Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts

July 23, 2014

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification

15 Dwight Street, North Haven, Connecticut

Dear Ms. Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains twelve (12) antennas at the 108-foot level of the existing 150-foot tower at 15 Dwight Street in North Haven, Connecticut (the Property"). The tower is owned by American Tower Corporation. The Council approved Cellco's use of this tower in 1999. Cellco now intends to modify its facility by removing all of its existing antennas and replacing them with three (3) model LNX-6514DS-VTM, 850 MHz antennas; three (3) BXA-70063-6CF, 700 MHz antennas; three (3) model HBX-6516DS-VTM, 1900 MHz antennas; and three (3) model HBX-6517DS-VTM, 2100 MHz antennas, all at the 108-foot level on the tower. Cellco also intends to install three (3) remote radio heads ("RRHs") behind its 2100 MHz antennas and one (1) HYBRIFLEXTM antenna cable. Included in Attachment 1 are specifications for Cellco's replacement antennas, RRHs and HYBRIFLEXTM cable.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Michael J. Freda, First Selectman of the Town of North Haven. A copy of this letter is also being sent to 15 Dwight Street LLC Corporation, the owner of the Property.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

13044990-v1

Robinson+Cole

Melanie A. Bachman July 23, 2014 Page 2

- 1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's new antennas and RRHs will be installed at the 108-foot level on the existing 150-foot tower.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A cumulative General Power Density table for Cellco's modified facility is included in Attachment 2.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The tower and its foundation can support Cellco's proposed modifications. (*See* Structural Evaluation Letter included in <u>Attachment 3</u>).

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Enclosures Copy to:

Michael J. Freda, North Haven First Selectman 15 Dwight Street LLC Sandy M. Carter

ATTACHMENT 1

LNX-6514DS-VTM

Andrew® Antenna, 698–896 MHz, 65° horizontal beamwidth, RET compatible

Electrical Specifications

Frequency Band, MHz	698-806	806-896
Gain, dBi	15.7	16.3
Beamwidth, Horizontal, degrees	65	65
Beamwidth, Horizontal Tolerance, degrees	±3	±3
Beamwidth, Vertical, degrees	12.5	11.2
Beam Tilt, degrees	0-10	0-10
USLS, typical, dB	17	18
Front-to-Back Ratio at 180°, dB	32	30
CPR at Boresight, dB	20	20
CPR at Sector, dB	10	10
Isolation, dB	30	30
VSWR Return Loss, dB	1.4 15.6	1.4 15.6
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153
Input Power per Port, maximum, watts	400	400
Polarization	±45°	±45°

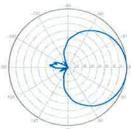
Mechanical Specifications

Color Radome Material	Light gray Fiberglass, UV resistant
Connector Interface Location Quantity	7-16 DIN Female Bottom 2
Wind Loading, maximum	617.7 N @ 150 km/h 138.9 lbf @ 150 km/h
Wind Speed, maximum	241.0 km/h 149.8 mph
Antenna Dimensions, L x W x D	1847.0 mm x 301.0 mm x 181.0 mm 72.7 in x 11.9 in x 7.1 in
Net Weight	17.6 kg 38.8 lb

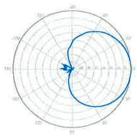
Model with factory installed AISG 2.0 RET LNX-6514DS-A1M

BXA-70063-6CF-EDIN-X

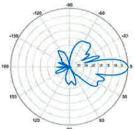
X-Pol | FET Panel | 63° | 14.5 dBd


Electrical Characteristics 696-900 MHz 696-806 MHz 806-900 MHz Frequency bands Polarization +459 Horizontal beamwidth 65° 63° 13* 11° Vertical beamwidth Gain 14.0 dBd (16.1 dBi) 14.5 dBd (16.6 dBi) 0, 2, 3, 4, 5, 6, 8, 10 Electrical downtilt (X) Impedance 50Ω **VSWR** ≤1,35:1 Upper sidelobe suppression (0°) -18₋3 dB -18.2 dB -33.4 dB -36,3 dB Front-to-back ratio (+/-30°) Null fill 5% (-26.02 dB) < -25 dB Isolation between ports 500 W Input power with EDIN connectors 300 W Input power with NE connectors < -153 dBc IM3 (2x20W carriers) Lightning protection Direct Ground 2 Ports / EDIN or NE / Female / Center (Back) Connector(s) **Mechanical Characteristics** 1804 x 285 x 132 mm Dimensions Length x Width x Depth 71.0 x 11.2 x 5.2 in 172 mm Depth with z-brackets Weight without mounting brackets 7.9 kg 17 lbs > 125 mph Survival wind speed > 201 km/hr Front: 5.5 ft2 Side: 2.6 ft2 Wind area Front: 0.51 m² Side: 0,24 m² Wind load @ 161 km/hr (100 mph) Front: 759 N Side: 391 N Front: 169 lbf Side: 89 lbf **Mounting Options** Part Number Fits Pipe Diameter Weight 40-115 mm 1.57-4.5 in 6.9 kg 15.2 lbs 3-Point Mounting & Downtilt Bracket Kit 36210008 For concealment configurations, order BXA-70063-6CF-EDIN-X-FP Concealment Configurations

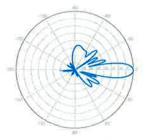
Replace X with desired electrical downfill.


Antenna is also available with NE connector(s). Replace "EDIN" with "NE" in the model number when ordering.

BXA-70063-6CF-EDIN-X

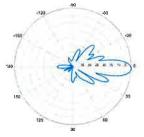


Horizontal | 750 MHz

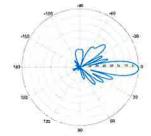


Horizontal | 850 MHz

BXA-70063-6CF-EDIN-0



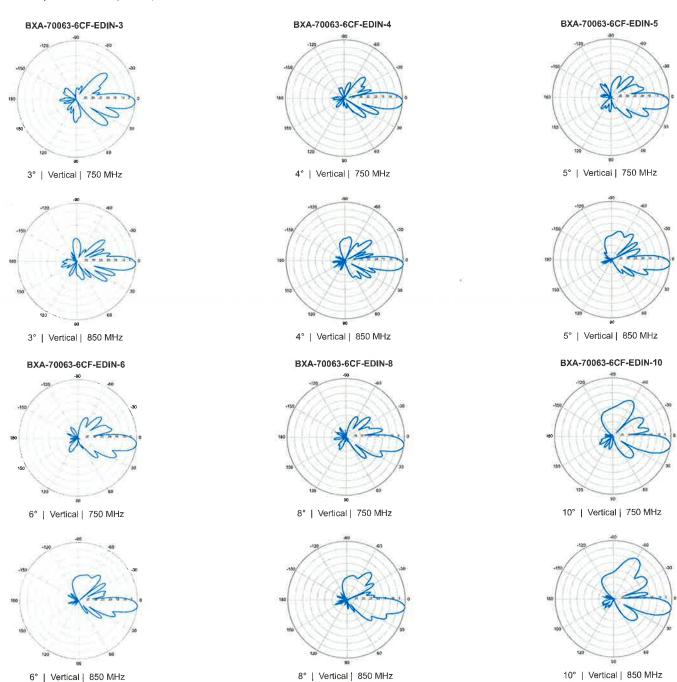
0° | Vertical | 750 MHz



0° | Vertical | 850 MHz

BXA-70063-6CF-EDIN-2

2° | Vertical | 750 MHz


2° | Vertical | 850 MHz

Quoted performance parameters are provided to offer typical or range values only and may vary as a result of normal manufacturing and operational conditions. Extreme operational conditions and/or stress on structural supports is beyond our control. Such conditions may result in damage to this product. Improvements to product may be made without notice.

BXA-70063-6CF-EDIN-X

X-Pol | FET Panel | 63° | 14.5 dBd

Quoted performance parameters are provided to offer typical or range values only and may vary as a result of normal manufacturing and operational conditions. Extreme operational conditions and/or stress on structural supports is beyond our control. Such conditions may result in damage to this product. Improvements to product may be made without notice.

HBX-6516DS-VTM

Andrew® Teletilt® Antenna, 1710-2170 MHz, 65° horizontal beamwidth, RET compatible

Electrical Specifications

Frequency Band, MHz	1710-1880	1850-1990	1920-2170
Gain by all Beam Tills, everage, dBI	17.1	17.3	17.5
Gain by all Beam Tilts Tolerance, dB	±0.2	±0.3	±0.4
	0 ° 17.1	0 ° 17.3	0 ° 17.6
Gain by Beam Tilt, average, dBi	5 ° 17.2	5 ° 17.5	5 ° 17.7
	10 ° 16.9	10 ° 17.0	10 ° 17.1
Beamwidth, Horizontal, degrees	68	65	64
Beamwidth, Horizontal Tolerance, degrees	±1.9	±1.6	±2.1
Beamwidth, Vertical, degrees	7.5	7.0	6.7
Beamwidth, Vertical Telerance, degrees	±0.4	±0.3	±0.4
Beam Tilt, degrees	0-10	0-10	0-10
USLS, dB	19	19	19
Front-to-Back Total Power at 180° ± 30°, dB	25	26	26
CPR at Boresight, dB	22	22	22
CPR at Sector, dB	11	9	9
Isolation, dB	30	30	30
VSWR Return Loss, dB	1.4 15.6	1.4 15.6	1.4 15.6
PIM, 3rd Ords , 2 x 20 W, dBs	-±53	-153	-153
Input Power per Port, maximum, watts	350	350	350
Polerization	主な長っ	±45°	±45°

^{*}Values calculated using NGMN Alliance N-P-BASTA v9.6

Mechanical Specifications

		A STATE OF THE PARTY OF THE PAR
Color Radome Material	Light gray PVC, UV resistant	
Connector Interface Location Quantity	7-16 DIN Femela Bottom 2	
Wind Loading, maximum	257.0 N @ 150 km/h 57.8 lbf @ 150 km/h	
Wind Speed, Hazimum	241.0 km/h 149.8 mph	
Antenna Dimensions, L x W x D	1306.0 mm x 166.0 mm x 83.0 mm 51.4 ln x 6.5 ln x 3.3 in	
Net Weight	4.7 kg 10.4 lb	

Model with factory installed AISG 2.0 RET HBX-6516DS-A1M

HBX-6517DS-VTM

Andrew® Teletilt® Antenna, 1710-2180 MHz, 65° horizontal beamwidth, RET compatible

- · Superior azimuth tracking and pattern symmetry to minimize any sector overlap
- · Rugged, reliable design with excellent passive intermodulation suppression
- The values presented on this datasheet have been calculated based on N-P-BASTA
 White Paper version 9.6 by the NGMN Alliance

Electrical Specifications

Frequency Band, MHz Gain by all Beam Tilts, average, dBi	1710-1880 18.5	1850-1990 18.6	1920-2180 18.9
Gain by all Beam Tilts Tolerance, dB	±0.2	±0.3	±0.4
	0 ° 18.3	0 ° 18.4	0 ° 18.8
Gain by Beam Tilt, average, dBí	3 ° 18.6	3 ° 18.7	3° 19.1
	6 ° 18.4	6 ° 18.6	6 ° 18.7
Beamwidth, Horizontal, degrees	67	66	64
Beamwidth, Horizontal Tolerance, degrees	±1.8	±0.9	±2.8
Beamwidth, Vertical, degrees	5.0	4.7	4.4
Beamwidth, Vertical Tolerance, degrees	±0.2	±0.2	±0.3
Beam Tilt, degrees	0-6	0-6	0-6
USLS, dB	19	19	18
Front-to-Back Total Power at 180° ± 30°, dB	26	26	26
CPR at Boresight, dB	22	22	22
CPR at Sector, dB	11	11	9
Isolation, dB	30	30	30
VSWR Return Loss, dB	1.4 15.6	1.4 15.6	1.4 15.6
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153
Input Power per Port, maximum, watts	350	350	350
Polarization	±45°	±45°	±45°
Impedance	50 ohm	50 ohm	50 ohm

General Specifications

Antenna Brand	Andrew®
Antenna Type	DualPol®
Band	Single band
Brand	DualPol® Teletilt®
Operating Frequency Band	1710 - 2180 MHz
Number of Ports, all types	2

Mechanical Specifications

Color	Light gray
Lightning Protection	dc Ground
Radiator Material	Low loss circuit board
Radome Material	PVC, UV resistant
RF Connector Interface	7-16 DIN Female
RE Connector Location	Bottom

HBX-6517DS-VTM

RF Connector Quantity, total

Wind Loading, maximum

Wind Speed, maximum

2

393.0 N @ 150 km/h 88.3 lbf @ 150 km/h

241.0 km/h | 149.8 mph

POWERED BY ANDREW.

Dimensions

Depth Length Width Net Weight 83.0 mm | 3.3 in 1902.0 mm | 74.9 in 166.0 mm | 6.5 in 6.2 kg | 13.7 lb

Remote Electrical Tilt (RET) Information

Model with Factory Installed AISG 1.1 Actuator HBX-6517DS-R2M Model with Factory Installed AISG 2.0 Actuator HBX-6517DS-A1M RET System Teletilt®

Regulatory Compliance/Certifications

Agency

RoHS 2011/65/EU China RoHS SJ/T 11364-2006

ISO 9001:2008

Classification

Compliant by Exemption

Above Maximum Concentration Value (MCV)

Designed, manufactured and/or distributed under this quality management system

Included Products

DB390 — Pipe Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Use for narrow panel antennas. Includes two pipe mounts.

DB5098E - Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members

Alcatel-Lucent RRH2x40-AWS

The Alcatel-Lucent RRH2x40-AWS is a high-power, small form-factor Remote Radio Head (RRH) operating in the AWS frequency band (1700/2100MHz - 3GPP Band 4). The Alcatel-Lucent RRH2x40-AWS is designed with an eco-efficient approach, providing operators with the means to achieve high quality and capacity coverage with minimum site requirements.

A distributed eNodeB expands deployment options by using two components, a Base Band Unit (BBU) containing the digital assets and a separate RRH containing the radiofrequency (RF) elements. This modular design optimizes available space and allows the main components of an eNodeB to be installed separately, within the same site or several kilometres apart.

The Alcatel-Lucent RRH2x40-AWS is linked to the BBU by an optical-fiber connection carrying downlink and uplink digital radio signals along with operations, administration and maintenance (OA&M) information. The Alcatel-Lucent RRH2x40-AWS has two transmit RF paths, 40 W RF output power per transmit path, and is designed to manage up to four-way receive diversity. The device is ideally suited to support macro coverage, with multiple-input multiple-output (MIMO) 2x2 operation in up to 20 MHz of bandwidth.

The Alcatel-Lucent RRH2x40-AWS is designed to make available all the benefits of a distributed eNodeB, with excellent RF characteristics, with low

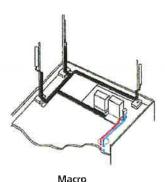
capital expenditures (CAPEX) and low operating expenditures (OPEX). The limited space available in some sites may prevent the installation of traditional single-cabinet BTS equipment or require costly cranes to be employed, leaving coverage holes. However, many of these sites can host an Alcatel-Lucent RRH2x40-AWS installation, providing more flexible site selection and improved network quality along with greatly reduced installation time and costs.

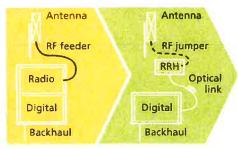
Fast, low-cost installation and deployment

The Alcatel-Lucent RRH2x40-AWS is a zero-footprint solution and operates noise-free, simplifying negotiations with site property owners and minimizing environmental impacts.

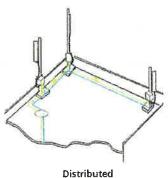
Installation can easily be done by a single person because the Alcatel-Lucent RRH2x40-AWS is compact and weighs less than 20 kg (44 lb), eliminating the need for a crane to hoist the BTS cabinet to the rooftop. A site can be in operation in less than one day — a fraction of the time required for a traditional BTS.

Excellent RF performance


Because of its small size and weight, the Alcatel-Lucent RRH2x40-AWS can be installed close to the antenna. Operators can therefore locate the Alcatel-Lucent RRH2x40-AWS where RF engineering is deemed ideal, minimizing trade-offs between available sites and RF optimum sites. The RF feeder cost and installation costs are reduced or eliminated, and there is no need for a Tower Mounted Amplifier (TMA) because losses introduced by the RF feeder are greatly reduced. The Alcatel-Lucent RRH2x40-AWS provides more RF power while at the same time consuming less electricity.


Features

- Zero-footprint deployment
- · Easy installation, with a lightweight unit can be carried and set up by one person
- · Optimized RF power, with flexible site selection and elimination of a TMA
- Convection-cooled (fanless)
- Noise-free
- Best-in-class power efficiency, with significantly reduced energy consumption


Benefits

- · Leverages existing real estate with lower site costs
- · Reduces installation costs, with fewer installation materials and simplified logistics
- · Decreases power costs and minimizes environmental impacts, with the potential for eco-sustainable power options
- Improves RF performance and adds flexibility to network planning

Technical specifications

Physical dimensions

- Height: 620 mm (24.4 in.)
- Width: 270 mm (10.63 in.)
- Depth: 170m (6.7 in.)
- Weight (without mounting kit): less than 20 kg (44 lb)

Power

Power supply: -48VDC

Operating environment

- Outdoor temperature range:
 - ¬ With solar load: -40°C to +50°C (-40°F to +122°F)
 - ¬ Without solar load: -40°C to +55°C (-40°F to +131°F)

- · Passive convection cooling (no fans)
- Enclosure protection
 - ¬ IP65 (International Protection rating)

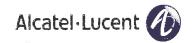
RF characteristics

- Frequency band: 1700/2100 MHz (AWS); 3GPP Band 4
- Bandwidth: up to 20 MHz
- RF output power at antenna port: 40 W nominal RF power for each Tx port
- · Rx diversity: 2-way or 4-way with optional Rx Diversity module
- Noise figure: below 2.0 dB typical
- Antenna Line Device features
 - ¬ TMA and Remote electrical tilt (RET) support via AISG v2.0

Optical characteristics Type/number of fibers

· Single-mode variant

- ¬ One Single Mode Single Fiber per RRH2x, carrying UL and DL using CWDM
- ¬ Single mode dual fiber (SM/DF)
- · Multi-mode variant
 - ¬ Two Multi-mode fibers per RRH2x: one carrying UL, the other carrying DL


Optical fiber length

- Up to 500 m (0.31 mi), using MM fiber
- Up to 20 km (12.43 mi), using SM fiber

Digital Ports and Alarms

- Two optical ports to support daisy-chaining
- Six external alarms

www.alcatel-lucent.com Alcatel, Lucent, Alcatel-Lucent and the Alcatel-Lucent logo are trademarks of Alcatel-Lucent. All other trademarks are the property of their respective owners. The information presented is subject to change without notice. Alcatel-Lucent assumes no responsibility for inaccuracies contained herein. Copyright © 2010 Alcatel-Lucent. All rights reserved. CPG2809100912 (09)

Product Description

RFS' HYBRIFLEX Remote Radio Head (RRH) hybrid feeder cabling solution combines optical fiber and DC power for RRHs in a single lightweight aluminum corrugated cable, making it the world's most innovative solution for RRH deployments.

It was developed to reduce installation complexity and costs at Cellular sites, HYBRIFLEX allows mobile operators deploying an RRH architecture to standardize the RRH installation process and eliminate the need for and cost of cable grounding, HYBRIFLEX combines optical fiber (multi-mode or single-mode) and power in a single corrugated cable. It eliminates the need for junction boxes and can connect multiple RRHs with a single feeder, Standard RFS CELLFLEX® accessories can be used with HYBRIFLEX cable. Both pre-connectorized and on-site options are available.

Features/Benefits

- Aluminum corrugated armor with outstanding bending characteristics minimizes installation time and enables mechanical protection and shielding
- Same accessories as 1 5/8" coaxial cable
- Outer conductor grounding Sliminates typical grounding requirements and saves on installation costs
- Lightweight solution and compact design Decreases tower loading
- Robust cabling Eliminates need for expensive cable trays and ducts
- Installation of tight bundled fiber optic cable pairs directly to the RRH Reduces CAPEX and wind load by eliminating need for interconnection
- Optical fiber and power cables housed in single corrugated cable Saves CAPEX by standardizing RRW cable installation and reducing installation requirements
- Outdoor polyethylene jacket Ensures long-lasting cable protection

Figure 1: HYBRIFLEX Series

PE/UV external lacket

Optical cable (pair) with an internal jacket

Aluminum OC

an internal jacket

Technical Specifications

Streeting

Outer Conductor Armor	Corrugated Aluminum	[mm (in)]	46.5 (1.83)
Jacket:	Polyethylene, PE	[mm (in)]	50.3 (1.98)
UV-Protection	Individual and External Jacket		Yes
New york Principles			
Weight, Approximate		[kg/m (lb/ft)]	1 9 (1.30)
Minimum Bending Radius,	Single Bending	[mm (in)]	200 (8)
Minimum Bending Radius,	Repeated Bending	[mm (in)]	500 (20)
Recommended/Maximum	Clamp Spacing	[m (ft)]	1.0 / 1.2 (3 25 / 4.0)
Emissional Minuspersions			
DC-Resistance Outer Conc	luctor Armor	$[\Omega/\text{km} (\Omega/1000fb)]$	068 (0.205)
DC-Resistance Power Cabl	e, 8 4mm² (8AWG)	$[\Omega/\text{km} (\Omega/1000\text{ft})]$	2 1 (0.307)
Fire Tains manyon			

Version		Single-mode ONI3
Quantity, Fiber Count		16 (8 pairs)
Core/Clad	[µTr]	50/125
Primary Coating (Acrylate)	[µm]	245
Buffer Diameter, Nominal	[µm]	900
Secondary Protection, Jacket, Nominal	[mm (in)]	Z O (0 08)
Minimum Bending Radius	[mm (:n)]	104 (4 1)
Insertion Loss @ wavelength 850nm	dB/km	3 0
Insertion Loss @ wavelength 1310nm	d8/km	1.0
Standards (Meets or exceeds)		UL94-V0 UL1666 Ro∺S Compliant

The same of the contract of		
Size (Power)	[mm (AWG)]	8 4 (8)
Quantity, Wire Count (Power)		16 (8 pairs)
Size (Alarm)	[mm (AWG)]	0.8 (18)
Quantity, Wire Count (Alarm)		4 (2 pairs)
Туре		UV protected
Strands		19
Primary Jacket Diameter, Nominal	[mm (in/]	6.8 (0.27)
Standards (Meets or exceeds)		NFPA 130, ICEA S-95-658
		UL Type XHHVV-2, UL 44
		UL-LS Limited Smoke, UL VW-1

 Installation Temperature
 [°C (°F)]
 -40 to +65 (-40 to149)

 Operation Temperature
 [°C (°F)]
 -40 to +65 (-40 to149)

This dara is provisional and subject to change

AFS The Clear Choice

HB153-1-03U3-33J18

IEEE-383 (1974), IEEE1202/FT4

RoHS Compliant

73V1 21

Print Date: 27.6.2012

71 7rint Dat

Alarm cable with an internal jacket

Figure 3: Construction Detail

ATTACHMENT 2

Site Name: North Haven 2 CALC. MAX. MAX. FREQ.	8	General	Power	Density					
CARRIER # OF CHAN. WATTS ERP HEIGHT HEIGHT HEIGHT HEIGHT DENS CALC. MAX. FRACTION MAX. CARRIER # OF CHAN. WATTS ERP HEIGHT HEI	Site Name: North Haven 2								
MAX PENMISE # OF CHAN. WATTS ERP HEIGHT DENS FREQ. EXP. MAX PENMISE MAX PENMISE MAX PENMISE MAX MATS ERP HEIGHT DENS FREQ. EXP. MPE MAX MATS ERP HEIGHT DENS FREQ. EXP. MPE MAX MATS ERP HEIGHT DENS FREQ. EXP. MPE MAX MATS ERP HEIGHT DENS EXP. MAX MATS ERP HEIGHT DENS EXP. MAX MATS ERP EXP. MAX MATS ERP HEIGHT DENS EXP. MAX MATS ERP EXP. MAX MATS ERP EXP. MAX MATS ERP EXP. MAX MATS ERP EXP. EXP. MAX MATS ERP EXP.	Tower Height: 150'								
CARRIER # OF CHAN. WATTS ERP HEIGHT DEMS FREG. FREG. FREO. TRACTION IMTS 2 565 151 0.0178 880 0.5867 3.04% SSIM 1 2 875 151 0.0025 1900 1.0000 2.76% SSIM 4 525 151 0.0045 880 0.5867 0.76% SSIM 4 525 151 0.0045 880 0.5867 0.76% SSIM 4 525 151 0.0045 880 0.5867 0.76% ITE 1313 151 0.0037 734 0.4893 4.23% Ire 2 153 146 0.0057 749 1.0000 7.19% Ire 7 333 108 0.0199 869 0.5793 17.24% India 1 11918 108 0.0251 698 0.4973 5.65% Sting Council 1 </td <td></td> <td></td> <td></td> <td></td> <td>CALC.</td> <td></td> <td>MAX.</td> <td></td> <td></td>					CALC.		MAX.		
CARRIER # OF CHAN. WATTS ERP HEIGHT DENS FREQ. EXP. MPE IMTS 2 565 151 0.0178 880 0.5867 3.04% IMTS 2 875 151 0.0276 1900 1.0000 2.76% SSM 4 525 151 0.0351 1900 1.0000 3.31% TE 2 153 146 0.0351 1900 1.0000 3.21% Ire 2 153 146 0.0052 2496 1.0000 0.52% ire 1 211 146 0.0052 2496 1.0000 0.36% ire 7 333 108 0.019 1970 1.0000 5.91% Ire 1 1918 108 0.059 869 0.5793 17.24% Ire 1 1918 108 0.0591 2445 1.0000 5.91% Ire 1 1 108 <td></td> <td></td> <td></td> <td></td> <td>POWER</td> <td></td> <td>PERMISS.</td> <td></td> <td></td>					POWER		PERMISS.		
IMTS 2 565 151 0.0178 880 0.5867 3.04% IMTS 2 875 151 0.0276 1900 1.0000 2.76% SSM 1 283 151 0.0276 1890 0.5867 0.76% SSM 4 525 151 0.0045 880 0.5867 0.76% SSM 4 525 151 0.0035 1900 0.5867 0.76% SSM 1 1 1313 151 0.0037 1748 0.4893 4.23% ire 2 153 146 0.0036 11 GHz 1.0000 0.52% ire 333 108 0.0356 11 GHz 1.0000 7.19% p 360 108 0.0351 2145 1.0000 5.91% ire 1 814 108 0.0251 698 0.4973 5.05% ire 1 814 108 0.0251	CARRIER	# OF CHAN.	WATTS ERP	HEIGHT	DENS	FREQ.	EXP.	MPE	Total
IMTS 2 875 151 0.0276 1900 1.0000 2.76% SSM 1 283 151 0.0045 880 0.5867 0.76% SSM 4 525 151 0.0045 880 0.5867 0.76% SSM 4 525 151 0.0045 880 0.5867 0.76% SSM 1 1 1313 151 0.0037 1.000 1.000 0.52% Ire 2 153 146 0.0052 2496 1.000 0.52% Ire 7 333 108 0.0719 1970 1.000 0.36% Ire 7 333 108 0.0591 2745 1.000 5.91% Ire 1 1918 108 0.0591 2745 1.000 5.91% Ire 1 1814 108 0.0591 245 1.000 5.91% Ire 1 1 1	*AT&T UMTS	2	565	151	0.0178	880	0.5867	3.04%	
SSM 1 283 151 0.0045 880 0.5867 0.76% SSM 4 525 151 0.0331 1900 1.0000 3.31% TE 1 1313 151 0.0207 734 0.4893 4.23% ire 2 153 146 0.0207 734 0.4893 4.23% ire 1 211 146 0.0052 2496 1.0000 0.52% ire 1 211 146 0.0052 2496 1.0000 0.36% ire 7 333 108 0.0719 1970 1.000 0.36% f 1 1918 108 0.0591 2145 1.000 5.91% f 1 814 108 0.0591 698 0.4973 5.05% isiting Council 1 1 1 1 1 1 1 1	*AT&T UMTS	2	875	151	0.0276	1900	1.0000	2.76%	
SSM 4 525 151 0.0331 1900 1.0000 3.31% TE 1 1313 151 0.0207 734 0.4893 4.23% ire 2 153 146 0.0052 2496 1.0000 0.52% ire 1 211 146 0.0036 11 GHz 1.0000 0.52% re 7 333 108 0.0719 1970 1.0000 7.19% re 9 360 108 0.0999 869 0.5793 17.24% re 1 1918 108 0.0591 2145 1.0000 5.91% re 1 814 108 0.0251 698 0.4973 5.05% re 1 814 108 0.0251 698 0.4973 5.05%	*AT&T GSM	_	283	151	0.0045	880	0.5867	%92.0	
TE 1313 151 0.0207 734 0.4893 4.23% life 2 153 146 0.0052 2496 1.0000 0.52% life 1 2 1 1 146 0.0036 1.0000 0.36% life 2 333 108 0.0719 1970 1.0000 0.36% life 1 1 1918 108 0.0591 2145 1.0000 7.19% life 1 1 1918 108 0.0591 2145 1.0000 5.91% life 1 1 1814 108 0.0251 698 0.4973 5.05% life 2 Siting Council	*AT&T GSM	4	525	151	0.0331	1900	1.0000	3.31%	
ire 2 153 146 0.0052 2496 1.0000 0.52% ire 1 211 146 0.0036 11 GHz 1.0000 0.36% ire 7 333 108 0.0719 1970 1.0000 7.19% ire 1 108 0.0999 869 0.5793 17.24% ire 1 1918 108 0.0591 2145 1.0000 5.91% ire 1 814 108 0.0251 698 0.4973 5.05% ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire ire	*AT&T LTE	Ψ-	1313	151	0.0207	734	0.4893	4.23%	
ire 211 146 0.0036 11 GHz 1.0000 0.36% 7 333 108 0.0719 1970 1.0000 7.19% 9 360 108 0.0999 869 0.5793 17.24% 1 1918 108 0.0591 2145 1.0000 5.91% 1 814 108 0.0251 698 0.4973 5.05% 1 5.05% 1 1 814 108 0.0251 698 0.4973 5.05% 1 1 814 108 0.0251 698 0.4973 5.05% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*Clearwire	2	153	146	0.0052	2496	1.0000	0.52%	
333 108 0.0719 1970 1.0000 7.19% 360 360 108 0.0999 869 0.5793 17.24% 1 1918 108 0.0591 2145 1.0000 5.91% 1 1918 108 0.0251 698 0.4973 5.05% 1 1918 108 0.0251 698 0.4973 5.05% 1 1918 108 0.00251 898 0.4973 5.05% 1 1918 108 0.0251 898 0.4973 1 1918 1 1918 1 108 0.0251 898 0.4973 1 1918 1 1	*Clearwire	-	211	146	0.0036	11 GHz	1.0000	0.36%	
360 108 0.0999 869 0.5793 17.24% 1918 108 0.0591 2145 1.0000 5.91% 1 1918 108 0.0251 698 0.4973 5.05% 1 1918 108 0.0051 698 0.4973 5.05% 1 1918 108 0.0051 698 0.4973 5.05% 1 1918 1 1918 108 0.0051 698 0.4973 6.05% 1 1918 1 191	Verizon	7	333	108	0.0719	1970	1.0000	7.19%	
## 1918 108 0.0591 2145 1.0000 5.91% 1	Verizon	6	360	108	0.0999	869	0.5793	17.24%	
3: Siting Council	Verizon	-	1918	108	0.0591	2145	1.0000	5.91%	
	Verizon	1	814	108	0.0251	869	0.4973	2.05%	
* Source: Siting Council									50.4%
* Source: Siting Council									
* Source: Siting Council									
	* Source: Siting Council								

ATTACHMENT 3

	Structural Evaluation		
ATC Site Number & Name	302482, North Haven CT 1, CT		
Carrier Site Number & Name	N/A , North Haven 2		
Site Location	15 Dewight Street		
	North Haven, CT 06473-1198, New Haven County		
	41.420806 N / -72.848800 W		
Tower Description	150 ft Monopole		
Basic Wind Speed	110 mph (3-Second Gust)		
Basic Wind Speed w/ Ice	50 mph (3-Second Gust) w/ 3/4 " ice		
Code	ANSI/TIA-222-G / 2003 IBC w/ 2005 Connecticut Supplement and 2009 and 2011		
	Connecticut Amendment		

Existing and Reserved Equipment

Existing did it	COCIO	eu Equipment			
Mount Elev. ¹ (ft)	Qty.	Antenna	Mount Type	Lines	Carrier
153.0	6	LGP Allgon LGP21903	Low Profile Platform	(12) 1 1/4" Coax (2) 0.78" 8 AWG 6 (1) 0.39" Cable	AT&T Mobility
	6	Powerwave LGP21401			
	1	Raycap DC6-48-60-18-8F			
	6	Ericsson RRUS 11 (Band 12)			
	6	Powerwave 7770.00			
	3	KMW AM-X-CD-16-65-00T-RET			
146.0	3	DragonWave Horizon Compact	Stand-Off	(6) 5/16" (0.31") Coax (3) 1/2" Coax (2) 2" conduit	Clearwire
	1	12" x 12" Junction Box			
	1	DragonWave A-ANT-23G-1-C			
	3	NextNet BTS-2500			
	1	DragonWave A-ANT-11G-2-C			
	3	Argus LLPX310R			
	1	DragonWave A-ANT-11G-2.5-C			
108.0	6	RFS FD9R6004/1C-3L	Low Profile Platform	(12) 15/8" Coax	Verizon Wireless

Proposed Equipment

Elevation ¹ (ft)	۵.	Antonna	May not Type	Linas	Carrior	
Mount	RAD	Qty.	Antenna	Mount Type	Lines	Carrier
108.0 1		3	Alcatel-Lucent RRH2X40-AWS 1700/2100 MHZ	Low Profile Platform	(1) 1 5/8" Hybriflex	Verizon Wireless
		3	Commscope HBX-6516DS-VTM			
	108.0	3	Commscope HBX-6517DS-VTM			
		1	RFS DB-T1-6Z-8AB-0Z			
		3	Antel BXA-70063/6CF_			
		3	Commscope LNX-6514DS-VTM			

Mount elevation is defined as height above bottom of steel structure to bottom of mount, RAD elevation is defined as center of antenna above grade level (AGL).

Install proposed coax inside of the pole shaft.

The existing and proposed loads listed in the tables above are compared to the tower's current design capacity or previous structural analysis. The tower should be re-evaluated as future loads are added or if actual loads are found different from those listed in the tables. The subject tower and foundation *are adequate* to support the above stated loads in conformance with specified requirements.

Mar 31 2014 9:18 AM