

Via Overnight Delivery

November 7, 2012

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re:

Property Address:

Tower Sharing Application

50 Devine Street, North Haven, CT 06473 (the

"Property")

Applicant:

New Cingular Wireless PCS, LLC d/b/a AT&T ("AT&T")

Dear Ms. Bachman:

On behalf of AT&T, enclosed in connection with the shared use of a tower located on the Property, please find an original and fifteen (15) copies of a tower sharing application package along with a check in the amount of six hundred and twenty five (\$625.00) dollars.

If you could please date stamp a copy of this letter and a copy of the check (both attached) and email them back to me, that would be greatly appreciated. If you have any questions, please contact me.

Sincerely,

Adam F. Braillard

Enclosures

Cc w/enclosures:

Honorable Michael J. Freda: First Selectman Town of North Haven, CT

Betsy Henley-Cohn, 424 Chapel Street, LLC: Property Owner

Shipment Receipt: Page #1 of 1

THIS IS NOT A SHIPPING LABEL. PLEASE SAVE FOR YOUR RECORDS.

SHIPMENT INFORMATION: SHIP DATE: Thur, Nov 7, 2013 UPS Ground Commercial 8.0 lbs actual wt (ManWt) EXPECTED DELIVERY DATE: FRI, NOV 8, 2013 E00 8.00 lbs billable wt Dims: 13.00x12.00x6.00 Store Packed Pack and Ship Guarantee SHIP FROM: SMARTLINK, LLC ADAM BRAILLARD Tracking Number: 122X36X50322402266 Shipment ID: MMZ920Y4KE9A1 Ship Ref 1: MP Ship Ref 2: - -33 BOSTON POST RD W Marlborough MA 01752 (508) 954-7702 SHIP TO: DESCRIPTION OF GOODS: CONNECTICUT SITING COUNCIL MELANIE A BACHMAN, EX DIRECTOR 10 FRANKLIN SO PAPERS NEW BRITAIN CT 06051-2655 Business SHIPMENT CHARGES: Ground Commercial Service Options Fuel Surcharge CMS Processing Fee \$10.90 \$0.00 \$0.82 \$0.20 SHIPPED THROUGH: THE UPS STORE #3645 ATTLEBORO FALLS,MA 02763-1156 (508) 643-7333 Total \$11.92

COMPLETE ONLINE TRACKING: Enter this address in your web browser to tracking this://theupsetore.com (select Tracking, enter Shipment ID #) SHIPMENT OUESTIONS? Contact SHIPPED TROUGH above.

CUSTOMER ACKNOWLEDGEMENT: I acknowledge and accept Terms & Conditions in force for tendering shipments through this location and certify that address, contents and values provided for this shipment are accurate in all respects.

Signature:

ShipmentID: MMZ920Y4KE9A1

Powered by iShip(r)

11/07/2013 07:47 AM Facific Time N

The UPS Store

SEE NOTICE ON REVENSE regarding UPS Earth, and most of limitation of blocking. Whose allowed by him, impose authorises UPs in act as forwarding agent for appart certoid and customs purposes. If appared of them the US in accordance with the Copart Administration Regulation, Or benchmarked accordance with the Copart Administration Regulation. Or benchmarked accordance with the Copart Administration Regulation accordance accordance and the Copart Administration Regulation. Or benchmarked accordance and the Copart Administration Regulation Regulation Regulati

APPLICATION TO THE CONNECTICUT SITING COUNCIL FOR AN ORDER TO APPROVE THE SHARED USE OF AN EXISTING TOWER PURSUANT TO CONNECTICUT GENERAL STATUTE §16-50aa

APPLICANT

New Cingular Wireless PCS, LLC, d/b/a AT&T 500 Enterprise Drive, Suite 3A Rocky Hill, CT 06067

TOWER/PROPERTY ADDRESS

50 Devine Street North Haven, Connecticut 06473

PREPARED BY:

Adam F. Braillard

Regional Land Use Manager

Smartlink, LLC

33 Boston Post Road West

Marlborough, Massachusetts 01752

508-954-7702

adam.braillard@smartlinkllc.com

TABLE OF CONTENTS

<u>APPLICANT</u>

New Cingular Wireless PCS, LLC, d/b/a AT&T 500 Enterprise Drive, Suite 3A Rocky Hill, CT 06067

TOWER/PROPERTY ADDRESS

50 Devine Street North Haven, Connecticut 06473

Project Narrative	Tab 1
Certificate of Service	Tab 2
Engineering Drawings	Tab 3
Structural Analysis	Tab 4
Memorandum of Lease	Tab 5
Power Density Calculations	Tab 6

TAB 1

November 7, 2013

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Request for an Order to Approve the Shared Use of an

Existing Tower

Property Address: 50 Devine Street, North Haven, CT 06473 (the "Property")

Applicant: New Cingular Wireless PCS, LLC d/b/a AT&T ("AT&T")

Dear Ms. Bachman:

This firm represents AT&T in connection with an application pursuant to Connecticut General Statute §16-50aa, as amended (the "Statute"), requesting the finding from the Connecticut Siting Council (the "Council") that the shared use of the tower and facility located on the Property (the "Facility") is technically, legally, economically and environmentally feasible, will meet public safety concerns, will avoid the unnecessary proliferation of towers and is in the public interest. AT&T further requests an order from the Council approving the shared use of the Facility.

I. The Facility

The Facility is owned by Florida Tower Partners ("FTP") and consists of a 120' monopole style tower (the "Tower") located on the Property, which is located at latitude 41° 22' 40.1" N and longitude -72° 52' 34.1" W. The Tower is currently shared by Metro PCS at an antenna centerline height of 117'. The Facility also consists of a 70' x 70' fenced compound at the base of the Tower with Metro PCS's radio equipment therein. Further, FTP has indicated that Verizon is proposing to extend the Tower to a height of 130' and install its equipment thereon and place its equipment within the fenced compound.

II. The Proposal

AT&T proposes to install a total of twelve (12) panel antennas (4 per sector) and eighteen (18) remote radio head ("RRHs") on the tower (see attached plans). The antennas and RRHs will be mounted on the Tower at a centerline of 107'. Further, AT&T proposes to install an 11'.5" x 16' equipment shelter and a generator at the base of the Tower within the

Connecticut Siting Council AT&T Tower Sharing Application 50 Devine Street, North Haven, CT November 7, 2013

existing fenced compound. The generator and equipment shelter will be juxtaposed on a proposed 12' x 24' concrete pad. The Tower will not be increased in height and the compound will not be expanded. Moreover, no upgrades to the access road or parking area will be necessary. Please refer to Tab 3 (Engineering Drawings) of this application package for further specifications of AT&T's proposed installation.

III. Technical Feasibility

It is technically feasible for AT&T to install its equipment on the Tower. To determine the structural integrity of the Tower, AT&T and FTP performed a structural analysis of the Tower with AT&T proposed modifications and including Verizon's proposed installation. The structural analysis, dated October 11, 2013 and attached herewith (see Tab 4) concludes that the "existing pole and foundation have sufficient capacity to support the existing, reserved and proposed antenna loads as detailed…". Consequently, the shared use of the Facility is technically feasible.

IV. Legal Feasibility

Pursuant to the Statute, the Council has the authority to issue an order approving the shared use of the Facility. By issuing an order approving AT&T's use of the Facility, AT&T will be able to proceed with obtaining a building permit from the Town of North Haven for the proposed installation on the Facility. Therefore, the shared use of the Facility is legally feasible.

V. Economic Feasibility

AT&T is a federally licensed telecommunications company providing service in areas of Connecticut, including the Town of North Haven. AT&T has entered into an agreement with FTP for the purpose of locating AT&T equipment at the Facility. Consequently, the shared use of the Facility is economically feasible.

VI. Environmental Feasibility

Pursuant to the Statute, AT&T's proposed sharing of the Facility will be environmentally feasible for the following reasons:

- a. The proposal will neither increase the height of the Tower, nor expand the size of the existing fenced compound at the base of the Tower. Therefore, the proposed sharing of the Facility will have an insignificant incremental visual impact on the area surrounding the Tower and will no significant change or alter the physical or environmental characteristics of the Facility.
- b. The addition of AT&T equipment will not increase the noise levels by six (6) decibels or more.
- c. The addition of the AT&T antennas will not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). The cumulative "worst-case" RF emissions for the operation of the existing Metro PCS antennas and

Connecticut Siting Council AT&T Tower Sharing Application 50 Devine Street, North Haven, CT November 7, 2013

the proposed AT&T antennas will be 20.73% of the FCC standards (see attached Tab 6, Power Density Table).

- d. The proposed installation will have no impact on the local wetlands or water resources.
- e. After installation, AT&T equipment will be unmanned and will only require monthly visits by maintenance personnel who will inspect the Facility to ensure it remains in good working order.
- f. AT&T's proposal will have no impact on water, sanitary or sewer systems or other municipal utilities. Additionally, the proposal complies with all applicable local, state and federal safety rules and regulations.

VII. Public Safety and Benefits

As referenced in Section III above, AT&T has performed a structural analysis of the Tower confirming that the Tower is structurally feasible to hold AT&T's additional equipment. Further, as referenced in Section VI.c above, AT&T has performed an analysis of the radio frequency emanating from its proposed antennas to ensure compliance with FCC standards. The analysis indicates that the maximum level of radio frequency energy emitting from the Facility after the installation of AT&T's antennas will be well below the FCC's exposure limits. Moreover, AT&T proposal is expected to enhance safety by improving wireless communications in the area of the Facility

VII. Conclusion

For the aforementioned reasons, AT&T's proposed shared use of the Facility meets all of the requirements set forth in the Statute, and the proposal advances the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. Moreover, the proposal is technically, legally, economically and environmentally feasible and meets all public safety concerns. Consequently, AT&T respectfully requests that the Council issue an order approving the proposed sharing use of the Facility.

Sincerely

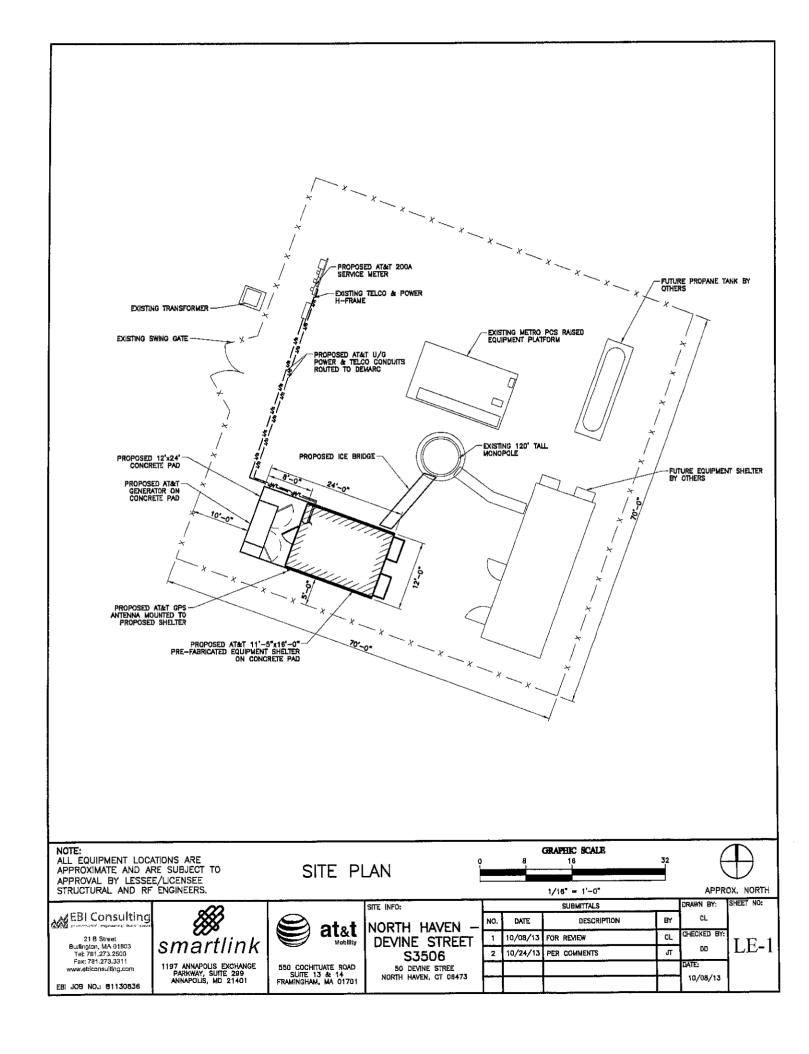
Adam F. Braillard

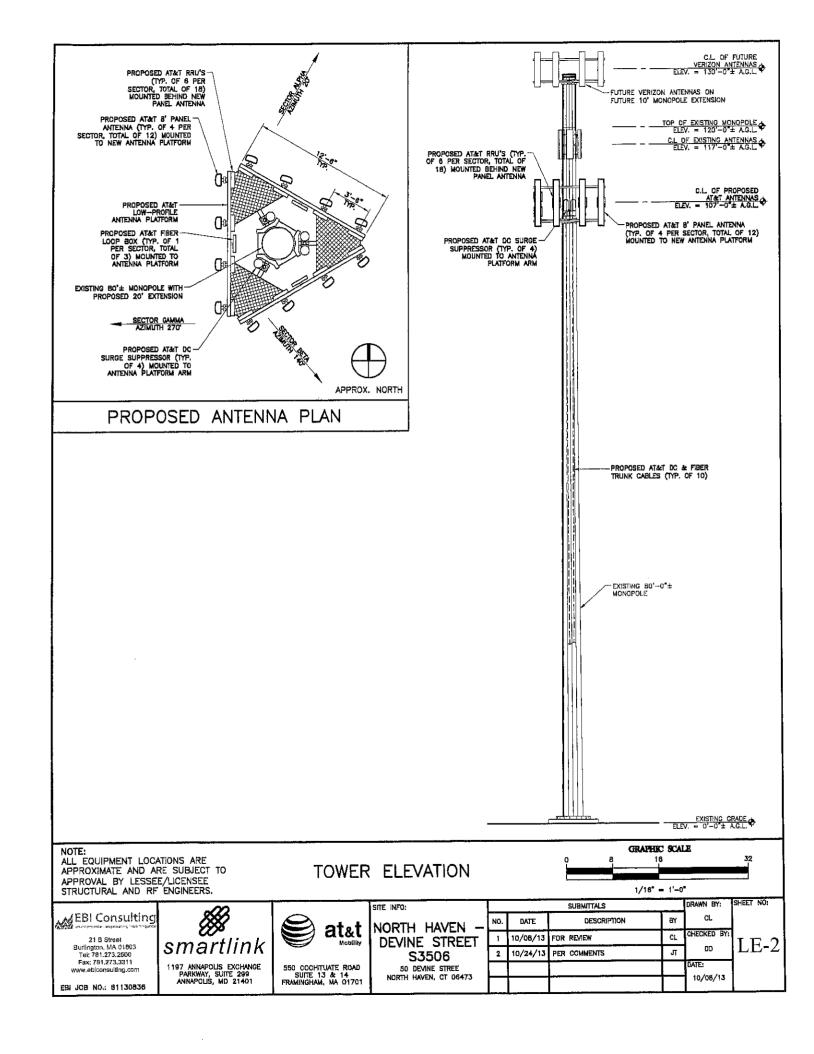
TAB 2

CERTIFICATE OF SERVICE

This is to certify that on the 6rd day of November, 2013, the foregoing application by AT&T for an Order to Approve the Shared Use of an Existing Tower was sent, via UPS, to the following:

Honorable Michael J. Freda: First Selectman Town of North Haven, CT 18 Church Street North Haven, CT 06473 (203) 239-5321


and


Betsy Henley-Cohn 424 Chapel Street, LLC 50 Devine Street North Haven, CT 06473 (203) 467-1759

ву:__

Adam F Braillard

TAB 3

TAB 4

Structural Analysis Report Existing 130-Ft. Monopole

Prepared for: Florida Tower Partners, LLC 1001 3rd Ave. West, Suite 420 Bradenton, FL 34205

MFP Project #40913-015 rl

Site Information: CTIOO3, North Haven New Haven Co., Conneticut Lat/Long: 41°22'40.1", -72°52'34.1"

> Analysis Type: ANSI/11A-222-G-2

Date 10/11/2013

Michael F. Plahovinsak, P.E. 1830| State Route 161 W, Plain City, OH 43064 614-398-6250 - mike@mfpeng.com Page 2 of 4 10/11/2013

Project Summary:

We have completed a structural analysis of the existing monopole for the addition of:

• AT&T - 107-ft - (3) Andrew SBNHH-1D6565C + (3) CCI HPA-65R-BUU-H8 + (6) Ericsson KRC-118-054/1 Panel w/ (18) RRUS-11 + (4) Raycap DC6-48-60-28-8F Suppresor. (8) 3/4" + (2) 1/2" + (3) 3/8" cables.

The pole has been analyzed in accordance with the requirements of the **2006 - 2009 International Building Code**, and the recommendations of the Telecommunications Industry Association "Structural Standard for Steel Antenna Supporting Structures" **ANSI/TIA-222-G.**

This analysis may be considered a "Rigorous Structural Analysis" as defined in ANSI/TIA-222-G 15.5.2.

As indicated in the conclusions of this analysis, we have determined that the existing pole and foundation have *sufficient capacity* to support the existing, reserved and proposed antenna loads as detailed herein. Based on the results of our analysis, structural modifications are not required at this time.

Source of Data:

Resource	Source	Job Number	Date
Pole and Foundation Drawings	Sabre Towers	11-05062	05/12/10
Geotechnical Report	Terracon	J2105136	04/20/10

Analysis Criteria:

International Building Code (All Versions) Section 3108.4 Structural Standards for Steel Antenna Supporting Structures ANSI/TIA-222-G 2

Basic Wind Speed
 Basic Wind Speed w/ 3/4" Ice
 Operational Wind Speed
 115 mph (3-Sec Gust)
 50 mph (3-Sec Gust)
 60 mph (3-Sec Gust)

Structure Class	Exposure Category	Topographic Category
II (I = 1.0)	С	I

Page 3 of 4 10/11/2013

Appurtenance Listing:

Status	Elev.	Antenna / Mounting	Coax	Owner
		(6) Antel BXA-70063/6CF + (6) BXA-171063/12CF		
Existing	130'	(6) Lucent 2x40 RRH's & (1) Distribution Box	(12) 1 5/8"	Verizon
		12' Low Profile Platform		
Davistina	117'	(6) Andrew HBX-6516DS Panel	(12) 1 5/8"	MetroPCS
Existing	117	12' T-Arm Mounts	(12) 1 5/4	VICTOR CD
		(3) Andrew SBNHH-1D6565C + (3) CCI HPA-65R-BUU-H8		
ן	107'	(6) Ericsson KRC-118-054/1 Panel	(8) 3/4" + (2) 1/2" +	AT&T
Proposed	107	(18) Ericsson RRUS-11 + (4) DC6-48-60-28-8F Suppresor	(3) 3/8"	717 (4.7
		12' T-Arm Mounts		

All antenna lines assumed internally mounted, not exposed to the wind.

Foundation Analysis:

The existing monopole foundation design was analyzed in conjunction with site specific geotechnical report. The existing foundation has sufficient capacity to support the pole with the proposed antenna configuration.

Conclusion:

We have completed a structural analysis of the existing monopole and foundation in accordance with the project specifics outlined above. Our analysis indicates that the existing monopole and foundation is stressed to a maximum of 72% (Foundation Capacity Comparison) of its usable capacity when considering the existing plus proposed loading. Please refer to the attached calculations for an itemized listing of all member stress ratios. The existing pole is safe and adequate to support the proposed loads, and no structural reinforcing is required to support the above loading.

If you have any questions about the contents of this structural report or require any additional information, please feel free to contact my office.

Sincerely,

Michael F. Plahovinsak, P.E.

mike@mfpeng.com - 614.398-6250

Page 4 of 4 10/11/2013

Standard Conditions for Providing Structural Consulting Services on Existing Structures

- 1. The following standard conditions are a general overview of key issues regarding the work product supplied.
- 2. If the existing conditions are not as represented in this structural report or attached sketches, we should be contacted to evaluate the significance of the deviation and revise the structural assessment accordingly.
- 3. The structural analysis has been performed assuming that the structure is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, etc. If there are any known deficiencies in the structure that potentially compromise structural integrity, we should be made aware of the deficiencies. If we are aware of a deficiency that exists in a structure at the time of our analysis, a general explanation of the structural concern due to the deficiency will be included in the structural report, but the deficiency will not be reflected in capacity calculations.
- 4. The structural analysis provided is an assessment of the primary load carrying capacity of the structure. We provide a limited scope of service in that we have not verified the capacity of every weld, plate, connection detail, etc. In most cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of this information is beyond the scope of our services. In instances where we have not performed connection capacity calculations, it is assumed that existing manufactured connections develop the full capacity of the primary members being connected.
- 5. The structural integrity of the existing foundation system can only be verified if exact foundation sizes and soils conditions are known. We will not accept any responsibility for the adequacy of the existing foundations unless this site-specific data is supplied.
- 6. Miscellaneous items such as antenna mounts, coax supports, etc. have not been designed, detailed, or specified as part of our work. It is assumed that material of adequate size and strength will be purchased from a reputable component manufacturer. The attached report and sketches are schematic in nature and should not be used to fabricate or purchase hardware and accessories to be attached to the structure. We recommend field measurement of the structure before fabricating or purchasing new hardware and accessories. We are not responsible for proper fit and clearance of hardware and accessory items in the field.
- 7. The structural analysis has been performed considering minimum code requirements or recommendations. If alternate wind, ice, or deflection criteria are to be considered, then We shall be made aware of the alternate criteria.

Section	4	e	2	1	
Length (ft)	52.75	47.50	28.50	10.00	
Number of Sides	18	18	18	18	
Thickness (in)	0.4375	0.3750	0.2500	0.1875	
Socket Length (ft)	The state of the s	5.50	4.25		
Top Dia (in)	36.8775	28.1396	23.1600	20.9000	
Bot Dia (in)	48.8000	38.8700	23,600	23.1600	
Grade		A572-65	William Committee the Committee of the C		
Weight (K) 19.4	10.6	64	2.0	0.4	
<u>1.0 ft</u>		48.3 ft	91.5 ft.	A	130.01
35	8	0			
36 K MOMENT K 3267 kip-fi CTIONS - 115 mph WIND	ALL REACTIONS ARE FACTORED AXIAL 56 K HEAR K MOMENT 727 kip-ft nph WIND - 0.7500 in ICE AXIAL	Andriphe G A572 1. T 2. T 3. T 4. T b 5. E 6. T 7. T 8. T	(2) L (2) A	(2) Al pipe (2) Al pipe (2) Al pipe	

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION	
(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)	130	CCI HPA-65R-BUU-H6 w/ mount pipe (ATT)	107	
(2) Antel BXA-171063/12CF w/ mount pipe (Verizon)	130	(2) Ericsson KRC-118-054/1 w/ mount pipe (ATT)	107	
(2) Lucent 2x40 RRH (Verizon)	130	(6) Ericsson RRUS11 Dual PA RRU	107	
(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)	130	(ATT) Andrew SBNHH-1D6565C w/ mount	107	
(2) Antel BXA-171063/12CF w/ mount pipe (Verizon)	130	plpe (ATT) CCI HPA-65R-8UU-H6 w/ mount pipe	107	
(2) Lucent 2x40 RRH (Verlzon)	130	(ATT)	1	
(2) Antel BXA-70063/6CF w/ mount pipe (Verizon)	130	(2) Ericeson KRC-118-054/1 w/ mount pipe (ATT)	107	
(2) Antel BXA-171063/12CF w/ mount pipe (Verizon)	130	(6) Ericeson RRUS11 Dual PARRU (ATT)	107	
(2) Lucent 2x40 RRH (Verlzon)	130	Andrew SBNHH-1D6565C w/ mount	107	
RFS DB-T1-6Z-8AB-OZ Box (Verizon)	130	pipe (ATT)	400	
12' Low Profile Platform (Verlzon)	130	CCI HPA-65R-BUU-H6 w/ mount plps (ATT)	107	
(2) Andrew HBX-6516DS w/ mount pipe (MetroPCS)	117	(2) Ericsson KRC-118-054/1 w/ mount pipe (ATT)	107	
(2) Andrew HBX-6516DS w/ mount pipe (MetroPCS)	117	(6) Ericsson RRUS11 Dual PA RRU (ATT)	107	
(2) Andrew HBX-6516DS w/ mount pipe (MetroPCS)	117	(4) Raycap DC6-48-60-28-8F Suppresor (ATT)	107	
12' T-Arm Mounts (MetroPCS)	117	12' T-Arm Mounts (ATT)	107	
Andrew SBNHH-1D6565C w/ mount pipe (ATT)	107	12 PARTITIVIDUIS (ATT)	1107	

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 kal	80 ksi			

TOWER DESIGN NOTES

- TOWER DESIGN NOTES

 Tower is located in New Haven County, Connecticut.

 Tower designed for Exposure C to the TIA-222-G Standard.

 Tower designed for a 115 mph basic wind in accordance with the TIA-222-G Standard.

 Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to Increase in thickness with height.

 Deflections are based upon a 60 mph wind.

 Tower Structure Class II.

 Topographic Category 1 with Crest Height of 0.00 ft

 TOWER RATING: 68.5%

^{Job:} 130-ft Monopole - MFP #40913-015 r1 Michael F. Plahovinsak, P.E. Project: CT1003, North Haven 18301 State Route 161 W Client: Florida Tower Partners Drawn by: Mike App'd:
Code: T!A-222-G Date: 10/11/13 Scale: NT Plain City, OH 43064 Code: TIA-222-G Phone: 614-398-6250 Dwg No. E Path: J:Projects/409-Misc/40913-015/40913-015 R1.or FAX: mlke@mfpeng.com

Page dot tnxTower 1 of 6 130-ft Monopole - MFP #40913-015 r1 Date Project Michael F. Plahovinsak, P.E. 08:13:44 10/11/13 CT1003, North Haven 18301 State Route 161 W Designed by Client Plain City, OH 43064 Phone: 614-398-6250 Florida Tower Partners Mike FAX: mike@mfpeng.com

Tower Input Data

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in New Haven County, Connecticut.

Basic wind speed of 115 mph.

Structure Class II.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feedline supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

Section	Elevation	Section	Splice Largeth	Number	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	Length ft	Length ft	of Sides	in	in	in	in	
LI	130.00-120.00	10.00	0.00	18	20.9000	23.1600	0.1875	0.7500	A572-65 (65 ksi)
L2	120.00-91.50	28.50	4.25	18	23.1600	29.6000	0,2500	1.0000	A572-65 (65 ksi)
L3	91.50-48.25	47.50	5.50	18	28.1396	38.8700	0.3750	1.5000	À572-65 (65 ksi)
L4	48.25-1.00	52.75		18	36.8775	48.8000	0.4375	1.7500	À572-65 (65 ksi)

Tapered Pole Properties

						The same of the sa			minglish dismander in the second	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS
Section	Tip Dia.	Area	I	r	С	I/C	J	It/Q	w	w/t
	in	in²	in⁴	in	in	in ^j	in ⁴	in²	in	
L1	21.2224	12,3265	668.1027	7.3529	10.6172	62.9264	1337.0845	6.1644	3.3484	17.858
	23.5173	13.6715	911.5289	8.1552	11.7653	77.4762	1824.2571	6.8371	3.7462	19.98
L2	23.5173	18.1791	1205.4790	8.1331	11,7653	102,4607	2412.5442	9.0913	3,6362	14.545
	30.0566	23,2892	2534.5957	10.4193	15,0368	168,5595	5072.5265	11.6468	4.7696	19.078
1.3	29.5486	33.0469	3218,4903	9.8565	14.2949	225.1489	6441.2155	16.5266	4.2926	11.447
	39,4696	45.8187	8578.0508	13,6657	19.7460	434.4205	17167.3888	22,9137	6.1811	16.483
L4	38,7087	50.6015	8489.0461	12.9362	18.7338	453.1409	16989.2624	25.3056	5.7204	13.075
	49,5528	67.1574	19844,8883	17.1687	24,7904	800.5070	39715.8890	33.5851	7.8188	17.872

tnxTower Job 130-ft Monopole - MFP #40913-015 r1 Page 2 of 6 Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com Project CT1003, North Haven Date 08:13:44 10/11/13 Florida Tower Partners Designed by Mike

				_	_
		Appurtenances		Λ	Araa
FAAGI INA/III	near.	Abburtenances	= Emereu	Ab	Mita
I CCU LINGE	IIIOGI A	Thentonianione			

Description	Face or	Allow Shield	Component Type	Placement	Total Number	Ville (de la Ville de la Vill	C_AA_A	Weight
	Leg	•	-71	ft			ft²/ft	plf
1 5/8"	C	No	Inside Pole	130.00 - 1.00	12	No Ice	0.00	0.92
(Verizon)	_					1/2" Ice	0.00	0.92
(. 410-)						1" Ice	0.00	0.92

1 5/8"	С	No	Inside Pole	117.00 - 1.00	12	No Ice	0.00	0.92
(MetroPCS)	_					1/2" Ice	0.00	0.92
(1.104.0.0)						1" Ice	0.00	0.92

3/4"	С	No	Inside Pole	107.00 - 1.00	8	No Ice	0.00	0.33
(ATT)	_					1/2" Ice	0.00	0.33
()						1" Ice	0.00	0.33
1/2"	С	No	Inside Pole	107.00 - 1.00	2	No Ice	0.00	0.15
(ATT)	_					1/2" Ice	0.00	0.15
()						1" Ice	0.00	0.15
5/8"	С	No	Inside Pole	107.00 - 1.00	3	No Ice	0.00	0.15
(ATT)	·					1/2" Ice	0.00	0.15
(-111)						l" Ice	0.00	0.15

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement	***************************************	C _A A _A Front	C_AA_A Side	Weight
	2.6		Vert ft ft	o	ft		ft²	ft²	K
(2) Antel BXA-70063/6CF w/	A	From Face		0.0000	130.00	No Ice	7.75	5.18	0.04
mount pipe	**	11011111100	0.00			1/2" Ice	8.29	6.11	0.09
(Verizon)			0.00			1" Ice	8.85	6.92	0.16
(2) Antel BXA-171063/12CF	A	From Face	3,00	0,0000	130.00	No Ice	4.98	5.93	0.04
w/ mount pipe	**	1101111100	0.00			1/2" Ice	5.43	6.87	0.08
(Verizon)			0.00			1" Ice	5.89	7.69	0.14
(2) Lucent 2x40 RRH	Α	From Face	3.00	0.0000	130.00	No Ice	1.20	2.25	0.01
(Verizon)			0,00			1/2" Ice	1.35	2.45	0.03
() drizion)			0.00			1" Ice	1.51	2.66	0.05
(2) Antel BXA-70063/6CF w/	В	From Face	3,00	0.0000	130.00	No Ice	7.75	5.18	0.04
mount pipe	_	1101111111	0.00			1/2" Ice	8.29	6.11	0.09
(Verizon)			0.00			I" Ice	8.85	6.92	0.16
(2) Antel BXA-171063/12CF	В	From Face	3.00	0.0000	130.00	No Ice	4.98	5.93	0.04
w/ mount pipe		***************************************	0,00			1/2" Ice	5.43	6.87	0.08
(Verizon)			0.00			1" Ice	5.89	7.69	0.14
(2) Lucent 2x40 RRH	В	From Face	3.00	0.0000	130.00	No Ice	1.20	2.25	0.01
(Verizon)	-	110Ht 1 doc	0.00	0.0004		1/2" Ice	1.35	2.45	0.03
(v GIZ-OII)			0.00			1" Ice	1.51	2.66	0.05
(2) Antel BXA-70063/6CF w/	С	From Face	3.00	0.0000	130.00	No Ice	7.75	5.18	0.04
mount pipe		i iom i uco	0.00	3,5350		1/2" Ice	8.29	6.11	0.09
(Verizon)			0.00			1" Ice	8.85	6.92	0.16
(2) Antel BXA-171063/12CF	С	From Face	3.00	0.0000	130.00	No Ice	4.98	5.93	0.04
w/ mount pipe		170m 1 a,cc	0.00	V10040		1/2" Ice	5,43	6.87	0.08
(Verizon)			0.00			1" Ice	5.89	7.69	0.14
(2) Lucent 2x40 RRH	С	From Face	3.00	0,000	130.00	No Ice	1,20	2.25	0.01
(Verizon)	C	1 Iom I acc	0.00	5,3600		1/2" Ice	1.35	2.45	0.03
(v Crizon)			0.00			1" Ice	1.51	2.66	0.05
RFS DB-T1-6Z-8AB-OZ Box	С	None	0,00	0.0000	130.00	No Ice	5.60	2.33	0.04
(Verizon)	C	Tione		0.0000	150107	1/2" Ice	5.92	2.56	80.0

Michael F. Plahovinsak, P.E. 18301 State Route 161 W

Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com

Job		Page
	130-ft Monopole - MFP #40913-015 r1	3 of 6
Project		Date
-	CT1003, North Haven	08:13:44 10/11/13
Client		Designed by
	Florida Tower Partners	Mike

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C_AA_A Side	Weight
			Vert ft ft ft	o	ft		ft²	ft²	K
12' Low Profile Platform (Verizon)	С	None	de (Pero and Pero)	0.0000	130.00	1" Ice No Ice 1/2" Ice 1" Ice	6.24 14.00 16.00 18.00	2.79 14.00 16.00 18.00	0.12 1.10 1.70 2.30
(2) Andrew HBX-6516DS w/ mount pipe	A	From Face	3,00 0.00 0.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	3.49 3.87 4.28	3.17 3.80 4.43	0.12 0.15 0.19
(MetroPCS) (2) Andrew HBX-6516DS w/ mount pipe	В	From Face	3.00 0.00 0.00	0.0000	117,00	No Ice 1/2" Ice 1" Ice	3.49 3.87 4.28	3.17 3.80 4.43	0.12 0.15 0.19
(MetroPCS) (2) Andrew HBX-6516DS w/ mount pipe (MetroPCS)	С	From Face	3.00 0.00 0.00	0000,0	117.00	No Ice 1/2" Ice 1" Ice	3.49 3.87 4.28	3.17 3.80 4.43	0.12 0.15 0.19
(MetroPCS) 12' T-Arm Mounts (MetroPCS)	С	None	0.00	0.0000	117.00	No Ice 1/2" Ice 1" Ice	12.00 18.00 24.00	12.00 18.00 24.00	1.14 1.27 0.47
** Andrew SBNHH-1D6565C w/ mount pipe	Α	From Face	3.00 0.00	0.0000	107.00	No Ice 1/2" Ice	11.47 12.08	9.48 10.90	0.09 0.17
(ATT) CCI HPA-65R-BUU-H6 w/ mount pipe	A	From Face	0.00 3.00 0.00	0.0000	107.00	1" Ice No Ice 1/2" Ice	12.71 10.36 10.93	12.17 7.88 8.84	0.27 0.07 0.15
(ATT) (2) Ericsson KRC-118-054/1	A	From Face	0.00 3.00 0.00	0.0000	107.00	1" Ice No Ice 1/2" Ice	11.50 12.24 12.87	9.68 12.59 14.03	0.24 0.23 0.33
w/ mount pipe (ATT) (6) Ericsson RRUS11 Dual PA RRU	A	From Face	0.00 3.00 0.00	0.0000	107.00	1" Ice No Ice 1/2" Ice	13.56 2.55 2.77	15.32 0.92 1.07	0.45 0.05 0.06
(ATT) Andrew SBNHH-1D6565C w/ mount pipe	В	From Face	0.00 3.00 0.00	0.0000	107.00	l" Ice No Ice 1/2" Ice	2.99 11.47 12.08	1.23 9.48 10.90	0.08 0.09 0.17
(ATT) CCI HPA-65R-BUU-H6 w/	В	From Face	0.00 3.00 0.00	0.0000	107.00	1" Ice No Ice 1/2" Ice	12.71 10.36 10.93	12.17 7.88 8.84	0.27 0.07 0.15
mount pipe (ATT) (2) Ericsson KRC-118-054/1	В	From Face	0.00 3.00 0.00	0.0000	107.00	1" Ice No Ice 1/2" Ice	11.50 12.24 12.87	9.68 12.59 14.03	0.24 0.23 0.33
w/ mount pipe (ATT) (6) Ericsson RRUS11 Dual	В	From Face	0.00 3.00	0.0000	107.00	1" Ice No Ice 1/2" Ice	13.56 2.55 2.77	15.32 0.92 1.07	0.45 0.05 0.06
PA RRU (ATT) Andrew SBNHH-1D6565C	C	From Face	0.00 0.00 3.00	0.0000	107.00	1" Ice No Ice	2.99 11.47 12.08	1,23 9,48 10,90	0.08 0.09 0.17
w/ mount pipe (ATT) CCI HPA-65R-BUU-H6 w/	C	From Face	0.00 0.00 3.00	0.0000	107.00	1/2" Ice 1" Ice No Ice	12.71 10.36	12.17 7.88	0.27 0.07
mount pipe (ATT) (2) Ericsson KRC-118-054/1	С	From Face	0.00 0.00 3.00	0.0000	107.00	1/2" Ice 1" Ice No Ice	10.93 11.50 12.24	8.84 9.68 12.59	0.15 0.24 0.23
w/ mount pipe (ATT) (6) Ericsson RRUS11 Dual	C	From Face	0.00 0.00 3.00	0.0000	107.00	1/2" íce 1" íce No íce	12.87 13.56 2.55	14.03 15.32 0.92	0.33 0.45 0.05
PA RRU (ATT) (4) Raycap DC6-48-60-28-8F	С	None	0.00	0.0000	107.00	1/2" Ice 1" Ice No Ice	2.77 2.99 2.22	1.07 1.23 2.22	0.06 0.08 0.05
Suppresor (ATT)		i vono		2.3000		1/2" Ice 1" Ice	2.44 2.66	2.44 2.66	0.07 0.09

Michael F. Plahovinsak, P.E. 18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com

Job		Page
	130-ft Monopole - MFP #40913-015 r1	4 of 6
Project		Date
•	CT1003, North Haven	08:13:44 10/11/13
Client		Designed by
	Florida Tower Partners	Mike

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement	William To a second	C _A A _A Front	C _A A _A Side	Weight
			Vert ft ft	o	fì		fît²	fi²	K
12' T-Arm Mounts (ATT)	С	None		0.0000	107.00	No Ice 1/2" Ice 1" Ice	12.00 18.00 24.00	12.00 18.00 24.00	1.14 1.27 0.47

Load Combinations

Comb.	Description
No.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 90 deg - No Ice
5	0.9 Dead+1.6 Wind 90 deg - No Ice
6	1.2 Dead+1.6 Wind 180 deg - No Ice
7	0.9 Dead+1.6 Wind 180 deg · No Ice
8	1.2 Dead+1.0 Ice+1.0 Temp
9	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
10	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
11	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
12	Dead+Wind 0 deg - Service
13	Dead+Wind 90 deg - Service
14	Dead+Wind 180 deg - Service

Maximum Member Forces

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
	,	71		Comb.	K	kip-ft	kip-ft
LI	130 - 120	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	8	-8.40	0.00	0.00
			Max. Mx	4	-1.96	-70.84	0.00
			Max. My	6	-1.96	0.00	-70.84
			Max. Vy	4	7.57	-70.84	00.0
			Max. Vx	6	7.57	0.00	-70.84
L2	120 - 91.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	8	-24.97	0.00	0.00
			Max, Mx	4	-10.58	-463.22	0.00
			Max. My	2	-10.58	0.00	463.22
			Max. Vy	4	23.96	-463.22	0.00
			Max. Vx	2	-23.96	0.00	463.22
L3	91.5 - 48.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	8	-36.50	0.00	0.00
			Max. Mx	4	-19.53	-1575.31	0.00
			Max. My	2	-19.53	0.00	1575.31
			Max. Vy	4	29.02	-1575.31	0.00
			Max. Vx	2	-29.02	0.00	1575.31
L4	48,25 - 1	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	8	-56.46	0.00	0.00
			Max. Mx	4	-36.08	-3266,60	0.00
			Max. My	6	-36.08	0.00	-3266.60
			Max. Vy	4	34.83	-3266.60	0.00
			Max. Vx	6	34.83	0.00	-3266.60
				Company of the second			Commence of the Commence of th

Michael F. Plahovinsak, P.E. 18301 State Route 161 W

Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com

Job		Page
	130-ft Monopole - MFP #40913-015 r1	5 of 6
Project		Date
•	CT1003, North Haven	08:13:44 10/11/13
Client		Designed by
	Florida Tower Partners	Mike

Maximum Tov	wer Deflections	- Service	Wind
-------------	-----------------	-----------	------

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection in	Load Comb.	٥	o
LI	130 - 120	12.844	13	0.8549	0.0000
L2	120 - 91.5	11.067	13	0.8367	0.0000
L3	95.75 - 48.25	7.080	13	0.7077	0.0000
L4	53.75 - 1	2.170	13	0.3821	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Goν.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	a	ft
130.00	(2) Antel BXA-70063/6CF w/	13	12.844	0.8549	0.0000	35009
	mount pipe					1000
117.00	(2) Andrew HBX-6516DS w/ mount	13	10.544	0.8272	0.0000	15652
	pipe					*****
107.00	Andrew SBNHH-1D6565C w/	13	8.854	0.7802	0.0000	11465
	mount pipe					

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	130 - 120	84.644	6	5.6380	0.0000
L2	120 - 91.5	72.941	6	5.5183	0.0000
L3	95.75 - 48.25	46.680	6	4.6683	0.0000
L4	53.75 - 1	14.309	6	2.5208	0.0000

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
130.00	(2) Antel BXA-70063/6CF w/ mount pipe	6	84.644	5.6380	0.0000	5423
117.00	(2) Andrew HBX-6516DS w/ mount pipe	6	69.496	5.4556	0000,0	2421
107.00	Andrew SBNHH-1D6565C w/	6	58,368	5.1460	0.0000	1768
	mount pipe					

Pole Design Data

Section	Elevation	Size	L	L_n	KUr	A	P_u	ΦP_n	Ratio
No.	2,0,4,0,0	5	_				_	• "	$P_{\scriptscriptstyle H}$
	ft		ft	ft		in²	K	K	ϕP_n
Lī	130 - 120 (1)	TP23.16x20.9x0.1875	10.00	0.00	0.0	13.6715	-1.96	958.52	0.002
L2	120 - 91.5 (2)	TP29.6x23.16x0.25	28.50	0.00	0.0	22.5272	-10.58	1617.01	0.007
L3	91.5 - 48.25 (3)	TP38.87x28.1396x0,375	47.50	0.00	0.0	44.3398	-19.53	3294.23	0.006
L4	48.25 - 1 (4)	TP48.8x36.8775x0.4375	52.75	0.00	0.0	67.1574	-36.08	4858.33	0,007

Michael F. Plahovinsak, P.E. 18301 State Route 161 W

Plain City, OH 43064 Phone: 614-398-6250 FAX: mike@mfpeng.com

Job		Page
	130-ft Monopole - MFP #40913-015 r1	6 of 6
Project		Date
	CT1003, North Haven	08:13:44 10/11/13
Client		Designed by
	Florida Tower Partners	Mike

		The second secon							
Section	Elevation	Size	L	L_{u}	Kl/r	A	P_u	ϕP_n	Ratio
No.	210 / 1110 / 1	2.22		-				·	$P_{\scriptscriptstyle \rm H}$
775.	ft		ft	ft		in^2	K	K	⊕ P _n
	J*				~	- PRINCE CO.			

Section	Elevation	Size	M_{ux}	$\phi M_{\mu x}$	Ratio	M_{uv}	ϕM_{ny}	Ratio
No.					$M_{\rm ex}$			$M_{\rm ny}$
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	130 - 120 (1)	TP23.16x20.9x0.1875	70.84	452.66	0.156	0.00	452.66	0.000
L2	120 - 91.5 (2)	TP29.6x23.16x0.25	463,23	943.10	0.491	0.00	943.10	0.000
L3	91.5 - 48.25 (3)	TP38.87x28.1396x0.375	1575.31	2517.97	0.626	0.00	2517.97	0.000
L3 L4	48.25 - 1 (4)	TP48.8x36.8775x0.4375	3266.60	4825.88	0.677	0.00	4825.88	0.000

Pole Shear Design Data								
Section No.	Elevation	Size	Actual V ₁₁	φ <i>V</i> ,,	Ratio V _u	Actual Tu	φ <i>T</i> ,,	Ratio T _u
710.	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_{a}
T 1	130 - 120 (1)	TP23.16x20.9x0.1875	7.57	476.07	0.016	0.00	906,43	0.000
Τ2	120 - 91.5 (2)	TP29.6x23.16x0.25	23.96	802.69	0.030	0.00	1888.51	0.000
L3	91.5 - 48.25 (3)	TP38.87x28.1396x0.375	29.02	1626.17	0.018	0.00	5042.12	0.000
L4	48.25 - 1 (4)	TP48.8x36.8775x0.4375	34.83	2408.87	0.014	0.00	9663.58	0.000

	Pole Interaction Design Data								
Section No.	Elevation ft	Ratio Pu • Pn	Ratio Mux	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L1	130 - 120 (1)	0.002	0.156	0.000	0.016	0.000	0.159	1.000	4.8.2
L2	120 - 91.5 (2)	0.007	0.491	000,0	0.030	0.000	0,499	1,000	4.8.2
L3	91.5 - 48.25 (3)	0.006	0.626	0.000	0.018	0.000	0,632	1,000	4.8.2
L4	48.25 - 1 (4)	0.007	0.677	0.000	0.014	0.000	0.685	1.000	4.8.2

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$rac{arphi P_{allow}}{K}$	% Capacity	Pass Fail
L1	130 - 120	Pole	TP23,16x20,9x0,1875	ī	-1.96	958,52	15.9	Pass
L2	120 - 91.5	Pole	TP29.6x23.16x0.25	2	-10.58	1617.01	49.9	Pass
L3	91.5 - 48.25	Pole	TP38.87x28.1396x0.375	3	-19.53	3294.23	63.2	Pass
L4	48.25 - 1	Pole	TP48.8x36.8775x0.4375	4	-36.08	4858.33	68.5	Pass
LT	40,23 - 1	1 010	11 1010/1010// 1111111				Summary	
						Pole (L4)	68.5	Pas
						RATING =	68.5	Pas

Michael F. Plahovinsak, P.E.

18301 State Route 161 W Plain City, OH 43064 Phone: 614-398-6250 email: mike@mfpeng.com

Job 12	20-ft monopole - MFP #40913-015	Page	BP-G
Project	CT1003, North Haven	Date	10/11/2013
Client	FLORIDA TOWER PARTNERS	Designe	d by Mike

Anchor Rod and Base Plate Calculation

ANSI/TIA-222-G-2

Factored Base Reactions:

Pole Shape:

Anchor Rods:

Base Plate:

Moment:

3267 ft-kips

18-Sided

(20) 2.25 in. A615 GR. 75

2.75 in. x 58 in. Round

Shear:

35 kips

Pole Dia. (D_f) :

Anchor Rods Evenly Spaced

fy = 50 ksi

Axial:

36 kips

48.80 in

On a 55.25 in Bolt Circle

Anchor Rod Calculation According to TIA-222-G section 4.9.9

0.80 TIA 4.9.9 **b** =

 $I_{\text{bolts}} =$

7631,41 in² Momet of Inertia

 $P_n =$

142 kips Tension Force

 $V_{n} =$

2 kips Shear Force 325,00 kips Nominal Tensile Strength

 $\mathbf{R}_{nt} =$ $\eta =$

0.50 for detail type (d)

The following Interation Equation Shall Be Satisfied:

$$\left(\frac{\mathbf{P_u} + \frac{\mathbf{V_u}}{\eta}}{\phi \mathbf{R_{nt}}}\right) \leq 1.0$$

 $0.559 \le 1$

Base Plate Calculation According to TIA-222-G

0.90 TIA 4.7

 $\mathbf{M}_{\mathrm{PL}} =$

301.8 in-kip Plate Moment

L =

7.7 in Section Length

Calculated Moment vs Factored Resistance

 $\mathbf{Z} =$

14.5 Plastic Section Modulus

301.80 in-kip ≤

652 in-kip

 $M_P =$

724.6 in-kip Plastic Moment

 $\phi M_n =$

652.2 in-kip Factored Resistance

Anchor Rods Are Adequate

55.9% ☑

Base Plate is Adequate

46.3% 🗹

TAB 5

MEMORANDUM OF LEASE

Prepared by:
Elizabeth Jamieson
Smartlink, LLC
33 Boston Post Road, W
Marlborough, MA 01752

Return to:
33 Boston Post Road, W
Marlborough, MA 01752

Re: Cell Site #: S3506A; Cell Site Name: North Haven Devine Street, (S3506A)

Fixed Asset Number: 10578263

State: Connecticut County: New Haven

MEMORANDUM OF LEASE

This Memorandum of Lease is entered into on this 1/2 day of 0ctob , 2013, by and between Florida Tower Partners, LLC, a Delaware limited liability company, having a mailing address of 1001 Third Avenue West, Suite 420, Bradenton, FL 34205 (hereinafter referred to as "Landlord") and New Cingular Wireless PCS, LLC, a Delaware limited liability company, having a mailing address of Suite 13-F West Tower, 575 Morosgo Drive, Atlanta, GA 30324 (hereinafter referred to as "Tenant").

- 1. Landlord and Tenant entered into a certain Lease Agreement ("Agreement") on the 3/ day of October, 2013, for the purpose of installing, operating and maintaining a communications facility and other improvements. All of the foregoing is set forth in the Agreement.
- 2. The initial lease term will be five (5) years commencing on the Rent Commencement Date of the Agreement, with four (4) successive five (5) year options to renew.
- 3. The portion of the land being leased to Tenant and associated easements (the "Premises") are described in **Exhibit 1** annexed hereto.
- 4. This Memorandum of Lease is not intended to amend or modify, and shall not be deemed or construed as amending or modifying, any of the terms, conditions or provisions of the Agreement, all of which are hereby ratified and affirmed. In the event of a conflict between the provisions of this Memorandum of Lease and the provisions of the Agreement, the provisions of the Agreement shall control. The Agreement shall be binding upon and inure to the benefit of the parties and their respective heirs, successors, and assigns, subject to the provisions of the Agreement.

IN WITNESS WHEREOF, the parties have executed this Memorandum of Lease as of the day and year first above written.

"LANDLORD"

FLORIDA TOWER PARTNERS, LLC a Delaware limited liability company
By: Plant Me
Print Name: Brett Buggeln
Its: Manager/President
Date: 16/3/13
•
"TENANT"
New Cingular Wireless PCS, LLC,
a Delaware limited liability company
By: AT&T Mobility Corporation Its: Manager
By: Kelte
Print Name: Kevin L. Mason
Its: Area Manager
Date: 10-3= 2013

[ACKNOWLEDGMENTS APPEAR ON THE NEXT PAGE]

TENANT ACKNOWLEDGMENT

State of Mussuchusetts
County of Mr Idlesex
On this the 30th day of October, 2013, before me,, the undersigned officer, personally appeared Kevin L. Mason who acknowledged himself to be the Area Manager of AT&T Mobility Corporation, manager of New Cingular Wireless PCS, LLC, a (member managed or manager managed) limited liability company, and that he, as such, being authorized so to do, executed the foregoing instrument for the purposes therein contained, by signing the name of the limited liability company by himself as
In witness whereof I hereunto set my hand.
Notary Public
Print Name:
My Commission Expires:
LANDLORD ACKNOWLEDGMENT
State of Floride
State of Hortole County of Magket
On this the <u>Y</u> day of <u>Och</u> , 2013, before me, <u>O. S. Berne</u> , the undersigned officer, personally appeared Brett Buggeln who acknowledged himself to be the Manager/President of Florida Tower Partners, LLC, a (member managed or manager managed) limited liability company, and that he, as such Manager/President, being authorized so to do, executed the foregoing instrument for the purposes therein contained, by signing the name of the limited liability company by himself as Manager/President.
In witness whereof I hereunto set my hand. TODD J. BOWMAN
Notary Public MY COMMISSION # EE 016243 EXPIRES: August 10, 2014 Bonded Thru Budget Notary Services
Print Name:
My Commission Expires:

EXHIBIT 1

DESCRIPTION OF PREMISES

Page of	-			
to the Memorandum of Lease dated	, 2013, by and	between	Florida	Tower
Partners, LLC, a Delaware limited liability company, as Lan-	dlord, and New	Cingular	Wireless	PCS,
LLC, a Delaware limited liability company, as Tenant.				
The Premises is a portion of the Property, which is legally described	ibed as follows:			

Schedule A

50 Devine Street:

All that certain piece or parcel of land with the buildings and all other improvements thereon, situated in the Town of North Haven, in the County of New Haven and State of Connecticut, bounded and described as follows:

WEST by land formerly of The New York, New Haven and Hartford Railroad Company, more lately of Consolidated Rail Corporation 584 feet;

NORTHEAST by land now or formerly of The Humphrey Chemical Company, 645 feet;

EAST by land now or formerly of The Humphrey Chemical Company, 242.98 feet;

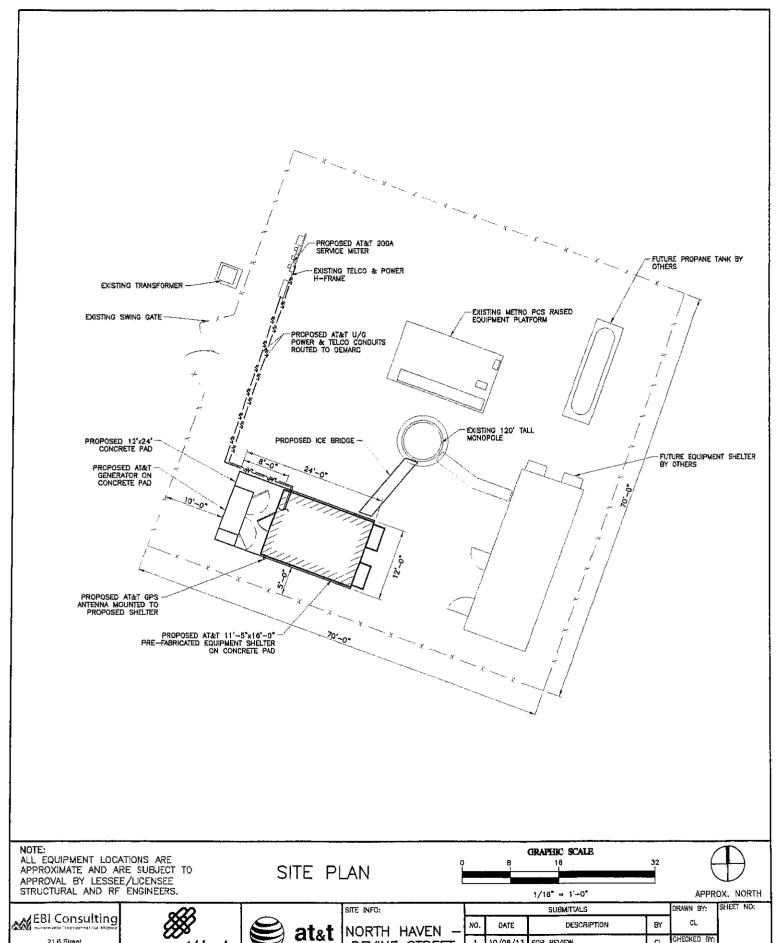
NORTHEAST again by land now or formerly of The Humphrey Chemical Company, 50 feet;

SOUTHEAST by land now or formerly of The Humphrey Chemical Company, 100 feet;

SOUTHWEST by land now or formerly of The Humphrey Chemical Company, 710 feet;

Being the premises shown on a map entitled, "MAP OF PROPERTY OF ROBERT E. WRIGHT TO BE CONVEYED TO ANTHONY S. PAPA OFF DEVINE STREET, North Haven, Connecticut, Aug. 11, 1980 Scale 1" = 40", by Joseph B. Burns, Land Surveyor

Together with a right of way in common with others in, through, over and across land now or formerly of The I.L. Stiles & Son Brick Company, known as Devine Street to State Street.


Together with and subject to rights of way and pole line easement heretofore granted and reserved as set forth in a deed from The Alfred B. King Company to Humphrey-Wilkinson, Incorporated, dated January 6, 1949 and recorded in Volume 108 on Page 306 of the North Haven Land Records, to which deed reference is hereby made; except as modified in a deed from The Alfred B. King Company to The Humphrey Chemical Company, dated August 20, 1969 and recorded in Volume 248 on Page 27 of said Land Records.

Together with and subject to a Mutual Easement and Sewer Tie-in Agreement by and between The Humphrey Chemical Company, Inc. and Anthony S. Papa dated July 20, 1990 and recorded July 24, 1990 in Volume 410 at Page 80 of the North Haven Land Records.

Excepting therefrom the property conveyed to Humphrey Chemical Company in a deed recorded in Volume 410, Page 102 of the North Haven Land Records.

17745\7\660651.2

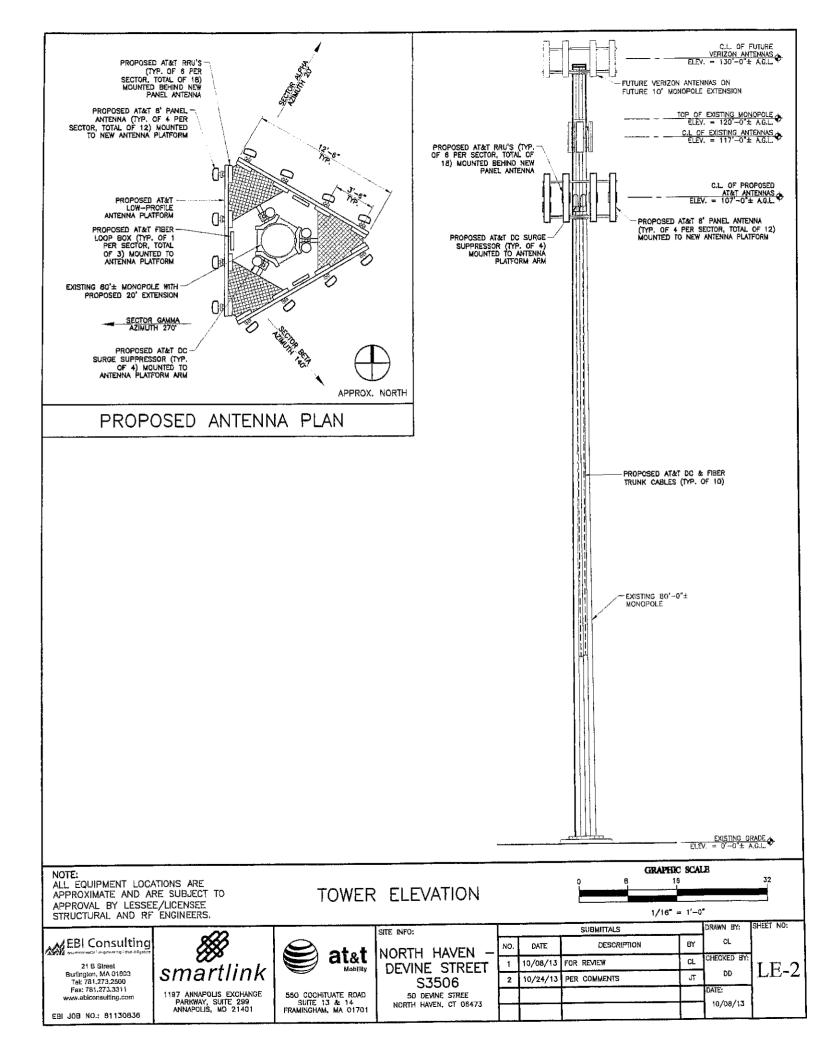
The Premises are described and/or depicted as follows:

21 8 Street Burlington, MA 01803 Tel: 781,273,2500 Fax: 781,273,3311 www.ebiconsulding.com

EB) JOB NO.: 81130836

smartlink

1197 ANNAPOLIS EXCHANGE PARKWAY, SUITE 299 ANNAPOLIS, MD 21401


at&t

550 COCHITUATE ROAD SUITE 13 & 14 FRAMINGHAM, MA 01701

DEVINE STREET

S3506 50 DEVINE STREE NORTH HAVEN, CT 06473

			SUBMITTALS		DRAWN BY:	SHEET NO:
_	NO.	DATE	DESCRIPTION	BY	CL	
	1	10/08/13	FOR REVIEW	CL	CHECKED BY:	T T7 1
	2,	10/24/13	PER COMMENTS	JT	DD	T-E-T
				I	DATE:	
					10/08/13	

TAB 6

Power Density Calculations

Applicant: New Cingular Wireless PCS, LLC d/b/a AT&T

Site ID: S3506

Site Type: Existing 120' Monopole Tower

Address: 50 Devine Street, North Haven, CT 06473

Date: November 7, 2013

1. Existing Power Density 1

Carrier	#Channels	ERP/Ch	Ant Ht	Power Density (mW/cm2)	Frequency MHz	Limit	%MPE
Metro PCS							
CDMA	3	727	117	0.0573	2135	1.0000	5.73%
Metro PCS							
LTE	1	1200	117	0.0315	2130	1.0000	3.15%
						TOTAL	8.88%

2. Proposed AT&T Power Density ²

Carrier	#Channels	ERP/Ch	Ant Ht	Power Density (mW/cm2)	Frequency MHz	Limit	%МРЕ
AT&T UMTS	2	500	107′	0.0314	800 Band	0.5867	5.35%
AT&T UMTS	2	500	107′	0.0314	1900 Band	1.0000	3.14%
AT&T LTE	1	500	107′	0.0157	700 Band	0.4667	3.36%
	I	I	.1			TOTAL	11.85%

3. Cumulative Power Density Calculation Results

Carrier	#Channels	ERP/Ch	Ant Ht	Power Density (mW/cm2)	Frequency MHz	Limit	%МРЕ
Metro PCS CDMA	3	727	117	0.0573	2135	1.0000	5.73%
Metro PCS LTE	1	1200	117	0.0315	2130	1.0000	3.15%
AT&T UMTS	2	500	107′	0.0314	800 Band	0.5867	5.35%
AT&T UMTS	2	500	107′	0.0314	1900 Band	1.0000	3.14%
AT&T LTE	1	500	107′	0.0157	700 Band	0.4667	3.36%
	1		<u>l</u> ,	<u> </u>		TOTAL	%20.73

¹ This Power Density information was taken from the Connecticut Siting Council database dated October 1, 2013. ² This Power Density information is based on worse case assumptions from AT&T's radio frequency engineers.

4. Conclusion:

The addition of AT&T's antennas on the existing tower will result in the cumulative maximum permissible exposure (MPE) level of 20.73%. The proposal complies with the National Council on Radiation Protection and Measurements standard for MPE adopted by the Federal Communications Commission ("FCC"). Moreover, the maximum level of radio-frequency energy emitted from AT&T's installation will be well below the FCC's mandated radio frequency exposure limits.