

Alex Murshteyn, Site Acquisition Consultant c/o Cellco Partnership d/b/a Verizon Wireless Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (508) 821-0159 AMurshteyn@centerlinecommunications.com

November 6, 2018

Melanie A. Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification // Site: West Farms CT (ATC: 370627) 605 Willard Avenue, Newington, CT 06111 N 41.69837 // W 72.7371

Dear Ms. Bachman:

Cellco Partnership d/b/a Verizon Wireless currently maintains 12 antennas at the 110-foot mount on the existing 179-foot monopole tower, located at 605 Willard Avenue, Newington, CT. The tower is owned by American Tower. The property is owned by the Town of Newington. Verizon Wireless facility was approved for tower sharing in 2002. Verizon Wireless now intends install upgraded mounts and mount reinforcement kit with 3 relocated and 3 LTE antenna (700/850/1900/2100 MHz) replacements for its PCS/AWS/LTE upgrade. Additionally, Verizon Wireless will replace 9 remote radio head units (RRUs) with 6 new RRUs, add 1 over-voltage protector (OVP) and remove certain cabling; altogether updating leased equipment rights, as reflected by the final configuration outlined in the structural analysis and proposed hereby.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Roy Zartarian, Mayor for the Town of Newington, its Town Planner Craig Minor, including for the Town Plan & Zoning Commission department and American Tower, the tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2). Enclosed to accommodate this filing are construction drawings dated November 1, 2018 and a structural analysis dated August 2, 2018 by A.T. Engineering Service, PLLC, a structural mount analysis by Trylon Engineering Services dated October 11, 2018 and radio frequency (RF) analysis table showing worst-case RF emission calculation by Verizon Wireless RF Design Engineering.

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the new antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading, with mount reinforcement, as shown in the attached structural analyses by A.T. Engineering Service, PLLC, dated August 2, 2018 and Trylon Engineering Services, dated October 11, 2018.

For the foregoing reasons, Verizon Wireless respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely,

Alex Murshteyn, Site Acquisition Consultant

c/o Cellco Partnership d/b/a Verizon Wireless Centerline Communications, LLC 750 West Center Street, Floor 3 West Bridgewater, MA 02379 Mobile: (508) 821-0159 AMurshteyn@centerlinecommunications.com

Attachments

cc: Roy Zartarian, Mayor - as chief elected official Craig Minor, Town Planner - as P&Z official American Tower Corporation - as tower owner Town of Newington - as property owner/see CEO above

AMERICAN TOWER®

CORPORATION

Structural Analysis Report

Structure	:	179 ft Monopole	
ATC Site Name	:	Newington CT, CT	
ATC Site Number	;	370627	
Engineering Number	:	12600288	
Proposed Carrier	:	Verizon	
Carrier Site Name	:	West Farms Ct	
Carrier Site Number	:	PSLC# 469196 - PROJ# 15246401	
Site Location	:	605 Willard Ave. Newington, CT 06111-0000 41.698400,-72.737100	
County	:	Hartford	
Date	:	August 2, 2018	
Max Usage	:	64%	
Result	:	Pass	IN OF CONNECT

Prepared By: Timothy Kassakatis Structural Engineer I

Jun Kan shals

Reviewed By:

Authorized by "EOR" Aug 2 2018 4:37 PM COSign

COA: PEC.0001553

Table of Contents

Introduction	1
Supporting Documents	1
Analysis	1
Conclusion	1
Existing and Reserved Equipment	. 2
Equipment to be Removed	2
Proposed Equipment	3
Structure Usages	3
Foundations	3
Deflection, Twist, and Sway	. 3
Standard Conditions	4
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 179 ft monopole to reflect the change in loading by Verizon.

Supporting Documents

Tower Drawings	PiRod Engineering File #A-118092, dated August 10, 2001
Foundation Drawing	PiRod Engineering File #A-118092, dated August 10, 2001
Geotechnical Report	Clarence Welti, dated August 1, 2001

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	97 mph (3-Second Gust, Vasd) / 125 mph (3-Second Gust, Vult)
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 1" radial ice concurrent
Code:	ANSI/TIA-222-G / 2012 IBC / 2016 Connecticut State Building Code
Structure Class:	1
Exposure Category:	В
Topographic Category:	1
Crest Height:	Oft
Spectral Response:	$Ss = 0.18, S_1 = 0.06$
Site Class:	D - Stiff Soil

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Eng. Number 12600288 August 2, 2018 Page 2

Existing and Reserved Equipment

Elevatio	on ¹ (ft)	054	Antonno	B downt Timo	Lines	Comion							
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier							
	188.0	1	18' Dipole										
170.0		1	5' Dipole			Town Of Newington, CT							
179.0	179.0	1	10' Omni	Low Profile Platform	(3) 7/8" Coax								
	i i	1	8' Yagi										
		3	Ericsson KRY 112 144/1										
		- 3	Ericsson RRUS 11 B12										
170.0	170.0	3	Ericsson AIR 21, 1.3 M, B2A B4P	Low Profile Platform	(12) 1 5/8" Coax	Metro PCS							
		3	Ericsson AIR 21, 1.3M, B4A B2P		(1) 1 1/4" Hybriflex								
		3	Andrew LNX-6515DS-VTM										
		3	RCU										
'		3	DragonWave Horizon Compact		(3) 0.28" Fiber								
160.0	160.0	3	Samsung U-RAS Premium-F FRH	Side Arms	(3) 5/8" Coax	Clearwire							
-		3	Argus LLPX310R		(3) 1/2" Coax								
		3	DragonWave A-ANT-18G-2-C		(1) 0.32" Cable								
		6	Powerwave LGP21401	Low Profile Platform	(6) 1 5/8" Coax (6) 0.78" 8 AWG 6 (2) 0.39" Fiber Trunk (2) 2" Conduit	AT&T Mobility							
		2	Raycap DC6-48-60-18-8F										
		13	Ericsson RRUS 4478 B14										
		3	Ericsson RRUS 11 (Band 12) (55 lb)										
		3	Ericsson RRUS 32										
	[3	Ericsson RRUS 12										
154.0	154.0	3	Ericsson RRUS 32 B2										
		3 Ericsson RRUS 32 B66			(1) 3" Conduit								
		1	Raycap DC6-48-60-0-8F		(1) 3/8" RET Control Cable								
		3	Kathrein 800 10121										
									1	Quintel QS66512-2			
		2	CCI TPA-65R-LCUUUU-H8										
		3	Alcatel-Lucent 800MHz 2X50W RRH w/										
			Filter										
		3	Alcatel-Lucent 1900MHz RRH		(4) 1 1/4" Hybriflex	Sprint Nextel							
140.0	140.0	3	Alcatel-Lucent TD-RRH8x20	Low Profile Platform									
		3	RFS APXVTM14-C-I20										
		1	RFS APXV9ERR18-C-A20										
		2	RFS APXVSPP18-C-A20										
110.0	110.0	6	Commscope SBNHH-1D65B	Low Profile Platform	(6) 1 5/8" Coax	Vorison							
	110.0	1	RFS DB-T1-6Z-8AB-0Z		(1) 1 5/8" Hybriflex	Verizon							

Equipment to be Removed

Elevatio	on ¹ (ft)	<u></u>	Antonno	Maximb Time	(lane	Comion
Mount	RAD	Qty	Antenna	Mount Type	Lines	Carrier
110.0	110.0	3	Antel BXA-70063-6CF-EDIN-X	2	(6) 1 5/8" Coax	Verizon
		3	Alcatel-Lucent RRH2x60 700	×	(1) 1 5/8" Fiber	- Crizon
		3	Alcatel-Lucent RRH2X60-AWS			
		3	Alcatel-Lucent RRH2X60-1900			

A.T. Engineering Service, PLLC - 3500 Regency Parkway, Suite 100 - Cary, NC 27528 - 919-468-0112 Office - 919-466-5414 Fax - www.americantower.com

Proposed Equipment

Elevatio	on ¹ (ft)	Qty	Antonno Mount Tuno		Lines	Corrier
Mount	RAD	Quy	Antenna	Mount Type	Lines	Carrier
		3	Samsung 700/850MHz Dual Band RRH	sung 700/850MHz Dual Band RRH		
110.0	110.0	3	Samsung PCS/AWS Dual Band RRH	Low Profile Platform	(1) 1 5/8" Hybriflex	Verizon
110.0	110.0	6	Antel BXA-80063/4CF 5°	Low Frome Flattorn	(1) 15/6 Hydrinex	venzon
		1	RFS DB-T1-6Z-8AB-0Z			

¹Mount elevation is defined as height above bottom of steel structure to the bottom of mount, RAD elevation is defined as center of antenna above ground level (AGL).

Install proposed coax inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail	
Anchor Bolts	62%	Pass	
Shaft	64%	Pass	
Base Plate	45%	Pass	

Foundations

Reaction Component	Original Design Reactions	Factored Design Reactions*	Analysis Reactions	% of Design
Moment (Kips-Ft)	4,601.2	6,211.6	3,747.1	60%
Shear (Kips)	37.2	50.2	29.7	59%

* The design reactions are factored by 1.35 per ANSI/TIA-222-G, Sec. 15.5.1

The structure base reactions resulting from this analysis are acceptable when compared to those shown on the original structure drawings, therefore no modification or reinforcement of the foundation will be required.

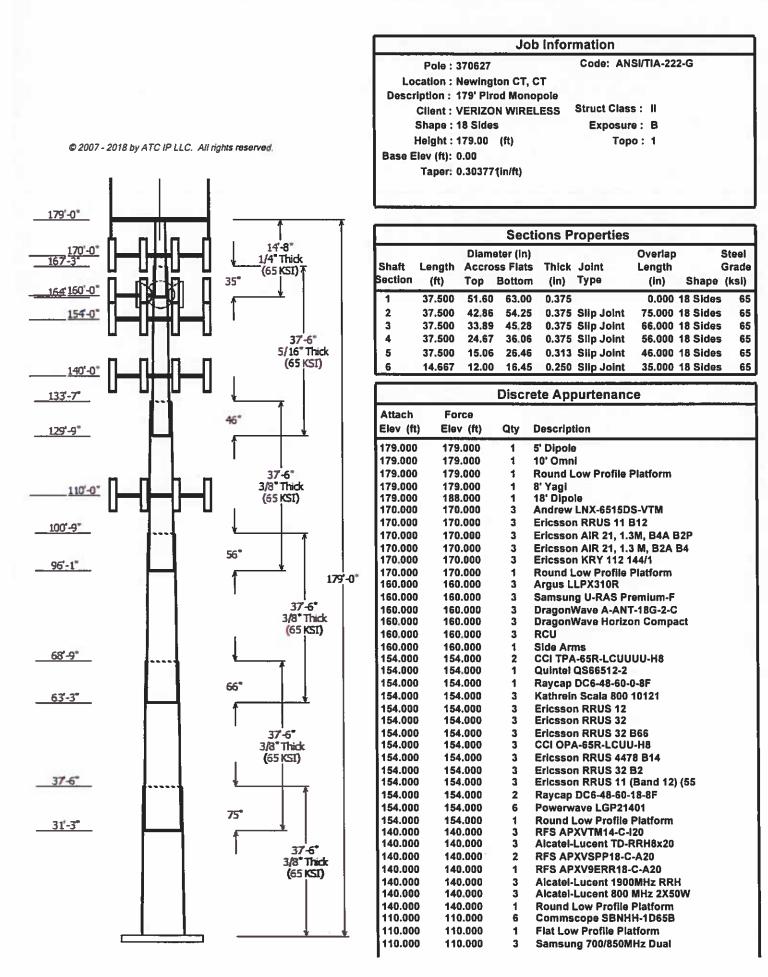
Deflection and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
160.0	DragonWave A-ANT-18G-2-C	Clearwire	2.056	1.623
	Samsung PCS/AWS Dual Band RRH	Verizon	0.889	1.029
110.0	Samsung 700/850MHz Dual Band RRH			
	Antel BXA-80063/4CF 5°			
	RFS DB-T1-6Z-8AB-0Z			

*Deflection and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-G

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

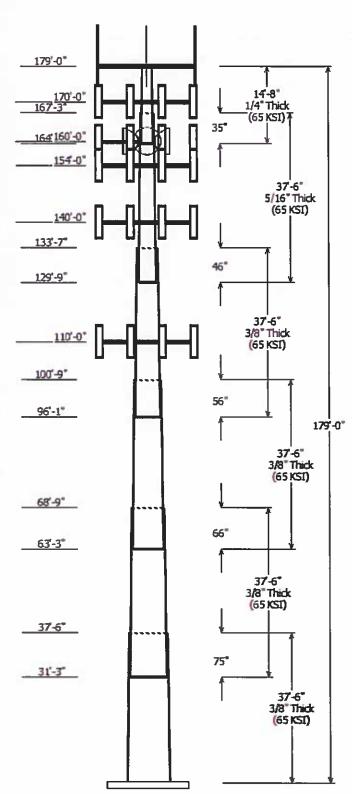

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

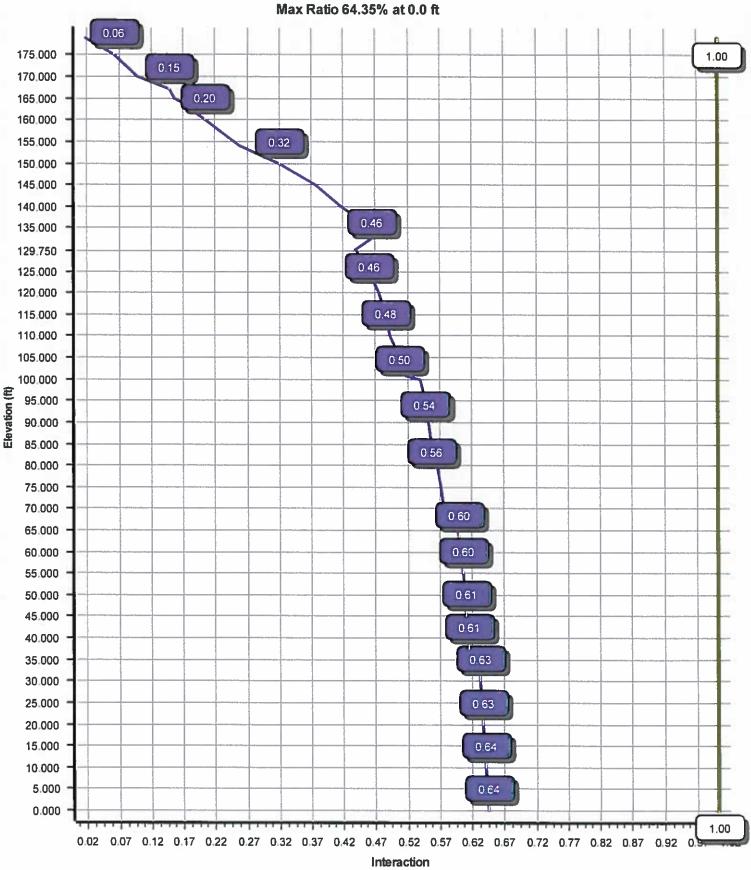
It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.


110.000 110.000 2 RFS DB-T1-62-8AB-0Z 110.000 110.000 6 Antel BXA-80063/4CF 5°


	Linear Appurtenance					
Elev	(ft)		Exposed			
From	То	Description	To Wind			
0.000	110.0	1 5/8" Coax	No			
0.000	110.0	1 5/8" Hybriflex	No			
0.000	140.0	1 1/4" Hybriflex	No			
0.000	154.0	0.39" Fiber Trunk	No			
0.000	154.0	0.78" 8 AWG 6	No			
0.000	154.0	1 5/8" Coax	No			
0.000	154.0	2" Conduit	No			
0.000	154.0	3" Conduit	No			
0.000	154.0	3/8" RET Control	No			
0.000	160.0	0.28" Fiber	No			
0.000	160.0	0.32" Cable	No			
0.000	160.0	1/2" Coax	No			
0.000	160.0	5/8" Coax	No			
0.000	170.0	1 1/4" Hybriflex	No			
0.000	170.0	1 5/8" Coax	No			
0.000	179.0	7/8" Coax	No			

	Load Cases
1.2D + 1.6W	97 mph with No Ice
0.9D + 1.6W	97 mph with No Ice (Reduced DL)
1.2D + 1.0Di + 1.0Wi	50 mph with 1.00 in Radial Ice
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Lateral Forces Method
(1.2 + 0.2Sds) * DL + E	Seismic Equivalent Modal Analysis Method
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Lateral
(0.9 - 0.2Sds) * DL + E	Seismic (Reduced DL) Equivalent Modal
1.0D + 1.0W	Serviceability 60 mph

.oad Case	Moment (kip-ft)	Shear (kip)	Axial (kip)
1.2D + 1.6W	3747.06	29.69	59.61
0.9D + 1.6W	3689.49	29.67	44.70
1.2D + 1.0Di + 1.0Wi	1223.53	9.15	99.09
(1.2 + 0.2Sds) * DL + E ELFM	281.60	1.94	59.73
(1.2 + 0.2Sds) * DL + E EMAM	308.46	2.32	59.73
(0.9 - 0.2Sds) * DL + E ELFM	276.19	1.94	41.52
(0.9 - 0.2Sds) * DL + E EMAM	301.76	2.32	41.52
1.0D + 1.0W	888.07	7.09	49.70

	Attach	Deflection	Rotation								
Load Case	Elev (ft)	(in)	(deg)								
1.0D + 1.0W	160.00	24.669	1.623								

Load Case : 1.2D + 1.6W

Site Numbe Site Name:	r: 370627 Newingtor	ст, ст	Enginee	Code: ANSI/TIA-222-G ring Number:12600288	© 2007 - 2018 by ATC	IP LLC. All rights reserved 8/2/2018 10:28:33 AM
Customer:	VERIZON	WIRELESS				
			A	nalysis Parameters		
Location :		HARTFORD Coun	ty, CT	Height (ft) :		179
Code :		ANSI/TIA-222-G		Base Diameter (in) :		63.00
Shape :		18 Sides		Top Diameter (in) :		12.00
Pole Type :		Тарег		Taper (in/ft) :		0.304
Pole Manfac	turer :	Pirod		Rotation (deg)		0.00
				& Wind Parameters		
Structure Cla		11				7 mah
		В		Design Wind Speed Without I Design Wind Speed With Ice:		7 mph
	xposure Category: B opographic Category: 1			Operational Wind Speed		0 mph
Crest Height		U ft		Design Ice Thickness:		0 mph 1.00 in
					·····-	
			S	eismic Parameters		
Analysis Me	thod:	Equivalent Modal	Analysis & Equ	ivalent Lateral Force Methods		
Site Class:		D - Stiff Soil				
	d on Rayleigh N	Nethod (sec):	2.90			
T _L (sec):	6		P	1.3	C _s :	0.030
S _s :	0.182		S ₁ :	0.064	C _s Max	0.030
F _a :	1.600		F _v :	2.400	C _s Min:	0.030
S _{ds} :	0.194		S _{d1} :	0.102		
				Load Cases		
1.2D + 1.6W		97 (mph with No Ice			
0.9D + 1.6W			mph with No Ice			
1.2D + 1.0Di			mph with 1.00 ir	Radial Ice		
) * DL + E ELFN			Lateral Forces Method		
) * DL + E EMA		•	Modal Analysis Method	and	
- 100) * DL + E ELFN) * DL + E EMAN			DL) Equivalent Lateral Forces Meth DL) Equivalent Modal Analysis Met		
1.0D + 1.0W			viceability 60 m	-		

Site Name: Newington CT, CT

Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G Engineering Number: 12600288 2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:28:33 AM

Sha	Shaft Section Properties							Bottom					тор						
Sect Info	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Joint	Weight (lb)	Dia (in)	Elev (ft)	Area (in ²)	lx {in ⁴)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (in²)	(in ⁴)	W/t Ratio	D/t Ratio	Taper (in/ft)
1-18	37.500	0.3750	65		0.00	8,646	63.00	0.00	74.54	36933.4	27.86	168.00	51.60	37.50	60.98	20222.7	22.50	137.62	0.303771
2-18	37.500	0.3750) 65	Slip	75.00	7,318	54.25	31.25	64.13	23524.0	23.75	144.69	42.86	68.75	50,57	11536.1	18.39	114,31	0.303771
3-18	37.500	0.3750	65	Slip	66.00	5,956	45.28	63.25	53.45	13622.2	19.53	120.76	33.89	100.75	39,90	5663.6	14.17	90,39	0.303771
4-18	37.500	0.3750) 65	Slip	56.00	4,555	36.06	96.08	42.48	6834.9	15.19	96.17	24.67	133,58	28.92	2156.7	9.84	65.79	0.303771
5-18	37.500	0.3125	5 65	Slip	46.00	2,589	26.46	129.75	25.93	2240.4	13.17	84.67	15.06	167.25	14.64	402.7	6.74	48.22	0.303771
6-18	14.667	0.2500	65	Slip	35.00	554	16.45	164.33	12.86	426.6	9.84	65.82	12.00	179.00	9.32	162.6	6.70	48.00	0.303771
			Sh	naft We	eight	29,617													

Discrete Appurtenance Properties

Attach Elev (ft)	Description	 	Distance From Face (ft)	Vert Ecc (ft)	Weight (Ib)	No Ice EPAa (sf)	Orientation Factor	
Elev (ft) 179.00 179.00 179.00 179.00 170.00 170.00 170.00 170.00 170.00 170.00 170.00 170.00 170.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 160.00 154.00	Description 10' Omni 18' Dipole 5' Dipole 8' Yagi Round Low Profile Platform Andrew LNX-6515DS-VTM Ericsson AIR 21, 1.3 M, B2A B4 Ericsson AIR 21, 1.3 M, B2A B4 Ericsson AIR 21, 1.3 M, B4A B2P Ericsson RRUS 11 B12 Round Low Profile Platform Argus LLPX310R DragonWave A-ANT-18G-2-C DragonWave Horizon Compact RCU Samsung U-RAS Premium-F FRH Side Arms CCI OPA-65R-LCUU-H8 CCI TPA-65R-LCUU-H8 Ericsson RRUS 11 (Band 12) (55 Ericsson RRUS 32 Ericsson RRUS 32 Ericsson RRUS 32 B2 Ericsson RRUS 32 B66 Ericsson RUS 32 B66	1111133333133333333333333333333333611221333312	From Face (ft) 0.0000 0.0000 0.0000 0.000000	Ecc (ft) 0.000 9.000 0.000	(Ib) 25.00 55.00 15.00 30.00 1500.00 51.30 83.00 81.50 11.00 28.60 27.10 11.50 100 33.00 560.00 88.00 81.60 55.00 55.00 55.10 53.00 55.10 53.00 53.00 53.00 53.00 53.00 53.00 54.00 31.80 11.00 11.00 31.80 1500.00 44.00 66.10 62.00 57.00	EPAa ((sf) 3.000 6.770 1.740 12.000 21.700 11.430 6.050 6.090 0.410 2.790 4.690 0.840 0.160 1.560 8.500 12.980 13.300 2.520 3.150 3.200 3.200 3.200 1.840 5.160 1.100 8.130 4.790 1.280 21.700 3.260 2.060 3.020 8.020	Drientation Factor 1.00 1.00 1.00 0.70 0.71 0.70 0.50 0.67 1.00 0.63 0.67 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	
140.00 140.00 110.00 110.00 110.00 110.00 110.00	RFS APXVSPF1a-C-A20 RFS APXVTM14-C-I20 Round Low Profile Platform Antel BXA-80063/4CF 5° Commscope SBNHH-1D65B Flat Low Profile Platform RFS DB-T1-6Z-8AB-0Z Samsung 700/850MHz Dual Band Samsung PCS/AWS Dual Band	2 3 1 6 6 1 2 3 3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	57.00 56.20 1500.00 9.90 40.60 1500.00 44.00 70.30 84.40	6.340 21.700 4.710 8.080 26.100 4.800 1.880 1.880	0.66 1.00 0.64 0.69 1.00 0.67 0.50	

Site Name: Newington CT, CT Customer:

Code: ANSI/TIA-222-G

© 2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:28:33 AM

Engineering Number: 12600288

VERIZON WIRELESS

Totals Num Loadings:44

111

12862.40

Linear Appurtenance Properties

Elev From (ft)	Elev To (ft)	Qty Description	Coax Diameter (in)	Coax Weight (Ib/ft)	Flat	Projected Width (in)	Exposed To Wind	Carrier
0.0	0 179.00	3 7/8" Coax	1.09	0.33	N	0.00	N	Town of Newington, CT
0.0	0 170.00	1 1 1/4" Hybriflex Cable	1.54	1.00	N	0.00	N	Metro PCS
0.0	0 170.00	12 1 5/8" Coax	1.98	0.82	Ν	0.00	N	Metro PCS
0.0	0 160.00	3 0.28" Fiber	0.28	0.03	Ν	0.00	N	Clearwire
0.0	0 160.00	1 0.32" Cable	0.32	0.06	N	0.00	N	Clearwire
0.0	0 160.00	3 1/2" Coax	0.63	0.15	N	0.00	Ν	Clearwire
0.0	0 160.00	3 5/8" Coax	0.87	0.15	N	0.00	N	Clearwire
0.0	0 154.00	2 0.39" Fiber Trunk	0.39	0.07	N	0.00	N	AT&T Mobility
0.0	0 154.00	6 0.78" 8 AWG 6	0.78	0.59	N	0.00	N	AT&T Mobility
0.0	0 154.00	6 1 5/8" Coax	1.98	0.82	Ν	0.00	N	AT&T Mobility
0.0	0 154.00	2 2" Conduit	2.38	3.65	Ν	0.00	Ν	AT&T Mobility
0.0	0 154.00	1 3" Conduit	3.50	7.58	Ν	0.00	N	AT&T Mobility
0.0	0 154.00	1 3/8" RET Control Cable	0.38	0.23	N	0.00	N	AT&T Mobility
0.0	0 140.00	4 1 1/4" Hybriflex Cable	1.54	1.00	Ν	0.00	N	Sprint Nextel
0.0	0 110.00	6 1 5/8" Coax	1.98	0.82	Ν	0.00	N	Verizon
0.0	0 110.00	2 1 5/8" Hybriflex Cable	1.98	1.30	Ν	0.00	N	Verizon

Site Name:

Newington CT, CT

Code: ANSI/TIA-222-G

© 2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:28:33 AM

Engineering Number: 12600288

VERIZON WIRELESS Customer:

Segment Properties (Max Len : 5.ft)

Seg To Elev	φ.	Flat Thick Dia	Area Ix	W/t	D/t F'y	S	Z	Weight	
(ft)	Description	(in) (in)	(in²) (in		Ratio (ksi)	(in ³)	(in ³)	(lb)	
0.00		0.3750 63.000	74.537 36,93		168.00 68.6		0.0	0.0	
5.00		0.3750 61.481	72.729 34,31	0.8 27.15	163.95 69.5	1099.	0.0	1,252.8	
10.00 15.00		0.3750 59.962 0.3750 58.443	70.921 31,81 69.113 29,44	5.3 26.43 3.9 25.72	159.90 70.3 155.85 71.2	1045.		1,222.0 1,191.3	
20.00		0.3750 56.925	67.306 27,19	3.4 25.00	151.80 72.0			1,160.5	
25.00		0.3750 55.406	65.498 25,06	0.6 24.29	147.75 72.8			1,129.8	
30.00		0.3750 53.887	63.690 23.04	2.3 23.57	143.70 73.7	842.2		1,099.0	
	Bot - Section 2	0.3750 53.507			142.69 73.9			269.9	
35.00	T D . H	0.3750 52.368	61.882 21,13	5.4 22.86	139.65 74.5	794.9	0.0	1,608.0	
37.50 40.00	Top - Section 1	0.3750 52.359 0.3750 51.599 0.3750 50.080	61.871 21,12	3.9 22.86	139.62 74.5	794.6		1.052.8	
45.00		0.3750 50.080	60.967 20,21 59.160 18,46	6.5 21.78	133.55 75.8	726.3		1,021.9	
50.00		0.3750 48.561	57.352 16,82	4.8 21.07	129.50 76.6	682.4		991.2	
55.00		0.3750 47.043	55.544 15,28	3.5 20.36	125.45 77.5			960.4	
60.00		0.3750 45.524	53.736 13,83	9.3 19.64	121.40 78.3		0.0	929.6	
63.25	Bot - Section 3	0.3750 44.536	52.561 12,95	1.1 19.18	118.76 78.8	572.8		587.8	
65.00 68.75	Top - Section 2	0.3750 44.005 0.3750 43.616	51.929 12,48	9.0 18.93 7.8 18.75	117.35 79.1 116.31 79.4	559.0		627.5 1,319.4	
70.00	Top - Section 2	0.3750 43.236	51.014 11,84	0.3 18.57				217.9	
75.00		0.3750 41.717						852.6	
80.00		0.3750 40.198	47.398 9.49	7.0 17.14	107.20 81.2	465.3	0.0	821.8	
85.00		0.3750 38.679	45.590 8,45	1.3 16.42	103.15 82.1	430.4	0.0	791.0	
90.00		0.3750 37.161	43.783 7,48	5.3 15.71	99.09 82.6	396.7	0.0	760.3	
95.00 96.08	Pot Costion 4	0.3750 35.642	41.975 6,59 41.583 6,41	5.9 15.00	95.04 82.6		0.0	729.5	
100.0	Bot - Section 4	0.3750 35.313 0.3750 34.123	41.583 6,41 40.167 5,77	2.9 14.84 9.8 14.28	94.17 82.6 90.99 82.6	337.1	0.0	154.0 1.101.4	
100.7	Top - Section 3	0.3750 34.645	40.788 6,05	2.3 14.53	92.39 82.6	344.1	0.0	206.6	
105.0		0.3750 33.354	39.252 5,39		88.94 82.6		0.0	578.8	
110.0		0.3750 31.835	37.444 4,68	2.3 13.21	84.89 82.6	289.7	0.0	652.4	
115.0		0.3750 30.316 0.3750 28.797	35.636 4,03	6.4 12.49	80.84 82.6	262.2	0.0	621.7	
120.0		0.3750 28.797	33.829 3,45	2.7 11.78	76.79 82.6	236.2	0.0	590.9	
125.0 129.7	Bot - Section 5	0.3750 27.279 0.3750 25.836	32.021 2,92 30.304 2,48		72.74 82.6 68.90 82.6		0.0 0.0	560.2 503.7	
130.0	Dot - Section S	0.3750 25.760	30.213 2,45		68.69 82.6		0.0	47.8	
133.5	Top - Section 4	0.3125 25.296	24.780 1.95		80.95 82.6	152.2	0.0	669.2	
135.0	•	0.3125 24.866	24.353 1,85	4.9 12.27	79.57 82.6	146.9	0.0	118.4	
140.0		0.3125 23.347	22.847 1,53	1.6 11.41	74.71 82.6	129.2	0.0	401.5	
145.0 150.0		0.3125 21.828	21.340 1.24	8.1 10.55 2.0 9.70	69.85 82.6		0.0	375.9 350.3	
150.0		0.3125 20.309 0.3125 19.094	19.834 1,00 18.629 83	12.0 9.70 10.2 9.01	64.99 82.6 61.10 82.6	97.2 85.6	0.0 0.0	261.8	
155.0		0.3125 18.791	18.327 79	0.6 8.84	60.13 82.6	82.9	0.0	62.9	
160.0		0.3125 17.272	16.821 61	1.2 7.98	55.27 82.6	69.7	0.0	299.0	
164.3	Bot - Section 6	0.3125 15.955 0.3125 15.753	15.515 47	9.7 7.24	51.06 82.6	59.2	0.0	238.4	
165.0	Ten Contine C	0.3125 15.753	15.314 46	51.3 7.13	50.41 82.6	57.7	0.0	64.0	
167.2	Top - Section 5	0.2500 15.569	12.155 36	0.4 9.22	62.28 82.6		0.0	209.8	
170.0 175.0		0.2500 14.734 0.2500 13.215		04.6 8.63 8.5 7.56	58.94 82.6 52.86 82.6	40.7 32.6	0.0 0.0	110.6 185.3	
179.0		0.2500 13.213	9.323 16	6.5 7.50 62.6 6.70	48.00 82.6	26.7	0.0	133.5	
		0.2000 12.000	0.020 10		10.00 02.0	20.7		9,617.5	
							2	5,017,3	

Site Name: Newington CT, CT

VERIZON WIRELESS Customer:

Code: ANSI/TIA-222-G Engineering Number: 12600288

97 mph with No Ice

© 2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:28:33 AM

Load Case: 1.2D + 1.6W

Gust Response Factor :1.10 Dead Load Factor :1.20

Wind Load Factor :1.60

Applied Segment Forces Summary

	<u> </u>												
		Shaft I	Forces		Discret	e Forces		Linear F		Sum of Forces			
Seg			Dead			Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(Ib)	(lb)	(lb)	(lb-ft)	(lb-ft)	(lb)	(lb)	(lb)	(Ib)	(Ib)	(lb-ft)	(lb)
0.00		241.3	0.0					0.0	0.0	241.3	0.0	0.0	0.0
5.00		476.7	1,503.3					0.0	288.7	476.7	1,792.0	0.0	0.0
10.00		464.9	1,466.4					0.0	288.7	464.9	1,755.1	0.0	0.0
15.00		453.1	1,429.5					0.0	288.7	453.1	1,718.2	0.0	
20.00		441.3	1,392.6					0.0	288.7	441.3	1,681.3	0.0	0.0
25.00		429.6	1,355.7					0.0	288.7	429.6	1,644.4	0.0	
30.00		264.2	1,318.8					0.0	288,7	264.2	1,607.5	0.0	
31.25	Bot - Section 2	213.1	323.9					0.0	72.2		396.1	0.0	
35.00	Top Costion 1	268.7	1,929.6					0.0	216.5	268.7	2,146.1	0.0	
37.50	Top - Section 1	216.5	1,263.3					0.0	144.3	216.5	1,407.6	0.0	
40.00		326.4	627.0					0.0	144.3	326.4	771.3	0.0	
45.00		436.1	1,226.3					0.0	288.7	436.1	1,515.0		
50.00		435.8	1,189.4					0.0	288.7	435.8	1,478.0		
55.00		433.9	1,152.5					0.0	288.7	433.9	1,441.1	0.0	
60.00	Bot - Section 3	355.7	1,115.6					0.0	288.7	355.7	1,404.2		
63.25	DOL- SECTION 3	215.4	705.3					0.0	187.6	215.4	893.0	0.0	
65.00 68.75	Top - Section 2	237.6 215.2	753.0 1,583.2					0.0 0.0	101.0 216.5	237.6 215.2	854.1 1,799.7	0.0 0.0	
70.00	Top - Section 2	265.6	261.5					0.0	72.2		333.7	0.0	
75.00		420.5	1,023.1					0.0	288.7	420.5	1,311.7	0.0	
80.00		420.5	986.2					0.0	288.7	420.5	1,274.8		
85.00		412.7	949.3					0.0	288.7	412.7	1,237.9		
90.00		394.6	912.3					0.0	288.7	394.6	1,201.0		
95.00		236.3	875.4					0.0	288.7	236.3	1,164.1	0.0	
96.08	Bot - Section 4	192.7	184.8					0.0	62.5		247.4	0.0	
100.00		179.8	1,321.7					0.0	226.1	179.8	1,547.8		
100.75	Top - Section 3	188.0	247.9					0.0	43.3		291.2	0.0	
105.00		341.5	694.5					0.0	245.4	341.5	939.9	0.0	
110.00	Appurtenance(s)	358.0	782.9		0.	0 0.0	2,826.1		288.7	3,506.7	3,897.7		
115.00		345.3	746.0		0.	0 0.0		0.0	243.5		989.6		
120.00		332.0	709.1					0.0	243.5		952.7	0.0	
125.00		310.6	672.2					0.0	243.5		915.8	0.0	0.0
129.75	Bot - Section 5	155.7	604.4					0.0	231.4		835.8		
130.00		117.5	57.3					0.0	12.2		69.5		
133.58	Top - Section 4	152.0	803.1					0.0	174.5		977.6		
135.00	•	186.8	142.1					0.0	69.0	186.8	211.1	0.0	0.0
140.00	Appurtenance(s)	281.3	481.8	2,613.2	2 0.	.0 0.0	2,840.3	3 0.0	243.5	2,894.4	3,565.6	i 0.0	0.0
145.00		265.6	451.1					0.0	219.5	265.6	670.6	0.0	0.0
150.00		226.1	420.3	1				0.0	219.5	226.1	639.9	0.0	0.0
154.00	Appurtenance(s)	120.7	314.1	4,950.8	0.	.0 0.0) 3,983.2	2 0.0	175.6	5,071.5	4,472.9) 0.0	0.0
155.00		135.8	75.5					0.0	15.5	135.8	90.9	0.0	0.0
160.00	Appurtenance(s)	202.8	358.8		3 0,	0.0	1,036.3	3 0.0	77.3		1,472.4	0.0	0.0
164.33	Bot - Section 6	104.2	286.1					0.0	61.5	104.2	347.6	0.0	0.0
165.00		59.1	76.7					0.0	9.5		86.2		
167.25	Top - Section 5	98.2	251.8					0.0	31.9		283.7	0.0	
170.00	Appurtenance(s)	142.3	132.8		3 0	.0 0.0) 2,799.0	0.0	39.0				
175.00		154.3	222.3	3				0.0	5.9	154.3	228.3	0.0	0.0
179.00	Appurtenance(s)	65.0	160.2	1,923.9	9 0	.0 2,323.4	1,950.0	0.0	4.8	1,988.9	2,114.9) 0.0	0.0

27 Iterations

Wind Importance Factor 1.00

Site Number: 370627 Site Name: Newington CT, CT Customer: VERIZON WIRELESS	Code: ANSI/TIA-222-G Engineering Number:12600288	© 2007	7 - 2018 by ATC IP LLC 8/2/20	All rights)18 10:28	
Load Case: 1.2D + 1.6W Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.60	97 mph with No Ice		Wind Importance		ations 1.00
		Fotals:	29,852.5 59,647.7	0.00	0.00

Site Number: 370627 Site Name: Newington CT, CT Customer: VERIZON WIRELESS				5	Code: ANSI/TIA-222-G Engineering Number:12600288					2007 - 2018 by ATC IP LLC. All rights reserved 8/2/2018 10:28:40 AM				
Gust R Dea Wi	Case: 1 esponse ad Load nd Load	Factor : Factor : Factor :	1.10 1.20		97	mph with No	o Ice			27 Ite Wind Importance Facto				
Calcula	ited Foi	rces												
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio	
0.00 5.00 10.00 25.00 30.00 25.00 31.25 35.00 37.50 40.00 45.00 55.00 60.00 63.25 65.00 68.75 70.00 75.00 80.00 95.00 96.08 100.00 155.00 110.00 129.75 130.00 129.75 130.00 129.75 130.00 145.00 155.00 155.00 167.25 170.00 175.00 157.00 157.00	$\begin{array}{c} -59.61\\ -57.75\\ -55.92\\ -54.12\\ -52.37\\ -50.65\\ -48.99\\ -48.56\\ -46.36\\ -44.99\\ -42.50\\ -40.95\\ -39.43\\ -37.97\\ -37.03\\ -36.14\\ -33.92\\ -32.54\\ -31.19\\ -29.88\\ -28.60\\ -27.40\\ -33.92\\ -32.54\\ -31.19\\ -29.88\\ -28.60\\ -27.40\\ -33.92\\ -32.54\\ -31.97\\ -35.53\\ -35.20\\ -24.19\\ -20.49\\ -15.53\\ -15.28\\ -11.26\\ -10.60\\ -6.72\\ -6.63\\ -5.31\\ -4.97\\ -4.88\\ -4.61\\ -2.06\\ \end{array}$	-29.69 -29.35 -29.03 -28.71 -28.40 -28.09 -27.90 -27.75 -27.75 -27.36 -27.12 -26.79 -26.44 -26.10 -25.81 -25.63 -25.43 -25.63 -25.21 -25.63 -25.21 -25.63 -25.25 -24.30 -23.95 -23.61 -23.37 -23.23 -23.00 -22.85 -24.30 -22.85 -22.54 -18.84 -17.58 -17.58 -17.58 -7.83 -6.11 -5.98 -2.42	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-3,747.06 -3,598.63 -3,451.87 -3,306.75 -3,163.21 -3,021.23 -2,845.90 -2,741.80 -2,741.80 -2,604.61 -2,469.00 -2,335.07 -2,202.85 -2,072.34 -1,988.46 -1,943.61 -1,943.61 -1,848.24 -1,988.46 -1,943.61 -1,848.24 -1,988.46 -1,943.61 -1,848.24 -1,969.67 -1,568.40 -1,327.14 -1,209.09 -1,183.77 -1,568.40 -1,327.14 -1,209.09 -1,183.77 -1,568.40 -1,327.14 -3,258.40 -978.45 -865.75 -771.54 -679.01 -588.10 -503.22 -498.80 -435.79 -411.17 -325.08 -254.90 -186.14 -132.15 -124.19 -85.04 -57.69 -53.58 -39.83 -23.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3,747.06 3,598.63 3,451.87 3,306.75 3,163.21 3,021.23 2,880.77 2,845.900 2,741.84 2,673.01 2,604.61 2,469.000 2,335.07 2,202.85 2,072.34 1,988.46 1,943.61 1,848.24 1,816.72 1,691.67 1,568.40 1,327.14 1,209.09 1,183.77 1,092.80 1,075.56 978.45 865.75 771.54 679.01 588.10 503.22 498.80 435.79 411.17 325.08 254.90 186.14 132.15 124.19 85.04 57.69 53.58 39.83 23.39	3,252.82 3,118.51 3,089.41 2,984.21 3,030.38 2,916.22 2,781.91 2,647.61 2,513.30 2,378.99 2,251.40 2,244.69	2,273,71 2,244,00 2,212,93 2,180,49 2,146,68 2,111,51 2,102,50 2,074,96 2,074,96 2,074,73 2,055,95 2,017,35 1,977,38 1,936,05 1,893,35 1,864,86 1,849,28 1,837,77 1,826,45 1,780,33 1,732,84 1,683,98 1,626,41 1,759,266 1,544,71 1,452,100 1,559,26 1,559,26 1,544,71 1,452,100 1,559,26 1,559,26 1,544,71 1,452,100 1,559,26 1,559,26 1,544,71 1,452,100 1,559,26 1,122,34 920,51 904,65 848,69 792,73 736,77 692,00 680,81	$\begin{array}{c} 11,437.5\\ 11,005.7\\ 10,575.0\\ 10,145.6\\ 9,718.32\\ 9,293.47\\ 9,187.70\\ 8,871.62\\ 8,869.01\\ 8,659.38\\ 8,243.04\\ 7,830.99\\ 7,423.76\\ 7,021.86\\ 6,763.73\\ 6,625.81\\ 6,525.34\\ 6,427.71\\ 6,525.34\\$	5,727.25 5,511.07 5,295.36 5,080.38 4,866.38 4,653.64 4,600.68 4,442.40 4,441.10 4,336.13 4,127.64 3,921.32 3,717.40 3,516.15 3,386.89 3,317.83 3,267.52 3,218.63 3,267.52 3,218.63 3,267.52 3,218.63 3,225.21 2,835.36 2,649.35 2,214.56 2,649.35 2,256.70 2,214.56 2,649.35 2,256.70 2,214.56 2,130.29 1,971.97 1,793.54 1,623.57 1,462.07 1,309.02 1,171.46 1,164.43 909.67 799.95 697.27 601.65 530.23 513.08 431.56 336.50 2,57.08 2,82.29	110.57 111.55 114.87	-5.12 -5.37 -5.39 -5.58 -5.66 -5.94 -6.21 -6.46	0.644 0.641 0.639 0.635 0.633 0.633 0.630 0.630 0.621 0.609 0.606 0.603 0.600 0.597 0.596 0.574 0.569 0.574 0.569 0.575 0.574 0.569 0.549 0.545 0.549 0.545 0.549 0.545 0.544 0.538 0.505 0.544 0.538 0.505 0.490 0.483 0.472 0.437 0.437 0.437 0.437 0.437 0.437 0.437 0.437 0.414 0.414 0.254 0.247 0.254 0.217 0.254 0.217 0.254 0.217 0.254 0.217 0.254 0.217 0.254 0.217 0.254 0.217 0.254 0.217	

Site Name: Newington CT, CT

Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G Engineering Number: 12600288 © 2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:28:40 AM

Load Case: 0.9D + 1.6W

Gust Response Factor :1.10 Dead Load Factor :0.90 Wind Load Factor :1.60 97 mph with No Ice (Reduced DL)

27 Iterations

Wind Importance Factor 1.00

Applied Segment Forces Summary

		Shaft F	Forces	Discrete Forces				Linear F	orces	Sum of Forces			
Seg			Dead		Forsion	Moment	Dead		Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(Ib)	(Ib)	(Ib)	(lb-ft)	(lb-ft)	(Ib)	(lb)	(Ib)	(lb)	(lb)	(lb-ft)	(lb)
0.00		241.3	0.0					0.0	0.0	241.3	0.0	0.0	
5.00		476.7	1,127.5					0.0	216.5	476.7	1,344.0	0.0	
10.00		464.9	1.099.8					0.0	216.5	464.9	1,316.3	0.0	
15.00		453.1	1,072.1					0.0	216.5	453.1	1,288.6	0.0	
20.00		441.3	1,044.5					0.0	216.5	441.3	1,261.0	0.0	
25.00		429.6	1,016.8					0.0	216.5	429.6	1,233.3	0.0	
30.00		264.2	989.1					0.0	216.5	264.2	1,205.6	0.0	
31.25	Bot - Section 2	213.1	242.9					0.0	54.1	213.1	297.1	0.0	
35.00		268.7	1,447.2					0.0	162.4	268.7	1,609.6	0.0	
37.50	Top - Section 1	216.5	947.5					0.0	108.2	216.5	1,055.7	0.0	
40.00	·	326.4	470.2					0.0	108.2	326.4	578.5	0.0	
45.00		436.1	919.7					0.0	216.5	436.1	1,136.2	0.0	
50.00		435.8	892.0					0.0	216.5	435.8	1,108.5	0.0	
55.00		433.9	864.4					0.0	216.5	433.9	1,080.9	0.0	
60.00		355.7	836.7					0.0	216.5	355.7	1,053.2	0.0	
63,25	Bot - Section 3	215.4	529.0					0.0	140.7	215.4	669.7	0.0	
65.00		237.6	564.8					0.0	75.8	237.6	640.6	0.0	
68.75	Top - Section 2	215.2	1,187.4					0.0	162.4	215.2	1,349.8	0.0	
70.00	- I	265.6	196.2					0.0	54.1	265.6	250.3	0.0	
75.00		420.5	767.3					0.0	216.5	420.5	983.8	0.0	
80.00		412.7	739.6					0.0	216.5	412.7	956.1	0.0	
85.00		404.0	711.9					0.0	216.5	404.0	928.4	0.0	
90.00		394.6	684.3					0.0	216.5	394.6	900.8	0.0	
95.00		236.3	656.6					0.0	216.5	236.3	873.1	0.0	
96.08	Bot - Section 4	192.7	138.6					0.0	46.9		185.5	0.0	
100.00		179.8	991.3					0.0	169.6		1,160.9	0.0	
100.75	Top - Section 3	188.0	185.9					0.0	32.5		218.4	0.0	
105.00		341.5	520.9					0.0	184.0		704.9	0.0	
110.00	Appurtenance(s)	358.0	587.2	3,148,7	0.	0.0	2,119.6	i 0.0	216.5		2.923.3	0.0	
115.00	•••	345.3	559.5				-, -,	0.0	182.7		742.2	0.0	
120,00		332.0	531.8					0.0	182.7	332.0	714.5	0.0	0.0
125.00		310.6	504.2					0.0	182.7	310.6	686.8	0.0	0.0
129.75	Bot - Section 5	155.7	453.3					0.0	173.5	155.7	626.8	0.0	0.0
130.00		117.5	43.0					0.0	9.1	117.5	52.1	0.0	0.0
133.58	Top - Section 4	152.0	602.3					0.0	130.9	152.0	733.2	0.0	0.0
135.00		186.8	106.6					0.0	51.8	186.8	158.3	0.0	0.0
140.00	Appurtenance(s)	281.3	361.4	2,613,2	0.	0 0.0	2,130.2	0.0	182.7	2,894.4	2,674.2	0.0	0.0
145.00		265.6	338.3					0.0	164.7	265.6	503.0	0.0	0.0
150.00		226.1	315.2					0.0	164.7	226.1	479.9	0.0	0.0
154.00	Appurtenance(s)	120.7	235.6	4,950.8	0,	0 0.0	2,987.4	0.0	131.7	5,071.5	3,354.7	0.0	0.0
155.00		135.8	56.6					0.0	11.6	135.8	68.2	0.0	0.0
160.00	Appurtenance(s)	202.8	269.1	1,165.3	0,	0 0.0	777.2	0.0	58.0	1,368.1	1,104.3	0.0	0.0
164.33	Bot - Section 6	104.2	214.6	925 121				0.0	46.1	104.2	260.7	0.0	0.0
165.00		59.1	57.6					0.0	7.1	59.1	64.7	0.0	0.0
167.25	Top - Section 5	98.2	188.8					0.0	24.0	98.2	212.8	0.0	0.0
170.00	Appurtenance(s)	142.3	99.6	3,076.3	0.	0.0	2,099.2	2 0.0	29.3	3,218.6	2,228.1	0.0	0.0
175.00		154.3	166.8					0.0	4.5	154.3	171.2	0.0	0.0
179.00	Appurtenance(s)	65.0	120.1	1,923.9	0.	0 2,323.4	1,462.5	5 0.0	3.6	1,988.9	1,586.2	0.0	0.0

Site Number: 370627 Site Name: Newington CT, CT Customer: VERIZON WIRELESS	Code: ANSI/TIA-222-G Engineering Number:12600288	© 2007 - 2018 by ATC IP LLC. All rights re 8/2/2018 10:28:				
Load Case: 0.9D + 1.6W	97 mph with No Ice (Reduced DL)			27 Iter	ations	
Gust Response Factor :1.10 Dead Load Factor :0.90			Wind Importance	e Factor	1.00	
Wind Load Factor :1.60						
F	Т	otals:	29,852.5 44,735.8	0.00	0.00	

Site Name: Newington CT, CT

Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G Engineering Number: 12600288

97 mph with No Ice (Reduced DL)

2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:38:46 AM

Wind Importance Factor 1.00

8/2/2018 10:28:46 AM

27 Iterations

Load Case: 0.9D + 1.6W

Gust Response Factor :1.10

Dead Load Factor :0.90

Wind Load Factor : 1.60

Calculated Forces

Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00 5.00 10.00	-44.70 -43.28 -41.89	-29.67 -29.30 -28.93	0.00 0.00 0.00	-3,689.49 -3,541.16 -3,394.68	0.00 0.00 0.00	3,689.49 3,541.16 3,394.68	4,547.42	2,302.05 2,273.71 2,244.00	11,437.5	5,727.25	0.00 0.08 0.30	0.00 -0.14 -0.28	0.631 0.628 0.625
15.00	-40.53	-28.58	0.00	-3,250.02	0.00	3,250.02		2,212.93			0.67	-0.43	0.623
20.00	-39.20	-28.23	0.00	-3,107.13	0.00	3,107.13		2,180.49			1.21	-0.59	0.621
25.00	-37.89	-27.90	0.00	-2,965.97	0.00	2,965.97	4,293.36	2,146.68	9,718.32	4,866.38	1.91	-0.74	0.618
30.00	-36.64	-27.68	0.00	-2,826.49	0.00	2,826.49		2,111.51			2.78	-0.91	0.616
31.25 35.00	-36.31 -34.65	-27.52	0.00 0.00	-2,791.89	0.00 0.00	2,791.89		2,102.50			3.02	-0.95	0.616
35.00	-34.05	-27.29	0.00	-2,688.70	0.00	2,688.70 2.620.49		2,074.96 2,074.73			3.82 4.41	-1.08 -1.17	0.614 0.598
40.00	-32.92	-26.84	0.00	-2,552.73	0.00	2,552.73		2,055.95			5.05	-1.26	0.597
45.00	-31.71	-26.48	0.00	-2,418.53	0.00	2,418.53		2,017.35			6.46	-1.44	0.594
50.00	-30.53	-26.11	0.00	-2,286.16	0.00	2,286.16		1,977.38			8.06	-1.62	0.591
55.00	-29.38	-25.74	0.00	-2,155.61	0.00	2,155.61		1,936.05		•	9.86	-1.81	0.588
60.00	-28.27	-25.43	0.00	-2,026.90		2,026.90		1,893.35			11.85	-2.00	0.584
63.25 65.00	-27.56 -26.88	-25.24 -25.04	0.00 0.00	-1,944.25	0.00	1,944.25 1,900.08		1,864.86			13.26 14.06	-2.13 -2.21	0.582 0.580
68.75	-25.49	-24.81	0.00	-1,806.20	0.00	1,806.20		1,837.77			15.86	-2.37	0.560
70.00	-25.20	-24.60	0.00	-1,775.18	0.00	1,775.18		1,826.45			16.48	-2.42	0.559
75.00	-24.14	-24.22	0.00	-1,652.21	0.00	1,652.21	3,560.66	1,780.33	6,041.44	3,025.21	19.13	-2.63	0.553
80.00	-23.12	-23.85	0.00	-1,531.10	0.00	1,531.10		1,732.84			21.99	-2.84	0.547
85.00	-22.12 -21.15	-23.49	0.00	-1,411.85	0.00	1,411.85		1,683.98	•	•	25.08	-3.06	0.540
90.00 95.00	-20.24	-23.13 -22.89	0.00 0.00	-1,294.43		1,294.43 1,178.79		1,626.41			28.41 31.97	-3.29 -3.52	0.534 0.529
96.08	-20.01	-22.73	0.00	-1,153.99	0.00	1,153.99		1,544.71			32.78	-3.58	0.528
100.00	-18.82	-22.51	0.00	-1,064.96		1.064.96	•	1,492.10	•	•	35.79	-3.77	0.522
100.75	-18.57	-22.35	0.00	-1,048.08	0.00	1,048.08	3,030.38	1,515.19	4,254.26	2,130.29	36.39	-3.81	0.498
105.00	-17.80	-22.04	0.00	-953.08	0.00	953.08		1,458.11	•		39.88	-4.02	0.490
110.00	-15.06	-18.39	0.00	-842.90		842.90		1,390.96			44.21	-4.26	0.476
115.00 120.00	-14.27 -13.51	-18.05	0.00 0.00	-750.96 -660.71	0.00 0.00	750.96 660.71	2,647.61	1,323.80 1,256.65	3,242.33	1.623.57	48.80 53.64	-4.50 -4.75	0.468 0.457
125.00	-12.77	-17.41	0.00	-572.11	0.00	572.11		1,189.50			58.75	-5.00	0.443
129.75	-12.12	-17.22	0.00	-489.42		489.42		1,125.70			63.85	-5.25	0.423
130.00	-12.05	-17.12	0.00	-485.11	0.00	485.11		1,122.34			64.12	-5.26	0.422
133.58	-11.30	-16.93	0.00	-423.75	0.00	423.75	1,841.02		1,881.29	942.04	68.14	-5.45	0.456
135.00	-11.10	-16.76 -13.66	0.00	-399.76		399.76	1,809.31		1,816.65	909.67	69.77	-5.53	0.446
140.00 145.00	-8.67 -8.13	-13.00	0.00 0.00	-315.94 -247.64	0.00	315.94 247.64	1,697.39 1,585.46		1,597.52 1,392.48	799.95 697.27	75.70 81.91	-5.80 -6.06	0.400 0.361
150.00	-7.63	-13.13	0.00	-180.74		180.74	1,473.54		1,201.51	601.65	88.38		0.306
154.00	-4.85	-7.73	0.00	-128.21	0.00	128.21	1,384.00		1,058.88	530.23	93.74	-6.48	0.245
155.00	-4.78	-7.59	0.00	-120.48		120.48	1,361.62	680.81	1,024.63	513.08	95.10	-6.53	0.238
160.00	-3.83	-6.12	0.00	-82.51	0.00	82.51	1,249.70		861.82		102.02	-6.71	0.194
164.33 165.00	-3.57 -3.51	-5.99 -5.93	0.00 0.00	-56.00 -52.01	0.00 0.00	56.00	1,152.70		732.11 713.10	366.60		-6.85	0.156
165.00	-3.31	-5.93	0.00	-38.68		52.01 38.68	1,137.78 903.09		563.74	357.08 282.29	109.12	-6.87 -6.93	0.149 0.141
170.00	-1.48	-2.34	0.00	-22.71	0.00	22.71	853.84		503.47		116.37	-6.99	0.092
175.00	-1.33	-2.17	0.00	-11.00		11.00	764.30		402.61	201.60	123.72	-7.07	0.056
179.00	0.00	-1.99	0.00	-2.32	0.00	2.32	692.67	346.34	330.04	165.26	129.65	-7.11	0.014

Site Number: 370627 Site Name: Newington CT, CT Customer: VERIZON WIRELESS	Code: ANSI/TIA-222-G Engineering Number:12600288	© 2007 - 2018 by ATC IP LLC. All rights reserved 8/2/2018 10:28:46 AM
Load Case: 1.2D + 1.0Di + 1.0Wi	50 mph with 1.00 in Radial Ice	27 Iterations
Gust Response Factor :1.10 Dead Load Factor :1.20	Ice Dead Load Factor 1.00	Wind Importance Factor 1.00 Ice Importance Factor :1.00

Applied Segment Forces Summary

Wind Load Factor :1.00

		Shaft I	Forces		Discret	e Forces		Linear F	orces		Sum o	f Forces	
Seg			Dead			Moment	Dead		Dead		Dead	Torsion	
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(Ib)	(Ib)	(Ib)	(Ib-ft)	(lb-ft)	(Ib)	(Ib)	(lb)	(lb)	(lb)	(lb-ft)	(Ib)
0.00		77.6	0.0					0.0	0.0	77,6	0.0	0.0	
5.00		153.8	2,113.4					0.0	288.7	153.8	2,402.1	0.0	
10.00		150.8	2,132.8					0.0	288.7	150.8	2,421.5		
15.00		147.6	2,114.6					0.0	288.7	147.6	2,403.2		
20.00		144.2	2,084.0					0.0	288.7	144.2	2,372.6		
25.00		140.8	2,046,9					0.0	288.7	140.8	2,335.6		
30.00 31.25	Bot - Section 2	86.8 70.1	2,005.8 496.4					0.0 0.0	288.7	86.8 70.1	2,294,4	0.0	
35.00	DUL - Section 2	88.5	2,447.6					0.0	216.5	88.5	568.6 2,664.1	0.0	
35.00	Top - Section 1	71.4	1,607.1					0.0	144.3	71.4	1,751.4		
40.00	rop ocononi	107.9	968.3					0.0	144.3	107.9	1,112,7		
45.00		144.5	1.896.0					0.0	288.7	144.5	2,184.7		
50.00		144.9	1,847.2					0.0	288.7	144.9	2,135.8		
55.00		144.7	1,797.2					0.0	288.7	144.7	2,085.8		
60.00		119.0	1,746.3					0.0	288.7	119.0	2.035.0		
63.25	Bot - Section 3	72.2	1,109.7					0.0	187.6		1,297.3		
65.00		79.8	972.7					0.0	101.0		1,073.8		
68.75	Top - Section 2	72.3	2,044.5					0.0	216.5		2,261.0		
70.00		89.5	414.6					0.0	72.2	89.5	486.8	0.0	0.0
75.00		142.1	1,617.6					0.0	288.7	142,1	1,906.3	0,0	0.0
80.00		140.1	1,564.2					0.0	288.7	140.1	1,852.8	0.0	0.0
85.00		137.7	1,510.2					0.0	288.7	137.7	1,798.9	0.0	0.0
90.00		135.1	1,455.8					0.0	288.7	135.1	1,744.5	0.0	0.0
95.00		81.2	1,401.0	I				0.0	288.7	81.2	1,689.6	0.0	0.0
96.08	Bot - Section 4	66.4	298.1					0.0	62.5	66.4	360.6	0.0	0.0
100.00		62.0	1,727.5					0.0	226.1	62.0	1,953.6		0.0
100.75	Top • Section 3	65.1	325.3					0.0	43,3		368.6		
105.00		118.7	1,119.0					0.0	245,4		1,364.3	0.0	0.0
110.00	Appurtenance(s)	125.1	1,263.2		i 0.	0 0.0	0 7,053.8		288.7		8,605.7		
115.00		121.4	1,207.1					0.0	243.5		1,450.7		
120.00		117.6	1,150.7					0.0	243.5				
125.00	Rot Contine C	110.9	1,094.1					0.0	243.5		1.337.7		
129.75	Bot - Section 5	55.9	987.2					0.0	231.4		1,218.6		
130.00	Tap Section 4	42.3	77.9					0.0	12.2		90.1		
133.58 135.00	Top - Section 4	54.8 68.0	1,087.4 253.0					0.0	174.5 69.0		1,261.9		
140.00	Appurtenance(s)	103.0	852.2		. 0	0 0.0	0 6.157.0	0.0	243.5		322.0 7.252.7		
145.00	, ibbar (crighteo (o)	98.5	800.8		. 0	0 04	J 0,137.0	0.0	243.5				
150.00		84.8	749.3					0.0	219.5		968.8		
154.00	Appurtenance(s)	45.7	564.0		6 O.	0 04	0 10,666.6		175.6		11,406.2		
155.00	, appendense (3)	52.2	137.1		- 0	0 00	. 10100010	0.0	15.5		152.6		
160.00	Appurtenance(s)	78.7	645.6		• •	0 0.0	0 2,746.7		77.3		3,469.6		
164.33	Bot - Section 6	40.9	518.7		, 0	- 0.	, 190.1	0.0	61.5				
165.00		23.3	113.2					0.0	9.5		122.6		
167.25	Top - Section 5	39.1	370.3					0.0	31.9		402.3		
170.00	Appurtenance(s)	57.7	271.1		3 0	.0 0.4	0 6,531.0		39.0				
175.00		63.8	452.1					0.0	5.9		051		
179.00	Appurtenance(s)	27.3	330.1		0	0 1,213.	2 3,473.5		4.8				
115.00	ppsi tertariae(3)	21.3	330-1	543.4	. 0	0 1,213	2 3,473.3	0.0	4.8	512.1	3,008,4	. 0.1	J

Site Number: 370627 Site Name: Newington CT, CT Customer: VERIZON WIRELESS	Code: ANSI/TIA-222-G Engineering Number:12600288	© 200	7 - 2018 by ATC IP LLC 8/2/20	All rights (018 10:28	
Load Case: 1.2D + 1.0Di + 1.0Wi Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00	50 mph with 1.00 in Radial Ice Ice Dead Load Factor 1.00		Wind Importance Ice Importance	e Factor	
		Totals:	9,185.88 99,089.5	0,00	0.00

Calculated Forces

Pu

(kips)

-99.09

-96.68

-94.25

Vu

(kips)

-9.15

-9.07

-9.00

FY (-) FX (-)

Seg

Elev

0.00

5.00

10.00

15.00

20.00

25.00

30.00

31.25

35.00

37.50

40.00

45.00

50.00

55.00

60.00

63.25

65.00

68.75

70.00

75.00

80.00

85.00

90.00

95.00

96.08

100.00

100.75

105.00

110.00

115.00 120.00

125.00

129.75

130.00

133.58

135.00

140.00

145.00

150.00

154.00

155.00

160.00

164.33

165.00

167.25

170.00

175.00

179.00

0.00

-0.97

0.00

-1.21

0.00

(ft)

Site Name: Newington CT, CT

Code: ANSI/TIA-222-G Engineering Number: 12600288

2007 - 2018 by ATC IP LLC. All rights reserved.

8/2/2018 10:28:52 AM

27 Iterations

VERIZON WIRELESS Customer:

Load Case: 1.2D + 1.0Di + 1.0Wi	
---------------------------------	--

50 mph with 1.00 in Radial Ice

phi

Ρn.

(kips)

phi

. Vπ

(kips)

4,604.11 2,302.05 11,869.6 5,943.65

Gust Response Factor :1.10 Dead Load Factor :1.20 Wind Load Factor :1.00

Mu

ΜZ

-1,223.53

-1,177.78

(ft-kips) (ft-kips)

Mu

MX

0.00

0.00

Ice Dead Load Factor 1.00

Resultant

Moment

(ft-kips)

1,223.53

1,177.78

Wind Importance Factor 1.00

Τu

MY

(ft-kips)

0.00

0.00

0.00

(ft-kips) (ft-kips)

phi

Мn

phi

Τn

Ice Importance Factor :1.00

Deflect Rotation

(deg)

0.00

-0.05

Ratio

0.227

0.227

0.226

0.226

0.226

0.225

0.225

0.225

0.225

0.219

0.219

0.219 0.218

0.218

0.217

0.217 0.217 0.210

0.209

0.208

0.207

0.205

0.204

0.204

0.204

0.203

0.194

0.192

0.187

0.185

0.183

0.179

0.174

0.173

0.190

0.187

0.170

0.158

0.141

0.115

0.112

0.094

0.080

0.077

0.078

0.052

0.034

0.007

Total

(in)

0.00

0.02

4,547.42 2,273.71 4,488.01 2,244.00 4,425.86 2,212.93 11,437.5 5,727.25 11,005.7 5,511.07 0.00 1,132.42 -0.09 -1,132.42 0.10 -91.84 -8.93 0.00 -1,087.42 1,087.42 0.00 10,575.0 5,295.36 0.22 -0.14-89.46-8.86 0.00 -1.042.780.00 1.042.78 4,360.98 2,180.49 10,145.6 5,080.38 0.40 -0.20 -87.11 -8.79 0.00 -998.48 0.00 998.48 4,293.36 2,146.68 9,718.32 4,866.38 0.64 -0.25 -954.53 4,223.01 2,111.51 9,293.47 4,653.64 4,205.00 2,102.50 9,187.70 4,600.68 -84.81 0.00 -8.75 0.00 954.53 0.93 -0.30 -84.24 -8.72 0.00 -943.59 0.00 943.59 1.01 -0.32 -81.57 0.00 -910.91 0.00 910.91 -8.66 -0.36 4,149.93 2,074.96 8,871.62 4,442.40 1.28 -79.82 -8.62 0.00 -889.25 0.00 889.25 4,149.47 2,074.73 8,869.01 4,441.10 1.47 -0.39-78.70 -8.57 0.00 -867.69 0.00 867.69 4,111.89 2,055.95 8,659.38 4,336.13 1.69 -0.42 -824.84 -782.40 824.84 782.40 4,034.69 2,017.35 8,243.04 4,127.64 3,954.76 1,977.38 7,830.99 3,921.32 2.16 2.70 -76.51 -8.49 0.00 0.00 -0.48-74.36 0.00 -8.41 0.00 -0.55 -72.27 -8.32 0.00 -740.36 0.00 740.36 3,872.09 1,936.05 7,423.76 3,717.40 3.31 -0.61 -70.23 -8.25 0.00 -698.740.00 698.74 3,786.70 1,893.35 7,021.86 3,516.15 3.98 -0.68 -68.93 -8.21 0.00 -671.92 0.00 671.92 3,729.72 1,864.86 6,763.73 3,386.89 4.46 -0.72 3,698.56 1,849.28 6,625.81 3,317.83 3,675.54 1,837.77 6,525.34 3,267.52 -67.85 -8.16 0.00 -657.56 0.00 657.56 4.73 -0.75 -65.58 -8.10 0.00 -626.96 0.00 626.96 5.34 -0.80 -65.09 -8.06 0.00 -616.84 0.00 616.84 5.55 -0.82 3,652.91 1,826.45 6,427.71 3,218.63 -7.97 -63.18 0.00 -576.56 0.00 576.56 3,560.66 1,780.33 6,041.44 3,025.21 6.45 -0.89 -61.32 -7.88 0.00 -536.74 0.00 536.74 3,465.68 1,732.84 5,662.31 2,835.36 3,367.96 1,683.98 5,290.83 2,649.35 7.43 -0.97 -59.51 -7.79 0.00 -497.36 0.00 497.36 8.48 -1.05 3,252.82 1,626.41 4,905.37 2,456.33 3,118.51 1,559.26 4,506.69 2,256.70 -57.76 -7.70 0.00 -458.41 0.00 458.41 9.62 -1.13 -56.06 -7.64 0.00 -419.890.00 419.89 10.84 -1.21 -55.70 -7.61 0.00 -411.62 0.00 411.62 3,089.41 1,544.71 4,422.54 2,214.56 11.12 -1.23 -1.30 -53.74 -7.54 0.00 -381.83 0.00 381.83 2,984.21 1,492.10 4,124.91 2,065.52 12.16 -53.37 -7.51 0.00 -376.17 0.00 376.17 3,030.38 1,515.19 4,254.26 2,130.29 12.36 -1.31 -51.99-7.43 0.00 -344.25 0.00 344.25 2,916.22 1,458.11 3,938.09 1,971.97 13.57 -1.39 -307.09 -43.40 -6.38 0.00 0.00 307.09 2,781.91 1,390.96 3,581.76 1,793.54 15.07 -1.47 -41.95 -40.55 -6.29 -6.20 $\begin{array}{c} 0.00\\ 0.00 \end{array}$ 0.00 2,647.61 1,323.80 3,242.33 1,623.57 2,513.30 1,256.65 2,919.79 1,462.07 -275.17 275.17 243.72 16.66 -1.56 18.34 -1.65 -39.20 -6.11 0.00 -212.73 0.00 212.73 2,378.99 1,189.50 2,614.15 1,309.02 20.13 -1.75 -37.98 -6.05 0.00 -183.70 0.00 183.70 2,251.40 1,125.70 2,339.44 1,171.46 21.91 -1.84 -37.89 -6.03 0.00 -182.190.00 182.19 2,244.69 1,122.34 2,325.40 1,164.43 22.01 -1.85 -160.58 -36.62 -5.97 0.00 0.00 160.58 1,841.02 920.51 1,881.29 942.04 23.42 -1.92 -36.30 -5.93 0.00 -152.13 0.00 152.13 1,809.31 904.65 1,816.65 909.67 24.00 -1.95 1,697.39 1,585.46 1,597.52 1,392.48 -2.05 -2.15 -29.07 -4.92 0.00 -122.48 0.00 122.48 848.69 799.95 26.09 697.27 -28.04 -97.88 0.00 97.88 28.29 -4.83 0.00 792.73 601.65 -27.07 -4.75 0.00 -73.72 0.00 73.72 1,473.54 736.77 30.60 1,201.51 -2.25 -54.71 -15.72 -3.08 1,384.00 -2.32 0.00 0.00 54.71 692.00 1,058.88 530.23 32.52 -15.57 -3.03 0.00 -51.63 0.00 51.63 1,361.62 680.81 1,024.63 513.08 33.01 -2.34 -12.12 -2.51 0.00 0.00 -36.46 36.46 1,249.70 624.85 861.82 431.55 35.51 -2.42 25.57 -25.57 -11.54 -2.45 0.00 0.00 1,152.70 576.35 732.11 366.60 37.73 -2.48 -11.41 -2.43 0.00 -23.940.00 23.94 1,137.78 -2.49 -2.52 568.89 713.10 357.08 38.08 -11.01 -2.38 0.00 -18.47 0.00 18.47 903.09 451.54 563.74 282.29 39.26 -4.22 -1.23 0.00 -11.93 0.00 11.93 853.84 426.92 503.47 252.11 40.73 -2.55 -3.76 0.00 -5.79 0.00 5.79 764.30 382.15 -1.14 402.61 201.60 43.42 -2.59

1.21

692.67

346.34

330.04

165.26

45.60

-2.61

Site Name: Newington CT, CT

Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G Engineering Number:12600288 © 2007 - 2018 by ATC IP LLC. All rights reserved, 8/2/2018 10:28:52 AM

Load Case: 1.0D + 1.0W

Gust Response Factor :1.10 Dead Load Factor :1.00

Mind Load Factor :1.00

Wind Load Factor : 1.00

Serviceability 60 mph

25 Iterations

Wind Importance Factor 1.00

Applied Segment Forces Summary

		Shaft I	Forces		Discret	e Forces		Linear F	orces		Sum of	Forces	
Seg			Dead		Torsion	Moment	Dead	·	Dead		Dead	Torsion	Moment
Elev		Wind FX	Load	Wind FX	MY	MZ	Load	Wind FX	Load	Wind FX	Load	MY	MZ
(ft)	Description	(Ib)	(lb)	(Ib)	(lb-ft)	(lb-ft)	(lb)	(ib)	(Ib)	(Ib)	(lb)	(lb-ft)	(lb)
				()	(((15)						
0.00		57.7	0.0					0.0	0.0	57.7	0.0	0.0	
5.00		114.0	1,252.8					0.0	240.6	114.0	1,493.3	0.0	
10.00		111.2	1,222.0					0.0	240.6	111.2	1,462.6	0.0	
15.00		108.4	1,191.3					0.0	240.6	108.4	1,431.8	0.0	
20.00		105.5	1,160.5					0.0	240.6	105.5	1,401.1	0.0	
25.00		102.7	1,129.8					0.0	240.6	102.7	1,370.3	0.0	
30.00		63.2	1,099.0					0.0	240.6	63.2	1,339.5	0.0	
31.25	Bot - Section 2	51.0	269.9					0.0	60.1	51.0	330.1	0.0	0.0
35.00		64.3	1,608.0					0.0	180.4	64.3	1,788.4	0.0	0.0
37.50	Top - Section 1	51.8	1,052.8					0.0	120.3	51.8	1,173.0	0.0	0.0
40.00		78.0	522.5					0.0	120.3	78.0	642.8	0.0	0.0
45.00		104.3	1,021.9					0.0	240.6	104.3	1,262.5	0.0	0.0
50.00		104.2	991.2					0.0	240.6	104.2	1,231.7	0.0	0.0
55.00		103.8	960.4					0.0	240.6	103.8	1,200.9	0.0	0.0
60.00		85.1	929.6					0.0	240.6	85.1	1,170.2	0.0	0.0
63.25	Bot - Section 3	51.5	587.8					0.0	156.4	51.5	744.1	0.0	
65.00		56.8	627.5					0.0	84.2	56.8	711.7	0.0	0.0
68.75	Top - Section 2	51.5	1,319.4					0.0	180.4	51.5	1,499.8	0.0	
70.00	•	63.5	217.9					0.0	60.1	63.5	278.1	0.0	
75.00		100.5	852.6					0.0	240.6	100.5	1,093.1	0.0	
80.00		98.7	821.8					0.0	240.6	98.7	1.062.4	0.0	
85.00		96.6	791.0					0.0	240.6	96.6	1,031.6	0.0	
90.00		94.4	760.3					0.0	240.6	94.4	1,000.8	0.0	
95.00		56.5	729.5					0.0	240.6	56.5	970.1	0.0	
96.08	Bot - Section 4	46.1	154.0					0.0	52.1	46.1	206.1	0.0	
100.00		43.0	1,101.4					0.0	188.4	43.0	1,289.9	0.0	
100.75	Top - Section 3	45.0	206.6					0.0	36.1	45.0	242.7	0.0	
105.00	Top Boottonio	81.7	578.8					0.0	204.5	81.7	783.2	0.0	
	Appurtenance(s)			752.0	0		2 255 1						
110.00 115.00	Appultenance(5)	85.6 82.6	652.4 621.7	752.9	0.	0 0.0	2,355.1	0.0 0.0	240.6	838.6	3,248.1 824.6	0.0	
120.00		79.4	590.9					0.0	203.0 203.0		793.9	0.0	
												0.0	
125.00	Bot - Section 5	74.3	560.2					0.0	203.0		763.1	0.0	
129.75	DOL - SECTION S	37.2	503.7					0.0	192.8		696.5	0.0	
130.00		28.1	47.8					0.0	10.1	28.1	57.9	0.0	
133.58	Top - Section 4	36.3	669.2					0.0	145.4	36.3	814.7	0.0	
135.00		44.7	118.4					0.0	57.5		175.9	0.0	
140.00	Appurtenance(s)	67.3	401.5		0.	0 0.0	2,366.9		203.0		2,971.4	0.0	
145.00		63.5	375.9					0.0	183.0		558.8	0.0	
150.00		54.1	350.3					0.0	183.0	-	533.2	0.0	
154.00	Appurtenance(s)	28.9	261.8		O .	0 0.0	3,319.3		146.4		3,727.4	0.0	
155.00		32.5	62.9					0.0	12.9		75.8	0.0	
160.00	Appurtenance(s)	48.5	299.0		0.	0.0	863.6		64.4		1,227.0	0.0	
164.33	Bot - Section 6	24.9	238.4					0.0	51.3		289.7	0.0	
165.00		14.1	64.0					0.0	7.9	14.1	71.8	0.0	0.0
167.25	Top - Section 5	23.5	209.8					0.0	26.6		236.4	0.0	0.0
170.00	Appurtenance(s)	34.0	110.6	735.6	0	.0 0.0	2,332.5	0.0	32.5	769.7	2,475.7	0.0	0.0
175.00		36.9	185.3					0.0	5.0	36.9	190.2	0.0	0.0
179.00	Appurtenance(s)	15.5	133.5	460.1	0	.0 555.6	1,625.0	0.0	4.0	475.6	1,762.4	0.0	0.0

Site Number: 370627 Site Name: Newington CT, CT Customer: VERIZON WIRELESS	Code: ANSI/TIA-222-G Engineering Number:12600288	 2007 • 2018 by ATC IP LLC. All rights re: 8/2/2018 10:28:5 					
Load Case: 1.0D + 1.0W	Serviceability 60 mph			25 Itera	ations		
Gust Response Factor :1.10 Dead Load Factor :1.00 Wind Load Factor :1.00			Wind Importance	e Factor	1.00		
		Totals:	7,138.73 49,706.4	0.00	0.00		

Site Num Site Name Custome	e: Nev	wington	CT, CT /IRELESS		Engin		de: ANSI/TIA-2 per:12600288	222-G	© 2007 - 2	018 by AT		All rights re 8 10:28:	
Gust Re	esponse	.0D + 1.0 Factor :	1.10		Se	rviceability	60 mph			Wind Im	portance	25 Itera Factor (- 1
Wir	nd Load	Factor : Factor :											
Calcula	ted Fo	rces											
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft-kips)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00 5.00 10.00 15.00 20.00 25.00 30.00 31.25 35.00 37.50 40.00 45.00 60.00 63.25 65.00 68.75 70.00 75.00 80.00 90.00 95.00 90.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00 100.75 100.00 155.00 110.00 125.00 129.75 130.00 133.58 135.00 140.00 145.00 150.00	-49.70 -48.21 -46.74 -45.30 -43.90 -42.52 -41.18 -40.85 -39.06 -37.88 -37.24 -35.97 -34.73 -33.53 -32.36 -31.61 -30.90 -29.39 -29.11 -28.02 -26.95 -25.91 -23.94 -23.73 -22.94 -23.94 -23.73 -22.94 -23.95 -24.91 -23.94 -23.95 -24.91 -23.94 -24.91 -17.34 -15.08 -15.02 -14.03 -10.07 -10.51 -9.97 -6.28	-7.09 -7.01 -6.93 -6.64 -6.69 -6.64 -6.60 -6.54 -6.50 -6.44 -6.366 -6.27 -6.19 -6.11 -6.02 -5.97 -5.92 -5.83 -5.582 -5.582 -5.583 -5.582 -5.583 -5.528 -5.582 -5.433 -5.420 -5.322 -4.44 -4.377 -4.29 -4.211 -4.17 -4.15 -3.25 -3.19 -3.25		-888.07 -852.60 -817.56 -782.93 -748.71 -714.90 -681.47 -673.17 -648.43 -632.07 -615.81 -583.60 -551.82 -520.46 -459.03 -469.63 -459.03 -436.45 -428.99 -399.40 -370.24 -341.51 -313.21 -285.32 -279.34 -257.86 -253.79 -230.85 -204.25 -182.02 -160.20 -138.76 -118.74 -117.69 -102.83 -97.02 -76.71 -60.15 -43.91 -31.17	0.00 0.00	888.07 852.60 817.56 782.93 748.71 714.90 681.47 673.17 648.43 632.07 615.81 583.60 551.82 520.46 489.53 469.53 469.53 459.63 436.45 428.99 399.40 370.24 341.51 313.21 285.32 279.34 253.79 230.85 204.25 182.02 160.20 138.76 118.74 117.69 102.83 97.02 76.71 60.15 43.91 31.17	4,604.11 4,547.42 4,488.01 4,425.86 4,360.98 4,293.36 4,223.01 4,205.00 4,149.93 4,149.47 4,111.89 4,034.69 3,954.76 3,872.09 3,786.70 3,786.70 3,729.72 3,698.56 3,675.54 3,675.54 3,652.91 3,560.66 3,465.68 3,367.96 3,252.82 3,118.51 3,089.41 2,984.21 3,030.38 2,916.22 2,781.91 2,647.61 2,513.30 2,378.99 2,251.40 2,244.69 1,841.02 1,697.39 1,585.46 1,473.54 1,384.00	2,302.05 2,273.71 2,244.00 2,212.93 2,146.68 2,111.51 2,102.50 2,074.96 2,074.73 2,055.95 2,074.73 2,055.95 2,077.38 1,936.05 1,864.86 1,849.28 1,837.77 1,826.45 1,780.33 1,732.84 1,683.98 1,626.41 1,559.26 1,544.71 1,592.10 1,515.19 1,458.11 1,390.96 1,323.80 1,256.65 1,189.50 1,122.34 920.51 904.65 848.69 792.73 736.77 692.00	11,869.6 11,437.5 11,005.7 10,575.0 10,145.6 9,718.32 9,293.47 9,187.70 8,871.62 8,869.01 8,659.38 8,243.04 7,423.76 7,021.86 6,763.73 6,625.81 6,525.34 6,625.81 6,525.34 6,625.81 6,525.34 6,625.81 6,525.34 6,625.81 6,525.34 6,427.71 6,041.44 5,662.31 5,290.83 4,905.37 4,506.69 4,422.54 4,124.91 4,254.26 3,938.09 3,581.76 3,242.33 2,919.79 2,614.15 2,339.44 1,881.29 1,816.65 1,597.52 1,392.48 1,201.51 1,058.88	5,943.65 5,727.25 5,511.07 5,295.36 5,295.36 5,295.36 5,295.36 5,295.36 4,866.38 4,866.38 4,653.64 4,600.68 4,442.40 4,441.10 4,336.13 4,127.64 3,717.40 3,717.40 3,717.40 3,717.40 3,717.40 3,717.40 3,267.52 3,218.63 3,267.52 3,218.63 3,267.52 3,218.63 3,225.21 2,835.36 2,649.35 2,2456.33 2,256.70 2,214.56 2,065.52 2,2456.33 2,256.70 2,214.56 2,065.52 2,456.33 2,256.70 2,214.56 2,065.52 2,456.33 2,256.70 2,214.56 2,065.52 2,456.33 2,256.70 1,971.97 1,793.54 1,623.57 1,462.07 1,309.02 1,171.46 1,164.43 942.04 909.67 799.95 697.27 601.65 530.23	$\begin{array}{c} 0.00\\ 0.02\\ 0.07\\ 0.16\\ 0.29\\ 0.46\\ 0.67\\ 0.73\\ 0.92\\ 1.06\\ 1.22\\ 1.56\\ 1.94\\ 2.38\\ 2.86\\ 3.20\\ 3.39\\ 3.82\\ 3.97\\ 4.61\\ 5.30\\ 6.05\\ 6.85\\ 7.71\\ 7.91\\ 8.64\\ 8.78\\ 9.62\\ 10.67\\ 11.78\\ 12.95\\ 14.19\\ 15.42\\ 15.49\\ 16.46\\ 16.85\\ 18.29\\ 19.79\\ 21.36\\ 22.66\\ \end{array}$	0.00 -0.03 -0.07 -0.10 -0.14 -0.18 -0.22 -0.23 -0.26 -0.28 -0.30 -0.35 -0.39 -0.44 -0.48 -0.53 -0.57 -0.58 -0.53 -0.57 -0.58 -0.63 -0.57 -0.58 -0.63 -0.57 -0.58 -0.63 -0.57 -0.58 -0.69 -0.74 -0.79 -0.85 -0.86 -0.91 -0.92 -0.97 -1.03 -1.27 -1.27 -1.27 -1.32 -1.34 -1.40 -1.47 -1.53 -1.57	0.160 0.159 0.159 0.157 0.157 0.157 0.157 0.156 0.155 0.151 0.151 0.150 0.150 0.150 0.150 0.150 0.150 0.147 0.147 0.147 0.142 0.144 0.138 0.137 0.135 0.134 0.135 0.134 0.132 0.126 0.126 0.124 0.120 0.000
155.00 160.00 164.33 165.00 167.25 170.00 175.00 179.00	-6.20 -4.99 -4.70 -4.62 -4.39 -1.94 -1.75 0.00	-1.85 -1.49 -1.46 -1.44 -1.41 -0.57 -0.53 -0.48	0.00 0.00 0.00 0.00 0.00 0.00	-29.29 -20.06 -13.61 -12.64 -9.40 -5.52 -2.67 -0.56	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	29.29 20.06 13.61 12.64 9.40 5.52 2.67 0.56	1,361.62 1,249.70 1,152.70 1,137.78 903.09 853.84 764.30 692.67	624.85 576.35 568.89 451.54 426.92 382.15	1,024.63 861.82 732.11 713.10 563.74 503.47 402.61 330.04	431.55 366.60 357.08 282.29 252.11 201.60		-1.58 -1.62 -1.66 -1.66 -1.68 -1.69 -1.71 -1.72	0.062 0.050 0.041 0.039 0.038 0.024 0.016 0.003

Site Number: 370627 Site Name: Newington CT, CT Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G Engineering Number: 12600288 © 2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:28:59 AM

Equivalent Lateral Forces Method Analysis

(Based on ASCE7-10 Chapters 11, 12, 15)

Spectral Response Acceleration for Short Period (S s):	0.18
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.06
Long-Period Transition Period (T L):	6
Importance Factor (I E):	1.00
Site Coefficient F a	1.60
Site Coeffiecient F $_{\rm v}$:	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S ds):	0.19
Design Spectral Response Acceleration at 1.0 Second Period (S d1):	0.10
Seismic Response Coefficient (C 5):	0.03
Upper Limit C _s	0.03
Lower Limit C s	0.03
Period based on Rayleigh Method (sec):	2.90
Redundancy Factor (p)	1.30
Seismic Force Distribution Exponent (k):	2.00
Total Unfactored Dead Load:	49.71 k
Selsmic Base Shear (E):	1.94 k

Load Case (1.2 + 0.2Sds) * DL + E ELFM

Seismic Equivalent Lateral Forces Method

	Height Above Base	Weight	Wz		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(lb-ft)	C vx	(lb)	(lb)
47	177.00	137	4,305	0.008	15	170
46	172.50	190	5,661	0.010	20	236
45	168.63	143	4,071	0.007	14	177
44	166.13	236	6,524	0.012	23	293
43	164.67	72	1,948	0.004	7	89
42	162.17	290	7,618	0.014	27	359
41	157.50	363	9,015	0.017	32	450
40	154.50	76	1,808	0.003	6	94
39	152.00	408	9,429	0.017	33	506
38	147.50	533	11,601	0.021	41	661
37	142.50	559	11,348	0.021	40	692
36	137.50	604	11,428	0.021	41	749
35	134.29	176	3,173	0.006	11	218
34	131.79	815	14,150	0.026	50	1,009
33	129.88	58	977	0.002	3	72
32	127.38	696	11,300	0.021	40	863
31	122.50	763	11,452	0.021	41	945
30	117.50	794	10,961	0.020	39	983
29	112.50	825	10,437	0.019	37	1,022
28	107.50	893	10,320	0.019	37	1,106
27	102.88	783	8,289	0.015	29	970
26	100.38	243	2,445	0.004		301
25	98.04	1,290	12,398	0.023	44	1,598

Site Number: 370627		(Code: ANSI/TIA-222	-G © 200	7 - 2018 by ATC IP LLC. All ri	ights reserved.
Site Name: Newington CT, CT	Г	Engineering Nu	mber:12600288		8/2/2018 1	0:28:59 AM
Customer: VERIZON WIRELE	ESS					
24	95.54	206	1,882	0.003	7	255
23 22	92.50 87.50	970 1,001	8,300	0.015	29	1,202
22	82.50	1,032	7,663 7,021	0.014 0.013	27 25	1,240 1,278
20	77.50	1,062	6,381	0.012	23	1,316
19	72.50	1,093	5,746	0.011	20	1,354
18	69.38	278	1,338	0.002	5	344
17	66.88	1,500	6,707	0.012	24	1,858
16 15	64.13 61.63	712 744	2,927 2,826	0.005 0.005	10 10	882 922
14	57.50	1,170	3,869	0.007	14	1,450
13	52.50	1,201	3,310	0.006	12	1,488
12	47.50	1,232	2,779	0.005	10	1,526
11	42.50	1,262	2,280	0.004	8	1,564
10 9	38.75 36.25	643 1,173	965	0.002 0.003	3 5	796
8	33.13	1,788	1,541 1,962	0.003	7	1,453 2,216
7	30.63	330	310	0.001	1	409
6	27.50	1,340	1,013	0.002	4	1,659
5	22.50	1,370	694	0.001	2	1,698
4 3	17.50	1,401	429	0.001	2	1,736
2	12.50 7.50	1,432 1,463	224	0.000 0.000	1 0	1,774 1,812
1	2.50	1,493	82 9	0.000	0	1,850
5' Dipole	179.00	15	481	0.001	2	19
10' Ömni	179.00	25	801	0.001	3	31
18' Dipole	179.00	55	1,762	0.003	6	68
8' Yagi Round Low Profile Pl	179.00 179.00	30	961	0.002	3	37
Ericsson KRY 112 144	170.00	1,500 33	48,062 954	0.088 0.002	171 3	1,858 41
Ericsson RRUS 11 B12	170.00	152	4,396	0.008	16	188
Ericsson AIR 21, 1.3	170.00	249	7,196	0.013	26	308
Ericsson AIR 21, 1.3	170.00	244	7,066	0.013	25	303
Andrew LNX-6515DS-VT Round Low Profile PI	170.00 170.00	154 1,500	4,448	0.008 0.079	16 154	191 1,858
RCU	160.00	3	43,350 77	0.079	0	1,000
DragonWave Horizon C	160.00	34	883	0.002	3	43
Samsung U-RAS Premiu	160.00	99	2,534	0.005	9	123
Argus LLPX310R	160.00	86	2,196	0.004	8	106
DragonWave A-ANT-18G Side Arms	160.00 160.00	81 560	2,081	0.004 0.026	7 51	101 694
Powerwave LGP21401	154.00	85	14,336 2,006	0.028	7	105
Raycap DC6-48-60-18-	154.00	64	1,508	0.003	5	79
Ericsson RRUS 4478 B	154.00	180	4,262	0.008	15	223
Ericsson RRUS 11 (Ba	154.00	165	3,913	0.007	14	204
Ericsson RRUS 32 Ericsson RRUS 12	154.00 154.00	165 150	3,920 3,557	0.007 0.007	14 13	205 186
Ericsson RRUS 32 B66	154.00	159	3,337	0.007	13	197
Ericsson RRUS 32 B2	154.00	159	3,771	0.007	13	197
Raycap DC6-48-60-0-8	154.00	16	379	0.001	1	20
Kathrein Scala 800 1	154.00	139	3,294	0.006	12	172
Quintel QS66512-2 CCI OPA-65R-LCUU-H8	154.00 154.00	111 264	2,632 6,261	0.005 0.011	9 22	138 327
CCI TPA-65R-LCUUUU-H	154.00	163	3,870	0.007	14	202
Round Low Profile PI	154.00	1,500	35,574	0.065	126	1,858
Alcatel-Lucent 800 M	140.00	192	3,763	0.007	13	238
Alcatel-Lucent 1900M	140.00	132	2,587	0.005	9	164
Alcatel-Lucent TD-RR RFS APXVTM14-C-I20	140.00 140.00	198 169	3,887 3,305	0.007 0.006	14 12	246 209
RFS APXV9ERR18-C-A20	140.00	62	3,305	0.002	4	209
RFS APXVSPP18-C-A20	140.00	114	2,234	0.004	8	141
Round Low Profile PI	140.00	1,500	29,400	0.054	104	1,858
Samsung PCS/AWS Dual Samsung 700/850MHz D	110.00	253	3,064	0.006	11	314
Samsung 700/850MHz D	110.00	211	2,552	0.005	9	261

Site Number: 370627		C	ode: ANSI/TIA-222	2-G © 200	7 - 2018 by ATC IP LLC. All	rights reserved.
Site Name: Newington CT, CT	r	Engineering Nun			-	10:28:59 AM
Customer: VERIZON WIRELE						
Antel BXA-80063/4CF	110.00	59	719	0.001	3	74
RFS DB-T1-6Z-8AB-0Z Commscope SBNHH-1D65	110.00 110.00	88 244	1,065 2,948	0.002	4 10	109 302
Flat Low Profile Pla	110.00	1,500	18,150	0.033	64	1,858
		49,706	546,109	1.000	1,939	61,578
Load Case (0.9 - 0.2Sds) * D	L + E ELFM	Seismic (Redu	ced DL) Equival	ent Lateral	Forces Method	
	Height					
	Above	Weight	w _z		Horizontal Force	Vertical Force
Segment	Base (ft)	(Ib)	۰۰ z (Ib-ft)	C vx	(lb)	(lb)
47	177.00	137		0.008	15	118
46	172.50	190	4,305 5,661	0.010	20	164
45	168.63	143	4,071	0.007	14	123
44 43	166.13 164.67	236 72	6,524	0.012 0.004	23 7	204 62
42	162.17	290	1,948 7,618	0.014	27	249
41	157.50	363	9,015	0.017	32	313
40 39	154.50	76 408	1,808	0.003	6	65
38	152.00 147.50	533	9,429 11,601	0.017 0.021	33 41	351 459
37	142.50	559	11,348	0.021	40	481
36	137.50	604	11,428	0.021	41	521
35 34	134.29 131.79	176 815	3,173	0.006 0.026	11 50	152
33	129.88	58	14,150 977	0.002	30	702 50
32	127.38	696	11,300	0.021	40	600
31	122.50	763	11,452	0.021	41	657
30 29	117.50 112.50	794 825	10,961 10,437	0.020 0.019	39 37	684 710
28	107.50	893	10,320	0.019	37	769
27	102.88	783	8,289	0.015	29	674
26 25	100.38 98.04	243 1,290	2,445	0.004 0.023	9 44	209
23	95.54	206	12,398 1,882	0.023	44 7	1,111 178
23	92.50	970	8,300	0.015	29	835
22	87.50	1,001	7,663	0.014	27	862
21 20	82.50 77.50	1,032 1,062	7,021	0.013 0.012	25 23	888 915
19	72.50	1,093	6,381 5,746	0.012	23	941
18	69.38	278	1,338	0.002	5	239
17	66.88	1,500	6,707	0.012	24	1,292
16 15	64.13 61.63	712 744	2,927 2,826	0.005	10 10	613 641
14	57.50	1,170	3,869	0.007	14	1,008
13	52.50	1,201	3,310	0.006	12	1,034
12 11	47.50	1,232	2,779	0.005	10	1,061
10	42.50 38.75	1,262 643	2,280 965	0.004	8 3	1,087 554
9	36.25	1,173	1,541	0.003	5	1,010
8	33.13	1,788	1,962	0.004	7	1,540
7 6	30.63 27.50	330 1,340	310 1,013	0.001 0.002	1	284 1,154
5	22.50	1,370	694	0.001	2	1,180
4	17.50	1,401	429	0.001	2	1,207
3	12.50	1,432	224	0.000	1	1,233
2 1	7.50 2.50	1,463 1,493	82 9	0.000 0.000	0 0	1,260 1,28 6
5' Dipole	179.00	1,455	9 481	0.001	2	13
10' Ómni 18' Diagla	179.00	25	801	0.001	3	22
18' Dipole	179.00	55	1,762	0.003	6	47

Site Number: 3	370627
----------------	--------

Site Name: Newington CT, CT

Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G Engineering Number:12600288 © 2007 - 2018 by ATC IP LLC. All rights reserved.

8/2/2018 10:28:59 AM

8' Yagi	179.00	30	961	0.002	3	26
Round Low Profile Pl	179.00	1,500	48.062	0.088	171	1,292
Ericsson KRY 112 144	170.00	33	954	0.002	3	28
Ericsson RRUS 11 B12	170.00	152	4,396	0.008	16	131
Ericsson AIR 21, 1.3	170.00	249	7,196	0.013	26	214
Ericsson AIR 21, 1.3	170.00	244	7,066	0.013	25	211
Andrew LNX-6515DS-VT	170.00	154	4,448	0.008	16	133
Round Low Profile Pl	170.00	1,500	43,350	0.079	154	1,292
RCU	160.00	3	77	0.000	0	3
DragonWave Horizon C	160.00	34	883	0.002	3	30
Samsung U-RAS Premiu	160.00	99	2,534	0.005	9	85
Argus LLPX310R	160.00	86	2,196	0.004	8	74
DragonWave A-ANT-18G	160.00	81	2,081	0.004	7	70
Side Arms	160.00	560	14,336	0.026	51	482
Powerwave LGP21401	154.00	85	2,006	0.004	7	73
Raycap DC6-48-60-18-	154.00	64	1,508	0.003	5	55
Ericsson RRUS 4478 B	154.00	180	4,262	0.008	15	155
Ericsson RRUS 11 (Ba	154.00	165	3,913	0.007	14	142
Ericsson RRUS 32	154.00	165	3,920	0.007	14	142
Ericsson RRUS 12	154.00	150	3,557	0.007	13	129
Ericsson RRUS 32 B66	154.00	159	3,771	0.007	13	137
Ericsson RRUS 32 B2	154.00	159	3,771	0.007	13	137
Raycap DC6-48-60-0-8	154.00	16	379	0.001	1	14
Kathrein Scala 800 1	154.00	139	3,294	0.006	12	120
Quintel QS66512-2	154.00	111	2,632	0.005	9	96
CCI OPA-65R-LCUU-H8	154.00	264	6,261	0.011	22	227
CCI TPA-65R-LCUUUU-H	154.00	163	3,870	0.007	14	141
Round Low Profile Pl	154.00	1,500	35.574	0.065	126	1,292
Alcatel-Lucent 800 M	140.00	192	3,763	0.007	13	165
Alcatel-Lucent 1900M	140.00	132	2,587	0.005	9	114
Alcatel-Lucent TD-RR	140.00	198	3.887	0.007	14	171
RFS APXVTM14-C-I20	140.00	169	3,305	0.006	12	145
RFS APXV9ERR18-C-A20	140.00	62	1,215	0.002	4	53
RFS APXVSPP18-C-A20	140.00	114	2,234	0.004	8	98
Round Low Profile Pl	140.00	1,500	29,400	0.054	104	1,292
Samsung PCS/AWS Dual	110.00	253	3,064	0.006	11	218
Samsung 700/850MHz D	110.00	211	2,552	0.005	9	182
Antel BXA-80063/4CF	110.00	59	719	0.001	3	51
RFS DB-T1-6Z-8AB-0Z	110.00	88	1,065	0.002	4	76
Commscope SBNHH-1D65	110.00	244	2,948	0.005	10	210
Flat Low Profile Pla	110.00	1,500	18,150	0.033	64	1,292
		49,706	546,109	1.000	1,939	42,806

Site Name: Newington CT, CT

Code: ANSI/TIA-222-G Engineering Number:12600288 2007 - 2018 by ATC IP LLC. All rights reserved.

8/2/2018 10:28:59 AM

Customer: VERIZON WIRELESS

Load Case (1.2 + 0.2Sds) * DL + E ELFM Seismic Equivalent Lateral Forces Method

Calculated Forces

Seg Elev	Pu FY (-)		Tu MY	Mu MZ	Mu MX	Resultant Moment	phi Pn	phi Vn	phi Tn	phi Mn		Rotation	Datio
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(it-kips)	(ft-kips)	(kips)	(kips)	(п-кірз)	(ft-kips)	(in)	(deg)	Ratio
0.00	-59.73	-1.94	0.00	-281.60	0.00	281.60			11,869.6		0.00	0.00	0.060
5.00	-57.92	-1.95	0.00	-271.89	0.00	271.89			11,437.5		0.01	-0.01	0.060
10.00 15.00	-56.14 -54.41	-1.96	0.00 0.00	-262.12 -252.31	0.00	262.12			11,005.7		0.02	-0.02	0.060
20.00	-54.41	-1.97 -1.98	0.00	-232.31	0.00 0.00	252.31 242.45			10,575.0 10,145.6		0.05 0.09	-0.03 -0.05	0.060 0.060
25.00	-51.05	-1.99	0.00	-232.55	0.00	232.55			9,718.32		0.05	-0.05	0.060
30.00	-50.64	-1.99	0.00	-222.62	0.00	222.62			9,293.47		0.21	-0.07	0.060
31.25	-48.42	-1.99	0.00	-220.13	0.00	220.13			9,187.70		0.23	-0.07	0.059
35.00	-46.97	-1.99	0.00	-212.68	0.00	212.68	4,149.93	2,074.96	8,871.62	4,442.40	0.30	-0.08	0.059
37.50	-46.17	-1.99	0.00	-207.71	0.00	207.71			8,869.01		0.34	-0.09	0.058
40.00 45.00	-44.61 -43.08	-1.99 -1.98	0.00 0.00	-202.74 -192.81	0.00 0.00	202.74 192.81			8,659.38 8,243.04		0.39 0.50	-0.10	0.058
50.00	-43.08	-1.98	0.00	-192.01	0.00	182.90			7,830.99		0.50	-0.11 -0.13	0.057 0.057
55.00	-40.14	-1.97	0.00	-173.00	0.00	173.00			7,423.76		0.77	-0.14	0.057
60.00	-39.22	-1.97	0.00	-163.13	0.00	163.13			7,021.86		0.93	-0.16	0.057
63.25	-38.34	-1.96	0.00	-156.73	0.00	156.73			6,763.73		1.04	-0.17	0.057
65.00	-36.48	-1.94	0.00	-153.30	0.00	153.30			6,625.81		1.10	-0.17	0.056
68.75	-36.14	-1.94	0.00	-146.03	0.00	146.03			6,525.34		1.24	-0.19	0.055
70.00 75.00	-34.78 -33.46	-1.92	0.00	-143.60	0.00	143.60	•		6,427.71	•	1.29	-0.19	0.054
75.00	-33.40	-1.90 -1.88	0.00 0.00	-134.00 -124.49	0.00	134.00 124.49			6,041.44 5,662.31		1.50 1.73	-0.21 -0.23	0.054 0.053
85.00	-30.95	-1.86	0.00	-115.07	0.00	115.07	,	•	5,290.83		1.97	-0.24	0.053
90.00	-29.74	-1.84	0.00	-105.77	0.00	105.77	• • •		4,905.37		2.24	-0.26	0.052
95.00	-29.49	-1.83	0.00	-96.59	0.00	96.59	3,118.51	1,559.26	4,506.69	2,256.70	2.52	-0.28	0.052
96.08	-27.89	-1.79	0.00	-94.60	0.00	94.60			4,422.54		2.59	-0.29	0.052
100.00	-27.59	-1.78	0.00	-87.61	0.00	87.61			4,124.91		2.83	-0.30	0.052
100.75 105.00	-26.62 -25.51	-1.75 -1.72	0.00 0.00	-86.27 -78.83	0.00 0.00	86.27 78.83			4,254.26 3,938.09		2.88 3.15	-0.30 -0.32	0.049 0.049
110.00	-25.51	-1.72	0.00	-70.24	0.00	70.24			3,581.76		3.15	-0.32	0.049
115.00	-20.59	-1.53	0.00	-62.42	0.00	62.42			3,242.33		3.87	-0.34	0.046
120.00	-19.64	-1.49	0.00	-54.79	0.00	54.79			2,919.79		4.26	-0.38	0.045
125.00	-18.78	-1.45	0.00	-47.36	0.00	47.36	2,378.99	1,189.50	2,614.15	1,309.02	4.67	-0.40	0.044
129.75	-18.71	-1.45	0.00	-40.48	0.00	40.48			2,339.44		5.09	-0.42	0.043
130.00	-17.70 -17.48	-1.39 -1.38	0.00 0.00	-40.12 -35.13	0.00	40.12			2,325.40		5.11	-0.43	0.042
133.58 135.00	-16.73	-1.30	0.00	-35.13	0.00	35.13 33.17	1,841.02 1,809.31		1,881.29		5.43 5.57	-0.44 -0.45	0.047 0.046
140.00	-13.11	-1.11	0.00	-26.47	0.00	26.47	1,697.39		1.597.52	799.95	6.05	-0.47	0.040
145.00	-12.45	-1.07	0.00	-20.91	0.00	20.91	1,585.46		1,392.48		6.55	-0.49	0.038
150.00	-11.94	-1.04	0.00	-15.57	0.00	15.57	1,473.54	736.77	1,201.51	601.65	7.08	-0.51	0.034
154.00	-7.74	-0.71	0.00	-11.42	0.00	11.42	1,384.00		1,058.88	530.23	7.52	-0.53	0.027
155.00	-7.29	-0.68	0.00	-10.71	0.00	10.71	1,361.62				7.63	-0.53	0.026
160.00 164.33	-5.86 -5.77	-0.56 -0.55	0.00 0.00	-7.32 -4.89	0.00	7.32 4.89	1,249.70 1,152.70		861.82 732.11		8.19 8.70	-0.55 -0.56	0.022 0.018
165.00	-5.48	-0.53		-4.53	0.00	4.69	1,137.78		713.10		8.77	-0.56	0.018
167.25	-5.30	-0.51	0.00	-3.34	0.00	3.34	903.09		563.74		9.04	-0.57	0.018
170.00	-2.18	-0.22		-1.93	0.00	1.93	853.84	426.92	503.47		9.37	-0.57	0.010
175.00	-2.01	-0.21	0.00	-0.82	0.00	0.82	764.30		402.61		9.97	-0.58	0.007
179.00	0.00	-0.18	0.00	0.00	0.00	0.00	692.67	346.34	330.04	165.26	10.46	-0.58	0.000

Site Name: Newington CT, CT Customer: VERIZON WIRELESS Code: ANSI/TIA-222-G Engineering Number: 12600288 2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:28:59 AM

Load Case (0.9 - 0.2Sds) * DL + E ELFM

Seismic (Reduced DL) Equivalent Lateral Forces Method

Calculated Forces

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
25.00-35.48-1.970.00-227.340.00227.344,293.362,146.689,718.324,866.380.14-0.060.05530.00-35.20-1.970.00-217.500.00217.504,223.012,111.519,293.474,653.640.21-0.070.05531.25-33.66-1.970.00-215.040.00215.044,205.002,102.509,187.704,600.680.23-0.070.05535.00-32.65-1.960.00-207.670.00207.674,149.932,074.968,871.624,442.400.29-0.080.05537.50-32.10-1.960.00-202.760.00207.674,149.472,074.738,869.014,441.100.33-0.090.05340.00-31.01-1.960.00-197.850.00197.854,111.892,055.958,659.384,336.130.38-0.100.05350.00-28.91-1.950.00-178.280.00178.283,954.761,977.387,830.993,921.320.61-0.120.05355.00-27.90-1.940.00-168.530.00168.533,872.091,936.057,423.763,717.400.75-0.140.05360.00-27.26-1.930.00-158.840.00158.843,786.701,893.357,021.863,516.150.90-0.150.05263.25-25.66-1.930.00-152.55
30.00 -35.20 -1.97 0.00 -217.50 0.00 217.50 4,223.01 2,111.51 9,293.47 4,653.64 0.21 -0.07 0.055 31.25 -33.66 -1.97 0.00 -215.04 0.00 215.04 4,205.00 2,102.50 9,187.70 4,600.68 0.23 -0.07 0.055 35.00 -32.65 -1.96 0.00 -207.67 0.00 207.67 4,149.93 2,074.96 8,871.62 4,442.40 0.29 -0.08 0.055 37.50 -32.10 -1.96 0.00 -202.76 0.00 207.67 4,149.47 2,074.73 8,869.01 4,441.10 0.33 -0.09 0.053 40.00 -31.01 -1.96 0.00 -197.85 0.00 197.85 4,034.69 2,017.35 8,243.04 4,127.64 0.49 0.11 0.053 45.00 -29.95 -1.96 0.00 -188.05 0.00 178.28 3,954.76 1,977.38 7,830.99 3,921.32 0.61 -0.12 0.053 50.00 -27.26 -1.93
35.00 -32.65 -1.96 0.00 -207.67 0.00 207.67 4,149.93 2,074.96 8,871.62 4,442.40 0.29 -0.08 0.055 37.50 -32.10 -1.96 0.00 -202.76 0.00 202.76 4,149.47 2,074.73 8,869.01 4,441.10 0.33 -0.09 0.053 40.00 -31.01 -1.96 0.00 -197.85 0.00 197.85 4,111.89 2,055.95 8,659.38 4,336.13 0.38 -0.10 0.053 45.00 -29.95 -1.96 0.00 -188.05 0.00 188.05 4,034.69 2,017.35 8,243.04 4,127.64 0.49 -0.11 0.053 50.00 -28.91 -1.95 0.00 -178.28 0.00 178.28 3,954.76 1,977.38 7,830.99 3,921.32 0.61 -0.12 0.053 55.00 -27.90 -1.94 0.00 -168.53 3,872.09 1,936.05 7,423.76 3,717.40 0.75 -0.14 0.052 63.25 -26.65 -1.93 0.00 -152.55
37.50 -32.10 -1.96 0.00 -202.76 0.00 202.76 4,149.47 2,074.73 8,869.01 4,441.10 0.33 -0.09 0.053 40.00 -31.01 -1.96 0.00 -197.85 0.00 197.85 4,111.89 2,055.95 8,659.38 4,336.13 0.38 -0.10 0.053 45.00 -29.95 -1.96 0.00 -188.05 0.00 188.05 4,034.69 2,017.35 8,243.04 4,127.64 0.49 -0.11 0.053 50.00 -28.91 +1.95 0.00 -178.28 0.00 178.28 3,954.76 1,977.38 7,830.99 3,921.32 0.61 -0.12 0.053 55.00 -27.90 -1.94 0.00 -168.53 0.00 168.53 3,872.09 1,936.05 7,423.76 3,717.40 0.75 -0.14 0.053 60.00 -27.26 -1.93 0.00 -158.84 0.00 152.55 3,729.72 1,864.86 6,763.73 3,386.89 1.01 -0.16 0.052 65.00 -25.36 -1.90
40.00 -31.01 -1.96 0.00 -197.85 0.00 197.85 4,111.89 2,055.95 8,659.38 4,336.13 0.38 -0.10 0.053 45.00 -29.95 -1.96 0.00 -188.05 0.00 188.05 4,034.69 2,017.35 8,243.04 4,127.64 0.49 -0.11 0.053 50.00 -28.91 +1.95 0.00 -178.28 0.00 178.28 3,954.76 1,977.38 7,830.99 3,921.32 0.61 -0.12 0.053 50.00 -27.90 -1.94 0.00 -168.53 0.00 168.53 3,872.09 1,936.05 7,423.76 3,717.40 0.75 -0.14 0.053 60.00 -27.26 -1.93 0.00 -158.84 0.00 158.84 3,786.70 1,893.35 7,021.86 3,516.15 0.90 -0.15 0.052 63.25 -26.65 -1.93 0.00 -152.55 0.00 152.55 3,729.72 1,864.86 6,763.73 3,386.89 1.01 -0.16 0.052 65.00 -25.36 -1.90
45.00 -29.95 -1.96 0.00 -188.05 0.00 188.05 4,034.69 2,017.35 8,243.04 4,127.64 0.49 -0.11 0.053 50.00 -28.91 -1.95 0.00 -178.28 0.00 178.28 3,954.76 1,977.38 7,830.99 3,921.32 0.61 -0.12 0.053 55.00 -27.90 -1.94 0.00 -168.53 0.00 168.53 3,872.09 1,936.05 7,423.76 3,717.40 0.75 -0.14 0.053 60.00 -27.26 -1.93 0.00 -158.84 0.00 158.84 3,786.70 1,893.35 7,021.86 3,516.15 0.90 -0.15 0.052 63.25 -26.65 -1.93 0.00 -152.55 0.00 152.55 3,729.72 1,864.86 6,763.73 3,386.89 1.01 -0.16 0.052 65.00 -25.36 -1.90 0.00 -149.18 0.00 149.18 3,698.56 1,849.28 6,625.81 3,317.83 1.07 -0.17 0.052 68.75 -25.12 -1.90
50.00 -28.91 +1.95 0.00 +178.28 0.00 178.28 3,954.76 1,977.38 7,830.99 3,921.32 0.61 -0.12 0.053 55.00 -27.90 +1.94 0.00 -168.53 0.00 168.53 3,872.09 1,936.05 7,423.76 3,717.40 0.75 -0.14 0.053 60.00 -27.26 -1.93 0.00 -158.84 0.00 158.84 3,786.70 1,893.35 7,021.86 3,516.15 0.90 -0.15 0.052 63.25 -26.65 -1.93 0.00 -152.55 0.00 152.55 3,729.72 1,864.86 6,763.73 3,386.89 1.01 -0.16 0.052 65.00 -25.36 -1.90 0.00 -149.18 0.00 149.18 3,698.56 1,849.28 6,625.81 3,317.83 1.07 -0.17 0.052 68.75 -25.12 -1.90 0.00 -142.05 0.00 142.05 3,675.54 1,837.77 6,525.34 3,267.52 1.21 -0.18 0.050 70.00 -24.18 -1.88
55.00 -27.90 -1.94 0.00 -168.53 0.00 168.53 3,872.09 1,936.05 7,423.76 3,717.40 0.75 -0.14 0.053 60.00 -27.26 -1.93 0.00 -158.84 0.00 158.84 3,786.70 1,893.35 7,021.86 3,516.15 0.90 -0.15 0.052 63.25 -26.65 -1.93 0.00 -152.55 0.00 152.55 3,729.72 1,864.86 6,763.73 3,386.89 1.01 -0.16 0.052 65.00 -25.36 -1.90 0.00 -149.18 0.00 149.18 3,698.56 1,849.28 6,625.81 3,317.83 1.07 -0.17 0.052 68.75 -25.12 -1.90 0.00 -142.05 0.00 142.05 3,675.54 1,837.77 6,525.34 3,267.52 1.21 -0.18 0.050 70.00 -24.18 -1.88 0.00 -139.67 0.00 139.67 3,652.91 1,826.45 6,427.71 3,218.63 1.26 -0.19 0.050 75.00 -23.26 -1.86
60.00 -27.26 -1.93 0.00 -158.84 0.00 158.84 3,786.70 1,893.35 7,021.86 3,516.15 0.90 -0.15 0.052 63.25 -26.65 -1.93 0.00 -152.55 0.00 152.55 3,729.72 1,864.86 6,763.73 3,386.89 1.01 -0.16 0.052 65.00 -25.36 -1.90 0.00 -149.18 0.00 149.18 3,698.56 1,849.28 6,625.81 3,317.83 1.07 -0.17 0.052 68.75 -25.12 -1.90 0.00 -142.05 0.00 142.05 3,675.54 1,837.77 6,525.34 3,267.52 1.21 -0.18 0.050 70.00 -24.18 -1.88 0.00 -139.67 0.00 139.67 3,652.91 1,826.45 6,427.71 3,218.63 1.26 -0.19 0.050 75.00 -23.26 +1.86 0.00 +130.27 0.00 130.27 3,560.66 1,780.33 6,041.44 3,025.21 1.47 -0.20 0.050 80.00 -22.37 +1.84
63.25 -26.65 -1.93 0.00 -152.55 0.00 152.55 3,729.72 1,864.86 6,763.73 3,386.89 1.01 -0.16 0.052 65.00 -25.36 -1.90 0.00 -149.18 0.00 149.18 3,698.56 1,849.28 6,625.81 3,317.83 1.07 -0.17 0.052 68.75 -25.12 -1.90 0.00 -142.05 0.00 142.05 3,675.54 1,837.77 6,525.34 3,267.52 1.21 -0.18 0.050 70.00 -24.18 -1.88 0.00 -139.67 0.00 139.67 3,560.66 1,780.33 6,041.44 3,025.21 1.47 -0.20 0.050 75.00 -23.26 -1.86 0.00 +130.27 0.00 130.27 3,560.66 1,780.33 6,041.44 3,025.21 1.47 -0.20 0.050 80.00 -22.37 +1.84 0.00 +120.95 0.00 120.95 3,465.68 1,732.84 5,662.31 2,835.36 1.69 -0.22 0.049
68.75 -25.12 -1.90 0.00 -142.05 0.00 142.05 3,675.54 1,837.77 6,525.34 3,267.52 1.21 -0.18 0.050 70.00 -24.18 -1.88 0.00 -139.67 0.00 139.67 3,652.91 1,826.45 6,427.71 3,218.63 1.26 -0.19 0.050 75.00 -23.26 -1.86 0.00 +130.27 0.00 130.27 3,560.66 1,780.33 6,041.44 3,025.21 1.47 -0.20 0.050 80.00 -22.37 +1.84 0.00 +120.95 0.00 120.95 3,465.68 1,732.84 5,662.31 2,835.36 1.69 -0.22 0.049
70.00 -24.18 -1.88 0.00 -139.67 0.00 139.67 3,652.91 1,826.45 6,427.71 3,218.63 1.26 -0.19 0.050 75.00 -23.26 -1.86 0.00 +130.27 0.00 130.27 3,560.66 1,780.33 6,041.44 3,025.21 1.47 -0.20 0.050 80.00 -22.37 -1.84 0.00 +120.95 0.00 120.95 3,465.68 1,732.84 5,662.31 2,835.36 1.69 -0.22 0.049
75.00 -23.26 -1.86 0.00 +130.27 0.00 130.27 3,560.66 1,780.33 6,041.44 3,025.21 1.47 -0.20 0.050 80.00 -22.37 -1.84 0.00 -120.95 0.00 120.95 3,465.68 1,732.84 5,662.31 2,835.36 1.69 -0.22 0.049
80.00 -22.37 -1.84 0.00 -120.95 0.00 120.95 3,465.68 1,732.84 5,662.31 2,835.36 1.69 -0.22 0.049
90.00 -20.67 -1.79 0.00 -102.67 0.00 102.67 3,252.82 1,626.41 4,905.37 2,456.33 2,19 -0.26 0.048
95.00 -20.50 -1.79 0.00 -93.72 0.00 93.72 3,118.51 1,559.26 4,506.69 2,256.70 2.46 -0.27 0.048
96.08 -19.39 -1.74 0.00 -91.78 0.00 91.78 3,089.41 1,544.71 4,422.54 2,214.56 2.53 -0.28 0.048
100.00 -19.18 -1.73 0.00 -84.96 0.00 84.96 2,984.21 1,492.10 4,124.91 2,065.52 2.76 -0.29 0.048
100.75 -18.50 -1.70 0.00 -83.66 0.00 83.66 3,030.38 1,515.19 4,254.26 2,130.29 2.81 -0.30 0.045
105.00 -17.73 -1.67 0.00 -76.41 0.00 76.41 2,916.22 1,458.11 3,938.09 1,971.97 3.08 -0.31 0.045 110.00 -14.99 -1.52 0.00 -68.07 0.00 68.07 2,781.91 1,390.96 3,581.76 1,793.54 3,42 -0.33 0.043
110.00 -14.99 -1.52 0.00 -68.07 0.00 68.07 2,781.91 1,390.96 3,581.76 1,793.54 3.42 -0.33 0.043 115.00 -14.31 -1.48 0.00 -60.46 0.00 60.46 2,647.61 1,323.80 3,242.33 1,623.57 3.78 -0.35 0.043
120.00 -13.65 -1.44 0.00 -53.05 0.00 53.05 2,513.30 1,256.65 2,919.79 1,462.07 4.16 -0.37 0.042
125.00 -13.05 -1.40 0.00 -45.83 0.00 45.83 2,378.99 1,189.50 2,614.15 1,309.02 4.56 -0.39 0.040
129.75 -13.00 -1.40 0.00 -39.16 0.00 39.16 2,251.40 1,125.70 2,339.44 1,171.46 4.96 -0.41 0.039
130.00 -12.30 -1.35 0.00 -38.81 0.00 38.81 2,244.69 1,122.34 2,325.40 1,164.43 4.98 -0.41 0.039
133.58 -12.15 -1.34 0.00 -33.98 0.00 33.98 1,841.02 920.51 1,881.29 942.04 5.30 -0.43 0.043
135.00 -11.63 -1.30 0.00 -32.08 0.00 32.08 1,809.31 904.65 1,816.65 909.67 5.43 -0.43 0.042 140.00 -9.11 -1.08 0.00 -25.60 0.00 25.60 1.697.39 848.69 1.597.52 799.95 5.89 -0.46 0.037
145.00 -8.65 -1.03 0.00 -20.22 0.00 20.22 1,585.46 792.73 1,392.48 697.27 6.38 -0.48 0.034
150.00 -8.30 -1.00 0.00 -15.05 0.00 15.05 1,473.54 736.77 1,201.51 601.65 6.90 -0.50 0.031
154.00 -5.38 -0.69 0.00 -11.05 0.00 11.05 1,384.00 692.00 1,058.88 530.23 7.32 -0.51 0.025
155.00 -5.07 -0.66 0.00 -10.36 0.00 10.36 1,361.62 680.81 1,024.63 513.08 7.43 -0.52 0.024
160.00 -4.07 -0.54 0.00 -7.08 0.00 7.08 1,249.70 624.85 861.82 431.55 7.98 -0.53 0.020
164.33 -4.01 -0.53 0.00 -4.73 0.00 4.73 1,152.70 576.35 732.11 366.60 8.47 -0.54 0.016
165.00 -3.81 -0.51 0.00 -4.38 0.00 4.38 1,137.78 568.89 713.10 357.08 8.54 -0.55 0.016 167.25 -3.69 -0.49 0.00 -3.23 0.00 3.23 903.09 451.54 563.74 282.29 8.80 -0.55 0.016
170.00 -1.52 -0.21 0.00 -1.87 0.00 1.87 853.84 426.92 503.47 252.11 9.12 -0.56 0.009
175.00 -1.40 -0.20 0.00 -0.79 0.00 0.79 764.30 382.15 402.61 201.60 9.71 -0.56 0.006
179.00 0.00 -0.18 0.00 0.00 0.00 0.00 692.67 346.34 330.04 165.26 10.18 -0.56 0.000

Site Number: 370627 Site Name: Newington CT, CT Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G Engineering Number: 12600288 2007 - 2018 by ATC IP LLC. All rights reserved, 8/2/2018 10:28:59 AM

Equivalent Modal Forces Analysis

(Based on ASCE7-10 Chapters 11, 12 & 15 and ANSI/TIA-G, section 2.7)

Spectral Response Acceleration for Short Period (S s):	0.18
Spectral Response Acceleration at 1.0 Second Period (S 1):	0.06
Importance Factor (I E):	1.00
Site Coefficient F a:	1.60
Site Coefficient F v	2.40
Response Modification Coefficient (R):	1.50
Design Spectral Response Acceleration at Short Period (S ds):	0.19
Desing Spectral Response Acceleration at 1.0 Second Period (S d_1):	0.10
Period Based on Rayleigh Method (sec):	2.90
Redundancy Factor (p):	1.30

Load Case (1.2 + 0.2Sds) * DL + E EMAM

Seismic Equivalent Modal Analysis Method

	Height Above Base	Weight					Horizontal Force	Vertical Force
Segment	(ft)	(Ib)	а	b	С	Saz	(Ib)	(Ib)
47	177.00	107	1.040	1.766	1.062	0.220	40	170
46	172.50	137 190	1.848 1.755	1.343	0.902	0.339 0.281	40 46	170 236
45	168.63	143	1.677	1.038	0.780	0.235	29	177
44	166.13	236	1.628	0.867	0.709	0.208	43	293
43	164.67	72	1.599	0.777	0.669	0.192	12	89
42	162.17	290	1.551	0.635	0.606	0.167	42	359
41	157.50	363	1.463	0.415	0.500	0.123	39	450
40	154.50	76	1.408	0.299	0.440	0.098	6	94
39	152.00	408	1.363	0.217	0.394	0.078	28	506
38	147.50	533	1.283	0.098	0.322	0.046	21	661
37	142.50	559	1.198	0.003	0.253	0.015	7	692
36	137.50	604	1,115	-0.061	0.196	-0.010	-5	749
35	134.29	176	1.064	-0.088	0.165	-0.023	-4	218
34	131.79	815	1.025	-0.103	0.144	-0.032	-23	1,009
33	129.88	58	0.995	-0.111	0.129	-0.038	-2	72
32	127.38	696	0.957	-0,118	0.111	-0.044	-27	863
31	122.50	763	0.885	-0.121	0.082	-0.053	-35	945
30	117.50	794	0.814	-0.114	0.058	-0.056	-39	983
29	112.50	825	0.747	-0.100	0.040	-0.054	-39	1,022
28	107.50	893	0.682	-0.081	0.026	-0.047	-36	1,106
27	102.88	783	0.624	-0.062	0.018	-0.035	-24	970
26	100.38	243	0.594	-0.051	0.014	-0.028	-6	301
25	98.04	1,290	0.567	-0.041	0.011	-0.020	-23	1,598
24	95.54	206	0.538	-0.030	0.009	-0.012	-2	255
23	92.50	970	0.505	-0.018	0.007	-0.001	-1	1,202
22	87.50	1,001	0.452	0.001	0.006	0.016	14	1,240
21	82.50	1,032	0.401	0.018	0.006	0.030	27	1,278
20	77.50	1,062	0.354	0.032	0.008	0.041	38	1,316
19	72.50	1,093	0.310	0.043	0.011	0.049	46	1,354
18	69.38	278	0.284	0.049	0.014	0.052	13	344
17	66.88	1,500	0.264	0.053	0.016	0.054	70	1,858
16	64.13	712	0.243	0.057	0.018	0.056	34	882
15	61.63	744	0.224	0.059	0.020	0.056	36	922
14	57.50	1,170	0.195	0.063	0.024	0.057	58	1,450

Site Number: 370627				Code: A	NSI/TIA-222	-G © 2	007 - 2018 by ATC	IP LLC, All rights reserve
Site Name: Newington C	СТ, СТ		Engineering I	Number:12	2600288			8/2/2018 10:28:59 AM
Customer: VERIZON W	IRELESS							
13	52.50	1,201	0.163	0.067	0.028	0.057	59	1,488
12	47.50	1,232	0.133	0.069	0.033	0.056	60	1,526
11	42.50	1,262	0.107	0.071	0.036	0.055	60	1,564
10	38.75	643	0.089	0.071	0.039	0.054	30	796
9	36.25	1,173	0.078	0 072	0.040	0.053	54	1,453
8 7	33.13 30.63	1,788	0.065	0.072	0.041	0.053	82	2,216
6	27.50	330 1,340	0.055 0.045	0.071 0.071	0.042 0.042	0.052 0.051	15 59	409
5	22.50	1,340	0.045	0.068	0.040	0.031	59	1,659 1,698
4	17.50	1,401	0.018	0.063	0.037	0.045	56	1,736
3	12.50	1,432	0.009	0.054	0.031	0.041	51	1,774
2	7.50	1,463	0.003	0.039	0.022	0.032	41	1,812
1	2.50	1,493	0.000	0.016	0.008	0.015	19	1,850
5' Dipole	179.00	15	1.890	1.980	1.140	0.366	5	19
10' Omni	179.00	25	1.890	1.980	1.140	0.366	8	31
18' Dipole	179.00	55	1.890	1.980	1.140	0.366	17	68
8' Yagi	179.00	30	1.890	1.980	1.140	0.366	10	37
Round Low Profile Pl	179.00	1,500	1.890	1.980	1.140	0.366	476	1,858
Ericsson KRY 112 144	170.00 170.00	33	1.705	1.140	0.822 0.822	0.251	7	41
Ericsson RRUS 11 B12 Ericsson AIR 21, 1.3	170.00	152 249	1.705 1.705	1.140 1.140	0.822	0 251 0 251	33 54	188 308
Ericsson AIR 21, 1.3	170.00	245	1.705	1.140	0.822	0.251	53	308
Andrew LNX-6515DS-VT	170.00	154	1.705	1.140	0.822	0.251	34	191
Round Low Profile Pl	170.00	1,500	1.705	1.140	0.822	0.251	327	1,858
RCU	160.00	3	1.510	0.526	0.555	0.146	0	4
DragonWave Horizon C	160.00	34	1.510	0.526	0.555	0.146	4	43
Samsung U-RAS	160.00	99	1.510	0.526	0.555	0.146	13	123
Argus LLPX310R	160.00	86	1.510	0.526	0.555	0.146	11	106
DragonWave A-ANT-18G	160.00	81	1.510	0.526	0.555	0.146	10	101
Side Arms	160.00	560	1.510	0.526	0.555	0.146	71	694
Powerwave LGP21401	154.00	85 64	1.399	0.282	0.431 0.431	0.094	7	105
Raycap DC6-48-60-18- Ericsson RRUS 4478 B	154.00 154.00	180	1.399 1.399	0.282 0.282	0.431	0.094 0.094	5 15	79 223
Ericsson RRUS 11 (Ba	154.00	165	1.399	0.282	0.431	0.094	13	204
Ericsson RRUS 32	154.00	165	1.399	0.282	0.431	0.094	13	205
Ericsson RRUS 12	154.00	150	1.399	0.282	0,431	0.094	12	186
Ericsson RRUS 32 B66	154.00	159	1.399	0.282	0.431	0.094	13	197
Ericsson RRUS 32 B2	154.00	159	1.399	0.282	0.431	0.094	13	197
Raycap DC6-48-60-0-8	154.00	16	1.399	0.282	0.431	0.094	1	20
Kathrein Scala 800 1	154.00	139	1.399	0.282	0,431	0.094	11	172
Quintel QS66512-2	154.00	111	1.399	0.282	0.431	0.094	9	138
CCI OPA-65R-LCUU-H8	154.00	264	1.399	0.282	0.431	0.094	21	327
CCI TPA-65R-LCUUUU-H Round Low Profile PI	154.00 154.00	163 1,500	1.399 1.399	0.282 0.282	0.431 0.431	0.094 0.094	13 122	202 1,858
Alcatel-Lucent 800 M	140.00	192	1.156	-0.033	0.223	0.002	0	238
Alcatel-Lucent 1900M	140.00	132	1.156	-0.033	0.223	0.002	0	164
Alcatel-Lucent TD-RR	140.00	198	1.156	-0.033	0.223	0.002	Ő	246
RFS APXVTM14-C-I20	140.00	169	1.156	-0.033	0.223	0.002	Ő	209
RFS APXV9ERR18-C-A20	140.00	62	1.156	-0.033	0.223	0.002	0	77
RFS APXVSPP18-C-A20	140.00	114	1.156	-0.033	0.223	0.002	0	141
Round Low Profile Pl	140.00	1,500	1.156	-0.033	0.223	0.002	3	1,858
Samsung PCS/AWS	110.00	253	0.714	-0.091	0.033	-0.051	-11	314
Samsung 700/850MHz D Antel BXA-80063/4CF	110.00	211	0.714	-0.091	0.033	-0.051	-9	261
RFS DB-T1-6Z-8AB-0Z	110.00 110.00	59 88	0.714 0.714	-0.091	0.033	-0.051	-3	74
Commscope SBNHH-	110.00	244	0.714	-0.091 -0.091	0.033	-0.051 -0.051	-4 -11	109 302
Flat Low Profile Pla	110.00	1,500	0.714	-0.091	0.033	-0.051	-11	302 1,858
		49,706	92.106	30.604	29.959	7,585	2,333	61,578

Site Number: 370627

Site Name: Newington CT, CT

Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G Engineering Number: 12600288 © 2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:28:59 AM

Load Case (0.9 - 0.2Sds) * DL + E EMAM

 Seismic (Reduced DL) Equivalent Modal Analysis Metho
--

47 17 46 17 45 16 44 16 43 16 42 16 41 15 39 15 38 14 37 14 36 13 35 13 34 13 33 12 31 12 30 11 29 11 28 10 27 10 26 10 27 10 26 10 27 10 26 10 27 10 26 10 27 10 26 10 27 10 26 10 27 10 26 10 27 10 28 10 30 17 18 6 17 6	77.00 72.50 58,63 56,13	(Ib)	а				Force	Force
46 17 45 16 44 16 43 16 42 16 41 15 40 15 39 15 38 14 37 14 36 13 35 13 34 13 33 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 25 9 26 10 27 10 26 10 27 10 26 10 27 10 3 2 13 5	72.50 58.63		-	b	с	Saz	(lb)	(lb)
46 17 45 16 44 16 43 16 42 16 41 15 40 15 39 15 38 14 37 14 36 13 35 13 34 13 33 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 25 9 26 10 27 10 26 10 27 26 17 6	72.50 58.63	137	1.848	1.766	1.062	0.339	40	118
45 16 44 16 43 16 42 16 41 15 40 15 39 15 38 14 37 14 36 13 35 13 34 13 32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 25 9 24 9 25 9 26 10 27 10 26 10 27 10 3 2 17 6 18 6	63 63	190	1.755	1.343	0.902	0.281	46	164
44 16 43 16 42 16 41 15 39 15 38 14 37 14 36 13 35 13 34 13 33 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 27 10 26 10 25 9 24 9 21 8 17 6 16 6 15 6 14 5 15 6 24 1 3 2 1 4 1		143	1.677	1.038	0.780	0.235	29	123
43 16 42 16 41 15 40 15 39 15 38 14 37 14 36 13 35 13 34 13 33 12 32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 3 5 17 6 16 6 15 6 14 5 3 2 1 1 3<	JU. I J	236	1.628	0.867	0.709	0.208	43	204
42 16 41 15 39 15 38 14 37 14 36 13 35 13 34 13 33 12 32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 25 6 17 6 16 6 17 6 18 6 17 6 18 3 10 3 9 3 8<	64.67	72	1.599	0.777	0.669	0.192	12	62
41 15 40 15 39 15 38 14 37 14 36 13 35 13 34 13 33 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 23 9 24 9 25 9 24 9 25 9 24 9 3 5 17 6 16 6 15 6 26 2 3 3 3 5 3 3 3	52.17	290	1.551	0.635	0.606	0.167	42	249
40 15 39 15 38 14 37 14 36 13 35 13 34 13 33 12 32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 25 9 24 9 25 9 24 9 23 9 24 9 25 9 24 9 25 9 24 9 3 2 18 6 17 6 18 6 14 5 15 6 25 2 3 2 1 <td>57.50</td> <td>363</td> <td>1.463</td> <td>0.415</td> <td>0.500</td> <td>0.123</td> <td>39</td> <td>313</td>	57.50	363	1.463	0.415	0.500	0.123	39	313
39 15 38 14 37 14 36 13 35 13 34 13 33 12 32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 25 9 24 9 25 9 24 9 25 9 24 9 25 9 24 9 25 9 24 9 25 9 26 10 27 10 18 6 17 6 18 6 14 5 13 5 25 2 4	54.50	76	1.408	0.299	0.440	0.098	6	65
38 14 37 14 36 13 35 13 34 13 33 12 32 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 25 9 24 9 25 9 24 9 25 9 24 9 25 9 24 9 25 9 26 10 17 6 16 6 17 6 18 6 14 5 15 6 25 2 3 <td>52.00</td> <td>408</td> <td>1.363</td> <td>0.217</td> <td>0.394</td> <td>0.078</td> <td>28</td> <td>351</td>	52.00	408	1.363	0.217	0.394	0.078	28	351
36 13 35 13 34 13 33 12 32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 25 9 24 9 25 9 24 9 25 9 24 9 25 9 26 10 27 10 7 6 15 6 16 6 17 3 18 13 19 1 11 4 10 </td <td>17.50</td> <td>533</td> <td>1.283</td> <td>0.098</td> <td>0.322</td> <td>0.046</td> <td>21</td> <td>459</td>	17.50	533	1.283	0.098	0.322	0.046	21	459
35 13 34 13 33 12 32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 23 9 24 9 25 9 24 9 20 7 18 6 17 6 18 6 14 5 12 4 11 4 10 3 3 2 1 3 2 1 3	12.50	559	1.198	0.003	0.253	0.015	7	481
35 13 34 13 33 12 32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 23 9 24 9 25 9 24 9 20 7 18 6 17 6 18 6 14 5 12 4 11 4 10 3 3 2 1 1 3 2 1	37.50	604	1.115	-0.061	0.196	-0.010	-5	521
34 13 33 12 32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 23 9 24 9 25 9 24 9 23 9 24 9 23 9 24 9 25 9 16 6 15 6 14 5 15 2 1 4 10 3 2 2 1 3 2 2 1 7 3 2 1 <	34.29	176	1.064	-0.088	0.165	-0.023	-4	152
32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 22 8 21 8 20 7 19 7 18 6 17 6 15 6 14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 5 2 1 1 5 2 1 1 5 2 1 1 5 1 5 1 7 2	31.79	815	1.025	-0.103	0.144	-0.032	-23	702
32 12 31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 22 8 21 8 20 7 19 7 18 6 17 6 15 6 14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 5 1 5 1 5 2 1 1 5 1 5 1 1 1 5 1 1 1	29.88	58	0.995	-0.111	0.129	-0.038	-2	50
31 12 30 11 29 11 28 10 27 10 26 10 25 9 24 9 23 9 22 8 21 8 20 7 19 7 18 6 17 6 15 6 14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 2 1 5 1 5 1 5 2 1 1 5 1 5 1 7 2 1 1 2 1	27.38	696	0.957	-0.118	0.111	-0.044	-27	600
29 11 28 10 27 10 26 10 25 9 24 9 23 9 22 8 20 7 19 7 18 6 17 6 16 6 15 6 14 5 12 4 11 4 10 3 9 3 8 3 7 3 5 2 4 1 3 1 5' Dipole 17	22.50	763	0.885	-0.121	0.082	-0.053	-35	657
28 10 27 10 26 10 25 9 24 9 23 9 22 8 21 8 20 7 19 7 18 6 17 6 16 6 15 6 14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 5 3 2 1 5 3 2 1 5 1 5 1 5 2 1 1 5 1 1 1 5 1 5 1 5 1 5 1 5 1 1 1 <td>17.50</td> <td>794</td> <td>0.814</td> <td>-0.114</td> <td>0.058</td> <td>-0.056</td> <td>-39</td> <td>684</td>	17.50	794	0.814	-0.114	0.058	-0.056	-39	684
27 10 26 10 25 9 24 9 23 9 22 8 21 8 20 7 19 7 18 6 17 6 16 6 15 6 14 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 1 4 3 1 5' Dipole 17	12.50	825	0.747	-0.100	0.040	-0.054	-39	710
26 10 25 9 24 9 23 9 22 8 21 8 20 7 19 7 18 6 17 6 13 5 12 4 11 4 10 3 9 3 7 3 6 2 5 2 4 1 3 1 5' Dipole 17	07.50	893	0.682	-0.081	0.026	-0.047	-36	769
25 9 24 9 23 9 22 8 21 8 20 7 19 7 18 6 17 6 13 5 12 4 11 4 10 3 9 3 7 3 6 2 5 2 4 1 3 1 5' Dipole 17	32.88	783	0.624	-0.062	0.018	-0.035	-24	674
25 9 24 9 23 9 22 8 21 8 20 7 19 7 18 6 17 6 16 6 15 6 14 5 12 4 11 4 10 3 9 3 7 3 6 2 5 2 4 1 3 1 5' Dipole 17	00.38	243	0.594	-0.051	0.014	-0.028	-6	209
23 9 22 8 21 8 20 7 19 7 18 6 17 6 15 6 14 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 1 3 2 1 5' Dipole 17	98.04	1,290	0.567	-0.041	0.011	-0.020	-23	1,111
22 8 21 8 20 7 19 7 18 6 17 6 15 6 14 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 2 1 5' Dipole 17	95.54	206	0.538	-0.030	0.009	-0.012	-2	178
21 8 20 7 19 7 18 6 17 6 15 6 14 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 5' Dipole 17	92.50	970	0.505	-0.018	0.007	-0.001	-1	835
20 7 19 7 18 6 17 6 16 6 15 6 14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 5' Dipole 17	87.50	1,001	0.452	0.001	0.006	0.016	14	862
19 7 18 6 17 6 16 6 15 6 14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 5' Dipole 17	82.50	1,032	0.401	0.018	0.006	0.030	27	888
18 6 17 6 16 6 15 6 14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 3 5 4 1 1 5' Dipole 17		1,062	0.354	0.032	0.008	0.041	38	915
17 6 16 6 15 6 14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 2 1 5' Dipole 17	72.50	1,093	0.310	0.043	0.011	0.049	46	941
16 6 15 6 14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 2 1 5' Dipole 17	69.38	278	0.284	0.049	0.014	0.052	13	239
15 6 14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 3 5 3 4 1 3 1 2 1 5' Dipole 17	66.88	1,500	0.264	0.053	0.016	0.054	70	1,292
14 5 13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 3 5 3 4 1 3 1 2 1 5' Dipole 17	64.13	712	0.243	0.057	0.018	0.056	34	613
13 5 12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 2 1 5' Dipole 17	61.63	744	0.224	0.059	0.020	0.056	36	641
12 4 11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 2 1 5' Dipole 17	57.50	1,170	0.195	0.063	0.024	0.057	58	1,008
11 4 10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 2 1 1 5' Dipole 17	52.50	1,201	0.163	0.067	0.028	0.057	59	1,034
10 3 9 3 8 3 7 3 6 2 5 2 4 1 3 1 2 1 1 5' Dipole 17	47.50	1,232	0.133	0.069	0.033	0.056	60	1,061
9 3 8 3 7 3 6 2 5 2 4 1 3 1 2 1 5' Dipole 17		1,262	0.107	0.071	0.036	0.055	60	1,087
8 3 7 3 6 2 5 2 4 1 3 1 2 1 5' Dipole 17	38.75	643	0.089	0.071	0.039	0.054	30	554
7 3 6 2 5 2 4 1 3 1 2 1 5' Dipole 17		1,173	0.078	0.072	0.040	0.053	54	1,010
6 22 5 22 4 1 3 1 2 1 5' Dipole 17		1,788	0.065	0.072	0.041	0.053	82	1,540
5 2 4 1 3 1 2 1 5' Dipole 17	30.63	330	0.055	0.071	0.042	0.052	15	284
4 1 3 1 2 1 5' Dipole 17	27.50	1,340	0.045	0.071	0.042	0.051	59	1,154
3 1 2 1 5' Dipole 17	22.50	1,370	0.030	0.068	0.040	0.049	59	1,180
2 1 5' Dipole 17	17.50	1,401	0.018	0.063	0.037	0.047	56	1,207
1 5' Dipole 17		1,432	0.009	0.054	0.031	0.041	51	1,233
5' Dipole 17	7.50	1,463	0.003	0.039	0.022	0.032	41	1,260
	2.50	1,493	0.000	0.016	0.008	0,015	19	1,286
10° Umrii 17	79.00	15	1.890	1.980	1.140	0.366	5	13
10 Dinolo	79.00	25	1.890	1.980	1.140	0.366	8	22
	79.00	55	1.890	1.980	1.140	0.366	17	47
	79.00	30	1.890	1.980	1.140	0.366	10	26
	79.00	1,500	1.890	1.980	1.140	0.366	476	1,292
	70.00	33	1.705	1.140	0.822	0.251	7	28
		152	1.705	1.140	0.822	0 251	33	131
Ericsson AIR 21, 1.3 17 Ericsson AIR 21, 1.3 17	70.00 70.00	249 244	1.705 1.705	1.140 1.140	0.822 0.822	0 251 0 251	54 53	214 211

Site Number: 370627 Site Name: Newington C Customer: VERIZON W		E	ngineering 1		NSI/TIA-222 2600288	-G © 200	17 - 2018 by ATC IP L 8/2	LC. All rights reserver
Andrew LNX-6515DS-VT	170.00	154	1.705	1.140	0.822	0.251	34	133
Round Low Profile Pl	170.00	1,500	1.705	1.140	0.822	0.251	327	1,292
RCU	160.00	3	1.510	0.526	0.555	0.146	0	3
DragonWave Horizon C	160.00	34	1.510	0.526	0.555 0.555	0.146	4	30
Samsung U-RAS	160.00	99	1.510	0.526	0.555	0.146	13	85
Argus LLPX310R DragonWave A-ANT-18G	160.00 160.00	86 81	1.510 1.510	0.526 0.526	0.555	0.146 0.146	11 10	74 70
Side Arms	160.00	560	1.510	0.526	0.555	0.146	71	482
Powerwave LGP21401	154.00	85	1.399	0.320	0.431	0.094	7	482
Raycap DC6-48-60-18-	154.00	64	1.399	0.282	0.431	0.094	5	55
Ericsson RRUS 4478 B	154.00	180	1.399	0.282	0.431	0.094	15	155
Ericsson RRUS 11 (Ba	154.00	165	1.399	0.282	0.431	0.094	13	142
Ericsson RRUS 32	154.00	165	1.399	0.282	0.431	0.094	13	142
Ericsson RRUS 12	154.00	150	1.399	0.282	0.431	0.094	12	129
Ericsson RRUS 32 B66	154.00	159	1.399	0.282	0.431	0.094	13	137
Ericsson RRUS 32 B2	154.00	159	1.399	0.282	0.431	0.094	13	137
Raycap DC6-48-60-0-8	154.00	16	1.399	0.282	0.431	0.094	1	14
Kathrein Scala 800 1	154.00	139	1.399	0.282	0.431	0.094	11	120
Quintel QS66512-2	154.00	111	1.399	0.282	0.431	0.094	9	96
CCI OPA-65R-LCUU-H8	154.00	264	1.399	0.282	0.431	0.094	21	227
CCI TPA-65R-LCUUUU-H	154.00	163	1.399	0.282	0.431	0.094	13	141
Round Low Profile Pl	154.00	1,500	1.399	0.282	0.431	0.094	122	1,292
Alcatel-Lucent 800 M	140.00	192	1.156	-0.033	0.223	0.002	0	165
Alcatel-Lucent 1900M	140.00	132	1.156	-0.033	0.223	0.002	0	114
Alcatel-Lucent TD-RR	140.00	198	1.156	-0.033	0.223	0.002	0	171
RFS APXVTM14-C-I20	140.00	169	1.156	-0.033	0.223	0.002	0	145
RFS APXV9ERR18-C-A20	140.00	62	1.156	-0.033	0.223	0.002	0	53
RFS APXVSPP18-C-A20	140.00	114	1.156	-0.033	0.223	0.002	0	98
Round Low Profile PI	140.00	1,500	1.156	-0.033	0.223	0.002	3	1,292
Samsung PCS/AWS	110.00 110.00	253 211	0.714 0.714	-0.091 -0.091	0.033 0.033	-0.051 -0.051	-11	218 182
Samsung 700/850MHz D Antel BXA-80063/4CF	110.00	211	0.714		0.033		-9	
RFS DB-T1-6Z-8AB-0Z	110.00	59 88	0.714	-0.091 -0.091	0.033	-0.051 -0.051	-3 -4	51 76
	110.00			-0.091 -0.091	0.033		•	-
Commscope SBNHH- Flat Low Profile Pla	110.00	244 1,500	0.714 0.714	-0.091	0.033	-0.051 -0.051	-11 -66	210 1,292
		49,706	92.106	30.604	29.959	7.585	2,333	42,806

Site Number: 370627

Site Name: Newington CT, CT Customer: VERIZON WIRELESS

Code: ANSI/TIA-222-G Engineering Number: 12600288

© 2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:28:59 AM

Load Case (1.2 + 0.2Sds) * DL + E EMAM Seismic Equivalent Modal Analysis Method

Calculated Forces

		(-) FX (-)		Mu MZ (ft-kips)	Mu MX (ft kips)	Resultant Moment (ft-kips)	phi Pn (kips)	phi Vn (kips)	phi Tn (ft king)	phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0	ι) (Nip	2) (chia)) (п-кіра)	(п-кіра)	(it-kips)	(пекірэ)	(kips)	(kips)	(It-kips)	(it-kips)	(01)	(ueg)	Ratio
	.00 -59.			-308.46		308.46		2,302.05			0.00	0.00	0.065
	.00 -57.9			-296.86		296.86		2,273.71			0.01	-0.01	0.065
10.	.00 -56. .00 -54.			-285.41 -274.16		285.41 274.16		2,244.00			0.02 0.06	-0.02 -0.04	0.064 0.064
	.00 -52.			-263.14		263.14		2,180.49			0.00	-0.05	0.064
	.00 -51.0			-252.35		252.35	•	2.146.68	•		0.16	-0.06	0.064
30	.00 -50.			-241.81		241.81		2,111.51			0.23	-0.08	0.064
	.25 -48.			-239.19		239.19		2,102.50			0.25	-0.08	0.064
	.00 -46.			-231.60		231.60		2,074.96			0.32	-0.09	0.063
	.50 -46. .00 -44.			-226.67 -221.80		226.67 221.80		2,074.73			0.37 0.43	-0.10 -0.11	0.062 0.062
	.00 -44.			-212.32		212.32		2,055.95			0.43	-0.12	0.062
	.00 -41.			-203.10		203.10		5 1,977.38			0.68	-0.14	0.062
	.00 -40.			-194.13		194.13	•	1,936.05	•	•	0.84	-0.16	0.063
	.00 -39.	22 -1.7	0.00	-185.41		185.41	3,786.70	1,893.35	7,021.86	3,516.15	1.01	-0.17	0.063
	.25 -38.			-179.84		179.84		2 1,864.86			1.13	-0.19	0.063
	.00 -36.			-176.89		176.89		i 1,849.28			1.20	-0.19	0.063
	.75 -36. .00 -34.			-170.83		170.83 168.82		1,837.77 1,826.45			1.36 1.41	-0.21 -0.21	0.062 0.062
. –	.00 -34.			-161.00		161.00		5 1,780.33			1.64	-0.21	0.062
	.00 -32.			-153.33		153.33		3 1,732.84			1.90	-0.25	0.063
	.00 -30.			-145.77		145.77		5 1,683.98			2.18	-0.28	0.064
	.00 -29.			-138.24		138.24		2 1,626.41			2.48	-0.30	0.065
	.00 -29.			-130.67		130.67		1,559.26	•	•	2.80	-0.32	0.067
96 100	.08 -27. .00 -27.			-129.02 -122.97		129.02 122.97		1,544.71			2.88	-0.33	0.067
100				-122.97		122.97		i 1,492.10 3 1,515.19		•	3.16 3.21	-0.35 -0.36	0.069 0.066
105				-115.10		115.10		2 1,458.11			3.54	-0.38	0.067
110				-107.00		107.00		1,390.96			3.96	-0.41	0.067
115	.00 -20.	59 -1.1	79 0.00	-98.27	0.00	98.27	2,647.61	1,323.80	3,242.33	1,623.57	4.41	-0.44	0.068
120				-89.32		89.32) 1,256.65			4.89	-0.48	0.069
125				-80.17		80.17		9 1,189.50			5.41	-0.51	0.069
129 130				-71.34 -70.87		71.34 70.87) 1,125.70) 1,122.34			5.93 5.96	-0.55 -0.55	0.069 0.069
133				-64.12		64.12	1,841.02		1,881.29		6.38	-0.55	0.009
135				-61.44		61.44	1,809.31		1,816.65		6.56	-0.59	0.077
140	.00 -13.	10 -1.	36 0.00	-51.95	0.00	51.95	1,697.39	848.69	1,597.52	799.95	7.20		0.073
145				-42.67		42.67	1,585.46		1,392.48		7.88	-0.68	0.069
150				-33.48			1,473.54		1,201.51		8.61	-0.72	0.064
154 155				-26.23		26.23	1,384.00		1,058.88		9.23	-0.75	0.055
155				-24.74 -17.52		24.74 17.52	1,361.62 1,249.70		1,024.63		9.39 10.21	-0.76 -0.80	0.054 0.045
164				-11.99			1,152.70				10.21		0.043
165	i.00 -5.			-11.14			1,137.78				11.06		0.036
167							903.09				11.46		0.036
170							853.84				11.95		0.023
175							764.30						0.013
1/9	.00 0.	•0.	JZ 0.00	0.00	0.00	0.00	692.67	340.34	330.04	165.26	13.60	-0.88	0.000

Site Number: 370627

Site Name: Newington CT, CT

Code: ANSI/TIA-222-G Engineering Number: 12600288

© 2007 - 2018 by ATC IP LLC. All rights reserved. 8/2/2018 10:28:59 AM

VERIZON WIRELESS Customer:

Seismic (Reduced DL) Equivalent Modal Analysis Method Load Case (0.9 - 0.2Sds) * DL + E EMAM

Calculated Forces

Seg Elev		Vu FX (-)	Tu MY	Mu MZ	Mu MX	Resultant Moment		phi Pn	phi Vn	phi Tn	phi Mn		Rotation	Datio
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(п-кірз)	(ft-kips)		(kips)	(kips)	(it-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-41.52	-2.32	0.00	-301.76	0.00	301.76	4,6	04.11	2,302.05	11,869.6	5,943.65	0.00	0.00	0.060
5.00	-40.26	-2.28	0.00	-290.18	0.00	290.18				11,437.5		0.01	-0.01	0.060
10.00		-2.24	0.00	-278.76	0.00	278.76				11,005.7		0.02	-0.02	0.059
15.00		-2.19	0.00	-267.56	0.00	267.56				10,575.0		0.06	-0.04	0.059
20.00 25.00		-2.14	0.00 0.00	-256.60 -245.91	0.00	256.60 245.91	•		•	10,145.6 9.718.32		0.10 0.16	-0.05 -0.06	0.059 0.059
30.00		-2.09	0.00	-245.91	0.00	235.47				9,293.47		0.18	-0.08	0.059
31.25		-2.00	0.00	-232.87	0.00	232.87				9,187.70		0.25	-0.08	0.059
35.00		-1.95	0.00	-225.38	0.00	225.38	•		•	8,871.62	-	0.31	-0.09	0.059
37.50		-1.92	0.00	-220.51	0.00	220.51				8,869.01		0.36	-0.10	0.057
40.00		-1.87	0.00	-215.71	0.00	215.71				8,659.38		0.42	-0.10	0.057
45.00		-1.81	0.00	-206.39	0.00	206.39				8,243.04		0.53	-0.12	0.057
50.00		-1.76	0.00	-197.33		197.33				7,830.99		0.67	-0.13	0.058
55.00 60.00		-1.71 -1.68	0.00 0.00	-188.54 -180.00	0.00	188.54 180.00				7,423.76		0.82	-0.15 -0.17	0.058
63.25		-1.64	0.00	-174.56		174.56				7,021.86 6,763.73		0.98 1.10	-0.17	0.058 0.059
65.00		-1.57	0.00	-171.68		171.68				6,625.81	•	1.17	-0.19	0.059
68.75		-1.56	0.00	-165.78		165.78				6,525.34		1.32	-0.20	0.058
70.00	-24.18	-1.52	0.00	•163.83	0.00	163.83	3,6	52.91	1,826.45	6,427.71	3,218.63	1.38	-0.21	0.058
75.00		-1.49	0.00	-156.23		156.23				6,041.44		1.60	-0.23	0.058
80.00		-1.46	0.00	-148.80		148.80				5,662.31		1.85	-0.25	0.059
85.00		-1.46		-141.47		141.47				5,290.83		2.12	-0.27	0.060
90.00 95.00		-1.46 -1.47	0.00 0.00	-134.20 -126.90		134.20 126.90				4,905.37 4,506.69		2.41 2.73	-0.29 -0.32	0.061 0.063
96.08		-1.49		-125.31	0.00	125.31				4,422.54		2.80	-0.32	0.063
100.00		-1.50		-119.48		119.48				4,124.91		3.07	-0.34	0.064
100.75		-1.52	0.00	-118.35	0.00	118.35				4,254.26		3.13	-0.35	0.062
105.00		-1.56		-111.89		111.89	2,9	16.22	1,458.11	3,938.09	1,971.97	3.45	-0.37	0.063
110.00		-1.69		-104.08		104.08				3,581.76		3.85	-0.40	0.063
115.00 120.00		-1.74 -1.77	0.00 0.00	-95.61 -86.93	0.00 0.00	95.61 86.93				3,242.33		4.29 4.76	-0.43 -0.46	0.064 0.065
125.00		-1.80		-78.06		78.06				2,919.79 2,614.15		5.26	-0.40	0.065
129.75		-1.81	0.00	-69.50		69.50				2,339.44		5.77	-0.53	0.065
130.00		-1.83		-69.05		69.05				2,325.40		5.80		0.065
133.58		-1.83	0.00	-62.50	0.00	62.50		341.02		1,881.29		6.21	-0.56	0.073
135.00		-1.84		-59.90		59.90		309.31		1,816.65		6.38		0.072
140.00		-1.81	0.00	-50.71	0.00	50.71		97.39		1,597.52		7.00		0.069
145.00 150.00		-1.79		-41.66		41.66 32.72		585.46		1,392.48		7.67	-0.66	0.065
154.00		-1.76 -1.45		-32.72 -25.67		25.67		173.54 384.00		1,201.51		8.38 8.98		0.060 0.052
155.00		-1.43		-24.22		24.22		361.62		1,024.63		9,13		0.052
160.00		-1.25		-17.16		17.16		249.70		861.82		9.93		0.043
164.33		-1.24		-11.75		11.75		152.70	576.35	732.11		10.65		0.036
165.00		-1.19		-10.92		10.92	1,1	137.78	568.89	713.10	357.08	10.76		0.034
167.25		-1.16		-8.24		8.24		03.09		563.74		11.15		0.033
170.00		-0.58		-5.04		5.04		353.84		503.47		11.63		0.022
175.00 179.00		-0.54 -0.52		-2.15 0.00		2.15 0.00		/64.30 592.67		402.61 330.04				0.012
179.00	0.00	-0.32	0.00	0.00	, 0.00	0.00	c	192.01	340.34	330,04	103.20	13.24	-0.00	0.000

Site Number	: 370627	Code: ANSI/TIA-222-G	© 2007 - 2018 by ATC IP LLC. All rights reserved.
Site Name:	Newington CT, CT	Engineering Number: 12600288	8/2/2018 10:28:59 AM
Customer:	VERIZON WIRELESS		

Analysis Summary

			- Rea	actions –			Max	Usage
Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	Elev (ft)	Interaction Ratio
1.2D + 1.6W	29.69	0.00	59.61	0.00	0.00	3747.06	0.00	0.64
0.9D + 1.6W	29.67	0.00	44.70	0.00	0.00	3689.49	0.00	0.63
1.2D + 1.0Di + 1.0Wi	9.15	0.00	99.09	0.00	0.00	1223.53	0.00	0.23
(1.2 + 0.2Sds) * DL + E ELFM	1.94	0.00	59.73	0.00	0.00	281.60	0.00	0.06
(1.2 + 0.2Sds) * DL + E EMAM	2.32	0.00	59.73	0.00	0.00	308.46	133.58	0.08
(0.9 - 0.2Sds) * DL + E ELFM	1.94	0.00	41.52	0.00	0.00	276.19	0.00	0.06
(0.9 - 0.2Sds) * DL + E EMAM	2.32	0.00	41.52	0.00	0.00	301.76	133.58	0.07
1.0D + 1.0W	7.09	0.00	49.70	0.00	0.00	888.07	0.00	0.16

Base Plate & Anchor Rod Analysis

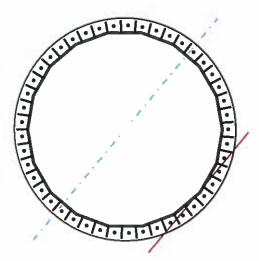
Base Reactions

3747.1

k-ft

Pole Dimensions									
Number of Sides	18								
Diameter	63	in							
Thickness	0.375	in							
Orientation Offset	0	•							

Base	Plate		
Shape	Round		
Diameter, ø	73	in	
Thickness	1 1/2	in	
Grade	A572-50		
Yield Strength, Fy	50	ksi	
Tensile Strength, Fu	65	ksi	
Clip	N/A	łn	
Orientation Offset	0	•	
Anchor Rod Detail	d	η=0.S	
Clear Distance	3	in	
Applied Moment, Mu	508.4	k	
Bending Stress, ¢M n	1118.5	k	


Original A	nchor Rods	
Arrangement	Radial	
Quantity	45	-
Diameter, ø	1 1/4	In
Bolt Circle	68	in
Grade	A587	
Yield Strength, Fy	105	ksi
Tensile Strength, Fu	125	ksi
Spacing	4.7	in
Orientation Offset	0	•
Applied Force, Pu	60.1	k
Anchor Rods, φP n	96.9	k

Stiffe	eners	
Arrangement	Radial	-0
Quantity	45	-
Height	12	in
Width	4	in
Effective Width	4.000	in
Thickness	1	in
Effective Thickness	0.230	in
Notch	0.5	in
Flat Edge	1.5	in
Grade	A36	-
Yield Strength, Fy	36	ksi
Tensile Strength, Fu	58	ksi
Horizontal Weld	Fillet	
Horizontal Fillet Size	3/16	In
Bevel Depth	3/16	in
Vertical Weld	Fillet	12380
Vertical Fillet Size	3/16	in
Weld Strength	70	ksi
Electrode Coefficient	1	
Orientation Offset	0	•
Vertical Weld, φ Rn	100.4	k
Horz. Weld, φRn	20.9	k
Ten. Capacity, фTn	113.4	k
Comp. Capacity, dPn	67.2	k

Shear, Vu	29.7	k
Neutral Axis	230	1

Moment, Mu

Report	Capacities	
Component	Capacity	Result
Base Plate	45%	Pass
Anchor Rods	62%	Pass
Dwyidag	1.1.1	-

Calculations for Monopole Base Plate & Anchor Rod Analysis

Reaction Distribution			Geometric Properties					
Shear Vu	Moment Mu	Factor	Section	Gross Area	Net Area	Individual Inertia	Threads per Inch	Moment of Inertia
k	k-ft	- 1	-	in ²	in ²	in ⁴	#	in ⁴
29.7	3747.1	1.00	Pole	73.4043	4.0780	0.1917	1000	35988.93
29.7	3747.1	1.00	Bolt	1.2272	0 9691	0.0747	7	25209.96
			Bolt1		10.963/1 L			
	20050		Bolt2	N. 1888.77	S. House			
-112-20-20-20-20			Dywidag		and the second second		1.1.1.1.1.1	-
10.0	1264.1	0.34	Stiffener	0.8050	0.7245	4.9067	and was no	18321.77
	Vu k 29.7 29.7	Vu Mu k k-ft 29.7 3747.1 29.7 3747.1	Vu Mu Factor k k-ft - 29.7 3747.1 1.00 29.7 3747.1 1.00	Shear Moment Mu Factor Vu Mu Factor k k-ft - 29.7 3747.1 1.00 29.7 3747.1 1.00 Bolt Bolt1 Bolt2 Dywidag	Shear Moment Mu Factor Section Gross Area k k-ft - in ² 29.7 3747.1 1.00 Bolt 1.2272 Bolt1 Bolt2 Dywidag Dywidag	Shear Moment Mu Factor Section Gross Area Net Area k k-ft - in ² in ² 29.7 3747.1 1.00 Bolt 1.2272 0.9691 Bolt1 Bolt2 Dywidag - Dywidag	Shear Moment Vu Factor Gross Area Net Area Individual Inertia k k-ft - in ² in ⁴ 29.7 3747.1 1.00 Pole 73.4043 4.0780 0.1917 29.7 3747.1 1.00 Bolt 1.2272 0.9691 0.0747 Bolt1 Bolt2 Dywidag - - - -	Shear Moment Mu Factor Gross Area Net Area Individual Individual Inertia Threads per Inch k k-ft - in ² in ² in ⁴ # 29.7 3747.1 1.00 Bolt 1.2272 0.9691 0.0747 7 Bolt1 Bolt2 Dywidag - - - - -

	_	
Base Plate Stiffener	rs	
Applied Axial Force, Pu	20.5	k
Applied Horizontal Force, Vu	0.11	k
14-47-1941-14		-
Vertical Weld		_
Vertto-Stiffener a=e,/I	0.111	-
Spacing Ratio, k	0.083	
Weld Coefficient, C	3.720	•
Compressive Capacity, dPn	100_4	k
Vertto-Plate a=e _s /i	0.333	•
Spacing Ratio, k	0.083	-
Weld Coefficient, C	2.940	-
Shear Capacity, $\phi V n$	79.4	k
$P_u/\phi_P P_n + V_u/\phi_V V_n$	0.205	OK
Horizontal Weld		11
Horzto-Stiffener a=e,/I	0.167	
Spacing Ratio, k	0.250	-
Weld Coefficient, C	2.240	-
Effective Fillet	0.188	in
Compressive Capacity, ϕ Pn	20.2	k
Horzto-Pole a=e,/I	0.500	20
Spacing Ratio, k	0.250	
Weld Coefficient, C	2.320	-
Shear Capacity, φVn	20.9	k
$P_u/\phi_P P_n + V_u/\phi_V V_n$	1.022	OK
Plate Tension		
Gross Cross Section	0.805	in²
Net Cross Section	0.724	in²
Tensile Capacity, ϕTn	113.4	k
Capacity, Tu/фTn	0.090	OK
Plate Compression		
Radius of Gyration	0.066	in³
kl/r	108.44	5 5
4.71 √(E/Fγ)	133.68	5
Buckling Stress(Fe)	24.3	$\tau_{\rm c}$
Crit. Buckling Stress(Fcr)	21.3	ksi
Compressive Capacity, ϕ Pn	67.2	k
Capacity, Pu/фPn	0.152	OK

220412 0.04	June		0.0000
			_
Anchor R			
Anchor Rod Quantit	.γ, N	45	•
Rod Diamet		1.25	in
Bolt Circle	:, BC	68	in
Yield Strengt	n, Fy	105	ksi
Tensile Strength	ı, Fu	125	ksi
Applied Axia	l, Pu	60.1	k
Applied Shear	r, Vu	0.0	k
Compressive Capacity,	фРп	96.9	k
Tensile Capacity, d		0.620	OK
Interaction Capa	acity	0.385	OK
Additional Bolt	Group	1	
Bolt Quantit	tγ, N	0	
Bolt Diamet	ar, d	0	In
Bolt Circle	e, BC	0	in
Yield Strengt	h, Fy	0	ksi
Tensile Strengt	n, Fu	0	ksi
Applied Axia	l, Pu	0.0	k
Applied Shea	r, Vu	0.0	k
Compressive Capacity,	фРп	0.0	k
Compressive Capacity,	фРn		
Interaction Cap	acity		
	_	_	
Additional Bol	Group	2	
Bolt Quanti	ty, N	0	
Bolt Diamet	er, d	0	in
Bolt Circle	e, BC	0	in
Yield Strengt	h, Fy	0	ksi
Tensile Strengt	h, Fu	0	ksi
Applied Axia	il, Pu	0.0	k
Applied Shea	r, Vu	0.0	k
Compressive Capacity,	фРn	0.0	k
Compressive Capacity,	фРп		
Interaction Cap	acity		
and the second sec			
Dywidag Reinf		nt	
Dywidag Quanti	tγ, N	0	
Dywidag Diamet	er, d	2.5	in
Bolt Circle	a, BC	69.88	in
Yield Strengt	h, Fy	80	ksł
Tensile Strengt	h, Fu	100	ksi
Applied Axia	il, Pu	0.0	k
Composition Composition	4.0-	0.0	1.

Compressive Capacity, ϕPn

Capacity, Pu/фPn

0.0

k

Sughe	nound	
Dlameter, D	73	in
Thickness, t	1.5	in
Yield Strength, Fy	50	ksi
Tensile Strength, Fu	65	ksi
Base Plate Chord	36.878	in
Detail Type	d	-
Detail Factor	0.50	-
Clear Distance	3	-
External Base Pl	ate	1
Chord Length AA	28.804	In
Additional AA	15.382	in
Section Modulus, Z	24.855	in ³
Applied Moment, Mu	508.4	k-ft
Bending Capacity, ϕ Mn	1118.5	k-ft
Capacity, Mu/фMn	0.455	ОК
Chord Length AB	26.558	In
Additional AB	11.573	In
Section Modulus, Z	21.449	in ³
Applied Moment, Mu	364.6	k-ft
Bending Capacity, ϕ Mn	965.2	k-ft
Capacity, Mu/фMn	0.378	ОК
Bend Line Length	25.220	in
Additional Bend Line	32.149	in
Section Modulus, Z	32.270	-In ³
Applied Moment, Mu	508.4	k-ft
	1452.2	k-ft
Bending Capacity, ¢ Min		

Base Plate

Shape Round

+

Internal Base Pla	ste	
Arc Length	0.000	in
Section Modulus, 2	0.000	in ^a
Moment Arm	0.000	in
Applied Moment, Mu	0.0	k-ft
Bending Capacity, ϕ Mn	0.0	k-ft
Capacity, Mu/фMn		

Prepared For

Mount Analysis

Michael F. Plahovinsak, P.E. Sole Proprietor - Independent Engineer 18301 SR 161, Plain City, Ohio 614-398-6250 / mike@mfpeng.com MFP Project #23218-256 NEWINGTON CT ATC 370627 10/11/18 PASSING W/REINFORCEMENT (71.6%)

MOUNT ANALYSIS REPORT

American Tower Corporation 10 Presidential Way

Woburn, MA 01801

Attention: Mr. Blake Paynter

Reference:	Analysis of the existing Platform mount at 110-ft elevation				
	Trylon Job No.:	141800			
	ATC Site Name:	Newington CT			
	ATC Asset Number:	370627			
	Verizon Site Name:	West Farms CT			
	Verizon Site Number:	325089			
	Site Address:	605 Willard Ave, Newington, CT, 06111			
	Tower Profile:	Monopole Tower			

Dear Sir:

We have been provided with RF information, photos and sketches of the structure for above-referenced site. Verizon is proposing to change the equipment configuration on the existing mounting hardware.

A revised antenna, coax and miscellaneous equipment schematic have been provided to us. We have been asked to evaluate this information to determine whether or not the existing mounts are adequate to safely support the proposed loading change. The structural evaluation refers to the Platform mount sat **110-ft** elevation of the existing Monopole located at 605 Willard Ave, Newington, CT, 06111.

The proposed changes were provided to us in aRFDS document dated 08/22/2018. The antennas are located at 110-ft elevation on all sectors.

According to the RFDS document, the finalconfiguration of antennas for each sector consists of:

- (2) Andrew antenna_SBNHH-1D65B_(72.72" x 23.7" x 7.1" 126.82lbs) mounted side by side on commscope mounting bracket **BSAMNT-SBS-1-2** in position #1;
- (1) Antel antenna_BXA-80063_(94.7" x 11.2" x 4.5" 24lbs) in position #3;
- (1) Antel antenna _BXA-80063_((94.7" x 11.2" x 4.5" 24lbs) in position #4;

According to the RFDS document, the finalconfiguration of RRHs for each sector consists of:

- (1) **RRUS B5/B13 RRH-BR04C** in position #2;
- (1) **RRUS B2/B66A RRH-BR049** in position #3;

TMA and Power Squid considered for this analysis:

• (1) RAYCAP are installed in Tower, not consider for this analysis.

The member dimensions that we considered in our evaluation are as per sketches and pictures provided by the site visit crew. The structural members that we considered in our analysis arepresented in the attached model sketches.

Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM 500 (GR B-46)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325

CONCLUSIONS AND RECOMMENDATIONS

Based on information provided, our calculations conclude that the existing Verizon Platform mount located at 110-ft elevation of the Monopole at the specified address, are ADEQUATE WITH REINFORCEMENT to safely support the proposed equipment, subject to the attached Standard Conditions on page 3.

Reinforcement: We recommend to install New PRK-1245 Kit at a distance of 35" below the existing Stand off arm.

Should you have any questions, comments or require additional information, please do not hesitate to call.

Sincerely,

Analysis performed by:

Bathrudeen Ishak

Reviewed by

Michael Plahovinsak, P.E.

Standard Conditions for Providing Structural Consulting Services on Existing Structures

- 1. Mounting hardware is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorizes by client). If the existing conditions are not as we have represented in this analysis, we should be contacted to evaluate the significance of the deviation and revise the assessment accordingly.
- 2. The structural analysis has been performed assuming that hardware is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
- 3. The structural analysis provided is an assessment of the primary load carrying capacity of the hardware. We provide a limited scope of service. In some cases we cannot verify the capacity of every weld, plate, connection detail, etc. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of some of the required details may not be possible. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
- 4. We cannot be held responsible for mounting hardware that is installed improperly or hardware that is loose or has a tendency of working loose over the lifetime of the mounting hardware. Our analysis has been performed assuming fully tightened connections, and proper installation and symmetry of the mounting hardware per manufacturer's instructions.
- 5. The structural analysis has been performed using information currently provided by the client and potentially field verified. We have been provided with a mounting arrangement for all telecommunications equipment, including antennas RRH's, TMA's, RRU's, diplexers, surge protection devices, etc. Our analysis has been based upon a particular mounting arrangement. We are not responsible for deviations in the mounting arrangement that may occur over time. If deviations in equipment type or mounting arrangements are proposed, then we should be contacted to revise the recommendations of this structural report.
- 6. We cannot be held responsible for temporary and unbalanced loads on mounting hardware. Our analysis is based on a particular mounting arrangement or as-built field condition. We are not responsible for the methods and means of how the mounting arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie off of tower riggers, personnel, and their equipment, etc.
- 7. Steel grade and strength is unknown and cannot be field tested. We cannot be held responsible for equipment manufactured from inferior steel or bolts. Our analysis assumes that standard structural grade steel has been used by the equipment manufacturer for all assembled parts of the mounting apparatus. Acceptable steels and connection components are specified by the American Institute of Steel Construction. It is assumed all welded connections are performed in the shop under the latest American Welding Society Code. No field welds are permitted or assumed for the existing pre-manufactured equipment.

ATC Hazards by Location

Search Information

Coordinates:	41.698372, -72.737147
Timestamp:	2018-08-22T08:50:24.205Z
Hazard Type:	Wind

Map Results

Text Results

ASCE 7-16					
MRI 10-Year					75 mph
MRI 25-Year					84 mph
MRI 50-Year					90 mph
MRI 100-Year					97 mph
Risk Category I					108 mph
Risk Category II					118 mph
Risk Category III					127 mph
Risk Category IV					🔔 🔺 131 mph
You are in a wind-borne del	bris region if you are als	so within 1 mile of the	coastal mean high w	ater line.	

ASCE 7-10

Risk Category III-IV				A 132 mph
Risk Category II				123 mph
Risk Category I		M		112 mph
MRI 100-Year				100 mph
MRI 50-Year				93 mph
MRI 25-Year				87 mph
MRI 10-Year				77 mph

If the structure under consideration is a healthcare facility, you are in a wind-borne debris region. If other occupancy, use the Risk Category II basic wind speed contours to determine if you are in a wind-borne debris region.

ASCE 7-05

.

General Info

370627
Newington CT
Connecticut
Hartford
141800
BSI

Analysis Criteria

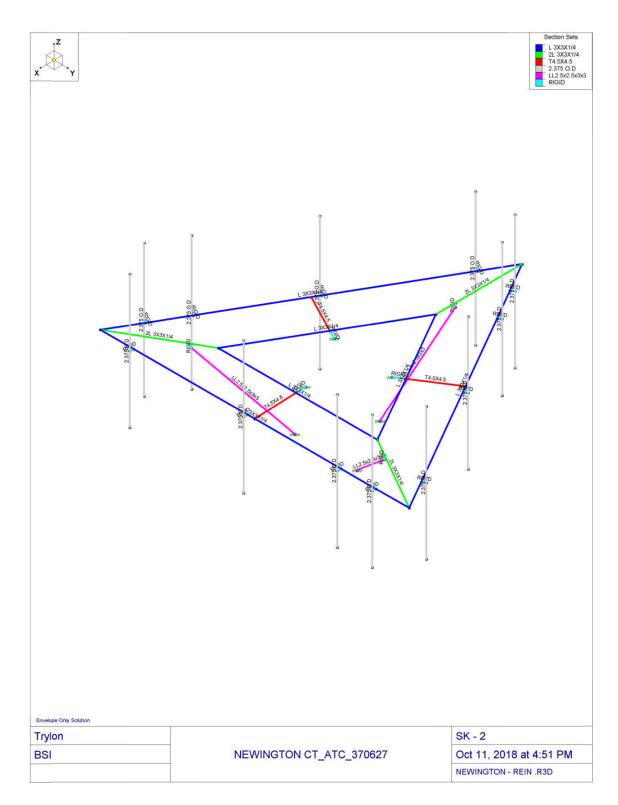
Standard

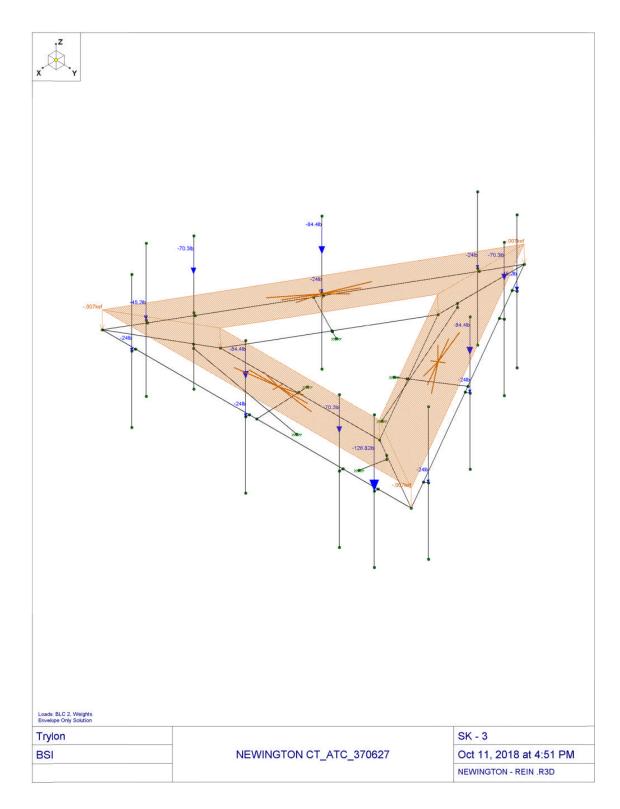
2015 IBC / ASCE 7-10 / TIA-222-G

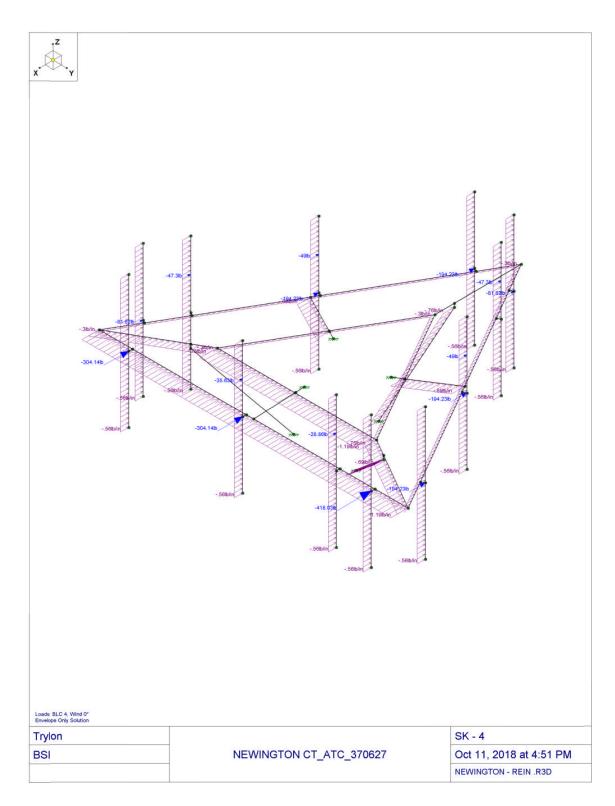
The mount structural analysis was performed in accordance with the requirements of TIA-222-G Structural Standards for Steel Antenna Supporting structure using a 3-second gust wind speed of 95.3 mph with no ice, 50.0 mph with 1.00 inch escalated ice thickness, Exposure Category C and Topographic Category 1 with a crest height of 0 ft.

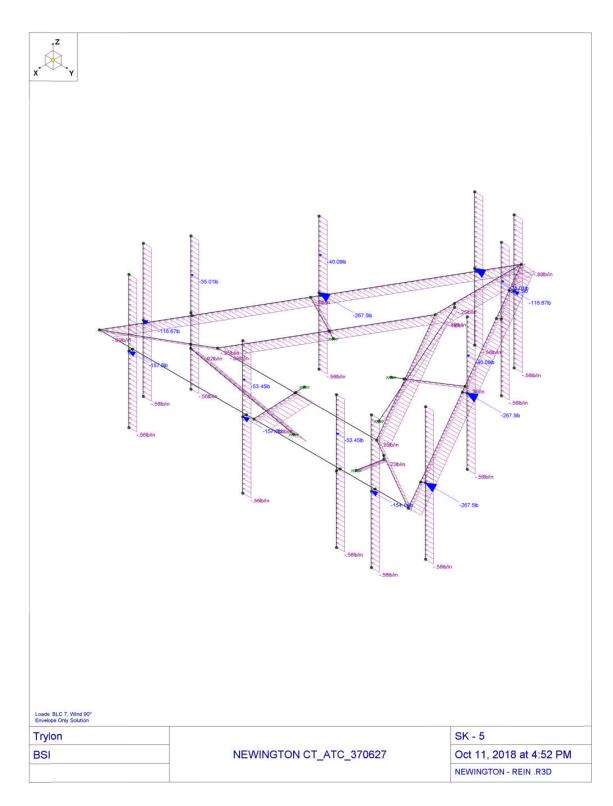
In addition, the platform has been analysed for various live loading conditions consisting of a 250-pound man live load applied individually at the midpoint and cantilevered ends of horizontal members as well as a 500-pound man live load applied individually at mount pipe locations using a 3-second gust wind speed of 30 mph.

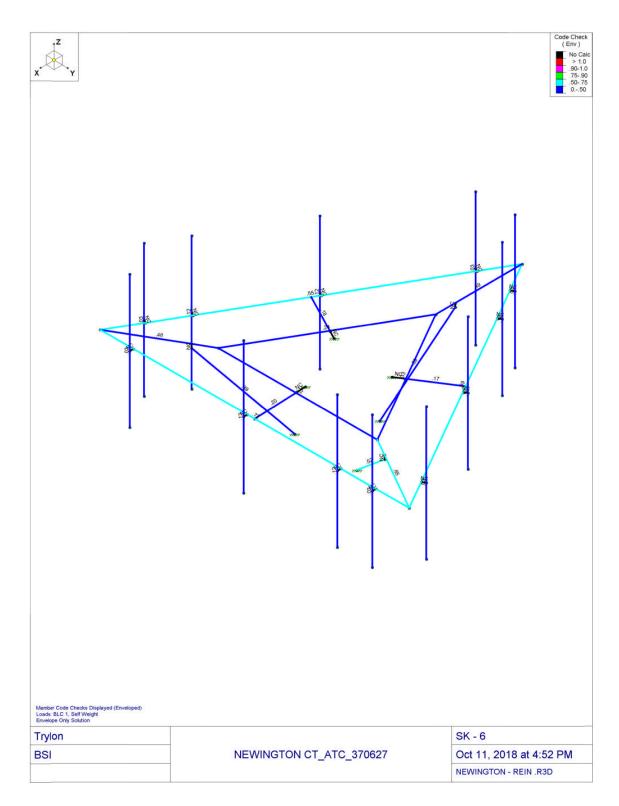
Design Loads

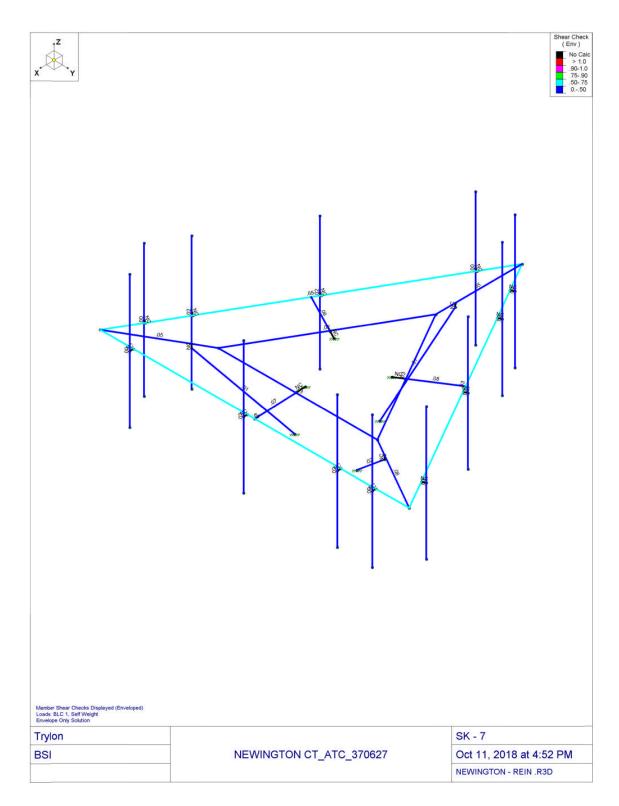

Appurtenances Dimensions								Wind Forces without ice Wind Forces with ice									
							ICE										
			Height	Width	Thk.	Weight	Weight	0°	30°	60°	90°	0°	30°	60°	90°		
No.	Manufacturer	Model	[in]	[in]	[in]	[lbs]	[lbs]	[lbs]	[lbs]	[lbs]	[lbs]	[lbs]	[lbs]	[lbs]	[lbs]		
3	Andrew	2XSBNHH-1D65B+Mnt Brckt	72.7	23.7	7.1	126.8	450.9	418.0	352.1	220.1	154.1	143.8	124.8	86.7	67.7		
6	Antel	BXA80063	94.7	11.2	4.5	24.0	311.6	304.1	267.5	194.2	157.6	116.4	106.0	85.2	74.8		
3	Samsung	B5/B13 RRH-BR04C	15.0	15.0	8.1	70.3	66.5	28.9	35.0	47.3	53.4	16.1	18.3	22.7	24.9		
3	Samsung	B2/B66A RRH-BR049	15.0	15.0	10.0	84.4	69.9	35.6	40.1	49.0	53.4	18.5	20.1	23.3	24.9		

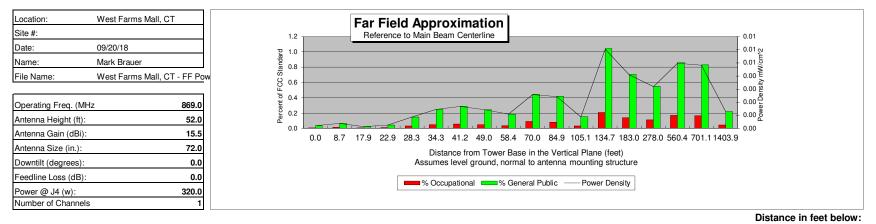












Estimated Radiated Emission

Single Emitter Far Field Model

Dipole / Wire/ Yagi Antenna Types

Calc Angle	90.0	80.0	70.0	65.0	60.0	55.0	50.0	45.0	40.0	35.0	30.0	25.0	20.0	15.0	10.0	5.0	4.0	2.0	
Solve for r, dx to antenna	49.0	49.8	52.2	54.1	56.6	59.8	64.0	69.3	76.3	85.5	98.0	116.0	143.3	189.4	282.3	562.5	702.8	1404.7	
Distance from Antenna Structure Base in Horizontal plane	0.0	8.7	17.9	22.9	28.3	34.3	41.2	49.0	58.4	70.0	84.9	105.1	134.7	183.0	278.0	560.4	701.1	1403.9	
Angle from Main Beam (reference to horizontal plane)	90	80	70	65	60	55	50	45	40	35	30	25	20	15	10	5	4	2	
dB down from centerline (referenced to centerline)	36.76	34.35	38.52	35.34	29.54	26.8	25.59	25.63	25.99	21.21	20.29	23.24	13.03	12.3	9.92	2	0.2	0	
Reflection Coefficient (1 to 4, 2.56 typical)	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	
Power Density (mW/cm^2)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	
Percent of Occupational Standard	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.1	0.1	0.0	0.2	0.1	0.1	0.2	0.2	0.0	
Percent of General Population Standard	0.0	0.1	0.0	0.0	0.1	0.3	0.3	0.2	0.2	0.4	0.4	0.2	1.0	0.7	0.5	0.9	0.8	0.2	

Antenna Type SBNHH-1D65B Max% 1.04%

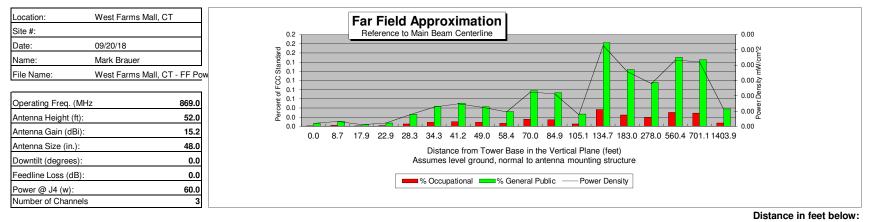
Instructions:

1) Fill in Site Location, Site number, Date, Name of Person Responsible for Date, and enter File Name to ba saved as.

2) References to J4 refer to a point where the transmission line exits the equipment shelter and proceeds to the antenna(s). There is typically a connector located here where power measurements are made.

Enter Antenna Height (in feet to bottom of antenna), Antenna Gain (expressed as dBi, add 2.17 to dBd to obtain dBi), Antenna Size (vertical size in inches), Downtilt (in Degrees, enter zero if none), Feedline loss from J4 to Antenna, and J4 Power (in
 From manufacturer's plots, or data sheet, input Angle from mainbeam and dB below mainbeam centerline.

5) Enter Reflection coefficient (2.56 would be typical, 1 for free space)


6) Spreadsheet calculates actual power density, then relates as Occupational or General Population percentage of FCC Standard.

Estimated Radiated Emission

Single Emitter Far Field Model

Dipole / Wire/ Yagi Antenna Types

Calc Angle	90.0	80.0	70.0	65.0	60.0	55.0	50.0	45.0	40.0	35.0	30.0	25.0	20.0	15.0	10.0	5.0	4.0	2.0	
Solve for r, dx to antenna	49.0	49.8	52.2	54.1	56.6	59.8	64.0	69.3	76.3	85.5	98.0	116.0	143.3	189.4	282.3	562.5	702.8	1404.7	
Distance from Antenna Structure Base in Horizontal plane	0.0	8.7	17.9	22.9	28.3	34.3	41.2	49.0	58.4	70.0	84.9	105.1	134.7	183.0	278.0	560.4	701.1	1403.9	
Angle from Main Beam (reference to horizontal plane)	90	80	70	65	60	55	50	45	40	35	30	25	20	15	10	5	4	2	
dB down from centerline (referenced to centerline)	36.76	34.35	38.52	35.34	29.54	26.8	25.59	25.63	25.99	21.21	20.29	23.24	13.03	12.3	9.92	2	0.2	0	
Reflection Coefficient (1 to 4, 2.56 typical)	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	
Power Density (mW/cm^2)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Percent of Occupational Standard	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Percent of General Population Standard	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.2	0.1	0.1	0.2	0.1	0.0	

Antenna Type LPA-80063-4CF Max% 0.18%

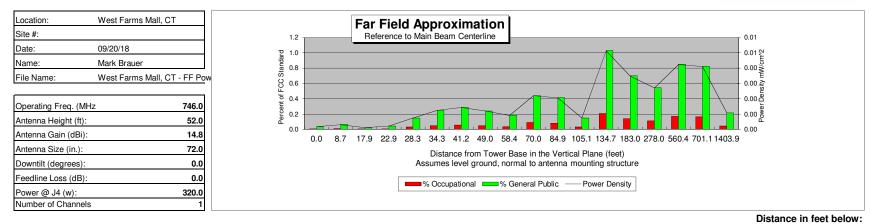
Instructions:

1) Fill in Site Location, Site number, Date, Name of Person Responsible for Date, and enter File Name to ba saved as.

2) References to J4 refer to a point where the transmission line exits the equipment shelter and proceeds to the antenna(s). There is typically a connector located here where power measurements are made.

Benter Antenna Height (in feet to bottom of antenna), Antenna Gain (expressed as dBi, add 2.17 to dBd to obtain dBi), Antenna Size (vertical size in inches), Downtilt (in Degrees, enter zero if none), Feedline loss from J4 to Antenna, and J4 Power (in
 From manufacturer's plots, or data sheet, input Angle from mainbeam and dB below mainbeam centerline.

5) Enter Reflection coefficient (2.56 would be typical, 1 for free space)


6) Spreadsheet calculates actual power density, then relates as Occupational or General Population percentage of FCC Standard.

Estimated Radiated Emission

Single Emitter Far Field Model

Dipole / Wire/ Yagi Antenna Types

Calc Angle	90.0	80.0	70.0	65.0	60.0	55.0	50.0	45.0	40.0	35.0	30.0	25.0	20.0	15.0	10.0	5.0	4.0	2.0	
Solve for r, dx to antenna	49.0	49.8	52.2	54.1	56.6	59.8	64.0	69.3	76.3	85.5	98.0	116.0	143.3	189.4	282.3	562.5	702.8	1404.7	
Distance from Antenna Structure Base in Horizontal plane	0.0	8.7	17.9	22.9	28.3	34.3	41.2	49.0	58.4	70.0	84.9	105.1	134.7	183.0	278.0	560.4	701.1	1403.9	
Angle from Main Beam (reference to horizontal plane)	90	80	70	65	60	55	50	45	40	35	30	25	20	15	10	5	4	2	
dB down from centerline (referenced to centerline)	36.76	34.35	38.52	35.34	29.54	26.8	25.59	25.63	25.99	21.21	20.29	23.24	13.03	12.3	9.92	2	0.2	0	
Reflection Coefficient (1 to 4, 2.56 typical)	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	
Power Density (mW/cm^2)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	
Percent of Occupational Standard	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.2	0.1	0.1	0.2	0.2	0.0	
Percent of General Population Standard	0.0	0.1	0.0	0.0	0.1	0.2	0.3	0.2	0.2	0.4	0.4	0.2	1.0	0.7	0.5	0.9	0.8	0.2	

Antenna Type SBNHH-1D65B Max% 1.03%

Max%

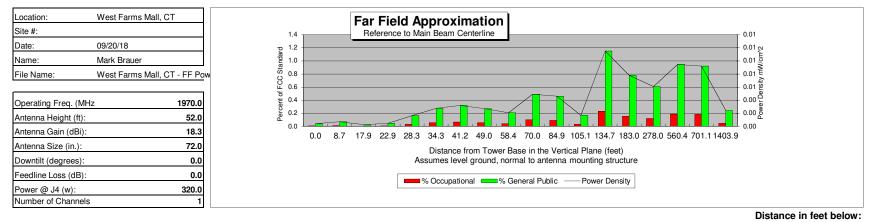
Instructions:

1) Fill in Site Location, Site number, Date, Name of Person Responsible for Date, and enter File Name to ba saved as.

2) References to J4 refer to a point where the transmission line exits the equipment shelter and proceeds to the antenna(s). There is typically a connector located here where power measurements are made.

3) Enter Antenna Height (in feet to bottom of antenna), Antenna Gain (expressed as dBi, add 2.17 to dBd to obtain dBi), Antenna Size (vertical size in inches), Downtilt (in Degrees, enter zero if none), Feedline loss from J4 to Antenna, and J4 Power (in watts).
 4) From manufacturer's plots, or data sheet, input Angle from mainbeam and dB below mainbeam centerline.

5) Enter Reflection coefficient (2.56 would be typical, 1 for free space)


6) Spreadsheet calculates actual power density, then relates as Occupational or General Population percentage of FCC Standard.

Estimated Radiated Emission

Single Emitter Far Field Model

Dipole / Wire/ Yagi Antenna Types

Calc Angle	90.0	80.0	70.0	65.0	60.0	55.0	50.0	45.0	40.0	35.0	30.0	25.0	20.0	15.0	10.0	5.0	4.0	2.0	
Solve for r, dx to antenna	49.0	49.8	52.2	54.1	56.6	59.8	64.0	69.3	76.3	85.5	98.0	116.0	143.3	189.4	282.3	562.5	702.8	1404.7	
Distance from Antenna Structure Base in Horizontal plane	0.0	8.7	17.9	22.9	28.3	34.3	41.2	49.0	58.4	70.0	84.9	105.1	134.7	183.0	278.0	560.4	701.1	1403.9	
Angle from Main Beam (reference to horizontal plane)	90	80	70	65	60	55	50	45	40	35	30	25	20	15	10	5	4	2	
dB down from centerline (referenced to centerline)	36.76	34.35	38.52	35.34	29.54	26.8	25.59	25.63	25.99	21.21	20.29	23.24	13.03	12.3	9.92	2	0.2	0	
Reflection Coefficient (1 to 4, 2.56 typical)	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	
Power Density (mW/cm^2)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00	
Percent of Occupational Standard	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.2	0.2	0.1	0.2	0.2	0.0	
Percent of General Population Standard	0.0	0.1	0.0	0.0	0.2	0.3	0.3	0.3	0.2	0.5	0.5	0.2	1.1	0.8	0.6	0.9	0.9	0.2	

Antenna Type SBNHH-1D65B Max% 1.15%

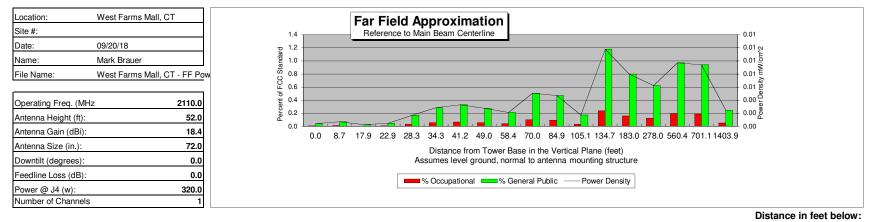
Instructions:

1) Fill in Site Location, Site number, Date, Name of Person Responsible for Date, and enter File Name to ba saved as.

2) References to J4 refer to a point where the transmission line exits the equipment shelter and proceeds to the antenna(s). There is typically a connector located here where power measurements are made.

Benter Antenna Height (in feet to bottom of antenna), Antenna Gain (expressed as dBi, add 2.17 to dBd to obtain dBi), Antenna Size (vertical size in inches), Downtilt (in Degrees, enter zero if none), Feedline loss from J4 to Antenna, and J4 Power (in
 From manufacturer's plots, or data sheet, input Angle from mainbeam and dB below mainbeam centerline.

5) Enter Reflection coefficient (2.56 would be typical, 1 for free space)


6) Spreadsheet calculates actual power density, then relates as Occupational or General Population percentage of FCC Standard.

Estimated Radiated Emission

Single Emitter Far Field Model

Dipole / Wire/ Yagi Antenna Types

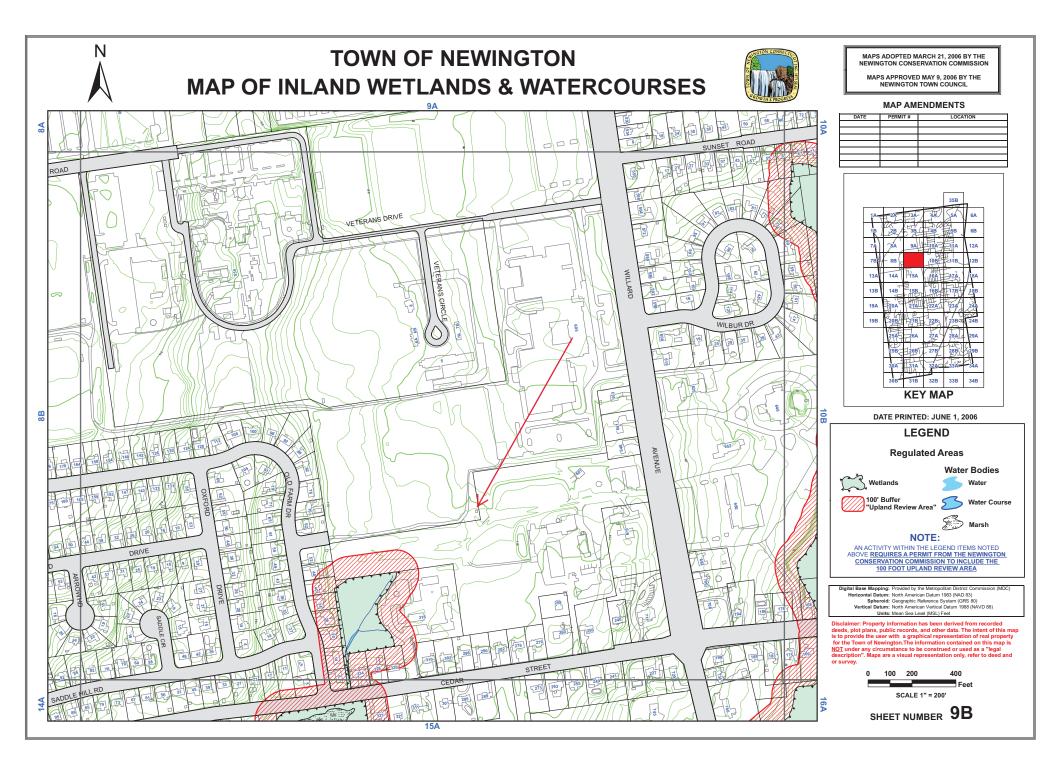
Calc Angle	90.0	80.0	70.0	65.0	60.0	55.0	50.0	45.0	40.0	35.0	30.0	25.0	20.0	15.0	10.0	5.0	4.0	2.0	
Solve for r, dx to antenna	49.0	49.8	52.2	54.1	56.6	59.8	64.0	69.3	76.3	85.5	98.0	116.0	143.3	189.4	282.3	562.5	702.8	1404.7	
Distance from Antenna Structure Base in Horizontal plane	0.0	8.7	17.9	22.9	28.3	34.3	41.2	49.0	58.4	70.0	84.9	105.1	134.7	183.0	278.0	560.4	701.1	1403.9	
Angle from Main Beam (reference to horizontal plane)	90	80	70	65	60	55	50	45	40	35	30	25	20	15	10	5	4	2	
dB down from centerline (referenced to centerline)	36.76	34.35	38.52	35.34	29.54	26.8	25.59	25.63	25.99	21.21	20.29	23.24	13.03	12.3	9.92	2	0.2	0	
Reflection Coefficient (1 to 4, 2.56 typical)	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	2.56	
Power Density (mW/cm^2)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00	
Percent of Occupational Standard	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.2	0.2	0.1	0.2	0.2	0.0	
Percent of General Population Standard	0.0	0.1	0.0	0.0	0.2	0.3	0.3	0.3	0.2	0.5	0.5	0.2	1.2	0.8	0.6	1.0	0.9	0.2	

Antenna Type SBNHH-1D65B Max% 1.18%

Instructions:

1) Fill in Site Location, Site number, Date, Name of Person Responsible for Date, and enter File Name to ba saved as.

2) References to J4 refer to a point where the transmission line exits the equipment shelter and proceeds to the antenna(s). There is typically a connector located here where power measurements are made.


Enter Antenna Height (in feet to bottom of antenna), Antenna Gain (expressed as dBi, add 2.17 to dBd to obtain dBi), Antenna Size (vertical size in inches), Downtilt (in Degrees, enter zero if none), Feedline loss from J4 to Antenna, and J4 Power (in
 From manufacturer's plots, or data sheet, input Angle from mainbeam and dB below mainbeam centerline.

5) Enter Reflection coefficient (2.56 would be typical, 1 for free space)

6) Spreadsheet calculates actual power density, then relates as Occupational or General Population percentage of FCC Standard.

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2015.

Information on the Property Records for the Municipality of Newington was last updated on 11/2/2018.

Parcel Information

Location:	605 WILLARD AVE	Property Use:	School	Primary Use:	Elementary School
Unique ID:	N0046500	Map Block Lot:	09/300/000	Acres:	80.59
490 Acres:	0.00	Zone:	R-12/	Volume / Page:	189/67
Developers Map / Lot:	N/W 1860 & 1969	Census:			

Value Information

	Appraised Value	Assessed Value
Land	8,147,790	5,703,450
Buildings	22,823,428	15,976,410
Detached Outbuildings	534,775	374,340
Total	31,505,993	22,054,200

Owner's Information

Owner's Data

NEWINGTON TOWN OF NEWINGTON HIGH SCHOOL 131 CEDAR ST

Building 1

GLA:

Year Built:

171,729

1971

Heating:	Forced Hot Air	Fuel:	Natural Gas	Cooling Percent:	100
Siding:	Brick	Roof Material:	Asphalt	Beds/Units:	0

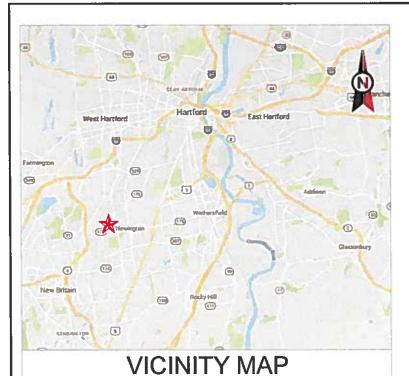
Special Features

Attached Components

Detached Outbuildings

Туре:	Year Built:	Length:	Width:	Area:
Tennis Courts	1971	0.00	0.00	10,000
4 Ft Chain Fence	1978	1.00	25,000.00	25,000
Paving	1978	1.00	175,000.00	175,000
Gunite Pool	1971	1.00	3,344.00	3,344
Frame Shed	1978	1.00	288.00	288

Owner History - Sales

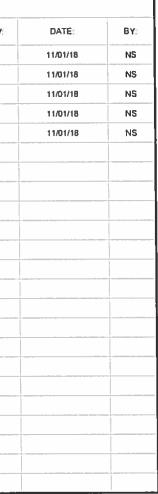

Owner Name	Volume	Page	Sale Date	Deed Type	Valid Sale	Sale Price
NEWINGTON TOWN OF	189	67	09/20/1968		No	\$0
NEWINGTON TOWN OF	182	151	10/03/1967		No	\$0
NEWINGTON TOWN OF	180	281	07/27/1967		No	\$0
U S GOVT	27	488	01/11/1930		No	\$0

Building Permits

Permit Number	Permit Type	Date Opened	Date Closed	Permit Status	Reason
M-18- 209	Mechanical	08/08/2018		Closed	Install HVAC per plans and specifications. Includes ductless heat- pump system with air to air heat
M-18- 192	Mechanical	07/30/2018		Closed	INSTALL NEW GAS LINE & REPLACE BURNER
P-18- 149	Fire Sprinkler	07/27/2018		Closed	INSTALL SPRINKLER HEADS IN NEW CEILINGS OF ART ROOMS 415, 415A, 416, 417, 418.
P-18- 139	Plumbing	07/12/2018		Closed	INSTALL MEN & WOMEN'S HANDICAP BATHROOM, 3 W/C, 2 LAVS OFF KITCHEN
B-18- 387	Comm Renovations	07/11/2018		Closed	INSTALL NEW SUSPENDED CEILING, REWORK SPRINKLERS.
B-18- 290	Comm Renovations	06/01/2018		Closed	DEMO OF EXISTING EMPLOYEES TOILETS TO MAKE ADA ACCESSABLE
B-18- 265	Remodel	05/24/2018		Closed	AT&T, an existing tenant on the existing wireless communication tower proposes to upgrade its equip
E-18- 167	Electrical	05/22/2018		Closed	Install 120 Volt power to 10 auto door openers
E-18- 162	Other	05/17/2018		Closed	Replace existing generator and transfer switch
B-17- 686	Comm Renovations	12/05/2017		Closed	ADDITION OF THREE (3) ANTENNAS AND THREE (3) RRHS ONTO EXISTING COMMUNICATION TOWER AT THE CURRENT
E-17- 451	Other	11/28/2017		Closed	Newington High School, Running fiber cable from the MDF to the Mech Room, through drop ceiling in r
E-17- 229	Electrical	07/18/2017		Closed	RENOVATION OF ART CLASS ROOMS. INCLUDES DEMO AND ALL NEW WIRING, BOTH HIGH & LOW VOLTAGE. PER PLA
P-17- 126	Plumbing	07/10/2017		Closed	INSTALL PLUMBING FOR SINKS & EMERGENCY EYE WASH & SHOWERS ART ROOMS 414, 415, 416, 417, 418. MOVE
E-17- 161	Electrical	05/25/2017		Closed	RELOCATION OF LOW-VOLTAGE FIBER CABLING IN ROOMS 418, 413, AND THE OFFICE
B-17- 121	Comm Renovations	03/29/2017		Closed	RENOVATION OF ART ROOMS AT HIGH SCHOOL NORTH END
E-17-28	Electrical	01/24/2017		Closed	Install Burglar, access control and CCTV system.
E-16- 549	Electrical	12/23/2016		Closed	COMPLETE CONTROL WIRING FOR (5) RTU'S, (1) EXHAUST FAN, (2) CABINET UNIT HEATERS, (2) RADIATORS AND

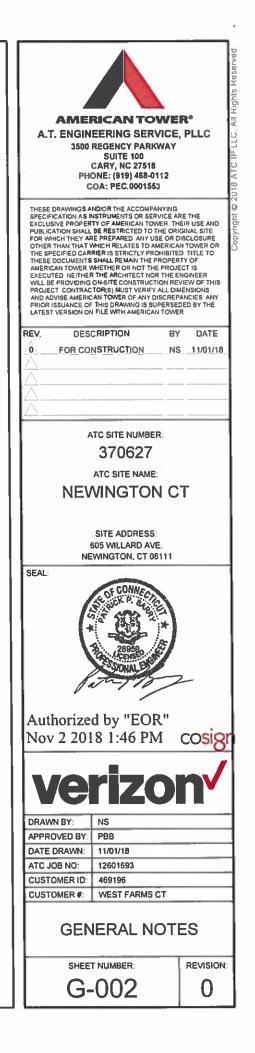
Permit Number	Permit Type	Date Opened	Date Closed	Permit Status	Reason
E-16- 539	Electrical	12/15/2016		Closed	ELECTRICAL ALTERATIONS AS PER PLANS & SPECS ON FILE. POWER LIGHTING FIRE ALARM
P-16- 259	Fire Sprinkler	12/13/2016		Closed	RELOCATE 4" MAIN FOR DUCTWORK BEING INSTALLED & RELOCATED. MISC. BRANCH PIPING AND DROP NEW HEADS
P-16- 242	Plumbing	11/23/2016		Closed	Plumbing Fixtures, Piping & Gas line
M-16- 305	Air Conditioning	11/23/2016		Closed	New Sheet Metal, New Roof Top Units, New Cabinet Unit Heaters, New Gas Lines, New Radiators
P-16- 195	Plumbing	09/21/2016		Closed	ROUGH UNDERGROUND PLUMBING FOR PHASE 1 CULINARY ARTS AREA. 2 H/C BATHROOMS, 2 F.O., 2 HANDSINKS, G
B-16- 589	Comm Renovations	08/04/2016		Closed	10,00 SQ FT CONVERT INDUSTRIAL TECH PROGRAM TO A STEM PROGRAM.
TB-16- 475	Commercial Demolition	05/30/2016		Closed	DEMO OF EXISTING SPACE.
M-16- 75	Air Conditioning	04/20/2016		Closed	AC
B-15- 606	Comm Renovations	02/23/2016		Closed	(3) PANEL ANTENNAS AND ADD A NEW COMMSCOPE
TB-14- 295	Addition	05/20/2014		Closed	ADDITION TO BAND ROOM
TB-13- 197	Remodel	04/26/2013		Closed	AAUDITORIUM, BAND AND CHORUS ROOMS
B-11- 429	Commercial New	08/16/2011		Closed	New construct
B-11- 352	Remodel	08/03/2011		Closed	remodel
TB-11- 352	Remodel	06/28/2011		Closed	Remodel
	Addition	06/28/2010		Closed	Gym flr replacement / misc

Information Published With Permission From The Assessor

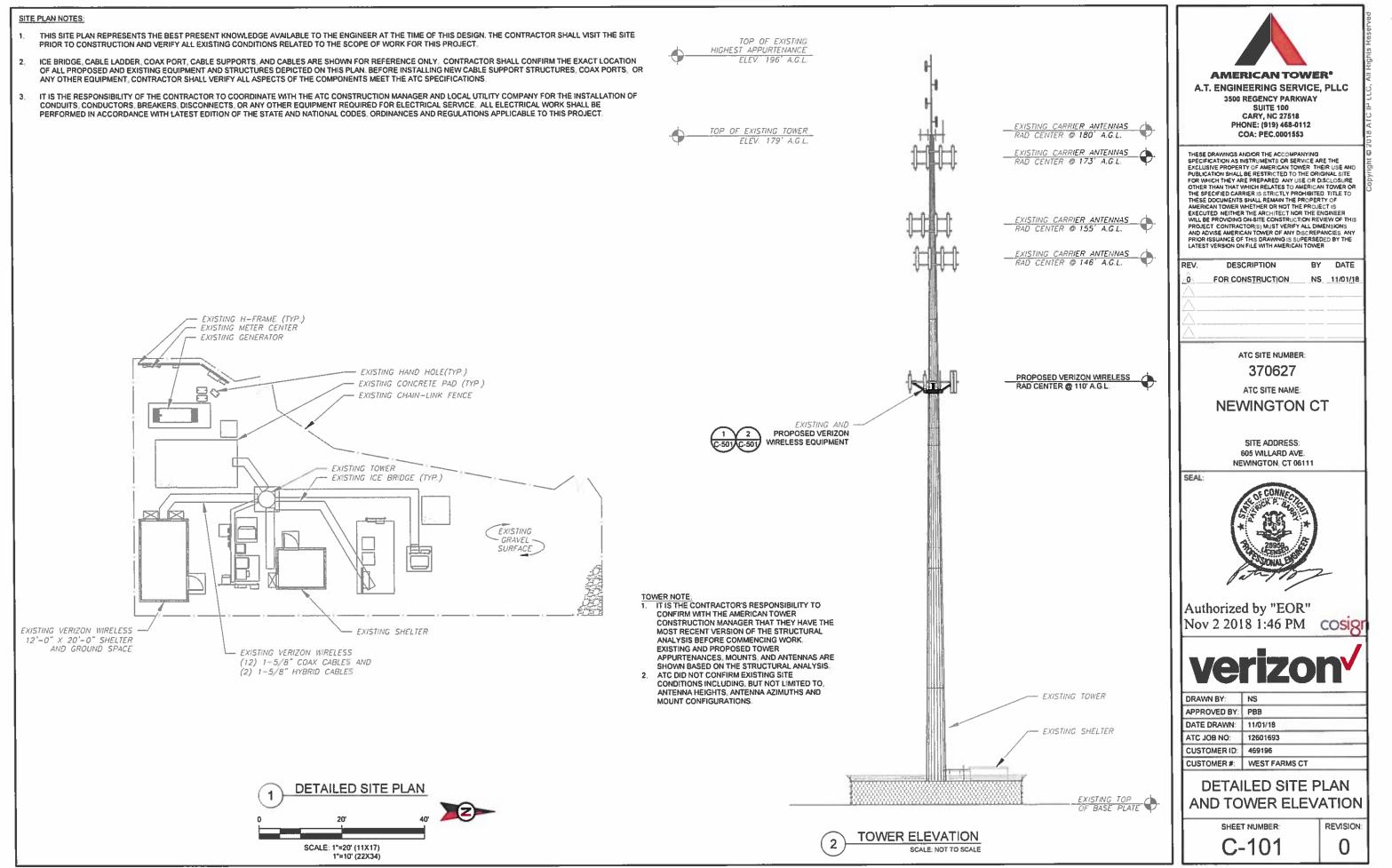

AMERICAN TOWER®


ATC SITE NAME: NEWINGTON CT ATC SITE NUMBER: 370627 VERIZON SITE NAME: 469196 VERIZON SITE NUMBER:WEST FARMS CT SITE ADDRESS: 605 WILLARD AVE. NEWINGTON, CT 06111

COMPLIANCE CODE	PROJECT SUMMARY	PROJECT DESCRIPTION		SHEET INDEX	
ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED	SITE ADDRESS	THE PROPOSED PROJECT INCLUDES MODIFYING GROUND BASED	SHEET NO:	DESCRIPTION	REV
OLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNMENT AUTHORITIES. NOTHING IN THESE PLANS IS	605 WILLARD AVE		G-001	COVER SHEET	0
TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO	NEWINGTON, CT 06111 COUNTY: HARTFORD	REMOVE (9) RRUS AND (6) 1-5/8" COAX CABLES	G-002	GENERAL NOTES	0
	GEOGRAPHIC COORDINATES	INSTALL (6) RRUS AND (3) DUAL ANTENNA MOUNTS	C-101	DETAILED SITE PLAN AND TOWER ELEVATION	D
, INTERNATIONAL BUILDING CODE (IBC)	LATITUDE: 41.69837222	EXISTING (12) PANELS, (6) 1-5/8" COAX CABLES, (2) 1-5/8" HYBRID CABLES, AND (2) OVPS TO REMAIN	C-501	RF SCHEDULE AND ANTENNA INSTALLATION	0
2. NATIONAL ELECTRIC CODE (NEC)	LONGITUDE: -72.73714722		C-502	CONSTRUCTION DETAILS	0
3. LOCAL BUILDING CODE	GROUND ELEVATION: 103' AMSL	PROJECT NOTES	R-601	SUPPLEMENTAL	
4. CITY/COUNTY ORDINANCES		1. THE FACILITY IS UNMANNED.	R-602	SUPPLEMENTAL	
		2. A TECHNICIAN WILL VISIT THE SITE APPROXIMATELY ONCE A MONTH FOR ROUTINE INSPECTION AND MAINTENANCE.	R-603	SUPPLEMENTAL	
		3. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT LAND	R-604	SUPPLEMENTAL	
		DISTURBANCE OR EFFECT OF STORM WATER DRAINAGE.			
UTILITY COMPANIES	PROJECT TEAM	4. NO SANITARY SEWER, POTABLE WATER OR TRASH DISPOSAL IS REQUIRED.			
		5. HANDICAP ACCESS IS NOT REQUIRED.			
POWER COMPANY: CONNECTICUT LIGHT AND POWER PHONE: (888) 783-6617	10 PRESIDENTIAL WAY WOBURN, MA 01801				
TELEPHONE COMPANY: FRONTIER COMMUNICATIONS	ENGINEER:				
PHONE: (600) 921-8102	ATC TOWER SERVICES, LLC 3500 REGENCY PKWY STE 100	PROJECT LOCATION DIRECTIONS			
	CARY, NC 27518				
000	PROPERTY OWNER	FROM DOWNTOWN HARTFORD, CT:			
811	TOWN OF NEWINGTON 131 CEDAR ST	START OUT GOING SOUTH ON MAIN ST TOWARD WELLS ST. TURN LEFT ONTO SHELDON ST. TURN SLIGHT LEFT ONTO			
	NEWINGTON, CT, 06111	RAMP. MERGE ONTO WHITEHEAD HWY E. MERGE ONTO I-91 S TOWARD NEW HAVEN. MERGE ONTO US-5 S/CT-15 S VIA EXIT			
	APPLICANT:	28 TOWARD BERLIN TPKE/WETHERSFIELD/NEWINGTON. TAKE THE CT-175 E EXIT TOWARD WETHERSFIELD. TURN LEFT ONTO			
Know what's below. Call before you dig.	VERIZON WIRELESS 99 EAST RIVER DRIVE, 9TH FLOOR EAST HARTFORD, CT 06108	E CEDAR ST/CT-175, TURN RIGHT ONTO OLD FARM DR. 60 OLD FARM DR IS ON THE RIGHT.			

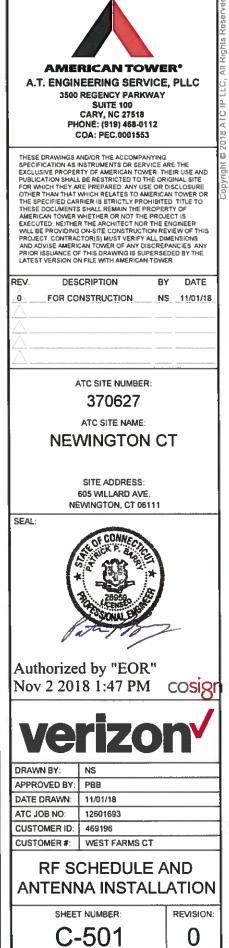

GENERAL CONSTRUCTION NOTES:

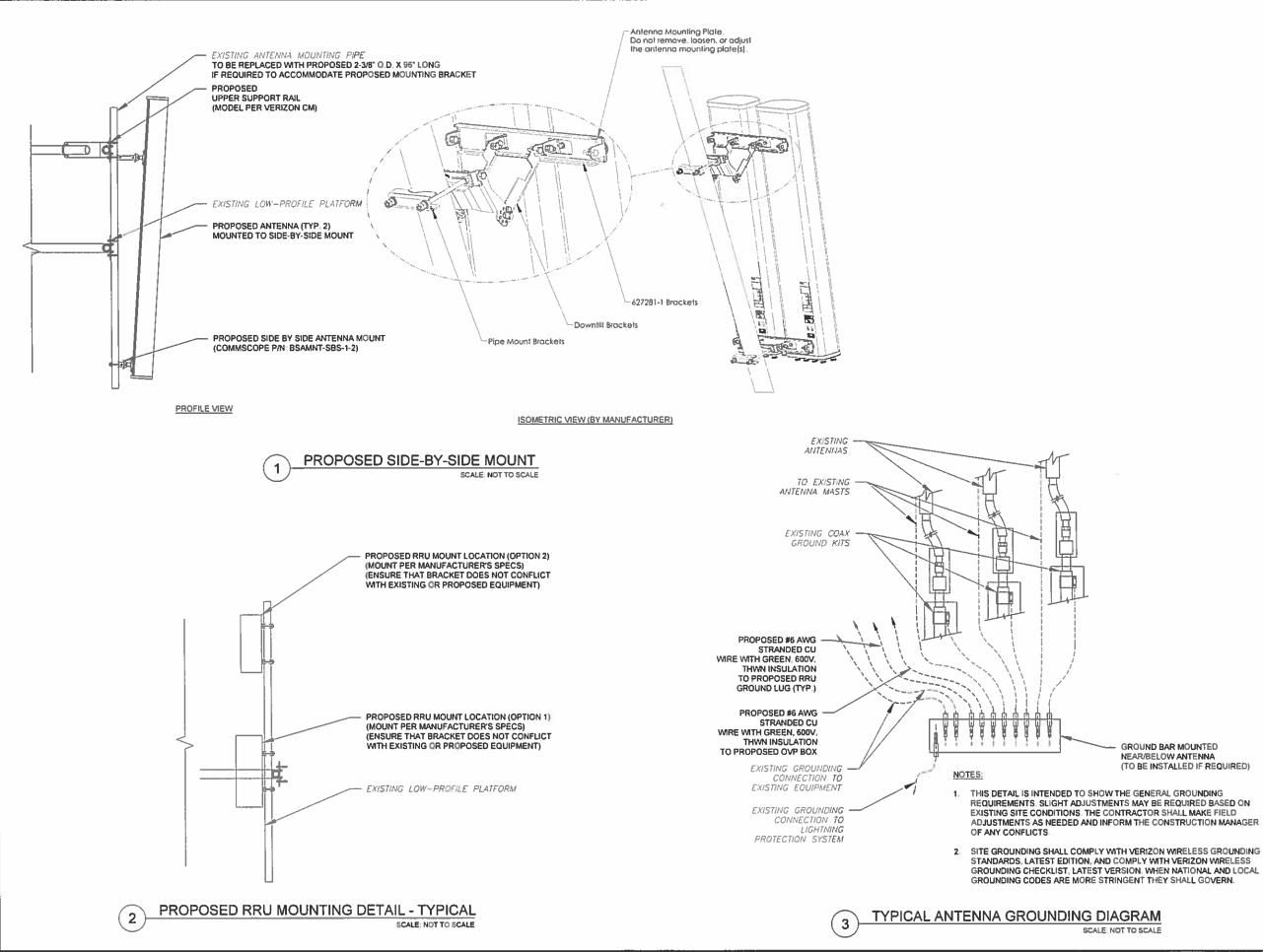
- 1. ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, INCLUDING ANSI/EIA/TIA-222, AND COMPLY WITH ATC MASTER SPECIFICATIONS.
- 2. CONTRACTOR SHALL CONTACT LOCAL 811 FOR IDENTIFICATION OF UNDERGROUND UTILITIES PRIOR TO START OF CONSTRUCTION.
- 3. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL REQUIRED INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- 5: DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS.
- 6. DETAILS SHOWN ARE TYPICAL; SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS OTHERWISE NOTED.
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- B. CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, ANCHOR BOLTS, ETC.
- CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS DRAINS, DRAIN PIPES, VENTS, ETC. BEFORE COMMENCING WORK.
- 10. INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE VERIZON WIRELESS REP PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE VERIZON WIRELESS REP PRIOR TO PROCEEDING.
- 11. EACH CONTRACTOR SHALL COOPERATE WITH THE VERIZON WIRELESS REP, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- 12. CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION OF THE VERIZON WRELESS CONSTRUCTION MANAGER.
- 13. ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING INSTALLATION USING A SILICONE SEALANT.
- 14. WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET, CONTRACTOR SHALL NOTIFY THE VERIZON WIRELESS REP IMMEDIATELY.
- 15. CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A COMPLETE AND CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT.
- 16. CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF EACH DAY.
- 17. CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH LANDLORD AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- 18. CONTRACTOR SHALL FURNISH VERIZON WIRELESS WITH A PDF MARKED UP AS-BUILT SET OF DRAWINGS UPON COMPLETION OF WORK.
- PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH VERIZON WIRELESS REP TO DETERMINE WHAT, IF ANY, ITEMS WILL BE PROVIDED. ALL ITEMS NOT PROVIDED SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL ALL ITEMS PROVIDED.
- PRIOR TO SUBMISSION OF BID, CONTRACTOR SHALL COORDINATE WITH VERIZON WIRELESS REP TO DETERMINE IF ANY PERMITS WILL BE OBTAINED BY CONTRACTOR. ALL REQUIRED PERMITS NOT OBTAINED BY VERIZON WIRELESS MUST BE OBTAINED, AND PAID FOR, BY THE CONTRACTOR.
- 21. CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH VERIZON WIRELESS SPECIFICATIONS AND REQUIREMENTS.
- 22. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO VERIZON WIRELESS FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
- 23. ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO VERIZON WIRELESS SPECIFICATIONS, AND AS SHOWN IN THESE PLANS.
- 24. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT,
- CONTRACTOR SHALL NOTIFY VERIZON WIRELESS REP A MINIMUM OF 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACKFILLING ANY UNDERGROUND UTILITIES, FOUNDATIONS OR SEALING ANY WALL, FLOOR OR ROOF PENETRATIONS FOR ENGINEERING REVIEW AND APPROVAL.
- 26. CONTRACTOR SHALL BE RESPONSIBLE FOR SITE SAFETY INCLUDING COMPLIANCE WITH ALL APPLICABLE OSHA STANDARDS AND RECOMMENDATIONS AND SHALL PROVIDE ALL NECESSARY SAFETY DEVICES INCLUDING PPE AND PPM AND CONSTRUCTION DEVICES SUCH AS WELDING AND FIRE PREVENTION. TEMPORARY SHORING, SCAFFOLDING, TRENCH BOXES/SLOPING, BARRIERS, ETC.


- 27. THE CONTRACTOR SHALL PROTECT AT HIS OWN EXPENSE, ALL EXISTING FACILITIES AND SUCH OF HIS NEW WORK LIABLE TO INJURY DURING THE CONSTRUCTION PERIOD, ANY DAMAGE CAUSED BY NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, OR BY THE ELEMENTS DUE TO NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, EITHER TO THE EXISTING WORK, OR TO HIS WORK OR THE WORK OF ANY OTHER CONTRACTOR, SHALL BE REPAIRED AT HIS EXPENSE TO THE OWNER'S SATISFACTION.
- 28. ALL WORK SHALL BE INSTALLED IN A FIRST CLASS, NEAT AND WORKMANLIKE MANNER BY MECHANICS SKILLED IN THE TRADE INVOLVED. THE QUALITY OF WORKMANSHIP SHALL BE SUBJECT TO THE APPROVAL OF THE VERIZON WIRELESS REP. ANY WORK FOUND BY THE VERIZON WIRELESS REP TO BE OF INFERIOR QUALITY AND/OR WORKMANSHIP SHALL BE REPLACED AND/OR REWORKED AT CONTRACTOR EXPENSE UNTIL APPROVAL IS OBTAINED.
- 29. IN ORDER TO ESTABLISH STANDARDS OF QUALITY AND PERFORMANCE, ALL TYPES OF MATERIALS LISTED HEREINAFTER BY MANUFACTURER'S NAMES AND/OR MANUFACTURER'S CATALOG NUMBER SHALL BE PROVIDED BY THESE MANUFACTURERS AS SPECIFIED.

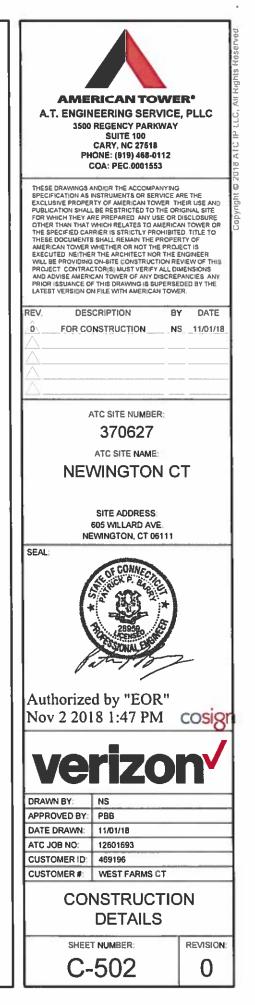
STRUCTURAL STEEL NOTES:

- STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF THE AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS."
- 2. STRUCTURAL STEEL ROLLED SHAPES, PLATES AND BARS SHALL CONFORM TO THE FOLLOWING ASTM DESIGNATIONS:
 - A. ASTM A-572, GRADE 50 ALL W SHAPES, UNLESS NOTED OR A992 OTHERWISE
 - B. ASTM A-36 ALL OTHER ROLLED SHAPES, PLATES AND BARS UNLESS NOTED OTHERWISE.
 - C. ASTM A-500, GRADE B HSS SECTION (SQUARE, RECTANGULAR, AND ROUND)
 - D. ASTM A-325, TYPE SC OR N ALL BOLTS FOR CONNECTING STRUCTURAL MEMBERS
 - E. ASTM F-1554 07 ALL ANCHOR BOLTS, UNLESS NOTED OTHERWISE
- ALL EXPOSED STRUCTURAL STEEL MEMBERS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION PER ASTM A123. EXPOSED STEEL HARDWARE AND ANCHOR BOLTS SHALL BE GALVANIZED PER ASTM A153 OR B695.
- 4. ALL FIELD CUT SURFACES, FIELD DRILLED HOLES AND GROUND SURFACES WHERE EXISTING PAINT OR GALVANIZATION REMOVAL WAS REQUIRED SHALL BE REPAIRED WITH (2) BRUSHED COATS OF ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A780 AND MANUFACTURER'S RECOMMENDATIONS.
- 5. DO NOT DRILL HOLES THROUGH STRUCTURAL STEEL MEMBERS EXCEPT AS SHOWN AND DETAILED ON STRUCTURAL DRAWINGS.
- 6. CONNECTIONS
 - A. ALL WELDING TO BE PERFORMED BY AWS CERTIFIED WELDERS AND CONDUCTED IN ACCORDANCE WITH THE LATEST EDITION OF THE AWS WELDING CODE D1.1.
 - B. ALL WELDS SHALL BE INSPECTED VISUALLY. 25% OF WELDS SHALL BE INSPECTED WITH DYE PENETRANT OR MAGNETIC PARTICLE TO MEET THE ACCEPTANCE CRITERIA OF AWS D1.1. REPAIR ALL WELDS AS NECESSARY.
 - C. INSPECTION SHALL BE PERFORMED BY AN AWS CERTIFIED WELD INSPECTOR.
 - D. IT IS THE CONTRACTORS RESPONSIBILITY TO PROVIDE BURNING/WELDING PERMITS AS REQUIRED BY LOCAL GOVERNING AUTHORITY AND IF REQUIRED SHALL HAVE FIRE DEPARTMENT DETAIL FOR ANY WELDING ACTIVITY.
 - E. ALL ELECTRODES TO BE LOW HYDROGEN, MATCHING FILLER METAL, PER AWS D1.1, UNLESS NOTED OTHERWISE.
 - F. MINIMUM WELD SIZE TO BE 0.1875 INCH FILLET WELDS, UNLESS NOTED OTHERWISE.
 - G. PRIOR TO FIELD WELDING GALVANIZING MATERIAL, CONTRACTOR SHALL GRIND OFF GALVANIZING ½ BEYOND ALL FIELD WELD SURFACES. AFTER WELD AND WELD INSPECTION IS COMPLETE, REPAIR ALL GROUND AND WELDED SURFACES WITH ZRC GALVILITE COLD GALVANIZING COMPOUND PER ASTM A760 AND MANUFACTURERS RECOMMENDATIONS.




-	(REFER DETAILE	(L R TO (ED INF EXI (REFE	(REFER DETAILL BOX (1 CHART ORMA) STING R TO	FOR	A CONTRACTOR						DETAIL EXISTING C (REFER DETAILEC	R TO LED IN VP BC TO CH) INFO	CHARÌ IFORMU DX (T) IART I IRMATI	AZ	$\frac{280}{03}$) / (F	ROPOSED REFER TO ETAILED IN	PROI	RT FO
								N.											
				1	CURRENT ANT			<u> </u>							2	OSED ANTENNA F			
					ITENNA AND RF EQUIPMENT S					NOTES				_	PROPOSED	ANTENNA AND RF EQUIPMENT		LE	
	CATION			ANTEN	ITENNA AND RF EQUIPMENT S NA SUMMARY	SCHEDUL	E	NON ANTENNA SUMMAF		APPROVED ATC		CATIO			PROPOSED ANTEN	ANTENNA AND RF EQUIPMENT INA SUMMARY	SCHEDU		1
		1	POS	BAND	ITENNA AND RF EQUIPMENT S NA SUMMARY MODEL NUMBER	STATUS	E	NON ANTENNA SUMMAF MODEL NUMBER	STATUS	APPROVED ATC ION 12500288 723/18 CONFIRM WITH WIRELESS REP FOR	SECTOR	1		PC	PROPOSED / ANTEN DS BAND	ANTENNA AND RF EQUIPMENT INA SUMMARY MODEL NUMBER	SCHEDU		5
			1	ANTEN	ITENNA AND RF EQUIPMENT S NA SUMMARY	SCHEDUL	E POS	NON ANTENNA SUMMAF		APPROVED ATC 10N 12500288 723/18 CONFIRM WITH WIRELESS REP FOR ILE UPDATES/REVISIONS T RECENT RFDS.	SECTOR	1		PC	PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE	ANTENNA AND RF EQUIPMENT INA SUMMARY	SCHEDU	5 POS	5
		AZ	POS 1 2 3	ANTEN BAND 700/850/1900 LTE	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH~1065B	STATUS	E POS	NON ANTENNA SUMMAR MODEL NUMBER RRH2X60 700	STATUS RMV	APPROVED ATC 10N 12600288 /23/18 CONFIRM WITH WRELESS REP FOR ILE UPDATES/REVISIONS T RECENT RFDS NOT YET VERIFIED ANY ANTENNA	SECTOR	RAD			PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE	ANTENNA AND RF EQUIPMENT INA SUMMARY MODEL NUMBER SBNHH-1065B	SCHEDU	5 POS	700
ECTOR	RAD	AZ	1	ANTEN BAND 700/850/1900 LTE S50 CDMA	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH-1D65B BXA-70063/4CF_5*	STATUS RMN REL	E POS 1 2	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS	STATUS RMV RMV	APPROVED ATC 10N 12500288 /23/18 CONFIRM WITH WRELESS REP FOR 1LE UPDATES/REVISIONS T RECENT RFDS. NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION. CONTRACTOR	SECTOR	RAD	AZ		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE	ANTENNA AND RF EQUIPMENT INA SUMMARY MODEL NUMBER SBNHH – 10658 SBNHH – 10658	STATUS	5 POS 1 2	700 P(
CTOR	RAD	AZ	1 2 3	ANTEN BAND 700/850/1900 LTE 850 CDMA 700/850/1900 LTE	ITENNA AND RF EQUIPMENT S NA SUMMARY MODEL NUMBER SBNHH – 1D65B BXA – 70063/4CF_5* SBNHH – 1D65B	STATUS RMN REL REL	E POS 1 2 3	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60-1900	STATUS RMV RMV RMV	APPROVED ATC 10N 12500288 /23/18 CONFIRM WITH WRELESS REP FOR 1LE UPDATES/REVISIONS T RECENT RFDS. NOT VET VERIFIED ANY ANTENNA RATION OR MOUNT RATION. CONTRACTOR Y MOUNT RATION HAS SUFFICIEN'	SECTOR D1	RAD	AZ		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA	ANTENNA AND RF EQUIPMENT INA SUMMARY MODEL NUMBER SBNHH-1D65B SBNHH-1D65B BXA-70063/4CF_5*	SCHEDU	6 POS	700 P(
ECTOR	RAD	AZ	1 2 3	ANTEN BAND 700/850/1900 LTE 850 CDMA 700/850/1900 LTE	ITENNA AND RF EQUIPMENT S NA SUMMARY MODEL NUMBER SBNHH – 1D65B BXA – 70063/4CF_5* SBNHH – 1D65B	STATUS STATUS RMN REL REL RMN	E POS 1 2 3	NON ANTENNA SLIMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60-1900	STATUS RMV RMV RMV	APPROVED ATC 10N 12600288 1/23/18 CONFIRM WITH WRELESS REP FOR ILE UPDATES/REVISIONS T RECENT RFDS. NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION CONTRACTOR Y MOUNT RATION HAS SUFFICIEN NT (I.E. CLEARANCES.	SECTOR D1	RAD	AZ		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA	ANTENNA AND RF EQUIPMENT INA SUMMARY MODEL NUMBER SBNHH-1D65B SBNHH-1D65B BXA-70063/4CF_5*	SCHEDU	6 POS	700 P(
ECTOR	RAD	AZ	1 2 3	ANTEN BAND 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH – 1D65B BXA – 70063/4CF_5* SBNHH – 1D65B BXA – 80063/4CF_5*	STATUS RMN REL REL RMN	E POS 1 2 3	NON ANTENNA SUMMAR MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60-1900	STATUS RMV RMV RMV	APPROVED ATC 10N 12500288 723/18 CONFIRM WITH WRELESS REP FOR 1/23/18 CONFIRM WITH WRELESS REVISIONS T RECENT RFDS. NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION CONTRACTOR Y MOUNT RATION HAS SUFFICIENT OR PROPOSED LESSEE NT (I.E. CLEARANCES. JPE OR SUFFICIENT ETC.) ATC DID NOT	SECTOR D1	RAD	AZ		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 	ANTENNA AND RF EQUIPMENT INA SUMMARY MODEL NUMBER SBNHH-1065B SBNHH-1065B BXA-70063/4CF_5* BXA-80063/4CF_5* -	SCHEDUI	5 POS 1 2 3 4 -	700 P(
ECTOR	RAD	AZ	1 2 3 4 -	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 700/850/1900 LTE	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH - 1D658 BXA - 70063/4CF_5* SBNHH - 1D658 BXA - 80063/4CF_5* - SBNHH - 1D658	STATUS STATUS RMN REL RMN - RMN RMN	E POS 1 2 3 4 - 1	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - - RRH2X60 700	STATUS RMV RMV RMV RMV RMV	APPROVED ATC 10N 12600288 7/23/18 CONFIRM WITH WIRELESS REP FOR 1/2 JIA CONFIRM WITH WIRELESS REP FOR 1/2 JIE CONFIRM RECENT RFDS NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION OR MOUNT RATION HAS SUFFICIENT RATION HAS SUFFICIENT RATION HAS SUFFICIENT ETC) ATC DID NOT ANTENNA MOUNT TO NE ADEQUATE	S D1	RAD	AZ		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 1 700/850/1900 LTE	ANTENNA AND RF EQUIPMENT INA SUMMARY MODEL NUMBER SBNHH-1D65B SBNHH-1D65B BXA-70063/4CF_5* BXA-80063/4CF_5* - SBNHH-1D65B	STATUS RMN RMN RMN RMN RMN RMN RMN	5 POS 1 2 3 4 -	700 P(
D1	RAD	AZ 30°	1 2 3 4 - 1 2	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA	ITENNA AND RF EQUIPMENT S NA SUMMARY MODEL NUMBER SBNHH - 10658 BXA - 70063/4CF_5* SBNHH - 10658 BXA - 80063/4CF_5* - SBNHH - 10658 BXA - 70063/4CF_5*	STATUS RMN REL REL RMN RMN REL	E POS 1 2 3 4 1 1 2 2 3 4 1 2 2	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - - RRH2X60 700 RRH2X60 -AWS	STATUS RMV RMV RMV RMV RMV RMV	APPROVED ATC 10N 12600288 1/23/18 CONFIRM WITH 1/23/18 CONFIRM WITH WRELESS REP FOR ILE UPDATES/REVISIONS T RECENT RFDS. NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION OR MOUNT RATION HAS SUFFICIENT Y MOUNT RATION HAS SUFFICIENT GUERSUFFICIENT ETC.) ATC DID NOT ANTENNA MOUNT TO NE ADEQUATE IRAL CAPACITY FOR ANY OADING.	S D1	RAD	AZ 30*		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 1 700/850/1900 LTE 2 700/850/1900 LTE	ANTENNA AND RF EQUIPMENT INA SUMMARY MODEL NUMBER SBNHH-1065B BXA-70063/4CF_5* BXA-80063/4CF_5* - SBNHH-1065B SBNHH-1065B	STATUS STATUS RMN RMN RMN RMN RMN RMN RMN	5 POS 1 2 3 4 - 1 2	700 P(
D1	RAD	AZ 30°	1 2 3 4 - 1 2 3	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA 	ITENNA AND RF EQUIPMENT S NA SUMMARY MODEL NUMBER SBNHH - 1D65B BXA - 70063/4CF_5* SBNHH - 1D65B BXA - 80063/4CF_5* SBNHH - 1D65B BXA - 70063/4CF_5* SBNHH - 1D65B	STATUS RMN REL REL REL RAIN REL REL	E POS 1 2 3 4 1 - 1 2 3 3 3	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - - RRH2X60 700 RRH2X60 -AWS	STATUS RMV RMV RMV RMV RMV RMV RMV	APPROVED ATC 10N 12500288 /23/18 CONFIRM WITH WRELESS REP FOR 1/23/18 CONFIRM WITH WRELESS REVISIONS T RECENT RFDS. NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION HAS SUFFICIENT OR PROPOSED LESSEE NT (I.E. CLEARANCES. DR PROPOSED LESSEE NT (I.E. CLEARANCES. DR PROPOSED LESSEE NT (I.E. CLEARANCES. DR PROPOSED LESSEE NT (I.E. CLEARANCES. ANTENNA MOUNT TO ANTENNA MOUNT TO NE ADEQUATE IRAL CAPACITY FOR ANY	S D1	RAD	AZ 30*		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA	ANTENNA AND RF EQUIPMENT NA SUMMARY MODEL NUMBER SBNHH-1D65B BXA-70063/4CF_5* BXA-80063/4CF_5* - SBNHH-1D65B SBNHH-1D65B BXA-70063/4CF_5*	STATUS STATUS RMN RMN RMN RMN RMN RMN RMN RMN	S POS 1 2 3 4 - 1 2 3 4 - 1 2 3	700 P(
D1	RAD	AZ 30°	1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA	ITENNA AND RF EQUIPMENT S NA SUMMARY MODEL NUMBER SBNHH-1D658 BXA-70063/4CF_5* SBNHH-1D658 BXA-80063/4CF_5* SBNHH-1D658 BXA-70063/4CF_5* SBNHH-1D658 BXA-80063/4CF_5* - SBNHH-1D658	STATUS RMN REL REL RMN - RMN REL REL RMN	E POS 1 2 3 4 1 2 1 2 3 4 1 2 3 4 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - - RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - - - RRH2X60 700	STATUS RMV RMV RMV RMV RMV RMV RMV	APPROVED ATC 10N 12600288 1/23/18 CONFIRM WITH 1/23/18 CONFIRM WITH WRELESS REP FOR ILE UPDATES/REVISIONS T RECENT RFDS. NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION OR MOUNT RATION HAS SUFFICIENT Y MOUNT RATION HAS SUFFICIENT CLEARANCES. IPE OR SUFFICIENT ETC.) ATC DID NOT ANTENNA MOUNT TO NE ADEQUATE IRAL CAPACITY FOR ANY OADING. 'OSED EQUIPMENT G ANTENNAS, COAX, LL BE MOUNTED IN	S D1	RAD	AZ 30*	· ·	PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 5 700/850/2100 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 5 700/850/2100 LTE 7 700/850/2100 LTE	ANTENNA AND RF EQUIPMENT NA SUMMARY MODEL NUMBER SBNHH-1D65B BXA-70063/4CF_5' BXA-80063/4CF_5' BXA-80063/4CF_5' SBNHH-1D65B BXA-70063/4CF_5' BXA-80063/4CF_5' - SBNHH-1D65B	STATUS RMN RMN RMN RMN RMN RMN RMN RMN RMN RMN	POS 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1	700 P(700 700 P(
D1	RAD 110' 110'	AZ 30°	1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 2	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH – 1D65B BXA – 70063/4CF_5* SBNHH – 1D65B BXA – 80063/4CF_5* SBNHH – 1D65B BXA – 70063/4CF_5* - SBNHH – 1D65B BXA – 80063/4CF_5* -	STATUS RMN REL REL REL RMN REL REL REL RMN REL RMN REL	E POS 1 2 3 4 1 1 2 3 4 1 2 3 4	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60 - 1900 	STATUS RMV RMV RMV RMV RMV RMV RMV	APPROVED ATC 10N 12500288 1/23/18 CONFIRM WITH WIRELESS REP FOR 1/23/18 CONFIRM WITH WIRELESS REP FOR 1/20 CONFIRM WITH TRECENT RFDS. NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION OR MOUNT RATION HAS SUFFICIENT RATION HAS SUFFICIENT BE OR SUFFICIENT ETC.) ATC DID NOT ANTENNA MOUNT TO NE ADEQUATE IRAL CAPACITY FOR ANY OADING. OSED EQUIPMENT G ANTENNAS, COAX, LL BE MOUNTED IN ANCE WITH THE TOWER IRAL ANALYSIS ON FILE	S SECTOR	RAD 110' 110'	AZ 30* 150*		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 1 700/850/1900 LTE 2 700/850/2100 LTE 1 700/850/1900 LTE 2 700/850/1900 LTE 2 700/850/1900 LTE	ANTENNA AND RF EQUIPMENT NA SUMMARY MODEL NUMBER SBNHH-1D65B BXA-70063/4CF_5' BXA-80063/4CF_5' C- SBNHH-1D65B BXA-70063/4CF_5' BXA-80063/4CF_5' BXA-80063/4CF_5' C- SBNHH-1D65B SBNHH-1D65B	STATUS STATUS RMN RMN RMN RMN RMN RMN RMN RMN RMN RMN	Image: Post of the second se	700 P(700 P(700 P(700
D1	RAD 110' 110'	AZ 30°	1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 2	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA 	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B	STATUS RMN REL REL REL RMN REL REL REL REL REL REL REL	E POS 1 2 3 4 1 2 1 2 3 4 1 2 3 4 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - - RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - - - RRH2X60 700	STATUS RMV RMV RMV RMV RMV RMV RMV RMV	APPROVED ATC 10N 12600288 1/23/18 CONFIRM WITH WIRELESS REP FOR 1/23/18 CONFIRM WITH WIRELESS REP FOR 1/20 CONFIRM WITH WIRELESS REP FOR 1/20 CONFIRM RATION CONTRACTOR ANTENNA RATION OR MOUNT RATION OR MOUNT RATION OR MOUNT RATION OR MOUNT RATION HAS SUFFICIENT RATION HAS SUFFICIENT RATION HAS SUFFICIENT FTC J ATC DID NOT ANTENNA MOUNT TO VE ADEQUATE IRAL CAPACITY FOR ANY OADING POSED EQUIPMENT G ANTENNAS, COAX, LL BE MOUNTED IN ANCE WITH THE TOWER IRAL ANALYSIS ON FILE 2 ATC CM. SPACING OF PROPOSE	S D1	RAD 110' 110'	AZ 30*		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 4 850 CDMA 5 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 5 700/850/2100 LTE 2 700/850/2100 LTE 3 850 CDMA	ANTENNA AND RF EQUIPMENT NA SUMMARY MODEL NUMBER SBNHH-1065B BXA-70063/4CF_5* BXA-80063/4CF_5* BXA-80063/4CF_5* BXA-70063/4CF_5* BXA-20063/4CF_5* BXA-80063/4CF_5* BXA-80063/4CF_5* BXA-70063/4CF_5*	STATUS	I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	700 P(700 P(700 P(700
D1	RAD 110' 110'	AZ 30°	1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 2	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH – 1D65B BXA – 70063/4CF_5* SBNHH – 1D65B BXA – 80063/4CF_5* SBNHH – 1D65B BXA – 70063/4CF_5* - SBNHH – 1D65B BXA – 80063/4CF_5* -	STATUS RMN REL REL REL RMN REL REL REL RMN REL RMN REL	E POS 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 1 2 1 1 2 2 3 1 1 2 1 1 2 1 1 2 1 3 1 4 1 1 2 1 3 1 4 1 1 2 1 3 1 4 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60 - 1900 	STATUS RMV RMV RMV RMV RMV RMV RMV RMV RMV RMV	APPROVED ATC 10N 12600288 1/23/18 CONFIRM WITH 1/23/18 CONFIRM WITH WRELESS REP FOR ILE UPDATES/REVISIONS T RECENT RFDS. NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION OR MOUNT RATION CONTRACTOR Y MOUNT RATION HAS SUFFICIENT Y MOUNT RATION HAS SUFFICIENT CLEARANCES. IPE OR SUFFICIENT ETC.) ATC DID NOT ANTENNA MOUNT TO NE ADEQUATE IRAL CAPACITY FOR ANY OADING. YOSED EQUIPMENT G ANTENNAS. COAX. LL BE MOUNTED IN ANCE WITH THE TOWER IRAL ANALYSIS ON FILE : ATC CM. ISPACING OF PROPOSE INT DOES NOT CAUSE ONFLICTS NOR IMPEDE	D D3	RAD 110' 110'	AZ 30* 150*		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/1900 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 4 850 CDMA 5 850 CDMA 4 850 CDMA	ANTENNA AND RF EQUIPMENT NA SUMMARY MODEL NUMBER SBNHH-1D65B BXA-70063/4CF_5' BXA-80063/4CF_5' C- SBNHH-1D65B BXA-70063/4CF_5' BXA-80063/4CF_5' BXA-80063/4CF_5' C- SBNHH-1D65B SBNHH-1D65B	STATUS STATUS RMN RMN RMN RMN RMN RMN RMN RMN RMN RMN	Image: Post of the second se	700 P(700 P(700 P(700
D1	RAD 110' 110'	AZ 30°	1 2 3 4 - 1 2 3 4 4 - 1 2 3 4 4 - 1 2 3 4 -	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH - 1D658 BXA - 70063/4CF_5' SBNHH - 1D658 BXA - 80063/4CF_5' SBNHH - 1D658 BXA - 70063/4CF_5' SBNHH - 1D658 BXA - 70063/4CF_5' SBNHH - 1D658 BXA - 70063/4CF_5' C	STATUS RMN REL REL REL RMN REL REL REL REL REL REL REL	E POS 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60 700 	STATUS RMV RMV RMV RMV RMV RMV RMV RMV RMV RMV	APPROVED ATC 10N 12500288 723/18 CONFIRM WITH WIRELESS REP FOR 11E UPDATES/REVISIONS T RECENT RFDS NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION OR MOUNT RATION HAS SUFFICIENT RATION HAS SUFFICIENT RATION HAS SUFFICIENT BE OR SUFFICIENT ETC.) ATC DID NOT ANTENNA MOUNT TO NE ADEQUATE IRAL CAPACITY FOR ANY OADING 'OSED EQUIPMENT G ANTENNAS, COAX, LL BE MOUNTED IN ANCE WITH THE TOWER IRAL ANALYSIS ON FILE : ATC CM. ISPACING OF PROPOSE NT DOES NOT CAUSE ONFLICTS NOR IMPEDE ;LIMBING PEGS. IS START WITH FIRST	D D3	RAD 110' 110'	AZ 30* 150*		PROPOSED / ANTEN DS BAND 700/850/1900 LTE 700/850/1900 LTE 700/850/1900 LTE 850 CDMA 4 850 CDMA 4 850 CDMA 4 850 CDMA 4 850 CDMA 4 850 CDMA 5 - 1 700/850/1900 LTE 3 850 CDMA 4 850 CDMA 5 -	ANTENNA AND RF EQUIPMENT INA SUMMARY MODEL NUMBER SBNHH-1D65B BXA-70063/4CF_5' BXA-80063/4CF_5' BXA-80063/4CF_5' BXA-70063/4CF_5' BXA-80063/4CF_5' BXA-80063/4CF_5' BXA-70063/4CF_5' BXA-80063/4CF_5' BXA-80063/4CF_5' BXA-80063/4CF_5'	STATUS	I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	700 P(700 700 P(700 P(700 700
D1 D2 D3	RAD 110' 110' 110'	AZ 30' 150'	1 2 3 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE 850 CDMA 700/850/1900 LTE	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' -	STATUS RMN REL REL REL RMN REL REL RMN REL REL REL REL REL	E POS 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 - 1 2 3 3 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - - - - -	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60 - 1900 	STATUS RMV RMV RMV RMV RMV RMV RMV RMV RMV RMV	APPROVED ATC 10N 12600288 1/23/18 CONFIRM WITH WIRELESS REP FOR 1/23/18 CONFIRM WITH WIRELESS REP FOR 1/23/18 CONFIRENCES RECENT RFDS NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION OR MOUNT RATION OR MOUNT RATION OR MOUNT RATION HAS SUFFICIEN RATION HAS SUFFICIEN RATION HAS SUFFICIENT ETC) ATC DID NOT ANTENNA MOUNT TO VE ADEQUATE IRAL CAPACITY FOR ANY OADING POSED EQUIPMENT G ANTENNAS, COAX, LI BE MOUNTED IN ANCE WITH THE TOWER IRAL ANALYSIS ON FILE CATC CM. SPACING OF PROPOSE NT DOES NOT CAUSE CONFLICTS NOR IMPEDE LIMBING PEGS.	B SECTOR D1 T D2 T D2 D D3	RAD 110' 110' 110'	AZ 30' 150' 280'		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 5 - PROPOSED FIBER DISTRIBUT	ANTENNA AND RF EQUIPMENT NA SUMMARY MODEL NUMBER SBNHH-1065B SBNHH-1065B BXA-70063/4CF_5' BXA-80063/4CF_5' SBNHH-1065B BXA-70063/4CF_5' BXA-80063/4CF_5' BXA-80063/4CF_5' SBNHH-1065B SBNHH-1065B SBNHH-1065B SA-80063/4CF_5' ICDN/OVP BOX	SCHEDUI STATUS RMN RMN RMN RMN RMN RMN RMN RMN RMN RMN	I I 2 3 4 - 1 2 3 4 - 1 2 3 4 - 11 2 3 4 - 1 2 3 4 - 1 2 3 4 - - 3 4	700 P(700 P(700 P(700 P(
D1 D2 D3 LC	RAD 110' 110' 110' 110' CATION	30° 150° 280°	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 4 	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA 	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' N / OVP BOX MODEL NUMBER	STATUS RMN REL REL RMN - RMN REL REL RMN REL REL REL REL REL REL	E POS 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 3 4 1 2 3 3 4 1 2 3 3 4 1 2 3 3 4 1 2 3 3 4 1 2 3 3 4 1 1 2 3 3 3 4 1 1 2 3 3 3 4 1 1 2 3 3 1 4 1 1 2 3 3 1 4 1 1 1 2 3 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60 700 - - RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - - RRH2X60-AWS RRH2X60-AWS RRH2X60-AWS RRH2X60-AWS RRH2X60-1900 - - CURRENT CABLING SUMM COAX	STATUS RMV	APPROVED ATC APPROVED ATC ION 12600288 //23/18 CONFIRM WITH //23/18 CONFIRM WITH WRELESS REP FOR ILE UPDATES/REVISIONS T RECENT RFDS. NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION OR MOUNT RATION OR MOUNT RATION HAS SUFFICIENT Y MOUNT RATION HAS SUFFICIENT EACL ON SUFFICIENT ETC.) ATC DID NOT ANTENNA MOUNT TO NE ADEOUATE IRAL CAPACITY FOR ANY OADING. OADING. OADING. SPACING OF PROPOSE IL BE MOUNTED IN ANCE WITH THE TOWER IRAL ANALYSIS ON FILE CATC CM. SPACING OF PROPOSE IS START WITH FIRST THE LEFT SIDE (AS FROM BEHIND THE ENGTHS SHOWN	S SECTOR D1 D2 D D3	RAD 110' 110' 110' 110'	AZ 30 [°] 150 [°] 280 [°] N		PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/1900 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 4 850 CDMA 5 - 1 700/850/1900 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 5 - 1 700/850/1900 LTE 3 850 CDMA 5 - PROPOSED FIBER DISTRIBUT 0S BAND	ANTENNA AND RF EQUIPMENT NA SUMMARY MODEL NUMBER SBNHH-1065B BXA-70063/4CF_5* BXA-80063/4CF_5* BXA-80063/4CF_5* BXA-80063/4CF_5* BXA-70063/4CF_5* BXA-80063/4CF_5* BXA-70063/4CF_5* BXA-70063/4CF_5* BXA-80063/4CF_5* B	STATUS	POS 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - S	700 P(700 P(700 P(700 P(700 P(700 P(
D1 D2 D3	RAD 110' 110' 110'	30° 150° 280°	1 2 3 4 - 1 2 3 4 4 - 1 2 3 4 4 - 1 2 3 4 4 - - CL POS	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' C BXA - 80063/4CF_5' SBNHH - 1065B BXA - 80063/4CF_5' SBNHH - 1065B BXA - 80063/4CF_5' C BXA - 80063/4CF_5'	STATUS RMN REL REL RMN - RMN REL REL REL REL REL REL REL REL REL REL	E POS 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 5 5 6 6 6 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - RRH2X60 700 RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - RRH2X60-AWS RRH2X60-AWS RRH2X60-1900 - RRH2X60-1900 - RRH2X60-1900 - CURRENT CABLING SUMM COAX HYBRID 1-5/8" (2) 1-5/8"	STATUS RMV RMV RMV RMV RMV RMV RMV RMV RMV RMV	APPROVED ATC 10N 12500288 7/23/18 CONFIRM WITH WIRELESS REP FOR 1/23/18 CONFIRM WITH WIRELESS REP FOR 1/23/18 CONFIRM WITH RECENT RFDS NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION OR MOUNT RATION OR MOUNT RATION HAS SUFFICIENT RATION HAS SUFFICIENT BROPOSED LESSEE NT (I.E. CLEARANCES. IPE OR SUFFICIENT ETC.) ATC DID NOT ANTENNA MOUNT TO NE ADEQUATE IRAL CAPACITY FOR ANY OADING OSED EQUIPMENT IG ANTENNAS, COAX. LL BE MOUNTED IN ANCE WITH THE TOWER IRAL ANALYSIS ON FILE E ATC CM. ISPACING OF PROPOSE NT DOES NOT CAUSE ONFLICTS NOR IMPEDE LIMBING PEGS. IS START WITH FIRST THE LEFT SIDE (AS "ROM BEHIND THE SMAXIMUM TYPICAL RU DROPORATE A 15%	S SECTOR D1 D2 D D3	RAD	AZ 30 [°] 150 [°] 280 [°] N	PI	PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 5 - 1 700/850/1900 LTE 2 700/850/1900 LTE 2 700/850/1900 LTE 3 850 CDMA 4 850 CDMA 5 - 700/850/1900 LTE 3 850 CDMA 4 850 CDMA - 1 700/850/1900 LTE 2 700/850/2100 LTE 3 850 CDMA 4 850 CDMA 5 - PROPOSED FIBER DISTRIBUT 0S BAND	ANTENNA AND RF EQUIPMENT NA SUMMARY MODEL NUMBER SBNHH-1065B SBNHH-1065B BXA-70063/4CF_5' BXA-80063/4CF_5' SBNHH-1065B BXA-70063/4CF_5' BXA-80063/4CF_5' BXA-80063/4CF_5' SBNHH-1065B SBNHH-1065B SBNHH-1065B SA-80063/4CF_5' ICDN/OVP BOX	STATUS	POS 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - S	700 P(700 P(700 P(700 P(
D1 D2 D3	RAD 110' 110' 110' 110' CATION	30° 150° 280°	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 4 	ANTEN BAND 700/850/1900 LTE 550 CDMA 700/850/1900 LTE 850 CDMA 	ITENNA AND RF EQUIPMENT S VA SUMMARY MODEL NUMBER SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' - SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 70063/4CF_5' SBNHH - 1D65B BXA - 80063/4CF_5' - N/ OVP BOX MODEL NUMBER	STATUS RMN REL REL RMN - RMN REL REL RMN REL REL REL REL REL REL	E POS 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 3 4 4 1 2 5 5 6 6 6 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7	NON ANTENNA SUMMAF MODEL NUMBER RRH2X60 700 RRH2X60-AWS RRH2X60 700 - - RRH2X60 700 RRH2X60-AWS RRH2X60-1900 - - RRH2X60-AWS RRH2X60-AWS RRH2X60-AWS RRH2X60-AWS RRH2X60-1900 - - CURRENT CABLING SUMM COAX	STATUS RMV	APPROVED ATC APPROVED ATC ION 12600288 //23/18 CONFIRM WITH ILE UPDATES/REVISIONS T RECENT RFDS NOT YET VERIFIED ANY ANTENNA RATION OR MOUNT RATION OR MOUNT RATION CONTRACTOR Y MOUNT RATION HAS SUFFICIENT BATION HAS SUFFICIENT CLEARANCES. IPE OR SUFFICIENT ETC) ATC DID NOT ANTENNA MOUNT TO NE ADEQUATE IRAL CAPACITY FOR ANY OADING. OSED EQUIPMENT G ANTENNAS. COAX. LI BE MOUNTED IN ANCE WITH THE TOWER IRAL CAPACITY FOR ANY OADING. SPACING OF PROPOSE NT DDES NOT CAUSE START WITH FIRST INE LEFT SIDE (AS "ROM BEHIND THE ENGTHS SHOWN E MAXIMUM TYPICAL RU	S SECTOR D1 D2 D D3	RAD 110' 110' 110' 110'	AZ 30 [°] 150 [°] 280 [°] N	PI	PROPOSED / ANTEN DS BAND 1 700/850/1900 LTE 2 700/850/1900 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 4 850 CDMA 5 - 1 700/850/1900 LTE 3 850 CDMA 4 850 CDMA 4 850 CDMA 5 - 1 700/850/1900 LTE 3 850 CDMA 5 - PROPOSED FIBER DISTRIBUT 0S BAND	ANTENNA AND RF EQUIPMENT NA SUMMARY MODEL NUMBER SBNHH-1065B BXA-70063/4CF_5* BXA-80063/4CF_5* BXA-80063/4CF_5* BXA-80063/4CF_5* BXA-70063/4CF_5* BXA-80063/4CF_5* BXA-70063/4CF_5* BXA-70063/4CF_5* BXA-80063/4CF_5* B	STATUS	POS 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - 1 2 3 4 - S	700 P(700 P(700 P(700 P(700 P(700 P(

DUNT ANA	F PRK-1245) LYSIS BY 0/11/2018)					
NON AN	TENNA SUMMARY					
MOD	EL NUMBER	STATUS				
	*	•				
00/850 MH	IZ DUALBANDRRH	ADD				
PCS/AWS	DUALBANDRRH	ADD				
	-	-				
	*	•				
	•	•				
00/850 MH	IZ DUALBANDRRH	ADD				
PCS/AWS	DUALBANDRRH	ADD				
	-	-				
	0 -	•				
	-	-				
00/850 MH	Z DUALBANDRRH	ADD				
PCS/AWS	DUALBANDRRH	ADD				
		-				
	*	•				
ROPOSE	CABLING SUMMA	RY				
XAC	HYBRID	STATUS				
-5/8"	(2) 1-5/8*	RMN				
	3	•				
IPERS I20' JUMPERS						



NEAR/BELOW ANTENNA (TO BE INSTALLED IF REQUIRED)

Prepared For

Mount Analysis

Michael F. Plahovinsak, P.E. Sole Proprietor - Independent Engineer 18301 SR 161, Plain City, Ohio 614-398-6250 / mike@mfpeng.com MFP Project #23218-256

NEWINGTON CT ATC 370627 10/11/18

PASSING

W/REINFORCEMENT (71.6%)

MOUNT ANALYSIS REPORT

American Tower Corporation 10 Presidential Way Woburn, MA 01801

Attention: Mr. Blake Paynter

Reference: Analysis of the existing Platform mount at 110-ftelevation Trylon Job No. 141800 ATC Site Name: Newington CT ATC Asset Number: 370627 Verizon Site Name: West Farms CT Verizon Site Number 325089 Site Address: 605 Willard Ave, Newington, CT, 06111 Tower Profile: Monopole Tower

Dear Sir:

We have been provided with RF information, photos and sketches of the structure for above-referenced sit Verizon is proposing to change the equipment configuration on the existing mounting hardware.

A revised antenna, coax and miscellaneous equipment schematic have been provided to us. We have been asked to evaluate this information to determine whether or not the existing mounts are adequate to safel support the proposed loading change. The structural evaluation refers to the Platform mount at 110-ftelevation of the existing Monopole located at 605 Willard Ave, Newington, CT, 06111.

The proposed changes were provided to us in aRFDS document dated 08/22/2018. The antennas are located 110-ft elevation on all sectors.

According to the RFDS document, the finalconfiguration of antennas for each sector consists of:

- (2) Andrew antenna SBNHH-1D65B (72.72" x 23.7" x 7.1" 126.82lbs) mounted side by side commscope mounting tracket BSAMNT-SBS-1-2 in position #1;
- (1) Antel antenna_BXA-80063_(94.7" x 11.2" x 4.5" 24lbs) in position #3;
- (1) Antel antenna BXA-80063 ((94.7" x 11.2" x 4.5" 24lbs) in position #4,

According to the RFDS document, the finalconfiguration of RRHs for each sector consists of:

- (1) RRUS B5/B13 RRII-BR04C in position #2;
- (1) RRUS B2/B66A RRH-BR049 in position #3;

TMA and Power Squid considered for this analysis:

• (1) RAYCAP are installed in Tower, not consider for this analysis.

www.trylon.com

		Солыской @ 2018 д.1 Г. 011 Излиные Адеентини
le.		
en 4y on		
at		
on		
1		
-		
	CUSTOMER #: WEST FARMS CT	
	SUPPLEMENTA	
ST OF CUSTOMER WITHOUT EDIT.	SHEET NUMBER: R-601	

The member dimensions that we considered in our evaluation are as per sketches and pictures provided by the site visit crew. The structural members that we considered in our analysis are presented in the attached model sketches.

Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	
HSS (Rectangular)	
Pipe	
Connection Bolts	

ASTM A36 (GR 36) ASTM 500 (GR B-46) ASTM A53 (GR 35) ASTM A325

CONCLUSIONS AND RECOMMENDATIONS

Based on information provided, our calculations conclude that the existing Verizon Platform mount located at **110-ft** clevation of the Monopole at the specified address, are **ADEQUATE WITH REINFORCEMENT** to safely support the proposed equipment, subject to the attached Standard Conditions on page 3.

Reinforcement: We recommend to install New PRK-1245 Kit at a distance of 35" below the existing Stand off arm.

Should you have any questions, comments or require additional information, please do not hesitate to call.

Sincerely,

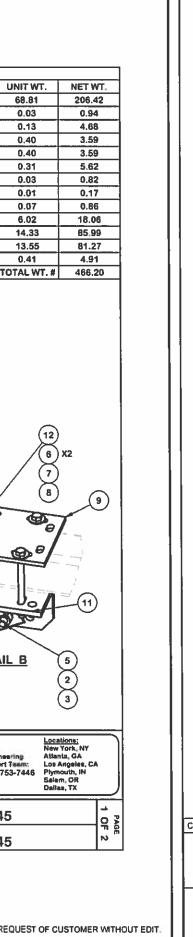
Analysis performed by:

Bathrudeen Ishak

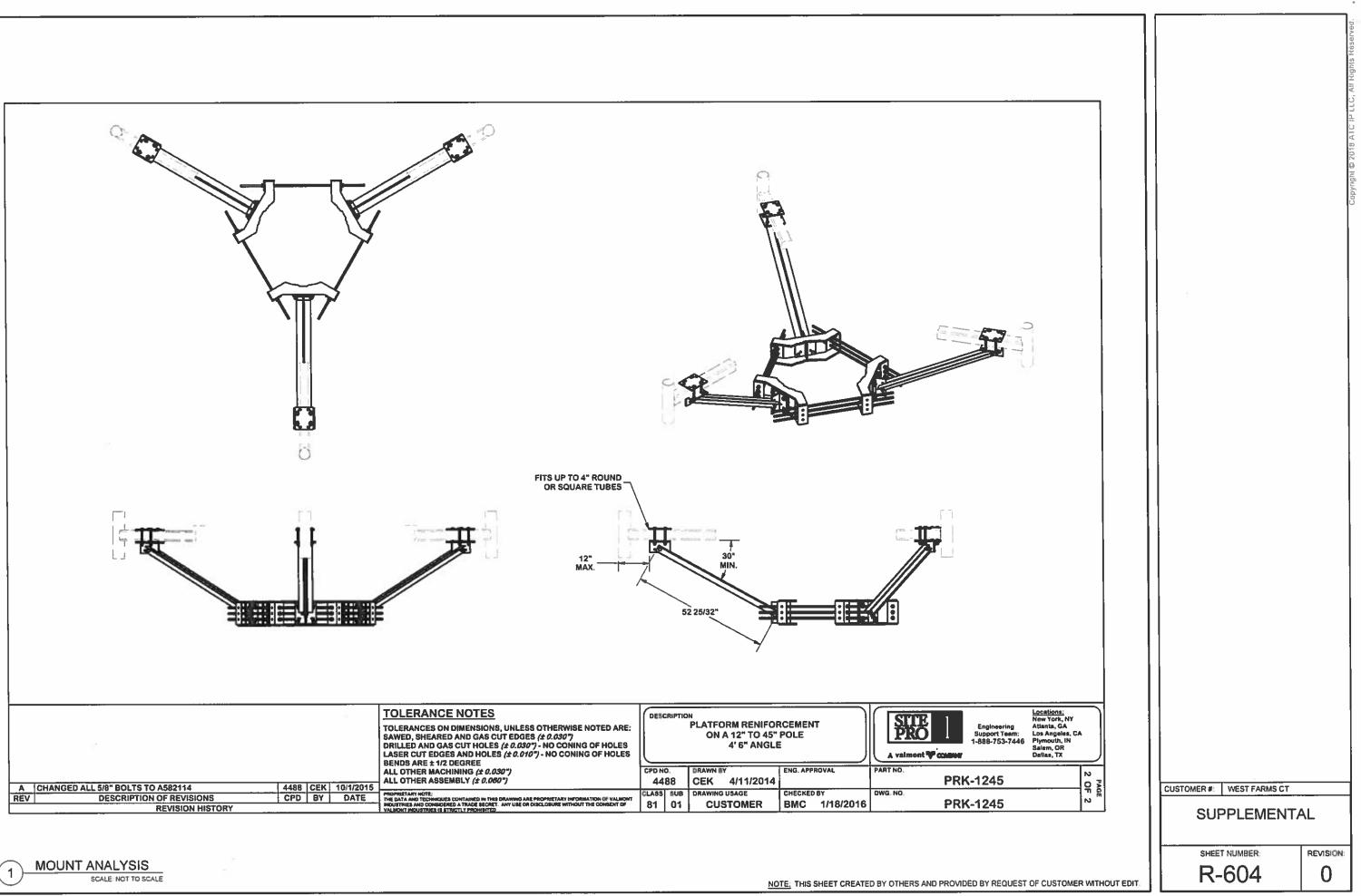
www.trylon.com

1

NOTE: THIS SHEET CREATED BY OTHERS AND PROVIDED BY REQU


		Bđ.
		Serv
		Copyright © 2018 ั่มิโ C iP LLC, All Rights Reserved.
		ghis
		41 K)
		₹ 0
		, ררי
		C Ib
		IV
		2018
		9
		14ga
		óby
		3
		1
		1
	CUSTOMER # WEST FARMS CT	
	SUPPLEMENT/	
		`L
	1	
	SHEET NUMBER:	REVISION:
EST OF CUSTOMER WITHOUT EDIT.	R-602	0
	L	

							PARTS	LICT		
		-	TENLO		PARTNO		· · · · · · · · · · · · · · · · · · ·		LENGTH	LINIT
									LENGTH	
	and the second sec	-		_	······					
									24 in	
		-								
		-						· · ·		
	18 °C	-		_						
		-								
	THE AND								1/8/17	
		-							a 412 L-	
		-						and the second sec		
		-							52 25/32 in	
	$\mathcal{H}_{\mathcal{H}} = \mathcal{H}_{\mathcal{H}}$	-		-					0.4301	÷
Image: Control of the set of the se		l	12 1	12	G12065	1/2" x 6-1	/2" HDG HEX BOLT GR5	FULL THREAD		
A CHANGED ALL 5/8" BOLTS TO A582114 LAABL CEK 10/1/2015 DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.030") ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060") PLATFORM RENIFORCEMENT ON A 12" TO 45" POLE 4'6" ANGLE DIFFUSION A'6" ANGLE Engineering Support Teal 1-888-753-7. A valment V colorer		3) x2					5 2 3 4 11 DETAIL		P	
A CHANGED ALL 5/8" BOLTS TO A582114 A488 CEK 10/1/2015 ALL OTHER ASSEMBLY (± 0.060") 4488 CEK 4/11/2014 PRK-1245		TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE			PLATFORM ON A 12 4' (" TO 45"	POLE	<u> </u>	Supp 1-888 CLINKY	ort Team 1-753-74
		_ ALL OTHER ASSEMBLY (# 0.060°)				11/2014			PRK-12	45
	REV DESCRIPTION OF REVISIONS CPD BY DATE	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIMONT INDUSTRES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALINOUT INDUSTRIES IS STRUCTLY PROMINENTED.						DWG. NO.		


MOUNT ANALYSIS SCALE NOT TO SCALE

(1)

NOTE: THIS SHEET CREATED BY OTHERS AND PROVIDED BY REQUEST OF CUSTOMER WITHOUT EDIT.

	Соличины 00.018.010.10.01.018.000000000000000000
USTOMER # WEST FARMS CT	
SUPPLEMENT	AL
	REVISION
R-603	0

