JULIE D. KOHLER

please reply to: Bridgeport
WRITER'S DIRECT DIAL: (203) 337-4157
E-Mail Address: jkohler@cohenandwolf.com
November 7, 2014

Attorney Melanie Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification Charter Communications/T-Mobile co-location Site ID CTNH369A 125 Ridge Road, New Milford CT

Dear Attorney Bachman:
This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, Charter Communications owns the existing telecommunications tower and related facility at 125 Ridge Road, New Milford Connecticut (latitude 41-35-40.73/ longitude -73-22-28.7). T-Mobile intends to add three antennas, relocate six antennas and add related equipment at this existing telecommunications facility in New Milford ("New Milford Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Mayor Pat Murphy and the property owner, Charter Communications Entertainment 1 LLC.

The existing New Milford Facility consists of a 130 foot tall self supported tower. ${ }^{1}$ TMobile plans to add three antennas and relocate six existing antennas to proposed pipe mounts at a centerline of 124 feet. (See the plans revised to October 27, 2014 attached hereto as Exhibit A). T-Mobile will also install three RRUs (remote radio units) on a proposed H frame, install a section of ice bridge, install coax cable, and reuse existing coax cables. The existing New Milford Facility is structurally capable of supporting T-Mobile's proposed modifications, as indicated in the structural analysis dated October 24, 2014 (stamped October $27,2014)$ and attached hereto as Exhibit B.

[^0]November 7, 2014
Site ID CTNH369A
Page 2

The planned modifications to the New Milford Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not increase the height of the tower. T-Mobile's proposed and relocated antennas will be installed at a centerline of 124 feet. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. The proposed modifications will not require an extension of the site boundaries. T-Mobile's equipment will be located entirely within the existing compound area.
3. The proposed modification to the New Milford Facility will not increase the noise levels at the existing facility by six decibels or more.
4. The operation of the additional antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated October 31, 2014, T-Mobile's operations would add 9.37% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 9.37% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed antennas at the New Milford Facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, T-Mobile shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.

Sincerely,

Julie D. Kohler, Esq.

cc: New Milford Mayor Pat Murphy
Charter Communications
Charter Communications Entertainment 1 LC
Elizabeth Jamieson, Transcend Wireless

Structural Analysis Report

Prepared for:
KG|
805 Las Cimas Parkway
Building Three, Suite 370
Austin, TX 78746
ATTN: Ms. Paula Gabriel

Structure : 130 ft Self Supported Tower
Proposed Carrier : T-Mobile
Site ID
: 11468
Site Location : New Milford, CT
County : Litchfield
Date : October 24, 2014
Usage : 96.0\% Legs, 93.0\% Diagonals, 11.0% Horizontals.

Structural Analysis Report

\author{

Prepared for:
 KGI
 805 Las Cimas Parkway
 Building Three, Suite 370
 Austin, TX 78746
 ATTN: Ms. Paula Gabriel
 | Structure | $: 130 \mathrm{ft}$ Self Supported Tower |
| :--- | :--- |
| Proposed Carrier | $:$ T-Mobile |
| Site ID | $: 11468$ |
| Site Location | $:$ New Milford, CT |
| County | $:$ Litchfield |
| Date | $:$ October 24, 2014 |
| Usage | $: 96.0 \%$ Legs, 93.0% Diagonals, 11.0% |
| | Horizontals. |

}

Site ID: 11468
October 24, 2014
Page 2

Introduction

The purpose of this report is to summarize results of the structural analysis performed on the 130 ft Self Supported Tower located at New Milford, CT, Litchfield County (site \# 11468). The tower original designer and manufacturer are unknown. (Additional information of the tower from HTS mapping dated October 7, 2014).

Analysis

The tower was analyzed using Semaan Engineering Solutions, Inc., Software. The analysis assumes that the tower is in good, undamaged, and non-corroded condition. The analysis was performed in conformance with TIA/EIA-222 Rev F and local building codes for a basic wind speed of 90 mph no ice and 78 mph with $1 / 2^{\prime \prime}$ radial ice (fastest mile). This is in conformance with the IBC 2006: Section 1609.1.1, Exception (4) and Section 3108.4.
Basic Wind Speed: $\quad 90.0 \mathrm{mph}$
Radial Ice: $\quad 78 \mathrm{mph} w / 0.50^{\prime \prime}$ ice
Code: TIA/ELA-222 Rev F

Antenna Loads

The following antenna loads were used in the tower analysis.
Existing Antennas

Elev.(ft)	Qty	Antennas	Mount	Coax (in)	Carrier
131.7	1	15 ft Omni	Pipe Mount	-	-
128.7	1	20 ft Dipole	Leg Mounted	(1) 1/2"	
	3	APX16PV-16PVL	(3) Pipe mount	(12) $15 / 8^{\prime \prime}$	T-Mobile
124.0	6	$12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$ TMAs		(1) $.32^{\prime \prime}$ Black Cable	
82.8	1	4'5" Yagi	Leg Mounted	(1) 40 " Black Cable	Charter Communications
77.0	1	9' Yagi	Pipe mount	(1). 58 " Black Cable	
69.0	1	4'5" Yagi	Leg Mounted	(1). 40 " Black Cable	
68.7	2	9' Yagi	(2) Pipe mount	(1) $.58^{\prime \prime}$ Black Cable	
60.0	1	$9{ }^{\text {9 Y Yagi }}$	Pipe mount	(1) $.58^{\prime \prime}$ Black Cable	
42.5	1	14' Yagi	Leg Mounted	(1) $40^{\prime \prime}$ Black Cable	
23.0	1	4 ft Std Dish	Dish Mount	-	-

Proposed Antennas

Elev.(ft)	Qty	Antennas	Mount	Coax (in)	Carrier
124.0	3	LNX-6515DS-VTM4	On existing (3) Pipe mount	(Existing)	T-Mobile

The transmission lines shall be distributed and/or stacked over the tower faces, such that no more than (12) lines are exposed to the wind on any one face.

Results

The existing Self Supported Tower is structurally capable of supporting the existing and proposed antennas.

The maximum structure usage is: 96.0% Legs, 93.0% Diagonals, and 11.0% Horizontals.

Leg Forces	Original Design Reactions	Current Analysis Reactions
Uplift (Kips)	N/A	94.10
Axial (Kips)	N/A	111.23
Shear (Kips)	N/A	15.30

The foundation was not investigated due to the lack of design drawings and documents and is not part of this analysis.

Conclusion

Based on the analysis results, the existing structure meets the requirements per the TIA/EIA-222 Rev F standards for a basic wind speed of 90 mph no ice and 78 mph with $1 / 2^{\prime \prime}$ radial ice.

If you have any questions or require additional information, please call 402-289-1888.

Standard Conditions

All engineering services are performed on the basis that the information used is current and correct. This information may consist of, but is not necessary limited, to:
-- Information supplied by the client regarding the structure itself, antenna, mounts and feed line loading on the structure and its components, or other relevant information.

- Information from drawings in the possession of Semaan Engineering Solutions, or generated by field inspections or measurements of the structure.

It is the responsibility of the client to ensure that the information provided to Semaan Engineering Solutions Holdings and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that all structures were constructed in accordance with the drawings and specifications and that their capacity has not significantly changed from the "as new" condition.

Unless explicitly agreed by both the client and Semaan Engineering Solutions, all services will be performed in accordance with the current revision of ANSI/TIA -222. The design basic wind speed will be determined based on the minimum basic wind speed as prescribed in ANSI/TIA-222. Although every effort is taken to ensure that the loading considered is adequate to meet the requirements of all applicable regulatory entities, we can provide no assurance to meet any other local and state codes or requirements. If wind and ice loads or other relevant parameters are to be different from the minimum values recommended by the codes, the client shall specify the exact requirement.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Semaan Engineering Solutions Holdings is not responsible for the conclusions, opinions and recommendations made by others based on the information we supply.

	Job Information	
Tower : 11468	Location : New Milford, CT	
Code: TIA/日A-222 Rev F	Shape : Triangle	Base Width:20.67 ft
Client: KGI		Top Width:8.67 ft

Sections Properties				
Section	Leg Mem	bers	Diagonal Members	Horizontal Members
1	PX 50 ksi	4" DIAPIPE	SAE $36 \mathrm{ksi} 3.5 \times 3.5 \times 0.25$	
2	PX 50 ksi	4" DIAPIPE	SAE $36 \mathrm{ksi} 3 \times 3 \times 0.25$	
3	PX 50 ksi	3-1/2" DIA PIPE	SAE $36 \mathrm{ksi} 3 \times 3 \times 0.25$	
4	PST 50 ksi	3" DIA PIPE	SAE $36 \mathrm{ksi} 2.5 \times 2.5 \times 0.25$	ksi
5	PX 50 ksi	2-1/2" DIA PIPE	SAE 36 ksi 2X2X0.1875	
6	PX 50 ksi	2-1/2" DIA PIPE	SAE $36 \mathrm{ksi} 1.75 \times 1.75 \times 0.1875$	
7	PST 50 ksi	2-1/2" DIA PIPE	SAE $36 \mathrm{ksi} 1.75 \times 1.75 \times 0.1875$	SAE $36 \mathrm{ksi} 2.5 \times 2.5 \times 0.25$

Linear Appurtenance		

[^1]

Site Number: 11468
Location: New Milford, CT

Code: TIA/EIA-222 Rev F

Gh : 1.14

Section Forces

LoadCase Normal No Ice

90.00 mph Wind Normal To Face with No Ice
$\begin{array}{rr}\text { Allow Stress Inc: } & 1.333 \\ \text { Dead LF: } & 1.000 \\ \text { Wind LF: } & 1.000\end{array}$

Sect Seq	Wind Height (ft)	$\begin{gathered} q z \\ \text { (psf) } \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Rr		Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (Ib)	Struct Force (lb)	Linear Force	Total Force (Ib)	Eff Face
7	125.0	30.34	7.64	12.71	0.00	0.23	2.48	1.00	1.00	0.60	15.25	0.00	0.00	586.6	0.0	1,313.62	0.00	1,313.62	3
6	110.0	29.25	15.28	49.20	0.00	0.33	2.21	1.00	1.00	0.63	46.11	0.00	0.00	1,403.2	0.0	3,409.46	0.00	3,409.46	3
5	90.00	27.62	18.44	49.20	0.00	0.29	2.32	1.00	1.00	0.61	48.60	0.00	0.00	1,545.4	0.0	3,565.29	0.00	3,565.29	3
4	70.00	25.71	24.02	51.29	0.00	0.28	2.36	1.00	1.00	0.61	55.23	0.00	0.00	2,079.0	0.0	3,836.37	0.00	3,836.37	3
3	50.00	23.35	23.59	52.96	0.00	0.24	2.45	1.00	1.00	0.60	55.39	0.00	0.00	2,351.9	0.0	3,629.82	0.00	3,629.82	3
2	30.00	20.74	25.31	54.62	0.00	0.23	2.51	1.00	1.00	0.60	57.87	0.00	0.00	2,603.1	0.0	3,444.65	0.00	3,444.65	3
1	10.00	20.74	28.12	54.62	0.00	0.21	2.56	1.00	1.00	0.59	60.49	0.00	0.00	2,855.1	0.0	3,673.82	0.00	3,673.82	3
														13,424.4	0.0			22,873.02	

LoadCase 60 deg No Ice
90.00 mph Wind at 60 deg From Face with No Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000

Sect Seq	Wind Height (ft)	$\begin{gathered} q z \\ (\mathrm{psf}) \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Rr		Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (Ib)	Weight Ice (Ib)	Struct Force (Ib)	Línear Force	Total Force (lb)	Eff Face
7	125.0	30.34	7.64	12.71	0.00	0.23	2.48	0.80	1.00	0.60	13.72	0.00	0.00	586.6	0.0	1,181.90	0.00	1,181.90	3
6	110.0	29.25	15.28	49.20	0.00	0.33	2.21	0.80	1.00	0.63	43.06	0.00	0.00	1,403.2	0.0	3,183.49	0.00	3,183.49	3
5	90.00	27.62	18.44	49.20	0.00	0.29	2.32	0.80	1.00	0.61	44.91	0.00	0.00	1,545.4	0.0	3,294.65	0.00	3,294.65	3
4	70.00	25.71	24.02	51.29	0.00	0.28	2.36	0.80	1.00	0.61	50.43	0.00	0.00	2,079.0	0.0	3,502.76	0.00	3,502.76	3
3	50.00	23.35	23.59	52.96	0.00	0.24	2.45	0.80	1.00	0.60	50.67	0.00	0.00	2,351.9	0.0	3,320.59	0.00	3,320.59	3
2	30.00	20.74	25.31	54.62	0.00	0.23	2.51	0.80	1.00	0.60	52.81	0.00	0.00	2,603.1	0.0	3,143.37	0.00	3,143.37	3
1	10.00	20.74	28.12	54.62	0.00	0.21	2.56	0.80	1.00	0.59	54.87	0.00	0.00	2,855.1	0.0	3,332.23	0.00	3,332.23	3
														13,424.4	0.0			20,958.98	

LoadCase 90 deg No Ice
90.00 mph Wind at 90 deg From Face with No Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000

Sect Seq	Wind Height (ft)	$\begin{gathered} q z \\ (p s f) \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Rr	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (lb)	Weight Ice (lb)	Struct Force (lb)	Linear Force (Ib)	Total Force (Ib)	Eff Face
7	125.0	30.34	7.64	12.71	0.00	0.23	2.48	0.85	1.00	0.60	14.10	0.00	0.00	586.6	0.0	1,214.83	0.00	1,214.83	3
6	110.0	29.25	15.28	49.20	0.00	0.33	2.21	0.85	1.00	0.63	43.82	0.00	0.00	1,403.2	0.0	3,239.98	0.00	3,239.98	3
5	90.00	27.62	18.44	49.20	0.00	0.29	2.32	0.85	1.00	0.61	45.83	0.00	0.00	1,545.4	0.0	3,362.31	0.00	3,362.31	3
4	70.00	25.71	24.02	51.29	0.00	0.28	2.36	0.85	1.00	0.61	51.63	0.00	0.00	2,079.0	0.0	3,586.16	0.00	3,586.16	3
3	50.00	23.35	23.59	52.96	0.00	0.24	2.45	0.85	1.00	0.60	51.85	0.00	0.00	2,351.9	0.0	3,397.90	0.00	3,397.90	3
2	30.00	20.74	25.31	54.62	0.00	0.23	2.51	0.85	1.00	0.60	54.07	0.00	0.00	2,603.1	0.0	3,218.69	0.00	3,218.69	3
1	10.00	20.74	28.12	54.62	0.00	0.21	2.56	0.85	1.00	0.59	56.27	0.00	0.00	2,855.1	0.0	3,417.62	0.00	3,417.62	3

Page 1

LoadCase 60 deg Ice
77.94 mph Wind at 60 deg From Face with Ice
$\begin{array}{rr}\text { Allow Stress Inc: } & 1.333 \\ \text { Dead LF: } & 1.000 \\ \text { Wind LF: } & 1.000\end{array}$

Sect Seq	Wind Height (ft)	$\begin{gathered} q z \\ (p s f) \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Rr	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (Ib)	Weight Ice (Ib)	Struct Force (lb)	Linear Force (lb)	Total Force (lb)	Eff Face
7	125.0	22.75	7.64	22.44	9.73	0.35	2.18	0.80	1.00	0.63	20.28	0.00	0.00	972.0	385.4	1,149.36	0.00	1,149.36	3
6	110.0	21.94	15.28	80.08	30.88	0.49	1.91	0.80	1.00	0.69	67.80	0.00	0.00	2,453.6	1,050.4	3,246.27	0.00	3,246.27	3
5	90.00	20.71	18.44	80.93	31.73	0.43	2.02	0.80	1.00	0.66	68.36	0.00	0.00	2,691.9	1,146.4	3,262.65	0.00	3,262.65	3
4	70.00	19.28	24.02	83.90	32.61	0.39	2.07	0.80	1.00	0.65	73.70	0.00	0.00	3,443.7	1,364.7	3,369.90	0.00	3,369.90	3
3	50.00	17.51	23.59	84.16	31.20	0.34	2.19	0.80	1.00	0.63	71.92	0.00	0.00	3,745.1	1,393.2	3,147.44	0.00	3,147.44	3
2	30.00	15.55	25.31	86.40	31.77	0.32	2.25	0.80	1.00	0.62	73.90	0.00	0.00	4,076.7	1,473.6	2,961.43	0.00	2,961.43	3
1	10.00	15.55	28.12	86.11	31.49	0.29	2.32	0.80	1.00	0.61	75.28	0.00	0.00	4,407.0	1,551.9	3,107.88	0.00	3,107.88	3
														21,790.0	8,365.6			20,244.93	

LoadCase 90 deg Ice
77.94 mph Wind at 90 deg From Face with Ice

Allow Stress Inc: 1.333
Dead LF: 1.000
Wind LF: 1.000

Sect Seq	Wind Height (ft)	$\begin{gathered} q z \\ (\mathrm{psf}) \end{gathered}$	Total Flat Area (sqft)	Total Round Area (sqft)	Ice Round Area (sqft)	Sol Ratio	Cf	Df	Dr	Rr	Eff Area (sqft)	Linear Area (sqft)	Ice Linear Area (sqft)	Total Weight (Ib)	Weight Ice (lb)	Struct Force (Ib)	Linear Force (Ib)	Total Force (lb)	Eff Face
7	125.0	22.75	7.64	22.44	9.73	0.35	2.18	0.85	1.00	0.63	20.66	0.00	0.00	972.0	385.4	1,171.02	0.00	1,171.02	3
6	110.0	21.94	15.28	80.08	30.88	0.49	1.91	0.85	1.00	0.69	68.57	0.00	0.00	2,453.6	1,050.4	3,282.85	0.00	3,282.85	3
5	90.00	20.71	18.44	80.93	31.73	0.43	2.02	0.85	1.00	0.66	69.29	0.00	0.00	2,691.9	1,146.4	3,306.66	0.00	3,306.66	3
4	70.00	19.28	24.02	83.90	32.61	0.39	2.07	0.85	1.00	0.65	74.90	0.00	0.00	3,443.7	1,364.7	3,424.81	0.00	3,424.81	3
3	50.00	17.51	23.59	84.16	31.20	0.34	2.19	0.85	1.00	0.63	73.10	0.00	0.00	3,745.1	1,393.2	3,199.07	0.00	3,199.07	3

Page 2
© 2007-2014 by A TC IP LLC. All rights reserved.

Site Number: 11468
Location: New Milford, CT
Code: TIA/EIA-222 RevF

Section Forces

$\begin{array}{llll}0.00 & 4,076.7 & 1,473.6 & 3,012.14\end{array}$
$\begin{array}{llll}0.00 & 4,407.0 & 1,551.9 & 3,165.92\end{array}$

Code: TIA/EIA-222 Rev F

Tower Loading

Discrete Appurtenance Properties

Attach Elev (ft)	Description	Qty	Weight (lb)	No Ice CaAa (sf)	CaAa Factor	Weight (lb)	Ice CaAa (sf)	CaAa Factor	Distance From Face (ft)	X Angle (deg)	Vert Ecc (ft)
130.0	Pipe mount		53.32	3.500	1.00	84.00	5.790	1.00	0.000	0.00	0.000
130.0	15 ft Omni	1	26.00	4.500	1.00	58.48	6.033	1.00	0.000	0.00	7.500
128.6	20 ft Dipole	1	32.00	4.920	1.00	74.00	9.080	1.00	0.000	0.00	11.000
124.0	Pipe mount	3	53.32	3.500	1.00	84.00	5.790	1.00	0.000	0.00	0.000
124.0	LNX-6515DS-VTM4	3	48.50	11.389	0.80	114.11	12.316	0.80	0.000	0.00	0.000
124.0	$12^{\prime \prime} \times 6$ " $3^{\prime \prime}$ TMAs	6	13.20	0.690	0.80	18.25	0.870	0.80	0.000	0.00	0.000
124.0	APX16PV-16PVL	3	18.00	6.760	0.62	49.62	7.420	0.62	0.000	0.00	0.000
82.75	4'5" Yagi	1	20.00	1.840	1.00	39.00	2.200	1.00	0.000	0.00	2.165
77.00	Pipe mount	1	53.32	3.500	1.00	84.00	5.790	1.00	0.000	0.00	0.000
77.00	9' Yagi	1	38.00	3.471	1.00	70.00	4.500	1.00	0.000	0.00	4.950
69.00	4'5" Yagi	1	20.00	1.840	1.00	39.00	2.200	1.00	0.000	0.00	2.165
68.67	Pipe mount	2	53.32	3.500	1.00	84.00	5.790	1.00	0.000	0.00	0.000
68.67	9^{\prime} Yagi	2	38.00	3.471	1.00	70.00	4.500	1.00	0.000	0.00	4.950
60.00	Pipe mount	1	53.32	3.500	1.00	84.00	5.790	1.00	0.000	0.00	0.000
60.00	9^{\prime} Yagi	1	38.00	3.471	1.00	70.00	4.500	1.00	0.000	0.00	4.950
42.50	14' Yagi	1	15.00	3.000	1.00	40.00	5.000	1.00	0.000	0.00	0.000
23.00	4 ft Std Dish	1	188.00	20.910	1.00	277.00	21.790	1.00	0.000	0.00	0.000
	Totals	30	1158.26			2080.17		Num	r of Appurt	enances	

Linear Appurtenance Properties

Elev From (ft)	$\begin{aligned} & \text { Elev } \\ & \text { To } \\ & \text { (tt) } \\ & \hline \end{aligned}$	Description	Qty	Width (in)	Weight (lb/ft)	Pct In Wind	Spread On Faces	Bundling Arrangement
0.00	128.6	1/2" Coax	1	0.65	0.16	100.00	2	Separate
0.00	124.0	.32" Black Cable	1	0.44	0.08	100.00	2	Separate
0.00	124.0	15/8" Coax	12	1.98	1.04	100.00	3	Separate
4.50	120.0	W/G Ladder	1	3.00	6.00	100.00	2	Separate
10.50	120.0	W/G Ladder	1	3.00	6.00	100.00	3	Separate
0.00	82.75	.40" Black Cable	1	0.44	0.08	100.00	2	Separate
0.00	77.00	.58" Black Cable	1	0.65	0.16	100.00	2	Separate
0.00	69.00	.40" Black Cable	1	0.44	0.08	100.00	2	Separate
0.00	68.67	.58" Black Cable	1	0.65	0.16	100.00	2	Separate
0.00	60.00	.58" Black Cable	1	0.65	0.16	100.00	2	Separate
0.00	42.50	.40" Black Cable	1	0.44	0.08	100.00	2	Separate

Force/Stress Summary

Section: 1 2BAY2	Bot Elev (ft): 0.00					Height (ft): 20.000							Shear Bear Cap Cap (kip) (kip)		$\begin{gathered} \text { Use } \\ \% \end{gathered}$	Controls
Max Compression Member	Force (kip)	Load Case	Len (ft)	Bracing \%				Fa (ksi)	Mem Ca (ki		Num Bolts	Num Holes				
LEG PX-4" DIA PIPE	-106.08	Normal No Ice	10.02	100	100	100	81.2	25.0	110	35	0	0	0.00	0.00	96	Member X
HORIZ	0.00		0.000	0	0	0	0.0	0.0		. 00	0	0	0.00	0.00	0	
DIAG SAE-3.5×3.5×0.25	-5.68	Normal No Ice	22.51	50	75	50	194.7	5.3		88	1	1	8.59	14.50	66	Bolt Shear
Max Tension Member	Force (K1p)	Load Case	Fy (ksi)		$\operatorname{cop}_{k i p)} \mathbf{N}$	Num Bolts	Num Holes	$\begin{aligned} & \text { Shea } \\ & \text { Cap (k } \end{aligned}$		$\begin{array}{r} \mathrm{Be} \\ \mathrm{Cap} \\ \hline \end{array}$	Bear $p(k i p)$		Con	trols		
LEG PX-4' DIA PIPE	90.00	60 deg No Ice	50		76.40	0	0		0.00		0.00	05	Mem			
HORIZ	0.00		0		0.00	0	0		. 00		0.00	0	0			
DIAG SAE - $3.5 \times 3.5 \times 0.25$	5.59	60 deg Ice	36		44.02	1	1		8.59		9.06	- 65	5 Bolt	Shear		

Section: 2 2BAY2 Max Compression Member	Bot Elev (ft): 20.00					Height (ft): 20.000							Shear Bear Cap Cap (kip) (kip)		$\begin{gathered} \text { Use } \\ \% \end{gathered}$	Controls
	Force (kip)	Load Case	Len (ft)	Bracing \%				Fa (ksi)	Mem Cap (kip)	ber p N p) Bo	Num Bolts	Num Holes				
LEG PX-4" DIA PIPE	-86.15	Normal lce	10.02	100	100	100	81.2	25.0	110.	35	0	0	0.00	0.00	78	Member X
HORIZ	0.00		0.000	0	0	0	0.0	0.0		. 00	0	0	0.00	0.00	0	
DIAG SAE-3X3X0.25	-5.38	Normal No Ice	20.74	50	75	50	210.2	4.5	6.	. 49	1	1	8.59	14.50	82	Member Z
Max Tension Member	Force (KIp)	Load Case	Fy (ksi)			Num Bolts	Num Holes	Shea Cap ($\begin{gathered} \mathrm{Be} \\ \mathrm{Cap} \end{gathered}$	Bear p (kip)	Use \%	Con	trols		
LEG PX-4" DIA PIPE	72.55	60 deg No Ice	50		6.40	0	0		0.00		0.00	41	Mem			
HORIZ	0.00		0		0.00	0	0		. 00		0.00					
DIAG SAE-3X3X0.25	5.26	90 deg No Ice	36		6.77	1	1		8.59		9.06	-61	Bolt	Shear		

Section: 3 2BAY2	Bot Elev (ft): 40.00					Height (ft): 20.000							Shear Bear Cap Cap (kip) (kip)		$\begin{gathered} \text { Use } \\ \% \end{gathered}$	Controls
Max Compression Member	Force (kip)	Load Case	Len (ft)		Y	9% Z	KL/R	Fa (ksi)	Mem Cap (kip)		Num Bolts	Num Holes				
LEG PX-3-1/2" DIA PIPE	-66.11	Normal lce	10.02	100	100	100	91.8	22.1	81.2	24	0	0	0.00	0.00	81	Member X
HORIZ	0.00		0.000	0	0	- 0	0.0	0.0		. 0	0	0	0.00	0.00	0	
DIAG SAE - $3 \times 3 \times 0.25$	-4.82	Normal No lce	19.01	50	75	50	192.7	5.4		72	1	1	8.59	14.50	62	Member Z
Max Tension Member	Force (KIp)	Load Case	Fy (ksi)		ap ip)	Num Bolts	Num Holes	Shea Cap (k		$\begin{array}{r} \mathrm{Be} \\ \mathrm{Cap} \\ \hline \end{array}$	Bear $p(k i p)$		Con	trols		
LEG PX - 3-1/2" DIA PIPE	55.18	60 deg No Ice	50	14	7.20	0	0		. 00		0.00	037	Mem			
HORIZ	0.00		0		0.00	0	0		. 00		0.00	0				
DIAG SAE - $3 \times 3 \times 0.25$	4.86	60 deg Ice	36		6.77	1	1		. 59		9.06	- 56	Bolt	Shear		

Site Number: 11468

Location: New Milford, CT

Code: TIA/EIA-222 Rev F

Force/Stress Summary

Section: 4 3BAY	Bot Elev (ft): 60.00 Hei						eight (ft): 20.000									Controls
Max Compression Member	Force (kip)	Load Case	Len (ft)	Bracing \%				Fa (ksi)	Mem Ca (kip	ber) B	Num Bolts	Num Holes	Shear Cap (kip)	Bear Cap (kip)	Use	
LEG PST-3" DIA PIPE	-47.82	Normal Ice	6.68	100	100	100	69.1	28.1		76	0	0	0.00	0.00	76	Member X
HORIZ	0.00		0.000	0	0	0	0.0	0.0		00	0	0	0.00	0.00	0	
DIAG SAE - $2.5 \times 2.5 \times 0.25$	-3.75	Normal No Ice	15.81	50	75	50	193.2	5.3		35	1	1	5.49	11.60	68	Bolt Shear
Max Tension Member	Force (KIp)	Load Case	Fy (ksi)		$\begin{gathered} \mathrm{ap} \\ \mathrm{kip}) \\ \mathrm{B} \\ \hline \end{gathered}$	Num Bolts	Num Holes	She Cap (k			Bear p (kip)	Use \%	Con	trols		
LEG PST - 3" DIA PIPE	39.55	60 deg No Ice	50		89.20	0	0		. 00		0.00	44	4 Mem			
HORIZ	0.00		0	-	0.00	0	0		. 00		0.00	0	0			
DIAG SAE-2.5×2.5×0.25	3.98	60 deg Ice	36		30.43	1	1		5.49		7.25	-72	Bolt	Shear		

Section: 5 3BAY	Bot Elev (ft): 80.00					Height (ft): 20.000						Shear Bear Cap Cap (kip) (kip)		$\begin{gathered} \text { Use } \\ \% \end{gathered}$	Controls
Max Compression Member	Force (kip)	Load Case	Len (ft)	Bracing \%				Member Fa Cap Num			Num Holes				
LEG PX - 2-1/2" DIA PIPE	-29.64	Normal lce	6.68	100	100	100	86.7	23.5		90	0	0.00	0.00	56	Member X
HORIZ	0.00		0.000	0	0	0	0.0	0.0		00	0	0.00	0.00	0	
DIAG SAE-2X2X0.1875	-2.90	90 deg No lce	14.02	50	75	50	213.6	4.4		101	1	5.49	8.70	93	Member Z
Max Tension Member	Force (KIp)	Load Case	Fy (ksi)		ap kip)	Num Bolts	Num Holes	Shea Cap (k		$\begin{gathered} \text { Bear } \\ \text { Cap (kip) } \end{gathered}$	Use \%	Cont	trols		
LEG PX-2-1/2" DIA PIPE	24.62	60 deg No Ice	50		90.00	0	0		0.00	0.00	27	Memb	ber		
HORIZ	0.00		0	0	0.00	0	0		. 00	0.00					
DIAG SAE-2X2X0.1875	2.94	90 deg No Ice	36		17.53	1	1		. 49	5.44	454	Bolt	Bear		

Section: 6 3BAY	Bot Elev (ft): 100.0					Height (ft): 20.000										Controls
Max Compression Member	Force (kip)	Load Case	Len (ft)	Bracing \%				Fa (ksi)	Mem Ca (kip		r Num Bolts	Num Holes	Shear Cap (kip)	Bear Cap (kip)	Use	
LEG PX - 2-1/2" DIA PIPE	-14.82	Normal Ice	6.68	100	0100	0100	86.7	23.5	52.	90	0	0	0.00	0.00	28	Member X
HORIZ	0.00		0.000		00	00	0.0	0.0		00	0	0	0.00	0.00	0	
DIAG SAE-1.75X1.75X0.18	-2.25	90 deg No lce	12.30	50	075	550	215.2	4.3		67	1	1	5.49	8.70	84	Member Z
Max Tension Member	Force (KIp)	Load Case	$\begin{gathered} \text { Fy } \\ (\mathrm{ksi}) \end{gathered}$		$(k i p) B$	Num Bolts	Num Holes	She Cap		$\begin{array}{r} \mathrm{Be} \\ \mathrm{Cap} \\ \hline \end{array}$	Bear $p(k i p)$		Con	trols		
LEG PX - 2-1/2" DIA PIPE	11.60	60 deg No lce	50	0	90.00	0	0		. 00		0.00	0	Mem	ber		
HORIZ	0.00			0	0.00	0	0		. 00		0.00					
DIAG SAE-1.75X1.75X0.18	2.14	90 deg No Ice	36	6	14.92	21	1		. 49		5.44	439	Bolt	Bear		

(c) 2007-2014 by A TC IP LLC. All rights reserved.

Site Number:	11468
Location:	New Milford, CT

Code: TIA/EIA-222 Rev F

Support Forces Summary

Load Case	Node	$\begin{aligned} & \text { FX } \\ & \text { (kip) } \end{aligned}$	$\begin{gathered} \text { FY } \\ (\text { kip }) \end{gathered}$	$\begin{aligned} & \text { FZ } \\ & (\mathrm{kip}) \end{aligned}$		$(-)=$ Uplift $\quad(+)=$ Down
90 deg lce	1b	-11.01	-77.16	-5.27		
	1a	-10.58	92.75	5.00		
	1	-2.70	8.27	0.27		
60 deg lce	1b	-11.89	-89.29	-7.10		
	1a	-6.57	56.10	1.64		
	1	-2.30	57.05	-6.53		
Normal Ice	1b	-5.39	-43.28	-5.57		
	1a	5.35	-43.21	-5.63		
	1	0.04	110.36	-14.04		
90 deg No lce	1b	-10.98	-82.25	-5.11		
	1a	-11.46	91.79	5.36		
	1	-2.83	5.04	-0.25		
60 deg No lce	1b	-11.78	-94.10	-7.00		
	1a	-7.28	53.99	1.85		
	1	-2.39	54.70	-7.24		
Normal No Ice	1b	-5.16	-48.34	-5.66		
	1a	5.11	-48.30	-5.72		
	1	0.05	111.23	-15.30		
Max Uplift:				ent:	1,904.03 (ft-kip)	Normal No Ice
Max Down:	11		Tot	wn:	14.58 (kip)	
Max Shear:			Tot	ar:	26.69 (kip)	

(c) 2007-2014 by A TC IP LLC. All rights reserved.

Site Number: 11468 Location: New Milford, CT

Code: TIA/EIA-222 Rev F

	Site Number:	11468		

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CTNH369A
NH369 / Charter Communications SST
125 Ridge Road
New Milford, CT 06776
October 31, 2014
EBI Project Number: 62145919

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{9 . 3 7 \%}$

environmental | engineering | due diligence

October 31, 2014

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CTNH369A - NH369 / Charter Communications SST

EBI Consulting was directed to analyze the proposed T-Mobile facility located at $\mathbf{1 2 5}$ Ridge Road, New Milford, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{1 2 5}$ Ridge Road, New Milford, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 W atts per Channel
2) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 W atts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
environmental | engineering | due diligence
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the RFS APX16DWV-16DWVS-E-A 20 for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APX16DWV-16DWVS-E-A20 has a maximum gain of $\mathbf{1 6 . 3}$ dBd at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6}$ $\mathbf{d B d}$ at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 2 4}$ feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

EBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	RFS APXI6DWV-16DWVS-E-A20	Make / Model:	RFS APX16DWV- 16DWVS-E-A20	Make / Model:	RFS APX16DWV-16DWVS-E-A20
Gaia:	16.3 dBd	Gain:	16.3 dBd	Gain:	16.3 dBd
Height (AGL):	124	Height (AGL):	124	Height (AGL):	124
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz} \text { (PCS) / } \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	6	Channel Count	6	\# PCS Channels:	6
Total TX Power:	240	Total TX Power:	240	\# AWS Channels:	240
ERP (W):	3,833.82	ERP (W):	3,833.82	ERP (W):	3,833.82
Antenna A1 MPE\%	2.64	Antenna B1 MPE\%	2.64	Antenaa C1 MPE\%	2.64
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	Commscope LNX- 6515DS-VTM	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ \text { 6515DS-VTM } \end{gathered}$
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	124	Height (AGL):	124	Height (AGL):	124
Frequency Bands	700 Mhz	Frequency Bands	700 Mhz	Frequency Bands	700 Mhz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	445.37	ERP (W):	445.37	ERP (W):	445.37
Antenna A2 MPE\%	0.48	Antenaa B2 MPE\%	0.48	Antenna C2 MPE\%	0.48
	Site Composite MPE\%			T-Mobile Sector 1 Total:	I: $\quad 3.12$ \%
	Carrier	MPE\%		T-Mobile Sector 2 Total:	I: $\quad 3.12$ \%
	T-Mobile	9.37		T-Mobile Sector 3 Total:	I: $\quad 3.12 \%$
	No Additional Carrier Values			Site Total:	1: $\quad 9.37 \%$

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	3.12%
Sector 2:	3.12%
Sector 3:	3.12%
T-Mobile Total:	9.37%
Site Total:	9.37%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{9 . 3 7 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan

RF Engineering Director

EBI Consulting

21 B Street
Burlington, MA 01803`

[^0]: ${ }^{1}$ The online CSC database does not reflect a Docket or Petition for the approval of this facility but T-Mobile was approved to locate on the facility in the tower sharing approval captioned TS-T-MOBILE-096-051201.

[^1]:
 90 mph no ice
 $78 \mathrm{mph} w / 1 / 2^{\prime \prime}$

