JULIE D. KOHLER

please reply to: Bridgeport
WRITER'S DIRECT DIAL: (203) 337-4157
E-Mail Address: jkohler@cohenandwolf.com
September 4, 2014

Attorney Melanie Bachman
Acting Executive Director
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

Re: Notice of Exempt Modification
 Laydon Industries/T-Mobile Site ID CTNH039A 69 Wheeler Street, New Haven

Dear Attorney Bachman:
This office represents T-Mobile Northeast LLC ("T-Mobile") and has been retained to file exempt modification filings with the Connecticut Siting Council on its behalf.

In this case, Laydon Industries owns the existing monopole telecommunications facility at 69 Wheeler Street, New Haven Connecticut (Latitude: 41.29603, Longitude: -72.89792). T-Mobile intends to replace three antennas and related equipment at this existing telecommunications facility in New Haven ("New Haven Facility"). Please accept this letter as notification, pursuant to R.C.S.A. § 16-50j-73, of construction which constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2) and/or (3). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to Mayor Toni Harp. Laydon Industries is also the property owner.

The existing New Haven Facility consists of a monopole telecommunications facility at a height of 98 feet AGL. ${ }^{1}$ T-Mobile proposes to replace three antennas on pipe mounts at a centerline of 98 feet. (See the plans revised to August 6, 2014 attached hereto as Exhibit A). T-Mobile will also install an H-frame, mount an RRU to the H-frame, and reuse existing coax cable.

The planned modifications to the New Haven Facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2) and/or (3).

[^0]September 4, 2014
Site ID CTNH039A
Page 2

1. The proposed replacement antennas will not increase the height of the tower. TMobile's new antennas will be installed at a centerline of 98 feet, merely replacing existing antennas. The enclosed tower drawing confirms that the proposed modification will not increase the height of the tower.
2. The proposed modifications will not require an extension of the site boundaries. T-Mobile's equipment will be located entirely within the existing compound and leased area as shown on Sheet A-1 of Exhibit A.
3. The proposed modifications to the New Haven Facility will not increase the noise level by six decibels or more.
4. The operation of the replacement antennas will not increase the total radio frequency (RF) power density, measured at the base of the tower, to a level at or above the applicable standard. According to a Radio Frequency Emissions Analysis Report prepared by EBI dated September 1, 2014 T-Mobile's operations would add 15.41% of the FCC Standard. Therefore, the calculated "worst case" power density for the planned combined operation at the site including all of the proposed antennas would be 79.77% of the FCC Standard as calculated for a mixed frequency site as evidenced by the engineering exhibit attached hereto as Exhibit C.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Upon acknowledgement by the Council of this proposed exempt modification, T-Mobile shall commence construction approximately sixty days from the date of the Council's notice of acknowledgement.
cc: City of New Haven, Mayor Toni Harp Laydon Industries Elizabeth Jamieson, Transcend Wireless

STRUCTURAL ANALYSIS REPORT

For

CTNH039A
NH039/LAYDON CONSTRUCTION
69 WHEELER STREET
NEW HAVEN, CT 06512
Antennas Mounted on the Monopole

Prepared for:

Transcend Wireless

Dated: August 26, 2014

Prepared by:

1600 Osgood Street Bldg. 20N Suite 3090 North Andover, MA 01845
(P) 978.557.5553 (F) 978.336.5586
www.hudsondesigngroupllc.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by T-MOBILE to conduct a structural evaluation of the 98^{\prime} monopole supporting the proposed T-MOBILE's antennas located at elevation 98' above the ground level.

This report represents this office's findings, conclusions and recommendations pertaining to the support of T-MOBILE's existing and proposed antennas listed below.

Record drawings of the existing monopole were not available for our use. The previous structural analysis report prepared by Structural Components, LLC, dated April 26, 2012, was available and obtained for our use.

CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing monopole is in conformance with the ANSI/TIA-222-F Standard for the loading considered under the criteria listed in this report. The monopole structure is rated at 98.3% - (Pole section L2 from EL. 70^{\prime} to EL. 88^{\prime} Controllingl.

APPURTANENCES CONFIGURATION:

Tenant	Appurtenances	Elev.	Mount
T-MOBILE	(3) APX16PV-16PVL Antennas	98^{\prime}	Low Profile Platform
T-MOBILE	(6) ATMAA1412D TMA	98^{\prime}	Low Profile Platform
T-MOBILE	(3) LNX-6515DS-VTM Antennas	98^{\prime}	Low Profile Platform
	(6) RRUS-11	94^{\prime}	T-Frame
	Surge Arrestor DC6-48-60-18-8F	94^{\prime}	T-Frame
	(3) AM-X-CD-16-65 Antennas	91.5^{\prime}	T-Frame
	(3) 7750 Antennas	91.5^{\prime}	T-Frame
	(3) 7770 Antennas	91.5^{\prime}	T-Frame
	(6) LGP21401 TMA	91.5^{\prime}	T-Frame
	(6) LGP21900	91.5^{\prime}	T-Frame
	(2) A-ANT-18G Dishes	82^{\prime}	T-Frame
	(11) DB844G45ZAXY Antennas	80^{\prime}	T-Frame
	(3) LLPX310R Antennas	80^{\prime}	T-Frame
	(3) RRUS-11	80^{\prime}	T-Frame

*Proposed T-MOBILE Appurtenances shown in Bold.

T-MOBILE EXISTING/PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
T-MOBILE	$(18) 15 / 8^{\prime \prime}$ Cables	98^{\prime}	Inside Monopole

*Proposed T-MOBILE Coax Cables shown in Bold.

ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (tt)	Pass/Fail	Comments
Pole Section-L1	23.9%	$88-98$	PASS	
Pole Section-L2	98.3%	$70-88$	PASS	Controlling
Pole Section-L3	86.6%	$48.68-70$	PASS	
Pole Section-L4	95.8%	$20-48.68$	PASS	
Pole Section-L5	92.4%	$0-20$	PASS	

DESIGN CRITERIA:

1. EIA/TIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County: New Haven
Wind Load: 90 mph (fastest mile)
110 mph (3 second gust)
Nominal Ice Thickness: $1 / 2$ inch
2. Approximate height above grade to proposed antennas: 98'

*Calculations and referenced documents are attached.

ASSUMPTIONS:

1. The monopole dimensions, member sizes and strength of material are as indicated in the previous structural analysis report prepared by Structural Components, LLC, dated April 26, 2012.
2. The appurtenances configuration is as stated in the previous structural analysis report prepared by Structural Components, LLC, dated April 26, 2012. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer requirements.
3. The monopole and foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
4. The support mounts and platforms are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.
5. All prior structural modification, if any, are assumed to be as per the data supplied (if available), and installed properly.
6. The foundation of the tower was not checked due to lack of information. As-built foundation drawings and geotechnical report would be required to determine whether the foundation is capable of supporting the proposed loadings.

SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed antennas be mounted on the existing steel platform supported by the monopole.

Reference HDG's Latest Construction Drawings for all component and connection requirements (attached).

Photo 1: Photo illustrating the Monopole with Appurtenances shown.

CALCULATIONS

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CTNH039A	$\begin{array}{ll} \text { Page } & \\ & 1 \text { of } 8 \end{array}$
	Project	98 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:12:39 08/26/14 } \end{array}$
	Client	T-MOBILE	Designed by kw

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in New Haven County, Connecticut.
Basic wind speed of 90.0 mph .
Nominal ice thickness of 0.5000 in.
Ice density of 56.0 pcf .
A wind speed of 77.9 mph is used in combination with ice.
Temperature drop of $50.0^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50.0 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Tapered Pole Section Geometry

Section	Elevation $f t$	Section Length $f t$	Splice Length f	Number of Sides	$\begin{gathered} \text { Top } \\ \text { Diameter } \\ \text { in } \\ \hline \end{gathered}$	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	98.00-88.00	10.00	0.00	18	12.7500	16.5000	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L2	88.00-70.00	18.00	0.00	18	16.5000	20.0700	0.1875	0.7500	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L3	70.00-48.68	21.32	0.00	1.8	20.0700	24.3130	0.3240	1.2960	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$
L4	48.68-20.00	28.68	0.00	18	24.3130	30.0200	0.3490	1.3960	A572-65 (65 ksi)
L5	20.00-0.00	20.00		18	30.0200	34.0000	0.3800	1.5200	$\begin{aligned} & \text { A572-65 } \\ & (65 \mathrm{ksi}) \end{aligned}$

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Component Type	Placement $f t$	Total Number		$C_{A} A_{A}$ $f^{2} / f t$	Weight plf
$15 / 8$	A	No	Inside Pole	98.00-0.00	18	No Ice	0.00	1.04
$\underset{* * * * * * * *}{(\mathrm{~T}-\mathrm{MOBLE}-\text { existing) }}$						$1 / 2^{\prime \prime}$ Ice	0.00	1.04
7/8	A	No	Inside Pole	88.00-0.00	12	No Ice	0.00	0.54
(AT\&T)						$1 / 2^{\prime \prime}$ Ice	0.00	0.54
$15 / 8$ Fiber Cable	A	No	Inside Pole	88.00-3.00	1	No Ice	0.00	1.04
						$1 / 2^{\prime \prime}$ Ice	0.00	1.04
597-6013 (5/16	A	No	Inside Pole	88.00-3.00	2	No Ice	0.00	0.03
COPPER)						$1 / 2^{\prime \prime}$ Ice	0.00	0.03

$15 / 8$	A	No	Inside Pole	79.00-0.00	12	No Ice	0.00	1.04

tnxTower	Job		Page
		CTNH039A	2 of 8
Hudson Design Group，LLC 1600 Osgood Street，Building 20 North， Suite 3090	Project	98 ft monopole	
			13：12：39 08／26／14
North Andover，MA 01845 Phone：（978）557－5553 FAX：（978）226－5586	Client	T－MOBILE	Designed by kw

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement	Total Number		$C_{A} A_{A} A$ $f^{2} / f t$	Weight plf
（Nextel）						1／2＂Ice	0.00	1.04
$1 / 2$	A	No	Inside Pole	79．00－0．00	2	No Ice	0.00	0.25
						1／2＂Ice	0.00	0.25
2 ＂Rigid Conduit	A	No	Inside Pole	79．00－0．00	1	No Ice	0.00	2.80
						1／2＂Ice	0.00	2.80
Switchblade	C	No	CaAa （Out Of	70．00－0．00	1	No Ice	0.56	0.00
			Face）			1／2＇ Ice	0.67	0.00

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets： \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f\) \\
\(f\)
\end{tabular} \& Azimuth Adjustment \& Placement

ft \& \& $C_{A} A_{A}$ Front $f t^{2}$ \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

$l b$

\hline PiROD 13＇Low Profile Platform（Monopole） （T－MOBILE－existing） \& A \& None \& \& 0.0000 \& 97.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 15.70 \\
& 20.10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.70 \\
& 20.10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1300.00 \\
& 1765.00
\end{aligned}
$$
\]

\hline RFS APX16PV－16PVL w／mount pipe \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 98.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.84 \\
& 7.31
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.03 \\
& 4.67
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
58.25 \\
107.10
\end{gathered}
$$
\]

\hline RFS APX16PV－16PVL w／mount pipe \& B \& From Face \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 98.00 \& | No Ice |
| :--- |
| $1 / 2^{\text {＂}}$ Ice | \& \[

$$
\begin{aligned}
& 6.84 \\
& 7.31
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.03 \\
& 4.67
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
58.25 \\
107.10
\end{gathered}
$$
\]

\hline RFS APX16PV－16PVL

w／mount pipe \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 98.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6.84 \\
& 7.31
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.03 \\
& 4.67
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
58.25 \\
107.10
\end{gathered}
$$
\]

\hline | （2）RFS |
| :--- |
| ATMAA1412D－1A20 | \& A \& From Face \& \[

$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 98.00 \& | No Ice |
| :--- |
| $1 / 2^{11}$ Ice | \& \[

$$
\begin{aligned}
& 1.17 \\
& 1.31
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.47 \\
& 0.57
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13.00 \\
& 20.62
\end{aligned}
$$
\]

\hline | （2）RFS |
| :--- |
| ATMAA1412D－1A20 | \& B \& From Face \& \[

$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 98.00 \& | No Ice |
| :--- |
| $1 / 2^{11}$ Ice | \& \[

$$
\begin{aligned}
& 1.17 \\
& 1.31
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.47 \\
& 0.57
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13.00 \\
& 20.62
\end{aligned}
$$
\]

\hline | （2）RFS |
| :--- |
| ATMAA1412D－1A20 | \& C \& From Face \& \[

$$
\begin{aligned}
& 2.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 98.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 1.17 \\
& 1.31
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.47 \\
& 0.57
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13.00 \\
& 20.62
\end{aligned}
$$
\]

\hline Andrew LNX－6515DS－VTM w／mount pipe （T－MOBLLE－proposed） \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 98.00 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 11.72 \\
& 12.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10.28 \\
& 11.81
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 102.41 \\
& 196.22
\end{aligned}
$$
\]

\hline Andrew LNX－6515DS－VTM w／mount pipe \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 98.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11.72 \\
& 12.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10.28 \\
& 11.81
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 102.41 \\
& 196.22
\end{aligned}
$$
\]

\hline | Andrew LNX－6515DS－VTM w／mount pipe |
| :--- |
| ＊＊＊＊＊＊桼氷水水 | \& C \& From Face \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 98.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11.72 \\
& 12.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10.28 \\
& 11.81
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 102.41 \\
& 196.22
\end{aligned}
$$
\]

\hline | （2）Ericsson RRUS－11 |
| :--- |
| （AT\＆T） | \& A \& From Face \& \[

$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 94.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline （2）Ericsson RRUS－11 \& B \& From Face \& \[
$$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 94.00 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ lce | \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline （2）Ericsson RRUS－11 \& C \& From Face \& $$
\begin{aligned}
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 94.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline
\end{tabular}

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CTNH039A	$\begin{aligned} & \text { Page } 3 \text { of } 8 \end{aligned}$
	Project	98 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:12:39 08/26/14 } \end{array}$
	Client	T-MOBILE	Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Offset Type \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

$l b$

\hline DC6-48-60-18-8F \& C \& From Face \& $$
\begin{aligned}
& 0.00 \\
& 0.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 94.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.27 \\
& 1.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.27 \\
& 1.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20.00 \\
& 35.12
\end{aligned}
$$
\]

\hline $$
\begin{gathered}
\text { KMW } \\
\text { AM-X-CD-16-65-00T-RET }
\end{gathered}
$$ \& A \& From Face \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 91.50 \& | No Ice |
| :--- |
| $1 / 2^{\text {" }}$ Ice | \& \[

$$
\begin{aligned}
& 8.26 \\
& 8.81
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.64 \\
& 5.09
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 48.50 \\
& 95.00
\end{aligned}
$$
\]

\hline $$
\begin{gathered}
\text { KMW } \\
\text { AM-X-CD-16-65-00T-RET }
\end{gathered}
$$ \& B \& From Face \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 91.50 \& | No Ice |
| :--- |
| $1 / 2^{\prime \prime}$ Ice | \& \[

$$
\begin{aligned}
& 8.26 \\
& 8.81
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.64 \\
& 5.09
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 48.50 \\
& 95.00
\end{aligned}
$$
\]

\hline $$
\begin{gathered}
\text { KMW } \\
\text { AM-X-CD-16-65-00T-RET }
\end{gathered}
$$ \& C \& From Face \& \[

$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 91.50 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 8.26 \\
& 8.81
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.64 \\
& 5.09
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 48.50 \\
& 95.00
\end{aligned}
$$
\]

\hline Powerwave 7750 \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& No Ice $1 / 2^{\text {" }}$ Ice \& \[

$$
\begin{aligned}
& 5.92 \\
& 6.36
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.91 \\
& 3.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 39.00 \\
& 71.64
\end{aligned}
$$
\]

\hline Powerwave 7750 \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& No Ice $1 / 2^{11}$ Ice \& \[

$$
\begin{aligned}
& 5.92 \\
& 6.36
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.91 \\
& 3.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 39.00 \\
& 71.64
\end{aligned}
$$
\]

\hline Powerwave 7750 \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& No Ice $1 / 2^{\text {1 }}$ Ice \& \[

$$
\begin{aligned}
& 5.92 \\
& 6.36
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.91 \\
& 3.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 39.00 \\
& 71.64
\end{aligned}
$$
\]

\hline Powerwave 7770 \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& No Ice $1 / 2^{\prime \prime}$ Ice \& \[

$$
\begin{aligned}
& 5.92 \\
& 6.36
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.91 \\
& 3.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 39.00 \\
& 71.64
\end{aligned}
$$
\]

\hline Powerwave 7770 \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& No Ice

$$
1 / 2^{\prime \prime} \text { Ice }
$$ \& \[

$$
\begin{aligned}
& 5.92 \\
& 6.36
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.91 \\
& 3.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 39.00 \\
& 71.64
\end{aligned}
$$
\]

\hline Powerwave 7770 \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.92 \\
& 6.36
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.91 \\
& 3.26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 39.00 \\
& 71.64
\end{aligned}
$$
\]

\hline (2) Powerwave TMA LGP21401 \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& No Ice $1 / 2^{\text {" }}$ Ice \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
0.41 \\
0.52
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline (2) Powerwave TMA LGP21401 \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& No Ice $1 / 2^{\text {1 }}$ Ice \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline (2) Powerwave TMA LGP21401 \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.23 \\
& 1.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.41 \\
& 0.52
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14.10 \\
& 21.29
\end{aligned}
$$
\]

\hline (2) Powerwave LGP21900 \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.23 \\
& 0.30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.12 \\
& 0.17
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.50 \\
& 7.70
\end{aligned}
$$
\]

\hline (2) Powerwave LGP21900 \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.23 \\
& 0.30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.12 \\
& 0.17
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.50 \\
& 7.70
\end{aligned}
$$
\]

\hline (2) Powerwave LGP21900 \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 91.50 \& No Ice $1 / 2^{11}$ Ice \& \[

$$
\begin{aligned}
& 0.23 \\
& 0.30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.12 \\
& 0.17
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.50 \\
& 7.70
\end{aligned}
$$
\]

\hline TA 602-3 \& A \& None \& \& 0.0000 \& 91.50 \& $$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 11.59 \\
& 15.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11.59 \\
& 15.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 774.00 \\
& 990.00
\end{aligned}
$$
\]

\hline (3) DB844G45ZAXY (Nextel) \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7.00 \\
& 7.41
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.97 \\
& 4.34
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 21.00 \\
& 64.04
\end{aligned}
$$
\]

\hline (4) DB844G45ZAXY \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7.00 \\
& 7.41
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.97 \\
& 4.34
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 21.00 \\
& 64.04
\end{aligned}
$$
\]

\hline
\end{tabular}

tnxTower	Job	CTNH039A	$\begin{aligned} & \text { Page } 4 \text { of } 8 \end{aligned}$
Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Project	98 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ 13: 12: 3908 / 26 / 14 \end{array}$
	Client	T-MOBILE	Designed by kw

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Offset } \\
\& \text { Type }
\end{aligned}
\] \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement \& \& \(C_{A} A_{A}\) Front
\[
f^{2}
\] \& \begin{tabular}{l}
\(C_{A} A_{A}\) Side \\
\(f t^{2}\)
\end{tabular} \& Weight

$l b$

\hline (4) DB844G45ZAXY \& C \& From Face \& $$
\begin{aligned}
& 0.00 \\
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7.00 \\
& 7.41
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.97 \\
& 4.34
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 21.00 \\
& 64.04
\end{aligned}
$$
\]

\hline Argus LLPX310R \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.83 \\
& 5.18
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.95 \\
& 2.21
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 29.00 \\
& 54.88
\end{aligned}
$$
\]

\hline Argus LLPX310R \& B \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 4.83 \\
& 5.18
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.95 \\
& 2.21
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 29.00 \\
& 54.88
\end{aligned}
$$
\]

\hline Argus LLPX310R \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& No Ice $1 / 2^{11}$ Ice \& \[

$$
\begin{aligned}
& 4.83 \\
& 5.18
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.95 \\
& 2.21
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 29.00 \\
& 54.88
\end{aligned}
$$
\]

\hline Ericsson RRUS-11 \& A \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{11} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline Ericsson RRUS-11 \& B \& From Face \& \[
$$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$

\] \& 0.0000 \& 80.00 \& | No Ice |
| :--- |
| $1 / 2^{\text {" Ice }}$ | \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline Ericsson RRUS-11 \& C \& From Face \& $$
\begin{aligned}
& 3.00 \\
& 0.00 \\
& 0.00
\end{aligned}
$$ \& 0.0000 \& 80.00 \& \[

$$
\begin{aligned}
& \text { No Ice } \\
& 1 / 2^{\prime \prime} \text { Ice }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.26 \\
& 3.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.38 \\
& 1.56
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 50.70 \\
& 71.57
\end{aligned}
$$
\]

\hline TA 602-3 \& A \& None \& \& 0.0000 \& 78.00 \& | No Ice |
| :--- |
| $1 / 2^{11}$ Ice | \& \[

$$
\begin{aligned}
& 11.59 \\
& 15.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11.59 \\
& 15.44
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 774.00 \\
& 990.00
\end{aligned}
$$
\]

\hline
\end{tabular}

Dishes

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Dish Type	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert $f t$	Azimuth Adjustment -	$3 d B$ Beam Width 。	Elevation	Outside Diameter $f t$		Aperture Area f^{2}	Weight
A-ANT-18G-24	A	Paraboloid w/Radome	From	1.00	0.0000		82.00	2.50	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{\prime \prime} \text { Ice } \end{aligned}$	4.90	41.00
			Face	0.00						5.20	81.00
				0.00							
A-ANT-18G-24	C	Paraboloid w/Radome	From	1.00	0.0000		82.00	2.50	No Ice $1 / 2^{\text {" }}$ Ice	4.90	41.00
			Face	0.00						5.20	81.00
				0.00							

Load Combinations

Comb.	
No.	
1	Dead Only
2	Dead+Wind 0 deg - No Ice
3	Dead+Wind 30 deg - No Ice
4	Dead+Wind 60 deg - No Ice
5	Dead+Wind 90 deg - No Ice
6	Dead+Wind 120 deg - No Ice

tnxTower	Job	CTNH039A	Page $\quad 5$ of 8
Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Project	98 ft monopole	Date $13: 12: 3908 / 26 / 14$
	Client	T-MOBILE	Designed by kw

Comb.	
No.	
7	Dead+Wind 150 deg - No Ice
8	Dead+Wind 180 deg - No Ice
9	Dead+Wind 210 deg - No Ice
10	Dead+Wind 240 deg - No Ice
11	Dead+Wind 270 deg - No Ice
12	Dead+Wind 300 deg - No Ice
13	Dead+Wind 330 deg - No Ice
14	Dead+Ice+Temp
15	Dead+Wind 0 deg+Ice+Temp
16	Dead+Wind 30 deg+Ice +Temp
17	Dead+Wind 60 deg+Ice+Temp
18	Dead+Wind 90 deg+Ice+Temp
19	Dead+Wind 120 deg+Ice+Temp
20	Dead+Wind 150 deg+Ice+Temp
21	Dead+Wind 180 deg+Ice+Temp
22	Dead+Wind 210 deg+Ice+Temp
23	Dead+Wind 240 deg+Ice + Temp
24	Dead+Wind 270 deg+Ice+Temp
25	Dead+Wind 300 deg+Ice+Temp
26	Dead+Wind 330 deg+Ice+Temp
27	Dead+Wind 0 deg - Service
28	Dead+Wind 30 deg - Service
29	Dead+Wind 60 deg - Service
30	Dead+Wind 90 deg - Service
31	Dead+Wind 120 deg - Service
32	Dead+Wind 150 deg - Service
33	Dead+Wind 180 deg - Service
34	Dead+Wind 210 deg - Service
35	Dead+Wind 240 deg - Service
36	Dead+Wind 270 deg - Service
37	Dead+Wind 300 deg - Service
38	Dead+Wind 330 deg - Service

	Maximum Reactions				
Location	Condition	Gov. Load Comb.	$\begin{gathered} \text { Vertical } \\ I b \end{gathered}$	Horizontal, X lb	Horizontal, Z $l b$
Pole	Max. Vert	21	20788.97	25.23	-14776.00
	Max. H_{5}	11	16700.99	17629.85	-24.59
	Max. H_{z}	2	16700.99	-66.35	17754.76
	Max. M_{x}	2	1327078.26	-66.35	17754.76
	Max. $\mathrm{M}_{\mathbf{z}}$	5	1322015.45	-17691.79	83.15
	Max. Torsion	11	626.23	17629.85	-24.59
	Min. Vert	1	16700.99	0.00	0.00
	Min. H_{x}	5	16700.99	-17691.79	83.15
	$\text { Min. } \mathrm{H}_{z}$	8	16700.99	34.34	-17774.14
	Min. M_{x}	8	-1328891.65	34.34	-17774.14
	Min. M_{z}	11	-1316787.76	17629.85	-24.59
	Min. Torsion	5	-661.87	-17691.79	83.15

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CTNH039A	$\begin{aligned} & \text { Page } \\ & \\ & 6 \text { of } 8 \end{aligned}$
	Project	98 ft monopole	$\begin{array}{\|l\|} \text { Date } \\ 13: 12: 3908 / 26 / 14 \end{array}$
	Client	T-MOBILE	Designed by kw

Load Combination	Vertical $1 b$	Shear $_{x}$ $i b$	Shear r_{z} $l b$	Overturning Moment, M_{x} $l b-f t$	Overturning Moment, M_{z} $l b-f t$	Torque $l b-f t$
Dead Only	16700.99	0.00	0.00	86.90	-6.59	0.00
Dead+Wind 0 deg - No Ice	16700.99	66.35	-17754.76	-1327078.26	-5490.04	101.78
Dead+Wind 30 deg - No Ice	16700.99	8917.90	-15398.52	-1151097.65	-666972.08	396.65
Dead+Wind 60 deg - No Ice	16700.99	15353.68	-8932.90	-668083.16	-1147534.26	611.14
Dead+Wind 90 deg - No Ice	16700.99	17691.79	-83.15	-6818.92	-1322015.45	661.87
Dead+Wind 120 deg - No Ice	16700.99	15290.68	8819.92	658941.11	-1142368.53	509.21
Dead+Wind 150 deg - No Ice	16700.99	8815.16	15385.67	1150335.42	-658514.92	211.59
Dead+Wind 180 deg - No Ice	16700.99	-34.34	17774.14	1328891.65	2774.55	-130.82
Dead+Wind 210 deg - No Ice	16700.99	-8836.22	15374.16	1149236.04	660069.22	-432.08
Dead+Wind 240 deg - No Ice	16700.99	-15253.81	8875.25	663402.46	1139115.42	-610.99
Dead+Wind 270 deg - No Ice	16700.99	-17629.85	24.59	2041.28	1316787.76	-626.23
Dead+Wind 300 deg - No Ice	16700.99	-15291.46	-8857.33	-661922.14	1142412.13	-480.36
Dead+Wind 330 deg - No Ice	16700.99	-8814.12	-15386.27	-1150202.42	658413.55	-211.82
Dead+Ice+Temp	20788.97	0.00	0.00	211.39	-86.31	0.00
Dead+Wind 0 deg+Ice+Temp	20788.97	50.71	-14760.58	-1125991.40	-4338.89	74.46
Dead+Wind 30 deg+Ice+Temp	20788.97	7411.92	-12799.84	-976494.08	-565880.92	330.69
Dead+Wind 60 deg+Ice+Temp	20788.97	12766.25	-7422.65	-566430.32	-974038.38	518.98
Dead+Wind 90 deg+Ice+Temp	20788.97	14712.89	-64.07	-5167.50	-1122352.85	568.24
Dead + Wind 120 deg+Ice+Temp	20788.97	12718.22	7336.37	559670.02	-970041.89	444.47
Dead+Wind $150 \mathrm{deg}+$ Ice+Temp	20788.97	7333.80	12791.71	976363.39	-559364.16	194.79
Dead + Wind 180 deg+Ice+Temp	20788.97	-25.23	14776.00	1127768.59	1972.83	-97.59
Dead + Wind 210 deg+Ice + Temp	20788.97	-7346.91	12780.45	975299.83	560135.36	-358.94
Dead+Wind 240 deg+Ice+Temp	20788.97	-12686.77	7376.76	562961.58	967065.08	-518.82
Dead+Wind 270 deg+Ice+Temp	20788.97	-14663.59	17.46	1624.61	1117954.26	-539.74
Dead+Wind 300 deg+Ice+Temp	20788.97	-12718.84	-7366.14	-561764.25	969902.15	-421.38
Dead + Wind 330 deg+Ice+Temp	20788.97	-7332.97	-12792.19	-975944.83	559106.33	-194.91
Dead+Wind 0 deg - Service	16700.99	20.48	-5479.86	-410347.24	-1702.80	32.71
Dead+Wind 30 deg - Service	16700.99	2752.44	-4752.63	-355927.14	-206275.22	124.79
Dead+Wind 60 deg - Service	16700.99	4738.79	-2757.07	-206546.47	-354892.90	191.53
Dead+Wind 90 deg - Service	16700.99	5460.43	-25.66	-2043.15	-408845.71	206.95
Dead+Wind 120 deg - Service	16700.99	4719.35	2722.20	203844.50	-353285.81	158.82
Dead + Wind 150 deg - Service	16700.99	2720.73	4748.66	355815.61	-203656.76	65.47
Dead+Wind 180 deg - Service	16700.99	-10.60	5485.85	411039.06	852.42	-41.75
Dead+Wind 210 deg - Service	16700.99	-2727.23	4745.11	355475.53	204126.39	-135.89
Dead+Wind 240 deg - Service	16700.99	-4707.97	2739.27	205223.70	352269.03	-191.51
Dead+Wind 270 deg - Service	16700.99	-5441.31	7.59	696.19	407212.82	-195.83
Dead+Wind 300 deg - Service	16700.99	-4719.59	-2733.74	-204637.83	353291.90	-149.77
Dead+Wind 330 deg - Service	16700.99	-2720.41	-4748.85	-355646.01	203615.78	-65.47

Solution Summary

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	PZ	PX	PY	$P Z$	
Comb.	$1 b$	$l b$	16	$l b$	$l b$	$l b$	
1	0.00	-16700.99	0.00	0.00	16700.99	0.00	0.000\%
2	66.35	-16700.99	-17754.76	-66.35	16700.99	17754.76	0.000\%
3	8917.90	-16700.99	-15398.52	-8917.90	16700.99	15398.52	0.000\%
4	15353.68	-16700.99	-8932.90	-15353.68	16700.99	8932.90	0.000\%
5	17691.78	-16700.99	-83.15	-17691.79	16700.99	83.15	0.000\%
6	15290.68	-16700.99	8819.92	-15290.68	16700.99	-8819.92	0.000\%
7	8815.16	-16700.99	15385.67	-8815.16	16700.99	-15385.67	0.000\%
8	-34.34	-16700.99	17774.13	34.34	16700.99	-17774.14	0.000\%
9	-8836.22	-16700.99	15374.16	8836.22	16700.99	-15374.16	0.000\%
10	-15253.81	-16700.99	8875.25	15253.81	16700.99	-8875.25	0.000\%
11	-17629.85	-16700.99	24.59	17629.85	16700.99	-24.59	0.000\%
12	-15291.46	-16700.99	-8857.33	15291.46	16700.99	8857.33	0.000\%
13	-8814.12	-16700.99	-15386.27	8814.12	16700.99	15386.27	0.000\%

tnxTower	Job		Page
		CTNH039A	7 of 8
Hudson Design Group, LLC 1600 Osgood Street, Building 20 North,	Project	98 ft monopole	
			13:12:39 08/26/14
North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Client	T-MOBILE	Designed by kw

	Sum of Applied Forces			Sum of Reactions			
Load	$P X$	PY	$P Z$	$P X$	PY	PZ	\% Error
Comb.	$1 b$	$l b$	$1 b$	$l b$	$l b$	$l b$	
14	0.00	-20788.97	0.00	0.00	20788.97	0.00	0.000\%
15	50.71	-20788.97	-14760.56	-50.71	20788.97	14760.58	0.000\%
16	7411.92	-20788.97	-12799.84	-7411.92	20788.97	12799.84	0.000\%
17	12766.25	-20788.97	-7422.65	-12766.25	20788.97	7422.65	0.000\%
18	14712.87	-20788.97	-64.07	-14712.89	20788.97	64.07	0.000\%
19	12718.22	-20788.97	7336.37	-12718.22	20788.97	-7336.37	0.000\%
20	7333.80	-20788.97	12791.71	-7333.80	20788.97	-12791.71	0.000\%
21	-25.23	-20788.97	14775.98	25.23	20788.97	-14776.00	0.000\%
22	-7346.91	-20788.97	12780.45	7346.91	20788.97	-12780.45	0.000\%
23	-12686.77	-20788.97	7376.76	12686.77	20788.97	-7376.76	0.000\%
24	-14663.57	-20788.97	17.46	14663.59	20788.97	-17.46	0.000\%
25	-12718.84	-20788.97	-7366.14	12718.84	20788.97	7366.14	0.000\%
26	-7332.97	-20788.97	-12792.19	7332.97	20788.97	12792.19	0.000\%
27	20.48	-16700.99	-5479.86	-20.48	16700.99	5479.86	0.000\%
28	2752.44	-16700.99	-4752.63	-2752.44	16700.99	4752.63	0.000\%
29	4738.79	-16700.99	-2757.07	-4738.79	16700.99	2757.07	0.000\%
30	5460.43	-16700.99	-25.66	-5460.43	16700.99	25.66	0.000\%
31	4719.35	-16700.99	2722.20	-4719.35	16700.99	-2722.20	0.000\%
32	2720.73	-16700.99	4748.66	-2720.73	16700.99	-4748.66	0.000\%
33	-10.60	-16700.99	5485.84	10.60	16700.99	-5485.85	0.000\%
34	-2727.23	-16700.99	4745.11	2727.23	16700.99	-4745.11	0.000\%
35	-4707.97	-16700.99	2739.27	4707.97	16700.99	-2739.27	0.000\%
36	-5441.31	-16700.99	7.59	5441.31	16700.99	-7.59	0.000\%
37	-4719.59	-16700.99	-2733.74	4719.59	16700.99	2733.74	0.000\%
38	-2720.41	-16700.99	-4748.85	2720.41	16700.99	4748.85	0.000\%

Maximum Tower Deflections - Service Wind

Section No.	Elevation	Horz. Deflection in	Gov. Load Comb.	Tilt	$=$
L1	$98-88$	23.5127	28	2.1748	Twist
L2	$88-70$	18.9992	28	2.1207	0
L3	$70-48.68$	11.7546	28	1.6561	0.0037
L4	$48.68-20$	5.5052	28	1.1264	0.0036
L5	$20-0$	0.8712	28	0.4216	0.022

Critical Deflections and Radius of Curvature - Service Wind

Elevation ft	Appurtenance	Gov. Load Comb.	Deflection	Tilt	Twist	Radius of Curvature $f t$
98.00	RFS APX16PV-16PVL w/mount pipe	28	23.5127	2.1748	0.0038	7456
97.00	PiROD 13' Low Profile Platform (Monopole)	28	23.0560	2.1734	0.0038	7456
94.00	(2) Ericsson RRUS-11	28	21.6893	2.1667	0.0038	7456
91.50	KMW AM-X-CD-16-65-00T-RET	28	20.5588	2.1547	0.0038	5745
82.00	A-ANT-18G-24	28	16.4195	2.0029	0.0033	2829
80.00	(3) DB844G45ZAXY	28	15.5917	1.9508	0.0031	2619
78.00	TA 602-3	28	14.7822	1.8946	0.0029	2437

tnxTower Hudson Design Group, LLC 1600 Osgood Street, Building 20 North, Suite 3090 North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 226-5586	Job	CTNH039A	$\begin{array}{ll} \hline \text { Page } & \\ & 8 \text { of } 8 \end{array}$
	Project	98 ft monopole	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:12:39 08/26/14 } \end{array}$
	Client	T-MOBILE	Designed by kw

Section Capacity Table

Section No.	$\begin{gathered} \text { Elevation } \\ \mathrm{ft} \end{gathered}$	Component Type	Size	Critical Element	$\begin{gathered} P \\ P \end{gathered}$	$\begin{gathered} S F^{*} P_{\text {allow }} \\ l b \end{gathered}$	\% Capacity	Pass Fail
L1	98-88	Pole	TP16.5x12.75x0.25	1	-3117.82	670340.35	23.9	Pass
L2	88-70	Pole	TP20.07x16.5x0. 1875	2	-5417.77	615139.48	98.3	Pass
L3	70-48.68	Pole	TP24.313x20.07x0.324	3	-8233.44	1282504.57	86.6	Pass
L4	48.68-20	Pole	TP30.02×24.313×0.349	4	-12861.60	1708679.32	95.8	Pass
L5	20-0	Pole	TP34×30.02x0.38	5	-16690.80	2108059.43	92.4	Pass
						Summary		
						Pole (L2)	98.3	Pass
						RATING =	98.3	Pass

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTNH039A
Laydon Construction
69 Wheeler Street
New Haven, CT 06512
September 1, 2014

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{7 9 . 7 7} \%$

September 1, 2014

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CTNH039A - Laydon Construction

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 69 Wheeler Street, New Haven, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307 (b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limit for the 700 MHz Band is $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, and the general population exposure limit for the PCS and AWS bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 69 Wheeler Street, New Haven, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel
2) 2 UMTS channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 LTE channels (AWS Band -2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
4) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
5) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
6) For the following calculations the sample point was the top of a six foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antennas used in this modeling are the RFS APX16DWV-16DWVS-E-A20 for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The RFS APX16DWV-16DWVS-E-A20 has a maximum gain of $\mathbf{1 6 . 3}$ dBd at its main lobe. The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6}$ dBd at its main lobe. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
8) The antenna mounting height centerline of the proposed antennas is $\mathbf{9 8}$ feet above ground level (AGL).
9) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	RFS APX16DWV-16DWVS-E-A20	Make / Model:	RFS APX16DWV-16DWVS-E-A20	Make / Model:	RFS APX16DWV-16DWVS-E-A20
Gain:	16.3 dBd	Gain:	16.3 dBd	Gain:	16.3 dBd
Height (AGL):	98	Height (AGL):	98	Height (AGL):	98
Frequency Bands	$1900 \mathrm{MHz}(\mathrm{PCS})$ / 2100 MHz (AWS)	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	6	Channel Count	6	\# PCS Channels:	6
Total TX Power:	240	Total TX Power:	240	\# AWS Channels:	240
ERP (W):	3,833.82	ERP (W):	3,833.82	ERP (W):	3,833.82
Antenna Al MPE\%	4.35	Antenna B1 MPE\%	4.35	Antenna C1 MPE\%	4.35
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	Commscope LNX -6515DS-VTM	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ \text { 6515DS-VTM } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Commscope LNX- } \\ \text { 6515DS-VTM } \\ \hline \end{gathered}$
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	98	Height (AGL):	98	Height (AGL):	98
Frequency Bands	700 Mhz	Frequency Bands	700 Mhz	Frequency Bands	700 Mhz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power:	30	Total TX Power:	30	Total TX Power:	30
ERP (W):	445.37	ERP (W):	445.37	ERP (W):	445.37
Antenna A2 MPE\%	0.79	Antenna B2 MPE\%	0.79	Antenna C2 MPE\%	0.79
	Site Composite MPE\%			T-Mobile Sector 1 Total:	1: 5.14%
	Carrier	MPE\%		T-Mobile Sector 2 Total:	1: 5.14%
	T-Mobile	15.41		T-Mobile Sector 3 Total:	: 5.14%
	Nextel	23.77 \%		Site Total:	l: 79.77 \%
	Clearwire	4.02\%			

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector 1:	5.14%
Sector 2:	5.14%
Sector 3:	5.14%
T-Mobile Total:	15.41%
Site Total:	79.77%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is 79.77% of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Scott Heffernan
RF Engineering Director

EBI Consulting
21 B Street
Burlington, MA 01803`

T. • -Mobile*

T-Mobile USA
35 Griffin Road South
Bloomfield, CT 06002
Attention: Elizabeth Jamieson
860-605-7808

SENT VIA CERTIFIED U.S. MAIL RETURN RECEIPT REQUESTED

August 28, 2014
Elmer Laydon
51 Longhini Ln
New Haven, CT 06519

Re: Acknowledgment and Consent Letter for Modification of Antenna Facilities at Site\#: CTNH039A
 Address: 69 Wheeler Street, New Haven, CT

Dear Mr. Laydon:
T-Mobile Northeast LLC, as successor in interest to Omnipoint Communications, Inc., as successor in interest to Omnipoint Holdings, Inc. ("Tenant") and ("Owner") entered into a Lease on 11/23/2005 for a site located at 69 Wheeler Street (the "Property"), to install telecommunication equipment as defined therein on the Property.

This letter is to notify you that T-Mobile Northeast LLC will be performing maintenance and modifications to its antenna facility located on the premises, according to the terms of the lease. The work to be performed will involve removing and replacing a total of three (3) antennas and removing and replacing three (3) mounting pipes on the tower for each antenna.

Please anticipate our Modification Department contacting you or your representative in the coming weeks to schedule access.

If you accept the terms of this Acknowledgment and Consent Letter set forth above, please sign and date the acknowledgment below on the two (2) original copies enclosed and return one (1) original copy in the enclosed self addressed, stamped envelope. Should you have any questions, please contact Elizabeth Jamieson at the above number.

We thank you in advance for your continued cooperation in this matter.

Sincerely,

Sam Simon

Development Manager
T-Mobile Northeast LLC

Site Number: CTNHOB9A
Site Name: Nousiadyon Construe
Achowlefgement mad Consent-Gmnection Market!

Acknowledged, Accepted and Agreed:

[^0]: ${ }^{1}$ This online Connecticut Siting Council database does not include a docket or petition number for the approval of this structure, but does include the approval of Petition 753, T-Mobile's request for an extension of ten feet on the existing facility. T-Mobile's proposed modifications are consistent with that approval.

