Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

July 25, 2023

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification Dicks Sporting Goods 2985 Berlin Turnpike, Newington, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of an antenna mast supporting a canister antenna and remote radio head ("RRH") on the roof of the building. The facility was approved by the Siting Council in September of 2016 (Petition No. 1244). A copy of the Council's Petition No. 1244 Staff Report is included in Attachment 1.

Cellco now intends to remove the existing canister antenna and installing a new model canister antenna on the antenna mast. Cellco also intends to replace the existing RRH with two (2) new RRHs. A set of project plans showing Cellco's proposed facility modifications and the new antenna and RRH specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Newington's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq. July 25, 2023 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing antenna. Cellco's new canister antenna will be installed on the existing antenna mast at the same centerline height of 31'-6" and will extend 7'6" above the building's parapet wall, six inches lower than the existing facility. The RRHs will be installed below the new antenna.
- 2. The proposed modifications will not involve any change to any of the equipment inside the building and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antenna will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Cellco's Far Field calculations are included in <u>Attachment 3</u>. The modified facility will not be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis ("SA") and Mounts Analysis ("MA"), the existing building and pipe mounting structure have adequate capacity to support Cellco's proposed facility modifications. A copy of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 6.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. July 25, 2023 Page 3

Sincerely,

Kenneth C. Baldwin

Enclosures Copy to:

Thomas Hutka, Newington Town Manager Paul Dickinson, Town Planner Brixmore GA Turnpike Plaza LLC, Property Owner Elizabeth Glidden Nicole O'Brien

ATTACHMENT 1

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

CERTIFIED MAIL RETURN RECEIPT REQUESTED

September 6, 2016

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **PETITION NO. 1244** - Cellco Partnership d/b/a Verizon Wireless petition for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the proposed installation of a small cell wireless telecommunications facility on the roof of an existing commercial building located at 2985-3017 Berlin Turnpike, Newington, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on September 1, 2016, the Connecticut Siting Council (Council) considered and ruled that the above-referenced proposal would not have a substantial adverse environmental effect, and pursuant to Connecticut General Statutes § 16-50k, would not require a Certificate of Environmental Compatibility and Public Need with the following conditions:

- 1. Use of off-road construction equipment that meets the latest EPA or California Air Resources Board standards, or in the alternative, equipment with the best available controls on diesel emissions, including, but not limited to, retrofitting with diesel oxidation catalysts, particulate filters and use of ultra-low sulfur fuel;
- 2. Compliance with the provisions of Section 22a-174-18(b)(3)(C) of the Regulations of Connecticut State Agencies that limit the idling of mobile sources to 3 minutes;
- 3. Approval of any minor project changes be delegated to Council staff;
- 4. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed within three years from the date of the mailing of the Council's decision, this decision shall be void, and the facility owner/operator shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The facility owner/operator shall provide written notice to the Executive Director of any schedule changes as soon as is practicable;
- 5. Any request for extension of the time period to fully construct the facility shall be filed with the Council not later than 60 days prior to the expiration date of this decision and shall be served on all parties and intervenors, if applicable, and the Town of Newington;
- 6. Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;

- 7. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
- 8. The facility owner/operator shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v;
- 9. This Declaratory Ruling may be transferred, provided the facility owner/operator/transferor is current with payments to the Council for annual assessments and invoices under Conn. Gen. Stat. §16-50v and the transferee provides written confirmation that the transferee agrees to comply with the terms, limitations and conditions contained in the Declaratory Ruling, including timely payments to the Council for annual assessments and invoices under Conn. Gen. Stat. §16-50v; and
- 10. If the facility owner/operator is a wholly owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the facility within 30 days of the sale and/or transfer.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the petition dated July 1, 2016.

Enclosed for your information is a copy of the staff report on this project.

Very truly yours,

but Stoin MAB

Robert Stein Chairman

RS/RDM/lm

Enclosure: Staff Report dated September 1, 2016

c: The Honorable Roy Zartarian, Mayor, Town of Newington Tanya Lane, Town Manager, Town of Newington Craig Minor, Town Planner, Town of Newington Brixmore GA Turnpike Plaza LLC

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

Petition No. 1244
Cellco Partnership d/b/a Verizon Wireless
2985-3017 Berlin Turnpike, Newington
Small Cell Facility
Staff Report
September 1, 2016

On July 1, 2016, the Connecticut Siting Council (Council) received a petition from Cellco Partnership d/b/a Verizon Wireless (Cellco) for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the proposed installation of a small cell telecommunications facility at 2985-3017 Berlin Turnpike, Newington, Connecticut. The small cell would provide 2100 MHz LTE wireless service to surrounding commercial and residential areas.

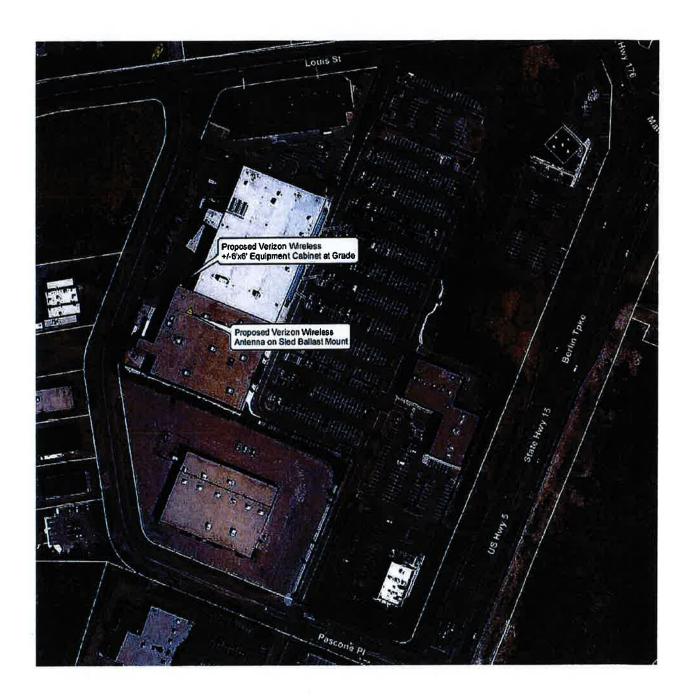
The proposed small cell facility would consist of a canister antenna mounted on a ballast sled placed on the rear portion of the roof of a 25-foot tall commercial building. The ballast sled contains a mounting pole and support arms attached to weighted ballasts. A remote radio head would be installed on the mounting pole below the canister antenna. The mounting pole and canister antenna would extend approximately 8.75 feet above the roof of the building. The commercial building is located on a 16.3-acre parcel, zoned Planned Development, and currently houses Dick's Sporting Goods and Price Chopper Supermarket.

Cellco's associated radio cabinet would be installed on a six-foot by six-foot concrete pad on the west side of the building, at the rear of the Dick's Sporting Goods store. A cable tray would be installed on the exterior wall of the building to connect the antenna to the radio cabinet. An eight-foot tall chain link fence would enclose the ground equipment. Electrical and telephone service would extend to the radio equipment from an existing pole on the subject property.

The maximum worst-case power density would be 3.3 percent of the applicable Federal Communications Commission limit using a -10 dB off beam adjustment. Notice is not required to the Federal Aviation Administration.

The visual effect of the proposed installation is minimal due to the site's location in a heavily developed commercial area and the small size of the proposed facility.

Notice was provided to the Town of Newington, the property owner, and abutting property owners on or about July 1, 2016. The Council has not received any comments regarding the proposed installation to date.


Cellco contends that this proposed project would not have a substantial adverse environmental impact.

Staff recommends the following conditions:

- 1. Use of off-road construction equipment that meets the latest EPA or California Air Resources Board standards, or in the alternative, equipment with the best available controls on diesel emissions, including, but not limited to, retrofitting with diesel oxidation catalysts, particulate filters and use of ultra-low sulfur fuel;
- 2. Compliance with the provisions of Section 22a-174-18(b)(3)(C) of the Regulations of Connecticut State Agencies that limit the idling of mobile sources to 3 minutes; and
- 3. Approval of any minor project changes be delegated to Council staff.

Site Location - 2985-3017 Berlin Turnpike, Newington

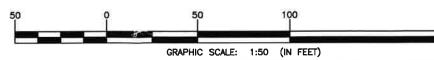
ATTACHMENT 2

SITE NAME:

NEWINGTON_SC_4_CT

LOCATION CODE:

467293


SITE ADDRESS:

2985 BERLIN TURNPIKE NEWINGTON, CT 06111

APPROX. NORTH

POLE COORDINATES N 41.6686527" ± W 72.721855"

	LATITUDE (NAD83)	LONGITUDE (NAD83)			
POLE COORDINATES	N 41.6686527° ±	W 72.721855° ±			
	N 41° 40' 07.15"	W 72' 43' 18.68"			
GROUND ELEVATION	116'± A.M.S.L. (NA	VD88)			

	SHEET INDEX
SHEET NO.	SHEET DESCRIPRION
LE-1	KEY PLAN
LE-2	ROOFTOP PLAN
LE-3	BUILDING ELEVATION
LE-4	ANTENNA PLAN, MOUNTING DETAILS & EQUIPMENT SPECS
LE-5	ANTENNA & ANCILLARY EQUIPMENT SPECIFICATION

PREPARED BY:


LEASE EXHIBIT (NOT FOR CONSTRUCTION)

PRESIDING POWER COMPANY:

PROFESSIONAL STAMP:

THIS DOCUMENT IS THE DESIGN PROPERTY AND COPYRIGHT OF MASTEC AND FOR THE EXCLUSIVE USE BY THE TITLE CLIENT. DUPLICATION OR USE WITHOUT THE EXPRESS WRITTEN CONSENT OF THE CREATOR IS STRICTLY PROHIBITED.

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY. ALL OTHER PRINTED SIZES ARE DEEMED "NOT TO SCALE".

		SUBMITTALS	
REV	DATE	DESCRIPTION	BY
0	01/25/23	POR REVIEW	M
1	03/30/23	REVISED PER COMMENTS	M
2	07/10/23	REVISED PER CANDERITS	AA

SITE INFO:

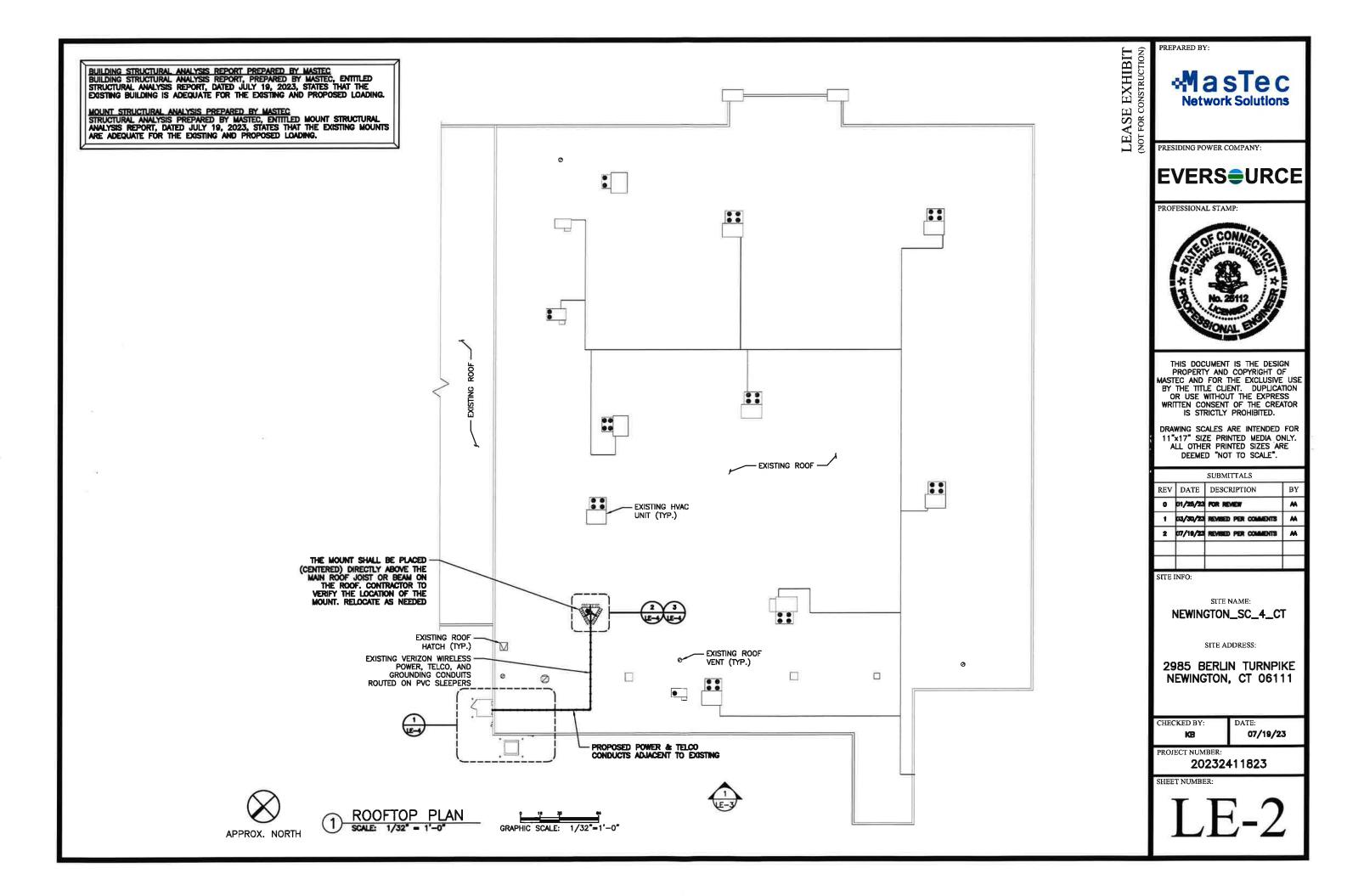
SITE NAME:

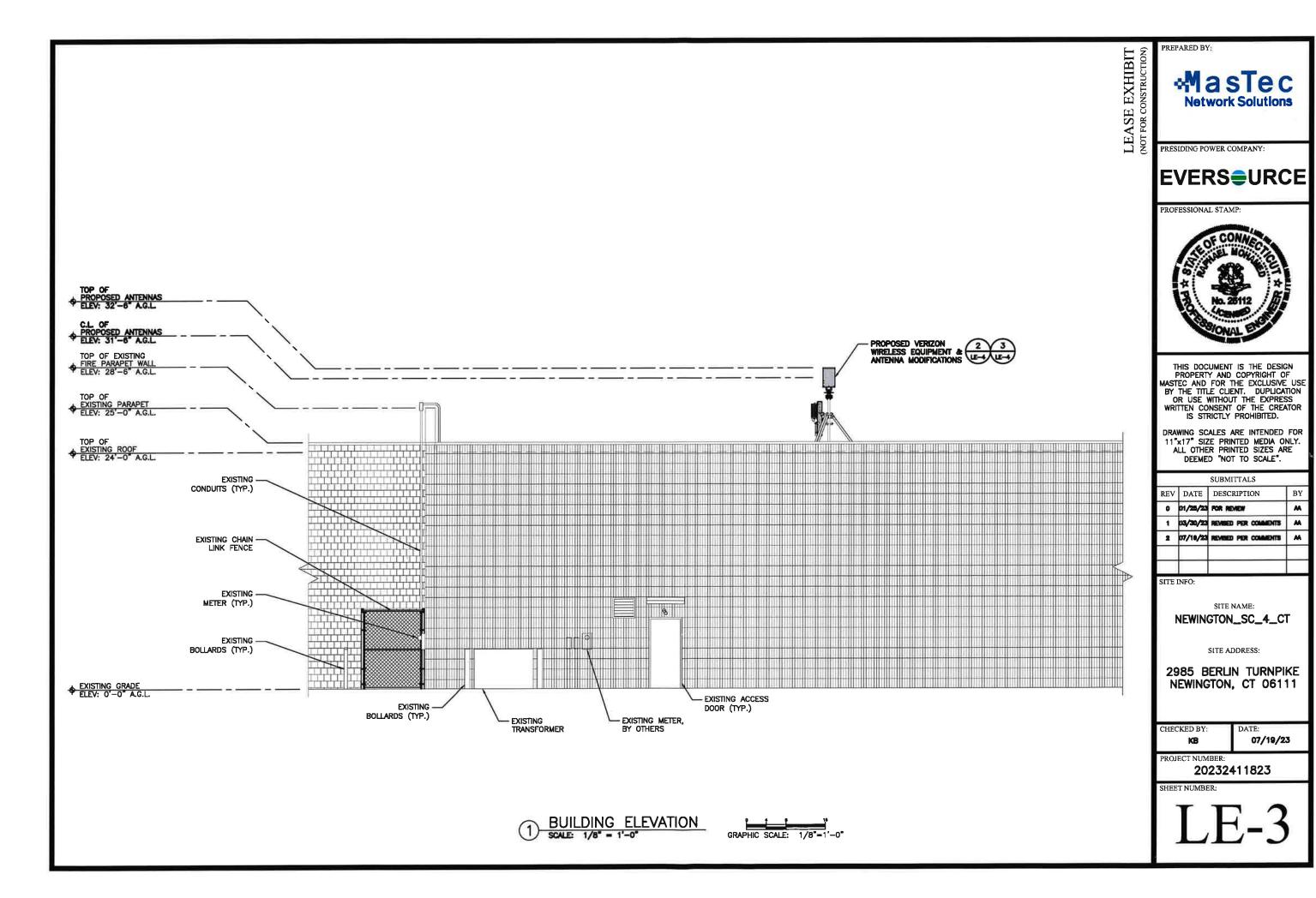
NEWINGTON_SC_4_CT

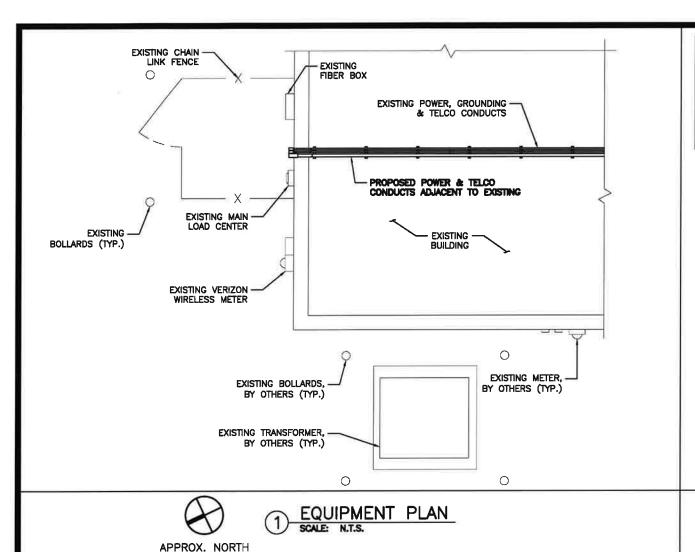
SITE ADDRESS:

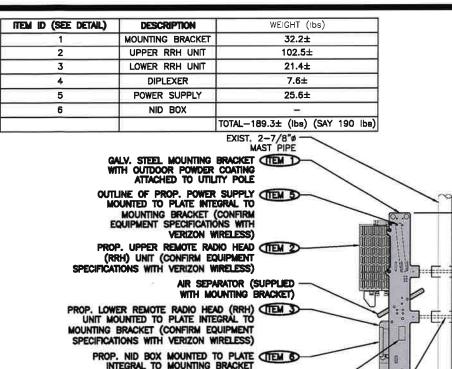
2985 BERLIN TURNPIKE NEWINGTON, CT 06111

CHECKED BY:

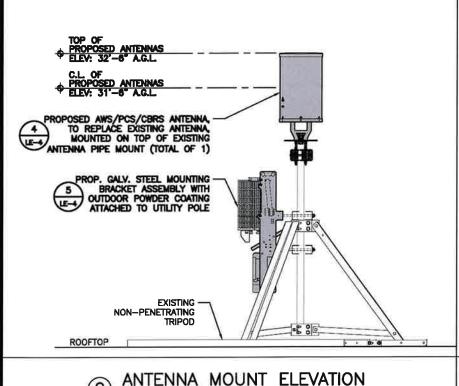

DATE: 07/19/23

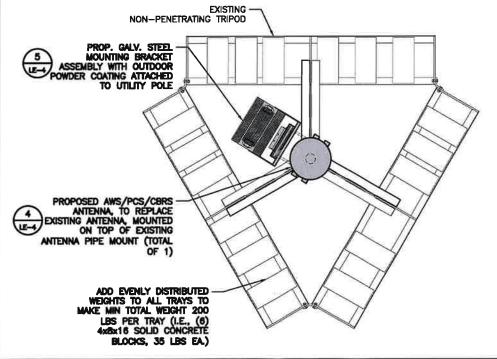

PROJECT NUMBER:


20232411823


SHEET NUMBE

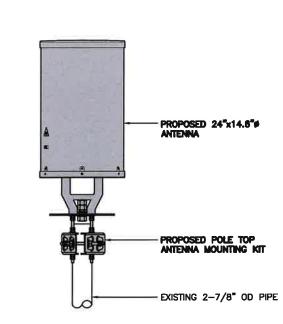
LE-1





PROP. NID BOX MOUNTED TO PLATE TEM B (CONFIRM EQUIPMENT SPECIFICATIONS WITH VERIZON WIRELESS) OUTLINE OF PROP. DIPLEXER TEM & MOUNTING BRACKET (CONFIRM EQUIPMENT SPECIFICATIONS WITH VERIZON WIRELESS) 5/8"%x16" LONG GALV. STEEL SQUARE HEAD THRU-BOLT (WITH HEX NUTS AND LOCK WASHERS) (TYP. AT (2) LOCATIONS) (SUPPLIED WITH MOUNTING BRACKET)

ANCILLARY EQUIPMENT MOUNTING BRACKET MOUNT DETAIL SCALE: N.T.S.



SCALE: N.T.S.

ANTENNA PLAN

3 ANTENNA SCALE: N.T.S.

ANTENNA DETAIL

PREPARED BY:

EXHIBIT

LEASE |

PRESIDING POWER COMPANY:

EVERSURCE

PROFESSIONAL STAMP:

THIS DOCUMENT IS THE DESIGN PROPERTY AND COPYRIGHT OF MASTEC AND FOR THE EXCLUSIVE USE BY THE TITLE CLIENT. DUPLICATION OR USE WITHOUT THE EXPRESS WRITTEN CONSENT OF THE CREATOR IS STRICTLY PROHIBITED.

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY. ALL OTHER PRINTED SIZES ARE DEEMED "NOT TO SCALE".

		SUBMITTALS	
REV	DATE	DESCRIPTION	BY
0	01/25/23	FOR REVIEW	M
1	03/30/23	REVISED PER COMMENTS	M
2	07/19/23	REVISED PER COMMENTS	м

SITE INFO:

SITE NAME:

NEWINGTON_SC_4_CT

SITE ADDRESS:

2985 BERLIN TURNPIKE NEWINGTON, CT 06111

CHECKED BY:

07/19/23

PROJECT NUMBER: 20232411823

SHEET NUMBER

MasTec Network Solutions

PREPARED BY:

PRESIDING POWER COMPANY:

EVERSURCE

PROFESSIONAL STAMP:

THIS DOCUMENT IS THE DESIGN PROPERTY AND COPYRIGHT OF MASTEC AND FOR THE EXCLUSIVE USE BY THE TITLE CLIENT. DUPLICATION OR USE WITHOUT THE EXPRESS WRITTEN CONSENT OF THE CREATOR IS STRICTLY PROHIBITED.

DRAWING SCALES ARE INTENDED FOR 11"x17" SIZE PRINTED MEDIA ONLY.
ALL OTHER PRINTED SIZES ARE DEEMED "NOT TO SCALE".

SUBMITTALS							
REV	DATE	DESCRIPTION	BY				
0	01/25/23	FOR REVIEW	м				
1	03/30/23	REVISED PER COMMENTS	M				
2	07/19/23	REVISED PER COMMENTS	M				

SITE INFO:

SITE NAME:

NEWINGTON_SC_4_CT

SITE ADDRESS:

2985 BERLIN TURNPIKE NEWINGTON, CT 06111

CHECKED BY:

07/19/23

PROJECT NUMBER:

20232411823

SMALL CELL "CANTENNA"							
DIMENSIONS	24"±ø x 14.6"±H						
WEIGHT	31.9± LBS						
QUANTITY	TOTAL OF 1						

TYPICAL "CANTENNA" SPECIFICATIONS

1	RRH SPECIFICATIONS							
1	DIMENSIONS	17.3"±H x 17.3"±W X 11.5"±D						
	WEIGHT	102.5± LBS						
1	QUANTITY	TOTAL OF 1						

RRH SPECIFICATIONS						
DIMENSIONS	13.9"±H x 9.8"±W X 4.8"±D					
WEIGHT	21.4± LBS					
QUANTITY	TOTAL OF 1					

TYPICAL REMORE RADIO HEAD (RRH) UNIT DIMENSIONS SCALE: N.T.S.

	DIPLEXER					
DIMENSIONS	4.8"±H x 7.9"±W X 3.3"±D					
WEIGHT	7.6± LBS					
QUANTITY	TOTAL OF 1					

NID BOX						
DIMENSIONS	7.7"±H x 7.7"±W X 4.2"±D					
WEIGHT	N/A					
QUANTITY	TOTAL OF 1					

TYPICAL DIPLEXER DIMENSIONS SCALE: N.T.S.

TYPICAL NID BOX DIMENSIONS 4 TYPICAL SCALE: N.T.S.

18-port small cell antenna, 4x 698-896, 8x 1695-2690, 4x 3300- 4200 and 2x 5150-5925 MHz, 360° Horizontal Beamwidth, fixed tilt.

General Specifications

Antenna Type Omni

Band Multiband

Color Light Gray (RAL 7035)

Grounding Type RF connector inner conductor and body grounded to reflector and mounting bracket

Performance Note Outdoor usage

Radome Material ASA

Radiator Material Aluminum | Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female

RF Connector Location Bottom

RF Connector Quantity, high band 6

RF Connector Quantity, mid band 8

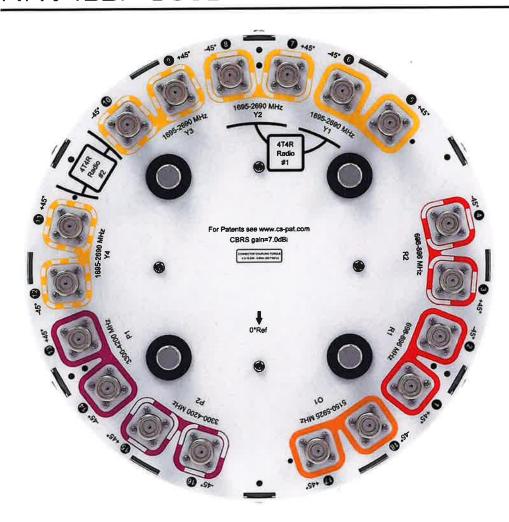
RF Connector Quantity, low band 4

RF Connector Quantity, total 18

Dimensions

Length 610 mm | 24.016 in

Net Weight, without mounting kit 14.5 kg | 31.967 lb


Outer Diameter 370 mm | 14.567 in

5 GHz Port Power Table

5 GHz FCC Power Requirements						
U-NII Band	U-NII 1	U-NII 2A	U-NII 2C	U-NII 3		
Frequency (MHz)	5150 - 5250	5250 - 5350	5470 - 5725	5725 - 5850		
Max Input power per port to align with FCC Title 47 Part 15 (Watts)	0.5	0.125	0.125	0.5		

Port Configuration

Electrical Specifications

50 ohm **Impedance**

1695 - 2690 MHz | 3300 - 4200 MHz | 5150 - 5925 MHz | 698 - 896 MHz **Operating Frequency Band**

±45° **Polarization**

900 W @ 50 °C **Total Input Power, maximum**

Electrical Specifications

 $698 - 806\,806 - 896\,1695 - 1920\,1920 - 2180\,2300 - 2360\,2360 - 2690\,3300 - 3550\,3550 - 3700\,3700 - 4200\,5150 - 5925$ Frequency Band, MHz 3.9 6.7 6.7 6.7 7.7 8.7 Gain, dBi 5 5.2

360

Horizontal, degrees

360 360 360 360 360 360 360 360 360 Beamwidth,

Beamwidth, Vertical, degrees	45.9	48.8	23.1	19.2	17.3	15.5	34.5	33.8	28.6	23.3
Beam Tilt, degrees	2	2	2	2	2	2	0	0	0	0
USLS (First Lobe), dB	12	12	10	11	11	11	10	10	10	
Isolation, Cross Polarization, dB	25	25	25	25	25	25	25	25	25	25
Isolation, Inter- band, dB	25	25	25	25	25	25	25	25	25	25
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1,5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1,5 14.0	1,5 14,0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153	-145	-145	-145	
Input Power per Port, maximum, watts	150	150	150	150	150	150	125	125	125	10
Input Power per Port at 50°C, maximum, watts	100	100	100	100	100	100	75	75	75	5

Electrical Specifications, BASTA

•		-									
Frequency Band, MHz	698-8	06806-89	961695-19	9 201920 -2	1802300-2	3602360-2	6903300-3	5503550-3	7003700-4	2005150-592	5
Gain by all Beam Tilts, average, dBi	4.6	4.6	7.1	7.6	8.1	8.4	6.4	6.5	6.3	3.4	
Gain by all Beam Tilts Tolerance, dB	±0.6	±0.4	±1	±0.7	±1.2	±0.5	±0.4	±0.4	±1	±1	
Beamwidth, Vertical Tolerance, degrees	±4.3	±6	±3.3	±2.4	±1.7	±0.9	±5.3	±3.2	±8.4	±3.6	

Mechanical Specifications

Wind Loading @ Velocity, frontal	129.0 N @ 150 km/h (29.0 lbf @ 150 km/h)
Wind Loading @ Velocity, lateral	129.0 N @ 150 km/h (29.0 lbf @ 150 km/h)
Wind Loading @ Velocity, maximum	129.0 N @ 150 km/h (29.0 lbf @ 150 km/h)
Wind Loading @ Velocity, rear	129.0 N @ 150 km/h (29.0 lbf @ 150 km/h)
Wind Speed, maximum	241.402 km/h 150 mph

Packaging and Weights

Width, packed

478 mm | 18.819 in

Depth, packed

464 mm | 18,268 in

Length, packed

894 mm | 35.197 in

Weight, gross

19.2 kg | 42.329 lb

Regulatory Compliance/Certifications

Agency

Classification

CHINA-ROHS

Below maximum concentration value

ISO 9001:2015

Designed, manufactured and/or distributed under this quality management system

REACH-SVHC

Compliant as per SVHC revision on www.commscope.com/ProductCompliance

ROHS

Compliant

UK-ROHS

Compliant

* Footnotes

Performance Note

Severe environmental conditions may degrade optimum performance

SAMSUNG

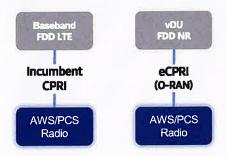
AWS/PCS MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A



Points of Differentiation

Continuous Migration

Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (21GHz) band, respectively.

Supports up to 7 carriers

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L

2 FH connectivity **O-RAN** capability

More carriers and spectrum

Same as an Incumbent radio volume

Technical Specifications

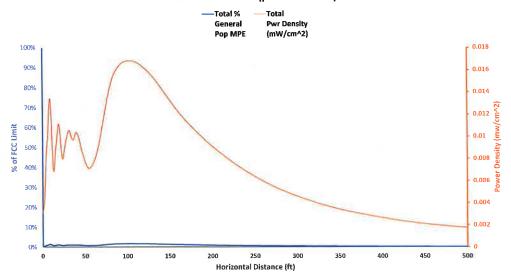
Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 1995MHz, UL: 1850 1915MHz DL: 2110 2200MHz, UL: 1710 1780MHz
RF Power	(B25) 4×40W or 2×60W (B66) 4×60W or 2×80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

Specifications

The table below outlines the main specifications of the RRH.

Table 1. Specifications

Item	RT4401-48A			
Air Technology	LTE			
Band	Band 48 (3.5 GHz)			
Operating Frequency (MHz)	3550 to 3700			
RF Chain	4TX/4RX			
Input Power	-48 V DC (-38 to -57 V DC, 1 SKU), with clip-on AC-DC converter (Option)			
Dimension (W × D × H) (mm)	8.55 in. (217.4) × 4.15 in. (105.5) × 13.91 in. (353.5) * RRH only 11.39 in. (289.4) × 5.45 in. (138.5) × 16.16 in. (410.5) * with Clip-on antenna, AC-DC power unit			
Cooling	Natural convection			
Unwanted Emission	3GPP 36.104 Category A			
	[B48]: FCC 47 CFR 96.41 e)			
Spectrum Analyzer	TX/RX Support			
Antenna Type	Integrated (Clip-on) antenna (Option), External antenna (Option)			
Operating Humidity	5 to 100 [%] (RH), condensing, not to exceed 30 g/m³ absolute humidity			
Altitude	-60 to 1,800 m			
Earthquake	Telcordia Earthquake Risk Zone4 (Telcordia GR-63-CORE)			
Vibration in Use	Office Vibration			
Transportation Vibration	Transportation Vibration			
Noise	Fanless (natural convection cooling)			
Wind Resistance	Telcordia GR-487-CORE, Section 3.34			
EMC	FCC Title 47, CFR Part 96			
Safety	UL 60950-1 2nd ED			


Item	RT4401-48A				
	UL 62368-1				
	UL 60950-22				
RF	FCC Title 47, CFR Part 96				

The table below outlines the AC/DC power unit specifications of the RRH system.

ATTACHMENT 3

Location	NEWINGTON SC 4 CT 7/3/2023					
Date						
Band	CBRS	AWS	PCS			
Operating Frequency (MHz)	3,550	2,145	1,970			
General Population MPE (mW/cm^2)	1	1	3			
ERP Par Transmitter (Watts)	50	238	183			
Number of Transmitters	4	4	4			
Antonna Centerline (feet)	31.5	31.5	31.5			
Total ERP (Watts)	200	952	732			
Total ERP (dBm)	53	60	59			
Maximum W.of General Population Limit		1.7%				

RF Exposure 6ft Above Ground Level Far Field Formula (per FCC OET65)

Angle	Power	Density (mW/	cm^2)				Percent of Ge	neral Popula	lion Mike			5		Total	-
Below Horizon	CBRS	AWS	PCS	196Hz	2BGH2	C-Band	CHHS	AWS	IKS	/Gellulae	COMA	700 MHz	Distance	Pwr Density (mW/cm^2)	Constal Constal Rop MPE
90	0.00011061	0.001703729	0.00125105	0.00%	0.00%	0.00%	0.01%	0.17%	0.13%	0.00%	0.00%	0.00%	0	0.003065388	0.31%
89	8.19712E-05	0.001911033	0.001250669	0.00%	0.00%	0.00%	0.01%	0.19%	0.13%	0.00%	0.00%	0.00%	0.445104156	0.003243673	0.32%
88	0.000152498	0.002093491	0.001221083	0,00%	0.00%	0.00%	0.02%	0.21%	0.12%	0.00%	0.00%	0.00%	0.890479622	0.003467072	0.35%
87	0,000187328	0.0022398	0.001276684	0.00%	0.00%	0.00%	0.02%	0.22%	0.13%	0.00%	0.00%	0.00%	1,336398372	0.003703812	0.37%
86	0.000135418	0.002340356	0.001567314	0.00%	0.00%	0.00%	0.01%	0.23%	0.16%	0.00%	0.00%	0.00%	1.783133705	0.004043088	0.40%
85	6.46371E-05	0.0023883	0.002108449	0,00%	0.00%	0.00%	0.01%	0.24%	0,21%	0.00%	0.00%	0.00%	2,23096092	0.004561386	0.46%
84	4.35534E-05	0.00243573	0.002900703	0.00%	0.00%	0.00%	0.00%	0.24%	0.29%	0.00%	0.00%	0.00%	2.680157999	0.005379986	0.54%
83	7.53867E-05	0.002540398	0.003721997	0.00%	0.00%	0.00%	0.01%	0.25%	0.37%	0.00%	0.00%	0.00%	3.131006303	0.006337782	0.63%
82	0.000121702	0.002647927	0.004454307	0.00%	0.00%	0.00%	0.01%	0.26%	0,45%	0.00%	0.00%	0.00%	3.583791285	0.007223936	0.72%
81	0.000171015	0.002888287	0.005087617	0.00%	0.00%	0.00%	0.02%	0.29%	0,51%	0.00%	0.00%	0.00%	4.038803228	0.008146918	0.81%
80	0.000240158	0.003148497	0,00529636	0.00%	0.00%	0.00%	0.02%	0.31%	0.53%	0.00%	0.00%	0.00%	4.496338008	0.008685015	0.87%
79	0.000329372	0.003509891	0.005384777	0.00%	0.00%	0.00%	0.03%	0.35%	0.54%	0.00%	0.00%	0.00%	4.956697883	0.009224039	0.92%
78	0.000461958	0.003821283	0.00534667	0.00%	0.00%	0.00%	0.05%	0.38%	0.53%	0.00%	0.00%	0.00%	5.420192323	0.00962991	0.96%
77	0.00061836	0.004157653	0.005305452	0.00%	0.00%	0.00%	0.06%	0.42%	0.53%	0.00%	0.00%	0.00%	5.887138874	0,010081466	1.01%
76	0,000846451	0.004417827	0.005383724	0,00%	0.00%	0.00%	0.08%	0.44%	0.54%	0.00%	0.00%	0.00%	6.357864073	0.010648001	1.06%
75	0.001131569	0.004691244	0.005586787	0.00%	0.00%	0,00%	0.11%	0.47%	0.56%	0.00%	0.00%	0.00%	6.832704407	0.0114096	1.14%
74	0.001477327	0.004754268	0.005928678	0.00%	0.00%	0.00%	0.15%	0.48%	0.59%	0.00%	0.00%	0.00%	7.312007337	0.012160273	1.22%
73	0.001798813	0.004598255	0.006433795	0.00%	0.00%	0.00%	0.18%	0.46%	0.64%	0.00%	0.00%	0.00%	7.796132377	0.012830863	1.28%

												0.000450054	0.042205504	1.770/	
72	0.002042707 0.004444399		0,00%	0.00%	0.00%	0.20%	0.44%	0.68%	0.00%	0.00%	0.00%	8,285452254	0.013305581	1,33% 1,35%	
71	0,002213776 0,004195083		0.00%	0.00%	0.00%	0.22%	0.42%	0.71%	0.00%	0.00%	0.00%	8,780354139	0.01346577	1.35%	
70	0.002237511 0.003866981		0.00%	0.00%	0.00%	0,22%	0,39%	0.71%	0,00%	0.00%	0.00%	9,281240974 9,788532893	0.013237064	1,24%	
69	0.002158226 0.003562082		0.00%	0.00%	0.00%	0.22%	0.36%	0,67%	0.00%	0.00%			0.011454395	1,15%	
68		0.006188798	0.00%	0.00%	0.00%	0.20%	0.33%	0,62%	0.00%	0.00%	0.00%	10.30266876 10.82410781	0.011434333	1.02%	
67	0.001745202 0.003016148		0.00%	0.00%	0.00%	0.17%	0.30%			0.00%	0.00%	11,35333148	0.008957788	0.90%	
66	0,00149711 0,002903092		0.00%	0.00%	0.00%	0.15%	0.29%	0.46%	0.00%	0.00%	0.00%	11.89084528	0.007824043	0.78%	
65	0.001254137 0.002923828		0.00%	0,00%	0.00%	-17-		0.36%	0.00%	0.00%	0.00%	12,43718101	0.007095208	0.71%	
64	0.001099294 0,003081206		0.00%	0.00%	0.00%	0.11%	0.31%		0.00%	0.00%	0.00%	12,99289896	0.00683665	0,68%	
63		0.002328286	0.00%	0.00%	0.00%	0.10%	0.35%	0.23%	0.00%	0.00%	0.00%	13.55859051	0.00704303	0.70%	
62	0.001036724 0.004104595		0.00%	0.00%	0.00%	0.10%	0.41%		0.00%	0.00%	0.00%	14.13488081	0.007670183	0.77%	
61	0.001090014 0.004954946		0.00%	0.00%	0,00%	0.11%	0.50%	0.16%		0.00%	0.00%	14,72243186	0.008338263	0.83%	
60	0.001044371 0.005840657		0.00%	0.00%	0.00%	0.10%	0,58%	0.15%	0.00%	0.00%	0.00%	15.32194579	0.00892196	0.89%	
59		0,001328635	0.00%	0.00%	0.00%	0.09%	0.67%	0.13%		0.00%	0.00%	15.93416847	0.00932190	0.93%	
58		0.001186084	0.00%	0.00%	0.00%	0.06%	0.76% 0.83%	0.12%	0.00%	0.00%	0.00%	16.55989363	0.009681909	0.97%	
57		0.001010316	0,00%	0.00%		0.04%	0.89%	0.10%	0.00%	0.00%	0.00%	17,19996718	0.010141393	1,01%	
56	0.000437464 0.008882779		0.00%	0.00%	0.00%		0.93%	0.06%	0.00%	0.00%	0,00%	17.85529222	0,010733339	1.07%	
55	0.000832765 0.009292434		0.00%	0.00%	0.00%	0.08%		0.04%	0.00%	0.00%	0.00%	18.52683446	0.010755539	1,11%	
54	0.001379459 0.009275038		0,00%	0.00%	0.00%	0.14% 0.19%	0.93%	0.04%	0.00%	0.00%	0.00%	19.21562828	0.011033333	1.12%	
53	0,00189885 0.009038527		0,00%	0.00%	0.00%	0.19%	0.86%	0.02%	0.00%	0.00%	0.00%	19.92278348	0.010909468	1,09%	
52	0,00217199 0.008599332		0.00%		0.00%	0,22%	0.80%	0.01%	0.00%	0.00%	0.00%	20.64949285	0.010303438	1.02%	
51	0.002112509 0.007987403		0,00%	0.00%			0.74%	0.01%	0.00%	0.00%	0.00%	21.3970406	0.009371459	0.94%	
50	0.001829369 0.007411538		0,00%	0,00%	0.00%	0,18%	0.74%	0.02%	0.00%	0.00%	0.00%	22.16681181	0.008552472	0.86%	
49	0.001476907 0.006870054		0.00%	0.00%	0.00%	0.15% 0.12%	0.67%	0.02%	0.00%	0.00%	0.00%	22.96030313	0.008332472	0.82%	
48	0.001191079 0.006661121 0.001052079 0.006451421		0.00%	0.00%	0.00%	0.12%	0.65%	0.05%	0.00%	0.00%	0.00%	23.7791347	0.007977228	0.82%	
47			0.00%	0.00%	0.00%	0.11%	0.65%	0.05%	0.00%	0.00%	0.00%	24,62506376	0.007377228	0.84%	
46 45	0.001017798 0.006687574 0.001006383 0.006924213		0.00%	0.00%	0.00%	0.10%	0.67%	0.09%	0.00%	0.00%	0.00%	25.5	0.008397806	0.88%	
	0.001006383 0.008924213		0.00%	0.00%	0.00%	0.10%	0.72%	0.11%	0.00%	0.00%	0.00%	26.406023	0.009227916	0.92%	
44	0,001003137 0,007395492		0.00%	0.00%	0.00%	0.10%	0.74%	0.11%	0.00%	0.00%	0.00%	27.34540211	0.009642689	0.96%	
43	0.001003137 0.007395492		0.00%	0.00%	0.00%	0.10%	0.75%	0.14%	0.00%	0.00%	0.00%	28,32061913	0.009938246	0.99%	
42	0.001108/03 0.007454585		0.00%	0,00%	0.00%	0.11%	0.75%	0.14%	0.00%	0.00%	0.00%	29,33439438	0.010293231	1.03%	
41			0.00%	0.00%	0.00%	0.17%	0.74%	0.14%	0,00%	0.00%	0.00%	30.38971661	0.010293231	1,05%	
40 39	0.001697964 0.007371153 0.002002337 0.007230095		0.00%	0.00%	0.00%	0.20%	0.72%	0.13%	0.00%	0.00%	0.00%	31,48987749	0.010566009	1.06%	
	0.002150193 0.006919654		0.00%	0.00%	0.00%	0.22%	0.69%	0.13%	0.00%	0.00%	0.00%	32.63851162	0.010317111	1.03%	
38 37	0.002190193 0.00691903		0.00%	0.00%	0.00%	0.22%	0.66%	0.12%	0.00%	0.00%	0.00%	33,83964295	0.009978071	1.00%	
36	0.00225025 0.006454133		0,00%	0.00%	0.00%	0.22%	0.65%	0.11%	0.00%	0.00%	0.00%	35.09773897	0,009790087	0.98%	
35	0,002460232 0,00628902		0.00%	0.00%	0.00%	0.25%	0.63%	0.10%	0.00%	0.00%	0.00%	36.41777417	0.009736571	0.97%	
34	0,002460232 0,00625927		0.00%	0.00%	0.00%	0.29%	0.63%	0.09%	0.00%	0.00%	0.00%	37.8053047	0.010053178	1.01%	
33	0.003206351 0.006362350		0.00%	0.00%	0.00%	0.32%	0.64%	0.08%	0.00%	0.00%	0.00%	39.26655658	0.010399498	1.04%	
32	0.003252467 0.00630695		0.00%	0.00%	0.00%	0.33%	0.63%	0.07%	0.00%	0.00%	0.00%	40.80853049	0.01029342	1.03%	
31	0.003232487 0.006338484		0.00%	0.00%	0.00%	0.31%	0,62%	0.07%	0.00%	0.00%	0.00%	42,4391268	0.00997299	1.00%	
30	0.002765244 0.00601645		0.00%	0.00%	0.00%	0.28%	0.60%	0,06%	0.00%	0.00%	0.00%	44.16729559	0.009377652	0.94%	
29		8 0.000586701	0.00%	0.00%	0.00%	0.27%	0.55%	0.06%	0.00%	0.00%	0.00%	46.00321776	0.008774714	0.88%	
28	0.002673081 0.00495015		0.00%	0.00%	0.00%	0.27%	0.50%	0,07%	0.00%	0.00%	0.00%	47,95852487	0.008284682	0.83%	
27	0.002678471 0.00422176		0.00%	0.00%	0.00%	0.27%	0.42%	0.08%	0.00%	0.00%	0.00%	50,04656789	0.00771563	0.77%	
26	0,002675946 0,00358991		0.00%	0.00%	0.00%	0.27%	0.36%	0,11%	0.00%	0.00%	0.00%	52.28274796	0.00733975	0.73%	
25	0.002664956 0.00304296		0.00%	0.00%	0.00%	0.27%	0.30%	0.14%	0.00%	0.00%	0.00%	54,68492647	0.007117765	0.71%	
24	0.002584759 0.00281855		0.00%	0.00%	0.00%	0.26%	0.28%	0.19%	0.00%	0.00%	0.00%	57.27393773	0.007290879	0.73%	
23	0.002331039 0.00291847		0.00%	0.00%	0.00%	0.23%	0.29%	0.24%	0.00%	0.00%	0.00%	60.07423533	0.007654049	0.77%	
22	0.001954089 0.00337715		0.00%	0.00%	0.00%	0.20%	0.34%	0.30%	0,00%	0.00%	0.00%	63.11471476	0.008312681	0.83%	
21	0.001668983 0.00407435		0.00%	0.00%	0.00%	0,17%	0.41%	0.36%	0.00%	0.00%	0.00%	66.42977115	0.009340274	0.93%	
20	0.001666851 0.00489219		0.00%	0.00%	0.00%	0.17%	0.49%	0.42%	0.00%	0.00%	0.00%	70.0606742	0.010779683	1.08%	
19	0.001858135 0.00584365		0.00%	0.00%	0.00%	0.19%	0.58%	0.48%	0.00%	0.00%	0.00%	74.05737738	0.012516366	1.25%	
18	0.002059483 0.00678211		0.00%	0.00%	0.00%	0.21%	0.68%	0,53%	0.00%	0.00%	0.00%	78.4809302	0.014177886	1.42%	
17	0.001975441 0.00764312		0.00%	0.00%	0.00%	0.20%	0.76%	0.59%	0,00%	0,00%	0.00%	83.40674177	0.015495427	1,55%	
16	0.001755778 0.00835750		0.00%	0.00%	0.00%	0.18%	0.84%	0.61%	0.00%	0.00%	0.00%	88.92906832	0.016250205	1.63%	
15	0.001512815 0.00885916		0.00%	0.00%	0.00%	0.15%	0.89%	0.64%	0.00%	0.00%	0.00%	95.16729559	0.016729199	1.67%	
14	0.001384025 0.00909391		0.00%	0.00%	0.00%	0.14%	0,91%	0.64%	0.00%	0.00%	0.00%	102,2749138	0.016855062	1.69%	-
13	0.001312108 0.00923796		0.00%	0.00%	0.00%	0.13%	0.92%	0.62%	0,00%	0,00%	0.00%	110,4526348	0.016736656	1.67%	
12	0.001228998 0.00906062	7 0.005929695	0.00%	0.00%	0.00%	0.12%	0.91%	0.59%	0.00%	0.00%	0,00%	119,9680678	0,01621932	1,62%	
11	0,001083905 0,00876189		0.00%	0.00%	0.00%	0.11%	0.88%	0.55%	0.00%	0.00%	0.00%	131 1861274	0.015321912	1,53%	
10	0.000897706 0.00814218		0.00%	0.00%	0.00%	0.09%	0.81%	0.49%	0.00%	0.00%	0.00%	144.6176864	0.013899651	1.39%	
9	0.000762884 0.00724544		0.00%	0.00%	0.00%	0.08%	0.72%	0.41%	0.00%	0.00%	0.00%	161 0006636	0.012138232	1.21%	
8	0.000647 0.00628797	8 0.003502557	0.00%	0.00%	0.00%	0.06%	0.63%	0.35%	0.00%	0.00%	0.00%	181,4419279	0.010437535	1.04%	
7	0.000519496 0.00528675	7 0.002812312	0.00%	0.00%	0.00%	0.05%	0.53%	0.28%	0.00%	0.00%	0.00%	207-6808339	0.008618565	0.86%	
6	0.000382175 0.00416744	2 0.002166425	0.00%	0.00%	0.00%	0.04%	0.42%	0.22%	0.00%	0.00%	0.00%	242.6162936	0.006716042	0.67%	
5	0.000253738 0.00303383	8 0.001541227	0.00%	0.00%	0.00%	0.03%	0.30%	0.15%	0.00%	0.00%	0.00%	291.4663337	0.004828803	0.48%	
4	0.000166327 0.00198870	1 0.001010284	0.00%	0.00%	0.00%	0.02%	0.20%	0.10%	0.00%	0.00%	0.00%	364.6669895	0.003165312	0.32%	
3	0.000100321 0.00114551	5 0.000581936	0.00%	0.00%	0,00%	0.01%	0.11%	0.06%	0.00%	0.00%	0.00%	486.5689855	0.001827772	0.18%	
2	5.00532E-05 0.00050937	6 0.000264797	0.00%	0.00%	0.00%	0.01%	0.05%	0.03%	0.00%	0.00%	0.00%	730.2244587	0.000824226	0.08%	
1	1.40444E-05 0.00012738	3 6.62194E-05	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00%	1460.894022	0.000207647	0.02%	

ATTACHMENT 4

Structural Analysis Report

Property Owner NA

Structural Type

24 ft Building

Site Address

2985 Berlin Turnpike, Newington

CT 06111

Latitude 41.669022

Longitude -72.721272

Verizon Wireless

Client

118 Flanders Road, 3rd Floor

Westborough, MA 01581

Site Type Macro

Site ID 324802

Site Name NEWINGTON SC 4 CT Rev.1

Location Code 467293

MasTec Network Solutions

Prepared by 1151 SE Cary Pkwy Suite 101

Cary, NC 27518

Job/Task Number VZW467190A01-NX062

Email MNS.Engineering@mastec.com

Phone (919) 674-5895

Rev 1

Date 07/19/2023

Rooftop Capacity 45.6%

Result Adequate

Dear Sir / Madam:

MasTec Network Solutions is pleased to submit this **Report** to determine the structural integrity of the referred structure.

Referenced documents used for this analysis are listed in the section DOCUMENTS & REFERENCES. This analysis has been performed in compliance with the:

- 2022 Building Code of the State of Connecticut (2021 IBC w/ State Amendment)
- ANSI/TIA-222-H w/ Addendums, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

Detailed design parameters are listed in Table 1. Analysis loading is detailed in Table 2.

Based on our analysis we have determined the following result:

Existing Building

45.6%

Adequate

MasTec Network Solutions appreciates the opportunity of providing continued engineering services. Should you have any questions, comments or require additional information, please do not hesitate to contact us.

Sincerely,

Analysis Prepared by:

Analysis Reviewed by:

Fernando Palacios

Raphael Mohamed, PE, Peng Senior Director of

Engineering

CT PE License No. 25112

DOCUMENTS & REFERENCES

- ➤ Construction Drawings, Location Code: 467293, Verizon Site Name: NEWINGTON SC 4 CT Rev.1, by Nexius, dated 01/25/2023.
- ➤ RFDS, Location Code: 467293, Verizon Site Name: NEWINGTON SC 4 CT Rev.1, by Verizon, dated 12/08/2022.
- ➤ Mount Analysis, Location Code: 467293, Verizon Site Name: NEWINGTON SC 4 CT Rev.1, by Mastec, dated 07/19/2023.
- ➢ Site Visit Photos and Notes, Location Code: 467293, Verizon Site Name: NEWINGTON SC 4 CT Rev.1, by Nexius, dated 01/23/2023.

DESIGN STANDARDS & PARAMETERS

TABLE 1 - STANDARDS & DESIGN PARAMETERS

Codes	s and Standards
Building Code	2022 State Building Code of Connecticut (2021 IBC
-	w/ State Amendment)
TIA Standard	ANSI/TIA-222-H w/ Addendums
Wi	nd Parameters
Ultimate Wind Speed (3-Sec)	118 mph
Basic Wind Speed with Ice	50 mph
Radial Ice Thickness	1.5 in
Exposure Category	C
Structure Class	II
Topographic Category	1
Seismic I	Design Parameters *
Ss	0.197
S_1	0.055

RESULTS & RECOMMENDATIONS

The change in vertical and lateral loading due to proposed installation is minimal when compared to existing structure's overall capacity. It is assumed that tripod mount is installed on the existing structure properly and causes no damage deteriorating the structural condition. It is assumed that the existing building and its roof are originally designed and maintained properly according to codes and standards and there are no damages and deflects. Based on our analysis, the **existing building** is determined to be **ADEQUATE** to support the proposed and existing loading.

It is required that all structural components and connections should be checked for tightness and good condition prior to installing the proposed structure and equipment. If the site conditions are different or do not meet requirements, the analysis result would not be valid and Mastec should be notified for re-evaluation.

LOADING

TABLE 2 - LOADING

Mount Elev.	Ant. Ctr. Elev. ft	Qty	Description	Carrier	Mount Type	Status	
		1	COMMSCOPE NNV 4SSP-360S-F2		Existing Rooftop Tripod TRPD-HD		
		1	COMMSCOPE SDX1926Q-43				
		1	SAMSUNG B2/B66A RRH ORAN (RF4439d-25A)	Verizon		Proposed	
24	31.5	1	SAMSUNG CBRS RRH-RT4401-48A	Wireless			
		1	Delta Rectifier		TKI D-HD	Existing	
		1	ANDREW NH36QS-DG-F0M			Existing to be	
		1	NOKIA UHIC B4 RRH 2x60-4R			Removed	

Standard Conditions for Providing Structural Consulting Services on Existing Structures

- 1. Mounting hardware is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorized by client). If the existing conditions are not as we have represented in this analysis, we should be contacted to evaluate the significance of the deviation and revise the assessment accordingly.
- 2. The structural analysis has been performed assuming that the hardware is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
- 3. The structural analysis provided is an assessment of the primary load carrying capacity of the hardware. We provided a limited scope of service. In some cases, we cannot verify the capacity of every weld, plate, connection detail, etc. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of some of the required details may not be possible. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
- 4. We cannot be held responsible for mounting hardware that is installed improperly or hardware that is loose or has a tendency of working loose over the lifetime of the mounting hardware. Our analysis has been performed assuming fully tightened connections, and proper installation and symmetry of the mounting hardware per manufacturer's instructions.
- 5. The structural analysis has been performed using information currently provided by the client and potentially field verified. We have been provided with a mounting arrangement for all telecommunications equipment, including antennas RRH's, TMA's, RRU's, diplexers, surge protection devices, etc. Our analysis has been based upon a particular mounting arrangement. We are not responsible for deviations in the mounting arrangements that may occur over time. If deviations in equipment type or mounting arrangements are proposed, then we should be contacted to revise the recommendations of this structural report.
- 6. We cannot be held responsible for temporary and unbalanced loads on mounting hardware. Our analysis is based on a particular mounting arrangement or as-build field condition. We are not responsible for the methods and means of how the mounting arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie off of tower riggers, personnel, and their equipment, etc.
- 7. Steel grade and strength is unknown and cannot be field tested. We cannot be held responsible for equipment manufactured from inferior steel or bolts. Our analysis assumes that standard structural grade steel has been used by the equipment manufacturer for all assembled parts of the mounting apparatus. Acceptable steels and connection components are specified by the American Institute of Steel Construction. It is assumed all welded connections are performed in the shop under the latest American
- 8. Welding Society Code. No field welds are permitted or assumed for the existing pre-manufactured equipment. In case no accurate info available, following material assumptions were used:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM 500 (GR B-46)
HSS (Round)	ASTM 500 (GR B-42)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325
U-Bolts	SAE 429 Gr.2

Appendix #1: Loading Parameters and Calculations

ASCE 7 Hazards Report


Address:

No Address at This Location

ASCE/SEI 7-16 41.669022 Latitude: Standard:

Longitude: -72.721272 Risk Category: ||

D - Stiff Soil Elevation: 113.62 ft (NAVD 88) Soil Class:

Wind

Results:

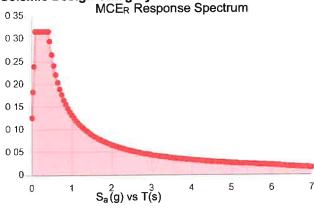
118 Vmph Wind Speed 75 Vmph 10-year MRI 25-year MRI 84 Vmph 90 Vmph 50-year MRI 97 Vmph 100-year MRI

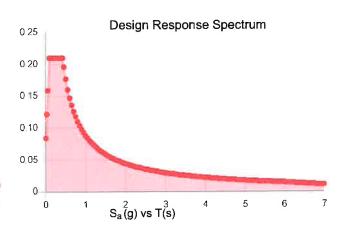
ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2 Data Source:

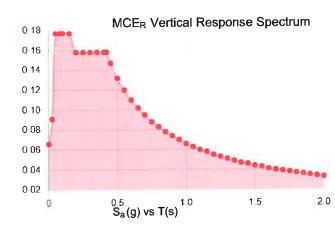
Wed Jan 25 2023 Date Accessed:

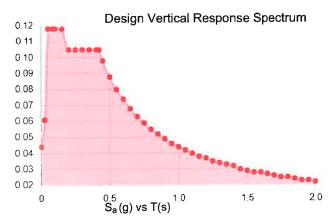
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


D - Stiff Soil


Site Soil Class:


Results:


S _s :	0.197	S _{D1} :	0.088
S ₁ :	0.055	T_L :	6
Fa:	1.6	PGA:	0.108
F _v :	2.4	PGA M:	0.171
S _{MS} :	0.316	F _{PGA} :	1.584
S _{M1} :	0.132	l _e :	1
S _{DS} :	0.21	C _v :	0.7

Seismic Design Category: B

Data Accessed:

Wed Jan 25 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness:

1.50 in.

Concurrent Temperature:

15 F

Gust Speed

50 mph

Data Source:

Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed:

Wed Jan 25 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Mount Analysis Loading Calculations

Site Name	NEWINGTON SC 4 CT		
Site IO	17022404		
Location Code	467293	Mount Existing?	Existing
TIA-222 Code Rev	н	Risk Category	11.

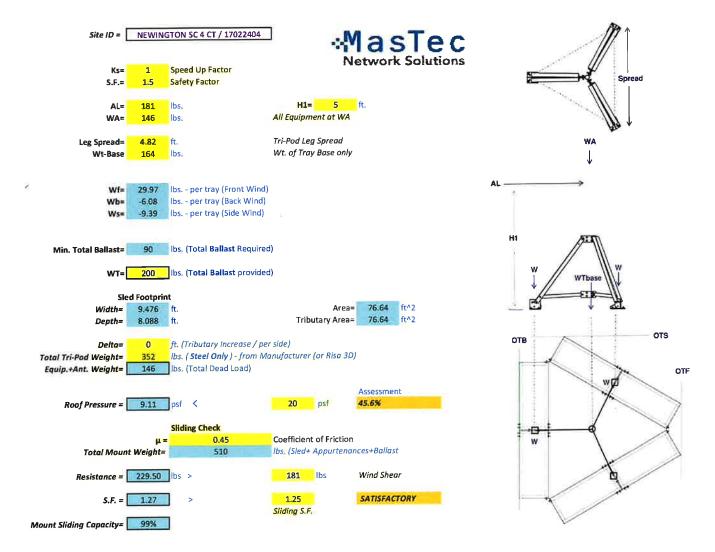
Bas	ic Parameters		
Mount Height	31,5	ft	
Exposure Category	С	(8,C, or D)	
Ultimate Wind Speed	118,00	mph	
Ice Wind Speed	50	mph	
Design Ice Thickness, t _i	1,5	ln ln	
Maintenance Wind Speed	30	mph	
Run Earthquake Analysis?	Yes		
Ground Elevation	113.62	ft, ASCE Hazard	Tool
S ₁	0.055	USGS	
Sos	0,21	2.7.5	
Vertical Seismic Loads, E _v	0.042	2.7.6	
Seismic Response Coefficient, C,	0.105	2.7.7.1.1	
C, Min	0.030	2.7.7.1.1	

Mou	Mounting Pipes Orientation Drawn Top-Down							
Risa 3D Label	Elevation (ft)	Length (in)	Diameter (in)					
M64	31.5	72	2.38					
M66	31.5	12.828	1.629					
M65	31.5	23.1	1.625					
			-					
		_	-					
		_						
		5						
		4						
			-					

Legend	
Input	
Calculated	
Notes	

	Wind	Parameters				
Gust Effect Factor, G _b	1.000	2.6.9	K,	1,000	2.6.7	
Kz	0.992	2.6.5.2	K,	0,996	2.6.8	
K _{2t}	1,000	2.6.6	Ka	0,900	16.6	
K _d	0.950	Table 2-2	than 50', u	Rooftop Struc nobstructed f	or OD deg an	
q,	30,215	psf, 2.6.11.6	protruding 10' above surrounding			
C/D	117.550	Table 2-9	Denta ne	buildings Ks must be calculated.		
t _{la}	1.493	in, 2.6.10				
q _{ie}	5.425	psf, 2.6.9.6	i, ice	1.000	Table 2-3	
C/D tz	49.809	Table 2-9	I, EQ	1.000	Table 2-3	
Q _{Mahtemore}	1.955	psf, 2.6.9.6				
C/D Maintenance	29.886	Table 2-9				
ice Dead, Grating	0.013935023	ksf				

	Appurtenances Appurtenances							
Model	Туре	Height (in)	Width (in)	Depth (In)	Weight (lbs)			
NNV4SSP-360S-F2	Antenna	24	14	14	31			
CBRS RRH - RT4401-48A	RRU, TMA, Etc.	14	. 8	4	25			
SDX1926Q-43	RRU, TMA, Etc.	4	- 6	3	7			
SAMSUNG RF4439d-25A	RRU, TMA, Etc.	14.96	14.96	10.04	74.7			
EXISTING DELTA RECTIFIER	RRU, TMA, Etc.	6	6	6	8			


Structural Analysis Loading Comparison

Status	Carrier	Qty.	Model Name	Height (in)	Width (in)	Depth (in)	Weight (lbs.)	Front Area (sqft)	Side Area (sqft)	Total Weight (lbs.)
Existing	AT&T	1	NH36QS-DG-F0M	28.661	12	12	26.676	2.4	0.0	26.7
Existing	AT&T	1	NOKIA UHIC B4 RRH2x60-4R	36.61	11	5.9	70	2.8	0.0	70.0
				#		*				
Final	VZW	1	NNV4SSP-360S-F2	24	14	14	31	2.3	0.0	31.0
Final	VZW	1	CBRS RRH - RT4401-48A	14	8	4	25	8.0	0.0	25.0
Final	VZW	1	SDX1926Q-43	4	6	3	7	0.2	0.0	7.0
Final	VZW	1	SAMSUNG RF4439d-25A	14.96	14.96	10.04	74.7	1,6	0.0	74.7

Change in Loading

Loading Scenario	EPA (Sqft)	EPA Change	Wt (lbs.)	Wt Change
Existing Loading	5.2	-7%	96.7	42%
Final Loading	4.8	-770	137.7	42%

Change in vertical and lateral loading due to proposed installations is minimal when compared to existing structure's overall capacity

Mount Analysis Report

Property Owner NA

Structural Type

24 ft Building

Site Address

2985 Berlin Turnpike, Newington, CT 06111

Latitude

41.669022

Longitude -72.721272

Verizon Wireless

Client

118 Flanders Road, 3rd Floor

Westborough, MA 01581

Site Type Small-Cell

Site ID

2785782

Site Name NEWINGTON_SC_4_CT Rev.1

Location Code

467293

Structural Type

Rooftop Tripod TRPD-HD

Prepared by

MasTec Network Solutions 1151 SE Cary Pkwy Suite 101

Cary, NC 27518

Job/Task Number

VZW467190A01-NX064

Email MNS.Engineering@mastec.com

Phone

(919) 674-5895

Rev

Date 07/19/2023

Capacity

99%

Result Adequate

Dear Sir / Madam:

MasTec Network Solutions is pleased to submit this **Report** to determine the structural integrity of the referred structure.

Referenced documents used for this analysis are listed in the section DOCUMENTS & REFERENCES. This analysis has been performed in compliance with the:

- 2022 State Building Code of Connecticut (2021 IBC w/ State Amendment)
- ANSI/TIA-222-H w/ Addendums, Structural Standard for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures.

Detailed design parameters are listed in Table 1. Analysis loading is detailed in Table 2.

Based on our analysis we have determined the following result:

Existing Roof Top Tripod

99.9%

Adequate

MasTec Network Solutions appreciates the opportunity of providing continued engineering services. Should you have any questions, comments or require additional information, please do not hesitate to contact us.

Sincerely,

Analysis Prepared by:

Analysis Reviewed by:

Fernando Palacios

Raphael Mohamed, PE, Peng Senior Director of Engineering CT PE License No. 25112

DOCUMENTS & REFERENCES

- ➤ Construction Drawings, Location Code: 467293, Verizon Site Name: NEWINGTON_SC_4_CT Rev.1, by Nexius, dated 01/25/2023.
- ➤ RFDS, Location Code: 467293, Verizon Site Name: NEWINGTON_SC_4_CT Rev.1, by Verizon, dated 12/08/2022.
- ➤ Structural Analysis, Location Code: 467293, Verizon Site Name: NEWINGTON_SC_4_CT Rev.1, by Mastec, dated 07/19/2023.
- ➤ Site Visit Photos and Notes, Location Code: 467293, Verizon Site Name: NEWINGTON_SC_4_CT Rev.1, by Nexius, dated 01/23/2023.

DESIGN STANDARDS & PARAMETERS

TABLE 1 - STANDARDS & DESIGN PARAMETERS

Codes a	and Standards
Building Code	2022 State Building Code of Connecticut (2021 IBC
	w/ State Amendment)
TIA Standard	ANSI/TIA-222-H w/ Addendums
Wind	l Parameters
Ultimate Wind Speed (3-Sec)	118 mph
Basic Wind Speed with Ice	50 mph
Radial Ice Thickness	1.50 in
Exposure Category	C
Structure Class	II
Topographic Category	1
Seismic De	esign Parameters
Ss	0.197
S_1	0.055

RECOMMENDATIONS

It is assumed that the existing building and its roof are originally designed and maintained properly according to codes and standards and there is no damage and deflects. Based on our analysis, the **existing rooftop Tripod structures** is determined to be **ADEQUATE** to support the proposed and existing loading, with min 200 lbs ballast weight evenly distributed at the mount base trays.

*See construction drawings for proposed modification sketch.

It is required that all structural components and connections should be checked for tightness and good condition prior to installing the proposed structure and equipment. If the site conditions are different or do not meet requirements, the analysis result would not be valid and Nexius should be notified for re-evaluation.

TABLE 2 - LOADING

Mount Elev. ft	Ant. Ctr. Elev. ft	Qty	Description	Carrier	Mount Type	Status
		1	COMMSCOPE NNV 4SSP-360S-F2			
		1	COMMSCOPE SDX1926Q-43			
		1	SAMSUNG B2/B66A RRH ORAN (RF4439d-25A)	Verizon	Existing	Proposed
24	31.5	1	SAMSUNG CBRS RRH-RT4401-48A	Wireless	Rooftop Tripod TRPD-HD	
		1	Delta Rectifier			Existing
		1	ANDREW NH36QS-DG-F0M			Existing to be
		1	NOKIA UHIC B4 RRH 2x60-4R			Removed

ANALYSIS

Risa 3D (Version 17), a commercially available finite element method-based software package for structural analysis, was used to create a three-dimensional model of the structure and calculate member stresses for required loading cases. Selected output from the analysis is included in APPENDICES.

Capacity percentages below 105% are considered acceptable for structure components.

ANALYSIS RESULTS

Structural Component	Capacity Percentage	Result	Notes
Frame Horizontal Bracings	7%	Pass	1
Tripod Double Angles	7%	Pass	1
Tripod Pipe	20%	Pass	1
Horizontal Bracings	3%	Pass	1

^{1.} Please see APPENDIX 2 for calculation details

Sliding Component	Capacity Percentage	Result	Notes
Mount Resistance	99%	Pass	1

^{1.} Please see APPENDIX 2 for calculation details

Standard Conditions for Providing Structural Consulting Services on Existing Structures

- 1. Mounting hardware is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorized by client). If the existing conditions are not as we have represented in this analysis, we should be contacted to evaluate the significance of the deviation and revise the assessment accordingly.
- 2. The structural analysis has been performed assuming that the hardware is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
- 3. The structural analysis provided is an assessment of the primary load carrying capacity of the hardware. We provided a limited scope of service. In some cases, we cannot verify the capacity of every weld, plate, connection detail, etc. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of some of the required details may not be possible. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
- 4. We cannot be held responsible for mounting hardware that is installed improperly or hardware that is loose or has a tendency of working loose over the lifetime of the mounting hardware. Our analysis has been performed assuming fully tightened connections, and proper installation and symmetry of the mounting hardware per manufacturer's instructions.
- 5. The structural analysis has been performed using information currently provided by the client and potentially field verified. We have been provided with a mounting arrangement for all telecommunications equipment, including antennas RRH's, TMA's, RRU's, diplexers, surge protection devices, etc. Our analysis has been based upon a particular mounting arrangement. We are not responsible for deviations in the mounting arrangements that may occur over time. If deviations in equipment type or mounting arrangements are proposed, then we should be contacted to revise the recommendations of this structural report.
- 6. We cannot be held responsible for temporary and unbalanced loads on mounting hardware. Our analysis is based on a particular mounting arrangement or as-build field condition. We are not responsible for the methods and means of how the mounting arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie off of tower riggers, personnel, and their equipment, etc.
- 7. Steel grade and strength is unknown and cannot be field tested. We cannot be held responsible for equipment manufactured from inferior steel or bolts. Our analysis assumes that standard structural grade steel has been used by the equipment manufacturer for all assembled parts of the mounting apparatus. Acceptable steels and connection components are specified by the American Institute of Steel Construction. It is assumed all welded connections are performed in the shop under the latest American
- 8. Welding Society Code. No field welds are permitted or assumed for the existing pre-manufactured equipment. In case no accurate info available, following material assumptions were used:

Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)
HSS (Rectangular)	ASTM 500 (GR B-46)
HSS (Round)	ASTM 500 (GR B-42)
Pipe	ASTM A53 (GR 35)
Connection Bolts	ASTM A325
U-Bolts	SAE 429 Gr.2

ASCE 7 Hazards Report

Address:

No Address at This Location

Standard: ASCE/SEI 7-16 Latitude: 41.669022 Risk Category: || Longitude: -72.721272

Soil Class: D - Stiff Soil Elevation: 113.62 ft (NAVD 88)

Wind

Results:

 Wind Speed
 118 Vmph

 10-year MRI
 75 Vmph

 25-year MRI
 84 Vmph

 50-year MRI
 90 Vmph

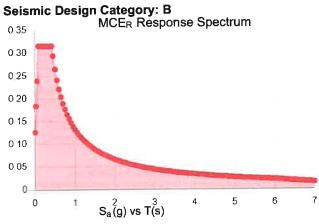
 100-year MRI
 97 Vmph

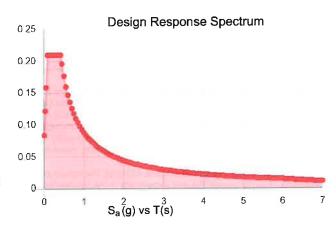
Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

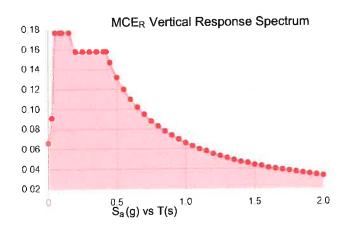
Date Accessed: Wed Jan 25 2023

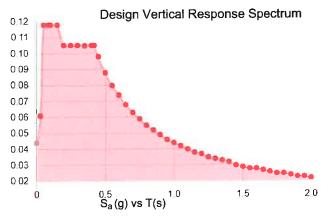
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.




D - Stiff Soil


Site Soil Class:


Results:

S _s :	0.197	S _{D1} :	0.088
S ₁ :	0.055	T _L :	6
F _a :	1.6	PGA:	0.108
F _v :	2.4	PGA M	0.171
S _{MS} :	0.316	F _{PGA} :	1.584
S _{M1} :	0.132	l _e :	1
S _{DS} :	0.21	C_v :	0.7

Data Accessed:

Wed Jan 25 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness: 1.50 in.

Concurrent Temperature: 15 F

Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Wed Jan 25 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

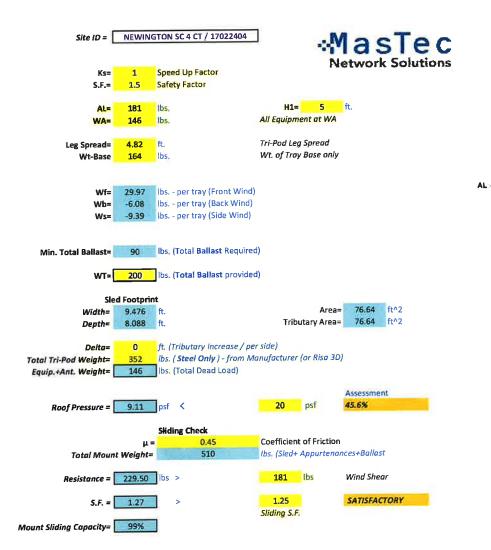
In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

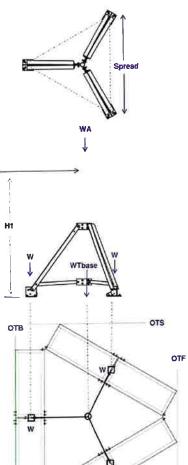
Mount Analysis Loading Calculations

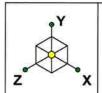
Site Name	NEWINGTON SC 4 CT		
Site ID	17022404		
Location Code	467293	Mount Existing?	Existing
TIA-222 Code Rev.	н	Risk Category	11

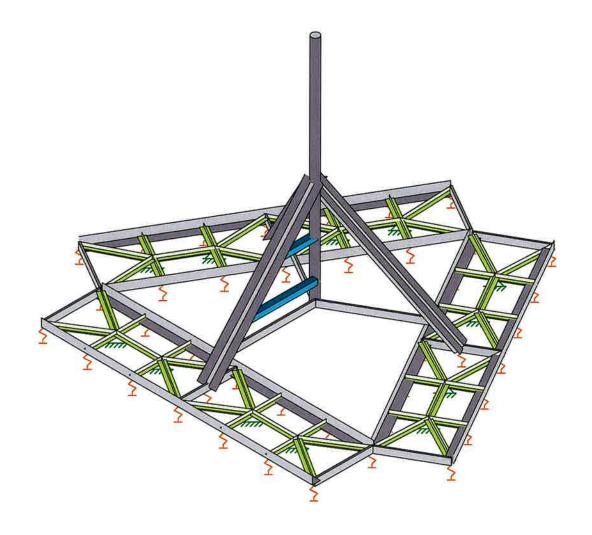
Bas	c Parameters	
Mount Height	31,5	ft
Exposure Category	С	(B,C, or D)
Ultimate Wind Speed	118.00	mph
ice Wind Speed	50	mph
Design Ice Thickness, t ₁	1.5	in
Maintenance Wind Speed	30	mph
Run Earthquake Analysis?	Yes	
Ground Elevation	113.62	ft, ASCE Hazard Tool
S ₁	0.055	USGS
S _{DS}	0.21	2:7\S:
Vertical Seismic Loads, E _v	0.042	2.7.6
Seismic Response Coefficient, C,	0.105	2.7.7.1.1
C. Min	0.030	2.7.7.1.1

Mou	nting Pipes Orientation Drawn Top-L		
Risa 3D Label	Elevation (ft)	Length (in)	Dlameter (in)
M64	31,5	72	2.38
M66	31.5	12 828	1.629
M65	31.5	23.1	1.625
		_	

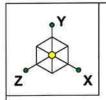

Legend	
Input	
Calculated	
Notes	

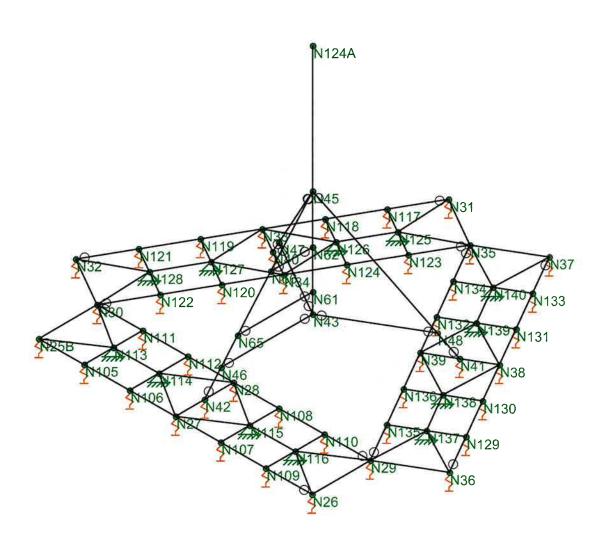

	Wind	Parameters				
Gust Effect Factor, Gh	1.000	2.6.9	K,	1.000	2.6.7	
K ₇	0.992	2,6.5.2	K,	0,996	2.6.8	
K ₂₁	1.000	2.6.6	K _n	K _n 0.900		
K _d	0.950	Table 2-2		*Note for Rootsop Structures greate		
				not immed f		
q ₂	30.215	psf, 2.6.11.6	protruding 20' above surrounding			
C/D	117.550	Table 2-9	buildings Ks must be calculated.			
t _{tz}	1.493	in; 2.6:10				
q _{lz}	5.425	psf, 2.6.9.6	I, Ice	1.000	Table 2-3	
C/D tr	49.809	Table 2-9	I, EQ	1.000	Table 2-3	
q Maintenance	1.955	psf, 2.6.9.6				
C/D Maintenance	29.886	Table 2-9	1/2			
ice Dead, Grating	0.013935023	ksf			_	

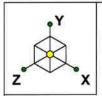

	Арр	urtenances	The second	and the same	
Model	Type	Height (in)	Width (in)	Depth (in)	Weight (lbs)
NNV4SSP-360S-F2	Antenna	24	14	14	31
CBRS RRH - RT4401-48A	RRU, TMA, Etc.	14	B	4	25
SDX1926Q-43	RRU, TMA, Etc.	4	6	3	7
SAMSUNG RF4439d-25A	RRU, TMA, Etc.	14.96	14.96	10.04	74.7
EXISTING DELTA RECTIFIER	RRU, TMA, Etc.	6	6	6	8

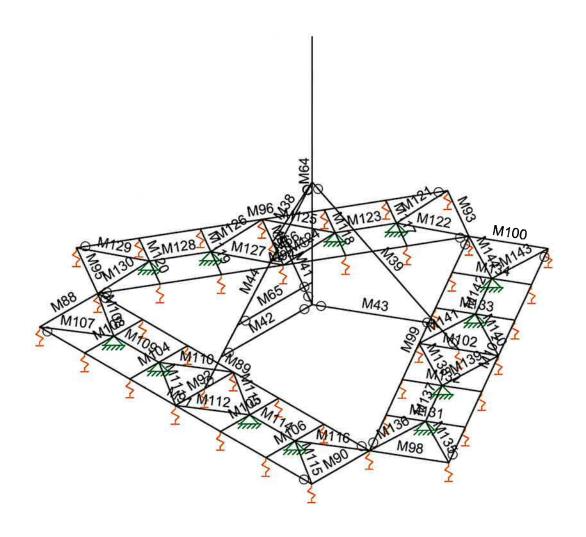


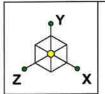
Pipe Mount	Antenna	Quantity	Orientation (deg)	Front Exposed (%)	Side Exposed (%)	Туре	Height (in)	Width (in)	Depth (in)	Weight (lbs)	Front CaAa (ft ²)	Side CaAs (ft ²)	Front F _a (kips)	Side F _A (kips	Top %	Bottom %
M64	NNV4SSP-360S-F2	1	0	100.0%	100.0%	Antenna	24.000	14.000	14.000	31.000	2.800	2.800	0.085	0,085	5.0%	5.0%
M64	CBRS RRH - RT4401-48A	1	0	100.0%	100.0%	RRU, TMA, Etc.	14.000	8.000	4.000	25,000	0.933	0.484	0.028	0.015	35.0%	35.0%
M64	SDX1926Q-43	1	90	100,0%	100.0%	RRU, TMA, Etc.	4.000	6.000	3.000	7.000	0.200	0,100	0,003	0,006	70.0%	70.0%
M64	SAMSUNG RF4439d-25A	1	0	100.0%	100.0%	RRU, TMA, Etc.	14.960	14.960	10.040	74.700	1.865	1.252	0.056	0.038	35.0%	35,0%
M64																
M64																
M66	EXISTING DELTA RECTIFIER	0.5	0	100,0%	100.0%	RRU, TMA, Etc.	6.000	6.000	6,000	4.000	0.300	0.300	0.005	0.005	50.0%	50,0%
M66																
M66																
M66																
M66																
M66												1				
M65	EXISTING DELTA RECTIFIER	0.5	0	100.0%	100.0%	RRU, TMA, Etc.	6.000	6.000	6.000	4.000	0.300	0.300	0.005	0.005	50.0%	50.0%
M65																
M65																
M65							+									
M65																100
M65																

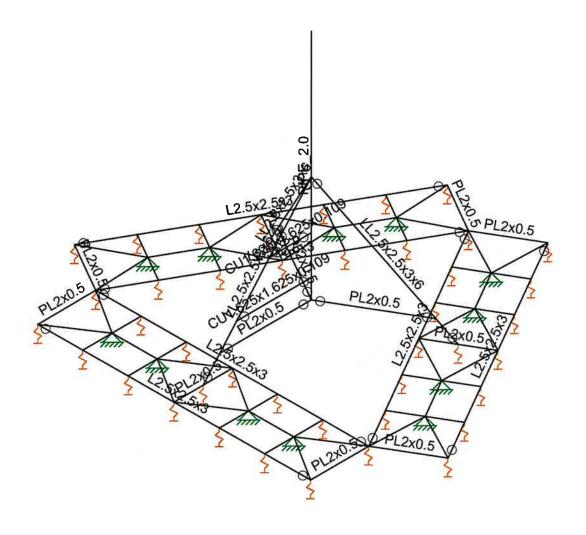


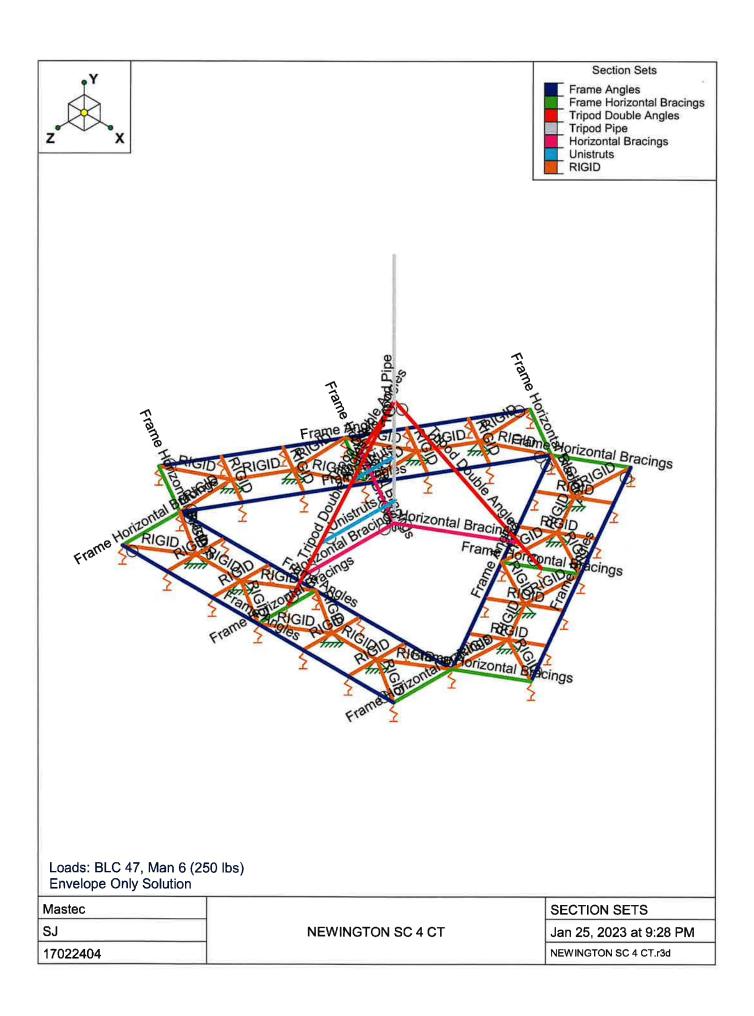


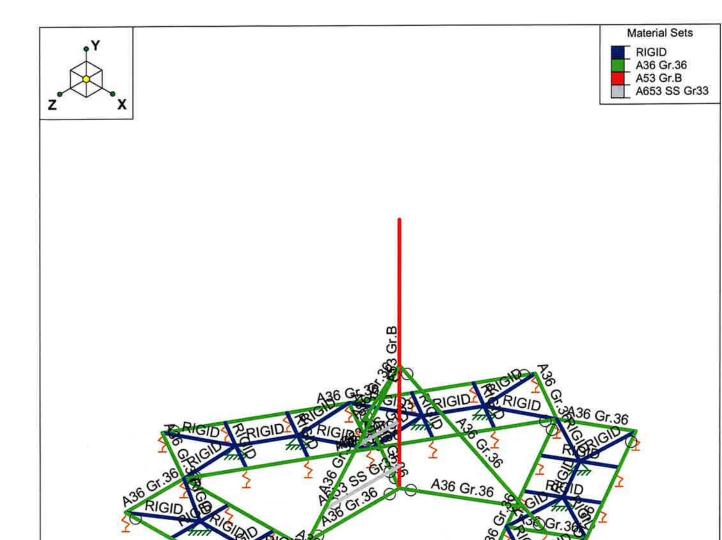


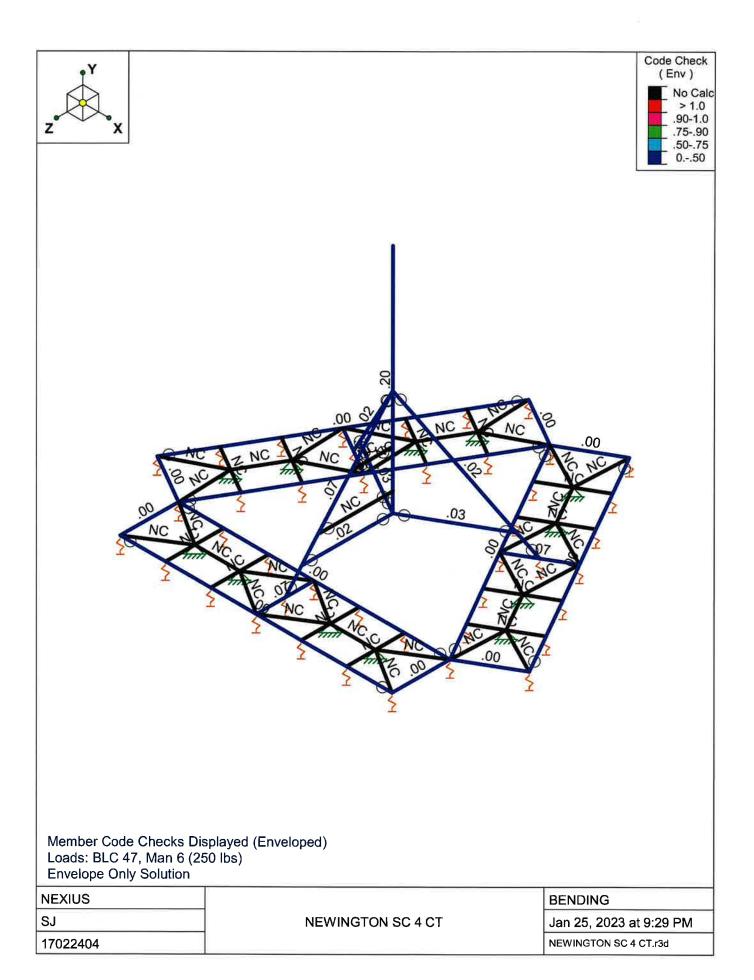

Mastec		RENDERING
SJ	NEWINGTON SC 4 CT	Jan 25, 2023 at 9:28 PM
17022404		NEWINGTON SC 4 CT.r3d

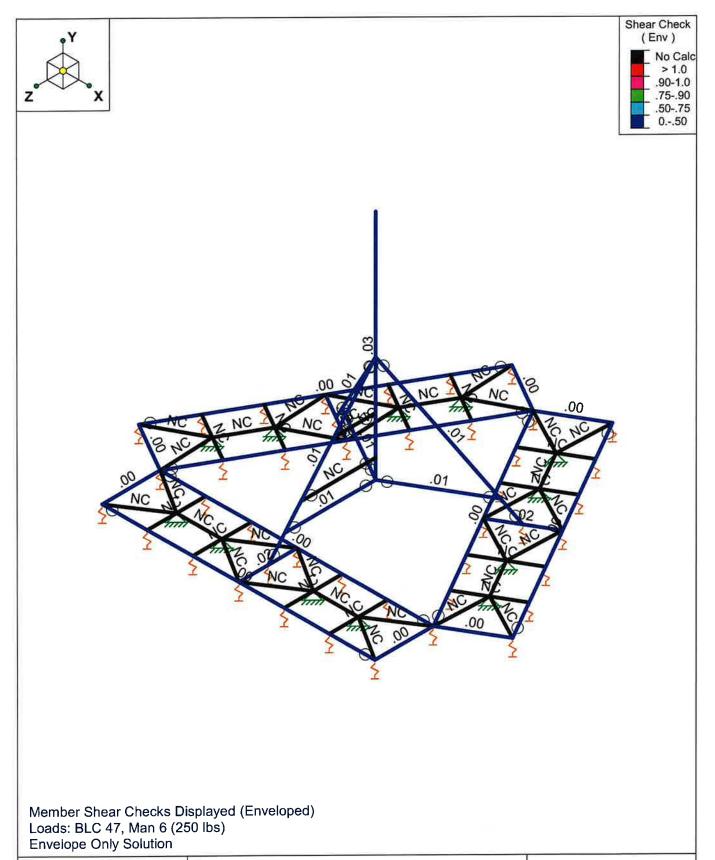


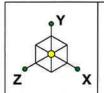

Mastec		NODES
SJ	NEWINGTON SC 4 CT	Jan 25, 2023 at 9:28 PM
17022404		NEWINGTON SC 4 CT.r3d

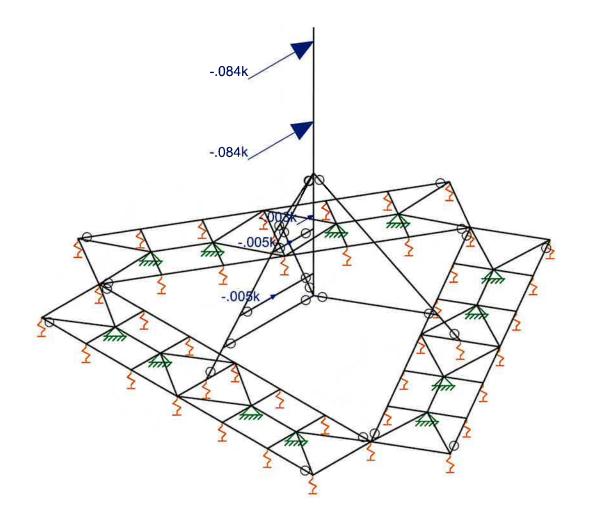



Mastec		LABELS
SJ	NEWINGTON SC 4 CT	Jan 25, 2023 at 9:28 PM
17022404		NEWINGTON SC 4 CT.r3d




Mastec		SHAPES
SJ	NEWINGTON SC 4 CT	Jan 25, 2023 at 9:28 PM
17022404		NEWINGTON SC 4 CT.r3d




NEXIUS		MATERIAL SETS
SJ	NEWINGTON SC 4 CT	Jan 25, 2023 at 9:29 PM
17022404		NEWINGTON SC 4 CT.r3d

Mastec		SHEAR CHECK
SJ	NEWINGTON SC 4 CT	Jan 25, 2023 at 9:29 PM
17022404		NEWINGTON SC 4 CT.r3d

Loads: BLC 3, Full Wind Antenna (0 Deg) Envelope Only Solution

Mastec		FRONT WIND
SJ	NEWINGTON SC 4 CT	Jan 25, 2023 at 9:29 PM
17022404		NEWINGTON SC 4 CT.r3d

NEXIUS

17022404 NEWINGTON SC 4 CT

Jan 25, 2023 9:29 PM Checked By: JH

Hot Rolled Steel Properties

,	Label	E [ksi]	G [ksi]	Nu	Therm (/1.	Density[k/	. Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8	A529	29000	11154	.3	.65	.49	50	1.5	65	1.2
9	A500 Gr.C	29000	11154	.3	.65	.49	46	1.4	62	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	Frame Angles	L2.5x2.5x3	Beam	Single Angle	A36 Gr.36	Typical	.901	.535	.535	.011
2	Frame Horizontal Braci	PL2x0.5	Beam	RECT	A36 Gr.36	Typical	1	.021	.333	.07
3	Tripod Double Angles	LL2.5x2.5x3x6	Column	Double Angle (3/8	A36 Gr.36	Typical	1.8	3.09	1.07	.023
4	Tripod Pipe	PIPE 2.0	Column	Pipe	A53 Gr.B	Typical	1.02	.627	.627	1.25
5	Horizontal Bracings	PL2x0.5	Beam	RECT	A36 Gr.36	Typical	1	.021	.333	.07

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
1	N25B		CS6				
2	N26		CS6				
3	N27		CS6				
4	N28		CS6				
5	N29		CS12				
6	N30		CS9				
7	N31		CS9				
8	N32		CS9				
9	N33		CS9				
10	N34		CS9				
11	N35		CS12				
12	N36		CS9				
13	N37		CS6				
14	N38		CS9				
15	N39		CS9				
16	N40		CS3				
17	N41		CS3				
18	N42		CS3				
19	N105		CS3				
20	N106		CS3				
21	N107		CS3				
22	N108		CS3				IF E W I AN
23	N109		CS3				
24	N110		CS3				
25	N111		CS3				
26	N112		CS3				
27	N113	Reaction	Reaction	Reaction			
28	N114	Reaction	Reaction	Reaction			
29	N115	Reaction	Reaction	Reaction			
30	N116	Reaction	Reaction	Reaction			
31	N117	1,00000	CS3				
32	N118		CS3				
33	N119		CS3				

Company : Designer : Job Number :

: NEXIUS : SJ : 17022404

Name : NEWINGTON SC 4 CT

Jan 25, 2023 9:29 PM Checked By: JH

Joint Boundary Conditions (Continued)

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]
34	N120		CS3			- COMPANDED NO.	
35	N121		CS3				
36	N122		CS3				
37	N123		CS3				
38	N124		CS3				
39	N125	Reaction	Reaction	Reaction			
40	N126	Reaction	Reaction	Reaction			
41	N127	Reaction	Reaction	Reaction			
42	N128	Reaction	Reaction	Reaction			
43	N129		CS3				
44	N130		CS3				
45	N131		CS3				
46	N132		CS3			and the same	
47	N133		CS3				
48	N134		CS3				
49	N135		CS3				
50	N136		CS3				
51	N137	Reaction	Reaction	Reaction			
52	N138	Reaction	Reaction	Reaction			
53	N139	Reaction	Reaction	Reaction			
54	N140	Reaction	Reaction	Reaction			

Hot Rolled Steel Design Parameters

	Label	Shape	Length	Lbyv[ft]	Lbzz[ft]	Lcomp to	Lcomp bo	.L-torque	Kyy	Kzz	Сь	Funct
1	M38	Tripod Double Angles	4.277	3.62	3.62	3.62	3.62	3.62				Lateral
2	M39	Tripod Double Angles	4.277	3.62	3.62	3.62	3.62	3.62		The second		Lateral
3	M41	Horizontal Bracings	2.354			Lbw						Lateral
4	M42	Horizontal Bracings	2.354			Lbyy						Lateral
5	M43	Horizontal Bracings	2.354			Lbvv						Lateral
6	M44	Tripod Double Angles	4.277	3.62	3.62	3.62	3.62	3.62				Lateral
7	M88	Frame Horizontal Bracings	1.5			Lbvv						Lateral
8	M89	Frame Angles	7.031	3.515	3.515	3.515	3.515	3.515				Lateral
9	M90	Frame Horizontal Bracings	1.5			Lbw						Lateral
10	M91	Frame Angles	7.031	3.515	3.515	3.515	3.515	3.515				Lateral
11	M92	Frame Horizontal Bracings	1.5			Lbvv						Lateral
12	M93	Frame Horizontal Bracings	1.5			Lbvv						Lateral
13	M94	Frame Angles	7.032	3.515	3.515	3.515	3.515	3.515				Lateral
14	M95	Frame Horizontal Bracings	1.501			Lbw						Lateral
15	M96	Frame Angles	7.031	3.515	3.515	3.515	3.515	3.515				Lateral
16	M97	Frame Horizontal Bracings	1.501			Lbw						Lateral
17	M98	Frame Horizontal Bracings	1.501			Lbw						Lateral
18	M99	Frame Angles	7.033	3.515	3.515	3.515	3.515	3.515				Lateral
19	M100	Frame Horizontal Bracings	1.501			Lbw						Lateral
20	M101	Frame Angles	7.031	3.515	3.515	3.515	3.515	3.515				Lateral
21	M102	Frame Horizontal Bracings	1.501			Lbw						Lateral
22	M64	Tripod Pipe	6	9.75	9.75	9.75	9.75	9.75				Lateral

Joint Loads and Enforced Displacements (BLC 42: Man 1 (500 lbs))

	Joint Label	L,D,M	Direction	Magnitude((k,k-ft), (in,rad), (k*s^2/ft
1	7,511,50,404,	77778871850	332773777337823333	0

Joint Loads and Enforced Displacements (BLC 43 : Man 2 (500 lbs))

Joint Label L,D,M Direction Magnitude[(k,k-ft), (in,rad), (k*s^2/ft...

Company Designer Job Number

NEXIUS 17022404

NEWINGTON SC 4 CT Model Name

Jan 25, 2023 9:29 PM Checked By: JH

Joint Loads and Enforced Displacements (BLC 43: Man 2 (500 lbs)) (Continued) Magnitude[(k,k-ft), (in,rad), (k*s^2/ft. Joint Label L,D,M Direction 0 1 Joint Loads and Enforced Displacements (BLC 44 : Man 3 (500 lbs) Magnitude[(k,k-ft), (in,rad), (k*s^2/ft Joint Label L,D,M Direction 0 1 Joint Loads and Enforced Displacements (BLC 45: Man 4 (250 lbs)) Magnitude[(k,k-ft), (in,rad), (k*s^2/ft. L,D,M Direction Joint Label 0 1 Joint Loads and Enforced Displacements (BLC 46: Man 5 (250 lbs)) Magnitude((k,k-ft), (in,rad), (k*s^2/ft L,D,M Direction Joint Label 1 0 Joint Loads and Enforced Displacements (BLC 47: Man 6 (250 lbs)) Magnitude[(k,k-ft), (in,rad), (k*s^2/ft Joint Label L,D,M Direction 0 1 Member Point Loads (BLC 1 : Dead) Magnitude[k,k-ft] Location[ft,%] Direction Member Label -.016 %5 1 M64 %35 -.0252 M64 %70 -.007 3 M64 %35 -.075 4 M64 %50 -.004 5 M66 -.004 %50 M65 6 %5 -.016 M64 Member Point Loads (BLC 2 : Ice Dead) Location[ft.%] Magnitude[k,k-ft] Member Label Direction %5 -.039 M64 -.022 %35 M64 -.005%70 M64 %35 -.044 M64 4 %50 -.0055 M66 %50 -.005M65 6 %5 -.039 M64 Member Point Loads (BLC 3 : Full Wind Antenna (0 Deg)) Magnitude[k,k-ft] Direction Location[ft,%] Member Label %5 -.042 M64 1 -.028 %35 M64 2 %70 -.003 M64 3 -.056 %35 M64 4 -.005 %50 5 M66 %50 -.0056 M65 -.042%5 M64 <u> Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg))</u> Location[ft.%] Magnitude[k,k-ft] Direction Member Label -.037%5 M64

%35

-.021

2

M64

Company : N Designer : S Job Number : 1 Model Name : N

NEXIUS SJ 17022404

Number : 17022404 del Name : NEWINGTON SC 4 CT Jan 25, 2023 9:29 PM Checked By: JH

Member Point Loads (BLC 4 : Full Wind Antenna (30 Deg)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
3	M64	Z	003	%70
4	M64	Z	045	%35
5	M66	Z	004	%50
6	M65	Z	004	%50
7	M64	Z	037	%5
8	M64	X	.021	%5
9	M64	X	.012	%35
10	M64	X	.002	%70
11	M64	X	.026	%35
12	M66	X	.002	%50
13	M65	X	.002	%50
14	M64	X	.021	%5

Member Point Loads (BLC 5: Full Wind Antenna (60 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft.%]
1	M64	Z	021	%5
2	M64	Z	009	%35
3	M64	Z	003	%70
4	M64	Z	021	%35
5	M66	Z	002	%50
6	M65	Z	002	%50
7	M64	Z	021	%5
8	M64	X	.037	%5
9	M64	X	.016	%35
10	M64	X	.005	%70
11	M64	X	.037	%35
12	M66	X	.004	%50
13	M65	X	.004	%50
14	M64	X	.037	%5

Member Point Loads (BLC 6 : Full Wind Antenna (90 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Z	0	%5
2	M64	Z	0	%35
3	M64	Z	0	%70
4	M64	Z	0	%35
5	M66	Z	0	%50
6	M65	Z	0	%50
7	M64	Z	0	%5
8	M64	X	.042	%5
9	M64	X	.015	%35
10	M64	X	.006	%70
11	M64	X	.038	%35
12	M66	X	.005	%50
13	M65	X	.005	%50
14	M64	X	.042	%5

Member Point Loads (BLC 7: Full Wind Antenna (120 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Z	.021	%5
2	M64	Z	.009	%35
3	M64	Z	.003	%70
4	M64	Z	.021	%35
5	M66	Z	.002	%50
6	M65	Z	.002	%50

NEXIUS SJ 17022404

NEWINGTON SC 4 CT

Jan 25, 2023 9:29 PM Checked By: JH

Member Point Loads (BLC 7: Full Wind Antenna (120 Deg)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
7	M64	Z	.021	%5
8	M64	X	.037	%5
9	M64	X	.016	%35
10	M64	X	.005	%70
11	M64	X	.037	%35
12	M66	X	.004	%50
13	M65	X	.004	%50
14	M64	X	.037	%5

Member Point Loads (BLC 8 : Full Wind Antenna (150 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Z	.037	%5
2	M64	Z	.021	%35
3	M64	Z	.003	%70
4	M64	Z	.045	%35
5	M66	Z	.004	%50
6	M65	Z	.004	%50
7	M64	Z	.037	%5
8	M64	X	.021	%5
9	M64	X	.012	%35
10	M64	X	.002	%70
11	M64	X	.026	%35
12	M66	X	.002	%50
13	M65	X	.002	%50
14	M64	X	.021	%5

Member Point Loads (BLC 15 : Ice Wind Antenna (0 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Z	01	%5
2	M64	Z	008	%35
3	M64	Z	002	%70
4	M64	Z	015	%35
5	M66	Z	002	%50
6	M65	Z	002	%50
7	M64	Z	01	%5

Member Point Loads (BLC 16 : Ice Wind Antenna (30 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Z	009	%5
2	M64	Z	007	%35
3	M64	Z	002	%70
4	M64	Z	012	%35
5	M66	Z	002	%50
6	M65	Z	002	%50
7	M64	Z	009	%5
8	M64	X	.005	%5
9	M64	X	.004	%35
10	M64	X	.001	%70
11	M64	X	.007	%35
12	M66	X	.001	%50
13	M65	X	.001	%50
14	M64	X	.005	%5

Member Point Loads (BLC 17 : Ice Wind Antenna (60 Deg))

Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]

Company : Designer : Job Number : Model Name :

: NEXIUS : SJ : 17022404

NEWINGTON SC 4 CT

Jan 25, 2023 9:29 PM Checked By: JH

Member Point Loads (BLC 17: Ice Wind Antenna (60 Deg)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Z	005	%5
2	M64	Z	003	%35
3	M64	Z	001	%70
4	M64	Z	006	%35
5	M66	Z	001	%50
6	M65	Z	001	%50
7	M64	Z	005	%5
8	M64	X	.009	%5
9	M64	X	.005	%35
10	M64	X	.002	%70
11	M64	X	.01	%35
12	M66	X	.002	%50
13	M65	X	.002	%50
14	M64	X	.009	%5

Member Point Loads (BLC 18 : Ice Wind Antenna (90 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Z	0	%5
2	M64	Z	0	%35
3	M64	Z	0	%70
4	M64	Z	0	%35
5	M66	Z	0	%50
6	M65	Z	0	%50
7	M64	Z	0	%5
8	M64	X	.01	%5
9	M64	X	.005	%35
10	M64	X	.003	%70
11	M64	X	.011	%35
12	M66	X	.002	%50
13	M65	X	.002	%50
14	M64	X	.01	%5

Member Point Loads (BLC 19 : Ice Wind Antenna (120 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Z	.005	%5
2	M64	Z	.003	%35
3	M64	Z	.001	%70
4	M64	Z	.006	%35
5	M66	Z	.001	%50
6	M65	Z	.001	%50
7	M64	Z	.005	%5
8	M64	X	.009	%5
9	M64	X	.005	%35
10	M64	X	.002	%70
11	M64	X	.01	%35
12	M66	X	.002	%50
13	M65	X	.002	%50
14	M64	X	.009	%5

Member Point Loads (BLC 20 : Ice Wind Antenna (150 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Z	.009	%5
2	M64	Z	.003	%35
3	M64	Z	.001	%70
4	M64	7	.006	%35

Company Designer Job Number NEXIUS SJ

b Number : 17022404

17022404 NEWINGTON SC 4 CT Jan 25, 2023 9:29 PM Checked By: JH

Member Point Loads (BLC 20 : Ice Wind Antenna (150 Deg)) (Continued)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
5	M66	Z	.001	%50
6	M65	Z	.001	%50
7	M64	Z	.009	%5
8	M64	X	.005	%5
9	M64	X	.005	%35
10	M64	X	.002	%70
11	M64	X	.01	%35
12	M66	X	.002	%50
13	M65	X	.002	%50
14	M64	X	.005	%5

Member Point Loads (BLC 27 : Seismic Antenna (0 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Z	003	%5
2	M64	Z	003	%35
3	M64	Z	001	%70
4	M64	Z	008	%35
5	M66	Z	0	%50
6	M65	Z	0	%50

Member Point Loads (BLC 28: Seismic Antenna (90 Deg))

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	X	.003	%5
2	M64	X	.003	%35
3	M64	X	.001	%70
4	M64	X	.008	%35
5	M66	X	0	%50
6	M65	X	0	%50

Member Point Loads (BLC 41 : Seismic Vertical Antennas)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M64	Y	006	%5
2	M64	Y	005	%35
3	M64	Y	001	%70
4	M64	Y	015	%35
5	M66	Y	001	%50
6	M65	Y	001	%50

Member Area Loads

Joint A	Joint B	Joint C	Joint D	Direction	Distribution	Magnitude[ksf]
			No Data to F	rint		

Basic Load Cases

	BLC Description	Category	X Gravity Y Gravity Z G	Bravity Joint	Point	Distribut.	.Area(Memb.	Surface
1	Dead	None	-1		7			
2	Ice Dead	None			7	66		
3	Full Wind Antenna (0 Deg)	None			7			
4	Full Wind Antenna (30 Deg)	None			14			
5	Full Wind Antenna (60 Deg)	None			14			
6	Full Wind Antenna (90 Deg)	None			14			
7	Full Wind Antenna (120 Deg)	None			14			
8	Full Wind Antenna (150 Deg)	None			14			

Company Designer Job Number Model Name : NEXIUS SJ 17022404 NEWINGTON SC 4 CT

Jan 25, 2023 9:29 PM Checked By: JH

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Memb.	Surface
9	Full Wind Members (0 Deg)	None		T			1.000	51	I additions.	1
10	Full Wind Members (30 Deg)	None			LAYLUI			51		
11	Full Wind Members (60 Deg)	None						51		
12	Full Wind Members (90 Deg)	None						51		
13	Full Wind Members (120 Deg)	None						51		
14	Full Wind Members (150 Deg)	None						51		
15	Ice Wind Antenna (0 Deg)	None					7	-		
16	Ice Wind Antenna (30 Deg)	None					14			
17	Ice Wind Antenna (60 Deg)	None					14			
18	Ice Wind Antenna (90 Deg)	None					14			
19	Ice Wind Antenna (120 Deg)	None					14			
20	Ice Wind Antenna (150 Deg)	None	MALLY Y			-0-7	14		Thirty to an	
21	Ice Wind Members (0 Deg)	None						135		
22	Ice Wind Members (30 Deg)	None						135		
23	Ice Wind Members (60 Deg)	None						135		
24	Ice Wind Members (90 Deg)	None						135		
25	Ice Wind Members (120 Deg)	None						135		
26	Ice Wind Members (150 Deg)	None						135		
27	Seismic Antenna (0 Deg)	None					6			
28	Seismic Antenna (90 Deg)	None					6			
29	Seismic Members (0 Deg)	None		042	105					
30	Seismic Members (30 Deg)	None	.052	042	091					
31	Seismic Members (60 Deg)	None	.091	042	052					
32	Seismic Members (90 Deg)	None	.105	042	-6.432e			THE STATE OF		
33	Seismic Members (120 Deg)	None	.091	042	.052					
34	Seismic Members (150 Deg)	None	.052	042	.091					
35	Seismic Members (180 Deg)	None	1.286e	042	.105					
36	Seismic Members (210 Deg)	None	052	042	.091					
37	Seismic Members (240 Deg)	None	091	042	.052					
38	Seismic Members (270 Deg)	None	105	042	1.93e-17					
39	Seismic Members (300 Deg)	None	091	042	052					
40	Seismic Members (330 Deg)	None	052	042	091					
41	Seismic Vertical Antennas	None					6			
42	Man 1 (500 lbs)	None				1				
43	Man 2 (500 lbs)	None				1				
44	Man 3 (500 lbs)	None				1				
45	Man 4 (250 lbs)	None				1				
46	Man 5 (250 lbs)	None				1				
47	Man 6 (250 lbs)	None				1				

Load Combinations

		S	P	S	В	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.4D	Yes	Y	110000	1	1.4	- (46302-5)			-			I	1	I	1			1		T	T		
2	1.2D + 1.0W 0°	Yes	Υ		1	1.2	3	1	9	1														
3		Yes	Y		1	1.2	4	1	10	1														
4	1.2D + 1.0W 60°	Yes	Y		1	1.2	5	1	11	1														
5	1.2D + 1.0W 90°	Yes	Y		1	1.2	6	1	12	1														
6	1.2D + 1.0W 120°	Yes	Y		1	1.2	7	1	13	1														
7	1.2D + 1.0W 150°	Yes	Υ		1	1.2	8	1	14	1														
8	1.2D + 1.0W 180°	Yes	Y		1	1.2	3	-1	9	-1														
9	1.2D + 1.0W 210°	Yes	Y		1	1.2	4	-1	10	-1	I													
10	1.2D + 1.0W 240°	Yes	Y		1	1.2	5	-1	11	-1		LD							П					
11	1.2D + 1.0W 270°	Yes	Y		1	1.2	6	-1	12	-1														
12	1.2D + 1.0W 300°	Yes	Y		1	1.2	7	-1	13	-1			1											
13	1.2D + 1.0W 330°	Yes	Y		1	1.2	8	-1	14	-1														

Company Designer Job Number Model Name NEXIUS : SJ : 17022404 : NEWINGTON SC 4 CT

Jan 25, 2023 9:29 PM Checked By: JH

Load Combinations (Continued)

	Description	S	. P	S	В	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa	В	Fa
	1.2D + 1.0Di + 1.0V	/Ye	s Y			1.2	2				21	1									7.2			
15	1.2D + 1.0Di + 1.0V	/Ye	s Y		1	1.2	2	1	16	1	22													
16	1.2D + 1.0Di + 1.0V	/ Ye	s Y		1	1.2	2	1	17	_	23	_												
17	1.2D + 1.0Di + 1.0V	/Ye	s Y		1	1.2	2	1	18		24										<u> </u>	_		
18	1.2D + 1.0Di + 1.0V	/ Ye	s Y		1	1.2	2	1		1	25													
	1.2D + 1.0Di + 1.0V				1	1.2	2	1	20		26								_	_			Ш	
20	1.2D + 1.0Di + 1.0V	/ Ye	s Y		1	1.2	2	1		-1			8										\perp	
	1.2D + 1.0Di + 1.0V				1	1.2	2	1_	16	-1	22	-1												
	1.2D + 1.0Di + 1.0V				1	1.2	2	1	17	-1	23	-1												
	1.2D + 1.0Di + 1.0V				1	1.2	2	1	18	-1	24	-1												
	1.2D + 1.0Di + 1.0V				1		2	1	19	-1	25	-1												
	1.2D + 1.0Di + 1.0V				1		2	1	20	-1	26	-1												
	1.2D + 1.5Lm_1 + 1				1		3			.065														
27	1.2D + 1.5Lm_1 + 1	Ye	s Y	T	_	1.2	4			.065														
	1.2D + 1.5Lm_1 + 1				1		5			.065														
	1.2D + 1.5Lm_1 + 1				_	1.2	6			.065					1									
	1.2D + 1.5Lm_1 + 1				_	1.2	7					1.5								K T				
	1.2D + 1.5Lm_1 + 1				1		8			.065														
	1.2D + 1.5Lm_1 + 1					1.2	3			065			T							17.				
32	1.2D + 1.5Lm_1 + 1		e V	1		1.2	4	065																
						1.2	5		-	065							0.5							
34	1.2D + 1.5Lm_1 + 1	16	SY	+-	_	_				065			-											
	1.2D + 1.5Lm_1 + 1				1		<u>6</u> 7		_	065	_												100	
36	1.2D + 1.5Lm_1 + 1	Ye	SY	+	-	1.2				065					+				1	-		_		
37	1.2D + 1.5Lm_1 + 1	Ye	SY	\vdash	1		8						-		+				-	1				
	1.2D + 1.5Lm_2 + 1				1	-	3			.065					-	-	H		1		+			
	1.2D + 1.5Lm_2 + 1				1		4			.065					-		-		+	-	-	-		
	1.2D + 1.5Lm_2 + 1				1		5					1.5		-	-		+-		-	-	-		-	
	1.2D + 1.5Lm_2 + 1				1		6			.065				-	-		-		-	-	-		-	
	1.2D + 1.5Lm_2 + 1				1		7					1.5			-		-		-	-	V. II	_	-	
	1.2D + 1.5Lm_2 + 1				1	1.2	8		_	.065				_	-					ļ.,	-			
44	1.2D + 1.5Lm_2 + 1	Үе	s Y		1	1.2	3			065					-		-		-	-			-	_
45	1.2D + 1.5Lm_2 + 1	Ye	s Y		1	1.2	4			065					_	_		_	-	_	_		-	_
46	1.2D + 1.5Lm 2 + 1	Ye	s Y		1	1.2	5	065	11	065	43	1.5											-	
	1.2D + 1.5Lm 2 + 1				1	1.2	6					1.5										_		_
	1.2D + 1.5Lm 2 + 1				1	1.2	7	065	13	065	43	1.5												
	1.2D + 1.5Lm_2 + 1				1	1.2	8	065	14	065	43	1.5												
	1.2D + 1.5Lm_3 + 1				1		3	.065	9	.065	44	1.5												10
	1.2D + 1.5Lm 3 + 1				1	1.2	4	.065	10	.065	44	1.5												
	1.2D + 1.5Lm_3 + 1				1	1.2	5					1.5												0.0
	1.2D + 1.5Lm_3 + 1				1		6					1.5												
0.00 Oz.					1		7					1.5												
<u> </u>	1.2D + 1.5Lm 3 + 1	_	_	_		1.2	8					1.5							1					
	1.2D + 1.5Lm_3 + 1					1.2		065																
56	1.2D + 1.5LIII_3 +	Vc	3 I	+-	1	1.2	4	.065	10	065	11	1.5									\vdash			
5/	1.2D + 1.5Lm_3 +	TE	5 Y	-								1.5												
58	1.2D + 1.5Lm_3 +	YE	SY	+-	_	1.2	5					1.5		1	_	\vdash	-		1		1		1	
59	1.2D + 1.5Lm_3 + 1	Υ (SY	-	1		6					1.5					-	= 1			-			
60	1.2D + 1.5Lm_3 +	Υ€	SY	-	1		7							-	-	 	+	-	+		-		1	
	1.2D + 1.5Lm_3 +				1	1.2	8			00	44	1.5	+	+			-	-	-		-		1	
62	1.2D + 1.5Lv_1 (YE	s Y		1	1.2	45	1.5		-	-		-	-	-	-	-	-	+	-	-		1	
	1.2D + 1.5Lv_1 3				1	1.2	45	1.5			-		-	-	-			-	+		+		-	-
					1	_	45	1.5			_			-	-		-	-	-	-	-	-	-	
					1	1.2	45	1.5		_	_		_	_			-		+		-		-	
66	1.2D + 1.5Lv_1 12	0° Υε	s Y		1	1.2	45	1.5			1			-	-		-		-				-	
67	1.2D + 1.5Lv_1 15	O° Ye	s Y		1	1.2	45	1.5						_					_			_	-	
68	1.2D + 1.5Lv_1 18	0° Υε	SY		1	1.2	45	1.5															1	
69	1.2D + 1.5Lv_1 21	0° Ye	s Y		1	1.2		1.5												_			_	
70	1.2D + 1.5Lv_1 24	0° Ye	s Y		_	1.2		1.5																
							ser\Des						=										_	ge 9

Company Designer Job Number Model Name **NEXIUS** SJ 17022404 NEWINGTON SC 4 CT

Jan 25, 2023 9:29 PM Checked By: JH

Load Combinations (Continued)

	Des	cription	s	P.	§	S B.	. Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
71	1.2D + 1	.5Lv_1 2	270° Y	es Y	1	1		45	1.5			Γ	1	T		1	1	T	1	1	1	1	T	T	<u> </u>
	1.2D + 1					1	1.2	45	1.5																
73	1.2D + 1					1	1.2	45	1.5					\top		\vdash				\vdash		\top		t -	
74	1.2D +					1		46	1.5															t	776
75	1.2D + 1	.5Lv_2	30° Y	es Y	7	1	1.2	46	1.5									T				1			
76	1.2D + 1	.5Lv_2	60° Y	es Y		1		46	1.5		TUE			1											
77	1.2D + 1	.5Lv_2	90° Y	es Y		1		46	1.5																
78	1.2D + 1.					1		46	1.5		11111					123									
79	1.2D + 1.	5Lv 2 1	150° Y	es Y	1	1	1.2	46	1.5					1		T						T			
	1.2D + 1.					1	1.2	46	1.5		110										n n				
81	1.2D + 1.	5Lv_2 2	210° Y	es Y	7	1		46	1.5					\top											
82	1.2D + 1.	5Lv 2 2	40° Y	es Y	1	1	1.2	46	1.5					T					IE.						
83	1.2D + 1.	5Lv_2 2	270° Yı	es Y	1	1	1.2	46	1.5																
84	1.2D + 1.	5Lv_2 3	00° Y	es Y	T	1	1.2	46	1.5					V											
85	1.2D + 1.					1	1.2	46	1.5									\vdash				T			
86	1.2D +					1	1.2	47	1.5																
87	1.2D + 1					1		47	1.5								Į.	$\overline{}$							
	1.2D + 1					1		47	1.5								T.								
	1.2D + 1					1	1.2	47	1.5																
90	1.2D + 1.	5Lv_3 1	20° Y€	s Y		1	1.2	47	1.5								V.		18		1				3.0
	1.2D + 1.					1	1.2	47	1.5													T		\Box	
	1.2D + 1.					1	1.2	47	1.5		153														
93	1.2D + 1.	5Lv_3 2	10° Ye	es Y		1	1.2	47	1.5					Т		П									
	1.2D + 1.					1	1.2	47	1.5														(4)		
	1.2D + 1.					1	1.2	47	1.5																
	1.2D + 1.					1	1.2	47	1.5													1	100		
	1.2D + 1					_ 1	1.2	47	1.5																
	1.2D + 1.					1	1.2	27	1	28		29	1	41	1						Wi				
	1.2D + 1.					1	1.2	27	.866	28	.5	30	1	41	1										
	1.2D + 1.					1	1.2	27	.5	28	.866	31	1	41	1						17				
	1.2D + 1.					1	1.2	27		28	1	32	1	41	1										
	1.2D + 1.					1	1.2	27	5	28	.866	33	1	41	1										
	1.2D + 1.					1	1.2	27	866	28	.5		1	41	1										
	1.2D + 1.0					1		27		28		35	1	41	1					12		1 5			
	1.2D + 1.0					1	1.2	27			5		1	41	1										
	1.2D + 1.0					1	1.2	27			866		্ৰ	41	1										
	1.2D + 1.					1	1.2	27		28	-1	38	1	41	1										
	1.2D + 1.0					1		27			866		1	41	1										
109	1.2D + 1.0	0EV +1.0	ΕΥε	s Y		1	1.2	27	.866	28	5	40	1	41	1										

Envelope Joint Reactions

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N25B	max	Ó	109	0	109	Ó	109	Ó	109	Ó	109	0	109
2		min	0	1	0	1	0	1	0	1	0	1	0	1
3	N26	max	0	109	0	109	0	109	0	109	0	109	0	109
4		min	0	11	0	11	0	1	0	1	0	1	0	1
5	N27	max	0	109	0	109	0	109	0	109	0	109	0	109
6		min	0	1	0	1	0	1	0	1	0	1	0	1
7	N28	max	0	109	0	109	0	109	0	109	0	109	0	109
8		min	0	1	0	1	0	1	0	1	0	1	0	1
9	N29	max	0	109	0	109	0	109	0	109	0	109	0	109
10		min	0	1	0	1	0	1	0	1	0	1	0	1
11	N30	max	0	109	0	109	0	109	0	109	0	109	0	109
12		min	0	1	0	1	0	1	0	11	0	1	0	1
13	N31	max	0	109	0	109	0	109	0	109	0	109	0	109

NEXIUS

17022404 NEWINGTON SC 4 CT

Jan 25, 2023 9:29 PM Checked By: JH

Envelope Joint Reactions (Continued)

	Joint	,	X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC T1
14		min	0	1	0	1	0	1	0	1	0	109	0	109
15	N32	max	0	109	0	109	0	109	0	109	0	109	0	1 1
16	0	min	0	11	0	1	0	100	0	109	0	109	0	109
17	N33	max	0	109	0	109	0	109	0	109	0	109	0	1 1
18	1101	min	0	100	0	109	0	109	0	109	0	109	0	109
19	N34	max	0	109	0	1 1	0	109	0	1	0	1	0	1
20	NOF	min	0	109	0	109	0	109	0	109	0	109	0	109
21	N35	max	0	109	0	1	0	1 1	0	1	0	1	0	1
22	N36		0	109	0	109	0	109	0	109	0	109	0	109
23	INSO	max	0	1	0	1	0	1	0	1	0	1	0	1
25	N37	max	0	109	0	109	0	109	0	109	0	109	0	109
26	1457	min	0	1	0	1	0	1	0	1	0	1	0	1
27	N38	max	0	109	0	109	0	109	0	109	0	109	0	109
28	1400	min	0	1	0	1	0	1	0	1	0	1	0	1
29	N39	max	0	109	0	109	0	109	0	109	0	109	00	109
30	1400	min	0	1	0	1	0	1	0	1	0	1	0	1
31	N40	max	0	109	.006	12	0	109	0	109	0	109	0	109
32		min	0	1	0	4	0	1	0	1	0	1	0	1
33	N41	max	0	109	.006	4	0	109	0	109	00	109	0	109
34		min	0	1	0	8	0	1	0	1	0	1	0	1
35	N42	max	0	109	.006	8	0	109	0	109	0	109	0	109
36		min	0	1	0	2	0	1	0	1	0	1.1	0	1
37	N105	max	0	109	0	109	.0	109	00	109	0	109	0	109
38		min	0	1	0	1	0	1	0	1	0	1	0	1
39	N106	max	0	109	0	109	0	109	0	109	0	109	0	109
40		min	0	1	0	11	0	1	0	1	0	1	0	1
41	N107	max	0	109	00	109	0	109	0	109	0	109	0	109
42		min	0	1	0	1	0	11	0	1	0	1	0	1
43	N108	max	0	109	0	109	0	109	0	109	0	109	0	109
44		min	0	1	0	1	0	1.1	0	1	0	1	0	1
45	N109	max	0	109	0	109	0	109	0	109	0	109	0	109
46		min	0	1	0	1	0	1	0	1	0	109	0	109
47	N110	max	0	109	0	109	0	109	0	109	0	109		1
48		min	0	11	0	1	0	1	0	109	0	109	0	109
49	N111	max	0	109	0	109	0	109	0	1	0	109	0	1
50		min	0	1	0	1	0	109	0	109	0	109	0	109
51	N112	max	0	109	0	109	0	109	0	1	0	1	0	1
52	11110	min	0	1	.072	1 2	.038	2	0	109	0	109	0	109
53	N113	max	.011	11	058	8	034	8	0	1	0	1	0	1
54	NIAAA	min	01 .036	11	.306	8	.148	2	0	109	0	109	0	109
55	N114	max	036	5	141	2	252	8	0	1	0	1	0	1
56	NIAAE	min	.036	11	.311	8	.149	2	0	109	0	109	0	109
57	N115	max	036	5	143	2	254	8	0	1	0	1	0	1
58	N1116		.01	111	.072	2	.038	2	0	109	0	109	0	109
59	N116	max min	011	5	059	8	035	8	0	1	0	1	0	1
60	N117	max	0	109	0	109	0	109	0	109	0	109	0	109
61	IN I I I	min	0	1 1	0	1	Ö	1	0	1	0	1	0	1
62 63	N118	max	0	109	0	109	0	109	0	109	0	109	0	109
64	INTIO	min	0	1	0	1	0	1	0	1	0	1	0	1
65	N119	max	0	109	0	109	0	109	0	109	0	109	0	109
66	14119	min	0	11	Ö	1	0	1	0	1	0	1	0	1
67	N120	max	0	109	0	109	0	109	0	109	0	109	0	109
68	11/20	min	0	11	0	1	0	1	0	1	0	1	0	1
69	N121	max	0	109	0	109	0	109	0	109	0	109	0	109
70	14141	min	0	1	0	1	0	1	0	1	0	1	0	1

NEXIUS

SJ 17022404 NEWINGTON SC 4 CT

Jan 25, 2023 9:29 PM Checked By: JH

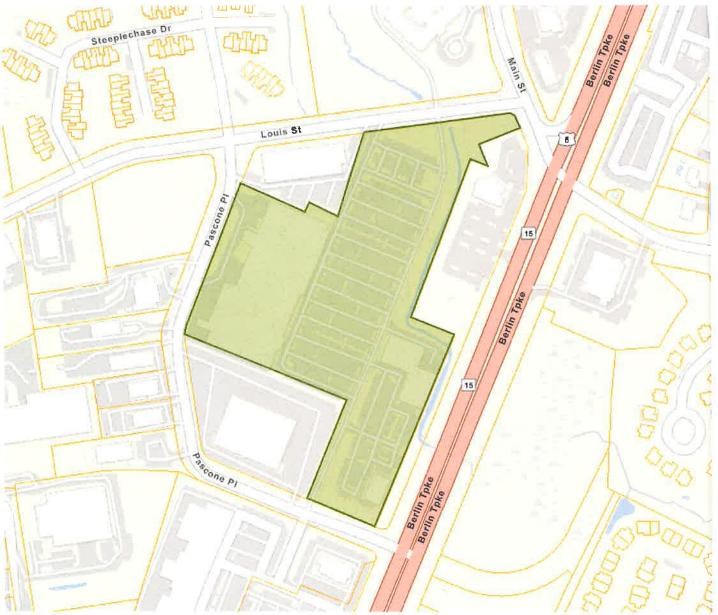
Envelope Joint Reactions (Continued)

	Joint		X [k]	LC	Y [k]	LC	Z [k]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
71	N122	max	0	109	0	109	Ô	109	Ó	109	Ó	109	Ó	109
72		min	0	1	0	1	0	1	0	1	0	1	0	1
73	N123	max	0	109	0	109	0	109	0	109	0	109	0	109
74		min	0	1	0	1	0	1	0	1 1	0	1	0	1
75	N124	max	0	109	0	109	0	109	0	109	0	109	0	109
76		min	0	1	0	1	0	1	0	1	0	1	0	1
77	N125	max	.027	11	.073	6	.012	13	0	109	0	109	0	109
78		min	031	5	058	12	014	7	0	1	0	1	0	1
79	N126	max	.178	12	.305	12	.095	13	0	109	0	109	0	109
80		min	088	6	145	6	043	7	0	1	0	1	0	1
81	N127	max	.181	12	.309	12	.097	12	0	109	0	109	0	109
82		min	09	6	147	6	044	6	0	1	0	1	- 0	1
83	N128	max	.025	12	.073	6	.018	13	0	109	0	109	0	109
84		min	028	6	058	12	021	7	0	1	0	1	0	1
85	N129	max	0	109	0	109	0	109	0	109	0	109	0	109
86		min	0	1	0	1	0	1	0	1	0	1	0	1
87	N130	max	0	109	0	109	0	109	0	109	0	109	0	109
88		min	0	11	0	11	0	1	0	1	0	1	0	1
89	N131	max	0	109	0	109	0	109	0	109	0	109	0	109
90		min	0	11	0	1	0	1	0	1	0	1	0	1
91	N132	max	0	109	0	109	0	109	0	109	0	109	0	109
92		min	0	1	0	1	0	1	0	1	0	1	0	1
93	N133	max	0	109	0	109	0	109	0	109	0	109	0	109
94		min	0	1 1	0	1 1	0	1	0	1	0	1	0	1
95	N134	max	0	109	0	109	0	109	0	109	0	109	0	109
96		min	0	1	0	11	0	1	0	1	0	1	0	1
97	N135	max	0	109	0	109	0	109	0	109	0	109	0	109
98		min	0	1	0	1	0	1	0	1	0	1	0	1
99	N136	max	0	109	0	109	0	109	0	109	0	109	0	109
100		min	0	1	0	1	0	1	0	1	0	1	0	1
101	N137	max	.028	10	.073	10	.018	3	0	109	0	109	0	109
102		min	025	4	057	4	021	9	0	1	0	1	0	1
103	N138	max	.089	10	.304	4	.096	4	0	109	0	109	0	109
104		min	179	4	145	10	044	10	0	1	0	1	0	1
105	N139	max	.088	10	.309	4	.096	3	0	109	0	109	0	109
106		min	18	4	148	10	044	9	0	1	0	1	0	1
107	N140	max	.031	11	.074	10	.012	3	0	109	0	109	0	109
108	عال كالحالي	min	027	5	058	4	014	9	0	1	0	1	0	1
109	Totals:	max	.721	11	1.464	14	.7	2						
110		min	721	5	.541	8	7	8						

Envelope AISC 15th(360-16): LRFD Steel Code Checks

	Member	Shape	Code C	. Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [k]	phi*Pnt [k]	phi*Mn v	.phi*Mn z	. Cb	Ean
1	M38	LL2.5x2.5x3x6	.025	3.609	7	.006	0	z	9	43.525	58.32	4.643	2.21	1	H1-1b
2	M39	LL2.5x2.5x3x6	.025	3.609	9	.006	0	z	7	43.525	58.32	4.643	2.21	1	H1-1b
3	M41	PL2x0.5	.026	2.354	7	.008	0	v	10		32.4	.338	1.35	1	H1-1b*
4	M42	PL2x0.5	.016	0	8	.013	0	V	11	5.9	32.4	.338	1.35	_	H1-1b*
5	M43	PL2x0.5	.026	2.354	9	.008	0	v	6	5.9	32.4	.338	1.35	1	H1-1b*
6	M44	LL2.5x2.5x3x6	.069	1.604	8	.008	0	z	5	43.525	58.32	4.643	2.21	1	H1-1b
7	M88	PL2x0.5	.002	0	11	.000	0	v	25	14.288	32.4	.338	1.35	2	H1-1b
8	M89	L2.5x2.5x3	.003	5.859	2	.001	5.859	z	8	19.507	29.192	.873	1.714	1	H2-1
9	M90	PL2x0.5	.002	0	11	.000	1.5	v	25	14.288	32.4	.338	1.35	2	H1-1b
10	M91	L2.5x2.5x3	.003	1.172	8	.001	1.172	z	8	19.507	29.192	.873	1.714	1	H2-1
11	M92	PL2x0.5	.074	.75	9	.017	0	٧	8	14.288	32.4	.338	1.35	1	H1-1b
12	M93	PL2x0.5	.002	1.5	21	.000	1.5	V	25	14.288	32.4	.338	1.35	2	H1-1b

: NEXIUS : SJ : 17022404


b Number : 1702240

17022404 NEWINGTON SC 4 CT Jan 25, 2023 9:29 PM Checked By: JH

Envelope AISC 15th(360-16): LRFD Steel Code Checks (Continued)

	Member	Shape	Code C	Loc[ft]	LC	Shear	Loc[ft]	Dir	LC	phi*Pnc [k]	phi*Pnt [k]		phi*Mn z	Cb	Eqn
13	M94	L2.5x2.5x3	.003	5.86	18	.001	5.86	٧	25	19.507	29.192	.873	1.714	1	H2-1
14	M95	PL2x0.5	.002	0	21	.000	0	٧	25	14.269	32.4	.338	1.35	2	H1-1b
15	M96	L2.5x2.5x3	.003	1.172	24	.001	1.172	V	25	19.507	29.192	.873	1.714	1	H2-1
16	M97	PL2x0.5	.074	1.501	13	.017	1.501	٧	12	14.278	32.4	.338	1.35	1	H1-1b
17	M98	PL2x0.5	.002	0	25	.000	1.501	V	25	14.269	32.4	.338	1.35	2	H1-1b
18	M99	L2.5x2.5x3	.003	5.861	22	.001	5.861	V	25	19.507	29.192	.873	1.714	1	H2-1
19	M100	PL2x0.5	.002	1.501	25	.000	1.501	V	25	14.269	32.4	.338	1.35	2	H1-1b
20	M101	L2.5x2.5x3	.003	1.172	16	.001	1.172	V	25	19.507	29.192	.873	1.714	1	H2-1
21	M102	PL2x0.5	.074	1.501	3	.017	1.501	V	4	14.269	32.4	.338	1.35	1	H1-1b
22	M64	PIPE 2.0	.198	3.25	9	.028	3.25		2	10.348	32.13	1.872	1.872	1	H1-1b

ATTACHMENT 5

The Assessor's office is responsible for the maintenance of records on the ownership of properties. Assessments are computed at 70% of the estimated market value of real property at the time of the last revaluation which was 2020.

Information on the Property Records for the Municipality of Newington was last updated on 7/18/2023.

Property Summary Information

Parcet Data And Values Building ▼ Outbuildings Sales Permits

Parcel Information

Location:	2985-3017 BERLIN TPK	Property Use:	Retail	Primary Use:	Community Shopping Center
Unique ID:	G1137100	Map Block Lot	27/149/000	Acres:	16.2900
490 Acres:	0.00	Zone:	PD	Volume / Page:	2175/0252
Developers Map / Lot:	S/E 1797 & 1731	Census:	494100		

Value Information

	Appraised Value	Assessed Value
Land	5,322,500	3,725,750
Buildings	22,727,760	15,909,430
Detached Outbuildings	736,000	515,200
Total	28,786,260	20,150,380

Owner's Information

Owner's Data	
BRIXMOR GATURNPIKE PLAZA LLC	
RYAN LLC	
500 EAST BROWARD BLVD SUITE 1130	
FORT LAUDERDALE, FL 33394	

ATTACHMENT 6

TOTAL NO. of Pieces Listed by Sender of Pieces Rece	Affix Stamp Here	e of Possint						
Postmaster, per (name of receiving employee)		neopost 07/25/2023 US POSTAGE \$003.190 ZIP 06103 041L12203937						
Address (Name Street, City, State, and ZIP C	ode™) Postage	Fee	Special Handling	Parcel Airlift				
Ryan LLC		141 25 205	TO SE POST OFFICE					
	Address (Name, Street, City, State, and ZIP C Thomas Hutka, Town Manager Town of Newington 200 Garfield Street Newington, CT 06111 Paul Dickinson, Town Planner Town of Newington 200 Garfield Street Newington, CT 06111 Paul Dickinson, Town Planner Town of Newington 200 Garfield Street Newington, CT 06111 Brixmore GA Turnpike Plaza LL Ryan LLC 500 East Broward Blvd, Suite 11	of Pieces Listed by Sender 3 Reopost 07/25/2 Postmark with Date Address (Name, Street, City, State, and ZIP Code™) Thomas Hutka, Town Manager Town of Newington 200 Garfield Street Newington, CT 06111 Paul Dickinson, Town Planner Town of Newington 200 Garfield Street Newington, CT 06111 Paul Dickinson, Town Planner Town of Newington 200 Garfield Street Newington, CT 06111 Brixmore GA Turnpike Plaza LLC Ryan LLC 500 East Broward Blvd, Suite 1130	of Pieces Listed by Sender 3 Postmark with Date of Receipt. Postmark with Date of Receipt.	Postmark with Date of Receipt. 3 Postmark with Date of Receipt. 3 Postmark with Date of Receipt. Postmark with Date of Postmark with Dat				