8/23/2016

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
Notice of Exempt Modification
69 Wheeler Street, New Haven, CT 06512
N 41* 17' 45.71"
W 72* $53^{\prime} 52.51^{\prime \prime}$
Dear Ms. Bachman:

T-Mobile currently maintains 6 antennas at the 98 -foot level of the existing 98 -foot monopole at 69 Wheeler Street, New Haven, CT 06512. The tower is owned by Laydon Industries. T-Mobile now intends to replace the 3 existing antennas with 3 new antennas, for a total of 6 antennas. These antennas would be installed at the 98 -foot level of the tower. The Structural Analysis is passing with a structural usage of 97.8% and a foundation usage of 93.3%

This facility was approved by the City of New Haven however they have no record of the original zoning dockets number. The City of New Haven City Plan Department and Building Department confirmed this on 8/23/2016.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies ~ 16-50j73, for construction that constitutes an exempt modification pursuant to R.C.S.A. ~ 16-50j- 72(b)(2). In accordance with R.C.S.A. g 16-50j-73, a copy of this letter is being sent to City of New Haven, Mayor Toni Harp, as well as the tower/property owner Laydon Industries.

The planned modifications to the facility fall squarely within those activities explicitly provided fox its R.C.S:A. ~ 16-50j-72(b)(2\}.

1. The proposed modifications will not result in an increase in the height of the existing structure.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels ox more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard,
5. The proposed modifications wall not cause a change or alteration in the physical ox environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. ${ }^{\sim} 16-S O j-$ 72(b\}(2).

Sincerely,

Gregg Shappy
10 Industrial Ave.
Suite 3
Mahwah, NJ 07430
(845) 553-2045
gshappy@transcendwireless.com
Attachments
cc: City of New Haven, Mayor Toni Harp
Laydon Industries

APPROVALS	
PROJECT MANAGER	DATE
CONSTRUCTION	DATE
RF ENGINEERING	DATE
ZONING / SITE ACQ.	DATE
OPERATIONS	DATE
TOWER OWNER	DATE

SITE NUMBER: CTNH039A

69 WHEELER ST NEW HAVEN, CT 06512 NEW HAVEN COUNTY

SITE NAME: NH039/LAYDON CONSTRUCTION

RF DESIGN GUIDELINE: 794DB

PROJECT SUMMARY

T-MOBILE TECHNICIAN SITE SAFETY NOTES	
LOCATION	\| SPECIAL RESTRICTIONS
SECTOR A: ANTENNA/TMA/RRH	ACCESS NOT PERMITED
SECTOR B: ANTENNA/TMA	ACCESS NOT PERMITED
ANCTOR	
ANTENNA/TMA/RRH	ACCESS NOT PERMITED
GPS/LMU:	UNRESTRICTED
Radio Cabinets:	UNRESTRICTED
PPC DISCONNECT:	UNRESTRICTED
mali circuit d/c:	UnRESTRICTED
NIU/T DEMARC:	UnRESTRICTED
OTHER/SPECIAL:	NONE

Transcend Wireless

SCOPE OF WORK: EQMAPMENT INSTALLATION	

TELECOMMUNICATONS EQUPMENT DEPLOYMENT IS AN ELGIBL FACLITM UNEER THS TAX RELIIFF AEC OF 20112 , 47 USC
1455(A), AND IS SUBJECT TO AN EXPEDTED ELIBLE
 LOCAL DISCRETIONARY PERMITS (VARIANCE, SPECIAL PERMIT,
SITE PLAN REVIEW).
SITE ADDRESS: $\quad \begin{aligned} & \text { 69 WHEELER } \\ & \text { NEW } \\ & \text { HAVEN, CT }\end{aligned} 06512$
LATITUDE: $\quad 41^{\circ} 17^{\prime} 45.71^{\prime \prime} \mathrm{N}$

LONGITUDE: $\quad 72^{\circ} 53^{\prime} 52.51^{\prime \prime} \mathrm{W}$
JURISOICTION:
national, state \& local codes or ordinances
CURRENT USE: TELECOMMUNICATIONS FACILITY
proposed use: telecommunications facility

DRINIG DIRECTONS:

HEAD NORTHEAST ON GRIFFIN ROAD SOUTH TOWARD WEST NEWERRR ROAD 0.6 GM . TURN RIGHT ONTO
DAY HILL ROAD $3.6 M 1$. USE THE RIGHT LANE TO MERGE ONTO I-91 SOUTH VIA THE RAMP TO HARTFRRD 0.4MI. MERGE ONTO 1-91 SOUTH 45.1MI. TAKE EXIT 2 FOR HAMLTON STREET O.3M
 RRIVE AT 69 WHELER STPEET NEW HAEN CT 06512.

DRAWING INDEX		
$\begin{gathered} \substack{\text { SHEET } \\ \text { NO. }} \end{gathered}$	description	rev.
T-1	TITLE SHEET	2
GN-1	GENERAL NOTES	2
A-1	COMPOUND PLAN \& EQUIPMENT PLAN	2
A-2	antenna layout \& Elevation	2
A-3	detalls	2
E-1	GROUNDING DIAGRAM	2

	T-MOBILE NORTHEAST LL 35 GRIFFIN ROAD SOUTH BLOOMFIELD, CT 06002 OFFICE: (860) 648-1116
Transcend Wireless	
TRANSCEND WIRELESS10 INDUSTRIAL AVEMAHWAH, NJ 07430	
Hudson Design Groupuc 1600 OSGOOD STREET N. ANDOVER, MA 01845	
CHECKED BY: DR	
APPROVED BY: DJC	
SUBMITTALS	
Ree. Din ome oiscrinow	
SHEET TITLE TITLE SHEET	
T-1	

GROUNDING NOTES

THE SUBCONTRACTOR SHALL REVEW AND INSPECT THE EXISTING FACILTTY
 THE STEE-SPECIFIC (UL, LPI, OR NFPA) LGHTING PROTECTION CODE, AND GENERAL
COMPLANCE WTTH TELCORDIA AND TIA GROUNOING STANDRRS. THE, SUBCONTRACTOR SHALL REPORT
CONTRACTOR FOR RESOUTON.
2. all ground electrode systems (including telecommunication radio LIGHTNING PROTECTION, AND AC POWER GES'S) SHAL BE BONDED TOGETHER,
OR BEOOW GRAE, PB IWO OR MORE COPPER BONDING CONOUCTORS IN
ACCORDANCE WITH THE NEC.
THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO
EARTH TESTING (PER IEEE 1100 AND 81) FOR NEW GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTR R SAAL FURNSH AND INSTALL SUPLLEEENTALCROUND
ELECTRODES AS NEEDED TO ACHEVE A TEST RESULT OF 5 OHMS OR LESS.
4. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQURED EQUIPMENT GRRUND
CONDUCTOR. STRANDED COPPER CONDUCTORS WTHE GREEN INSULATION, SIZED IN

5. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER
GROUND BAR WTH GREEN INSULATED SUPPLEMENTAL EQUPMENT GROUND WIRES,

6. ExXothermic welds shall be used for all grounoing connections below
7. APPROUED ANTIOXIDANT COATINGS (I.E., CONDUCTVE GEL OR PASTE) SHALL BE
USED ON ALL COMPRESSION AND
BOLTED GROUND CONNECTINS.
8. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR
BOLTED TO GROUND BAR.
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED
FOR GROUNDING CONEETONS. 0. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SEC.
METAL CONDUIT SHALL BE MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING
FIITNGS OR BY BONOING ACROSS THE IISCONTNUITY WITH 6 AWS COPPER WIRE UNDING TYPE CONDUT CLAMPS.
2. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVIVG 20 fT. OR MORE OF $1 / 2$ IN. OR GREATER ELECTRICALY CONDCTVE REINFRCCING STEEL
MUST TAVE IT BONOED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING \#2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC
250.50

GENERAL NOTES

FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIONS
SHALL APPLY:
CONTRACTOR - TRANSEEN WIRELESS
SUBCONTRACTOR
OWNER - T-MOBILE
2. PRIOR TO THE SUBMISIIN OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VIST
 DRANINGS. AK
CONTRACTOR.
3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTH ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES,

4. DRAWINGS PROVIDED Here are not to be sCaled and are intended to show
OUTLNE only.
5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS,
EQUPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL EQUIPMENT, APPUUTENANCES, AND LABOR NECESS
INSTALATIONS AS INOICATED ON THE DRAWINGS.
6. "KITTING LST" SUPPLEE WWTH THE BI PACKAGE IDENTIFES ITEMS THAT WILL BE THE SUBCONTRACTOR SHALL INSTALL ALL EQUPMENT AND MATERIALS IN
ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY ACCORDANCE WTH
STATED OTHERWISE
8. IF THE SPECIFIED EQUPMENT CANNOT BE INSTALLED AS SHOWN ON THESE
DRAWINGS, THE SUBCONTRACTOR SHALL $\operatorname{PROPOSE}$ AN ALTERNATVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
9. SUBCONTRACTOR SHALL DEETERMINE ACTUAL ROUTING OF CONDUT, POWER AND T1
 ADD NEW TRAYS AS NECESSARY.
ROUTNG WTH THE CONTRACTOR.
10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS,
LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPARED AT CANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL B,
SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
11. SUBCONTRACTOR SHALL LEGALLY AND PRORERLY DISPOOE OF ALL SCRAP MATERALS SUCH AS COAXAA LABLES AND OTHER ITEMS REMMVED FROM THE EXXISTIN
FACIITHY ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
LOCATON.
12. SUbcontractor shall leave premises in clean condition
13. ALL CONCRETE REPAR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN
CONCRETE INSTITUTE (ACI) 301.

15. ALL STRUCTURAL STEEL WORK SHALL BE DETALED, FABRICATED AND ERECTED IN A36 (Fy $=36$ ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A53 TTP
 STEEL IS ERECTED USING A COMPATBLE ZINC RICH PAINT.
16. CONSTRUCTION SHALL COMPLY WITH SPECIIICATIONS AND "GENERAL CONSTRUCTION 7. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONOITIONS PRIOR
TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXITTNG CONSTRUCTON SHOWN
 CONTRACTOR OF ANY
WTH CONSTRUCTON.
18. THE EXISTING CEL SIIE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION
WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXITING NORMAL OPERATON.
 AAYOO WOR SHOUD BE SCHEDUNED FRO AN APPR RO
ASUALLY IN LOW TRAFFIC PERIODS AFTER MDNIGHT.
19. SINCE THE CELL SITE II ACTVE, ALL SAEETY PRECAUTIONS MUST BE TAAEN WHEN位 THE WORKERS TO DANGER PERSONAL RF EXPOSURE MONTO
BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.
20. APPLICABLE bullding codes:

SUBCONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONALL STATE,
AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISOICTION

DESIGN
BULLDING CODE:
AMENDENTS
2003 IBC WTH 2005 CT SUPPLEMENT, $+2009 \& 2013$ C AMENOMENS
ELECTRRCL CODE: REEER TO ELECTRICAL DRAWINGS
LIGHTENNG COOE: REFER TO ELECTRICAL DRAWNGS

SUBCONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST EDITION OF THE
FOLOWING STANDARDS:
AMERICAN CONCRETE INSTIUTE (ACI) 318; BUILDING CODE
REQUIREMENTS FOR STRUCTURAL CONCRETE;
american institute of steel construction (aisc)
MANUAL OF STEEL CONSTRUCTION, ASD, FOURTEENTH EDTTION;
TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA) 222-F,
STRUCTURAL STANDARDS FOR STEEL
EQUIPMENT AND ANTENNA SUPPORTING STRUCTURES; REFER
TO ELECTIICAL DRAWNGS FOR SPECIFIC ELECTRICAL STANDARDS.
FOR ANY CONFLCTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS
REGARDING MATERAL, METHODS OF CONSTRUCTON, OR OTHER REQUIRMENTS, MOST RESTRICTIE REQUIREMENT SHALL GOVERN. WHERE THERE IS CONFLLST, BETWEEN A GENERAL REOUREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFI

T-MOBILE NORTHEAST LLC

Hudson
Desen

$$
\begin{aligned}
& \text { sTIT ADRESS: } \\
& \text { W9 WHEERR } \\
& \text { wh HVNEN }
\end{aligned}
$$

G9 WHEELER
NEW HAVEN CT
NEW HAVN COU

GENERAL NOTES

bbu batery wre gauge
 How

bGR COPPER WIRE Solid
bGR BURIED GROUND RING
InEAL COntractor
GRC galvanized rigid conduit
mge master ground bar
min minimum
its base transceiver station
Existing
EqB EQipment ground bar
NTS NOT to SCALE
rad radiation center line

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTNH039A

NH039/Laydon Construction
69 Wheeler Street
New Haven, CT 06512
August 18, 2016
EBI Project Number: 6216003631

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{2 0 . 0 6} \%$

August 18, 2016

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CTNH039A - NH039/Laydon Construction

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 69 Wheeler Street, New Haven, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is approximately 467 $\mu \mathrm{W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 69 Wheeler Street, New Haven, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 2 UMTS channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
4) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
5) 2 LTE channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
6) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
8) For the following calculations the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antennas used in this modeling are the Ericsson AIR32 B66Aa/B2A \& Commscope SBNHH-1D65C for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope SBNHH-1D65C for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR32 B66Aa/B2A has a maximum gain of $\mathbf{1 5 . 9} \mathbf{~ d B d}$ at its main lobe at 1900 MHz and 2100 MHz . The Commscope SBNHH1D65C has a maximum gain of $\mathbf{1 5 . 1} \mathbf{~ d B d}$ at its main lobe at 1900 MHz and 2100 MHz . The Commscope SBNHH-1D65C has a maximum gain of $\mathbf{1 3 . 6} \mathbf{~ d B d}$ at its main lobe at 700 MHz . The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
10) The antenna mounting height centerline of the proposed antennas is $\mathbf{9 8}$ feet above ground level (AGL).
11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
12) All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	$\begin{gathered} \hline \text { Ericsson AIR32 } \\ \text { B66Aa/B2A } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \hline \text { Ericsson AIR32 } \\ \text { B66Aa/B2A } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \hline \text { Ericsson AIR32 } \\ \text { B66Aa/B2A } \\ \hline \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	98	Height (AGL):	98	Height (AGL):	98
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz}(\mathrm{AWS}) \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz}(\mathrm{AWS}) \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz}(\mathrm{AWS}) \end{aligned}$
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	240	Total TX Power(W):	240	Total TX Power(W):	240
ERP (W):	9,337.08	ERP (W):	9,337.08	ERP (W):	9,337.08
Antenna A1 MPE\%	3.97	Antenna B1 MPE\%	3.97	Antenna C1 MPE\%	3.97
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	Commscope SBNHH-1D65C	Make / Model:	Commscope SBNHH-1D65C	Make / Model:	Commscope SBNHH-1D65C
Gain:	15.1 dBd	Gain:	15.1 dBd	Gain:	15.1 dBd
Height (AGL):	98	Height (AGL):	98	Height (AGL):	98
Frequency Bands	$\begin{gathered} 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ 2100 \mathrm{MHz}(\mathrm{AWS}) / \\ 700 \mathrm{MHz} \\ \hline \end{gathered}$	Frequency Bands	$\begin{gathered} 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ 2100 \mathrm{MHz}(\mathrm{AWS}) / \\ 700 \mathrm{MHz} \\ \hline \end{gathered}$	Frequency Bands	$\begin{gathered} 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ 2100 \mathrm{MHz}(\mathrm{AWS}) / \\ 700 \mathrm{MHz} \\ \hline \end{gathered}$
Channel Count	7	Channel Count	7	Channel Count	7
Total TX Power(W):	210	Total TX Power(W):	210	Total TX Power(W):	210
ERP (W):	6,511.95	ERP (W):	6,511.95	ERP (W):	6,511.95
Antenna A2 MPE\%	3.10	Antenna B2 MPE\%	3.10	Antenna C2 MPE\%	3.10

Site Composite MPE\%	
Carrier	MPE \%
T-Mobile (Per Sector Max)	$\mathbf{7 . 0 6} \%$
Nextel	2.78%
Clearwire	0.48%
AT\&T	9.74%
Site Total MPE \%:	$\mathbf{2 0 . 0 6} \%$

T-Mobile Sector A Total:	7.06%
T-Mobile Sector B Total:	7.06%
T-Mobile Sector C Total:	7.06%
Site Total:	

NOTE: Totals may vary by 0.01% due to summing of remainders
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	7.06%
Sector B:	7.06%
Sector C:	7.06%
T-Mobile Per Sector Maximum:	7.06%
Site Total:	20.06%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{2 0 . 0 6 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

STRUCTURAL ANALYSIS REPORT

For

CTNH039A

NH039/LAYDON CONSTRUCTION
69 WHEELER STREET
NEW HAVEN, CT 06512
Antennas Mounted on the Monopole

Prepared for:

Transcend Wireless

Dated: July 21, 2016

1600 Osgood Street Bldg. 20N Suite 3090 North Andover, MA 01845

(P) 978.557.5553 (F) 978.336.5586
www.hudsondesigngroupllc.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by T-MOBILE to conduct a structural evaluation of the 98' monopole supporting the proposed T-MOBILE's antennas located at elevation 98' above the ground level.

This report represents this office's findings, conclusions and recommendations pertaining to the support of T-MOBILE's existing and proposed antennas listed below.

Record drawings of the existing monopole were not available for our use. The previous structural analysis report prepared by Structural Components, LLC, dated April 26, 2012, was available and obtained for our use.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing monopole is in conformance with the ANSI/TIA-222-F Standard for the loading considered under the criteria listed in this report. The monopole structure is rated at 93.3% - (Pole section L2 from EL. 70^{\prime} to EL. 88 ' Controlling).

APPURTENANCES CONFIGURATION:

Tenant	Appurtenances	Elev.	Mount
T-MOBILE	(3) AIR 32 B66Aa/B2a Antennas	98^{\prime}	Low Profile Platform
T-MOBILE	(3) SBNHH-1D65C Antennas	98^{\prime}	Low Profile Platform
T-MOBILE	(6) TMA	98^{\prime}	Low Profile Platform
T-MOBILE	(3) RRUS-11	98^{\prime}	Low Profile Platform
	(6) RRUS-11	94^{\prime}	T-Frame
	Surge Arrestor DC6-48-60-18-8F	94^{\prime}	T-Frame
	(3) AM-X-CD-16-65 Antennas	91.5^{\prime}	T-Frame
	(3) 7750 Antennas	91.5^{\prime}	T-Frame
	(3) 7770 Antennas	91.5^{\prime}	T-Frame
	(6) LGP21401 TMA	91.5^{\prime}	T-Frame
	(6) LGP21900	91.5^{\prime}	T-Frame
	(2) A-ANT-18G Dishes	82^{\prime}	T-Frame
	(11) DB844G45ZAXY Antennas	80^{\prime}	T-Frame
	(3) LLPX310R Antennas	80^{\prime}	T-Frame
	(3) RRUS-11	80^{\prime}	T-Frame

*Proposed T-MOBILE Appurtenances shown in Bold.

T-MOBILE EXISTING/PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
T-MOBILE	(18) $11 / 4^{\prime \prime}$ Cables	98^{\prime}	Inside Monopole
T-MOBILE	(1) Fiber Cable	98^{\prime}	Inside Monopole

*Proposed T-MOBILE Coax Cables shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Pole Section-L1	23.6%	$88-98$	PASS	
Pole Section-L2	93.3%	$70-88$	PASS	Controlling
Pole Section-L3	81.1%	$48.68-70$	PASS	
Pole Section-L4	89.1%	$20-48.68$	PASS	
Pole Section-L5	85.6%	$0-20$	PASS	

DESIGN CRITERIA:

1. EIA/TIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County: New Haven
Wind Load: 85 mph (fastest mile)
105 mph (3 second gust)
Nominal Ice Thickness: $1 / 2$ inch
2. Approximate height above grade to proposed antennas: 98

*Calculations and referenced documents are attached.

ASSUMPTIONS:

1. The monopole dimensions, member sizes and strength of material are as indicated in the previous structural analysis report prepared by Structural Components, LLC, dated April 26, 2012.
2. The appurtenances configuration is as stated in the previous structural analysis report prepared by Structural Components, LLC, dated April 26, 2012. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's requirements.
3. The monopole and foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
4. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.
5. All prior structural modification, if any, are assumed to be as per the data supplied (if available), and installed properly.
6. The foundation of the monopole was not checked due to lack of information. Asbuilt foundation drawings and geotechnical report would be required to determine whether the foundation is capable of supporting the proposed loadings.

SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed antennas be mounted on the existing steel platform supported by the monopole.

Reference HDG's Latest Construction Drawings for all component and connection requirements.

ONGOING AND PERIODIC INSPECTION AND MAINTENANCE:

After the Contractor has successfully completed the installation and the work has been accepted, the Owner will be responsible for the ongoing and periodic inspection and maintenance of the monopole.

The owner shall refer to TIA/EIA-222-F for recommendations for maintenance and inspection. The frequency of the inspection and maintenance intervals is to be determined by the owner based upon actual site and environmental conditions. It is recommended that a complete and thorough inspection of the entire monopole structural system be performed at least yearly and more frequently as conditions warrant. According to TIA/EIA-222-F section 14.1, Note 1 : It is recommended that the structure be inspected after severe wind and/or ice storms or other extreme loading conditions.

Photo 1: Photo illustrating the Monopole with Appurtenances shown.

Hudson Design Group LLC	Dob: CTNH039A		
udson 1600 Osgood Street Bldg. 20N Suite 3090	Project: 98 ft monopol		
North Andover, MA 01845	Client: T-MOBILE	Drawn by: kw	App'd:
Phone: (978) 557-5553	Code: TIA/EIA-222-F	Date: 07/20/16	Scale: NTS
FAX: (978) 336-5586	Path:		Dwg No. E-1

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CTNH039A	$\begin{aligned} & \text { Page } \\ & \\ & 1 \text { of } 8 \end{aligned}$
	Project	98 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:30:54 07/20/16 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-MOBILE	Designed by kw

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in New Haven County, Connecticut.
Basic wind speed of 85.0 mph .
Nominal ice thickness of 0.5000 in.
Ice density of 56.0 pcf .
A wind speed of 73.6 mph is used in combination with ice.
Temperature drop of $50.0^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50.0 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

| Section | Elevation | Section
 Length
 $f t$ | Splice
 Length
 $f t$ | Number
 of
 Sides | Top
 Diameter
 in | Bottom
 Diameter
 in | Wall
 Thickness
 in | Bend
 Radius |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | | |

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement $f t$	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & f t^{2} / f t \end{aligned}$	Weight plf
$11 / 4$	A	No	Inside Pole	98.00-0.00	18	No Ice	0.00	0.66
(T-MOBILE - existing)						1/2" Ice	0.00	0.66
15/8 Fiber Cable	A	No	Inside Pole	98.00-0.00	1	No Ice	0.00	1.04
$\underset{* * * * * * * * *}{(\mathrm{~T}-\mathrm{MOBILE}}$ - proposed)						1/2" Ice	0.00	1.04
7/8	A	No	Inside Pole	88.00-0.00	12	No Ice	0.00	0.54
(AT\&T)						1/2" Ice	0.00	0.54
15/8 Fiber Cable	A	No	Inside Pole	88.00-3.00	1	No Ice	0.00	1.04
						1/2" Ice	0.00	1.04
597-6013 (5/16	A	No	Inside Pole	88.00-3.00	2	No Ice	0.00	0.03
COPPER) *********						1/2" Ice	0.00	0.03
$15 / 8$	A	No	Inside Pole	79.00-0.00	12	No Ice	0.00	1.04

Hudson Hudson Design Group LLC	Job	CTNH039A	$\text { Page } 2 \text { of } 8$
	Project	98 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:30:54 07/20/16 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-MOBILE	Designed by kw

Description	Face or Leg	Allow Shield	Component Type	Placement	Total Number		$C_{A} A_{A}$	Weight
			$f t$			$1 / 2^{\prime \prime}$ Ice	0.00	$f^{2} / f t$

Discrete Tower Loads

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$ $f t$ ft	Azimuth Adjustment ○	$f t$		$f t^{2}$	$f t^{2}$	$l b$
PiROD 13' Low Profile	A	None		0.0000	97.00	No Ice	15.70	15.70	1300.00
Platform (Monopole) (T-MOBILE - existing)	A	From Face		0.0000	98.00	No Ice $1 / 2^{\prime \prime}$ Ice	1.171.31	0.470.57	1765.00
(2) RFS			2.00						13.00
ATMAA1412D-1A20			0.00 0.00						20.62
(2) RFS	B	From Face	2.00	0.0000	98.00	No Ice 1/2" Ice	1.17	0.47	13.00
ATMAA1412D-1A20			0.00 0.00				1.31	0.57	20.62
(2) RFS	C	From Face	2.00	0.0000	98.00	No Ice1/2" Ice	1.17	0.47	13.00
ATMAA1412D-1A20			0.00				1.31	0.57	20.62
Ericsson RRUS-11	A		0.00 2.00				3.26		
		From Face	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	0.0000	98.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	3.50	1.56	71.57
Ericsson RRUS-11	B	From Face	2.00	0.0000	98.00	No Ice $1 / 2^{\text {" }}$ Ice	3.26	1.38	50.70
			0.00 0.00				3.50	1.56	71.57
Ericsson RRUS-11	C	From Face	2.00	0.0000	98.00	No Ice1/2" Ice	3.26	1.38	50.70
			0.00				3.50	1.56	71.57
			0.00						

AIR 32 B66Aa/B2a w/mount	A	From Face	3.00	0.0000	98.00	No Ice1/2" Ice	7.407.97	6.21	153.90
pipe			0.00					7.14	215.61
(T-MOBILE - proposed)			0.00						
AIR 32 B66Aa/B2a w/mount	B	From Face	3.00	0.0000	98.00	No Ice1/2" Ice	$\begin{aligned} & 7.40 \\ & 7.97 \end{aligned}$	6.21	153.90
pipe			0.00					7.14	215.61
			0.00						
AIR 32 B66Aa/B2a w/mount	C	From Face	3.00	0.0000	98.00	No Ice $1 / 2^{\prime \prime}$ Ice	$\begin{aligned} & 7.40 \\ & 7.97 \end{aligned}$	6.21	153.90
pipe			0.00					7.14	215.61
			0.00						
SBNHH-1D65C w/ Mount	A	From Face	3.00	0.0000	98.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	11.63	9.79	82.45
Pipe			0.00				12.35	11.31	171.76
			0.00						
SBNHH-1D65C w/ Mount	B	From Face	3.00	0.0000	98.00	No Ice1/2" Ice	$\begin{aligned} & 11.63 \\ & 12.35 \end{aligned}$	$\begin{gathered} 9.79 \\ 11.31 \end{gathered}$	$\begin{gathered} 82.45 \\ 171.76 \end{gathered}$
Pipe			0.00						
			0.00						
SBNHH-1D65C w/ Mount	C	From Face	3.00	0.0000	98.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	$\begin{aligned} & 11.63 \\ & 12.35 \end{aligned}$	$\begin{gathered} 9.79 \\ 11.31 \end{gathered}$	82.45
Pipe			0.00						171.76
			0.00						

Hudson Hudson Design Group LLC	Job	CTNH039A	$\begin{aligned} & \text { Page } \\ & \\ & \end{aligned}$
	Project	98 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:30:54 07/20/16 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-MOBILE	Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

\[
f t^{2}

\] \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline \multicolumn{10}{|l|}{**********}

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS-11 (AT\&T)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{94.00} \& \multirow[t]{3}{*}{No Ice
$1 / 2$ Ice} \& 3.26 \& 1.38 \& 50.70

\hline \& \& \& 0.00 \& \& \& \& \multirow[t]{2}{*}{3.50} \& \multirow[t]{2}{*}{1.56} \& \multirow[t]{2}{*}{71.57}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS-11} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{94.00} \& \multirow[t]{3}{*}{No Ice
1/2" Ice} \& 3.26 \& 1.38 \& 50.70

\hline \& \& \& 0.00 \& \& \& \& \multirow[t]{2}{*}{3.50} \& \multirow[t]{2}{*}{1.56} \& \multirow[t]{2}{*}{71.57}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) Ericsson RRUS-11} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{94.00} \& No Ice \& 3.26 \& 1.38 \& 50.70

\hline \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{1/2" Ice} \& \multirow[t]{2}{*}{3.50} \& \multirow[t]{2}{*}{1.56} \& \multirow[t]{2}{*}{71.57}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{DC6-48-60-18-8F} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 0.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{94.00} \& \multirow[t]{3}{*}{No Ice
1/2" Ice} \& 1.27 \& 1.27 \& 20.00

\hline \& \& \& 0.00 \& \& \& \& \multirow[t]{2}{*}{1.46} \& \multirow[t]{2}{*}{1.46} \& \multirow[t]{2}{*}{35.12}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline KMW \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& No Ice \& 8.26 \& 4.64 \& 48.50

\hline \multirow[t]{2}{*}{AM-X-CD-16-65-00T-RET} \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{$1 / 2^{\prime \prime}$ Ice} \& \multirow[t]{2}{*}{8.81} \& \multirow[t]{2}{*}{5.09} \& \multirow[t]{2}{*}{95.00}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline KMW \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& No Ice \& 8.26 \& 4.64 \& 48.50

\hline \multirow[t]{2}{*}{AM-X-CD-16-65-00T-RET} \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{$1 / 2^{\prime \prime}$ Ice} \& \multirow[t]{2}{*}{8.81} \& \multirow[t]{2}{*}{5.09} \& \multirow[t]{2}{*}{95.00}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline KMW \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& No Ice \& 8.26 \& 4.64 \& 48.50

\hline \multirow[t]{2}{*}{AM-X-CD-16-65-00T-RET} \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{1/2" Ice} \& \multirow[t]{2}{*}{8.81} \& \multirow[t]{2}{*}{5.09} \& \multirow[t]{2}{*}{95.00}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Powerwave 7750} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& No Ice \& 5.92 \& 2.91 \& 39.00

\hline \& \& \& 0.00 \& \& \& \multirow[t]{2}{*}{1/2" Ice} \& \multirow[t]{2}{*}{6.36} \& \multirow[t]{2}{*}{3.26} \& \multirow[t]{2}{*}{71.64}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Powerwave 7750} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& \multirow[t]{3}{*}{No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$} \& 5.92 \& 2.91 \& 39.00

\hline \& \& \& 0.00 \& \& \& \& \multirow[t]{2}{*}{6.36} \& \multirow[t]{2}{*}{3.26} \& \multirow[t]{2}{*}{71.64}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Powerwave 7750} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& \multirow[t]{3}{*}{No Ice
1/2" Ice} \& 5.92 \& 2.91 \& 39.00

\hline \& \& \& 0.00 \& \& \& \& \multirow[t]{2}{*}{6.36} \& \multirow[t]{2}{*}{3.26} \& \multirow[t]{2}{*}{71.64}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Powerwave 7770} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& \multirow[t]{3}{*}{No Ice
1/2" Ice} \& 5.92 \& 2.91 \& 39.00

\hline \& \& \& 0.00 \& \& \& \& \multirow[t]{2}{*}{6.36} \& \multirow[t]{2}{*}{3.26} \& \multirow[t]{2}{*}{71.64}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Powerwave 7770} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& \multirow[t]{3}{*}{No Ice

1/2" Ice} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 5.92 \\
& 6.36
\end{aligned}
$$} \& 2.91 \& 39.00

\hline \& \& \& 0.00 \& \& \& \& \& \multirow[t]{2}{*}{3.26} \& \multirow[t]{2}{*}{71.64}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{Powerwave 7770} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& \multirow[t]{3}{*}{No Ice

1/2" Ice} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 5.92 \\
& 6.36
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 2.91 \\
& 3.26
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 39.00 \\
& 71.64
\end{aligned}
$$
\]}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) Powerwave TMA LGP21401} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& \multirow[t]{3}{*}{No Ice 1/2" Ice} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) Powerwave TMA LGP21401} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& \multirow[t]{3}{*}{No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) Powerwave TMA LGP21401} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& \multirow[t]{3}{*}{No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) Powerwave LGP21900} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& \multirow[t]{3}{*}{No Ice

1/2" Ice} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 0.23 \\
& 0.30
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 0.12 \\
& 0.17
\end{aligned}
$$
\]} \& 5.50

\hline \& \& \& 0.00 \& \& \& \& \& \& \multirow[t]{2}{*}{7.70}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(2) Powerwave LGP21900} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{91.50} \& \multirow[t]{2}{*}{No Ice

1/2" Ice} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 0.23 \\
& 0.30
\end{aligned}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 0.12 \\
& 0.17
\end{aligned}
$$
\]} \& 5.50

\hline \& \& \& 0.00 \& \& \& \& \& \& \multirow[t]{2}{*}{7.70}

\hline \& \& \& 0.00 \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{(2) Powerwave LGP21900} \& \multirow[t]{2}{*}{C} \& From Face \& 3.00 \& 0.0000 \& 91.50 \& No Ice \& 0.23 \& 0.12 \& 5.50

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.30 \& 0.17 \& 7.70

\hline
\end{tabular}

Hudson Design Group LLC	Job	CTNH039A	$\begin{aligned} & \text { Page } \\ & \\ & 4 \text { of } 8 \end{aligned}$
	Project	98 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:30:54 07/20/16 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-MOBILE	Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
ft \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$ Side

$$
f t^{2}
$$ \& Weight

$l b$

\hline | TA 602-3 |
| :--- |
| ************ | \& A \& None \& 0.00 \& 0.0000 \& 91.50 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11.59 \\
& 15.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11.59 \\
& 15.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 774.00 \\
& 990.00
\end{aligned}
$$
\]

\hline (3) DB844G45ZAXY (Nextel) \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 7.00 \\
& 7.41
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 3.97 \\
& 4.34
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 21.00 \\
& 64.04
\end{aligned}
$$
\]

\hline (4) DB844G45ZAXY \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 7.00 \\
& 7.41
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 3.97 \\
& 4.34
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 21.00 \\
& 64.04
\end{aligned}
$$
\]

\hline (4) DB844G45ZAXY \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 7.00 \\
& 7.41
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 3.97 \\
& 4.34
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 21.00 \\
& 64.04
\end{aligned}
$$
\]

\hline Argus LLPX310R \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 4.83 \\
& 5.18
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.95 \\
& 2.21
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 29.00 \\
& 54.88
\end{aligned}
$$
\]

\hline Argus LLPX310R \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 4.83 \\
& 5.18
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.95 \\
& 2.21
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 29.00 \\
& 54.88
\end{aligned}
$$
\]

\hline Argus LLPX310R \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& No Ice 1/2" Ice \& \[

$$
\begin{aligned}
& 4.83 \\
& 5.18
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.95 \\
& 2.21
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 29.00 \\
& 54.88
\end{aligned}
$$
\]

\hline Ericsson RRUS-11 \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& \text { 1/2" Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline Ericsson RRUS-11 \& B \& From Face \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 80.00 \& | No Ice |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline Ericsson RRUS-11 \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& No Ice

1/2" Ice \& $$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline TA 602-3 \& A \& None \& \& 0.0000 \& 78.00 \& | No Ice |
| :--- |
| 1/2" Ice | \& \[

$$
\begin{aligned}
& 11.59 \\
& 15.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11.59 \\
& 15.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 774.00 \\
& 990.00
\end{aligned}
$$
\]

\hline
\end{tabular}

Hudson Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job		Page $\begin{array}{ll} \\ & 5 \text { of } 8\end{array}$
	CTNH039A Project 98 ft monopole		$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:30:54 07/20/16 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-MOBILE	Designed by kw

Comb.	Description
No.	
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 60 deg - No Ice
5	Dead+Wind 90 deg - No Ice
6	Dead+Wind 120 deg - No Ice
7	Dead+Wind 150 deg - No Ice
8	Dead+Wind 180 deg - No Ice
9	Dead+Wind 210 deg - No Ice
10	Dead+Wind 240 deg - No Ice
11	Dead+Wind 270 deg - No Ice
12	Dead+Wind 300 deg - No Ice
13	Dead+Wind 330 deg - No Ice
14	Dead+Ice+Temp
15	Dead+Wind 0 deg+Ice+Temp
16	Dead+Wind 30 deg+Ice+Temp
17	Dead+Wind 60 deg+Ice+Temp
18	Dead+Wind 90 deg+Ice+Temp
19	Dead+Wind 120 deg+Ice+Temp
20	Dead+Wind 150 deg+Ice+Temp
21	Dead+Wind 180 deg+Ice+Temp
22	Dead+Wind 210 deg+Ice+Temp
23	Dead+Wind 240 deg+Ice+Temp
24	Dead+Wind 270 deg+Ice+Temp
25	Dead+Wind 300 deg+Ice+Temp
26	Dead+Wind 330 deg+Ice+Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 30 deg - Service
29	Dead+Wind 60 deg - Service
30	Dead+Wind 90 deg - Service
31	Dead+Wind 120 deg - Service
32	Dead+Wind 150 deg - Service
33	Dead+Wind 180 deg - Service
34	Dead+Wind 210 deg - Service
35	Dead+Wind 240 deg - Service
36	Dead+Wind 270 deg - Service
37	Dead+Wind 300 deg - Service
38	Dead+Wind 330 deg - Service

		Maximum Reactions			
Location	Condition	Gov. Load Comb.	Vertical $l b$	$\begin{gathered} \text { Horizontal, } X \\ l b \end{gathered}$	$\begin{gathered} \text { Horizontal, Z } \\ l b \end{gathered}$
Pole	Max. Vert	21	20687.45	22.50	-13544.23
	Max. H_{x}	11	16511.76	16160.42	-21.93
	Max. H_{z}	2	16511.76	-59.18	16271.84
	Max. M_{x}	2	1229459.33	-59.18	16271.84
	Max. M_{z}	5	1224948.89	-16215.67	74.16
	Max. Torsion	11	559.98	16160.42	-21.93
	Min. Vert	1	16511.76	0.00	0.00
	Min. H_{x}	5	16511.76	-16215.67	74.16
	Min. H_{z}	8	16511.76	30.63	-16289.12
	Min. M_{x}	8	-1231101.70	30.63	-16289.12
	Min. M_{z}	11	-1220277.17	16160.42	-21.93
	Min. Torsion	5	-591.83	-16215.67	74.16

Hudson Design Group LLC 1600 Osgood Street Bldg. 20N Suite 3090	Job	CTNH039A	Page 6 of 8
	Project	98 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:30:54 07/20/16 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-MOBILE	Designed by kw

Tower Mast Reaction Summary

Load Combination	Vertical lb	Shear $_{x}$ lb	Shear $_{z}$ lb	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	16511.76	0.00	0.00	86.90	-6.59	0.00
Dead+Wind 0 deg - No Ice	16511.76	59.18	-16271.84	-1229459.33	-4903.27	91.30
Dead+Wind 30 deg - No Ice	16511.76	8172.06	-14111.85	-1066365.08	-617803.19	354.92
Dead+Wind 60 deg - No Ice	16511.76	14071.85	-8185.44	-618783.68	-1063193.10	546.61
Dead+Wind 90 deg - No Ice	16511.76	16215.67	-74.16	-6078.97	-1224948.89	591.83
Dead+Wind 120 deg - No Ice	16511.76	14015.66	8084.66	610638.40	-1058576.61	455.20
Dead+Wind 150 deg - No Ice	16511.76	8080.42	14100.38	1065703.06	-610249.99	189.00
Dead+Wind 180 deg - No Ice	16511.76	-30.63	16289.12	1231101.70	2476.72	-117.22
Dead+Wind 210 deg - No Ice	16511.76	-8099.20	14090.12	1064720.90	611635.97	-386.58
Dead+Wind 240 deg - No Ice	16511.76	-13982.77	8134.01	614621.89	1055669.44	-546.48
Dead+Wind 270 deg - No Ice	16511.76	-16160.42	21.93	1832.89	1220277.17	-559.98
Dead+Wind 300 deg - No Ice	16511.76	-14016.35	-8118.03	-613280.49	1058614.74	-429.42
Dead+Wind 330 deg - No Ice	16511.76	-8079.49	-14100.92	-1065563.94	610157.98	-189.18
Dead+Ice+Temp	20687.45	0.00	0.00	211.39	-86.31	0.00
Dead+Wind 0 deg+Ice+Temp	20687.45	45.23	-13530.47	-1043713.81	-3886.42	67.06
Dead+Wind 30 deg+Ice+Temp	20687.45	6793.45	-11732.72	-905092.23	-524458.10	296.28
Dead+Wind 60 deg+Ice+Temp	20687.45	11702.76	-6803.02	-524912.49	-902933.95	464.59
Dead+Wind 90 deg+Ice+Temp	20687.45	13487.93	-57.15	-4590.72	-1040498.03	508.42
Dead+Wind 120 deg+Ice+Temp	20687.45	11659.91	6726.06	518923.34	-899361.70	397.48
Dead+Wind $150 \mathrm{deg}+$ Ice+Temp	20687.45	6723.77	11725.47	905025.73	-518635.87	173.95
Dead+Wind 180 deg+Ice+Temp	20687.45	-22.50	13544.23	1045353.03	1751.89	-87.71
Dead+Wind 210 deg+Ice+Temp	20687.45	-6735.46	11715.42	904075.17	519303.62	-321.51
Dead+Wind 240 deg+Ice+Temp	20687.45	-11631.86	6762.09	521863.41	896681.07	-464.44
Dead+Wind 270 deg+Ice+Temp	20687.45	-13443.96	15.58	1476.76	1036546.29	-482.97
Dead+Wind $300 \mathrm{deg}+$ Ice+Temp	20687.45	-11660.47	-6752.62	-520743.37	899216.60	-376.86
Dead+Wind 330 deg+Ice+Temp	20687.45	-6723.03	-11725.90	-904600.72	518384.86	-174.05
Dead+Wind 0 deg - Service	16511.76	20.48	-5630.39	-426091.44	-1704.24	32.70
Dead+Wind 30 deg - Service	16511.76	2827.70	-4882.99	-369562.65	-214148.43	124.85
Dead+Wind 60 deg - Service	16511.76	4869.15	-2832.33	-214419.83	-368527.69	191.63
Dead+Wind 90 deg - Service	16511.76	5610.96	-25.66	-2044.81	-424588.86	207.08
Dead+Wind 120 deg - Service	16511.76	4849.71	2797.46	211715.84	-366919.35	158.93
Dead+Wind 150 deg - Service	16511.76	2795.99	4879.03	369451.42	-211527.79	65.54
Dead+Wind 180 deg - Service	16511.76	-10.60	5636.38	426784.16	853.15	-41.74
Dead+Wind 210 deg - Service	16511.76	-2802.49	4875.47	369110.96	211997.78	-135.94
Dead+Wind 240 deg - Service	16511.76	-4838.33	2814.54	213096.15	365901.62	-191.62
Dead+Wind 270 deg - Service	16511.76	-5591.84	7.59	696.87	422954.57	-195.95
Dead+Wind 300 deg - Service	16511.76	-4849.95	-2809.01	-212509.61	366925.40	-149.88
Dead+Wind 330 deg - Service	16511.76	-2795.67	-4879.21	-369281.37	211486.77	-65.54

Solution Summary

Load	Sum of Applied Forces			Sum of Reactions			\% Error
	PX	PY	PZ	PX	PY	PZ	
Comb.	$l b$						
1	0.00	-16511.76	0.00	0.00	16511.76	0.00	0.000\%
2	59.18	-16511.76	-16271.83	-59.18	16511.76	16271.84	0.000\%
3	8172.06	-16511.76	-14111.85	-8172.06	16511.76	14111.85	0.000\%
4	14071.85	-16511.76	-8185.44	-14071.85	16511.76	8185.44	0.000\%
5	16215.66	-16511.76	-74.16	-16215.67	16511.76	74.16	0.000\%
6	14015.66	-16511.76	8084.66	-14015.66	16511.76	-8084.66	0.000\%
7	8080.42	-16511.76	14100.38	-8080.42	16511.76	-14100.38	0.000\%
8	-30.63	-16511.76	16289.12	30.63	16511.76	-16289.12	0.000\%
9	-8099.20	-16511.76	14090.12	8099.20	16511.76	-14090.12	0.000\%
10	-13982.77	-16511.76	8134.01	13982.77	16511.76	-8134.01	0.000\%

Hudson Hudson Design Group LLC 1600 Osgood Street BIdg. 20N Suite 3090	CTNH039A		$\text { Page } 7 \text { of } 8$
	98 ft monopole		16:30:54 07/20/16
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-MOBILE	Designed by kw

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	PZ	
Comb.	$l b$	lb					
11	-16160.42	-16511.76	21.93	16160.42	16511.76	-21.93	0.000\%
12	-14016.35	-16511.76	-8118.03	14016.35	16511.76	8118.03	0.000\%
13	-8079.49	-16511.76	-14100.92	8079.49	16511.76	14100.92	0.000\%
14	0.00	-20687.45	0.00	0.00	20687.45	0.00	0.000\%
15	45.23	-20687.45	-13530.45	-45.23	20687.45	13530.47	0.000\%
16	6793.45	-20687.45	-11732.72	-6793.45	20687.45	11732.72	0.000\%
17	11702.76	-20687.45	-6803.02	-11702.76	20687.45	6803.02	0.000\%
18	13487.91	-20687.45	-57.15	-13487.93	20687.45	57.15	0.000\%
19	11659.91	-20687.45	6726.06	-11659.91	20687.45	-6726.06	0.000\%
20	6723.77	-20687.45	11725.47	-6723.77	20687.45	-11725.47	0.000\%
21	-22.50	-20687.45	13544.21	22.50	20687.45	-13544.23	0.000\%
22	-6735.46	-20687.45	11715.42	6735.46	20687.45	-11715.42	0.000\%
23	-11631.86	-20687.45	6762.09	11631.86	20687.45	-6762.09	0.000\%
24	-13443.94	-20687.45	15.58	13443.96	20687.45	-15.58	0.000\%
25	-11660.46	-20687.45	-6752.62	11660.47	20687.45	6752.62	0.000\%
26	-6723.03	-20687.45	-11725.89	6723.03	20687.45	11725.90	0.000\%
27	20.48	-16511.76	-5630.39	-20.48	16511.76	5630.39	0.000\%
28	2827.70	-16511.76	-4882.99	-2827.70	16511.76	4882.99	0.000\%
29	4869.15	-16511.76	-2832.33	-4869.15	16511.76	2832.33	0.000\%
30	5610.96	-16511.76	-25.66	-5610.96	16511.76	25.66	0.000\%
31	4849.71	-16511.76	2797.46	-4849.71	16511.76	-2797.46	0.000\%
32	2795.99	-16511.76	4879.03	-2795.99	16511.76	-4879.03	0.000\%
33	-10.60	-16511.76	5636.37	10.60	16511.76	-5636.38	0.000\%
34	-2802.49	-16511.76	4875.47	2802.49	16511.76	-4875.47	0.000\%
35	-4838.33	-16511.76	2814.54	4838.33	16511.76	-2814.54	0.000\%
36	-5591.84	-16511.76	7.59	5591.84	16511.76	-7.59	0.000\%
37	-4849.95	-16511.76	-2809.01	4849.95	16511.76	2809.01	0.000\%
38	-2795.67	-16511.76	-4879.21	2795.67	16511.76	4879.21	0.000\%

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	o

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection in	Tilt	Twist 。	Radius of Curvature ft
98.00	(2) RFS ATMAA1412D-1A20	28	24.6280	2.2952	0.0038	6724
97.00	PiROD 13' Low Profile Platform (Monopole)	28	24.1462	2.2933	0.0038	6724
94.00	(2) Ericsson RRUS-11	28	22.7043	2.2850	0.0038	6724
91.50	KMW AM-X-CD-16-65-00T-RET	28	21.5121	2.2714	0.0038	5181
82.00	A-ANT-18G-24	28	17.1547	2.1059	0.0033	2606
80.00	(3) DB844G45ZAXY	28	16.2850	2.0496	0.0031	2424
78.00	TA 602-3	28	15.4352	1.9890	0.0030	2265

Hudson Design Group LLC	Job	CTNH039A	$\begin{aligned} & \text { Page } 8 \text { of } 8 \end{aligned}$
	Project	98 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 16:30:54 07/20/16 } \end{array}$
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586	Client	T-MOBILE	Designed by kw

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ f t \end{gathered}$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} S F * P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L1	98-88	Pole	TP16.5x12.75x0.25	1	-3533.87	670340.35	23.6	Pass
L2	88-70	Pole	TP20.07x16.5x0.1875	2	-5796.54	615139.48	93.3	Pass
L3	70-48.68	Pole	TP24.313x20.07x0.324	3	-8456.98	1282504.57	81.1	Pass
L4	48.68-20	Pole	TP30.02x24.313x0.349	4	-12848.10	1708679.32	89.1	Pass
L5	20-0	Pole	TP34x 30.02×0.38	5	-16503.10	2108059.43	85.6	Pass
						Pole (L2) RATING =	$\begin{gathered} \text { Summary } \\ 93.3 \\ \mathbf{9 3 . 3} \end{gathered}$	Pass Pass

