JULIE D. KOHLER

PLEASE REPLY TO: Bridgeport
WRITER'S DIRECT DIAL: (203) 337-4157
E-Mail Address: jkohler@cohenandwolf.com
February 26, 2015
Attorney Melanie Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification
 AT\&T Towers/T-Mobile equipment upgrade Site ID CT11349A
 453 Loon Meadow Road, Norfolk Connecticut

Dear Attorney Bachman:
This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, AT\&T Towers owns the existing guyed tower and related facility located at 453 Loon Meadow Road, Norfolk, Connecticut (Latitude: 42.009073; Longitude: -73.180934). T-Mobile intends to remove three (3) antennas and add three (3) antennas and related equipment at this existing telecommunications facility in Norfolk ("Norfolk Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, copies of this letter are being sent to the First Selectman, Susan M. Dyer, and the property owner, AT\&T Capital Services, Inc.

The existing Norfolk Facility consists of a 160 foot tall guyed tower, approved as a replacement tower by the Council in Petition No. 106. ${ }^{1}$ T-Mobile plans to remove three (3) antennas and add three (3) antennas at a centerline of 120 feet. T-Mobile will replace an equipment cabinet and mount three (3) RRU's (remote radio units) inside the equipment shelter. T-Mobile will also add coax cable to follow the existing coax cable inside the cable tray. (See the plans revised to September 15, 2014 attached hereto as Exhibit A). The existing Norfolk Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated January 23, 2015 and attached hereto as Exhibit B.

The planned modifications to the Norfolk Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. T-Mobile's proposed modifications will be installed at a centerline of 120 feet, merely modifying existing
[^0]February 26, 2015
Site ID CT11349A
Page 2
antennas located at the same 120 foot elevation. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. The proposed modifications will not require an extension of the site boundaries. T-Mobile's modifications are all within the existing compound area as shown on Sheets A-1 and A-2.
3. The proposed modification to the Norfolk Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated February 24, 2015, T-Mobile's operations would add 7.02% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 29.96% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed replacement/additional antennas and equipment at the Norfolk Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, T-Mobile shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

Sincerely,

Julie D. Kohler, Esq.
cc: Town of Norfolk, First Selectman Susan M. Dyer
AT\&T Towers
AT\&T Capital Services, Inc.
Elizabeth Jamieson, Transcend Wireless

EXHIBIT A

AT\&T Towers
2300 Northlake Center Dr. Ste 405
Tucker, GA 30084-4032
(770) 708-6130

GPD GROUP.

Kevin Clements
520 South Main Street, Suite 2531
Akron, OH 44311
(330) 572-3546
kclements@gpdgroup.com

GPD\# 2015723.01.SNET020.03
January 23, 2015

STRUCTURAL ANALYSIS REPORT

AT\&T DESIGNATION:	Site USID: Site FA: Site Name: AT\&T Project:	SNET020 10137487 NORFOLK
1) Wireline T-Mobile Modification 09.10 .2014		

Ms. Julie Overman,

GPD is pleased to submit this Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	55.5%	Pass
Foundation Ratio with Proposed Equipment:	98.3%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and AT\&T Towers. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT\&T Mobility to AT\&T Towers. This report was commissioned by Ms. Julie Overman of AT\&T Towers.

The proposed coax shall be installed in a 3 on 4 configuration along Face C for the results of this analysis to be valid. See Appendix C for the proposed coax layout.

TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Leg	43.2%	Pass
Diagonal	55.5%	Pass
Horizontal	33.9%	Pass
Top Girt	4.6%	Pass
Guy Wires	54.6%	Pass
Top Guy Pull-Off	28.2%	Pass
Bottom Guy Pull-Off	19.1%	Pass
Torque Arm Top	17.5%	Pass
Torque Arm Bottom	12.4%	Pass
Bolt Checks	52.0%	Pass
Guy Anchor Foundation	95.5%	Pass
Tower Foundation	98.3%	Pass

ANALYSIS METHOD

tnxTower (Version 6.1.4.1), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a detailed site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
Notice of Co-lo Form (Part 2)	AT\&T Loading Document, uploaded 8/10/2014	Siterra
Site Lease Application	AT\&T Application, uploaded 8/11/2014	Siterra
Tower Design	Not Provided	N/A
Foundation Design	Not Provided	N/A
Geotechnical Report	WEI Project \# 2010-1212, dated 9/15/2010	Siterra
Previous Structural Analysis	GPD Job \# 2013723.01.SNET020.02, dated 9/27/2013	Siterra
Tower Mapping	GPD \& MTSI Northeast, dated 7/21/2010	Siterra
Foundation Mapping	WEI Project \# 2010-1212, dated 9/15/2010	Siterra

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
9. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
10. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
11. The existing loading was obtained from the previous structural analysis by GPD (Job \# 2013723.01.SNET020.02, dated 9/27/2013), the provided Site Lease Application, the provided Notice of CoLocation Form and site photos and is assumed to be accurate.
12. The proposed coax shall be installed in a 3 on 4 configuration along Face C for the results of this analysis to be valid. See Appendix C for the proposed coax layout.
13. The azimuth orientation of Leg A was assumed to be at 340 degrees based on the tower mapping performed by GPD \& MTSI Northeast (dated 7/21/2010).
14. Foundation steel was not able to be determined through testing for the tower base. Therefore it was assumed that the foundation steel in place is equal to the minimum required steel per code specifications.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD Group should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD GROUP has not performed a site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD GROUP in connection with this Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD GROUP does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD GROUP provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD GROUP, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD GROUP makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD GROUP will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD GROUP pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form
Tower Analysis Summary Form

Guy Wires	EHS
Nota: Stael grades assumed based on past experience with similar towera.	

APPENDIX B

tnxTower Output File

tnxTTOWeF	Job	Page	
	Project	SNET020 NORFOLK	1 of 9
	Client	2015723.01.SNET020.03	Date $14: 20: 23$ 01/28/15

Tower Input Data

The main tower is a 3 x guyed tower with an overall height of 160.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 4.00 ft at the top and tapered at the base.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Litchfield County, Connecticut.
Basic wind speed of 80 mph .
Nominal ice thickness of 0.7500 in .
Ice thickness is considered to increase with height.
Ice density of 56 pcf.
A wind speed of 28 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
Pressures are calculated at each section.
Safety factor used in guy design is 2 .
Stress ratio used in tower member design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.
Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement \qquad $f t$	Face Offset in	Lateral Offset (Frac FW)	\#	\# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
Climbing Ladder	B	Yes	Af (CfAe)	160.00-8.00	-2.0000	0	1	1	3.8400	3.8400	15.3600	4.81
$\begin{gathered} \text { LDF5-50A } \\ (7 / 8 \text { FOAM) } \end{gathered}$	A	Yes	Ar (CfAe)	160.00-8.00	-2.0000	-0.35	1	1	1.0000	1.0900		0.33
$\begin{gathered} \text { LDF7-50A } \\ (1-5 / 8 \text { FOAM }) \end{gathered}$	A	Yes	Ar (CfAe)	158.00-8.00	0.0000	0.1	6	6	0.5000	1.9800		0.82
Hybriflex (1-1/4")	A	Yes	Ar (CfAe)	158.00-8.00	0.0000	-0.15	3	3	0.5000	1.5400		1.30
$\begin{aligned} & \text { LDF4-50A } \\ & (1 / 2 \text { FOAM }) \end{aligned}$	A	Yes	Ar (CfAe)	148.00-8.00	-2.0000	0.1	I	1	0.0000	0.0000		0.15
$\begin{aligned} & \text { LDF6-50A } \\ & (1-1 / 4 \text { FOAM }) \end{aligned}$	A	Yes	At (CfAe)	120.00-8.00	-3.0000	0	6	5	1.0000	0.0000		0.66
LDF1-50A (1/4 FOAM)	A	Yes	Ar (CfAe)	$75.00-8.00$	0.0000	-0.075	1	1	0.3500	0.3500		0.06
Coax Bracket $5 / 20^{\prime} \times 12^{\prime \prime}$	A	Yes	Af(CfAe)	160.00-8.00	0.0000	0	1	1	0.5000	0.5000	1.5000	0.43
$\begin{aligned} & \text { LDF4-50A } \\ & \text { (1/2 FOAM) } \end{aligned}$	B	Yes	Ar (CfAe)	$13.00-8.00$	0.0000	-0.25	1	1	0.6300	0.6300		0.15
$\begin{gathered} \text { LDF7-50A } \\ (1-5 / 8 \text { FOAM) } \end{gathered}$	B	Yes	$\operatorname{Ar}(\mathrm{CfAe})$	142.00-8.00	0.0000	0.4	6	3	1.0000	1.9800		0.82
1.5" DC/Fiber Bundle	B	Yes	Ar (CfAe)	142.00-8.00	0.0000	0.3	1	1	1.5000	1.5000		0.80
$\begin{gathered} \text { LDF7-50A } \\ (1-5 / 8 \text { FOAM) } \end{gathered}$	B	Yes	Ar (CfAe)	142.00-8.00	0.0000	-0.4	6	3	1.0000	1.9800		0.82
Coax Bracket $5 / 20^{\prime} \times 12^{\prime \prime}$	C	Yes	Af(CfAe)	120.00-8.00	0.0000	0	1	1	0.5000	0.5000	1.5000	0.43
$\begin{gathered} 3 / 8^{\prime \prime} \mathrm{RET} \\ \text { Cable } \end{gathered}$	C	Yes	Ar (CfAe)	120.00-8.00	0.0000	0.1	1	1	0.3750	0.3750		0.10
$\begin{gathered} \text { LDF7-50A } \\ (1-5 / 8 \text { FOAM }) \end{gathered}$	C	Yes	Ar (CfAe)	120.00-8.00	0.0000	0	6	3	1.0000	1.9800		0.82

tnxTOwer	Job	SNET020 NORFOLK	$\text { Page } 2 \text { of } 9$
GPD Group 520 S. Main Street	Project	2015723.01.SNET020.03	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:20:23 01/28/15 } \end{array}$
Akron, OH 44311 Phone: 330.572.2201 FAX:	Client	AT\&T Towers	Designed by jdischinger

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| f^{2} | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multirow[t]{5}{*}{10^{\prime} Dipole} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 0.50 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{160.00} \& No Ice \& 2.00 \& 2.00 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1 / 2^{1 \prime}$ Ice \& 3.02 \& 3.02 \& 0.04

\hline \& \& \& \multirow[t]{3}{*}{8.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.07 \& 4.07 \& 0.06

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 5.70 \& 5.70 \& 0.12

\hline \& \& \& \& \& \& $4{ }^{\prime \prime}$ Ice \& 8.26 \& 8.26 \& 0.33

\hline \multirow[t]{5}{*}{Pipe Mount 3'x2.375'} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 0.25 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{160.00} \& No Ice \& 0.58 \& 0.58 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.77 \& 0.77 \& 0.02

\hline \& \& \& 1.50 \& \& \& 1" Ice \& 0.97 \& 0.97 \& 0.02

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.42 \& 1.42 \& 0.05

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 2.54 \& 2.54 \& 0.13

\hline \multirow[t]{5}{*}{$3{ }^{\prime}$ Omni} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Face} \& 0.50 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{160.00} \& No Ice \& 0.52 \& 0.52 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.71 \& 0.71 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1^{\prime \prime}$ Ice \& 0.90 \& 0.90 \& 0.03

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.33 \& 1.33 \& 0.05

\hline \& \& \& \& \& \& 4 I' Ice \& 2.44 \& 2.44 \& 0.12

\hline \multirow[t]{5}{*}{Rohn 12' Boom Gate} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 1.29 \& \multirow[t]{5}{*}{50.0000} \& \multirow[t]{5}{*}{158.00} \& No. Ice \& 15.35 \& 14.00 \& 0.56

\hline \& \& \& 1.53 \& \& \& 1/2" Ice \& 21.29 \& 20.81 \& 0.74

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& 1" Ice \& 27.23 \& 27.62 \& 0.92

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 39.11 \& 41.24 \& 1.29

\hline \& \& \& \& \& \& 4 " Ice \& 62.87 \& 68.48 \& 2.03

\hline \multirow[t]{5}{*}{Rohn 12' Boom Gate} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 1.29 \& \multirow[t]{5}{*}{50.0000} \& \multirow[t]{5}{*}{158.00} \& No Ice \& 15.35 \& 14.00 \& 0.56

\hline \& \& \& 1.53 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 21.29 \& 20.81 \& 0.74

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1^{\prime \prime}$ Ice \& 27.23 \& 27.62 \& 0.92

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 39.11 \& 41.24 \& 1.29

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 62.87 \& 68.48 \& 2.03

\hline \multirow[t]{5}{*}{Rohn 12' Boom Gate} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& $$
1.29
$$ \& \multirow[t]{5}{*}{50.0000} \& \multirow[t]{5}{*}{158.00} \& No Ice \& 15.35 \& 14.00 \& 0.56

\hline \& \& \& 1.53 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 21.29 \& 20.81 \& 0.74

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1^{\prime \prime}$ Ice \& 27.23 \& 27.62 \& 0.92

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 39.11 \& 41.24 \& 1.29

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 62.87 \& 68.48 \& 2.03

\hline \multirow[t]{5}{*}{(2) DB980H90E-M w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{50.0000} \& \multirow[t]{5}{*}{158.00} \& No Ice \& 4.04 \& 3.62 \& 0.03

\hline \& \& \& 3.06 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 4.50 \& 4.48 \& 0.07

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1{ }^{1 \prime}$ Ice \& 4.95 \& 5.22 \& 0.11

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 5.87 \& 6.74 \& 0.22

\hline \& \& \& \& \& \& 4" Ice \& 8.05 \& 10.00 \& 0.55

\hline \multirow[t]{5}{*}{(2) DB980H90E-M w/ Mount Pipe} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{50.0000} \& \multirow[t]{5}{*}{158.00} \& No Ice \& 4.04 \& 3.62 \& 0.03

\hline \& \& \& 3.06 \& \& \& $1 / 2^{\text {" }}$ Ice \& 4.50 \& 4.48 \& 0.07

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1^{\prime \prime}$ Ice \& 4.95 \& 5.22 \& 0.11

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 5.87 \& 6.74 \& 0.22

\hline \& \& \& \& \& \& $4{ }^{\prime \prime}$ Ice \& 8.05 \& 10.00 \& 0.55

\hline \multirow[t]{5}{*}{(2) DB980H90E-M w/ Mount Pipe} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 2.57 \& \multirow[t]{5}{*}{50.0000} \& \multirow[t]{5}{*}{158.00} \& No Ice \& 4.04 \& 3.62 \& 0.03

\hline \& \& \& 3.06 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 4.50 \& 4.48 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{11}$ Ice \& 4.95 \& 5.22 \& 0.11

\hline \& \& \& \& \& \& 2" Ice \& 5.87 \& 6.74 \& 0.22

\hline \& \& \& \& \& \& 4" Ice \& 8.05 \& 10.00 \& 0.55

\hline \multirow[t]{5}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 2.57 \& \multirow[t]{5}{*}{70.0000} \& \multirow[t]{5}{*}{158.00} \& No Ice \& 8.26 \& 6.71 \& 0.08

\hline \& \& \& 3.05 \& \& \& $1 / 2^{\text {" }}$ Ice \& 8.81 \& 7.66 \& 0.14

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 9.36 \& 8.49 \& 0.22

\hline \& \& \& \& \& \& 2^{11} Ice \& 10.50 \& 10.20 \& 0.39

\hline \& \& \& \& \& \& 4"Ice \& 12.88 \& 13.98 \& 0.87

\hline \multirow[t]{4}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{4}{*}{B} \& \multirow[t]{4}{*}{From Leg} \& 2.57 \& \multirow[t]{4}{*}{70.0000} \& \multirow[t]{4}{*}{158.00} \& No Ice \& 8.26 \& 6,71 \& 0.08

\hline \& \& \& 3.05 \& \& \& $1 / 2^{\text {" }}$ Ice \& 8.81 \& 7.66 \& 0.14

\hline \& \& \& \multirow[t]{2}{*}{0.00} \& \& \& 1" Ice \& 9.36 \& 8.49 \& 0.22

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 10.50 \& 10.20 \& 0.39

\hline
\end{tabular}

tnxTower	Job	SNET020 NORFOLK	$\text { Page } \quad 3 \text { of } 9$
GPD Group 520 S. Main Street	Project	2015723.01.SNET020.03	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:20:23 01/28/15 } \end{array}$
Alkon, OH 44311 Phone: 330.572.2201 FAX:	Client	AT\&T Towers	Designed by jdischinger

tnxTower GPD Group 520 S. Main Street	Job	SNET020 NORFOLK	$\text { Page } 4 \text { of } 9$
	Project	2015723.01.SNET020.03	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:20:23 01/28/15 } \\ \hline \end{array}$
Alkon, OH 44311 Phone: 330.572.2201 FAX:	Client	AT\&T Towers	Designed by jdischinger

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or \\
Leg
\end{tabular} \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f\)
\end{tabular} \& \begin{tabular}{l}
Azinuth Adjustment \\
。
\end{tabular} \& Placement \& \& \(C_{4} A_{A}\) Front
\[
f t^{2}
\] \& \begin{tabular}{l}
\(C_{A} A_{A}\) \\
Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline \multirow{9}{*}{8 ' Frame} \& \multirow{8}{*}{A} \& \multirow{7}{*}{From Leg} \& 0.00 \& \multirow{7}{*}{50.0000} \& \multirow{7}{*}{142.00} \& 1/2" Ice \& 1.11 \& 1.11 \& 0.03

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& 1 Ice \& 1.36 \& 1.36 \& 0.04

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1,90 \& 1.90 \& 0.07

\hline \& \& \& \& \& \& 4" Ice \& 3.23 \& 3.23 \& 0.17

\hline \& \& \& 0.48 \& \& \& No Ice \& 14.48 \& 3.61 \& 0.31

\hline \& \& \& 0.57 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 18.67 \& 4.62 \& 0.45

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& 1" Ice \& 22.86 \& 5.62 \& 0.60

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{50.0000} \& \multirow{5}{*}{142.00} \& $2^{\prime \prime}$ Ice \& 31.24 \& 7.63 \& 0.89

\hline \& \multirow{5}{*}{B} \& \& \& \& \& 4 " Ice \& 48.00 \& 11.65 \& 1.46

\hline \multirow[t]{5}{*}{8 Frame} \& \& \& 0.48 \& \& \& No Ice \& 14.48 \& 3.61 \& 0.31

\hline \& \& \& 0.57 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 18.67 \& 4.62 \& 0.45

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 22.86 \& 5.62 \& 0.60

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{50.0000} \& \multirow{5}{*}{142.00} \& $2^{\prime \prime}$ Ice \& 31.24 \& 7.63 \& 0.89

\hline \& \multirow{4}{*}{C} \& \& \& \& \& 4 Ice \& 48.00 \& 11.65 \& 1.46

\hline \multirow[t]{5}{*}{8' Frame} \& \& \& 0.48 \& \& \& No Ice \& 14.48 \& 3.61 \& 0.31

\hline \& \& \& 0.57 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 18.67 \& 4.62 \& 0.45

\hline \& \& \& 0.00 \& \& \& 1^{11} Ice \& 22.86 \& 5.62 \& 0.60

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{50.0000} \& \multirow{5}{*}{142.00} \& 2^{11} Ice \& 31.24 \& 7.63 \& 0.89

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 48.00 \& 11.65 \& 1.46

\hline \multirow[t]{5}{*}{AM-X-CD-16-65-00T w/ Mount Pipe} \& \& \& 0.96 \& \& \& No Ice \& 8.55 \& 6.65 \& 0.09

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 9.18 \& 7.68 \& 0.16

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 9.79 \& 8.56 \& 0.23

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{50.0000} \& \multirow{5}{*}{142.00} \& $2^{\prime \prime}$ Ice \& 11.06 \& 10.38 \& 0.41

\hline \& \& \& \& \& \& 4 " Ice \& 13.71 \& 14.23 \& 0.91

\hline \multirow[t]{5}{*}{AM-X-CD-16-65-00T w/ Mount Pipe} \& \& \& 0.96 \& \& \& No Ice \& 8.55 \& 6.65 \& 0.09

\hline \& \& \& 1.15 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 9.18 \& 7.68 \& 0.16

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 9.79 \& 8.56 \& 0.23

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{50.0000} \& \multirow{5}{*}{142.00} \& $2^{\prime \prime}$ Ice \& 11.06 \& 10.38 \& 0.41

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 13.71 \& 14.23 \& 0.91

\hline \multirow[t]{5}{*}{AM-X-CD-16-65-00T w/ Mount Pipe} \& \& \& 0.96 \& \& \& No Ice \& 8.55 \& 6.65 \& 0.09

\hline \& \& \& 1.15 \& \& \& $1 / 2^{11}$ Ice \& 9.18 \& 7.68 \& 0.16

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.79 \& 8.56 \& 0.23

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{50.0000} \& \multirow{5}{*}{142.00} \& $2^{\prime \prime}$ Ice \& 11.06 \& 10.38 \& 0.41

\hline \& \& \& \& \& \& 4 " Ice \& 13.71 \& 14.23 \& 0.91

\hline \multirow[t]{5}{*}{(2) $7770.00 \mathrm{w} /$ Mount Pipe} \& \& \& 0.96 \& \& \& No Ice \& 5.88 \& 4.10 \& 0.06

\hline \& \& \& 1.15 \& \& \& $1 / 2^{\text {" }}$ Ice \& 6.31 \& 4.73 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1 " Ice \& 6.75 \& 5.37 \& 0.16

\hline \& \multirow{6}{*}{B} \& \multirow{6}{*}{From Leg} \& \& \multirow{5}{*}{50.0000} \& \multirow{5}{*}{142.00} \& $2^{\prime \prime}$ Ice \& 7.66 \& 6.70 \& 0.29

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 9.58 \& 9.87 \& 0.65

\hline \multirow[t]{5}{*}{(2) $7770.00 \mathrm{w} /$ Mount Pipe} \& \& \& 0.96 \& \& \& No Ice \& 5.88 \& 4.10 \& 0.06

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 6.31 \& 4.73 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 6.75 \& 5.37 \& 0.16

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 7.66 \& 6.70 \& 0.29

\hline \& \multirow{4}{*}{C} \& \multirow{4}{*}{From Leg} \& \& \multirow{4}{*}{50.0000} \& \multirow{4}{*}{142.00} \& $4^{\prime \prime}$ Ice \& 9.58 \& 9.87 \& 0.65

\hline \multirow[t]{5}{*}{(2) $7770.00 \mathrm{~W} / \mathrm{Mount}$ Pipe} \& \& \& 0.96 \& \& \& No Ice \& 5.88 \& 4.10 \& 0.06

\hline \& \& \& 1.15 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 6.31 \& 4.73 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1 Ice \& 6.75 \& 5.37 \& 0.16

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{50.0000} \& \multirow{5}{*}{142.00} \& $2^{\prime \prime}$ Ice \& 7.66 \& 6.70 \& 0.29

\hline \& \& \& \& \& \& 4 " Ice \& 9.58 \& 9.87 \& 0.65

\hline \multirow[t]{4}{*}{(2) RRU-11} \& \& \& 0.96 \& \& \& No Ice \& 1.91 \& 1.47 \& 0.04

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 2.10 \& 1.65 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.30 \& 1.83 \& 0.08

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{50.0000} \& \multirow{5}{*}{142.00} \& $2^{\prime \prime}$ Ice \& 2.72 \& 2.22 \& 0.12

\hline \multirow{4}{*}{(2) RRU-11} \& \& \& \& \& \& 4 " Ice \& 3.68 \& 3.10 \& 0.25

\hline \& \& \& 0.96 \& \& \& No Ice \& 1.91 \& 1.47 \& 0.04

\hline \& \& \& 1.15 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 2.10 \& 1.65 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 2.30 \& 1.83 \& 0.08

\hline
\end{tabular}

tnxTower	Job	SNET020 NORFOLK	Page 5 of 9
GPD Group 520 S. Main Street Akron, OH 44311 Phone: 330.572.2201 FAX:	Project	2015723.01.SNET020.03	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:20:23 01/28/15 } \end{array}$
	Client	AT\&T Towers	Designed by jdischinger

tnxTower GPD Group 520 S. Main Street Akron, OH 44311 Phone: 330.572.2201 FAX:	Job	SNET020 NORFOLK	$\text { Page } 6 \text { of } 9$
	Project	2015723.01.SNET020.03	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:20:23 01/28/15 } \end{array}$
	Client	AT\&T Towers	Designed by jdischinger

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f^{2}
\] \& \(C_{A} A_{A}\) Side \(f t^{2}\) \& Weight

K

\hline \multirow[t]{5}{*}{RRUS 11 B12} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{120.00} \& No Ice \& 3.31 \& 1.36 \& 0.05

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.55 \& 1.54 \& 0.07

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1^{1 \prime}$ Ice \& 3.80 \& 1.73 \& 0.10

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 4.33 \& 2.13 \& 0.15

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 5.50 \& 3.04 \& 0.31

\hline \multirow[t]{5}{*}{RRUS 11 B12} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{120.00} \& No Ice \& 3.31 \& 1.36 \& 0.05

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.55 \& 1.54 \& 0.07

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1^{\prime \prime}$ Ice \& 3.80 \& 1.73 \& 0.10

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 4.33 \& 2.13 \& 0.15

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 5.50 \& 3.04 \& 0.31

\hline \multirow[t]{5}{*}{(2) $1412 \mathrm{D}-1 \mathrm{~A} 20$} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{120.00} \& No Ice \& 0.00 \& 0.47 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.00 \& 0.57 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.69 \& 0.03

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 0.00 \& 0.95 \& 0.06

\hline \& \& \& \& \& \& 4"Ice \& 0.00 \& 1.57 \& 0.14

\hline \multirow[t]{5}{*}{(2) 1412D-1A20} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{120.00} \& No Ice \& 0.00 \& 0.47 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.00 \& 0.57 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& 1" Ice \& 0.00 \& 0.69 \& 0.03

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.00 \& 0.95 \& 0.06

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 0.00 \& 1.57 \& 0.14

\hline \multirow[t]{5}{*}{(2) $1412 \mathrm{D}-1 \mathrm{~A} 20$} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{120.00} \& No Ice \& 0.00 \& 0.47 \& 0.01

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.00 \& 0.57 \& 0.02

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1^{\prime \prime}$ Ice \& 0.00 \& 0.69 \& 0.03

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.00 \& 0.95 \& 0.06

\hline \& \& \& \& \& \& 4 I' Ice \& 0.00 \& 1.57 \& 0.14

\hline \multirow[t]{5}{*}{4' Standoff - Flat (GPD)} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 2.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{120.00} \& No Ice \& 1.96 \& 6.13 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.08 \& 8.58 \& 0.11

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& 1 I' Ice \& 4.20 \& 11.03 \& 0.14

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 6.44 \& 15.93 \& 0.20

\hline \& \& \& \& \& \& $4{ }^{\prime \prime}$ Ice \& 10.92 \& 25.73 \& 0.33

\hline \multirow[t]{5}{*}{4' Standoff - Flat (GPD)} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{120.00} \& No Ice \& 1.96 \& 6.13 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 3.08 \& 8.58 \& 0.11

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1^{1 \prime}$ Ice \& 4.20 \& 11.03 \& 0.14

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 6.44 \& 15.93 \& 0.20

\hline \& \& \& \& \& \& $4{ }^{\prime \prime}$ Ice \& 10.92 \& 25.73 \& 0.33

\hline \multirow[t]{5}{*}{4' Standoff - Flat (GPD)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{120.00} \& \& 1.96 \& 6.13 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 3.08 \& 8.58 \& 0.11

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& 1" Ice \& 4.20 \& 11.03 \& 0.14

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 6.44 \& 15.93 \& 0.20

\hline \& \& \& \& \& \& 4 " Ice \& 10.92 \& 25.73 \& 0.33

\hline \multirow[t]{5}{*}{GPS-TMG-HR-26NCM} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{75.00} \& \& 0.80 \& 0.93 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 1.05 \& 1.17 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 1.30 \& 1.41 \& 0.04

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.80 \& 1.89 \& 0.05

\hline \& \& \& \& \& \& 4 " Ice \& 2.80 \& 2.85 \& 0.08

\hline \multirow[t]{5}{*}{2' Sidearm - Round (GPD)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{75.00} \& \& 0.80 \& 0.93 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\text {" }}$ Ice \& 1.05 \& 1.17 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 1.30 \& 1.41 \& 0.04

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.80 \& 1.89 \& 0.05

\hline \& \& \& \& \& \& 4'Ice \& 2.80 \& 2.85 \& 0.08

\hline \multirow[t]{5}{*}{GPS} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 1.00 \& \multirow[t]{5}{*}{0.0000} \& \multirow[t]{5}{*}{13.00} \& No Ice \& 0.17 \& 0.17 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1 / 2^{\prime \prime}$ Ice \& 0.24 \& 0.24 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.32 \& 0.32 \& 0.01

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 0.51 \& 0.51 \& 0.02

\hline \& \& \& \& \& \& 4"Ice \& 1.02 \& 1.02 \& 0.06

\hline \multirow[t]{2}{*}{1 1' Sidearm - Flat (GPD)} \& \multirow[t]{2}{*}{B} \& \multirow[t]{2}{*}{From Leg} \& 0.50 \& \multirow[t]{2}{*}{0.0000} \& \multirow[t]{2}{*}{13.00} \& No Ice \& 0.80 \& 0.80 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.05 \& 1.00 \& 0.02

\hline
\end{tabular}

tnxTower GPD Group 520 S. Main Street Akron, OH 44311 Phone: 330.572.2201 FAX:	Job	SNET020 NORFOLK	$\text { Page } 7 \text { of } 9$
	Project	2015723.01.SNET020.03	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:20:23 01/28/15 } \end{array}$
	Client	AT\&T Towers	Designed by jdischinger

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f^{2}
\] \& \begin{tabular}{l}
\(C_{A} A_{A}\) Side \\
\(f t^{2}\)
\end{tabular} \& Weight

K

\hline \& \& \& 0.00 \& \& \& 1^{11} Ice \& 1.30 \& 1.20 \& 0.03

\hline \& \& \& \& \& \& $2^{\prime \prime}$ Ice \& 1.80 \& 1.60 \& 0.04

\hline \& \& \& \& \& \& $4^{\prime \prime}$ Ice \& 2.80 \& 2.40 \& 0.06

\hline
\end{tabular}

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist	Radius of Curvature $f t$
160.00	10' Dipole	27	1.364	0.0260	0.0213	302519
158.00	Rohn 12' Boom Gate	27	1.374	0.0277	0.0239	302519
154.00	$800 \mathrm{MHz} 2 \times 50 \mathrm{w}$	27	1.395	0.0308	0.0292	252100
148.00	4' Yagi	27	1.428	0.0339	0.0368	126050
145.75	Guy	27	1.441	0.0344	0.0396	106151
142.00	8 ' Frame	27	1.464	0.0339	0.0442	95290
137.00	4^{\prime} Sidearm - Flat (GPD)	27	1.496	0.0306	0.0498	498885
120.00	RR90-17-02DP w/ Mount Pipe	27	1.579	0.0135	0.0623	23428
86.00	Guy	27	1.437	0.0256	0.0964	30777
75.00	GPS-TMG-HR-26NCM	27	1.397	0.0246	0.1066	148739
13.00	GPS	27	0.394	0.1338	0.1176	53218

Bolt Design Data

Section No.	Elevation $f t$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load K	Ratio Load Allowable	Allowable Ratio	Criteria
T1	160	Leg	A325N	0.6250	12	2.49	12.89	0.193	1	Bolt DS
		Diagonal	A325N	0.6250	2	2.86	9.58	0.299	1.333	Member Block Shear
		Horizontal	A 325 N	0.6250	2	0.47	4.79	0.098	1.333	Member Block Shear
T2	141	Leg	A325N	0.6250	12	4.22	12.89	0.328	1.333	Bolt DS
		Diagonal	A325N	0.6250	1	4.27	6.44	0.662	1.333	Bolt Shear
	121	Horizontal	A325N	0.6250	1	1.23	4.55	0.270	1.333	Member Block Shear
T3		Leg	A 325 N	0.6250	12	3.11	12.89	0.241	1	Bolt DS
		Diagonal	A325N	0.6250	1	2.48	5.10	0.486	1.333	Member Bearing
		Horizontal	A 325 N	0.6250	1	1.23	4.55	0.269	1.333	Member Block Shear
T4	101	Leg	A325N	0.6250	12	3.27	12.89	0.254	1	Bolt DS
		Diagonal	A 325 N	0.6250	1	4.46	6.44	0.693	1.333	Bolt Shear
		Horizontal	A325N	0.6250	1	2.01	4.55	0.441	1.333	Member Block Shear
T5	86	Leg	A325N	0.6250	12	4.02	12.89	0.312	1	Bolt DS
		Diagonal	A 325 N	0.6250	1	4.23	6.44	0.657	1.333	Bolt Shear
		Horizontal	A325N	0.6250	1	0.63	4.55	0.139	1	Member Block Shear

tnxTower GPD Group 520 S. Main Street Akron, OH 44311 Phone: 330.572.2201	Job	SNET020 NORFOLK	$\begin{aligned} & \text { Page } 8 \text { of } 9 \end{aligned}$
	Project	2015723.01.SNET020.03	Date 14:20:23 01/28/15
	Client	AT\&T Towers	Designed by jdischinger

Section No.	Elevation $f t$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load K	Ratio Load Allowable	Allowable Ratio	Criteria
T6	66	Leg	A325N	0.6250	12	5.73	12.89	0.445	1.333	Bolt DS
		Diagonal	A 325 N	0.6250	1	2.62	6.44	0.407	1.333	Bolt Shear
		Horizontal	A 325 N	0.6250	1	0.67	4.55	0.147	1	Member Block Shear
T7	46	Leg	A 325 N	0.6250	12	4.44	12.89	0.345	1	Bolt DS
		Diagonal	A 325 N	0.6250	1	2.09	6,44	0.325	1.333	Bolt Shear
		Horizontal	A 325 N	0.6250	1	0.70	4.55	0.155	1	Member Block Shear
T8	26	Leg	A325N	0.7500	3	0.00	19.44	0.000	1.333	Bolt Tension
		Diagonal	A325N	0.6250	1	2.55	5.10	0.501	1.333	Member Bearing
		Horizontal	A325N	0.6250	1	0.71	4.55	0.157	1	Member Block Shear

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	$\begin{aligned} & \text { Pass } \\ & \text { Fail } \end{aligned}$
T1	160-141	Leg	V5x5x5/16	2	-15.63	92.01	17.0	Pass
T2	141-121	Leg	V $5 \times 5 \times 5 / 16$	29	-25.32	90.67	27.9	Pass
T3	121-101	Leg	V5x5x5/16	57	-26.10	90.67	28.8	Pass
T4	101-86	Leg	V $5 \times 5 \times 5 / 16$	84	-19.65	68.02	28.9	Pass
T5	86-66	Leg	V5x5x5/16	105	-24.11	68.02	35.5	Pass
T6	66-46	Leg	V5x5x5/16	132	-34.39	90.67	37.9	Pass
T7	46-26	Leg.	V5 $\times 5 \times 5 / 16$	159	-34.84	90.67	38.4	Pass
T8	26-6	Leg	V $5 \times 5 \times 5 / 16$	186	-28.40	68.02	41.7	Pass
T9	6-0	Leg	V5x5x5/16	213	-31.06	71.83	43.2	Pass
T1	160-141	Diagonal	2L2 1/2x2 1/2×3/16	9	-6.60	29.65	22.3	Pass
T2	141-121	Diagonal	L2 1/2×2 1/2×3/16	54	-4.27	8.04	53.1	Pass
T3	121-101	Diagonal	L2 1/2×2 1/2×3/16	61	-3.01	8.04	37.4	Pass
T4	101-86	Diagonal	L2 $1 / 2 \times 21 / 2 \times 3 / 16$	88	-4.46	8.04	55.5	Pass
T5	86-66	Diagonal	L2 1/2×2 1/2×3/16	129	-4.23	8.04	52.6	Pass
T6	66-46	Diagonal	L2 1/2x2 1/2×3/16	156	-2.62	8.04	32.6	Pass
T7	46-26	Diagonal	L2 1/2x2 1/2×3/16	163	-2.09	8.04	26.0	Pass
T8	26-6	Diagonal	L2 1/2x2 1/2x3/16	198	-3.16	8.04	39.3	Pass
T9	6-0	Diagonal	L2 1/2×2 1/2×3/16	222	-0.60	10.30	5.8	Pass
T1	160-141	Horizontal	L2 1/2x2 1/2x3/16	24	-0.91	15.04	6.0	Pass
T2	141-121	Horizontal	L2 $2 \times 3 \times 16$	31	1.23	16.65	7.4	Pass
T3	121-101	Horizontal	L $2 \times 2 \times 3 / 16$	60	1.23	16.65	7.4	Pass
T4	101-86	Horizontal	L2 $\times 2 \times 3 / 16$	85	-1.67	10.17	16.5	Pass
T5	86-66	Horizontal	L2 $2 \times 2 \times 3 / 16$	119	-0.42	7.63	5.5	Pass
T6	66-46	Horizontal	L2 $2 \times 3 \times 3 / 16$	134	-0.60	10.17	5.9	Pass
T7	46-26	Horizontal	L $2 \times 2 \times 3 / 16$	161	-0.46	7.63	6.1	Pass
T8	26-6	Horizontal	L2 $2 \times 2 \times 3 / 16$	188	-0.49	7.63	6.4	Pass
T9	6-0	Horizontal	L2 1/2×2 1/2x3/16	215	6.61	19.48	33.9	Pass
T1	160-141	Top Girt	L2 1/2×2 1/2x3/16	5	-0.66	14.28	4.6	Pass
T1	160-141	Guy A@145.75	3/4	236	12.34	29.15	42.3	Pass
T5	86-66	Guy A@86	5/8	243	10.79	21.20	50.9	Pass
T1	160-141	Guy B@145.75	3/4	230	12.95	29.15	44.4	Pass
T5	86-66	Guy B@86	5/8	242	11.58	21.20	54.6	Pass
T1	160-141	Guy C@145.75	3/4	223	12.82	29.15	44.0	Pass
T5	86-66	Guy C@86	5/8	241	11.31	21.20	53.4	Pass
T1	160-141	Top Guy Pull-Off@145.75	L2 1/2x2 1/2x3/16	17	-2.54	16.06	15.8	Pass
T5	86-66	Top Guy	L $2 \times 2 \times 3 / 16$	106	5.81	20.59	28.2	Pass

tnxTower GPD Group 520 S. Main Street Akron, OH 44311 Phone: 330.572.2201 FAX:	Job	SNET020 NORFOLK	$\begin{aligned} & \text { Page } \quad 9 \text { of } 9 \end{aligned}$
	Project	2015723.01.SNET020.03	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 14:20:23 01/28/15 } \end{array}$
	Client	AT\&T Towers	Designed by jdischinger

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ K \end{gathered}$	Capacity	Pass Fail
T1	160-141	Pull-Off@86 Bottom Guy Pull-Off@145.75	L2 1/2x2 1/2x3/16	10	4.96	25.97	19.1	Pass
T1	160-141	Torque Arm Тор@145.75	2L2 $1 / 2 \times 2 \times 1 / 4$	237	8.07	46.01	17.5	Pass
T1	160-141	Torque Arm Bottom@145.75	2L3x2 1/2x1/4	239	-7.98	64.09	12.4	Pass
		*				Summary	ELC:	Existing/Pro posed
						Leg (T9)	43.2	Pass
						Diagonal (T4)	55.5	Pass
						Horizontal (T9)	33.9	Pass
						Top Girt (T1)	4.6	Pass
						Guy A (T5)	50.9	Pass
						Guy B (T5)	54.6	Pass
						Guy C (T5)	53.4	Pass
						Top Guy Pull-Off (T5)	28.2	Pass
						Bottom Guy Pull-Off (T1)	19.1	Pass
						Torque Arm Top (T1)	17.5	Pass
						Torque Arm Bottom (T1)	12.4	Pass
						Bolt Checks	52.0	Pass
						Rating $=$	55.5	Pass

APPENDIX C

Tower Elevation Drawing

Feed Line Distribution Chart
\qquad ound \qquad Flat \qquad 6' -160^{\prime}
App In Face \qquad App Out Face \qquad Truss Leg

GPD Group 520 S. Main Street Akron, OH 44311 Phone: 330.572.2201 FAX:	${ }^{\text {pob: }}$ SNET020 NORFOLK		
	Project 2015723.01.SNET020.03		
	Client: AT\&T Towers	Drawn by.jdischinger	Appd:
	Code: TIAVEIA-222-F	Date: 01/28/15	TS

Feed Line Plan

\qquad Round \qquad Flat App in Face \qquad App Out Face

	Pob: SNET020 NORFOLK		
	Client: AT\&T Towers	Drawn by. jdischinger	App'd:
	Code: TIA/EIA-222-F	Date: 01/28/15	le: NTS
	Path: ${ }_{\text {Nupgi liatand SNETO2 }}$		g No. E-7

APPENDIX D

Foundation Analysis

Pad \& Pier Geometry		
Pier Width, \varnothing	0	ft
Pad Length, L	4	ft
Pad Width, W	4	ft
Pad Thickness, t	4	ft
Depth, D	3.5	ft
Height Above Grade, HG	0.5	ft

Pad \& Pier Reinforcing		
Rebar Fy	60	ksi
Concrete Fc'	3	ksi
Clear Cover	3	in
Reinforced Top \& Bottom?	Yes	
Pad Reinforcing Size	$\# 8$	
Pad Quantity Per Layer	6	
Pier Rebar Size		
Pier Quantity of Rebar		

Soil Properties	
Soil Type	Cohesive
Soil Unit Weight	135 pcf
Cohesion, Cu	2.5 ksf
Bearing Type	Net
Ultimate Bearing	15 ksf
Water Table Depth	99 ft
Frost Depth	3.33 ft

[^1]| Tower Reactions | |
| :---: | :---: |
| Moment | $0 \mathrm{k}-\mathrm{ft}$ |
| Axial | 87.42 k |
| Shear | 3.05 k |

Base Foundation Reinforcement Check	Code
SNET020 / NORFOLK	TIA/EIA-222-F
2015723.1.SNET020.03	

Overall Capacities		
Reinforcement Capacity	15.4%	OK
As Min Met?	Yes	
Controlling Capacity	$\mathbf{1 5 . 4 \%}$	OK

Pad \& Pier Geometry	
Height	3.5 ft
Height above Grade	0.5 ft
Pad Length, L	4 ft
Pad Width, W	4 ft
Pad Thickness	4 ft
Pier Shape	Square
Square Pier Width	0 ft

Pad \& Pier Reinforcing	
Reinforcing Known	Yes
f_{c}^{\prime}	3 ksi
Clear Cover	3 in
Rebar Fy	60 ksi
Pad Rebar Size	$\# 8$
Pad Rebar Quantity	6
Pier Rebar Size	
Pier Rebar Quantity	

Unit Weights	
Concrete Unit Weight	150 pcf
Soil Unit Weight	135 pcf
Orthogonal Bearing	
$\mathrm{Q}_{\max }$	7.14 ksf
$\mathrm{Q}_{\min }$	4.86 ksf

Pad Moment Capacity		
中 (bending) $=$	0.90	
$\mathrm{M}_{\mathrm{u}}=$	$12.14 \mathrm{k}-\mathrm{ft}$	
$\phi \mathrm{M}_{\mathrm{n}}=$	$225.77 \mathrm{k}-\mathrm{ft}$	
Moment Capacity	5.4%	OK
One-Way (Wide-Beam)	Shear	
$\mathrm{V}_{\mathrm{u}}=$	2.30 psi	
$\phi \mathrm{V}_{\mathrm{n}}=$	82.16 psi	
Shear Capacity	2.8%	OK
Two-Way (Punching)	Shear	
$\mathrm{V}_{\mathrm{u}}=$	25.25 psi	
$\phi \mathrm{V}_{\mathrm{n}}=$	164.32 psi	
Shear Capacity	15.4%	OK

Soil Capacity Calcualtions		
W_{s}	-3.45 k	
W_{c}	42.19 k	
$\left(\mathrm{W}_{\mathrm{s}}+\mathrm{W}_{\mathrm{I}} / 1.5\right.$	25.82 k	
$\left(\mathrm{W}_{\mathrm{s}} / 2\right)+\left(\mathrm{W}_{\mathrm{c}} / 1.25\right)$	32.02 k	
Uplift Resistance	25.82 k	
Horizontal Resistance	61.75 k	
Uplift Capacity=	95.5%	OK
Horizontal Capacity $=$	44.2%	OK

Anchor Block Reinformement	
is Reinforcement Known?	yes
Fc'	4 ksi
Fy	60 ksi
Clear Cover	3 in
Top Bar Size	$\# 8$
Top Bar Quantity	5
Front Bar Size	$\# 8$
Front Bar Quantity	4
Back \& Bottom Bar Size	$\# 8$
Back \& Bottom Bar Quantity	0

Reinforcement Capacity Calculations		
Moment Check		
$\mathrm{M}_{\mathrm{u}}=$	$55.47 \mathrm{k}-\mathrm{ft}$	
$\phi \mathrm{M}_{\mathrm{n}}=$	$782.60 \mathrm{k}-\mathrm{ft}$	
Moment Capacity	$7.1 \% \quad$ OK	
Minimum Reinforcment		
$\mathrm{A}_{\text {smin }}$ Requirements Met?	Yes	

GPD Guyed Tower Anchor Foundation Analysis (Rev F) - V1.03

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CT11349A

Norfolk SNET
453 Loon Meadow Road
Norfolk, CT 06058
February 24, 2015
EBI Project Number: 6215001280

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	29.96%

February 24, 2015

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11349A - Norfolk SNET

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 453 Loon Meadow
Road, Norfolk, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{4 5 3}$ Loon Meadow Road, Norfolk, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) 2 UMTS channels (PCS Band -1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
environmental | engineering | due diligence
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the EMS RR90_17_02DP for 1900 MHz (PCS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The EMS
RR90_17_02DP has a maximum gain of $\mathbf{1 4 . 4} \mathbf{d B d}$ at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of 14.6 dBd at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 2 0}$ feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

EBI Consulting
 environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Anterna \#:	1
Make / Model:	$\begin{gathered} \text { EMS } \\ \text { RR90_17_02DP } \end{gathered}$	Make / Model:	EMS RR90_17_02DP	Make / Model:	$\begin{gathered} \text { EMS } \\ \text { RR90_17_02DP } \end{gathered}$
Gain:	14.4 dBd	Gain:	14.4 dBd	Gain:	14.4 dBd
Height (AGL):	120	Height (AGL):	120	Height (AGL):	120
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	6	Chamnel Count	6	\# PCS Channels:	6
Total TX Power:	240	Total TX Power:	240	\# AWS Channels:	240
ERP (W):	6,610.15	ERP (W):	6,610.15	ERP (W):	6,610.15
Antenna A1 MPE\%	1.83	Antenna B1 MPE\%	1.83	Antenna C1 MPE\%	1.83
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX-6515DS-VTM	Make / Model:	Commscope LNX-6515DS-VTM
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	120	Height (AGL):	120	Height (AGL):	120
Frequency Bands	700 Mhz	Frequency Bands	700 Mhz	Frequency Bands	700 Mhz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A2 MPE\%	0.51	Antenna B2 MPE\%	0.51	Antenna C2 MPE\%	0.51

Site Composite MPE \%	
Carrier	MPE \%
T-Mobile	$\mathbf{7 . 0 2}$
AT\&T	15.95%
PageNet	3.38%
Sprint	3.61%
Site Total MPE \%:	$\mathbf{2 9 . 9 6 \%}$

T-Mobile Sector 1 Total:	2.34%
T-Mobile Sector 2 Total:	2.34%
T-Mobile Sector 3 Total:	2.34%
Site Total:	

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	2.34%
Sector 2:	2.34%
Sector 3:	2.34%
T-Mobile Total:	7.02%
Site Total:	29.96%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{2 9 . 9 6 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803

[^0]: ${ }^{1}$ The Staff Report for this Petition does not contain any relevant limitations on the configuration of the Norfoik Facility.

[^1]: GPD Mat Foundation Analysis - V1.02

