Michael Gentile, Site Acquisition
c/o New Cingular Wireless, PCS LLC (AT\&T)
Centerline Communications, LLC
750 West Center Street, Suite 301
West Bridgewater, MA 02739
Mobile: (508) 844-9813
mgentile@clinellc.com

August 2, 2018
Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification // Site Number: CT1006 453 Loon Meadow Road, Norfolk, CT (Site Name: Norfolk - Loon Meadow Rd) N 42.0088888 // W -73.1808333

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC ("AT\&T") currently maintains nine (9) antennas at the 142foot level of the existing 160-foot guyed tower at 453 Loon Meadow Road, Norfolk, CT 06058. The tower is owned by New Cingular Wireless PCS, LLC ("AT\&T"). The property is owned by AT\&T. AT\&T now intends to add three (3) new LTE models for its LTE upgrade. These antennas would be installed at the 142 -foot level of the tower. AT\&T also intends to install six (6) small RRUS (radios), as well as one (1) DC Surge Arrestor and associated two (2) DC and one (1) Fiber cables.

AT\&T was originally approved for nine (9) antennas on July 31, 1991.
Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16$50 \mathrm{j}-72$ (b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Matthew Riiska, First Selectman for the Town of Norfolk, as well as the tower and ground owner, AT\&T.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

Attached to accommodate this filing are construction drawings dated July 30, 2018, by Infinigy Engineering, a structural analysis dated July 19, 2018 by GPD Engineering and an Emissions Analysis Report dated July 24, 2018, by Centerline Communications, LLC.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading as shown in the attached structural analysis by GPD Engineering, dated July 19, 2018.

For the foregoing reasons, AT\&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Michael Gentile, Site Acquisition
c/o New Cingular Wireless, PCS LLC (AT\&T)
Centerline Communications, LLC
750 West Center Street, Suite 301
West Bridgewater, MA 02739
Mobile: (508) 844-9813
mgentile@centerlincommunications.com

cc: Matthew Riiska, First Selectman, Town of Norfolk - as elected official AT\&T - as tower owner
AT\&T - as property owner

Town of Norfolk
 "Icebox" of Connecticut

Building Information
No Building Information available for this parcel.

Out Buildings / Extra Features				
Description	Sub Description	Area	Year Built	Value
1 STORY FRAME		408 S.F.		\$ 20,400
1 STORY FRAME		256 S.F.		\$ 6,400
8' FENCE		360 L.F.		\$ 1,980
CELL TOWER C		1 UNITS		\$ 1,000,000

Sale Information						
Sale Date	Sale Price	Deed Book/Page	Sale Qualification	Reason	Vacant or Improved	Owner
06/22/2015		118/1088	Unqualified	Unqualified Sale - Nonspecific	Vacant	NEW CINGULAR WIRELESS PCS LLC ATTN PROPERTY TAX DEPT
10/28/2014		118/311	Unqualified	No Consideration Sale	Improved	AT\&T CAPITAL SERVICES INC
08/02/1957		42/29	Unqualified			SOUTHERN NEW ENGLAND TELEPHONE

Permit Information								
Permit ID	Issue Date	Type	Description	Amount	Inspection Date	\% Complete	Date Complete	Comments
828 E	03/27/2015	EL	Electric	\$ 15,000		0		UPG 3 ANTENNAS
388-E	03/02/2013	EL	Electric	\$ 12,000		0		6 NEW ANTENNAS
7470-E	01/18/2001	EL	Electric	\$ 54,000		0		ADD ANTENNAS TO TOWER
7457	12/18/2000	EL	Electric	\$ 10,000		0		INSTALL CONDUITS

Recent Sales in Neighborhood	Previous Parcel	Next Parcel		Return to Main Search Page	Norfolk Home

 interpretation. Website Updated: July 29, 2018
© 2012 by the Town of Norfolk, CT | Website design by gpublic.net

	$1 \text { OF } 1$
	-02
UPS GROUND TRACKING \#: 1Z 9Y4 5034305838749	
BILLING: P/P	
Reference No.1: CT1006-1x filing to tower/ground Reference No.2: owner -- ATT XOL 18.07.27 NV45 03.0A 07/2018	\%

Radio Frequency Emissions Analysis Report

AT\&T Existing Facility

Site ID: CT1006

FA\#: 10035022

Norfolk - Loon Meadow Road
453 Loon Meadow Road
Norfolk, CT 06058
July 24, 2018
Centerline Communications Project Number: 950012-130

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{1 6 . 4 3} \%$

July 24, 2018
AT\&T Mobility - New England
Attn: John Benedetto, RF Manager
550 Cochituate Road
Suite 550-13\&14
Framingham, MA 06040

Emissions Analysis for Site: CT1006 - Norfolk - Loon Meadow Road

Centerline Communications, LLC ("Centerline") was directed to analyze the proposed AT\&T facility located at $\mathbf{4 5 3}$ Loon Meadow Road, Norfolk, CT, for the purpose of determining whether the emissions from the Proposed AT\&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)$ - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 700 and 850 MHz Bands are approximately $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$ respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were performed for the proposed AT\&T Wireless antenna facility located at $\mathbf{4 5 3}$ Loon Meadow Road, Norfolk, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT\&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in Table 1:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
UMTS	850 MHz	2	30
LTE	700 MHz (BAND 14)	4	40
LTE	$1900 \mathrm{MHz}($ PCS $)$	4	40
LTE	700 MHz	2	40

Table 1: Channel Data Table

The following antennas listed in Table 2 were used in the modeling for transmission in the $700 \mathrm{MHz}, 850$ MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

Sector	Antenna Number	Antenna Make / Model	Antenna Centerline (ft)
A	1	Powerwave 7770	143
A	2	Powerwave 7770 (Decommissioned)	143
A	3	Kathrein 800-10965	143
A	4	KMW AM-X-CD-16-65-00T-RET	143
B	1	Powerwave 7770	143
B	2	Powerwave 7770 (Decommissioned)	143
B	3	Kathrein 800-10965	143
B	4	KMW AM-X-CD-16-65-00T-RET	143
C	1	Powerwave 7770	143
C	2	Powerwave 7770 (Decommissioned)	143
C	3	Kathrein 800-10965	143
C	4	KMW AM-X-CD-16-65-00T-RET	143

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

RESULTS

Per the calculations completed for the proposed AT\&T configurations Table 3 shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

Antenna ID	Antenna Make / Model	Frequency Bands	Antenna Gain (dBd)	Channel Count	Total TX Power (W)	ERP (W)	MPE \%
Antenna A1	Powerwave 7770	850 MHz	11.4	2	60	828.23	0.28
Antenna A2	Powerwave 7770 (Decommissioned)	NA	NA	0	0	0.00	0.00
Antenna A3	Kathrein 800-10965	$\begin{gathered} \hline 700 \mathrm{MHz}(\text { Band } 14) / \\ 1900 \\ \hline \end{gathered}$	$\begin{gathered} 12.65 / \\ 15.65 \\ \hline \end{gathered}$	8	320	8,821.75	2.33
Antenna \qquad	KMW AM-X-CD-16-65-00T- RET	700 MHz	13.35	2	80	1,730.17	0.71
Sector A Composite MPE\%							3.32
Antenna B1	Powerwave 7770	850 MHz	11.4	2	60	828.23	0.28
Antenna B2	Powerwave 7770 (Decommissioned)	NA	NA	0	0	0.00	0.00
$\begin{gathered} \text { Antenna } \\ \text { B3 } \\ \hline \end{gathered}$	Kathrein 800-10965	$\begin{gathered} \hline 700 \mathrm{MHz}(\text { Band 14) } / \\ 1900 \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.65 / \\ 15.65 \\ \hline \end{gathered}$	8	320	8,821.75	2.33
Antenna B4	$\begin{gathered} \text { KMW } \\ \text { AM-X-CD-16-65-00T- } \\ \text { RET } \end{gathered}$	700 MHz	13.35	2	80	1,730.17	0.71
Sector B Composite MPE\%							3.32
Antenna C1	Powerwave 7770	850 MHz	11.4	2	60	828.23	0.28
Antenna C2	Powerwave 7770 (Decommissioned)	NA	NA	0	0	0.00	0.00
Antenna C3	Kathrein 800-10965	$\begin{gathered} \hline 700 \mathrm{MHz} \text { (Band 14) / } \\ 1900 \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.65 \text { / } \\ 15.65 \\ \hline \end{gathered}$	8	320	8,821.75	2.33
Antenna C4	KMW AM-X-CD-16-65-00T- RET	$700 \mathrm{MHz} / 1900$	$\begin{gathered} 13.35 / 0 \\ / 0 / 0 \\ \hline \end{gathered}$	2	80	1,730.17	0.71
Sector C Composite MPE\%							3.32

Table 3: AT\&T Emissions Levels

The Following table (table 4) shows all additional carriers on site and their MPE\% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum AT\&T MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. Table 5 below shows a summary for each AT\&T Sector as well as the composite MPE value for the site.

Site Composite MPE\%	
Carrier	MPE \%
AT\&T - Max Sector Value	$\mathbf{3 . 3 2 \%}$
Clearwire	0.43%
Sprint	1.27%
T-Mobile	2.65%
Verizon Wireless	8.76%
Site Total MPE \%:	$\mathbf{1 6 . 4 3 \%}$

Table 4: All Carrier MPE Contributions

AT\&T Sector A Total:	3.32%
AT\&T Sector B Total:	3.32%
AT\&T Sector C Total:	3.32%
Site Total:	

Table 5: Site MPE Summary

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. Table 6 below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated AT\&T sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { AT\&T_} \begin{array}{c}\text { Frequency Band / Technology } \\ \text { Max Power Values } \\ \text { (Per Sector) }\end{array} & \begin{array}{c}\# \\ \text { Channels }\end{array} & \begin{array}{c}\text { Watts ERP } \\ (\text { Per Channel) }\end{array} & \begin{array}{c}\text { Height } \\ (\text { feet })\end{array} & \begin{array}{c}\text { Total } \\ \text { Power } \\ \text { Density } \\ \left(\boldsymbol{\mu W / \mathbf { c m } ^ { 2 })}\right.\end{array} & \begin{array}{c}\text { Frequency } \\ (\mathbf{M H z})\end{array} & \begin{array}{c}\text { Allowable } \\ \text { MPE } \\ \left(\mu \mathbf{W} / \mathbf{c m}^{2}\right)\end{array} \\ \hline \text { Calculated } \\ \text { \% MPE }\end{array}\right\}$

Table 6: AT\&T Maximum Sector MPE Power Values

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the AT\&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

AT\&T Sector	Power Density Value (\%)
Sector A:	3.32%
Sector B:	3.32%
Sector C:	3.32%
AT\&T Maximum Total	
(per sector):	3.32%
Site Total:	16.43%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 6 . 4 3} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director
Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767

CENTERLINE

- COMMUNICATIONS

Centerline Communications, LLC
95 Ryan Drive, Suite 1
Raynham, MA 02767
(508) 844-9813

GPD Engineering and Architecture Professional Corporation

Kevin Fraleigh
520 South Main Street, Suite 2531
Akron, OH 44311
(330) 572-2191
kfraleigh@gpdgroup.com

GPD\# 2018702.82 Rev. 1
July 19, 2018

REVISED RIGOROUS STRUCTURAL ANALYSIS REPORT

AT\&T DESIGNATION:

ANALYSIS CRITERIA:

Site USID:
 Site FA:
 Client \#:
 Site Name:

Codes:

SNET020
10137487
CT1006
NORFOLK

TIA-222-G, 2012 IBC, and 2016 CTBC
115-mph Ultimate (3-second gust) with 0 " ice 89-mph Nominal (3-second gust) with 0 " ice 40-mph (3-second gust) with $0.75^{\prime \prime}$ ice

402 Loon Meadow Dr., Norfolk, CT 06058, Litchfield County Latitude $42^{\circ} 0^{\prime} 32.004 " \mathrm{~N}$, Longitude 73${ }^{\circ} 10{ }^{\prime} 51^{\prime \prime} \mathrm{W}$ Market: NEW ENGLAND 160' Guyed Tower

Mr. Michael Gentile,

GPD is pleased to submit this Revised Rigorous Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

Analysis Results

Tower Stress Level with Proposed Equipment:	51.1%	Pass
Foundation Ratio with Proposed Equipment:	85.2%	Pass

We at GPD appreciate the opportunity of providing our continuing professional services to you and Centerline Communications, LLC. If you have any questions or need further assistance on this or any other projects please do not hesitate to call.

Respectfully submitted,

Christopher J. Scheks, P.E. Connecticut \#: 30026

SUMMARY \& RESULTS

The purpose of this analysis was to verify whether the existing structure is capable of carrying the proposed loading configuration as specified by AT\&T Mobility to Centerline Communications, LLC. This report was commissioned by Mr. Michael Gentile of Centerline Communications, LLC.

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3 -second gust wind speed of 115 mph converted to a nominal 3 -second gust wind speed of 89 mph per Section 1609.3 and Appendix N as required for use in the TIA-222-G Standard per Exception \#5 of Section 1609.1.1. Exposure Category B with a maximum topographic factor, Kzt, of 1.000 and Risk Category II was/were used in this analysis.

TOWER SUMMARY AND RESULTS

Member	Capacity	Results
Legs	42.9%	Pass
Diagonals	51.1%	Pass
Horizontals	34.4%	Pass
Guy Wires	49.7%	Pass
Guy Pull-Offs	28.0%	Pass
Torque Arms	15.5%	Pass
Bolt Checks	51.1%	Pass
Guy Anchor Foundation	26.7%	Pass
Tower Base Foundation	85.2%	Pass

ANALYSIS METHOD

tnxTower (Version 7.0.7.0), a commercially available software program, was used to create a three-dimensional model of the tower and calculate primary member stresses for various dead, live, wind, and ice load cases. Selected output from the analysis is included in Appendix B. The following table details the information provided to complete this structural analysis. This analysis is solely based on this information and is being completed without the benefit of a recent detailed site visit.

DOCUMENTS PROVIDED

Document	Remarks	Source
RF Data Sheet	RFDS Name: CTV1006 Rev 1.0, updated 10/2/2017	Centerline
Tower Design	Not Provided	N/A
Foundation Design	Not Provided	N/A
Geotechnical Report	WEI Project \# 2010-1212, dated 9/15/2010	AT\&T
Boring Log Review	GPD Job \#: 2018704.07, dated 5/15/2018	GPD
Previous Structural Analysis	GPD Job \#: 2015723.01.SNET020.04, dated 7/17/2015	AT\&T
Tower Mapping	GPD \& MTSI Northeast, dated 7/21/2010	AT\&T
Foundation Mapping	WEI Project \# 2010-1212, dated 9/15/2010	AT\&T

ASSUMPTIONS

This structural analysis is based on the theoretical capacity of the members and is not a condition assessment of the tower. This analysis is from information supplied, and therefore, its results are based on and are as accurate as that supplied data. GPD has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural analysis.

1. The tower member sizes and shapes are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated in the materials section.
2. The antenna configuration is as supplied and/or as modeled in the analysis. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
3. Some assumptions are made regarding antennas and mount sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type and industry practice.
4. All mounts, if applicable, are considered adequate to support the loading. No actual analysis of the mount(s) is performed. This analysis is limited to analyzing the tower only.
5. The soil parameters are as per data supplied or as assumed and stated in the calculations.
6. Foundations are properly designed and constructed to resist the original design loads indicated in the documents provided.
7. The tower and structures have been properly maintained in accordance with TIA Standards and/or with manufacturer's specifications.
8. All welds and connections are assumed to develop at least the member capacity unless determined otherwise and explicitly stated in this report.
9. All prior structural modifications are assumed to be as per data supplied/available and to have been properly installed.
10. Loading interpreted from photos is accurate to $\pm 5^{\prime} \mathrm{AGL}$, antenna size accurate to $\pm 3.3 \mathrm{sf}$, and coax equal to the number of existing antennas without reserve.
11. The existing loading was obtained from the previous structural analysis by GPD (Job \#: 2015723.01.SNET020.04, dated 7/17/2015), the provided RF Data Sheet, and site photos and is assumed to be accurate.
12. The azimuth orientation of Leg A was assumed to be at 340 degrees based on the tower mapping performed by GPD \& MTSI Northeast (dated 7/21/2010).
13. Foundation steel was not able to be determined through testing for the tower base. Therefore it was assumed that the foundation steel in place is equal to the minimum required steel per code specifications.

If any of these assumptions are not valid or have been made in error, this analysis may be affected, and GPD should be allowed to review any new information to determine its effect on the structural integrity of the tower.

DISCLAIMER OF WARRANTIES

GPD has not performed a recent site visit to the tower to verify the member sizes or antenna/coax loading. If the existing conditions are not as represented on the tower elevation contained in this report, we should be contacted immediately to evaluate the significance of the discrepancy. This is not a condition assessment of the tower or foundation. This report does not replace a full tower inspection. The tower and foundations are assumed to have been properly fabricated, erected, maintained, in good condition, twist free, and plumb.

The engineering services rendered by GPD in connection with this Rigorous Structural Analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance was made for any damaged, bent, missing, loose, or rusted members (above and below ground). No allowance was made for loose bolts or cracked welds.

This analysis is limited to the designated maximum wind and seismic conditions per the governing tower standards and code. Wind forces resulting in tower vibrations near the structure's resonant frequencies were not considered in this analysis and are outside the scope of this analysis. Lateral loading from any dynamic response was not evaluated under a time-domain based fatigue analysis.

GPD does not analyze the fabrication of the structure (including welding). It is not possible to have all the very detailed information needed to perform a thorough analysis of every structural sub-component and connection of an existing tower. GPD provides a limited scope of service in that we cannot verify the adequacy of every weld, plate connection detail, etc. The purpose of this report is to assess the capability of adding appurtenances usually accompanied by transmission lines to the structure.

It is the owner's responsibility to determine the amount of ice accumulation in excess of the code specified amount, if any, that should be considered in the structural analysis.

The attached sketches are a schematic representation of the analyzed tower. If any material is fabricated from these sketches, the contractor shall be responsible for field verifying the existing conditions, proper fit, and clearance in the field. Any mentions of structural modifications are reasonable estimates and should not be used as a precise construction document. Precise modification drawings are obtainable from GPD, but are beyond the scope of this report.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as a part of our work. We recommend that material of adequate size and strength be purchased from a reputable tower manufacturer.

Towers are designed to carry gravity, wind, and ice loads. All members, legs, diagonals, struts, and redundant members provide structural stability to the tower with little redundancy. Absence or removal of a member can trigger catastrophic failure unless a substitute is provided before any removal. Legs carry axial loads and derive their strength from shorter unbraced lengths by the presence of redundant members and their connection to the diagonals with bolts or welds. If the bolts or welds are removed without providing any substitute to the frame, the leg is subjected to a higher unbraced length that immediately reduces its load carrying capacity. If a diagonal is also removed in addition to the connection, the unbraced length of the leg is greatly increased, jeopardizing its load carrying capacity. Failure of one leg can result in a tower collapse because there is no redundancy. Redundant members and diagonals are critical to the stability of the tower.

GPD makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of this tower. GPD will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report. The maximum liability of GPD pursuant to this report will be limited to the total fee received for preparation of this report.

APPENDIX A

Tower Analysis Summary Form

Tower Analysis Summary Form

General Info	
Site Name	NORFOLK
Site Number	SNETO20
FA Number	10137487
Date of Analysis	7/1912018
Company Pertorming Analysis	GPD

The information contained in this summary report is not to be used independently from
the PE stamped tower analysis.

A Number	10137487
Pate of Analysis	7/192018
Company Pertorming Analysis	GPD

the PE stamped tower analysis. thed independently from then

Tower Into	Description	Date
Tower Type (G, SST, MP)	G	
Tower Height (top of steel AGL)	${ }^{160}$	
Tower Manufacturer	n/a	
Tower Model	n/a	
Tower Design	n/a	
Foundation Design	n/a	
Geotech Report	WEI Project \#: 2010-1212	9/15/2010
Boring Log Review	GPD Job \#: 20187704.07	5/15/2018
Tower Mapping	GPD \& MTSI Northeast	7/21/2010
Previous Structural Analysis	GPD Job \#: 2015723.01.SNET020.04	7/17/2015
Foundation Mapping	WEI Project \#: 2010-1212	9/15/2010

Ssign Parameters	
Design Code Used	TIA-222-G, 2012 IBC \& 2016 CTBC
Location of Tower (Countr, State)	Litchfield, Connecticut
Basic Wind Speed (mph)	89-mph (3-second gust)
Ie Thickness (in)	0.75
Structure Classification (1, I, II, II)	1
Exposure Category (B, C, D)	B
Topographic Category (1 to 5)	1

Steel Yield Strength (ksi)

Steel Yield Strength (ksi)	
Legs 50 Braces 36 Member Botis A325 Guy Wires EHS	

$\frac{\text { Guy Wires }}{\text { Note: Steel grades assumed based on past experience with similiar towers. }}$

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{aligned} & \begin{array}{l} \text { Mount } \\ \text { Height (ft) } \end{array} \end{aligned}$	$\begin{array}{\|c} \hline \text { Antenna CL } \\ \text { (ti) } \end{array}$	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manuacturer	Type	Quantity	Model	Size	Attachment Leg/Face
AT\&T Mobilily	160	168	1	Dipole	Unknown	10' Dipole		1	Unknown	Pipe Mount	1	Unknown	$718{ }^{\prime \prime}$	Fac
AT\&T Mobility	160	160	1	Omni	Unknown	3^{\prime} Omi				Flush Mount				
Sprint	158	158	3	Panel	RFS	APXVSPP18-C-A20	50/170/250	3	Unknown	12' Boom Gate	3	Hybriflex	1-1/4"	Face A
Sprint	154	154	3	RRU	Andrew	800MHz 2x50w				Flush Mounted				
Sprint	154	154	3	RRU	Panasonic	1900MHz 2x40w				Flush Mounted				
Sprint	154	154	3	Filter	Andrew	800MHz 2x50w Notch Filter				Flush Mounted				
ATET Mobility	148	148	1	Yagi	Unknown	$4^{\text {' Yagi }}$		1	Unknown	Pipe Mount	1	Unknown	${ }^{1 / 2}{ }^{\prime \prime}$	Face A
AT\&T Mobility	142	143	3	Panel	KMw	AM-X-CD-16-65-00T-RET	23/143/264	3	Unknown	$8{ }^{\text {' Frame }}$	12	Unknown	$1.5 / 8^{\prime \prime}$	Face B
AT\&T Mobility	142	143	6	Panel	Powerwave	7770	23/143/264			on the same mounts	1	DC/Fiber Bundle	1-1/2"	Face B
AT\&T Mobility	142	143	6	TMA	Powerwave	TT 19-08BP111-001				on the same mounts				
AT\&T Mobility	142	143	${ }^{12}$	RET	Powerwave	7020				on the same mounts				
AT\&T Mobility	142	143	3	RRU	Ericsson	RRUS 11				on the same mounts				
AT\&T Mobility	142	143	1	Surge	Andrew	ABT-DFDM-ADBH				on the same mounts				
Unknown	137							2	Unknown	4' Sidearm				
T-Mobile	120	120	3	Panel	EMS	RR90-17-02DP	60/190/280	3	Unknown	4' Standoff	6	Unknown	1-1/4"	Face A
T-Mobile	${ }^{120}$	${ }^{120}$	3	Panel	Commscope	LNX-6515DS-VTM	60/190/280			on the same mounts	6	Unknown	1-5/8"	Face B
T-Mobile	120	120	6	TMA	RFS	14120-1A20				on the same mounts	1	RET Cable	$338{ }^{\text {" }}$	Face B
Sprint	75	75	1	GPS	PCTEL	GPS-TMG-HR-26NCM		1	Unknown	2' Sidearm	1	Unknown	114"	Face A
AT\&T Mobility	13	13	1	GPS	Unknown	GPS		1	Unknown	1' Sidearm	1	Unknown	$112^{\prime \prime}$	Face B

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (tt) } \end{gathered}$	$\int_{\text {(tt) }}^{\text {Ant }}$	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	nufacture	Type	Quantity	Model	Size	Attachment Leg/Face
AT\&T Mobility	142	${ }^{143}$	3	Panel	Kathrein	$800-10965$	23/143/264			on the existing mounts	1	DC/Fiber Bundle	$12^{1 /}$	Face B
ATET Mobility	142	${ }^{143}$	3	RRU	Ericsson	314478				on the existing mounts				
AT\&T Mobility	142	143	3	RRU	Ericsson	RRUS-32 B2				on the existing mounts				
AT\&T Mobilily	142	143	,	Surge	Andrew	ABT-DFDM-ADBH				on the existing mounts				

Note: The proposed loading shal be in addition to the existing equipment at the same elevation.
Note: The proposed coax shall be installed inside the monopole in order tor this analysis to be vald.

- Anten___ Antena								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (tt) } \end{gathered}$	Antenna CL (ft)	Quantity	Type	Manutacturer	del	Azimuth	Quantity	Manutacturer	Type	Quantity	Model	Size	Attachment

APPENDIX B

tnxTower Output File

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2222 FAX: (330) 572-3722	Job	SNET020 (CT1006) NORFOLK	$\begin{aligned} & \text { Page } \\ & \\ & \\ & \hline \end{aligned}$
	Project	2018702.82	Date 09:17:58 04/03/18
	Client	Centerline Communications, LLC	Designed by chake

Tower Input Data

The main tower is a 3 x guyed tower with an overall height of 160.00 ft above the ground line.
The base of the tower is set at an elevation of 0.00 ft above the ground line.
The face width of the tower is 4.00 ft at the top and tapered at the base.
This tower is designed using the TIA-222-G standard.
The following design criteria apply:
Tower is located in Litchfield County, Connecticut.
Basic wind speed of 89 mph .
Structure Class II.
Exposure Category B.
Topographic Category 1.
Crest Height 0.00 ft .
Nominal ice thickness of 0.7500 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 40 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
Pressures are calculated at each section.
Safety factor used in guy design is 1 .
Stress ratio used in tower member design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description | Face
 or
 Leg | Allow
 Shield | Component
 Type | Placement | Face
 Offset
 in | Lateral
 Offset
 (Frac FW) | \# | \#
 Per
 Row | Clear
 Spacing
 in | Width or
 Diameter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | | | | |

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2222 FAX: (330) 572-3722	Job SNET020 (CT1006) NORFOLK		Page 2 of 8
	Project	2018702.82	Date 09:17:58 04/03/18
	Client	Centerline Communications, LLC	Designed by chake

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	\#	$\begin{gathered} \hline \# \\ \text { Per } \\ \text { Row } \\ \hline \end{gathered}$	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
$\begin{gathered} \text { (1/4 FOAM) } \\ \text { LDF4-50A } \\ \text { (1/2 FOAM) } \\ \hline \end{gathered}$	B	No	Ar (CaAa)	13.00-8.00	0.0000	-0.25	1	1	0.6300	0.6300		0.15

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \begin{tabular}{l}
Face \\
or \\
Leg
\end{tabular} \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
o
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[t]{3}{*}{10' Dipole} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 2.00 \& 2.00 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.02 \& 3.02 \& 0.04

\hline \& \& \& 8.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.07 \& 4.07 \& 0.06

\hline \multirow[t]{3}{*}{Pipe Mount 3'x2.375'} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.25 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 0.58 \& 0.58 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.77 \& 0.77 \& 0.02

\hline \& \& \& 1.50 \& \& \& 1" Ice \& 0.97 \& 0.97 \& 0.02

\hline \multirow[t]{3}{*}{3' Omni} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{160.00} \& No Ice \& 0.52 \& 0.52 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.71 \& 0.71 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.90 \& 0.90 \& 0.03

\hline \multirow[t]{3}{*}{Rohn 12' Boom Gate} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 1.29 \& \multirow[t]{3}{*}{50.0000} \& \multirow[t]{3}{*}{158.00} \& No Ice \& 15.35 \& 14.00 \& 0.56

\hline \& \& \& 1.53 \& \& \& 1/2" Ice \& 21.29 \& 20.81 \& 0.74

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 27.23 \& 27.62 \& 0.92

\hline \multirow[t]{3}{*}{Rohn 12' Boom Gate} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.29 \& \multirow[t]{3}{*}{50.0000} \& \multirow[t]{3}{*}{158.00} \& No Ice \& 15.35 \& 14.00 \& 0.56

\hline \& \& \& 1.53 \& \& \& 1/2" Ice \& 21.29 \& 20.81 \& 0.74

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 27.23 \& 27.62 \& 0.92

\hline \multirow[t]{3}{*}{Rohn 12' Boom Gate} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.29 \& \multirow[t]{3}{*}{50.0000} \& \multirow[t]{3}{*}{158.00} \& No Ice \& 15.35 \& 14.00 \& 0.56

\hline \& \& \& 1.53 \& \& \& 1/2" Ice \& 21.29 \& 20.81 \& 0.74

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 27.23 \& 27.62 \& 0.92

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.57 \& \multirow[t]{3}{*}{70.0000} \& \multirow[t]{3}{*}{158.00} \& No Ice \& 8.02 \& 6.71 \& 0.08

\hline \& \& \& 3.05 \& \& \& 1/2" Ice \& 8.48 \& 7.66 \& 0.14

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 8.94 \& 8.49 \& 0.22

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.57 \& \multirow[t]{3}{*}{70.0000} \& \multirow[t]{3}{*}{158.00} \& No Ice \& 8.02 \& 6.71 \& 0.08

\hline \& \& \& 3.05 \& \& \& 1/2" Ice \& 8.48 \& 7.66 \& 0.14

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 8.94 \& 8.49 \& 0.22

\hline \multirow[t]{3}{*}{APXVSPP18-C-A20 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.57 \& \multirow[t]{3}{*}{30.0000} \& \multirow[t]{3}{*}{158.00} \& No Ice \& 8.02 \& 6.71 \& 0.08

\hline \& \& \& 3.05 \& \& \& 1/2" Ice \& 8.48 \& 7.66 \& 0.14

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 8.94 \& 8.49 \& 0.22

\hline \multirow[t]{3}{*}{800MHz 2x50w} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{154.00} \& No Ice \& 2.49 \& 2.07 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.71 \& 2.27 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 2.93 \& 2.48 \& 0.10

\hline \multirow[t]{3}{*}{800MHz 2x50w} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{154.00} \& No Ice \& 2.49 \& 2.07 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.71 \& 2.27 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.93 \& 2.48 \& 0.10

\hline \multirow[t]{3}{*}{$800 \mathrm{MHz} \mathrm{2x50w}$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{154.00} \& No Ice \& 2.49 \& 2.07 \& 0.05

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.71 \& 2.27 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.93 \& 2.48 \& 0.10

\hline \multirow[t]{3}{*}{1900MHz 2x40w} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{154.00} \& No Ice \& 2.49 \& 3.06 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.71 \& 3.30 \& 0.12

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.93 \& 3.54 \& 0.15

\hline \multirow[t]{3}{*}{1900MHz 2x40w} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{154.00} \& No Ice \& 2.49 \& 3.06 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.71 \& 3.30 \& 0.12

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.93 \& 3.54 \& 0.15

\hline \multirow[t]{3}{*}{1900MHz 2x40w} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{154.00} \& No Ice \& 2.49 \& 3.06 \& 0.09

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 2.71 \& 3.30 \& 0.12

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.93 \& 3.54 \& 0.15

\hline
\end{tabular}

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2222 FAX: (330) 572-3722	Job SNET020 (CT1006) NORFOLK		Page 3 of 8
	Project	2018702.82	Date 09:17:58 04/03/18
	Client	Centerline Communications, LLC	Designed by chake

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment \circ	Placement		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
800MHz 2x50w Notch Filter	A	From Leg	0.50	0.0000	154.00	No Ice	0.85	0.37	0.01
			0.00			1/2" Ice	0.97	0.46	0.02
			0.00			$1{ }^{\prime \prime}$ Ice	1.11	0.56	0.03
800MHz 2x50w Notch Filter	B	From Leg	0.50	0.0000	154.00	No Ice	0.85	0.37	0.01
			0.00			1/2" Ice	0.97	0.46	0.02
			0.00			$1{ }^{\prime \prime}$ Ice	1.11	0.56	0.03
800MHz 2x50w Notch Filter	C	From Leg	0.50	0.0000	154.00	No Ice	0.85	0.37	0.01
			0.00			1/2" Ice	0.97	0.46	0.02
			0.00			$1{ }^{\prime \prime}$ Ice	1.11	0.56	0.03
4' Yagi	B	From Face	6.50	0.0000	148.00	No Ice	0.79	0.79	0.01
			0.00			1/2" Ice	1.03	1.03	0.01
			0.00			$1{ }^{\prime \prime}$ Ice	1.28	1.28	0.02
Pipe Mount $4^{\prime} \times 2.375^{\prime \prime}$	B	From Face	6.00	0.0000	148.00	No Ice	0.87	0.87	0.02
			0.00			$1 / 2^{\prime \prime} \text { Ice }$	1.11	1.11	0.03
			0.00			$1{ }^{\prime \prime}$ Ice	1.36	1.36	0.04

8' Frame	A	From Leg	0.48	50.0000	142.00	No Ice	14.48	3.61	0.31
			0.57			1/2" Ice	18.67	4.62	0.45
			0.00			1" Ice	22.86	5.62	0.60
8' Frame	B	From Leg	0.48	50.0000	142.00	No Ice	14.48	3.61	0.31
			0.57			1/2" Ice	18.67	4.62	0.45
			0.00			$1{ }^{\prime \prime}$ Ice	22.86	5.62	0.60
8' Frame	C	From Leg	0.48	50.0000	142.00	No Ice	14.48	3.61	0.31
			0.57			1/2" Ice	18.67	4.62	0.45
			0.00			$1{ }^{\prime \prime}$ Ice	22.86	5.62	0.60
AM-X-CD-16-65-00T w/ Mount Pipe	A	From Leg	0.96	43.0000	142.00	No Ice	8.55	6.65	0.09
			1.15			1/2" Ice	9.18	7.68	0.16
			1.00			$1{ }^{\prime \prime}$ Ice	9.79	8.56	0.23
AM-X-CD-16-65-00T w/ Mount Pipe	B	From Leg	0.96	43.0000	142.00	No Ice	8.55	6.65	0.09
			1.15			1/2" Ice	9.18	7.68	0.16
			1.00			1" Ice	9.79	8.56	0.23
AM-X-CD-16-65-00T w/ Mount Pipe	C	From Leg	0.96	43.0000	142.00	No Ice	8.55	6.65	0.09
			1.15			1/2" Ice	9.18	7.68	0.16
			1.00			1" Ice	9.79	8.56	0.23
(2) 7770.00 w/Mount Pipe	A	From Leg	0.96	43.0000	142.00	No Ice	5.51	4.10	0.06
			1.15			1/2" Ice	5.87	4.73	0.11
			1.00			$1{ }^{\prime \prime}$ Ice	6.23	5.37	0.16
(2) $7770.00 \mathrm{w} /$ Mount Pipe	B	From Leg	0.96	43.0000	142.00	No Ice	5.51	4.10	0.06
			1.15			1/2" Ice	5.87	4.73	0.11
			1.00			$1{ }^{\prime \prime}$ Ice	6.23	5.37	0.16
(2) 7770.00 w/Mount Pipe	C	From Leg	0.96	44.0000	142.00	No Ice	5.51	4.10	0.06
			1.15			1/2" Ice	5.87	4.73	0.11
			1.00			$1{ }^{\prime \prime}$ Ice	6.23	5.37	0.16
80010965 w/ Mount Pipe	A	From Leg	0.96	43.0000	142.00	No Ice	14.05	7.63	0.13
			1.15			1/2" Ice	14.69	8.90	0.22
			1.00			$1{ }^{\prime \prime}$ Ice	15.30	9.96	0.33
80010965 w/ Mount Pipe	B	From Leg	0.96	43.0000	142.00	No Ice	14.05	7.63	0.13
			1.15			1/2" Ice	14.69	8.90	0.22
			1.00			$1{ }^{\prime \prime}$ Ice	15.30	9.96	0.33
80010965 w/ Mount Pipe	C	From Leg	0.96	43.0000	142.00	No Ice	14.05	7.63	0.13
			1.15			1/2" Ice	14.69	8.90	0.22
			1.00			$1{ }^{\prime \prime}$ Ice	15.30	9.96	0.33
(2) TT19-08BP111-001	A	From Leg	0.96	50.0000	142.00	No Ice	0.55	0.45	0.02
			1.15			1/2" Ice	0.65	0.53	0.02
			1.00			$1{ }^{\prime \prime}$ Ice	0.75	0.63	0.03
(2) TT19-08BP111-001	B	From Leg	0.96	50.0000	142.00	No Ice	0.55	0.45	0.02
			1.15			1/2" Ice	0.65	0.53	0.02

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2222 FAX: (330) 572-3722	Job SNET020 (CT1006) NORFOLK		Page 4 of 8
	Project 2018702.82		Date 09:17:58 04/03/18
	Client	Centerline Communications, LLC	Designed by chake

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

\hline \multirow{4}{*}{(2) TT19-08BP111-001} \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& 1" Ice \& 0.75 \& 0.63 \& 0.03

\hline \& \& \& 0.96 \& \& \& No Ice \& 0.55 \& 0.45 \& 0.02

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 0.65 \& 0.53 \& 0.02

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& 1" Ice \& 0.75 \& 0.63 \& 0.03

\hline \multirow[t]{3}{*}{(4) 7020.00 RET} \& \& \& 0.96 \& \& \& No Ice \& 0.10 \& 0.17 \& 0.00

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 0.15 \& 0.24 \& 0.01

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& $1^{\prime \prime}$ Ice \& 0.20 \& 0.31 \& 0.01

\hline \multirow[t]{3}{*}{(4) 7020.00 RET} \& \& \& 0.96 \& \& \& No Ice \& 0.10 \& 0.17 \& 0.00

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 0.15 \& 0.24 \& 0.01

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& 1 I' Ice \& 0.20 \& 0.31 \& 0.01

\hline \multirow[t]{3}{*}{(4) 7020.00 RET} \& \& \& 0.96 \& \& \& No Ice \& 0.10 \& 0.17 \& 0.00

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 0.15 \& 0.24 \& 0.01

\hline \& \multirow{3}{*}{A} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& $1{ }^{\prime \prime}$ Ice \& 0.20 \& 0.31 \& 0.01

\hline \multirow[t]{3}{*}{RRUS-11} \& \& \& 0.96 \& \& \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 0.07

\hline \& \multirow{3}{*}{B} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& $1^{\prime \prime}$ Ice \& 3.21 \& 1.49 \& 0.09

\hline \multirow[t]{3}{*}{RRUS-11} \& \& \& 0.96 \& \& \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 0.07

\hline \& \multirow{3}{*}{C} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& $1{ }^{\prime \prime}$ Ice \& 3.21 \& 1.49 \& 0.09

\hline \multirow[t]{3}{*}{RRUS-11} \& \& \& 0.96 \& \& \& No Ice \& 2.78 \& 1.19 \& 0.05

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 2.99 \& 1.33 \& 0.07

\hline \& \multirow{4}{*}{A} \& \multirow{3}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& $1{ }^{\prime \prime}$ Ice \& 3.21 \& 1.49 \& 0.09

\hline \multirow[t]{3}{*}{B14 4478} \& \& \& 0.96 \& \& \& No Ice \& 1.84 \& 1.06 \& 0.06

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 2.01 \& 1.20 \& 0.08

\hline \& \& \multirow{4}{*}{From Leg} \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& $1{ }^{\prime \prime}$ Ice \& 2.19 \& 1.34 \& 0.09

\hline \multirow[t]{3}{*}{B14 4478} \& \multirow[t]{3}{*}{B} \& \& 0.96 \& \& \& No Ice \& 1.84 \& 1.06 \& 0.06

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 2.01 \& 1.20 \& 0.08

\hline \& \& \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& 1" Ice \& 2.19 \& 1.34 \& 0.09

\hline \multirow[t]{3}{*}{B14 4478} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.96 \& \& \& No Ice \& 1.84 \& 1.06 \& 0.06

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 2.01 \& 1.20 \& 0.08

\hline \& \& \& 1.00 \& \multirow{4}{*}{50.0000} \& \multirow{3}{*}{142.00} \& $1^{\prime \prime}$ Ice \& 2.19 \& 1.34 \& 0.09

\hline \multirow[t]{3}{*}{RRUS 32 B 2} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.96 \& \& \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& 1.00 \& \& \multirow{3}{*}{142.00} \& $1{ }^{\prime \prime}$ Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 32 B 2} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.96 \& \multirow[t]{2}{*}{50.0000} \& \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& $1{ }^{\prime \prime}$ Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow[t]{3}{*}{RRUS 32 B2} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 0.96 \& \& \& No Ice \& 2.73 \& 1.67 \& 0.05

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 2.95 \& 1.86 \& 0.07

\hline \& \& \& 1.00 \& \multirow{3}{*}{50.0000} \& \multirow{3}{*}{142.00} \& $1{ }^{\prime \prime}$ Ice \& 3.18 \& 2.05 \& 0.10

\hline \multirow[t]{3}{*}{ABT-DFDM-ADBH} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 0.96 \& \& \& No Ice \& 0.02 \& 0.04 \& 0.00

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 0.04 \& 0.08 \& 0.00

\hline \& \& \& 1.00 \& \multirow{4}{*}{50.0000} \& \multirow{4}{*}{142.00} \& 1 " Ice \& 0.07 \& 0.11 \& 0.00

\hline \multirow[t]{3}{*}{ABT-DFDM-ADBH} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.96 \& \& \& No Ice \& 0.02 \& 0.04 \& 0.00

\hline \& \& \& 1.15 \& \& \& 1/2" Ice \& 0.04 \& 0.08 \& 0.00

\hline \& \& \& 1.00 \& \& \& 1" Ice \& 0.07 \& 0.11 \& 0.00

\hline **** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{4' Sidearm - Flat (GPD)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{137.00} \& No Ice \& 0.80 \& 3.20 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.05 \& 4.00 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.30 \& 4.80 \& 0.09

\hline \multirow[t]{3}{*}{4' Sidearm - Flat (GPD)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{137.00} \& No Ice \& 0.80 \& 3.20 \& 0.06

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.05 \& 4.00 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.30 \& 4.80 \& 0.09

\hline \multirow[t]{3}{*}{RR90-17-02DP w/ Mount Pipe} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 4.59 \& 3.32 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.02 \& 4.09 \& 0.07

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.44 \& 4.78 \& 0.12

\hline RR90-17-02DP w/ Mount \& A \& From Leg \& 4.00 \& -60.0000 \& 120.00 \& No Ice \& 4.59 \& 3.32 \& 0.03

\hline
\end{tabular}

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2222 FAX: (330) 572-3722	Job	SNET020 (CT1006) NORFOLK	Page 5 of 8
	Project	2018702.82	$\begin{array}{\|l\|} \hline \text { Date } \\ 09: 17: 58 \text { 04/03/18 } \end{array}$
	Client	Centerline Communications, LLC	Designed by chake

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
。
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multirow[t]{2}{*}{Pipe} \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& 0.00 \& \multirow{5}{*}{60.0000} \& \multirow{5}{*}{120.00} \& 1/2" Ice \& 5.02 \& 4.09 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 5.44 \& 4.78 \& 0.12

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { RR90-17-02DP w/ Mount } \\
& \text { Pipe }
\end{aligned}
$$} \& \& \& 4.00 \& \& \& No Ice \& 4.59 \& 3.32 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 5.02 \& 4.09 \& 0.07

\hline \& \multirow{4}{*}{B} \& \multirow{4}{*}{From Leg} \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 5.44 \& 4.78 \& 0.12

\hline \multirow[t]{3}{*}{LNX-6515DS-VTM w/ Mount Pipe} \& \& \& 4.00 \& \multirow[t]{3}{*}{-60.0000} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 11.64 \& 9.79 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.34 \& 11.30 \& 0.17

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.04 \& 12.80 \& 0.27

\hline \multirow[t]{3}{*}{LNX-6515DS-VTM w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{60.0000} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 11.64 \& 9.79 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.34 \& 11.30 \& 0.17

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.04 \& 12.80 \& 0.27

\hline \multirow[t]{3}{*}{LNX-6515DS-VTM w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{-60.0000} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 11.64 \& 9.79 \& 0.08

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 12.34 \& 11.30 \& 0.17

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 13.04 \& 12.80 \& 0.27

\hline \multirow[t]{3}{*}{(2) $1412 \mathrm{D}-1 \mathrm{~A} 20$} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 0.00 \& 0.47 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.57 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.69 \& 0.03

\hline \multirow[t]{3}{*}{(2) $1412 \mathrm{D}-1 \mathrm{~A} 20$} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 0.00 \& 0.47 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.57 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.69 \& 0.03

\hline \multirow[t]{3}{*}{(2) $1412 \mathrm{D}-1 \mathrm{~A} 20$} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 0.00 \& 0.47 \& 0.01

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.00 \& 0.57 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 0.00 \& 0.69 \& 0.03

\hline \multirow[t]{3}{*}{4' Standoff - Flat (GPD)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 1.96 \& 6.13 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.08 \& 8.58 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.20 \& 11.03 \& 0.14

\hline \multirow[t]{3}{*}{4' Standoff - Flat (GPD)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 1.96 \& 6.13 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.08 \& 8.58 \& 0.11

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 4.20 \& 11.03 \& 0.14

\hline \multirow[t]{3}{*}{4' Standoff - Flat (GPD)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{120.00} \& No Ice \& 1.96 \& 6.13 \& 0.07

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.08 \& 8.58 \& 0.11

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.20 \& 11.03 \& 0.14

\hline \multirow[t]{3}{*}{GPS-TMG-HR-26NCM} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 2.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{75.00} \& No Ice \& 0.80 \& 0.93 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.05 \& 1.17 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.30 \& 1.41 \& 0.04

\hline \multirow[t]{3}{*}{2' Sidearm - Round (GPD)} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{75.00} \& No Ice \& 0.80 \& 0.93 \& 0.03

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.05 \& 1.17 \& 0.03

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.30 \& 1.41 \& 0.04

\hline \multirow[t]{3}{*}{GPS} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 1.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{13.00} \& No Ice \& 0.14 \& 0.14 \& 0.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.21 \& 0.21 \& 0.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.28 \& 0.28 \& 0.01

\hline \multirow[t]{3}{*}{1' Sidearm - Flat (GPD)} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Leg} \& 0.50 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{13.00} \& No Ice \& 0.80 \& 0.80 \& 0.02

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.05 \& 1.00 \& 0.02

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.30 \& 1.20 \& 0.03

\hline
\end{tabular}

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2222 FAX: (330) 572-3722	Job SNET020 (CT1006) NORFOLK		Page 6 of 8
	Project2018702.82		Date 09:17:58 04/03/18
	Client	Centerline Communications, LLC	Designed by chake

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature $f t$
160.00	10' Dipole	63	0.603	0.0612	0.0069	724092
158.00	Rohn 12' Boom Gate	63	0.628	0.0619	0.0095	724092
154.00	$800 \mathrm{MHz} \mathrm{2x50w}$	63	0.678	0.0633	0.0145	603419
148.00	4' Yagi	63	0.754	0.0644	0.0215	301709
145.75	Guy	63	0.782	0.0644	0.0238	254084
142.00	8' Frame	63	0.829	0.0636	0.0270	246002
137.00	4' Sidearm - Flat (GPD)	63	0.893	0.0609	0.0302	155916
120.00	RR90-17-02DP w/ Mount Pipe	63	1.076	0.0416	0.0375	28276
86.00	Guy	63	1.157	0.0120	0.0733	50428
75.00	GPS-TMG-HR-26NCM	63	1.168	0.0071	0.0828	70658
13.00	GPS	63	0.356	0.1199	0.0887	55203

Bolt Design Data

Section No.	Elevation $f t$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load K	Ratio Load Allowable	Allowable Ratio	Criteria
T1	160	Leg	A325N	0.6250	12	3.57	22.75	$\begin{aligned} & 0.157 \\ & 0.222 \end{aligned}$	1	Bearing
		Diagonal	A325N	0.6250	2	3.20	14.38		1	Member Block Shear
		Horizontal	A325N	0.6250	2	0.30	7.19	0.042	1	Member Block Shear
T2	141	Leg	A325N	0.6250	12	5.10	22.75	$\begin{aligned} & 0.224 \\ & 0.493 \\ & 0.192 \end{aligned}$	1	Bearing
		Diagonal	A325N	0.6250	1	3.86	7.83		1	Member Bearing
		Horizontal	A325N	0.6250	1	1.31	6.83		1	Member Block Shear
T3	121	Leg	A325N	0.6250	12	4.97	22.75	$\begin{aligned} & 0.219 \\ & 0.254 \\ & 0.154 \end{aligned}$	1	Bearing
		Diagonal	A325N	0.6250	1	1.99	7.83		1	Member Bearing
		Horizontal	A325N	0.6250	1	1.05	6.83		1	Member Block Shear
T4	101	Leg	A325N	0.6250	12	4.93	22.75	$\begin{aligned} & 0.217 \\ & 0.446 \end{aligned}$	1	Bearing
		Diagonal	A325N	0.6250	1	3.49	7.83		1	Member Bearing
		Horizontal	A325N	0.6250	1	1.85	6.83	0.271	1	Member Block Shear
T5	86	Leg	A325N	0.6250	12	6.59	22.75	$\begin{aligned} & 0.290 \\ & 0.511 \end{aligned}$	1	Bearing
		Diagonal	A325N	0.6250	1	4.00	7.83		1	Member Bearing
		Horizontal	A325N	0.6250	1	0.96	6.83	0.140	1	Member Block Shear
T6	66	Leg	A325N	0.6250	12	7.50	22.75	0.330	1	Bearing
		Diagonal	A325N	0.6250	1	2.75	12.43	0.221	1	Bolt Shear
		Horizontal	A325N	0.6250	1	1.03	6.83	0.151	1	Member Block Shear
T7	46	Leg	A325N	0.6250	12	7.42	22.75	0.326	1	Bearing
		Diagonal	A325N	0.6250	1	2.92	12.43	0.235	1	Bolt Shear
		Horizontal	A325N	0.6250	1	1.08	6.83	0.158	1	Member Block Shear
T8	26	Leg	A325N	0.7500	3	4.88	29.82	0.164	1	Bolt Tension

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2222 FAX: (330) 572-3722	Job	SNET020 (CT1006) NORFOLK	Page 7 of 8
	Project	2018702.82	$\begin{array}{\|l\|} \hline \text { Date } \\ 09: 17: 58 \text { 04/03/18 } \end{array}$
	Client	Centerline Communications, LLC	Designed by chake

Section No.	Elevation $f t$	Component Type	Bolt Grade	Bolt Size in	Number Of Bolts	Maximum Load per Bolt K	Allowable Load K	Ratio Load Allowable	Allowable Ratio	Criteria
		Diagonal	A325N	0.6250	1	3.80	7.83	0.486	1	Member Bearing
		Horizontal	A325N	0.6250	1	1.09	6.83	0.159	1	Member Block Shear

Section Capacity Table

tnxTower GPD 520 South Main Street Suite 2531 Akron, Ohio 44311 Phone: (330) 572-2222 FAX: (330) 572-3722	Job Project 2018702.82		Page 8 of 8 Date 09:17:58 $04 / 03 / 18$
	Client	Centerline Communications, LLC	Designed by chake

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component туре	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} \curvearrowleft P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	Pass Fail
T5	86-66	Guy C@86	5/8	241	12.40	25.44	48.8	Pass
T1	160-141	Top Guy PullOff@145.75	L2 1/2x2 1/2x $3 / 16$	18	3.33	29.22	11.4	Pass
T5	86-66	Top Guy PullOff@86	L $2 \times 2 \times 3 / 16$	106	6.50	23.17	28.0	Pass
T1	160-141	Bottom Guy PullOff@145.75	L2 $1 / 2 \times 21 / 2 \times 3 / 16$	10	4.56	29.22	15.6	Pass
T1	160-141	Torque Arm Top@145.75	2L2 $1 / 2 \times 2 \times 1 / 4$	231	10.68	69.01	15.5	Pass
T1	160-141	Torque Arm Bottom@145.75	2L3x2 1/2x1/4	239	-7.05	75.42	9.4	Pass
						Summary	ELC:	Proposed
						Leg (T6)	42.9	Pass
						Diagonal (T5)	51.1	Pass
						Horizontal (T9)	34.4	Pass
						Top Girt (T1)	2.4	Pass
						Guy A (T5)	46.7	Pass
						Guy B (T5)	49.7	Pass
						Guy C (T5)	48.8	Pass
						Top Guy	28.0	Pass
						Pull-Off (T5)		
						Bottom Guy Pull-Off (T1)	15.6	Pass
						Torque Arm Top (T1)	15.5	Pass
						Torque Arm	9.4	Pass
						Bottom (T1)		
						Bolt Checks	51.1	Pass
						Rating =	51.1	Pass

APPENDIX C

Tower Elevation Drawing

Feed Line Distribution Chart 6' - 160'
\qquad Flat \qquad App In Face \qquad App Out Face \qquad Truss Leg

		Dob: SNET020 (CT1006) NORFOLK	
		Priect: 2018702.82	
		Code: TIA-222-G Date: $04 / 03 / 18$	Scale: NT
		Path:	No.

\qquad Flat \qquad App In Face

SNET020 (CT1006) NORFOLK

APPENDIX D

Foundation Analysis

General Info	
Foundation Criteria	GPD
TIA Code	TIA-222-G
Soil Code	AASHTO 2012
Concrete Code	ACI 318-11
Seismic Design Category	B
Tower Height	160 ft
Bearing On	Rock
Foundation Type	Guyed Pad
Pier Type	None
Reinforcing Known	Yes
Max Bearing Capacity	105%
Max Overturning Capacity	105%

Tower Reactions	
Moment, M	$0 \mathrm{k}-\mathrm{ft}$
Axial, P	128.73 k
Shear, V	4.26 k

Pad \& Pier Geometry	
Pier N/A	0 ft
Pad Length, L [y]	4 ft
Pad Width, W [x]	4 ft
Pad Thickness, t	3.5 ft
Depth, D	3.5 ft
Height Above Grade, HG	0.5 ft
Tower Centroid, X	2 ft
Tower Centroid, Y	2 ft
Tower Eccentricity	0.0000 ft

Pad \& Pier Reinforcing	
Rebar Fy	60 ksi
Concrete F'c	3 ksi
Pier Reinforcing Clear Cover	
Shear Rebar Type	Tie
Shear Rebar Size	$\# 4$
Pad Reinforcing Clear Cover	3 in
Reinforced Top \& Bottom?	No
Pad Reinforcing Size	$\# 6$
Pad Quantity Per Layer	5
Pier Rebar Size	
Pier Quantity of Rebar	

Soil Properties	
Soil Type	Cohesive
Soil Unit Weight	135 pcf
Cohesion, Cu (ksf)	2.5
Base Friction Coeff. Provided in Geo?	Yes
Base Friction Coefficient, μ	0.4
Bearing Type	Net
Ultimate Bearing	21 ksf
Water Table Depth	99 ft
Frost Depth	3.33 ft

Bearing Summary					
Case	Demand/Limits	Capacity/Availability	Check	Eccentricity	Load Case
Qxmax	10.34 ksf	12.88 ksf	OK, $<=105 \%$	$\mathrm{~L} / 33.4$	$1.2 \mathrm{D}+1.6 \mathrm{~W}$
Qymax	10.34 ksf	12.88 ksf	OK, $<=105 \%$	$\mathrm{~W} / 33.4$	$1.2 \mathrm{D}+1.6 \mathrm{~W}$
Qmax @ 45	10.98 ksf	12.88 ksf	OK, $<=105 \%$	$\mathrm{~W} / 47.5$	$1.2 \mathrm{D}+1.6 \mathrm{~W}$
Controlling Capacity					

Overturning Summary					
Case	Demand/Limits	Capacity/Availability	Check	Load Case	
Ovtx	$16.8 \mathrm{k}-\mathrm{ft}$	$280.5 \mathrm{k}-\mathrm{ft}$	8.0%	OK	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
Ovty	$16.8 \mathrm{k}-\mathrm{ft}$	$280.5 \mathrm{k}-\mathrm{ft}$	8.0%	OK	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
Ovtxy	$11.8 \mathrm{k}-\mathrm{ft}$	$280.5 \mathrm{k}-\mathrm{ft}$	5.6%	OK	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
$\mathbf{8 . 0 \%}$					Pass

Sliding Summary					
Case	Demand/Limits	Capacity/Availability	Check	Load Case	
Slidingx	4.3 k	34.3 k	12.4%	OK	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
Slidingy	4.3 k	34.3 k	12.4%	OK	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
Pass					

Reinforcement Summary					
Component	Demand/Limits	Capacity/Availability	Check		Load Case
Pad Flexural Bending	18.2 k -ft	107.3 k -ft	17.0\%	OK	1.2D+1.6W
One-Way Shear in Pad	0.0 k	173.0 k	0.0\%	OK	1.2D+1.6W
Two-Way Shear in Pad	50.5 k	1265.2 k	4.0\%	OK	$0.9 \mathrm{D}+1.6 \mathrm{~W}$
As Min Pad Met?	0.55 sq. in.	0.17 sq. in.			
Controlling	pacity	17.0\%			

Tower Reactions	
Vertical	22.73 k
Horizontal	25.87 k

Anchor Block Geometry	
Width	5 ft
Height	5 ft
Length	12.5 ft
Depth	4.5 ft

General Info	
Foundation Criteria	GPD
TIA Code	TIA-222-G

Soil Capacity Calculations				
W_{s}	0.00 k			
W_{c}	46.88 k			
Uplift Resistance	85.16 k			
Horizontal Resistance	110.65 k			
Uplift Capacity=	26.7%	OK		
Horizontal Capacity=	23.4%	OK		

Anchor Block Reinforcement	
Is Reinforcement Known? fc' Fy	assume min $4 \mathrm{ksi}$ $60 \text { ksi }$

Capacity Summary		
Soil Capacity $=$	26.7%	OK
Reinforcing Capacity $=$	4.1%	OK
Controlling Capacity $=$	$\mathbf{2 6 . 7 \%}$	OK

Soil Properties								
Layer	C_{u}, psf	¢, degrees	$\nu_{\text {soil }}$, pcf	$\gamma_{\text {concrete, }}$ pcf	d, ft	$\mathrm{P}_{\mathrm{p} \text {,top }}$ psf	$\mathrm{P}_{\mathrm{p}, \mathrm{bot}}$, psf	$\mathrm{f}_{\mathrm{s} \text {, psf }}$
1	0	0	120	150	2.5	0	0	0
2	2500	0	135	150	2.5	5000	5000	1500
3								
4								
5								
6								
Ignored Depth	2.5 ft		Consider soil for uplift			User Input Angle (${ }^{\circ}$)		
Water Table	99 ft		Cohesive			Angle for Uplift (${ }^{\circ}$)		0

Block Moment and Shear Calculations

Block Moment and Shear Calculations				
Moment Check				
$\mathrm{M}_{\mathrm{ux}}=$	35.52 k -ft	$\mathrm{M}_{\mathrm{uy}}=$	40.42 k -ft	
$\phi \mathrm{M}_{\mathrm{nx}}=$	2736.73 k -ft	$\phi \mathrm{Mny}_{\text {y }}=$	2736.73 k-ft	
Capacity	1.3\% OK	Capacity	1.5\%	ок
Shear Check				
$\mathrm{V}_{\mathrm{ux}}=$	11.37 k	$\mathrm{V}_{\text {uy }}=$	12.94 k	
$\phi V_{n x}=$	318.76 k	$\phi V_{n y}=$	318.76 k	
Capacity	3.6\% OK	Capacity	4.1\%	OK

Guy Anchor Shaft Calculations	
Shape of Anchor Shaft \quad Unknown	

[^0]

GENERAL CONSTRUCTION NOTES:
FOR THE FURPOSE OF CONSTRUCTON DRAWNGS, THE FOLLOWNG
DEFIIITIONS SHALL APPLY:
GENERAL COLNPRCCTOR
SUBCONTRACTOR $-C$
SUBCONTRACTOR - CONTRACTOR (CONSTRUCTION)
OWWER - AICTT

GENERAL CONTRACTOR SHALL COOROINATE WORK AND SCHEDULE WORK

 THE SURCONTRACTOR SHALL PROTECT EXSTING IMPROVEMENTS,
PAVEMENT, CURSS, LANDSCAPING AND STRUCTUEES ANY
 SATIFACTION OF THE OWMER. THE SHE START OF CONSTRUCTON.
COEVERAL GENERAL CONTRACTOR SHALL COORINATE AND MANTAN ACCESS FOR
AL TRADES ANO SUBCOOTRACTORS TO THE SITE AND OR BULDINGG T

 ALL PoRTIONS OF WHERE THE WORK IS BEING COMPLEETED DURIN
CONSTUCTON.
 ORECTED YY THE ARCHITCT/ENGMEER EXTREME CAUTONSHOUD AS

23. ALL EXSTNG INACTVE SEWER, WATER, GAS, ELECTRC, AND OOHER

 THE GENERAL CONTRACTOR AT COMPLETOON OF CONSTRUCTION AND
PRIOR TO PAYMENT.

ELECTRICAL NOTES:

ELECTRICAL CONTRACTOR SHAL SUPPLY AND INSTALL ANY/ALL
ELECTRICAL WORK INOCCAEE. ANY/ALL CONSTRUCTION SHALL

 'CONSTRUCTION MANAGER' HAS IIRECTED THE CORRECTVE ACTIONS TO
BE TAKEN. CONTRACTOR SHALL VSIT THE JOB SITE AND FAMLIARIZ HIMSELF WTH ANY YAL CNNDITON AFEECTNG ELECTRICAL AND

 AND WORRNG SYSTEM

DO NOT SCALE ELECTRICAL DRAMNGS: REER TO STEE PLANS AND
ELEVATONS FOR EXACT LOCATONS OF ALL EQUPMENT, AND CONFRM

 TERM "PROVIE" USED IN CONSTRUGTTON DOCUMENTS AND SPECIFCCATONS, NODCATES THAT THE CONTRACTOR SHALL FURNSH AND
ISSTLL
CNTRACTOR SHALL CONFIRM WTH LOCAL UTLITY COMPANY ANY/ALL
 CONFRMATON. ETC... ANY/ALL CONFLCTSTS SHAL BE BROUCHT TO THE
ATENTON OF THE CONSTRUCTON MANAGER, PRIOR TO BEGINNING ANY

10. OUTLLT INOUATES SHAAL BE PRESSED STEL IN DRY LOCATIONS, CAST

 NSTAL ALL IEMES FOR A COMPLETE EEECTRCCAL SYSTEM ASD PROVIDE
AL REOURMNT FRR THE EQUPMENI TO BE PLACED IN PROPR

12. EIECTRICAL SYSTEM SHAL BE AS COMPLETELY AND EFFECTVELY

 ALL WOR SHAL BE COORDNATED WHH OTHER IRADES TO AVOID
ANTEREREECEE WTH THE PROGRESS OF CONSRUCTON.

20. EXCAVATINN, AND EACKFLLING NOTES',

 THE ELECTRCAL CONTRACTORS RESPO SIBL AND SHAL BE

26.

29. CRINADEE CONDUCTORS FOR WRE ABOVE NO. 8 AWG.

31. TELEPHONE SERMCE: CONTRaCTOR SHALL PROUDE EMPTY CONOUITS wTH
32. ELECCTRCAL AND TELCO RACEWAYS TO BE BURIED A MINMUM OF 2^{\prime}
33. COONRACTOR SHALL PLACE TWO LENGTHS OF WARNNG TAPE AT A DEPTH OF 12 " 日ELOW GROUND AND DIRECTY ABOVE EEECTRLCAL AND TELCO
SERYCE CONDITS. CAUTON TAPE TO READ "CAUTON BURED ELECTRC"
34. OR "BURED TELECOMN." BTIN SHALL EE STANLESS STEEL

GROUNDING NOTES:

COMPRESSION CONNECTIONS (2), 2 2 AWG BARE TINED SOLD COPPER
CONOUCTORS TO GROUNOING BAR. ROUTE CONOUCTORS TO BURED

5. NUT \& WASHER SHALL BE PLACED ON THE FRONT SIE OF THE

FOUNDATION, EXCAVATION, \& BACKFILL NOTES:
All IIINAL graded slopes shall be a maximum of 3 horrzontal to

 WTH ASTM D557 MACRETE FOUNDATIONS SHALL CURE A MINMUM OF 72

8. TO ESTABLSH SPECFIFEDEEEEVATONS WHERE REQURED.

 UP SLOPED SURRACES STEEPER THAN 1 VERTICAL TO 4 HORZOONTAL
SUCH THAT FIL MATERRIL WLL BIND WTH EXISTNG/PREPARED SOLL
SURFACE.

12.

13. 6

 SUB GRADE
OPERATIONS

ENVIRONMENTAL NOTES:
 INES ANO PROPER CLEAN UP FOR AREAS IN VOLATINN.
CONTACTOR AND OR DEVELOPER

 ISNTEGRAED MATERAL,
CONCRETE MASONRY NOTES:

 28 DAYS.
ALCLIS CONTANING REINFORCNG STEEL OR EMEDDED ITENS AND ALL
CELS ITE REANING WALLS ANO WALLS BELOW GRADE SHALL BE SOLID

 $1-1 / 2^{\prime \prime}$ EELOW TOP OF THE UPPERMOST UNT.

31. PRONDE ONE BAR DIAMETER (A MNMMUM OF $1 / 2^{\prime \prime}$) GROUT BETWEEN MA

34. CODE CELLS N CONCRETE Blocks SHAL EE FLLED SOLD WTH GROUT,
35. EXCEPT AA NOTED IN THE DRAMMGS OR SPECICLCATONS

STRUCTURAL CONCRETE NOTES:

OTHERMSE: THE FOLLOWNG MINMUM CONCRETE COVER

$\underset{1-1 / 2}{2}$
 $\begin{array}{ll}\text { SLAB AND WALL } \\ \text { BEAMS AND COLUMNS } & 3 / 4 \mathrm{~N} \text {. } \\ 1-1 / 2 / \mathbb{N} .\end{array}$

STRUCTURAL STEEL NOTES:
ALL STEEL WORK SHALL BE IN ACCORDANCE WTH THE LATEST EDTITN
OF THE AIICO MAUA OF TEEL CONTR BE IN ACCORDANEE WTH ASTM AS NDICATED BELOW:
W-SHAPES: ASTM A92, 50 KSI

ALL EXIERROR EXPOSED STEEL AND HARDWARE SHALL BE HOT DIPPED
GALVNNZD

TOUCHED UP.
BOITE CONNETONS SHALL BE ASTM A325 BEARNG TYPE $3 / /^{4 \prime} \varnothing$
CONNECTINNS ANO SHALL HAVE MNIMWM OF TWO BOLTS UNLESS NOTED
CONNECTIONS ANO SHALL HAVE MINMUM OF TWO BOLTS UNLESS NOTED
OTOHRRIME.
NON-STRUCTURAL CONNECTONS FOR STEEL GRATMG MAY USE $5 / 8$ "

SITE WORK \& DRAINAGE:

1.1 REFERENCES:
A. DOT (STATE D

DOT (STATE DEPARTMENT OF TRANSPDRTATION STANDARD SPECIFCATIONS
FOR WAY CONSTRUCTOON - CUBEENT FDITON)

Site Malitenavce
Pronde all ne

Pr Woin All necessary job sit mantenance fron commencement
 TRESS, AND SHRUBS DESGNATED TO REMAIN. TAKE PROTECTIVE
MEASURES TO PREVENT EXSTING FACLIITES THAT ARE NOT DESIGNATED

PROUDE EROSION CONTROL MAASURES IN ACCORDANCE WTH STATE DO

 WRITIEN
SRRMCE.

2.3 POROUS GGANULAR EMANANKANNT AND BACKFLL: ASTM D2321 (CLASS

2.6 C SWW-SMM.
COARSE AGGREGATE FOR ACCESS ROAD SUB BASE COURSE SHALL CONFORM TOASTM D2940.

$\frac{\text { PART } 2 \text { - EXECUTON }}{\text { 3. } 1 \text { GENERAL: }}$

 C CEAR AND GRUB THE AREA WTHIN THE LIMTS OF THE STEE. REMOVE

 TO A DEETH A 12 INCHES ALL ROOTS AND OTHER DEBRIS THEREB
EXPOSED.

Prior to excavating, thoroughy examine the area to be
 LOCATIN OF AYY STRUCTURE, UNDERGROUND STRUCUREE, OR
TEM NOT SHOWN THAT MGHT WTERERE WIH THE PROPOSED

 BACKFIL ALL EXCESS EXCAVATED AND UNSUTABL
BE OISPOSED OF OFF-SIIE IN A LEGAL MANNER
 CURING PERIOD FOR CAST-NI-PLACE CONCRETE, BACFFIL THE
EXCAVATON WTH APROVED MATERAL TO RESTORE THE REQUIRD

 NNLESS OTHERWSE AUTHORRED BY THE GEOICCHNCAL ENGINER. THE
CONTRACTOR SHAL TAKE WHATEVER APPRORRAIE ACTION IS

 To PREVENT CAVMG OR SLOUGHNG OF THE TRENCH WALLS.
EXEEND THE TRENCH WOTH A MNIMUM OF 6 INCHES BETOND THE
C. OUTSDE EDGE OO THE OUTEROSS CONDIIT

3.4 TRENCH BACKFILL:

D. DRAMNG AND THE UTIITV REQUREMENTS
B. NOTFY THE GNERAL CONTRACTOR 24 HOURS IN ADVANCE O
c. $\operatorname{BACKFLLLLCGG}$ ULILTY CHECK TESTS BEFORE BACKFLLING. BACKFLL AND

E. CROUOCTS. CONOUTT FROM LATERAL MOVEMENT, IMPACT DAMAGE, OR

 TEST, ASTM D 69
3.5 FiNSH GRADING:

c. ACHEVE FINSHED GRAD B P PLACING A M MNUM OP 4 INCHES OF $1 / 2^{\prime \prime}$

CENSEOA
1 ONAL EM以
\qquad

THESE DRAMNGS DO NOT RELECT ADEQUACY OF
EXSTING OR PROPOSED ANTENA MOUNTS，MOUNT
 Not Accers
ELEMENT．
．ROUTE ALL Proposed cabling on existing cable LaDDER ACTUAL ROUTE ON DRAMNGS MAY VARY FROM INSTALLER SHALL PROVIE ALL NECESSARY CONOUTS ANSTALLATON AND SHALL COMPLY WTH EOUPMENT MANUFACTURER＇S INSTALLATON REQUIEMENTS．
5．INSTALLER SHALL PROUDE ALL STRAN RELIEF FOR ALL

[^0]: GPD Guyed Tower Anchor Foundation Analysis - V3.6

