

Northeast Site Solutions Victoria Masse 420 Main St Unit 1 Box 2 Sturbridge, MA 01566 victoria@northeastsitesolutions.com

April 28, 2022

Members of the Siting Council Connecticut Siting Council Ten Franklin Square New Britain, CT 06051

RE: Tower Share Application 62 Youngs Apple Orchard Road (a/k/a 59 Youngs Apple Orchard Road), North Branford, CT Latitude: 41.42083300 N Longitude: 72.74944444 W Site#: BOHVN00032A

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 62 Youngs Apple Orchard Road (a/k/a 59 Youngs Apple Orchard Road), North Branford, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/1900/2100 5G MHz antenna and six (6) RRUs, at the 83-foot level of the existing 129-selfsupport tower, one (1) Fiber cable will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7x5 lease area. Included are plans by Infinigy, dated April 6, 2022, Exhibit C. Also included is a structural analysis prepared by Armor Tower, dated February 10, 2022 confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. This facility was approved and built around 1997-1998, The Town of North Branford was unable to locate the exact approval. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to Michael Paulhus, Town Manager, Eric Knapp, Planning and Zoning Administrator for the Town of North Branford, as well as the tower owner and property.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modifications will not result in an increase in the height of the existing structure. The top of the tower is 129-feet; Dish Wireless LLC proposed antennas will be located at a center line height of 83-feet.

2. The proposed modification will not result in the increase of the site boundary as depicted on the attached site plan.

3. The proposed modification will not increase the noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total density of 20.65% as evidenced by Exhibit F.

Connecticut General Statutes 16-50-aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.

A. Technical Feasibility. The existing self-support tower has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included in Exhibit D.

B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this self-support tower in North Branford. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.

C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 83-foot level of the existing 129-foot tower would have an insignificant visual impact on the area around the self-support tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F, the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.

D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower share application.

E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through North Branford.

Sincerely,

Victoria Masse Mobile: 860-306-2326 Fax: 413-521-0558 Office: 420 Main Street, Unit 1 Box 2, Sturbridge, MA 01566 Email: victoria@northeastsitesolutions.com

Attachments Cc: Michael Paulhus, Town Manager Town of North Branford 909 Foxon Road North Branford CT 06471

Eric Knapp, Planning and Zoning Administrator Town of North Branford 909 Foxon Road North Branford CT 06471

Town of Wallingford Water Division C/O Duff & Phelps/Telcom DIV, Property Owner PO 2629 Addison, TX 75001

Everest, Tower Owners 100 Summer St. Suite 1600 Boston, MA 02110

Exhibit A

Original Facility Approval

Victoria Masse <victoria@northeastsitesolutions.com>

Dish Original Zoning Approval Request for 62 Youngs Apple Orchard Road

Eric Knapp <townplanner@townofnorthbranfordct.com> To: Victoria Masse <victoria@northeastsitesolutions.com> Cc: Chuck Regulbuto <chuck@northeastsitesolutions.com> Thu, Apr 28, 2022 at 3:20 PM

Victoria, we looked back as far as our records would go.

Here is what I emailed Chuck Regulbuto back in October:

Dear Mr. Regulbuto,

You have inquired about the zoning status of the tower located at 62 Young Apple Orchard Road in North Branford, Connecticut. Specifically, you are seeking the zoning approval status of the original tower at that location.

My research has revealed that evidence of the original lease from the Town of Wallingford's Water Department to the Southern New England Telephone company was recorded on the Land Records of the Town of North Branford on December 31, 1957, at Volume 36, Page 463.

Zoning was adopted by the Town of North Branford effective August 1, 1962. Therefore, there would be no evidence of zoning approval for the tower, because there would have been no Zoning Regulations to comply with.

I trust that this response will prove satisfactory, but should you have additional questions, or require additional information, please do not hesitate to contact me.

Very truly yours,

Eric Knapp Town Planner

Town of North Branford

North Branford, CT 06471

(475) 655-0425

From: Victoria Masse <victoria@northeastsitesolutions.com>
Sent: Thursday, April 28, 2022 3:14 PM
To: Eric Knapp <townplanner@townofnorthbranfordct.com>
Cc: Chuck Regulbuto <chuck@northeastsitesolutions.com>
Subject: Dish Original Zoning Approval Request for 62 Youngs Apple Orchard Road

Good Afternoon,

I am reaching out on behalf of Dish regarding their proposed installation of antennas on an existing tower located at 62 Youngs Apple Orchard Road.

Currently we are working with Dish to file with the Connecticut Siting Council, part of the Siting Council's filing requirements is that we provide the original zoning approval of the tower build. It does not appear that the council has this on their website so that is why I am reaching out to you for this information.

I have attached the property card for your reference.

If you could review your records for any approvals of when this tower was originally approved to be built with the height that the tower was originally approved for that would be greatly appreciated.

Please let me know if you have any questions or need any additional information, I can be reached at 860-306-2326.

Thank you

Victoria Masse

Zoning & Permitting Specialist

Notary Public

Mobile: 860-306-2326

Office: 420 Main Street Unit 1 Box 2 Sturbridge, MA 01566

Email: victoria@northeastsitesolutions.com

1

Exhibit B

Property Card

62 YOUNGS APPLE ORCH

Location	62 YOUNGS APPLE ORCH	Mblu	81/ 22A/ / /
Acct#	003798	Owner	WALLINGFORD TOWN OF WATER DIV
Assessment	\$269,700	Appraisal	\$385,300
PID	5127	Building Count	1

Current Value

Appraisal						
Valuation Year Improvements Land Total						
2020	\$85,900	\$299,400	\$385,300			
	Assessment					
Valuation Year	Valuation Year Improvements Land Total					
2020	\$60,100	\$209,600	\$269,700			

Owner of Record

OwnerWALLINGFORD TOWN OF WATER DIVCo-OwnerC/O DUFF & PHELPS / TELCOM DIV

Sale Price\$0CertificateBook & Page0036/0463

Ownership History

Ownership History				
Owner	Sale Price	Certificate	Book & Page	Sale Date
WALLINGFORD TOWN OF WATER DIV	\$0		0036/0463	12/31/1957

Building Information

Building 1 : Section 1

Year Built:

Living Area: Replacement Cost: Building Percent Good:

Replacement Cost

Less Depreciation:

Building Attributes					
Field Description					
Style:	Outbuildings				
Model					
Grade:					
Stories:					
Occupancy					
Exterior Wall 1					
Exterior Wall 2					

0

\$0

\$0

Building Photo

(https://images.vgsi.com/photos/NorthBranfordCTPhotos//\00\00\72\27.jpg)

Roof Structure:	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior FIr 2	
Heat Fuel	
Heat Type:	
АС Туре:	
Total Bedrooms:	
Total Bthrms:	
Total Half Baths:	
Total Xtra Fixtrs:	
Total Rooms:	
Bath Style:	
Kitchen Style:	
Num Kitchens	
Cndtn	
Num Park	
Fireplaces	
Fndtn Cndtn	
Basement	

Building Layout

Building Layout

(https://images.vgsi.com/photos/NorthBranfordCTPhotos//Sketches/5127_{

Building Sub-Areas (sq ft)	<u>Legend</u>
No Data for Building Sub-Areas	

Extra Features

•

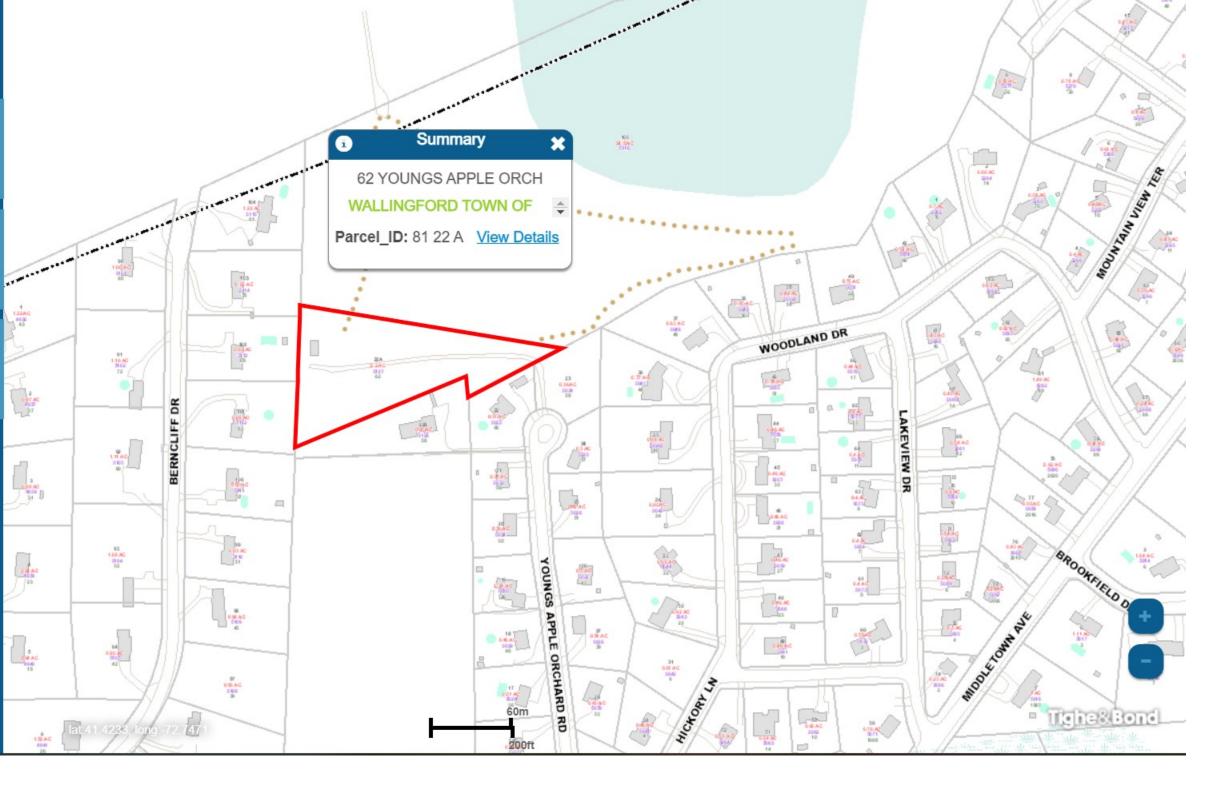
Extra Features	<u>Legend</u>
No Data for Extra Features	

Land

Land Use		Land Line Valua	tion
Use Code	504V	Size (Acres)	2.2
Description	PUB UTIL MDL-00	Frontage	0
Zone	R40	Depth	0
Neighborhood		Assessed Value	\$209,600
Alt Land Appr	No	Appraised Value	\$299,400
Category			

Outbuildings

	Outbuildings					<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
FN4	FENCE-8' CHAIN			300.00 L.F.	\$3,000	1
TW1	CELL TOWER			75.00 HEIGHT	\$28,900	1
ELCB	ELECTRONIC COMM BLDG			560.00 S.F.	\$54,000	1


Valuation History

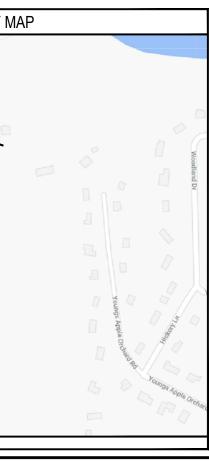
Appraisal				
Valuation Year Improvements Land Total				
2019	\$82,300	\$290,700	\$373,000	
2018	\$82,300	\$290,700	\$373,000	

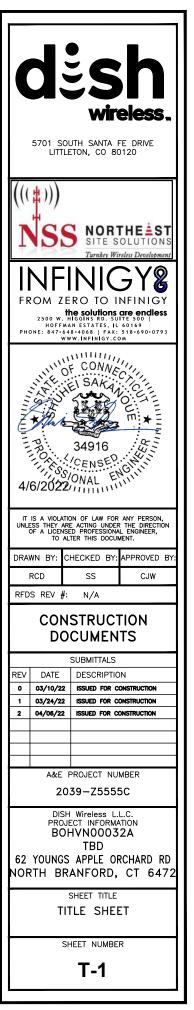
2017 \$8	00 \$151,300	\$233,600
----------	--------------	-----------

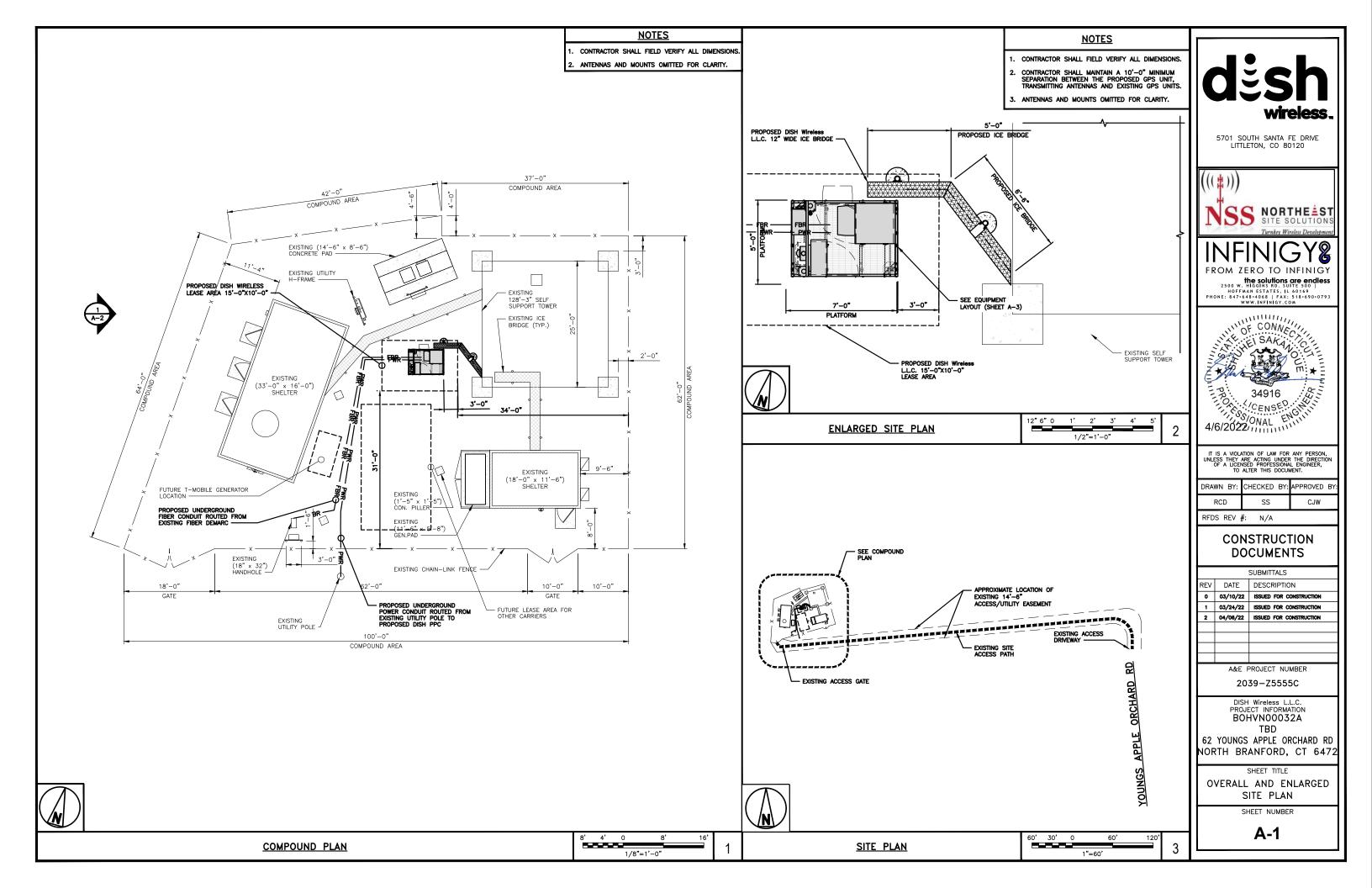
Assessment					
Valuation Year Improvements Land Total					
2019	\$57,600	\$203,500	\$261,100		
2018	\$57,600	\$203,500	\$261,100		
2017	\$57,600	\$105,900	\$163,500		

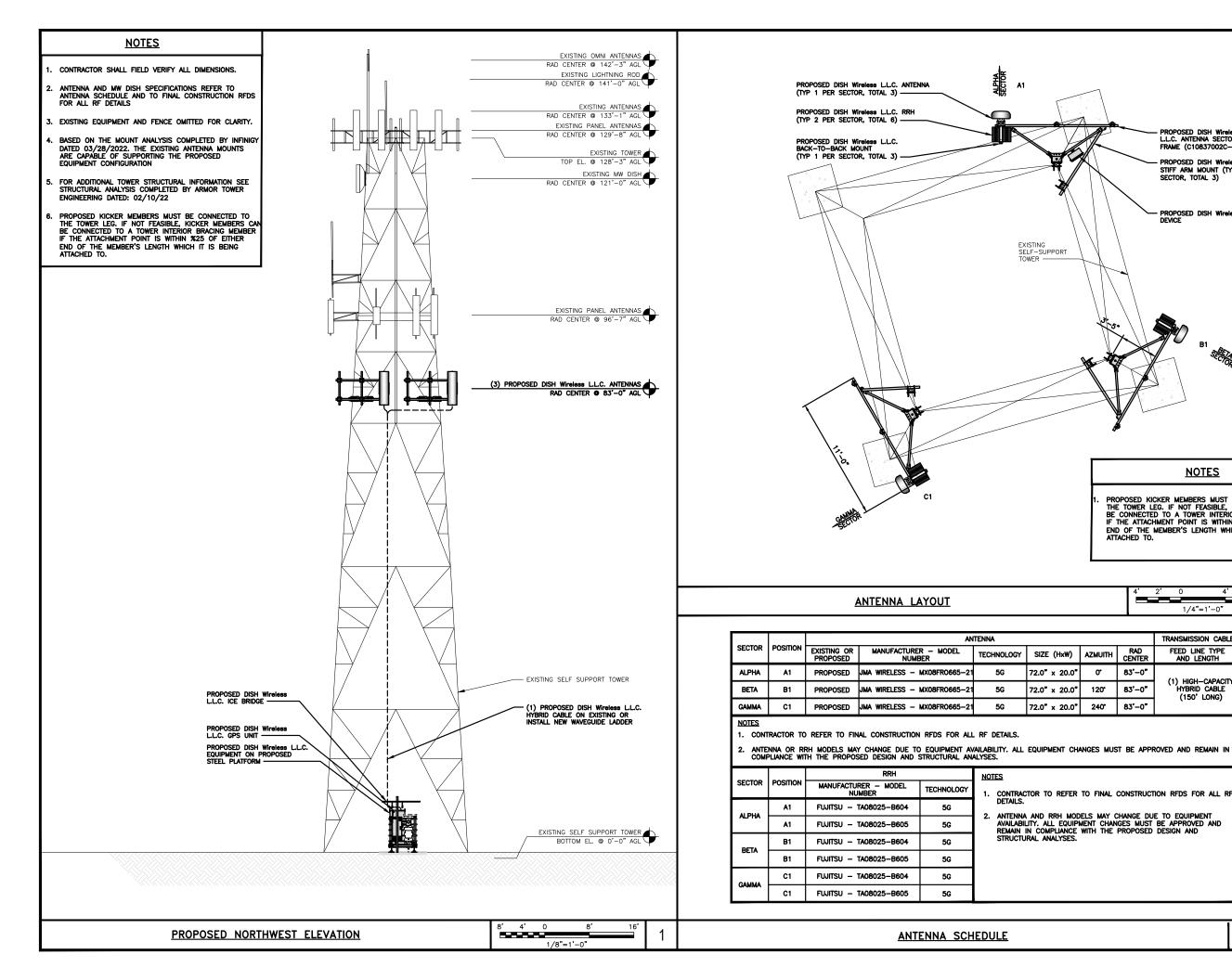
(c) 2022 Vision Government Solutions, Inc. All rights reserved.

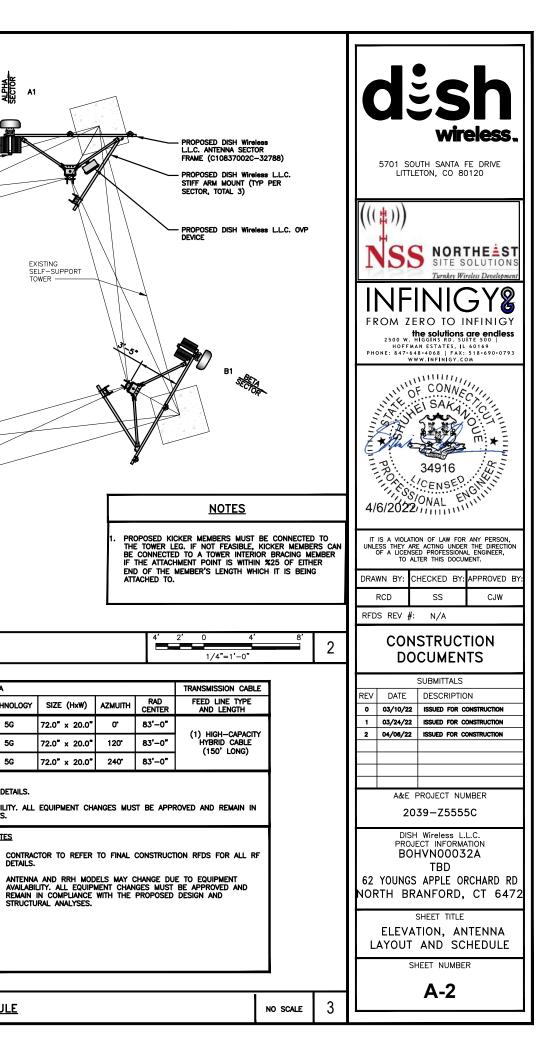
Exhibit C

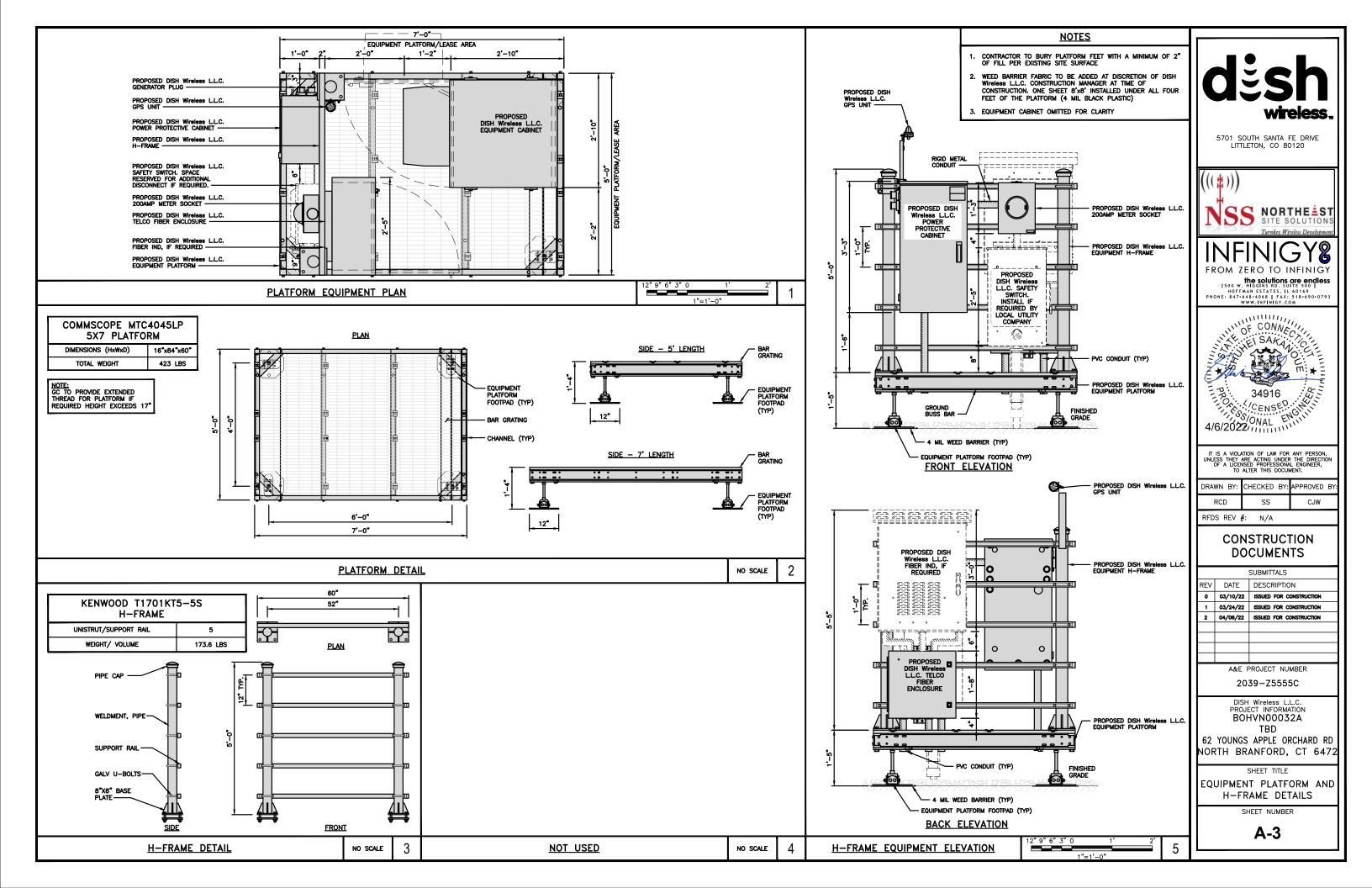

Construction Drawings

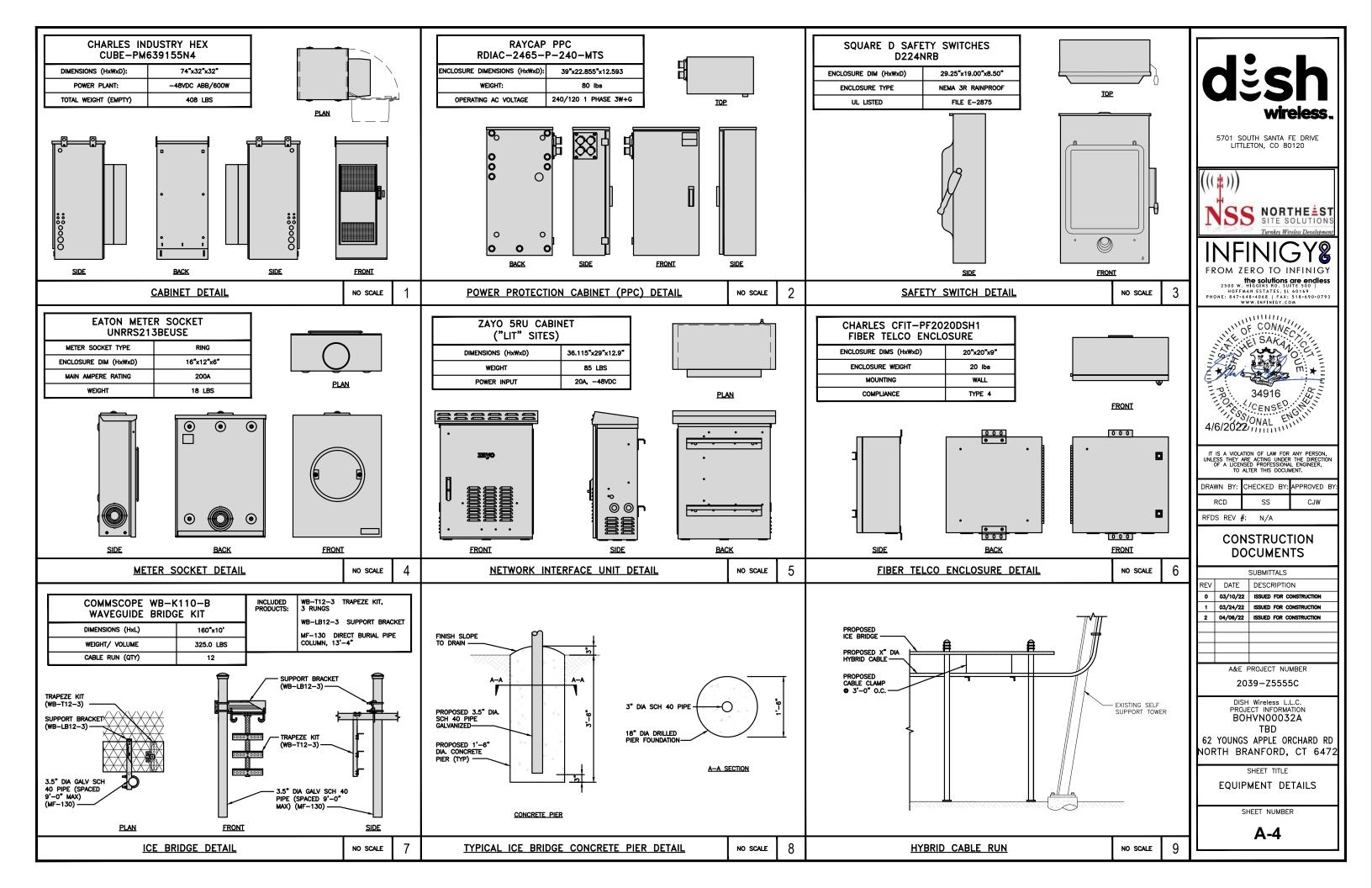

		SITE INF	ORMATION	Γ
dish		PROPERTY OWNER: ADDRESS:	TOWN OF WALLINGFORD WATER DIVISION 377 S. CHERRY STREET WALLINGFORD, CT 06492	^
		TOWER TYPE:	SELF SUPPORT TOWER	
		TOWER CO SITE ID:	701778	י
	SCOPE OF WORK	TOWER APP NUMBER:	твр	
	THIS IS NOT AN ALL INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER APPROVED EQUIVALENT. CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL STE.	COUNTY:	NEW HAVEN	
wireless	THE PROJECT GENERALLY CONSISTS OF THE FOLLOWING: TOWER SCOPE OF WORK:	LATITUDE (NAD 83):	41°25′15.88″N 41.421078N	
	INSTALL (3) PROPOSED PANEL ANTENNAS (1 PER SECTOR) INSTALL (3) PROPOSED ANTENNA MOUNTS (1 PER SECTOR) INSTALL PROPOSED JUMPERS	LONGITUDE (NAD 83):	72* 44' 57.58" W 72.749328 W	
DISH Wireless L.L.C. SITE ID:	INSTALL (6) PROPOSED RRUs (2 PER SECTOR) INSTALL (1) PROPOSED OVER VOLTAGE PROTECTION DEVICE (OVP) INSTALL (1) PROPOSED HYBRID CABLE	ZONING JURISDICTION:	CONNECTICUT SITING COUNCIL	'
BOHVN00032A	GROUND SCOPE OF WORK: • INSTALL (1) PROPOSED METAL PLATFORM	ZONING DISTRICT:	R40	
	INSTALL (1) PROPOSED ICE BRIDGE INSTALL (1) PROPOSED PPC CABINET INSTALL (1) PROPOSED EQUIPMENT CABINET	PARCEL NUMBER:	81/22A U	
DISH Wireless L.L.C. SITE ADDRESS:	INSTALL (1) PROPOSED POWER CONDUIT INSTALL (1) PROPOSED TELCO CONDUIT	CONSTRUCTION TYPE:	V-в	'
62 YOUNGS APPLE ORCHARD RD	INSTALL (1) PROPOSED TELCO-FIBER BOX INSTALL (1) PROPOSED GPS UNIT INSTALL (1) PROPOSED SAFETY SWITCH (IF REQUIRED)	POWER COMPANY:	EVERSOURCE	
NORTH BRANFORD, CT 6472	INSTALL (1) PROPOSED CIENA BOX (IF REQUIRED) INSTALL (1) PROPOSED METER SOCKET	TELEPHONE COMPANY:	AT&T	
CONNECTICUT CODE COMPLIANCE			DIREC	
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF	SITE PHOTO			-
THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES:			MAPLEWOOD FARM AIRP	
CODE TYPE CODE BUILDING 2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS MECHANICAL 2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS ELECTRICAL 2018 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS		BRANFORD RD, ROAD N	D RD, TURN LEFT ONTO WHIRLY IAME CHANGES TO REEDS GAP RD RD, NORTH BRANFORD, CT (RDTU
SHEET INDEX			VICINI	TY
SHEET NO. SHEET TITLE		Rd W		~
T-1 TITLE SHEET				
LS1 SITE SURVEY				
A-1 OVERALL AND ENLARGED SITE PLAN A-2 ELEVATION, ANTENNA LAYOUT AND SCHEDULE		trees SI		
A-3 EQUIPMENT PLATFORM AND H-FRAME DETAILS		Com Rd		
A-4 EQUIPMENT DETAILS A-5 EQUIPMENT DETAILS				
		orolLi		
E-1 ELECTRICAL/FIBER ROUTE PLAN AND NOTES E-2 ELECTRICAL DETAILS E-3 ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	UNDERGROUND SERVICE ALERT - OHIO 811		Ben	
G-1 GROUNDING PLANS AND NOTES	UTILITY NOTIFICATION CENTER OF OHIO (800) 362-2764 WWW.OUPS.ORG	Evergre	ncliff Dr	
G-2 GROUNDING DETAILS G-3 GROUNDING DETAILS	CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION	en Rd		
RF-1 RF CABLE COLOR CODE	GENERAL NOTES			
RF-2 RF PLUMBING DIAGRAM	GENERAL NOTES THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED			
GN-1 LEGEND AND ABBREVIATIONS GN-2 GENERAL NOTES	FOR ROUTINE MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON DRAINAGE. NO SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL SIGNAGE IS PROPOSED.	cliff Dr Berncliff	Dr	
GN-3 GENERAL NOTES GN-4 GENERAL NOTES				
	11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED			
	CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON THE JOB SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.	NO SCALE		
		INV JUALE		

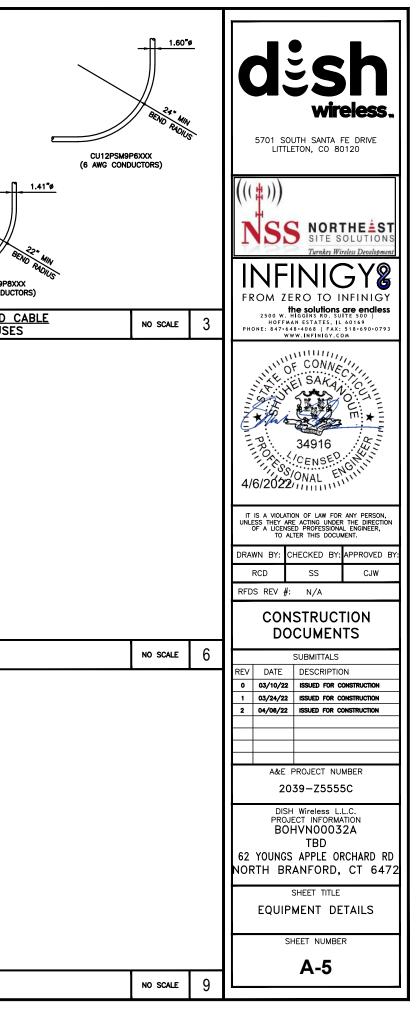

PROJE	PROJECT DIRECTORY					
APPLICANT:	5701 S	reless L.L.C. Duth Santa fe Drive N, CO 80120				
TOWER OWNER:	100 SUI SUITE 1	MMER ST				
SITE DESIGNER:	1033 W. ALBANY,	ATERVLIET SHAKER RD NY 12205 90–0790				
SITE ACQUISITION:		JEANNE CONTTRELL (203) 927–4317				
CONSTRUCTION M	ANAGER:	JAVIER SOTO (617) 839–6514				
RF ENGINEER:		JARED ROBINSON (978) 855–5870				

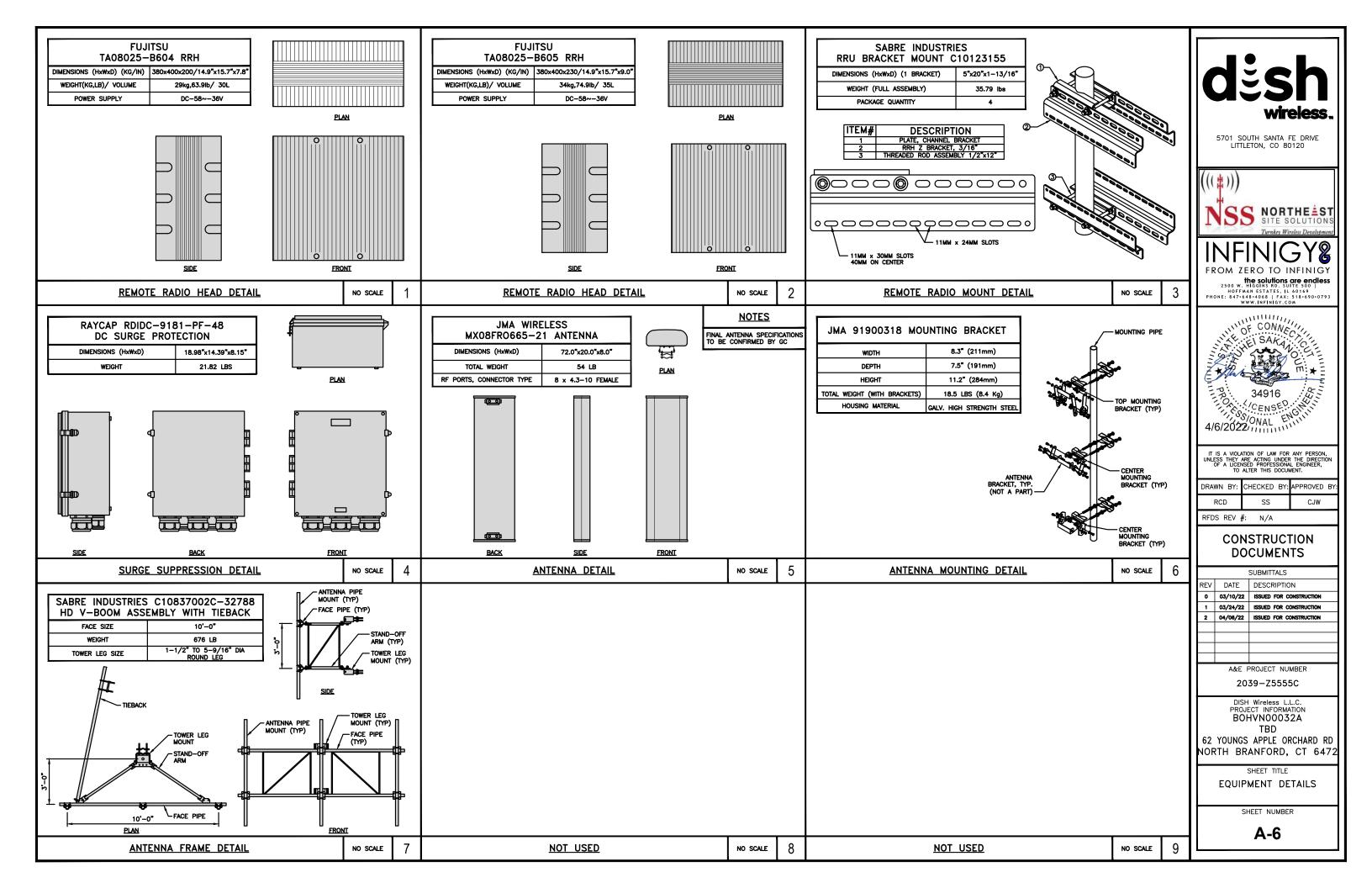

IONS

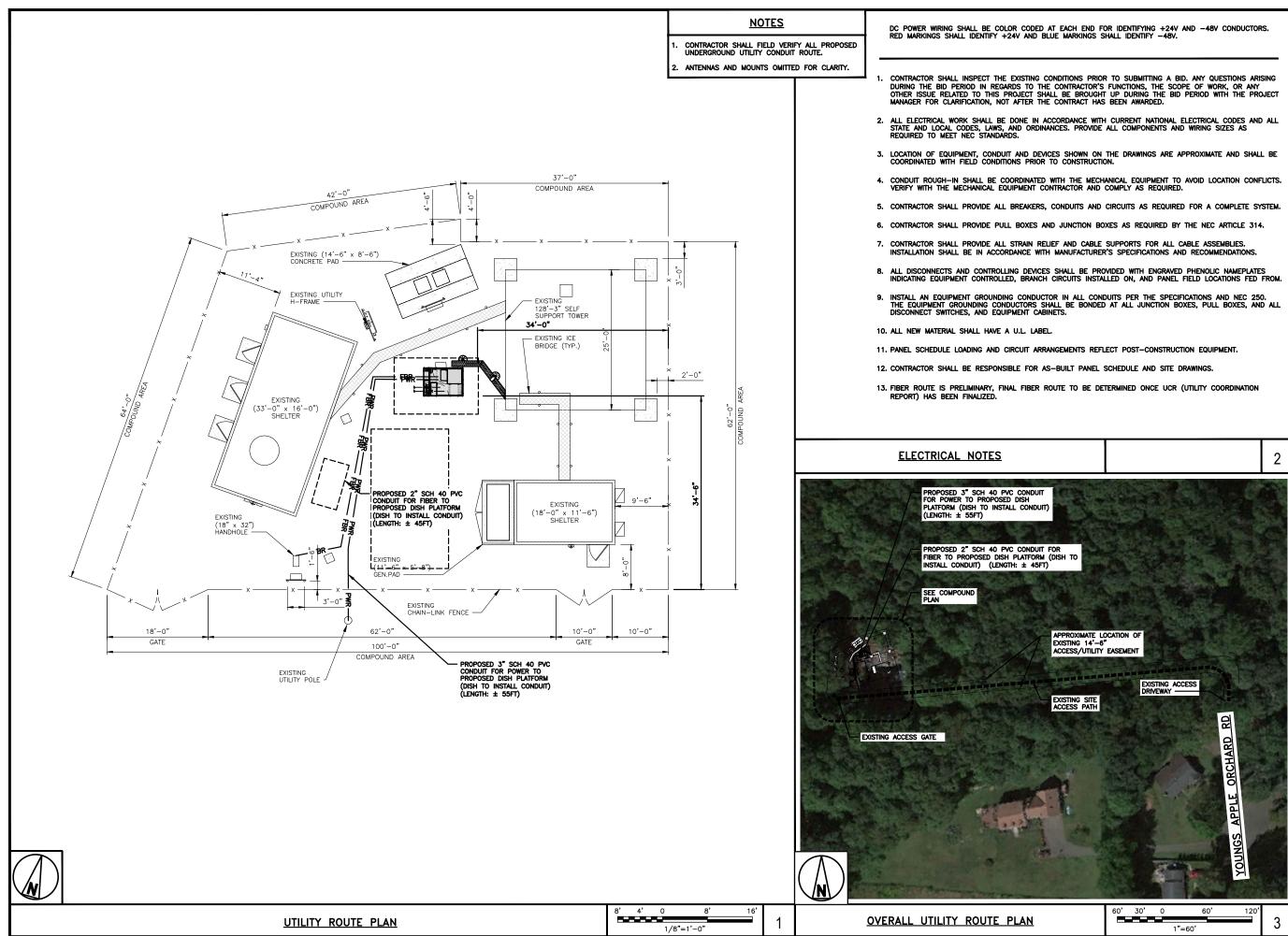

TURN LEFT ONTO CT-68 / WALLINGFORD RD, BEAR HILL RD, THEN IMMEDIATELY TURN RIGHT ONTO S JRN LEFT ONTO BERNCLIFF DR, ARRIVE AT, 62

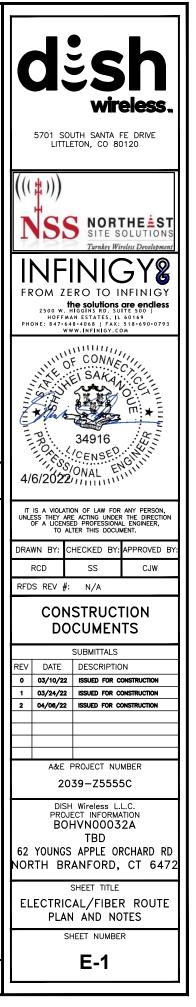


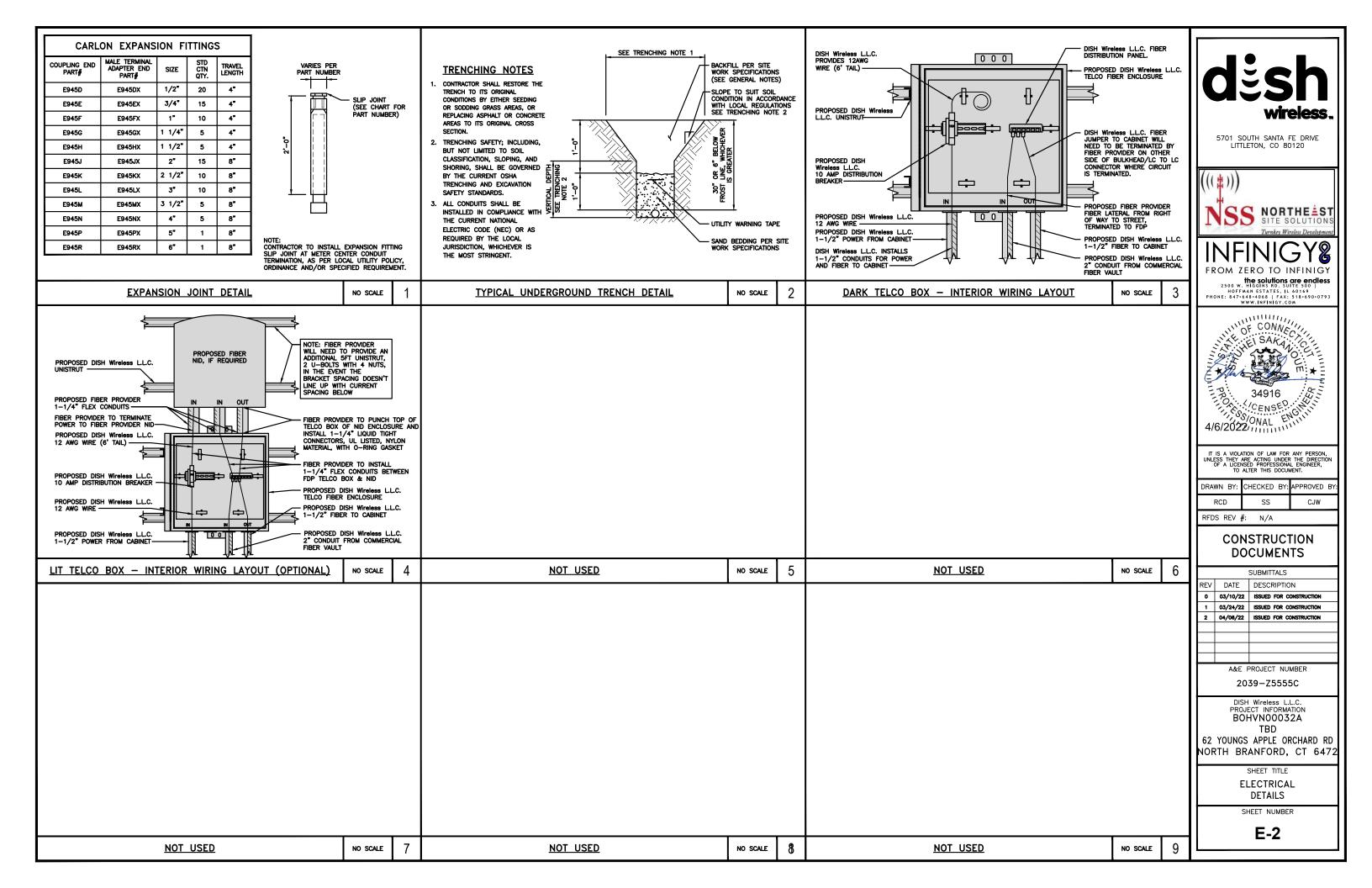


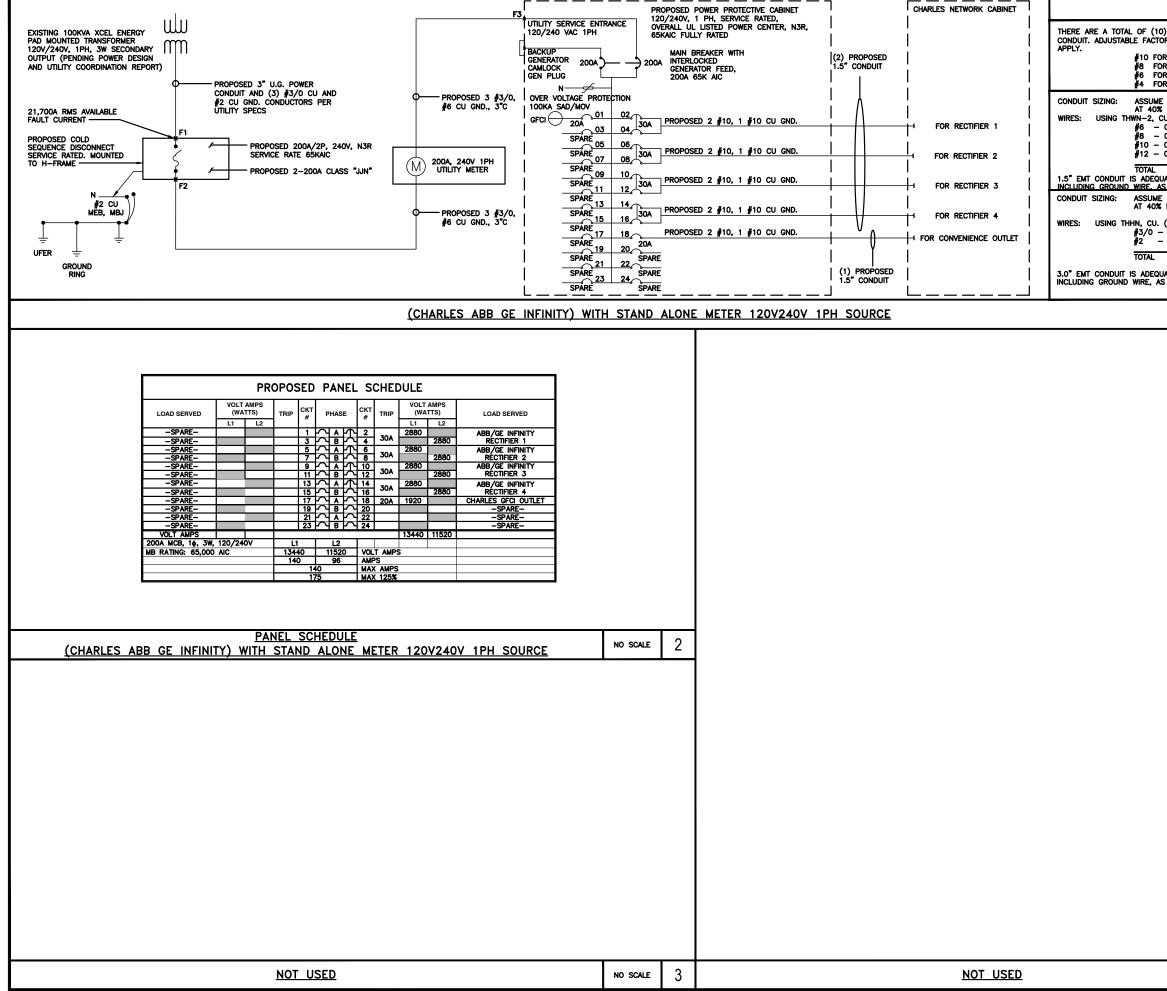


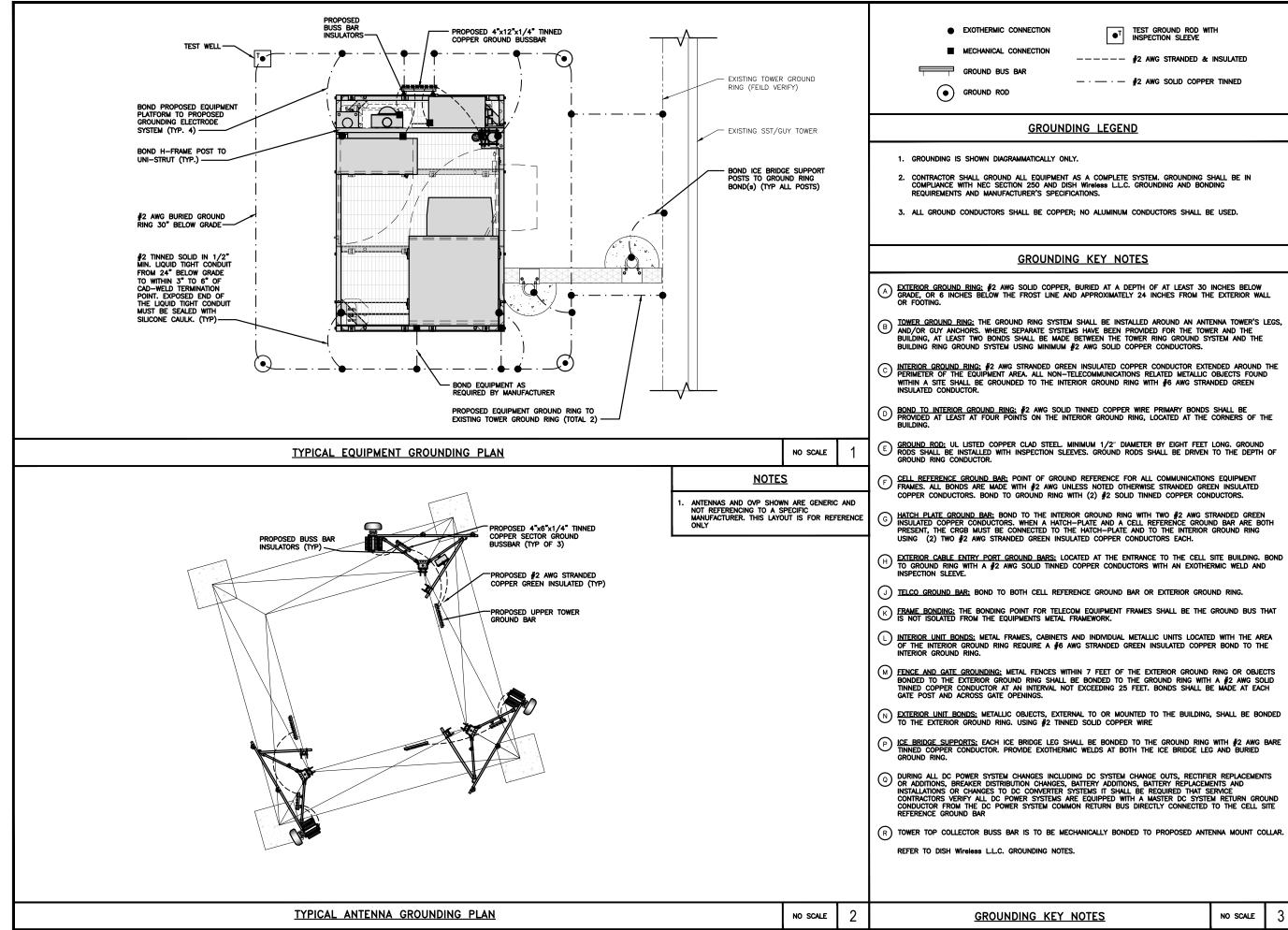


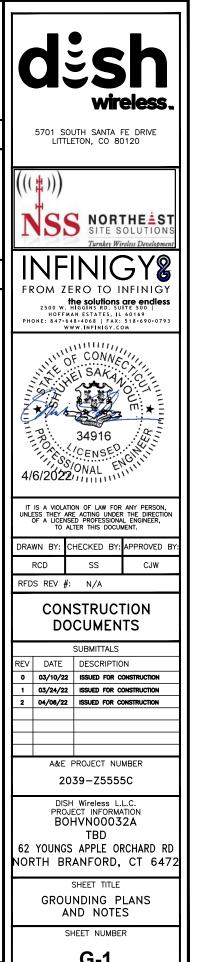


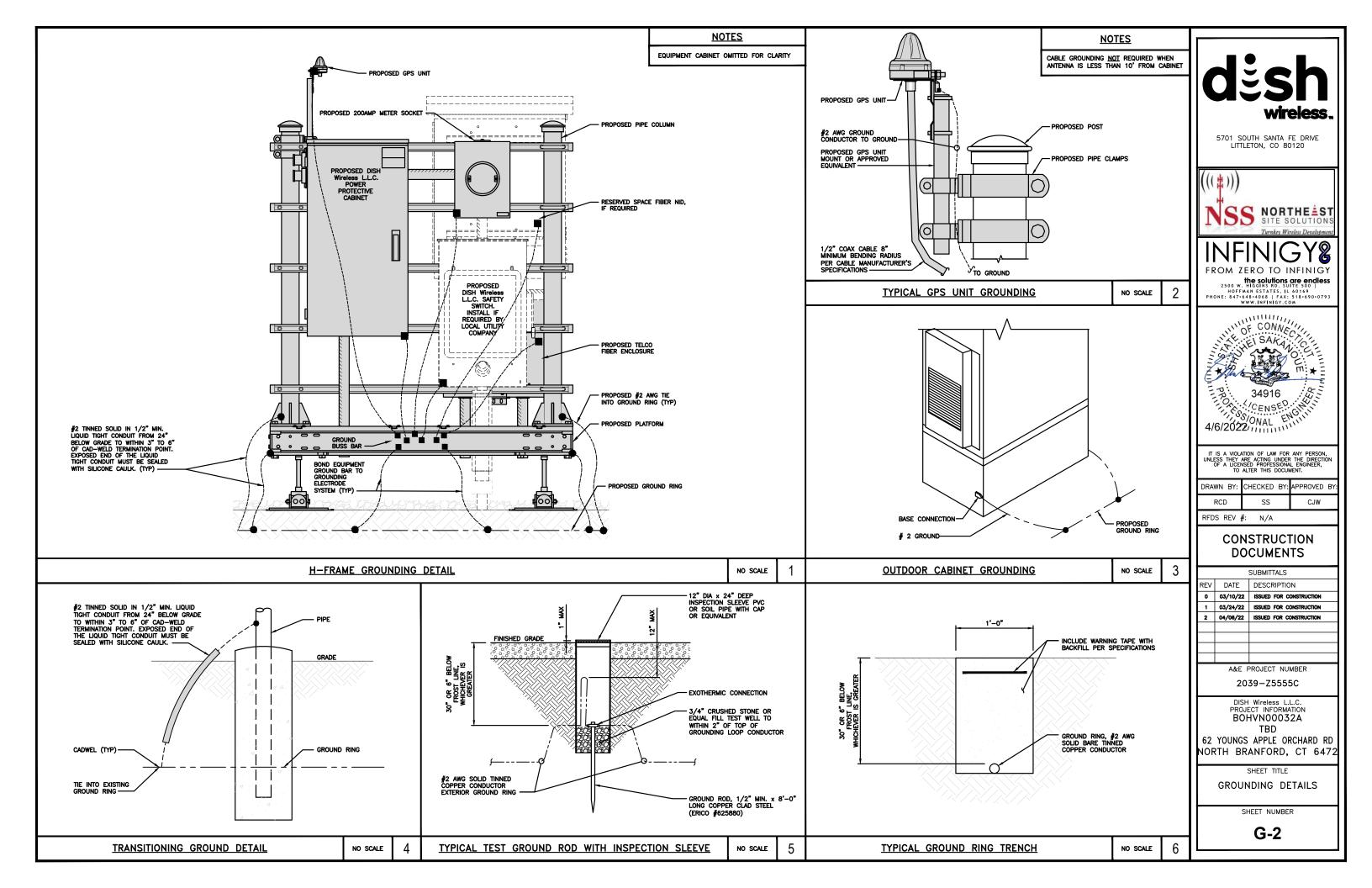



ROSENBERGER GPSGLONASS-36-N-S DIMENSION (DIA × H) 69mm × 98.5mm WEIGHT (WITH ACCESSORIES) 515.74g CONNECTOR N-FEMALE FREQUENCY RANGE 1559 MHz ~ 1610.5MHz BACK GPS UNIT GPS UNIT GPS UNIT GPS UNIT MACK GPS UNIT GPS UNIT GPS UNIT GROUNDING MOUNTING BACK	SIDE GPS UNIT GROUNDING BRACKET GPS UNIT GROUNDING KIT GROUNDING KIT MOUNTING BRACKET	MINIMUM OF 75% OR 270° IN ANY DIRECTION GPS GPS UNIT BE BELOW 10° E BELOW 10°			CU12PSM8P4XXX (4 AWG CONDUCTORS)
GPS ANTENNA DETAIL	no scale 1	GPS MINIMUM SKY VIEW REQUIREMENTS	NO SCALE	2	CABLES UNLIMITED HYBRID MINIMUM BEND RADIUSE
NOT USED	NO SCALE 4	NOT USED	NO SCALE	5	NOT USED
NOT USED	no scale 7	NOT USED	NO SCALE	8	NOT USED
				-	

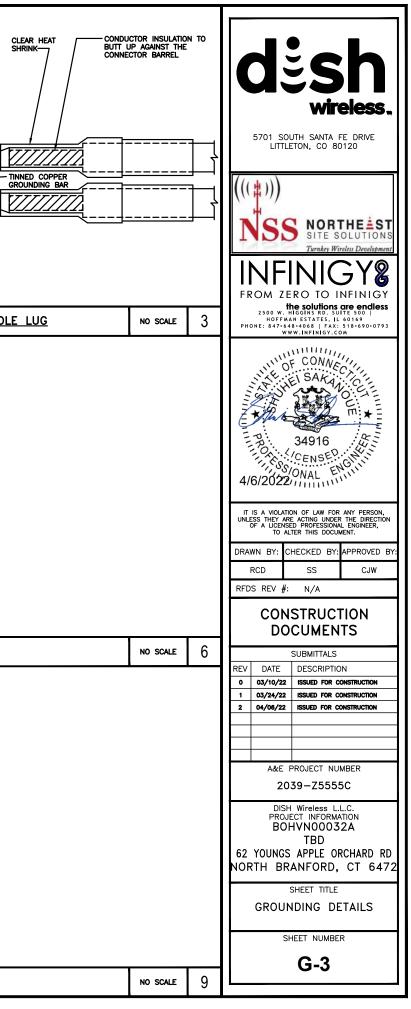




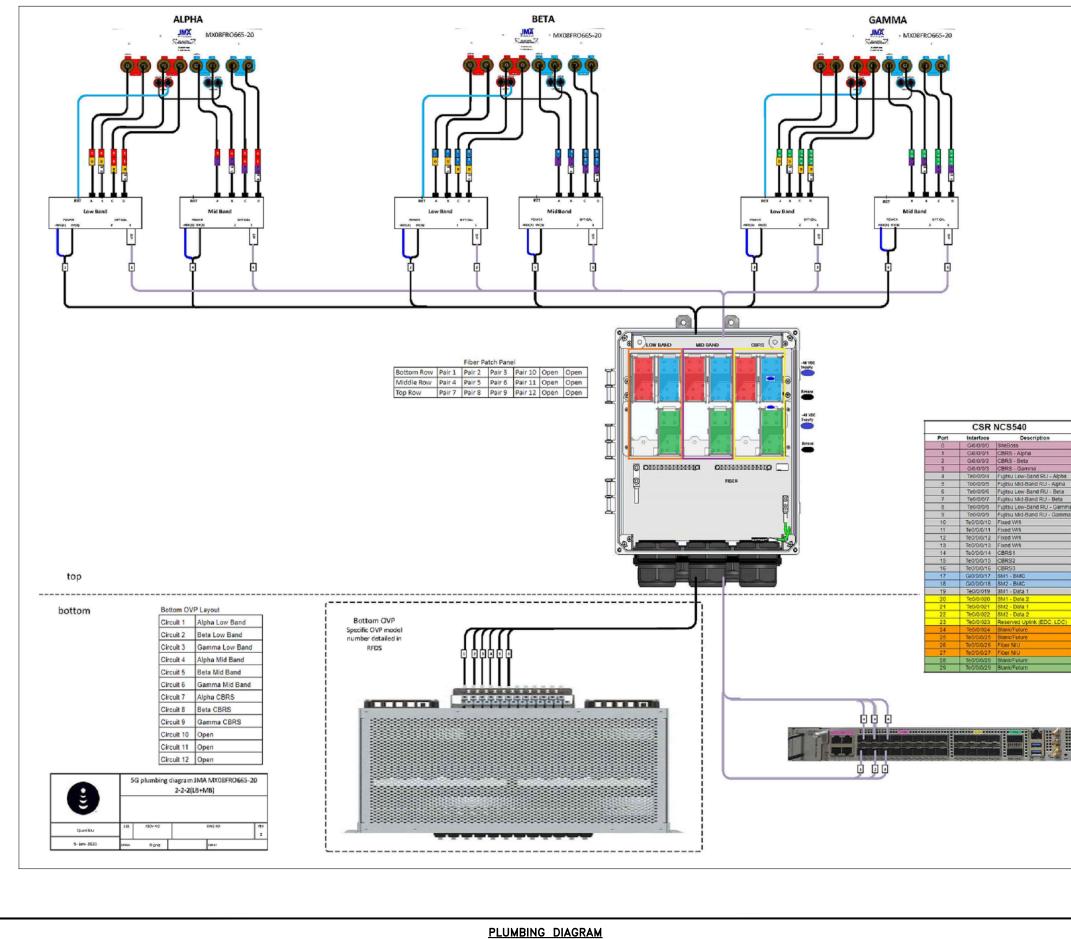

	<u>NOTES</u>					
COR. 404-424 ZB BREAKER, C.S. × BR.4 + 73.4 WX: PULJERN NG: 335, TABLE 4 - 0.6344 SQ. N. AREA. C. (MCLIONS 53, TABLE 4 - 0.6345 SQ. N. AREA. C. 0.0313 SQ. N.X 4 - 0.0345 SQ. N. C. 0.0313 SQ. N.X 4 - 0.0345 SQ. N. C. 0.0313 SQ. N.X 4 - 0.0345 SQ. N. C. 0.0313 SQ. N.X 4 - 0.0345 SQ. N. C. 0.0313 SQ. N.X 1 - 0.0321 SQ. N. AREA. A. (MCLIDING 2 AROUND WRES). C. 0.0313 SQ. N.X 3 - 0.0325 SQ. N. C. 0.0313 SQ. N.X 3 - 0.0325 SQ. N. C. 0.0313 SQ. N.X 3 - 0.0325 SQ. N. C. 0.0313 SQ. N.X 3 - 0.0325 SQ. N. C. 0.0313 SQ. N.X 3 - 0.0325 SQ. N. C. 0.0313 SQ. N.X 3 - 0.0325 SQ. N. C. 0.0314 SQ. N.X 3 - 0.0326 SQ. N. C. 0.0314 SQ. N.X 3 - 0.0326 SQ. N. C. 0.0314 SQ. N.X 3 - 0.0326 SQ. N. MICATED MARCH. NO SCALE 1			LL		•	
VE FIL FER NO 336, TABLE 4 - 0.0314 S.S. IN AREA 0.0021 S.D. IN X 2 - 0.0325 S.D. IN 0.0021 S.D. IN X 1 - 0.0313 S.D. IN CROUND 0.0021 S.D. IN X 1 - 0.0315 S.D. IN 0.0021 S.D. IN X 1 - 0.0315 S.D. IN 0.0021 S.D. IN X 1 - 0.0315 S.D. IN 0.0021 S.D. IN X 1 - 0.0321 S.D. IN 0.0021 S.D. IN X 1 - 0.0321 S.D. IN 0.0021 S.D. IN X 3 - 0.0324 S.D. IN 0.0021 S.D. IN X 3 - 0.0324 S.D. IN 0.0021 S.D. IN X 3 - 0.0324 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN 0.0021 S.D. IN X 1 - 0.0221 S.D. IN	FOR 20A-25A/2P BREAKER: 0.5 x 5 FOR 30A-35A/2P BREAKER: 0.5 x 7	55A = 27.5A 75A = 37.5A			žS	n
- 0.0133 SQ. IN X 1 - 0.0133 SQ. IN CROVING - 0.0785 SQ. IN OUNTE TO HANDLE THE TOTAL OR (19) WRES, AS INDICATED ABOVE: - 0.0138 SQ. IN X 3 - 0.0394 SQ. IN - 0.0475 SQ. IN - 0.0521 SQ. IN X 1 - 0.0521 SQ. IN - 0.0475 SQ. IN - 0.0476 IN INCLE - 1.216A SQ. IN AREA A (MCLUME - 1.216A SQ. IN - 0.0475 IN	X FILL PER NEC 358, TABLE 4 - CU. (INCLUDING 3 GROUND WIRES) - 0.0507 SQ. IN X 8 = 0.4056 SQ - 0.0366 SQ. IN X 8 = 0.0732 SQ	2. IN 2. IN	AREA		SOUTH SANTA	FE DRIVE
	- 0.0133 SQ. IN X 1 = 0.0133 SQ). IN <ground< th=""><th></th><th></th><th></th><th></th></ground<>				
WE FILL FER NEC 332,108 E4 - 1,2168 30, IN AREA - 0.0521 50, IN X 1 = 0.0521 50, IN - 0.0521 50, IN X 1 = 0.0521 50, IN - 0.0521 50, IN X 1 = 0.0521 50, IN - 0.0475 50, IN - 0.0475 50, IN OUNEE TO HANDLE THE TOTAL OR (3) WIRES, MINICATED ABOVE: NO SCALE NO SCALE 1	QUATE TO HANDLE THE TOTAL OR (1 AS INDICATED ABOVE.			(((‡)))		
- 0.4475 SO. IN OUNTE TO HANDLE THE TOTAL OR (3) WIRES. NO SCALE 1)% FILL PER NEC 352,TABLE 4 - 1. J. (INCLUDING 2 GROUND WIRES)		REA	NS	S NOR	THE ST
AS INDEXTED ABOVE NO SCALE 1 FROM ZERO TO INFINIGY TI 1 FROM ZERO TO INFINIGY TI 1	= 0.4475 S	SQ. IN		INF	Turnkey W	FY &
NO SOLE 1 PROPERTANCE CONSTRUCTION 34916 34916 34916 34916 34000000000000000000000000000000000000		,		-		-
In the Antional of Link role and performed in the Antional Performance in the		NO SCALE	1	HOFF PHONE: 847	MAN ESTATES, IL 648-4068 FAX:	60169 518-690-0793
UNLESS THE WARE VALUE TO REPORTED TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED B RCD SS CJW RFDS REV #: N/A CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION 0 03/10/22 ISSUE FOR CONSTRUCTION 1 03/24/22 ISSUE FOR CONSTRUCTION 2 04/06/22 ISSUE FOR CONSTRUCTION 2 05/06/07 ISSUE FOR CONSTRUCTION 2 05/06/07 ISSUE FOR CONSTRUCTION 2 05/06/07 ISSUE FOR CONSTRUCTION 2 05/07 ISSUE FOR CONSTRUCTION 2 05/07 ISSUE				LIVE HOR	OF CONVE	
RCD SS CJW RFDS REV #: N/A CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION 0 03/10/22 BSUED FOR CONSTRUCTION 1 03/24/22 BSUED FOR CONSTRUCTION 2 04/06/22 BSUED FOR CONSTRUCTION A&E PROJECT NUMBER 2039-Z5555C DISH WIRELES LLC: PROJECT INFORMATION BOHVN00032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 647 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3				UNLESS THEY OF A LICE	ARE ACTING UNDE	R THE DIRECTION
RFDS REV #: N/A CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION • 03/10/22 ISSUED FOR CONSTRUCTION 1 03/24/22 ISSUED FOR CONSTRUCTION 2 04/06/22 ISSUED FOR CONS				DRAWN BY:	CHECKED BY:	APPROVED B
CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION 0 03/10/22 ISSUED FOR CONSTRUCTION 1 03/24/22 ISSUED FOR CONSTRUCTION 2 04/06/22 ISSUED FOR CONSTRUCTION 3 039-Z5555C DISH Wireless LL.C. PROJECT INFORMATION BOHYNO0032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 647 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3						CJW
REV DATE DESCRIPTION 0 03/10/22 ISUED FOR CONSTRUCTION 1 03/24/22 ISUED FOR CONSTRUCTION 2 04/06/22 ISUED FOR CONSTRUCTION 3 A&E PROJECT NUMBER 2 039-Z5555C DISH Wireless LLC. PROJECT INFORMATION BOHVN00032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 647 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3 E-3				со	NSTRUC	
0 03/10/22 ISUED FOR CONSTRUCTION 1 03/24/22 ISUED FOR CONSTRUCTION 2 04/06/22 ISUED FOR CONSTRUCTION 3 04/06/22 ISUED FOR CONSTRUCTION 4 A&E PROJECT NUMBER 2 039-Z5555C DISH Wireless LL.C. PROJECT INFORMATION BOHVN00032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 647 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3 E-3						
2 04/06/22 ISSUED FOR CONSTRUCTION A&E PROJECT NUMBER 2039-Z5555C DISH Wireless LLC. PROJECT INFORMATION BOHVN00032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 647 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3						
A&E PROJECT NUMBER 2039–Z5555C DISH Wireless L.L.C. PROJECT INFORMATION BOHVN00032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 647 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3						
2039-Z5555C DISH Wireless L.L.C. PROJECT INFORMATION BOHVNO0032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 647 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3						
2039-Z5555C DISH Wireless L.L.C. PROJECT INFORMATION BOHVNO0032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 647 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3						
2039-Z5555C DISH Wireless L.L.C. PROJECT INFORMATION BOHVNO0032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 647 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3				A&E	PROJECT NU	IMBER
PROJECT INFORMATION BOHVN00032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 647 SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3				2	039–Z555	5C
SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3				PR(B(DJECT INFORM DHVN0003 TBD	ATION 52A
ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE SHEET NUMBER E-3				NORTH B	-	
E-3					AL ONE-LI	NE, FAULT
						R
		NO SCALE	4		⊑- 3	


TEST GROUND ROD WITH INSPECTION SLEEVE

---- #2 AWG STRANDED & INSULATED


- · - · · #2 AWG SOLID COPPER TINNED

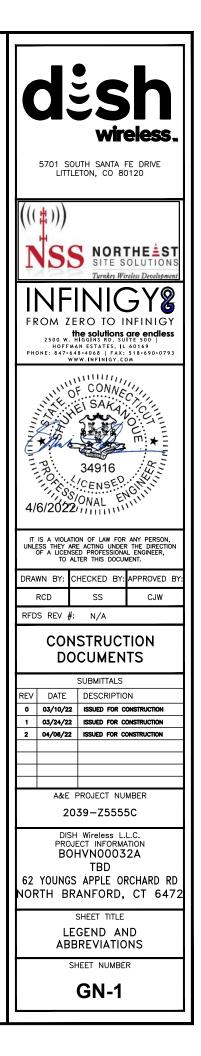
TES	NO SCALE	3	U
-----	----------	---	----------



 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GI BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BC THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRAC 7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	Larger. 25 with 1Pound 1Ductor Dlted on tor. 5		TOOTHED EXTERIOR TWO-HOLE SHRINK UV CONNECTORS OF A CONNECTORS	UCTOR INSULATIO	<u>}</u>	EXTERNAL TOOTHED 3/8" DIA x1 1/2" S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING
TYPICAL GROUNDING NOTES	NO SCALE	1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HOLI
	Washer (typ) Masher (typ) Masher (typ)					
LUG DETAIL	NO SCALE	4	NOT_USED	NO SCALE	5	NOT USED
<u>NOT_USED</u>	NO SCALE	7	<u>NOT_USED</u>	NO SCALE	8	<u>NOT_USED</u>

RF JUMPER COLOR CODING	3/4" TAPE WIDTHS WITH 3/4" SPACING	
LOW–BAND RRH – (600MHz N71 BASEBAND) + (850MHz N26 BAND) + (700MHz N29 BAND) – OPTIONAL PER MARKET	ALPHA RRH PORT 1 PORT 2 PORT 3 PORT 4 PORT 1 PORT 2 PORT 3 PORT 4 + SLANT + SLANT <t< th=""><th>LOW BANDS (N71-N28) OPTIONAL - (N29) ORANGE</th></t<>	LOW BANDS (N71-N28) OPTIONAL - (N29) ORANGE
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	ORANGE ORANGE RED ORANGE ORANGE BLUE BLUE ORANGE ORANGE GREEN GREEN WHITE (1) PORT ORANGE	CBRS TECH (3 GHz) YELLOW
MID-BAND RRH — (AWS BANDS N66+N70)	RED RED RED BLUE BLUE BLUE BLUE GREEN GREEN GREEN GREEN PURPLE PURPLE RED RED PURPLE PURPLE PURPLE PURPLE PURPLE GREEN GREEN GREEN GREEN	ALPHA SECTOR BETA
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BANDS)	WHITE (1) PORT PURPLE PURPLE PURPLE PURPLE PURPLE PURPLE WHITE (1) PORT	COLOR IDENTIFIE
HYBRID/DISCREET CABLES	EXAMPLE 1 EXAMPLE 2	
INCLUDE SECTOR BANDS BEING SUPPORTED AM LONG WITH FREQUENCY BANDS	RED RED BLUE BLUE	
EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS	GREEN GREEN ORANGE YELLOW	
EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS	PURPLE	
HYBRID/DISCREET CABLES	LOW BAND RRH HIGH BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH	
LOW-BAND RRH FIBER CABLES HAVE SECTOR STRIPE ONLY	RED BLUE BLUE GREEN GREEN PURPLE PURPLE PURPLE PURPLE	
POWER CABLES TO RRHs	LOW BAND RRH HIGH BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH LOW BAND RRH	
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED BLUE BLUE GREEN GREEN	
	PURPLE PURPLE PURPLE	<u>NOT_USED</u>
RET MOTORS AT ANTENNAS	PORT 1/ PORT 1/ ANTENNA 1 ANTENNA 1 "IN" IN" RED BLUE GREEN	
MICROWAVE RADIO LINKS	PRIMARY SECONDARY	
LINKS WILL HAVE A 1.5-2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE. ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO.	WHITE RED WHITE WHITE	
MICROWAVE CABINETS WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID'S.	WHITE RED WHITE	
	RF CABLE COLOR CODES NO SCALE	1 <u>NOT USED</u>

AWS (N65+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANTRRH WHITE TOR GAMMA S	SECTOR		DESCENSE UNDERSTANCE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDERSE UNDER
	NO SCALE	2	FROM ZERO TO INFINIGY the solutions are endless 2500 W. HIGGINS RD. SUITE 500 HOFFMAN ESTATES, IL 60169 PHONE: 847-648-4068 FAX: 518-690-0793 WWW.INFINIGY.COM
			TRANSFERRE 4/6/2022
			IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
			DRAWN BY: CHECKED BY: APPROVED BY: RCD SS CJW
			RFDS REV #: N/A CONSTRUCTION DOCUMENTS
	NO SCALE	3	SUBMITTALS
			REV DATE DESCRIPTION 0 03/10/22 ISSUED FOR CONSTRUCTION 1 03/24/22 ISSUED FOR CONSTRUCTION 2 04/06/22 ISSUED FOR CONSTRUCTION 3 04/06/22 ISSUED FOR CONSTRUCTION 4 04/06/22 ISSUED FOR CONSTRUCTION 4 04/06/22 ISSUED FOR CONSTRUCTION 3 04/06/22 ISSUED FOR CONSTRUCTION 4 04/06/22 ISSUED FOR CONSTRUCTION 4 04/06/22 ISSUED FOR CONSTRUCTION 5 0 0 4 0 0 5 0 0 6 0 0 5 0 0 6 0 0 6 0 0 6 0
			SHEET NUMBER
	NO SCALE	4	



			ANTIMICAL STATES, IS S
ipha pra eta amma amma			IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY:
			RCD SS CJW RFDS REV #: N/A CONSTRUCTION DOCUMENTS SUBMITTALS REV DATE DESCRIPTION 0 03/10/22 ISSUED FOR CONSTRUCTION 1 03/24/22 ISSUED FOR CONSTRUCTION 2 04/06/22 ISSUED FOR CONSTRUCTION
			A&E PROJECT NUMBER 2039-Z5555C DISH Wireless L.L.C. PROJECT INFORMATION BOHVN00032A TBD 62 YOUNGS APPLE ORCHARD RD NORTH BRANFORD, CT 6472 SHEET TITLE
	NO SCALE	1	RF PLUMBING DIAGRAM SHEET NUMBER RF-2

EXOTHERMIC CONNECTION	•
MECHANICAL CONNECTION	•
BUSS BAR INSULATOR	Ā
CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	
TEST CHEMICAL ELECTROLYTIC GROUNDING SYST	EM 😝T
EXOTHERMIC WITH INSPECTION SLEEVE	
GROUNDING BAR	
GROUND ROD	, i ⊢ ● [']
TEST GROUND ROD WITH INSPECTION SLEEVE	
SINGLE POLE SWITCH	\$
	Щ.
DUPLEX RECEPTACLE	Ψ
DUPLEX GFCI RECEPTACLE	
FLUORESCENT LIGHTING FIXTURE	F
(2) TWO LAMPS 48-T8	
SMOKE DETECTION (DC)	(SD)
	2
EMERGENCY LIGHTING (DC)	
SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW LED-1-25A400/51K-SR4-120-PE-DDBTXD	
CHAIN LINK FENCE	x x x x
WOOD/WROUGHT IRON FENCE	-0000
WALL STRUCTURE	/////////////////////////////////////</td
LEASE AREA	
PROPERTY LINE (PL)	
SETBACKS	
ICE BRIDGE	
CABLE TRAY	
WATER LINE	w w w w w
UNDERGROUND POWER	UGP UGP UGP UGP
UNDERGROUND TELCO	UGT UGT UGT UGT
OVERHEAD POWER	OHP OHP OHP
OVERHEAD TELCO	онт ——— онт ——— онт ——— онт ———
UNDERGROUND TELCO/POWER	UGT/P UGT/P UGT/P
ABOVE GROUND POWER	AGP AGP AGP AGP
ABOVE GROUND TELCO	AGT AGT AGT AGT
ABOVE GROUND TELCO/POWER	AGT/P AGT/P AGT/P
WORKPOINT	
SECTION REFERENCE	W.P.
DETAIL REFERENCE	XX X-X

AB	ANCHOR BOLT	IN	INCH
ABV AC	ABOVE ALTERNATING CURRENT	INT LB(S)	INTERIO POUND(
ADDL	ADDITIONAL	LE(3)	LINEAR
AFF	ABOVE FINISHED FLOOR	LTE	LONG T
AFG	ABOVE FINISHED GRADE	MAS	MASON
AGL AIC	ABOVE GROUND LEVEL AMPERAGE INTERRUPTION CAPACITY	MAX	MAXIMU
ALUM	ALUMINUM	MB MECH	MACHIN
ALT	ALTERNATE	MFR	MANUFA
ANT	ANTENNA	MGB	MASTER
APPRO		MIN	MINIMU
ARCH ATS	ARCHITECTURAL AUTOMATIC TRANSFER SWITCH	MISC MTL	MISCELI METAL
AWG	AMERICAN WIRE GAUGE	MTS	MANUAL
BATT	BATTERY	MW	MICROW
BLDG	BUILDING	NEC	NATION/
BLK BLKG	BLOCK BLOCKING	NM	NEWTON
BM	BEAM	NO. #	NUMBE NUMBEI
BTC	BARE TINNED COPPER CONDUCTOR	# NTS	NOT TO
BOF	BOTTOM OF FOOTING	oc	ON-CE
CAB		OSHA	OCCUP/
CANT CHG	CANTILEVERED CHARGING	OPNG	OPENIN
CLG	CEILING	P/C PCS	PRECAS
CLR	CLEAR	PCS	PERSON
COL	COLUMN	PRC	PRIMAR
COMM	COMMON CONCRETE	PP	POLARIZ
CONST		PSF	POUND
DBL	DOUBLE	PSI PT	POUND: PRESSL
DC	DIRECT CURRENT	PWR	POWER
DEPT	DEPARTMENT	QTY	QUANTI
DF DIA	DOUGLAS FIR DIAMETER	RAD	RADIUS
DIAG	DIAGONAL	RECT	RECTIFI
DIM	DIMENSION	REF REINF	REFERE
DWG	DRAWING	REQ'D	REQUIR
DWL	DOWEL	RET	REMOTE
EA EC	EACH ELECTRICAL CONDUCTOR	RF	RADIO
EL.	ELEVATION	RMC	RIGID N
ELEC	ELECTRICAL	RRH RRU	REMOTE
EMT	ELECTRICAL METALLIC TUBING	RWY	RACEWA
ENG EQ	ENGINEER EQUAL	SCH	SCHEDU
EXP	EXPANSION	SHT	SHEET
EXT	EXTERIOR	SIAD	SMART
EW	EACH WAY	SIM SPEC	SIMILAR
FAB	FABRICATION	SQ	SQUARE
FF FG	FINISH FLOOR FINISH GRADE	SS	STAINLE
FIF	FACILITY INTERFACE FRAME	STD	STANDA
FIN	FINISH(ED)	STL TEMP	STEEL TEMPOR
FLR	FLOOR	THK	THICKN
FDN		ТМА	TOWER
FOC FOM	FACE OF CONCRETE FACE OF MASONRY	TN	TOE NA
FOS	FACE OF STUD	TOA	TOP OF
FOW	FACE OF WALL	TOC TOF	TOP OF
FS	FINISH SURFACE	тор	TOP OF
FT FTG	FOOT FOOTING	TOS	TOP OF
GA	GAUGE	TOW	TOP OF
GEN	GENERATOR	TVSS	TRANSI
GFCI	GROUND FAULT CIRCUIT INTERRUPTER	TYP UG	TYPICAL UNDER(
GLB		UL	UNDER
GLV GPS	GALVANIZED GLOBAL POSITIONING SYSTEM	UNO	UNLESS
GPS	GROUND	UMTS	UNIVER
GSM	GLOBAL SYSTEM FOR MOBILE	UPS	UNITERI
HDG	HOT DIPPED GALVANIZED	VIF	VERIFIE
HDR	HEADER	w w/	WIDE WITH
HGR HVAC	HANGER HEAT/VENTILATION/AIR CONDITIONING	WD	WOOD
11046		WP	WEATHE
HT	HEIGHT		

IOR D(S) FEET TERM EVOLUTION NRY UM INE BOLT ANICAL FACTURER ER GROUND BAR IM LLANEOUS JAL TRANSFER SWITCH WAVE NAL ELECTRIC CODE ON METERS BER ER TO SCALE ENTER PATIONAL SAFETY AND HEALTH ADMINISTRATION ING CAST CONCRETE ONAL COMMUNICATION SERVICES ARY CONTROL UNIT ARY RADIO CABINET RIZING PRESERVING NDS PER SQUARE FOOT NDS PER SQUARE INCH SURE TREATED CABINET TITY IFIER RENCE ORCEMENT RED DTE ELECTRIC TILT FREQUENCY METALLIC CONDUIT DTE RADIO HEAD DTE RADIO UNIT WAY DULE INTEGRATED ACCESS DEVICE FICATION RE LESS STEEL DARD ORARY NESS MOUNTED AMPLIFIER AIL OF ANTENNA OF CURB OF FOUNDATION OF PLATE (PARAPET) OF STEEL OF WALL SIENT VOLTAGE SURGE SUPPRESSION CAL RGROUND RWRITERS LABORATORY SS NOTED OTHERWISE ERSAL MOBILE TELECOMMUNICATIONS SYSTEM RRUPTIBLE POWER SYSTEM (DC POWER PLANT) FIED IN FIELD **ERPROOF**

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH WIRE SLL.C. AND DISH WIRE SLL.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH WIRELESS L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELS LL.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

18. CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:

CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

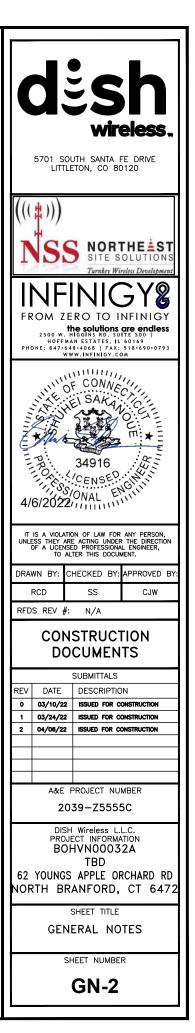
5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

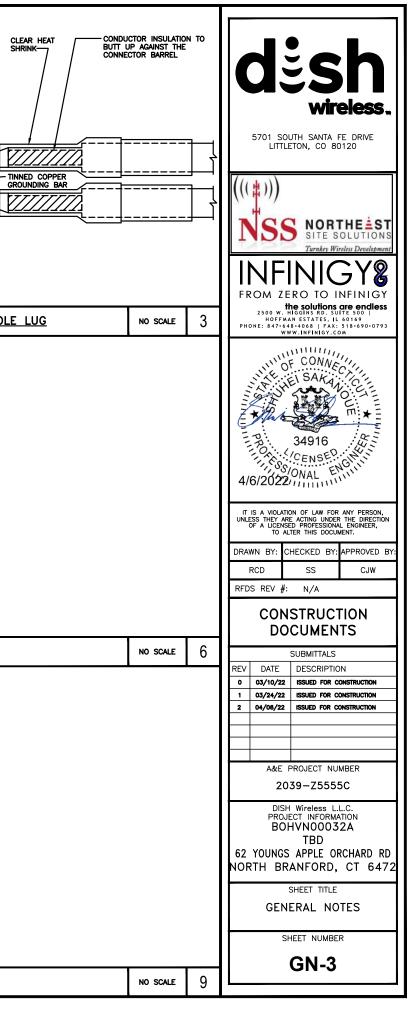
7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.


10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.


12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO GI BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BC THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR A REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	LARGER. ES WITH IPOUND IDUCTOR DLTED ON TOR. S	EXTERNAL TOOTHED S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING	UCTOR INSULATION UP AGAINST THE ECTOR BARREL	⊑√⊥ ∐√⊥	EXTERNAL INSPECTION WINDOW IN BARREL, REQUIRED FOR ALL INTERCTOR TWO-HOLE CONNECTORS S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT S/S FLAT S/S BOLT (1 OF 2) 1/16" MINIMUM SPACING
TYPICAL GROUNDING NOTES	no scale 1	TYPICAL EXTERIOR TWO HOLE LUG	NO SCALE	2	TYPICAL INTERIOR TWO HOLI
	WASHER (TYP) ASHER (TYP) ASHER (TYP)				
LUG DETAIL	NO SCALE 4	NOT USED	NO SCALE	5	NOT_USED
NOT USED	no scale 7	NOT USED	NO SCALE	8	<u>NOT USED</u>

GROUNDING NOTES:

BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.
4. METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
6. EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL

EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS. 7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE

OF THE GROUND BUS ARE PERMITTED.

8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED.

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

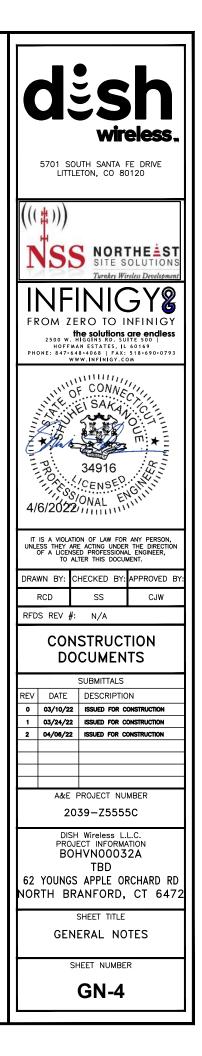
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.


17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

18. BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND CONDUCTOR.

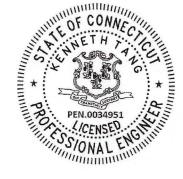
19. GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

Exhibit D

Structural Analysis Report


Structural Analysis of a 129 ft Self-Supporting Tower

Site Number Dish Wireless BOHVN00032A EIP: 701778 Site Name: Youngs Apple Orchard County: New Haven Location: North Branford, CT

Checked By:

IAA

Patrick Propert Structural Design Engineer III

2/10/2022

Two Allegheny Ctr

Nova Tower 2, Suite 703

Pittsburgh, PA 15212

February 2022

9 North Main Street, 2nd Floor, Cortland, NY 13045 (607)591-5381 Fax: (866)870-0840 www.ArmorTower.com February 10, 2022

Tom Rigg Everest Infrastructure Partners Two Allegheny Ctr) Nova Tower 2, Suite 703 Pittsburgh, PA 15212

RE: Dish Wireless – BOHVN00032A EIP – 701778 – Youngs Apple Orchard 62 Youngs Apple Orchard Rd, North Branford, CT

Tom:

We have completed the structural analysis of the subject tower and have found it to be adequate within the scope of this analysis to support the proposed antenna loading. The tower was analyzed according to the code wind and ice parameters outlined in the *Code Requirements Table* following this letter.

The subject tower is a 129 ft square self-supporting tower consisting of bolted angle legs and bracing. Tower face dimension ranges from 9.2' at the top to 24.3' at the base. Foundation capacities are based on a foundation mapping and geotechnical report by TEP dated September 2018.

The loading used in the analysis consisted of the existing antennas/lines as well as the following for Dish Wireless at 83 ft on a (3) Sabre THD 10' V-boom antenna frames:

- (3) MX08FRO665 antennas
- (3) TA08025-B604 RRUs, (3) TA08025-B605 RRUs
- (1) RDIDC-9181-PF-48 fed with (1) 1-5/8" hybrid cable installed as shown on E-7.

The results of the analysis showed all tower and apparent foundation elements to be loaded within allowable limits with a maximum stress rating of 79%. We recommend a post-construction inspection be completed by a structural engineer to document that tower-mounted equipment has been placed in compliance with the requirements of this analysis. For a detailed listing of tower performance, please see pages 34 to 35 of the calculations.

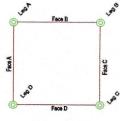
We appreciate the opportunity to provide our professional services to Everest Infrastructure and Dish Wireless and if you have any questions concerning this analysis, please contact us.

Sincerely,

ARMOR TOWER, INC.

Patrick Botimer Structural Design Engineer V

2/10/2022


CODE REQUIREMENTS

Governing code: Code basis/adoption: Referenced standard: Basic wind speed: (3-sec. gust):

County of site location: ASCE 7 Special wind region: Structure/Risk Category: Exposure Category: Topographic Category: (Method 1) Crest Height/Tower Base AMSL Elevation: Site Spectral Response:

PRIMARY ASSUMPTIONS CONSIDERED IN THIS PROJECT

- 1. Leg A is assumed to be oriented Northwest.
- 2. Allowable steel stresses are defined by AISC-LRFD-99/360-16 and all welds conform to AWS D1.1 specification.

- 3. If reserved antennas/feed lines by other carriers are to be considered in this analysis, it is the responsibility of Everest Infrastructure and its affiliates to provide this information.
- 4. Any deviation from the analyzed antenna loading will require a re-analysis of the tower for verification of structural integrity. This analysis has considered the proposed hybrid line to be installed on the tower face as shown on drawing E-7.
- 5. This analysis assumes all tower members are galvanized adequately to prevent corrosion of the steel and that all tower members are in "like new" condition with no physical deterioration. This analysis also assumes the tower has been maintained properly per TIA 222-G Annex J recommended inspection and maintenance procedures for tower owners and is in a plumb condition. Armor Tower has not completed a condition assessment of the tower.
- 6. No accounting for residual stresses due to incorrect tower erection can be made. This analysis assumes all bolts are appropriately tightened providing necessary connection continuity and that the installation of the tower was performed by a qualified tower erector.
- 7. Foundation capacities are based on a foundation mapping and geotechnical report by TEP dated September 2018.
- 8. No conclusions, expressed or implied, shall indicate that Armor Tower has made an evaluation of the original design, materials, fabrication, or potential installation or erection deficiencies. Any information contrary to that assumed for the purpose of preparing this analysis could alter the findings and conclusions stated herein.
- 9. Tower member sizes, geometry, and existing antenna loading are based on a tower analysis by Ramaker & Associates dated July 2019. It is our assumption that this data is complete and accurately

reflects the existing conditions of the tower and equipment. Armor Tower has not been commissioned to field-validate this data. Armor Tower reserves the right to add to or modify this report as more information becomes available. Proposed equipment was outlined in a ColoApp dated July 2021.

- 10. The investigation of the load carrying capacities of the antenna supporting frames/mounts is outside the scope of this analysis. Antenna mount certification can be completed under a separate contract.
- 11. Armor Tower can assist the contractor in providing a Class IV rigging plan for equipment lifting.

APPURTENANCE LOADING	122 ELEVATION 152 BEISSON IRY 112 BIA (TWO-LegN) 122 Elevenon (KY 112 BIA (TWO-LegN) 132 Elevenon (KY 112 BIA (TMO-LegN)	125 125	Erlosson Radio 4448 B12/B71 (TMO-LegC) Friescon Barlio 4448 B12/B71 (TMO-LegC)	126 Ericsson RRUS 4415 B25 (TMO-LegA)	125 Eriosson RRUS 4416 B25 (TMO-LegC) 125 Eriosson RRUS 4416 B25 (TMO-LegC)	125 Rado 4415 B66A(TMOLogA)	125 (1992) (1992	156 (2) 2.55°Schild of 160 (1700-claph) (2) 2.55°Schild of 160 (1700-claph)	125 (2.2.5%sh40 x 15ft (TMO-LegC)	125 [2] 2.5°Servio x 15h (TMO-LegD) 125 6h ettororicate rTMO:	APXVAARR24_43-U-NA20 w. MigPpø (TMO-LegA)	125 MXX06FRC0665 w Mtg Pipe (P-DM-Alpha)	125 MXQ9FRC965 v, Mig Pipe (P-DW-Beta) 125 MX09FRC9655 v, Mir Pipe (P-DW-Deta)	125 T708025-B604 RFU (P-DW-Alpha)	TDRH-80-2020 (BL-462) 128 T-10020-8804 RRU (PDW-880)	125 TA08025-B804 RFU (P-DW-Gamma)	Beterkhommen ShiTroy For American ShiTroy (2014) (2	125 Tarter Transaction	117.6 Reproductive Convolutional	(117.5 Satisfield of the Satis	Sabre THD 10' V-Boom (P-DW-Beta)	100 Sative THD 10' V-Boom (P-DW-Gairma)	RPXINAMER24_ALUHARDIN MIGPRE (TINCLARD) 84 Control 765	94			MARK SIZE MARK SIZE			GRADE Ev MAIEKIALSIKEIGIH	36 ksi		ABE EXENTED A	1. Tower is located in New Haven Country Connecticut	MAX. CORNER REACTIONS AT BA; 2: Tower designed for Exposure to the In-222-of Standard.	DOWN, 106215, 5. Towar user year of a softwind the above with the Intercol softwind with 0.75 minet. Part 200 minet parts with with 0.75 minet parts with the part 200 minet parts with with 0.75 minet parts		UPLFF: -846441b 0. ION-STRUCTURE Class II.		O contractions use generation stress databatized actaco batta in trans and locating adverses. Issued Acta 20 and Acta 222 and Alcs Specifications. 9. Orwer members are thin cloneer" advantized in accordance with Activ Acta Acta Acta Acta Acta Acta Acta Acta	AZAL 10. Tower Rating: 78.9%	2011 7 7 7 131401 lb	(12950/b / 1058 ki2-ft	OROUF 27 Vin	So mph WWD 0.7500 in ICE		Second Se	(CIN GHIOT GONG	$\underline{ARMOR}_{NMOR} = 0 \text{ norm} LIVE LIVE TO $	Cortland, NY 13045 Client Everest Infrastructure Partners - 701778 Drawn by: PB	Fhore: 607-645-5391 Cover TA-222-G 2016:021-0225-941 Cover TA-222-G 2017:0225 Senter, NTS	Рабл.	
97882 274 20 L 29991 62405	9'6 2990		99	2 2	129	2		425	15.6	22	**		6 21.8	© z		1.82	5			563.3	11				¥196						81	05.81				3.0137					8.4	Z 🕲	2			6	1838				9.0211		(y) ð	@ s	Pane Pane Meight	#						
A.N			-			-		222	27		_	_					91/8	XZX	2/1.3	57							-									.A.N						L			91.	1\5×3	. 2021	121				_			H .be:							
.А.И .А.И	91/8×3/16	1.50		91	1\5×3/	3×3			27			91	L/EXZ	רסא	_				-	-						_		-	-	L/EX				~								-				/1×2/				+					ed. D	-						
A.A.	₽.£1%€	SO CE										_	-	_	_								-				XML	xzxz		-																				 +		-16		elistri	ozitoł	н						
A.N A	- 25						-	3							1	1		-	1		1			-	96A A.N								1	1				-	-											-		a	pere		ob ek	-						
.А.И		8/E×8/	5×5×3	1.21	5		193	Γ			8/	EXP/	LXZX	2/1.2	אר									-						1				8/	e×8/8	×6×2	11 27	51												 +		9			TODEK	-						
		8/6%				-		-					/L×GX						T				9	9EA			_	-			T											-	-							1				epei	ið ga	n						
1		01010						1				1.5					- 6		1					-	xox			-	-	-	1										-									 	-					-						

13

21

41

C/LXgXg7

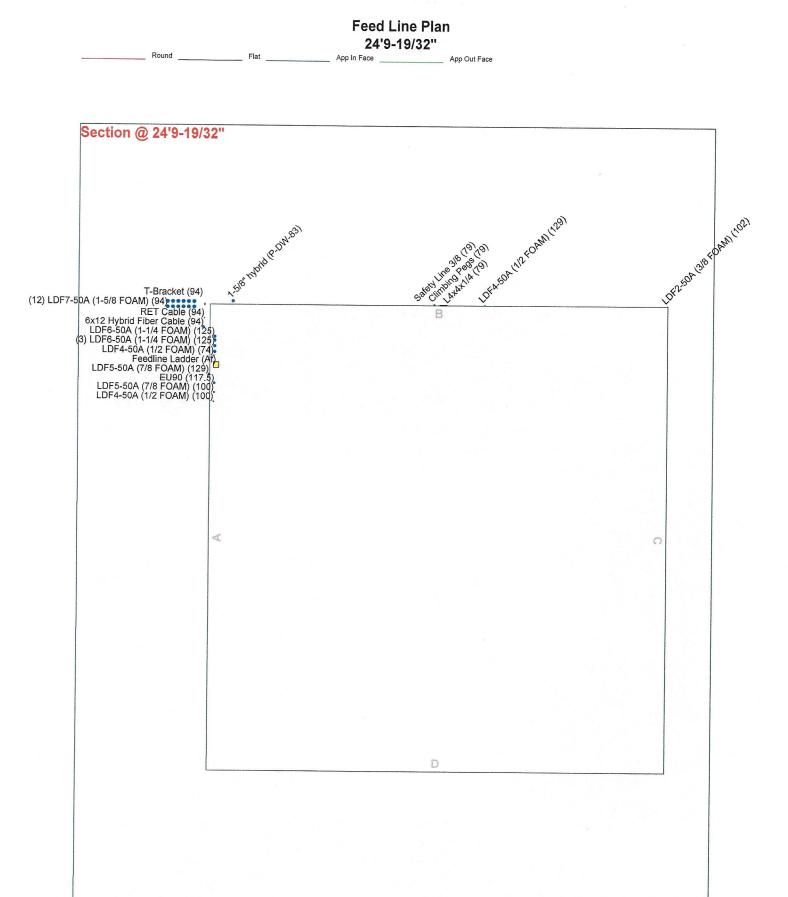
\$1

*1

C6x6x1/2

91

8/9×9×97


4

Z/L×8×81

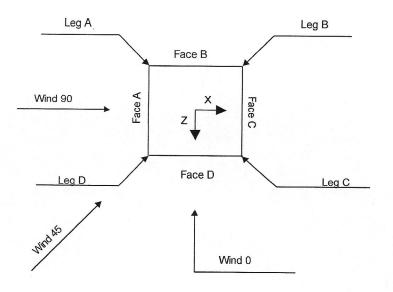
81

s6aŋ

noitoe2

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 1 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Tower Input Data


The main tower is a 4x free standing tower with an overall height of 129.00 ft above the ground line. The base of the tower is set at an elevation of 0.00 ft above the ground line. The face width of the tower is 9.17 ft at the top and 24.33 ft at the base. This tower is designed using the TIA-222-G standard. The following design criteria apply: Tower is located in New Haven County, Connecticut. ASCE 7-10 Wind Data is used (wind speeds converted to nominal values). Basic wind speed of 98 mph. Structure Class II. Exposure Category C. Topographic Category 1. Crest Height 0.00 ft. Nominal ice thickness of 0.7500 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. Connections use galvanized A325 bolts, nuts and locking devices. Installation per TIA/EIA-222 and AISC Specifications. Tower members are "hot dipped" galvanized in accordance with ASTM A123 and ASTM A153 Standards. Pressures are calculated at each section. Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options Consider Moments - Legs Distribute Leg Loads As Uniform Use ASCE 10 X-Brace Ly Rules Consider Moments - Horizontals Assume Legs Pinned ✓ Calculate Redundant Bracing Forces Consider Moments - Diagonals Assume Rigid Index Plate Ignore Redundant Members in FEA Use Moment Magnification Use Clear Spans For Wind Area SR Leg Bolts Resist Compression Use Code Stress Ratios Use Clear Spans For KL/r All Leg Panels Have Same Allowable Use Code Safety Factors - Guys Retension Guys To Initial Tension Offset Girt At Foundation Escalate Ice Bypass Mast Stability Checks Consider Feed Line Torque Always Use Max Kz Use Azimuth Dish Coefficients Include Angle Block Shear Check Use Special Wind Profile Project Wind Area of Appurt. Use TIA-222-G Bracing Resist. Exemption Include Bolts In Member Capacity Use TIA-222-G Tension Splice Exemption Autocalc Torque Arm Areas Leg Bolts Are At Top Of Section Add IBC .6D+W Combination Poles Secondary Horizontal Braces Leg Sort Capacity Reports By Component Include Shear-Torsion Interaction Use Diamond Inner Bracing (4 Sided) Triangulate Diamond Inner Bracing Always Use Sub-Critical Flow SR Members Have Cut Ends Treat Feed Line Bundles As Cylinder Use Top Mounted Sockets SR Members Are Concentric Ignore KL/ry For 60 Deg. Angle Legs Pole Without Linear Attachments

Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 2 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Square Tower

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number	Section
	Lievanon	Duiubuse		w iain	of Sections	Length
	ft			ft		ft
T1	129.00-124.80			9.17	1	4.20
T2	124.80-112.50			9.66	1	12.30
Т3	112.50-100.20			11.11	î	12.30
T4	100.20-87.50			12.55	î	12.70
T5	87.50-74.80			14.05	î	12.70
T6	74.80-49.60			15.54	î	25.20
T7	49.60-24.80			18.50	1	24.80
T8	24.80-0.00			21.42	1	24.80

Tower Section Geometry (cont'd)

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Gir Offset
	ft	ft		Panels		in	in
T1	129.00-124.80	4.20	X Brace	No	Yes	0.0000	0.0000
T2	124.80-112.50	12.30	K1 Down	No	Yes	0.0000	0.0000
T3	112.50-100.20	12.30	K1 Down	No	Yes	0.0000	0.0000
T4	100.20-87.50	12.70	K1 Down	No	Yes	0.0000	0.0000
T5	87.50-74.80	12.70	K1 Down	No	Yes	0.0000	0.0000
T6	74.80-49.60	25.20	K3A Down	No	Yes	0.0000	0.0000
T7	49.60-24.80	24.80	K3A Down	No	Yes	0.0000	0.0000
T8	24.80-0.00	24.80	K3A Down	No	Yes	0.0000	0.0000

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 3 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagona
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						
T1 129.00-124.80	Equal Angle	L4x4x3/8	A36	Solid Round		A572-50
			(36 ksi)			(50 ksi)
Г2 124.80-112.50	Equal Angle	L4x4x3/8	A36	Double Angle	2L2 1/2x2x3/8x3/8	A36
			(36 ksi)			(36 ksi)
ГЗ 112.50-100.20	Equal Angle	L4x4x3/8	A36	Double Angle	2L2 1/2x2x3/8x3/8	A36
			(36 ksi)			(36 ksi)
T4 100.20-87.50	Equal Angle	L5x5x1/2	A36	Double Angle	2L2 1/2x2x1/4x3/8	A36
			(36 ksi)			(36 ksi)
T5 87.50-74.80	Equal Angle	L5x5x1/2	A36	Double Angle	2L2 1/2x2x1/4x3/8	A36
			(36 ksi)			(36 ksi)
T6 74.80-49.60	Equal Angle	L6x6x1/2	A36	Double Angle	2L2 1/2x3x3/8x3/8	A36
			(36 ksi)	Ũ		(36 ksi)
T7 49.60-24.80	Equal Angle	L6x6x5/8	A36	Double Angle	2L2 1/2x3x3/8x3/8	A36
			(36 ksi)			(36 ksi)
T8 24.80-0.00	Equal Angle	L8x8x1/2	A36	Double Angle	2L2 1/2x3x3/8x3/8	A36
			(36 ksi)			(36 ksi)

		Tower	Section (Geometry ((cont'd)	
Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
Г1 129.00-124.80	Solid Round	5/16	A36 (36 ksi)	Solid Round	auronio da una contra de 1478 de 1970 de contra do 2010 de 2010	A36 (36 ksi)

Tower Section Geometry (cont'd)

Tower Elevation	No. of	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
ft	Mid Girts	-SF		Grade	Type	5126	Grude
12 124.80-112.50	None	Flat Bar		A36 (36 ksi)	Channel	C9x13.4	A36 (36 ksi)
112.50-100.20	None	Flat Bar		A36 (36 ksi)	Double Angle	2L2 1/2x2x1/4x3/8	(36 ksi) (36 ksi)
T4 100.20-87.50	None	Flat Bar		A36 (36 ksi)	Double Angle	2L2 1/2x2x1/4x3/8	A36 (36 ksi)
T5 87.50-74.80	None	Flat Bar		A36 (36 ksi)	Double Angle	2L2 1/2x2x1/4x3/8	(36 ksi)
T6 74.80-49.60	None	Flat Bar		A36 (36 ksi)	Double Angle	2L2 1/2x2x1/4x3/8	A36
T7 49.60-24.80	None	Flat Bar		A36	Double Angle	2L2 1/2x2x1/4x3/8	(36 ksi) A36
T8 24.80-0.00	None	Flat Bar		(36 ksi) A36 (36 ksi)	Double Angle	2L2 1/2x2x1/4x3/8	(36 ksi) A36 (36 ksi)

9 North Main

Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

ſ

Job	Page
129' Sqr SELF-SUPPORTING TOWER ANALYSIS	4 of 35
Project	Date
Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	09:58:35 02/10/22
Client	Designed by
Everest Infrastructure Partners - 701778	PB

Tower Section Geometry (cont'd)

Tower Elevation ft	Secondary Horizontal Type	Secondary Horizontal Size	Secondary Horizontal Grade	Inner Bracing Type	Inner Bracing Size	Inner Bracing Grade
Г1 129.00-124.80	Solid Round		A572-50 (50 ksi)	Single Angle	L2 1/2x2x3/16	A36
Г2 124.80-112.50	Solid Round		(50 ksi) A572-50 (50 ksi)	Single Angle	L2 1/2x2x3/16	(36 ksi) A36
ГЗ 112.50-100.20	Solid Round		(50 ksl) A572-50 (50 ksl)	Single Angle	L2 1/2x2x3/16	(36 ksi) A36
T4 100.20-87.50	Solid Round		À572-50	Single Angle	L2 1/2x2x3/16	(36 ksi) A36
T5 87.50-74.80	Solid Round		(50 ksi) A572-50	Single Angle	L2 1/2x2x3/16	(36 ksi) A36
T6 74.80-49.60	Solid Round		(50 ksi) A572-50	Single Angle	L2 1/2x2x3/16	(36 ksi) A36
T7 49.60-24.80	Solid Round		(50 ksi) A572-50	Single Angle	L2 1/2x2x3/16	(36 ksi) A36
T8 24.80-0.00	Solid Round		(50 ksi) A572-50 (50 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	(36 ksi) A36 (36 ksi)

Tower Elevation	Redundant Bracing		Redundant Type	Redundant Size	K Factor
ft	Grade				
T2	A36	Horizontal (1)	Single Angle	L2x2x3/16	1
4.80-112.50	(36 ksi)	Diagonal (1)	Single Angle	L2x2x3/16	1
		Hip (1)	Equal Angle	L2x2x3/16	1
T3	A36	Horizontal (1)	Single Angle	L2x2x3/16	1
12.50-100.20	(36 ksi)	Diagonal (1)	Single Angle	L2x2 1/2x3/16	î
		Hip (1)	Equal Angle	L2x2x3/16	1
T4	A36	Horizontal (1)	Single Angle	$L_{2x2x3/16}$	î
100.20-87.50	(36 ksi)	Diagonal (1)	Single Angle	L2x2x3/16	1
		Hip (1)	Equal Angle	L2x2x3/16	1
T5	A36	Horizontal (1)	Single Angle	L2x2x3/16	1
87.50-74.80	(36 ksi)	Diagonal (1)	Single Angle	L2x2x3/16	1
		Hip (1)	Equal Angle	L2x2x3/16	1
T6	A36	Horizontal (1)	Single Angle	L2 1/2x2x3/16	1
74.80-49.60	(36 ksi)	Horizontal (2)	0 -0-	$L_2 1/2x_2x_3/16$	1
		Horizontal (3)		L2 1/2x2x3/16	
		Diagonal (1)	Single Angle	L2x2 1/2x3/16	1
		Diagonal (2)		L2x2 1/2x3/16	
		Diagonal (3)		L2x2 1/2x3/16	
Τ7	A36	Horizontal (1)	Single Angle	L2 1/2x2x3/16	1
49.60-24.80	(36 ksi)	Horizontal (2)		L2 1/2x2x3/16	
		Horizontal (3)		L2 1/2x2x3/16	
		Diagonal (1)	Single Angle	L2x2 1/2x3/16	1
		Diagonal (2)		L2x2 1/2x3/16	
		Diagonal (3)		L2x2 1/2x3/16	
8 24.80-0.00	A36	Horizontal (1)	Single Angle	L2 1/2x2x1/4	1
	(36 ksi)	Horizontal (2)		L2 1/2x2x1/4	
		Horizontal (3)		L2 1/2x2x1/4	
		Diagonal (1)	Single Angle	L2x2 1/2x1/4	1

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 5 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Grade
Diagonal (2)

Bracing

Elevation

ft

Туре

Diagonal (3)

L2x2 1/2x1/4 L2x2 1/2x1/4

Size

Tower Section Geometry (cont'd)

Tower Elevation ft	Gusset Area (per face) ft ²	Gusset Thickness in	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
T1 129.00-124.80	0.00	0.0000	A36 (36 ksi)	1.03	1	1.1	36.0000	36.0000	36.0000
T2 124.80-112.50	0.00	0.0000	A36 (36 ksi)	1.03	1	1.1	21.0000	58.0000	36.0000
T3 112.50-100.20	0.00	0.0000	A36 (36 ksi)	1.03	1	1.1	24.0000	19.0000	36.0000
T4 100.20 - 87.50	0.00	0.0000	A36 (36 ksi)	1.03	1	1.1	21.0000	28.0000	36.0000
T5 87.50-74.80	0.00	0.0000	A36 (36 ksi)	1.03	1	1.1	24.0000	28.0000	36.0000
T6 74.80-49.60	0.00	0.0000	A36 (36 ksi)	1.03	1	1.1	19.0000	21.0000	36.0000
Г7 49.60-24.80	0.00	0.0000	A36 (36 ksi)	1.03	1	1.1	19.0000	20.0000	22.0000
T8 24.80-0.00	0.00	0.0000	A36 (36 ksi)	1.03	1	1.1	20.0000	21.0000	24.0000

Tower Section Geometry (cont'd)

						K Fac	ctors ¹			
Tower Elevation ft	Calc K Single Angles	Calc K Solid Rounds	Legs	X Brace Diags X Y	K Brace Diags X Y	Single Diags X Y	Girts X	Horiz. X Y	Sec. Horiz. X V	Inner Brace X V
T1	No	No	1	1	1	1	1	1	<u>I</u> 1	<i>I</i> 1
129.00-124.80	110	110	1	1	1	1	1	1	1	1
T2	No	No	1	1	0.5	1	1	1	1	1
124.80-112.50 T3	No	No		1	0.5	1	1	1	1	1
112.50-100.20	INO	No	1	1	0.5	1	1	1	1	1
T4	No	No	1	1	0.5	1	1	1	1	1
100.20-87.50	110	140	1	1	0.5 0.5	1	1	1	1	1
T5 87.50-74.80	No	No	1	1	0.5	1	1	1	1	1
T6	No	No	1	1	0.5 1	1 1	1 1	1	1	1
74.80-49.60				1	0.667	1	1	1	î	î
T7	No	No	1	1	1	1	1	ī	1	1
49.60-24.80				1	0.667	1	1	1	1	1
T8 24.80-0.00	No	No	1	1	1	1	1	1	î	î
				1	0.667	1	1	1	1	1

¹Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 6 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Tower Section Geometry (cont'd)

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Botton	n Girt	Mid	Girt	Long Ho	orizontal	Short Ho	orizontal
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
129.00-124.80														
T2	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
124.80-112.50	1													
T3	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
112.50-100.20 T4	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000							
100.20-87.50	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
Γ5 87.50-74.80	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	
6 74.80-49.60		1	1							0.75	0.0000	0.75	0.0000	0.75
		1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
7 49.60-24.80		1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 24.80-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation ft	Reduna Horizor		Redund Diago		Redund Sub-Diag		Redui Sub-Hoi		Redundar	t Vertical	Redunda	ant Hip	Redunda Diag	-
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 129.00 - 124.80	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 124.80-112.50	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T3 112.50-100.20	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 100.20-87.50	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 87.50-74.80	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 74.80-49.60	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
Т7 49.60-24.80		0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T8 24.80-0.00	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

	Tower Section Geometry (cont'd)														
Tower Elevation ft	Elevation Connection														
		Bolt Size in	No.	<i>Bolt Size</i> in	No.	Bolt Size	No.	Bolt Size in	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
T1 29.00-124.80	Sleeve SS	0.6250 A307	0	0.6250 A307	0	0.6250 A307	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A307	0	0.6250 A325N	0
T2 24.80-112.50	Sleeve SS	0.6250 A307	0	0.6250 A307	2	0.6250 A307	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A307	3	0.6250 A325N	0

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Job	Page
129' Sqr SELF-SUPPORTING TOWER ANALYSIS	7 of 35
	Date
Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	09:58:35 02/10/22
Client	Designed by
Everest Infrastructure Partners - 701778	PB

Tower Elevation ft	Leg Connection Type	Leg		Diagor	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hor	izontal
5	-77-	Bolt Size in	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
T3	Sleeve SS	0.6250	24	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
112.50-100.20		A307		A307		A307		A325N		A325N		A307		A325N	
T4	Sleeve SS	0.6250	0	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
100.20-87.50		A307		A307		A307		A325N		A325N		A307		A325N	, i
T5 87.50-74.80	Sleeve SS	0.6250	24	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
		A307		A307		A307		A325N		A325N		A307		A325N	Ŭ
T6 74.80-49.60	Sleeve SS	0.6250	32	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
		A307		A307		A307		A325N		A325N		A307		A325N	0
T7 49.60-24.80	Sleeve SS	0.6250	40	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
		A307		A307		A307		A325N		A325N	5	A307	-	A325N	0
T8 24.80-0.00	Sleeve SS	0.6250	48	0.6250	2	0.6250	0	0.6250	0	0.6250	0	0.6250	2	0.6250	0
		A307		A307		A307		A325N	, in the second s	A325N	5	A307	-	A325N	0

Tower Section Geometry (cont'd)

Tower Elevation ft	Reduna Horizon		Reduna Diagon		Redunc Sub-Diag		Redun Sub-Hor		Redundani	Vertical	Redunda	int Hip	Redunda Diago	
	Bolt Size in	No.	Bolt Size in	No.	Bolt Size	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size in	No.	Bolt Size	No.
T1 129.00-124.80	0.6250 A307	1	0.6250 A307	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A307	1	0.6250 A307	1
T2 124.80-112.50	0.6250 A307	1	0.6250 A307	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A307	1	0.6250 A307	1
T3 112.50-100.20	0.6250 A307	1	0.6250 A307	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A307	1	0.6250 A307	1
T4 100.20 - 87.50	0.6250 A307	1	0.6250 A307	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A307	1	0.6250 A307	1
Г5 87.50-74.80	0.6250 A307	1	0.6250 A307	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A307	1	0.6250 A307	1
Гб 74.80-49.60	0.6250 A307	1	0.6250 A307	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A307	1	0.6250 A307	1
Г7 49.60-24.80	0.6250 A307	1	0.6250 A307	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A307	1	0.6250 A307	1
T8 24.80-0.00	0.6250 A307	1	0.6250 A307	1	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A307	1	0.6250 A307	1

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
L4x4x1/4 (129)	D	No	No	Af (CaAa)	129.00 -	0.0000	0.01	1	1	4.0000	4.0000		6.00
L4x4x1/4 (79)	В	No	No	Af (CaAa)	79.00 - 0.00	0.0000	0.01	1	1	4.0000	4.0000		6.00
Climbing Pegs (129)	D	No	No	Ar (CaAa)	129.00 - 75.00	0.0000	-0.01	1	1	0.8800	0.8800		0.50
Climbing Pegs	В	No	No	Ar (CaAa)	79.00 - 0.00	0.0000	-0.01	1	1	0.8800	0.8800		0.50

Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS Project Date

ARMOR TOWER, INC 9 North Main

Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840 Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT Client Everest Infrastructure Partners - 701778

09:58:35 02/10/22 Designed by PB

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Туре	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
(79) Safety Line 3/8	D	No	No	Ar (CaAa)	129.00 - 75.00	0.0000	0	1	1	0.0000 0.3750	0.3750		0.22
(129) Safety Line 3/8 (79) *	В	No	No	Ar (CaAa)	79.00 - 0.00	0.0000	0	1	1	0.3750	0.3750		0.22
LDF4-50A (1/2 FOAM) (129) *	В	No	No	Ar (CaAa)	129.00 - 0.00	0.0000	0.1	1	1	0.6300	0.6300		0.15
LDF5-50A (7/8 FOAM) (129) *	A	No	No	Ar (CaAa)	129.00 - 0.00	0.0000	0.35	1	1	1.0900	1.0900		0.33
LDF6-50A (1-1/4 FOAM) (125)	Α	No	No	Ar (CaAa)	125.00 - 0.00	-2.0000	0.41	3	3	1.5500	1.5500		0.66
LDF6-50A (1-1/4 FOAM) (125)	Α	No	No	Ar (CaAa)	125.00 - 0.00	-2.0000	0.43	1	1	1.5500	1.5500		0.66
Feedline Ladder (Af) *	Α	No	No	Af (CaAa)	125.00 - 0.00	-2.0000	0.37	1	1	3.0000	3.0000		8.40
EU90 (117.5) *	Α	No	No	Ar (CaAa)	117.50 - 0.00	-2.0000	0.33	1	1	1.2900	1.2900		0.34
LDF2-50A (3/8 FOAM) (102) *	В	No	No	Ar (CaAa)	102.00 - 0.00	0.0000	0.5	1	1	0.4400	0.4400		0.08
LDF5-50A (7/8 FOAM) (100)	Α	No	No	Ar (CaAa)	100.00 - 0.00	-2.0000	0.31	1	1	1.0900	1.0900		0.33
LDF4-50A (1/2 FOAM) (100)	A	No	No	Ar (CaAa)	100.00 - 0.00	-2.0000	0.29	1	1	0.6300	0.6300		0.15
LDF7-50A 1-5/8 FOAM) (94)	Α	No	No	Ar (CaAa)	94.00 - 0.00	8.0000	0.5	12	2	1.0000	1.9800		0.82
RET Cable (94)	А	No	No	Ar (CaAa)	94.00 - 0.00	3.0000	0.47	1	1	0.4400	0.4400		0.08
6x12 Hybrid Fiber Cable (94)	Α	No	No	Ar (CaAa)	94.00 - 0.00	3.0000	0.45	1	1	1.4300	1.4300		1.72
T-Bracket (94) *	Α	No	No	Af (CaAa)	94.00 - 0.00	3.0000	0.5	1		0.7500 1.0000	1.0000		1.50
LDF4-50A (1/2 FOAM) (74) *	A	No	No	Ar (CaAa)	74.00 - 0.00	-2.0000	0.39	1	1	0.6300	0.6300		0.15
DishWireless Feb2022 I-5/8" hybrid (P-DW-83)	В	No	No	Ar (CaAa)	83.00 - 0.00	1.0000	-0.45	1	1	1.6250	1.6250		0.67

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 9 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number	$C_A A_A$	Weight
	Leg		Torque	~1	ft		ft²/ft	plf
			Calculation					

ver Tower ion Elevation	Face	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
ft		ft^2	ft^2	ft^2	ft^2	lb
129.00-124.80	А	0.000	0.000	0.682	0.000	4
	В	0.000	0.000	0.265	0.000	1
	С	0.000	0.000	0.000	0.000	0
	D	0.000	0.000	3.327	0.000	28
2 124.80-112.50	Α	0.000	0.000	15.762	0.000	142
	В	0.000	0.000	0.775	0.000	2
	С	0.000	0.000	0.000	0.000	õ
	D	0.000	0.000	9.744	0.000	83
112.50-100.20	Α	0.000	0.000	16.703	0.000	144
	В	0.000	0.000	0.854	0.000	2
	С	0.000	0.000	0.000	0.000	õ
	D	0.000	0.000	9.744	0.000	83
100.20-87.50	Α	0.000	0.000	37.139	0.000	240
	В	0.000	0.000	1.359	0.000	3
	С	0.000	0.000	0.000	0.000	0
	D	0.000	0.000	10.061	0.000	85
87.50-74.80	Ă	0.000	0.000	54.098	0.000	322
	В	0.000	0.000	6.019	0.000	322
	Č	0.000	0.000	0.019	0.000	0
	D	0.000	0.000	9.902	0.000	
74.80-49.60	A	0.000	0.000	9.902 108.881		84
77.00-79.00	B	0.000	0.000		0.000	642
	C	0.000	0.000	26.754 0.000	0.000	192
	D	0.000	0.000		0.000	0
49.60-24.80	A	0.000	0.000	0.000	0.000	0
77.00-24.00	B	0.000	0.000	107.202	0.000	632
	Б С	0.000		26.329	0.000	189
	D	0.000	0.000	0.000	0.000	0
24.80-0.00	A	0.000	0.000	0.000 107.202	0.000	0
24.00-0.00	B	0.000	0.000		0.000	632
	С	0.000	0.000	26.329	0.000	189
	C	0.000	0.000	0.000	0.000	0

Feed Line/Linear Appurtenances Section Areas - With Ice									
Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	lb	
T1	129.00-124.80	Α	1.716	0.000	0.000	2.474	0.000	36	

A	RA	A(11-	Ł
1		1.000	-	*
1		WE	<u>-</u> K	
AL N	CIN	ENG	1.11	E.

Job Page 129' Sqr SELF-SUPPORTING TOWER ANALYSIS 10 of 35 Project

ARMOR TOWER, INC

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840 Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT

Everest Infrastructure Partners - 701778

Client

09:58:35 02/10/22 Designed by PB

Date

Tower Section	Tower Elevation	Face or	Ice Thickness	A_R	A_F	C _A A _A In Face	$C_A A_A$ Out Face	Weight
	ft	Leg	in	ft ²	ft^2	ft^2	ft^2	lb
		В		0.000	0.000	1.706	0.000	21
		С		0.000	0.000	0.000	0.000	0
		D		0.000	0.000	7.652	0.000	112
T2	124.80-112.50	A	1.705	0.000	0.000	43.104	0.000	691
		В		0.000	0.000	4.969	0.000	62
		С		0.000	0.000	0.000	0.000	0
		D		0.000	0.000	22.325	0.000	324
T3	112.50-100.20	А	1.686	0.000	0.000	46.277	0.000	730
		В		0.000	0.000	5.609	0.000	69
		С		0.000	0.000	0.000	0.000	0
		D		0.000	0.000	22.188	0.000	320
T4	100.20-87.50	Α	1.665	0.000	0.000	84.500	0.000	1384
		В		0.000	0.000	9.818	0.000	117
		С		0.000	0.000	0.000	0.000	0
		D		0.000	0.000	22.750	0.000	326
T5	87.50-74.80	Α	1.641	0.000	0.000	109.235	0.000	1844
		в		0.000	0.000	21.183	0.000	279
		С		0.000	0.000	0.000	0.000	0
		D		0.000	0.000	22.211	0.000	315
T6	74.80-49.60	Α	1.598	0.000	0.000	223.422	0.000	3678
		в		0.000	0.000	75.082	0.000	1007
		С		0.000	0.000	0.000	0.000	0
		D		0.000	0.000	0.000	0.000	0
T7	49.60-24.80	Α	1.518	0.000	0.000	214.906	0.000	3452
		В		0.000	0.000	71.507	0.000	928
		С		0.000	0.000	0.000	0.000	0
		D		0.000	0.000	0.000	0.000	0
T8	24.80-0.00	Α	1.360	0.000	0.000	204.521	0.000	3130
		В		0.000	0.000	66.807	0.000	811
		С		0.000	0.000	0.000	0.000	0
		D		0.000	0.000	0.000	0.000	0

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
T1	129.00-124.80	-1.5368	-0.2509	-2.7682	2,7306
T2	124.80-112.50	-4.5692	-4.4568	-8.7218	-6.2418
T3	112.50-100.20	-6.2527	-6.0370	-10.8902	-8.1592
T4	100.20-87.50	-15.4536	-9.9044	-20.2693	-15.4279
T5	87.50-74.80	-23.2576	-14.2149	-27.7839	-22.3382
Т6	74.80-49.60	-24.5289	-16.9863	-31.1936	-33.2992
T7	49.60-24.80	-27.1067	-18.8999	-34.3597	-36.5920
T8	24.80-0.00	-27.1441	-18.8631	-35.2491	-37.0843

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K _a	K _a
Section	Record No.		Segment Elev.	No Ice	Ice
T1	1	L4x4x1/4	124.80 -	0.6000	0.6000

Job Page 11 of 35 129' Sqr SELF-SUPPORTING TOWER ANALYSIS Project Date Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT 09:58:35 02/10/22 Client

ARMOR TOWER, INC 9 North Main

Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840 Everest Infrastructure Partners - 701778

Designed by PB

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment Elev.	No Ice	Ice
T1	3	Climbing Pegs	129.00 124.80 -	0.6000	0.6000
T1	5	Safety Line 3/8	129.00	0.6000	0.6000
T1	8	LDF4-50A (1/2 FOAM)	129.00	0.6000	
			129.00		0.6000
T1	10	LDF5-50A (7/8 FOAM)	124.80 - 129.00	0.6000	0.6000
T1	12	LDF6-50A (1-1/4 FOAM)	124.80 - 125.00	0.6000	0.6000
T1	13	LDF6-50A (1-1/4 FOAM)	124.80 -	0.6000	0.6000
T1	14	Feedline Ladder (Af)	125.00 124.80 - 125.00	0.6000	0.6000
T2	1	L4x4x1/4	112.50 -	0.6000	0.6000
T2	3	Climbing Pegs	124.80 112.50 - 124.80	0.6000	0.6000
T2	5	Safety Line 3/8	112.50 -	0.6000	0.6000
T2	8	LDF4-50A (1/2 FOAM)	124.80 112.50 - 124.80	0.6000	0.6000
T2	10	LDF5-50A (7/8 FOAM)	112.50 -	0.6000	0.6000
T2	12	LDF6-50A (1-1/4 FOAM)	124.80 112.50 - 124.80	0.6000	0.6000
T2	13	LDF6-50A (1-1/4 FOAM)	1124.80 112.50 - 124.80	0.6000	0.6000
T2	14	Feedline Ladder (Af)	1124.80 112.50 - 124.80	0.6000	0.6000
T2	16	EU90	112.50 - 117.50	0.6000	0.6000
Т3	1	L4x4x1/4	100.20 - 112.50	0.6000	0.6000
Т3	3	Climbing Pegs	100.20 - 112.50	0.6000	0.6000
Т3	5	Safety Line 3/8	100.20 - 112.50	0.6000	0.6000
Т3	8	LDF4-50A (1/2 FOAM)	112.30 100.20 - 112.50	0.6000	0.6000
Т3	10	LDF5-50A (7/8 FOAM)	100.20 - 112.50	0.6000	0.6000
T3	12	LDF6-50A (1-1/4 FOAM)	100.20 -	0.6000	0.6000
T3	13	LDF6-50A (1-1/4 FOAM)	112.50 100.20 -	0.6000	0.6000
Т3	14	Feedline Ladder (Af)	112.50 100.20 - 112.50	0.6000	0.6000
Т3	16	EU90	100.20 -	0.6000	0.6000
Т3	18	LDF2-50A (3/8 FOAM)	112.50 100.20 - 102.00	0.6000	0.6000
T4	1		87.50 - 100.20	0.6000	0.6000
T4	3	Climbing Pegs	87.50 - 100.20	0.6000	0.6000
T4	5	Safety Line 3/8	87.50 - 100.20	0.6000	0.6000
T4	8	LDF4-50A (1/2 FOAM)	87.50 - 100.20	0.6000	0.6000
T4	10	LDF5-50A (7/8 FOAM)	87.50 - 100.20	0.6000	0.6000
T4	12		87.50 - 100.20	0.6000	0.6000
T4	13	LDF6-50A (1-1/4 FOAM)		0.6000	0.6000
T4 T4	14	Feedline Ladder (Af)		0.6000	0.6000
14	16	EU90]	87.50 - 100.20	0.6000	0.6000

Job Page 129' Sqr SELF-SUPPORTING TOWER ANALYSIS 12 of 35 Project Date Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT 09:58:35 02/10/22 Client

Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Everest Infrastructure Partners - 701778

Designed by PB

Tower Section	Feed Line	Description	Feed Line	Ka	Ka
	Record No.		Segment Elev.	No Ice	Ice
T4 T4	18 20	LDF2-50A (3/8 FOAM)		0.6000	0.6000
14 T4	20	LDF5-50A (7/8 FOAM) LDF4-50A (1/2 FOAM)		0.6000	0.6000
T4	23	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
T4	23	RET Cable		0.6000 0.6000	0.6000 0.6000
T4	25	6x12 Hybrid Fiber Cable		0.6000	0.6000
T4	26	T-Bracket		0.6000	0.6000
T5	1	L4x4x1/4		0.6000	0.6000
T5	2	L4x4x1/4	74.80 - 79.00	0.6000	0.6000
T5	3	Climbing Pegs	75.00 - 87.50	0.6000	0.6000
T5	4	Climbing Pegs	74.80 - 79.00	0.6000	0.6000
T5	5	Safety Line 3/8	75.00 - 87.50	0.6000	0.6000
T5	6	Safety Line 3/8	74.80 - 79.00	0.6000	0.6000
T5	8	LDF4-50A (1/2 FOAM)	74.80 - 87.50	0.6000	0.6000
T5	10	LDF5-50A (7/8 FOAM)	74.80 - 87.50	0.6000	0.6000
T5	12	LDF6-50A (1-1/4 FOAM)	74.80 - 87.50	0.6000	0.6000
T5	13	LDF6-50A (1-1/4 FOAM)	74.80 - 87.50	0.6000	0.6000
T5	14	Feedline Ladder (Af)	74.80 - 87.50	0.6000	0.6000
T5	16	EU90	74.80 - 87.50	0.6000	0.6000
T5	18	LDF2-50A (3/8 FOAM)	74.80 - 87.50	0.6000	0.6000
T5	20	LDF5-50A (7/8 FOAM)	74.80 - 87.50	0.6000	0.6000
T5	21	LDF4-50A (1/2 FOAM)	74.80 - 87.50	0.6000	0.6000
T5 T5	23	LDF7-50A (1-5/8 FOAM)	74.80 - 87.50	0.6000	0.6000
T5	24 25	RET Cable	74.80 - 87.50	0.6000	0.6000
13 T5	25	6x12 Hybrid Fiber Cable	74.80 - 87.50	0.6000	0.6000
T5	31	T-Bracket	74.80 - 87.50	0.6000	0.6000
T6	2	1-5/8" hybrid L4x4x1/4	74.80 - 83.00	0.6000	0.6000
T6	4	Climbing Pegs	49.60 - 74.80 49.60 - 74.80	0.6000 0.6000	0.6000
T6	6	Safety Line 3/8	49.60 - 74.80	0.6000	0.6000
T6	8	LDF4-50A (1/2 FOAM)	49.60 - 74.80	0.6000	0.6000 0.6000
T6	10	LDF5-50A (7/8 FOAM)	49.60 - 74.80	0.6000	0.6000
T6	12	LDF6-50A (1-1/4 FOAM)	49.60 - 74.80	0.6000	0.6000
T6	13	LDF6-50A (1-1/4 FOAM)	49.60 - 74.80	0.6000	0.6000
T6	14	Feedline Ladder (Af)	49.60 - 74.80	0.6000	0.6000
T6	16	EU90	49.60 - 74.80	0.6000	0.6000
T6	18	LDF2-50A (3/8 FOAM)	49.60 - 74.80	0.6000	0.6000
T6	20	LDF5-50A (7/8 FOAM)	49.60 - 74.80	0.6000	0.6000
T6	21	LDF4-50A (1/2 FOAM)	49.60 - 74.80	0.6000	0.6000
T6	23	LDF7-50A (1-5/8 FOAM)	49.60 - 74.80	0.6000	0.6000
T6	24	RET Cable	49.60 - 74.80	0.6000	0.6000
T6	25	6x12 Hybrid Fiber Cable	49.60 - 74.80	0.6000	0.6000
T6	26	T-Bracket	49.60 - 74.80	0.6000	0.6000
T6	28	LDF4-50A (1/2 FOAM)	49.60 - 74.00	0.6000	0.6000
T6	31	1-5/8" hybrid	49.60 - 74.80	0.6000	0.6000
T7	2	L4x4x1/4	24.80 - 49.60	0.6000	0.6000
T7	4	Climbing Pegs	24.80 - 49.60	0.6000	0.6000
T7 T7	6	Safety Line 3/8	24.80 - 49.60	0.6000	0.6000
17 T7	8 10	LDF4-50A (1/2 FOAM) LDF5-50A (7/8 FOAM)	24.80 - 49.60	0.6000	0.6000
T7	10	LDF5-50A (1-1/4 FOAM)	24.80 - 49.60 24.80 - 49.60	0.6000	0.6000
T7	13	LDF6-50A (1-1/4 FOAM)	24.80 - 49.60	0.6000	0.6000
T7	14	Feedline Ladder (Af)	24.80 - 49.60	0.6000	0.6000
T7	16	EU90	24.80 - 49.60	0.6000	0.6000
T7	18	LDF2-50A (3/8 FOAM)	24.80 - 49.60	0.6000	0.6000
T7	20	LDF5-50A (7/8 FOAM)	24.80 - 49.60	0.6000	0.6000
T7	21	LDF4-50A (1/2 FOAM)	24.80 - 49.60	0.6000	0.6000
T7	23	LDF7-50A (1-5/8 FOAM)	24.80 - 49.60	0.6000	0.6000
T7	24	RET Cable	24.80 - 49.60	0.6000	0.6000
	25	6x12 Hybrid Fiber Cable	24.80 - 49.60	0.6000	0.6000
T7					
Т7 Т7 Т7	26 28	T-Bracket	24.80 - 49.60	0.6000	0.6000

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 13 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.	-	Segment Elev.	No Ice	Ice
T7	31	1-5/8" hybrid	24.80 - 49.60	0.6000	0.6000
Т8	2	L4x4x1/4	0.00 - 24.80	0.6000	0.6000
Т8	4	Climbing Pegs	0.00 - 24.80	0.6000	0.6000
Т8	6	Safety Line 3/8	0.00 - 24.80	0.6000	0.6000
T8	8	LDF4-50A (1/2 FOAM)	0.00 - 24.80	0.6000	0.6000
T8	10	LDF5-50A (7/8 FOAM)	0.00 - 24.80	0.6000	0.6000
Т8	12	LDF6-50A (1-1/4 FOAM)	0.00 - 24.80	0.6000	0.6000
T8	13	LDF6-50A (1-1/4 FOAM)	0.00 - 24.80	0.6000	0.6000
Т8	14	Feedline Ladder (Af)	0.00 - 24.80	0.6000	0.6000
Т8	16	EU90	0.00 - 24.80	0.6000	0.6000
T8	18	LDF2-50A (3/8 FOAM)	0.00 - 24.80	0.6000	0.6000
Т8	20	LDF5-50A (7/8 FOAM)	0.00 - 24.80	0.6000	0.6000
T8	21	LDF4-50A (1/2 FOAM)	0.00 - 24.80	0.6000	0.6000
T8	23	LDF7-50A (1-5/8 FOAM)	0.00 - 24.80	0.6000	0.6000
T8	24	RET Cable	0.00 - 24.80	0.6000	0.6000
Т8	25	6x12 Hybrid Fiber Cable	0.00 - 24.80	0.6000	0.6000
T8	26	T-Bracket	0.00 - 24.80	0.6000	0.6000
Τ8	28	LDF4-50A (1/2 FOAM)	0.00 - 24,80	0.6000	0.6000
Т8	31	1-5/8" hybrid	0.00 - 24.80	0.6000	0.6000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	0	ft		ft²	ft²	lb
No Lightning Rod *							-0.000		
CC807-08	D	From Leg	0.50 0.00 4.57	0.0000	132.00	No Ice 1/2" Ice 1" Ice	2.85 3.83 4.67	2.85 3.83 4.67	27 48 68
2.5"Sch40 x 20ft	D	From Leg	0.50 0.00 -10.00	0.0000	132.00	No Ice 1/2" Ice	5.75 7.78	5.75 7.78	116 158
* *Sprint-2019			-10.00			1" Ice	9.83	9.83	212
PXVSPP18-C-A20 w. Mtg Pipe (SP-LegB)	В	From Leg	4.00 0.00 1.66	0.0000	125.00	No Ice 1/2" Ice 1" Ice	8.02 8.48 8.94	6.71 7.66 8.49	79 144 217
PXVSPP18-C-A20 w. Mtg Pipe (SP-LegC)	С	From Leg	4.00 0.00	0.0000	125.00	No Ice 1/2" Ice	8.02 8.48	6.71 7.66	79 144
PXVSPP18-C-A20 w. Mtg Pipe	D	From Leg	1.66 4.00 0.00	0.0000	125.00	1" Ice No Ice 1/2" Ice	8.94 8.02 8.48	8.49 6.71 7.66	217 79 144
(SP-LegD) 800 MHz 2x50W RRH (SP-LegB)	В	From Leg	1.66 1.00 0.00	0.0000	125.00	1" Ice No Ice	8.94 2.06	8.49 1.93	217 64
800 MHz 2x50W RRH	С	From Leg	3.00 1.00	0.0000	125.00	1/2" Ice 1" Ice No Ice	2.24 2.43 2.06	2.11 2.29 1.93	86 111 64
(SP-LegC)	D	-	0.00 3.00	0.0000		1/2" Ice 1" Ice	2.24 2.43	2.11 2.29	86 111
800 MHz 2x50W RRH	D	From Leg	1.00	0.0000	125.00	No Ice	2.06	1.93	64

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 14 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	0	ft		ft^2	ft²	lb
(SP-LegD)			0.00 3.00			1/2" Ice	2.24	2.11	86
800 Ext Notch Filter	В	From Leg	1.00	0.0000	125.00	1" Ice No Ice	2.43 0.65	2.29 0.29	111
(SP-LegB)	1.11		0.00	0.0000	125.00	1/2" Ice	0.05	0.29	11 17
			3.00			1" Ice	0.87	0.45	24
800 Ext Notch Filter	С	From Leg	1.00	0.0000	125.00	No Ice	0.65	0.29	11
(SP-LegC)			0.00			1/2" Ice	0.76	0.37	17
200 E-+ N-+-1 E11	D	D T	3.00			1" Ice	0.87	0.45	24
800 Ext Notch Filter	D	From Leg	1.00	0.0000	125.00	No Ice	0.65	0.29	11
(SP-LegD)			0.00			1/2" Ice	0.76	0.37	17
1900MHz 4x45W RRH	В	From Leg	3.00 1.00	0.0000	105.00	1" Ice	0.87	0.45	24
(SP-LegB)	Б	FIOIII Leg	0.00	0.0000	125.00	No Ice 1/2" Ice	2.32	2.24	60
(-0.25			1/2" Ice 1" Ice	2.53 2.74	2.44	109
1900MHz 4x45W RRH	С	From Leg	1.00	0.0000	125.00	No Ice	2.74	2.65 2.24	158 60
(SP-LegC)		J	0.00			1/2" Ice	2.53	2.44	109
			-0.25			1" Ice	2.74	2.65	158
1900MHz 4x45W RRH	D	From Leg	1.00	0.0000	125.00	No Ice	2.32	2.24	60
(SP-LegD)			0.00			1/2" Ice	2.53	2.44	109
T465B-2XR w. Mtg Pipe	В	From Leg	-0.25 4.00	0.0000	105.00	1" Ice	2.74	2.65	158
(SP-LegB)	Б	FIOIDLeg	6.00	0.0000	125.00	No Ice 1/2" Ice	9.34	7.64	84
(Sr Dogb)			1.66			1/2" Ice	9.91 10.44	8.82 9.72	160
T465B-2XR w. Mtg Pipe	С	From Leg	4.00	0.0000	125.00	No Ice	9.34	7.64	245 84
(SP-LegC)			6.00	0.0000	125.00	1/2" Ice	9.91	8.82	84 160
			1.66			1" Ice	10.44	9.72	245
Г465B-2XR w. Mtg Pipe	D	From Leg	4.00	0.0000	125.00	No Ice	9.34	7.64	84
(SP-LegD)			6.00			1/2" Ice	9.91	8.82	160
OO MIL O COM DDM	ъ		1.66			1" Ice	10.44	9.72	245
800 MHz 2x50W RRH	В	From Leg	4.00	0.0000	125.00	No Ice	2.06	1.93	64
(SP-LegB)			6.00 4.66			1/2" Ice	2.24	2.11	86
800 MHz 2x50W RRH	С	From Leg	4.00	0.0000	125.00	1" Ice No Ice	2.43 2.06	2.29 1.93	111 64
(SP-LegC)			6.00	0.0000	125.00	1/2" Ice	2.00	2.11	86
			4.66			1" Ice	2.43	2.29	111
300 MHz 2x50W RRH	D	From Leg	4.00	0.0000	125.00	No Ice	2.06	1.93	64
(SP-LegD)			6.00			1/2" Ice	2.24	2.11	86
TD-RRH-8x20-2500	D		4.66			1" Ice	2.43	2.29	111
(SP-LegB)	В	From Leg	4.00	0.0000	125.00	No Ice	4.05	1.53	70
(BI-LegD)			6.00 1.66			1/2" Ice	4.30	1.71	97
TD-RRH-8x20-2500	С	From Leg	4.00	0.0000	125.00	1" Ice No Ice	4.56	1.90	128
(SP-LegC)	2	105	6.00	0.0000	123.00	NO ICE 1/2" ICE	4.05 4.30	1.53 1.71	70 97
			1.66			1" Ice	4.56	1.90	128
TD-RRH-8x20-2500	D	From Leg	4.00	0.0000	125.00	No Ice	4.05	1.53	70
(SP-LegD)			6.00			1/2" Ice	4.30	1.71	97
ectorMount SM702-1	В	From Leg	1.66 4.00	0.0000	125.00	1" Ice	4.56	1.90	128
(SP-LegB)		208	4.00 0.00	0.0000	123.00	No Ice 1/2" Ice	20.60 28.80	12.90 19.40	517
			0.00			1" Ice	37.00	25.90	784 1051
ectorMount SM702-1	С	From Leg	4.00	0.0000	125.00	No Ice	20.60	12.90	517
(SP-LegC)			0.00			1/2" Ice	28.80	19.40	784
	1		0.00			1" Ice	37.00	25.90	1051
ectorMount SM702-1 (SP-LegD)	D	From Leg	4.00	0.0000	125.00	No Ice	20.60	12.90	517
(or-LogD)			0.00 0.00			1/2" Ice	28.80	19.40	784
*			0.00			1" Ice	37.00	25.90	1051

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 15 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	0	ft		ft²	ft²	lb
4"Sch40 x 4ft	D	From Leg	1.00	0.0000	117.50	No Ice	1.13	1.13	50
(Dishmount)			0.00			1/2" Ice	1.58	1.58	63
*			0.00			1" Ice	1.84	1.84	79
			<						
CC807-08	D	From Leg	6.00	0.0000	100.00	No Ice	2.85	2.85	27
			0.00			1/2" Ice	3.83	3.83	48
TNA	D	r r	4.57	0.0000	100.00	1" Ice	4.67	4.67	68
TMA	D	From Leg	2.00	0.0000	100.00	No Ice	1.20	0.60	5
			0.00			1/2" Ice	1.34	0.70	15
Side Arm mount (SOG01 1)	D	Frank Law	0.00	0.0000	100.00	1" Ice	1.48	0.80	28
Side Arm mount (SO601-1)	D	From Leg	3.00	0.0000	100.00	No Ice	1.22	6.30	159
			0.00			1/2" Ice	1.85	8.61	197
*			0.00			1" Ice	2.48	10.92	234
*TMO-2019									
PXVAARR24 43-U-NA20	٨	From Log	1.00	0.0000	04.00	N-T	20.24	10.70	100
w. MtgPipe	A	From Leg	1.00	0.0000	94.00	No Ice	20.24	10.79	182
(TMO-LegA)			6.00 0.00			1/2" Ice	20.89	12.21	316
PXVAARR24 43-U-NA20	С	From Leg	1.00	0.0000	94.00	1" Ice	21.55	13.49	460
w. MtgPipe	C	FIOII Leg	6.00	0.0000	94.00	No Ice 1/2" Ice	20.24	10.79	182
(TMO-LegC)			0.00			1/2 Ice	20.89 21.55	12.21	316
PXVAARR24_43-U-NA20	D	From Leg	1.00	0.0000	94.00	No Ice	21.55	13.49	460
w. MtgPipe	D	Trom Deg	6.00	0.0000	94.00	1/2" Ice	20.24	10.79 12.21	182
(TMO-LegD)			0.00			172 Ice	20.89	13.49	316
Ericsson KRY 112 89/4	А	From Leg	1.00	0.0000	94.00	No Ice	0.56	0.36	460
(TMO-LegA)		r tom hog	6.00	0.0000	94.00	1/2" Ice	0.66	0.30	15 20
(0.00			1" Ice	0.00	0.44	20
Ericsson KRY 112 89/4	С	From Leg	1.00	0.0000	94.00	No Ice	0.76	0.34	15
(TMO-LegC)		Lion Deg	6.00	0.0000	94.00	1/2" Ice	0.66	0.30	20
(0.00			1" Ice	0.00	0.44	20
Ericsson KRY 112 89/4	D	From Leg	1.00	0.0000	94.00	No Ice	0.56	0.34	15
(TMO-LegD)	-	110111 208	6.00	0.0000	94.00	1/2" Ice	0.66	0.30	20
(0.00			172 ICC 1" ICC	0.00	0.44	20 27
Ericsson Radio 4449	А	From Leg	1.00	0.0000	94.00	No Ice	1.64	1.14	27 74
B12/B71			6.00	0.0000	94.00	1/2" Ice	1.80	1.14	90
(TMO-LegA)			0.00			1" Ice	1.97	1.42	109
Ericsson Radio 4449	С	From Leg	1.00	0.0000	94.00	No Ice	1.64	1.42	74
B12/B71	4 [*] * 1	0	6.00		200	1/2" Ice	1.80	1.14	90
(TMO-LegC)			0.00			1" Ice	1.97	1.42	109
Ericsson Radio 4449	D	From Leg	1.00	0.0000	94.00	No Ice	1.64	1.14	74
B12/B71			6.00			1/2" Ice	1.80	1.28	90
(TMO-LegD)			0.00			1" Ice	1.97	1.42	109
Eriesson RRUS 4415 B25	A	From Leg	1.00	0.0000	94.00	No Ice	1.64	0.68	46
(TMO-LegA)			6.00			1/2" Ice	1.80	0.79	58
Enimer DDUG 4415 DOF	0		0.00			1" Ice	1.97	0.91	73
Ericsson RRUS 4415 B25	С	From Leg	1.00	0.0000	94.00	No Ice	1.64	0.68	46
(TMO-LegC)			6.00			1/2" Ice	1.80	0.79	58
Ericsson RRUS 4415 B25	D	Erom I	0.00	0.0000	01.00	1" Ice	1.97	0.91	73
	D	From Leg	1.00	0.0000	94.00	No Ice	1.64	0.68	46
(TMO-LegD)			6.00			1/2" Ice	1.80	0.79	58
Padio 1115 DCCA		Eners I	0.00	0.0000	0.4.00	1" Ice	1.97	0.91	73
Radio 4415 B66A	A	From Leg	1.00	0.0000	94.00	No Ice	1.86	0.82	44
(TMO-LegA)		see a star in F	6.00			1/2" Ice	2.03	0.94	58
Radio 4415 B66A	С	From Leg	0.00 1.00	0.0000	04.00	1" Ice	2.20	1.07	75
(TMO-LegC)	C	TIOM LUZ	6.00	0.0000	94.00	No Ice 1/2" Ice	1.86 2.03	0.82	44
(1110 2050)			0.00			1/2 Ice 1" Ice	2.03	0.94	58 75
			0.00			1 100	2.20	1.07	75

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 16 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
			Vert						
			ft ft ft	0	ft		ft²	ft²	lb
Radio 4415 B66A	D	From Leg	1.00	0.0000	94.00	No Ice	1.86	0.82	44
(TMO-LegD)		5	6.00			1/2" Ice	2.03	0.94	58
			0.00			1" Ice	2.20	1.07	75
(2) 2.5"Sch40 x 15ft	Α	From Leg	1.00	0.0000	94.00	No Ice	4.31	4.31	87
(TMO-LegA)		r rom 248	0.00	0.0000	94.00	1/2" Ice	5.84	5.84	118
(5)			0.00			1" Ice	7.39	7.39	159
(2) 2.5"Sch40 x 15ft	С	From Leg	1.00	0.0000	94.00	No Ice	4.31	4.31	87
(TMO-LegC)	-	1 tom Beg	0.00	0.0000	94.00	1/2" Ice	5.84	5.84	
(IIIIO Lego)			0.00			1" Ice	7.39		118
(2) 2.5"Sch40 x 15ft	D	From Leg	1.00	0.0000	94.00	No Ice		7.39	159
(TMO-LegD)	D	110m Log	0.00	0.0000	94.00		4.31	4.31	87
(IMO-LegD)						1/2" Ice	5.84	5.84	118
6ft standoff-Flat	D	Passa I	0.00	0.0000	04.00	1" Ice	7.39	7.39	159
	D	From Leg	3.00	0.0000	94.00	No Ice	1.96	8.31	97
(TMO)			0.00			1/2" Ice	3.08	11.83	138
*			0.00			1" Ice	4.20	15.35	179
GPS	С	None		0.0000	76.50	No Ice	1.00	1.00	10
				0.0000	70.00	1/2" Ice	1.50	1.50	15
						1" Ice	2.00	2.00	20
*						1 100	2.00	2.00	20
Catwalk	С	None		0.0000	75.00	No Ice	18.00	4.00	1000
						1/2" Ice	23.00	6.00	1200
						1" Ice	28.00	8.00	1400
* *DishWireless Feb2022									
1X08FRO665-20 w. Mtg	А	From Leg	3.00	0.0000	83.00	No Ioo	12.40	7.20	0.1
Pipe	А	From Leg		0.0000	83.00	No Ice	12.49	7.29	94
(P-DW-Alpha)			0.00			1/2" Ice	12.99	8.25	184
	D	т. т	0.00	0.0000		1" Ice	13.49	9.08	282
IX08FRO665-20 w. Mtg	В	From Leg	3.00	0.0000	83.00	No Ice	12.49	7.29	94
Pipe			0.00			1/2" Ice	12.99	8.25	184
(P-DW-Beta)	6	-	0.00			1" Ice	13.49	9.08	282
IX08FRO665-20 w. Mtg	С	From Leg	3.00	0.0000	83.00	No Ice	12.49	7.29	94
Pipe			0.00			1/2" Ice	12.99	8.25	184
(P-DW-Gamma)			0.00			1" Ice	13.49	9.08	282
TA08025-B604 RRU	Α	From Leg	3.00	0.0000	83.00	No Ice	1.98	1.04	64
(P-DW-Alpha)			0.00			1/2" Ice	2.15	1.18	81
			0.00			1" Ice	2.33	1.32	100
TA08025-B604 RRU	В	From Leg	3.00	0.0000	83.00	No Ice	1.98	1.04	64
(P-DW-Beta)			0.00			1/2" Ice	2.15	1.18	81
			0.00			1" Ice	2.33	1.32	100
TA08025-B604 RRU	С	From Leg	3.00	0.0000	83.00	No Ice	1.98	1.04	64
(P-DW-Gamma)		Ú.	0.00			1/2" Ice	2.15	1.18	81
			0.00			1" Ice	2.33	1.32	100
TA08025-B605 RRU	Α	From Leg	3.00	0.0000	83.00	No Ice	1.98	1.20	75
(P-DW-Alpha)			0.00			1/2" Ice	2.15	1.34	93
			0.00			1" Ice	2.33	1.49	114
TA08025-B605 RRU	В	From Leg	3.00	0.0000	83.00	No Ice	1.98	1.20	75
(P-DW-Beta)		,	0.00			1/2" Ice	2.15	1.34	93
			0.00			1" Ice	2.33	1.49	114
TA08025-B605 RRU	С	From Leg	3.00	0.0000	83.00	No Ice	1.98	1.49	75
(P-DW-Gamma)			0.00	0.0000	05.00	1/2" Ice	2.15	1.20	93
, , , , , , , , , , , , , , , , , , , ,			0.00			172 ICe 1" Ice			
RDIDC-9181-PF-48	Α	From Leg	1.00	0.0000	83.00		2.33	1.49	114
(P-DW-Alpha)	11	110m Leg	0.00	0.0000	63.00	No Ice 1/2" Ice	2.31	1.29	22
(* 2 ··· · ···pina)			0.00			1/2" Ice	2.50	1.45	41
		From Leg	2.50	0.0000	83.00	No Ice	2.70 9.12	1.61 4.97	63 610
abre THD 10' V-Boom	A								

	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 17 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weigh
			ft ft ft	٥	ft		ft^2	ft²	lb
Sabre THD 10' V-Boom	В	Erom Loo	0.00	0.0000	02.00	1" Ice	16.80	9.15	848
(P-DW-Beta)	Б	From Leg	2.50 0.00	0.0000	83.00	No Ice 1/2" Ice	9.12 12.96	4.97 7.06	610 729
			0.00			1" Ice	16.80	9.15	848
Sabre THD 10' V-Boom	С	From Leg	2.50	0.0000	83.00	No Ice	9.12	4.97	610
(P-DW-Gamma)			0.00			1/2" Ice	12.96	7.06	729
			0.00			1" Ice	16.80	9.15	848

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft²	lb
RFS	D	Paraboloid	From	1.00	0.0000		117.50	3.28	No Ice	8.45	40
SC3-xxx/SCX3-xxx		w/Shroud (HP)	Leg	0.00					1/2" Ice	8.88	85
	Concernance and		All of the line between the	1.50					1" Ice	9.32	131

Load Combinations

Comb. No.		Description
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 45 deg - No Ice	
5	0.9 Dead+1.6 Wind 45 deg - No Ice	
6	1.2 Dead+1.6 Wind 90 deg - No Ice	
7	0.9 Dead+1.6 Wind 90 deg - No Ice	
8	1.2 Dead+1.6 Wind 135 deg - No Ice	
9	0.9 Dead+1.6 Wind 135 deg - No Ice	
10	1.2 Dead+1.6 Wind 180 deg - No Ice	
11	0.9 Dead+1.6 Wind 180 deg - No Ice	
12	1.2 Dead+1.6 Wind 225 deg - No Ice	
13	0.9 Dead+1.6 Wind 225 deg - No Ice	
14	1.2 Dead+1.6 Wind 270 deg - No Ice	
15	0.9 Dead+1.6 Wind 270 deg - No Ice	
16	1.2 Dead+1.6 Wind 315 deg - No Ice	
17	0.9 Dead+1.6 Wind 315 deg - No Ice	
18	1.2 Dead+1.0 Ice+1.0 Temp	
19	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
20	1.2 Dead+1.0 Wind 45 deg+1.0 Ice+1.0 Temp	
21	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	
22	1.2 Dead+1.0 Wind 135 deg+1.0 Ice+1.0 Temp	
23	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
24	1.2 Dead+1.0 Wind 225 deg+1.0 Ice+1.0 Temp	
25	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 18 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Comb. No.	De.	scription
Manager and the second second second second		
26	1.2 Dead+1.0 Wind 315 deg+1.0 Ice+1.0 Temp	
27	Dead+Wind 0 deg - Service	
28	Dead+Wind 45 deg - Service	
29	Dead+Wind 90 deg - Service	
30	Dead+Wind 135 deg - Service	
31	Dead+Wind 180 deg - Service	
32	Dead+Wind 225 deg - Service	
33	Dead+Wind 270 deg - Service	
34	Dead+Wind 315 deg - Service	

ocation	Condition	Gov. Load	Vertical lb	Horizontal, X lb	Horizontal, Z lb
T D		Comb.			
Leg D	Max. Vert	12	104364	11215	-12713
	Max. H _x	14	73073	11384	-4713
	Max. H _z	3	-51497	-2275	11489
	Min. Vert	5	-80165	-9641	11074
	Min. H _x	7	-48851	-9809	3071
	Min. Hz	10	75719	3850	-13131
Leg C	Max. Vert	8	104225	-12265	-11856
	Max. H _x	17	-81614	10675	10280
	Max. H _z	17	-81614	10675	10280
	Min. Vert	17	-81614	10675	10280
	Min. H _x	8	104225	-12265	-11856
	Min. Hz	8	104225	-12265	-11856
Leg B	Max. Vert	4	104501	-12740	11222
	Max. H _x	13	-79995	11048	-9630
	Max. H _z	2	75833	-5371	11642
	Min. Vert	13	-79995	11048	-9630
	Min. H _x	4	104501	-12740	11222
	Min. H _z	11	-51350	3682	-10050
Leg A	Max. Vert	16	106215	11913	12303
	Max. H _x	14	74274	11950	4301
	Max. Hz	2	76944	3986	13154
	Min. Vert	9	-80122	-10238	-10647
	Min. H _x	7	-48204	-10288	-2636
	Min. Hz	11	-50827	-2318	-11486

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Dead Only	46385	0	0	-19	22	0
1.2 Dead+1.6 Wind 0 deg - No Ice	55662	-145	-45897	-3040	27	-71
0.9 Dead+1.6 Wind 0 deg - No Ice	41747	-145	-45897	-3035	21	-71
1.2 Dead+1.6 Wind 45 deg - No Ice	55662	33332	-33332	-2228	-2180	-71
0.9 Dead+1.6 Wind 45 deg - No Ice	41747	33332	-33332	-2223	-2186	- 71
1.2 Dead+1.6 Wind 90 deg - No	55662	42993	145	-21	-2863	-25

ł٨	AC	X	
N	NF	·K	
1 11 1	T	1200	
			R WOR

Job

129' Sqr SELF-SUPPORTING TOWER ANALYSIS

Page 19 of 35

ARMOR TOWER, INC

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Project	
Dish Wireless BOHVN00032A - Youngs Apple Orchard	, CT
Client	

Everest Infrastructure Partners - 701778

Designed by PB

09:58:35 02/10/22

Date

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _r	Overturning Moment, M _z	Torque
	lb	lb	lb	kip-ft	kip-ft	kip-ft
Ice						
0.9 Dead+1.6 Wind 90 deg - No Ice	41747	42993	145	-16	-2870	-25
	55(())	22(20	22(01			
1.2 Dead+1.6 Wind 135 deg - No Ice	55662	33632	33681	2202	-2193	19
0.9 Dead+1.6 Wind 135 deg -	41747	22622	22/01	2200	2100	
No Ice	41/4/	33632	33681	2208	-2199	19
1.2 Dead+1.6 Wind 180 deg -	55662	191	45842	2000	10	
No Ice	55002	191	43842	2989	19	71
0.9 Dead+1.6 Wind 180 deg -	41747	191	45842	2994	12	71
No Ice	41/4/	191	43642	2994	13	71
1.2 Dead+1.6 Wind 225 deg -	55662	-33277	33277	2177	2225	
No Ice	55002	-33211	33277	2177	2225	71
0.9 Dead+1.6 Wind 225 deg -	41747	22277	22277	21.92	0010	
No Ice	41/4/	-33277	33277	2182	2219	71
1.2 Dead+1.6 Wind 270 deg -	55662	-42938	-191	20	0000	2.5
No Ice	55002	-42938	-191	-29	2908	25
0.9 Dead+1.6 Wind 270 deg -	41747	-42938	-191	24	2002	
No Ice	41/4/	-42938	-191	-24	2902	25
1.2 Dead+1.6 Wind 315 deg -	55662	-33681	-33632	-2241	2250	10
No Ice	55002	-55001	-55052	-2241	2250	-19
0.9 Dead+1.6 Wind 315 deg -	41747	-33681	-33632	-2236	2244	10
No Ice		-55001	-55052	-2230	2244	-19
1.2 Dead+1.0 Ice+1.0 Temp	131401	0	0	-117	135	0
1.2 Dead+1.0 Wind 0 deg+1.0	131401	-56	-11997	-913	133	
Ice+1.0 Temp		20	11))/	-715	150	-23
1.2 Dead+1.0 Wind 45 deg+1.0	131401	9055	-9055	-717	-465	-27
Ice+1.0 Temp		2000	5055	-/1/	-405	-27
1.2 Dead+1.0 Wind 90 deg+1.0	131401	11709	56	-114	-651	-15
Ice+1.0 Temp	101101	1110)	50	-114	-031	-15
1.2 Dead+1.0 Wind 135	131401	9153	9162	490	-471	F
deg+1.0 Ice+1.0 Temp	151101	5155	5102	490	-4/1	5
1.2 Dead+1.0 Wind 180	131401	65	11986	678	131	23
deg+1.0 Ice+1.0 Temp	101101	05	11500	078	151	23
1.2 Dead+1.0 Wind 225	131401	-9045	9045	482	734	27
leg+1.0 Ice+1.0 Temp		5010	5015	402	754	21
1.2 Dead+1.0 Wind 270	131401	-11698	-65	-121	920	15
leg+1.0 Ice+1.0 Temp					520	15
.2 Dead+1.0 Wind 315	131401	-9162	-9153	-723	742	-5
leg+1.0 Ice+1.0 Temp					, 12	-9
Dead+Wind 0 deg - Service	46385	-34	-10754	-726	22	-17
Dead+Wind 45 deg - Service	46385	7810	-7810	-536	-495	-17
Dead+Wind 90 deg - Service	46385	10074	34	-19	-655	-17
Dead+Wind 135 deg - Service	46385	7880	7892	502	-498	-0
Dead+Wind 180 deg - Service	46385	45	10741	687	20	17
Dead+Wind 225 deg - Service	46385	-7797	7797	497	537	17
Dead+Wind 270 deg - Service	46385	-10061	-45	-20	697	17
Dead+Wind 315 deg - Service	46385	-7892	-7880	-539	543	-5

Solution Summary

	Su	m of Applied Force	\$				
Load	PX	PY	PZ	PX	ΡY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	, u 11, u
1	0	-46385	0	0	46385	0	0.000%
2	-145	-55662	-45897	145	55662	45897	0.000%
3	-145	-41747	-45897	145	41747	45897	0.000%
4	33332	-55662	-33332	-33332	55662	33332	0.000%

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 20 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

		m of Applied Force			Sum of Reactions			
Load	PX	PY	PZ	PX	PY	PZ	% Erron	
Comb.	lb	lb	lb	lb	lb	lb		
5	33332	-41747	-33332	-33332	41747	33332	0.000%	
6	42993	-55662	145	-42993	55662	-145	0.000%	
7	42993	-41747	145	-42993	41747	-145	0.000%	
8	33632	-55662	33681	-33632	55662	-33681	0.000%	
9	33632	-41747	33681	-33632	41747	-33681	0.000%	
10	191	-55662	45842	-191	55662	-45842	0.000%	
11	191	-41747	45842	-191	41747	-45842	0.000%	
12	-33277	-55662	33277	33277	55662	-33277	0.000%	
13	-33277	-41747	33277	33277	41747	-33277	0.000%	
14	-42938	-55662	-191	42938	55662	191	0.000%	
15	-42938	-41747	-191	42938	41747	191	0.000%	
16	-33681	-55662	-33632	33681	55662	33632	0.000%	
17	-33681	-41747	-33632	33681	41747	33632	0.000%	
18	0	-131401	0	0	131401	0	0.000%	
19	-56	-131401	-11997	56	131401	11997	0.000%	
20	9055	-131401	-9055	-9055	131401	9055	0.000%	
21	11709	-131401	56	-11709	131401	-56	0.000%	
22	9153	-131401	9162	-9153	131401	-9162	0.000%	
23	65	-131401	11986	-65	131401	-11986	0.000%	
24	-9045	-131401	9045	9045	131401	-9045	0.000%	
25	-11698	-131401	-65	11698	131401	65	0.000%	
26	-9162	-131401	-9153	9162	131401	9153	0.000%	
27	-34	-46385	-10754	34	46385	10754	0.000%	
28	7810	-46385	-7810	-7810	46385	7810	0.000%	
29	10074	-46385	34	-10074	46385	-34	0.000%	
30	7880	-46385	7892	-7880	46385	-7892	0.000%	
31	45	-46385	10741	-45	46385	-10741	0.000%	
32	-7797	-46385	7797	7797	46385	-7797	0.000%	
33	-10061	-46385	-45	10061	46385	45	0.000%	
34	-7892	-46385	-7880	7892	46385	7880	0.000%	

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
T1	129 - 124.8	0.437	34	0.0176	0.0124
T2	124.8 - 112.5	0.393	34	0.0192	0.0059
T3	112.5 - 100.2	0.344	34	0.0191	0.0060
T4	100.2 - 87.5	0.295	34	0.0179	0.0061
T5	87.5 - 74.8	0.240	34	0.0167	0.0055
T6	74.8 - 49.6	0.187	34	0.0152	0.0048
T7	49.6 - 24.8	0.094	34	0.0132	0.0040
T8	24.8 - 0	0.032	30	0.0063	0.0014

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	٥	ft
132.00	CC807-08	34	0.437	0.0176	0.0124	11106
125.00	APXVSPP18-C-A20 w. Mtg Pipe	34	0.395	0.0191	0.0060	11106

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 21 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
119.00	RFS SC3-xxx/SCX3-xxx	34	0.360	0.0197	0.0043	20484
117.50	4"Sch40 x 4ft	34	0.356	0.0197	0.0046	32899
100.00	CC807-08	34	0.294	0.0179	0.0061	317938
94.00	APXVAARR24_43-U-NA20 w. MtgPipe	34	0.268	0.0174	0.0057	347877
83.00	MX08FRO665-20 w. Mtg Pipe	34	0.221	0.0163	0.0053	Inf
76.50	GPS	34	0.194	0.0154	0.0049	593372
75.00	Catwalk	34	0.188	0.0152	0.0049	534320

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	0	0
T1	129 - 124.8	1.838	16	0.0702	0.0530
T2	124.8 - 112.5	1.650	16	0.0777	0.0250
T3	112.5 - 100.2	1.441	16	0.0782	0.0257
T4	100.2 - 87.5	1.234	16	0.0741	0.0259
T5	87.5 - 74.8	1.007	16	0.0698	0.0234
T6	74.8 - 49.6	0.788	16	0.0627	0.0207
T7	49.6 - 24.8	0.401	16	0.0468	0.0127
T8	24.8 - 0	0.136	8	0.0256	0.0059

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ji		Comb.	in	0	0	ft
132.00	CC807-08	16	1.838	0.0702	0.0530	2775
125.00	APXVSPP18-C-A20 w. Mtg Pipe	16	1.657	0.0774	0.0257	2775
119.00	RFS SC3-xxx/SCX3-xxx	16	1.511	0.0808	0.0185	5103
117.50	4"Sch40 x 4ft	16	1.492	0.0805	0.0197	8168
100.00	CC807-08	16	1.230	0.0741	0.0259	81281
94.00	APXVAARR24_43-U-NA20 w. MtgPipe	16	1.121	0.0724	0.0244	84582
83.00	MX08FRO665-20 w. Mtg Pipe	16	0.929	0.0674	0.0226	294700
76.50	GPS	16	0.817	0.0637	0.0211	148003
75.00	Catwalk	16	0.792	0.0628	0.0207	134589

Bolt Design Data										
Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt lb	Allowable Load per Bolt lb	Ratio Load Allowable	Allowable Ratio	Criteria
T2	124.8	Diagonal	A307	0.6250	2	2119	12425	0.171	1	Bolt Shear
		Horizontal	A307	0.6250	3	586	6213	0.094	1	Bolt Shear

1	11-	(Λ)	M.)R	
					1
	IC	N	/ -	R	
-			-		
- 数	14 84	174.6	要我	1846	

129' Sqr SELF-SUPPORTING TOWER ANALYSIS

Page 22 of 35

Date

ARMOR TOWER, INC

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT Client

Job

Project

Everest Infrastructure Partners - 701778

Designed by PB

09:58:35 02/10/22

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Rai Loc	ad	Allowable Ratio	Criteria
	Ji			in	Bolts	per Bolt lb	per Bolt lb	Allow	able		
		Redund Horz 1 Bracing	A307	0.6250	1	206	6213	0.033	~	1	Bolt Shear
		Redund Diag 1 Bracing	A307	0.6250	1	367	6213	0.059	~	1	Bolt Shear
		Redund Hip 1 Bracing	A307	0.6250	1	23	6213	0.004	V	1	Bolt Shear
T3	112.5	Leg	A307	0.6250	24	712	6213	0.115	V	1	Bolt SS
		Diagonal	A307	0.6250	2	2525	12425	0.203	1	1	Bolt Shear
		Horizontal	A307	0.6250	2	1095	12425	0.088	V	1	Bolt Shear
		Redund Horz 1 Bracing	A307	0.6250	1	130	6213	0.088	V	1	Bolt Shear
		Redund Diag 1 Bracing	A307	0.6250	1	270	6213	0.044	~	1	Bolt Shear
T 4	100.0	Redund Hip 1 Bracing	A307	0.6250	1	19	6213	0.003	~	1	Bolt Shear
T4	100.2	Diagonal	A307	0.6250	2	3723	12425	0.300	Real Property lies	1	Bolt Shear
		Horizontal	A307	0.6250	2	1544	12425	0.124	V	1	Bolt Shear
		Redund Horz 1 Bracing	A307	0.6250	1	881	6213	0.142	V	1	Bolt Shear
		Redund Diag 1 Bracing	A307	0.6250	1	1048	6213	0.169	~	1	Bolt Shear
T5	87.5	Redund Hip 1 Bracing	A307	0.6250	1	20	6213	0.003	V	1	Bolt Shear
15	07.5	Leg	A307	0.6250	24	1956	6213	0.315	V	1	Bolt SS
		Diagonal	A307	0.6250	2	4436	12425	0.357	V	1	Bolt Shear
		Horizontal	A307	0.6250	2	2216	12425	0.178	~	1	Bolt Shear
		Redund Horz 1 Bracing	A307	0.6250	1	526	6213	0.085	V	1	Bolt Shear
		Redund Diag 1 Bracing Redund Hip 1	A307 A307	0.6250 0.6250	1	617	6213	0.099	V	1	Bolt Shear
		Bracing	A307	0.0230	1	19	6213	0.003	~	1	Bolt Shear
T6	74.8	Leg	A307	0.6250	32	2091	6213	0.337	~	1	Bolt SS
		Diagonal	A307	0.6250	2	8533	12425	0.687	See.	1	Bolt Shear
		Horizontal	A307	0.6250	2	2673	12425	0.215	1	1	Bolt Shear
		Redund Horz 1 Bracing	A307	0.6250	1	517	6213	0.083	V	1	Bolt Shear
		Redund Horz 2 Bracing	A307	0.6250	1	517	6213	0.083	~	1	Bolt Shear
		Redund Horz 3 Bracing	A307	0.6250	1	517	6213	0.083	~	1	Bolt Shear
		Redund Diag 1 Bracing	A307	0.6250	1	865	6213	0.139	V	1	Bolt Shear
		Redund Diag 2 Bracing	A307	0.6250	1	500	6213	0.080	~	1	Bolt Shear
T ' 7	10.5	Redund Diag 3 Bracing	A307	0.6250	1	555	6213	0.089	~	1	Bolt Shear
Τ7	49.6	Leg	A307	0.6250	40	2838	6213	0.457	V	1	Bolt SS
		Diagonal	A307	0.6250	2	9041	12425	0.728	1	1	Bolt Shear
		Horizontal	A307	0.6250	2	3416	12425	0.275	V	1	Bolt Shear
		Redund Horz 1 Bracing	A307	0.6250	1	862	6213	0.139	~	1	Bolt Shear

	ARMOR	Job	Page
	TOWER	129' Sqr SELF-SUPPORTING TOWER ANALYSIS	23 of 35
ARM	OR TOWER, INC	Project	Date
	9 North Main	Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	09:58:35 02/10/22
Ph	ortland, NY 13045 100ne: 607-591-5381 AX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Rati Loa		Allowable Ratio	Criteria
	ft			in	Bolts	per Bolt lb	per Bolt lb	Allow	able		
		Redund Horz 2 Bracing	A307	0.6250	1	862	6213	0.139	1	1	Bolt Shear
		Redund Horz 3 Bracing	A307	0.6250	1	862	6213	0.139	1	1	Bolt Shear
		Redund Diag 1 Bracing	A307	0.6250	1	1213	6213	0.195	~	1	Bolt Shear
		Redund Diag 2 Bracing	A307	0.6250	1	702	6213	0.113	V	1	Bolt Shear
		Redund Diag 3 Bracing	A307	0.6250	1	742	6213	0.119	V	1	Bolt Shear
Τ8	24.8	Leg	A307	0.6250	48	3397	6213	0.547	V	1	Bolt SS
		Diagonal	A307	0.6250	2	9809	12425	0.789	1	1	Bolt Shear
		Horizontal	A307	0.6250	2	4002	12425	0.322	V	1	Bolt Shear
		Redund Horz 1 Bracing	A307	0.6250	1	1232	6213		V	1	Bolt Shear
		Redund Horz 2 Bracing	A307	0.6250	1	1232	6213	0.198	~	1	Bolt Shear
		Redund Horz 3 Bracing	A307	0.6250	1	1232	6213	0.198	V	1	Bolt Shear
		Redund Diag 1 Bracing	A307	0.6250	1	1524	6213	0.245	~	1	Bolt Shear
		Redund Diag 2 Bracing	A307	0.6250	1	916	6213	0.147	V	1	Bolt Shear
		Redund Diag 3 Bracing	A307	0.6250	1	971	6213	0.156	~	1	Bolt Shear

Compression Checks

Section No.	Elevation	Size	L	L_u	Kl/r	A	P _u	ϕP_n	Ratio P _u
	fi		ft	ft		in ²	lb	lb	ϕP_n
T1	129 - 124.8	L4x4x3/8	4.21	4.21	64.2 K=1.00	2.8600	-1617	74600	0.022
T2	124.8 - 112.5	L4x4x3/8	12.34	6.17	94.0 K=1.00	2.8600	-5523	58209	0.095 1
T3	112.5 - 100.2	L4x4x3/8	12.34	6.17	94.0 K=1.00	2.8600	-8544	58209	0.147 1
T4	100.2 - 87.5	L5x5x1/2	12.74	6.37	77.8 K=1.00	4.7500	-14661	111919	0.131 1
T5	87.5 - 74.8	L5x5x1/2	12.74	6.37	77.8 K=1.00	4.7500	-23473	111919	0.210 1
T6	74.8 - 49.6	L6x6x1/2	25.29	6.32	64.3 K=1.00	5.7500	-34391	149871	0.229 1
Τ7	49.6 - 24.8	L6x6x5/8	24.89	6.22	63.3 K=1.00	7.1100	-57362	186593	0.307 1
Т8	24.8 - 0	L8x8x1/2	24.89	6.22	47.0 K=1.00	7.7500	-81966	216866	0.378 1

ARMOR	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 24 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

¹ P_u / ϕP_n controls

Leg Bending Design Data (Compression)

Section No.	Elevation	Size	M _{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{my}	Ratio M _{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{mv}
T1	129 - 124.8	L4x4x3/8	1	10	0.107	0	5	0.059
T2	124.8 - 112.5	L4x4x3/8	0	10	0.000	0	5	0.000
T3	112.5 - 100.2	L4x4x3/8	0	10	0.000	0	5	0.000
T4	100.2 - 87.5	L5x5x1/2	0	22	0.000	0	11	0.000
T5	87.5 - 74.8	L5x5x1/2	0	22	0.000	0	11	0.000
T6	74.8 - 49.6	L6x6x1/2	. 0	32	0.000	0	16	0.000
T7	49.6 - 24.8	L6x6x5/8	0	39	0.000	õ	20	0.000
T8	24.8 - 0	L8x8x1/2	0	55	0.000	Õ	28	0.000

Leg Interaction Design Data (Compression)

ection No.	Elevation	Size	$\frac{Ratio}{P_u}$	Ratio M _{ux}	Ratio M _{uy}	Comb. Stress	Allow. Stress	Criteria
Company of the second	ft		ϕP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
T1	129 - 124.8	L4x4x3/8	0.022	0.107	0.059	0.177	1.000	4.8.1 🖌
T2	124.8 - 112.5	L4x4x3/8	0.095	0.000	0.000	0.095 1	1.000	4.8.1 🖌
Т3	112.5 - 100.2	L4x4x3/8	0.147	0.000	0.000	0.147 ¹	1.000	4.8.1 🖌
T4	100.2 - 87.5	L5x5x1/2	0.131	0.000	0.000	0.131 1	1.000	4.8.1
T5	87.5 - 74.8	L5x5x1/2	0.210	0.000	0.000	0.210 ¹	1.000	4.8.1 🖌
Т6	74.8 - 49.6	L6x6x1/2	0.229	0.000	0.000	0.229 1	1.000	4.8.1 🖌
T7	49.6 - 24.8	L6x6x5/8	0.307	0.000	0.000	0.307 1	1.000	4.8.1 🖌
Т8	24.8 - 0	L8x8x1/2	0.378	0.000	0.000	0.378 1	1.000	4.8.1 🖌

¹ $P_u / \phi P_n$ controls

		Diagor	nal De	sign I	Data (0	Compi	ression)	
Section No.	Elevation	Size	L	L_u	Kl/r	A	P _u	φ <i>P</i> _n	Ratio
	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\Phi P_n}$
T2	124.8 - 112.5	2L2 1/2x2x3/8x3/8	13.51	13.51	98.1 K=0.50	3.0900	-4238	60334	0.070 1
T3	112.5 - 100.2	2L2 1/2x2x3/8x3/8	13.83	13.83	103.5	3.0900	-5049	56943	0.089 ¹

ARMOR
ARMOR TOWER, INC 9 North Main

Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Job	Page
129' Sqr SELF-SUPPORTING TOWER ANALYSIS	25 of 35
Project	Date
Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	09:58:35 02/10/22
Client	Designed by
Everest Infrastructure Partners - 701778	PB

Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φP _n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	$\frac{1}{\phi P_n}$
				-	K=0.50				V
T4	100.2 - 87.5	2L2 1/2x2x1/4x3/8	14.53	14.53	105.6 K=0.50	2.1300	- 7446	38373	0.194
T5	87.5 - 74.8	2L2 1/2x2x1/4x3/8	14.91	14.91	111.2 K=0.50	2.1300	-8873	36013	0.246
T6	74.8 - 49.6	2L2 1/2x3x3/8x3/8	26.89	26.89	150.8 K=0.67	3.8400	-17066	38125	0.448
T 7	49.6 - 24.8	2L2 1/2x3x3/8x3/8	27.05	27.05	151.7 K=0.67	3.8400	-18083	37682	0.480
Т8	24.8 - 0	2L2 1/2x3x3/8x3/8	27.66	27.66	155.4 K=0.67	3.8400	-19619	35916	0.546 1

¹ $P_u / \phi P_n$ controls

		Horizo	ntal De	esign	Data	Comp	ressio	1)	
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φP _n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	$\frac{1}{\psi P_n}$
T2	124.8 - 112.5	C9x13.4	9.66	4.83	86.6 K=1.00	3.9400	-1759	85984	0.020
Т3	112.5 - 100.2	2L2 1/2x2x1/4x3/8	11.11	5.55	85.0 K=1.00	2.1300	-2144	47178	0.045 1
T4	100.2 - 87.5	2L2 1/2x2x1/4x3/8	12.55	6.28	104.2 K=1.00	2.1300	-3088	38982	0.079 ¹
Т5	87.5 - 74.8	2L2 1/2x2x1/4x3/8	14.05	7.02	111.7 K=1.00	2.1300	-4432	35766	0.124 ¹
Т6	74.8 - 49.6	2L2 1/2x2x1/4x3/8	15.54	7.77	111.3 K=1.00	2.1300	-5643	35934	0.157 1
T7	49.6 - 24.8	2L2 1/2x2x1/4x3/8	18.50	9.25	127.8 K=1.00	2.1300	-6999	29226	0.239 1
Τ8	24.8 - 0	2L2 1/2x2x1/4x3/8	21.42	10.71	146.1 K=1.00	2.1300	-8248	22546	0.366 1

¹ $P_u / \phi P_n$ controls

	R	edundant Ho	orizonta	al (1)	Desig	n Data	(Com	pressio	n)
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	φP _n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	$\frac{1}{\phi P_n}$
T2	124.8 - 112.5	L2x2x3/16	2.42	2.42	73.6 K=1.00	0.7150	-206	17424	0.012
Т3	112.5 - 100.2	L2x2x3/16	2.78	2.78	84.6 K=1.00	0.7150	-129	15898	0.008 1
T4	100.2 - 87.5	L2x2x3/16	3.14	3.14	95.6 K=1.00	0.7150	-881	14322	0.062 1

ARMOR
ARMOR TOWER, INC 9 North Main

Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Job	Page
129' Sqr SELF-SUPPORTING TOWER ANALYSIS	26 of 35
Project	Date
Dish Wireless BOHVN00032A - Youngs Apple Orchard, (CT 09:58:35 02/10/22
Client	Designed by
Everest Infrastructure Partners - 701778	PB

Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φP _n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	$\frac{1}{\phi P_n}$
T5	87.5 - 74.8	L2x2x3/16	3.51	3.51	106.9 K=1.00	0.7150	-526	12687	0.041
T6	74.8 - 49.6	L2 1/2x2x3/16	1.94	1.94	54.6 K=1.00	0.8090	-517	22406	0.023
Τ7	49.6 - 24.8	L2 1/2x2x3/16	2.31	2.31	65.0 K=1.00	0.8090	-862	20985	0.041
Τ8	24.8 - 0	L2 1/2x2x1/4	2.68	2.68	75.8 K=1.00	1.0600	-1232	25386	0.049

¹ $P_u / \phi P_n$ controls

	R	Redundant Ho	rizonta	al (2)	Desig	n Data	(Comp	oressio	n)
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φP _n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
Т6	74.8 - 49.6	L2 1/2x2x3/16	3.88	3.88	109.2 K=1.00	0.8090	-517	13996	0.037 1
T7	49.6 - 24.8	L2 1/2x2x3/16	4.63	4.63	130.0 K=1.00	0.8090	-862	10769	0.080 1
Т8	24.8 - 0	L2 1/2x2x1/4	5.35	5.35	151.5 K=1.00	1.0600	-1232	10428	0.118 1

¹ P_u / ϕP_n controls

	R	Redundant Ho	orizonta	al (3)	Desig	n Data	(Comp	oressio	n)
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	φP _n	Ratio P
	ft		ft	ft		in ²	lb	lb	$\frac{1}{\phi P_n}$
Т6	74.8 - 49.6	L2 1/2x2x3/16	5.83	5.83	163.8 K=1.00	0.8090	-517	6815	0.076 ⁻¹
Τ7	49.6 - 24.8	L2 1/2x2x3/16	6.94	6.94	195.0 к=1.00	0.8090	-862	4807	0.179 ¹
T8	24.8 - 0	L2 1/2x2x1/4	8.03	8.03	227.3 K=1.00	1.0600	-1232	4635	0.266 1

¹ P_u / ϕP_n controls

Redundant Diagonal (1) Design Data (Compression)

NOR
WER
TT had 1

Job	Page
129' Sqr SELF-SUPPORTING TOWER ANALYSIS	27 of 35
Project	Date
Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	09:58:35 02/10/22
Client	Designed by

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

ARMOR TOWER, INC

Everest Infrastructure Partners - 701778

Designed by PB

Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	$\frac{1}{\Phi P_n}$
T2	124.8 - 112.5	L2x2x3/16	6.49	6.49	197.8 K=1.00	0.7150	-202	4129	0.049
Т3	112.5 - 100.2	L2x2 1/2x3/16	6.62	6.62	186.0 K=1.00	0.8090	-153	5285	0.029
T4	100.2 - 87.5	L2x2x3/16	6.94	6.94	211.2 K=1.00	0.7150	-862	3620	0.238
T5	87.5 - 74.8	L2x2x3/16	7.09	7.09	216.0 K=1.00	0.7150	-470	3461	0.136
Т6	74.8 - 49.6	L2x2 1/2x3/16	6.50	6.50	182.8 K=1.00	0.8090	-865	5471	0.158
T7	49.6 - 24.8	L2x2 1/2x3/16	6.51	6.51	182.9 K=1.00	0.8090	-1213	5462	0.222
T8	24.8 - 0	L2x2 1/2x1/4	6.63	6.63	187.6 K=1.00	1.0600	-1524	6807	0.224

¹ P_u / ϕP_n controls

Redundant Diagonal (2) Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P _u	ϕP_n	Ratio P _u
ft	ft		ft	ft		in ²	lb	lb	$\frac{1}{\Phi P_n}$
T6	74.8 - 49.6	L2x2 1/2x3/16	7.22	7.22	203.0 K=1.00	0.8090	-480	4435	0.108
Τ7	49.6 - 24.8	L2x2 1/2x3/16	7.53	7.53	211.7 K=1.00	0.8090	-702	4079	0.172 1
Т8	24.8 - 0	L2x2 1/2x1/4	7.97	7.97	225.5 K=1.00	1.0600	-916	4710	0.195 1

¹ $P_u / \phi P_n$ controls

Redundant Diagonal (3) Design Data (Compression)

Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	ϕP_n	Ratio Fu
	ft		ft	ft		in ²	lb	ІЬ	$\frac{1}{\phi P_n}$
Т6	74.8 - 49.6	L2x2 1/2x3/16	7.61	7.61	213.9 K=1.00	0.8090	-555	3994	0.139 1
T7	49.6 - 24.8	L2x2 1/2x3/16	7.97	7.97	223.9 K=1.00	0.8090	-742	3646	0.204 1
Т8	24.8 - 0	L2x2 1/2x1/4	8.44	8.44	238.9 K=1.00	1.0600	-971	4194	0.232 1

¹ P_u / ϕP_n controls

ARMOR	Job
TOWER	
ARMOR TOWER, INC	Project

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Job	Page
129' Sqr SELF-SUPPORTING TOWER ANALYSIS	28 of 35
Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Client	Designed by
Everest Infrastructure Partners - 701778	PB

Redundant Hip (1) Design Data (Compression) Section Elevation Size L L_u Kl/r A P_u ϕP_n Ratio No. P_u ft ft ft in² lb lb ϕP_n T2 124.8 - 112.5 L2x2x3/16 3.42 3.42 104.0 0.7150 -23 13105 0.002 1 V K=1.00 Т3 112.5 - 100.2 3.93 L2x2x3/16 119.6 3.93 0.7150 10910 0.002 1 -19 V K=1.00 T4 100.2 - 87.5 L2x2x3/16 4.44 135.2 4.44 0.002 1 0.7150 -20 8841 K=1.00 1 T5 87.5 - 74.8 L2x2x3/16 4.97 4.97 151.2 0.003 1 0.7150 -19 7061 K=1.00 V

¹ $P_u / \phi P_n$ controls

Section No.	Elevation	Size	L	L_u	Kl/r	A	Pu	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	${\phi P_n}$
T1	129 - 124.8	L2 1/2x2x3/16	12.96	12.96	364.3 K=1.00	0.8090	-33	1377	0.024*1
		KL/R > 250 (C) - 6							
T2	124.8 - 112.5	L2 1/2x2x3/16	6.83	6.83	192.0 K=1.00	0.8090	-30	4959	0.006 1
T3	112.5 - 100.2	L2 1/2x2x3/16	7.85	7.85	220.7 K=1.00	0.8090	-28	3752	0.007 1
T4	100.2 - 87.5	L2 1/2x2x3/16	8.88	8.88	249.4 K=1.00	0.8090	-24	2937	0.008 1
Т5	87.5 - 74.8	L2 1/2x2x3/16	9.93	9.93	279.1 K=1.00	0.8090	-25	2346	0.011 1
		KL/R > 250 (C) - 173							
Т6	74.8 - 49.6	L2 1/2x2x3/16	10.99	10.99	308.8 K=1.00	0.8090	-67	1917	0.035 1
		KL/R > 250 (C) - 249							
T7	49.6 - 24.8	L2 1/2x2x3/16	13.08	13.08	367.7 K=1.00	0.8090	-69	1352	0.051 1
		KL/R > 250 (C) - 330							
Т8	24.8 - 0	L2 1/2x2 1/2x3/16	15.14	15.14	367.1 K=1.00	0.9020	-71	. 1512	0.047 1
		KL/R > 250 (C) - 411							*

* DL controls

¹ $P_u / \phi P_n$ controls

Tension Checks

Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Job	Page
129' Sqr SELF-SUPPORTING TOWER ANALYSIS	29 of 35
Project	Date
Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	09:58:35 02/10/22
Client	Designed by
Everest Infrastructure Partners - 701778	PB

Leg Design Data (Tension)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P _u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T1	129 - 124.8	L4x4x3/8	4.21	4.21	41.1	2.8600	151	92664	0.002
Т3	112.5 - 100.2	L4x4x3/8	12.34	6.17	60.2	2.8600	3085	92664	0.033 1
T4	100.2 - 87.5	L5x5x1/2	12.74	6.37	49.7	4.7500	7534	153900	0.049 1
T5	87.5 - 74.8	L5x5x1/2	12.74	6.37	49.7	4,7500	14778	153900	0.096 1
T6	74.8 - 49.6	L6x6x1/2	25.29	6.32	40.8	5.7500	23217	186300	0.125 1
T7	49.6 - 24.8	L6x6x5/8	24.89	6.22	40.6	7.1100	41854	230364	0.182 1
T8	24.8 - 0	L8x8x1/2	24.89	6.22	29.9	7.7500	61660	251100	0.246 1

¹ P_u / ϕP_n controls

	Leg Bending Design Data (Tension)								
Section No.	Elevation	Size	M _{ux}	φ <i>M_{nx}</i>	Ratio M _{ux}	M _{uy}	φ <i>M_{ny}</i>	Ratio M _{uy}	
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{mv}	
T1	129 - 124.8	L4x4x3/8	-1	10	0.100	0	5	0.055	
T3	112.5 - 100.2	L4x4x3/8	0	10	0.000	0	5	0.000	
T4	100.2 - 87.5	L5x5x1/2	0	22	0.000	0	11	0.000	
T5	87.5 - 74.8	L5x5x1/2	0	22	0.000	0	11	0.000	
T6	74.8 - 49.6	L6x6x1/2	0	32	0.000	0	16	0.000	
T7	49.6 - 24.8	L6x6x5/8	0	39	0.000	Ő	20	0.000	
T8	24.8 - 0	L8x8x1/2	0	55	0.000	Ő	28	0.000	

Leg Interaction Design Data (Tension)

Section No.	Elevation	Size	Ratio P _u	Ratio M _{ux}	Ratio M _{uy}	Comb. Stress	Allow. Stress	Criteria
	ft		ϕP_n	ϕM_{nx}	ϕM_{mv}	Ratio	Ratio	
T1	129 - 124.8	L4x4x3/8	0.002	0.100	0.055	0.156	1.000	4.8.1 🖌
T3	112.5 - 100.2	L4x4x3/8	0.033	0.000	0.000	0.033 1	1.000	4.8.1 🖌
T4	100.2 - 87.5	L5x5x1/2	0.049	0.000	0.000	0.049 1	1.000	4.8.1 🖍
T5	87.5 - 74.8	L5x5x1/2	0.096	0.000	0.000	0.096 1	1.000	4.8.1 🖌
Т6	74.8 - 49.6	L6x6x1/2	0.125	0.000	0.000	0.125 ¹	1.000	4.8.1 🖌
T7	49.6 - 24.8	L6x6x5/8	0.182	0.000	0.000	0.182 1	1.000	4.8.1 🖌
T8	24.8 - 0	L8x8x1/2	0.246	0.000	0.000	0.246 1	1.000	4.8.1

¹ P_u / ϕP_n controls

ARMOR	ЈоБ 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 30 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
	ft		ft	ft		in ²	lb	lb	$\frac{P_u}{\phi P_n}$
T2	124.8 - 112.5	2L2 1/2x2x3/8x3/8	13.51	13.51	168.8	1.8956	3876	82460	0.047 1
T3	112.5 - 100.2	2L2 1/2x2x3/8x3/8	13.83	13.83	172.7	1.8956	4708	82460	0.057 ¹
T4	100.2 - 87.5	2L2 1/2x2x1/4x3/8	14.53	14.53	186.5	1.3162	7243	57257	0.126 1
T5	87.5 - 74.8	2L2 1/2x2x1/4x3/8	14.91	14.91	191.3	1.3162	8589	57257	0.150 1
Т6	74.8 - 49.6	2L2 1/2x3x3/8x3/8	26.89	26.89	219.5	2.4581	16537	106928	0.155 ¹
T7	49.6 - 24.8	2L2 1/2x3x3/8x3/8	27.05	27.05	220.8	2.4581	17501	106928	0.164 1
T8	24.8 - 0	2L2 1/2x3x3/8x3/8	27.66	27.66	225.8	2.4581	18786	106928	0.176 ¹

¹ $P_u / \phi P_n$ controls

Section No.	Elevation	Size	L	L_u	Kl/r	A	P _u	φP _n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	$\frac{1}{\phi P_n}$
T2	124.8 - 112.5	C9x13.4	9.66	4.83	86.6	2.8239	1547	122841	0.013
T3	112.5 - 100.2	2L2 1/2x2x1/4x3/8	11.11	5.55	85.0	1.3162	2191	57257	0.038
T4	100.2 - 87.5	2L2 1/2x2x1/4x3/8	12.55	6.28	96.1	1.3162	3060	57257	0.053
T5	87.5 - 74.8	2L2 1/2x2x1/4x3/8	14.05	7.02	107.5	1.3162	4335	57257	0.076
Т6	74.8 - 49.6	2L2 1/2x2x1/4x3/8	15.54	7.77	99.7	1.3162	5470	57257	0.096
Τ7	49.6 - 24.8	2L2 1/2x2x1/4x3/8	18.50	9.25	118.7	1.3162	6785	57257	0.119
Т8	24.8 - 0	2L2 1/2x2x1/4x3/8	21.42	10.71	137.4	1.3162	7985	57257	0.139

¹ P_u / ϕP_n controls

Redundant Horizontal (1) Design Data (Tension)

ARMOR
ARMOR TOWER, INC 9 North Main

Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Job	Page
129' Sqr SELF-SUPPORTING TOWER ANALYSIS	31 of 35
Project	Date
Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	09:58:35 02/10/22
Client	Designed by
Everest Infrastructure Partners - 701778	PB

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P_u	
	ft		ft	ft		in ²	lb	lb	$\frac{1}{\Phi P_n}$	
T2	124.8 - 112.5	L2x2x3/16	2.42	2.42	47.0	0.4308	196	18739	0.010	
Т3	112.5 - 100.2	L2x2x3/16	2.78	2.78	54.0	0.4308	130	18739	0.007	
T4	100.2 - 87.5	L2x2x3/16	3.14	3.14	61.0	0.4308	827	18739	0.044	
T5	87.5 - 74.8	L2x2x3/16	3.51	3.51	68.3	0.4308	508	18739	0.027	
T6	74.8 - 49.6	L2 1/2x2x3/16	1.94	1.94	38.9	0.5013	517	21806	0.024	
T7	49.6 - 24.8	L2 1/2x2x3/16	2.31	2.31	46.3	0.5013	862	21806	0.040	
T8	24.8 - 0	L2 1/2x2x1/4	2.68	2.68	54.2	0.6544	1232	28465	0.043	

¹ P_u / ϕP_n controls

Redundant Horizontal (2) Design Data (Tensi								nsion)	
Section No.	Elevation	Size	L	L _u	Kl/r	A	Pu	φP _n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	$\frac{1}{\Phi P_n}$
Т6	74.8 - 49.6	L2 1/2x2x3/16	3.88	3.88	77.7	0.5013	517	21806	0.024 1
T 7	49.6 - 24.8	L2 1/2x2x3/16	4.63	4.63	92.5	0.5013	862	21806	0.040 1
T8	24.8 - 0	L2 1/2x2x1/4	5.35	5.35	108.5	0.6544	1232	28465	0.043 1

¹ $P_u / \phi P_n$ controls

	Redundant Horizontal (3) Design Data (Tens								
Section	Elevation	Size	L	L_u	Kl/r	A	P _u	φP _n	Ratio F _u
When we do to a long star and a	ft		ft	ft		in ²	lb	lb	ϕP_n
Т6	74.8 - 49.6	L2 1/2x2x3/16	5.83	5.83	116.6	0.5013	517	21806	0.024 1
T7	49.6 - 24.8	L2 1/2x2x3/16	6.94	6.94	138.8	0.5013	862	21806	0.040 1
Τ8	24.8 - 0	L2 1/2x2x1/4	8.03	8.03	162.7	0.6544	1232	28465	0.043 1

¹ $P_u / \phi P_n$ controls

ARMOR	ЈоБ 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 32 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P _u	ϕP_n	Ratio P_u
	ft		ft	ft		in ²	lb	lb	ϕP_n
T2	124.8 - 112.5	L2x2x3/16	6.49	6.49	126.3	0.4308	367	18739	0.020 1
T3	112.5 - 100.2	L2x2 1/2x3/16	6.62	6.62	132.4	0.5013	270	21806	0.012 1
T4	100.2 - 87.5	L2x2x3/16	6.94	6.94	134.9	0.4308	1048	18739	0.056 1
T5	87.5 - 74.8	L2x2x3/16	7.09	7.09	137.9	0.4308	617	18739	0.033 1
Τ6	74.8 - 49.6	L2x2 1/2x3/16	6.50	6.50	130.1	0.5013	865	21806	0.040 1
T7	49.6 - 24.8	L2x2 1/2x3/16	6.51	6.51	130.2	0.5013	1213	21806	0.056 1
Т8	24.8 - 0	L2x2 1/2x1/4	6.63	6.63	134.2	0.6544	1524	28465	0.054 1

¹ P_u / ϕP_n controls

Redundant Diagonal (2) Design Data (Tension)									
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	φP _n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
T6	74.8 - 49.6	L2x2 1/2x3/16	7.22	7.22	144.5	0.5013	500	21806	0.023
Τ7	49.6 - 24.8	L2x2 1/2x3/16	7.53	7.53	150.7	0.5013	702	21806	0.032
Т8	24.8 - 0	L2x2 1/2x1/4	7.97	7.97	161.4	0.6544	916	28465	0.032

¹ P_u / ϕP_n controls

Redundant Diagonal (3) Design Data (Tension)									
Section No.	Elevation	Size	L	Lu	Kl/r	A	P _u	φP _n	Ratio P _u
	ft		ft	ft		in ²	lb	lb	ϕP_n
Т6	74.8 - 49.6	L2x2 1/2x3/16	7.61	7.61	152.3	0.5013	506	21806	0.023
T 7	49.6 - 24.8	L2x2 1/2x3/16	7.97	7.97	159.4	0.5013	742	21806	0.034
Т8	24.8 - 0	L2x2 1/2x1/4	8.44	8.44	171.0	0.6544	971	28465	0.034

	Job 129' Sqr SELF-SUPPORTING TOWER ANALYSIS	Page 33 of 35
ARMOR TOWER, INC 9 North Main	Project Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT	Date 09:58:35 02/10/22
Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840	Client Everest Infrastructure Partners - 701778	Designed by PB

¹ P_u / ϕP_n controls

Redundant Hip (1) Design Data (Tension)									
Section No.	Elevation	Size	L	L _u	Kl/r	A	P _u	¢P _n	Ratio P.,
	ft		ft	ft		in^2	lb	lb	$\frac{1}{\Phi P_n}$
T2	124.8 - 112.5	L2x2x3/16	3.42	3.42	66.4	0.4308	1	18739	0.000 1
T3	112.5 - 100.2	L2x2x3/16	3.93	3.93	76.4	0.4308	1	18739	0.000 1

¹ $P_u / \phi P_n$ controls

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
T1	129 - 124.8	Leg	L4x4x3/8	2	-1617	74600	17.7	Pass
T2	124.8 - 112.5	Leg	L4x4x3/8	12	-5523	58209	9.5	Pass
T3	112.5 - 100.2	Leg	L4x4x3/8	53	-8544	58209	14.7	Pass
T4	100.2 - 87.5	Leg	L5x5x1/2	93	-14661	111919	13.1	Pass
T5	87.5 - 74.8	Leg	L5x5x1/2	134	-23473	111919	21.0	Pass
T6	74.8 - 49.6	Leg	L6x6x1/2	175	-34391	149871	31.5 (b) 22.9 33.7 (b)	Pass
Τ7	49.6 - 24.8	Leg	L6x6x5/8	259	-57362	186593	30.7 45.7 (b)	Pass
T8	24.8 - 0	Leg	L8x8x1/2	340	-81966	216866	37.8 54.7 (b)	Pass
T2	124.8 - 112.5	Diagonal	2L2 1/2x2x3/8x3/8	16	-4238	60334	7.0 17.1 (b)	Pass
Т3	112.5 - 100.2	Diagonal	2L2 1/2x2x3/8x3/8	57	-5049	56943	8.9 20.3 (b)	Pass
T4	100.2 - 87.5	Diagonal	2L2 1/2x2x1/4x3/8	121	-7446	38373	19.4 30.0 (b)	Pass
T5	87.5 - 74.8	Diagonal	2L2 1/2x2x1/4x3/8	162	-8873	36013	24.6 35.7 (b)	Pass
Т6	74.8 - 49.6	Diagonal	2L2 1/2x3x3/8x3/8	239	-17066	38125	44.8 68.7 (b)	Pass
T7	49.6 - 24.8	Diagonal	2L2 1/2x3x3/8x3/8	320	-18083	37682	48.0 72.8 (b)	Pass
Т8	24.8 - 0	Diagonal	2L2 1/2x3x3/8x3/8	401	-19619	35916	54.6 78.9 (b)	Pass
T2	124.8 - 112.5	Horizontal	C9x13.4	15	-1759	85984	2.0 9.4 (b)	Pass
T3	112.5 - 100.2	Horizontal	2L2 1/2x2x1/4x3/8	56	-2144	47178	4.5 8.8 (b)	Pass
T4	100.2 - 87.5	Horizontal	2L2 1/2x2x1/4x3/8	97	-3088	38982	7.9 12.4 (b)	Pass
T5	87.5 - 74.8	Horizontal	2L2 1/2x2x1/4x3/8	161	-4432	35766	12.4 17.8 (b)	Pass
T6	74.8 - 49.6	Horizontal	2L2 1/2x2x1/4x3/8	230	-5643	35934	15.7 21.5 (b)	Pass

129' Sqr SELF-SUPPORTING TOWER ANALYSIS

Page 34 of 35

ARMOR TOWER, INC

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840 Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT

Job

Project

Client

Everest Infrastructure Partners - 701778

Date 09:58:35 02/10/22 Designed by

PB

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} Ib	% Capacity	Pass Fail
T7	49.6 - 24.8	Horizontal	2L2 1/2x2x1/4x3/8	311	-6999	29226	23.9 27.5 (b)	Pass
T8	24.8 - 0	Horizontal	2L2 1/2x2x1/4x3/8	392	-8248	22546		Deee
T2	124.8 - 112.5	Redund Horz 1	L2x2x3/16	43			36.6	Pass
		Bracing			-206	17424	1.2 3.3 (b)	Pass
T3	112.5 - 100.2	Redund Horz 1 Bracing	L2x2x3/16	65	-129	15898	0.8 2.1 (b)	Pass
T4	100.2 - 87.5	Redund Horz 1 Bracing	L2x2x3/16	125	-881	14322	6.2 14.2 (b)	Pass
T5	87.5 - 74.8	Redund Horz 1 Bracing	L2x2x3/16	158	-526	12687	4.1	Pass
T6	74.8 - 49.6	Redund Horz 1 Bracing	L2 1/2x2x3/16	181	517	21806	8.5 (b) 2.4	Pass
T 7	49.6 - 24.8	Redund Horz 1	L2 1/2x2x3/16	304	-862	20985	8.3 (b) 4.1	Pass
Т8	24.8 - 0	Bracing Redund Horz 1	L2 1/2x2x1/4	385	-1232	25386	13.9 (b) 4.9	Pass
T6	74.8 - 49.6	Bracing Redund Horz 2	L2 1/2x2x3/16	182	-517	13996	19.8 (b) 3.7	Pass
T7	49.6 - 24.8	Bracing Redund Horz 2	L2 1/2x2x3/16	305	-862	10769	8.3 (b) 8.0	Pass
Т8	24.8 - 0	Bracing Redund Horz 2	L2 1/2x2x1/4	386	-1232	10/09	13.9 (b)	
T6	74.8 - 49.6	Bracing Redund Horz 3					11.8 19.8 (b)	Pass
T7	49.6 - 24.8	Bracing Redund Horz 3	L2 1/2x2x3/16	184	-517	6815	7.6 8.3 (b)	Pass
		Bracing	L2 1/2x2x3/16	307	-862	4807	17.9	Pass
T8	24.8 - 0	Redund Horz 3 Bracing	L2 1/2x2x1/4	388	-1232	4635	26.6	Pass
T2	124.8 - 112.5	Redund Diag 1 Bracing	L2x2x3/16	44	-202	4129	4.9 5.9 (b)	Pass
Т3	112.5 - 100.2	Redund Diag 1 Bracing	L2x2 1/2x3/16	66	-153	5285	2.9 4.4 (b)	Pass
T4	100.2 - 87.5	Redund Diag 1 Bracing	L2x2x3/16	123	-862	3620	23.8	Pass
T5	87.5 - 74.8	Redund Diag 1 Bracing	L2x2x3/16	148	-470	3461	13.6	Pass
Т6	74.8 - 49.6	Redund Diag 1 Bracing	L2x2 1/2x3/16	183	-865	5471	15.8	Pass
Т7	49.6 - 24.8	Redund Diag 1 Bracing	L2x2 1/2x3/16	306	-1213	5462	22.2	Pass
Т8	24.8 - 0	Redund Diag 1 Bracing	L2x2 1/2x1/4	396	-1524	6807	22.4	Pass
T6	74.8 - 49.6	Redund Diag 2	L2x2 1/2x3/16	185	-480	4435	24.5 (b) 10.8	Pass
Τ7	49.6 - 24.8	Bracing Redund Diag 2	L2x2 1/2x3/16	308	-702	4079	17.2	Pass
Т8	24.8 - 0	Bracing Redund Diag 2	L2x2 1/2x1/4	398	-916	4710	19.5	Pass
T6	74.8 - 49.6	Bracing Redund Diag 3	L2x2 1/2x3/16	220	-555	3994	13.9	Pass
Т7	49.6 - 24.8	Bracing Redund Diag 3	L2x2 1/2x3/16	309	-742	3646	20.4	Pass
Т8	24.8 - 0	Bracing Redund Diag 3	L2x2 1/2x1/4	390	-971	4194	23.2	Pass
T2	124.8 - 112.5	Bracing Redund Hip 1	L2x2x3/16	29	-11	13105	0.3	Pass
Т3	112.5 - 100.2	Bracing Redund Hip 1	L2x2x3/16	78	-17	10910	0.4 (b) 0.3	Pass
T4	100.2 - 87.5	Bracing Redund Hip 1	L2x2x3/16	119	-20	8841	0.4	Pass

R	
Ł.	
1	
	3

Job

Project

Client

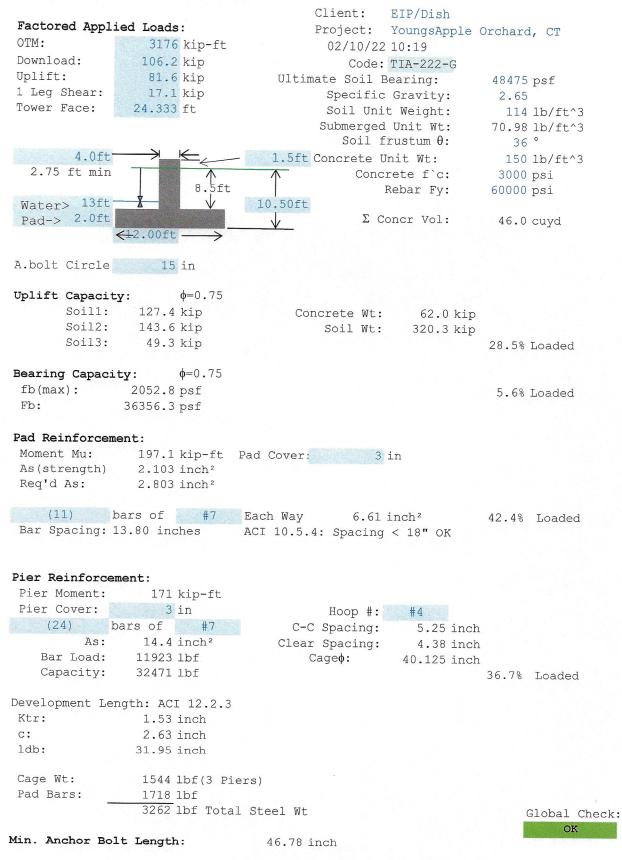
129' Sqr SELF-SUPPORTING TOWER ANALYSIS

Page 35 of 35

ARMOR TOWER, INC

9 North Main Cortland, NY 13045 Phone: 607-591-5381 FAX: 866-870-0840

Dish Wireless BOHVN00032A - Youngs Apple Orchard, CT


Date 09:58:35 02/10/22 Designed by

PB

Everest Infrastructure Partners - 701778

Section No.	Elevation ft	Component Type	Size	Critical Element	P Ib	øP _{allow} Ib	% Capacity	Pass Fail
T5	87.5 - 74.8	Redund Hip 1 Bracing	L2x2x3/16	152	-19	7061	0.4	Pass
T1	129 - 124.8	Inner Bracing	L2 1/2x2x3/16	6	-33	1377	2.4	Pass
T2	124.8 - 112.5	Inner Bracing	L2 1/2x2x3/16	51	-4	2480	0.7	Pass
T3	112.5 - 100.2	Inner Bracing	L2 1/2x2x3/16	92	-5	1876	0.7	Pass
T4	100.2 - 87.5	Inner Bracing	L2 1/2x2x3/16	133	-5	1469	0.8	Pass
T5	87.5 - 74.8	Inner Bracing	L2 1/2x2x3/16	173	-25	2346	1.1	Pass
T6	74.8 - 49.6	Inner Bracing	L2 1/2x2x3/16	249	-67	1917	3.5	
T7	49.6 - 24.8	Inner Bracing	L2 1/2x2x3/16	330				Pass
T8	24.8 - 0	Inner Bracing			-69	1352	5.1	Pass
10	24.8 - 0	miller bracing	L2 1/2x2 1/2x3/16	411	-71	1512	4.7	Pass
							Summary	
						Leg (T8)	54.7	Pass
						Diagonal (T8)	78.9	Pass
						Horizontal (T8)	36.6	Pass
					Redund Horz 1	19.8	Pass	
						Bracing (T8)		
						Redund	19.8	Pass
						Horz 2	19.0	rass
						Bracing (T8)		
						Redund	266	D
							26.6	Pass
						Horz 3		
						Bracing (T8)		
						Redund	24.5	Pass
						Diag 1		
						Bracing (T8)		
						Redund	19.5	Pass
						Diag 2	19.0	1 400
						Bracing (T8)		
						Redund	23.2	Pass
						Diag 3	23.2	r ass
						Bracing (T8)		
							0.4	D
						Redund Hip	0.4	Pass
						1 Bracing		
						(T5)		
						Inner	5.1	Pass
						Bracing (T7)		
						Bolt Checks	78.9	Pass
						RATING =	78.9	Pass

SS Tower Pad & Pier Calculations

Foundation Analysis per ACI 318

ASCE 7 Hazards Report

ASCE/SEI 7-10

Address: 62 Youngs Apple Orchard RRisk Category: II Northford, Connecticut 06472

Standard:

Soil Class: D - Stiff Soil Elevation: 451.16 ft (NAVD 88) Latitude: 41.421021 Longitude: -72.749517

Wind

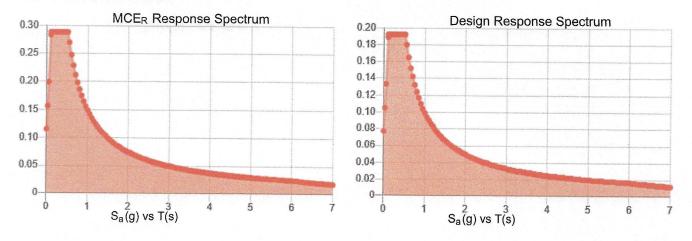
Results:

Wind Speed:	126 Vmph
10-year MRI	77 Vmph
25-year MRI	87 Vmph
50-year MRI	94 Vmph
100-year MRI	103 Vmph

CT State Building Code Appendix N: Vult=125/Vasd=97

Date Socessed:

ABCE/(SE26/2021Fig. 26.5-1A and Figs. CC-1-CC-4, and Section 26.5.2, incorporating errata of March 12, 2014


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.18	S _{DS} :	0.192	
S ₁ :	0.062	S _{D1} :	0.099	
F _a :	1.6	Τ _L :	6	
F _v :	2.4	PGA :	0.092	
S _{MS} :	0.288	PGA _M :	0.148	
S _{M1} :	0.149	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Thu Aug 26 2021

USGS Šeismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Thu Aug 26 2021

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Exhibit E

Mount Analysis

INFINIGY8

MOUNT ANALYSIS REPORT

March 28, 2022

Dish Wireless Site Number	BOHVN00032A
Infinigy Job Number	1197-F0001-B
Client	Northeast Site Solutions
Carrier	Dish Wireless
Site Location	62 Youngs Apple Orchard Road North Branford, CT 06472 New Haven County 41.42083300° N NAD83 72.74944444° W NAD83
Structure Type	Self-Supported Tower
Structure Height	128.3 ft
Mount Type	10.0 ft Sector Frame
Mount Elevation	83.0 ft AGL
Structural Usage Ratio	28.2%
Overall Result	Pass

The enclosed structural analysis has been performed in accordance with the 2015 International Building Code based on an ultimate 3-second gust wind speed of 130 mph. The evaluation criteria and applicable standards are presented in the next section of this report.

structural@ininigy.com

CONTENTS

- 1. Introduction
- 2. Design/Analysis Parameters
- 3. Proposed Loading Configuration
- 4. Supporting Documentation
- 5. Results
- 6. Recommendations
- 7. Assumptions
- 8. Liability Waiver and Limitations
- 9. Calculations

1. INTRODUCTION

Infinigy performed a mount analysis on the Dish Wireless proposed telecommunication equipment supporting Sector Frame mounted to the existing structure located at the aforementioned address. All referenced supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using Risa3D version 19.0.4 analysis software.

2. DESIGN/ANALYSIS PARAMETERS

Wind Speed	130 mph (3-Second Gust)
Wind Speed w/ ice	50 mph (3-Second Gust) w/ 0.75" ice / No Ice Loading Considered
Adopted Code	2015 International Building Code
Standard(s)	TIA-222-G
Risk Category	I
Exposure Category	С
Topographic Factor	1.0
Seismic Spectral Response	$S_s = 0.18 \text{ g} / S_1 = 0.062 \text{ g}$
Ground Elevation (HMSL)	462.73 ft

3. PROPOSED LOADING CONFIGURATION - 83.0 ft. AGL Sector Frame

Centerline (ft)	Qty.	Appurtenance Manufacturers	Appurtenance Models
83.0	3	JMA	MX08FRO665-21
83.0	3	Fujitsu	TA08025-B605
83.0	3	Fujitsu	TA08025-B604
83.0	1	Raycap	RDIDC-9181-PF-48

4. SUPPORTING DOCUMENTATION

Construction Drawings	Infinigy Engineering, dated March 2022
Dish Wireless Proposed Loading	RFDS rev 1, dated 09/09/2021
Mount Design Drawings	Sabre Industries Part C10837002C

5. RESULTS

Components	Capacity	Pass/Fail
Antenna Pipe	28.2%	Pass
Kicker	05.8%	Pass
Bracing	13.5%	Pass
Standoff	08.1%	Pass
Horizontal	11.8%	Pass
Plate	20.7%	Pass
Mount Connection	22.5\$	Pass
RATING =	28.2%	Pass

Notes:

1. See additional documentation in Appendix for calculations supporting the capacity consumed and detailed mount connection calculations.

2. All sectors are typical.

6. RECOMMENDATIONS

Infinigy recommends installing Dish Wireless's proposed equipment loading configuration on the Sector Frame at 83.0 ft. The installation shall be performed in accordance with the construction documents issued for this site.

If you have any questions, require additional information, or believe the actual conditions differ from those detailed in this report, please contact us immediately.

Alexandre Matout, MS, PE Project Manager | **INFINIGY**

7. ASSUMPTIONS

The antenna mounting system was properly fabricated, installed and maintained in accordance with its original design and manufacturer's specifications.			
The configuration of antennas, mounts, and other appurtenances are as specified in the proposed loading configuration table.			
All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.			
The analysis will require revisions if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members.			
Steel grades have been assumed as follows, unless	s noted otherwise:		
Channel, Solid Round, Angle, Plate	ASTM A36		
HSS (Rectangular) ASTM A500-B GR 46			
HSS (Circular) ASTM A500-B GR 42			
Pipe ASTM A53-B GR 35			
Connection Bolts ASTM A325			
U-Bolts ASTM A307			
All bolted connections are pretensioned in accordance with Table 8.2 of the RCSC 2014 Standard.			

8. LIABILITY WAIVER AND LIMITATIONS

Our structural calculations are completed assuming all information provided to Infinigy is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition as erected and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report, Infinigy should be notified immediately to assess the impact on the results of this report.

Our evaluation is completed using industry standard methods and procedures. The structural results, conclusions and recommendations contained in this report are proprietary and should not be used by others as their own. Infinigy is not responsible for decisions made by others that are or are not based on the stated assumptions and conclusions in this report.

This report is an evaluation of the mount structure only and does not determine the adequacy of the supporting structure, other carrier mounts or cable mounting attachments. The analysis of these elements is outside the scope of this analysis, are assumed to be adequate for the purpose of this report and to have been installed per their manufacturer requirements. This document is not for construction purposes.

Program Inputs

PROJECT INFORMATION			
Client: Northeast Site Soluti			
Carrier: Dish Wireless			
Engineer: Alex Matout			

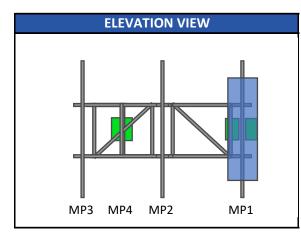
SITE INFORMATION		
Risk Category:	=	
Exposure Category:	С	
Topo Category: 1		
Site Class:	D - Stiff Soil (Assumed)	
Ground Elevation:	N/A	ft *Rev H

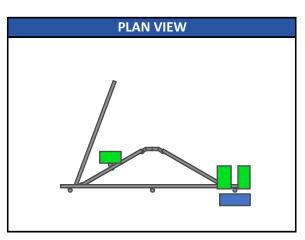
MOUNT INFORMATION			
Mount Type: Sector Frame			
Num Sectors:	1		
Centerline AGL:	83.00	ft	
Tower Height AGL:	128.25	ft	

TOPOGRAPHIC DATA			
Topo Feature: N/A			
Slope Distance:	N/A	ft	
Crest Distance:	N/A	ft	
Crest Height:	N/A	ft	

FACTORS		
Directionality Fact. (K _d):	0.950	
Ground Ele. Factor (K _e):	N/A	*Rev H Only
Rooftop Speed-Up (K _s):	N/A	*Rev H Only
Topographic Factor (K _{zt}):	1.000	
Gust Effect Factor (G _h):	1.000	

CODE STANDARDS								
Building Code:	2015 IBC							
TIA Standard:	TIA-222-G							
ASCE Standard:	ASCE 7-10							


WIND AND ICE DATA						
Ultimate Wind (V _{ult}):	130	mph				
Design Wind (V):	101	mph				
Ice Wind (V _{ice}):	50	mph				
Base Ice Thickness (t _i):	0.75	in				
Flat Pressure:	60.381	psf				
Round Pressure:	36.229	psf				
Ice Wind Pressure:	8.879	psf				

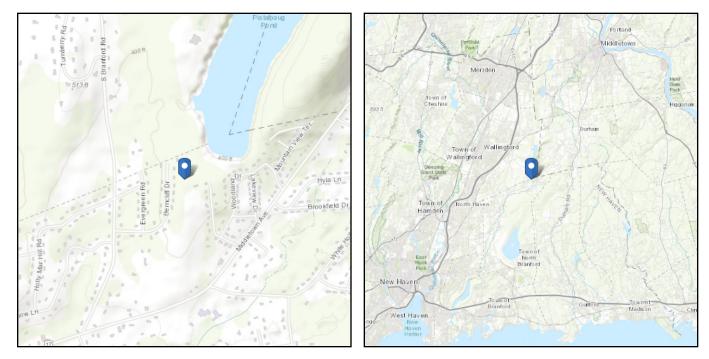

SEISMIC	C DATA	
Short-Period Accel. (S _s):	0.180	g
1-Second Accel. (S ₁):	0.062	g
Short-Period Design (S _{DS}):	0.192	
1-Second Design (S _{D1}):	0.099	
Short-Period Coeff. (F _a):	1.600	
1-Second Coeff. (F _v):	2.400	
Amplification Factor (A _s):	3.000	
Response Mod. Coeff. (R):	2.000	

Infinigy Load Calculator V2.1.7

Program Inputs

Infinigy Load Calculator V2.1.7

			APPURT	ENANCE INI	ORMATION						
Appurtenance Name	Elevation	Qty.	K _a	q _z (psf)	EPA _N (ft ²)	EPA _T (ft ²)	Wind F _z (lbs)	Wind F _x (lbs)	Weight (Ibs)	Seismic F (lbs)	Member (α sector)
JMA WIRELESS MX08FRO665-21	83.0	1	1.00	30.19	12.49	5.87	377.05	177.12	82.50	23.76	MP1
FUJITSU TA08025-B605	83.0	1	1.00	30.19	1.17	0.55	35.26	16.60	74.95	21.59	MP1
FUJITSU TA08025-B604	83.0	1	1.00	30.19	1.17	0.55	35.26	16.60	63.93	18.41	MP1
RAYCAP RDIDC-9181-PF-48	83.0	1	1.00	30.19	1.76	0.87	53.19	26.35	21.85	6.29	MP4


ASCE 7 Hazards Report

Standard:ASCE/SEI 7-10Risk Category:IISoil Class:D - Stiff Soil

 Elevation:
 462.73 ft (NAVD 88)

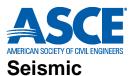
 Latitude:
 41.420833

 Longitude:
 -72.749444

Wind

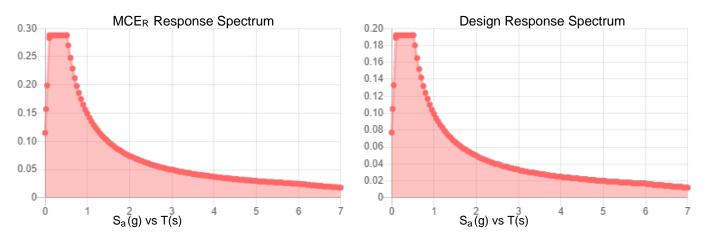
Results:

Wind Speed	130 Vmph
10-year MRI	77 Vmph
25-year MRI	87 Vmph
50-year MRI	94 Vmph
100-year MRI	103 Vmph


Data Source:

ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1–CC-4, and Section 26.5.2, incorporating errata of March 12, 2014

Date Accessed: Mon Mar 28 2022


Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class: Results:	D - Stiff Soil			
S _s :	0.18	S _{DS} :	0.192	
S ₁ :	0.062	S _{D1} :	0.099	
F _a :	1.6	Τ _L :	6	
F_v :	2.4	PGA :	0.092	
S _{MS} :	0.288	PGA M:	0.148	
S _{M1} :	0.149	F _{PGA} :	1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed:

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

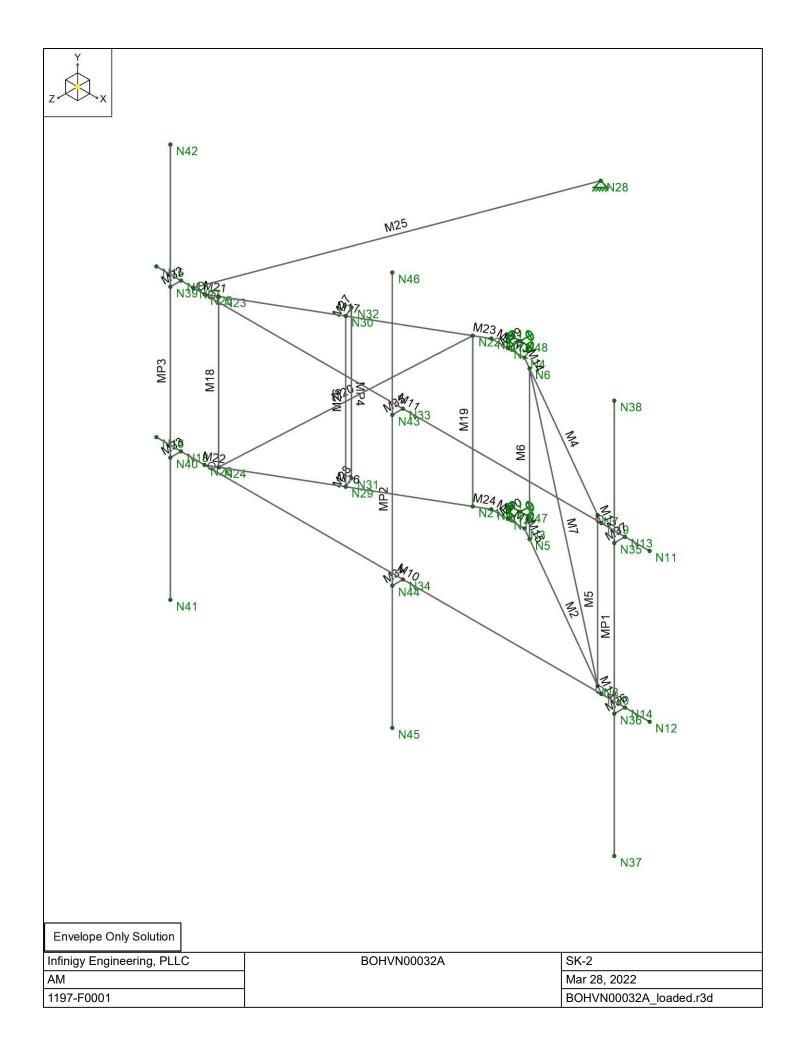
Mon Mar 28 2022

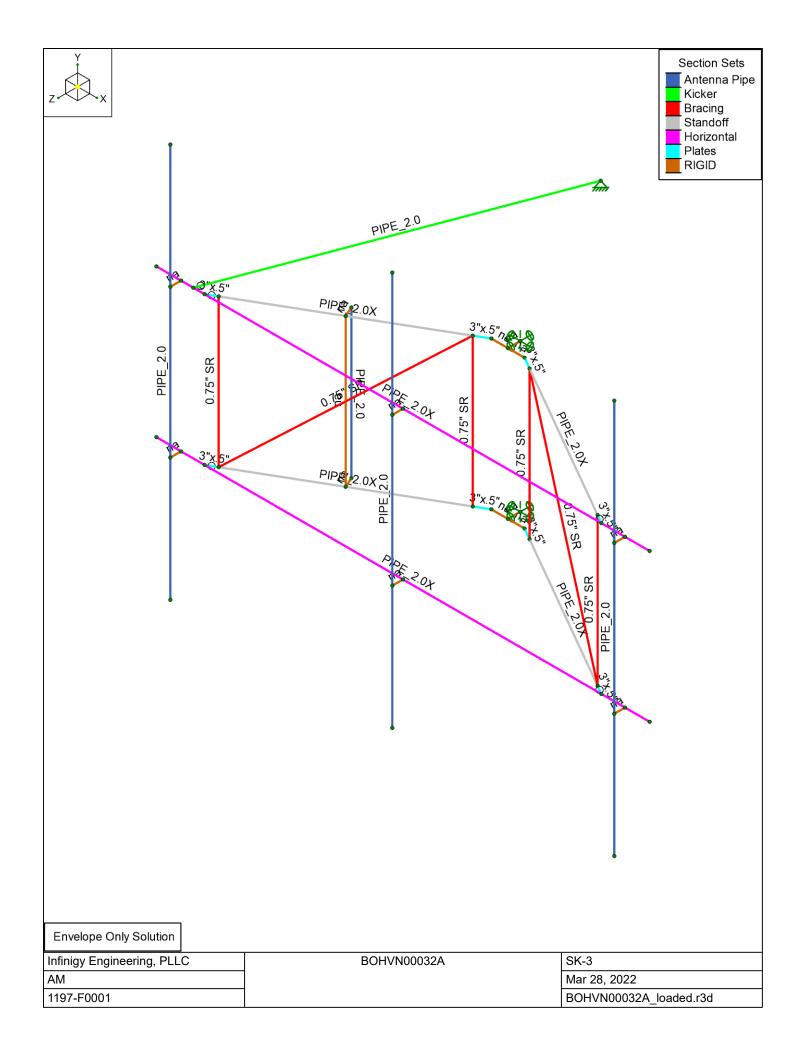
Ice

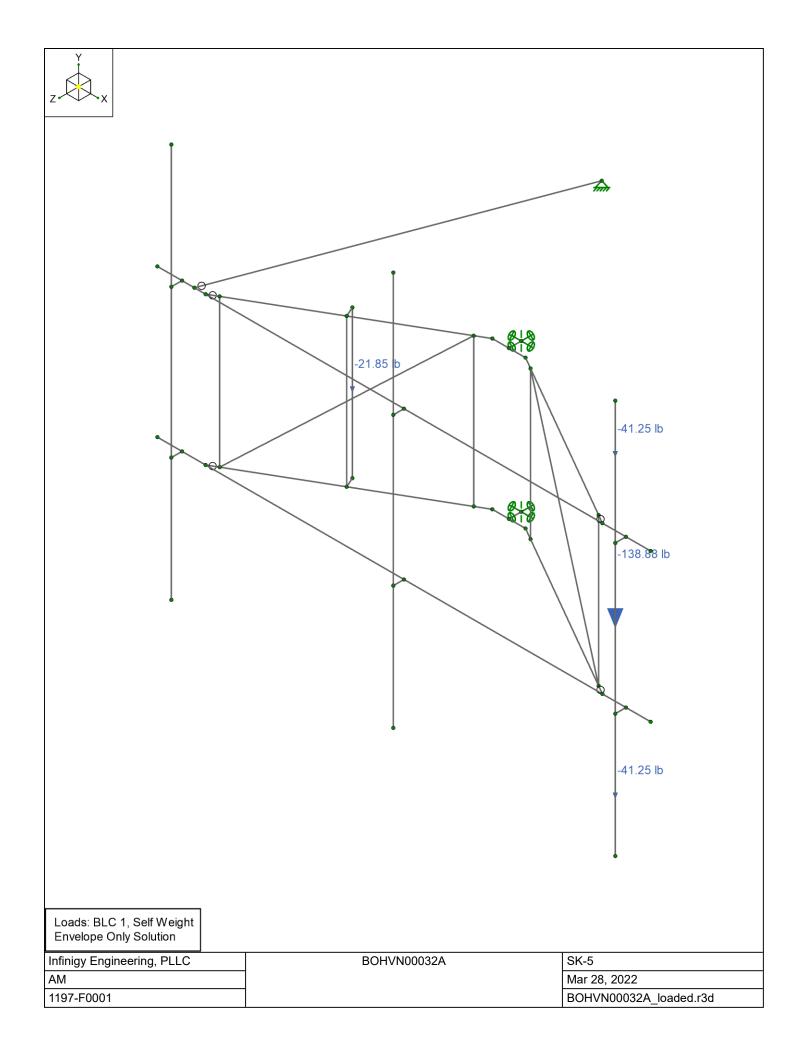
Results:

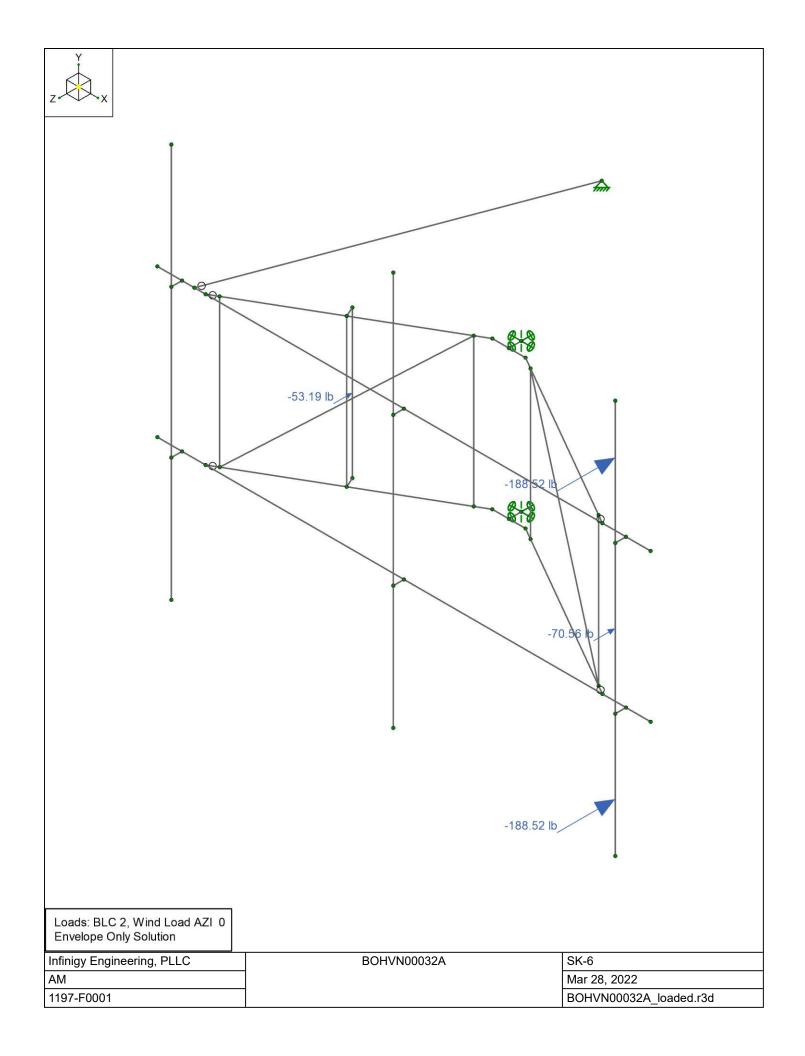
Ice Thickness:	0.75 in.
Concurrent Temperature:	15 F
Gust Speed	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Mon Mar 28 2022

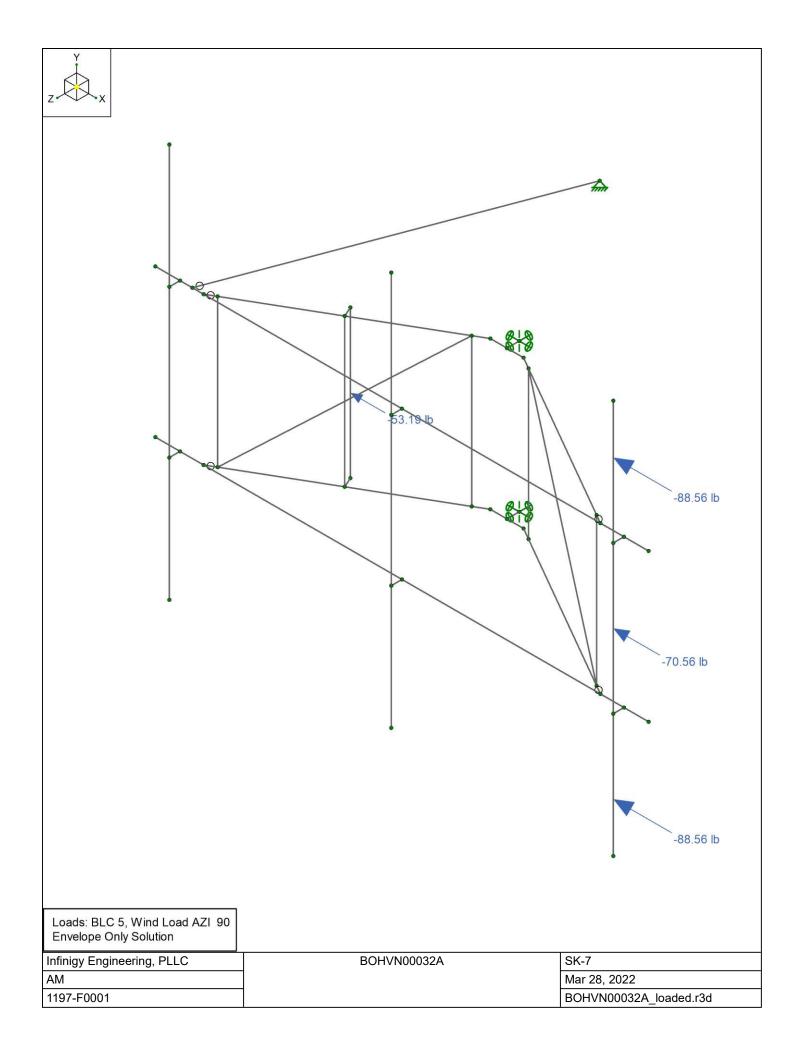
Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

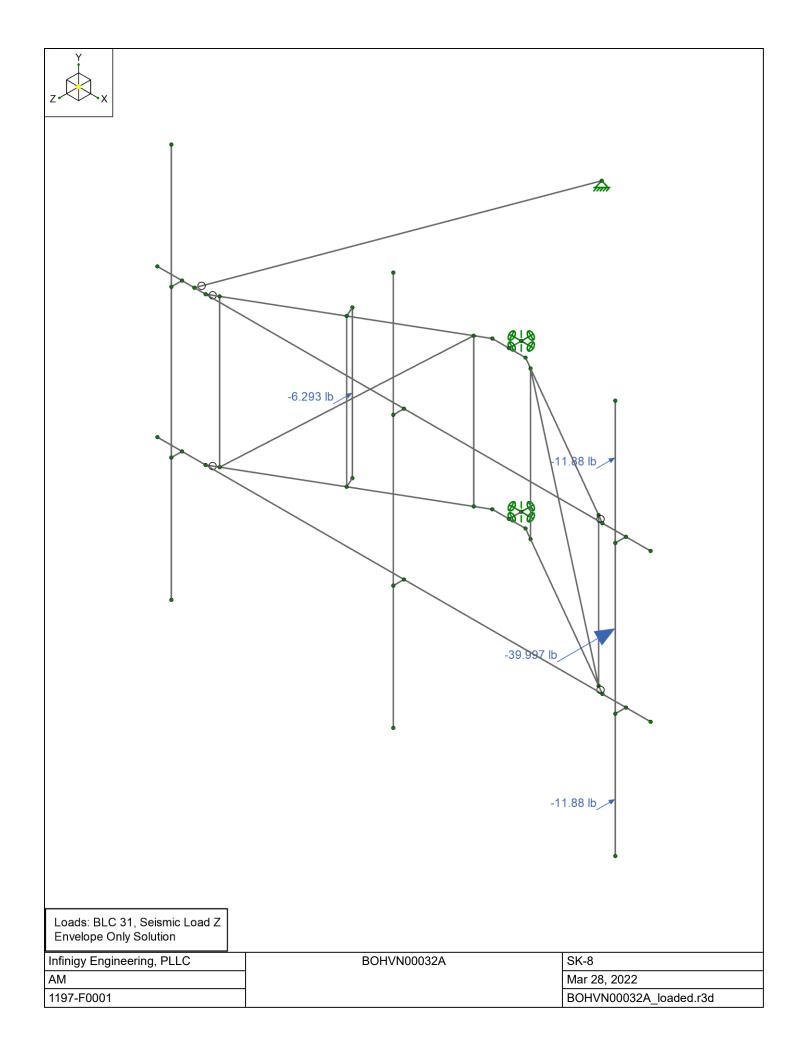

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

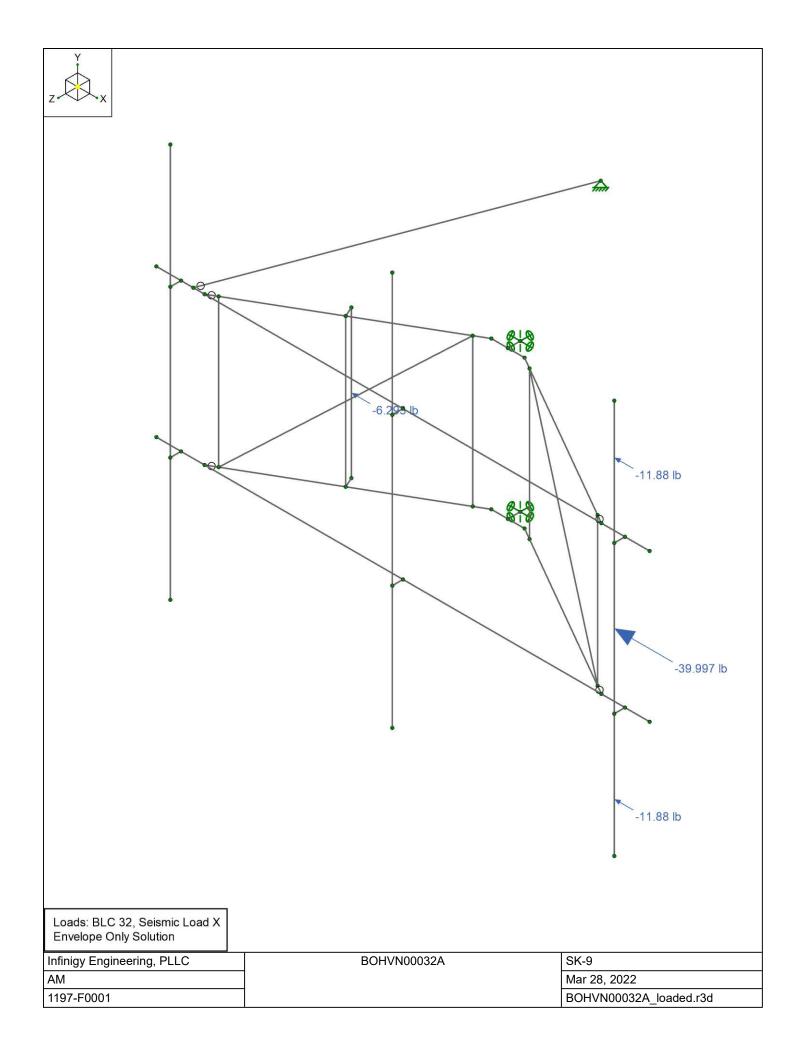

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.


ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.


In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.


Envelope Only Solution		
Infinigy Engineering, PLLC AM 1197-F0001	BOHVN00032A	SK-1 Mar 28, 2022 BOHVN00032A_loaded.r3d





Company : Infinigy Engineering, PLLC Designer : AM Job Number : 1197-F0001 Model Name : BOHVN00032A

Member Primary Data

1 M1 N3 RIGID None None RIGID Typical 2 M2 N5 N8 Standoff Beam Pipe A500 Gr.C. Typical 4 M4 N6 N7 Standoff Beam Pipe A500 Gr.C. Typical 5 M5 N8 N7 Bracing VBrace BAR A572 Gr.50 Typical 6 M6 N5 N6 Bracing VBrace BAR A572 Gr.50 Typical 7 M7 N6 Name RIGID None None RIGID Typical 8 M8 N1 N9 RIGID None None RIGID Typical 10 M10 N16 N12 Horizontal Beam Pipe A500 Gr.C. Typical 11 M11 N15 N11 Horizontal Beam BAR A572 Gr.50 Typical 12 M12 N7 N19<							_			
2 M2 N5 N8 Standoff Beam Pipe A500 Gr.C Typical 3 M3 N2 N4 RIGID None RIGID Typical 4 M4 N6 N7 Standoff Beam Pipe A500 Gr.C Typical 5 M5 N8 N7 Bracing VBrace BAR A572 Gr.50 Typical 6 M6 N5 N6 Bracing VBrace BAR A572 Gr.50 Typical 7 M7 N6 N8 Bracing VBrace BAR A572 Gr.50 Typical 9 M9 N10 N16 N12 Horizontal Beam Pipe A500 Gr.C Typical 10 M10 N16 N12 Horizontal Beam BAR A572 Gr.50 Typical 11 M11 No Horizontal Beam BAR A572 Gr.50 Typical 12 M12 N7		Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре			Design Rule
3 M3 N2 N4 Rigit None None None Rone Rigit Typical 4 M4 N6 N7 Standoff Beam Pipe A500 Gr.C Typical 6 M5 N8 N7 Bracing VBrace BAR A572 Gr.50 Typical 7 M7 N6 N8 Bracing VBrace BAR A572 Gr.50 Typical 8 M8 N1 N9 RiGID None None RiGID Typical 9 M9 N2 N10 RiGID None None RiGID Typical 10 M10 N16 N12 Horizontal Beam Pipe A500 Gr.C Typical 12 M12 N7 N19 90 Plates Beam BAR A572 Gr.50 Typical 13 M13 N8 N20 90 Plates Beam BAR A572 Gr.50 Typical										
4 M4 N6 N7 Standoff Beam Pipe A500 Gr.C Typical 5 M5 N8 N7 Bracing VBrace BAR A572 Gr.50 Typical 6 M6 N5 N6 Bracing VBrace BAR A572 Gr.50 Typical 7 M7 N6 N8 Bracing VBrace BAR A572 Gr.50 Typical 9 M9 N2 N10 RIGID None None RIGID Typical 10 M10 N16 N12 Horizontal Beam Pipe A500 Gr.C Typical 12 M12 N7 N19 90 Plates Beam BAR A572 Gr.50 Typical 13 M13 N8 N20 90 Plates Beam BAR A572 Gr.50 Typical 14 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Typical					_					
5 M5 N8 N7 Bracing VBrace BAR A572 Gr.50 Typical 6 M6 N5 N6 Bracing VBrace BAR A572 Gr.50 Typical 7 M7 N6 N8 Bracing VBrace BAR A572 Gr.50 Typical 8 M8 N1 N9 RIGID None None RIGID Typical 9 M9 N2 N10 RIGID None None RIGID Typical 10 M10 N16 N12 Horizontal Beam Pipe A500 Gr.C Typical 11 M11 N15 N11 Horizontal Beam BAR A572 Gr.50 Typical 13 M13 N8 N20 90 Plates Beam BAR A572 Gr.50 Typical 14 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Typical										
6 M6 N5 N6 Bracing VBrace BAR A572 Gr.50 Typical 7 M7 N6 N8 Bracing VBrace BAR A572 Gr.50 Typical 8 M8 N1 N9 RIGID None None RIGID Typical 9 M9 N2 N10 RIGID None None None RIGID Typical 10 M10 N16 N12 Horizontal Beam Pipe A500 Gr.C Typical 11 M11 N15 N11 Horizontal Beam BAR A572 Gr.50 Typical 12 M12 N7 N19 90 Plates Beam BAR A572 Gr.50 Typical 13 M13 N8 N20 90 Plates Beam BAR A572 Gr.50 Typical 14 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Ty										
7 M7 N6 N8 Bracing VBrace BAR A572 Gr.50 Typical 8 M8 N1 N9 RIGID None None RIGID Typical 10 M10 N16 N12 Horizontal Beam Pipe A500 Gr.C Typical 11 M11 N15 N11 Horizontal Beam Pipe A500 Gr.C Typical 12 M12 N7 N19 90 Plates Beam BAR A572 Gr.50 Typical 13 M13 N8 N20 90 Plates Beam BAR A572 Gr.50 Typical 14 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Typical 15 M15 N3 N5 90 Plates Beam BAR A572 Gr.50 Typical 16 M16 N21 N22 Bracing VBrace BAR A572 Gr.50							VBrace			
8 M8 N1 N9 RIGID None None RIGID Typical 9 M9 N2 N10 RIGID None RIGID Typical 10 M10 N16 N12 Horizontal Beam Pipe A500 Gr.C Typical 11 M11 N15 N11 Horizontal Beam Pipe A500 Gr.C Typical 12 M12 N7 N19 90 Plates Beam BAR A572 Gr.50 Typical 14 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Typical 15 M15 N3 N5 90 Plates Beam BAR A572 Gr.50 Typical 16 M16 N21 N23 Standoff Beam Pipe A500 Gr.C Typical 17 M17 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical							VBrace			
9 M9 N2 N10 RIGID None None RIGID Typical 10 M10 N16 N12 Horizontal Beam Pipe A500 Gr.C Typical 11 M11 N15 N11 Horizontal Beam Pipe A500 Gr.C Typical 12 M12 N7 N19 90 Plates Beam BAR A572 Gr.50 Typical 13 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Typical 15 M15 N3 N5 90 Plates Beam BAR A572 Gr.50 Typical 16 M16 N21 N22 N23 Standoff Beam Pipe A500 Gr.C Typical 17 M17 N22 N23 Standoff Beam Pipe A500 Gr.C Typical 18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 <td></td>										
10 M10 N16 N12 Horizontal Beam Pipe A500 Gr.C Typical 11 M11 N15 N11 Horizontal Beam Pipe A500 Gr.C Typical 12 M12 N7 N19 90 Plates Beam BAR A572 Gr.50 Typical 13 M13 N8 N20 90 Plates Beam BAR A572 Gr.50 Typical 14 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Typical 16 M16 N21 N24 Standoff Beam Pipe A500 Gr.C Typical 17 M17 N22 N23 Bracing VBrace BAR A572 Gr.50 Typical 18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 Typical 20 M22 N24 Bracing VBrace BAR A572 Gr.50 Typical	8						None			
11 M11 N15 N11 Horizontal Beam Pipe A500 Gr.C Typical 12 M12 N7 N19 90 Plates Beam BAR A572 Gr.50 Typical 14 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Typical 15 M15 N3 N5 90 Plates Beam BAR A572 Gr.50 Typical 16 M16 N21 N24 Standoff Beam Pipe A500 Gr.C Typical 17 M17 N22 N23 Standoff Beam Pipe A500 Gr.C Typical 18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 Typical 19 M19 N21 N22 Bracing VBrace BAR A572 Gr.50 Typical 20 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical <										
12 M12 N7 N19 90 Plates Beam BAR A572 Gr.50 Typical 13 M13 N8 N20 90 Plates Beam BAR A572 Gr.50 Typical 14 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Typical 15 M15 N3 N5 90 Plates Beam BAR A572 Gr.50 Typical 16 M16 N21 N24 Standoff Beam Pipe A500 Gr.C Typical 18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 Typical 19 M19 N21 N22 Bracing VBrace BAR A572 Gr.50 Typical 20 M20 N24 Bracing VBrace BAR A572 Gr.50 Typical 21 M21 N23 N25 90 Plates Beam BAR A572 Gr.50 <td></td>										
13 M13 N8 N20 90 Plates Beam BAR A572 Gr.50 Typical 14 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Typical 15 M15 N3 N5 90 Plates Beam BAR A572 Gr.50 Typical 16 M16 N21 N24 Standoff Beam Pipe A500 Gr.C Typical 17 M17 N22 N23 Standoff Beam Pipe A500 Gr.C Typical 18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 Typical 20 M20 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical 21 M21 N23 N25 90 Plates Beam BAR A572 Gr.50 Typical 22 M24 N26 90 Plates Beam BAR A572 Gr.50 <td></td>										
14 M14 N4 N6 90 Plates Beam BAR A572 Gr.50 Typical 15 M15 N3 N5 90 Plates Beam BAR A572 Gr.50 Typical 16 M16 N21 N24 Standoff Beam Pipe A500 Gr.C Typical 17 M17 N22 N23 Standoff Beam Pipe A500 Gr.C Typical 18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 Typical 20 M20 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical 21 M21 N23 N25 90 Plates Beam BAR A572 Gr.50 Typical 22 M24 N26 90 Plates Beam BAR A572 Gr.50 Typical 24 M24 N9 N21 90 Plates Beam BAR A572 Gr.50 <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	12									
15 M15 N3 N5 90 Plates Beam BAR A572 Gr.50 Typical 16 M16 N21 N24 Standoff Beam Pipe A500 Gr.C Typical 17 M17 N22 N23 Standoff Beam Pipe A500 Gr.C Typical 18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 Typical 19 M19 N21 N22 Bracing VBrace BAR A572 Gr.50 Typical 20 M20 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical 21 M21 N23 N25 90 Plates Beam BAR A572 Gr.50 Typical 23 M23 N10 N22 90 Plates Beam BAR A572 Gr.50 Typical 24 M24 N9 N21 90 Plates Beam BAR A572 Gr							Beam			
16 M16 N21 N24 Standoff Beam Pipe A500 Gr.C Typical 17 M17 N22 N23 Standoff Beam Pipe A500 Gr.C Typical 18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 Typical 20 M20 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical 21 M21 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical 22 M22 N24 N25 90 Plates Beam BAR A572 Gr.50 Typical 23 M23 N10 N22 90 Plates Beam BAR A572 Gr.50 Typical 24 M24 N9 N21 90 Plates Beam BAR A572 Gr.50 Typical 25 M25 N28 N27 Kicker HBrace Pipe A53 Gr.B		M14				Plates	Beam	BAR	A572 Gr.50	Typical
17 M17 N22 N23 Standoff Beam Pipe A500 Gr.C Typical 18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 Typical 19 M19 N21 N22 Bracing VBrace BAR A572 Gr.50 Typical 20 M21 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical 21 M21 N23 N25 90 Plates Beam BAR A572 Gr.50 Typical 23 M23 N10 N22 90 Plates Beam BAR A572 Gr.50 Typical 24 M24 N9 N21 90 Plates Beam BAR A572 Gr.50 Typical 25 M28 N27 Kicker HBrace Pipe A53 Gr.B Typical 26 M26 N29 N30 24.12 RIGID None None RIGID T		M15	N3	N5	90	Plates	Beam	BAR	A572 Gr.50	Typical
17 M17 N22 N23 Standoff Beam Pipe A500 Gr.C Typical 18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 Typical 19 M19 N21 N22 Bracing VBrace BAR A572 Gr.50 Typical 20 M20 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical 21 M21 N23 N25 90 Plates Beam BAR A572 Gr.50 Typical 23 M23 N10 N22 90 Plates Beam BAR A572 Gr.50 Typical 24 M24 N9 N21 90 Plates Beam BAR A572 Gr.50 Typical 25 M28 N27 Kicker HBrace Pipe A53 Gr.B Typical 26 M26 N29 N30 24.12 RIGID None None RIGID T	16	M16	N21	N24		Standoff	Beam	Pipe	A500 Gr.C	Typical
18 M18 N24 N23 Bracing VBrace BAR A572 Gr.50 Typical 19 M19 N21 N22 Bracing VBrace BAR A572 Gr.50 Typical 20 M20 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical 21 M21 N23 N25 90 Plates Beam BAR A572 Gr.50 Typical 22 M22 N24 N26 90 Plates Beam BAR A572 Gr.50 Typical 23 M23 N10 N22 90 Plates Beam BAR A572 Gr.50 Typical 24 M24 N9 N21 90 Plates Beam BAR A572 Gr.50 Typical 26 M26 N29 N30 24.12 RIGID None None RIGID Typical 27 M27 N32 N30 RIGID None None	17	M17	N22	N23		Standoff		Pipe	A500 Gr.C	Typical
19 M19 N21 N22 Bracing VBrace BAR A572 Gr.50 Typical 20 M20 N22 N24 Bracing VBrace BAR A572 Gr.50 Typical 21 M21 N23 N25 90 Plates Beam BAR A572 Gr.50 Typical 22 M22 N24 N26 90 Plates Beam BAR A572 Gr.50 Typical 23 M23 N10 N22 90 Plates Beam BAR A572 Gr.50 Typical 24 M24 N9 N21 90 Plates Beam BAR A572 Gr.50 Typical 25 M25 N28 N27 Kicker HBrace Pipe A53 Gr.B Typical 26 M26 N29 N30 24.12 RIGID None None RIGID Typical 27 M27 N32 N30 RIGID None None	18	M18	N24	N23		Bracing	VBrace	BÁR	A572 Gr.50	
21M21N23N2590PlatesBeamBARA572 Gr.50Typical22M22N24N2690PlatesBeamBARA572 Gr.50Typical23M23N10N2290PlatesBeamBARA572 Gr.50Typical24M24N9N2190PlatesBeamBARA572 Gr.50Typical25M25N28N27KickerHBracePipeA53 Gr.BTypical26M26N29N3024.12RIGIDNoneNoneRIGIDTypical28M28N29N31RIGIDNoneNoneRIGIDTypical29MP1N37N38Antenna PipeColumnPipeA53 Gr.BTypical30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38M39 <t< td=""><td></td><td>M19</td><td></td><td>N22</td><td></td><td></td><td>VBrace</td><td></td><td>A572 Gr.50</td><td>Typical</td></t<>		M19		N22			VBrace		A572 Gr.50	Typical
21M21N23N2590PlatesBeamBARA572 Gr.50Typical22M22N24N2690PlatesBeamBARA572 Gr.50Typical23M23N10N2290PlatesBeamBARA572 Gr.50Typical24M24N9N2190PlatesBeamBARA572 Gr.50Typical25M25N28N27KickerHBracePipeA53 Gr.BTypical26M26N29N3024.12RIGIDNoneNoneRIGIDTypical28M28N29N31RIGIDNoneNoneRIGIDTypical29MP1N37N38Antenna PipeColumnPipeA53 Gr.BTypical30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38M39 <t< td=""><td>20</td><td>M20</td><td>N22</td><td>N24</td><td></td><td>Bracing</td><td>VBrace</td><td>BAR</td><td>A572 Gr.50</td><td>Typical</td></t<>	20	M20	N22	N24		Bracing	VBrace	BAR	A572 Gr.50	Typical
22M22N24N2690PlatesBeamBARA572 Gr.50Typical23M23N10N2290PlatesBeamBARA572 Gr.50Typical24M24N9N2190PlatesBeamBARA572 Gr.50Typical25M25N28N27KickerHBracePipeA53 Gr.BTypical26M26N29N3024.12RIGIDNoneNoneRIGIDTypical27M27N32N30RIGIDNoneNoneRIGIDTypical28M28N29N31RIGIDNoneNoneRIGIDTypical29MP1N37N38Antenna PipeColumnPipeA53 Gr.BTypical30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38M94N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2	21	M21	N23	N25	90			BAR	A572 Gr.50	
23M23N10N2290PlatesBeamBARA572 Gr.50Typical24M24N9N2190PlatesBeamBARA572 Gr.50Typical25M25N28N27KickerHBracePipeA53 Gr.BTypical26M26N29N3024.12RIGIDNoneNoneRIGIDTypical27M27N32N3024.12RIGIDNoneNoneRIGIDTypical28M28N29N31RIGIDNoneNoneNoneRIGIDTypical29MP1N37N38Antenna PipeColumnPipeA53 Gr.BTypical30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N43RIGIDNoneNoneRIGIDTypical36M35N33N43RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38M94N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical	22	M22	N24	N26	90	Plates		BAR	A572 Gr.50	Typical
24M24N9N2190PlatesBeamBARA572 Gr.50Typical25M25N28N27KickerHBracePipeA53 Gr.BTypical26M26N29N3024.12RIGIDNoneNoneRIGIDTypical27M27N32N3024.12RIGIDNoneNoneRIGIDTypical28M28N29N31RIGIDNoneNoneRIGIDTypical29MP1N37N38Antenna PipeColumnPipeA53 Gr.BTypical30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical32M32N17N39RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical	23	M23	N10	N22	90	Plates	Beam			
25M25N28N27KickerHBracePipeA53 Gr.BTypical26M26N29N3024.12RIGIDNoneNoneRIGIDTypical27M27N32N3024.12RIGIDNoneNoneRIGIDTypical28M28N29N31RIGIDNoneNoneNoneRIGIDTypical29MP1N37N38Antenna PipeColumnPipeA53 Gr.BTypical30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical32M32N17N39RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical	24				90					
26M26N29N3024.12RIGIDNoneNoneRIGIDTypical27M27N32N30RIGIDRIGIDNoneNoneRIGIDTypical28M28N29N31RIGIDRIGIDNoneNoneRIGIDTypical29MP1N37N38Antenna PipeColumnPipeA53 Gr.BTypical30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical32M32N17N39RIGIDNoneNoneRIGIDTypical33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical	25	M25	N28	N27		Kicker	HBrace			
27M27N32N30RIGIDNoneNoneRIGIDTypical28M28N29N31RIGIDRIGIDNoneNoneRIGIDTypical29MP1N37N38Antenna PipeColumnPipeA53 Gr.BTypical30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical32M32N17N39RIGIDNoneNoneRIGIDTypical33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical		M26	N29	N30	24.12	RIGID	None	None	RIGID	
28M28N29N31RIGIDNoneNoneRIGIDTypical29MP1N37N38Antenna PipeColumnPipeA53 Gr.BTypical30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical32M32N17N39RIGIDNoneNoneRIGIDTypical33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical	27		N32							
29MP1N37N38Antenna PipeColumnPipeA53 Gr.BTypical30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical32M32N17N39RIGIDNoneNoneRIGIDTypical33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical		M28	N29	N31		RIGID	None			
30MP3N41N42Antenna PipeColumnPipeA53 Gr.BTypical31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical32M32N17N39RIGIDNoneNoneRIGIDTypical33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical	29	MP1				Antenna Pipe	Column			
31MP2N45N46Antenna PipeColumnPipeA53 Gr.BTypical32M32N17N39RIGIDNoneNoneNoneRIGIDTypical33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical										
32M32N17N39RIGIDNoneNoneRIGIDTypical33M33N18N40RIGIDNoneNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical	31									
33M33N18N40RIGIDNoneNoneRIGIDTypical34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical										
34M34N34N44RIGIDNoneNoneRIGIDTypical35M35N33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical										
35M33N43RIGIDNoneNoneRIGIDTypical36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical										
36M36N14N36RIGIDNoneNoneRIGIDTypical37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical	35									
37M37N13N35RIGIDNoneNoneRIGIDTypical38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical										
38MP4N32N31Antenna PipeColumnPipeA53 Gr.BTypical39M39N2N48RIGIDNoneNoneRIGIDTypical	37									
39 M39 N2 N48 RIGID None None RIGID Typical										
	39									
40 M40 N1 N47 RIGID None RIGID Typical								-		

Material Take-Off

Material	Pieces	Length[in]	Weight[K]
1 General Members			
2 RIGID	2	6	0
3 Total General	2	6	0

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed
1	Self Weight	DL		-1			5	
2	Wind Load AZI 0	WLZ					10	
3	Wind Load AZI 30	None					10	

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed
4	Wind Load AZI 60	None					10	
5	Wind Load AZI 90	WLX					10	
6	Wind Load AZI 120	None					10	
7	Wind Load AZI 150	None					10	
8	Wind Load AZI 180	None					10	
9	Wind Load AZI 210	None					10	
10	Wind Load AZI 240	None					10	
11	Wind Load AZI 270	None					10	
12	Wind Load AZI 300	None					10	
13	Wind Load AZI 330	None					10	
14	Distr. Wind Load Z	WLZ						38
15	Distr. Wind Load X	WLX						38
16	Ice Weight	OL1					5	38
17	Ice Wind Load AZI 0	OL2					10	
18	Ice Wind Load AZI 30	None					10	
19	Ice Wind Load AZI 60	None					10	
20	Ice Wind Load AZI 90	OL3					10	
21	Ice Wind Load AZI 120	None					10	
22	Ice Wind Load AZI 150	None					10	
23	Ice Wind Load AZI 180	None					10	
24	Ice Wind Load AZI 210	None					10	
25	Ice Wind Load AZI 240	None					10	
26	Ice Wind Load AZI 270	None					10	
27	Ice Wind Load AZI 300	None					10	
28	Ice Wind Load AZI 330	None					10	
29	Distr. Ice Wind Load Z	OL2						38
30	Distr. Ice Wind Load X	OL3						38
31	Seismic Load Z	ELZ			-0.288		5	
32	Seismic Load X	ELX	-0.288				5	
33	Service Live Loads	LL				1		

Load Combinations

	Description	Solve	P-Delta	BLC	Factor								
1	1.4DL	Yes	Y	1	1.4								
2	1.2DL + 1.6WL AZI 0	Yes	Y	1	1.2	2	1.6	14	1.6	15			
3	1.2DL + 1.6WL AZI 30	Yes	Y	1	1.2	3	1.6	14	1.386	15	0.8		
4	1.2DL + 1.6WL AZI 60	Yes	Y	1	1.2	4	1.6	14	0.8	15	1.386		
5	1.2DL + 1.6WL AZI 90	Yes	Y	1	1.2	5	1.6	14		15	1.6		
6	1.2DL + 1.6WL AZI 120	Yes	Y	1	1.2	6	1.6	14	-0.8	15	1.386		
7	1.2DL + 1.6WL AZI 150	Yes	Y	1	1.2	7	1.6	14	-1.386	15	0.8		
8	1.2DL + 1.6WL AZI 180	Yes	Y	1	1.2	8	1.6	14	-1.6	15			
9	1.2DL + 1.6WL AZI 210	Yes	Y	1	1.2	9	1.6	14	-1.386	15	-0.8		
10	1.2DL + 1.6WL AZI 240	Yes	Y	1	1.2	10	1.6	14	-0.8	15	-1.386		
11	1.2DL + 1.6WL AZI 270	Yes	Y	1	1.2	11	1.6	14		15	-1.6		
12	1.2DL + 1.6WL AZI 300	Yes	Y	1	1.2	12	1.6	14	0.8	15	-1.386		
13	1.2DL + 1.6WL AZI 330	Yes	Y	1	1.2	13	1.6	14	1.386	15	-0.8		
14	0.9DL + 1.6WL AZI 0	Yes	Y	1	0.9	2	1.6	14	1.6	15			
15	0.9DL + 1.6WL AZI 30	Yes	Y	1	0.9	3	1.6	14	1.386	15	0.8		
16	0.9DL + 1.6WL AZI 60	Yes	Y	1	0.9	4	1.6	14	0.8	15	1.386		
17	0.9DL + 1.6WL AZI 90	Yes	Y	1	0.9	5	1.6	14		15	1.6		
18	0.9DL + 1.6WL AZI 120	Yes	Y	1	0.9	6	1.6	14	-0.8	15	1.386		
19	0.9DL + 1.6WL AZI 150	Yes	Y	1	0.9	7	1.6	14	-1.386	15	0.8		
20	0.9DL + 1.6WL AZI 180	Yes	Y	1	0.9	8	1.6	14	-1.6	15			
21	0.9DL + 1.6WL AZI 210	Yes	Y	1	0.9	9	1.6	14	-1.386	15	-0.8		
22	0.9DL + 1.6WL AZI 240	Yes	Y	1	0.9	10	1.6	14	-0.8	15	-1.386		

Load Combinations (Continued)

_													
	Description	Solve	P-Delta	BLC					Factor			BLC	Factor
23	0.9DL + 1.6WL AZI 270	Yes	Y	1	0.9	11	1.6	14		15	-1.6		
24	0.9DL + 1.6WL AZI 300	Yes	Y	1	0.9	12	1.6	14	0.8	15	-1.386		
25	0.9DL + 1.6WL AZI 330	Yes	Y	1	0.9	13	1.6	14	1.386	15	-0.8		
26	1.2D + 1.0Di	Yes	Y	1	1.2	16	1	_		_		L	
27	1.2D + 1.0Di +1.0Wi AZI 0	Yes	Y	1	1.2	16	1	17	1	29	1.6	30	
28	1.2D + 1.0Di +1.0Wi AZI 30	Yes	Y	1	1.2	16	1	18	1	29	1.386	30	0.8
29	1.2D + 1.0Di +1.0Wi AZI 60	Yes	Y	1	1.2	16	1	19	1	29	0.8	30	1.386
30	1.2D + 1.0Di +1.0Wi AZI 90	Yes	Y	1	1.2	16	1	20	1	29		30	1.6
31	1.2D + 1.0Di +1.0Wi AZI 120	Yes	Y	1	1.2	16	1	21	1	29	-0.8	30	1.386
32	1.2D + 1.0Di +1.0Wi AZI 150	Yes	Y	1	1.2	16	1	22	1	29	-1.386	30	0.8
33	1.2D + 1.0Di +1.0Wi AZI 180	Yes	Y	1	1.2	16	1	23	1	29	-1.6	30	
34	1.2D + 1.0Di +1.0Wi AZI 210	Yes	Y	1	1.2	16	1	24	1	29	-1.386	30	-0.8
35	1.2D + 1.0Di +1.0Wi AZI 240	Yes	Y	1	1.2	16	1	25	1	29	-0.8	30	-1.386
36	1.2D + 1.0Di +1.0Wi AZI 270	Yes	Y	1	1.2	16	1	26	1	29	_	30	-1.6
37	1.2D + 1.0Di +1.0Wi AZI 300	Yes	Y	1	1.2	16	1	27	1	29	0.8	30	-1.386
38	1.2D + 1.0Di +1.0Wi AZI 330	Yes	Y	1	1.2	16	1	28	1	29	1.386	30	-0.8
39	(1.2 + 0.2Sds)DL + 1.0E AZI 0	Yes	Y	1	1.238	31	1	32					
40	(1.2 + 0.2Sds)DL + 1.0E AZI 30	Yes	Y		1.238	31	0.866	32	0.5	_			L
41	(1.2 + 0.2Sds)DL + 1.0E AZI 60	Yes	Y	1	1.238	31	0.5	32	0.866				<u> </u>
42	(1.2 + 0.2Sds)DL + 1.0E AZI 90	Yes	Y		1.238	31	0.5	32	1	_			<u> </u>
43	(1.2 + 0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	1.238	31	-0.5	32	0.866				<u> </u>
44	(1.2 + 0.2Sds)DL + 1.0E AZI 150	Yes	Y		1.238	31	-0.866	32	0.5	_		<u> </u>	<u> </u>
45	(1.2 + 0.2Sds)DL + 1.0E AZI 180	Yes	Y		1.238	31	-1	32					<u> </u>
46	(1.2 + 0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	1.238	31	-0.866	32	-0.5		_		-
47	(1.2 + 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	1.238	31	-0.5	32	-0.866				
48	(1.2 + 0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	1.238	31	0.5	32	-1	_			
49	(1.2 + 0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	1.238	31	0.5	32	-0.866				
50	(1.2 + 0.2Sds)DL + 1.0E AZI 330	Yes	Y	1	1.238	31	0.866	32	-0.5	-			
51	(0.9 - 0.2Sds)DL + 1.0E AZI 0	Yes	Y Y	1	0.862	31	1	32	0.5				-
52 53	(0.9 - 0.2Sds)DL + 1.0E AZI 30	Yes	Y Y	1	0.862	31	0.866	32	0.5				
	(0.9 - 0.2Sds)DL + 1.0E AZI 60	Yes Yes	Y	1	0.862	31 31	0.5	32 32	0.866				
54 55	(0.9 - 0.2Sds)DL + 1.0E AZI 90	_	Y Y	1	0.862	31	0.5	32	1 0.866				
56	(0.9 - 0.2Sds)DL + 1.0E AZI 120 (0.9 - 0.2Sds)DL + 1.0E AZI 150	Yes	Y	<u>1</u> 1	0.862	31	-0.5	32	0.000				
50	(0.9 - 0.2Sds)DL + 1.0E AZI 150 (0.9 - 0.2Sds)DL + 1.0E AZI 180	Yes Yes	Y Y	1	0.862	31	-0.866	32	0.5				
58	(0.9 - 0.2Sds)DL + 1.0E AZI 180 (0.9 - 0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	0.862	31	-0.866	32	-0.5				
59	(0.9 - 0.2Sds)DL + 1.0E AZI 210 (0.9 - 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	0.862	31	-0.800	32	-0.866	_		_	
60	(0.9 - 0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	0.862	31	-0.5	32	-0.000				
61	(0.9 - 0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	0.862	31	0.5	32	-0.866				
62	(0.9 - 0.2Sds)DL + 1.0E AZI 330	Yes	Y	1	0.862	31	0.866	32	-0.5				
63	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 0	Yes	Y	1	1	2	0.353	14	0.353	15		33	1.5
64	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 30	Yes	Y	1	1	3	0.353		0.306		0.176		1.5
	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 60	Yes	Y	1	1	4	0.353	14	0.300	15	0.306	33	1.5
66	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 90	Yes	Y	1	1	5	0.353	14	0.170	15	0.353	33	1.5
	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 120	Yes	Y	1	1	6	0.353	14	-0.176	15	0.306	33	1.5
	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 150	Yes	Y	1	1	7	0.353	14	-0.306	15	0.176	33	1.5
	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 180	Yes	Y	1	1	8	0.353	14	-0.353	15	0.170	33	1.5
	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 210	Yes	Y	1	1	9	0.353	14	-0.306	15	-0.176		1.5
	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 240	Yes	Y	1	1	10	0.353	14	-0.176	15	-0.306		1.5
	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 270	Yes	Y	1	1	11	0.353	14	0.170	15	-0.353		1.5
	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 270	Yes	Y	1	1	12	0.353	14	0.176	15	-0.306		1.5
	1.0DL + 1.5LL + 1.0SWL (60 mph) AZI 330	Yes	Y	1	1	13	0.353	14	0.306	15	-0.176		1.5
14	1.00 · 1.	103	1	I		10	0.000	14	0.000	10	-0.170		1.0

Company : Infinigy Engineering, PLLC Designer : AM Job Number : 1197-F0001 Model Name : BOHVN00032A

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design Rule	Area [in²]	lyy [in⁴]	lzz [in⁴]	J [in⁴]
1	Antenna Pipe	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
2	Kicker	PIPE_2.0	HBrace	Pipe	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
3	Bracing	0.75" SR	VBrace	BAR	A572 Gr.50	Typical	0.442	0.016	0.016	0.031
4	Standoff	PIPE_2.0X	Beam	Pipe	A500 Gr.C	Typical	1.4	0.827	0.827	1.65
5	Horizontal	PIPE_2.0X	Beam	Pipe	A500 Gr.C	Typical	1.4	0.827	0.827	1.65
6	Plates	3"x.5"	Beam	BAR	A572 Gr.50	Typical	1.5	0.031	1.125	0.112

Member Advanced Data

	Label	J Release	Physical	Deflection Ratio Options	Seismic DR
1	M1		Yes	** NA **	None
2	M2		Yes	Default	None
3	M3		Yes	** NA **	None
4	M4		Yes	Default	None
5	M5		Yes	** NA **	None
6	M6		Yes	** NA **	None
7	M7		Yes	** NA **	None
8	M8		Yes	** NA **	None
9	M9		Yes	** NA **	None
10	M10		Yes	Default	None
11	M11		Yes	Default	None
12	M12	BenPIN	Yes	Default	None
13	M13	BenPIN	Yes	Default	None
14	M14		Yes	Default	None
15	M15		Yes	Default	None
16	M16		Yes	Default	None
17	M17		Yes	Default	None
18	M18		Yes	** NA **	None
19	M19		Yes	** NA **	None
20	M20		Yes	** NA **	None
21	M21	BenPIN	Yes	Default	None
22	M22	BenPIN	Yes	Default	None
23	M23		Yes	Default	None
24	M24		Yes	Default	None
25	M25	BenPIN	Yes	** NA **	None
26	M26		Yes	** NA **	None
27	M27		Yes	** NA **	None
28	M28		Yes	** NA **	None
29	MP1		Yes	** NA **	None
30	MP3		Yes	** NA **	None
31	MP2		Yes	** NA **	None
32	M32		Yes	** NA **	None
33	M33		Yes	** NA **	None
34	M34		Yes	** NA **	None
35	M35		Yes	** NA **	None
36	M36		Yes	** NA **	None
37	M37		Yes	** NA **	None
38	MP4		Yes	** NA **	None
39	M39		Yes	** NA **	None
40	M40		Yes	** NA **	None

Hot Rolled Steel Design Parameters

	Label	Shape	Length [in]	Lcomp top [in]	К у-у	K z-z	Function
1	M2	Standoff	45.25	Lbyy			Lateral
2	M4	Standoff	45.25	Lbyy			Lateral
3	M5	Bracing	36		0.7	0.7	Lateral
4	M6	Bracing	36		0.7	0.7	Lateral
5	M7	Bracing	57.824		0.7	0.7	Lateral
6	M10	Horizontal	120	Lbyy			Lateral
7	M11	Horizontal	120	Lbyy			Lateral
8	M12	Plates	2.5	Lbyy			Lateral
9	M13	Plates	2.5	Lbyy			Lateral
10	M14	Plates	3.313	Lbyy			Lateral
11	M15	Plates	3.313	Lbyy			Lateral
12	M16	Standoff	45.25	Lbyy			Lateral
13	M17	Standoff	45.25	Lbyy			Lateral
14	M18	Bracing	36		0.7	0.7	Lateral
15	M19	Bracing	36		0.7	0.7	Lateral
16	M20	Bracing	57.824		0.7	0.7	Lateral
17	M21	Plates	2.5	Lbyy			Lateral
18	M22	Plates	2.5	Lbyy			Lateral
19	M23	Plates	3.313	Lbyy			Lateral
20	M24	Plates	3.313	Lbyy			Lateral
21	M25	Kicker	76.996				Lateral
22	MP1	Antenna Pipe	96				Lateral
23	MP3	Antenna Pipe	96				Lateral
24	MP2	Antenna Pipe	96				Lateral
25	MP4	Antenna Pipe	36				Lateral

Node Loads and Enforced Displacements (BLC 33 : Service Live Loads)

Node Label	L, D, M	Direction	Magnitude [(lb, lb-ft), (in, rad), (lb*s²/in, lb*s²*in)]
1 N12	L	Y	-500

Member Point Loads (BLC 1 : Self Weight)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Y	-41.25	12
2	MP1	Y	-41.25	84
3	MP1	Y	-74.95	48
4	MP1	Y	-63.93	48
5	MP4	Y	-21.85	18

Member Point Loads (BLC 2 : Wind Load AZI 0)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	0	12
2	MP1	Z	-188.52	12
3	MP1	X	0	84
4	MP1	Z	-188.52	84
5	MP1	X	0	48
6	MP1	Z	-35.28	48
7	MP1	X	0	48
8	MP1	Z	-35.28	48
9	MP4	Х	0	18
10	MP4	Z	-53.19	18

Member Point Loads (BLC 3 : Wind Load AZI 30)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	-81.77	12
2	MP1	Z	-141.62	12
3	MP1	X	-81.77	84
4	MP1	Z	-141.62	84
5	MP1	X	-17.64	48
6	MP1	Z	-30.56	48
7	MP1	X	-17.64	48
8	MP1	Z	-30.56	48
9	MP4	X	-26.59	18
10	MP4	Z	-46.06	18

Member Point Loads (BLC 4 : Wind Load AZI 60)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	-98.34	12
2	MP1	Z	-56.78	12
3	MP1	X	-98.34	84
4	MP1	Z	-56.78	84
5	MP1	X	-30.56	48
6	MP1	Z	-17.64	48
7	MP1	X	-30.56	48
8	MP1	Z	-17.64	48
9	MP4	Х	-46.06	18
10	MP4	Z	-26.59	18

Member Point Loads (BLC 5 : Wind Load AZI 90)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	-88.56	12
2	MP1	Z	0	12
3	MP1	X	-88.56	84
4	MP1	Z	0	84
5	MP1	Х	-35.28	48
6	MP1	Z	0	48
7	MP1	Х	-35.28	48
8	MP1	Z	0	48
9	MP4	Х	-53.19	18
10	MP4	Z	0	18

Member Point Loads (BLC 6 : Wind Load AZI 120)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	-98.34	12
2	MP1	Z	56.78	12
3	MP1	Х	-98.34	84
4	MP1	Z	56.78	84
5	MP1	Х	-30.56	48
6	MP1	Z	17.64	48
7	MP1	X	-30.56	48
8	MP1	Z	17.64	48
9	MP4	X	-46.06	18
10	MP4	Z	26.59	18

Member Point Loads (BLC 7 : Wind Load AZI 150)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	-81.77	12
2	MP1	Z	141.62	12
3	MP1	X	-81.77	84
4	MP1	Z	141.62	84
5	MP1	X	-17.64	48
6	MP1	Z	30.56	48
7	MP1	X	-17.64	48
8	MP1	Z	30.56	48
9	MP4	X	-26.59	18
10	MP4	Z	46.06	18

Member Point Loads (BLC 8 : Wind Load AZI 180)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	0	12
2	MP1	Z	188.52	12
3	MP1	X	0	84
4	MP1	Z	188.52	84
5	MP1	Х	0	48
6	MP1	Z	35.28	48
7	MP1	Х	0	48
8	MP1	Z	35.28	48
9	MP4	Х	0	18
10	MP4	Z	53.19	18

Member Point Loads (BLC 9 : Wind Load AZI 210)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	81.77	12
2	MP1	Z	141.62	12
3	MP1	Х	81.77	84
4	MP1	Z	141.62	84
5	MP1	Х	17.64	48
6	MP1	Z	30.56	48
7	MP1	Х	17.64	48
8	MP1	Z	30.56	48
9	MP4	Х	26.59	18
10	MP4	Z	46.06	18

Member Point Loads (BLC 10 : Wind Load AZI 240)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	98.34	12
2	MP1	Z	56.78	12
3	MP1	Х	98.34	84
4	MP1	Z	56.78	84
5	MP1	Х	30.56	48
6	MP1	Z	17.64	48
7	MP1	X	30.56	48
8	MP1	Z	17.64	48
9	MP4	X	46.06	18
10	MP4	Z	26.59	18

Member Point Loads (BLC 11 : Wind Load AZI 270)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	88.56	12
2	MP1	Z	0	12
3	MP1	X	88.56	84
4	MP1	Z	0	84
5	MP1	Х	35.28	48
6	MP1	Z	0	48
7	MP1	X	35.28	48
8	MP1	Z	0	48
9	MP4	X	53.19	18
10	MP4	Z	0	18

Member Point Loads (BLC 12 : Wind Load AZI 300)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	98.34	12
2	MP1	Z	-56.78	12
3	MP1	X	98.34	84
4	MP1	Z	-56.78	84
5	MP1	Х	30.56	48
6	MP1	Z	-17.64	48
7	MP1	Х	30.56	48
8	MP1	Z	-17.64	48
9	MP4	Х	46.06	18
10	MP4	Z	-26.59	18

Member Point Loads (BLC 13 : Wind Load AZI 330)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	81.77	12
2	MP1	Z	-141.62	12
3	MP1	X	81.77	84
4	MP1	Z	-141.62	84
5	MP1	Х	17.64	48
6	MP1	Z	-30.56	48
7	MP1	Х	17.64	48
8	MP1	Z	-30.56	48
9	MP4	Х	26.59	18
10	MP4	Z	-46.06	18

Member Point Loads (BLC 16 : Ice Weight)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Y	-134.113	12
2	MP1	Y	-134.113	84
3	MP1	Y	-69.888	48
4	MP1	Y	-65.575	48
5	MP4	Y	-63.952	18

Member Point Loads (BLC 17 : Ice Wind Load AZI 0)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	0	12
2	MP1	Z	-23.26	12

Member Point Loads (BLC 17 : Ice Wind Load AZI 0) (Continued)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
3	MP1	Х	0	84
4	MP1	Z	-23.26	84
5	MP1	X	0	48
6	MP1	Z	-15.54	48
7	MP1	X	0	48
8	MP1	Z	-15.54	48
9	MP4	Х	0	18
10	MP4	Z	-16.03	18

Member Point Loads (BLC 18 : Ice Wind Load AZI 30)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	-10.49	12
2	MP1	Z	-18.17	12
3	MP1	X	-10.49	84
4	MP1	Z	-18.17	84
5	MP1	X	-7.77	48
6	MP1	Z	-13.45	48
7	MP1	Х	-7.77	48
8	MP1	Z	-13.45	48
9	MP4	X	-8.02	18
10	MP4	Z	-13.89	18

Member Point Loads (BLC 19 : Ice Wind Load AZI 60)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	-14.21	12
2	MP1	Z	-8.21	12
3	MP1	X	-14.21	84
4	MP1	Z	-8.21	84
5	MP1	X	-13.45	48
6	MP1	Z	-7.77	48
7	MP1	Х	-13.45	48
8	MP1	Z	-7.77	48
9	MP4	Х	-13.89	18
10	MP4	Z	-8.02	18

Member Point Loads (BLC 20 : Ice Wind Load AZI 90)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	-14.13	12
2	MP1	Z	0	12
3	MP1	X	-14.13	84
4	MP1	Z	0	84
5	MP1	Х	-15.54	48
6	MP1	Z	0	48
7	MP1	Х	-15.54	48
8	MP1	Z	0	48
9	MP4	Х	-16.03	18
10	MP4	Z	0	18

Member Point Loads (BLC 21 : Ice Wind Load AZI 120)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	-14.21	12
2	MP1	Z	8.21	12
3	MP1	X	-14.21	84
4	MP1	Z	8.21	84
5	MP1	X	-13.45	48
6	MP1	Z	7.77	48
7	MP1	X	-13.45	48
8	MP1	Z	7.77	48
9	MP4	X	-13.89	18
10	MP4	Z	8.02	18

Member Point Loads (BLC 22 : Ice Wind Load AZI 150)

	Member Label	Direction Magnitude [lb, lb-ft]		Location [(in, %)]
1	MP1	Х	-10.49	12
2	MP1	Z	18.17	12
3	MP1	X	-10.49	84
4	MP1	Z	18.17	84
5	MP1	X	-7.77	48
6	MP1	Z	13.45	48
7	MP1	X	-7.77	48
8	MP1	Z	13.45	48
9	MP4	Х	-8.02	18
10	MP4	Z	13.89	18

Member Point Loads (BLC 23 : Ice Wind Load AZI 180)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]	
1	MP1	Х	0	12	
2	MP1	Z	23.26	12	
3	MP1	Х	0	84	
4	MP1	Z	23.26	84	
5	MP1	Х	0	48	
6	MP1	Z	15.54	48	
7	MP1	Х	0	48	
8	MP1	Z	15.54	48	
9	MP4	Х	0	18	
10	MP4	Z	16.03	18	

Member Point Loads (BLC 24 : Ice Wind Load AZI 210)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	10.49	12
2	MP1	Z	18.17	12
3	MP1	Х	10.49	84
4	MP1	Z	18.17	84
5	MP1	Х	7.77	48
6	MP1	Z	13.45	48
7	MP1	X	7.77	48
8	MP1	Z	13.45	48
9	MP4	X	8.02	18
10	MP4	Z	13.89	18

Member Point Loads (BLC 25 : Ice Wind Load AZI 240)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	14.21	12
2	MP1	Z	8.21	12
3	MP1	X	14.21	84
4	MP1	Z	8.21	84
5	MP1	X	13.45	48
6	MP1	Z	7.77	48
7	MP1	X	13.45	48
8	MP1	Z	7.77	48
9	MP4	X	13.89	18
10	MP4	Z	8.02	18

Member Point Loads (BLC 26 : Ice Wind Load AZI 270)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	14.13	12
2	MP1	Z	0	12
3	MP1	X	14.13	84
4	MP1	Z	0	84
5	MP1	Х	15.54	48
6	MP1	Z	0	48
7	MP1	Х	15.54	48
8	MP1	Z	0	48
9	MP4	Х	16.03	18
10	MP4	Z	0	18

Member Point Loads (BLC 27 : Ice Wind Load AZI 300)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	14.21	12
2	MP1	Z	-8.21	12
3	MP1	Х	14.21	84
4	MP1	Z	-8.21	84
5	MP1	Х	13.45	48
6	MP1	Z	-7.77	48
7	MP1	Х	13.45	48
8	MP1	Z	-7.77	48
9	MP4	Х	13.89	18
10	MP4	Z	-8.02	18

Member Point Loads (BLC 28 : Ice Wind Load AZI 330)

_	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Х	10.49	12
2	MP1	Z	-18.17	12
3	MP1	Х	10.49	84
4	MP1	Z	-18.17	84
5	MP1	Х	7.77	48
6	MP1	Z	-13.45	48
7	MP1	X	7.77	48
8	MP1	Z	-13.45	48
9	MP4	Х	8.02	18
10	MP4	Z	-13.89	18

Member Point Loads (BLC 31 : Seismic Load Z)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	-11.88	12
2	MP1	Z	-11.88	84
3	MP1	Z	-21.586	48
4	MP1	Z	-18.412	48
5	MP4	Z	-6.293	18

Member Point Loads (BLC 32 : Seismic Load X)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	-11.88	12
2	MP1	Х	-11.88	84
3	MP1	Х	-21.586	48
4	MP1	Х	-18.412	48
5	MP4	Х	-6.293	18

Member Distributed Loads (BLC 14 : Distr. Wind Load Z)

	Member LabelDirectionStart Magnitude [lb/ft, F, psf, lb-ft/in]End Magnitude [lb/ft, F, psf, lb-ft/in]Start Location [(in, %)]End Location [(in, %)]								
1	M1	SZ	0	0	0	%100			
2	M2	SZ	-36.229	-36.229	0	%100			
3	M3	SZ	0	0	0	%100			
4	M4	SZ	-36.229	-36.229	0	%100			
5	M5	SZ	-36.229	-36.229	0	%100			
6	M6	SZ	-36.229	-36.229	0	%100			
7	M7	SZ	-36.229	-36.229	0	%100			
8	M8	SZ	0	0	0	%100			
9	M9	SZ	0	0	0	%100			
10	M10	SZ	-36.229	-36.229	0	%100			
11	M11	SZ	-36.229	-36.229	0	%100			
12	M12	SZ	0	0	0	%100			
13	M13	SZ	0	0	0	%100			
14	M14	SZ	0	0	0	%100			
15	M15	SZ	0	0	0	%100			
16	M16	SZ	-36.229	-36.229	0	%100			
17	M17	SZ	-36.229	-36.229	0	%100			
18	M18	SZ	-36.229	-36.229	0	%100			
19	M19	SZ	-36.229	-36.229	0	%100			
20	M20	SZ	-36.229	-36.229	0	%100			
21	M21	SZ	0	0	0	%100			
22	M22	SZ	0	0	0	%100			
23	M23	SZ	0	0	0	%100			
24	M24	SZ	0	0	0	%100			
25	M25	SZ	-36.229	-36.229	0	%100			
26	M26	SZ	0	0	0	%100			
27	M27	SZ	0	0	0	%100			
28	M28	SZ	0	0	0	%100			
29	MP1	SZ	-36.229	-36.229	0	%100			
30	MP3	SZ	-36.229	-36.229	0	%100			
31	MP2	SZ	-36.229	-36.229	0	%100			
32	M32	SZ	0	0	0	%100			
33	M33	SZ	0	0	0	%100			
34	M34	SZ	0	0	0	%100			
35	M35	SZ	0	0	0	%100			
36	M36	SZ	0	0	0	%100			

Member Distributed Loads (BLC 14 : Distr. Wind Load Z) (Continued)

Ν	Member LabelDirectionStart Magnitude [lb/ft, F, psf, lb-ft/in]End Magnitude [lb/ft, F, psf, lb-ft/in]Start Location [(in, %)]End Location [(in, %)]							
37	M37	SZ	0	0	0	%100		
38	MP4	SZ	-36.229	-36.229	0	%100		

Member Distributed Loads (BLC 15 : Distr. Wind Load X)

	/lember Labe	Direction	Start Magnitude [lb/ft, F, psf, lb-ft/in]	End Magnitude [lb/ft, F, psf, lb-ft/in]	Start Location [(in, %)]	End Location [(in, %)]
1	M1	SX	0	0	0	%100
2	M2	SX	-36.229	-36.229	0	%100
3	M3	SX	0	0	0	%100
4	M4	SX	-36.229	-36.229	0	%100
5	M5	SX	-36.229	-36.229	0	%100
6	M6	SX	-36.229	-36.229	0	%100
7	M7	SX	-36.229	-36.229	0	%100
8	M8	SX	0	0	0	%100
9	M9	SX	0	0	0	%100
10	M10	SX	-36.229	-36.229	0	%100
11	M11	SX	-36.229	-36.229	0	%100
12	M12	SX	0	0	0	%100
13	M13	SX	0	0	0	%100
14	M14	SX	0	0	0	%100
15	M15	SX	0	0	0	%100
16	M16	SX	-36.229	-36.229	0	%100
17	M17	SX	-36.229	-36.229	0	%100
18	M18	SX	-36.229	-36.229	0	%100
19	M19	SX	-36.229	-36.229	0	%100
20	M20	SX	-36.229	-36.229	0	%100
21	M21	SX	0	0	0	%100
22	M22	SX	0	0	0	%100
23	M23	SX	0	0	0	%100
24	M24	SX	0	0	0	%100
25	M25	SX	-36.229	-36.229	0	%100
26	M26	SX	0	0	0	%100
27	M27	SX	0	0	0	%100
28	M28	SX	0	0	0	%100
29	MP1	SX	-36.229	-36.229	0	%100
30	MP3	SX	-36.229	-36.229	0	%100
31	MP2	SX	-36.229	-36.229	0	%100
32	M32	SX	0	0	0	%100
33	M33	SX	0	0	0	%100
34	M34	SX	0	0	0	%100
35	M35	SX	0	0	0	%100
36	M36	SX	0	0	0	%100
37	M37	SX	0	0	0	%100
38	MP4	SX	-36.229	-36.229	0	%100

Member Distributed Loads (BLC 16 : Ice Weight)

	Member LabelDirectionStart Magnitude [lb/ft, F, psf, lb-ft/in]End Magnitude [lb/ft, F, psf, lb-ft/in]Start Location [(in, %)]End Location [(in, %)]									
1	M1	Y	-3.306	-3.306	0	%100				
2	M2	Y	-8.079	-8.079	0	%100				
3	M3	Y	-3.306	-3.306	0	%100				
4	M4	Y	-8.079	-8.079	0	%100				
5	M5	Y	-4.813	-4.813	0	%100				
6	M6	Y	-4.813	-4.813	0	%100				
7	M7	Y	-4.813	-4.813	0	%100				

Member Distributed Loads (BLC 16 : Ice Weight) (Continued)

Μ	lember Label	Direction	Start Magnitude [lb/ft, F, psf, lb-ft/in]	End Magnitude [lb/ft, F, psf, lb-ft/in]	Start Location [(in, %)]	End Location [(in, %)]
8	M8	Y	-3.306	-3.306	0	%100
9	M9	Y	-3.306	-3.306	0	%100
10	M10	Y	-8.079	-8.079	0	%100
11	M11	Y	-8.079	-8.079	0	%100
12	M12	Y	-3.306	-3.306	0	%100
13	M13	Y	-3.306	-3.306	0	%100
14	M14	Y	-3.306	-3.306	0	%100
15	M15	Y	-3.306	-3.306	0	%100
16	M16	Y	-8.079	-8.079	0	%100
17	M17	Y	-8.079	-8.079	0	%100
18	M18	Y	-4.813	-4.813	0	%100
19	M19	Y	-4.813	-4.813	0	%100
20	M20	Y	-4.813	-4.813	0	%100
21	M21	Y	-3.306	-3.306	0	%100
22	M22	Y	-3.306	-3.306	0	%100
23	M23	Y	-3.306	-3.306	0	%100
24	M24	Y	-3.306	-3.306	0	%100
25	M25	Y	-8.079	-8.079	0	%100
26	M26	Y	-3.306	-3.306	0	%100
27	M27	Y	-3.306	-3.306	0	%100
28	M28	Y	-3.306	-3.306	0	%100
29	MP1	Y	-8.079	-8.079	0	%100
30	MP3	Y	-8.079	-8.079	0	%100
31	MP2	Y	-8.079	-8.079	0	%100
32	M32	Y	-3.306	-3.306	0	%100
33	M33	Y	-3.306	-3.306	0	%100
34	M34	Y	-3.306	-3.306	0	%100
35	M35	Y	-3.306	-3.306	0	%100
36	M36	Y	-3.306	-3.306	0	%100
37	M37	Y	-3.306	-3.306	0	%100
38	MP4	Y	-8.079	-8.079	0	%100

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z)

Ν	lember Label	Direction	Start Magnitude [lb/ft, F, psf, lb-ft/in]	End Magnitude [lb/ft, F, psf, lb-ft/in]	Start Location [(in, %)]	End Location [(in, %)]
1	M1	SZ	0	0	0	%100
2	M2	SZ	-21.178	-21.178	0	%100
3	M3	SZ	0	0	0	%100
4	M4	SZ	-21.178	-21.178	0	%100
5	M5	SZ	-47.825	-47.825	0	%100
6	M6	SZ	-47.825	-47.825	0	%100
7	M7	SZ	-47.825	-47.825	0	%100
8	M8	SZ	0	0	0	%100
9	M9	SZ	0	0	0	%100
10	M10	SZ	-21.178	-21.178	0	%100
11	M11	SZ	-21.178	-21.178	0	%100
12	M12	SZ	0	0	0	%100
13	M13	SZ	0	0	0	%100
14	M14	SZ	0	0	0	%100
15	M15	SZ	0	0	0	%100
16	M16	SZ	-21.178	-21.178	0	%100
17	M17	SZ	-21.178	-21.178	0	%100
18	M18	SZ	-47.825	-47.825	0	%100
19	M19	SZ	-47.825	-47.825	0	%100
20	M20	SZ	-47.825	-47.825	0	%100
21	M21	SZ	0	0	0	%100

Member Distributed Loads (BLC 29 : Distr. Ice Wind Load Z) (Continued)

Ν	Member LabelDirectionStart Magnitude [lb/ft, F, psf, lb-ft/in]End Magnitude [lb/ft, F, psf, lb-ft/in]Start Location [(in, %)]End Location [(in, %)]										
22	M22	SZ	0	0	0	%100					
23	M23	SZ	0	0	0	%100					
24	M24	SZ	0	0	0	%100					
25	M25	SZ	-21.178	-21.178	0	%100					
26	M26	SZ	0	0	0	%100					
27	M27	SZ	0	0	0	%100					
28	M28	SZ	0	0	0	%100					
29	MP1	SZ	-21.178	-21.178	0	%100					
30	MP3	SZ	-21.178	-21.178	0	%100					
31	MP2	SZ	-21.178	-21.178	0	%100					
32	M32	SZ	0	0	0	%100					
33	M33	SZ	0	0	0	%100					
34	M34	SZ	0	0	0	%100					
35	M35	SZ	0	0	0	%100					
36	M36	SZ	0	0	0	%100					
37	M37	SZ	0	0	0	%100					
38	MP4	SZ	-21.178	-21.178	0	%100					

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X)

	Member LabelDirectionStart Magnitude [lb/ft, F, psf, lb-ft/in]End Magnitude [lb/ft, F, psf, lb-ft/in]Start Location [(in, %)]End Location [(in, %)]									
			Start Magnitude [lb/ft, F, psf, lb-ft/in]	End Magnitude [lb/ft, F, psf, lb-ft/in]						
1	<u>M1</u>	SX	01.470	01.470	0	%100				
2	M2	SX	-21.178	-21.178	0	%100				
3	M3	SX	0	0	0	%100				
4	M4	SX	-21.178	-21.178	0	%100				
5	M5	SX	-47.825	-47.825	0	%100				
6	M6	SX	-47.825	-47.825	0	%100				
7	M7	SX	-47.825	-47.825	0	%100				
8	M8	SX	0	0	0	%100				
9	M9	SX	0	0	0	%100				
10	M10	SX	-21.178	-21.178	0	%100				
11	M11	SX	-21.178	-21.178	0	%100				
12	M12	SX	0	0	0	%100				
13	M13	SX	0	0	0	%100				
14	M14	SX	0	0	0	%100				
15	M15	SX	0	0	0	%100				
16	M16	SX	-21.178	-21.178	0	%100				
17	M17	SX	-21.178	-21.178	0	%100				
18	M18	SX	-47.825	-47.825	0	%100				
19	M19	SX	-47.825	-47.825	0	%100				
20	M20	SX	-47.825	-47.825	0	%100				
21	M21	SX	0	0	0	%100				
22	M22	SX	0	0	0	%100				
23	M23	SX	0	0	0	%100				
24	M24	SX	0	0	0	%100				
25	M25	SX	-21.178	-21.178	0	%100				
26	M26	SX	0	0	0	%100				
27	M27	SX	0	0	0	%100				
28	M28	SX	0	0	0	%100				
29	MP1	SX	-21.178	-21.178	0	%100				
30	MP3	SX	-21.178	-21.178	0	%100				
31	MP2	SX	-21.178	-21.178	0	%100				
32	M32	SX	0	0	0	%100				
33	M33	SX	0	0	0	%100				
34	M34	SX	0	0	0	%100				
35	M35	SX	0	0	0	%100				
	11100	0,1	v v	v	v	70100				

Member Distributed Loads (BLC 30 : Distr. Ice Wind Load X) (Continued)

I	Member LabelDirectionStart Magnitude [lb/ft, F, psf, lb-ft/in]End Magnitude [lb/ft, F, psf, lb-ft/in]Start Location [(in, %)]End Location [(in, %)]									
36	M36	SX	0	0	0	%100				
37	M37	SX	0	0	0	%100				
38	MP4	SX	-21.178	-21.178	0	%100				

Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks

	Member	Shape	Code Check	<pre>kLoc[in]LCS</pre>	hear Cheo	ck Loc[in]	Dir	LC	phi*Pnc [lb]	ohi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft] Cb Eqn
1	MP1	PIPE_2.0	0.282	66 2	0.043	66			14916.096	32130	1871.625	1871.625	3 H1-1b
2	M12	3"x.5"	0.207	0 64	0.064	2.5	у	8	66023.816	67500	705	4218.75	1.667 H1-1b
3	M14	3"x.5"	0.194	0 68	0.029	0	z	37	64929.826	67500	705	4218.75	1.042 H1-1b
4	M13	3"x.5"	0.189	0 9	0.129	2.5	У	2	66023.816	67500	705	4218.75	1.667 H1-1b
5	M15	3"x.5"	0.136	0 28	0.108	3.313	у	13	64929.826	67500	705	4218.75	1.055 H1-1b
6	M5	0.75" SR	0.135	0 64	0.007	36		13	5691.919	19890	256	256	2.269 H1-1b*
7	M23	3"x.5"	0.119	0 38	0.072	3.313	y	7	64929.826	67500	705	4218.75	1.114 H1-1b
8	M11	PIPE_2.0X	0.118	107.5 7	0.09	11.25		7	12974.268	57960	3325.8	3325.8	1.526 H1-1b
9	MP2	PIPE_2.0	0.116	66 7	0.043	66		7	14916.096	32130	1871.625	1871.625	3 H1-1b
10	M10	PIPE_2.0X	0.116	107.5 7	0.093	108.75		8	12974.268	57960	3325.8	3325.8	2.001 H1-1b
11	M7	0.75" SR	0.11	57.82428	0.006	0		2	2206.248	19890	256	256	2.494 H1-1b
12	MP3	PIPE_2.0	0.097	30 13	0.053	30		13	14916.096	32130	1871.625	1871.625	3 H1-1b
13	M24	3"x.5"	0.09	0 35	0.073	3.313	у	7	64929.826	67500	705	4218.75	1.204 H1-1b
14	M6	0.75" SR	0.087	0 69	0.011	36		7	5691.919	19890	256	256	2.247 H1-1b*
15	M16	PIPE_2.0X	0.081	22.62513	0.019	22.625		7	45905.544	57960	3325.8	3325.8	1.5 H1-1b
16	M17	PIPE_2.0X	0.079	22.62513	0.021	0		7	45905.544	57960	3325.8	3325.8	1.292 H1-1b
17	M20	0.75" SR	0.076	57.82438	0.004	57.824		2	2206.248	19890	256	256	2.15 H1-1b
18	M21	3"x.5"	0.07	0 13	0.058	2.5	y	7	66023.816	67500	705	4218.75	1.667 H1-1b
19	M25	PIPE_2.0	0.058	76.996 7	0.005	76.996		36	19612.716	32130	1871.625	1871.625	1.136 H1-1b*
20	M22	3"x.5"	0.058	0 33	0.033	2.5	y	28	66023.816	67500	705	4218.75	1.667 H1-1b
21	M2	PIPE_2.0X	0.051	45.25 70	0.022	45.25		8	45905.544	57960	3325.8	3325.8	2.286 H1-1b
22	M19	0.75" SR	0.048	0 27	0.012	36		7	5691.919	19890	256	256	2.272 H1-1b
23	M18	0.75" SR	0.047	0 38	0.014	0		7	5691.919	19890	256	256	2.25 H1-1b*
24	M4	PIPE_2.0X	0.044	45.25 3	0.009	0		8	45905.544	57960	3325.8	3325.8	2.297 H1-1b
25	MP4	PIPE_2.0	0.022	36 11	0.006	36		8	28843.414	32130	1871.625	1871.625	2.005 H1-1b

Envelope Node Reactions

	Node Label X		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N28	max	378.883	13	39.321	37	1045.485	7	Ô	74	0	74	0	74
2		min	-378.656	7	9.59	55	-1047.296	13	0	1	0	1	0	1
3	N47	max	1460.02	66	726.061	37	1400.774	27	-57.401	19	0	74	222.814	69
4		min	-180.573	23	150.738	15	-466.754	20	-252.446	31	0	1	-62.064	14
5	N48	max	581.256	18	1091.588	31	1390.342	25	-79.23	25	0	74	331.431	68
6		min	-1548.55	73	256.014	21	-2130.909	7	-374.939	28	0	1	-21.185	25
7	Totals:	max	964.062	17	1849.441	30	1589.85	2						
8		min	-964.062	11	500.933	61	-1589.85	8						

INFINIGY8

Bolt Calculation Tool, V1.6.1

PROJEC	T DATA
Site Name:	BOHVN00032A
Site Number:	BOHVN00032A
Connection Description:	Mount to Tower

MAXIMUM BOLT LOADS								
Bolt Tension:	1490.91	lbs						
Bolt Shear:	486.58	lbs						

WORST CASE BOLT LOADS ¹								
Bolt Tension:	1490.91	lbs						
Bolt Shear:	427.12	lbs						

WORST CASE CONNECTION SLIP LOADS ²						
Sliding Force: 1091.24 lbs						
Torsion About Leg: 0.00 lbs-ft						

BOLT PROPERTIES					
Bolt Type:	Threaded Rod	-			
Bolt Diameter:	0.5	in			
Bolt Grade:	A307	-			
# of Threaded Rods:	4	-			
Leg Diameter:	3	in			
Threads Excluded?	No	-			

¹ Worst case bolt loads correspond to Load combination #32 on member M39 in RISA-

3D, which causes the maximum demand on the bolts. ² Worst Case slip loads correspond to Load combination #32 on member M40 in

RISA 3D, which causes the maximum slip demand on the connection.

Member Information

J nodes of M39, M40,

BOLT CHECK				
Tensile Strength	6626.80			
Shear Strength	3976.08			
Max Tensile Usage	22.5%			
Max Shear Usage	12.2%			
Combined Shear and Tension (Worst Case)	22.5%			
Result	Pass			

SLIP CHECK (WORST CASE)					
Torsional Slip Resistance	1062.63				
Sliding Resistance	8501.05				
Torsional Slip Usage	0.0%				
Sliding Usage	12.8%				
Interaction Check	0.02	≤1.05			
Result	Pass				

Exhibit F

Power Density/RF Emissions Report

Radio Frequency Emissions Analysis Report

Site ID: BOHVN00032A

EVE - Youngs Apple Orchard Rd62 Youngs Apple Orchard RoadNorth Branford, CT 06472

October 11, 2021

Fox Hill Telecom Project Number: 210622

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	20.65 %			

October 11, 2021

Dish Wireless 5701 South Santa Fe Drive Littleton, CO 80120

Emissions Analysis for Site: BOHVN00032A - EVE - Youngs Apple Orchard Rd

Fox Hill Telecom, Inc ("Fox Hill") was directed to analyze the proposed radio installation for Dish Wireless, LLC (Dish) facility located at **62 Youngs Apple Orchard Road, North Branford, CT**, for the purpose of determining whether the emissions from the Proposed Dish radio and antenna installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz & 700 MHz bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed radio system installation for **Dish** on the subject site located at **62 Youngs Apple Orchard Road, North Branford, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since **Dish** is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused toward the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
5G	600 MHz	4	61.5
5G	1900 MHz (PCS)	4	40
5G	2100 MHz (AWS)	4	40

Table 1: Channel Data Table

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

	Antenna		Antenna Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	JMA MX08FRO665-21	83
В	1	JMA MX08FRO665-21	83
С	1	JMA MX08FRO665-21	83

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed **Dish** configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total TX		
Antenna	Antenna Make /		Antenna Gain	Channel	Power		
ID	Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
		600 MHz /					
Antenna	JMA	1900 MHz (PCS) /	11.45 / 16.15 /				
A1	MX08FRO665-21	2100 MHz (AWS)	16.65	12	566	17,426.72	7.50
				Se	ector A Comp	osite MPE%	7.50
		600 MHz /					
Antenna	JMA	1900 MHz (PCS) /	11.45 / 16.15 /				
B1	MX08FRO665-21	2100 MHz (AWS)	16.65	12	566	17,426.72	7.50
Sector B Composite MPE%						7.50	
		600 MHz /					
Antenna	JMA	1900 MHz (PCS) /	11.45 / 16.15 /				
C1	MX08FRO665-21	2100 MHz (AWS)	16.65	12	566	17,426.72	7.50
Sector C Composite MPE%						7.50	

Table 3: Dish Emissions Levels

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum **Dish** MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each **Dish** Sector as well as the composite MPE value for the site.

Site Composite MPE%					
Carrier MPE%					
Dish – Max Per Sector Value	7.50 %				
T-Mobile	9.16 %				
Sprint	3.99 %				
Site Total MPE %:	20.65 %				

Table 4: All Carrier MPE Contributions

Dish Sector A Total:	7.50 %
Dish Sector B Total:	7.50 %
Dish Sector C Total:	7.50 %
Site Total:	20.65 %

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated **Dish** sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

Dish _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
Dish 600 MHz 5G	4	858.77	83	11.42	600 MHz	400	2.85%
Dish 1900 MHz (PCS) 5G	4	1,648.39	83	21.92	1900 MHz (PCS)	1000	2.19%
Dish 2100 MHz (AWS) 5G	4	1,849.52	83	24.59	2100 MHz (AWS)	1000	2.46%
						Total:	7.50%

Table 6: Dish Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Sector	Power Density Value (%)
Sector A:	7.50 %
Sector B:	7.50 %
Sector C:	7.50 %
Dish Maximum Total (per sector):	7.50 %
Site Total:	20.65 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **20.65** % of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

let M

Scott Heffernan Principal RF Engineer Fox Hill Telecom, Inc Holden, MA 01520 (978)660-3998

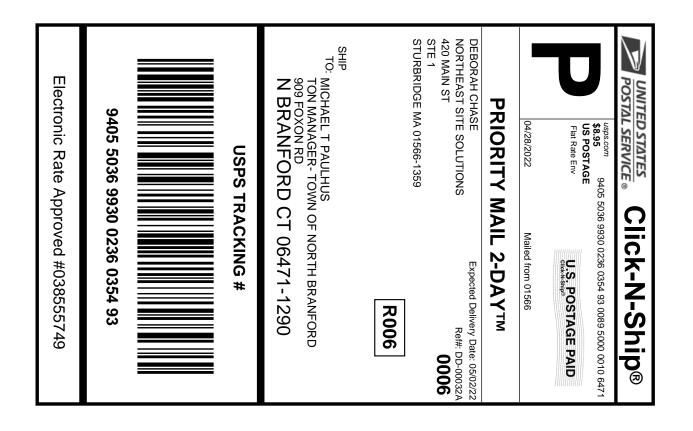
Exhibit G

Letter of Authorization

LETTER OF AUTHORIZATION

I, Michael Ashley Culbert, the owner representative for the telecommunications tower located at 62 Youngs Apple Orchard Road, North Branford, New Haven County, Connecticut, as evidenced by unrecorded Lease by and between The Town of Wallingford and EIP Communications I, LLC dated June 27, 2019.

As owner of the above-referenced telecommunications tower, I hereby authorize DISH Wireless L.L.C., through its designated agent, Northeast Site Solutions, to apply for all necessary municipal, state, federal and other permits necessary to accommodate the installation of DISH Wireless L.L.C.'s antennas and ancillary equipment on the subject tower and base station equipment on the ground on our leasehold property.

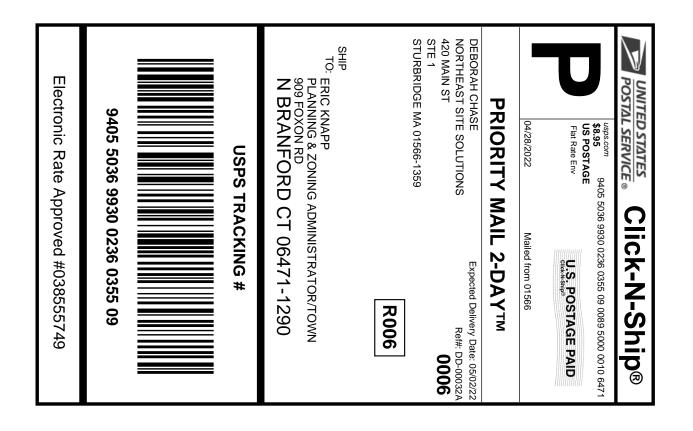

EIP Communications I, LLC

By: Michael Ashley Culler

Michael Ashley Culbert Vice President of Leasing & Collocation Date: <u>April 26, 2022</u>

Exhibit H


Recipient Mailings



Instructions

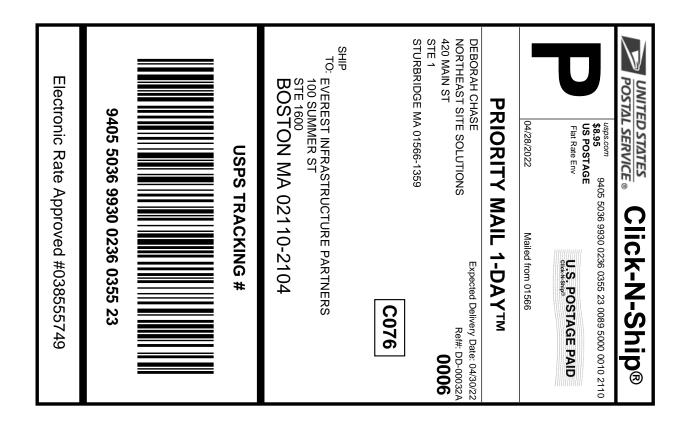
- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

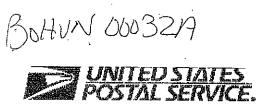
Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record



Instructions

- 1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
- 2. Place your label so it does not wrap around the edge of the package.
- 3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
- 4. To mail your package with PC Postage®, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office™, or drop in a USPS collection box.
- 5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

,

FARMINGTON 210 MAIN ST FARMINGTON, CT 06032-9998 (800)275-8777

04/29/2022	(800)2/5-8	111	04:25 PM
Product	Ûty	Unit Price	Price
Prepaid Mail North Branfo Weight: 0 1k Acceptance [Fri 04/2 Tracking #: 9405 503	1 ord, CT 064 0 8.20 cz Date: 29/2022	171	\$0.00
Prepaid Mail North Branfo Weight: O 1k Acceptance L Fri 04/2 Tracking #: 9405 50:	ord, CT 064 5 8.10 oz Date:		\$0.00 9
Addison, TX Weight: 0 11 Acceptance 1 Fri 04/3 Tracking #:	o 8.10 oz Date:	36 0355 1	* \$0 .00
	02110 b 8.10 oz Date: 29/2022 36 9930 02		
Grand Total:			\$0.00

.