Robinson+Cole

KENNETH C. BALDWIN

One State Street Hartford, CT 06103 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

November 6, 2024

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 54 Meadow Street, New Haven, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at 54 Meadow Street in New Haven (the "Property"). The existing facility consists of antennas and remote radio heads at various locations on the roof of the building. Radio equipment is located inside the building. The facility was originally approved by the Siting Council ("Council") in April of 1991 (Docket No. 140). Cellco proposed certain modifications to the facility in August of 2020 (Petition No. 1430). The Petition No. 1430 facility modifications were approved by the Council in December of 2020. A copy of the Council's Docket No. 140 Decision and Order and Petition No. 1430 decision and Staff Report are included in Attachment 1.

Cellco now intends to modify its facility further by installing four (4) new antennas on its existing antenna mounts. A set of project plans showing Cellco's proposed facility modifications and the specifications for Cellco's new antennas is included in Attachment 2.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to New Haven's Chief Elected Official and Land Use Officer. A copy of this letter is being sent to the owner of the Property and rooftop manager.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of the existing antennas. Cellco's new antennas and RRHs will be installed at the same height on the building.

30636861-v1

Robinson+Cole

Melanie A. Bachman, Esq. November 6, 2024 Page 2

- 2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Included in <u>Attachment 3</u> is a Far Field Calculation Table demonstrating that the proposed modified facility will comply with the FCC safety standards. The modified facility will be capable of providing Cellco's 5G wireless service.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. According to the attached Structural Analysis Report ("SA") and Mount Analysis Report ("MA"), the existing tower, tower foundation and antenna mounts, with certain modifications, can support Cellco's proposed modifications. Copies of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials, the property owner and rooftop manager is included in Attachment 6.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Kenneth C. Baldwin

Kung gmu

Enclosures Copy to:

Justin Elicker, Mayo Laura Brown, Director of City Plan Gateway Partners LLC, Property Owner MCM Holdings LLC, Rooftop Manager Ryan Hand, Verizon Wireless Brennan Byrd, Verizon Wireless

ATTACHMENT 1

DOCKET NO. 140 - An application of Metro Mobile CTS of New Haven, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of cellular telephone antennas and associated equipment in the City of New Haven, Connecticut.

Connecticut

Siting

Council ORIGINA

April 1, 1991

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council finds that the effects associated with the construction, operation, and maintenance of a cellular telecommunications facility at the proposed site in New Haven, Connecticut, including effects on the natural environment; ecological balance; public health and safety; scenic, historic, and recreational values; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the proposed New Haven site in this application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by Section 16-50k of the Connecticut General Statutes (CGS), be issued to Metro Mobile CTS of New Haven, Inc., for the construction, operation, and maintenance of a cellular telephone facility at the proposed site at the Gateway Center Building, 54 Meadow Street, New Haven, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record on this matter, and subject to the following conditions:

- The facility shall be constructed in accordance with 1. applicable sections of the State of Connecticut Basic Building Code.
- The Certificate Holder shall notify the Council if and when any equipment other than that listed in this 2. application is added to this facility.
- The omnidirectional antenna bases shall be mounted no 3. higher than 157 feet above ground level (AGL) or 167 feet above mean sea level (AMSL). The panel antennas shall not extend higher than the rooftop's parapet railing. The total height of the antennas shall not extend above 163.3 feet AGL or 173.3 feet AMSL.
- If this facility does not initially provide, or 4. permanently ceases to provide, cellular service following

Docket No. 140 Decision and Order Page 2

the completion of construction, this Decision and Order shall be void, and the antennas and all associated equipment in this application shall be dismantled and removed or reapplication for any new use shall be made to the Council and approval granted before any such new use is made.

- 5. The Certificate Holder shall comply with any applicable radio frequency (RF) standard promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facility granted in this Decision and Order shall be brought into compliance with such standards.
- 6. The Certificate Holder shall provide the Council with a report of recalculated power density if and when additional channels over the proposed 90 channels, higher wattage over the proposed 100 watts per channel, or if other circumstances in operation cause change in power density above the levels originally calculated in the application.
- 7. The Certificate Holder shall provide a final report to the Council upon completion of construction, including the final construction costs and date of commercial operation.

Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order.

Pursuant to Section 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below and notice of issuance be published in the New Haven Register.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of State Agencies.

The parties or intervenors to this proceeding are:

(Applicant)

(Its Representative)

Metro Mobile CTS of
New Haven
20 Alexander Drive
Wallingford, CT 06492
Attn: David S. Malko, Mgr.
Engineering & Regulatory
Services

Robinson & Cole
One Commercial Plaza
Hartford, CT 06103-3597
Attn: Earl W. Phillips, Jr.
(203) 275-8200

Docket No. 140 Decision and Order Page 3

(Intervenor)

SNET Cellular, Inc. 237 Church Street New Haven, CT 06506 (Its Representative)

Peter J. Tyrrell Senior Attorney SNET Cellular, Inc. 227 Church Street Room 1021 New Haven, CT 06506

5200E

Ср

CERTIFICATION

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case in Docket No. 140 or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut the 1st day of April, 1991.

<u>Council Members</u>	<u>Vote Cast</u>
Gloria Dibble Pond Chairperson	Yes
Commissioner Peter Boucher Designee: Mark Marcus	Yes
Commissioner Timothy R.E. Keeney Designee: Brian Emerick	Yes
Harry E. Covey	Yes
Mortimer A. Gelston	Yes
Daniel P. Lynch, Jr.	Yes
Paulann H. Sheets	Yes
William H. Smith	Yes
Colin C. Tait	Yes

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Web Site: www.ct.gov/csc

VIA ELECTRONIC MAIL

December 4, 2020

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **PETITION NO. 1430** - Cellco Partnership d/b/a Verizon Wireless petition for a declaratory ruling, pursuant to Connecticut General Statutes §4-176 and §16-50k, for proposed modifications to an existing rooftop telecommunications facility located at 54 Meadow Street, New Haven, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on December 3, 2020 the Connecticut Siting Council (Council) considered and ruled that the above-referenced proposal would not have a substantial adverse environmental effect, and pursuant to Connecticut General Statutes § 16-50k, would not require a Certificate of Environmental Compatibility and Public Need with the following conditions:

- 1. Approval of any project changes be delegated to Council staff;
- 2. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed within three years from the date of the mailing of the Council's decision, this decision shall be void, and the facility owner/operator shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The facility owner/operator shall provide written notice to the Executive Director of any schedule changes as soon as is practicable;
- 3. Any request for extension of the time period to fully construct the facility shall be filed with the Council not later than 60 days prior to the expiration date of this decision and shall be served on all parties and intervenors, if applicable, and the City of New Haven
- 4. Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- 5. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
- 6. The facility owner/operator shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v;

- 7. If the facility ceases to provide wireless services for a period of one year the Petitioner shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Petitioner may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period; and
- 8. This Declaratory Ruling may be transferred or partially transferred, provided both the facility owner/operator/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. The Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the facility within 30 days of the sale and/or transfer. Both the facility owner/operator/transferor and the transferee shall provide the Council with a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the petition dated August 26, 2020, and additional information received October 26, 2020.

Enclosed for your information is a copy of the staff report on this project.

Sincerely,

s/Melanie A. Bachman

Melanie A. Bachman Executive Director

MAB/CMW/emr

Enclosure: Staff Report dated December 3, 2020

c: The Honorable Justin Elicker, Mayor, City of New Haven (jelicker@newhavenct.gov)
Scott Jackson, Acting Chief Administrative Officer, City of New Haven (jelicker@newhavenct.gov)
Aïcha Woods, A.I.A., Executive Director, City Plan Department, City of New Haven (jelicker@newhavenct.gov)
(awoods@newhavenct.gov)

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL

Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov Web Site: portal.ct.gov/csc

Petition No. 1430 Cellco Partnership d/b/a Verizon Wireless 54 Meadow Street, New Haven

> Staff Report December 3, 2020

Introduction

On August 26, 2020, the Connecticut Siting Council (Council) received a petition from Cellco Partnership d/b/a Verizon Wireless (Cellco) for a declaratory ruling pursuant to Connecticut General Statutes §4-176 and §16-50k, for the proposed modifications to its existing wireless telecommunications facility on the roof of a building located at 54 Meadow Street, New Haven, Connecticut.

On August 26, 2020, Cellco provided notice of the project to abutting property owners and City of New Haven (City) officials.

On August 27, 2020, the Council sent correspondence to the City stating that the Council has received the petition and invited the municipality to contact the Council with any questions or comments by September 25, 2020. No comments have been received.

The Council issued interrogatories to Cellco on October 22, 2020. Cellco provided responses to the Council's interrogatories on October 26, 2020.

Existing Facility

On April 1, 1991, the Council approved the existing facility in Docket No. 140. Cellco currently maintains 12 antennas located on the façade of the rooftop penthouse of the building owned by Gateway Partners LLC located within a BE Wholesale and Distribution zone. MCM Holdings LLC manages the facility for the property owner.

Cellco's existing equipment is located in an equipment room inside the building.

The host building is an office building. Surrounding land use includes New Haven Police Department Headquarters to the east, the New Haven Train Station and a parking garage to the south, a commercial building owned by the Knights of Columbus to the north and vacant land along South Orange Street to the west.

Proposed Facility

Cellco proposes to remove nine existing antennas (leaving three antennas) and install 12 new antennas and 10 remote radio heads at various locations on the roof of the building. Three of the existing antennas would remain on the façade of the rooftop penthouse. Four new antennas would be attached to the penthouse façade. Two existing antennas and four new antennas would be attached to the existing mechanical screen wall in the northwest corner of the building rooftop. One existing antenna and one new antenna would be attached to the building façade on the southeast corner of the building.

Cellco would provide wireless services in the 850 MHz, 1900 MHz, 2100 MHz and 28 GHz frequency ranges. The facility would provide 5G services in the 850 MHz, 2100 MHz and 28 GHz frequency bands.

Emergency backup power is supplied by the facility's existing battery backup power system and is connected to the building's backup generator. No change to backup power is proposed. Commercial Mobile Radio Service (CMRS) providers are licensed by and are under the jurisdiction and authority of the Federal Communications Commission (FCC). At present, no standards for backup power for CMRS providers have been promulgated by the FCC. Every year since 2006, AT&T, T-Mobile and Verizon have certified their compliance with the CTIA Business Continuity/Disaster Recovery Program and the Communications Security, Reliability and Interoperability Council standards and best practices to ensure network reliability during power outages.

The proposed installation may be visible from surrounding properties; however, the building currently has multiple antennas and equipment installed on the penthouse façade, therefore, the proposed modifications would not increase visibility of the facility.

The installation would not be a hazard to air navigation and no notice to the Federal Aviation Administration is required.

A Professional Engineer duly licensed in the State of Connecticut has certified that the existing building and antenna mounting systems are adequate to support the proposed loading.

The highest calculated power density level for Cellco's proposed antennas would be 4.05 percent of the applicable exposure limit established by the FCC at ground level with a -10 dB off-beam adjustment.

Cellco contends that this proposed project would not have a substantial adverse environmental impact.

If approved, staff recommends the following condition:

1. Approval of any project changes be delegated to Council staff.

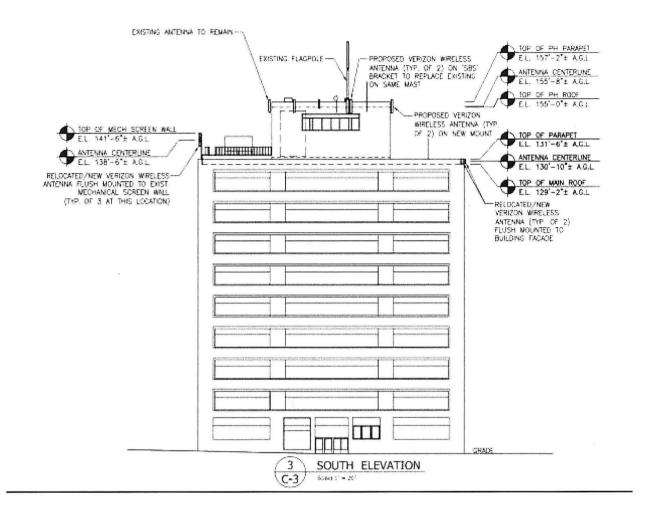


Figure 1. Facility elevation drawing.

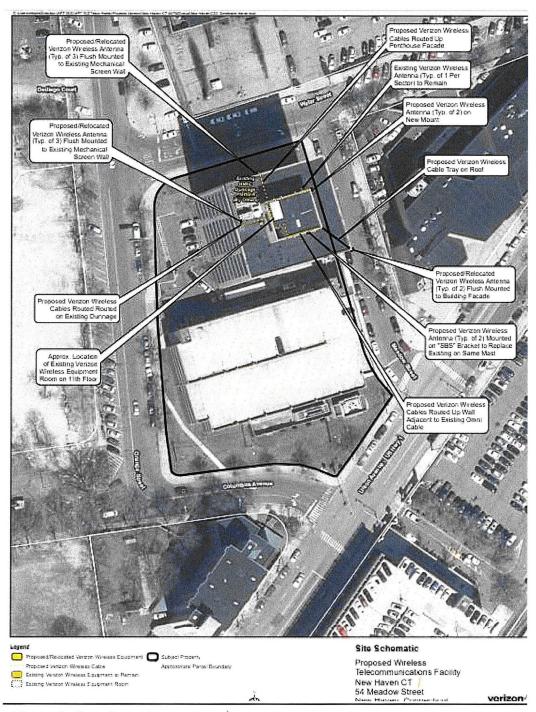


Figure 2. Site schematic

Figure 3. Existing facility.

Figure 4. Proposed facility.

ATTACHMENT 2

TANGLEWOOD

LOCATION NUMBER: 468764

ADDRESS: 54 MEADOW STREET

Trylon Trylon

825 W. WALNUT HILL LANE, SUITE 120 IRVING, TEXAS 75038

verizon

4 CENTEROCK ROAD WEST NYACK, NY 10994

FUZE PROJECT ID: 17290616

NEW HAVEN, CT 06519

11, 1990-00 DOING DESCRIPTOR OF COUNTY OF CONTROL OF COUNTY OF COU

0

PROJECT	PROJECT INFORMATION		DRAWING INDEX
PROJECT DESCRIPTION:	SUB6 - CARRIER ADD	SHEET #	SHEET DESCRIPTION
SITE NAME:	TANGLEWOOD	1-1	TITLE SHEET
CONTION #:	468764	GN-1	GENERAL NOTES
		GN-2	GENERAL NOTES
SITE ADDRESS:	S4 MEADOW STREET NEW HAVEN CT 06519	A-1	PLAN
		A-2 & A-2.1	ELEVATION
LATITUDE:	41.299819°	A-3	EQUIPMENT PLANS
LONGITUDE:	-72.926491°	A-4	ANTENNA PLANS
		A-4.1	ANTENNA PLANS
PARCEL #:	238/0106/00101-00106	A-5	ANTENNA & CABLE SCHEDULE
ZONING:	TBD	D-1	EQUIPMENT AND ANTENNA SPECIFICATIONS
NOISOICH .	ALMINO REPORTED	E-1	ELECTRICAL NOTES
- Course of the	NEW DAVEN COOK!	E-2	ELECTRICAL GROUNDING NOTES AND DETAILS
POWER COMPANY:	TBO	E-3	PLUMBING DIAGRAM
TELCO COMPANY:	VERIZON		
OCCUPANCY CLASS:	RES		
CONSTRUCTION CLASS:	TYPE II-8		
GROUND ELEVATION:	±2,		
STRUCTURE TYPE:	ROOFTOP		
STRUCTURE HEIGHT:	¥155,	<u>а</u>	PROJECT DESCRIPTI(
NUMBER OF STORIES:	6	MODIFICATION ANTENNAS ON	MODIFICATION OF EXISTING VERIZON WIRELESS TELECOMMUNI ANTENNAS ON THE ROOF. ALL WORK IS IN COMPLIANCE WITH T
		CHANGE IN US	CHANGE IN USE, EGRESS OR OCCUPANCY.
		EXISTING ANT	EXISTING ANTENNAS TO BE REMOVED = 0

PPN #5/98. NO

OWNER INFORMATION

PROPERTY OWNER:
GATEWAY PARTNERS LLC
30 LEWIS ST.
HARTFORD,CT 06103
780

APPLICABLE CODES

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTILLED IN ACCORDANCE WIT THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL COVERNING ANTHORITIES NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERRIT TWORK ADT CORPOSAINGS TO THESE CODES. 0021 IBC PORTION OF THE 2022 CT STATE BUILDING CODE (IBC 2021 W/WEINDKENTS)

TO CONNECTION THE CODE (IPC 2021 W, AVEIDNMENTS)
2021 IPC PORTION OF THE 2020 C STAFFE BULLIONG CODE (IPC 2021 W)
AREADORISTO)
AND CONTROL ON THE 2022 CT STAFFE BULLIONG CODE (IPC 2021 W)
AREADORISTO CON OF THE 2022 CT STAFFE BULLIONG CODE (IPC 2021 W)
AREADORISTO CONTROL OF THE 2022 CT STAFFE BULLIONG CODE (IPC 2021 W)
2021 CHECC DONING OF THE 2022 CT STAFFE BULLIONG CODE (IPCC 2021 W) C PORTION OF THE 2022 CT STATE BUILDING CODE (IRC 2021 MRNTS)

NEW YORK SYSA LIMITED PARTNERSHIP OI/93 VERTAZOW WIRELESS 4 CENTROCK ROAD WEST NACK, NY 10994 KEROLOS BASTAWROS KEROLOS BASTAWROS EVERTZON.COM

PROJECT CONTACTS

MP COMMUNICATIONS, LLC COUGLAS NURSE COUGLASNURSE@AMPCOMMUNICATIONS TRYLON 1825 W. WALNUT HILL LANE, SUITE 120 RVING, TEXAS 75038 1-855-669-5421

SITE ACQUISITION FIRM: CONTACT: EMAIL:

CONTRUCTION MANAGER EMAIL: ENGINEERING FIRM:

	Oak Street Connector	olice
8	Sireer Connector Supply Department	S Orange Street T. Wolfe Apartments
	Luxury Furnished (E) Tower Lane Tower L	St. Basil's Greek Church St. s Church St. s Church St. s Church St. s

PROJECT TITLE	LOCATION #: 468764	TANGLEWOOD	54 MEADOW STREET NEW HAVEN, CT 06519	EXISTING ROOFTOP	SHEET DESCRIPTION	TITLE SHEET

SHEET NO.

<u>|</u>

- 1. THIS SET OF PLANS HAS BEEN PREPARED FOR THE PURPOSES OF MANICIPAL, AND AGENCY REVIEW AND

 MARCHAEL THIS SET OF PLANS ARE INTERDED TO BE USED TO DESTRUCT THE PLANS ARE INTERDED TO BE USED TO DESTRUCT THE PLANS ARE INTERDED TO BE USED TO DESTRUCT THE PLANS ARE INTERDED TO SIGN THE PLANS ARE INTERDED. THE DIGNERAL SIGN THE PLANS ARE INTERDED TO SIGN THE SIGN THE PLANS ARE INTERDED TO SIGN THE SI

SITE WORK GENERAL NOTE:

- THE CONTRICTOR STATE LALL LUTIONS PRING TO THE START OF CONSTRUCTION.
 ALL DESIGNACTOR, SEARCH WAITE, CAS, ELECTRE, AND DIRER ULUTIES WHERE ENCOUNTERED IN THE WORKS SHALL BE FRONCED AT ALL INES, ON WHERE ENGINEED FOR HE HERBER ESCENDEN OF THE WORKS SHALL BECAMING ON PRING MAY SHALL BE FRONCED AS DIRECTED BY ENRINGES. STRENG CANTINN SOUTH BY THE WAITE CONTRACTOR WHIS HER ENCOUNTED STRENG SHALL PROVIDE SHETTY TRAINING FOR THE PROVIDE SHETTY TRAINING FOR THE PROPERTY TRAINING TO THE CASH.

 IN FRONCED SHALL BE A COMMON USED BY THE WINNEY AND HER PROVIDE SHETTY TRAINING FOR THE CASH OF THE WAS ON THE WEST OF THE WAS ON THE WAS ONLY TO SHELLED BY THE WAS ONLY TO SHELLED BY THE WAS ONLY TO SHELLED SHE WAS ONLY TO SHELLED SHELLED, S

2014 NYC BUILDING CODE - SECTION BC 3108 - RADIO, TELEVISION, AND TELECOMMUNICATIONS TOWERS AND ANTENNAS:

10th Country of the Provisions of Country 1s And The Ricourschaffs of Chapter 1s consensus. The Provision of Country 1st Count

SPECIFICS FOR SIKA TOP 123 PLUS NON SHRINK GENERAL PURPOSE GROUT:

1. ALL OURS-GRINGA GENERAL-PURPOSE GROUT SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S THE COMMENDATION OF THE MANUFACTURER'S THE SECRETARY GENERAL BE SHALLED SHALL BE SHALLED SHALL BE SHALLED SHALL

INSTILLED AFTER THE GROUT MAS CURED FOR 48 HOURS.

8. SHOULD THE CONTRACTOR WISH TO PROPOSE AN ALTERNATIC GROUT AND METHOD OF WORKING DUTSIDE THEER PRANKERS. THIS WASTER FRESENTED TO THE DRINKER IN WITHING WITH A POLIL METHOD STATEBURY, METHOD, LAND INSTILLATION FOR HEAFTER PROPONL.

9. FALLORE TO COMETY WITH THIS SPECIFICATION COLUD. SERBOUSLY AFTER THE STRAILTY OF THE INSTILLATION.

GENERAL NOTES FOR POST-INSTALLED ANCHORS (HILTI OR APPROVED EQUAL):

1. INSTALLER DANNING.

REPORTED THROUGH THE ACT/CESI AMERICA MACHOR NISTALER CERTIFICATION PRODEMA TO REDIVALENT TRANSITIE CERTIFICATION PRODEMA.

RE CHOMALDIT. THE CREEKLA CONTROLOR SHALL REMOVED THE USANIETO PRODEMATION DE LOUGHSTALLED ANCHOR PRODUCTS SPECIFICA AND SHALL PROMORE THE ENBANCER OF RECORD DOCUMENTION DEDUCATION OF THE COMMENCEMENT OF INSTALLING AMERICAS.

2. NISTALLERS SHALL BE TRANKED ON THE COMPLETE NISTALATION PROCESS FOR DRILLED-IN ANCHORS, INCLUDING THE DEPLAY OF THE NISTAL AND HERE OF THE NISTALATION & CHEMBER THE NISTALATION E. PRODUCT LOADING FEBROARIDS AND INSTALATION.

E. PROOF LOADING/FINISTE TESTS/TORQUING

GERERAL ROCKILLER IS CONTRACTOR/PASTALLER TO FOLLOW MICHOR MANUFACTURES SPECIFICATIONS AND INSTRUCTIONS FOR LISE, INCLUDING BUT NOT LIMITED TO THE FOLLOWING GENERAL PROCEDURES:

HOLE DRILLNG PROCEDURE.
 A DRILL HOLE WITH ROTHER HANCE BRILLS USING CARBOE—THRED BITS, HOLLOW DRILL BITS STEEL, AND, FOR DRILL SHAND CORE BITS, DRILL BITS SHALL BE OF DAMERERS AS SPECIFIED FOR THE ADMINISTS, ALL HOLES SPECIFIEDS. SURVIN SHALL BE DRILLED REPRODUCLARY TO THE CONVERTE OF MASSARY SURFACE.

2. YOUR PREPARATION & CALCHANIC
A. HYGERS, MAST BE FREE OF CRESSE, DUST, WATER, PEE, OIL, GREGE, AND OTHER CONTAMINANTS PROP TO
ADHESTER, MAST BE RELEGY FOLLOWING JAMAN-CATHERS SPECTRED METHODS:
ADD STEEL WINE RRUSH; POLLOWING JAMAN-CATHERS SPECTRED METHODS:
ADD STEEL WINE RRUSH FOLLOWING JAMAN-CATHERS SPECTRED METHODS:
ADD STEEL WINE RRUSH FOLLOWING JAMAN-CATHERS SPECTRED METHODS:
ADD STEEL WINE RRUSH FOLLOWING JAMAN CATHER SPECTRED METHODS:
FOR RESISTING CONTINUE AND CATHER SPECTRED METHODS:
FOR RESISTING CONTINUE AND CATHER SPECTRED.

A. CLEAN AMERICA WATER AND AMERICAN AMERICAN AMERICAN AND PRILLING TO REMOVE LOOSE WITERAL AND PRILLING TO STATE ALL HOUSE PRECENCE WATER ALL HOUSE PRE WANTEACTHER PRECONDERS PROCEEDED FROM HE PROPE TO RESEARCH RESEARCH RESEARCH RESEARCH PROBLEM ROBER PROPER WAND OF THE POLICE AND PROPERSION TOWNED THE SURFACE IN SUCH A MANRE AS TO AND INTRODUCTION OF THE PROPERTY OF THE SURFACE RADIO FROM THE SURFACE TO INSTALLATION FURTHER PURSACE FOR CANTERION AND THE SURFACE RADIO FROM THE SURFACE TO INSTALLATION FROM THE SURFACE TO INSTALLATION THE PURSACE FOR CANTER FROM THE SURFACE TO INSTALLATION THE SURFACE FOR CANTER FROM THE SURFACE TO INSTALLATION THE PURSACE FOR CANTER FROM THE SURFACE TO INSTALLATION THE SURFACE FOR CANTER FROM THE SURFACE TO INSTALLATION THE SURFACE FOR CANTER FROM THE SURFACE TO INSTALLATION THE SURFACE FOR CANTER FROM THE SURFACE TO INSTALLATION THE SURFACE FOR CANTER FROM THE SURFACE FOR CANTER FROM THE SURFACE FOR CANTER FOR THE SURFACE FOR CANTER FROM THE SURFACE FOR CANTER FOR THE SURFACE FOR THE SURFACE FOR CANTER FOR THE SURFACE FOR THE SURF

POST-INSTALLED ANCHOR SPECIAL INSPECTION:

THE GREAGA CONTRACTOR SHALL WITH THE REQUESTED OF RECEDENT WHEN POEST-LISTALED ANGENGE WIRTH THE RECEDENT OF THE REPORT OF THE RECEDENT OF THE REPORT OF THE RECEDENT OF THE REPORT OF T

CONSTRUCTION SPECIFICATIONS:

DIVISION 1 - GENERAL REQUIREMENTS SECTION 01010 SUMMARY OF WORK:

1. THE COMPACIDE SALL VORT THE STITE OF THE PROPRIED WORK AND THIS ACHIGAN. PHRAERINES WITH THE STATE CHARLES AND DIRESTORS ARE INDICATED ON THE DAWNINGS AS ACCURRENTLY. REPOSSELE THA ALLOOD. ALL AREAS AND DIRESTORS ARE INDICATED ON THE DAWNINGS AS ACCURRENTLY. REPOSSELE THE ALLOOD CONDITIONS AND ALLOOD ON THE DAWNINGS AS ACCURRENTLY. REPOSSELED ON THE PALLOD ON THE STITE AND ALLOOD ALLOOD ON THE STITE AND ALLOOD ALLOOD ALLOOD ON THE STITE AND ALLOOD ALLOO

4 CENTEROCK ROAD WEST NYACK, NY 10994

10. CME SHALL MORNES.

11. CARE SHALL MORNES OF THIS PROFICE DEFOR TENDER SHALL BE WING TO MANNAN A CLEAN DEPARTON.

12. CARE SHALL MORNES OF THIS PROFICE DEFOR TENDER SHALL BE WORKING AT CLEAN DEPARTON.

13. SHALL MORNES AND SHALL SHALL SHALL SHALL SHALL BE CORRIGHED SHALL BE CORRIGHED SHALL BE CORRIGHED SHALL BE CORRIGHED SHALL SHAL

THE CONTRACTOR SWALL BE RESPONSIBLE FOR ALL PROCEDURES AND SCHEDULNG, ASSOCIATED WITH HOSTING, STAGNIG, AND RESPONSIBLE AND EDUDANING TO AND/THO WITH STITE. ALL ELEGANIS OF THE EXCENSING STILE, STRICTURES, STITE PARATINGS, ETC. SWALL BE PROTECTED AS PROTECTED AS A PROTECTED AS THE PROPERTY OF THE PROPERTY.

SECTION 01740 - WARRANTIES AND BONDS:

SECTION 01613 - DELIVERY, STORAGE AND HANDLING:

825 W. WALNUT HILL LANE, SUITE 120 IRVING, TEXAS 75038

ILL DRAWNS CONTANED HEREN ARE FORMANTED FOR IT 11 21. CONTRACTORS SHALL MENTS ALL PARKS AND EDSTINO DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMENTER WOTH THE EXCHARGE N WITH THE WORK OR BE RESPONSIBLE FOR SAME.

1. THE CONTRECTOR SHALL GURANITES ALL LEGRA AND MITHERASK SEED IN THIS PROJECT FOR A UNIQUIA PEROD OF PORE (1), YARE COMMENCION FROM THE DATE OF FINAL ACCEPTANCE THE CLIENT. THE CONTRACTOR IS A PINAL DATE OF ACCEPTANCE IN THE CHARLE WITHOUT SHALL SHALL BECOMES STATE AND FEDERAL APPROVAL HAVE BEEN DATE OF ACCEPTANCE IN FIGURE TO SHALL DATE OF ACCEPTANCE IN FIGURE OF THE CHARLE STATE AND FEDERAL APPROVAL HAVE BEEN REMEMBERIZED FOR CHARLES TO SHALL BEEN CONTRACTOR OF THE CHARLES OF THE CONTRACTOR AT THE CONTRACTOR SHALL BEEN CHARLES OF THE CONTRACTOR SHALL BE CORRECTED BY THE CONTRACTOR AT THE CONTRACTOR SHEARS.

SUBMITTALS

B REV DATE DESCRIPTION BOX CD 09/26/24

PROJECT TITLE

LOCATION #: 468764

TANGLEWOOD

54 MEADOW STREET NEW HAVEN, CT 06519

EXISTING ROOFTOP

SHEET DESCRIPTION

GENERAL NOTES

SHEET NO. GN-1

DIVISION 4 - MASONRY SECTION 04520 - MASONRY RESTORATION - TUCK POINTING

IN SECTION SECTIONS REQUIREMENTS FOR THE CLEANING RESTORATION OF MORTAR, JOHTS, REPLACEMENT OF MASONAY, AND MASONAY RAND. ALL WORK SHALL BE COMPLETED IN ACCORDANCE WITH THESE ACTIVITIES IN ACCORDANCE WITH THESE ACTIVITIES IN A MASON MINIMAL STATEMENT OF A MASON MINIMAL STATEME

SPECIPIONISMS AND MACRONARY REPAIRS ALL WORK SHALL BE COMPLETED IN ACCORDANCE WITH THESE SPECIPACIONISM IN AUDITION 10.

** AND COST STANDARD SPECIPACION FOR MACROSE COURT.**

** AND COST STANDARD SPECIPACION REPRESENTED AND COMPANY.**

** AND COST STANDARD SPECIPACION REPRESENTED AND SPECIPACION REPRESENTED AND SPECIPACION REPRESENTED AND SPECIPACION REPRESENTED AND SPECIPACION REPRESENTED AND

PLOSE MASSINGS TO LINEAR NOR LETELS ARROWS AND ACCORDANCE AND FOREIGNING, JOINT SOURCE AND ACCORDING AND ACCORDING

13.

13. TOLERAGINE TO A COUNTY OF A COUNTY OF

CONSTRUCTION, OR AS TOWN DUE FROMED THE LOSTON FROM CONTROL CONTROL OF THE CONTROL OF SATURATION OF AS TOWN DUE FROMED THE LOSTON FROM CONTROL OF THE CONTROL OF SATURATION OF AS TOWN DUE FROMED THE LOSTON FROM CONTROL OF THE CONTRO

1. CODES AND SPECIFICATIONS.

A. THE CARBIOCANCY PERCENTION SHALL CONFORM TO THE PROJUBELENTS OF THE FOLLOWING CODES AND THE PROJECT AND SHALL CONFORM TO THE PROJECT AND THE TABLE TO THE STREAM THE TABLE TO THE STREAM THE TABLE TABLE THE TABLE TABLE THE TABLE THE TABLE THE TABLE THE TABLE THE TABLE THE TABLE TABLE THE TABLE TABLE THE TABLE TA

INSPECTIONS.

ALL SRIPCTURAL STEEL ANTENN FRANCE, AND CONNECTIONS SHALL BE INSPECTED PRIOR TO NETALLY STATEM OF STEEL TRAYS. SUPPORTS, CHANNELS, AND CLAMPS SHALL BE INSPECTED PRIOR TO NETALLY AND CHANNEL OF TRAYS. SUPPORTS, CHANNELS, AND CLAMPS SHALL BE INSPECTED PRIOR TO CORRONAVE ALL BESTEEDINS WITH THE CLERY'S CONSTRUCTION WANGER.

OGNIWACES.

OR WATERLA SPECIFICATIONS, SEE CENERAL HOTTS, SHALL FE MARE USING SPECIFIED WELDS WITH WELDING TELEMENT SPECIFIED WELDS WITH WELDING TELEMENT SPECIFIED WELDS WITH WELDING TELEMENT SPECIFIED WITH SPECIFICATION FOR A STATE SPECIFICATION FOR A

)	E 20 Z 2
	1. DRAWINGS CONTINED HEREN ARE FORMANTED FOR THE ATT AT THE ATT ATT ATT ATT ATT ATT ATT ATT ATT AT
	A POST
	SERE EN
	A FIRST PROPERTY.
	C C C C C C C C C C C C C C C C C C C
	S S S S S S S S S S S S S S S S S S S
	SECONS SECONS
	SEE 3
	S S S S S S
	STATE OF THE STATE
- 1	1-2F33

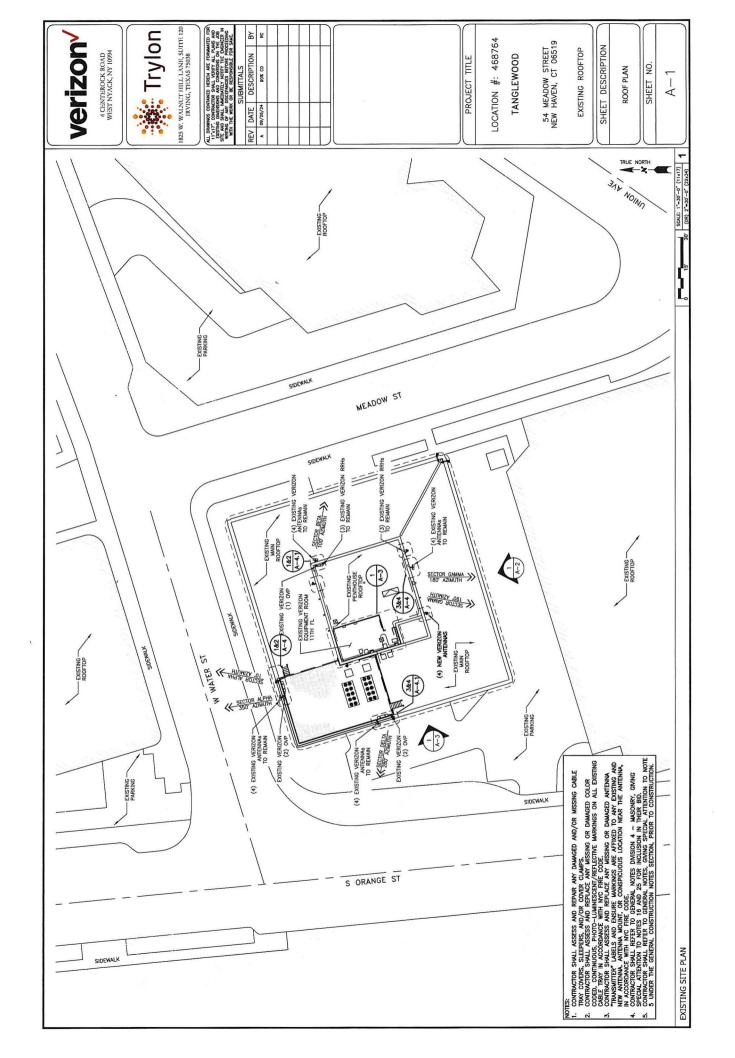
	U	SUBMITTALS	
3EV	DATE	DESCRIPTION	ВУ
4	09/26/24	90% CD	RC

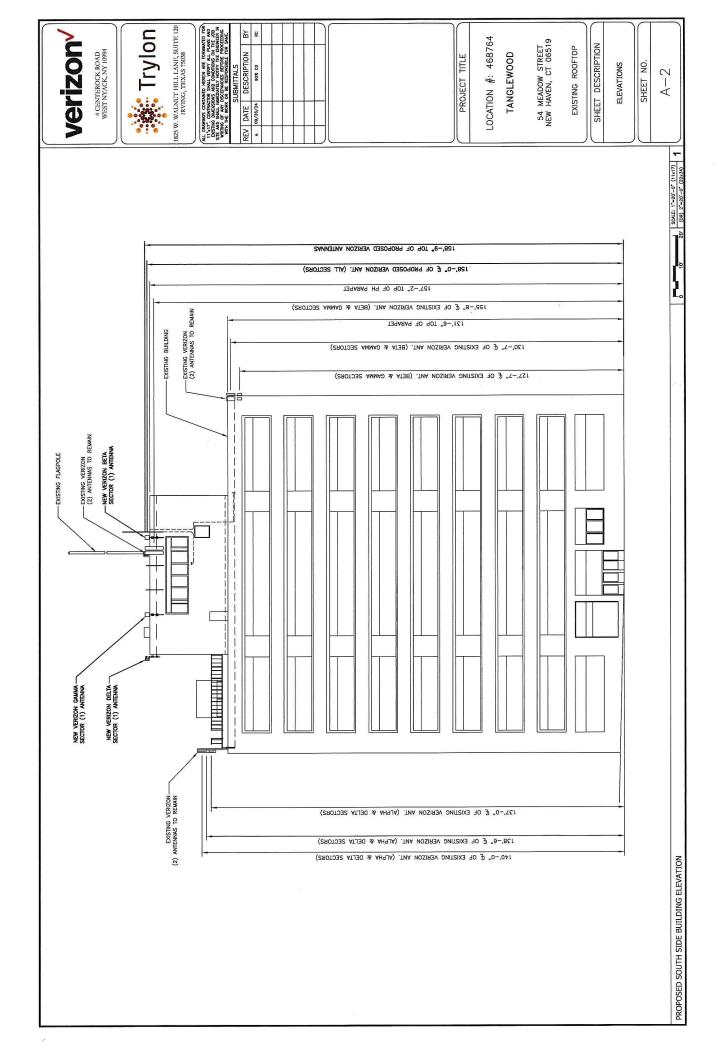
ā	RC				
DESCRIPTION	02 X06				
DAIE	09/26/24				
KEV	<				

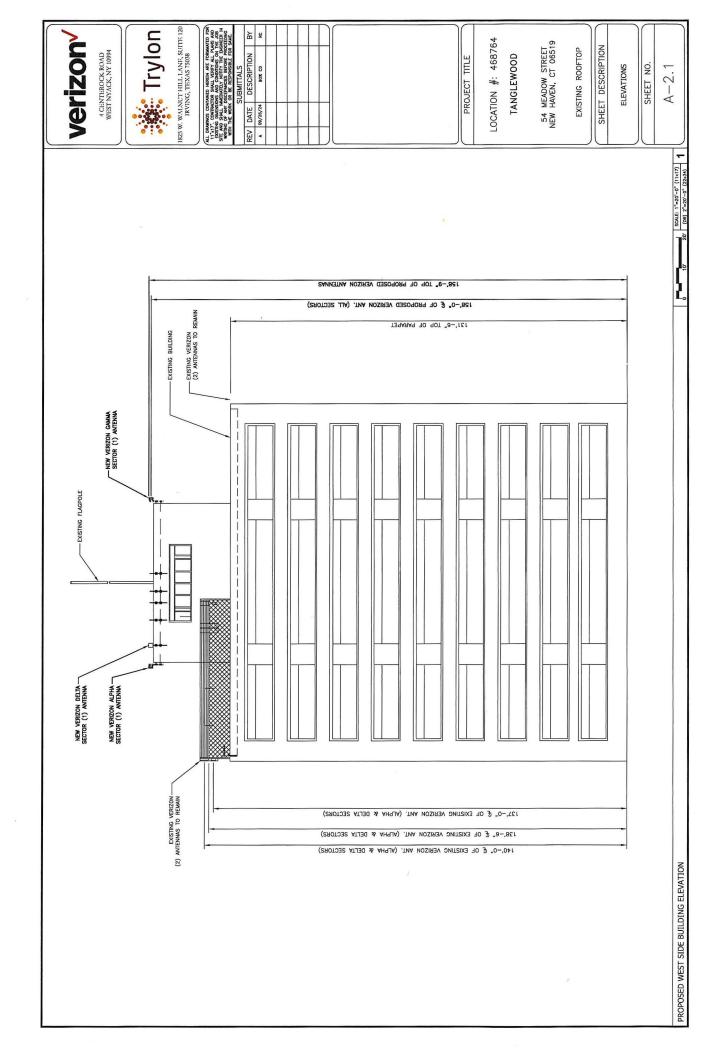
PROJECT TITLE

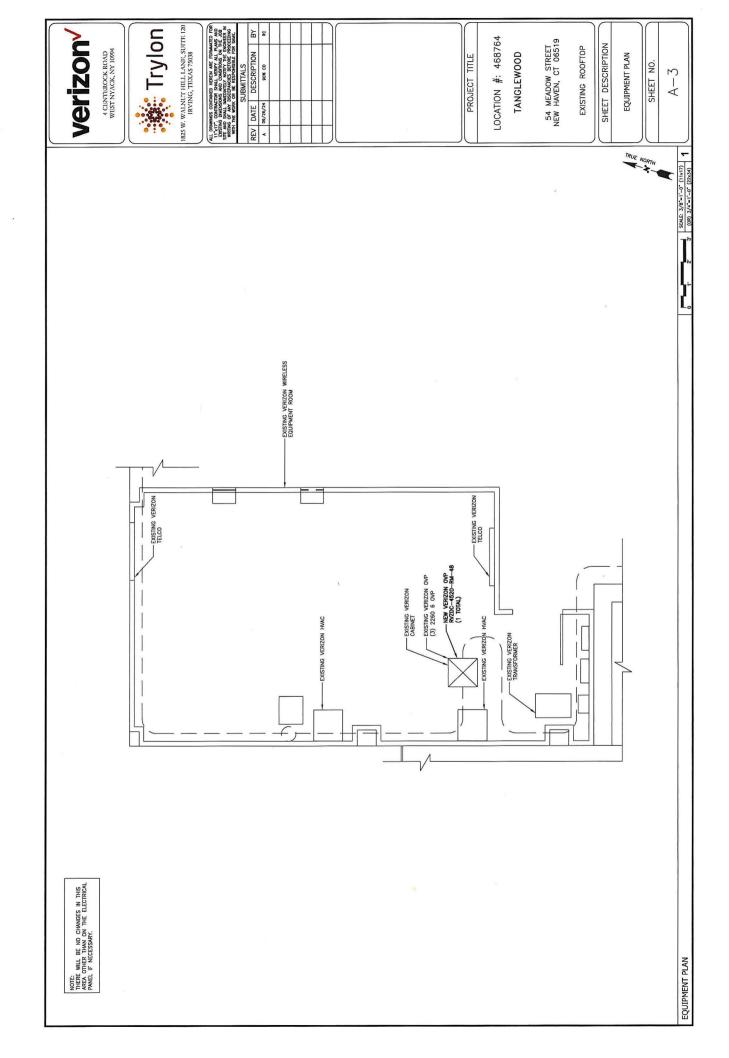
LOCATION #: 468764

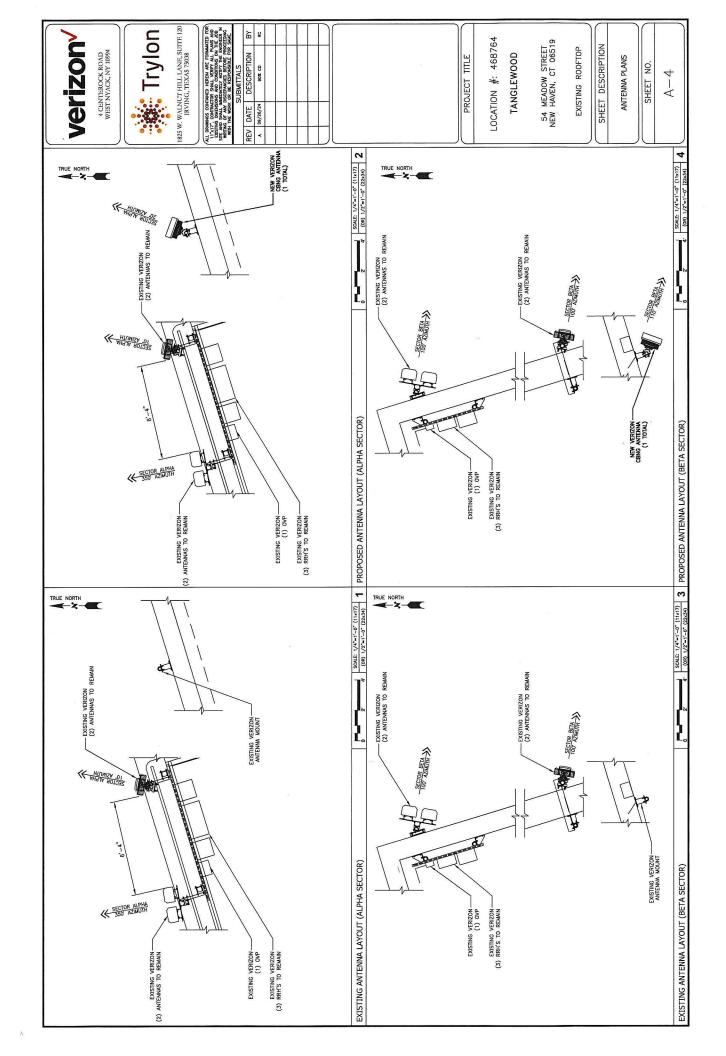
TANGLEWOOD

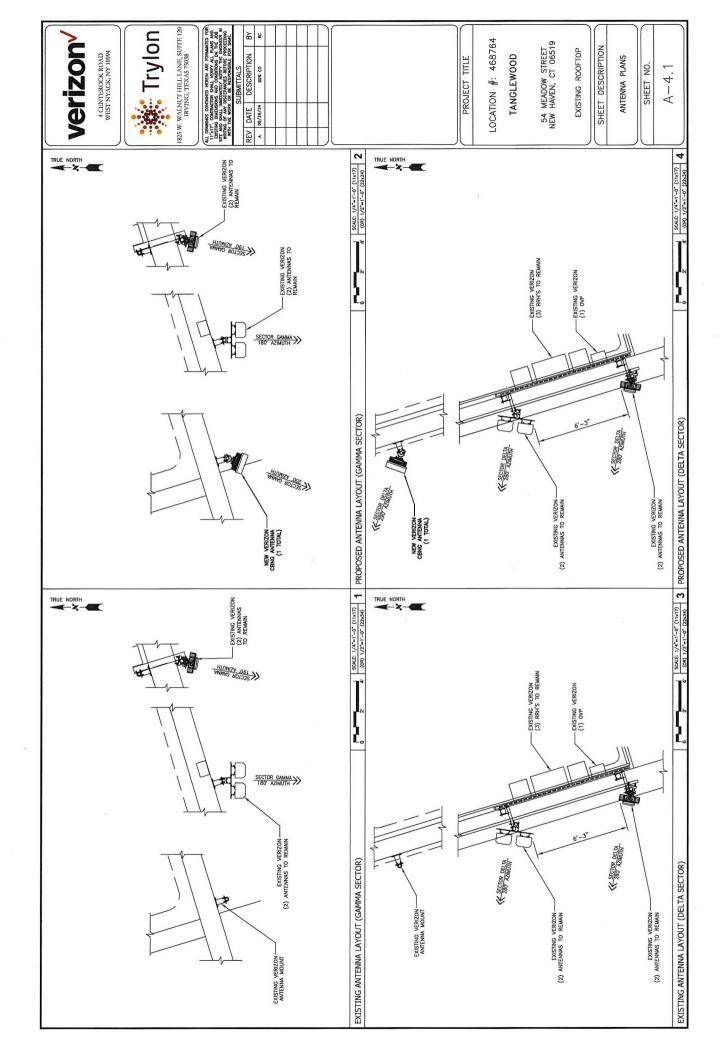

54 MEADOW STREET NEW HAVEN, CT 06519


EXISTING ROOFTOP


SHEET DESCRIPTION


GENERAL NOTES


SHEET NO. GN-2



_	
	NAME OF TAXABLE PARTY.
	N
-	
_	
	1000
	AN
	w

4 CENTEROCK ROAD WEST NYACK, NY 10994

(1) B2/B66A RRH-BR049 (RFV01U-D1A)

DT MECH (DEGREES)

0 0

14,14,14,5,4,0 14,14,14,5,4,0

320 320

> 7.5 5.5 6.4 9.0 7.5 7.5 5.5

12.2 16.1 16.1

70.9

(DEGREES)

AZIMUTH (DEGREES)

QUANTITY

LENGTH (IN) WIDTH (IN) DEPTH (IN)

ANTENN/

12.2

MX10FIT665-02 MX10FIT665-02

EXISTING EXISTING EXISTING EXISTING EXISTING EXISTING EXISTING

LTE 700/5G850/1900/AWS/CBRS LTE 700/5G850/1900/AWS/CBRS

ALPHA

SECTOR

TOWER EQUIPMENT

(1) B5/B13 RRH-BR04C (RFV01U-D2A)

(1) CBRS RRH - RT4401-48A

INTEGRATED RRU

0 0 0 0

15

2 2 2

11.0 12.2 12.2 16.1

35.1 16.8 16.7

39GHz VECTASTAR NRBNB

PROPOSED

LTE 700/850/5G850/1900/AWS/CBRS LTE 700/850/5G850/1900/AWS/CBRS

5G L-SUB6 5G 28GHz 5G 39GHz

ALPHA

ALPHA ALPHA ALPHA BETA BETA

VZ-AT1K04

MX10FIT665-02

MX10FIT665-02

70.9

35.1

MT6407-77A

70.9

0

14,14,14,5,4,0 14,14,14,5,4,0

100 100 100

Trylon

825 W. WALNUT HILL LANE, SUITE 120 IRVING, TEXAS 75038

ALL DRAWNGS CONTANED HERBIN ARE FORMANTED FOR 11°17'. CONTRACTORS SHALL PERSA ALL PLASS AND EXCEPTION SOLVEN THE LOSS SITE AND SECEPANCIES BEFORE FOR WARTHOO OF ANY DESCEPANCIES BEFORE FOR SECEPANCIES BEFORE FOR SAME.

(1) B2/B66A RRH-BR049 (RFV01U-D1A) (1) B5/B13 RRH-BR04C (RFV01U-D2A)

(1) CBRS RRH - RT4401-48A

INTEGRATED RRU

9

ч

1100

6.4

11.0

16.8

VZ-AT1K04 39GHz VECTASTAR NRgNB

EXISTING

5G 28GHz 5G 39GHz

5G L-SUB6

BETA BETA

90% CD 09/26/24

REV DATE DESCRIPTION

(1) B2/B66A RRH-BR049 (RFV01U-D1A) (1) B5/B13 RRH-BR04C (RFV01U-D2A) (1) CBRS RRH - RT4401-48A

> 0 0

14,14,14,5,4,0

180

14,14,14,5,4,0

180 190 200

7.5

12.2

5.5 6.4 9.0 7.5

16.1

11.0

35.1 16.8 16.7

39GHz VECTASTAR NRgNB

VZ-AT1K04

MX10FIT665-02 MX10FIT665-02

LTE 700/850/5G850/1900/AWS/CBRS LTE 700/850/5G850/1900/AWS/CBRS

DELTA

5G 28GHz 5G 39GHz **2G L-SUB6**

5G L-SUB6 5G 28GHz 5G 39GHz

DELTA DELTA DELTA DELTA

12.2

70.9

7.5

12.2

70.9

MX10FIT665-02

EXISTING EXISTING EXISTING EXISTING PROPOSED EXISTING EXISTING EXISTING

LTE 700/850/5G850/1900/AWS/CBRS GAMMA | LTE 700/850/5G850/1900/AWS/CBRS

GAMMA

GAMMA GAMMA

MX10FIT665-02

MT6407-77A

(1) B2/B66A RRH-BR049 (RFV01U-D1A)

0 0

15

5,5,5,5,4,0 5,5,5,5,4,0

280

INTEGRATED RRU

(1) B5/B13 RRH-BR04C (RFV01U-D2A)

(1) CBRS RRH - RT4401-48A

INTEGRATED RRU

0 00

0 13

9.0

5.5

12.2 16.1 11.0 16.1

35.1 16.8 16.7

MT6407-77A VZ-AT1K04 39GHz VECTASTAR NRgNB

PROPOSED

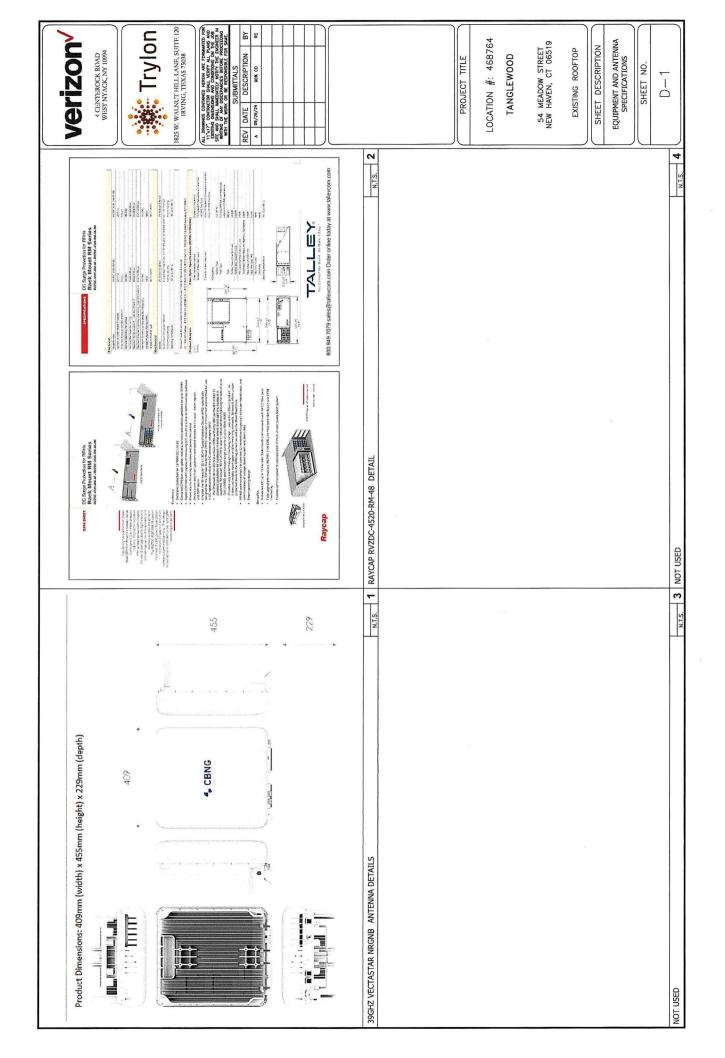
TITLE	468764
5	#
PROJECT	LOCATION

TANGLEWOOD

54 MEADOW STREET NEW HAVEN, CT 06519

EXISTING ROOFTOP

SHEET DESCRIPTION


ANTENNA & CABLE SCHEDULE

NO.	2
SHEET	A

BASE COLOR 700 LTE AWS LTE PCS LTE 850 LTE 850 1X PCS 1X GPS	LIGHT BLUE PINK GRAY PURPLE BROWN	LIGHT BLUE PINK GRAY PURPLE	VICIT OILL DINN CRAV DIEDE			
700 LTE AWS LTE	RED YELLOW	RED YELLOW	RED YELLOW	RED YELLOW	RED YELLOW	WO LIN
BASE COLOR	WHITE	BLUE	GREEN	WHITE/WHITE	BLUE/BLUE	141100/141100
SECTOR	SECTOR 1 (ALPHA)	SECTOR 2 (BETA)	SECTOR 3 (GAMMA)	SECTOR 4 (DELTA)	SECTOR 5 (EPSILON)	Croton C (Stra)

1. CONFIGURO SALL PROFICE LEGISLACE CONTROLL CON

ANTENNA AND CABLE SCHEDULE

	ELECTRICAL LEGEND	L LEGEN	Q
	LIGHTING FIXTURES		EQUIPMENT
	1'X 4' SURFACE MOUNTED FLOURESCENT FIXTURE WITH WRAP AROUND ACHYLIC PRISMATIC LENS, LITHONIA PART NO.	۵	DISCONNECT SWITCH 30 = AMP RATING NF = NON-FUSED
	LB-332-120-SS81/3-NYC. LAMPS: (3) F32T8/35K	*	мпгвох
(SOWATT H.P.S. EXTERIOR WALL MOUNTED FIXTURE W/ PHOTOCELL.		PANELBOARD
2	MOUNT 66 A.F.G. TO BOLLOW, HUBBELL NO, NRG-301-320-PC	4	MOTOR-OPERATED DAMPER
	POWER	ģ	MOTOR
1	HOMERUN TO DESIGNATED PANEL CROSS LINES INDICATE NUMBER OF CONDUCTORS WHEN MORE THAN TWO (GROUND NOT		GROUNDING
_	INCLUDED) NUMBER DENOTES CIRCUIT		#2 SOLID TINNED COPPER UNLESS OTHERWISE NOTIFIED
Ŀ	TRANSFORMER		EXOTHERMIC WELD CONNECTION
	WIRING DEVICES	•	MECHANICAL CONNECTION, DOUBLE-CRIMP 'C' TYPE
Φ	DUPLEX RECEPTACLE, 20 AMP, 125 V, LEVITON NO. 5262-1 MOUNT 16" A.F.F. TO CENTER		MASTER GROUND BAR
#	DOUBLE DUPLEX RECEPTACLE, (2) 20 AMP, 125 V, LEVITON NO. 5282-I MOUNT 1'6' A.F.F. TO CENTER		INSULATED GROUND BAR
ф	20 AMP, 125 V, DUPLEX RECEPTACLE W/ GROUND FAULT INTERRUPTER LEVITON NO. 6599 W/ LOCKING COVER 5977		UNINSULATED GROUND BAR
S	SINGLE POLE, 20 AMP TOGGLE SWITCH LEVITON NO. CSB 1-20. MOUNT 4:0" A.F.F. 10 TOP.	8	S/8" x 10" COPPER CLAD GROUND ROD
Š	TWO-POLE, 20 AMP TOGGLE SWITCH LEVITON NO. CSB 2-20. MOUNT 4:0" A F.F. TO TOP.		
Ŝ	3-WAY, 20 AMP TOGGLE SWITCH LEVITON NO. CSB 3-20. MOUNT 4-0" A.F.F. TO TOP.		
	AUXILIARY SYSTEMS		
Θ	CEILING-MOUNTED IONIZATION SMOKE DETECTOR		
@	CEILING MOUNTED PHOTOELECTRIC SMOKE DETECTOR		
100	SELF-CONTAINED COMBINATION EMERGENCY LED LIGHT WI (2) LAMPHEADS. DUAL-LITE NO.: LISRW		
L	FIRE ALARM PULL STATION, MOUNT 48" A.F.F. TO TOP.		
Ē	FIRE ALARM HORN / STROBE, MOUNT 80" A.F.F. TO TOP.		

- ALL WORK SHOULD BE EDME IN A MELY VORMANILYE MANNEN, LEFT CLEAN AND FREE FRO DEFECTS, AND COMPLETEV, OPERABE. THE CONTRICTOR SHALL BEYONDER ALL SEDIMENT AS SCHOOLED ON THE DRIVINGS. ALL METERIALS SHALL BE WIRM MAIL MOW, KND MATTERIALS SHELL BE GLIONANIED BY THE CONTRICTOR FOR A PERIOD OF ONE (1) FEAR FROM THE DATE OF ACCESTINGE BY THE CONTRICTOR FOR A PERIOD OF ONE (1) FEAR FROM THE DATE OF ACCESTINGE BY THE CONTRICTOR FOR A PERIOD OF ONE (1) FEAR FROM THE DATE OF ACCESTINGE BY THE CONTRICTOR.
- ALL WORK SHALL BE CAREFULLY COORDINATED WITH THE UADLORD AND ALL TRADES INVOLVED, AND THE CONTRACTOR SHALL PROVIDE PROPER CONNECTORS, FITTINGS, VALVES PRING, ETC. FOR ALL EQUIPMENT FURNISHED BY CARRIER OR OTHER TRADES INVOLVED IN THIS CONTRACT.

CONTRACTOR SHALL INFORM THE ENGINEER IMMEDIATELY OF ANY CONFLICT DISCOVER BEFORE PERFORMING ANY WORK RELATED TO SUCH CONFLICT.

- PROVIDE ALL REQUIRED TEMPORARY UTILITIES AND PAY ALL ASSOCIATED FEES AND OPERATING COSTS.

WHINE NOTES

- ALL GROUNDING CONDUCTORS SHALL BE #7 SOLID TINNED COPPER, UNLESS OTI NOTED.
- ALL EXTERIOR CONNECTIONS TO GROUND CONDUCTOR SHALL BE EXOTHERM (CADMELD).
- ALL CONNECTIONS BELOW GRADE SIALL BE EXOTIFERMICALLY WELDED (CADWELD). CONNECTIONS TO GROUUD MASS SIALL BE MADE UTLENG TWO-HOLE LONG BARREL STANLESS STEEL BOLTS, MUTS, AND LOCKWASHERS.
- CONNECTIONS TO EQUIPMENT AND ENCLOSURES SHALL BE MADE UTILIZING TWO-HOLE GROUND LUGS WITH AN ANTI-OXIDENT COMPOUND.
- THE OROUNDING SYSTEM SHALL BE TESTED UPON INSTALLATION, THE MAXIMUM RESIST TO GROUND SHALL NOT EXCEED 5 OHMS.

 - WHERE GROUNDING CONNECTIONS ARE MADE TO PAINTED METAL. SURFACES SHALL BE SCRAFED CLEAN TO BEAR METAL TO NUSINE PROPER CONTACT. SURFACES SHALL BE RESTORED TO MATCH GRIGHAL INISHES.
- BOND ALL METALLIC RACEWAYS, EQUIPMENT ENCLOSURES, AND BOXES.

ALL BENDS IN GROUNDING CONDUCTORS SHALL NOT BE LESS THAN A 12" RAC

- ALL BONDING CONDUCTORS SHALL BE #6 AWG. STRANDED INSULATED COPPEF
- CABLE TO CABLE CONNECTIONS SHALL BE EXOTHERMICALLY WELDED (CADWELD)
- CABLE TO STEEL CONECTIONS SHALL BE EXOTHERMICALLY WELDED (CAF OTHERWISE NOTED.
- BOND ALL SERVICE RACEWAYS, EQUIPMENT ENCLOSURES, METER FITTINGS, BOXES, AND METALLIC RACEWAYS IN ACCORDANCE WITH SECTION 250-71 OF THE NATIONAL ELECTRIC CODE. USE OF NINETY DEGREE BENDS SHALL BE AVOIDED, BENDS SHALL BE FORTY FIVE DEGI WHERE POSSIBLE.

THE CONTRACTOR IS RECURED TO COMPACT AND MEET WITH THE UTILITY COMPANIES WITH THE CONTRACTOR OF A COMPACT RECURED TO A CONTRACTOR RECEIVED THE CONTRACTOR OF A CONTRACTOR OF A

- B. ALL CONTROL WIRING SHALL BE FURNISHED BY THE ELECTRICAL CONTRACTOR. OTHER CONTRACTORS SHALL PROVIDE STARTERS, ETC. FOR ALL EQUIPMENT THEY FURNISH, UNICES SPECIFICALTY INDICATED ON THE ELECTRICAL DAMWINGS.
- C. UALESS OTHERWISE MOICHED, THE ARRANGEMENT, POSITION, CONNECTIONS, ETC SHOWN WITH EDWANDESS SHALL SET NEWTHON MORGANAMENT, THE RESERVE RESERVE THE DOGREET TO THAT UNIVERS AND ARRANGEMENT SHALL SHOWN AND ARRANGEMENT SHALL SHOUTHEN THE DEGREE OF THE DEGREET TO THE CONTRACTION.
 - D. REFER TO THE GENERAL SPECIFICATION, THIS SHEET.
- ALL WORK SHALL CONFORM TO THE ADOPTED EDITION OF THE NATIONAL ELECTICODE AND LOCAL, STATE AND APPLICABLE CODES.
- G. OBTAIN ALL PERMITS AND APPROVALS FROM AUTHORITIES MAVING. PAYING ALL FEES REQUIRED.
- WIRLA JUTIN COMMAN VERSETS RESCRIBED THE CONTRACTOR SMLLL OBTAINANL.
 ASSOCIATIO CHI JA CANDS, INSPECTIONS, ETC. NECESSARY OTHANE THE MEETE SET THE THE RESPONSIBILITY OF THE CONTRACTOR TO MEET WITH UTLITY COMPANY PRIC TO CONSTRUCTION TO VERSET SOURCE OF ELECTRIC SERVICE, TAP AND METER COCTION.
- GROUND RING DEPTH SHALL BE 30 INCHES MINIMUM BELOW FINISHED GRADE, OR INCHES BELOW FROST LINE, WHICHEVER IS THE GREATER DISTANCE.
- PROVIDE TYPEWRITTEN DIRECTORIES FOR PANELS, INDICATING USE OF EACH BRANCH CIRCUIT AND DESIGNATING SPARE CIRCUITS, HANDWRITTEN DIRECTORIES ARE NOT ACCEPTABLE.
 - B. LABEL ALL CONDUITS AND WIRES WITH THEIR ASSOCIATED CONDUIT AND CIRCUITTERNIAL, INMERES, MARKERS TO BE AS WANUFACTURED BY SETON NAMED ATTE COPP., OR FOLIAL.

Verizon

4 CENTEROCK ROAD WEST NYACK, NY 10994

Trylon

MINIMUM CONDUIT SIZE SHALL BE 3/4" UNLESS OTHERWISE NOTED ON THE DRAWINGS

EXPOSED BACEWAYS SHALL BE RUN TRUE, PLUMB, AND PARALLEL OR PERPENDICULAR TO BUILDING LINES. C. CONDUIT SUPPORTS SHALL BE SPACED AT A MAXIMUM DISTANCE OF 10 FEET APART.

A SINGLE COMDUCTOR CABLES SHALL BET USED FOR FEEDERS AND BRANCH CIRCUIT WHING WAS THE WILL BE SHALL BE FAVE AND MASS DATES TO AND WAS AND MASS OF THE SHALL BE STATED TO COMPOUN TO MODIAN, NEVO USED THOSE WHIS ESSES THANK CANDUCTORS SHALL BE STRANGED. ALL

CONDUCTORS SHALL BE CONTINUOUS FROM ORIGIN TO PAMEL OR EQUIPMENT WITHOUT SENCES, WHERE TAY BY RELECTS ARE INCESSARY AND ADPROVED, THEY SHALL BE MADE WITH SUITME CONNECTORS BY LUNCTION BOXES.

1825 W. WALNUT HILL LANF, SUITE 120 IRVING, TEXAS 75038

C. PHASE CONDUCTORS SHALL BE IDENTIFIED WITH THE FOLLOWING COLOR CODED TAPE.

THE SHALL SHALL BE IDENTIFIED TO THE SHALL BE IDENT

PROVIDE FIRESTOPPING AROUND ALL CONDUITS AT WALL AND FLOOR PENETRATIONS. SEAL ALL EXTERIOR WALL PENETRATIONS AS REQUIRED.

SUBMITTALS
REV DATE DESCRIPTION BY ALL DRAWINGS CONTANED HETEN ARE TORAUNTED FOR EDSTINO DUESCASS AND CONDITIONS ON THE ADB EDSTINO DUESCASS AND CONDITIONS ON THE ADB WITHING OF ANY DOSEDWANCES BEFORE THE WITHIN OF ANY DOSEDWANCES BEFORE THE WITHIN THE WORK OR BE RESTAUSIBLE FOR SAULE

90% CD

09/26/24

THE CONTRACTOR SYALL CONCEAL ALL CONDUIT ROUTING PASSING THROUGH FINSHED AS ASSACROUNT ROLLYOUTH THROUGH VIRNINHED AREAS SHALL BE SUPPORTED AS SPECIFIED IN DRAWINGS. UNLESS CLEARLY SPECIFIED, NO CONDUITS SHALL BE ROUTED ON EXTERIOR SURFACE OF BUILDING. THE REPORT OF THE REPORT SHALL BE ANALY BE CONCRETED BY THE SHELL SHALL BE SHELL SHELL SHALL BE SHALL BE

ALL FEEDERS RUN INDOORS SHALL CONSIST OF EMT WITH INDIVIDUAL CONDUCTORS, SHEMBLE MERFLUC CONDUIT WAS SHALL BE USED WHERE STRUCTURAL, MEXIBER PROHIBIT CONDUIT, MC MAY ALSO BE UTILEZED FOR LIGHTING WHITE, BRANCH CIRCUIT AND OTHER MISCELLANEOUS APPLICATIONS PERMITTED BY CODE.

ALL FEDERS IN "DAMP" OR "WET", LOCATIONS SI'ALL CONSIST OF INDIVIDUAL CONDUCTOR INSIGN CANAVAREDS SIELE MEND ALLANGAME NOUGHT. LEDUC-TION TELESISE ENTRALIC CONDUCT SAALL SEE ET INLEDO WHEN CONNECTING TO ECOPINACI SEAL SEE CONDUCT THE MAXINUM LENGTH FOR FLEXIBLE CONDUCT SAALL SEE GT."

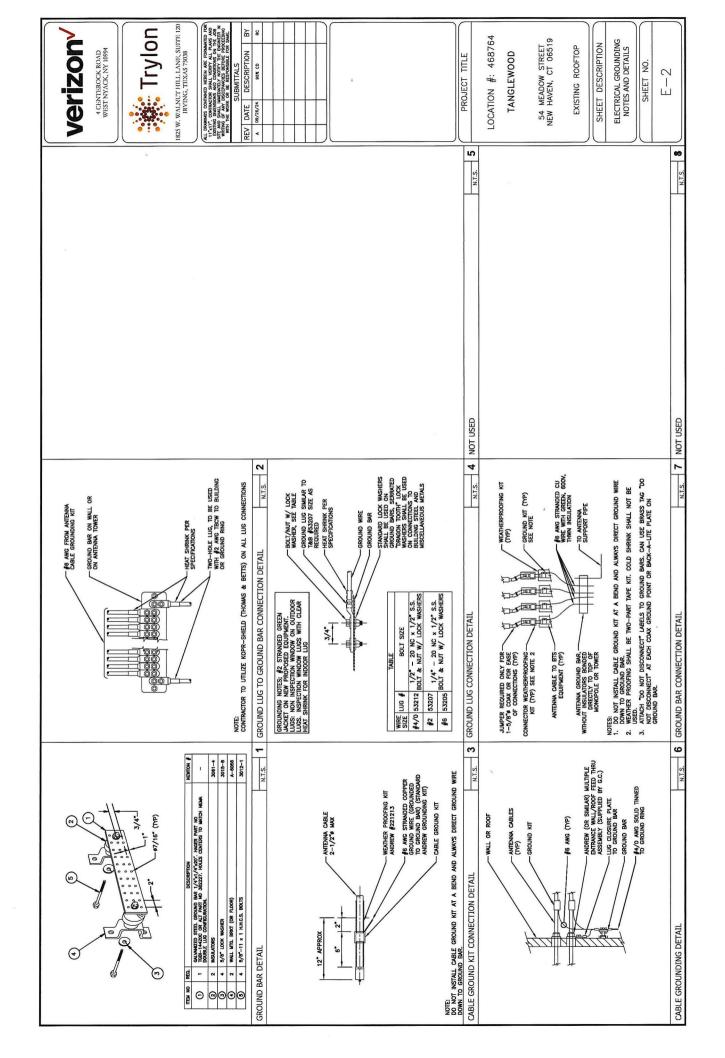
- SWITCHES, RECEPTACLES AND OTHER WIRING DEVICES SHALL BE SPECIFICATION OF TYPE, SIZE AND RATING INDICATED ON THE DRAWINGS.
- SWITCHES SYALL BE QUICK-MAKE QUICK-BREAK MEMA, I FOR NIDOOR USE AND NEMA 3R FOR OUTDOOR USE AS MANUFACTURED BY GENERAL ELECTRICE, SQUARE D OR EQUAL. ELECTRICAL, COMTRACTOR TO PROVIDE ALL SMETY DISCOMMENTS.

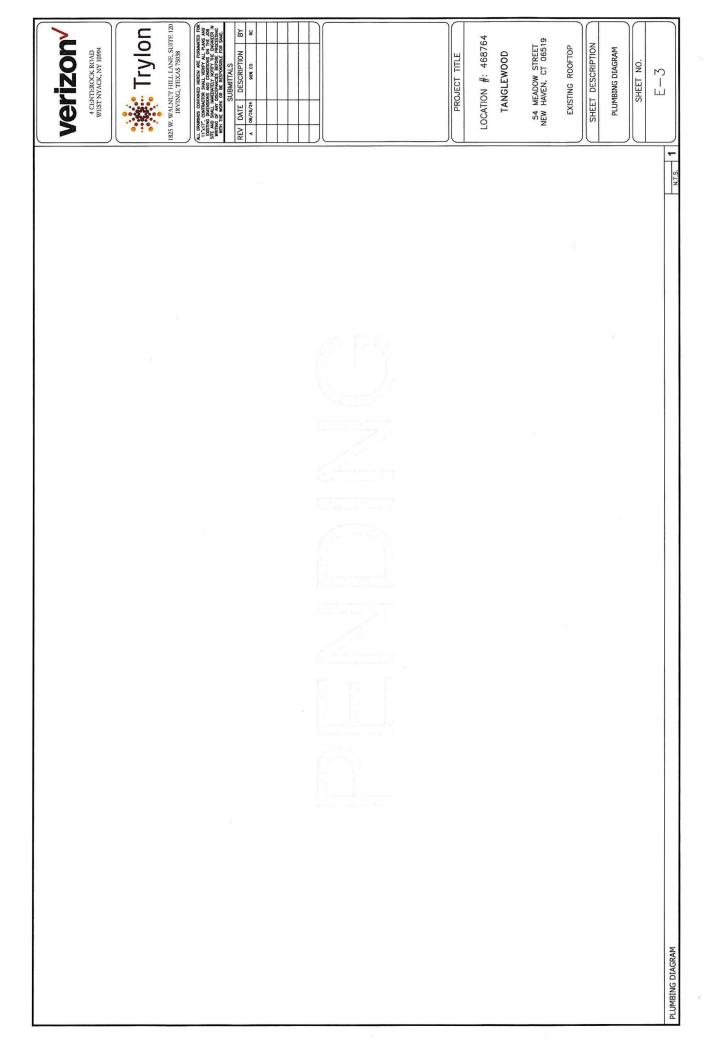
 - THE ELECTRICAL CONTRACTOR SHALL FURNISH AND INSTALL ALL POWER AND CONTROL WIRING FOR EQUIPMENT FURNISHED UNDER HYAC, PLUMBING AND GENERAL TRADE SECTIONS.
- ALL WORK REQUIRING AN OUTAGE OR INTERRUPTION OF SERVICE (POWER, TELEPHONE) SHALL BE SCHEDULED ONLY AT SUCH TIME PERMITTED BY OWNJER.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR FILNG THE PROJECT WITH THE ADVISORY BOARD OF THE CITY OF NEW YORK (IF REQUIRED) THE CONTRACTOR SHALL BE RESPONSIBLE FOR PREPARATION OF NECESSARY DRAWINGS, FORMS AND ALL ASSOCIATED FIELS.
- A. LIGHTING FIXTURES SHALL BE FURNISHED COMPLETE WITH NECESSARY LAMPS.

LOCATION #: 468764

PROJECT TITLE

TANGLEWOOD


- A. PANELS SHALL BE BOLTED. ON MOLDED CASE CIRCUIT LOCKS.
 - 3. ALL CONDUCTOR TERMINALS SHALL BE U.L. LISTED FOR MINIMUM OF
- A. IRANSFORMERS SHALL BE DRY TYPE WITH AVERAGE TEMPERATURE RISE NOT EXCEED 150° C (115° C) (80° C)
- TRANSFORMERS SHALL BE AS MANUFACTURED BY SQUARE D, GENERAL ELECTRIC OR SIEMENS.


54 MEADOW STREET NEW HAVEN, CT 06519

EXISTING ROOFTOP

F -		
SHEET NO.		
	ELECTRICAL & GROUNDING DETAILS	E-010
ELECTRICAL NOT	GENERAL INFORMATION	E-001
	DRAWING TITLES	DWG#
SHEEL DESCRIP	DRAWING INDEX	
TOIGOTT TTTIC		

NOL TES _ | |-

39GHz VectaStar NR gNB Product Specification

39GHz VectaStar NR gNB Product Specification

Contents

3	
	4
6	
6	
12	
	8

Version History

0.1	Justin Clark	31st May 2024	DRAFT – Subject to Review
1	Justin Clark	6 th June 2024	1 st version

1 Introduction

This product specification document is for the VectaStar NR 39GHz n260 3GPP gNB which shall be referred to as the AP or Access Point forming the donor end point for a 5G NR Point to Multi-Point Fixed Wireless Access system. The AP is designed and manufactured by Delta Electronics to CBNG's requirements and is based on a NXP Layerscape® LX2160 Host processor and LS1235 programmable modem.

2 Product Specification

The following table defines the key product specifications for the VectaStar NR gNB.

Description	Specification	Notes
RF Performance		
Frequency Range 1	37 - 40 GHz	n260 FR2 Band
EIRP	+64dBmi ± 3dB	
Antenna Type	Phased array	
Antenna Beam Width	>4.5°	Half Power Beam width
Antenna Scan Range	Azimuth ±45°, Elevation ±10°	
Antenna Scan Loss	3dB max @ ±45°	
Main Beam Sidelobes	20dBc min	
Features		
Channel Bandwidth	100, 200, 400, 800MHz	Contiguous
# of Layers	2	Horizontal & Vertical Antenna Polarization, 2x2 MIMO
Carrier Aggregation	Up to 8CC	800MHz aggregated BW per layer
Component Carrier Bandwidth	100, 200, 400MHz	800MHz aggregated BW per layer
Modulation UL & DL	QPSK, 16QAM, 64QAM, 256QAM	
Duplex Mode	TDD	
Time Sync	IEEE 1588 PTP v2 (Microchip DPLL) GPS with External Antenna Holdover – 8hrs	Holdover occurs when IEEE 1588 Grandmaster and GPS unavailable
MIMO	2T2R	
Interfaces		
Back Haul	2x 10GbE Fiber (SFP+) 1x 1GbE RJ45 as LMT (Local Management)	
Power	DC 54V (Option with External AC Adaptor, 100-240 VAC, 54V ±5%, 6.48A)	Peak Power consumption ~320W
LED Indicators	System & Front Haul	
Environmental/Certification		
Operating Temperature Range	-40°C to +55°C	
Operating Humidity Range	5% to 95% RH	
IP Rating	IP67	
Certification	UL, FCC	

Commercial-in-Confidence Cambridge Broadband Networks Group Ltd Suites 1a & 1b, Ground Floor, Enterprise House, Vision Park, Histon, CB24 9ZR

	3GPP compliant RoSH and WEEE	
Weight	gNB 18kg AC/DC Power Adaptor 3.2kg Mounting Bracket 2.6kg	
Size	455mm (height) x 409mm (width) x 229mm (depth)	
Software		
Management	HTTPS / Netconf	
Firmware Upgrade	FOTA & Local (via Ethernet)	
LAN	IEEE 802.1Q-1998 / IEEE 802.1AD (VLAN, QinQ) IEEE 802.1P (DSCP QOS) IPv4/IPv6 Dual-Stack NAPT, DNS Proxy, Port Forwarding, VPN Pass-through, DHCP Server/Client MAC/IP Packet Filtering, Stateless Firewall	PDU Type Ethernet supported

2.1 Ethernet Ports

The device supports one 10Gbps Ethernet port for data in an SFP+ format to support LC or RJ45 connector formats via selection of the appropriate transceiver embedded in the data connector housing.

The device supports one 1Gbps Ethernet port for management interface in an RJ45 format supporting 10/100/1000 Base-T.

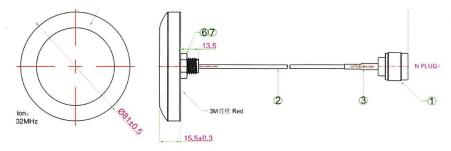
2.2 Power Supply

The device is powered by a -48V nominal DC Input Power Rating TBC:

2.3 Status & Signal Strength LED Functionality

The device has two LEDs whose functionality is described in the following table.

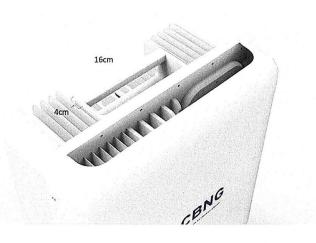
LED Behaviour

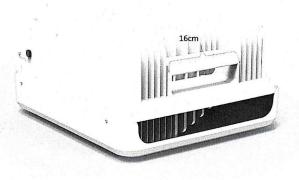

	LED	Description	
System	Off	Power Off	
	Green - Solid	Operating	
	Amber - Solid	System Crash	
	Amber – Flashing Slow	PTP Unlock	
	Amber – Flashing Fast	HW Failure	
Front Haul	Green - Solid	Link Established	
	Amber - Flashing	TX Active	

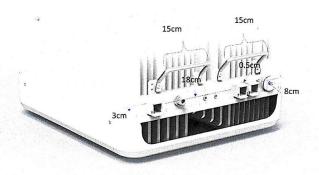
2.4 GNSS

The device integrates global navigation satellite system solution that supports L1:

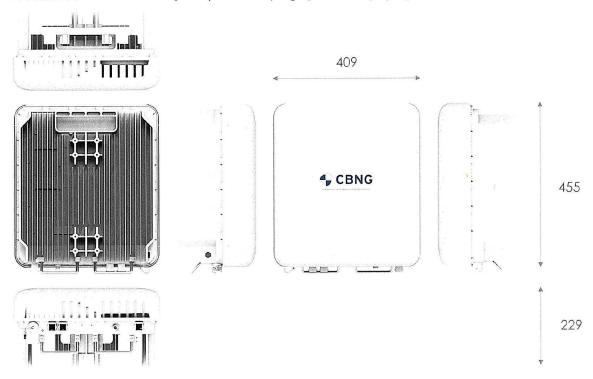
- GPS (North America)
- Galileo (Europe)
- GLONASS (Russia)
- QZSS (Japan)


An external antenna is supplied affixed to a bracket attached to the unit, drawing below:

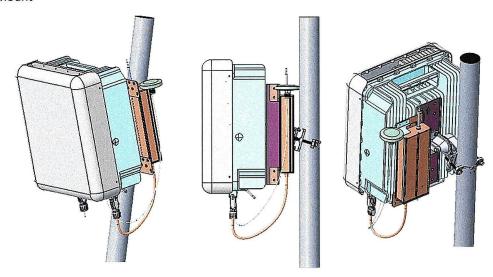



3 Mechanical

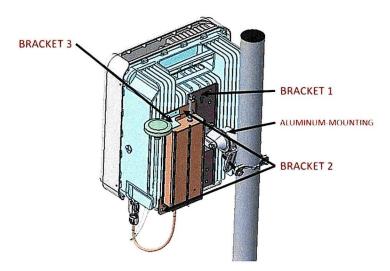
3.1 Device Images



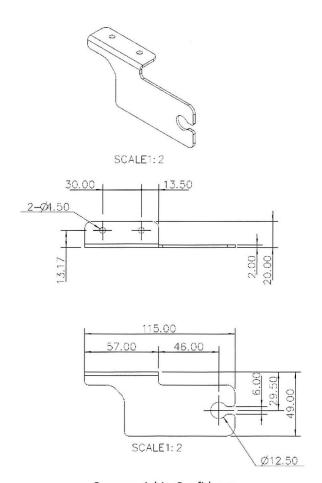
Commercial-in-Confidence Cambridge Broadband Networks Group Ltd Suites 1a & 1b, Ground Floor, Enterprise House, Vision Park, Histon, CB24 9ZR


3.2 Device Dimensions

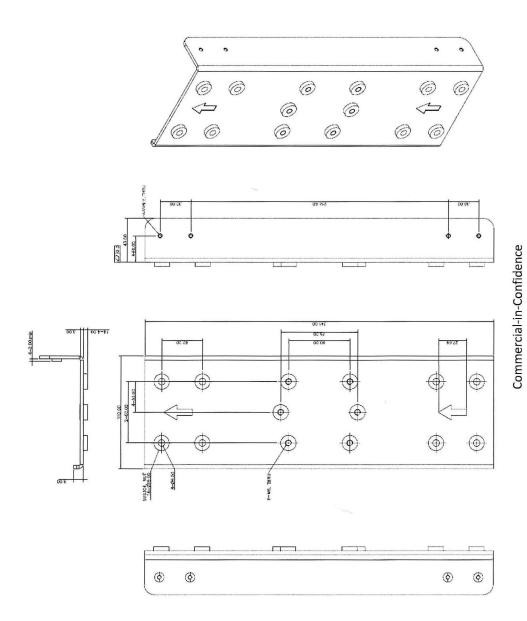
Product Dimensions: 409mm (width) x 455mm (height) x 229mm (depth)


3.3 Mounting Options

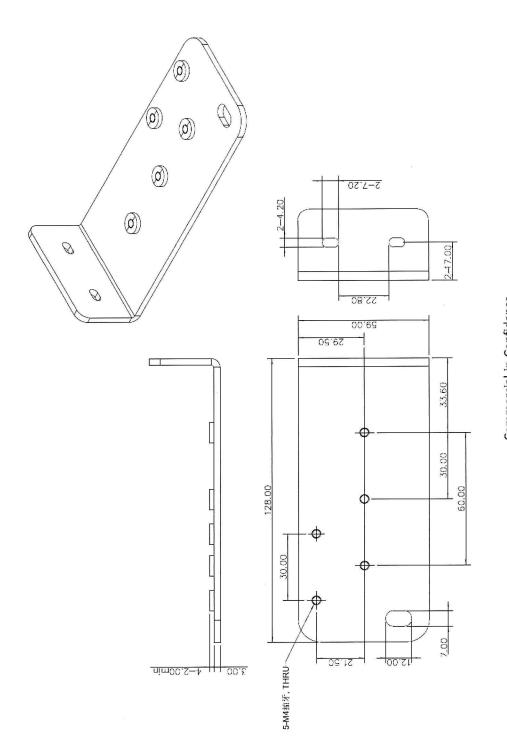
Pole Mount


Commercial-in-Confidence Cambridge Broadband Networks Group Ltd Suites 1a & 1b, Ground Floor, Enterprise House, Vision Park, Histon, CB24 9ZR

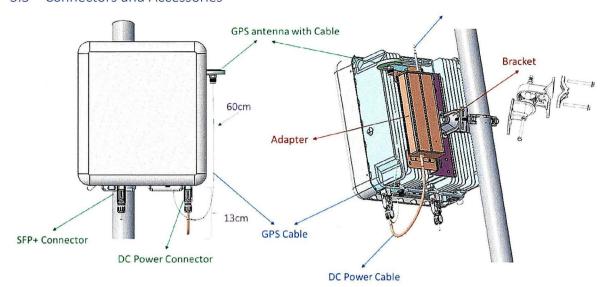
3.4 Mounting Bracket Details



Technical Drawings:


Bracket 3

Commercial-in-Confidence Cambridge Broadband Networks Group Ltd Suites 1a & 1b, Ground Floor, Enterprise House, Vision Park, Histon, CB24 9ZR



Commercial-in-Confidence Cambridge Broadband Networks Group Ltd Suites 1a & 1b, Ground Floor, Enterprise House, Vision Park, Histon, CB24 9ZR

Commercial-in-Confidence Cambridge Broadband Networks Group Ltd Suites 1a & 1b, Ground Floor, Enterprise House, Vision Park, Histon, CB24 9ZR

3.5 Connectors and Accessories

SFP/SPF+

- SFP transceiver inside the plug
- Direct heat dissipation to the chassis
- 5 cm² surface savings on the PCB
- Easy access to the SFP for replacement
- No exposure of optical fibers
- EMI shielded
- IP67

Power

- Available with 2 or 4 contacts + cable braid grounding
- Crimped contacts or screw terminal blocks
- Wire size from 1.5 to 6 mm² (10-16AWG)
- Current rating up to 20A per contact
- Lightning protection
- EMI shielded

4 Qualification & Certification

The following qualification and certification standards are applicable, Item 6 is under investigation and as the design is in prototype phase compliance to standards has yet to be proven.

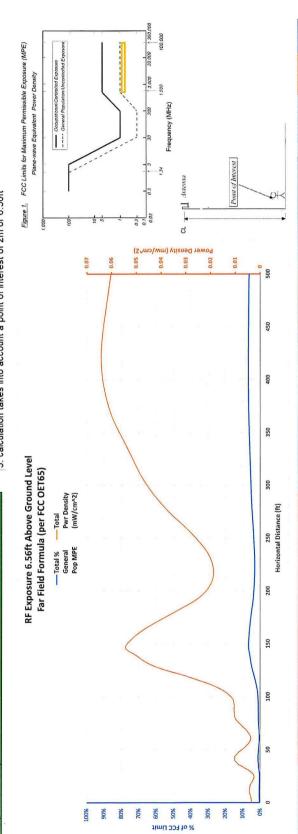
- 1. US UL
 - a. CFR 29 Part 1910,
 - b. EN 62368-1
- 2. US FCC
 - a. FCC Title 47 CFR parts 15B,
 - b. part 18,
 - c. part 30,
 - d. CFR 47 Part 1 §1310

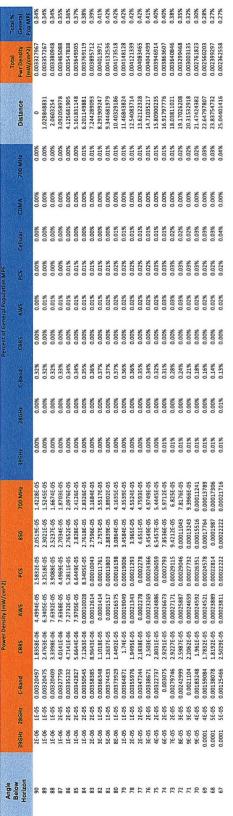
Commercial-in-Confidence
Cambridge Broadband Networks Group Ltd
Suites 1a & 1b, Ground Floor, Enterprise House, Vision Park, Histon, CB24 9ZR

3. 3GPP Rel 16

- a. TS 38.104,
- b. TS 38.113,
- c. TS 38.141-1,
- d. TS 38.141-2
- 4. Customer Compliance Requirements (under investigation for compliance)
 - a. TL 9000 Quality Management System Requirements Handbook,
 - b. TL 9000 Quality Management System Measurements Handbook,
 - c. GR-63 Network Equipment Building System (NEBS) Requirements: Physical Protection
 - d. GR-78 Generic Requirements for the Physical Design and Manufacture of Telecommunications Products and Equipment
 - e. GR-282 Software Reliability And Quality Acceptance Criteria (SRQAC), A Module Of RQGR, FR-796 Issue 4
 - f. GR-383 COMMON LANGUAGE® Equipment Codes (CLEITM Codes) Generic Requirements for Bar Code Labels Issue 3
 - g. GR-485 Common Language® Equipment Codes (CLEITM Codes)- Generic Requirements for Processes and Guidelines Issue 5
 - h. GR-929 Reliability and Quality Measurements for Telecommunications Systems RQMS-Wire line), A Module of RQMS, FR-929 and RQGR, FR-796 Issue 8
 - GR-1089 Electromagnetic Compatibility and Electrical Safety Generic Criteria for Network Telecommunications Equipment Issue 4
 - j. GR-1315 In-Process Quality Metrics (IPQM)
 - k. GR-1421 Generic Requirements for ESD Protective Circuit Packet Containers
 - I. SR-NWT-2759 A View of Packaging, Palletization and Marking Requirements
 - m. SR-332 Reliability Prediction Procedure for Electronic Equipment
 - n. TR-NWT-000357 Generic Requirements for Assuring Reliability of Components Used in Telecommunications Equipment
 - GR-418 Generic Reliability Assurance Requirements For Fiber Optic Transport Systems A Module Of RQGR, FR-796 Issue 2
 - p. GR-840 Supplier Support Generic Requirements (SSGR), A Module of LSSGR, FR-64; OTGR, FR-439; and TSGR, FR-440 Issue 1
 - q. TR-NWT-000870 Electrostatic Discharge Control in the Manufacture of Telecommunications Equipment

ATTACHMENT 3


Location	(49 W. Store)			N	New Haven CT			
Date	SERVICE SERVIC				10/23/2024			
Band	39GHZ	39GHZ 28GHZ	C-Band	CBRS	AWS	PCS	850	700
Operating Frequency (MHz)	38,500	38,500 27,500	3,700	3,550	2,145	1,970	869	746
General Population MPE (mW/cm^2)	1	٠	-	-	-	-	0.57933333	0.57933333 0.49733333
ERP Per Transmitter (Watts)	1,303	153	21,751	52	1,396	1,303	638	929
Number of Transmitters	2	4	2	4	4	4	4	4
Antenna Centerline (CL) (feet)	158	127.8	130.8	138.5	138.5	138.5	138.5	138.5
Total ERP (Watts)	2,606	612	43,501	208	5,585	5,213	2,553	2,224
Total ERP (dBm)	64	58	92	53	- 67	49	64	63
Maximum % of General Population Limit								


*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Section 1.1310 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992

MHz = Megahertz

mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

- Absolute worst case maximum values used, including the following assumptions: closest accessible point is distance from antenna to base of pole;
- continuous transmission from all available channels at full power for indefinite time period;
 calculation takes into account a point of interest of 2m or 6.56ft

0.30% 0.34% 0.44% 0.44% 0.46% 0.58% 0.078% 0.09% 1.118% 1.18	3.92% 3.12% 3.12% 3.24% 5.59% 6.61% 6.84% 5.82% 6.47% 1.72% 1.72% 0.05%
0.00233182 0.002391182 0.002391108 0.004065736 0.00600923793 0.001013672 0.00101372 0.00101372 0.00101372 0.00101372 0.00101372 0.00101372 0.00101372 0.00101372 0.00101372 0.00101372 0.00101372 0.00101372 0.00101372 0.0010	0.025026127 0.01810978 0.02131810978 0.02131810978 0.02131810978 0.038004768 0.038004768 0.05650926459 0.05650926459 0.05650926459 0.05650926459 0.05650926459 0.0565092659 0.0565093
76.26849243 75.51215183 77.51215183 77.51215183 77.5222183 79.00200152 79.00200152 79.00200153 79.00200153 79.00200153 79.00200153 79.00200153 79.00200153 79.00200153 79.00200153 79.00200153 79.00200153 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.00200124 79.0020026	192.3803045 205.757522 220.190997 226.456075 225.556075 277.573176 277.573176 277.573176 277.573176 277.573176 277.573176 261.3477063 643.733091 11125.787065 11125.787065
0.008	2.69% 2.64% 2.14% 1.190% 1.25% 0.97% 0.13% 0.13% 0.10% 0.00%
0.000	\$00.00
0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.03% 0.02% 0.02% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00%	0.03% 0.03% 0.013% 0.03% 0.03% 0.23% 0.42% 0.43% 0.31% 0.21%
0.02% 0.03% 0.03% 0.03% 0.03% 0.00%	0.01% 0.01% 0.00% 0.00% 0.00% 0.13% 0.13% 0.40% 0.12% 0.12% 0.10%
0.02% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.02% 0.03%	0.05% 0.01% 0.03% 0.05% 0.05% 0.00% 0.00% 0.01% 0.01% 0.01% 0.01%
0.00% 0.00%	0.10% 0.10% 0.10% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.13% 0.13% 0.13% 0.13% 0.24% 0.24% 0.24% 0.65%	0.48% 0.07% 0.06% 0.40% 1.109% 3.04% 4.53% 4.53% 4.53% 4.50% 1.1.22% 0.12%
0.01% 0.01%	0.33% 0.34% 0.28% 0.24% 0.18% 0.11% 0.01% 0.00% 0.00%
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.07% 0.16% 0.28% 0.28% 0.58% 0.58% 0.58% 0.018% 0.017% 0.017%
0.000023728 0.000028333 0.000028333 0.00002833 0.000028439 0.000028439 0.00001278 0.00001278 0.00001378	0.000094475 0.000050887 7.03366-05 0.0001885 0.0001785 0.00107335 0.00249381 0.00024938 0.00024938 0.00024938 0.00024938 0.00024938 0.00024938 0.00024938
0.00021248 0.00021428 0.00021649 0.0005110 0.0	9.9222E-05 9.9222E-05 4.0188E-06 9.51E-06 1.3345E-06 4.6832E-05 0.00039235 0.000423542 0.000423542 0.000423542 0.000423542 0.000423542 0.000423542 0.000423543 0.000423547 0.000423547 0.000428647 5.6835E-05
0.0002363 0.00012368 8.0771E-0 8.0771E-0 9.1095E-0 9.1095E-0 9.1095E-0 9.1095E-0 9.0001349 0.0001349 0.0001349 0.0001380 0.00001380	0.00046272 0.00014291 0.00014291 0.00014748 0.00046631 0.000467786 0.0004778 0.0004778 0.0003788 0.0004388 0.0004384 0.0004384 0.0004384 7.16778-05
4,9381-05 4,9381-05 3,73971-05 3,73971-05 1,40581-05 1,10581-05 1,	0.00095058 0.00097541 0.00095249 0.00095311 0.0005311 0.0005512 0.0005512 0.0005512 0.0005244 0.0005244 0.0005245 0.0005245 0.0005245 0.0005245 0.0005245 0.0005245 0.0005245 0.0005245 0.000524
0.00130867 0.00135312 0.0013752 0.0013752 0.0013752 0.0013752 0.0013752 0.0013762	0,00481644 0,00069504 0,00069504 0,00069502 0,010851 0,00033702 0,00033704 0,00033704 0,00033704 0,00033704 0,0003227 0,00119097
\$ 5.6.0 \$ 5.6.	0.0033 0.0034 0.0028 0.0024 0.0024 0.0016 0.0016 0.0006 0.0008 0.0003 0.0003 0.0003 0.0003 0.0003
	0.0007 0.0011 0.0011 0.0012 0.0028 0.0058 0.0058 0.0038 0.0039 0.0039 0.0017 0.0017 0.0007
8 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	117 118 119 111 111 111 111 111 111 111 111

ATTACHMENT 4

Structural Analysis Report

Trylon Project # 244236

October 31, 2024

Rev. 1

Client:

Smartlink

Carrier Info:

Verizon Wireless

Site ID:

324458 Tanglewood

Site Name: Site Address:

54 Meadow Street, New Haven. CT 06519

Site Coordinates:

41.299819 -72.926491

Structure Type:

Building-Rooftop

Structure Height:

131.6 ft.

STRUCTURE RATING =

PASS

Reviewed and Approved by:

Cliff Abernathy, P.E.

Structural Analysis Report

Subject:

Analysis of the Existing Building Wall

Dear Smartlink,

We have been provided with RF information, photos and sketches of the structure for the above referenced site. Verizon is proposing to change the equipment configuration on the Existing Building Wall.

Revised antenna, coax and miscellaneous equipment schematics have been provided to us. We have been asked to evaluate this information to determine whether the building penthouse is adequate to safely support the proposed loading change.

1. Source Data

Document Type	Source	Reference	Date
RFDS	Verizon Wireless	Site Name:	09/05/2024
THE BO	VCHZOH VVIICICSS	Tanglewood	03/03/2024
Ctrustural Analysis	On Air Engineering,	Site Name:	03/22/2023
Structural Analysis	LLC	Tanglewood	03/22/2023
Construction Drawings	Construction Descriptor	Site Name:	09/26/2024
Construction Drawings	Trylon	Tanglewood	09/20/2024

2. Analysis Criteria

Building Code / Local Code: 2022 CT State Building Code

Code Standard: TIA-222-H

Design Wind Speed (mph):120Design Wind Speed with Ice (mph):50Design Ice Thickness (in):1.0Risk Category/Structure Class:IIExposure Category:CTopographic Factor, Kzt:1.0

Seismic Response Acceleration, Ss (g): 0.201 Seismic Response Acceleration, S1 (g): 0.054

3. Assumptions

- 1) We assume that the structure has been previously studied for structural integrity and that the carrier equipment was included in any structural study indicating that the building is adequate to support its overall load.
- 2) The mount hardware has appropriate strength and that is has been proven adequate to support the proposed loading.
- 3) All structural members and their connections are in good condition and are free of defects with no significant deterioration in their structural capacities.

This assessment may not be valid if any of the assumptions and statements are found not to be accurate and Trylon should be contacted immediately.

4. Final Loading Configuration- Antennas

Mount CL (ft)	Equipment CL (ft)	Qty.	Manufacturer	Model	Feedlines	Carrier
107.0	107.0	2	Samsung	VZ-AT1K04		
127.8	127.8	2	Samsung	AT1K04 DC		
130.8	130.8	2	Samsung	MT6407-77A		
127.0	127.0	2	Samsung	VZ-AT1K04		
137.0	137.0	2	Samsung	AT1K04 DC		
		4	JMA	MX10FIT665-02		
		4	Comouna	B5/B13 RRH-BR04C		
		4	Samsung	(RFV01U-D2A)		
				B2/B66A RRH-	/=> / = /= <u>"</u>	Verizon
138.5	138.5	4	Samsung	BR049	(5) 1-5/8"	Venzon
				(RFV01U-D1A)		
		4	Comouna	CBRS RRH -		
		4	Samsung	RT4401-48A		
		5	Raycap	RVZDC-3315-PF-48		
140.0	140.0	2	Samsung	MT6407-77A		
155.7	155.7	4	JMA	MX10FIT665-02		v
158.0	158.0	4	CBNG	39GHz VectaStar NR gNB		

5. Standard Conditions for Providing Structural Consulting Services on Existing Structures

- 4) Mounting hardware is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorized by client). If the existing conditions are not as we have represented in this analysis, we should be contacted to evaluate the significance of the deviation and revise the assessment accordingly.
- 5) The structural analysis has been performed assuming that hardware is in "like new" condition. No allowance was made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
- 6) The structural analysis provided is an assessment of the primary load carrying capacity of the hardware. We provide a limited scope of service. In some cases, we cannot verify the capacity of every weld, plate, connection detail, etc. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurement of some of the required details may not be possible. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
- 7) We cannot be held responsible for mounting hardware that is installed improperly or hardware that is loose or has a tendency of working loose over the lifetime of the mounting hardware. Our analysis has been performed assuming fully tightened connections, and proper installation and symmetry of the mounting hardware per manufacturer's instructions.
- 8) The structural analysis has been performed using information currently provided by the client and potentially field verified. We have been provided with a mounting arrangement for all telecommunications equipment, including antennas RRH's, TMA's, RRU's, diplexers, surge protection devices, etc. Our analysis has been based upon a particular mounting arrangement. We are not responsible for deviations in the mounting arrangement that may occur over time. If deviations in equipment type or mounting arrangements are proposed, then we should be contacted to revise the recommendations of this structural report.
- 9) We cannot be held responsible for temporary and unbalanced loads on mounting hardware. Our analysis is based on a particular mounting arrangement or as-built field condition. We are not responsible for the methods and means of how the mounting arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie off of tower riggers, personnel, and their equipment, etc.
- 10) Steel grade and strength is unknown and cannot be field tested. We cannot be held responsible for equipment manufactured from inferior steel or bolts. Our analysis assumes that standard structural grade steel has been used by the equipment manufacturer for all assembled parts of the mounting apparatus. Acceptable steels and connection components are specified by the American Institute of Steel Construction. It is assumed all welded connections are performed in the shop under the latest American Welding Society Code. No field welds are permitted or assumed for the existing premanufactured equipment.
- 11) Steel grades have been assumed as follows, unless noted otherwise:

Assumed Steel Grades

Assu	Assumed Steel Stades		
Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)		
HSS (Rectangular)	ASTM 500 (GR B-46)		
Pipe	ASTM A53 (GR 35)		
Connection Bolts	ASTM A325		
U-Bolts, Threaded Rods	SAE J429 Gr. 2		

5. Analysis Results

Component	% Capacity	Pass/Fail	Notes
Building Wall		Pass	1

Structure Rating =	Pass	
--------------------	------	--

Notes:

6. Conclusions and Recommendations

Based on the information provided, our calculations conclude that the Existing Verizon Building Penthouse wall and existing pipe mast has sufficient capacity to carry the final loading configuration.

The size of the proposed antennas is so small that the increase in lateral and gravity loads caused by their installation will be structurally insignificant to the overall stability of the existing building walls. Also, the wall mount connection was evaluated and found to be adequate. The construction of the walls is such that the installation of these antennas will not cause undue stress or impose loads above their capacity to withstand. Per the 2022 CT State Building Code Section 806.2 and 806.3, any existing load carrying structural element whose lateral demand-capacity ratio is increased no more than 10% and any existing gravity load carrying structural element whose loads increase no more than 5% shall be permitted to remain unaltered. Therefore, we conclude that the Existing Building wall is adequate under the proposed carrier equipment.

¹⁾ See additional documentation in "Appendix A – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX ADDITIONAL CALCULATIONS

TIA LOAD CALCULATOR 2.1

PROJECT DA	ATA
Job Code:	0
Carrier Site ID:	17290616
Carrier Site Name:	Tanglewood

CODES AND STA	NDARDS
Building Code:	2022 CT SBC
Local Building Code:	0
Design Standard:	TIA-222-H

STRUCTURE DETAILS		
Mount Type:	Rooftop	-
Mount Elevation:	158.0	ft.
Number of Sectors:	4	
Structure Type:	Building	-
Structure Height:	131.5	ft.

ANALYSIS CE	ANALYSIS CRITERIA		
Structure Risk Category:	H		
Exposure Category:	С		
Site Class:	D - Stiff Soil		
Ground Elevation:	10.8	ft.	

TOPOGRAPHIC	DATA	
Topographic Category:	1.00	-
Topographic Feature:	N/A	
Crest Point Elevation:	0.00	ft.
Base Point Elevation:	0.00	ft.
Crest to Mid-Height (L/2):	0.00	ft.
Distance from Crest (x):	0.00	ft.
Base Topo Factor (K _{zt}):	1.00	
Mount Topo Factor (K _{zt}):	1.00	

WIND PARAMETERS							
Design Wind Speed:	120	mph					
Wind Escalation Factor (K _s):	1.00						
Velocity Coefficient (K _z):	1.39						
Directionality Factor (K _d):	0.85						
Gust Effect Factor (Gh):	0.85						
Shielding Factor (K _a):	0.90						
Velocity Pressure (qz):	43.65	psf					
Ground Elevation Factor (K _e):	1.00						

ICE PARAMETERS						
Design Ice Wind Speed:	50	mph				
Design Ice Thickness (t _i):	1.00	in				
Importance Factor (I _i):	1.00					
Ice Velocity Pressure (qzi):	43.65	psf				
Mount Ice Thickness (tiz):	1.17	in				

WIND STRUCTURE CALCULATIONS							
Flat Member Pressure:	66.78	psf					
Round Member Pressure:	40.07	psf					
Ice Wind Pressure:	5.84	psf					

SEISMIC PARA	METERS	
Importance Factor (I _e):	1.00	-
Short Period Accel .(S _s):	0.20	g
1 Second Accel (S ₁):	0.05	g
Short Period Des. (S _{DS}):	0.21	g
1 Second Des. (S _{D1}):	0.09	g
Short Period Coeff. (F _a):	1.60	
1 Second Coeff. (F _v):	2.40	
Response Coefficient (Cs):	0.11	
Amplification Factor (A _S):	3.00	

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

EQUIPMENT LOADING

Appurtenance Name	Qty.	Elevation [ft]	-	EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
39GHZ VECTASAR NRGNB	1	158	No Ice	2.24	1.25	40.00
			w/ lce	2.54	1.49	50.58
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
	1000		No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
	. 1		No Ice		A 181.	
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
Control of the Contro			No Ice			
			w/ Ice			

EQUIPMENT WIND CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	K _z	K _d	t _d	q _z [psf]	q _{zi} [psf]
9GHZ VECTASAR NRGN	1	158	1.00	1.39	0.85	1.17	43.65	7.58
								175

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

Appurtenance Name	Qty.		0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
39GHZ VECTASAR NRGNB	1	No Ice	74.82	50.07	66.57	41.82	66.57	50.07
		w/ Ice	14.70	10.15	13.18	8.64	13.18	10.15
N.		No Ice						
		w/ Ice						
		No Ice						
	1	w/ Ice						
		No Ice						
` <u>-</u>		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
<u></u>		w/ Ice	THE RESERVE TO SERVE TO SERVE	Brachonka (1840 - 1860				
		No Ice						
		w/ Ice				W11. 14. 20.9 (Section Section		
		No Ice				1 1 1		
		w/ Ice						
		No Ice						
		w/ Ice No Ice				Carlo San Anna M		
		w/ Ice						
		No Ice				94-28-2000		
	<u></u>	w/ lce						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice			4 (2) A (4) (4) (5) (4) (6)			
		No Ice						
		w/ Ice				2000 000 000 000 000 000 000 000 000 00		
		No Ice						
		w/ Ice				3 200 330 300 300 30 30		A1.
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
-		w/ Ice	and the second s	70.00				
		No Ice						
		w/ Ice	Towns of the second			Charles No. 10	MAN AND AND AND AND AND AND AND AND AND A	
		No Ice						
	27 SER 70 -							100000
		w/ Ice			. The second second			- 18 a
		No Ice	232 page 53					
		w/ Ice						

EQUIPMENT SEISMIC FORCE CALCULATIONS

Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
39GHZ VECTASAR NRGNB	1	158	40	12.86
			7.675	
	4			
	- Bigs 13			
		The state of	47.111.	

Verizon	Tanglewood	SK-1
Trylon	*	Tanglewood.r3d
17290616		5

Company :Verizon
Designer :Trylon
Job Number :17290616

Job Number :17290616 Checked By : CTR Model Name:Tanglewood

Envelope Node Reactions

1	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N9	max	208.967	6	305.055	2	295.063	18	38.983	18	117.338	6	131.186	14
2		min	-208.967	14	-211.807	26	-321.781	10	-80.675	10	-117.338	14	-131.186	6
3	N10	max	82.966	13	300.366	10	184.563	10	77.573	18	40.817	13	11.325	6
4		min	-82.966	7	-215.331	18	-157.846	18	-114.888	10	-40.817	7	-11.325	14
5	Totals:	max	126.485	6	197.891	43	137.218	18	4 2 2 2 2	7	Mark to	To the Car	100000	and the second
6		min	-126.485	14	72.702	72	-137.218	26						

Envelope AISI S100-20: LRFD Member Cold Formed Steel Code Checks

The state of the s	The state of the s
No Data to Print	

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	Membe	r Shape (Code Check	kLoc[in]	LC	Shear Checl	kLoc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft]	Cb	Eqn
1	MP1	PIPE 2.5	0.105	53.368	10	0.016	55.421		11	35890.384	50715	3596.25	3596.25	1	H1-1b
2	M3	HSS3X3X3	0.036	0	2	0.033	8	Z	14	77987.62	78246	6796.5	6796.5	1.508	H1-1b
3	M4	HSS3X3X3	0.019	8	11	0.014	8	у	10	77987.62	78246	6796.5	6796.5	2.223	H1-1b

www.hilti.com

Company:

Address:

Phone I Fax: Design:

Fastening point:

l Tanglewood Page:

Specifier: E-Mail:

Date:

10/23/2024

Specifier's comments:

1 Input data

Anchor type and diameter:

HY 270 + threaded rod 5.8 1/2

Item number:

385423 HAS 5.8 1/2"x4-1/2" (element) / 2194247 HIT-HY

270 (adhesive)

Specification text:

Hilti HIT-V 5.8 threaded rod with HIT-HY 270 injection mortar with 2.75 in embedment hef, 1/2, Steel galvanized, Hammer drilled

installation per ESR-4143

Effective embedment depth:

 $h_{ef} = 2.750 in.$

ESR-4143

Material:

aterial.

5.8

Evaluation Service Report:

11/1/2023 | 1/1/2025

Issued I Valid: Proof:

Design Method LRFD (AC58) Masonry + ACI 318-19

Stand-off installation:

 $e_b = 0.000$ in. (no stand-off); t = 0.400 in.

Anchor plate^R:

 $I_x \times I_y \times t = 8.500$ in. x 8.500 in. x 0.400 in.; (Recommended plate thickness: not calculated)

Profile:

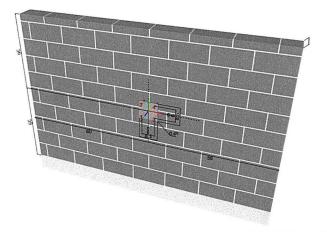
no profile

Base material:

uncracked Grout-filled CMU, f=1500, f = 1,500 psi, L x W x H: 16.000 in. x 8.000 in. x 8.000 in.;

Solid Head Joint: no; open ended unit: no

Temp. short/long:


32 °F / 32 °F

Joints: vertical: 0.375 in.; horizontal: 0.375 in.

Installation:

Face installation, Drill hole: Hammer drilled, Installation condition: Dry

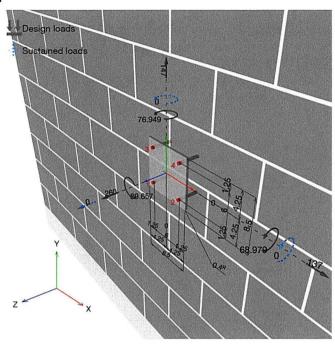
Geometry [in.]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

^R - The anchor calculation is based on a rigid anchor plate assumption.

www.hilti.com

 Company:
 Page:
 2


 Address:
 Specifier:
 Fedail:

 Phone I Fax:
 I
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 Tanglewood
 Date:
 10/23/2024

Geometry [in.] & Loading [lb, ft.lb]

1.1 Load combination and design results

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 322	$\begin{aligned} N &= 18; \ V_x = 0; \ V_y = -62; \\ M_x &= 27.789; \ M_y = 0.000; \ M_z = 0.000; \\ N_{\text{sus}} &= 0; \ M_{\text{x,sus}} = 0.000; \ M_{\text{y,sus}} = 0.000; \end{aligned}$	no	4
2	Combination 323	$\begin{aligned} N &= -18; \ V_x = 0; \ V_y = -57; \\ M_x &= 24.863; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
3	Combination 324	$N = -291; V_x = 0; V_y = -305;$ $M_x = -33.044; M_y = 0.000; M_z = 0.000;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	12
4	Combination 325	$\begin{aligned} & N = 154; \ V_x = 0; \ V_y = 203; \\ & M_x = -72.271; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	12
5	Combination 326	$N = -230; V_x = -137; V_y = -253;$ $M_x = -21.346; M_y = 76.957; M_z = -89.657;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	7
6	Combination 327	$\begin{aligned} & N = 118; \ V_x = 61; \ V_y = 152; \\ & M_x = -53.043; \ M_y = 30.247; \ M_z = 7.719; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	11

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Fastening point:

Company:
Address:
Phone I Fax:
Design:

Tanglewood

Page: Specifier: E-Mail:

Date:

10/23/2024

28

4.4 Masonry breakout strength y-

$$V_{mbg} = \left(\frac{A_{Vm}}{A_{Vm0}}\right) v$$

 $V_{\text{mbg}} \quad = \left(\frac{A_{\text{Vm}}}{A_{\text{Vm}}}\right) \; \psi_{\text{ ec,V,m}} \; \psi_{\text{ed,V,m}} \; \psi_{\text{m,V}} \; \psi_{\text{h,V,m}} \; \psi_{\text{parallel,V}} \; V_{\text{b,m}}$ ϕ V_{mbg} \geq V_{ua} A_{Vm} see ACI 318-19 , Section 17.7.2.1, Fig. R 17.7.2.1(b) A_{Vm0} = 4.5 c_{a1}^2

 $\psi_{\text{ec,V,m}} = \left(\frac{1}{1 + \frac{2e_{v}}{3c_{a1}}}\right) \le 1.0$

$$\begin{split} \psi_{\text{ed,V,m}} &= 0.7 + 0.3 \bigg(\frac{c_{a2}}{1.5c_{a1}} \bigg) \leq 1.0 \\ \psi_{\text{h,V,m}} &= \sqrt{\frac{1.5c_{a1}}{h_a}} \geq 1.0 \end{split}$$

 $V_{b,m} = \left(7 \left(\frac{I_e}{d_a}\right)^{0.2} \sqrt{d_a}\right) \lambda_a \sqrt{f_m} c_{a1}^{1.5}$

ACI 318-19 Eq. (17.7.2.1b)

AC58 Table 3.2 + ACI 318-19 Table 17.5.2

ACI 318-19 Eq. (17.7.2.1.3)

ACI 318-19 Eq. (17.7.2.3.1)

ACI 318-19 Eq. (17.7.2.4.1b)

ACI 318-19 Eq. (17.7.2.6.1)

ACI 318-19 Eq. (17.7.2.2.1a)

Variables

l _e [in.]	d _a [in.]	c _{a1} [in.]	c _{a2} [in.]	A_{Vm} [in. ²]	A_{Vm0} [in. ²]	f _m [psi]
2.750	0.500	5.083	3.187	61.00	116.28	1,500

Calculations

$\Psi_{\text{ed,V,m}}$	$\psi_{\text{parallel,V}}$	e _{c,V} [in.]	$\Psi_{\text{ec,V,m}}$	$\psi_{\text{m,V}}$	$\psi_{\text{h,V,m}}$
0.825	1.000	0.000	1.000	1.400	1.000

Results

V _{b.m} [lb]	ф	φ V _{mba} [lb]	V _{ua} [lb]	
3.089	0.700	1,311	81	

5 Required verifications under combined tension and shear forces

β_{N}	β_{V}	ζ	Utilization $\beta_{N,V}$ [%]	Status	
0.195	0.062	5/3	8	OK	

 $\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$

www.hilti.com			
Company:		Page:	29
Address:		Specifier:	
Phone I Fax:	Ī	E-Mail:	
Design:	Tanglewood	Date:	10/23/2024

6 Warnings

Fastening point:

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The min. sizes of the bricks, the masonry compressive strength, the type / strength of the mortar and the grout (in case of fully grouted CMU walls) has to fulfill the requirements given in the relevant ESR-approval or in the PTG.
- · Only the local load transfer from the anchor(s) to the wall is considered, a further load transfer in the wall is not covered by PROFIS!
- Wall is assumed as being perfectly aligned vertically checking required(!): Noncompliance can lead to significantly different distribution of forces and higher tension loads than those calculated by PROFIS. Masonry wall must not have any damages (neither visible nor not visible)! While installation, the positioning of the anchors needs to be maintained as in the design phase i.e. either relative to the brick or relative to the mortar joints.
- The effect of the joints on the compressive stress distribution on the plate / bricks was not taken into consideration.
- If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this position or the area should be assessed and reinforced. Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.
- The accessories and installation remarks listed on this report are for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- The compliance with current standards (e.g. 2018, 2015, 2012, 2009 and 2006 IBC) is the responsibility of the user.
- · Drilling method (hammer, rotary) to be in accordance with the approval!
- Masonry needs to be built in a regular way in accordance with state-of the art guidelines!

Fastening meets the design criteria!

www.hilti.com

Company:

Address:

Phone I Fax: Design:

Fastening point:

| Tanglewood Page:

Specifier: E-Mail:

Date:

10/23/2024

30

7 Installation data

Anchor plate, steel: ASTM A36; E = 29,000,001 psi; f_{vk} = 36,000 psi

Profile: no profile

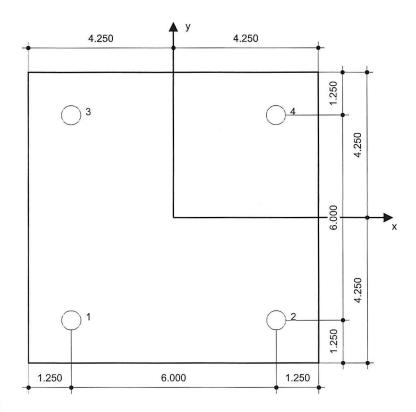
Hole diameter in the fixture: $d_f = 0.562$ in.

Plate thickness (input): 0.400 in.

Recommended plate thickness: not calculated

Drilling method: Drilled in hammer mode

Cleaning: No cleaning of the drilled hole is required


Anchor type and diameter: HY 270 + threaded rod 5.8 1/2 Item number: 385423 HAS 5.8 1/2"x4-1/2" (element) /

2194247 HIT-HY 270 (adhesive)

Maximum installation torque: 7.501 ft.lb Hole diameter in the base material: 0.562 in. Hole depth in the base material: 2.750 in.

Minimum thickness of the base material: 7.625 in.

Hilti HIT-V 5.8 threaded rod with HIT-HY 270 injection mortar with 2.75 in embedment hef, 1/2, Steel galvanized, Hammer drilled installation per ESR-4143

Coordinates Anchor [in.]

Anchor	X	' у	c _{-x}	C+x	C _{-y}	C _{+y}
1	-3.000	-3.000	57.000	59.000	36.000	39.000
2	3.000	-3.000	63.000	53.000	36.000	39.000
3	-3.000	3.000	57.000	59.000	42.000	33.000
4	3.000	3.000	63.000	53.000	42.000	33.000

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com					
Company:		Page:	3		
Address:		Specifier:			
Phone I Fax:	Î	E-Mail:			
Design:	Tanglewood	Date:	10/23/2024		
Fastening point:					

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.

ASCE Hazards Report

Address:

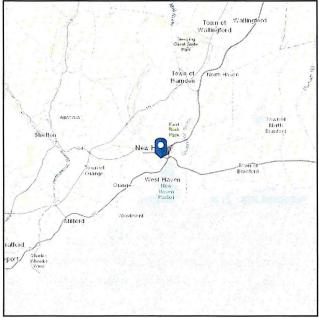
No Address at This Location

Standard:

ASCE/SEI 7-16 Latitude: 41.299819

Risk Category: ^Ⅱ


Longitude: -72.926491


Soil Class:

D - Stiff Soil

Elevation: 10.79639615913296 ft

(88 DVAN)

Wind

Results:

Wind Speed 120 Vmph 10-year MRI 75 Vmph 25-year MRI 85 Vmph 50-year MRI 91 Vmph 100-year MRI 99 Vmph

Data Source:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2

Date Accessed:

Wed Oct 23 2024

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class:	D - Stiff Soil			
Results:				
S _s :	0.201	S _{D1} :	0.086	
S ₁ :	0.054	T _L :	6	
Fa:	1.6	PGA:	0.112	
F _v :	2.4	PGA _M :	0.177	
S _{MS} :	0.321	F _{PGA} :	1.576	
S _{M1} :	0.129	l _e :	1	
S _{DS} :	0.214	C_v :	0.701	
Seismic Design MCER	Response Spectrum	0.25	Design Response Spectrum	
0.30		0.20		
0.25		0.20		
0.20		0.15		
0.15				
		0.10		
0.10		0.05		
0.05				
0		0		
0 1 2 S _a (g) vs	T(s) 4 5 6	7 0	$S_a(g) \text{ vs T(s)}$ 4 5 6	7
0.18 MCE _R \	ertical Response Spectrun	n _{0.12}	Design Vertical Response Spectrun	n
0.16		0.11	•••	
0.14		0.10		
0.12		0.09		
0.10		0.08		
0.08		0.06		
0.08	***	0.05		
	***************************************	0.04		
0.04	*************************	0.03	***************************************	
0.02	1.0 1.5	0.02 2.0 0	0.5 1.0 1.5	2.0
0 0.5 S _a (g) vs	T(s)		0.5 S _a (g) vs T(s) 1.5	

Data Accessed:

Wed Oct 23 2024

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:

1.00 in.

Concurrent Temperature:

15 F

Gust Speed

50 mph

Data Source:

Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed:

Wed Oct 23 2024

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

Mount Analysis Report

Trylon Project # 244235

October 31, 2024

Rev. 1

Client:

Verizon Wireless

Carrier Info:

Verizon Wireless

Site ID:

324458 Tanglewood

Site Name:

54 Meadow Street, New Haven. CT 06519

Site Address: Site Coordinates:

41.299819

-72.926491

Structure Type:

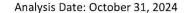
Building- Rooftop

Structure Height:

131.5 ft. Pipe Mounts

Mount Type: Mount Elevation:

127.8 ft., 130.8 ft., 137.0, 138.5 ft., 140.0 ft., 155.7 ft.,


158 ft.

STRUCTURE RATING =	20.0%	PASS

Reviewed and Approved by:

Cliff Abernathy, P.E.

Mount Analysis Report

Subject:

Analysis of the Existing Pipe Mounts.

Dear Verizon Wireless,

We have been provided with RF information, photos and sketches of the structure for the above referenced site. Verizon Wireless is proposing to change the equipment configuration on the Existing mounting hardware.

Revised antenna, coax and miscellaneous equipment schematics have been provided to us. We have been asked to evaluate this information to determine whether the mounting apparatus is adequate to safely support the proposed loading change.

RISA 3D (Version 22.0.1), a commercially available analysis software package, was used to create a threedimensional model of the antenna mounting system and calculate member stresses for various loading cases.

1. Source Data

Document Type	Source	Reference	Date
RFDS	Verizon Wireless	Site Name: Tanglewood	09/05/2024
Structural Analysis	On Air Engineering, LLC	Site Name: Tanglewood	03/22/2023
Construction Drawings	Trylon	Site Name: Tanglewood	09/26/2024

2. Analysis Criteria

Building Code / Local Code: 2022 CT State Building Code

Code Standard: TIA-222-H
Design Wind Speed (mph): 120
Design Wind Speed with Ice (mph): 50
Design Ice Thickness (in): 1.0
Risk Category/Structure Class: II

Exposure Category: C
Topographic Factor, Kzt: 1.0
Seismic Response Acceleration, Ss (g): 0.201

Seismic Response Acceleration, S1 (g): 0.054

3. Final Loading Configuration

Mount CL (ft)	Equipment CL (ft)	Qty.	Manufacturer	Model	Carrier
450	107.0	2	Samsung	VZ-AT1K04	2014 IF 15 500 0448 128 100 44 10 444 A 10 100 A
158	127.8	2	Samsung	AT1K04 DC	
130.8	130.8	2	Samsung	MT6407-77A	
127.0	127.0	2	Samsung	VZ-AT1K04	
137.0	137.0	2	Samsung	AT1K04 DC	
		4	JMA	MX10FIT665-02	
	138.5	4	Sameuna	B5/B13 RRH-BR04C	
		4	Samsung	(RFV01U-D2A)	Verizon
138.5		4	Comouna	B2/B66A RRH-BR049	Wireless
		4	Samsung	(RFV01U-D1A)	
		4	Samsung	CBRS RRH -RT4401-48A	
		5	Raycap	RVZDC-3315-PF-48	
140.0	140.0	2	Samsung	MT6407-77A	
155.7	155.7	4	JMA	MX10FIT665-02	1
158.0	158.0	4	CBNG	39GHz VectaStar NR	
156.0	156.0	4	CBNG	gNB	

4. Standard Conditions for Providing Structural Consulting Services

- Mounting hardware is analyzed to the best of our ability using all information that is provided or can be obtained during fieldwork (if authorized by client). If the existing conditions are not as we have represented in this analysis, we should be contacted immediately to evaluate the significance of the deviation and revise the assessment accordingly.
- 2) The structural analysis has been performed assuming that hardware is in "like new" condition. No allowance has been made for excessive corrosion, damaged or missing structural members, loose bolts, misaligned parts, or any reduction in strength due to the age or fatigue of the product.
- 3) The structural analysis is an assessment of the primary load carrying capacity of the hardware. In some cases, we cannot verify the capacity of every weld, plate, connection detail, etc. In some cases, structural fabrication details are unknown at the time of our analysis, and the detailed field measurements or some of the required details may not be obtainable. In instances where we cannot perform connection capacity calculations, it is assumed that the existing manufactured connections develop the full capacity of the primary members being connected.
- 4) We cannot be held responsible for mounting hardware that is installed improperly or hardware that is loose or has a tendency of working loose over the lifetime of the mounting hardware. Our analysis has been performed assuming fully tightened connections, and proper installation and symmetry of the mounting hardware per manufacturers' instructions.
- 5) The structural analysis has been performed using information currently provided by the client and potentially field verified. We have been provided with a mounting arrangement for all telecommunications equipment, including antennas RRH's, TMA's, RRU's, diplexers, surge protection devices, etc. Our analysis has been based upon a particular mounting arrangement. We are not responsible for deviations in the mounting arrangement that may occur over time. If deviations in equipment type or mounting arrangements are proposed, then we should be contacted to revise the recommendations of this structural report.
- 6) We cannot be held responsible for temporary and unbalanced loads on mounting hardware. Our analysis is based on a particular mounting arrangement or as-built field condition. We are not responsible for the methods and means of how the mounting arrangement is accomplished by the contractor. These methods and means may include rigging of equipment or hardware to lift and locate, temporary hanging of equipment in locations other than the final arrangement, movement and tie-off of tower riggers, personnel, and their equipment, etc.
- 7) Steel grade and strength is unknown and cannot be field verified. We cannot be held responsible for equipment manufactured from inferior steel or bolts. Our analysis assumes that standard structural grade steel has been used by the equipment manufacturer for all assembled parts of the mounting apparatus. Acceptable steels and connection components are specified by the American Institute of Steel Construction. It is assumed all welded connections are performed under the latest American Welding Society Code.
- 8) Steel grades have been assumed as follows, unless noted otherwise:

Assumed Steel Grades

/ House otto: Otto			
Channel, Solid Round, Angle, Plate	ASTM A36 (GR 36)		
HSS (Rectangular)	ASTM 500 (GR B-46)		
Pipe	ASTM A53 (GR 35)		
Connection Bolts	ASTM A325		
U-Bolts, Threaded Rods	SAE J429 Gr. 2		

5. Analysis Results

Mount CL (ft.)	Component	% Capacity	Pass/Fail	Notes
A COMPANIE WAS A VENETO TO THE WAS COMPANIED AS	Pipe(s)	10.5%	Pass	
158	Standoff(s)	3.6%	Pass	1
	Connection(s)	20.0%	Pass	

Structure Rating (max from all components) =	20.0%	
--	-------	--

Notes:

6. Conclusions and Recommendations

Based on the information provided, our calculations conclude that the Existing Verizon Wireless Pipe Mounts installed at 158 ft. elevation has sufficient capacity to carry the final loading configuration.

The evaluation of the supporting building structure is outside of the scope of work of this report. Therefore, Trylon is not responsible for providing calculations for the supporting building structure or commenting on its current capacity due to the loading from carrier equipment. Should any concerns arise related to the installation of the carrier loading on the building, please contact Verizon Wireless.

¹⁾ See additional documentation in "Appendix A – Additional Calculations" for calculations supporting the % capacity consumed.

APPENDIX ADDITIONAL CALCULATIONS

TIA LOAD CALCULATOR 2.1

PROJECT DATA				
Job Code:	0			
Carrier Site ID:	17290616			
Carrier Site Name:	Tanglewood			

CODES AND STANDARDS				
Building Code:	2018 IBC			
Local Building Code:	0			
Design Standard:	TIA-222-H			

STRUCTURE DETAILS				
Mount Type:	Rooftop			
Mount Elevation:	158.0	ft.		
Number of Sectors:	4			
Structure Type:	Building	-		
Structure Height:	131.5	ft.		

ANALYSIS CRITERIA				
Structure Risk Category:	11			
Exposure Category:	С			
Site Class:	D - Stiff Soil			
Ground Elevation:	10.8	ft.		

TOPOGRAPHIC DATA					
Topographic Category:	1.00				
Topographic Feature:	N/A	-			
Crest Point Elevation:	0.00	ft.			
Base Point Elevation:	0.00	ft.			
Crest to Mid-Height (L/2):	0.00	ft.			
Distance from Crest (x):	0.00	ft.			
Base Topo Factor (K _{zt}):	1.00				
Mount Topo Factor (K _{zt}):	1.00				

WIND PARAMETERS				
Design Wind Speed:	120	mph		
Wind Escalation Factor (K _s):	1.00			
Velocity Coefficient (K _z):	1.39			
Directionality Factor (K _d):	0.85			
Gust Effect Factor (Gh):	0.85			
Shielding Factor (K _a):	0.90			
Velocity Pressure (q _z):	43.65	psf		
Ground Elevation Factor (K _e):	1.00			

ICE PARAMETERS				
Design Ice Wind Speed:	50	mph		
Design Ice Thickness (t _i):	1.00	in		
Importance Factor (I _i):	1.00			
Ice Velocity Pressure (qzi):	43.65	psf		
Mount Ice Thickness (tiz):	1.17	in		

WIND STRUCTURE CALCULATIONS						
Flat Member Pressure:	66.78	psf				
Round Member Pressure:	40.07	psf				
Ice Wind Pressure:	5.84	psf				

SEISMIC PARAMETERS							
Importance Factor (I _e):	1.00						
Short Period Accel .(S _s):	0.20	g					
1 Second Accel (S ₁):	0.05	g					
Short Period Des. (S _{DS}):	0.21	g					
1 Second Des. (S _{D1}):	0.09	g					
Short Period Coeff. (Fa):	1.60						
1 Second Coeff. (F _v):	2.40						
Response Coefficient (Cs):	0.11						
Amplification Factor (A _S):	3.00						

LOAD COMBINATIONS [LRFD]

#	Description
1	1.4DL
2	1.2DL + 1WL 0 AZI
3	1.2DL + 1WL 30 AZI
4	1.2DL + 1WL 45 AZI
5	1.2DL + 1WL 60 AZI
6	1.2DL + 1WL 90 AZI
7	1.2DL + 1WL 120 AZI
8	1.2DL + 1WL 135 AZI
9	1.2DL + 1WL 150 AZI
10	1.2DL + 1WL 180 AZI
11	1.2DL + 1WL 210 AZI
12	1.2DL + 1WL 225 AZI
13	1.2DL + 1WL 240 AZI
14	1.2DL + 1WL 270 AZI
15	1.2DL + 1WL 300 AZI
16	1.2DL + 1WL 315 AZI
17	1.2DL + 1WL 330 AZI
18	0.9DL + 1WL 0 AZI
19	0.9DL + 1WL 30 AZI
20	0.9DL + 1WL 45 AZI
21	0.9DL + 1WL 60 AZI
22	0.9DL + 1WL 90 AZI
23	0.9DL + 1WL 120 AZI
24	0.9DL + 1WL 135 AZI
25	0.9DL + 1WL 150 AZI
26	0.9DL + 1WL 180 AZI
27	0.9DL + 1WL 210 AZI
28	0.9DL + 1WL 225 AZI
29	0.9DL + 1WL 240 AZI
30	0.9DL + 1WL 270 AZI
31	0.9DL + 1WL 300 AZI
32	0.9DL + 1WL 315 AZI
33	0.9DL + 1WL 330 AZI
34	1.2DL + 1DLi + 1WLi 0 AZI
35	1.2DL + 1DLi + 1WLi 30 AZI
36	1.2DL + 1DLi + 1WLi 45 AZI
37	1.2DL + 1DLi + 1WLi 60 AZI
38	1.2DL + 1DLi + 1WLi 90 AZI
39	1.2DL + 1DLi + 1WLi 120 AZI
40	1.2DL + 1DLi + 1WLi 135 AZI
41	1.2DL + 1DLi + 1WLi 150 AZI

#	Description
42	1.2DL + 1DLi + 1WLi 180 AZI
43	1.2DL + 1DLi + 1WLi 210 AZI
44	1.2DL + 1DLi + 1WLi 225 AZI
45	1.2DL + 1DLi + 1WLi 240 AZI
46	1.2DL + 1DLi + 1WLi 270 AZI
47	1.2DL + 1DLi + 1WLi 300 AZI
48	1.2DL + 1DLi + 1WLi 315 AZI
49	1.2DL + 1DLi + 1WLi 330 AZI
50	(1.2+0.2Sds) + 1.0E 0 AZI
51	(1.2+0.2Sds) + 1.0E 30 AZI
52	(1.2+0.2Sds) + 1.0E 45 AZI
53	(1.2+0.2Sds) + 1.0E 60 AZI
54	(1.2+0.2Sds) + 1.0E 90 AZI
55	(1.2+0.2Sds) + 1.0E 120 AZI
56	(1.2+0.2Sds) + 1.0E 135 AZI
57	(1.2+0.2Sds) + 1.0E 150 AZI
58	(1.2+0.2Sds) + 1.0E 180 AZI
59	(1.2+0.2Sds) + 1.0E 210 AZI
60	(1.2+0.2Sds) + 1.0E 225 AZI
61	(1.2+0.2Sds) + 1.0E 240 AZI
62	(1.2+0.2Sds) + 1.0E 270 AZI
63	(1.2+0.2Sds) + 1.0E 300 AZI
64	(1.2+0.2Sds) + 1.0E 315 AZI
65	(1.2+0.2Sds) + 1.0E 330 AZI
66	(0.9-0.2Sds) + 1.0E 0 AZI
67	(0.9-0.2Sds) + 1.0E 30 AZI
68	(0.9-0.2Sds) + 1.0E 45 AZI
69	(0.9-0.2Sds) + 1.0E 60 AZI
70	(0.9-0.2Sds) + 1.0E 90 AZI
71	(0.9-0.2Sds) + 1.0E 120 AZI
72	(0.9-0.2Sds) + 1.0E 135 AZI
73	(0.9-0.2Sds) + 1.0E 150 AZI
74	(0.9-0.2Sds) + 1.0E 180 AZI
75	(0.9-0.2Sds) + 1.0E 210 AZI
76	(0.9-0.2Sds) + 1.0E 225 AZI
77	(0.9-0.2Sds) + 1.0E 240 AZI
78	(0.9-0.2Sds) + 1.0E 270 AZI
79	(0.9-0.2Sds) + 1.0E 300 AZI
80	(0.9-0.2Sds) + 1.0E 315 AZI
81	(0.9-0.2Sds) + 1.0E 330 AZI
82-88	1.2D + 1.5 Lv1
02-00	1.2D 1 1.3 LV1

#	Description
89	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP1
90	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1
91	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP1
92	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP1
93	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP1
94	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP1
95	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1
96	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP1
97	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1
98	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1
99	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1
100	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1
101	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1
102	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1
103	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1
104	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1
105	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2
106	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2
107	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2
108	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2
109	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2
110	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2
111	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2
112	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2
113	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2
114	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2
115	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2
116	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2
117	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2
118	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2
119	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2
120	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2

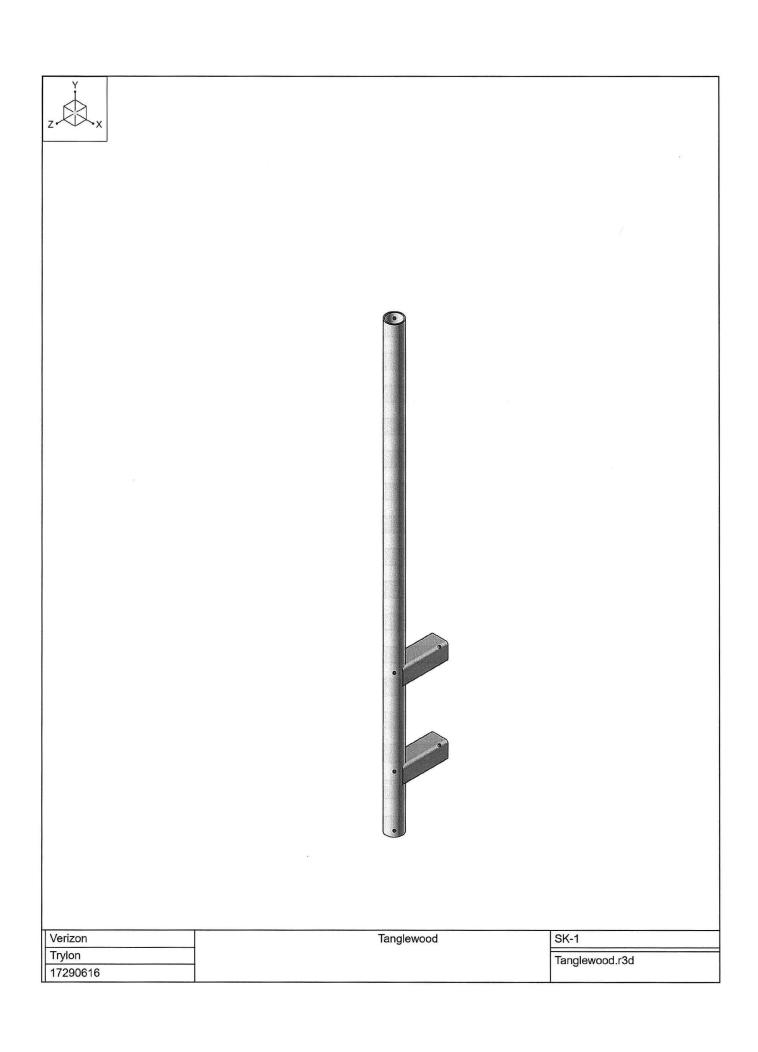
#	Description
121	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3
122	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3
123	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3
124	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3
125	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3
126	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3
127	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3
128	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3
129	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3
130	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3
131	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3
132	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3
133	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3
134	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3
135	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3
136	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3
137	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP4
138	1.2D + 1.5Lm + 1.0Wm 30 AZI - MP4
139	1.2D + 1.5Lm + 1.0Wm 45 AZI - MP4
140	1.2D + 1.5Lm + 1.0Wm 60 AZI - MP4
141	1.2D + 1.5Lm + 1.0Wm 90 AZI - MP4
142	1.2D + 1.5Lm + 1.0Wm 120 AZI - MP4
143	1.2D + 1.5Lm + 1.0Wm 135 AZI - MP4
144	1.2D + 1.5Lm + 1.0Wm 150 AZI - MP4
145	1.2D + 1.5Lm + 1.0Wm 180 AZI - MP4
146	1.2D + 1.5Lm + 1.0Wm 210 AZI - MP4
147	1.2D + 1.5Lm + 1.0Wm 225 AZI - MP4
148	1.2D + 1.5Lm + 1.0Wm 240 AZI - MP4
149	1.2D + 1.5Lm + 1.0Wm 270 AZI - MP4
150	1.2D + 1.5Lm + 1.0Wm 300 AZI - MP4
151	1.2D + 1.5Lm + 1.0Wm 315 AZI - MP4
152	1.2D + 1.5Lm + 1.0Wm 330 AZI - MP4

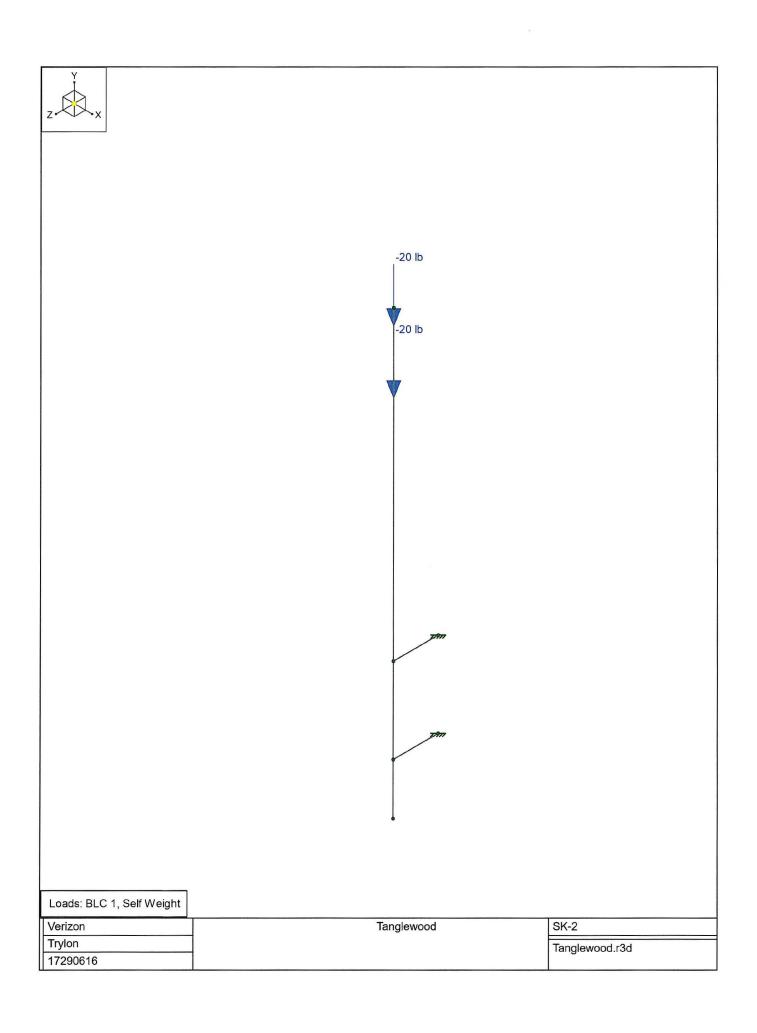
^{*}This page shows an example of maintenance loads for (4) pipes, the number of mount pipe LCs may vary per site

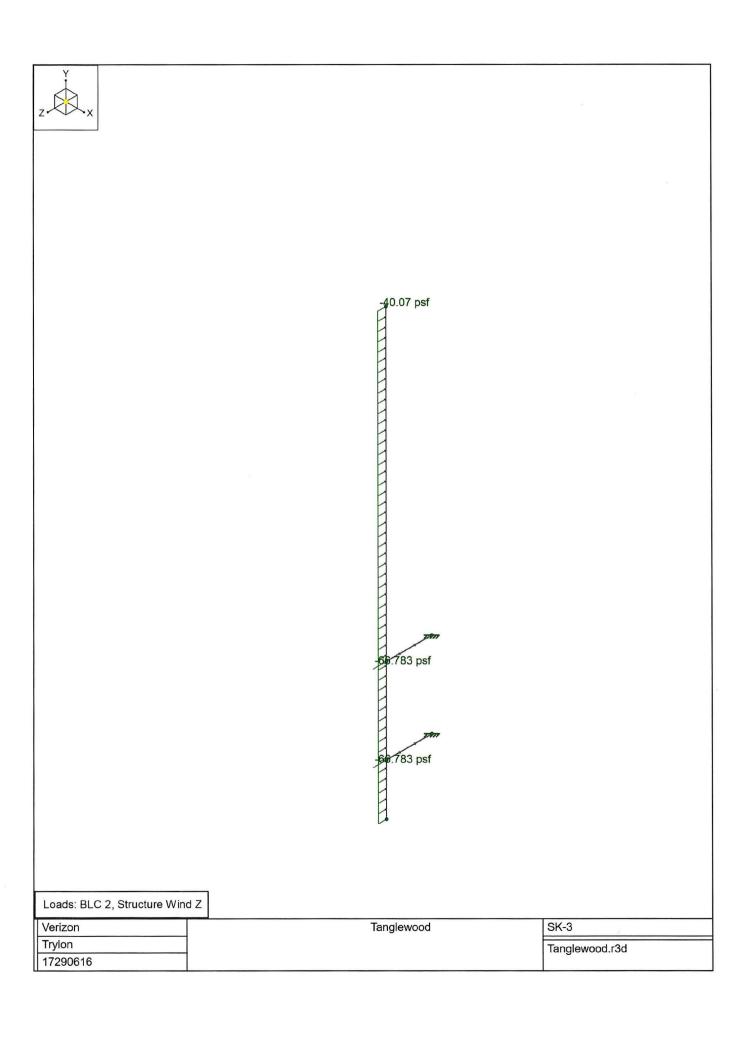
EQUIPMENT LOADING

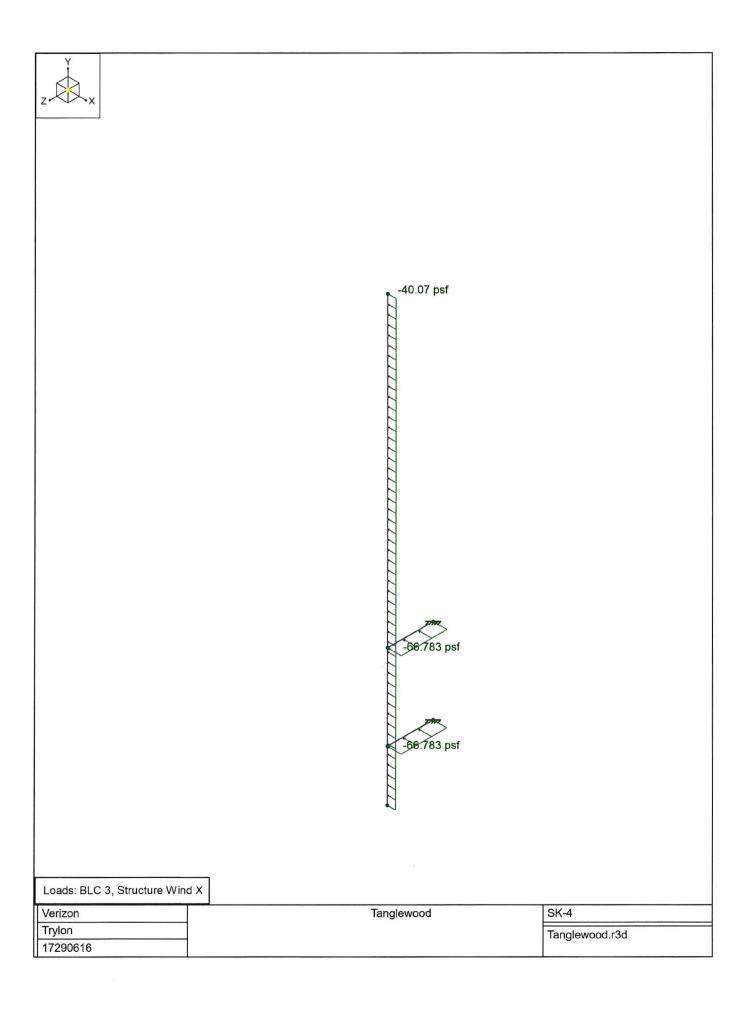
Appurtenance Name	Qty.	Elevation [ft]		EPA _N (ft2)	EPA _T (ft2)	Weight (lbs)
39GHZ VECTASAR NRGNB	1	158	No Ice	2.24	1.25	40.00
:			w/ Ice	2.54	1.49	50.58
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice		- 4	
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			(°
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
	1		w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
	量性		No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			
			No Ice			
			w/ Ice			1000
			No Ice			
			w/ Ice			
					(84) (14) (8) (8)	
			No Ice			
			w/ Ice			
	13 334		No Ice			
			w/ Ice			

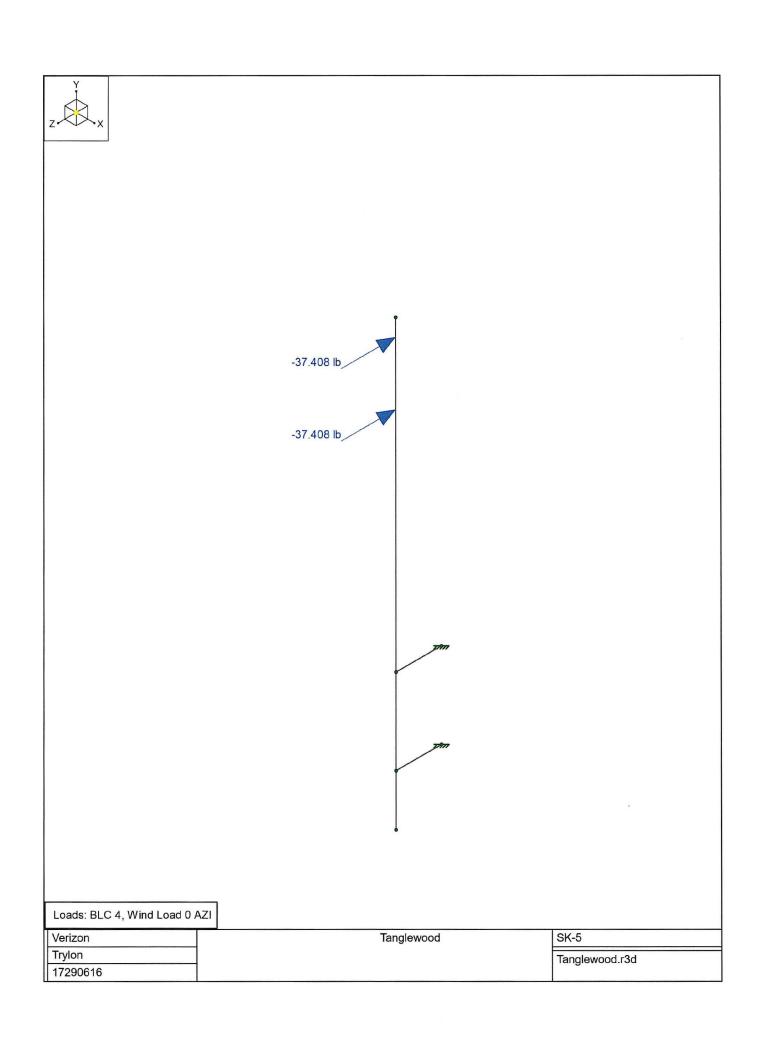
EQUIPMENT WIND CALCULATIONS

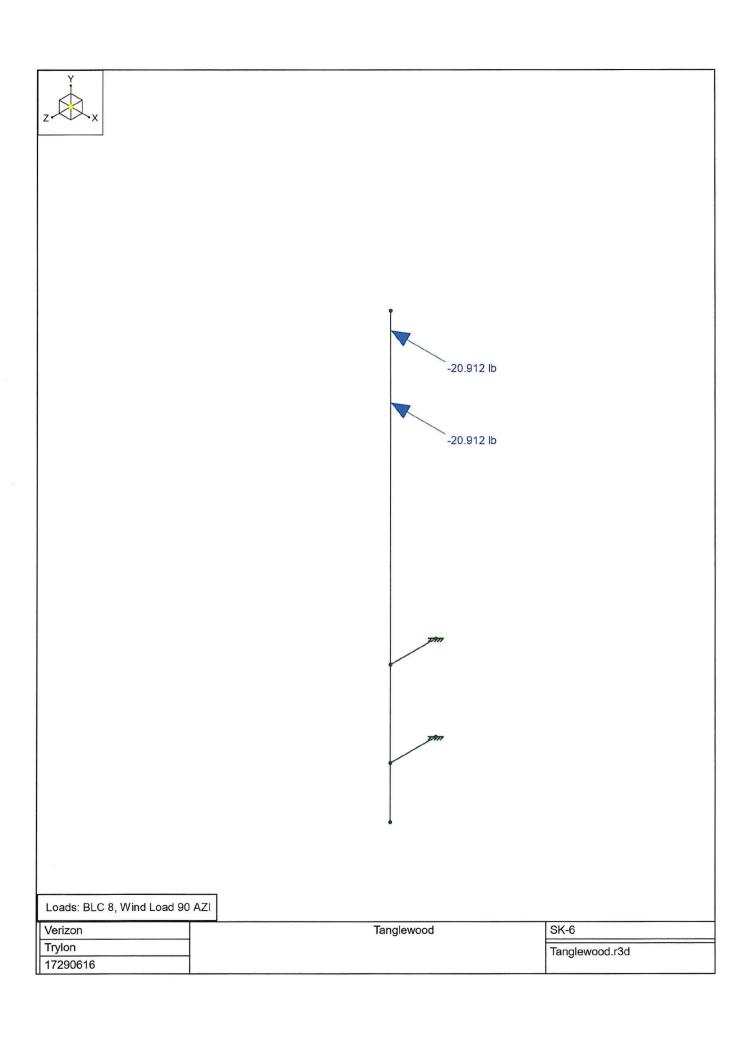

Appurtenance Name	Qty.	Elevation [ft]	K _{zt}	Kz	K _d	t _d	q _z [psf]	q _{zi} [psf]
9GHZ VECTASAR NRGNI	1	158	1.00	1.39	0.85	1.17	43.65	7.58
								50.25 B. M.C.A.
							5	
							2000000	
							A Committee of the Comm	
	ender!							
	A, v.A.s.							
					-3. p. 6. 1. s.			13.15

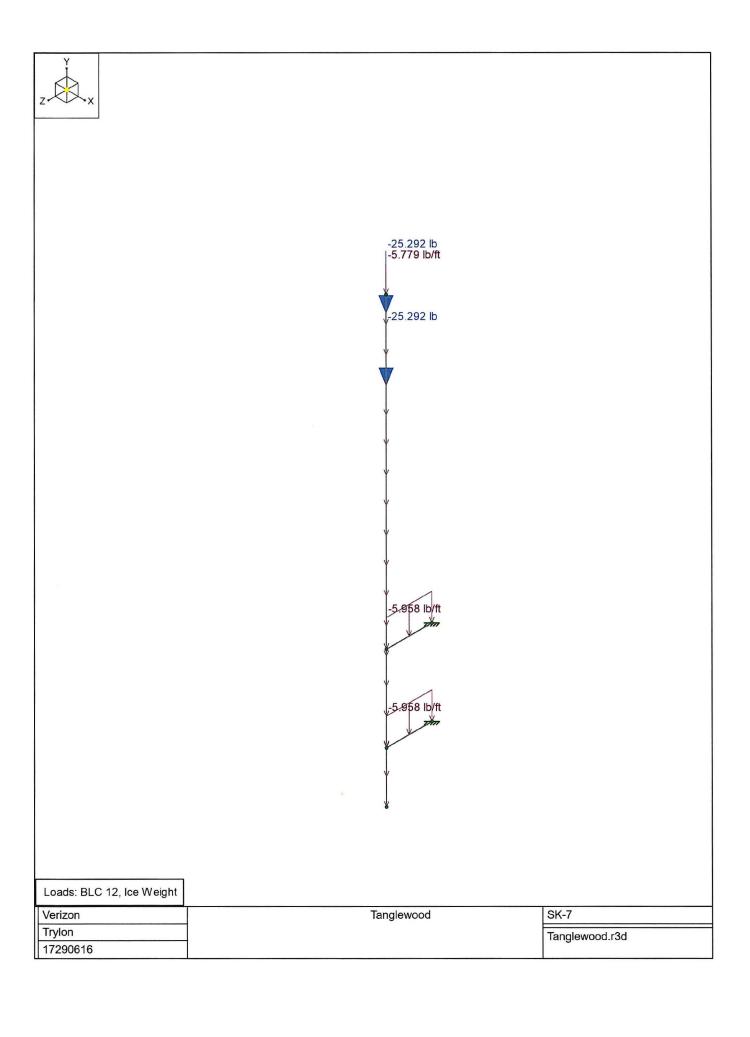

EQUIPMENT LATERAL WIND FORCE CALCULATIONS

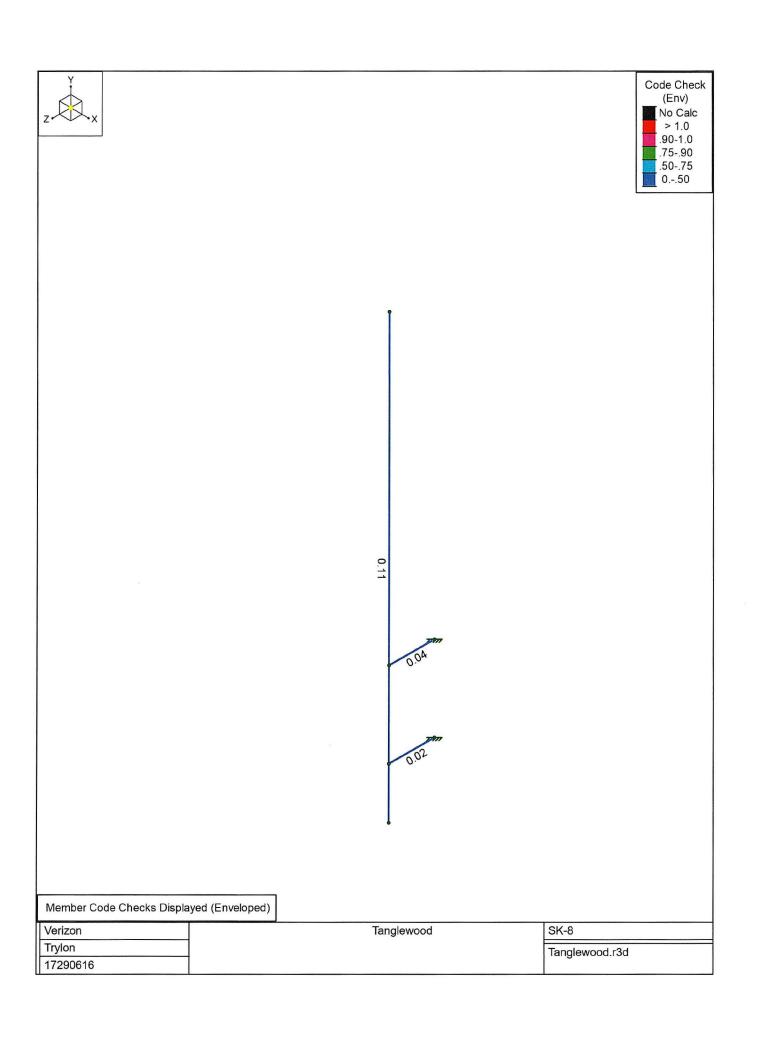

Appurtenance Name	Qty.	-	0° 180°	30° 210°	60° 240°	90° 270°	120° 300°	150° 330°
39GHZ VECTASAR NRGNB	1	No Ice	74.82	50.07	66.57	41.82	66.57	50.07
		w/ Ice	14.70	10.15	13.18	8.64	13.18	10.15
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice						
		w/ Ice						
		No Ice				arara - ''		
	-	w/ Ice						
		No Ice						
I 		w/ Ice						
		No Ice						
		w/ Ice		N. 150 (1975)		200		
		No Ice						
		w/ Ice				2000000		The Addition to the Court
		No Ice						
		w/ Ice				FT 270-250-3-200-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	1.80 (2.00 (3.00 (4.00 (NO. AND ROOM AND ADDRESS.
		No Ice						
		w/ Ice	Standard Charles at	Walter Water State	Cartha telephor		a a tribanci	
		No Ice						
		w/ Ice	91 11 11 11 12 11 12 11					
		No Ice w/ Ice						
	Market and a	No Ice	Part of the stage of the			erinaria	and the state of the state of	
		w/ Ice						
					Nanda - Texas			
		No Ice						
		w/ Ice	Tarana Partie Partie	74		100 C S 1 S 14 16 1		
		No Ice						
		w/ Ice						
		No Ice	200					
	-	w/ Ice						
		No Ice						
		w/ Ice						
	6.	No Ice						
		w/ Ice						

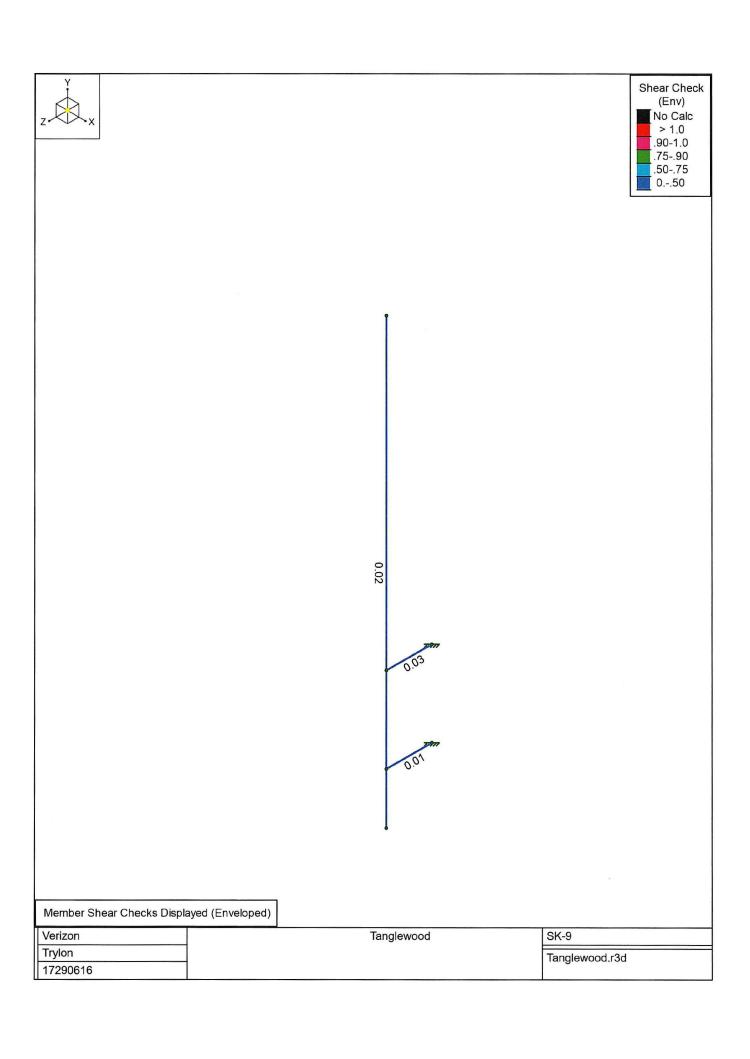

EQUIPMENT SEISMIC FORCE CALCULATIONS


Appurtenance Name	Qty.	Elevation [ft]	Weight [lbs]	F _p [lbs]
39GHZ VECTASAR NRGNB	1	158	40	12.86
1				
	1,514, 25,44			
		2 1 2 1		









Job Number :17290616 Checked By : CTR

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rule	Area [in²	llvv [in4]	lzz [in4]	.l [in4]
1	Pipe 2.0	PIPE 2.0	Beam	Pipe	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
2	Pipe 2.5	PIPE 2.5	Beam	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
3	HSS3X3X3	HSS3X3X3	Beam	SquareTube	A500 Gr.B Rect	Typical 1	1.89	2.46	2.46	4.03

Cold Formed Steel Section Sets

	Label	Shape	Type Design List	Material	Design Rule	Area [in²]	lyy [in⁴]	lzz [in⁴]	J [in⁴]
1	Unistrut	P1000	Column CS	A653 SS Gr.33	Typical	0.48	0.149	0.203	0.002
2	Z3x6x3x3	Z3X6X3X3	Beam None	A653 SS Gr33	Typical 1	2.009	3.087	10.64	0.024

Member Primary Data

	Label	I Node	J Node	Section/Shape	Type	Design List	Material	Design Rule
1	MP1	N3	N1	Pipe 2.5	Beam	Pipe	A53 Gr.B	Typical
2	M3	N5	N9	HSS3X3X3	Beam	SquareTube	A500 Gr.B Rect	Typical 1
3	M4	N4	N10	HSS3X3X3	Beam	SquareTube	A500 Gr.B Rect	Typical 1

Nodal Loads and Enforced Displacements

No Data to Drint	
No Data to Print	

Member Point Loads (BLC 1 : Self Weight)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Υ	-20	3
2	MP1	Υ	-20	14

Member Point Loads (BLC 4 : Wind Load 0 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	-37.408	3
2	MP1	Z	-37.408	14

Member Point Loads (BLC 5 : Wind Load 30 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	-28.825	3
2	MP1	Z	-28.825	14
3	MP1	Χ	-16.642	3
4	MP1	Χ	-16.642	14

Member Point Loads (BLC 6 : Wind Load 45 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	-20.619	3
2	MP1	Z	-20.619	14
3	MP1	X	-20.619	3
4	MP1	X	-20.619	14

Checked By: CTR

Member Point Loads (BLC 7 : Wind Load 60 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	-12.518	3
2	MP1	Z	-12.518	14
3	MP1	X	-21.682	3
4	MP1	X	-21.682	14

Member Point Loads (BLC 8: Wind Load 90 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	-20.912	3
2	MP1	X	-20.912	14

Member Point Loads (BLC 9 : Wind Load 120 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	12.518	3
2	MP1	Z	12.518	14
3	MP1	X	-21.682	3
4	MP1	X	-21.682	14

Member Point Loads (BLC 10 : Wind Load 135 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	20.619	3
2	MP1	Z	20.619	14
3	MP1	X	-20.619	3
4	MP1	X	-20.619	14

Member Point Loads (BLC 11 : Wind Load 150 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	28.825	3
2	MP1	Z	28.825	14
3	MP1	X	-16.642	3
4	MP1	X	-16.642	14

Member Point Loads (BLC 12 : Ice Weight)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Υ	-25.292	3
2	MP1	Υ	-25 292	14

Member Point Loads (BLC 15 : Ice Wind Load 0 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	-7.35	3
2	MP1	Z	-7.35	14

Member Point Loads (BLC 16: Ice Wind Load 30 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	-5.709	3
2	MP1	Z	-5.709	14

Checked By: CTR

Member Point Loads (BLC 16 : Ice Wind Load 30 AZI) (Continued)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
3	MP1	X	-3.296	3
4	MP1	X	-3.296	14

Member Point Loads (BLC 17 : Ice Wind Load 45 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	-4.126	3
2	MP1	Z	-4.126	14
3	MP1	Χ	-4.126	3
4	MP1	X	-4.126	14

Member Point Loads (BLC 18 : Ice Wind Load 60 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	-2.539	3
2	MP1	Z	-2.539	14
3	MP1	Χ	-4.397	3
4	MP1	X	-4.397	14

Member Point Loads (BLC 19 : Ice Wind Load 90 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	-4.32	3
2	MP1	X	-4 32	14

Member Point Loads (BLC 20 : Ice Wind Load 120 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	2.539	3
2	MP1	Z	2.539	14
3	MP1	X	-4.397	3
4	MP1	X	-4.397	14

Member Point Loads (BLC 21 : Ice Wind Load 135 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	4.126	3
2	MP1	Z	4.126	14
3	MP1	X	-4.126	3
1	MP1	X	-4.126	14

Member Point Loads (BLC 22 : Ice Wind Load 150 AZI)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	Z	5.709	3
2	MP1	Z	5.709	14
3	MP1	Χ	-3.296	3
4	MP1	X	-3.296	14

Number:17290616 Checked By: CTR

Member Point Loads (BLC 23 : Seismic Load Z)

Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1 MP1	Z	-6.432	3
2 MP1	Z	-6.432	14

Member Point Loads (BLC 24 : Seismic Load X)

	Member Label	Direction	Magnitude [lb, lb-ft]	Location [(in, %)]
1	MP1	X	-6.432	3
2	MP1	X	-6.432	14

Member Area Loads

No Data to Brint	
No Data to Print	

Member Distributed Loads (BLC 2 : Structure Wind Z)

	Member Label	Direction	Start Magnitude [lb/ft, F, psf, lb-ft/in]	End Magnitude [lb/ft, F, psf, lb-ft/in]	Start Location [(in, %)]	End Location [(in, %)]
1	MP1	SZ	-40.07	-40.07	0	%100
2	M3	SZ	-66.783	-66.783	0	%100
3	M4	SZ	-66.783	-66.783	0	%100

Member Distributed Loads (BLC 3 : Structure Wind X)

1	Member Labe	Direction	Start Magnitude [lb/ft, F, psf, lb-ft/in]	End Magnitude [lb/ft, F, psf, lb-ft/in]	Start Location [(in, %)]	End Location [(in, %)]
1	MP1	SX	-40.07	-40.07	0 '	%100
2	M3	SX	-66.783	-66.783	0	%100
3	M4	SX	-66.783	-66.783	0	%100

Member Distributed Loads (BLC 12 : Ice Weight)

1	Member Labe	el Direction S	Start Magnitude [lb/ft, F, psf, lb-ft/in]	End Magnitude [lb/ft, F, psf, lb-ft/in]	Start Location [(in, %)]	End Location [(in, %)]
1	MP1	Υ	-5.779	-5.779	0	%100
2	М3	Υ	-5.958	-5.958	0	%100
3	M4	Y	-5.958	-5.958	0	%100

Member Distributed Loads (BLC 13 : Structure Ice Wind Z)

ľ	Member Label	Direction	Start Magnitude [lb/ft, F, psf, lb-ft/in]	End Magnitude [lb/ft, F, psf, lb-ft/in]	Start Location [(in, %)]	End Location [(in, %)]
1	MP1	SZ	-5.838	-5.838	0	%100
2	M3	SZ	-5.838	-5.838	0	%100
3	M4	SZ	-5.838	-5.838	0	%100

Member Distributed Loads (BLC 14 : Structure Ice Wind X)

Ν	1ember Lab	el Direction S	Start Magnitude [lb/ft, F, psf, lb-ft/in]	End Magnitude [lb/ft, F, psf, lb-ft/in]	Start Location [(in, %)] End Location [(in, %)]
1	MP1	SX	-5.838	-5.838	0	%100
2	M3	SX	-5.838	-5.838	0	%100
3	M4	SX	-5.838	-5.838	0	%100

RISA-3D Version 22 [Tanglewood.r3d] Page 4

Checked By: CTR

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Point	Distributed
1	Self Weight	DL		5 A 8 7 1 8 4 7 6	1. The second second	2	
2	Structure Wind Z	WLZ					3
3	Structure Wind X	WLX					3
4	Wind Load 0 AZI	WLZ				2	
5	Wind Load 30 AZI	None	Control of the second	ARTHUR STATE		4	add to state
6	Wind Load 45 AZI	None				4	
7	Wind Load 60 AZI	None			2007 2007 4	4	
8	Wind Load 90 AZI	WLX				2	
9	Wind Load 120 AZI	None			100000000000000000000000000000000000000	4	
10	Wind Load 135 AZI	None				4	
11	Wind Load 150 AZI	None	The Bush of the		1 - 1 1 - 1 6 3	4	
12	Ice Weight	OL1				2	3
13	Structure Ice Wind Z	OL2	and the second	2012/2017/2	190 E - 12 C	1 2 3 3 2 2 2 2 3	3
14	Structure Ice Wind X	OL3					3
15	Ice Wind Load 0 AZI	OL2	2000		rice Courter	2	
16	Ice Wind Load 30 AZI	None				4	
17	Ice Wind Load 45 AZI	None	ART DUE DES			4	
18	Ice Wind Load 60 AZI	None				4	
19	Ice Wind Load 90 AZI	OL3	127. 1 -7.22		MARKET AND A	2	
20	Ice Wind Load 120 AZI	None				4	
21	Ice Wind Load 135 AZI	None	100000000000000000000000000000000000000			4	
22	Ice Wind Load 150 AZI	None				4	
23	Seismic Load Z	ELZ	141755		-0.322	2	
24	Seismic Load X	ELX	-0.322			2	
25	Maintenance Load 1 (Lm)	None					
26	Maintenance Load 2 (Lm)	None					
27	Maintenance Load 3 (Lm)	None					140000000000000000000000000000000000000

Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4DL	Yes	Y	DL	1.4								
2	1.2DL + 1WL 0 AZI	Yes	Υ	DL	1.2	2	1	3		4	1		
3	1.2DL + 1WL 30 AZI	Yes	Y	DL	1.2	2	0.866	3	0.5	5	1	5 1 7	
4	1.2DL + 1WL 45 AZI	Yes	Υ	DL	1.2	2	0.707	3	0.707	6	1		
5	1.2DL + 1WL 60 AZI	Yes	Y	DL	1.2	2	0.5	3	0.866	7	71-		1 4 4 4
6	1.2DL + 1WL 90 AZI	Yes	Υ	DL	1.2	2		3	1	8	1		
7	1.2DL + 1WL 120 AZI	Yes	Υ	DL	1.2	2	-0.5	3	0.866	9	1		- 1
8	1.2DL + 1WL 135 AZI	Yes	Υ	DL	1.2	2	-0.707	3	0.707	10	1		
9	1.2DL + 1WL 150 AZI	Yes	Υ	DL	1.2	2	-0.866	3	0.5	11	1		1 2 2 2
10	1.2DL + 1WL 180 AZI	Yes	Υ	DL	1.2	2	-1	3		4	-1		
11	1.2DL + 1WL 210 AZI	Yes	Υ	DL	1.2	2	-0.866	3	-0.5	5	-1	10000	100
12	1.2DL + 1WL 225 AZI	Yes	Υ	DL	1.2	2	-0.707	3	-0.707	6	-1		
13	1.2DL + 1WL 240 AZI	Yes	Y	DL	1.2	2	-0.5	3	-0.866	7	-1		
14	1.2DL + 1WL 270 AZI	Yes	Υ	DL	1.2	2		3	-1	8	-1		
15	1.2DL + 1WL 300 AZI	Yes	Y	DL	1.2	2	0.5	3	-0.866	9	-1	1000	-
16	1.2DL + 1WL 315 AZI	Yes	Y	DL	1.2	2	0.707	3	-0.707	10	-1		
17	1.2DL + 1WL 330 AZI	Yes	Υ	DL	1.2	2	0.866	3	-0.5	11	-1	3420	1-1-2-0
18	0.9DL + 1WL 0 AZI	Yes	Υ	DL	0.9	2	1	3		4	1		
19	0.9DL + 1WL 30 AZI	Yes	Υ	DL	0.9	2	0.866	3	0.5	5	1		1 7 7 7
20	0.9DL + 1WL 45 AZI	Yes	Υ	DL	0.9	2	0.707	3	0.707	6	1		
21	0.9DL + 1WL 60 AZI	Yes	Υ	DL	0.9	2	0.5	3	0.866	7	1		100
22	0.9DL + 1WL 90 AZI	Yes	Υ	DL	0.9	2		3	1	8	1		
23	0.9DL + 1WL 120 AZI	Yes	Υ	DL	0.9	2	-0.5	3	0.866	9	1	The Car	47724
24	0.9DL + 1WL 135 AZI	Yes	Υ	DL	0.9	2	-0.707	3	0.707	10	1		

Checked By: CTR

Load Combinations (Continued)

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor		Factor	BLC	Factor	BLC	Factor
25	0.9DL + 1WL 150 AZI	Yes	Y	DL	0.9	2	-0.866	3	0.5	11	1.	1	
26	0.9DL + 1WL 180 AZI	Yes	Y	DL	0.9	2	-1	3		4	-1		
27	0.9DL + 1WL 210 AZI	Yes	Υ	DL	0.9	2	-0.866	3	-0.5	5	-1	196	1715
28	0.9DL + 1WL 225 AZI	Yes	Y	DL	0.9	2	-0.707	3	-0.707	6	-1		
29	0.9DL + 1WL 240 AZI	Yes	Υ	DL	0.9	2	-0.5	3	-0.866	7	-1		1 2 2 2 7
30	0.9DL + 1WL 270 AZI	Yes	Υ	DL	0.9	2		3	-1	8	-1		
31	0.9DL + 1WL 300 AZI	Yes	Y	DL	0.9	2	0.5	3	-0.866	9	-1		
32	0.9DL + 1WL 315 AZI	Yes	Y	DL	0.9	2	0.707	3	-0.707	10	-1		
33	0.9DL + 1WL 330 AZI	Yes	Y	DL	0.9	2	0.866	3	-0.5	11	-1		
34	1.2DL + 1DLi + 1WLi 0 AZI	Yes	Υ	DL	1.2	OL1	1	13	1	14		15	1
35	1.2DL + 1DLi + 1WLi 30 AZI	Yes	Y	DL	1.2	OL1	1	13	0.866	14	0.5	16	1
36	1.2DL + 1DLi + 1WLi 45 AZI	Yes	Υ	DL	1.2	OL1	1	13	0.707	14	0.707	17	1
37	1.2DL + 1DLi + 1WLi 60 AZI	Yes	Y	DL	1.2	OL1	1	13	0.5	14	0.866	18	1
38	1.2DL + 1DLi + 1WLi 90 AZI	Yes	Υ	DL	1.2	OL1	1	13		14	1	19	1
39	1.2DL + 1DLi + 1WLi 120 AZI	Yes	Υ	DL	1.2	OL1	1	13	-0.5	14	0.866	20	1
40	1.2DL + 1DLi + 1WLi 135 AZI	Yes	Υ	DL	1.2	OL1	1	13	-0.707	14	0.707	21	1
41	1.2DL + 1DLi + 1WLi 150 AZI	Yes	Υ	DL	1.2	OL1	1	13	-0.866	14	0.5	22	1
42	1.2DL + 1DLi + 1WLi 180 AZI	Yes	Υ	DL	1.2	OL1	1	13	-1	14		15	-1
43	1.2DL + 1DLi + 1WLi 210 AZI	Yes	Υ	DL	1.2	OL1	1	13	-0.866	14	-0.5	16	1 11
44	1.2DL + 1DLi + 1WLi 225 AZI	Yes	Υ	DL	1.2	OL1	1	13	-0.707	14	-0.707	17	-1
45	1.2DL + 1DLi + 1WLi 240 AZI	Yes	Υ	DL	1.2	OL1	1	13	-0.5	14	-0.866	18	-1
46	1.2DL + 1DLi + 1WLi 270 AZI	Yes	Υ	DL	1.2	OL1	1	13		14	-1	19	-1
47	1.2DL + 1DLi + 1WLi 300 AZI	Yes	Y	DL	1.2	OL1	1	13	0.5	14	-0.866	20	-1
48	1.2DL + 1DLi + 1WLi 315 AZI	Yes	Υ	DL	1.2	OL1	1	13	0.707	14	-0.707	21	-1
49	1.2DL + 1DLi + 1WLi 330 AZI	Yes	Υ	DL	1.2	OL1	1	13	0.866	14	-0.5	22	-1:
50	(1,2+0,2Sds) + 1,0E 0 AZI	Yes	Υ	DL	1.243	ELZ	1	ELX					
51	(1.2+0.2Sds) + 1.0E 30 AZI	Yes	Υ	DL	1.243	ELZ	0.866	ELX	0.5	500		() () ()	
52	(1.2+0.2Sds) + 1.0E 45 AZI	Yes	Υ	DL	1.243	ELZ	0.707	ELX	0.707				
53	(1.2+0.2Sds) + 1.0E 60 AZI	Yes	Υ	DL	1.243	ELZ	0.5	ELX	0.866		1000		
54	(1.2+0.2Sds) + 1.0E 90 AZI	Yes	Υ	DL	1.243	ELZ		ELX	1				
55	(1.2+0.2Sds) + 1.0E 120 AZI	Yes	Υ	DL	1.243	ELZ	-0.5	ELX	0.866	greet steps	1 1 1		3 3 5 2 7
56	(1.2+0.2Sds) + 1.0E 135 AZI	Yes	Υ	DL	1.243	ELZ	-0.707	ELX	0.707				
57	(1.2+0.2Sds) + 1.0E 150 AZI	Yes	Υ	DL	1.243	ELZ	-0.866	ELX	0.5				1
58	(1.2+0.2Sds) + 1.0E 180 AZI	Yes	Υ	DL	1.243	ELZ	-1	ELX					
59	(1.2+0.2Sds) + 1.0E 210 AZI	Yes	Y	DL	1.243	ELZ	-0.866	ELX	-0.5		711	*****	4.0
60	(1.2+0.2Sds) + 1.0E 225 AZI	Yes	Υ	DL	1.243	ELZ	-0.707	ELX	-0.707				
61	(1.2+0.2Sds) + 1.0E 240 AZI	Yes	Y	DL	1.243	ELZ	-0.5	ELX			4 700	No.	
62	(1.2+0.2Sds) + 1.0E 270 AZI	Yes	Υ	DL	1.243	ELZ		ELX	-1				
63	(1.2+0.2Sds) + 1.0E 300 AZI	Yes	Υ	DL	1.243	ELZ	0.5	ELX	-0.866		1 7 7		HELD Y
64	(1.2+0.2Sds) + 1.0E 315 AZI	Yes	Υ	DL	1.243	ELZ	0.707	ELX	-0.707				
65	(1.2+0.2Sds) + 1.0E 330 AZI	Yes	Υ	DL	1.243	ELZ	0.866	ELX	-0.5	-	THE STA		. 47.67
66	(0.9-0.2Sds) + 1.0E 0 AZI	Yes	Υ	DL	0.857	ELZ	1	ELX					
67	(0.9-0.2Sds) + 1.0E 30 AZI	Yes	Y	DL	0.857	ELZ	0.866	ELX	0.5		P. P. Ty		
68	(0.9-0.2Sds) + 1.0E 45 AZI	Yes	Υ	DL	0.857	ELZ	0.707	ELX	0.707				
69	(0.9-0.2Sds) + 1.0E 60 AZI	Yes	Υ	DL	0.857	ELZ	0.5	ELX	0.866		The state	-/	4473
70	(0.9-0.2Sds) + 1.0E 90 AZI	Yes	Υ	DL	0.857	ELZ		ELX					
71	(0.9-0.2Sds) + 1.0E 120 AZI	Yes	Υ	DL	0.857	ELZ	-0.5	ELX					
72	(0.9-0.2Sds) + 1.0E 135 AZI	Yes	Y	DL	0.857	ELZ	-0.707	ELX					
73	(0.9-0.2Sds) + 1.0E 150 AZI	Yes	Y	DL	0.857	ELZ	-0.866		0.5		1000		1. 1. 1. 1. 1.
74	(0.9-0.2Sds) + 1.0E 180 AZI	Yes	Y	DL	0.857	ELZ	-1	ELX					
75	(0.9-0.2Sds) + 1.0E 210 AZI	Yes	Y	DL	0.857	ELZ	-0.866		-0.5	100		2 1 20	
76	(0.9-0.2Sds) + 1.0E 225 AZI	Yes	Y	DL	0.857	ELZ	-0.707		-0.707				
77	(0.9-0.2Sds) + 1.0E 240 AZI	Yes	Y	DL	0.857	ELZ	-0.5	-	-0.866			7 18	1
78	(0.9-0.2Sds) + 1.0E 270 AZI	Yes	Y	DL	0.857	ELZ	7.0	ELX					
79	(0.9-0.2Sds) + 1.0E 300 AZI	Yes	Y	DL	0.857	ELZ	0.5		-0.866	446 V	-17	123 4 PE	

Checked By: CTR

Load Combinations (Continued)

Description		Description	Solvo	P Dolta	BI C	Factor	BLC	Factor	BLC	Factor	BI C	Factor	BI C	Factor
81	90										BLC	1 actor	BLC	Tacion
12D + 1.5 LV1								-			W. F. S. S.	2.962	4 . 47	
83			-			-			LLA	-0.5				100
Fig.			100000000000000000000000000000000000000							F1 F1	t with		J## No. 1	
Fig. 12D + 1.5.Lm + 1.0Wm 30 AZI - MP1 Yes Y DL 1.2 27 1.5 5 0.062 2 0.054 3 0.031			700 70						1	0.062	2	0.062	2	* 1 * *
86 12D + 1.5Lm + 1.0Wm 45 AZ MP1 Yes Y DL 1.2 27 1.5 6 0.062 2 0.044 3 0.044 81 12D + 1.5Lm + 1.0Wm 90 AZ MP1 Yes Y DL 1.2 27 1.5 8 0.062 2 0.031 3 0.054 81 12D + 1.5Lm + 1.0Wm 90 AZ MP1 Yes Y DL 1.2 27 1.5 8 0.062 2 0.031 3 0.054 90 1.2D + 1.5Lm + 1.0Wm 135 AZ MP1 Yes Y DL 1.2 27 1.5 9 0.062 2 0.031 3 0.054 90 1.2D + 1.5Lm + 1.0Wm 135 AZ MP1 Yes Y DL 1.2 27 1.5 10 0.062 2 0.044 3 0.044 91 1.2D + 1.5Lm + 1.0Wm 150 AZ MP1 Yes Y DL 1.2 27 1.5 10 0.062 2 0.044 3 0.031 0.054 92 1.2D + 1.5Lm + 1.0Wm 180 AZ MP1 Yes Y DL 1.2 27 1.5 10 0.062 2 0.054 3 0.031 0.054 1.2D + 1.5Lm + 1.0Wm 210 AZ MP1 Yes Y DL 1.2 27 1.5 5 0.062 2 0.054 3 0.031 0.054 1.2D + 1.5Lm + 1.0Wm 225 AZ MP1 Yes Y DL 1.2 27 1.5 5 0.062 2 0.054 3 0.051 0.05			757/201											0.031
87 12D + 1,5Lm + 1,0Wm 90 AZ MP1 Yes Y DL 1.2 27 1.5 8 0,062 2 0.031 3 0,054 88 12D + 1,5Lm + 1,0Wm 120 AZ -MP1 Yes Y DL 1.2 27 1.5 8 0,062 2 -0.031 3 0,054 90 12D + 1,5Lm + 1,0Wm 120 AZ -MP1 Yes Y DL 1.2 27 1.5 10 0,062 2 -0.044 3 0,044 91 12D + 1,5Lm + 1,0Wm 150 AZ -MP1 Yes Y DL 1.2 27 1.5 10 0,062 2 -0.054 3 0,031 92 1,2D + 1,5Lm + 1,0Wm 150 AZ -MP1 Yes Y DL 1.2 27 1.5 11 0,062 2 -0.054 3 0,031 93 1,2D + 1,5Lm + 1,0Wm 150 AZ -MP1 Yes Y DL 1.2 27 1.5 11 0,062 2 -0.054 3 0,031 93 1,2D + 1,5Lm + 1,0Wm 120 AZ -MP1 Yes Y DL 1.2 27 1.5 5 0,062 2 -0.054 3 -0.031 94 1,2D + 1,5Lm + 1,0Wm 204 AZ -MP1 Yes Y DL 1.2 27 1.5 5 0,062 2 -0.054 3 -0.031 95 1,2D + 1,5Lm + 1,0Wm 204 AZ -MP1 Yes Y DL 1.2 27 1.5 5 0,062 2 -0.044 3 -0.044 96 1,2D + 1,5Lm + 1,0Wm 300 AZ -MP1 Yes Y DL 1.2 27 1.5 5 0,062 2 -0.031 3 -0.054 97 1,2D + 1,5Lm + 1,0Wm 300 AZ -MP1 Yes Y DL 1.2 27 1.5 5 0,062 2 -0.031 3 -0.054 98 1,2D + 1,5Lm + 1,0Wm 300 AZ -MP1 Yes Y DL 1.2 27 1.5 5 0,062 2 -0.031 3 -0.054 99 1,2D + 1,5Lm + 1,0Wm 300 AZ -MP1 Yes Y DL 1.2 27 1.5 9 0,062 2 0.031 3 -0.054 99 1,2D + 1,5Lm + 1,0Wm 30 AZ -MP1 Yes Y DL 1.2 27 1.5 10 0,062 2 0.044 3 -0.044 91 1,2D + 1,5Lm + 1,0Wm 30 AZ -MP1 Yes Y DL 1.2 27 1.5 10 0,062 2 0.054 3 -0.041 101 1,2D + 1,5Lm + 1,0Wm 30 AZ -MP2 Yes Y DL 1.2 28 1.5 6 0,062 2 0,062 3 -0.041 101 1,2D + 1,5Lm + 1,0Wm 30 AZ -MP2 Yes Y DL 1.2 28 1.5 6 0,062 2 0,064 3 -0.041 101 1,2D + 1,5Lm + 1,0Wm 30 AZ -MP2 Yes Y DL 1.2 28 1.5 6 0,062 2 0,054 3 -0.041 101 1			-C20 101						-			-		
88 12D + 1.5Lm + 1.0Wm 90 AZI - MP1 Ves Y DL 1.2 27 1.5 8 0.002 2 0.031 3 0.062 90 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1 Ves Y DL 1.2 27 1.5 9 0.002 2 0.031 3 0.044 91 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP1 Ves Y DL 1.2 27 1.5 10 0.062 2 0.044 3 0.044 91 1.2D + 1.5Lm + 1.0Wm 130 AZI - MP1 Ves Y DL 1.2 27 1.5 10 0.062 2 0.044 3 0.044 91 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1 Ves Y DL 1.2 27 1.5 11 0.062 2 0.054 3 0.031 93 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP1 Ves Y DL 1.2 27 1.5 5 0.062 2 0.054 3 0.031 93 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP1 Ves Y DL 1.2 27 1.5 5 0.062 2 0.054 3 0.034 1.2D + 1.5Lm + 1.0Wm 25 AZI - MP1 Ves Y DL 1.2 27 1.5 5 0.062 2 0.054 3 0.034 95 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1 Ves Y DL 1.2 27 1.5 6 0.062 2 0.031 3 0.054 96 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1 Ves Y DL 1.2 27 1.5 8 0.062 2 0.031 3 0.054 97 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1 Ves Y DL 1.2 27 1.5 8 0.062 2 0.031 3 0.054 99 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1 Ves Y DL 1.2 27 1.5 9 0.062 2 0.031 3 0.054 99 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1 Ves Y DL 1.2 27 1.5 11 0.062 2 0.044 3 0.044 99 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP1 Ves Y DL 1.2 27 1.5 11 0.062 2 0.054 3 0.031 100 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Ves Y DL 1.2 27 1.5 11 0.062 2 0.054 3 0.031 100 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Ves Y DL 1.2 28 1.5 6 0.062 2 0.054 3 0.031 100 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Ves Y DL 1.2 28 1.5 6 0.062 2 0.054 3 0.031 100 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Ves Y DL 1.2 28 1.5 6 0.062 2 0.054 3 0.031 100 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Ves Y DL 1.2 28			1000 000					_						
Fig. 1,2D+1,5Lm+1,0Wm 120 AZI - MP1 Yes Y DL 1,2 27 1,5 10 0,062 2 -0,031 3 0,054 1 1,2D+1,5Lm+1,0Wm 150 AZI - MP1 Yes Y DL 1,2 27 1,5 10 0,062 2 -0,044 3 0,044 1 1,2D+1,5Lm+1,0Wm 150 AZI - MP1 Yes Y DL 1,2 27 1,5 11 0,062 2 -0,054 3 0,031 1,2D+1,5Lm+1,0Wm 120 AZI - MP1 Yes Y DL 1,2 27 1,5 1,5 0 0,062 2 -0,054 3 0,031 1,2D+1,5Lm+1,0Wm 120 AZI - MP1 Yes Y DL 1,2 27 1,5 5 0,062 2 -0,054 3 -0,031 3 1,2D+1,5Lm+1,0Wm 240 AZI - MP1 Yes Y DL 1,2 27 1,5 5 0,062 2 -0,044 3 -0,044												0.031		
10			1112							- Com 2 - 2 - 3 - 3		0.024		
State						-								
122 1.5			7									-		
12D + 1.5Lm + 1.0Wm 210 AZI - MP1 Yes Y DL 1.2 27 1.5 5 0.062 2 -0.054 3 -0.031 34 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP1 Yes Y DL 1.2 27 1.5 6 0.082 2 -0.044 3 -0.044 95 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1 Yes Y DL 1.2 27 1.5 6 0.082 2 -0.031 3 -0.054 96 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1 Yes Y DL 1.2 27 1.5 8 0.062 2 0.031 3 -0.054 97 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1 Yes Y DL 1.2 27 1.5 9 0.062 2 0.031 3 -0.054 98 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1 Yes Y DL 1.2 27 1.5 9 0.062 2 0.031 3 -0.054 99 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1 Yes Y DL 1.2 27 1.5 10 0.062 2 0.044 3 -0.044 99 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2 Yes Y DL 1.2 28 1.5 4 0.062 2 0.062 3 101 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.064 3 -0.031 102 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.064 3 0.031 102 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.064 3 0.031 102 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.044 3 0.044 103 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.031 3 0.054 104 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.031 3 0.054 105 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.031 3 0.054 105 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.031 3 0.054 105 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.031 3 0.054 106 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.034 3 0.062 107 1.2D + 1.5Lm + 1.0Wm 30 A												_		0.031
95 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1 Yes Y DL 1.2 27 1.5 6 0.062 2 -0.031 3 -0.044 96 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP1 Yes Y DL 1.2 27 1.5 7 0.062 2 -0.031 3 -0.062 97 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP1 Yes Y DL 1.2 27 1.5 7 0.062 2 -0.031 3 -0.062 97 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1 Yes Y DL 1.2 27 1.5 9 0.062 2 0.031 3 -0.064 98 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1 Yes Y DL 1.2 27 1.5 9 0.062 2 0.031 3 -0.054 98 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1 Yes Y DL 1.2 27 1.5 10 0.062 2 0.044 3 -0.044 99 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1 Yes Y DL 1.2 27 1.5 11 0.062 2 0.054 3 -0.031 100 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2 Yes Y DL 1.2 28 1.5 11 0.062 2 0.054 3 -0.031 101 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.054 3 0.031 102 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 0.054 3 0.031 102 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 0.054 3 0.031 102 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 0.044 3 0.044 103 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 0.031 3 0.054 104 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.062 105 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.064 104 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.064 105 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.064 105 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.031 3 0.064 106 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.031 3 0.054 106 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.031 3 0.054 106 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.031 3 0.054 106 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.031 3 0.054 109 1.2D + 1.5Lm + 1.0Wm 25 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.031 3 0.054 110 1.2D + 1.5Lm + 1.0Wm 26 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.031 3 0.054 111 1.2D + 1.5Lm + 1.0Wm 26 AZI - MP2 Yes Y DL 1.2 28 1														0.004
Section 1.5D + 1.5Lm + 1.0Wm 270 AZI - MP1 Yes Y DL 1.2 27 1.5 7 0.062 2 0.031 3 0.054			1000											
Fig.			- 1775 ISS	-										
ST 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP1 Yes Y DL 1.2 27 1.5 9 0.062 2 0.031 3 -0.054					_							-0.031		
98 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP1 Yes Y DL 1.2 27 1.5 10 0.062 2 0.044 3 -0.044 99 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 27 1.5 11 0.662 2 0.062 3 -0.031 100 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 4 0.062 2 0.062 3 3 101 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.064 3 0.031 102 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.054 3 0.031 102 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 0.054 3 0.034 103 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 0.031 3 0.054 104 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.054 105 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 0.054 106 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 -0.031 3 0.054 106 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 -0.044 3 0.044 107 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 -0.054 3 0.031 109 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 -0.054 3 0.031 109 1.2D + 1.5Lm + 1.0Wm 250 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 0.031 100 1.2D + 1.5Lm + 1.0Wm 250 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 0.031 100 1.2D + 1.5Lm + 1.0Wm 250 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 0.031 100 1.2D + 1.5Lm + 1.0Wm 250 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 -0.031 110 1.2D + 1.5Lm + 1.0Wm 250 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 -0.031 111 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2				-	1000							0.004		_
99 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP1 Yes Y DL 1.2 27 1.5 11 0.062 2 0.064 3 -0.031 100 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.062 3 0.031 102 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.064 3 0.031 102 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 0.044 3 0.044 103 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 0.044 3 0.044 103 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.054 104 1.2D + 1.5Lm + 1.0Wm 100 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.054 106 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 -0.031 3 0.054 106 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 -0.044 3 0.044 107 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 -0.054 3 0.031 108 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 -0.054 3 0.031 109 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 0.031 109 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 -0.031 101 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 -0.031 101 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 -0.031 3 -0.054 111 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 -0.031 3 -0.054 111 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 -0.031 3 -0.054 111 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 -0.031 3 -0.054 111 1.2D + 1.5Lm + 1.0Wm 300			0.000-0.000											
100										-		A CONTRACTOR OF THE PARTY OF TH		
1.2D + 1.5Lm + 1.0Wm 30 AZI - MP2			Yes						- //					-0.031
102 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 0.044 3 0.044 103 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 0.031 3 0.052 105 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.062 105 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 0.064 106 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 0.044 107 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 11 0.062 2 0.044 3 0.041 107 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 11 0.062 2 0.054 3 0.031 108 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.054 3 0.031 108 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.054 3 0.031 109 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 0.054 3 0.031 101 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 0.031 3 0.054 112 12D + 1.5Lm + 1.0Wm 270 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 0.031 3 0.054 113 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.054 113 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.031 3 0.054 113 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.054 3 0.031 115 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.054 3 0.031 116 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.054 3 0.031 116 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.054 3 0.031 120 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Ye			Yes											
103 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 0.031 3 0.064 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.062 1.5			Yes		DL				-					
104 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 0.062 105 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 -0.034 3 0.054 106 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2 Yes Y DL 1.2 28 1.5 11 0.062 2 -0.044 3 0.044 107 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 11 0.062 2 -0.054 3 0.031 108 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2 Yes Y DL 1.2 28 1.5 11 0.062 2 -0.054 3 0.031 108 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.062 3 109 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 -0.031 110 1.2D + 1.5Lm + 1.0Wm 2240 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.044 3 -0.044 111 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 -0.031 3 -0.054 112 12.D + 1.5Lm + 1.0Wm 270 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 -0.031 3 -0.054 112 12.D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 0.031 3 -0.054 113 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 -0.054 114 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.044 3 0.044 115 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.044 115 1.2D + 1.5Lm + 1.0Wm 300			Yes	Υ	DL					0.062		0.044		
105 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP2	103 1	.2D + 1.5Lm + 1.0Wm 60 AZI - MP2	Yes		DL	1.2	28		7	0.062	2	0.031	3	0.054
106 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 -0.044 3 0.044 107 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2 Yes Y DL 1.2 28 1.5 11 0.062 2 -0.054 3 0.031 108 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 -0.031 109 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 -0.031 110 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 -0.044 3 -0.044 111 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 -0.031 3 -0.054 112 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 -0.031 3 -0.054 112 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 -0.054 114 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 -0.054 115 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.054 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 0.054 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 0.031 3 0.054 122 1.2D + 1.5Lm + 1.0Wm 15	104 1	.2D + 1.5Lm + 1.0Wm 90 AZI - MP2	Yes	Y	DL	1.2	28		8	0.062	2		3	0.062
107 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP2	105 1.	2D + 1.5Lm + 1.0Wm 120 AZI - MP2	Yes	_	DL		28		9	0.062	2	-0.031	3	0.054
108 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP2 Yes Y DL 1.2 28 1.5 4 0.062 2 -0.062 3 109 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 -0.031 110 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 -0.044 3 -0.044 111 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 -0.031 3 -0.054 112 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 -0.031 3 -0.054 113 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 -0.054 114 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 28 1.5 11 0.062 2 0.054 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 0.AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 0.054 3 -0.031 117 1.2D + 1.5Lm + 1.0Wm 0.AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 0.AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.044 119 1.2D + 1.5Lm + 1.0Wm 0.AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 10.AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 -0.044 3 0.044 121 1.2D + 1.5Lm + 1.0Wm 10.AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 -0.044 3 0.044 122 1.2D + 1.5Lm + 1.0Wm 10.AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 10.AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 0.031 124 1.2D + 1.5Lm + 1.0Wm 10.AZI	106 1.	2D + 1.5Lm + 1.0Wm 135 AZI - MP2	Yes	Υ	DL	1.2	28	1.5	10	0.062	2	-0.044	3	0.044
109 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP2 Yes Y DL 1.2 28 1.5 5 0.062 2 -0.054 3 -0.031 110 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 -0.044 3 -0.044 111 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 -0.031 3 -0.054 112 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 -0.031 3 -0.054 112 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 -0.054 114 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 0.054 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.044 119 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 0.031 3 0.054 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 0.031 3 0.054 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.054 3 0.031 126 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 1.5 0.062 2 -0.054 3 0.031 125 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 0.031 126 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3	107 1.	2D + 1.5Lm + 1.0Wm 150 AZI - MP2	Yes	Υ	DL	1.2	28	1.5	11	0.062	2	-0.054	3	0.031
110 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP2 Yes Y DL 1.2 28 1.5 6 0.062 2 -0.044 3 -0.044 111 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 -0.031 3 -0.054 112 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 3 -0.064 113 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 -0.054 114 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2 Yes Y DL 1.2 28 1.5 11 0.062 2 0.054 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 0.054 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 0.031 3 0.054 122 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.054 3 0.031 126 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 0.031 126 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 0.031 126 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 0.031 126 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 0.031 126 1.2D + 1.5Lm + 1.0Wm 270 AZI -	108 1.	2D + 1.5Lm + 1.0Wm 180 AZI - MP2	Yes		DL	1.2	28	1.5	4	0.062	2	-0.062	3	
111 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP2 Yes Y DL 1.2 28 1.5 7 0.062 2 -0.031 3 -0.054 112 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 3 -0.062 113 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 -0.054 114 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 28 1.5 11 0.062 2 0.054 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 0.054 3 -0.031 117 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.044 119 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 0.031 3 0.054 121 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.054 3 0.031 124 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.054 3 0.031 125 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 0.031 126 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 0.031 126 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 0.031 126 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 -0.054 127 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 -0.054 3 -0.054 128	109 1.	2D + 1.5Lm + 1.0Wm 210 AZI - MP2	Yes	Υ	DL	1.2	28	1.5	5	0.062	2	-0.054	3	-0.031
112 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 3 -0.062 113 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 -0.054 114 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 28 1.5 11 0.062 2 0.044 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 0.062 3 -0.031 117 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.			Yes	Υ	DL	1.2	28	1.5	6	0.062	2	-0.044	3	-0.044
112 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP2 Yes Y DL 1.2 28 1.5 8 0.062 2 3 -0.062 113 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP2 Yes Y DL 1.2 28 1.5 9 0.062 2 0.031 3 -0.054 114 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 28 1.5 11 0.062 2 0.044 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 0.062 3 -0.031 117 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.	111 1.	2D + 1.5Lm + 1.0Wm 240 AZI - MP2	Yes	Υ	DL	1.2	28	1.5	7	0.062	2	-0.031	3	-0.054
114 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP2 Yes Y DL 1.2 28 1.5 10 0.062 2 0.044 3 -0.044 115 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2 Yes Y DL 1.2 28 1.5 11 0.062 2 0.054 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 0.062 3 117 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.044 119 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.031 3 0.054 120 <td></td> <td></td> <td>Yes</td> <td>Υ</td> <td>DL</td> <td>1.2</td> <td>28</td> <td>1.5</td> <td>8</td> <td>0.062</td> <td>2</td> <td></td> <td>3</td> <td>-0.062</td>			Yes	Υ	DL	1.2	28	1.5	8	0.062	2		3	-0.062
115 1.2D + 1.5Lm + 1.0Wm 330 AZI - MP2 Yes Y DL 1.2 28 1.5 11 0.062 2 0.054 3 -0.031 116 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 0.062 3 117 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.044 119 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.044 120 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 0.031 3 0.052 121 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5	113 1.	2D + 1.5Lm + 1.0Wm 300 AZI - MP2	Yes	Υ	DL	1.2	28	1.5	9	0.062	2	0.031	3	-0.054
116 1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 0.062 3 117 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.044 119 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 0.031 3 0.054 121 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 -0.031 3 0.054 122	114 1.	2D + 1.5Lm + 1.0Wm 315 AZI - MP2	Yes	Υ	DL	1.2	28	1.5	10	0.062	2	0.044	3	-0.044
117 1.2D + 1.5Lm + 1.0Wm 30 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 0.054 3 0.031 118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.044 119 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 -0.031 3 0.054 122 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29	115 1.	2D + 1.5Lm + 1.0Wm 330 AZI - MP2	Yes	Y	DL	1.2	28	1.5	11	0.062	2	0.054	3	-0.031
118 1.2D + 1.5Lm + 1.0Wm 45 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 0.044 3 0.044 119 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 -0.031 3 0.052 121 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 -0.031 3 0.054 122 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.054 3 0.031 124 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3 Yes Y DL 1.2 <t< td=""><td>116</td><td>1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3</td><td>Yes</td><td>Υ</td><td>DL</td><td>1.2</td><td>29</td><td>1.5</td><td>4</td><td>0.062</td><td>2</td><td>0.062</td><td>3</td><td></td></t<>	116	1.2D + 1.5Lm + 1.0Wm 0 AZI - MP3	Yes	Υ	DL	1.2	29	1.5	4	0.062	2	0.062	3	
119 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 -0.031 3 0.062 121 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 -0.031 3 0.054 122 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 11 0.062 2 -0.054 3 0.031 124 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 -0.054 3 -0.031 126 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2	117 1	.2D + 1.5Lm + 1.0Wm 30 AZI - MP3	Yes	Y	DL	1.2	29	1.5	5	0.062	2	0.054	3	0.031
119 1.2D + 1.5Lm + 1.0Wm 60 AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 0.031 3 0.054 120 1.2D + 1.5Lm + 1.0Wm 90 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 -0.031 3 0.052 121 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 -0.031 3 0.054 122 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 11 0.062 2 -0.054 3 0.031 124 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 -0.054 3 -0.031 126 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2	118 1	.2D + 1.5Lm + 1.0Wm 45 AZI - MP3	Yes	Υ	DL	1.2	29	1.5	6	0.062	2	0.044	3	0.044
121 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 -0.031 3 0.054 122 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 11 0.062 2 -0.054 3 0.031 124 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 -0.054 3 -0.031 125 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 -0.031 126 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 -0.044 3 -0.044 127 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3 Yes Y DL 1.2	119 1	.2D + 1.5Lm + 1.0Wm 60 AZI - MP3	Yes	Υ	DL	1.2		1.5	7	0.062	2	0.031	3	0.054
121 1.2D + 1.5Lm + 1.0Wm 120 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 -0.031 3 0.054 122 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 11 0.062 2 -0.054 3 0.031 124 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 -0.054 3 -0.031 125 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 -0.031 126 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 -0.044 3 -0.044 127 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3 Yes Y DL 1.2					DL		29	1.5	8	0.062	2		3	0.062
122 1.2D + 1.5Lm + 1.0Wm 135 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 -0.044 3 0.044 123 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 11 0.062 2 -0.054 3 0.031 124 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 -0.062 3 125 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 -0.031 126 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 -0.044 3 -0.044 127 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 -0.031 3 -0.054 128 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 Yes Y DL 1.2 29					DL	1.2		1.5	9	0.062		-0.031	3	0.054
123 1.2D + 1.5Lm + 1.0Wm 150 AZI - MP3 Yes Y DL 1.2 29 1.5 11 0.062 2 -0.054 3 0.031 124 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 -0.062 3 125 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 -0.031 126 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 -0.044 3 -0.044 127 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 -0.031 3 -0.054 128 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 -0.031 3 -0.062 129 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29	122 1.	2D + 1.5Lm + 1.0Wm 135 AZI - MP3		Υ	DL	1.2	29		10	0.062	2	-0.044	3	0.044
124 1.2D + 1.5Lm + 1.0Wm 180 AZI - MP3 Yes Y DL 1.2 29 1.5 4 0.062 2 -0.062 3 125 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 -0.031 126 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 -0.044 3 -0.044 127 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 -0.031 3 -0.054 128 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 -0.031 3 -0.062 129 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 0.031 3 -0.054 130 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3 Yes Y DL 1.2 29			WIND AT THE									-0.054		0.031
125 1.2D + 1.5Lm + 1.0Wm 210 AZI - MP3 Yes Y DL 1.2 29 1.5 5 0.062 2 -0.054 3 -0.031 126 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 -0.044 3 -0.044 127 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 -0.031 3 -0.054 128 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 3 -0.062 129 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 0.031 3 -0.054 130 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 0.044 3 -0.044														
126 1.2D + 1.5Lm + 1.0Wm 225 AZI - MP3 Yes Y DL 1.2 29 1.5 6 0.062 2 -0.044 3 -0.044 127 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 -0.031 3 -0.054 128 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 3 -0.062 129 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 0.031 3 -0.054 130 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 0.044 3 -0.044			- Dayler Cho											-0.031
127 1.2D + 1.5Lm + 1.0Wm 240 AZI - MP3 Yes Y DL 1.2 29 1.5 7 0.062 2 -0.031 3 -0.054 128 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 3 -0.062 129 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 0.031 3 -0.054 130 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 0.044 3 -0.044			2001100		20.000								1000	
128 1.2D + 1.5Lm + 1.0Wm 270 AZI - MP3 Yes Y DL 1.2 29 1.5 8 0.062 2 3 -0.062 129 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 0.031 3 -0.054 130 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 0.044 3 -0.044														
129 1.2D + 1.5Lm + 1.0Wm 300 AZI - MP3 Yes Y DL 1.2 29 1.5 9 0.062 2 0.031 3 -0.054 130 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 0.044 3 -0.044												0.001		
130 1.2D + 1.5Lm + 1.0Wm 315 AZI - MP3 Yes Y DL 1.2 29 1.5 10 0.062 2 0.044 3 -0.044												0.031		

Checked By: CTR

Envelope Node Reactions

1	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N9	max	208.967	6	305.055	2	295.063	18	38.983	18	117.338	6	131.186	14
2		min	-208.967	14	-211.807	26	-321.781	10	-80.675	10	-117.338	14	-131.186	6
3	N10	max	82.966	13	300.366	10	184.563	10	77.573	18	40.817	13	11.325	6
4		min	-82.966	7	-215.331	18	-157.846	18	-114.888	10	-40.817	7	-11.325	14
5	Totals:	max	126.485	6	197.891	43	137.218	18				W. Salar	15 TO 15	
6		min	-126.485	14	72.702	72	-137.218	26						

Envelope AISI S100-20: LRFD Member Cold Formed Steel Code Checks

No Data to Print		

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	Membe	r Shape	Code Chec	kLoc[in]	LC	Shear Check	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft]	Cb	Eqn
1	MP1	PIPE 2.5	0.105	53.368	10	0.016	55.421	*	11	35890.384	50715	3596.25	3596.25	1	H1-1b
2	M3	HSS3X3X3	0.036	0	2	0.033	8	Z	14	77987.62	78246	6796.5	6796.5	1.508	H1-1b
3	M4	HSS3X3X3	0.019	8	11	0.014	8	У	10	77987.62	78246	6796.5	6796.5	2.223	H1-1b

www.hilti.com

Company: Address: Phone I Fax:

Design:

| Tanglewood Page: Specifier:

E-Mail: Date:

10/23/2024

Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter:

HY 270 + threaded rod 5.8 1/2

Item number:

385423 HAS 5.8 1/2"x4-1/2" (element) / 2194247 HIT-HY

270 (adhesive)

Specification text:

Hilti HIT-V 5.8 threaded rod with HIT-HY 270 injection mortar with 2.75 in embedment hef, 1/2, Steel galvanized, Hammer drilled

installation per ESR-4143

Effective embedment depth:

 $h_{ef} = 2.750 in.$

Material:

5.8

Evaluation Service Report:

ESR-4143

Issued I Valid:

11/1/2023 | 1/1/2025

Proof:

Design Method LRFD (AC58) Masonry + ACI 318-19

Stand-off installation:

 $e_b = 0.000$ in. (no stand-off); t = 0.400 in.

Anchor plate^R:

 $l_x \times l_y \times t = 8.500$ in. x 8.500 in. x 0.400 in.; (Recommended plate thickness: not calculated)

Profile:

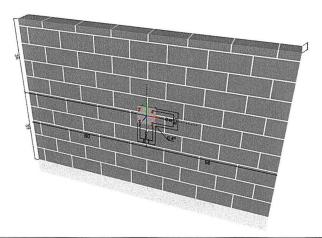
no profile

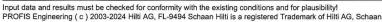
Base material:

uncracked Grout-filled CMU, f=1500, f = 1,500 psi, L x W x H: 16.000 in. x 8.000 in. x 8.000 in.;

Solid Head Joint: no; open ended unit: no

Temp. short/long:


32 °F / 32 °F


Joints: vertical: 0.375 in.; horizontal: 0.375 in.

Installation:

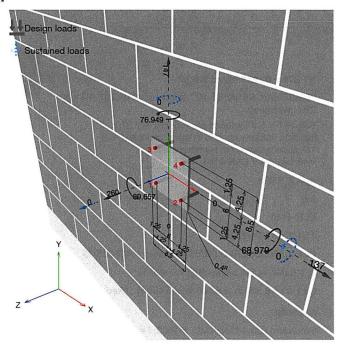
Face installation, Drill hole: Hammer drilled, Installation condition: Dry

Geometry [in.]

^R - The anchor calculation is based on a rigid anchor plate assumption.

www.hilti.com

 Company:
 Page:
 2


 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Geometry [in.] & Loading [lb, ft.lb]

1.1 Load combination and design results

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 322	$\begin{aligned} & N = 18; \ V_x = 0; \ V_y = -62; \\ & M_x = 27.789; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{\text{sus}} = 0; \ M_{\text{x,sus}} = 0.000; \ M_{\text{y,sus}} = 0.000; \end{aligned}$	no	4
2	Combination 323	$\begin{aligned} N &= -18; \ V_x = 0; \ V_y = -57; \\ M_x &= 24.863; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
3	Combination 324	$\begin{aligned} & N = -291; \ V_x = 0; \ V_y = -305; \\ & M_x = -33.044; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	12
4	Combination 325	$\begin{split} N &= 154; \ V_x = 0; \ V_y = 203; \\ M_x &= -72.271; \ M_y = 0.000; \ M_z = 0.000; \\ N_{\text{sus}} &= 0; \ M_{x,\text{sus}} = 0.000; \ M_{y,\text{sus}} = 0.000; \end{split}$	no	12
5	Combination 326	$\begin{aligned} & N = -230; \ V_x = -137; \ V_y = -253; \\ & M_x = -21.346; \ M_y = 76.957; \ M_z = -89.657; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	7
6	Combination 327	$\begin{split} N &= 118; \ V_x = 61; \ V_y = 152; \\ M_x &= -53.043; \ M_y = 30.247; \ M_z = 7.719; \\ N_{\text{sus}} &= 0; \ M_{\text{x,sus}} = 0.000; \ M_{\text{y,sus}} = 0.000; \end{split}$	no	11

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

 Company:
 Page:
 3

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
/	Combination 328	$N = -168; V_x = -178; V_y = -202;$ $M_x = -9.726; M_y = 100.206; M_z = -115.445;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	8
8	Combination 329	$\begin{aligned} N &= 83; \ V_x = 77; \ V_y = 100; \\ M_x &= -33.935; \ M_y = 38.047; \ M_z = 9.946; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	9
9	Combination 330	$\begin{split} & N = -103; \ V_x = -200; \ V_y = -148; \\ & M_x = 2.454; \ M_y = 112.175; \ M_z = -127.502; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	10
10	Combination 331	$\begin{aligned} & N = 47; \ V_x = 83; \ V_y = 46; \\ & M_x = -13.893; \ M_y = 40.808; \ M_z = 10.995; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	7
11	Combination 332	$\begin{aligned} & N = 15; V_x = -209; V_y = -53; \\ & M_x = 23.819; M_y = 117.338; M_z = -131.186; \\ & N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000; \end{aligned}$	no	14
12	Combination 333	$\begin{split} N &= -15; \ V_x = 82; \ V_y = -49; \\ M_x &= 21.311; \ M_y = 40.436; \ M_z = 11.325; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	6
13	Combination 334	$\begin{aligned} & N = 133; \ V_x = -200; \ V_y = 42; \\ & M_x = 45.183; \ M_y = 112.169; \ M_z = -127.503; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	18
14	Combination 335	$N = -77; V_x = 83; V_y = -143;$ $M_x = 56.515; M_y = 40.817; M_z = 10.995;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	8
15	Combination 336	$\begin{aligned} & N = 199; \ V_x = -178; \ V_y = 96; \\ & M_x = 57.361; \ M_y = 100.199; \ M_z = -115.445; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	19
16	Combination 337	$\begin{aligned} & N = -114; \ V_x = 77; \ V_y = -197; \\ & M_x = 76.555; \ M_y = 38.060; \ M_z = 9.946; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	9
17	Combination 338	$N = 260; V_x = -137; V_y = 147; \\ M_x = 68.979; M_y = 76.949; M_z = -89.657; \\ N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	20
18	Combination 339	$\begin{aligned} & \text{N} = -149; \ \text{V}_{\text{x}} = 61; \ \text{V}_{\text{y}} = -249; \\ & \text{M}_{\text{x}} = 95.662; \ \text{M}_{\text{y}} = 30.260; \ \text{M}_{\text{z}} = 7.718; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	11
19	Combination 340	$\begin{split} N &= 322; \ V_x = 0; \ V_y = 199; \\ M_x &= 80.675; \ M_y = 0.000; \ M_z = 0.000; \\ N_{\text{sus}} &= 0; \ M_{\text{x,sus}} = 0.000; \ M_{\text{y,sus}} = 0.000; \end{split}$	no	17

www.hilti.com

| Page: 4 | Address: | Specifier: | Phone | Fax: | E-Mail: | Design: | Tanglewood | Date: | 10/23/2024 | Tastening point: | Tanglewood | Tanglewood | Tanglewood | Tanglewood | Tanglewood | Date: | Tanglewood | Tan

20	Combination 341	$N = 195 \cdot 17 = 0 \cdot 17 = 300 \cdot$	no	12
		$N = -185$; $V_x = 0$; $V_y = -300$; $M_x = 114.888$; $M_y = 0.000$; $M_z = 0.000$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	12
<u>21</u>	Combination 342	$\frac{N = 260; V_x = 137; V_y = 147;}{M_x = 68.979; M_y = 76.949; M_z = 89.657;}$ $N_{\underline{sus}} = 0; M_{\underline{s,sus}} = 0.000; M_{\underline{y,sus}} = 0.000;$	<u>no</u>	<u>20</u>
22	Combination 343	$N = -149$; $V_x = -61$; $V_y = -249$; $M_x = 95.662$; $M_y = 30.260$; $M_z = -7.718$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	11
23	Combination 344	$N = 199; V_x = 178; V_y = 96;$ $M_x = 57.361; M_y = 100.199; M_z = 115.445;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	19
24	Combination 345	$N = -114; V_x = -77; V_y = -197;$ $M_x = 76.555; M_y = 38.060; M_z = -9.946;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	9
25	Combination 346	$\begin{aligned} & N = 133; \ V_x = 200; \ V_y = 42; \\ & M_x = 45.183; \ M_y = 112.169; \ M_z = 127.503; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	18
26	Combination 347	$\begin{aligned} & N = -77; \ V_x = -83; \ V_y = -143; \\ & M_x = 56.515; \ M_y = 40.817; \ M_z = -10.995; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	8
27	Combination 348	$N = 15; V_x = 209; V_y = -53;$ $M_x = 23.819; M_y = 117.338; M_z = 131.186;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	16
28	Combination 349	$N = -15; V_x = -82; V_y = -49; \\ M_x = 21.311; M_y = 40.436; M_z = -11.325; \\ N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	6
29	Combination 350	$\begin{split} & N = -103; \ V_x = 200; \ V_y = -148; \\ & M_x = 2.454; \ M_y = 112.175; \ M_z = 127.502; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	18
30	Combination 351	$N = 47; V_x = -83; V_y = 46;$ $M_x = -13.893; M_y = 40.808; M_z = -10.995;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	7
31	Combination 352	$\begin{split} & N = -168; \ V_x = 178; \ V_y = -202; \\ & M_x = -9.726; \ M_y = 100.206; \ M_z = 115.445; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	19
32	Combination 353	$\begin{aligned} N &= 83; \ V_x = -77; \ V_y = 100; \\ M_x &= -33.935; \ M_y = 38.047; \ M_z = -9.946; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	9

www.hilti.com

 Company:
 Page:
 5

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
33	Combination 354	$N = -230; V_x = 137; V_y = -253;$ $M_x = -21.346; M_y = 76.957; M_z = 89.657;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	18
34	Combination 355	$\begin{aligned} & N = 118; V_x = -61; V_y = 152; \\ & M_x = -53.043; M_y = 30.247; M_z = -7.719; \\ & N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000; \end{aligned}$	no	11
35	Combination 356	$N = -295; V_x = 0; V_y = -292;$ $M_x = -38.983; M_y = 0.000; M_z = 0.000;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	12
36	Combination 357	$\begin{aligned} & N = 158; \ V_x = 0; \ V_y = 215; \\ & M_x = -77.573; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	12
37	Combination 358	$\begin{aligned} & \text{N} = -234; \ \text{V}_{\text{x}} = -137; \ \text{V}_{\text{y}} = -240; \\ & \text{M}_{\text{x}} = -27.288; \ \text{M}_{\text{y}} = 76.944; \ \text{M}_{\text{z}} = -89.631; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	7
38	Combination 359	$\begin{aligned} & N = 122; V_x = 61; V_y = 164; \\ & M_x = -58.351; M_y = 30.234; M_z = 7.716; \\ & N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000; \end{aligned}$	no	11
39	Combination 360	$\begin{aligned} & N = -172; \ V_x = -178; \ V_y = -189; \\ & M_x = -15.671; \ M_y = 100.191; \ M_z = -115.412; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	8
40	Combination 361	$\begin{aligned} & N = 87; \ V_x = 77; \ V_y = 112; \\ & M_x = -39.248; \ M_y = 38.031; \ M_z = 9.942; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	9
41	Combination 362	$\begin{aligned} & \text{N} = -107; \ \text{V}_{\text{x}} = -200; \ \text{V}_{\text{y}} = -135; \\ & \text{M}_{\text{x}} = -3.496; \ \text{M}_{\text{y}} = 112.158; \ \text{M}_{\text{z}} = -127.467; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	10
42	Combination 363	$\begin{aligned} & N = 51; V_x = 83; V_y = 58; \\ & M_x = -19.212; M_y = 40.790; M_z = 10.991; \\ & N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000; \end{aligned}$	no	7
43	Combination 364	$\begin{split} N &= 11; \ V_x = -209; \ V_y = -40; \\ M_x &= 17.864; \ M_y = 117.320; \ M_z = -131.150; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	13
44	Combination 365	$\begin{split} & N = -11; \ V_x = 82; \ V_y = -36; \\ & M_x = 15.983; \ M_y = 40.418; \ M_z = 11.321; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	5
45	Combination 366	$\begin{split} \text{N} &= 130; \ \text{V}_{\text{x}} = \text{-}200; \ \text{V}_{\text{y}} = 55; \\ \text{M}_{\text{x}} &= 39.223; \ \text{M}_{\text{y}} = 112.152; \ \text{M}_{\text{z}} = \text{-}127.467; \\ \text{N}_{\text{sus}} &= 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{split}$	no	17

www.hilti.com

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
46	Combination 367	$N = -73$; $V_x = 83$; $V_y = -131$; $M_x = 51.178$; $M_y = 40.799$; $M_z = 10.991$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	7
47	Combination 368	$\begin{aligned} & N = 195; \ V_x = -178; \ V_y = 109; \\ & M_x = 51.397; \ M_y = 100.183; \ M_z = -115.413; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	19
48	Combination 369	$\begin{aligned} & N = -110; \ V_x = 77; \ V_y = -185; \\ & M_x = 71.213; \ M_y = 38.043; \ M_z = 9.942; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	9
49	Combination 370	$\begin{aligned} & N = 257; \ V_x = -137; \ V_y = 160; \\ & M_x = 63.013; \ M_y = 76.936; \ M_z = -89.632; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	19
50	Combination 371	$\begin{aligned} & N = -145; \ V_x = 61; \ V_y = -237; \\ & M_x = 90.314; \ M_y = 30.247; \ M_z = 7.715; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	10
51	Combination 372	$\begin{split} N &= 318; \ V_x = 0; \ V_y = 212; \\ M_x &= 74.705; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	17
52	Combination 373	$\begin{aligned} & \text{N} = \text{-181; } \text{V}_{\text{x}} = 0; \text{V}_{\text{y}} = \text{-288;} \\ & \text{M}_{\text{x}} = 109.535; \text{M}_{\text{y}} = 0.000; \text{M}_{\text{z}} = 0.000; \\ & \text{N}_{\text{sus}} = 0; \text{M}_{\text{x,sus}} = 0.000; \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	12
53	Combination 374	$\begin{aligned} & N = 257; \ V_x = 137; \ V_y = 160; \\ & M_x = 63.013; \ M_y = 76.936; \ M_z = 89.632; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	19
54	Combination 375	$\begin{aligned} & N = -145; \ V_x = -61; \ V_y = -237; \\ & M_x = 90.314; \ M_y = 30.247; \ M_z = -7.715; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	11
55	Combination 376	$\begin{aligned} & N = 195; \ V_x = 178; \ V_y = 109; \\ & M_x = 51.397; \ M_y = 100.183; \ M_z = 115.413; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	19
56	Combination 377	$\begin{aligned} & N = -110; \ V_x = -77; \ V_y = -185; \\ & M_x = 71.213; \ M_y = 38.043; \ M_z = -9.942; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	9
57	Combination 378	$\begin{aligned} N &= 130; \ V_x = 200; \ V_y = 55; \\ M_x &= 39.223; \ M_y = 112.152; \ M_z = 127.467; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	17
58	Combination 379	$N = -73$; $V_x = -83$; $V_y = -131$; $M_x = 51.178$; $M_y = 40.799$; $M_z = -10.991$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	7

www.hilti.com

 Company:
 Page:
 7

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
59	Combination 380	$N = 11; V_x = 209; V_y = -40;$ $M_x = 17.864; M_y = 117.320; M_z = 131.150;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	15
60	Combination 381	$\begin{aligned} N &= -11; \ V_x = -82; \ V_y = -36; \\ M_x &= 15.983; \ M_y = 40.418; \ M_z = -11.321; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	5
61	Combination 382	$\begin{split} & N = -107; \ V_x = 200; \ V_y = -135; \\ & M_x = -3.496; \ M_y = 112.158; \ M_z = 127.467; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	18
62	Combination 383	$\begin{split} N &= 51; \ V_x = -83; \ V_y = 58; \\ M_x &= -19.212; \ M_y = 40.790; \ M_z = -10.991; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	7
63	Combination 384	$\begin{aligned} & N = -172; \ V_x = 178; \ V_y = -189; \\ & M_x = -15.671; \ M_y = 100.191; \ M_z = 115.412; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	18
64	Combination 385	$N = 87; V_x = -77; V_y = 112;$ $M_x = -39.248; M_y = 38.031; M_z = -9.942;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	9
65	Combination 386	$\begin{aligned} & N = -234; \ V_x = 137; \ V_y = -240; \\ & M_x = -27.288; \ M_y = 76.944; \ M_z = 89.631; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	18
66	Combination 387	$N = 122; V_x = -61; V_y = 164;$ $M_x = -58.351; M_y = 30.234; M_z = -7.716;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	11
67	Combination 388	$N = -26$; $V_x = 0$; $V_y = -150$; $M_x = 36.151$; $M_y = 0.000$; $M_z = 0.000$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	6
68	Combination 389	$\begin{aligned} N &= 2; \ V_x = 0; \ V_y = -48; \\ M_x &= 24.404; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
69	Combination 390	$N = -14; V_x = -24; V_y = -140; \\ M_x = 38.303; M_y = 13.688; M_z = -16.471; \\ N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	7
70	Combination 391	$\begin{aligned} & N = -5; \ V_x = 12; \ V_y = -58; \\ & M_x = 27.939; \ M_y = 5.939; \ M_z = 1.416; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
71	Combination 392	$\begin{aligned} N &= -3; \ V_x = -31; \ V_y = -131; \\ M_x &= 40.441; \ M_y = 17.773; \ M_z = -21.207; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	7

www.hilti.com

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
72	Combination 393	$N = -11; V_x = 15; V_y = -67;$ $M_x = 31.453; M_y = 7.528; M_z = 1.825;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	4
73	Combination 394	$N = 9$; $V_x = -35$; $V_y = -121$; $M_x = 42.682$; $M_y = 19.828$; $M_z = -23.419$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	7
74	Combination 395	$N = -18; V_x = 17; V_y = -77;$ $M_x = 35.139; M_y = 8.155; M_z = 2.016;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	4
75	Combination 396	$\begin{aligned} N &= 30; \ V_x = -36; \ V_y = -104; \\ M_x &= 46.615; \ M_y = 20.655; \ M_z = -24.092; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	7
76	Combination 397	$\begin{split} N &= -30; \ V_x = 17; \ V_y = -94; \\ M_x &= 41.614; \ M_y = 8.186; \ M_z = 2.076; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	4
77	Combination 398	$\begin{split} N &= 51; \ V_x = -35; \ V_y = -86; \\ M_x &= 50.549; \ M_y = 19.828; \ M_z = -23.419; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	8
78	Combination 399	$\begin{aligned} & N = -42; \ V_x = 17; \ V_y = -112; \\ & M_x = 48.089; \ M_y = 8.155; \ M_z = 2.016; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	5
79	Combination 400	$\begin{split} N &= 63; \ V_x = -31; \ V_y = -76; \\ M_x &= 52.790; \ M_y = 17.773; \ M_z = -21.207; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	8
80	Combination 401	$N = -48$; $V_x = 15$; $V_y = -122$; $M_x = 51.774$; $M_y = 7.529$; $M_z = 1.825$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	5
81	Combination 402	$\begin{split} N &= 74; \ V_x = -24; \ V_y = -67; \\ M_x &= 54.928; \ M_y = 13.688; \ M_z = -16.471; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	8
82	Combination 403	$N = -55; V_x = 12; V_y = -131;$ $M_x = 55.288; M_y = 5.939; M_z = 1.416;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	6
83	Combination 404	$\begin{aligned} & \text{N} = 85; \ \text{V}_{\text{x}} = 0; \ \text{V}_{\text{y}} = \text{-}57; \\ & \text{M}_{\text{x}} = 57.080; \ \text{M}_{\text{y}} = 0.000; \ \text{M}_{\text{z}} = 0.000; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	8
84	Combination 405	$N = -62$; $V_x = 0$; $V_y = -141$; $M_x = 58.824$; $M_y = 0.000$; $M_z = 0.000$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	6

www.hilti.com

 Company:
 Page:
 9

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
85	Combination 406	$N = 74$; $V_x = 24$; $V_y = -67$; $M_x = 54.928$; $M_y = 13.688$; $M_z = 16.471$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	8
86	Combination 407	$\begin{aligned} & N = -55; \ V_x = -12; \ V_y = -131; \\ & M_x = 55.288; \ M_y = 5.939; \ M_z = -1.416; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	6
87	Combination 408	$N = 63; V_x = 31; V_y = -76;$ $M_x = 52.790; M_y = 17.773; M_z = 21.207;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	8
88	Combination 409	$N = -48$; $V_x = -15$; $V_y = -122$; $M_x = 51.774$; $M_y = 7.529$; $M_z = -1.825$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	5
89	Combination 410	$N = 51; V_x = 35; V_y = -86;$ $M_x = 50.549; M_y = 19.828; M_z = 23.419;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	8
90	Combination 411	$N = -42$; $V_x = -17$; $V_y = -112$; $M_x = 48.089$; $M_y = 8.155$; $M_z = -2.016$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	5
91	Combination 412	$\begin{aligned} N &= 30; \ V_x = 36; \ V_y = -104; \\ M_x &= 46.615; \ M_y = 20.655; \ M_z = 24.092; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	7
92	Combination 413	$\begin{aligned} & N = -30; \ V_x = -17; \ V_y = -94; \\ & M_x = 41.614; \ M_y = 8.186; \ M_z = -2.076; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	4
93	Combination 414	$\begin{split} N &= 9; V_x = 35; V_y = -121; \\ M_x &= 42.682; M_y = 19.828; M_z = 23.419; \\ N_{sus} &= 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000; \end{split}$	no	7
94	Combination 415	$N = -18; V_x = -17; V_y = -77;$ $M_x = 35.139; M_y = 8.155; M_z = -2.016;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	4
95	Combination 416	$\begin{aligned} N &= -3; \ V_x = 31; \ V_y = -131; \\ M_x &= 40.441; \ M_y = 17.773; \ M_z = 21.207; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	7
96	Combination 417	$\begin{aligned} & N = -11; \ V_x = -15; \ V_y = -67; \\ & M_x = 31.453; \ M_y = 7.528; \ M_z = -1.825; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	4
97	Combination 418	$\begin{aligned} N &= -14; \ V_x = 24; \ V_y = -140; \\ M_x &= 38.303; \ M_y = 13.688; \ M_z = 16.471; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	7

www.hilti.com

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
98	Combination 419	$N = -5$; $V_x = -12$; $V_y = -58$; $M_x = 27.939$; $M_y = 5.939$; $M_z = -1.416$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	3
99	Combination 420	$\begin{aligned} & N = -40; \ V_x = 0; \ V_y = -99; \\ & M_x = 14.732; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	4
100	Combination 421	$\begin{aligned} N &= 12; \ V_x = 0; \ V_y = -6; \\ M_x &= 5.711; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	1
101	Combination 422	$\begin{aligned} N &= -32; \ V_x = -26; \ V_y = -93; \\ M_x &= 16.064; \ M_y = 14.508; \ M_z = -17.084; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	6
102	Combination 423	$\begin{aligned} N &= 8; \ V_x = 12; \ V_y = -12; \\ M_x &= 7.904; \ M_y = 5.908; \ M_z = 1.470; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
103	Combination 424	$\begin{split} N &= -23; \ V_x = -36; \ V_y = -86; \\ M_x &= 17.644; \ M_y = 20.514; \ M_z = -24.157; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	6
104	Combination 425	$\begin{aligned} & N = 4; \ V_x = 17; \ V_y = -19; \\ & M_x = 10.506; \ M_y = 8.354; \ M_z = 2.079; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
105	Combination 426	$\begin{aligned} N &= -12; \ V_x = -44; \ V_y = -77; \\ M_x &= 19.702; \ M_y = 25.128; \ M_z = -29.590; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	6
106	Combination 427	$\begin{split} N &= -2; \ V_x = 21; \ V_y = -28; \\ M_x &= 13.893; \ M_y = 10.233; \ M_z = 2.547; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
107	Combination 428	$\begin{split} N &= 16; \ V_x = -51; \ V_y = -55; \\ M_x &= 24.672; \ M_y = 29.016; \ M_z = -34.169; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	6
108	Combination 429	$\begin{split} N &= -16; \ V_x = 24; \ V_y = -50; \\ M_x &= 22.075; \ M_y = 11.817; \ M_z = 2.941; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
109	Combination 430	$\begin{split} N &= 43; \ V_x = -44; \ V_y = -33; \\ M_x &= 29.643; \ M_y = 25.128; \ M_z = -29.590; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	6
110	Combination 431	$\begin{split} N &= -30; \ V_x = 21; \ V_y = -72; \\ M_x &= 30.256; \ M_y = 10.233; \ M_z = 2.547; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	. 4

www.hilti.com

 Company:
 Page:
 11

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

	Case	Description Combination 433	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
	111	Combination 432	$N = 55; V_x = -36; V_y = -24;$ $M_x = 31.700; M_y = 20.514; M_z = -24.157;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	o
,	112	Combination 433	$\begin{split} & \text{N} = \text{-36; V}_{\text{x}} = \text{17; V}_{\text{y}} = \text{-81;} \\ & \text{M}_{\text{x}} = 33.643; \text{M}_{\text{y}} = 8.355; \text{M}_{\text{z}} = 2.079; \\ & \text{N}_{\text{sus}} = 0; \text{M}_{\text{x,sus}} = 0.000; \text{M}_{\text{y,sus}} = 0.000; \end{split}$	no	4
,	113	Combination 434	$\begin{split} N &= 64; \ V_x = -26; \ V_y = -17; \\ M_x &= 33.281; \ M_y = 14.508; \ M_z = -17.084; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	6
•	114	Combination 435	$\begin{split} & \text{N} = \text{-40; V}_{\text{x}} = \text{12; V}_{\text{y}} = \text{-88;} \\ & \text{M}_{\text{x}} = 36.245; \text{M}_{\text{y}} = 5.909; \text{M}_{\text{z}} = 1.470; \\ & \text{N}_{\text{sus}} = 0; \text{M}_{\text{x,sus}} = 0.000; \text{M}_{\text{y,sus}} = 0.000; \end{split}$	no	4
,	115	Combination 436	$\begin{aligned} N &= 71; \ V_x = 0; \ V_y = -11; \\ M_x &= 34.613; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	6
,	116	Combination 437	$\begin{split} N &= \text{-}44; \ V_x = 0; \ V_y = \text{-}94; \\ M_x &= 38.438; \ M_y = 0.000; \ M_z = 0.000; \\ N_{\text{sus}} &= 0; \ M_{\text{x,sus}} = 0.000; \ M_{\text{y,sus}} = 0.000; \end{split}$	no	4
,	117	Combination 438	$\begin{split} N &= 64; \ V_x = 26; \ V_y = -17; \\ M_x &= 33.281; \ M_y = 14.508; \ M_z = 17.084; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	6
•	118	Combination 439	$\begin{split} & \text{N} = -40; \ \text{V}_{\text{x}} = -12; \ \text{V}_{\text{y}} = -88; \\ & \text{M}_{\text{x}} = 36.245; \ \text{M}_{\text{y}} = 5.909; \ \text{M}_{\text{z}} = -1.470; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{split}$	no	4
7	119	Combination 440	$\begin{aligned} & N = 55; V_x = 36; V_y = -24; \\ & M_x = 31.700; M_y = 20.514; M_z = 24.157; \\ & N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000; \end{aligned}$	no	6
•	120	Combination 441	$\begin{split} N &= \text{-36; } V_x = \text{-17; } V_y = \text{-81;} \\ M_x &= 33.643; \ M_y = 8.355; \ M_z = \text{-2.079;} \\ N_{\text{sus}} &= 0; \ M_{\text{x,sus}} = 0.000; \ M_{\text{y,sus}} = 0.000; \end{split}$	no	4
í	121	Combination 442	$\begin{aligned} & N = 43; \ V_x = 44; \ V_y = -33; \\ & M_x = 29.643; \ M_y = 25.128; \ M_z = 29.590; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	6
1	122	Combination 443	$\begin{aligned} & \text{N} = -30; \ \text{V}_{\text{x}} = -21; \ \text{V}_{\text{y}} = -72; \\ & \text{M}_{\text{x}} = 30.256; \ \text{M}_{\text{y}} = 10.233; \ \text{M}_{\text{z}} = -2.547; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	4
1	123	Combination 444	$N = 16; V_x = 51; V_y = -55; \\ M_x = 24.672; M_y = 29.016; M_z = 34.169; \\ N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	6

www.hilti.com

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
124	Combination 445	$N = -16$; $V_x = -24$; $V_y = -50$; $M_x = 22.075$; $M_y = 11.817$; $M_z = -2.941$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	3
125	Combination 446	$N = -12; V_x = 44; V_y = -77;$ $M_x = 19.702; M_y = 25.128; M_z = 29.590;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	6
126	Combination 447	$N = -2$; $V_x = -21$; $V_y = -28$; $M_x = 13.893$; $M_y = 10.233$; $M_z = -2.547$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	3
127	Combination 448	$\begin{aligned} N &= -23; \ V_x = 36; \ V_y = -86; \\ M_x &= 17.644; \ M_y = 20.514; \ M_z = 24.157; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	6
128	Combination 449	$N = 4$; $V_x = -17$; $V_y = -19$; $M_x = 10.506$; $M_y = 8.354$; $M_z = -2.079$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	2
129	Combination 450	$\begin{aligned} N &= -32; \ V_x = 26; \ V_y = -93; \\ M_x &= 16.064; \ M_y = 14.508; \ M_z = 17.084; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	5
130	Combination 451	$\begin{split} N &= 8; \ V_x = -12; \ V_y = -12; \\ M_x &= 7.904; \ M_y = 5.908; \ M_z = -1.470; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	2
131	Combination 452	$\begin{aligned} & N = -44; \ V_x = 0; \ V_y = -82; \\ & M_x = 7.073; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	4
132	Combination 453	$\begin{aligned} N &= 17; \ V_x = 0; \ V_y = 9; \\ M_x &= -1.138; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	1
133	Combination 454	$\begin{aligned} N &= -37; \ V_x = -26; \ V_y = -76; \\ M_x &= 8.405; \ M_y = 14.505; \ M_z = -17.078; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
134	Combination 455	$\begin{aligned} & N = 13; \ V_x = 12; \ V_y = 3; \\ & M_x = 1.054; \ M_y = 5.905; \ M_z = 1.470; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	1
135	Combination 456	$\begin{aligned} N &= -28; \ V_x = -36; \ V_y = -69; \\ M_x &= 9.985; \ M_y = 20.510; \ M_z = -24.148; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
136	Combination 457	$\begin{aligned} N &= 9; \ V_x = 17; \ V_y = -4; \\ M_x &= 3.655; \ M_y = 8.350; \ M_z = 2.078; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2

www.hilti.com

 Company:
 Page:
 13

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
137	Combination 458	$N = -17; V_x = -44; V_y = -60;$ $M_x = 12.042; M_y = 25.123; M_z = -29.579;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	3
138	Combination 459	$\begin{aligned} N &= 3; \ V_x = 21; \ V_y = -13; \\ M_x &= 7.041; \ M_y = 10.228; \ M_z = 2.545; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
139	Combination 460	$\begin{split} N &= 11; \ V_x = -51; \ V_y = -38; \\ M_x &= 17.011; \ M_y = 29.010; \ M_z = -34.156; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	5
140	Combination 461	$\begin{split} N &= -11; \ V_x = 24; \ V_y = -35; \\ M_x &= 15.220; \ M_y = 11.810; \ M_z = 2.939; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
141	Combination 462	$\begin{split} N &= 39; \ V_x = -44; \ V_y = -16; \\ M_x &= 21.979; \ M_y = 25.122; \ M_z = -29.579; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	6
142	Combination 463	$\begin{split} N &= -25; \ V_x = 21; \ V_y = -57; \\ M_x &= 23.398; \ M_y = 10.228; \ M_z = 2.545; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
143	Combination 464	$\begin{split} N &= 50; \ V_x = -36; \ V_y = -7; \\ M_x &= 24.036; \ M_y = 20.510; \ M_z = -24.148; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	6
144	Combination 465	$\begin{split} N &= -31; \ V_x = 17; \ V_y = -66; \\ M_x &= 26.784; \ M_y = 8.350; \ M_z = 2.078; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
145	Combination 466	$\begin{split} N &= 59; \ V_x = -26; \ V_y = 0; \\ M_x &= 25.616; \ M_y = 14.505; \ M_z = -17.078; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	5
146	Combination 467	$\begin{aligned} N &= -35; \ V_x = 12; \ V_y = -73; \\ M_x &= 29.385; \ M_y = 5.905; \ M_z = 1.470; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
147	Combination 468	$\begin{aligned} & N = 66; \ V_x = 0; \ V_y = 6; \\ & M_x = 26.948; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{\text{sus}} = 0; \ M_{x,\text{sus}} = 0.000; \ M_{y,\text{sus}} = 0.000; \end{aligned}$	no	5
148	Combination 469	$\begin{aligned} & N = \text{-39; } V_x = 0; V_y = \text{-79;} \\ & M_x = 31.577; \; M_y = 0.000; \; M_z = 0.000; \\ & N_{sus} = 0; \; M_{x,sus} = 0.000; \; M_{y,sus} = 0.000; \end{aligned}$	no	4
149	Combination 470	$\begin{split} N &= 59; V_x = 26; V_y = 0; \\ M_x &= 25.616; M_y = 14.505; M_z = 17.078; \\ N_{sus} &= 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000; \end{split}$	no	5

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening point:

Tanglewood

Page: Specifier: E-Mail: Date:

10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
150	Combination 471	$N = -35$; $V_x = -12$; $V_y = -73$; $M_x = 29.385$; $M_y = 5.905$; $M_z = -1.470$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	3
151	Combination 472	$\begin{split} & N = 50; \ V_{_{X}} = 36; \ V_{_{y}} = -7; \\ & M_{_{X}} = 24.036; \ M_{_{Y}} = 20.510; \ M_{_{Z}} = 24.148; \\ & N_{_{SUS}} = 0; \ M_{_{X,SUS}} = 0.000; \ M_{_{y,SUS}} = 0.000; \end{split}$	no ²	6
152	Combination 473	$\begin{split} N &= -31; \ V_x = -17; \ V_y = -66; \\ M_x &= 26.784; \ M_y = 8.350; \ M_z = -2.078; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
153	Combination 474	$\begin{split} N &= 39; \ V_x = 44; \ V_y = -16; \\ M_x &= 21.979; \ M_y = 25.122; \ M_z = 29.579; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	6
154	Combination 475	$\begin{split} N &= -25; \ V_x = -21; \ V_y = -57; \\ M_x &= 23.398; \ M_y = 10.228; \ M_z = -2.545; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
155	Combination 476	$\begin{split} N &= 11; \ V_x = 51; \ V_y = -38; \\ M_x &= 17.011; \ M_y = 29.010; \ M_z = 34.156; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	5
156	Combination 477	$\begin{split} N &= -11; \ V_x = -24; \ V_y = -35; \\ M_x &= 15.220; \ M_y = 11.810; \ M_z = -2.939; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
157	Combination 478	$\begin{split} N &= -17; \ V_x = 44; \ V_y = -60; \\ M_x &= 12.042; \ M_y = 25.123; \ M_z = 29.579; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	5
158	Combination 479	$\begin{split} N &= 3; V_x = -21; V_y = -13; \\ M_x &= 7.041; M_y = 10.228; M_z = -2.545; \\ N_{sus} &= 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000; \end{split}$	no	2
159	Combination 480	$\begin{split} N &= -28; \ V_x = 36; \ V_y = -69; \\ M_x &= 9.985; \ M_y = 20.510; \ M_z = 24.148; \\ N_{\text{sus}} &= 0; \ M_{\text{x,sus}} = 0.000; \ M_{\text{y,sus}} = 0.000; \end{split}$	no	5
160	Combination 481	$\begin{aligned} N &= 9; \ V_x = -17; \ V_y = -4; \\ M_x &= 3.655; \ M_y = 8.350; \ M_z = -2.078; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
161	Combination 482	$\begin{split} N &= \text{-37; } V_x = 26; \ V_y = \text{-76;} \\ M_x &= 8.405; \ M_y = 14.505; \ M_z = 17.078; \\ N_{\text{sus}} &= 0; \ M_{\text{x,sus}} = 0.000; \ M_{\text{y,sus}} = 0.000; \end{split}$	no	5
162	Combination 483	$\begin{aligned} & N = 13; \ V_x = -12; \ V_y = 3; \\ & M_x = 1.054; \ M_y = 5.905; \ M_z = -1.470; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	1

www.hilti.com

 Company:
 Page:
 15

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Case 163	Description Combination 484	Forces [lb] / Moments [ft.lb] N = 15; V _v = 0; V _v = -53;	Seismic no	Max. Util. Anchor [%]
103	Combination 464	$M_x = 23.819$; $M_y = 0.000$; $M_z = 0.000$; $M_{sus} = 0$; $M_{sus} = 0.000$; $M_{y,sus} = 0.000$;	110	3
164	Combination 485	$\begin{split} N &= -15; \ V_x = 0; \ V_y = -49; \\ M_x &= 21.311; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	2
165	Combination 486	$\begin{aligned} & N = 15; \ V_x = 0; \ V_y = -53; \\ & M_x = 23.819; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
166	Combination 487	$\begin{aligned} N &= -15; \ V_x = 0; \ V_y = -49; \\ M_x &= 21.311; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
167	Combination 488	$\begin{aligned} N &= -4; \ V_x = 0; \ V_y = -69; \\ M_x &= 20.265; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
168	Combination 489	$\begin{split} N &= -5; \ V_x = 0; \ V_y = -33; \\ M_x &= 15.462; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	2
169	Combination 490	$\begin{aligned} & N = -0; \ V_x = -9; \ V_y = -66; \\ & M_x = 20.996; \ M_y = 4.810; \ M_z = -5.604; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	4
170	Combination 491	$\begin{aligned} N &= -7; \ V_x = 4; \ V_y = -36; \\ M_x &= 16.664; \ M_y = 1.891; \ M_z = 0.482; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
171	Combination 492	$\begin{aligned} N &= 4; \ V_x = -11; \ V_y = -63; \\ M_x &= 21.722; \ M_y = 6.263; \ M_z = -7.216; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	4
172	Combination 493	$\begin{aligned} & N = -9; \ V_x = 5; \ V_y = -39; \\ & M_x = 17.858; \ M_y = 2.378; \ M_z = 0.622; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
173	Combination 494	$N = 8; V_x = -12; V_y = -59; \\ M_x = 22.484; M_y = 7.011; M_z = -7.969; \\ N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	3
174	Combination 495	$\begin{aligned} & N = -11; \ V_x = 5; \ V_y = -43; \\ & M_x = 19.111; \ M_y = 2.551; \ M_z = 0.687; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
175	Combination 496	$N = 15; V_x = -13; V_y = -53;$ $M_x = 23.819; M_y = 7.334; M_z = -8.199;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	4

www.hilti.com

 Company:
 Page:
 16

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
176	Combination 497	$N = -15; V_x = 5; V_y = -49;$ $M_x = 21.311; M_y = 2.527; M_z = 0.708;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	2
177	Combination 498	$N = 23$; $V_x = -12$; $V_y = -47$; $M_x = 25.154$; $M_y = 7.011$; $M_z = -7.969$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	4
178	Combination 499	$\begin{aligned} N &= -19; \ V_x = 5; \ V_y = -55; \\ M_x &= 23.511; \ M_y = 2.551; \ M_z = 0.687; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
179	Combination 500	$N = 27$; $V_x = -11$; $V_y = -44$; $M_x = 25.915$; $M_y = 6.263$; $M_z = -7.216$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	4
180	Combination 501	$\begin{aligned} N &= -21; \ V_x = 5; \ V_y = -58; \\ M_x &= 24.764; \ M_y = 2.378; \ M_z = 0.622; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
181	Combination 502	$\begin{aligned} N &= 31; \ V_x = -9; \ V_y = -41; \\ M_x &= 26.642; \ M_y = 4.810; \ M_z = -5.604; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	4
182	Combination 503	$\begin{aligned} N &= -24; \ V_x = 4; \ V_y = -61; \\ M_x &= 25.958; \ M_y = 1.891; \ M_z = 0.482; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
183	Combination 504	$\begin{aligned} N &= 8; \ V_x = 0; \ V_y = -61; \\ M_x &= 22.032; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
184	Combination 505	$\begin{split} N = -9; \ V_x = 0; \ V_y = -41; \\ M_x = 18.403; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	2
185	Combination 506	$\begin{aligned} N &= 10; \ V_x = -2; \ V_y = -59; \\ M_x &= 22.527; \ M_y = 1.339; \ M_z = -2.488; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
186	Combination 507	$\begin{aligned} N &= -10; \ V_x = 3; \ V_y = -43; \\ M_x &= 19.210; \ M_y = 1.484; \ M_z = 0.209; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
187	Combination 508	$\begin{aligned} N &= 12; \ V_x = -2; \ V_y = -57; \\ M_x &= 22.972; \ M_y = 1.354; \ M_z = -2.810; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
188	Combination 509	$\begin{aligned} N &= -12; \ V_x = 3; \ V_y = -45; \\ M_x &= 19.937; \ M_y = 1.803; \ M_z = 0.235; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2

www.hilti.com

 Company:
 Page:
 17

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
189	Combination 510	$N = 14$; $V_x = -2$; $V_y = -55$; $M_x = 23.367$; $M_y = 0.999$; $M_z = -2.573$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	3
190	Combination 511	$\begin{aligned} N &= -13; \ V_x = 4; \ V_y = -47; \\ M_x &= 20.581; \ M_y = 1.846; \ M_z = 0.213; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
191	Combination 512	$\begin{aligned} N &= 15; \ V_x = -1; \ V_y = -53; \\ M_x &= 23.819; \ M_y = 0.392; \ M_z = -1.969; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
192	Combination 513	$\begin{aligned} N &= -15; \ V_x = 3; \ V_y = -49; \\ M_x &= 21.311; \ M_y = 1.713; \ M_z = 0.161; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
193	Combination 514	$\begin{aligned} & N = 17; \ V_x = -2; \ V_y = -51; \\ & M_x = 24.271; \ M_y = 0.999; \ M_z = -2.573; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
194	Combination 515	$\begin{aligned} N &= -17; \ V_x = 4; \ V_y = -50; \\ M_x &= 22.041; \ M_y = 1.846; \ M_z = 0.213; \\ N_{\text{sus}} &= 0; \ M_{x,\text{sus}} = 0.000; \ M_{y,\text{sus}} = 0.000; \end{aligned}$	no	2
195	Combination 516	$\begin{aligned} N &= 18; \ V_x = -2; \ V_y = -50; \\ M_x &= 24.666; \ M_y = 1.354; \ M_z = -2.810; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
196	Combination 517	$\begin{aligned} & \text{N} = -19; \ \text{V}_{\text{x}} = 3; \ \text{V}_{\text{y}} = -52; \\ & \text{M}_{\text{x}} = 22.685; \ \text{M}_{\text{y}} = 1.803; \ \text{M}_{\text{z}} = 0.235; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	3
197	Combination 518	$\begin{aligned} N &= 20; \ V_x = -2; \ V_y = -48; \\ M_x &= 25.111; \ M_y = 1.339; \ M_z = -2.488; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
198	Combination 519	$\begin{split} N &= -20; \ V_x = 3; \ V_y = -54; \\ M_x &= 23.412; \ M_y = 1.484; \ M_z = 0.209; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
199	Combination 520	$\begin{aligned} & N = -4; \ V_x = 0; \ V_y = -69; \\ & M_x = 20.265; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
200	Combination 521	$\begin{aligned} & \text{N} = -5; \ \text{V}_{\text{x}} = 0; \ \text{V}_{\text{y}} = -33; \\ & \text{M}_{\text{x}} = 15.462; \ \text{M}_{\text{y}} = 0.000; \ \text{M}_{\text{z}} = 0.000; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	2
201	Combination 522	$\begin{aligned} & N = -0; \ V_x = -9; \ V_y = -66; \\ & M_x = 20.996; \ M_y = 4.810; \ M_z = -5.604; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	4

www.hilti.com

Company: Address: Phone I Fax: Design:

Fastening point:

| Tanglewood Page: Specifier: E-Mail:

Date:

10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
202	Combination 523	$N = -7$; $V_x = 4$; $V_y = -36$; $M_x = 16.664$; $M_y = 1.891$; $M_z = 0.482$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	2
203	Combination 524	$\begin{aligned} N &= 4; \ V_x = -11; \ V_y = -63; \\ M_x &= 21.722; \ M_y = 6.263; \ M_z = -7.216; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	4
204	Combination 525	$\begin{split} & N = -9; \ V_x = 5; \ V_y = -39; \\ & M_x = 17.858; \ M_y = 2.378; \ M_z = 0.622; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	2
205	Combination 526	$N = 8; V_x = -12; V_y = -59; \\ M_x = 22.484; M_y = 7.011; M_z = -7.969; \\ N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	3
206	Combination 527	$\begin{aligned} & \text{N} = -11; \ \text{V}_{\text{x}} = 5; \ \text{V}_{\text{y}} = -43; \\ & \text{M}_{\text{x}} = 19.111; \ \text{M}_{\text{y}} = 2.551; \ \text{M}_{\text{z}} = 0.687; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	2
207	Combination 528	$N = 15; V_x = -13; V_y = -53;$ $M_x = 23.819; M_y = 7.334; M_z = -8.199;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	4
208	Combination 529	$\begin{aligned} & \text{N} = -15; \ \text{V}_{\text{x}} = 5; \ \text{V}_{\text{y}} = -49; \\ & \text{M}_{\text{x}} = 21.311; \ \text{M}_{\text{y}} = 2.527; \ \text{M}_{\text{z}} = 0.708; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	2
209	Combination 530	$N = 23$; $V_x = -12$; $V_y = -47$; $M_x = 25.154$; $M_y = 7.011$; $M_z = -7.969$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	4
210	Combination 531	$\begin{aligned} & \text{N} = -19; \ \text{V}_{\text{x}} = 5; \ \text{V}_{\text{y}} = -55; \\ & \text{M}_{\text{x}} = 23.511; \ \text{M}_{\text{y}} = 2.551; \ \text{M}_{\text{z}} = 0.687; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	3
211	Combination 532	$N = 27$; $V_x = -11$; $V_y = -44$; $M_x = 25.915$; $M_y = 6.263$; $M_z = -7.216$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	4
212	Combination 533	$\begin{aligned} & N = -21; \ V_x = 5; \ V_y = -58; \\ & M_x = 24.764; \ M_y = 2.378; \ M_z = 0.622; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
213	Combination 534	$N = 31; V_x = -9; V_y = -41; \\ M_x = 26.642; M_y = 4.810; M_z = -5.604; \\ N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	4
214	Combination 535	$\begin{aligned} & \text{N} = \text{-24; V}_{\text{x}} = \text{4; V}_{\text{y}} = \text{-61;} \\ & \text{M}_{\text{x}} = 25.958; \text{M}_{\text{y}} = 1.891; \text{M}_{\text{z}} = 0.482; \\ & \text{N}_{\text{sus}} = 0; \text{M}_{\text{x,sus}} = 0.000; \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	3

www.hilti.com

 Company:
 Page:
 19

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
215	Combination 536	$N = 8$; $V_x = 0$; $V_y = -61$; $M_x = 22.032$; $M_y = 0.000$; $M_z = 0.000$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	3
216	Combination 537	$\begin{split} N &= -9; \ V_x = 0; \ V_y = -41; \\ M_x &= 18.403; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	2
217	Combination 538	$\begin{aligned} N &= 10; \ V_x = -2; \ V_y = -59; \\ M_x &= 22.527; \ M_y = 1.339; \ M_z = -2.488; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
218	Combination 539	$\begin{aligned} & \text{N} = -10; \ \text{V}_{\text{x}} = 3; \ \text{V}_{\text{y}} = -43; \\ & \text{M}_{\text{x}} = 19.210; \ \text{M}_{\text{y}} = 1.484; \ \text{M}_{\text{z}} = 0.209; \\ & \text{N}_{\text{sus}} = 0; \ \text{M}_{\text{x,sus}} = 0.000; \ \text{M}_{\text{y,sus}} = 0.000; \end{aligned}$	no	2
219	Combination 540	$\begin{aligned} N &= 12; \ V_x = -2; \ V_y = -57; \\ M_x &= 22.972; \ M_y = 1.354; \ M_z = -2.810; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
220	Combination 541	$\begin{aligned} & N = -12; \ V_x = 3; \ V_y = -45; \\ & M_x = 19.937; \ M_y = 1.803; \ M_z = 0.235; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
221	Combination 542	$\begin{aligned} N &= 14; \ V_x = -2; \ V_y = -55; \\ M_x &= 23.367; \ M_y = 0.999; \ M_z = -2.573; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
222	Combination 543	$\begin{aligned} N &= -13; \ V_x = 4; \ V_y = -47; \\ M_x &= 20.581; \ M_y = 1.846; \ M_z = 0.213; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
223	Combination 544	$\begin{aligned} N &= 15; \ V_x = -1; \ V_y = -53; \\ M_x &= 23.819; \ M_y = 0.392; \ M_z = -1.969; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
224	Combination 545	$\begin{aligned} N &= -15; \ V_x = 3; \ V_y = -49; \\ M_x &= 21.311; \ M_y = 1.713; \ M_z = 0.161; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
225	Combination 546	$\begin{split} N &= 17; \ V_x = -2; \ V_y = -51; \\ M_x &= 24.271; \ M_y = 0.999; \ M_z = -2.573; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
226	Combination 547	$\begin{aligned} N &= -17; \ V_x = 4; \ V_y = -50; \\ M_x &= 22.041; \ M_y = 1.846; \ M_z = 0.213; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
227	Combination 548	$\begin{aligned} N &= 18; \ V_x = -2; \ V_y = -50; \\ M_x &= 24.666; \ M_y = 1.354; \ M_z = -2.810; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
226	Combination 547	$\begin{split} N &= 17; V_x = -2; V_y = -51; \\ M_x &= 24.271; M_y = 0.999; M_z = -2.573; \\ N_{sus} &= 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000; \\ N &= -17; V_x = 4; V_y = -50; \\ M_x &= 22.041; M_y = 1.846; M_z = 0.213; \\ N_{sus} &= 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000; \\ N &= 18; V_x = -2; V_y = -50; \\ M_x &= 24.666; M_y = 1.354; M_z = -2.810; \end{split}$	no	2

www.hilti.com

Company: Address: Phone I Fax: Design: Fastening point:

| Tanglewood Page: Specifier: E-Mail:

Date:

10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
228	Combination 549	$N = -19$; $V_x = 3$; $V_y = -52$; $M_x = 22.685$; $M_y = 1.803$; $M_z = 0.235$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	3
229	Combination 550	$\begin{aligned} N &= 20; \ V_x = -2; \ V_y = -48; \\ M_x &= 25.111; \ M_y = 1.339; \ M_z = -2.488; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
230	Combination 551	$\begin{split} N &= -20; \ V_x = 3; \ V_y = -54; \\ M_x &= 23.412; \ M_y = 1.484; \ M_z = 0.209; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
231	Combination 552	$\begin{split} & N = -4; \ V_x = 0; \ V_y = -69; \\ & M_x = 20.265; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
232	Combination 553	$\begin{split} N &= -5; \ V_x = 0; \ V_y = -33; \\ M_x &= 15.462; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	2
233	Combination 554	$\begin{aligned} N &= -0; \ V_x = -9; \ V_y = -66; \\ M_x &= 20.996; \ M_y = 4.810; \ M_z = -5.604; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	4
234	Combination 555	$\begin{aligned} & N = -7; \ V_x = 4; \ V_y = -36; \\ & M_x = 16.664; \ M_y = 1.891; \ M_z = 0.482; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
235	Combination 556	$N = 4$; $V_x = -11$; $V_y = -63$; $M_x = 21.722$; $M_y = 6.263$; $M_z = -7.216$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	4
236	Combination 557	$\begin{split} & N = -9; \ V_x = 5; \ V_y = -39; \\ & M_x = 17.858; \ M_y = 2.378; \ M_z = 0.622; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	2
237	Combination 558	$N = 8$; $V_x = -12$; $V_y = -59$; $M_x = 22.484$; $M_y = 7.011$; $M_z = -7.969$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	3
238	Combination 559	$\begin{aligned} N &= -11; \ V_x = 5; \ V_y = -43; \\ M_x &= 19.111; \ M_y = 2.551; \ M_z = 0.687; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
239	Combination 560	$\begin{split} N &= 15; \ V_x = -13; \ V_y = -53; \\ M_x &= 23.819; \ M_y = 7.334; \ M_z = -8.199; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	4
240	Combination 561	$\begin{split} N = -15; \ V_x = 5; \ V_y = -49; \\ M_x = 21.311; \ M_y = 2.527; \ M_z = 0.708; \\ N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	2

www.hilti.com

 Company:
 Page:
 21

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
241	Combination 562	$N = 23$; $V_x = -12$; $V_y = -47$; $M_x = 25.154$; $M_y = 7.011$; $M_z = -7.969$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	4
242	Combination 563	$\begin{split} N &= -19; \ V_x = 5; \ V_y = -55; \\ M_x &= 23.511; \ M_y = 2.551; \ M_z = 0.687; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
243	Combination 564	$\begin{split} N &= 27; \ V_x = -11; \ V_y = -44; \\ M_x &= 25.915; \ M_y = 6.263; \ M_z = -7.216; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	4
244	Combination 565	$\begin{split} N &= -21; \ V_x = 5; \ V_y = -58; \\ M_x &= 24.764; \ M_y = 2.378; \ M_z = 0.622; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
245	Combination 566	$\begin{split} N &= 31; \ V_x = -9; \ V_y = -41; \\ M_x &= 26.642; \ M_y = 4.810; \ M_z = -5.604; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	4
246	Combination 567	$\begin{aligned} N &= -24; \ V_x = 4; \ V_y = -61; \\ M_x &= 25.958; \ M_y = 1.891; \ M_z = 0.482; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
247	Combination 568	$\begin{aligned} N &= 8; \ V_x = 0; \ V_y = -61; \\ M_x &= 22.032; \ M_y = 0.000; \ M_z = 0.000; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
248	Combination 569	$\begin{aligned} & N = -9; \ V_x = 0; \ V_y = -41; \\ & M_x = 18.403; \ M_y = 0.000; \ M_z = 0.000; \\ & N_{sus} = 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
249	Combination 570	$\begin{aligned} N &= 10; \ V_x = -2; \ V_y = -59; \\ M_x &= 22.527; \ M_y = 1.339; \ M_z = -2.488; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
250	Combination 571	$\begin{aligned} N &= -10; \ V_x = 3; \ V_y = -43; \\ M_x &= 19.210; \ M_y = 1.484; \ M_z = 0.209; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
251	Combination 572	$\begin{aligned} N &= 12; \ V_x = -2; \ V_y = -57; \\ M_x &= 22.972; \ M_y = 1.354; \ M_z = -2.810; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
252	Combination 573	$\begin{aligned} N &= -12; \ V_x = 3; \ V_y = -45; \\ M_x &= 19.937; \ M_y = 1.803; \ M_z = 0.235; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
253	Combination 574	$\begin{aligned} N &= 14; \ V_x = -2; \ V_y = -55; \\ M_x &= 23.367; \ M_y = 0.999; \ M_z = -2.573; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3

www.hilti.com

Company: Address: Phone I Fax: Design:

Fastening point:

| S | Tanglewood

Page: Specifier: E-Mail: Date:

10/23/2024

Case	Description	Forces [lb] / Moments [ft.lb]	Seismic	Max. Util. Anchor [%]
254	Combination 575	$N = -13$; $V_x = 4$; $V_y = -47$; $M_x = 20.581$; $M_y = 1.846$; $M_z = 0.213$; $N_{sus} = 0$; $M_{x,sus} = 0.000$; $M_{y,sus} = 0.000$;	no	2
255	Combination 576	$\begin{split} N &= 15; \ V_x = -1; \ V_y = -53; \\ M_x &= 23.819; \ M_y = 0.392; \ M_z = -1.969; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
256	Combination 577	$\begin{aligned} N &= -15; \ V_x = 3; \ V_y = -49; \\ M_x &= 21.311; \ M_y = 1.713; \ M_z = 0.161; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	2
257	Combination 578	$\begin{split} N &= 17; \ V_x = -2; \ V_y = -51; \\ M_x &= 24.271; \ M_y = 0.999; \ M_z = -2.573; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3
258	Combination 579	$\begin{split} N &= -17; \ V_x = 4; \ V_y = -50; \\ M_x &= 22.041; \ M_y = 1.846; \ M_z = 0.213; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	2
259	Combination 580	$\begin{aligned} N &= 18; \ V_x = -2; \ V_y = -50; \\ M_x &= 24.666; \ M_y = 1.354; \ M_z = -2.810; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{aligned}$	no	3
260	Combination 581	$\begin{split} N &= -19; \ V_x = 3; \ V_y = -52; \\ M_x &= 22.685; \ M_y = 1.803; \ M_z = 0.235; \\ N_{\text{sus}} &= 0; \ M_{\text{x,sus}} = 0.000; \ M_{\text{y,sus}} = 0.000; \end{split}$	no	3
261	Combination 582	$N = 20; V_x = -2; V_y = -48;$ $M_x = 25.111; M_y = 1.339; M_z = -2.488;$ $N_{sus} = 0; M_{x,sus} = 0.000; M_{y,sus} = 0.000;$	no	3
262	Combination 583	$\begin{split} N &= -20; \ V_x = 3; \ V_y = -54; \\ M_x &= 23.412; \ M_y = 1.484; \ M_z = 0.209; \\ N_{sus} &= 0; \ M_{x,sus} = 0.000; \ M_{y,sus} = 0.000; \end{split}$	no	3

www.hilti.com

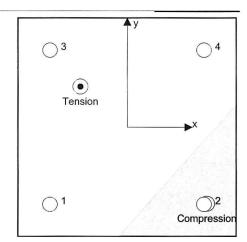
 Company:
 Page:
 23

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Tanglewood
 Date:
 10/23/2024

 Fastening point:
 10/23/2024


2 Load case/Resulting anchor forces

Controlling load case: 21 Combination 342

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	83	79	79	-8
2	0	114	79	82
3	200	13	-11	-8
4	69	82	-11	82

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load [lb]	Capacity [lb]	Utilization β _N [%]	Status
Steel	200	6,688	3	OK
Bond	282	1,451	20	OK
Masonry breakout	282	2,141	14	OK

3.1 Steel strength

 N_{sa} = ESR value refer to ICC-ES ESR-4143 ϕ $N_{sa} \ge N_{ua}$ AC58 Table 3.2 + ACI 318-19 Table 17.5.2

N _{sa} [lb]	ф	φ N _{sa} [lb]	N _{ua} [lb]
10,289	0.650	6,688	200

www.hilti.com

Company: Address:

Page: Specifier: 24

Phone I Fax: Design: Fastening point:

Tanglewood

E-Mail:

Date:

10/23/2024

3.2 Bond strength

$$N_{\text{mag}} = \left(\frac{A_{\text{Na}}}{A_{\text{Na}0}}\right) \cdot \psi$$

 $N_{\text{mag}} = \left(\frac{A_{\text{Na}}}{A_{\text{Na0}}}\right) \cdot \psi_{\text{ec1,Na}} \cdot \psi_{\text{ec2,Na}} \cdot \psi_{\text{ed,Na}} \cdot N_{\text{ba,m}}$

ACI 318-19 Eq. (17.6.5.1b)

 $\begin{array}{ll} \text{A}_{\text{Na0}} & \text{A}_{\text{Na0}} \text{/} \\ \phi & \text{N}_{\text{mag}} \geq \text{N}_{\text{ua}} \\ \text{A}_{\text{Na}} & \text{see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)} \\ \text{A}_{\text{Na0}} & = \left(2 \text{ c}_{\text{Na}}\right)^2 \\ \text{c}_{\text{Na}} & = 10 \text{ d}_{\text{a}} & \sqrt{\frac{\tau_{\text{uncr,m}}}{1100}} \end{array}$

AC58 Table 3.2 + ACI 318-19 Table D.4.1.1

ACI 318-19 Eq. (17.6.5.1.2a)

ACI 318-19 Eq. (17.6.5.1.2b)

 $\psi_{ec,Na} = \left(\frac{1}{1 + \frac{e_N}{c_{Na}}}\right) \le 1.00$

ACI 318-19 Eq. (17.6.5.3.1)

$$\begin{split} \psi_{\text{ed},\text{Na}} &= 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}}\right) \leq 1.00 \\ N_{\text{ba,m}} &= \lambda_{\text{a}} \cdot \tau_{\text{uncr,m}} \cdot \pi \cdot d_{\text{a}} \cdot h_{\text{ef}} \end{split}$$

ACI 318-19 Eq. (17.6.5.4.1b)

ACI 318-19 Eq. (17.6.5.2.1)

Variables

d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	τ _{uncr,m} [psi]	α_{sat}	α_{top}
0.500	2.750	3.187	435	1.000	1.000
e _{c1,N} [in.]	e _{c2,N} [in.]	λ _a	_		
0.000	1 239	1 000	_		

Calculations

c _{Na} [in.]	A_{Na} [in. ²]	A _{Na0} [in. ²]	$\psi_{\text{ ed,Na}}$
3.131	76.77	39.20	1.000
Ψ _{ec1,Na}	Ψ _{ec2,Na}	N _{ba,m} [lb]	
1.000	0.716	1.880	

Results

N _{mag} [lb]	ф	φ N _{mag} [lb]	φ N _{ua} [lb]
2 637	0.550	1.451	282

www.hilti.com

Company: Page: 25 Address: Specifier:

E-Mail: Phone I Fax:

Design: Tanglewood Date: 10/23/2024 Fastening point:

3.3 Masonry breakout strength

$$N_{mbg} = \frac{A_{Nm}}{A_{Nm0}} \cdot \psi_{ec,N,m} \ \psi_{ed,N,m} \cdot \psi_{c,N,m} \cdot N_{b,m}$$
 ACI 318-19 Eq. (17.6.5.1b)

$$\Phi$$
 N_{mbg} \geq N_{ua} AC58 Table 3.2 + ACI 318-19 Table 17.5.2 A_{Nm} see ACI 318-19, Section 17.4.2.1, Fig. R 17.4.2.1(b) ACI 318-19 Eq. (17.6.2.2.1)

ACI 318-19 Eq. (17.6.2.2.1)

$$\psi_{\text{ec,N,m}} = \left(\frac{1}{1 + \frac{2 e_{\text{N}}}{3 \cdot h_{\text{ef}}}}\right) \le 1.00$$
ACI 318-19 Eq. (17.6.2.3.1)

$$\psi_{\text{ed,N}} = 0.7 + 0.3 \frac{\text{C}_{\text{a,min}}}{1.5 \cdot \text{h}_{\text{ef}}} \le 1.0$$

$$N_{\text{b,m}} = k_{\text{m}} \cdot \lambda_{\text{a}} \cdot \sqrt{\dot{f_{\text{m}}}} \cdot h_{\text{ef}}^{1.5}$$
ACI 318-19 Eq. (17.6.2.2.1)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

100	h _{ef} [in.]	e _{c1,N,m} [in.]	e _{c2,N,m} [in.]	c _{a,min} [in.]	$\psi_{\text{ c,N,m}}$	k _c
	2.750	0.000	1.239	3.187	1.000	17
	λ_a	f _m [psi]				
	1.000	1,500	-			

Calculations

A _{Nm} [in. ²]	A_{Nm0} [in. ²]	$\Psi_{\text{ec1,N,m}}$	$\psi_{\text{ec2,N,m}}$	$\psi_{\text{ed},N,m}$	N _{b,m} [lb]
104.20	68.06	1.000	0.769	0.932	3.002

Results

N _{mbg} [lb]	ф	φ N _{mbg} [lb]	N _{ua} [lb]
3,294	0.650	2,141	282

www.hilti.com

Company: Address: Phone I Fax:

Design:

Tanglewood

Date:

Page: Specifier: E-Mail:

10/23/2024

26

Fastening point:

4 Shear load

	Load [lb]	Capacity [lb]	Utilization β _v [%]	Status
Steel	79	3,705	3	OK
Pryout bond	79	2,577	4	OK
Masonry crushing strength	79	3,342	3	ОК
Masonry breakout in direction y-	81	1,311	7	OK

4.1 Steel strength

 V_{sa} = ESR value $\phi V_{sa} \ge V_{ua}$

refer to ICC-ES ESR-4143

AC58 Table 3.2 + ACI 318-19 Table 17.5.2

V _{sa} [lb]	ф	φ V _{sa} [lb]	V _{ua} [lb]	
6.175	0.600	3,705	79	

www.hilti.com

Company:	Page:	27
Address:	Specifier:	

Phone I Fax: E-Mail: Design: Tanglewood Date: 10/23/2024

Fastening point:

4.2 Pryout strength (Bond strength controls)

$$\begin{array}{lll} V_{mpg} & = min(k_{cp} \cdot N_{mag}, \, k_{cp} \cdot N_{mbg}) \\ \varphi \ V_{mpg} & \geq V_{ua} & \text{AC58 Table 3.2 + ACI 318-19 Table 17.5.2} \\ A_{Na} & \text{see ACI 318-19, Section 17.6.5.1, Fig. 17.6.5.1(b)} \\ A_{Na0} & = \left(2 \, c_{Na} \right)^2 & \text{ACI 318-19 Eq. (17.6.5.1.2a)} \\ c_{Na} & = 10 \, d_a \ \sqrt{\frac{\tau_{uncr,m}}{1100}} & \text{ACI 318-19 Eq. (17.6.5.1.2b)} \end{array}$$

$$A_{Na0} = (2 c_{Na})^2$$
 ACI 318-19 Eq. (17.6.5.1.2a)
 $c_{Na} = 10 d_a \sqrt{\frac{\tau_{uncr,m}}{1400}}$ ACI 318-19 Eq. (17.6.5.1.2b)

$$\psi_{ec,Na} = \left(\frac{1}{1 + \frac{e_N}{c_{Na}}}\right) \le 1.0$$
ACI 318-19 Eq. (17.6.5.3.1)

$$\psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{ac}}} \right) \le 1.0$$
 ACI 318-19 Eq. (17.6.5.4.1b)
$$N_{\text{ba,m}} = \lambda_{\text{a}} \cdot \tau_{\text{uncr,m}} \cdot \pi \cdot d_{\text{a}} \cdot h_{\text{ef}}$$
 ACI 318-19 Eq. (17.6.5.2.1)

Variables

k_{cp}	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	τ _{uncr,m} [psi]
2	0.500	2.750	3.187	435
α_{sat}	α_{top}	e _{c1,N} [in.]	e _{c2,N} [in.]	λ a
1.000	1.000	0.000	0.000	1.000

Calculations

c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	$\Psi_{\text{ed,Na}}$	$\Psi_{\text{ec1,Na}}$	$\psi_{\text{ec2,Na}}$
3.131	38.38	39.20	1.000	1.000	1.000
Ψ _{cp,Na}	N _{ba,m} [lb]				
1.000	1,880				

Results

V _{mpg} [lb]	ф	φ V _{mpg} [lb]	V _{ua} [lb]
3,681	0.700	2,577	79

4.3 Masonry crushing strength

$$\begin{array}{ll} \varphi \ V_{mc} & \geq V_{ua} & \text{AC58 Table 3.2} \\ \\ V_{mc} & = 1750 \cdot \left(\dot{f_m} \cdot A_{se, V} \right)^{\frac{1}{4}} & \text{AC58 Eq. 3-1} \end{array}$$

Variables

f _m [psi]	A _{se,v} [in. ²]
1,500	0.14

Results

V _{mc} [lb]	ф	φ V _{mc} [lb]	V _{ua} [lb]	
6,684	0.500	3,342	79	

www.hilti.com

Company:

Address:

Phone I Fax: Design:

Fastening point:

. Tanglewood

Page:

Date:

Specifier: E-Mail:

10/23/2024

28

4.4 Masonry breakout strength y-

$$V_{\text{mbg}} = \left(\frac{A_{\text{Vm}}}{A_{\text{Vm}}}\right) \psi$$

 $V_{mbg} = \left(\frac{A_{Vm}}{A_{Vm0}}\right) \; \psi_{\; ec, V, m} \; \; \psi_{ed, V, m} \; \; \psi_{m, V} \; \; \psi_{h, V, m} \; \; \psi_{parallel, V} \; V_{b, m}$

 ϕ V_{mbg} \geq V_{ua} A_{Vm} see ACI 318-19 , Section 17.7.2.1, Fig. R 17.7.2.1(b) A_{Vm0} = 4.5 c_{a1}^2

 $\psi_{\text{ec,V,m}} = \left(\frac{1}{1 + \frac{2e_{v}}{3c_{a1}}}\right) \le 1.0$

$$\begin{split} &\psi_{ed,V,m} = 0.7 + 0.3 \bigg(\frac{c_{a2}}{1.5c_{a1}}\bigg) \leq 1.0 \\ &\psi_{h,V,m} = \sqrt{\frac{1.5c_{a1}}{h_a}} \geq 1.0 \\ &V_{b,m} = \bigg(7 \left(\frac{l_e}{d_a}\right)^{0.2} \sqrt{d_a}\right) \, \lambda_a \, \sqrt{f_m} \, c_{a1}^{1.5} \end{split}$$

ACI 318-19 Eq. (17.7.2.1b)

AC58 Table 3.2 + ACI 318-19 Table 17.5.2

ACI 318-19 Eq. (17.7.2.1.3)

ACI 318-19 Eq. (17.7.2.3.1)

ACI 318-19 Eq. (17.7.2.4.1b)

ACI 318-19 Eq. (17.7.2.6.1)

ACI 318-19 Eq. (17.7.2.2.1a)

Variables

l _e [in.]
2.750

d_a [in.] 0.500

c_{a1} [in.] 5.083

c_{a2} [in.] 3.187

A_{Vm} [in.²] 61.00

A_{Vm0} [in.²] 116.28

f_m [psi] 1,500

Calculations

$\psi_{\text{ ed,V,m}}$
0.825

Ψ_{parallel,V} 1.000

e_{c,V} [in.] 0.000

 $\Psi_{ec,V,m}$ 1.000

 $\psi_{\text{m,V}}$ 1.400 $\psi_{\text{h,V,m}}$ 1.000

Results

$V_{b,m}$ [lb]
3.089

φ 0.700 φ V_{mbg} [lb] 1,311

V_{ua} [lb] 81

5 Required verifications under combined tension and shear forces

β_{N}	
0.195	

 $\beta_{NV} = \beta_N^{\zeta} + \beta_V^{\zeta} \le 1$

0.062

Utilization $\beta_{N,V}$ [%]

Status OK

www	hilti	con	1	

Company:		Page:	29
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Tanglewood	Date:	10/23/2024
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- · Refer to the manufacturer's product literature for cleaning and installation instructions.
- · For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The min. sizes of the bricks, the masonry compressive strength, the type / strength of the mortar and the grout (in case of fully grouted CMU walls) has to fulfill the requirements given in the relevant ESR-approval or in the PTG.
- · Only the local load transfer from the anchor(s) to the wall is considered, a further load transfer in the wall is not covered by PROFIS!
- Wall is assumed as being perfectly aligned vertically checking required(!): Noncompliance can lead to significantly different distribution of forces and higher tension loads than those calculated by PROFIS. Masonry wall must not have any damages (neither visible nor not visible)! While installation, the positioning of the anchors needs to be maintained as in the design phase i.e. either relative to the brick or relative to the mortar joints.
- · The effect of the joints on the compressive stress distribution on the plate / bricks was not taken into consideration.
- If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this position or the area should be assessed and reinforced. Hilti recommends the anchoring in masonry always with sieve sleeve. Anchors can only be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.
- The accessories and installation remarks listed on this report are for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- The compliance with current standards (e.g. 2018, 2015, 2012, 2009 and 2006 IBC) is the responsibility of the user.
- · Drilling method (hammer, rotary) to be in accordance with the approval!
- Masonry needs to be built in a regular way in accordance with state-of the art guidelines!

Fastening meets the design criteria!

www.hilti.com

Company:

Address:

Phone I Fax:

Design:

Fastening point:

Page: Specifier:

E-Mail:

Date:

10/23/2024

30

7 Installation data

Anchor plate, steel: ASTM A36; E = 29,000,001 psi; f_{vk} = 36,000 psi

Tanglewood

Profile: no profile

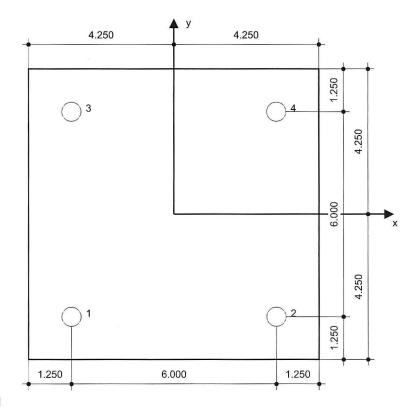
Hole diameter in the fixture: $d_f = 0.562$ in.

Plate thickness (input): 0.400 in.

Recommended plate thickness: not calculated

Drilling method: Drilled in hammer mode

Cleaning: No cleaning of the drilled hole is required


Anchor type and diameter: HY 270 + threaded rod 5.8 1/2 Item number: 385423 HAS 5.8 1/2"x4-1/2" (element) /

2194247 HIT-HY 270 (adhesive)

Maximum installation torque: 7.501 ft.lb Hole diameter in the base material: 0.562 in. Hole depth in the base material: 2.750 in.

Minimum thickness of the base material: 7.625 in.

Hilti HIT-V 5.8 threaded rod with HIT-HY 270 injection mortar with 2.75 in embedment hef, 1/2, Steel galvanized, Hammer drilled installation per ESR-4143

Coordinates Anchor [in.]

Anchor	X	У	C _{-x}	C+x	C _{-y}	C _{+y}
1	-3.000	-3.000	57.000	59.000	36.000	39.000
2	3.000	-3.000	63.000	53.000	36.000	39.000
3	-3.000	3.000	57.000	59.000	42.000	33.000
4	3.000	3.000	63.000	53.000	42.000	33.000

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2024 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company:		Page:	31
Address:		Specifier:	
Phone I Fax:	I	E-Mail:	
Design:	Tanglewood	Date:	10/23/2024
Fastening point:			

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

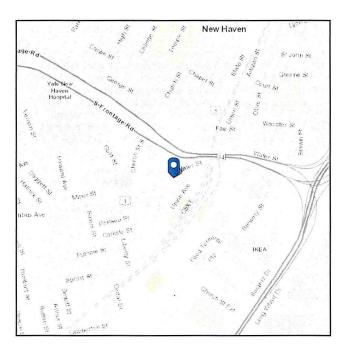
Address:

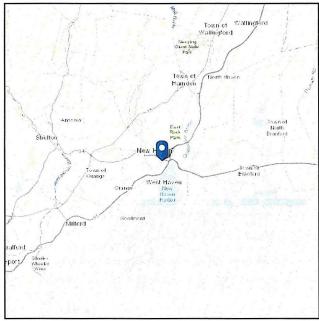
No Address at This Location

ASCE Hazards Report

Standard: ASCE/SEI 7-16

SCE/SEI 7-16 Latitude: 41.299819


Risk Category: ||


Longitude: -72.926491

Soil Class: D - Stiff Soil

Elevation: 10.79639615913296 ft

(NAVD 88)

Wind

Results:

Wind Speed 120 Vmph
10-year MRI 75 Vmph
25-year MRI 85 Vmph
50-year MRI 91 Vmph
100-year MRI 99 Vmph

Data Source:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2

Date Accessed:

Wed Oct 23 2024

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Seismic

Site Soil Class:	D - Stiff Soil			
Results:				
S _s :	0.201	S _{D1} :	0.086	
S ₁ :	0.054	T _L :	6	
Fa:	1.6	PGA:	0.112	
F _v :	2.4	PGA _M :	0.177	
S _{MS} :	0.321	F _{PGA} :	1.576	
S _{M1} :	0.129	l _e :	1	
S _{DS} :	0.214	C_{ν} :	0.701	
Seismic Design MCER	Response Spectrum	0.25	Design Response Spec	ctrum
0.30				
0.25		0.20		
1		0.15		
0.20				
0.15		0.10		
0.10				
0.05		0.05		
0				
$S_a(g)$	vs T(s) 4 5 6	7 0	$S_a(g)$ vs $T(s)$	5 6 7
0.18 MCE _R	Vertical Response Spectro	um 0.12 (Design Vertical Respon	nse Spectrum
0.16		0.11	1000	
0.14		0.10		
0.12		0.09		
0.10		0.08		
0.08		0.06		
0.06		0.05		
0.04	*************	0.04		
0.02		0.03		*********
0.02 S _a (g) v	vs T(s) 1.0 1.5	2.0 0	0.5 S _a (g) vs T(s)	1.5 2.0

Data Accessed:

Wed Oct 23 2024

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

lce

Results:

Ice Thickness:

1.00 in.

Concurrent Temperature:

15 F

Gust Speed

50 mph

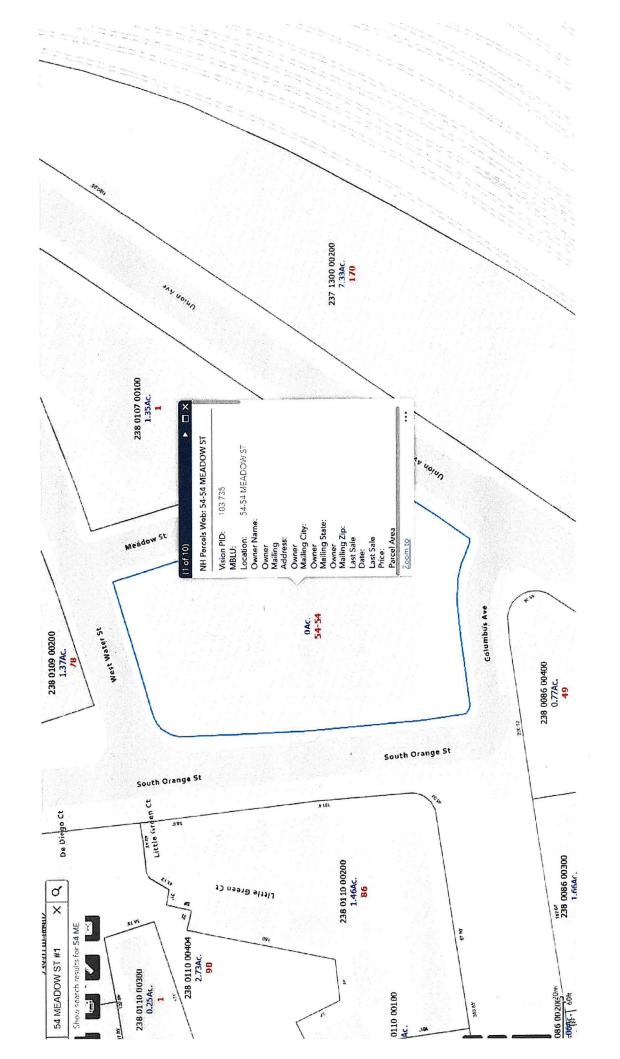
Data Source:

Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed:

Wed Oct 23 2024

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.


Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

ATTACHMENT 5

New Haven, CT

© VISION GOVERNMENT SOLUTIONS

Street Listing Sales Search

Search

54 MEADOW ST

Location 54 MEADOW ST Acct# 238 0106 00112

Map

Back

Q. Sales

Home

Feedback

Mblu 238/ 0106/ 00112/ /

Owner GATEWAY PARTNERS LLC

Appraisal \$330,000

PID 105992

Assessment \$231,000

Building Count 1

Current Value

	Appraisal		
Valuation Year	Improvements	Land	Total
2021	\$330,000	80	\$330.000
	Assessment		
Valuation Year	Improvements	Land	Total
2021	5231,000	20	5231.000

Owner of Record

GATEWAY PARTNERS LLC
C/O LEXINGTON PROPERTY MGT
755 MAIN ST STE 1245
HARTFORD, CT 06103 Owner Co-Owner Address

Book & Page 6973/0194
Sale Date 10/18/2004 '
Instrument Sale Price Certificate

\$0

ATTACHMENT 6

Certificate of Mailing — Firm

iot.	quadent	\$003,80 ° OSTA	Fee Special Handling Parcel Airlift												
fice M Postmark with Date of Receipt.		OH 06103	Postage	0										T	
TOTAL NO. of Pieces Received at Post Office TM		ceiving employee)	Address (Name, Street, City, State, and ZIP Code™)	Mayor USPS	06510	Director of City Plan aven	06510	ers, LLC Property Management	03	LC	05				
TOTAL NO. of Pieces Listed by Sender	7	Postmaster, per (name of receiving employee)	(Name, Stre	Justin Elicker, May City of New Haven	New Haven, CT 06510	Laura Brown, Direc City of New Haven	165 Church Street New Haven, CT 06510	Gateway Partners, LL c/o Lexington Propert		MCM Holdings, LLC 40 Woodland Street	Hartford, CT 06105				
Name and Address of Sender	Kenneth C. Baldwin, Esq. Robinson & Cole LLP One State Street Hartford, CT 06103		USPS® Tracking Number Firm-specific Identifier	1,		2.		3.		4.		5.	6.		