JULIE D. KOHLER

PLEASE REPLY TO: Bridgeport WRITER'S DIRECT DIAL: (203) 337-4157 E-Mail Address: jkohler@cohenandwolf.com

May 20, 2014

Attorney Melanie Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification
 Florida Tower Partners/ MetroPCS co-location
 Site ID CTNH522A
 50 Devine Street, North Haven CT

Dear Attorney Bachman:
This office represents MetroPCS Wireless Inc. ("MetroPCS") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, Florida Tower Partners owns the existing monopole telecommunications tower and related facility at 50 Devine Street, North Haven, Connecticut (Latitude: 41.377810, Longitude: -72.8762). MetroPCS intends to replace three existing antennas with six new antennas and related equipment at this existing telecommunications facility in North Haven ("North Haven Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16$50 \mathrm{j}-73$, of construction which constitutes an exempt modification pursuant to R.C.S.A. § $16-$ 50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the First Selectman Michael J. Freda, and the property owner, 424 Chapel Street LLC.

The existing North Haven Facility consists of a 130 foot monopole tower. ${ }^{1}$ MetroPCS plans to replace three existing antennas with six new antennas on T-arm mounts at a centerline of 117 feet. (See the plans revised to May 1, 2014 attached hereto as Exhibit A). MetroPCS will also replace an equipment cabinet and battery backup unit, install fiber cable and reuse existing coax cables. The existing North Haven Facility is structurally capable of supporting MetroPCS' proposed modifications, as indicated in the structural analysis dated May 4, 2014 and attached hereto as Exhibit B.

[^0]May 20, 2014
Site ID CTNH522A
Page 2

The planned modifications to the North Haven Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. MetroPCS' replacement and additional antennas will be installed at a centerline of 117 feet, merely replacing existing antennas located at the same 117 foot elevation. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. The proposed modifications will not require an extension of the site boundaries or lease area, as depicted on Sheets 2 and 4 of Exhibit A. MetroPCS' equipment will be located entirely within the existing compound area.
3. The proposed modification to the North Haven Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated May 12, 2014, MetroPCS' operations would add 0.846% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 48.056% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, MetroPCS respectfully submits that the proposed replacement antennas and equipment at the North Haven Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, MetroPCS shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

Sincerely,

cc: Town of North Haven, First Selectman Michael J. Freda
424 Chapel Street LLC
Florida Tower Partners
Sheldon Freincle, NSS

KEY PLAN
N.T.S.

SUBMITTALS	
LE REV A	05.01 .14

LEASE EXHIBIT
SITE NUMBER:
CTNH522A
SITE NAME:
FLORIDA PARTNERS NORTH HAVEN MONOPOLE
SITE ADDRESS:
50 DEVINE ST,
NORTH HAVEN, CT

NORTHEAST SITE SOLUTIONS
54 MAIN STREET, UNIT 3 STURBRIDGE, MA 01566
(508) 434-5237

Metion ${ }^{\text {FOR }} \mathrm{B}$?

metroPCS WIRELESS, INC. 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002

ALL EQUIPMENT LOCATIONS ARE APPROXIMATE AND ARE SUBJECT TO APPROVAL BY LESSEE/LICENSEE'S
STRUCTURAL \& RF ENGINEERS. LOCATIONS OF POWER \&
TELEPHONE FACILITIES ARE SUBJECT TO APPROVAL BY UTILITY COMPANIES.

LEASE EXHIBIT
STE NUMBER:
CTNH522A
SITE NAME:
FLORIDA PARTNERS NORTH HAVEN
MONOPOLE SITE ADDRESS:
50 DEVINE ST,
NORTH HAVEN, CT

- tlantis

G ROUP
1340 Centre Street
Suite 212
Newton, MA 02459
Office: 617-965-0789
Fax: 617-213-5056

CONFIGURATION
5A

SUBMITTALS	
LE REV A	05.01 .14

LEASE EXHIBITSTE NUMBER:CTNH522AASIIE NAME:FLORIDA PARTNERS NORTH HAVENMONOPOLESITEADDESS:SO DEVINE ST,NORTH HAVEN, CT		NORTHEAST SITE SOLUTIONS 54 MAIN STREET, UNIT 3 STURBRIDGE, MA 01566 (508) 434-5237 metro P คя S . metroPCS WIRELESS, INC. 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002
DRAWN BY: MB	CHECKED BY:SM	PAGE $20 F 5$

EXISTING EQUIPMENT

ЕХНІВІТ B

Structural Analysis 130-ft Monopole

Prepared For:
Florida Tower Partners, LLC $10013^{\text {rd }}$ Ave. West, Suite 420
Bradenton, FL 34205
MFP Project \#40913-015 r4
Site Location:
CT1003 North Haven
New Haven Co., Connecticut Lat/Long: 41 $22^{\prime} 40.1^{\prime \prime},-72^{\circ} 52^{\prime} 34.1^{\prime \prime}$

Analysis Type:

ANSI/TIA-222-G
Structure Rating: 79.5\% Passing

$$
\text { May 4, } 2014
$$

Michael F, Plahovinsak, P.E,
183 OI State Route I61 W, Plain City, OH 43064
614-398-6250-mike@mfpena, com

```
Project Summary:
```

We have completed a structural analysis of the existing monopole for the proposed configuration:

$$
\text { MetroPCS - 117' - (6) Ericsson AIR-21 Panel \& (12) } 15 / 8^{\prime \prime} \text { on T-Arm Mounts }
$$

The pole has been analyzed in accordance with the requirements of the 2006-2012 International Building Code, and the recommendations of the Telecommunications Industry Association "Structural Standard for Steel Antenna Supporting Structures" ANSI/TIA-222-G.

This analysis may be considered a "Rigorous Structural Analysis" as defined in ANSI/TIA-222-G 15.5.2.

As indicated in the conclusions of this analysis, we have determined that the existing pole and foundation have sufficient capacity to support the existing, reserved and proposed antenna loads as detailed herein. Based on the results of our analysis, structural modifications are not required at this time.

Source of Data:

Resource	Source	Job Number	Date
Pole and Foundation Drawings	Sabre Towers	$11-05062$	$05 / 12 / 10$
Geotechnical Report	Terracon	J2105136	$04 / 20 / 10$

Analysis Criteria:

International Building Code (All Versions) Section 3108.4
Structural Standards for Steel Antenna Supporting Structures ANSI/TIA-222-G 2

- Basic Wind Speed
- Basic Wind Speed w/ 3/4" Ice
- Operational Wind Speed

115 mph (3-Sec Gust)
50 mph (3-Sec Gust)
60 mph (3-Sec Gust)

Structure Class	Exposure Category	Topographic Category
$\mathrm{II}(\mathrm{I}=1.0)$	C	I

Michael F, Plahovinsak, P.E, - $2 \mathrm{O} \mid 4$

Appurtenance Listing:

Status	Elev.	Antenna / Mounting	Coax	Owner
Existing	130^{\prime}	(1) Antel BXA-70080/6CF + (1) BXA-80080/6CF (4) Antel BXA-70063/6CF + (6) BXA-171063/12CF (6) Lucent 2×40 RRH's \& (1) Distribution Box 12' Low Profile Platform	(12) $15 / 8^{\prime \prime}$	Verizon
Proposed	117^{\prime}	(6) Ericsson AlR-21 Panel 12' T-Arm Mounts	(12) $15 / 8{ }^{\prime \prime}$	MetroPCS
Existing	107'	(12) CCI HPA-65R-BUU-H8 Panel (9) RRUS-11 + (6) RRUS-12 + (6) RRUS-32 + (6) RRUS-A2 (4) Raycap DC6-48-60-18-8F Suppressor 12' T-Arm Mounts	(8) $3 / 4^{\prime \prime}+$ (2) $1 / 2^{\prime \prime}+$ (3) $3 / 8^{\prime \prime}$	AT\&T

All antenna lines assumed internally mounted, not exposed to the wind.

```
Foundation Analysis:
```

The existing monopole foundation design was analyzed in conjunction with site specific geotechnical report. The existing foundation has sufficient capacity to support the pole with the proposed antenna configuration.

Conclusion:

We have completed a structural analysis of the existing monopole and foundation in accordance with the project specifics outlined above. Our analysis indicates that the existing monopole and foundation is stressed to a maximum of 79.5% of its usable capacity when considering the existing plus proposed loading. Please refer to the attached calculations for an itemized listing of all member stress ratios. The existing pole is safe and adequate to support the proposed loads, and no structural reinforcing is required to support the above loading.

If you have any questions about the contents of this structural report or require any additional information, please feel free to contact my office.

Sincerely,
Michael F. Plahovinsak, P.E.

Michael F, Plahovinsak, P.E, - 2014

Standard Conditions for Providing Structural Consulting Services on Existing Structures

1. The following standard conditions are a general overview of key issues regarding the work product supplied.
2. If the existing conditions are not as represented in this structural report or attached sketches, we should be contacted to evaluate the significance of the deviation and revise the structural assessment accordingly.
3. The structural analysis has been performed assuming that the structure is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, etc. If there are any known deficiencies in the structure that potentially compromise structural integrity, we should be made aware of the deficiencies. If we are aware of a deficiency that exists in a structure at the time of our analysis, a general explanation of the structural concern due to the deficiency will be included in the structural report, but the deficiency will not be reflected in capacity calculations.
4. The structural analysis provided is an assessment of the primary load carrying capacity of the structure. We provide a limited scope of service in that we have not verified the capacity of every weld, plate, connection detail, etc. In most cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of this information is beyond the scope of our services. In instances where we have not performed connection capacity calculations, it is assumed that existing manufactured connections develop the full capacity of the primary members being connected.
5. The structural integrity of the existing foundation system can only be verified if exact foundation sizes and soils conditions are known. We will not accept any responsibility for the adequacy of the existing foundations unless this site-specific data is supplied.
6. Miscellaneous items such as antenna mounts, coax supports, etc. have not been designed, detailed, or specified as part of our work. It is assumed that material of adequate size and strength will be purchased from a reputable component manufacturer. The attached report and sketches are schematic in nature and should not be used to fabricate or purchase hardware and accessories to be attached to the structure. We recommend field measurement of the structure before fabricating or purchasing new hardware and accessories. We are not responsible for proper fit and clearance of hardware and accessory items in the field.
7. The structural analysis has been performed considering minimum code requirements or recommendations. If alternate wind, ice, or deflection criteria are to be considered, then We shall be made aware of the alternate criteria.

> Michael F. Plahovinsak, P.E. -2014
> mike@mfpeng.com

TYPE	ELEVATION	TYPE	ELEVATION
(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)	130	12' T-Arm Mounts (MetroPCS)	117
		(4) CCI HPA-65R-BUU-H8 w/ mount pipe (ATT)	107
(2) Antel BXA-171063/12CF w/ mount pipe (Verizon)	130		
		(3) Ericsson RRUS-11 (ATT)	107
(2) Lucent 2×40 RRH (Verizon)	130	(2) Ericsson RRUS 12 (ATT)	107
(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)	130	(2) Ericsson RRUS-32 (ATI)	107
		(2) Ericsson RRUS A2 (ATT)	107
(2) Antel BXA-171063/12CF w/ mount pipe (Verizon)	130	(4) CCI HPA-65R-BUU-H8 w/ mount pipe (ATT)	107
(2) Lucent 2×40 RRH (Verizon)	130	(3) Ericsson RRUS-11 (AT)	107
Antel BXA-70080-6CF w/ mount pipe (Verizon)	130	(2) Ericsson RRUS 12 (ATT)	107
Antel BXA-80080/6CF w/ mount pipe (Verizon)	130	(2) Ericsson RRUS-32 (ATT)	107
		(2) Ericsson RRUS A2 (ATT)	107
(2) Antel BXA-t71063/12CF w/ mount pipe (Verizon)	130	(4) CCI HPA-65R-BUU-H8 w/ mount pipe (ATT)	107
(2) Lucent 2x40 RRH (Verizon)	130	(3) Ericsson RRUS-11 (ATD)	107
RFS DB-T1-6Z-8AB-OZ Box (Verizon)	130	(2) Ericsson RRUS 12 (ATT)	107
12'Low Profile Platform (Verizon)	130	(2) Ericsson RRUS-32 (ATI)	107
(2) Ericsson AIR 21 w/ mount pipe (MetropCS)	117	(2) Ericsson RRUS A2 (ATT)	107
		(4) Raycap DC6-48-60-18-8F	107
(2) Ericsson AIR 21 w/ mount pipe (MetraPCS)	117	Supressor (AT])	
		12' T-Arm Mounts (ATT)	107
(2) Ericsson AIR 21 w/ mount pipe (MetroPCS)	117		

MATERIAL STRENGTH

TOWER DESIGN NOTES

1. Tower is located in New Haven County, Connecticut.
2. Tower designed for Exposure C to the TIA-222-G Standard.
3. Tower designed for a 115 mph basic wind in accordance with the TIA-222-G Standard
4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
5. Defiections are based upon a 60 mph wind.
6. Tower Structure Class II.
7. Topographic Category 1 with Crest Height of 0.00 ft
8. TOWER RATING: 75.1\%

ALL REACTIONS
ARE FACTORED

TORQUE 0 kip-ft 50 mph WIND - 0.7500 in ICE

TORQUE 1 kip-ft
REACTIONS - 115 mph WIND

tnxTOwer	130-ft Monopole (Prop. 130-ft) - MFP \#40913-015 r4		$\begin{array}{ll} \hline \text { Page } & \\ & 1 \text { of } 7 \end{array}$
Michael F. Plahovinsak, P.E. 18301 State Route 161 W	Project	CT1003, North Haven	Date $10: 51: 1505 / 04 / 14$
Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Client	Florida Tower Partners	Designed by Mike

Tower Input Data

This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in New Haven County, Connecticut.
Basic wind speed of 115 mph .
Structure Class II.
Exposure Category C.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.
Tapered Pole Section Geometry

Section	Elevation	St	Section Length $f t$	Splice Length $f t$	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in
L1	$130.00-120.00$	10.00	0.00	18	20.9000	23.1600	0.1875	0.7500	Pole Grade
L2	$120.00-91.50$	28.50	4.25	18	23.1600	29.6000	0.2500	1.0000	A572-65 $(65 \mathrm{ksi})$
L3	$91.50-48.25$	47.50	5.50	18	28.1396	38.8700	0.3750	1.5000	$65 \mathrm{ksi})$ A572-65 $(65 \mathrm{ksi})$
L4	$48.25-1.00$	52.75		18	36.8775	48.8000	0.4375	1.7500	A572-65 $(65 \mathrm{ksi})$

Tapered Pole Properties

Section	Tip Dia.									
	in	Area $i n^{2}$	I in 4	r in	C in	I / C $i n^{3}$	J $i n^{4}$	$I t / Q$ $i n^{2}$	w in	w / t
L1	21.2224	12.3265	668.1027	7.3529	10.6172	62.9264	1337.0845	6.1644	3.3484	17.858
	23.5173	13.6715	911.5289	8.1552	11.7653	77.4762	1824.2571	6.8371	3.7462	19.98
L2	23.5173	18.1791	1205.4790	8.1331	11.7653	102.4607	2412.5442	9.0913	3.6362	14.545
	30.0566	23.2892	2534.5957	10.4193	15.0368	168.5595	5072.5265	11.6468	4.7696	19.078
L3	29.5486	33.0469	3218.4903	9.8565	14.2949	225.1489	6441.2155	16.5266	4.2926	11.447
	39.4696	45.8187	8578.0508	13.6657	19.7460	434.4205	17167.3888	22.9137	6.1811	16.483
L4	38.7087	50.6015	8489.0461	12.9362	18.7338	453.1409	16989.2624	25.3056	5.7204	13.075
	49.5528	67.1574	19844.8883	17.1687	24.7904	800.5070	39715.8890	33.5851	7.8188	17.872

tnxTower	130-ft Monopole (Prop. 130-ft) - MFP \#40913-015 r4		$\begin{aligned} & \text { Page } \\ & \quad 2 \text { of } 7 \end{aligned}$
Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX:mike@mfpeng.com	Project	CT1003, North Haven	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:51:15 05/04/14 } \end{array}$
	Client	Florida Tower Partners	Designed by Mike

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \\ \hline \end{gathered}$	Allow Shield	Component Type	Placement ft	Total Number		$C_{A} A_{A}$ $f^{2} / f t$	Weight plf
$15 / 8^{\prime \prime}$	C	No	Inside Pole	130.00-1.00	12	No Ice	0.00	0.92
(Verizon)						$1 / 2^{\prime \prime}$ Ice	0.00	0.92
						$1{ }^{\prime \prime}$ Ice	0.00	0.92

$15 / 8^{\prime \prime}$	C	No	Inside Pole	117.00-1.00	12	No Ice	0.00	0.92
(MetroPCS)						$1 / 2^{\prime \prime}$ Ice	0.00	0.92
						$1^{\prime \prime}$ Ice	0.00	0.92
**								
$3 / 4{ }^{\prime \prime}$	C	No	Inside Pole	107.00-1.00	8	No Ice	0.00	0.33
(ATT')						$1 / 2^{\prime \prime}$ Ice	0.00	0.33
						$1^{\prime \prime}$ Ice	0.00	0.33
$1 / 2^{\prime \prime}$	C	No	Inside Pole	107.00-1.00	2	No Ice	0.00	0.15
(ATT)						$1 / 2^{\prime \prime}$ Ice	0.00	0.15
						$1^{\prime \prime}$ Ice	0.00	0.15
3/8"	C	No	Inside Pole	107.00-1.00	3	No Ice	0.00	0.08
(ATT)						$1 / 2^{\prime \prime}$ Ice	0.00	0.08
						$1^{\prime \prime}$ Ice	0.00	0.08

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\hline \text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& Offsets:
Horz
Lateral
Vert
ft
ft
ft \& Azimuth Adjustment \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A A} A_{A}\)
Side \& Weight

K

\hline \multirow[t]{3}{*}{(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 7.75 \& 5.18 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.29 \& 6.11 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 8.85 \& 6.92 \& 0.16

\hline \multirow[t]{2}{*}{(2) Antel BXA-171063/12CF w/ mount pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 4.98 \& 5.93 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 5.43 \& 6.87 \& 0.08

\hline (Verizon) \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 5.89 \& 7.69 \& 0.14

\hline \multirow[t]{3}{*}{(2) Lucent 2×40 RRH (Verizon)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 1.20 \& 2.25 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.35 \& 2.45 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.51 \& 2.66 \& 0.05

\hline \multirow[t]{3}{*}{(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 7.75 \& 5.18 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 8.29 \& 6.11 \& 0.09

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 8.85 \& 6.92 \& 0.16

\hline \multirow[t]{3}{*}{| (2) Antel BXA-171063/12CF |
| :--- |
| w/ mount pipe (Verizon) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 4.98 \& 5.93 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 5.43 \& 6.87 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{11}$ Ice \& 5.89 \& 7.69 \& 0.14

\hline \multirow[t]{3}{*}{(2) Lucent 2×40 RRH (Verizon)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 1.20 \& 2.25 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.35 \& 2.45 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.51 \& 2.66 \& 0.05

\hline \multirow[t]{3}{*}{Antel BXA-70080-6CF w/ mount pipe (Verizon)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 5.79 \& 5.99 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.25 \& 6.93 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1^{11} Ice \& 6.71 \& 7.74 \& 0.15

\hline \multirow[t]{3}{*}{Antel BXA-80080/6CF w/ mount pipe (Verizon)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 5.79 \& 5.99 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 6.25 \& 6.93 \& 0.13

\hline \& \& \& 0.00 \& \& \& $1^{1 \prime}$ Ice \& 6.71 \& 7.74 \& 0.19

\hline \multirow[t]{3}{*}{(2) Antel BXA-171063/12CF w/ mount pipe (Verizon)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 4.98 \& 5.93 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 5.43 \& 6.87 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 5.89 \& 7.69 \& 0.14

\hline \multirow[t]{2}{*}{(2) Lucent 2×40 RRH (Verizon)} \& \multirow[t]{2}{*}{C} \& \multirow[t]{2}{*}{From Face} \& 3.00 \& 0.0000 \& 130.00 \& No Ice \& 1.20 \& 2.25 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {1 }}$ Ice \& 1.35 \& 2.45 \& 0.03

\hline
\end{tabular}

tnxTower	130-ft Monopole (Prop. 130-ft) - MFP \#40913-015 r4		$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$
Michael F. Plahovinsak, P.E. 18301 State Route 161 W	Project	CT1003, North Haven	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:51:15 05/04/14 } \end{array}$
Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Client	Florida Tower Partners	Designed by Mike

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& Offsets:
Horz
Lateral
Vert
\(f t\)
\(f t\)
\(f t\)
\(f t\) \& Azimuth Adjustment \& Placement \& \& CAAAA
Front \& CAA
Side

$f t^{2}$ \& Weight

K

\hline \multirow{4}{*}{RFS DB-T1-6Z-8AB-OZ Box (Verizon)} \& \multirow{3}{*}{C} \& \multirow{3}{*}{None} \& 0.00 \& \multirow{3}{*}{0.0000} \& \multirow{3}{*}{130.00} \& 1" Ice \& 1.51 \& 2.66 \& 0.05

\hline \& \& \& \& \& \& No Ice \& 5.60 \& 2.33 \& 0.04

\hline \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 5.92 \& 2.56 \& 0.08

\hline \& \& \multirow{4}{*}{None} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{130.00} \& $1^{\prime \prime}$ Ice \& 6.24 \& 2.79 \& 0.12

\hline \multirow[t]{3}{*}{12' Low Profile Platform (Verizon)} \& \multirow[t]{3}{*}{C} \& \& \& \& \& No Ice \& 14.00 \& 14.00 \& 1.10

\hline \& \& \& \& \& \& 1/2" Ice \& 16.00 \& 16.00 \& 1.70

\hline \& \& \& \& \& \& $1^{1 \prime}$ Ice \& 18.00 \& 18.00 \& 2.30

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{(2) Ericsson AR $21 \mathrm{w} /$ mount pipe (MetroPCS)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{117.00} \& No Ice \& 6.61 \& 5.50 \& 0.11

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {n }}$ Ice \& 7.08 \& 6.22 \& 0.16

\hline \& \& \& 0.00 \& \& \& 1^{11} Ice \& 7.55 \& 6.95 \& 0.22

\hline \multirow[t]{3}{*}{(2) Ericsson AIR 21 w/ mount pipe (MetroPCS)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{117.00} \& No Ice \& 6.61 \& 5.50 \& 0.11

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 7.08 \& 6.22 \& 0.16

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 7.55 \& 6.95 \& 0.22

\hline \multirow[t]{3}{*}{(2) Ericsson AIR $21 \mathrm{w} /$ mount pipe (MetroPCS)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{117.00} \& No Ice \& 6.61 \& 5.50 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.08 \& 6.22 \& 0.16

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 7.55 \& 6.95 \& 0.22

\hline \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{117.00} \& No Ice \& 12.00 \& 12.00 \& 1.14

\hline \multirow[t]{2}{*}{(MetroPCS)} \& \& \& \& \& \& $1 / 2^{\prime \prime}$ Ice \& 18.00 \& 18.00 \& 1.27

\hline \& \& \& \& \& \& $1^{\prime \prime}$ Ice \& 24.00 \& 24.00 \& 0.47

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{6}{*}{| (4) CCI HPA-65R-BUU-H8 |
| :--- |
| w/ mount pipe |
| (ATT) |
| (3) Ericsson RRUS-11 |
| (ATT) |} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 13.62 \& 9.18 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 14.35 \& 10.58 \& 0.19

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 15.09 \& 11.83 \& 0.29

\hline \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 2.55 \& 0.92 \& 0.05

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.77 \& 1.07 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.99 \& 1.23 \& 0.08

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS 12 (ATT)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 3.67 \& 1.46 \& 0.06

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.92 \& 1.64 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 4.19 \& 1.84 \& 0.11

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS-32 (ATT)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 3.87 \& 2.76 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {n }}$ Ice \& 4.15 \& 3.02 \& 0.10

\hline \& \& \& 0.00 \& \& \& $1^{1 \prime}$ Ice \& 4.44 \& 3.29 \& 0.14

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS A2 (ATT)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 1.87 \& 0.50 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{1 \prime}$ Ice \& 2.05 \& 0.62 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.24 \& 0.75 \& 0.05

\hline \multirow[t]{3}{*}{(4) CCI HPA-65R-BUU-H8 w/ mount pipe (ATT)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 13.62 \& 9.18 \& 0.10

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 14.35 \& 10.58 \& 0.19

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 15.09 \& 11.83 \& 0.29

\hline \multirow[t]{3}{*}{(3) Ericsson RRUS-11 (ATT)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 2.55 \& 0.92 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.77 \& 1.07 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1^{11} Ice \& 2.99 \& 1.23 \& 0.08

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS 12 (ATT)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 3.67 \& 1.46 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.92 \& 1.64 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 4.19 \& 1.84 \& 0.11

\hline \multirow[t]{3}{*}{| (2) Ericsson RRUS-32 |
| :--- |
| (ATT) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 3.87 \& 2.76 \& 0.08

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 4.15 \& 3.02 \& 0.10

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.44 \& 3.29 \& 0.14

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS A2 (ATT)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 1.87 \& 0.50 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.05 \& 0.62 \& 0.04

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 2.24 \& 0.75 \& 0.05

\hline \multirow[t]{3}{*}{(4) CCI HPA-65R-BUU-H8 $\mathrm{w} /$ mount pipe (ATT)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 13.62 \& 9.18 \& 0.10

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 14.35 \& 10.58 \& 0.19

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 /}$ Ice \& 15.09 \& 11.83 \& 0.29

\hline \multirow[t]{3}{*}{(3) Ericsson RRUS-11 (ATT)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 2.55 \& 0.92 \& 0.05

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.77 \& 1.07 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.99 \& 1.23 \& 0.08

\hline
\end{tabular}

tnxTower Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Job $130-\mathrm{ft}$ Monopole (Prop. 130-ft) - MFP \#40913-015 r4		$\begin{array}{ll} \hline \text { Page } \\ & \\ & \\ \text { of } 7 \end{array}$
	Project	CT1003, North Haven	$\begin{array}{\|l\|} \hline \text { Date } \\ 10: 51: 15 ~ 05 / 04 / 14 \end{array}$
	Client	Florida Tower Partners	Designed by Mike

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f t^{2}
\] \& \(C_{A} A_{A}\) Side
\[
f t^{2}
\] \& Weight

K

\hline \multirow[t]{3}{*}{| (2) Ericsson RRUS 12 |
| :--- |
| (ATT) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 2.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 3.67 \& 1.46 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.92 \& 1.64 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.19 \& 1.84 \& 0.11

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS-32 (ATT)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 3.87 \& 2.76 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 4.15 \& 3.02 \& 0.10

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.44 \& 3.29 \& 0.14

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS A2 (ATT)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 1.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 1.87 \& 0.50 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.05 \& 0.62 \& 0.04

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.24 \& 0.75 \& 0.05

\hline \multirow[t]{2}{*}{(4) Raycap DC6-48-60-18-8F} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 1.47 \& 1.47 \& 0.03

\hline \& \& \& \& \& \& 1/2" Ice \& 1.67 \& 1.67 \& 0.05

\hline (ATT) \& \& \& \& \& \& 1" Ice \& 1.88 \& 1.88 \& 0.07

\hline \multirow[t]{3}{*}{12^{\prime} T-Arm Mounts (ATT)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{107.00} \& No Ice \& 12.00 \& 12.00 \& 1.14

\hline \& \& \& \& \& \& 1/2" Ice \& 18.00 \& 18.00 \& 1.27

\hline \& \& \& \& \& \& 1 " Ice \& 24.00 \& 24.00 \& 0.47

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 90 deg - No Ice
5	0.9 Dead +1.6 Wind 90 deg - No Ice
6	1.2 Dead+1.6 Wind 180 deg - No Ice
7	0.9 Dead+1.6 Wind 180 deg - No Ice
8	$1.2 \mathrm{Dead}+1.0$ Ice+1.0 Temp
9	1.2 Dead+1.0 Wind 0 deg+1.0 Ice +1.0 Temp
10	1.2 Dead+1.0 Wind 90 deg+1.0 Ice +1.0 Temp
11	$1.2 \mathrm{Dead}+1.0$ Wind $180 \mathrm{deg}+1.0$ Ice 1.0 Temp
12	Dead+Wind 0 deg - Service
13	Dead+Wind 90 deg - Service
14	Dead+Wind 180 deg - Service

tnxTower	130-ft Monopole (Prop. 130-ft) - MFP \#40913-015 r4		Page $\begin{array}{ll} \\ & 5 \text { of } 7\end{array}$
Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Project	CT1003, North Haven	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:51:15 05/04/14 } \end{array}$
	Client	Florida Tower Partners	Designed by Mike

Maximum Member Forces							
Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment $k i p-f t$
L1	130-120	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	8	-8.42	0.00	-0.08
			Max. Mx	4	-1.90	-73.83	-0.09
			Max. My	6	-1.95	0.00	-70.58
			Max. Vy	4	7.88	-73.83	-0.09
			Max. Vx	6	7.53	0.00	-70.58
			Max. Torque	4			-1.09
L2	120-91.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	8	-26.12	0.00	-0.08
			Max. Mx	4	-9.89	-511.93	-0.13
			Max. My	6	-9.96	0.00	-500.18
			Max. Vy	4	26.80	-511.93	-0.13
			Max. Vx	6	26.45	0.00	-500.18
			Max. Torque	4			-1.09
L3	91.5-48.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	8	-37.64	0.00	-0.08
			Max. Mx	4	-19.01	-1744.18	-0.18
			Max. My	6	-19.05	0.00	-1717.46
			Max. Vy	4	31.88	-1744.18	-0.18
			Max. Vx	6	31.52	0.00	-1717.46
			Max. Torque	4			-1.09
L4	48.25-1	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	8	-57.59	0.00	-0.08
			Max. Mx	4	-35.82	-3585.20	-0.19
			Max. My	6	-35.82	0.00	-3539.95
			Max. Vy	4	37.62	-3585.20	-0.19
			Max. Vx	6	37.28	0.00	-3539.95
			Max. Torque	4			-1.09

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	$f t$	$130-120$	14.178	0	0
L1	$120-91.5$	12.220	13	0.9418	0.0024
L2	$95.75-48.25$	7.815	13	0.9228	0.0016
L3	$53.75-1$	2.389	13	0.7826	0.0007
L4				0.4214	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Looad Comb.	Deflection	in	Tilt	0

tnxTower	Job 130-ft Monopole (Prop. 130-ft) - MFP \#40913-015 r4		$\begin{array}{ll} \text { Page } \\ & 6 \text { of } 7 \end{array}$
Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com	Project	CT1003, North Haven	$\begin{array}{\|l\|} \hline \text { Date } \\ 10: 51: 1505 / 04 / 14 \end{array}$
	Client	Florida Tower Partners	Designed by Mike

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load	Tilt	Twist
Comb.	\circ	\circ			
L1	$130-120$	93.361	4	6.2068	0.0156
L2	$120-91.5$	80.477	4	6.0819	0.0105
L3	$95.75-48.25$	51.491	4	5.1593	0.0047
L4	$53.75-1$	15.751	4	2.7786	0.0015

Critical Deflections and Radius of Curvature - Design Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Tuist 。	Radius of Curvature $f t$
130.00	(2) Antel BXA-70063/6CF w/ mount pipe	4	93.361	6.2068	0.0156	5248
117.00	(2) Ericsson AIR $21 \mathrm{w} /$ mount pipe	4	76.680	6.0151	0.0093	2307
107.00	(4) CCI HPA-65R-BUU-H8 w/ mount pipe	4	64.402	5.6808	0.0065	1632

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
ft			$f t$	$f t$		in^{2}	K	K	ϕP_{n}
L1	130-120 (1)	TP23.16×20.9×0.1875	10.00	0.00	0.0	13.6715	-1.90	958.52	0.002
L2	120-91.5 (2)	TP29.6x23.16x0.25	28.50	0.00	0.0	22.5272	-9.89	1617.01	0.006
L3	91.5-48.25 (3)	TP38.87x28.1396x0.375	47.50	0.00	0.0	44.3398	-19.01	3294.23	0.006
L4	48.25-1 (4)	TP48.8×36.8775x0.4375	52.75	0.00	0.0	67.1574	-35.82	4858.33	0.007

Pole Bending Design Data

| Section | Elevation | Size | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | | | | | | |

Pole Shear Design Data								
Section No.	Elevation	Size	$\begin{gathered} \text { Actual } \\ V_{u} \end{gathered}$	ϕV_{n}	Ratio V_{u}	Actual T_{n}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{n} \end{gathered}$
	$f t$		K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	130-120 (1)	TP23.16x20.9×0.1875	7.88	479.26	0.016	1.09	906.43	0.001
L2	120-91.5 (2)	TP29.6x23.16x0.25	26.80	808.51	0.033	1.09	1888.51	0.001
L3	91.5-48.25 (3)	TP38.87×28.1396x0.375	31.88	1647.11	0.019	1.09	5042.12	0.000
L4	48.25-1 (4)	TP48.8×36.8775×0.4375	37.62	2429.16	0.015	1.08	9663.58	0.000

Pole Interaction Design Data

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$	Ratio $M_{u x}$	Ratio $M_{u y}$	Ratio \qquad ${ }_{\phi} V_{n}$	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \frac{d}{2} T_{u} \end{gathered}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
	$f t$	ϕP_{n}	$\phi M_{n \tau}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}			
L1	130-120 (1)	0.002	0.163	0.000	0.016	0.001	$\begin{gathered} 0.165 \\ \end{gathered}$	1.000	4.8.2
L2	120-91.5 (2)	0.006	0.543	0.000	0.033	0.001	$\begin{gathered} 0.550 \\ \end{gathered}$	1.000	4.8 .2
L3	91.5-48.25 (3)	0.006	0.693	0.000	0.019	0.000	0.699	1.000	4.8 .2
L4	48.25-1 (4)	0.007	0.743	0.000	0.015	0.000	$\begin{gathered} 0.751 \\ \end{gathered}$	1.000	4.8.2

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \varrho P_{\text {cullow }} \\ K \end{gathered}$	\% Capacity	$\begin{gathered} \hline \text { Pass } \\ \text { Fail } \end{gathered}$
L1	130-120	Pole	TP23.16×20.9x0.1875	1	-1.90	958.52	16.5	Pass
L2	120-91.5	Pole	TP29.6x23.16x0.25	2	-9.89	1617.01	55.0	Pass
L3	91.5-48.25	Pole	TP38.87x28.1396x0.375	3	-19.01	3294.23	69.9	Pass
L4	48.25-1	Pole	TP48.8×36.8775×0.4375	4	-35.82	4858.33	75.1	Pass
						$\begin{gathered} \text { Pole (L4) } \\ \text { RATING = } \end{gathered}$	$\begin{gathered} \text { Summary } \\ 75.1 \\ 75.1 \end{gathered}$	$\begin{aligned} & \text { Pass } \\ & \text { Pass } \end{aligned}$

Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 email: mike@mfpeng.com	Job 130-ft monopole - MFP \#40913-015		Page \quad BP-G	
	Project		5/4/2014	
	Client	FLORIDA TOWER PARTNERS	Designed by	Mike

Anchor Rod and Base Plate Calculation

ANSI/TIA-222-G-2

Factored Base Reactions:	Pole Shape:	Anchor Rods:	Base Plate:	
Moment:	3585 ft -kips	18-Sided	$(20) 2.25 \mathrm{in} . \mathrm{A} 615 \mathrm{GR} .75$	$2.75 \mathrm{in} . \mathrm{x} 58 \mathrm{in}$. Round
Shear:	38 kips	Pole Dia. $\left(\boldsymbol{D}_{f}\right):$	Anchor Rods Evenly Spaced	fy $=50 \mathrm{ksi}$
Axial:	36 kips	48.80 in	On a 55.25 in Bolt Circle	

Anchor Rod Calculation According to TLA-222-G section 4.9.9

$$
\begin{aligned}
& \phi=\quad 0.80 \mathrm{TA} 4.99 \quad \text { The following Interation Equation Shall Be Satisfied: } \\
& \mathbf{I}_{\text {bolts }}=\quad 7631.41 \mathrm{in}^{2} \text { Momet of Inertia } \\
& \mathbf{P}_{\mathbf{u}}=\quad 156 \mathrm{kips} \text { Tension Force } \\
& \mathbf{V}_{\mathbf{u}}=\quad 2 \mathrm{kips} \text { Shear Force } \\
& \mathbf{R}_{\mathrm{nt}}=325.00 \mathrm{kips} \text { Nominal Tensile Strength } \\
& \eta=\quad 0.50 \text { for detail type (d) } \\
& \text { The following Interation Equation Shall Be Satisfied: } \\
& \left(\frac{\mathbf{P}_{\mathrm{u}}+\frac{\mathbf{V}_{\mathrm{u}}}{\eta}}{\phi \mathbf{R}_{\mathrm{n}}}\right) \leq 1.0 \\
& 0.614 \leq 1
\end{aligned}
$$

Base Plate Calculation According to TLA-222-G

$\phi=$	0.90 tTA 4.7		
$\mathbf{M}_{\mathbf{P L}}$	$=$	330.8 in-kip Plate Moment	
$\mathbf{L}=$	7.7 in Section Length	Calculated Moment vs Factored Resistance	
$\mathbf{Z}=$	14.5 Plastic Section Modulus	330.81 in-kip \leq	652 in-kip
$\mathbf{M}_{\mathbf{P}}=$	724.6 in-kip Plastic Moment		
$\phi \mathbf{M}_{\mathbf{n}}=$	652.2 in-kip Factored Resistance		

Anchor Rods Are Adequate	$\mathbf{6 1 . 4 \%}$
Base Plate is Adequate	$\mathbf{5 0 . 7 \%}$

Monopole Spread Footing Calculation

ANSU/TIA-222-G-2

Factored Base Reactions:		Footing Dimensions:		Concrete:$\mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$
Moment:	3585 ft-kips	24 ftx 24 ft	7 ft Square Pier	
Shear:	38 kips	x 2 ft thick	w/6 in Reveal	Steel fy $=60 \mathrm{ksi}$
Axial:	36 kips	Bearing $8 \mathrm{ft} \mathrm{B.G}$.	54.5 Yd3 Concrete	$\mathrm{f}=0.75$
Soil Backfill	120 pcf	Ultimate Bearing:	6000 psf	Water Table

Foundation Weight

Weight of Pole	36.0 kips
Weight of Concrete	220.575 kips
Weight of Soil	379.44 kips
Bouyancy of Water	-89.9 kips
Total	546.2 kips

Overturning Resistance:

Overturning Moment $\left(M_{u}\right)$	3908 ft -kips
Resisting Moment $\left(R_{s}\right)$	6553.908 ft -kips
$\phi \times \mathrm{R}_{\mathrm{s}}>\mathrm{M}_{\mathrm{u}}$	$\mathrm{M}_{\text {overturning }} / \mathrm{f}_{\mathrm{r}} \mathrm{M}$ resist

$$
\begin{aligned}
& \mathrm{ft}-\mathrm{kips}+(1.05 \mathrm{kips} \times 0 \mathrm{ft}) \\
& 546.159 \mathrm{kips} \times 24 \mathrm{ft} / 2
\end{aligned}
$$

79.5\% OK

Soil Bearing Pressure:

Eccentricity (e)	7.16 ft	$3908 \mathrm{ft}-\mathrm{kips} / 546.159 \mathrm{kips}$
$6(\mathrm{e})$	$42.9 \mathrm{ft}>$	$24.0 \mathrm{ft} \quad 6 \mathrm{e}>24$
Maximum Soil Bearing	3423.6533 psf	Calculated across corners
Soil Overburden	-804 psf	Overburden - Bouyancy
Net Soil Bearing	2619.6533 psf	
Resisting Soil Bearing $\left(\mathrm{R}_{\mathrm{s}}\right)$	6000 psf	
Net Soil Bearing $<\phi \times \mathrm{R}_{\mathrm{s}}$	Net Bearing $/ \mathrm{fR}_{\mathrm{s}}$	$\mathbf{5 8 . 2} \% \quad$ OK

Bending Moment in Pier:

Bending Moment
3832 ft-kips
$3585 \mathrm{ft}-\mathrm{kips}+(38 \mathrm{kips} \times 6.5 \mathrm{ft})$

Bending Moment in Footing:

Max Bending Moment
2185.7652 ft-kips
Σ Moments about pier face

Min. Footing Steel
$0.52 \mathrm{in}^{2} / \mathrm{ft}$
0.18\%

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CTNH522A

Florida Tower Partners North Haven
50 Devine Street
North Haven, CT 06473
May 12, 2014

EBI PROJECT NUMBER: 62142824

May 12, 2014
T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Re: Emissions Values for Site: CTNH522A Florida Tower Partners North Haven

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 50 Devine Street, North Haven, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm} 2$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The general population exposure limit for the cellular band is $567 \mu \mathrm{~W} / \mathrm{cm} 2$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm} 2$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupationa1/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 50 Devine Street, North Haven, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, the actual antenna pattern gain value in the direction of the sample area was used. For this report the sample point is a 6 foot person standing at the base of the tower

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (1935.000 MHz -to $1945.000 \mathrm{MHz} / 1980.000 \mathrm{MHz}$-to 1985.000 MHz) were considered for each sector of the proposed installation.
2) 2 UMTS channels (2110.000 to $2120.000 \mathrm{MHz} / 2140.000 \mathrm{MHz}$ to 2145.000 MHz) were considered for each sector of the proposed installation.
3) 2 LTE channels (2110.000 to $2120.000 \mathrm{MHz} / 2140.000 \mathrm{MHz}$ to 2145.000 MHz) were considered for each sector of the proposed installation.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The actual gain in this direction was used per the manufactures supplied specifications.
6) The antenna used in this modeling is the Ericsson AR221 for LTE, UMTS and GSM. This is based on feedback from the carrier with regards to anticipated antenna selection. This antenna has a 15.6 dBd gain value at its main lobe. Actual antenna gain values were used for all calculations as per the manufacturers specifications
7) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 1 7}$ feet above ground level (AGL)
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

Summary

All calculations performed for this analysis yielded results that were well within the allowable limits for general public exposure to RF Emissions.

The anticipated Maximum Composite contributions from the T-Mobile facility are $\mathbf{0 . 8 4 6 \%}$ ($\mathbf{0 . 2 8 2} \%$ from each sector) of the allowable FCC established general public limit considering all three sectors simultaneously sampled at the ground level.

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{4 8 . 0 5 6 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were within the allowable 100% threshold standard per the federal government.

Scott Heffernan
RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

[^0]: ${ }^{1}$ The North Haven Facility was approved at a height of 120 feet (Docket 384), and subsequently the subject of a Petition to increase the height of the Facility to 130 feet (Petition 1089). The existing/proposed antenna height and configuration is consistent with the February 25, 2010 Docket 384 Decision and Order.

