

Northeast Site Solutions Denise Sabo 4 Angela's Way, Burlington CT 06013 203-435-3640 denise@northeastsitesolutions.com

October 7, 2021

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 117 Washington Ave, North Haven, CT 06473 Latitude: 41.396369 Longitude: -72.857686 Site# 806454_Crown_Dish

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 117 Washington Ave in North Haven, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900 5G MHz antenna and six (6) RRUs, at the 95-foot level of the existing 120-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated October 6, 2021 Exhibit C. Also included is a structural analysis prepared by Crown Castle, dated June 5, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. The facility was approved by the CT Siting Council, Docket No. 117 on January 16, 1990. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to First Selectman Michael J. Freda and Laura Magaraci, ZEO for the Town of North Haven, as well as the tower owner (Crown Castle) and property owner (Commercial Investment Group)

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

- 1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 120-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 95-feet.
- 2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 31.42% as evidenced by Exhibit F.

Connecticut General Statutes 16-50aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

- A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included as Exhibit D.
- B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in North Haven. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a Letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
- C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 95-foot level of the existing 120-foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
- D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower sharing application.
- E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing guyed tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through North Haven.

Sincerely,

Denise Sabo

Denise Sabo

Mobile: 203-435-3640 Fax: 413-521-0558

Office: 4 Angela's Way, Burlington CT 06013 Email: denise@northeastsitesolutions.com

Attachments cc:

Michael J. Freda, First Selectman Town of North Haven 5 Linsley Street, North Haven CT 06473

Laura Magaraci, ZEO Town of North Haven -Annex Building 5 Linsley Street, North Haven CT 06473

Commercial Investment Group LLC c/o Mr. Joseph Moruzzi 2911 Dixwell Ave, Hamden CT 06518

Crown Castle, Tower Owner

Exhibit A

Original Facility Approval

Connecticut DOCKET NO. 117 - An application of

Metro Mobile CTS of New Haven, Inc., for a Certificate of Environmental Compatibility :

and Public Need for the construction, operation, and maintenance of a cellular

telephone tower and associated equipment in the Town of North Haven, Connecticut.

Siting

Council

January 16, 1990

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council finds that the effects associated with the construction, operation, and maintenance of cellular telephone facility at the alternate North Haven site, including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not significant either alone or cumulatively with other effects, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by Section 16-50k of the General Statutes of Connecticut (CGS), be issued to Metro Mobile CTS of New Haven, Inc., for the construction, operation, and maintenance of a cellular telecommunications tower, associated equipment, and building at the alternate site in North Haven, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- The self-supporting, monopole tower including antennas 1. and associated equipment shall not exceed a height of 133 feet AGL.
- The facility shall be constructed in accordance with the 2. State of Connecticut Basic Building Code.
- The Certificate Holder shall prepare a Development and 3. Management (D&M) Plan for this site which shall include detailed plans of the site preparation with specifications for the tower foundation.
- 4. The Certificate Holder shall comply with any future radio frequency (RF) standard, promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facility granted

Docket No. 117 Decision and Order Page 2

in this Decision and Order shall be brought into compliance with such standards.

- The Certificate Holder or its successor shall provide the Council a recalculated report of power density if and when additional channels over the proposed 90 channels, higher wattage over the proposed 100 watts per channel, or if other circumstances in operation cause a change in power density above the levels originally calculated in the application.
- 6. The Certificate Holder or its successor shall permit public or private entities to share space on the North Haven tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 7. If this facility does not initially provide, or permanently ceases to provide cellular service following completion of construction, this Decision and Order shall be void, and the tower and all associated equipment in this application shall be dismantled and removed or reapplication of any new use shall be made to the Council before any such new use is made.
- 8. Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the issuance of this Decision and Order, or within three years after the completion of any appeal to this Decision and Order.
- 9. The Applicant shall provide a final report to the Council upon completion of construction, including the final construction cost and date of commercial operation.

Pursuant to Section 16-50p we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below. A notice of issuance shall be published in the New Haven Register.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with section 16-50j-17 of the Regulations of State Agencies.

The parties or intervenors to this proceeding are:

Metro Mobile CTS of
New Haven, Inc.
50 Rockland Road
South Norwalk, CT 06854
ATTN: Phillip Mayberry
General Manager

(Applicant)

Docket No. 117 Decision and Order Page 3

Robinson and Cole One Commercial Plaza Hartford, CT 06103-3597 ATTN: Earl W. Phillips, Jr., Esq. (Its Representative)

Luke and Angelina Camarota and Surv Camarota 303 Washington Avenue North Haven, CT 06473 (Party)

SNET Cellular, Inc. 227 Church Street New Haven, CT 06506 (Intervenor)

Peter J. Tyrrell SNET Cellular, Inc. Room 1021 227 Church Street New Haven, CT 06506 (its Representative)

3999E cp

CERTIFICATION

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case in Docket No. 117 or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut the 16th day of January, 1990.

<u>Council Members</u>	<u>Vote Cast</u>
Gloria Dibble Pond Chairperson	YES
Commissioner Peter Boucher Designee: Robert A. Pulito	YES
Commissioner Leslie Carothers Designee: Brian Emerick	YES
Harry E. Covey	YES
Mortimer A. Gelston	YES
Daniel P. Lynch, Jr.	ABSENT
Paulann H. Sheets	ABSENT
William H. Smith	ABSENT
Colin C. Tait	ABSENT

Exhibit B

Property Card

Barbadora, Jeff

From:

Barbadora, Jeff

Sent:

Monday, November 11, 2019 4:13 PM

To:

townclerk@northhaven-ct.gov

Subject:

117 Washington Av - Map 073 Lot 009

Good Afternoon,

I have an inquiry regarding original zoning documents for a cell tower and I am hoping you can provide more information.

We are applying for Connecticut Siting Council (CSC) approval to modify antennas on an existing cell tower and a requirement for the filing by the CSC is that we procure original zoning documents from the jurisdiction, if possible. However, if these documents are not available, please let me know.

The cell tower is located at 117 Washington Ave in North Haven, CT and according to lease documents this may have been approved around 1990/92 and the entity leasing the property would have been Metro Mobile CTS of New Haven, Inc. Owner of the property at that time were Luciani Realty Partnership.

If you have any questions, please don't hesitate to call or e-mail me.

Thanks,

Jeffrey Barbadora 781-970-0053 12 Gill Street, Suite 5800, Woburn, MA 01801 CrownCastle.com

117 WASHINGTON AVE

Location 117 WASHINGTON AVE

Mblu 073//009//

Acct# 201742

Owner COMMERCIAL INVESTMENT

GROUP LLC

Assessment \$3,416,280

Appraisal \$4,880,400

PID 8732

Building Count 3

Current Value

•	Appraisal			
Valuation Year	Improvements	Land	Total	
2014 \$1,740,100		\$3,140,300	\$4,880,400	
	Assessment			
Valuation Year	Improvements	Land	Total	
2014	\$1,218,070	\$2,198,210	\$3,416,280	

Owner of Record

Owner

COMMERCIAL INVESTMENT GROUP LLC

Sale Price

\$6,139,443

Co-Owner C/O JOSEPH MORUZZI

Certificate

Address

P O BOX 185599 HAMDEN, CT 06518 Book & Page 952/916

Sale Date

03/30/2017

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Sale Date	
COMMERCIAL INVESTMENT GROUP LLC	\$6,139,443	•	952/ 916	03/30/2017	
NORTH HAVEN SHOPPING CENTER LLC	\$0		952/ 912	03/30/2017	
NORTH HAVEN SHOPPING CENTER LLC	\$0		918/ 751	03/18/2015	
LUCIANI REALTY LIMITED PARTNERSHIP	\$0		900/ 87	12/30/2013	
LUCIANI REALTY LIMITED PARTNERSHIP	\$0	1	431/ 862	05/28/1992	

Building Information

Building 1 : Section 1

Year Built:

1952

Living Area:

13,800

Replacement Cost:

\$872,105

Building Percent

Good:

Replacement Cost

Less Depreciation:

\$305,200

35

Less Depreciation:	\$305,200
В	uilding Attributes
Field	Description
STYLE	Shopping Cntr
MODEL	Comm/Ind
Grade	C -
Stories:	1
Occupancy	12
Exterior Wall 1	Concr/Cinder
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Asphalt
Interior Wall 1	Drywall
Interior Wall 2	
Interior Floor 1	Carpet
Interior Floor 2	Ceram Clay Til
Heating Fuel	Oil
Heating Type	Forced Air-Duc
АС Туре	Central
Bldg Use	SHOPPING CENTER M94
Total Rooms	
Total Bedrms	
Total Baths	
1st Floor Use:	
Heat/AC	HEAT/AC PKGS
Frame Type	FIREPRF STEEL
Baths/Plumbing	AVERAGE
Ceiling/Wall	CEIL & WALLS
Rooms/Prtns	AVERAGE
Wall Height	12
% Comn Wall	

Building 2: Section 1

Year Built:

1962

Living Area:

41,446

Replacement Cost:

\$2,429,016

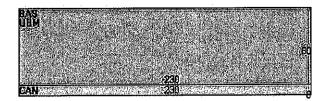
Building Percent

40

Good:

Replacement Cost

Less Depreciation: \$971,600


Building Attributes: Bldg 2 of 3

Building Photo

(http://images.vgsi.com/photos/NorthHavenCTPhotos/\\00\01\98

Building Layout

	Building Sub-Areas (sq ft)		
Code Description		Gross Area	Living Area
BAS	First Floor	13,800	13,800
CAN	Canopy	1,840	0
UВM	Basement, Unfinished	13,800	0
		29,440	13,800

Field	Description
STYLE	Shopping Cntr
MODEL	Comm/Ind
Grade	c-
Stories:	1
Occupancy	6
Exterior Wall 1	Concr/Cinder
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	T&G/Rubber
Interior Wall 1	Drywall
Interior Wall 2	
Interior Floor 1	Linoleum
Interior Floor 2	Carpet
Heating Fuel	Oil
Heating Type	Forced Air-Duc
AC Type	Central
Bldg Use	SHOPPING CENTER M94
Total Rooms	
Total Bedrms	
Total Baths	
1st Floor Use:	
Heat/AC	HEAT/AC PKGS
Frame Type	WOOD FRAME
Baths/Plumbing	AVERAGE
Ceiling/Wall	CEIL & WALLS
Rooms/Prtns	AVERAGE
Wall Height	16
% Comn Wall	

Building 3: Section 1

Year Built:

2014

Living Area:

5,100

Replacement Cost: Building Percent

\$735,779

Good:

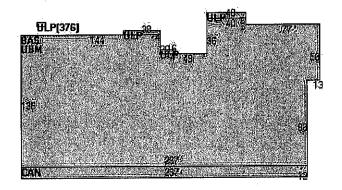
75

Gooa:

Replacement Cost

Less Depreciation:

\$551,800

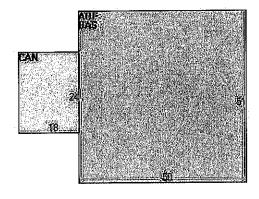

Building Attributes : Bldg 3 of 3				
Field Description				
STYLE	Branch Bank			

Building Photo

(http://images.vgsi.com/photos/NorthHavenCTPhotos/\\00\01\98

Building Layout

	Building Sub-Areas (sq ft))	<u>Legend</u>
Code	Description	Gross Area	Living Area
BAS	First Floor	41,446	41,446
CAN	Canopy	3,564	0
UВM	Basement, Unfinished	41,446	0
ULP	Loading Platform, Unfinished	832	0
	Procedure and the Control of the Con	87,288	41,446


Building Photo

Building Photo

 $(http://images.vgsi.com/photos/NorthHavenCTPhotos//\00\02\18) \\$

MODEL	Comm/Ind
Grade	C +
Stories:	2
Occupancy	1
Exterior Wall 1	Clapboard
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Asphalt
Interior Wall 1	Drywall
Interior Wall 2	
Interior Floor 1	Carpet
Interior Floor 2	
Heating Fuel	Gas
Heating Type	Forced Air-Duc
AC Type	Central
Bldg Use	BANK BLDG
Total Rooms	
Total Bedrms	
Total Baths	
1st Floor Use:	
Heat/AC	HEAT/AC PKGS
Frame Type	WOOD FRAME
Baths/Plumbing	AVERAGE
Ceiling/Wall	SUS-CEIL & WL
Rooms/Prtns	AVERAGE
Wall Height	8
% Comn Wall	

Building Layout

	<u>Legend</u>		
Code Description		Gross Area	Living Area
AOF	Office	2,550	2,550
BAS	First Floor	2,550	2,550
CAN	Сапору	432	0
		5,532	5,100

Extra Features

Extra Features Le				
Code	Description	Value	Bldg #	
CLR1	COOLER	98 S.F.	\$700	1
OVHD	OVER HEADDOOR	400 S.F.	\$0	2
SPR1	SPRINKLERS-WET	29440 S.F.	\$9,300	1
ATM1	АТМ	1 UNITS	\$6,200	2
SPR1	SPRINKLERS-WET	82892 S.F.	\$29,800	2

Land

Land Use

Land Line Valuation

Use Code

3230

Description

SHOPPING CENTER M94

Zone

IL30

Neighborhood 301

Alt Land Appr No

Category

Size (Acres)

Frontage

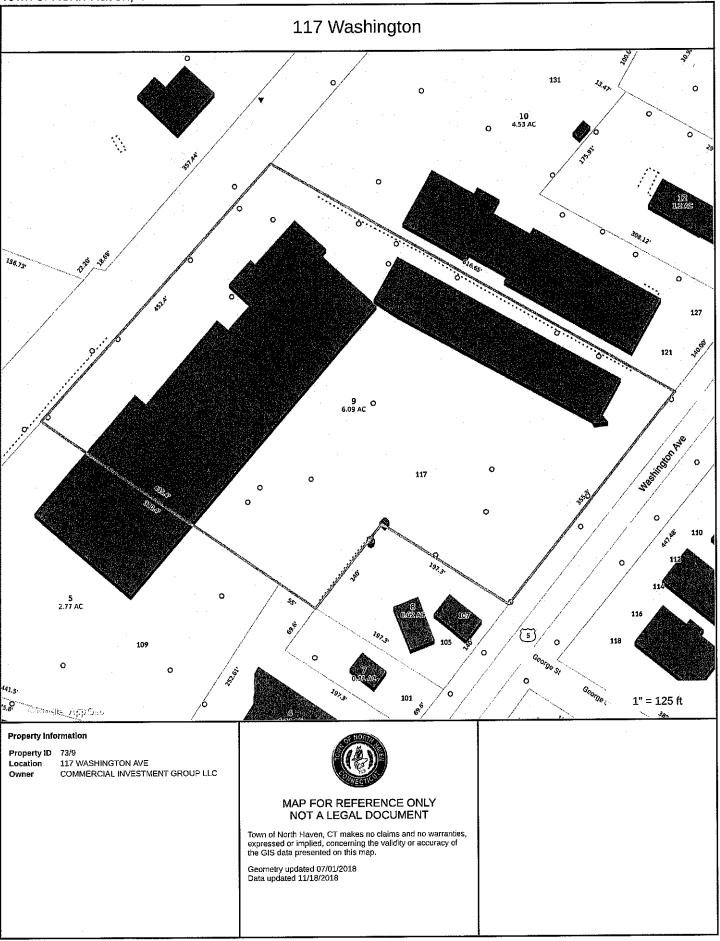
Depth

Assessed Value

6.09

\$2,198,210 Appraised Value \$3,140,300

Outbuildings


	Outbuildings					<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
PAV1	PAVING-ASPHALT			128300 S.F.	\$86,600	1
PAV1	PAVING-ASPHALT			128300 S.F.	\$86,600	2
TWR1	COMMU-TOWER			1 UNITS	\$125,000	2

Valuation History

	Appraisal		
Valuation Year	Improvements	Land	Total
2013	\$2,080,000	\$3,045,000	\$5,125,000
2008	\$2,096,400	\$1,982,400	\$4,078,800
2007		\$1,364,160	\$2,750,160

Assessment						
Valuation Year	Improvements	Land	Total			
2013	\$1,456,000	\$2,131,500	\$3,587,500			
2008	\$1,467,480	\$1,387,680	\$2,855,160			
2007		\$1,364,160	\$2,750,160			

(c) 2016 Vision Government Solutions, Inc. All rights reserved.

Site Name: North Haven CT Cumulative Power Density

Operator Operating Frequency Number Frequency ERP Per Per I Total Total Total Total Distance Power ERP Calculated Power Demissible Power Power (Power Power P	1)								
Operating Frequency Number of Trans. ERP Per Learns Total Frequency Distance Frequency Calculated Power of Trans. Maximum Permissible to Target of Trans. Calculated Power Permissible Density Maximum Permissible Exposure* (MHz) (vatts) (vatts) (feet) (mW/cm^2) (mW/cm^2) 746 4 628 2511.04 119 0.0638 0.497333333 869 1 643 642.83 119 0.0163 0.579333333 1970 4 364 1454.32 119 0.0369 0.586666667 1970 4 1525 6100.4 119 0.1549 1.0 2145 4 1493 5972.52 119 0.1517 1.0	0.24%	1.0	0.0024	119	93.44	23	4	3550	VZW CBRS
Operating Frequency Number of Trans ERP Per Frequency Total of Trans Distance Frequency Calculated Power of Trans Maximum Permissible ERP (MHz) (vatts) (vatts) (feet) (mW/cm^2) (mW/cm^2) 746 4 628 2511.04 119 0.0638 0.497333333 869 1 643 642.83 119 0.0163 0.579333333 880 4 364 1454.32 119 0.0369 0.586666667 1970 4 1525 6100.4 119 0.1549 1.0	15.17%	1.0	0.1517	119	5972.52	1493	4	2145	SWA WZV
Operating Frequency Number of Trans. ERP Per Lirans. Total ERP Distance Frequency of Trans. Calculated Power of Total Exposure* Maximum Permissible Density Maximum Permissible Density Maximum Permissible Density Calculated Power Permissible Density Maximum Permissible Density Permissible Densi	15.49%	1.0	0.1549	119	6100.4	1525	4	1970	VZW PCS
Operating Frequency Number of Trans ERP Per Trans Total ERP Distance Frequency Calculated Power Demissible (Frequency) Maximum Permissible Exposure* (MHz) (watts) (watts) (feet) (mW/cm^2) (mW/cm^2) 746 4 628 2511.04 119 0.0638 0.497333333 869 1 643 642.83 119 0.0163 0.579333333	6.30%	0.586666667	0.0369	119	1454.32	364	4	880	VZW Cellular
Operating Number ERP Per Frequency of Trans. Trans: ERP (Total Frequency of Trans) (watts) (watts) (feet) (mW/cm^2) (mW/cm^2) 746 4 628 2511.04 Distance Power Permissible (mW/cm^2) (mW/cm^2)	2.82%	0.579333333	0.0163	119	642.83	643	1	869	VZW Cellular
Calculated Maximum Frequency of Trans Trans: ERP to Target Density (MHz) (watts) (watts) (feet) (mW/cm^2)	12.82%		0.0638	119	2511.04	628	4	746	VZW 700
Operating Number ERP Per Total Distance Power Frequency of Trans. ERP to Target Density	(%)	n^2)	(mW/cm^2)	(feet)	(watts)	(watts)		(MHz)	
	Fraction of MPE	Maximum Permissible Exposure*	Calculated Power Density	Distance to Target		ERP Per Trans.	(250) (在原源)(開展)(作品)(Operating Frequency	Operator

Total Percentage of Maximum Permissible Exposure

52.83%

MHz = Megahertz

mW/cm^2 = milliwatts per square centimeter

ERP = Effective Radiated Power

Absolute worst case maximum values used, including the following assumptions:

- 1. closest accessible point is distance from antenna to base of pole;
- 2. continuous transmission from all available channels at full power for indefinite time period; and,
- 3. all RF energy is assumed to be directed solely to the base of the pole.

^{*}Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.13101 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

Exhibit C

Construction Drawings

wireless...

DISH Wireless L.L.C. SITE ID:

BOHVN00011A

DISH Wireless L.L.C. SITE ADDRESS:

117 WASHINGTON AVENUE **NORTH HAVEN, CT 06473**

CONNECTICUT CODE COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:

2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL ELECTRICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS
2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS

	SHEET INDEX
SHEET NO.	SHEET TITLE
T-1	TITLE SHEET
A-1	OVERALL AND ENLARGED SITE PLAN
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS
A-4	EQUIPMENT DETAILS
A-5	EQUIPMENT DETAILS
A-6	EQUIPMENT DETAILS
E-1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES
E-2	ELECTRICAL DETAILS
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
G-1	GROUNDING PLANS AND NOTES
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
RF-1	RF CABLE COLOR CODE
GN-1	LEGEND AND ABBREVIATIONS
GN-2	GENERAL NOTES
GN-3	GENERAL NOTES
GN-4	GENERAL NOTES

SCOPE OF WORK

THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIPMENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING:

- TOWER SCOPE OF WORK:

 INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR)

 INSTALL (1) PROPOSED ANTENNA MOUNTS
- INSTALL PROPOSED JUMPERS
- INSTALL (9) PROPOSED RUIS (2 PER SECTOR)
 INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP)
- INSTALL (1) PROPOSED HYBRID CABLE
- REMOVE TOWER MOUNTED EQUIPMENT AT 90

- GROUND SCOPE OF WORK:

 INSTALL (1) PROPOSED METAL PLATFORM

 UTILIZED EXISTING ICE BRIIGGE

 INSTALL (1) PROPOSED PPC CABINET

 INSTALL (1) PROPOSED EQUIPMENT CABINET
- (1) PROPOSED POWER CONDUIT
- INSTALL (1) PROPOSED TELCO CONDUIT
- PROPOSED TELCO-FIBER BOX INSTALL (1) PROPOSED GPS UNIT
- INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)
- INSTALL (1) PROPOSED FIBER NID (IF REQUIRED)

 EXISTING METER SOCKET ON EXISTING H-FRAME TO BE UTILIZED

 REMOVE EXISTING H-FRAME PIPES AND EQUIPMENT INSTALLED ON H-FRAME
- REMOVE EXISTING 6 RUNS OF 1-5/8" FEEDLINES

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455 WWW.CBYD.COM

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

811

NO SCALE

GENERAL NOTES

THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCFEDING WITH THE WORK.

DIRECTIONS

DIRECTIONS FROM TWEED NEW HAVEN AIRPORT:

SITE INFORMATION

GROUP LLC

MONOPOLE

806454

NEW HAVEN

41° 23' 46.93" N

72° 51' 27.67" W

TOWN OF NORTH HAVEN

UNITED ILLUMINATING COMPAN

41.396369 N

72.857686 W

11.30

201742

PO BOX 185599

HAMDEN, CT 06518

PROPERTY OWNER:

TOWER CO SITE ID:

LATITUDE (NAD 83):

LONGITUDE (NAD 83):

ZONING JURISDICTION:

ZONING DISTRICT:

PARCEL NUMBER:

OCCUPANCY GROUP:

CONSTRUCTION TYPE:

TELEPHONE COMPANY: TBD

TOWER APP NUMBER: 553355

ADDRESS:

COUNTY:

TOWER TYPE:

COMMERCIAL INVESTMENT

DEPART AND HEAD (NORTHEAST), TURN LEFT, AVIS RENT A CAR ON THE CORNER, TURN RIGHT, TURN RIGHT TOWARD FORT HALE RD, BUDGET CAR RENTAL ON THE CORNER, KEEP STRAIGHT TO GET ONTO FORT HALE RD, TURN RIGHT ONTO CT-337 / TOWNSEND AVE, TURN LEFT ONTO MAIN STREET ANNEX, TAKE THE RAMP ON THE RIGHT FOS S / GOVERNOR JOHN DAVIS LODGE TPKE S, TAKE THE RAMP ON THE RIGHT FOR I-91 NORTH AND HEAD TOWARD DOWNTOWN NEW HAVEN / HARTFORD, AT EXIT 12, HEAD RIGHT ON THE RAMP FOR WASHINGTON AVE TOWARD NORTH HAVEN, TURN RIGHT, MCDONALD'S ON THE CORNER, UNPAVED ROAD, ARRIVE AT 117 WASHINGTON AVENUE NORTH HAVEN, CT 06473

PROJECT DIRECTORY

TOWER OWNER: CROWN CASTLE

SITE ACQUISITION: NICHOLAS CURRY

CONSTRUCTION MANAGER: JAVIER SOTO

SITE DESIGNER: INFINIGY

RF ENGINEER:

DISH Wireless L.L.C.

LITTLETON, CO 80120

2000 CORPORATE DRIVE

CANONSBURG, PA 15317

2500 W. HIGGINS RD. SUITE 500

NICHOLAS.CURRY@crowncastle.com

SYED ZAIDI

JAVIER SOTO@dish.com

SYED.ZAIDI@dish.com

HOFFMAN ESTATES, IL 60169

(877) 486-9377

(847) 648-4068

5701 SOUTH SANTA FE DRIVE

5701 SOUTH SANTA FF DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

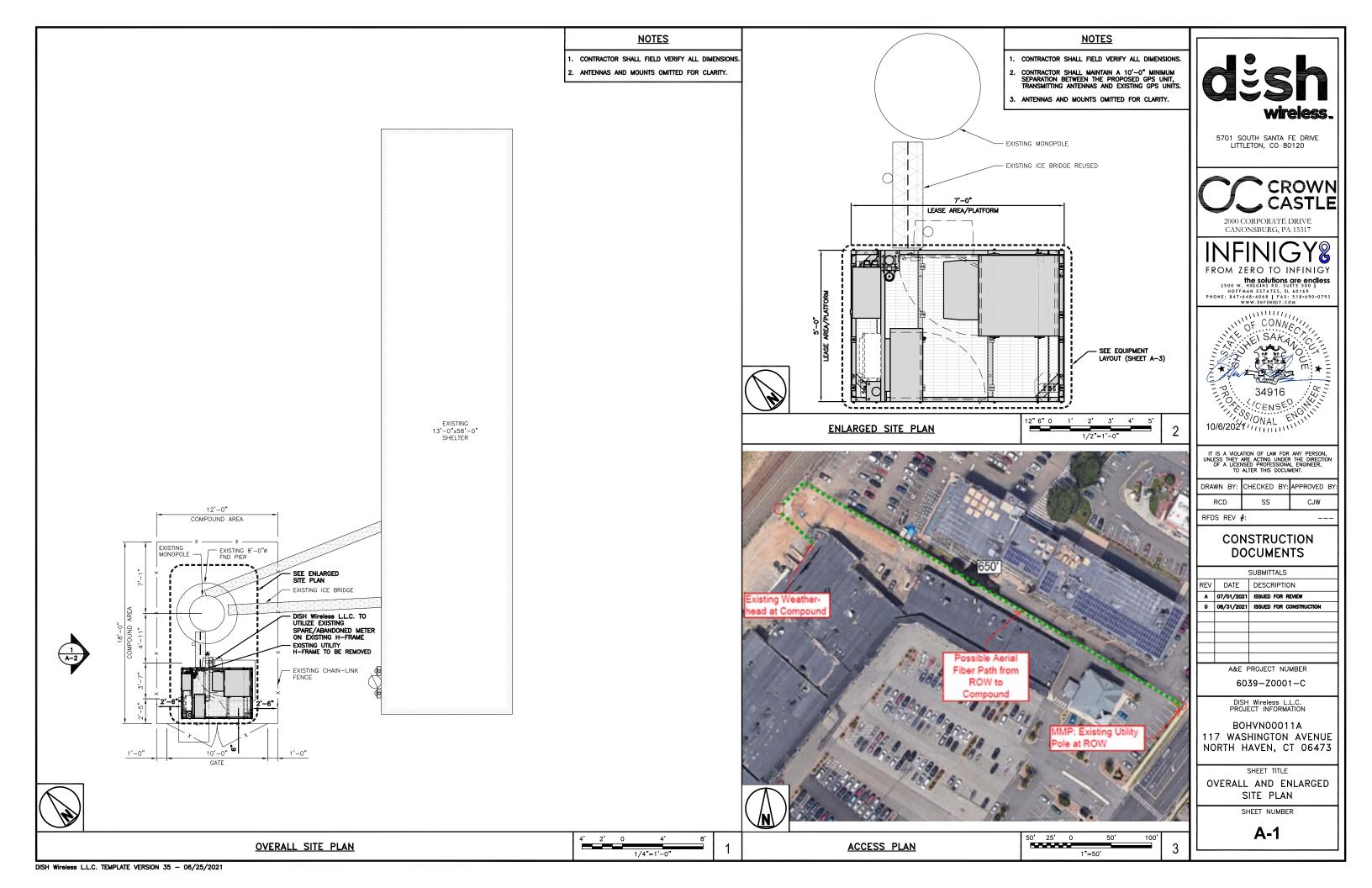
INFINIGY8

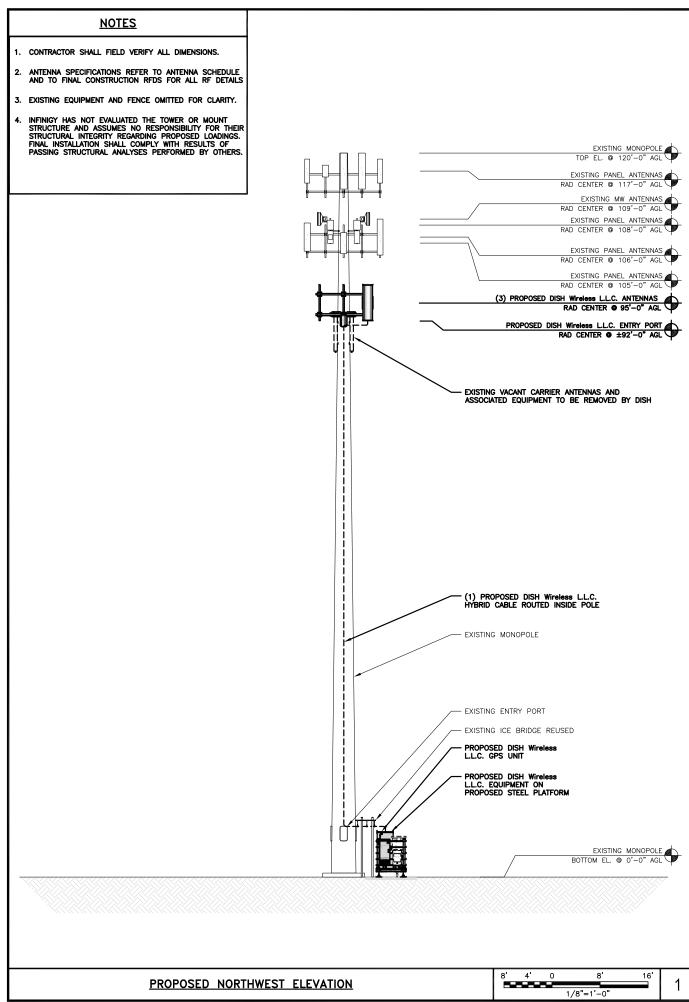
the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

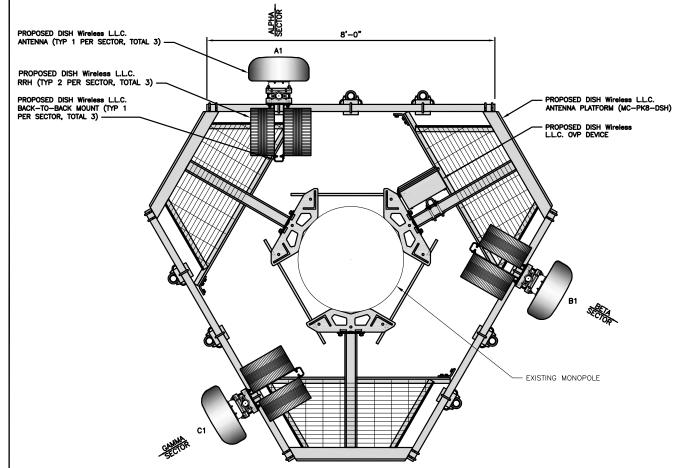
IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

CONSTRUCTION **DOCUMENTS**

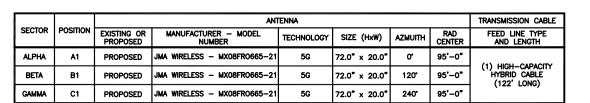
	SUBMITTALS					
REV	DATE	DESCRIPTION				
A	07/01/2021	ISSUED FOR REVIEW				
0	08/31/2021	ISSUED FOR CONSTRUCTION				
	A&E PROJECT NUMBER					


6039-Z0001-C


BOHVN00011A 117 WASHINGTON AVENUE NORTH HAVEN, CT 06473


> SHEET TITLE TITLE SHEET

SHEET NUMBER


T-1

ANTENNA LAYOUT

		RRH	
SECTOR	POSITION	MANUFACTURER — MODEL NUMBER	TECHNOLOGY
ALPHA	A1	FUJITSU - TA08025-B604	5G
ALPHA	A1	FUJITSU - TA08025-B605	5G
BETA	B1	FUJITSU - TA08025-B604	5G
DEIA	B1	FUJITSU - TA08025-B605	5G
	C1	FUJITSU - TA08025-B604	5G
GAMMA	C1	FUJITSU - TA08025-B605	5G

NOTES

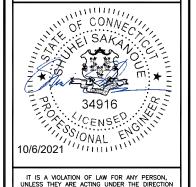
ANTENNA SCHEDULE

- 1. CONTRACTOR TO REFER TO FINAL CONSTRUCTION RFDS FOR ALL RF
- ANTENNA AND RRH MODELS MAY CHANGE DUE TO EQUIPMENT AVAILABILITY. ALL EQUIPMENT CHANGES MUST BE APPROVED AND REMAIN IN COMPLIANCE WITH THE PROPOSED DESIGN AND STRUCTURAL ANALYSES.

2" 6" 0

3/4"=1'-0'

NO SCALE


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY 8 FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

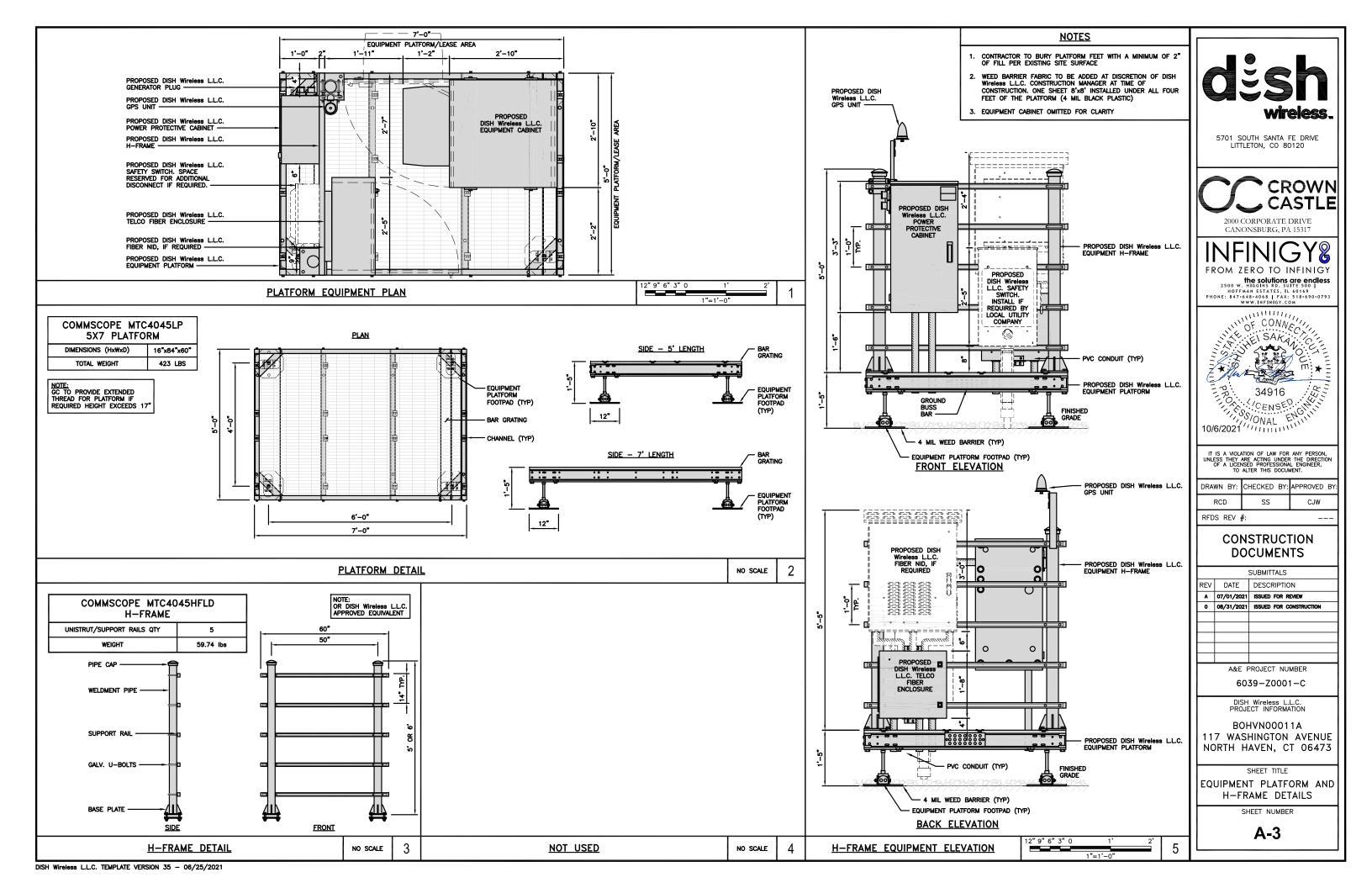
	DRAWN BY:	CHECKED BY:	APPROVED BY:
	RCD	SS	CJW
	RFDS REV	#:	

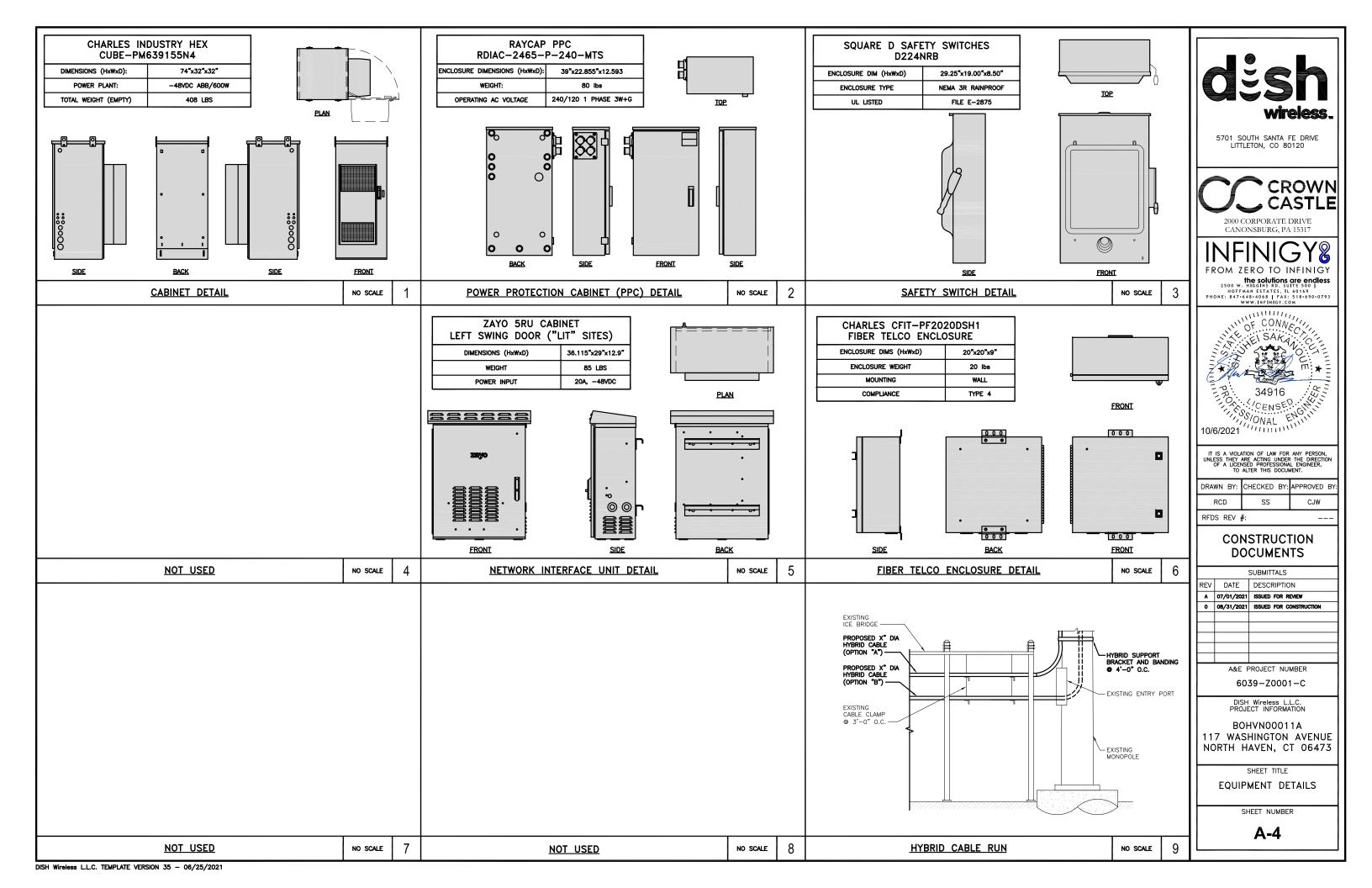
CONSTRUCTION **DOCUMENTS**

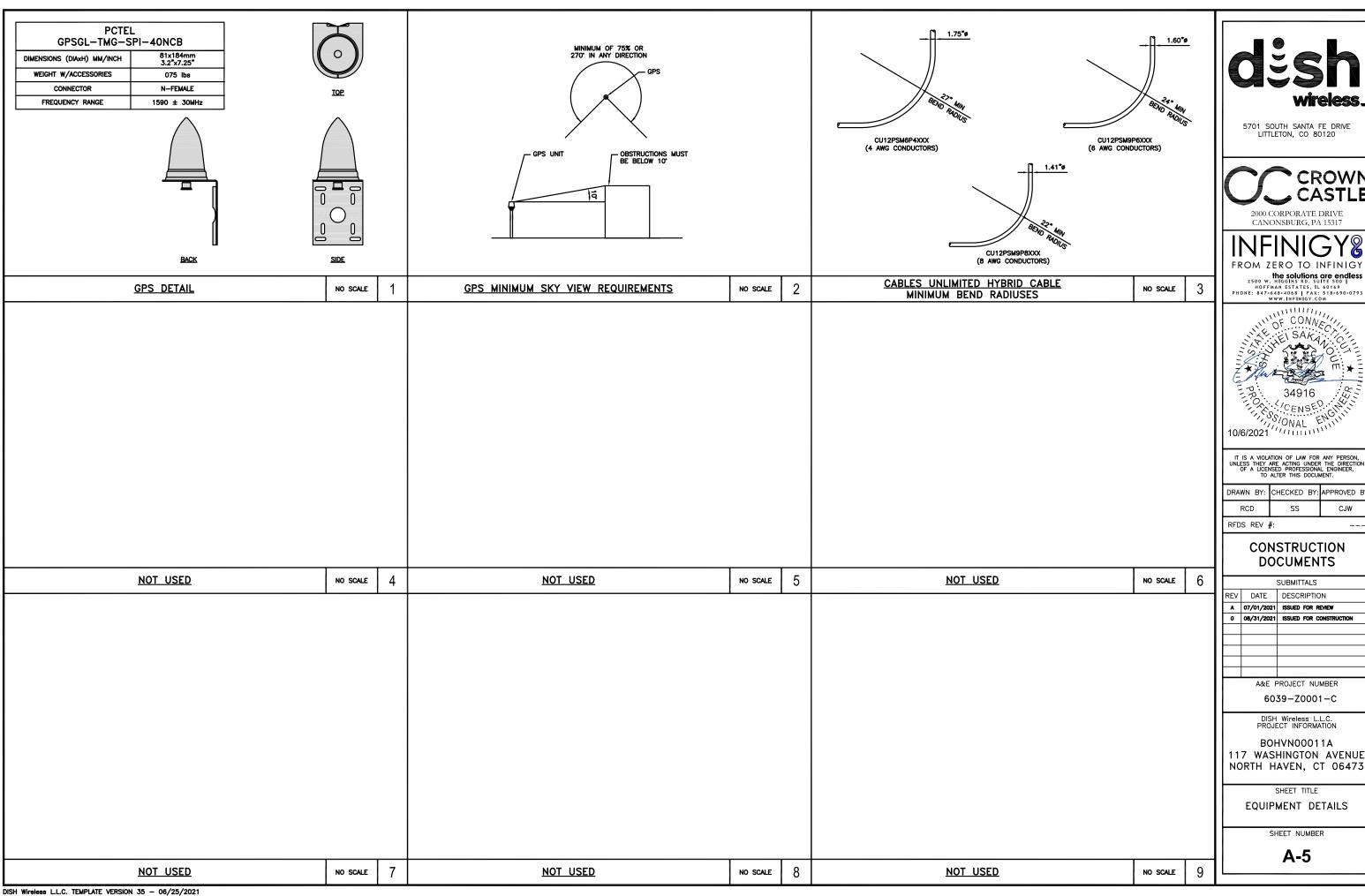
		SUBMITTALS
REV	DATE	DESCRIPTION
A	07/01/2021	ISSUED FOR REVIEW
0	08/31/2021	ISSUED FOR CONSTRUCTION
	A&E F	PROJECT NUMBER

6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

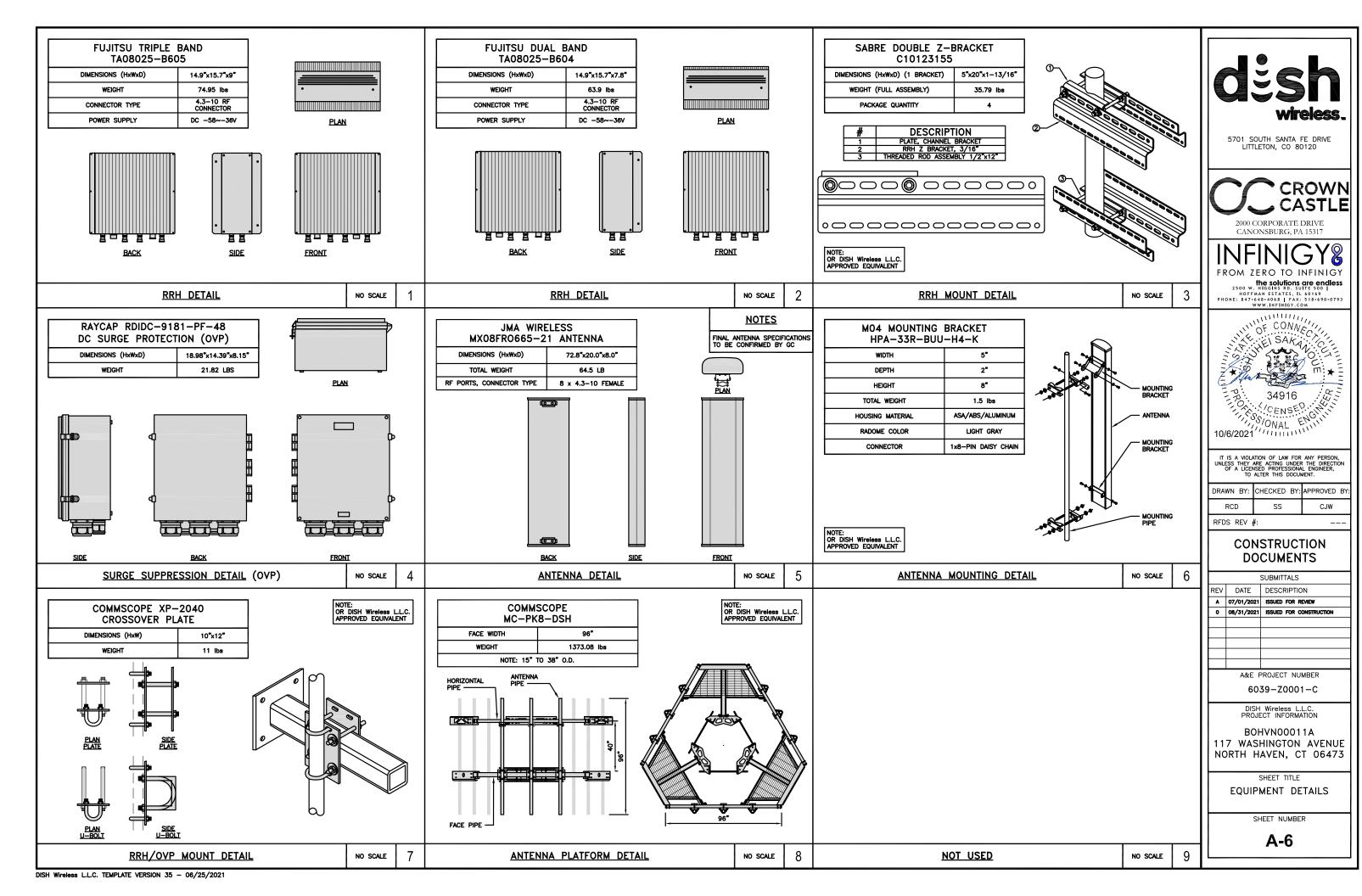

BOHVN00011A 117 WASHINGTON AVENUE NORTH HAVEN, CT 06473

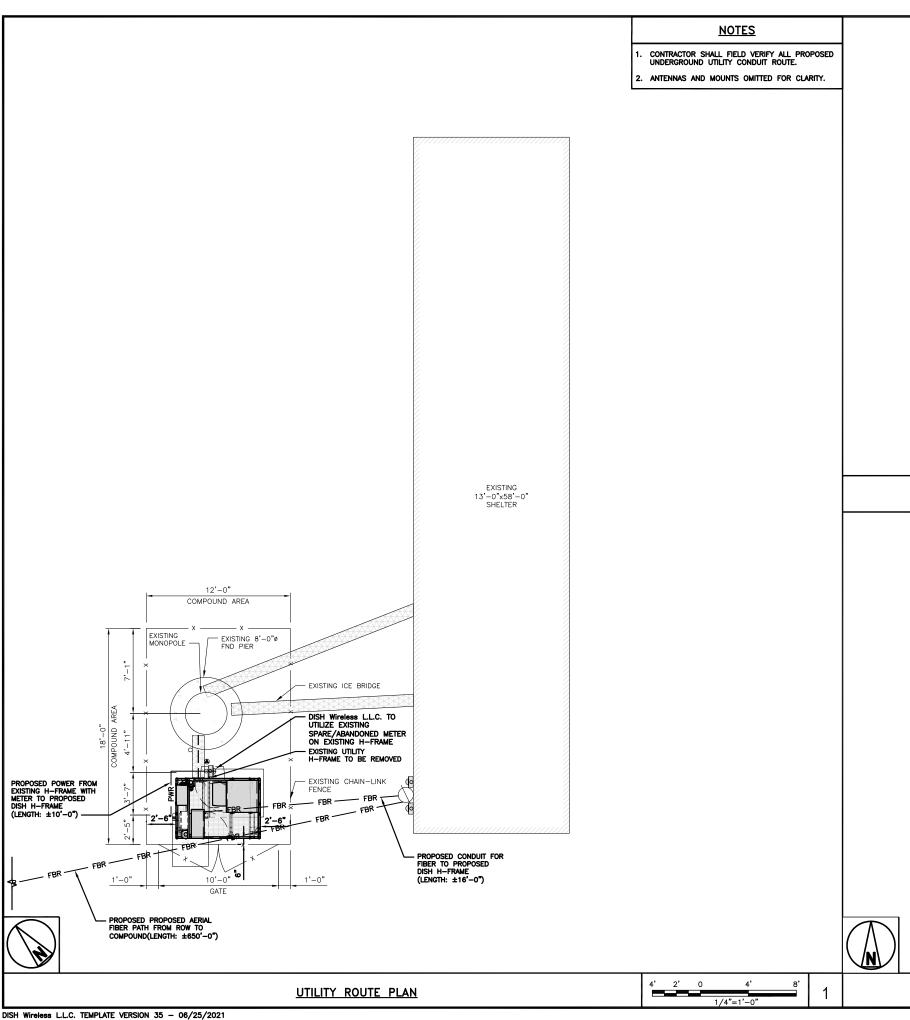

SHEET TITLE


ELEVATION, ANTENNA LAYOUT AND SCHEDULE

SHEET NUMBER

A-2





	RCD	SS	CJW	
	DRAWN BY:	CHECKED BY:	APPROVED	BY:

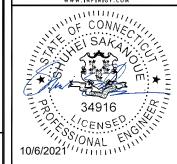
		SUBMITTALS
REV	DATE	DESCRIPTION
A	07/01/2021	ISSUED FOR REVIEW
0	08/31/2021	ISSUED FOR CONSTRUCTION
	A&E F	PROJECT NUMBER

117 WASHINGTON AVENUE NORTH HAVEN, CT 06473

DC POWER WIRING SHALL BE COLOR CODED AT EACH END FOR IDENTIFYING $\pm 24V$ and $\pm 48V$ conductors. RED MARKINGS SHALL IDENTIFY $\pm 24V$ and blue markings shall identify $\pm 48V$.

- CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGHT UP DURING THE BID PERIOD WITH THE PROJECT MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HAS BEEN AWARDED.
- ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDE ALL COMPONENTS AND WIRING SIZES AS REQUIRED TO MEET NEC STANDARDS.
- 3. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCTION.
- 4. CONDUIT ROUGH-IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. VERIFY WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND COMPLY AS REQUIRED.
- 5. CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.
- 6. CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION BOXES AS REQUIRED BY THE NEC ARTICLE 314.
- 7. CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE SUPPORTS FOR ALL CABLE ASSEMBLIES. INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS AND RECOMMENDATIONS.
- 8. ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES INDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INSTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.
- INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL CONDUITS PER THE SPECIFICATIONS AND NEC 250.
 THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL
 DISCONNECT SWITCHES, AND EQUIPMENT CABINETS.
- 10. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL.
- 11. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REFLECT POST-CONSTRUCTION EQUIPMENT.
- 12. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL SCHEDULE AND SITE DRAWINGS.
- 13. ALL TRENCHES IN COMPOUND TO BE HAND DUG

ELECTRICAL NOTES


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY8 FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFANN ESTATES, IL 60169
PHONE: 847-648-4086 | FAX: 518-690-0793
www.infinigy.com

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:		
RCD	SS	CJW		
DEDS DEV #.				

CONSTRUCTION **DOCUMENTS**

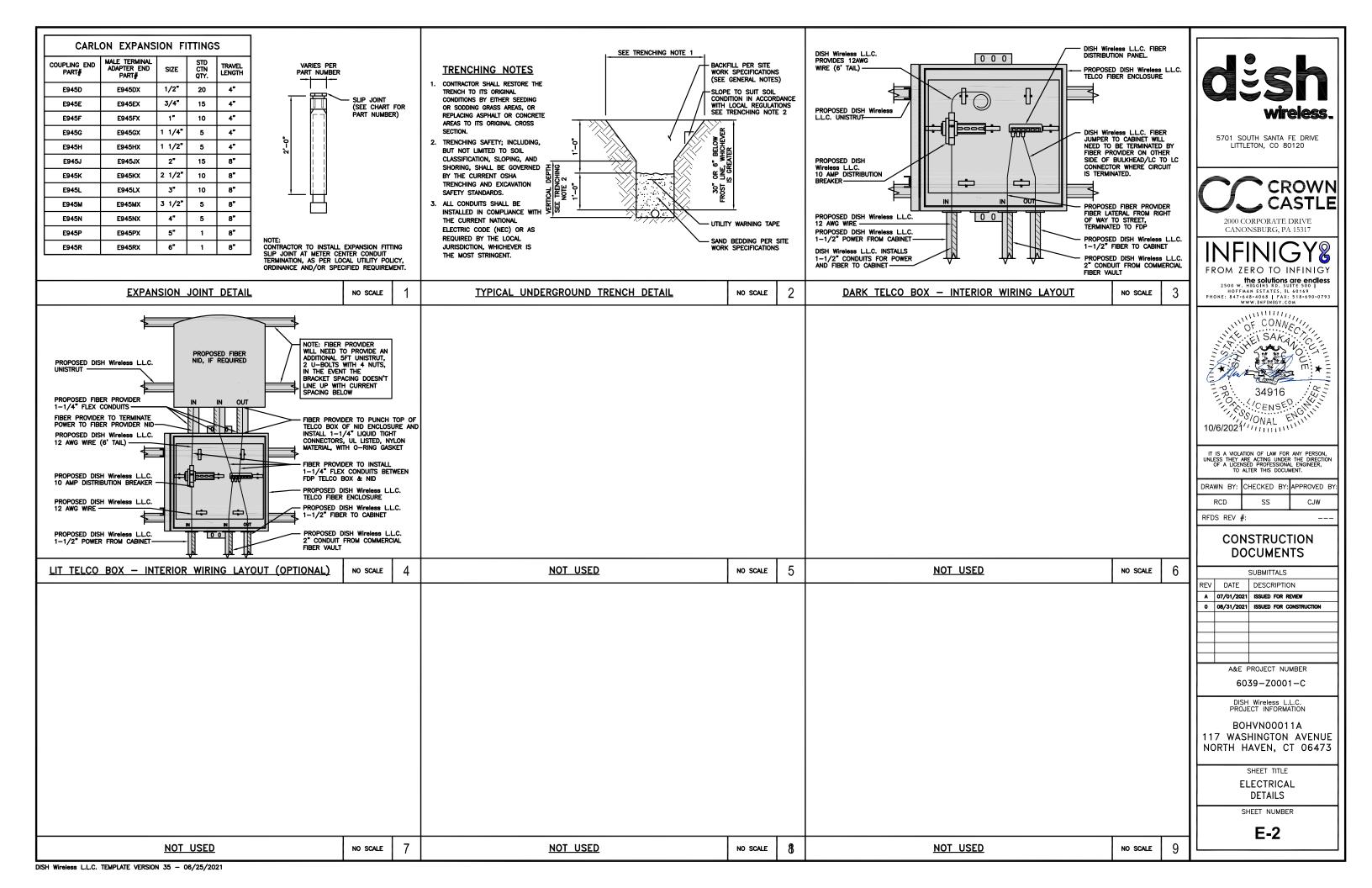
	SUBMITTALS					
REV	DATE	DATE DESCRIPTION				
A	A 07/01/2021 ISSUED FOR REVIEW 0 08/31/2021 ISSUED FOR CONSTRUCTION					
0						
A&E PROJECT NUMBER						

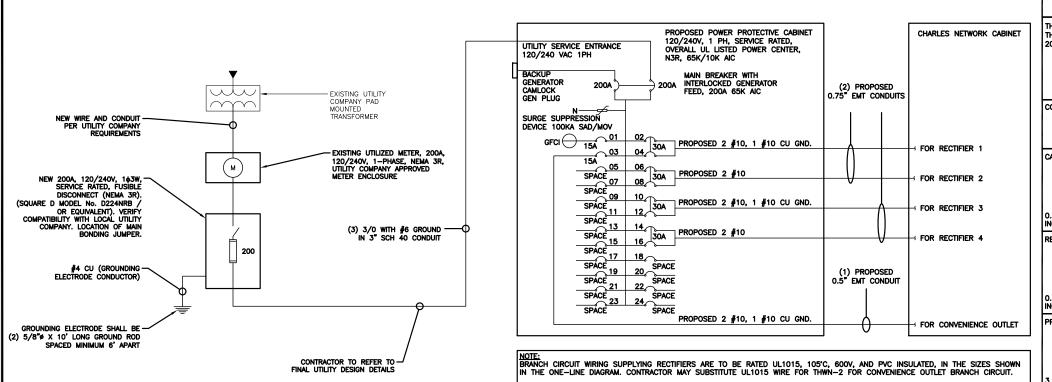
6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

BOHVN00011A 117 WASHINGTON AVENUE NORTH HAVEN, CT 06473

SHEET TITLE


ELECTRICAL/FIBER ROUTE PLAN AND NOTES


SHEET NUMBER

120'

E-1

ELECTRICAL NOTES

BREAKERS REQUIRED: (4) 30A, 2P BREAKER - SQUARE D P/N:QO230 (1) 15A, 1P BREAKER - SQUARE D P/N:QO115 <u>NOTES</u>

THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS EACH, SHALL APPLY THE ADJUSTMENT FACTOR OF 80% PER 2014/17 NEC TABLE 310.15(B)(3)(a) OR 2020 NEC TABLE 310.15(C)(1) FOR UL1015 WIRE.

#12 FOR 15A-20A/1P BREAKER: 0.8 x 30A = 24.0A #10 FOR 25A-30A/2P BREAKER: 0.8 x 40A = 32.0A #8 FOR 35A-40A/2P BREAKER: 0.8 x 55A = 44.0A #6 FOR 45A-60A/2P BREAKER: 0.8 x 75A = 60.0A

CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4, ARTICLE 358.

0.5" CONDUIT - 0.122 SQ. IN AREA 0.75" CONDUIT - 0.213 SQ. IN AREA 2.0" CONDUIT - 1.316 SQ. IN AREA 3.0" CONDUIT - 2.907 SQ. IN AREA

CABINET CONVENIENCE OUTLET CONDUCTORS (1 CONDUIT): USING THWN-2, CU.

#10 - 0.0211 SQ. IN X 2 = 0.0422 SQ. IN #10 - 0.0211 SQ. IN X 1 = 0.0211 SQ. IN <GROUND TOTAL = 0.0633 SQ. IN

0.5" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (3) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

RECTIFIER CONDUCTORS (2 CONDUITS): USING UL1015, CU.

#10 - 0.0266 SQ. IN X 4 = 0.1064 SQ. IN #10 - 0.0082 SQ. IN X 1 = 0.0082 SQ. IN <BARE GROUND TOTAL = 0.1146 SQ. IN

0.75" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.

3/0 - 0.2679 SQ. IN X 3 = 0.8037 SQ. IN #6 - 0.0507 SQ. IN X 1 = 0.0507 SQ. IN <GROUND

TAL = 0.8544 SQ. IN

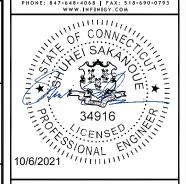
3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (4) WIRES, INCLUDING GROUND WIRE, AS INDICATED ABOVE.

PPC ONE-LINE DIAGRAM

NO SCALE

NO SCALE

dësh wireless


5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CROWN CASTLE

> 2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFAMA ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	OTTE OTTE BT	APPROVED BY
RCD	SS	CJW

RFDS REV #:

CONSTRUCTION DOCUMENTS

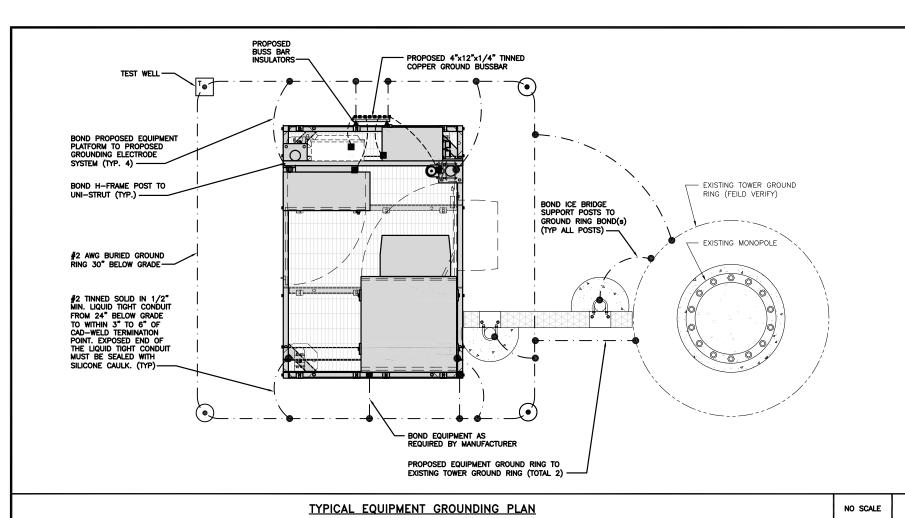
	SUBMITTALS						
REV	DATE	DESCRIPTION					
A 07/01/2021 ISSUED FOR REVIEW							
0	08/31/2021	ISSUED FOR CONSTRUCTION					
A&E PROJECT NUMBER							

ACE PROJECT NUMBER

6039-Z0001-C

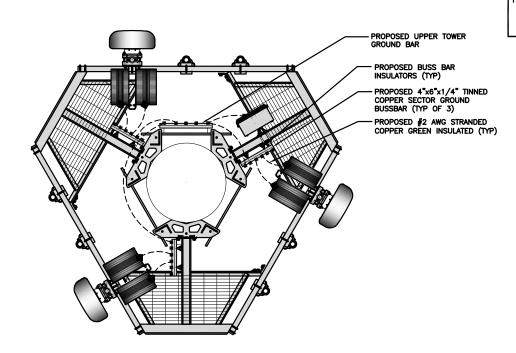
DISH Wireless L.L.C.

BOHVN00011A 117 WASHINGTON AVENUE NORTH HAVEN, CT 06473


SHEET TITLE

ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE

SHEET NUMBER


E-3

PANEL SCHEDULE	NO SCALE	2	NOT USED

<u>NOTES</u>

. ANTENNAS AND OVP SHOWN ARE GENERIC AND NOT REFERENCING TO A SPECIFIC MANUFACTURER. THIS LAYOUT IS FOR REFERENCE ONLY

TYPICAL ANTENNA GROUNDING PLAN

EXOTHERMIC CONNECTION

MECHANICAL CONNECTION

GROUND BUS BAR

GROUND ROD

TEST GROUND ROD WITH INSPECTION SLEEVE

#6 AWG STRANDED & INSULATED

#2 AWG SOLID COPPER TINNED

▲ BUSS BAR INSULATOR

GROUNDING LEGEND

- 1. GROUNDING IS SHOWN DIAGRAMMATICALLY ONLY.
- CONTRACTOR SHALL GROUND ALL EQUIPMENT AS A COMPLETE SYSTEM. GROUNDING SHALL BE IN COMPLIANCE WITH NEC SECTION 250 AND DISH Wireless L.L.C. GROUNDING AND BONDING REQUIREMENTS AND MANUFACTURER'S SPECIFICATIONS.
- 3. ALL GROUND CONDUCTORS SHALL BE COPPER; NO ALUMINUM CONDUCTORS SHALL BE USED.

GROUNDING KEY NOTES

- (A) EXTERIOR GROUND RING: #2 AWG SOLID COPPER, BURIED AT A DEPTH OF AT LEAST 30 INCHES BELOW GRADE, OR 6 INCHES BELOW THE FROST LINE AND APPROXIMATELY 24 INCHES FROM THE EXTERIOR WALL OR FOOTING.
- B TOWER GROUND RING: THE GROUND RING SYSTEM SHALL BE INSTALLED AROUND AN ANTENNA TOWER'S LEGS, AND/OR GUY ANCHORS. WHERE SEPARATE SYSTEMS HAVE BEEN PROVIDED FOR THE TOWER AND THE BUILDING, AT LEAST TWO BONDS SHALL BE MADE BETWEEN THE TOWER RING GROUND SYSTEM AND THE BUILDING RING GROUND SYSTEM USING MINIMUM #2 AWG SOLID COPPER CONDUCTORS.
- C Interior ground ring: #2 awg stranded green insulated copper conductor extended around the perimeter of the equipment area. All non-telecommunications related metallic objects found within a site shall be grounded to the interior ground ring with #6 awg stranded green insulated conductor.
- D BOND TO INTERIOR GROUND RING: #2 AWG SOLID TINNED COPPER WIRE PRIMARY BONDS SHALL BE PROVIDED AT LEAST AT FOUR POINTS ON THE INTERIOR GROUND RING, LOCATED AT THE CORNERS OF THE BUILDING.
- (E) GROUND ROD: UL LISTED COPPER CLAD STEEL. MINIMUM 1/2" DIAMETER BY EIGHT FEET LONG. GROUND RODS SHALL BE INSTALLED WITH INSPECTION SLEEVES. GROUND RODS SHALL BE DRIVEN TO THE DEPTH OF GROUND RING CONDUCTOR.
- F CELL REFERENCE GROUND BAR: POINT OF GROUND REFERENCE FOR ALL COMMUNICATIONS EQUIPMENT FRAMES. ALL BONDS ARE MADE WITH #2 AWG UNLESS NOTED OTHERWISE STRANDED GREEN INSULATED COPPER CONDUCTORS. BOND TO GROUND RING WITH (2) #2 SOLID TINNED COPPER CONDUCTORS.
- (3) HATCH PLATE GROUND BAR: BOND TO THE INTERIOR GROUND RING WITH TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS. WHEN A HATCH-PLATE AND A CELL REFERENCE GROUND BAR ARE BOTH PRESENT, THE CRGB MUST BE CONNECTED TO THE HATCH-PLATE AND TO THE INTERIOR GROUND RING USING (2) TWO #2 AWG STRANDED GREEN INSULATED COPPER CONDUCTORS EACH.
- (H) EXTERIOR CABLE ENTRY PORT GROUND BARS; LOCATED AT THE ENTRANCE TO THE CELL SITE BUILDING, BOND TO GROUND RING WITH A #2 AWG SOLID TINNED COPPER CONDUCTORS WITH AN EXOTHERMIC WELD AND INSPECTION SLEEVE.
- 1 TELCO GROUND BAR: BOND TO BOTH CELL REFERENCE GROUND BAR OR EXTERIOR GROUND RING.
- J FRAME BONDING: THE BONDING POINT FOR TELECOM EQUIPMENT FRAMES SHALL BE THE GROUND BUS THAT IS NOT ISOLATED FROM THE EQUIPMENTS METAL FRAMEWORK.
- (K) INTERIOR UNIT BONDS: METAL FRAMES, CABINETS AND INDIVIDUAL METALLIC UNITS LOCATED WITH THE AREA OF THE INTERIOR GROUND RING REQUIRE A #6 AWG STRANDED GREEN INSULATED COPPER BOND TO THE INTERIOR GROUND RING.
- L FENCE AND GATE GROUNDING: METAL FENCES WITHIN 7 FEET OF THE EXTERIOR GROUND RING OR OBJECTS BONDED TO THE EXTERIOR GROUND RING SHALL BE BONDED TO THE GROUND RING WITH A ∯2 AWG SOLID TINNED COPPER CONDUCTOR AT AN INTERVAL NOT EXCEEDING 25 FEET. BONDS SHALL BE MADE AT EACH GATE POST AND ACROSS GATE OPENINGS.
- M EXTERIOR UNIT BONDS: METALLIC OBJECTS, EXTERNAL TO OR MOUNTED TO THE BUILDING, SHALL BE BONDED TO THE EXTERIOR GROUND RING. USING #2 TINNED SOLID COPPER WIRE
- N ICE BRIDGE SUPPORTS: EACH ICE BRIDGE LEG SHALL BE BONDED TO THE GROUND RING WITH #2 AWG BARE TINNED COPPER CONDUCTOR. PROVIDE EXOTHERMIC WELDS AT BOTH THE ICE BRIDGE LEG AND BURIED GROUND RING.
- DURING ALL DC POWER SYSTEM CHANGES INCLUDING DC SYSTEM CHANGE OUTS, RECTIFIER REPLACEMENTS OR ADDITIONS, BREAKER DISTRIBUTION CHANGES, BATTERY ADDITIONS, BATTERY REPLACEMENTS AND INSTALLATIONS OR CHANGES TO DC CONVERTER SYSTEMS IT SHALL BE REQUIRED THAT SERVICE CONTRACTORS VERIFY ALL DC POWER SYSTEMS ARE EQUIPPED WITH A MASTER DC SYSTEM RETURN GROUND CONDUCTOR FROM THE DC POWER SYSTEM COMMON RETURN BUS DIRECTLY CONNECTED TO THE CELL SITE REFERENCE GROUND BAR
- P TOWER TOP COLLECTOR BUSS BAR IS TO BE MECHANICALLY BONDED TO PROPOSED ANTENNA MOUNT COLLAR.

REFER TO DISH Wireless L.L.C. GROUNDING NOTES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

INFINIGY&

CANONSBURG PA 15317

the solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

RCD SS CJW	DRAWN E	3Y:	CHECKED	BY:	APPROVED	BY:
	RCD		SS		CJW	

CONSTRUCTION DOCUMENTS

	SUBMITTALS							
REV	DATE	DESCRIPTION						
A	07/01/2021	ISSUED FOR REVIEW						
0 08/31/2021		ISSUED FOR CONSTRUCTION						
A&F PROJECT NUMBER								

6039-Z0001-C

DISH Wireless L.L.C. PROJECT INFORMATION

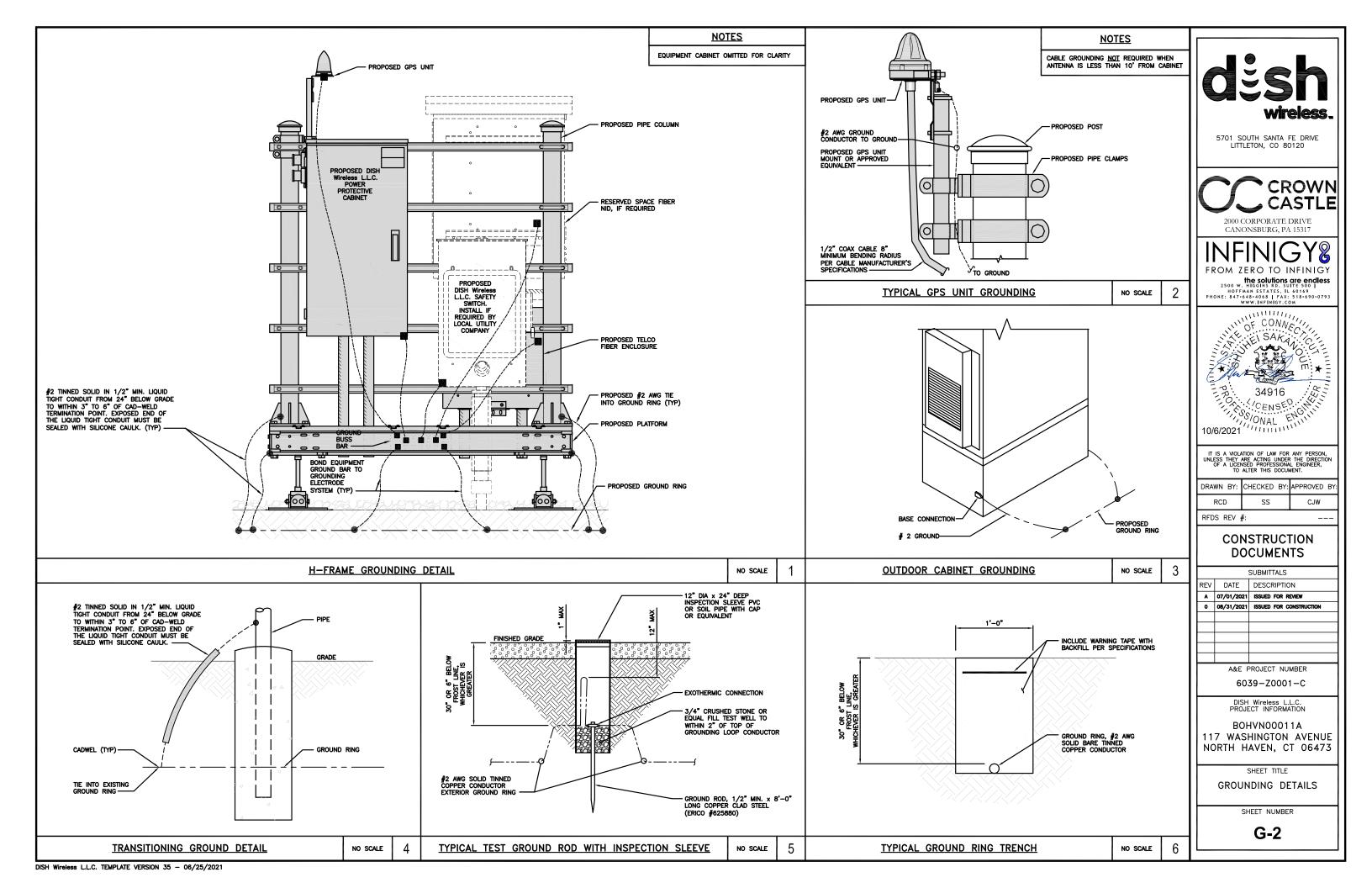
BOHVN00011A 117 WASHINGTON AVENUE NORTH HAVEN, CT 06473

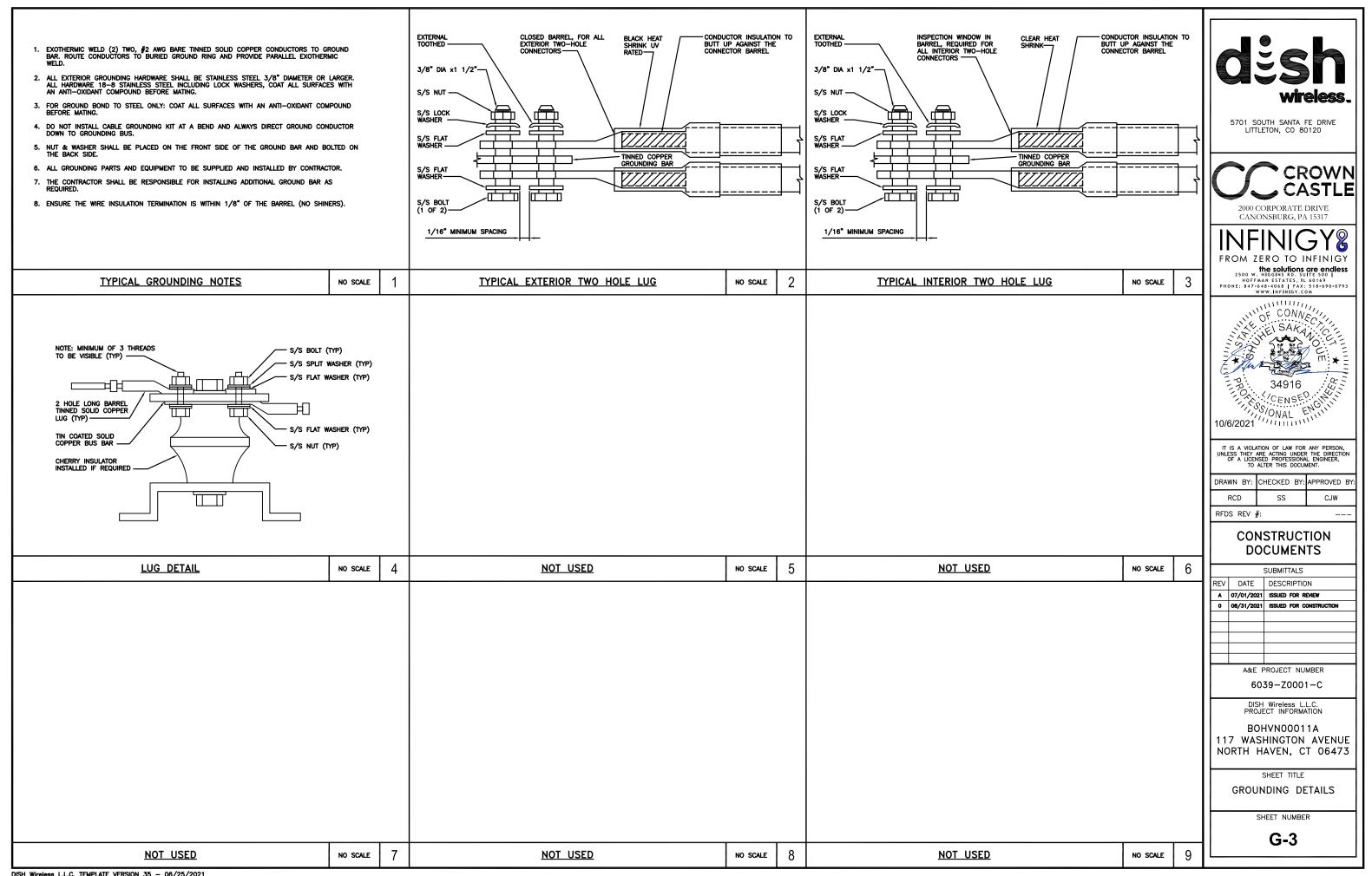
SHEET TITLE

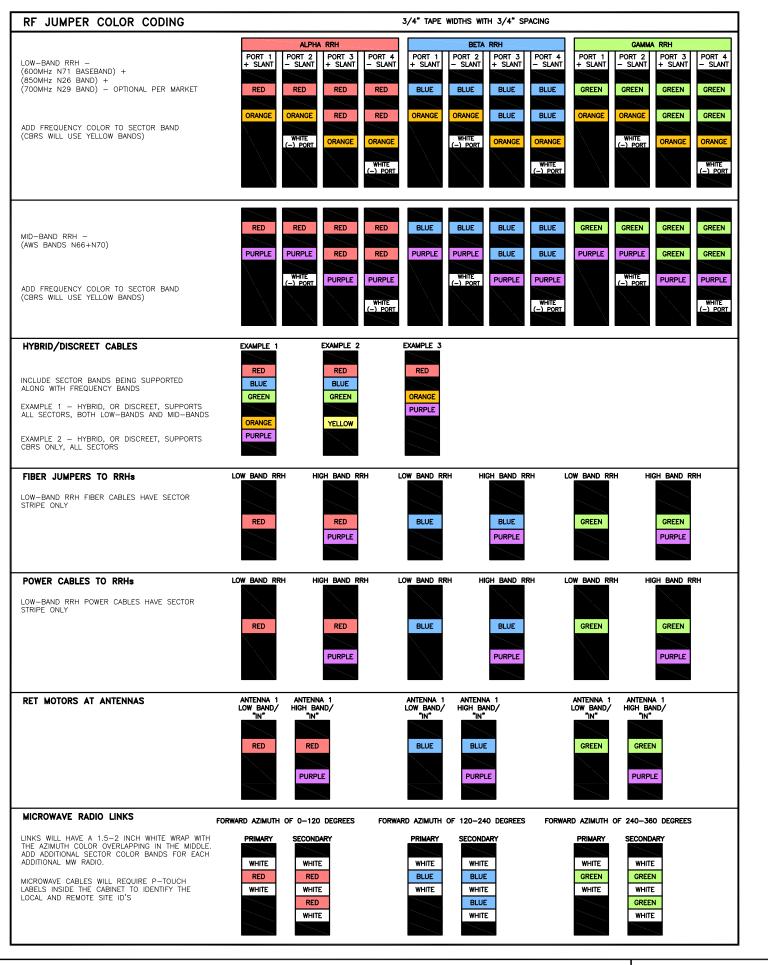
GROUNDING PLANS AND NOTES

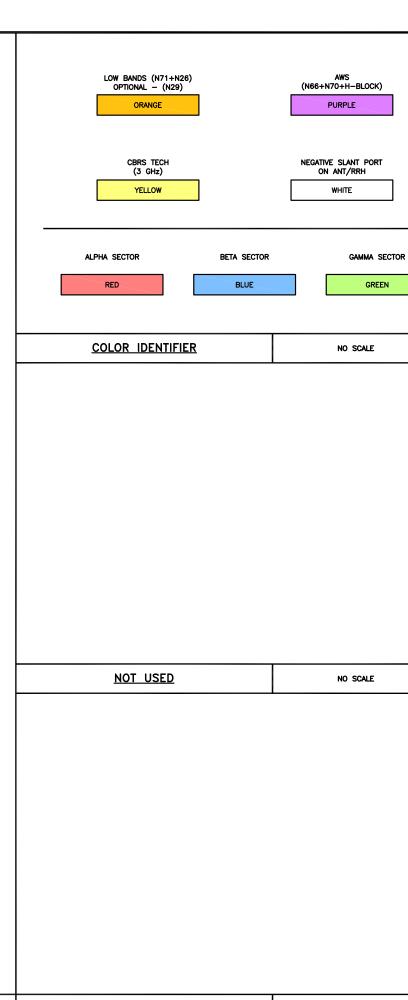
SHEET NUMBER

G-1

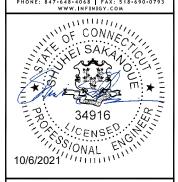

NO SCALE


2


GROUNDING KEY NOTES


NO SCALE

(



CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 w. HIGGINS RD. SUITE 500 |
HOFFANN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW
DEDG DEV	"	

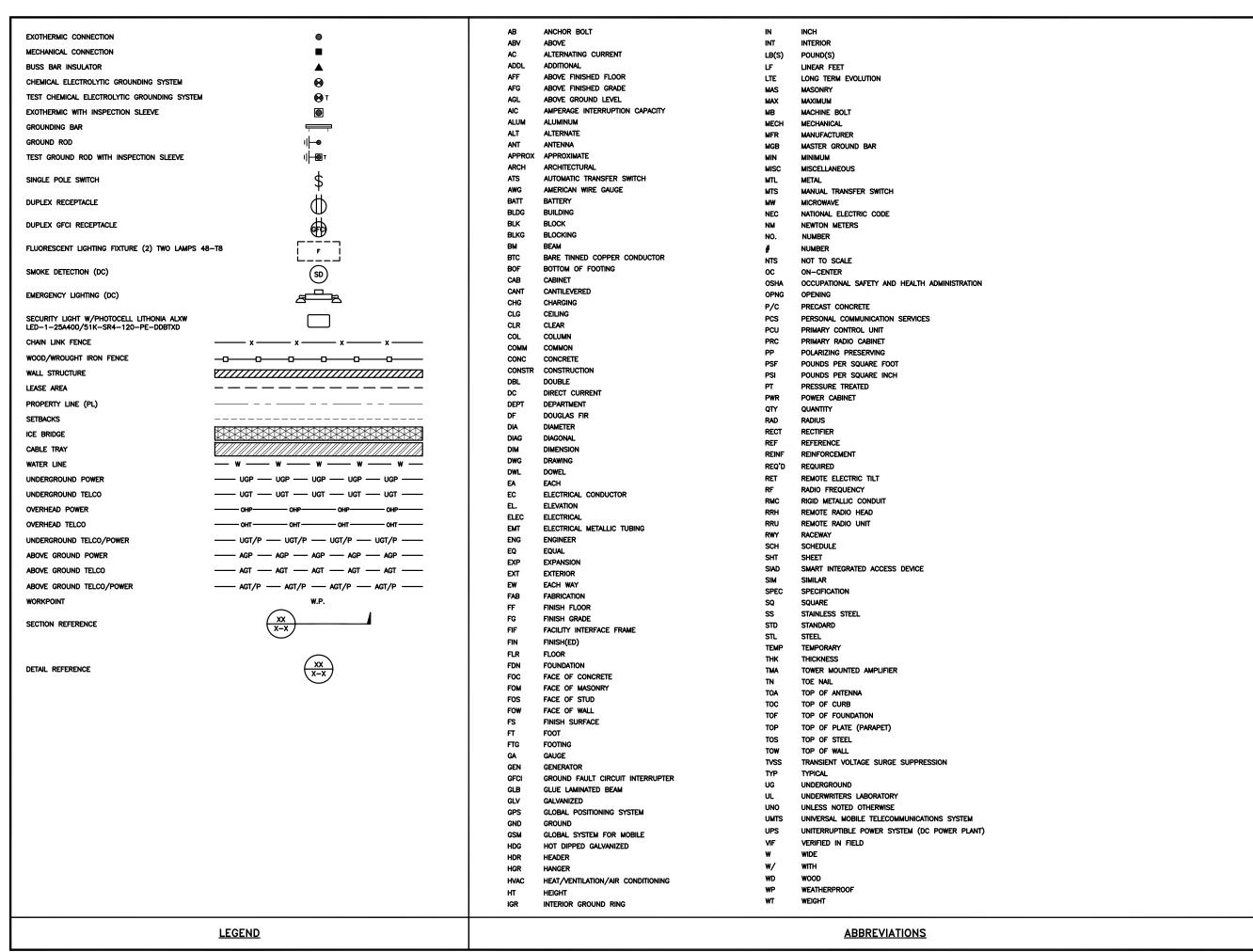
CONSTRUCTION DOCUMENTS

		SUBMITTALS					
REV	DATE	DESCRIPTION					
A	07/01/2021	ISSUED FOR REVIEW					
٥	0 08/31/2021 ISSUED FOR CONSTRU						
	A&E F	PROJECT NUMBER					

6039-Z0001-C

PROJECT INFORMATIO

BOHVN00011A 117 WASHINGTON AVENUE NORTH HAVEN, CT 06473


SHEET TITLE

RF

CABLE COLOR CODES

SHEET NUMBER

RF-1

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

2000 CORPORATE DRIVE CANONSBURG, PA 15317

INFINIGY&

THE SOUTIONS ATE ENGINESS
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4068 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN	BY:	CHECKED	BY:	APPROVED	BY:
RCI)	SS		CJW	

RFDS REV #:

CONSTRUCTION DOCUMENTS

DATE	DESCRIPTION
A 07/01/2021 ISSUED FOR REVI	
08/31/2021	ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

6039-Z0001-C

PROJECT INFORMATIO

BOHVN00011A 117 WASHINGTON AVENUE NORTH HAVEN, CT 06473

SHEET TITLE

LEGEND AND ABBREVIATIONS

SHEET NUMBER

SITE ACTIVITY REQUIREMENTS:

- 1. NOTICE TO PROCEED NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER CONSTRUCTION MANAGER.
- 2. "LOOK UP" DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIReless L.L.C. AND DISH WIReless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

- 3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.
- 4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIFELDS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).
- 5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- 6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.
- 11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.
- 12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIReless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.
- 14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.
- 15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
- 16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.
- 18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.
- 22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER:TOWER OWNER

- 2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.
- 3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.
- 4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.
- 5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.
- 6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.
- 7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION
- 11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN
- 12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER
- 13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

the solutions are endless
2500 W. Higgins RD. Suite 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

DRAWN BY:	CHECKED BY:	APPROVED BY:
RCD	SS	CJW
RFDS REV	#:	

CONSTRUCTION DOCUMENTS

6039-Z0001-C

BOHVN00011A
117 WASHINGTON AVENUE

NORTH HAVEN, CT 06473

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL:

- 1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST—IN—PLACE CONCRETE.
- 2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 psf.
- 3. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90'f AT TIME OF PLACEMENT.
- 4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.
- 5. ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS:

#4 BARS AND SMALLER 40 ksi

#5 BARS AND LARGER 60 ksi

- 6. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:
- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3"
- · CONCRETE EXPOSED TO EARTH OR WEATHER:
- #6 BARS AND LARGER 2"
- #5 BARS AND SMALLER 1-1/2"
- . CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- SLAB AND WALLS 3/4"
- BEAMS AND COLUMNS 1-1/2"
- 7. A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- 2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- 3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC.
- 4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE.
- 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION.
- 5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE LABELED WITH COLOR—CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- 6. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S).
- 7. PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 8. TIE WRAPS ARE NOT ALLOWED.
- 9. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 10. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 11. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW. THWN. THWN-2. XHHW. XHHW-2. THW. THW-2. RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED.
- 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

- . ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- 19. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE NEC.
- 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS (WIREMOLD SPECMATE WIREWAY).
- 22. SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL).
- 23. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS.
- 25. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY—COATED OR NON—CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 26. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS.
- 27. THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS.
- 28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 29. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
- 30. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG PA 15317

INFINIGY & FROM ZERO TO INFINIGY the solutions are enclass

The solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
HOFFMAN ESTATES, IL 60169
PHONE: 847-648-4088 | FAX: 518-690-0793
WWW.INFINIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED B,	Y: APPROVED BY
	RCD	SS	CJW
	DEDG DEV	"	

CONSTRUCTION DOCUMENTS

SUBMITTALS

REV DATE DESCRIPTION

A 07/01/2021 ISSUED FOR REVIEW

0 08/31/2021 ISSUED FOR CONSTRUCTION

A&E PROJECT NUMBER

6039-Z0001-C

BOHVN00011A 117 WASHINGTON AVENUE NORTH HAVEN, CT 06473

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

GROUNDING NOTES:

- 1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 2. THE CONTRACTOR SHALL PERFORM IEEE FALL—OF—POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
- 4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.
- 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.
- 8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.
- 11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.
- 12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
- COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.
- 15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- 17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.
- 18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.
- 19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
- 20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).
- 21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/O COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120

CANONSBURG, PA 15317

INFINIGY FROM ZERO TO INFINIGY

The solutions are endless
2500 W. HIGGINS RD. SUITE 500 |
PHONE: 847-648-4068 | FAX: 518-690-0793
WW.INE!NIGY.COM

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

	DRAWN BY:	CHECKED BY	: APPROVED BY:
	RCD	SS	CJW
ı	RFDS REV ;		

CONSTRUCTION DOCUMENTS

	SUBMITTALS			
REV	DATE	DESCRIPTION		
A	07/01/2021	ISSUED FOR REVIEW		
0	08/31/2021	ISSUED FOR CONSTRUCTION		

A&E PROJECT NUMBER

6039-Z0001-C

DISH Wireless L.L. PROJECT INFORMAT

BOHVN00011A 117 WASHINGTON AVENUE NORTH HAVEN, CT 06473

SHEET TITLE

GENERAL NOTES

SHEET NUMBER

Exhibit D

Structural Analysis Report

Date: June 05, 2021

Crown Castle 2000 Corporate Drive Canonsburg, PA 15317 (724) 416-2000

Subject: **Structural Analysis Report**

Carrier Designation: **DISH Network Co-Locate**

> Site Number: BOHVN00011A Site Name: CT-CCI-T-806454

Crown Castle Designation: **BU Number:** 806454

> Site Name: NHV 112 948129

JDE Job Number: 645112 **Work Order Number:** 1966155 **Order Number:** 553355 Rev. 1

Engineering Firm Designation: **Crown Castle Project Number:** 1966155

Site Data: 117 Washington Avenue, NORTH HAVEN, NEW HAVEN County, CT

Latitude 41° 23' 46.93", Longitude -72° 51' 27.67"

120 Foot - Monopole Tower

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

Sufficient Capacity – 58.5%

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - "Analysis Criteria".

Structural analysis prepared by: Roy Zhou

Respectfully submitted by:

Digitally signed by Maham Barimani Oate: 2021.06.06 12:27:26

Maham Barimani, P.E. Senior Project Engineer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

Table 2 - Non-Carrier Equipment To be Removed

Table 3 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

3.1) Analysis Method

3.2) Assumptions

4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)

Table 6 - Tower Component Stresses vs. Capacity - LC7

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 120 ft Monopole tower designed by VALMONT.

2) ANALYSIS CRITERIA

TIA-222 Revision: TIA-222-H

Risk Category:

Wind Speed: 125 mph

Exposure Category:
Topographic Factor:
Ice Thickness:
Wind Speed with Ice:
So mph
Service Wind Speed:
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3	fujitsu	TA08025-B604		
		3	fujitsu	TA08025-B605		
95.0	95.0	3	jma wireless	MX08FRO665-21 w/ Mount Pipe	1	1-1/2
		1	raycap	RDIDC-9181-PF-48		
		1	tower mounts	Commscope MC-PK8-DSH		

Table 2 - Non-Carrier Equipment To be Removed

Mounting Level (ft)	Elevation	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
90.0	90.0	3	rfs/celwave	APXV18-206517S-C		
90.0	90.0	1	tower mounts	Pipe Mount [PM 601-3]		_

Table 3 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	121.0	3	samsung telecommunications	MT6407-77A w/ Mount Pipe		
	119.0	6	commscope_cfd	JAHH-65B-R3B		
		6	decibel_cfd	DB844G65ZAXY		
		3	commscope	CBC78T-DS-43-2X		1-5/8
115.0		3	commscope_cfd	VVSSP-65S-R1BV2	14	
		2	raycap	RRFDC-3315-PF-48		
	117.0	3	samsung telecommunications	RFV01U-D1A		
		3	samsung telecommunications	RFV01U-D2A		

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
	115.0	1	tower mounts	Platform Mount [LP 301- 1_KCKR]		
	108.0	3	alcatel lucent	800MHZ RRH		
	107.0	1	tower mounts	Pipe Mount [PM 601-3]		
107.0		3	alcatel lucent	1900MHz RRH (65MHz)	-	-
	106.0	3	alcatel lucent	800 EXTERNAL NOTCH FILTER		
		1		A-ANT-23G-2-C		
	109.0	1		VHLP2-18		
		1	andrew	VHLP800-11		
		3	alcatel lucent	TD-RRH8x20-25		
		9	rfs celwave	ACU-A20-N	RH 1 601-3] (65MHz) NOTCH -2-C 8 11 0-25 -N 0 w/ Mount 0 w/ Mount 4 count Pipe	
105.0	106.0	3	rfs celwave_cfd	APXVSPP18-C-A20 w/ Mount Pipe		5/16 1-1/4
105.0		3	rfs celwave_cfd	APXVTM14-C-120 w/ Mount Pipe		7983A
		3	argus technologies_cfd	LLPX310R w/ Mount Pipe		
	105.0	3	samsung telecommunications	FDD_R6_RRH		
		1	tower mounts	Platform Mount [LP 713-1]	<u> </u>	
90.0	90.0	-	-	-	6	1-5/8

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Reference	Source
4-GEOTECHNICAL REPORTS	2294635	CCISITES
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	253930	CCISITES
4-TOWER MANUFACTURER DRAWINGS	253972	CCISITES

3.1) Analysis Method

tnxTower (version 8.0.9.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

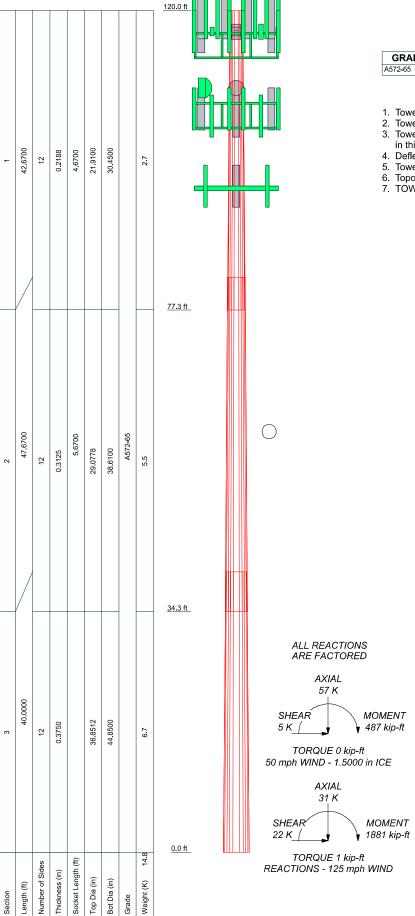
Table 5 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	120 - 77.33	Pole	TP30.45x21.91x0.2188	1	-13.59	1267.55	47.8	Pass
L2	77.33 - 34.33	Pole	TP38.61x29.0778x0.3125	2	-20.98	2297.05	57.0	Pass
L3	34.33 - 0	Pole	TP44.85x36.8512x0.375	3	-31.30	3298.74	58.5	Pass
							Summary	
						Pole (L3)	58.5	Pass
						Rating =	58.5	Pass

Table 6 - Tower Component Stresses vs. Capacity – LC7

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Anchor Rods	0	54.4	Pass
1	Base Plate	0	29.2	Pass
1	Base Foundation (Structure)	0	29.4	Pass
1	Base Foundation (Soil Interaction)	0	25.3	Pass

Structure Rating (max from all components) =	58.5%
--	-------

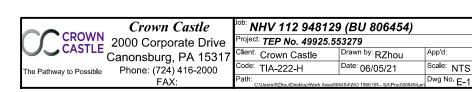

Notes:

4.1) Recommendations

Once the equipment in Table is removed, the tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

¹⁾ See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX A TNXTOWER OUTPUT



MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- 1. Tower designed for Exposure B to the TIA-222-H Standard.
- Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard.
- 3. Tower is also designed for a 50 mph basic wind with 1.50 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 60 mph wind.
- 5. Tower Risk Category II.
 6. Topographic Category 1 with Crest Height of 0.0000 ft
 7. TOWER RATING: 58.5%

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower base elevation above sea level: 33.0000 ft.
- Basic wind speed of 125 mph.
- Risk Category II.
- Exposure Category B.
- Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- Topographic Category: 1.
- Crest Height: 0.0000 ft.
- Nominal ice thickness of 1.5000 in.
- Ice thickness is considered to increase with height.
- Ice density of 56.00 pcf.
- A wind speed of 50 mph is used in combination with ice.
- Temperature drop of 50 °F.
- Deflections calculated using a wind speed of 60 mph.
- A non-linear (P-delta) analysis was used.
- Pressures are calculated at each section.
- Stress ratio used in pole design is 1.
- Tower analysis based on target reliabilities in accordance with Annex S.
- Load Modification Factors used: Kes(Fw) = 0.95, Kes(ti) = 0.85.
- Maximum demand-capacity ratio is: 1.05.
- Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification

√ Use Code Stress Ratios
 √ Use Code Safety Factors - Guys

Escalate Ice
Always Use Max Kz

Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination

✓ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

 ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	120.0000- 77.3300	42.6700	4.67	12	21.9100	30.4500	0.2188	0.8750	A572-65 (65 ksi)
L2	77.3300- 34.3300	47.6700	5.67	12	29.0778	38.6100	0.3125	1.2500	A572-65 (65 ksi)
L3	34.3300- 0.0000	40.0000		12	36.8512	44.8500	0.3750	1.5000	À572-65 (65 ksi)

	Tapered Pole Properties											
Section	Tip Dia. in	Area in²	I in⁴	r	C	I/C in³	J in⁴	It/Q in²	w in	w/t	_	
L1	22.6057 31.4470	15.2788 21,2941	917.57 2484.03				1859.2645 5033.3340		5.2856 7.5743	24.16 34.62		
L2	30.9601 39.8618	28.9451 38.5369	3057.03 7214.44	357 10.29	980 15.062	3 202.9591	6194.3832		6.9554 9.5100	22.25 30.43	7	
L3	39.1927	44.0450	7480.01	161 13.0	585 19.088	9 391.8510	•	21.6776	8.8711	23.65	6	
	46.2999	53.7036	13558.7 8	790 15.92	221 23.232	3 583.6181	27473.786 1	26.4313	11.0148	29.37	3	
Tower Elevatio		ea Thi	Gusset ickness	Gusset Gra	ade Adjust. Fad Ar	ctor Adjust. Factor Ar	Weight N	Stitcl Spa	h Bolt St cing S	ble Angle itch Bolt pacing rizontals	Double Angle Stitch Bolt Spacing Redundants	
ft	ft ²	?	in					•	n in	in	in	
L1 120.00 77.3300					1	1	1					
L2 77.330	00-				1	1	1					

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude	Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weight
		From	t		Number	Per Row	d	Diamete	r	
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	
FXL-1480(1-1/4")	С	No	Surface Ar	105.0000 -	4	4	-0.342	1.5700		0.45
			(CaAa)	0.0000			-0.217			
ATCB-B01-001 (5/16")	С	No	Surface Ar	105.0000 -	2	2	0.442	0.3300		0.06
			(CaAa)	0.0000			0.467			
2" (Nominal) Conduit	С	No	Surface Ar	105.0000 -	2	2	0.400	2.3750		0.72
			(CaAa)	0.0000			0.442			
7983A(ELLIPTICAL)	С	No	Surface Ar	105.0000 -	4	2	0.467	0.5730		80.0
			(CaAa)	0.0000			0.500			
AVA7-50(1-5/8")	С	No	Surface Ar	90.0000 -	6	6	0.083	2.0100		0.70
			(CaAa)	0.0000			0.333			
CU12PSM9P6XXX(1-	Α	No	Surface Ar	95.0000 -	1	1	0.150	1.6000		2.35
1/2)			(CaAa)	0.0000			0.150			

Feed Line/Linear Appurtenances - Entered As Area

34.3300 L3 34.3300-0.0000

Description	Face or	Allow Shield	Exclude From	Componen t	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation	Type 1	ft			ft²/ft	plf
AVA7-50(1-5/8")	С	No	No	Inside Pole	115.0000 - 0.0000	14	No Ice 1/2" Ice 1" Ice 2" Ice	0.0000 0.0000 0.0000 0.0000	0.70 0.70 0.70 0.70
ATCB-B01-001 (5/16")	С	No	No	Inside Pole	105.0000 - 0.0000	4	No Ice 1/2" Ice 1" Ice 2" Ice	0.0000 0.0000 0.0000 0.0000	0.06 0.06 0.06 0.06

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A_R	A_F	C _A A _A In Face	C _A A _A Out Face	Weight
n	ft		ft ²	ft ²	ft ²	ft ²	K
L1	120.0000-	Α	0.000	0.000	2.827	0.000	0.04
	77.3300	В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	50.797	0.000	0.53
L2	77.3300-34.3300	Α	0.000	0.000	6.880	0.000	0.10
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	107.053	0.000	0.77
L3	34.3300-0.0000	Α	0.000	0.000	5.493	0.000	0.08
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	85.468	0.000	0.62

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_{\digamma}	$C_A A_A$	$C_A A_A$	Weight
Sectio	Elevation	or	Thickness			In Face	Out Face	
n	ft	Leg	in	ft ²	ft ²	ft ²	ft ²	K
L1	120.0000-	Α	1.421	0.000	0.000	7.850	0.000	0.13
	77.3300	В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	107.328	0.000	1.57
L2	77.3300-34.3300	Α	1.343	0.000	0.000	19.104	0.000	0.33
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	210.214	0.000	2.82
L3	34.3300-0.0000	Α	1.191	0.000	0.000	14.715	0.000	0.25
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	164.471	0.000	2.15

Feed Line Center of Pressure

Section	Elevation	CP _X	CPz	CP _X Ice	CPz Ice
	ft	in	in	in	in
L1	120.0000-77.3300	-1.3869	3.8699	-1.9306	3.5412
L2	77.3300-34.3300	-2.6277	6.3075	-3.0089	5.2610
L3	34.3300-0.0000	-2.8383	6.8189	-3.3608	5.9449

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	<i>'</i>	Segment	No Ice	Ice
			Ĕlev.		
L1	2	FXL-1480(1-1/4")	77.33 -	1.0000	1.0000
			105.00		
L1	3	ATCB-B01-001 (5/16")	77.33 -	1.0000	1.0000
			105.00		
L1	4	2" (Nominal) Conduit	77.33 -	1.0000	1.0000
			105.00		
L1	5	7983A(ELLIPTICAL)	77.33 -	1.0000	1.0000
			105.00		
L1	6	AVA7-50(1-5/8")	77.33 -	1.0000	1.0000
			90.00		
L1	7	CU12PSM9P6XXX(1-1/2)	77.33 -	1.0000	1.0000
		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	95.00		
L2	2	FXL-1480(1-1/4")	34.33 -	1.0000	1.0000
		ATOR ROLL 004 (5(4011)	77.33	4 0000	4 0000
L2	3	ATCB-B01-001 (5/16")	34.33 -	1.0000	1.0000
	4	Oll (Nicholand) Complyit	77.33	1.0000	1.0000
L2	4	2" (Nominal) Conduit	34.33 - 77.33	1.0000	1.0000
L2	5	7983A(ELLIPTICAL)	34.33	1.0000	1.0000
L L L L L L L L L L L L L L L L L L L	اد	7903A(ELLIFTICAL)	77.33	1.0000	1.0000
L2	6	AVA7-50(1-5/8")	34.33	1.0000	1.0000
	ď	AVA7-30(1-3/0)	77.33	1.0000	1.0000
L2	7	CU12PSM9P6XXX(1-1/2)	34.33	1.0000	1,0000
	'	00121 010101 07000(1 1/2)	77.33	1.0000	1.0000
L3	2	FXL-1480(1-1/4")	0.00 - 34.33	1.0000	1.0000
L3	3	ATCB-B01-001 (5/16")	0.00 - 34.33	1.0000	1.0000
L3	4	2" (Nominal) Conduit	0.00 - 34.33	1.0000	1.0000
L3	5	7983A(ELLIPTICAL)	0.00 - 34.33	1.0000	1.0000
L3	6	AVA7-50(1-5/8")	0.00 - 34.33	1.0000	1.0000
L3	7	CU12PSM9P6XXX(1-1/2)	0.00 - 34.33	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft ²	ft²	K
(2) DB844G65ZAXY	A	From Centroid- Leg	4.0000 0.00 4.00	0.00	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.2400 4.7500 5.2800 6.3800	3.5500 4.0500 4.5600 5.6300	0.02 0.05 0.09 0.17
(2) DB844G65ZAXY	В	From Centroid- Leg	4.0000 0.00 4.00	0.00	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.2400 4.7500 5.2800 6.3800	3.5500 4.0500 4.5600 5.6300	0.02 0.05 0.09 0.17
(2) DB844G65ZAXY	С	From Centroid- Leg	4.0000 0.00 4.00	0.00	115.0000	No Ice 1/2" Ice 1" Ice 2" Ice	4.2400 4.7500 5.2800 6.3800	3.5500 4.0500 4.5600 5.6300	0.02 0.05 0.09 0.17
MT6407-77A w/ Mount Pipe	Α	From Centroid- Leg	4.0000 0.00 6.00	0.00	115.0000	No Ice 1/2" Ice 1" Ice	4.9069 5.2559 5.6147 6.3615	2.6821 3.1450 3.6241 4.6310	0.10 0.14 0.18 0.29

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	٥	ft		ft²	ft²	K
MT6407-77A w/ Mount Pipe	В	From Centroid- Leg	4.0000 0.00 6.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.9069 5.2559 5.6147 6.3615	2.6821 3.1450 3.6241 4.6310	0.10 0.14 0.18 0.29
MT6407-77A w/ Mount Pipe	С	From Centroid- Leg	4.0000 0.00 6.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	4.9069 5.2559 5.6147 6.3615	2.6821 3.1450 3.6241 4.6310	0.10 0.14 0.18 0.29
(2) JAHH-65B-R3B	А	From Centroid- Leg	4.0000 0.00 4.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	5.2900 5.7500 6.2200 7.2000	3.0500 3.4800 3.9300 4.8400	0.06 0.12 0.19 0.33
(2) JAHH-65B-R3B	В	From Centroid- Leg	4.0000 0.00 4.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	5.2900 5.7500 6.2200 7.2000	3.0500 3.4800 3.9300 4.8400	0.06 0.12 0.19 0.33
(2) JAHH-65B-R3B	С	From Centroid- Leg	4.0000 0.00 4.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	5.2900 5.7500 6.2200 7.2000	3.0500 3.4800 3.9300 4.8400	0.06 0.12 0.19 0.33
VVSSP-65S-R1BV2	Α	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8600 2.1000 2.3600 2.9000	0.7200 0.9200 1.1200 1.5700	0.03 0.04 0.06 0.11
VVSSP-65S-R1BV2	В	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8600 2.1000 2.3600 2.9000	0.7200 0.9200 1.1200 1.5700	0.03 0.04 0.06 0.11
VVSSP-65S-R1BV2	С	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8600 2.1000 2.3600 2.9000	0.7200 0.9200 1.1200 1.5700	0.03 0.04 0.06 0.11
CBC78T-DS-43-2X	Α	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.3680 0.4456 0.5306 0.7228	0.5120 0.6046 0.7046 0.9268	0.02 0.03 0.04 0.06
(2) CBC78T-DS-43-2X	В	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.3680 0.4456 0.5306 0.7228	0.5120 0.6046 0.7046 0.9268	0.02 0.03 0.04 0.06
RRFDC-3315-PF-48	Α	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	3.3636 3.5972 3.8383 4.3426	2.1921 2.3950 2.6056 3.0491	0.03 0.06 0.09 0.17
RRFDC-3315-PF-48	В	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	3.3636 3.5972 3.8383 4.3426	2.1921 2.3950 2.6056 3.0491	0.03 0.06 0.09 0.17
RFV01U-D1A	А	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8750 2.0454 2.2231 2.6009	1.2500 1.3926 1.5426 1.8648	0.08 0.10 0.12 0.18

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
(2) RFV01U-D1A	В	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8750 2.0454 2.2231 2.6009	1.2500 1.3926 1.5426 1.8648	0.08 0.10 0.12 0.18
(2) RFV01U-D2A	В	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8750 2.0454 2.2231 2.6009	1.0125 1.1445 1.2840 1.5851	0.07 0.09 0.11 0.15
RFV01U-D2A	С	From Centroid- Leg	4.0000 0.00 2.00	0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice	1.8750 2.0454 2.2231 2.6009	1.0125 1.1445 1.2840 1.5851	0.07 0.09 0.11 0.15
Platform Mount [LP 301- 1_KCKR]	С	None		0.00	115.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	35.0300 44.4600 53.7200 72.2900	35.0300 44.4600 53.7200 72.2900	1.86 2.52 3.33 5.42
800MHZ RRH	Α	From Leg	1.0000 0.00 1.00	0.00	107.0000	No Ice 1/2" Ice 1" Ice	2.1342 2.3195 2.5123 2.9201	1.7730 1.9461 2.1267 2.5100	0.05 0.07 0.10 0.16
800MHZ RRH	В	From Leg	1.0000 0.00 1.00	0.00	107.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.1342 2.3195 2.5123 2.9201	1.7730 1.9461 2.1267 2.5100	0.05 0.07 0.10 0.16
800MHZ RRH	С	From Leg	1.0000 0.00 1.00	0.00	107.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.1342 2.3195 2.5123 2.9201	1.7730 1.9461 2.1267 2.5100	0.05 0.07 0.10 0.16
800 EXTERNAL NOTCH FILTER	Α	From Leg	1.0000 0.00 -1.00	0.00	107.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.6601 0.7627 0.8727 1.1149	0.3211 0.3983 0.4830 0.6744	0.01 0.02 0.02 0.04
800 EXTERNAL NOTCH FILTER	В	From Leg	1.0000 0.00 -1.00	0.00	107.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.6601 0.7627 0.8727 1.1149	0.3211 0.3983 0.4830 0.6744	0.01 0.02 0.02 0.04
800 EXTERNAL NOTCH FILTER	С	From Leg	1.0000 0.00 -1.00	0.00	107.0000	2" Ice No Ice 1/2" Ice 1" Ice	0.6601 0.7627 0.8727 1.1149	0.3211 0.3983 0.4830 0.6744	0.01 0.02 0.02 0.04
1900MHz RRH (65MHz)	Α	From Leg	1.0000 0.00 -1.00	0.00	107.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.3125 2.5168 2.7284 3.1740	2.3750 2.5809 2.7943 3.2431	0.06 0.08 0.11 0.18
1900MHz RRH (65MHz)	В	From Leg	1.0000 0.00 -1.00	0.00	107.0000	2" Ice No Ice 1/2" Ice 1" Ice	2.3125 2.5168 2.7284 3.1740	2.3750 2.5809 2.7943 3.2431	0.06 0.08 0.11 0.18
1900MHz RRH (65MHz)	С	From Leg	1.0000 0.00 -1.00	0.00	107.0000	2" Ice No Ice 1/2" Ice	2.3125 2.5168 2.7284	2.3750 2.5809 2.7943	0.06 0.08 0.11

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	۰	ft		ft ²	ft²	K
						1" Ice 2" Ice	3.1740	3.2431	0.18
Pipe Mount [PM 601-3]	С	None		0.00	107.0000	No Ice	3.1700	3.1700	0.20
· · · · · ·						1/2"	3.7900	3.7900	0.23
						Ice	4.4200	4.4200	0.28
**						1" Ice 2" Ice	5.7600	5.7600	0.40
APXVSPP18-C-A20 w/	Α	From	4.0000	0.00	105.0000	No Ice	4.6000	4.0100	0.10
Mount Pipe		Centroid-	0.00			1/2"	5.0500	4.4500	0.16
		Leg	1.00			Ice	5.5000	4.8900	0.23
						1" Ice 2" Ice	6.4400	5.8200	0.42
APXVSPP18-C-A20 w/	В	From	4.0000	0.00	105.0000	No Ice	4.6000	4.0100	0.10
Mount Pipe		Centroid-	0.00			1/2"	5.0500	4.4500	0.16
		Leg	1.00			Ice 1" Ice	5.5000 6.4400	4.8900 5.8200	0.23 0.42
						2" Ice	0.7700	0.0200	0.42
APXVSPP18-C-A20 w/	С	From	4.0000	0.00	105.0000	No Ice	4.6000	4.0100	0.10
Mount Pipe		Centroid-	0.00			1/2"	5.0500	4.4500	0.16
		Leg	1.00			Ice	5.5000	4.8900	0.23
						1" Ice 2" Ice	6.4400	5.8200	0.42
LLPX310R w/ Mount Pipe	Α	From	4.0000	0.00	105.0000	No Ice	3.8800	2.3600	0.06
·		Centroid-	0.00			1/2"	4.2900	2.7300	0.09
		Leg	0.00			Ice	4.7200	3.1200	0.13
						1" Ice 2" Ice	5.6100	3.9400	0.24
LLPX310R w/ Mount Pipe	В	From	4.0000	0.00	105.0000	No Ice	3.8800	2.3600	0.06
		Centroid-	0.00			1/2"	4.2900	2.7300	0.09
		Leg	0.00			Ice 1" Ice	4.7200 5.6100	3.1200 3.9400	0.13 0.24
						2" I ce			
LLPX310R w/ Mount Pipe	С	From	4.0000	0.00	105.0000	No Ice	3.8800	2.3600	0.06
		Centroid-	0.00			1/2"	4.2900 4.7200	2.7300	0.09
		Leg	0.00			Ice 1" Ice	5.6100	3.1200 3.9400	0.13 0.24
						2" Ice	3.0100	3.9400	0.24
APXVTM14-C-120 w/	Α	From	4.0000	0.00	105.0000	No Ice	4.0900	2,8600	0.08
Mount Pipe		Centroid-	0.00			1/2"	4.4800	3.2300	0.13
·		Leg	1.00			Ice	4.8800	3.6100	0.19
						1" I ce	5.7100	4.4000	0.33
ADVI/TN444 C 400/	_		4.0000	0.00	405 0000	2" Ice	4.0000	0.0000	0.00
APXVTM14-C-120 w/ Mount Pipe	В	From Centroid-	4.0000 0.00	0.00	105.0000	No I ce 1/2"	4.0900 4.4800	2.8600 3.2300	0.08 0.13
Mount Fipe		Leg	1.00			Ice	4.8800	3.6100	0.13
		Log	1,00			1" Ice	5.7100	4.4000	0.33
	_	_				2" Ice			
APXVTM14-C-120 w/	С	From	4.0000	0.00	105.0000	No Ice	4.0900	2.8600	0.08
Mount Pipe		Centroid-	0.00 1.00			1/2" Ice	4.4800 4.8800	3.2300 3.6100	0.13 0.19
		Leg	1.00			1" Ice	5.7100	4.4000	0.19
						2" Ice	3.7 100	4.4000	0.55
(3) ACU-A20-N	Α	From	4.0000	0.00	105.0000	No Ice	0.0667	0.1167	0.00
. ,		Centroid-	0.00			1/2"	0.1037	0.1620	0.00
		Leg	1.00			Ice	0.1481	0.2148	0.00
						1" Ice 2" Ice	0.2593	0.3426	0.01
(3) ACU-A20-N	В	From	4.0000	0.00	105.0000	No Ice	0.0667	0.1167	0.00
		Centroid-	0.00			1/2"	0.1037	0.1620	0.00
		Leg	1.00			Ice	0.1481	0.2148	0.00
						1" Ice 2" Ice	0.2593	0.3426	0.01

Description	Face	Offset	Offsets:	Azimuth	Placement		C _A A _A	C _A A _A	Weight
	or Leg	Type	Horz Lateral Vert	Adjustmen t			Front	Side	
			ft ft ft	o	ft		ft ²	ft²	К
(3) ACU-A20-N	С	From	4.0000	0.00	105.0000	No Ice	0.0667	0.1167	0.00
		Centroid- Leg	0.00 1.00			1/2" I ce	0.1037 0.1481	0.1620 0.2148	0.00 0.00
		Log	1.00			1" Ice 2" Ice	0.2593	0.3426	0.01
FDD_R6_RRH	Α	From	4.0000	0.00	105.0000	No Ice	1.5333	0.6840	0.03
		Centroid-	0.00			1/2"	1.6898	0.7999	0.04
		Leg	0.00			Ice 1" Ice 2" Ice	1.8537 2.2037	0.9228 1.1926	0.06 0.09
FDD_R6_RRH	В	From	4.0000	0.00	105.0000	No Ice	1.5333	0.6840	0.03
		Centroid-	0.00			1/2"	1.6898	0.7999	0.04
		Leg	0.00			Ice	1.8537	0.9228	0.06
EDD D0 DD11	0	-	4.0000	0.00	105.0000	1" Ice 2" Ice	2.2037	1.1926	0.09
FDD_R6_RRH	С	From Centroid-	4.0000 0.00	0.00	105.0000	No Ice 1/2"	1.5333 1.6898	0.6840 0.7999	0.03 0.04
		Leg	0.00			Ice	1.8537	0.9228	0.06
		J				1" Ice	2.2037	1.1926	0.09
TD DD110 00 05		F	4.0000	0.00	105.0000	2" Ice	4.0455	4 5045	0.07
TD-RRH8x20-25	Α	From Centroid-	4.0000 0.00	0.00	105.0000	No Ice 1/2"	4.0455 4.2975	1.5345 1.7142	0.07 0.10
		Leg	1.00			Ice	4.5570	1.9008	0.13
		3				1" Ice 2" Ice	5.0981	2.2951	0.20
TD-RRH8x20-25	В	From	4.0000	0.00	105.0000	No Ice	4.0455	1.5345	0.07
		Centroid- Leg	0.00 1.00			1/2" I ce	4.2975 4.5570	1.7142 1.9008	0.10 0.13
		Leg	1.00			1" Ice 2" Ice	5.0981	2.2951	0.20
TD-RRH8x20-25	С	From	4.0000	0.00	105.0000	No Ice	4.0455	1.5345	0.07
		Centroid-	0.00			1/2"	4.2975	1.7142	0.10
		Leg	1.00			Ice 1" Ice	4.5570 5.0981	1.9008 2.2951	0.13 0.20
						2" Ice	0.0001	2.2001	0.20
(2) 6' x 2" Mount Pipe	Α	From	4.0000	0.00	105.0000	No Ice	1.4250	1.4250	0.02
		Centroid-	0.00			1/2"	1.9250	1.9250	0.03
		Leg	0.00			Ice 1" Ice	2.2939 3.0596	2.2939 3.0596	0.05 0.09
						2" Ice	0.0000	0.0000	0.00
6' x 2" Mount Pipe	С	From	4.0000	0.00	105.0000	No Ice	1.4250	1.4250	0.02
		Centroid-	0.00			1/2"	1.9250	1.9250	0.03
		Leg	0.00			Ice 1" Ice	2.2939 3.0596	2.2939 3.0596	0.05 0.09
						2" Ice	0.0000	0.0000	0.00
Platform Mount [LP 713-1]	С	None		0.00	105.0000	No Ice	32.8900	32.8900	1.51
						1/2" Ice	35.7600 38.7600	35.7600 38.7600	2.23 3.03
						1" Ice 2" Ice	45.2600	45.2600	4.86
**		E '	4.0000	0.00	05 0000		0.0400	4.0000	0.44
MX08FRO665-21 w/ Mount Pipe	Α	From Leg	4.0000 0.00	0.00	95.0000	No Ice 1/2"	8.0100 8.5200	4.2300 4.6900	0.11 0.19
Widalit i ipe			0.00			Ice	9.0400	5.1600	0.19
						1" I ce	10.1100	6.1200	0.52
MV00EDOCCE 04/	Р	From Lar	4.0000	0.00	05.0000	2" Ice	0.0400	4 0000	0.44
MX08FRO665-21 w/ Mount Pipe	В	From Leg	4.0000 0.00	0.00	95.0000	No Ice 1/2"	8.0100 8.5200	4.2300 4.6900	0.11 0.19
Would Tipe			0.00			Ice	9.0400	5.1600	0.29
						1" Ice	10.1100	6.1200	0.52
MYOOFDOOG O4	•	F !	4.0000	0.00	05.0000	2" Ice	0.0400	4 0000	0.44
MX08FRO665-21 w/ Mount Pipe	С	From Leg	4.0000 0.00	0.00	95.0000	No Ice 1/2"	8.0100 8.5200	4.2300 4.6900	0.11 0.19
Would ipo			0.00			Ice	9.0400	5.1600	0.19
						1" I ce	10.1100	6.1200	0.52

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft ft	۰	ft		ft²	ft²	К
						2" I ce			
TA08025-B604	Α	From Leg	4.0000	0.00	95.0000	No Ice	1.9635	0.9811	0.06
			0.00			1/2"	2.1378	1.1117	0.08
			0.00			Ice 1" Ice	2.3195 2.7052	1.2496 1.5477	0.10
						2" Ice	2.7052	1.5477	0.15
TA08025-B604	В	From Leg	4.0000	0.00	95.0000	No Ice	1.9635	0.9811	0.06
17400025-0004	D	1 Tom Leg	0.00	0.00	33.0000	1/2"	2.1378	1.1117	0.08
			0.00			Ice	2.3195	1 2496	0.10
			0.00			1" Ice	2,7052	1.5477	0.15
						2" Ice			
TA08025-B604	С	From Leg	4.0000	0.00	95.0000	No Ice	1.9635	0.9811	0.06
		_	0.00			1/2"	2.1378	1.1117	0.08
			0.00			ce	2.3195	1.2496	0.10
						1" Ice	2.7052	1.5477	0.15
		_				2" Ice			
TA08025-B605	Α	From Leg	4.0000	0.00	95.0000	No Ice	1.9635	1.1295	0.08
			0.00			1/2"	2.1378	1.2666	0.09
			0.00			Ice	2.3195	1.4112	0.11
						1" Ice	2.7052	1.7225	0.16
TA08025-B605	В	From Leg	4.0000	0.00	95.0000	2" Ice No Ice	1.9635	1.1295	0.08
1A08025-B005	Ь	From Leg	0.00	0.00	95.0000	1/2"	2.1378	1.1293	0.08
			0.00			Ice	2.3195	1.4112	0.03
			0.00			1" Ice	2.7052	1.7225	0.16
						2" Ice	2.7002	1.7220	0.10
TA08025-B605	С	From Leg	4.0000	0.00	95.0000	No Ice	1.9635	1.1295	0.08
		J	0.00			1/2"	2.1378	1.2666	0.09
			0.00			Ice	2.3195	1.4112	0.11
						1" Ice	2.7052	1.7225	0.16
	_					2" Ice			
RDIDC-9181-PF-48	В	From Leg	4.0000	0.00	95.0000	No Ice	2.3118	1.2931	0.02
			0.00			1/2"	2.5022	1.4479	0.04
			0.00			Ice	2.7000	1.6101	0.06
						1" Ice 2" Ice	3.1179	1.9566	0.12
(2) 8' x 2" Mount Pipe	Α	From Leg	4.0000	0.00	95,0000	No Ice	1.9000	1.9000	0.03
(2) 6 X 2 Would ripe	,,	1 Tom Log	0.00	0.00	30.0000	1/2"	2.7281	2.7281	0.04
			0.00			lce	3.4009	3,4009	0.06
						1" Ice	4.3962	4.3962	0.12
						2" Ice			
(2) 8' x 2" Mount Pipe	В	From Leg	4.0000	0.00	95.0000	No Ice	1.9000	1.9000	0.03
			0.00			1/2"	2.7281	2.7281	0.04
			0.00			Ice	3.4009	3.4009	0.06
						1" Ice	4.3962	4.3962	0.12
(0) 01 / 04 14 - 15	^	Facility 1	4.0000	0.00	05 0000	2" Ice	4.0000	4.0000	0.00
(2) 8' x 2" Mount Pipe	С	From Leg	4.0000	0.00	95.0000	No Ice	1.9000	1.9000	0.03
			0.00			1/2"	2.7281	2.7281	0.04
			0.00			Ice 1" Ice	3.4009 4.3962	3.4009 4.3962	0.06 0.12
						2" Ice	7.0302	4.0302	0.12
Commscope MC-PK8-DSH	С	None		0.00	95.0000	No Ice	34.2400	34.2400	1.75
	-				23.2200	1/2"	62.9500	62.9500	2.10
						Ice	91.6600	91.6600	2.45
						1" Ice	149.0800	149.0800	3.15
						2" Ice			

Dishes

Description	Face or Leg	Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	٥	٥	ft	ft		ft ²	K
A-ANT-23G-2-C	Α	Paraboloid	From	4.0000	-10.00		105.0000	2.1750	No Ice	3.7200	0.01
		w/Shroud (HP)	Centroi	0.00					1/2" Ice	4.0100	0.02
			d-Leg	4.00					1" Ice	4.3000	0.03
									2" Ice	4.8800	0.05
VHLP2-18	Α	Paraboloid	From	4.0000	30.00		105.0000	2.0000	No Ice	3.1400	0.03
		w/Shroud (HP)	Centroi	0.00					1/2" Ice	3.4100	0.05
			d-Leg	4.00					1" Ice	3.6800	0.07
									2" Ice	4.2100	0.10
VHLP800-11	С	Paraboloid	From	4.0000	-10.00		105.0000	2.9167	No Ice	6.6800	0.02
		w/Shroud (HP)	Centroi	0.00					1/2" Ice	7.0700	0.03
			d-Leg	4.00					1" Ice	7.4600	0.03
									2" Ice	8.2300	0.07

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41 42	Dead+Wind 60 deg - Service
42 43	Dead+Wind 90 deg - Service
43 44	Dead+Wind 120 deg - Service Dead+Wind 150 deg - Service
44 45	Dead+Wind 180 deg - Service Dead+Wind 180 deg - Service
45 46	Dead+Wind 210 deg - Service Dead+Wind 210 deg - Service
40	Dead - Willia 210 deg - Sel Vice

Comb. No.	Description
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Member Forces

Sectio	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
n	ft	Type		Load		Moment	Moment
No.				Comb.	K	kip-ft	kip-ft
L1	120 - 77.33	Pole	Max Tension	14	0.00	-0.00	0.00
			Max. Compression	26	-30.45	-2.41	-1.45
			Max. Mx	8	-13.59	-361.36	2.55
			Max. My	14	-13.59	1.49	-361.68
			Max. Vy	8	14.79	-361.36	2.55
			Max. Vx	14	14.83	1.49	-361.68
			Max. Torque	8			0.97
L2	77.33 - 34.33	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-42.38	-2.12	-4.88
			Max. Mx	8	-20.99	-1059.75	6.92
			Max. My	14	-20.99	5.95	-1062.33
			Max. Vy	8	18.42	-1059.75	6.92
			Max. Vx	14	18.46	5.95	-1062.33
			Max. Torque	8			0.87
L3	34.33 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-57.09	-1.66	-8.49
			Max. Mx	8	-31.30	-1861.41	10.85
			Max. My	14	-31.30	10.16	-1866.25
			Max. Vy	8	21.64	-1861.41	10.85
			Max. Vx	14	21.68	10.16	-1866.25
			Max. Torque	8			0.87

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	33	57.09	0.02	-5.23
	Max. H _x	20	31.31	21.58	-0.10
	Max. H _z	2	31.31	-0.14	21.62
	Max. M_x	2	1859.54	-0.14	21.62
	$Max. M_z$	8	1861.41	-21.62	0.11
	Max. Torsion	8	0.87	-21.62	0.11
	Min. Vert	23	23.48	18.68	10.79
	Min. H _x	8	31.31	-21.62	0.11
	Min. H _z	14	31.31	0.10	-21.66
	Min. M _x	14	-1866.25	0.10	-21.66
	Min. M _z	20	-1854.80	21.58	-0.10
	Min. Torsion	20	-0.80	21,58	-0.10

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	26.09	0.00	0.00	1.20	-0.70	0.00
1.2 Dead+1.0 Wind 0 deg - No Ice	31.31	0.14	-21.62	-1859.54	-17.07	0.14

Load Combination	Vertical	Shear _x	Shear₂	Overturning Moment, M _x	Overturning Moment, Mz	Torque
0.9 Dead+1.0 Wind 0 deg -	<i>K</i> 23.48	<i>K</i> 0.14	<i>K</i> -21.62	kip-ft -1843.07	kip-ft -16.67	<u>kip-ft</u> 0.15
No Ice	20.40	0.14	-21.02	-10-0.07	-10.07	0.13
1.2 Dead+1.0 Wind 30 deg	31.31	10.83	-18.76	-1613.78	-932.82	-0.12
No Ice 0.9 Dead+1.0 Wind 30 deg -	23.48	10.83	-18.76	-1599.53	-924.14	-0.11
No Ice	20.10		10.70		021.11	0.11
1.2 Dead+1.0 Wind 60 deg -	31.31	18.71	-10.89	-937.74	-1610.20	-0.52
No Ice 0.9 Dead+1.0 Wind 60 deg -	23.48	18.71	-10.89	-929.61	-1595.39	-0.51
No Ice						
1.2 Dead+1.0 Wind 90 deg - No Ice	31.31	21.62	-0.11	-10.85	-1861.41	-0.87
0.9 Dead+1.0 Wind 90 deg -	23.48	21.62	-0.11	-11.11	-1844.33	-0.87
No Ice 1.2 Dead+1.0 Wind 120 deg	31.31	18.71	10.77	926.80	-1610.90	-0.69
- No Ice	31.31	10.71	10.77	920.00	-1010.90	-0.03
0.9 Dead+1.0 Wind 120 deg	23.48	18.71	10.77	918.03	-1596.08	-0.69
- No Ice 1.2 Dead+1.0 Wind 150 deg	31.31	10.87	19.09	1636.78	-927.16	-0.05
- No Ice	00.40	40.0=			0.40 =0	
0.9 Dead+1.0 Wind 150 deg - No Ice	23.48	10.87	19.09	1621.63	-918.58	-0.06
1.2 Dead+1.0 Wind 180 deg	31,31	-0.10	21.66	1866.25	10.16	-0.04
- No Ice 0.9 Dead+1.0 Wind 180 deg	23.48	-0.10	21.66	1848.98	10,29	-0.05
- No Ice						
1.2 Dead+1.0 Wind 210 deg - No Ice	31.31	-10.79	18.77	1617.61	927.06	0.13
0.9 Dead+1.0 Wind 210 deg	23.48	-10.79	18.77	1602.58	918.90	0.12
- No Ice	31.31	19.66	10.89	040.31	1602.47	0.40
1.2 Dead+1.0 Wind 240 deg - No Ice	31.31	-18.66	10.69	940.31	1603.47	0.40
0.9 Dead+1.0 Wind 240 deg	23.48	-18.66	10.89	931.42	1589.19	0.40
- No Ice 1.2 Dead+1.0 Wind 270 deg	31.31	-21.58	0.10	12.96	1854.80	0.80
- No Ice						
0.9 Dead+1.0 Wind 270 deg - No I ce	23.48	-21.58	0.10	12,46	1838.24	0.80
1.2 Dead+1.0 Wind 300 deg	31.31	-18.68	-10.79	-926.60	1605.00	0.50
- No Ice 0.9 Dead+1.0 Wind 300 deg	23.48	-18.68	-10,79	-918.57	1590.70	0.50
- No Ice	23.40	-10.00	-10.79	-910.57	1590.70	0.50
1.2 Dead+1.0 Wind 330 deg	31.31	-10.89	-19.02	-1625.05	927.91	0.23
- No Ice 0.9 Dead+1.0 Wind 330 deg	23.48	-10.89	-19.02	-1610.75	919.78	0.24
- No Ice						
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	57.09 57.09	0.00 0.03	0.00 -5.22	8.49 -468.96	-1.66 -4.97	0.00 0.02
deg+1.0 Ice+1.0 Temp	01.00	0.00	0.22	400.00	7.07	0.02
1.2 Dead+1.0 Wind 30	57.09	2.61	-4.53	-405.75	-240.72	-0.04
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 60	57.09	4.52	-2.63	-232.04	-414.68	-0.12
deg+1.0 Ice+1.0 Temp	57.00	5.00	0.00	2.22	470.00	0.40
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	57.09	5.22	-0.02	6.02	-478.99	-0.19
1.2 Dead+1.0 Wind 120	57.09	4.52	2.60	246.27	-414.74	-0.15
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150	57.09	2.59	4.53	423.75	-237.66	-0.02
deg+1.0 Ice+1.0 Temp	07.00		4.00	420.70	207.00	0.02
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	57.09	-0.02	5.23	486.90	0.61	-0.01
1.2 Dead+1.0 Wind 210	57.09	-2.61	4.53	423.12	236.60	0.04
deg+1.0 Ice+1.0 Temp	57.00	4.54	0.00	040.44	440.07	0.40
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	57.09	-4.51	2.63	249.14	410.37	0.10
1.2 Dead+1.0 Wind 270	57.09	-5.21	0.02	10.97	474.70	0.18
deg+1.0 Ice+1.0 Temp	57.09	-4.51	-2.61	-229.69	410.55	0.12
1.2 Dead+1.0 Wind 300		-4.01				

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination	.,		.,	Moment, M _x	Moment, Mz	
	K	K	K	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 330	57.09	-2.59	-4.52	-404.84	234.81	0.05
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	26.09	0.03	-4.69	-400.46	-4.23	0.03
Dead+Wind 30 deg - Service	26.09	2.35	-4.07	-347.41	-201.89	-0.02
Dead+Wind 60 deg - Service	26.09	4.06	-2.36	-201.49	-348.10	-0.11
Dead+Wind 90 deg - Service	26.09	4.69	-0.02	-1.43	-402.32	-0.19
Dead+Wind 120 deg -	26.09	4.06	2.34	200.95	-348.25	-0.15
Service						
Dead+Wind 150 deg -	26.09	2.36	4.14	354,21	-200.67	-0.01
Service						
Dead+Wind 180 deg -	26.09	-0.02	4.70	403.73	1.65	-0.01
Service						
Dead+Wind 210 deg -	26.09	-2.34	4.07	350.06	199.56	0.03
Service						
Dead+Wind 240 deg -	26.09	-4.05	2.36	203.87	345.55	0.09
Service						
Dead+Wind 270 deg -	26.09	-4.68	0.02	3.71	399.80	0.18
Service			3.52	31	000.00	00
Dead+Wind 300 deg -	26.09	-4.05	-2.34	-199.09	345.88	0.11
Service	20.00	1.50	2.04	100100	0.000	0.11
Dead+Wind 330 deg -	26.09	-2.36	-4.13	-349.85	199.74	0.05
Service	20.03	-2.00	-7.10	-0-0.00	100.74	0.00
OCIVICO						

Solution Summary

	Sun	n of Applied Force			Sum of Reactio		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	Κ	K	K	
1	0.00	-26.09	0.00	0.00	26.09	0.00	0.000%
2	0.14	-31.31	-21.62	-0.14	31.31	21.62	0.000%
3	0.14	-23.48	-21.62	-0.14	23.48	21.62	0.000%
4	10.83	-31.31	-18.76	-10.83	31.31	18.76	0.000%
5	10.83	-23.48	-18.76	-10.83	23.48	18.76	0.000%
6	18.71	-31.31	-10.89	-18.71	31.31	10.89	0.000%
7	18.71	-23.48	-10.89	-18.71	23.48	10.89	0.000%
8	21.62	-31.31	-0.11	-21.62	31.31	0.11	0.000%
9	21.62	-23.48	-0.11	-21.62	23.48	0.11	0.000%
10	18.71	-31.31	10.77	-18.71	31.31	-10.77	0.000%
11	18.71	-23.48	10.77	-18.71	23.48	-10.77	0.000%
12	10.87	-31.31	19.09	-10.87	31.31	-19.09	0.000%
13	10.87	-23.48	19.09	-10.87	23.48	-19.09	0.000%
14	-0.10	-31.31	21.66	0.10	31.31	-21.66	0.000%
15	-0.10	-23.48	21.66	0.10	23.48	-21.66	0.000%
16	-10.79	-31.31	18.77	10.79	31.31	-18.77	0.000%
17	-10.79	-23.48	18.77	10.79	23.48	-18.77	0.000%
18	-18.66	-31.31	10.89	18.66	31.31	-10.89	0.000%
19	-18.66	-23.48	10.89	18.66	23.48	-10.89	0.000%
20	-21.58	-31.31	0.10	21.58	31.31	-0.10	0.000%
21	-21.58	-23.48	0.10	21.58	23.48	-0.10	0.000%
22	-18.68	-31.31	-10.79	18.68	31.31	10.79	0.000%
23	-18.68	-23.48	-10.79	18.68	23.48	10.79	0.000%
24	-10.89	-31.31	-19.02	10.89	31.31	19.02	0.000%
25	-10.89	-23.48	-19.02	10.89	23.48	19.02	0.000%
26	0.00	-57.09	0.00	-0.00	57.09	-0.00	0.000%
27	0.03	-57.09	-5.22	-0.03	57.09	5.22	0.000%
28	2.61	-57.09	-4.53	-2.61	57.09	4.53	0.000%
29	4.52	-57.09	-2.63	-4.52	57.09	2.63	0.000%
30	5.22	-57.09	-0.02	-5.22	57.09	0.02	0.000%
31	4.52	-57.09	2.60	-4.52	57.09	-2.60	0.000%
32	2.59	-57.09	4.53	-2.59	57.09	-4.53	0.000%
33	-0.02	-57.09	5.23	0.02	57.09	-5.23	0.000%
34	-2.61	-57.09	4.53	2.61	57.09	-4.53	0.000%
35	-4.51	-57.09	2.63	4.51	57.09	-2.63	0.000%
36	-5.21	-57.09	0.02	5.21	57.09	-0.02	0.000%
37	-4.51	-57.09	-2.61	4.51	57.09	2.61	0.000%
38	-2.59	-57.09	-4.52	2.59	57.09	4.52	0.000%

	Sur	n of Applied Force	es		Sum of Reaction	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
39	0.03	-26.09	-4.69	-0.03	26.09	4.69	0.000%
40	2.35	-26.09	-4.07	-2.35	26.09	4.07	0.000%
41	4.06	-26.09	-2.36	-4.06	26.09	2.36	0.000%
42	4.69	-26.09	-0.02	-4.69	26.09	0.02	0.000%
43	4.06	-26.09	2.34	-4.06	26.09	-2.34	0.000%
44	2.36	-26.09	4.14	-2.36	26.09	-4.14	0.000%
45	-0.02	-26.09	4.70	0.02	26.09	-4.70	0.000%
46	-2.34	-26.09	4.07	2.34	26.09	-4.07	0.000%
47	-4.05	-26.09	2.36	4.05	26.09	-2.36	0.000%
48	-4.68	-26.09	0.02	4.68	26.09	-0.02	0.000%
49	-4.05	-26.09	-2.34	4.05	26.09	2.34	0.000%
50	-2.36	-26.09	-4.13	2.36	26.09	4.13	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	Convergeu:	of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00003526
3	Yes	4	0.00000001	0.00023320
4	Yes	5	0.00000001	0.00015757
5	Yes	5	0.00000001	0.00023213
6	Yes	5	0.00000001	0.00011041
7	Yes	5	0.00000001	0.00023332
8	Yes	4	0.00000001	0.00011002
9	Yes	4	0.00000001	0.00047122
10	Yes	5	0.00000001	0.00023302
11	Yes	5	0.00000001	0.00024471
12	Yes	5	0.00000001	0.00011173
13	Yes	5	0.00000001	0.00023338
14	Yes	4	0.00000001	0.00011300
15	Yes	4	0.00000001	0.00015777
16	Yes	5	0.00000001	0.00003742
17	Yes	5	0.00000001	0.00023328
18	Yes	5	0.00000001	0.00011003
19	Yes	5	0.00000001	0.00024070
20	Yes	4	0.00000001	0.00011303
21	Yes	4	0.00000001	0.00020014
22	Yes	5	0.00000001	0.00016306
23	Yes	5	0.00000001	0.00023383
23 24	Yes	5	0.00000001	0.00011072
25 25	Yes	5	0.00000001	0.00024733
26	Yes	4	0.00000001	0.00011333
27	Yes	5	0.00000001	0.00003113
28	Yes	5	0.00000001	0.00014040
29 29	Yes	5	0.00000001	0.00016985
30	Yes	5	0.00000001	0.00015953
31	Yes	5	0.00000001	0.00013034
32	Yes	5	0.00000001	0.00017332
33	Yes	5	0.00000001	0.00017400
33 34	Yes	5	0.00000001	0.00013160
35	Yes	5 5	0.0000001	0.00017159
36	Yes	5	0.00000001	0.00017003
36 37	Yes	5	0.0000001	0.00014724
		5 5		
38	Yes		0.00000001	0.00016473
39	Yes	4	0.00000001	0.00001617
40	Yes	4	0.00000001	0.00007571
41	Yes	4	0.00000001	0.00008258
42	Yes	4	0.00000001	0.00002528
43	Yes	4	0.00000001	0.00007135
44	Yes	4	0.00000001	0.00007826
45	Yes	4	0.00000001	0.00001545
46	Yes	4	0.00000001	0.00007707
47	Yes	4	0.00000001	0.00007272
48	Yes	4	0.00000001	0.00002242
49	Yes	4	0.00000001	0.00007928
50	Yes	4	0.0000001	0.00007229

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	٥
L1	120 - 77.33	12.54	44	0.87	0.00
L2	82 - 34.33	6.05	44	0.69	0.00
L3	40 - 0	1.44	44	0.33	0.00

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
115.0000	(2) DB844G65ZAXY	44	11.64	0.85	0.00	53735
109.0000	A-ANT-23G-2-C	44	10.56	0.83	0.00	24425
107.0000	800MHZ RRH	44	10.20	0.82	0.00	20667
105.0000	APXVSPP18-C-A20 w/ Mount	44	9.85	0.81	0.00	17911
	Pipe					
95.0000	MX08FRO665-21 w/ Mount Pipe	44	8.12	0.77	0.00	10747

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
L1	120 - 77.33	57.90	12	4.01	0.01
L2	82 - 34.33	27.98	12	3.20	0.00
L3	40 - 0	6.67	12	1.51	0.00

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	۰	0	ft
115.0000	(2) DB844G65ZAXY	12	53.72	3.93	0.01	11836
109.0000	A-ANT-23G-2-C	12	48.75	3.83	0.01	5379
107.0000	800MHZ RRH	12	47.10	3.79	0.01	4551
105.0000	APXVSPP18-C-A20 w/ Mount Pipe	12	45.47	3.75	0.01	3944
95.0000	MX08FRO665-21 w/ Mount Pipe	12	37.52	3.55	0.01	2365

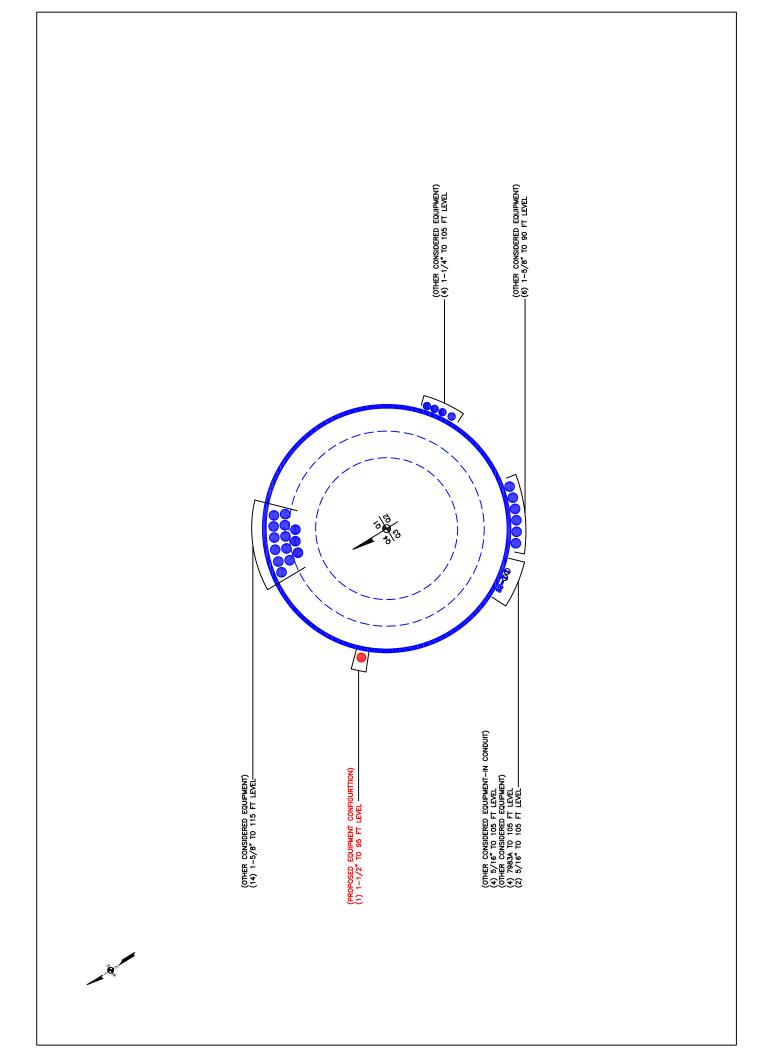
Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_u	KI/r	Α	P_u	ϕP_n	Ratio Pu
	ft		ft	ft		in²	K	K	$\overline{\phi P_n}$
L1	120 - 77.33 (1)	TP30.45x21.91x0.2188	42.670 0	0.0000	0.0	20.635 8	-13.59	1207.19	0.011
L2	77.33 - 34.33 (2)	TP38.61x29.0778x0.3125	47.670 0	0.0000	0.0	37.396 0	-20.98	2187.67	0.010
L3	34.33 - 0 (3)	TP44.85x36.8512x0.375	40.000 0	0.0000	0.0	53.703 6	-31.30	3141.66	0.010

Pole Bending Design Data

Section No.	Elevation	Size	M _{ux}	ф М пх	Ratio M _{ux}	M _{uy}	ф М пу	Ratio Muy
	ft		kip-ft	kip-ft	φ <i>M</i> _{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	120 - 77.33 (1)	TP30.45x21.91x0.2188	361.69	740.11	0.489	0.00	740.11	0.000


Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	Muy	ϕM_{ny}	Ratio
				M_{ux}			Muy
ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
77.33 - 34.33	TP38.61x29.0778x0.3125	1065.82	1811.49	0.588	0.00	1811.49	0.000
(2)							
34.33 - 0 (3)	TP44.85x36.8512x0.375	1881.13	3117.30	0.603	0.00	3117.30	0.000
	ft 77.33 - 34.33 (2)	ft 77.33 - 34.33 TP38.61x29.0778x0.3125 (2)	ft kip-ft 77.33 - 34.33 TP38.61x29.0778x0.3125 1065.82 (2)	ft kip-ft kip-ft 77.33 - 34.33 TP38.61x29.0778x0.3125 1065.82 1811.49 (2)	$\frac{ft}{ft}$ $\frac{M_{ux}}{\psi M_{nx}}$ $\frac{M_{ux}}{\psi M_{nx}}$ 77.33 - 34.33 TP38.61x29.0778x0.3125 1065.82 1811.49 0.588 (2)	ft $\frac{M_{ux}}{ft}$ $\frac{M_{ux}}{h_{ux}}$ $M_{$	ft kip -ft

Pole Shear Design Data								
Section No.	Elevation	Size	Actual V _u	φVn	Ratio V _u	Actual T _u	φTn	Ratio Tu
	ft		K	K	$\overline{\phi V_n}$	kip-ft	kip-ft	ϕT_n
L1	120 - 77.33 (1)	TP30.45x21.91x0.2188	14.83	362.16	0.041	0.04	933.28	0.000
L2	77.33 - 34.33 (2)	TP38.61x29.0778x0.3125	18.70	656.30	0.028	0.05	2145.47	0.000
L3	34.33 - 0 (3)	TP44.85x36.8512x0.375	21.99	942.50	0.023	0.05	3687.19	0.000

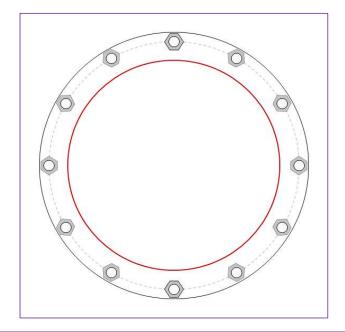
Pole Interaction Design Data									
Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio Vu	Ratio Tu	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	φ <i>M</i> _{nx}	<u></u> φ <i>M</i> _{ny}	$\overline{\phi V_n}$	$\overline{\phi T_n}$	Ratio	Ratio	
L1	120 - 77.33 (1)	0.011	0.489	0.000	0.041	0.000	0.502	1.050	4.8.2
L2	77.33 - 34.33 (2)	0.010	0.588	0.000	0.028	0.000	0.599	1.050	4.8.2
L3	34.33 - 0 (3)	0.010	0.603	0.000	0.023	0.000	0.614	1.050	4.8.2

Section Capacity Table								
Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	120 - 77.33	Pole	TP30.45x21.91x0.2188	1	-13.59	1267.55	47.8	Pass
L2	77.33 - 34.33	Pole	TP38.61x29.0778x0.3125	2	-20.98	2297.05	57.0	Pass
L3	34.33 - 0	Pole	TP44.85x36.8512x0.375	3	-31.30	3298.74	58.5	Pass
							Summary	
						Pole (L3)	58.5	Pass
						RATING =	58.5	Pass

APPENDIX B BASE LEVEL DRAWING

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection


Site Info	
BU#	80654
Site Name	NHV 112 948129
Order #	553355 Rev. 1

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	Yes
I _{ar} (in)	1.25

Applied Loads	
Moment (kip-ft)	1881.14
Axial Force (kips)	31.30
Shear Force (kips)	21.99

^{*}TIA-222-H Section 15.5 Applied

Pole Data

Connection Properties Analysis Results Anchor Rod Summary (units of kips, kip-in) (12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 52.97" BC Pu_t = 139.34 φPn_t = 243.75 **Stress Rating** Vu = 1.83 φVn = 149.1 54.4% **Base Plate Data** Mu = n/a φMn = n/a Pass 57.16" OD x 2.75" Plate (S-128; Fy=60 ksi, Fu=80 ksi) **Base Plate Summary** Stiffener Data Max Stress (ksi): 16.56 (Flexural) N/A Allowable Stress (ksi): 54 Stress Rating: 29.2% **Pass**

44.85" x 0.375" 12-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

CCIplate - Version 4.1.1 Analysis Date: 6/5/2021

Drilled Pier Foundation

CASTLE

BU #: 806454
Site Name: NHV 112 948129
Order Number: 553355 Rev. 1
TIA-222 Revison: H
Tower Type: Monopole

	Uplift				
Applied Loads	Comp.	1881.14	31,31	21.97	
Applie		Moment (kip-ft)	Axial Force (kips)	Shear Force (kips)	

Input Effective Depths (else Actual):

Shear Design Options
Check Shear along Depth of Pier:
Utilize Shear-Friction Methodology:
Override Critical Depth:

Go to Soil Calcula

N/A N/A Additional Longitudinal Rebar

Check Limitation Apply TIA-222-H Section 15.5:

Material Properties	3 ksi	60 ksi	60 ksi	Pier Design Data	59.25 ft	0,5 ft	Dier Section 1
Material	Concrete Strength, f'c:	Rebar Strength, Fy:	Tie Yield Strength, Fyt:	Pier De	Depth	Ext. Above Grade	O roid

	10tal Capacity (Kips)	882.91	
	Axial (kips)	237.42	
Rebar & Pier Options	Rating*	25.3%	
. !	Reinforced Concrete Flexure	Compression	
Embedded Pole Inputs	Critical Depth (ft from TOC)	14.61	
Belled Pier Inputs	Critical Moment (kip-ft)	2108.26	
	Critical Moment Capacity	6821.92	
	Rating*	29.4%	
	Reinforced Concrete Shear	Compression	
	Critical Depth (ft from TOC)	44.13	
	Critical Shear (kip)	95.56	
	Critical Shear Capacity	391.39	
	Rating*	23.3%	

 From 0.5' above grade to 59.25' below grade

 Pier Diameter
 6 It

 Rebar Quantity
 36

 Rebar Size
 11

 Clear Cover to Ties
 3.5 in

 Tie Size
 4

Rebar Quantity
Rebar Size
Clear Cover to Ties
Tie Size

Tie Spacing

	1 1 7
Soil Interaction Rating*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

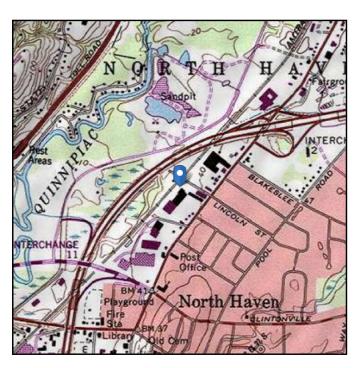
	Analysis Kesults	Results	
	Soil Lateral Check	Compression	Upliff
	D _{v=0} (ft from TOC)	14.52	ı
	Soil Safety Factor	19.46	ı
	Max Moment (kip-ft)	2108.28	ı
	Rating*	6.5%	-
	Soil Vertical Check	Compression	Uplift
	Skin Friction (kips)	592.91	ı
	End Bearing (kips)	300,000	ı
	Weight of Concrete (kips)	206.11	•
	Total Capacity (kips)	892.91	ı
	Axial (kips)	237.42	-
	Rating*	25.3%	-
	Reinforced Concrete Flexure	Compression	Uplift
SI	Critical Depth (ft from TOC)	14.61	i
	Critical Moment (kip-ft)	2108.26	-
	Critical Moment Capacity	6821.92	-
	Rating*	29.4%	-
	Reinforced Concrete Shear	Compression	Upliff
	Critical Depth (ft from TOC)	44.13	-
	Critical Shear (kip)	92.56	-
	Critical Shear Capacity	391.39	-
	Rating*	23.3%	-

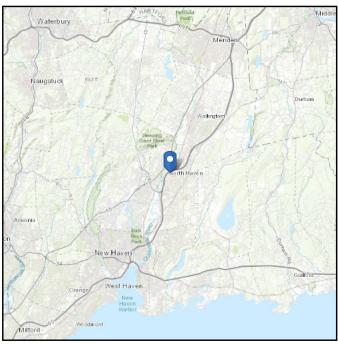
29.4%	25.3%	
Structural Foundation Rating*	Soil Interaction Rating*	*Rating per TIA-222-H Section 15.5

Soil Profile

Groundwater Depth	er Depth	13				# of Layers	5							
					•									
Layer	Top	Bottom (ft)	Thickness	Vsoil	Vconcrete	Cohesion	Angle of Friction	Calculated Ultimate Skin	Calculated Ultimate Skin Ultimate Skin Friction Comp	Ultimate Skin Friction Comp	Ultimate Skin Friction Uplift	Ult. Gross Bearing SPT Blow	SPT Blow	Soil Type
	E)		(H)	(bct)	(pct)	(KST)	(degrees)	Friction Comp (ksf)	riction Comp Friction Uplint (ksf) (ksf)	Override (ksf)		Capacity (ksf)	Count	
1	0	3.33	88.83	105	120	0	0	000'0	0000					Cohesionless
2	3,33	12	29'8	105	120	0	25	000'0	000'0	92'0	0.75			Cohesionless
3	12	13	1	110	120	1.25	0	889'0	0.688	92'0	0.75			Cohesive
4	13	42	67	47.6	87.6	1,25	0	889'0	0.688	92'0	0,75			Cohesive
5	42	59.25	17.25	52.6	87.6	2.5	0	1.375	1.375	92'0	0.75	0.75 14 14711		Cohesive

Address:


No Address at This Location


ASCE 7 Hazards Report

Standard: ASCE/SEI 7-10 Elevation: 33.83 ft (NAVD 88)

Risk Category: || Latitude: 41.396369

Soil Class: D - Stiff Soil Longitude: -72.857686

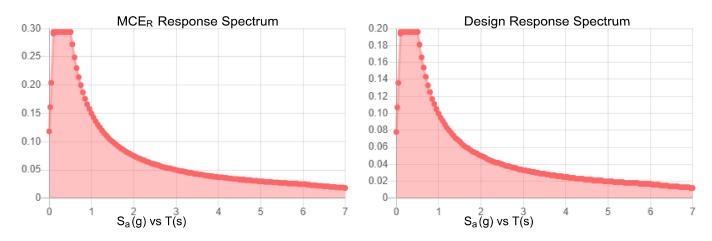
Wind

Results:

Wind Speed: 125 Vmph
10-year MRI 77 Vmph
25-year MRI 87 Vmph
50-year MRI 94 Vmph
100-year MRI 101 Vmph

Date Somessed: AGEMSE18-2002, Fig. 26.5-1A and Figs. CC-1—CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.184	S _{DS} :	0.196	
S_1 :	0.062	S _{D1} :	0.1	
Fa:	1.6	T_L :	6	
F _v :	2.4	PGA :	0.095	
S _{MS} :	0.294	PGA _M :	0.152	
S _{M1} :	0.15	F _{PGA} :	1.6	
		1 .	1	

Seismic Design Category B

Data Accessed: Tue May 18 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue May 18 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

Date: July 28, 2021

Darcy Tarr Crown Castle 3530 Toringdon Way, Suite 300 Charlotte, NC 28277 (704) 405-6589

Trylon 1825 W. Walnut Hill Lane, Suite 302 Irving, TX 75038 214-930-1730

Subject: Mount Replacement Analysis Report

Carrier Designation: Dish Network Dish 5G

Carrier Site Number:BOHVN00011ACarrier Site Name:CT-CCI-T-806454

Crown Castle Designation: Crown Castle BU Number: 806454

Crown Castle Site Name: NHV 112 948129

Crown Castle JDE Job Number: 645112 **Crown Castle Order Number:** 553355 Rev. 1

Engineering Firm Designation: Trylon Report Designation: 189029

Site Data: 117 Washington Avenue, North Haven, New Haven County, CT, 06473

Latitude 41°23'46.93" Longitude -72°51'27.67"

Structure Information: Tower Height & Type: 120.0 ft Monopole

Mount Elevation: 95.0 ft

Mount Type: 8.0 ft Platform

Dear Darcy Tarr,

Trylon is pleased to submit this "Mount Replacement Analysis Report" to determine the structural integrity of Dish Network's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

Platform Sufficient*
*Sufficient upon completion of the changes listed in the 'Recommendations' section of this report.

This analysis utilizes an ultimate 3-second gust wind speed of 125 mph as required by the 2018 Connecticut State Building Code. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Ionela Neamtu

Respectfully Submitted by: Cliff Abernathy, P.E.

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C

Software Analysis Output

8) APPENDIX D

Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

This is a proposed 3 sector 8.0 ft Platform, designed by Commscope.

2) ANALYSIS CRITERIA

Building Code: 2015 IBC **TIA-222 Revision:** TIA-222-H

Risk Category:

Ultimate Wind Speed: 125 mph

Exposure Category: Topographic Factor at Base: 1.00 **Topographic Factor at Mount:** 1.00 Ice Thickness: 1.50 in Wind Speed with Ice: 50 mph Seismic S_s: 0.184 Seismic S₁: 0.062 Live Loading Wind Speed: 30 mph Man Live Load at Mid/End-Points: 250 lb Man Live Load at Mount Pipes: 500 lb

Table 1 - Proposed Equipment Configuration

	abio : 1 topocoa Equipinont comigaration						
Mount Centerline (ft)	Antenna Centerline (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Mount / Modification Details		
	95.0	0.50	3	JMA Wireless	MX08FRO665-21	O O ft Diotform	
95.0			3	Fujitsu	TA08025-B604	8.0 ft Platform	
		3	Fujitsu	TA08025-B605	[Commscope, MC-PK8-Cl		
		1	Raycap	RDIDC-9181-PF-48	WIC-FRO-C]		

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Crown Application	Dish Network Application	553355 Rev. 1	CCI Sites
Mount Manufacturer Drawings	Commscope	MC-PK8-C	Trylon

3.1) Analysis Method

RISA-3D (Version 17.0.4), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A tool internally developed, using Microsoft Excel, by Trylon was used to calculate wind loading on all appurtenances, dishes, and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Tower Mount Analysis* (Revision B).

3.2) Assumptions

- The antenna mounting system was properly fabricated, installed and maintained in good condition in accordance with its original design and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the referenced drawings.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.
- 5) Prior structural modifications to the tower mounting system are assumed to be installed as shown per available data.
- 6) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate
HSS (Rectangular)
Pipe
ASTM A36 (GR 36)
ASTM A500 (GR B-46)
ASTM A53 (GR 35)
ASTM A325
ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Trylon should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity (Platform, All Sectors)

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1,2	Mount Pipe(s)	MP1		27.9	Pass
	Horizontal(s)	H1		10.2	Pass
	Standoff(s)	M2		46.2	Pass
	Bracing(s)	M1	95.0	34.6	Pass
	Handrail(s)	M19		11.9	Pass
	Plate(s)	M10		21.0	Pass
	Mount Connection(s)	-		18.7	Pass

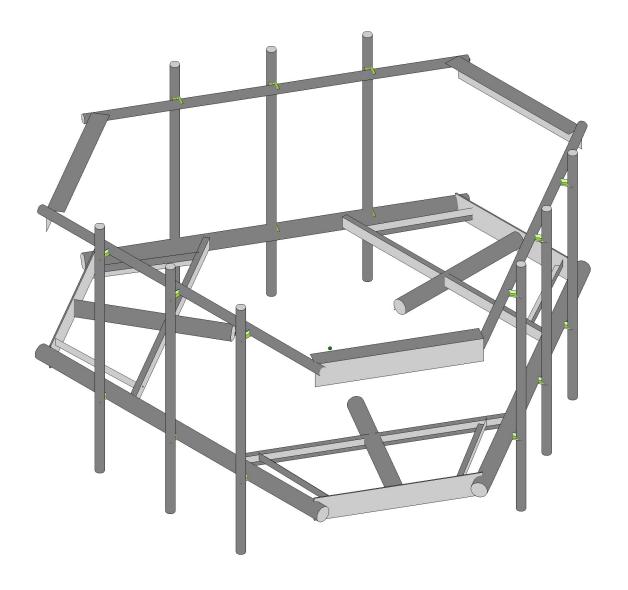
Structure Rating (max from all components) =	46.2%
--	-------

Notes:

See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

²⁾ Rating per TIA-222-H, Section 15.5

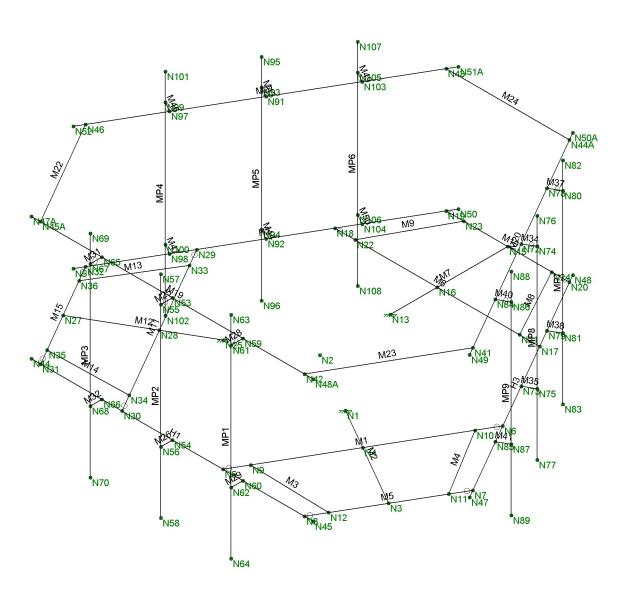
4.1) Recommendations


The mount has sufficient capacity to carry the proposed loading configuration. In order for the results of the analysis to be considered valid, the proposed mount listed below must be installed.

1. Commscope, MC-PK8-C.

No structural modifications are required at this time, provided that the above-listed changes are implemented.

APPENDIX A WIRE FRAME AND RENDERED MODELS



Envelope Only Solution

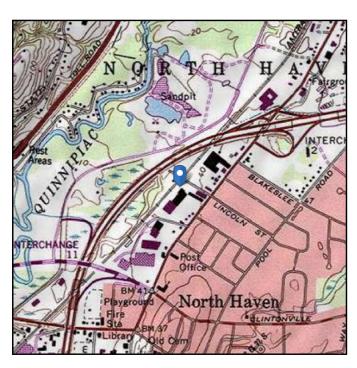
Trylon		SK - 1
IN	806454_NHV 112 948129	July 27, 2021 at 4:05 PM
		806454_NHV 112 948129.r3d

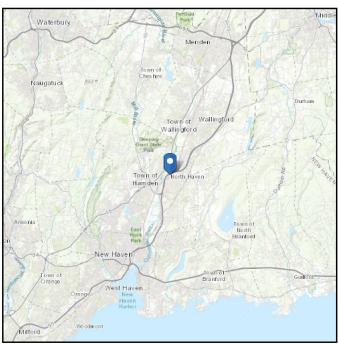
Envelope Only Solution

Trylon		SK - 2	
IN	806454_NHV 112 948129	July 27, 2021 at 4:05 PM	
		806454_NHV 112 948129.r3d	

APPENDIX B SOFTWARE INPUT CALCULATIONS

Address:


No Address at This Location


ASCE 7 Hazards Report

ASCE/SEI 7-10 Elevation: 33.83 ft (NAVD 88) Standard:

Risk Category: □ Latitude: 41.396369

Soil Class: D - Stiff Soil Longitude: -72.857686

Wind

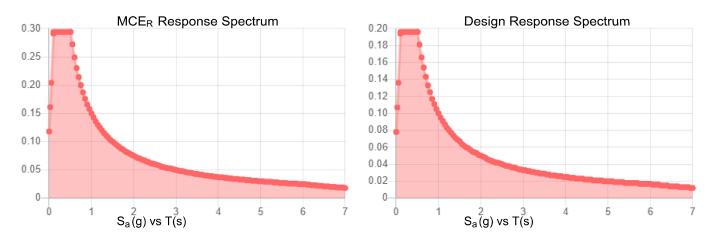
Results:

Wind Speed: 125 Vmph 10-year MRI 77 Vmph 25-year MRI 87 Vmph 50-year MRI 94 Vmph 100-year MRI 101 Vmph

ASCELISE 2020, Fig. 26.5-1A and Figs. CC-1-CC-4, and Section 26.5.2, Date & ocessed:

incorporating errata of March 12, 2014

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.184	S _{DS} :	0.196	
S_1 :	0.062	S _{D1} :	0.1	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA:	0.095	
S _{MS} :	0.294	PGA _M :	0.152	
S _{M1} :	0.15	F _{PGA} :	1.6	
		1. •	1	

Seismic Design Category B

Data Accessed: Tue Jul 27 2021

Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating

Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with

ASCE/SEI 7-10 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 0.75 in.

Concurrent Temperature: 15 F

Gust Speed: 50 mph

Data Source: Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8

Date Accessed: Tue Jul 27 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

TIA LOAD CALCULATOR 2.0

PROJECT DATA			
Job Code:	189029		
Carrier Site ID:	BOHVN00011A		
Carrier Site Name:	CT-CCI-T-806454		

CODES AND STANDARDS			
Building Code:	2015 IBC		
Local Building Code:	Connecticut State Building		
Design Standard:	TIA-222-H		

STRUCTURE DETAILS			
Mount Type:	Platform		
Mount Elevation:	95.0	ft.	
Number of Sectors:	3	-	
Structure Type:	Monopole	-	
Structure Height:	120.0	ft.	

ANALYSIS CRITERIA			
Structure Risk Category:	=		
Exposure Category:	В	-	
Site Class:	D - Stiff Soil	-	
Ground Elevation:	33.83	ft.	

TOPOGRAPHIC DATA		
Topographic Category:	1.00	-
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	_
Mount Topo Factor (K _{zt}):	1.00	

	WIND PARAMETERS								
mph	125	Design Wind Speed:							
	1.00	Wind Escalation Factor (K _s):							
	0.97	Velocity Coefficient (Kz):							
	0.95	Directionality Factor (K _d):							
	1.00	Gust Effect Factor (Gh):							
	0.90	Shielding Factor (K _a):							
psf	36.96	Velocity Pressure (q _z):							
_	0.90	Shielding Factor (K _a):							

ICE PARAMETERS									
Design Ice Wind Speed:	50	mph							
Design Ice Thickness (t _i):	1.50	in							
Importance Factor (I _i):	1.00	-							
Ice Velocity Pressure (q _{zi}):	36.96	psf							
Mount Ice Thickness (t _{iz}):	1.67	in							

WIND STRUCTURE CALCULATIONS									
Flat Member Pressure:	66.53	psf							
Round Member Pressure:	39.92	psf							
Ice Wind Pressure:	7.29	psf							

SEISMIC PARA	METERS	
Importance Factor (I _e):	1.00	
Short Period Accel .(S _s):	0.184	g
1 Second Accel (S ₁):		g
Short Period Des. (S _{DS}):		g
1 Second Des. (S _{D1}):	0.10	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F _v):	2.40	
Response Coefficient (Cs):		
Amplification Factor (A _S):	1.20	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI 1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 240 AZI 1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 270 AZI 1.2DL + 1WL 300 AZI
16	1,2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1
02-00	1.2D + 1.3 LV1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1,2D + 1,5Lm + 1,0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
MX08FRO665-21	3	95	No Ice	8.01	3.21	82.50
MP1/MP4/MP7, 0/120/240			w/ Ice	9.62	4.62	272.39
TA08025-B604	3	95	No Ice	1.96	0.98	63.90
MP1/MP4/MP7, 90/210/330			w/ Ice	2.37	1.30	66.68
TA08025-B605	3	95	No Ice	1.96	1.13	75.00
MP1/MP4/MP7, 90/210/330			w/ Ice	2.37	1.46	71.06
RDIDC-9181-PF-48	1	95	No Ice	2.01	1.17	21.85
MP1, 0	-		w/ Ice	2.43	1.51	70.03
			No Ice			
	-		w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	-		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT LOADING [CONT.]

Appurtenance Name/Location	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
			No Ice			
			w/ Ice			
			No Ice			
		-	w/ Ice			
			No Ice			
-			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
MX08FRO665-21	3	95	1.00	0.97	0.95	1.67	36.96	5.91
TA08025-B604	3	95	1.00	0.97	0.95	1.67	36.96	5.91
TA08025-B605	3	95	1.00	0.97	0.95	1.67	36.96	5.91
RDIDC-9181-PF-48	1	95	1.00	0.97	0.95	1.67	36.96	5.91

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.	-	0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
MX08FRO665-21	3	No Ice	266.45	146.70	226.53	106.78	226.53	146.70
MP1/MP4/MP7, 0/120/240		w/ Ice	51.21	31.26	44.56	24.61	44.56	31.26
TA08025-B604	3	No Ice	65.32	40.81	57.15	32.64	57.15	40.81
MP1/MP4/MP7, 90/210/330		w/ Ice	12.62	8.33	11.19	6.90	11.19	8.33
TA08025-B605	3	No Ice	65.32	44.51	58.38	37.57	58.38	44.51
MP1/MP4/MP7, 90/210/330		w/ Ice	12.62	8.98	11.40	7.77	11.40	8.98
RDIDC-9181-PF-48	1	No Ice	66.93	45.88	59.91	38.86	59.91	45.88
MP1, 0		w/ Ice	12.91	9.26	11.69	8.04	11.69	9.26
		No Ice						
	-	w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
	-	w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT LATERAL WIND FORCE CALCULATIONS [CONT.]

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
MX08FRO665-21	3	95	82.5	9.72
TA08025-B604	3	95	63.9	7.52
TA08025-B605	3	95	75	8.83
RDIDC-9181-PF-48	1	95	21.85	2.57

APPENDIX C SOFTWARE ANALYSIS OUTPUT

ny : Trylon er : IN mber :

: 806454_NHV 112 948129

July 27, 2021 4:05 PM Checked By: CA

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include S hear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec ^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Z
Global Member Orientation Plane	XY
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver

Hot Rolled Steel Code	AISC 15th(360-16): LRFD
Adjust Stiffness?	Yes(Iterative)
R ISAConnection Code	AISC 15th(360-16): LRFD
Cold Formed Steel Code	AIS I S 100-12: LRF D
Wood Code	None
Wood Temperature	< 100F
Concrete Code	None
Masonry Code	None
Aluminum Code	None - Building
Stainless Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

igner : IN Number :

: Trylon

: 806454_NHV 112 948129

July 27, 2021 4:05 PM Checked By: CA

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
CtX	.02
CtZ	.02
TX (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
R Z	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or II
Drift Cat	Other
O m Z	1
O m X	1
CdZ	1
CdX	1
R ho Z	1
R ho X	1

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/	Density[k/ft^3]	Yield[psi]	Ry	Fu[psi]	Rt
1	A992	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36000	1.5	58000	1.2
3	A572 G r.50	29000	11154	.3	.65	.49	50000	1.1	65000	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42000	1.4	58000	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46000	1.4	58000	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35000	1.6	60000	1.2
7	A1085	29000	11154	.3	.65	.49	50000	1.4	65000	1.3

Cold Formed Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5F)	Density[k/ft^3]	Yield[psi]	Fu[psi]
1	A653 S S G r33	29500	11346	.3	.65	.49	33000	45000
2	A653 S S G r50/1	29500	11346	.3	.65	.49	50000	65000

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Des ign	. A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Plates	6.5"x0.37" Plate	Beam	RECT	A53 Gr.B	Typical	2.405	.027	8.468	.106
2	Grating Bracing	L2x2x3	Beam	Single Angle	A36 Gr.36	Typical	.722	.271	.271	.009
3	Standoffs	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04
4	Standoff Bracing	C3X5	Beam	Channel	A36 Gr.36	Typical	1.47	.241	1.85	.043
5	Handrails	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
6	Handrail Corners	L6.6"X4.46"X0.25"	Beam	Single Angle	A36 Gr.36	Typical	2.703	4.759	12.473	.055
7	Horizontals	PIPE 3.5	Beam	Pipe	A53 Gr.B	Typical	2.5	4.52	4.52	9.04

: Trylon : IN

: 806454_NHV 112 948129

July 27, 2021 4:05 PM Checked By: CA

Hot Rolled Steel Section Sets (Continued)

_		Label	Shape	Type	Design List	Material	Design A [in2]	lyy [in4] lzz [ir	n4] J [in4]
	8	Mount Pipes	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical 1.02	.627 .62	

Cold Formed Steel Section Sets

	Label	Shape	Type	Des ign List	Material	Design Rules	A [in2]	lyy [in4]	lzz [in4]	J [in4]
1	CF1A	8CU1.25X057	Beam	None	A653 SS Gr.	 Typical 	.581	.057	4.41	.00063

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N1	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N13	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	Point	Distributed	A rea (Me	Surface(
1	Self Weight	DL			-1		13		3	
2	Structure Wind X	WLX						33		
3	Structure Wind Y	WLY						33		
4	Wind Load 0 AZI	WLX					13			
5	Wind Load 30 AZI	None					26			
6	Wind Load 45 AZI	None					26			
7	Wind Load 60 AZI	None					26			
8	Wind Load 90 AZI	WLY					13			
9	Wind Load 120 AZI	None					26			
10	Wind Load 135 AZI	None					26			
11	Wind Load 150 AZI	None					26			
12	lce Weight	OL1					13	33	3	
13	Structure Ice Wind X	OL2						33		
14	Structure Ice Wind Y	OL3						33		
15	Ice Wind Load 0 AZI	OL2					13			
16	Ice Wind Load 30 AZI	None					26			
17	Ice Wind Load 45 AZI	None					26			
18	Ice Wind Load 60 AZI	None					26			
19	Ice Wind Load 90 AZI	OL3					13			
20	Ice Wind Load 120 AZI	None					26			
21	Ice Wind Load 135 AZI	None					26			
22	Ice Wind Load 150 AZI	None					26			
23	Seismic Load X	ELX	118				13			
24	Seismic Load Y	ELY		118			13			
25	Live Load 1 (Lv)	LL				1				
26	Live Load 2 (Lv)	LL				1				
27	Live Load 3 (Lv)	LL				1				
28	Live Load 4 (Lv)	LL				1				
29	Live Load 5 (Lv)	LL				1				
30	Live Load 6 (Lv)	LL				1				
31	Maintenance Load 1 (Lm)	None				1				
32	Maintenance Load 2 (Lm)	None				1				
33	Maintenance Load 3 (Lm)	None				1				

: 806454_NHV 112 948129

: Trylon : IN July 27, 2021 4:05 PM Checked By: CA

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z G ravity	Joint	P oint	Distributed	A rea (Me	.Surface(
34	Maintenance Load 4 (Lm)	None				1				
35	Maintenance Load 5 (Lm)	None				1				
36	Maintenance Load 6 (Lm)	None				1				
37	Maintenance Load 7 (Lm)	None				1				
38	Maintenance Load 8 (Lm)	None				1				
39	Maintenance Load 9 (Lm)	None				1				
40	BLC 1 Transient Area Loads	None						9		
41	BLC 12 Transient Area Loads	None						9		

Load Combinations

	Des cription	S	Ρ	S	В	Facto	۲B	Fac	В	Fac	.BLC	Fac.	В	Fac.	В	Fac	В	Fac.	В	Fac.	В	Fac	В	Fac.
1	1.4DL	Yes	Υ		DL	1.4																		
2	1.2DL +1WL 0 AZI	Yes	Υ		DL	1.2	2	1	3		4	1												
3	1.2DL + 1WL 30 AZI	Yes	Υ		DL	1.2	2	.866	3	.5	5	1												
4	1.2DL + 1WL 45 AZI	Yes	Υ		DL	1.2	2	.707	3	.707	6	1												
5	1.2DL + 1WL 60 AZI	Yes	Υ		DL	1.2	2	.5	3	.866	7	1												
6	1.2DL + 1WL 90 AZI	Yes	Υ		DL	1.2	2		3	1	8	1												
7	1.2DL + 1WL 120 AZI	Yes	Υ		DL	1.2	2	5	3	.866	9	1												
8	1.2DL + 1WL 135 AZI	Yes	Υ		DL	1.2	2	707	3	.707	10	1												
9	1.2DL + 1WL 150 AZI	Yes	Υ		DL	1.2	2	866	3	.5	11	1												
10	1.2DL + 1WL 180 AZI	Yes	Υ		DL	1.2	2	-1	3		4	-1												
11	1.2DL + 1WL 210 AZI	Yes	Υ		DL	1.2	2	866	3	5	5	-1												
12	1.2DL + 1WL 225 AZI	Yes	Υ		DL	1.2	2	707	3	707	6	-1												
13	1.2DL + 1WL 240 AZI	Yes	Υ		DL	1.2	2	5	3	866	7	-1												
14	1.2DL + 1WL 270 AZI	Yes	Υ		DL	1.2	2		3	-1	8	-1												
15	1.2DL + 1WL 300 AZI	Yes	Υ		DL	1.2		.5	3	866	9	-1												
16	1.2DL + 1WL 315 AZI	Yes	Υ		DL	1.2	2	.707	3	707	10	-1												
17	1.2DL + 1WL 330 AZI	Yes	Υ		DL	1.2	2	.866	3	5	11	-1												
18	0.9DL +1WL 0 AZI	Yes	Υ		DL	.9	2	1	3		4	1												
19	0.9DL + 1WL 30 AZI	Yes	Υ		DL	.9	2	.866	3	.5	5	1												
20	0.9DL + 1WL 45 AZI	Yes	Υ		DL	.9	2	.707	3	.707	6	1												
21	0.9DL + 1WL 60 AZI	Yes	Υ		DL	.9	2	.5	3	.866	7	1												
22	0.9DL + 1WL 90 AZI	Yes	Υ		DL	.9	2		3	1	8	1												
23	0.9DL + 1WL 120 AZI	Yes	Υ		DL	.9	2	5	3	.866	9	1												
24	0.9DL + 1WL 135 AZI	Yes	Υ		DL	.9	2	707	3	.707	10	1												
25	0.9DL + 1WL 150 AZI	Yes	Υ		DL	.9	2	866	3	.5	11	1												
26	0.9DL + 1WL 180 AZI	Yes	Υ		DL	.9	2	-1	3		4	-1												
27	0.9DL + 1WL 210 AZI	Yes	Υ		DL	.9	2	866	3	5	5	-1												
28	0.9DL + 1WL 225 AZI	Yes	Υ		DL	.9	2	707	3	707	6	-1												
29	0.9DL + 1WL 240 AZI	Yes	Υ		DL	.9	2	5	3	866	7	-1												
30	0.9DL + 1WL 270 AZI	Yes	Υ		DL	.9	2		3	-1	8	-1												
31	0.9DL + 1WL 300 AZI	Yes	Υ		DL	.9	2	.5	3	866	9	-1												
32	0.9DL + 1WL 315 AZI	Yes	Υ		DL	.9	2	.707	3	707	10	-1												
33	0.9DL + 1WL 330 AZI	Yes			DL	.9	2	.866	3	5	11	-1												
34	1.2DL + 1DLi + 1W Li 0 A.	.Yes	Υ		DL	1.2	0	1	13	1	14		15	1										
35	1.2DL + 1DLi + 1W Li 30 .	.Yes	Υ		DL		0			.866	14	.5	16	1										
36	1.2DL + 1DLi + 1W Li 45.	.Yes	Υ		DL	1.2	0	1	13	.707	14	.707	17	1										
37	1.2DL + 1DLi + 1W Li 60.	. Y es	Υ		DL	1.2	0	1	13	.5	14	.866		1										
38	1.2DL + 1DLi + 1W Li 90 .	.Yes	Υ		DL		0		13		14	1	19	1										
39	1.2DL + 1DLi + 1W Li 12	. Y es	Υ		DL	1.2	0	1	13			.866		1										

: 806454_NHV 112 948129

: Trylon : IN July 27, 2021 4:05 PM Checked By: CA

Load Combinations (Continued)

Description S., P., S., B., Factor B., Fac, B., Eac,
41 1.2DL +1DLi +1WLi 15Yes Y DL 1.2 0 1 13 .866 14 .5 22 1 42 1.2DL +1DLi +1WLi 18Yes Y DL 1.2 0 1 13 .866 14 .5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
42 1.2DL +1DLi +1WLi 18Yes Y DL 1.2 0 1 13 -1 14 -5 16 -1 4
43 1.2DL + 1.DLi + 1.WLi 21 Yes Y DL 1.2 O 1 13 1.866 14 5 16 -1 44 1.2DL + 1.DLi + 1.WLi 22 Yes Y DL 1.2 O 1 13 -7.77 14 -7.777 7 -1 45 1.2DL + 1.DLi + 1.WLi 24 Yes Y DL 1.2 O 1 13 -5 14 -8.66 18 -1 46 1.2DL + 1.DLi + 1.WLi 27 Yes Y DL 1.2 O 1 13 -5 14 -8.66 18 -1 47 1.2DL + 1.DLi + 1.WLi 30 Yes Y DL 1.2 O 1 13 .5 14 -8.66 20 -1 48 1.2DL + 1.DLi + 1.WLi 31 Yes Y DL 1.2 O 1 13 .707 14 .707 21 -1 49 1.2DL + 1.DLi + 1.WLi 33 Yes Y DL 1.2 O 1 13 .866 14 5 22 -1 50 (1.2+0.25.ds) + 1.0.0 0.7. Yes Y DL 1.239 E 8.66 E .5 51 (1.2+0.25.ds) + 1.0.0 4.5 Yes Y DL 1.239 E 7.07 E 8.66 52 (1.2+0.25.ds) + 1.0.0 60 Yes Y DL 1.239 E 5.66 E 5.6 54 (1.2+0.25.ds) + 1.0.0 60 Yes Y DL 1.239 E 5.6 E 8.66 55 (1.2+0.25.ds) + 1.0.0 130 Yes Y DL 1.239 E 5.6 E 8.66 56 (1.2+0.25.ds) + 1.0.0 130 Yes Y DL 1.239 E 5.5 E 8.66 57 (1.2+0.25.ds) + 1.0.0 130 Yes Y DL 1.239 E 7.07 E 7.07 58 (1.2+0.25.ds) + 1.0.0 180 Yes Y DL 1.239 E 7.07 E 5.6 58 (1.2+0.25.ds) + 1.0.0 180 Yes Y DL 1.239 E 7.07 E 5.6 58 (1.2+0.25.ds) + 1.0.0 240 Yes Y DL 1.239 E 7.07 E 7.07 59 (1.2+0.25.ds) + 1.0.0 240 Yes Y DL 1.239 E 7.07 E 7.07 60 (1.2+0.25.ds) + 1.0.0 300 Yes Y DL 1.239 E 7.07 E 7.07 61 (1.2+0.25.ds) + 1.0.0 330 Yes Y DL 1.239 E 7.07 E 7.07 62 (1.2+0.25.ds) + 1.0.0 330 Yes Y DL 1.239 E 5.5 E 8.66 E 5. 63 (0.9+0.25.ds) + 1.0.0 0.4 Yes Y DL 8.61 E.
44 1.2DL + 1DLi + 1WLi 22 Yes Y DL 1.2 0 1 13 .707 14 .707 17 -1 45 1.2DL + 1DLi + 1WLi 22 Yes Y DL 1.2 0 1 13 .5 14 .866 18 -1 46 1.2DL + 1DLi + 1WLi 27 Yes Y DL 1.2 0 1 13 .5 14 .866 18 -1 47 1.2DL + 1DLi + 1WLi 30 Yes Y DL 1.2 0 1 13 .5 14 .866 20 -1 48 1.2DL + 1DLi + 1WLi 31 Yes Y DL 1.2 0 1 13 .5 14 .866 20 -1 48 1.2DL + 1DLi + 1WLi 33 Yes Y DL 1.2 0 1 13 .5 14 .866 20 -1 49 1.2DL + 1DLi + 1WLi 33 Yes Y DL 1.2 0 1 13 .507 14 .707 21 -1 49 1.2DL + 1DLi + 1WLi 33 Yes Y DL 1.2 9 1 13 .866 145 22 -1 50 (1.2+0.2Sds) + 1.0E 0 Yes Y DL 1.239 E 866 E5 51 (1.2+0.2Sds) + 1.0E 30 Yes Y DL 1.239 E866 E5 52 (1.2+0.2Sds) + 1.0E 45 Yes Y DL 1.239 E5 E866 54 (1.2+0.2Sds) + 1.0E 120 Yes Y DL 1.239 E5 E866 54 (1.2+0.2Sds) + 1.0E 10 Yes Y DL 1.239 E5 E866 55 (1.2+0.2Sds) + 1.0E 10 Yes Y DL 1.239 E5 E866 56 (1.2+0.2Sds) + 1.0E 135 Yes Y DL 1.239 E5 E866 57 (1.2+0.2Sds) + 1.0E 120 Yes Y DL 1.239 E5 E866 58 (1.2+0.2Sds) + 1.0E 120 Yes Y DL 1.239 E5 E866 59 (1.2+0.2Sds) + 1.0E 120 Yes Y DL 1.239 E5 E866 60 (1.2+0.2Sds) + 1.0E 120 Yes Y DL 1.239 E5 E866 61 (1.2+0.2Sds) + 1.0E 120 Yes Y DL 1.239 E5 E866 62 (1.2+0.2Sds) + 1.0E 210 Yes Y DL 1.239 E5 E866 63 (1.2+0.2Sds) + 1.0E 225 Yes Y DL 1.239 E5 E866 64 (1.2+0.2Sds) + 1.0E 235 Yes Y DL 1.239 E5 E866 65 (1.2+0.2Sds) + 1.0E 300 Yes Y DL 1.239 E5 E866 66 (0.9+0.2Sds) + 1.0E 300 Yes Y DL 1.239 E5 E866 67 (1.2+0.2Sds) + 1.0E 300 Yes Y DL 1.239 E5 E866 68 (0.9+0.2Sds) + 1.0E 300 Yes Y DL 1.239 E5 E866 69 (0.9+0.2Sds) + 1.0E 300 Yes Y DL 1.239 E5 E866 60 (0.9+0.2Sds) + 1.0E 300 Yes Y DL 1.239 E5 E866 61 (0.9+0.2Sds) + 1.0E 300 Yes Y DL 1.239 E5 E866 62 (0.9+0.2Sds) + 1.0E 45 A Yes Y DL 1.861 E707 63 (0.9+0.2Sds) + 1.0E 45 A Yes Y DL 1.861 E
45 1.2DL +1DLi +1WLi 24Yes Y DL 1.2 0 1 135 14866 181 46 1.2DL +1DLi +1WLi 27Yes Y DL 1.2 0 1 135 14866 181 47 1.2DL +1DLi +1WLi 30Yes Y DL 1.2 0 1 13 .5 14866 201 48 1.2DL +1DLi +1WLi 33Yes Y DL 1.2 0 1 13 .5 14866 201 49 1.2DL +1DLi +1WLi 33Yes Y DL 1.2 0 1 13 .50 14707 211 49 1.2DL +1DLi +1WLi 33Yes Y DL 1.2 0 1 13 .866 145 221 50 (1.2+0.2Sds) +1.0E 0 AZIYes Y DL 1.239 E 1 E 5 E 866 145 221 51 (1.2+0.2Sds) +1.0E 30Yes Y DL 1.239 E 5.5 E 866 5
46 1.2DL + 1DLi + 1WLi 27 Yes Y DL 1.2 O 1 13 14 -1 19 -1 4 47 1.2DL + 1DLi + 1WLi 30 Yes Y DL 1.2 O 1 13 .5 14 -866 20 -1 4 48 1.2DL + 1DLi + 1WLi 31 Yes Y DL 1.2 O 1 13 .707 14 -707 21 -1 4 49 1.2DL + 1DLi + 1WLi 33 Yes Y DL 1.2 O 1 13 .866 145 22 -1 50 (1.2+0.2Sds) + 1.0E 0.AZYes Y DL 1.239 E 1 E 51 (1.2+0.2Sds) + 1.0E 30 Yes Y DL 1.239 E 866 E5 52 (1.2+0.2Sds) + 1.0E 60 Yes Y DL 1.239 E866 E5 53 (1.2+0.2Sds) + 1.0E 60 Yes Y DL 1.239 E 707 E707 53 (1.2+0.2Sds) + 1.0E 100 Yes Y DL 1.239 E5 E866 54 (1.2+0.2Sds) + 1.0E 100 Yes Y DL 1.239 E5 E866 55 (1.2+0.2Sds) + 1.0E 150 Yes Y DL 1.239 E5 E866 56 (1.2+0.2Sds) + 1.0E 150 Yes Y DL 1.239 E5 E866 56 (1.2+0.2Sds) + 1.0E 180 Yes Y DL 1.239 E5 E866 57 (1.2+0.2Sds) + 1.0E 180 Yes Y DL 1.239 E5 E866 58 (1.2+0.2Sds) + 1.0E 180 Yes Y DL 1.239 E866 E5 59 (1.2+0.2Sds) + 1.0E 180 Yes Y DL 1.239 E866 E5 60 (1.2+0.2Sds) + 1.0E 20 Yes Y DL 1.239 E866 E5 60 (1.2+0.2Sds) + 1.0E 20 Yes Y DL 1.239 E866 E5 60 (1.2+0.2Sds) + 1.0E 30 Yes Y DL 1.239 E866 E5 60 (1.2+0.2Sds) + 1.0E 30 Yes Y DL 1.239 E866 E5 60 (1.2+0.2Sds) + 1.0E 30 Yes Y DL 1.239 E
47 1.2DL + 1DLi + 1WLi 30 Yes Y DL 1.2 0 1 13 .5 14 -866 20 -1 48 1.2DL + 1DLi + 1WLi 31 Yes Y DL 1.2 0 1 13 .707 14 -707 21 -1 49 1.2DL + 1DLi + 1WLi 33 Yes Y DL 1.2 0 1 13 .866 14 5 22 -1 50 (1.2+0.2S ds) + 1.0E 0 AZIYes Y DL 1.239 E .866 14 5 22 -1 51 (1.2+0.2S ds) + 1.0E 45 Yes Y DL 1.239 E .707 E .707 53 (1.2+0.2S ds) + 1.0E 45 Yes Y DL 1.239 E .5 E .866 54 (1.2+0.2S ds) + 1.0E 190 Yes Y DL 1.239 E .5 E .1 55 (1.2+0.2S ds) + 1.0E 150 Yes Y DL 1.239 E .5 E .5 58 (1.2+0.2S ds) + 1.0E 180 Yes Y DL 1.239 E .5 E .5 59
48 1.2DL + 1DLi + 1WLi 31 Yes Y DL 1.2 0 1 13 .707 14 707 21 1 49 1.2DL + 1DLi + 1WLi 33 Yes Y DL 1.2 0 1 13 .866 14 5 22 1 50 (1.2+0.2Sds) + 1.0E 0 AZIYes Y DL 1.239 E 1 E 5 51 (1.2+0.2Sds) + 1.0E 45 Yes Y DL 1.239 E .707 E .707 53 (1.2+0.2Sds) + 1.0E 45 Yes Y DL 1.239 E .707 E .707 53 (1.2+0.2Sds) + 1.0E 10 Yes Y DL 1.239 E .5 E .1 55 (1.2+0.2Sds) + 1.0E 135 Yes Y DL 1.239 E .5 E .1 56 (1.2+0.2Sds) + 1.0E 180 Yes Y DL 1.239 E .707 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
49 1.2DL + 1DLi + 1WLi 33Yes Y DL 1.2 0 1 13.866 145 22 -1 50 (1.2+0.28ds) + 1.0E 0 AZIYes Y DL 1.239 E 1 E 51 (1.2+0.28ds) + 1.0E 30Yes Y DL 1.239 E866 E5 52 (1.2+0.28ds) + 1.0E 45Yes Y DL 1.239 E707 E707 53 (1.2+0.28ds) + 1.0E 60Yes Y DL 1.239 E5 E866 B. 54 (1.2+0.28ds) + 1.0E 90Yes Y DL 1.239 E5 E866 B. 55 (1.2+0.28ds) + 1.0E 120Yes Y DL 1.239 E707 E707 56 (1.2+0.28ds) + 1.0E 150Yes Y DL 1.239 E707 E707 57 (1.2+0.28ds) + 1.0E 150Yes Y DL 1.239 E866 E5 58 (1.2+0.28ds) + 1.0E 180Yes Y DL 1.239 E866 E5 59 (1.2+0.28ds) + 1.0E 210Yes Y DL 1.239 E707 E707 60 (1.2+0.28ds) + 1.0E 225Yes Y DL 1.239 E707 E707 61 (1.2+0.28ds) + 1.0E 235Yes Y DL 1.239 E5 E866 62 (1.2+0.28ds) + 1.0E 300Yes Y DL 1.239 E5 E866 64 (1.2+0.28ds) + 1.0E 300Yes Y DL 1.239 E5 E866 65 (1.2+0.28ds) + 1.0E 300Yes Y DL 1.239 E5 E866
50 (1.2+0.28 ds) + 1.0E 0 AZ/Yes Y DL 1.239 E 1 E 51 (1.2+0.28 ds) + 1.0E 30 Yes Y DL 1.239 E 707 E 707 52 (1.2+0.28 ds) + 1.0E 45 Yes Y DL 1.239 E 707 E 707 53 (1.2+0.28 ds) + 1.0E 60 Yes Y DL 1.239 E 5 E 866 54 (1.2+0.28 ds) + 1.0E 100 Yes Y DL 1.239 E 5 E 866 56 (1.2+0.28 ds) + 1.0E 135 Yes Y DL 1.239 E 707 57 (1.2+0.28 ds) + 1.0E 150 Yes Y DL 1.239 E 866 58 (1.2+0.28 ds) + 1.0E 180 Yes Y DL 1.239 E 866 59 (1.2+0.28 ds) + 1.0E 210 Yes Y DL 1.239 E 866 60 (1.2+0.28 ds) + 1.0E 225 Yes Y DL 1.239 E 707 61 (1.2+0.28 ds) + 1.0E 270 Yes Y DL 1.239 E
51 (1.2+0.2S ds) + 1.0E 30 Yes Y DL 1.239 E866 E5 52 (1.2+0.2S ds) + 1.0E 45 Yes Y DL 1.239 E707 E707 53 (1.2+0.2S ds) + 1.0E 60 Yes Y DL 1.239 E5 E866 54 (1.2+0.2S ds) + 1.0E 120 Yes Y DL 1.239 E5 E866 55 (1.2+0.2S ds) + 1.0E 120 Yes Y DL 1.239 E707 E707 57 (1.2+0.2S ds) + 1.0E 135 Yes Y DL 1.239 E707 E707 58 (1.2+0.2S ds) + 1.0E 140 Yes Y DL 1.239 E707 E707 59 (1.2+0.2S ds) + 1.0E 120 Yes Y DL 1.239 E707 60 (1.2+0.2S ds) + 1.0E 221 Yes Y DL 1.239 E
52 (1.2+0.2Sds) + 1.0E 45 Yes Y DL 1.239 E .707
53 (1.2+0.2S ds) + 1.0E 60 Yes Y DL 1.239 E
54 (1.2+0.2Sds) + 1.0E 90 Yes Y DL 1.239 E E 1 55 (1.2+0.2Sds) + 1.0E 120 Yes Y DL 1.239 E 5 E .866 56 (1.2+0.2Sds) + 1.0E 135 Yes Y DL 1.239 E 707
55 (1.2+0.28 ds) + 1.0E 120Yes Y DL 1.239 E, 5 E 866 56 (1.2+0.28 ds) + 1.0E 135Yes Y DL 1.239 E, 707 E 707 57 (1.2+0.28 ds) + 1.0E 150Yes Y DL 1.239 E, 866 E
56 (1.2+0.2S ds) + 1.0E 135Yes Y DL 1.239 E707 E 707
57 (1.2+0.2S ds) + 1.0E 150Yes Y DL 1.239 E 866 E
58 (1.2+0.28 ds) + 1.0E 180 Yes Y DL 1.239 E -1 E E -5 59 (1.2+0.28 ds) + 1.0E 240 Yes Y DL 1.239 E 866 E 707 60 (1.2+0.28 ds) + 1.0E 240 Yes Y DL 1.239 E 707 E 707 61 (1.2+0.28 ds) + 1.0E 270 Yes Y DL 1.239 E 5 E 866 62 (1.2+0.28 ds) + 1.0E 300 Yes Y DL 1.239 E 5 E 866 64 (1.2+0.28 ds) + 1.0E 315 Yes Y DL 1.239 E 707 65 (1.2+0.28 ds) + 1.0E 330 Yes Y DL 1.861 E 5 66 (0.9-0.28 ds) + 1.0E 30 A Yes Y DL .861 E 5 68 (0.9-0.28 ds) + 1.0E 45 A Yes Y DL .861 E .707 69 (0.9-0.28 ds) + 1.0E 60 A Yes Y DL .861 E .5 E
59 (1.2+0.2sds) +1.0E 210Yes Y DL 1.239 E866 E5 60 (1.2+0.2sds) +1.0E 225Yes Y DL 1.239 E707 E707 61 (1.2+0.2sds) +1.0E 240Yes Y DL 1.239 E5 E866 62 (1.2+0.2sds) +1.0E 270Yes Y DL 1.239 E E1 63 (1.2+0.2sds) +1.0E 300Yes Y DL 1.239 E 5 E866 64 (1.2+0.2sds) +1.0E 315Yes Y DL 1.239 E 5 E866 65 (1.2+0.2sds) +1.0E 315Yes Y DL 1.239 E 707 E707 65 (1.2+0.2sds) +1.0E 330Yes Y DL 1.239 E 866 E5 66 (0.9-0.2sds) +1.0E 30 AYes Y DL 861 E 1 E 67 (0.9-0.2sds) +1.0E 30 AYes Y DL 861 E 5 E866 68 (0.9-0.2sds) +1.0E 45 AYes Y DL 861 E 707 E707 69 (0.9-0.2sds) +1.0E 60 AYes Y DL 861 E 5 E866 70 (0.9-0.2sds) +1.0E 90 AYes Y DL 861 E 5 E866
60 (1.2+0.2sds) +1.0E 225Yes Y DL 1.239 E707 E707 6.1 (1.2+0.2sds) +1.0E 240Yes Y DL 1.239 E5 E866 6.2 (1.2+0.2sds) +1.0E 270Yes Y DL 1.239 E E1 6.3 (1.2+0.2sds) +1.0E 300Yes Y DL 1.239 E 5 E866 6.4 (1.2+0.2sds) +1.0E 315Yes Y DL 1.239 E 7.07 E707 6.5 (1.2+0.2sds) +1.0E 330Yes Y DL 1.239 E 866 E5 6.6 (0.9-0.2sds) +1.0E 30 AYes Y DL 861 E 1 E 67 (0.9-0.2sds) +1.0E 30 AYes Y DL 861 E 866 E 5 6.8 (0.9-0.2sds) +1.0E 45 AYes Y DL 861 E 866 E 5 6.8 (0.9-0.2sds) +1.0E 45 AYes Y DL 861 E 707 E 707 6.9 (0.9-0.2sds) +1.0E 60 AYes Y DL 861 E 5 E 866 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6
61 (1.2+0.28 ds) +1.0E 240Yes Y DL 1.239 E5 E866 62 (1.2+0.28 ds) +1.0E 270Yes Y DL 1.239 E E1 63 (1.2+0.28 ds) +1.0E 300Yes Y DL 1.239 E 5 E866 64 (1.2+0.28 ds) +1.0E 315Yes Y DL 1.239 E 7.07 E7.07 65 (1.2+0.28 ds) +1.0E 330Yes Y DL 1.239 E 866 E5 66 (0.9-0.28 ds) +1.0E 0 AZIYes Y DL 861 E 1 E 67 (0.9-0.28 ds) +1.0E 30 AYes Y DL 861 E 866 E 5 68 (0.9-0.28 ds) +1.0E 45 AYes Y DL 861 E 7.07 E 7.07 69 (0.9-0.28 ds) +1.0E 60 AYes Y DL 861 E 5 E 866 70 (0.9-0.28 ds) +1.0E 90 AYes Y DL 861 E 5 E 866 70 (0.9-0.28 ds) +1.0E 90 AYes Y DL 861 E 5 E 866
62 (1.2+0.2Sds) +1.0E 270Yes Y DL 1.239 E E1 63 (1.2+0.2Sds) +1.0E 300Yes Y DL 1.239 E5 E866 64 (1.2+0.2Sds) +1.0E 315Yes Y DL 1.239 E707 E707 65 (1.2+0.2Sds) +1.0E 330Yes Y DL 1.239 E866 E5 66 (0.9-0.2Sds) +1.0E 0 AZIYes Y DL .861 E 1 E 67 (0.9-0.2Sds) +1.0E 30 AYes Y DL .861 E866 E5 68 (0.9-0.2Sds) +1.0E 45 AYes Y DL .861 E707 E707 69 (0.9-0.2Sds) +1.0E 60 AYes Y DL .861 E5 E866 70 (0.9-0.2Sds) +1.0E 90 AYes Y DL .861 E5 E866
63 (1.2+0.2Sds) +1.0E 300Yes Y DL 1.239 E5 E866 64 (1.2+0.2Sds) +1.0E 315Yes Y DL 1.239 E707 E707 65 (1.2+0.2Sds) +1.0E 330Yes Y DL 1.239 E866 E5 66 (0.9-0.2Sds) +1.0E 0 AZIYes Y DL .861 E 1 E 67 (0.9-0.2Sds) +1.0E 30 AYes Y DL .861 E5 68 (0.9-0.2Sds) +1.0E 45 AYes Y DL .861 E707 E707 69 (0.9-0.2Sds) +1.0E 60 AYes Y DL .861 E5 E866 70 (0.9-0.2Sds) +1.0E 90 AYes Y DL .861 E5 E866
64 (1.2+0.2s\ds) +1.0E 315\forall Yes Y DL 1.239\text{ E} .707\text{ E} -707
65 (1.2+0.2Sds) +1.0E 330Yes Y DL 1.239 E866 E5 66 (0.9-0.2Sds) +1.0E 0 AZIYes Y DL .861 E 1 E 67 (0.9-0.2Sds) +1.0E 30 AYes Y DL .861 E866 E5 68 (0.9-0.2Sds) +1.0E 45 AYes Y DL .861 E707 E707 69 (0.9-0.2Sds) +1.0E 60 AYes Y DL .861 E5 E866 70 (0.9-0.2Sds) +1.0E 90 AYes Y DL .861 E E 1
66 (0.9-0.2Sds) + 1.0E 0 AZ Yes Y
67 (0.9-0.2Sds) + 1.0E 30 A. Yes Y DL .861 E566 E5 68 (0.9-0.2Sds) + 1.0E 45 A. Yes Y DL .861 E707 E707 69 (0.9-0.2Sds) + 1.0E 60 A. Yes Y DL .861 E5 E866 70 (0.9-0.2Sds) + 1.0E 90 A. Yes Y DL .861 E E 1
68 (0.9-0.2Sds) + 1.0E 45 A. Yes Y DL .861 E707 E707 69 (0.9-0.2Sds) + 1.0E 60 A. Yes Y DL .861 E5 E866 70 (0.9-0.2Sds) + 1.0E 90 A. Yes Y DL .861 E E 1
69 (0.9-0.2Sds) + 1.0E 60 A. Yes Y DL .861 E5 E866 70 (0.9-0.2Sds) + 1.0E 90 A. Yes Y DL .861 E E 1
70 (0.9-0.2Sds) + 1.0E 90 A. Yes Y DL .861 E E 1
72 (0.9-0.2Sds) + 1.0E 135Yes Y DL 861 E707 E707
73 (0.9-0.2Sds) + 1.0E 150Yes Y DL 861 E866 E 5
74 (0.9-0.2Sds) + 1.0E 180Yes Y DL 861 E1 E
75 (0.9-0.2Sds) + 1.0E 210Yes Y DL 861 E866 E 5
76 (0.9-0.2Sds) + 1.0E 225Yes Y DL 861 E707 E707
77 (0.9-0.2Sds) + 1.0E 240Yes Y DL .861 E5 E866
78 (0.9-0.2Sds) + 1.0E 270Yes Y DL 861 E E1
79 (0.9-0.2Sds) + 1.0E 300Yes Y DL 861 E 5 E866
80 (0.9-0.2Sds) + 1.0E 315Yes Y DL 861 E707 E707
81 (0.9-0.2Sds) + 1.0E 330Yes Y DL .861 E866 E5
82 1.2D + 1.5 Lv1 Yes Y DL 1.2 25 1.5
83 1.2D + 1.5 Lv2 Yes Y DL 1.2 26 1.5
84 1.2D + 1.5 Lv3 Yes Y DL 1.2 27 1.5
85 1.2D + 1.5 Lv4 Yes Y DL 1.2 28 1.5
86 1.2D + 1.5 Lv5 Yes Y DL 1.2 29 1.5
87 1.2D + 1.5 Lv6 Yes Y DL 1.2 30 1.5
88 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 4 .058 2 .058 3
89 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 5 .058 2 .05 3 .029
90 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 6 .058 2 .041 3 .041
91 1.2D + 1.5Lm + 1.0Wm Yes Y DL 1.2 31 1.5 7 .058 2 .029 3 .05

nber : lame : 806454_NHV 112 948129

: Trylon : IN July 27, 2021 4:05 PM Checked By: CA

Load Combinations (Continued)

Description S D S	P Footor P Foo P Foo	DIC Foo D For	o P. Foo P	Eco P E	00 P F	P [Egg
Description S P S 92 1.2D + 1.5Lm + 1.0Wm Yes Y	B Factor B Fac B Fac. DL 1.2 31 1.5 8 .058			. гась г	acb r	ась г	rac
93 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 31 1.5 9 .058						
94 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 31 1.5 10 .058						
95 1.2D + 1.5Lm + 1.0Wm Yes Y							
			-9				
			20				
	- 1 0 1 1 1						
	2 12 01 110 0						
	22 112 01 110 0						
	DL 1.2 31 1.5 10 .058						
	DL 1.2 31 1.5 11 .058		29				
104 1.2D + 1.5Lm + 1.0Wm Yes Y 105 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 4 .058		20				
106 1.2D + 1.5Lm + 1.0Wm Yes Y							
107 1.2D + 1.5Lm + 1.0Wm Yes Y 108 1.2D + 1.5Lm + 1.0Wm Yes Y							
109 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 8 .058						
110 1.2D + 1.5Lm + 1.0Wm Yes Y							
111 1.2D + 1.5Lm + 1.0WmYes Y							
112 1.2D + 1.5Lm + 1.0Wm Yes Y			.9				
113 1.2D + 1.5Lm + 1.0WmYes Y	DL 1.2 32 1.5 4 .058		20				
114 1.2D + 1.5Lm + 1.0Wm Yes Y							
115 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 6 .058						
116 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 8 .058						
117 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 9 .058						
118 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 10 .058						
119 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 32 1.5 11 .058						
120 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 4 .058		20				
121 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 5 .058		99				
122 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 6 .058						
123 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 7 .058						
124 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 8 .058						
125 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 9 .058						
126 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 10 .058						
127 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 11 .058						
128 1.2D + 1.5Lm + 1.0WmYes Y	DL 1.2 33 1.5 4 .058						
129 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 5 .058		29				
130 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 6 .058						
131 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 7 .058						
132 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 8 .058						
133 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 9 .058						
134 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 33 1.5 10 .058						
135 1.2D + 1.5Lm + 1.0WmYes Y	DL 1.2 33 1.5 11 .058						
136 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 4 .058						
137 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 5 .058		29				
138 1.2D + 1.5Lm + 1.0WmYes Y	DL 1.2 34 1.5 6 .058						
139 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 7 .058						
140 1.2D + 1.5Lm + 1.0WmYes Y	DL 1.2 34 1.5 8 .058						
141 1.2D + 1.5Lm + 1.0Wm Yes Y	DL 1.2 34 1.5 9 .058						
142 1.2D + 1.5Lm + 1.0WmYes Y	DL 1.2 34 1.5 10 .058						
143 1.2D + 1.5Lm + 1.0WmYes Y	DL 1.2 34 1.5 11 .058						
1.10	DE 1.2 04 1.0 11 .000	00 0 .02					

: Trylon : IN

: 806454_NHV 112 948129

July 27, 2021 4:05 PM Checked By: CA

Load Combinations (Continued)

Des cription	S	Р	S B.	Fa	ctor	•В	Fac.	.В	Fac	BLC	FacB	FacB	Fa	cB	. Fac.	.В	Fac.	.В	Fac	В	Fac
144 1.2D + 1.5Lm + 1.0Wm.			D				1.5		.058		058 3										
145 1.2D + 1.5Lm + 1.0Wm.	Yes	Y	D	_	.2	_	1.5		.058	2	05 3	029									
146 1.2D + 1.5Lm + 1.0Wm.	Yes	Υ	D	_	.2		1.5		.058		041 3	041									
147 1.2D + 1.5Lm + 1.0Wm.	Yes	Y	D	_	.2		1.5	_	.058			05									
148 1.2D + 1.5Lm + 1.0Wm .	_	_	D		.2		1.5		.058	2		058									
149 1.2D + 1.5Lm + 1.0Wm .		_	D	_	.2	34			.058	2	.029 3	05									
150 1.2D + 1.5Lm + 1.0Wm .	_	_	D		.2	_			.058	2		041									
151 1.2D + 1.5Lm + 1.0Wm .	_	_	D		.2	34				2	.05 3	029									
152 1.2D + 1.5Lm + 1.0Wm .	Yes	_	D		.2		1.5		.058	2	.058 3										
153 1.2D + 1.5Lm + 1.0Wm .	_	_	D		.2	35		_	.058	2	.05 3	.029									
154 1.2D + 1.5Lm + 1.0Wm .	Yes		D		.2		1.5		.058	2	.041 3	.041									
155 1.2D + 1.5Lm + 1.0Wm .	_	_	D	_	.2	35		_	.058	2	.029 3	.05									
156 1.2D + 1.5Lm + 1.0Wm .	_	_	D		.2	35		_	.058	2	3	.058									
157 1.2D + 1.5Lm + 1.0Wm .		-	D	_	.2	35			.058		029 3	.05									
158 1.2D + 1.5Lm + 1.0Wm .			D	_		_		_	.058		041 3	.041									
159 1.2D + 1.5Lm + 1.0Wm .			D	_	.2		1.5	_			05 3	.029									
160 1.2D + 1.5Lm + 1.0Wm .			D		.2		1.5		.058		058 3										
161 1.2D + 1.5Lm + 1.0Wm .			D	_	.2	_	1.5	_	.058	2	05 3	029									
162 1.2D + 1.5Lm + 1.0Wm .	_	_	D	_	.2		1.5		.058			041									
163 1.2D + 1.5Lm + 1.0Wm .			D	_	.2		1.5		.058		029 3	05									
164 1.2D + 1.5Lm + 1.0Wm .		_	D		.2		1.5		.058			058									
165 1.2D + 1.5Lm + 1.0Wm .			D	_	.2	35		_	.058	2	.029 3	05									
166 1.2D + 1.5Lm + 1.0Wm .			D		.2		1.5		-			041									
167 1.2D + 1.5Lm + 1.0Wm .	_	_	D	_	.2	_	1.5	_	.058	2	.05 3	029									
168 1.2D + 1.5Lm + 1.0Wm .	_	_	D	_	.2		1.5	_	.058	2	.058 3										
169 1.2D + 1.5Lm + 1.0Wm .	_	_	D	$\overline{}$.2		1.5		.058	2	.05 3	.029									
170 1.2D + 1.5Lm + 1.0Wm .			D	_	.2		1.5	_	.058	2	.041 3	.041									
171 1.2D + 1.5Lm + 1.0Wm .	_		D	_	.2	36			.058	2	.029 3	.05									
172 1.2D + 1.5Lm + 1.0Wm.	_	<u> </u>	D		.2	36			.058	2	3	.058									
173 1.2D + 1.5Lm + 1.0Wm .	Yes		D		.2		1.5		.058		029 3	.05									
174 1.2D + 1.5Lm + 1.0Wm .		+ -	D		.2				.058		041 3	.041									
175 1.2D + 1.5Lm + 1.0Wm .	Yes	Y	D	_	.2	_	1.5	_			05 3	.029									
176 1.2D + 1.5Lm + 1.0Wm .	_	_	D		.2	_	1.5	_	.058		058 3										
177 1.2D + 1.5Lm + 1.0Wm .	_		D		.2		1.5		.058			029									
178 1.2D + 1.5Lm + 1.0Wm .			D		.2		1.5	_	.058			041									
179 1.2D + 1.5Lm + 1.0Wm .	_	_	D	_	.2	_	1.5	_	.058		029 3	05									
180 1.2D + 1.5Lm + 1.0Wm .			D		.2		1.5	_	.058			058									
181 1.2D + 1.5Lm + 1.0Wm .	_	_							.058		.029 3	05									
182 1.2D + 1.5Lm + 1.0Wm .		_							.058			041									
183 1.2D + 1.5Lm + 1.0Wm .		_							.058			029									
184 1.2D + 1.5Lm + 1.0Wm .	_	_	D				1.5		.058		.058 3										
185 1.2D + 1.5Lm + 1.0Wm .	_	_	D				1.5		.058	2	.05 3	.029									
186 1.2D + 1.5Lm + 1.0Wm .		_	D				1.5		.058	2	.041 3	.041									
187 1.2D + 1.5Lm + 1.0Wm .		_	D				1.5		.058	2	.029 3	.05									
188 1.2D + 1.5Lm + 1.0Wm .			D				1.5		.058		3	.058									
189 1.2D + 1.5Lm + 1.0Wm .			D				1.5		.058		029 3	.05									
190 1.2D + 1.5Lm + 1.0Wm .	_	_	D						.058		041 3	.041									
191 1.2D + 1.5Lm + 1.0Wm .			D	_		_		_	.058		05 3	.029									
192 1.2D + 1.5Lm + 1.0Wm .	_	_	D				1.5		.058		058 3										
193 1.2D + 1.5Lm + 1.0Wm .	_	_	D	_			1.5		.058		05 3	029									
194 1.2D + 1.5Lm + 1.0Wm .	_	_					1.5	_			041 3										
195 1.2D + 1.5Lm + 1.0Wm .	_	_					1.5		.058		029 3										
 _		<u> </u>		-1 '	_					_						_		_			\Box

: Trylon : IN

: 806454_NHV 112 948129

July 27, 2021 4:05 PM Checked By: CA

Load Combinations (Continued)

	Des cription	S	P	S B	Factor	ъ	Fac	В	Fac	.BLC	Fac	В	FacB	Fac	В	Fac	В	Fac	В	Fac	В	Fac
196 1.21	D + 1.5Lm + 1.0Wm	. Y es	Υ	DL	1.2	37	1.5	8	.058	2		3	058									
197 1.21	D + 1.5Lm + 1.0Wm	. Y es	Υ	DL	1.2	37	1.5	9	.058	2	.029	3	05									
198 1.21	D + 1.5Lm + 1.0Wm	. Yes	Υ	DL	1.2	37	1.5	10	.058	2	.041	3	041									
199 1.21	D + 1.5Lm + 1.0Wm	. Y es	Υ	DL	1.2	37	1.5		.058		.05	3	029									
200 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	38	1.5	4	.058	2	.058	3										
201 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2		1.5		.058	2	.05	3	.029									
202 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	38	1.5	6	.058	2	.041	3	.041									
203 1.21	D + 1.5Lm + 1.0Wm	. Y es	Υ	DL	1.2		1.5		.058	2	.029	3	.05									
204 1.21	D + 1.5Lm + 1.0Wm	. Yes	Υ	DL	1.2	38	1.5	8	.058	2		3	.058									
205 1.21	D + 1.5Lm + 1.0Wm	. Y es	Υ	DL	1.2		1.5		.058	2	029	3	.05									
206 1.21	D + 1.5Lm + 1.0Wm	. Yes	Υ	DL	1.2	38	1.5	10	.058	2	041	3	.041									
207 1.21	D + 1.5Lm + 1.0Wm	. Y es	Υ	DL	1.2	38	1.5	11	.058	2	05	3	.029									
208 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	38	1.5	4	.058	2	058	3										
209 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	38	1.5	5	.058	2	05	3	029									
210 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	38	1.5	6	.058	2	041	3	041									
211 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	38	1.5	7	.058	2	029	3	05									
212 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	38	1.5	8	.058	2		3	058									
213 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	38	1.5	9	.058	2	.029	3	05									
214 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	38	1.5	10	.058	2	.041	3	041									
215 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	38	1.5	11	.058	2	.05	3	029									
216 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	4	.058	2	.058	3										
217 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	5	.058	2	.05	3	.029									
218 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	6	.058	2	.041	3	.041									
219 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	7	.058	2	.029	3	.05									
220 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	8	.058	2		3	.058									
221 1.21	D + 1.5Lm + 1.0Wm	. Y es	Υ	DL	1.2	39	1.5	9	.058	2	029	3	.05									
222 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	10	.058	2	041	3	.041									
223 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	11	.058	2	05	3	.029									
224 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	4	.058	2	058	3										
225 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	5	.058	2	05	3	029									
226 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	6	.058	2	041	3	041									
227 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	7	.058	2	029	3	05									
	D + 1.5Lm + 1.0Wm	_		DL	1.2		1.5		.058			_	058									
	D + 1.5Lm + 1.0Wm	-		DL	1.2	39	1.5	9	.058		.029		05									
230 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	10	.058		.041	3	041									
231 1.21	D + 1.5Lm + 1.0Wm	.Yes	Υ	DL	1.2	39	1.5	11	.058	2	.05	3	029									

Envelope Joint Reactions

	Joint		X [b]	LC	Y [b]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	_LC_
1	N25	max	1208.106	3	799.295	20	1809.69	39	51.552	31	195.058	33	1427.18	19
2		min	-1202.708	27	-803.576	12	83.112	31	-3287.944	39	-1951.229	127	-1430.542	11
3	N1	max	1262.221	17	735.442	8	1859.781	45	3213.564	45	182.179	19	1454.487	25
4		min	-1260.254	25	-728.342	32	92.032	21	-36.04	21	-2193.721	43	-1459.197	17
5	N13	max	341.969	18	1222.358	22	1764.416	34	725.225	192	3639.783	34	1192.249	30
6		min	-349.648	10	-1224.992	14	52.617	26	-612.202	172	-137.548	26	-1195.374	6
7	Totals:	max	2573.249	18	2405.515	6	5226.18	41						
8		min	-2573.249	26	-2405.515	30	1366.261	81						

. : 806454_NHV 112 948129

: Trylon

July 27, 2021 4:05 PM Checked By: CA

Envelope AISC 15th (360-16): LRFD Steel Code Checks

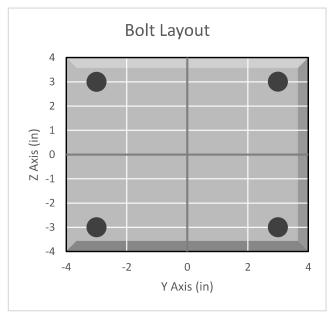
	Member	Shape	Code Check	Loc[in]	LC	SheaLoc Lphi*Pnphi*Pnphi*M phi*M Eqn
1	M2	PIPE 3.5	.486	40	45	.163 40 95 6449178750 7953.75 7953.75 2H1-1b
2	M12	PIPE 3.5	.469	40	39	.157 40 16449178750 7953.75 7953.75 2H1-1b
3	M7	PIPE_3.5	.458	40	34	.156 40 1. 64491. 78750 7953.75 7953.75 2. H1-1b
4	M1	C3X5	.364	34.856	45	.131 63 y 41 32858 47628 981.263 4104 1H1-1b
5	M11	C3X5	.355	34.856	40	.129 63 y 35 32858 47628 981.263 4104 1H1-1b
6	M6	C3X5	.343	34.856	34	.125 63 y 46 32858 47628 981.263 4104 1H1-1b
7	MP1	PIPE 2.0	.293	51	15	.035 51 15 20866 32130 1871 1871 2H1-1b
8	MP4	PIPE 2.0	.279	51	10	.037 51 11 2086632130 1871 1871 1 H1-1b
9	MP7	PIPE 2.0	.272	51	3	.030 51 2 2086632130 1871 1871 1 H1-1b
10	MP3	PIPE 2.0	.270	51	5	.029 51 10 2086632130 1871 1871 1 H1-1b
11	MP9	PIPE 2.0	.267	51	10	.023 51 3 2086632130 1871 1871 1H1-1b
12	MP2	PIPE 2.0	.264	51	6	.039 51 8 2086632130 1871 1871 1 H1-1b
13	MP8	PIPE 2.0	.256	51	10	.032 51 11 2086632130 1871 1871 1H1-1b
14	MP5	PIPE 2.0	.240	51	17	.037 51 3 2086632130 1871 18712H1-1b
15	MP6	PIPE 2.0	.234	51	16	.025 51 8 2086632130 1871 18712H1-1b
16	M10	6.5"x0.37" Plate	.221	21	2	.088 21 y 48 2754875757.5 583.963 6403 1H1-1b
17	M15	6.5"x0.37" Plate	.218	21	7	.090 21 y 37 2754875757.5 583.963 6364 1H1-1b
18	M5	6.5"x0.37" Plate	.214	21	12	.095 21 y 42 2754875757.5 583.963 6639 1H1-1b
19	M13	L2x2x3	.150	0	14	025 0 z 43 18084.2 23392.8 557.717 1182 1 H2-1
20	М3	L2x2x3	.141	0	3	.026 0 z 49 18084.2 23392.8 557.717 1182 1 H2-1
21	M8	L2x2x3	.136	0	10	.025 0 z 38 18084.2 23392.8 557.717 1182 1 H2-1
22	M19	PIPE_2.0	.125	72	10	.116 72 2 14916 32130 1871 1871 1 H1-1b
23	M4	L2x2x3	.121	0	13	0 y 42 18084.2 23392.8 557.717 1182 1 H2-1
24	M20	PIPE 2.0	.115	24	16	.102 72 8 1491632130 1871 1871 1H1-1b
25	М9	L2x2x3	.108	0	2	0 y 47 18084.2 23392.8 557.717 1182 1 H2-1
26	H1	PIPE 3.5	.108	72	88	085 24 10 60666 78750 7953.75 7953.75 1 H1-1b
27	M21	PIPE 2.0	.107	24	5	.102 72 13 1491632130 1871 1871 1H1-1b
28	Н3	PIPE 3.5	.105	72	187	.082 24 16 60666 78750 7953.75 7953.75 1 H1-1b
29	H2	PIPE 3.5	.105	72	143	.076 24 5 6066678750 7953.75 7953.75 1 H1-1b
30	M14	L2x2x3	.098	0	7	0 y 36 18084.2 23392.8 557.717 1182 1 H2-1
31	M22	L6.6"X4.46"X0	.052	0	21	.029 42 z 4 5117087561 246471251 H2-1
32	M23	L6.6"X4.46"X0	.051	0	26	.030 0 y 9 5117087561 246471251 H2-1
33	M24	L6.6"X4.46"X0	.040	0	32	026 0 y 14 51170 87561 2464 7125 1 H2-1

Envelope A IS I S 100-12: LRFD Cold Formed Steel Code Checks

Member Shape	Code Check	Loc[in]LC SheaLoc[iDirLC phi*Pn[phi*Tn[phi*Mnphi*Mn Cb Cmyy Cmzz Eqn
		No Data to Print

APPENDIX D ADDITIONAL CALCUATIONS

Analysis date: 7/29/2021



BOLT TOOL 1.5.2

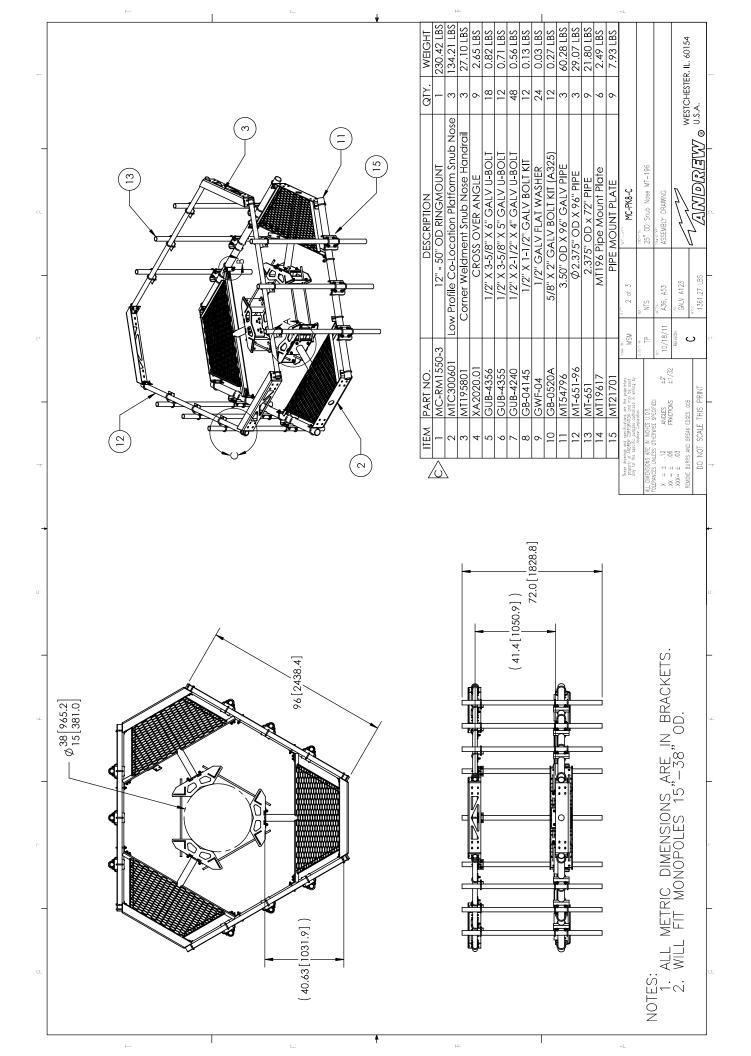
Projec	et Data
Job Code:	ı
Carrier Site ID:	BOHVN00011A
Carrier Site Name:	CT-CCI-T-806454

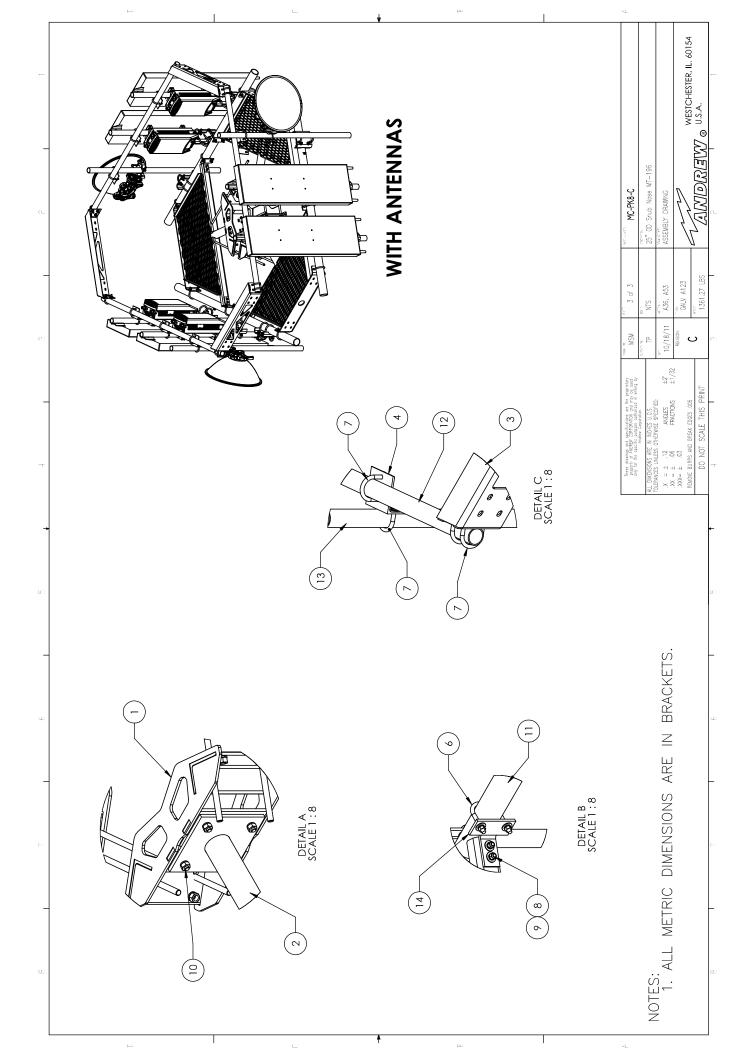
Co	ode
Design Standard:	TIA-222-H
Slip Check:	No
Pretension Standard:	AISC

Bolt Properties			
Connection Type:	Bolt		
Diameter:	0.625	in	
Grade:	A325		
Yield Strength (Fy):	92	ksi	
Ultimate Strength (Fu):	120	ksi	
Number of Bolts:	4		
Threads Included:	No		
Double Shear:	No		
Connection Pipe Size:	-	in	

Connection Description		
Standoff to Monopole		

Bolt Check*			
Tensile Capacity (ϕT_n):		lbs	
Shear Capacity (ϕV_n) :		lbs	
Tension Force (T _u):	3994.4	lbs	
Shear Force (V _u):	665.1	lbs	
Tension Usage:	18.7%		
Shear Usage:	3.7%		
Interaction:	18.7%	Pass	
Controlling Member:	M2		
Controlling LC:	42		


^{*}Rating per TIA-222-H Section 15.5


APPENDIX E SUPPLEMENTAL DRAWINGS

WESTCHESTER, IL. 60154

WESTCHESTER, IL. 60154

U.S.A. BY DRR MSM DESCRIPTION
INITIAL RELEASE
CHANGE NOSE CORNER BRKT, ADD GUB-4240 LOW PROFILE PLATFORM KIT 8' FACE MC-PK8-C REVISIONS ASSEMBLY DRAWING 1410.14 LBS GALV A123 1 of 3 A36, A500 10/18/11 MSM DO NOT SCALE THIS PRINT \triangle NOTE NO. 464.27 LBS 543.22 LBS FOR BOM ENTRY ONLY 402.64 LBS WEIGHT QIY. NOTES: 1. CUSTOMER ASSEMBLY SHEETS 2-3. STEEL BUNDLE FOR SNUB NOSE PLATFORM PIPE STEEL BUNDLE FOR MC-PK8-C HARDWARE KIT FOR MC-PK8-C DESCRIPTION 2 MCPK8CSB 3 MCPK8CHWK MTC3006SB ITEM PART NO.

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00011A

806454

117 Washington Avenue North Haven, Connecticut 06473

September 29, 2021

EBI Project Number: 6221005714

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	31.42%			

September 29, 2021

Dish Wireless

Emissions Analysis for Site: BOHVN00011A - 806454

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 117 Washington Avenue in North Haven, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully

aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 117 Washington Avenue in North Haven, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 4 n71 channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 2) 4 n70 channels (PCS Band 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 3) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 4) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

- 5) The antennas used in this modeling are the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector A, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector B, the JMA MX08FRO665-20 for the 600 MHz / 1900 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 6) The antenna mounting height centerline of the proposed antennas is 95 feet above ground level (AGL).
- 7) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
- 8) All calculations were done with respect to uncontrolled / general population threshold limits.

Dish Wireless Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	I	Antenna #:	I	Antenna #:	I
Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20	Make / Model:	JMA MX08FRO665- 20
Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz	Frequency Bands:	600 MHz / 1900 MHz
Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd	Gain:	17.45 dBd / 22.65 dBd
Height (AGL):	95 feet	Height (AGL):	95 feet	Height (AGL):	95 feet
Channel Count:	8	Channel Count:	8	Channel Count:	8
Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts	Total TX Power (W):	280 Watts
ERP (W):	3,065.51	ERP (W):	3,065.51	ERP (W):	3,065.51
Antenna A1 MPE %:	2.00%	Antenna B1 MPE %:	2.00%	Antenna C1 MPE %:	2.00%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
Dish Wireless (Max at Sector A):	2.00%			
Sprint	5.91%			
Clearwire	0.19%			
Verizon	23.32%			
Site Total MPE % :	31.42%			

Dish Wireless MPE % Per Sector					
Dish Wireless Sector A Total:	2.00%				
Dish Wireless Sector B Total:	2.00%				
Dish Wireless Sector C Total:	2.00%				
Site Total MPE % :	31.42%				

Dish Wireless Maximum MPE Power Values (Sector A)							
Dish Wireless Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
Dish Wireless 600 MHz n71	4	223.68	95.0	4.06	600 MHz n71	400	1.02%
Dish Wireless 1900 MHz n70	4	542.70	95.0	9.85	1900 MHz n70	1000	0.99%
						Total:	2.00%

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (%)
Sector A:	2.00%
Sector B:	2.00%
Sector C:	2.00%
Dish Wireless Maximum MPE % (Sector A):	2.00%
Site Total:	31.42%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **31.42**% of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

4545 E River Rd, Suite 320 West Henrietta, NY 14586

Phone: (585) 445-5896 Fax: (724) 416-4461 www.crowncastle.com

Crown Castle Letter of Authorization

CT - CONNECTICUT SITING COUNCIL

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

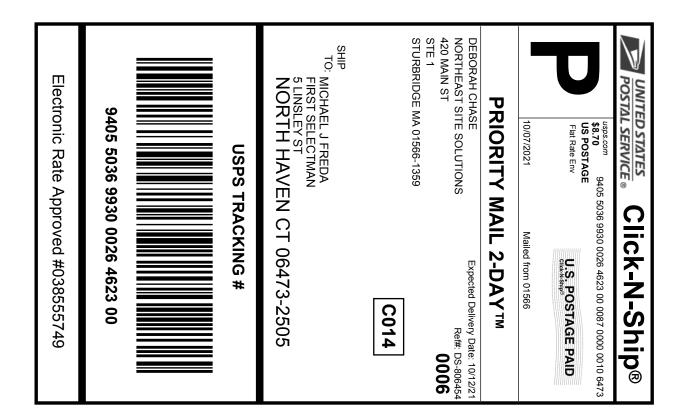
Re: Tower Share Application

Crown Castle telecommunications site at: 117 WASHINGTON AVENUE, NORTH HAVEN, CT 06473

CROWN ATLANTIC COMPANY LLC ("Crown Castle") hereby authorizes DISH Wireless, LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT - CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Crown Site ID/Name: 806454/NHV 112 948129

Customer Site ID: BOHVN00011A/CT-CCI-T-806454


Site Address: 117 Washington Avenue, NORTH HAVEN, CT 06473

By:

Richard Zajac
Site Acquisition Specialist

Exhibit H

Recipient Mailings

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 4623 00

545448188 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

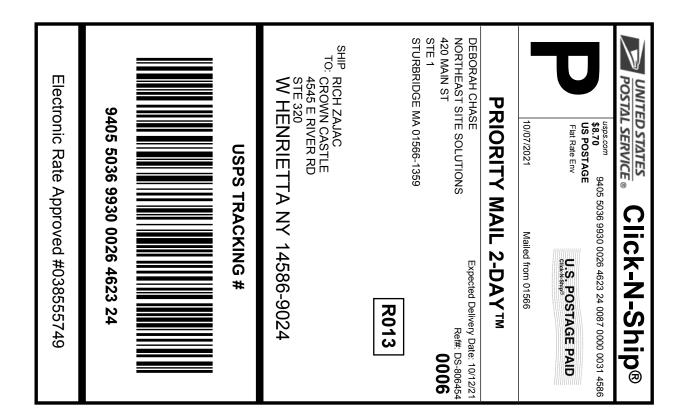
Ref#: DS-806454

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1


STURBRIDGE MA 01566-1359

MICHAEL J FREDA

FIRST SELECTMAN **5 LINSLEY ST**

NORTH HAVEN CT 06473-2505

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 4623 24

545448188 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-806454

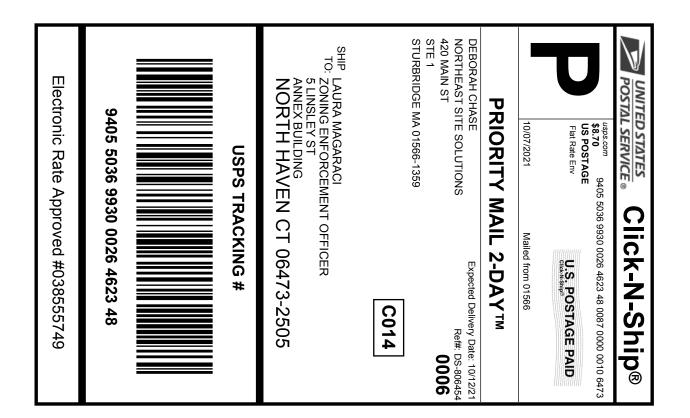
From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


RICH ZAJAC

CROWN CASTLE 4545 E RIVER RD

STE 320

W HENRIETTA NY 14586-9024

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 4623 48

545448188 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: \$8.70 \$8.70 Total:

Ref#: DS-806454 From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359


LAURA MAGARACI

ZONING ENFORCEMENT OFFICER

5 LINSLEY ST ANNEX BUILDING

NORTH HAVEN CT 06473-2505

* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO **COPY OR ALTER LABEL.**
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING #: 9405 5036 9930 0026 4623 55

545448188 10/07/2021 Trans. #: Print Date: Ship Date: 10/07/2021 10/12/2021 Delivery Date:

Priority Mail® Postage: Total:

\$8.70 \$8.70

Ref#: DS-806454

From: DEBORAH CHASE

NORTHEAST SITE SOLUTIONS

420 MAIN ST

STE 1

STURBRIDGE MA 01566-1359

JOSEPH MORUZZI

COMMERCIAL INVESTMENT GROUP LLC

2911 DIXWELL AVE HAMDEN CT 06518-3195

Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking® service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.

806454

UNITED STATES POSTAL SERVICE.

UNIONVILLE 24 MILL ST UNIONVILLE, CT 06085-9998 (800)275-8777

		01:37 PM
Qty	Unit Price	Price
1 etta, NY 145 b 2.00 oz Date: 708/2021	586	\$0.00
lb 11.60 o Date: /08/2021	Z	\$0.00 00
Date: 0/08/2021		\$0.00 55
e Date: 0/08/2021 #: 5036 9930 0	026 4623	

en, CT 06473 1b 11.60 of the post of the p	026 4623	\$0. ****** ted volum loyee acts of
	Qty 1 tta, NY 14% b 2.00 oz Date: '08/2021 036 9930 00 1 0, CT 06473 b 11.60 o Date: /08/2021 : 036 9930 00 1 06518 lb 11.60 o Date: /08/2021 : 036 9930 00 1 on, CT 06473 lb 11.60 o Date: /08/2021 : 5036 9930 00 1 on, CT 06473 lb 11.60 o Date: /08/2021 : in, CT 06473 lb 11.60 o Date: /08/2021 itin, CT 06473 lb 11.60 o Date: /08/2021	Qty Unit Price 1 tta, NY 14586 b 2.00 oz Date: '08/2021 10, CT 06473 lb 11.60 oz Date: '08/2021 1 06518 lb 11.60 oz Date: /08/2021 1 06518 lb 11.60 oz Date: /08/2021 1 06518 lb 11.60 oz Date: /08/2021 1 06518 lb 11.60 oz Date: /08/2021