7	MP2A	X	0	1
8	MP2A	Z	36.543	1
9	MP2A	Mx	018	1
0	MP2A	X	0	5
1	MP2A	Z	36.543	5
2	MP2A	Mx	018	5
3	MP2B	X	0	1
4	MP2B	Z	25.521	1
5	MP2B	Mx	015	1
6	MP2B	X	0	5
7	MP2B	Z	25.521	5
8	MP2B	Mx	015	5
9	MP2C	X	0	1
0	MP2C	Z	28.1	1
1	MP2C	Mx	.02	1
2	MP2C	X	0	5
3	MP2C	Z	28.1	5
4	MP2C	Mx	.02	5
5	MP1A	X	0	2
6	MP1A	Z	16.386	2
7	MP1A	Mx	001	2
8	MP1B	Х	0	2
9	MP1B	Z	11.655	2
0	MP1B	Mx	.006	2
1	MP1C	X	0	2
2	MP1C	Z	12.762	2
3	MP1C	Mx	006	2
4	MP2A	Х	0	2
5	MP2A	Z	16.328	2
6	MP2A	Mx	001	2
7	MP2B	X	0	2
8	MP2B	Z	9.799	2
9	MP2B	Mx	.005	2
0	MP2C	X	0	2
1	MP2C	Z	11.327	2
2	MP2C	Mx	005	2

Member Point Loads (BLC 21 : Antenna Wi (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
73	MP2A	Х	0	4
74	MP2A	Z	3.983	4
75	MP2A	Mx	000346	4
76	MP2B	Х	0	4
77	MP2B	Z	3.042	4
78	MP2B	Mx	.001	4
79	MP2C	Х	0	4
80	MP2C	Z	3.262	4
81	MP2C	Mx	001	4
82	OVP1	Х	0	1
83	OVP1	Z	21.777	1
84	OVP1	Mx	0	1
85	MP3A	Х	0	1
86	MP3A	Z	30.59	1
87	MP3A	Mx	.003	1
88	MP3A	Х	0	5
89	MP3A	Z	30.59	5
90	MP3A	Mx	.003	5
91	MP3B	Х	0	1
92	MP3B	Z	18.531	1
93	MP3B	Mx	009	1
94	MP3B	Х	0	5
95	MP3B	Z	18.531	5
96	MP3B	Mx	009	5
97	MP3C	Х	0	1
98	MP3C	Z	21.352	1
99	MP3C	Mx	.009	1
100	MP3C	Х	0	5
101	MP3C	Z	21.352	5
102	MP3C	Mx	.009	5
103	OVP2	Х	0	1
104	OVP2	Z	21.777	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-7.484	2
2	MP4A	Z	12.963	2
3	MP4A	Mx	.005	2
4	MP4A	Х	-7.484	4
5	MP4A	Z	12.963	4
6	MP4A	Mx	.005	4
7	MP4B	Х	-6.506	2
8	MP4B	Z	11.269	2
9	MP4B	Mx	005	2
10	MP4B	Х	-6.506	4
11	MP4B	Z	11.269	4
12	MP4B	Mx	005	4
13	MP4C	Х	-8.404	2
14	MP4C	Z	14.555	2
15	MP4C	Mx	.004	2
16	MP4C	Х	-8.404	4
17	MP4C	Z	14.555	4
18	MP4C	Mx	.004	4
19	MP2A	Х	-16.025	1
20	MP2A	Z	27.756	1

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP2A	Mx	.025	1
22	MP2A	X	-16.025	5
23	MP2A	Z	27.756	5
24	MP2A	Mx	.025	5
25	MP2B	X	-15.007	1
26	MP2B	Z	25.993	1
27	MP2B	Mx	000242	1
28	MP2B	X	-15.007	5
29	MP2B	Z	25.993	5
30	MP2B	Mx	000242	5
31	MP2C	X	-16.982	1
32	MP2C	Z	29.414	1
33	MP2C	Mx	009	1
34	MP2C	X	-16.982	5
35	MP2C	Ž	29.414	5
36	MP2C	Mx	009	5
37	MP2A	X	-16.025	1
38	MP2A	Z	27.756	1
39	MP2A	Mx	004	1
40	MP2A	X	-16.025	5
41	MP2A	Z	27.756	5
42	MP2A	Mx	004	5
43	MP2B	X	-15.007	1
44	MP2B	Z	25.993	1
45	MP2B	Mx	023	1
46	MP2B	X	-15.007	5
47	MP2B	Z	25.993	5
48	MP2B	Mx	023	5
49	MP2C	X	-16.982	1
50	MP2C	Z	29.414	1
51	MP2C	Mx	.026	1
52	MP2C	X	-16.982	5
53	MP2C	Z	29.414	5
54	MP2C	Mx	.026	5
55	MP1A	X	-7.229	2
56	MP1A	Z	12.521	2
57	MP1A	Mx	005	2
58	MP1B	X	-6.792	2
59	MP1B	^ Z	11.763	2
60	MP1B	Mx	.005	2
61	MP1C	X	-7.64	2
62	MP1C	X	13.232	2
63	MP1C	Mx	004	2
64	MP2A	X	-6.834	2
65	MP2A	^ Z	11.836	2
66	MP2A	Mx	004	2
67	MP2B	X	004 -6.23	2
		X Z		2
68 69	MP2B MP2B	Mx	10.791	
70	MP2B MP2C	X	.005 -7.4	2
70	MP2C	X Z		2
72			12.818	2
	MP2C	Mx	004	
73	MP2A	X Z	-1.8	4
74	MP2A		3.117	4
75	MP2A	Mx	001	4
76	MP2B	X 7	-1.713	4
77	MP2B		2.967	4
			168327-VZW MT LO H r3d1	Page 53

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP2B	Mx	.001	4
79	MP2C	Х	-1.881	4
80	MP2C	Z	3.259	4
81	MP2C	Mx	000941	4
82	OVP1	Х	-12.146	1
83	OVP1	Z	21.038	1
84	OVP1	Mx	0	1
85	MP3A	Х	-12.837	1
86	MP3A	Z	22.235	1
87	MP3A	Mx	.008	1
88	MP3A	Х	-12.837	5
89	MP3A	Z	22.235	5
90	MP3A	Mx	.008	5
91	MP3B	Х	-11.723	1
92	MP3B	Z	20.305	1
93	MP3B	Mx	009	1
94	MP3B	Х	-11.723	5
95	MP3B	Z	20.305	5
96	MP3B	Mx	009	5
97	MP3C	Х	-13.884	1
98	MP3C	Z	24.048	1
99	MP3C	Mx	.007	1
100	MP3C	Х	-13.884	5
101	MP3C	Z	24.048	5
102	MP3C	Mx	.007	5
103	OVP2	Х	-12.146	1
104	OVP2	Z	21.038	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-8.38	2
2	MP4A	Z	4.838	2
3	MP4A	Mx	.005	2
4	MP4A	Х	-8.38	4
5	MP4A	Z	4.838	4
6	MP4A	Mx	.005	4
7	MP4B	Х	-15.853	2
8	MP4B	Z	9.153	2
9	MP4B	Mx	003	2
10	MP4B	Х	-15.853	4
11	MP4B	Z	9.153	4
12	MP4B	Mx	003	4
13	MP4C	Х	-16.994	2
14	MP4C	Z	9.812	2
15	MP4C	Mx	0	2
16	MP4C	Х	-16.994	4
17	MP4C	Z	9.812	4
18	MP4C	Mx	0	4
19	MP2A	Х	-22.984	1
20	MP2A	Z	13.27	1
21	MP2A	Mx	.018	1
22	MP2A	Х	-22.984	5
23	MP2A	Z	13.27	5
24	MP2A	Mx	.018	5
25	MP2B	Х	-30.765	1

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
:6	MP2B	Z	17.762	1
.7	MP2B	Mx	.013	1
.8	MP2B	X	-30.765	5
9	MP2B	Z	17.762	5
0	MP2B	Mx	.013	5
51	MP2C	X	-31.953	1
2	MP2C	Z	18.448	1
3	MP2C	Mx	022	1
4	MP2C	X	-31.953	5
5	MP2C	Z	18.448	5
6	MP2C	Mx	022	5
57	MP2A	X	-22.984	1
8	MP2A	Z	13.27	1
9	MP2A MP2A		.007	1
.0	MP2A MP2A	Mx X	-22.984	5
		Z		
.1	MP2A		13.27	5
2	MP2A	Mx	.007	5
3	MP2B	<u> </u>	-30.765	1
4	MP2B	Z	17.762	1
.5	MP2B	Mx	026	1
.6	MP2B	X	-30.765	5
7	MP2B	Z	17.762	5
.8	MP2B	Mx	026	5
.9	MP2C	X	-31.953	1
i0	MP2C	Z	18.448	1
51	MP2C	Mx	.022	1
2	MP2C	X	-31.953	5
3	MP2C	Z	18.448	5
4	MP2C	Mx	.022	5
5	MP1A	X	-10.472	2
6	MP1A	Z	6.046	2
7	MP1A	Mx	006	2
8	MP1B	X	-13.812	2
i9	MP1B	Z	7.974	2
i0	MP1B	Mx	.003	2
1	MP1C	X Z	-14.322	2
2	MP1C		8.269	2
3	MP1C	Mx	0	2
4	MP2A	X	-9.009	2
5	MP2A	Z	5.201	2
6	MP2A	Mx	005	2
7	MP2B	X	-13.618	2
8	MP2B	Z	7.863	2
i9	MP2B	Mx	.003	2
0	MP2C	X	-14.322	2
'1	MP2C	Z	8.269	2
2	MP2C	Mx	0	2
3	MP2A	X	-2.71	4
·4	MP2A	Z	1.564	4
·5	MP2A	Mx	001	4
6	MP2B	X	-3.374	4
7	MP2B	^ Z	1.948	4 4
7 '8	MP2B		.000666	
		Mx		4
9	MP2C	X 7	-3.476	4
0	MP2C	Z	2.007	4
1	MP2C	Mx	0	4
2	OVP1	X	-25.394	1

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
83	OVP1	Z	14.661	1
84	OVP1	Mx	0	1
85	MP3A	Х	-17.013	1
86	MP3A	Z	9.823	1
87	MP3A	Mx	.009	1
88	MP3A	X	-17.013	5
89	MP3A	Z	9.823	5
90	MP3A	Mx	.009	5
91	MP3B	Х	-25.526	1
92	MP3B	Z	14.738	1
93	MP3B	Mx	005	1
94	MP3B	Х	-25.526	5
95	MP3B	Z	14.738	5
96	MP3B	Mx	005	5
97	MP3C	Х	-26.826	1
98	MP3C	Z	15.488	1
99	MP3C	Mx	0	1
100	MP3C	Х	-26.826	5
101	MP3C	Z	15.488	5
102	MP3C	Mx	0	5
103	OVP2	Х	-25.394	1
104	OVP2	Z	14.661	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-8.698	2
2	MP4A	Z	0	2
3	MP4A	Mx	.004	2
4	MP4A	Х	-8.698	4
5	MP4A	Z	0	4
6	MP4A	Mx	.004	4
7	MP4B	Х	-19.284	2
8	MP4B	Z	0	2
9	MP4B	Mx	.002	2
10	MP4B	Х	-19.284	4
11	MP4B	Z	0	4
12	MP4B	Mx	.002	4
13	MP4C	Х	-16.807	2
14	MP4C	Z	0	2
15	MP4C	Mx	004	2
16	MP4C	Х	-16.807	4
17	MP4C	Z	0	4
18	MP4C	Mx	004	4
19	MP2A	Х	-25.521	1
20	MP2A	Z	0	1
21	MP2A	Mx	.01	1
22	MP2A	Х	-25.521	5
23	MP2A	Z	0	5
24	MP2A	Mx	.01	5
25	MP2B	Х	-36.543	1
26	MP2B	Z	0	1
27	MP2B	Mx	.024	1
28	MP2B	Х	-36.543	5
29	MP2B	Z	0	5
30	MP2B	Mx	.024	5

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP2C	X	-33.964	1
32	MP2C	Z	0	1
33	MP2C	Mx	026	1
34	MP2C	X	-33.964	5
35	MP2C	Z	0	5
36	MP2C	Mx	026	5
37	MP2A	X	-25.521	1
38	MP2A	Z	0	1
39	MP2A	Mx	.015	1
40	MP2A	X	-25.521	5
41	MP2A	Z	0	5
42	MP2A	Mx	.015	5
43	MP2B	<u> </u>	-36.543	1
44	MP2B	Z	0	1
45	MP2B	Mx	018	1
46	MP2B	X	-36.543	5
47	MP2B	Z	0	5
48	MP2B	Mx	018	5
49	MP2C	X 7	-33.964	1
50	MP2C	Z	0	1
51	MP2C	Mx	.009	1
52	MP2C	X 7	-33.964	5
53	MP2C	Z	0	5
54	MP2C	Mx	.009	5
55	MP1A	<u> </u>	-11.655	2
56	MP1A	Z	0	2
57	MP1A	Mx	006	2
58	MP1B	X 7	-16.386	2
59	MP1B	Z	0	2
60	MP1B	Mx	001	2
61	MP1C	<u>X</u>	-15.279	2
62	MP1C	Z	0	2
63	MP1C	Mx	.004	2
64	MP2A	X	-9.799	2
65	MP2A	Z	0	2
66	MP2A	Mx	005	2
67	MP2B	X Z	-16.328	2
68	MP2B		0	2
69	MP2B	Mx	001	2
70	MP2C	X 7	-14.801	2
71 72	MP2C	Z	0.004	2
	MP2C	Mx ×		
73 74	MP2A	X Z	-3.042	4 4
74	MP2A MP2A		001	4 4
76	MP2A MP2B	Mx X	001	4 4
76	MP2B MP2B	Z	-3.983	4 4
78	MP2B		000346	4 4
78	MP2C	Mx X	-3.763	4 4
80	MP2C	Z	-5.765	4 4
81	MP2C	Mx	.000941	4 4
82	OVP1	X	-31.838	<u>+</u>
83	OVP1	Z	0	1
84	OVP1	Mx	0	1
85	MP3A	X	-18.531	1
86	MP3A	Z	-18.551	1
87	MP3A	Mx	.009	1
		•		1
	Version $17.0.4$ [R·\ \ \		C0207 V/7W/ MT IO U 2041	Page 57

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
88	MP3A	Х	-18.531	5
89	MP3A	Z	0	5
90	MP3A	Mx	.009	5
91	MP3B	Х	-30.59	1
92	MP3B	Z	0	1
93	MP3B	Mx	.003	1
94	MP3B	Х	-30.59	5
95	MP3B	Z	0	5
96	MP3B	Mx	.003	5
97	MP3C	Х	-27.768	1
98	MP3C	Z	0	1
99	MP3C	Mx	007	1
100	MP3C	Х	-27.768	5
101	MP3C	Z	0	5
102	MP3C	Mx	007	5
103	OVP2	Х	-31.838	1
104	OVP2	Z	0	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-11.269	2
2	MP4A	Z	-6.506	2
3	MP4A	Mx	.005	2
4	MP4A	Х	-11.269	4
5	MP4A	Z	-6.506	4
6	MP4A	Mx	.005	4
7	MP4B	Х	-12.963	2
8	MP4B	Z	-7.484	2
9	MP4B	Mx	.005	2
10	MP4B	Х	-12.963	4
11	MP4B	Z	-7.484	4
12	MP4B	Mx	.005	4
13	MP4C	Х	-9.677	2
14	MP4C	Z	-5.587	2
15	MP4C	Mx	005	2
16	MP4C	Х	-9.677	4
17	MP4C	Z	-5.587	4
18	MP4C	Mx	005	4
19	MP2A	X	-25.993	1
20	MP2A	Z	-15.007	1
21	MP2A	Mx	.000242	1
22	MP2A	Х	-25.993	5
23	MP2A	Z	-15.007	5
24	MP2A	Mx	.000242	5
25	MP2B	Х	-27.756	1
26	MP2B	Z	-16.025	1
27	MP2B	Mx	.025	1
28	MP2B	Х	-27.756	5
29	MP2B	Z	-16.025	5
30	MP2B	Mx	.025	5
31	MP2C	Х	-24.335	1
32	MP2C	Z	-14.05	1
33	MP2C	Mx	02	1
34	MP2C	Х	-24.335	5
35	MP2C	Z	-14.05	5

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
36	MP2C	Mx	02	5
37	MP2A	X	-25.993	1
38	MP2A	Z	-15.007	1
39	MP2A	Mx	.023	1
40	MP2A	Х	-25.993	5
41	MP2A	Z	-15.007	5
42	MP2A	Mx	.023	5
43	MP2B	X	-27.756	1
44	MP2B	Z	-16.025	1
45	MP2B	Mx	004	1
46	MP2B	X	-27.756	5
47	MP2B	Z	-16.025	5
48	MP2B	Mx	004	5
49	MP2C	X	-24.335	1
50	MP2C	Z	-14.05	1
51	MP2C	Mx	004	1
52	MP2C	X	-24.335	5
53	MP2C	Ζ	-14.05	5
54	MP2C	Mx	004	5
55	MP1A	Χ	-11.763	2
56	MP1A	Z	-6.792	2
57	MP1A	Mx	005	2
58	MP1B	X	-12.521	2
59	MP1B	Z	-7.229	2
60	MP1B	Mx	005	2
61	MP1C	X	-11.052	2
62	MP1C	Z	-6.381	2
63	MP1C	Mx	.006	2
64	MP2A	X	-10.791	2
65	MP2A	Z	-6.23	2
66	MP2A	Mx	005	2
67	MP2B	X	-11.836	2
68	MP2B	Z	-6.834	2
69	MP2B	Mx	004	2
70	MP2C	X	-9.809	2
71	MP2C	Z	-5.663	2
72	MP2C	Mx	.005	2
73	MP2A	X	-2.967	4
74	MP2A	Z	-1.713	4
75	MP2A	Mx	001	4
76	MP2B	X	-3.117	4
77	MP2B	Z	-1.8	4
78	MP2B	Mx	001	4
79	MP2C	X	-2.825	4
80	MP2C	Z	-1.631	4
81	MP2C	Mx	.001	4
82	OVP1	Х	-25.394	1
83	OVP1	Z	-14.661	1
84	OVP1	Mx	0	1
85	MP3A	X	-20.305	1
86	MP3A	Z	-11.723	1
87	MP3A	Mx	.009	1
88	MP3A	X	-20.305	5
89	MP3A	Z	-11.723	5
90	MP3A	Mx	.009	5
91	MP3B	X	-22.235	1
92	MP3B	Z	-12.837	1
			168327-VZW MT LO H r3d1	Page 59

Member Point Loads (BLC 25 : Antenna Wi (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
93	MP3B	Mx	.008	1
94	MP3B	Х	-22.235	5
95	MP3B	Z	-12.837	5
96	MP3B	Mx	.008	5
97	MP3C	Х	-18.492	1
98	MP3C	Z	-10.676	1
99	MP3C	Mx	009	1
100	MP3C	Х	-18.492	5
101	MP3C	Z	-10.676	5
102	MP3C	Mx	009	5
103	OVP2	Х	-25.394	1
104	OVP2	Z	-14.661	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-9.153	2
2	MP4A	Z	-15.853	2
3	MP4A	Mx	.003	2
4	MP4A	X	-9.153	4
5	MP4A	Z	-15.853	4
6	MP4A	Mx	.003	4
7	MP4B	Х	-4.838	2
8	MP4B	Z	-8.38	2
9	MP4B	Mx	.005	2
10	MP4B	Х	-4.838	4
11	MP4B	Z	-8.38	4
12	MP4B	Mx	.005	4
13	MP4C	Х	-4.179	2
14	MP4C	Z	-7.238	2
15	MP4C	Mx	004	2
16	MP4C	X	-4.179	4
17	MP4C	Z	-7.238	4
18	MP4C	Mx	004	4
19	MP2A	Х	-17.762	1
20	MP2A	Z	-30.765	1
21	MP2A	Mx	013	1
22	MP2A	X	-17.762	5
23	MP2A	Z	-30.765	5
24	MP2A	Mx	013	5
25	MP2B	Х	-13.27	1
26	MP2B	Z	-22.984	1
27	MP2B	Mx	.018	1
28	MP2B	Х	-13.27	5
29	MP2B	Z	-22.984	5
30	MP2B	Mx	.018	5
31	MP2C	Х	-12.584	1
32	MP2C	Z	-21.796	1
33	MP2C	Mx	013	1
34	MP2C	X	-12.584	5
35	MP2C	Z	-21.796	5
36	MP2C	Mx	013	5
37	MP2A	X Z	-17.762	1
38	MP2A		-30.765	1
39	MP2A	Mx	.026	1
40	MP2A	Х	-17.762	5

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
41	MP2A	Z	-30.765	5
42	MP2A	Mx	.026	5
43	MP2B	X	-13.27	1
44	MP2B	Z	-22.984	1
45	MP2B	Mx	.007	1
46	MP2B	X	-13.27	5
47	MP2B	Z	-22.984	5
48	MP2B	Mx	.007	5
49	MP2C	Χ	-12.584	1
50	MP2C	Z	-21.796	1
51	MP2C	Mx	013	1
52	MP2C	Х	-12.584	5
53	MP2C	Z	-21.796	5
54	MP2C	Mx	013	5
55	MP1A	Х	-7.974	2
56	MP1A	Z	-13.812	2
57	MP1A	Mx	003	2
58	MP1B	X	-6.046	2
59	MP1B	Z	-10.472	2
60	MP1B	Mx	006	2
61	MP1C	X	-5.752	2
62	MP1C	Z	-9.962	2
63	MP1C	M×	.006	2
64	MP2A	X	-7.863	2
65	MP2A	Z	-13.618	2
66	MP2A	Mx	003	2
67	MP2B	Χ	-5.201	2
68	MP2B	Z	-9.009	2
69	MP2B	Mx	005	2
70	MP2C	X	-4.795	2
71	MP2C	Z	-8.305	2
72	MP2C	Mx	.005	2
73	MP2A	Χ	-1.948	4
74	MP2A	Z	-3.374	4
75	MP2A	Mx	000666	4
76	MP2B	Х	-1.564	4
77	MP2B	Z	-2.71	4
78	MP2B	Mx	001	4
79	MP2C	X	-1.506	4
80	MP2C	Z	-2.608	4
81	MP2C	Mx	.002	4
82	OVP1	X	-12.146	1
83	OVP1	Z	-21.038	1
84	OVP1	Mx	0	1
85	MP3A	X	-14.738	1
86	MP3A	Z	-25.526	1
87	MP3A	Mx	.005	1
88	MP3A	X	-14.738	5
89	MP3A	Z	-25.526	5
90	MP3A	Mx	.005	5
91	MP3B	X	-9.823	1
92	MP3B	Z	-17.013	1
93	MP3B	Mx	.009	1
94	MP3B	X	-9.823	5
95	MP3B	Z	-17.013	5
96	MP3B	Mx	.009	5
97	MP3C	X	-9.072	1
		L	168327-V/ZW_MT_LO_H_r3d]	Page 61

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
98	MP3C	Z	-15.713	1
99	MP3C	Mx	009	1
100	MP3C	Х	-9.072	5
101	MP3C	Z	-15.713	5
102	MP3C	Mx	009	5
103	OVP2	Х	-12.146	1
104	OVP2	Z	-21.038	1
105	OVP2	Mx	0	1

<u>Member Point Loads (BLC 27 : Antenna Wm (0 Deg))</u>

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	0	2
2	MP4A	Z	-6.139	2
3	MP4A	Mx	000533	2
4	MP4A	Х	0	4
5	MP4A	Z	-6.139	4
6	MP4A	Mx	000533	4
7	MP4B	Х	0	2
8	MP4B	Z	-2.563	2
9	MP4B	Mx	.001	2
10	MP4B	X	0	4
11	MP4B	Z	-2.563	4
12	MP4B	Mx	.001	4
13	MP4C	Х	0	2
14	MP4C	Z	-3.4	2
15	MP4C	Mx	001	2
16	MP4C	Х	0	4
17	MP4C	Z	-3.4	4
18	MP4C	Mx	001	4
19	MP2A	Х	0	1
20	MP2A	Z	-11.997	1
21	MP2A	Mx	008	1
22	MP2A	Х	0	5
23	MP2A	Z	-11.997	5
24	MP2A	Mx	008	5
25	MP2B	X Z	0	1
26	MP2B	Z	-8.087	1
27	MP2B	Mx	.003	1
28	MP2B	X	0	5
29	MP2B	Z	-8.087	5
30	MP2B	Mx	.003	5
31	MP2C	Х	0	1
32	MP2C	Z	-9.002	1
33	MP2C	Mx	001	1
34	MP2C	Х	0	5
35	MP2C	Z	-9.002	5
36	MP2C	Mx	001	5
37	MP2A	X	0	1
38	MP2A	Z	-11.997	1
39	MP2A	Mx	.006	1
40	MP2A	Х	0	5
41	MP2A	Z	-11.997	5
42	MP2A	Mx	.006	5
43	MP2B	Х	0	1
44	MP2B	Z	-8.087	1
45	MP2B	Mx	.005	1

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

46 MP2B X 0 47 MP2B Z -8.087 48 MP2B Mx .005 49 MP2C X 0 50 MP2C Z .9.002 51 MP2C X 0 52 MP2C Z .9.002 54 MP2C X 0 55 MP1A X 0 56 MP1A Z .4.927 57 MP1A Mx .000428 58 MP1B Z .3.769 60 MP1B Mx .002 61 MP1C X 0 62 MP1C X 0 63 MP2A Z .4.908 66 MP2A Z .4.908 66 MP2A Z .2.763 69 MP2B X 0 70 MP2B Z .2.763	Location[ft,%]
48 MP2B Mx 005 49 MP2C X 0 50 MP2C Z 9.002 51 MP2C X 0 52 MP2C X 00 53 MP2C X 00 54 MP2C X 00 55 MP1A X 00 56 MP1A X 0 57 MP1A X 0 59 MP1B X 0 60 MP1B Mx -002 61 MP1C X 0 62 MP1C X 0 63 MP2A Z -4.908 66 MP2A X 0 67 MP2B X 0 68 MP2B Z -2.763 69 MP2B X 0 71 MP2C X 0 75 <	5
49 MP2C X 0 50 MP2C Z -9.002 51 MP2C X 0 53 MP2C Z -9.002 54 MP2C X 0 55 MP1A X 0 56 MP1A Z -4.927 57 MP1A MX .0002 59 MP1B X 0 59 MP1B X 0 61 MP1C X 0 62 MP1C Z -3.739 63 MP1C X 0 64 MP2A X 0 65 MP2A Z -4.908 66 MP2A X 0 67 MP2B X 0 68 MP2A Z -2.763 69 MP2B X 0 70 MP2C X 0 71	5
50 MP2C Z 9.002 51 MP2C Mx 007 52 MP2C X 0 53 MP2C Z 9.002 54 MP2C X 0 55 MP1A X 0 56 MP1A Z 4.927 57 MP1B Z -3.376 60 MP1B X 0 59 MP1C X 0 61 MP1C X 0 62 MP1C X 0 63 MP1C X 0 64 MP2A X 0 65 MP2A Z -4.908 66 MP2A X 0 67 MP2B X 0 71 MP2A X 0 73 MP2A X 0 74 MP2A X 0 75<	5
51 MP2C Mx 007 52 MP2C X 0 53 MP2C Z -9.002 54 MP2C Mx 007 55 MP1A X 0 56 MP1A X 0 56 MP1A X 0 57 MP1A Mx .00428 58 MP1B X 0 59 MP1B Z -3.376 60 MP1C X 0 61 MP1C X 0 62 MP1C Mx .002 64 MP2A X 0 65 MP2A X 0 66 MP2A X 0 67 MP2B X 0 68 MP2B Z -2.763 69 MP2A X 0 71 MP2C X 0 73	1
52 MP2C X 0 53 MP2C Z -9.002 54 MP2C Mx 007 55 MP1A X 0 56 MP1A Z -4.927 57 MP1A Mx 000428 58 MP1B X 0 59 MP1B Z -3.376 60 MP1C X 0 61 MP1C X 0 62 MP1C Z -3.739 63 MP2A X 0 65 MP2A Z -4.908 66 MP2A X 0 67 MP2B X 0 70 MP2B X 0 71 MP2C Z -2.763 72 MP2C X 0 73 MP2A X 0 74 MP2A X 0 7	1
53 MP2C Z -9.002 54 MP2C Mx 007 55 MP1A X 0 56 MP1A Z 4.927 57 MP1A Mx .00428 58 MP1B X 0 59 MP1B Mx .002 61 MP1C X 0 62 MP1C X 0 63 MP1C Mx .002 64 MP2A Z -3.739 66 MP2A X 0 67 MP2B Z -2.763 69 MP2B Z -2.763 69 MP2B Z -2.763 69 MP2B X 0 71 MP2C X 0 71 MP2C X 0 73 MP2A Z -3.265 72 MP2A X 0	the second se
54 MP2C Mx 007 55 MP1A X 0 56 MP1A Z -4.927 57 MP1A Mx .000428 58 MP1B X 0 59 MP1B X 0 60 MP1B Mx 002 61 MP1C X 0 62 MP1C X 002 64 MP2A X 0 65 MP2A Z -4.908 66 MP2A X 0 67 MP2B X 0 68 MP2A Z -2.763 69 MP2B Z -2.763 69 MP2B X 0 71 MP2C Z -3.265 72 MP2A X 0 74 MP2A Z -976 75 MP2A X 0	5
55 MP1A X 0 56 MP1A Z -4.927 57 MP1A Mx .000428 58 MP1B X 0 59 MP1B Z -3.376 60 MP1B Mx 002 61 MP1C X 0 62 MP1C X 0 63 MP1C X 0 64 MP2A X 0 65 MP2A X 0 66 MP2A X 0 67 MP2B Z -2.763 69 MP2B X 0 70 MP2C Z -3.265 72 MP2C X 0 71 MP2A Z -976 75 MP2A X 0 74 MP2A Z 69 78 MP2B Z 69 78	5
56 MP1A Z -4.927 57 MP1A Mx .000428 58 MP1B X 0 59 MP1B Z -3.376 60 MP1B Mx 002 61 MP1C X 0 62 MP1C Z -3.739 63 MP1C X 0 64 MP2A X 0 65 MP2A Z -4.908 66 MP2A X 0 68 MP2B X 0 68 MP2B X 0 68 MP2B X 0 70 MP2C X 0 71 MP2C X 0 74 MP2A Z 976 75 MP2A X 0 77 MP2B X 0 78 MP2B X 0 79	
57 MP1A Mx .000428 58 MP1B X 0 59 MP1B Z -3.376 60 MP1B Mx 002 61 MP1C X 0 62 MP1C Z -3.739 63 MP1C Mx .002 64 MP2A X 0 65 MP2A Z -4.908 66 MP2A X 0 68 MP2B X 0 69 MP2B X 0 70 MP2C X 0 71 MP2C X 0 73 MP2A Z -9.763 74 MP2A Z -9.976 75 MP2A X 0 77 MP2B Z -69 78 MP2B Mx 000344 79 MP2C X 0	2
58 MP1B X 0 59 MP1B Z -3.376 60 MP1B Mx 002 61 MP1C X 0 62 MP1C Z -3.739 63 MP1C X 0 64 MP2A X 0 65 MP2A Z -4.908 66 MP2A X 0 67 MP2B X 0 68 MP2B X 0 69 MP2B X 0 70 MP2C X 0 71 MP2C X 0 73 MP2A X 0 74 MP2A X 0 75 MP2A X 0 76 MP2A X 0 77 MP2B Z 69 78 MP2B X 0 80	2
59 MP1B Z -3.376 60 MP1B Mx 002 61 MP1C X 0 62 MP1C Z -3.739 63 MP1C Mx .002 64 MP2A Z -4.908 66 MP2A Z -4.908 66 MP2A Z -2.763 69 MP2B Z -2.763 69 MP2B Z -2.763 69 MP2B Z -3.265 72 MP2C X 0 71 MP2C Z -3.265 72 MP2A X 0 74 MP2A Z 976 75 MP2A X 0 76 MP2B Z 69 78 MP2B X 0 82 OVP1 X 0 83 OVP1 X 0	2
60 MP1B Mx 002 61 MP1C X 0 62 MP1C Z -3.739 63 MP1C Mx .002 64 MP2A X 0 65 MP2A Z -4.908 66 MP2A Mx .000426 67 MP2B X 0 68 MP2B X 0 69 MP2B X 0 70 MP2C X 0 71 MP2C X 0 71 MP2C X 0 73 MP2A Z 976 75 MP2A Z 69 76 MP2B Z 69 77 MP2B Z 69 78 MP2B Z 69 78 MP2C X 0 80 MP2C X 0 81	
61 MP1C X 0 62 MP1C Z -3.739 63 MP1C Mx .002 64 MP2A X 0 65 MP2A Z -4.908 66 MP2A X 0 68 MP2B X 0 68 MP2B X 0 70 MP2B X 0 71 MP2C X 0 71 MP2C X 0 73 MP2A Z 976 74 MP2A Z 976 75 MP2A Z 69 78 MP2B Z 69 78 MP2B X 0 79 MP2C X 0 82 OVP1 X 0 83 OVP1 X 0 84 OVP1 Mx 0 85	2
62 MP1C Z -3.739 63 MP1C Mx .002 64 MP2A X 0 65 MP2A Z -4.908 66 MP2A X 0 67 MP2B X 0 68 MP2B Z -2.763 69 MP2B X 0 70 MP2C X 0 71 MP2C X 0 72 MP2C Mx .001 73 MP2A Z 976 75 MP2A X 0 74 MP2A Z 976 75 MP2A X 0 77 MP2B X 0 78 MP2B X 0 79 MP2C X 0 82 OVP1 X 0 83 OVP1 Z -6.676 84	2
63 MP1C Mx .002 64 MP2A X 0 65 MP2A Z -4.908 66 MP2A Mx .000426 67 MP2B X 0 68 MP2B Z -2.763 69 MP2B X 0 70 MP2C X 0 71 MP2C X 0 73 MP2C X 0 74 MP2A Z 976 75 MP2A X 0 76 MP2B Z 69 78 MP2B X 0 79 MP2C X 0 82 OVP1 X 0 83 OVP1 X 0 84 OVP1 X 0 85 MP3A Z -9.936 90 MP3A Z -9.936 90 <td>2</td>	2
64 MP2A X 0 65 MP2A Z -4.908 66 MP2A Mx .000426 67 MP2B X 0 68 MP2B Z -2.763 69 MP2B Mx 001 70 MP2C X 0 71 MP2C X 0 71 MP2C X 0 73 MP2A Z -3.265 72 MP2C Mx .001 73 MP2A Z 976 75 MP2A Z 976 76 MP2B X 0 77 MP2B Z 69 78 MP2B Mx .00034 79 MP2C X 0 80 MP2C X 0 81 MP2C Mx .000328 82 OVP1 X 0	2
65 MP2A Z -4.908 66 MP2A Mx .000426 67 MP2B X 0 68 MP2B Z -2.763 69 MP2B Mx 001 70 MP2C X 0 71 MP2C Z -3.265 72 MP2A X 0 73 MP2A X 0 74 MP2A X 0 74 MP2A X 0 75 MP2A X 0 76 MP2B Z 69 78 MP2B X 0 79 MP2C X 0 80 MP2C X 0 81 MP2C X 0 82 OVP1 X 0 83 OVP1 X 0 84 OVP1 Mx 000863 88	2
66 MP2A Mx .000426 67 MP2B X 0 68 MP2B Z -2.763 69 MP2B Mx 001 70 MP2C X 0 71 MP2C X 0 73 MP2C X 0 74 MP2A X 0 75 MP2A X 0 76 MP2B Z 976 75 MP2A Mx 8.5e-5 76 MP2B Z 69 78 MP2B Z 69 78 MP2B Z 69 78 MP2C X 0 80 MP2C X 0 81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 X 0 84 OVP1 Mx 0 <td< td=""><td>2</td></td<>	2
67 MP2B X 0 68 MP2B Z -2.763 69 MP2B Mx 001 70 MP2C X 0 71 MP2C Z -3.265 72 MP2C Mx .001 73 MP2A X 0 74 MP2A Z 976 75 MP2A X 0 76 MP2B Z 69 78 MP2B X 0 79 MP2C X 0 80 MP2C X 0 81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A Z -9.936 90 MP3A X 0 91 MP3B X 0	2
68 MP2B Z -2.763 69 MP2B Mx 001 70 MP2C X 0 71 MP2C Z -3.265 72 MP2C Mx .001 73 MP2A X 0 74 MP2A Z 976 75 MP2A X 0 77 MP2B X 0 77 MP2B Z 69 78 MP2B X 0 79 MP2C X 0 80 MP2C X 0 81 MP2C X 0 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx .000863 85 MP3A X 0 86 MP3A X 0 91 MP3B Z -5.67	2
69 MP2B Mx 001 70 MP2C X 0 71 MP2C Z -3.265 72 MP2C Mx .001 73 MP2A X 0 74 MP2A X 0 74 MP2A X 0 75 MP2A X 0 76 MP2B Z 976 78 MP2B X 0 79 MP2C X 0 80 MP2C X 0 81 MP2C X 0 82 OVP1 X 0 83 OVP1 X 0 84 OVP1 Mx 000863 87 MP3A X 0 88 MP3A X 0 90 MP3A X 0 91 MP3B X 0 92	2
70 MP2C X 0 71 MP2C Z -3.265 72 MP2C Mx .001 73 MP2A X 0 74 MP2A Z 976 75 MP2A Z 976 75 MP2B X 0 77 MP2B Z 69 78 MP2B X 0 79 MP2C X 0 80 MP2C Z 757 81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A Z -9.936 87 MP3A X 0 88 MP3A Z -9.936 91 MP3B X 0 92 MP3B X 0	2
MP2C Z -3.265 72 MP2C Mx .001 73 MP2A X 0 74 MP2A Z 976 75 MP2A X 0 76 MP2B X 0 77 MP2B Z 69 78 MP2B X 0 79 MP2C X 0 80 MP2C Z 757 81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 X 0 84 OVP1 Mx .000328 85 MP3A X 0 86 MP3A X 0 87 MP3A X 0 88 MP3A Z -9.936 90 MP3A Z -9.936 91 MP3B X 0 92	2
72 MP2C Mx .001 73 MP2A X 0 74 MP2A Z 976 75 MP2A Mx 8.5e-5 76 MP2B X 0 77 MP2B Z 69 78 MP2B Mx 00034 79 MP2C X 0 80 MP2C X 0 81 MP2C X 0 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 90 MP3A X 0 91 MP3B X 0 92 MP3B X 0 92 MP3B X 0 93 MP3B X 0 94	2
73 MP2A X 0 74 MP2A Z 976 75 MP2A Mx 8.5e-5 76 MP2B X 0 77 MP2B Z 69 78 MP2B Mx 00034 79 MP2C X 0 80 MP2C X 0 81 MP2C X 0 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 87 MP3A X 0 90 MP3A Z -9.936 91 MP3A X 0 92 MP3B X 0 93 MP3B X 0 94 MP3B X 0 95 <td>2</td>	2
74 MP2A Z 976 75 MP2A Mx $8.5e-5$ 76 MP2B X 0 77 MP2B Z 69 78 MP2B Mx 00034 79 MP2C X 0 80 MP2C Z 757 81 MP2C Mx 000328 82 OVP1 X 0 83 OVP1 X 0 84 OVP1 Mx 0 85 MP3A Z -9.936 87 MP3A X 0 88 MP3A Z -9.936 90 MP3A Z -9.936 91 MP3B X 0 92 MP3B X 0 92 MP3B X 0 93 MP3B X 0 94 MP3B X 0	4
75 MP2A Mx 8.5e-5 76 MP2B X 0 77 MP2B Z 69 78 MP2B Mx 00034 79 MP2C X 0 80 MP2C Z 757 81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 87 MP3A X 0 88 MP3A Z -9.936 90 MP3A Z -9.936 91 MP3B X 0 92 MP3A Z -9.936 91 MP3B X 0 92 MP3B X 0 93 MP3B X 0	4
76 MP2B X 0 77 MP2B Z 69 78 MP2B Mx 00034 79 MP2C X 0 80 MP2C Z 757 81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 87 MP3A X 0 88 MP3A Z -9.936 90 MP3A Z -9.936 91 MP3B X 0 92 MP3B X 0 92 MP3B X 0 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67 <	4
77 MP2B Z 69 78 MP2B Mx 00034 79 MP2C X 0 80 MP2C Z 757 81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 87 MP3A X 0 88 MP3A Z -9.936 90 MP3A X 0 91 MP3A X 0 92 MP3A Z -9.936 91 MP3B X 0 92 MP3B Z -5.67 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67	4
78 MP2B Mx 00034 79 MP2C X 0 80 MP2C Z 757 81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 87 MP3A X 0 88 MP3A X 0 89 MP3A Z -9.936 90 MP3A X 0 91 MP3B X 0 92 MP3B X 0 92 MP3B X 0 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B X 0 95 <td>4</td>	4
79 MP2C X 0 80 MP2C Z 757 81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 87 MP3A X 0 88 MP3A X 0 89 MP3A Z -9.936 90 MP3A X 0 91 MP3B X 0 92 MP3B X 0 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B Mx .003 97 MP3C X 0 98 MP3C X 0 99	4
80 MP2C Z 757 81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 87 MP3A X 0 88 MP3A X 0 89 MP3A X 0 90 MP3A Z -9.936 91 MP3B X 0 92 MP3B X 0 92 MP3B X 0 93 MP3B X 0 94 MP3B X 0 95 MP3B X 0 96 MP3B Mx .003 97 MP3C X 0 98 MP3C X 0 99	4
81 MP2C Mx .000328 82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 87 MP3A Mx 000863 88 MP3A X 0 89 MP3A Z -9.936 90 MP3A X 0 91 MP3B X 0 92 MP3B X 0 92 MP3B X 0 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B X 0 97 MP3C X 0 98 MP3C X 0 98 MP3C X 0 98	4
82 OVP1 X 0 83 OVP1 Z -6.676 84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 87 MP3A Mx 000863 88 MP3A X 0 89 MP3A Z -9.936 90 MP3A Z -9.936 90 MP3A Z -9.936 90 MP3A Z -9.936 91 MP3B X 0 92 MP3B X 0 92 MP3B X 0 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B Mx .003 97 MP3C X 0 98 MP3C Z -6.668	4
83 $OVP1$ Z-6.67684 $OVP1$ Mx 0 85 $MP3A$ X 0 86 $MP3A$ Z -9.93687 $MP3A$ Mx 00086388 $MP3A$ X 0 89 $MP3A$ Z -9.93690 $MP3A$ Z -9.93691 $MP3B$ X 0 92 $MP3B$ X 0 93 $MP3B$ X 0 94 $MP3B$ X 0 95 $MP3B$ Z -5.6796 $MP3B$ Mx .00397 $MP3C$ X 0 98 $MP3C$ Z -6.66899 $MP3C$ Mx 003	
84 OVP1 Mx 0 85 MP3A X 0 86 MP3A Z -9.936 87 MP3A Mx 000863 88 MP3A X 0 89 MP3A Z -9.936 90 MP3A Z -9.936 90 MP3A Z -9.936 90 MP3A Z -9.936 90 MP3A Z -9.936 91 MP3B X 0 92 MP3B X 0 92 MP3B X 0 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B Mx .003 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003 <td>1</td>	1
85 MP3A X 0 86 MP3A Z -9.936 87 MP3A Mx 000863 88 MP3A X 0 89 MP3A Z -9.936 90 MP3A Z -9.936 91 MP3B X 0 92 MP3B X 0 92 MP3B X 0 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B X 0 97 MP3B X 0 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	1
86 MP3A Z -9.936 87 MP3A Mx 000863 88 MP3A X 0 89 MP3A Z -9.936 90 MP3A Z -9.936 91 MP3A Z -9.936 92 MP3B X 0 92 MP3B Z -5.67 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B X 0 97 MP3B X 0 98 MP3C X 0 98 MP3C X 0 99 MP3C Mx 003	1
87 MP3A Mx 000863 88 MP3A X 0 89 MP3A Z -9.936 90 MP3A Mx 000863 91 MP3B X 0 92 MP3B Z -5.67 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B X 0 97 MP3B Z -5.67 98 MP3C X 0 98 MP3C X 0 98 MP3C Mx 003	1
88 MP3A X 0 89 MP3A Z -9.936 90 MP3A Mx 000863 91 MP3B X 0 92 MP3B Z -5.67 93 MP3B X 0 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B X 0 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	1
89 MP3A Z -9.936 90 MP3A Mx 000863 91 MP3B X 0 92 MP3B Z -5.67 93 MP3B Mx .003 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B X 0 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	5
90 MP3A Mx 000863 91 MP3B X 0 92 MP3B Z -5.67 93 MP3B Mx .003 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B X 0 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	5
91 MP3B X 0 92 MP3B Z -5.67 93 MP3B Mx .003 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B Z -5.67 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	5
92 MP3B Z -5.67 93 MP3B Mx .003 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B Z -5.67 96 MP3B Mx .003 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	1
93 MP3B Mx .003 94 MP3B X 0 95 MP3B Z -5.67 96 MP3B Mx .003 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	1
94 MP3B X 0 95 MP3B Z -5.67 96 MP3B Mx .003 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	1
95 MP3B Z -5.67 96 MP3B Mx .003 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	5
96 MP3B Mx .003 97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	5
97 MP3C X 0 98 MP3C Z -6.668 99 MP3C Mx 003	5
98 MP3C Z -6.668 99 MP3C Mx 003	1
99 MP3C Mx003	1
	1
100 MP3C X 0	5
MP3C X 0 101 MP3C Z -6.668	5
102 MP3C Mx003	5

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
103	OVP2	Х	0	1
104	OVP2	Z	-6.676	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	2.341	2
2	MP4A	Z	-4.055	2
3	MP4A	Mx	002	2
4	MP4A	X	2.341	4
5	MP4A	Z	-4.055	4
6	MP4A	Mx	002	4
7	MP4B	X	2.01	2
8	MP4B	Z	-3.482	2
9	MP4B	Mx	.002	2
10	MP4B	Х	2.01	4
11	MP4B	Z	-3.482	4
12	MP4B	Mx	.002	4
13	MP4C	X	2.651	2
14	MP4C	Z	-4.592	2
15	MP4C	Mx	001	2
16	MP4C	Х	2.651	4
17	MP4C	Z	-4.592	4
18	MP4C	Mx	001	4
19	MP2A	X	5.202	1
20	MP2A	Z	-9.01	1
21	MP2A	Mx	008	1
22	MP2A	Х	5.202	5
23	MP2A	Z	-9.01	5
24	MP2A	Mx	008	5
25	MP2B	<u> </u>	4.84	1
26	MP2B	Z	-8.384	1
27	MP2B	Mx	7.8e-5	1
28	MP2B	X	4.84	5
29	MP2B	Z	-8.384	5
30	MP2B	Mx	7.8e-5	5
31	MP2C	<u> </u>	5.541	1
32	MP2C	Z	-9.598	1
33	MP2C	Mx	.003	1
34	MP2C	X 7	5.541	5
35	MP2C	Z	-9.598	5
36	MP2C	Mx	.003	5
37	MP2A	X	5.202	1
38	MP2A	Z	-9.01	
39	MP2A	Mx	.001	1
40	MP2A	X	5.202	5
41	MP2A	Z	-9.01	5
42	MP2A	Mx	.001	5
43	MP2B	X Z	4.84	
44 45	MP2B		-8.384	
45	MP2B MP2B	Mx X	4.84	5
46	MP2B MP2B	Z	-8.384	5
47	MP2B MP2B		.007	5
48	MP2B MP2C	Mx	5.541	5
50	MP2C	X Z	-9.598	1
50	IVII ⁻ 20	<u>۲</u>	-9.090	1

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
51	MP2C	Mx	008	1
52	MP2C	X	5.541	5
53	MP2C	Z	-9.598	5
54	MP2C	Mx	008	5
55	MP1A	X	2.147	2
56	MP1A	Z	-3.72	2
57	MP1A	Mx	.001	2
58	MP1B	X	2.004	2
59	MP1B	Z	-3.471	2
60	MP1B	Mx	002	2
61	MP1C	X	2.282	2
62	MP1C	Z	-3.953	2
63	MP1C	Mx	.001	2
64	MP2A	X	2.017	2
65	MP2A	Z	-3.493	2
66	MP2A	Mx	.001	2
67	MP2B	X	1.819	2
68	MP2B	Z	-3.15	2
69	MP2B	Mx	001	2
70	MP2C	X	2.203	2
71	MP2C	Z	-3.816	2
72	MP2C	Mx	.001	2
73	MP2A	X Z	.43	4
74	MP2A		744	4
75	MP2A	Mx	.000276	4
76	MP2B	X	.403	4
77	MP2B	Z	699	4
78	MP2B	Mx	000309	4
79	MP2C	<u> </u>	.454	4
80	MP2C	Z	787	4
81	MP2C	Mx	.000227	4
82	OVP1	X	3.764	1
83	OVP1	Z	-6.52	1
84	OVP1	Mx	0	1
85	MP3A	<u> </u>	4.099	1
86	MP3A	Z	-7.099	1
87	MP3A	Mx	003	1
88	MP3A	X 7	4.099	5
89	MP3A	Z	-7.099	5
90	MP3A	Mx	003	5
91	MP3B	X Z	3.704	1
92	MP3B		-6.416	
93	MP3B	Mx	.003	1 F
94	MP3B	X Z	3.704	5
95	MP3B		-6.416	5
96	MP3B	Mx	.003	5
97	MP3C	X 7	4.469	1
98	MP3C	Z	-7.741	1
99 100	MP3C	Mx	002	5
100	MP3C	Z	4.469	5 5
	MP3C MP3C		-7.741	
102		Mx	002	5
103 104	OVP2 OVP2	X Z	<u>3.764</u> -6.52	1
104	OVP2 OVP2	Mx	-6.52	1
105	UVPZ		U U	1

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	<u> </u>	2.506	2
2	MP4A	Z	-1.447	2
3	MP4A	Mx	001	2
4	MP4A	X 7	2.506	4
5	MP4A	Z	-1.447 001	4
6 7	MP4A MP4B	Mx	5.031	4
	MP4B MP4B	X Z	-2.904	2 2
<u>8</u> 9			.000993	2
10	MP4B MP4B	Mx X	5.031	4
10	MP4B MP4B	Z	-2.904	4 4
12	MP4B MP4B	Mx	.000993	4 4
13	MP4C	X	5.416	2
14	MP4C	Z	-3.127	2
15	MP4C	Mx	0	2
16	MP4C	X	5.416	4
17	MP4C	Z	-3.127	4
18	MP4C	Mx	0	4
19	MP2A	X	7.317	1
20	MP2A	Ž	-4.224	1
21	MP2A	Mx	006	1
22	MP2A	X	7.317	5
23	MP2A	Z	-4.224	5
24	MP2A	Mx	006	5
25	MP2B	X	10.077	1
26	MP2B	Z	-5.818	1
27	MP2B	Mx	004	1
28	MP2B	X	10.077	5
29	MP2B	Z	-5.818	5
30	MP2B	Mx	004	5
31	MP2C	X	10.498	1
32	MP2C	Z	-6.061	1
33	MP2C	Mx	.007	1
34	MP2C	X	10.498	5
35	MP2C	Z	-6.061	5
36	MP2C	Mx	.007	5
37	MP2A	Х	7.317	1
38	MP2A	Z	-4.224	1
39	MP2A	Mx	002	1
40	MP2A	<u> </u>	7.317	5
41	MP2A	Z	-4.224	5
42	MP2A	Mx	002	5
43	MP2B	X	10.077	1
44	MP2B	Z	-5.818	1
45	MP2B	Mx	.008	1
46	MP2B	X 7	10.077	5
47	MP2B	Z	-5.818	5
48	MP2B	Mx	.008	5
49	MP2C	Z	10.498	1
50	MP2C		-6.061	
51	MP2C	Mx	007	1
52	MP2C	X Z	10.498	5
53	MP2C		-6.061	<u> </u>
54 55	MP2C	Mx X	007	2
55	MP1A MP1A	Z	3.048	2
57	MP1A MP1A	Mx	.002	2
51			.002	۷

Member Point Loads (BLC 29 : Antenna Wm (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
58	MP1B	X	4.143	2
59	MP1B	Z	-2.392	2
60	MP1B	Mx	000818	2
61	MP1C	X	4.31	2
62	MP1C	Z	-2.488	2
63	MP1C	Mx	0	2
64	MP2A	X	2.565	2
65	MP2A	Z	-1.481	2
66	MP2A	Mx	.001	2
67	MP2B	X	4.079	2
68	MP2B	Z	-2.355	2
69	MP2B	Mx	000805	2
70	MP2C	X	4.31	2
71	MP2C	Z	-2.488	2
72	MP2C	Mx	0	2
73	MP2A	X	.621	4
74	MP2A	Z	358	4
75	MP2A	Mx	.000337	4
76	MP2B	X	.822	4
77	MP2B	Z	475	4
78	MP2B	Mx	000163	4
79	MP2C	X	.853	4
80	MP2C	Z	492	4
81	MP2C	Mx	0	4
82	OVP1	X	7.997	1
83	OVP1	Z	-4.617	1
84	OVP1	Mx	0	1
85	MP3A	X	5.252	1
86	MP3A	Z	-3.032	1
87	MP3A	Mx	003	1
88	MP3A	X	5.252	5
89	MP3A	Z	-3.032	5
90	MP3A	Mx	003	5
91	MP3B	X	8.264	1
92	MP3B	Z	-4.771	1
93	MP3B	Mx	.002	11
94	MP3B	X	8.264	5
95	MP3B	Z	-4.771	5
96	MP3B	Mx	.002	5
97	MP3C	<u> </u>	8.724	1
98	MP3C	Z	-5.037	1
99	MP3C	Mx	0	1
100	MP3C	X	8.724	5
101	MP3C	Z	-5.037	5
102	MP3C	Mx	0	5
103	OVP2	Χ	7.997	1
104	OVP2	Z	-4.617	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	2.563	2
2	MP4A	Z	0	2
3	MP4A	Mx	001	2
4	MP4A	X	2.563	4
5	MP4A	Z	0	4

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

•	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	001	4
7	MP4B	<u> </u>	6.139	2
8	MP4B	Z	0	2
9	MP4B	Mx	000533	2
10	MP4B	X	6.139	4
11	MP4B	Z	0	4
12	MP4B	Mx	000533	4
13	MP4C	X	5.303	2
14	MP4C	Z	0	2
15	MP4C	Mx	.001	2
16	MP4C	X	5.303	4
17	MP4C	Z	0	4
18	MP4C	Mx	.001	4
19	MP2A	X	8.087	1
20	MP2A	Z	0	1
21	MP2A	Mx	003	1
22	MP2A	X	8.087	5
23	MP2A	Z	0	5
23	MP2A MP2A	Mx	003	5
25				<u>5</u>
	MP2B	X Z	11.997	1
26	MP2B		0	
27	MP2B	Mx	008	1
28	MP2B	<u> </u>	11.997	5
29	MP2B	Z	0	5
30	MP2B	Mx	008	5
31	MP2C	X	11.082	1
32	MP2C	Z	0	1
33	MP2C	Mx	.008	1
34	MP2C	X	11.082	5
35	MP2C	Z	0	5
36	MP2C	Mx	.008	5
37	MP2A	X	8.087	1
38	MP2A	Z	0	1
39	MP2A	Mx	005	1
40	MP2A	X	8.087	5
41	MP2A	Z	0	5
42	MP2A	Mx	005	5
43	MP2B	X	11.997	1
44	MP2B	Z	0	1
45	MP2B	Mx	.006	1
46	MP2B	X	11.997	5
47	MP2B	Z	0	5
48	MP2B	Mx	.006	5
40	MP2C	X	11.082	<u>5</u>
49 50	MP2C	Z	0	1
			003	
51	MP2C	Mx V		1
52	MP2C	X	11.082	5
53	MP2C	Z	0	5
54	MP2C	Mx	003	5
55	MP1A	<u> </u>	3.376	2
56	MP1A	Z	0	2
57	MP1A	Mx	.002	2
58	MP1B	X	4.927	2
59	MP1B	Z	0	2
60	MP1B	Mx	.000428	2
00				
61	MP1C	X Z	4.564	2

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
63	MP1C	Mx	001	2
64	MP2A	X Z	2.763	2
65	MP2A	Z	0	2
66	MP2A	Mx	.001	2
67	MP2B	Х	4.908	2
68	MP2B	Z	0	2
69	MP2B	Mx	.000426	2
70	MP2C	Х	4.406	2
71	MP2C	Z	0	2
72	MP2C	Mx	001	2
73	MP2A	X	.69	4
74	MP2A	Z	0	4
75	MP2A	Mx	.00034	4
76	MP2B	X	.976	4
77	MP2B	Z	0	4
78	MP2B	Mx	8.5e-5	4
79	MP2C	Х	.909	4
80	MP2C	Z	0	4
81	MP2C	Mx	000227	4
82	OVP1	Х	10.086	1
83	OVP1	Z	0	1
84	OVP1	Mx	0	1
85	MP3A	X	5.67	1
86	MP3A	Z	0	1
87	MP3A	Mx	003	1
88	MP3A	X	5.67	5
89	MP3A	Z	0	5
90	MP3A	Mx	003	5
91	MP3B	X	9.936	1
92	MP3B	Z	0	1
93	MP3B	Mx	000863	1
94	MP3B	Х	9.936	5
95	MP3B	Z	0	5
96	MP3B	Mx	000863	5
97	MP3C	Х	8.938	1
98	MP3C	Z	0	1
99	MP3C	Mx	.002	1
100	MP3C	Х	8.938	5
101	MP3C	Z	0	5
102	MP3C	Mx	.002	5
103	OVP2	X	10.086	1
104	OVP2	Z	0	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	3.482	2
2	MP4A	Z	2.01	2
3	MP4A	Mx	002	2
4	MP4A	X	3.482	4
5	MP4A	Z	2.01	4
6	MP4A	Mx	002	4
7	MP4B	X	4.055	2
8	MP4B	Z	2.341	2
9	MP4B	Mx	002	2
10	MP4B	Х	4.055	4

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

4.4	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
11	MP4B	Z	2.341	4
12	MP4B	Mx	002	4
13	MP4C	<u> </u>	2.944	2
14	MP4C	Z	1.7	2
15	MP4C	Mx	.001	2
16	MP4C	X 7	2.944	4
17	MP4C	Z	1.7	4
18	MP4C	Mx	.001	4
19	MP2A	<u> </u>	8.384	1
20	MP2A	Z	4.84	1
21	MP2A	Mx	-7.8e-5	1
22	MP2A	<u> </u>	8.384	5
23	MP2A	Z	4.84	5
24	MP2A	Mx	-7.8e-5	5
25	MP2B	<u> </u>	9.01	1
26	MP2B	Z	5.202	1
27	MP2B	Mx	008	1
28	MP2B	X	9.01	5
29	MP2B	Z	5.202	5
30	MP2B	Mx	008	5
31	MP2C	X	7.796	1
32	MP2C	Z	4.501	1
33	MP2C	Mx	.007	1
34	MP2C	X	7.796	5
35	MP2C	Z	4.501	5
36	MP2C	Mx	.007	5
37	MP2A	X	8.384	1
38	MP2A	Z	4.84	1
39	MP2A	Mx	007	1
40	MP2A	X	8.384	5
41	MP2A	Z	4.84	5
42	MP2A	Mx	007	5
43	MP2B	X	9.01	1
44	MP2B	Z	5.202	1
45	MP2B	Mx	.001	1
46	MP2B	X	9.01	5
47	MP2B	Z	5.202	5
48	MP2B	Mx	.001	5
49	MP2C	X	7.796	1
50	MP2C	Z	4.501	1
51	MP2C	Mx	.001	1
52	MP2C	X	7.796	5
53	MP2C	Z	4.501	5
54	MP2C	Mx	.001	5
55	MP1A	X	3.471	2
56	MP1A	Z	2.004	2
57	MP1A	Mx	.002	2
58	MP1B	X	3.72	2
59	MP1B	Z	2.147	2
60	MP1B	Mx	.001	2
61	MP1C	<u> </u>	3.238	2
62	MP1C	Z	1.87	2
63	MP1C	Mx	002	2
64	MP2A	X	3.15	2
65	MP2A	Z	1.819	2
66	MP2A	Mx	.001	2
67	MP2B	X	3.493	2

RISA-3D Version 17.0.4 [R:\...\...\...\Rev 0\RISA\468327-VZW_MT_LO_H.r3d]

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
68	MP2B	Z	2.017	2
69	MP2B	Mx	.001	2
70	MP2C	Х	2.828	2
71	MP2C	Z	1.633	2
72	MP2C	Mx	001	2
73	MP2A	X	.699	4
74	MP2A	Z	.403	4
75	MP2A	Mx	.000309	4
76	MP2B	Х	.744	4
77	MP2B	Z	.43	4
78	MP2B	Mx	.000276	4
79	MP2C	Х	.656	4
80	MP2C	Z	.379	4
81	MP2C	Mx	000328	4
82	OVP1	Х	7.997	1
83	OVP1	Z	4.617	1
84	OVP1	Mx	0	1
85	MP3A	Х	6.416	1
86	MP3A	Z	3.704	1
87	MP3A	Mx	003	1
88	MP3A	Х	6.416	5
89	MP3A	Z	3.704	5
90	MP3A	Mx	003	5
91	MP3B	Х	7.099	1
92	MP3B	Z	4.099	1
93	MP3B	Mx	003	1
94	MP3B	Х	7.099	5
95	MP3B	Z	4.099	5
96	MP3B	Mx	003	5
97	MP3C	Х	5.775	1
98	MP3C	Z	3.334	1
99	MP3C	Mx	.003	1
100	MP3C	Х	5.775	5
101	MP3C	Z	3.334	5
102	MP3C	Mx	.003	5
103	OVP2	Х	7.997	1
104	OVP2	Z	4.617	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	2.904	2
2	MP4A	Z	5.031	2
3	MP4A	Mx	000993	2
4	MP4A	X	2.904	4
5	MP4A	Z	5.031	4
6	MP4A	Mx	000993	4
7	MP4B	X	1.447	2
8	MP4B	Z	2.506	2
9	MP4B	Mx	001	2
10	MP4B	X	1.447	4
11	MP4B	Z	2.506	4
12	MP4B	Mx	001	4
13	MP4C	X	1.224	2
14	MP4C	Z	2.12	2
15	MP4C	Mx	.001	2

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP4C	X	1.224	4
17	MP4C	Z	2.12	4
18	MP4C	Mx	.001	4
19	MP2A	X	5.818	1
20	MP2A	Z	10.077	1
21	MP2A	Mx	.004	1
22	MP2A	X	5.818	5
23	MP2A	Z	10.077	5
24	MP2A	Mx	.004	5
25	MP2B	X	4.224	1
26	MP2B	Z	7.317	1
27	MP2B	Mx	006	1
28	MP2B	X	4.224	5
29	MP2B	Z	7.317	5
30	MP2B	Mx	006	5
31	MP2C	X	3.981	1
32	MP2C	Z	6.895	1
33	MP2C	Mx	.004	1
34	MP2C		3.981	5
		X Z		
35	MP2C		6.895	5
36	MP2C	Mx	.004	5
37	MP2A	<u> </u>	5.818	1
38	MP2A	Z	10.077	1
39	MP2A	Mx	008	1
40	MP2A	X	5.818	5
41	MP2A	Z	10.077	5
42	MP2A	Mx	008	5
43	MP2B	X	4.224	1
44	MP2B	Z	7.317	1
45	MP2B	Mx	002	1
46	MP2B	X	4.224	5
47	MP2B	Z	7.317	5
48	MP2B	Mx	002	5
49	MP2C	Х	3.981	1
50	MP2C	Z	6.895	1
51	MP2C	Mx	.004	1
52	MP2C	X	3.981	5
53	MP2C	Z	6.895	5
54	MP2C	Mx	.004	5
55	MP1A	X	2.392	2
56	MP1A	Z	4.143	2
57	MP1A	Mx	.000818	2
58	MP1B	X	1.76	2
		Z		
59	MP1B		3.048	2
60	MP1B	Mx	.002	2
61	MP1C	X 7	1.663	2
62	MP1C	Z	2.881	2
63	MP1C	Mx	002	2
64	MP2A	X	2.355	2
65	MP2A	Z	4.079	2
66	MP2A	Mx	.000805	2
67	MP2B	Χ	1.481	2
68	MP2B	Z	2.565	2
69	MP2B	Mx	.001	2
70	MP2C	Х	1.347	2
		Z	2.334	2
71	MP2C		2.334	2

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
73	MP2A	X	475	4
74	MP2A	Z	.822	4
75	MP2A	Mx	.000163	4
76	MP2B	Х	.358	4
77	MP2B	Z	.621	4
78	MP2B	Mx	.000337	4
79	MP2C	Х	.341	4
80	MP2C	Z	.59	4
81	MP2C	Mx	000341	4
82	OVP1	Х	3.764	1
83	OVP1	Z	6.52	1
84	OVP1	Mx	0	1
85	MP3A	Х	4.771	1
86	MP3A	Z	8.264	1
87	MP3A	Mx	002	1
88	MP3A	Х	4.771	5
89	MP3A	Z	8.264	5
90	MP3A	Mx	002	5
91	MP3B	Х	3.032	1
92	MP3B	Z	5.252	1
93	MP3B	Mx	003	1
94	MP3B	Х	3.032	5
95	MP3B	Z	5.252	5
96	MP3B	Mx	003	5
97	MP3C	X	2.767	1
98	MP3C	Z	4.792	1
99	MP3C	Mx	.003	1
100	MP3C	Х	2.767	5
101	MP3C	Z	4.792	5
102	MP3C	Mx	.003	5
103	OVP2	Х	3.764	1
104	OVP2	Z	6.52	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	0	2
2	MP4A	Z	6.139	2
3	MP4A	Mx	.000533	2
4	MP4A	X	0	4
5	MP4A	Z	6.139	4
6	MP4A	Mx	.000533	4
7	MP4B	X	0	2
8	MP4B	Z	2.563	2
9	MP4B	Mx	001	2
10	MP4B	Х	0	4
11	MP4B	Z	2.563	4
12	MP4B	Mx	001	4
13	MP4C	Х	0	2
14	MP4C	Z	3.4	2
15	MP4C	Mx	.001	2
16	MP4C	X	0	4
17	MP4C	Z	3.4	4
18	MP4C	Mx	.001	4
19	MP2A	X	0	1
20	MP2A	Z	11.997	1

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP2A	Mx	.008	1
22	MP2A	X 7	0	5
23	MP2A	Z	11.997	5
24	MP2A	Mx	.008	5
25	MP2B	<u> </u>	0	1
26	MP2B	Z	8.087	1
27	MP2B	Mx	003	1
28	MP2B	X 7	0	5
29	MP2B	Z	8.087	5
30	MP2B	Mx	003	5
31 32	MP2C	X Z	0 9.002	1
	MP2C			1
33	MP2C	Mx V	.001	5
34 35	MP2C MP2C	X Z	0 9.002	5
36	MP2C	Mx	.001	5
37	MP20 MP2A	X	0	<u>5</u>
38	MP2A MP2A		11.997	1
39	MP2A MP2A	Mx	006	1
40	MP2A MP2A	X	000	5
40 41	MP2A MP2A	Z	11.997	5
42	MP2A	Mx	006	5
42 43	MP2B	X	000	1
43	MP2B	Z	8.087	1
45	MP2B	Mx	005	1
46	MP2B	X	005	5
40	MP2B	^ Z	8.087	5
48	MP2B	Mx	005	5
49	MP2C	X	0	1
50	MP2C	Z	9.002	1
51	MP2C	Mx	.007	1
52	MP2C	X	0	5
53	MP2C	Z	9.002	5
54	MP2C	Mx	.007	5
55	MP1A	X	0	2
56	MP1A	Z	4.927	2
57	MP1A	Mx	000428	2
58	MP1B	X	0	2
59	MP1B	Z	3.376	2
60	MP1B	Mx	.002	2
61	MP1C	X	0	2
62	MP1C	Z	3.739	2
63	MP1C	Mx	002	2
64	MP2A	X	0	2
65	MP2A	Z	4.908	2
66	MP2A	Mx	000426	2
67	MP2B	X	0	2
68	MP2B	Z	2.763	2
69	MP2B	Mx	.001	2
70	MP2C	X	0	2
71	MP2C	Z	3.265	2
72	MP2C	Mx	001	2
73	MP2A	X	0	4
	MP2A	Z	.976	4
74			-8.5e-5	4
	MP2A MP2B	Mx X	-8.5e-5 0	4 4

Member Point Loads (BLC 33 : Antenna Wm (180 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
78	MP2B	Mx	.00034	4
79	MP2C	Х	0	4
80	MP2C	Z	.757	4
81	MP2C	Mx	000328	4
82	OVP1	Х	0	1
83	OVP1	Z	6.676	1
84	OVP1	Mx	0	1
85	MP3A	Х	0	1
86	MP3A	Z	9.936	1
87	MP3A	Mx	.000863	1
88	MP3A	Х	0	5
89	MP3A	Z	9.936	5
90	MP3A	Mx	.000863	5
91	MP3B	Х	0	1
92	MP3B	Z	5.67	1
93	MP3B	Mx	003	1
94	MP3B	Х	0	5
95	MP3B	Z	5.67	5
96	MP3B	Mx	003	5
97	MP3C	Х	0	1
98	MP3C	Z	6.668	1
99	MP3C	Mx	.003	1
100	MP3C	Х	0	5
101	MP3C	Z	6.668	5
102	MP3C	Mx	.003	5
103	OVP2	Х	0	1
104	OVP2	Z	6.676	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-2.341	2
2	MP4A	Z	4.055	2
3	MP4A	Mx	.002	2
4	MP4A	Х	-2.341	4
5	MP4A	Z	4.055	4
6	MP4A	Mx	.002	4
7	MP4B	Х	-2.01	2
8	MP4B	Z	3.482	2
9	MP4B	Mx	002	2
10	MP4B	Х	-2.01	4
11	MP4B	Z	3.482	4
12	MP4B	Mx	002	4
13	MP4C	Х	-2.651	2
14	MP4C	Z	4.592	2
15	MP4C	Mx	.001	2
16	MP4C	Х	-2.651	4
17	MP4C	Z	4.592	4
18	MP4C	Mx	.001	4
19	MP2A	Х	-5.202	1
20	MP2A	Z	9.01	1
21	MP2A	Mx	.008	1
22	MP2A	Х	-5.202	5
23	MP2A	Z	9.01	5
24	MP2A	Mx	.008	5
25	MP2B	Х	-4.84	1

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

22	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
26	MP2B	Z	8.384	1
27	MP2B	Mx	-7.8e-5	1
28	MP2B	<u> </u>	-4.84	5
29	MP2B	Z	8.384	5
30	MP2B	Mx	-7.8e-5	5
31	MP2C	X	-5.541	1
32	MP2C	Z	9.598	1
33	MP2C	Mx	003	1
34	MP2C	X 7	-5.541	5
35	MP2C	Z	9.598	5
36	MP2C	Mx	003	5
37	MP2A	X	-5.202	1
38	MP2A	Z	9.01	1
39	MP2A	Mx	001	1
40	MP2A	Z	-5.202	5
41	MP2A		9.01	5
42	MP2A	Mx	001	5
43	MP2B	X 7	-4.84	1
44	MP2B	Z	8.384	1
45	MP2B	Mx X	007	1
46	MP2B	X 7	-4.84	5
47	MP2B	Z	8.384	5
48	MP2B	Mx	007	5
49	MP2C	Z	-5.541	1
50	MP2C		9.598	1
51	MP2C	Mx	.008	1
52	MP2C	X 7	-5.541	5
53	MP2C	Z	9.598	5
54	MP2C	Mx	.008	5
55	MP1A	X Z	-2.147	2
56	MP1A		3.72	2
57	MP1A	Mx	001	2
58	MP1B	X 7	-2.004	2
59	MP1B	Z	3.471	2
60	MP1B	Mx	.002	2
61	MP1C MP1C	Z	-2.282	2
62			3.953	2
63	MP1C	Mx X	001	2
64	MP2A	X 7	-2.017	2
65	MP2A	Z	3.493	2
66 67	MP2A MP2B	Mx X	001 -1.819	2
67 68	MP2B MP2B		3.15	2
69	MP2B MP2B		.001	
70	MP2B MP2C	Mx V	-2.203	2 2
70		X Z		
72	MP2C		3.816	2 2
	MP2C	Mx V	001	
73	MP2A MP2A	X Z	43 .744	4 4
74				
75	MP2A	Mx V	000276	4
76	MP2B	X 7	403	4
77	MP2B	Z	.699	4
78	MP2B	Mx X	.000309	4
79	MP2C	X 7	454	4
80	MP2C	Z	.787	4
81	MP2C	Mx	000227	4
82	OVP1	X	-3.764	1

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
83	OVP1	Z	6.52	1
84	OVP1	Mx	0	1
85	MP3A	Х	-4.099	1
86	MP3A	Z	7.099	1
87	MP3A	Mx	.003	1
88	MP3A	Х	-4.099	5
89	MP3A	Z	7.099	5
90	MP3A	Mx	.003	5
91	MP3B	Х	-3.704	1
92	MP3B	Z	6.416	1
93	MP3B	Mx	003	1
94	MP3B	Х	-3.704	5
95	MP3B	Z	6.416	5
96	MP3B	Mx	003	5
97	MP3C	Х	-4.469	1
98	MP3C	Z	7.741	1
99	MP3C	Mx	.002	1
100	MP3C	Х	-4.469	5
101	MP3C	Z	7.741	5
102	MP3C	Mx	.002	5
103	OVP2	Х	-3.764	1
104	OVP2	Z	6.52	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-2.506	2
2	MP4A	Z	1.447	2
3	MP4A	Mx	.001	2
4	MP4A	Х	-2.506	4
5	MP4A	Z	1.447	4
6	MP4A	Mx	.001	4
7	MP4B	Х	-5.031	2
8	MP4B	Z	2.904	2
9	MP4B	Mx	000993	2
10	MP4B	Х	-5.031	4
11	MP4B	Z	2.904	4
12	MP4B	Mx	000993	4
13	MP4C	Х	-5.416	2
14	MP4C	Z	3.127	2
15	MP4C	Mx	0	2
16	MP4C	Х	-5.416	4
17	MP4C	Z	3.127	4
18	MP4C	Mx	0	4
19	MP2A	Х	-7.317	1
20	MP2A	Z	4.224	1
21	MP2A	Mx	.006	1
22	MP2A	Х	-7.317	5
23	MP2A	Z	4.224	5
24	MP2A	Mx	.006	5
25	MP2B	Х	-10.077	1
26	MP2B	Z	5.818	1
27	MP2B	Mx	.004	1
28	MP2B	Х	-10.077	5
29	MP2B	Z	5.818	5
30	MP2B	Mx	.004	5

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

04	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
31	MP2C	X Z	-10.498	<u> </u>
32	MP2C		6.061	1
33	MP2C	Mx V	007	I
34	MP2C	X 7	-10.498	5
35	MP2C	Z	6.061	5
36	MP2C	Mx V	007	5
37	MP2A	X 7	-7.317	1
38	MP2A	Z	4.224	1
39	MP2A	Mx	.002	
40	MP2A	X Z	-7.317	5
41	MP2A		4.224	5
42	MP2A	Mx	.002	5
43	MP2B	<u> </u>	-10.077	1
44	MP2B	Z	5.818	1
45	MP2B	Mx	008	1
46	MP2B	<u> </u>	-10.077	5
47	MP2B	Z	5.818	5
48	MP2B	Mx	008	5
49	MP2C	<u> </u>	-10.498	1
50	MP2C	Z	6.061	1
51	MP2C	Mx	.007	1
52	MP2C	X	-10.498	5
53	MP2C	Z	6.061	5
54	MP2C	Mx	.007	5
55	MP1A	<u> </u>	-3.048	2
56	MP1A	Z	1.76	2
57	MP1A	Mx	002	2
58	MP1B	X	-4.143	2
59	MP1B	Z	2.392	2
60	MP1B	Mx	.000818	2
61	MP1C	X	-4.31	2
62	MP1C	Z	2.488	2
63	MP1C	Mx	0	2
64	MP2A	X	-2.565	2
65	MP2A	Z	1.481	2
66	MP2A	Mx	001	2
67	MP2B	X	-4.079	2
68	MP2B	Z	2.355	2
69	MP2B	Mx	.000805	2
70	MP2C	X	-4.31	2
71	MP2C	Z	2.488	2
72	MP2C	Mx	0	2
73	MP2A	Χ	621	4
74	MP2A	Z	.358	4
75	MP2A	Mx	000337	4
76	MP2B	X	822	4
77	MP2B	Z	.475	4
78	MP2B	Mx	.000163	4
79	MP2C	X	853	4
80	MP2C	Z	.492	4
81	MP2C	Mx	0	4
82	OVP1	X	-7.997	1
83	OVP1	Z	4.617	1
84	OVP1	Mx	0	1
85	MP3A	X	-5.252	1
	MP3A	Z	3.032	1
86	IVIF 3A	<u> </u>	0.002	

RISA-3D Version 17.0.4 [R:\...\...\...\Rev 0\RISA\468327-VZW_MT_LO_H.r3d]

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
88	MP3A	Х	-5.252	5
89	MP3A	Z	3.032	5
90	MP3A	Mx	.003	5
91	MP3B	Х	-8.264	1
92	MP3B	Z	4.771	1
93	MP3B	Mx	002	1
94	MP3B	X	-8.264	5
95	MP3B	Z	4.771	5
96	MP3B	Mx	002	5
97	MP3C	X	-8.724	1
98	MP3C	Z	5.037	1
99	MP3C	Mx	0	1
100	MP3C	Х	-8.724	5
101	MP3C	Z	5.037	5
102	MP3C	Mx	0	5
103	OVP2	X	-7.997	1
104	OVP2	Z	4.617	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-2.563	2
2	MP4A	Z	0	2
3	MP4A	Mx	.001	2
4	MP4A	Х	-2.563	4
5	MP4A	Z	0	4
6	MP4A	Mx	.001	4
7	MP4B	Х	-6.139	2
8	MP4B	Z	0	2
9	MP4B	Mx	.000533	2
10	MP4B	Х	-6.139	4
11	MP4B	Z	0	4
12	MP4B	Mx	.000533	4
13	MP4C	Х	-5.303	2
14	MP4C	Z	0	2
15	MP4C	Mx	001	2
16	MP4C	Х	-5.303	4
17	MP4C	Z	0	4
18	MP4C	Mx	001	4
19	MP2A	X	-8.087	1
20	MP2A	Z	0	1
21	MP2A	Mx	.003	1
22	MP2A	Х	-8.087	5
23	MP2A	Z	0	5
24	MP2A	Mx	.003	5
25	MP2B	Х	-11.997	1
26	MP2B	Z	0	1
27	MP2B	Mx	.008	1
28	MP2B	Х	-11.997	5
29	MP2B	Z	0	5
30	MP2B	Mx	.008	5
31	MP2C	Х	-11.082	1
32	MP2C	Z	0	1
33	MP2C	Mx	008	1
34	MP2C	X	-11.082	5
35	MP2C	Z	0	5
			· · · ·	-

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

<u></u>	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
36	MP2C	Mx	008	5
37	MP2A	X	-8.087	1
38	MP2A	Z	0	1
39	MP2A	Mx	.005	1
40	MP2A	X	-8.087	5
41	MP2A	Z	0	5
42	MP2A	Mx	.005	5
43	MP2B	X 7	-11.997	1
44	MP2B	Z	0	1
45	MP2B	Mx	006	
46	MP2B	X Z	-11.997	5
47	MP2B		0	5
48	MP2B	Mx	006	5
49	MP2C	X Z	-11.082	1
50	MP2C		0.003	1
51	MP2C	Mx		1
52	MP2C	X 7	-11.082	5
53	MP2C	Z	0	5
54	MP2C	Mx X	.003	5
55	MP1A	Z	-3.376	2
56	MP1A		0	2
57	MP1A	Mx	002	2
58	MP1B	X 7	-4.927	2
59	MP1B	Z	0	2
60	MP1B	Mx	000428	
61	MP1C	X 7	-4.564	2
62	MP1C	Z	0	2
63	MP1C	Mx	.001	2
64	MP2A	X 7	-2.763	2
65	MP2A	Z	0	2
66	MP2A	Mx	001	2
67	MP2B	X 7	-4.908	2
<u>68</u>	MP2B	Z	0	2
69	MP2B	Mx	000426	2
70	MP2C	X	-4.406	2
71	MP2C	Z	0	2
72	MP2C	Mx	.001	2
73	MP2A	X	69	4
74	MP2A	Z	0	4
75	MP2A	Mx	00034	4
76 77	MP2B	X Z	976	4
	MP2B		0	4
78	MP2B	Mx	-8.5e-5	4
79	MP2C	X Z	909	4
80	MP2C		0	4
81	MP2C	Mx V	.000227	4
82	OVP1	X 7	-10.086	1
83	OVP1	Z	0	1
84	OVP1	Mx X	0	4
85	MP3A	Z	-5.67	1
86	MP3A		0	1
87	MP3A	Mx	.003	1
88	MP3A	X 7	-5.67	5
89	MP3A	Z	0	5
90	MP3A	Mx	.003	5
91	MP3B	X	-9.936	1
92	MP3B	Z	0	1

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
93	MP3B	Mx	.000863	1
94	MP3B	Х	-9.936	5
95	MP3B	Z	0	5
96	MP3B	Mx	.000863	5
97	MP3C	Х	-8.938	1
98	MP3C	Z	0	1
99	MP3C	Mx	002	1
100	MP3C	Х	-8.938	5
101	MP3C	Z	0	5
102	MP3C	Mx	002	5
103	OVP2	Х	-10.086	1
104	OVP2	Z	0	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	-3.482	2
2	MP4A	Z	-2.01	2
3	MP4A	Mx	.002	2
4	MP4A	Х	-3.482	4
5	MP4A	Z	-2.01	4
6	MP4A	Mx	.002	4
7	MP4B	Х	-4.055	2
8	MP4B	Z	-2.341	2
9	MP4B	Mx	.002	2
10	MP4B	Х	-4.055	4
11	MP4B	Z	-2.341	4
12	MP4B	Mx	.002	4
13	MP4C	Х	-2.944	2
14	MP4C	Z	-1.7	2
15	MP4C	Mx	001	2
16	MP4C	Х	-2.944	4
17	MP4C	Z	-1.7	4
18	MP4C	Mx	001	4
19	MP2A	Х	-8.384	1
20	MP2A	Z	-4.84	1
21	MP2A	Mx	7.8e-5	1
22	MP2A	Х	-8.384	5
23	MP2A	Z	-4.84	5
24	MP2A	Mx	7.8e-5	5
25	MP2B	Х	-9.01	1
26	MP2B	Z	-5.202	1
27	MP2B	Mx	.008	1
28	MP2B	Х	-9.01	5
29	MP2B	Z	-5.202	5
30	MP2B	Mx	.008	5
31	MP2C	Х	-7.796	1
32	MP2C	Z	-4.501	1
33	MP2C	Mx	007	1
34	MP2C	Х	-7.796	5
35	MP2C	Z	-4.501	5
36	MP2C	Mx	007	5
37	MP2A	Х	-8.384	1
38	MP2A	Z	-4.84	1
39	MP2A	Mx	.007	1
40	MP2A	Х	-8.384	5

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
41	MP2A	Z	-4.84	5
42	MP2A	Mx	.007	5
43	MP2B	<u> </u>	-9.01	1
44	MP2B	Z	-5.202	1
45	MP2B	Mx	001	1
46	MP2B	X 7	-9.01	5
47	MP2B	Z	-5.202	5
48	MP2B	Mx	001	5
49	MP2C	<u> </u>	-7.796	1
50	MP2C	Z	-4.501	1
51	MP2C	Mx	001	1
52	MP2C	<u> </u>	-7.796	5
53	MP2C	Z	-4.501	5
54	MP2C	Mx	001	5
55	MP1A	<u> </u>	-3.471	2
56	MP1A	Z	-2.004	2
57	MP1A	Mx	002	2
58	MP1B	<u> </u>	-3.72	2
59	MP1B	Z	-2.147	2
60	MP1B	Mx	001	2
61	MP1C	X	-3.238	2
62	MP1C	Z	-1.87	2
63	MP1C	Mx	.002	2
64	MP2A	X	-3.15	2
65	MP2A	Z	-1.819	2
66	MP2A	Mx	001	2
67	MP2B	X	-3.493	2
68	MP2B	Z	-2.017	2
69	MP2B	Mx	001	2
70	MP2C	X	-2.828	2
71	MP2C	Z	-1.633	2
72	MP2C	Mx	.001	2
73	MP2A	X	699	4
74	MP2A	Z	403	4
75	MP2A	Mx	000309	4
76	MP2B	X	744	4
77	MP2B	Z	43	4
78	MP2B	Mx	000276	4
79	MP2C	X	656	4
80	MP2C	Z	379	4
81	MP2C	Mx	.000328	4
82	OVP1	Χ	-7.997	1
83	OVP1	Ζ	-4.617	1
84	OVP1	Mx	0	1
85	MP3A	X	-6.416	1
86	MP3A	Z	-3.704	1
87	MP3A	Mx	.003	1
88	MP3A	X	-6.416	5
89	MP3A	Z	-3.704	5
90	MP3A	Mx	.003	5
91	MP3B	X	-7.099	1
92	MP3B	Z	-4.099	1
93	MP3B	Mx	.003	1
94	MP3B	X	-7.099	5
95	MP3B	Z	-4.099	5
96	MP3B	Mx	.003	5
97	MP3C	X		

Member Point Loads (BLC 37 : Antenna Wm (300 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
98	MP3C	Z	-3.334	1
99	MP3C	Mx	003	1
100	MP3C	Х	-5.775	5
101	MP3C	Z	-3.334	5
102	MP3C	Mx	003	5
103	OVP2	X	-7.997	1
104	OVP2	Z	-4.617	1
105	OVP2	Mx	0	1

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X X	-2.904	2
2	MP4A	Z	-5.031	2
3	MP4A	Mx	.000993	2
4	MP4A	Х	-2.904	4
5	MP4A	Z	-5.031	4
6	MP4A	Mx	.000993	4
7	MP4B	Х	-1.447	2
8	MP4B	Z	-2.506	2
9	MP4B	Mx	.001	2
10	MP4B	Х	-1.447	4
11	MP4B	Z	-2.506	4
12	MP4B	Mx	.001	4
13	MP4C	X Z	-1.224	2
14	MP4C		-2.12	2
15	MP4C	Mx	001	2
16	MP4C	Х	-1.224	4
17	MP4C	Z	-2.12	4
18	MP4C	Mx	001	4
19	MP2A	Х	-5.818	1
20	MP2A	Z	-10.077	1
21	MP2A	Mx	004	1
22	MP2A	Х	-5.818	5
23	MP2A	Z	-10.077	5
24	MP2A	Mx	004	5
25	MP2B	Х	-4.224	1
26	MP2B	Z	-7.317	1
27	MP2B	Mx	.006	1
28	MP2B	Х	-4.224	5
29	MP2B	Z	-7.317	5
30	MP2B	Mx	.006	5
31	MP2C	Х	-3.981	11
32	MP2C	Z	-6.895	1
33	MP2C	Mx	004	1
34	MP2C	Х	-3.981	5
35	MP2C	Z	-6.895	5
36	MP2C	Mx	004	5
37	MP2A	Х	-5.818	11
38	MP2A	Z	-10.077	1
39	MP2A	Mx	.008	11
40	MP2A	Х	-5.818	5
41	MP2A	Z	-10.077	5
42	MP2A	Mx	.008	5
43	MP2B	Х	-4.224	11
44	MP2B	Z	-7.317	1
45	MP2B	Mx	.002	1

Member Point Loads (BLC 38 : Antenna Wm (330 Deg)) (Continued)

10	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
46	MP2B	X 7	-4.224	5
47	MP2B	Z	-7.317	5
48	MP2B	Mx	.002	5
49	MP2C	<u> </u>	-3.981	1
50	MP2C	Z	-6.895	1
51	MP2C	Mx	004	1
52	MP2C	<u> </u>	-3.981	5
53	MP2C	Z	-6.895	5
54	MP2C	Mx	004	5
55	MP1A	<u> </u>	-2.392	2
56	MP1A	Z	-4.143	2
57	MP1A	Mx	000818	2
58	MP1B	X	-1.76	2
59	MP1B	Z	-3.048	2
60	MP1B	Mx	002	2
61	MP1C	Χ	-1.663	2
62	MP1C	Z	-2.881	2
63	MP1C	Mx	.002	2
64	MP2A	Χ	-2.355	2
65	MP2A	Z	-4.079	2
66	MP2A	Mx	000805	2
67	MP2B	Χ	-1.481	2
68	MP2B	Z	-2.565	2
69	MP2B	Mx	001	2
70	MP2C	X	-1.347	2
71	MP2C	Z	-2.334	2
72	MP2C	Mx	.001	2
73	MP2A	X	475	4
74	MP2A	Z	822	4
75	MP2A	Mx	000163	4
76	MP2B	X	358	4
77	MP2B	Z	621	4
78	MP2B	Mx	000337	4
79	MP2C	X	341	4
80	MP2C	Z	59	4
81	MP2C	Mx	.000341	4
82	OVP1	X	-3.764	1
83	OVP1	Z	-6.52	1
84	OVP1	Mx	0	1
85	MP3A	X	-4.771	1
86	MP3A	Z	-8.264	1
87	MP3A	Mx	.002	1
38	MP3A	X	-4.771	5
39	MP3A	Z	-8.264	5
90	MP3A	Mx	.002	5
91	MP3B	X	-3.032	1
92	MP3B	Z	-5.252	1
93	MP3B	Mx	.003	1
94	MP3B	X	-3.032	5
95	MP3B	Z	-5.252	5
96	MP3B	Mx	.003	5
97	MP3C	X	-2.767	1
98	MP3C	Z	-4.792	1
99	MP3C	Mx	003	1
00	MP3C	X	-2.767	5
	MP3C	Z	-4.792	5
01	IVIE 3C	<u> </u>		

RISA-3D Version 17.0.4 [R:\...\...\...\Rev 0\RISA\468327-VZW_MT_LO_H.r3d]

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
3	OVP2	Х	-3.764	1
4	OVP2	Z	-6.52	1
5	OVP2	Mx	0	1
mber F	Point Loads (BLC 77 :	Lm1)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	M1	Y	-500	%35
mbor F	Point Loads (BLC 78 :	1 m2)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	M1	Y	-500	%96
mhor F	Point Loads (BLC 79 :	l v1)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	M1	Y	-250	
ember F	Point Loads (BLC 80 :	Lv2)		
	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	M1	Y	-250	%50
ember F	Point Loads (BLC 81 : Member Label	Antenna Ev) Direction	Magnitude[]b k ft]	Location[ft,%]
	MP4A	Y	Magnitude[lb,k-ft] -1.728	2
2	MP4A	My	000851	2
	MP4A	Mz	.00015	2
	MP4A	Y	-1.728	4
5	MP4A	My	000851	4
	MP4A	Mz	.00015	4
,	MP4B	Y	-1.728	2
	MP4B	My	00015	2
)	MP4B	Mz	000851	2
)	MP4B	Y	-1.728	4
1	MP4B	My	00015	4
2	MP4B	Mz Y	000851	4
3	MP4C MP4C	Y My	-1.728 .000432	2
5	MP4C MP4C	Mz	.000432	2
5	MP4C	Y	-1.728	4
7	MP4C	My	.000432	4
3	MP4C	Mz	.000748	4
)	MP2A	Y	-1.256	1
0	MP2A	My	000491	1
1	MP2A	Mz	.000831	1
2	MP2A	Y	-1.256	5
3	MP2A	My	000491	5
	MP2A	Mz	.000831	5
5	MP2B	Y	-1.256	1
3	MP2B	My	000831	1
7	MP2B	Mz	000491	1
0	MP2B	Y	-1.256 000831	<u>5</u> 5
8			1000921	6
9	MP2B	Μγ		
	MP2B MP2B MP2C	My Mz Y	000491 -1.256	<u>5</u> 1

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

00	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
33	MP2C	Mz Y	.000178	1
34	MP2C		-1.256	5
35	MP2C	My	.000948	5
36	MP2C	Mz	.000178	5
37	MP2A	Y	-1.256	1
38	MP2A	My	000746	1
39	MP2A	Mz	000612	1
40	MP2A	Y	-1.256	5
41	MP2A	My	000746	5
42	MP2A	Mz	000612	5
43	MP2B	Y	-1.256	1
44	MP2B	My	.000612	1
45	MP2B	Mz	000746	1
46	MP2B	Y	-1.256	5
47	MP2B	My	.000612	5
48	MP2B	Mz	000746	5
49	MP2C	Y	-1.256	1
50	MP2C	My	00032	1
51	MP2C	Mz	.00091	1
52	MP2C	Y	-1.256	5
53	MP2C	My	00032	5
54	MP2C	Mz	.00091	5
55	MP1A	Y	-3.349	2
56	MP1A	My	.002	2
57	MP1A	Mz	000291	2
58	MP1B	Y	-3.349	2
59	MP1B	My	.000291	2
60	MP1B	Mz	.002	2
61	MP1C	Y	-3.349	2
62	MP1C	My	000837	2
63	MP1C	Mz	001	2
64	MP2A	Y	-2.79	2
65	MP2A	My	.001	2
66	MP2A	Mz	000242	2
67	MP2B	Y	-2.79	2
68	MP2B	My	.000242	2
69	MP2B		.000242	
		Mz		2
70	MP2C	Y	-2.79	2
71	MP2C	My	000697	2
72	MP2C	Mz	001	2
73	MP2A	Y	825	4
74	MP2A	My	.000406	4
75	MP2A	Mz	-7.2e-5	4
76	MP2B	Y	825	4
77	MP2B	My	7.2e-5	4
78	MP2B	Mz	.000406	4
79	MP2C	Y	825	4
80	MP2C	My	000206	4
81	MP2C	Mz	000357	4
82	OVP1	Y	-1.27	1
83	OVP1	My	0	1
84	OVP1	Mz	0	1
85	MP3A	Y	337	1
86	MP3A	My	000166	1
87	MP3A	Mz	2.9e-5	1
				-
88	MP3A	Y	337	5

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
90	MP3A	Mz	2.9e-5	5
91	MP3B	Y	337	1
92	MP3B	My	-2.9e-5	1
93	MP3B	Mz	000166	1
94	MP3B	Y	337	5
95	MP3B	My	-2.9e-5	5
96	MP3B	Mz	000166	5
97	MP3C	Y	337	1
98	MP3C	My	8.4e-5	1
99	MP3C	Mz	.000146	1
100	MP3C	Y	337	5
101	MP3C	My	8.4e-5	5
102	MP3C	Mz	.000146	5
103	OVP2	Y	-1.27	1
104	OVP2	Му	0	1
105	OVP2	Mz	0	1

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Z	-4.32	2
2	MP4A	Mx	000375	2
3	MP4A	Z	-4.32	4
4	MP4A	Mx	000375	4
5	MP4B	Z	-4.32	2
6	MP4B	Mx	.002	2
7	MP4B	Z	-4.32	4
8	MP4B	Mx	.002	4
9	MP4C	Z	-4.32	2
10	MP4C	Mx	002	2
11	MP4C	Z	-4.32	4
12	MP4C	Mx	002	4
13	MP2A	Z	-3.14	1
14	MP2A	Mx	002	1
15	MP2A	Z	-3.14	5
16	MP2A	Mx	002	5
17	MP2B	Z	-3.14	1
18	MP2B	Mx	.001	1
19	MP2B	Z	-3.14	5
20	MP2B	Mx	.001	5
21	MP2C	Z	-3.14	1
22	MP2C	Mx	000444	1
23	MP2C	Z	-3.14	5
24	MP2C	Mx	000444	5
25	MP2A	Z	-3.14	1
26	MP2A	Mx	.002	1
27	MP2A	Z	-3.14	5
28	MP2A	Mx	.002	5
29	MP2B	Z	-3.14	1
30	MP2B	Mx	.002	1
31	MP2B	Z	-3.14	5
32	MP2B	Mx	.002	5
33	MP2C	Z	-3.14	1
34	MP2C	Mx	002	1
35	MP2C	Z	-3.14	5
36	MP2C	Mx	002	5
37	MP1A	Z	-8.372	2

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
38	MP1A	Mx	.000727	2
39	MP1B	Z	-8.372	2
40	MP1B	Mx	004	2
41	MP1C	Z	-8.372	2
42	MP1C	Mx	.004	2
43	MP2A	Z	-6.974	2
44	MP2A	Mx	.000605	2
45	MP2B	Z	-6.974	2
46	MP2B	Mx	003	2
47	MP2C	Z	-6.974	2
48	MP2C	Mx	.003	2
49	MP2A	Z	-2.063	4
50	MP2A	Mx	.000179	4
51	MP2B	Z	-2.063	4
52	MP2B	Mx	001	4
53	MP2C	Z	-2.063	4
54	MP2C	Mx	.000893	4
55	OVP1	Z	-3.174	1
56	OVP1	Mx	0	1
57	MP3A	Z	843	1
58	MP3A	Mx	-7.3e-5	1
59	MP3A	Z	843	5
60	MP3A	Mx	-7.3e-5	5
61	MP3B	Z	843	1
62	MP3B	Mx	.000415	1
63	MP3B	Z	843	5
64	MP3B	Mx	.000415	5
65	MP3C	Z	843	1
66	MP3C	Mx	000365	1
67	MP3C	Z	843	5
68	MP3C	Mx	000365	5
69	OVP2	Z	-3.174	1
70	OVP2	Mx	0	1

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Х	4.32	2
2	MP4A	Mx	002	2
3	MP4A	Х	4.32	4
4	MP4A	Mx	002	4
5	MP4B	Х	4.32	2
6	MP4B	Mx	000375	2
7	MP4B	Х	4.32	4
8	MP4B	Mx	000375	4
9	MP4C	Х	4.32	2
10	MP4C	Mx	.001	2
11	MP4C	Х	4.32	4
12	MP4C	Mx	.001	4
13	MP2A	Х	3.14	1
14	MP2A	Mx	001	1
15	MP2A	Х	3.14	5
16	MP2A	Mx	001	5
17	MP2B	Х	3.14	1
18	MP2B	Mx	002	1
19	MP2B	Х	3.14	5
20	MP2B	Mx	002	5

Member Point Loads (BLC 83 : Antenna Eh (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
21	MP2C	X	3.14	1
22	MP2C	Mx	.002	1
23	MP2C	X	3.14	5
24	MP2C	Mx	.002	5
25	MP2A	X	3.14	1
26	MP2A	Mx	002	1
27	MP2A	X	3.14	5
28	MP2A	Mx	002	5
29	MP2B	X	3.14	1
30	MP2B	Mx	.002	1
31	MP2B	X	3.14	5
32	MP2B	Mx	.002	5
33	MP2C	X	3.14	1
34	MP2C	Mx	000801	1
35	MP2C	X	3.14	5
36	MP2C	Mx	000801	5
37	MP1A	X	8.372	2
38	MP1A	Mx	.004	2
39	MP1B	X	8.372	2
40	MP1B	Mx	.000727	2
41	MP1C	X	8.372	2
42	MP1C	Mx	002	2
43	MP2A	X	6.974	2
44	MP2A	Mx	.003	2
45	MP2B	X	6.974	2
46	MP2B	Mx	.000605	2
47	MP2C	X	6.974	2
48	MP2C	Mx	002	2
49	MP2A	X	2.063	4
50	MP2A	Mx	.001	4
51	MP2B	X	2.063	4
52	MP2B	Mx	.000179	4
53	MP2C	X	2.063	4
54	MP2C	Mx	000516	4
55	OVP1	X	3.174	11
56	OVP1	Mx	0	1
57	MP3A	Х	.843	1
58	MP3A	Mx	000415	1
59	MP3A	X	.843	5
60	MP3A	Mx	000415	5
61	MP3B	X	.843	1
62	MP3B	Mx	-7.3e-5	1
63	MP3B	X	.843	5
64	MP3B	Mx	-7.3e-5	5
65	MP3C	X	.843	1
66	MP3C	Mx	.000211	1
67	MP3C	X	.843	5
68	MP3C	Mx	.000211	5
69	OVP2	X	3.174	1
70	OVP2	Mx	0	1

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Y	-6.553	-6.553	0	%100
2	M4	Y	-9.59	-9.59	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 40 : Structure Di) (Continued)

2	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
3 4	M10 MP3A	Y	-9.59 -4.968	<u>-9.59</u> -4.968	0	%100 %100
5	MP3A MP4A	Y		-4.968	0	%100
		Y	-4.968	-5.673		%100
6 7	MP2A MP1A	Y	-5.673 -4.968		0	%100
8	MP 1A M43	Y	-4.900	<u>-4.968</u> -9.59	0	%100
9	M45 M46	Y	-10.103	-10.103	0	%100
10	M51B	Y	-5.607	-5.607	0	%100
11	M52B	Y	-5.607	-5.607	0	%100
12		Y	-10.09	-10.09	0	%100
13	M76 M77	Y	-10.09	-10.09	0	%100
14	M80	Y	-10.103	-10.103	0	%100
15	M84	Y	-10.103	-10.09	0	%100
16	M85	Y	-10.09	-10.09	0	%100
17	M91	Y	-10.103	-10.103	0	%100
18	M52A	Y	-9.59	-9.59	0	%100
19	M53	Y	-9.59	-9.59	0	%100
20	M53	Y	-9.59	-9.59	0	%100
20	M54 M55	Y	-10.103	-10.103	0	%100
22	M58A	Y	-5.607	-5.607	0	%100
23	M59A	Y	-5.607	-5.607	0	%100
23	M63	Y	-10.09	-10.09	0	%100
25	M64	Y	-10.09	-10.09	0	%100
26	M66	Y	-10.103	-10.103	0	%100
27	M68	Y	-10.103	-10.09	0	%100
28	M69	Y	-10.09	-10.09	0	%100
20	M71	Y	-10.103	-10.103	0	%100 %100
30	M76A	Y	-9.59	-9.59	0	%100
31	M76A M77A	Y	-9.59	-9.59	0	%100
32	M78	Y	-9.59		0	%100
33	M79A	Y	-10.103	<u>-9.59</u> -10.103	0	%100
34	M82	Y	-5.607	-5.607	0	%100
35	M83A	Y	-5.607	-5.607	0	%100
36	M87	Y	-10.09	-10.09	0	%100
37	M88A	Y	-10.09	-10.09	0	%100
38	M90	Y	-10.103	-10.103	0	%100
39	M90 M92A	Y	-10.103	-10.09	0	%100
40	M92A M93	Y	-10.09	-10.09	0	%100
41	<u>M95</u>	Y	-10.103	-10.103	0	%100
42 43	M82A M91B	Y	-6.553 -6.553	<u>-6.553</u> -6.553	0	<u>%100</u> %100
43	M91B M100	Y	-4.968	-4.968	0	%100
44	M100	Y	-4.968	-4.968	0	%100
45	M110	Y	-4.968	-4.968	0	%100
40	M110 M121	Y	-4.968 -6.603	-4.908 -6.603	0	%100
47	M121 M122	Y	-6.603	-6.603	0	%100
	M122 M123	Y			0	
49 50	OVP1	Y	-6.603 -4.968	<u>-6.603</u> -4.968	0	%100 %100
		Y	-4.968	-4.968		
51 52	MP3C MP4C	Y			0	%100 %100
		Y	-4.968 -5.673	-4.968	0	
53	MP2C	Y		-5.673		%100
54	MP1C		-4.968	-4.968	0	%100 %100
55	MP3B	Y	-4.968	-4.968	0	%100
56	MP4B	Y	-4.968	-4.968	0	<u>%100</u>
57	MP2B	Y	-5.673	-5.673	0	%100
58	MP1B	Y	-4.968	-4.968	0	<u>%100</u>
59	OVP2	Y	-4.968	-4.968	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Logation[ft	.End Location[ft,
1	Member Laber	X				%100
2	M1	Z	-15.121	-15.121	0	%100
3	M4	X	0	0	0	%100
4	M4	Z	0	0	0	%100
5	M10	X	0	0	0	%100
6	M10	Z	-14.347	-14.347	0	%100
7	MP3A	X	0	0	0	%100
8	MP3A	Z	-11.327	-11.327	0	%100
9	MP4A	X	0	0	0	%100
10	MP4A	Z	-11.327	-11.327	0	%100
11	MP2A	X	0	0	0	%100
12	MP2A	Z	-13.712	-13.712	0	%100
13	MP1A	Х	0	0	0	%100
14	MP1A	Z	-11.327	-11.327	0	%100
15	M43	Х	0	0	0	%100
16	M43	Z	-14.347	-14.347	0	%100
17	M46	X	0	0	0	%100
18	M46	Z	-28.617	-28.617	0	%100
19	M51B	Х	0	0	0	%100
20	M51B	Z	-3.973	-3.973	0	%100
21	M52B	X	0	0	0	%100
22	M52B	Z	-3.973	-3.973	0	%100
23	M76	X	0	0	0	%100
24	M76	Z	0	0	0	%100
25	<u>M77</u>	X	0	0	0	%100
26	M77	Z	-7.287	-7.287	0	%100
27	<u>M80</u>	X	0	0	0	%100
28	<u>M80</u>	Z	-7.675	-7.675	0	%100
29	<u>M84</u>	X	0	0	0	%100
30	<u>M84</u>	Z	0	0	0	%100
31 32	M85	X Z	0	-7.287	0	%100
32	<u>M85</u> M91	X	-7.287	-7.287	0	%100 %100
33	M91	Z	-7.675	-7.675	0	%100
35	M52A	X	-7.675	-7.675	0	%100
36	M52A	Z	-12.716	-12.716	0	%100
37	M53	X	-12.710	-12.710	0	%100
38	M53	Z	-3.587	-3.587	0	%100
39	M54	X	0	-0.307	0	%100
40	M54	Z	-3.587	-3.587	0	%100
41	M55	X	0	0	0	%100
42	M55	Z	-7.154	-7.154	0	%100
43	M58A	X	0	0	0	%100
44	M58A	Z	-3.973	-3.973	0	%100
45	M59A	X	0	0	0	%100
46	M59A	Z	-15.89	-15.89	0	%100
47	M63	X	0	0	0	%100
48	M63	Z	-21.462	-21.462	0	%100
49	M64	X	0	0	0	%100
50	M64	Z	-7.287	-7.287	0	%100
51	M66	Х	0	0	0	%100
52	M66	Z	-7.675	-7.675	0	%100
53	M68	Х	0	0	0	%100
54	M68	Z	-21.462	-21.462	0	%100
55	M69	Х	0	0	0	%100
56	M69	Z	-29.146	-29.146	0	%100
57	M71	Х	0	0	0	%100
				V468327-VZW MT LO H r3		Page 91

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
58	M71	Z	-30.699	-30.699	0	%100
59	M76A	X	0	0	0	%100
60	M76A	Z	-12.716	-12.716	0	%100
61	M77A	X	0	0	0	%100
62	M77A	Z	-3.587	-3.587	0	%100
63	M78	X	0	0	0	%100
64	M78	Z	-3.587	-3.587	0	%100
65	M79A	X	0	0	0	%100
66	M79A	Z	-7.154	-7.154	0	%100
67	M82	X	0	0	0	%100
68	M82	Z	-15.89	-15.89	0	%100
69	M83A	X	0	0	0	%100
70	M83A	Z	-3.973	-3.973	0	%100
71	M87	X	0	0	0	%100
72	M87	Z	-21.462	-21.462	0	%100
73	M88A	X	0	0	0	%100
74	M88A	Z	-29.146	-29.146	0	%100
75	M90	X	0	0	0	%100
76	M90	Z	-30.699	-30.699	0	%100
77	M92A	X	0	0	0	%100
78	M92A	Z	-21.462	-21.462	0	%100
79	M93	X	0	0	0	%100
80	M93	Z	-7.287	-7.287	0	%100
81	M95	X	0	0	0	%100
82	M95	Z	-7.675	-7.675	0	%100
83	M82A	X	0	0	0	%100
84	M82A	Z	-3.78	-3.78	0	%100
85	M91B	X	0	0	0	%100
86	M91B	Z	-3.78	-3.78	0	%100
87	M100	X	0	0	0	%100
88	M100	Z	-11.327	-11.327	0	%100
89	M105	X	0	0	0	%100
90	M105	Z	-2.832	-2.832	0	%100
91	M110	X	0	0	0	%100
92	M110	Z	-2.832	-2.832	0	%100
93	M121	X	0	0	0	%100
94	M121	Z	-3.519	-3.519	0	%100
95	M122	X	0	0	0	%100
96	M122	Z	-3.519	-3.519	0	%100
97	M123	X	0	0	0	%100
98	M123	Z	-14.075	-14.075	0	%100
99	OVP1	Х	0	0	0	%100
100	OVP1	Z	-9.263	-9.263	0	%100
101	MP3C	X	0	0	0	%100
102	MP3C	Z	-11.327	-11.327	0	%100
103	MP4C	X	0	0	0	%100
104	MP4C	Z	-11.327	-11.327	0	%100
105	MP2C	X	0	0	0	%100
106	MP2C	Z	-13.712	-13.712	0	%100
107	MP1C	X	0	0	0	%100
108	MP1C	Z	-11.327	-11.327	0	%100
109	MP3B	X	0	0	0	%100
110	MP3B	Z	-11.327	-11.327	0	%100
111	MP4B	X	0	0	0	%100
112	MP4B	Z	-11.327	-11.327	0	%100
113	MP2B	X	0	0	0	%100
114	MP2B	Z	-13.712	-13.712	0	%100
				V468327-VZW_MT_LO_H_r3		Page 92

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
115	MP1B	Х	0	0	0	%100
116	MP1B	Z	-11.327	-11.327	0	%100
117	OVP2	Х	0	0	0	%100
118	OVP2	Z	-9.263	-9.263	0	%100

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	Х	5.67	5.67	0	%100
2	M1	Z	-9.821	-9.821	0	%100
3	M4	Х	2.119	2.119	0	%100
4	M4	Z	-3.671	-3.671	0	%100
5	M10	Х	5.38	5.38	0	%100
6	M10	Z	-9.319	-9.319	0	%100
7	MP3A	Х	5.664	5.664	0	%100
8	MP3A	Z	-9.81	-9.81	0	%100
9	MP4A	Х	5.664	5.664	0	%100
10	MP4A	Z	-9.81	-9.81	0	%100
11	MP2A	Х	6.856	6.856	0	%100
12	MP2A	Z	-11.875	-11.875	0	%100
13	MP1A	Х	5.664	5.664	0	%100
14	MP1A	Z	-9.81	-9.81	0	%100
15	M43	Х	5.38	5.38	0	%100
16	M43	Z	-9.319	-9.319	0	%100
17	M46	Х	10.731	10.731	0	%100
18	M46	Z	-18.587	-18.587	0	%100
19	M51B	Х	5.959	5.959	0	%100
20	M51B	Z	-10.321	-10.321	0	%100
21	M52B	Х	0	0	0	%100
22	M52B	Z	0	0	0	%100
23	M76	Х	3.577	3.577	0	%100
24	M76	Z	-6.196	-6.196	0	%100
25	M77	Х	10.93	10.93	0	%100
26	M77	Z	-18.931	-18.931	0	%100
27	M80	Х	11.512	11.512	0	%100
28	M80	Z	-19.94	-19.94	0	%100
29	M84	Х	3.577	3.577	0	%100
30	M84	Z	-6.196	-6.196	0	%100
31	M85	Х	0	0	0	%100
32	M85	Z	0	0	0	%100
33	M91	X	0	0	0	%100
34	M91	Z	0	0	0	%100
35	M52A	Х	2.119	2.119	0	%100
36	M52A	Z	-3.671	-3.671	0	%100
37	M53	X	5.38	5.38	0	%100
38	M53	Z	-9.319	-9.319	0	%100
39	M54	Х	5.38	5.38	0	%100
40	M54	Z	-9.319	-9.319	0	%100
41	M55	Х	10.731	10.731	0	%100
42	M55	Z	-18.587	-18.587	0	%100
43	M58A	X Z	0	0	0	%100
44	M58A	Z	0	0	0	%100
45	M59A	Х	5.959	5.959	0	%100
46	M59A	Z	-10.321	-10.321	0	%100
47	M63	X	3.577	3.577	0	%100
48	M63	Z	-6.196	-6.196	0	%100
49	M64	X	0	0	0	%100

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
50	M64	Z	0	0	0	%100
51	M66	X	0	0	0	%100
52	M66	Z	0	0	0	%100
53	M68	Х	3.577	3.577	0	%100
54	M68	Z	-6.196	-6.196	0	%100
55	M69	X	10.93	10.93	0	%100
56	M69	Z	-18.931	-18.931	0	%100
57	M71	X	11.512	11.512	0	%100
58	M71	Z	-19.94	-19.94	0	%100 %100
59 60	M76A M76A	X Z	<u>8.478</u> -14.684	<u>8.478</u> -14.684	0	%100
61	M77A	X	-14.004	0	0	%100
62	M77A	Z	0	0	0	%100
63	M78	X	0	0	0	%100
64	M78	Z	0	0	0	%100
65	M79A	X	0	0	0	%100
66	M79A	Z	0	0	0	%100
67	M82	X	5.959	5.959	0	%100
68	M82	Z	-10.321	-10.321	0	%100
69	M83A	X	5.959	5.959	0	%100
70	M83A	Z	-10.321	-10.321	0	%100
71	M87	Х	14.308	14.308	0	%100
72	M87	Z	-24.783	-24.783	0	%100
73	<u>M88A</u>	X	10.93	10.93	0	%100
74	<u>M88A</u>	Z	-18.931	-18.931	0	%100
75	<u>M90</u>	X	11.512	11.512	0	%100
76 77	M90	Z	-19.94	-19.94	0	<u>%100</u>
78	M92A M92A	X Z	14.308 -24.783	<u>14.308</u> -24.783	0	%100 %100
70	M92A M93	X	10.93	10.93	0	%100
80	M93	Z	-18.931	-18.931	0	%100
81	M95	X	11.512	11.512	0	%100
82	M95	Z	-19.94	-19.94	0	%100
83	M82A	X	5.67	5.67	0	%100
84	M82A	Z	-9.821	-9.821	0	%100
85	M91B	X	0	0	0	%100
86	M91B	Z	0	0	0	%100
87	M100	X	4.248	4.248	0	%100
88	M100	Z	-7.357	-7.357	0	%100
89	M105	X	4.248	4.248	0	%100
90	M105	Z	-7.357	-7.357	0	%100
91	<u>M110</u>	X	0	0	0	%100
92	M110	Z	0	0	0	%100
93	M121	X	5.278	5.278	0	<u>%100</u>
94	M121	Z	-9.142	-9.142	0	%100 %100
95 96	M122 M122	X Z	0	0	0	%100 %100
96	M122 M123	X	5.278	5.278	0	%100
97	M123	Z	-9.142	-9.142	0	%100
99	OVP1	X	4.631	4.631	0	%100
100	OVP1	Z	-8.022	-8.022	0	%100
101	MP3C	X	5.664	5.664	0	%100
102	MP3C	Z	-9.81	-9.81	0	%100
103	MP4C	X	5.664	5.664	0	%100
104	MP4C	Z	-9.81	-9.81	0	%100
105	MP2C	X	6.856	6.856	0	%100
106	MP2C	Z	-11.875	-11.875	0	%100
DIO	A-3D Version 17.0			468327-VZW MT LO H.r3	-11	Page 94

Member Distributed Loads (BLC 42 : Structure Wo (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
107	MP1C	Х	5.664	5.664	0	%100
108	MP1C	Z	-9.81	-9.81	0	%100
109	MP3B	Х	5.664	5.664	0	%100
110	MP3B	Z	-9.81	-9.81	0	%100
111	MP4B	Х	5.664	5.664	0	%100
112	MP4B	Z	-9.81	-9.81	0	%100
113	MP2B	Х	6.856	6.856	0	%100
114	MP2B	Z	-11.875	-11.875	0	%100
115	MP1B	Х	5.664	5.664	0	%100
116	MP1B	Z	-9.81	-9.81	0	%100
117	OVP2	X	4.631	4.631	0	%100
118	OVP2	Z	-8.022	-8.022	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

1 2	M1 M1	Х	3.274			
	M1		÷.=. :	3.274	0	%100
0		Z	-1.89	-1.89	0	%100
3	M4	Х	11.013	11.013	0	%100
4	M4	Z	-6.358	-6.358	0	%100
5	M10	Х	3.106	3.106	0	%100
6	M10	Z	-1.793	-1.793	0	%100
7	MP3A	X	9.81	9.81	0	%100
8	MP3A	Z	-5.664	-5.664	0	%100
9	MP4A	Х	9.81	9.81	0	%100
10	MP4A	Z	-5.664	-5.664	0	%100
11	MP2A	Х	11.875	11.875	0	%100
12	MP2A	Z	-6.856	-6.856	0	%100
13	MP1A	Х	9.81	9.81	0	%100
14	MP1A	Z	-5.664	-5.664	0	%100
15	M43	Х	3.106	3.106	0	%100
16	M43	Z	-1.793	-1.793	0	%100
17	M46	X	6.196	6.196	0	%100
18	M46	Z	-3.577	-3.577	0	%100
19	M51B	X	13.761	13.761	0	%100
20	M51B	Z	-7.945	-7.945	0	%100
21	M52B	X	3.44	3.44	0	%100
22	M52B	Z	-1.986	-1.986	0	%100
23	M76	Х	18.587	18.587	0	%100
24	M76	Z	-10.731	-10.731	0	%100
25	M77	Х	25.242	25.242	0	%100
26	M77	Z	-14.573	-14.573	0	%100
27	M80	Х	26.586	26.586	0	%100
28	M80	Z	-15.35	-15.35	0	%100
29	M84	Х	18.587	18.587	0	%100
30	M84	Z	-10.731	-10.731	0	%100
31	M85	Х	6.31	6.31	0	%100
32	M85	Z	-3.643	-3.643	0	%100
33	M91	Х	6.647	6.647	0	%100
34	M91	Z	-3.837	-3.837	0	%100
35	M52A	Х	0	0	0	%100
36	M52A	Z	0	0	0	%100
37	M53	Х	12.425	12.425	0	%100
38	M53	Z	-7.173	-7.173	0	%100
39	M54	Х	12.425	12.425	0	%100
40	M54	Z	-7.173	-7.173	0	%100
41	M55	Х	24.783	24.783	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
42	M55	Z	-14.308	-14.308	0	%100
43	M58A	X	3.44	3.44	0	%100
44	M58A	Z	-1.986	-1.986	0	%100
45	M59A	X	3.44	3.44	0	%100
46	M59A	Z	-1.986	-1.986	0	%100
47	M63	X	0	0	0	%100
48	M63	Z	0	0	0	%100
49	M64	X	6.31	6.31	0	%100
50	M64	Z	-3.643	-3.643	0	%100
51	M66	X	6.647	6.647	0	%100
52	M66	Z	-3.837	-3.837	0	%100
53	M68	X	0	0	0	%100
54	M68	Z	0	0	0	%100
55	M69	X	6.31	6.31	0	%100
56	M69	Z	-3.643	-3.643	0	%100
57	M71	X	6.647	6.647	0	%100
58	M71	Z	-3.837	-3.837	0	%100
59	M76A	X	11.013	11.013	0	%100
60	M76A	Z	-6.358	-6.358	0	%100
61	M77A	X	3.106	3.106	0	%100
62	M77A	Z	-1.793	-1.793	0	%100
63	M78	X	3.106	3.106	0	%100
64	M78	Z	-1.793	-1.793	0	%100
65	M79A	X	6.196	6.196	0	%100
66	M79A	Z	-3.577	-3.577	0	%100
67	M82	X	3.44	3.44	0	%100
68	M82	Z	-1.986	-1.986	0	%100
69	M83A	X	13.761	13.761	0	%100
70	M83A	Z	-7.945	-7.945	0	%100
71	M87	X	18.587	18.587	0	%100
72	M87	Z	-10.731	-10.731	0	%100
73	M88A	Х	6.31	6.31	0	%100
74	M88A	Z	-3.643	-3.643	0	%100
75	M90	X	6.647	6.647	0	%100
76	M90	Z	-3.837	-3.837	0	%100
77	M92A	X	18.587	18.587	0	%100
78	M92A	Z	-10.731	-10.731	0	%100
79	M93	X	25.242	25.242	0	%100
80	M93	Z	-14.573	-14.573	0	%100
81	M95	X	26.586	26.586	0	%100
82	M95	Z	-15.35	-15.35	0	%100
83	M82A	X	13.095	13.095	0	%100
84	M82A	Z	-7.561	-7.561	0	%100
85	M91B	X	3.274	3.274	0	%100
86	M91B	Z	-1.89	-1.89	0	%100
87	M100	Х	2.452	2.452	0	%100
88	M100	Z	-1.416	-1.416	0	%100
89	M105	X	9.81	9.81	0	%100
90	M105	Z	-5.664	-5.664	0	%100
91	M110	Х	2.452	2.452	0	%100
92	M110	Z	-1.416	-1.416	0	%100
93	M121	Х	12.189	12.189	0	%100
94	M121	Z	-7.037	-7.037	0	%100
95	M122	X	3.047	3.047	0	%100
96	M122	Z	-1.759	-1.759	0	%100
97	M123	Х	3.047	3.047	0	%100

Company Designer	:
Job Number Model Name	:

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
99	OVP1	Х	8.022	8.022	0	%100
100	OVP1	Z	-4.631	-4.631	0	%100
101	MP3C	Х	9.81	9.81	0	%100
102	MP3C	Z	-5.664	-5.664	0	%100
103	MP4C	Х	9.81	9.81	0	%100
104	MP4C	Z	-5.664	-5.664	0	%100
105	MP2C	X	11.875	11.875	0	%100
106	MP2C	Z	-6.856	-6.856	0	%100
107	MP1C	Х	9.81	9.81	0	%100
108	MP1C	Z	-5.664	-5.664	0	%100
109	MP3B	Х	9.81	9.81	0	%100
110	MP3B	Z	-5.664	-5.664	0	%100
111	MP4B	Х	9.81	9.81	0	%100
112	MP4B	Z	-5.664	-5.664	0	%100
113	MP2B	Х	11.875	11.875	0	%100
114	MP2B	Z	-6.856	-6.856	0	%100
115	MP1B	X	9.81	9.81	0	%100
116	MP1B	Z	-5.664	-5.664	0	%100
117	OVP2	Х	8.022	8.022	0	%100
118	OVP2	Z	-4.631	-4.631	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	M1	Х	0	0	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	M1	Z	0	0	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	M4		16.955	16.955	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	M4	Z	0	0	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	M10	Х	0	0	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	M10	Z	0	0	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	MP3A	Х	11.327	11.327	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	MP3A	Z	0	0	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	MP4A	Х	11.327	11.327	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	MP4A	Z	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	MP2A	Х	13.712	13.712	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	MP2A	Z	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	MP1A	Х	11.327	11.327	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	MP1A	Z	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	M43	Х	0	0	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	M43	Z	0	0	0	%100
19 M51B X 11.918 11.918 0 %100 20 M51B Z 0 0 0 0 %100 21 M52B X 11.918 11.918 0 %100 22 M52B Z 0 0 0 %100 23 M76 X 28.617 28.617 0 %100 24 M76 Z 0 0 0 %100 24 M76 Z 0 0 0 %100 25 M77 X 21.86 21.86 0 %100 26 M77 Z 0 0 0 %100 27 M80 X 23.024 23.024 0 %100 28 M80 Z 0 0 %100 %100 30 M84 X 28.617 28.617 0 %100 31 M85 X<	17	M46	Х	0	0	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	M46	Z	0	0	0	%100
21 M52B X 11.918 11.918 0 %100 22 M52B Z 0 0 0 %100 23 M76 X 28.617 28.617 0 %100 24 M76 Z 0 0 0 %100 24 M76 Z 0 0 0 %100 25 M77 X 21.86 21.86 0 %100 26 M77 Z 0 0 0 %100 27 M80 X 23.024 23.024 0 %100 28 M80 Z 0 0 0 %100 29 M84 X 28.617 28.617 0 %100 30 M84 Z 0 0 %100 %100 31 M85 X 21.86 21.86 0 %100 32 M85 Z 0	19	M51B	Х	11.918	11.918	0	%100
22 M52B Z 0 0 %100 23 M76 X 28.617 28.617 0 %100 24 M76 Z 0 0 0 %100 25 M77 X 21.86 21.86 0 %100 26 M77 Z 0 0 0 %100 27 M80 X 23.024 23.024 0 %100 28 M80 Z 0 0 0 %100 29 M84 X 28.617 28.617 0 %100 30 M84 Z 0 0 %100 31 M85 X 21.86 21.86 0 %100 32 M85 Z 0 0 %100 %100 %100	20	M51B		0	0	0	%100
23 M76 X 28.617 28.617 0 %100 24 M76 Z 0 0 0 %100 25 M77 X 21.86 21.86 0 %100 26 M77 Z 0 0 0 %100 27 M80 X 23.024 23.024 0 %100 28 M80 Z 0 0 0 %100 29 M84 X 28.617 28.617 0 %100 30 M84 Z 0 0 %100 %100 31 M85 X 21.86 21.86 0 %100 32 M85 Z 0 0 %100 %100 %100	21	M52B		11.918	11.918	0	%100
24 M76 Z 0 0 %100 25 M77 X 21.86 21.86 0 %100 26 M77 Z 0 0 0 %100 27 M80 X 23.024 23.024 0 %100 28 M80 Z 0 0 0 %100 29 M84 X 28.617 28.617 0 %100 30 M84 Z 0 0 %100 %100 31 M85 X 21.86 21.86 0 %100 32 M85 Z 0 0 %100 %100	22	M52B		0	~	0	%100
25 M77 X 21.86 21.86 0 %100 26 M77 Z 0 0 0 %100 27 M80 X 23.024 23.024 0 %100 28 M80 Z 0 0 0 %100 29 M84 X 28.617 28.617 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 21.86 21.86 0 %100 32 M85 Z 0 0 %100 %100	23	M76		28.617	28.617	0	%100
26 M77 Z 0 0 %100 27 M80 X 23.024 23.024 0 %100 28 M80 Z 0 0 0 %100 29 M84 X 28.617 28.617 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 21.86 21.86 0 %100 32 M85 Z 0 0 %100 %100	24	M76	Z	0	0	0	%100
27 M80 X 23.024 23.024 0 %100 28 M80 Z 0 0 0 %100 29 M84 X 28.617 28.617 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 21.86 21.86 0 %100 32 M85 Z 0 0 %100	25		Х	21.86	21.86		
28 M80 Z 0 0 %100 29 M84 X 28.617 28.617 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 21.86 21.86 0 %100 32 M85 Z 0 0 %100	26	M77	Z	0	0	0	%100
29 M84 X 28.617 28.617 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 21.86 21.86 0 %100 32 M85 Z 0 0 %100	27	M80	Х	23.024	23.024	0	
30 M84 Z 0 0 %100 31 M85 X 21.86 21.86 0 %100 32 M85 Z 0 0 %100	28	M80		, v	~	0	%100
31 M85 X 21.86 21.86 0 %100 32 M85 Z 0 0 0 %100				28.617	28.617		
32 M85 Z 0 0 0 %100		M84	_	0	0	0	%100
		M85		21.86	21.86		%100
		M85		0	0	0	%100
<u>33 M91 X 23.024 23.024 0 %100</u>	33	M91	Х	23.024	23.024	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	1
34	M91	Z	0	0	0	%100
35	M52A	X	4.239	4.239	0	%100
36	M52A	Z	0	0	0	%100
37	M53	X	10.76	10.76	0	%100
38	M53	Z	0	0	0	%100
39	M54	X	10.76	10.76	0	%100
40	M54	Z	0	0	0	%100
41	M55	X	21.462	21.462	0	%100
42	M55	Z	0	0	0	%100
43	M58A	X	11.918	11.918	0	%100
44	M58A	Z	0	0	0	%100
45	M59A	X	0	0	0	%100
46	M59A	Z	0	0	0	%100
47	M63	X	7.154	7.154	0	%100
48	M63	Z	0	0	0	%100
49	M64	X	21.86	21.86	0	%100
50	M64	Z	0	0	0	%100
51	M66	X	23.024	23.024	0	%100
52	M66	Z	0	0	0	%100
53	M68	X	7.154	7.154	0	%100
54	M68	Z	0	0	0	%100
55	M69	X	0	0	0	%100
56	M69	Z	0	0	0	%100
57	M71	X	0	0	0	%100
58	M71	Z	0	0	0	%100
59	M76A	X	4.239	4.239	0	%100
60	M76A	Z	0	0	0	%100
61	M77A	X	10.76	10.76	0	%100
62	M77A	Z	0	0	0	%100
63	M78	X	10.76	10.76	0	%100
64	M78	Z	0	0	0	%100
65	M79A	X	21.462	21.462	0	%100
66	M79A	Z	0	0	0	%100
67	M82	Х	0	0	0	%100
68	M82	Z	0	0	0	%100
69	M83A	X	11.918	11.918	0	%100
70	M83A	Z	0	0	0	%100
71	M87	X	7.154	7.154	0	%100
72	M87	Z	0	0	0	%100
73	M88A	X	0	0	0	%100
74	M88A	Z	0	0	0	%100
75	M90	X	0	0	0	%100
76	M90	Z	0	0	0	%100
77	M92A	X	7.154	7.154	0	%100
78	M92A	Z	0	0	0	%100
79	M93	X	21.86	21.86	0	%100
80	M93	Z	0	0	0	%100
81	M95	Х	23.024	23.024	0	%100
82	M95	Z	0	0	0	%100
83	M82A	Х	11.341	11.341	0	%100
84	M82A	Z	0	0	0	%100
85	M91B	Х	11.341	11.341	0	%100
86	M91B	Z	0	0	0	%100
87	M100	Х	0	0	0	%100
	M100	Z	0	0	0	%100
88						
88 89	M100	X	8.496	8.496	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
91	M110	Х	8.496	8.496	0	%100
92	M110	Z	0	0	0	%100
93	M121	Х	10.556	10.556	0	%100
94	M121	Z	0	0	0	%100
95	M122	Х	10.556	10.556	0	%100
96	M122	Z	0	0	0	%100
97	M123	X	0	0	0	%100
98	M123	Z	0	0	0	%100
99	OVP1	Х	9.263	9.263	0	%100
100	OVP1	Z	0	0	0	%100
101	MP3C	Х	11.327	11.327	0	%100
102	MP3C	Z	0	0	0	%100
103	MP4C	Х	11.327	11.327	0	%100
104	MP4C	Z	0	0	0	%100
105	MP2C	Х	13.712	13.712	0	%100
106	MP2C	Z	0	0	0	%100
107	MP1C	Х	11.327	11.327	0	%100
108	MP1C	Z	0	0	0	%100
109	MP3B	X	11.327	11.327	0	%100
110	MP3B	Z	0	0	0	%100
111	MP4B	Х	11.327	11.327	0	%100
112	MP4B	Z	0	0	0	%100
113	MP2B	X	13.712	13.712	0	%100
114	MP2B	Z	0	0	0	%100
115	MP1B	X	11.327	11.327	0	%100
116	MP1B	Z	0	0	0	%100
117	OVP2	X	9.263	9.263	0	%100
118	OVP2	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	Х	3.274	3.274	0	%100
2	M1	Z	1.89	1.89	0	%100
3	M4	Х	11.013	11.013	0	%100
4	M4	Z	6.358	6.358	0	%100
5	M10	X	3.106	3.106	0	%100
6	M10	Z	1.793	1.793	0	%100
7	MP3A	Х	9.81	9.81	0	%100
8	MP3A	Z	5.664	5.664	0	%100
9	MP4A	Х	9.81	9.81	0	%100
10	MP4A	Z	5.664	5.664	0	%100
11	MP2A	X	11.875	11.875	0	%100
12	MP2A	Z	6.856	6.856	0	%100
13	MP1A	Х	9.81	9.81	0	%100
14	MP1A	Z	5.664	5.664	0	%100
15	M43	X	3.106	3.106	0	%100
16	M43	Z	1.793	1.793	0	%100
17	M46	Х	6.196	6.196	0	%100
18	M46	Z	3.577	3.577	0	%100
19	M51B	X	3.44	3.44	0	%100
20	M51B	Z	1.986	1.986	0	%100
21	M52B	X	13.761	13.761	0	%100
22	M52B	Z	7.945	7.945	0	%100
23	M76	X	18.587	18.587	0	%100
24	M76	Z	10.731	10.731	0	%100
25	M77	Х	6.31	6.31	0	%100

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft.
26	M77	Z	3.643	3.643	0	%100
27	M80	Х	6.647	6.647	0	%100
28	M80	Z	3.837	3.837	0	%100
29	M84	Х	18.587	18.587	0	%100
30	M84	Z	10.731	10.731	0	%100
31	M85	X	25.242	25.242	0	%100
32	M85	Z	14.573	14.573	0	%100
33	M91	X	26.586	26.586	0	%100
34	<u>M91</u>	Z	15.35	15.35	0	%100
35	M52A	X	11.013	11.013	0	%100
36	M52A	Z	6.358	6.358	0	%100
37	M53	X	3.106	3.106	0	%100
38	M53	Z	1.793	1.793	0	%100 %100
39 40	M54 M54	X Z	3.106 1.793	<u>3.106</u> 1.793	0	%100 %100
40	M55	X	6.196	6.196	0	%100
42	M55	Z	3.577	3.577	0	%100
43	M58A	X	13.761	13.761	0	%100
44	M58A	Z	7.945	7.945	0	%100
45	M59A	X	3.44	3.44	0	%100
46	M59A	Z	1.986	1.986	0	%100
47	M63	X	18.587	18.587	0	%100
48	M63	Z	10.731	10.731	0	%100
49	M64	X	25.242	25.242	0	%100
50	M64	Z	14.573	14.573	0	%100
51	M66	Х	26.586	26.586	0	%100
52	M66	Z	15.35	15.35	0	%100
53	M68	X	18.587	18.587	0	%100
54	M68	Z	10.731	10.731	0	%100
55	M69	X	6.31	6.31	0	%100
56	M69	Z	3.643	3.643	0	<u>%100</u>
57 58	<u>M71</u> M71	X Z	6.647 3.837	<u>6.647</u> 3.837	0	%100 %100
59	M76A	X	0	0	0	%100
60	M76A	Z	0	0	0	%100
61	M70A	X	12.425	12.425	0	%100
62	M77A	Z	7.173	7.173	0	%100
63	M78	X	12.425	12.425	0	%100
64	M78	Z	7.173	7.173	0	%100
65	M79A	X	24.783	24.783	0	%100
66	M79A	Z	14.308	14.308	Ő	%100
67	M82	Х	3.44	3.44	0	%100
68	M82	Z	1.986	1.986	0	%100
69	M83A	Х	3.44	3.44	0	%100
70	M83A	Z	1.986	1.986	0	%100
71	M87	X	0	0	0	%100
72	M87	Z	0	0	0	%100
73	<u>M88A</u>	X	6.31	6.31	0	%100
74	<u>M88A</u>	Z	3.643	3.643	0	%100
75	M90	X	6.647	6.647	0	%100
76	M90	Z	3.837	3.837	0	%100 %100
77	M92A	X	0	0	0	%100
78	M92A	Z	0	0	0	%100 %100
79 80	M93	X Z	6.31	<u> </u>	0	%100 %100
80	M93 M95	X	<u>3.643</u> 6.647	<u> </u>	0	%100
82	M95	Z	3.837	3.837	0	%100
ŲΖ	A-3D Version 17 (3.657	1 -	Page 100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft
83	M82A	X	3.274	3.274	0	%100
84	M82A	Z	1.89	1.89	0	%100
85	M91B	X	13.095	13.095	0	%100
86	M91B	Z	7.561	7.561	0	%100
87	M100	Х	2.452	2.452	0	%100
88	M100	Z	1.416	1.416	0	%100
89	M105	Х	2.452	2.452	0	%100
90	M105	Z	1.416	1.416	0	%100
91	M110	Х	9.81	9.81	0	%100
92	M110	Z	5.664	5.664	0	%100
93	M121	Х	3.047	3.047	0	%100
94	M121	Z	1.759	1.759	0	%100
95	M122	Х	12.189	12.189	0	%100
96	M122	Z	7.037	7.037	0	%100
97	M123	Х	3.047	3.047	0	%100
98	M123	Z	1.759	1.759	0	%100
99	OVP1	Х	8.022	8.022	0	%100
100	OVP1	Z	4.631	4.631	0	%100
101	MP3C	Х	9.81	9.81	0	%100
102	MP3C	Z	5.664	5.664	0	%100
103	MP4C	Х	9.81	9.81	0	%100
104	MP4C	Z	5.664	5.664	0	%100
105	MP2C	Х	11.875	11.875	0	%100
106	MP2C	Z	6.856	6.856	0	%100
107	MP1C	Х	9.81	9.81	0	%100
108	MP1C	Z	5.664	5.664	0	%100
109	MP3B	Х	9.81	9.81	0	%100
110	MP3B	Z	5.664	5.664	0	%100
111	MP4B	Х	9.81	9.81	0	%100
112	MP4B	Z	5.664	5.664	0	%100
113	MP2B	Х	11.875	11.875	0	%100
114	MP2B	Z	6.856	6.856	0	%100
115	MP1B	Х	9.81	9.81	0	%100
116	MP1B	Z	5.664	5.664	0	%100
117	OVP2	Х	8.022	8.022	0	%100
118	OVP2	Z	4.631	4.631	0	%100

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	5.67	5.67	0	%100
2	M1	Z	9.821	9.821	0	%100
3	M4	Х	2.119	2.119	0	%100
4	M4	Z	3.671	3.671	0	%100
5	M10	Х	5.38	5.38	0	%100
6	M10	Z	9.319	9.319	0	%100
7	MP3A	Х	5.664	5.664	0	%100
8	MP3A	Z	9.81	9.81	0	%100
9	MP4A	Х	5.664	5.664	0	%100
10	MP4A	Z	9.81	9.81	0	%100
11	MP2A	Х	6.856	6.856	0	%100
12	MP2A	Z	11.875	11.875	0	%100
13	MP1A	Х	5.664	5.664	0	%100
14	MP1A	Z	9.81	9.81	0	%100
15	M43	Х	5.38	5.38	0	%100
16	M43	Z	9.319	9.319	0	%100
17	M46	Х	10.731	10.731	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft
18	M46	Z	18.587	18.587	0	%100
19	M51B	X	0	0	0	%100
20	M51B	Z	0	0	0	%100
21	M52B	X	5.959	5.959	0	%100
22	M52B	Z	10.321	10.321	0	%100
23	M76	X	3.577	3.577	0	%100
24	M76	Z	6.196	6.196	0	%100
25	M77	X	0	0	0	%100
26	M77	Z	0	0	0	%100
27	<u>M80</u>	X Z	0	0	0	%100
28	<u>M80</u>		0 3.577	0 3.577	0	<u>%100</u>
29 30	<u>M84</u> M84	X Z	6.196	6.196	0	%100 %100
31	M85	X	10.93	10.93	0	%100
32	M85	Z	18.931	18.931	0	%100
33	M03 M91	X	11.512	11.512	0	%100
34	M91	Z	19.94	19.94	0	%100
35	M52A	X	8.478	8.478	0	%100
36	M52A	Z	14.684	14.684	0	%100
37	M53	X	0	0	0	%100
38	M53	Z	0	0	0	%100
39	M54	Х	0	0	0	%100
40	M54	Z	0	0	0	%100
41	M55	X	0	0	0	%100
42	M55	Z	0	0	0	%100
43	M58A	X	5.959	5.959	0	%100
44	M58A	Z	10.321	10.321	0	%100
45	M59A	X	5.959	5.959	0	%100
46	M59A	Z	10.321	10.321	0	%100
47	M63	X Z	14.308	14.308	0	%100
48 49	M63 M64	X	24.783	<u>24.783</u> 10.93	0	%100 %100
50	M64	Z	10.93 18.931	18.931	0	%100
51	M66	X	11.512	11.512	0	%100
52	M66	Z	19.94	19.94	0	%100
53	M68	X	14.308	14.308	0	%100
54	M68	Z	24.783	24.783	0	%100
55	M69	X	10.93	10.93	0	%100
56	M69	Z	18.931	18.931	0	%100
57	M71	X	11.512	11.512	0	%100
58	M71	Z	19.94	19.94	0	%100
59	M76A	Х	2.119	2.119	0	%100
60	M76A	Z	3.671	3.671	0	%100
61	M77A	X	5.38	5.38	0	%100
62	M77A	Z	9.319	9.319	0	%100
63	M78	X	5.38	5.38	0	%100
64	M78	Z	9.319	9.319	0	%100
65	<u>M79A</u>	X	10.731	10.731	0	%100
66	M79A	Z	18.587	18.587	0	%100
67	M82	X Z	5.959	5.959	0	%100 %100
68	M82		10.321	10.321		%100 %100
69 70	M83A M83A	X Z	0	0	0	%100 %100
70	<u>M83A</u>	X	3.577	3.577	0	%100
72	M87	Z	6.196	6.196	0	%100
73	M88A	X	10.93	10.93	0	%100
74	M88A	Z	18.931	18.931	0	%100
	-3D Version 17 (10.001	1 -	Page 102

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg)) (Continued)

					547	
	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		End Location[ft,
75	M90	X	11.512	11.512	0	%100
76	M90	Z	19.94	19.94	0	%100
77	M92A	Х	3.577	3.577	0	%100
78	M92A	Z	6.196	6.196	0	%100
79	M93	Х	0	0	0	%100
80	M93	Z	0	0	0	%100
81	M95	X	0	0	0	%100
82	M95	Z	0	0	0	%100
83	M82A	Х	0	0	0	%100
84	M82A	Z	0	0	0	%100
85	M91B	Х	5.67	5.67	0	%100
86	M91B	Z	9.821	9.821	0	%100
87	M100	Х	4.248	4.248	0	%100
88	M100	Z	7.357	7.357	0	%100
89	M105	Х	0	0	0	%100
90	M105	Z	0	0	0	%100
91	M110	Х	4.248	4.248	0	%100
92	M110	Z	7.357	7.357	0	%100
93	M121	Х	0	0	0	%100
94	M121	Z	0	0	0	%100
95	M122	Х	5.278	5.278	0	%100
96	M122	Z	9.142	9.142	0	%100
97	M123	X	5.278	5.278	0	%100
98	M123	Z	9.142	9.142	0	%100
99	OVP1	Х	4.631	4.631	0	%100
100	OVP1	Z	8.022	8.022	0	%100
101	MP3C	Х	5.664	5.664	0	%100
102	MP3C	Z	9.81	9.81	0	%100
103	MP4C	Х	5.664	5.664	0	%100
104	MP4C	Z	9.81	9.81	0	%100
105	MP2C	Х	6.856	6.856	0	%100
106	MP2C	Z	11.875	11.875	0	%100
107	MP1C	Х	5.664	5.664	0	%100
108	MP1C	Z	9.81	9.81	0	%100
109	MP3B	Х	5.664	5.664	0	%100
110	MP3B	Z	9.81	9.81	0	%100
111	MP4B	Х	5.664	5.664	0	%100
112	MP4B	Z	9.81	9.81	0	%100
113	MP2B	Х	6.856	6.856	0	%100
114	MP2B	Z	11.875	11.875	0	%100
115	MP1B	Х	5.664	5.664	0	%100
116	MP1B	Z	9.81	9.81	0	%100
117	OVP2	X	4.631	4.631	0	%100
118	OVP2	Z	8.022	8.022	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	0	0	0	%100
2	M1	Z	15.121	15.121	0	%100
3	M4	Х	0	0	0	%100
4	M4	Z	0	0	0	%100
5	M10	Х	0	0	0	%100
6	M10	Z	14.347	14.347	0	%100
7	MP3A	Х	0	0	0	%100
8	MP3A	Z	11.327	11.327	0	%100
9	MP4A	Х	0	0	0	%100

IRISA	Company Designer Job Number	
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
10	MP4A	Z	11.327	11.327	0	%100
11	MP2A	X	0	0	0	%100
12	MP2A	Z	13.712	13.712	0	%100
13	MP1A	X	0	0	0	%100
14	MP1A	Z	11.327	11.327	0	%100
15	M43	X	0	0	0	%100
16	M43	Z	14.347	14.347	0	%100
17	M46	X	0	0	0	%100
18	M46	Z	28.617	28.617	0	%100
19	M51B	X	0	0	0	%100
20	M51B	Z	3.973	3.973	0	%100
21	M52B	X	0	0	0	%100
22	M52B	Z	3.973	3.973	0	%100
23	M76	X	0	0	0	%100
24	M76	Z	0	0	0	%100
25	M77	X	0	0	0	%100
26	M77	Z	7.287	7.287	0	%100
27	M80	X	0	0	0	%100
28	M80	Z	7.675	7.675	0	%100
29	M84	X	0	0	0	%100
30	M84	Z	0	0	0	%100
31	M85	X	0	0	0	%100
32	M85	Z	7.287	7.287	0	%100
33	M91	X	0	0	0	%100
34	M91	Z	7.675	7.675	0	%100
35	M52A	X	0	0	0	%100
36	M52A	Z	12.716	12.716	0	%100
37	M53	X	0	0	0	%100
38	M53	Z	3.587	3.587	0	%100
39	M54	X	0	0	0	%100
40	M54	Z	3.587	3.587	0	%100
41	M55	X	0	0	0	%100
42	M55	Z	7.154	7.154	0	%100
43	M58A	X	0	0	0	%100
44	M58A	Z	3.973	3.973	0	%100
45	M59A	X	0	0	0	%100
46	M59A	Z	15.89	15.89	0	%100
47	M63	Х	0	0	0	%100
48	M63	Z	21.462	21.462	0	%100
49	M64	X	0	0	0	%100
50	M64	Z	7.287	7.287	0	%100
51	M66	Х	0	0	0	%100
52	M66	Z	7.675	7.675	0	%100
53	M68	Х	0	0	0	%100
54	M68	Z	21.462	21.462	0	%100
55	M69	X	0	0	0	%100
56	M69	Z	29.146	29.146	0	%100
57	M71	Х	0	0	0	%100
58	M71	Z	30.699	30.699	0	%100
59	M76A	Х	0	0	0	%100
60	M76A	Z	12.716	12.716	0	%100
61	M77A	X	0	0	0	%100
62	M77A	Z	3.587	3.587	0	%100
63	M78	X	0	0	0	%100
64	M78	Z	3.587	3.587	0	%100
65	M79A	X	0	0	0	%100
66	M79A	Z	7.154	7.154	0	%100
~~				V468327-VZW MT LO H r3		, ,,,,,,,

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg)) (Continued)

mem	Ser Biethbatet			10 (100 Deg)) (Continu	<i>cu</i> /	
	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
67	M82	X	0	0	0	%100
68	M82	Z	15.89	15.89	0	%100
69	M83A	Х	0	0	0	%100
70	M83A	Z	3.973	3.973	0	%100
71	M87	Х	0	0	0	%100
72	M87	Z	21.462	21.462	0	%100
73	M88A	Х	0	0	0	%100
74	M88A	Z	29.146	29.146	0	%100
75	M90	Х	0	0	0	%100
76	M90	Z	30.699	30.699	0	%100
77	M92A	X	0	0	0	%100
78	M92A	Z	21.462	21.462	0	%100
79	M93	X	0	0	0	%100
80	M93	Z	7.287	7.287	0	%100
81	M95	X	0	0	0	%100
82	M95	Z	7.675	7.675	0	%100
83	M82A	X	0	0	0	%100
84	M82A	Z	3.78	3.78	0	%100
85	M91B	X	0	0	0	%100
86	M91B	Z	3.78	3.78	0	%100
87	M31D M100	X	0	0	0	%100
88	M100	Z	11.327	11.327	0	%100
89	M100	X	0	0	0	%100
90	M105	Ż	2.832	2.832	0	%100
90			0			
	<u>M110</u>	X		0	0	%100
92	M110	Z	2.832	2.832	0	%100
93	M121	X	0	0	0	%100
94	M121	Z	3.519	3.519	0	%100
95	M122	X	0	0	0	%100
96	M122	Z	3.519	3.519	0	%100
97	M123	X	0	0	0	%100
98	M123	Z	14.075	14.075	0	%100
99	OVP1	X	0	0	0	%100
100	OVP1	Z	9.263	9.263	0	%100
101	MP3C	X	0	0	0	%100
102	MP3C	Z	11.327	11.327	0	%100
103	MP4C	X	0	0	0	%100
104	MP4C	Z	11.327	11.327	0	%100
105	MP2C	X	0	0	0	%100
106	MP2C	Z	13.712	13.712	0	%100
107	MP1C	X	0	0	0	%100
108	MP1C	Z	11.327	11.327	0	%100
109	MP3B	X	0	0	0	%100
110	MP3B	Z	11.327	11.327	0	%100
111	MP4B	Х	0	0	0	%100
112	MP4B	Z	11.327	11.327	0	%100
113	MP2B	X	0	0	0	%100
114	MP2B	Z	13.712	13.712	0	%100
115	MP1B	X	0	0	0	%100
116	MP1B	Z	11.327	11.327	0	%100
117	OVP2	Х	0	0	0	%100
118	OVP2	Z	9.263	9.263	0	%100

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	-5.67	-5.67	0	%100
					- T	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
2	M1	Z	9.821	9.821	0	%100
3	M4	X	-2.119	-2.119	0	%100
4	M4	Z	3.671	3.671	0	%100
5	M10	X	-5.38	-5.38	0	%100
6	M10	Z	9.319	9.319	0	%100
7	MP3A	X	-5.664	-5.664	0	%100
8	MP3A	Z	9.81	9.81	0	%100
9	MP4A	X	-5.664	-5.664	0	%100
10	MP4A	Z	9.81	9.81	0	%100
11	MP2A	X	-6.856	-6.856	0	%100
12	MP2A	Z	11.875	11.875	0	%100
13	MP1A	X	-5.664	-5.664	0	%100
14	MP1A	Z	9.81	9.81	0	%100
15	M43	X	-5.38	-5.38	0	%100
16	M43	Z	9.319	9.319	0	%100
17	M46	X	-10.731	-10.731	0	%100
18	M46	Z	18.587	18.587	0	%100
19	M51B	X	-5.959	-5.959	0	%100
20	M51B	Z	10.321	10.321	0	%100
21	M52B	X	0	0	0	%100
22	M52B	Z	0	0	0	%100
23	M76	X	-3.577	-3.577	0	%100
24	M76	Z	6.196	6.196	0	%100
25	M77	X	-10.93	-10.93	0	%100
26	M77	Z	18.931	18.931	0	%100
27	M80	Х	-11.512	-11.512	0	%100
28	M80	Z	19.94	19.94	0	%100
29	M84	X	-3.577	-3.577	0	%100
30	M84	Z	6.196	6.196	0	%100
31	M85	X	0	0	0	%100
32	M85	Z	0	0	0	%100
33	M91	Х	0	0	0	%100
34	M91	Z	0	0	0	%100
35	M52A	X	-2.119	-2.119	0	%100
36	M52A	Z	3.671	3.671	0	%100
37	M53	Х	-5.38	-5.38	0	%100
38	M53	Z	9.319	9.319	0	%100
39	M54	X	-5.38	-5.38	0	%100
40	M54	Z	9.319	9.319	0	%100
41	M55	Х	-10.731	-10.731	0	%100
42	M55	Z	18.587	18.587	0	%100
43	M58A	Х	0	0	0	%100
44	M58A	Z	0	0	0	%100
45	M59A	X	-5.959	-5.959	0	%100
46	M59A	Z	10.321	10.321	0	%100
47	M63	X	-3.577	-3.577	0	%100
48	M63	Z	6.196	6.196	0	%100
49	M64	X	0	0	0	%100
50	M64	Z	0	0	0	%100
51	M66	X	0	0	0	%100
52	M66	Z	0	0	0	%100
53	M68	Х	-3.577	-3.577	0	%100
54	M68	Z	6.196	6.196	0	%100
55	M69	X	-10.93	-10.93	0	%100
56	M69	Z	18.931	18.931	0	%100
57	M71	X	-11.512	-11.512	0	%100
58	M71	Z	19.94	19.94	0	%100
				N468327-VZW_MT_LO_H_r3		Page 106

IRISA	Company Designer Job Number Model Name	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
59	M76A	X	-8.478	-8.478	0	%100
60	M76A	Z	14.684	14.684	0	%100
61	M77A	X	0	0	0	%100
62	M77A	Z	0	0	0	%100
63	M78	X	0	0	0	%100
64	M78	Z	0	0	0	%100
65	M79A	X	0	0	0	%100
66	M79A	Z	0	0	0	%100
67	M82	X	-5.959	-5.959	0	%100
68	M82	Z	10.321	10.321	0	%100
69	<u>M83A</u>	X	-5.959	-5.959	0	%100
70	<u>M83A</u>	Z	10.321	10.321	0	%100
71	<u>M87</u>	X	-14.308	-14.308	0	%100
72	<u>M87</u>	Z	24.783	24.783	0	%100
73	<u>M88A</u>	X	-10.93	-10.93	0	%100
74	<u>M88A</u>	Z	18.931	18.931	0	%100
75	<u>M90</u>	X	-11.512	-11.512	0	%100
76	<u>M90</u>	Z	19.94	19.94	0	%100
77	<u>M92A</u>	X	-14.308	-14.308	0	%100
78	M92A	Z	24.783	24.783	0	<u>%100</u>
79	M93	X	-10.93	-10.93	0	%100
80	M93	Z	18.931	18.931	0	<u>%100</u>
81	M95	X Z	-11.512	-11.512	0	<u>%100</u> %100
82	<u>M95</u>		19.94	19.94	0	
83	<u>M82A</u>	X Z	-5.67	<u>-5.67</u> 9.821	0	%100
84 85	<u>M82A</u>	X	9.821			<u>%100</u>
86	M91B M91B	Z	0	0	0	%100 %100
87	M100	X	-4.248	-4.248	0	%100
88	M100	Z	7.357	7.357	0	%100
89	M105	X	-4.248	-4.248	0	%100
90	M105	Z	7.357	7.357	0	%100
91	M103	X	0	0	0	%100
92	M110	Z	0	0	0	%100
93	M121	X	-5.278	-5.278	0	%100
94	M121	Z	9.142	9.142	0	%100
95	M122	X	0	0	0	%100
96	M122	Z	0	0	0	%100
97	M123	X	-5.278	-5.278	0	%100
98	M123	Z	9.142	9.142	0	%100
99	OVP1	X	-4.631	-4.631	0	%100
100	OVP1	Z	8.022	8.022	0	%100
101	MP3C	X	-5.664	-5.664	0	%100
102	MP3C	Z	9.81	9.81	0	%100
103	MP4C	X	-5.664	-5.664	0	%100
104	MP4C	Z	9.81	9.81	0	%100
105	MP2C	X	-6.856	-6.856	0	%100
106	MP2C	Z	11.875	11.875	0	%100
107	MP1C	X	-5.664	-5.664	0	%100
108	MP1C	Z	9.81	9.81	0	%100
109	MP3B	X	-5.664	-5.664	0	%100
110	MP3B	Z	9.81	9.81	0	%100
111	MP4B	X	-5.664	-5.664	0	%100
112	MP4B	Z	9.81	9.81	0	%100
113	MP2B	X	-6.856	-6.856	0	%100
114	MP2B	Z	11.875	11.875	0	%100
115	MP1B	X	-5.664	-5.664	0	%100
	-3D Version 17 (•		\468327-\/ZW_MT_LO_H_r	•	Page 107

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
116	MP1B	Z	9.81	9.81	0	%100
117	OVP2	Х	-4.631	-4.631	0	%100
118	OVP2	Z	8.022	8.022	0	%100

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	X	-3.274	-3.274		%100
2	M1	Z	1.89	1.89	0	%100
3	M4	X	-11.013	-11.013	0	%100
4	M4	Z	6.358	6.358	0	%100
5	M10	X	-3.106	-3.106	0	%100
6	M10	Z	1.793	1.793	0	%100
7	MP3A	X	-9.81	-9.81	0	%100
8	MP3A	Z	5.664	5.664	0	%100
9	MP4A	X	-9.81	-9.81	0	%100
10	MP4A	Z	5.664	5.664	0	%100
11	MP2A	X	-11.875	-11.875	0	%100
12	MP2A	Z	6.856	6.856	0	%100
13	MP1A	X	-9.81	-9.81	0	%100
14	MP1A	Z	5.664	5.664	0	%100
15	M43	X	-3.106	-3.106	0	%100
16	M43	Ž	1.793	1.793	0	%100
17	M46	X	-6.196	-6.196	0	%100
18	M46	Z	3.577	3.577	0	%100
19	M51B	Х	-13.761	-13.761	0	%100
20	M51B	Z	7.945	7.945	0	%100
21	M52B	Х	-3.44	-3.44	0	%100
22	M52B	Z	1.986	1.986	0	%100
23	M76	Х	-18.587	-18.587	0	%100
24	M76	Z	10.731	10.731	0	%100
25	M77	Х	-25.242	-25.242	0	%100
26	M77	Z	14.573	14.573	0	%100
27	M80	Х	-26.586	-26.586	0	%100
28	M80	Z	15.35	15.35	0	%100
29	M84	Х	-18.587	-18.587	0	%100
30	M84	Z	10.731	10.731	0	%100
31	M85	Х	-6.31	-6.31	0	%100
32	M85	Z	3.643	3.643	0	%100
33	M91	Х	-6.647	-6.647	0	%100
34	M91	Z	3.837	3.837	0	%100
35	M52A	X	0	0	0	%100
36	M52A	Z	0	0	0	%100
37	M53	Х	-12.425	-12.425	0	%100
38	M53	Z	7.173	7.173	0	%100
39	M54	Х	-12.425	-12.425	0	%100
40	M54	Z	7.173	7.173	0	%100
41	M55	Х	-24.783	-24.783	0	%100
42	M55	Z	14.308	14.308	0	%100
43	M58A	X	-3.44	-3.44	0	%100
44	M58A	Z	1.986	1.986	0	%100
45	M59A	X	-3.44	-3.44	0	%100
46	M59A	Z	1.986	1.986	0	%100
47	M63	X	0	0	0	%100
48	M63	Z	0	0	0	%100
49	M64	X	-6.31	-6.31	0	%100
50	M64	Z	3.643	3.643	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,.
51	M66	X	-6.647	-6.647	0	%100
52	M66	Z	3.837	3.837	0	%100
53	M68	X	0	0	0	%100
54	M68	Z	0	0	0	%100
55	M69	Х	-6.31	-6.31	0	%100
56	M69	Z	3.643	3.643	0	%100
57	M71	Х	-6.647	-6.647	0	%100
58	M71	Z	3.837	3.837	0	%100
59	M76A	X	-11.013	-11.013	0	%100
60	M76A	Z	6.358	6.358	0	%100
61	M77A	X	-3.106	-3.106	0	%100
62	M77A	Z	1.793	1.793	0	%100
63	M78	X	-3.106	-3.106	0	%100
64	M78	Z	1.793	1.793	0	%100
65	M79A	X	-6.196	-6.196	0	%100
66	M79A	Z	3.577	3.577	0	%100
67	M82	X	-3.44	-3.44	0	%100
68	M82	Z	1.986	1.986	0	%100
69	<u>M83A</u>	X	-13.761	-13.761	0	%100
70	<u>M83A</u>	Z	7.945	7.945	0	%100
71	<u>M87</u>	X	-18.587	-18.587	0	%100
72	<u>M87</u>	Z	10.731	10.731	0	%100
73	<u>M88A</u>	X	-6.31	-6.31	0	%100 %100
74	<u>M88A</u>	Z	3.643	3.643	0	
75 76	M90 M90	X Z	-6.647 3.837	<u>-6.647</u> 3.837	0	%100
77	M90 M92A	X	-18.587	-18.587	0	%100 %100
78	M92A	Z	10.731	10.731	0	%100
79	M93	X	-25.242	-25.242	0	%100
80	M93	Z	14.573	14.573	0	%100
81	M95	X	-26.586	-26.586	0	%100
82	M95	Z	15.35	15.35	0	%100
83	M82A	X	-13.095	-13.095	0	%100
84	M82A	Z	7.561	7.561	0	%100
85	M91B	X	-3.274	-3.274	0	%100
86	M91B	Z	1.89	1.89	0	%100
87	M100	X	-2.452	-2.452	0	%100
88	M100	Z	1.416	1.416	0	%100
89	M105	X	-9.81	-9.81	0	%100
90	M105	Z	5.664	5.664	0	%100
91	M110	X	-2.452	-2.452	0	%100
92	M110	Z	1.416	1.416	0	%100
93	M121	X	-12.189	-12.189	0	%100
94	M121	Z	7.037	7.037	0	%100
95	M122	X	-3.047	-3.047	0	%100
96	M122	Z	1.759	1.759	0	%100
97	M123	X	-3.047	-3.047	0	%100
98	M123	Z	1.759	1.759	0	%100
99	OVP1	X	-8.022	-8.022	0	%100
100	OVP1	Z	4.631	4.631	0	%100
101	MP3C	Х	-9.81	-9.81	0	%100
102	MP3C	Z	5.664	5.664	0	%100
103	MP4C	Х	-9.81	-9.81	0	%100
104	MP4C	Z	5.664	5.664	0	%100
105	MP2C	Х	-11.875	-11.875	0	%100
106	MP2C	Z	6.856	6.856	0	%100
107	MP1C	Х	-9.81	-9.81	0	%100
	-3D Version 17 (1/468327-1/ZW/MTIOHr3		Page 109

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
108	MP1C	Z	5.664	5.664	0	%100
109	MP3B	Х	-9.81	-9.81	0	%100
110	MP3B	Z	5.664	5.664	0	%100
111	MP4B	X	-9.81	-9.81	0	%100
112	MP4B	Z	5.664	5.664	0	%100
113	MP2B	Х	-11.875	-11.875	0	%100
114	MP2B	Z	6.856	6.856	0	%100
115	MP1B	Х	-9.81	-9.81	0	%100
116	MP1B	Z	5.664	5.664	0	%100
117	OVP2	Х	-8.022	-8.022	0	%100
118	OVP2	Z	4.631	4.631	0	%100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

					01 11 11 11	
4	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		End Location[ft,
1	M1 M1	X	0	~	0	%100
	M4	Z X	-16.955	0 -16.955	0	%100 %100
3 4	M4	Z		- 16.955	0	%100
<u>4</u> 5	M10		0	0	0	
6	M10	X	0	0	0	%100 %100
				v	-	
7 8	MP3A	X Z	-11.327	-11.327	0	%100
<u>8</u> 9	MP3A MP4A	X	0 -11.327	0 -11.327	0	%100 %100
10	MP4A MP4A	Z	-11.327	0	0	%100 %100
11	MP4A MP2A	X	-13.712	-13.712	0	%100
12	MP2A MP2A	Z		-13.712	0	%100
	MP2A MP1A	X	0	-11.327		
13 14	MP1A MP1A	Z	-11.327		0	%100
			0	0		%100 %100
<u>15</u> 16	M43 M43	X Z	0	0	0	%100 %100
17	M43	X	0	0	0	<u>%100</u> %100
18	M46	Z	0	0	0	
		X		-11.918		%100 %100
19 20	M51B	Z	-11.918		0	%100 %100
	M51B		0	0		
21 22	M52B M52B	X Z	-11.918	<u>-11.918</u> 0	0	%100
		X	`	-28.617	-	%100
23	M76	Z	-28.617		0	%100
24	M76		0	0	0	%100
25	M77 M77	X Z	-21.86	-21.86	0	%100
26			0	0		<u>%100</u>
27	M80	X Z	-23.024	-23.024	0	%100
28	<u>M80</u>	X	0	0		<u>%100</u>
29	<u>M84</u>	Z	-28.617	-28.617	0	%100
30	M84		0	0	0	%100 %100
31 32	M85	X Z	-21.86	-21.86	0	%100 %100
	M85	X	0	0	0	%100 %100
33	M91		-23.024	-23.024		%100 %100
34	M91	Z	0	-4.239	0	%100 %100
35	M52A M52A	X Z	-4.239	-4.239	0	%100 %100
36			0 -10.76	-10.76	0	
37	M53	X	-10.76	-10.76	0	%100 %100
38	M53 M54	X	-10.76	-10.76	0	<u>%100</u> %100
39		Z			-	
40	M54		0	0	0	%100 %100
41 42	M55 M55	X Z	-21.462	<u>-21.462</u> 0	0	%100 %100
42	CCIVI		U	U	U	%100

IRISA	Company Designer Job Number Model Name	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
43	M58A	X	-11.918	-11.918	0	%100
44	M58A	Z	0	0	0	%100
45	M59A	X	0	0	0	%100
46	M59A	Z	0	0	0	%100
47	M63	X	-7.154	-7.154	0	%100
48	M63	Z	0	0	0	%100
49	<u>M64</u>	X	-21.86	-21.86	0	%100
50	M64	Z	0	0	0	%100
51 52	M66 M66	X Z	-23.024	-23.024	0	%100 %100
53	M68	X	-7.154	-7.154	0	%100 %100
54	M68	Z	0	-7.154	0	%100
55	M69	X	0	0	0	%100
56	M69	Z	0	0	0	%100
57	M71	X	0	0	0	%100
58	M71	Z	0	Ő	0	%100
59	M76A	X	-4.239	-4.239	0	%100
60	M76A	Z	0	0	0	%100
61	M77A	X	-10.76	-10.76	0	%100
62	M77A	Z	0	0	0	%100
63	M78	X	-10.76	-10.76	0	%100
64	M78	Z	0	0	0	%100
65	M79A	X	-21.462	-21.462	0	%100
66	M79A	Z	0	0	0	%100
67	M82	X	0	0	0	%100
68	M82	Z	0	0	0	%100
69	<u>M83A</u>	X	-11.918	-11.918	0	%100
70	<u>M83A</u>	Z	0	0	0	<u>%100</u>
71 72	M87 M87	X Z	-7.154	<u>-7.154</u> 0	0	%100 %100
73	M88A	X	0	0	0	%100 %100
74	M88A	Z	0	0	0	%100
75	M90	X	0	0	0	%100
76	M90	Z	0	0	0	%100
77	M92A	X	-7.154	-7.154	0	%100
78	M92A	Z	0	0	0	%100
79	M93	X	-21.86	-21.86	0	%100
80	M93	Z	0	0	0	%100
81	M95	X	-23.024	-23.024	0	%100
82	M95	Z	0	0	0	%100
83	M82A	X	-11.341	-11.341	0	%100
84	M82A	Z	0	0	0	%100
85	M91B	X	-11.341	-11.341	0	%100
86	M91B	Z	0	0	0	%100
87	<u>M100</u>	X	0	0	0	%100
88	M100	Z	0	0	0	%100
89	M105	X	-8.496	-8.496	0	%100
90	<u>M105</u>	Z	0	0	0	%100 %100
91 92	M110 M110	X Z	-8.496	-8.496	0	%100 %100
92	M121	X	-10.556	-10.556	0	%100
93	M121	Z	-10.556	-10.556	0	%100
94	M121 M122	X	-10.556	-10.556	0	%100
96	M122	Z	0	0	0	%100
97	M122 M123	X	0	0	0	%100
98	M123	Z	0	0	0	%100
99	OVP1	X	-9.263	-9.263	0	%100
	-3D Version 17 (1/468327-1/7W/MTIOHr3		Page 111

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
100	OVP1	Z	0	0	0	%100
101	MP3C	Х	-11.327	-11.327	0	%100
102	MP3C	Z	0	0	0	%100
103	MP4C	Х	-11.327	-11.327	0	%100
104	MP4C	Z	0	0	0	%100
105	MP2C	Х	-13.712	-13.712	0	%100
106	MP2C	Z	0	0	0	%100
107	MP1C	Х	-11.327	-11.327	0	%100
108	MP1C	Z	0	0	0	%100
109	MP3B	X	-11.327	-11.327	0	%100
110	MP3B	Z	0	0	0	%100
111	MP4B	Х	-11.327	-11.327	0	%100
112	MP4B	Z	0	0	0	%100
113	MP2B	Х	-13.712	-13.712	0	%100
114	MP2B	Z	0	0	0	%100
115	MP1B	Х	-11.327	-11.327	0	%100
116	MP1B	Z	0	0	0	%100
117	OVP2	Х	-9.263	-9.263	0	%100
118	OVP2	Z	0	0	0	%100

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	-3.274	-3.274	0	%100
2	M1	Z	-1.89	-1.89	0	%100
3	M4	Х	-11.013	-11.013	0	%100
4	M4	Z	-6.358	-6.358	0	%100
5	M10	Х	-3.106	-3.106	0	%100
6	M10	Z	-1.793	-1.793	0	%100
7	MP3A	Х	-9.81	-9.81	0	%100
8	MP3A	Z	-5.664	-5.664	0	%100
9	MP4A	X	-9.81	-9.81	0	%100
10	MP4A	Z	-5.664	-5.664	0	%100
11	MP2A	Х	-11.875	-11.875	0	%100
12	MP2A	Z	-6.856	-6.856	0	%100
13	MP1A	Х	-9.81	-9.81	0	%100
14	MP1A	Z	-5.664	-5.664	0	%100
15	M43	Х	-3.106	-3.106	0	%100
16	M43	Z	-1.793	-1.793	0	%100
17	M46	Х	-6.196	-6.196	0	%100
18	M46	Z	-3.577	-3.577	0	%100
19	M51B	Х	-3.44	-3.44	0	%100
20	M51B	Z	-1.986	-1.986	0	%100
21	M52B	Х	-13.761	-13.761	0	%100
22	M52B	Z	-7.945	-7.945	0	%100
23	M76	Х	-18.587	-18.587	0	%100
24	M76	Z	-10.731	-10.731	0	%100
25	M77	Х	-6.31	-6.31	0	%100
26	M77	Z	-3.643	-3.643	0	%100
27	M80	Х	-6.647	-6.647	0	%100
28	M80	Z	-3.837	-3.837	0	%100
29	M84	Х	-18.587	-18.587	0	%100
30	M84	Z	-10.731	-10.731	0	%100
31	M85	Х	-25.242	-25.242	0	%100
32	M85	Z	-14.573	-14.573	0	%100
33	M91	Х	-26.586	-26.586	0	%100
34	M91	Z	-15.35	-15.35	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft
35	M52A	X	-11.013	-11.013		%100
36	M52A	Z	-6.358	-6.358	0	%100
37	M53	X	-3.106	-3.106	0	%100
38	M53	Z	-1.793	-1.793	0	%100
39	M54	X	-3.106	-3.106	0	%100
40	M54	Z	-1.793	-1.793	0	%100
41	M55	Х	-6.196	-6.196	0	%100
42	M55	Z	-3.577	-3.577	0	%100
43	M58A	Х	-13.761	-13.761	0	%100
44	M58A	Z	-7.945	-7.945	0	%100
45	M59A	Х	-3.44	-3.44	0	%100
46	M59A	Z	-1.986	-1.986	0	%100
47	M63	Х	-18.587	-18.587	0	%100
48	M63	Z	-10.731	-10.731	0	%100
49	M64	Х	-25.242	-25.242	0	%100
50	M64	Z	-14.573	-14.573	0	%100
51	M66	X	-26.586	-26.586	0	%100
52	M66	Z	-15.35	-15.35	0	%100
53	M68	X	-18.587	-18.587	0	%100
54	M68	Z	-10.731	-10.731	0	%100
55	M69	Х	-6.31	-6.31	0	%100
56	M69	Z	-3.643	-3.643	0	%100
57	<u>M71</u>	X	-6.647	-6.647	0	%100
58	M71	Z	-3.837	-3.837	0	%100
59	M76A	X	0	0	0	%100
60	M76A	Z	0	0	0	%100
61	<u>M77A</u>	X	-12.425	-12.425	0	%100
62	M77A	Z	-7.173	-7.173	0	%100
63	<u>M78</u>	X	-12.425	-12.425	0	%100
64	M78	Z	-7.173	-7.173	0	%100
65	<u>M79A</u>	X	-24.783	-24.783	0	%100
66 67	M79A	Z	-14.308	-14.308	0	<u>%100</u>
68	M82 M82	X Z	-3.44	<u>-3.44</u> -1.986	0	%100 %100
69	M83A	X	<u>-1.986</u> -3.44	-3.44	0	%100
70	M83A	Z	-1.986	-1.986	0	%100
70	M87	X	0	-1.900	0	%100
72	M87	Z	0	0	0	%100
73	M88A	X	-6.31	-6.31	0	%100
74	M88A	Z	-3.643	-3.643	0	%100
75	M90	X	-6.647	-6.647	0	%100
76	M90	Z	-3.837	-3.837	0	%100
77	M92A	X	0	0	0	%100
78	M92A	Z	0	0	0	%100
79	M93	X	-6.31	-6.31	0	%100
80	M93	Z	-3.643	-3.643	0	%100
81	M95	X	-6.647	-6.647	0	%100
82	M95	Z	-3.837	-3.837	0	%100
83	M82A	X	-3.274	-3.274	0	%100
84	M82A	Z	-1.89	-1.89	0	%100
85	M91B	Х	-13.095	-13.095	0	%100
86	M91B	Z	-7.561	-7.561	0	%100
87	M100	Х	-2.452	-2.452	0	%100
88	M100	Z	-1.416	-1.416	0	%100
89	M105	Х	-2.452	-2.452	0	%100
90	M105	Z	-1.416	-1.416	0	%100
91	M110	X	-9.81	-9.81	0	%100
	-3D Version 17 (\468327-\/ZW/MTIOHr		Page 113

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
92	M110	Z	-5.664	-5.664	0	%100
93	M121	Х	-3.047	-3.047	0	%100
94	M121	Z	-1.759	-1.759	0	%100
95	M122	Х	-12.189	-12.189	0	%100
96	M122	Z	-7.037	-7.037	0	%100
97	M123	Х	-3.047	-3.047	0	%100
98	M123	Z	-1.759	-1.759	0	%100
99	OVP1	Х	-8.022	-8.022	0	%100
100	OVP1	Z	-4.631	-4.631	0	%100
101	MP3C	X	-9.81	-9.81	0	%100
102	MP3C	Z	-5.664	-5.664	0	%100
103	MP4C	Х	-9.81	-9.81	0	%100
104	MP4C	Z	-5.664	-5.664	0	%100
105	MP2C	Х	-11.875	-11.875	0	%100
106	MP2C	Z	-6.856	-6.856	0	%100
107	MP1C	Х	-9.81	-9.81	0	%100
108	MP1C	Z	-5.664	-5.664	0	%100
109	MP3B	Х	-9.81	-9.81	0	%100
110	MP3B	Z	-5.664	-5.664	0	%100
111	MP4B	Х	-9.81	-9.81	0	%100
112	MP4B	Z	-5.664	-5.664	0	%100
113	MP2B	Х	-11.875	-11.875	0	%100
114	MP2B	Z	-6.856	-6.856	0	%100
115	MP1B	X	-9.81	-9.81	0	%100
116	MP1B	Z	-5.664	-5.664	0	%100
117	OVP2	Х	-8.022	-8.022	0	%100
118	OVP2	Z	-4.631	-4.631	0	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	-5.67	-5.67	0	%100
2	M1	Z	-9.821	-9.821	0	%100
3	M4	Х	-2.119	-2.119	0	%100
4	M4	Z	-3.671	-3.671	0	%100
5	M10	Х	-5.38	-5.38	0	%100
6	M10	Z	-9.319	-9.319	0	%100
7	MP3A	X	-5.664	-5.664	0	%100
8	MP3A	Z	-9.81	-9.81	0	%100
9	MP4A	X	-5.664	-5.664	0	%100
10	MP4A	Z	-9.81	-9.81	0	%100
11	MP2A	Х	-6.856	-6.856	0	%100
12	MP2A	Z	-11.875	-11.875	0	%100
13	MP1A	Х	-5.664	-5.664	0	%100
14	MP1A	Z	-9.81	-9.81	0	%100
15	M43	Х	-5.38	-5.38	0	%100
16	M43	Z	-9.319	-9.319	0	%100
17	M46	Х	-10.731	-10.731	0	%100
18	M46	Z	-18.587	-18.587	0	%100
19	M51B	Х	0	0	0	%100
20	M51B	Z	0	0	0	%100
21	M52B	Х	-5.959	-5.959	0	%100
22	M52B	Z	-10.321	-10.321	0	%100
23	M76	Х	-3.577	-3.577	0	%100
24	M76	Z	-6.196	-6.196	0	%100
25	M77	Х	0	0	0	%100
26	M77	Z	0	0	0	%100

IRISA	Company Designer Job Number Model Name	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
27	M80	X	0	0	0	%100
28	M80	Z	0	0	0	%100
29	M84	X	-3.577	-3.577	0	%100
30	M84	Z	-6.196	-6.196	0	%100
31	M85	X	-10.93	-10.93	0	%100
32	M85	Z	-18.931	-18.931	0	%100
33	M91	Х	-11.512	-11.512	0	%100
34	M91	Z	-19.94	-19.94	0	%100
35	M52A	X	-8.478	-8.478	0	%100
36	M52A	Z	-14.684	-14.684	0	%100
37	M53	Х	0	0	0	%100
38	M53	Z	0	0	0	%100
39	M54	X	0	0	0	%100
40	M54	Z	0	0	0	%100
41	M55	X	0	0	0	%100
42	M55	Z	0	0	0	%100
43	M58A	X	-5.959	-5.959	0	%100
44	M58A	Z	-10.321	-10.321	0	%100
45	<u>M59A</u>	X	-5.959	-5.959	0	%100
46	M59A	Z	-10.321	-10.321	0	%100
47	M63	X	-14.308	-14.308	0	%100
48	M63	Z	-24.783	-24.783	0	<u>%100</u>
49	M64	X	-10.93	-10.93	0	%100
50	M64	Z	-18.931	-18.931	0	<u>%100</u>
51 52	M66	X Z	-11.512 -19.94	-11.512	0	%100 %100
52 53	M66	X	-19.94	-19.94		
53	M68 M68	Z	-14.308	<u>-14.308</u> -24.783	0	%100 %100
55	M69	X	-24.765	-10.93	0	%100
56	M69	Z	-18.931	-18.931	0	%100
57	M71	X	-11.512	-11.512	0	%100
58	M71	Z	-19.94	-19.94	0	%100
59	M76A	X	-2.119	-2.119	0	%100
60	M76A	Z	-3.671	-3.671	0	%100
61	M70A	X	-5.38	-5.38	0	%100
62	M77A	Z	-9.319	-9.319	0	%100
63	M78	X	-5.38	-5.38	0	%100
64	M78	Z	-9.319	-9.319	0	%100
65	M79A	X	-10.731	-10.731	0	%100
66	M79A	Z	-18.587	-18.587	0	%100
67	M82	X	-5.959	-5.959	0	%100
68	M82	Z	-10.321	-10.321	0	%100
69	M83A	X	0	0	0	%100
70	M83A	Z	0	0	0	%100
71	M87	X	-3.577	-3.577	0	%100
72	M87	Z	-6.196	-6.196	0	%100
73	M88A	X	-10.93	-10.93	0	%100
74	M88A	Z	-18.931	-18.931	0	%100
75	M90	X	-11.512	-11.512	0	%100
76	M90	Z	-19.94	-19.94	0	%100
77	M92A	X	-3.577	-3.577	0	%100
78	M92A	Z	-6.196	-6.196	0	%100
79	M93	X	0	0	0	%100
80	M93	Z	0	0	0	%100
81	M95	X	0	0	0	%100
	M95	Z	0	0	0	%100
82	10130					

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
84	M82A	Z	0	0	0	%100
85	M91B	Х	-5.67	-5.67	0	%100
86	M91B	Z	-9.821	-9.821	0	%100
87	M100	Х	-4.248	-4.248	0	%100
88	M100	Z	-7.357	-7.357	0	%100
89	M105	Х	0	0	0	%100
90	M105	Z	0	0	0	%100
91	M110	Х	-4.248	-4.248	0	%100
92	M110	Z	-7.357	-7.357	0	%100
93	M121	Х	0	0	0	%100
94	M121	Z	0	0	0	%100
95	M122	Х	-5.278	-5.278	0	%100
96	M122	Z	-9.142	-9.142	0	%100
97	M123	Х	-5.278	-5.278	0	%100
98	M123	Z	-9.142	-9.142	0	%100
99	OVP1	Х	-4.631	-4.631	0	%100
100	OVP1	Z	-8.022	-8.022	0	%100
101	MP3C	Х	-5.664	-5.664	0	%100
102	MP3C	Z	-9.81	-9.81	0	%100
103	MP4C	Х	-5.664	-5.664	0	%100
104	MP4C	Z	-9.81	-9.81	0	%100
105	MP2C	Х	-6.856	-6.856	0	%100
106	MP2C	Z	-11.875	-11.875	0	%100
107	MP1C	Х	-5.664	-5.664	0	%100
108	MP1C	Z	-9.81	-9.81	0	%100
109	MP3B	Х	-5.664	-5.664	0	%100
110	MP3B	Z	-9.81	-9.81	0	%100
111	MP4B	Х	-5.664	-5.664	0	%100
112	MP4B	Z	-9.81	-9.81	0	%100
113	MP2B	Х	-6.856	-6.856	0	%100
114	MP2B	Z	-11.875	-11.875	0	%100
115	MP1B	Х	-5.664	-5.664	0	%100
116	MP1B	Z	-9.81	-9.81	0	%100
117	OVP2	Х	-4.631	-4.631	0	%100
118	OVP2	Z	-8.022	-8.022	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	0	0	0	%100
2	M1	Z	-4.292	-4.292	0	%100
3	M4	Х	0	0	0	%100
4	M4	Z	0	0	0	%100
5	M10	Х	0	0	0	%100
6	M10	Z	-3.529	-3.529	0	%100
7	MP3A	Х	0	0	0	%100
8	MP3A	Z	-3.46	-3.46	0	%100
9	MP4A	Х	0	0	0	%100
10	MP4A	Z	-3.46	-3.46	0	%100
11	MP2A	Х	0	0	0	%100
12	MP2A	Z	-3.83	-3.83	0	%100
13	MP1A	Х	0	0	0	%100
14	MP1A	Z	-3.46	-3.46	0	%100
15	M43	Х	0	0	0	%100
16	M43	Z	-3.529	-3.529	0	%100
17	M46	Х	0	0	0	%100
18	M46	Z	-5.52	-5.52	0	%100

IRISA	Company Designer Job Number Model Name	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
19	M51B	X	0	0	0	%100
20	M51B	Z	-1.016	-1.016	0	%100
21	M52B	Х	0	0	0	%100
22	M52B	Z	-1.016	-1.016	0	%100
23	M76	Х	0	0	0	%100
24	M76	Z	0	0	0	%100
25	M77	Х	0	0	0	%100
26	M77	Z	-1.378	-1.378	0	%100
27	M80	Х	0	0	0	%100
28	M80	Z	-1.438	-1.438	0	%100
29	M84	X	0	0	0	%100
30	M84	Z	0	0	0	%100
31	M85	X	0	0	0	%100
32	M85	Z	-1.378	-1.378	0	%100
33	M91	X	0	0	0	%100
34	M91	Z	-1.438	-1.438	0	%100
35	M52A	X	0	0	0	%100
36	M52A	Z	-3.249	-3.249	0	%100
37	M53	X	0	0	0	%100
38	M53	Z	882	882	0	%100
39	M54	X	0	0	0	%100
40	M54	Z	882	882	0	%100
41	M55	X	0	0	0	%100
42	M55	Z	-1.38	-1.38	0	%100
43	M58A	X	0	0	0	%100
44	M58A	Z	-1.016	-1.016	0	%100
45	M59A	Х	0	0	0	%100
46	M59A	Z	-4.062	-4.062	0	%100
47	M63	X	0	0	0	%100
48	M63	Z	-4.072	-4.072	0	%100
49	M64	X	0	0	0	%100
50	M64	Z	-1.378	-1.378	0	%100
51	M66	X	0	0	0	%100
52	M66	Z	-1.438	-1.438	0	%100
53	M68	X	0	0	0	%100
54	M68	Z	-4.072	-4.072	0	%100
55	M69	X	0	0	0	%100
56	M69	Z	-5.512	-5.512	0	%100
57	M71	X	0	0	0	%100
58	M71	Z	-5.753	-5.753	0	%100
59	M76A	X	0	0	0	%100
60	M76A	Z	-3.249	-3.249	0	%100
61	M77A	X	0	0	0	%100
62	M77A	Z	882	882	0	%100
63	M78	X	0	0	0	%100
64	M78	Z	882	882	0	%100
65	M79A	X	0	0	0	%100
66	M79A	Z	-1.38	-1.38	0	%100
67	M82	X	0	0	0	%100
68	M82	Z	-4.062	-4.062	0	%100
69	M83A	X	0	0	0	%100
70	M83A	Z	-1.016	-1.016	0	%100
71	M87	X	0	0	0	%100
72	M87	Z	-4.072	-4.072	0	%100
73	M88A	X	0	0	0	%100
74	M88A	Z	-5.512	-5.512	0	%100
75	M90	X	0	0	0	%100
· · · ·				V468327-VZW MT LO H r3	•	Page 117

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[Ib/ft,F,ksf]	Start Location[ft	End Location[ft
76	M90	Z	-5.753	-5.753	0	%100
77	M92A	X	0	0	0	%100
78	M92A	Z	-4.072	-4.072	0	%100
79	M93	X	0	0	0	%100
80	M93	Z	-1.378	-1.378	0	%100
81	M95	X	0	0	0	%100
82	M95	Z	-1.438	-1.438	0	%100
83	M82A	X	0	0	0	%100
84	M82A	Z	-1.073	-1.073	0	%100
85	M91B	Х	0	0	0	%100
86	M91B	Z	-1.073	-1.073	0	%100
87	M100	X	0	0	0	%100
88	M100	Z	-3.46	-3.46	0	%100
89	M105	Х	0	0	0	%100
90	M105	Z	865	865	0	%100
91	M110	X	0	0	0	%100
92	M110	Z	865	865	0	%100
93	M121	X	0	0	0	%100
94	M121	Z	838	838	0	%100
95	M122	X	0	0	0	%100
96	M122	Z	838	838	0	%100
97	M123	X	0	0	0	%100
98	M123	Z	-3.353	-3.353	0	%100
99	OVP1	Х	0	0	0	%100
100	OVP1	Z	-2.844	-2.844	0	%100
101	MP3C	X	0	0	0	%100
102	MP3C	Z	-3.46	-3.46	0	%100
103	MP4C	Х	0	0	0	%100
104	MP4C	Z	-3.46	-3.46	0	%100
105	MP2C	Х	0	0	0	%100
106	MP2C	Z	-3.83	-3.83	0	%100
107	MP1C	Х	0	0	0	%100
108	MP1C	Z	-3.46	-3.46	0	%100
109	MP3B	X	0	0	0	%100
110	MP3B	Z	-3.46	-3.46	0	%100
111	MP4B	X	0	0	0	%100
112	MP4B	Z	-3.46	-3.46	0	%100
113	MP2B	X	0	0	0	%100
114	MP2B	Z	-3.83	-3.83	0	%100
115	MP1B	X	0	0	0	%100
116	MP1B	Z	-3.46	-3.46	0	%100
117	OVP2	X	0	0	0	%100
118	OVP2	Z	-2.844	-2.844	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	1.609	1.609	0	%100
2	M1	Z	-2.788	-2.788	0	%100
3	M4	Х	.542	.542	0	%100
4	M4	Z	938	938	0	%100
5	M10	Х	1.323	1.323	0	%100
6	M10	Z	-2.292	-2.292	0	%100
7	MP3A	Х	1.73	1.73	0	%100
8	MP3A	Z	-2.997	-2.997	0	%100
9	MP4A	X	1.73	1.73	0	%100
10	MP4A	Z	-2.997	-2.997	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

Micini			BEC 54 . Structure M			
44	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
11 12	MP2A	X Z	1.915 -3.317	1.915	0	%100 %100
	MP2A			-3.317		
13	MP1A	X	1.73	1.73	0	%100
14	MP1A	Z	-2.997	-2.997	0	%100
15	M43	X	1.323	1.323	0	%100
16	M43	Z	-2.292	-2.292	0	%100
17	M46	X Z	2.07	2.07	0	%100
18	M46		-3.586	-3.586	0	%100
19	<u>M51B</u>	X	1.523	1.523	0	%100
20	M51B	Z	-2.638	-2.638	0	%100
21	M52B	X	0	0	0	%100
22	M52B	Z	0	0	0	<u>%100</u>
23	<u>M76</u>	X	.679	.679	0	%100
24	M76	Z	-1.176	-1.176	0	%100
25	M77	X	2.067	2.067	0	%100
26	M77	Z	-3.58	-3.58	0	%100
27	<u>M80</u>	X	2.157	2.157	0	%100
28	<u>M80</u>	Z	-3.736	-3.736	0	%100
29	<u>M84</u>	X	.679	.679	0	%100
30	<u>M84</u>	Z	-1.176	-1.176	0	%100
31	<u>M85</u>	X	0	0	0	%100
32	M85	Z	0	0	0	%100
33	<u>M91</u>	X	0	0	0	%100
34	<u>M91</u>	Z	0	0	0	%100
35	M52A	X	.542	.542	0	%100
36	M52A	Z	938	938	0	%100
37	M53	X	1.323	1.323	0	%100
38	M53	Z	-2.292	-2.292	0	%100
39	<u>M54</u>	X	1.323	1.323	0	%100
40	M54	Z	-2.292	-2.292	0	%100
41	<u>M55</u>	X	2.07	2.07	0	%100
42	M55	Z	-3.586	-3.586	0	%100
43	<u>M58A</u>	X	0	0	0	%100
44	M58A	Z	0	0	0	%100
45	<u>M59A</u>	X	1.523	1.523	0	%100
46	M59A	Z	-2.638	-2.638	0	%100
47	M63	X	.679	.679	0	%100
48	M63	Z	-1.176	-1.176	0	%100
49	M64	X	0	0	0	%100
50	M64	Z	0	0	0	%100
51	M66	X	0	0	0	%100
52	M66	Z	0	0	0	%100
53	M68	X	.679	.679	0	%100
54	M68	Z	-1.176	-1.176	0	%100
55	M69	X	2.067	2.067	0	%100
56	M69	Z	-3.58	-3.58	0	%100
57	<u>M71</u>	X	2.157	2.157	0	%100
58	M71	Z	-3.736	-3.736	0	%100
59	<u>M76A</u>	X	2.166	2.166	0	%100
60	M76A	Z	-3.752	-3.752	0	%100
61	<u>M77A</u>	X	0	0	0	%100
62	M77A	Z	0	0	0	%100
63	M78	X	0	0	0	%100
64	M78	Z	0	0	0	%100
65	<u>M79A</u>	X	0	0	0	%100
66 67	<u>M79A</u> M82	Z X	0 1.523	0 1.523	0	<u>%100</u> %100
	N/15212	· ·				

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg)) (Continued)

68 69	Member Label M82	Direction Z	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
69	IVIOZ		-2.638	-2.638	0	%100
	M83A	X	1.523	1.523	-	%100
70	M83A	Z	-2.638		0	%100
70 71				-2.638		%100
71	M87 M87	X Z	2.715	2.715	0	
72	M88A	X	-4.702 2.067	<u>-4.702</u> 2.067	0	%100 %100
73	M88A	Z	-3.58	-3.58	0	%100
74	M90	X	2.157	2.157	0	%100
76	M90	Z	-3.736	-3.736	0	%100
70	M92A		2.715	2.715	0	%100
78	M92A	X Z	-4.702	-4.702	0	%100
78	M92A M93	X	2.067	2.067		%100
80	M93	Z	-3.58	-3.58	0	%100
81	M95	X	2.157	2.157	0	%100
82	M95	Z	-3.736	-3.736	0	%100
83	M82A	X	1.609	1.609	0	%100
84	M82A	Z	-2.788	-2.788	0	%100
85	M91B	X	0	0	0	%100
86	M91B	Z	0	0	0	%100
87	M91B M100	X	1.298	1.298	0	%100
88	M100	Z	-2.247	-2.247	0	%100
89	M100	X	1.298	1.298	0	%100
90	M105	Z	-2.247	-2.247	0	%100
91	M105	X	0	0	0	%100
92	M110	Z	0	0	0	%100
93	M110 M121	X	1.258	1.258	0	%100
94	M121	Z	-2.178	-2.178	0	%100
95	M122	X	0	0	0	%100
96	M122	Z	0	0	0	%100
97	M122	X	1.258	1.258	0	%100
98	M123	Z	-2.178	-2.178	0	%100
99	OVP1	X	1.422	1.422	0	%100
100	OVP1	Z	-2.463	-2.463	0	%100
101	MP3C	X	1.73	1.73	0	%100
102	MP3C	Z	-2.997	-2.997	0	%100
103	MP4C	X	1.73	1.73	0	%100
104	MP4C	Z	-2.997	-2.997	0	%100
105	MP2C	X	1.915	1.915	0	%100
106	MP2C	Z	-3.317	-3.317	0	%100
107	MP1C	X	1.73	1.73	0	%100
108	MP1C	Z	-2.997	-2.997	0	%100
109	MP3B	X	1.73	1.73	0	%100
110	MP3B	Z	-2.997	-2.997	0	%100
111	MP4B	X	1.73	1.73	0	%100
112	MP4B	Z	-2.997	-2.997	0	%100
113	MP2B	Х	1.915	1.915	0	%100
114	MP2B	Z	-3.317	-3.317	0	%100
115	MP1B	X	1.73	1.73	0	%100
116	MP1B	Z	-2.997	-2.997	0	%100
117	OVP2		1.422	1.422	0	%100
118	OVP2	X Z	-2.463	-2.463	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	.929	.929	0	%100
2	M1	Z	536	536	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

			DLO JJ . Structure h			
	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		End Location[ft,
3	<u>M4</u> M4	X Z	2.814	<u>2.814</u> -1.625	0	%100 %100
4 5	M10	X	.764	.764	0	%100
6	M10	Z	441	441	0	%100
7	MP3A	X	2.997	2.997	0	%100
8	MP3A	Z	-1.73	-1.73	0	%100
9	MP4A	X	2.997	2.997	0	%100
10	MP4A	Z	-1.73	-1.73	0	%100
11	MP2A	X	3.317	3.317	0	%100
12	MP2A	Z	-1.915	-1.915	0	%100
13	MP1A	X	2.997	2.997	0	%100
14	MP1A	Z	-1.73	-1.73	0	%100
15	M43	X	.764	.764	0	%100
16	M43	Z	441	441	0	%100
17	M46	X	1.195	1.195	0	%100
18	M46	Z	69	69	0	%100
19	M51B	X	3.518	3.518	0	%100
20	M51B	Z	-2.031	-2.031	0	%100
21	M52B	Х	.879	.879	0	%100
22	M52B	Z	508	508	0	%100
23	M76	X	3.527	3.527	0	%100
24	M76	Z	-2.036	-2.036	0	%100
25	M77	X	4.773	4.773	0	%100
26	M77	Z	-2.756	-2.756	0	%100
27	<u>M80</u>	X Z	4.982	4.982	0	%100
28	M80		-2.876	-2.876	0	<u>%100</u>
29 30	<u>M84</u>	X Z	3.527	3.527	0	%100 %100
30	<u>M84</u> M85	X	-2.036 1.193	<u>-2.036</u> 1.193	0	%100 %100
32	M85	Z	689	689	0	%100
33	M91	X	1.245	1.245	0	%100
34	M91	Z	719	719	0	%100
35	M52A	X	0	0	0	%100
36	M52A	Z	0	0	0	%100
37	M53	X	3.056	3.056	0	%100
38	M53	Z	-1.765	-1.765	0	%100
39	M54	X	3.056	3.056	0	%100
40	M54	Z	-1.765	-1.765	0	%100
41	M55	Х	4.781	4.781	0	%100
42	M55	Z	-2.76	-2.76	0	%100
43	M58A	Х	.879	.879	0	%100
44	M58A	Z	508	508	0	%100
45	M59A	Х	.879	.879	0	%100
46	M59A	Z	508	508	0	%100
47	M63	X	0	0	0	%100
48	M63	Z	0	0	0	%100
49	M64	X	1.193	1.193	0	%100
50	M64	Z	689	689	0	<u>%100</u>
51	M66	X	1.245	1.245	0	%100
52	M66	Z	719	719	0	%100 %100
53 54	M68 M68	X Z	0	0	0	%100 %100
55	M69	X	1.193	1.193	0	%100
56	M69	Z	689	689	0	%100
57	M09 M71	X	1.245	1.245	0	%100
58	M71	Z	719	719	0	%100
59	M76A	X	2.814	2.814	0	%100
	A-3D Version 17 (V468327-VZW MT LO H r3		Page 121

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		.End Location[ft,
60	M76A	Z	-1.625	-1.625	0	%100
61	M77A	X	.764	.764	0	%100
62	M77A	Z	441	441	0	%100
63	M78	X	.764	.764	0	%100
64	M78	Z	441	441	0	%100
65	M79A	X	1.195	1.195	0	%100
66	M79A	Z	69	69	0	%100
67	M82	X	.879	.879	0	%100
68	M82	Z	508	508	0	%100
69	<u>M83A</u>	X	3.518	3.518	0	%100
70	<u>M83A</u>	Z	-2.031	-2.031	0	%100
71	<u>M87</u>	X	3.527	3.527	0	%100
72	<u>M87</u>	Z	-2.036	-2.036	0	%100
73 74	M88A M88A	X Z	<u>1.193</u> 689	<u>1.193</u> 689	0	%100 %100
74	M90	X	1.245	1.245	0	%100
76	M90	Z	719	719	0	%100
77	M92A	X	3.527	3.527	0	%100
78	M92A	Z	-2.036	-2.036	0	%100
79	M93	X	4.773	4.773	0	%100
80	M93	Z	-2.756	-2.756	0	%100
81	M95	X	4.982	4.982	0	%100
82	M95	Z	-2.876	-2.876	0	%100
83	M82A	X	3.717	3.717	0	%100
84	M82A	Z	-2.146	-2.146	0	%100
85	M91B	X	.929	.929	0	%100
86	M91B	Z	536	536	0	%100
87	M100	X	.749	.749	0	%100
88	M100	Z	433	433	0	%100
89	M105	X	2.997	2.997	0	%100
90	M105	Z	-1.73	-1.73	0	<u>%100</u>
91 92	<u>M110</u>	X Z	.749 433	.749	0	%100
92	M110 M121	X	2.904	<u>433</u> 2.904	0	%100 %100
93	M121	Z	-1.677	-1.677	0	%100
95	M121 M122	X	.726	.726	0	%100
96	M122	Z	419	419	0	%100
97	M123	X	.726	.726	0	%100
98	M123	Z	419	419	0	%100
99	OVP1	x	2.463	2.463	0	%100
100	OVP1	Z	-1.422	-1.422	0	%100
101	MP3C	X	2.997	2.997	0	%100
102	MP3C	Z	-1.73	-1.73	0	%100
103	MP4C	Х	2.997	2.997	0	%100
104	MP4C	Z	-1.73	-1.73	0	%100
105	MP2C	X	3.317	3.317	0	%100
106	MP2C	Z	-1.915	-1.915	0	%100
107	MP1C	X	2.997	2.997	0	%100
108	MP1C	Z	-1.73	-1.73	0	%100
109	MP3B	X	2.997	2.997	0	%100
110	MP3B	Z	-1.73	-1.73	0	<u>%100</u>
111	MP4B	X Z	2.997	2.997	0	%100 %100
112	MP4B MP2B	X	-1.73 3.317	<u>-1.73</u> 3.317	0	%100 %100
114	MP2B	Z	-1.915	-1.915	0	%100
115	MP2B MP1B	X	2.997	2.997	0	%100 %100
116	MP1B	Z	-1.73	-1.73	0	%100
			· · ·	468327-VZW MT LO H r3		Page 122

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg)) (Continued)

		Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
11	17	OVP2	Х	2.463	2.463	0	%100
11	18	OVP2	Z	-1.422	-1.422	0	%100

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M4	Х	4.332	4.332	0	%100
4	M4	Z	0	0	0	%100
5	M10	Х	0	0	0	%100
6	M10	Z	0	0	0	%100
7	MP3A	Х	3.46	3.46	0	%100
8	MP3A	Z	0	0	0	%100
9	MP4A	X	3.46	3.46	0	%100
10	MP4A	Z	0	0	0	%100
11	MP2A	X	3.83	3.83	0	%100
12	MP2A	Z	0	0	0	%100
13	MP1A	X	3.46	3.46	0	%100
14	MP1A	Z	0	0	0	%100
15	M43	Х	0	0	0	%100
16	M43	Z	0	0	0	%100
17	M46	X	0	0	0	%100
18	M46	Z	0	0	0	%100
19	<u>M51B</u>	X	3.047	3.047	0	%100
20	M51B	Z	0	0	0	%100
21	M52B	X	3.047	3.047	0	%100
22	M52B	Z	0	0	0	%100
23	<u>M76</u>	X	5.43	5.43	0	%100
24	M76	Z	0	0	0	%100
25	M77	X	4.134	4.134	0	%100
26	M77	Z	0	0	0	%100
27	<u>M80</u>	X	4.314	4.314	0	%100
28	<u>M80</u>	Z	0	0	0	%100
29	<u>M84</u>	X Z	5.43	5.43	0	%100
30	<u>M84</u>		0	0	0	%100
31	<u>M85</u>	X	4.134	4.134	0	%100
32	<u>M85</u>	Z	0	0	0	%100
33	<u>M91</u>	X	4.314	4.314	0	%100
34	M91	Z	0	0	0	<u>%100</u>
35	M52A	X Z	1.083 0	<u> </u>	0	%100 %100
36 37	<u>M52A</u> M53	X	2.647	2.647	0	%100
38	M53	Z	0	0	0	%100
39	M53	X	2.647	2.647	0	%100
40	M54	Z	0	0	0	%100
40	M54 M55	X	4.14	4.14	0	%100
41	M55	Z	0	0	0	%100
42	M58A	X	3.047	3.047	0	%100
43	M58A	Z	0	0	0	%100
45	M59A	X	0	0	0	%100
46	M59A	Z	0	0	0	%100
47	M63	X	1.357	1.357	0	%100
48	M63	Z	0	0	0	%100
49	M64		4.134	4.134	0	%100
50	M64	X Z	0	0	0	%100
51	M66	X	4.314	4.314	0	%100
	11100				· · ·	70100

IRISA	Company Designer Job Number Model Name	
A NEMETSCHEK COMPANY	Model Name	:

<u>Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)</u>

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
52	M66	Z	0	0	0	%100
53	M68	X	1.357	1.357	0	%100
54	M68	Z	0	0	0	%100
55	M69	X	0	0	0	%100
56	M69	Z	0	0	0	%100
57	M71	Х	0	0	0	%100
58	M71	Z	0	0	0	%100
59	M76A	Х	1.083	1.083	0	%100
60	M76A	Z	0	0	0	%100
61	M77A	X	2.647	2.647	0	%100
62	M77A	Z	0	0	0	%100
63	M78	X	2.647	2.647	0	%100
64	M78	Z	0	0	0	%100
65	M79A	X	4.14	4.14	0	%100
66	M79A	Z	0	0	0	%100
67	M82	X	0	0	0	%100
68	M82	Z	0	0	0	%100
69	M83A	X	3.047	3.047	0	%100
70	M83A	Z	0	0	0	%100
71	M87	X	1.357	1.357	0	%100
72	M87	Z		_	0	%100
			0	0		
73	<u>M88A</u>	X Z	0	0	0	%100
74	<u>M88A</u>		0	0	0	<u>%100</u>
75	<u>M90</u>	X	0	0	0	%100
76	M90	Z	0	0	0	%100
77	M92A	X	1.357	1.357	0	%100
78	M92A	Z	0	0	0	%100
79	M93	X	4.134	4.134	0	%100
80	M93	Z	0	0	0	%100
81	M95	X	4.314	4.314	0	%100
82	M95	Z	0	0	0	%100
83	M82A	X	3.219	3.219	0	%100
84	M82A	Z	0	0	0	%100
85	M91B	X	3.219	3.219	0	%100
86	M91B	Z	0	0	0	%100
87	M100	Х	0	0	0	%100
88	M100	Z	0	0	0	%100
89	M105	Х	2.595	2.595	0	%100
90	M105	Z	0	0	0	%100
91	M110	X	2.595	2.595	0	%100
92	M110	Z	0	0	0	%100
93	M121	X	2.515	2.515	0	%100
94	M121	Z	0	0	0	%100
95	M122	X	2.515	2.515	0	%100
96	M122	Z	0	0	0	%100
97	M123	X	0	0	0	%100
98	M123	Z	0	0	0	%100
99	OVP1	X	2.844	2.844	0	%100
100	OVP1	Z	0	0	0	%100
101	MP3C	X	3.46	3.46	0	%100
102	MP3C	Z	0	0	0	%100
			Ť	3.46		
103	MP4C	X Z	3.46		0	%100 %100
104	MP4C		0	0	0	<u>%100</u>
105	MP2C	X	3.83	3.83	0	%100
106	MP2C	Z	0	0	0	%100
107	MP1C	X Z	3.46	3.46	0	%100 %100
108	MP1C		0			

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
109	MP3B	Х	3.46	3.46	0	%100
110	MP3B	Z	0	0	0	%100
111	MP4B	Х	3.46	3.46	0	%100
112	MP4B	Z	0	0	0	%100
113	MP2B	Х	3.83	3.83	0	%100
114	MP2B	Z	0	0	0	%100
115	MP1B	Х	3.46	3.46	0	%100
116	MP1B	Z	0	0	0	%100
117	OVP2	X	2.844	2.844	0	%100
118	OVP2	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft
1	M1	X	.929	.929	0	%100
2	M1	Z	.536	.536	0	%100
3	M4	X	2.814	2.814	0	%100
4	M4	Z	1.625	1.625	0	%100
5	M10	X	.764	.764	0	%100
6	M10	Z	.441	.441	0	%100
7	MP3A	Х	2.997	2.997	0	%100
8	MP3A	Z	1.73	1.73	0	%100
9	MP4A	X	2.997	2.997	0	%100
10	MP4A	Z	1.73	1.73	0	%100
11	MP2A	Х	3.317	3.317	0	%100
12	MP2A	Z	1.915	1.915	0	%100
13	MP1A	Х	2.997	2.997	0	%100
14	MP1A	Z	1.73	1.73	0	%100
15	M43	Х	.764	.764	0	%100
16	M43	Z	.441	.441	0	%100
17	M46	Х	1.195	1.195	0	%100
18	M46	Z	.69	.69	0	%100
19	M51B	Х	.879	.879	0	%100
20	M51B	Z	.508	.508	0	%100
21	M52B	Х	3.518	3.518	0	%100
22	M52B	Z	2.031	2.031	0	%100
23	M76	Х	3.527	3.527	0	%100
24	M76	Z	2.036	2.036	0	%100
25	M77	Х	1.193	1.193	0	%100
26	M77	Z	.689	.689	0	%100
27	M80	X	1.245	1.245	0	%100
28	M80	Z	.719	.719	0	%100
29	M84	Х	3.527	3.527	0	%100
30	M84	Z	2.036	2.036	0	%100
31	M85	Х	4.773	4.773	0	%100
32	M85	Z	2.756	2.756	0	%100
33	M91	X	4.982	4.982	0	%100
34	M91	Z	2.876	2.876	0	%100
35	M52A	X	2.814	2.814	0	%100
36	M52A	Z	1.625	1.625	0	%100
37	M53	X	.764	.764	0	%100
38	M53	Z	.441	.441	0	%100
39	M54	X	.764	.764	0	%100
40	M54	Z	.441	.441	0	%100
41	M55	X	1.195	1.195	0	%100
42	M55	Z	.69	.69	0	%100
43	M58A	Х	3.518	3.518	0	%100

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

44	Member Label M58A	Direction	Start Magnitude[lb/ft,F,ksf] 2.031	End Magnitude[lb/ft,F,ksf] 2.031	Start Location[ft	End Location[%100
44	M59A	Z X	.879	.879	0	%100
46	M59A	Z	.508	.508	0	%100
47	M63	X	3.527	3.527	0	%100
48	M63	Z	2.036	2.036	0	%100
40	M64	X	4.773	4.773	0	%100
50	M64	Z	2.756	2.756	0	%100
50	M66	X	4.982	4.982	0	%100
52	M66	Z	2.876	2.876	0	%100
53				3.527	0	%100
53 54	M68 M68	X Z	3.527 2.036	2.036	0	%100
55	M69	X	1.193	1.193	0	%100
56	M69	Z	.689	.689	0	%100
57	M71	X	1.245	1.245	0	%100
58	M71	Z	.719	.719	0	%100
59	M76A				0	%100
60	M76A M76A	X Z	0	0	0	%100
61		X		3.056		
62	<u>M77A</u>	Z	3.056		0	%100
	M77A		1.765	1.765	0	<u>%100</u>
63	M78	X	3.056	3.056	0	%100
64	M78	Z	1.765	1.765	0	<u>%100</u>
65	M79A	X	4.781	4.781	0	%100
66	M79A	Z	2.76	2.76	0	<u>%100</u>
67	M82	X	.879	.879	0	%100
68	M82	Z	.508	.508	0	<u>%100</u>
69	<u>M83A</u>	X Z	.879	.879	0	%100
70	<u>M83A</u>		.508	.508	0	%100
71	<u>M87</u>	X	0	0	0	%100
72	<u>M87</u>	Z	0	0	0	<u>%100</u>
73	<u>M88A</u>	X	1.193	1.193	0	%100
74	<u>M88A</u>	Z	.689	.689	0	<u>%100</u>
75	M90	X	1.245	1.245	0	%100
76	M90	Z	.719	.719	0	<u>%100</u>
77	<u>M92A</u>	X	0	0	0	%100
78	M92A	Z	0	0	0	%100
79	M93	X Z	1.193	1.193	0	%100
80	M93		.689	.689	0	<u>%100</u>
81	M95	X	1.245	1.245	0	%100
82	M95	Z	.719	.719	0	%100
83	<u>M82A</u>	X	.929	.929	0	%100
84	<u>M82A</u>	Z	.536	.536	0	%100
85	<u>M91B</u>	X	3.717	3.717	0	%100
86	<u>M91B</u>	Z	2.146	2.146	0	%100
87	<u>M100</u>	X	.749	.749	0	%100
88	M100	Z	.433	.433	0	%100
89	M105	X	.749	.749	0	%100
90	M105	Z	.433	.433	0	<u>%100</u>
91	<u>M110</u>	X	2.997	2.997	0	%100
92	M110	Z	1.73	1.73	0	<u>%100</u>
93	<u>M121</u>	X	.726	.726	0	%100
94	M121	Z	.419	.419	0	%100
95	M122	X	2.904	2.904	0	%100
96	M122	Z	1.677	1.677	0	%100
97	M123	X	.726	.726	0	%100
98	M123	Z	.419	.419	0	%100
99	OVP1	X	2.463	2.463	0	%100
00	OVP1	Z	1.422	1.422	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
101	MP3C	Х	2.997	2.997	0	%100
102	MP3C	Z	1.73	1.73	0	%100
103	MP4C	Х	2.997	2.997	0	%100
104	MP4C	Z	1.73	1.73	0	%100
105	MP2C	Х	3.317	3.317	0	%100
106	MP2C	Z	1.915	1.915	0	%100
107	MP1C	X	2.997	2.997	0	%100
108	MP1C	Z	1.73	1.73	0	%100
109	MP3B	Х	2.997	2.997	0	%100
110	MP3B	Z	1.73	1.73	0	%100
111	MP4B	X	2.997	2.997	0	%100
112	MP4B	Z	1.73	1.73	0	%100
113	MP2B	Х	3.317	3.317	0	%100
114	MP2B	Z	1.915	1.915	0	%100
115	MP1B	X	2.997	2.997	0	%100
116	MP1B	Z	1.73	1.73	0	%100
117	OVP2	X	2.463	2.463	0	%100
118	OVP2	Z	1.422	1.422	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

1			Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location It.	End Location[ft,
	M1	Х	1.609	1.609	0	%100
2	M1	Z	2.788	2.788	0	%100
3	M4	Х	.542	.542	0	%100
4	M4	Z	.938	.938	0	%100
5	M10	Х	1.323	1.323	0	%100
6	M10	Z	2.292	2.292	0	%100
7	MP3A	Х	1.73	1.73	0	%100
8	MP3A	Z	2.997	2.997	0	%100
9	MP4A	Х	1.73	1.73	0	%100
10	MP4A	Z	2.997	2.997	0	%100
11	MP2A	Х	1.915	1.915	0	%100
12	MP2A	Z	3.317	3.317	0	%100
13	MP1A	Х	1.73	1.73	0	%100
14	MP1A	Z	2.997	2.997	0	%100
15	M43	Х	1.323	1.323	0	%100
16	M43	Z	2.292	2.292	0	%100
17	M46	Х	2.07	2.07	0	%100
18	M46	Z	3.586	3.586	0	%100
19	M51B	X	0	0	0	%100
20	M51B	Z	0	0	0	%100
21	M52B	Х	1.523	1.523	0	%100
22	M52B	Z	2.638	2.638	0	%100
23	M76	Х	.679	.679	0	%100
24	M76	Z	1.176	1.176	0	%100
25	M77	Х	0	0	0	%100
26	M77	Z	0	0	0	%100
27	M80	Х	0	0	0	%100
28	M80	Z	0	0	0	%100
29	M84	X	.679	.679	0	%100
30	M84	Z	1.176	1.176	0	%100
31	M85	X	2.067	2.067	0	%100
32	M85	Z	3.58	3.58	0	%100
33	M91	Х	2.157	2.157	0	%100
34	M91	Z	3.736	3.736	0	%100
35	M52A	Х	2.166	2.166	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

36	Member Label M52A	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf] 3.752	Start Location[ft	End Location[f. %100
37	M53	Z X	0	0	0	%100
38	M53	Z	0	0	0	%100
39	M54	X	0	0	0	%100
40	M54	Z	0	0	0	%100
41	M54 M55	X	0	0	0	%100
42	M55	Z	0	0	0	%100
43	M58A	X	1.523	1.523	0	%100
44	M58A	Z	2.638	2.638	0	%100
45	M59A	X	1.523	1.523	0	%100
46	M59A	Z	2.638	2.638	0	%100
47	M63	X	2.715	2.715	0	%100
48	M63	Z	4.702	4.702	0	%100
49	M64	X	2.067	2.067	0	%100
50	M64	Z	3.58	3.58	0	%100
51	M66	X	2.157	2.157	0	%100
52	M66	Z	3.736	3.736	0	%100
53	M68	X	2.715	2.715	0	%100
54	M68	Z	4.702	4.702	0	%100
55	M69	X	2.067	2.067	0	%100
56	M69	Z	3.58	3.58	0	%100
57	M71	X	2.157	2.157	0	%100
58	M71	Z	3.736	3.736	0	%100
59	M76A	X	.542	.542	0	%100
60	M76A	Z	.938	.938	0	%100
61	M77A	X	1.323	1.323	0	%100
62	M77A	Z	2.292	2.292	0	%100
63	M78	X	1.323	1.323	0	%100
64	M78	Z	2.292	2.292	0	%100
65	M79A	X	2.07	2.07	0	%100
66	M79A	Z	3.586	3.586	0	%100
67	M82	X	1.523	1.523	0	%100
68	M82	Z	2.638	2.638	0	%100
69	M83A	X	0	0	0	%100
70	M83A	Z	0	0	0	%100
71			.679	.679	0	%100
72	<u>M87</u> M87	X Z	1.176	1.176	0	%100
73	M88A	X	2.067	2.067	0	%100
	M88A	Z	3.58	3.58	0	%100
74 75	M90	X	2.157	2.157	0	%100
				3.736		%100
76 77	M90 M92A	Z X	<u>3.736</u> .679	.679	0	%100
78	M92A	Z	1.176	1.176	0	%100
78 79						%100
	M93	X Z	0	0	0	%100
80	M93		0	0	0	
81 82	M95	X Z	0	0	0	%100
	M95		0	0	-	%100 %100
83	M82A	X Z	0	0	0	%100 %100
84	M82A M91B			• • • • • • • • • • • • • • • • • • •	0	%100 %100
85		X	1.609	1.609	0	
86	M91B	Z	2.788	2.788	0	%100 %100
87	M100	X	1.298	1.298	0	%100
88	M100	Z	2.247	2.247	0	%100 %100
89	M105	X	0	0	0	%100
90	M105	Z	0	0	0	<u>%100</u>
91	<u>M110</u>	X	1.298	1.298	0	%100
92	M110	Z	2.247	2.247	0	%100

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
93	M121	Х	0	0	0	%100
94	M121	Z	0	0	0	%100
95	M122	Х	1.258	1.258	0	%100
96	M122	Z	2.178	2.178	0	%100
97	M123	Х	1.258	1.258	0	%100
98	M123	Z	2.178	2.178	0	%100
99	OVP1	Х	1.422	1.422	0	%100
100	OVP1	Z	2.463	2.463	0	%100
101	MP3C	Х	1.73	1.73	0	%100
102	MP3C	Z	2.997	2.997	0	%100
103	MP4C	Х	1.73	1.73	0	%100
104	MP4C	Z	2.997	2.997	0	%100
105	MP2C	Х	1.915	1.915	0	%100
106	MP2C	Z	3.317	3.317	0	%100
107	MP1C	Х	1.73	1.73	0	%100
108	MP1C	Z	2.997	2.997	0	%100
109	MP3B	Х	1.73	1.73	0	%100
110	MP3B	Z	2.997	2.997	0	%100
111	MP4B	Х	1.73	1.73	0	%100
112	MP4B	Z	2.997	2.997	0	%100
113	MP2B	Х	1.915	1.915	0	%100
114	MP2B	Z	3.317	3.317	0	%100
115	MP1B	Х	1.73	1.73	0	%100
116	MP1B	Z	2.997	2.997	0	%100
117	OVP2	Х	1.422	1.422	0	%100
118	OVP2	Z	2.463	2.463	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	Х	0	0	0	%100
2	M1	Z	4.292	4.292	0	%100
3	M4	Х	0	0	0	%100
4	M4	Z	0	0	0	%100
5	M10	Х	0	0	0	%100
6	M10	Z	3.529	3.529	0	%100
7	MP3A	Х	0	0	0	%100
8	MP3A	Z	3.46	3.46	0	%100
9	MP4A	Х	0	0	0	%100
10	MP4A	Z	3.46	3.46	0	%100
11	MP2A	Х	0	0	0	%100
12	MP2A	Z	3.83	3.83	0	%100
13	MP1A	Х	0	0	0	%100
14	MP1A	Z	3.46	3.46	0	%100
15	M43	Х	0	0	0	%100
16	M43	Z	3.529	3.529	0	%100
17	M46	Х	0	0	0	%100
18	M46	Z	5.52	5.52	0	%100
19	M51B	Х	0	0	0	%100
20	M51B	Z	1.016	1.016	0	%100
21	M52B	Х	0	0	0	%100
22	M52B	Z	1.016	1.016	0	%100
23	M76	Х	0	0	0	%100
24	M76	Z	0	0	0	%100
25	M77	Х	0	0	0	%100
26	M77	Z	1.378	1.378	0	%100
27	M80	Х	0	0	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
28	M80	Z	1.438	1.438	0	%100
29	M84	X	0	0	0	%100
30	M84	Z	0	0	0	%100
31	M85	X	0	0	0	%100
32	M85	Z	1.378	1.378	0	%100
33	M91	X	0	0	0	%100
34	<u>M91</u>	Z	1.438	1.438	0	%100
35	M52A	X	0	0	0	%100
36	M52A	Z	3.249	3.249	0	%100
37	M53	X	0	0	0	%100
38	M53	Z	.882	.882	0	%100
39	M54	X	0	0	0	%100
40	M54	Z	.882	.882	0	%100
41	M55	X	0	0	0	%100
42	M55	Z	1.38	1.38	0	%100
43	M58A	X	0	0	0	%100
44	M58A	Z	1.016	1.016	0	%100
45	M59A	X	0	0	0	%100
46	M59A	Z	4.062	4.062	0	%100
47	M63	X	0	0	0	%100
48	M63	Z	4.072	4.072	0	%100
49	M64	X	0	0	0	%100
50	M64	Z	1.378	1.378	0	%100
51	M66	X	0	0	0	%100
52	M66	Z	1.438	1.438	0	%100
53	M68	X	0	0	0	%100
54	M68	Z	4.072	4.072	0	%100
55	M69	X	0	0	0	%100
56	M69	Z	5.512	5.512	0	%100
57	M71	X	0	0	0	%100
58	M71	Z	5.753	5.753	0	%100
59	M76A	X	0	0	0	%100
60	M76A	Z	3.249	3.249	0	%100
61	M77A	Х	0	0	0	%100
62	M77A	Z	.882	.882	0	%100
63	M78	Х	0	0	0	%100
64	M78	Z	.882	.882	0	%100
65	M79A	Х	0	0	0	%100
66	M79A	Z	1.38	1.38	0	%100
67	M82	X	0	0	0	%100
68	M82	Z	4.062	4.062	0	%100
69	<u>M83A</u>	X	0	0	0	%100
70	M83A	Z	1.016	1.016	0	%100
71	M87	X	0	0	0	%100
72	M87	Z	4.072	4.072	0	%100
73	<u>M88A</u>	X	0	0	0	%100
74	M88A	Z	5.512	5.512	0	%100
75	M90	X	0	0	0	%100
76	M90	Z	5.753	5.753	0	%100
77	M92A	X	0	0	0	%100
78	M92A	Z	4.072	4.072	0	%100
79	M93	X	0	0	0	%100
80	M93	Z	1.378	1.378	0	%100
81	M95	Х	0	0	0	%100
82	M95	Z	1.438	1.438	0	%100
83	M82A	X	0	0 1.073	0	%100
84	M82A	Z	1.073		0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
85	M91B	Х	0	0	0	%100
86	M91B	Z	1.073	1.073	0	%100
87	M100	Х	0	0	0	%100
88	M100	Z	3.46	3.46	0	%100
89	M105	Х	0	0	0	%100
90	M105	Z	.865	.865	0	%100
91	M110	Х	0	0	0	%100
92	M110	Z	.865	.865	0	%100
93	M121	Х	0	0	0	%100
94	M121	Z	.838	.838	0	%100
95	M122	Х	0	0	0	%100
96	M122	Z	.838	.838	0	%100
97	M123	Х	0	0	0	%100
98	M123	Z	3.353	3.353	0	%100
99	OVP1	Х	0	0	0	%100
100	OVP1	Z	2.844	2.844	0	%100
101	MP3C	Х	0	0	0	%100
102	MP3C	Z	3.46	3.46	0	%100
103	MP4C	Х	0	0	0	%100
104	MP4C	Z	3.46	3.46	0	%100
105	MP2C	Х	0	0	0	%100
106	MP2C	Z	3.83	3.83	0	%100
107	MP1C	X	0	0	0	%100
108	MP1C	Z	3.46	3.46	0	%100
109	MP3B	X	0	0	0	%100
110	MP3B	Z	3.46	3.46	0	%100
111	MP4B	X	0	0	0	%100
112	MP4B	Z	3.46	3.46	0	%100
113	MP2B	X	0	0	0	%100
114	MP2B	Z	3.83	3.83	0	%100
115	MP1B	Х	0	0	0	%100
116	MP1B	Z	3.46	3.46	0	%100
117	OVP2	Х	0	0	0	%100
118	OVP2	Z	2.844	2.844	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	Х	-1.609	-1.609	0	%100
2	M1	Z	2.788	2.788	0	%100
3	M4	Х	542	542	0	%100
4	M4	Z	.938	.938	0	%100
5	M10	Х	-1.323	-1.323	0	%100
6	M10	Z	2.292	2.292	0	%100
7	MP3A	Х	-1.73	-1.73	0	%100
8	MP3A	Z	2.997	2.997	0	%100
9	MP4A	Х	-1.73	-1.73	0	%100
10	MP4A	Z	2.997	2.997	0	%100
11	MP2A	Х	-1.915	-1.915	0	%100
12	MP2A	Z	3.317	3.317	0	%100
13	MP1A	Х	-1.73	-1.73	0	%100
14	MP1A	Z	2.997	2.997	0	%100
15	M43	Х	-1.323	-1.323	0	%100
16	M43	Z	2.292	2.292	0	%100
17	M46	Х	-2.07	-2.07	0	%100
18	M46	Z	3.586	3.586	0	%100
19	M51B	Х	-1.523	-1.523	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

20	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
20	M51B	Z	2.638	2.638	0	%100
21	M52B	X	0	0	0	%100
22	M52B	Z	0	0	0	%100
23	<u>M76</u>	X	679	679	0	%100
24	M76	Z	1.176	1.176	0	%100
25	<u>M77</u>	X	-2.067	-2.067	0	%100
26	M77	Z	3.58	3.58	0	%100
27	<u>M80</u>	X	-2.157	-2.157	0	%100
28	<u>M80</u>	Z	3.736	3.736	0	%100
29	<u>M84</u>	X	679	679	0	%100
30	M84	Z	1.176	1.176	0	%100
31	<u>M85</u>	X	0	0	0	%100
32	M85	Z	0	0	0	%100
33	<u>M91</u>	X	0	0	0	%100
34	<u>M91</u>	Z	0	0	0	%100
35	M52A	X	542	542	0	%100
36	M52A	Z	.938	.938	0	%100
37	M53	X	-1.323	-1.323	0	%100
38	M53	Z	2.292	2.292	0	%100
39	M54	X	-1.323	-1.323	0	%100
40	M54	Z	2.292	2.292	0	%100
41	M55	X	-2.07	-2.07	0	%100
42	M55	Z	3.586	3.586	0	%100
43	M58A	X	0	0	0	%100
44	M58A	Z	0	0	0	%100
45	M59A	X	-1.523	-1.523	0	%100
46	M59A	Z	2.638	2.638	0	%100
47	M63	X	679	679	0	%100
48	M63	Z	1.176	1.176	0	%100
49	M64	X	0	0	0	%100
50	M64	Z	0	0	0	%100
51	M66	X	0	0	0	%100
52	M66	Z	0	0	0	%100
53	M68	X	679	679	0	%100
54	M68	Z	1.176	1.176	0	%100
55	M69	X	-2.067	-2.067	0	%100
56	M69	Z	3.58	3.58	0	%100
57	<u>M71</u>	X	-2.157	-2.157	0	%100
58	<u>M71</u>	Z	3.736	3.736	0	%100
59	M76A	X	-2.166	-2.166	0	%100
60	M76A	Z	3.752	3.752	0	%100
61	M77A	X	0	0	0	%100
62	M77A	Z	0	0	0	%100
63	M78	X	0	0	0	%100
64	M78	Z	0	0	0	%100
65	M79A	X	0	0	0	%100
66	M79A	Z	0	0	0	%100
67	M82	X	-1.523	-1.523	0	%100
68	M82	Z	2.638	2.638	0	%100
69	<u>M83A</u>	X	-1.523	-1.523	0	%100
70	M83A	Z	2.638	2.638	0	%100
71	M87	Х	-2.715	-2.715	0	%100
72	M87	Z	4.702	4.702	0	%100
73	M88A	X	-2.067	-2.067	0	%100
74	M88A	Z	3.58	3.58	0	%100
75	M90	Х	-2.157	-2.157	0	%100
76	M90	Z	3.736	3.736	0	%100

	Company	:
	Designer	:
IIKISA	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
77	M92A	Х	-2.715	-2.715	0	%100
78	M92A	Z	4.702	4.702	0	%100
79	M93	Х	-2.067	-2.067	0	%100
80	M93	Z	3.58	3.58	0	%100
81	M95	Х	-2.157	-2.157	0	%100
82	M95	Z	3.736	3.736	0	%100
83	M82A	Х	-1.609	-1.609	0	%100
84	M82A	Z	2.788	2.788	0	%100
85	M91B	Х	0	0	0	%100
86	M91B	Z	0	0	0	%100
87	M100	Х	-1.298	-1.298	0	%100
88	M100	Z	2.247	2.247	0	%100
89	M105	Х	-1.298	-1.298	0	%100
90	M105	Z	2.247	2.247	0	%100
91	M110	Х	0	0	0	%100
92	M110	Z	0	0	0	%100
93	M121	X	-1.258	-1.258	0	%100
94	M121	Z	2.178	2.178	0	%100
95	M122	Х	0	0	0	%100
96	M122	Z	0	0	0	%100
97	M123	Х	-1.258	-1.258	0	%100
98	M123	Z	2.178	2.178	0	%100
99	OVP1	X	-1.422	-1.422	0	%100
100	OVP1	Z	2.463	2.463	0	%100
101	MP3C	X	-1.73	-1.73	0	%100
102	MP3C	Z	2.997	2.997	0	%100
103	MP4C	X	-1.73	-1.73	0	%100
104	MP4C	Z	2.997	2.997	0	%100
105	MP2C	X	-1.915	-1.915	0	%100
106	MP2C	Z	3.317	3.317	0	%100
107	MP1C	Х	-1.73	-1.73	0	%100
108	MP1C	Z	2.997	2.997	0	%100
109	MP3B	X	-1.73	-1.73	0	%100
110	MP3B	Z	2.997	2.997	0	%100
111	MP4B	X	-1.73	-1.73	0	%100
112	MP4B	Z	2.997	2.997	0	%100
113	MP2B	Х	-1.915	-1.915	0	%100
114	MP2B	Z	3.317	3.317	0	%100
115	MP1B	X	-1.73	-1.73	0	%100
116	MP1B	Z	2.997	2.997	0	%100
117	OVP2	X	-1.422	-1.422	0	%100
118	OVP2	Z	2.463	2.463	0	%100

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	Х	929	929	0	%100
2	M1	Z	.536	.536	0	%100
3	M4	Х	-2.814	-2.814	0	%100
4	M4	Z	1.625	1.625	0	%100
5	M10	Х	764	764	0	%100
6	M10	Z	.441	.441	0	%100
7	MP3A	Х	-2.997	-2.997	0	%100
8	MP3A	Z	1.73	1.73	0	%100
9	MP4A	Х	-2.997	-2.997	0	%100
10	MP4A	Z	1.73	1.73	0	%100
11	MP2A	Х	-3.317	-3.317	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

			Otert Merritudellh (th E kefl			End Location Iff
12	Member Label MP2A	Direction Z	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf] 1.915	Start Location[ft	. <u>End Location]π,.</u> %100
13	MP1A	X	-2.997	-2.997	0	%100
14	MP1A	Z	1.73	1.73	0	%100
15	M43	X	764	764	0	%100
16	M43	Z	.441	.441	0	%100
17	M46	X	-1.195	-1.195	0	%100
18	M46	Z	.69	.69	0	%100
19	M51B	X	-3.518	-3.518	0	%100
20	M51B	Z	2.031	2.031	0	%100
21	M52B	X	879	879	0	%100
22	M52B	Z	.508	.508	0	%100
23	M76	Х	-3.527	-3.527	0	%100
24	M76	Z	2.036	2.036	0	%100
25	M77	X	-4.773	-4.773	0	%100
26	M77	Z	2.756	2.756	0	%100
27	<u>M80</u>	X	-4.982	-4.982	0	%100
28	M80	Z	2.876	2.876	0	%100
29	<u>M84</u>	X	-3.527	-3.527	0	%100
30	M84	Z	2.036	2.036	0	<u>%100</u>
31	M85	X Z	-1.193	-1.193	0	%100
32	M85		.689	.689	0	<u>%100</u>
33	<u>M91</u>	X Z	-1.245	-1.245	0	%100 %100
34 35	<u>M91</u> M52A	X	.719	<u>.719</u> 0	0	%100 %100
36	M52A	Z	0	0	0	%100
37	M53	X	-3.056	-3.056	0	%100 %100
38	M53	Z	1.765	1.765	0	%100
39	M53	X	-3.056	-3.056	0	%100
40	M54	Z	1.765	1.765	0	%100
40	M55	X	-4.781	-4.781	0	%100
42	M55	Z	2.76	2.76	0	%100
43	M58A	X	879	879	0	%100
44	M58A	Z	.508	.508	0	%100
45	M59A	X	879	879	0	%100
46	M59A	Z	.508	.508	0	%100
47	M63	X	0	0	0	%100
48	M63	Z	0	0	0	%100
49	M64	X	-1.193	-1.193	0	%100
50	M64	Z	.689	.689	0	%100
51	M66	X	-1.245	-1.245	0	%100
52	M66	Z	.719	.719	0	%100
53	M68	Х	0	0	0	%100
54	M68	Z	0	0	0	%100
55	M69	X	-1.193	-1.193	0	%100
56	M69	Z	.689	.689	0	%100
57	M71	X	-1.245	-1.245	0	%100
58	M71	Z	.719	.719	0	%100
59	M76A	Х	-2.814	-2.814	0	%100
60	M76A	Z	1.625	1.625	0	%100
61	M77A	X	764	764	0	%100
62	M77A	Z	.441	.441	0	%100
63	M78	X	764	764	0	%100
64	M78	Z	.441	.441	0	%100
65	M79A	X	-1.195	-1.195	0	%100
66	M79A	Z	.69	.69	0	%100
67	M82	X	879	879	0	%100
68	M82	Z	.508	.508	0	%100
DIC	A-3D Version 17 (\468327-VZW_MT_LO_H_r3	<u></u>	Page 134

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		.End Location[ft,
69	M83A	X	-3.518	-3.518		%100
70	M83A	Z	2.031	2.031	0	%100
70	M87	X	-3.527	-3.527	0	%100
72	M87	Z	2.036	2.036	0	%100
73	M88A	X	-1.193	-1.193	0	%100
74	M88A	Z	.689	.689	0	%100
75	M90	X	-1.245	-1.245	0	%100
76	M90	Z	.719	.719	0	%100
77	M92A	X	-3.527	-3.527	0	%100
78	M92A	Z	2.036	2.036	0	%100
79	M93	X	-4.773	-4.773	0	%100
80	M93	Z	2.756	2.756	0	%100
81	M95	X	-4.982	-4.982	0	%100
82	M95	Z	2.876	2.876	0	%100
83	M82A	X	-3.717	-3.717	0	%100
84	M82A	Z	2.146	2.146	0	%100
85	M91B	X	929	929	0	%100
86	M91B	Z	.536	.536	0	%100
87	M100	X	749	749	0	%100
88	M100	Z	.433	.433	0	%100
89	M105	X	-2.997	-2.997	0	%100
90	M105	Z	1.73	1.73	0	%100
91	M100	X	749	749	0	%100
92	M110	Z	.433	.433	0	%100
93	M121	X	-2.904	-2.904	0	%100
94	M121	Z	1.677	1.677	0	%100
95	M122	X	726	726	0	%100
96	M122	Z	.419	.419	0	%100
97	M123	X	726	726	0	%100
98	M123	Z	.419	.419	0	%100
99	OVP1	X	-2.463	-2.463	0	%100
100	OVP1	Z	1.422	1.422	0	%100
101	MP3C	X	-2.997	-2.997	0	%100
102	MP3C	Z	1.73	1.73	0	%100
102	MP4C	X	-2.997	-2.997	0	%100
104	MP4C	Z	1.73	1.73	0	%100
105	MP2C	X	-3.317	-3.317	0	%100
106	MP2C	Z	1.915	1.915	0	%100
107	MP1C	X	-2.997	-2.997	0	%100
108	MP1C	Z	1.73	1.73	0	%100
109	MP3B	X	-2.997	-2.997	0	%100
110	MP3B	Z	1.73	1.73	0	%100
111	MP4B	X	-2.997	-2.997	0	%100
112	MP4B	Z	1.73	1.73	0	%100
113	MP2B	X	-3.317	-3.317	0	%100
114	MP2B	Z	1.915	1.915	0	%100
115	MP1B	X	-2.997	-2.997	0	%100
116	MP1B	Z	1.73	1.73	0	%100
117	OVP2	X	-2.463	-2.463	0	%100
118	OVP2	Z	1.422	1.422	0	%100
110	0112	<u> </u>	1.766	1.TLL	v	70100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M4	X	-4.332	-4.332	0	%100

IRISA	Company Designer Job Number Model Name	
A NEMETSCHEK COMPANY	wodel Name	

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		.End Location[ft,
4	Member Laber	Z				%100
5	M10	X	0	0	0	%100
6	M10	Z	0	0	0	%100
7	MP3A	Х	-3.46	-3.46	0	%100
8	MP3A	Z	0	0	0	%100
9	MP4A	X	-3.46	-3.46	0	%100
10	MP4A	Z	0	0	0	%100
11	MP2A	Х	-3.83	-3.83	0	%100
12	MP2A	Z	0	0	0	%100
13	MP1A	X	-3.46	-3.46	0	%100
14	MP1A	Z	0	0	0	%100
15	M43	X	0	0	0	%100
16	M43	Z	0	0	0	<u>%100</u>
17 18	<u>M46</u> M46	X Z	0	0	0	%100 %100
19	M40 M51B	X	-3.047	-3.047	0	%100 %100
20	M51B	Z	0	-3.047	0	%100
20	M52B	X	-3.047	-3.047	0	%100
22	M52B	Z	0	0	0	%100
23	M76	X	-5.43	-5.43	0	%100
24	M76	Z	0	0	0	%100
25	M77	Х	-4.134	-4.134	0	%100
26	M77	Z	0	0	0	%100
27	M80	Х	-4.314	-4.314	0	%100
28	M80	Z	0	0	0	%100
29	M84	X	-5.43	-5.43	0	%100
30	M84	Z	0	0	0	%100
31	M85	X	-4.134	-4.134	0	%100
32	M85	Z	0	0	0	%100
33	<u>M91</u>	X	-4.314	-4.314	0	%100
34	<u>M91</u>	Z	0	0	0	<u>%100</u>
35 36	M52A M52A	X Z	-1.083	<u>-1.083</u> 0	0	%100 %100
37	M53	X	-2.647	-2.647	0	%100
38	M53	Z	0	0	0	%100
39	M54	X	-2.647	-2.647	0	%100
40	M54	Z	0	0	0	%100
41	M55	X	-4.14	-4.14	0	%100
42	M55	Z	0	0	0	%100
43	M58A	X	-3.047	-3.047	0	%100
44	M58A	Z	0	0	0	%100
45	M59A	Х	0	0	0	%100
46	M59A	Z	0	0	0	%100
47	M63	Х	-1.357	-1.357	0	%100
48	M63	Z	0	0	0	%100
49	M64	X	-4.134	-4.134	0	%100
50	M64	Z	0	0	0	%100
51	M66	X	-4.314	-4.314	0	%100
52	<u>M66</u>	Z	0	0	0	<u>%100</u>
53	M68	X Z	-1.357	-1.357	0	%100
54 55	M68 M69	X	0	0	0	%100 %100
56	M69	Z	0	0	0	%100 %100
57	M71	X	0	0	0	%100 %100
58	M71	Z	0	0	0	%100
59	M76A	X	-1.083	-1.083	0	%100
60	M76A	Z	0	0	0	%100
<u> </u>	A-3D Version 17 (_	· · · · · · · · ·			Page 136

IRISA	Company Designer Job Number Model Name	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
61	M77A	Х	-2.647	-2.647	0	%100
62	M77A	Z	0	0	0	%100
63	M78	X	-2.647	-2.647	0	%100
64	M78	Z	0	0	0	%100
65	M79A	X	-4.14	-4.14	0	%100
66	M79A	Z	0	0	0	%100
67	M82	X	0	0	0	%100
68	M82	Z	0	0	0	%100
69	M83A	X	-3.047	-3.047	0	%100
70	M83A	Z	0	0	0	%100
71	M87	X	-1.357	-1.357	0	%100
72	M87	Z	0	0	0	%100
73	M88A	X	0	0	0	%100
74	M88A	Z	0	0	0	%100
75	M90	X	0	0	0	%100
76	M90	Z	0	0	0	%100
77	M92A	X	-1.357	-1.357	0	%100
78	M92A	Z	0	0	0	%100
79	M93	X	-4.134	-4.134	0	%100
80	M93	Z	0	0	0	%100
81	M95	X	-4.314	-4.314	0	%100
82	M95	Z	0	0	0	%100
83	M82A	X	-3.219	-3.219	0	%100
84	M82A	Z	0	0	0	%100
85	M91B	X	-3.219	-3.219	0	%100
86	M91B	Z	0	0	0	%100
87	M100	X	0	0	0	%100
88	M100	Z	0	0	0	%100
89	M105	X	-2.595	-2.595	0	%100
90	M105	Z	0	0	0	%100
91	M110	X	-2.595	-2.595	0	%100
92	M110	Z	0	0	0	%100
93	M121	X	-2.515	-2.515	0	%100
94	M121	Z	0	0	0	%100
95	M122	X	-2.515	-2.515	0	%100
96	M122	Z	0	0	0	%100
97	M123	X	0	0	0	%100
98	M123	Z	0	0	0	%100
99	OVP1	X	-2.844	-2.844	0	%100
100	OVP1	Z	0	0	0	%100
101	MP3C	X	-3.46	-3.46	0	%100
102	MP3C	Z	0	0	0	%100
103	MP4C	X	-3.46	-3.46	0	%100
104	MP4C	Z	0	0	0	%100
105	MP2C	X	-3.83	-3.83	0	%100
106	MP2C	Z	0	0	0	%100
107	MP1C	X	-3.46	-3.46	0	%100
108	MP1C	Z	0	0	0	%100
109	MP3B	X	-3.46	-3.46	0	%100
110	MP3B	Z	0	0	0	%100
111	MP4B	X	-3.46	-3.46	0	%100
112	MP4B	Z	0	0	0	%100
113	MP2B	Х	-3.83	-3.83	0	%100
114	MP2B	Z	0	0	0	%100
115	MP1B	Х	-3.46	-3.46	0	%100
116	MP1B	Z	0	0	0	%100
117	OVP2	Х	-2.844	-2.844	0	%100
				\468327-\/ZW MT LO Hr3	17	Page 137

	Company Designer Job Number	:
		:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
118	OVP2	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	Х	929	929	0	%100
2	M1	Z	536	536	0	%100
3	M4	X	-2.814	-2.814	0	%100
4	M4	Z	-1.625	-1.625	0	%100
5	M10	Х	764	764	0	%100
6	M10	Z	441	441	0	%100
7	MP3A	Х	-2.997	-2.997	0	%100
8	MP3A	Z	-1.73	-1.73	0	%100
9	MP4A	Х	-2.997	-2.997	0	%100
10	MP4A	Z	-1.73	-1.73	0	%100
11	MP2A	Х	-3.317	-3.317	0	%100
12	MP2A	Z	-1.915	-1.915	0	%100
13	MP1A	Х	-2.997	-2.997	0	%100
14	MP1A	Z	-1.73	-1.73	0	%100
15	M43	Х	764	764	0	%100
16	M43	Z	441	441	0	%100
17	M46	X	-1.195	-1.195	0	%100
18	M46	Z	69	69	0	%100
19	M51B	x	879	879	0	%100
20	M51B	Ž	508	508	0	%100
21	M52B	X	-3.518	-3.518	0	%100
22	M52B	Z	-2.031	-2.031	0	%100
23	M76	X	-3.527	-3.527	0	%100
24	M76	Z	-2.036	-2.036	0	%100
25	M70	X	-1.193	-1.193	0	%100
26	M77	Z	689	689	0	%100
27	M80	X	-1.245	-1.245	0	%100
28	M80	Z	719	719	0	%100
29	M84	X	-3.527	-3.527	0	%100
30	M84	Z	-2.036	-2.036	0	%100
31	M85	X	-4.773	-4.773	0	%100
32	M85	Z	-2.756	-2.756	0	%100
33	M03 M91	X	-4.982	-4.982	0	%100
34	M91	Z	-2.876	-2.876	0	%100
35	M52A	X	-2.814	-2.814	0	%100
36	M52A	Z	-1.625	-1.625	0	%100
37	M53	X	764	764	0	%100
38	M53	Z	441	441	0	%100
39	M55 M54	X	764	764	0	%100
40	M54	Z	441	441	0	%100
40	M54 M55	X	-1.195	-1.195	0	%100
41	M55	Z	69	69	0	%100
42	M58A		-3.518	-3.518	0	%100
43	M58A	X Z	-2.031	-2.031	0	%100
44	M59A	X	-2.031	-2.031	0	%100
45	M59A M59A	Z	508	508	0	%100
40	M63	X	-3.527	-3.527		%100
	M63	Z			0	
48			-2.036	-2.036		%100 %100
49	M64	X Z	-4.773	-4.773	0	%100 %100
50	M64		-2.756	-2.756	0	%100 %100
51	M66	X Z	-4.982	-4.982	0	%100 %100
52	M66	2	-2.876	-2.876	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft
53	M68	Х	-3.527	-3.527	0	%100
54	M68	Z	-2.036	-2.036	0	%100
55	M69	Х	-1.193	-1.193	0	%100
56	M69	Z	689	689	0	%100
57	M71	Х	-1.245	-1.245	0	%100
58	M71	Z	719	719	0	%100
59	M76A	X	0	0	0	%100
60	M76A	Z	0	0	0	%100
61	M77A	X	-3.056	-3.056	0	%100
62	M77A	Z	-1.765	-1.765	0	%100
63	M78	X	-3.056	-3.056	0	%100
64	M78	Z	-1.765	-1.765	0	%100
65	M79A	X	-4.781	-4.781	0	%100
66	M79A	Z	-2.76	-2.76	0	%100
67	M82	X	879	879	0	%100
68	M82	Z	508	508	0	%100
69	M83A	X	879	879	0	%100
70	M83A	Z	508	508	0	%100
71	M87	X	0	0	0	%100
72	M87	Z	0	0	0	%100
73	M88A	Х	-1.193	-1.193	0	%100
74	M88A	Z	689	689	0	%100
75	M90	X	-1.245	-1.245	0	%100
76	M90	Z	719	719	0	%100
77	M92A	X	0	0	0	%100
78	M92A	Z	0	0	0	%100
79	M93	Х	-1.193	-1.193	0	%100
80	M93	Z	689	689	0	%100
81	M95	Х	-1.245	-1.245	0	%100
82	M95	Z	719	719	0	%100
83	M82A	X	929	929	0	%100
84	M82A	Z	536	536	0	%100
85	M91B	X	-3.717	-3.717	0	%100
86	M91B	Z	-2.146	-2.146	0	%100
87	M100	X	749	749	0	%100
88	M100	Z	433	433	0	%100
89	M105	X	749	749	0	%100
90	M105	Z	433	433	0	%100
91	<u>M110</u>	X	-2.997	-2.997	0	%100
92	<u>M110</u>	Z	-1.73	-1.73	0	<u>%100</u>
93	M121	X	726	726	0	%100
94	M121	Z	419	419	0	<u>%100</u>
95	M122	X	-2.904	-2.904	0	%100
96	M122	Z	-1.677	-1.677	0	%100
97	M123	X	726	726	0	%100
98	M123	Z	419	419	0	<u>%100</u>
99	OVP1	X	-2.463	-2.463	0	%100
100	OVP1	Z	-1.422	-1.422	0	<u>%100</u>
101	MP3C	X	-2.997	-2.997	0	%100 %100
102	MP3C	Z	-1.73	-1.73	0	%100 %100
103	MP4C	X Z	-2.997	-2.997	0	%100
104	MP4C		-1.73	-1.73	0	<u>%100</u>
105	MP2C	X	-3.317	-3.317	0	%100
106	MP2C	Z	-1.915	-1.915	0	%100 %100
107	MP1C	X	-2.997	-2.997	0	%100
108	MP1C	Z	-1.73	-1.73	0	%100 %100
109	MP3B	Х	-2.997	-2.997	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
110	MP3B	Z	-1.73	-1.73	0	%100
111	MP4B	Х	-2.997	-2.997	0	%100
112	MP4B	Z	-1.73	-1.73	0	%100
113	MP2B	Х	-3.317	-3.317	0	%100
114	MP2B	Z	-1.915	-1.915	0	%100
115	MP1B	Х	-2.997	-2.997	0	%100
116	MP1B	Z	-1.73	-1.73	0	%100
117	OVP2	Х	-2.463	-2.463	0	%100
118	OVP2	Z	-1.422	-1.422	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		End Location[ft,
1	<u>M1</u>	X	-1.609	-1.609	0	%100
2	M1	Z	-2.788	-2.788	0	%100
3	M4	X	542	542	0	%100
4	M4	Z	938	938	0	%100
5	M10	X	-1.323	-1.323	0	%100
6	M10	Z	-2.292	-2.292	0	%100
7	MP3A	X	-1.73	-1.73	0	%100
8	MP3A	Z	-2.997	-2.997	0	%100
9	MP4A	Х	-1.73	-1.73	0	%100
10	MP4A	Z	-2.997	-2.997	0	%100
11	MP2A	Х	-1.915	-1.915	0	%100
12	MP2A	Z	-3.317	-3.317	0	%100
13	MP1A	Х	-1.73	-1.73	0	%100
14	MP1A	Z	-2.997	-2.997	0	%100
15	M43	Х	-1.323	-1.323	0	%100
16	M43	Z	-2.292	-2.292	0	%100
17	M46	Х	-2.07	-2.07	0	%100
18	M46	Z	-3.586	-3.586	0	%100
19	M51B	Х	0	0	0	%100
20	M51B	Z	0	0	0	%100
21	M52B	Х	-1.523	-1.523	0	%100
22	M52B	Z	-2.638	-2.638	0	%100
23	M76	Х	679	679	0	%100
24	M76	Z	-1.176	-1.176	0	%100
25	M77	X	0	0	0	%100
26	M77	Z	0	0	0	%100
27	M80	X	0	0	0	%100
28	M80	Z	0	0	0	%100
29	M84	Х	679	679	0	%100
30	M84	Z	-1.176	-1.176	0	%100
31	M85	Х	-2.067	-2.067	0	%100
32	M85	Z	-3.58	-3.58	0	%100
33	M91	Х	-2.157	-2.157	0	%100
34	M91	Z	-3.736	-3.736	0	%100
35	M52A	Х	-2.166	-2.166	0	%100
36	M52A	Z	-3.752	-3.752	0	%100
37	M53	Х	0	0	0	%100
38	M53	Z	0	0	0	%100
39	M54	Х	0	0	0	%100
40	M54	Z	0	0	0	%100
41	M55	Х	0	0	0	%100
42	M55	Z	0	0	0	%100
43	M58A	Х	-1.523	-1.523	0	%100
44	M58A	Z	-2.638	-2.638	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft
45	M59A	X	-1.523	-1.523	0	%100
46	M59A	Z	-2.638	-2.638	0	%100
47	M63	Х	-2.715	-2.715	0	%100
48	M63	Z	-4.702	-4.702	0	%100
49	M64	Х	-2.067	-2.067	0	%100
50	M64	Z	-3.58	-3.58	0	%100
51	M66	X	-2.157	-2.157	0	%100
52	M66	Z	-3.736	-3.736	0	%100
53	<u>M68</u>	X	-2.715	-2.715	0	%100
54	M68	Z	-4.702	-4.702	0	%100
55	M69	X	-2.067	-2.067	0	%100
56	M69	Z	-3.58	-3.58	0	%100
57	<u>M71</u>	X	-2.157	-2.157	0	%100
58	M71	Z	-3.736	-3.736	0	%100
59	M76A	X	542	542	0	%100
60	<u>M76A</u>	Z	938	938	0	<u>%100</u>
61 62	M77A	X Z	-1.323 -2.292	<u>-1.323</u> -2.292	0	%100 %100
	M77A			-2.292 -1.323	0	%100 %100
63 64	M78 M78	X Z	-1.323 -2.292	-2.292	0	%100
65	M79A	X	-2.292	-2.292	0	%100
66	M79A	Z	-3.586	-3.586	0	%100
67	M82	X	-1.523	-1.523	0	%100
68	M82	Z	-2.638	-2.638	0	%100
69	M83A	X	0	0	0	%100
70	M83A	Z	0	0	0	%100
71	M87	X	679	679	0	%100
72	M87	Z	-1.176	-1.176	0	%100
73	M88A	X	-2.067	-2.067	0	%100
74	M88A	Z	-3.58	-3.58	0	%100
75	M90	X	-2.157	-2.157	0	%100
76	M90	Z	-3.736	-3.736	0	%100
77	M92A	X	679	679	0	%100
78	M92A	Z	-1.176	-1.176	0	%100
79	M93	X	0	0	0	%100
80	M93	Z	0	0	0	%100
81	M95	X	0	0	0	%100
82	M95	Z	0	0	0	%100
83	M82A	Х	0	0	0	%100
84	M82A	Z	0	0	0	%100
85	M91B	Х	-1.609	-1.609	0	%100
86	M91B	Z	-2.788	-2.788	0	%100
87	M100	Х	-1.298	-1.298	0	%100
88	M100	Z	-2.247	-2.247	0	%100
89	M105	Х	0	0	0	%100
90	M105	Z	0	0	0	%100
91	M110	Х	-1.298	-1.298	0	%100
92	M110	Z	-2.247	-2.247	0	%100
93	M121	X	0	0	0	%100
94	M121	Z	0	0	0	%100
95	M122	Х	-1.258	-1.258	0	%100
96	M122	Z	-2.178	-2.178	0	%100
97	M123	X	-1.258	-1.258	0	%100
98	M123	Z	-2.178	-2.178	0	%100
99	OVP1	X	-1.422	-1.422	0	%100
100	OVP1	Z X	<u>-2.463</u> -1.73	<u>-2.463</u> -1.73	0	<u>%100</u> %100
101	MP3C					

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
102	MP3C	Z	-2.997	-2.997	0	%100
103	MP4C	X	-1.73	-1.73	0	%100
104	MP4C	Z	-2.997	-2.997	0	%100
105	MP2C	X	-1.915	-1.915	0	%100
106	MP2C	Z	-3.317	-3.317	0	%100
107	MP1C	X	-1.73	-1.73	0	%100
108	MP1C	Z	-2.997	-2.997	0	%100
109	MP3B	X	-1.73	-1.73	0	%100
110	MP3B	Z	-2.997	-2.997	0	%100
111	MP4B	X	-1.73	-1.73	0	%100
112	MP4B	Z	-2.997	-2.997	0	%100
113	MP2B	X	-1.915	-1.915	0	%100
114	MP2B	Z	-3.317	-3.317	0	%100
115	MP1B	X	-1.73	-1.73	0	%100
116	MP1B	Z	-2.997	-2.997	0	%100
117	OVP2	X	-1.422	-1.422	0	%100
118	OVP2	Z	-2.463	-2.463	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	M1	X	0	0		%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	M1		844	844	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	M4		0	0	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M4		0	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	M10		0	0	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	M10	Z	801	801	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	MP3A		0	0	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	MP3A	Z	632	632	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	MP4A		0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	MP4A	Z	632	632	0	%100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	MP2A	Х	0	0	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	MP2A	Z	765	765	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	MP1A	X	0	0	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	MP1A	Z	632	632	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	M43	Х	0	0	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	M43	Z	801	801	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	M46	X	0	0	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	M46	Z	-1.597	-1.597	0	%100
21 M52B X 0 0 0 %100 22 M52B Z 222 222 0 %100 23 M76 X 0 0 0 %100 24 M76 Z 0 0 0 %100 24 M76 Z 0 0 0 %100 25 M77 X 0 0 0 %100 26 M77 Z 407 407 0 %100 27 M80 X 0 0 0 %100 28 M80 Z 428 428 0 %100 29 M84 X 0 0 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 0 0 0 %100 33 M91 X 0 0 0 </td <td>19</td> <td>M51B</td> <td>Х</td> <td>0</td> <td>0</td> <td>0</td> <td>%100</td>	19	M51B	Х	0	0	0	%100
22 M52B Z 222 222 0 %100 23 M76 X 0 0 0 %100 24 M76 Z 0 0 0 %100 24 M76 Z 0 0 0 %100 25 M77 X 0 0 0 %100 26 M77 Z 407 407 0 %100 27 M80 X 0 0 0 %100 28 M80 Z 428 428 0 %100 29 M84 X 0 0 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 0 0 0 %100 33 M91 X 0 0 0 %100 34 M91 Z 428 428	20			222	222		
23 M76 X 0 0 0 0 %100 24 M76 Z 0 0 0 %100 25 M77 X 0 0 0 %100 25 M77 X 0 0 0 %100 25 M77 X 0 0 0 %100 26 M77 Z 407 407 0 %100 26 M77 Z 407 407 0 %100 26 M77 Z 407 407 407 0 %100 27 M80 X 0 0 0 %100 28 M80 Z 428 428 0 %100 30 M84 X 0 0 0 %100 %100 31 M85 X 0 0 0 %100 %100 33 M91 X 0 0 0 %100 </td <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td></td>			X				
24 M76 Z 0 0 %100 25 M77 X 0 0 %100 26 M77 Z 407 407 0 %100 27 M80 X 0 0 0 %100 28 M80 Z 428 428 0 %100 29 M84 X 0 0 0 %100 30 M84 Z 0 0 %100 31 M85 X 0 0 %100 32 M85 Z 407 407 0 %100 33 M91 X 0 0 %100 3 %100 34 M91 Z 428 428 0 %100 35 M52A X 0 0 0 %100				222	222		%100
25 M77 X 0 0 0 %100 26 M77 Z 407 407 0 %100 27 M80 X 0 0 0 %100 28 M80 Z 428 428 0 %100 29 M84 X 0 0 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 0 0 0 %100 32 M85 Z 407 407 0 %100 33 M91 X 0 0 0 %100 34 M91 Z 428 428 0 %100 35 M52A X 0 0 0 %100	23			0			%100
26 M77 Z 407 407 0 %100 27 M80 X 0 0 0 %100 28 M80 Z 428 428 0 %100 29 M84 X 0 0 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 0 0 0 %100 32 M85 Z 407 407 0 %100 33 M91 X 0 0 0 %100 34 M91 Z 428 428 0 %100 35 M52A X 0 0 0 %100				0	0		
27 M80 X 0 0 0 0 %100 28 M80 Z 428 428 0 %100 29 M84 X 0 0 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 0 0 0 %100 32 M85 Z 407 407 0 %100 33 M91 X 0 0 0 %100 34 M91 Z 428 428 0 %100 35 M52A X 0 0 0 %100	25						%100
28 M80 Z 428 428 0 %100 29 M84 X 0 0 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 0 0 0 %100 32 M85 Z 407 407 0 %100 33 M91 X 0 0 %100 34 M91 Z 428 428 0 %100 35 M52A X 0 0 0 %100		M77		407	407	0	
29 M84 X 0 0 0 %100 30 M84 Z 0 0 0 %100 31 M85 X 0 0 0 %100 32 M85 Z 407 407 0 %100 33 M91 X 0 0 %100 34 M91 Z 428 428 0 %100 35 M52A X 0 0 0 %100				~	~		%100
30 M84 Z 0 0 %100 31 M85 X 0 0 %100 32 M85 Z 407 407 0 %100 33 M91 X 0 0 0 %100 34 M91 Z 428 428 0 %100 35 M52A X 0 0 0 %100				428	428	0	
31 M85 X 0 0 %100 32 M85 Z 407 407 0 %100 33 M91 X 0 0 0 %100 34 M91 Z 428 428 0 %100 35 M52A X 0 0 0 %100	29	M84	X	0	0	0	%100
32 M85 Z 407 0 %100 33 M91 X 0 0 0 %100 34 M91 Z 428 428 0 %100 35 M52A X 0 0 %100							
33 M91 X 0 0 %100 34 M91 Z 428 428 0 %100 35 M52A X 0 0 %100					*		
34 M91 Z 428 0 %100 35 M52A X 0 0 %100				407	407		
35 M52A X 0 0 0 %100					-		
			Z	428	428	0	%100
36 M52A Z7171 0 %100		M52A				0	%100
	36	M52A	Z	71	71	0	%100

IRISA	Company Designer Job Number	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
37	M53	X	0	0	0	%100
38	M53	Z	2	2	0	%100
39	M54	X	0	0	0	%100
40	M54	Z	2	2	0	%100
41	M55	X	0	0	0	%100
42	M55	Z	399	399	0	%100
43	M58A	X	0	0	0	%100
44	M58A	Z	222	222	0	%100
45	M59A	X	0	0	0	%100
46	M59A	Z	887	887	0	%100
47	M63	X	0	0	0	%100
48	M63	Z	-1.198	-1.198	0	%100
49	M64	X	0	0	0	%100
50	M64	Z	407	407	0	%100
51	M66	Х	0	0	0	%100
52	M66	Z	428	428	0	%100
53	M68	X	0	0	0	%100
54	M68	Z	-1.198	-1.198	0	%100
55	M69	X	0	0	0	%100
56	M69	Z	-1.626	-1.626	0	%100
57	M71	Х	0	0	0	%100
58	M71	Z	-1.713	-1.713	0	%100
59	M76A	X	0	0	0	%100
60	M76A	Z	71	71	0	%100
61	M77A	X	0	0	0	%100
62	M77A	Z	2	2	0	%100
63	M78	X	0	0	0	%100
64	M78	Z	2	2	0	%100
65	M79A	X	0	0	0	%100
66	M79A	Z	399	399	0	%100
67	M82	X	0	0	0	%100
68	M82	Z	887	887	0	%100
69	M83A	X	0	0	0	%100
70	M83A	Z	222	222	0	%100
71	M87	X	0	0	0	%100
72	M87	Z	-1.198	-1.198	0	%100
73	M88A	X	0	0	0	%100
74	M88A	Z	-1.626	-1.626	0	%100
75	M90	X	0	0	0	%100
76	M90	Z	-1.713	-1.713	0	%100
77	M92A	X	0	0	0	%100
78	M92A	Z	-1.198	-1.198	0	%100
79	M93	X	0	0	0	%100
80	M93	Z	407	407	0	%100
81	M95	X	0	0	0	%100
82	M95	Z	428	428	0	%100
83	M82A	X	0	0	0	%100
84	M82A	Z	211	211	0	%100
85	M91B	X	0	211	0	%100
86	M91B	Z	211	211	0	%100
87	M100	X	0	0	0	%100
88	M100	Z	632	632	0	%100
89	M105	X	0	0	0	%100
90	M105	Z	158	158	0	%100
90	M105	X	150	150	0	%100
91	M110	Z	158	158	0	%100
34						
93	M121	X	0	0	0	%100

IRISA	Company Designer Job Number Model Name	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
94	M121	Z	196	196	0	%100
95	M122	X	0	0	0	%100
96	M122	Z	196	196	0	%100
97	M123	Х	0	0	0	%100
98	M123	Z	785	785	0	%100
99	OVP1	Х	0	0	0	%100
100	OVP1	Z	517	517	0	%100
101	MP3C	X	0	0	0	%100
102	MP3C	Z	632	632	0	%100
103	MP4C	X	0	0	0	%100
104	MP4C	Z	632	632	0	%100
105	MP2C	X	0	0	0	%100
106	MP2C	Z	765	765	0	%100
107	MP1C	X	0	0	0	%100
108	MP1C	Z	632	632	0	%100
109	MP3B	X	0	0	0	%100
110	MP3B	Z	632	632	0	%100
111	MP4B	X	0	0	0	%100
112	MP4B	Z	632	632	0	%100
113	MP2B	X	0	0	0	%100
114	MP2B	Z	765	765	0	%100
115	MP1B	X	0	0	0	%100
116	MP1B	Z	632	632	0	%100
117	OVP2	X	0	0	0	%100
118	OVP2	Z	517	517	0	%100

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	.316	.316	0	%100
2	M1	Z	548	548	0	%100
3	M4	X	.118	.118	0	%100
4	M4	Z	205	205	0	%100
5	M10	Х	.3	.3	0	%100
6	M10	Z	52	52	0	%100
7	MP3A	Х	.316	.316	0	%100
8	MP3A	Z	547	547	0	%100
9	MP4A	Х	.316	.316	0	%100
10	MP4A	Z	547	547	0	%100
11	MP2A	Х	.383	.383	0	%100
12	MP2A	Z	663	663	0	%100
13	MP1A	Х	.316	.316	0	%100
14	MP1A	Z	547	547	0	%100
15	M43	Х	.3	.3	0	%100
16	M43	Z	52	52	0	%100
17	M46	Х	.599	.599	0	%100
18	M46	Z	-1.037	-1.037	0	%100
19	M51B	Х	.333	.333	0	%100
20	M51B	Z	576	576	0	%100
21	M52B	X	0	0	0	%100
22	M52B	Z	0	0	0	%100
23	M76	X	.2	.2	0	%100
24	M76	Z	346	346	0	%100
25	M77	Х	.61	.61	0	%100
26	M77	Z	-1.056	-1.056	0	%100
27	M80	X	.642	.642	0	%100
28	M80	Z	-1.113	-1.113	0	%100

IRISA	Company Designer Job Number	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		.End Location[ft,
29	M84	X	.2	.2	0	%100
30	M84	Z	346	346	0	%100
31	M85	X	0	0	0	%100
32	M85	Z	0	0	0	%100
33	M91	X	0	0	0	%100
34	M91	Z	0	0	0	%100
35	M52A	Х	.118	.118	0	%100
36	M52A	Z	205	205	0	%100
37	M53	X	.3	.3	0	%100
38	M53	Z	52	52	0	%100
39	M54	X	.3	.3	0	%100
40	M54	Z	52	52	0	%100
41	M55	X	.599	.599	0	%100
42	M55	Z	-1.037	-1.037	0	%100
43	M58A	X	0	0	0	%100
44	M58A	Z	0	0	0	%100
45	M59A	Х	.333	.333	0	%100
46	M59A	Z	576	576	0	%100
47	M63	X	.2	.2	0	%100
48	M63	Z	346	346	0	%100
49	M64	X	0	0	0	%100
50	M64	Z	0	0	0	%100
51	M66	X	0	0	0	%100
52	M66	Z	0	0	0	%100
53	M68	X	.2	.2	0	%100
54	M68	Z	346	346	0	%100
55	M69	X	.61	.61	0	%100
56	M69	Z	-1.056	-1.056	0	%100
57	<u>M71</u>	X	.642	.642	0	%100
58	M71	Z	-1.113	-1.113	0	%100
59 60	M76A	X Z	.473 819	<u>.473</u> 819	0	%100 %100
61	M76A M77A	X	019		0	%100
62	M77A	Z	0	0	0	%100
63	M78	X	0	0	0	%100
64	M78	Z	0	0	0	%100
65	M79A	X	0	0	0	%100
66	M79A	Z	0	0	0	%100
67	M82	X	.333	.333	0	%100
68	M82	Z	576	576	0	%100
69	M83A	X	.333	.333	0	%100
70	M83A	Z	576	576	0	%100
71	M87	X	.798	.798	0	%100
72	M87	Z	-1.383	-1.383	0	%100
73	M88A	X	.61	.61	0	%100
74	M88A	Z	-1.056	-1.056	0	%100
75	M90	X	.642	.642	0	%100
76	M90	Z	-1.113	-1.113	0	%100
77	M92A	X	.798	.798	0	%100
78	M92A	Z	-1.383	-1.383	0	%100
79	M93	X	.61	.61	0	%100
80	M93	Z	-1.056	-1.056	0	%100
81	M95	X	.642	.642	0	%100
82	M95	Z	-1.113	-1.113	0	%100
83	M82A	Х	.316	.316	0	%100
84	M82A	Z	548	548	0	%100
85	M91B	Х	0	0	0	%100
	A-3D Version 17 (V468327-VZW MT LO H r3		Page 145

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
86	M91B	Z	0	0	0	%100
87	M100	Х	.237	.237	0	%100
88	M100	Z	411	411	0	%100
89	M105	Х	.237	.237	0	%100
90	M105	Z	411	411	0	%100
91	M110	X	0	0	0	%100
92	M110	Z	0	0	0	%100
93	M121	Х	.295	.295	0	%100
94	M121	Z	51	51	0	%100
95	M122	Х	0	0	0	%100
96	M122	Z	0	0	0	%100
97	M123	Х	.295	.295	0	%100
98	M123	Z	51	51	0	%100
99	OVP1	Х	.258	.258	0	%100
100	OVP1	Z	448	448	0	%100
101	MP3C	Х	.316	.316	0	%100
102	MP3C	Z	547	547	0	%100
103	MP4C	X	.316	.316	0	%100
104	MP4C	Z	547	547	0	%100
105	MP2C	Х	.383	.383	0	%100
106	MP2C	Z	663	663	0	%100
107	MP1C	X	.316	.316	0	%100
108	MP1C	Z	547	547	0	%100
109	MP3B	X	.316	.316	0	%100
110	MP3B	Z	547	547	0	%100
111	MP4B	X	.316	.316	0	%100
112	MP4B	Z	547	547	0	%100
113	MP2B	Х	.383	.383	0	%100
114	MP2B	Z	663	663	0	%100
115	MP1B	Х	.316	.316	0	%100
116	MP1B	Z	547	547	0	%100
117	OVP2	Х	.258	.258	0	%100
118	OVP2	Z	448	448	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	Х	.183	.183	0	%100
2	M1	Z	105	105	0	%100
3	M4	Х	.615	.615	0	%100
4	M4	Z	355	355	0	%100
5	M10	Х	.173	.173	0	%100
6	M10	Z	1	1	0	%100
7	MP3A	Х	.547	.547	0	%100
8	MP3A	Z	316	316	0	%100
9	MP4A	Х	.547	.547	0	%100
10	MP4A	Z	316	316	0	%100
11	MP2A	Х	.663	.663	0	%100
12	MP2A	Z	383	383	0	%100
13	MP1A	X	.547	.547	0	%100
14	MP1A	Z	316	316	0	%100
15	M43	X	.173	.173	0	%100
16	M43	Z	1	1	0	%100
17	M46	Х	.346	.346	0	%100
18	M46	Z	2	2	0	%100
19	M51B	Х	.768	.768	0	%100
20	M51B	Z	443	443	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
21	M52B	X Z	.192	.192	0	%100
22	M52B		111	111	0	%100
23	M76	X	1.037	1.037	0	%100
24	M76	Z	599	599	0	%100
25	M77	X	1.408	1.408	0	%100
26	M77	Z	813	813	0	%100
27	M80	X	1.484	1.484	0	%100
28	M80	Z	857	857	0	%100
29	M84	X	1.037	1.037	0	%100
30	M84	Z	599	599	0	%100
31	M85	Х	.352	.352	0	%100
32	M85	Z	203	203	0	%100
33	M91	Х	.371	.371	0	%100
34	M91	Z	214	214	0	%100
35	M52A	Х	0	0	0	%100
36	M52A	Z	0	0	0	%100
37	M53	Х	.693	.693	0	%100
38	M53	Z	4	4	0	%100
39	M54	Х	.693	.693	0	%100
40	M54	Z	4	4	0	%100
41	M55	Х	1.383	1.383	0	%100
42	M55	Z	798	798	0	%100
43	M58A	X	.192	.192	0	%100
44	M58A	Z	111	111	0	%100
45	M59A	Х	.192	.192	0	%100
46	M59A	Z	111	111	0	%100
47	M63	Х	0	0	0	%100
48	M63	Z	0	0	0	%100
49	M64	Х	.352	.352	0	%100
50	M64	Z	203	203	0	%100
51	M66	Х	.371	.371	0	%100
52	M66	Z	214	214	0	%100
53	M68	Х	0	0	0	%100
54	M68	Z	0	0	0	%100
55	M69	Х	.352	.352	0	%100
56	M69	Z	203	203	0	%100
57	M71	Х	.371	.371	0	%100
58	M71	Z	214	214	0	%100
59	M76A	Х	.615	.615	0	%100
60	M76A	Z	355	355	0	%100
61	M77A	Х	.173	.173	0	%100
62	M77A	Z	1	1	0	%100
63	M78	Х	.173	.173	0	%100
64	M78	Z	1	1	0	%100
65	M79A	Х	.346	.346	0	%100
66	M79A	Z	2	2	0	%100
67	M82	X	.192	.192	0	%100
68	M82	Z	111	111	0	%100
69	M83A	X	.768	.768	0	%100
70	M83A	Z	443	443	0	%100
71	M87	X	1.037	1.037	0	%100
72	M87	Z	599	599	0	%100
73	M88A	X	.352	.352	0	%100
74	M88A	Z	203	203	0	%100
75	M90	X	.371	.371	0	%100
76	M90	Z	214	214	0	%100
77	M92A	X	1.037	1.037	0	%100
11				V468327-VZW MT LO H r3	·	Page 147

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
78	M92A	Z	599	599	0	%100
79	M93	Х	1.408	1.408	0	%100
80	M93	Z	813	813	0	%100
81	M95	Х	1.484	1.484	0	%100
82	M95	Z	857	857	0	%100
83	M82A	Х	.731	.731	0	%100
84	M82A	Z	422	422	0	%100
85	M91B	Х	.183	.183	0	%100
86	M91B	Z	105	105	0	%100
87	M100	Х	.137	.137	0	%100
88	M100	Z	079	079	0	%100
89	M105	Х	.547	.547	0	%100
90	M105	Z	316	316	0	%100
91	M110	Х	.137	.137	0	%100
92	M110	Z	079	079	0	%100
93	M121	X	.68	.68	0	%100
94	M121	Z	393	393	0	%100
95	M122	X	.17	.17	0	%100
96	M122	Z	098	098	0	%100
97	M123	X	.17	.17	0	%100
98	M123	Z	098	098	0	%100
99	OVP1	X	.448	.448	0	%100
100	OVP1	Z	258	258	0	%100
101	MP3C	Х	.547	.547	0	%100
102	MP3C	Z	316	316	0	%100
103	MP4C	Х	.547	.547	0	%100
104	MP4C	Z	316	316	0	%100
105	MP2C	Х	.663	.663	0	%100
106	MP2C	Z	383	383	0	%100
107	MP1C	Х	.547	.547	0	%100
108	MP1C	Z	316	316	0	%100
109	MP3B	X	.547	.547	0	%100
110	MP3B	Z	316	316	0	%100
111	MP4B	X	.547	.547	0	%100
112	MP4B	Z	316	316	0	%100
113	MP2B	X	.663	.663	0	%100
114	MP2B	Z	383	383	0	%100
115	MP1B	X	.547	.547	0	%100
116	MP1B	Z	316	316	0	%100
117	OVP2	X	.448	.448	0	%100
118	OVP2	Z	258	258	0	%100

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M4	Х	.946	.946	0	%100
4	M4	Z	0	0	0	%100
5	M10	X	0	0	0	%100
6	M10	Z	0	0	0	%100
7	MP3A	X	.632	.632	0	%100
8	MP3A	Z	0	0	0	%100
9	MP4A	Х	.632	.632	0	%100
10	MP4A	Z	0	0	0	%100
11	MP2A	X	.765	.765	0	%100
12	MP2A	Z	0	0	0	%100

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	otion[ft
14 MP1A Z 0 <td></td>	
15 M43 X 0 0 0 9 16 M43 Z 0 0 0 % 17 M46 X 0 0 0 % 18 M46 Z 0 0 0 % 19 M51B X .665 .665 0 % 20 M51B Z 0 0 0 % 21 M52B Z 0 0 0 % 23 M76 X 1.597 1.597 0 % 24 M76 Z 0 0 0 % % 25 M77 X 1.22 1.285 0 % % 26 M77 Z 0 0 0 % % 30 M84 X 1.597 1.597 0 % % 31 M85 Z	
16 M43 Z 0 0 0 9 17 M46 X 0 0 0 % 18 M46 Z 0 0 0 % 19 M51B X .665 .665 0 % 20 M52B X .665 .665 0 % 21 M52B X .665 .665 0 % 22 M52B Z 0 0 0 % 23 M76 X 1.597 1.597 0 % 24 M76 Z 0 0 0 % % 26 M77 Z 0 0 0 % % 27 M80 Z 0 0 0 % % 30 M84 X 1.285 1.285 0 % 31 M85 X 1.22 <td></td>	
18 M46 Z 0 0 9 9 19 M51B X .665 .665 0 % 20 M51B X .665 .665 0 % 21 M52B X .665 .665 0 % 21 M52B X .665 .665 0 % 23 M76 X .1597 1.597 0 % 24 M77 X .1.22 1.22 0 % 25 M77 Z 0 0 0 % 26 M77 Z 0 0 0 % 28 M80 Z 0 0 0 % 30 M84 Z 0 0 0 % 31 M85 X 1.22 1.22 0 % 33 M91 X 1.285 1.285 0	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100
20 M61B Z 0 0 9% 21 M52B X .665 .665 0 % 22 M52B Z 0 0 0 % 23 M76 X 1.597 1.597 0 % 24 M76 Z 0 0 0 % 25 M77 X 1.22 1.22 0 % 26 M77 Z 0 0 0 % 26 M80 Z 0 0 0 % 29 M84 X 1.597 0 % % 30 M84 X 1.285 1.285 0 % 31 M85 X 1.22 1.22 0 % 33 M91 X 1.285 1.285 0 % 34 M91 Z 0 0 0 % <td>100</td>	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
44 M58A Z 0 0 % 45 M59A X 0 0 0 % 46 M59A Z 0 0 0 % 47 M63 X .399 .399 0 % 48 M63 Z 0 0 0 % 49 M64 X 1.22 1.22 0 % 50 M64 Z 0 0 0 % 51 M66 X 1.285 1.285 0 % 52 M66 Z 0 0 0 % 53 M68 X .399 .399 0 % 54 M68 Z 0 0 0 % 55 M69 X 0 0 0 % 56 M69 Z 0 0 % % <t< td=""><td></td></t<>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
47 M63 X .399 .399 0 % 48 M63 Z 0 0 0 % 49 M64 X 1.22 1.22 0 % 50 M64 Z 0 0 0 % 51 M66 X 1.285 1.285 0 % 52 M66 Z 0 0 0 % 53 M68 X .399 .399 0 % 54 M68 Z 0 0 0 % 55 M69 X 0 0 % % 56 M69 Z 0 0 % % 58 M71 X 0 0 % % 59 M76A X .237 .237 0 % <td></td>	
48 M63 Z 0 0 % 49 M64 X 1.22 1.22 0 % 50 M64 Z 0 0 0 % 51 M66 X 1.285 1.285 0 % 52 M66 Z 0 0 0 % 53 M68 X .399 .399 0 % 54 M68 Z 0 0 0 % 55 M69 X 0 0 % % 56 M69 Z 0 0 % % 57 M71 X 0 0 % % 58 M71 Z 0 0 % % 59 M76A X .237 .237 0 %	
49 M64 X 1.22 1.22 0 % 50 M64 Z 0 0 0 0 % 51 M66 X 1.285 1.285 0 % 52 M66 Z 0 0 0 % 53 M68 X .399 .399 0 % 54 M68 Z 0 0 0 % 55 M69 X 0 0 % % 56 M69 Z 0 0 % % 57 M71 X 0 0 % % 58 M71 Z 0 0 % % 59 M76A X .237 .237 0 %	
50 M64 Z 0 0 % 51 M66 X 1.285 1.285 0 % 52 M66 Z 0 0 0 % 53 M68 X .399 .399 0 % 54 M68 Z 0 0 0 % 55 M69 X 0 0 % % 56 M69 Z 0 0 % % 57 M71 X 0 0 % % 58 M71 Z 0 0 % % 59 M76A X .237 .237 0 %	
51 M66 X 1.285 1.285 0 % 52 M66 Z 0 0 0 % 53 M68 X .399 .399 0 % 54 M68 Z 0 0 0 % 55 M69 X 0 0 % 56 M69 Z 0 0 % 57 M71 X 0 0 % 58 M71 Z 0 0 % 59 M76A X .237 .237 0 %	
52 M66 Z 0 0 % 53 M68 X .399 .399 0 % 54 M68 Z 0 0 0 % 55 M69 X 0 0 0 % 56 M69 Z 0 0 % % 57 M71 X 0 0 % % 58 M71 Z 0 0 % % 59 M76A X .237 .237 0 %	100
53 M68 X .399 .399 0 % 54 M68 Z 0 0 0 % 55 M69 X 0 0 0 % 56 M69 Z 0 0 0 % 57 M71 X 0 0 % 58 M71 Z 0 0 % 59 M76A X .237 .237 0 %	100
54 M68 Z 0 0 % 55 M69 X 0 0 % 56 M69 Z 0 0 % 57 M71 X 0 0 % 58 M71 Z 0 0 % 59 M76A X .237 .237 0 %	100
55 M69 X 0 0 % 56 M69 Z 0 0 % 57 M71 X 0 0 % 58 M71 Z 0 0 % 59 M76A X .237 .237 0 %	100
56 M69 Z 0 0 % 57 M71 X 0 0 % 58 M71 Z 0 0 % 59 M76A X .237 .237 0 %	100
57 M71 X 0 0 % 58 M71 Z 0 0 % 59 M76A X .237 .237 0 %	100
58 M71 Z 0 0 % 59 M76A X .237 .237 0 %	100
59 M76A X .237 .237 0 %	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
	100
BISA-3D Version 17.0.4 IB:\ \ \ \ \ \ Rev 0\BISA\468327-\/ZW/ MT I O H r3d] Page	

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

70	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		End Location[ft,
70	<u>M83A</u>	Z	0	0	0	%100
71	M87	X	.399	.399	0	%100
72	<u>M87</u>	Z	0	0	0	%100
73	<u>M88A</u>	X	0	0	0	%100
74	<u>M88A</u>	Z	0	0	0	%100
75	M90	X	0	0	0	%100
76	<u>M90</u>	Z	0	0	0	%100
77	M92A	X	.399	.399	0	%100
78	M92A	Z	0	0	0	%100
79	M93	X	1.22	1.22	0	%100
80	M93	Z	0	0	0	%100
81	M95	Х	1.285	1.285	0	%100
82	M95	Z	0	0	0	%100
83	M82A	X	.633	.633	0	%100
84	M82A	Z	0	0	0	%100
85	M91B	Х	.633	.633	0	%100
86	M91B	Z	0	0	0	%100
87	M100	X	0	0	0	%100
88	M100	Z	0	0	0	%100
89	M105	X	.474	.474	0	%100
90	M105	Z	0	0	0	%100
91	M110	Х	.474	.474	0	%100
92	M110	Z	0	0	0	%100
93	M121	Х	.589	.589	0	%100
94	M121	Z	0	0	0	%100
95	M122	Х	.589	.589	0	%100
96	M122	Z	0	0	0	%100
97	M123	Х	0	0	0	%100
98	M123	Z	0	0	0	%100
99	OVP1	Х	.517	.517	0	%100
100	OVP1	Z	0	0	0	%100
101	MP3C	X	.632	.632	0	%100
102	MP3C	Z	0	0	0	%100
103	MP4C	X	.632	.632	0	%100
104	MP4C	Z	0	0	0	%100
105	MP2C	X	.765	.765	0	%100
106	MP2C	Z	0	0	0	%100
107	MP1C	X	.632	.632	0	%100
108	MP1C	Z	0	0	0	%100
109	MP3B	X	.632	.632	0	%100
110	MP3B	Z	0	0	0	%100
111	MP4B	X	.632	.632	0	%100
112	MP4B	Z	0	0	0	%100
113	MP2B	X	.765	.765	0	%100
114	MP2B	Z	0	0	0	%100
115	MP1B	X	.632	.632	0	%100
116	MP1B	Z	0	0	0	%100
117	OVP2	X	.517	.517	0	%100
118	OVP2	Z	0	0	0	%100
110	UVF2	2	U	U	U	70100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	.183	.183	0	%100
2	M1	Z	.105	.105	0	%100
3	M4	Х	.615	.615	0	%100
4	M4	Z	.355	.355	0	%100

IRISA	Company Designer Job Number Model Name	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

			Stort Magnitude[lb/ft E kaf]			End Logation[ft
5	Member Label M10	Direction X	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf] .173		End Location[ft, %100
6	M10	Z	.1	.1	0	%100
7	MP3A	X	.547	.547	0	%100
8	MP3A	Z	.316	.316	0	%100
9	MP4A	X	.547	.547	0	%100
10	MP4A	Z	.316	.316	0	%100
11	MP2A	X	.663	.663	0	%100
12	MP2A	Z	.383	.383	0	%100
13	MP1A	X	.547	.547	0	%100
14	MP1A	Z	.316	.316	0	%100
15	M43	X	.173	.173	0	%100
16	M43	Z	.1	.1	0	%100
17	M46	X	.346	.346	0	%100
18	M46	Z	.2	.2	0	%100
19	M51B	X	.192	.192	0	%100
20	M51B	Z	.111	.111	0	%100
21	M52B	Х	.768	.768	0	%100
22	M52B	Z	.443	.443	0	%100
23	M76	X	1.037	1.037	0	%100
24	M76	Z	.599	.599	0	%100
25	M77	X	.352	.352	0	%100
26	M77	Z	.203	.203	0	%100
27	M80	X	.371	.371	0	%100
28	M80	Z	.214	.214	0	%100
29	M84	X	1.037	1.037	0	%100
30	M84	Z	.599	.599	0	%100
31	M85	Х	1.408	1.408	0	%100
32	M85	Z	.813	.813	0	%100
33	M91	Х	1.484	1.484	0	%100
34	M91	Z	.857	.857	0	%100
35	M52A	X	.615	.615	0	%100
36	M52A	Z	.355	.355	0	%100
37	M53	X	.173	.173	0	%100
38	M53	Z	.1	.1	0	%100
39	M54	X	.173	.173	0	%100
40	M54	Z	.1	.1	0	%100
41	M55	X	.346	.346	0	%100
42	M55	Z	.2	.2	0	%100
43	M58A	X	.768	.768	0	%100
44	<u>M58A</u> M59A	Z	.443 .192	<u>.443</u> .192	0	%100 %100
45 46	M59A M59A	X Z	.192	.192	0	%100
40	M63	X	1.037	1.037	0	%100
47	M63	Z	.599	.599	0	%100
48	M64	X	1.408	1.408	0	%100
50	M64	Z	.813	.813	0	%100
50	M66	X	1.484	1.484	0	%100
52	M66	Z	.857	.857	0	%100
53	M68	X	1.037	1.037	0	%100
54	M68	Z	.599	.599	0	%100
55	M69	X	.352	.352	0	%100
56	M69	Z	.203	.203	0	%100
57	M71	X	.371	.371	0	%100
58	M71	Z	.214	.214	0	%100
59	M76A	X	0	0	0	%100
60	M76A	Z	0	0	0	%100
61	M77A	X	.693	.693	0	%100
	A-3D Version 17 (· · ·	\468327-\/ZW/MTIOHr3		Page 151

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
62	M77A	Z	.4	.4	0	%100
63	M78	X	.693	.693	0	%100
64	M78	Z	.4	.4	0	%100
65	M79A	X	1.383	1.383	0	%100
66	M79A	Z	.798	.798	0	%100
67	M82	X	.192	.192	0	%100
68	M82	Z	.111	.111	0	%100
69	M83A	Х	.192	.192	0	%100
70	M83A	Z	.111	.111	0	%100
71	M87	Х	0	0	0	%100
72	M87	Z	0	0	0	%100
73	M88A	Х	.352	.352	0	%100
74	M88A	Z	.203	.203	0	%100
75	M90	X	.371	.371	0	%100
76	M90	Z	.214	.214	0	%100
77	M92A	X	0	0	0	%100
78	M92A	Z	0	0	0	%100
79	M93	X	.352	.352	0	%100
80	M93	Z	.203	.203	0	%100
81	M95	X	.371	.371	0	%100
82	M95	Z	.214	.214	0	%100
83	M82A	X	.183	.183	0	%100
84	M82A	Z	.105	.105	0	%100
85	M91B	X	.731	.731	0	%100
86	M91B	Z	.422	.422	0	%100
87	M100	X	.137	.137	0	%100
88	M100	Z	.079	.079	0	%100
89	M105	X	.137	.137	0	%100
90	M105	Z	.079	.079	0	%100
91	M110	X	.547	.547	0	%100
92	M110	Z	.316	.316	0	%100
93	M121	X	.17	.17	0	%100
94	M121	Z	.098	.098	0	%100
95	M122	X	.68	.68	0	%100
96	M122	Z	.393	.393	0	%100
97	M123	X	.17	.17	0	%100
98	M123	Z	.098	.098	0	%100
99	OVP1	X	.448	.448	0	%100
100	OVP1	Z	.258	.258	0	%100
101	MP3C	X	.547	.547	0	%100
102	MP3C	Z	.316	.316	0	%100
103	MP4C	X	.547	.547	0	%100
104	MP4C	Z	.316	.316	0	%100
105	MP2C	X	.663	.663	0	%100
106	MP2C	Z	.383	.383	0	%100
107	MP1C	X	.547	.547	0	%100
108	MP1C	Z	.316	.316	0	%100
109	MP3B	X	.547	.547	0	%100
110	MP3B	Z	.316	.316	0	%100
111	MP4B	X	.547	.547	0	%100
112	MP4B	Z	.316	.316	0	%100
113	MP2B	X	.663	.663	0	%100
114	MP2B	Z	.383	.383	0	%100
115	MP1B	X	.547	.547	0	%100
116	MP1B	Z	.316	.316	0	%100
117	OVP2	X	.448	.448	0	%100
118	OVP2	Z	.258	.258	0	%100
	QV12	-	.200	.200		70100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Oct 25, 2021 2:16 PM Checked By:___

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	X	.316	.316	0	%100
2	M1	Z	.548	.548	0	%100
3	M4	X	.118	.118	0	%100
4	M4	Z	.205	.205	0	%100
5	M10	Х	.3	.3	0	%100
6	M10	Z	.52	.52	0	%100
7	MP3A	X	.316	.316	0	%100
8	MP3A	Z	.547	.547	0	%100
9	MP4A	X	.316	.316	0	%100
10	MP4A	Z	.547	.547	0	<u>%100</u>
11 12	MP2A MP2A	X Z	.383 .663	<u>.383</u> .663	0	%100 %100
13	MP1A	X	.316	.316	0	%100
14	MP1A	Z	.547	.547	0	%100
15	MF 1A M43	X	.3	.3	0	%100
16	M43	Z	.52	.52	0	%100
17	M46	X	.599	.599	0	%100
18	M46	Z	1.037	1.037	0	%100
19	M51B	X	0	0	0	%100
20	M51B	Z	0	0	0	%100
21	M52B	X	.333	.333	0	%100
22	M52B	Z	.576	.576	0	%100
23	M76	Х	.2	.2	0	%100
24	M76	Z	.346	.346	0	%100
25	M77	X	0	0	0	%100
26	M77	Z	0	0	0	%100
27	<u>M80</u>	X	0	0	0	%100
28	<u>M80</u>	Z	0	0	0	%100
29	<u>M84</u>	X Z	.2	.2	0	%100
<u>30</u> 31	<u>M84</u> M85	X	.346 .61	<u>.346</u> .61	0	%100 %100
32	M85	Z	1.056	1.056	0	%100
33	M91	X	.642	.642	0	%100
34	M91	Z	1.113	1.113	0	%100
35	M52A	X	.473	.473	0	%100
36	M52A	Z	.819	.819	0	%100
37	M53	X	0	0	0	%100
38	M53	Z	0	0	0	%100
39	M54	Х	0	0	0	%100
40	M54	Z	0	0	0	%100
41	M55	Х	0	0	0	%100
42	M55	Z	0	0	0	%100
43	M58A	X	.333	.333	0	%100
44	M58A	Z	.576	.576	0	%100
45	M59A	X	.333	.333	0	%100
46	M59A	Z	.576	.576	0	%100
47	M63	X	.798	.798	0	%100
48	M63	Z	1.383	1.383	0	<u>%100</u>
49 50	<u>M64</u> M64	X Z	.61 1.056	<u>.61</u> 1.056	0	%100 %100
50	M66	X	.642	.642	0	%100
52	M66	Z	1.113	1.113	0	%100
53	M68	X	.798	.798	0	%100
54	M68	Z	1.383	1.383	0	%100
55	M69	X	.61	.61	0	%100
56	M69	Z	1.056	1.056	0	%100
57	M71	X	.642	.642	0	%100
	A-3D Version 17 (· · ·	1/468327-1/7W MT LO H r3	·	Page 153

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
58	M71	Z	1.113	1.113	0	%100
59	M76A	X	.118	.118	0	%100
60	M76A	Z	.205	.205	0	%100
61	M77A	X	.3	.3	0	%100
62	M77A	Z	.52	.52	0	%100
63	M78	X	.3	.3	0	%100
64	M78	Z	.52	.52	0	%100
65	<u>M79A</u>	X	.599	.599	0	%100
66	<u>M79A</u>	Z	1.037	1.037	0	<u>%100</u>
67 68	M82 M82	X Z	.333 .576	<u>.333</u> .576	0	%100 %100
69	M83A	X	0	0	0	%100
70	M83A	Z	0	0	0	%100
71	M87	X	.2	.2	0	%100
72	M87	Z	.346	.346	0	%100
73	M88A	X	.61	.61	0	%100
74	M88A	Z	1.056	1.056	0	%100
75	M90	X	.642	.642	0	%100
76	M90	Z	1.113	1.113	0	%100
77	M92A	Х	.2	.2	0	%100
78	M92A	Z	.346	.346	0	%100
79	M93	X	0	0	0	%100
80	M93	Z	0	0	0	%100
81	M95	X	0	0	0	%100
82	M95	Z	0	0	0	%100
83	<u>M82A</u>	X	0	0	0	%100
84	<u>M82A</u>	Z	0	0	0	%100
85	<u>M91B</u>	X	.316	.316	0	%100
86 87	<u>M91B</u>	Z X	.548	.548	0	%100 %100
88	M100 M100	Z	.237 .411	<u>.237</u> .411	0	%100 %100
89	M105	X	0	0	0	%100
90	M105	Z	0	0	0	%100
91	M110	X	.237	.237	0	%100
92	M110	Z	.411	.411	0	%100
93	M121	X	0	0	0	%100
94	M121	Z	0	0	0	%100
95	M122	X	.295	.295	0	%100
96	M122	Z	.51	.51	0	%100
97	M123	X	.295	.295	0	%100
98	M123	Z	.51	.51	0	%100
99	OVP1	X	.258	.258	0	%100
100	OVP1	Z	.448	.448	0	%100
101	MP3C	X	.316	.316	0	%100
102	MP3C	Z	.547	.547	0	%100
103	MP4C	X	.316	.316	0	%100
104	MP4C	Z	.547	.547	0	%100
105	MP2C	X	.383	.383	0	%100 %100
106 107	MP2C MP1C	Z X	.663 .316	<u>.663</u> .316	0	%100
107	MP1C MP1C	Z	.547	.547	0	%100
108	MP1C MP3B	X	.316	.316	0	%100
110	MP3B	Z	.547	.547	0	%100
111	MP3B MP4B	X	.316	.316	0	%100
112	MP4B	Z	.547	.547	0	%100
113	MP2B	X	.383	.383	0	%100
114	MP2B	Z	.663	.663	0	%100
	-3D Version 17 (1000 1468327-1/7W MT LO H r3	· ·	Page 154

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
115	MP1B	Х	.316	.316	0	%100
116	MP1B	Z	.547	.547	0	%100
117	OVP2	Х	.258	.258	0	%100
118	OVP2	Z	.448	.448	0	%100

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	X	0	0	0	%100
2	M1	Z	.844	.844	0	%100
3	M4	Х	0	0	0	%100
4	M4	Z	0	0	0	%100
5	M10	Х	0	0	0	%100
6	M10	Z	.801	.801	0	%100
7	MP3A	Х	0	0	0	%100
8	MP3A	Z	.632	.632	0	%100
9	MP4A	Х	0	0	0	%100
10	MP4A	Z	.632	.632	0	%100
11	MP2A	Х	0	0	0	%100
12	MP2A	Z	.765	.765	0	%100
13	MP1A	X	0	0	0	%100
14	MP1A	Z	.632	.632	0	%100
15	M43	X	0	0	0	%100
16	M43	Z	.801	.801	0	%100
17	M46	X	0	0	0	%100
18	M46	Z	1.597	1.597	0	%100
19	M51B	X	0	0	0	%100
20	M51B	Z	.222	.222	0	%100
21	M52B	X	0	0	0	%100
22	M52B	Z	.222	.222	0	%100
23	M76	X	0	0	0	%100
24	M76	Z	0	0	0	%100
25	M70	X	0	0	0	%100
26	M77	Z	.407	.407	0	%100
27	M80	X	0	0	0	%100
28	M80	Z	.428	.428	0	%100
29	M84	X	0	0	0	%100
30	M84	Z	0	0	0	%100
31	M85	X	0	0	0	%100
32	M85	Z	.407	.407	0	%100
33	M85 M91	X	0	0	0	%100
34	M91	Z	.428	.428	0	%100
35	M52A	X	0	0	0	%100
36	M52A	Z	.71	.71	0	%100
37	M53	X	0	0	0	%100
38	M53	Z	.2	.2	0	%100
39	M53	X	0	0	0	%100
40	M54	Z	.2	.2	0	%100
40	M54 M55	X	0	0	0	%100
41	M55	Z	.399	.399	0	%100
	M55 M58A				0	%100
43	M58A	X Z	.222	.222	0	%100
44		X				
45	<u>M59A</u>	Z	0	0 .887	0	%100 %100
46	M59A		.887			%100 %100
47	M63	X	0	0	0	%100
48	M63	Z	1.198	1.198	0	<u>%100</u>
49	M64	Х	0	0	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

50	Member Label M64	Direction	Start Magnitude[lb/ft,F,ksf] .407	End Magnitude[lb/ft,F,ksf] .407	Start Location[ft	End Location[ft, %100
51	M66	Z X	0	0	0	%100
52	M66	Z	.428	.428	0	%100
53	M68	X	0	0	0	%100
54	M68	Z	1.198	1.198	0	%100
55	M69	X	0	0	0	%100
56	M69	Z	1.626	1.626	0	%100
57	M71	X	0	0	0	%100
58	M71	Z	1.713	1.713	0	%100
59	M76A	X	0	0	0	%100
60	M76A	Z	.71	.71	0	%100
61	M77A	Х	0	0	0	%100
62	M77A	Z	.2	.2	0	%100
63	M78	Х	0	0	0	%100
64	M78	Z	.2	.2	0	%100
65	M79A	X	0	0	0	%100
66	M79A	Z	.399	.399	0	%100
67	M82	X	0	0	0	%100
68	M82	Z	.887	.887	0	%100
69	<u>M83A</u>	X	0	0	0	%100
70	<u>M83A</u>	Z	.222	.222	0	%100
71	<u>M87</u>	X	0	0	0	%100
72	M87	Z	1.198	1.198	0	%100
73	<u>M88A</u>	X	0	0	0	%100
74	<u>M88A</u>	Z	1.626	1.626	0	<u>%100</u>
75	<u>M90</u>	X Z	0 1.713	0 1.713	0	<u>%100</u>
76 77	<u>M90</u>	X	0		0	<u>%100</u>
78	M92A M92A	Z	1.198	0 1.198	0	%100 %100
79	M93	X	0	0	0	%100
80	M93	Z	.407	.407	0	%100
81	M95	X	0	0	0	%100
82	M95	Z	.428	.428	0	%100
83	M82A	X	0	0	0	%100
84	M82A	Z	.211	.211	0	%100
85	M91B	X	0	0	0	%100
86	M91B	Z	.211	.211	0	%100
87	M100	X	0	0	0	%100
88	M100	Z	.632	.632	0	%100
89	M105	Х	0	0	0	%100
90	M105	Z	.158	.158	0	%100
91	M110	Х	0	0	0	%100
92	M110	Z	.158	.158	0	%100
93	M121	X	0	0	0	%100
94	M121	Z	.196	.196	0	%100
95	M122	X	0	0	0	%100
96	M122	Z	.196	.196	0	%100
97	M123	X	0	0	0	%100
98	M123	Z	.785	.785	0	<u>%100</u>
99	OVP1	X	0	0 .517	0	%100
100	OVP1 MP3C	ZX	.517 0	<u>.517</u> 0	0	<u>%100</u> %100
101 102	MP3C MP3C	Z	.632	.632	0	%100
102	MP3C MP4C	X	0	0	0	%100 %100
103	MP4C MP4C	Z	.632	.632	0	%100
104	MP4C MP2C	X	0	0	0	%100
105	MP2C	Z	.765	.765	0	%100
100	1011 20				·	Page 156

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
107	MP1C	Х	0	0	0	%100
108	MP1C	Z	.632	.632	0	%100
109	MP3B	Х	0	0	0	%100
110	MP3B	Z	.632	.632	0	%100
111	MP4B	Х	0	0	0	%100
112	MP4B	Z	.632	.632	0	%100
113	MP2B	Х	0	0	0	%100
114	MP2B	Z	.765	.765	0	%100
115	MP1B	Х	0	0	0	%100
116	MP1B	Z	.632	.632	0	%100
117	OVP2	X	0	0	0	%100
118	OVP2	Z	.517	.517	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	X	316	316	0	%100
2	M1	Z	.548	.548	0	%100
3	M4	Х	118	118	0	%100
4	M4	Z	.205	.205	0	%100
5	M10	X	3	3	0	%100
6	M10	Z	.52	.52	0	%100
7	MP3A	X	316	316	0	%100
8	MP3A	Z	.547	.547	0	%100
9	MP4A	X	316	316	0	%100
10	MP4A	Z	.547	.547	0	%100
11	MP2A	Х	383	383	0	%100
12	MP2A	Z	.663	.663	0	%100
13	MP1A	X	316	316	0	%100
14	MP1A	Z	.547	.547	0	%100
15	M43	Х	3	3	0	%100
16	M43	Z	.52	.52	0	%100
17	M46	X	599	599	0	%100
18	M46	Z	1.037	1.037	0	%100
19	M51B	Х	333	333	0	%100
20	M51B	Z	.576	.576	0	%100
21	M52B	X	0	0	0	%100
22	M52B	Z	0	0	0	%100
23	M76	X	2	2	0	%100
24	M76	Z	.346	.346	0	%100
25	M77	X	61	61	0	%100
26	M77	Z	1.056	1.056	0	%100
27	M80	X	642	642	0	%100
28	M80	Z	1.113	1.113	0	%100
29	M84	X	2	2	0	%100
30	M84	Z	.346	.346	0	%100
31	M85	Х	0	0	0	%100
32	M85	Z	0	0	0	%100
33	M91	Х	0	0	0	%100
34	M91	Z	0	0	0	%100
35	M52A	Х	118	118	0	%100
36	M52A	Z	.205	.205	0	%100
37	M53	Х	3	3	0	%100
38	M53	Z	.52	.52	0	%100
39	M54	X	3	3	0	%100
40	M54	Z	.52	.52	0	%100
41	M55	Х	599	599	0	%100

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	
42	M55	Z	1.037	1.037	0	%100
43	M58A	X	0	0	0	%100
44	M58A	Z	0	0	0	%100
45	M59A	X	333	333	0	%100
46	M59A	Z	.576	.576	0	%100
47	M63	X	2	2	0	%100
48	M63	Z	.346	.346	0	%100
49	M64	Х	0	0	0	%100
50	M64	Z	0	0	0	%100
51	M66	X	0	0	0	%100
52	M66	Z	0	0	0	%100
53	M68	X	2	2	0	%100
54	M68	Z	.346	.346	0	%100
55	M69	X	61	61	0	%100
56	M69	Z	1.056	1.056	0	%100
57	<u>M71</u>	X	642	642	0	%100
58	M71	Z	1.113	1.113	0	%100
59	M76A	X	473	473	0	%100
60	M76A	Z	.819	.819	0	%100
61	M77A	X Z	0	0	0	%100
62	M77A		0	0	0	<u>%100</u>
63	M78	X Z	0	0	0	%100
64	M78		0	0		%100 %100
65 66	M79A M79A	X Z	0	0	0	%100 %100
67	M79A M82	X	333	333	0	%100 %100
68	M82	Z	.576	.576	0	%100
69	M83A	X	333	333	0	%100
70	M83A	Z	.576	.576	0	%100
70	M87	X	798	798	0	%100
72	M87	Z	1.383	1.383	0	%100
73	M88A	X	61	61	0	%100
74	M88A	Z	1.056	1.056	0	%100
75	M90	X	642	642	0	%100
76	M90	Z	1.113	1.113	0	%100
77	M92A	X	798	798	0	%100
78	M92A	Z	1.383	1.383	0	%100
79	M93	X	61	61	0	%100
80	M93	Z	1.056	1.056	0	%100
81	M95	X	642	642	0	%100
82	M95	Z	1.113	1.113	0	%100
83	M82A	Х	316	316	0	%100
84	M82A	Z	.548	.548	0	%100
85	M91B	X	0	0	0	%100
86	M91B	Z	0	0	0	%100
87	M100	Х	237	237	0	%100
88	M100	Z	.411	.411	0	%100
89	M105	X	237	237	0	%100
90	M105	Z	.411	.411	0	%100
91	M110	Х	0	0	0	%100
92	M110	Z	0	0	0	%100
93	M121	X	295	295	0	%100
94	M121	Z	.51	.51	0	%100
95	M122	X	0	0	0	%100
96	M122	Z	0	0	0	%100
97	M123	X	295	295	0	%100
98	M123	Z	.51	.51	0	%100
	A-3D Version 17.(AV468327-VZW MT LO H.r3		Page 158

Company Designer	:
Job Number Model Name	:

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
99	OVP1	Х	258	258	0	%100
100	OVP1	Z	.448	.448	0	%100
101	MP3C	Х	316	316	0	%100
102	MP3C	Z	.547	.547	0	%100
103	MP4C	X	316	316	0	%100
104	MP4C	Z	.547	.547	0	%100
105	MP2C	X	383	383	0	%100
106	MP2C	Z	.663	.663	0	%100
107	MP1C	X	316	316	0	%100
108	MP1C	Z	.547	.547	0	%100
109	MP3B	X	316	316	0	%100
110	MP3B	Z	.547	.547	0	%100
111	MP4B	X	316	316	0	%100
112	MP4B	Z	.547	.547	0	%100
113	MP2B	Х	383	383	0	%100
114	MP2B	Z	.663	.663	0	%100
115	MP1B	X	316	316	0	%100
116	MP1B	Z	.547	.547	0	%100
117	OVP2	Х	258	258	0	%100
118	OVP2	Z	.448	.448	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	M1		183	- 183	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	M1	Z	.105	.105	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	M4		615	615	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		M4		.355	.355	0	%100
7 MP3A X 547 547 0 $%100$ 8 MP3A Z $.316$ $.316$ 0 $%100$ 9 MP4A X 547 547 0 $%100$ 10 MP4A Z $.316$ $.316$ 0 $%100$ 11 MP2A X 663 663 0 $%100$ 12 MP2A Z $.383$ $.383$ 0 $%100$ 13 MP1A X 547 547 0 $%100$ 14 MP1A Z $.316$ $.316$ 0 $%100$ 14 MP1A Z $.316$ $.316$ 0 $%100$ 15 M43 X 173 173 0 $%100$ 16 M43 Z $.2$ 2 0 $%100$ 16 M46 Z $.2$ 2 0	5	M10	X	173	173	0	%100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	M10	Z	.1	.1	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	MP3A	X		547	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	MP3A	Z	.316	.316	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	MP4A	X	547	547	0	%100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	MP4A	Z	.316	.316	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	MP2A	X	663	663	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	MP2A	Z	.383	.383	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	MP1A	Х	547	547	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	MP1A	Z	.316	.316	0	%100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	M43		173	173	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16	M43	Z	.1	.1	0	%100
19 M51B X 768 768 0 %100 20 M51B Z .443 .443 0 %100 21 M52B X 192 .192 0 %100 22 M52B Z .111 .111 0 %100 23 M76 X -1.037 -1.037 0 %100 24 M76 Z .599 .599 0 %100 25 M77 X -1.408 -1.408 0 %100 26 M77 Z .813 .813 0 %100 27 M80 X -1.484 -1.408 0 %100 27 M80 Z .857 .857 0 %100 28 M80 Z .857 .0 %100 %100 30 M84 Z .599 .599 .0 %100 %100 %100 %100		M46	X				%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	M46		.2	.2	0	%100
21 M52B X 192 192 0 %100 22 M52B Z .111 .111 0 %100 23 M76 X -1.037 -1.037 0 %100 24 M76 Z .599 .599 0 %100 25 M77 X -1.408 -1.408 0 %100 26 M77 Z .813 .813 0 %100 27 M80 X -1.484 -0 %100 28 M80 Z .857 .857 0 %100 29 M84 X -1.037 -1.037 0 %100 30 M84 Z .599 .599 0 %100 31 M85 X 352 352 0 %100	19	M51B	X	768	768	0	%100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		M51B		.443	.443		%100
23 M76 X -1.037 -1.037 0 %100 24 M76 Z .599 .599 0 %100 25 M77 X -1.408 -1.408 0 %100 26 M77 Z .813 .813 0 %100 27 M80 X -1.484 0 %100 28 M80 Z .857 .857 0 %100 29 M84 X -1.037 -1.037 0 %100 30 M84 Z .599 .599 0 %100 31 M85 X 352 352 0 %100		M52B					%100
24 M76 Z .599 .599 0 %100 25 M77 X -1.408 -1.408 0 %100 26 M77 Z .813 .813 0 %100 27 M80 X -1.484 -1.484 0 %100 28 M80 Z .857 .857 0 %100 29 M84 X -1.037 -1.037 0 %100 30 M84 Z .599 .599 0 %100 31 M85 X 352 352 0 %100	22			.111			%100
25 M77 X -1.408 -1.408 0 %100 26 M77 Z .813 .813 0 %100 27 M80 X -1.484 -1.484 0 %100 28 M80 Z .857 .857 0 %100 29 M84 X -1.037 -1.037 0 %100 30 M84 Z .599 .599 0 %100 31 M85 X 352 352 0 %100	23	M76	X	-1.037	-1.037		%100
26 M77 Z .813 0 %100 27 M80 X -1.484 -1.484 0 %100 28 M80 Z .857 .857 0 %100 29 M84 X -1.037 -1.037 0 %100 30 M84 Z .599 .599 0 %100 31 M85 X 352 352 0 %100				.599	.599		%100
27 M80 X -1.484 -1.484 0 %100 28 M80 Z .857 .857 0 %100 29 M84 X -1.037 -1.037 0 %100 30 M84 Z .599 .599 0 %100 31 M85 X 352 352 0 %100							
28 M80 Z .857 .857 0 %100 29 M84 X -1.037 -1.037 0 %100 30 M84 Z .599 .599 0 %100 31 M85 X 352 352 0 %100		M77		.813	.813	0	%100
29 M84 X -1.037 -1.037 0 %100 30 M84 Z .599 .599 0 %100 31 M85 X 352 352 0 %100		M80	X			0	
30 M84 Z .599 .599 0 %100 31 M85 X 352 352 0 %100							
31 M85 X352352 0 %100							
				.599	.599		
00 N05 7 000 000 000 000			X				
	32	M85	Z	.203	.203	0	%100
33 M91 X371371 0 %100	33	M91	X	371	371	0	%100

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
34	M91	Z	.214	.214	0	%100
35	M52A	Х	0	0	0	%100
36	M52A	Z	0	0	0	%100
37	M53	X	693	693	0	%100
38	M53	Z	.4	.4	0	%100
39	M54	X	693	693	0	%100
40	M54	Z	.4	.4	0	%100
41	M55	Х	-1.383	-1.383	0	%100
42	M55	Z	.798	.798	0	%100
43	M58A	Х	192	192	0	%100
44	M58A	Z	.111	.111	0	%100
45	M59A	Х	192	192	0	%100
46	M59A	Z	.111	.111	0	%100
47	M63	Х	0	0	0	%100
48	M63	Z	0	0	0	%100
49	M64	Х	352	352	0	%100
50	M64	Z	.203	.203	0	%100
51	M66	Х	371	371	0	%100
52	M66	Z	.214	.214	0	%100
53	M68	Х	0	0	0	%100
54	M68	Z	0	0	0	%100
55	M69	Х	352	352	0	%100
56	M69	Z	.203	.203	0	%100
57	M71	Х	371	371	0	%100
58	M71	Z	.214	.214	0	%100
59	M76A	Х	615	615	0	%100
60	M76A	Z	.355	.355	0	%100
61	M77A	Х	173	173	0	%100
62	M77A	Z	.1	.1	0	%100
63	M78	Х	173	173	0	%100
64	M78	Z	.1	.1	0	%100
65	M79A	Х	346	346	0	%100
66	M79A	Z	.2	.2	0	%100
67	M82	Х	192	192	0	%100
68	M82	Z	.111	.111	0	%100
69	M83A	Х	768	768	0	%100
70	M83A	Z	.443	.443	0	%100
71	M87	Х	-1.037	-1.037	0	%100
72	M87	Z	.599	.599	0	%100
73	M88A	Х	352	352	0	%100
74	M88A	Z	.203	.203	0	%100
75	M90	Х	371	371	0	%100
76	M90	Z	.214	.214	0	%100
77	M92A	Х	-1.037	-1.037	0	%100
78	M92A	Z	.599	.599	0	%100
79	M93	X	-1.408	-1.408	0	%100
80	M93	Z	.813	.813	0	%100
81	M95	X	-1.484	-1.484	0	%100
82	M95	Z	.857	.857	0	%100
83	M82A	Х	731	731	0	%100
84	M82A	Z	.422	.422	0	%100
85	M91B	X	183	183	0	%100
86	M91B	Z	.105	.105	0	%100
87	M100	X	137	137	0	%100
88	M100	Z	.079	.079	0	%100
89	M105	X	547	547	0	%100
90	M105	Z	.316	.316	0	%100
						Page 160

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
91	M110	Х	137	137	0	%100
92	M110	Z	.079	.079	0	%100
93	M121	Х	68	68	0	%100
94	M121	Z	.393	.393	0	%100
95	M122	Х	17	17	0	%100
96	M122	Z	.098	.098	0	%100
97	M123	Х	17	17	0	%100
98	M123	Z	.098	.098	0	%100
99	OVP1	Х	448	448	0	%100
100	OVP1	Z	.258	.258	0	%100
101	MP3C	Х	547	547	0	%100
102	MP3C	Z	.316	.316	0	%100
103	MP4C	Х	547	547	0	%100
104	MP4C	Z	.316	.316	0	%100
105	MP2C	Х	663	663	0	%100
106	MP2C	Z	.383	.383	0	%100
107	MP1C	Х	547	547	0	%100
108	MP1C	Z	.316	.316	0	%100
109	MP3B	Х	547	547	0	%100
110	MP3B	Z	.316	.316	0	%100
111	MP4B	Х	547	547	0	%100
112	MP4B	Z	.316	.316	0	%100
113	MP2B	Х	663	663	0	%100
114	MP2B	Z	.383	.383	0	%100
115	MP1B	Х	547	547	0	%100
116	MP1B	Z	.316	.316	0	%100
117	OVP2	Х	448	448	0	%100
118	OVP2	Z	.258	.258	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
1	M1	Х	0	0	0	%100
2	M1	Z	0	0	0	%100
3	M4	Х	946	946	0	%100
4	M4	Z	0	0	0	%100
5	M10	X	0	0	0	%100
6	M10	Z	0	0	0	%100
7	MP3A	Х	632	632	0	%100
8	MP3A	Z	0	0	0	%100
9	MP4A	X	632	632	0	%100
10	MP4A	Z	0	0	0	%100
11	MP2A	Х	765	765	0	%100
12	MP2A	Z	0	0	0	%100
13	MP1A	Х	632	632	0	%100
14	MP1A	Z	0	0	0	%100
15	M43	Х	0	0	0	%100
16	M43	Z	0	0	0	%100
17	M46	Х	0	0	0	%100
18	M46	Z	0	0	0	%100
19	M51B	Х	665	665	0	%100
20	M51B	Z	0	0	0	%100
21	M52B	Х	665	665	0	%100
22	M52B	Z	0	0	0	%100
23	M76	Х	-1.597	-1.597	0	%100
24	M76	Z	0	0	0	%100
25	M77	Х	-1.22	-1.22	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

26	Member Label M77	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		End Location[ft,
26 27	M80	Z X	-1.285	0 	0	%100 %100
28	M80	Z	0	0	0	%100
29	M84	X	-1.597	-1.597	0	%100
30	M84	Z	0	0	0	%100
31	M85	X	-1.22	-1.22	0	%100
32	M85	Z	0	0	0	%100
33	M91	X	-1.285	-1.285	0	%100
34	M91	Z	0	0	0	%100
35	M52A	X	237	237	0	%100
36	M52A	Z	0	0	0	%100
37	M53	Х	6	6	0	%100
38	M53	Z	0	0	0	%100
39	M54	Х	6	6	0	%100
40	M54	Z	0	0	0	%100
41	M55	X	-1.198	-1.198	0	%100
42	M55	Z	0	0	0	%100
43	M58A	Х	665	665	0	%100
44	M58A	Z	0	0	0	%100
45	M59A	X	0	0	0	%100
46	M59A	Z	0	0	0	%100
47	M63	X	399	399	0	%100
48	M63	Z	0	0	0	%100
49	M64	X	-1.22	-1.22	0	%100
50	M64	Z	0	0	0	<u>%100</u>
51	M66	X Z	-1.285	-1.285	0	<u>%100</u>
<u>52</u> 53	M66	X	0	0 399	0	<u>%100</u>
54	M68 M68	Z	399 0	3990	0	%100 %100
55	M69	X	0	0	0	%100
56	M69	Z	0	0	0	%100
57	M03	X	0	0	0	%100
58	M71	Z	0	0	0	%100
59	M76A	X	237	237	0	%100
60	M76A	Z	0	0	0	%100
61	M77A	X	6	6	0	%100
62	M77A	Z	0	0	0	%100
63	M78	X	6	6	0	%100
64	M78	Z	0	0	0	%100
65	M79A	X	-1.198	-1.198	0	%100
66	M79A	Z	0	0	0	%100
67	M82	Х	0	0	0	%100
68	M82	Z	0	0	0	%100
69	M83A	Х	665	665	0	%100
70	<u>M83A</u>	Z	0	0	0	%100
71	<u>M87</u>	X	399	399	0	%100
72	<u>M87</u>	Z	0	0	0	%100
73	<u>M88A</u>	X	0	0	0	%100
74	<u>M88A</u>	Z	0	0	0	<u>%100</u>
75	<u>M90</u>	X	0	0	0	%100
76	<u>M90</u>	Z	0	0	0	<u>%100</u>
77	M92A	X Z	399	399	0	%100 %100
78	M92A		0	0	0	%100 %100
79 80	M93 M93	X Z	-1.22	-1.22	0	%100 %100
80	M93	X	0 -1.285	-1.285	0	%100 %100
82	M95	Z	-1.285	-1.265	0	%100
02	NI30	_	U U	U	V	/0100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
83	M82A	X	633	- 633	0	%100
84	M82A	Z	0	0	0	%100
85	M91B	X	633	633	0	%100
86	M91B	Z	0	0	0	%100
87	M100	X	0	0	0	%100
88	M100	Z	0	0	0	%100
89	M105	X	474	474	0	%100
90	M105	Z	0	0	0	%100
91	M110	X	474	474	0	%100
92	M110	Z	0	0	0	%100
93	M121	X	589	589	0	%100
94	M121	Z	0	0	0	%100
95	M122	X	589	589	0	%100
96	M122	Z	0	0	0	%100
97	M123	X	0	0	0	%100
98	M123	Z	0	0	0	%100
99	OVP1	Х	517	517	0	%100
100	OVP1	Z	0	0	0	%100
101	MP3C	X	632	632	0	%100
102	MP3C	Z	0	0	0	%100
103	MP4C	X	632	632	0	%100
104	MP4C	Z	0	0	0	%100
105	MP2C	X	765	765	0	%100
106	MP2C	Z	0	0	0	%100
107	MP1C	X	632	632	0	%100
108	MP1C	Z	0	0	0	%100
109	MP3B	X	632	632	0	%100
110	MP3B	Z	0	0	0	%100
111	MP4B	X	632	632	0	%100
112	MP4B	Z	0	0	0	%100
113	MP2B	X	765	765	0	%100
114	MP2B	Z	0	0	0	%100
115	MP1B	X	632	632	0	%100
116	MP1B	Z	0	0	0	%100
117	OVP2	Х	517	517	0	%100
118	OVP2	Z	0	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	183	183	0	%100
2	M1	Z	105	105	0	%100
3	M4	Х	615	615	0	%100
4	M4	Z	355	355	0	%100
5	M10	Х	173	173	0	%100
6	M10	Z	1	1	0	%100
7	MP3A	Х	547	547	0	%100
8	MP3A	Z	316	316	0	%100
9	MP4A	Х	547	547	0	%100
10	MP4A	Z	316	316	0	%100
11	MP2A	Х	663	663	0	%100
12	MP2A	Z	383	383	0	%100
13	MP1A	Х	547	547	0	%100
14	MP1A	Z	316	316	0	%100
15	M43	Х	173	173	0	%100
16	M43	Z	1	1	0	%100
17	M46	Х	346	346	0	%100

IRISA	Company Designer Job Number	: : :
A NEMETSCHEK COMPANY	Model Name	÷

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		.End Location[ft,
18	M46	Z	2	2	0	%100
19	M51B	X	192	192	0	%100
20	M51B	Z	111	111	0	%100
21	M52B	Х	768	768	0	%100
22	M52B	Z	443	443	0	%100
23	M76	X	-1.037	-1.037	0	%100
24	M76	Z	599	599	0	%100
25	M77	X	352	352	0	%100
26	M77	Z	203	203	0	%100
27	<u>M80</u>	X	371	371	0	%100
28	<u>M80</u>	Z	214	214	0	%100
29	<u>M84</u>	X Z	-1.037	-1.037	0	%100
<u>30</u> 31	<u>M84</u> M85		<u>599</u> -1.408	<u>599</u> -1.408	0	%100 %100
32	M85	X Z	813	813	0	%100
33	M91	X	-1.484	-1.484	0	%100
34	M91	Z	857	857	0	%100
35	M52A	X	615	615	0	%100
36	M52A	Z	355	355	0	%100
37	M53	X	173	173	0	%100
38	M53	Z	1	1	0	%100
39	M54	Х	173	173	0	%100
40	M54	Z	1	1	0	%100
41	M55	X	346	346	0	%100
42	M55	Z	2	2	0	%100
43	M58A	Х	768	768	0	%100
44	M58A	Z	443	443	0	%100
45	M59A	X	192	192	0	%100
46	M59A	Z	111	111	0	%100
47	M63	X Z	-1.037	-1.037	0	%100
48 49	M63 M64	X	<u>599</u> -1.408	<u>599</u> -1.408	0	%100 %100
50	M64	Z	813	813	0	%100
51	M66	X	-1.484	-1.484	0	%100
52	M66	Z	857	857	0	%100
53	M68	X	-1.037	-1.037	0	%100
54	M68	Z	599	599	0	%100
55	M69	X	352	352	0	%100
56	M69	Z	203	203	0	%100
57	M71	X	371	371	0	%100
58	M71	Z	214	214	0	%100
59	M76A	Х	0	0	0	%100
60	M76A	Z	0	0	0	%100
61	M77A	X	693	693	0	%100
62	M77A	Z	4	4	0	%100
63	M78	X	693	693	0	%100
64	M78	Z	4	4	0	%100
65	M79A	X	-1.383	-1.383	0	%100
66	M79A	Z	798	798	0	<u>%100</u>
67	M82	X Z	192	192	0	%100
68 69	M82 M83A	X	111 192	<u>111</u> 192	0	<u>%100</u> %100
70	M83A	Z	192	192	0	%100
70	M87	X	111	111	0	%100
72	M87	Z	0	0	0	%100
73	M88A	X	352	352	0	%100
74	M88A	Z	203	203	0	%100
	A-3D Version 17 (N468327-VZW MT LO H r3		Page 164

IRISA	Company Designer Job Number Model Name	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		.End Location[ft,
75	M90	X				%100
76	M90	Z	214	214	0	%100
77	M92A	X	0	0	0	%100
78	M92A	Z	0	0	0	%100
79	M93	X	352	352	0	%100
80	M93	Z	203	203	0	%100
81	M95	X	371	371	0	%100
82	M95	Z	214	214	0	%100
83	M82A	X	183	183	0	%100
84	M82A	Z	105	105	0	%100
85	M91B	X	731	731	0	%100
86	M91B	Z	422	422	0	%100
87	M100	X	137	137	0	%100
88	M100	Z	079	079	0	%100
89	M105	X	137	137	0	%100
90	M105	Z	079	079	0	%100
91	M110	X	547	547	0	%100
92	M110	Z	316	316	0	%100
93	M121	X	17	17	0	%100
94	M121	Z	098	098	0	%100
95	M122	Х	68	68	0	%100
96	M122	Z	393	393	0	%100
97	M123	X	17	17	0	%100
98	M123	Z	098	098	0	%100
99	OVP1	X	448	448	0	%100
100	OVP1	Z	258	258	0	%100
101	MP3C	X	547	547	0	%100
102	MP3C	Z	316	316	0	%100
103	MP4C	X	547	547	0	%100
104	MP4C	Z	316	316	0	%100
105	MP2C	X	663	663	0	%100
106	MP2C	Z	383	383	0	%100
107	MP1C	Х	547	547	0	%100
108	MP1C	Z	316	316	0	%100
109	MP3B	Х	547	547	0	%100
110	MP3B	Z	316	316	0	%100
111	MP4B	Х	547	547	0	%100
112	MP4B	Z	316	316	0	%100
113	MP2B	Х	663	663	0	%100
114	MP2B	Z	383	383	0	%100
115	MP1B	X	547	547	0	%100
116	MP1B	Z	316	316	0	%100
117	OVP2	X	448	448	0	%100
118	OVP2	Z	258	258	0	%100

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg))

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M1	Х	316	- 316	0	%100
2	M1	Z	548	548	0	%100
3	M4	Х	118	118	0	%100
4	M4	Z	205	205	0	%100
5	M10	X	3	3	0	%100
6	M10	Z	52	52	0	%100
7	MP3A	Х	316	316	0	%100
8	MP3A	Z	547	547	0	%100
9	MP4A	X	316	316	0	%100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	.End Location[ft,
10	MP4A	Z	547	547	0	%100
11	MP2A	Х	383	383	0	%100
12	MP2A	Z	663	663	0	%100
13	MP1A	Х	316	316	0	%100
14	MP1A	Z	547	547	0	%100
15	M43	Х	3	3	0	%100
16	M43	Z	52	52	0	%100
17	M46	Х	599	599	0	%100
18	M46	Z	-1.037	-1.037	0	%100
19	M51B	X	0	0	0	%100
20	M51B	Z	0	0	0	%100
21	M52B	Х	333	333	0	%100
22	M52B	Z	576	576	0	%100
23	M76	Х	2	2	0	%100
24	M76	Z	346	346	0	%100
25	M77	Х	0	0	0	%100
26	M77	Z	0	0	0	%100
27	M80	X	0	0	0	%100
28	M80	Z	0	0	0	%100
29	M84	Х	2	2	0	%100
30	M84	Z	346	346	0	%100
31	M85	Х	61	61	0	%100
32	M85	Z	-1.056	-1.056	0	%100
33	M91	Х	642	642	0	%100
34	M91	Z	-1.113	-1.113	0	%100
35	M52A	Х	473	473	0	%100
36	M52A	Z	819	819	0	%100
37	M53	Х	0	0	0	%100
38	M53	Z	0	0	0	%100
39	M54	X	0	0	0	%100
40	M54	Z	0	0	0	%100
41	M55	X	0	0	0	%100
42	M55	Z	0	0	0	%100
43	M58A	X	333	333	0	%100
44	M58A	Z	576	576	0	%100
45	M59A	X	333	333	0	%100
46	M59A	Z	576	576	0	%100
47	M63	X	798	798	0	%100
48	M63	Z	-1.383	-1.383	0	%100
49	M64	X	61	61	0	%100
50	M64	Z	-1.056	-1.056	0	%100
51	M66	X	642	642	0	%100
52	M66	Z	-1.113	-1.113	0	%100
53	M68	X	798	798	0	%100
54	M68	Z	-1.383	-1.383	0	%100
55	M69	X	61	61	0	%100
56	M69	Z	-1.056	-1.056	0	%100
57	M71	X	642	642	0	%100
58	M71	Z	-1.113	-1.113	0	%100
59	M76A	X	118	118	0	%100
60	M76A	Z	205	205	0	%100
61	M77A	X	3	3	0	%100
62	M77A	Z	52	52	0	%100
63	M78	X	3	3	0	%100
64	M78	Z	52	52	0	%100
65	M79A	X	599	599	0	%100
66	M79A	Z	-1.037	-1.037	0	%100
		_	1.001	1.001		70100

	Company	:
	Designer	:
	Job Number	:
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 76 : Structure Wm (330 Deg)) (Continued)

			BECTO: Structure V			
	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]		End Location[ft,
67	M82	X	333	333	0	%100
68	M82	Z	576	576	0	%100
69	<u>M83A</u>	X	0	0	0	%100
70	<u>M83A</u>	Z	0	0	0	%100
71	M87	<u>X</u>	2	2	0	%100
72	M87	Z	346	346	0	%100
73	<u>M88A</u>	X	61	61	0	%100
74	M88A	Z	-1.056	-1.056	0	%100
75	M90	Х	642	642	0	%100
76	M90	Z	-1.113	-1.113	0	%100
77	M92A	X	2	2	0	%100
78	M92A	Z	346	346	0	%100
79	M93	X	0	0	0	%100
80	M93	Z	0	0	0	%100
81	M95	X	0	0	0	%100
82	M95	Z	0	0	0	%100
83	M82A	X	0	0	0	%100
84	M82A	Z	0	0	0	%100
85	M91B	X	316	316	0	%100
86	M91B	Z	548	548	0	%100
87	M100	Х	237	237	0	%100
88	M100	Z	411	411	0	%100
89	M105	X	0	0	0	%100
90	M105	Z	0	0	0	%100
91	M110	Х	237	237	0	%100
92	M110	Z	411	411	0	%100
93	M121	Х	0	0	0	%100
94	M121	Z	0	0	0	%100
95	M122	Х	295	295	0	%100
96	M122	Z	51	51	0	%100
97	M123	X	295	295	0	%100
98	M123	Z	51	51	0	%100
99	OVP1	Х	258	258	0	%100
100	OVP1	Z	448	448	0	%100
101	MP3C	X	316	316	0	%100
102	MP3C	Z	547	547	0	%100
103	MP4C	X	316	316	0	%100
104	MP4C	Z	547	547	0	%100
105	MP2C	X	383	383	0	%100
106	MP2C	Z	663	663	0	%100
107	MP1C	X	316	316	0	%100
108	MP1C	Z	547	547	0	%100
109	MP3B	X	316	316	0	%100
110	MP3B	Z	547	547	0	%100
111	MP4B	X	316	316	0	%100
112	MP4B	Z	547	547	0	%100
113	MP2B	X	383	383	0	%100
114	MP2B	Z	663	663	0	%100
115	MP1B	X	316	316	0	%100
116	MP1B	Z	547	547	0	%100
117	OVP2	X	258	258	0	%100
118	OVP2	Z	448	448	0	%100
110	UVF2	4	++0	440	U	/0100

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
1	M58A	Y	-1.597	-4.066	0	.832
-						

IRISA	Company Designer Job Number	
A NEMETSCHEK COMPANY	Model Name	:

Member Distributed Loads (BLC 87 : BLC 39 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
2	M58A	Y	-4.066	-6.636	.832	1.665
3	M58A	Y	-6.636	-7.874	1.665	2.497
4	M58A	Y	-7.874	-6.293	2.497	3.329
5	M58A	Y	-6.293	-3.33	3.329	4.162
6	M59A	Y	-3.329	-6.32	0	.832
7	M59A	Y	-6.32	-7.943	.832	1.665
8	M59A	Y	-7.943	-6.773	1.665	2.497
9	M59A	Y	-6.773	-4.256	2.497	3.329
10	M59A	Y	-4.256	-1.812	3.329	4.162
11	M82	Y	-1.81	-4.257	0	.832
12	M82	Y	-4.257	-6.777	.832	1.665
13	M82	Y	-6.777	-7.943	1.665	2.497
14	M82	Y	-7.943	-6.319	2.497	3.329
15	M82	Y	-6.319	-3.329	3.329	4.162
16	M83A	Y	-3.33	-6.293	0	.832
17	M83A	Y	-6.293	-7.872	.832	1.665
18	M83A	Y	-7.872	-6.634	1.665	2.497
19	M83A	Y	-6.634	-4.065	2.497	3.329
20	M83A	Y	-4.065	-1.6	3.329	4.162
21	M51B	Y	-1.601	-4.064	0	.832
22	M51B	Y	-4.064	-6.634	.832	1.665
23	M51B	Y	-6.634	-7.874	1.665	2.497
24	M51B	Y	-7.874	-6.293	2.497	3.329
25	M51B	Y	-6.293	-3.33	3.329	4.162
26	M52B	Y	-3.336	-6.325	0	.832
27	M52B	Y	-6.325	-7.939	.832	1.665
28	M52B	Y	-7.939	-6.771	1.665	2.497
29	M52B	Y	-6.771	-4.258	2.497	3.329
30	M52B	Y	-4.258	-1.807	3.329	4.162

Member Distributed Loads (BLC 88 : BLC 40 Transient Area Loads)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft.	End Location[ft,
1	M58A	Y	-3.514	-8.944	0	.832
2	M58A	Y	-8.944	-14.6	.832	1.665
3	M58A	Y	-14.6	-17.322	1.665	2.497
4	M58A	Y	-17.322	-13.844	2.497	3.329
5	M58A	Y	-13.844	-7.326	3.329	4.162
6	M59A	Y	-7.323	-13.905	0	.832
7	M59A	Y	-13.905	-17.474	.832	1.665
8	M59A	Y	-17.474	-14.902	1.665	2.497
9	M59A	Y	-14.902	-9.363	2.497	3.329
10	M59A	Y	-9.363	-3.986	3.329	4.162
11	M82	Y	-3.983	-9.366	0	.832
12	M82	Y	-9.366	-14.909	.832	1.665
13	M82	Y	-14.909	-17.475	1.665	2.497
14	M82	Y	-17.475	-13.902	2.497	3.329
15	M82	Y	-13.902	-7.324	3.329	4.162
16	M83A	Y	-7.326	-13.844	0	.832
17	M83A	Y	-13.844	-17.319	.832	1.665
18	M83A	Y	-17.319	-14.595	1.665	2.497
19	M83A	Y	-14.595	-8.942	2.497	3.329
20	M83A	Y	-8.942	-3.519	3.329	4.162
21	M51B	Y	-3.523	-8.941	0	.832
22	M51B	Y	-8.941	-14.596	.832	1.665
23	M51B	Y	-14.596	-17.322	1.665	2.497
24	M51B	Y	-17.322	-13.844	2.497	3.329

Member Distributed Loads (BLC 88 : BLC 40 Transient Area Loads) (Continued)

	Member Label	Direction	Start Magnitude[lb/ft,F,ksf]	End Magnitude[lb/ft,F,ksf]	Start Location[ft	End Location[ft,
25	M51B	Y	-13.844	-7.325	3.329	4.162
26	M52B	Y	-7.34	-13.915	0	.832
27	M52B	Y	-13.915	-17.465	.832	1.665
28	M52B	Y	-17.465	-14.896	1.665	2.497
29	M52B	Y	-14.896	-9.367	2.497	3.329
30	M52B	Y	-9.367	-3.976	3.329	4.162

Member Area Loads (BLC 39 : Structure D)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N113	N111	N89	N90	Y	Two Way	005
2	N117	N139	N141	N118	Y	Two Way	005
3	N6	N87C	N87B	N7	Y	Two Way	005

Member Area Loads (BLC 40 : Structure Di)

	Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
1	N113	N111	N89	N90	Y	Two Way	011
2	N117	N139	N141	N118	Y	Two Way	011
3	N6	N87C	N87B	N7	Y	Two Way	011

Envelope Joint Reactions

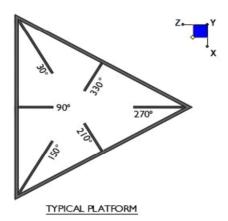
	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N3	max	1656.462	10	2333.639	13	2709.709	2	4.596	13	2.041	4	.386	4
2		min	-1657.066	4	666.878	7	-2869.999	8	.602	7	-2.045	10	168	10
3	N87D	max	2660.833	10	2407	21	1676.791	1	092	3	1.893	12	48	3
4		min	-2807.957	4	645.492	3	-1591.393	7	-2.77	45	-1.896	6	-4.42	45
5	N115	max	2352.332	11	2246.812	17	1878.966	1	492	11	1.635	8	3.91	17
6		min	-2210.725	5	613.819	11	-1802.634	7	-2.45	29	-1.629	2	.597	11
7	Totals:	max	6577.106	10	6724.697	17	6118.204	1						
8		min	-6577.11	4	2305.373	75	-6118.201	7						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Memb	Shape	Code Check	Loc[ft]	LC	Shear	.Loc[Dir	LC phi*F	phi*Pnt [phi*Mn	phi*Mn z	. Cb Eqn
1	MP3B	PIPE 2.0	.371	3.5	9	.080	3.5		11 1785	5 32130	1.872	1.872	1.7H1
2	M76	PL3/8x6	.344	0	4	.183	0	У	18 7067	7 72900	.57	9.113	1.3H1
3	MP3A	PIPE 2.0	.333	3.5	5	.085	3.5		7 1785	5 32130	1.872	1.872	1.6H1
4	MP3C	PIPE 2.0	.328	3.5	1	.089	3.5		3 1785	5 32130	1.872	1.872	1.8H1
5	M52A	HSS4X4X4	.324	0	42	.079	0	У	23 1246	5 139518	16.181	16.181	2.5H1
6	M64	PL3/8x6	.318	.167	4	.324	0	У	21 7160	1 72900	.57	9.113	1.3H1
7	MP2B	PIPE 2.5	.318	3.5	3	.097	3.5		10 3396	1 50715	3.596	3.596	1.8H1
8	M77	PL3/8x6	.310	.167	8	.316	0	У	14 7160	1 72900	.57	9.113	1.2H1
9	M93	PL3/8x6	.308	.167	10	.305	0	ý	16 7160	1 72900	.57	9.113	1.1H1
10	M88A	PL3/8x6	.306	.167	12	.323	0	V	17 7160	1 72900	.57	9.113	1.2H1
11	M69	PL3/8x6	.304	.167	2	.308	0	ý	21 7160	1 72900	.57	9.113	1.1H1
12	MP2C	PIPE 2.5	.302	3.5	9	.091	3.5		2 3396	1 50715	3.596	3.596	1.7H1
13	MP2A	PIPE 2.5	.300	3.5	9	.091	3.5		6 3396	1 50715	3.596	3.596	1.7H1
14	M87	PL3/8x6	.299	0	8	.191	0	y	22 7067	7 72900	.57	9.113	1.3H1
15	M4	HSS4X4X4	.294	0	15	.078	0	ý	15 1246	5 139518	16.181	16.181	3.2H1
16	M76A	HSS4X4X4	.291	0	20	.101	0	V	30 1246	5 139518	16.181	16.181	3.2H1
17	MP4B	PIPE 2.0	.270	3.5	9	.101	3.5		10 1785	5 32130	1.872	1.872	1.7H1
18	M63	PL3/8x6	.264	0	12	.158	0	V	14 7067	7., 72900	.57	9.113	1.2H1
19	M85	PL3/8x6	.263	.167	6	.298	0	ý	13 7160	1 72900	.57	9.113	1.1H1
20	M122	L2.5x2.5x4	.252	0	7	.036	.098	z	2 3560	7 38556	1.114	2.537	2.1H2

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Memb	Shape	Code Check	Loc[ft]	LC	Shear	.Loc[Dir	LC phi*P	phi*Pnt [phi*Mn	phi*Mn z	Cb Eqn
21	M123	L2.5x2.5x4	.250	0	3	.034	0	z	10 35607	38556	1.114	2.537	2.1H2
22	MP4A	PIPE 2.0	.250	3.5	41	.097	1.021		6 17855	32130	1.872	1.872	1.7H1
23	MP4C	PIPE 2.0	.247	3.5	1	.105	1.969		2 17855	32130	1.872	1.872	1.6H1
24	M84	PL3/8x6	.246	0	9	.271	0	V	20 70677	72900	.57	9.113	2.2H1
25	M121	L2.5x2.5x4	.243	0	11	.033	0	z	6 35607	38556	1.114	2.537	2.1H2
26	M68	PL3/8x6	.227	0	6	.274	0	V	15 70677	72900	.57	9.113	1.4H1
27	MP1A	PIPE 2.0	.210	3.5	9	.096	3.5		8 17855	32130	1.872	1.872	1.6H1
28	M92A	PL3/8x6	.202	0	1	.269	0	V	24 70677	72900	.57	9.113	2.2H1
29	MP1C	PIPE 2.0	.195	3.5	5	.095	3.5		4 17855	32130	1.872	1.872	1.7H1
30	M58A	L2x2x3	.195	4.162	10	.011	4.162	V	13 9823	23392.8	.558	1.127	1.4H2
31	MP1B	PIPE 2.0	.194	3.5	2	.087	3.5		12 17855	32130	1.872	1.872	1.5H1
32	M100	PIPE 2.0	.194	4.297	8	.113	1.172		7 6295	32130	1.872	1.872	2.7H1
33	M51B	L2x2x3	.193	4.162	2	.011	4.162	V	17 9823	23392.8	.558	1.127	1.4H2
34	M105	PIPE 2.0	.191	4.297	4	.113	1.172		3 6295	32130	1.872	1.872	2.7H1
35	M82	L2x2x3	.188	4.162	6	.012	4.162	V		23392.8	.558	1.119	1.3H2
36	M110	PIPE 2.0	.181	4.036	1	.114	1.172		10 6295	32130	1.872	1.872	2.7H1
37	M59A	L2x2x3	.174	0	8	.012	0	V	17 9823	23392.8	.558	1.119	1.3H2
38	M79A	PL1/2x6	.173	.516	4	.095	.516	V	49 66009	97200	1.012	12.15	1.4H1
39	M83A	L2x2x3	.173	0	4	.012	0	ý	13 9823	23392.8	.558	1.128	1.4H2
40	M55	PL1/2x6	.169	.516	8	.134	.516	V	48 66009	97200	1.012	12.15	1.4H1
41	M77A	HSS4X4X4	.162	2.375	18	.054	.223	z	6 13626	139518	16.181	16.181	1.6H1
42	M53	HSS4X4X4	.162	2.375	22	.056	.223	z	10 13626	139518	16.181	16.181	1.66 H1
43	OVP2	PIPE 2.0	.161	2.5	10	.021	2.5		10 28843	32130	1.872	1.872	1.9H1
44	OVP1	PIPE 2.0	.161	2.5	4	.021	2.5		4 28843	32130	1.872	1.872	1.9H1
45	M46	PL1/2x6	.159	.516	12	.092	.516	V	10 66009	97200	1.012	12.15	1.4H1
46	M10	HSS4X4X4	.158	2.375	14	.055	.223	z	2 13626	139518	16.181	16.181	1.6H1
47	M54	HSS4X4X4	.157	0	20	.046	2.152	z	8 13626	139518	16.181	16.181	1.6H1
48	M78	HSS4X4X4	.157	0	16	.046	2.152	z	4 13626	139518	16.181	16.181	1.6H1
49	M43	HSS4X4X4	.152	0	24	.043	0	V	16 13626	139518	16.181	16.181	1.6H1
50	M52B	L2x2x3	.150	0	12	.012	0	V	21 9823	23392.8	.558	1.118	1.3H2
51	M1	PIPE 3.0	.117	7.813	9	.072	4.557		7 28250	65205	5.749	5.749	2.0H1
52	M82A	PIPE_3.0	.112	7.813	16	.077	4.557		3 28250	65205	5.749	5.749	1.8H1
53	M91B	PIPE 3.0	.110	7.813	13	.064	4.557		12 28250	65205	5.749	5.749	1.8H1
54	M71	PL1/2x6	.065	.112	9	.128	0	У	47 96757	97200	1.012	12.15	1.0H1
55	M95	PL1/2x6	.061	.112	5	.046	.112	ý	2 96757	97200	1.012	12.15	1.0H1
56	M91	PL1/2x6	.061	.112	2	.048	.112	У	9 96757	97200	1.012	12.15	1.1H1
57	M66	PL1/2x6	.057	.112	9	.054	0	ý	7 96757	97200	1.012	12.15	1.2H1
58	M90	PL1/2x6	.055	.112	5	.084	0	y	49 96757	97200	1.012	12.15	1.1H1
59	M80	PL1/2x6	.051	.112	1	.052	0	ý	10 96757	97200	1.012	12.15	1.1H1


Client:	Verizon	Date:	10/25/2021
Site Name:	SPECTRASITE KERNAN		
Project No.	21944416A		
Title:	Mount Analysis	Page:	1

Version 3.1

I. Mount-to-Tower Connection Check

RISA Model Data

Nodes (labeled per RISA)	Orientation (per graphic of typical platform)
N87D	30
N3	270
N115	150

Tower Connection Bolt Checks

Any moment resistance?:

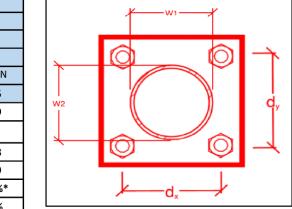
Bolt Quantity per Reaction:

d_x (in) (Delta X of typ. bolt config. sketch) : d_y (in) (Delta Y of typ. bolt config. sketch) : Bolt Type:

Bolt Diameter (in):

Required Tensile Strength (kips):

Required Shear Strength (kips):


Tensile Strength / bolt (kips):

Shear Strength / bolt (kips):

Tensile Capacity Overall:

Shear Capacity Overall:

	_
yes	
4	
6	
6	
A325N	
0.75	
20.9	
4.8	
29.8	
17.9	
17.5%*	
6.7%	

*Note: Tension reduction not required if tension or shear capacity < 30%

Tower Connection Plate and Weld Check

Connecting Standoff Member Shape: Plate Width (in): Plate Height (in): W1 (in): W2 (in): Fy (ksi, plate): t_{Plate} (in): Weld Size (1/16 in): Phi*Rn (kip/in): Required Weld Strength (kip/in): Plate Bending Capacity: Weld Capacity:

Rect
8
8
4
4
36
0.625
5
6.96
2.94
41.6%
42.3%

Max Plate Bending Strengths

Mu _{xx} (kip-in) :	10.3
Phi*Mn _{xx} (<i>kip-in</i>) :	25.3
Mu _{yy} (kip-in) :	0.2
Phi*Mn _{yy} <i>(kip-in)</i> :	25.3
1 In 10 In yy (kip in).	23.5

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – New Mount Passing MA Electronic pdf version of this can be downloaded at <u>https://pmi.vzwsmart.com</u> For additional questions and support, please reach out to pmisupport@colliersengineering.com

<u>**Purpose**</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown. NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped.
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely impacted by the install of the modification components. This may involve the install of wire rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool engineer for recommendations.
- The PMI can be accessed at the following portal: *https://pmi.vzwsmart.com*

Photo Requirements:

- Photos taken at ground level
 - Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations, pictures must be provided for all elevations that equipment was installed.
- <u>Photos taken at Mount Elevation</u>
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation of mounts. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.
- Photos of each installed mount; pictures shall also include connection hardware (Ubolts, bolts, nuts, all-threaded rods, etc.)
- Photos showing the installed mount elevation.

Antenna & equipment placement and Geometry Confirmation:

• The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.

<u>Special Instructions / Validation as required from the MA or any other information the contractor</u> <u>deems necessary to share that was identified:</u>

lssue:

Install four 84" long mount pipes per sector with a U-Value (Distance from bottom face horizontal to top of the mount pipe) of 42". Positions 1, 3, & 4 to be 84" long P2 STD pipes. Attach to face horizontal and support rail using kits provided crossover plates. Position 2 to be 84" long P2 ½ STD pipe. Attach to support rail with crossover plate (VZWSMART Part #: MSK2) and attach to face horizontal with crossover plate (VZWSMART Part #: MSK2).

Install the mount pipes evenly spaced along the face horizontal as shown in the rendered mount image in the report.

Install one Site Pro 1, Part #: HRK12 kit, 30" above the face horizontal.

Install two 36" long P2.0 STD OVP pipes. Install one on the standoff between alpha and beta sector and install the other on the standoff between beta and gamma sector. Attach each OVP pipe to the standoff horizontals with VZWSMART Part #: MSK6).

Response:

<u>Contractor certifies that the climbing facility / safety climb was not damaged or obstructed prior to</u> <u>starting work:</u>

□ Yes □ No

Contractor certifies no new damage/obstructions created during the current installation:

□ Yes □ No

<u>Contractor to certify the condition of the safety climb and verify no obstructions when leaving the site:</u>

□ Safety climb in good condition with no obstructions □ Safety Climb Damaged □ Safety Climb Obstructed

Comments:

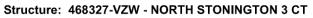
New Mount Certification:

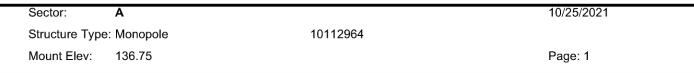
The contractor certifies that the New Mount installed is as specified in the Passing Mount Analysis.
 The contractor notes that the New Mount installed is not as specified and engineering approval was received for the New Mount installed.

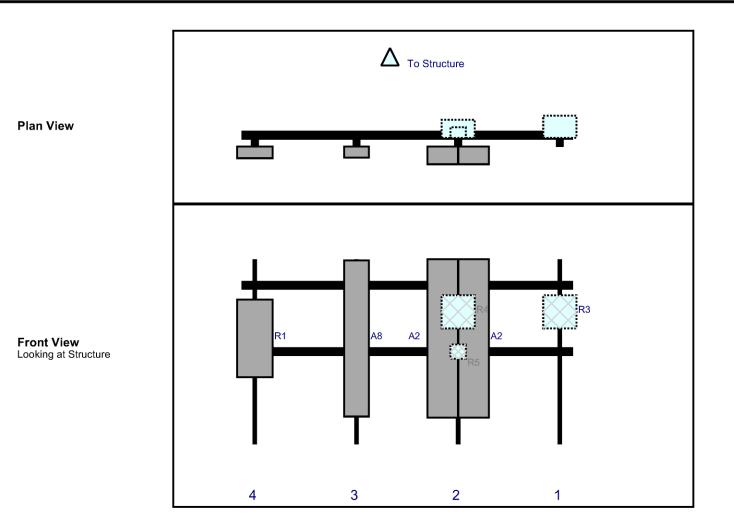
Antenna & equipment placement and Geometry Confirmation:

□ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.

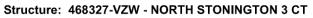
OR

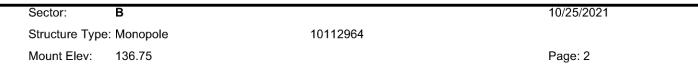

□ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.

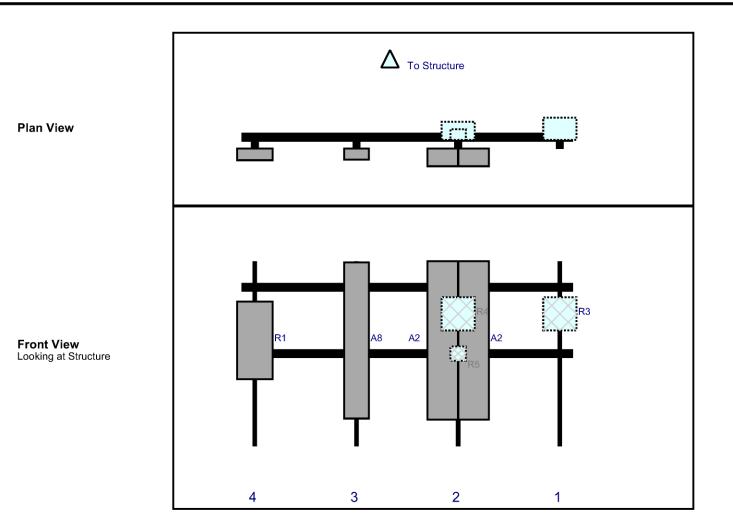

Special Instruction Confirmation:

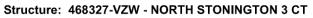

 $\hfill\square$ The contractor has read and acknowledges the above special instructions.

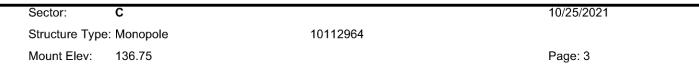
Certifying Individual:

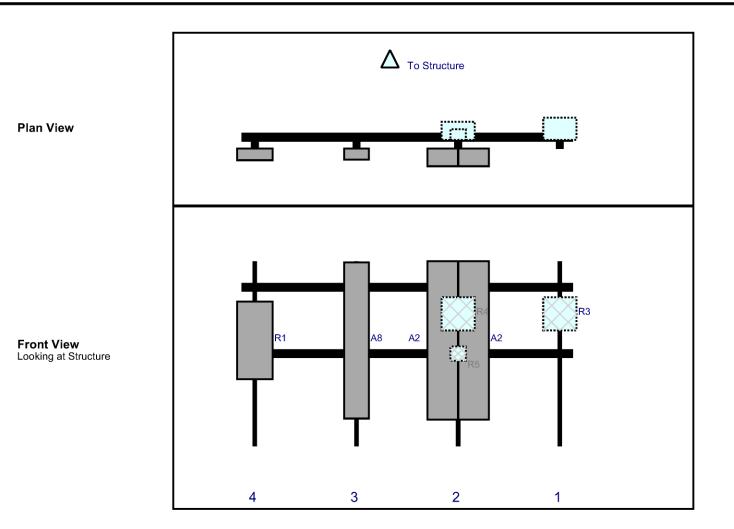

Company:	
Employee Name: Contact Phone:	
Contact Phone:	
Email:	
Date:	






		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R3	B2/B66A RRH-BR049	15	15	144	1	а	Behind	24	0	Added	
A2	JAHH-65B-R3B	72	13.8	98	2	а	Front	36	7	Added	
A2	JAHH-65B-R3B	72	13.8	98	2	b	Front	36	-7	Added	
R4	B5/B13 RRH-BR04C	15	15	98	2	а	Behind	24	0	Added	
R5	CBC78T-DS-43-2X	6.4	6.9	98	2	а	Behind	42	0	Added	
A8	BXA-70063-6CF	71	11.2	52	3	а	Front	36	0	Retained	
R1	MT6407-77A	35.1	16.1	6	4	а	Front	36	0	Added	





		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R3	B2/B66A RRH-BR049	15	15	144	1	а	Behind	24	0	Added	
A2	JAHH-65B-R3B	72	13.8	98	2	а	Front	36	7	Added	
A2	JAHH-65B-R3B	72	13.8	98	2	b	Front	36	-7	Added	
R4	B5/B13 RRH-BR04C	15	15	98	2	а	Behind	24	0	Added	
R5	CBC78T-DS-43-2X	6.4	6.9	98	2	а	Behind	42	0	Added	
A8	BXA-70063-6CF	71	11.2	52	3	а	Front	36	0	Retained	
R1	MT6407-77A	35.1	16.1	6	4	а	Front	36	0	Added	

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Ref#	Model	(in)	(in)	Frm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
R3	B2/B66A RRH-BR049	15	15	144	1	а	Behind	24	0	Added	
A2	JAHH-65B-R3B	72	13.8	98	2	а	Front	36	7	Added	
A2	JAHH-65B-R3B	72	13.8	98	2	b	Front	36	-7	Added	
R4	B5/B13 RRH-BR04C	15	15	98	2	а	Behind	24	0	Added	
R5	CBC78T-DS-43-2X	6.4	6.9	98	2	а	Behind	42	0	Added	
A8	BXA-70063-6CF	71	11.2	52	3	а	Front	36	0	Retained	
R1	MT6407-77A	35.1	16.1	6	4	а	Front	36	0	Added	

Maser Consulting Connecticut

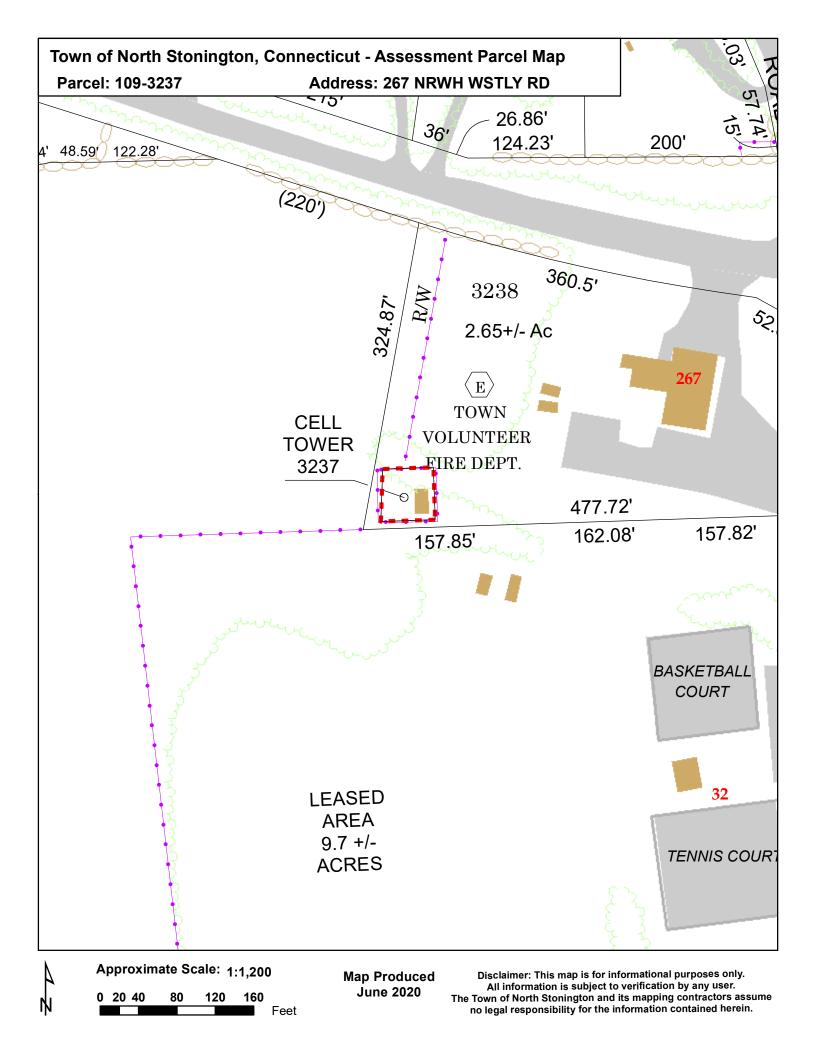
<u>Subject</u>	TIA-222-H Usage					
<u>Site Information</u>	Site ID: Site Name: Carrier Name: Address:	468327-VZW / NORTH STONINGTON 3 CT NORTH STONINGTON 3 CT Verizon Wireless 267 Norwich Westerly Rd Stonington, Connecticut 06359				
	Latitude: Longitude:	New London County 41.436967° -71.881972°				
Structure Information	Tower Type: Mount Type:	Monopole 13.83-Ft Platform				

To Whom It May Concern,

We respectfully submit the above referenced Antenna Mount Structural Analysis report in conformance with ANSI/TIA-222-H, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

The 2015 International Building Code states that, in Section 3108, telecommunication towers shall be designed and constructed in accordance with the provisions of TIA-222. TIA-222-H is the latest revision of the TIA-222 Standard, effective as of January 01, 2018.

As with all ANSI standards and engineering best practice is to apply the most current revision of the standard. This ensures the engineer is applying all updates. As an example, the TIA-222-H Standard includes updates to bring it in line with the latest AISC and ACI standards and it also incorporates the latest wind speed maps by ASCE 7 based on updated studies of the wind data.

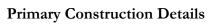

The TIA-222-H standard clarifies these specific requirements for the antenna mount analysis such as modeling methods, seismic analysis, 30-degree increment wind directions and maintenance loading. Therefore, it is our opinion that TIA-222-H is the most appropriate standard for antenna mount structural analysis and is acceptable for use at this site to ensure the engineer is taking into account the most current engineering standard available.

Sincerely,

Peter Albano, PE

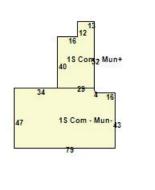
Project Manager

ATTACHMENT 5



Town of North Stonington, CT

Property Listing	Report	Map Block Lot	109 3238	Buildi	ing #	1	Unique Identifier	10182600
Property Inform	nation							
Property Location	267 NRWH WSTLY RD			Owner		NOS	STONINGTON VOL	FIRE CO INC
	40 MAIN ST			Co-Owner				
Mailing Address	NORTH CT	063590279	-	Book / Page		0111	1/0760	
Land Use	Governmental Building			Land Class		Con	nmercial	
Zoning Code	R40			Census Tract		7071	I	
Neighborhood	C130			Acreage		2.57		
Valuation Summ	nary			Utility Info	rmat	ion		
(Assessed value = 70% of	Appraised Value)		-	Electric		No		
Itom	Appraised	Assessed						


(Assessed value = 70% of	(Assessed value = 70% of Appraised Value)		Electric	No		
Item	Appraised	Assessed				
Buildings	634200	443940	Gas	No		
			Sewer	No		
Outbuildings	22500	15750				
Land	138200	96740	Public Water	No		
Total	794900	556430	Well	No		

Year Built	1964
Building Desc.	Commercial
Building Style	
Stories	1
Exterior Walls	Concr/Cinder
Exterior Walls 2	Brick Veneer
Interior Walls	None/Minumum
Interior Walls 2	Panel
Interior Floors 1	Concrete
Interior Floors 2	Hardwood

Heating Fuel	Oil
Heating Type	Hot Water
AC Type	None
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	
Occupancy	0
	· · · · · · · · · · · · · · · · · · ·

Building Use	Governmental
Building Condition	Average
Frame Type	С
Fireplaces	0
Bsmt Gar	0
Fin Bsmt Area	900
Fin Bsmt Quality	Average Quality
Building Grade	0
Roof Style	Flat
Roof Cover	Tar and Gravel
eport Created On	5/19/2022

Town of North Stonington, CT

10001011010101000000000	5,011, 01			
Property Listing Report	Map Block Lot	109 3238	Building # 1 Unique Identi	fier 10182600
Detached Outbuildings				
Туре	Description	Area (sq ft)	Condition	Year Built
Shed	Frame	100	Average	2000
Fence	4 Ft Chain	75	Average	1970
Paving	Paving	17500	Average	2000
Shed	Frame	80	Average	1970

Attached Extra Features

Туре	Description	Area (sq ft)	Condition	Year Built

Sales History

Owner of Record	Book/ Page	Sale Date	Sale Price
NO STONINGTON VOL FIRE CO INC	0111_0760	10/8/1996	0
TOWN OF NORTH STONINGTON	0108_0651	1/25/1996	0
STATE OF CONNECTICUT	0026_0498	12/17/1954	0

ATTACHMENT 6

UNITED STATES
POSTAL SERVICE ®

NORTH STONINGTON 3 Certificate of Mailing — Firm

Name and Address of Sender	TOTAL NO.	TOTAL NO.	Affix Stamp Her	е		
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103			Affix Stamp Here Postmark with Date of Receipt.			
USPS® Tracking Number		ddress y, State, and ZIP Code™)	Postage	INTE HOUSE O	Special Handling	Parcel Airlift
Firm-specific Identifier 1.	Robert Carlson, First Selectn Town of North Stonington Old Town Hall 40 Main Street North Stonington, CT 06359	nan		MAY 2 3 2	18	
2.	Nathan Reichert, Planning, E Town of North Stonington Old Town Hall 40 Main Street North Stonington, CT 06359	Development and Zoning Official	-	USPS		
3.	North Stonington Vol 40 Main Street North Stonington, CT	lunteer Fire Company Inc.	-			
l.	-					
5.						
6.			_			

PS Form **3665**, January 2017 (Page 1 of 1) PSN 7530-17-000-5549