Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

May 7, 2021

Via Electronic Mail

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Notice of Exempt Modification – Facility Modification 1440 Litchfield Turnpike, New Hartford, Connecticut

Dear Attorney Bachman:

Cellco Partnership d/b/a Verizon Wireless ("Cellco") currently maintains an existing wireless telecommunications facility at the above-referenced property address (the "Property"). The facility consists of antennas and remote radio heads attached to a bell tower and related equipment on the ground, near the base of the bell tower. The bell tower and Cellco's use of the bell tower was approved by the Council in December of 2004 in Petition No. 687. A copy of Cellco's Petition No. 687 Decision and Order is included in <u>Attachment 1</u>.

Cellco now intends to modify its facility by replacing nine (9) of its existing antennas with three (3) Samsung 64T64RMMU antennas and six (6) NHH-65B-R2B antennas. Cellco will also install six (6) remote radio heads ("RRHs") on Cellco's existing antenna platform. A set of project plans showing Cellco's proposed facility modifications and the new antennas and RRHs specifications are included in <u>Attachment 2</u>.

Please accept this letter as notification pursuant to R.C.S.A. § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to New Hartford's Chief Elected Official and Land Use Officer.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2).

Boston | Hartford | New York | Providence | Stamford | Albany | Los Angeles | Miami | New London | rc.com

Melanie A. Bachman, Esq. May 7, 2021 Page 2

1. The proposed modifications will not result in an increase in the height of the existing tower. Cellco's replacement antennas and RRHs will be installed on Cellco's existing antenna platform.

2. The proposed modifications will not involve any change to ground-mounted equipment and, therefore, will not require the extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The installation of Cellco's new antennas and RRHs will not increase radio frequency (RF) emissions at the facility to a level at or above the Federal Communications Commission (FCC) safety standard. A General Power Density table for the modified facility is included in <u>Attachment 3</u>. The modified facility will be capable of providing Cellco's 5G wireless service.

5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.

6. According to the attached Structural Analysis ("SA"), which includes the mount analysis, the existing bell tower structure, foundation and mounting assembly, with certain modifications, can support Cellco's proposed modifications. A copy of the SA is included in <u>Attachment 4</u>. Also included in <u>Attachment 4</u> is a separate letter prepared by the consulting engineer responsible for the preparation of the SA verifying that the antenna model described in the SA, respectively, as a nL-Sub6 Antenna or License-Sub6 Antenna, is the Samsung 64T64R model antenna and RRH that will be installed on the tower.

A copy of the parcel map and Property owner information is included in <u>Attachment 5</u>. A Certificate of Mailing verifying that this filing was sent to municipal officials is included in <u>Attachment 6</u>.

For the foregoing reasons, Cellco respectfully submits that the proposed modifications to the above-referenced telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Melanie A. Bachman, Esq. May 7, 2021 Page 3

Sincerely,

Kunig mu

Kenneth C. Baldwin

Enclosures

Copy to:

Daniel V. Jerram, New Hartford First Selectman Michael Lucas, New Hartford Inland Wetlands/Zoning Enforcement Officer Harvest Baptist Church Inc. Aleksey Tyurin

ATTACHMENT 1

PETITION NO. 687 - Cellco Partnership d/b/a Verizon Wireless petition for a declaratory ruling that no Certificate of Environmental Compatibility	}	Connecticut
and Public Need is required for the establishment of a wireless telecommunications facility at the Harvest Baptist Church, 1440	}	Siting
Litchfield Turnpike (Route 202), New Hartford, Connecticut.	}	Council
		December 1, 2004

Decision and Order

Pursuant to the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the environmental effects associated with the construction, operation, and maintenance of a telecommunications facility at the Harvest Baptist Church, 1440 Litchfield Turnpike (Route 202), New Hartford, Connecticut are not significant and therefore are not sufficient reason to deny this petition.

The facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

1. The tower shall be constructed as specified in the petition, designed as a 125-foot bell tower placed on a platform within the Town approved pavilion structure. The bell tower shall not exceed 125 feet above the level of the pavilion platform. The pavilion platform shall not exceed a height of six feet above ground level.

2. The facility owner shall prepare a Development and Management (D&M) Plan for this site that complies with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be served on the Town of New Hartford for comment, and all parties and intervenors as listed in the service list, and submitted to and approved by the Council prior to the commencement of facility construction. The D&M shall include:

- a. a final site plan(s) of site development, approved by a professional engineer, that includes specifications for the pavilion, bell tower, bell tower foundation, antennas, radio equipment, access road, utility line, and landscaping; and
- b. construction plans for site clearing, water drainage, and erosion and sedimentation control consistent with the <u>2002 Connecticut Guidelines for Soil Erosion and</u> <u>Sediment Control</u>, as amended.
- 3. The facility owner shall, prior to the commencement of operation, provide the Council worst-case modeling of electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The facility owner shall ensure a recalculated report of electromagnetic radio frequency power density is submitted to the Council when circumstances in operation cause a change in power

density above the levels calculated and provided pursuant to this Decision and Order.

- 4. Upon the establishment of any new State or federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The facility owner shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 6. The facility owner shall provide reasonable space on the tower for no compensation for any municipal antennas, provided such antennas are compatible with the structural integrity of the tower.
- 7. If the facility does not initially provide wireless services within one year of completion of construction or ceases to provide wireless services for a period of one year, this Decision and Order shall be void. The facility owner shall remove all associated equipment or reapply for any continued or new use to the Council before any such use is made.
- 8. Any antenna that becomes obsolete and ceases to function shall be removed within 60 days after such antennas become obsolete and cease to function.
- 9. Any proposed modifications to this Decision and Order shall be served to all parties and intervenors and the Town of New Hartford as listed in the service list.

Pursuant to General Statutes § 16-50p, the Council hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed below, and notice of issuance shall be published in <u>Hartford Courant</u> and the <u>Register</u> <u>Citizen</u>.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

The parties and intervenors to this proceeding are:

Applicant	Its Representative
Cellco Partnership d/b/a Verizon Wireless	Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103
James J. Grustas Patricia A. Grustas 1460 Litchfield Turnpike New Hartford, CT 06057	

Silas Kinsey 98 Kinsey Road New Hartford, CT 06057	Jaime M. LaMere, Esq. Cramer & Anderson LLP 46 West Street P.O. Box 278 Litchfield, CT 06759-0278
Thomas Fabiaschi 43 Wood Land Road New Hartford, CT 06057	
Charles Yanavich 1474 Litchfield Turnpike New Hartford, CT 06057	
Marcia Wyman Kim Wyman P.O. Box 161 Harwinton, CT 06791	

ATTACHMENT 2

verizon WIRELESS COMMUNICATIONS FACILITY

NEW HARTFORD W CT 1440 LITCHFIELD TURNPIKE NEW HARTFORD, CT 06057

DRAWING INDEX

- T-1 TITLE SHEET
- C-1 PARTIAL SITE PLAN, TOWER ELEVATION, EQUIPMENT **CONFIGURATION PLANS & ELEVATIONS.**
- **B-1 RF BILL OF MATERIALS, MECHANICAL SPECIFICATIONS &** EQUIPMENT DETAILS.
- N-1 NOTES & SPECIFICATIONS

SITE DIRECTIONS

START: 20 ALEXANDER DRIVE WALLINGFORD, CONNECTICUT 06492

END: 1440 LITCHFIELD TURNPIKE NEW HARTFORD, CT 06057

1.	HEAD SOUTH TOWARDS ALEXANDER DRIVE	279 FT
2.	SLIGHT RIGHT TOWARDS ALEXANDER DRIVE	289 FT
З.	TURN RIGHT TOWARDS ALEXANDER DRIVE	167 FT
4.	TURN RIGHT ONTO ALEXANDER DRIVE	0.3 MI
5.	TURN RIGHT ONTO BARNES INDUSTRIAL RD S.	0.1 MI
6.	TURN LEFT ONTO CT-68 W	0.4 MI
7.	TURN RIGHT ONTO N. COLONY RD	0.5 MI
8.	TURN RIGHT TO MERGE ONTO CT-15 N	0.5 MI
9.	CONTINUE ONTO CT-15 N	3.1 MI
10	. TAKE EXIT 68 W TO I-691 W TOWARD MERIDEN/WATERBURY	7.9 MI
11	. TAKE EXIT 1 TO I-84 W TOWARD WATERBURY/DANBURY	1.0 MI
12	. MERGE ONTO I-84 W	7.7 MI
13	. TAKE EXIT 20 ONTO CT-8 N TOWARD TORRINGTON	9.2 MI
14	. CONTINUE ONTO CT-8 N	10.4 MI
15	. TAKE EXIT 44 FOR US-202 TOWARD DOWNTOWN TORRINGTON	0.2 MI
16	. TURN RIGHT ONTO US-202 E (DESTINATION WILL BE ON THE LEFT)	3.2 MI

LOCATION MAP

SITE INFORMATION

VZ SITE NAME: NEW HARTFORD W CT VZ PROJ FUZE I.D.: 16244635 VZ LOCATION CODE: 467556 VZ PROJECT CODE: 20202199086 LOCATION: 1440 LITCHFIELD TURNPIKE

PROJECT SCOPE: REFER TO NOTES ON C-1 FOR SCOPE OF WORK

MAP/BI OCK/I OT: 007/024/018

ZONING DISTRICT: R-2 RESIDENTIAL

LATITUDE: 41° 49' 23.26" N (41.823128° N) SITE COORDINATES AND GROUND ELEVATION OBTAINED FROM GOOGLE EARTH. 624 TORRINGFORD WEST STREET TORRINGTON, CT 06790 d/b/a VERIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492 KENNETH C. BALDWIN, ESQ. 280 TRUMBULL STREET HARTFORD, CT 06103 567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 (860) 663-1697

LONGITUDE: 73° 03' 18.60" W (73.055167° W) GROUND ELEVATION: 975'± AMSL PROPERTY OWNER: HARVEST BAPTIST CHURCH INC APPLICANT: CELLCO PARTNERSHIP ENGINEER CONTACT: ALL-POINTS TECHNOLOGY CORP., P.C.

LEGAL/REGULATORY COUNSEL: ROBINSON & COLE, LLP

NEW HARTFORD, CT 06057

EQUIPM	ENT SPECIFICATIONS							
SECTOR	ANTENNA MAKE/MODEL	QTY	AZIMUTH	EQUIPMENT STATUS	HEIGHT (IN)	WIDTH (IN)	DEPTH (IN)	WEIGHT (LBS)
	700/850/1900/2100: COMMSCOPE NHH-65B-R2B	1	60°	NEW	72.0	11.9	7.1	43.7 ⁽²⁾
ALPHA	700/850/1900/2100/CDMA: COMMSCOPE NHH-65B-R2B	1	60°	NEW	72.0	11.9	7.1	43.7(2)
	SAMSUNG MT6407-77A	1	60°	NEW	35.1 ⁽⁵⁾	16.1(5)	5.51 ⁽⁵⁾	87.1 ⁽²⁾
	700/850/1900/2100: COMMSCOPE NHH-65B-R2B	1	180°	NEW	72.0	11.9	7.1	43.7(2
BETA	700/850/1900/2100/CDMA: COMMSCOPE NHH-65B-R2B	1	180°	NEW	72.0	11.9	7.1	43.7
	SAMSUNG MT6407-77A	1	180°	NEW	35.1 ⁽⁵⁾	16.1 ⁽⁵⁾	5.51 ⁽⁵⁾	87.1 ⁽²⁾
GAMMA	700/850/1900/2100: COMMSCOPE NHH-65B-R2B	1	300°	NEW	72.0	11.9	7.1	43.7
	700/850/1900/2100/CDMA: COMMSCOPE NHH-65B-R2B	1	300°	NEW	72.0	11.9	7.1	43.7(2)
	SAMSUNG MT6407-77A	1	300°	NEW	35.1 ⁽⁵⁾	16.1 ⁽⁵⁾	5.51 ⁽⁵⁾	87.1 ⁽²⁾
	APPURTENANCE MAKE/MODEL							
	COMMSCOPE CHB626-43-2X TWIN DIPLEXER	3	-	NEW	7.1	14.6	3.4	19.4
	SAMSUNG B2/B66A RRH-BR049 (RFV01U-D1A)	3	-	NEW	14.9	14.9	10.04	97.5
	SAMSUNG B5/B13 RRH-BR04C (RFV01U-D2A)	3	-	NEW	14.9	14.9	8.14	82.0
	RAYCAP RVZDC-6627-PF-48	1	-	NEW	29.5	16.5	12.6	32.0

				BILL OF MATERIALS
		QUANTITY	LENGTH	
1	700/850/1900/2100	3		(COMMSCOPE NHH-65B-R2B) MOUNTED TO EXIST.
2	700/850/1900/2100/CDMA	3		(COMMSCOPE NHH-65B-R2B) MOUNTED TO EXIST.
3	SAMSUNG MT6407-77A	3		MOUNTED W/ NEW 1' STANDOFF (SITEPRO1 TAM-2U
(4)	1/2" JUMPER CABLE	30	15 FT	ROUTE FROM RRH TO ANTENNAS
5	1/2" JUMPER CABLE	6	6 FT	ROUTE FROM RRH TO DIPLEXER
6	1/2" JUMPER CABLE	6	15 FT	ROUTE FROM DIPLEXER TO ANTENNAS
7	TWIN DIPLEXER	3		COMMSCOPE CHB626-43-2X
8	ANTENNA LINK CABLES	6	15 M	ROUTE FROM UPPER OVP TO ANTENNAS
9	ANTENNA POWER CABLES	3	15 M	PROPRIETARY POWER CABLE FROM UPPER OVP TO
10	700/850 RRH	3		SAMSUNG B5/B13 RRH-BR04C (RFV01U-D2A) MOUN
(1)	AWS/PCS RRH	3		SAMSUNG B2/B66 RRH-BR049 (RFV01U-D1A) MOUN
12	RRH CABLES	6	15M	PROPRIETARY POWER & FIBER CABLES
13	UPPER 120VP	1		(RVZDC-6627-PF-48)
(14)	HYBRID CABLE	1	250'± FT	12x24 LOW INDUCTANCE HYBRID CABLE (1% Ø)
(15)	LOWER 60VP	2		RACK MOUNTED LOWER OVP

DESIGN BASIS: GOVERNING CODES/DESIGN STANDARDS: 2015 INTERNATIONAL BUILDING CODE (IBC) AS AMENDED BY THE 2018 CONNECTICUT STATE BUILDING CODE ASCE 7-10 TIA-222-G (TOWER) DESIGN CRITERIA (TOWER): STRUCTURE CLASS : II (TIA-222-G, TABLE 2-1 & ANNEX A.) BISK CATEGORY II (BC 2015 TABLE 1604.5) WIND LOADS: IL TIMATE BASIC VIND SPEED, V_{ULT}: 3-SECOND GUST) 120 MPH (2018 CSBC APPENDIX N) NOMINAL BASIC WIND SPEED, V₃₈: (3-SECOND GUST) 93 MPH (2018 CSBC APPENDIX N) XPOSURE CATEGORY C (2015 IBC SEC. 1609.4.3) WIND IMPORTANCE FACTOR, I_W: 1.0 (TIA-222G, TABLE 2-3) ICE LOADS: ICE THICKNESS, Tj: 0.75 IN (TIA-222G, ANNEX B) ICE THICKNESS IMPORTANCE FACTOR, I: 1.0 (TIA-222G, TABLE 2-3) NOMINAL BASIC WIND SPEED W/ ICE, VI 40 MPH (TIA-222G, ANNEX B) (3-SECOND GUST) WIND LOAD W/ICE IMPORTANCE FACTOR, I_W: 1.0 (TIA-222G, TABLE 2-3) SEISMIC LOAD:

REFER TO SECTION 1613 OF THE 2015 IBC/2018 CONNECTICUT STA BUILDING CODE FOR SEISMIC CLASSIFICATION AND LOADING DETERMINATION.

- 01 GENERAL: ARRREVIATIONS USED IN THESE SPECIFICATIONS INCLUDE THE BEEVATIONS USED IN THESE SPECIFICATIONS INCLUDE THE LICOWING: ALL AMERICAN CONCRETE INSTITUTE AMERICAN CONCRETE INSTITUTE AMERICAN NOTIONAL STAALARDED INSTITUTE AMERICAN INSTITUTE CONSTITUTE AMERICAN INSTITUTE CONSTITUTE AMERICAN STANDARDS AND TESTING METHODS SASTM AMERICAN STANDARDS AND TESTING METHODS INFERNATIONAL CODE COUNCIL EVALUATION SERVICE CO-ES INTERNATIONAL CODE COUNCIL EVALUATION SERVICE VIED INTERNATIONAL CODE SASTM AMERICAN STANDARDS AND TESTING THE AMERICAN LEPERTRECL CODE VIED INTERNATIONAL SERVICES AND ONTATIONAL SERVICES VIED INTOINAL ELECTRICAL CODE VIED INTOINAL ELECTRICAL CODE VIED INTOINAL ELECTRICAL AND INSTITUTION DSHA DOCULATIONAL SASTM AND HEALTH ADMINISTRATION

ERY INDIVIDUAL TRADE, DISCIPLINE, AND CONTRACTOR SHALL CLUDE THESE GENERAL SPECIFICATIONS.

INVLOLDE I FIESE EXEMPLE SPECIFICATIONS. THE ENGINEER IS NOT RESPONSIBLE FOR NOR A GUARANTOR OF THE INSTALLING CONTRACTORS WORK, ADEQUACY OF ANY SITE COMPONENT, SUPERVISION OF ANY WORK, AND SAFETY IN, ON, OR ABOUT THE WORK SITE.

VI REFERENCE HEREIN TO AN OR EQUAL ITEM, THAT EQUAL ITEM ALL BE PRE-APPROVED BY THE CONSTRUCTION MANAGER BEFORE

TALLATION TRADES SHALL COORDINATE THEIR WORK WITH ALL OTHER TRADES 0 OTHER WORK AND CONDITIONS AS APNEWRATE OR REQUIRED TO 00 CONFLICTS. RESOLVE AND COORDINATE ALL CONFLICTS WITH AFFECTED WORK AND STE OPERATIONS. COORDINATION UNTIT THE 5 FMALL BE WITH THE OWNER, OWNERS SPECIFIED PRESENTATIVE, FOR EVERYTHING RELATED TO THE INSTALLATION OF 5 FMOLECT.

IS PROJECT. INORK SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE TIONS OF ALL APPLICABLE CODES AND SHALL BE ACCIPITATE ALTHORITIES HAVING JURGEOTON (AHJ), WHEEL COMPLICT PROVINCE AND ALTHORTY SHALL APPLY, WHEEL CONFLICT EXSTS TWEEN FANSA SHAD SPECIFICATIONS, PLAN SHALL PAPLY, WHEEL NELTC EXSTS BETWEEN PLAN SHEETS, CONSTRUCTION MANAGER HALE ECONSLICT PRIOR TO COMMENDING ANY WORK.

ALL BE CONSOLIED FRICH TO COMMENDING ANY WORK VITRAOTOR SHALL PROVIDE ALL ABOR, MATERIALS, INSURANCE, JIPMENT, INSTALLATION, CONSTRUCTION TOOLS, TRANSPORTATION, S., FOR A COMPLETE AND NEWERLY OPERATURE AND USABLE SYSTEM ROUGHOUT AND AS INDICATED ON THE DRAWINGS AND AS SPECIFIED IEIN AND/OR OTHERWISE REQUIRED.

TRACTOR SHALL VERIFY ALL EXISTING CONDITIONS, INSTALLATIONS, EQUIPMENT IN THE FIELD PRIOR TO BID, FABRICATION, AND JLLATION OF ANY WORK.

INTRACTORS SHALL VERIFY ALL DIMENSIONS AND CONDITIONS IN THE DPIRON TO FARGENTIAL DIMENSIONS AND CONDITIONS IN THE DPIRON TO FARGENTIAL DIMENSIONS PRIOR TO CLOSING ETHATIONS AND CAN'D CAN'D DEVICE THE CONTRACT URENTS.

LIMENTS. TIRACTOR SHALL VISIT THE SITE TO MANAGE AND GAIN APPROVAL ALL TENMYT DISRUPTIONS, POVER OUTAGES, WORK SCHEDULES, NITION OF WORK PAREA AND WORK STORAGE, INVERSIBIL BULDINGSTE ESS, NOBE AND CLEANLINESS RECUIREMENTS WITH THE BURGSTE MANAGEMENT PRIOR TO ALL WORK. ANY DISRUPTIONS LI DE KEPT TO A NIMAMUM AND GHALL BE IMPLEMENTED ONLY MANTENCIPACING SHALL SCHARAUST COESTING ANY HAZARD SCHMOT REVEALS OF THE OWNERNING SITE SECURITY SUPPER SUPPER SCHARAUST COMPRISING SITE SECURITY

ASURES. NOTES. BTO ALL BELOW-GRADE WORK AND ANY SURFACE WORK IN A WARE AFOR STRUCTURES OF VEHICLES, CONTRACTOR SHALL BAGE A MARKOLT SERVICE TO DENTY AVY UNDERFOLKATION MER. WARES, CASE SERVICE TO EXPLOYED AND OTHER DERROCHAD UTILES DENTIFIED OF RECOUNTERED SHALL BE DERROCHAD UTILES DENTIFIED OF RECOUNTERED SHALL DENTIFIED AND AND OTHER DERROCHAD UTILES DENTIFIED OR INCOMPTENDE DUIDO OTHERA SECURITIES OF RECOUNTERED SHALL DENTIFIED OTHERA DERROCHADOR DENTIFIED DUIDO OTHERA SECURITIES DENTIFIED OTHERATION DENTIFIED DUIDO OTHERA SECURITIES DENTIFIED OTHERATION DENTIFIED DUIDO OTHERA SECURITIES DENTIFIED OTHERATION DENTIFIED DUIDO OTHERA SECURITIES DENTIFIED OTHERATIONES DUIDO OTHERATIONES DUIDO OTHERA SECURITIES DENTIFIED OTHERATIONES DUIDO OTHERA SECURITIES DENTIFIED OTHERATIONES DUIDO OTHERATIONES DUIDO

PARES, REFARLEMENT, AND ALL DARAGES DUE TO DARAGE OF ILTERS BY HIS OPERATIONS. L DISTING AND NEW EXPERIMENTS AND MATERIAL LOCATIONS L DISTING AND NEW EXPERIMENTS DEFENDED AND ADDRESS STALLED OHARACTERSTICS SHALL BE CONSIGNED DARAMMATIC UP THE PLANS. EXACT CONDITIONS SHALL BE DETERMINED IN THE LUP PROX TO ANY INSTALLATION. ANY DEFERENCES THAT MAY TENTION OF THE CONTRIBUTION OF ANY CONTONINO OF SHE TENTION OF THE CONTRIBUTION OF ANY CONTONINO OF SHE LLB PERSING SHALL DO FENDING TO ANY WORK SHALL BE THE LLB RESPONSIBILITY OF THE CONTRACTOR. ANY AND ALL ADDITIONS, DISTINGTONS, CHANGES, REPARL, OR DEMOLTION AS A RESULT OF TENTION OF THE CONTRACTOR. MAY AND ALL ADDITIONS, DISTINGTONS, CHANGES, REPARL, OR DEMOLTION AS A RESULT OF TENTION OF THE CONTRACTOR. WITHOUT DELAY, COST, OR ANGES IN QUALITY.

ANGES IN QUALITY. I. NOTES THIS SHEET SHALL APPLY UNLESS SPECIFICALLY NOTED HERWISE ON THE INCLUDED DRAWINGS OR IN SEPARATE PROJECT ECIFICATIONS AS PAPICABLE. ALL SPECIFICATIONS SHALL BE INSIDERED REQUIRED UNLESS APPROVED EQUAL BY THE OWNER, INSTRUCTION MANAGER, OR ENGINEER AS APPLICABLE. E WORDS' 'FROVIDE' OR 'INSTALL' SHALL MEAN FURNISH AND TH

RACTOR SHALL PROVIDE ALL CUTTING AND PATCHING AS JIRED FOR THE INSTALLATION OF HIS WORK. ANY PATCHING CH EXISTING SUPPOUNDING AREA IN ALL RESPECTS. ALL REMOVED EMALSHALL BE REMOVED FROM THE PREMISES DAILY IN AN ROVED SAFE MANNER.

L SURPLUS MATERIAL SHALL BE REMOVED FROM THE SITE PROMPTLY HEN DEEMED TO BE SURPLUS. V DEEXENT I O BE SUPPLUS. YOOTRACTOR SHALL BE RESPONSIBLE FOR THE PROTECTION OF ORK AND NEWLY INSTALLED OR EXISTING WORK, INCLUDING SETTON OF THE STEP, ALL STRUCTURES, AND ALL COCUPANTS. WRIATE BARRIERS, SAFETY GUARDS, SKINAGE, AND SECURITY AS RED.

NTRACTOR SHALL BE BESPONSIBLE FOR THEIR RESPECTIVE

CONTINUE OF STALL BE HESPONSIBLE FOR THEIR RESPECTIVE EMMITS, INSPECTIONS, TESTING, CERTIFICATES, AND ALL EMENT OF SAME REQUIRED FOR COMPLETION OF AND LEGAL ANCY OF THE FINISHED PROJECT. XONTRACTORS SHALL PROVIDE ALL NECESSARY TOOLS, FIXTURES, CES, MATERIALS, JOB AIDS, AND PERSONNEL REQUIRED FOR THE JION OF THEIR WORK.

CONTRACTOR SHALL GUARANTEE ALL MATERIALS AND MANSHIP BY THEM TO BE FREE OF DEFECTS AND MAINTAINED FOR 30 OF ONE YEAR AFTER ACCEPTANCE OF THE INSTALLATION PY (NER AND ENGINEER.

ALL WORK SHALL BE PERFORMED BY LICENSED CONTRACTORS IN THE LEVATION, MODIFICATION, ADDITION, OR CHANGE IN DESIGN L NOT BE MADE WITHOUT WRITTEN APPROVAL OF THE OWNER OR CONTRACTORS SHALL SUBMIT SHOP DRAWINGS OF ALL EQUIPMENT L CONTRACTORS SHALL SUBMIT SHOP DRAWINGS OF ALL EQUIPMENT DI ANTERIALS TO THE ENANCERE FOR APPROVAL PROFITO BRCATION AND INSTALLATION, AND SHALL AND TPROCEED UNTER SHALL AND AND INSTALLATION, AND SHALL AND TPROCEED UNTER HALM DEVATIONS FROM THE ORIGINAL DESIGN SHALL BOY TO AND DEVATIONS FROM THE ORIGINAL DE NOV, WITHOUT BLEMSH OF RECT, AND SUITABLE AND USEED FOR THE INSTALLATION AND SHALL DEVATIONS FROM THE ORIGINAL DE NEW, WITHOUT BLEMSH OF NUMERIAL AND SUITABLE AND USEED FOR THE INSTALLATION AND SHALL DEVATIONS GREGOREATURE. ALL DE NEW, WITHOUT BLEMSH OF NUMERIAL AND SUITABLE AND USEED FOR THE INSTALLATION AND SHALL DOWNERDANTONS OF SPECIFICATIONS. ALL ITEMS OF CALUMPENT OR TREAL THAT ARE OF ONE GENERIC TYPE SHALL BE COME UNFORTURE THE INSTALLS. BUILDING SHE SUITABLE AND ITEMS UNDER THE INSTACTORS RESPONSED ITY ON THE JOBSITE SHALL BE NOT UNFORTURE THE INSTALL SHE OF ONE GENERIC TYPE SHALL BE ONE UNFORTURE THE ORIGINAL DE NOT WITH DEVELSE TO DESTINGTION OF SPECIFICATIONS. ALL ITEMS OF CALL BEEN ONE TREAL THAT ARE OF ONE GENERIC TYPE SHALL BE COME UNFORTURE THE ORIGINAL DEVELSE ONE OF THE USE THE INSTALLATION AND SHALL DO DEVELSE ONE OF THE DESTINGT ON THE DESTINGT ONE OF THE ODD DEVELSE ONE OF THE ADD TO DERIVE AND THE OD DESTING THALL BE NOT DOWNED DATIONS OF SPECIFICATION AND THE DESTINGT ONE OF THE ODD DEVELSE ONE OF THE ADD TO DERIVE AND THE ODD DEVELSE ONE OF THE ODD DEVELSE ONE OF THE ADD THE ODD DESTINGT ONE OF THE DOWNE DAMAGED OR CREATE ANY HAZARD TO PERSONNEL OR NOT DOWNE THAT ADD THE OF THE ODD DETAILS OF THE ODD DESTINGT ONE O ONTRACTORS HOURS OF WORK SHALL BE IN ACCORDANCE WITH CODES AND ORDINANCES AND BE APPROVED BY THE OWNER. TRAOTER SALL PROVIDE SAFETY TRAINING TO BE THE OWNER. BROADER SAFETY TRAINING TRADING TO ALL OF HIS OFEN DRAFTER SAFETY TRAINING SHALL INCLUDE, BUT NOT BE LIMITED TO, TOTOES SAFETY TRAINING SHALL INCLUDE, BUT NOT BE LIMITED TO, HOTERTON, OONFINDE SPACE BUTKY, ELECTRICAL SAFETY, AND NOHINGEKCAVATION SAFETY WHERE SUCH WORK IS EXECUTED OR OUNTERED. ZOUNTERED. I TEMPORARY WORK REQUIRED OR SPECIFIED AS A PART OF THIS RRK, SHALL MEET ALL OF THE SAME REQUIREMENTS AS PERIMANEN TALLATIONS, SHALL BE COMPLETELY REMOVED AFTER ITS PUPPOSES HAVE IS SHALL BE COMPLETELY REMOVED AFTER ITS PUPPOSES HAVE SERVED. SERVED. SEXTING UTILITY, SERVICE, STRUCTURE, EQUIPMENT, OR FIXTURE RUCTING THE WORK SHALL BE REMOVED ANJOCR RELOCATED AS TED BY THE CONSTITUCTION MANAGER. BESTOS BENOCUNTERED DURING WORK EXECUTION, MARCH AND CEASE ALL, ACTIVITIES IN AFFECTED AFRAS UNTIL BE IN THE CONSTITUCTION 10 AFFECTED AFRAS UNTIL BE IN THE CONSTITUCTION 10 AFFECTED AFRAS UNTIL INFORMATION INFORMATION INFORMATION AFFECTED AFRAS UNTIL INFORMATION INFORMATION AFFECTED AFRAS UNTIL INFORMATION INFORMATION INFORMATION AFFECTED AFRAS UNTIL INFORMATION INFORMATION AFFECTED AFRAS UNTIL INFORMATION AFFECTED AFRAS AFRAS AFRAS AFRAS UNTIL INFORMATION AFFECTED AFRAS AFRAS

NOTIFIED BY THE CONSTRUCTION TO RESUME OPERATIONS. EVIST. ELECTRICAL AND MECHANICAL FUTURES, PIPING, WIRING AND EQUIPMENT OBSTRUCTING THE WORK SHALL BE REMOVED ANDOR RELOCATED AS DIRECTED BY THE CONSTRUCTION MANAGER. TEMPORARY SERVICE INTERRUPTIONS MUST BE COORDINATED WITH OWNER.

05 STEEL -CIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS

WIDE FLANGE	ASTM A992, GR 50
TUBING	ASTM A500, GR B
PIPE	ASTM A53, GR B
BOLTS	ASTM A325
GRATING	TYPE GW-2 (1-1/4"x3/16" BARS)
EXISTING METALS	ASTM A36
ROVIDE CERTIFICATIO	IN THAT WELDERS TO BE USED IN WORK ARE

PROVIDE CERTIFICATION 1144 WELDERS TO BE USED IN WORK ARE LICENSED AND HAVE SATISFACTOREY YASSEG ANS QUALIFICATION TEST LIADERT THE PROVISIONS OF APPENDIX D, PARTS I AADII IG THE NMS CODE FOR WELDING IN BUILDING CONSTRUCTION ALL BUILDING CONNECTION POINTS TO BE CENTRED ON EXISTING TRUCTURAL BELEING IN BUILDING CONSTRUCTION STRUCTURAL BEAMING FOINTS AND THE LOCATIONS ARE TO BE VERIFIED IN FIELD PARKET TO THE FARMENTION OF STEEL DEGINA MAC DOCINGENTION OF STEEL TO THE LATEST EDITION OF AGO STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF AGO STRUCTURAL STEEL SHALL CONFORM TO THE LATEST EDITION OF AGO STRUCTURAL THE FEEL SHALL CONFORM ANA ARTIMUTING EDIDION OF AGO STRUCTURAL THE FEEL SHALL CONFORM

I-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8' I/ETER GALVANIZED ASTM A 307 BOLTS UNLESS OTHERWISE NOTED STEEL MATERIAL SHALL BE GALVANIZED AFTER FABRICATION IN DRDANCE WITH ASTM A123 'ZINC (HOT-DIPPED GALVANIZED) INGS' ON IRON AND STEEL PRODUCTS WITH A COATING WEIGHT OF

22 CONTROL OF THE ANALYSIS AND STEEL PRODUCTS WITH A COATING WEIGHT OF 2 COZEF ALL BOLTS, ANCHORS AND MISCELLANEOUS HARDWARE EXPOSED TO WEATHER SHALL BE GALVANEED IN ACCORDANCE WITH ASTM A153 ZNO COATING (HOT-DIP) ON IRON AND STEEL HARDWARE. ANAGED GALVANZED STRALES SHALL BE REPARED BY TOUCHING IP ALL DANAGED GALVANZED STRALE WITH COLD ZING, 'GALVANON, YA GALV, OR STOT, 'N ACOCRANCE WITH MANN-RECTURES ANAGED GALVANZED STRALES SHALL BE REPARED BY TOUCHING IP ALL DANAGED GALVANZED STRALE WITH SAME LIBELINGS. TOUCH IP ADAMAGED NON-GALVANZED STREL WITH SAME ANALY OF THE ANALES NOT CONCOLLY ANALYSIS IN CONTONS TO THE REVIEW OF ANY INCORDERING MATERIALS CONDITIONS TO REMEDIAL OF CORRECTIVE ACTION ANY SUCH TION SHALL REQUIRE ENDINEER REVIEW, FIELD CUTTING OF RUDUTURAL STELLS IN OT FERMINEER WITHOUT OF THE ENXIFIER IN CONCOLLYTING OF RUDUTURAL STELLS IN OT FERMINEER

TRACTOR TO REMOVE AND RE-INSTALL ALL FIRE PROOFING AS

Scored UDRING CONSINUCTION. In STREES STRUCTURE SHALL BE DESIGNED TO BE SELF-SUPPORTING ND STABLE AFTER COMPLETION. IT IS THE CONTRACTORS SOLE ISONSIBILITY TO DETERMINE ERICTION PROCEDURE AND SEQUENCE ND TO INSURE THE SAFETY OF THE BUILDING AND ITS COMPONENT RTS DURING REPCTION.

ARTS DURING ERECTION. LL STELE, LEINENTS SHALL BE INSTALLED PLUMB AND LEVEL. OWER MANUFACTURERS DESIGNES SHALL PREVAIL FOR TOWER. CONNECTIONS SHALL BE DESIGNED BY THE FABRICATOR AND OKSTRUCTED IN ACCORDANCE WITH THE LATEST EIGENDING OF THE AISC ANXIAL OF STELE. CONSTRUCTION: CONNECTIONS SHALL BE OKVED TO CONFORM TO THE REQUERIEMENTS OF TYPE 2

WIDED TO CONFORM TO THE HELUMREMENTS OF TITLE 2 STRUCTION. ILICITURAL CONNECTION BOLTS SHALL CONFORM TO ASTM AS26. BOLTS SHALL BE MINIMUM 34 OPMATER AND EACH CONNECTION BOLTS SHALL BE MINIMUM 34 OPMATER AND EACH CONNECTION ULL HAVE MINIMUM TWO BOLTS. LOCK WASHERS ARE NOT MITTED FOR ASS STELE. ASSEMUES. IF ETNISION CONTROL BOLTS E USED, CONNECTIONS SHALL BE DESIGNED FOR SLIP ORTICAL BOLT

DWABLE LOAD VALUES. IGN CONNECTIONS AT BEAM ENDS FOR 10 KIPS (MIN).

. U-BOLTED CONNECTIONS SHALL BE COMPLETED WITH DOUBLE 'S OR A LOCK WASHER. TS OR A LOCK WASHER. TRACTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES, NERAOTOR SHALL COMPLY WITH AWS CODE FOR PROCEDURES, NELLIS CUALIFIED IN ACCORDANCE WITH AWS STRANDARD ALERCANDW PROCEDURES, ALL WELDING SHALL BE PERFORMED ALERCANDW PROCEDURES, ALL WELDING SHALL BE PERFORMED THE FLLET WELDING STRAND, PROVIDENT THE ARGENO FILLET ON MINIMANISZE PER TABLE 32.4 IN THE AISC WANAUAL OF FILLET ON MINIMANISZE PER TABLE 32.4 IN THE AISC WANAUAL OF SEC.CONSTRUCTION. AT THE CONTINUETION OF WELDING, ALL MAGE TO GALVANIZED COATING SHALL BE REPARED. SEE NOTE ADDING DAMAGED GALVANZED UNFACES. ARC AND GAS WELDING SHALL BE DONE BY A LICENSED AND RTIFIED WELDER IN ACCORDANCE WITH AWS.

ALL PENETRATIONS AND SEAMS BETWEEN MASONRY AND STEEL DOW CORNING 790 SILICONE BUILDING SEALANT OR EQUAL.

26 ELECTRICAL: HESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS

LL ELECTRICAL CONDUCTORS: INSULATION SHALL BE MINIMUM 600V TYPE THHN, THWN-2, OR XHHW

XHHW. • BRANCH CIRCUIT CONDUCTORS SHALL BE SOFT DRAWN 98% MINIMUM CONDUCTIVITY NEWERLY REFINED COPPER.

INTERNATION CONCLUCTIVITY NEWBALLY HEHINED COPPER. • FEEDER CIRCUIT CONDUCTORS SHALL BE EITHER COPPER OR ALUMINUM OF THE APNEWRIATE SIZE FOR THE APPLICATION, OR AS SPECIFICALLY NOTED.

SPECIFICALLY NOTED PERMANENT. VABEL OR TAG ALL CONDUCTORS WITH THEIR ORGUT DESIGNATION AT ALL TERMINATION ENDS, SPLICES, AND LICONDUIT, RAGEWAY, WRITWAYS, DUCTS, ETC. SHALL BE LISTED ND SUTABLE FOR THE APPLICATION. ONLY THE FOLLOWING CONDUITS S APPROVED AND LISTED FOR THE APPLICATION SHALL BE

SEPTABLE: ELECTRICAL METALLIC TUBING (EMT).

COMPRESSION COUPLINGS AND CONNECTORS ONLY MADE UP WRENCH TIGHT.
 FLEXIBLE METAL CONDUIT (FMC) AND LIQUIDTIGHT FLEXIBLE METAL CONDUIT (LFMC).

CONDUTL (LIMO). FINAL CONNECTIONS TO VIBRATING OR ADJUSTABLE EQUIPMENT INCLUDING, BUT NOT LAMTED TO, LIGHT FOUTURES, HAVE UNITS, TRANSPORMERS, MOTORS, ETC. OR WHERE RIGD DAL VINNEED STEEL, IROS ALL FITTINGS, CONNECTIONS, AND COUPLINGS SHALL BE THREADED MADE UP WERCH TIGHT. RIGID POLYVING, OLCHREING STALL BE THREADED MADE UP WERCH TIGHT. RIGID POLYVING, OLCHREING STALL BE THREADED MADE UP WERCH TIGHT. RIGID POLYVING, OLCHREING STALL BE THREADED MADE UP WERCH TIGHT. BUT DE USED FOR SERVICES, EXTERIOR, BELOW GRADE, AND WET LOCATIONS

TTONS. L NOT BE USED IN CONCRETE SLABS NOR EXPOSED WITHIN A JING OR STRUCTURE. -CLAD CABLE (MC) ZEALED INSTALLATIONS ONLY.

WITHIN A DUCT WITH SMOOTH OR CORRUGATED METAL JACKET AND NO OUTER COVERING OVER THE METAL JACKET. HED SPACES, ALL CONDUITS SHALL BE CONCEALED EXCEPT TO FINAL CONNECTION TO EQUIPMENT NOT MOUNTED IN OR

DEPTH AS THE IN-GROUND CONDUCTOR. IF NOT POSSIBLE TO INSTALL VERTICALLY, PLACE AS CLOSE TO VERTICAL AS POSSIBLE AND IN A DIRECTION AWAY FROM THE NEAREST ABOVE- GROUND CONDUCTIVE ELEMENT (TOWER, EQUIPMENT, ETC.).

OUNDOINTE LEBINETI (TOTER EDUPINIT, ETC). UN-ERF FRASIBLE WITH ENOLGA ED COMUNICATION STES): UN-ERF FRASIBLE WITH ENOLGA EPACE AVAILABLE, INSTALL A MINIMUM CF AL AVAXIMUM 10 NITOR RADIALS EACH RADIALS LENGTH SHALL BE MIN 20 FT, MAX 80 FT. UNE ARDIALS EPERPINICULANE FROM RINGS IN AS STRAGHT LINE AS POSSIBLE, AWAY FROM OTHER RING GROUNDS, RADIAL BONDS, AND SMILAR.

SUNDS, AND SIMILAH. A COMMON PRACTICE IS TO PLACE 4 RADIALS FROM THE TOWER RING TO THE 4 CORNERS OF THE AVAILABLE AREA.

MINISTIO THE 4 CORNERS OF THE AVAILABLE AREA. MINIMUM, BOND ALL COMPOUND CONDUCTIVE FENCE CORNER S AND GATE POSTS TO THE LPGS. PREFERABLY, INSTALL A IND RING THAT FOLLOWS THE FENCE LINE. BONDING ALL POSTS T

ESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS RFIN

TRACTOR SHALL FURNISH AND INSTALL ALL TRANSMISSION JUMPERS, CONNECTORS, GROUNDING STRAPS, ANTENNAS, LES, JUMPERS, CONNECTORS, GROUNDING STRAPS, ANTENNAS, INT AND HARDWARE. ALL MATERIALS SHALL BE INSPECTED BY THE TRACTOR FOR DAMAGE UPON DELIVERY. JUMPERS SHALL BE PLIED AT ANTENNAS AND EQUIPMENT INSIDE SHELTER. RDINATE LENGTH OF JUMPER CABLES WITH OWNER. COORDINATE

INATE LENGTH OF JUMPER CABLES WITH OWNER. COOHDIN RIFY ALL OF THE MATERIALS TO BE PROVIDED WITH OWNER TO SUBMITTING BID AND ORDERING MATERIALS.

TO SUBMITTING BIL AND UNDERING MATERIALS. INSTALLATON, THE TRANSMISSION LINE SYSTEM SHALL BE PIM / P TESTED FOR NEWER INSTALLATION AND DAMAGE WITH INAS CONNECTED. CONTRACTOR SHALL OBTAIN AND USE LATEST VID PROCEEDURES FROM OWNER OR MANUFACTURER PRIOR TO VID

NNA CABLES SHALL BE UNIQUELY COLOR-CODED AT THE NNAS. BOTH SIDES OF EQUIPMENT SHELTER WALL, AND JUMPER

CUALED GABLE MOUNTING AND GROUNDING HARDWARE, WALL JINTS, STANDOFFS, AND ALL ASSOCIATED HARDWARE TO INSTALL CABLES AND ANTENNAS TO THE MANUFACTURER'S AND OWNERS DIFICATIONS.

INNA CABLES SHALL BE FOAM DIELECTRIC COAXIAL CABLES AS

E SHALL BE INSTALLED WITH A MINIMUM NUMBER OF BENDS RE POSSIBLE. CABLE SHALL NOT BE LEFT UNTERMINATED AND LE BESALED MMEDIATELY AFTER BEING NOTALLED. EXTERIOR CABLE CONNECTIONS SHALL BE COVERED WITH A ERPROOF SHOLGNAK IT.

ABLE SHALL BE FURNISHED AND INSTALLED WITHOUT SPLICES AND ITH CONNECTORS AT EACH END. 27 CABLE TRAY: THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS HEREIN

EREIN. BALLE TRAY SHALL BE MADE OF EITHER CORROSION RESISTANT METAL R WITH A CORROSION RESISTANT FINISH. ABLE TRAY SHALL BE OF LADDER TRAY TYPE WITH FLAT COVER LAMPED TO SIDE RAILS.

ABLE LADDER SHALL BE SIZED TO FIT ALL CABLES IN ACCORDANCE WITH NEC AND NEMA 11-15-R4

ABLE LADDER TRAYS SHALL BE NEMA CLASS 12A BY PW INDUSTRIES, NC. OR EQUAL.

CABLE LADDER TRAY SHALL BE SUPPORTED IN ACCORDANCE WITH MANUFACTURERS SPECIFICATIONS. L WORKMANSHIP SHALL CONFORM TO THESE REQUIREMENTS AND L LOCAL CODES AND STANDARDS TO ENSURE SAFE AND ADEQUATE

TRACTOR SHALL VERIFY EXACT LENGTH AND DIRECTION OF TRAVEL ELD PRIOR TO CONSTRUCTION

NTENNAS, BOTH SIDES OF EQUIPMENT SHELTER WALL, AND JUMP SABLES AT THE EQUIPMENT. HE CONTRACTOR SHALL FURNISH AND INSTALL ALL CONNECTORS ISSOCIATED CABLE MOUNTING AND GROUNDING HARDWARE, WALL

ANTENNAS & CABLES:

DING

AGAINST FINISH MATERIAL. ALL PEEDER AND BRANCH CIRCUITS SHALL HAVE A SEPARATE NEWERLY SIZED AND MARKED GROUNDING CONDUCTOR, PER APPLICABLE CODES, PERSIMAL ENCODENSE DOES, ETC. CONDUIT SHALL NOT BE IF DUSTING ELECTRO SERVICE IS TO REMAIN, CONTRACTOR SHALL DE VERRY THAT IN MEETS PROJECT REQUIREMENTS WITHOUT MODIFICATION, IF IT IS TO BE ADDED OR REPLACED AS A PART OF THIS WORK, CONTRACTOR SHALL DEREMENTS WITHOUT MODIFICATION, IF IT IS TO BE ADDED OR REPLACED AS A PART OF THIS WORK, CONTRACTOR SHALL DEREMENTS. MORE ADDITIONAL DE ADDED OR REPLACED AS A PART OF THIS INSTALLED ENVIRONMENT, INMUNISMA STROMAL BE SUITABLE FOR THE INSTALLED ENVIRONMENT, INMUNISMA STROMAL DE SUITABLE FOR THE INSTALLED ENVIRONMENT, INMUNISMA STROMAL DE SUITABLE FOR THE INSTALLED ENVIRONMENT, INMUNISMA STROMA DEVICE SUITABLE FOR THE NISTALLED ENVIRONMENT, INMUNISMA STROMA DEVICE SUITABLE FOR THE INSTALLED ENVIRONMENT, INMUNISMA STROMAL DES SUITABLE OCIDOR BHALL BE RORM- ALL DEVICES AND OVER PLATES SHALL BE OCIDOR SHALL BE NORM- ALL DEVICES AND OVER PLATES SHALL BE OCIDOR SHALL BE NORM- ALL DEVICES AND OVER PLATES SHALL BE OCIDOR SHALL BE NORM- ALL DEVICES AND OVER PLATES SHALL BE OCIDOR SHALL BE NORM- ALL DEVICES AND OVER PLATES SHALL BE OCIDOR SHALL BE NORM- ALL DEVICES AND OVER PLATES SHALL BE DEVIDENTIFICATION SHALL DE SEALED USING A SUITABLE OCIDOR SHALL BE NORM- ALL DEVICES AND OVER PLATES SHALL BE DEVIDENTIFICATION SHALL BE SOLITION OF THE STROMAL THE REMAINS OF THE STRUCTURE PRIMETRATED. MORE DEVICES SUITED DEVIDENTIFICATION SHALL BE SOLITION OF THE STRUCTURE DESOLITION OF THE STRUCTURE PRIMETRATED. MORE DEVICES SUITED AND OVER PLATES SHALL BE DEVIDENTIFICATION OF THE STRUCTURE PRIMETRATED. DESOLITION OF THE STRUCTURE PRIMETRATED. DEVIDENTIFICATION SHALL BE SOLITION THAT DENTIFIES DEVIDENTIFICATION SHALL BE SOLITION OF THE STRUCTURE DEVIDENTIFICATION OF THE STRUCTURE PROVIDED THAT DENTIFIES DEVIDENTIFICATION OF THE STRUCTURE PROVIDED THAT DENTIFIES DEVIDENTIFICATION OF THE STRUCTURE PROVIDED THAT DE

CTRICAL CONTRACTOR IS RESPONSIBLE FOR ALL FINAL MINATIONS TO ALL EQUIPMENT.

NATIONS TO ALL EQUIPMENT. LECTIRGAL APPURTENANCES THAT ARE DISCONNECTED SHALL BE LETELY REMOVED WITH EXISTING STRUCTURES TO REMAIN, RED, FINISHED, ILLED, PAINTED, ETC. ALL PAREL SCHEDULES, MENT LABELING, AND COOE-REQUIRED LABELING, ANLL BE ED AND NEWFERLY COMPLETE TO MATCH THEI, INSTALLATION.

26 GROUNDING: THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS HERFIN

HEIN. DUND ALL SYSTEMS AND EQUIPMENT IN ACCORDANCE WITH BEST DUSTRY PRACTICE, THE REQUIREMENTS OF THE NIFPA 70 NATIONAL IGTRICAL CODE (NEC), AND ALL OTHER APPLICABLE CODES AND JULATIONS. GROUNDING ELECTRODES PRESENT AT EACH SERVICE LOCATION LL BE BONDED TOGETHER TO FORM THE GROUNDING ELECTRODE

ALL BE BONDED TOGETHEN TO FORM THE GROUNDING ELECTRODE TO INJUNCTION COLSTANCE, DEVOCES, AND CONDUTES SHALL BE INDURITOR TO ALL DETERDER AND SMACH CENTRES SHALL BE INDURCTOR TO RALL REFEDER AND BRANCH CIRCUITS THAT IS SZED INDUCTOR TO RALL REFEDER AND BRANCH CIRCUITS THAT IS SSED THROUGH. ONDUTTS SHALL BE INDUCTOR TO RALL ONDUTS THALL NOT BE USED AS A GROUNDING OF NED AND AND AND THE SIZE INDUCTOR TO ALL BE INDUCTOR TO RALL CONDUTS TO STATE THAT ARE CONNECTED TO NHOW THE OR CIRCUIT. STATE INDUCTOR IN THAT AND THAT INDUCTOR TO RALL CONDUTS TO STATE THAT ARE CONNECTED TO NHOW THE CONDUCT STATE INTO THE USED AS A GROUNDING OF NHOW THAT DE DISCOMPTING THAT AND THAT AND THAT AND THAT INDUCTOR TO ALL DE DISCOMPTING THAT AND THAT INDUCTOR TO AND THAT AND THAT AND THAT AND THAT AND THAT INDUCTOR THAT AND THAT AND THAT AND THAT AND THAT AND THAT INDUCTOR TO AND THAT AND THAT AND THAT AND THAT AND THAT INDUCTOR THAT AND THAT AND THAT AND THAT AND THAT AND THAT INDUCTOR THAT AND THAT AND THAT AND THAT AND THAT AND THAT AND THAT INDUCTOR THAT AND THAT NUMERT GROUNDING AND LOAD SIDE BOYDING CONDUCTORE MALLES SIZE DER THE GROUTDING VOIR-CURRENT PROTECTIVE DEVICE PRI) SIZE. WHERE THE UNOROUNDED CONDUCTORE ARE INCREASED SIZE ABOVCT THE STANDARD FOR THE GIROLITS COPO, INCREASE THE IOUNDING CONDUCTOR NEWORTIONATELY TO THE OSS-SECTIONAL REAK OF THE UNARQUINED CONDUCTORS.

VICE MAIN BONDING JUMPERS AND GROUNDING ELECTRODE IDUCTORS SHALL BE SIZED AND INSTALLED PER THE MINIMUM OF APPLICABLE CODES AND REGULATIONS.

ALL APRICABLE CODES AND REQULATIONS. "DEVINE INMUNITOR DE 22 LIGHTINUS PROTECTION: THESE SPECIFICATIONS SHALL INCLUDE THE EXPERIMENTS AND THE CROUNDING SPECIFICATIONS HEREIN. THE LIGHTINIG PROTECTION GROUNDING SYSTEM LPGS SHALL CONSIST OF BONNING ALL EQUIPMENT AND CONDUCTIVE STRUCTURES TO LOOALZED SINCLE-FONT GROUNDING CONNECTIONS (THYREAL STATUS) AND ALL CONDUCTIONS HEREIN. STEML IF THE LIGST SCH A BUDDING TO STRUCTURES TRUCTURES DOLOCALZED SINCLE-FONT GROUNDING CONNECTIONS (THYREAL) DONOCHTED, IF THE LIGST SCH A BUDDING, I SIMPER AND TO ADDITIONUL, IF-CROUND ELECTRICOL SA MAN ER ERGUIRED OR ADDITIONUL, IF-CROUND ELECTRICOL SA MAN ER ERGUIRED OR ADDITIONUL FOR ON THE DEVER THIS BONDED TO STRUCTURES IN CLOSE PROXIMITY (FINCES), CE BRIDGES, SCH TET ET THE LIGST SCH A BUDDING SONGED TO GROUPE A COMMON, ADDITIONUL, IF-CH SING SCH ADDITIONE ALL CONDUCTIVE STRUCTURES SCH TET ET AND ADDITIONAL SYSTEM FOR ALL CONDUCTIVE ELEMENTS AND STRUCTURES.

NDUCTORS: • MIN #2 AWG SOLID BARE TINNED COPPER (SBTC) FOR ALL

IN-GROUND CONDUCTORS. • MIN #2 AWG COPPER GREEN STRANDED FOR BONDING STRUCTURES, AND FOR INTER-SYSTEM BONDING OF INDIVIDUAL ELEMENTS SUCH AS GROUND BAR TO GROUND BAR.

MIN #6 AWG COPPER GREEN STRANDED OR ALL EQUIPMENT
 BONDING

BONDING. NISTALL ALL IN-GROUND CONDUCTORS IN THE SAME HORIZONTAL PLAKE OR IN A DOWNWARD DIRECTION AWAY FROM THE TOWER AND EQUIPMENT AREAS. AVXIDI LONG RUNS. MAKE DIRECT RUNS AS MUCH AS POSSIBLE. PLACE THROUGH INCOMENTATION SERVICES WHEN PASSING THROUGH FLOORS, WALLS, CELINDS, AND SIMILAR STRUCTURES. MAKE ALL CORES, WALLS, CREANS AND SIMILAR STRUCTURES.

MAKE ALL CONNECTIONS IN CONTACT WITH EARTH WITH EXOTHERMIC WELDING. MAKE ALL OTHER CONNECTIONS WITH EXOTHERMIC WELDING, IRREVERSIBLE COMPRESSION BOTHERING VIELENCE IN THE REL VIENE CLARRECTORS WITH DOWNECTORS, OIL INTO OVERSELE COMPRESSION OF SI OWNECTORS, OIL INTO OVERSELE COMPRESSION OF SI OWNECTORS, OIL INTO OVERSELE COMPRESSION OF SI OWNECTORS, OUTSTONE, OWNER, OWNER, ON THE OWNER PARTIES NOT NO END COMPRET THAN A DECORET AND ALL BENDS SHALL BE HORECONTAL, OR DOWNWARD TOWARDS EARTH ALL CONJUCTORS PASSING FORM ACQUE, GROAD TO INCOMP POTOTOTIC WITH A NON-METALLIC CONDULT SEALED AT BOTH ENDS.

ENDS. IF 2 OR MORE IN-GROUND CONDUCTOS ARE IN THE SAME PATH (2 RINGS OVERLAPPING, BONDING FOLLOWING ANOTHER RING OR RADIAL, OR SIMILAR), COMBINE WITH A SHARED SINGLE

PADARL, OR SIMILARY, CONDITIVE WITH A STRATED STRALE CONDUCTOR OWER GROUND RINGS SHALL BE: BONDED TO ANY CONDUCTIVE OBJECT OR STRUCTURE WITHIN 5 FEET OF EQUIPMENT GROUND RINGS AND WITHIN 20 FEET OF TIMMER GROUND RINGS

 INSTALLED MINIMUM 18 INCHES FROM FOUNDATIONS, FOOTINGS, AND SIMILAR. - ALL IN-GROUND RINGS, RADIALS, BONDS CONNECTING THEM, L SIMILAR GROUNDING.

NO ALL SMILAR GROUNDING. WIN 30 NOVES BELOW GRACE, OR 6 INOVES BELOW THE FROST LINE, WINCHEVER IS GREATER DEPTH WINCHEVER IS GREATER DEPTH WINCHEVER IS STRUCTURES, EXCEPT WHEN MAKING A BOND TO ANY OF THESE STRUCTURES, DO NOT BOND TO FOUNDATION INTERNAL REINFORCEMENT.

FOUNDATION INTERNAL REPORTED

OWER GROUNDING: • EACH TOWER LEG SHALL BE BONDED TO ITS RING: SINGLE-LEGGED SIDES: • BOND TO TOWER BASE, NOT TO VERTICAL TOWER STRUCTURE, • BOND TO TOWER BASE, NOT TO VERTICAL TOWER STRUCTURE, • MAY FROM TOWER MOUNTING WARDWARE: • EACH BOND SHALL HAVE A CORRESPONDING GROUND ROD ON THE RING.

RING. • ACH BOND SHALL CONSIST OF 2 CONDUCTORS FROM THE TOWER TO ITS RING WITH EACH CONDUCTOR DIRECTED IN OPPOSITE DIRECTIONS WITH A PARALLEL CONNECTION ON THE RING ON OPPOSITE SIDES OF THE GROUND ROD.

Descriptions with a prevalue connection on the end on connections with a prevalue connection and connections and a prevalue connection of the end of connection areas on earth shull have a declina final earth all connections areas on earth shull have a declina final earth all connections are and earth and the end of the end of the end end of declination of the end of the end of the end of declination of the end of the end of declination of the end of the end of declination of declination

IOUND RODS: SERARATION SPACE BETWEEN ANY 2 GROUND RODS SHALL BE NO CLOSER THAN THEIR DEPTH. THIS APPLIES TO ALL RODS IN THE COMPLETE SYSTEM. • DRIVE VERTICALLY IN UNDISTURBED SOIL WITH THE TOP AT SAME

SAMSUNG

Dual-Band Radio Unit AWS/PCS (B66/B2) RFV01U-D1A

Samsung's RFV01U-D1A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D1A RU targets dual-band support across Band 66 (AWS) and Band 2 (PCS), making it an ideal product for broad coverage footprints across multiple common mid-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation
- Built-in Broadcast Auxiliary Services (BAS) filter ensures compliant AWS operation without impacting footprint

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B66: DL(2,110-2,180MHz)/UL(1,710-1,780MHz) B2: DL(1,930-1,990MHz)/UL(1,850-1,910MHz) Instantaneous Bandwidth: 70MHz(B66) + 60MHz(B2) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 255mm (36.8L) Weight: 38.3kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

SAMSUNG

Dual-Band Radio Unit 700/850MHz (B13/B5) RFV01U-D2A

Samsung's RFV01U-D2A is a compact remote Radio Unit (RU) designed for deployments that require flexibility in installation and rapid onlining, without compromising on coverage, capacity or operational expenses.

The RFV01U-D2A RU targets dual-band support across Band 13 (700MHz) and Band 5 (850MHz), making it an ideal product for broad coverage footprints across multiple common low-end, long-range frequencies.

The RU handles all Radio Frequency (RF) processing in a single, compact unit, and is designed to interface via CPRI with Samsung's CDU baseband offerings, in both distributed-and central-RAN configurations.

In addition to its minimal footprint and ease of installation, the RU is also designed to reduce cost of ownership through its integrated spectrum analyzer, which allows for remote RF monitoring, greatly reducing the need for on-site maintenance visits.

Features and Benefits

- Dual-band support for broad frequency coverage
- Minimal footprint reduces site costs
- Rapid, easy installation
- Flexibly deployable in any location
- Remote RF monitoring capability
- Convection cooled, silent operation

Key Technical Specifications

Duplex Type: FDD Operating Frequencies: B13: DL(746-756MHz)/UL(777-787MHz) B5: DL(869-894MHz)/UL(824-849MHz) Instantaneous Bandwidth: 10MHz(B13) + 25MHz(B5) RF Chain: 4T4R/2T4R/2T2R Output Power: Total 320W DU-RU Interface: CPRI (10Gbps) Dimensions: 380 x 380 x 207mm (29.9L) Weight: 31.9kg Input Power: -48V DC Operating Temp.: -40 - 55°(w/o solar load) Cooling: Natural convection

6-port sector antenna, 2x 698–896 and 4x 1695–2360 MHz, 65° HPBW, 2x RET. Both high bands share the same electrical tilt.

- Interleaved dipole technology providing for attractive, low wind load mechanical package
- Internal SBT on low and high band allow remote RET control from the radio over the RF jumper cable
- Separate RS-485 RET input/output for low and high band
- One RET for low band and one RET for both high bands to ensure same tilt level for 4x Rx or 4x MIMO

General Specifications

Antenna Type	Sector
Band	Multiband
Color	Light gray
Effective Projective Area (EPA), frontal	0.26 m ² 2.799 ft ²
Effective Projective Area (EPA), lateral	0.22 m ² 2.368 ft ²
Grounding Type	RF connector body grounded to reflector and mounting bracket
Performance Note	Outdoor usage Wind loading figures are validated by wind tunnel measurements described in white paper WP-112534-EN
Radome Material	Fiberglass, UV resistant
Radiator Material	Low loss circuit board
Reflector Material	Aluminum
RF Connector Interface	7-16 DIN Female
RF Connector Location	Bottom
RF Connector Quantity, high band	4
RF Connector Quantity, low band	2
RF Connector Quantity, total	6

Remote Electrical Tilt (RET) Information, General

RET Interface	8-pin DIN Female 8-pin DIN Male
RET Interface, quantity	2 female 2 male
Dimensions	
Width	301 mm 11.85 in
Length	1828 mm 71.969 in

Page 1 of 4

©2020 CommScope, Inc. All rights reserved. All trademarks identified by ® or [™] are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 9, 2020

Depth

180 mm | 7.087 in

AISG RET UID

RET (SRET)

Conns

Array Layout

View from the front of the antenna (Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance	50 ohm
Operating Frequency Band	1695 – 2360 MHz 698 – 896 MHz
Polarization	±45°
Total Input Power, maximum	900 W @ 50 °C

Remote Electrical Tilt (RET) Information, Electrical

Protocol	3GPP/AISG 2.0 (Single RET)
Power Consumption, idle state, maximum	2 W

Page 2 of 4

©2020 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 9, 2020

Power Consumption, normal conditions, maximum	13 W
Input Voltage	10–30 Vdc
Internal Bias Tee	Port 1 Port 3
Internal RET	High band (1) Low band (1)

Electrical Specifications

Frequency Band, MHz	698–806	806–896	1695–1880	1850–1990	1920–2200	2300-2360
Gain, dBi	14.9	15	17.7	17.9	18.4	18.7
Beamwidth, Horizontal, degrees	65	60	71	69	64	57
Beamwidth, Vertical, degrees	12.4	11.2	5.7	5.2	4.9	4.6
Beam Tilt, degrees	0–14	0–14	0–7	0–7	0–7	0–7
USLS (First Lobe), dB	13	14	18	18	19	18
Front-to-Back Ratio at 180°, dB	30	29	31	30	29	31
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	30	30	30	30	30	30
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50° C, maximum, watts	300	300	300	300	300	300

Electrical Specifications, BASTA

Frequency Band, MHz	698–806	806–896	1695–1880	1850–1990	1920–2200	2300–2360
Gain by all Beam Tilts, average, dBi	14.5	14.5	17.3	17.7	18.1	18.5
Gain by all Beam Tilts Tolerance, dB	±0.6	±1.1	±0.4	±0.4	±0.5	±0.3
Gain by Beam Tilt, average, dBi	0 ° 14.4 7 ° 14.6 14 ° 14.3	0 ° 14.7 7 ° 14.7 14 ° 14.1	0 ° 17.2 4 ° 17.3 7 ° 17.3	0 ° 17.6 4 ° 17.7 7 ° 17.7	0 ° 18.0 4 ° 18.2 7 ° 18.1	0 ° 18.3 4 ° 18.5 7 ° 18.6
Beamwidth, Horizontal Tolerance, degrees	±2	±2.1	±3	±4.1	±6.5	±2.9
Beamwidth, Vertical Tolerance, degrees	±0.7	±0.7	±0.3	±0.2	±0.3	±0.2
USLS, beampeak to 20° above beampeak, dB	13	14	16	16	17	15
Front-to-Back Total Power at 180° ± 30°, dB	23	22	27	27	25	25
CPR at Boresight, dB	22	21	23	23	22	19

Page 3 of 4

©2020 CommScope, Inc. All rights reserved. All trademarks identified by ® or ™ are registered trademarks, respectively, of CommScope. All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: May 9, 2020

COMMSCOPE°

CPR at Sector, dB	10	7	16	13	11	4
Mechanical Specificat	ions					
Wind Loading at Velocity, front	al		278.0 N @ 150 km	/h 63.6 lbf @	150 km/h	
Wind Loading at Velocity, latera	al		230.0 N @ 150 km	/h 51.7 lbf@	150 km/h	
Wind Loading at Velocity, maxi	mum		120.7 lbf @ 150 kr	n/h 537.0N@	2 150 km/h	
Wind Speed, maximum			241 km/h 149.	75 mph		

Packaging and Weights

Width, packed	409 mm 16.102 in
Depth, packed	299 mm 11.772 in
Length, packed	1952 mm 76.85 in
Net Weight, without mounting kit	19.8 kg 43.651 lb
Weight, gross	32.3 kg 71.209 lb

Regulatory Compliance/Certifications

Agency	Classification
CHINA-ROHS	Below maximum concentration value
ISO 9001:2015	Designed, manufactured and/or distributed under this quality management system
REACH-SVHC	Compliant as per SVHC revision on www.commscope.com/ProductCompliance
ROHS	Compliant

Included Products

9001:2015

BSAMNT- ____ Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

Page 4 of 4

SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..

Model Code : MT6407-77A

Points of Differentiation

Wide Bandwidth

With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.

This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Technical Specifications

ltem	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

Future Proof Product

Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment.

SAMSUNG

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

ATTACHMENT 3

Site Name: NEW HARTFORD W CT

Cumulative Power Density

Operator	Operating Frequency	Number of Trans.	ERP Per Trans.	Total ERP	Distance to Target	Calculated Power Density	Maximum Permissible Exposure*	Fraction of MPE
	(MHz)		(watts)	(watts)	(feet)	(mW/cm^2)	(mW/cm^2)	(%)
VZW 700	751	4	470	1880	92	0.0080	0.5007	1.60%
VZW Cellular CDMA	874	2	500	1000	92	0.0042	0.5827	0.73%
VZW Cellular LTE	874	4	481	1923	92	0.0082	0.5827	1.40%
VZW PCS	1975	4	1026	4103	92	0.0174	1.0000	1.74%
VZW AWS	2120	4	1138	4551	92	0.0193	1.0000	1.93%
VZW CBAND	3730.005	1	6531	6531	92	0.0278	1.0000	2.78%
Total Percentage of M	aximum Permissible	Exposure						10.18%

*Guidelines adopted by the FCC on August 1, 1996, 47 CFR Part 1 based on NCRP Report 86, 1986 and generally on ANSI/IEEE C95.1-1992 **Calculation includes a -10 dB Off Beam Antenna Pattern Adjustment pursuant to Attachments B and C of the Siting Council's November 10, 2015 Memorandum for Exempt Modification filings

MHz = Megahertz mW/cm^2 = milliwatts per square centimeter ERP = Effective Radiated Power

Absolute worst case maximum values used.

ATTACHMENT 4

April 22, 2021

Verizon Wireless 20 Alexander Drive Wallingford, CT 06492

Attn: Mr. Andrew Leone

Re: Structural Analysis Report – Wireless Communications Modification Verizon Wireless Site I.D.: New Hartford West CT Harvard Baptist Church New Hartford, CT 06057

Project/Location Code: VZW FUZE I.D.: APT Filing No. 10202093652/467556 16244635 CT14111720

Dear Mr. Leone,

All-Points Technology Corp. (APT), a professional engineering corporation licensed in the State of Connecticut, has been retained by Verizon Wireless (VZW) to assess the structural adequacy of the existing host structure to support the proposed equipment modification.

Details of the proposed antenna and appurtenance modification are included within the table on the following page. Reference is made to the Construction Drawings prepared by this office, marked Rev 1, dated April 22, 2021.

The following information was utilized in the preparation of this assessment:

- RFDS provided by Verizon Wireless, dated January 20, 2021.
- Geotechnical Study prepared by Dr. Clarence Welti, P.E., P.C., dated October 29, 2004.
- 125' Bell Tower Drawings prepared by Engineered Endeavors Incorporated, dated February 7, 2005.
- Design Calculations for a Spread Footing Foundation prepared by Engineered Endeavors Incorporated, dated February 15, 2005.
- FRP Cross Drawings prepared by Engineered Endeavors Incorporated, dated June 2, 2005.

The structural review has been prepared in accordance with the following design standards:

- ANSI/TIA-222-G-2009 Structural Standards for Steel Antenna Towers and Antenna Supporting Structures
- AISC American Institute of Steel Construction Manual of Steel Construction, 14th Ed.
- IBC 2015 as amended by the 2018 Connecticut State Building Code.

The structural review has been prepared utilizing the following design criteria:

- 120mph (3-second gust), Ultimate Wind Speed (equivalent to 93mph Nominal)
- 50mph (3-second gust) Nominal Wind Speed with 1.00" Ice Thickness.
- Risk Category II
- Exposure Category C

Structural Analysis Report Verizon Wireless Site I.D.: New Hartford West CT Harvard Baptist Church New Hartford, CT 06057

The existing and proposed VZW antenna/appurtenance loading consists of the following equipment (proposed equipment indicated in **bold** text):

Antenna and Appurtenance Make/Model	Quantity	Status	Mount Type	Centerline
Samsung MT6407-77A panel antennas	3	Р		97.5' ± AGL
Andrew NHH-65B-R2B panel antennas	6	Р	Nine (9) existing single pipe	
Samsung B2/B66a RRH-BR049 (RFV01U-D1A) Remote Radio Heads (RRHs)	3	Р	mounts within Bell Tower FRP enclosure.	96.0' +
Samsung B5/B13 RRH-BR04C (RFV01U-D2A) Remote Radio Heads (RRHs)	3	Р	Add three (3) 1'-0" Standoffs (SitePro1 TAM-2U).	AGL
Commscope CHB626-43-2X Twin Diplexers	3	Р		
Raycap RVZDC-6627-PF-48 (12 OVP)	1	Р		
12x24 Low Inductance Hybrid Cable	1	Р	n/a	n/a
Coaxial Cables	64	ETR	n/a	n/a

Notes:

- 1. ETR = Existing to Remain; ERL = Exist to be Relocated; P = Proposed; R = Removed.
- 2. Based upon RFDS provided by VZW dated 01/20/2021.
- 3. Three (3) existing Andrew BXA-70063/6CF antennas to be removed.
- 4. All unused coaxial cable feed-lines to be removed.

The findings of this review are based upon comparative review of the proposed equipment loading to the referenced design documentation and a rigorous mount analysis. Under the proposed loading as referenced above, the maximum usage of the existing mounting assembly is **57%** (mount framing). In conclusion, we find that the proposed modification will not adversely affect the structural integrity of the existing mount framing and host structure.

Sincerely, All-Points Technology Corp. P.C.

Michael S. Trodden, P.E. Sr. Structural Engineer

Appendix A

Design Criteria

(/	APPEN	DIX N)	MUNIC	IPALIT	Y - SPE	CIFIC ST	RUCTU	RAL DE	SIGN P	ARAMETE	ERS	
							Wind D)esign P	aramet	ers		
bality Snow		M Spe Accele (%	MCE Spectral Accelerations (%g)			esign ds, V _{ult}	Mominal Design Wind Speeds, V _{asd} (mph) Wind-Borne Debris Regions ¹			Borne oris ons¹	-Prone	
Munici	Ground Loa	S₅	S1	Risk Cat.l	Risk Cat.II	Risk Cat III-IV	Risk Cat. I	Risk Cat. II	Risk Cat. III-IV	Risk Cat. II & III except Occup I-2	Risk Cat III Occup I-2 & Risk Cat. IV	Hurricane Regio
Enfield	35	0.176	0.065	110	125	130	85	97	101			Yes
Essex	30	0.168	0.059	120	135	145	93	105	112		Type A	Yes
Fairfield	30	0.215	0.065	115	125	135	89	97	105		Type B	Yes
Farmington	35	0.183	0.064	115	125	135	89	97	105			Yes
Franklin	30	0.171	0.061	120	130	140	93	101	108		Type A	Yes
Glastonbury	30	0.180	0.063	115	125	135	89	97	105			Yes
Goshen	40	0.181	0.065	105	115	125	81	89	97			
Granby	35	0.176	0.065	110	120	130	85	93	101			Yes
Greenwich	30	0.259	0.070	110	120	130	85	93	101			Yes
Griswold	30	0.168	0.060	125	135	145	97	105	112		Type A	Yes
Groton	30	0.160	0.058	125	135	145	97	105	112	Type B	Type A	Yes
Guilford	30	0.176	0.061	120	130	140	93	101	108	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Type B	Yes
Haddam	30	0.175	0.061	120	130	140	93	101	108		.) 0 =	Yes
Hamden	30	0 185	0.063	115	125	135	89	97	105			Yes
Hampton	35	0 172	0.062	120	130	140	93	101	108			Yes
Hartford	30	0.181	0.064	115	125	135	89	97	105			Yes
Hartland	40	0 175	0.065	110	120	125	85	93	97			Yes
Harwinton	35	0 183	0.065	110	120	130	85	93	101			Yes
Hebron	30	0.177	0.063	120	130	140	93	101	108			Yes
Kent	40	0.188	0.065	105	115	120	81	89	93			
Killingly	40	0.171	0.062	120	130	140	93	101	108			Yes
Killingworth	30	0.173	0.061	120	130	140	93	101	108			Yes
Lebanon	30	0.173	0.062	120	130	140	93	101	108			Yes
Ledvard	30	0.163	0.059	125	135	145	97	105	112		A eqvT	Yes
Lisbon	30	0.169	0.061	125	135	145	97	105	112		Type A	Yes
Litchfield	40	0.184	0.065	110	120	125	85	93	97			Yes
Lyme	30	0.164	0.059	125	135	145	97	105	112		Type A	Yes
Madison	30	0.173	0.060	120	130	140	93	101	108		Type B	Yes
Manchester	30	0.178	0.064	115	125	135	89	97	105			Yes
Mansfield	35	0.173	0.062	120	130	140	93	101	108			Yes
Marlborough	30	0.177	0.062	120	130	140	93	101	108			Yes
Meriden	30	0.183	0.063	115	125	135	89	97	105			Yes
Middlebury	35	0.191	0.064	110	120	130	85	93	101			Yes
Middlefield	30	0.181	0.063	115	125	135	89	97	105			Yes
Middletown	30	0.180	0.063	115	130	135	89	101	105			Yes
Milford	30	0.194	0.063	115	125	135	89	97	105		Type B	Yes
Monroe	30	0.205	0.065	110	120	130	85	93	101			Yes
Montville	30	0.165	0.059	125	135	145	97	105	112		Type A	Yes
Morris	35	0.187	0.065	110	120	125	85	93	97			Yes
Naugatuck	30	0.190	0.064	110	125	135	85	97	105			Yes
New Britain	30	0.183	0.064	115	125	135	89	97	105			Yes
New Canaan	30	0.240	0.068	110	120	130	85	93	101			Yes
New Fairfield	35	0.212	0.067	105	115	125	81	89	97			
New Hartford	40	0.180	0.065	110	120	130	85	93	101			Yes

Appendix B

Mount & Global Stability Analysis

CT141_11720 New Hartford W CT 4/22/2021

(Based on ANSI/TIA-222-G-2005)

Site Name:	New Hartford W CT
Site Address:	1440 Litchfield Turnpike
	New Hartford, CT 06057
Site County:	Litchfield
	Design Criteria

<u>L</u>	Jesign Chilen	<u>a</u>	
Ultimate Basic Wind Speed, V_{ULT} =	120	mph	2018 CSBC, Appendix N
Nominal Basic Wind Speed, V _{ASD} =	93	mph	2018 CSBC, Appendix N
Basic Wind Speed with ice, V _i =	50	mph	
Basic Wind Speed, V_w =	15	mph	For access/man combinations
Design Ice Thickness, t _i =	1.00	in	
Type of Structure =	Monopole		
Structure Height =	130.1	ft, +/-	
Structure Class =	II		Table 2-1
Exposure Category =	С		Section 2.6.5
Importance Factor, I =	1.00		Table 2-3
Importance Factor with Ice, I _{wi} =	1.00		Table 2-3
Ice Thickness Importance Factor, I _{it} =	1.00		Table 2-3
z _g =	900		Table 2-4
α=	9.5		Table 2-4
K _{zmin} =	0.85		Table 2-4
K _{zt} =	1.00		Section 2.6.6.4
K _d =	0.95		Table 2-2
G _h =	1.10		Section 2.6.7
Mount G _h =	1.00		Section 2.6.7
q _z ' =	21.03	psf	
q_{zi} =	6.08	psf	Excluding Kz
q _{zw} ' =	0.55	psf	

(Based on ANSI/TIA-222-G-2005)

Project ID: Site Name: Date:

CT141_11720 New Hartford W CT 4/22/2021

q _z ' =	21.03	psf
q _{zi} ' =	6.08	psf

G_h = 1.00 Section 2.6.7 K_a = 1.00 Section 2.6.9.2.2 - Section 2.6.9.2.4

q _{zw} ' =	0.55	psf

t_i = 1.00 in

						Dimensions				at Panel Fro	nt Coefficie	ent	Flat Panel Side Coefficient			nt	Front		
	# /C+	Elev.			Height,	Width,	Depth,	Wght.,	Area,	Aspect			Area,	Aspect			Wind	Side Wind	Weight,
Description	#/Sector	z, ft	Kz	q _z , psf	in	in	in	lbs	ft ²	Ratio	Ca	C_aA_a	ft ²	Ratio	Ca	C_aA_a	Force, lbs	Force, lbs	lbs
NHH-65B-R2B	2.0	96.0	1.255	26.39	72.0	11.9	7.1	57.0	5.95	6.051	1.33	7.91	3.550	10.142	1.50	5.342	209.0	142.0	57.0
MT6407-77A	1.0	97.5	1.259	26.48	35.1	16.1	5.5	87.1	3.93	2.181	1.20	4.71	1.344	6.374	1.34	1.802	125.0	48.0	87.1
RFV01U-D1A	1.0	96.0	1.255	26.39	14.9	14.9	10.0	97.5	1.54	1.000	1.20	1.85	1.039	1.484	1.20	1.247	49.0	33.0	97.5
RFV01U-D2A	1.0	96.0	1.255	26.39	14.9	14.9	8.1	82.0	1.54	1.000	1.20	1.85	0.842	1.830	1.20	1.011	49.0	27.0	82.0
RVZDC-6627-PF-48 (OVP)	1.0	96.0	1.255	26.39	19.5	16.5	12.6	32.0	2.23	1.182	1.20	2.68	1.706	1.548	1.20	2.048	71.0	55.0	32.0
CHB626-43-2X	1.0	96.0	1.255	26.39	14.6	7.1	3.4	19.4	0.72	2.056	1.20	0.86	0.345	4.294	1.27	0.436	23.0	12.0	19.4
												-				-			

						Dimensions with Ice				at Panel Fro	nt Coefficie	ent	Flat Panel Side Coefficient				Front		
					Ice Thick.,	Height,	Dc,	Wght.,	Area,	Aspect			Area,	Aspect			Wind	Side Wind	Weight,
Description	#/Sector	Elev.	Kz	q _{zi} , psf	t _{iz} , in	in	in	lbs	ft ²	Ratio	Ca	C_aA_a	ft ²	Ratio	Ca	C_aA_a	Force, lbs	Force, lbs	lbs
NHH-65B-R2B	2.0	96.0	1.255	7.629	2.23	76.46	13.86	278.6	8.68	5.52	0.77	6.659	6.133	5.52	0.77	4.704	51.0	36.0	335.6
MT6407-77A	1.0	97.5	1.259	7.654	2.23	39.58	17.02	172.8	5.65	2.33	0.70	3.955	2.740	2.33	0.70	1.918	31.0	15.0	259.9
RFV01U-D1A	1.0	96.0	1.255	7.629	2.23	19.35	17.97	88.5	2.60	1.08	0.70	1.820	1.947	1.08	0.70	1.363	14.0	11.0	186.0
RFV01U-D2A	1.0	96.0	1.255	7.629	2.23	19.35	16.98	84.2	2.60	1.14	0.70	1.820	1.692	1.14	0.70	1.184	14.0	10.0	166.2
RVZDC-6627-PF-48 (OVP)	1.0	96.0	1.255	7.629	2.23	23.95	20.76	124.7	3.48	1.15	0.70	2.439	2.836	1.15	0.70	1.985	19.0	16.0	156.7
CHB626-43-2X	1.0	96.0	1.255	7.629	2.23	19.05	7.87	43.6	1.53	2.42	0.70	1.070	1.039	2.42	0.70	0.727	9.0	6.0	63.0
																1			

						Dimensions				at Panel Fro	nt Coefficie	ent	Flat Panel Side Coefficient				Front		
	#/Contor	Elev.			Height,	Width,	Depth,	Wght.,	Area,	Aspect			Area,	Aspect			Wind	Side Wind	Weight,
Description	#/Sector	z, ft	Kz	q _{zW} , psf	in	in	in	lbs	ft ²	Ratio	Ca	C_aA_a	ft ²	Ratio	Ca	C_aA_a	Force, lbs	Force, lbs	lbs
NHH-65B-R2B	2.0	96.0	1.255	0.69	72.0	11.9	7.1	57.0	5.95	6.051	1.33	7.91	3.550	10.142	1.50	5.342	6.0	4.0	57.0
MT6407-77A	1.0	97.5	1.259	0.69	35.1	16.1	5.5	87.1	3.93	2.181	1.20	4.71	1.344	6.374	1.34	1.802	4.0	2.0	87.1
RFV01U-D1A	1.0	96.0	1.255	0.69	14.9	14.9	10.0	97.5	1.54	1.000	1.20	1.85	1.039	1.484	1.20	1.247	2.0	1.0	97.5
RFV01U-D2A	1.0	96.0	1.255	0.69	14.9	14.9	8.1	82.0	1.54	1.000	1.20	1.85	0.842	1.830	1.20	1.011	2.0	1.0	82.0
RVZDC-6627-PF-48 (OVP)	1.0	96.0	1.255	0.69	19.5	16.5	12.6	32.0	2.23	1.182	1.20	2.68	1.706	1.548	1.20	2.048	2.0	2.0	32.0
CHB626-43-2X	1.0	96.0	1.255	0.69	14.6	7.1	3.4	19.4	0.72	2.056	1.20	0.86	0.345	4.294	1.27	0.436	1.0	1.0	19.4
												-				-			

(Based on ANSI/TIA-222-G-2005)

 $\begin{array}{c|c} \underline{\text{Design Criteria:}} & (\textit{From Previous Sheet}) \\ \hline q_z &= & 21.03 & \text{psf} \\ q_{zi} &= & 6.08 & \text{psf} \\ q_{zw} &= & 0.55 & \text{psf} \\ \hline t_i &= & 1.00 & \text{in} \end{array}$

G_h = 1.00 Section 2.6.9 K_a = 1.00 Section 2.6.9.2.2 - Section 2.6.9.2.4

							Dimensions			Loading, No Ice			With Ice					Loading, Working		
	Elev.			Ice Thick.,			Width or		Weight,	Flat or		Wind,	Width or		Weight,		Wind,	Flat or		Wind,
Description	z, ft	Kz	q _z , psf	t _{iz} , in	q _{zi} , psf	q _w , psf	Dia, in	Depth, in	lbs/ft	Round	Ca	lbs/ft	Dia, in	Dc, in	lbs/ft	Ca	lbs/ft	Round	Ca	lbs/ft
2.5" STD	96	1.255	26.39	2.23	7.63	0.69	2.875	2.875	5.79	Round	1.20	7.59	7.33	2.88	13.87	1.20	5.59	Round	1.20	0.20
TS 2x2x3/16	96	1.255	26.39	2.23	7.63	0.69	2.000	2.000	4.32	FLAT	2.00	8.80	6.45	2.83	13.74	1.20	4.92	FLAT	2.00	0.23
2.0" STD	96	1.255	26.39	2.23	7.63	0.69	2.375	2.375	3.66	Round	1.20	6.27	6.83	2.38	12.51	2.20	9.55	Round	1.20	0.16

- Member sizes have been assumed

Project ID: Site Name: Date:

CT141_11720 New Hartford W CT 4/22/2021

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Include Warping?	Yes
Trans Load Btwn Intersecting Wood Wall?	Yes
Area Load Mesh (in^2)	144
Merge Tolerance (in)	.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (in/sec^2)	386.4
Wall Mesh Size (in)	24
Eigensolution Convergence Tol. (1.E-)	4
Vertical Axis	Y
Global Member Orientation Plane	XZ
Static Solver	Sparse Accelerated
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	AISC 14th(360-10): LRFD
Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD

Adjust Stiffness?	Yes(Iterative)
RISAConnection Code	AISC 14th(360-10): ASD
Cold Formed Steel Code	AISI S100-12: ASD
Wood Code	AWC NDS-15: ASD
Wood Temperature	< 100F
Concrete Code	ACI 318-14
Masonry Code	ACI 530-13: ASD
Aluminum Code	AA ADM1-15: ASD - Building
	AISC 14th(360-10): ASD

Number of Shear Regions	4
Region Spacing Increment (in)	4
Biaxial Column Method	Exact Integration
Parme Beta Factor (PCA)	.65
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Use Cracked Sections Slab?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min % Steel for Column	1
Max % Steel for Column	8

(Global) Model Settings, Continued

Seismic Code	ASCE 7-10
Seismic Base Elevation (in)	Not Entered
Add Base Weight?	Yes
Ct X	.02
Ct Z	.02
T X (sec)	Not Entered
T Z (sec)	Not Entered
RX	3
RZ	3
Ct Exp. X	.75
Ct Exp. Z	.75
SD1	1
SDS	1
S1	1
TL (sec)	5
Risk Cat	l or ll
Drift Cat	Other
Om Z	1
Om X	1
Cd Z	4
Cd X	4
Rho Z	1
Rho X	1

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rules
1	M1	3	1			2.5" STD	Column	Pipe	A53 Gr.B	Typical
2	M2	5	4			2.5" STD	Column	Pipe	A53 Gr.B	Typical
3	M3	7	6			2.5" STD	Column	Pipe	A53 Gr.B	Typical
4	M4	10	8			2.5" STD	Column	Pipe	A53 Gr.B	Typical
5	M5	11	15			RIGID	None	None	RIGID	Typical
6	M6	12	16			RIGID	None	None	RIGID	Typical
7	M7	14	18			RIGID	None	None	RIGID	Typical
8	M8	13	17			RIGID	None	None	RIGID	Typical
9	M9	20	19			HSS2x2x3/16	Beam	SquareTube	A500 Gr.B	Typical
10	M10	27	25			2.5" STD	Column	Pipe	A53 Gr.B	Typical
11	M11	29	28			2.5" STD	Column	Pipe	A53 Gr.B	Typical
12	M12	32	30			2.5" STD	Column	Pipe	A53 Gr.B	Typical
13	M13	33	36			RIGID	None	None	RIGID	Typical
14	M14	35	38			RIGID	None	None	RIGID	Typical
15	M15	34	37			RIGID	None	None	RIGID	Typical
16	M16	39	40			HSS2x2x3/16	Beam	SquareTube	A500 Gr.B	Typical
17	M17	43	41			2.5" STD	Column	· Pipe	A53 Gr.B	Typical
18	M18	45	44			2.5" STD	Column	Pipe	A53 Gr.B	Typical
19	M19	48	46			2.5" STD	Column	Pipe	A53 Gr.B	Typical
20	M20	49	52			RIGID	None	None	RIGID	Typical
21	M21	51	54			RIGID	None	None	RIGID	Typical
22	M22	50	53			RIGID	None	None	RIGID	Typical
23	M23	55	56			HSS2x2x3/16	Beam	SquareTube	A500 Gr.B	Typical
24	M24	58	57			2.5" STD	Column	Pipe	A53 Gr.B	Typical
25	M25	59	60			RIGID	None	None	RIGID	Typical

Member Advanced Data

	Label	I Release	J Release	I Offset[in]	J Offset[in]	T/C Only	Physical	Defl RatAnalysis	Inactive	Seismic
1	M1						Yes	** NA **		None
2	M2						Yes	** NA **		None
3	M3						Yes	** NA **		None
4	M4						Yes	** NA **		None
5	M5						Yes	** NA **		None
6	M6						Yes	** NA **		None
7	M7						Yes	** NA **		None
8	M8						Yes	** NA **		None
9	M9						Yes			None
10	M10						Yes	** NA **		None
11	M11						Yes	** NA **		None
12	M12						Yes	** NA **		None
13	M13						Yes	** NA **		None
14	M14						Yes	** NA **		None
15	M15						Yes	** NA **		None
16	M16						Yes			None
17	M17						Yes	** NA **		None
18	M18						Yes	** NA **		None
19	M19						Yes	** NA **		None
20	M20						Yes	** NA **		None
21	M21						Yes	** NA **		None
22	M22						Yes	** NA **		None
23	M23						Yes			None
24	M24						Yes	** NA **		None
25	M25						Yes	** NA **		None

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torg	Kyy	Kzz	Cb	Function
1	M1	2.5" STD	108									Lateral
2	M2	2.5" STD	108									Lateral
3	M3	2.5" STD	108									Lateral
4	M4	2.5" STD	108									Lateral
5	M9	HSS2x2x3/16	168	96	96	96	96	96				Lateral
6	M10	2.5" STD	108									Lateral
7	M11	2.5" STD	108									Lateral
8	M12	2.5" STD	108									Lateral
9	M16	HSS2x2x3/16	168	96	96	96	96	96				Lateral
10	M17	2.5" STD	108									Lateral
11	M18	2.5" STD	108									Lateral
12	M19	2.5" STD	108									Lateral
13	M23	HSS2x2x3/16	168	96	96	96	96	96				Lateral
14	M24	2.5" STD	108									Lateral

Load Combinations

	Description	S	PDelta	S	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	.B	Fa	.В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.2DL + 1.6WLX	Yes	Y		DL	1.2	WLX	1.6																
2	1.2DL + 1.6WLZ	Yes	Y		DL	1.2	WLZ	1.6																
3	1.2DL + 1.13(WLX + WLZ)	Yes	Y		DL	1.2	WLX	1.13	WLZ	1.13														
4	1.2DL + 1.6WL-X	Yes	Y		DL	1.2	WLX	-1.6																
5	1.2DL + 1.6WL-Z	Yes	Y		DL	1.2	WLZ	-1.6																
6	1.2DL + 1.13(WL-X + W	Yes	Y		DL	1.2	WLX	-1	WLZ	-1														
7	1.2DL + DLi + WLXi	Yes	Y		DL	1.2	OL1	1	OL2	1														
8	1.2DL + DLi + WLZi	Yes	Y		DL	1.2	OL1	1	OL3	1														

	Description	S	PDelta	S	BLC	Fa	BLC	Fa	BLC	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	.В	Fa	В	Fa	.в	Fa
9	1.2DL + DLi + 0.707(WL	Yes	Y		DL	1.2	OL1	1	OL2	.707	OL3	.707												
10	1.2DL + DLi + WLXi	Yes	Y		DL	1.2	OL1	1	OL2	-1														
11	1.2DL + DLi + WLZi	Yes	Y		DL	1.2	OL1	1	OL3	-1														
12	1.2DL + DLi + 0.707(WL	Yes	Y		DL	1.2	OL1	1	OL2	7	OL3	7												
13	DL	Yes	Y		DL	1																		

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	1	max	49.55	7	995.11	7	38.82	7	Ó .	1	.38	7	Ō	1
2		min	15.1	13	258.03	13	12.87	13	0	1	04	1	0	1
3	2	max	-16.45	13	0	1	-13.74	13	0	1	.32	7	0	1
4		min	-51.49	7	0	1	-40.37	7	0	1	03	1	0	1
5	8	max	57.1	7	1805.18	7	55.59	7	0	1	.91	7	0	1
6		min	22.6	13	543.98	13	19.87	13	0	1	.31	13	0	1
7	9	max	-21.26	13	0	1	-19	13	0	1	.75	7	0	1
8		min	-55.16	7	0	1	-54.04	7	0	1	.25	13	0	1
9	25	max	12.89	7	1286.11	7	4.65	7	0	1	.33	7	0	1
10		min	5.14	13	354.13	13	-9.39	1	0	1	.22	13	0	1
11	26	max	-5.07	13	0	1	5.55	1	0	1	.28	7	0	1
12		min	-12.79	7	0	1	-9.37	7	0	1	.18	13	0	1
13	30	max	10.38	7	1351.08	7	34.37	7	0	1	45	13	0	1
14		min	3.34	13	415.88	13	12.33	13	0	1	65	7	0	1
15	31	max	-3.41	13	0	1	-9.13	13	0	1	37	13	0	1
16		min	-10.48	7	0	1	-29.66	7	0	1	54	7	0	1
17	41	max	-41.96	13	1215.35	7	62.24	7	0	1	4.34	7	0	1
18		min	-134.33	7	323.82	13	18.28	13	0	1	1.29	13	0	1
19	42	max	99.66	7	0	1	-12.21	13	0	1	3.58	7	0	1
20		min	31.38	13	0	1	-42.3	7	0	1	1.06	13	0	1
21	46	max	85.89	7	1234.88	7	-18.66	13	0	1	-1.45	13	0	1
22		min	25.66	13	394.42	13	-61.13	7	0	1	-4.64	7	0	1
23	47	max	-15.08	13	0	1	41.2	7	0	1	-1.19	13	0	1
24		min	-51.22	7	0	1	12.59	13	0	1	-3.82	7	0	1
25	Totals:	max	0	13	7887.71	7	0	13						
26		min	0	7	2290.25	13	0	7						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Che	.Loc[in]	LC	Shear Check	<loc[i< th=""><th>. Dir</th><th>LC</th><th>phi*Pnc</th><th>phi*Pnt [</th><th>.phi*Mn y-y</th><th>phi*Mn z-z</th><th>Cb</th><th>Eqn</th></loc[i<>	. Dir	LC	phi*Pnc	phi*Pnt [.phi*Mn y-y	phi*Mn z-z	Cb	Eqn
1	M1	PIPE 2.5	.082	65.25	7	.004	15.75		7	26137.19	50715	3596.25	3596.25	1.59	H1-1b
2	M2	PIPE 2.5	.011	65.25	7	.000	0		7	26137.19	50715	3596.25	3596.25	1.54	H1
3	M3	PIPE 2.5	.013	65.25	7	.000	0		7	26137.19	50715	3596.25	3596.25	1.54	H1
4	M4	PIPE 2.5	.109	66.38	7	.005	66.38		7	26137.19	50715	3596.25	3596.25	1.57	H1-1b
5	M9	HSS2x2x3	.569	80.5	7	.131	80.5	y	7	15712.87	49266	2749.65	2749.65	1	H1-1b
6	M10	PIPE 2.5	.049	108	7	.001	15.75		7	26137.19	50715	3596.25	3596.25	1.58	H1
7	M11	PIPE 2.5	.011	65.25	7	.000	0		7	26137.19	50715	3596.25	3596.25	1.54	H1
8	M12	PIPE 2.5	.054	66.38	7	.003	66.38		7	26137.19	50715	3596.25	3596.25	1.58	H1-1b
9	M16	HSS2x2x3	.222	75.25	7	.106	145	V	7	15712.87	49266	2749.65	2749.65	1	H1-1b
10	M17	PIPE 2.5	.161	66.38	7	.011	66.38		7	26137.19	50715	3596.25	3596.25	1.59	H1-1b
11	M18	PIPE 2.5	.011	65.25	7	.000	0		7	26137.19	50715	3596.25	3596.25	1.54	H1
12	M19	PIPE 2.5	.120	66.38	7	.008	66.38		7	26137.19	50715	3596.25	3596.25	1.74	H1-1b
13	M23	HSS2x2x3	.354	155.75	7	.080	155	V	7	15712.87	49266	2749.65	2749.65	1	H1-1b
14	M24	PIPE 2.5	.011	65.25	7	.000	0		7	26137.19	50715	3596.25	3596.25	1.54	H1

(Based on ASCE 7-10)

WIND LOADING

> Wind Loads: General Requirements - Chapter 26

Location =	New Hartf	ord, CT	
Risk Category =	II		Table 1.5-1
V _{ult} =	120	mph	2018 CSBC, Appendix N
z =	85.1	ft, +/-	Centerline of Sign
Exposure =	С		Section 26.7.3
α =	9.5		Table 26.9-1
z _g =	900		Table 26.9-1
$k_z =$	1.22		Table 27.3-1
k _{zt} =	1.00		Section 26.8
k _d =	0.85		Table 26.6-1
$q_z =$	38.33	psf	

> Wind Loads on Other Structures & Building Appurtenances (MWRFS) - Chapter 29

0.60 x P =	35.24	psf < 50.8 psf (Per EEI Des	ign Calculation	s)
P =	58.73	nsf			
Cf =	1.80	Figure 29.4-1			
h =	94.08	ft			
s =	18.00	ft	s/h =	0.191	
B =	16.00	ft	B/s =	0.889	
G =	0.85	Section 26.9			

Since the design loading based upon current standards is less than the original design loading, it is safe to assume that the global stability of the existing sign structure will not be adversely affected by the proposed equipment modification.

Project ID: CT141_11720 Site Name: New Hartford W CT Date: 2/2/2021

Appendix **C**

Reference Documents

ENGINEERED ENDEAVORS INCORPORATED The Experienced Point of View

TOWER desiGN

ENGINEERED ENDEAVORS, INC.

7610 Jenther Drive
Mentor, Ohio 44060
Telephone: (440) 918-1101
Telefax: (440) 918-1108

13141 Bell Tower idw 2/18

B ANCHOR BOLTS		TYP. SPOOL C	ONNECTION	ia i N
		SECTIO	8'	·=
6"x 18" 3/8" THK 600 GR B 13-10 7/8" 18 2TION E-E		6 10" x 11 A500 G 13-11 1 SECTIO	р ілі у 144° тНК RB 15/16° 8° ОN C-C	AttForMs - TYP. 2) ELEVATIONS
a" Ø x 72" LG A615-75				
R BOLTS ON 36" Ø BOLT - TYP, ALL (3) LOCATIONS				
TION F-F				
	7610 Jenther Driv Ph: (440) 918-110 Fx: (440) 918-110	EN EN INC <i>The</i> Mentor, 01 * Ph: (88 08 * www.en	GINEERED DEAVORS CORPORAT Experienced F OH 44060-487 8) 270-3855 ligend.com	ED Point of View 72
	125' Bell Tower Harvest Baptist Bell Tower Eler	: Church vation, P	Ne Ian Views,	URS ew Hartford, CT & Side Section
	DRAWN BY IRB CREATED 2/07/05	SHEET	ROJECT NUMBER	GS55610

27

			MATERIAL LIST	
ITEM	PART NUMBER	QTY	DESCRIPTION	WEIGHT (BLACK) - LB GALV, WEIGHT - LBS
1	TUBE A LOWER SECTION	1	30" Ø TUBE ASSEMBLY	5713.090 lbmass
2	TUBE B LOWER SECTION	2	30" Ø TUBE ASSEMBLY	5690.132 lbmass
3	TUBE A MIDDLE SECTION	1	30" Ø TUBE ASSEMBLY	4882.378 lbmass
4	TUBE B MIDDLE SECTION	2	30" Ø TUBE ASSEMBLY	4854.254 lbmass
5	TUBE A UPPER SECTION	1	30" Ø TUBE ASSEMBLY	4561.033 lbmass
6	TUBE B UPPER SECTION	2	30" Ø TUBE ASSEMBLY	4537.597 lbmass
7	LOWER MAIN BRACE TUBE	6	18"x18"x3/8" THK, TUBE ASSEMBLY	1492.084 lbmass
8	UPPER BRACE TUBE	9	10"x10"x1/4" THK. TUBE ASSEMBLY	544.221 lbmass
9	SPOOL KIT 11669	1	30" Ø x 10'-0" LG HEAVY DUTY AMS SYSTEM	577.071 lbmass
10	SPOOL KIT 11597	3	30" Ø x 10'-0" LG MEDIUM DUTY AMS SYSTEM	577.071 lbmass
11	SPOOL KIT 11587	3	30" Ø x 10'-0" LG LIGHT DUTY AMS SYSTEM	631.521 lbmass
12	PLATFORM SECTOR A	2	CHANNEL ASSEMBLY W/ GRATING	351.496 lbmass
13	PLATFORM SECTOR B	2	CHANNEL ASSEMBLY W/ GRATING	351.496 lbmass
14	PLATFORM SECTOR C	2	CHANNEL ASSEMBLY W/ GRATING	381.084 lbmass
15	PANEL	12	RF TRANSPARENT PANEL	177.7991 lbmass
16	K11097	3	6" x 12" HANDHOLE COVER PLATE	6.6991 lbmass
17	K11098	9	9" x 24" ACCESS PORT COVER PLATE	22.5963 lbmass
18	AMS-30-CAP-11455	3	30" Ø AMS SYSTEM II CAP	12.7775 lbmass
19	SM CROSS	6	SMALL RF TRANSPARENT CROSS	24.1400 lbmass
20	LG CROSS	3	LARGE RF TRANSPARENT CROSS	49.9918 lbmass

GENERAL NOTES.

135' BELL TOWER IS DESIGNED IN ACCORDANCE WITH EIA/TIA-222F FOR 80 mph (FASTEST MILE WIND) AND 2008 INTERNATIONAL BUILDING CODE FOR 100 mph S-SECOND GUST WIND. THE DESIGN IS IN COMPLIANCE WITH CT BUILDING CODE, LATEST EDITION. THE ARCHITECHTIRAL DETAILS OF THE TOWER, PANELS, CROSSES, ELEVATIONS ARE PROVIDED BUILS CORPORATION, INC. (URS PROJECT 30921424, VERIZON JOB V21-067). 1.

-

- THE DRAWINGS DO NOT INDICATE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL METHODS, MEANS, TECHNIQUES, SEQUENCES, AND PROCEDURES. 2.
- THE CONTRACTOR SHALL REVIEW ASSEMBLY DRAWINGS AND DESIGN PROCEDURES FRIOR TO INITIATING ANY WORK FOR INSTALLATION OF THE TOWER AND FOUNDATION. э.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PROGRAMS AND PREGAUTIONS IN CONNECTION WITH THE WORK. 4.

5.

- MATERIAL MATERIAL A STRUGTURAL STEEL: 1. TOWER LEG: A100 GR.50 (Fy=50 ksl) ROUND PIPE. 2. HORIZONTAL BRACES: A500 GR. B (Fy=46 ksl). 3. PLATFORMS: A39 STRUCTURAL SHAPES. 4. PLATES AND PLANGES: A30 GTEEL 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHERWISE. 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS STATED OTHER A125 AND THE 5. RF-TIS, A355 HIGH STRENGT H BOLTS UNLESS AND THE AND T
- ALL STEEL STRUCTURAL MEMBER SHALL BE GALVANIZED PER A123 AND THEN PAINTED PER CUSTOMER SPECIFICATIONS. 6.
- RF-TRANSPARENT PANELS AND CROSSES TO BE PAINTED PER CUSTOMER SPECIFICATIONS. RF-TRANSPARENT ANTENNA MOUNTING SPOOLS TO PANTED PER CUSTOMER SPECIFICATION. 7.
- PER COS I OMER SPECIFICATION. WELDING A WELDING MATERIAL SHALL CONFORM TO ASTM A-233, ALL WELDED CONNECTONS SHALL USE ETXX ELECTRODES AND SHALL COMPLY WITH THE LATEST EDITION OF AWS D.1.1. WILLESS NOTED OTHERWISE. B. ALL WELDS SHALL BE DONE BY QUALIFIED WELDERS, ALL COMPLETE PENETRATION WELDS SHALL BE DONE BY GUALIFIED WELDERS, ALL COMPLETE CONNECTOR SHALL BE DONE BY QUALIFIED WELDERS, ALL COMPLETE CONTRATONION WELDS SHALL BE DONE BY GUALIFIED WELDERS AND UTTAGONICALLY TESTED. CERTIFICATION DOCUMENTS SHALL BE AVAILABLE C. COMPLETE FENETRATION WELDS SHALL BE USED FOR ALL BASE PLATE AND PLATE CONNECTIONS. d. WELDS NOT SHOWN ON FABRICATION DRAWINGS SHALL BE IN COMPLIANCE WITH ASD STH, SECTION 32. 8.
- CONNECTIONS NOT DETAILED ON THE DRAWING SHALL CONFORM TO THE ASDAFD REQUIREMENTS AND SPECIFICATIONS. BOLT SIZE AND PITCH SHALL BE TAKEN FROM THE TABLES IN ASDARPD MANUALS. 9.
- MINIMUM 1/2°DIA A325 BOLTS SHALL BE USED UNLESS NOTED OTHERWISE. NON-STRUCTURAL CONNECTIONS SUCH AS GRATING AND LADDER ATTACHMENTS MAY USE A337 BOLTS OR SIMLAR, 10.
- 11. WORKING PLATFORMS SHALL BE HEAVY-DUTY OR OPEN-STYLE GRATING AND CONFORM TO ASTM A-500.
- 12. FOR FOUNDATION DESIGN AND CONSTRUCTION REFER TO EEI DRAWING 13141-FOUND.

DETAIL M

DETAIL P

DETAIL J

ENGINEERED ENDEAVORS, INC.

FNGINEERED Customer: UR.S CORP. Date: 2/7-05 ENDEAVORS Structure: 125 BELL TOWER Job No .: 13/41 INCORPORATED 1. DESTEN Code: 2003 G Build Code 2003 JBC 100 mpie 3-sec Gust 80 mph (fastest mile) TIA/EIA-222F 2. Wind PRESSURE calculation (TIA/EIA-222F) P= q2GhCf 2.9. TOWER MEMBERS 2.9.1. VERTICAL MEMBERS. 30 \$ A106 GR. 50 q= 0.00256 × (125')= x (80) = 24.0 PSF P= 24,0:1.69×1.2= 48.7 PSF Gh = 1,69 - GUST FACTOR CA = 1.2 - dEAG FACTOR OR PL = 48,7× (30") = 121,8 #/LIN, FT 2.6.2. HORIZONTAL BRACES TS. 18×18" ASTO-B G=0.00256× (50)2/7×802 = 18.4 PSF P=9,2×1.69×1.8 = 56.1 PSF OR $P_L = 56.1 \times (\frac{18''}{10''}) = 84.2 \#/LiN. FT$ -/-

ENGINEERED ENDEAVORS, INC.

www.engend.com

7610 Jenther Dr. * Mentor, Ohio 44060 (440) 918-1101 * FAX (440) 918-1108

ENGINEERED Date: 2/7.05 Customer: ENDEAVORS Job No.: 13/4/ INCORPORATED Structure: PANELS. PANELS ARE 18 TALL and 16 wide 2.9.C WITH MAIN SUPPORT STRUCTLERAL BRACES at TOP, MD., and BOTTOM. EACH INDIVIDUAL PANEL is 9'THLL x 4'(2) Wide P=q2GhCA w $q_2 = 0.00256 \times \left(\frac{85}{33}\right)^{2/7} \times 80^2 = 21.5 PSF$ $G_{h} = 1.69$ $C_{A} = 1.4$ p= 21.5×1.69×1.4= 50.8 PSF ω_z TOP (BOTTOM) SEACE W:= px 9/ = 229 #/LIN FT MIDDLE BRACE W2 = P×9' = 458 #/Lin FT PANELS MAIN BRACES -2-

ENGINEERED ENDEAVORS, INC. www.engend.com 7610 Jenther Dr. * Mentor, Ohio 44060 (440) 918-1101 * FAX (440) 918-1108

ATTACHMENT 5

Town of New Hartford, CT

Property Listing Report

Map Block Lot

Property Information

Property Location	1440 LITCHFIELD TPKE		
Owner	HARVEST BAPTIST CHURCH INC		
Co-Owner	na		
Mailing Address	624 TORRINGFORD WEST ST		
	TORRINGTON CT 06790		
Land Use	9060 CHURCH		
Land Class	E		
Zoning Code	R2		
Census Tract	3061		

Neighborhood	D
Acreage	9.1
Utilities	Well,Septic
Lot Setting/Desc	Rural Level
Book / Page	
Fire District	4

Photo

Sketch

Primary Construction Details

Year Built	1999
Building Desc.	EXEMPT - MDL-94
Building Style	Churches
Building Grade	Average
Stories	1
Occupancy	1.00
Exterior Walls	Vinyl Siding
Exterior Walls 2	NA
Roof Style	Gable
Roof Cover	Asphalt
Interior Walls	Drywall
Interior Walls 2	NA
Interior Floors 1	Concrete
Interior Floors 2	Carpet
Interior Walls 2 Interior Floors 1 Interior Floors 2	NA Concrete Carpet

Heating Fuel	Oil
Heating Type	Hot Water
АС Туре	Central
Bedrooms	0
Full Bathrooms	0
Half Bathrooms	0
Extra Fixtures	0
Total Rooms	0
Bath Style	NA
Kitchen Style	NA
Fin Bsmt Area	
Fin Bsmt Quality	
Bsmt Gar	
Fireplaces	

(*Industrial / Commercial Details)				
Building Use	Commercial			
Building Condition	G			
Sprinkler %	NA			
Heat / AC	HEAT/AC PKGS			
Frame Type	STEEL			
Baths / Plumbing	AVERAGE			
Ceiling / Wall	CEIL & WALLS			
Rooms / Prtns	AVERAGE			
Wall Height	16.00			
First Floor Use	NA			
Foundation	NA			

Report Created On

5/6/2021

Valuation Sum	mary (As	ssessed value = 70°	% of Appraised Value)	Sub Areas		
Item	Appraised 1092300		Assessed	Subarea Type	Gross Area (sq ft)	Living Area (sq ft) 6000
Buildings			764610	First Floor	6000	
Extras	0		0	Half Story, Finished	1248	749 4752 0
Improvements				Finished Lower Level	4752	
Outbuildings	83500		58450	Porch, Open	896	
Land	129200		90440	Basement, Unfinished	1248	0
Total	1305000		913500			
Outbuilding a	nd Extra F	eatures				
Туре		Descriptio	n			
Paving Asphalt 10000 S.F.						
Open Porch Frame 3680 S.F.						
Lights (2) 4 UNITS		4 UNITS				
				Total Area	14144	11501
Sales History				I	I	1
Owner of Record				Book/ Page Sale	Date Sale Pri	ce

HARVEST BAPTIST CHURCH INC

0161/0195

0

Town of New Hartford, CT

Property Listing Report

Sketch

Primary Construction Details

Year Built	1998	Heating Fuel	Gas		
Building Desc.	Residential	Heating Type	Forced Air		
Building Style	Ranch	AC Type	Central	(*Industrial /	Commercial Details)
Building Grade	Average	Bedrooms	2 Bedrooms	Building Use	CHURCH HSE
Stories	1	Full Bathrooms	1	Building Condition	A
Occupancy	1.00	Half Bathrooms	0	Sprinkler %	NA
Exterior Walls	Vinyl Siding	Extra Fixtures	0	Heat / AC	NA
Exterior Walls 2	NA	Total Rooms	3	Frame Type	NA
Roof Style	Gable	Bath Style	Average	Baths / Plumbing	NA
Roof Cover	Asphalt	Kitchen Style	Average	Ceiling / Wall	NA
Interior Walls	Drywall	Fin Bsmt Area		Rooms / Prtns	NA
Interior Walls 2	NA	Fin Bsmt Quality		Wall Height	NA
Interior Floors 1	Hardwood	Bsmt Gar		First Floor Use	NA
Interior Floors 2	Carpet	Fireplaces		Foundation	NA

Sub Areas

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
First Floor	1300	1300
Composite Deck	570	0
Garage	600	0
Basement, Unfinished	660	0

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
Total Area	3130	1300

ATTACHMENT 6

UNITED STATES
POSTAL SERVICE ®

Certificate of Mailing — Firm

Name and Address of Sender	TOTAL NO. of Pieces Listed by Sender	TOTAL NO. of Pieces Received at Post Office™	Affix Stamp Here Postmark with Date of Receipt			
Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	Postmaster, per (name of receiving	employee)	neopost ^{»/} 05/07/2021 US POSTAG	5 \$00 21 041L	2.89 ⁰ P 06103 .12203937	
USPS [®] Tracking Number Firm-specific Identifier	Ad (Name, Street, City,	dress State, and ZIP Code™)	Postage Fe		necial Handling	Parcel Airlift
1.	Daniel V. Jerram, First Town of New Hartford 530 Main Street New Hartford, CT 060	Selectman	(AND STR	7 2021	4
2.	Michael Lucas, Inland Wet Town of New Hartford 530 Main Street New Hartford, CT 06057	lands/Zoning Enforcement Off	cer	MAI	05	
3.	Harvest Baptist Church 624 Torringford West Torrington, CT 06790	n Inc. Street		061	03 051	
4.						
5.						
6.						