Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

July 26, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 115 Peat Meadow Road, New Haven, Connecticut

Dear Attorney Bachman:

On May 7, 2021, the Siting Council ("Council") approved Petition No. 1440, a request of Cellco Partnership d/b/a Verizon Wireless ("Cellco") to establish a wireless telecommunications facility on an extension of an existing billboard support pole, at the above-referenced property address (the "Property"). A copy of the Council's Petition No. 1440 approval letter is included in Attachment 1.

Cellco has not yet completed all of the site improvements approved in Petition No. 1440 but is seeking Council approval to replace three (3) of the approved antennas with three (3) new Samsung MT6407-77A antennas. The approved and new antennas will be installed on a new antenna mounting frame and utilize new antenna mounts. A set of project plans showing Cellco's proposed antenna modifications and new antennas specifications are included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to New Haven's Chief Elected Official and Land Use Officer.

Melanie A. Bachman, Esq. July 26, 2022 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new replacement antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A General Power Density table for Cellco's modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis ("SA") and Mount Analysis ("MA"), the existing tower, tower foundation and antenna mounts, with certain modifications, can support Cellco's proposed antenna changes. Copies of the updated SA and MA are included in Attachment 4.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in Attachment 6.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. July 26, 2022 Page 3

Sincerely,

Kenneth C. Baldwin

Kunig mu

Enclosures Copy to:

Justin Elicker, New Haven's Mayor Laura Brown, Executive Director of City Plan 115 Peat Meadows LLC Alex Tyurin, Verizon Wireless

ATTACHMENT 1

STATE OF CONNECTICUT

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Web Site: portal.ct.gov/csc

VIA ELECTRONIC MAIL

May 7, 2021

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597 kbaldwin@rc.com

RE: **PETITION NO. 1440** - Cellco Partnership d/b/a Verizon Wireless petition for a declaratory ruling, pursuant to Connecticut General Statutes §4-176 and §16-50k, for the proposed installation of a wireless telecommunications facility and associated equipment on an extension of the support structure above the top of an existing billboard located on a commercial property at 115 Peat Meadow Road, New Haven, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on May 6, 2021, the Connecticut Siting Council (Council) considered and ruled that the above-referenced proposal would not have a substantial adverse environmental effect, and pursuant to Connecticut General Statutes § 16-50k, would not require a Certificate of Environmental Compatibility and Public Need with the recommendation that security measures be employed in the wood fence design and with the following conditions:

- 1. Approval of any project changes be delegated to Council staff;
- 2. Submit a final site plan showing the route of the access road and placement of the facility at least an additional 1-foot above the existing ground elevation prior to commencement of construction;
- 3. Submit the FAA determination or the analysis related to any FAA notification requirements prior to commencement of construction;
- 4. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed within three years from the date of the mailing of the Council's decision, this decision shall be void, and the facility owner/operator shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The facility owner/operator shall provide written notice to the Executive Director of any schedule changes as soon as is practicable;
- 5. Any request for extension of the time period to fully construct the facility shall be filed with the Council not later than 60 days prior to the expiration date of this decision and shall be served on all parties and intervenors, if applicable, and the City of New Haven;

- 6. Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- 7. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
- 8. The facility owner/operator shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v;
- 9. This Declaratory Ruling may be transferred, provided the facility owner/operator/transferor is current with payments to the Council for annual assessments and invoices under Conn. Gen. Stat. §16-50v and the transferee provides written confirmation that the transferee agrees to comply with the terms, limitations and conditions contained in the Declaratory Ruling, including timely payments to the Council for annual assessments and invoices under Conn. Gen. Stat. §16-50v; and
- 10. If the facility owner/operator is a wholly owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the facility within 30 days of the sale and/or transfer.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the petition dated January 14, 2021, and additional correspondence dated March 26, 2021.

Enclosed for your information is a copy of the staff report on this project.

Sincerely,

s/Melanie A. Bachman

Melanie A. Bachman Executive Director

MAB/IN/emr

Enclosure: Staff Report dated May 6, 2021

c: The Honorable Justin Elicker, Mayor, City of New Haven (<u>jelicker@newhavenct.gov</u>)
The Honorable Joseph Carfora, Mayor, Town of East Haven (<u>jearfora@townofeasthavenct.org</u>)

STATE OF CONNECTICUT CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Web Site: www.ct.gov/csc

Petition No. 1440
Cellco Partnership d/b/a Verizon Wireless
Telecommunications Facility
115 Peat Meadow Road
New Haven, Connecticut

Staff Report May 6, 2021

Introduction

On January 14, 2021, the Connecticut Siting Council (Council) received a petition (Petition) from Cellco Partnership d/b/a Verizon Wireless (Cellco) for a declaratory ruling, pursuant to Connecticut General Statutes (CGS) §4-176 and §16-50k, for the proposed installation of a wireless telecommunications facility on an extension of the support structure above the top of an existing billboard located on a commercial property at 115 Peat Meadow Road, New Haven, Connecticut.

The purpose of the proposed facility is to provide reliable wireless service to portions of Interstate-95 (I-95) between Cellco's facility at 153 Forbes Street in New Haven and its facility at 65 Messina Drive in East Haven.

On January 14, 2021, Cellco provided notice of the proposed project to abutting property owners, City of New Haven (City) officials, Town of East Haven (Town) officials and state agencies and officials.

On January 15, 2021, the Council sent correspondence to the City and the Town stating that the Council has received the petition and invited the municipalities to contact the Council with any questions or comments by February 13, 2021. No comments were received.

Pursuant to CGS §4-176(e) of the Uniform Administrative Procedure Act, an administrative agency is required to take action on a petition within 60 days of receipt, and therefore, March 15, 2021 was the deadline for action on this Petition. In response to the Coronavirus pandemic, Governor Lamont issued Executive Order No. 7, as subsequently extended, that provides for a 90-day extension of statutory and regulatory deadlines for administrative agencies. Thus, the deadline under CGS §4-176(e) is extended to June 13, 2021.

The Council issued interrogatories to Cellco on March 11, 2021. Cellco provided responses to the Council's interrogatories on March 26, 2021.

Jurisdiction

Pursuant to CGS §16-50i(a)(6), the Council has exclusive jurisdiction over telecommunications towers, including associated equipment, owned or operated by the state, a public service company or a certified telecommunications provider or used in a cellular system.

Under Regulations of Connecticut State Agencies (RCSA) §16-50j-2a (30), "Tower" means a structure, whether free standing or attached to a building or another structure, that has a height greater than its diameter and that is high relative to its surroundings, or that is used to support antennas for sending or receiving radio frequency signals, or for sending or receiving signals to or from satellites, or any of these, which is or is to be:

- (A) used principally to support one or more antennas for receiving or sending radio frequency signals, or for sending or receiving signals to or from satellites, or any of these, and
- (B) owned or operated by the state, a public service company as defined in Section 16-1 of the Connecticut General Statutes, or a certified telecommunications provider, or used in a cellular system, as defined in Section 16-50i(a) of the Connecticut General Statutes.

Cellco would install its equipment at the top of an extension of the existing billboard support structure. The telecommunications facility would be owned and operated by Cellco, a certified telecommunications provider. Thus, the Council has jurisdiction over the proposed telecommunications facility.

Proposed Telecommunications Facility

The proposed facility would provide wireless service to the surrounding area in Cellco's 700 MHz, 850 MHz, 1900 MHz and 2100 MHz LTE frequency range.

The site is located in the southeast corner of a 6.0 acre developed commercial property within New Haven's Automobile Sales Business (BB) district. The property is owned by 115 Peat Meadows, LLC. The property hosts the Brandfon Hyundai automotive dealership and is owned by 115 Peat Meadow, LLC. The subject property abuts Route 1 and I-95 to the south, a City park, an undeveloped parcel and a bulk oil storage facility to the north, residential properties to the west and the New Haven-East Haven town line and the CarMax automobile dealership to the east.

Cellco proposes to install a 45-foot 10-inch extension of the existing monopole support structure extending its overall height to 70-feet above ground level (agl). Cellco would install six panel antennas at a centerline height of 67- feet agl and six remote radio heads at 62-feet agl. The proposed antennas would offer 5G services.

The proposed facility would also include two equipment cabinets on a 7-foot by 4-foot concrete pad and an H-frame structure supporting associated equipment enclosed within an 18-foot by 8-foot 8-inch fenced equipment compound. Cellco would install backup batteries which would provide about eight hours of backup power to the cell site. Cellco would also install an ice bridge and a GPS antenna.

Access to the site would be via a proposed 15-foot wide easement extending from the existing parking lot north of the facility. Cellco would not make any improvements to the ground surface leading up to the gate of the fenced compound.

Electrical and telephone service would extend underground approximately 430 feet south along a proposed 10-foot wide easement from an existing utility pole located in the northeast corner of the property.

Public Safety

A preliminary Federal Aviation Administration (FAA) determination indicates the proposed facility would not require notice to the FAA. A more detailed analysis will be completed to determine if further notification to the FAA is required.

A Professional Engineer duly licensed in the State of Connecticut has certified that the proposed monopole extension and antenna mounts would be structurally adequate to support the proposed equipment loading.

The calculated power density would be 26.35 percent of the applicable limit using a -10 dB off-beam adjustment.

Environmental

The surrounding land use is a mixture of residential and commercial. The nearest residence is approximately 650 feet west of the facility at 590 Forbes Avenue. The nearest wetland is located about 583-feet northwest of the proposed facility. No tree clearing is proposed for the project.

Cellco will implement erosion and sedimentation controls in accordance with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control.

The facility site is not located within the Federal Emergency Management Agency-designated 100-year or 500-year flood zone. It is located approximately 1 foot above the base flood elevation for the 100-year flood plain and portions of the proposed underground utility easement are located within the 100-year flood zone. Cellco indicates elevating the proposed facility an additional 1-foot above the existing ground elevation may increase the reliability of the facility during a flood event.

The proposed project is not located within a buffered area of the Department of Energy and Environmental Protection's Natural Diversity Database. The facility would be located on a previously disturbed area.

The facility would comply with United States Fish and Wildlife Service guidelines for minimizing potential impacts to bird species.

No schools or commercial child day care centers are located within 250 feet of the site. The nearest school and child day care are located approximately 0.98 miles east and 0.3 miles west of the site, respectively. No visibility of the proposed facility is predicted from either location.

The proposed telecommunications facility is not expected to have a significant visual impact to the surrounding area. Views of the existing billboard and proposed facility are primarily along I-95 to the south and commercial and industrial development to the south and east of the facility. Visibility from the residential area to the west would be obscured by existing vegetation and mature trees. The facility would also be visible from some residences along Peat Meadow Road during leaf-off conditions.

Facility Construction

The construction of the facility is anticipated to take four to eight weeks. Construction will be conducted between the hours of 7 a.m. to 5 p.m. weekdays and Saturdays.

Conclusion

If approved, staff recommends the following conditions:

- 1. Approval of any project changes be delegated to Council staff;
- 2. Submit a final site plan showing the route of the access road and placement of the facility at least an additional 1-foot above the existing ground elevation prior to commencement of construction; and
- 3. Submit the FAA determination or the analysis related to any FAA notification requirements prior to commencement of construction.

Proposed Verizon Wireles 5' Wide Access Easemer Proposed Verizon Wireless 10' Utility Easement Control of the second second Proposed Verizon Wireless Equipment and Wood Fence within Proposed Verizon Wireless 21" x 10" Lease Area Power and Telco Service to Run Underground from Existing Utility Pole (By Others o Proposed Equipmen Site Schematic Existing Utility Pole (Bly Others) roposed Verteen Wiseless Equipment Subject Property Proposed Wireless oposed Veriton Wisewas Fence Telecommunications Facility East Haven 5 CT end Workson Wilminson Littlify Eleve verizon 115 Peat Meadow Road seed Written Wireless Power and Telco Servi New Haven, Connecticut

Figure 1. Proposed Site Location¹

¹ Cellco states in the response to Council interrogatories dated March 25, 2021 that "The 15-foot-wide access easement will commence at the northerly right-of-way line of Forbes Avenue, and run in a northerly direction though the existing parking-lot, then change course and continue in a southerly direction towards the northerly side of the proposed facility." This is represented in Fig. 3

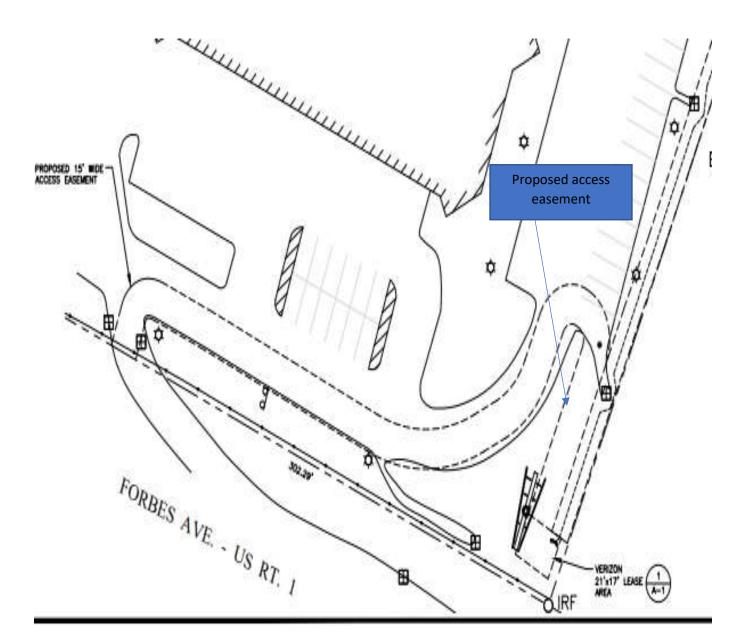

PROPOSED 15'-0"± WIDE ACCES EASEMENT EXISTING BILLBOARD SUPPORT POLE EXISTING BILLBOARD (OVERHEAD) PROPOSED 200A METER WITH DISCONNECT SWITC PROPOSED VERIZON ICE BRIDGE 12'-0's GATE PROPOSED WOOD FIDNOE POWER
DESTRIBUTION BOX NEMA 3R 3x3x1 PROPOSED 7'M" EQUIPMENT CONCRETE PRO PROPOSED OPS ANTENNA 18'-0"± 21'-0"± (LEASE AMEA) GRAPHIC SCALE

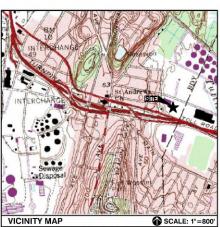
Figure 2. Site Plan of the proposed Facility

PROPOSED VERIZON ARH (TYP. OF 2 PER SECTOR, TOTAL OF 6) PROPOSED VERIZON OVP PROPOSED VERIZON DIPLEMENTS (TYP. OF 1 PER SECTOR, TOTAL OF 3) PROPOSED VERIZON 46° POLE EXTENSION EXISTING BILL BOARD POLE (HEIGHT = 24") PROPOSED WOOD FENCE ELEV. = 0.0'± A.G.L D.EV. = 18'-0"s A.W.S.L EAST ELEVATION 22:34 SCAE: 1/4"-1"-0" 11x17 SCAE: 1/8"-1"-0"

Figure 3. Side Elevation of the proposed facility

Figure 4. Site Plan showing access easement

ATTACHMENT 2


CELLCO PARTNERSHIP

WIRELESS COMMUNICATIONS FACILITY

EAST HAVEN 5 CT

115 MEADOW ROAD **NEW HAVEN, CT 06513**

DIRECTIONS TO SITE: FROM VERIZON WALLINGFORD CT OFFICE

20 ALEXANDER DRIVE, WALLINGFORD, CT 06492

HEAD NORTH ON ALEXANDER DR TOWARD BARNES INDUSTRIAL RD S TURN RIGHT ONTO BARNES INDUSTRIAL RD S TURN LEFT AT THE 1ST CROSS STREET ONTO CT-68 W TURN RIGHT TOWARD US-5 N/N COLONY RD TURN RIGHT ONTO US-5 N/N COLONY RD TURN LEFT TO MERGE ONTO CT-15 S TOWARD NEW HAVEN TAKE EXIT 38 FOR CT-123/NEW CANAAN AVENUE TURN RIGHT ONTO CT-123 S/NEW CANAAN AVE ARRIVE AT 284 NEW CANAAN AVENUE, NORWALK, CT ON LEFT

CONSULTANT TEAM

PROJECT ENGINEER

HUDSON DESIGN GROUP, LLC 45 BEECHWOOD DRIVE NORTH ANDOVER, MA 01845 FAX: 1-(978)-336-5586

SURVEYOR

NORTHEAST SURVEY CONSULTANTS 116 PLEASANT ST. SUITE 302 EASTHAMPTON, MA 01027 TEL: 1-(413)-203-5144

SITE NAME: EAST HAVEN 5 CT SITE ADDRESS: 115 MEADOW ROAD NEW HAVEN, CT 06513 APPLICANT: CELLCO PARTNERSHIP d/b/a VERIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492 LATITUDE:

PROJECT SUMMARY

LONGITUDE:

PARCEL ID:

PROPERTY OWNER:

115 PEAT MEADOWS LLC 515 WEST MAIN STREET BRANFORD, CT 06405

N 41*17'18 84"

72/982/300

W 72' 53' 09.07"

SHEET IN	IDEX
SHEET NO.	DESCRIPTION
T-1	TITLE SHEET
GN-1	GENERAL NOTES
C-1	ABUTTERS PLAN AND EXISTING CONDITIONS
C-2	SITE PLAN
C-3	COMPOUND GRADING PLAN
A-1	COMPOUND PLAN
A-2	ELEVATION
A-3	EQUIPMENT PLAN AND DETAILS
A-4	ANTENNA PLAN AND DETAILS
A-5	CABLE SUPPORT DETAILS
A-6	FENCE DETAILS
A-7	SITE SURFACE COVER AND EROSION CONTROL DETAILS
SN-1	STRUCTURAL NOTES & SPECIAL INSPECTIONS
S-1	ICE CANOPY DETAILS
S-2	ICE CANOPY DETAILS
E-1	ELECTRICAL NOTES & WIRING DIAGRAM
E-2	GROUNDING RISER DIAGRAM
E-3	GROUNDING PLAN
E-4	GROUNDING DETAILS
RF-1	RF PLUMBING DIAGRAM & BILL OF MATERIAL

PREPARED FOR: CELLCO PARTNERSHIP D.I FOR CONSTRUCTION verizon

CHECKED BY: JX

APPROVED BY: DPH

SUBMITTALS								
REV.	DATE	DESCRIPTION	BY					
2	08/24/22	REV. ANTENNA NOUNT	SLY					
1		ADDED N77 ANTENNAS	SLY					
0		ISSUED FOR CONSTRUCTION	SLY					

EAST HAVEN 5 CT

SITE ADDRESS: 115 MEADOW ROAD NEW HAVEN, CT 06513

TITLE SHEET

SHEET NUMBER 1-1

UNDERGROUND SERVICE ALERT

NOTE TO GENERAL CONTRACTOR:

RF' DESIGN AND EQUIPMENT IS BASED UPON RFDS ISSUED BY VZW DATED: 4/06/2022 REV 3 THE CONTRACTOR OF RECORD SHALL CONTACT VZW PRIOR TO ANY AND ALL ORDERING/PURCHASING/INSTALLATION OF EQUIPMENT TO VERIFY THAT THE 'RF' LISTED IN THE DRAWING SET IS CURRENT AND UP TO DATE.

PART 1 CENERAL

PART 2 GENERAL NOTES

- THE CONTRACTOR SHALL OVE ALL NOTICES AND COMPLY WITH ALL LAWS, ORDINACES, RULES, REQUATIONS AND ALL LAWS, ORDINACES, RULES, REQUATIONS AND ALL LAWS OF A PROPERTY OF A PRO
- THE ARCHITECT/ENGINEER HAVE MADE EVERY EFFORT TO SET PORTH IN THE CONSTRUCTION AND CONTINUET CONTINUED CONTINUED STATE OF THE PROPERTY OF THE PROPERTY OF THE DEARNINGS AND OR SPECIFICATIONS SHALL NOT EXCUSE SHIP COMPACTOR FROM COMPLETING THE PROJECT AND IMPROVAMENTS IN ACCORDANCE WITH THE RITERAL OF THESE DOCUMENTS.
- THE CONTRACTOR OR BIDDER SHALL BEAR THE RESPONSIBILITY OF NOTIFYING (IN WRITING) VERIZON'S REPRESENTATIVE OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF CONTRACTOR'S PROPOSAL OR PERFORMANCE OF WORK
- THE SCOPE OF WORK SHALL INCLUDE FURNISHING ALL MATERIALS, EQUIPMENT, LABOR AND ALL OTHER MATERIALS AND LABOR DEEMED NECESSARY TO COMPLETE THE WORK/PROJECT AS DESCRIBED HEREIN.
- THE CONTRACTOR SHALL VISIT THE JOB SITE PRIOR TO THE SUBMISSION OF BIOS OR PERFORMING WORK TO FAMILIARIZE THEIRSELF WITH THE FIELD CONDITIONS AND TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH
- THE CONTRACTOR SHALL OBTAIN AUTHORIZATION TO PROCEED WITH CONSTRUCTION PRIOR TO STARTING WORK ON ANY ITEM NOT CLEARLY DEFINED BY THE CONSTRUCTION DRAWINGS / CONTRACT DOCUMENTS.
- THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS ACCORDING TO THE MANUFACTURER'S / VENDOR'S SPECIFICATIONS UNLESS NOTED OTHERWISE OR WHERE LOCAL CODES OR ORDINANCES TAKE PRECEDENCE.
- THE CONTRACTOR SHALL MAINTAIN A FULL SET OF CONSTRUCTION DOCUMENTS AT THE SITE UPDATED WITH THE LATEST REVISIONS AND ADDEBOUNDING OR CARRICATIONS AVAILABLE FOR THE USE OF ALL PERSONNEL INVOLVED WITH THE PROJECT.
- THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HERBIN. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDINATING ALL PORTIONS OF THE WORK UNDINATION.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS WHICH MAY BE REQUIRED FOR THE WORK BY THE ARCHITECT/ENGINEER, THE STATE, COUNTY OR LOCAL GOVERNMENT AUTHORITY.
- 11. THE CONTRACTOR SHALL MAKE NECESSARY PROMSIONS TO PROTECT EXISTING SITE CONDITIONS DURING CONSTRUCTION. UPON COMPLETION OF WORK, THE CONTRACTOR SHALL REPAIR ANY DIAMAGE THAT MAY HAVE OCCURRED DUE TO CONSTRUCTION ON A BOUT THE PROPERTY.
- THE CONTRACTOR SHALL KEEP THE GENERAL WORK AREA CLEAN AND HAZARD FREE DURING CONSTRUCTION AND DISPOSE OF ALL DIRT, DEBRIS, RUBBISH AND REMOVE ALL UNNECESSARY MATERIAL.
- 13. THE COMPACTOR SIMIL COMPLY WITH ALL PERTINENT SECTIONS OF THE STATE BASIS BULINDS CODE, ATEST EDITION, NO ALL SOM REQUESTIONS THE WARRY OF A LEGITARY OF THE PROPERTY OF T ARCHITECT/ENGINEER.
- 14. THE CONTRACTOR SHALL NOTIFY VERIZON'S REPRESENTATIVE WHERE A CONFLICT OCCURS ON ANY OF THE CONTRACT DOCUMENTS. THE CONTRACTOR IS NOT TO ORDER MATERIAL OR CONSTRUCT ANY PORTION OF THE WORK THAT IS IN CONFLICT UNTIL THE CONFLICT IS RESOLVED BY VERIZON'S REPRESENTATIVE.
- THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS, ELEVATIONS, PROPERTY LINES, ETC. ON THE JOB.
- THE CONTRACTOR SHALL NOTIFY THE RF ENGINEER FOR ANTENNA AZIMUTH VERIFICATION (DURING ANTENNA INSTALLATION) PRIOR TO CONDUCTING SITE SWEEPING.
- WHERE APPLICABLE
 PROVIDE CORE PROVIDED THE PRESENTIONS
 PROVIDE CORE OF THE PRESENT OF THE PRESENTIONS
 PROVIDED THE CORE OF THE PRESENT PASSAGE OF WATER, SMOKE FIRE AND FUNES. ALL PREVENT PASSAGE OF WATER, SMOKE FIRE AND FUNES. ALL PREVENT PASSAGE OF WATER, SMOKE FIRE AND FUNES. ALL PREVENT PASSAGE OF WATER, SMOKE FIRE AND FUNES.

CONCRETE

CAST-IN-PLACE CONCRETE

1 01 DESCRIPTION

WORK INCLUDES CONSTRUCTION OF CAST—IN-PLACED CONCRETE FOUNDATIONS. INCLUDING PURPISHING AND INSTILLING REJOT—MX RESIDENCY—INCLUDING PROPERTY—INCLUDING PROPERTY—INCLUDING PROPERTY—INCLUDING FOUNDATIONS, SLASS ON GRADE, EQUIPMENT PAUS, PIERS AND QUARD POST PURDINATIONS.

- 1.02 PELATED WORK
- A. COORDINATE UNDER SLAB CONDUITS
- B. COORDINATE WITH GROUNDING
- 1.03 APPLICABLE STANDARDS
- A. ACI-301 SPECIFICATIONS FOR STRUCTURAL CONCRETE BUILDINGS
- B. ACI 347 GUIDE TO FORMWORK FOR CONCRETE.
- C. ASTM C33 CONCRETE AGGREGATES
- D. ASTM C94 READY-MIXED CONCRETE
- E. ASTM C150 PORTLAND CEMENT
- F. ASTM C260 AIR-ENTRAINING ADMIXTURES FOR CONCRETE.
- G. ASTM C309 LIQUID MEMBRANE FORMING COMPOUNDS FOR CURING CONCRETE.
- H. ASTM C494 CHEMICAL ADMIXTURES FOR CONCRETE. ASTM A615 - DEFORMED STEEL BARS FOR CONCRETE REINFORCEMENT.
- J. ASTM A185 STEEL WELDED WIRE FABRIC FOR CONCRETE REINFORCEMENT
- 1.04 QUALITY ASSURANCE

CONCRETE TESTS SHALL BE AS DETAILED BELOW OR AS DIRECTED BY VERIZON. CONCRETE MATERIALS AND OPERATIONS SHALL BE TESTED AND INSPECTED BY THE ENGINEER AS THE WORK PROORESSES. FAILURE TO DETECT ANY DEFECTIVE WORK OR MATERIAL SHALL NOT IN ANY WAY PREVENT LATER REJECTION WHEN SUCH DEFECT IS DISCOVERED NOR

SHALL IT ORLIGATE THE ENGINEER FOR FINAL ACCEPTANCE A. THREE CONCRETE TEST CYUNDERS SHALL BE TAKEN OF THE TOWER PIER FOUNDATION. ONE SHALL BE TESTED © THREE DAYS, ONE © TWENTY-EIGHT DAYS. THE THIRD CYLINDER SHALL BE KEPT SEPARATELY. (IF REQUIRED TO BE USED IN THE FUTURE.)

B. ONE SLUMP TEST SHALL BE TAKEN FOR EACH SET OF TEST CYLINDERS TAKEN. SLUMP SHALL NOT EXCEED 4" UNLESS OTHERWISE NOTED.

PART 2 - PRODUCT

CONCRETE SHALL BE COMPOSED OF PORTLAND CEMENT, WATER, FINE AND COARSE AGGREGATES, AND ADMIXTURES AS SPECIFIED BELOW, ALL WELL MIXED AND BROUGHT TO PROPER CONSISTENCY, CLASS I. II, III, OR

- A. CEMENT: CEMENT SHALL BE TYPE II, GRAY COLOR, LOW-ALKALI PORTLAND CEMENT CONFORMING TO ASTM C150.
- C. WATER WATER FOR MIXING AND CURING CONCRETE SHALL BE FREE FROM SEWAGE, OIL, ACID, ALKALI, AND SALTS AND SHALL BE FREE FROM OBJECTIONABLE QUANTITIES OF SILT, ORGANIC MATTER, AND OTHER DELETEROUS SUBSTANCES.

- A. CHEMICAL ADMIXTURE: ASTM C494, TYPE A— WATER REDUCING OR TYPE D WATER REDUCING AND RETARDING.
- 2.03 CURING COMPOUND: ASTM C309, TYPE1. CLASS B; TRANSLUCENT.
- A. NONSHRINK GROUT: PREMIXED COMPOUND CONSISTING OF NONMETALLIC AGGREGATE, CEMENT, WATER REDUCING AND PLASTICIZING AGENTS; CAPABLE OF DEVELOPING MINIMUM COMPRESSIVE STRENGTH OF 7,000 PSI IN 28 DAYS.
- B. JOINT FILLER: BITUMINOUS TYPE, ASTM D1751 OR NON-BITUMINOUS TYPE ASTM D1752.
- C. ANCHOR BOLTS: ASTM A307. UNPRIMED.
- CONCRETE SHALL BE PROPORTIONED PER REQUIREMENTS OF ACI 11 & VERIZON CONSTRUCTION SPECIFICATIONS FOR DESIGN STRENGTH WORKABILITY. CONCRETE SHALL BE DELIVERED WITHIN 45 MINUTES ADDITION OF WATER TO MIX.
- B. THE FOLLOWING STREAMTHS SHALL BE USED:

 1. FIRSTE FOOT FOUNDATIONS DESIGN COMPRESSIVE STRENGTH
 AT 28 DAYS OF 3,000 F9 STEEN FOUNDATION DESIGN
 COMPRESSIVE STRENGTH OF 3,000 F9 AT 28 DAYS UNLESS OTHERWISE
 MOTED. (CONTRICON FURNISH > 4,000 F9 CONCRETE).
- CONCRETE STRENGTH FOR MONOPOLE OR TOWER FOUNDATION SHALL BE 1,000 PSI MORE THAN THE MANUFACTURER'S RECOMMENDATIONS, 4,000 PSI MINIMUM.

- C. USE ACCELERATING ADMIXTURES IN COLD WEATHER AND RETARDING ADMIXTURES IN HOT WEATHER ONLY WHEN APPROVED BY THE ENGINEER.
- D. TOTAL AIR CONTENT SHALL BE 5 PERCENT PLUS OR MINUS PERCENT.
- 3.01 INSPECTION

THE CONTRACTOR SHALL VERIFY ANCHORS, SEATS, PENETRATIONS, PLATES, REINFORCEMENT, AND OTHER ITEMS TO CAST INTO CONCRETE ARE ACCURATELY PLACED, HELD SECURELY, AND SHALL NOT CAUSE HARDSHIP IN PLACING CONORETE.

A. THE CONTRACTOR SHALL PREPARE PREVIOUSLY PLACED CONCRETE BY CLEANING WITH STEEL BRUSH AND APPLYING BONDING AGENT. APPLY BONDING AGENT IN ACCORDANCE WITH MANUFACTURER'S INSTRUCTIONS.

A. THE ENGINEER SHALL BE NOTIFIED NOT LESS THAN 24 HOURS IN ADVANCE OF CONCRETE PLACEMENT. UNLESS INSPECTION IS WAVED IN EACH CASE, PLACING OF CONCRETE SHALL BE PERFORMED ONLY IN THE PRESENCE OF THE ENGINEER.

CONCRETE SHALL NOT BE PLACED UNTIL ALL FORM WORK, EMBEDDED PARTS, STEEL, RENFORCEMENT, POLINATION SIRPALES, AND JOHN FACES, AND JOHN FOR THE PLACE OF THE PLACE OF THE PLACE OF THE PLACE OF THE WORK AS SPICIFED. CONCRETE WAY NOT BE CHOREDED FOR PLACEMENT UNTIL ALL TRUST NAVE BEEN APPROVED AND VERZON HAS PERFORNED A FINAL SIRPETION AND GROWN APPROVED. TO STARTH FLACEMENT IN WRITING.

- C. PLACEMENT OF CONCRETE SHALL BE IN ACCORDANCE WITH ACI 301.

D. THE CONTRACTOR SHALL ENSURE THAT REINFORCEMENT, INSERTS, EMBEDDED PARTS, FORMED JOINTS AND VAPOR BARRIERS ARE NOT DISTURBED DURING CONCRETE PLACEMENT.

3.04 SURFACE FINISHES

A. SURFACES AGAINST WHICH BACK FILL OR CONCRETE SHALL BE PLACED REQUIRE NO TREATMENT EXCEPT REPAIR OF DEFECTIVE AREAS.

- B. SURFACES THAT WILL BE PERMANENTLY EXPOSED SHALL PRESENT A UNIFORM FINISH PROVIDED BY THE REMOVAL OF FINS AND THE FILLING OF HOLES AND OTHER IRREGULARITIES WITH DRY PACK GROUT, OR BY SACKING WITH UTILITY OR ORDINARY GROUT.
- C. SURFACES THAT WOULD NORMALLY BE LEVEL AND WHICH WILL BE PERMANENTLY EXPOSED TO THE WEATHER SHALL BE SLOPED FOR PERMANENTY EXPOSED TO THE WATHER SHALL BE SUPPLY FOR DOWNING SPECIFIED PROMISED TO THE WATHER SHALL BE SUPPLY BE TO SEE TO SHARE SHALL BE SUPPLY BE SHALL BE SHALL BE SUPPLY BE SHALL BE S
- D. SURFACES THAT WILL BE COVERED BY BACKFILL OR CONCRETE SHALL BE SMOOTH SCREEDED.
- E. EPPOSED S.A.B. AND PIER SURFACES SHALL BE CONSOLDATED, SOMEEDED, FLOATED, AND STITLL FROMELED. HAND OR MICH SHALL BE STATED AS SOON AS THE SOFERING SURFACE HAS ATTAINED AS SOON AS THE SOFERING SURFACE HAS ATTAINED AS STORY AS THE SOFERING SURFACE HAS ATTAINED AS STORY AS THE SOFERING SURFACE HAS ATTAINED AS STORY AS THE SOFERING SURFACE HAS SHALL BE INSTITUTED AS THE SOFERING SURFACE HAS SHALL BE INSTITUTED. MANUFACTURER'S MAXIMUM ALLOWABLE LOADS. MANUFACTURER'S MINIMUM CONCRETE EDGE DISTANCE SHALL BE MAINTAINED DURING INSTALLATION.

3.05 PATCHING

THE CONTRACTOR SHALL NOTIFY THE ENGINEER IMMEDIATELY UPON REMOVAL OF THE FORMS TO OBSERVE CONCRETE SURFACE CONDITIONS. IMPERFECTIONS SHALL BE PATCHED ACCORDING TO THE ENGINEERS

3.06 DEFECTIVE CONCRETE

THE CONTRACTOR SHALL MODIFY OR REPLACE CONCRETE NOT CONFORMING TO REQUIRED LEVELS AND LINES, DETAILS, AND ELEVATIONS AS SPECIFIED IN ACI 301.

- A. IMMEDIATELY AFTER PLACEMENT, THE CONTRACTOR SHALL PROTECT THE CONCRETE FROM PREMATURE DRYING, EXCESSIVELY HOT OR COLD TEMPERATURES, AND MECHANICAL INJURY, FINISHED WORK SHALL BE
- B. CONCRETE SHALL BE MAINTAINED WITH MINIMAL MOISTURE LOSS AT RELATIVELY CONSTANT TEMPERATURE FOR PERIOD NECESSARY FOR HYDRATION OF CEMENT AND HARDENING OF CONCRETE.
- C. ALL CONCRETE SHALL BE WATER CURED PER ACCEPTABLE PRACTICES SPECIFIED BY ACI CODE.

METALS

PART 1 - GENERAL

- A. THE WORK CONSISTS OF THE FABRICATION AND INSTALLATION OF THE MATERIAL TO BE FURNISHED, AND WITHOUT LIMITION THE SERVICE OF THE PROPERTY OF THE SERVICES REQUIRED FOR ALL STRUCTURAL STEEL WORK, INCLUDING ALL HEAR INCIDENTAL THERETO AS SPECIFED HEREIN AND AS SHOWN ON THE DRAWNINGS. INCLUDING
- STEEL FRAMING INCLUDING BEAMS, ANGLES, CHANNELS AND PLATES.
- 2. WELDING AND ROLLING OF ATTACHMENTS.
- A. THE WORK SHALL CONFORM TO THE CODES AND STANDARDS OF THE FOLLOWING AGENCIES AS FURTHER CITED HEREIN:
- ASTM: AMERICAN SOCIETY FOR TESTING AND MATERIALS, AS PUBLISHED IN "COMPILATION OF ASTM STANDARDS IN BUILDING CODES"
- AWS: AMERICAN WELDING SOCIETY INC., AS PUBLISHED IN "STANDARD D1.1-2015, STRUCTURAL WELDING CODE"
- AISC: AMERICAN INSTITUTE FOR STEEL CONSTRUCTION, AS PUBLISHED IN "CODE FOR STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES", "SPECIFICATIONS FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS".
- 4. EIA/TIA-222-G STRUCTURAL STANDARDS FOR STEEL ANTENNO SUPPORTING STRUCTURES.
- PART 2 STRUCTURAL NOTES

ALL STEEL WORK SHALL BE PAINTED OR GALVANIZED IN ACCORDANCE WITH THE DRAWINGS AND VERZON SPECIFICATIONS ASTEROPHY OF THE STEEL SPECIFICATION SHALL BE SECURIFICATION. AND STATE OF THE STEEL PERSON, INSTALLATION AND BOLTING SHALL BE IN ACCORDANCE WITH THE AMERICAN INSTITUTE OF STEEL. CONSTRUCTION (AISC) "MANUAL OF STEEL CONSTRUCTION". MISC. STEEL TO BE A36.

- DESIGN REQUIREMENTS ARE PER STATE BUILDING CODE AND APPLICABLE SUPPLEMENTS, ANSI/TIA-222-G STRUCTURAL STANDARDS FOR STEEL ANTENNA SUPPORTING STRUCTURES.
- CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. ANY UNUSUAL CONDITIONS SHALL BE REPORTED TO THE ATTENTION OF THE CONSTRUCTION MANAGER AND ENGINEER OF RECORD.
- DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS".
- 4. STEEL PIPE SHALL CONFORM TO ASTM ASOO "COLD-FORMED WELDED & SEAMLESS CARBON STEEL STRUCTURAL TUBING", GRADE A, OR ASTM ASS PIPE STEEL BLACK AND HOT-DIPPED ZING-COATED WELDED AND SEAMLESS TYPE E OR S, GRADE B, PIPE SIZES NIDICATED ARE NOMINLA, LATULAL OUTSIDE DIMMETER IS LARGER.
- 5. STRUCTURAL CONNECTION BOLTS SHALL BE HIGH STRENGTH BOLTS (BEARING TYPE)AND CONFORM TO ASTM A325 "HIGH STRENGTH BOLTS FOR STREUTURAL JOINTS, INCLUDING SUITABLE NUTS AND PLAIN HARDENED WASHERS". UNLESS OTHERWISE NOTED, ALL BOLTS SHALL BE 5/8" DIA TYPE X. ALL STEEL MATERIALS SHALL BE GALVANIZED AFTER FABRICATION
 IN ACCORDANCE WITH ASTM A123 "ZINC (HOT-DIP GALVANIZED)
 COATINGS ON IRON AND STEEL PRODUCTS", UNLESS OTHERWISE
 NOTED.

 OUT 1. TO THE CONTROL OF THE CONTR
- 7. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTA A153 "ZINC-COATING (HOT-DIP) ON IRON AND STEEL HARDWARE", UNLESS OTHERWISE NOTED.
- B. FELD WELDS, ORILL HOLES, SAW DUTS AND ALL DAMAGED SENSOR OF THE SENSO
- 9. COMINACION SAAL COMPLY WITH AMS CODE FOR PROCEDURE OF CONTRACTOR STALL COMPLY WITH AMS CODE FOR PROCEDURE IN CORRECTINO WILDING, ALL WILLDIES AND WILDING PROCESS NA SHALL BE COLUMPIED IN ACCOSSIDANCE WITH MAS TATABARD CIJALIFACTION PROCEDURES, ALL WILDING SHALL BE DONE USING DIALARDOLOGICAL WITH A STANDARD CIJALIFACTION PROCEDURES, ALL WILDING SHALL BE DONE USING DIALARDOLOGICAL WITH PROCEDURES, ALL WILDING SHALL BE DONE USING USING DIALARDOLOGICAL WITH A WILDING WITH A WILDING WITH WITH A WILDING WITH A WIL
- 10. INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE. REPORTED TO THE CONSTRUCTION MANAGER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE CONSTRUCTION MANAGER APPROVIAL.
- 11. UNISTRUTS SHALL BE FORMED STEEL CHANNEL STRUT FRAMING AS MANUFACTURED BY UNISTRUT CORP, WAYNE, MI OR EQUAL STRUT MEMBERS SHALL BE 1.5 /6/x1 5.6/x12GA. UNICSS OTHERWISE NOTED, AND SHALL BE HOT-OIP GALVANIZED AFTER FABRICATION FOR EXTERNAL USE APPLICATION FOR
- 12. UNLESS OTHERWISE NOTED, EPOXY ANCHOR ASSEMBLY SHALL 12. ONLESS UTLESSED RUILD FOR A PARTHUR ASSUMED, SPALL TOORNIST OF THE DIMETER STATES. AND MET ROOM WITH THE AND A EPOLY ADMESTIC STATES. AND A EPOLY ADMESTIC. THE ANCHORING SYSTEM SHALL BE THE HILTH-HIT "-270 AND OR IN-200 SYSTEMS (AS SPECIFIED ON DWG.) OR ENGINEERS APPROVED EQUAL WITH 4-1/4" MIN. PLEISDEATH OEPTH.

13. UNLESS OTHERWISE NOTED, EXPANSION BOLTS SHALL CONFORM TO FEDERAL SPECIFICATION FF-S-325, GROUP II, TYPE 4. CLASS I. HILTI KWIK BOLT II OR APPROVED EQUAL INSTALLATION SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S
RECOMMENDATIONS, MINIMUM EMBEDMENT SHALL BE THREE AND ONE HALF (3 1/2) INCHES.

- 1. PLYWOOD SHALL MEET THE RECOMMENDATIONS OF THE A.P.A.
 2. ALL LUMBER SHALL BE SPRUCE-PINE-FIR (SPF) § 1 GRADE.
 3. ALL LUMBER SHALL BE PRESSURE TREATED WITH PRESERVATIVES.
 ALL DIABASE BENDING STRESS: th min = 1,000 PSI
 MODILLS OF ELISTICITY. 1.54-012 PSI
- ALL JOIST HANGERS, CLIP ANGLES AND PLATES TO BE HEAVY GALVANIZED AS MANUFACTURED BY SIMPSON CO., OR APPROVED EQUAL.
- ALL LVL'S TO BE MANUFACTURED BY BOSIE CASCADE OR APPROVED EQUAL.

SPECIAL CONSTRUCTION ANTENNA INSTALLATION

A. ANTENNAS AND HYBRIFLEX CABLES SHALL BE AS SPECIFIED ON THESE DRAWNINGS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE PROTECTION OF PERSONNEL AND PROPERTY. STRICT ADHERENCE TO OSHA STANDARDS IS MANDATED.

B. INSTALL ANTENNAS AS INDICATED ON DRAWINGS AND VERIZON SPECIFICATIONS.

INSTALL GALVANIZED STEEL ANTENNA MOUNTS AS INDICATED ON INCS.

D. INSTALL HYBRIFLEX CABLES AND TERMINATION'S BETWEEN ANTENNAS AND EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. WEATHERPROOF ALL CONNECTORS BETWEEN THE ANTENNA AND EQUIPMENT PER MANUFACTURER'S REQUIREMENTS. TERMINATE ALL COAXIAL CABLE THREE (3) FEET IN EXCESS OF ENTRY PORT LOCATION UNLESS OTHERWISE STATED.

E. ANTENNA MOUNTS AND HARDWARE SHALL BE PAINTED TO MATCH EXISTING CONDITIONS.

F. ANTENNA AND HYBRIFLEX CABLE GROUNDING:

1. ALL EXTERIOR #6 GREEN GROUND WIRE "DASY CHAIN"
CONNECTIONS ARE TO BE WEATHER SEALED.

2. ALL COXABL CHEE BOTHONIONS KITS ARE TO BE
INSTALLED ON STRAIGHT RUNS OF COXABL CABLE (NOT WITHIN BENDS).

IF ASSUMED EXISTING CONDITION DIFFERS, ENGINEER MUST BE INFORMED OF ACTUAL FIELD CONDITION.

STELL FABRICATION.

<u>N</u>

盈

S

Ö

ō

verizon

PREPARED FOR: CELLCO PARTNERSHIP D.B.A.

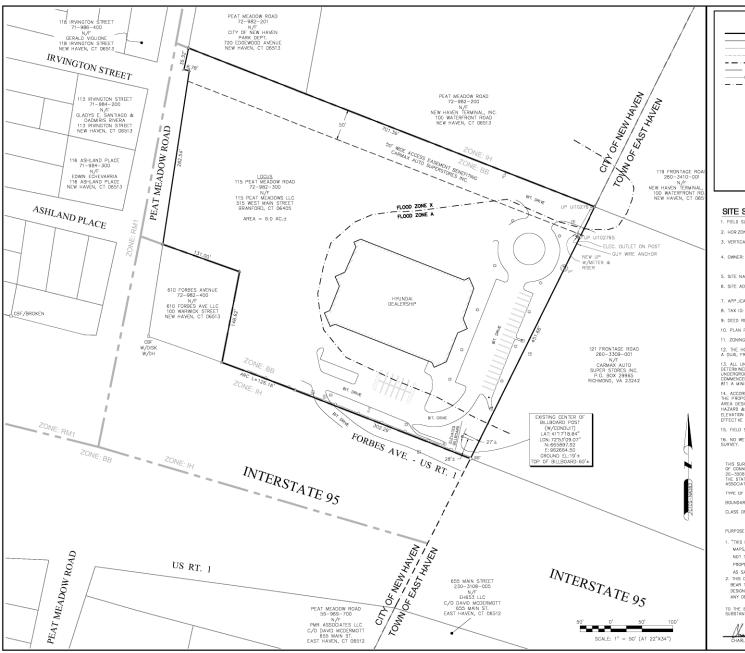
TEL: (978) 557-5553 FAX: (978) 336-5586

JX

DPH

CHECKED BY: APPROVED BY:

SUBMITTALS REV. DATE DESCRIPTION 2 06/24/22 REV. ANTENNA WOUNT 05/13/22 ADDED N77 ANTENNAS


0 07/19/21 ISSUED FOR CONSTRUCTION EAST HAVEN 5 CT

> SITE ADDRESS: 115 MEADOW ROAD NEW HAVEN, CT 06513

GENERAL NOTES

SHEET NUMBER

GN-1

SITE SPECIFIC NOTES:

2. HOR ZONTAL DATUM: NORTH AMERICAN DATUM OF 1983 (NAD83)

NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88) 3. VERTICAL DATUM:

\$ UTILITY POLE

LIGHT POLE ਰਰ SIGN POST

N /F NOW OR FORMERLY

85-328-007 MAP-BLOCK-LOT

115 PEAT MEADOWS LLC 515 WEST MAIN STREET BRANFORD, CT 06405

5. SITE NAME: EAST HAVEN 5 CT

6 SITE ADDRESS 115 PEAT MEADOW ROAD NEW HAVEN, CT 06513

CELLCO PARTNERSHIP D.B.A. VERIZON WIRELESS

8. TAX ID: 72-982-300 9. DEED REFERENCE: BOOK 9467 PAGE 342

10. PLAN REFERENCE: MAP 61-44

11. ZONING DISTRICT: BB

12. THE HORIZONTAL DATUM AND VERTICAL DATUM WERE DERIVED FROM A DUAL FREQUENCY GPS SURVEY.

13. ALL UNDERGROUND UTILITY INFORMATION PRESENTED HEREON WAS DETERMINED FROM SURFACE EVIDENCE AND PLANS OF RECORD. ALL UNDERGROUND UTILITIES SHOULD BE LOCATED IN THE FIELD PROBY TO COMMENCEMENT OF ALL STE WORK. CONTACT CALL BEFORE YOU DIG AT 811 A MINIMUM OF 22 HOURS PROBY TO PLANNED ACTIVITY.

14. ACCORDING TO FIDELS, INTERDANY MANAGEMENT MERITY MATE THE PROPOSED MEMOREMENTS ON INTERPROPERTY ARE LOCATED AN AREA DESIGNATED AS ZONE X (UNSHADED), AREA OF MINNAL, FLOOD HAZARD & ZONE A 12 MINNIAL CHANCE FLOOD (NO BASE FLOOD ELEVATION DETERMINED), MAP NO. 09009C 0442J

15. FIELD SURVEY BY EDM TOTAL STATION & RTK GPS.

16. NO WETLAND DELINEATIONS WERE OBSERVED DURING THE FIELD SLIPWEY

THIS SURVEY HAS BEEN PREPARED PURSUANT TO THE REQUILATIONS OF CONNECTICUT STATE ACENCIES SECTIONS 20-3008-1 THROUGH 20-3008-20 AND THE "STANDARDS FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT" AS ADOPTED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS INC. ON SEPTEMBER 26, 1997.

TYPE OF SURVEY IMPROVEMENT LOCATION SURVEY

BOUNDARY SURVEY CATEGORY: DEPENDENT RESURVEY

CLASS OF ACCURACY: HORIZONTAL CLASS C VERTICAL CLASS V-2 TOPOGRAPHIC CLASS N/A

PURPOSE OF SURVEY: ADDITION OF CELLULAR FOLIPMENT

1 "THIS MAP WAS PREPARED FROM RECORD RESEARCH OTHER MAPS, LIMITED FIELD MEASUREMENTS AND OTHER SOURCES. IT IS NOT TO BE CONSTRUED AS A PROPERTY/BOUNDARY OR LIMITED PROPERTY/BOUNDARY SURVEY AND IS SUBJECT TO SUCH FACTS AS SAID SURVEYS MAY DISCLOSE."

2. THIS DOCUMENT AND COPIES THEREOF ARE VALID ONLY IF THEY
BEAR THE LIVE SIGNATURE AND EMBOSSED SEAL OF THE DESIGNATED PROFESSIONAL, UNAUTHORIZED ALTERATIONS RENDER ANY DECLARATION NULL AND VOID.

TO THE BEST OF MY KNOWLEDGE AND BELIEF, THIS MAP IS SUBSTANTIALLY CORRECT AS NOTED HEREON.

#7010*3*

PREPARED FOR: CELLCO PARTNERSHIP D.S.A verizon

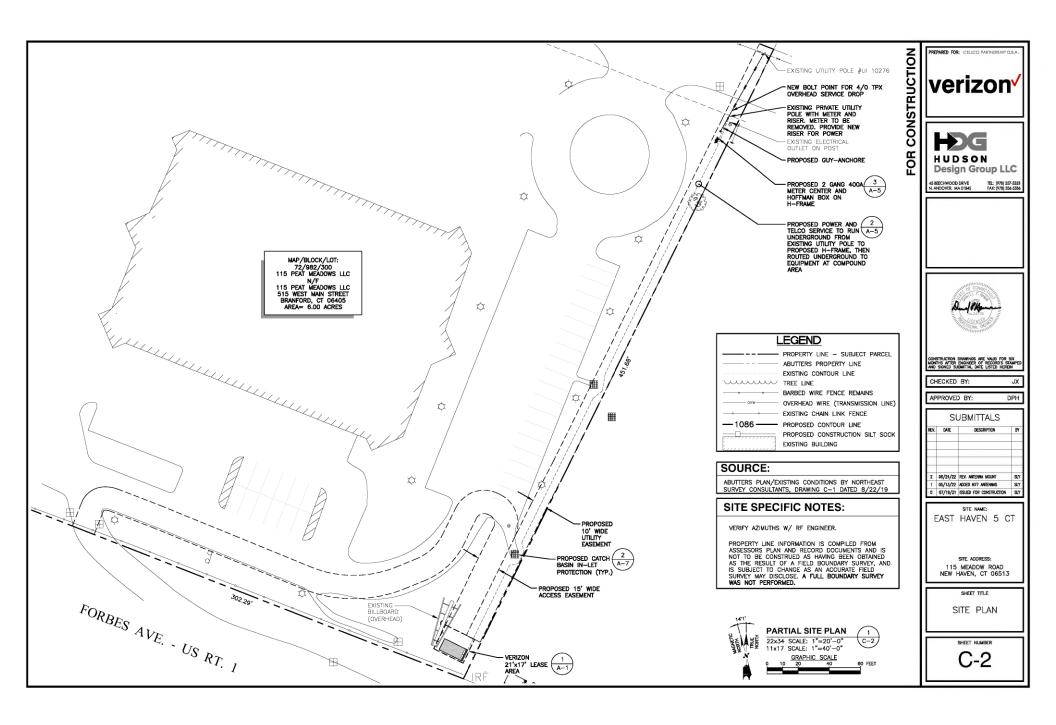
TEL: (978) 557-5553 FAX: (978) 336-5586

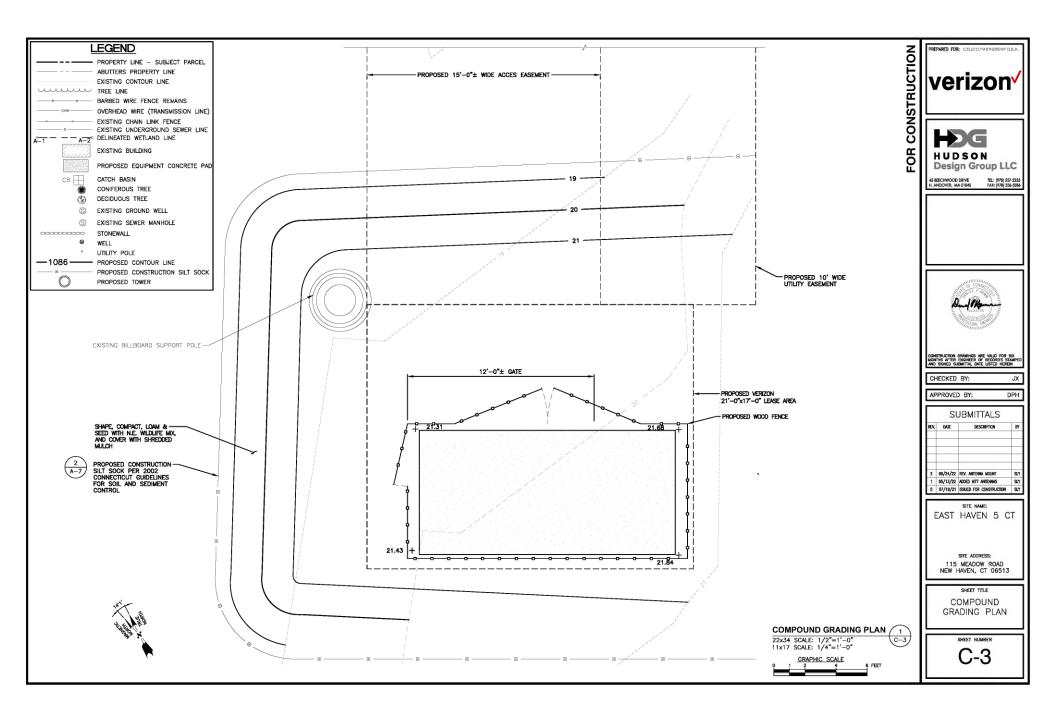
NORTHEAST SURVEY CONSULTANTS

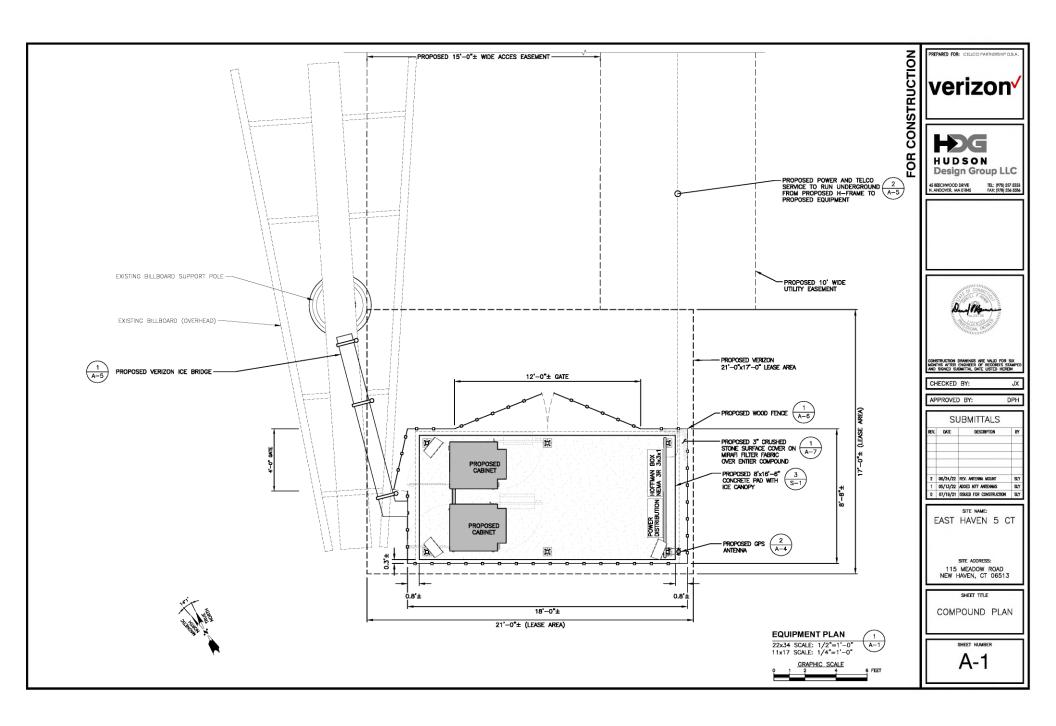
CHECKED BY:

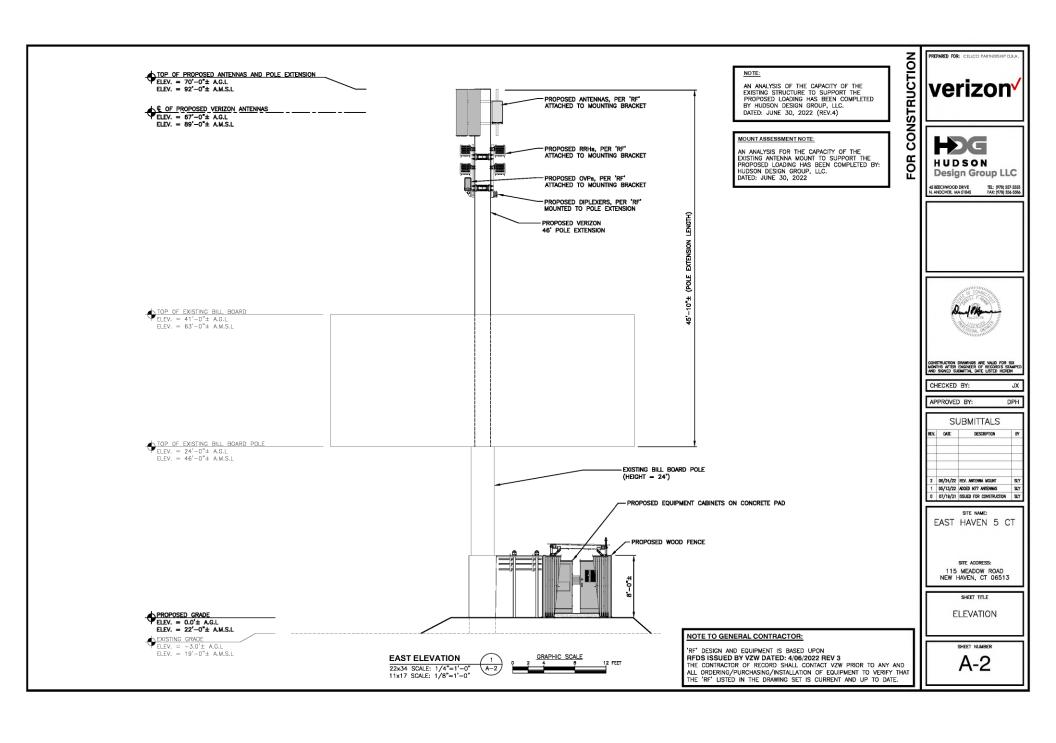
APPROVED BY

SUBMITTALS						
REV.	DATE	DESCRIPTION	BY			
-			+			
			\perp			
			+			
_			+			
0	8/22/19	ISSUED FOR REVIEW	BCF			

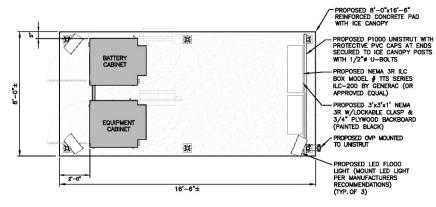

EAST HAVEN 5 CT

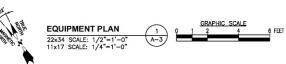

SITE ADDRESS: 115 PEAT MEADOW ROAD NEW HAVEN, CT 06513


ABUTTERS PLAN/EXISTING CONDTIONS

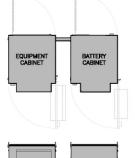

SHFFT NUMBER

C-1





CONTRACTOR SHALL NOT INSTALL ANY HARDWARE/EQUIPMENT IN AND AROUND ANY WORKING AREAS THAT CREATE A TRIP HAZARD. E.O.R. SHALL BE NOTIFIED IF ANY EXISTING HARDWARE/EQUIPMENT CREATES A TRIP HAZARD PRIOR TO INSTALLATION.



COOPER LIGHTING NFFLD NIGHT FALCON NFFLD-A25-E-UNV-66-S-BK SLIPFITTER MOUNT AND VANDAL SHIELD

MOUNT PER MANUFACTURER'S SPECIFICATIONS.

SPECIFICATIONS:
MANUFACTURER: COMMSCOPE
PART NO.: CMC74-36B
BATTERY CABINET
SIZE: 80.75"x36.2"x43.7"
WEIGHT: TBD LBS

SPECIFICATIONS:
MANUFACTURER: COMMSCOPE
PART NO.: CMC74-36E
EQUIPMENT CABINET
SIZE: 80.75"x35.2"x43.7"
WEIGHT: TBD LBS

NOTE: ANCHOR CABINET TO STEEL PLATFORM PER MANUFACTURERS RECOMMENDATIONS

SCALE: N.T.S

EQUIPMENT CABINET

INTERMATIC WP1220C

TYPE: DOUBLE GANG
HINGE: VERTICAL
INSERT: WP217
DEPTH: 2-1/4"
COLOR: CLEAR

TIME CYCLE: 6 HOURS SWITCH: SPST HOLD: NO

OR APPROVED EQUIVALENT

NTERMATIC FF6H

OR APPROVED EQUIVALENT

SWITCH DETAIL 4
SCALE: N.T.S

verizon

FOR CONSTRUCTION

PREPARED FOR: CELLCO PARTHERSHIP D.B.

BEECHWOOD DRIVE TEL: (978) 557-5553 ANDOVER, MA 01845 FAX: (978) 336-5586

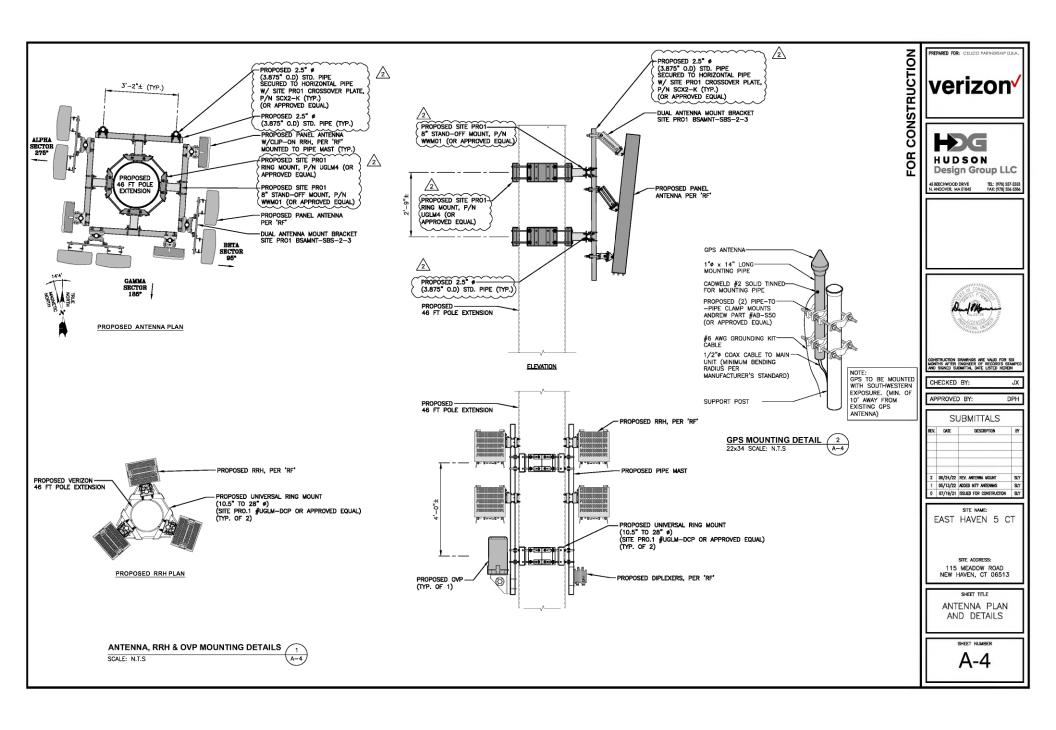
CONSTRUCTION DRAWINGS ARE VALID FOR SD MONTHS AFTER ENGINEER OF RECORDS STAM AND SIGNED SUBMITTAL DATE LISTED HEREIN

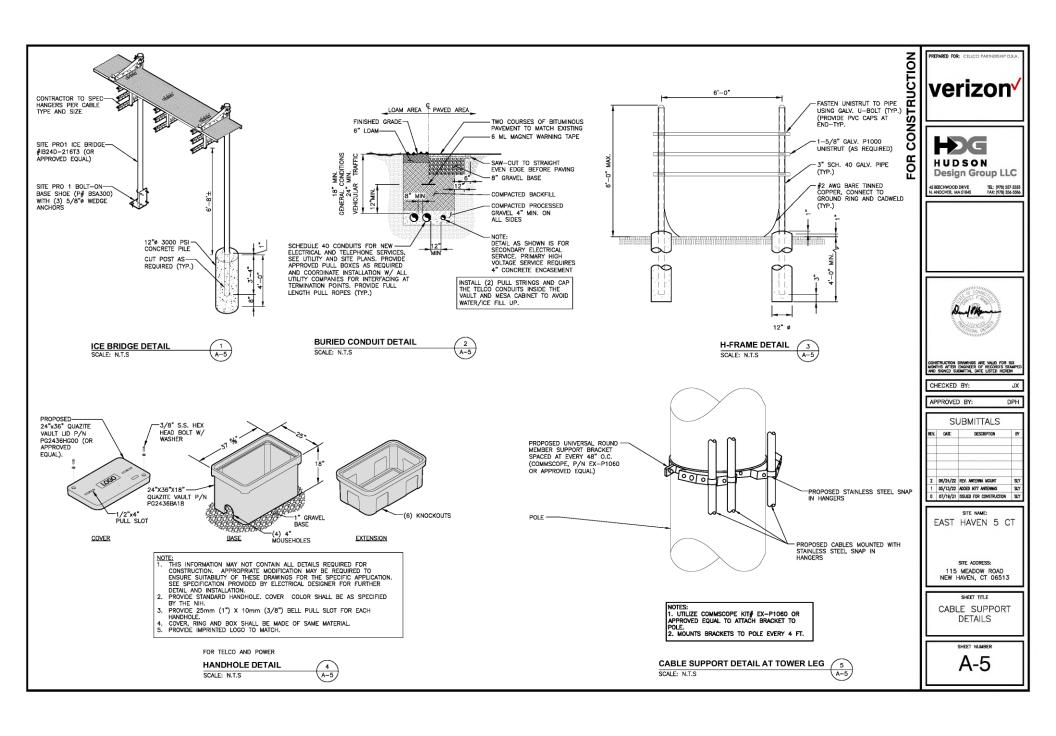
JX

DPH

CHECKED BY:

APPROVED BY:


0 07/19/21 ISSUED FOR CONSTRUCTION :
SITE NAME:
EAST HAVEN 5 CT


SITE ADDRESS: 115 MEADOW ROAD NEW HAVEN, CT 06513

EQUIPMENT PLAN AND DETAILS

A-3

SCALE: N.T.S A-3

CHECKED BY:

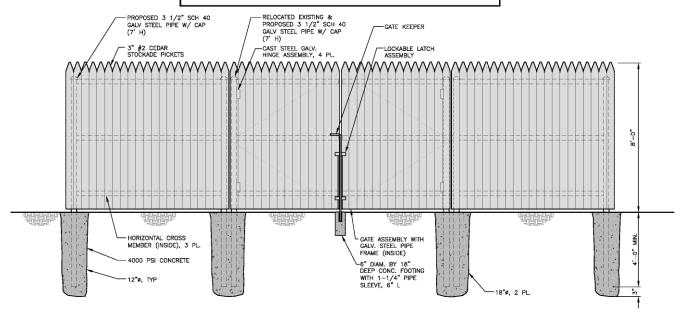
APPROVED BY:

DPH

SUBMITTALS 2 06/24/22 REV. ANTENNA WOUNT 05/13/22 ADDED N77 ANTENNAS 0 07/19/21 ISSUED FOR CONSTRUCTION

EAST HAVEN 5 CT

SITE ADDRESS: 115 MEADOW ROAD NEW HAVEN, CT 06513


FENCE DETAILS

SHEET NUMBER A-6

FENCE NOTES

1. ALTERNATE FOOTINGS FOR ALL FENCE POSTS IN LEDGE: IF LEDGE IS ENCOUNTERED AT GRADE, OR AT A DEPTH SHALLOWER THAN 3'-6", CORE DRILL AN 8" DIA HOLE 18" INTO THE LEDGE. CENTER POST IN THE HOLE AND FILL WITH CONCRETE OR GROUT, IF LEDGE IS BELOW FINISH GRADE, COAT BACKFILLED SECTION OF POST WITH COAL TAR, AND BACKFILL WITH WELL-DRAINING GRAVEL.


2. ATTACH EACH GATE WITH 1-1/2 PAIR OF NON-LIFT-OFF TYPE, MALLEABLE IRON OR FORGING, PIN-TYPE HINGES. ASSEMBLIES SHALL ALLOW FOR 180' OF GATE TRAVEL.

STOCKADE FENCE DETAIL

SCALE: N.T.S

COMPOUND SURFACE DETAIL 22x34 SCALE: 1"=1'-0" 11x17 SCALE: 1/2"=1'-0"

NOTES:

- 1. SILTSOCK SHALL BE FILTREXX SILTSOXX, OR APPROVED EQUAL.
- 2. COMPOST MATERIAL SHALL BE DISPERSED ON SITE, AS DETERMINED BY THE ENGINEER 6)
- SILTSOCK SHALL BE INSPECTED PERIODICALLY AND AFTER ALL STORM EVENTS, AND REPAIR OR REPLACEMENT SHALL BE PERFORMED PROMPTLY AS NEFOED.
- SEE SPECIFICATIONS FOR SOCK SIZE, AND COMPOST FILL, REQUIREMENTS.

GENERAL CONSTRUCTION SEQUENCE:

THIS IS A GENERAL CONSTRUCTION SEQUENCE OUTLINE SOME ITEMS OF WHICH MAY NOT APPLY TO PARTICULAR SITES.

- 1) CLEAR AND GRUB AREAS OF PROPOSED CONSTRUCTION.
- INSTALL TEMPORARY SEDIMENT AND EROSION CONTROL MEASURES AS REQUIRED.
- 3) REMOVE AND STOCKPILE TOPSOIL. STOCKPILE SHALL BE SEFDED TO PREVENT FROSION
- 4) CONSTRUCT CLOSED DRAINAGE SYSTEM. PROTECT CULVERT INLETS AND CATCH BASINS WITH SEDIMENTATION BARRIERS.
- 5) CONSTRUCT ROADWAYS AND PERFORM SITE GRADING, PLACING HAY BALES AND SILTATION FENCES AS REQUIRED TO CONTROL SOIL EROSION.
- 6) INSTALL UNDERGROUND UTILITIES.
- 7) BEGIN TEMPORARY AND PERMANENT SEEDING AND MULCHING.
 ALL CUT AND FILL SLOPES SHALL BE SEEDED OR MULCHED
 IMMEDIATELY AFTER THEIR CONSTRUCTION. NO AREA SHALL BE
 LEFT UNSTABILIZED FOR A TIME PERIOD OF MORE THAN 30
 DAYS.
- 8) DAILY, OR AS REQUIRED, CONSTRUCT, INSPECT, AND IF NECESSARY, RECONSTRUCT TEMPORARY BERNS, DRAINS, DITCHES, SILT FENCES AND SEDIMENT TRAPS INCLUDING MULCHING AND SEEDING.
- 9) BEGIN EXCAVATION FOR AND CONSTRUCTION OF TOWERS AND PLATFORMS.
- 10) FINISH PAVING ALL ROADWAYS, DRIVES, AND PARKING AREAS.
- 11) COMPLETE PERMANENT SEEDING AND LANDSCAPING.
- 12) NO STORM WATER FLOW SHALL BE DIVERTED TO ANY WETLANDS UNTIL A HEALTHY STAND OF GRASS HAS BEEN ESTABLISHED IN REGRADED AREAS.
- 13) AFTER GRASS HAS BEEN FULLY GERMINATED IN ALL SEEDED AREAS, REMOVE ALL TEMPORARY EROSION CONTROL MEASURES.

EROSION CONTROL MEASURES:

- DISTURBED AREAS SHALL BE KEPT TO THE MINIMUM AREA NECCESSARY TO CONSTRUCT THE ROADWAYS AND ASSOCIATED DRAINAGE FACILITIES.
- HAY BALE BARRIERS AND SEDIMENT TRAPS SHALL BE INSTALLED AS REQUIRED. BARRIERS AND TRAPS ARE TO BE MAINTAINED AND CLEANED UNTIL ALL SLOPES HAVE A HEALTHY STAND OF GRASS.
- 3) BALED HAY AND MULCH SHALL BE MOWINGS OF ACCEPTABLE HERBACEOUS GROWTH, FREE FROM NOXIOUS WEEDS OR WOODY STEMS, AND SHALL BE DRY. NO SALT HAY SHALL BE USED.
- FILL MATERIAL SHALL BE FREE FROM STUMPS, WOOD, ROOTS, ETC.
- 5) STOCKPILED MATERIALS SHALL BE PLACED IN AREAS SHOWN ON THE PLANS. STOCKPILES SHALL BE PROTECTED BY SILTATION FENCE AND SEEDED TO PREVENT EROSION. THESE MEASURES SHALL REMAIN UNTIL ALL MATERIAL HAS BEEN PLACED OR DISPOSED OFF SITE.
- 6) ALL DISTURBED AREAS SHALL BE LOAMED AND SEEDED. A MINIMUM OF 4 INCHES OF LOAM SHALL BE INSTALLED WITH NOT LESS THAN ONE POUND OF SEED PER 50 SQUARE YARDS OF AREA.
- APPLICATION OF GRASS SEED, FERTILIZERS AND MULCH SHALL BE ACCOMPLISHED BY BROADCAST SEEDING OR HYDROSEEDING AT THE RATES OUTLINED BELOW:

LIMESTONE:75-100 LBS./1,000 SQUARE FEET.
FERTILIZER:RATE RECOMMENDED BY MANUFACTURER.
MULCH: HAY MULCH APPROXIMATELY 3 TONS/ACRE UNLESS
EROSION CONTROL MATTING IS USED.

SEED MIX (SLOPES LESS THAN 4:1)	LBS./ACRE
CREEPING RED FESCUE	20
TALL FESCUE	20
REDTOP	2
	42
SLOPE MIX (SLOPES GREATER THAN 4:1)	LBS./ACRE
CREEPING RED FESCUE	20
TALL FESCUE	20
BIRDSFOOT TREEFOIL	8

TREATMENT SWALE PLANTING SPECIFICATIONS

48

LIME AND FERTILIZER SHOULD BE APPLIED PRIOR TO OR AT TIME OF SEEDING AND INCORPORATED INTO THE SOIL. THE FOLLOWING RATES ARE RECOMMENDED:

AGRICUITURAL LIMESTONE 2 TONS/ACRE OR 100 LBS/1,000 SF NITROGEN (N) 50 LBS/ACRE OR 1.1 LBS/10,000 SF PHOSPHATE (P205) 100 LBS/ACRE OR 2.2 LBS/10,000 SF POTASH (K20) 100 LBS/ACRE OR 2.2 LBS/10,000 SF (THIS IS EQUIVALENT TO 500 LBS/ACRE OF 10–20–20 FERTILIZER OR 1,000 LBS/ACRE OF 5–10–10).

- 8) AFTER ALL DISTURBED AREAS HAVE BEEN STABILIZED THE TEMPORARY EROSION CONTROL MEASURES ARE TO BE REMOVED.
- 9) PAVED ROADWAYS MUST BE KEPT CLEAN AT ALL TIMES.
- ALL CATCH BASIN INLETS WILL BE PROTECTED WITH LOW POINT SEDIMENTATION BARRIER.
- ALL STORM DRAINAGE OUTLETS WILL BE STABILIZE AND CLEANED AS REQUIRED, BEFORE THE DISCHARGE POINTS BECOME OPERATIONAL.
- 12) ALL DEWATERING OPERATIONS MUST DISCHARGE DIRECTLY INTO A SEDIMENT FILTER AREA.
- NO DISCHARGE SHALL BE DIRECTED TOWARDS ANY PROPOSED DITCHES, SWALES, OR PONDS UNTIL THEY HAVE BEEN PROPERLY STABILIZED.

verizon

Verizon

OR

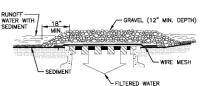
CONSTRUCTION DRAWINGS ARE VALID FOR SIX
MONTHS AFTER ENGINEER OF RECORD'S STAMPEC
AND SIGNED SUBMITTAL DATE LISTED HEREIN

CHECKED BY:

CHECKED BY:

APPROVED BY: DPH

JX


EAST HAVEN 5 CT

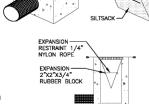
SITE ADDRESS: 115 MEADOW ROAD NEW HAVEN, CT 06513

SHEET TITLE
SITE SURFACE
COVER AND EROSION
CONTROL DETAILS

SHEET NUMBER

A-7

CONSTRUCTION SEQUENCE:


1. A WIRE MESH SHOULD BE PLACED OVER THE DROP INLET OR CURB OPENING SO THAT THE ENTIRE OPENING AND A MINIMUM OF IZ INCHES AROUND THE OPENING ARE OVERED BY THE MESH. THE MESH MAY BE ORDINARY HARDWARE CLOTH OR WIRE MESH WITH OPENINGS UP TO 1/2 INCH.

2. THE WIRE MESH SHOULD BE COVERED WITH CLEAN COARSE AGGREGATE SUCH AS SEWER STONE FOR A MINIMUM DEPTH OF 12 INCHES.

3) THE COARSE AGGREGATE SHOULD EXTEND AT LEAST 18 INCHES ON ALL SIDES OF THE DRAIN OPENING.

MAINTENANCE

ALL STRUCTURES SHOULD BE INSPECTED AFTER EVERY RAIN STORM AND REPAIRS MAD AS NECESSARY, SEDIMENT SHOULD BE REMOVED FROM THE TRAPPING DEVICES AFTER THE SEDIMENT HAS REACHED A MAXIMUM OF ONE HALF THE DEPTH OF THE TRAP. THE SEDIMENT SHOULD BE DISFOSED OF IN A SUITABLE AREA AND PROTECTED FROM EROSION BY STHER STRUCTURAL OR VEGETATIVE MEANS. THE EMPORARY TRAPS SHOULD BE REMOVED AND THE AREA REPAIRED AS SOON AS THE CONTRIBUTION DRAINAGE AREA TO THE NILET HAS BEEN COMPLETELY STABILIZED.

NOTE: REGULAR FLOW = 40 GAL./MIN./SF. HIGH = 200 GAL./MIN./SF.

SILKSACK DETAIL - ON OR OFF SITE

1" REBAR FOR

BAG REMOVAL

STONE INLET PROTECTION DETAIL-ON SITE

STRUCTURAL NOTES:

- DESIGN REQUIREMENTS ARE PER STATE BUILDING CODE AND APPLICABLE SUPPLEMENTS, INTERNATIONAL BUILDING CODE, EIA/TIA-222-G STRUCTURAL STANDARDS FOR STEEL ANTENNA, TOWERS AND ANTENNA SUPPORTING
- CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. ANY UNUSUAL CONDITIONS SHALL BE REPORTED TO THE ATTENTION OF THE CONSTRUCTION MANAGER AND ENGINEER OF RECORD
- DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION "SPECIFICATION FOR THE DESIGN FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS".
- STRUCTURAL STEEL SHALL CONFORM TO ASTM A992 (Fy=50 ksi), MISCELLANEOUS STEEL SHALL CONFORM TO ASTM A36 UNLESS OTHERWISE
- STEEL PIPE SHALL CONFORM TO ASTM A500 "COLD-FORMED WELDED & SEAMLESS CARBON STEEL STRUCTURAL TUBING", GRADE B, OR ASTM A53 PIPE STEEL BLACK AND HOT—DIPPED ZINC—COATED WELDED AND SEAMLESS TYPE E GRADE B. PIPE SIZES INDICATED ARE NOMINAL. ACTUAL OUTSIDE DIAMETER IS LARGER.
- STRUCTURAL CONNECTION BOLTS SHALL BE HIGH STRENGTH BOLTS (BEARING TYPE) AND CONFORM TO ASTM A325 TYPE-X "HIGH STRENGTH BOLTS FOR STRUCTURAL JOINTS, INCLUDING SUITABLE NUTS AND PLAIN HARDENED WASHERS". ALL BOLTS SHALL BE 3/4" DIA UON.
- ALL STEEL MATERIALS SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT-DIP GALVANIZED) COATINGS ON IRON AND STEEL PRODUCTS", UNLESS OTHERWISE NOTED.
- ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZINC-COATING (HOT-DIP) ON IRON AND STEEL HARDWARF". UNI ESS OTHERWISE NOTED.
- FIELD WELDS, DRILL HOLES, SAW CUTS AND ALL DAMAGED GALVANIZED SUFFACES SHALL BE REPAIRED WITH AN ORGANIC ZINC REPAIR PAINT COMPLYING WITH REQUIREMENTS OF ASTM A780. GALVANIZING REPAIR PAINT SHALL HAVE 65 PERCENT ZINC BY WEIGHT, ZIRP BY DUNCAN GALVANIZING, CALVA BRIGHT PREMIUM BY CROWN OR EQUAL. THEKCHESS OF APPLIED GALVANIZING REPAIR PAINT SHALL BE NOT NOT LESS THAN 4 COATS (ALLOW TIME TO DRY BETWEEN COATS) WITH A RESULTING COATING THICKNESS REQUIRED BY ASTM A123 OR A153 AS APPLICABLE.
- 10. CONTRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES, APPEARANCE AND QUALITY OF WELDS, AND FOR METHIODS USED IN CORRECTING WELDING, ALL WELDERS AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES". ALL WELDING SHALL BE DONE USING ETOXX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND DI.I. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "STEEL CONSTRUCTION MANUAL". 14TH EDITION.
- 11. INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISEITTING OR NON-CONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE CONSTRUCTION MANAGER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE CONSTRUCTION MANAGER APPROVAL.
- 12. UNISTRUT SHALL BE FORMED STEEL CHANNEL STRUT FRAMING AS MANUFACTURED BY UNISTRUT CORP., WAYNE, MI OR EQUAL STRUT MEMBERS SHALL BE 1 5/8"x1 5/8"x12GA, UNLESS OTHERWISE NOTED, AND SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION.
- 13 FPOXY ANCHOR ASSEMBLY SHALL CONSIST OF STAINLESS STEEL ANCHOR ROD WITH NUTS & WASHERS. AN INTERNALLY THREADED INSERT, A SCREEN TUBE
 AND A EPOXY ADHESIVE. THE ANCHORING SYSTEM SHALL BE THE HILLI-HIT HY-70 AND OR HY-200 SYSTEMS (AS SPECIFIED IN DWG.) OR ENGINEERS APPROVED EQUAL.
- EXPANSION BOLTS SHALL CONFORM TO FEDERAL SPECIFICATION FF-S-325, GROUP II, TYPE 4, CLASS I, HILTI KWIK BOLT III OR APPROVED EQUAL. INSTALLATION SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS
- 15. LUMBER SHALL COMPLY WITH THE REQUIREMENTS OF THE AMERICAN INSTITUTE OF TIMBER CONSTRUCTION AND THE NATIONAL FOREST PRODUCTS ASSOCIATION'S NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION. ALL LUMBER SHALL PRESSURE TREATED AND SHALL BE STRUCTURAL GRADE NO. 2 OR BETTER.
- 16 WHERE ROOF PENETRATIONS ARE REQUIRED. THE CONTRACTOR SHALL CONTACT AND COORDINATE RELATED WORK WITH THE BUILDING OWNER AND THE EXISTING ROOF INSTALLER. WORK SHALL BE PERFORMED IN SUCH A MANNER AS TO NOT VOID THE EXISTING ROOF WARRANTY. ROOF SHALL BE WATERTIGHT
- 17. ALL FIBERGLASS MEMBERS USED ARE AS MANUFACTURED BY STRONGWELL COMPANY OF BRISTOL, VA 24203. ALL DESIGN CRITERIA FOR THESE MEMBERS IS BASED ON INFORMATION PROVIDED IN THE DESIGN MANUAL. ALL REQUIREMENTS PUBLISHED IN SAID MANUAL MUST BE STRICTLY ADHERED TO.
- 18. NO MATERIALS TO BE ORDERED AND NO WORK TO BE COMPLETED UNTIL SHOP DRAWINGS HAVE BEEN REVIEWED AND APPROVED IN WRITING
- 19. SUBCONTRACTOR SHALL FIREPROOF ALL STEEL TO PRE-EXISTING CONDITIONS.

SPECIAL INSPECTIONS (REFERENCE IBC CHAPTER 17):

GENERAL: WHERE APPLICATION IS MADE FOR CONSTRUCTION, THE OWNER OR THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE ACTING AS THE OWNER'S AGENT SHALL EMPLOY ONE OR MORE APPROVED AGENCIES TO PERFORM INSPECTIONS DURING CONSTRUCTION ON THE TYPES OF WORK LISTED IN THE INSPECTION CHECKLIST ABOVE.

THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE AND ENGINEERS OF RECORD INVOLVED IN THE DESIGN OF THE PROJECT ARE PERMITTED TO ACT AS THE APPROVED AGENCY AND THEIR PERSONNEL ARE PERMITTED TO ACT AS THE SPECIAL INSPECTOR FOR THE WORK DESIGNED BY THEM, PROVIDED THOSE PERSONNEL MEET THE QUALIFICATION REQUIREMENTS.

STATEMENT OF SPECIAL INSPECTIONS: THE APPLICANT SHALL SUBMIT A STATEMENT OF SPECIAL INSPECTIONS PREPARED BY THE REGISTERD DESION PROFESSIONAL IN RESPONSIBLE CHARGE IN ACCORDANCE WITH SECTION 107.1 AS A CONDITION FOR ISSUANCE. THIS STATEMENT SHALL BE IN ACCORDANCE WITH SECTION 1705.

REPORT REQUIREMENT: SPECIAL INSPECTORS SHALL KEEP RECORDS OF INSPECTIONS. THE SPECIAL INSPECTOR SHALL FURNISH INSPECTION REPORTS TO THE BUILDING OFFICIAL, AND TO THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE. REPORTS SHALL INDICATE THAT WORK INSPECTED WAS OR WAS NOT COMPLETED IN CONFORMANCE TO APPROVED CONSTRUCTION DOCUMENTS. DISCREPANCIES SHALL BE BROUGHT TO THE MIMEDIATE ATTENTION OF THE CONTRACTOR FOR CORRECTION. IF THEY ARE NOT CORRECTED, THE DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE BUILDING OFFICIAL AND TO THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE. A FINAL REPORT DOCUMENTING REQUIRED SPECIAL INSPECTIONS SHALL BE SUBMITTED.

SPECIAL INSPE	ECTION CHECKLIST
BEFORE C	ONSTRUCTION
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM
REQUIRED	ENGINEER OF RECORD APPROVE
REQUIRED	MATERIAL SPECIFICATIONS REPORT 2
N/A	FABRICATOR NDE INSPECTION
REQUIRED	PACKING SLIPS 3
ADDITIONAL TESTING AND INSP	PECTIONS:
DURING C	ONSTRUCTION
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM
REQUIRED	STEEL INSPECTIONS
N/A	HIGH STRENGTH BOLT INSPECTIONS
N/A	HIGH WIND ZONE INSPECTIONS
REQUIRED	FOUNDATION INSPECTIONS
REQUIRED	CONCRETE COMP. STRENGTH, SLUMP TESTS AND PLACEMENT
N/A	POST INSTALLED ANCHOR VERIFICATION 5
N/A	GROUT VERIFICATION
N/A	CERTIFIED WELD INSPECTION
REQUIRED	EARTHWORK: LIFT AND DENSITY
N/A	ON SITE COLD GALVANIZING VERIFICATION
N/A	GUY WIRE TENSION REPORT
ADDITIONAL TESTING AND INSP	PECTIONS:
AFTER CO	ONSTRUCTION
CONSTRUCTION/INSTALLATION INSPECTIONS AND TESTING REQUIRED (COMPLETED BY ENGINEER OF RECORD)	REPORT ITEM
REQUIRED	MODIFICATION INSPECTOR REDLINE OR RECORD DRAWINGS 8
N/A	POST INSTALLED ANCHOR PULL-OUT TESTING
REQUIRED	PHOTOGRAPHS
ADDITIONAL TESTING AND INSP	PECTIONS:

NOTES:

- REQUIRED FOR ANY NEW SHOP FABRICATED FRP OR STEEL PROVIDED BY MANUFACTURER, REQUIRED IF HIGH STRENGTH BOLTS OR STEEL. PROVIDED BY GENERAL CONTRACTOR; PROOF OF MATERIALS. HIGH WIND ZONE INSPECTION CATB 120MPH OR CAT C,D 110MPH INSPECT FRAMING OF WALLS, ANCHORING, FASTENING SCHEDULE.
- TIOMPH INSPECT HAMMING OF WALLS, ANCHORING, FASTENING SCHEDULE.
 ADHESIVE FOR REBAR AND ANCHORS SHALL HAVE BEEN ITSTED IN ACCORDANCE WITH ACI 355.4 AND ICC-ES AC308 FOR CRACKED CONCRETE AND SEISMIC APPLICATIONS, DESIGN ADHESIVE BOND STRENGTH HAS APPLICATIONS, DESIGN ADHESIVE, BOND SIRENGIH PAS BEEN BASED ON ACI 355.4 TEMPERATURE CATEGORY B WITH INSTALLATIONS INTO DRY FULES DRILLED USING A CABIBLE BIT INTO CRACKED CONCRETE THAT HAS CURED FOR AT LEAST 21 DAYS, ADHESIVE ANCHORS REQUIRING CERTIFIED INSTALLATIONS SHALL BE INSTALLED BY A CERTIFIED ADHESIVE ANCHOR INSTALLER PER ACI 318-11
 D.9.2.2. INSTALLATIONS REQUIRING CERTIFIED INSTALLERS
 SHALL BE INSPECTED PER ACI 318-11 D.8.2.4.
 6. AS REQUIRED; FOR ANY FIELD CHANGES TO THE ITEMS IN
- THIS TABLE

NOTES:

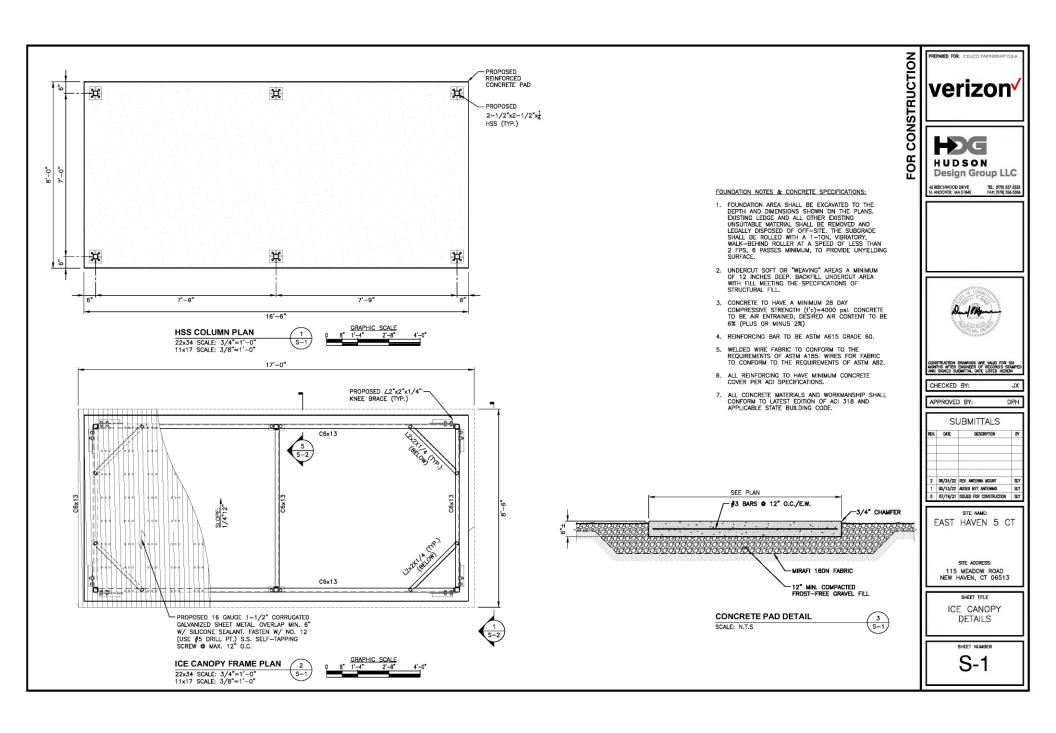
- ALL CONNECTIONS TO BE SHOP WELDED & FIELD BOLTED USING 3/4" A325-X BOLTS, UNLESS OTHERWISE NOTIFIED. SHOP DRAWING ENGINEER REVIEW & APPROVAL REQUIRED
- SHOP DRAWING ENGINEER REVIEW & APPROVAL REQUIRED BEFORE ORDERING MATERIAL SHOP DRAWING ENGINEER REVIEW & APPROVAL REQUIRED PRIOR TO STEEL FABRICATION. VERIFICATION OF EXISTING ROOF CONSTRUCTION IS REQUIRED PRIOR TO THE INSTALLATION OF THE ROOF PLATFORM. ENGINEER OF RECORD IS TO APPROVE EXISTING CONDITIONS IN ORDER TO MOVE FORWARD. SUPPORT COLUMNS TO BE CENTRALLY LOCATED OVER THE EXISTING COLUMNS TO BE CENTRALLY LOCATED OVER THE EXISTING
- BUILDING COLUMNS
- EXISTING BRICK MASONRY COLUMNS/BEARING TO BE REPAIRED/REPLACED AT ALL PROPOSED PLATFORM SUPPORT POINTS. ENGINEER OF RECORD TO REVIEW AND

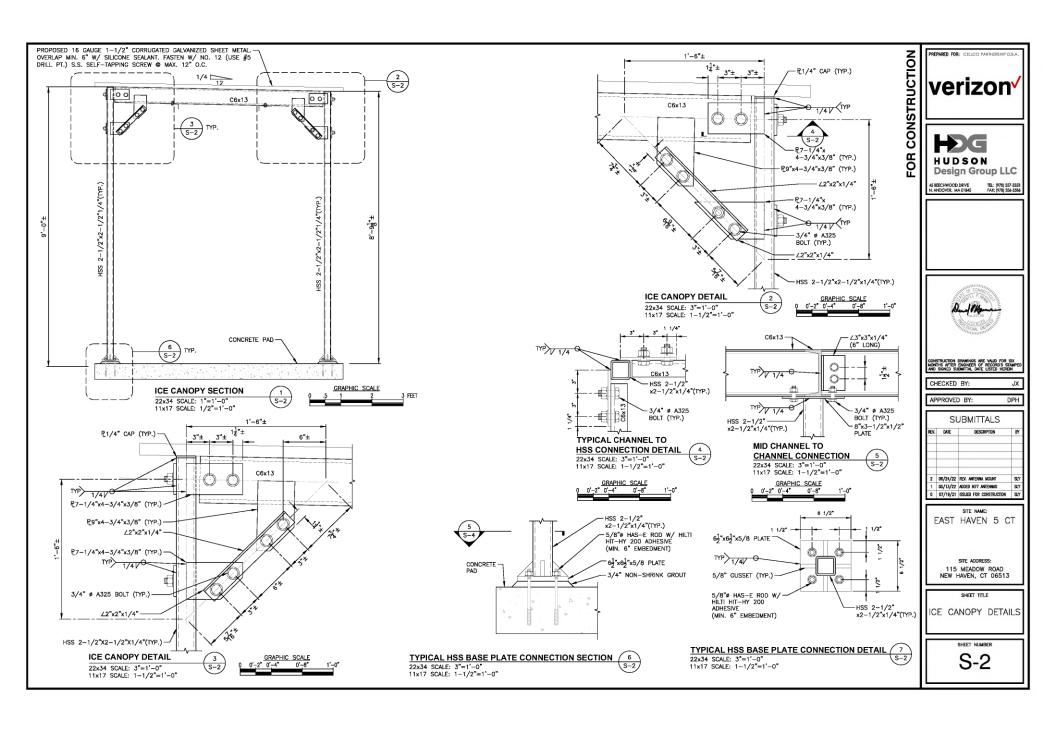
REPARED FOR: CELLCO PARTHERSHIP D. STRUCTION verizon CON Œ HUDSON <u>6</u>

CONSTRUCTION DRAWINGS ARE VALID FOR SIX MONTHS AFTER ENGINEER OF RECORD'S STAM AND SIGNED SUBMITTAL DATE LISTED HEREIN

CHECKED BY

APPROVED BY:


SUBMITTALS							
REV.	DATE	DESCRIPTION	BY				
2	06/24/22	REV. ANTENNA MOUNT	SLY				
1		ADDED N77 ANTENNAS	SLY				
0	07/19/21	ISSUED FOR CONSTRUCTION	SLY				


EAST HAVEN 5 CT

SITE ADDRESS: 115 MEADOW ROAD NEW HAVEN, CT 06513

STRUCTURAL NOTES AND SPECIAL INSPECTIONS

SN-1

GENERAL NOTES ABBREVIATIONS ELECTRICAL 1. ALL CONDUCTORS SHALL BE COPPER. ALTERNATING CURRENT ALL WIRING DEVICES AND EQUIPMENT SHALL BE SPECIFICATION GRADE AND UL LISTED. AMERICANS WITH DISABILITIES ACT ABOVE FINISH FLOOR GRADIE AND ULLISTED. ALL UNDERGROUND LINES ON SITE SHALL BE LOCATED PRIOR TO CONSTRUCTION (IF APPLICABLE). THE INSTALLATION OF ALL MATERIALS SHALL COMPLY WITH THE NATIONAL ELECTRIC CODE. AGB AJC AWG COPPER ANTENNA GROUND BAR AMPERE INTERRUPTING CAPACITY AMERICAN WIRE GAUGE BARE COPPER WIRE BASE TRANSMISSION SYSTEM ALL MATERIALS SHALL BE NEW. ALL MATERIALS SMALL BE. NEXES SHALL BE ZINC—COATED OR CADMIUM PLATED SHEET STEEL BOXES NOT LESS THAN FOUR INCHES SQUARE AND SUITABLE FOR THE TYPE OF SERVICE OUTLET. ALL OUTLET AND JUNCTION BOXES SHALL BE SECURELY SURFACE CONDUIT CIRCUIT BREAKER COAX INSULATED GROUND BAR EXTERNAL DIRECT CURRENT CÍGBE MOUNTED. DWG DRAWING THE ENTIRE SYSTEM SHALL BE SOLIDLY GROUNDED USING COMPRESSION—TYPE CONDUIT FITTINGS ON CONDUITS AND PROPERLY BONDED GROUND CONDUCTORS. CRIMP—TYPE AND SET EMT FACP ELECTRICAL METALLIC TUBING FIRE ALARM CONTROL PANEL GROUND SCREW-TYPE CONDUIT FITTINGS ARE NOT ALLOWED. ALL RECEPTACLES AND EQUIPMENT CIRCUITS SHALL BE GROUNDED GENERATOR GLOBAL POSITIONING SYSTEM USING A FULL-SIZE EQUIPMENT GROUNDING CONDUCTOR RUN WITH CROWTH THE CURRENT CONDUCTORS. ALL WALL PENETRATIONS FOR TELCO, POWER, AND GROUNDING HEATING VENTILATION AND AIR-CONDITIONING INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS IEEE SHALL REQUIRE RIGID STEEL SLEEVES. 9. ALL SWITCHES SHALL BE 48 INCHES A.F.F. 10. ALL RECEPTACLES SHALL BE 18 INCHES A.F.F. INTERNAL GROUND RING (HALO) ONE THOUSAND CIRCUIAR MILS LOWER ANTENNA COPPER GROUND BAR MASTER ISOLATED GROUND BAR 11. ALL T-STATS SHALL BE 60 INCHES A.F.F MIGB NATIONAL FLECTRIC CODE NATIONAL ELECTRIC MANUFACTURER'S ASSOCIATION NEMA 1. BOTTOM OF CABLE TRAY SHALL BE 7'-6" A.F.F. PCS PH PERSONAL COMMUNICATION SYSTEM 2. CABLE TRAY ANCHORS SHALL BE MOUNTED TO STRUCTURAL POWER PROTECTION CABINET AFTER FINAL LEVELING OF CABLE TRAY, CUT THREADED RODS 1/2" BELOW NUT AND CAP OFF. PRIMARY RADIO CABINET RIGID GALVANIZED STEEL RACEWAY ALARM AND SIGNAL 1. ALL ALARM WIRES SHALL BE RUN FROM EACH OF THE UPPER ANTENNA COPPER GROUND LIAGE 1. ALL ALARM WIRES SHALL BE ROW FROM EACH OF THE COMPONENTS TERMINAL STRIP. LEAVE ADDITIONAL ALARM WIRE COILED WITH SUFFICIENT LENGTH TO REACH THE FLOOR. 2. ALL ALARM WIRES SHALL BE TAGGED AND LABELED WITH THE UNDERWRITERS LABORATORIES UNLESS OTHERWISE NOTED UL VOLTS. APPROPRIATE ALARM ITEM. ALL CONTRACTORS WILL BE NORMALLY CLOSED, DRY, AND ISOLATED FROM GROUND, U.O.N. VOLT-AMPS

						MOUNTING: SURFACE MANUFACTURER: I.B.D.					
CKT No.	BREAKER AMPS	POLES	LOAD DESCRIPTION	LOAD kVA	BRANCH CKT	CKT No.	BREAKER AMPS	POLES	LOAD DESCRIPTION	LOAD kVA	BRANCH CKT
1 3	40	2	SURGE	9.6	3#8, 1#8G, 1°C	2 4	40	2	RECTIFIER #5	9.6	3#8, 1#8G, 1°C
5	40	2	RECTIFIER #1	9.6	3#8, 1#8G, 1°C	8	40	2	RECTIFIER # 6	9.6	3#8, 1#8G, 1°C
9	40	2	RECTIFIER #2	9.6	3#8, 1#8G, 1°C	10	40	2	RECTIFIER #7	9.6	3#8, 1#8G, 1°C
13 15	40	2	RECTIFIER #3	9.6	3#8, 1#80, 1°C	14	40	2	RECTIFIER #8	9,6	3#8, 1#8G, 1°C
17	40	2	RECTIFIER #4	9.6	3#8, 1#8G, 1°C	18	20	1	EQUIPMENT CABINET	2.4	2#12, 1#8G, 3/4"
19		_				20	20	1	TELCO/TWISTLOCK	2.4	2#12, 1#8G, 3/4"
21		1	SPARE			22	20	1	LIGHTING	2.4	2#12, 1#8C, 3/4"
23		1	SPARE			24		1	SPARE		

PREPARED FOR: CELLCO PARTNERSHIP D.B. CONSTRUCTION verizon

HUDSON **Design Group LLC**

FOR

CHECKED BY:

APPROVED BY:

- - 6

- 64

__ 6

--

__

__

--

--

30- - - 80

31- - - 81

- -

_ _

7--

n --- -

- -

7--

79-

JX

DPH

SUBMITTALS REV. DATE 2 06/24/22 REV. ANTENNA WOUNT 05/13/22 ADDED N77 ANTENNAS 0 07/19/21 ISSUED FOR CONSTRUCTION

EAST HAVEN 5 CT

SITE ADDRESS: 115 MEADOW ROAD NEW HAVEN, CT 06513

ELECTRICAL NOTES & WIRING DIAGRAM

> SHEET NUMBER E-1

Wiring Diagram for Porta Systems Block Model 899A

Afarm	Alarm	Allarma	Alarm	Alarm	Alarm	Atarm 4	Alarm
1	1	2	2	3	3		4
Alarm	Ataem	Marin	Alarm	Alarm	Marm	Afarm	Marm
	6	7	7	8	8	9	9
Alarm	Alaem	Alarm	Alarm	Alarm	Alarm	Alarm	Alarm
11	11	12	12	13	13	14	14
Afaim 16	Marm 16	Spare	Spare	Space	Spare	Spare	Space
Spare	Space	Spare	Spare	Space	Spare	Spare	Space
Afarm	Alarm	Alarm	Alarm	Alarm	Alarm	Alarm	Alama
17	17	13	18	19	19	20	20
Alarm:	Alama	Alarm	Alarm	Alarm	Marm	Alarm	Nam
22	22	23	23	24	24	25	25
Alarm	Alem	Alarm	Alam	Alam	Alarm	Alarm	Alems
37	27	28	28	25	29	30	30
Alam 12	Alarm 32	Spare	Spare	Spare	Spare	Spare	Spare
Spare	Spare	Spare	Spare	Spare	Spare	Spare	Spare

- RJ45s P1 – P8		
	BBU	

P1 P2 P3 P4 P5 P6 P7 P8 (1886)

		i				
F1FW1 WH/DL	01	_		51	- P5 PH1	WH/BL
P1Fin2 BL/WH	02	_ :		- 52	F5 Fn2	BL/WH
F3 Pin 3 WH/0 R	-	\equiv			(SPa)	WH/DR
PIFM4 DR/WH	83	-	_	53	FEF n4	олужн
Paris WH/QR	04	-		54	- PEPAS	WHATE
717m6 01/WH	05	-		■ 55	- FS Fm6	055001
	06	-		■ 56		
P1 Fin 7 WH/ER	07	-		- 57	- 15 Pa7	
F1FinB ER/WH	08	-		- 58	- F5 Fm8	
F2Fin1 WH/SL	09	_		- 59	- PEPm1	MHILL
F2FH2 SL/WII	10			■ 60	rerm2	ST/MH
F2 Fin 3 #0/8L	11			61	PSPn3	RD/BL
727m4 80/8L	12	-		62	-FEFn4	RD/BL
F2 PMS 80/08	13	-		_ 63	PETRE	no/or
F2 Fin 6 OR/RD		-			- PEPME	08/80
F2 FW7 80/GE	14	-		64	F6F67	
	15	-		65		
F2 FinS ER/RD	16	_		66	PEPMS	
F3FW1 80/86 -	17	_		67	-F7Fm1	RD/BR
F2FM2 ER/RD	18	_		- 68	F7Fm3	ER/RD
137in3 80/SL	19	_		69	F7Fm3	RD/IIL
FSFin4 SURD	20			→ 70	F7Fm4	51/10
FORMS DI/D.	-			-	FFFeS	mc/m.
F3PW6 BL/BK	21			71	PZPms	DI /DV
737in7 BK/08	22	-		72	- F7Fe7	
Contract Con	23	-		73		
FIFINS OR/EK	24	-		→ 74	F7Fm8	
147m1 SF/GN	25	-		75	FO Fell	EK/CR
P4Fm2 58/6K	76	_		- 76	18.Pm2	CHEK
PATHS DE/DE	27	_		- 77	FEFRI	ER/ER
F4Pin 4 B8/BX					PS Pm4	BR/BK
PEPINS BE/SL	28		_	78	FB FeS	BK/SL
PAPING SL/SK	29	_		79	rorne	PL/IK
PAPINT TI/BL	30	-		80	18.Pm7	
	31 -	-		■ 61		
P4PinS EL/YL	32	-		82	FO Pad	BLYL

ALARM DETAIL SCALE: N.T.S E-1/

UTILITY SERVICES SHOWN ARE PROPOSED, THE ELECTRIC CONTRACTOR SHALL COORDINATE EXACT TELEPHONE AND ELECTRIC SERVICE CONNECTION POINTS, PULL BOXES, ROUTING AND ASSOCIATED REQUIREMENTS WITH OWNER AND LOCAL UTILITY CO. VISIT SITE AND EXAMINE CONDITIONS UNDER WHICH WORK MUST BE PERFORMED. REPORT ADVERSE CONDITIONS IN WRITING TO LICENSEE. COMMECTEMENT OF WORK SHALL BE CONSTRUED AS COMPLETE ACCEPTANCE OF EXISTING CONDITIONS INCLUDING PREPARATORY WORK DONE BY OTHERS.

GIVE NOTICES, FILE PLANS, OBTAIN PERMITS AND LICENSES, PAY
FEES AND BACK CHARGES, AND OBTAIN NECESSARY APPROVALS FROM AUTHORITIES THAT HAVE JURISDICTION.
PERFORM WORK AS REQUIRED BY BOCA AND PER LOCAL LAWS. THE ELECTRICAL CONTRACTOR SHALL COORDINATE ALL CONDUIT ROUTING WITH OWNER AND FIELD CONSTRUCTION MANAGER. ALL EXTERIOR WALL PENETRATIONS SHALL BE SILICONE SEALED.
MATERIAL AND EQUIPMENT SHALL BE UL, NEMA, ANSI, IEEE, ADA &
CBM APPROVED FOR INTENDED SERVICE. INSTALLATION SHALL
MEET REQUIREMENTS OF NATIONAL AND STATE ELECTRICAL CODE. ALL ELECTRICAL EQUIPMENT SHALL HAVE AN INTERRUPTING RATING NOT LESS THEN THE MAXIMUM SHORT CIRCUIT CURRENT TO WHICH THEY MAY BE SUBJECTED, AND A MINIMUM OF 10,000 A.I.C..
ALL NEW WIRING SHALL BE TYPE THWN RATED 75°C., 600 VOLT.
WET OR DRY LOCATIONS. MINIMUM BRANCH CIRCUIT WIRING SHALL BE #12 AWG SOLID COPPER.

ALL ALARM WIRING SHALL BE 1/2"C., (2)#22 AWG, UNLESS

OTHERWISE NOTED.

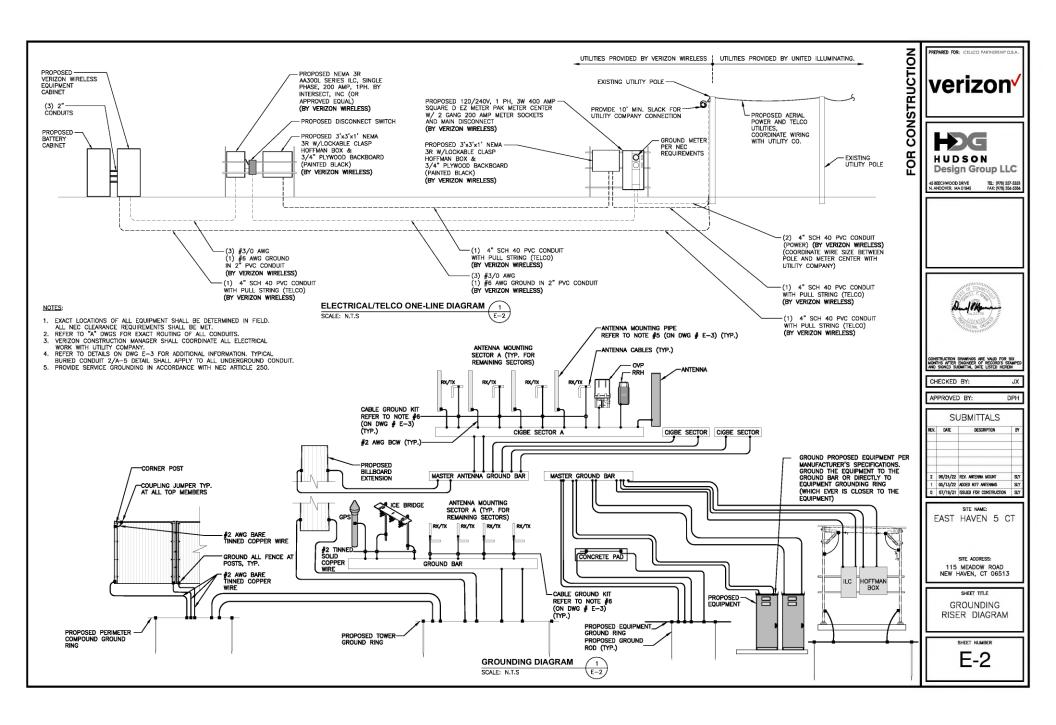
CELETRICAL CONTRACTOR TO CARRY POWER FEED OF LESSEE'S MOD CELL EQUIPMENT.
ALL ENCLOSURES TO BE NEMA.
INTEGRATED LOAD CENTER ASSEMBLY SUPPLIED BY LESSEE.

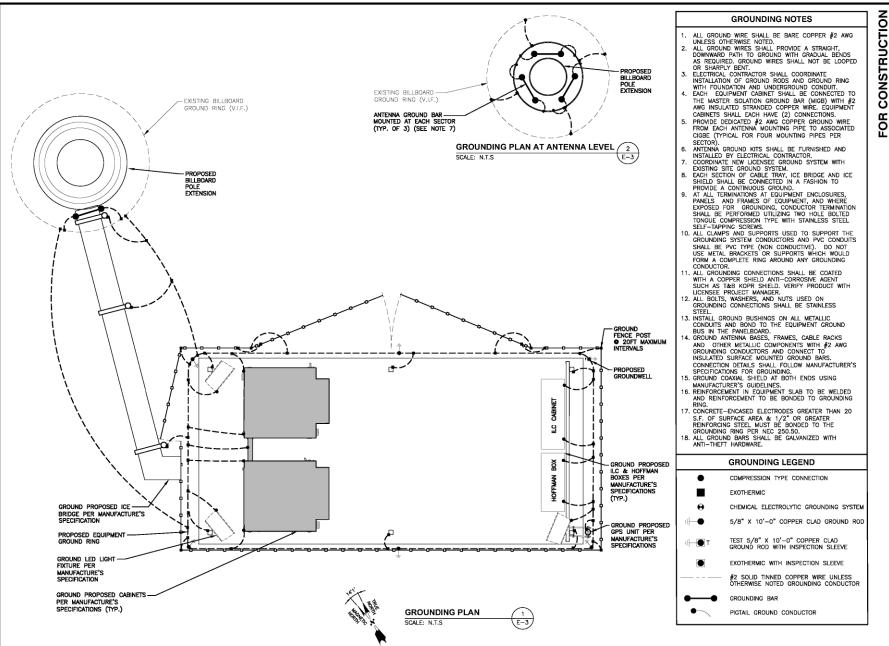
ELECTRICAL NOTES

OTHERWISE NOTED.

10. ALL METALLIC CONDUITS SHALL BE PROVIDED WITH BONDING BUSHINGS.

11. ALL BROCHURES, OPERATING MANUALS, CATALOGS, SHOP


DRAWINGS, ETC. SHALL BE TURNED OVER TO THE LICENSEE PROJECT MANAGER AT JOB COMPLETION.


PROJECT MANAGER AT JOB COMPLETION.

2. PROVIDE THE OWNER WITH ONE SET OF COMPLETE ELECTRICAL. "AS BUILT" DRAWINGS AT THE COMPLETION OF THE JOB.

3. GUARANTEE WORK IN WRITING FOR ONE YEAR FROM DATE OF FINAL ACCEPTANCE. REPAIR OR REPLACE DEFECTIVE MATERIALS OR INSTALLATION AT NO COST TO OWNER. CORRECT DAMAGE CAUSED IN MAKING NECESSARY REPAIRS AND REPLACEMENTS UNDER GUARANTEE AT NO COST TO OWNER.

CONTRACTOR SHALL CONTACT "DIG SAFE" (1-888-DIG-SAFE) PRIOR TO COMMENCEMENT OF WORK.

verizon

PREPARED FOR: CELLCO PARTNERSHIP D.B.

HUDSON Design Group LLC

> THL: (978) 557-5553 OVER, MA 01845 FAX: (978) 336-5586

ONSTRUCTION DRAWINGS ARE VALID FOR SIX ONTH'S AFTER ENGINEER OF RECORD'S STAMPED IN SOMED SUBMITTAL DATE LISTED HEDERN

٦X

DPH

CHECKED BY:

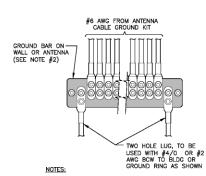
APPROVED BY:

SUBMITTALS

MX. DAIE 065069700 97

2 06/24/22 REV. MREMM. MOINT SY
1 06/3/3/22 MOID MY MREMMS SY
07/19/21 RED FOR CORRISONS

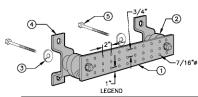
SITE NAME: EAST HAVEN 5 CT


SITE ADDRESS: 115 MEADOW ROAD NEW HAVEN, CT 06513

SHEET TITI

GROUNDING PLAN

SHEET NUMBER


E-3

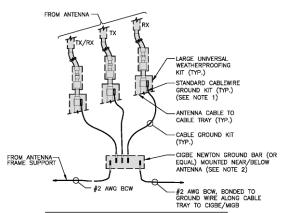
1. CONTRACTOR TO UTILIZE KOPR-SHIELD (THOMAS & BETTS) ON ALL LUG CONNECTIONS.

ALL GROUND BARS SHALL BE GALVANIZED WITH ANTI—THEFT HARDWARE.

GROUNDING - STANDARD DETAIL INSTALLATION OF GROUNDWIRE TO GROUND BAR SCALE: N.T.S

GALVANIZED STEEL GROUND BAR, 1/4"x4"x20", OR OTHER LENGTH AS REQUIRED, HOLE CENTERS TO MATCH NEMA DOUBLE LUG CONFIGURATION.

- INSULATORS, NEWTON INSTRUMENT CAT. NO. 3061-4 OR EQUAL.
- 5/8" LOCKWASHERS OR EQUAL.
- WALL MOUNTING BRACKET, NEWTON INSTRUMENT CO. CAT. NO. A-8056 OR EQUAL. 4
- (5) 5/8-11 x 1" H.H.C.S. BOLTS

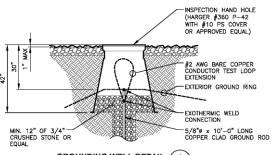

NOTES:

ALL BOLTS, NUTS, WASHERS, AND LOCK WASHERS SHALL BE 18-8 STAINLESS STEEL.

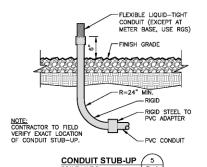
E-4

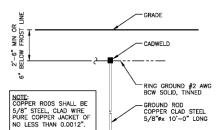
ALL GROUND BARS SHALL BE GALVANIZED WITH ANTI-THEFT HARDWARE.

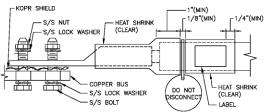



NOTES:

1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO CIGBE.


ALL GROUND BARS SHALL BE GALVANIZED WITH ANTI-THEFT HARDWARE.


GROUNDING - STANDARD DETAIL TO GROUND BAR (CIGBE)



GROUNDING WELL DETAIL

TYPICAL GROUND ROD DETAIL SCALE: N.T.S

- 1. ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACES WITH KOPR-SHIELD BEFORE MATING.
- 2. FOR GROUND BOND TO STEEL ONLY: INSERT A DRAGON TOOTH WASHER BETWEEN LUG AND STEEL, COAT ALL SURFACES WITH KOPR-SHIELD.
- 3. CADWELD DOWNLEADS FROM UPPER EGB, LOWER EGB, AND MGB.
- 4. "DOUBLING UP" OR "STACKING" OF CONNECTION IS NOT PERMITTED.

TYPICAL GROUND BAR CONNECTION DETAIL

PREPARED FOR: CELLCO PARTNERSHIP D.B verizon

CONSTRUCTION

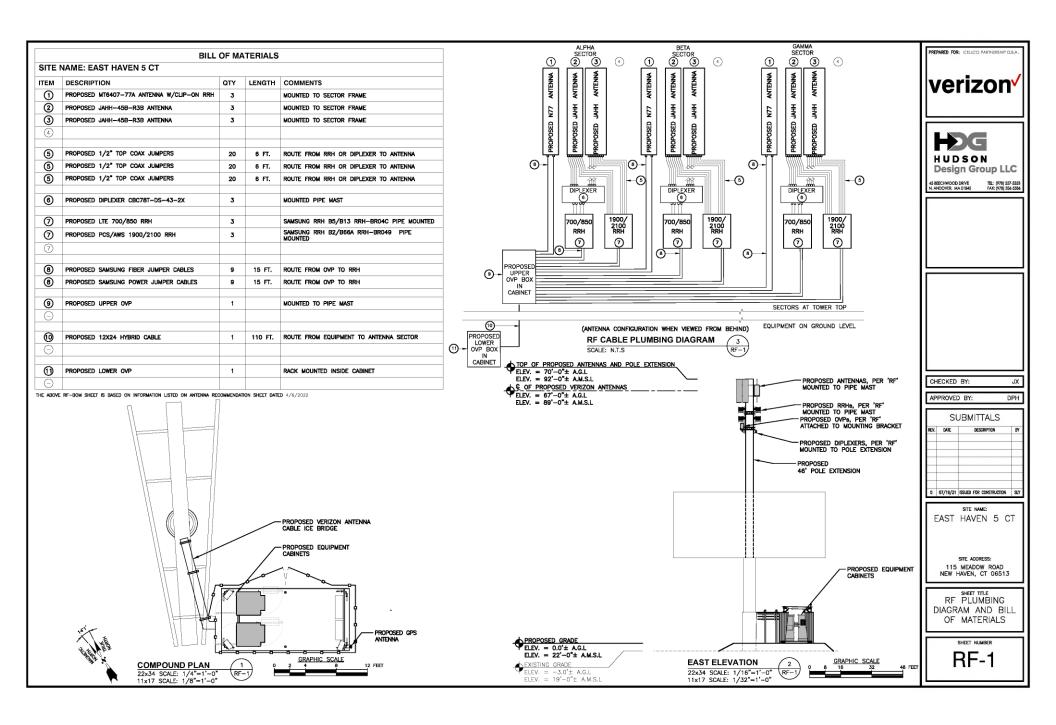
FOR R

HUDSON **Design Group LLC**

CHECKED BY: ٦X

APPROVED BY: DPH

SUBMITTALS DATE 06/24/22 REV. ANTENNA WOUNT 05/13/22 ADDED N77 ANTENNAS 0 07/19/21 ISSUED FOR CONSTRUCTION

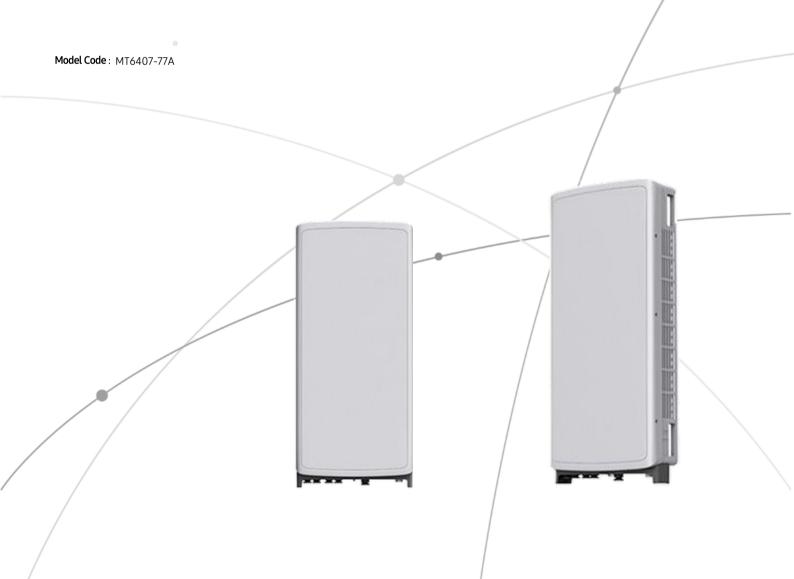

EAST HAVEN 5 CT

SITE ADDRESS: 115 MEADOW ROAD NEW HAVEN, CT 06513

> GROUNDING DETAILS

SHEET NUMBER

E-4

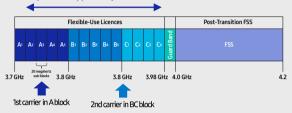


SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..


Points of Differentiation

Wide Bandwidth

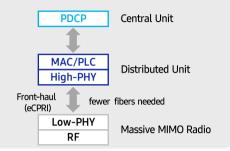
With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

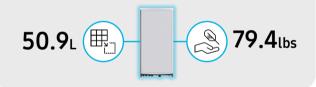
Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Future Proof Product


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment..

Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

ATTACHMENT 3

Site Name: EAST HAVEN 5 CT

Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissible Exposure*	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
VZW 700	751	4	1019	4075	67	0.0326	0.5007	6.52%
VZW Cellular	874	4	809	3237	67	0.0259	0.5827	4.45%
VZW PCS	1975	4	2215	8861	67	0.0710	1.0000	7.10%
VZW AWS	2120	4	2664	10655	67	0.0854	1.0000	8.54%
VZW CBAND	3730.08	2	13335	26670	67	0.2137	1.0000	21.37%

Total Percentage of Maximum Permissible Exposure

47.97%

MHz = Megahertz mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used.

^{*}Guidelines adopted by the FCC on August 1, 1996, 47 CFR Part 1 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

^{**}Calculation includes a -10 dB Off Beam Antenna Pattern Adjustment pursuant to Attachments B and C of the Siting Council's November 10, 2015 Memorandum for Exempt Modification filings

ATTACHMENT 4

(REVISED) STRUCTURAL ANALYSIS REPORT

For

EAST HAVEN 5 CT

115 Peat Meadow Road New Haven, CT 06513

Antennas Mounted to the Monopole

Prepared for:

20 Alexander Drive, 2nd Floor Wallingford, CT 06492

Dated: June 30, 2022 (Rev.4)

May 11, 2022 (Rev.3)
January 5, 2021 (Rev.2)
December 22, 2020 (Rev.1)
November 20, 2020

Prepared by:

45 Beechwood Drive North Andover, MA 01845 (P) 978.557.5553 (F) 978.336.5586

www.hudsondesigngroupllc.com

SCOPE OF WORK:

Hudson Design Group LLC (HDG) has been authorized by Verizon to conduct a structural evaluation of the 24' monopole with proposed 46' extension supporting the proposed Verizon antennas located at elevation 67' above the ground level.

This report represents this office's findings, conclusions and recommendations pertaining to the support of Verizon's proposed antennas listed below.

The following documents were used for our reference:

Previous HDG Structural Analysis Report dated January 31, 2018.

TOWER CONCLUSION SUMMARY:

Based on our evaluation, we have determined that the existing monopole **is in conformance** with the ANSI/TIA-222-G Standard for the loading considered under the criteria listed in this report. The monopole structure is rated at **93.0%** - (Pole section L3 from EL.0' to EL.10' Controlling).

APPURTENANCES CONFIGURATION:

Tenant	Appurtenances	Elev.	Mount
Verizon	(6) JAHH-45B-R3B Antennas	67'	BSAMNT-SBS-2-3 on Pipe Mast on Horizontal Pipe
Verizon	(3) MT6407-77AAntennas	67'	Pipe Mast on Horizontal Pipe
Verizon	(3) B2/B66A RRH-BR049 RRH's	60'	Pipe Mast on UGLM-DCP
Verizon	(3) B5/B13 RRH-BR04C RRH's	60'	Pipe Mast on UGLM-DCP
Verizon	(3) CBC78T-DS-43-2X Diplexers	60'	Pipe Mast on UGLM-DCP
Verizon	(1) OVP Box	60'	Pipe Mast on UGLM-DCP
	Billboards	35'	Top of Monopole

^{*}Proposed Verizon Appurtenances shown in Bold.

VERIZON EXISTING/PROPOSED COAX CABLES:

Tenant	Coax Cables	Elev.	Mount
VERIZON	(1) Hybrid Cable	0' - 67'	Inside Monopole

^{*}Proposed Verizon Coax Cables shown in Bold.

TOWER ANALYSIS RESULTS SUMMARY:

Component	Max. Stress Ratio	Elev. of Component (ft)	Pass/Fail	Comments
Pole Section-L1	85.6%	24 – 70	PASS	
Pole Section-L2	79.3%	10 – 24	PASS	
Pole Section-L3	93.0%	0 – 10	PASS	Controlling

TOWER FOUNDATION COMPARISON SUMMARY:

	Proposed Reactions	*Previous Reactions	% Change	Pass/Fail
Shear	50218 lbs	49755 lbs	+0.93%	ACCEPTABLE
Axial	93560 lbs	150000 lbs**	-37.63%	PASS
Moment	1898212 lb-ft	1865196 lb-ft	+1.77%	ACCEPTABLE

^{*} Reactions taken from previous HDG Tower Structural Analysis dated January 31, 2018.

^{**} Reaction taken from previous HDG Foundation Evaluation dated January 31, 2018.

DESIGN CRITERIA:

 EIA/TIA-222-G Structural Standards for Steel Antenna Towers and Antenna Supporting Structures

County: New Haven

Wind Load: 105 mph (3 second gust)

Structural Class: II Exposure Category: B Topographic Category: 1

Crest Height: 0 ft.

Nominal Ice Thickness: 0.75 inch

2. Approximate height above grade to proposed antennas: 67'

*Calculations and referenced documents are attached.

ASSUMPTIONS:

- 1. The monopole geometry and member sizes are as indicated in the record drawings prepared by Effective Engineering Solutions, LTD., dated October 15, 2012.
- 2. The monopole and foundation are properly constructed and maintained. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- The support mounts and billboard supporting frames are not analyzed and are considered adequate to support the loading. The analysis is limited to the primary support structure itself.
- 4. All prior structural modifications, if any, are assumed to be as per the data supplied (if available) and installed properly.
- 5. Foundation and geotechnical information were gathered from the previous HDG Tower Structural Analysis dated January 31, 2018.

SUPPORT RECOMMENDATIONS:

HDG recommends that the proposed antennas, RRH's, and OVP be mounted on the proposed mounts supported by the proposed monopole extension.

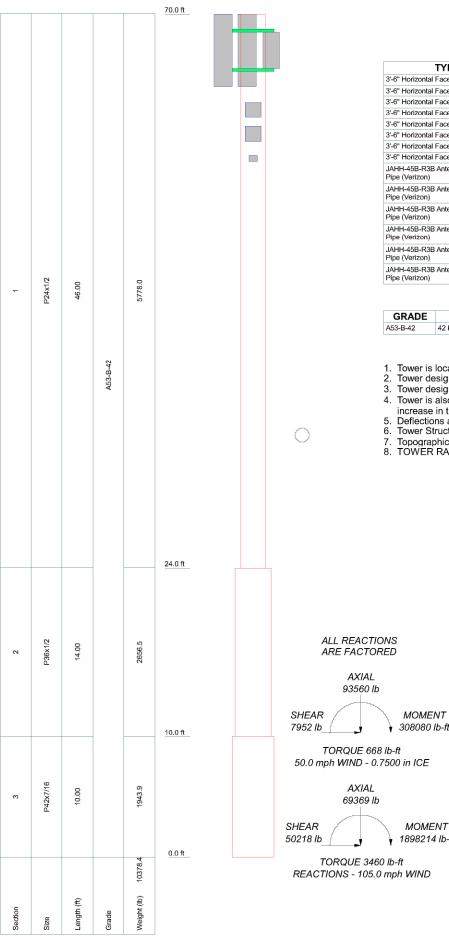
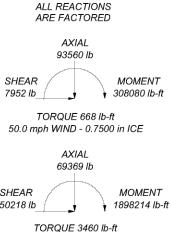

FIELD PHOTO:

Photo 1: Photo illustrating the monopole with appurtenances shown.

CALCULATIONS

DESIGNED APPURTENANCE LOADING


TYPE	ELEVATION	TYPE	ELEVATION
3'-6" Horizontal Face Pipe (Verizon)	67	MT6407-77A Antenna w/ Mounting	67
3'-6" Horizontal Face Pipe (Verizon)	67	Pipe (Verizon)	
3'-6" Horizontal Face Pipe (Verizon)	67	MT6407-77A Antenna w/ Mounting	67
3'-6" Horizontal Face Pipe (Verizon)	67	Pipe (Verizon)	
3'-6" Horizontal Face Pipe (Verizon)	67	MT6407-77A Antenna w/ Mounting Pipe (Verizon)	67
3'-6" Horizontal Face Pipe (Verizon)	67	B2/B66A RRH-BR049 RRH (Verizon)	60
3'-6" Horizontal Face Pipe (Verizon)	67	B2/B66A RRH-BR049 RRH (Verizon)	60
3'-6" Horizontal Face Pipe (Verizon)	67	, ,	
JAHH-45B-R3B Antenna w/ Mounting	67	B2/B66A RRH-BR049 RRH (Verizon)	60
Pipe (Verizon)		B5/B13 RRH-BR04C RRH (Verizon)	60
JAHH-45B-R3B Antenna w/ Mounting	67	B5/B13 RRH-BR04C RRH (Verizon)	60
Pipe (Verizon)	0,	B5/B13 RRH-BR04C RRH (Verizon)	60
JAHH-45B-R3B Antenna w/ Mounting	67	CBC78T-DS-43-2X Diplexer (Verizon)	60
Pipe (Verizon)		CBC78T-DS-43-2X Diplexer (Verizon)	60
JAHH-45B-R3B Antenna w/ Mounting	67	CBC78T-DS-43-2X Diplexer (Verizon)	60
Pipe (Verizon)		OVP (Verizon)	60
JAHH-45B-R3B Antenna w/ Mounting Pipe (Verizon)	67	Billboards (East Haven 5 CT)	35
JAHH-45B-R3B Antenna w/ Mounting Pipe (Verizon)	67		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-42	42 ksi	63 ksi			

TOWER DESIGN NOTES

- Tower is located in New Haven County, Connecticut.
 Tower designed for Exposure B to the TIA-222-G Standard.
- 3. Tower designed for a 105.0 mph basic wind in accordance with the TIA-222-G Standard.
- 4. Tower is also designed for a 50.0 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60.0 mph wind.
- 6. Tower Structure Class II.
- 7. Topographic Category 1 with Crest Height of 0.00 ft 8. TOWER RATING: 93%

EAST HAVEN 5 CT Hudson Design Group LLC Project: 70 ft Monopole 45 Beechwood Drive Client: VERIZON Drawn by: CL App'd: North Andover, MA 01845 Code: TIA-222-G Date: 06/30/22 Scale: NTS Phone: (978) 557-5553 Dwg No. E-1 FAX: (978) 336-5586

4 7	
tny I	ower
	UIVUI

Hudson Design Group LLC

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

Job		Page
	EAST HAVEN 5 CT	1 of 12
Project		Date
	70 ft Monopole	16:20:54 06/30/22
Client	VERIZON	Designed by CL

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in New Haven County, Connecticut.

Basic wind speed of 105.0 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56.0 pcf.

A wind speed of 50.0 mph is used in combination with ice.

Temperature drop of 50.0 °F.

Deflections calculated using a wind speed of 60.0 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Pole Section Geometry

Section	Elevation	Section	Pole	Pole	Socket Length
		Length	Size	Grade	ft
	ft	$f\bar{t}$			
L1	70.00-24.00	46.00	P24x1/2	A53-B-42	
				(42 ksi)	
L2	24.00-10.00	14.00	P36x1/2	A53-B-42	
				(42 ksi)	
L3	10.00-0.00	10.00	P42x7/16	A53-B-42	
				(42 ksi)	

Tower	Gusset	Gusset	Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness		A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)				A_r		Spacing	Spacing	Spacing
							Diagonals	Horizontals	Redundants
ft	ft²	in					in	in	in
L1 70.00-24.00				1	1	1			
L2 24.00-10.00				1	1	1			
L3 10.00-0.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

tnx1	ower

Hudson Design Group LLC

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

Job		Page
	EAST HAVEN 5 CT	2 of 12
Project		Date
	70 ft Monopole	16:20:54 06/30/22
Client	VERIZON	Designed by CL

Description	Face	Allow	Exclude	Component	Placement	Total		C_AA_A	Weight
	or Leg	Shield	From Torque	Туре	ft	Number		ft²/ft	plf
			Calculation						
12X24 Hybrid Cable	D	No	Yes	Inside Pole	67.00 - 0.00	1	No Ice	0.00	3.20
(Verizon)							1/2" Ice	0.00	3.20
							1" Ice	0.00	3.20

1 5/8	D	No	Yes	Inside Pole	35.00 - 0.00	10	No Ice	0.00	1.04
							1/2" Ice	0.00	1.04
							1" Ice	0.00	1.04

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft²	ft^2	ft²	lb
L1	70.00-24.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	0.000	0.000	252.00
L2	24.00-10.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	0.000	0.000	190.40
L3	10.00-0.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	0.000	0.000	0.00
		D	0.000	0.000	0.000	0.000	136.00

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft²	ft ²	ft²	ft ²	lb
L1	70.00-24.00	A	1.557	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00
		D		0.000	0.000	0.000	0.000	252.00
L2	24.00-10.00	A	1.404	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00
		D		0.000	0.000	0.000	0.000	190.40
L3	10.00-0.00	A	1.242	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		C		0.000	0.000	0.000	0.000	0.00
		D		0.000	0.000	0.000	0.000	136.00

Hudson Design Group LLC 45 Beechwood Drive

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

J	b	Page
	EAST HAVEN 5 CT	3 of 12
Г	roject	Date
	70 ft Monopole	16:20:54 06/30/22
ſ	lient VERIZON	Designed by CL

Discrete Tower Loads

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C_AA_A Side	Weigh
	Leg		Vert						
			ft ft	0	ft		ft ²	ft²	lb
21 (# IIi1 F Pi		P P	ft	0.0000	(7.00	N. T.	1.01	0.07	20.20
3'-6" Horizontal Face Pipe	A	From Face	1.50 0.00	0.0000	67.00	No Ice 1/2" Ice	1.01 1.26	$0.07 \\ 0.10$	20.30 29.99
(Verizon)			1.59			1" Ice	1.52	0.10	42.97
3'-6" Horizontal Face Pipe	A	From Face	1.50	0.0000	67.00	No Ice	1.01	0.13	20.30
(Verizon)	Α	Tiom race	0.00	0.0000	07.00	1/2" Ice	1.26	0.10	29.99
(Verizon)			-1.59			1" Ice	1.52	0.15	42.97
3'-6" Horizontal Face Pipe	В	From Face	1.50	0.0000	67.00	No Ice	1.01	0.13	20.30
(Verizon)	Ь	1 10111 1 1100	0.00	0.0000	07.00	1/2" Ice	1.26	0.10	29.99
(Verizon)			1.59			1" Ice	1.52	0.15	42.97
3'-6" Horizontal Face Pipe	В	From Face	1.50	0.0000	67.00	No Ice	1.01	0.07	20.30
(Verizon)	2	110111111100	0.00	0.0000	07.00	1/2" Ice	1.26	0.10	29.99
(101201)			-1.59			1" Ice	1.52	0.15	42.97
3'-6" Horizontal Face Pipe	C	From Face	1.50	0.0000	67.00	No Ice	1.01	0.07	20.30
(Verizon)			0.00	0.000	07.00	1/2" Ice	1.26	0.10	29.99
(, , , , , , , , , , , , , , , , , , ,			1.59			1" Ice	1.52	0.15	42.97
3'-6" Horizontal Face Pipe	C	From Face	1.50	0.0000	67.00	No Ice	1.01	0.07	20.30
(Verizon)	-		0.00			1/2" Ice	1.26	0.10	29.99
(-1.59			1" Ice	1.52	0.15	42.97
3'-6" Horizontal Face Pipe	D	From Face	1.50	0.0000	67.00	No Ice	1.01	0.07	20.30
(Verizon)			0.00			1/2" Ice	1.26	0.10	29.99
(:)			1.59			1" Ice	1.52	0.15	42.97
3'-6" Horizontal Face Pipe	D	From Face	1.50	0.0000	67.00	No Ice	1.01	0.07	20.30
(Verizon)			0.00			1/2" Ice	1.26	0.10	29.99
,			-1.59			1" Ice	1.52	0.15	42.97

AHH-45B-R3B Antenna w/	Α	From Face	3.00	0.0000	67.00	No Ice	11.40	7.01	126.74
Mounting Pipe			-2.50			1/2" Ice	11.89	7.82	211.06
(Verizon)			0.00			1" Ice	12.38	8.66	304.34
AHH-45B-R3B Antenna w/	Α	From Face	3.00	0.0000	67.00	No Ice	11.40	7.01	126.74
Mounting Pipe			-0.50			1/2" Ice	11.89	7.82	211.06
(Verizon)			0.00			1" Ice	12.38	8.66	304.3
AHH-45B-R3B Antenna w/	В	From Face	3.00	0.0000	67.00	No Ice	11.40	7.01	126.74
Mounting Pipe			-2.50			1/2" Ice	11.89	7.82	211.06
(Verizon)			0.00			1" Ice	12.38	8.66	304.34
AHH-45B-R3B Antenna w/	В	From Face	3.00	0.0000	67.00	No Ice	11.40	7.01	126.7
Mounting Pipe			-0.50			1/2" Ice	11.89	7.82	211.00
(Verizon)	~		0.00			1" Ice	12.38	8.66	304.3
AHH-45B-R3B Antenna w/	C	From Face	3.00	0.0000	67.00	No Ice	11.40	7.01	126.74
Mounting Pipe			-2.50			1/2" Ice	11.89	7.82	211.00
(Verizon)	a	D D	0.00	0.0000	67.00	1" Ice	12.38	8.66	304.3
AHH-45B-R3B Antenna w/	С	From Face	3.00	0.0000	67.00	No Ice	11.40	7.01	126.74
Mounting Pipe			-0.50			1/2" Ice	11.89	7.82	211.06
(Verizon)	A	Enom E	0.00	0.0000	67.00	1" Ice	12.38	8.66	304.34
MT6407-77A Antenna w/	A	From Face	3.00	0.0000	67.00	No Ice	5.43	3.27	109.00
Mounting Pipe			1.50			1/2" Ice	5.97	3.99	154.1
(Verizon)	P	Enom E	0.00	0.0000	67.00	1" Ice	6.46	4.59	204.90
MT6407-77A Antenna w/	В	From Face	3.00	0.0000	67.00	No Ice	5.43	3.27	109.00
Mounting Pipe			1.50			1/2" Ice	5.97	3.99	154.17

Hudson Design Group LLC 45 Beechwood Drive

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

Job		Page
	EAST HAVEN 5 CT	4 of 12
Project		Date
	70 ft Monopole	16:20:54 06/30/22
Client	VERIZON	Designed by CL

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
			Vert ft ft	0	ft		ft²	ft²	lb
			ft						
MT6407-77A Antenna w/	С	From Face	3.00	0.0000	67.00	No Ice	5.43	3.27	109.00
Mounting Pipe			1.50			1/2" Ice	5.97	3.99	154.17
(Verizon)			0.00			1" Ice	6.46	4.59	204.90
B2/B66A RRH-BR049 RRH	Α	From Face	2.00	0.0000	60.00	No Ice	1.88	1.25	98.00
(Verizon)			0.00			1/2" Ice	2.05	1.39	116.34
			2.00			1" Ice	2.22	1.54	137.47
B2/B66A RRH-BR049 RRH	В	From Face	2.00	0.0000	60.00	No Ice	1.88	1.25	98.00
(Verizon)			0.00			1/2" Ice	2.05	1.39	116.34
			2.00			1" Ice	2.22	1.54	137.47
B2/B66A RRH-BR049 RRH	C	From Face	2.00	0.0000	60.00	No Ice	1.88	1.25	98.00
(Verizon)			0.00			1/2" Ice	2.05	1.39	116.34
			2.00			1" Ice	2.22	1.54	137.47
B5/B13 RRH-BR04C RRH	A	From Face	2.00	0.0000	60.00	No Ice	1.88	1.01	82.00
(Verizon)			0.00			1/2" Ice	2.05	1.14	98.43
			0.00			1" Ice	2.22	1.28	117.53
B5/B13 RRH-BR04C RRH	В	From Face	2.00	0.0000	60.00	No Ice	1.88	1.01	82.00
(Verizon)			0.00			1/2" Ice	2.05	1.14	98.43
			0.00			1" Ice	2.22	1.28	117.53
B5/B13 RRH-BR04C RRH	C	From Face	2.00	0.0000	60.00	No Ice	1.88	1.01	82.00
(Verizon)			0.00			1/2" Ice	2.05	1.14	98.43
,			0.00			1" Ice	2.22	1.28	117.53
CBC78T-DS-43-2X Diplexer	Α	From Face	2.00	0.0000	60.00	No Ice	0.37	0.52	9.50
(Verizon)			0.00			1/2" Ice	0.45	0.61	15.95
, ,			-2.00			1" Ice	0.54	0.71	24.08
CBC78T-DS-43-2X Diplexer	В	From Face	2.00	0.0000	60.00	No Ice	0.37	0.52	9.50
(Verizon)			0.00			1/2" Ice	0.45	0.61	15.95
,			-2.00			1" Ice	0.54	0.71	24.08
CBC78T-DS-43-2X Diplexer	C	From Face	2.00	0.0000	60.00	No Ice	0.37	0.52	9.50
(Verizon)			0.00			1/2" Ice	0.45	0.61	15.95
(-2.00			1" Ice	0.54	0.71	24.08
OVP	Α	From Face	2.00	0.0000	60.00	No Ice	3.78	2.51	32.00
(Verizon)		_ 3.0.3.2.2.2.00	0.00	0.000		1/2" Ice	4.03	2.72	63.40
(. 22)			-2.00			1" Ice	4.29	2.94	98.56
*****									, 5.50
Billboards (East Haven 5 CT)	C	None		0.0000	35.00	No Ice	1238.40	78.12	45000.00
, , , , , , , , , , , , , , , , , , , ,						1/2" Ice	1243.04	79.76	50654.87
						1" Ice	1247.68	81.40	56365.93

Load Combinations

Comb.		Description
No.		
1	Dead Only	
2	1.2 Dead+1.6 Wind 0 deg - No Ice	
3	0.9 Dead+1.6 Wind 0 deg - No Ice	
4	1.2 Dead+1.6 Wind 30 deg - No Ice	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	

Hudson Design Group LLC 45 Beechwood Drive

North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

_		
	Job	Page
	EAST HAVEN 5 CT	5 of 12
	Project	Date
	70 ft Monopole	16:20:54 06/30/22
	Client	Designed by
	VERIZON	CL

Comb.	Description
No.	
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

Maximum Reactions

Location	Condition	Gov. Load	Vertical lb	Horizontal, X lb	Horizontal, Z lb
		Comb.			
Pole	Max. Vert	26	93560.22	0.00	0.00
	$Max. H_x$	20	69368.59	50217.77	0.00
	$Max. H_z$	2	69368.59	0.00	49657.33
	$Max. M_x$	2	1862704.43	0.00	49657.33

tnx7	ower
	UIVCI

Hudson Design Group LLC 45 Beechwood Drive

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

Job		Page
	EAST HAVEN 5 CT	6 of 12
Project		Date
	70 ft Monopole	16:20:54 06/30/22
Client	VERIZON	Designed by CL

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	lb	lb	lb
		Comb.			
	Max. M _z	8	1897436.41	-50217.77	0.00
	Max. Torsion	7	3454.55	-43489.86	24828.66
	Min. Vert	13	52026.44	-25108.88	-43004.50
	Min. H _x	8	69368.59	-50217.77	0.00
	Min. H _z	14	69368.59	0.00	-49657.33
	$Min. M_x$	14	-1857697.79	0.00	-49657.33
	Min. Mz	20	-1898212.02	50217.77	0.00
	Min. Torsion	19	-3460.21	43489.86	-24828.66

Tower Mast Reaction Summary

Load	Vertical	$Shear_x$	$Shear_z$	Overturning	Overturning	Torque
Combination	77	**	**	Moment, M_x	Moment, M_z	11 0
D 10.1	lb	lb	<u>lb</u>	lb-ft	lb-ft	lb-ft
Dead Only	57807.16	-0.00	-0.00	-2030.89	314.65	0.00
1.2 Dead+1.6 Wind 0 deg - No	69368.59	-0.00	-49657.33	-1862704.43	386.43	-1379.89
Ice	50006.44	0.00	40657.22	105441570	207.26	1200.64
0.9 Dead+1.6 Wind 0 deg - No	52026.44	-0.00	-49657.32	-1854415.72	287.36	-1380.64
Ice	(02(0.50	25100.00	42004.51	1712400 57	040521 50	2797.22
1.2 Dead+1.6 Wind 30 deg - No	69368.59	25108.88	-43004.51	-1613480.57	-948531.58	-2787.33
Ice	52026.44	25108.88	12001 50	-1606216.74	044606.21	2700 47
0.9 Dead+1.6 Wind 30 deg - No	52026.44	25108.88	-43004.50	-1000210.74	-944696.31	-2790.47
1.2 Dead+1.6 Wind 60 deg - No	69368.59	43489.86	-24828.66	-932596.28	-1643180.55	-3449.88
I.2 Dead+1.6 wind 60 deg - No Ice	09308.39	43489.80	-24828.00	-932396.28	-1043180.33	-3449.88
0.9 Dead+1.6 Wind 60 deg - No	52026.44	43489.86	-24828.66	-928131.79	-1636465.57	-3454.55
Ice	32020.44	75705.00	-24626.00	-920131.79	-1030403.37	-5454.55
1.2 Dead+1.6 Wind 90 deg - No	69368.59	50217.77	-0.00	-2500.71	-1897436.41	-3190.17
Ice	0,500.53	30217.77	0.00	2500.71	1057 150.11	3130.17
0.9 Dead+1.6 Wind 90 deg - No	52026.44	50217.77	-0.00	-1859.58	-1889667.71	-3195.11
Ice	22020	50217177	0.00	1003.00	1007007171	5155.11
1.2 Dead+1.6 Wind 120 deg -	69368.59	43489.86	24828.66	927593.55	-1643178.56	-2075.77
No Ice						
0.9 Dead+1.6 Wind 120 deg -	52026.44	43489.86	24828.66	924411.66	-1636464.09	-2079.65
No Ice						
1.2 Dead+1.6 Wind 150 deg -	69368.59	25108.88	43004.51	1608475.23	-948529.59	-403.02
No Ice						
0.9 Dead+1.6 Wind 150 deg -	52026.44	25108.88	43004.50	1602494.66	-944694.83	-404.83
No Ice						
1.2 Dead+1.6 Wind 180 deg -	69368.59	-0.00	49657.33	1857697.79	386.45	1379.93
No Ice						
0.9 Dead+1.6 Wind 180 deg -	52026.44	-0.00	49657.32	1850692.67	287.37	1380.67
No Ice						
1.2 Dead+1.6 Wind 210 deg -	69368.59	-25108.88	43004.51	1608476.49	949303.17	2793.07
No Ice					0.1-0-0.00	
0.9 Dead+1.6 Wind 210 deg -	52026.44	-25108.88	43004.50	1602495.59	945270.08	2796.16
No Ice	(02(0.50	12 100 07	24020 66	027504.02	1642052.50	2455.50
1.2 Dead+1.6 Wind 240 deg -	69368.59	-43489.86	24828.66	927594.82	1643953.50	3455.58
No Ice	52026 44	12490 96	24020 66	024412.60	1627040.25	2460.21
0.9 Dead+1.6 Wind 240 deg -	52026.44	-43489.86	24828.66	924412.60	1637040.35	3460.21
No Ice 1.2 Dead+1.6 Wind 270 deg -	69368.59	-50217.77	-0.00	-2500.70	1898212.02	3190.15
No Ice	09300.39	-30/17.77	-0.00	-2300.70	1070212.02	3190.13
NO ICC						

Hudson Design Group LLC 45 Beechwood Drive

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

Job		Page
	EAST HAVEN 5 CT	7 of 12
Project		Date
	70 ft Monopole	16:20:54 06/30/22
Client	VERIZON	Designed by CL

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M_z	Torque
	lb	lb	lb	lb-ft	lb-ft	lb-ft
0.9 Dead+1.6 Wind 270 deg - No Ice	52026.44	-50217.77	-0.00	-1859.57	1890244.48	3195.09
1.2 Dead+1.6 Wind 300 deg - No Ice	69368.59	-43489.86	-24828.66	-932597.53	1643955.47	2070.06
0.9 Dead+1.6 Wind 300 deg - No Ice	52026.44	-43489.86	-24828.66	-928132.72	1637041.83	2073.99
1.2 Dead+1.6 Wind 330 deg - No Ice	69368.59	-25108.88	-43004.51	-1613481.82	949305.13	397.34
0.9 Dead+1.6 Wind 330 deg - No Ice	52026.44	-25108.88	-43004.50	-1606217.67	945271.55	399.18
1.2 Dead+1.0 Ice+1.0 Temp	93560.22	-0.00	-0.00	-6264.14	1437.02	0.01
1.2 Dead+1.0 Wind 0 deg+1.0	93560.22	-0.00	-7886.92	-306668.86	1458.12	-219.98
Ice+1.0 Temp	75500.22	-0.00	-7660.72	-500000.00	1450.12	-217.76
1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp	93560.22	3976.22	-6830.27	-266434.56	-150906.86	-512.86
1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp	93560.22	6887.02	-3943.46	-156512.50	-262445.70	-668.35
1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp	93560.22	7952.45	-0.00	-6356.26	-303271.70	-644.79
1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	93560.22	6887.02	3943.46	143799.94	-262445.62	-448.45
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	93560.22	3976.22	6830.27	253721.90	-150906.77	-131.92
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	93560.22	-0.00	7886.92	293956.16	1458.13	220.00
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	93560.22	-3976.22	6830.27	253721.95	153823.06	512.97
1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	93560.22	-6887.02	3943.46	143799.99	265361.94	668.46
1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	93560.22	-7952.45	-0.00	-6356.24	306188.03	644.80
1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	93560.22	-6887.02	-3943.46	-156512.52	265362.01	448.37
1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	93560.22	-3976.22	-6830.27	-266434.59	153823.12	131.84
Dead+Wind 0 deg - Service	57807.16	-0.00	-9067.40	-340846.98	321.64	-252.29
Dead+Wind 30 deg - Service	57807.16	4584.87	-7852.59	-295460.25	-172487.11	-510.25
Dead+Wind 60 deg - Service	57807.16	7941.22	-4533.70	-171461.52	-298991.82	-631.53
Dead+Wind 90 deg - Service	57807.16	9169.73	-0.00	-2076.19	-345295.72	-583.70
Dead+Wind 120 deg - Service	57807.16	7941.22	4533.70	167309.11	-298991.76	-379.45
Dead+Wind 150 deg - Service	57807.16	4584.87	7852.59	291307.77	-172487.05	-73.4
Dead+Wind 180 deg - Service	57807.16	-0.00	9067.40	336694.46	321.64	252.2
Dead+Wind 210 deg - Service	57807.16	-4584.87	7852.59	291307.81	173130.35	510.4
Dead+Wind 240 deg - Service	57807.16	-7941.22	4533.70	167309.14	299635.11	631.7
Dead+Wind 270 deg - Service	57807.16	-9169.73	-0.00	-2076.18	345939.07	583.7
Dead+Wind 300 deg - Service	57807.16	-7941.22	-4533.70	-171461.55	299635.16	379.2
Dead+Wind 330 deg - Service	57807.16	-4584.87	-7852.59	-295460.29	173130,41	73.2

Solution Summary

	Sı	ım of Applied Forces			Sum of Reactions		
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	lb	lb	lb	lb	lb	lb	
1	0.00	-57807.16	0.00	0.00	57807.16	0.00	0.000%

Hudson Design Group LLC 45 Beechwood Drive

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

Job		Page
	EAST HAVEN 5 CT	8 of 12
Project		Date
	70 ft Monopole	16:20:54 06/30/22
Client	VERIZON	Designed by CL

	Sur	n of Applied Force:	5		Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	lb	lb	lb	lb	lb	lb	
2	0.00	-69368.59	-49657.32	0.00	69368.59	49657.33	0.000%
3	0.00	-52026.44	-49657.32	0.00	52026.44	49657.32	0.000%
4	25108.88	-69368.59	-43004.50	-25108.88	69368.59	43004.51	0.000%
5	25108.88	-52026.44	-43004.50	-25108.88	52026.44	43004.50	0.000%
6	43489.86	-69368.59	-24828.66	-43489.86	69368.59	24828.66	0.000%
7	43489.86	-52026.44	-24828.66	-43489.86	52026.44	24828.66	0.000%
8	50217.76	-69368.59	0.00	-50217.77	69368.59	0.00	0.000%
9	50217.76	-52026.44	0.00	-50217.77	52026.44	0.00	0.000%
10	43489.86	-69368.59	24828.66	-43489.86	69368.59	-24828.66	0.000%
11	43489.86	-52026.44	24828.66	-43489.86	52026.44	-24828.66	0.000%
12	25108.88	-69368.59	43004.50	-25108.88	69368.59	-43004.51	0.000%
13	25108.88	-52026.44	43004.50	-25108.88	52026.44	-43004.50	0.000%
14	0.00	-69368.59	49657.32	0.00	69368.59	-49657.33	0.000%
15	0.00	-52026.44	49657.32	0.00	52026.44	-49657.32	0.000%
16	-25108.88	-69368.59	43004.50	25108.88	69368.59	-43004.51	0.000%
17	-25108.88	-52026.44	43004.50	25108.88	52026.44	-43004.50	0.000%
18	-43489.86	-69368.59	24828.66	43489.86	69368.59	-24828.66	0.000%
19	-43489.86	-52026.44	24828.66	43489.86	52026.44	-24828.66	0.000%
20	-50217.76	-69368.59	0.00	50217.77	69368.59	0.00	0.000%
21	-50217.76	-52026.44	0.00	50217.77	52026.44	0.00	0.000%
22	-43489.86	-69368.59	-24828.66	43489.86	69368.59	24828.66	0.000%
23	-43489.86	-52026.44	-24828.66	43489.86	52026.44	24828.66	0.000%
24	-25108.88	-69368.59	-43004.50	25108.88	69368.59	43004.51	0.000%
25	-25108.88	-52026.44	-43004.50	25108.88	52026.44	43004.50	0.000%
26	0.00	-93560.22	0.00	0.00	93560.22	0.00	0.000%
27	0.00	-93560.22	-7886.90	0.00	93560.22	7886.92	0.000%
28	3976.21	-93560.22	-6830.26	-3976.22	93560.22	6830.27	0.000%
29	6887.01	-93560.22	-3943.45	-6887.02	93560.22	3943.46	0.000%
30	7952.43	-93560.22	0.00	-7952.45	93560.22	0.00	0.000%
31	6887.01	-93560.22	3943.45	-6887.02	93560.22	-3943.46	0.000%
32	3976.21	-93560.22	6830.26	-3976.22	93560.22	-6830.27	0.000%
33	0.00	-93560.22	7886.90	0.00	93560.22	-7886.92	0.000%
34	-3976.21	-93560.22	6830.26	3976.22	93560.22	-6830.27	0.000%
35	-6887.01	-93560.22	3943.45	6887.02	93560.22	-3943.46	0.000%
36	-7952.43	-93560.22	0.00	7952.45	93560.22	0.00	0.000%
37	-6887.01	-93560.22	-3943.45	6887.02	93560.22	3943.46	0.000%
38	-3976.21	-93560.22	-6830.26	3976.22	93560.22	6830,27	0.000%
39	0.00	-57807.16	-9067.40	0.00	57807.16	9067.40	0.000%
40	4584.87	-57807.16	-7852.59	-4584.87	57807.16	7852.59	0.000%
41	7941.22	-57807.16	-4533.70	-7941.22	57807.16	4533.70	0.000%
42	9169.73	-57807.16	0.00	-9169.73	57807.16	0.00	0.000%
43	7941.22	-57807.16	4533.70	-7941.22	57807.16	-4533.70	0.000%
44	4584.87	-57807.16	7852.59	-4584.87	57807.16	-7852.59	0.000%
45	0.00	-57807.16	9067.40	0.00	57807.16	-9067.40	0.000%
46	-4584.87	-57807.16	7852.59	4584.87	57807.16	-7852.59	0.000%
47	-7941.22	-57807.16	4533.70	7941.22	57807.16	-4533.70	0.000%
48	-9169.73	-57807.16	0.00	9169.73	57807.16	0.00	0.000%
49	-7941.22	-57807.16	-4533.70	7941.22	57807.16	4533.70	0.000%
50	-4584.87	-57807.16	-7852.59	4584.87	57807.16	7852.59	0.000%

4 7	
tnvl	ower
	UIVUI

Hudson Design Group LLC 45 Beechwood Drive

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

Job		Page
	EAST HAVEN 5 CT	9 of 12
Project		Date
	70 ft Monopole	16:20:54 06/30/22
Client	VERIZON	Designed by CL

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00003982
3	Yes	4	0.00000001	0.00002220
4	Yes	4	0.00000001	0.00009245
5	Yes	4	0.00000001	0.00005628
6	Yes	4	0.00000001	0.00013190
7	Yes	4	0.00000001	0.00008374
8	Yes	4	0.00000001	0.00006361
9	Yes	4	0.00000001	0.00003952
10	Yes	4	0.00000001	0.00008974
11	Yes	4	0.00000001	0.00005437
12	Yes	4	0.00000001	0.00009845
13	Yes	4	0.00000001	0.00006058
14	Yes	4	0.00000001	0.00003958
15	Yes	4	0.00000001	0.00002210
16	Yes	4	0.00000001	0.00011987
17	Yes	4	0.00000001	0.00007570
18	Yes	4	0.00000001	0.00009229
19	Yes	4	0.00000001	0.00005636
20	Yes	4	0.00000001	0.00006367
21	Yes	4	0.00000001	0.00003954
22	Yes	4	0.0000001	0.00003934
23	Yes	4	0.0000001	0.00007283
24	Yes	4	0.00000001	0.00007283
25	Yes	4	0.0000001	0.00009317
26	Yes	4	0.0000001	0.00003790
27	Yes	4	0.0000001	0.00011057
28	Yes	4	0.0000001	0.00011037
29	Yes	4	0.0000001	0.00011029
30	Yes	4	0.0000001	0.00010910
31	Yes	4	0.0000001	0.00010039
32	Yes	4	0.0000001	0.00010332
33	Yes	4	0.0000001	0.00010070
33	Yes	4	0.0000001	0.00009938
34 35	Yes	4	0.0000001	0.00010211
36	Yes	4	0.0000001	0.00010380
36 37	Yes	4	0.0000001	0.00010890
38	Yes	4	0.0000001	
38 39		4		0.00011152
39 40	Yes		0.00000001	0.00000534
	Yes	4	0.00000001	0.00000578
41	Yes	4	0.00000001	0.00000610
42	Yes	4	0.00000001	0.00000568
43	Yes	4	0.00000001	0.00000565
44	Yes	4	0.00000001	0.00000548
45	Yes	4	0.00000001	0.00000519
46	Yes	4	0.00000001	0.00000577
47	Yes	4	0.00000001	0.00000586
48	Yes	4	0.00000001	0.00000571
49	Yes	4	0.00000001	0.00000587
50	Yes	4	0.0000001	0.00000562

Hudson Design Group LLC

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

Job		Page
	EAST HAVEN 5 CT	10 of 12
Project		Date
	70 ft Monopole	16:20:54 06/30/22
Client	VERIZON	Designed by CL

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	70 - 24	2.9983	49	0.2995	0.0044
L2	24 - 10	0.4201	48	0.1558	0.0006
L3	10 - 0	0.0762	48	0.0692	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
67.00	3'-6" Horizontal Face Pipe	49	2.7986	0.2935	0.0041	80159
60.00	B2/B66A RRH-BR049 RRH	49	2.3371	0.2789	0.0033	40079
35.00	Billboards (East Haven 5 CT)	48	0.8811	0.2066	0.0012	11451

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	70 - 24	16.4162	20	1.6301	0.0236
L2	24 - 10	2.3057	20	0.8550	0.0031
L3	10 - 0	0.4180	20	0.3799	0.0010

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
67.00	3'-6" Horizontal Face Pipe	20	15.3243	1.5984	0.0225	14752
60.00	B2/B66A RRH-BR049 RRH	20	12.8013	1.5217	0.0185	7376
35.00	Billboards (East Haven 5 CT)	20	4.8332	1.1333	0.0064	2106

Compression Checks

Pole Design Data

Hudson Design Group LLC

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

Job		Page
	EAST HAVEN 5 CT	11 of 12
Project		Date
	70 ft Monopole	16:20:54 06/30/22
Client	VERIZON	Designed by CL

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in^2	lb	lb	ΦP_n
L1	70 - 24 (1)	P24x1/2	46.00	0.00	0.0	36.9137	-62649.20	1395340.00	0.045
L2	24 - 10 (2)	P36x1/2	14.00	0.00	0.0	55.7633	-66523.40	2107850.00	0.032
L3	10 - 0 (3)	P42x7/16	10.00	0.00	0.0	57.1254	-69349.60	2028190.00	0.034

Pole Bending Design Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M_{ux}	M_{uy}	ϕM_{ny}	Ratio M_{uy}
110.	ft		lb-ft	lb-ft	$\frac{1}{\Phi M_{nx}}$	lb-ft	lb-ft	ϕM_{ny}
L1	70 - 24 (1)	P24x1/2	699469.17	869925.00	0.804	0.00	869925.00	0.000
L2	24 - 10 (2)	P36x1/2	1397150.00	1842816.67	0.758	0.00	1842816.67	0.000
L3	10 - 0 (3)	P42x7/16	1898216.67	2125975.00	0.893	0.00	2125975.00	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_u	ϕV_n	$Ratio$ V_u	Actual T _u	ϕT_n	Ratio T_u
	ft		lb	lb	$\overline{\phi V_n}$	lb-ft	lb-ft	ϕT_n
L1	70 - 24 (1)	P24x1/2	49725.90	697669.00	0.071	3190.82	1338408.33	0.002
L2	24 - 10 (2)	P36x1/2	49992.40	1053930.00	0.047	3190.32	3075166.67	0.001
L3	10 - 0 (3)	P42x7/16	50244.00	1014090.00	0.050	3190.14	3476150.00	0.001

Pole Interaction Design Data

Section No.	Elevation	$Ratio$ P_u	$Ratio$ M_{ux}	$Ratio \ M_{uy}$	$Ratio$ V_u	$Ratio$ T_u	Comb. Stress	Allow. Stress	Criteria
	ft	$\overline{\qquad}$ ϕP_n	ϕM_{nx}	ϕM_{ny}	$\overline{\qquad}$ ϕV_n	$\overline{\qquad}$ ϕT_n	Ratio	Ratio	
L1	70 - 24 (1)	0.045	0.804	0.000	0.071	0.002	0.854	1.000	4.8.2
L2	24 - 10 (2)	0.032	0.758	0.000	0.047	0.001	0.792	1.000	4.8.2
L3	10 - 0 (3)	0.034	0.893	0.000	0.050	0.001	0.930	1.000	4.8.2

4 7	
tnvl	Tower
	UIVUI

Hudson Design Group LLC 45 Beechwood Drive

45 Beechwood Drive North Andover, MA 01845 Phone: (978) 557-5553 FAX: (978) 336-5586

Job		Page
	EAST HAVEN 5 CT	12 of 12
Project		Date
	70 ft Monopole	16:20:54 06/30/22
Client	VERIZON	Designed by CL

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	øP _{allow} lb	% Capacity	Pass Fail
L1	70 - 24	Pole	P24x1/2	1	-62649.20	1395340.00	85.4	Pass
L2	24 - 10	Pole	P36x1/2	2	-66523.40	2107850.00	79.2	Pass
L3	10 - 0	Pole	P42x7/16	3	-69349.60	2028190.00	93.0	Pass
							Summary	
						Pole (L3)	93.0	Pass
						RATING =	93.0	Pass

June 30, 2022

Verizon Wireless 20 Alexander Drive, 2nd Floor Wallingford, CT 06492

RE: Site Name: EAST HAVEN 5 CT

Site Address: 115 Peat Meadow Road

New Haven, CT 06513

To Whom It May Concern:

Hudson Design Group LLC (HDG) has been authorized by Verizon Wireless to perform a mount analysis on the proposed Verizon Wireless antenna/RRH mounts to determine their capability of supporting the following additional loading:

- (6) JAHH-45B-R3B Antennas (72.0"x18.0"x7.0" Wt. = 92 lbs. /each)
- (3) MT6407-77A Antennas w/ RRH's (Not to Exceed: 35.12"x16.06"x5.51" Wt. = 87.1 lbs. /each)
- (3) B2/B66A RRH-BR049 RRH's (15.0"x15.0"x10.0" Wt. = 98 lbs. /each) (separate mount)
- (3) B5/B13 RRH-BR04C RRH's (15.0"x15.0"x8.1" Wt. = 82 lbs. /each) (separate mount)
- (3) CBC78T-DS-43-2X Diplexers (9.7"x6.9"x6.4" Wt. = 21 lbs. /each) (separate mount)
- (1) OVP Box (28.9"x15.7"x10.3" Wt. = 32 lbs. /each) (separate mount)

Mount fabrication drawings prepared by SitePro1, P/N WMM01 dated May 10, 2010; P/N UGLM-DCP dated February 27, 2013; P/N UGLM4 dated June 12, 2017; and mount fabrication drawings prepared by CommScope, P/N BSAMNT-SBS-2-3 dated March 2, 2017, were used to perform this analysis.

^{*}Proposed equipment shown in bold

Page 2 of 3 Re: EAST HAVEN 5 CT June 30, 2022

Mount Analysis Methods:

- This analysis was conducted in accordance with EIA/TIA-222-G, Structural Standards for Steel Antenna Towers and Antenna Supporting Structures, and the International Building Code 2015 with 2018 Connecticut State Building Code.
- HDG considers this mount to be asymmetrical and has applied wind loads in 30 degree increments all around the mount. Per TIA-222-G Annex B, the max basic wind speed for this site is equal to 105 mph with a max basic wind speed with ice of 50 mph and a maxice thickness of 0.75 in. An escalated ice thickness of 1.61 in was used for this analysis.
- HDG considers this site to be exposure category B; tower is located in an urban/suburban or wooded area with numerous closely spaced obstructions.
- HDG considers this site to be topographic category 1; tower is located on flat terrain or the bottom
 of a hill or ridge.
- HDG considers this site to have a spectral response acceleration parameter at short periods, S_S, of 0.186 and a spectral response acceleration parameter at a period of 1 second, S₁, of 0.062.
- The mount has been analyzed with load combinations consisting of 250 lbs live load using a service wind speed of 30 mph wind on the worst case antenna. Analysis performed on each antenna pipe to determine worst case location; worst case location was antenna position 2.
- The mount has been analyzed with load combinations consisting of a 250 lbs live load in a worst case location on the mount.
- The proposed mounts are to be secured to the existing monopole with ring mounts and threaded rods. HDG considers the threaded rods to be the governing connection member.

Based on our evaluation, we have determined that the <u>Proposed SitePro1 P/N UGLM-DC4 collar mounts</u>, <u>Proposed CommScope P/N BSAMNT-SBS-2-3 dual mounts</u>, and <u>Proposed SitePro1 P/N UGLM-DCP collar mounts</u> <u>ARE CAPABLE</u> of supporting the proposed installation.

	Component	Controlling Load Case	Stress Ratio	Pass/Fail
Proposed Antenna Mount	1	LC7	29%	PASS
Proposed RRH Mount	11	LC7	3%	PASS

Reference Documents:

- Fabrication drawings prepared by SitePro1, P/N WMM01 dated May 10, 2010.
- Fabrication drawings prepared by SitePro1, P/N UGLM-DCP dated February 27, 2013.
- Fabrication drawings prepared by SitePro1, P/N UGLM4 dated June 12, 2017.
- Fabrication drawings prepared by CommScope, P/N BSAMNT-SBS-2-3 dated March 2, 2017.

Page 3 of 3 Re: EAST HAVEN 5 CT June 30, 2022

This determination was based on the following limitations and assumptions:

- 1. HDG is not responsible for any modifications completed prior to and hereafter which HDG was not directly involved.
- 2. All structural members and their connections are assumed to be in good condition and are free from defects with no deterioration to its member capacities.
- 3. All antennas, coax cables and waveguide cables are assumed to be properly installed and supported as per the manufacturer's rquirements.
- 4. The existing mount has been adequately secured to the tower structure per the mount manufacturer's specifications.
- 5. All components pertaining to Verizon's mounts must be tightened and re-plumbed prior to the installation of new appurtenances.
- 6. HDG performed a localized analysis on the mount itself and not on the supporting tower structure.

Please feel free to contact our office should you have any questions.

Respectfully Submitted, Hudson Design Group LLC

Parlace al

Michael Cabral Vice President Daniel P. Hamm, PE Principal

Wind & Ice Calculations **Date:** 6/30/2022

Project Name: EAST HAVEN 5 CT

Designed By: CL Checked By: MSC

2.6.5.2 Velocity Pressure Coeff:

 $Kzmin \le Kz \le 2.01$

Table 2-4

Exposure	Z_g	α	K_{zmin}	K _e
В	1200 ft	7.0	0.70	0.9
С	900 ft	9.5	0.85	1.0
D	700 ft	11.5	1.03	1.1

2.6.6.4 Topographic Factor:

Table 2-5

Topo. Category	K _t	f
2	0.43	1.25
3	0.53	2.0
4	0.72	1.5

 $K_h = e^{(f*z/H)}$ $K_{zt} = [1 + (K_e K_t/K_h)]^2$ $K_{zt} =$ $K_h =$ 1 0.9 (from Table 2-4) $K_e =$ (If Category 1 then K zt =1.0) 0 (from Table 2-5) $K_t =$ f= 0 (from Table 2-5) Category= z= 67 0 (Ht. of the crest above surrounding terrain) H= K_{zt} = $K_{iz} =$ 1.07 (from Sec. 2.6.8)

2.6.8 Design Ice Thickness

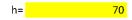
 $\begin{aligned} \text{Max Ice Thickness} &= & & t_i &= & 0.75 \text{ in} \\ \\ \text{Importance Factor, } I_{ice} &= & & I_{ice} &= & 1.00 \text{ (from Table 2-3)} \\ \\ t_{iz} &= & 2.0*t_i*I_{ice}*K_{iz}*(Kzt)^{0.35} & & t_{iz} &= & 1.61 \text{ in} \end{aligned}$

Date: 6/30/2022

Project Name: EAST HAVEN 5 CT

Designed By: CL Checked By: MSC

2.6.7 Gust Effect Factor


2.6.7.1 Self Supporting Lattice Structures

Gh = 1.0 Latticed Structures > 600 ft

Gh = 0.85 Latticed Structures 450 ft or less

Gh = 0.85 + 0.15 [h/150 - 3.0]

h= ht. of structure

Gh= 0.85

2.6.7.2 Guyed Masts

Gh= 0.85

2.6.7.3 Pole Structures

Gh= 1.1

2.6.9 Appurtenances

Gh= 1.0

2.6.7.4 Structures Supported on Other Structures

(Cantilivered tubular or latticed spines, pole, structures on buildings (ht.: width ratio > 5)

Gh= 1.35 Gh= 1.00

2.6.9.2 Design Wind Force on Appurtenances

Ultimate Design Wind Speed per 2018 CTSBC:

V_{ult} = 125 mph

Nomial Design Wind Speed,

 $V_{asd} = V_{ult} \sqrt{(0.6)}$

_{asd} = 97 mph

 $\ensuremath{V_{\text{asd}}}$ per Appendix N of the Connecticut State Building Code, Latest Edition.

Per TIA-222-G,

V_{min} = 95 mph

V_{max} = 115 mph

0.95 (from Table 2-2)

F= qz*Gh*(EPA)A

 $q_z = 0.00256*K_z*K_{zt}*K_d*V_{max}^2*I$

1.93

 $K_z = 0.881$

 $K_{zt} = 1.0$

 $q_z = 23.63$ $q_{z (ice)} = 5.36$

V_{basic}= 105 mph

V_{max (ice)}= 50 mph

V₃₀= 30 mph

I= 1.0 (from Table 2-3)

 I_{wice} = 1.0 (from Table 2-3)

Table 2-2

 $q_{z(30)} =$

Structure Type	Wind Direction Probability Factor, Kd
Latticed structures with triangular, square or rectangular cross sections	0.85
Tubular pole structures, latticed structures with other cross sections, appurtenances	0.95

Date: 6/30/2022

Project Name: EAST HAVEN 5 CT

Designed By: CL Checked By: MSC

Determine Ca:

Table 2-8

	I	Force Coefficients (Ca) for	Appurtenances	
	ambar Tuna	Aspect Ratio ≤ 2.5	Aspect Ratio = 7	Aspect Ratio ≥ 25
,vi	ember Type	Ca	Ca	Ca
	Flat	1.2	1.4	2.0
Round	C < 32	0.7	0.0	1.2
	(Subcritical)	0.7	0.8	1.2
	32 ≤ C ≤ 64	0.485.	0.415.	10.
	(Transitional)	3.76/(C ^{0.485})	3.37/(C ^{0.415})	38.4/(C ^{.1.0})
	C > 64	0.5	0.6	0.6
	(Supercritical)	0.5	0.6	0.6

Aspect Ratio is the overall length/width ratio in the plane normal to the wind direction.

(Aspect ratio is independent of the spacing between support points of a linear appurtenance,

Note: Linear interpolation may be used for aspect ratios other than those shown.

Ice Thickness =	1.61	in	Angle =	0 (deg)	[Equival	ent Angle =	180 (deg)	
<u>Appurtenances</u>	<u>Height</u>	<u>Width</u>	<u>Depth</u>	Flat Area	Aspect Ratio	<u>Ca</u>	Force (lbs)	Force (lbs) (w/ lce)	Force (lbs) (30 mph)
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	4.00	1.27	269	75	22
MT6407-77A Antenna	35.1	16.1	5.5	3.92	2.19	1.20	111	33	9
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.00	1.20	44	15	4
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	1.00	1.20	44	15	4
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	1.41	1.20	13	6	1
OVP Box	28.9	15.7	10.3	3.15	1.84	1.20	89	27	7
2-1/2" Pipe	2.9	12.0		0.24	0.24	1.20	7		
HSS 4x4	4.0	12.0		0.33	0.33	2.00	16		

By: CL Checked By: MSC				1	WIND LOAD	S						
Angle = 30	(deg)		Ice Thick	ness =	1.61	in.]		Equivale	ent Angle =	210	(deg)
WIND LOADS WITH NO ICE:												
<u>Appurtenances</u>	Height	<u>Width</u>	<u>Depth</u>	Flat Area (normal)	Flat Area (side)	Aspect Ratio	Aspect Ratio	Ca (normal)	<u>Ca</u> (side)	Force (lbs)	Force (lbs)	Force (lbs)
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	3.50	4.00	10.29	1.27	1.51	269	125	233
MT6407-77A Antenna	35.1	16.1	5.5	3.92	1.34	2.19	6.37	1.20	1.37	111	44	94
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	44	30	41
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	44	24	39
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	0.43	1.41	1.52	1.20	1.20	13	12	13
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	89	59	82
WIND LOADS WITH ICE:												
JAHH-45B-R3B Antenna	75.2	21.2	10.2	11.08	5.34	3.54	7.36	1.25	1.41	74	40	66
MT6407-77A Antenna	38.3	19.3	8.7	5.13	2.32	1.99	4.39	1.20	1.28	33	16	29
B2/B66A RRH-BR049 RRH	18.2	18.2	13.2	2.31	1.67	1.00	1.38	1.20	1.20	15	11	14
B5/B13 RRH-BR04C RRH	18.2	18.2	11.3	2.31	1.43	1.00	1.61	1.20	1.20	15	9	13
CBC78T-DS-43-2X Diplexer	12.9	10.1	9.6	0.91	0.86	1.28	1.34	1.20	1.20	6	6	6
OVP Box	32.1	18.9	13.5	4.22	3.02	1.70	2.38	1.20	1.20	27	19	25
WIND LOADS AT 30 MPH:												
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	3.50	4.00	10.29	1.27	1.51	22	10	19
MT6407-77A Antenna	35.1	16.1	5.5	3.92	1.34	2.19	6.37	1.20	1.37	9	4	8
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	4	2	3
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	4	2	3
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	0.43	1.41	1.52	1.20	1.20	1	1	1
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	7	5	7

Angle = 60	(deg)		Ice Thick	ness =	1.61	în.		l	Equivale	ent Angle =	240	(deg)
WIND LOADS WITH NO ICE:												
<u>Appurtenances</u>	Height	Width	<u>Depth</u>	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs)	Force (lbs)	Force (lbs)
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	3.50	4.00	10.29	1.27	1.51	269	125	161
MT6407-77A Antenna	35.1	16.1	5.5	3.92	1.34	2.19	6.37	1.20	1.37	111	44	60
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	44	30	33
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	44	24	29
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	0.43	1.41	1.52	1.20	1.20	13	12	12
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	89	59	67
WIND LOADS WITH ICE:												
JAHH-45B-R3B Antenna	75.2	21.2	10.2	11.08	5.34	3.54	7.36	1.25	1.41	74	40	49
MT6407-77A Antenna	38.3	19.3	8.7	5.13	2.32	1.99	4.39	1.20	1.28	33	16	20
B2/B66A RRH-BR049 RRH	18.2	18.2	13.2	2.31	1.67	1.00	1.38	1.20	1.20	15	11	12
B5/B13 RRH-BR04C RRH	18.2	18.2	11.3	2.31	1.43	1.00	1.61	1.20	1.20	15	9	11
CBC78T-DS-43-2X Diplexer	12.9	10.1	9.6	0.91	0.86	1.28	1.34	1.20	1.20	6	6	6
OVP Box	32.1	18.9	13.5	4.22	3.02	1.70	2.38	1.20	1.20	27	19	21
WIND LOADS AT 30 MPH:												
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	3.50	4.00	10.29	1.27	1.51	22	10	13
MT6407-77A Antenna	35.1	16.1	5.5	3.92	1.34	2.19	6.37	1.20	1.37	9	4	5
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	4	2	3
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	4	2	2
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	0.43	1.41	1.52	1.20	1.20	1	1	1
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	7	5	5

Angle = 90	(deg)		Ice Thick	ness =	1.61	in.		l	Equivale	ent Angle =	270	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	<u>Height</u>	<u>Width</u>	<u>Depth</u>	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs)	Force (lbs)	Force (lbs)
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	3.50	4.00	10.29	1.27	1.51	269	125	125
MT6407-77A Antenna	35.1	16.1	5.5	3.92	1.34	2.19	6.37	1.20	1.37	111	44	44
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	44	30	30
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	44	24	24
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	0.43	1.41	1.52	1.20	1.20	13	12	12
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	89	59	59
WIND LOADS WITH ICE:												
JAHH-45B-R3B Antenna	75.2	21.2	10.2	11.08	5.34	3.54	7.36	1.25	1.41	74	40	40
MT6407-77A Antenna	38.3	19.3	8.7	5.13	2.32	1.99	4.39	1.20	1.28	33	16	16
B2/B66A RRH-BR049 RRH	18.2	18.2	13.2	2.31	1.67	1.00	1.38	1.20	1.20	15	11	11
B5/B13 RRH-BR04C RRH	18.2	18.2	11.3	2.31	1.43	1.00	1.61	1.20	1.20	15	9	9
CBC78T-DS-43-2X Diplexer	12.9	10.1	9.6	0.91	0.86	1.28	1.34	1.20	1.20	6	6	6
OVP Box	32.1	18.9	13.5	4.22	3.02	1.70	2.38	1.20	1.20	27	19	19
WIND LOADS AT 30 MPH:												
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	3.50	4.00	10.29	1.27	1.51	22	10	10
MT6407-77A Antenna	35.1	16.1	5.5	3.92	1.34	2.19	6.37	1.20	1.37	9	4	4
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	4	2	2
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	4	2	2
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	0.43	1.41	1.52	1.20	1.20	1	1	1
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	7	5	5

By: CL Checked By: MSC				V	VIND LOAD	s						
Angle = 120	(deg)		Ice Thick	ness =	1.61	in.		ı	Equivale	ent Angle =	300	(deg)
WIND LOADS WITH NO ICE:												
Appurtenances	Height	Width	Depth	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs)	Force (lbs)	Force (lbs)
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	3.50	4.00	10.29	1.27	1.51	269	125	161
MT6407-77A Antenna	35.1	16.1	5.5	3.92	1.34	2.19	6.37	1.20	1.37	111	44	60
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	44	30	33
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	44	24	29
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	0.43	1.41	1.52	1.20	1.20	13	12	12
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	89	59	67
WIND LOADS WITH ICE:												
JAHH-45B-R3B Antenna	75.2	21.2	10.2	11.08	5.34	3.54	7.36	1.25	1.41	74	40	49
MT6407-77A Antenna	38.3	19.3	8.7	5.13	2.32	1.99	4.39	1.20	1.28	33	16	20
B2/B66A RRH-BR049 RRH	18.2	18.2	13.2	2.31	1.67	1.00	1.38	1.20	1.20	15	11	12
B5/B13 RRH-BR04C RRH	18.2	18.2	11.3	2.31	1.43	1.00	1.61	1.20	1.20	15	9	11
CBC78T-DS-43-2X Diplexer	12.9	10.1	9.6	0.91	0.86	1.28	1.34	1.20	1.20	6	6	6
OVP Box	32.1	18.9	13.5	4.22	3.02	1.70	2.38	1.20	1.20	27	19	21
WIND LOADS AT 30 MPH:												
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	3.50	4.00	10.29	1.27	1.51	22	10	13
MT6407-77A Antenna	35.1	16.1	5.5	3.92	1.34	2.19	6.37	1.20	1.37	9	4	5
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	4	2	3
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	4	2	2
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	0.43	1.41	1.52	1.20	1.20	1	1	1
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	7	5	5

					WIND LOADS							
Angle = 150	(deg)		Ice Thick	ness =	1.61 in.			ا	Equivalent Angle =		330	(deg)
WIND LOADS WITH NO ICE:												
<u>Appurtenances</u>	<u>Height</u>	Width	<u>Depth</u>	Flat Area (normal)	Flat Area (side)	Ratio (normal)	Ratio (side)	<u>Ca</u> (normal)	<u>Ca</u> (side)	Force (lbs)	(lbs)	Force (lbs)
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	3.50	4.00	10.29	1.27	1.51	269	125	233
MT6407-77A Antenna	35.1	16.1	5.5	3.92	1.34	2.19	6.37	1.20	1.37	111	44	94
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	44	30	41
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	44	24	39
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	0.43	1.41	1.52	1.20	1.20	13	12	13
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	89	59	82
WIND LOADS WITH ICE:												
IAHH-45B-R3B Antenna	75.2	21.2	10.2	11.08	5.34	3.54	7.36	1.25	1.41	74	40	66
MT6407-77A Antenna	38.3	19.3	8.7	5.13	2.32	1.99	4.39	1.20	1.28	33	16	29
B2/B66A RRH-BR049 RRH	18.2	18.2	13.2	2.31	1.67	1.00	1.38	1.20	1.20	15	11	14
B5/B13 RRH-BR04C RRH	18.2	18.2	11.3	2.31	1.43	1.00	1.61	1.20	1.20	15	9	13
CBC78T-DS-43-2X Diplexer	12.9	10.1	9.6	0.91	0.86	1.28	1.34	1.20	1.20	6	6	6
OVP Box	32.1	18.9	13.5	4.22	3.02	1.70	2.38	1.20	1.20	27	19	25
WIND LOADS AT 30 MPH:												
JAHH-45B-R3B Antenna	72.0	18.0	7.0	9.00	3.50	4.00	10.29	1.27	1.51	22	10	19
MT6407-77A Antenna	35.1	16.1	5.5	3.92	1.34	2.19	6.37	1.20	1.37	9	4	8
B2/B66A RRH-BR049 RRH	15.0	15.0	10.0	1.56	1.04	1.00	1.50	1.20	1.20	4	2	3
B5/B13 RRH-BR04C RRH	15.0	15.0	8.1	1.56	0.84	1.00	1.85	1.20	1.20	4	2	3
CBC78T-DS-43-2X Diplexer	9.7	6.9	6.4	0.46	0.43	1.41	1.52	1.20	1.20	1	1	1
OVP Box	28.9	15.7	10.3	3.15	2.07	1.84	2.81	1.20	1.21	7	5	7

Project Name: EAST HAVEN 5 CT

Designed By: CL Checked By: MSC

ICE WEIGHT CALCULATIONS

Thickness of ice: 1.61 in.

Density of ice: 56 pcf

JAHH-45B-R3B Antenna

Weight of ice based on total radial SF area:

 Height (in):
 72.0

 Width (in):
 18.0

 Depth (in):
 7.0

Total weight of ice on object: 247 lbs

Weight of object: 92.0 lbs

Combined weight of ice and object: 339 lbs

B2/B66A RRH-BR049 RRH

Weight of ice based on total radial SF area:

Height (in): 15.0
Width (in): 15.0
Depth (in): 10.0

Total weight of ice on object: 48 lbs

Weight of object: 98.0 lbs

Combined weight of ice and object: 146 lbs

CBC78T-DS-43-2X Diplexer

Weight of ice based on total radial SF area:

 Height (in):
 9.7

 Width (in):
 6.9

 Depth (in):
 6.4

Total weight of ice on object: 18 lbs
Weight of object: 21.0 lbs

Combined weight of ice and object: 39 lbs

2-1/2" Pipe

Per foot weight of ice:

diameter (in): 2.88

Per foot weight of ice on object: 9 plf

MT6407-77A Antenna

Weight of ice based on total radial SF area:

Height (in): 35.1
Width (in): 16.1
Depth (in): 5.5

Total weight of ice on object: 107 lbs

Weight of object: 87.1 lbs

Combined weight of ice and object: 194 lbs

B5/B13 RRH-BR04C RRH

Weight of ice based on total radial SF area:

Height (in): 15.0
Width (in): 15.0
Depth (in): 8.1

Total weight of ice on object: 46 lbs

Weight of object: 82.0 lbs

Combined weight of ice and object: 128 lbs

OVP Box

Weight of ice based on total radial SF area:

Height (in):

Width (in):

Depth (in):

Total weight of ice on object:

Weight of object:

28.9

15.7

10.3

97 lbs

Weight of object:

32.0 lbs

Combined weight of ice and object: 129 lbs

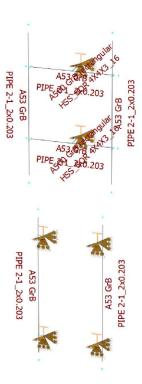
HSS 4x4

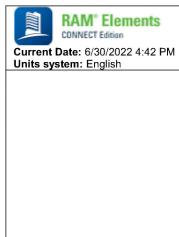
Weight of ice based on total radial SF area:

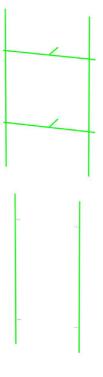
Height (in): 4
Width (in): 4

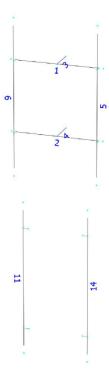
Per foot weight of ice on object: 14 plf

Mount Calculations (Proposed Conditions)


Current Date: 6/30/2022 4:42 PM Units system: English




Current Date: 6/30/2022 4:42 PM Units system: English

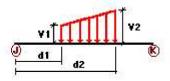

Design status Not designed Error on design Design O.K. With warnings

Current Date: 6/30/2022 4:42 PM Units system: English

Current Date: 6/30/2022 4:42 PM

Units system: English

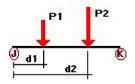
Load data


GLOSSARY

Comb : Indicates if load condition is a load combination

Load Conditions

Condition	Description	Comb.	Category
D	Dead Load	No	DL
Wo	Wind Load (NO ICE)	No	WIND
W30	WL 30deg	No	WIND
W60	WL 60deg	No	WIND
W90	WL 90deg	No	WIND
W120	WL 120deg	No	WIND
W150	WL 150deg	No	WIND
Di	Ice Load	No	LL
WI0	WL ICE 0deg	No	WIND
VI30	WL ICE 30deg	No	WIND
W160	WL ICE 60deg	No	WIND
N190	WL ICE 90deg	No	WIND
VI120	WL ICE 120deg	No	WIND
VI150	WL ICE 150deg	No	WIND
VL0	WL 30 mph 0deg	No	WIND
/L30	WL 30 mph 30deg	No	WIND
VL60	WL 30 mph 60deg	No	WIND
NL90	WL 30 mph 90deg	No	WIND
NL120	WL 30 mph 120deg	No	WIND
NL150	WL 30 mph 150deg	No	WIND
L1	250 lb Live Load on Left End	No	LL
L2	250 lb Live Load on Center	No	LL
.L3	250 lb Live Load on Right End	No	LL
La1	250 lb Live Load on Antenna 1	No	LL
LLa2	250 lb Live Load on Antenna 2	No	LL


Distributed force on members

Condition	Member	Dir1	Val1 [Kip/ft]	Val2 [Kip/ft] 	Dist1 [ft]	%	Dist2 [ft]	%
Wo	1	z	-0.007	-0.007	0.00	No	100.00	Yes
	2 11	Z 7	-0.007 -0.007	-0.007 -0.007	0.00 0.00	No No	100.00 100.00	Yes Yes
	14	7	-0.007	-0.007	0.00	No	100.00	Yes
W30	1	z	-0.007	-0.007	0.00	No	100.00	Yes

	2	z	-0.007	-0.007	0.00	No	100.00	Yes
	11	z	-0.007	-0.007	0.00	No	100.00	Yes
	14	z	-0.007	-0.007	0.00	No	100.00	Yes
W60	3	x	-0.016	-0.016	0.00	No	100.00	Yes
	4	x	-0.016	-0.016	0.00	No	100.00	Yes
	5	x	-0.007	-0.007	0.00	No	100.00	Yes
	6	x	-0.007	-0.007	0.00	No	100.00	Yes
	11	x	-0.007	-0.007	0.00	No	100.00	Yes
	14	x	-0.007	-0.007	0.00	No	100.00	Yes
W90	3	x	-0.016	-0.016	0.00	No	100.00	Yes
	4	x	-0.016	-0.016	0.00	No	100.00	Yes
	5	x	-0.007	-0.007	0.00	No	100.00	Yes
	6	x	-0.007	-0.007	0.00	No	100.00	Yes
	11	x	-0.007	-0.007	0.00	No	100.00	Yes
	14	x	-0.007	-0.007	0.00	No	100.00	Yes
W120	3	x	-0.016	-0.016	0.00	No	100.00	Yes
	4	x	-0.016	-0.016	0.00	No	100.00	Yes
	5	x	-0.007	-0.007	0.00	No	100.00	Yes
	6	x	-0.007	-0.007	0.00	No	100.00	Yes
	11	x	-0.007	-0.007	0.00	No	100.00	Yes
	14	x	-0.007	-0.007	0.00	No	100.00	Yes
W150	1	z	0.007	0.007	0.00	No	100.00	Yes
	2	z	0.007	0.007	0.00	No	100.00	Yes
	5	z	0.007	0.007	0.00	No	100.00	Yes
	6	z	0.007	0.007	0.00	No	100.00	Yes
	11	z	0.007	0.007	0.00	No	100.00	Yes
	14	z	0.007	0.007	0.00	No	100.00	Yes
Di	1	У	-0.009	-0.009	0.00	No	100.00	Yes
	2	У	-0.009	-0.009	0.00	No	100.00	Yes
	3	У	-0.014	-0.014	0.00	No	100.00	Yes
	4	У	-0.014	-0.014	0.00	No	100.00	Yes
	5	У	-0.009	-0.009	0.00	No	100.00	Yes
	6	У	-0.009	-0.009	0.00	No	100.00	Yes
	11	у	-0.009	-0.009	0.00	No	100.00	Yes
	14	у	-0.009	-0.009	0.00	No	100.00	Yes
		-						

Concentrated forces on members

Condition	Member	Dir1	Value1 [Kip]	Dist1 [ft] 	%
D	5	у	-0.044	1.00	No
		У	-0.044	4.00	No
	6	У	-0.092	0.50	No
		У	-0.092	5.50	No
		У	-0.11	0.50	No
		У	-0.11	5.50	No
	11	У	-0.098	0.50	No
		У	-0.082	3.00	No
		У	-0.032	5.50	No
	14	У	-0.098	0.50	No

		У	-0.082	3.00	No
		у	-0.021	5.50	No
Wo	5	z	-0.056	1.00	No
****	3				
		Z	-0.056	4.00	No
	6	z	-0.269	0.50	No
		Z	-0.269	5.50	No
	11	Z	-0.044	0.50	No
		Z	-0.044	3.00	No
		z	-0.089	5.50	No
	14		-0.044		
	14	Z		0.50	No
		z	-0.044	3.00	No
		Z	-0.013	5.50	No
W30	5	3	-0.047	1.00	No
		3	-0.047	4.00	No
	6	3	-0.233	0.50	No
		3	-0.233	5.50	No
	11	3	-0.041	0.50	No
	11				
		3	-0.039	3.00	No
		3	-0.082	5.50	No
	14	3	-0.041	0.50	No
		3	-0.039	3.00	No
		3	-0.013	5.50	No
W60	5	3	-0.03	1.00	No
VV 00	5				
	_	3	-0.03	4.00	No
	6	3	-0.161	0.50	No
		3	-0.161	5.50	No
	11	3	-0.033	0.50	No
		3	-0.029	3.00	No
		3	-0.067	5.50	No
	1.4	3			
	14		-0.033	0.50	No
		3	-0.029	3.00	No
		3	-0.012	5.50	No
W90	5	X	-0.022	1.00	No
		X	-0.022	4.00	No
	6	x	-0.063	0.50	No
	-	x	-0.063	5.50	No
	11				
	11	x	-0.03	0.50	No
		X	-0.024	3.00	No
		X	-0.059	5.50	No
	14	X	-0.03	0.50	No
		X	-0.024	3.00	No
		x	-0.012	5.50	No
W120	5	2	-0.03	1.00	No
VV 120	3	2			
	_	2	-0.03	4.00	No
	6	2	-0.161	0.50	No
		2	-0.161	5.50	No
	11	2	-0.033	0.50	No
		2	-0.029	3.00	No
		2	-0.067	5.50	No
	14	2	-0.033	0.50	No
	14				
		2	-0.029	3.00	No
		2	-0.012	5.50	No
W150	5	2	-0.047	1.00	No
		2	-0.047	4.00	No
	6	2	-0.233	0.50	No
	_	2	-0.233	5.50	No
	11	2			
	1.1		-0.041	0.50	No
		2	-0.039	3.00	No
		2	-0.082	5.50	No
	14	2	-0.041	0.50	No

		2	-0.039	3.00	No
		2	-0.013	5.50	No
Di	5		-0.054	1.00	No
DI	5	У			
		У	-0.054	4.00	No
	6	У	-0.247	0.50	No
		У	-0.247	5.50	No
	11	У	-0.048	0.50	No
		у	-0.046	3.00	No
			-0.097	5.50	No
	4.4	У			
	14	У	-0.048	0.50	No
		У	-0.046	3.00	No
		У	-0.018	5.50	No
WI0	5	Z	-0.017	1.00	No
		z	-0.017	4.00	No
	6	z	-0.075	0.50	No
	Ŭ	z	-0.075	5.50	No
	4.4				
	11	Z	-0.015	0.50	No
		z	-0.015	3.00	No
		Z	-0.027	5.50	No
	14	Z	-0.015	0.50	No
		z	-0.015	3.00	No
		z	-0.006	5.50	No
14/100	-				
WI30	5	3	-0.015	1.00	No
		3	-0.015	4.00	No
	6	3	-0.066	0.50	No
		3	-0.066	5.50	No
	11	3	-0.014	0.50	No
		3	-0.013	3.00	No
		3	-0.025	5.50	No
	4.4				
	14	3	-0.014	0.50	No
		3	-0.013	3.00	No
		3	-0.006	5.50	No
WI60	5	3	-0.01	1.00	No
		3	-0.01	4.00	No
	6	3	-0.049	0.50	No
	Ū	3	-0.049	5.50	No
	11	3	-0.012	0.50	No
		3	-0.011	3.00	No
		3	-0.021	5.50	No
	14	3	-0.012	0.50	No
		3	-0.011	3.00	No
		3	-0.006	5.50	No
W190	5		-0.008	1.00	No
VV130	3	X			
	_	X	-0.008	4.00	No
	6	X	-0.02	0.50	No
		X	-0.02	5.50	No
	11	X	-0.011	0.50	No
		x	-0.009	3.00	No
		X	-0.019	5.50	No
	14		-0.011	0.50	No
	14	X			
		X	-0.009	3.00	No
		X	-0.006	5.50	No
WI120	5	2	-0.01	1.00	No
		2	-0.01	4.00	No
	6	2	-0.049	0.50	No
	-	2	-0.049	5.50	No
	11	2			
	1.1		-0.012	0.50	No
		2	-0.011	3.00	No
		2	-0.021	5.50	No
	14	2	-0.012	0.50	No

		_			
		2	-0.011	3.00	No
		2	-0.006	5.50	No
WI150	5	2	-0.015	1.00	No
		2	-0.015	4.00	No
	6	2	-0.066	0.50	No
	U				
		2	-0.066	5.50	No
	11	2	-0.014	0.50	No
		2	-0.013	3.00	No
		2	-0.025	5.50	No
	14	2	-0.014	0.50	No
		2	-0.013	3.00	No
		2	-0.006	5.50	No
WL0	5	Z	-0.005	1.00	No
		Z	-0.005	4.00	No
	6	Z	-0.022	0.50	No
		Z	-0.022	5.50	No
	11	z	-0.004	0.50	No
					No
		z	-0.004	3.00	
		Z	-0.007	5.50	No
	14	Z	-0.004	0.50	No
		Z	-0.004	3.00	No
		Z	-0.001	5.50	No
WL30	5	3	-0.004	1.00	No
.,_55	Ü	3	-0.004	4.00	No
	6				
	6	3	-0.019	0.50	No
		3	-0.019	5.50	No
	11	3	-0.003	0.50	No
		3	-0.003	3.00	No
		3	-0.007	5.50	No
	14	3	-0.003	0.50	No
		3	-0.003	3.00	No
14/1 00	_	3	-0.001	5.50	No
WL60	5	3	-0.003	1.00	No
		3	-0.003	4.00	No
	6	3	-0.013	0.50	No
		3	-0.013	5.50	No
	11	3	-0.003	0.50	No
		3	-0.002	3.00	No
		3	-0.005	5.50	No
	14	3	-0.003	0.50	No
		3	-0.002	3.00	No
		3	-0.001	5.50	No
WL90	5	X	-0.002	1.00	No
		x	-0.002	4.00	No
	6	x	-0.005	0.50	No
	U				
		X	-0.005	5.50	No
	11	X	-0.002	0.50	No
		X	-0.002	3.00	No
		X	-0.005	5.50	No
	14	x	-0.002	0.50	No
		x	-0.002	3.00	No
					No
M/I 400	-	X	-0.001	5.50	
WL120	5	2	-0.003	1.00	No
		2	-0.003	4.00	No
	6	2	-0.013	0.50	No
		2	-0.013	5.50	No
	11	2	-0.003	0.50	No
		2	-0.002	3.00	No
		2	-0.005	5.50	No
	14	2	-0.003	0.50	No

LLa1	5	y	-0.25	50.00	Yes
LL3	1	У	-0.25	0.00	Yes
LL2	1	У	-0.25	50.00	Yes
LL1	1	У	-0.25	100.00	Yes
		2	-0.001	5.50	No
		2	-0.003	3.00	No
	14	2	-0.003	0.50	No
		2	-0.007	5.50	No
		2	-0.003	3.00	No
	11	2	-0.003	0.50	No
		2	-0.019	5.50	No
	6	2	-0.019	0.50	No
		2	-0.004	4.00	No
WL150	5	2	-0.004	1.00	No
		2	-0.001	5.50	No
		2	-0.002	3.00	No

Self weight multipliers for load conditions

			Self weigh	nt multiplie	r
Condition	Description	Comb.	MultX	MultY	MultZ
D	Dead Load	No	0.00	 -1.00	0.00
Wo	Wind Load (NO ICE)	No	0.00	0.00	0.00
W30	WL 30deg	No	0.00	0.00	0.00
W60	WL 60deg	No	0.00	0.00	0.00
W90	WL 90deg	No	0.00	0.00	0.00
W120	WL 120deg	No	0.00	0.00	0.00
W150	WL 150deg	No	0.00	0.00	0.00
Di	Ice Load	No	0.00	0.00	0.00
WI0	WL ICE 0deg	No	0.00	0.00	0.00
WI30	WL ICE 30deg	No	0.00	0.00	0.00
WI60	WL ICE 60deg	No	0.00	0.00	0.00
WI90	WL ICE 90deg	No	0.00	0.00	0.00
WI120	WL ICE 120deg	No	0.00	0.00	0.00
WI150	WL ICE 150deg	No	0.00	0.00	0.00
WL0	WL 30 mph 0deg	No	0.00	0.00	0.00
WL30	WL 30 mph 30deg	No	0.00	0.00	0.00
WL60	WL 30 mph 60deg	No	0.00	0.00	0.00
WL90	WL 30 mph 90deg	No	0.00	0.00	0.00
WL120	WL 30 mph 120deg	No	0.00	0.00	0.00
WL150	WL 30 mph 150deg	No	0.00	0.00	0.00
LL1	250 lb Live Load on Left End	No	0.00	0.00	0.00
LL2	250 lb Live Load on Center	No	0.00	0.00	0.00
LL3	250 lb Live Load on Right End	No	0.00	0.00	0.00
LLa1	250 lb Live Load on Antenna 1	No	0.00	0.00	0.00
LLa2	250 lb Live Load on Antenna 2	No	0.00	0.00	0.00

Earthquake (Dynamic analysis only)

Condition	a/g	Ang. [Deg]	Damp. [%]
D	0.00	0.00	0.00
Wo	0.00	0.00	0.00
W30	0.00	0.00	0.00
W60	0.00	0.00	0.00
W90	0.00	0.00	0.00
W120	0.00	0.00	0.00
W150	0.00	0.00	0.00
Di	0.00	0.00	0.00
WI0	0.00	0.00	0.00
WI30	0.00	0.00	0.00
WI60	0.00	0.00	0.00
WI90	0.00	0.00	0.00
WI120	0.00	0.00	0.00
WI150	0.00	0.00	0.00
WL0	0.00	0.00	0.00
WL30	0.00	0.00	0.00
WL60	0.00	0.00	0.00
WL90	0.00	0.00	0.00
WL120	0.00	0.00	0.00
WL150	0.00	0.00	0.00
LL1	0.00	0.00	0.00
LL2	0.00	0.00	0.00
LL3	0.00	0.00	0.00
LLa1	0.00	0.00	0.00
LLa2	0.00	0.00	0.00

Current Date: 6/30/2022 4:42 PM

Units system: English

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design:

LC1=1.2D+1.6Wo

LC2=1.2D+1.6W30

LC3=1.2D+1.6W60

LC4=1.2D+1.6W90

LC5=1.2D+1.6W120

LC6=1.2D+1.6W150

LC7=1.2D-1.6Wo

LC8=1.2D-1.6W30

LC9=1.2D-1.6W60

LC10=1.2D-1.6W90

LC11=1.2D-1.6W120

LC12=1.2D-1.6W150

LC13=0.9D+1.6Wo

LC14=0.9D+1.6W30

LC15=0.9D+1.6W60

LC16=0.9D+1.6W90

LC17=0.9D+1.6W120

LC18=0.9D+1.6W150

LC19=0.9D-1.6Wo

LC20=0.9D-1.6W30

LC21=0.9D-1.6W60

LC22=0.9D-1.6W90

LC23=0.9D-1.6W120

LC24=0.9D-1.6W150

LC25=1.2D+Di+WI0

LC26=1.2D+Di+WI30

LC27=1.2D+Di+WI60

LC28=1.2D+Di+WI90

LC29=1.2D+Di+WI120

LC30=1.2D+Di+WI150

LC31=1.2D+Di-WI0 LC32=1.2D+Di-WI30

LC33=1.2D+Di-WI60 LC34=1.2D+Di-WI90

LC35=1.2D+Di-WI120

LC36=1.2D+Di-WI150

LC37=0.9D

LC38=1.2D+1.6LL1

LC39=1.2D+1.6LL2

LC40=1.2D+1.6LL3

LC41=1.2D+WL0+LLa1

LC42=1.2D+WL30+LLa1

LC43=1.2D+WL60+LLa1

LC44=1.2D+WL90+LLa1

LC45=1.2D+WL120+LLa1

LC46=1.2D+WL150+LLa1

LC47=1.2D-WL0+LLa1

LC48=1.2D-WL30+LLa1

LC49=1.2D-WL60+LLa1

LC50=1.2D-WL90+LLa1

LC51=1.2D-WL120+LLa1 LC52=1.2D-WL150+LLa1

LC53=1.2D+WL0+LLa2

LC54=1.2D+WL30+LLa2

LC55=1.2D+WL60+LLa2 LC56=1.2D+WL90+LLa2 LC57=1.2D+WL120+LLa2 LC58=1.2D+WL150+LLa2 LC59=1.2D-WL0+LLa2 LC60=1.2D-WL30+LLa2 LC61=1.2D-WL60+LLa2 LC62=1.2D-WL90+LLa2 LC63=1.2D-WL120+LLa2 LC63=1.2D-WL120+LLa2

Description	Section	Member	Ctrl Eq.	Ratio	Status	Reference
	HSS_SQR 4X4X3_16	3	LC1 at 100.00%	0.08	 ОК	
		4	LC7 at 100.00%	0.08	ок	
	PIPE 2-1_2x0.203	1	LC7 at 50.00%	0.29	 ОК	
	_	2	LC1 at 50.00%	0.29	OK	
		5	LC31 at 27.08%	0.15	OK	
		6	LC7 at 27.08%	0.23	OK	
		11	LC7 at 83.33%	0.03	OK	
		14	LC10 at 16.67%	0.03	OK	

Current Date: 6/30/2022 4:42 PM

Units system: English

Geometry data

GLOSSARY

Cb22, Cb33 : Moment gradient coefficients

Cm22, Cm33 : Coefficients applied to bending term in interaction formula d0 : Tapered member section depth at J end of member DJX : Rigid end offset distance measured from J node in axis X DJY : Rigid end offset distance measured from J node in axis Y DJZ : Rigid end offset distance measured from J node in axis Z DKX : Rigid end offset distance measured from K node in axis X DKY : Rigid end offset distance measured from K node in axis Y DKZ : Rigid end offset distance measured from K node in axis Z dL : Tapered member section depth at K end of member

Ig factor : Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members

K22 : Effective length factor about axis 2 K33 : Effective length factor about axis 3

L22 : Member length for calculation of axial capacity
L33 : Member length for calculation of axial capacity

LB pos : Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg : Lateral unbraced length of the compression flange in the negative side of local axis 2

RX : Rotation about X
RY : Rotation about Y
RZ : Rotation about Z

TO : 1 = Tension only member 0 = Normal member

TX : Translation in X
TY : Translation in Y
TZ : Translation in Z

Nodes

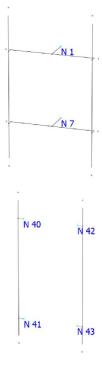
Node	X [ft]	Y [ft]	Z [ft]	Rigid Floor
1	0.00	1.375	0.00	0
2	0.00	1.375	1.00	0
3	-1.75	1.375	1.00	0
4	1.75	1.375	1.00	0
5	-1.585	1.375	1.00	0
6	1.585	1.375	1.00	0
7	0.00	-1.375	0.00	0
8	0.00	-1.375	1.00	0
9	-1.75	-1.375	1.00	0
10	1.75	-1.375	1.00	0
11	-1.585	-1.375	1.00	0
12	1.585	-1.375	1.00	0
13	-1.585	1.375	1.20	0
14	-1.585	-1.375	1.20	0
15	1.585	1.375	1.20	0
16	1.585	-1.375	1.20	0
17	-1.585	3.00	1.20	0
18	-1.585	-3.00	1.20	0
19	1.585	3.00	1.20	0
20	1.585	-3.00	1.20	0
26	-1.25	-4.00	1.20	0
27	-1.25	-10.00	1.20	0
34	1.25	-4.00	1.20	0

35	1.25	-10.00	1.20	0
36	-1.25	-5.00	1.20	0
37	1.25	-5.00	1.20	0
38	-1.25	-9.00	1.20	0
39	1.25	-9.00	1.20	0
40	-1.05	-5.00	1.20	0
41	-1.05	-9.00	1.20	0
42	1.05	-5.00	1.20	0
43	1.05	-9.00	1.20	0
43	1.05	-9.00	1.20	0

Restraints

Node	TX	TY	TZ	RX	RY	RZ
1	 1	 1	 1	 0	1	0
7	1	1	1	0	1	0
40	1	1	1	0	1	0
41	1	1	1	0	1	0
42	1	1	1	0	1	0
43	1	1	1	0	1	0

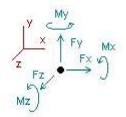
Members


Member	NJ	NK	Description	Section	Material	d0 [in]	dL [in]	lg factor
1	4	3		PIPE 2-1_2x0.203	 A53 GrB	0.00	0.00	0.00
2	10	9		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
3	1	2		HSS_SQR 4X4X3_16	A500 GrB rectangular	0.00	0.00	0.00
4	7	8		HSS_SQR 4X4X3_16	A500 GrB rectangular	0.00	0.00	0.00
5	19	20		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
6	17	18		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
11	26	27		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00
14	34	35		PIPE 2-1_2x0.203	A53 GrB	0.00	0.00	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ	
5	315.00	0	0.00	0.00	0.00	
6	315.00	0	0.00	0.00	0.00	
11	315.00	0	0.00	0.00	0.00	
14	315.00	0	0.00	0.00	0.00	

Current Date: 6/30/2022 4:43 PM Units system: English



Current Date: 6/30/2022 4:43 PM

Units system: English

Analysis result

Reactions

Direction of positive forces and moments

		Forces [Kip]		Moments [Kip*ft]			
Node	FX	FY	FZ	MX	MY	MZ	
Condition L	_C1=1.2D+1.6Wo						
1	0.21853	0.49331	0.27703	0.00000	0.70978	0.00000	
7	-0.21853	0.24639	0.84137	0.00000	0.37137	0.00000	
40	0.01473	0.15248	0.13020	0.00000	0.02743	0.00000	
41	-0.01473	0.14352	0.22020	0.00000	0.04265	0.00000	
42	-0.01407	0.14663	0.14540	0.00000	-0.02812	0.00000	
43	0.01407	0.13617	0.08340	0.00000	-0.01764	0.00000	
SUM	0.00000	1.31850	1.69760	0.00000	1.10547	0.00000	
Condition L	_C2=1.2D+1.6W30						
1	0.55446	0.42874	0.06081	0.00000	0.91262	0.00000	
7	0.07911	0.31096	0.65115	0.00000	0.51421	0.00000	
40	0.07738	0.10689	0.09625	0.00000	0.02015	0.00000	
41	0.10590	0.18911	0.15423	0.00000	0.02995	0.00000	
42	0.05834	0.12232	0.10601	0.00000	-0.02059	0.00000	
43	0.04688	0.16048	0.06641	0.00000	-0.01389	0.00000	
SUM	0.92207	1.31850	1.13487	0.00000	1.44244	0.00000	
Condition L	_C3=1.2D+1.6W60						
1	0.53962	0.41063	-0.08584	0.00000	0.78580	0.00000	
7	0.07816	0.32908	0.51803	0.00000	0.38928	0.00000	
40	0.09726	0.14336	0.04893	0.00000	0.01053	0.00000	
41	0.11589	0.15264	0.09701	0.00000	0.01866	0.00000	
42	0.07624	0.10003	0.05671	0.00000	-0.01088	0.00000	
43	0.07468	0.18277	0.02701	0.00000	-0.00586	0.00000	
SUM	0.98185	1.31850	0.66185	0.00000	1.18752	0.00000	
Condition L	_C4=1.2D+1.6W90						
1	0.46008	0.36423	-0.31398	0.00000	0.46590	0.00000	
7	-0.00248	0.37547	0.31398	0.00000	0.04751	0.00000	
40	0.10973	0.12717	0.00000	0.00000	0.00000	0.00000	
41	0.13827	0.16883	0.00000	0.00000	0.00000	0.00000	
42	0.09033	0.10461	0.00000	0.00000	0.00000	0.00000	
43	0.08247	0.17819	0.00000	0.00000	0.00000	0.00000	
SUM	0.87840	1.31850	0.00000	0.00000	0.51341	0.00000	

Condition L	_C5=1.2D+1.6W120)				
1	0.53965	0.30705	-0.54212	0.00000	0.33716	0.00000
7	0.07814	0.43265	0.10993	0.00000	-0.10095	0.00000
40	0.09726	0.14336	-0.04893	0.00000	-0.01053	0.00000
41	0.11589	0.15264	-0.09701	0.00000	-0.01866	0.00000
42	0.07624	0.10003	-0.05671	0.00000	0.01088	0.00000
43	0.07468	0.18277	-0.02701	0.00000	0.00586	0.00000
SUM	0.98185	1.31850	-0.66185	0.00000	0.22377	0.00000
Condition L	_C6=1.2D+1.6W150	1				
1	0.55449	0.27470	-0.75583	0.00000	0.27893	0.00000
7	0.07907	0.46501	-0.09054	0.00000	-0.18468	0.00000
40	0.07738	0.10689	-0.09625	0.00000	-0.02015	0.00000
41	0.10590	0.18911	-0.15423	0.00000	-0.02995	0.00000
42	0.05834	0.12232	-0.10601	0.00000	0.02059	0.00000
43	0.04688	0.16048	-0.06641 	0.00000	0.01389	0.00000
SUM	0.92207	1.31850	-1.26927	0.00000	0.07864	0.00000
Condition L	-C7=1.2D-1.6Wo					
1	0.21859	0.24801	-0.90491	0.00000	-0.31564	0.00000
7	-0.21859	0.49169	-0.21349	0.00000	-0.76390	0.00000
40	0.01473	0.15248	-0.13020	0.00000	-0.02743	0.00000
41	-0.01473	0.14352	-0.22020	0.00000	-0.04265	0.00000
42	-0.01407	0.14663	-0.14540	0.00000	0.02812	0.00000
43	0.01407	0.13617	-0.08340	0.00000	0.01764	0.00000
SUM	0.00000	1.31850	-1.69760	0.00000	-1.10386	0.00000
Condition L	C8=1.2D-1.6W30					
1	-0.11735	0.31262	-0.68873	0.00000	-0.51984	0.00000
7	-0.51622	0.42708	-0.02324	0.00000	-0.90810	0.00000
40	-0.04792	0.19806	-0.09625	0.00000	-0.02015	0.00000
41	-0.13536	0.09794	-0.15423	0.00000	-0.02995	0.00000
42	-0.08648	0.17094	-0.10601	0.00000	0.02059	0.00000
43	-0.01874	0.11186	-0.06641	0.00000	0.01389	0.00000
SUM	-0.92207	1.31850	-1.13487	0.00000	-1.44355	0.00000
Condition L	_C9=1.2D-1.6W60					
1	-0.10251	0.33064	-0.54208	0.00000	-0.39273	0.00000
7	-0.51528	0.40906	0.10990	0.00000	-0.78287	0.00000
40	-0.06780	0.16160	-0.04893	0.00000	-0.01053	0.00000
41	-0.14534	0.13440	-0.09701	0.00000	-0.01866	0.00000
42	-0.10438	0.19322	-0.05671	0.00000	0.01088	0.00000
43	-0.04654	0.08958	-0.02701	0.00000	0.00586	0.00000
SUM	-0.98185	1.31850	-0.66185	0.00000	-1.18805	0.00000
Condition L	_C10=1.2D-1.6W90					
1	-0.02296	0.37696	-0.31396	0.00000	-0.07246	0.00000
7	-0.43464	0.36274	0.31396	0.00000	-0.44071	0.00000
40	-0.08027	0.17779	0.00000	0.00000	0.00000	0.00000
41	-0.16773	0.11821	0.00000	0.00000	0.00000	0.00000
42	-0.11847	0.18865	0.00000	0.00000	0.00000	0.00000
43	-0.05433	0.09415	0.00000	0.00000	0.00000	0.00000
SUM	-0.87840	1.31850	0.00000	0.00000	-0.51317	0.00000

Condition	LC11=1.2D-1.6W12	0				
1	-0.10253	0.43412	-0.08581	0.00000	0.05668	0.00000
7	-0.51525	0.30558	0.51799	0.00000	-0.29184	0.00000
40	-0.06780	0.16160	0.04893	0.00000	0.01053	0.00000
41	-0.14534	0.13440	0.09701	0.00000	0.01866	0.00000
42	-0.10438	0.19322	0.05671	0.00000	-0.01088	0.00000
43	-0.04654	0.08958	0.02701	0.00000	-0.00586	0.00000
SUM	-0.98185	1.31850	0.66185	0.00000	-0.22271	0.00000
Condition	LC12=1.2D-1.6W15	0				
1	-0.11738	0.46644	0.12792	0.00000	0.11542	0.00000
7	-0.51618	0.27326	0.71845	0.00000	-0.20759	0.00000
40	-0.04792	0.19806	0.09625	0.00000	0.02015	0.00000
41	-0.13536	0.09794	0.15423	0.00000	0.02995	0.00000
42	-0.08648	0.17094	0.10601	0.00000	-0.02059	0.00000
43	-0.01874	0.11186	0.06641	0.00000	-0.01389	0.00000
SUM	-0.92207	1.31850	1.26927	0.00000	-0.07656	0.00000
0 1111	. 040-0 0D : 4 0W-					
	LC13=0.9D+1.6Wo	0.40055	0.25572	0.00000	0.66050	0.0000
1	0.16390	0.40055	0.35573	0.00000	0.66058	0.00000
7	-0.16390	0.15423	0.76267	0.00000	0.42050	0.00000
40	0.01105	0.11436	0.13020	0.00000	0.02743	0.00000
41	-0.01105	0.10764	0.22020	0.00000	0.04265	0.00000
42	-0.01055	0.10997	0.14540	0.00000	-0.02812	0.00000
43	0.01055	0.10213	0.08340	0.00000	-0.01764 	0.00000
SUM	0.00000	0.98888	1.69760	0.00000	1.10540	0.00000
Condition	LC14=0.9D+1.6W30)				
1	0.49987	0.33596	0.13945	0.00000	0.86347	0.00000
7	0.13369	0.21881	0.57252	0.00000	0.56329	0.00000
40	0.07370	0.06878	0.09625	0.00000	0.02015	0.00000
41	0.10959	0.15322	0.15423	0.00000	0.02995	0.00000
42	0.06186	0.08566	0.10601	0.00000	-0.02059	0.00000
43	0.04336	0.12644	0.06641	0.00000	-0.01389	0.00000
SUM	0.92207	0.98888	1.13487	0.00000	1.44236	0.00000
Condition	LC15=0.9D+1.6W60	,				
1	0.48503	0.31785	-0.00727	0.00000	0.73663	0.00000
7	0.13276		0.43945	0.00000		0.00000
		0.23693			0.43837	
40	0.09358	0.10524	0.04893	0.00000	0.01053	0.00000
41	0.11957	0.11676	0.09701	0.00000	0.01866	0.00000
42	0.07976	0.06338	0.05671	0.00000	-0.01088	0.00000
43	0.07116	0.14872	0.02701	0.00000	-0.00586 	0.00000
SUM	0.98185	0.98888	0.66185	0.00000	1.18745	0.00000
Condition	LC16=0.9D+1.6W90)				
1	0.40546	0.27144	-0.23548	0.00000	0.41672	0.00000
7	0.05214	0.28333	0.23548	0.00000	0.09662	0.00000
40	0.10605	0.08905	0.00000	0.00000	0.00000	0.00000
41	0.14195	0.13295	0.00000	0.00000	0.00000	0.00000
42	0.09385	0.06795	0.00000	0.00000	0.00000	0.00000
43	0.07895	0.14415	0.00000	0.00000	0.00000	0.00000
SUM	0.87840	0.98888	0.00000	0.00000	0.51334	0.00000

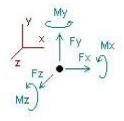
Condition L	_C17=0.9D+1.6W12	20				
1	0.48504	0.21425	-0.46369	0.00000	0.28800	0.00000
7	0.13274	0.34052	0.03151	0.00000	-0.05187	0.00000
40	0.09358	0.10524	-0.04893	0.00000	-0.01053	0.00000
41	0.11957	0.11676	-0.09701	0.00000	-0.01866	0.00000
42	0.07976	0.06338	-0.05671	0.00000	0.01088	0.00000
43	0.07116	0.14872	-0.02701	0.00000	0.00586	0.00000
SUM	0.98185	0.98888	-0.66185	0.00000	0.22369	0.00000
Condition L	_C18=0.9D+1.6W15	50				
1	0.49990	0.18189	-0.67750	0.00000	0.22977	0.00000
7	0.13367	0.37288	-0.16887	0.00000	-0.13560	0.00000
40	0.07370	0.06878	-0.09625	0.00000	-0.02015	0.00000
41	0.10959	0.15322	-0.15423	0.00000	-0.02995	0.00000
42	0.06186	0.08566	-0.10601	0.00000	0.02059	0.00000
43	0.04336	0.12644	-0.06641	0.00000	0.01389	0.00000
SUM	0.92207	0.98888	-1.26927	0.00000	0.07856	0.00000
Condition L	_C19=0.9D-1.6Wo					
1	0.16394	0.15520	-0.82662	0.00000	-0.36484	0.00000
7	-0.16394	0.39958	-0.29178	0.00000	-0.71477	0.00000
40	0.01105	0.11436	-0.13020	0.00000	-0.02743	0.00000
41	-0.01105	0.10764	-0.22020	0.00000	-0.04265	0.00000
42	-0.01055	0.10997	-0.14540	0.00000	0.02812	0.00000
43	0.01055	0.10213	-0.08340	0.00000	0.01764	0.00000
SUM	0.00000	0.98888	-1.69760	0.00000	-1.10393	0.00000
Condition L	_C20=0.9D-1.6W30					
1	-0.17204	0.21982	-0.61037	0.00000	-0.56909	0.00000
7	-0.46152	0.33496	-0.10160	0.00000	-0.85891	0.00000
40	-0.05160	0.15994	-0.09625	0.00000	-0.02015	0.00000
41	-0.13168	0.06206	-0.15423	0.00000	-0.02995	0.00000
42	-0.08296	0.13428	-0.10601	0.00000	0.02059	0.00000
43	-0.02226	0.07782	-0.06641	0.00000	0.01389	0.00000
SUM	-0.92207	0.98888	-1.13487	0.00000	-1.44362	0.00000
Condition L	_C21=0.9D-1.6W60					
1	-0.15719	0.23785	-0.46367	0.00000	-0.44197	0.00000
7	-0.46059	0.31693	0.03148	0.00000	-0.73370	0.00000
40	-0.07148	0.12348	-0.04893	0.00000	-0.01053	0.00000
41	-0.14166	0.09852	-0.09701	0.00000	-0.01866	0.00000
42	-0.10086	0.15657	-0.05671	0.00000	0.01088	0.00000
43	-0.05006	0.05553	-0.02701	0.00000	0.00586	0.00000
SUM	-0.98185	0.98888	-0.66185	0.00000	-1.18812	0.00000
Condition L	_C22=0.9D-1.6W90					
1	-0.07762	0.28418	-0.23547	0.00000	-0.12168	0.00000
7	-0.37998	0.27060	0.23547	0.00000	-0.39156	0.00000
40	-0.08395	0.13967	0.00000	0.00000	0.00000	0.00000
41	-0.16405	0.08233	0.00000	0.00000	0.00000	0.00000
42	-0.11495	0.15199	0.00000	0.00000	0.00000	0.00000
43	-0.05785	0.06011	0.00000	0.00000	0.00000	0.00000
SUM	-0.87840	0.98888	0.00000	0.00000	-0.51324	0.00000

Condition I	_C23=0.9D-1.6W12	0				
1	-0.15721	0.34134	-0.00725	0.00000	0.00743	0.00000
7	-0.46058	0.21343	0.43943	0.00000	-0.24267	0.00000
40	-0.07148	0.12348	0.04893	0.00000	0.01053	0.00000
41	-0.14166	0.09852	0.09701	0.00000	0.01866	0.00000
42	-0.10086	0.15657	0.05671	0.00000	-0.01088	0.00000
43	-0.05006	0.05553	0.02701	0.00000	-0.00586	0.00000
SUM	-0.98185	0.98888	0.66185	0.00000	-0.22278	0.00000
Condition I	_C24=0.9D-1.6W15	0				
1	-0.17207	0.37367	0.20658	0.00000	0.06616	0.00000
7	-0.46150	0.18111	0.63979	0.00000	-0.15841	0.00000
40	-0.05160	0.15994	0.09625	0.00000	0.02015	0.00000
41	-0.13168	0.06206	0.15423	0.00000	0.02995	0.00000
42	-0.08296	0.13428	0.10601	0.00000	-0.02059	0.00000
43	-0.02226	0.07782	0.06641	0.00000	-0.01389	0.00000
SUM	-0.92207	0.98888	1.26927	0.00000	-0.07663	0.00000
Condition L	_C25=1.2D+Di+WI0)				
1	0.44104	0.74052	-0.50676	0.00000	0.48394	0.00000
7	-0.44104	0.69218	0.69076	0.00000	-0.29940	0.00000
40	0.02428	0.24518	0.02100	0.00000	0.00443	0.00000
41	-0.02428	0.24182	0.03600	0.00000	0.00697	0.00000
42	-0.01967	0.20432	0.02362	0.00000	-0.00455	0.00000
43	0.01967	0.19048	0.01238	0.00000	-0.00265	0.00000
SUM	0.00000	2.31450	0.27700	0.00000	0.18874	0.00000
Condition I	_C26=1.2D+Di+WI3	30				
1	0.50211	0.72944	-0.54373	0.00000	0.52357	0.00000
7	-0.38756	0.70326	0.65828	0.00000	-0.27115	0.00000
40	0.03780	0.23695	0.01352	0.00000	0.00286	0.00000
41	-0.00103	0.25005	0.02325	0.00000	0.00450	0.00000
42	-0.00447	0.20052	0.01520	0.00000	-0.00293	0.00000
43	0.02780	0.19428	0.00813	0.00000	-0.00174	0.00000
SUM	0.17466	2.31450	0.17466	0.00000	0.25511	0.00000
Condition I	_C27=1.2D+Di+WI6	60				
1	0.48528	0.72675	-0.56052	0.00000	0.49129	0.00000
7	-0.40184	0.70596	0.64396	0.00000	-0.30309	0.00000
40	0.03586	0.23822	0.01158	0.00000	0.00244	0.00000
41	-0.00474	0.24878	0.01953	0.00000	0.00378	0.00000
42	-0.00676	0.20179	0.01290	0.00000	-0.00250	0.00000
43	0.02727	0.19301	0.00760	0.00000	-0.00160	0.00000
SUM	0.13506	2.31450	0.13506	0.00000	0.19032	0.00000
Condition I	_C28=1.2D+Di+WI9	10				
1	0.47194	0.71786	-0.60470	0.00000	0.43365	0.00000
7	-0.41594	0.71484	0.60470	0.00000	-0.36579	0.00000
40	0.03878	0.23444	0.00000	0.00000	0.00000	0.00000
41	0.00022	0.25256	0.00000	0.00000	0.00000	0.00000
42	-0.00354	0.20343	0.00000	0.00000	0.00000	0.00000
42	0.02954	0.19137	0.00000	0.00000	0.00000	0.00000
SUM	0.12100	2.31450	0.00000	0.00000	0.06786	0.00000

Condition I	LC29=1.2D+Di+WI1	120				
1	0.48529	0.70702	-0.64888	0.00000	0.40821	0.00000
7	-0.40185	0.72568	0.56545	0.00000	-0.39483	0.00000
40	0.03586	0.23822	-0.01158	0.00000	-0.00244	0.00000
41	-0.00474	0.24878	-0.01953	0.00000	-0.00378	0.00000
42	-0.00676	0.20179	-0.01290	0.00000	0.00250	0.00000
43	0.02727	0.19301	-0.00760	0.00000	0.00160	0.00000
SUM	0.13506	2.31450	-0.13506	0.00000	0.01126	0.00000
Condition I	LC30=1.2D+Di+WI1	150				
1	0.50212	0.70279	-0.66569	0.00000	0.41577	0.00000
7	-0.38757	0.72991	0.55113	0.00000	-0.39194	0.00000
40	0.03780	0.23695	-0.01352	0.00000	-0.00286	0.00000
41	-0.00103	0.25005	-0.02325	0.00000	-0.00450	0.00000
42	-0.00447	0.20052	-0.01520	0.00000	0.00293	0.00000
43	0.02780	0.19428	-0.00813	0.00000	0.00174	0.00000
SUM	0.17466	2.31450	-0.17466	0.00000	0.02114	0.00000
Condition I	LC31=1.2D+Di-WI0					
1	0.44106	0.69771	-0.70263	0.00000	0.31049	0.00000
7	-0.44106	0.73499	0.51863	0.00000	-0.49368	0.00000
40	0.02428	0.24518	-0.02100	0.00000	-0.00443	0.00000
41	-0.02428	0.24182	-0.03600	0.00000	-0.00697	0.00000
42	-0.01967	0.20432	-0.02362	0.00000	0.00455	0.00000
43	0.01967	0.19048	-0.01238	0.00000	0.00265	0.00000
SUM	0.00000	2.31450	-0.27700	0.00000	-0.18739	0.00000
Condition I	LC32=1.2D+Di-WI3	0				
1	0.37999	0.70879	-0.66567	0.00000	0.27082	0.00000
7	-0.49454	0.72391	0.55112	0.00000	-0.52197	0.00000
40	0.01075	0.25341	-0.01352	0.00000	-0.00286	0.00000
41	-0.04752	0.23359	-0.02325	0.00000	-0.00450	0.00000
42	-0.03487	0.20812	-0.01520	0.00000	0.00293	0.00000
43	0.01154	0.18668	-0.00813	0.00000	0.00174	0.00000
SUM	-0.17466	2.31450	-0.17466	0.00000	-0.25384	0.00000
Condition I	LC33=1.2D+Di-WI6	0				
1	0.39681	0.71149	-0.64887	0.00000	0.30311	0.00000
7	-0.48025	0.72122	0.56543	0.00000	-0.49002	0.00000
40	0.01270	0.25215	-0.01158	0.00000	-0.00244	0.00000
41	-0.04381	0.23485	-0.01953	0.00000	-0.00378	0.00000
42	-0.03257	0.20685	-0.01290	0.00000	0.00250	0.00000
43	0.01207	0.18795	-0.00760	0.00000	0.00160	0.00000
SUM	-0.13506	2.31450	-0.13506	0.00000	-0.18903	0.00000
Condition I	LC34=1.2D+Di-WI9	0				
1	0.41016	0.72037	-0.60469	0.00000	0.36076	0.00000
7	-0.46616	0.71233	0.60469	0.00000	-0.42731	0.00000
40	0.00978	0.25593	0.00000	0.00000	0.00000	0.00000
41	-0.04878	0.23107	0.00000	0.00000	0.00000	0.00000
42	-0.03579	0.20522	0.00000	0.00000	0.00000	0.00000
43	0.00979	0.18958	0.00000	0.00000	0.00000	0.00000
SUM	-0.12100	2.31450	0.00000	0.00000	-0.06655	0.00000

Condition	LC35=1.2D+Di-WI1	20				
1	0.39681	0.73121	-0.56051	0.00000	0.38621	0.00000
7	-0.48024	0.70149	0.64395	0.00000	-0.39825	0.00000
40	0.01270	0.25215	0.01158	0.00000	0.00244	0.00000
41	-0.04381	0.23485	0.01953	0.00000	0.00378	0.00000
42	-0.03257	0.20685	0.01290	0.00000	-0.00250	0.00000
43	0.01207	0.18795	0.00760	0.00000	-0.00160	0.00000
SUM	-0.13506	2.31450	0.13506	0.00000	-0.00992	0.00000
Condition	LC36=1.2D+Di-WI1	50				
1	0.37998	0.73543	-0.54371	0.00000	0.37866	0.00000
7	-0.49453	0.69727	0.65826	0.00000	-0.40113	0.00000
40	0.01075	0.25341	0.01352	0.00000	0.00286	0.00000
41	-0.04752	0.23359	0.02325	0.00000	0.00450	0.00000
42	-0.03487	0.20812	0.01520	0.00000	-0.00293	0.00000
43	0.01154	0.18668	0.00813	0.00000	-0.00174	0.00000
SUM	 -0.17466	2.31450	0.17466	0.00000	 -0.01978	0.00000
0	. 007-0 0D					
	LC37=0.9D	0.07704	0.00547	0.00000	0 14754	0.00000
1	0.16392	0.27781	-0.23547	0.00000	0.14754	0.00000
7	-0.16392	0.27697	0.23547	0.00000	-0.14745	0.00000
40	0.01105	0.11436	0.00000	0.00000	0.00000	0.00000
41	-0.01105	0.10764	0.00000	0.00000	0.00000	0.00000
42	-0.01055	0.10997	0.00000	0.00000	0.00000	0.00000
43	0.01055	0.10213	0.00000	0.00000	0.00000	0.00000
SUM	0.00000	0.98888	0.00000	0.00000	0.00009	0.00000
Condition	LC38=1.2D+1.6LL1					
1	0.47311	0.58188	-0.45949	0.00000	0.44762	0.00000
7	-0.47311	0.55782	0.45949	0.00000	-0.44713	0.00000
40	0.01473	0.15248	0.00000	0.00000	0.00000	0.00000
41	-0.01473	0.14352	0.00000	0.00000	0.00000	0.00000
42	-0.01407	0.14663	0.00000	0.00000	0.00000	0.00000
43	0.01407	0.13617	0.00000	0.00000	0.00000	0.00000
SUM	0.00000	1.71850	0.00000	0.00000	0.00049	0.00000
	LC39=1.2D+1.6LL2		0.45040	0.00000	0.40000	0.00000
1	0.21859	0.61614	-0.45943	0.00000	0.19683	0.00000
7	-0.21859	0.52356	0.45943	0.00000	-0.19657	0.00000
40	0.01473	0.15248	0.00000	0.00000	0.00000	0.00000
41	-0.01473	0.14352	0.00000	0.00000	0.00000	0.00000
42	-0.01407	0.14663	0.00000	0.00000	0.00000	0.00000
43	0.01407	0.13617	0.00000	0.00000	0.00000	0.00000
SUM	0.00000	1.71850	0.00000	0.00000	0.00026	0.00000
Condition	LC40=1.2D+1.6LL3					
1	-0.03597	0.58168	-0.45954	0.00000	-0.05399	0.00000
7	0.03597	0.55802	0.45954	0.00000	0.05398	0.00000
40	0.01473	0.15248	0.00000	0.00000	0.00000	0.00000
41	-0.01473	0.14352	0.00000	0.00000	0.00000	0.00000
42	-0.01407	0.14663	0.00000	0.00000	0.00000	0.00000
43	0.01407	0.13617	0.00000	0.00000	0.00000	0.00000
SUM	0.00000	1.71850	0.00000	0.00000	-0.00001	0.00000

Condition I	LC41=1.2D+WL0+L	_La1				
1	0.07447	0.50243	-0.39430	0.00000	0.09247	0.00000
7	-0.07447	0.48727	0.44830	0.00000	-0.03850	0.00000
40	0.01473	0.15248	0.00563	0.00000	0.00118	0.00000
41	-0.01473	0.14352	0.00937	0.00000	0.00182	0.00000
42	-0.01407	0.14663	0.00637	0.00000	-0.00122	0.00000
43	0.01407	0.13617	0.00263	0.00000	-0.00058	0.00000
 SUM	0.00000	1.56850	0.07800	0.00000	0.05517	0.00000
Condition I	LC42=1.2D+WL30+	⊦LLa1				
1	0.09176	0.49912	-0.40581	0.00000	0.10353	0.00000
7	-0.05923	0.49059	0.43834	0.00000	-0.03080	0.00000
40	0.01756	0.14995	0.00283	0.00000	0.00062	0.00000
41	-0.00836	0.14605	0.00636	0.00000	0.00122	0.00000
42	-0.01071	0.14536	0.00336	0.00000	-0.00064	0.00000
43	0.01566	0.13744	0.00159	0.00000	-0.00035	0.00000
 SUM	0.04667	1.56850	0.04667	0.00000	0.07358	0.00000
Condition I	LC43=1.2D+WL60+	⊦LLa1				
1	0.08655	0.49819	-0.41100	0.00000	0.09195	0.00000
7	-0.06392	0.49151	0.43363	0.00000	-0.04230	0.00000
40	0.01738	0.14995	0.00265	0.00000	0.00056	0.00000
41	-0.01031	0.14605	0.00442	0.00000	0.00086	0.00000
42	-0.01106	0.14663	0.00301	0.00000	-0.00057	0.00000
43	0.01531	0.13617	0.00301	0.00000	-0.00037	0.00000
 SUM	0.03394	1.56850	0.03394	0.00000	0.05021	0.00000
SOW	0.03334	1.50050	0.00094	0.00000	0.03021	0.00000
	LC44=1.2D+WL90+					
1	0.08219	0.49584	-0.42306	0.00000	0.07617	0.00000
7	-0.06819	0.49386	0.42306	0.00000	-0.05929	0.00000
40	0.01735	0.14979	0.00000	0.00000	0.00000	0.00000
41	-0.00835	0.14621	0.00000	0.00000	0.00000	0.00000
42	-0.01094	0.14573	0.00000	0.00000	0.00000	0.00000
43	0.01594	0.13707	0.00000	0.00000	0.00000	0.00000
SUM	0.02800	1.56850	0.00000	0.00000	0.01688	0.00000
Condition I	LC45=1.2D+WL120)+LLa1				
1	0.08655	0.49293	-0.43512	0.00000	0.07083	0.00000
7	-0.06392	0.49677	0.41250	0.00000	-0.06602	0.00000
40	0.01738	0.14995	-0.00265	0.00000	-0.00056	0.00000
41	-0.01031	0.14605	-0.00442	0.00000	-0.00086	0.00000
42	-0.01106	0.14663	-0.00301	0.00000	0.00057	0.00000
43	0.01531	0.13617	-0.00301	0.00000	0.00037	0.00000
 SUM	0.03394	1.56850	-0.03394	0.00000	0.00425	0.00000
Condition i	LC46=1.2D+WL150 0.09176	0.49146	-0.44032	0.00000	0.07164	0.00000
7	-0.05923	0.49824	0.40779	0.00000	-0.06615	0.00000
40	0.01756	0.14995	-0.00283	0.00000	-0.00062	0.00000
41	-0.00836	0.14605	-0.00636	0.00000	-0.00122	0.00000
42	-0.01071	0.14536	-0.00336	0.00000	0.00064	0.00000
43	0.01566	0.13744	-0.00159	0.00000	0.00035	0.00000
SUM	0.04667	1.56850	-0.04667	0.00000	0.00464	0.00000


Condition	LC47=1.2D-WL0+L	La1				
1	0.07447	0.48987	-0.45182	0.00000	0.04164	0.00000
7	-0.07447	0.49983	0.39782	0.00000	-0.09545	0.00000
40	0.01473	0.15248	-0.00563	0.00000	-0.00118	0.00000
41	-0.01473	0.14352	-0.00937	0.00000	-0.00182	0.00000
42	-0.01407	0.14663	-0.00637	0.00000	0.00122	0.00000
43	0.01407	0.13617	-0.00263	0.00000	0.00058	0.00000
SUM	0.00000	1.56850	-0.07800	0.00000	-0.05501	0.00000
Condition	LC48=1.2D-WL30+	LLa1				
1	0.05718	0.49319	-0.44032	0.00000	0.03058	0.00000
7	-0.08970	0.49651	0.40779	0.00000	-0.10316	0.00000
40	0.01190	0.15501	-0.00283	0.00000	-0.00062	0.00000
41	-0.02109	0.14099	-0.00636	0.00000	-0.00122	0.00000
42	-0.01743	0.14790	-0.00336	0.00000	0.00064	0.00000
43	0.01248	0.13490	-0.00159	0.00000	0.00035	0.00000
 SUM	-0.04667	1.56850	 -0.04667	0.00000	-0.07343	0.00000
	LC49=1.2D-WL60+		0.40740	0.00000	0.01010	0.000
1	0.06238	0.49412	-0.43512	0.00000	0.04216	0.00000
7	-0.08501	0.49559	0.41249	0.00000	-0.09165	0.00000
40	0.01208	0.15501	-0.00265	0.00000	-0.00056	0.00000
41	-0.01915	0.14099	-0.00442	0.00000	-0.00086	0.00000
42	-0.01707	0.14663	-0.00301	0.00000	0.00057	0.00000
43	0.01283	0.13617	-0.00124	0.00000	0.00027	0.00000
SUM	-0.03394	1.56850	-0.03394	0.00000	-0.05006	0.00000
Condition	LC50=1.2D-WL90+	LLa1				
1	0.06674	0.49647	-0.42306	0.00000	0.05794	0.00000
7	-0.08074	0.49324	0.42306	0.00000	-0.07466	0.00000
40	0.01210	0.15517	0.00000	0.00000	0.00000	0.00000
41	-0.02110	0.14083	0.00000	0.00000	0.00000	0.00000
42	-0.01719	0.14753	0.00000	0.00000	0.00000	0.00000
43	0.01219	0.13527	0.00000	0.00000	0.00000	0.00000
SUM	-0.02800	1.56850	0.00000	0.00000	 -0.01672	0.00000
	LC51=1.2D-WL120					
1	0.06238	0.49937	-0.41100	0.00000	0.06328	0.00000
7	-0.08501	0.49033	0.43363	0.00000	-0.06794	0.00000
40	0.01208	0.15501	0.00265	0.00000	0.00056	0.00000
41	-0.01915	0.14099	0.00442	0.00000	0.00086	0.00000
42	-0.01707	0.14663	0.00301	0.00000	-0.00057	0.00000
43	0.01283	0.13617	0.00124	0.00000	-0.00027	0.00000
SUM	-0.03394	1.56850	0.03394	0.00000	-0.00409	0.00000
Condition	LC52=1.2D-WL150	+LLa1				
1	0.05718	0.50085	-0.40580	0.00000	0.06247	0.00000
7	-0.08970	0.48886	0.43833	0.00000	-0.06780	0.00000
40	0.01190	0.15501	0.00283	0.00000	0.00062	0.00000
41	-0.02109	0.14099	0.00636	0.00000	0.00122	0.00000
42	-0.02103	0.14790	0.00336	0.00000	-0.00064	0.00000
43	0.01248	0.13490	0.00350	0.00000	-0.00035	0.00000
SUM	-0.04667	1.56850	0.04667	0.00000	-0.00448	0.00000
COIVI	-0.0-1007	1.50050	0.04007	0.00000	-0.00770	5.00000

Condition I	LC53=1.2D+WL0+L	La2				
1	0.36265	0.50254	-0.39431	0.00000	0.35191	0.00000
7	-0.36265	0.48716	0.44831	0.00000	-0.29764	0.00000
40	0.01473	0.15248	0.00563	0.00000	0.00118	0.00000
41	-0.01473	0.14352	0.00937	0.00000	0.00182	0.00000
42	-0.01407	0.14663	0.00637	0.00000	-0.00122	0.00000
43	0.01407	0.13617	0.00263	0.00000	-0.00058	0.00000
SUM	0.00000	1.56850	0.07800	0.00000	0.05547	0.00000
Condition I	LC54=1.2D+WL30+	·LLa2				
1	0.37992	0.49923	-0.40581	0.00000	0.36294	0.00000
7	-0.34739	0.49048	0.43834	0.00000	-0.28991	0.00000
40	0.01756	0.14995	0.00283	0.00000	0.00062	0.00000
41	-0.00836	0.14605	0.00636	0.00000	0.00122	0.00000
42	-0.01071	0.14536	0.00336	0.00000	-0.00064	0.00000
43	0.01566	0.13744	0.00159	0.00000	-0.00035	0.00000
SUM	0.04667	1.56850	0.04667	0.00000	0.07388	0.00000
Condition I	LC55=1.2D+WL60+	·LLa2				
1	0.37472	0.49830	-0.41100	0.00000	0.35137	0.00000
7	-0.35209	0.49140	0.43363	0.00000	-0.30143	0.00000
40	0.01738	0.14995	0.00265	0.00000	0.00056	0.00000
41	-0.01031	0.14605	0.00442	0.00000	0.00086	0.00000
42	-0.01106	0.14663	0.00301	0.00000	-0.00057	0.00000
43	0.01531	0.13617	0.00124	0.00000	-0.00027	0.00000
SUM	0.03394	1.56850	0.03394	0.00000	0.05051	0.00000
Condition I	LC56=1.2D+WL90+	·LLa2				
1	0.37037	0.49595	-0.42306	0.00000	0.33561	0.00000
7	-0.35637	0.49375	0.42306	0.00000	-0.31843	0.00000
40	0.01735	0.14979	0.00000	0.00000	0.00000	0.00000
41	-0.00835	0.14621	0.00000	0.00000	0.00000	0.00000
42	-0.01094	0.14573	0.00000	0.00000	0.00000	0.00000
43	0.01594	0.13707	0.00000	0.00000	0.00000	0.00000
SUM	0.02800	1.56850	0.00000	0.00000	0.01718	0.00000
Condition I	LC57=1.2D+WL120	HT 1 22				
1	0.37472	0.49305	-0.43512	0.00000	0.33027	0.00000
•	-0.35210		0.41250	0.00000		0.00000
7		0.49666			-0.32515	
40	0.01738	0.14995	-0.00265	0.00000	-0.00056	0.00000
41	-0.01031	0.14605	-0.00442	0.00000	-0.00086	0.00000
42 43	-0.01106 0.01531	0.14663 0.13617	-0.00301 -0.00124	0.00000 0.00000	0.00057 0.00027	0.00000 0.00000
SUM	0.03394	1.56850	-0.03394	0.00000	0.00455	0.00000
	LC58=1.2D+WL150 0.37992		0.44022	0.00000	0.22407	0.00000
1		0.49157	-0.44032	0.00000	0.33107	0.00000
7	-0.34740	0.49813	0.40779	0.00000	-0.32528	0.00000
40	0.01756	0.14995	-0.00283	0.00000	-0.00062	0.00000
41	-0.00836	0.14605	-0.00636	0.00000	-0.00122	0.00000
42	-0.01071	0.14536	-0.00336	0.00000	0.00064	0.00000
43 	0.01566	0.13744	-0.00159	0.00000	0.00035	0.00000
SUM	0.04667	1.56850	-0.04667	0.00000	0.00494	0.00000

Condition	LC59=1.2D-WL0+L	La2				
1	0.36266	0.48998	-0.45182	0.00000	0.30110	0.00000
7	-0.36266	0.49972	0.39782	0.00000	-0.35461	0.00000
40	0.01473	0.15248	-0.00563	0.00000	-0.00118	0.00000
41	-0.01473	0.14352	-0.00937	0.00000	-0.00182	0.00000
42	-0.01407	0.14663	-0.00637	0.00000	0.00122	0.00000
43	0.01407	0.13617	-0.00263	0.00000	0.00058	0.00000
SUM	0.00000	1.56850	-0.07800	0.00000	-0.05471	0.00000
Condition	LC60=1.2D-WL30+	LLa2				
1	0.34539	0.49330	-0.44032	0.00000	0.29006	0.00000
7	-0.37791	0.49640	0.40779	0.00000	-0.36234	0.00000
40	0.01190	0.15501	-0.00283	0.00000	-0.00062	0.00000
41	-0.02109	0.14099	-0.00636	0.00000	-0.00122	0.00000
42	-0.01743	0.14790	-0.00336	0.00000	0.00064	0.00000
43	0.01248	0.13490	-0.00159	0.00000	0.00035	0.00000
SUM	-0.04667	1.56850	-0.04667	0.00000	-0.07313	0.00000
Condition	LC61=1.2D-WL60+	LLa2				
1	0.35059	0.49423	-0.43512	0.00000	0.30163	0.00000
7	-0.37321	0.49548	0.41249	0.00000	-0.35082	0.00000
40	0.01208	0 15501	-0.00265	0.00000	-0.00056	0.00000
41	-0.01915	0.14099	-0.00442	0.00000	-0.00086	0.00000
42	-0.01707	0.14663	-0.00301	0.00000	0.00057	0.00000
43	0.01283	0.13617	-0.00124	0.00000	0.00027	0.00000
SUM	-0.03394	1.56850	-0.03394	0.00000	-0.04976	0.00000
Condition	LC62=1.2D-WL90+	LLa2				
1	0.35493	0.49658	-0.42306	0.00000	0.31739	0.00000
7	-0.36893	0.49313	0.42306	0.00000	-0.33382	0.00000
40	0.01210	0.15517	0.00000	0.00000	0.00000	0.00000
41	-0.02110	0.14083	0.00000	0.00000	0.00000	0.00000
42	-0.01719	0.14753	0.00000	0.00000	0.00000	0.00000
43	0.01219	0.13527	0.00000	0.00000	0.00000	0.00000
SUM	-0.02800	1.56850	0.00000	0.00000	-0.01642	0.00000
Condition	LC63=1.2D-WL120	+l l a2				
1	0.35058	0.49948	-0.41100	0.00000	0.32274	0.00000
7	-0.37321	0.49022	0.43363	0.00000	-0.32710	0.00000
40	0.01208	0.49022	0.43365			0.00000
				0.00000	0.00056	
41	-0.01915	0.14099	0.00442	0.00000	0.00086	0.00000
42 43	-0.01707 0.01283	0.14663 0.13617	0.00301 0.00124	0.00000 0.00000	-0.00057 -0.00027	0.00000 0.00000
SUM	-0.03394	1.56850	0.03394	0.00000	-0.00380	0.00000
Condition 1	LC64=1.2D-WL150- 0.34538	+LLa2 0.50096	-0.40581	0.00000	0.32194	0.00000
7	-0.37791	0.48875	0.43833	0.00000	-0.32697	0.00000
40	0.01190	0.48873	0.43833	0.00000	0.00062	0.00000
			0.00283			
41	-0.02109	0.14099		0.00000	0.00122	0.00000
42 43	-0.01743 0.01248	0.14790 0.13490	0.00336 0.00159	0.00000 0.00000	-0.00064 -0.00035	0.00000 0.00000
SUM	-0.04667	1.56850	0.04667	0.00000	 -0.00418	0.00000
JOIN	-0.07001	1.00000	0.04007	0.00000	-0.00+10	0.00000

Envelope for nodal reactions

Note.- Ic is the controlling load condition

Direction of positive forces and moments

Envelope of nodal reactions for

LC1=1.2D+1.6Wo

LC2=1.2D+1.6W30

LC3=1.2D+1.6W60

LC4=1.2D+1.6W90

LC5=1.2D+1.6W120

LC6=1.2D+1.6W150

LC7=1.2D-1.6Wo

LC8=1.2D-1.6W30

LC9=1.2D-1.6W60

LC10=1.2D-1.6W90

LC11=1.2D-1.6W120

LC12=1.2D-1.6W150

LC13=0.9D+1.6Wo

LC14=0.9D+1.6W30

LC15=0.9D+1.6W60

LC16=0.9D+1.6W90

LC17=0.9D+1.6W120

LC18=0.9D+1.6W150

LO10-0.3D11.0VV

LC19=0.9D-1.6Wo

LC20=0.9D-1.6W30

LC21=0.9D-1.6W60

LC22=0.9D-1.6W90

LC23=0.9D-1.6W120

LC24=0.9D-1.6W150

LC25=1.2D+Di+WI0

LC26=1.2D+Di+WI30

LC27=1.2D+Di+WI60 LC28=1.2D+Di+WI90

LC29=1.2D+Di+WI120

LC30=1.2D+Di+WI150

LC31=1.2D+Di-WI0

LC32=1.2D+Di-WI30

LC33=1.2D+Di-WI60

LC34=1.2D+Di-WI90

LC35=1.2D+Di-WI120

LC36=1.2D+Di-WI150

LC37=0.9D

LC38=1.2D+1.6LL1

LC39=1.2D+1.6LL2

LC40=1.2D+1.6LL3

LC41=1.2D+WL0+LLa1

LC42=1.2D+WL30+LLa1

LC43=1.2D+WL60+LLa1

LC44=1.2D+WL90+LLa1 LC45=1.2D+WL120+LLa1 LC46=1.2D+WL150+LLa1 LC47=1.2D-WL0+LLa1 LC48=1.2D-WL30+LLa1 LC49=1.2D-WL60+LLa1 LC50=1.2D-WL90+LLa1 LC51=1.2D-WL120+LLa1 LC52=1.2D-WL150+LLa1 LC53=1.2D+WL0+LLa2 LC54=1.2D+WL30+LLa2 LC55=1.2D+WL60+LLa2 LC56=1.2D+WL90+LLa2 LC57=1.2D+WL120+LLa2 LC58=1.2D+WL150+LLa2 LC59=1.2D-WL0+LLa2 LC60=1.2D-WL30+LLa2 LC61=1.2D-WL60+LLa2 LC62=1.2D-WL90+LLa2 LC63=1.2D-WL120+LLa2 LC64=1.2D-WL150+LLa2

				Fo	orces					Mome	ents		
Node		Fx [Kip]	lc	Fy [Kip]	lc	Fz [Kip]	lc	Mx [Kip*ft]	lc	My [Kip*ft]	lc	Mz [Kip*ft]	lc
1	Max	0.554	LC6	0.741	LC25	0.356	LC13	0.00000	LC1	0.91262	LC2	0.00000	LC1
	Min	-0.172	LC24	0.155	LC19	-0.905	LC7	0.00000	LC1	-0.56909	LC20	0.00000	LC1
7	Max	0.134	LC14	0.735	LC31	0.841	LC1	0.00000	LC1	0.56329	LC14	0.00000	LC1
	Min	-0.516	LC8	0.154	LC13	-0.292	LC19	0.00000	LC1	-0.90810	LC8	0.00000	LC1
40	Max	0.110	LC4	0.256	LC34	0.130	LC1	0.00000	LC1	0.02743	LC1	0.00000	LC1
	Min	-0.084	LC22	0.069	LC14	-0.130	LC7	0.00000	LC1	-0.02743	LC7	0.00000	LC1
41	Max	0.142	LC16	0.253	LC28	0.220	LC13	0.00000	LC1	0.04265	LC13	0.00000	LC1
	Min	-0.168	LC10	0.062	LC24	-0.220	LC19	0.00000	LC1	-0.04265	LC19	0.00000	LC1
42	Max	0.094	LC16	0.208	LC36	0.145	LC13	0.00000	LC1	0.02812	LC19	0.00000	LC1
	Min	-0.118	LC10	0.063	LC15	-0.145	LC19	0.00000	LC1	-0.02812	LC13	0.00000	LC1
43	Max	0.082	LC4	0.194	LC30	0.083	LC1	0.00000	LC1	0.01764	LC7	0.00000	LC1
	Min	-0.058	LC22	0.056	LC21	-0.083	LC7	0.00000	LC1	-0.01764	LC1	0.00000	LC1

Connection Check

Project Name: EAST HAVEN 5 CT

Designed By: CL Checked By: MSC

CHECK THRU BOLT CONNECTION CAPACITY → PROPOSED ANCHORS AT ANTENNA MOUNT

Reference: AISC Steel Construction Manual 14th Edition (ASD)

Bolt Type = A325 5/8" Threaded Rod

Allowable Tensile Load =

F_{Tall} = 13806 lbs.

Allowable Shear Load =

F_{Vall}= 8283 lbs.

CONNECTION PLATE CONFIGURATION (4-BOLTS)

 $N_{BOLT ROWS}$ = 2 rows N_{BOLTS} = 2 bolts/row S_{Y} = 6 in (Min.) S_{X} = 6 in (Min.)

TENSILE FORCES

Moment in X axis: 0 lb-ft. (See Bentley Output)

Couple Reaction from M_X : 0 lbs.

Moment in Y axis: 913 lb-ft. (See Bentley Output)

Couple Reaction from M_Y: 3652 lbs.

Reaction in Z direction: 905 lbs. (See Bentley Output)

Resultant: 2052 lbs.

SHEAR FORCES

Moment in Z axis: 0 lb-ft. (See Bentley Output)

Couple Reaction from M₇: 0 lbs.

Reaction in X direction: 554 lbs. (See Bentley Output)
Reaction in Y direction: 741 lbs. (See Bentley Output)

Resultant: 231 lbs.

Project Name: EAST HAVEN 5 CT

Designed By: CL Checked By: MSC

(CONT.)

<u>Tension Design Load /Bolts =</u>

 f_t = 2052.25 lbs. < 13806 lbs. Therefore, OK!

Shear Design Load / Bolts=

 f_v = 231.30 lbs. < 8283.5 lbs. Therefore, OK!

CHECK COMBINED TENSION AND SHEAR

 f_t/F_T + f_v/F_V \leq 1.0

0.149 + 0.028 = 0.177 < 1.0 Therefore, **OK!**

Project Name: EAST HAVEN 5 CT

Designed By: CL Checked By: MSC

CHECK THREADED ROD CONNECTION CAPACITY → PROPOSED ANCHORS AT RRH MOUNT

Reference: AISC Steel Construction Manual 14th Edition (ASD)

Bolt Type = A36 5/8" Threaded Rod

Allowable Tensile Load =

 $\mathbf{F}_{\mathsf{Tall}} = 6673 \; \mathsf{lbs}.$

Allowable Shear Load =

 F_{Vall} = 4004 lbs.

CONNECTION PLATE CONFIGURATION (2-BOLTS)

 $N_{BOLT ROWS}$ = 2 rows N_{BOLTS} = 1 bolts/row S_Y = 6 in (Min.)

TENSILE FORCES

Moment in Y axis: 43 lb-ft. (See Bentley Output)

Couple Reaction from M_Y: 172 lbs.

Reaction in Z direction: 220 lbs. (See Bentley Output)

Resultant: 282 lbs.

SHEAR FORCES

Reaction in X direction: 168 lbs. (See Bentley Output)
Reaction in Y direction: 253 lbs. (See Bentley Output)

Resultant: 152 lbs.

Project Name: EAST HAVEN 5 CT

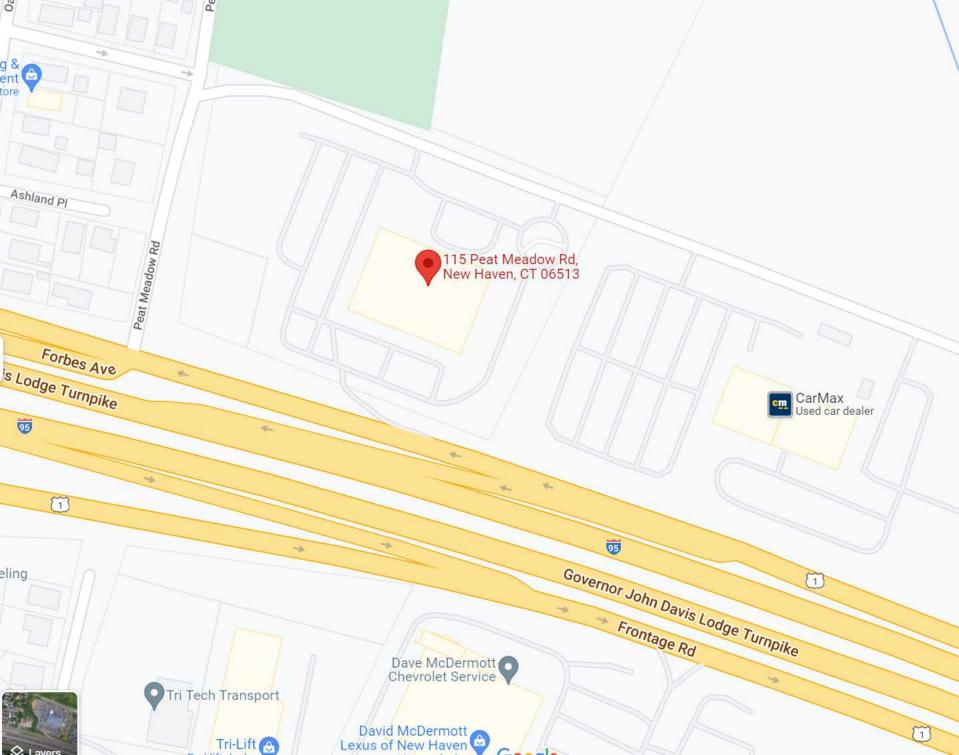
Designed By: CL Checked By: MSC

(CONT.)

<u>Tension Design Load /Bolts =</u>

 f_t = 282.00 lbs. < 6672.8 lbs. Therefore, OK!

Shear Design Load / Bolts=


 f_v = 151.85 lbs. < 4003.7 lbs. Therefore, OK!

CHECK COMBINED TENSION AND SHEAR

 f_t / F_T + f_v / F_V \leq 1.0

0.042 + 0.038 = 0.080 < 1.0 Therefore, OK!

ATTACHMENT 5

<u>Search</u> <u>Street Listing</u> <u>Sales Search</u> <u>Map</u> <u>Feedback</u> <u>Back</u> <u>Home</u>

115 PEAT MEADOW RD

Q Sales

A Print

♥ Map It

Location 115 PEAT MEADOW RD **Mblu** 072/ 0982/ 00300/ /

PID 3242 Building Count 1

Current Value

Appraisal								
Valuation Year Improvements Land Total								
2021	\$3,886,700	\$3,616,300	\$7,503,000					
Assessment								
Valuation Year	Improvements	Land	Total					
2021	\$2,720,690	\$2,531,410	\$5,252,100					

Owner of Record

Owner 115 PEAT MEADOWS LLC

Co-Owner

Address 515 WEST MAIN ST BRANFORD, CT 06405 **Book & Page** 9467/0342 **Sale Date** 09/01/2016

\$6,140,000

Instrument 00

Sale Price

Certificate

ATTACHMENT 6

EAST HAVEN 5 Certificate of Mailing — Firm

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Her	e e of Receipt.		
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving	neopost 07/26/2022 USIPOSTAGE \$003.099 ZIP 06103 041L12203937				
USPS® Tracking Number	Ad (Nama Street City	dress State, and ZIP Code™)	Postage	Fée	Special Handling	Parcel Airlift
Firm-specific Identifier	Justin Elicker, Mayor	State, and AIT Code ***)		181	100	
1.	City of New Haven			19	10	
	165 Church Street		S 1111 26	2022		
	New Haven, CT 0651		1111 20			
	Laura Brown, Executiv		1	11		
2.	City of New Haven					
	165 Church Street			USPS		
	New Haven, CT 0651	0				
	115 Peat Meadows LL					
3.	515 West Main Street		1			
	Branford, CT 06405		1			
1.						
5.						
6.						