Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

September 11, 2023

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 33 (a/k/a 86) Boardman Road, New Milford, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains a wireless telecommunications facility at the above-referenced address (the "Property"). Cellco's facility consists of antennas and remote radio heads attached to a tower. Equipment associated with the facility is located on the ground adjacent to the tower. The tower was approved by the Siting Council ("Council") in July of 2004 (Docket No. 285). Cellco's shared use of the tower was approved by the Council in January of 2006 (EM-VER-017-020-096-068-060104). A copy of the Council's Docket No. 285 Decision and Order and the Cellco's shared use approval are included in Attachment 1.

Cellco's proposed modification involves the installation of two (2) interference mitigation filters ("Filters") on its existing antenna platform and mounting assembly. The Filter specification sheet is included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to New Milford's Chief Elected Official and Land Use Officer.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modification will not result in an increase in the height of the existing tower. The Filters will be installed on Cellco's existing antenna platform and mounting

Robinson+Cole

Melanie A. Bachman, Esq. September 11, 2023 Page 2

assembly.

- 2. The proposed modifications will not involve any change to ground-mounted equipment and therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new Filters will not result in a change to radio frequency (RF) emissions from the facility. Therefore, no new RF emissions information is included in this filing.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA") and Antenna Mount Analysis Report ("MA"), the existing tower, foundation, antenna platform and mounting assembly can support Cellco's proposed modifications. A copy of the SA and MA are included in <u>Attachment 3</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 4</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 5</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Enclosures Copy to:

Pete Bass, Mayor Laura Regan, Town Planner Quarry Stone + Gravel LLC, Property Owner Alex Tyurin, Verizon Wireless

ATTACHMENT 1

DOCKET NO. 285 - Sprint Spectrum, L.P. application for a Certificate of Environmental Compatibility and Public Need for the construction,	}	Connecticut
maintenance and operation of a wireless telecommunications facility at 33 Boardman Road, New Milford, Connecticut.	}	Siting
33 Boardman Road, New Milliold, Connecticut.	}	Council
		July 13, 2004

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, operation, and maintenance of a telecommunications facility including effects on the natural environment; ecological integrity and balance; public health and safety; scenic, historic, and recreational values; forests and parks; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Sprint Spectrum, L.P. for the construction, maintenance and operation of a wireless telecommunications facility at 33 Boardman Road, New Milford, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a monopole, no taller than necessary to provide the proposed telecommunications services, sufficient to accommodate the antennas of Sprint Spectrum L.P., Nextel Communications, Inc., and other entities, both public and private, but such tower shall not exceed a height of 150 feet above ground level. The height at the top of the antennas shall not exceed a height of 153 feet above ground level.
 - 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of New Milford, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction. The D&M shall include:
- a final site plan(s) of site development to include specifications for the tower, tower foundation, antennas, equipment building, access road, utility line, and landscaping; and

- construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and</u> <u>Sediment Control</u>, as amended.
 - 3. Prior to submission of the D&M plan to the Council, the Certificate Holder shall discuss the appropriateness and feasibility of stealth tower designs for this site with the Town. The Town and Certificate Holder shall agree upon the final tower design.
- 4. The Certificate Holder shall, prior to the commencement of operation, provide the Council worst-case

modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.

- 5. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 6. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 7. The Certificate Holder shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
- 8. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 9. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 10. Unless otherwise approved by the Council, this Decision and Order shall be void if the facility authorized herein is not operational within one year of the effective date of this Decision and Order or within one year after all appeals to this Decision and Order have been resolved. Any request for extension of this

period shall be filed with the Council no later than sixty days prior to expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list. Any proposed modifications to this Decision and Order shall likewise be so served.

Pursuant to General Statutes § 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in the Hartford Courant, the New Milford Spectrum, and the New Milford Times.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant	Its Representative
Sprint Spectrum, L.P.	Thomas J. Regan, Esquire Brown Rudnick Berlack Isreals LLP CityPlace I, 38 th Floor 185 Asylum Street Hartford, CT 06103-3402
Intervenor	Its Representative
Nextel Communications, Inc.	Julie Donaldson Kohler Hurwitz & Sagarin P.O. Box 112 Milford, CT 06460

The state of the s

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@po.state.ct.us www.ct.gov/csc

January 26, 2006

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Avenue Hartford, CT 06103-3597

RE: EM-VER-017-020-096-068-060104 - Cellco Partnership d/b/a Verizon Wireless notice of intent to modify existing telecommunications facilities located at 371 Terryville Avenue, Bristol; 12 Nepaug Road, Burlington; 399 Chestnut Land Road, New Milford; 33 Boardman Road, New Milford; and 136 Bulls Bridge Road, Kent, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on January 25, 2006, the Connecticut Siting Council (Council) acknowledged your notice to modify these existing telecommunications facilities, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies.

The proposed modifications are to be implemented as specified here and in your notice dated January 4, 2006, including the placement of all necessary equipment and shelters within the tower compounds. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to existing facility sites that would not increase tower heights, extend the boundaries of the tower sites, increase noise levels at the tower site boundaries by six decibels, and increase the total radio frequencies electromagnetic radiation power densities measured at the tower site boundaries to or above the standard adopted by the State Department of Environmental Protection pursuant to General Statutes § 22a-162. These facilities have also been carefully modeled to ensure that radio frequency emissions are conservatively below State and federal standards applicable to the frequencies now used on these towers.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to any of these facilities will require explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Any deviation from this format may result in the Council implementing enforcement proceedings pursuant to General Statutes § 16-50u including, without limitation, imposition of expenses resulting from such failure and of civil penalties in an amount not less than one thousand dollars per day for each day of construction or operation in material violation.

Thank you for your attention and cooperation.

ery truly yours,

Chairman

PBK/laf

c: See attached List

List Attachment:

c: The Honorable William T. Stortz, Mayor, City of Bristol
Alan Weiner, Planner/Dev. Coordinator, City of Bristol
The Honorable Theodore C. Scheidel, Jr., First Selectman, Town of Burlington
Robert J. Coates, Planning and Zoning Chairman, Town of Burlington
The Honorable Ruth S. Epstein, First Selectman, Town of Kent
Judith Wick, Zoning Enforcement Officer, Town of Kent
The Honorable Patricia A. Murphy, Mayor, Town of New Milford
Christopher B. Fisher, Esq., Cuddy & Feder LLP
Michele G. Briggs, New Cingular Wireless PCS, LLC
Thomas F. Flynn III, Sprint Nextel Corporation
Thomas J. Regan, Esq., Brown Rudnick Berlack Israels LLP

ATTACHMENT 2

BSF0020F3V1-1

TWIN BANDSTOP 900MHZ INTERFERENCE MITIGATION FILTER

The BSF0020 is ideal for co-located 700, 850 and 900 networks. Utilising a 2,6MHz guardband the BSF0020 provides rejection of the 900 UL band while passing 700/850 UL and DL bands. Capable of being used in an outdoor environment the BSF0020 contains two identical bandstop filters, suitable for 2x2 MIMO configuration, offering excellent insertion loss, group delay and rejection.

FEATURES

- · Passes full 700 and 850 bands
- Low insertion loss
- Rejection of 900MHz uplink
- DC/AISG pass
- Twin unit
- Dual twin mounting available

ENNE NAME	708 PATH / 850 UPLINK PATH	SSU DOWNLINK FATH		
Passband	698 - 849MHz	869 - 891,5MHz		
Insertion loss	0.1d8 typical / 0.3dB maximum	0.5dB typical, 1.45dB maximum		
Return loss	24dB typicai, 1	18dB minimum		
Maximum input power (Per Port)	100W average	200W average and 66W per 5MHz		
Rejection	53dB minimum @	894 ₋ 1 - 896.5MHz		
ELECTRICAL				
Impedance	500	hms		
Intermodulation products	-160dBc maximum in UL Band (assuming -153dBc maximur	g 20MHz Signal), with 2 x 43dBm carriers m with 2 x 43dBm		
DC / AISG				
Passband	0 - 13	8MHz		
Insertion loss	0.3dB m	aximum		
Return loss	15dB m	inimum		
Input voltage range	± 3	3V		
DC current rating	2A continuo	us. 4A peak		
Compliance	3GPP TS	3 25,461		
ENVIRONMENTAL				
For further details of environmental co				
Temperature range	-20°C to +60°C	-4°F to +140°F		
Ingress protection	IPE	37		
Altitude	2600m			
Lightning protection	RF port: ±5kA maximum (8/20us), IEC 61000-4-5 - Unit m	nust be terminated with some lightning protection circuits.		
MTBF	>1,000,00			
Compliance	ETSI EN 300 019 class 4.1H,	RoHS, NEBS GR-487-CORE		
MECHANICAL				
Dimensions H x D x W	269 x 277 x 80mm 10.60 x 10.90 x 3.15	5in (Excluding brackets and connectors)		
Weight	8.0 kg 17.6 lb			
Finish	Powder coated, light	ht grey (RAL7035)		
Connectors	RF: 4.3-1			
Mounting	Optional pole/wall bracket supplied with two metal clamps 45-178mm diameter poles or custom bracket. See ordering information.			

ORDERING INFORMATION

ORDERING INFORMA	CONFIGURATION	OPTIONAL PEATURES	CONNECTORS
BSF0020F3V1	TWIN, 2 in / 2 out	DC/AISG PASS NO BRACKET	4 ₋ 3-10 (F)
	TWIN, 2 in / 2 out	DC/AISG PASS	4.3-10 (F)
BSF0020F3V1-1		DC/AISG PASS	4,3-10 (F)
BSF0020F3V1-2	QUAD, 4 in / 4 out	BC/AICC TACC	

ELECTRICAL BLOCK DIAGRAM

MECHANICAL BLOCK DIAGRAM

ATTACHMENT 3

STRUCTURAL ANALYSIS REPORT FOR PROPOSED ANTENNA AND APPURTENANCE MODIFICATION ON A 153'± MONOPOLE TOWER NEW MILFORD, CONNECTICUT

Prepared for Verizon Wireless

Verizon Site Ref. 467734; New Milford W CT

Site Address: 86 Boardman Road, New Milford, Connecticut 06776

FUZE ID: 17123971 Location Code: 467734

Project Type: Filter Add

MDG Location Code: 5000243611

APT Filing No. CT141_14040

Rev 0 August 18, 2023

STRUCTURAL ANALYSIS REPORT 153'± MONOPOLE TOWER NEW MILFORD, CONNECTICUT prepared for Verizon Wireless

EXECUTIVE SUMMARY:

All-Points Technology Corporation, P.C. (APT) performed a structural analysis of an existing 153'± tapered steel monopole tower structure to support a proposed Verizon equipment modification.

The proposed Verizon antenna and appurtenance modification consists of the installation of two (2) new Kaelus KA-6030 mitigation filters. Reference can be made to the equipment table on the following page.

The results of this analysis indicate that the existing monopole tower structure meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and that ANSI/TIA-222-H standard with Verizon's proposed equipment modification.

The tower steel component usage is summarized in the table below:

Elevation/Component	Usage (%)
134.83'-154	19%
89.16'-134.83'	77%
44.54'-89.16'	69%
1'-44.54'	72%
Base Plate	74%
Anchor Bolts	70%

INTRODUCTION:

A structural analysis of this communications tower was performed by APT for Verizon Wireless. The tower is located at 86 Boardman Road in New Milford, Connecticut.

The following information was utilized in the preparation of this analysis:

- Construction Drawings prepared by All-Points Technology Corporation, P.C. (APT), APT Filing No. CT141_14040, marked Rev 0, dated 08/18/23.
- Antenna Mount Analysis Report and PMI Requirements prepared by Colliers Engineering & Design CT, P.C. (Project No. 23777083), dated 07/20/23.
- Post-Mod Antenna Mount Analysis Report, PMI Requirements and Mount Modification drawings, prepared by GPD Engineering, Project #2021740.467734.02, dated 6/30/2021.
- RFDS sheet provided by Verizon Wireless, latest version.
- Structural Analysis Report prepared by Centek Engineering, Centek Project No. 20074.50, dated 07/08/20.
- Structural Analysis Report prepared by Centek Engineering, Centek Project No. 14001.060, dated 12/1/2014.
- Tower & Foundation Drawings prepared by Engineered Endeavors, Incorporated (EEI) (Project No. 13200), marked Rev. 0, dated 02/28/05.

 Structure & Foundation Design Calculations prepared by Engineered Endeavors, Incorporated (EEI) (Project No. 13200-E01), dated 02/25/05.

The tower is a $153'\pm$, 18-sided tapered steel monopole tower structure manufactured by Engineered Endeavors, Inc. (EEI). The pole features pine branches above the 80' elevation.

The analysis was conducted using the following antenna inventory (proposed equipment shown in **bold** text):

Carrier	Antenna and Appurtenance Make/Model	Elevation (AGL) ²	Status	Mount Type	Coax/Feed- Line ³
Motorola	2' HP dish, 3' HP dish	156'±	ETR	(2) 5' x 4-1/2" pipe mount	(2) 7/8"
Town	Motorola BA40-41-DIN	154' <u>+</u>	ETR	Valmont Uni-Tri bracket, (1) 5' x 4-1/2" pipe mounts	7/8"
Sprint	(3) Commscope DT465B-2XR & (3) RFS APXVSPP18-C-A20 panels, (3) TD-RRH8x20-25 RRHs, (6) FD-RRH-2x50-800 RRHs, (3) ALU RRH4x40-1900 RRHs	150' <u>+</u>	ETR	(3) 10' T-arm sector mounts	(9) 1-5/8", (4) 1-1/4" hybrid
T-Mobile	(3) RFS APXVAARR24_43-U-NA20, (3) RFS APX16DWV-16DWVS & (3) Ericsson Air6449 B41 panels, (3) Radio 4424 RRHs, (3) Radio 4415 RRHs, (3) Radio 4449 RRHs, (3) TMA 8" x 10"	140' <u>+</u>	ETR	(3) 10' T-arm sector mounts (Reinforced)	(2) 6x12 hybrid
Verizon Wireless	(2) Kaelus KA-6030 mitigation filters, (3) Andrew LNX-8513DS-A1M, (6) JMA Wireless MX06FR0660-03 & (3) Samsung MT6407-77A panels, (3) Samsung B66a/B2a RRH-BR049 (RFV01U-D1A) RRHs, (3) Samsung B13/B5 RRH-BR04C (RFV01UD2A) RRHs, (1) Raycap DB-C1-12C-24AB-0Z OVP	130'±	ETR ETR ETR ETR ETR	(3) 10' T-arm sector mounts (Reinforced)	(6) 1-5/8", (1) 12x24 Ll hybrid
AT&T	(3) Powerwave 7770.00, (2) Kathrein 800-10965, (1) Kathrein 800-10966 & (6) cci HPA-65R-BUU-H6 panels, (3) Powerwave LGP21401 TMAs, (3) Ericsson RRUS-11 RRHs, (6) Ericsson RRUS-32 RRHs, (3) Radio 4426 RRHs, (3) Radio 4478 RRHs, (3) Raycap DC6-48-60-18-8F "squid" D-boxes	120'±	ETR	(3) 10' T-arm sector mounts	(12) 1-5/8", (1) Fiber, (2) DC powe

Notes:

^{1.} ETR = Existing to Remain; ERL = Existing to be Relocated; P = Proposed.

^{2.} Elevations refer to AGL.

^{3.} All feed lines run inside the pole.

STRUCTURAL ANALYSIS:

Methodology:

This structural analysis has been prepared in accordance with the ANSI/TIA-222-H standard entitled "Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures"; American Institute of Steel Construction (AISC) Manual of Steel Construction, and the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code utilizing the following criteria:

- o Load Case 1: 115 mph (3-second gust), 0" ice
- o Load Case 2: 40 mph (3-second gust) w/ 1.0" ice thickness required
- o Load Case 3: 60 mph (3-second gust) (Service Load)
- o Structure Class: II
- o Exposure Category: C
- o Topographic Category: 1

Splice and Anchor Bolts:

Connection bolts were evaluated under the reduced design criteria. All splice and anchor bolts were found to be adequately sized to support the proposed equipment.

Analysis Results:

The analysis was conducted in accordance with the criteria outlined above with the aforementioned loading. The following table summarizes the results of the analysis:

Elevation/Component	Usage (%)		
134.83'-154'	19%		
89.16'-134.83'	77%		
44.54'-89.16'	69% 72%		
1'-44.54'			
Base Plate	74%		
Anchor Bolts	70%		

Base Foundation:

Evaluation of the existing base foundation was evaluated utilizing the aforementioned Tower & foundation Drawings and Calculations previously provided to APT. The existing foundation was determined to be adequately sized to support the proposed loads.

The calculated base reactions with the proposed equipment loading are indicated within the table below:

Load Effect	Calculated Reactions	Result
Compression	77.1 k	PASS
Total Shear	58.9 k	PASS
Overturning Moment	6,847 ft-k	PASS

CONCLUSIONS AND SUGGESTIONS:

In conclusion, our analysis indicates the 153'± monopole tower structure located at 86 Boardman Road in New Milford, Connecticut meets the requirements of the 2021 International Building Code (IBC), as amended by the 2022 Connecticut State Building Code, and the ANSI/TIA-222-H standard with Verizon's proposed equipment modification.

Sincerely,

All-Points Technology Corp. P.C.

Michael S. Trodden, P.E. Senior Structural Engineer

Prepared by:

All-Points Technology Corp. P.C.

Ali M. Adair

Project Scientist

LIMITATIONS:

This report is based on the following:

- 1. Tower/structure is properly installed and maintained.
- 2. All members and components are in a non-deteriorated condition.
- 3. All required members are in place.
- 4. All bolts are in place and are properly tightened.
- 5. Tower/structure is in plumb condition.
- 6. All tower members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.
- 7. Material yield stress values as follows:

Monopole: 65 ksi Base plate: 60 ksi Anchor bolts: 75 ksi

All-Points Technology Corporation, P.C. (APT) is not responsible for any modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

- 1. Replacing or reinforcing bracing members.
- 2. Reinforcing members in any manner.
- 3. Adding or relocating antennas.
- 4. Installing antenna mounts or waveguide cables.
- 5. Extending tower.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which conflicts with that which is contained herein, or you are aware of any defects arising from original design, material, fabrication, or erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Appendix A

Design Criteria

. Silverior in M	Basic	Basic Design Wind Speeds, V (mph)	/ind Speed	ts, V	Allow	Allowable Stress Design Wind Speeds, V _{avd} (mph)	s Design V_{axd}	Wind	Ground	MCE Ground Accelerations	round	Wind-Borne Debris Region ¹	ne Debris on ¹	Hurricane-
Municipanty	Risk Cat. I	Risk Cat. II	Risk Cat. III	Risk Cat. 1V	Risk Cat. I	Risk Cat. II	Risk Cat. III	Risk Cat, IV	P _k (psf)	<i>S</i> _S (g)	S_I	Risk Cat. III Occup. I-2	Risk Cat. IV	Prone Region
New Milford	110	115	125	130	85	68	97	101	35	0.198	0.055			
Newington	110	120	130	135	85	93	101	105	30	0.195	0.055			Yes
Newtown	110	120	130	130	85	93	101	101	30	0.20	0.055			Yes
Norfolk	105	115	125	130	81	68	- 26	101	40	0.165	0.054			
North Branford	115	125	135	135	68	62	105	105	30	0.204	0.054			Yes
North Canaan	105	115	125	130	81	86	- 26	101	40	0.164	0.054			
North Haven	110	120	130	135	85	93	101	105	30	0.204	0.054			Yes
North Stonington	120	130	140	140	93	101	108	108	30	0.186	0.052			Yes
Norwalk	110	120	130	135	85	93	101	105	30	0.240	0.056		Type B	Yes
Norwich	115	125	135	140	68	16	105	108	30	0.194	0.054			Yes
Old Lyme	120	130	135	140	93	101	105	108	30	0.201	0.053	Type B	Type B	Yes
Old Saybrook	120	130	135	140	93	101	105	108	30	0.202	0.053	Type B	Type B	Yes
Orange	110	120	130	135	85	93	101	105	30	0.201	0.054			Yes
Oxford	110	120	130	135	85	93	101	105	30	0.199	0.054			Yes
Plainfield	115	125	135	140	68	97	105	108	30	0.187	0.054			Yes
Plainville	110	120	130	135	85	93	101	105	35	0.191	0.055			Yes
Plymouth	110	120	125	130	85	93	97	101	35	0.185	0.054			Yes
Pomfret	115	125	130	135	68	97	101	105	40	0.182	0.055			Yes
Portland	110	120	130	135	85	93	101	105	30	0.208	0.056			Yes
Preston	120	125	135	140	93	97	105	108	30	0.191	0.053			Yes
Prospect	110	120	130	135	85	93	101	105	30	0.197	0.054			Yes
Putnam	115	125	130	135	68	26	101	105	40	0.184	0.055			Yes
Redding	110	120	125	130	85	93	76	101	30	0.228	0.056			Yes
Ridgefield	110	120	125	130	85	93	97	101	30	0.243	0.057			Yes
Rocky Hill	110	120	130	135	85	93	101	105	30	0.200	0.055			Yes
Roxbury	110	120	125	130	85	93	97	101	35	0.196	0.054			Yes
Salem	115	125	135	140	68	16	105	108	30	0.205	0.055			Yes
Salisbury	105	115	125	130	81	68	76	101	40	0.116	0.054			
Scotland	115	125	135	135	68	97	105	105	30	0.188	0.054			Yes
Seymour	110	120	130	135	85	93	101	105	30	0.200	0.054			Yes
Sharon	105	115	125	130	81	68	97	101	40	0.171	0.054			
Shelton	110	120	130	135	85	93	101	105	30	0.203	0.054			Yes

ice

Results:

Ice Thickness: 1

1.00 in.

Concurrent Temperature:

15 F

Gust Speed

40 mph

Data Source:

Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed:

Mon Jun 26 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Appendix B

Tower Schematic

	50.00	18	0.3130 0.1875	5.67 4.33	28.5753 25.2500	40,9100	A572-65 5819.6 1085.7	154.0 ft
n	50.29	18	0,5000	6,92	38,8852	51.2800	12107.6	
4	50.46	18	0,5630		48.5745	61,0000	16637.6	44.5 ft
Section	Length (ft)	Number of Sides	Thickness (In)	Socket Length (ft)	Top Dia (In)	Bot Dia (in)	Grade Weight (b) 35530.5	<u>1.0 ft</u>

MOMENT
1437362 lb-ft

1111 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
846 lb-ft
15 mph WIND

All Points Technology
567 Vauxhall St. Ext., Suite
Waterford, CT 06385
Phone: (860) 663-0935

Pain:

Pain:

Pain:

MOMENT
1437362 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb-ft
1.0000 in ICE

NL
10 lb

MOMENT
6846573 lb

MOMENT
6846573 l

MATERIAL STRENGTH

80 ksi

GRADE

Fy

Fu

Appendix C

Calculations

All Points Technology 567 Vauxhall St. Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697

FAX: (860) 663-0935

Job	153' Monopole Tower	Page 1 of 10
Project	CT141_14040 New Milford	Date 15:22:13 08/18/23
Client	VzW Site #467734; New Milford West	Designed by AMA

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 1.00 ft.

Basic wind speed of 115 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1.

Crest Height: 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 40 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Monopole Base Plate Data

Base Plate D	ata
Base plate is square	
Base plate is grouted	
Anchor bolt grade	A615-75
Anchor bolt size	2.2500 in
Number of bolts	28
Embedment length	84.0000 in
f _c	4 ksi
Grout space	2.0000 in
Base plate grade	A572-60
Base plate thickness	3.0000 in
Bolt circle diameter	68.0000 in
Outer diameter	74,0000 in
Inner diameter	61.0000 in
Base plate type	Plain Plate

Feed Line/Linear Appurtenances

Description	Face	Allow	Exclude	Component	Placement	Total Number		$C_A A_A$	Weight
	or Leg	Shield	From Torque	Туре	fl	ivumber		ft²/ft	plf
7/8 (Town)	В	No	Calculation Yes	Inside Pole	154.00 - 5.00	3	No Ice 1/2" Ice 1" Ice	0.00 0.00 0.00	0.54 0.54 0.54
1-1/4" Hybrid	В	No	Yes	Inside Pole	150.00 - 5.00	4	No Ice	0.00	1.30

All Points Technology 567 Vauxhall St. Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935

Job		Page
	153' Monopole Tower	2 of 10
Project		Date
	CT141_14040 New Milford	15:22:13 08/18/23
Client	VzW Site #467734; New Milford West	Designed by
		AMA

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/fi	plf
fiber-power cable							1/2" Ice	0.00	1.30
(Sprint)							1" Ice	0.00	1.30
1 5/8	В	No	Yes	Inside Pole	150.00 - 5.00	9	No Ice	0.00	1.04
(Sprint)							1/2" Ice	0.00	1.04
							1" Ice	0.00	1.04
6x12 hybrid	В	No	Yes	Inside Pole	140.00 - 5.00	2	No Ice	0.00	1.88
(T-Mobile)							1/2" Ice	0.00	1.88
							1" Ice	0.00	1.88
1 5/8	В	No	Yes	Inside Pole	130.00 - 5.00	6	No Ice	0.00	1.04
(Verizon Wireless)							1/2" Ice	0.00	1.04
							l" Ice	0.00	1.04
12x24 LI	В	No	Yes	Inside Pole	130.00 - 5.00	1	No Ice	0.00	3.04
(Verizon Wireless)							1/2" Ice	0.00	3.04
							1" Ice	0.00	3.04
1 5/8	В	No	Yes	Inside Pole	120.00 - 5.00	12	No Ice	0.00	1.04
(AT&T)							1/2" Ice	0.00	1.04
							l" Ice	0.00	1.04
5/16" Fiberoptic	C	No	Yes	Inside Pole	120.00 - 5.00	1	No Ice	0.00	0.25
cable							1/2" Ice	0.00	0.25
(AT&T)							1" Ice	0.00	0.25
3/4" power	C	No	Yes	Inside Pole	120.00 - 5.00	2	No Ice	0.00	0.58
(AT&T)							1/2" Ice	0.00	0.58
							1" Ice	0.00	0.58
3/8" safety cable	Α	No	Yes	CaAa (Out	154.00 - 5.00	1	No Ice	0.04	0.22
				Of Face)			1/2" Ice	0.14	0.83
							1" Ice	0.24	1.98

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			fi fi fi	0	ft		ft²	ft²	lb
5'x4 1/2" Pipe Mount	В	From Face	0.00	0.0000	156.00	No Ice	1.48	1.48	53.90
(Motorola)			0.00			1/2" Ice	2.08	2.08	69.94
			2.00			1" Ice	2.40	2.40	89.65
5'x4 1/2" Pipe Mount	C	From Face	0.00	0.0000	156.00	No Ice	1.48	1.48	53.90
(Motorola)			0.00			1/2" Ice	2.08	2.08	69.94
			2.00			1" Ice	2.40	2.40	89.65
BA40-41-DIN	A	From Leg	1.00	0.0000	154.00	No Ice	0.15	0.15	36.00
(Town)			0.00			1/2" Ice	0.22	0.22	38.07
			7.00			1" Ice	0.30	0.30	41.13
5'x4 1/2" Pipe Mount	Α	From Leg	1.00	0.0000	154.00	No Ice	1.48	1.48	53.90
(Town)			0.00			1/2" Ice	2.08	2.08	69.94
			2.00			1" Ice	2.40	2.40	89.65
Valmont Uni-Tri bracket	Α	None		0.0000	154.00	No Ice	1.75	1.75	29.00
(Town)						1/2" Ice	1.94	1.94	30.60
						1" Ice	2.13	2.13	32.30
DT465B-2XR	Α	From Face	4.00	0.0000	150.00	No Ice	9.10	5.97	63.00
(Sprint)			0.00			1/2" Ice	9.56	6.43	121.00
			0.00			1" Ice	10.04	6.90	185.29
DT465B-2XR	В	From Face	4.00	0.0000	150.00	No Ice	9.10	5.97	63.00
(Sprint)			0.00			1/2" Ice	9.56	6.43	121.00
			0.00			1" Ice	10.04	6.90	185.29
DT465B-2XR	С	From Face	4.00	0.0000	150.00	No Ice	9.10	5.97	63.00

Job		Page
JOB	153' Monopole Tower	3 of 10
Project	CT141_14040 New Milford	Date 15:22:13 08/18/23
Client	VzW Site #467734; New Milford West	Designed by AMA

(Sprint) APXVSPP18-C-A20 (Sprint) APXVSPP18-C-A20	Leg A B	From Face	Lateral Vert fi fi ft 0.00 0.00 4.00	•	ft		ft²	ft²	lЬ
APXVSPP18-C-A20 (Sprint) APXVSPP18-C-A20		From Face	ft ft ft 0.00 0.00	•	ft		ft^2	ft²	11
APXVSPP18-C-A20 (Sprint) APXVSPP18-C-A20		From Face	0.00 0.00					<i>J</i> .	ID
APXVSPP18-C-A20 (Sprint) APXVSPP18-C-A20		From Face	0.00			1/2" Ice	9.56	6.43	121.0
(Sprint) APXVSPP18-C-A20		From Face				1" Ice	10.04	6.90	185.2
(Sprint) APXVSPP18-C-A20		From Face		0.0000	150.00	No Ice	8.02	5.81	68.00
APXVSPP18-C-A20	В		0.00	0.0000	150.00	1/2" Ice	8.48	6.27	119.9
	В		0.00			I" Ice	8.94	6.73	178.1
	Б	From Face	4.00	0.0000	150.00	No Ice	8.02	5.81	68.0
		From Face	0.00	0.0000	100.00	1/2" Ice	8.48	6.27	119.9
(Sprint)			0.00			1" Ice	8.94	6.73	178.1
ADVITIONDING AND	С	From Face	4.00	0.0000	150.00	No Ice	8.02	5.81	68.0
APXVSPP18-C-A20	C	Pioni Pacc	0.00	0.000		1/2" Ice	8.48	6.27	119.9
(Sprint)			0.00			1" Ice	8.94	6.73	178.1
TD-RRH8x20-25	Α	From Face	3.50	0.0000	150.00	No Ice	4.05	1.53	75.0
(Sprint)	11	1100111200	0.00			1/2" Ice	4.30	1.71	102.1
(Sprint)			0.00			1" Ice	4.56	1.90	132.8
TD-RRH8x20-25	В	From Face	3.50	0.0000	150.00	No Ice	4.05	1.53	75.0
(Sprint)			0.00			1/2" Ice	4.30	1.71	102.1
(Opinit)			0.00			1" Ice	4.56	1.90	132.8
TD-RRH8x20-25	С	From Face	3.50	0.0000	150.00	No Ice	4.05	1.53	75.0 102.1
(Sprint)			0.00			1/2" Ice	4.30	1.71	132.8
(-1 /			0.00		4 = 0 00	1" Ice	4.56	1.90 2.49	90.0
ALU RRH4x40-1900	Α	From Face	3.50	0.0000	150.00	No Ice	3.26	2.49	121.2
(Sprint)			0.00			1/2" Ice	3.48 3.72	2.70	156.
			0.00	0.0000	1.50.00	1" Ice No Ice	3.72	2.49	90.0
ALU RRH4x40-1900	В	From Face	3.50	0.0000	150.00	1/2" Ice	3.48	2.70	121.3
(Sprint)			0.00			1" Ice	3.72	2.91	156.
			0.00	0.0000	150.00	No Ice	3.26	2.49	90.0
ALU RRH4x40-1900	С	From Face	3.50	0.0000	130.00	1/2" Ice	3.48	2.70	121.
(Sprint)			0.00			1" Ice	3.72	2.91	156.
		г Б	0.00 3.50	0.0000	150.00	No Ice	2.13	1.79	53.0
(2) FD-RRH-2x50-800	A	From Face	0.00	0.0000	150.00	1/2" Ice	2.32	1.96	74.3
(Sprint)			0.00			1" Ice	2.51	2.14	98.6
	В	From Face	3.50	0.0000	150.00	No Ice	2.13	1.79	53.0
(2) FD-RRH-2x50-800	Б	FIUIII Face	0.00	0,000		1/2" Ice	2.32	1.96	74.3
(Sprint)			0.00			1" Ice	2.51	2.14	98.6
(2) ED DDII 250 900	С	From Face	3.50	0.0000	150.00	No Ice	2.13	1.79	53.0
(2) FD-RRH-2x50-800	C	110M 1 400	0.00			1/2" Ice	2.32	1.96	74.3
(Sprint)			0.00			1" Ice	2.51	2.14	98.6
EEI 10' T-Amn	Α	None		0.0000	150.00	No Ice	10.54	10.54	336.
(Sprint)						1/2" Ice	14.45	14.45	412.0
(Sprint)						1" Ice	18.36	18.36	488.0
EEI 10' T-Arm	В	None		0.0000	150.00	No Ice	10.54	10.54	336.0
(Sprint)						1/2" Ice	14.45	14.45	412.0
()						1" Ice	18.36	18.36	488.0
EEI 10' T-Arm	C	None		0.0000	150.00	No Ice	10.54	10.54	336.0 412.0
(Sprint)						1/2" Ice	14.45 18.36	14.45 18.36	488.0
					1.40.00	1" Ice	6.08	2.00	25.0
APX16DWV-16DWVS	Α	From Face	3.00	0.0000	140.00	No Ice 1/2" Ice	6.44	2.33	56.3
(T-Mobile)			6.00			1/2" Ice	6.80	2.66	92.3
•			0.00	0.000	140.00	No Ice	6.08	2.00	25.0
APX16DWV-16DWVS	В	From Face	3.00	0.0000	140.00	1/2" Ice	6.44	2.33	56.3
(T-Mobile)			6.00			1" Ice	6.80	2.66	92.3
	_	, , , , , , , , , , , , , , , , , , ,	0.00	0.0000	140.00	No Ice	6.08	2.00	25.0
APX16DWV-16DWVS	С	From Face	3.00	0.0000	1-0.00	1/2" Ice	6.44	2.33	56.3
(T-Mobile)			6.00 0.00			1" Ice	6.80	2.66	92.3
APXVAARR 24 43	A	From Face	3.00	0.0000	140.00	No Ice	20.24	8.89	154.0

Job		Page
	153' Monopole Tower	4 of 10
Project	07111 11010 11 11010	Date
	CT141_14040 New Milford	15:22:13 08/18/23
Client	V-16/ Cita #467724. No	Designed by
	VzW Site #467734; New Milford West	AMA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weigh
	Leg		Laterat Vert						
			ft	0	ft		ft²	ft²	lb
			ft ft		-		v	,	
(T-Mobile)			-6.00			1/2" Ice	20.89	9.49	266.59
			0.00			I" Ice	21.54	10.09	387.72
APXVAARR 24_43	В	From Face	3.00	0.0000	140.00	No Ice	20.24	8.89	154.00
(T-Mobile)			-6.00			1/2" Ice	20.89	9.49	266.59
APXVAARR 24 43	С	F F	0.00	0.0000		1" Ice	21.54	10.09	387.7
(T-Mobile)	C	From Face	3.00 -6.00	0.0000	140.00	No Ice	20.24	8.89	154.00
(1 modile)			0.00			1/2" Ice 1" Ice	20.89 21.54	9.49 10.09	266.55
AIR 6449 B41	Α	From Face	3.00	0.0000	140.00	No Ice	5.68	2.49	387.72 128.00
(T-Mobile)			-2.00	0.0000	140.00	1/2" Ice	5.98	2.72	167.12
			0.00			1" Ice	6.29	2.95	210.4
AIR 6449 B41	В	From Face	3.00	0.0000	140.00	No Ice	5.68	2.49	128.00
(T-Mobile)			-2.00			1/2" Ice	5.98	2.72	167.13
			0.00			1" Ice	6.29	2.95	210.4
AIR 6449 B41	C	From Face	3.00	0.0000	140.00	No Ice	5.68	2.49	128.00
(T-Mobile)			-2.00			1/2" Ice	5.98	2.72	167.12
D - 4: 4424 D25			0.00			1" Ice	6.29	2.95	210.46
Radio 4424 B25	A	From Face	3.00	0.0000	140.00	No Ice	1.86	1.32	46.00
(T-Mobile)			-6.00			1/2" Ice	2.03	1.47	63.87
Radio 4424 B25	В	From Food	0.00	0.0000	1.40.00	1" Ice	2.20	1.62	84.50
(T-Mobile)	ь	From Face	3.00	0.0000	140.00	No Ice	1.86	1.32	46.00
(1-Modic)			-6.00 0.00			1/2" Ice	2.03	1.47	63.87
Radio 4424 B25	С	From Face	3.00	0.0000	140.00	1" Ice	2.20	1.62	84.50
(T-Mobile)	_	* 10 III 1 400	-6.00	0.0000	140.00	No Ice 1/2" Ice	1.86 2.03	1.32 1.47	46.00
(0.00			1" Ice	2.20	1.62	63.87 84.50
Radio 4415	Α	From Face	3.00	0.0000	140.00	No Ice	1.64	0.68	50.00
(T-Mobile)			6.00	***************************************	110100	1/2" Ice	1.80	0.79	62.41
			0.00			1" Ice	1.97	0.91	77.18
Radio 4415	В	From Face	3.00	0.0000	140.00	No Ice	1.64	0.68	50.00
(T-Mobile)			6.00			1/2" Ice	1.80	0.79	62.41
			0.00			1" Ice	1.97	0.91	77.18
Radio 4415	С	From Face	3.00	0.0000	140.00	No Ice	1.64	0.68	50.00
(T-Mobile)			6.00			1/2" Ice	1.80	0.79	62.41
Radio 4449		F 7	0.00			1" Ice	1.97	0.91	77.18
(T-Mobile)	Α	From Face	3.00	0.0000	140.00	No Ice	1.65	1.16	80.00
(1-14100110)			-6.00 0.00			1/2" Ice	1.81	1.30	96.16
Radio 4449	В	From Face	3.00	0.0000	140.00	1" Ice No Ice	1.98	1.45	114.95
(T-Mobile)		110811800	-6.00	0.0000	140.00	1/2" Ice	1.65 1.81	1.16 1.30	80.00 96.16
` /			0.00			1" Ice	1.98	1.45	114.95
Radio 4449	C	From Face	3.00	0.0000	140.00	No Ice	1.65	1.16	80.00
(T-Mobile)			-6.00		1.0.00	1/2" Ice	1.81	1.30	96.16
			0.00			I" Ice	1.98	1.45	114.95
TMA 8" x 10"	Α	From Face	3.00	0.0000	140.00	No Ice	0.67	0.26	12.00
(T-Mobile)			0.00			1/2" Ice	0.77	0.33	17.06
TD 44 OH 10"	_		0.00			1" Ice	0.88	0.41	23.67
TMA 8" x 10"	В	From Face	3.00	0.0000	140.00	No Ice	0.67	0.26	12.00
(T-Mobile)			0.00			1/2" Ice	0.77	0.33	17.06
TMA 8" x 10"	0	F F	0.00	0.0000	1.40.00	1" Ice	0.88	0.41	23.67
(T-Mobile)	С	From Face	3.00	0.0000	140.00	No Ice	0.67	0.26	12.00
(1-Monne)			0.00			1/2" Ice	0.77	0.33	17.06
EEI 10' T-Arm	Α	None	0.00	0.0000	140.00	1" Ice	0.88	0.41	23.67
(T-Mobile)	71	140116		0.0000	140.00	No Ice 1/2" Ice	10.54	10.54	336.00
()						1" Ice	14.45 18.36	14.45 18.36	412.00 488.00
EEI 10' T-Arm	В	None		0.0000	140.00	No Ice	10.54	10.54	336.00

Lab		Page
Job	153' Monopole Tower	5 of 10
Project	CT141_14040 New Milford	Date 15:22:13 08/18/23
Client	VzW Site #467734; New Milford West	Designed by AMA

C1-Mobile	ets:	Offset Type	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weigh
CF-Mobile CF-M	ert U		О	ft		ft²	ft^2	lb
EEI 10' T-Arm	t_				1/2" Ice	14.45	14.45	412.00
Monopole Sector Stabilizer						18.36	18.36	488.00
Monopole Sector Stabilizer		None	0.0000	140.00	No Ice	10.54	10.54	336.00
Monopole Sector Stabilizer		110110				14.45	14.45	412.00
Monopole Sector Statutzer						18.36	18.36	488.00
(T-Mobile) (Trice (Non Condition (Iter (Verizon Wireless)) (Non Condition (Trice) (Verizon Wireless) (Non Condition (Trice) (Verizon Wireless) (The Condition (Trice) (Verizon Wireless) (The Condition (Trice) (Trice) (Trice) (Verizon Wireless) (Trice) (Trice) (Trice) (Verizon Wireless) (Trice) (Trice) (Trice) (Trice) (Trice) (Trice) (Verizon Wireless) (Trice) (Tri		None	0.0000	140.00		9.00	9.00	35.00
2) KA-6030 mitigation filter A From Face 4.00 0.0000 130.00 No Ice 1/2"						11.50	11.50	42.50
Comparison of the Comparison of Comparison						14.00	14.00	50.00
Company Comp	00	From Face	0.0000	130.00		0.96	0.29	17.60
LNX-8513DS-A1M A From Face 4.00 0.0000 130.00 No Ice 1/2" Ice 1 Ice No Ice I/2" Ice 1 Ice I/2"	00					1.09	0.36	24.37
LNX-8513DS-A1M C From Face 4.00 0.000 130.00 No Ice 1/2" Ice 1 Ice I						1.22	0.45	32.93 75.00
(Verizon Wireless)		From Face	0.0000	130.00		14.30	11.70 12.26	177.00
LINX-8513DS-A1M						14.88 15.47	12.20	287.01
Color Colo			0.0000	120.00		14.30	11.70	75.00
Color		From Face	0.0000	130.00		14.30	12.26	177.00
LINX-8513DS-A1M (Verizon Wireless)						15.47	12.82	287.0
1/2" Ice 1 1/2" Ice			0.0000	120.00		14.30	11.70	75.00
(Verizon Wireless) (2) JMA MX06FRO660-03		From Face	0.0000	130.00		14.88	12.26	177.00
(2) JMA MX06FRO660-03						15.47	12.82	287.01
(2) JMA MX06FR060-03 (Verizon Wireless)		Б Б.	0.0000	130.00		9.87	7.34	65.00
(Verizon Wireless) (2) JMA MX06FRO660-03		From Pace	0.0000	150.00		10.34	7.78	133.84
(2) JMA MX06FRO660-03						10.82	8.24	209.18
(2) JMA MX06FR0600-03 (Verizon Wireless) (2) JMA MX06FR0660-03 (C From Face 4.00 0.000 130.00 No Ice (Verizon Wireless) (2) JMA MX06FR0660-03 (Verizon Wireless) (2) JMA MX06FR0660-03 (Verizon Wireless) (3) MT6407-77A (A From Face 4.00 0.000 130.00 No Ice (Verizon Wireless) (4) MT6407-77A (Verizon Wireless) (5) MT6407-77A (C From Face 4.00 0.0000 130.00 No Ice (Verizon Wireless) (6) MT6407-77A (C From Face 4.00 0.0000 130.00 No Ice (Verizon Wireless) (7) Il Ice MT6407-77A (C From Face 4.00 0.0000 130.00 No Ice (Verizon Wireless) (8) MT6407-77A (C From Face 4.00 0.0000 130.00 No Ice (Verizon Wireless) (9) MT6407-77A (C From Face 3.50 0.0000 130.00 No Ice (RFV01U-D1A) (Verizon Wireless) (9) MT6407-77A (C From Face 3.50 0.0000 130.00 No Ice (RFV01U-D1A) (Verizon Wireless) (1) Il Ice MT6407-77A (C From Face 3.50 0.0000 130.00 No Ice (RFV01U-D1A) (Verizon Wireless) (8) MT6407-77A (C From Face 3.50 0.0000 130.00 No Ice (RFV01U-D1A) (Verizon Wireless) (9) MT6407-77A (C From Face 3.50 0.0000 130.00 No Ice (RFV01UD2A) (Verizon Wireless) (1) Il Ice MT6407-77A (C From Face 3.50 0.0000 130.00 No Ice (RFV01UD2A) (Verizon Wireless) (1) Il Ice MT6407-77A (C From Face 3.50 0.0000 130.00 No Ice (RFV01UD2A) (Verizon Wireless) (1) Il Ice MT6407-77A (C From Face 3.50 0.0000 130.00 No Ice (RFV01UD2A) (Verizon Wireless) (1) Il Ice MT6407-77A (C From Face 3.50 0.0000 130.00 No Ice (RFV01UD2A) (Verizon Wireless) (1) Il Ice MT6407-77A (D MT6407-77A (D MT6407-77A) (D MT6407-77A (D MT6407-77A (D MT6407-77A (D MT6407-77A) (D MT6407-77A (D MT6407-77A (D MT6407-77A) (D MT6407-77A (D MT6407-77A (D MT6407-77A) (D MT6407-77A (D MT		F F	0.000	130.00		9.87	7.34	65.00
(Verizon Wireless) (2) JMA MX06FR0660-03 C From Face 4.00 0.0000 130.00 No Ice (Verizon Wireless) (RFV01U-D1A) (Verizon Wireless) (RFV01U-D2A) (Verizon Wireless) (RFV01U-		From Face	0.0000	150.00		10.34	7.78	133.84
(2) JMA MX06FR0660-03 (Verizon Wireless) (Verizon Wireless) MT6407-77A						10.82	8.24	209.18
(2) JMA MXU6FR0600-05 (Verizon Wireless) 0.00 MT6407-77A (Verizon Wireless) MT6407-77A (Ve		Erom Eage	0.000	130.00		9.87	7.34	65.00
MT6407-77A		FIGHT Pace	0.0000			10.34	7.78	133.84
MT6407-77A					1" Ice	10.82	8.24	209.18
Note		From Face	0.0000	130.00	No Ice	4.69	1.84	81.20
MT6407-77A		11011111100			1/2" Ice	4.98	2.06	110.44
MT6407-77A B From Face 4.00 0.0000 130.00 No Ice (Verizon Wireless) 0.00 0.00 1" Ice MT6407-77A C From Face 4.00 0.0000 130.00 No Ice (Verizon Wireless) 0.00 0.00 1" Ice 1" Ice B2/B66A RRHBRO49 A From Face 3.50 0.0000 130.00 No Ice (RFV01U-D1A) 0.00 0.00 130.00 No Ice 1/2" Ice (RFV01U-D1A) 0.00 0.00 130.00 No Ice 1/2" Ice (RFV01U-D1A) 0.00 0.00 130.00 No Ice 1/2" Ice (Verizon Wireless) 0.00 0.00 130.00 No Ice 1/2" Ice (Verizon Wireless) 0.00 0.00 130.00 No Ice 1/2" Ice (Verizon Wireless) 0.00 0.00 130.00 No Ice 1/2" Ice (Verizon Wireless) 0.00 0.00 130.00 No Ice 1/2" Ice						5.28	2.29	143.55
(Verizon Wireless) 0.00 1/2" Ice MT6407-77A C From Face 4.00 0.0000 130.00 No Ice (Verizon Wireless) 0.00 0.00 17" Ice 1" Ice B2/B66A RRHBRO49 A From Face 3.50 0.0000 130.00 No Ice (RFV01U-D1A) 0.00 0.00 17" Ice 1" Ice B2/B66A RRHBRO49 B From Face 3.50 0.0000 130.00 No Ice (Verizon Wireless) B2/B66A RRHBRO49 C From Face 3.50 0.0000 130.00 No Ice (RFV01U-D1A) 0.00 0.00 130.00 No Ice 1/2" Ice (Verizon Wireless) 0.00 10.00 130.00 No Ice 1/2" Ice (RFV01U-D1A) 0.00 0.00 130.00 No Ice 1/2" Ice (RFV01UD2A) 0.00 172" Ice 172" Ice 172" Ice 172" Ice (Verizon Wireless) B5/B13 RRHBR04C B From Face 3.50 0.000 <td></td> <td>From Face</td> <td>0.0000</td> <td>130.00</td> <td>No Ice</td> <td>4.69</td> <td>1.84</td> <td>81.20</td>		From Face	0.0000	130.00	No Ice	4.69	1.84	81.20
MT6407-77A					1/2" Ice	4.98	2.06	110.44
M1640/-/7A C From Face 1/2" Ice 1/2" Ice 1 Ice						5.28	2.29	143.55
Color Colo	00	From Face	0.0000	130.00		4.69	1.84	81.20
B2/B66A RRHBRO49 A From Face 3.50 0.0000 130.00 No Ice 1/2" I	00					4.98	2.06	110.44
1/2" Ice 1/2	00					5.28	2.29	143.55
(RFV01U-D1A) 0.00 172" Ice (Verizon Wireless) 0.00 1" Ice B2/B66A RRHBRO49 B From Face 3.50 0.0000 130.00 No Ice (RFV01U-D1A) 0.00 1" Ice 1" Ice 1" Ice 1" Ice No Ice 1/2" Ice	50	From Face	0.0000	130.00		1.88	1.25	85.00
Comparison Com						2.05	1.39	103.34
1/2" Ice 1/2				100.00		2.22	1.54	124.47 85.00
(RFV01U-D1A) 0.00 1" Ice (Verizon Wireless) 0.00 130.00 No Ice B2/B66A RRHBR049 C From Face 3.50 0.0000 130.00 No Ice (RFV01U-D1A) 0.00 1" Ice 1" Ice (Verizon Wireless) 0.00 130.00 No Ice (RFV01UD2A) 0.00 1/2" Ice (Verizon Wireless) 0.00 1" Ice B5/B13 RRHBR04C B From Face 3.50 0.0000 130.00 No Ice (RFV01UD2A) 0.00 12" Ice 1" Ice (Verizon Wireless) 0.00 130.00 No Ice B5/B13 RRHBR04C C From Face 3.50 0.0000 130.00 No Ice (Verizon Wireless) 0.00 0.00 130.00 No Ice (PFV01UD2A) 0.00 0.00 130.00 No Ice (PFV01UD2A) 0.00 0.00 130.00 No Ice (PFV01UD2A) 0.00 0.00 130.00 No Ice		From Face	0.0000	130.00		1.88	1.25 1.39	103.34
Control wireless B2/B66A RRHBRO49 C From Face 3.50 0.0000 130.00 No Ice 1/2" Ice						2.05		124.47
1/2" Ice 1/2			0.0000	120.00		2.22 1.88	1.54 1.25	85.00
(RFV01U-D1A) 0.00 1" Ice (Verizon Wireless) 0.00 130.00 No Ice B5/B13 RRHBR04C A From Face 3.50 0.0000 1/2" Ice (Verizon Wireless) 0.00 1" Ice B5/B13 RRHBR04C B From Face 3.50 0.0000 130.00 No Ice (RFV01UD2A) 0.00 1/2" Ice 1" Ice (Verizon Wireless) 0.00 1" Ice 1" Ice B5/B13 RRHBR04C C From Face 3.50 0.0000 130.00 No Ice B5/B13 RRHBR04C C From Face 3.50 0.0000 130.00 No Ice (PEV01UD2A) 0.00 0.000 130.00 No Ice		From Face	0.0000	130.00		2.05	1.39	103.34
No Ice						2.22	1.54	124.47
1/2" Ice 1/2			0.0000	120.00		1.88	1.01	82.00
(KFV01UD2A) 0.00 1" Ice (Verizon Wireless) 0.00 130.00 No Ice B5/B13 RRHBR04C 0.00 1/2" Ice (Verizon Wireless) 0.00 1" Ice B5/B13 RRHBR04C 0.00 130.00 No Ice B5/B13 RRHBR04C 0.00 130.00 No Ice (PEV01UD2A) 0.00 1/2" Ice		From Face	0.0000	130.00		2.05	1.14	98.43
(Vertizon Wireless) 8 From Face 3.50 0.0000 130.00 No Ice B5/B13 RRHBR04C 0.00 0.00 1/2" Ice (Verizon Wireless) 0.00 1" Ice B5/B13 RRHBR04C C From Face 3.50 0.0000 130.00 No Ice (PEVALIDIZA) 0.00 1/2" Ice						2.22	1.28	117.53
1/2" Ice (RFV01UD2A)		F F	ህ ህህህህ	130.00		1.88	1.01	82.00
(RFV01UD2A) 1" Ice (Verizon Wireless) 0.00 130.00 No Ice B5/B13 RRHBR04C C From Face 3.50 0.0000 130.00 No Ice (RFV01UD2A) 0.00 1/2" Ice		From Face	0.0000	150.00		2.05	1.14	98.43
(Verizon Wretess) B5/B13 RRHBR04C C From Face 3.50 0.0000 130.00 No Ice (VERVOLUTION 0.000 1/2" Ice						2.22	1.28	117.53
(PEVOLID2A) 0.00 1/2" Ice		Erom Foso	0 0000	130.00		1.88	1.01	82.00
		FIOIII FACE	0.0000			2.05	1.14	98.43
(NG ************************************					1" Ice	2.22	1.28	117.53
(Verizon Wireless)		None	0.0000	130.00		4.06	3.10	38.00

All Points Technology 567 Vauxhall St. Ext., Suite 311

Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935

Job		Page
	153' Monopole Tower	6 of 10
Project		Date
	CT141_14040 New Milford	15:22:13 08/18/23
Client		Designed by
	VzW Site #467734; New Milford West	AMA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C₄A₄ Side	Weigh
			ft ft ft	o	ft		ft²	ft^2	lb
(Verizon Wireless)						1/2" Ice	4.32	3.34	74.49
EEL10LT A		2.7				1" Ice	4.58	3.58	114.97
EEI 10' T-Arm w/ Reinforcements	Α	None		0.0000	128.00	No Ice	13.50	13.50	500.00
(Verizon Wireless)						1/2" Ice	17.00	17.00	650.00
EEI 10' T-Arm w/	С	None		0.0000	120.00	1" Ice	20.50	20.50	800.00
Reinforcements	C	None		0.0000	128.00	No Ice 1/2" Ice	13.50 17.00	13.50 17.00	500.00
(Verizon Wireless)						1" Ice	20.50	20.50	650.00 800.00
EEI 10' T-Arm w/	С	None		0.0000	128.00	No Ice	13.50	13.50	500.00
Reinforcements		110110		0.0000	120.00	1/2" Ice	17.00	17.00	650.00
(Verizon Wireless)						1" Ice	20.50	20.50	800.00
7770.00	Α	From Face	3.00	0.0000	120.00	No Ice	5.51	2.93	35.00
(AT&T)			-2.00	0,000	120.00	1/2" Ice	5.87	3.27	67.63
			0.00			1" Ice	6.23	3.63	105.06
7770.00	В	From Face	3.00	0.0000	120.00	No Ice	5.51	2.93	35.00
(AT&T)			-2.00			1/2" Ice	5.87	3.27	67.63
			0.00			1" Ice	6.23	3.63	105.06
7770.00	C	From Face	3.00	0.0000	120.00	No Ice	5.51	2.93	35.00
(AT&T)			-2.00			1/2" Ice	5.87	3,27	67.63
			0.00			1" Ice	6.23	3.63	105.0€
(2) HPA-65R-BUU-H6	A	From Face	3.00	0.0000	120.00	No Ice	9.66	6.45	55.00
(AT&T)			0.00			1/2" Ice	10.13	6.91	117.99
			0.00			1" Ice	10.61	7.38	187.38
(2) HPA-65R-BUU-H6	В	From Face	3.00	0.0000	120.00	No Ice	9.66	6.45	55.00
(AT&T)			0.00			1/2" Ice	10.13	6.91	117.99
(2) IID A CED DITTIIC	0	F 7	0.00			1" Ice	10.61	7.38	187.38
(2) HPA-65R-BUU-H6	С	From Face	3.00	0.0000	120.00	No Ice	9.66	6.45	55.00
(AT&T)			0.00			1/2" Ice	10.13	6.91	117.99
800-10965	Α	From Face	0.00	0.0000	120.00	1" Ice	10.61	7.38	187.38
(AT&T)	A	From Face	3.00 2.00	0.0000	120.00	No Ice	13.81	5.83	109.00
(Alter)			0.00			1/2" Ice 1" Ice	14.35	6.32 6.82	185.53
800-10965	В	From Face	3.00	0.0000	120.00	No Ice	14.89 13.81	5.83	269.11 109.00
(AT&T)		1101111111100	2.00	0.0000	120.00	1/2" Ice	14.35	6.32	185.53
(111001)			0.00			1" Ice	14.89	6.82	269.11
800-10966	С	From Face	3.00	0.0000	120.00	No Ice	17.36	7.50	117.00
(AT&T)			2.00	0.000	120100	1/2" Ice	17.99	8.09	209.18
			0.00			1" Ice	18.63	8.69	309.51
LGP2140X TMA	A	From Face	3.00	0.0000	120.00	No Ice	1.08	0.36	20.00
(AT&T)			0.00			1/2" Ice	1.21	0.45	27.13
			0.00			1" Ice	1.35	0.56	36.14
LGP2140X TMA	В	From Face	3.00	0.0000	120.00	No Ice	1.08	0.36	20.00
(AT&T)			0.00			1/2" Ice	1.21	0.45	27.13
			0.00			1" Ice	1.35	0.56	36.14
LGP2140X TMA	С	From Face	3.00	0.0000	120.00	No Ice	1.08	0.36	20.00
(AT&T)			0.00			1/2" Ice	1.21	0.45	27.13
D' DDIIC 11			0.00			1" Ice	1.35	0.56	36.14
Ericsson RRUS-11	A	From Face	1.00	0.0000	120.00	No Ice	2.79	1.02	55.00
(AT&T)			2.00			1/2" Ice	3.00	1.16	75.86
Ericsson RRUS-11	В	From Foor	0.00	0.0000	120.00	1" Ice	3.21	1.30	99.77
(AT&T)	D	From Face	1.00	0.0000	120.00	No Ice	2.79	1.02	55.00
(AIGI)			2.00 0.00			1/2" Ice	3.00	1.16	75.86
Ericsson RRUS-11	С	From Face	1.00	0.0000	120.00	1" Ice	3.21	1.30	99.77
(AT&T)	0	1 Tom Pace	2.00	0.0000	120.00	No Ice 1/2" Ice	2.79	1.02	55.00
()			0.00			1" Ice	3.00 3.21	1.16	75.86 99.77
			U.UU			" Ice		1.30	

Job		Page
	153' Monopole Tower	7 of 10
Project	CT141_14040 New Milford	Date 15:22:13 08/18/23
Client	VzW Site #467734; New Milford West	Designed by AMA

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	-71	Lateral Vert						
			ft	0	ft		ft²	ft²	lb
			ft ft						
(AT&T)			2.00			1/2" Ice	2.95	1.86	70.00
,			0.00			1" Ice	3.18	2.05	110.00 50.00
(2) Ericsson RRUS-32	В	From Face	1.00	0.0000	120.00	No Ice	2.73 2.95	1.67 1.86	70.00
(AT&T)			2.00			1/2" Ice 1" Ice	3.18	2.05	110.00
	_		0.00	0.0000	120.00	No Ice	2.73	1.67	50.00
(2) Ericsson RRUS-32	C	From Face	1.00	0.0000	120.00	1/2" Ice	2.95	1.86	70.00
(AT&T)			2.00 0.00			1" Ice	3.18	2.05	110.00
D 11 1106		From Face	1.00	0.0000	120.00	No Ice	1.63	0.72	50.00
Radio 4426	Α	From Face	2.00	0.0000	120.00	1/2" Ice	1.79	0.84	62.72
(AT&T)			0.00			1" Ice	1.95	0.96	77.82
Radio 4426	В	From Face	1.00	0.0000	120.00	No Ice	1.63	0.72	50.00
(AT&T)	Ь	110m1 acc	2.00			1/2" Ice	1.79	0.84	62.72
(AI&I)			0.00			1" Ice	1.95	0.96	77.82
Radio 4426	С	From Face	1.00	0.0000	120.00	No Ice	1.63	0.72	50.00
(AT&T)	Ü		2.00			1/2" Ice	1.79	0.84	62.72
(11141)			0.00			1" Ice	1.95	0.96	77.82
(2) Radio 4478	Α	From Face	1.00	0.0000	120.00	No Ice	1.86	1.06	65.00
(AT&T)			2.00			1/2" Ice	2.03	1.20	80.96
()			0.00			1" Ice	2.20	1.34	99.56
(2) Radio 4478	В	From Face	1.00	0.0000	120.00	No Ice	1.86	1.06	65.00
(AT&T)			2.00			1/2" Ice	2.03	1.20	80.96
,			0.00		1.152	1" Ice	2.20	1.34	99.56
(2) Radio 4478	C	From Face	1.00	0.0000	120.00	No Ice	1.86	1.06	65.00
(AT&T)			2.00			1/2" Ice	2.03	1.20 1.34	80.96 99.56
			0.00		100.00	1" Ice	2.20	1.19	30.00
Raycap DC6-48-60-18-8F	Α	From Face	0.50	0.0000	120.00	No Ice 1/2" Ice	1.19 1.37	1.19	44.34
squid			0.00			1" Ice	1.56	1.56	60.93
(AT&T)	_		0.00	0.0000	120.00	No Ice	1.19	1.19	30.00
Raycap DC6-48-60-18-8F	В	From Face	0.50	0.0000	120.00	1/2" Ice	1.37	1.37	44.34
squid			0.00			1" Ice	1.56	1.56	60.93
(AT&T)		F . F	0.00 0.50	0.0000	120.00	No Ice	1.19	1.19	30.00
Raycap DC6-48-60-18-8F	C	From Face	0.00	0.0000	120.00	1/2" Ice	1.37	1.37	44.34
squid			0.00			1" Ice	1.56	1.56	60.93
(AT&T)	Α.	None	0.00	0.0000	120.00	No Ice	10.54	10.54	336.00
EEI 10' T-Arm	A	TVOIC		0.0000		1/2" Ice	14.45	14.45	412.00
(AT&T)						1" Ice	18.36	18.36	488.00
EEI 10' T-Arm	В	None		0.0000	120.00	No Ice	10.54	10.54	336.00
(AT&T)	D	140110				1/2" Ice	14.45	14.45	412.00
(A1&1)						1" Ice	18.36	18.36	488.00
EEI 10' T-Arm	С	None		0.0000	120.00	No Ice	10.54	10.54	336.00
(AT&T)	Ü	21000				1/2" Ice	14.45	14.45	412.00
(AI&I)						1" Ice	18.36	18.36	488.00
Pine branches large (EEI)	С	None		0.0000	150.00	No Ice	90.00	90.00	1500.0
Time oranenes image (222)						1/2" Ice	130.00	130.00	1900.0
						1" Ice	170.00	170.00	2300.0
Pine branches large (EEI)	C	None		0.0000	140.00	No Ice	90.00	90.00	1500.0
						1/2" Ice	130.00	130.00	1900.0
					100.00	1" Ice	170.00	170.00	2300.0
Pine branches large (EEI)	C	None		0.0000	130.00	No Ice	90.00	90.00	1500.0
* '						1/2" Ice	130.00	130.00	1900.0 2300.0
				0.0000	120.00	1" Ice	170.00	170.00	1500.0
Pine branches large (EEI)	С	None		0.0000	120.00	No Ice	90.00	90.00 130.00	1900.0
						1/2" Ice 1" Ice	130.00 170.00	170.00	2300.00
				0.0000	110.00	No Ice	90.00	90.00	1500.00
Pine branches large (EEI)	C	None		0.0000	110.00	TAO TOE	70.00	70.00	1500.00

All Points Technology 567 Vauxhall St. Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935

Job		Page
	153' Monopole Tower	8 of 10
Project		Date
	CT141_14040 New Milford	15:22:13 08/18/23
Client	VzW Site #467734; New Milford West	Designed by AMA

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
			fi fi fi	o	fi		ſt²	ft²	lb
						1/2" Ice	130.00	130.00	1900.00
						1" Ice	170.00	170.00	2300.00
Pine branches large (EEI)	C	None		0.0000	100.00	No Ice	90.00	90.00	1500.00
						1/2" Ice	130.00	130.00	1900.00
						1" Ice	170.00	170.00	2300.00
Pine branches large (EEI)	C	None		0.0000	90.00	No Ice	90.00	90.00	1500.00
						1/2" Ice	130.00	130.00	1900.00
						1" Ice	170.00	170.00	2300.00
ine branches large (EEI)	С	None		0.0000	80.00	No Ice	90.00	90.00	1500.00
						1/2" Ice	130.00	130.00	1900.00
						1" Ice	170.00	170.00	2300.00

	Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weigh
				ft	•	0	ft	ft		ft²	lb
2' HP dish	В	Paraboloid w/Shroud (HP)	From Leg	1.00 0.00 0.00	Worst		156.00	2.00	No Ice 1/2" Ice 1" Ice	3.14 3.41 3.68	50.00 67.50 85.00
3' HP dish	С	Paraboloid w/Shroud (HP)	From Leg	1.00 0.00 0.00	Worst		156.00	3.00	No Ice 1/2" Ice 1" Ice	7.07 7.47 7.86	75.00 113.33 153.33

Solution Summary

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
Ll	154 - 134.83	24.482	50	1.3698	0.0012
L2	139.16 - 89.16	20.248	50	1.3437	0.0008
L3	94.83 - 44.54	9.217	50	0.9351	0.0003
L4	51.46 - 1	2.645	50	0.4808	0.0001

Critical Deflections and Radius of Curvature - Service Wind

Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
	Load				Curvature
	Comb.	in	0	۰	ft
2' HP dish	50	24.482	1.3698	0.0012	38289
BA40-41-DIN	50	24.482	1.3698	0.0012	38289
DT465B-2XR	50	23.332	1.3665	0.0011	38289
APX16DWV-16DWVS	50	20.484	1.3467	0.0008	13890
(2) KA-6030 mitigation filter	50	17.721	1.2942	0.0006	9648
EEI 10' T-Arm w/ Reinforcements	50	17.182	1.2797	0.0006	9145
7770.00	50	15.081	1.2111	0.0005	7565
	2' HP dish BA40-41-DIN DT465B-2XR APX16DWV-16DWVS (2) KA-6030 mitigation filter EEI 10' T-Arm w/ Reinforcements	Load Comb.	Load Comb. in 2' HP dish 50 24.482 BA40-41-DIN 50 24.482 DT465B-2XR 50 23.332 APX16DWV-16DWVS 50 20.484 (2) KA-6030 mitigation filter 50 17.721 EEI 10' T-Arm w/ Reinforcements 50 17.182	Load Comb. in ° 2' HP dish 50 24.482 1.3698 BA40-41-DIN 50 24.482 1.3698 DT465B-2XR 50 23.332 1.3665 APX16DWV-16DWVS 50 20.484 1.3467 (2) KA-6030 mitigation filter 50 17.721 1.2942 EEI 10' T-Arm w/ Reinforcements 50 17.182 1.2797	Load Comb. in ° ° 2' HP dish 50 24.482 1.3698 0.0012 BA40-41-DIN 50 24.482 1.3698 0.0012 DT465B-2XR 50 23.332 1.3665 0.0011 APX16DWV-16DWVS 50 20.484 1.3467 0.0008 (2) KA-6030 mitigation filter 50 17.721 1.2942 0.0006 EEI 10' T-Arm w/ Reinforcements 50 17.182 1.2797 0.0006

All Points Technology 567 Vauxhall St. Ext., Suite 311 Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935

Job	153' Monopole Tower	Page 9 of 10
Project	CT141_14040 New Milford	Date 15:22:13 08/18/23
Client	VzW Site #467734; New Milford West	Designed by AMA

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
e.		Comb.	in	0	•	ft
110.00	Pine branches large (EEI)	50	12.601	1.1078	0.0004	6222
110.00	Pine branches large (EEI)	50	10.313	0.9944	0.0003	5284
100.00	2 ()	50	8.252	0.8807	0.0003	4867
90.00 -80.00	Pine branches large (EEI) Pine branches large (EEI)	50	6.437	0.7718	0.0002	4798

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.	ft	Deflection in	Load Comb.	0	٥
T 1	154 - 134.83	100.878	2	5.6491	0.0052
Ll	139.16 - 89.16	83.447	2	5.5424	0.0034
L2		38.003	2	3.8581	0.0012
L3	94.83 - 44.54		24	1.9833	0.0004
L4	51.46 - 1	10.907	27	1.7055	

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of Curvature
Δ.		Load Comb.	in	0	0	ft
156.00	2' HP dish	2.	100.878	5.6491	0.0052	9495
156.00	BA40-41-DIN	2	100.878	5.6491	0.0052	9495
154.00	DT465B-2XR	2	96.145	5.6354	0.0047	9495
150.00		2	84.419	5.5547	0.0035	3442
140.00	APX16DWV-16DWVS	2	73.038	5.3385	0.0026	2383
130.00	(2) KA-6030 mitigation filter	2	70.818	5.2788	0.0025	2257
128.00	EEI 10' T-Arm w/ Reinforcements	2	62.166	4.9964	0.0020	1863
120.00	7770.00	2	51.946	4.5705	0.0016	1528
110.00	Pine branches large (EEI)	2		4.1026	0.0013	1295
100.00	Pine branches large (EEI)	2	42.519		0.0013	1190
90.00	Pine branches large (EEI)	2	34.025	3.6340		1171
80.00	Pine branches large (EEI)	24	26.543	3.1844	0.0009	11/1

Base Plate Design Data

Plate	Number	Anchor Bolt	Actual	Actual	Actual	Actual	Controlling	Ratio
Thickness	of Anchor Bolts	Size	Allowable Ratio Bolt Tension	Allowable Ratio Bolt Compression	Allowable Ratio Plate Stress	Allowable Ratio Stiffener Stress	Condition	
in		in	lb	lb	ksi	ksi		
3.0000	28	2.2500	169851.11 243576.14 0.70	175354.23 404336.40 0.43	39.855 54.000 0.74		Plate	0.74

Section Capacity Table

Section	Elevation ft	Component Type	Size	Critical Element	P lb	øР _{айоw} lb	°, Capacity	Pass Fail
No. L1 L2 L3 L4	154 - 134.83 134.83 - 89.16 89.16 - 44.54 44.54 - 1	Pole Pole Pole Pole	TP30.03x25.25x0.1875 TP40.91x28.5753x0.313 TP51.28x38.8852x0.5 TP61x48.5745x0.563	1 2 3 4	-9255.50 -30312.90 -50504.60 -77043.80	1001370.00 2278110.00 4556050.00 6317920.00	18.6 76.8 69.2 72.3 Summary	Pass Pass Pass Pass

All Points Technology 567 Vauxhall St. Ext., Suite 311

Waterford, CT 06385 Phone: (860) 663-1697 FAX: (860) 663-0935

Job		Page		
	153' Monopole Tower	10 of 10		
Project	CT141_14040 New Milford	Date 15:22:13 08/18/23		
Client	VzW Site #467734; New Milford West	Designed by AMA		

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
						Pole (L2)	76.8	Pass
						Base Plate	73.8	Pass
						RATING =	76.8	Pass

 $Program\ Version\ 8.1.1.0-6/3/2021\ File: Z:/Shared/CT\ office/APT\ Files/VZ\ NE-141\ All\ Sites\ (fka\ CT)/New\ Milford\ W\ CT/New\ Milford\ W\ (Filter\ Add)-CT141_14040/Engineering/Resources/Structure/Tower\ SA/Modeling/CT141_14040\ New\ Milford\ West.eri$

All-Points Technology Corp., P.C.

567 Vauxhall St. Ext., Suite 311 Waterford, CT 06385 (860) 663-1697

Client:

Verizon Wireless

Site No.: New Milford W CT

Job:

New Milford West

Job No.: CT141_14040

Calculated By:

A. Adair

Date:

8/18/2023

Program assumes:

Mat is square in plan view.

Water table is below bottom of mat.

150 pcf

Unit weight of concrete = Unit weight of soil =

100 pcf

Monopole tower with center pier

Information to be provided:

	I also dimension ("D" or "S")	Shape =	R	
Pier is	round or square in plan dimension ("R" or "S")	•		Litera
V = Ba	ase Shear	V =	58.9	•
	Overturning moment at base	OTM =	6847	ft-kips
OTM _T	otal = Overturning Moment to be resisted	$OTM_{Total} =$	7288.75	ft-kips
	ead load weight	P =	69.3	kips
	eight from ground surface to top of mat (if buried)	H =	2.50	ft.
	Projection of pier above mat	$P_{M} =$	3.50	ft.
	ickness of mat	y =	4.00	ft.
•	dth of mat	x =	32.00	ft.
	ameter of round pier	d =	7.5	ft.
	ze of tension bars	S =	11	

Mass of tower and appurtenances (below)

Results:

Component	Mass	Moment Arm	Moment Resist.
Pier	20.9 kips	16 ft.	334.0 ft-kips
Overburden	201.8 kips	16 ft.	3228.9 ft-kips
Mat	553.0 kips	16 ft.	8847.4 ft-kips

Overturning Moment Resistance = 13519.06 ft-kips

Factor of Safety =

1.85

SATISFACTORY

Concrete Quantity =

168.9 c.y.

Colliers Engineering & Design CT, P.C. 1055 Washington Boulevard Stamford, CT 06901 203.324.0800 peter.albano@collierseng.com

Antenna Mount Analysis Report and PMI Requirements

Mount ReAnalysis

SMART Tool Project #: 10206407 **
Colliers Engineering & Design CT, P.C. Project #: 23777083

July 20, 2023

Site Information

Structure Information

Site ID:

5000243611-VZW / NEW MILFORD W CT

Site Name: Carrier Name: NEW MILFORD W CT Verizon Wireless

Address:

86 Boardman Rd.

New Milford, Connecticut 06776

Litchfield County

Latitude:

Longitude:

41.599411° -73.437478°

Tower Type:

150-Ft Monopole

Mount Type:

10.00-Ft T-Frame

FUZE ID # 17123971

Analysis Results

T-Frame: 79.1% Pass*

*Antennas and equipment to be installed in compliance with PMI Requirements of this mount analysis.

***Contractor PMI Requirements:

Included at the end of this MA report
Available & Submitted via portal at https://pmi.vzwsmart.com

For additional questions and support, please reach out to: pmisupport@colliersengineering.com

Report Prepared By: Prasanna Dhakal

Digitally signed by Derek Hartzell Oute: 2023.07.20 06:48-16-07:00

Executive Summary:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards. Any modification listed under Sources of Information was assumed completed and was included in this analysis.

This analysis is inclusive of the mount structure only and does not address the structural capacity of the supporting structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent person.

Sources of Information:

Document Type	Remarks		
Radio Frequency Data Sheet (RFDS)	Verizon RFDS Site ID: 324472, dated October 27, 2020		
Mount Mapping Report	Tower Engineering Professionals, Site ID: 20777375, dated May 20, 2021		
Previous Post-Mod Antenna Mount Analysis Report	GPD Engineering And Architecture Professional Corporation, Project #: 2021740.467734.02, dated June 30, 2021		
Antenna Mount Post-Modification Inspection Report	Maser Consulting Connecticut, Project #: 20777375A, dated February 18, 2022		
Final Loading Configuration	Filter Add Scope Provided by Verizon Wireless		

Analysis Criteria:

ANSI/TIA-222-H

2022 Connecticut State Building Code (CSBC), Effective October 1, 2022

Wind	Daran	neters:
VVIIII	Paran	IDIDIS:

Basic Wind Speed (Ultimate 3-sec. Gust), Vultilice Wind Speed (3-sec. Gust): Design Ice Thickness: Risk Category: Exposure Category: Topographic Category: Topographic Feature Considered: Topographic Method: Ground Elevation Factor, Ke:	115 mph 40 mph 1.00 in II C 1 N/A N/A 0.979
S _S : S ₁ :	0.198 g 0.055 g
Wind Speed (3-sec. Gust): Maintenance Load, Lv: Maintenance Load, Lm:	30 mph 250 lbs. 250 lbs.*

*Reduced as allowed per ANSI/TIA-222-H 16.9

Analysis Software:

Seismic Parameters:

Maintenance Parameters:

RISA-3D (V17)

Final Loading Configuration:

The following equipment has been considered for the analysis of the mounts:

Mount Elevation (ft)	Equipment Elevation (ft)	Quantity	Manufacturer	Model	Status	
(1.2)		2	KAelus	KA-6030	Added	
		6	JMA Wireless	MX06FRO660-03		
129.25	129.25	130.00	3	Samsung	MT6407-77A	
			1	Raycap	RVZDC-6627-PF-48	Retained
			3	Samsung	B2/B66A RRH-BR049	Retailled
			3	Samsung	B5/B13 RRH-BR04C	
		3	Andrew	LNX-8513DS-AIM		

It is acceptable to install up to any three (3) of the OVP model numbers listed below as required at any location other than the mount face without affecting the structural capacity of the mount. If OVP units are installed on the mount face, a mount re-analysis may be required unless replacing an existing OVP.

Model Number	Ports	AKA
DB-B1-6C-12AB-0Z	6	OVP-6
RVZDC-6627-PF-48	12	OVP-12

Standard Conditions:

- All engineering services are performed on the basis that the information provided to Colliers Engineering & Design CT, P.C. and used in this analysis is current and correct. The existing equipment loading has been applied at locations determined from the supplied documentation. Any deviation from the loading locations specified in this report shall be communicated to Colliers Engineering & Design CT, P.C. to verify deviation will not adversely impact the analysis.
- Mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.

Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping and reported in the Mount Mapping Report are assumed to be corrected and documented as part of the PMI process and are not considered in the mount analysis.

The mount analysis and the mount mapping are not a condition assessment of the mount. Proper maintenance and condition assessments are still required post analysis.

- 3. For mount analyses completed from other data sources (including new replacement mounts) and not specifically mapped in accordance with the NSTD-446 Standard, the mounts are assumed to have been properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- All member connections are assumed to have been designed to meet or exceed the load carrying capacity
 of the connected member unless otherwise specified in this report.
- The mount was checked up to, and including, the bolts that fasten it to the mount collar/attachment and threaded rod connections in collar members if applicable. Local deformation and interaction between the mount collar/attachment and the supporting tower structure are outside the scope of this analysis.

Page | 4

6. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Colliers Engineering & Design CT, P.C. is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.

7. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

Channel, Solid Round, Angle, Plate
 HSS (Rectangular)
 Pipe
 Threaded Rod
 Bolts
 ASTM A36 (Gr. 36)
 ASTM 500 (Gr. B-46)
 ASTM A53 (Gr. B-35)
 F1554 (Gr. 36)
 ASTM A325

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Colliers Engineering & Design CT, P.C.

Analysis Results:

Component	Utilization %	Pass/Fail
Standoff Horizontal	18.9%	Pass
Face Horizontal	12.4%	Pass
Mount Pipe	26.3%	Pass
Mod Standoff Horizontal	32.8%	Pass
Mod Face Horizontal	32.1%	Pass
Mount Connection (Bolt)	14.6%	Pass
Mount Connection (Plate)	79.1%	Pass

Structure Rating – (Controlling Utilization of all Components)	79.1%
	THE REPORT OF THE PARTY OF THE

Mount Steel (EPA)a per ANSI/TIA-222-H Section 2.6.11.2:

lce luc	Mount Pipes Excluded		Mount Pipes Included	
Thickness (In)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)	Front (EPA)a (Sq. Ft.)	Side (EPA)a (Sq. Ft.)
0	11.8	3.0	18.8	10.0
0.5	15.2	4.3	25.0	14.1
1	18.4	5.0	30.9	17.6

Notes

- (EPA)a values listed above may be used in the absence of more precise information
- (EPA)a values in the table above include 1 sector.
- Ka factors included in (EPA)a calculations

July 20, 2023 Site ID: 5000243611-VZW / NEW MILFORD W CT Page | 5

Requirements:

The existing mounts are **SUFFICIENT** for the final loading configuration shown in attachment 2 and do not require modifications. Additional requirements are noted below.

If required, ANSI/ASSP rigging plan review services compliant with the requirements of ANSI/TIA 322 are available for a Construction Class IV site or other. Separate review fees will apply.

Attachments:

- 1. Contractor Required Post Installation Inspection (PMI) Report Deliverables
- 2. Antenna Placement Diagrams
- 3. Mount Photos
- 4. Mount Mapping Report (for reference only)
- 5. Analysis Calculations

Mount Desktop – Post Modification Inspection (PMI) Report Requirements

Documents & Photos Required from Contractor – Passing Mount Analysis

Passing Mount Analysis requires a PMI due to a modification in loading.

Electronic pdf version of this can be downloaded at https://pmi.vzwsmart.com.

For additional questions and support, please reach out to pmisupport@colliersengineering.com

MDG #: 5000243611 SMART Project #: 10206407 Fuze Project ID: 17123971

<u>Purpose</u> – to provide SMART Tool structural vendor the proper documentation in order to complete the required Mount Desktop review of the Post Modification Inspection Report.

- Contractor is responsible for making certain the photos provided as noted below provide confirmation that the installation was completed in accordance with this Passing Mount Analysis.
- Contractor shall relay any data that can impact the performance of the mount, this includes safety issues.

Base Requirements:

- If installation will cause damage to the structure, the climbing facility, or safety climb if present or any installed system, SMART Tool vendor to be notified prior to install. Any special photos outside of the standard requirements will be indicated on the drawings.
- Provide "as built mount drawings" showing contractor's name, contact information, preparer's signature, and date. Any deviations from the drawings (Proposed modification) shall be shown.
 NOTE: If loading is different than what is conveyed in the passing mount analysis (MA) contact the SMART Tool vendor immediately.
- Each photo should be time and date stamped
- Photos should be high resolution.
- Contractor shall ensure that the safety climb wire rope is supported and not adversely
 impacted by the install of the modification components. This may involve the install of wire
 rope guides, or other items to protect the wire rope. If there is conflict, contact the SMART Tool
 engineer for recommendations.
- The PMI can be accessed at the following portal: https://pmi.vzwsmart.com

Photo Requirements:

- Photos taken at ground level
 - o Photo of Gate Signs showing the tower owner, site name, and number.
 - Overall tower structure after installation.
 - Photos of the mount after installation; if the mounts are at different rad elevations,
 pictures must be provided for all elevations that equipment was installed.
- Photos taken at Mount Elevation
 - Photos showing the safety climb wire rope above and below the mount prior to installation.
 - Photos showing the climbing facility and safety climb if present.
 - Photos showing each individual sector after installation. Each entire sector shall be in one photo to show the interconnection of members.

- These photos shall also certify that the placement and geometry of the equipment on the mount is as depicted in the antenna placement diagram in this form.
- Photos that show the model number of each antenna and piece of equipment installed per sector.

Antenna & equipment placement and Geometry Confirmation:

•	The contractor shall certify that the antenna & equipment placement and geometry is in accordance with the sketch and table as included in the mount analysis and noted below.
	☐ The contractor certifies that the photos support and the equipment on the mount is as depicted on the sketch and table included in this form and with the mount analysis provided.
	OR
	☐ The contractor notes that the equipment on the mount is not in accordance with the sketch and has noted the differences below and provided photo documentation of any alterations.
Specia	l Instructions / Validation as required from the MA or any other information the contractor
deem	s necessary to share that was identified:
<mark>lssue:</mark>	
Respo	nse:
Specia	al Instruction Confirmation:
	\square The contractor has read and acknowledges the above special instructions.
	\square All hardware listed in the Special Instructions above (if applicable) has been properly installed, and the existing hardware was inspected.
	☐ The material utilized was as specified in the SMART Tool engineering vendor Special Instructions above (if applicable) and included in the material certification folder is a packing list or invoice for these materials.
	OR
	\Box The material utilized was approved by a SMART Tool engineering vendor as an "equivalent" and this approval is included as part of the contractor submission.

Comments:		
Contractor certifies that	t the climbing facilit	ty / safety climb was not damaged prior to starting work:
☐ Yes ☐	No	
Contractor contificance		
Contractor certifies no r	new damage created	d during the current installation:
□Yes □	No	
	110	
Contractor to certify the	condition of the sa	afety climb and verify no damage when leaving the site:
☐ Safety Climb ir	Good Condition	☐ Safety Climb Damaged
Certifying Individual:		
Cottil Jing martiada.		
Company:		
Employee Name:		
Contact Phone:		
Email: Date:		
Date.		

Sector:

Mount Elev:

129.25

Structure Type: Monopole

10206407

7/19/2023

Page: 1

			Height	Width	H Dist	Pipe #	Pipe Pos V	Ant Pos	C. Ant	Ant H Off	Status	Validation
Ref#	Model		(in)	(in)	Fm L.	#	F 05 V	1 03				
A8	LNX-8513DS-AIM		72.7	11.9	116.5	1	а	Front	27	0	Retained	02/11/2022
A1	MX06FRO660-03		71.3	15.4	74.5	2	а	Front	27	8.5	Retained	02/11/2022
A1	MX06FRO660-03		71.3	15.4	74.5	2	b	Front	27	-8.5	Retained	02/11/2022
A9	KA-6030		10.6	10.9	74.5	2	а	Front	12	0	Added	500
A9	KA-6030	AND BU	10.6	10.9	74.5	2	b	Behind	12	0	Added	
R4	B2/B66A RRH-BR049		15	15	27.5	3	а	Behind	6	0	Retained	02/11/2022
R2	MT6407-77A		35.1	16.1	3.5	4	а	Front	21	0	Retained	02/11/2022
R5	B5/B13 RRH-BR04C	K I	15	15	3.5	4	a	Behind	3	0	Retained	02/11/2022
S1	RVZDC-6627-PF-48		29.5	16.5		Memb	er				Retained	02/11/2022

Sector:

7/19/2023

Colliers Engineering & Design

		Height	Width	H Dist	Pipe	Pipe	Ant	C. Ant	Ant		
Model		(in)	(in)	Fm L.	#	Pos V	Pos	Frm T.	H Off	Status	Validation
LNX-8513DS-AIM		72.7	11.9	116.5	1	а	Front	27	0	Retained	02/11/2022
MX06FRO660-03	Jane By	71.3	15.4	74.5	2	а	Front	27	8.5	Retained	02/11/2022
MX06FRO660-03		71.3	15.4	74.5	2	b	Front	27	-8.5	Retained	02/11/2022
B2/B66A RRH-BR049		15	15	27.5	3	а	Behind	6	0	Retained	02/11/2022
MT6407-77A	400 1880	35.1	16.1	3.5	4	a	Front	21	0	Retained	02/11/2022
B5/B13 RRH-BR04C		15	15	3.5	4	а	Behind	3	0	Retained	02/11/2022
	LNX-8513DS-AIM MX06FRO660-03 MX06FRO660-03 B2/B66A RRH-BR049 MT6407-77A	LNX-8513DS-AIM MX06FR0660-03 MX06FR0660-03 B2/B66A RRH-BR049 MT6407-77A	Model (in) LNX-8513DS-AIM 72.7 MX06FR0660-03 71.3 MX06FR0660-03 71.3 B2/B66A RRH-BR049 15 MT6407-77A 35.1	Model (in) (in) LNX-8513DS-AIM 72.7 11.9 MX06FR0660-03 71.3 15.4 MX06FR0660-03 71.3 15.4 B2/B66A RRH-BR049 15 15 MT6407-77A 35.1 16.1	Model (in) (in) Fm L. LNX-8513DS-AIM 72.7 11.9 116.5 MX06FRO660-03 71.3 15.4 74.5 MX06FRO660-03 71.3 15.4 74.5 B2/B66A RRH-BR049 15 15 27.5 MT6407-77A 35.1 16.1 3.5	Model (in) (in) Fm L. # LNX-8513DS-AIM 72.7 11.9 116.5 1 MX06FRO660-03 71.3 15.4 74.5 2 MX06FRO660-03 71.3 15.4 74.5 2 B2/B66A RRH-BR049 15 15 27.5 3 MT6407-77A 35.1 16.1 3.5 4	Model (in) (in) Fm L. # Pos V LNX-8513DS-AIM 72.7 11.9 116.5 1 a MX06FR0660-03 71.3 15.4 74.5 2 a MX06FR0660-03 71.3 15.4 74.5 2 b B2/B66A RRH-BR049 15 15 27.5 3 a MT6407-77A 35.1 16.1 3.5 4 a	Model (in) (in) Fm L. # Pos V Pos V LNX-8513DS-AIM 72.7 11.9 116.5 1 a Front MX06FRO660-03 71.3 15.4 74.5 2 a Front MX06FRO660-03 71.3 15.4 74.5 2 b Front B2/B66A RRH-BR049 15 15 27.5 3 a Behind MT6407-77A 35.1 16.1 3.5 4 a Front	Model (in) (in) Frm L. # Pos V Pos Description LNX-8513DS-AIM 72.7 11.9 116.5 1 a Front 27 MX06FR0660-03 71.3 15.4 74.5 2 a Front 27 MX06FR0660-03 71.3 15.4 74.5 2 b Front 27 B2/B66A RRH-BR049 15 15 27.5 3 a Behind 6 MT6407-77A 35.1 16.1 3.5 4 a Front 21	Model (in) (in) Frm L. # Pos V Pos Erm T. H Off LNX-8513DS-AIM 72.7 11.9 116.5 1 a Front 27 0 MX06FRO660-03 71.3 15.4 74.5 2 a Front 27 -8.5 MX06FRO660-03 71.3 15.4 74.5 2 b Front 27 -8.5 B2/B66A RRH-BR049 15 15 27.5 3 a Behind 6 0 MT6407-77A 35.1 16.1 3.5 4 a Front 21 0	Model (in) (in) Fm L. # Pos V Pos Fm T. H Off Status LNX-8513DS-AIM 72.7 11.9 116.5 1 a Front 27 0 Retained MX06FR0660-03 71.3 15.4 74.5 2 a Front 27 8.5 Retained MX06FR0660-03 71.3 15.4 74.5 2 b Front 27 -8.5 Retained B2/B66A RRH-BR049 15 15 27.5 3 a Behind 6 0 Retained MT6407-77A 35.1 16.1 3.5 4 a Front 21 0 Retained

Sector:

Mount Elev:

Structure Type: Monopole 129.25

10206407

7/19/2023

Colliers Engineering & Design

Page: 3

Ref#	Model	Height (in)	Width (in)	H Dist	Pipe #	Pipe Pos V	Ant Pos	C. Ant Frm T.	Ant H Off	Status	Validation
A8	LNX-8513DS-AIM	72.7	11.9	116.5	1	а	Front	27	0	Retained	02/11/2022
A1	MX06FRO660-03	71.3	15.4	74.5	2	а	Front	27	8.5	Retained	02/11/2022
A1	MX06FRO660-03	71.3	15.4	74.5	2	b	Front	27	-8.5	Retained	02/11/2022
R4	B2/B66A RRH-BR049	15	15	27.5	3	а	Behind	6	0	Retained	02/11/2022
R2	MT6407-77A	35.1	16.1	3.5	4	a	Front	21	0	Retained	02/11/2022
R5	B5/B13 RRH-BR04C	15	15	3.5	4	а	Behind	3	0	Retained	02/11/2022

	Antenna Mount Mappin	g Form (PATENT PENDING)	N/A
Tower Owner:	Unknown	Mapping Date:	/2021
Site Name:	New Milford West	Tower Type:	her
Site Number or ID:	20777375	Tower Height (FL):	50
Manning Contractor:	TEP	Mount Elevation (FL):	30

IMapping Contractor: TEP Mount Elevation (FL): 130

This antenna mapping form is the property of TES and under PATENT PENDING. The formation contained herein is considered confidential in nature and is to be used only for the specific customer it was intended for. Reproduction, transmission, publication modification or disclosure by any method is prohibited except by express written permission of TES, All means and methods are the responsibility of the contractor and the work shall be compliant with ANSI/ASSE A 10.48, OSHA, ECC, FAA and other safety requirements that may apply, TES is not warrantying the usability of the safety climb as it must be assessed prior to each use in compliance with OSHA requirements.

11) 1 0-000 C UX - 851505 AIM

2 BRA- most GER-BUEN-E (E) Rus GALLE BAS (10)

14 Common

E1: -4 ST-AFF EARON FOR Z'

Sector / Pasition	Mount Pipe Size & Length	Vertical Offset Dimension	Horizontal Offset "C1, C2, C3, etc."	Sector / Pasition	eometries [Unit = Inches] Mount Pipe Size & Length	Vertical Offset Dimension """	Horizonta Offset "C1 C2, C3, etc
A1	2.4"Øx0,154"x5'-0"	44,00	3.50	C1	2.4"Øx0.154"x5'-0"	44.00	3,50
A2	2.4"Øx0.154"x5'-0"	44.00	27.50	CZ	2.4"Øx0.154"x5'-0"	44.00	27,50
A3	2.4"Øx0.154"x6'-0"	46.00	74.50	C3	2.4"Øx0.154"x6'-0"	46.00	74.50
A4	2.4"Øx0.154"x5'-0"	44.50	116,50	C4	2.4"Øx0.154"x5'-0"	44.50	116,50
A5	E-T BAGILL THE	-		C5			
A6				C6			
B1	2.4"Øx0.154"x5'-0"	44.00	3.50	D1			
B2	2.4"Øx0.154"x5'-0"	44.00	27.50	D2			
B3	2 4"Øx0.154"x6'-0"	46.00	74.50	D3			
B4	2.4"Øx0.154"x5'-0"	44.50	115,50	D4			_
B5				D5			
B6				D6			-
	Distance between bottom ra	il and moun	t CL elevati	on (dim d). Unit is inches. See 'Mount Elev Rel' tab	for details.	0.00
	Distance from t	op of botto	m support r	ail to low	est tip of ant./eqpt. of Carrier above. (N/	Aif > 10 ft.):	60
	Distance from te	p of botton	support ra	il to high	est tip of ant./eqpt. of Carrier below. (N/	Aif > 10 ft.):	126
_					ion or comments below.		

Tower Face Width at Mount Elev. (ft.):

Tower Leg Size or Pole Shaft Diameter at Mount Elev. (in.):

'쾰.	Antia III	Antas A	Antse e	Ante g	Antsi Antsi
	<u> </u>	<u> </u>	ž	ž	Ï
					# N
Ç!	Anju _e CZ	Aprilos	Antsi	Ante:	Arits:
		04			

	Enter antenna	model.	If not label	led, enter '	'Unknown'	i.	Mountin (Units are incl	g Locations nes and de		Photos of antenna
Ants. Items	Antenna Models if Known	Width (in.)	Depth (in.)	Height (in.)	Coax Size and Qty	Antenna Center- line (FL)	Vertical Distances"b _{1a} , b _{2a} , b _{3a} , b _{1b} " (Inches)	Horlz. Offset "h" (Use "-" if Ant. Is behind)	Antenna Azimuth (Degrees)	Photo Number
					Sector A					
Antıa										
Antıb	LNX-8513DS-AIM	11.90	7.10	72.70) 1 5/8" F	132	20.00	4.00	10.00	26-28
Ant _{1c}										
Ant _{2a}	RFS Diplexor	6.25	1.00	4.75		131,667	24,00	2.00		38
Ant _{2b}	BXA-70063 6CF-EDIN-	11.30	6.00	71.00) 1 5/8" F	130.917	33.00	6.50	20.00	29-31
Antze	RFS Diplexor					131.667	24.00	-2.00		39
Anta		1								
Antah	HBXX-6517DS-A2M	12.00	6.50	75,00) 1 5/8" F	131.333	30.00	5.50	20.00	32-34
Ant _{ac}										
Ant										
Ant _{4b}	HBXX-6517D5-A2M	12.00	6.50	75.00) 1 5/8" F	132.042	20.00	5.50	10.00	35-36
Ant _{4c}	B4 RRH2x60-4R	10.60	5.70	36.60		132.042	20.00			40-42
Antsa										
Ants										
Ant _{5c}										
Ant on Standoff	RRFDC-3315-PF-48	15,70	10.30	28.90	1) 1 1/2"(ð				88-90
Ant on Standoff										
Ant on Tower										
Ant on Tower										

1		
2		
3		THE SHAME
4	and the control of th	
5		
6		
7		
8	March David	

Mapping Notes

- 1. Please report any visible structural or safety issues observed on the antenna mounts (Damaged members, loose connections, tilting mounts, safety climb issues, etc.)
- 2. If the thickness of the existing pipes or tubing can't be obtained from a general tool (such as Caliper), please use an ultrasonic measurement tool (thickness gauge) to measure the thickness.
- 3, Please create all required detail sketches of the mounts and insert them into the "Sketches" tab.
- p. riease create all required detail sketches of the mounts and insert them into the "sketches" rab.

 4. Please measure and enter the bolt sizes and types under the Members Box in the spreadsheet of the mount type.

 5. Take and label the photos of the tower, mounts, connections, antennas and all measurements. Minimum 50 photos are required.

 6. Please measure and report the size and length of all existing antenna mounting pipes.

 7. Please measure and report the antenna information for all sectors.

- 8. Don't delete or rearrange any sheet or contents of any sheet from this mapping form.

Standard Conditions

1. Obvious safety and structural issues/deficiencies noticed at the time of the mount mapping are to be reported in this mapping. However, this mount mapping is not a condition assessment of the mount.

MASER

			V3.0 Updated on 8	-31-2020
	Antenna Mount Manning	Form (PATENT PENDING)		FCC#
	remember mount mapping	Total (I ATENT I ENDING)		N/A
Fower Owner:	Unknown	Mapping Date:	5/2	0/2021
Site Name:	New Milford West	Tower Type:		Other
Site Number or ID:	20777375	Tower Height (FL):		150
Mapping Contractor:	TEP	Mount Elevation (Ft.):		130

(4) Stiffnes 13/4x3/8x4"

New Milford West Kennedy.
Billy
5-20-21
VZW MT Mappery Combo: 5000 Arm/Collar MT &: 130' MT 6tandoff: 31" A fru At. @ 60° Coix: (All inside) (12) 2" OFH (1) PUT. Ant. (1) 1/2" DF4: Deferation from MT Below (ATT): 9.2 Scheration From My alone (Table): 1'2" 2) 87210x974"x414"wigs x1/2" 3) PL 9/2* (1x/2" (4) 3/9" 15/20cHx Ford

Envelope Only Solution

Colliers Engineering & De...
Project # 23777083

Antenna Mount Analysis

SK - 1 July 19, 2023 at 3:12 PM 5000243611-VZW_MT_LOT_A_H....

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Basic Load Cases

-	BLC Description	Category	X Gr	Y Gr	Z Gr	Joint	Point	Distributed	Area(Member)	Surfa
1	Antenna D	None					39			
2	Antenna Di	None					39			
3	Antenna Wo (0 Deg)	None					39			
4	Antenna Wo (30 Deg)	None					39			
5	Antenna Wo (60 Deg)	None					39			
6	Antenna Wo (90 Deg)	None					39			
7	Antenna Wo (120 Deg)	None					39			
8	Antenna Wo (150 Deg)	None					39			
9	Antenna Wo (180 Deg)	None					39			
10	Antenna Wo (210 Deg)	None					39			
11	Antenna Wo (240 Deg)	None	- 2515.7				39			
12	Antenna Wo (270 Deg)	None					39			
13	Antenna Wo (300 Deg)	None					39			
14	Antenna Wo (330 Deg)	None					39			
15	Antenna Wi (0 Deg)	None					39			
16	Antenna Wi (30 Deg)	None			1		39	e e e e e e e e e e e e e e e e e e e	400	
17	Antenna Wi (60 Deg)	None					39			
18	Antenna Wi (90 Deg)	None					39			
19	Antenna Wi (120 Deg)	None					39			
20	Antenna Wi (150 Deg)	None					39			
21	Antenna Wi (180 Deg)	None					39			
22	Antenna Wi (210 Deg)	None				-	39			
23	Antenna Wi (240 Deg)	None					39			
24	Antenna Wi (270 Deg)	None					39			
25	Antenna Wi (300 Deg)	None					39			
26	Antenna Wi (330 Deg)	None					39			
27	Antenna Wm (0 Deg)	None					39			
28	Antenna Wm (30 Deg)	None					39			
29	Antenna Wm (60 Deg)	None					39			
30	Antenna Wm (90 Deg)	None				ĺ	39			
31	Antenna Wm (120 Deg)	None					39			
32	Antenna Wm (150 Deg)	None					39			
33	Antenna Wm (180 Deg)	None					39			
34	Antenna Wm (210 Deg)	None					39			
35	Antenna Wm (240 Deg)	None					39			
36	Antenna Wm (270 Deg)	None					39			
37	Antenna Wm (300 Deg)	None					39			
38	Antenna Wm (330 Deg)	None					39			
39	Structure D	None		-1						
40	Structure Di	None						10		
41	Structure Wo (0 Deg)	None						20		
42	Structure Wo (30 Deg)	None						20		
43	Structure Wo (60 Deg)	None						20		
44	Structure Wo (90 Deg)	None						20		
45	Structure Wo (120 Deg)	None						20		
46	Structure Wo (150 Deg)	None						20		
47	Structure Wo (180 Deg)	None						20		
48	Structure Wo (210 Deg)	None						20		
49	Structure Wo (240 Deg)	None						20		
50	Structure Wo (270 Deg)	None						20		
51	Structure Wo (300 Deg)	None						20		
52	Structure Wo (330 Deg)	None						20		
53	Structure Wi (0 Deg)	None						20		
54	Structure Wi (30 Deg)	None						20		44.5
55	Structure Wi (60 Deg)	None						20		
56	Structure Wi (90 Deg)	None			12	,		20		

: Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Basic Load Cases (Continued)

	BLC Description	Category	X Gr	Y Gr	Z Gr	Joint	Point		Area(Member)	Surfa.
57	Structure Wi (120 Deg)	None						20		
58	Structure Wi (150 Deg)	None			0.01			20		ā
59	Structure Wi (180 Deg)	None						20		
60	Structure Wi (210 Deg)	None						20	ALL LING I	
61	Structure Wi (240 Deg)	None						20		
62	Structure Wi (270 Deg)	None						20		
63	Structure Wi (300 Deg)	None						20		
64	Structure Wi (330 Deg)	None						20		
65	Structure Wm (0 Deg)	None						20		
66	Structure Wm (30 Deg)	None						20		100
67	Structure Wm (60 Deg)	None						20		
68	Structure Wm (90 Deg)	None			75		_ 3	20		
69	Structure Wm (120 Deg)	None						20		
70	Structure Wm (150 Deg)	None						20		
71	Structure Wm (180 Deg)	None						20		
72	Structure Wm (210 Deg)	None						20		
73	Structure Wm (240 Deg)	None						20		
74	Structure Wm (270 Deg)	None						20		
75	Structure Wm (300 Deg)	None						20		
76	Structure Wm (330 Deg)	None						20		
77	Lm1	None					1			
78	Lm2	None			III KU		1			
79	Lv1	None					1			
80	Lv2	None				4	1			
81	Antenna Ev	None					39			
82	Antenna Eh (0 Deg)	None					26			
83	Antenna Eh (90 Deg)	None					26			
84	Structure Ev	ELY		0422						
85	Structure Eh (0 Deg)	ELZ			1056					
86	Structure Eh (90 Deg)	ELX	.1056	1						

Load Combinations

	Description	S F	PDel.	SR	BLC	Fa	BLC	Fa		Fa			В	Fa	В	Fa	BLC	Fa	В	Fa	В	Fa	.B	. Fa
1	1.2D+1.0Wo (0 Deg)	Yes	Y		1	1.2	39	1.2	3	1	41	_1_				_	_	_	-	_	-	-	-	+
2	1.2D+1.0Wo (30 Deg	Yes	Υ	- 2/3	1	1.2	39	1.2	4	1	42	1						-		-	-		-	-
3	1.2D+1.0Wo (60 Deg	Yes	Y		1_1_	1.2	39	1.2	5	1	43	1			-	_	-		-		-	-	-	-
4	1.2D+1.0Wo (90 Deg	Yes	Y		1	1.2	39	1.2	6	1	44	_							-					+
5	1.2D+1.0Wo (120 De.	.Yes	Υ		1	1.2	39	1.2	7	1	45		_					_			-		-	+
6	1.2D+1.0Wo (150 De.	Yes	Y		1	1.2	39	1.2	8	1	46	_	-			_	-	-		-	-		-	-
7	1.2D+1.0Wo (180 De.	Yes	Y		1	1.2	39	1.2	9_	1	47		ļ.,		1			-	-		-	-	-	+
8	1.2D+1.0Wo (210 De.				1	1.2	39	1.2	10	1	48	1						-				-	-	H
9	1.2D+1.0Wo (240 De.	.Yes	Υ		1	1.2	39	1.2	11	1	49	1					-	-	-	_	-		-	+
10	1.2D+1.0Wo (270 De.	Yes	Y		1	1.2	39	1.2	12	1	50							-	-		-	-	-	-
11	1.2D+1.0Wo (300 De.	Yes	Y		1	1.2	39	1.2	13	1	51	1	-			_		-	-			-	-	-
12	1.2D+1.0Wo (330 De.	Yes	Y		1	1.2	39	1.2	14	1	52	1						-			-	-	-	-
13	1.2D + 1.0Di + 1.0Wi.	.Yes	Y		1	1.2	39	1.2	2	1	40	_	15		53			_	-		-	-	-	+
14	1.2D + 1.0Di + 1.0Wi.	Yes	Y		1	1.2	39	1.2	2	1	40		16	1	54				-	-	-	-	+	+-
15	1.2D + 1.0Di + 1.0Wi.				1	1.2	39	1.2	2	1	40		17	1	55			_	-	-	_	-	-	-
16	1.2D + 1.0Di + 1.0Wi.	Yes	Y		1	1.2	39	1.2	2	1	40		18	1	56	1					_			+
17	1.2D + 1.0Di + 1.0Wi.				1	1.2	39	1.2	2	1	40	1	19	1	57	1		_			-		-	1
18	1.2D + 1.0Di + 1.0Wi.	Yes	Y		1	1.2	39	1.2	2	1	40		20	1	58	_		_			-		-	
19	1.2D + 1.0Di + 1.0Wi.				1_1_	1.2	39	1.2	2_	1	40		21	_1_	59			-			ļ.,		-	+
20	1.2D + 1.0Di + 1.0Wi.				1	1.2	39	1.2	2	1	40		22	1	60	_	-				-		-	1
21	1.2D + 1.0Di + 1.0Wi.				1	1.2	39	1.2	2	1	40		23	1	61				_		-		-	-
22	1.2D + 1.0Di + 1.0Wi.				1	1.2	39	1.2	2	1	40	1	24	1	62	1		1	1					1

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Load Combinations (Continued)

Description S PDelSR	BLC	Fa	BLC	Fa	BI C	Fa	В	Fa	В	Fa	B	Fa	BI C	Fa	В	Fa	В	Fa	R	Fa
23 1.2D + 1.0Di + 1.0Wi. Yes Y	1	1.2	39	1.2	2	1	40	1	25	1		1		1	T	T	<u> </u>		Ü.,,	, d
24 1.2D + 1.0Di + 1.0WiYes Y	1	1.2		1.2		1	40		-	1		1	100							
25 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2		1.5			65		-	-		1		1	-	1	-	
26 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2		1.5			66		T									
27 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2		1.5			67											
28 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2			30		68											
29 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2					69											
30 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2				1	70							114				
31 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2					71	1										
32 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2					72	1								-		
33 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2					73											
34 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2					74		-	-		100	-	100			3.71	
35 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2		1.2		1.5			75						\vdash		-			
36 1.2D + 1.5Lm1 + 1.0Yes Y	1	1.2				1.5			76											
37 1.2D + 1.5Lm2 + 1.0Yes Y	1	_	39			1.5			65						-					
38 1.2D + 1.5Lm2 + 1.0 Yes Y	1		39			1.5		1	66											
39 1.2D + 1.5Lm2 + 1.0Yes Y	1	1.2				1.5			67			_				-				
40 1.2D + 1.5Lm2 + 1.0Yes Y	1	_	39						68	_										
41 1.2D + 1.5Lm2 + 1.0Yes Y	1	1.2	39	12	78	1.5	31	1	69								100			
42 1.2D + 1.5Lm2 + 1.0Yes Y	1		39					1	70						-	-	-			
43 1.2D + 1.5Lm2 + 1.0Yes Y	1		39					1	71											
44 1.2D + 1.5Lm2 + 1.0Yes Y	1	1.2	30	12	78	1.5	34	1	72	1							-			
45 1.2D + 1.5Lm2 + 1.0Yes Y	1	1.2	30	12	78	1.5	35		73											
46 1.2D + 1.5Lm2 + 1.0Yes Y	1	1.2				1.5			74											
47 1.2D + 1.5Lm2 + 1.0Yes Y	1	1.2				1.5			75	_										
48 1.2D + 1.5Lm2 + 1.0Yes Y	1		39						76											
49 1.2D + 1.5Lv1 Yes Y	1	1.2				1.5		-1	70			_								/
50 1.2D + 1.5Lv2 Yes Y	1		39																	
51 1.4D Yes Y	1		39		-00	1.0			+				-		-	-	-			
52 1.2D + 1.0Ev + 1.0E Yes Y	1	1.2		1.2	81	1	E	1	82	1	83		ELZ	1	E					
53 1.2D + 1.0Ev + 1.0EYes Y	1		39			1	E	-				5	ELZ		-	.5				
54 1.2D + 1.0Ev + 1.0E Yes Y	1	1.2		1.2			_		82				ELZ							
55 1.2D + 1.0Ev + 1.0E Yes Y	1	1.2		1.2			E	1	82	.0	83		ELZ	-	E	1				
56 1.2D + 1.0Ev + 1.0E Yes Y	1	1.2				1	Ē			- 5			ELZ		-					
57 1.2D + 1.0Ev + 1.0E Yes Y	1	1.2		1.2			E						ELZ			.5				
58 1.2D + 1.0Ev + 1.0E Yes Y	1		39				E			-1			ELZ			.0				
59 1.2D + 1.0Ev + 1.0E Yes Y	1	1.2		1.2			E						ELZ			5				
60 1.2D + 1.0Ev + 1.0E Yes Y	1	1.2		1.2			E	1					ELZ							
61 1.2D + 1.0Ev + 1.0EYes Y	1	-	39				E		82	.0			ELZ		E					
62 1.2D + 1.0Ev + 1.0EYes Y	1	1.2		1.2			_			5			ELZ							
63 1.2D + 1.0Ev + 1.0E Yes Y	1	1.2	_	1.2			E	1					ELZ			5				
64 0.9D - 1.0Ev + 1.0EhYes Y	1	.9	39		81		E		82		83		ELZ			5				
65 0.9D - 1.0Ev + 1.0EhYes Y	1		39		81								ELZ			.5				
66 0.9D - 1.0Ev + 1.0EhYes Y	1	.9	39	.9				_1	82	5	83	866	ELZ	5	Ē					125.2
67 0.9D - 1.0Ev + 1.0EhYes Y	1	.9	39	.9	81		E		82		83		ELZ		E	1				
68 0.9D - 1.0Ev + 1.0EhYes Y	1	.9	39	.9			E						ELZ		-		577			
69 0.9D - 1.0Ev + 1.0Eh Yes Y	1	.9	39	.9	81								ELZ			.5				
70 0.9D - 1.0Ev + 1.0Eh Yes Y	1	.9	39	.9						-1		.0	ELZ							
71 0.9D - 1.0Ev + 1.0EhYes Y	1	.9	39	.9		_						- 5	ELZ			5				
72 0.9D - 1.0Ev + 1.0EhYes Y	1	.9	39	.9		-1	_						ELZ					-	ra j	
73 0.9D - 1.0Ev + 1.0EhYes Y	1	.9	39	9	81		_	-1	82		83		ELZ		E	-				
74 0.9D - 1.0Ev + 1.0EhYes Y	1	.9	39		81		E	-		5			ELZ		_	_				111
75 0.9D - 1.0Ev + 1.0EhYes Y	1	.9	39	.9			E						ELZ							
		.0	00	.0	UI	7.7		-1	UZ	.000	UU	0		.000	1-10	0				

Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:__

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
1	A1	0	0	1.541667	Ó	
2	A2	0	0	3.520833	0	
3	A3	5	0	3.9375	0	
4	A4	-5	0	3.9375	0	
5	A7	4.708333	0	3.9375	0	
6	A8	4.708333	0	4.229167	0	
7	A13	-4.708333	0	3.9375	0	
8	A14	-4.708333	0	4.229167	0	
9	A15	0	0	3.9375	0	
10	A16	Ö	1.125	3.520833	0	
11	A17	0	-1.125	3.520833	0	
	A18	4.708333	3.666667	4.229167	0	
12		4.708333	-1.333333	4.229167	0	
13	A20	-4.708333	3.708333	4.229167	0	11.71
14	A24	-4.708333	-1.291667	4.229167	0	
15	A25		4.666667	2.53125	0	
16	N26	-0. -0.	1.666667	2.53125	0	
17	N27		0	3.9375	0	
18	N28	-2.708333		4.229167	0	
19	N29	-2.708333	0	4.229167	0	
20	N30	-2.708333	3.708333	4.229107	0	
21	N31	-2.708333	-1.291667	4.229167	0	
22	N32	1.208333	0	3.9375		
23	N33	1.208333	0	4.229167	0	
24	N34	1.208333	5.166667	4.229167	0	
25	N35	1.208333	-2.833333	4.229167	0	
26	N28A	0	1.5	1.541667	0	
27	N29A	0	1.5	3.520833	0	
28	N30A	5	1.5	3.9375	0	
29	N31A	-5	1.5	3.9375	0	
30	N32A	4.708333	1.5	3.9375	0	
31	N33A	4.708333	1.5	4,229167	00	
32	N34A	-4.708333	1.5	3.9375	0	
33	N35A	-4.708333	1.5	4.229167	0	
34	N36	0	1.5	3.9375	0	
35	N37	-2.708333	1.5	3.9375	0	
36	N38	-2.708333	1.5	4.229167	0	
37	N39	1.208333	1.5	3.9375	0	
	N40	1.208333	1.5	4.229167	0	
38	N40 N41	0	1.5	2.53125	0	

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List		Desig				
1	Standoff Horizontal	HSS4X4X4	None	None	A500 Gr.B RE.		-	-	+	12.8
2	Mast Pipe	PIPE 4.0	None	None	A53 Gr.B	Typical	2.96	6.82	6.82	13.6
2	Face Horizontal	HSS4X4X4	None	None	A500 Gr.B RE.	Typical	3.37	7.8	7.8	12.8
4	Mount Pipe (P2STD)	PIPE 2.0	None	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
	Mount Pipe (P2.5STD)	PIPF 2.5	None	None	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
5	Mod Standoff Horizontal	HSS3X3X4	None	None	A500 Gr.B RE.	Typical	2.44	3.02	3.02	5.08
6	Mod Face Horizontal	PIPE 3.0	None	None	A53 Gr.B	Typical	2.07	2.85	2.85	5.69

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (/	Density[k/ft^3]	Yield[ksi]	Rv	Fulksil	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B RECT	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A500 Gr.C RND	29000	11154	.3	.65	.527	46	1.4	62	1.3
7	A500 Gr.C RECT	29000	11154	.3	.65	.527	50	1.4	62	1.3
8	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
9	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
10	A913 Gr.65	29000	11154	.3	.65	.49	65	1.1	80	1.1

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(d Section/Shape	Type	Design List	Material	Design Ru
1	A1	A1	A2		Standoff Horizontal	None	None	A500 Gr	
2	A2	A3	A4		Face Horizontal	None	None	A500 Gr	Typical
3	A4	A7	A8		RIGID	None	None	RIGID	Typical
4	A7	A13	A14		RIGID	None	None	RIGID	Typical
5	A8	A2	A15		RIGID	None	None	RIGID	Typical
6	A9	A16	A17		Mast Pipe	None	None	A53 Gr.B	Typical
7	MP1A	A18	A20		Mount Pipe (P2ST	None	None	A53 Gr.B	Typical
8	MP4A	A24	A25		Mount Pipe (P2ST	None	None	A53 Gr.B	Typical
9	S1	N26	N27		Mount Pipe (P2ST	None	None	A53 Gr.B	Typical
10	M15	N28	N29		RIGID	None	None	RIGID	Typical
11	MP3A	N30	N31		Mount Pipe (P2ST	None	None	A53 Gr.B	Typical
12	M17	N32	N33		RIGID	None	None	RIGID	Typical
13	MP2A	N34	N35		Mount Pipe (P2.5	None	None	A53 Gr.B	Typical
14	M15A	N28A	N29A		Mod Standoff Hori	None	None	A500 Gr	Typical
15	M16	N30A	N31A		Mod Face Horizon	None	None	A53 Gr.B	Typical
16	<u>M17A</u>	N32A	N33A		RIGID	None	None	RIGID	Typical
17	M18	N34A	N35A		RIGID	None	None	RIGID	Typical
18	M19	N29A	N36		RIGID	None	None	RIGID	Typical
19	M20	N37	N38		RIGID	None	None	RIGID	Typical
20	M21	N39	N40		RIGID	None	None	RIGID	Typical
21	M22	N27	N41		RIGID	None	None	RIGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl Ratio Opti	Analysis	Inactive	Seismi
1	A1						Yes	** NA **		- MANAGARA CARA	None
2	A2						Yes	** NA **	CARLES	وواطيسية	None
3	A4						Yes	** NA **			None
4	A7						Yes	** NA **		DOM:	None
5	A8	0000X0					Yes	** NA **			None
6	A9						Yes	** NA **			None
7	MP1A						Yes	** NA **			None
8	MP4A						Yes	** NA **			None
9	S1						Yes	** NA **			None
10	M15		ACCUPATION OF THE PARTY OF THE				Yes	** NA **			None
11	MP3A						Yes	** NA **			None
12	M17						Yes	** NA **			None
13	MP2A						Yes	** NA **			None
14	M15A						Yes	** NA **			None
15	M16						Yes	** NA **			None
16	M17A						Yes	** NA **			None

Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:__

Member Advanced Data (Continued)

	Label	I Release	J Release	I Offsetfinl	J Offset[in]	T/C Only	Physical	Defl Ratio Opti Ar	nalysis Inactive	Seismi
17	M18	Trelease	UTTOICUO	T G HOOT THE	10000		Yes	** NA **		None
1/							Yes	** NA **	118	None
18	M19	+		203-2-2			Yes	** NA **		None
19	M20					-		** NA **		None
20	M21						Yes			None
21	M22						Yes	** NA **		None

Member Point Loads (BLC 1 : Antenna D)

Member La	bel Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 MP4A	Y	-43.55	.75
2 MP4A	My	0286	.75
3 MP4A	Mz	005	.75
4 MP4A	Y	-43.55	2.75
5 MP4A	My	0286	2.75
6 MP4A	Mz	005	2.75
7 S1	Y	-32	1
8 S1	My	.016	11
9 51	Mz	0	1
10 MP3A	Y	-84.4	.5
11 MP3A	My	.0422	.5
12 MP3A	Mz	0	.5
13 MP4A	Y	-70.3	.25
14 MP4A	My	.0352	.25
15 MP4A	Mz	0	.25
16 MP1A	Y	-13.15	.25
17 MP1A	My	0065	.25
18 MP1A	Mz	0011	.25
19 MP1A	Y	-13.15	4.25
20 MP1A	My	0065	4.25
21 MP1A	Mz	0011	4.25
22 MP2A	Y	-17.6	1
23 MP2A	My	0073	1
24 MP2A	Mz	0	1
25 MP2A	Y	-17.6	11
26 MP2A	My	.0073	1
27 MP2A	Mz	0	1
28 MP2A	Y	-30	.75
29 MP2A	My	0234	.75
30 MP2A	Mz	.0175	.75
31 MP2A	Y	-30	6
32 MP2A	My	0234	6
33 MP2A	Mz	.0175	6
34 MP2A	Y	-30	.75
35 MP2A	My	016	.75
36 MP2A	Mz	0244	.75
37 MP2A	Y	-30	6
38 MP2A	My	016	6
39 MP2A	Mz	0244	6

Member Point Loads (BLC 2 : Antenna Di)

rembe	I FUIII LUAUS IDL	O Z . Alltollia Dij		
	Member Label	Direction	Magnitude[lb,k-ft] -35,4089	Location[ft,%]
1	MP4A	Υ		
2	MP4A	My	0232	.75
3	MP4A	Mz	0041	.75
4	MP4A	Y	-35.4089	2.75
5	MP4A	My	0232	2.75

Colliers Engineering & Design

: Project # 23777083 : Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:___

Member Point Loads (BLC 2 : Antenna Di) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mz	0041	2.75
7	S1	Y	-87.4162	1
8	S1	My	.0437	
9	S 1	Mz	0	1
10	MP3A	Y	-44.6383	.5
11	MP3A	Mv	.0223	.5
12	MP3A	Mz	0	.5
13	MP4A	Y	-40.1419	.25
14	MP4A	Mv	.0201	.25
15	MP4A	Mż	0	.25
16	MP1A	Y	-60.7901	.25
17	MP1A	My	0299	.25
18	MP1A	Mz	0053	.25
19	MP1A	Y	-60.7901	4.25
20	MP1A	Mv	0299	4.25
21	MP1A	Mz	0053	4.25
22	MP2A	Y	-17.1179	1
23	MP2A	My	0071	1
24	MP2A	Mz	0	10.4
25	MP2A	Y	-17.1179	
26	MP2A	My	.0071	1
27	MP2A	Mz	0	1
28	MP2A	Y	-82.0044	.75
29	MP2A	My	0639	.75
30	MP2A	Mz	.0477	.75
31	MP2A	Y	-82.0044	6
32	MP2A	Mv	0639	6
33	MP2A	Mz	.0477	6
34	MP2A	Y	-82.0044	.75
35	MP2A	Mv	0438	.75
36	MP2A	Mz	0667	.75
37	MP2A	Y	-82.0044	6
38	MP2A	My	0438	6
39	MP2A	Mz	0667	6

Member Point Loads (BLC 3 : Antenna Wo (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	. X	0	.75
2	MP4A	Z	-73.005	.75
3	MP4A	Mx	.0085	.75
4	MP4A	X	0	2.75
5	MP4A	Z	-73.005	2.75
6	MP4A	Mx	.0085	2.75
7	S1	X	0	1
8	S1	Z	-91.577	1
9	S1	Mx	0	
10	MP3A	X	0	.5
11	MP3A	Z	-58.898	.5
12	MP3A	Mx	0	.5
13	MP4A	X	0	.25
14	MP4A	Z	-58.898	.25
15	MP4A	Mx	0	.25
16	MP1A	X	0	.25
17	MP1A	Z	-153.641	.25
18	MP1A	Mx	.0133	.25
19	MP1A	X	0	4.25

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 3 : Antenna Wo (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP1A	Z	-153.641	4.25
21	MP1A	Mx	.0133	4.25
22	MP2A	X	0	1
23	MP2A	Z	-36.361	
24	MP2A	Mx	0	LIPE A
25	MP2A	X	0	1
26	MP2A	Z	-36.361	1
27	MP2A	Mx	0	1
28	MP2A	X	0	.75
29	MP2A	Z	-89.185	.75
30	MP2A	Mx	0519	.75
31	MP2A	X	0	6
32	MP2A	7	-89.185	6
33	MP2A	Mx	0519	6
34	MP2A	X	0	.75
35	MP2A	Ž	-89.185	.75
36	MP2A	Mx	.0725	.75
37	MP2A	X	0	6
38	MP2A	Z	-89.185	6
39	MP2A	Mx	.0725	6

Member Point Loads (BLC 4 : Antenna Wo (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	34.383	.75
2	MP4A	Z	-59.553	.75
3	MP4A	Mx	0157	.75
4	MP4A	X	34.383	2.75
5	MP4A	Z	-59.553	2.75
6	MP4A	Mx	0157	2.75
7	S1	X	49.398	1
8	S1	Z	-85.561	
9	S1	Mx	.0247	1
10	MP3A	X	27.027	.5
11	MP3A	Z	-46.812	.5
12	MP3A	Mx	.0135	.5
13	MP4A	X	26.124	.25
14	MP4A	Z	-45.248	.25
15	MP4A	Mx	.0131	.25
16	MP1A	X	74.54	.25
17	MP1A	Z	-129.108	.25
18	MP1A	Mx	0255	.25
19	MP1A	X	74.54	4.25
20	MP1A	Z	-129.108	4.25
21	MP1A	Mx	0255	4.25
22	MP2A	X	14.995	1
23	MP2A	Z	-25.972	1
24	MP2A	Mx	0062	
25	MP2A	X	14.995	1
26	MP2A	Z	-25.972	1
27	MP2A	Mx	.0062	1
28	MP2A	X	43.611	.75
29	MP2A	Z	-75.537	.75
30	MP2A	Mx	0779	.75
31	MP2A	X	43.611	6
32	MP2A	Z	-75.537	6
33	MP2A	Mx	0779	6

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 4: Antenna Wo (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
34	MP2A	X	43.611	.75
35	MP2A	Z	-75.537	.75
36	MP2A	Mx	.0382	75
37	MP2A	X	43,611	6
38	MP2A	Z	-75.537	6
39	MP2A	Mx	.0382	6

Member Point Loads (BLC 5 : Antenna Wo (60 Deg))

1 2	MP4A	V	Magnitude[lb,k-ft]	
2		X	39.685	.75
	MP4A	Z	-22.912	.75
3	MP4A	Mx	0234	.75
4	MP4A	X	39.685	2.75
5	MP4A	Z	-22.912	2.75
6	MP4A	Mx	0234	2.75
7	S1	X	98.066	1
8	S1	Z	-56.618	
9	S1	Mx	.049	1
10	MP3A	X	38.42	.5
11	MP3A	Z	-22.182	.5
12	MP3A	Mx	.0192	.5
13	MP4A	X	33.731	.25
14	MP4A	Z	-19.474	.25
15	MP4A	Mx	.0169	.25
16	MP1A		107.735	.25
17	MP1A	X	-62.201	.25
18	MP1A	Mx	0476	.25
19	MP1A	X	107.735	4.25
20	MP1A	Z	-62.201	4.25
21	MP1A	Mx	0476	4.25
22	MP2A		14.937	1
23	MP2A	X	-8.624	1
24	MP2A	Mx	0062	
25	MP2A	X	14.937	1
26	MP2A	Ž	-8.624	1
27	MP2A	Mx	.0062	1
28	MP2A	X	66.337	.75
29	MP2A	Z	-38.3	.75
30	MP2A	Mx	074	.75
31	MP2A	X	66.337	6
32	MP2A	Ž	-38.3	6
33	MP2A	Mx	074	6
34	MP2A	X	66.337	.75
35	MP2A	Z	-38.3	.75
36	MP2A	Mx	0042	.75
37	MP2A	X	66.337	6
38	MP2A	Z	-38.3	6
39	MP2A	Mx	0042	6

Member Point Loads (BLC 6 : Antenna Wo (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	27.122	.75
2	MP4A	Z	0	.75
3	MP4A	Mx	0178	.75
4	MP4A	X	27.122	2.75
5	MP4A	Z	0	2.75

: Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Member Point Loads (BLC 6 : Antenna Wo (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	0178	2.75
7	S1	X	120.456	1
8	S1	Z	0	1 1
9	S1	Mx	.0602	11
10	MP3A	X	39.519	.5
11	MP3A	Z	0	.5
12	MP3A	Mx	.0198	.5
13	MP4A	X	32.299	.25
14	MP4A	Z	0	.25
15	MP4A	Mx	.0161	.25
16	MP1A	X	104.283	.25
17	MP1A	Z	0	.25
18	MP1A	Mx	0513	.25
19	MP1A	X	104.283	4.25
20	MP1A	Z	0	4.25
21	MP1A	Mx	0513	4.25
22	MP2A	X	10.877	1
23	MP2A	Ž	0	1
24	MP2A	Mx	0045	1
25	MP2A	X	10.877	1
26	MP2A	Z	0	1
27	MP2A	Mx	.0045	1
28	MP2A	X	67.94	.75
29	MP2A	Z	0	.75
30	MP2A	Mx	053	.75
31	MP2A	X	67.94	6
32	MP2A	Z	0	6
33	MP2A	Mx	053	6
34	MP2A	X	67.94	.75
	MP2A	Z	0	.75
35 36	MP2A	Mx	0362	.75
36 37	MP2A MP2A	X	67.94	6
		Z	0	6
38 39	MP2A MP2A	Mx	0362	6

Member Point Loads (BLC 7 : Antenna Wo (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	27.159	.75
2	MP4A	Z	15.681	.75
3	MP4A	Mx	0196	.75
4	MP4A	X	27.159	2.75
5	MP4A	Z	15.681	2.75
6	MP4A	Mx	0196	2.75
7	S1	X	98.066	
8	S1	Z	56.618	
9	S1	Mx	.049	1
10	MP3A	X	38.42	.5
11	MP3A	Z	22.182	.5
12	MP3A	Mx	.0192	.5
13	MP4A	X	33.731	.25
14	MP4A	Z	19.474	.25
15	MP4A	Mx	.0169	.25
16	MP1A	X	94.261	.25
17	MP1A	Z	54.422	.25
18	MP1A	Mx	0511	.25
19	MP1A	X	94.261	4.25

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_____

Member Point Loads (BLC 7 : Antenna Wo (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP1A	Z	54.422	4.25
21	MP1A	Mx	0511	4.25
22	MP2A	X	14.937	1
23	MP2A	Z	8.624	1
24	MP2A	Mx	0062	1
25	MP2A	X	14.937	1
26	MP2A	Z	8.624	1
27	MP2A	Mx	.0062	1
28	MP2A	X	60.537	.75
29	MP2A	Z	34.951	.75
30	MP2A	Mx	0269	.75
31	MP2A	X	60.537	6
32	MP2A	Z	34.951	6
33	MP2A	Mx	0269	6
34	MP2A	X	60.537	.75
35	MP2A	Z	34.951	.75
36	MP2A	Mx	0607	.75
37	MP2A	X	60.537	6
38	MP2A	Z	34.951	6
39	MP2A	Mx	0607	6

Member Point Loads (BLC 8 : Antenna Wo (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	27.151	.75
2	MP4A	Z	47.028	.75
3	MP4A	Mx	0233	.75
4	MP4A	X	27.151	2.75
5	MP4A	Z	47.028	2.75
6	MP4A	Mx	0233	2.75
7	S1	X	49.398	1
8	S1	Z	85.561	
9	S1	Mx	.0247	1
10	MP3A	X	27.027	.5
11	MP3A	Z	46.812	.5
12	MP3A	Mx	.0135	.5
13	MP4A	X	26.124	.25
14	MP4A	Z	45.248	.25
15	MP4A	Mx	.0131	.25
16	MP1A	X	66.761	.25
17	MP1A	Z	115.634	.25
18	MP1A	Mx	0429	.25
19	MP1A	X	66.761	4.25
20	MP1A	Z	115.634	4.25
21	MP1A	Mx	0429	4.25
22	MP2A	X	14.995	1
23	MP2A	Z	25.972	1
24	MP2A	Mx	0062	
25	MP2A	X	14.995	1
26	MP2A	Z	25.972	1
27	MP2A	Mx	.0062	1
28	MP2A	X	40.263	.75
29	MP2A	Z	69.737	.75
30	MP2A	Mx	.0092	.75
31	MP2A	X	40.263	6
32	MP2A	Z	69.737	6
33	MP2A	Mx	.0092	6

Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Member Point Loads (BLC 8 : Antenna Wo (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
34	MP2A	X	40,263	.75
35	MP2A	Z	69.737	75
36	MP2A	Mx	0782	.75
37	MP2A	X	40.263	6
38	MP2A	7	69.737	6
30	MP2A	Mx	0782	6

Member Point Loads (BLC 9 : Antenna Wo (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	.75
2	MP4A	Z	73.005	.75
3	MP4A	Mx	0085	.75
4	MP4A	X	0	2.75
5	MP4A	Z	73,005	2.75
6	MP4A	Mx	0085	2.75
7	S1	X	0	1
8	S1	Z	91.577	
9	S1	Mx	0	1
10	MP3A	X	0	.5
11	MP3A	Ž	58.898	.5
12	MP3A	Mx	0	.5
13	MP4A	X	0	.25
14	MP4A	Z	58.898	.25
15	MP4A	Mx	0	.25
16	MP1A	X	0	.25
17	MP1A	Ž	153.641	.25
18	MP1A	Mx	0133	.25
19	MP1A	X	0	4.25
20	MP1A	Z	153.641	4.25
21	MP1A	Mx	0133	4.25
22	MP2A	X	0	1
23	MP2A	Z	36.361	1
	MP2A	Mx	0	1
24	MP2A	X	Ö	<u> </u>
25	MP2A	Z	36.361	1
26 27	MP2A	Mx	0	1
28	MP2A	X	0	.75
	MP2A	Z	89.185	.75
29 30	MP2A	Mx	.0519	.75
	MP2A	X	0	6
31	MP2A	Z	89.185	6
		Mx	.0519	6
33	MP2A MP2A	X	0	.75
34		Z	89.185	.75
35	MP2A	Mx	0725	.75
36	MP2A	X	0	6
37	MP2A	Z	89.185	6
38 39	MP2A MP2A	Mx	0725	6

Member Point Loads (BLC 10 : Antenna Wo (210 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	X	-34.383	.75
	7	59.553	.75
	Mx	.0157	.75
	X		2.75
	7	59.553	2.75
	Member Label MP4A MP4A MP4A MP4A MP4A	Member Label Direction MP4A X MP4A Z MP4A Mx MP4A X	MP4A X -34.383 MP4A Z 59.553 MP4A Mx .0157 MP4A X -34.383

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 10 : Antenna Wo (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	.0157	2.75
7	Ş 1	X	-49.398	1
8	S1	Z	85.561	4574
9	S1	Mx	0247	1
10	MP3A	X	-27.027	.5
11	MP3A	Z	46.812	.5
12	MP3A	Mx	0135	.5
13	MP4A	X	-26.124	.25
14	MP4A	Z	45.248	.25
15	MP4A	Mx	0131	.25
16	MP1A		-74.54	.25
17	MP1A	X	129.108	.25
18	MP1A	Mx	.0255	.25
19	MP1A		-74.54	4.25
20	MP1A	X	129.108	4.25
21	MP1A	Mx	.0255	4.25
22	MP2A	X	-14.995	1
23	MP2A	Z	25.972	1
24	MP2A	Mx	.0062	
25	MP2A		-14.995	1
26	MP2A	X	25.972	1
27	MP2A	Mx	0062	1
28	MP2A	X	-43.611	.75
29	MP2A	Z	75.537	.75
30	MP2A	Mx	.0779	.75
31	MP2A	X	-43.611	6
32	MP2A	7	75.537	6
33	MP2A	Mx	.0779	6
34	MP2A	X	-43.611	.75
35	MP2A	Z	75.537	.75
36	MP2A	Mx	0382	.75
37	MP2A	X	-43.611	6
38	MP2A	Z	75.537	6
39	MP2A	Mx	0382	6

Member Point Loads (BLC 11 : Antenna Wo (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-39.685	.75
2	MP4A	Z	22.912	.75
3	MP4A	Mx	.0234	.75
4	MP4A	X	-39.685	2.75
5	MP4A	Z	22.912	2.75
6	MP4A	Mx	.0234	2.75
7	S1	X	-98.066	1
8	S1	Z	56.618	
9	S1	Mx	049	1
10	МРЗА	X	-38.42	.5
11	MP3A	Z	22.182	.5
12	MP3A	Mx	0192	.5
13	MP4A	X	-33.731	.25
14	MP4A	Z	19.474	.25
15	MP4A	Mx	0169	.25
16	MP1A	X	-107.735	.25
17	MP1A	Z	62.201	.25
18	MP1A	Mx	.0476	.25
19	MP1A	X	-107.735	4.25

Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 11 : Antenna Wo (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP1A	7	62.201	4.25
21	MP1A	Mx	.0476	4.25
22	MP2A	X	-14.937	4-24
23	MP2A	Z	8.624	1
24	MP2A	Mx	.0062	1 1
25	MP2A	X	-14.937	1
26	MP2A	Z	8.624	1
27	MP2A	Mx	0062	1
28	MP2A	X	-66.337	.75
29	MP2A	Z	38.3	.75
30	MP2A	Mx	.074	.75
31	MP2A	X	-66.337	- 6
32	MP2A	Z	38.3	6
33	MP2A	Mx	.074	6
	MP2A	X	-66.337	.75
34	MP2A		38.3	.75
35	MP2A	Mx	.0042	.75
36	MP2A	X	-66.337	6
37		Z	38.3	6
38	MP2A MP2A	Mx	.0042	6

Member Point Loads (BLC 12 : Antenna Wo (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-27.122	.75
2	MP4A	Z	0	.75
3	MP4A	Mx	.0178	.75
4	MP4A	X	-27.122	2.75
5	MP4A	Z	0	2.75
6	MP4A	Mx	.0178	2.75
7	S1	X	-120.456	1
	S1	Z	0	1
8	S1	Mx	0602	1
9	MP3A	X	-39.519	.5
10	MP3A MP3A	Z	0	.5
11 12	MP3A	Mx	-,0198	.5
	MP4A	X	-32.299	.25
13		Z	0	.25
14	MP4A	Mx	0161	.25
15	MP4A	X	-104.283	.25
16	MP1A	Z	0	.25
17	MP1A	Mx	.0513	.25
18	MP1A		-104.283	4.25
19	MP1A	X	0	4.25
20	MP1A		.0513	4.25
21	MP1A	Mx	-10.877	1
22	MP2A	<u>X</u>	-10.677	
23	MP2A	Z	.0045	1
24	MP2A	Mx		1
25	MP2A	X	-10.877	1
26	MP2A		0	1
27	MP2A	Mx	0045	.75
28	MP2A	X	-67.94	.75
29	MP2A	Z	0	.75
30	MP2A	Mx	.053	
31	MP2A	X	-67.94	6
32	MP2A	Z	0	6
33	MP2A	Mx	.053	6

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:___

Member Point Loads (BLC 12 : Antenna Wo (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
34	MP2A	X	-67.94	.75
35	MP2A	Z	0	.75
36	MP2A	Mx	.0362	75
37	MP2A	X	-67.94	6
38	MP2A	Z	0	6
38 39	MP2A	Mx	.0362	6

Member Point Loads (BLC 13 : Antenna Wo (300 Deg))

	ber Label Direction	Magnitude[lb,k-ft]	Location[ft,%]
		-27.159	75
2 N	MP4A X	-15.681	.75
3 N	MP4A Mx	.0196	.75
	1P4A X	-27.159	2.75
	1P4A Z	-15.681	2.75
	MP4A Mx	.0196	2.75
7	S1 X	-98.066	
	S1 Z	-56.618	1
	S1 Mx	049	1
	1P3A X	-38.42	.5
	1P3A Z	-22.182	.5
	1P3A Mx	0192	.5
	1P4A X	-33.731	.25
	1P4A Z	-19.474	.25
	IP4A Mx	0169	.25
	IP1A X	-94.261	.25
	IP1A Z	-54.422	.25
	IP1A Mx	.0511	.25
	IP1A X	-94.261	4.25
	IP1A Z	-54.422	4.25
	IP1A Mx	.0511	4.25
	IP2A X	-14.937	1
	IP2A Z	-8.624	1
	P2A Mx	.0062	
	IP2A X	-14.937	1
	P2A Z	-8.624	
	P2A Mx	0062	1
	P2A X	-60.537	.75
	P2A Z	-34.951	.75
	P2A Mx	.0269	.75
	P2A X	-60.537	6
	P2A Z	-34.951	6
	P2A Mx	.0269	6
	P2A X	-60.537	.75
	P2A Z	-34.951	.75
	P2A Mx	.0607	75
	P2A X	-60.537	6
	P2A Z	-34.951	6
39 M	P2A Mx	.0607	6

Member Point Loads (BLC 14 : Antenna Wo (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-27.151	.75
2	MP4A	Z	-47.028	.75
3	MP4A	Mx	.0233	.75
4	MP4A	X	-27.151	2.75
5	MP4A	Z	-47.028	2.75

Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Member Point Loads (BLC 14: Antenna Wo (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	.0233	2.75
7	S1	X	-49.398	1
8	S1	Z	-85.561	
9	S1	Mx	0247	
10	MP3A	X	-27.027	.5
11	MP3A	7	-46.812	.5
12	MP3A	Mx	0135	.5
13	MP4A	X	-26.124	.25
14	MP4A	Z	-45.248	.25
15	MP4A	Mx	0131	.25
16	MP1A	X	-66.761	.25
17	MP1A	7	-115.634	.25
18	MP1A	Mx	.0429	.25
19	MP1A	X	-66.761	4.25
20	MP1A	Ž	-115.634	4.25
21	MP1A	Mx	.0429	4.25
22	MP2A	X	-14.995	1
23	MP2A	7	-25.972	1
24	MP2A	Mx	.0062	
25	MP2A	X	-14.995	1
26	MP2A	Z	-25.972	1
27	MP2A	Mx	0062	1
28	MP2A	X	-40.263	.75
29	MP2A	Z	-69.737	.75
30	MP2A	Mx	0092	.75
31	MP2A	X	-40.263	6
32	MP2A	Ž	-69.737	6
33	MP2A	Mx	0092	6
34	MP2A	X	-40.263	.75
	MP2A	Z	-69.737	.75
35	MP2A	Mx	.0782	.75
36	MP2A	X	-40.263	6
37	MP2A	Ť Ž	-69.737	6
38 39	MP2A	Mx	.0782	6

Member Point Loads (BLC 15 : Antenna Wi (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	.75
2	MP4A	Z	-11.986	.75
3	MP4A	Mx	.0014	75
4	MP4A	X	0	2.75
5	MP4A	Z	-11.986	2.75
6	MP4A	Mx	.0014	2.75
7	S1	X	0	1
8	S1	Z	-16.518	11
9	S1	Mx	0	1
0	MP3A	X	0	.5
1	MP3A	Z	-10,277	.5
2	MP3A	Mx	0	.5
3	MP4A	X	0	.25
4	MP4A	Z	-10.277	.25
5	MP4A	Mx	0	.25
6	MP1A	X	0	.25
7	MP1A	Z	-20.512	.25
8	MP1A	Mx	.0018	.25
19	MP1A	X	0	4.25

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 15 : Antenna Wi (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP1A	Z	-20.512	4.25
21	MP1A	Mx	.0018	4.25
22	MP2A	X	0	1
23	MP2A	Z	-5.627	1
24	MP2A	Mx	0	1000
25	MP2A	X	0	1
26	MP2A	Z	-5.627	1
27	MP2A	Mx	0	1
28	MP2A	X	0	.75
29	MP2A	Z	-24.547	.75
30	MP2A	Mx	0143	.75
31	MP2A	X	0	6
32	MP2A	Z	-24.547	6
33	MP2A	Mx	0143	6
34	MP2A	X	0	.75
35	MP2A	Z	-24.547	.75
36	MP2A	Mx	.02	.75
37	MP2A	X	0	6
38	MP2A	Z	-24.547	6
39	MP2A	Mx	.02	6

Member Point Loads (BLC 16 : Antenna Wi (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	5.689	.75
2	MP4A	Z	-9.854	.75
3	MP4A	Mx	0026	.75
4	MP4A	X	5.689	2.75
5	MP4A	Z	-9.854	2.75
6	MP4A	Mx	0026	2.75
7	S1	X	8.835	1
8	S1	Z	-15.303	
9	S1	Mx	.0044	1
10	MP3A	X	4.747	.5
11	MP3A	Z	-8.222	.5
12	MP3A	Mx	.0024	.5
13	MP4A	X	4.599	.25
14	MP4A	Z	-7.965	.25
15	MP4A	Mx	.0023	.25
16	MP1A		9.977	.25
17	MP1A	X	-17.281	.25
18	MP1A	Mx	0034	.25
19	MP1A	X	9.977	4.25
20	MP1A	Z	-17.281	4.25
21	MP1A	Mx	0034	4.25
22	MP2A	X	2.372	1
23	MP2A	Z	-4.108	1
24	MP2A	Mx	000988	
25	MP2A	X	2.372	1
26	MP2A	Z	-4.108	1
27	MP2A	Mx	.000988	1
28	MP2A	X	12.012	.75
29	MP2A	Z	-20.805	.75
30	MP2A	Mx	0215	.75
31	MP2A	X	12.012	6
32	MP2A	Z	-20.805	6
33	MP2A	Mx	0215	6

: Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Member Point Loads (BLC 16: Antenna Wi (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
34	MP2A	X	12.012	.75
35	MP2A	Z	-20.805	.75
36	MP2A	Mx	.0105	.75
27	MP2A	X	12.012	6
38	MP2A	Z	-20.805	6
39	MP2A	Mx	.0105	6

Member Point Loads (BLC 17 : Antenna Wi (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	7.004	.75
2	MP4A	Z	-4.044	.75
3	MP4A	Mx	0041	.75
4	MP4A	X	7.004	2.75
5	MP4A	Z	-4.044	2.75
6	MP4A	Mx	0041	2.75
7	S1	X	17.298	
8	S1	Z	-9.987	1
9	S1	Mx	.0086	1
10	MP3A	X	6.867	.5
11	MP3A	Z	-3.965	.5
12	MP3A	Mx	.0034	.5
13	MP4A	X	6.095	.25
14	MP4A	Z	-3.519	.25
15	MP4A	Mx	.003	.25
16	MP1A	X	14.665	.25
17	MP1A	Z	-8.467	.25
18	MP1A	Mx	0065	.25
	MP1A	X	14.665	4.25
19	MP1A	Z	-8.467	4.25
20	MP1A	Mx	0065	4.25
21	MP2A	X	2.579	1 1
22		Z	-1.489	1
23	MP2A	Mx	0011	
24	MP2A	X	2.579	1
25	MP2A	Ž	-1.489	1
26	MP2A	Mx	.0011	1
27	MP2A		18.354	.75
28	MP2A	X	-10.597	.75
29	MP2A	Mx	0205	.75
30	MP2A	X	18.354	6
31	MP2A		-10.597	6
32	MP2A	Z	0205	6
33	MP2A	Mx	18.354	.75
34	MP2A	X	-10.597	.75
35	MP2A			.75
36	MP2A	Mx	0012	6
37	MP2A	X	18.354	6
38	MP2A	Z	-10.597	6
39	MP2A	Mx	0012	O.

Member Point Loads (BLC 18: Antenna Wi (90 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	X	5,404	.75
	7	0	.75
	Mx	0035	.75
	X	5.404	2.75
	Z	0	2.75
	Member Label MP4A MP4A MP4A MP4A MP4A MP4A	MP4A X MP4A Z MP4A Mx MP4A X	MP4A X 5.404 MP4A Z 0 MP4A Mx 0035 MP4A X 5.404

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:___

Member Point Loads (BLC 18: Antenna Wi (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	0035	2.75
7	S1	X	21.126	1
8	S1	Z	0	
9	S1	Mx	.0106	1
10	MP3A	X	7,147	.5
11	MP3A	Z	0	.5
12	MP3A	Mx	.0036	.5
13	MP4A	X	5.958	.25
14	MP4A	Z	0	.25
15	MP4A	Mx	.003	.25
16	MP1A	X	14.471	.25
17	MP1A	Z	0	.25
18	MP1A	Mx	0071	.25
19	MP1A	X	14.471	4.25
20	MP1A	Z	0	4.25
21	MP1A	Mx	0071	4.25
22	MP2A	X	2.094	1
23	MP2A	Z	0	1
24	MP2A	Mx	000872	3 1
25	MP2A	X	2.094	1
26	MP2A	Z	0	6.31
27	MP2A	Mx	.000872	1
28	MP2A	X	18.887	.75
29	MP2A	Z	0	.75
30	MP2A	Mx	0147	.75
31	MP2A	X	18.887	6
32	MP2A	Z	0	6
33	MP2A	Mx	0147	6
34	MP2A	X	18.887	.75
35	MP2A	Z	0	.75
36	MP2A	Mx	0101	.75
37	MP2A	X	18.887	6
38	MP2A	Ž	0	6
39	MP2A	Mx	0101	6

Member Point Loads (BLC 19 : Antenna Wi (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	5.207	.75
2	MP4A	Z	3.006	.75
3	MP4A	Mx	0038	.75
4	MP4A	X	5.207	2.75
5	MP4A	Z	3.006	2.75
6	MP4A	Mx	0038	2.75
7	S 1	X	17.298	1
8	S1	Z	9.987	1
9	S1	Mx	.0086	1
10	MP3A	X	6.867	.5
11	MP3A	Z	3.965	.5
12	MP3A	Mx	.0034	.5
13	MP4A	X	6.095	.25
14	MP4A	Z	3.519	.25
15	MP4A	Mx	.003	.25
16	MP1A	X	13.016	.25
17	MP1A	Z	7.515	.25
18	MP1A	Mx	0071	.25
19	MP1A	X	13.016	4.25

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Member Point Loads (BLC 19 : Antenna Wi (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP1A	Z	7.515	4.25
21	MP1A	Mx	0071	4.25
22	MP2A	X	2,579	
23	MP2A	Z	1.489	1
24	MP2A	Mx	0011	1
25	MP2A	X	2.579	1
26	MP2A	Z	1.489	1
27	MP2A	Mx	.0011	1
28	MP2A	X	16.809	.75
29	MP2A	Z	9.705	.75
30	MP2A	Mx	0075	.75
31	MP2A	X	16.809	6
32	MP2A	Z	9.705	6
33	MP2A	Mx	0075	6
34	MP2A	X	16.809	.75
35	MP2A	Z	9.705	.75
36	MP2A	Mx	0169	.75
37	MP2A	X	16.809	6
38	MP2A	Z	9.705	6
39	MP2A	Mx	0169	6

Member Point Loads (BLC 20 : Antenna Wi (150 Deg))

_	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	4.652	75
2	MP4A	Z	8.057	.75
3	MP4A	Mx	004	.75
4	MP4A	X	4.652	2.75
5	MP4A	Z	8.057	2.75
6	MP4A	Mx	004	2.75
7	S1	X	8,835	1
8	\$1	Z	15.303	
9	S1	Mx	.0044	11
10	MP3A	X	4.747	.5
11	MP3A	Z	8.222	.5
12	MP3A	Mx	.0024	.5
13	MP4A	X	4.599	.25
14	MP4A	Z	7.965	.25
15	MP4A	Mx	.0023	.25
	MP1A	X	9.025	.25
16	MP1A	Z	15.632	.25
17	MP1A MP1A	Mx	0058	.25
18		X	9.025	4.25
19	MP1A	Z	15.632	4.25
20	MP1A	Mx	0058	4.25
21	MP1A	X	2.372	1
22	MP2A		4.108	1
23	MP2A	Mx	000988	1
24	MP2A	X	2.372	1
25	MP2A	^	4.108	1
26	MP2A	Mx Mx	.000988	1
27	MP2A		11.12	.75
28	MP2A	X	19.26	.75
29	MP2A	Z	.0025	.75
30	MP2A	Mx		6
31	MP2A	X	11.12	6
32	MP2A	Z	19.26	6
33	MP2A	Mx	.0025	0

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:

Member Point Loads (BLC 20 : Antenna Wi (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
34	MP2A	X	11.12	.75
34 35	MP2A	Z	19.26	.75
36	MP2A	Mx	0216	75
37	MP2A	X	11.12	6
38	MP2A	Z	19.26	6
39	MP2A	Mx	0216	6

Member Point Loads (BLC 21 : Antenna Wi (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	.75
2	MP4A	Z	11.986	.75
3	MP4A	Mx	0014	.75
4	MP4A	X	0	2.75
5	MP4A	Z	11.986	2.75
6	MP4A	Mx	0014	2.75
7	S1	X	0	1
8	S1	Z	16.518	
9	S1	Mx	0	1
10	MP3A	X	0	.5
11	MP3A	Z	10.277	.5
12	MP3A	Mx	0	.5
13	MP4A	X	0	.25
14	MP4A	Z	10.277	.25
15	MP4A	Mx	0	.25
16	MP1A	X	0	.25
17	MP1A	Z	20.512	.25
18	MP1A	Mx	0018	.25
19	MP1A	X	0	4.25
20	MP1A	Z	20.512	4.25
21	MP1A	Mx	0018	4.25
22	MP2A	X	0	1
23	MP2A	Z	5.627	1
24	MP2A	Mx	0	
25	MP2A	X	0	1
26	MP2A	Z	5.627	
27	MP2A	Mx	0	1
28	MP2A	X	0	.75
29	MP2A	Z	24.547	.75
30	MP2A	Mx	.0143	.75
31	MP2A	X	0	6
32	MP2A	Z	24.547	6
33	MP2A	Mx	.0143	6
34	MP2A	X	0	.75
35	MP2A	Z	24.547	.75
36	MP2A	Mx	02	.75
37	MP2A	X	0	6
38	MP2A	Z	24.547	6
39	MP2A	Mx	02	6

Member Point Loads (BLC 22 : Antenna Wi (210 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-5.689	.75
2	MP4A	Z	9.854	.75
3	MP4A	Mx	.0026	.75
4	MP4A	X	-5.689	2.75
5	MP4A	Z	9.854	2.75

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Member Point Loads (BLC 22 : Antenna Wi (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	.0026	2.75
7	S1	X	-8.835	1
8	S1	Z	15.303	4.8361
9	S1	Mx	0044	1
10	MP3A	X	-4.747	.5
11	MP3A	Z	8.222	.5
12	MP3A	Mx	0024	.5
13	MP4A	X	-4.599	.25
14	MP4A	Z	7.965	.25
15	MP4A	Mx	0023	.25
16	MP1A	X	-9.977	.25
17	MP1A	Z	17.281	.25
18	MP1A	Mx	.0034	.25
19	MP1A	X	-9.977	4.25
20	MP1A	Ž	17.281	4.25
21	MP1A	Mx	.0034	4.25
22	MP2A	X	-2.372	1 1
23	MP2A	Z	4.108	11
24	MP2A	Mx	.000988	1
25	MP2A	X	-2.372	1
26	MP2A	Z	4.108	11
27	MP2A	Mx	000988	1
28	MP2A	X	-12.012	.75
29	MP2A	Z	20.805	.75
30	MP2A	Mx	.0215	.75
31	MP2A	X	-12.012	6
32	MP2A	Z	20.805	6
	MP2A MP2A	Mx	.0215	6
33	MP2A	X	-12.012	.75
34		Z	20.805	.75
35	MP2A	Mx	0105	.75
36	MP2A	X	-12.012	6
37	MP2A	+ <u>2</u>	20.805	6
38	MP2A MP2A	Mx	0105	6

Member Point Loads (BLC 23 : Antenna Wi (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-7.004	.75
2	MP4A	Z	4.044	.75
3	MP4A	Mx	.0041	.75
4	MP4A	X	-7.004	2.75
5	MP4A	Z	4.044	2.75
6	MP4A	Mx	.0041	2.75
7	S1	X	-17.298	1
8	S1	Z	9.987	1
9	S1	Mx	0086	1
10	MP3A	X	-6.867	.5
11	MP3A	Z	3.965	.5
12	MP3A	Mx	0034	.5
13	MP4A	X	-6.095	.25
	MP4A	Z	3.519	.25
14	MP4A	Mx	003	.25
15 16	MP1A	X	-14.665	.25
17	MP1A		8.467	.25
	MP1A	Mx	.0065	.25
18 19	MP1A	X	-14.665	4.25

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 23 : Antenna Wi (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP1A	Z	8.467	4.25
21	MP1A	Mx	.0065	4.25
22	MP2A	X	-2.579	
23	MP2A	Z	1.489	1
24	MP2A	Mx	.0011	
25	MP2A	X	-2.579	
26	MP2A	Z	1.489	
27	MP2A	Mx	0011	1
28	MP2A	X	-18.354	.75
29	MP2A	Z	10.597	.75
30	MP2A	Mx	.0205	.75
31	MP2A	X	-18.354	6
32	MP2A	Z	10.597	6
33	MP2A	Mx	.0205	6
34	MP2A	X	-18.354	.75
35	MP2A	Z	10.597	.75
36	MP2A	Mx	.0012	.75
37	MP2A	X	-18.354	6
38	MP2A	Z	10.597	6
39	MP2A	Mx	.0012	6

Member Point Loads (BLC 24 : Antenna Wi (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-5.404	.75
2	MP4A	Z	0	.75
3	MP4A	Mx	.0035	.75
4	MP4A	X	-5.404	2.75
5	MP4A	Z	0	2.75
6	MP4A	Mx	.0035	2.75
7	S1	X	-21.126	1
8	S1	Z	0	
9	S1	Mx	0106	1
10	MP3A	X	-7.147	.5
11	MP3A	Z	0	.5
12	MP3A	Mx	0036	.5
13	MP4A	X	-5.958	.25
14	MP4A	Z	0	.25
15	MP4A	Mx	003	.25
16	MP1A	X	-14.471	.25
17	MP1A	Z	0	.25
18	MP1A	Mx	.0071	.25
19	MP1A	X	-14.471	4.25
20	MP1A	Z	0	4.25
21	MP1A	Mx	.0071	4.25
22	MP2A	X	-2.094	1
23	MP2A	Z	0	1
24	MP2A	Mx	.000872	
25	MP2A	X	-2.094	1
26	MP2A	Z	0	1
27	MP2A	Mx	000872	1
28	MP2A	X	-18.887	.75
29	MP2A	Z	0	.75
30	MP2A	Mx	.0147	.75
31	MP2A	X	-18.887	6
32	MP2A	Z	0	6
33	MP2A	Mx	.0147	6

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Member Point Loads (BLC 24 : Antenna Wi (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
24	MP2A	X	-18.887	.75
34 35 36	MP2A	Z	0	.75
36	MP2A	Mx	.0101	.75
37	MP2A	X	-18.887	6
37 38	MP2A	Z	0	6
39	MP2A	Mx	.0101	6

Member Point Loads (BLC 25 : Antenna Wi (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A		-5.207	75
2	MP4A	X	-3.006	.75
3	MP4A	Mx	.0038	.75
4	MP4A	X	-5.207	2.75
5	MP4A	Z	-3.006	2.75
6	MP4A	Mx	.0038	2.75
7	S1	X	-17.298	1
8	S1	Z	-9.987	1
9	S1	Mx	0086	1
10	MP3A	X	-6.867	.5
11	MP3A	Z	-3.965	5
12	MP3A	Mx	0034	.5
13	MP4A	X	-6.095	.25
14	MP4A	Z	-3.519	.25
15	MP4A	Mx	003	.25
16	MP1A	X	-13.016	.25
17	MP1A	Z	-7.515	.25
18	MP1A	Mx	.0071	.25
19	MP1A	X	-13.016	4.25
20	MP1A	Z	-7.515	4.25
21	MP1A	Mx	.0071	4.25
22	MP2A	X	-2.579	1
23	MP2A	Z	-1.489	1
24	MP2A	Mx	.0011	1
25	MP2A	X	-2.579	1
26	MP2A	Z	-1.489	11
27	MP2A	Mx	0011	11
28	MP2A	X	-16.809	.75
	MP2A	Z	-9.705	.75
29 30	MP2A	Mx	.0075	.75
	MP2A	X	-16.809	6
31	MP2A	Z	-9.705	6
32	MP2A	Mx	.0075	6
	MP2A	X	-16.809	.75
34	MP2A	Z	-9.705	.75
35	MP2A	Mx	.0169	.75
36	MP2A	X	-16.809	6
37	MP2A	Ž	-9.705	6
38 39	MP2A MP2A	Mx	.0169	6

Member Point Loads (BLC 26 : Antenna Wi (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-4.652	.75
-	MP4A	7	-8.057	.75
2	MP4A	Mx	.004	.75
	MP4A	X	-4.652	2.75
-	MP4A	7	-8.057	2.75

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:____

Member Point Loads (BLC 26 : Antenna Wi (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	.004	2.75
7	S1	X	-8.835	
8	S1	Z	-15.303	
9	S 1	Mx	0044	1
10	MP3A	X	-4.747	.5
11	MP3A	Z	-8.222	.5
12	MP3A	Mx	0024	.5
13	MP4A	X	-4.599	.25
14	MP4A	Z	-7.965	.25
15	MP4A	Mx	0023	.25
16	MP1A		-9.025	
17	MP1A	X	-15.632	.25
18	MP1A	Mx	.0058	.25
19	MP1A	X	-9.025	4.25
20	MP1A	Z	-15.632	4.25
21	MP1A	Mx	.0058	4.25
22	MP2A	X	-2.372	1
23	MP2A	Z	-4.108	1
24	MP2A	Mx	.000988	1
25	MP2A		-2.372	1
26	MP2A	X	-4.108	19,111
27	MP2A	Mx	000988	1
28	MP2A	X	-11.12	.75
29	MP2A	Z	-19.26	.75
30	MP2A	Mx	0025	.75
31	MP2A	X	-11.12	6
32	MP2A	Z	-19.26	6
33	MP2A	Mx	0025	6
34	MP2A	X	-11.12	.75
35	MP2A	7	-19.26	.75
36	MP2A	Mx	.0216	.75
37	MP2A	X	-11.12	6
38	MP2A	Ž	-19.26	6
39	MP2A	Mx	.0216	6

Member Point Loads (BLC 27 : Antenna Wm (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	.75
2	MP4A	Z	-4.968	.75
3	MP4A	Mx	.000575	.75
4	MP4A	X	0	2.75
5	MP4A	Z	-4.968	2.75
6	MP4A	Mx	.000575	2.75
7	S1	X	0	1
8	S1	Z	-6.232	
9	S1	Mx	0	1
10	MP3A	X	Ö	.5
11	MP3A	Z	-4.008	.5
12	MP3A	Mx	0	.5
13	MP4A	X	0	.25
14	MP4A	Z	-4.008	.25
15	MP4A	Mx	0	.25
16	MP1A	X	0	.25
17	MP1A	Z	-10.456	.25
18	MP1A	Mx	.000908	.25
19	MP1A	X	0	4.25

: Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 27 : Antenna Wm (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
20	MP1A	7	-10.456	4.25
21	MP1A	Mx	.000908	4.25
22	MP2A	X	0	4-4
23	MP2A	Z	-2.474	
24	MP2A	Mx	0	1
25	MP2A	X	0	1
26	MP2A	Z	-2.474	1
27	MP2A	Mx	0	1
28	MP2A	X	0	.75
29	MP2A	Z	-6.069	.75
30	MP2A	Mx	0035	.75
31	MP2A	X	0	6
32	MP2A	Z	-6.069	6
33	MP2A	Mx	0035	6
34	MP2A	X	0	.75
35	MP2A	Ž	-6.069	.75
36	MP2A	Mx	.0049	.75
37	MP2A	X	0	6
38	MP2A	Z	-6.069	6
39	MP2A	Mx	.0049	6

Member Point Loads (BLC 28 : Antenna Wm (30 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	2.34	.75
2	MP4A	Ž	-4.053	.75
3	MP4A	Mx	0011	.75
4	MP4A	X	2.34	2.75
5	MP4A	Z	-4.053	2.75
6	MP4A	Mx	0011	2.75
7	S1	X	3.362	11
8	S1	Z	-5.823	
9	S1	Mx	.0017	1
10	MP3A	X	1.839	.5
11	MP3A	Z	-3.186	.5
12	MP3A	Mx	.00092	.5
13	MP4A	X	1.778	.25
14	MP4A	Z	-3.079	.25
	MP4A	Mx	.000889	.25
15	MP1A	X	5,073	.25
16 17	MP1A	Z	-8.786	.25
	MP1A MP1A	Mx	0017	.25
18	MP1A	X	5.073	4.25
19	MP1A	Z	-8.786	4.25
20		Mx	0017	4.25
21	MP1A	X	1.02	1
22	MP2A		-1.767	1
23	MP2A	Mx	000425	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
24	MP2A	X	1.02	1
25	MP2A	Ž	-1.767	1
26	MP2A		.000425	1
27	MP2A	Mx	2.968	.75
28	MP2A	X	-5.14	.75
29	MP2A	Z	0053	.75
30	MP2A	Mx	2.968	6
31	MP2A	<u>x</u>		6
32	MP2A	Z	-5.14	6
33	MP2A	Mx	0053	0

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:

Member Point Loads (BLC 28 : Antenna Wm (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
34	MP2A	X	2.968	.75
35	MP2A	Z	-5.14	75
36	MP2A	Mx	.0026	75
37	MP2A	X	2.968	6
38	MP2A	Z	-5.14	6
39	MP2A	Mx	.0026	6

Member Point Loads (BLC 29 : Antenna Wm (60 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	2.701	.75
2	MP4A	Z	-1.559	.75
3	MP4A	Mx	0016	.75
4	MP4A	X	2.701	2.75
5	MP4A	Z	-1.559	2.75
6	MP4A	Mx	0016	2.75
7	S1	X	6.674	1
8	S1	Z	-3.853	1
9	S1	Mx	.0033	1
10	MP3A	X	2.615	.5
11	MP3A	Z	-1.51	.5
12	MP3A	Mx	.0013	.5
13	MP4A	X	2.295	.25
14	MP4A	Z	-1.325	.25
15	MP4A	Mx	.0011	.25
16	MP1A		7.332	.25
17	MP1A	X	-4.233	.25
18	MP1A	Mx	0032	.25
19	MP1A	X	7.332	4.25
20	MP1A	Z	-4.233	4.25
21	MP1A	Mx	0032	4.25
22	MP2A	X	1.017	1
23	MP2A	X	587	1
24	MP2A	Mx	000424	
25	MP2A	X	1.017	1
26	MP2A	Z	587	
27	MP2A	Mx	.000424	1
28	MP2A	X	4.514	.75
29	MP2A	Z	-2.606	.75
30	MP2A	Mx	005	.75
31	MP2A	X	4.514	6
32	MP2A	Z	-2.606	6
33	MP2A	Mx	005	6
34	MP2A		4.514	.75
35	MP2A	X	-2.606	.75
36	MP2A	Mx	000289	.75
37	MP2A	X	4.514	6
38	MP2A	Z	-2.606	6
39	MP2A	Mx	000289	6

Member Point Loads (BLC 30 : Antenna Wm (90 Deg))

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
1	MP4A	X	1.846	75
2	MP4A	Z	0	.75
3	MP4A	Mx	0012	75
4	MP4A	X	1.846	2.75
5	MP4A	Z	0 -	2.75

Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Member Point Loads (BLC 30 : Antenna Wm (90 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	0012	2.75
7	S1	X	8.197	1
8	S1	Z	0	1
9	S1	Mx	.0041	11
10	MP3A	X	2.689	.5
11	MP3A	Z	0	.5
12	MP3A	Mx	.0013	.5
13	MP4A	X	2.198	.25
14	MP4A	Z	0	.25
15	MP4A	Mx	.0011	.25
16	MP1A	X	7.097	.25
17	MP1A	Z	0	.25
18	MP1A	Mx	0035	.25
19	MP1A	X	7.097	4.25
20	MP1A	Z	0	4.25
21	MP1A	Mx	0035	4.25
22	MP2A	X	.74	1
23	MP2A	Z	0	1
24	MP2A	Mx	000308	
25	MP2A	X	.74	1
26	MP2A	Z	0	1 1 1
27	MP2A	Mx	.000308	1
28	MP2A	X	4.623	.75
29	MP2A	Z	0	.75
30	MP2A	Mx	0036	.75
31	MP2A	X	4.623	6
32	MP2A	Z	0	6
33	MP2A	Mx	-,0036	6
34	MP2A	X	4.623	.75
35	MP2A	Z	0	.75
36	MP2A	Mx	-,0025	.75
37	MP2A	X	4.623	6
38	MP2A	Z	0	6
39	MP2A	Mx	0025	6

Member Point Loads (BLC 31 : Antenna Wm (120 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	1.848	.75
2	MP4A	Z	1.067	.75
3	MP4A	Mx	0013	75
4	MP4A	X	1.848	2.75
5	MP4A	Z	1.067	2.75
6	MP4A	Mx	0013	2.75
7	S1	X	6.674	1
8	S1	Z	3.853	
9	S1	Mx	.0033	1
10	MP3A	X	2.615	.5
11	MP3A	Z	1.51	.5
12	MP3A	Mx	.0013	.5
13	MP4A	X	2.295	.25
14	MP4A	Z	1.325	.25
15	MP4A	Mx	.0011	.25
16	MP1A	X	6.415	.25
17	MP1A	Z	3.704	25
18	MP1A	Mx	0035	.25
19	MP1A	X	6.415	4.25

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:

Member Point Loads (BLC 31 : Antenna Wm (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP1A	Z	3.704	4.25
21	MP1A	Mx	0035	4.25
22	MP2A	X	1.017	
23	MP2A	Z	.587	1
24	MP2A	Mx	000424	
25	MP2A	X	1.017	1
26	MP2A	Z	.587	18,1
27	MP2A	Mx	.000424	1
28	MP2A	X	4.12	.75
29	MP2A	Z	2.379	.75
30	MP2A	Mx	0018	.75
31	MP2A	X	4.12	6
32	MP2A	Z	2.379	6
33	MP2A	Mx	0018	6
34	MP2A	X	4.12	.75
35	MP2A	Z	2.379	.75
36	MP2A	Mx	0041	.75
37	MP2A	X	4.12	6
38	MP2A	Z	2.379	6
39	MP2A	Mx	0041	6

Member Point Loads (BLC 32 : Antenna Wm (150 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	1.848	.75
2	MP4A	Z	3.2	.75
3	MP4A	Mx	0016	.75
4	MP4A	X	1.848	2.75
5	MP4A	Z	3.2	2.75
6	MP4A	Mx	0016	2.75
7	S1	X	3.362	
8	S1	Z	5.823	
9	S1	Mx	.0017	1
10	MP3A	X	1.839	.5
11	MP3A	Z	3.186	.5
12	MP3A	Mx	.00092	.5
13	MP4A	X	1.778	.25
14	MP4A	Z	3.079	.25
15	MP4A	Mx	.000889	.25
16	MP1A	X	4.543	.25
17	MP1A	Z	7.869	.25
18	MP1A	Mx	0029	.25
19	MP1A	X	4.543	4.25
20	MP1A	Z	7.869	4.25
21	MP1A	Mx	0029	4.25
22	MP2A	X	1.02	
23	MP2A	Z	1.767	1
24	MP2A	Mx	000425	
25	MP2A	X	1.02	1
26	MP2A	Z	1.767	1
27	MP2A	Mx	.000425	1
28	MP2A		2.74	.75
29	MP2A	X	4.746	.75
30	MP2A	Mx	.000625	.75
31	MP2A	X	2.74	6
32	MP2A	Z	4.746	6
33	MP2A	Mx	.000625	6

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 32 : Antenna Wm (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
34	MP2A	X	2.74	.75
35	MP2A	7	4.746	.75
36	MP2A	Mx	0053	75
37	MP2A	X	2.74	6
38	MP2A	7	4.746	6
39	MP2A	Mx	0053	6

Member Point Loads (BLC 33 : Antenna Wm (180 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	0	.75
2	MP4A	Z	4.968	.75
3	MP4A	Mx	000575	.75
4	MP4A	X	0	2.75
5	MP4A	Z	4.968	2.75
6	MP4A	Mx	000575	2.75
7	S1	X	0	1
8	S1	Z	6.232	1
9	S1	Mx	0	1
10	MP3A	X	0	.5
11	MP3A	Z	4.008	.5
12	MP3A	Mx	0	.5
13	MP4A	X	0	.25
14	MP4A	Z	4.008	.25
15	MP4A	Mx	0	.25
16	MP1A	X	0	.25
17	MP1A	Z	10.456	.25
18	MP1A	Mx	000908	.25
19	MP1A	X	0	4.25
20	MP1A	Z	10.456	4.25
21	MP1A	Mx	000908	4.25
22	MP2A	X	0	1
23	MP2A	Ž	2.474	1
24	MP2A	Mx	0	1
25	MP2A	X	0	
26	MP2A	Ž	2.474	11
27	MP2A	Mx	0	11
28	MP2A	X	0	.75
29	MP2A	Z	6.069	.75
30	MP2A	Mx	.0035	.75
31	MP2A	X	0	6
32	MP2A	Z	6.069	6
33	MP2A	Mx	.0035	6
34	MP2A	X	0	.75
35	MP2A	Z	6.069	.75
36	MP2A	Mx	0049	.75
37	MP2A	X	0	6
38	MP2A	Z	6.069	6
39	MP2A	Mx	0049	6

Member Point Loads (BLC 34 : Antenna Wm (210 Deg))

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
	X		.75
	7	4.053	.75
	Mx		.75
	X		2.75
	7	4.053	2.75
	Member Label MP4A MP4A MP4A MP4A MP4A MP4A	MP4A X MP4A Z MP4A Mx MP4A X	MP4A X -2.34 MP4A Z 4.053 MP4A Mx .0011 MP4A X -2.34

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 34 : Antenna Wm (210 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	.0011	2.75
7	S1	X	-3.362	1
8	S1	Z	5.823	
9	S1	Mx	0017	
10	MP3A	X	-1.839	.5
11	MP3A	Z	3.186	.5
12	MP3A	Mx	00092	.5
13	MP4A	X	-1.778	.25
14	MP4A	Z	3.079	.25
15	MP4A	Mx	000889	.25
16	MP1A	X	-5.073	.25
17	MP1A	Z	8.786	.25
18	MP1A	Mx	.0017	.25
19	MP1A	X	-5.073	4.25
20	MP1A	Z	8.786	4.25
21	MP1A	Mx	.0017	4.25
22	MP2A	X	-1.02	1
23	MP2A	7	1.767	1
24	MP2A	Mx	.000425	1
25	MP2A	X	-1.02	1
26	MP2A	Z	1.767	10.004
27	MP2A	Mx	000425	1
28	MP2A	X	-2.968	.75
29	MP2A	Z	5.14	.75
30	MP2A	Mx	.0053	.75
31	MP2A	X	-2.968	6
32	MP2A	7	5.14	6
33	MP2A	Mx	.0053	6
34	MP2A	X	-2.968	.75
35	MP2A	Z	5.14	.75
36	MP2A	Mx	0026	.75
37	MP2A	X	-2.968	6
38	MP2A	Z	5.14	6
39	MP2A	Mx	0026	6

Member Point Loads (BLC 35 : Antenna Wm (240 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-2.701	.75
2	MP4A	Z	1.559	.75
3	MP4A	Mx	.0016	.75
4	MP4A	X	-2.701	2.75
5	MP4A	Z	1.559	2.75
6	MP4A	Mx	.0016	2.75
7	S1	X	-6.674	1
8	S1	Z	3.853	1
9	S1	Mx	0033	1
10	MP3A	X	-2.615	.5
11	MP3A	Z	1.51	.5
12	MP3A	Mx	0013	.5
13	MP4A	X	-2.295	.25
14	MP4A	Z	1.325	.25
15	MP4A	Mx	0011	.25
16	MP1A	X	-7.332	.25
17	MP1A	Z	4.233	.25
18	MP1A	Mx	.0032	.25
19	MP1A	X	-7.332	4.25

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 35 : Antenna Wm (240 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
20	MP1A	Z	4.233	4.25
21	MP1A	Mx	.0032	4.25
22	MP2A	X	-1.017	1 1
23	MP2A	Z	.587	
24	MP2A	Mx	.000424	1
25	MP2A	X	-1.017	1
26	MP2A	Z	.587	1
27	MP2A	Mx	000424	1
28	MP2A	X	-4.514	.75
29	MP2A	Z	2.606	.75
30	MP2A	Mx	.005	.75
31	MP2A	X	-4.514	6
32	MP2A	Z	2.606	6
33	MP2A	Mx	.005	6
34	MP2A	X	-4.514	.75
35	MP2A	Z	2.606	.75
36	MP2A	Mx	.000289	.75
37	MP2A	X	-4.514	6
38	MP2A	Z	2.606	6
39	MP2A	Mx	.000289	6

Member Point Loads (BLC 36 : Antenna Wm (270 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-1.846	.75
2	MP4A	Z	0	.75
3	MP4A	Mx	.0012	.75
4	MP4A	X	-1.846	2.75
5	MP4A	Z	0	2.75
6	MP4A	Mx	.0012	2.75
7	S1	X	-8.197	1
8	S1	Z	0	1
9	S1	Mx	0041	1
10	MP3A	X	-2.689	.5
11	MP3A	Z	0	.5
12	MP3A	Mx	0013	.5
13	MP4A	X	-2.198	.25
14	MP4A	Z	0	,25
15	MP4A	Mx	0011	.25
16	MP1A	X	-7.097	.25
17	MP1A	Z	0	.25
18	MP1A	Mx	.0035	.25
19	MP1A	X	-7.097	4.25
20	MP1A	7	0	4.25
21	MP1A	Mx	.0035	4.25
22	MP2A	X	74	
23	MP2A	Z	0	1
	MP2A	Mx	.000308	
24	MP2A	X	74	1
25	MP2A MP2A	$+\frac{\lambda}{z}$	0	
26	MP2A	Mx	000308	
27		X	-4.623	.75
28	MP2A	Z	0	.75
29	MP2A	Mx	.0036	.75
30	MP2A	X	-4.623	6
31	MP2A		-4.025	6
32	MP2A	Z Mx	.0036	6
33	MP2A	IVIX	.0030	

Colliers Engineering & Design

: Project # 23777083 : Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:____

Member Point Loads (BLC 36 : Antenna Wm (270 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
34	MP2A	X	-4.623	.75
35	MP2A	Z	0	.75
36	MP2A	Mx	.0025	75
37 38	MP2A	X	-4.623	6
38	MP2A	Z	0	6
39	MP2A	Mx	.0025	6

Member Point Loads (BLC 37 : Antenna Wm (300 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft.%]
1	MP4A_	X	-1.848	.75
2	MP4A	Z	-1.067	.75
3	MP4A	Mx	.0013	.75
4	MP4A	X	-1.848	2.75
5	MP4A	Z	-1.067	2.75
6	MP4A	Mx	.0013	2.75
7	S1	X	-6.674	4
8	S1	Z	-3.853	1
9	S1	Mx	0033	
10	MP3A	X	-2.615	.5
11	MP3A	Z	-1.51	.5
12	MP3A	Mx	0013	.5
13	MP4A	X	-2.295	.25
14	MP4A	Z	-1.325	.25
15	MP4A	Mx	0011	.25
16	MP1A		-6.415	.25
17	MP1A	X	-3.704	.25
18	MP1A	Mix	.0035	.25
19	MP1A	X	-6.415	4.25
20	MP1A	Ž	-3.704	4.25
21	MP1A	Mx	.0035	4.25
22	MP2A	X	-1.017	1
23	MP2A	Z	587	1
24	MP2A	Mx	.000424	
25	MP2A	X	-1.017	1
26	MP2A	Z	587	1
27	MP2A	Mx	000424	1
28	MP2A	X	-4.12	.75
29	MP2A	Z	-2.379	.75
30	MP2A	Mx	.0018	.75
31	MP2A		-4.12	6
32	MP2A	X	-2.379	6
33	MP2A	Mx	.0018	6
34	MP2A	X	-4.12	.75
35	MP2A	Z	-2.379	.75
36	MP2A	Mx	.0041	.75
37	MP2A	X	-4.12	6
38	MP2A	Z	-2.379	6
39	MP2A	Mx	.0041	6

Member Point Loads (BLC 38 : Antenna Wm (330 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	-1.848	.75
2	MP4A	Z	-3.2	.75
3	MP4A	Mx	.0016	.75
4	MP4A	X	-1.848	2.75
5	MP4A	Z	-3.2	2.75

: Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Member Point Loads (BLC 38: Antenna Wm (330 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
6	MP4A	Mx	.0016	2.75
7	S1	X	-3.362	11
8	S1	Z	-5.823	1 1
9	S1	Mx	0017	11
10	MP3A	X	-1.839	.5
11	MP3A	Ž	-3,186	.5
12	MP3A	Mx	00092	.5
13	MP4A	X	-1,778	.25
14	MP4A	Z	-3.079	.25
15	MP4A	Mx	000889	.25
16	MP1A	X	-4.543	.25
17	MP1A	Z	-7.869	.25
18	MP1A	Mx	.0029	.25
19	MP1A	X	-4.543	4.25
20	MP1A	Z	-7.869	4.25
21	MP1A	Mx	.0029	4.25
22	MP2A	X	-1.02	1
23	MP2A	Z	-1.767	1
24	MP2A	Mx	.000425	4
25	MP2A	X	-1.02	1
26	MP2A	Z	-1.767	1
27	MP2A	Mx	000425	1
28	MP2A	X	-2.74	.75
29	MP2A	Z	-4.746	.75
30	MP2A	Mx	000625	.75
31	MP2A	X	-2.74	6
32	MP2A	Z	-4.746	6
33	MP2A	Mx	000625	6
34	MP2A	X	-2.74	.75
35	MP2A	7	-4.746	.75
36	MP2A	Mx	.0053	.75
37	MP2A	X	-2.74	6
	MP2A	Z	-4.746	6
38 39	MP2A	Mx	.0053	6

Member	Doint Las	de (RI	C 77 ·	m1)
wemner	POINTION	IUS IDL		

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 A7	Y	-250	0

Member Point Loads (BLC 78 : Lm2)

Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1 M17	Y	-250	0

Member Point Loads (BLC 79 : Lv1)

M	ember Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	A2	Y	-250	%100

Member Point Loads (BLC 80 : Lv2)

 Manhaelahal	Direction	Magnitude(lb,k-ft)	Location[ft.%]	
Member Label	Y	-250	%50	

Member Point Loads (BLC 81 : Antenna Ev)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Υ	-1.8396	.75

: Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Member Point Loads (BLC 81 : Antenna Ev) (Continued)

	Member Label	Direction	Magnitude[lb.k-ft]	Location[ft,%]
2	MP4A	My	0012	.75
3	MP4A	Mz	000213	.75
4	MP4A	Y	-1.8396	2.75
5	MP4A	My	0012	2.75
6	MP4A	Mz	000213	2.75
7	S1	Y	-1.3517	1
8	S1	My	.000676	
9	S1	Mz	0	1
10	MP3A	Y	-3.5651	.5
11	MP3A	Mv	.0018	.5
12	MP3A	Mz	0	.5
13	MP4A	Y	-2.9695	.25
14	MP4A	My	.0015	.25
15	MP4A	Mz	0	.25
16	MP1A	Y	5555	.25
17	MP1A	Mv	000274	.25
18	MP1A	Mz	-4.8e-5	.25
19	MP1A	Y	5555	4.25
20	MP1A	My	000274	4.25
21	MP1A	Mz	-4.8e-5	4.25
22	MP2A	Y	7434	1
23	MP2A	My	00031	1
24	MP2A	Mz	0	1
25	MP2A	Y	7434	1
26	MP2A	My	.00031	1
27	MP2A	Mz	0	1
28	MP2A	Y	-1,2672	.75
29	MP2A	My	000988	.75
30	MP2A	Mz	.000737	.75
31	MP2A	Y	-1.2672	6
32	MP2A	My	000988	6
33	MP2A	Mz	.000737	6
34	MP2A	Y	-1.2672	.75
35	MP2A	Mv	000676	.75
36	MP2A	Mz	001	.75
37	MP2A	Y	-1.2672	6
38	MP2A	My	000676	6
39	MP2A	Mz	001	6

Member Point Loads (BLC 82 : Antenna Eh (0 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	Z	-4.5989	.75
2	MP4A	Mx	.000532	.75
3	MP4A	Z	-4.5989	2.75
4	MP4A	Mx	.000532	2.75
5	S1	Z	-3.3792	1
6	S1	Mx	0	1
7	MP3A	Z	-8.9126	.5
8	MP3A	Mx	0	.5
9	MP4A	Z	-7.4237	.25
10	MP4A	Mx	0	.25
11	MP1A	Z	-1.3886	.25
12	MP1A	Mx	.000121	.25
13	MP1A	Z	-1.3886	4.25
14	MP1A	Mx	.000121	4.25
15	MP2A	Z	-1.8586	1

Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Member Point Loads (BLC 82 : Antenna Eh (0 Deg)) (Continued)

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
16	MP2A	Mx	0	En Calledon Land
17	MP2A	Z	-1.8586	1
18	MP2A	Mx	0	t # 1
19	MP2A	Z	-3.168	.75
20	MP2A	Mx	0018	.75
21	MP2A	Z	-3.168	6
22	MP2A	Mx	0018	6
23	MP2A	Z	-3.168	.75
24	MP2A	Mx	.0026	.75
25	MP2A	Z	-3.168	66
26	MP2A	Mx	.0026	6

Member Point Loads (BLC 83 : Antenna Eh (90 Deg))

	Member Label	Direction	Magnitude[lb,k-ft]	Location[ft,%]
1	MP4A	X	4.5989	.75
2	MP4A	Mx	003	.75
3	MP4A	X	4.5989	2.75
4	MP4A	Mx	003	2.75
5	S1	X	3.3792	1
6	S1	Mx	.0017	1
7	MP3A	X	8.9126	.5
8	MP3A	Mx	.0045	.5
9	MP4A	X	7.4237	.25
10	MP4A	Mx	.0037	.25
11	MP1A	X	1.3886	.25
12	MP1A	Mx	000684	.25
13	MP1A	X	1.3886	4.25
14	MP1A	Mx	000684	4.25
15	MP2A	X	1.8586	1
16	MP2A	Mx	000774	1
17	MP2A	X	1.8586	11
18	MP2A	Mx	.000774	nazal 1
19	MP2A	X	3.168	.75
	MP2A	Mx	0025	.75
20	MP2A	X	3.168	6
	MP2A	Mx	0025	6
22	MP2A MP2A	X	3,168	.75
23	MP2A	Mx	0017	.75
24	MP2A MP2A	X	3.168	6
25 26	MP2A	Mx	0017	6

Member Distributed Loads (BLC 40 : Structure Di)

	Member Label	Direction	Start Magnitude.	.End Magnitude[I.	.Start Location[ft.,	End Location[ft,
1	A1	Y	-9.5274	-9.5274	00	%100
2	A2	Y	-9.5274	-9.5274	0	%100
3	A9	Y	-7.9073	-7.9073	0	%100
	MP1A	Y	-4.9314	-4.9314	0	%100
5	MP4A	Y	-4.9314	-4.9314	0	%100
6	S1	Y	-4.9314	-4.9314	0	%100
7	МРЗА	Y	-4.9314	-4.9314	0	%100
8	MP2A	Ý	-5.6316	-5.6316	0	%100
9	M15A	Ÿ	-7.5469	-7.5469	0	%100
10	M16	Ÿ	-6.5069	-6.5069	0	%100

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Member Distributed Loads (BLC 41 : Structure Wo (0 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude(I.	.Start Location[ft.	End Location[ft,
1	A1	X	Ŏ	0	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	Z	-15.7817	-15.7817	0	%100
5	A9	X	0	0	0	%100
6	A9	Z	-9.991	-9.991	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	-8.9956	-8.9956	0	%100
9	MP4A	X	0	0	0	%100
10	MP4A	Z	-8.9956	-8.9956	0	%100
11	S1	X	0	0	0	%100
12	S1	Z	-7.356	-7.356	0	%100
13	MP3A	X	0	0	0	%100
14	MP3A	Z	-8.9956	-8.9956	0	%100
15	MP2A	X	0	0	0	%100
16	MP2A	Z	-10.8894	-10.8894	0	%100
17	M15A	X	0	0	0	%100
18	M15A	Z	0	0	0	%100
19	M16	X	0	0	0	%100
20	M16	Z	-13.2567	-13.2567	0	%100

Member Distributed Loads (BLC 42: Structure Wo (30 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitudell.	Start Locationift	End Location[ft
1	A1	X	1.4017	1.4017	0	%100
2	A1	Z	-2.4279	-2.4279	0	%100
3	A2	X	5.9181	5.9181	0	%100
4	A2	Z	-10.2505	-10.2505	0	%100
5	A9	X	4.9955	4.9955	0	%100
6	A9	Z	-8.6525	-8.6525	0	%100
7	MP1A	X	4.4978	4.4978	0	%100
8	MP1A	Z	-7.7904	-7.7904	0	%100
9	MP4A	X	4.4978	4.4978	0	%100
10	MP4A	Z	-7.7904	-7.7904	0	%100
11	S1	X	3.678	3.678	0	%100
12	S1	Z	-6.3705	-6.3705	0	%100
13	MP3A	X	4.4978	4.4978	0	%100
14	MP3A	Z	-7.7904	-7.7904	0	%100
15	MP2A	X	5.4447	5.4447	0	%100
16	MP2A	Z	-9.4305	-9.4305	0	%100
17	M15A	X	1.0864	1.0864	0	%100
18	M15A	Z	-1.8816	-1.8816	0	%100
19	M16	X	4.9712	4.9712	0	%100
20	M16	Z	-8.6104	-8.6104	0	%100

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start LocationIft.	End Location[ft,
1	A1	X	7.2836	7.2836	0	%100
2	A1	Z	-4.2052	-4.2052	0	%100
3	A2	X	3.4168	3.4168	0	%100
4	A2	Z	-1.9727	-1.9727	0	%100
5	A9	X	8.6525	8.6525	0	%100
6	A9	Z	-4.9955	-4.9955	0	%100
7	MP1A	X	7.7904	7.7904	0	%100
8	MP1A	Z	-4.4978	-4.4978	0	%100
9	MP4A	X	7.7904	7.7904	0	%100
10	MP4A	Z	-4.4978	-4.4978	0	%100

Company Designer Job Number Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:__

Member Distributed Loads (BLC 43 : Structure Wo (60 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	.End Magnitude[I.	.Start Location[ft	.End Location[ft,
11	S1	X	6,3705	6.3705	0	%100
	S1	7	-3.678	-3.678	0	%100
12	MP3A	$\frac{\overline{x}}{x}$	7.7904	7.7904	0	%100
13	MP3A	7	-4.4978	-4.4978	0	%100
14	MP2A	X	9,4305	9.4305	0	%100
15	MP2A MP2A	7	-5.4447	-5.4447	0	%100
16	M15A	X	5.6449	5.6449	0	%100
17	M15A	7	-3.2591	-3.2591	0	%100
18		Y	2.8702	2.8702	0	%100
19	M16 M16	Z	-1.6571	-1.6571	0	%100

Member Distributed Loads (BLC 44 : Structure Wo (90 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude[l.	.Start Location[ft.	End Location[ft,
1	A1	X	11.2138	11.2138	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	Z	0	0	0	%100
5	A9	X	9.991	9.991	0	%100
6	A9	Z	0	0	0	%100
7	MP1A	X	8.9956	8.9956	0	%100
	MP1A	7	0	0	0	%100
9	MP4A	X	8.9956	8.9956	0	%100
	MP4A	Z	0	0	0	%100
10	S1	X	7.356	7.356	0	%100
4	S1	Z	0	0	0	%100
12	MP3A	X	8,9956	8.9956	0	%100
13	MP3A	Z	0	0	0	%100
14	MP2A	X	10.8894	10.8894	0	%100
15 16	MP2A	Z	0	0	0	%100
	M15A	X	8.6909	8.6909	0	%100
17	M15A	Ž	0	0	0	%100
18	M16	X	Ō	0	0	%100
19 20	M16	Z	0	0	0	%100

Member Distributed Loads (BLC 45 : Structure Wo (120 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitude[I.	.Start Location[ft,	.End Location[ft,
1	A1	X	7.2836	7.2836	0	%100
2	A1	Z	4.2052	4.2052	0	%100
3	A2	X	3.4168	3.4168	0	%100
4	A2	Z	1.9727	1.9727	0	%100
5	A9	X	8.6525	8.6525	0	%100
6	A9	Z	4.9955	4.9955	0	%100
7	MP1A	X	7.7904	7.7904	0	%100
8	MP1A	7	4,4978	4.4978	0	%100
9	MP4A	X	7,7904	7.7904	0	%100
10	MP4A	7	4,4978	4.4978	0	%100
11	S1	X	6.3705	6.3705	0	%100
12	S1	7	3.678	3.678	0	%100
	MP3A	X	7.7904	7.7904	0	%100
13	MP3A	7	4.4978	4.4978	0	%100
15	MP2A	X	9.4305	9.4305	0	%100
	MP2A	7	5.4447	5.4447	0	%100
16	M15A	X	5.6449	5,6449	0	%100
17	M15A	7	3.2591	3.2591	0	%100
18	M16	X	2.8702	2.8702	0	%100
19 20	M16	Z	1.6571	1.6571	0	%100

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Member Distributed Loads (BLC 46 : Structure Wo (150 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitudell.	.Start Location[ft.	.End Location[ft,
1	A1	X	1.4017	1.4017	0	%100
2	A1	Z	2.4279	2.4279	0	%100
3	A2	X	5.9181	5.9181	0	%100
4	A2	Z	10.2505	10.2505	0	%100
5	A9	X	4.9955	4.9955	0	%100
6	A9	Z	8.6525	8.6525	0	%100
7	MP1A	X	4.4978	4.4978	0	%100
8	MP1A	Z	7.7904	7.7904	0	%100
9	MP4A	X	4.4978	4.4978	0	%100
10	MP4A	Z	7.7904	7,7904	0	%100
11	S1	X	3.678	3.678	0	%100
12	S1	Z	6.3705	6.3705	0	%100
13	MP3A	X	4.4978	4.4978	0	%100
14	MP3A	Z	7.7904	7.7904	0	%100
15	MP2A	X	5.4447	5.4447	0	%100
16	MP2A	Z	9.4305	9.4305	0	%100
17	M15A	X	1.0864	1.0864	0	%100
18	M15A	Z	1.8816	1.8816	0	%100
19	M16	X	4.9712	4.9712	0	%100
20	M16	Z	8.6104	8.6104	0	%100

Member Distributed Loads (BLC 47 : Structure Wo (180 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitudell	Start Location(ft	End Location[ft,
1	A1	X	0	0	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	Z	15.7817	15.7817	0	%100
5	A9	X	0	0	0	%100
6	A9	Z	9.991	9.991	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	8.9956	8.9956	0	%100
9	MP4A	X	0	0	0	%100
10	MP4A	Z	8.9956	8.9956	0	%100
11	S1	X	0	0	0	%100
12	S1	Z	7.356	7.356	0	%100
13	MP3A	X	0	0	0	%100
14	MP3A	Z	8.9956	8.9956	0	%100
15	MP2A	X	0	0	0	%100
16	MP2A	Z	10.8894	10.8894	0	%100
17	M15A	X	0	0	0	%100
18	M15A	Z	0	0	0	%100
19	M16	X	0	0	0	%100
20	M16	Z	13.2567	13.2567	0	%100

Member Distributed Loads (BLC 48: Structure Wo (210 Deg))

	Member Label	Direction	Start Magnitude.	.End MagnitudeII.	.Start Location[ft.	End Location[ft,
1	A1	X	-1.4017	-1.4017	0	%100
2	A1	Z	2.4279	2.4279	0	%100
3	A2	X	-5.9181	-5.9181	0	%100
4	A2	Z	10.2505	10.2505	0	%100
5	A9	X	-4.9955	-4.9955	0	%100
6	A9	Z	8.6525	8.6525	0	%100
7	MP1A	X	-4.4978	-4.4978	0	%100
8	MP1A	Z	7.7904	7.7904	0	%100
9	MP4A	X	-4.4978	-4.4978	0	%100
10	MP4A	Z	7.7904	7.7904	0	%100

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_____

Member Distributed Loads (BLC 48 : Structure Wo (210 Deg)) (Continued)

Momber Label	Direction	Start Magnitude.	.End Magnitude[I.	.Start Location[ft.,	.End Location[ft
	X		-3.678	0	%100
	7		6.3705	0	%100
	<u> </u>		-4.4978	0	%100
	7			0	%100
January Control of the Control of th	Y			0	%100
	7		- Deliveration	0	%100
	Y			0	%100
- Carrant February	7			0	%100
	V			Ö	%100
	7		8.6104	Ŏ	%100
	Member Label S1 S1 MP3A MP3A MP2A MP2A MP2A M15A M15A M16	S1 X S1 Z MP3A X MP3A Z MP2A X MP2A Z M15A X M15A Z M16 X	S1 X -3.678 S1 Z 6.3705 MP3A X -4.4978 MP3A Z 7.7904 MP2A X -5.4447 MP2A Z 9.4305 M15A X -1.0864 M15A Z 1.8816 M16 X -4.9712	S1 X -3.678 -3.678 S1 Z 6.3705 6.3705 MP3A X -4.4978 -4.4978 MP3A Z 7.7904 7.7904 MP2A X -5.4447 -5.4447 MP2A Z 9.4305 9.4305 M15A X -1.0864 -1.0864 M15A Z 1.8816 1.8816 M16 X -4.9712 -4.9712	S1 X -3.678 -3.678 0 S1 Z 6.3705 6.3705 0 MP3A X -4.4978 -4.4978 0 MP3A Z 7.7904 7.7904 0 MP2A X -5.4447 -5.4447 0 MP2A Z 9.4305 9.4305 0 M15A X -1.0864 -1.0864 0 M15A Z 1.8816 1.8816 0 M16 X -4.9712 -4.9712 0

Member Distributed Loads (BLC 49 : Structure Wo (240 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[l.	.Start Location[ft,	End Location[ft,
1	A1	X	-7.2836	-7.2836	0	%100
	A1	Z	4.2052	4.2052	0	%100
2	A2	X	-3.4168	-3,4168	0	%100
3	A2	Z	1.9727	1.9727	0	%100
4	A9	X	-8.6525	-8.6525	0	%100
5	A9	Z	4.9955	4.9955	0	%100
6 7	MP1A	$\frac{\overline{x}}{x}$	-7.7904	-7.7904	0	%100
	MP1A	7	4.4978	4,4978	0	%100
8		X	-7.7904	-7.7904	0	%100
9	MP4A	Z	4.4978	4.4978	0	%100
10	MP4A	$\frac{2}{X}$	-6.3705	-6.3705	0	%100
11	S1	Z	3.678	3.678	0	%100
12	S1	X	-7.7904	-7.7904	0	%100
13	MP3A	Z	4.4978	4.4978	0	%100
14	MP3A	X	-9.4305	-9.4305	0	%100
15	MP2A	Ž	5.4447	5.4447	Ö	%100
16	MP2A		-5.6449	-5.6449	0	%100
17	M15A	X	3.2591	3.2591	0	%100
18	M15A	Z		-2.8702	0	%100
19	M16	X	-2.8702 1.6571	1.6571	0	%100
20	M16	Z	1.007	1.0071		70100

Member Distributed Loads (BLC 50 : Structure Wo (270 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft,	End Location[ft
1	A1	X	-11.2138	-11.2138	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	7	0	0	0	%100
	A9	X	-9.991	-9.991	0	%100
5	A9	7	0	0	0	%100
6	MP1A	X	-8.9956	-8.9956	0	%100
	MP1A	7	0	0	0	%100
8	MP4A	X	-8.9956	-8.9956	0	%100
9		7	0.000	0	0	%100
10	MP4A	X	-7.356	-7.356	0	%100
11	<u>S1</u>	7	0	0	0	%100
12	S1	X	-8.9956	-8.9956	0	%100
13	MP3A		0	0.0000	0	%100
14	MP3A	X	-10.8894	-10.8894	0	%100
15	MP2A	7	0	0	0	%100
16	MP2A	X	-8.6909	-8.6909	0	%100
17	M15A		0	0.0000	0	%100
18	M15A	Z	0	0	0	%100
19	M16	X		0	0	%100
20	M16	Z	0	U	U	70100

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:

Member Distributed Loads (BLC 51 : Structure Wo (300 Deg))

	Member Label	Direction	Start Magnitude.	.End MagnitudeII	Start Location(ft	.End Location[ft
1	A1	X	-7.2836	-7.2836	0	%100
2	A1	Z	-4.2052	-4.2052	0	%100
3	A2	X	-3.4168	-3.4168	0	%100
4	A2	Z	-1.9727	-1.9727	0	%100
5	A9	X	-8.6525	-8.6525	0	%100
6	A9	Z	-4.9955	-4.9955	0	%100
7	MP1A	X	-7.7904	-7.7904	0	%100
8	MP1A	Z	-4.4978	-4.4978	0	%100
9	MP4A	X	-7.7904	-7.7904	0	%100
10	MP4A	Z	-4.4978	-4.4978	0	%100
11	S1	X	-6.3705	-6.3705	0	%100
12	S1	Z	-3.678	-3.678	0	%100
13	MP3A	X	-7.7904	-7.7904	0	%100
14	MP3A	Z	-4.4978	-4.4978	0	%100
15	MP2A	X	-9.4305	-9.4305	0	%100
16	MP2A	Z	-5.4447	-5.4447	0	%100
17	M15A	X	-5.6449	-5.6449	0	%100
18	M15A	Z	-3.2591	-3.2591	0	%100
19	M16	X	-2.8702	-2.8702	0	%100
20	M16	Z	-1.6571	-1.6571	Ō	%100

Member Distributed Loads (BLC 52 : Structure Wo (330 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitudell	Start Location(ft	.End Location[ft,
1	A1	X	-1.4017	-1.4017	0	%100
2	A1	Z	-2.4279	-2.4279	0	%100
3	A2	X	-5.9181	-5.9181	0	%100
4	A2	Z	-10.2505	-10.2505	0	%100
5	A9	X	-4.9955	-4.9955	0	%100
6	A9	Z	-8.6525	-8.6525	0	%100
7	MP1A	X	-4.4978	-4.4978	0	%100
8	MP1A	Z	-7.7904	-7.7904	0	%100
9	MP4A	X	-4.4978	-4.4978	0	%100
10	MP4A	Z	-7.7904	-7.7904	0	%100
11	S1	X	-3.678	-3.678	0	%100
12	S1	Z	-6.3705	-6.3705	0	%100
13	MP3A	X	-4.4978	-4.4978	0	%100
14	MP3A	Z	-7.7904	-7.7904	0	%100
15	MP2A	X	-5.4447	-5.4447	0	%100
16	MP2A	Z	-9.4305	-9.4305	0	%100
17	M15A	X	-1.0864	-1.0864	0	%100
18	M15A	Z	-1.8816	-1.8816	0	%100
19	M16	X	-4.9712	-4.9712	0	%100
20	M16	Z	-8.6104	-8.6104	0	%100

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitudell.	.Start Location(ft.	End Location[ft,
1	A1	X	0	Ŏ	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	Z	-2.9694	-2.9694	0	%100
5	A9	X	0	0	0	%100
6	A9	Z	-2.1367	-2.1367	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	-2.1458	-2.1458	Ö	%100
9	MP4A	X	0	0	0	%100
10	MP4A	Z	-2.1458	-2.1458	0	%100

: Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Member Distributed Loads (BLC 53 : Structure Wi (0 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I	Start Location[ft,	End Location[ft
11	S1	X	0	Ŭ Ü	0	%100
	S1	7	-1.7653	-1.7653	0	%100
12	MP3A	X	0	0	0	%100
13	MP3A	7	-2.1458	-2.1458	0	%100
14	MP2A	X	0	0	0	%100
15	MP2A	7	-2.3756	-2.3756	0	%100
16	M15A	X	0	0	0	%100
17		7	0	0	0	%100
18	M15A	Y	0	0	0	%100
19	M16 M16	Z	-2.663	-2.663	0	%100

Member Distributed Loads (BLC 54 : Structure Wi (30 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitude[I	Start Location[ft	.End Location[ft,
1	A1	X	.2662	.2662	0	%100
2	A1	Z	461	461	0	%100
3	A2	X	1.1135	1.1135	0	%100
4	A2	7	-1.9287	-1.9287	0	%100
5	A9	X	1.0684	1.0684	0	%100
	A9	7	-1.8505	-1.8505	0	%100
6	MP1A	X	1.0729	1.0729	0	%100
	MP1A	7	-1.8583	-1.8583	0	%100
8	MP4A	X	1.0729	1.0729	0	%100
9	MP4A	7	-1.8583	-1.8583	0	%100
10	S1	X	.8827	.8827	0	%100
11	S1	7	-1.5288	-1.5288	0	%100
12	MP3A	X	1.0729	1.0729	0	%100
13	MP3A	Z	-1.8583	-1.8583	0	%100
14	MP2A	X	1.1878	1.1878	0	%100
15		Ž	-2.0574	-2.0574	0	%100
16	MP2A	X	2279	.2279	0	%100
17	M15A	Z	3947	3947	0	%100
18	M15A	X	.9986	9986	0	%100
19 20	M16 M16	Z	-1.7296	-1.7296	0	%100

Member Distributed Loads (BLC 55 : Structure Wi (60 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude[I.	Start Location[ft.	End Location[ft,
1	A1	X	1.383	1.383	0	%100
2	A1	Z	7985	7985	0	%100
3	A2	X	.6429	.6429	0	%100
4	A2	Z	3712	3712	0	%100
5	A9	X	1.8505	1.8505	0	%100
6	A9	Z	-1.0684	-1.0684	0	%100
7	MP1A	X	1.8583	1.8583	0	%100
8	MP1A	7	-1.0729	-1.0729	0	%100
9	MP4A	X	1.8583	1.8583	0	%100
	MP4A	7	-1.0729	-1.0729	0	%100
10	S1	X	1.5288	1.5288	.0	%100
	S1	7	8827	8827	0	%100
12	MP3A	X	1.8583	1.8583	0	%100
13	MP3A	Z	-1.0729	-1.0729	0	%100
14	MP2A	X	2.0574	2.0574	0	%100
15	MP2A	7	-1.1878	-1.1878	0	%100
16	M15A	X	1.1841	1.1841	0	%100
17	M15A	7	6836	6836	0	%100
18	M16	X	.5765	.5765	0	%100
19 20	M16	Z	3329	3329	0	%100

Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:

Member Distributed Loads (BLC 56 : Structure Wi (90 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude(I.	.Start Location[ft.	End Location[ft
1	A1	X	2.1293	2.1293	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	Z	0	0	0	%100
5	A9	X	2.1367	2.1367	0	%100
6	A9	Z	0	0	0	%100
7	MP1A	X	2.1458	2.1458	0	%100
8	MP1A	Z	0	0	0	%100
9	MP4A	X	2.1458	2.1458	0	%100
10	MP4A	Z	0	0	0	%100
11	S1	X	1.7653	1.7653	0	%100
12	S1	Z	0	0	0	%100
13	MP3A	X	2.1458	2.1458	0	%100
14	MP3A	Z	0	0	0	%100
_15	MP2A	X	2.3756	2.3756	0	%100
16	MP2A	Z	0	0	0	%100
17	M15A	X	1.8231	1.8231	0	%100
18	M15A	Z	0	0	0	%100
19	M16	X	0	0	0	%100
20	M16	Z	0	0	0	%100

Member Distributed Loads (BLC 57 : Structure Wi (120 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitudell	Start Location[ft.	End Location[ft
. 1	A1	X	1.383	1.383	0	%100
2	A1	Z	.7985	.7985	0	%100
3	A2	X	.6429	.6429	0	%100
4	A2	Z	.3712	.3712	0	%100
5	A9	X	1.8505	1.8505	0	%100
6	A9	Z	1.0684	1.0684	0	%100
7	MP1A	X	1.8583	1.8583	0	%100
8	MP1A	Z	1.0729	1.0729	0	%100
9	MP4A	X	1.8583	1.8583	0	%100
10	MP4A	Z	1.0729	1.0729	0	%100
11	S1	X	1.5288	1.5288	0	%100
12	S1	Z	.8827	.8827	0	%100
13	MP3A	X	1.8583	1.8583	0	%100
14	MP3A	Z	1.0729	1.0729	0	%100
15	MP2A	X	2.0574	2.0574	0	%100
16	MP2A	Z	1.1878	1.1878	0	%100
17	M15A	X	1.1841	1.1841	0	%100
18	M15A	Z	.6836	.6836	0	%100
19	M16	X	.5765	.5765	0	%100
20	M16	Z	.3329	.3329	0	%100

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[].	.Start Location[ft.	End Location[ft
1	A1	X	.2662	.2662	0	%100
2	A1	Z	.461	.461	0	%100
3	A2	X	1.1135	1.1135	0	%100
4	A2	Z	1.9287	1.9287	0	%100
5	A9	X	1.0684	1.0684	0	%100
6	A9	Z	1.8505	1.8505	0	%100
- 7	MP1A	X	1.0729	1.0729	0	%100
8	MP1A	Z	1.8583	1.8583	0	%100
9	MP4A	X	1.0729	1.0729	0	%100
10	MP4A	Z	1.8583	1.8583	0	%100

1 Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Member Distributed Loads (BLC 58 : Structure Wi (150 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft,	End Location[ft,
11	S1	X	.8827	.8827	0	%100
12	S1	7	1.5288	1.5288	0	%100
13	MP3A	X	1.0729	1.0729	0	%100
14	MP3A	Z	1.8583	1.8583	0	%100
15	MP2A	X	1.1878	1.1878	0	%100
16	MP2A	Z	2.0574	2.0574	0	%100
17	M15A	X	2279	.2279	0	%100
18	M15A	7	.3947	.3947	Q	%100
19	M16	X	9986	.9986	0	%100
20	M16	Z	1.7296	1.7296	0	%100

Member Distributed Loads (BLC 59 : Structure Wi (180 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft,.	.End Location[ft
1	A1	X	Ŏ	0	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	Z	2.9694	2.9694	0	%100
5	A9	X	0	0	0	%100
6	A9	Z	2.1367	2.1367	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	2.1458	2.1458	0	%100
9	MP4A	X	0	0	0	%100
10	MP4A	Z	2.1458	2.1458	0	%100
11	S1	X	0	0	0	%100
12	S1	Z	1.7653	1.7653	0	%100
13	MP3A	X	0	0	0	%100
14	MP3A	Z	2.1458	2.1458	0	%100
15	MP2A	X	0	0	0	%100
16	MP2A	Z	2.3756	2.3756	0	%100
17	M15A	X	0	0	0	%100
18	M15A	Z	0	0	0	%100
19	M16	X	0	0	0	%100
20	M16	Z	2.663	2.663	0	%100

Member Distributed Loads (BLC 60 : Structure Wi (210 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	Start Location[ft.	End Location[ft
1	A1	X	2662	2662	0	%100
2	A1	Z	.461	.461	0	%100
3	A2	X	-1.1135	-1.1135	0	%100
4	A2	Z	1.9287	1.9287	0	%100
5	A9	X	-1.0684	-1.0684	0	%100
6	A9	Z	1.8505	1.8505	0	%100
7	MP1A	X	-1.0729	-1.0729	0	%100
8	MP1A	Z	1.8583	1.8583	0	%100
9	MP4A	X	-1.0729	-1.0729	0	%100
10	MP4A	Z	1.8583	1.8583	0	%100
11	S1	X	8827	8827	0	%100
12	S1	Z	1.5288	1.5288	0	%100
13	MP3A	X	-1.0729	-1.0729	0	%100
14	MP3A	7	1.8583	1.8583	0	%100
15	MP2A	X	-1.1878	-1.1878	0	%100
16	MP2A	7	2.0574	2.0574	0	%100
17	M15A	X	2279	2279	0	%100
18	M15A	Z	.3947	.3947	0	%100
19	M16	X	9986	9986	0	%100
20	M16	Z	1.7296	1.7296	0	%100

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_____

Member Distributed Loads (BLC 61 : Structure Wi (240 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude[l.	.Start Location[ft.	End Location[ft,
1	A1	X	-1.383	-1.383	0	%100
2	A1	Z	.7985	.7985	0	%100
3	A2	X	6429	6429	0	%100
4	A2	Z	.3712	.3712	0	%100
5	A9	X	-1.8505	-1.8505	0	%100
6	A9	Z	1.0684	1.0684	0	%100
7	MP1A	X	-1.8583	-1.8583	0	%100
8	MP1A	Z	1.0729	1.0729	0	%100
9	MP4A	X	-1.8583	-1.8583	0	%100
10	MP4A	Z	1.0729	1.0729	0	%100
11	S1	X	-1.5288	-1.5288	0	%100
12	S1	Z	.8827	.8827	0	%100
13	MP3A	X	-1.8583	-1.8583	0	%100
14	MP3A	Z	1.0729	1.0729	0	%100
15	MP2A	X	-2.0574	-2.0574	0	%100
16	MP2A	Z	1.1878	1.1878	0	%100
17	M15A	X	-1.1841	-1.1841	0	%100
18	M15A	Z	.6836	.6836	0	%100
19	M16	X	5765	5765	0	%100
20	M16	Z	.3329	.3329	0	%100

Member Distributed Loads (BLC 62 : Structure Wi (270 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitudell.	.Start Location(ft.	.End Location[ft,
1.	A1	X	-2.1293	-2.1293	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	Z	0	0	0	%100
5	A9	X	-2.1367	-2.1367	0	%100
6	A9	Z	0	0	0	%100
7	MP1A	X	-2.1458	-2.1458	0	%100
8	MP1A	Z	0	0	0	%100
9	MP4A	X	-2.1458	-2.1458	0	%100
10	MP4A	Z	0	0	0	%100
11	S1	X	-1.7653	-1.7653	0	%100
12	S1	Z	0	0	0	%100
13	MP3A	X	-2.1458	-2.1458	0	%100
14	MP3A	Z	0	0	0	%100
15	MP2A	X	-2.3756	-2.3756	0	%100
16	MP2A	Z	0	0	0	%100
17	M15A	X	-1.8231	-1.8231	0	%100
18	M15A	Z	0	0	0	%100
19	M16	X	0	0	0	%100
20	M16	Z	0	0	0	%100

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg))

	Member Label	Direction	Start Magnitude	End Magnitude[I	.Start Location[ft,	End Location[ft,
1	A1	X	-1.383	-1.383	0	%100
2	A1	Z	7985	7985	0	%100
3	A2	X	6429	6429	0	%100
4	A2	Z	3712	3712	0	%100
5	A9	X	-1.8505	-1.8505	0	%100
6	A9	Z	-1.0684	-1.0684	0	%100
7	MP1A	X	-1.8583	-1.8583	0	%100
8	MP1A	Z	-1.0729	-1.0729	0	%100
9	MP4A	X	-1.8583	-1.8583	0	%100
10	MP4A	Z	-1.0729	-1.0729	0	%100

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Member Distributed Loads (BLC 63 : Structure Wi (300 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft	End Location[ft,
11	S1	X	-1.5288	-1.5288	0	%100
12	S1	Z	8827	8827	0	%100
13	MP3A	X	-1.8583	-1.8583	0	%100
14	MP3A	7	-1.0729	-1.0729	0	%100
	MP2A	X	-2.0574	-2.0574	0	%100
15	MP2A	7	-1,1878	-1.1878	0	%100
16	M15A	X	-1.1841	-1.1841	0	%100
11	M15A	7	6836	6836	0	%100
18	M16	X	5765	5765	0	%100
19	M16	Z	3329	3329	0	%100

Member Distributed Loads (BLC 64 : Structure Wi (330 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[l.	.Start Location[ft.	.End Location[ft.
1	A1	X	2662	2662	0	%100
2	A1	Z	461	461	Q _	%100
3	A2	X	-1.1135	-1.1135	0	%100
4	A2	Z	-1.9287	-1.9287	0	%100
5	A9	X	-1.0684	-1.0684	0	%100
6	A9	Z	-1.8505	-1.8505	0	%100
7	MP1A	X	-1.0729	-1.0729	0	%100
8	MP1A	Z	-1.8583	-1.8583	0	%100
9	MP4A	X	-1.0729	-1.0729	0	%100
10	MP4A	Z	-1.8583	-1.8583	0	%100
11	S1	X	8827	8827	0	%100
12	S1	Z	-1.5288	-1.5288	0	%100
13	MP3A	X	-1.0729	-1.0729	0	%100
14	MP3A	Z	-1.8583	-1.8583	0	%100
15	MP2A	X	-1.1878	-1.1878	0	%100
16	MP2A	Z	-2.0574	-2.0574	0	%100
17	M15A	X	2279	2279	0	%100
	M15A	Ž	3947	3947	0	%100
18 19	M16	X	9986	9986	0	%100
20	M16	Z	-1.7296	-1.7296	0	%100

Member Distributed Loads (BLC 65 : Structure Wm (0 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude[I	Start Location[ft,	End Location[ft,
1	A1	X	Ŏ	0	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	Z	-1.0775	-1.0775	0	%100
5	A9	X	0	0	0	%100
6	A9	Z	6821	6821	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	6142	6142	0	%100
9	MP4A	X	0	0	0	%100
10	MP4A	Z	6142	6142	0	%100
11	S1	X	0	0	0	%100
12	S1	Z	5022	5022	0	%100
13	MP3A	X	0	0	0	%100
	MP3A	Ž	6142	6142	0	%100
15	MP2A	X	0	0	0	%100
16	MP2A	Z	7435	7435	0	%100
17	M15A	X	0	0	0	%100
18	M15A	Z	0	0	0	%100
19	M16	X	0	0	0	%100
20	M16	Z	9051	9051	0	%100

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:____

Member Distributed Loads (BLC 66 : Structure Wm (30 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude[l.	.Start Location[ft,	.End Location[ft
1	A1	X	.0957	.0957	0	%100
2	A1	Z	1658	1658	0	%100
3	A2	X	.4041	.4041	0	%100
4	A2	Z	6998	6998	0	%100
5	A9	X	.3411	.3411	0	%100
6	A9	Z	5907	5907	0	%100
7	MP1A	X	.3071	.3071	0	%100
8	MP1A	Z	5319	5319	0	%100
9	MP4A	X	.3071	.3071	0	%100
10	MP4A	Z	5319	5319	0	%100
11	S1	X	.2511	.2511	0	%100
12	S1	Z	4349	4349	0	%100
13	MP3A	X	.3071	.3071	0	%100
14	MP3A	Z	5319	5319	0	%100
15	MP2A	X	.3717	.3717	0	%100
16	MP2A	Z	6439	6439	0	%100
17	M15A	X	.0742	.0742	0	%100
18	M15A	Z	1285	1285	0	%100
19	M16	X	.3394	.3394	0	%100
20	M16	Z	5879	5879	0	%100

Member Distributed Loads (BLC 67 : Structure Wm (60 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude(I.	.Start Location[ft,	.End Location[ft
1	A1	X	.4973	.4973	0	%100
2	A1	Z	2871	2871	0	%100
3	A2	X	.2333	.2333	0	%100
4	A2	Z	1347	1347	0	%100
5	A9	X	.5907	.5907	0	%100
6	A9	Z	3411	3411	0	%100
7	MP1A	X	.5319	.5319	0	%100
8	MP1A	Z	3071	3071	0	%100
9	MP4A	X	.5319	.5319	0	%100
10	MP4A	Z	3071	3071	0	%100
11	S1	X	.4349	.4349	0	%100
12	S1	Z	2511	2511	0	%100
13	MP3A	X	.5319	.5319	0	%100
14	MP3A	Z	3071	3071	0	%100
15	MP2A	X	.6439	.6439	0	%100
16	MP2A	Z	3717	3717	0	%100
17	M15A	X	.3854	.3854	0	%100
18	M15A	Z	2225	2225	0	%100
19	M16	X	.196	.196	0	%100
20	M16	Z	1131	1131	0	%100

Member Distributed Loads (BLC 68: Structure Wm (90 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft.	End Location[ft
1	A1	X	7656	.7656	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	Z	0	0	0	%100
5	A9	X	.6821	.6821	0	%100
6	A9	Z	0	0	0	%100
7	MP1A	X	.6142	.6142	0	%100
8	MP1A	Z	0	0	0	%100
9	MP4A	X	.6142	.6142	0	%100
10	MP4A	Z	0	0	0	%100

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Member Distributed Loads (BLC 68 : Structure Wm (90 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft.	.End Location[ft
11	S1	X	.5022	.5022	0	%100
12	\$1	7	0	0	0	%100
	MP3A	$\frac{1}{X}$.6142	.6142	0	%100
13	MP3A	7	0	0	0	%100
14	MP2A	X	.7435	.7435	0	%100
15	MP2A	7	0	0	0	%100
16		Y	.5934	.5934	0	%100
17	M15A	7	0	0	O O	%100
18	M15A	V	0	0	0	%100
19	M16 M16	7	0	Ö	0	%100

Member Distributed Loads (BLC 69 : Structure Wm (120 Deg))

	Member Label	Direction	Start Magnitude	.End Magnitude[I.	.Start Location[ft.,	.End Location[ft,
1	A1 A1	X	.4973	.4973	0	%100
2	A1	Z	.2871	.2871	0	%100
3	A2	X	.2333	.2333	0	%100
4	A2	Z	.1347	.1347	0	%100
5	A9	X	.5907	.5907	0	%100
6	A9	Z	.3411	.3411	0	%100
7	MP1A	X	.5319	.5319	0	%100
8	MP1A	Z	.3071	.3071	0	%100
9	MP4A	X	.5319	.5319	0	%100
10	MP4A	Z	.3071	.3071	0	%100
11	S1	X	.4349	.4349	0	%100
	S1	Z	.2511	.2511	0	%100
12	MP3A	X	.5319	.5319	0	%100
13	MP3A	Z	.3071	.3071	0	%100
14	MP2A	X	.6439	.6439	0	%100
15	MP2A	Z	.3717	.3717	0	%100
16	M15A	X	.3854	.3854	0	%100
17	M15A	Z	.2225	.2225	0	%100
18	M16	X	.196	.196	0	%100
19 20	M16	Ž	.1131	.1131	0	%100

Member Distributed Loads (BLC 70 : Structure Wm (150 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitude[I.	.Start Location[ft,	End Location[ft,
1	A1	X	.0957	.0957	0	%100
2	A1	Z	.1658	.1658	0	%100
3	A2	X	.4041	.4041	0	%100
4	A2	Z	.6998	.6998	0	%100
5	A9	X	.3411	.3411	0	%100
6	A9	Z	.5907	.5907	0	%100
7	MP1A	X	.3071	.3071	0	%100
8	MP1A	Z	.5319	.5319	0	%100
9	MP4A	X	.3071	.3071	0	%100
10	MP4A	Z	.5319	.5319	0	%100
11	S1	X	.2511	.2511	0	%100
12	S1	7	.4349	.4349	0	%100
	MP3A	X	.3071	.3071	0	%100
13	MP3A	7	.5319	.5319	0	%100
15	MP2A	X	.3717	.3717	0	%100
16	MP2A	7	.6439	.6439	0	%100
17	M15A	X	.0742	.0742	0	%100
	M15A	7	.1285	.1285	0	%100
18	M16	X	.3394	.3394	0	%100
20	M16	Z	.5879	.5879	0	%100

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Member Distributed Loads (BLC 71 : Structure Wm (180 Deg))

	Member Label	Direction	Start Magnitude.	.End Magnitudell.	.Start Location[ft.	End Location[ft,
1	A1	X	l 0	Ŏ.	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100
4	A2	Z	1.0775	1.0775	0	%100
5	A9	X	0	0	0	%100
6	A9	Z	.6821	.6821	0	%100
7	MP1A	X	0	0	0	%100
8	MP1A	Z	.6142	.6142	0	%100
9	MP4A	X	0	0	0	%100
10	MP4A	Z	.6142	.6142	0	%100
11	S1	X	0	0	0	%100
12	S1	Z	.5022	.5022	0	%100
13	MP3A	X	0	0	0	%100
14	MP3A	Z	.6142	.6142	0	%100
15	MP2A	X	0	0	0	%100
16	MP2A	Z	.7435	.7435	0	%100
17	M15A	X	0	0	0	%100
18	M15A	Z	0	0	0	%100
19	M16	X	0	0	0	%100
20	M16	Z	.9051	.9051	0	%100

Member Distributed Loads (BLC 72 : Structure Wm (210 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude(I	Start Location[ft,	End Location(ft
1	A1	X	0957	0957	0	%100
2	A1	Z	.1658	.1658	0	%100
3	A2	X	4041	4041	0	%100
4	A2	Z	.6998	.6998	0	%100
_5	A9	X	3411	3411	0	%100
6	A9	Z	.5907	.5907	0	%100
7	MP1A	X	3071	3071	0	%100
8	MP1A	Z	.5319	.5319	0	%100
9	MP4A	X	3071	3071	0	%100
10	MP4A	Z	.5319	.5319	0	%100
11	S1	X	2511	2511	0	%100
12	S1	Z	.4349	.4349	0	%100
13	MP3A	X	3071	3071	0	%100
14	MP3A	Z	.5319	.5319	0	%100
15	MP2A	X	3717	3717	0	%100
16	MP2A	Z	.6439	.6439	0	%100
17	M15A	X	0742	0742	0	%100
18	M15A	Z	.1285	.1285	0	%100
19	M16	X	3394	3394	0	%100
20	M16	Z	.5879	.5879	0	%100

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg))

	Member Label	Direction	Start Magnitude.	End Magnitude[I.	.Start Location[ft.	.End Location[ft
1	A1	X	4973	4973	0	%100
2	A1	Z	.2871	.2871	0	%100
3	A2	X	2333	2333	0	%100
4	A2	Z	.1347	.1347	0	%100
5	A9	X	5907	5907	0	%100
6	A9	Z	.3411	.3411	0	%100
7	MP1A	X	5319	5319	0	%100
8	MP1A	Z	.3071	.3071	0	%100
9	MP4A	X	5319	5319	0	%100
10	MP4A	Z	.3071	.3071	0	%100

: Colliers Engineering & Design

Project # 23777083
Antenna Mount Analysis

July 19, 2023 3:21 PM Checked By:_

Member Distributed Loads (BLC 73 : Structure Wm (240 Deg)) (Continued)

	Member Label	Direction	Start Magnitude.	End Magnitude[l.	.Start Location[ft,	End Location[ft
11	S1	X	4349	4349	0	%100
12	S1	7	.2511	.2511	0	%100
13	MP3A	X	5319	5319	0	%100
14	MP3A	Z	.3071	.3071	0	%100
15	MP2A	X	6439	6439	0	%100
16	MP2A	7	.3717	.3717	0	%100
17	M15A	X	3854	3854	0	%100
18	M15A	7	.2225	.2225	0	%100
	M16	X	196	196	0	%100
19	M16	Z	.1131	.1131	0	%100

Member Distributed Loads (BLC 74 : Structure Wm (270 Deg))

	Member Label	Direction		End Magnitude[IS	itart Location[ft	End Location[f
1	A1	X	7656	7656	0	%100
2	A1	Z	0	0	0	%100
3	A2	X	0	0	0	%100_
4	A2	Z	0	0	0	%100
5	A9	X	6821	6821	0	%100
6	A9	Z	0	0	0	%100
7	MP1A	X	6142	6142	0	%100_
8	MP1A	Z	0	0	0	%100
9	MP4A	X	6142	6142	0	%100
10	MP4A	Z	0	0	0	%100
11	S1	X	5022	5022	0	%100
12	S1	Z	0	0	0	%100
13	MP3A	X	6142	6142	0	%100
14	MP3A	Z	0	0	0	%100
15	MP2A	X	7435	7435	0	%100
16	MP2A	7	0	0	0	%100
17	M15A	X	5934	5934	0	%100
18	M15A	Z	0	0	0	%100
19	M16	X	0	0	0	%100
20	M16	Z	Ö	0	0	%100

Member Distributed Loads (BLC 75 : Structure Wm (300 Deg))

	Member Label	Direction	Start Magnitude	End Magnitude[l.	.Start Location[ft,	.End Location[ft,
1	A1	X	4973	4973	0	%100
2	A1	Z	2871	2871	0	%100
3	A2	X	2333	2333	0	%100
4	A2	Z	1347	1347	0	%100
5	A9	X	5907	5907	0	%100
6	A9	Z	3411	3411	. 0	%100
7	MP1A	X	5319	5319	0	%100
8	MP1A	Z	3071	3071	0	%100
9	MP4A	X	5319	5319	0	%100
10	MP4A	7	3071	3071	0	%100
11	S1	X	4349	4349	0	%100
12	\$1	7	2511	2511	0	%100
13	MP3A	X	5319	5319	0	%100
14	MP3A	Z	3071	3071	0	%100
15	MP2A	X	6439	6439	0	%100
16	MP2A	7	3717	3717	0	%100
17	M15A	X	3854	3854	0	%100
18	M15A	7	2225	2225	0	%100
19	M16	X	196	196	0	%100
20	M16	Z	1131	1131	0	%100

Colliers Engineering & Design

Project # 23777083 Antenna Mount Analysis July 19, 2023 3:21 PM Checked By:_

Member Distributed Loads (BLC 76: Structure Wm (330 Deg))

WW	Member Label	Direction	Start Magnitude.	.End Magnitudell.	.Start Locationfft.	.End Location[ft
1	A 1	X	0957	0957	0	%100
2	A1	Z	1658	1658	0	%100
3	A2	X	4041	4041	0	%100
4	A2	Z	6998	6998	0	%100
5	A9	X	3411	3411	0	%100
6	A9	Z	5907	5907	0	%100
7	MP1A	X	3071	3071	0	%100
8	MP1A	Z	5319	5319	0	%100
9	MP4A	X	3071	3071	0	%100
10	MP4A	Z	5319	5319	0	%100
11	S1	X	2511	2511	0	%100
12	S1	Z	4349	4349	0	%100
13	MP3A	X	3071	3071	0	%100
14	MP3A	Z	5319	5319	0	%100
15	MP2A	X	3717	3717	0	%100
16	MP2A	Z	6439	6439	0	%100
17	M15A	X	0742	0742	0	%100
18	M15A	Z	1285	1285	0	%100
19	M16	X	3394	3394	0	%100
20	M16	Z	5879	5879	0	%100

Member Area Loads

 Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
			No Data t	to Print		

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	L	MZ [k-ft]	LC
1	A1	100	582.274	9	1319.417	19	1043.923	13	547	1	1.139	9	.55	3
2		w.	-895.928	3	341.599	1	243.124	7	-2.699	19	-1.76	3	-1.381	9
3	N28A		690.938	11	854.174	13	1013.017	1	402	65	2.117	9	.368	3
4			-379.983	5	95.81	7	-1892.245	7	-1.231	21	-1.495	3	702	9
5	Totals:		1079.615	9	2056,729	14	1649.119	1						
6			-1079.616	3	703.462	72	-1649.121	7						Alexa .

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code Check	Lo	LC	Shear Check	Lo	LC	phi*Pnc	phi*Pnt [phi*Mn v	.phi*Mn	Cb	Ean
1	A1	HSS4X4X4	.189	0	17	.121	0 v	33	137249	139518	16.181	16.181	1.624	H1
2	A2	HSS4X4X4	.124	5	2	.048	3, z	8	91806.5	139518	16.181	16.181	1.445	H1
3	A9	PIPE_4.0	.001	1	9	.000	1	9	91742.2	93240	10.631	10.631	1.561	H1
4	MP1A	PIPE_2.0	.170	2	7	.044	2	11	23808.54	32130	1.872	1.872	2.755	H1
5	MP4A	PIPE_2.0	.200	3	49	.060	3	7	23808.54	32130	1.872	1.872	2.682	H1
6	S1	PIPE 2.0	.148	3	10	.051	3	10	28843.4		1.872	1.872	2.325	H1
7	MP3A	PIPE_2.0	.230	3	15	.086	3	18	23808.54		1.872	1.872	2.539	H1
8	MP2A	PIPE_2.5	.263	3	8	.119	3	7	30038.4	50715	3.596	3.596	2.903	H1
9	M15A	HSS3X3X4	.328	0	9	.114	0 z	9	97966.2	101016		8.556	1.621	H1
10	M16	PIPE_3.0	.321	5	8	.117	5	1	38176.7	65205	5.749	5.749	1.697	H1

Client:	Verizon Wireless	Date: 7/19/2023
Site Name:	NEW MILFORD W CT	
MDG #:	5000243611	
Fuze ID #:	17123971	Page: 1

Version 1.01

I. Mount-to-Tower Connection Check (Existing Standoff)

Custom Orientation Required

Yes

Nodes (labeled per Risa)	Orientation (per graphic of typical platform)
A1	0
	The second secon
	The same of the sa
Name of Street, Street	

Tower Connection Bolt Checks

Yes

Bolt Orientation

Bolt Quantity per Reaction:

 d_x (in) (Delta X of typ. bolt config. sketch) : d_y (in) (Delta Y of typ. bolt config. sketch) :

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips):

Required Shear Strength / bolt (kips):

Tensile Capacity / bolt (kips):

Shear Capacity / bolt (kips):

Bolt Overall Utilization:

V-		

Parallel

4	
3	
8	
A325N	
0.75	
4.2	
0.6	
29.8	
17.9	
14.2%	

Tower Connection Baseplate Checks

Connecting Standoff Member Shape:

Weld Stiffener Configuration:

Plate Width, D_x (in):

Plate Height, D_y (in):

W1(in):

W2 (in):

Member Thickness (in):

Stiffener location a₁ (in):

Stiffener location b₁ (in):

Stiffener location a₂ (in):

Stiffener location b₂ (in):

F_v (ksi, plate):

Plate Thickness (in):

Length of Yield Line, L, (in):

Bolt Eccentricity, e (in):

M_u (kip-in):

 $Phi*M_n (kip-in):$

Plate Bending Utilization:

Yes

Rect Tube
No Stiffeners
6
10
4
4
0.25
36
0.5
4.90
1.86
7.85
9.92
79.1%

VzW SMART Tool® Vendor

Client:	Verizon Wireless	Date:	7/19/2023
Site Name:	NEW MILFORD W CT		
MDG #:	5000243611		
Fuze ID #:	17123971	Page:	2

Version 1.01

Tower Connection Weld Checks

Weld Shape:

Weld Stiffener Configuration:

Weld Size (1/16 in):

W1 (in):

W2 (in):

Weld Total Length (in): $Z_x (in^3/in)$:

 Z_y (in³/in):

 J_p (in⁴/in):

c_x (in)

c_y (in)

Required combined strength (kip/in):

Weld Capacity (kip/in):

Weld Utilization:

II Sept	Rectangle	CO. BANK
	None	
	4	

Yes

	Rectangle	
	None	
100	4	
	4	
	4	
	16.00	
	21.33	
	21.33	
	85.33	
	2.25	
	2.25	
	1.16	
	5.57	
	20.8%	

Client:	Verizon Wireless	Date:	7/19/2023
Site Name:	NEW MILFORD W CT		
MDG #:	5000243611		
Fuze ID #:	17123971	Page:	1

Version 1.01

I. Mount-to-Tower Connection Check (New Standoff)

Custom	Orientation	Required

Yes

Nodes (labeled per Risa)	Orientation (per graphic of typical platform)
N28A	0
	A COLUMN TO THE REAL PROPERTY OF THE PARTY O
The second second	
Name and Address of	
	A STATE OF THE PARTY OF

Tower Connection Bolt Checks

Parallel

Bolt Orientation

Bolt Quantity per Reaction: d_x (in) (Delta X of typ. bolt config. sketch):

 $d_v(in)$ (Delta Y of typ. bolt config. sketch):

Bolt Type:

Bolt Diameter (in):

Required Tensile Strength / bolt (kips):

Required Shear Strength / bolt (kips):

Tensile Capacity / bolt (kips):

Shear Capacity / bolt (kips):

Bolt Overall Utilization:

Vo	-		

2	4
	6
	6
A3	25N
0.0	525
3	.0
0	.6
20	0.7
12	2.4
14	.6%

Tower Connection Baseplate Checks

Connecting Standoff Member Shape:

Weld Stiffener Configuration:

Plate Width, D_x (in):

Plate Height, D_v (in):

W1(in):

W2 (in):

Member Thickness (in):

Stiffener location a₁ (in):

Stiffener location b₁ (in):

Stiffener location a₂ (in):

Stiffener location b₂ (in):

F_v (ksi, plate):

Plate Thickness (in):

Length of Yield Line, Ly (in):

Bolt Eccentricity, e (in):

M_u (kip-in):

Phi*M_n (kip-in):

Plate Bending Utilization:

fa to the	-	
	6	
	A325N	
	0.625	
	3.0	
	0.6	
	20.7	
	12.4	

Yes

Rect Tube
No Stiffeners
8.25
8.25
3
3
0.25
50
0.75
6.69
2.35
7.14
42.31
16.9%

$\mathbf{V}\mathbf{z}\mathbf{W}$ SMART Tool® Vendor

Client:	Verizon Wireless	Date: 7/19/2023
Site Name:	NEW MILFORD W CT	
MDG #:	5000243611	
Fuze ID #:	17123971	Page: 2

Version 1.01

Tower Connection Weld Checks

Weld Shape:

Weld Stiffener Configuration:

Weld Size (1/16 in):

W1 (in):

W2 (in):

Weld Total Length (in): $Z_x (in^3/in)$:

 Z_y (in³/in):

J_p (in⁴/in): c_x (in)

c_y (in)

Required combined strength (kip/in):

Weld Capacity (kip/in):

Weld Utilization:

Herest	Rectangle	. ISWIT
	None	
	5	
	3	-

None
5
3
12.00
12.00
12.00
36.00
1.75
1.75
1.98
6.96
28.4%

ATTACHMENT 4

NEW MILFORD,CT

33 BOARDMAN RD

```
Location
33 BOARDMAN RD

Mblu
47/ / 73/ /
Acct#
005304

Owner
QUARRY STONE AND GRAVEL LLC
Assessment
$2,990,290
Appraisal
$5,201,730
PID
8323
Building Count
```

Current Value

2

Appraisal

Valuation Year	Improvements	Land	Total	
2020	\$1,268,700	\$3,933,030	\$5,201,730	

Assessment

Valuation Year	Improvements	Land	Total
2020	\$888,090	\$2,102,200	\$2,990,290

Parcel Addreses

Additional Addresses

No Additional Addresses available for this parcel

Owner of Record

Owner

QUARRY STONE AND GRAVEL LLC

Co-Owner % O + G INDUSTRIES

Address

112 WALL ST

TORRINGTON, CT 06790

Sale Price

\$0

Certificate

Book & Page 0778/0681

Sale Date

09/11/2003

Instrument

03

Ownership History

Ownership History

	U	wiletzilih u	istoi y			
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date	
QUARRY STONE AND GRAVEL LLC	\$0		0778/0681	03	09/11/2003	
QUARRY STONE AND GRAVEL LLC	\$0		0765/0512	03	07/08/2003	
KOVACS ROBERT G + KOVACS PAUL B + KOVACS	\$0		0705/0499	29	05/23/2002	
QUARRY STONE AND GRAVEL LLC	\$0		0690/0804	03	01/09/2002	
KOVACS ROGER P + PAUL B + ROBERT G	\$0		0361/0142		12/24/1986	

ATTACHMENT 5

POSTAL SERVICE ® Name and Address of Sender	TOTAL NO.	TOTAL NO.	Affix Stamp Here					
Name and Address of Sender	of Pieces Listed by Sender	of Pieces Received at Post Office™	Postmark with Date	of Receipt.				
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103		Postmaster, per (name of receiving employee)			Postmark with Date of Receipt. neopost // 09/11/2023 US POSTAGE \$003.19 ZIP 06103 041L12203937			
USPS® Tracking Number Firm-specific Identifier	(Name, Street,	Address Ny State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift		
1. 2. 3.	Pete Bass, Mayor Town of New Milfo 10 Main Street New Milford, CT 0 Laura Regan, Town Town of New Milfo 10 Main Street New Milford, CT 0 Quarry Stone + Gracolo O&G Industries 112 Wall Street Torrington, CT 067	6776 Planner rd 6776 vel, LLC LLC	NES CITO TO	SEP 11 2025				
5.								
6.								