Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

March 29, 2023

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 54 Meadow Street, New Haven, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The existing facility consists of antennas and remote radio heads at various locations on the roof of the existing building and associated equipment located inside the building. The facility was originally approved by the Siting Council (the "Council") in April of 1991 (Docket No. 140). In December of 2020 the Council approved Cellco's request to modify its existing facility in Petition No. 1430. Copies of the Council's Decision and Order in Docket No. 140 and its approval letter for Petition No. 1430 are included in Attachment 1.

Cellco now intends to modify its facility further by removing three (3) existing antennas and installing four (4) new Samsung MT6407-77A antennas on existing antenna masts on the roof of the building. Other Cellco antennas will be re-oriented in their current locations. A set of project plans showing Cellco's proposed facility modifications and new antennas specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to New Haven's Chief Elected Official and Land Use Officer.

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Robinson+Cole

Melanie A. Bachman, Esq. March 29, 2023 Page 2

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

1. The proposed modifications will not result in an increase in the height of Cellco's existing antenna mounts. Cellco's replacement antennas will be installed on its existing antenna masts or on the building façade.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. Cellco's far field analysis for its modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the property.

6. According to the attached Structural Analysis Report ("SA"), the host building, screen wall and parapet wall can support Cellco's proposed modifications. Also attached is a Antenna Mount Analysis Report ("MA") stating that the existing antenna mounts can support the proposed modifications. A copy of the SA and MA are included in <u>Attachment 4</u>.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials and the property owner is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Robinson+Cole

Melanie A. Bachman, Esq. March 29, 2023 Page 3

Sincerely,

Kunie MM

Kenneth C. Baldwin

Enclosures

Copy to:

Justin Elicker, New Haven Mayor Laura Brown, Executive Director of City Plan Gateway Partners LLC, Property Owner MCM Holdings LLC, Rooftop Manager Alex Tyurin, Verizon Wireless

ATTACHMENT 1

DOCKET NO. 140 - An application of Metro Mobile CTS of New Haven, Inc., for a Certificate of Environmental Compatibility and Public Need for the construction, maintenance, and operation of cellular telephone antennas and associated equipment in the City of New Haven, Connecticut. Connecticut

Siting Council ORIGINAL

April 1, 1991

DECISION AND ORDER

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council finds that the effects associated with the construction, operation, and maintenance of a cellular telecommunications facility at the proposed site in New Haven, Connecticut, including effects on the natural environment; ecological balance; public health and safety; scenic, historic, and recreational values; air and water purity; and fish and wildlife are not disproportionate either alone or cumulatively with other effects when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the proposed New Haven site in this application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by Section 16-50k of the Connecticut General Statutes (CGS), be issued to Metro Mobile CTS of New Haven, Inc., for the construction, operation, and maintenance of a cellular telephone facility at the proposed site at the Gateway Center Building, 54 Meadow Street, New Haven, Connecticut.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record on this matter, and subject to the following conditions:

- 1. The facility shall be constructed in accordance with applicable sections of the State of Connecticut Basic Building Code.
- 2. The Certificate Holder shall notify the Council if and when any equipment other than that listed in this application is added to this facility.
- 3. The omnidirectional antenna bases shall be mounted no higher than 157 feet above ground level (AGL) or 167 feet above mean sea level (AMSL). The panel antennas shall not extend higher than the rooftop's parapet railing. The total height of the antennas shall not extend above 163.3 feet AGL or 173.3 feet AMSL.
- 4. If this facility does not initially provide, or permanently ceases to provide, cellular service following

the completion of construction, this Decision and Order shall be void, and the antennas and all associated equipment in this application shall be dismantled and removed or reapplication for any new use shall be made to the Council and approval granted before any such new use is made.

- 5. The Certificate Holder shall comply with any applicable radio frequency (RF) standard promulgated by State or federal regulatory agencies. Upon the establishment of any new governmental RF standards, the facility granted in this Decision and Order shall be brought into compliance with such standards.
- 6. The Certificate Holder shall provide the Council with a report of recalculated power density if and when additional channels over the proposed 90 channels, higher wattage over the proposed 100 watts per channel, or if other circumstances in operation cause change in power density above the levels originally calculated in the application.
- 7. The Certificate Holder shall provide a final report to the Council upon completion of construction, including the final construction costs and date of commercial operation.

Unless otherwise approved by the Council, this Decision and Order shall be void if all construction authorized herein is not completed within three years of the effective date of this Decision and Order.

Pursuant to Section 16-50p, we hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below and notice of issuance be published in the <u>New Haven Register</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of State Agencies.

The parties or intervenors to this proceeding are:

(Applicant)

(Its Representative)

Metro Mobile CTS of New Haven 20 Alexander Drive Wallingford, CT 06492 Attn: David S. Malko, Mgr. Engineering & Regulatory Services Robinson & Cole One Commercial Plaza Hartford, CT 06103-3597 Attn: Earl W. Phillips, Jr. (203) 275-8200 Docket No. 140 Decision and Order Page 3

(Intervenor)

SNET Cellular, Inc. 237 Church Street New Haven, CT 06506

(Its Representative)

Peter J. Tyrrell Senior Attorney SNET Cellular, Inc. 227 Church Street Room 1021 New Haven, CT 06506

5200E

ср

CERTIFICATION

The undersigned members of the Connecticut Siting Council hereby certify that they have heard this case in Docket No. 140 or read the record thereof, and that we voted as follows:

Dated at New Britain, Connecticut the 1st day of April, 1991.

Council Members

Vote Cast

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Gloria Dibble Pond Chairperson

Commissioner Peter Boucher Designee: Mark Marcus

Yes Commissioner Timothy R.E. Keeney

Designee: Brian Emerick

Harry E. Covey

Mortimer A, Gelston

Daniel P. Lynch, Jr.

aulann W. h e.

Paulann H. Sheets

William H. Smith

Colin C. Tait

Yes

VIA ELECTRONIC MAIL

December 4, 2020

Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103-3597

RE: **PETITION NO. 1430** - Cellco Partnership d/b/a Verizon Wireless petition for a declaratory ruling, pursuant to Connecticut General Statutes §4-176 and §16-50k, for proposed modifications to an existing rooftop telecommunications facility located at 54 Meadow Street, New Haven, Connecticut.

Dear Attorney Baldwin:

At a public meeting held on December 3, 2020 the Connecticut Siting Council (Council) considered and ruled that the above-referenced proposal would not have a substantial adverse environmental effect, and pursuant to Connecticut General Statutes § 16-50k, would not require a Certificate of Environmental Compatibility and Public Need with the following conditions:

- 1. Approval of any project changes be delegated to Council staff;
- 2. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed within three years from the date of the mailing of the Council's decision, this decision shall be void, and the facility owner/operator shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The facility owner/operator shall provide written notice to the Executive Director of any schedule changes as soon as is practicable;
- 3. Any request for extension of the time period to fully construct the facility shall be filed with the Council not later than 60 days prior to the expiration date of this decision and shall be served on all parties and intervenors, if applicable, and the City of New Haven
- 4. Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- 5. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by the Petitioner shall be removed within 60 days of the date the antenna ceased to function;
- 6. The facility owner/operator shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v;

- 7. If the facility ceases to provide wireless services for a period of one year the Petitioner shall dismantle the facility and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Petitioner may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period; and
- 8. This Declaratory Ruling may be transferred or partially transferred, provided both the facility owner/operator/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. The Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the facility within 30 days of the sale and/or transfer. Both the facility owner/operator/transferor and the transferee shall provide the Council with a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility.

This decision is under the exclusive jurisdiction of the Council and is not applicable to any other modification or construction. All work is to be implemented as specified in the petition dated August 26, 2020, and additional information received October 26, 2020.

Enclosed for your information is a copy of the staff report on this project.

Sincerely,

s/ Melanie A. Bachman

Melanie A. Bachman Executive Director

MAB/CMW/emr

Enclosure: Staff Report dated December 3, 2020

 c: The Honorable Justin Elicker, Mayor, City of New Haven (<u>jelicker@newhavenct.gov</u>) Scott Jackson, Acting Chief Administrative Officer, City of New Haven (<u>sjackson@newhavenct.gov</u>) Aïcha Woods, A.I.A., Executive Director, City Plan Department, City of New Haven (<u>awoods@newhavenct.gov</u>)

STATE OF CONNECTICUT

CONNECTICUT SITING COUNCIL Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: <u>siting.council@ct.gov</u> Web Site: portal.ct.gov/csc

Petition No. 1430 Cellco Partnership d/b/a Verizon Wireless 54 Meadow Street, New Haven

> Staff Report December 3, 2020

Introduction

On August 26, 2020, the Connecticut Siting Council (Council) received a petition from Cellco Partnership d/b/a Verizon Wireless (Cellco) for a declaratory ruling pursuant to Connecticut General Statutes §4-176 and §16-50k, for the proposed modifications to its existing wireless telecommunications facility on the roof of a building located at 54 Meadow Street, New Haven, Connecticut.

On August 26, 2020, Cellco provided notice of the project to abutting property owners and City of New Haven (City) officials.

On August 27, 2020, the Council sent correspondence to the City stating that the Council has received the petition and invited the municipality to contact the Council with any questions or comments by September 25, 2020. No comments have been received.

The Council issued interrogatories to Cellco on October 22, 2020. Cellco provided responses to the Council's interrogatories on October 26, 2020.

Existing Facility

On April 1, 1991, the Council approved the existing facility in Docket No. 140. Cellco currently maintains 12 antennas located on the façade of the rooftop penthouse of the building owned by Gateway Partners LLC located within a BE Wholesale and Distribution zone. MCM Holdings LLC manages the facility for the property owner.

Cellco's existing equipment is located in an equipment room inside the building.

The host building is an office building. Surrounding land use includes New Haven Police Department Headquarters to the east, the New Haven Train Station and a parking garage to the south, a commercial building owned by the Knights of Columbus to the north and vacant land along South Orange Street to the west.

Proposed Facility

Cellco proposes to remove nine existing antennas (leaving three antennas) and install 12 new antennas and 10 remote radio heads at various locations on the roof of the building. Three of the existing antennas would remain on the façade of the rooftop penthouse. Four new antennas would be attached to the penthouse façade. Two existing antennas and four new antennas would be attached to the existing mechanical screen wall in the northwest corner of the building rooftop. One existing antenna and one new antenna would be attached to the building façade on the southeast corner of the building.

Petition No. 1430 Page 2

Cellco would provide wireless services in the 850 MHz, 1900 MHz, 2100 MHz and 28 GHz frequency ranges. The facility would provide 5G services in the 850 MHz, 2100 MHz and 28 GHz frequency bands.

Emergency backup power is supplied by the facility's existing battery backup power system and is connected to the building's backup generator. No change to backup power is proposed. Commercial Mobile Radio Service (CMRS) providers are licensed by and are under the jurisdiction and authority of the Federal Communications Commission (FCC). At present, no standards for backup power for CMRS providers have been promulgated by the FCC. Every year since 2006, AT&T, T-Mobile and Verizon have certified their compliance with the CTIA Business Continuity/Disaster Recovery Program and the Communications Security, Reliability and Interoperability Council standards and best practices to ensure network reliability during power outages.

The proposed installation may be visible from surrounding properties; however, the building currently has multiple antennas and equipment installed on the penthouse façade, therefore, the proposed modifications would not increase visibility of the facility.

The installation would not be a hazard to air navigation and no notice to the Federal Aviation Administration is required.

A Professional Engineer duly licensed in the State of Connecticut has certified that the existing building and antenna mounting systems are adequate to support the proposed loading.

The highest calculated power density level for Cellco's proposed antennas would be 4.05 percent of the applicable exposure limit established by the FCC at ground level with a -10 dB off-beam adjustment.

Cellco contends that this proposed project would not have a substantial adverse environmental impact.

If approved, staff recommends the following condition:

1. Approval of any project changes be delegated to Council staff.

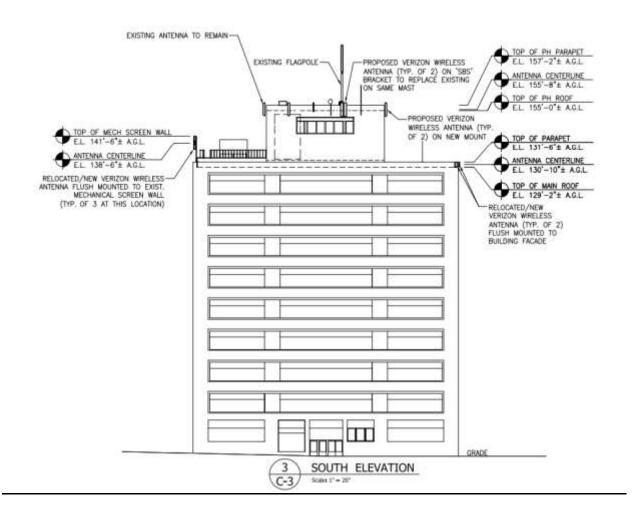


Figure 1. Facility elevation drawing.

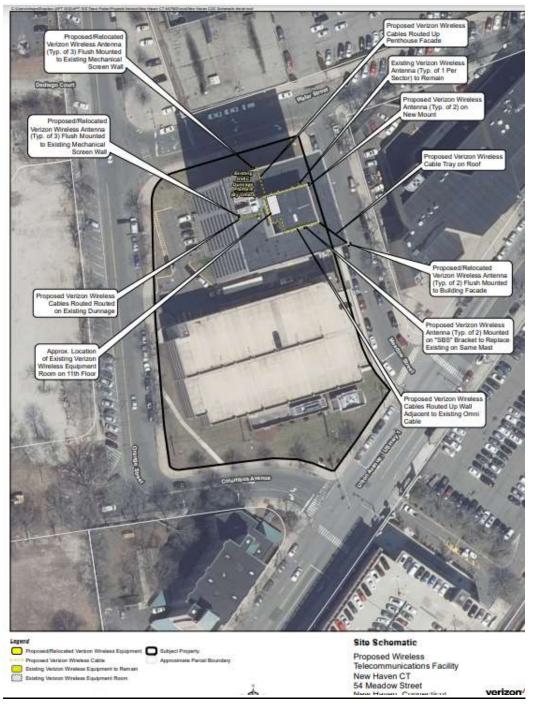


Figure 2. Site schematic

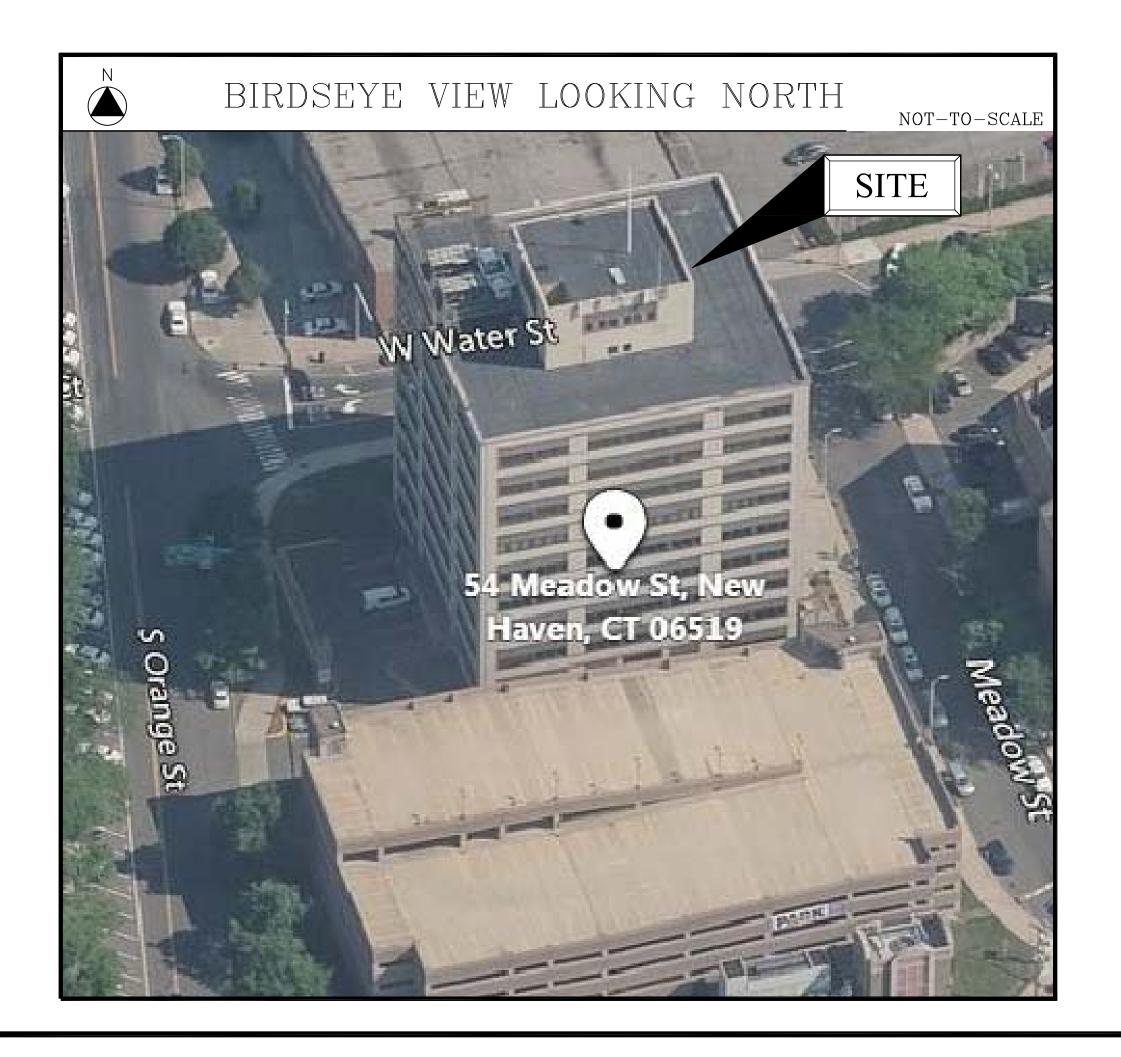


Figure 3. Existing facility.

Figure 4. Proposed facility.

ATTACHMENT 2

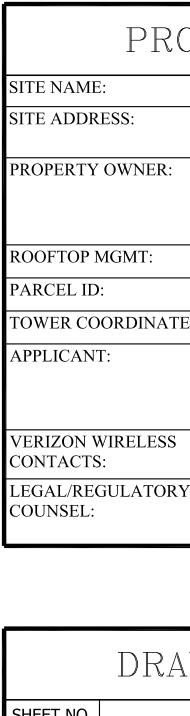
REFERENCED CODES & STRUCTURAL REPORTS

- CONNECTICUT STATE BUILDING CODE, OCTOBER 1, 2022 (LATEST EDITION)

- REFER TO STRUCTURAL ANALYSIS ("SA") AND MOUNT ANALYSIS ("MA") REPORTS (BOTH PASSING, UNDER SEPARATE COVER)

PROJECT DESCRIPTION

- INSTALLATION OF (4) NEW ANTENNAS MOUNTED ON EXISTING MASTS WITH EXISTING ANTENNAS. - EXISTING (12) ANTENNAS TO REMAIN.


- EXISTING (3) 850-CDMA ANTENNAS TO BE REMOVED.

- EXISTING ACCESSORY EQUIPMENT (RRH's, CABLE BOXES, ETC.) TO REMAIN.

SITE NAME: NEW HAVEN CT

54 MEADOW ST. NEW HAVEN, CT 06519

SHEET NO.	
T-1	TITLE SHE
G-1	GENERAL I
A-1	ROOF PLA
A-2	ELEVATION
S-1	ANTENNA

	NEW HAVEN CT
SS:	54 MEADOW ST. NEW HAVEN, CT 06519
OWNER:	GATEWAY PARTNERS LLC C/O LEXINGTON PROPERTY MGMT. 30 LEWIS ST. HARTFORD, CT 06103
GMT:	MCM HOLDINGS, LLC
	238/ 0106/ 00101-00106
ORDINATES:	41° 17' 59.3484" N 72° 55' 35.3676" W
	CELLCO PARTNERSHIP d.b.a. VERIZON WIRELESS 20 ALEXANDER DR. WALLINGFORD, CT 06492
IRELESS	BRYON MORAWSKI - CONSTRUCTION ALEKSEY TYURIN - LEASING
ULATORY	KENNETH C. BALDWIN, ESQ. ROBINSON & COLE, LLP (860) 275-8345

DRAWING SCHEDULE

SHEET DESCRIPTION

EET

NOTES, B.O.M. & RF PLUMBING DIAGRAM

PLANS & SECTIONS

	erizon Wireless
WIRELESS COM 20 AL	MUNICATIONS FACILITY LEXANDER DRIVE INGFORD, CT 06492
88 H Cold	Engineering, LLC Foundry Pond Road d Spring, NY 10516 mair@optonline.net 201-456-4624
LICENSURE	
DAVI	NO. 22144 NO. 22144 NO. 22144 NO. 22144 NO. 22144 NO. 22144 NO. 22144
NO.: DATE:	SUBMISSIONS
	EW SET
	ED PER RF COMMENTS
2 06.15.22 REVIS 3 10.19.22 REMO	ED AZIMUTHS PER NEW RFDS WED 850-CDMA ANTENNAS
2 06.15.22 REVIS 3 10.19.22 REMO	ED AZIMUTHS PER NEW RFDS
2 06.15.22 REVIS 3 10.19.22 REMO	ED AZIMUTHS PER NEW RFDS WED 850-CDMA ANTENNAS
2 06.15.22 REVIS 3 10.19.22 REMO	ED AZIMUTHS PER NEW RFDS WED 850-CDMA ANTENNAS
2 06.15.22 REVIS 3 10.19.22 REMO	ED AZIMUTHS PER NEW RFDS WED 850-CDMA ANTENNAS
2 06.15.22 REVIS 3 10.19.22 REMO 4 03.22.23 REVIS 0 0 0 0 0	ED AZIMUTHS PER NEW RFDS VED 850-CDMA ANTENNAS ED FOR CSC FILING CHECKED BY:
2 06.15.22 REVIS 3 10.19.22 REMO 4 03.22.23 REVIS 0 0 0 0 0	ED AZIMUTHS PER NEW RFDS VED 850-CDMA ANTENNAS ED FOR CSC FILING CHECKED BY: DW ADW ADV ADV ADV CTION
2 06.15.22 REVIS 3 10.19.22 REMO 4 03.22.23 REVIS 0 0 0 0 0	ED AZIMUTHS PER NEW RFDS VED 850-CDMA ANTENNAS ED FOR CSC FILING CHECKED BY: DW ICHECKED BY: IDW ICHECKED BY:
2 06.15.22 REVIS 3 10.19.22 REMO 4 03.22.23 REVIS - - - - - - DRAWN BY: MF DRAWN BY: MF SITE NAME: NEW PROJECT INFORMATION 54 M	ED AZIMUTHS PER NEW RFDS VED 850-CDMA ANTENNAS ED FOR CSC FILING CHECKED BY: DW ICHECKED BY: IDW ICHECKED BY:
2 06.15.22 REVIS 3 10.19.22 REMO 4 03.22.23 REVIS - - - - - - - - - - - - - - - - - - DRAWN BY: MF MF MF SITE NAME: DRAWN BY: PROJECT INFORMATION - 54 ME - DRAWING TITLE: -	ED AZIMUTHS PER NEW RFDS VED 850-CDMA ANTENNAS ED FOR CSC FILING CHECKED BY: DW CHECKED BY: DW AO MT6407 TRUCTION AWINGS HAVEN CT DN: EADOW ST.

GENERAL CONSTRUCTION NOTES:

1. CONTRACTOR SHALL NOT COMMENCE ANY WORK UNTIL HE OBTAINS, AT HIS OWN EXPENSE, ALL INSURANCE REQUIRED BY *CELLCO PARTNERSHIP d/b/a VERIZON* WIRELESS, THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY.

2. ALL WORK SHALL BE DONE IN ACCORDANCE WITH ALL APPLICABLE CODES AND REGULATIONS AND ALL LOCAL LAWS AND REGULATIONS, CURRENT EDITIONS.

3. CONTRACTOR SHALL VISIT THE JOB SITE AND FAMILIARIZE HIMSELF WITH ALL CONDITIONS AFFECTING THE PROPOSED WORK AND MAKE PROVISIONS AS TO THE COST THEREOF. CONTRACTOR SHALL BE RESPONSIBLE FOR FAMILIARIZING HIMSELF WITH ALL CONTRACT DOCUMENTS, FIELD CONDITIONS AND DIMENSIONS AND CONFIRMING THAT THE WORK MAY BE ACCOMPLISHED AS SHOWN PRIOR TO PROCEEDING WITH CONSTRUCTION. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER PRIOR TO THE COMMENCEMENT OF WORK.

4. CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS, ELEVATIONS, ANGLES AND EXISTING CONDITIONS AT THE SITE PRIOR TO FABRICATION AND/OR INSTALLATION OF ANY WORK IN THE CONTRACT AREA AND SUBMIT TO THE ENGINEER ANY DISCREPANCIES FROM THE DRAWINGS.

5. CONTRACTOR IS TO REVIEW ALL DRAWINGS AND SPECIFICATIONS IN THE CONTRACT DOCUMENT SET. CONTRACTOR SHALL COORDINATE ALL WORK SHOWN IN THE SET OF DRAWINGS. CONTRACTOR SHALL PROVIDE A COMPLETE SET OF DRAWINGS TO ALL SUB-CONTRACTORS AND ALL RELATED PARTIES. THE SUB-CONTRACTORS SHALL EXAMINE ALL THE DRAWINGS AND SPECIFICATIONS FOR THE INFORMATION THAT AFFECTS THEIR WORK.

6. CONTRACTOR SHALL PROVIDE A COMPLETE BUILD-OUT WITH ALL FINISHES, STRUCTURAL, MECHANICAL AND ELECTRICAL COMPONENTS AND PROVIDE ALL ITEMS AS SHOWN OR INDICATED ON DRAWINGS OR WRITTEN IN SPECIFICATIONS.

7. CONTRACTOR SHALL FURNISH ALL MATERIAL, LABOR AND EQUIPMENT TO COMPLETE THE WORK AND FURNISH A COMPLETED JOB IN ACCORDANCE WITH LOCAL AND STATE GOVERNING AUTHORITIES AND OTHER AUTHORITIES HAVING LAWFUL JURISDICTION OVER THE WORK.

8. CONTRACTOR SHALL OBTAIN AT HIS OWN EXPENSE ALL PERMITS AND ALL INSPECTIONS REQUIRED FROM FEDERAL AND STATE GOVERNMENTS, COUNTIES, MUNICIPALITIES AND OTHER REGULATORY AGENCIES WHICH MAY BE REQUIRED FOR THE PROJECT.

10. DETAILS ARE INTENDED TO SHOW END RESULT OF DESIGN. MINOR MODIFICATIONS MAY BE REQUIRED TO SUIT JOB DIMENSIONS OR CONDITIONS, AND SUCH MODIFICATIONS SHALL BE INCLUDED AS PART OF THE WORK.

11. ALL MATERIAL PROVIDED BY **CELLCO PARTNERSHIP d/b/a VERIZON WIRELESS** IS TO BE REVIEWED BY CONTRACTOR AND ALL APPLICABLE SUB-CONTRACTOR PRIOR TO INSTALLATION. ANY DEFICIENCIES TO PROVIDED MATERIALS SHALL BE BROUGHT TO THE CONSTRUCTION MANAGERS ATTENTION IMMEDIATELY.

12. THE MATERIALS INSTALLED IN THE WORK SHALL MEET THE REQUIREMENTS OF THE CONTRACT DOCUMENTS. NO SUBSTITUTIONS ARE ALLOWED.

13. CONTRACTOR IS SOLELY RESPONSIBLE FOR THE MEANS AND METHODS OF CONSTRUCTION, FOR SEQUENCES AND PROCEDURES TO BE USED, AND TO ENSURE THE SAFETY OF THE EXISTING BUILDING AND ITS COMPONENT DURING CONSTRUCTION. THIS INCLUDES THE ADDITION OF WHATEVER SHORING, BRACING, UNDERPINNING, ETC. THAT MAY BE NECESSARY.

14. CONTRACTOR SHALL COORDINATE ALL CIVIL, STRUCTURAL AND ELECTRICAL DRAWINGS FOR THE LOCATION OF ALL OPENINGS, RECESSES, BUILT-IN WORK, ETC.

15. CONTRACTOR SHALL RECEIVE CLARIFICATION IN WRITING AND SHALL RECEIVE IN WRITING AUTHORIZATION TO PROCEED BEFORE STARTING WORK ON ANY ITEMS NOT CLEARLY DEFINED OR IDENTIFIED BY THE CONTRACT DOCUMENTS.

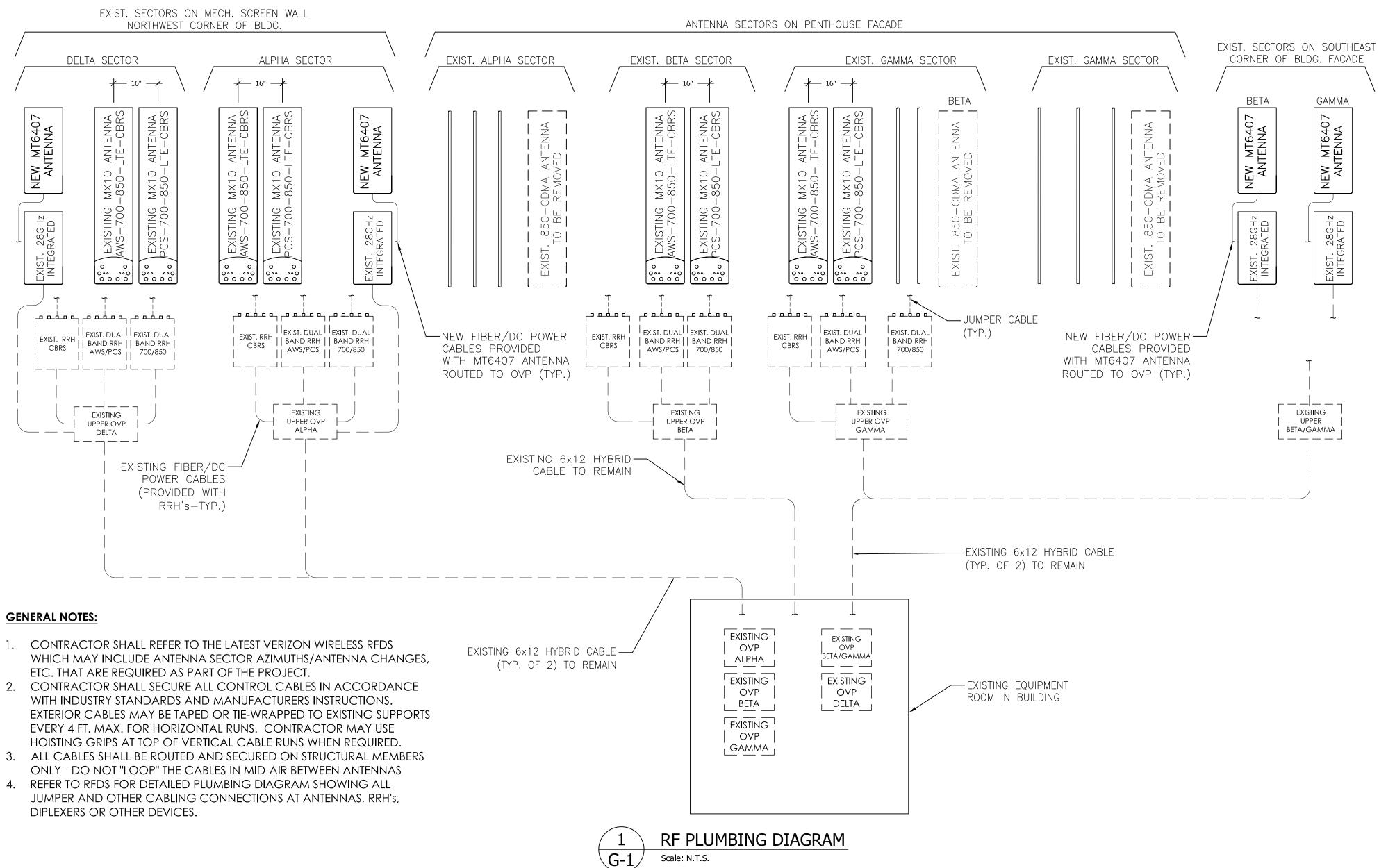
16. CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ALL PRODUCTS OR ITEMS NOTED AS "EXISTING" WHICH ARE NOT FOUND TO BE IN THE FIELD.

17. ERECTION SHALL BE DONE IN A WORKMANLIKE MANNER BY COMPETENT EXPERIENCED WORKMEN IN ACCORDANCE WITH APPLICABLE CODES AND THE BEST-ACCEPTED PRACTICE. ALL MEMBERS SHALL BE LAID PLUMB AND TRUE AS INDICATED ON THE DRAWINGS.

18. CONTRACTOR SHALL BE RESPONSIBLE FOR THE SAFETY OF THE WORK AREA, ADJACENT AREAS, AND BUILDING OCCUPANTS THAT ARE LIKELY TO BE AFFECTED BY THE WORK UNDER THIS CONTRACT. WORK SHALL CONFORM TO ALL O.S.H.A REQUIREMENTS.

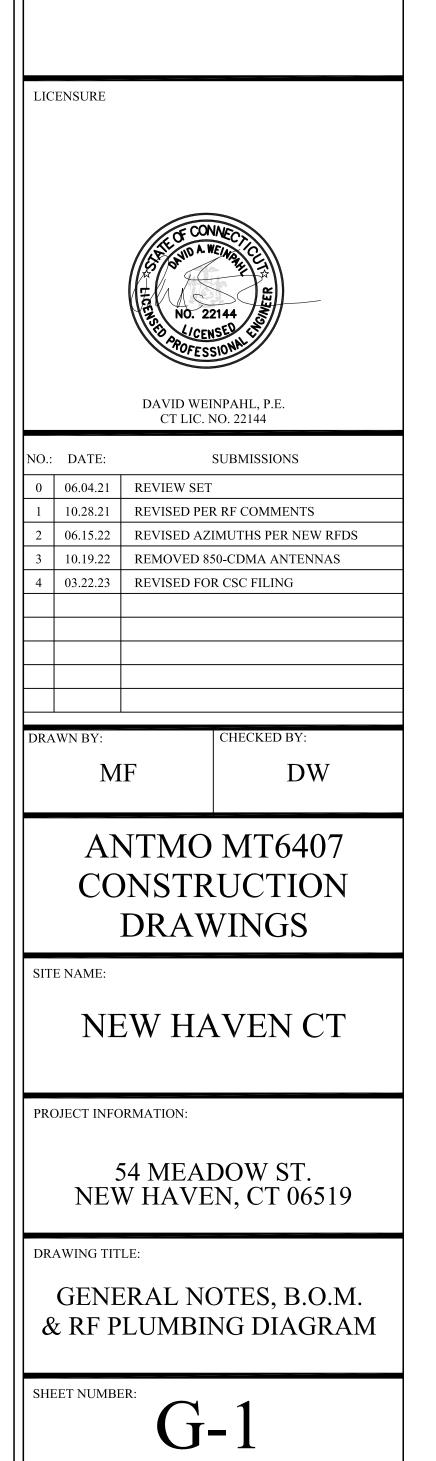
19. CONTRACTOR SHALL COORDINATE HIS WORK AND SCHEDULE HIS ACTIVITIES AND WORKING HOURS IN ACCORDANCE WITH THE REQUIREMENTS OF THE PROPERTY OWNER AND/OR PROPERTY MANAGEMENT COMPANY.

20. CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING HIS WORK WITH THE WORK OF OTHERS AS IT MAY RELATE TO RADIO EQUIPMENT, ANTENNAS AND ANY OTHER PORTIONS OF THE WORK.


21. CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY INDICATED OR WHERE LOCAL CODES OR REGULATIONS MAY TAKE PRECEDENCE.

22. CONTRACTOR SHALL MAKE NECESSARY PROVISIONS TO PROTECT EXISTING SURFACES, EQUIPMENT, IMPROVEMENTS, PIPING, ANTENNA AND ANTENNA CABLES AND REPAIR ANY DAMAGE THAT OCCURS DURING CONSTRUCTION.

23. CONTRACTOR SHALL REPAIR ALL EXISTING SURFACES DAMAGED DURING CONSTRUCTION SUCH THAT THEY MATCH AND BLEND WITH ADJACENT SURFACES.


24. CONTRACTOR SHALL KEEP CONTRACT AREA CLEAN, HAZARD FREE AND DISPOSE OF ALL DEBRIS AND RUBBISH. EQUIPMENT NOT SPECIFIED AS REMAINING ON THE PROPERTY OF THE OWNER SHALL BE REMOVED. LEAVE PREMISES IN CLEAN CONDITIONS AND FREE FROM PAINT SPOTS, DUST, OR SMUDGES OF ANY NATURE. CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING ALL ITEMS UNTIL COMPLETION OF CONSTRUCTION.

25. BEFORE FINAL ACCEPTANCE OF THE WORK, CONTRACTOR SHALL REMOVE ALL EQUIPMENT, TEMPORARY WORKS, UNUSED AND USELESS MATERIALS, RUBBISH AND TEMPORARY STRUCTURES.

GENERAL NOTES:

			BILL OF M	ATERIALS						
\supset	SITE NAME: NEW HAVEN CT		AN	TMO MT6407	EMBEDDED BASE					
	DESCRIPTION	QTY	LENGTH	COMME	NTS					
	6-CKT. LOWER OVP	_	-	AIN - RACK MOUNT						
	6-CKT. UPPER OVP	-	-	EXISTING (5) TO REMA	IN - 1 PER SECTOR					
	6x12 L.I. HYBRID CABLE	_	_	EXISTING (5) TO REMA	IN - 1 PER SECTOR					
	1/2" PRE-FAB JUMPERS	-	-	SEE NO						
	CBRS RRH	-		EXISTING (4) TO REMA	IN - 1 PER SECTOR					
	AWS/PCS RRH	-	_	EXISTING (4) TO REMA						
	700/850 RRH	-	-	EXISTING (4) TO REMA	IN - 1 PER SECTOR					
	SAMSUNG INTEGRATED MT6407-77A	4	-		R TO RFDS - 1 PER SECTOR					
	SAMSUNG INTEGRATED VZ-AT1K01	-	-	- 1 PER SECTOR						
	MX10FIT665	-	-	EXISTING (8) TO REMA						
	DUAL MOUNTING BRACKET	-	-	EXISTING (4) TO REMA						
	850-CDMA ANTENNA	-	-	EXISTING (3) TO BE REMO	OVED - 1 PER SECTOR					
OTE: ALL	 ITEMS SHOWN ARE FOR MAJOR DE MANUFACTURER PART NUMBERS AND CONTRACTOR SHALL DETERMINE A LENGTHS, KEEPING ALL LENGTHS TO A 	D ACCE	essory items r Ovide all req	EQUIRED FOR A COMPLETE INST	TALLATION.					
	ANTENNA SECTORS ON PENTHOUS	SE FACAD	ЭЕ							
DR	EXIST. BETA SECTOR E		MMA SECTOR	EXIST. GAMMA SECTOR	EXIST. SECTORS ON SO CORNER OF BLDG. F					
	ENNA CBRS -CBRS -CBRS -CBRS -CBRS	- CBRS	BETA		BETA CAU IG407 C00					

Cellco Partnership

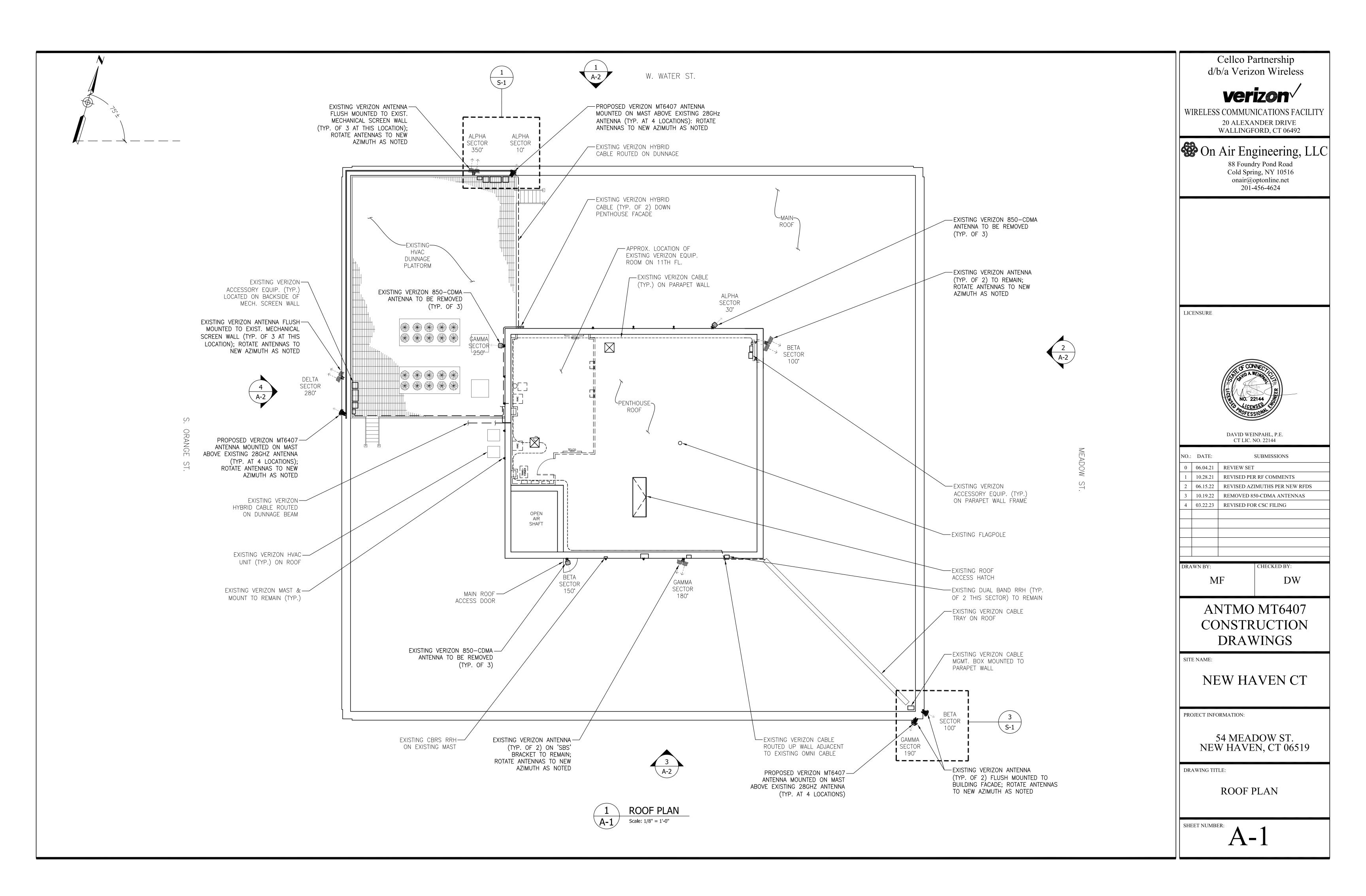
d/b/a Verizon Wireless

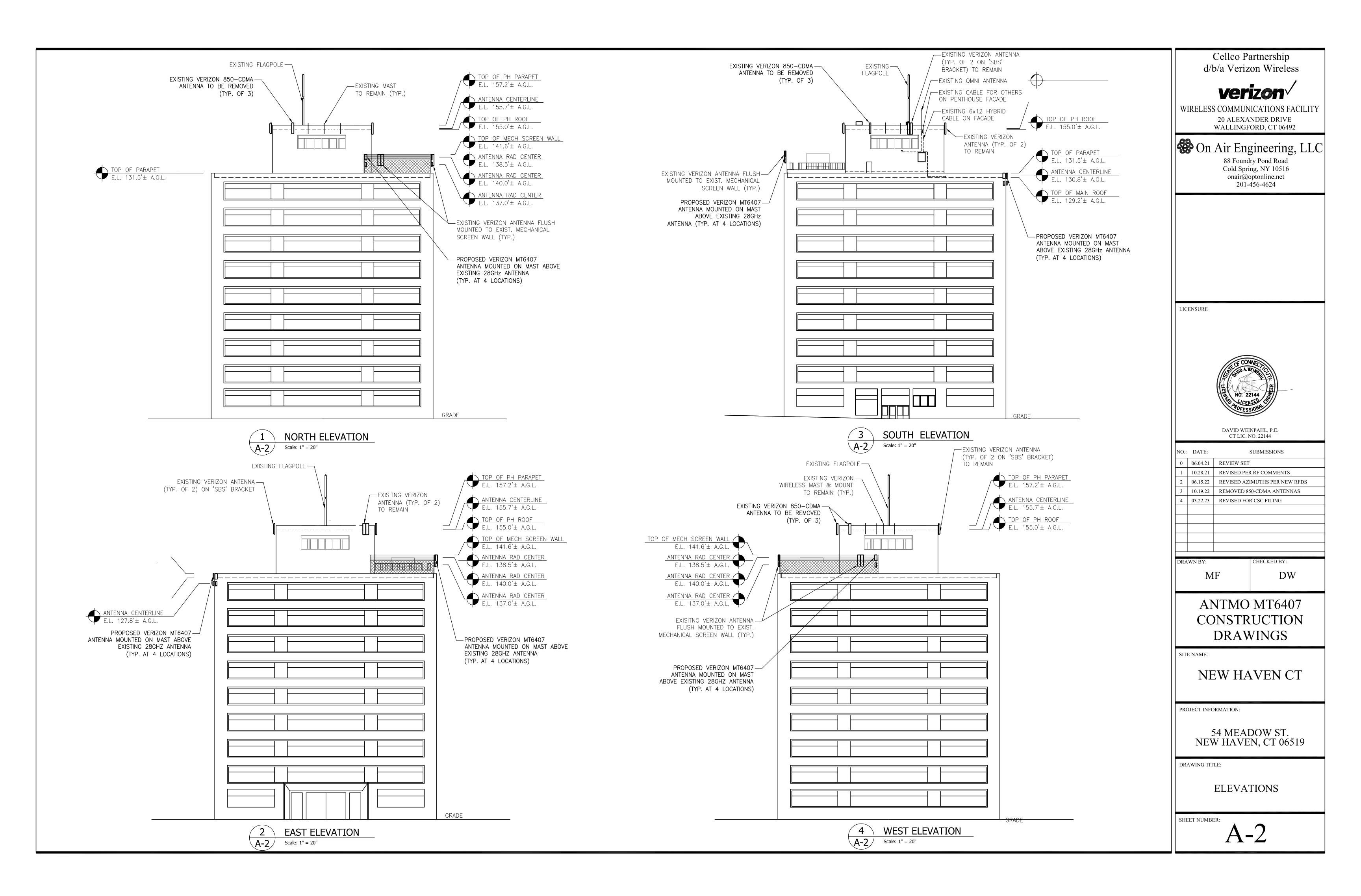
verizon

20 ALEXANDER DRIVE

WALLINGFORD, CT 06492

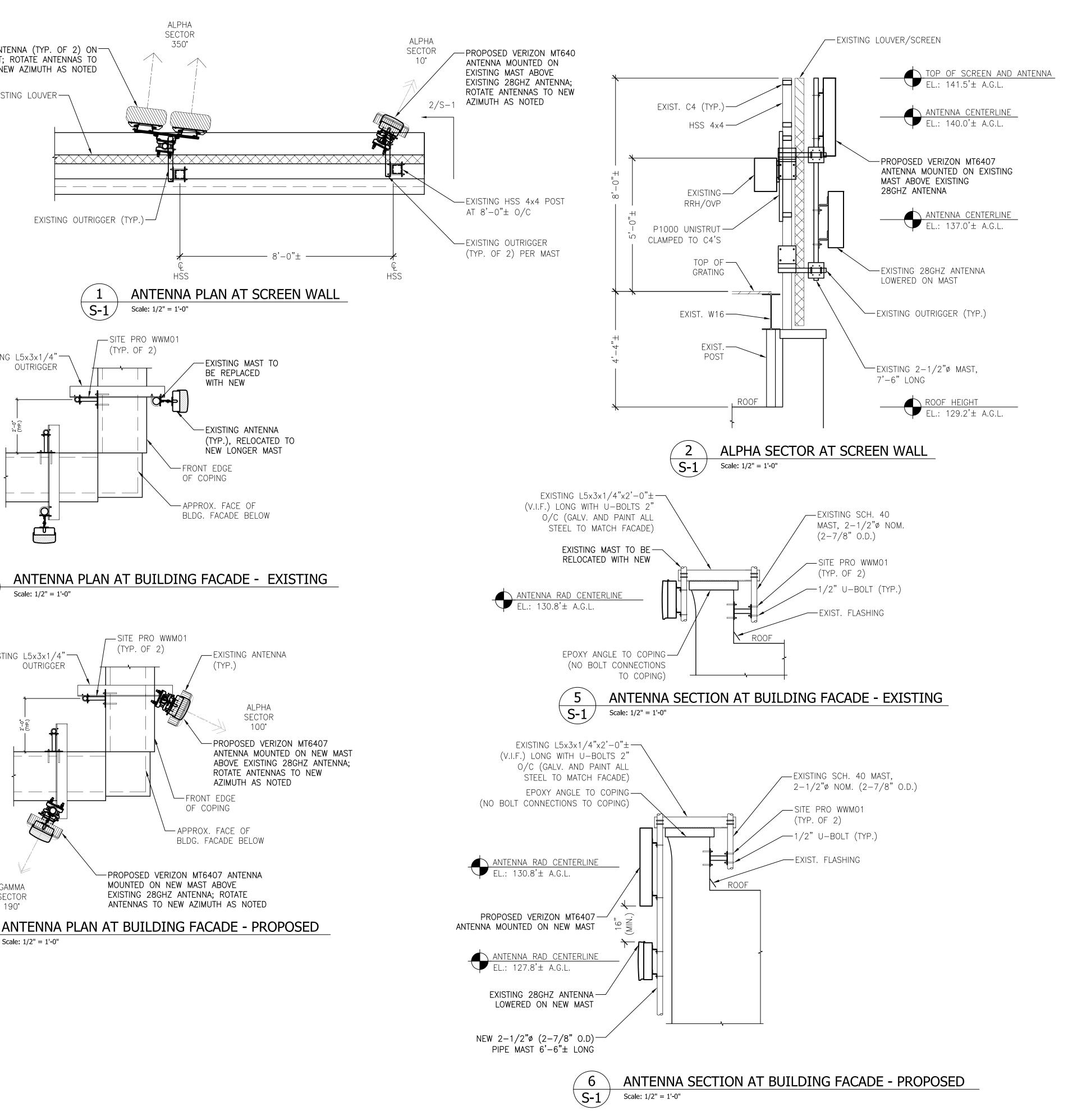
88 Foundry Pond Road

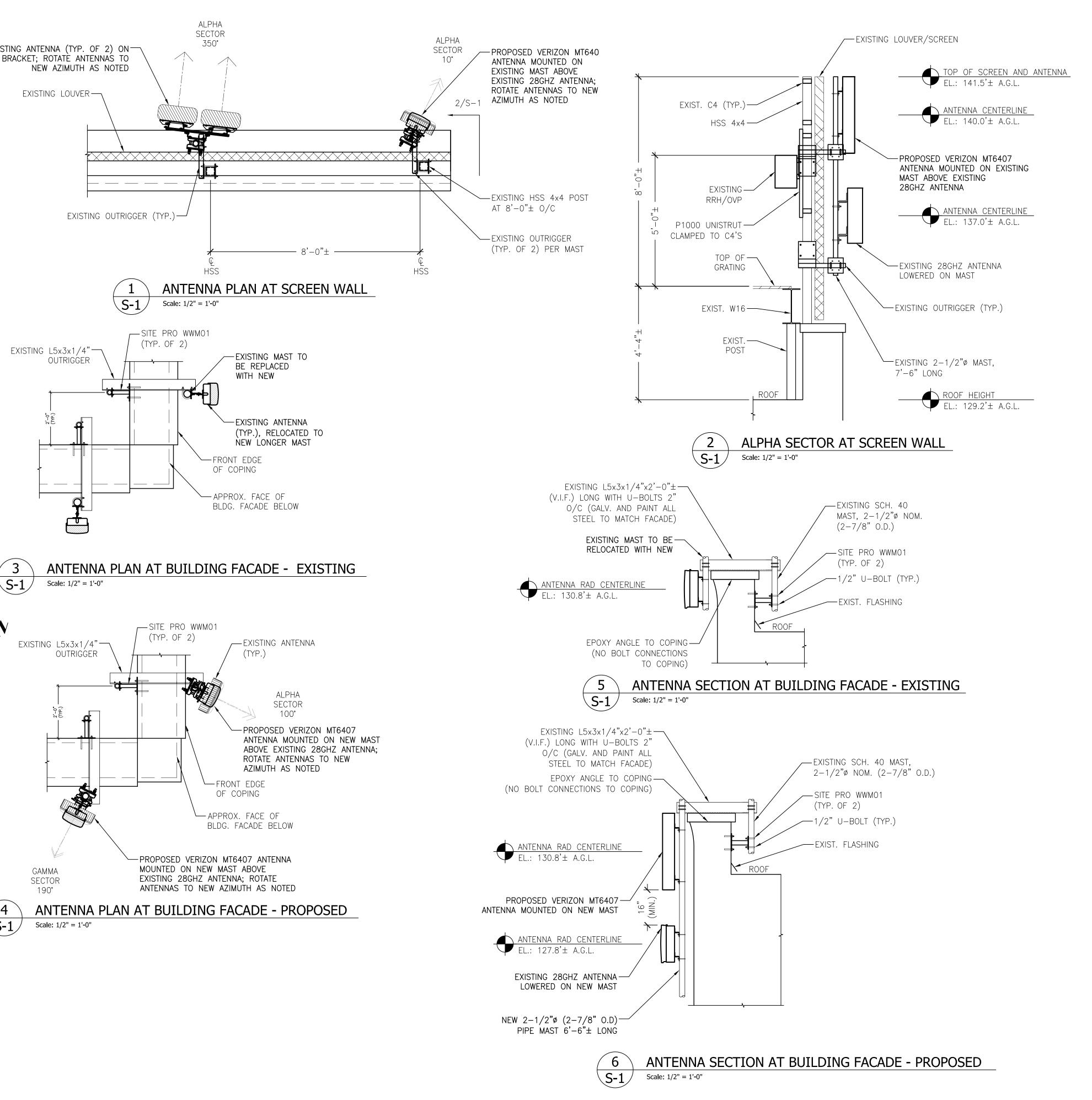

Cold Spring, NY 10516

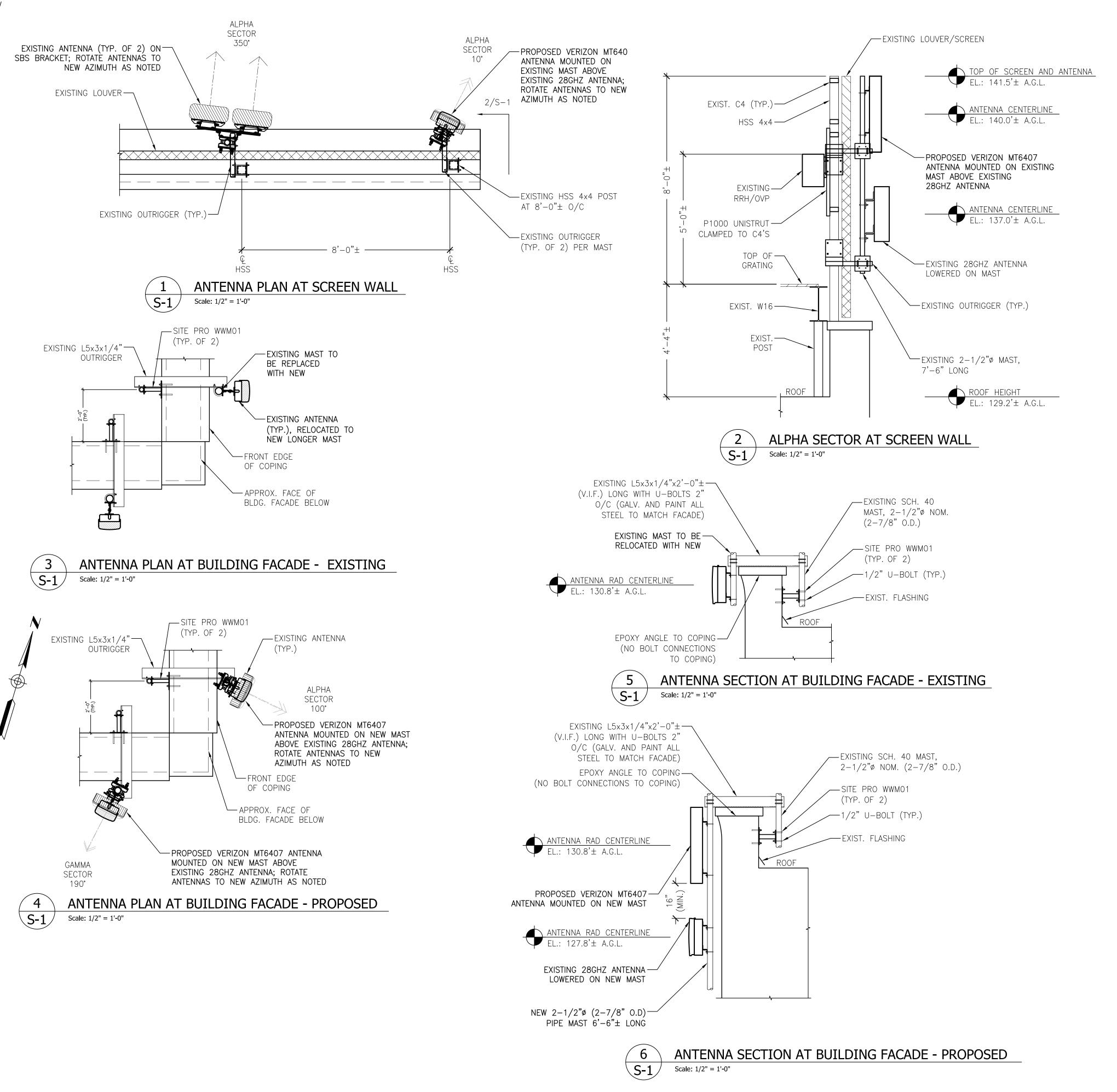

onair@optonline.net

201-456-4624

WIRELESS COMMUNICATIONS FACILITY


On Air Engineering, LLC




STRUCTURAL NOTES

- 1. DESIGN REQUIREMENTS ARE PER STATE BUILDING CODE AND APPLICABLE SUPPLEMENTS, ANSI/ASCE7, TIA-222-G STRUCTURAL STANDARDS FOR STEEL ANTENNA SUPPORTING STRUCTURES.
- 2. CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE FIELD PRIOR TO FABRICATION AND ERECTION OF ANY MATERIAL. ANY UNUSUAL CONDITIONS SHALL BE REPORTED TO THE ATTENTION OF THE CONSTRUCTION MANAGER.
- 3. DESIGN AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORM TO The american institute of steel construction "specification for ~ ~THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL FOR BUILDINGS."
- 4. WIDE FLANGE STRUCTURAL STEEL SHALL CONFORM TO ASTM A992. MISCELLANEOUS STEEL SHALL CONFORM TO ASTM A36.
- 5. STEEL PIPE SHALL CONFORM TO ASTM A500 "COLD-FORMED WELDED & SEAMLESS CARBON STEEL STRUCTURAL TUBING" GRADE A, OR ASTM S53 PIPE STEEL BLACK AND HOT-DIPPED ZINC-COATED WELDED AND SEAMLESS TYPE E OR S, GRADE B. PIPE SIZES INDICATED ARE NOMINAL. ACTUAL OUTSIDE DIAMETER OS LARGER.
- 6. STRUCTURAL CONNECTION BOLTS SHALL BE HIGH STRENGTH BOLTS (BEARING TYPE) AND CONFORM TO ASTM A325 "HIGH STRENGTH BOLTS FOR STRUCTURAL JOINTS, INCLUDING SUITABLE NUTS AND PLAIN HARDENED WASHERS." ALL BOLTS SHALL BE 3/4" ϕ (U.O.N.)
- 7. ALL STEEL MATERIALS SHALL BE GALVANIZED AFTER FABRICATION IN ACCORDANCE WITH ASTM A123 "ZINC (HOT-DIP GALVANIZED) COATINGS ON IRON AND STEEL PRODUCTS", UNLESS OTHERWISE NOTED.
- 8. ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM A153 "ZONC-COATING (HOT-DIP) ON IRON AND STEEL HARDWARE", UNLESS OTHERWISE NOTED.
- 9. FIELD WELDS, DRILL HOLES, SAW CUTS AND ALL DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED WITH AN ORGANIC ZINC REPAIR PAINT COMPLYING WITH REQUIREMENTS OF ATM A780. GALVANIZING REPAIR PAINT SHALL HAVE 65 PERCENT ZINC BY WEIGHT, ZIRP BY DUNCAN GALVANIZING, GALVA BRIGHT PREMIUM BY CROWN OR EQUAL. THICKNESS OF APPLIED GALVANIZING REPAIR PAINT SHALL BE NOT LESS THAN 4 COATS (ALLOW TIME TO DRY BETWEEN COATS) WITH A RESULTING COATING THICKNESS REQUIRED BY ASTM A123 OF A153 AS APPLICABLE.
- 10. CONTRACTOR SHALL COMPLY WITH AWS CODE PROCEDURES, APPEARANCE AND QUALITY OF WELDS AND FOR METHODS USED IN CORRECTING WELDING. ALL WELDERS AND WELDING PROCESSES SHALL BE QUALIFIED IN ACCORDANCE WITH AWS "STANDARD QUALIFICATION PROCEDURES". ALL WELDING SHALL BE DONE USING E70XX ELECTRODES AND WELDING SHALL CONFORM TO AISC AND DI.I. WHERE FILLET WELD SIZES ARE NOT SHOWN, PROVIDE THE MINIMUM SIZE PER TABLE J2.4 IN THE AISC "MANUAL OF STEEL CONSTRUCTION". 9TH EDITION.
- 11. INCORRECTLY FABRICATED, DAMAGED OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE CONSTRUCTION MANAGER PRIOR TO REMEDIAL OR CORRECTIVE ACTION. ANY SUCH ACTION SHALL REQUIRE CONSTRUCTION MANAGER APPROVAL. 12. UNISTRUTS SHALL BE FORMED STEEL CHANNEL STRUT FRAMING AS
- MANUFACTURED BY UNITSTRUT CORP, WAYNE, MI OR EQUAL. STRUT MEMBERS SHALL BE 1 5/8"x1 5/8"x12GA, UNLESS OTHERWISE NOTED, AND SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION.

Cellco Partnership d/b/a Verizon Wireless
VERIZON WIRELESS COMMUNICATIONS FACILITY 20 ALEXANDER DRIVE WALLINGFORD, CT 06492
On Air Engineering, LLC 88 Foundry Pond Road Cold Spring, NY 10516 onair@optonline.net 201-456-4624
LICENSURE
THE OF CONVECTOR Shill A. WEIMAR THE NO. 22144 NO. 22144 HIS APOFESSIONAL LINE
DAVID WEINPAHL, P.E. CT LIC. NO. 22144
NO.:DATE:SUBMISSIONS006.04.21REVIEW SET110.28.21REVISED PER RF COMMENTS
1 10.20.21 REVISED FERRI COMMENTS 2 06.15.22 REVISED AZIMUTHS PER NEW RFDS 3 10.19.22 REMOVED 850-CDMA ANTENNAS 4 03.22.23 REVISED FOR CSC FILING
DRAWN BY: CHECKED BY: DW
ANTMO MT6407 CONSTRUCTION DRAWINGS
SITE NAME: NEW HAVEN CT
PROJECT INFORMATION:
54 MEADOW ST. NEW HAVEN, CT 06519
DRAWING TITLE: ANTENNA PLANS & SECTIONS
SHEET NUMBER:

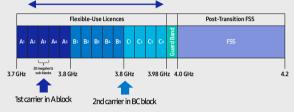
SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A


Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

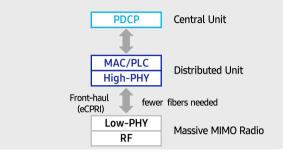
C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.



Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

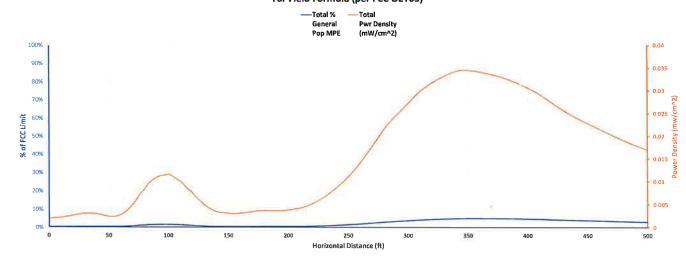
It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

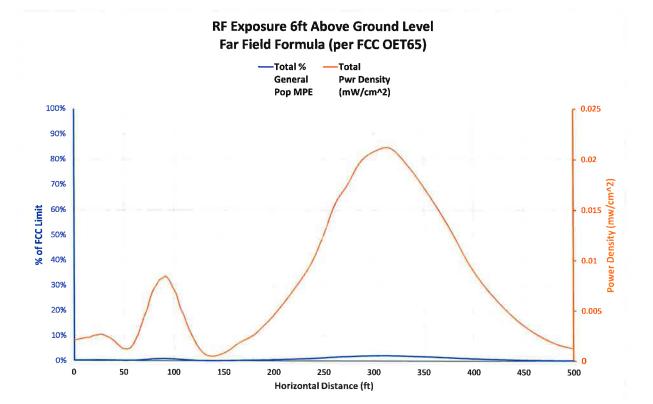
129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea


© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

ATTACHMENT 3

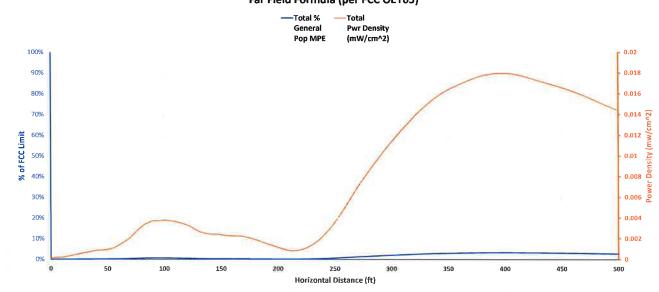
Location	New Haven CT - Part 1 of 3													
Date	3/22/2023													
Band	28GHZ	C-Band	CBRS	AWS	PCS	850-LTE	700							
Operating Frequency (MHz)	27,500	3,700	3,550	2,145	1,970	880	746							
General Population MPE (mW/cm^2)	1	1	1	1	1	0,586666667	0,497333333							
ERP Per Transmitter (Watts)	251	21,678	68	2,291	1,622	1,047	1,622							
Number of Transmitters	4	2	4	4	4	4	4							
Antenna Conterline (feet)	138	138	138	138	138	138	138							
Total ERP (Watts)	1,004	43,755	270	9,163	6,487	4,189	6,487							
Total ERP (dBm)	60	76	54	70	68	66	68							
Maximum & of Organit Reputation timit														


RF Exposure 6ft Above Ground Level Far Field Formula (per FCC OET65)

Angle	Power Density (mW/cm/l2)								Renard of General Ropolation MPE										
Below Horizon	28GHz	C-Band	CBRS	AWS	PCS	850-LTE	700 MHz	mon	26966	C6amit	(1995	4005	77.70	Cellider	COMM	700 Mile	Distance	Total Twy Density (mW/cm92)	Terral S Terral
90	1.9211E-05	0.001760865	2,37893E-06	7,3749E-05	3.21186E-05	6,726E-06	4.14721E-05	0.00%	0.00%	0.18%	0.00%	0.01%	0.00%	0.00%	0.00%	0.01%	0	0 001936521	0.20%
89	2 01103E-05	0.001760329	3 20811E-06	0.000103902	4.04225E-05	5.45286E-06	4,44246E-05	0.00%	0.00%	0.18%	0.00%	0.01%	0.00%	0,00%	0,00%	0.01%	2,304068571	0.001977849	0.20%
88	2.08459E-05	0.001799686	4.32366E-06	0.000125091	4.85542E-05	3.68322E-06	4,85542E-05	0.00%	0.00%	0.18%	0.00%	0.01%	0.00%	0.00%	0.00%	0.01%	4.609541573	0.002050739	0.21%
87	2.13973E-05	0.001838802	5.19027E-06	0.000124901	5.57911E-05	2.26759E-06	5 43957E-05	0.00%	0.00%	0.18%	0.00%	0.01%	0.01%	0,00%	0,00%	0.01%	6,917826865	0.002102744	0.22%
86	2.16986E-05	0.00187762	6.08503E-06	0.000118751	6.5409E-05	1.92592E-06	6 09028E-05	0.00%	0.00%	0.19%	0.00%	0.01%	0.01%	0.00%	0.00%	0.01%	9,230339177	0.002152352	0.22%
85	2 1739E-05	0.001916084	7 29575E-06	0.000129851	B.21191E-05	2.84083E-06	6.98947E-05	0.00%	0.00%	0.19%	0.00%	0.01%	0.01%	0.00%	0.00%	0.01%	11.54850359	0.002229824	0.23%
84	2.1418E-05	0.001954136	9,15398E-06	0.000162924	0.000102798	5,03484E-06	8.18436E-05	0.00%	0.00%	0.20%	0.00%	0.02%	0.01%	0.00%	0.00%	0.02%	13 87375906	0.002337308	0.24%
83	2.07516E-05	0.001946379	1.14784E-05	0.000204295	0.000123384	8.51644E-06	9.12551E-05	0.00%	0.00%	0.19%	0.00%	0.02%	0.01%	0.00%	0.00%	0.02%	16.20756204	0.00240606	0.25%
82	1,97268E-05	0.002028764	1.40568E-05	0.000228172	0.000143967	1,34358E-05	0.00010192	0.00%	0.00%	0.20%	0.00%	0.02%	0.01%	0.00%	0.00%	0.02%	18 55139018	0.002550042	0.27%
81	1.82722E-05	0.002113323	1.60554E-05	0.000243779	0.000168266	1.88798E-05	0.000111172	0.00%	0.00%	0.21%	0.00%	0.02%	0.02%	0.00%	0.00%	0.02%	20,90674612	0.002689747	0.28%
BO	1.63777E-05	0.002149953	1.83267E-05	0.00026513	0.000196544	2,41802E-05	0.000118429	0.00%	0.00%	0.21%	0.00%	0.03%	0.02%	0.00%	0.00%	0.02%	23 27516145	0.002788941	0.29%
79	1.60858E-05	0,002185844	2.18914E-05	0 000303144	0.000229429	2.95563E-05	0.000123211	0.00%	0.00%	0.22%	0.00%	0,03%	0.02%	0.01%	0,00%	0.02%	25.65820081	0.002909162	0,31%
78	1.82541E-05	0.00222093	2.43888E-05	0 000337727	0.000255602	3.69458E-05	0.000128105	0.00%	0.00%	0.22%	0.00%	0.03%	0,03%	0.01%	0,00%	0.03%	28.05746614	0.003021952	0.32%
77	2.04644E-05	0.002203809	2.71537E-05	0.000358265	0.000271771	4.844E-05	0,000133108	0.00%	0.00%	0.22%	0.00%	0.04%	0.03%	0.01%	0.00%	0.03%	30,47460123	0.003063011	0.32%
76	2.2561E-05	0.002135671	3.09164E-05	0.00036355	0.000288778	6.31778E-05	0.000138218	0.00%	0.00%	0.21%	0.00%	0.04%	0.03%	0.01%	0.00%	0.03%	32-91129638	0.003042872	0.32%
75	2.4459E-05	0 00202122	3.43771E-05	0.00038605	0.00030665	8-25361E-05	0.000150191	0.00%	0.00%	0.20%	0.00%	0.04%	0.03%	0.01%	0.00%	0.03%	35.3692934	0.003005464	0.32%
74	2.59558E-05	0.001956182	3.56504E-05	0.00041062	0.000326166	0.000102906	0.00016347	0.00%	0.00%	0.20%	0.00%	0.04%	0.03%	0.02%	0.00%	0.03%	37.85039092	0.003020951	0.33%
73	2-82972E-05	0 001806836	3.52837E-05	0.000414905	0.000337247	0.000122447	0.000185331	0.00%	0.00%	0.18%	0.00%	0.04%	0.03%	0.02%	0.00%	0.04%	40.35644995	0.002930348	0.32%
72	3.53968E-05	0.00166778	3.11024E-05	0.000391894	0.000333556	0.000142288	0.00021046	0.00%	0.00%	0.17%	0.00%	0.04%	0.03%	0.02%	0.00%	0,04%	42.8893999	0.002812477	0.31%
71	4.28441E-05	0.00146915	2.6165E-05	0,00036991	0.00031557	0.000161844	0.000250666	0.00%	0.00%	0.15%	0.00%	0.04%	0,03%	0.03%	0.00%	0.05%	45.45124495	0.00263615	0.30%
70	4.99485E-05	0.001263856	2.30331E-05	0.000365366	0.00029698	0.000179361	0.00029698	0.00%	0.00%	0.13%	0.00%	0.04%	0.03%	0.03%	0.00%	0.06%	48.04407092	0.002475525	0.29%
69	5.62153E-05	0.001086499	2.07341E-05	0.000360628	0.000274195	0.000198637	0.000360628	0.00%	0.01%	0.11%	0.00%	0.04%	0.03%	0.03%	0.00%	0.07%	50 67005262	0.002357537	0.29%
68	6 06572E-05	0.000977367	2.09273E-05	0.000347607	0.000251819	0,000224434	0.000447804	0.00%	0.01%	0.10%	0.00%	0.03%	0.03%	0.04%	0,00%	0.09%	53 33146181	0.002330614	0.29%

67	6.27484E-05	0.000941409	2,8473E-05	0.000342617	0,000242554	0,000259901	0,000555659	0,00%	0.01%	0.09%	0.00%	0.03%	0.02%	0.04%	0.00%	0,11%	56,03067574	0,002433361	0,32%
66	6.18032E-05	0.000970927	4 25443E-05	0.000337456	0,0002389	0.000293912	0.000705044	0.00%	0.01%	0.10%	0.00%	0.03%	0.02%	0.05%	0.00%	0,14%	58,77018646	0,002650586	0.36%
65	5,76902E-05	0.001097179	5,50722E-05	0.000309962	0.000258409	0.000339866	0.000873589	0.00%	0.01%	0,11%	0.01%	0.03%	0.03%	0.06%	0.00%	0.18%	61.5526108B	0.002991767	0.41%
64	6.29319E-05	0.001422481	5.41629E-05	0.000242146	0.000291123	0.000383775	0.001081624	0.00%	0.01%	0.14%	0.01%	0.02%	0.03%	0.07%	0.00%	0.22%	64.38070169	0.003538243	0.49%
63	6,73461E-05	0.001842841	4.04709E-05	0.000168468	0.000343968	0.000413541	0.00133819	0.00%	0.01%	0.18%	0.00%	0.02%	0.03%	0.07%	0.00%	0.27%	67,25735933	0.004214824	0.59%
62	6.68992E-05	0.002385591	2.38919E-05	0.000119847	0.000406093	0.000435137	0.001616686	0.00%	0.01%	0.24%	0.00%	0.01%	0.04%	0.07%	0.00%	0,33%	70,18564498	0.005054145	0.70%
61	6.05605E-05	0.003085777	1 47918E-05	0.000107497	0.00046816	0.000457504	0.001951616	0.00%	0.01%	0.31%	0.00%	0.01%	0.05%	0.08%	0.00%	0.39%	73,16879479	0.006145907	0.84%
60	4.88216E-05	0.003808792	1 41724E-05	0.000107601	0.000528223	0.000448557	0.002305776	0.00%	0.00%	0.38%	0.00%	0.01%	0.05%	0.08%	0.00%	0.45%	76 21023553	0.007261944	0.99%
59	4.19452E-05	0.004383866	1.83026E-05	0.00011295	0.000580614	0.000420518	0.00258754	0.00%	0.00%	0.44%	0.00%	0.01%	0.06%	0.07%	0.00%	0.52%	79,31360171	0.008145836	1.11%
58	4.89093E-05	0.005279187	1.96437E-05	0.00011233	0.000621723	0.000383352	0.002908017	0.00%	0.00%	0.53%	0.00%	0.01%	0.06%	0.07%	0.00%	0.58%	82.48275445	0.009376601	
																			1.26%
57	5.12547E-05	0.005928009	1.52603E-05	0,000121322	0.000636706	0.000326542	0.00311845	0.00%	0.01%	0.59%	0.00%	0.01%	0.06%	0.06%	0.00%	0.63%	85,7218023	0.010197544	1.36%
56	4,77199E-05	0.006351473	9.85212E-06	0,000136428	0,000636655	0,000259361	0.003348917	0,00%	0,00%	0.64%	0,00%	0.01%	0,06%	0,04%	0.00%	0.67%	89.03512422	0.010790407	1,44%
55	3.8219E-05	0.006799157	9.61857E-06	0.000171193	0.000621563	0.000192524	0.003415741	0.00%	0.00%	0.68%	0.00%	0.02%	0.06%	0.03%	0.00%	0,69%	92,42739504	0.011248016	1.48%
54	5,45087E-05	0.006944506	1.55703E-05	0.000225254	0.000620399	0.00018779	0.003331741	0,00%	0,01%	0,69%	0,00%	0,02%	0.06%	0.03%	0.00%	0.67%	95.9036137	0.011379768	1,49%
53	6.87461E-05	0.007086361	2.35006E-05	0.00029611	0,000647818	0.000240688	0.003246782	0.00%	0.01%	0.71%	0.00%	0.03%	0.06%	0.04%	0.00%	0.65%	99,46913461	0,011610006	1.51%
52	7 93625E-05	0.006742025	3,08635E-05	0.000389781	0.00066042	0.000288284	0.003025661	0.00%	0,01%	0,67%	0.00%	0.04%	0.07%	0.05%	0.00%	0.61%	103 1297027	0.011216397	1.45%
51	0.000103408	0.006119716	3,45451E-05	0.00052211	0,000688274	0,00032193	0.002740067	0,00%	0.01%	0.61%	0.00%	0.05%	0.07%	0.05%	0.00%	0,55%	106 8914924	0.010530049	1,35%
50	0.00011404	0.005549246	3 84494E-05	0.000716579	0.000684327	0.00032754	0.002428085	0.00%	0.01%	0.55%	0.00%	0 07%	0.07%	0.06%	0.00%	0.49%	110.7611513	0.009858268	1.25%
49	0.000105466	0.00448008	4.60194E-05	0,000984728	0.000664226	0.000317919	0.002052654	0,00%	0.01%	0,45%	0.00%	0.10%	0.07%	0.05%	0.00%	0.41%	114.7458494	0.008651091	1.09%
4B	7.88311E-05	0.003783319	5.61731E-05	0.00125575	0.000616457	0.000294377	0.0016554	0.00%	0.01%	0.38%	0.01%	0.13%	0.06%	0.05%	0.00%	0.33%	118 8533338	0.007740307	0.96%
47	8.76609E-05	0.002844336	6.67784E-05	0.001465586	0.000543264	0.00026608	0.001273535	0.00%	0.01%	0,28%	0.01%	0.15%	0.05%	0.05%	0.00%	0.26%	123.0919914	0.00654724	0.80%
46	9.89507E-05	0.002087345	7.76693E-05	0.001590833	0.000468408	0.000229417	0.000915428	0.00%	0.01%	0,21%	0.01%	0.16%	0.05%	0.04%	0.00%	0.18%	127,4709183	0.00546805	0,66%
45	9.11005E-05	0.001395391	9.23318E-05	0.001724751	0.000385235	0.00018868	0.000611964	0.00%	0.01%	0.14%	0.01%	0.17%	0.04%	0.03%	0.00%	0.12%	132	0.004489454	0.52%
44	6.50269E-05	0.000869498	9.54825E-05	0.001906773	0.000302899	0.000158599	0.000371791	0.00%	D.01%	0.09%	0.01%	0.19%	0.03%	0.03%	0.00%	0.07%	136 6900014	0.003770069	0.43%
43	8.4941E-05	0.000482273	8.9939E-05	0.002110197	0.000226111	0.000130114	0.000196935	0.00%	0.01%	0.05%	0.01%	0.21%	0.02%	0.03%	0.00%	0.04%	141,5526697	0,00332051	0.36%
42	0.000165414	0.000261065	8.26805E-05	0.002279178	0.0001B1041	0.000106605	8.66518E-05	0.00%	0.02%	0.03%	0.01%	0.23%	0.02%	0.02%	0.00%	0.02%	146.600852	0.003162635	0.33%
41	0.000237376	0.000169673	8.51662E-05	0.002242034	0.000182239	7.95504E-05	2,95557E-05	0.00%							0,0070				
40	0.000268959	0.000252267	8,56084E-05	0.002152243	0.000241485	5.66098E-05	1.1038E-05	0.00%	0.02%	0.02%	0.01%	0.22%	0.02%	0.01%	0.00%	0.01%	151,8486298	0.003025594	0.31%
			7.83655E-05									0,22%	0.02%	0.01%	0.00%	0.00%	157 3114742	0.003068211	0.31%
39	0.000237845	0.000460755		0,002016044	0.000358509	4.31023E-05	1.6014E-05	0.00%	0.02%	0.05%	0.01%	0.20%	0.04%	0.01%	D.00%	0.00%	163 0064247	0.003210634	0,33%
38		0.00078417	6.68444E-05	0.001800696	0.000507504	5.45055E-05	2.9953E-05	0,00%	0.02%	0.08%	0.01%	0.18%	0.05%	0.01%	0,00%	0.01%	168 9522954	0.003426582	0,35%
37	0.000233602	0.001108287	5,69256E-05	0.001431141	0.000584986	6 84987E-05	4.0335E-05	0,00%	0,02%	0,11%	0.01%	0,14%	0.07%	0.01%	0.00%	0,01%	175,1699165	0.003623776	0.37%
36	0.000229609	0.001426144	4,31339E-05	0.001035604	0.000822609	8.03885E-05	3.93725E-05	0.00%	0,02%	0,14%	0.00%	0,10%	0.08%	0.01%	0.00%	0.01%	181,6824135	0.003676861	0.38%
35	0.000163958	0.001749479	2,59158E-05	0.000666713	0.000901444	8 78899E-05	3,34148E-05	0,00%	0,02%	0,17%	0.00%	0,07%	0,09%	0,01%	0.00%	0.01%	188.5155369	0.003628814	0,37%
34	0 000434184	0.001823263	1.41744E-05	0.000409147	0.000876757	9.37303E-05	3.73146E-05	0.00%	0.04%	0,18%	0.00%	0.04%	0,09%	0.02%	0.00%	0.01%	195,6980478	0.003688571	0,38%
33	0.001001771	0.001811105	1.04376E-05	0.000239317	0.000724392	8 68909E-05	8.10912E-05	0.00%	0,10%	0.18%	0.00%	0.02%	0,07%	0.01%	D.00%	0.02%	203.2621752	0.003955004	0,41%
32	0,00175376	0,001675504	9 8B1E-06	0,000133406	0.000507195	5 82339E-05	0.000206621	0,00%	0,18%	0,17%	0.00%	0.01%	0.05%	0.01%	0.00%	0.04%	211.2441578	0.004344602	0,46%
31	0.002559938	0.001619589	9 77372E-06	6.03164E-05	0.000309339	0.000155037	0.000458601	0.00%	0.26%	0.16%	0.00%	0.01%	0.03%	0.03%	0.00%	0.09%	219,6848917	0.005172593	0.57%
30	0.003247064	0,001793354	1,30113E-05	1.88233E-05	0.000163944	0.000342528	0.000880432	0.00%	0.32%	0.18%	0.00%	0.00%	0.02%	0.06%	0,00%	0.18%	228,6307066	0.006459157	0.76%
29	0.003653367	0,002381598	1.72792E-05	5.72663E-05	7-90494E-05	0,000613619	0.001471968	0.00%	0.37%	0,24%	0,00%	0.01%	0.01%	0,10%	0.00%	0.30%	238,1343037	0.008274147	1.02%
28	0.003670873	0.003458953	2.28876E-05	0.000239869	3,89919E-05	0.000999943	0.00223859	0.00%	0.37%	0,35%	0.00%	0.02%	0.00%	0.17%	0.00%	0.45%	248.2558934	0.010670107	1.36%
27	0.003300991	0.005245895	4 17325E-05	0,000539324	3,02586E-05	0.001482006	0.003249746	0.00%	0.33%	0,52%	0,00%	0.05%	0.00%	0.25%	0.00%	0.65%	259,0645867	0.013889954	1.82%
26	0,003084855	0.007575477	7.76364E-05	0.000852001	4 B022E-05	0.002091416	0.004379655	0,00%	0.31%	0.76%	0,01%	0.09%	0.00%	0.36%	0.00%	0.88%	270,6401071	0.018109062	2.40%
25	0.003079267	0.010177065	0.000111758	0.000996903	0.000102012	0.00275203	0.005478384	0.00%	0.31%	1.02%	0.01%	0.10%	0.01%	0.47%	0,00%	1.10%	283,0749135	0.022697419	3.02%
24	0.002730093	0,012143745	0.000136461	0.000923385	0.000211535	0 003438612	0,006704749	0.00%	0.27%	1.21%	0.01%	0.09%	0.02%	0.59%	0.00%	1,35%	296.4768542	0,02628858	3.55%
23	0.002389499	0.01443717	0.000173835	0.000662998	0.000372831	0.004280678	0.007789543	0.00%	0.24%	1.44%	0.02%	0.07%	0.04%	0.73%	0.00%	1.57%	310.9725123	0.030106554	4.10%
22	0.002504388	0.015236208	0.000230958	0.00034987	0.000543134	0.004953446	0.009013776	0.00%	0.25%	1.52%	0.02%	0.03%	0.05%	0.84%	0.00%	1.81%	326 7114647	0.032831779	4.54%
21	0.002323855	0.015645317	0.00027928	0.000143356	0.000670524	0.005564356	0.009917775	0.00%	0.23%	1.56%	0.03%	0.01%	0.07%	0.95%	0.00%	1.99%	343 8717565	0.034544463	4.85%
20	0.001890837	0.014582414	0.000312957	0.000116375	0.000668127	0.00610745	0.010371924	0.00%	0.19%	1.46%	0.03%	0.01%	0.07%	1.04%	0.00%	2.09%	362.6670194	0.0340500B4	4.88%
19	0,00192236	0,012331329	0.000332403	0.000200466	0.00053956	0.006486948	0.010790455	0.00%	0.19%	1 23%	0.03%	0.02%	0.05%	1.11%	0.00%	2.17%	383,3558359	0.032603521	4.81%
18	0.001743876	0.009675887	0.000336005	0.000255106	0.000336295	0.006557243	0.010907386	0.00%	0.17%	0.97%	0.03%	0.03%	0.03%	1,12%	0.00%	2,19%	406.2542269	0.029811798	4.55%
17	0,00138491	0.006420912	0.000330561	0.000203529	0.000144088	0,006451003	0.010462287	0.00%	0.14%	0.64%	0.03%	0.02%	0.01%	1.10%	0.00%	2.10%	431-7525456	0.02539729	4.05%
16	0.001377929	0.003600826	0.000329653	0.00010652	3 21686E-05	0.006143738	0.009963963	0.00%	0.14%	0.36%	0.03%	0.02%	0.00%	1.05%	0.00%	2.00%	460.3387066	0.021554799	
15	0.001307806	0.001418138	0,000318694	5.93949E-05	1 26692E-06	0.005672167	0.00896909	0.00%	0.13%	0.14%	0.03%	0.01%	0.00%	0.97%	0.00%	1.80%			3,60%
14	0.001078701	0.000210415	0.000304601	0.000108419	2 91814E-06	0.005059492	0.007836214	0.00%	0.13%		0.03%		0.00%	0.86%	0.0071		492 6307066	0.017746557	3.08%
13	0.000919871	6.02424E-05	0.000276412					=1= +7 =		0.02%		0.01%			0.00%	1,58%	529 4230832	0.014600761	2.61%
				0.000187039	3.98962E-07	0.004284821	0.006636392	0.00%	0.09%	0 01%	0.03%	0.02%	0.00%	0,73%	0.00%	1.33%	571 7548154	0.012365176	2.21%
12	0.000843934	0.000834611	0.000241068	0.000179273	1.35992E-05	0.003495541	0.005413944	0.00%	0.08%	0 08%	0.02%	0.02%	0.00%	0.60%	0.00%	1.09%	621-0111745	0.011021969	1,90%
11	0.000669497	0.00217232	0.000198874	6.74457E-05	0.000111932	0.002747605	0,004158662	0.00%	0.07%	0.22%	0.02%	0.01%	0.01%	0.47%	0.00%	0.B4%	679.0811301	0.010126335	1,63%
10	0.000570022	0.003846507	0.000164711	1,5034BE-06	0,000360659	0.002070604	0.003141206	0.00%	0.06%	0.38%	0.02%	0.00%	0.04%	0.35%	0.00%	0.63%	748 6092002	0.010155211	1,48%
9	0.000496839	0.00542489	0.000130631	0.000171958	0.000752352	0.001466971	0.002272065	0.00%	0.05%	0.54%	0.01%	0.02%	0.08%	0.25%	0.00%	0.46%	833.4151999	0.010715705	1.40%
8	0,00036954	0.00635092	0.000100807	0.00060935	0.001134662	0.000988251	0.001530617	0.00%	0.04%	0,64%	0 01%	0,06%	0.11%	0.17%	0.00%	0.31%	939-2288034	0.0110B414B	1,33%
7	0.000278189	0.006878837	7-38194E-05	0.001118267	0.00134755	0.000601929	0.000953992	0.00%	0.03%	0.69%	0.01%	0.11%	0,13%	0.10%	0,00%	0.19%	1075,053728	0 011252583	1.26%
6	0.000219796	0.006519213	5.19B17E-05	0.001400314	0.001303842	0,00033514	0.000557475	0.00%	0.02%	0.65%	0.01%	0.14%	0.13%	0.06%	0.00%	0.11%	1255 896108	0.010387762	1.12%
5	0.000142936	0.005324981	3.29589E-05	0.001313253	0.001017063	0.000165329	0.000294	0.00%	0.01%	0,53%	0.00%	0 13%	0,10%	0.03%	0.00%	0.06%	1508.766904	0.008290522	0,87%
4	9-39117E-05	0.004007699	1.9211E-05	0.000920292	0.000638153	6.99722E-05	0.000133022	0.00%	0.01%	0.40%	0.00%	0.09%	0.06%	0.01%	0.00%	0.03%	1887.687946	0.005882261	0.61%
з	5 67742E-05	0.002362253	9.44021E-06	0.000483456	0.000298783	2.31397E-05	4-95857E-05	0.00%	0.01%	0.24%	0.00%	0.05%	0.03%	0.00%	0.00%	0.01%	2518.710043	0.003283432	0.33%
2	2.35608E-05	0.001074891	3.56467E-06	0.000159733	9,40577E-05	5,5258E-06	1.29537E-05	0.00%	0.00%	0.11%	0.00%	0.02%	0.01%	0.00%	0.00%	0.00%	3779 985433	0.001374287	0.14%
1	5.77114E-06	0.000275066	7.43176E-07	2.35216E-05	1.41732E-05	6.17259E-07	1.62355E-06	0.00%	0.00%	0.03%	0.00%	0.00%	0.00%	0,00%	0.00%	0.00%	7562.274935	0.000321515	0.03%
																			54.5

Location	New Haven C	T - Part 2 of 3
Date	3/22	2023
Band	28GHZ	C-Band
Operating Frequency (MHz)	27,500	3,700
General Population MPE (mW/cm^2)	1	1
ERP Per Transmitter (Watts)	251	21,878
Number of Transmitters	4	2
Antenna Centerline (feet)	127.8	127.8
Total ERP (Watts)	1,004	43,755
Total ERP (dBm)	60	76
Maximum % of General Population Limit	2	1%

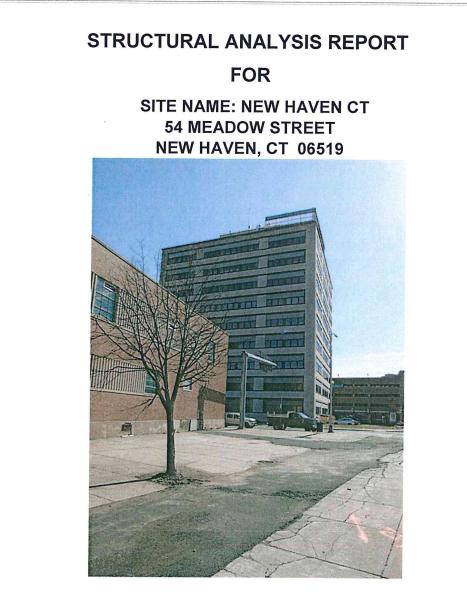


Angle	Power Density	(mW/cm^2)				Percent of Ge	meral Populat	tion MPE						
Below Horizon	28GHz	C-Band	39GHz	28GHz	C-Band	CBR5	AWS	PES	Cellular	CDIMA	700 MHz	Distance	Total Pwr Density	Total % General
90	2.25634E-05	0.002068137	0.00%	0.00%	0.21%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0	(mW/cm^2) 0.0020907	Pop MPE 0.21%
89	2.36196E-05	0.002067507	0.00%	0.00%	0.21%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.126026908	0.002091127	0.21%
88	2.44836E-05	0.002113733	0.00%	0.00%	0.21%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	4.253349724	0.002138216	0.21%
87	2.51312E-05	0.002159674	0.00%	0.00%	0.22%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6.383267517	0.002184805	0.22%
86	2.54851E-05	0.002205266	0.00%	0.00%	0.22%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	8.517085695	0.002230751	0.22%
85	2.55325E-05	0.002250442	0.00%	0.00%	0.23%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	10.65611922	0.002275974	0.23%
84	2.51555E-05	0.002295134	0.00%	0.00%	0.23%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	12.80169586	0.002320289	0.23%
83	2.43728E-05	0.002286024	0.00%	0.00%	0.23%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	14.95515952	0.002310397	0.23%
82	2.31691E-05	0.002382785	0.00%	0.00%	0.24%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	17.11787367	0.002405954	0.24%
81	2.14607E-05	0.002482099	0.00%	0.00%	0.25%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	19.29122483	0.00250356	0.25%
80	1.92357E-05	0.002525121	0.00%	0.00%	0.25%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	21.47662625	0.002544357	0.25%
79	1.88928E-05	0.002567276	0.00%	0.00%	0.26%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	23.67552165	0.002586168	0.26%
78	2.14394E-05	0.002608484	0.00%	0.00%	0.26%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	25.88938921	0.002629923	0.26%
77	2.40354E-05	0.002588375	0.00%	0.00%	0.26%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	28.11974568	0.00261241	0.26%
76	2.6498E-05	0.002508347	0.00%	0.00%	0.25%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	30.36815075	0.002534845	0.25%
75	2.87271E-05	0.002373924	0.00%	0.00%	0.24%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	32.63621164	0.002402652	0.24%
74	3.04851E-05	0.002297537	0.00%	0.00%	0.23%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	34.92558799	0.002328023	0.23%
73	3.32351E-05	0.00212213	0.00%	0.00%	0.21%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	37.237997	0.002155365	0.22%
72	4.15735E-05	0.001958809	0.00%	0.00%	0.20%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	39.575219	0.002000382	0.20%
71	5.03204E-05	0.001725518	0.00%	0.01%	0.17%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	41.9391033	0.001775838	0.18%
70	5.86645E-05	0.0014844	0.00%	0.01%	0.15%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	44.33157453	0.001543065	0.15%
69	6.60249E-05	0.001276094	0.00%	0.01%	0.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	46.75463947	0.001342119	0.13%
68	7.12419E-05	0.001147918	0.00%	0.01%	0.11%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	49 .21039431	0.00121916	0.12%
67	7.36981E-05	0.001105685	0.00%	0.01%	0.11%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	51.70103261	0.001179383	0.12%
66	7.25879E-05	0.001140354	0.00%	0.01%	0.11%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	54.22885387	0.001212942	0.12%
65	6.77572E-05	0.001288637	0.00%	0.01%	0.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	56.79627276	0.001356395	0.14%
64	7.39136E-05	0.001670705	0.00%	0.01%	0.17%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	59.40582929	0.001744618	0.17%
63	7.90981E-05	0.002164418	0.00%	0.01%	0.22%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	62.06019975	0.002243516	0.22%
62	7.85731E-05	0.002801878	0.00%	0.01%	0.28%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	64.76220878	0.002880451	0.29%
61	7.11283E-05	0.003624247	0.00%	0.01%	0.36%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	67.51484247	0.003695376	0.37%
60	5.7341E-05	0.004473429	0.00%	0.01%	0.45%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	70.32126279	0,00453077	0.45%
59	4,92646E-05	0.005148853	0.00%	0.00%	0.51%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	73.1848234	0.005198118	0.52%
58	5.7444E-05	0.006200408	0.00%	0.01%	0.62%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	76.10908706	0.006257852	0.63%
57	6.01987E-05	0.006962451	0.00%	0.01%	0.70%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	79.09784485	0.007022649	0.70%
56	5.6047E-05	0.00745981	0.00%	0.01%	0.75%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	82.15513735	0.007515857	0.75%
55	4.48883E-05	0.007985615	0.00%	0.00%	0.80%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	85.28527815	0.008030503	0.80%
54	6.40205E-05	0.008156327	0.00%	0.01%	0.82%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	88.49287991	0.008220347	0.82%
53	8.07423E-05	0.008322936	0.00%	0.01%	0.83%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	91.7828833	0.008403678	0.84%
52 51	9.32113E-05	0.007918513	0.00%	0.01%	0.79%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	95.16058931	0.008011724	0.80%
51	0.000121453	0.00718761	0.00%	0.01%	0.72%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	98.63169524	0.007309064	0.73%
49	0.000133941	0.006517593	0.00%	0.01%	0.65%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	102.2023351	0.006651534	0.67%
49	0.000123869 9.25872E-05	0.005261857 0.004443511	0.00%	0.01%	0.53%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	105.8791247	0.005385727	0.54%
48	0.000102958	0.004443511	0.00%	0.01%	0.44%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	109.6692126	0.004536098	0.45%
47	0.000102958		0.00%	0.01%	0.33%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	113.5803375	0.003443633	0.34%
46	0.000116218	0.002451588 0.001638888	0.00%	0.01%	0.25%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.002567806	0.26%
43	7.637428-05	0.001021226	0.00% 0.00%	0.01% 0.01%	0.16% 0.10%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00%	0.00%		0.001745886	0.17%
44	9.97633E-05	0.00056643	0.00%	0.01%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00% 0.00%	126.1275922	0.0010976	0.11%
43	0.000194279	0.00030662	0.00%	0.01%	0.06%	0.00%	0.00%	0.00%	0.00%	0.00% 0.00%	0.00%	130.6145089	0.000666193	0.07%
42	0.000194279	0.00030882	0.00%	0.02%	0.03%	0.00%	0.00%	0.00%	0.00%		0.00%		0.000500899	0.05%
40	0.000315892	0.000296288	0.00%	0.03%	0.02%	0.00%	0.00%	0.00%	0.00%	0.00% 0.00%	0.00%	140.114872 145.1555876	0.000478079 0.00061218	0.05%
39	0.000279349	0.000541157	0.00%	0.03%	0.05%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	145.1555876 150.4104737	0.000820506	0.06%
38	0.000279349	0.000921008	0.00%	0.03%	0.05%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	155.8968908	0.000820506	0.08%
37	0.000274366	0.001301683	0.00%	0.02%	0.03%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		0.001135834	0.11% 0.16%
	0.0002/4000	0.001001000	0,0070	0.0378	0.10/0	0.0070	5.0070	0.0070	0.0070	5.00%	0.00%	101.0340333	0.001370049	0.10%

36	0.000269675	0.001675007	0.00%	0.03%	0.17%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	167.6433179	0.001944683	0.19%
35	0.000192569	0.002054764	0.00%	0.02%	0.21%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	173.9484272	0.002247333	0.22%
34	0.00050995	0.002141424	0,00%	0.05%	0.21%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	180.575926	0.002651374	0.27%
33	0.00117658	0.002127144	0.00%	0.12%	0.21%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	187,5555526	0.003303724	0.33%
32	0.002059793	0.001967881	0.00%	0.21%	0.20%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	194.9207456	0.004027673	0.40%
31	0.003006649	0.001902208	0.00%	0.30%	0.19%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	202.709241	0.004908857	0.49%
30	0.003813679	0.002106296	0.00%	0.38%	0.21%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	210.9637884	0.005919974	0.59%
29	0.004290882	0.002797189	0.00%	0.43%	0.28%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	219.7330166	0.00708807	0.71%
28	0.004311443	0.004062542	0.00%	0.43%	0.41%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	229.0724835	0.008373986	0.84%
27	0.003877016	0.006161307	0.00%	0.39%	0.62%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	239.0459596	0.010038323	1.00%
26	0.003623164	0.008897403	0.00%	0.36%	0.89%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	249.7270079	0.012520567	1.25%
25	0.003616601	0.011952971	0.00%	0.36%	1.20%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	261.2009429	0.015569571	1.56%
24	0.003206496	0.014262837	0.00%	0.32%	1.43%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	273.5672791	0.017469333	1.75%
23	0.002806468	0.016956466	0.00%	0.28%	1.70%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	286.9428182	0.019762934	1.98%
22	0.002941406	0.017894937	0.00%	0.29%	1.79%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	301.4655787	0.020836342	2.08%
21	0.00272937	0.018375436	0.00%	0.27%	1.84%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	317.2998481	0.021104806	2.11%
20	0.00222079	0.017127055	0.00%	0.22%	1.71%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	334.6427497	0.019347845	1.93%
19	0.002257813	0.014483155	0.00%	0.23%	1.45%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	353.7328849	0.016740967	1.67%
18	0.002048183	0.011364336	0.00%	0.20%	1.14%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	374.8618548	0.013412519	1.34%
17	0.001626577	0.007541366	0.00%	0.16%	0.75%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	398.3898489	0.009167943	0.92%
16	0.001618379	0.004229173	0.00%	0.16%	0.42%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	424.7670793	0.005847552	0.58%
15	0.001536019	0.001665604	0.00%	0.15%	0.17%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	454.5637884	0.003201623	0.32%
14	0.001266935	0.000247132	0.00%	0.13%	0.02%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	488.5131177	0.001514068	0.15%
13	0.001080389	7.07547E-05	0.00%	0.11%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	527.5737615	0.001151144	0.12%
12	0.000991201	0.000980251	0.00%	0.10%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	573.0239473	0.001971452	0.20%
11	0.000786324	0.002551391	0.00%	0.08%	0.26%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	626.6066791	0.003337715	0.33%
10	0.000669491	0.004517725	0.00%	0.07%	0.45%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	690.7621256	0.005187216	0.52%
9	0.000583538	0.006371537	0.00%	0.06%	0.64%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	769.0149345	0.006955075	0.70%
8	0.000434025	0.00745916	0.00%	0.04%	0.75%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	866.6520322	0.007893185	0.79%
7	0.000326733	0.008079198	0.00%	0.03%	0.81%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	991.9813949	0.008405931	0.84%
6	0.000258151	0.00765682	0.00%	0.03%	0.77%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1158.849591	0.007914971	0.79%
5	0.000167879	0.006254194	0.00%	0.02%	0.63%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1392.18037	0.006422073	0.64%
4	0.000110299	0.004707045	0.00%	0.01%	0.47%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1741.82115	0.004817345	0.48%
3	6.66814E-05	0.002774468	0.00%	0.01%	0.28%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2324.082449	0.002841149	0.28%
2	2.76721E-05	0.00126246	0.00%	0.00%	0.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3487.89565	0.001290132	0.13%
1	6.77821E-06	0.000323065	0.00%	0.00%	0.03%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	6977.917327	0.000329843	0.03%

Location	New Haven CT - Part 3 of 3												
Date			3/22/2023										
Band	CBRS	AWS	PCS	850-LTE	700								
Operating Frequency (MHz)	3,550	2,145	1,970	880	746								
General Population MPE (mW/cm*2)	1	1	1	0.586666667	0.497333333								
ERP Per Transmitter (Watts)	68	2,291	1,622	1,047	1,622								
Number of Transmitters	4	4	4	4	4								
Antenna Centerline (feet)	155	155	155	155	155								
Total ERP (Watts)	270	9,163	6,487	4,189	6,487								
Total ERP (dBm)	54	70	68	66	68								
Maximum 3 of General Repetation Limit			8,9%										

RF Exposure 6ft Above Ground Level Far Field Formula (per FCC OET65)



Angle								and the second second									
Below Horizon	CBRS	AW5	PCS	850-LTE	700 MHz	99GHz	20GHz	GBind	CHIRS.	AWS	#CS	CHINAN	COMA	700 MHz	Distance	Total Pwr Density (mW/cm>2)	Fotal in General Rop MPE
90	1.86705E-06	5.78804E-05	2.52076E-05	5.27876E-06	3.25485E-05	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.01%	0	0.000122792	0.02%
89	2.51798E-06	8,15507E-05	3.17269E-05	4.27985E-06	3.4868E-05	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.01%	2.304068571	0.000154943	0.02%
88	3,39423E-06	9.82011E-05	3.81167E-05	2.89146E-06	3,81167E-05	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.01%	4.609541573	0.00018072	0.02%
87	4.07588E-06	9.80836E-05	4.38123E-05	1.78072E-06	4.27165E-05	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.01%	6.917826865	0.000190469	0.02%
86	4.78072E-06	9,32971E-05	5.13887E-05	1.5131E-06	4.78484E-05	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.01%	9.230339177	0.000198828	0.02%
85	5.73529E-06	0.000102078	6.4555E-05	2.23322E-06	5.49452E-05	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.01%	11.54850359	0.000229546	0.03%
84	7.20124E-06	0.000128169	8.0869E-05	3.9608E-06	6.43846E-05	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.01%	13.87375906	0.000284585	0.04%
83	9.0375E-06	0.000160851	9 71455E-05	6.70538E-06	7.18493E-05	0.00%	0.00%	0.00%	0.00%	0.02%	0.01%	0.00%	0.00%	0.01%	16.20756204	0.000345589	0.04%
82	1.10784E-05	0.000179825	0.000113462	1.05889E-05	8.0325E-05	0.00%	0.00%	0.00%	0.00%	0.02%	0.01%	0.00%	0.00%	0.02%	18.55139018	0.00039528	0.05%
81	1.26675E-05	0.000192338	0.000132759	1.48958E-05	8.7713E-05	0.00%	0.00%	0.00%	0.00%	0.02%	0.01%	0.00%	0.00%	0.02%	20.90674612	0.000440373	0.05%
80	1.44773E-05	0.000209441	0.000155261	1.91012E-05	9.35537E-05	0.00%	0.00%	0.00%	0.00%	0.02%	0.02%	0.00%	0.00%	0.02%	23.27516145	0.000491834	0.06%
79	1.73167E-05	0.000239795	0.000181485	2.33798E-05	9.74631E-05	0.00%	0.00%	0.00%	0.00%	0.02%	0.02%	0.00%	0.00%	0.02%	25.65820081	0.00055544	0.07%
78	1.93207E-05	0.000267546	0.000202488	2.92684E-05	0.000101484	0.00%	0.00%	0.00%	0.00%	0.03%	0.02%	0.00%	0.00%	0.02%	28.05746614	0.000620307	0.07%
77	2.15456E-05	0.000284272	0.000215642	3.84357E-05	0.000105617	0.00%	0.00%	0.00%	0.00%	0.03%	0.02%	0.01%	0.00%	0.02%	30,47460123	0.000665513	0.08%

76	2 45 7 2 65 05	0.000000000	0.0000000000000000000000000000000000000	F 034635 05	0.000100064	0.000/	0.000/	0.00%	0.000/	0.02%	0.070/	0.0444	0.0004	0.007		0.0007074.47	0.000/
76 75	2 45736E-05 2 73747E-05	0,000288964	0.000229532	5,02162E-05 6,57241E-05	0.000109861 0.000119598	0.00%	0.00%	0.00%	0.00%	0.03% 0.03%	0.02% 0_02%	0.01% 0.01%	0.00% 0.00%	0.02%	32.91129638 35.3692934	0.000703147	0.08% 0.09%
75	2,84445E-05	0.000327622	0.000244188	8,21058E-05	0.000130429	0.00%	0.00%	0.00%	0.00%	0.03%	0.02%	0.01%	0.00%	0.02%			
					0.000148179	0.00%	0.00%	0.00%	0.00%	0.03%	0.03%	0.01%	0.00%	0.03%	37.85039092 40.35644995	0.000828841	0,10%
73 72	2.82106E-05 2.49222E-05	0,000331732	0.000269641 0.000267276	9.79009E-05 0.000114015	0.00016864	0.00%	0.00%	0.00%	0.00%	0.03%	0.03%	0.02%	0.00%	0.03%	42,8893999	0.000875663	0.11%
71	2.10144E-05	0.000297092	0.000253449	0.000129985	0.000201322	0.00%	0.00%	0.00%	0.00%	0.03%	0,03%	0.02%	0.00%	0.04%	45,45124495	0.000902862	0.12%
70	1,85438E-05	0.000294154	0.000239097	0.000144403	0.000239097	0.00%	0.00%	0.00%	0.00%	0.03%	0.03%	0.02%	0.00%	0.05%	48.04407092	0,000935294	0,12%
69	1.67352E-05	0.000291075	0,000221312	0.000160327	0.000291075	0.00%	0.00%	0.00%	0.00%	0.03%	0.02%	0.03%	0.00%	0.06%	50.67005262	0.000980524	0.14%
68	1.69357E-05	0.000281306	0.000203788	0.000181626	0.000362392	0.00%	0.00%	0.00%	0.00%	0.03%	0.02%	0_03%	0.00%	0.07%	53.33146181	0.001046048	0.15%
67	2,31055E-05	0.000278029	0.000196829	0.000210907	0.00045091	0.00%	0.00%	0.00%	0.00%	0.03%	0.02%	0.04%	0.00%	0.09%	56.03067574	0.00115978	0.18%
66	3.46225E-05	0.000274621	0.000194416	0.000239185	0.000573763	0.00%	0.00%	0.00%	0.00%	0.03%	0.02%	0.04%	0.00%	0.12%	58 77018646	0.001316608	0.21%
65	4,49498E-05	0.00025299	0.000210912	0.000277398	0.000713021	0.00%	0.00%	0.00%	0.00%	0.03%	0.02%	0.05%	0.00%	0,14%	61,55261088	0.00149927	0.24%
64	4.43421E-05	0.00019824	0.000238337	0.00031419	0.000885505	0.00%	0.00%	0.00%	0.00%	0.02%	0.02%	0.05%	0.00%	0,18%	64,38070169	0.001680614	0.28%
63	3,32368E-05	0.000138355	0.000282484	0,000339621	0.001098989	0.00%	0.00%	0.00%	0.00%	0.01%	0.03%	0.06%	0.00%	0.22%	67.25735933	0.001892685	0.32%
62	1,96846E-05	9 8742E-05	0.000334581	0,000358511	0,001331992	0,00%	0.00%	0.00%	0,00%	0,01%	0.03%	0.06%	0.00%	0.27%	70.18564498	0.002143511	0.37%
61	1,22274E-05	8,88606E-05	0.000386998	0.000378189	0.001613276	0.00%	0.00%	0.00%	0.00%	0.01%	0.04%	0,06%	0.00%	0,32%	73,16879479	0.002479551	0.44%
60	1.17552E-05	8.92497E-05	0.000438133	0.000372055	0.001912521	0.00%	0.00%	0.00%	0.00%	0.01%	0.04%	0.06%	0.00%	0.38%	76,21023553	0.002823714	0.50%
59	1.52339E-05	9.40127E-05	0.000483266	0.000350096	0.002153705	0.00%	0.00%	0.00%	0.00%	0.01%	0.05%	0.06%	0.00%	0.43%	79.31360171	0.003096314	0.55%
58	1.64084E-05	9.67031E-05	0.000519326	0.000320214	0.002429069	0.00%	0.00%	0.00%	0.00%	0.01%	0.05%	0.05%	0.00%	0.49%	82.48275445	0.00338172	0.61%
57	1.27933E-05	0.000101709	0,000533774	0.000273753	0.002614314	0.00%	0.00%	0.00%	0.00%	0.01%	0.05%	0.05%	0.00%	0.53%	85.7218023	0.003536343	0.64%
56	8 29001E-06	0.000114797	0.00053571	0.000218238	0.002817928	0.00%	0.00%	0.00%	0.00%	0.01%	0.05%	0_04%	0.00%	0.57%	89.03512422	0.003694963	0,67%
55	8.12403E-06	0.000144593	0.000524984	0,00016261	0.002885001	0.00%	0.00%	0.00%	0.00%	0.01%	0.05%	0.03%	0.00%	0,58%	92.42739504	0.003725311	0,68%
54	1,32014E-05	0.000190983	0.000526011	0.000159219	0.002824847	0.00%	0.00%	0,00%	0.00%	0.02%	0.05%	0.03%	0.00%	0,57%	95,9036137	0.003714261	0.67%
53	2.00028E-05	0.000252038	0.000551398	0.000204864	0.002763535	0.00%	0.00%	0.00%	0.00%	0.03%	0.06%	0.03%	0.00%	0,56%	99.46913461	0.003791837	0.67%
52	2.63736E-05	0.000333077	0.000564344	0.000246345	0.002585496	0.00%	0.00%	0.00%	0.00%	0.03%	0.06%	0.04%	0.00%	0.52%	103.1297027	0.003755635	0.65%
51	2.96376E-05	0.000447939	0.000590498	0,000276197	0.002350815	0.00%	0.00%	0.00%	0.00%	0.04%	0.06%	0.05%	0.00%	0.47%	106 8914924	0.003695086	0.63%
50	3,31207E-05	0,00061727	0.000589488	0.000282147	0.002091581	0.00%	0.00%	0.00%	0,00%	0,06%	0.06%	0,05%	0.00%	0,42%	110,7611513	0.003613606	0,59%
49	3.98037E-05	0.000851723	0.000574511	0,000274978	0.001775408	0.00%	0.00%	0.00%	0.00%	0.09%	0,06%	0.05%	0.00%	0,36%	114.7458494	0.003516424	0,55%
48 47	4.87863E-05 5.82382E-05	0.00109062	0.000535393 0.000473786	0.000255666	0.001437715 0.001110664	0.00%	0.00% 0.00%	0.00%	0.00%	0.11% 0.13%	0.05% 0.05%	0.04% 0.04%	0.00% 0.00%	0.29%	118,8533338	0.003368181	0.50%
47	6 80197E-05	0.001393188	0.000410213	0.000232031	0.000801695	0.00%	0.00%	0.00%	0.01% 0.01%	0.13%	0.05%	0.03%	0.00%	0,22%	123.0919914	0,003152892	0.44%
45	8.12007E-05	0.001516823	0.000338793	0.000165934	0.000538189	0.00%	0.00%	0.00%	0.01%	0.15%	0,04%	0.03%	0.00%	0.11%	127.4709183 132	0.00287403 0.00264094	0.38%
44	8 43264E-05	0.001683987	0.000267509	0.000140068	0.000328351	0.00%	0.00%	0.00%	0.01%	0,17%	0.03%	0.02%	0.00%	0.07%	136,6900014	0.002504241	0.29%
43	7.97672E-05	0.001871541	0.000200539	0.000115398	0.000174662	0,00%	0.00%	0.00%	0.01%	0.19%	0.02%	0.02%	0.00%	0.04%	141,5526697	0.002441907	0.27%
42	7.36409E-05	0.002029992	0.000161248	9.49499E-05	7.71781E-05	0.00%	0.00%	0.00%	0,01%	0.20%	0.02%	0.02%	0.00%	0.02%	146.600852	0.002437009	0.26%
41	7.61771E-05	0.002005392	0.000163004	7.1154E-05	2.64362E-05	0.00%	0.00%	0.00%	0.01%	0.20%	0.02%	0.01%	0.00%	0.01%	151,8486298	0.002342163	0.24%
40	7.68976E-05	0,00193325	0.000216914	5.08497E-05	9.91488E-06	0.00%	0.00%	0.00%	0.01%	0.19%	0.02%	0.01%	0.00%	0.00%	157.3114742	0.002287827	0,23%
39	7.069E-05	0.001818582	0.000323394	3.88806E-05	144455E-05	0.00%	0.00%	0.00%	0.01%	0.18%	0.03%	0.01%	0,00%	0.00%	163.0064247	0.002265992	0.23%
36	6,0552E-05	0,001631186	0.00045973	4.93746E-05	2.71333E-05	0.00%	0.00%	0.00%	0.01%	0.16%	0.05%	0.01%	0.00%	0.01%	168 9522954	0.002227976	0.23%
37	5,17836E-05	0.00130187	0.000623114	6.23114E-05	3.66916E-05	0.00%	0.00%	0.00%	0.01%	0.13%	0.06%	0.01%	0.00%	0.01%	175.1699165	0.00207577	0.22%
36	3,94017E-05	0.000945999	0.000751433	7.34329E-05	3 5965BE-05	0.00%	0.00%	0.00%	0.00%	0.09%	0.08%	0.01%	0.00%	0.01%	181,6824135	0.001846232	0,19%
35	2.37716E-05	0.000611553	0.000826863	8.061B4E-05	3.06502E-05	0.00%	0.00%	0.00%	0.00%	0.06%	0.08%	0.01%	0.00%	0.01%	188,5155369	0.001573457	0.17%
34	1 30552E-05	0.000376841	0.000807528	8.63293E-05	3.43683E-05	0.00%	0.00%	0.00%	0.00%	0.04%	0,08%	0.01%	0.00%	0.01%	195,6980478	0.001318122	0.14%
33	9.65256E-06	0.000221318	0.000669911	8.03559E-05	7.49924E-05	0.00%	0.00%	0.00%	0.00%	0.02%	0.07%	0.01%	0.00%	0.02%	203.2621752	0.00105623	0.12%
32	9.17465E-06	0.00012387	0.000470939	5.40711E-05	0.000191851	0.00%	0.00%	0.00%	0.00%	0.01%	0.05%	0.01%	0.00%	0.04%	211.2441578	0.000849905	0.11%
31	9.11111E-06 1.21767E-05	5.62272E-05	0.000288367	0.000144526	0.00042751	0.00%	0.00%	0.00%	0.00%	0.01%	0.03%	0.02%	0.00%	0.09%	219.6848917	0.000925742	0.15%
30 29	1.62332E-05	1 76159E-05 5 37995E-05	0.000153428 7.42639E-05	0.000320557 0.000576472	0.000823958 0.001382858	0.00%	0.00% 0.00%	0.00%	0.00%	0.00%	0.02%	0.05%	0.00%	0,17%	228,6307066	0.001327736	0.24%
29	2.15834E-05	0.000226201	3.677E-05	0.000942963	0.002111028	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.10%	0.00%	0.28%	238,1343037 248.2558934	0.002103626 0.003338546	0.39%
27	3.95005E-05	0.000510479	2.86403E-05	0.001402742	0.003075935	0.00%	0.00%	0.00%	0.00%	0.02%	0.00%	0.18%	0.00%	0.62%	259,0645867	0.005057297	0.92%
26	7.37508E-05	0.00080936	4.56185E-05	0.001986744	0.004160459	0.00%	0.00%	0.00%	0.01%	0.08%	0.00%	0.34%	0.00%	0.84%	270,6401071	0.007075932	1.27%
25	0.000106541	0.000950366	9.72502E-05	0.002623561	0.005222646	0.00%	0.00%	0.00%	0.01%	0.10%	0.01%	0,45%	0.00%	1.05%	283.0749135	0.009000365	1.61%
24	0.00013054	0.000883322	0.000202357	0.003289417	0,006413843	0.00%	0.00%	0.00%	0.01%	0.09%	0.02%	0.56%	0.00%	1.29%	296,4768542	0.01091948	1.97%
23	0,000166851	0.000636362	0.000357852	0.004108702	0.007476598	0.00%	0.00%	0.00%	0.02%	0.06%	0.04%	0.70%	0.00%	1,50%	310,9725123	0.012746366	2.32%
22	0.000222401	0.000336908	0.000523012	0.004769931	0.008679835	0.00%	0.00%	0.00%	0.02%	0,03%	0,05%	0,81%	0.00%	1.75%	326.7114647	0.014532088	2.67%
21	0.000269781	0.00013848	0.000647718	0.005375099	0.009580448	0.00%	0.00%	0,00%	0.03%	0.01%	0.06%	0.92%	0.00%	1.93%	343,8717565	0.016011525	2,95%
20	0.000303232	0.000112759	0.000647366	0.005917666	0.010049623	0.00%	0.00%	0.00%	0.03%	0.01%	0.06%	1.01%	0.00%	2.02%	362.6670194	0.017030646	3.14%
19	0,000323016	0.000194805	0.000524323	0.006303762	0.010485743	0.00%	0.00%	0.00%	0.03%	0.02%	0.05%	1.07%	0.00%	2.11%	383.3558359	0.01783165	3.29%
18	0.000327433	0.000248598	0.000327716	0.006389953	0.010629114	0.00%	0.00%	0.00%	0.03%	0.02%	0.03%	1.09%	0.00%	2.14%	406.2542269	0.017922814	3.32%
17	0.000322992	0.000198869	0.000140788	0.006303281	0.01022271	0.00%	0,00%	0.00%	0.03%	0.02%	0.01%	1.07%	0.00%	2.06%	431,7525456	0.01718864	3.20%
16	0.000322927	0.000104347	3,15122E-05	0.006018377	0.009760651	0.00%	0.00%	0.00%	0,03%	0.01%	0.00%	1.03%	0.00%	1,96%	460,3387066	0,016237814	3.03%
15	0.000312947	5.83237E-05	1.24407E-06	0.005569874	0,00880734	0.00%	0.00%	0.00%	0.03%	0.01%	0.00%	0.95%	0.00%	1.77%	492,6307066	0.014749729	2.76%
14	0.000299791	0.000106707	2.87206E-06	0.004979591	0.007712463	0.00%	0.00%	0.00%	0.03%	0.01%	0.00%	0.85%	0.00%	1.55%	529.4230832	0.013101424	2.44%
13 12	0.00027263 0.000238244	0.00018448	3.93503E-07 1.34399E-05	0.004226189 0.003454599	0.006545582 0.005350533	0.00%	0.00%	0.00%	0.03%	0.02%	0.00%	0.72%	0.00%	1.32%	571.7548154	0.011229274	2.08%
12	0.000196909	6.67791E-05	0.000110826	0.003454599	0.005350533	0.00%	0.00% 0.00%	0.00%	0.02% 0.02%	0.02%	0.00%	0.59% 0.46%	0.00%	1,08%	621.0111745 679.0811301	0.00923399	1,71%
10	0.00016336	1.49115E-06	0.000357702	0.002053627	0.00311545	0.00%	0.00%	0.00%	0.02%	0.01%	0.01%	0.46%	0.00%	0.83%	748.6092002	0.007212525 0.00569163	1.33% 1.03%
9	0.00012976	0.000170812	0.000747337	0.001457194	0.002256923	0.00%	0.00%	0.00%	0.02%	0.00%	0.04%	0.25%	0.00%	0.45%	833.4151999	0.004762027	0.81%
8	0.000100275	0.000606132	0.001128669	0.000983031	0.001522532	0.00%	0.00%	0.00%	0.01%	0.05%	0.11%	0.17%	0.00%	0.31%	939.2288034	0.004340637	0.81%
7	7.352E-05	0.001113732	0.001342085	0.000599488	0.000950124	0.00%	0.00%	0.00%	0.01%	0.11%	0.13%	0.10%	0.00%	0.19%	1075.053728	0.004078949	0.55%
6	5.18264E-05	0.001396132	0.001299948	0.000334139	0.00055581	0.00%	0.00%	0.00%	0.01%	0.14%	0.13%	0.06%	0.00%	0.11%	1255 896108	0.003637855	0.44%
					_												

5	3.28905E-05	0.001310524	0.00101495	0.000164985	0.000293389	0.00%	0.00%	0.00%	0.00%	0.13%	0.10%	0.03%	0.00%	0.06%	1508.766904	0.002816738	0.32%
4	1.91854E-05	0.000919065	0.000637303	6.9879E-05	0.000132845	0.00%	0.00%	0.00%	0.00%	0.09%	0.06%	0.01%	0.00%	0.03%	1887,687946	0.001778278	0.20%
3	9.43313E-06	0.000483093	0.000298559	2.31223E-05	4.95485E-05	0.00%	0.00%	0.00%	0.00%	0.05%	0.03%	0.00%	0.00%	0.01%	2518.710043	0.000863756	0.09%
2	3.56348E-06	0.00015968	9.40263E-05	5.52395E-06	1.29494E-05	0.00%	0.00%	0.00%	0.00%	0.02%	0.01%	0.00%	0.00%	0.00%	3779.985433	0.000275743	0.03%
1	7.43114E-07	2.35196E-05	1.4172E-05	6.17207E-07	1.62342E-06	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	7562 274935	4.06754E-05	0.00%

ATTACHMENT 4

PREPARED FOR:

verizon[/]

WIRELESS COMMUNICATIONS FACILITY 20 ALEXANDER DRIVE WALLINGFORD, CT 06492 On Air Engineering, LLC

88 FOUNDRY POND ROAD COLD SPRING, NY 10516 ONAIR@OPTONLINE.NET 201-456-4624

12 KULICK ROAD FAIRFIELD, NEW JERSEY 07004-3363 PHONE: (973) 276-1700 FAX: (973) 276-9766 PROJECT NO. N-585 DATE: 3/22/2023

Paul C. Beck, P.E. Connecticut Professional Engineer License No: 12949

CONTENTS

- 1. -PURPOSE
- 2. -REFERENCES
- 3. -BUILDING CODES
- 4. -EXISTING STRUCTURE & FIELD OBSERVATIONS
- 5. PROPOSED VERIZON ANTENNA/EQUIPMENT CONFIGURATION
- 6. -RESULTS
- 7. -CONCLUSION
- 8. APPENDIX A (CALCULATIONS)

1. PURPOSE

The purpose of this analysis is to determine whether the existing screen wall framing and the penthouse façade located at 54 Meadow Street, New Haven, Ct 06519, are adequate to support the proposed modifications to Verizon's antennas and equipment.

2. REFERENCES

- 1. Verizon CD's by On Air Engineering, LLC, dated: October 19, 2022.
- 2. Photographs and antenna frame supports.
- 3. New Haven CT Structural Assessment Letter by On Air Engineering, LLC dated: July 13, 2020.

3. BUILDING CODES

- 1. 2021 International Building Code.
- 2. CT State Building Code, October 1, 2022
- 3. ASCE/SEI 7-16 (Minimum Design Loads for Buildings and Other Structures).

4. EXISTING STRUCTURE & FIELD OBSERVATIONS

Verizon has a 4-sector antenna configuration on the above referenced roof which are split into mounts on the central penthouse facade, main roof mechanical screen wall and main roof parapet wall. Verizon is proposing to add (4) integrated antennas to the sectors on the mechanical screen wall and parapet wall, which will be located above existing Verizon antennas on shared 2-1/2" nominal steel pipe masts. Details for these mounts are noted within the above referenced CD's. There are no other proposed changes to Verizon's existing antennas or accessory equipment. Verizon also proposes to remove (3) 850-CDMA antennas which are no longer in use.

5. PROPOSED VERIZON ANTENNA/EQUIPMENT CONFIGURATION (TYP. EA. SECTOR)

- a. (1) MT6407 Antenna.
- b. (1)28HZ Integrated Antenna/RRH.
- c. (2) MX10FR0660 Antennas on Dual Mounting brackets.
- d. (1) AWS/PCS Dual-Band RRH.
- e. (1) 700/850 Dual-Band RRH.
- f. (1) RRH CBRS.
- g. Raycap 6-ckt. OVP.

6. <u>RESULTS</u>

A structural analysis was completed on the Parapet wall and the HSS 4x4 posts supporting the antenna. Our analysis was performed against the wind and gravity loads caused by Verizon's equipment.

The HSS 4x4 post supporting the mechanical screen wall and antennas is at 29.5% capacity, which is adequate.

The parapet wall mounts support short horizontal outriggers located over the top of the parapet with antennas extending down in front of the South-East corner of the building facade to simulate a "flush mount" appearance. The parapet connection is at 73% capacity, which is structurally adequate.

7. CONCLUSION

The host building, the screen wall and the parapet wall are capable of supporting the existing and proposed equipment.

This analysis is based on the information provided to our office and is assumed to correctly depict the existing condition. The existing roof, subsequent floors, and foundation are assumed to be installed properly and in a professional manner.

Should you have any questions concerning the items contained within this report, please do not hesitate to contact our office.

Sincerely, PBA ENGINEERING, P.C.

Em

L. Bah

Paul C. Beck, P.E. Connecticut Professional Engineer License No: 12949

PCB/nf L:WP61/LTR\CELLULAR JOBS\N-585 Structural Analysis Report, Verizon - 54 Meadow St., New Haven, CT (3-22-23).docx APPENDIX (A)

.

.

Hurricane-	Prone Region	Vac	Voc	ICS	Vac	Vec	1 C2	Ves	Yes	Yes	Vec	Vac	1 43	Vec	Vac	Vec	Vec	Vec	Yes	Vec	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Vec	001		Yes	Yes
ne Debris on ¹	Risk Cat. IV														Time B	T Addr						•	Type B									Tvne B	Type A
Wind-Borne Debris Region ¹	Risk Cat. III Occup. I-2														Tyme R	1744							Type B									Type B	Type B
MCE Ground Accelerations	$\begin{array}{c} S_I \\ (g) \end{array}$	0.054	0.055	0.054	0.054	0.055	0.054	0.055	0.055	0.055	0.053	0.054	0.054	0.054	0.054	0.055	0.055	0.056	0.055	0.054	0.055	0.056	0.053	0.055	0.054	0.054	0.054	0.055	0.058	0.056	0.054	0.054	0.053
MCE Ground Accelerations	S _S (g)	0 184	0 189	0.167	0.177	0.200	0.184	0.186	0.210	0.196	0.190	0.190	0.178	0.207	0.206	0.190	0.186	0.205	0.203	0.194	0.209	0.209	0.202	0.208	0.198	0.182	0.197	0.195	0.252	0.219	0.172	0.201	0.191
Ground Snow	$\underset{(\mathrm{psf})}{Load}$	35	30	35	35	30	40	35	30	30	30	30	35	30	30	30	35	30	30	35	30	30	30	30	30	35	30	30	30	30	35	30	30
Wind	Risk Cat. IV	105	105	101	101	105	101	108	108	105	108	108	101	108	108	105	105	105	105	101	105	105	105	105	108	101	105	105	105	101	101	105	108
is Design ' s, V _{asd}	Risk Cat. III	101	101	97	97	101	97	105	105	105	108	105	97	105	105	101	101	101	101	101	101	101	101	101	105	97	101	101	101	76	97	101	108
Allowable Stress Design Wind Speeds, V _{asd} (mph)	Risk Cat. II	97	93	89	93	57	89	97	97	97	101	97	89	57	67	93	93	97	93	93	93	93	93	93	97	89	93	93	93	89	89	97	101
Allow	Risk Cat. I	89	85	85	85	89	81	89	89	89	93	89	85	89	89	85	85	85	85	85	85	85	85	85	93	85	85	85	85	85	85	85	93
ds, V	Risk Cat. IV	135	135	130	130	135	130	140	140	135	140	140	130	140	140	135	135	135	135	130	135	135	135	135	140	130	135	135	135	130	130	135	140
Basic Design Wind Speeds, V (mph)	Risk Cat. III	130	130	125	125	130	125	135	135	135	140	135	125	135	135	130	130	130	130	130	130	130	130	130	135	125	130	130	130	125	125	130	140
Design Win (mph)	Risk Cat. II	125	120	115	120	125	115	125	125	125	130	125	115	125	125	120	120	125	120	120	120	120	120	120	C71	511	120	120	120	115	FH2	(125)	130
Basic	Risk Cat. I	115	110	110	110	115	105	115	115	115	120	115	110	115	115	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	120
Municinality	are the second sec	Hampton	Hartford	Hartland	Harwinton	Hebron	Kent	Killingly	Killingworth	Lebanon	Ledyard	Lisbon	Litchfield	Lyme	Madison	Manchester	Manstield	Marlborough	Meriden	Middlebury	Middlefield	Middletown	Manual	Montrille		IMUITIS M	Naugatuck	New Britain	New Canaan	New Fairfield	New Hartford	New Haven	INEW LONGON

2022 CT. STATE BUILDING CODE

65

MecaWind v2405

Mecawind V2405	
Software Developer: Meca Enterprises Inc., www.meca.biz, Copyr.	ight © 2020
Calculations Prepared by:Calculations Prepared For:TrueClient:CustomerAddressProject #:JobNoCity, State,Location:LocatiorDate: Mar 22, 2023Description:Description	1
File Location: T:\01-Telecomm-Clients\On Air Engineering (N)\Documents\N-585 - New Haven N-585 - New Haven CT MecaWind_v2405.wnd	CT\Calcs\
Basic Wind ParametersWind Load Standard= ASCE 7-16 Exposure CategoryWind Design Speed= 125.0 mphStructure Type= Other	= B = II = Solid Sign
General Wind Settings Incl_LF = Include ASD Load Factor of 0.6 in Pressures DynType = Dynamic Type of Structure Zg = Altitude (Ground Elevation) above Sea Level Bdist = Base Elevation of Structure MWFRSType = MWFRS Method Selected	= True = Rigid = 1200.000 ft = 158.000 ft = Ch 29
TopographicFactorperFig26.8-1Topo=TopographicFeatureKzt=TopographicFactor	= None = 1.000
Solid Sign Inputsh: Height to Top of Sign= 6.000 ftB: Horizontal Width of SLr: Dimension of return corner = 1.000 fts: Vertical Height of Se: Solidity Ratio= 1.000 t: Thickness of SignAtt: Attached to Wall= FalseDbl: Double Faced & all sIsCol:Is the Sign Supported on Columns= False	ign = 10.000 ft = 0 ft
Exposure Constants per Table 26.11-1: Alpha: Table 26.11-1 Const = 7.000 Zg: Table 26.11-1 Const At: Table 26.11-1 Const = 0.143 Bt: Table 26.11-1 Const Am: Table 26.11-1 Const = 0.250 Bm: Table 26.11-1 Const C: Table 26.11-1 Const = 0.300 Eps: Table 26.11-1 Const	= 0.450
Gust Factor Calculation:Gust Factor Category I Rigid Structures - Simplified MethodG1= For Rigid Structures (Nat. Freq.>1 Hz) use 0.85Gust Factor Category II Rigid Structures - Complete AnalysisZm= Max(0.6 * Ht, Zmin)Izm= Cc * (33 / Zm) ^ 0.167Lzm= L * (Zm / 33) ^ EpsB= Structure Width Normal to WindQ= (1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5G2= 0.925*((1+0.7*Izm*3.4*Q)/(1+0.7*3.4*Izm))Gust Factor Used in AnalysisG= Lessor Of G1 Or G2	<pre>= 0.85 = 30.000 ft = 0.305 = 309.993 = 1.000 ft = 0.972 = 0.909 = 0.850</pre>
Main Wind Force Resisting System (MWFRS) Calculations for Solid Sign per ChLF= Load Factor based upon ASD Designhs= Overall height of structureh= Mean Roof Height above gradeKh= 15 ft [4.572 m] < Z <zg>(2.01*(Z/zg)^(2/Alpha) {Table 26.10-1Kzt= Topographic Factor is 1 since no Topographic feature specifiedKd= Wind Directionality Factor per Table 26.6-1qh= (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF</zg>	= 0.60 = 6.000 ft = 164.000 ft }= 1.138
MWFRS Pressures on Solid Sign per Fig 29.3-1:R= Reduction factor to account for openings: (1-(1-e)^1.5)Rc= Reduction factor for Case C since s/h > 0.8: (1.8-s/h)As= Gross Area of Sign: B * sB/s= Aspect Ratio: B / ss/h= Clearance Ratio: s / h	= 1.000 = 0.133 = 10.00 sq ft = 0.100 = 1.667

Page 2 of 2

Cf e	= Net Force Coefficient for Case A and B per Fig 29.3-1 = Not Double Faced, Case B eccentricity is 0.2	= 1.700 = 0.2
Case A: F	Resultant force acts normal to face through geometric center = Design Wind force: $qh * G * Cf * As * R$	= 321 lb
Case B: Dx F	Resultant force acts normal to face at a distance from the geometric center toward the windward edge equal to e times the average width = Force Offset from Center toward windward edge: e * B = Design Wind force: qh * G * Cf * As * R	ric = 0.200 ft = 321 lb
Case C:	Since $B/s < 2$ then Case C need not be considered	

.

Steel Beam		Project	File: N-585 - New Haven CT.ec6
LIC# : KW-06014238, Build:20.22.12.28	PBA E	NGINEERING, P.C.	(c) ENERCALC INC 1983-202
DESCRIPTION: Existing Screen	Verticals	and a standard	
CODE REFERENCES			
Calculations per AISC 360-16, IBC 202	21. ASCE 7-16		
Load Combination Set : ASCE 7-16	.,		
laterial Properties			
Analysis Method Allowable Strength Des	ian	Ever Ote - 1 Min 14	
Beam Bracing : Completely Unbrace	d	Fy : Steel Yield : E: Modulus :	46.0 ksi
Bending Axis : Major Axis Bending	u	E. Modulus .	29,000.0 ksi
D(0.0540) W(0.240)		D(0.0540) W(0.240)	
× ×		W(0.1113)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*			
HSS4x4x1/4		HSS4x4x1/4	
Span = 1.330 ft			
span – 1.330 ft		Span = 8.0 ft	I
			•
pplied Loads		Service loads entered. Load Fact	ors will be applied for calculations
Beam self weight NOT internally cal	culated and added		
Loads on all spans			
Uniform Load on ALL spans : W	/ = 0.01855 ksf, Tribut	ary Width = 6.0 ft	
Load(s) for Span Number 2			
Point Load : $D = 0.0540$, $W = 0$	0.240 k @ 0.250 ft		
Point Load : $D = 0.0540, W = 0$.240 k @ 5.0 ft		
ESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.295:1	Maximum Shear Stress Ratio =	0.096 : 1
Section used for this span	HSS4x4x1/4	Section used for this span	HSS4x4x1/4
Ma : Applied	3.176 k-ft	Va : Applied	поо4х4х1/4 2.433 k
Mn / Omega : Allowable	10.765 k-ft	Vn/Omega : Allowable	2.433 k 25.423 k
Load Combination	+D+0.60W	Load Combination	20.423 K +D+0.60W
		Location of maximum on span	1.330 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection			
Mox Doursead Transient Deflect			

Max multiple flection0.709 in Ratio =270>=180.Span: 2 : W OnlyMax Upward Transient Deflection-0.004 in Ratio =3,829>=180.Span: 2 : W OnlyMax Downward Total Deflection0.466 in Ratio =412>=180.Span: 2 : +D+0.60WMax Upward Total Deflection-0.003 in Ratio =5809>=180.Span: 2 : +D+0.60W

Maximum Forces & Stresses for Load Combinations

.

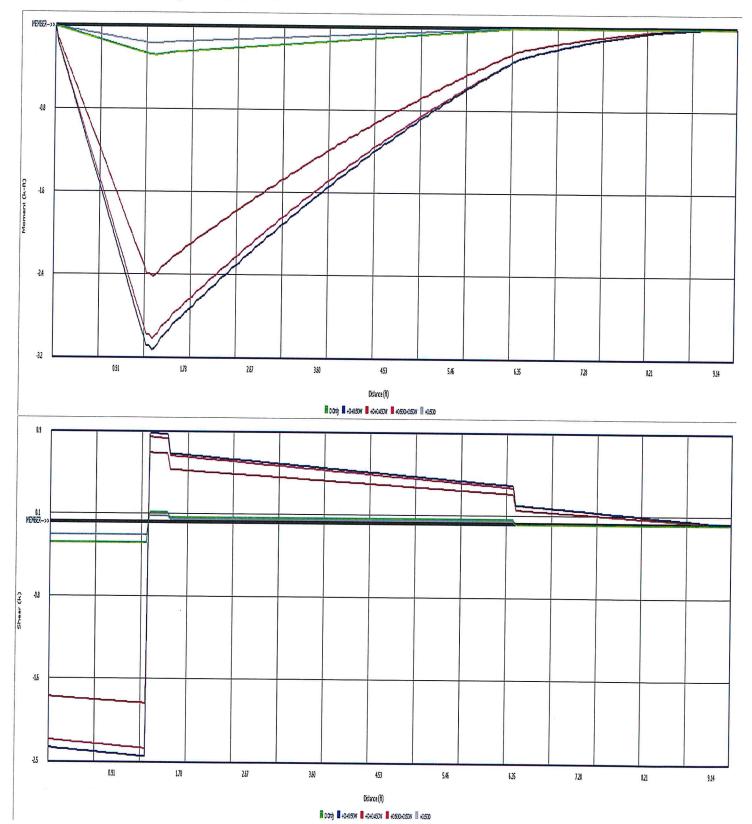
Load Combina	ation		Max Stres	s Ratios		Sur	nmary of Mo	ment Value	es		Summar	v of Shear	Values
Segment	Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx Mnx	/Omega Cb	Rm	Va Max	VnxVnx/	0.000000000
D Only												••••••	omogu
Dsgn. L =	1.33 ft	1	0.026	0.008		-0.28	0.28	17.98	10.77 1.67 [·]	1 00	0.21	42.46	25.42
Dsgn. L = +D+0.60W	8.00 ft	2	0.026	0.004		-0.28	0.28	17.98	10.77 1.00		0.11	42.46	25.42
Dsgn. L =	1.33 ft	1	0.295	0.096		-3.18	3.18	17.98	10.77 1.68		2.43	42.46	25.42
Dsgn. L = +D+0.450W	8.00 ft	2	0.295	0.037		-3.18	3.18	17.98	10.77 1.00		0.93	42.46	25.42
Dsgn. L =	1.33 ft	1	0.228	0.074		-2.45	2.45	17.98	10.77 1.68 1	00	1.88	42.46	25.42
Dsgn. L = +0.60D+0.60W	8.00 ft √	2	0.228	0.029		-2.45	2.45	17.98	10.77 1.00 1		0.72	42.46	25.42
Dsgn. L =	1.33 ft	1	0.285	0.092		-3.06	3.06	17.98	10.77 1.68 1	00	2.35	42.46	25.42
Dsgn. L = +0.60D	8.00 ft	2	0.285	0.035		-3.06	3.06	17.98	10.77 1.00 1		0.89	42.46	25.42
Dsgn. L =	1.33 ft	1	0.016	0.005		-0.17	0.17	17.98	10.77 1.67 1	.00	0.13	42.46	25.42
Dsgn. L =	8.00 ft	2	0.016	0.003		-0.17	0.17	17.98	10.77 1.00 1		0.06	42.46	25.42

Steel Beam LIC# : KW-0601423		22 12 28					Proje	ect File: N-585 - Ne	
DESCRIPTIO			Verticals	PBA ENGINI	Ering, P.C.			(c) ENER(CALC INC 1983-202
Overall Maxim		87.	v or trouto						
Load Combinatio	10 M 10	Span	Max. "-" Defl	Location in Spar	n Load Co	mbination		Max. "+" Defl	Location in Spar
W O-L		1	0.0000	0.000	W Only	1		-0.0042	0.771
W Only		2	0.7094	8.000				0.0000	0.771
Maximum Defl		for Load Co							
Load Combinatio	n	_		Max. Downward	Defl Location	n in Span	Span	Max. Upward Defl	Location in Spa
D Only			2	0.040		8.000	1	-0.0002	0.771
+D+0.60W			2	0.466		8.000	1	-0.0027	0.771
+D+0.450W			2	0.359	-	8.000	1	-0.0021	0.771
+0.60D+0.60W			2	0.449		8.000	1	-0.0026	0.771
+0.60D			2	0.024		8.000	1	-0.0001	0.771
W Only			2	0.709	4	8.000	1	-0.0042	0.771
Vertical Reacti				Supp	ort notation : F	⁻ ar left is # [.]		Values in KIPS	
Load Combinatio			Support	1 Support 2 Su	pport 3				
Max Upward fro	m all Load	d Conditions		5.070					
Max Upward fro				3.363					
Max Upward fro				5.070					
Max Downward	from all Lo	oad Conditions (Resi: -3.55	1					
Max Downward	from Load	Combinations (Resi: -2.34	4					
Max Downward	from Load	Cases (Resistir	ng Ur -3.55	1					
D Only			-0.21	3 0.321					
+D+0.60W			-2.34	4 3.363					
+D+0.450W			-1.81	1 2.603					
+0.60D+0.60W			-2.259	3.235					
+0.60D			-0.128						
W Only			-3.55	1 5.070					
teel Section P	ropertie	es : HSS4x	4x1/4						
Depth	=	4.000 in	l xx	E	7.80 in^4		J	= 12	800 in^4
			S xx		3.90 in^3		-	12.	
Width	=	4.000 in	R xx	=	1.520 in				
Wall Thick	=	0.233 in	Zx	=	4.690 in^3				
Area	=	3.370 in^2	l yy	=	7.800 in^4		С	= 0.	000 in^3
Weight	=	12.210 plf	Syy	=	3.900 in^3				··· ·
-		pi	R yy	17-61	0.000 11-0				

Ycg

Steel Beam

2.000 in

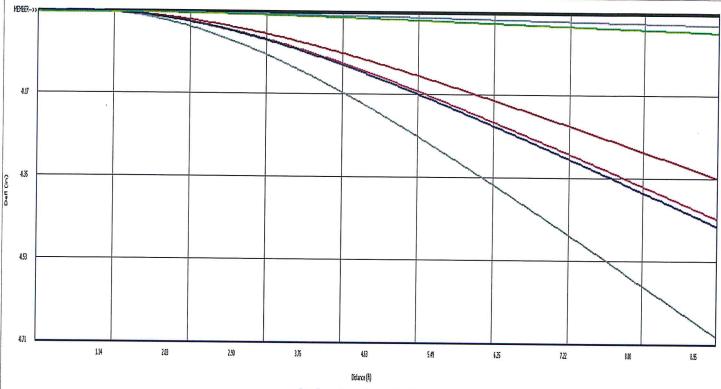

=

Steel Beam LIC# : KW-06014238, Build:20.22.12.28

PBA ENGINEERING, P.C.

Project File: N-585 - New Haven CT.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: Existing Screen Verticals



Steel Beam LIC# : KW-06014238, Build:20.22.12.28

PBA ENGINEERING, P.C.

Project File: N-585 - New Haven CT.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: Existing Screen Verticals

🖥 D Crily 📕 +0+0.65W 📕 +0+0.455W 📕 +0.650+0.65W 📓 +0.550 📓 w Crily

0

•

Steel Beam	20 22 12 20		网络海洋			CDING S				ile: N-585 - Ne		2.21.0
DESCRIPTION:			alo	PE	SA ENGINE	ERING, P.C				(c) ENER	CALC INC 19	83-2022
	arapern	ADUIT AN	gie									
CODE REFEREN												
Calculations per AISC Load Combination Se	C 360-16, et : ASCE	IBC 2021 7-16	, ASCE 7	-16								
Material Properties												
Analysis Method Allo	wable Stre	ngth Desig	n				Fv : S	Steel Yie	ld :	35.0 ksi		
Beam Bracing : Bea Bending Axis : Maj	am is Fully jor Axis Ber	y Braced and ing	against la	teral-tors	sional bu	ckling		odulus :		29,000.0 ksi		
Vertical Leg Up								D	0.380)	A		
		_						1				
		-	Contraction of the second				and the second					
	_											
•												
			A CARLER OF		L5x	3x1/4						
		<u> </u>			Span	= 2.0 ft			_ _			
Applied Loads						-			3			
Beam self weight	alaulatad	and adds	المعالمة الم			Serv	ice loads ente	red. Load	Factors	s will be applie	d for calcul	ations.
Load(s) for Span N Point Load : D	Number 1			ng								
		0										
Moment : D =	1.240 k-ft	Loc = 2.	0 ft in spa	n			·					
Moment : D =	1.240 k-ft	, Loc = 2.	0 ft in spa	n								
		, Loc = 2.	0 ft in spa	n			·					
DESIGN SUMMARY	ſ									D	esign OK	
DESIGN SUMMARY Maximum Bending S	, Stress Rat			0.507 : 1	1 Ma		hear Stress				0.025 :	1
DESIGN SUMMARY	Stress Rat s span			<mark>0.507</mark> : ^ (3x1/4			ion used for th				0.025 : L5x3x1/4	
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap	Stress Rat s span	io =		0.507 : 1	-ft		ion used for th Va : Applied	nis span			0.025 : L5x3x1/4 0.3932	k
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap	Stress Rat s span plied	io =	L5>	<mark>0.507</mark> : 7 (3x1/4 2.013 k	-ft	Sect Load	ion used for th Va : Applied Vn/Omega : Combination	nis span Allowabl			0.025 : L5x3x1/4 0.3932 15.719	k
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination	Stress Rat s span plied nega : Allow	io = vable	L5>	0.507 : (3x1/4 2.013 k 3.969 k D Only	-ft	Sect Load Locat	ion used for th Va : Applied Vn/Omega : Combination tion of maximu	nis span Allowable um on sp	an		0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000	k k
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir	Stress Rat s span plied nega : Allow num occurs	io = vable	L5>	0.507 : 7 (3x1/4 2.013 k 3.969 k	-ft	Sect Load Locat	ion used for th Va : Applied Vn/Omega : Combination	nis span Allowable um on sp	an		0.025 : L5x3x1/4 0.3932 15.719 D Only	k k
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflectior	Stress Rat s span plied nega : Allow num occurs	io = vable	L5x Sj	0.507 : 3 x1/4 2.013 k 3.969 k D Only D Only	-ft -ft	Sect Load Locat Span	ion used for th Va : Applied Vn/Omega : Combination tion of maximu	nis span Allowable um on sp	an		0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000	k k
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir	Stress Rat s span plied nega : Allow num occurs n sient Defle	io = vable s	L 5 × Sj 0.000 ir	0.507 : (3x1/4 2.013 k 3.969 k D Only	-ft -ft 0	Sect Load Locat Span	ion used for th Va : Applied Vn/Omega : Combination tion of maximu	nis span Allowable um on sp	an		0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000	k k
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflectior Max Downward Trar Max Upward Transie Max Downward Tota	Stress Rat s span plied nega : Allow mum occurs n sient Deflectior al Deflectior	io = vable s ction on	L 5 × Sı 0.000 ir 0.000 ir	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only D Only D an # 1	-ft -ft 0 0	Sect Load Locat Span	ion used for th Va : Applied Vn/Omega : Combination tion of maximu	nis span Allowable um on sp imum oce	an		0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000	k k
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflection Max Downward Tran Max Upward Transie	Stress Rat s span plied nega : Allow mum occurs n sient Deflectior al Deflectior	io = vable s ction on	L 5 × SI 0.000 ir 0.000 ir 0.041 ir	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only D Only D an # 1 Ratio =	-ft -ft 0 1172	Sect Load Locat Span <360.0 <360.0	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi	nis span Allowable um on sp imum oce	an		0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000	k k
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflectior Max Downward Trar Max Upward Transie Max Downward Tota	Stress Rat s span plied nega : Allow mum occurs n sisient Defle ent Deflection al Deflection Peflection	vable s cction	L5x 0.000 ir 0.000 ir 0.041 ir 0.000 ir	0.507 : 7 3x1/4 2.013 k 3.969 k D Only Dan # 1 n Ratio = n Ratio = n Ratio = n Ratio =	-ft -ft 0 1172 0	Sect Load Locat Span <360.0 <360.0 >=180.	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi	nis span Allowable um on sp imum oce	an		0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000	k k
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflection Max Downward Trar Max Upward Transie Max Downward Tota Max Upward Total D Maximum Forces & Load Combination	Stress Rat s span plied nega : Allow mum occurs n ssient Defle ent Deflection Deflection Stresses	vable s cction	L5x SI 0.000 ir 0.000 ir 0.041 ir 0.000 ir d Comb s Ratios	0.507 : 7 3x1/4 2.013 k 3.969 k D Only Dan # 1 n Ratio = n Ratio = n Ratio = n Ratio =	-ft -ft 1172 0 s Sur	Sect Load Local Span <360.0 <360.0 >=180. <180.0	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi	nis span Allowablum on sp imum occi Only	an	I	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000	k k ft
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflection Max Downward Trar Max Upward Transie Max Downward Total Max Upward Total D Maximum Forces & Load Combination Segment Length	Stress Rat s span plied nega : Allow mum occurs n sient Defle ent Deflection Deflection Stresses	vable ction	L5x SI 0.000 ir 0.000 ir 0.041 ir 0.000 ir 0.041 s d Comb	0.507 : 7 3x1/4 2.013 k 3.969 k D Only Dan # 1 n Ratio = n Ratio = n Ratio = n Ratio =	-ft -ft 0 1172 0 s	Sect Load Local Span <360.0 <360.0 >=180. <180.0	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi Span: 1 : D (nis span Allowablum on sp imum occi Only S	an curs	Summa	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1	k ft Values
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflection Max Downward Trar Max Downward Trar Max Upward Transie Max Downward Total D Maximum Forces & Load Combination Segment Length D Only Dsgn. L = 2.00 ft	Stress Rat s span plied nega : Allow mum occurs n ssient Defle ent Deflection Deflection Stresses	io = vable ction on 5 for Loa Max Stress	L5x SI 0.000 ir 0.000 ir 0.041 ir 0.000 ir 0.041 s d Comb	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only Dan # 1 Ratio = Ratio = Ratio = Ratio = Ratio =	-ft -ft 1172 0 s Sur	Sect Load Local Span <360.0 <360.0 >=180. <180.0 mmary of I Ma Max	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi Span: 1 : D (Moment Value Mnx Mnx	nis span Allowable um on sp imum occ Only S /Omega	an curs	Summa n Va Max	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1	k k ft Values Dmega
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflection Max Downward Trar Max Upward Transie Max Upward Transie Max Upward Total D Maximum Forces & Load Combination Segment Length D Only	Stress Rat s span plied nega : Allow mum occurs n sient Deflection Deflection Stresses Span #	io = vable section on <u>section</u> <u>section</u> <u>section</u> <u>section</u>	L5x SI 0.000 ir 0.000 ir 0.041 ir 0.000 i	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only ban # 1 n Ratio = n Ratio = n Ratio	-ft -ft 0 1172 0 s <u>Sur</u> <u>Mmax</u> - -2.01	Sect Load Local Span <360.0 <360.0 >=180. <180.0 mmary of I Ma Max 2.01	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi Span: 1 : D (Moment Value Mnx Mnx 6.63	nis span Allowablum on sp imum occ Only S /Omega 3.97	an burs Cb Rn 1.00 1.0	Summa n Va Max 10 0.39	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1 ry of Shear VnxVnx/0 26.25	k k ft Values Dmega 15.7
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflection Max Downward Trar Max Upward Transie Max Downward Total D Maximum Forces & Load Combination Segment Length D Only Dsgn. L = 2.00 ft to.60D	Stress Rat s span plied nega : Allow mum occurs nsient Defle ent Deflection Deflection Stresses Span # 1 1	io = vable ction on Max Stress M 0.507 0.304	L5x SI 0.000 ir 0.000 ir 0.041 ir 0.000 ir 0.041 s M 0.000 ir 0.025	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only Dan # 1 Ratio = Ratio = Ratio = Ratio = Ratio = Ratio =	-ft -ft 0 1172 0 s Sur Mmax -	Sect Load Local Span <360.0 <360.0 >=180. <180.0 mmary of I Ma Max 2.01	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi Span: 1 : D (Moment Value Mnx Mnx 6.63	nis span Allowablum on sp imum occ Only S /Omega 3.97	an curs Cb Rn	Summa n Va Max 10 0.39	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1 ry of Shear VnxVnx/0 26.25	k k ft Values Dmega 15.7
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflection Max Downward Trar Max Upward Transie Max Downward Total D Maximum Forces & Load Combination Segment Length D Only Dsgn. L = 2.00 ft to.60D Dsgn. L = 2.00 ft	Stress Rat s span plied nega : Allow mum occurs national Deflection loeflection Stresses Span # 1 1 eflection	io = vable ction on <u>Max Stress</u> <u>M</u> 0.507 0.304 S	L5x SI 0.000 ir 0.000 ir 0.041 ir 0.000 ir 0.041 s M 0.000 ir 0.025	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only ban # 1 n Ratio = n Ratio = n Ratio = n Ratio = n Ratio = n Ratio = n Ratio	-ft -ft 0 1172 0 s <u>Sur</u> <u>Mmax -</u> -2.01 -1.21	Sect Load Locat Span <360.0 >=180. <180.0 <u>mmary of 1</u> <u>Ma Max</u> 2.01 1.21	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi Span: 1 : D (Moment Value Mnx Mnx 6.63	nis span Allowablum on sp imum occ Only S /Omega 3.97	an curs Cb Rn 1.00 1.0 1.00 1.0	<u>Summa</u> n Va Max 0 0.39 0 0.24	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1	k k ft Dmega 15.7 15.7
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxim Maximum Deflection Max Downward Transie Max Downward Transie Max Downward Total D Maximum Forces & Load Combination Segment Length D Only Dsgn. L = 2.00 ft Dogn. L = 2.00 ft	Stress Rat s span plied nega : Allow mum occurs nasient Defle al Deflection Deflection Stresses Span # 1 1 eflections	io = vable s cction on <u>max Stress</u> <u>M</u> 0.507 0.304 S pan Ma 1	L5x SI 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.025 0.015 ax. "-" Defl 0.0409	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only ban # 1 n Ratio = n Ratio = n Ratio = n Ratio = n Ratio	-ft -ft 0 1172 0 s <u>Sur</u> <u>Mmax -</u> -2.01 -1.21	Sect Load Locat Span <360.0 >=180. <180.0 <u>mmary of 1</u> <u>Ma Max</u> 2.01 1.21	ion used for th Va : Applied Vn/Omega : Combination iion of maximu # where maxi Span: 1 : D 0 Moment Value Mnx Mnx 6.63 6.63	nis span Allowablum on sp imum occ Only S /Omega 3.97	an curs Cb Rn 1.00 1.0 1.00 1.0	<u>Summa</u> n Va Max 00 0.39 00 0.24 1ax. "+" Defl L	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1 ry of Shear VnxVnx/0 26.25 26.25 26.25	k k ft Values Dmega 15.7 15.7 Span
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxim Maximum Deflection Max Downward Transie Max Downward Transie Max Upward Transie Max Upward Transie Max Upward Transie Max Upward Total D Maximum Forces & Load Combination Segment Length D Only Dsgn. L = 2.00 ft Overall Maximum Deflection D Only Load Combination	Stress Rat s span plied nega : Allow mum occurs nasient Defle al Deflection Deflection Stresses Span # 1 1 eflections	io = vable s cction on <u>max Stress</u> <u>M</u> 0.507 0.304 S pan Ma 1	L5x SI 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.025 0.015 ax. "-" Defl 0.0409	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only ban # 1 n Ratio = n Ratio = n Ratio = n Ratio = n Ratio	-ft -ft 0 1172 0 s <u>Sur</u> <u>Mmax -</u> -2.01 -1.21 in Span	Sect Load Locat Span <360.0 >=180. <180.0 <u>mmary of 1</u> <u>Ma Max</u> 2.01 1.21	ion used for th Va : Applied Vn/Omega : Combination iion of maximu # where maxi Span: 1 : D 0 Moment Value Mnx Mnx 6.63 6.63	nis span Allowablum on sp imum occ Only S /Omega 3.97	an curs Cb Rn 1.00 1.0 1.00 1.0	<u>Summa</u> n Va Max 0 0.39 0 0.24	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1 ry of Shear VnxVnx/0 26.25 26.25 26.25	k k ft Dmega 15.7 15.7
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflection Max Downward Trar Max Upward Transie Max Downward Trar Max Upward Transie Max Downward Total D Maximum Forces & Load Combination Segment Length D Only Dsgn. L = 2.00 ft Donly Dsgn. L = 2.00 ft Donly Dsgn. L = 2.00 ft Donly Dsgn. L = 2.00 ft Donly Donly Load Combination D Only Maximum Deflection Load Combination	Stress Rat s span plied nega : Allow mum occurs nasient Defle al Deflection Deflection Stresses Span # 1 1 eflections	io = vable s cction on <u>max Stress</u> <u>M</u> 0.507 0.304 S pan Ma 1	L5x SI 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.025 0.015 ax. "-" Defl 0.0409	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only ban # 1 n Ratio = n -0.00 Location	-ft -ft 0 1172 0 s <u>Sur</u> <u>Mmax -</u> -2.01 -1.21 in Span 2.000	Sect Load Locai Span <360.0 >=180. <180.0 mmary of I Ma Max 2.01 1.21 Load Co	ion used for th Va : Applied Vn/Omega : Combination iion of maximu # where maxi Span: 1 : D 0 Moment Value Mnx Mnx 6.63 6.63	nis span Allowablum on sp imum occ Only S /Omega 3.97	an curs Cb Rn 1.00 1.0 1.00 1.0	Summa n Va Max 10 0.39 10 0.24 1ax. "+" Defl L 0.0000	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1 ry of Shear VnxVnx/0 26.25 26.25 26.25 Location in S	k k ft Values Dmega 15.7 15.7 Span 00
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Orr Load Combination Span # where maxir Maximum Deflection Max Downward Transie Max Downward Transie Max Upward Transie Max Upward Transie Max Upward Total D Maximum Forces & Load Combination Segment Length D Only Dsgn. L = 2.00 ft Donly Dsgn. L = 2.00 ft Donly Load Combination D Only Load Combination D Only	Stress Rat s span plied nega : Allow mum occurs nasient Defle al Deflection Deflection Stresses Span # 1 1 eflections	io = vable s cction on <u>max Stress</u> <u>M</u> 0.507 0.304 S pan Ma 1	L5x SI 0.000 ir 0.000 ir 0.001 ir 0.000 ir 0.041 ir 0.000 ir 0.0401 ir 0.025 0.015 0.015 0.0409 0	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only ban # 1 n Ratio = n -0.00 Location	-ft -ft 0 1172 0 s <u>Sur</u> <u>Mmax</u> - -2.01 -1.21 in Span 2.000 wnward Do 0.0409	Sect Load Locai Span <360.0 >=180. <180.0 mmary of I Ma Max 2.01 1.21 Load Co	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi Span: 1 : D 0 Moment Value Mnx Mnx 6.63 6.63 0mbination on in Span 2.000	nis span Allowablu im on sp imum occ Only S /Omega 3.97 3.97	an curs Cb Rn 1.00 1.0 1.00 1.0	<u>Summa</u> n Va Max 00 0.39 00 0.24 1ax. "+" Defl L	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1 ry of Shear VnxVnx/0 26.25 26.25 26.25 Location in S 0.0	k k ft Values Dmega 15.7 15.7 Span 00
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflection Max Downward Trar Max Upward Transie Max Downward Trar Max Upward Transie Max Downward Total D Maximum Forces & Load Combination Segment Length D Only Dsgn. L = 2.00 ft Dorly Dsgn. L = 2.00 ft Dorly Dsgn. L = 2.00 ft Dorly Dsgn. L = 2.00 ft Dorly Dsgn. L = 2.00 ft Dorly Load Combination D Only Load Combination D Only Load Combination D Only +0.60D	Stress Rat s span plied nega : Allow mum occurs nasient Defle al Deflection Deflection Stresses Span # 1 1 eflections	io = vable s cction on <u>max Stress</u> <u>M</u> 0.507 0.304 S pan Ma 1	L5x SI 0.000 ir 0.000 ir 0.041 ir 0.000 ir 0.041 ir 0.000 ir 0.041 or M 0.025 0.015 0.015 0.0409 0.0409 0.0409 0.0409 0.0409 0.0409	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only ban # 1 n Ratio = n Ratio = n Ratio = n Ratio = n Ratio = n Ratio = n Ratio	-ft -ft 0 1172 0 s <u>Sur</u> <u>Mmax</u> - -2.01 -1.21 in Span 2.000 wnward D	Sect Load Locai Span <360.0 >=180. <180.0 mmary of I Ma Max 2.01 1.21 Load Co	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi Span: 1 : D 0 Moment Value Mnx Mnx 6.63 6.63 ombination	nis span Allowablu im on sp imum occ Only S /Omega 3.97 3.97	an curs Cb Rn 1.00 1.0 1.00 1.0	Summa n Va Max 0 0.39 0 0.24 1ax. "+" Defl L 0.0000 Upward Defl	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1 ry of Shear VnxVnx/0 26.25 26.25 26.25 Location in S 0.0 Location in S	k k ft Dmega 15.7 15.7 Span 00 Span
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxim Maximum Deflection Max Downward Transie Max Downward Transie Max Downward Total D Maximum Forces & Load Combination Segment Length D Only Dsgn. L = 2.00 ft D Only Dsgn. L = 2.00 ft Donly Dsgn. L = 2.00 ft Donly Dsgn. L = 2.00 ft Donly Dagn. L = 2.00 ft Donly Load Combination D Only Load Combination D Only Haximum Deflection D Only Haximum Deflection D Only Ho.60D	Stress Rat s span plied nega : Allow mum occurs nasient Defle al Deflection Deflection Stresses Span # 1 1 eflections	io = vable s cction on <u>max Stress</u> <u>M</u> 0.507 0.304 S pan Ma 1	L5x SI 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.0015 0.015 0.015 0.015 0.015 0.0409 0.041 1 1 1 1 1 1 1 1 1 1 1 1 1	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only ban # 1 n Ratio = n Ratio = n Ratio = n Ratio = n Ratio = n Ratio = n Ratio	-ft -ft -ft 0 1172 0 s <u>Sur</u> <u>Mmax -</u> -2.01 -1.21 in Span 2.000 wnward Dr 0.0409 0.0246 Support	Sect Load Local Span <360.0 <360.0 >=180. <180.0 Ma Max 2.01 1.21 Load Co efl Locatio	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi Span: 1 : D 0 Moment Value Mnx Mnx 6.63 6.63 0mbination on in Span 2.000	nis span Allowablu im on sp imum occ Only S /Omega 3.97 3.97	an curs Cb Rn 1.00 1.0 1.00 1.0 Max.	Summa n Va Max 10 0.39 10 0.24 1ax. "+" Defl L 0.0000 Upward Defl 0.0000	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1 ry of Shear VnxVnx/0 26.25 26.25 26.25 Location in S 0.0 Location in S	k k ft Dmega 15.7 15.7 Span 100 Span
DESIGN SUMMARY Maximum Bending S Section used for this Ma : Ap Mn / Om Load Combination Span # where maxir Maximum Deflection Max Downward Trar Max Upward Transie Max Downward Trar Max Upward Transie Max Downward Total D Maximum Forces & Load Combination Segment Length D Only Dsgn. L = 2.00 ft Dorly Dsgn. L = 2.00 ft Dorly Dsgn. L = 2.00 ft Dorly Dsgn. L = 2.00 ft Dorly Dsgn. L = 2.00 ft Dorly Load Combination D Only Load Combination D Only Load Combination D Only +0.60D	Stress Rat s span plied nega : Allow mum occurs nsient Defle al Deflection Stresses Span # 1 1 eflections Span #	io = vable s cction on Max Stress M 0.507 0.304 Span Ma 1 ad ComI	L5x SI 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.000 ir 0.0015 0.015 0.015 0.015 0.015 0.0409 0.041 1 1 1 1 1 1 1 1 1 1 1 1 1	0.507 : 7 (3x1/4 2.013 k 3.969 k D Only ban # 1 n Ratio = n Ratio = n Ratio = n Ratio = n Ratio = n Ratio = n Ratio	-ft -ft -ft 0 1172 0 s <u>Sur</u> <u>Mmax -</u> -2.01 -1.21 in Span 2.000 wnward Dr 0.0409 0.0246 Support	Sect Load Local Span <360.0 <360.0 >=180. <180.0 Ma Max 2.01 1.21 Load Co efl Locatio	ion used for th Va : Applied Vn/Omega : Combination tion of maximu # where maxi Span: 1 : D 0 Moment Value Mnx Mnx 6.63 6.63 0mbination 0n in Span 2.000 2.000	nis span Allowablu im on sp imum occ Only S /Omega 3.97 3.97	an curs Cb Rn 1.00 1.0 1.00 1.0 Max.	Summa n Va Max 10 0.39 10 0.24 1ax. "+" Defl L 0.0000 Upward Defl 0.0000 0.0000	0.025 : L5x3x1/4 0.3932 15.719 D Only 0.000 Span # 1 ry of Shear VnxVnx/0 26.25 26.25 26.25 Location in S 0.0 Location in S	k k ft Dmega 15.7 15.7 Span 100 Span

Steel Beam Project File: N-585 - New Haven CT.ec6 LIC# : KW-06014238, Build:20.22.12.28 PBA ENGINEERING, P.C. (c) ENERCALC INC 1983-2022 **DESCRIPTION:** Parapet Mount Angle **Vertical Reactions** Support notation : Far left is #" Values in KIPS Load Combination Support 1 Support 2 D Only 0.393 +0.60D 0.236 Steel Section Properties : L5x3x1/4 Depth 5.000 in Ξ = l xx 5.09 in^4 J = 0.044 in^4 S xx 1.51 in^3 Cw = 0.06 in^6 Leg Width = 3.000 in R xx 1.620 in = Ro = 2.430 in Thickness = 0.250 in Zx = 2.680 in^3 Area = 1.940 in^2 l yy = 1.410 in^4 Weight 6.600 plf = S yy = 0.600 in^3 Kdesign = 0.688 in R yy =0.853 in Zy = 1.050 in^3 Ycg 1.640 in = Qs = 0.804 Xcg = 0.648 in lz = 0.825 in^4 Хр = 0.194 in Sz = 0.491 in^3 Yp 1.120 in = Rz = 0.652 in Tan = 0.37 deg Eo = 0.194 in NENER-> -05 Moment (k-R) -10 -15 -2.1 0.19 0.39 059 0,79 0.99 1.19 139 159 179 1.59 Distance (A)

📕 D Only 📕 +0.500

Steel Beam Project File: N-585 - New Haven CT.ec6 LIC# : KW-06014238, Build:20.22.12.28 PBA ENGINEERING, P.C. (c) ENERCALC INC 1983-2022 DESCRIPTION: Parapet Mount Angle 0.40 030 0.20 Shear (k) 0.10 MEMBER->> 0.19 039 053 0,75 0.99 1.19 139 159 179 1.59 Distance (It) Donly 🛛 +0500 NEMBER-> -0.010 -0.020 Defl (in) -0.030 -0.040 0.17 034 051 83.0 0.85 1.02 1.19 137 154 171 1.83

Distance (R)

ANTENNA MOUNT ANALYSIS REPORT

FOR

SITE NAME: NEW HAVEN CT 54 MEADOW STREET NEW HAVEN, CT 06519

PREPARED FOR:

verizon[/]

WIRELESS COMMUNICATIONS FACILITY 20 ALEXANDER DRIVE WALLINGFORD, CT 06492 On Air Engineering, LLC 88 FOUNDRY POND ROAD COLD SPRING, NY 10516 ONAIR@OPTONLINE.NET 201-456-4624

12 KULICK ROAD FAIRFIELD, NEW JERSEY 07004-3363 PHONE: (973) 276-1700 FAX: (973) 276-9766 PROJECT NO. N-585 DATE: 3/22/2023

Paul C. Beck, P.E. Connecticut Professional Engineer License No: 12949

CONTENTS

- 1. -PURPOSE
- 2. -REFERENCES
- 3. -BUILDING CODES
- 4. EXISTING STRUCTURE & FIELD OBSERVATIONS
- 5. PROPOSED VERIZON ANTENNA/EQUIPMENT CONFIGURATION
- 6. -RESULTS
- 7. -CONCLUSION
- 8. APPENDIX A (CALCULATIONS)

1. PURPOSE

The purpose of this analysis is to determine whether the antenna support mounts located at 54 Meadow Street, New Haven, Ct 06519, are adequate to support the proposed modifications to Verizon's antennas and equipment.

2. <u>REFERENCES</u>

- 1. Verizon CD's by On Air Engineering, LLC, dated: October 19, 2022.
- 2. Photographs and antenna frame supports.
- 3. New Haven CT Structural Assessment Letter by On Air Engineering, LLC dated: July 13, 2020.

3. BUILDING CODES

- 1. 2021 International Building Code.
- 2. CT State Building Code, October 1, 2022
- 3. ASCE/SEI 7-16 (Minimum Design Loads for Buildings and Other Structures).

4. EXISTING STRUCTURE & FIELD OBSERVATIONS

Verizon has a 4-sector antenna configuration on the above referenced roof which are split into mounts on the central penthouse facade, main roof mechanical screen wall and main roof parapet wall. Verizon is proposing to add (4) integrated antennas to the sectors on the mechanical screen wall and parapet wall, which will be located above existing Verizon antennas on shared 2-1/2" nominal steel pipe masts. Details for these mounts are noted within the above referenced CD's. There are no other proposed changes to Verizon's existing antennas or accessory equipment. Verizon also proposes to remove (3) 850-CDMA antennas which are no longer in use.

5. PROPOSED VERIZON ANTENNA/EQUIPMENT CONFIGURATION (TYP. EA. SECTOR)

- a. (1) MT6407 Antenna.
- b. (1)28HZ Integrated Antenna/RRH.
- c. (2) MX10FR0660 Antennas on Dual Mounting brackets.
- d. (1) AWS/PCS Dual-Band RRH.
- e. (1) 700/850 Dual-Band RRH.
- f. (1) RRH CBRS.
- g. Raycap 6-ckt. OVP.

6. <u>RESULTS</u>

A mount analysis was completed on the 2 1/2" diameter steel pipes supporting the antennas/equipment. The mounts are modeled against the wind and gravity loads caused by the equipment. The max bending moment stressess for the parapet pipe masts are at 27% capacity which is adequate.

7. CONCLUSION

The pipe masts are structurally adequate and safe to support the forces applied to them.

This analysis is based on the information provided to our office and is assumed to correctly depict the existing condition. The existing roof, subsequent floors, and foundation are assumed to be installed properly and in a professional manner.

Should you have any questions concerning the items contained within this report, please do not hesitate to contact our office.

Sincerely, PBA ENGINEERING, P.C.

But

Paul C. Beck, P.E. Connecticut Professional Engineer License No: 12949

PCB/nf L:WP61/LTR\CELLULAR JOBS\N-585 Mount Analysis Report, Verizon - 54 Meadow St., New Haven, CT (3-22-23).docx APPENDIX (A)

2022 CT. STATE BUILDWICT CODE

	Hurricane-	Prone	IIOIBOV		Yes	Yes		Yes	Ves		Yes	Yes	Yes	Vec	Vec	T CO	Vac	ICS	I eS	I es	Yes	Yes	Yes	Yes	V SS	V	Vec	V	ICS	17	ICS	Yes	Y eS		Vac	Yes
Wind-Borne Debris	Kegion ¹	Dick Co.	NISK Cat. IV															TimeD	T JUC D							Tune B	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								Tvne B	Type A
Wind-Bon	Reg	Rick Cat III	Occup. I-2															Tvne R	22215							Tvne R	2221-								Type B	Type B
MCE Ground Accelerations	a utuits	S,	(g)	0.074	10.024	0.055	0.054	0.054	0.055	0.054	0.055	0.055	0.055	0.053	0.054	0.054	0.054	0.054	0.055	0.055	0.056	0.055	0.054	0.055	0.056	0.053	0.055	0.054	0.054	0.054	0.055	0.058	0.056	0.054	0.054	0.053
MCE (Accele	TTTTTTTTTT	Ss	(g)	A 104	401.0	0.189	0.167	0.177	0.200	0.184	0.186	0.210	0.196	0.190	0.190	0.178	0.207	0.206	0.190	0.186	0.205	0.203	0.194	0.209	0.209	0.202	0.208	0.198	0.182	0.197	0.195	+	\vdash	+		0.191
Ground		P_g	(Jsd)	35	00	00	3	35	30	40	35	30	20	30	30	35	30	30	30	35	30	30	35	30	30	30	30	30	35	30	-	\vdash				30
Wind		Risk Cat	IV.	105	105	101	101	101	C01	101	108	102	COT	108	108	101	108	108	105	105	105	105	101	105	105	105	105	108	101	105	105	105	101	101	105	108
Allowable Stress Design Wind Speeds, Vasd (much)		Risk	III	101	101	101	10	101	INI	16	201	201	001	108	CUI	1.6	105	105	101	101	101	101	101	101	101	101	101	105	67	101	101	101	97	97	101	108
able Stre Speed	(IIdmi)	Risk	Cat. II	67	93	80	9 8	50	00	60	10	10	101	INT	16	69	16	16	93	93	97	93	93	93	<u>93</u>	93	93	16	68	93	93	93	89	89	101	101
Allow		Risk	Cat. I	89	85	85	85	80	61 K	100	80	80	8	80	20	60	60	89	¢2	82	\$	85	85	85	00	50	60	20	20	00	60	\$	\$	85	60	2
ds, V		Risk Cat.	N	135	135	130	130	135	130	140	140	135	140	140	130	140	140	175	201	201	132	135	130	135	125	221	071	120	125	201	201	CCI	001	135	140	
Vind Spee		Kisk Cat.	Ш	130	130	125	125	130	125	135	135	135	140	135	125	135	135	130	130	130	001	120	001	130	130	130	135	175	130	130	120	175	105	021	140	
Basic Design Wind Speeds, $ u$ (mph)		Risk Cat II	Lat. 11	125	120	115	120	125	115	125	125	125	130	125	115	125	125	120	120	125	120	120	120	120	120	120	125	115	120	120	120	115	TIC	125)	E	
Basic		Risk Cat. I	115	CII	110	110	110	115	105	115	115	115	120	115	110	115	115	110	110	110	110	110	110	110	110	110	120	110	110	110	110	110	110	110	120	
Municinalita	ty uniter participating		Hamnton	TTO-TE1	TTAILIOID	Hartland	Harwinton	Hebron	Kent	Killingly	Killingworth	Lebanon	Ledyard	Lisbon	Litchfield	Lyme	Madison	Manchester	Mansfield	Marlborough	Meriden	Middlebury	Middlefield	Middletown	Milford	Monroe	Montville	Morris	Naugatuck	New Britain	New Canaan	New Fairfield	New Hartford	New Haven	New London	

65

MecaWind v2405

Software Developer: Meca Enterprises Inc., <u>www.meca.biz</u>, Copyright © 2020 Calculations Prepared by: Calculations Prepared For: True Client: Customer Address Project #: JobNo City, State, Location: Location Date: Mar 22, 2023 Description: Designer: Engineer Description File Location: T:\01-Telecomm-Clients\On Air Engineering (N)\Documents\N-585 - New Haven CT\Calcs\ N-585 - New Haven CT MecaWind_v2405.wnd Basic Wind Parameters Wind Load Standard = ASCE 7-16 Exposure Category = B Wind Design Speed = 125.0 mph Risk Category Structure Type = II= Other Other Structure Type = Solid Sign General Wind Settings Incl_LF = Include ASD Load Factor of 0.6 in Pressures = True DynType = Dynamic Type of Structure = Rigid = Altitude (Ground Elevation) above Sea Level Zg = 1200.000 ftBdist = Base Elevation of Structure = 158.000 ftMWFRSType = MWFRS Method Selected = Ch 29Topographic Factor per Fig 26.8-1 Topo = Topographic Feature = None Kzt = Topographic Factor = 1.000Solid Sign Inputs bolic bight inputsh: Height to Top of Sign= 6.000 ftB: Horizontal Width of Sign= 1.000 ftLr: Dimension of return corner= 1.000 fts: Vertical Height of Sign= 10.000 fte: Solidity Ratio= 1.000 t: Thickness of Sign= 0 ftAtt: Attached to Wall= FalseDbl: Double Faced & all sides enclosed= False IsCol: Is the Sign Supported on Columns= False Exposure Constants per Table 26.11-1:

 Alpha: Table 26.11-1 Const
 = 7.000

 At: Table 26.11-1 Const
 = 0.143

 Am: Table 26.11-1 Const
 = 0.250

 Zg: Table 26.11-1 Const = 1200.000 ftBt: Table 26.11-1 Const = 0.840 Table 26.11-1 Const Bm: = 0.450 C: Table 26.11-1 Const Eps: Table 26.11-1 Const = 0.300 = 0.333 Gust Factor Calculation: Gust Factor Category I Rigid Structures - Simplified Method = For Rigid Structures (Nat. Freq.>1 Hz) use 0.85 G1 = 0.85Gust Factor Category II Rigid Structures - Complete Analysis Zm = Max(0.6 * Ht, Zmin) = 30.000 ft Izm = Cc * (33 / Zm) ^ 0.167 = 0.305 = L * (Zm / 33) ^ Eps Lzm = 309.993В = Structure Width Normal to Wind = 1.000 ft= $(1 / (1 + 0.63 * ((B + Ht) / Lzm)^{0.63}))^{0.5}$ 0 = 0.972 G2 = 0.925*((1+0.7*Izm*3.4*Q)/(1+0.7*3.4*Izm)) = 0.909 Gust Factor Used in Analysis G = Lessor Of G1 Or G2 = 0.850Main Wind Force Resisting System (MWFRS) Calculations for Solid Sign per Ch 29: LF = Load Factor based upon ASD Design = 0.60 hs = Overall height of structure $= 6.000 \, \text{ft}$ h = Mean Roof Height above grade = 164.000 ft = 15 ft [4.572 m] < Z <Zg -->(2.01*(Z/zg)^(2/Alpha) {Table 26.10-1}= 1.138 Kh = Topographic Factor is 1 since no Topographic feature specified = 1.000 Kzt Kd = Wind Directionality Factor per Table 26.6-1 = 0.85 qh = (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF = 22.23 psf MWFRS Pressures on Solid Sign per Fig 29.3-1: = Reduction factor to account for openings: $(1-(1-e)^{1.5})$ R = 1.000 = Reduction factor for Case C since s/h > 0.8: (1.8-s/h) RC = 0.133 = Gross Area of Sign: B * s As = 10.00 sq ft B/s = Aspect Ratio: B / s = 0.100s/h = Clearance Ratio: s / h = 1.667

Cf e	= Net Force Coefficient for Case A and B per Fig 29.3-1 = Not Double Faced, Case B eccentricity is 0.2	= 1.700 = 0.2
Case A: F	Resultant force acts normal to face through geometric center = Design Wind force: $qh + G + Cf + As + R$	= 321 lb
Case B: Dx F	Resultant force acts normal to face at a distance from the geometr center toward the windward edge equal to e times the average width = Force Offset from Center toward windward edge: e * B = Design Wind force: qh * G * Cf * As * R	= 0.200 ft
Case C:	Since B/s < 2 then Case C need not be considered	= 321 lb

Steel Beam								Project	File: N-585	5 - New Haven	CT.ec6
IC# : KW-06014238			Mast	PE	BA ENGINE	ERING, P.C			(c) E	ENERCALC INC 1	983-202
ODE REFER		enna i ipe	s Mast								
alculations per		, IBC 2021	, ASCE	7-16							
oad Combination											
aterial Prope											
Analysis Metho	d Allowable Str	ength Desig	In				Fy:S	Steel Yield :	35.	0 ksi	
Beam Bracing : Bending Axis :		Unbraced					E: Mo	odulus :	29,000.	0 ksi	
Bending Axis .		enuing									
		D(0.0320)	W(0.0410)							D(0.08710) W(0	.1420)
*	1 . A . A . A . A . A . A . A . A . A .						<u>X</u>	and the second	in the second	6 5 8	
\bowtie		Pipe2-	1/2STD			(2	Pipe2-1/2	STD		
T		Span =	= 5.0 ft					Span = 3	0.#		
•									.0 1		
										1	
plied Loads											
Load(s) for S Point Loa	pan Number 1 d: D = 0.032	0, W = 0.0							ors will be a	applied for calcu	ulations
Load(s) for S Point Loa Load(s) for S	pan Number 1 d: D = 0.032	0, W = 0.0	0410 k @) 2.50 ft						applied for calc	ulations
Load(s) for S Point Loa Load(s) for S Point Loa	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY	0, W = 0.0 2 10, W = 0	0410 k @) 2.50 ft						-	
Load(s) for S Point Loa Load(s) for S Point Loa SIGN SUMM	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra	0, W = 0.0 2 10, W = 0	0410 k @	2.50 ft @ 3.0 ft 0.216 : 1	1 Ma	ximum SI	near Stress I	Ratio =		Design Ok 0.017	
Load(s) for S Point Loa Load(s) for S Point Loa SIGN SUMM, Maximum Bend Section used f	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span	0, W = 0.0 2 10, W = 0	0410 k @	2.50 ft 3.0 ft 0.216 : 1 1/2STD		ximum SI	near Stress I on used for th	Ratio =		Design Ok 0.017 Pipe2-1/2STD	: 1
Load(s) for S Point Loa Load(s) for S Point Loa SIGN SUMM Maximum Bend Section used f	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra	0, W = 0.0 10, W = 0	0410 k @	2.50 ft 3.0 ft 0.216 : 1 1/2STD 0.517 k	-ft	ximum SI Secti	near Stress F on used for th Va : Applied	Ratio = is span		Design Ok 0.017 Pipe2-1/2STD 0.1723	: 1 k
Load(s) for S Point Loa Load(s) for S Point Loa SIGN SUMM Maximum Bend Section used f	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo	0, W = 0.0 10, W = 0	0410 k @ .1420 k (Pipe2-'	2.50 ft 3.0 ft 0.216 : 1 1/2STD	-ft	iximum SI Secti	near Stress F on used for th Va : Applied Vn/Omega : <i>i</i> Combination	Ratio = is span Allowable		Design Ok 0.017 Pipe2-1/2STD	: 1 k k
Load(s) for S Point Loa Load(s) for S Point Loa SIGN SUMM, Maximum Bend Section used f Ma Mr Load Combina	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo tion	0, W = 0.0 2 10, W = 0 atio =	0410 k @ .1420 k (Pipe2-' +E	2.50 ft 3.0 ft 0.216 : 1/2STD 0.517 k 2.393 k 0+0.60W	-ft	Load	near Stress F on used for th Va : Applied Vn/Omega : <i>A</i> Combination on of maximu	Ratio = is span Allowable m on span		Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000	: 1 k k
Load(s) for S Point Loa Load(s) for S Point Loa SIGN SUMM. Maximum Bend Section used f Ma Mr Load Combina Span # where	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo ttion maximum occu	0, W = 0.0 2 10, W = 0 atio =	0410 k @ .1420 k (Pipe2-' +E	2.50 ft 3.0 ft 0.216 : 1/2STD 0.517 k 2.393 k	-ft	Load	near Stress F on used for th Va : Applied Vn/Omega : <i>i</i> Combination	Ratio = is span Allowable m on span		Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W	: 1 k k
Load(s) for S Point Loa Load(s) for S Point Loa SIGN SUMM, Maximum Benc Section used f Ma Load Combina Span # where Maximum Defle	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo tion maximum occu	0, W = 0.0 2 10, W = 0 atio = wable rs	0410 k @ .1420 k (Pipe2-' +E	2.50 ft 3.0 ft 0.216 : 1 0.517 k 2.393 k 0+0.60W Span # 1	-ft -ft	ximum Sł Secti Load Locati Span	near Stress F on used for th Va : Applied Vn/Omega : <i>i</i> Combination on of maximu # where maxin	Ratio = is span Allowable m on span mum occurs		Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000	: 1 k k
Load(s) for S Point Loa Load(s) for S Point Loa SIGN SUMM Maximum Benc Section used f Ma Load Combina Span # where Maximum Defle Max Downward Max Upward T	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo tho maximum occu ection d Transient Deflect	0, W = 0.0 2 10, W = 0 atio = wable rs lection tion	0410 k @ .1420 k (Pipe2-' +E 	2.50 ft 3.0 ft 0.216 : 1/2STD 0.517 k 2.393 k 0+0.60W	-ft -ft = 545	Load	near Stress F on used for th Va : Applied Vn/Omega : <i>A</i> Combination on of maximu	Ratio = is span Allowable m on span mum occurs Only		Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000	: 1 k k
Load(s) for S Point Loa Load(s) for S Point Loa Sign SUMM Maximum Bend Section used f Ma Load Combina Span # where Maximum Defle Max Downward Max Upward T Max Downward	pan Number 1 d : $D = 0.032$ pan Number 2 d : $D = 0.087$ ding Stress Rate for this span a : Applied n / Omega : Allo this maximum occur ection d Transient Deflection d Total Deflection	0, W = 0.0 2 10, W = 0 atio = wable rs lection tion	0410 k @ .1420 k (Pipe2- +E 0.132 -0.024 0.159	 2.50 ft 3.0 ft 0.216 : 1 1/2STD 0.517 k 2.393 k 0+0.60W Span # 1 in Ratio = in Ratio = in Ratio = 	-ft -ft 545 2,501 453	Load Locati Span >=360. >=360. >=180.	near Stress F on used for th Va : Applied Vn/Omega : <i>A</i> Combination on of maximu # where maxim \$pan: 2 : W Span: 2 : W Span: 2 : +D	Ratio = is span Allowable m on span mum occurs Only Only +0.60W		Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000	: 1 k k
Load(s) for S Point Loa Load(s) for S Point Loa Sign SUMM Maximum Benc Section used f Max Coad Combina Span # where Maximum Defle Max Downward Max Upward T Max Downward Max Upward T	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo tition maximum occu ection d Transient Deflection otal Deflection	0, W = 0.0 10, W = 0 atio = wable rs lection tion	0410 k @ .1420 k (Pipe2- +E 0.132 -0.024 0.159 -0.028	 2.50 ft 3.0 ft 0.216 : 1 1/2STD 0.517 k 2.393 k 0+0.60W Span # 1 in Ratio = in Ratio = in Ratio = in Ratio = 	-ft -ft 2,501 453 2112	Load Load Locati Span >=360. >=360.	near Stress F on used for th Va : Applied Vn/Omega : / Combination on of maximu # where maxim Span: 2 : W (Span: 2 : W (Ratio = is span Allowable m on span mum occurs Only Only +0.60W		Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000	: 1 k k
Load(s) for S Point Loa Load(s) for S Point Loa SIGN SUMM. Maximum Benc Section used f Ma Load Combina Span # where Max Downward Max Downward Max Downward Max Upward T Max Upward T Max Upward T	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo tition maximum occu ection d Transient Deflection otal Deflection	0, W = 0.0 10, W = 0 atio = wable rs lection tion s for Loa	0410 k @ .1420 k (Pipe2- +E 0.132 -0.024 0.159 -0.028 d Coml	 2.50 ft 3.0 ft 0.216 : 1 1/2STD 0.517 k 2.393 k 0+0.60W Span # 1 in Ratio = in Ratio = in Ratio = in Ratio = 	-ft -ft = 545 = 2,501 = 453 = 2112 s	ximum SI Secti Load Locati Span >=360. >=180. >=180.	near Stress F on used for th Va : Applied Vn/Omega : / Combination on of maximu # where maxim # where maxim Span: 2 : W Span: 2 : +D Span: 2 : +D	Ratio = is span Allowable m on span mum occurs Only +0.60W +0.60W		Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000	: 1 k k
Load(s) for S Point Loa Load(s) for S Point Loa SIGN SUMM. Maximum Benc Section used f Ma Section used f Ma Load Combina Span # where Max Downward Max Downward T Max Downward T Max Downward T Max Downward T Max Downward T	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo tion maximum occu ection d Transient Deflection otal Deflection es & Stresse	0, W = 0.0 10, W = 0 atio = wable rs lection tion on es for Loa Max Stress	0410 k @ .1420 k (Pipe2- +E 0.132 -0.024 0.159 -0.028 d Coml s Ratios	2.50 ft 3.0 ft 0.216 : 1/2STD 0.517 k 2.393 k 0+0.60W Span # 1 in Ratio = in Ratio = in Ratio = in Ratio = bination	-ft -ft = 2,501 = 453 = 2112 s Sur	ximum SI Secti Load Locati Span >=360. >=180. >=180.	near Stress F on used for th Va : Applied Vn/Omega : / Combination on of maximu # where maxim \$pan: 2 : W (Span: 2 : +D Span: 2 : +D Span: 2 : +D	Ratio = is span Allowable m on span mum occurs Only Only +0.60W +0.60W	F	Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000 Span # 1	t 1 k k ft
Load(s) for S Point Loa Load(s) for S Point Loa Sign SUMM. Maximum Benc Section used f Ma Section used f Ma Load Combina Span # where Max Downward Max Downward M	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo tion maximum occu ection d Transient Deflection otal Deflection es & Stresse	0, W = 0.0 10, W = 0 atio = wable rs lection tion s for Loa	0410 k @ .1420 k (Pipe2- +E 0.132 -0.024 0.159 -0.028 d Coml s Ratios	 2.50 ft 3.0 ft 0.216 : 1 1/2STD 0.517 k 2.393 k 0+0.60W Span # 1 in Ratio = in Ratio = in Ratio = in Ratio = 	-ft -ft = 545 = 2,501 = 453 = 2112 s	ximum SI Secti Load Locati Span >=360. >=180. >=180.	near Stress F on used for th Va : Applied Vn/Omega : / Combination on of maximu # where maxim \$pan: 2 : W (Span: 2 : +D Span: 2 : +D Span: 2 : +D	Ratio = is span Allowable m on span mum occurs Only Only +0.60W +0.60W	F	Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000 Span # 1	t 1 k k ft
Load(s) for S Point Loa Load(s) for S Point Loa Sign SUMM. Maximum Benc Section used f Ma Section used f Ma Load Combina Span # where Max Downward Max Downward T Max Downward T Max Downward T Max Downward T Max Downward T	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo tion maximum occu ection d Transient Deflection otal Deflection es & Stresse h Span #	0, W = 0.0 10, W = 0 atio = wable rs lection tion on es for Loa Max Stress M	0410 k @ .1420 k (Pipe2- +E 0.132 -0.024 0.159 -0.028 d Coml s Ratios V i	2.50 ft 3.0 ft 0.216 : 1/2STD 0.517 k 2.393 k 0+0.60W Span # 1 in Ratio = in Ratio = in Ratio = in Ratio = bination	-ft -ft = 2,501 = 453 = 2112 S Sur Mmax -	Load Locati Span >=360. >=180. >=180. Nmary of M Ma Max	near Stress F on used for th Va : Applied Vn/Omega : / Combination on of maximu # where maxim \$pan: 2 : W (Span: 2 : +D Span: 2 : +D Span: 2 : +D Ioment Values Mnx Mnx/	Ratio = is span Allowable m on span mum occurs Only Only +0.60W +0.60W s Omega Cb	F Su Rm Va M	Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000 Span # 1	t 1 k k ft /Omega
Load(s) for Sp Point Loa Load(s) for Sp Point Loa Sign SUMM. Maximum Benc Section used f Max Span # where Maximum Defle Max Downward Max Upward T Max Upward T	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo tion maximum occu ection d Transient Deflection d Transient Deflection es & Stresse h Span # ft 1	0, W = 0.0 10, W = 0 atio = wable rs lection tion on es for Loa Max Stress	0410 k @ .1420 k (Pipe2- +E 0.132 -0.024 0.159 -0.028 d Coml s Ratios	2.50 ft 3.0 ft 0.216 : 1/2STD 0.517 k 2.393 k 0+0.60W Span # 1 in Ratio = in Ratio = in Ratio = in Ratio = bination	-ft -ft = 2,501 = 453 = 2112 s Sur	ximum SI Secti Locati Span >=360. >=180. >=180. mmary of M Ma Max 0.26	hear Stress F on used for th Va : Applied Vn/Omega : / Combination on of maximu # where maxim \$pan: 2 : W (Span: 2 : +D Span: 2 : +D Span: 2 : +D Span: 2 : +D Mnx Mnx/ 4.00	Ratio = is span Allowable m on span mum occurs Only +0.60W +0.60W s Omega Cb 2.39 1.94	F F Rm Va M 1.00	Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000 Span # 1 mmary of Shea Max VnxVnx 0.09 16.91	t 1 k k ft /Omega 10.
Load(s) for Sp Point Loa Load(s) for Sp Point Loa Sign SUMM. Maximum Bend Section used f Max Downward Max Downward Max Upward T Max Downward Max Upward T	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Ra for this span a : Applied n / Omega : Allo tion maximum occu ection d Transient Deflection otal Deflection es & Stresse h Span # ft 1 ft 2	0, W = 0.0 10, W = 0 atio = wable rs lection tion s for Loa Max Stress M 0.109 0.109 0.109	0410 k @ .1420 k @ Pipe2- +E 0.132 -0.024 0.159 -0.028 d Coml s Ratios V T 0.009 0.009	2.50 ft 3.0 ft 0.216 : 1/2STD 0.517 k 2.393 k 0+0.60W Span # 1 in Ratio = in Ratio = in Ratio = in Ratio = bination	-ft -ft 2,501 2,501 453 2112 S <u>Sur</u> Mmax - -0.26 -0.26	ximum SI Secti Load Locati Span >=360. >=180. >=180. mmary of M Ma Max 0.26 0.26	near Stress F on used for th Va : Applied Vn/Omega : / Combination on of maximu # where maxim \$pan: 2 : W (Span: 2 : +D Span: 2 : +D Span: 2 : +D Ioment Values Mnx Mnx/	Ratio = is span Allowable m on span mum occurs Only Only +0.60W +0.60W s Omega Cb	F F Rm Va M 1.00	Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000 Span # 1	t 1 k k ft /Omeg
Load(s) for Sp Point Loa Load(s) for Sp Point Loa Sign SUMM. Maximum Benc Section used f Max Span # where Maximum Defle Max Downward Max Upward T Max Upward T	pan Number 1 d : D = 0.032 pan Number 2 d : D = 0.087 ARY ding Stress Rator this span a : Applied n / Omega : Allo thion maximum occu ection d Transient Deflection otal Deflection es & Stresse h Span # ft 1 ft 2 ft 1	0, W = 0.0 10, W = 0 atio = wable rs lection tion sn s for Loa <u>Max Stress</u> M 0.109	0410 k @ .1420 k (Pipe2- +E 0.132 -0.024 0.159 -0.028 d Coml s Ratios V f 0.009	2.50 ft 3.0 ft 0.216 : 1/2STD 0.517 k 2.393 k 0+0.60W Span # 1 in Ratio = in Ratio = in Ratio = in Ratio = bination	-ft -ft = 545 = 2,501 = 453 = 2112 s <u>Sur</u> <u>Mmax</u> - -0.26	Load Locati Span >=360. >=180. >=180. mmary of M Ma Max 0.26	hear Stress F on used for th Va : Applied Vn/Omega : / Combination on of maximu # where maxim \$pan: 2 : W (Span: 2 : +D Span: 2 : +D Span: 2 : +D Span: 2 : +D Mnx Mnx/ 4.00	Ratio = is span Allowable m on span mum occurs Only +0.60W +0.60W s Omega Cb 2.39 1.94	F F Rm Va M 1.00 1.00	Design Ok 0.017 Pipe2-1/2STD 0.1723 10.123 +D+0.60W 5.000 Span # 1 mmary of Shea Max VnxVnx 0.09 16.91	t 1 k k ft /Omeg 10

-0.45

-0.45

-0.41

-0.41

-0.16

-0.16

0.45

0.45

0.41

0.41

0.16

0.16

4.00

4.00

4.00

4.00

4.00

4.00

2.39 1.92 1.00

2.39 1.00 1.00

2.39 1.90 1.00

2.39 1.00 1.00

2.39 1.94 1.00

2.39 1.00 1.00

+D+0.450W

+0.60D+0.60W

+0.60D

Dsgn. L = 5.00 ft

Dsgn. L = 3.00 ft

Dsgn. L = 5.00 ft

Dsgn. L = 3.00 ft

Dsgn. L = 5.00 ft

Dsgn. L = 3.00 ft

1

2

1

2

1

2

0.189

0.189

0.172

0.172

0.066

0.066

0.015

0.015

0.014

0.014

0.005

0.005

0.15

0.15

0.14

0.14

0.05

0.05

16.91

16.91

16.91

16.91

16.91

16.91

10.12

10.12

10.12

10.12

10.12

10.12

Steel Beam Project File: N-585 - New Haven CT.ec6 LIC# : KW-06014238, Build:20.22.12.28 PBA ENGINEERING, P.C. (c) ENERCALC INC 1983-2022 DESCRIPTION: New Antenna Pipe Mast (c) ENERCALC INC 1983-2022

Overall Maximum Deflections

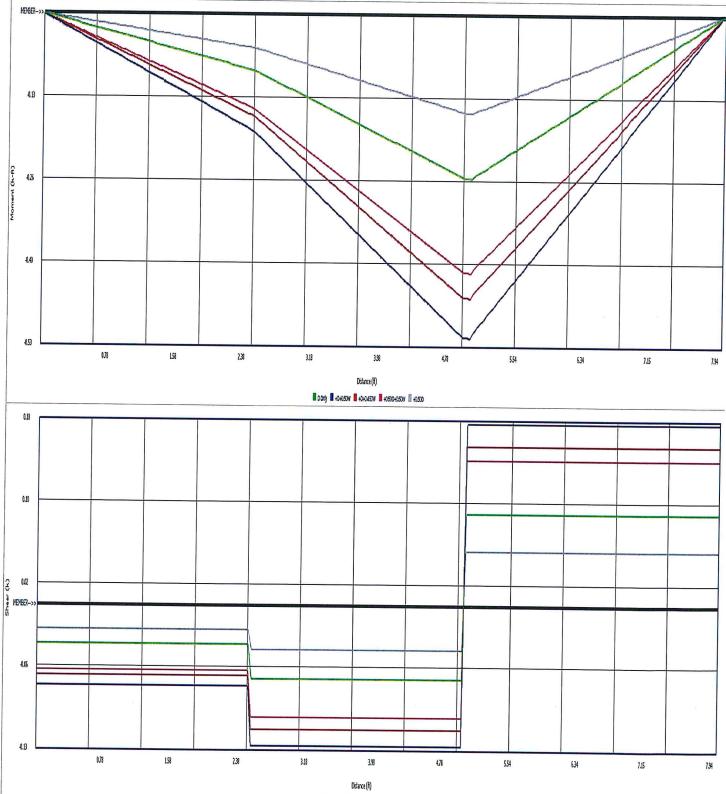
Load Combination	1	Span	Max. "-" Defl	Location in S	Span L	oad Combination		Max. "+" Defl	Location in Span
· D · 0 0014/		1	0.0000	0.0		+D+0.60W		-0.0284	3.000
+D+0.60W		2	0.1588	3.0	000			0.0000	3.000
Maximum Defle		for Load Cor	nbinations						
Load Combination	[Span	Max. Downw	ward Defl	Location in Span	Span	Max. Upward Defl	Location in Spa
D Only			2		.0796	3.000	1	-0.0140	3.020
+D+0.60W			2	0.	1588	3.000	1	-0.0284	3.000
+D+0.450W			2	0.	1390	3.000	1	-0.0248	3.000
+0.60D+0.60W			2	0.	1270	3.000	1	-0.0228	3.000
+0.60D			2	0.	0478	3.000	1	-0.0084	3.020
W Only			2		1320	3.000	1	-0.0240	2.980
Vertical Reactio	ns			s	Support not	ation : Far left is # [.]		Values in KIPS	2.300
Load Combination			Support	1 Support 2					
Max Upward from	all Load	Conditions	5-0 BO • C • BO • C • BO	0.304		-			
Max Upward from	Load Co	mbinations		0.304					
Max Upward from	Load Ca	ses		0.248					
Max Downward fr	om all Lo	ad Conditions (F	lesi: -0.07						
Max Downward fr	om Load	Combinations (F	Resi: -0.07	-					
Max Downward fr	om Load	Cases (Resisting	Ur -0.06						
D Only		 O 10 - 550 (2008) 	-0.03						
+D+0.60W			-0.07						
+D+0.450W			-0.06						
+0.60D+0.60W			-0.06						
+0.60D			-0.02						
W Only			-0.06						
Steel Section Pr	opertie	s : Pipe2-1							
Depth	=	2.880 in	l xx	E	1 4 5	in^4	J	= 2	200 :- 14
			S xx			in^3	5	– Z.	890 in^4
Diameter	=	2.880 in	Rxx	=	0.952	05.00 70			
Wall Thick	_	0.203 in	Zx	=					
Area	=	1.610 in^2			1.370				
Weight	=		Гуу	=	1.450				
weight	-	5.800 plf	S yy	=	1.010				
			R yy	=	0.952	in			

Ycg

1.440 in

=

PBA ENGINEERING, P.C.

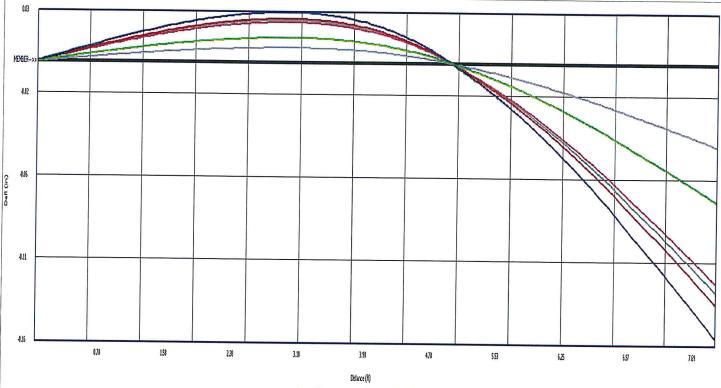

Steel Beam

LIC# : KW-06014238, Build:20.22.12.28

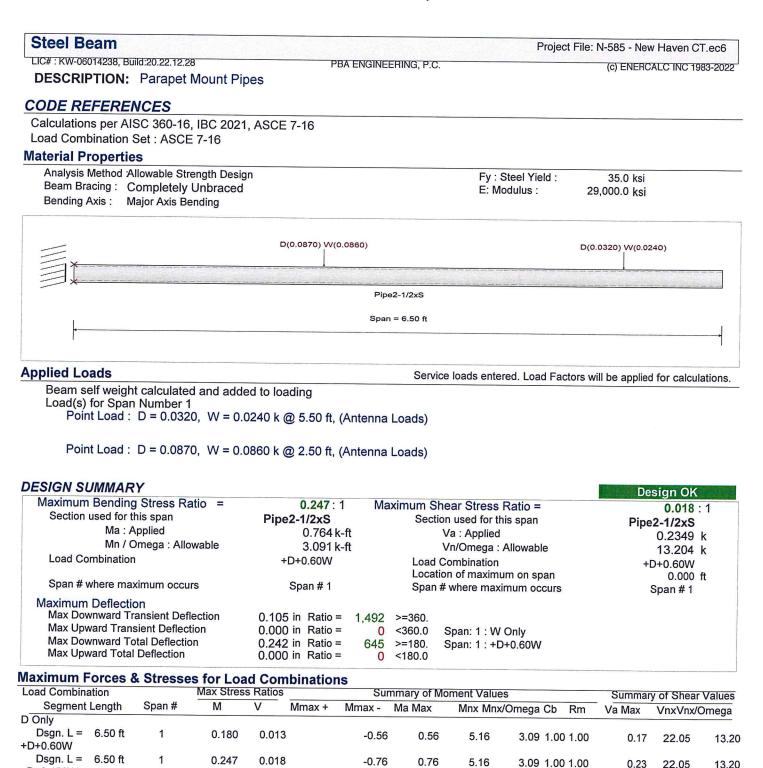
Project File: N-585 - New Haven CT.ec6

(c) ENERCALC INC 1983-2022

DESCRIPTION: New Antenna Pipe Mast


📕 D Orty 📕 +D+0550% 📕 +D+045578 📕 +0550+05508 📓 +0550

Steel Beam


LIC# : KW-06014238, Build:20.22.12.28 PBA ENGINEERING, P.C.

Project File: N-585 - New Haven CT.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: New Antenna Pipe Mast

Dorly # +0+050W # +0+0453W # +0500+055W # +0550 # worty

Maximum Deflections f	or Load Combination				0.0000	0.000
Load Combination	Span	Max. Downward Defl	Location in Span	Span	Max. Upward Defl	Location in Span
D Only	1	0.1791	6.500		0.0000	0.000
+D+0.60W	1	0.2418	6.500		0.0000	0.000

0 000

-0.71

-0.54

-0.33

0.71

0.54

0.33

Load Combination

5.16

5.16

5.16

3.09 1.00 1.00

3.09 1.00 1.00

3.09 1.00 1.00

0.22

0.17

0.10

Max. "+" Defl Location in Span

22.05

22.05

22.05

+D+0.450W

+0.60D

+0.60D+0.60W Dsgn. L = 6.50 ft

Dsgn. L = 6.50 ft

Dsgn. L = 6.50 ft

Load Combination

+D+0 60\M

Overall Maximum Deflections

1

1

0.230

0.175

0.108

Span

0.017

0.013

0.008

0.0440

Max. "-" Defl Location in Span

13.20

13.20

13 20

13.20

Support notation : Far left is #'

Values in KIPS

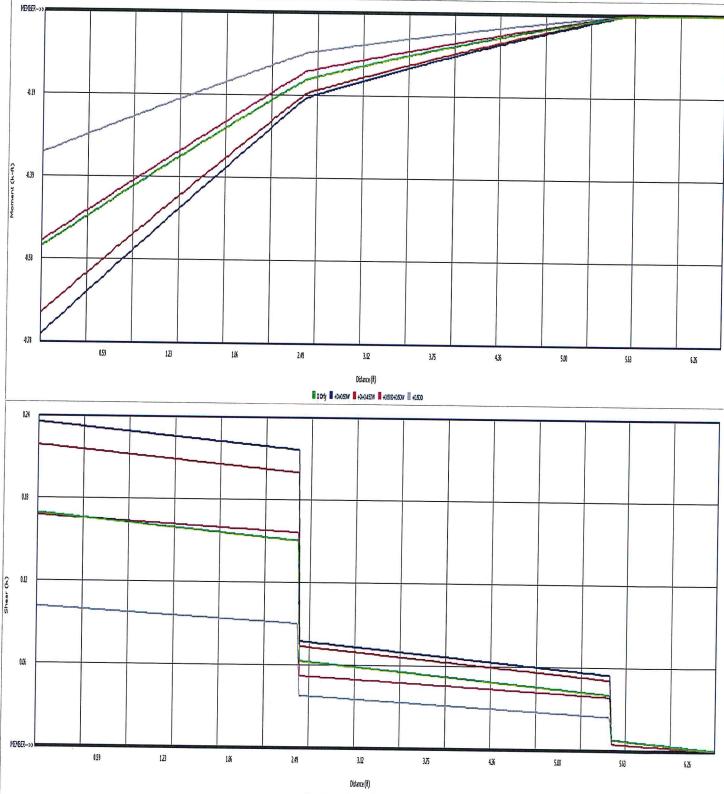
Steel Beam				Proje	ect File: N-585 - New	v Haven CT.ec6
DESCRIPTION: Parapet M	lount Pipes	PBA ENGINEERIN	G, P.C.		and the second second second	ALC INC 1983-2022
aximum Deflections for Lo						
Load Combination	Span	Max. Downward Defl	Location in Span	Span	Max Unward Defl	Location in Spar
+D+0.450W	Span 1	Max. Downward Defl 0.2261	Location in Span 6.500	Span	Max. Upward Defl 0.0000	Location in Spar 0.000
	Span 1 1 1			Span		

Vertical Reactions

and the second se				10 A3		10 //	valueo III	
Load Combination			Support 1	Support 2				
Max Upward from	all Load	Conditions	0.235					
Max Upward from	Load Co	ombinations	0.235					
Max Upward from			0.169					
D Only			0.169					
+D+0.60W			0.235					
+D+0.450W			0.218					
+0.60D+0.60W			0.167					
+0.60D			0.101					
W Only			0.101					
Steel Section Pre	opertie	s : Pipe2-1/2						
Depth	=	2.880 in	I xx	Ξ	1.83 in^4	J	=	3.660 in^4
			S xx		1.27 in^3	2=2		0.000 11 4
Diameter	=	2.880 in	R xx	=	0.930 in			
Wall Thick	=	0.276 in	Zx	=	1.770 in^3			
Area	=	2.100 in^2	l yy	=	1.830 in^4			
Weight	=	7.670 plf	S уу	=	1.270 in^3			
			Ryy	=	0.930 in			

Ycg = 1.4

1.440 in

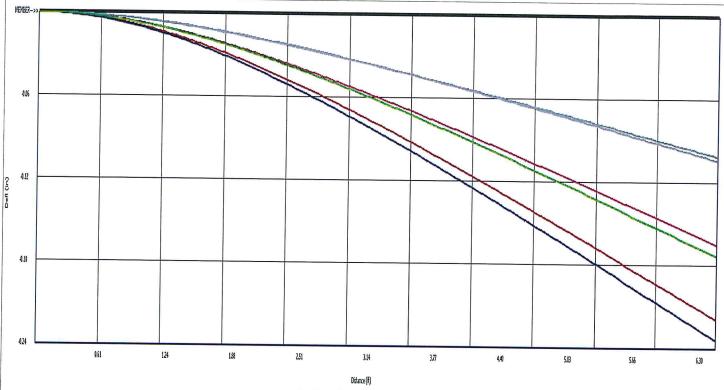

Steel Beam

LIC# : KW-06014238, Build:20.22.12.28

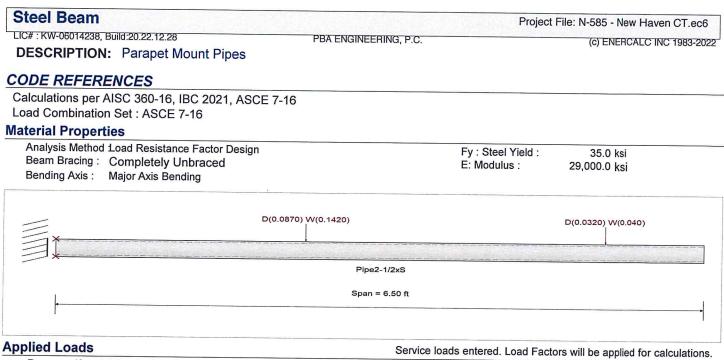
PBA ENGINEERING, P.C.

Project File: N-585 - New Haven CT.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: Parapet Mount Pipes


Steel Beam

LIC# : KW-06014238, Build:20.22.12.28


PBA ENGINEERING, P.C.

Project File: N-585 - New Haven CT.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: Parapet Mount Pipes

🖥 D Crity 📕 +0+0.60W 📕 +0+0.450N 📕 +0.600+0.65W 📓 +0.500 📗 W Crity

Beam self weight calculated and added to loading

Load(s) for Span Number 1

Point Load : D = 0.0320, W = 0.040 k @ 5.50 ft, (Antenna Loads)

Point Load : D = 0.0870, W = 0.1420 k @ 2.50 ft, (Antenna Loads)

DESIGN SUMMARY

			Design OK
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable Load Combination	0.267 : 1 Pipe2-1/2xS 1.242 k-ft 4.646 k-ft +1.20D+W	Maximum Shear Stress Ratio = Section used for this span Vu : Applied Vn * Phi : Allowable	0.019 : 1 Pipe2-1/2xS 0.3846 k 19.845 k
Span # where maximum occurs Maximum Deflection	+1.20D+W Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	+1.20D+W 0.000 ft Span # 1
Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.173 in Ratio = 0.000 in Ratio = 0.283 in Ratio = 0.000 in Ratio =	899 >=360. 0 <360.0 Span: 1 : W Only 551 >=180. Span: 1 : +D+0.60W 0 <180.0	

Maximum Forces & Stresses for Load Combinations

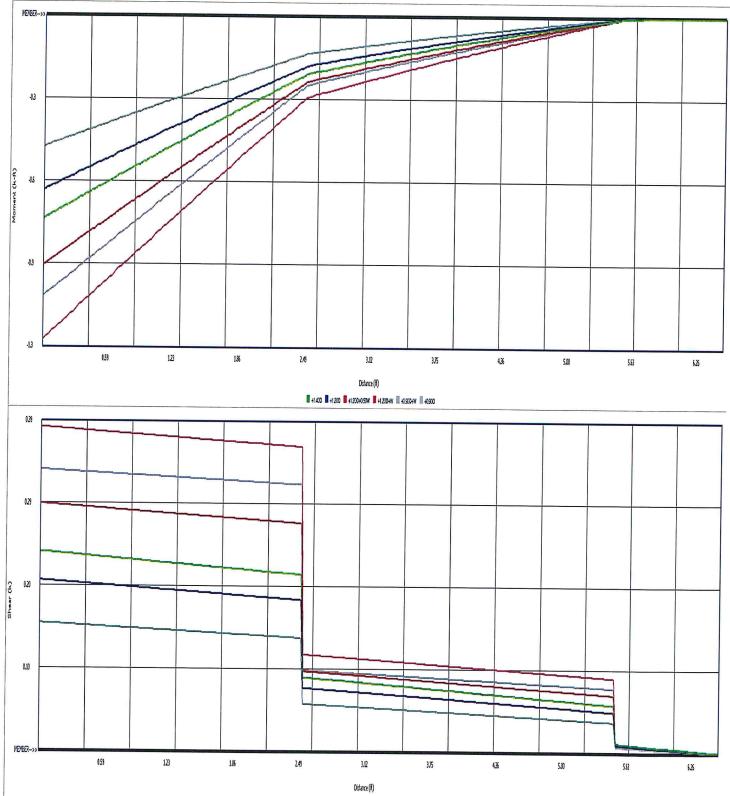
Load Combina	ation		Max Stres	s Ratios		Sur	nmary of Mo	ment Va	lues			Summar	v of She	ar Values
Segment	Length	Span #	М	V m	ax Mu +	max Mu -	Mu Max	Mnx	Phi*Mnx	Cb	Rm	VuMax	Vnx	Phi*Vnx
+1.40D												- united	VIIX	
Dsgn. L = +1.20D	6.50 ft	1	0.167	0.012		-0.78	0.78	5.16	4.65	1.00	1.00	0.24	22.05	19.8
Dsgn. L = +1.20D+0.50V		1	0.143	0.010		-0.67	0.67	5.16	4.65	1.00	1.00	0.20	22.05	19.8
Dsgn. L = +1.20D+W	6.50 ft	1	0.205	0.015		-0.95	0.95	5.16	4.65	1.00	1.00	0.29	22.05	19.8
Dsgn. L = +0.90D+W	6.50 ft	1	0.267	0.019		-1.24	1.24	5.16	4.65	1.00	1.00	0.38	22.05	19.85
Dsgn. L = +0.90D	6.50 ft	1	0.231	0.017		-1.07	1.07	5.16	4.65	1.00	1.00	0.33	22.05	19.85
Dsgn. L =	6.50 ft	1	0.108	0.008		-0.50	0.50	5.16	4.65	1.00	1.00	0.15	22.05	19.85
Overall Max	kimum	Deflectio	ns											
Load Combin	nation		Span Ma	ax. "-" Def	Location	n in Span	Load Com	bination			Max.	"+" Defl Lo	ocation in	Span
+D+0.60W			1	0.2832	2	6.500						0.0000		0.000

ad Conditions Combinations Cases	binations Span 1 1 1 1 1 1 1	S Max. Down 0 0 0 0 0 0 0 0 0 5 1 Support 2 78 78	GINEERING, F ward Defl Lo .1791 .2832 .2572 .2116 .1075 .1735 Support notati	6.500 6.500 6.500 6.500 6.500 6.500 6.500		in Max. Upwai 0.0 0.0 0.0 0.0 0.0 0.0	rd Defl 2000 2000 2000 2000 2000 2000	ALC INC 1983-202 Location in Spa 0.000 0.000 0.000 0.000 0.000 0.000
s for Load Com	binations Span 1 1 1 1 1 1 1 5 upport 0.27 0.27	Max. Down 0 0 0 0 0 0 0 0 5 1 5 8 78	.1791 .2832 .2572 .2116 .1075 .1735 Support notati	6.500 6.500 6.500 6.500 6.500 6.500		0.0 0.0 0.0 0.0 0.0 0.0	0000 0000 0000 0000 0000 0000	0.000 0.000 0.000 0.000 0.000
ad Conditions Combinations	Span 1 1 1 1 1 1 Support 0.27 0.27	Max. Down 0 0 0 0 0 0 0 0 5 1 5 8 78	.1791 .2832 .2572 .2116 .1075 .1735 Support notati	6.500 6.500 6.500 6.500 6.500 6.500		0.0 0.0 0.0 0.0 0.0 0.0	0000 0000 0000 0000 0000 0000	0.000 0.000 0.000 0.000 0.000
Combinations	1 1 1 1 1 1 5upport 0.27 0.27	0 0 0 0 0 5 1 Support 2 78 78	.1791 .2832 .2572 .2116 .1075 .1735 Support notati	6.500 6.500 6.500 6.500 6.500 6.500		0.0 0.0 0.0 0.0 0.0 0.0	0000 0000 0000 0000 0000 0000	0.000 0.000 0.000 0.000 0.000
Combinations	0.27 0.27	0 0 0 0 5 1 Support 2 78 78	.2832 .2572 .2116 .1075 .1735 Support notati	6.500 6.500 6.500 6.500 6.500	is # [.]	0.0 0.0 0.0 0.0 0.0 0.0	0000 0000 0000 0000 0000 0000	0.000 0.000 0.000 0.000 0.000
Combinations	0.27 0.27	0 0 0 1 Support 2 78 78	.2572 .2116 .1075 .1735 Support notati	6.500 6.500 6.500 6.500	is # [.]	0.0 0.0 0.0 0.0 0.0	0000 0000 0000 0000 0000	0.000 0.000 0.000 0.000
Combinations	0.27 0.27	0 0 0 1 Support 2 78 78	.2116 .1075 .1735 Support notati	6.500 6.500 6.500 6.500	is # [.]	0.0 0.0 0.0 0.0	0000 0000 0000 0000	0.000 0.000 0.000
Combinations	0.27 0.27	0 0 1 Support 2 78 78	.1075 .1735 Support notati	6.500 6.500 6.500	is # [.]	0.0 0.0 0.0	0000 0000 0000	0.000 0.000
Combinations	0.27 0.27	0 0 1 Support 2 78 78	.1075 .1735 Support notati	6.500 6.500	is # [.]	0.0 0.0	0000	0.000
Combinations	0.27 0.27	0 5 1 Support 2 78 78	.1735 Support notati	6.500	is #'	0.0	0000	
Combinations	0.27 0.27	1 Support 2 78 78		ion : Far left	is # [.]			0.000
Combinations	0.27 0.27	1 Support 2 78 78						
Combinations	0.27 0.27	78 78						
Combinations Cases	0.27	'8						
Cases								
		2						
	0.16							
	0.27							
		-						
ies : Pipe2-1/2	2xS							
2.880 in	l xx	E	1.83 ir	n^4		_	36	60 in^4
	S xx			12 7 St.	0		5.0	00 111 4
2.880 in	R xx	=						
0.276 in								
and the first								
	2.880 in	0.25 0.21 0.10 0.18 es: Pipe2-1/2xS 2.880 in I xx S xx 2.880 in R xx 0.276 in Zx 2.100 in^2 I yy	0.251 0.211 0.101 0.182 es: Pipe2-1/2xS 2.880 in I xx ≡ S xx 2.880 in R xx = 0.276 in Zx = 2.100 in^2 I yy = 7.670 plf S yy =	$\begin{array}{c} 0.251\\ 0.211\\ 0.101\\ 0.182 \end{array}$ es : Pipe2-1/2xS $\begin{array}{c} 2.880 \text{ in } & I \text{ xx } & \Xi & 1.83 \text{ i} \\ & S \text{ xx } & 1.27 \text{ i} \\ 2.880 \text{ in } & R \text{ xx } & = & 0.930 \text{ i} \\ 0.276 \text{ in } & Zx & = & 1.770 \text{ i} \\ 2.100 \text{ in}^2 & I \text{ yy } & = & 1.830 \text{ i} \\ 7.670 \text{ plf } & S \text{ yy } & = & 1.270 \text{ i} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.251 \\ 0.211 \\ 0.101 \\ 0.182 \end{array}$ es: Pipe2-1/2xS 2.880 in I xx Image: 1.83 in^4 display dis	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Ycg

1.440 in

=

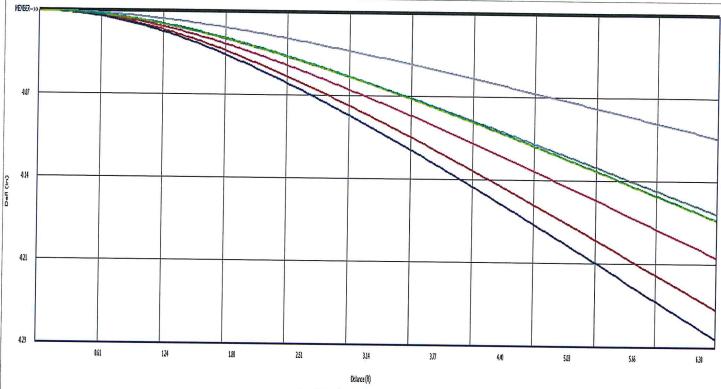

Steel Beam

LIC# : KW-06014238, Build:20.22.12.28

PBA ENGINEERING, P.C.

Project File: N-585 - New Haven CT.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: Parapet Mount Pipes


Steel Beam

LIC# : KW-06014238, Build:20.22.12.28

PBA ENGINEERING, P.C.

Project File: N-585 - New Haven CT.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: Parapet Mount Pipes

🖥 DONY 📕 +0+050W 📕 +0+0450W 📕 +0500+050W 📓 +0500 📗 WONY

Hilti PROFIS Engineeri	ng 3.0.70			
www.hilti.com Company: Address: Phone I Fax: Design: Fastening point:	 N-545_Masonry - Jun 12, 2020	Page: Specifier: E-Mail: Date:		6/21/2021
Specifier's comments:				
1 Input data			Concerna A.	
Anchor type and diameter:	HY 270 + threaded rod 5.8 1/2, H	IT-SC 18x50		•
Item number:	385422 HAS 5.8 1/2"x3-1/8" (elem 270 (adhesive) / 360485 HIT-SC 1	ent) / 2194247 HIT-HY 8x50 (sieve sleeve)	(Bassel Bassel).	
Effective embedment depth:	h _{er} = 2.000 in.	()		
Material:	5.8			
Evaluation Service Report:	ESR-4143			
Issued I Valid:	3/1/2021 1/1/2022			
Proof:	Design Method ASD Masonry			

 $I_x \times I_y \times t = 8.000$ in. x 8.000 in. x 0.375 in.; (Recommended plate thickness: not calculated)

 $e_b = 0.000$ in. (no stand-off); t = 0.375 in.

Joints: vertical: 0.375 in.; horizontal: 0.375 in.

Base material temperature: 68 °F

Hollow CMU, L x W x H: 16.000 in. x 8.000 in. x 8.000 in.;

no profile

no

Face installation

^R - The anchor calculation is based on a rigid anchor plate assumption. Geometry [in.]

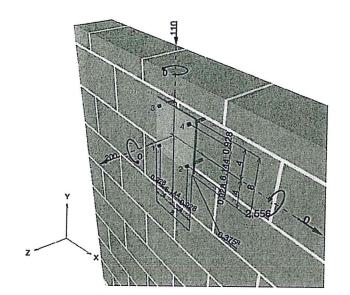
Stand-off installation:

Anchor plate^R : Profile:

Base material:

Installation:

Seismic loads



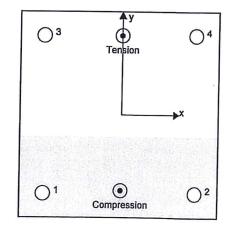
Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilli AG, FL-9494 Schaan Hilli Is a registered Trademark of Hilli AG, Schaan

Hilti PROFIS Engineering 3.0.70	
www.hilti.com	
Company	

Company: Address: Phone I Fax:		Page: Specifier: E-Mail:	2
Design: Fastening point:	N-545_Masonry - Jun 12, 2020	Date:	6/21/2021

Geometry [in.] & Loading [lb, in.lb]

1.1 Design results


Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 200; $V_x = 0$; $V_y = -110$; M _x = 2,556; M _y = 0; M _z = 0;	по	73

2 Load case/Resulting anchor forces

Load case: Service loads

Anchor reactions [lb]
Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0	27	0	-27
2	0	27	0	-27
3	261	27	0	-27
4	261	27	0	-27
max. compressiv max. compressiv			0.02 [‰] 26 [psi]	
esulting tension	force in (x/y)=(0.00	0/3.072): 5	522 [lb]	
	ssion force in (x/y)=		322 [lb]	

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilli AG, FL-9494 Schaan Hilli is a registered Trademark of Hilli AG, Schaan

	<u>T</u>	
La Part		

www.hilti.com			
Company: Address: Phone I Fax:		Page: Specifier: E-Mail:	3
Design: Fastening point:	N-545_Masonry - Jun 12, 2020	Date:	6/21/2021

Anchor forces are calculated based on the assumption of a rigid anchor plate.

Input dala and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

•

www.hilti.com			
Company: Address: Phone I Fax: Design:		Page: Specifier: E-Mail:	4
Fastening point:	N-545_Masonry - Jun 12, 2020	Date:	6/21/2021

3 Tension load (Most utilized anchor 3)

	Load P _s [lb]	Capacity Pt [lb]	Utilization $\beta_P = P_s/P_t$ [%]	Status
Steel strength	261	4,700	6	OK
Bond strength	261	390	67	ОК

3.1 Steel strength

 $\begin{array}{ll} \mathsf{P}_{ts} = \mathsf{ESR} \; \mathsf{Value} & \mathsf{refer} \; \mathsf{to} \; \mathsf{ICC}\text{-}\mathsf{ES} \; \mathsf{ESR}\text{-}\mathsf{4143} \\ \mathsf{P}_{ts} \geq \mathsf{P}_s & \end{array}$

Results

Pt,s [lb]	P _s [lb]	
4,700	261	

3.2 Bond strength

$\begin{array}{l} P_{t,b,Base} = ESR \; Valu \\ P_{t,b} &= P_{t,b,Base} \cdot \\ P_{t,b} &\geq P_{s} \end{array}$	ue f _{red,E} • f _{red,s} • f _{red,Temp}	refer to ICC-I	ES ESR-4143			
Variables						
c _{min} [in.]	c _{cr} [in.]	s _{min} [in.]	s _{cr} [in.]	Temperature [°F]		
4.000	-	4.000	-	68		
Results						
P _{t,b} [lb]	P _{t,b,Base} [lb]	P _s [lb]	f _{red,E}	f _{red,S}	f _{red.Temp}	fred,TwolnOn
390	390	261	1.000	1.000	1.000	1.000

.

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

•

1 Bentard	6-1	
	No. In Concession, Name	-
		122

www.hilti.com			
Company: Address: Phone I Fax:		Page: Specifier: E-Mail:	5
Design: Fastening point:	N-545_Masonry - Jun 12, 2020	Date:	6/21/2021

4 Shear load (Most utilized anchor 3)

	Load V _s [lb]	Capacity V _t [lb]	Utilization $\beta_v = V_*/V_*$ [%]	Status
Steel strength	27	2,420	2	OK
Bond strength para and perp, (Dir. x-) ¹	-	-	6	ОК

¹Shear utilization may result from parallel and perpendicular shear (see details)

4.1 Steel strength

$V_{t,s} = E$	SR Value	refer to ICC-ES	ESR-4143

 $V_{t,s} \ge V_s$

Results

V _{t,s} [lb]	V _s [lb]	
2,420	27	

4.2 Bond strength parallel

 $\begin{array}{ll} V_{t,b,Base,\parallel} = ESR \; Value \\ V_{t,b,\parallel} &= V_{t,b,Base,\parallel} \cdot f_{red,E,\parallel} \cdot f_{red,s,\parallel} \cdot f_{red,Temp} \\ V_{t,b,\parallel} &\geq V_{s,\parallel} \end{array}$ refer to ICC-ES ESR-4143

Variables

c _{min} [in.]	c _{cr} [in.]	s _{min} [în.]	s _{cr} [in.]	Temperature [°F]		
4.000	12.000	4.000	-	68		
Results						
V _{t,b,ll} [lb]	V _{t,b,Base,II} [lb]	V _{s,} [lb]	f _{red,E,I}	f _{red,S,I}	f _{red,Temp}	Utilization β _{v,i} [%]
510	670	-27	0.761	1.000	1.000	5

4.3 Bond strength perpendicular

$\begin{array}{l} V_{tb,Base,\bot} = ESR \; Val \\ V_{tb,\bot} &= V_{t,b,Base,\bot} \\ V_{tb,\bot} &\geq V_{s,\bot} \end{array}$	ue • f _{red,E,L} • f _{red,s,L} • f _{red,T}	refer to	ICC-ES ESR-4143			
Variables						
c _{min} [in.] 4.000	c _{cr} [in.] 12.000	s _{min} [in.] 4.000	s _{cr} [in.]	Temperature [°F]		
Results	12,000	4.000	-	68		
V _{t,b,1} [lb]	V _{t,b,Base,1} [lb] 670	V _{s,1} [lb]	f _{red,E,1}	f _{red,S,1}	f _{red,Temp}	Utilization $\beta_{v, \perp}$ [%]
-	010	U	0.000	0.000	1.000	0

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti Is a registered Trademark of Hilti AG, Schaan

1		1 1000	And the second second second	and the second second
		12 点	-	
l man	11		1	1000

www.hilti.com			
Company: Address: Phone I Fax:		Page: Specifier:	6
Design: Fastening point:	N-545_Masonry - Jun 12, 2020	E-Mail: Date:	6/21/2021

4.4 Shear interaction

$$\frac{\beta_{V,\parallel} = \frac{V_{s,\parallel}}{V_{t,\parallel}}}{0.054} \qquad \beta_{V,\perp} = \frac{V_{s,\perp}}{V_{t,\perp}} \qquad \delta \qquad \text{Utilization } \beta_{V} [\%] \qquad \text{Status}}{6}$$

 $\beta_{\rm V} = \beta_{\rm V, \parallel}^{\rm o} + \beta_{\rm V, \perp}^{\rm o} <= 1.0$

5 Combined tension and shear loads (Most utilized anchor 3)

$\beta_{P} = \frac{\Gamma_{s}}{P_{t}}$	$\beta_V = \frac{V_s}{V_t}$	α	Utilization β _{P.V} [%]	Status	
0.669	0.054	1.000	73	OK	

 $\beta_{P,V} = \beta_P^{\alpha} + \beta_V^{\alpha} \le 1.0$

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2018, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for
- Refer to the manufacturer's product literature for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- The min. sizes of the bricks, the masonry compressive strength, the type / strength of the mortar and the grout (in case of fully grouted CMU walls) has to fulfill the requirements given in the relevant ESR-approval or in the PTG.
- Only the local load transfer from the anchor(s) to the wall is considered, a further load transfer in the wall is not covered by PROFISI
- Wall is assumed as being perfectly aligned vertically checking required(i): Noncompliance can lead to significantly different distribution of forces and higher tension loads than those calculated by PROFIS. Masonry wall must not have any damages (neither visible nor not visible)! While installation, the positioning of the anchors needs to be maintained as in the design phase i.e. either relative to the brick or relative to the mortar joints.
- · The effect of the joints on the compressive stress distribution on the plate / bricks was not taken into consideration.
- If no significant resistance is felt over the entire depth of the hole when drilling (e.g. in unfilled butt joints), the anchor should not be set at this
 position or the area should be assessed and reinforced. Hilli recommends the anchoring in masonry always with sieve sleeve. Anchors can only
 be installed without sieve sleeves in solid bricks when it is guaranteed that it has not any hole or void.
- The accessories and installation remarks listed on this report are for the information of the user only. In any case, the instructions for use
 provided with the product have to be followed to ensure a proper installation.
- The compliance with current standards (e.g. 2015, 2012, 2009 and 2006 IBC) is the responsibility of the user.
- Drilling method (hammer, rotary) to be in accordance with the approval!
- Masonry needs to be built in a regular way in accordance with state-of the art guidelines!
- Warnings/Notes OST in Masonry HNA!

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS EngIneering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

BOLD OF	11		1
	2.57		
ALCO INTO	- 10	1000	
And the state of the	ALCONG DOLLARS	State State of State	

Company: Address:		Page:	7
Phone I Fax: Design: Fastening point:	 N-545_Masonry - Jun 12, 2020	Specifier: E-Mall: Date:	6/21/2021

Fastening meets the design criteria!

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hitli AG, FL-9494 Schaan Hitli is a registered Trademark of Hitli AG, Schaan

•

.

5

www.hilti.com Company:			
Address: Phone I Fax:	I	Page: Specifier:	8
Design: Fastening point:	i N-545_Masonry - Jun 12, 2020	E-Mail: Date:	6/21/2021

7 Installation data

Anchor

1

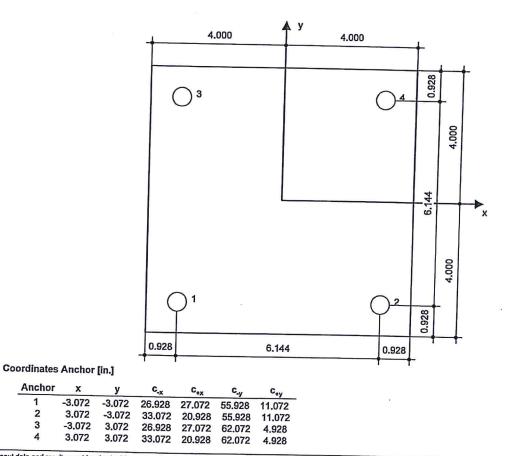
2

3

4

x

-3.072


3.072

-3.072

3.072

Profile: no profile	Anchor type and diameter: HY 270 + threaded rod 5.8 1/2, HIT-SC 18x50 Item number: 385422 HAS 5.8 1/2"x3-1/8" (element) / 2194247 HIT-HY 270 (adhesive) / 360485 HIT-SC 18x50
	(sieve sleeve)
Hole diameter in the fixture: $d_f = 0.562$ in.	Maximum installation torque: 54 in.lb
Plate thickness (input): 0.375 in.	Hole diameter in the base material: 0.687 in.
Drilling methods Orited to a	Hole depth in the base material: 2.375 in.
Drilling method: Drilled in rotary mode	Minimum thickness of the base material: 7.625 in.

Hilti HIT-V threaded rod with HIT-HY 270 injection mortar and 1 HIT-SC 18x50 sieve sleeve(s) with 2 in embedment h_ef, 1/2, Steel galvanized, Rotary drilled installation per ESR-4143

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilti AG, FL-9494 Schaan Hilti Is a registered Trademark of Hilti AG, Schaan

	1. 11 L		-
1	the second second	-	- 1
And and a second second	101	6.565	- 6

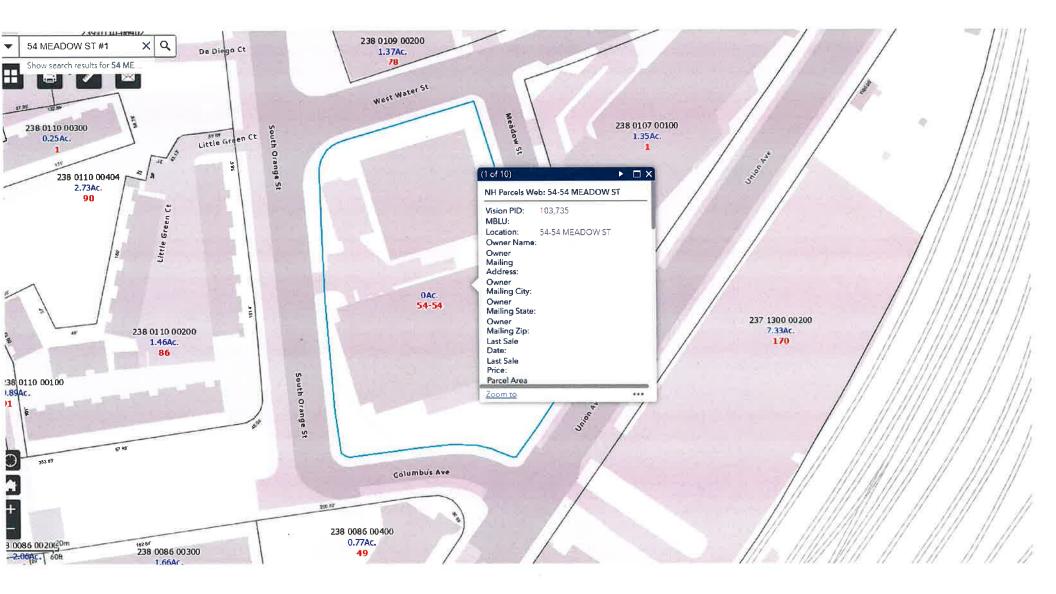
 www.hilti.com
 Page:
 9

 Company:
 Address:
 Page:
 9

 Address:
 Specifier:
 9

 Phone I Fax:
 I
 E-Mail:

 Design:
 N-545_Masonry - Jun 12, 2020
 Date:
 6/21/2021


8 Remarks; Your Cooperation Duties

 Any and all information and data contained in the Software concern solely the use of Hilli products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.

You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilli on a regular basis. If you do not use
the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
or programs, arising from a culpable breach of duty by you.

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2021 Hilli AG, FL-9494 Schaan Hilli is a registered Trademark of Hilli AG, Schaan

ATTACHMENT 5

	New Haven, CT					OVISION GOVERNMENT SOLUTIONS	
Search	Street Listing	Sales Search	Map	Feedback	Back	Home	
54 ME/	ADOW ST	r			Ω.		Q Sales A Print Q Map It
	Location	54 MEADOW ST				Mblu	238/ 0106/ 00112/ /
	Acct#	238 0106 00112			c	Owner	GATEWAY PARTNERS LLC
A	ssessment	\$231,000			Арр	raisal	\$330,000
	PID	105992		I	Building	Count	1

Current Value

	Appraisal			
Valuation Year	Improvements	Land	Total	
2021	\$330,000	\$0	\$330.000	
	Assessment			
Valuation Year	Improvements	Land	Total	
2021	\$231,000	\$0	\$231,000	

Owner of Record

Owner	GATEWAY PARTNERS LLC	Sale Price	\$0
Co-Owner	C/O LEXINGTON PROPERTY MGT	Certificate	
Address	755 MAIN ST STE 1245	Book & Page	6973/0194
	HARTFORD, CT 06103	Sale Date	10/18/2004
		Instrument	

ATTACHMENT 6

Verizon/New Haven 08989.5373

UNITED STATES POSTAL SERVICE ®				ficate of Mail	
Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving employed)	EHOUSE ST. TOT		\$003.55º ZIP 06103 041L12203937	
USPS [®] Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Code™)	Postage	Fee	Special Handling	Parcel Airlift
1. 2. 3.	Justin Elicker, MayorCity of New Haven165 Church StreetNew Haven, CT 06510Laura Brown, Executive DirectorCity Plan, City of New Haven165 Church StreetNew Haven, CT 06510Gateway Partners LLC54 Meadow StreetNew Haven, CT 06519				
4.	MCM Holdings LLC 40 Woodland Street Hartford, CT 06105		ā.		
5.					
6.		_			

PS Form **3665**, January 2017 (Page <u>1</u> of <u>1</u>) PSN 7530-17-000-5549

See Reverse for Instructions