CC CROWN CASTLE

Crown Castle 3 Corporate Park Drive, Suite 101 Clifton Park, NY 12065

March 26, 2021

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification for T-Mobile: 876392 115 Industrial Park Rd, New Hartford, CT 06057 Latitude: 41° 53' 10.48" / Longitude: -72° 57' 58.10"

Dear Ms. Bachman:

T-Mobile currently maintains three (3) antennas at the 166-foot mount level on the existing 168-foot monopole tower, located at 115 Industrial Park Road, New Hartford, CT. The property and tower are owned by Global Signal/Crown Castle. T-Mobile now intends to add three (3) new antennas and ancillary equipment at the 166-ft level. T-Mobile is to also to replace the antenna mount at the same level. This modification/proposal includes hardware that is both 4G (LTE) and 5G capable through remote software configuration and either or both services may be turned on or off at various times.

<u>Panned Modification:</u> <u>Tower:</u>

> Installed New: (3) RFS/Celwave – APXVAARR24_43-U-NA20 (3) Ericsson-Radio 449 B12/B71 (1) HYBRID CABLE (1-5/8") (1) Site Pro 1 RDS 284 T-Arm Mount

Remove: (3) Sector Antenna Mounts

Ground:

Install New: (1) BB 6630

The facility was approved by the Town of New Hartford Planning & Zoning Commission on August 9, 2000 via Gant of Special Exception.

The Foundation for a Wireless World. CrownCastle.com Melanie A. Bachman

Page 2

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies §16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to First Selectman, Mr. Daniel V. Jerram, Town of New Hartford, Zoning Enforcement Officer, Mr. Michael Lucas, Town of New Hartford. Global Signal/Crown Castle is the property & tower owner.

- 1. The proposed modifications will not result in an increase in the height of the existing tower.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the abovereference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Jeffrey Barbadora.

Sincerely. Bull

Jeffrey Barbadora Site Acquisition Specialist 1800 W. Park Drive Westborough, MA 01581 (781) 970-0053 Jeff.Barbadora@crowncastle.com

Attachments

cc:

First Selectman, Mr. Daniel V. Jerram, 530 Main Street, New Hartford, CT 06057 (860)-379-3389 (via email to djerram@newhartfordct.gov).

Zoning Enforcement Officer, Mr. Michael Lucas, 530 Main Street, New Hartford, CT 06057 (860)-379-7677 (via email to MLucus@town.new-hartford.ct.us).

Property & Tower Owner, Global Signal/Crown Castle, 1800 W. Park Drive, Westborough, MA 01581

FAX COVER SHEET

DATE: August 16, 2000

This transmission consists of this cover sheet and 1 page(s).

DELIVER 10:	COMPANY/FIRM:	EAN NUMBER:	PHONE NUMBER:
Karen J. Nielsen	SPRINT PCS	201/ 684-4070	(201) 684-4064
Rich Feeley	ATLANTIC WESTERN CONSULTING, INC.	401/949-8096	401/949-1605

FROM: THOMAS J. REGAN

TELEPHONE: DIRECT DIAL: (860) 509-6522

OUR FACSIMILE NUMBER IS: (860) 509-6501.

80563/1916/825

MESSAGE	Attached is a copy of the Nonce of Decision as published in the sub- Hartford Courant on Wednesday, August 16, 2000. The appeal
New Hartford, CT	period on this matter expires on 8/31/00, as which time the Netice.
4CU33NC588-2)	will be recorded on the New Hartford Land Records.

IF YOU DO NOT RECEIVE ALL PAGES, PLEASE CALL (860) 509-6542 AND ASK FOR OFFICE SERVICES.

*****CONFIDENTIALITY NOTE*****

The documents accompanying this telecopy transmission contain information from the law firm of Brown, Rudnick, Freed & Gesmer which is confidential or privileged. The information is intended to be for the use of the individual or entity named on this transmission sheet. If you are not the intended recipient, be aware that any disclosure, copying, distribution or use of the contents of this telecopied information is prohibited. If you have received this telecopy in error, please notify us by telephone immediately so that we can arrange for the retrieval of the original documents at no cost to you.

A PARTNERSHIP OF PROFESSIONAL CORPORATIONS

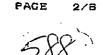
City Place I 185 Asylum Street Hartford, CT Tel:(860)509-6500 Fax:(860)509-6501

. . .

Alerson Ribhshed (New Hartford) - 8/16/00

LEGAL PUBLIC NOTICES

NOTICE OF DECISIONS TOPA OF NEW HARTFORD FLANKING AND ZONJING COMMISSION


The Planning and Zoniag commission at a saccial meeting. Against Physics of Barkshire Holl, Brocie Park, more the following decisions:

By minimum with it approve the coolimitor of Mark & Helly Paran, opsicants/Eller Chick, secure [Lot Stativistic withe special sacardian for an interior in it an REZOLA-Town Hill Cood with the condition.

By untailmoust wate, to approve the application of Serial Sectrum L.P. Disk Serial PCS applicant Exacutive Greetions Isc., Denser - Special Escaption the Information Contact Networks IP page-115 Infiltitial Part Access Road with Site Pion approval with 2 conditions.

Copies of the applications are set file in the siftee of the Planning cost Zaning Commission of the New Haritani Town Hall, Brock, Pack, West Hill Road, New Haritand.

Daled this tom day of August, 2000 by Planning and Zayins Cantrilision Chairman, David Kristowi.

(Recid .8/23/00

An BRACE) Appeal Period Expires \$37100 Cert to be recorded The (File for BP)

Town of New Hartford

530 MAIN STREET + TOWN HALL New Hartford, CT 06057

PLANNING AND ZONING COMMISSION (860) 379-7677

August 14, 2000

Sprint Spectrum LP dba Sprint PCS, applicant Executive Greetings, Inc., owner 9 Barnes Industrial Road Wallingford, CT. 06492

Dear Sirs.

The Planning and Zoning Commission at a "Special" meeting, August 9, 2000 at Barkshire Hall, Brodie Park, made the following decision:

By unanimous approval, , that the application of Sprint Spectrum L.P. DBA Sprint PCS applicant/Executive Greetings Inc., Owner - Special Exception for a telecommunications tower in a IP zone - 115 Industrial Park Access Road be approved in the method described in the written and oral testimony of the applicant and its representative and according to the site plan supplied "Sprint PCS Wireless Communications Facility - CT33xC588, New Hartford, 115 Industrial Park Access Road, -New Hartford, CT. prepared for Sprint Spectrum LP by Natcomm LLC, Branford, CT., dated 1/28/00, revised 2/24/00(issued for zoning) and 4/14/200(modified for wetlands commission and easement location) with the following conditions:

- That the review comments of the Town Engineer (3/15/00 & 6/29/200), the Town Planner (7/7/2000), and the radio frequency engineer (7/12/00 & 8/9/00) shall be incorporated into the plans with final determination for compliance by the Zoning Enforcement Officer.
- 2. Soil testing (as provided for in the regulations) shall be furnished prior to the issuance of a building permit.
- 3. That the maximum 160 foot high monopole telecommunications tower be designed and constructed to allow additional co-locators.

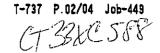
The special exception for the telecommunications tower is approved according to the standards and criteria as set forth in Article VI, Antennas, Towers, and Wireless Communications Facilities of the Town of New Hartford Zoning Regulations and all of the above conditions as relating to special exception shall be in addition to the pertinent standards and criteria of Article V, Section 2. "General Standards and Requirements.

Enclosed please find a GRANT OF SPECIAL EXCEPTION that corresponds with your approval. This Grant of Special Exception should be filed in the Town Clerk's Office at your earliest convenience. This filing ensures that your permit is made a permanent record on the land records in the Town of New Hartford. A \$18.00 fee payable to the Town of New Hartford is due upon filing of the permit.

Please contact Karl Nilsen, ZEO, in New Hartford Town Hall if you have any questions concerning this matter.

Respectfully yours,

David Krimmel, Chairman Planning and Zoning Commission


DK/ken

ClibPDF - www.fastio.com

£

BOOK 180 PAGE 0899

000344

TOWN OF NEW HARTFORD GRANT OF SPECIAL EXCEPTION

On the application of

Sprint Spectrum LP dbs Sprint PCS applicant Executive Greetings Inc, owner 9 Barnes Industrial Road Wallingford, CT. 06492

the PLANNING AND ZONING COMMISSION

did grant a

Special Permit

XXX____ Special Exception for a telecommunications tower in a IP zone

Street address: 115 Industrial Park Road Description of Premises: Assessor's Aerial Map 038 Block 134 Lot 15C Volume 145 page 451 Owners of record: Executive Greetings Inc.

The application of Sprint Spectrum L.P. DBA Sprint PCS applicant/Executive Greetings Inc., Owner - Special Exception for a telecommunications tower in a IP zone - 115 Industrial Park Access Road is approved in the method described in the written and oral testimony of the applicant and its representative and according to the site plan supplied "Sprint PCS Wireless Communications Facility - CT33xC588, New Hartford, 115 Industrial Park Access Road, New Hartford, CT, prepared for Sprint Spectrum LP by Natcomm LLC, Branford, CT., dated 1/28/00, revised 2/24/00(issued for zoning) and 4/14/200(modified for wetlands commission and easement location) with the following conditions;

- That the review comments of the Town Engineer (3/15/00 & 6/29/200), the Town Planner (7/7/2000), and the radio frequency engineer (7/12/00 & 8/9/00) shall be incorporated into the plans with final determination for compliance by the Zoning Enforcement Officer.
- 2. Soil testing (as provided for in the regulations) shall be furnished prior to the issuance of a building permit.
- 3. That the maximum 160 foot high monopole telecommunications tower be designed and constructed to allow additional co-locators.

. . .

-- ÷.,

The special exception for the telecommunications tower is approved according to the standards and criteria as set forth in Article VI, Antennas, Towers, and Wireless Communications Facilities of the Town of New Hartford Zoning Regulations and all of the above conditions as relating to special exception shall be in addition to the pertinent standards and criteria of Article V, Section 2. "General Standards and Requirements.

Certified this 10th day of August, 2000 Bv ICOC .

8605096501

David Krimmel, Chairman Planning and Zoning Commission

T-737 P.04/04 Job-449

.:

OCT-04-00 11:50 From:BROWN RUDNIC

.... . . ٠. 2

• • • • . .

> Receive Recorded in New Hartford Land Records Vol September 1, 2000 10:10 A Town Clerk 186 Z Page 006-668

AFTER RECORDING, PLEASE RETURN TO: Thomas J. Regan, Esquire Brown Rudnick Freed & Gesmer 185 Asylum Street, 38th Floor Hartford, CT 06103-3402

TOWN OF NEW HARTFORD 530 MAIN STREET- TOWN HALL NEW HARTFORD, CT. 06057

INLAND WETLANDS COMMISSION (860-379-8830)

April 26, 2000

Sprint Spectrum LP. 9 Barnes Industrial Road Wallingford, CT. 06492

To whom it may concern:

The Inland Wetlands Commission, at its regular meeting at Berkshire Hall, Brodie Park, on April 24th, 2000, made the following decision:

By a majority vote, to approve the application of Sprint Spectrum LP., applicant/ Executive Greetings, owner - Crossing of an intermittent watercourse for the construction of a telecommunications tower - 120 Industrial Park Access Road as presented as the method described in the written and oral testimony of the applicant and according to the revised site plan provided as the method shows that there will no adverse effects to the watercourse or wetlands on the property.

Feasible and prudent alternatives were explored and the commission's approval is based on the belief that the revised application as presented is the most reasonable and prudent available. As part of the permit granted, proper soil and erosion controls must be in place prior to the start of any construction and those controls are to inspected and approved by the Inland Wetlands Enforcement Officer prior to and during all phases of construction

Any information or assistance required concerning this decision should be directed to Mr. Paul Volovski, Inland Wetlands Enforcement officer at 379-8830 during regular Town Hall business hours.

Respectfully yours, Alden Ringklib, Chairman Inland Wetlands Commission

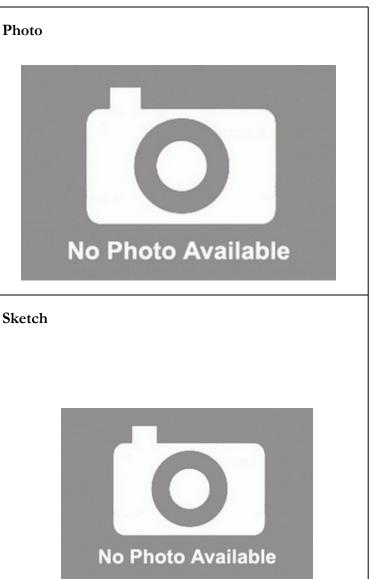
AR/kgn Cc/Thomas J Regan, Brown Rudnick Freed & Gesmer

Town of New Hartford, CT

Property Listing Report

 Map Block Lot
 038-134-15C
 Bldg #
 1
 Sec #
 1
 PID
 184722
 Account
 00284401

Property Information


Property Location	115 INDUSTRIAL PARK ROAD		
Owner	FRAMINGHAM COMMONS LLC		
Co-Owner	C/O GLOBAL SIGNAL ACQUISITION PMB		
Mailing Address	4017 WASHINGTON ROAD		
8	MCMURRAY PA 15317		
Land Use	4400 IND VACANT		
Land Class	1		
Zoning Code	IP		
Census Tract	3061/1002		

Neighborhood	с
Acreage	0.4
Utilities	Well,Septic
Lot Setting/Desc	Rural Level
Book / Page	0234/0515
Fire District	1

Primary Construction Details

	1
Year Built	0
Building Desc.	IND VACANT
Building Style	UNKNOWN
Building Grade	
Stories	
Occupancy	
Exterior Walls	
Exterior Walls 2	NA
Roof Style	
Roof Cover	
Interior Walls	
Interior Walls 2	NA
Interior Floors 1	
Interior Floors 2	NA

		Contract of the local sectors
Heating Fuel		
Heating Type		
АС Туре		
Bedrooms	0	
Full Bathrooms	0	
Half Bathrooms	0	
Extra Fixtures	0	
Total Rooms	0	
Bath Style	NA	
Kitchen Style	NA	
Fin Bsmt Area		
Fin Bsmt Quality		
Bsmt Gar		
Fireplaces		

(*Industrial / Commercial Details)		
Building Use	Vacant	
Building Condition		
Sprinkler %	NA	
Heat / AC	NA	
Frame Type	NA	
Baths / Plumbing	NA	
Ceiling / Wall	NA	
Rooms / Prtns	NA	
Wall Height	NA	
First Floor Use	NA	
Foundation	NA	

Report Created On

3/25/2021

Valuation Summary (Assessed value = 70% of Appraised Value)		Sub Areas				
Item	Appr	aised	Assessed	Subarea Type	Gross Area (sq ft)	Living Area (sq ft
Buildings	0		0			
Extras	0		0			
Improvements						
Outbuildings	98700		69090			
Land	324000		226800			
Fotal	422700		295890			
Outbuilding a	nd Extra F	eatures				
Туре		Description	l			
Pre Cast Cell		300 S.F.				
Pre Cast Cell		240 S.F.				
Fence-8' Chain		400 L.F.				
				Total Area	0	0
Sales History						
Owner of Record				Book/ Page Sale	e Date Sale Prie	ce

FRAMINGHAM COMMONS LLC

0234/0515

2005-05-10

0

Barbadora, Jeff

From:	Barbadora, Jeff
Sent:	Friday, March 26, 2021 12:20 PM
То:	djerram@newhartfordct.gov
Subject:	115 Industrial Park Road, New Hartford, CT - Exempt Modification _ T-Mobile - 876392
Attachments:	876392_115 Industrial Park Road_T_Mobile_Exempt_Modification_JDX_Copy.pdf

Good Afternoon Mr. Jerram,

Attached please find T-Mobile's exempt modification application package that is being sent to the Connecticut Siting Council today.

The Council has advised that electronic notifications of such filing are acceptable at this time.

Please let me know if you have any question.

Thanks,

Jeffrey Barbadora Site Acquisition Specialist 781-970-0053

<u>Crown Castle</u> 1800 W. Park Drive Westborough, MA 01581

Barbadora, Jeff

From:	Barbadora, Jeff
Sent:	Friday, March 26, 2021 12:20 PM
То:	MLucas@town.new-hartford.ct.us
Subject:	115 Industrial Park Road, New Hartford, CT - Exempt Modification _ T-Mobile - 876392
Attachments:	876392_115 Industrial Park Road_T_Mobile_Exempt_Modification_JDX_Copy.pdf

Good Afternoon Mr. Lucas,

Attached please find T-Mobile's exempt modification application package that is being sent to the Connecticut Siting Council today.

The Council has advised that electronic notifications of such filing are acceptable at this time.

Please let me know if you have any question.

Thanks,

Jeffrey Barbadora Site Acquisition Specialist 781-970-0053

<u>Crown Castle</u> 1800 W. Park Drive Westborough, MA 01581

Denice Nicholson Crown Castle 3 Corporate Dr Clifton Park, NY 12065	Crown Castle 2000 Corpora Canonsburg, (724) 416-200	te Drive PA 15317
Subject:	Structural Analysis Report	
Carrier Designation:	<i>T-Mobile</i> Co-Locate Carrier Site Number: Carrier Site Name:	CTNH414A Litchfield 10
Crown Castle Designation:	Crown Castle BU Number: Crown Castle Site Name: NEW HARTFOR Crown Castle JDE Job Number: Crown Castle Work Order Number: Crown Castle Order Number:	876392 D / EXECUTIVE GREET 559339 1902062 479857 Rev. 4
Engineering Firm Designation:	Crown Castle Project Number:	1902062
Site Data:	115 INDUSTRIAL PARK RD, NEW HARTFORD Latitude <i>41° 53' 10.48"</i> , Longitude -72° 57' 5 168 Foot - Monopole Tower	, Litchfield County, CT 8.1″
Deer Deeler Mithel		

Dear Denice Nicholson,

Date: December 10, 2020

Crown Castle is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Proposed Equipment Configuration

*Sufficient Capacity - 99.9%

*The structure has sufficient capacity once the loading changes, described in the Recommendations section of this report, are completed.

This analysis utilizes an ultimate 3-second gust wind speed of 120 mph as required by the 2018 Connecticut State Building Code and Appendix N. Applicable Standard references and design criteria are listed in Section 2 -"Analysis Criteria".

Structural analysis prepared by: Patrick Himes

Respectfully submitted by:

Maribel Dentinger

Maribel Dentinger, P.E. Senior Project Engineer

Maribel Dentinger Date: 2020.12.10 20:35:05 - 05'00'

Digitally signed by Maribel Dentinger

December 10, 2020 CCI BU No 876392 Page 2

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity - LC7 4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 168 ft Monopole tower designed by Summit. The tower has been modified multiple times in the past to accommodate additional loading.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	11
Wind Speed:	120 mph
Exposure Category:	C .
Topographic Factor:	1
Ice Thickness:	2 in
Wind Speed with Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Line Level (ft) Elevation (ft)		Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	
		3	ericsson	KRY 112 144/1			
	166.0		3	ericsson	KRY 112 489/2		
		3	ericsson	RADIO 4449 B71 B85A_T- MOBILE			
166.0		3	rfs celwave	APX16DWV-16DWV-S-E-A20 w/ Mount Pipe	13	1-5/8	
		3	rfs celwave	APXVAALL24_43-U-NA20_TMO w/ Mount Pipe			
		1	newave	FSK-126-X22			
		3	sitepro1	RDS-284 T-Arm Mounts			

Table 2 - Other Considered Equipment

Level (ft) Elevation of		Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		3 alcatel lucent RRH2X50-800				
157.0	157.0	3	alcatel lucent	TD-RRH8X20-25	N-Y-	1-1/4 5/8
		3	commscope	DT465B-2XR w/ Mount Pipe	3	
107.0		9	rfs celwave	ACU-A20-N	1	
		3 rfs		APXVTM14-C-120 w/ Mount Pipe		
		1	tower mounts	Platform Mount [LP 712-1]		
	156.0	3	alcatel lucent	800 EXTERNAL NOTCH FILTER		
	100.0	3	alcatel lucent	800MHZ RRH		
155.0	155.0	1	tower mounts	Side Arm Mount [SO 102-3]	-	_
	154.0 3		alcatel lucent	1900MHz RRH (65MHz) w/ Mount Pipe		

Mounting Level (ft)	Elevation Antennas Manufacturer Antenna Model		Antenna Model	Number of Feed Lines	Feed Line Size (in)	
		3	antel	BXA-171085-12BF-2 w/ Mount Pipe		
145.0	147.0	3	antel	BXA-70063-6CF-2 w/ Mount Pipe		
145.0		6	antel	LPA-80080/6CF w/ Mount Pipe	12	1-5/8
		6	rfs celwave	FD9R6004/2C-3L		
	145.0	1	tower mounts	Platform Mount [LP 403-1]		
120.0	120.0	3	ericsson	RRUS 11	I	
120.0	120.0	1	tower mounts	Side Arm Mount [SO 102-3]	-	-
		2	andrew	SBNHH-1D65A w/ Mount Pipe		
		1	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe		
		3	ericsson	RRUS 4415 B25		1-5/8
	119.0	1	kathrein	800 10764 w/ Mount Pipe		
		1	kmw communications	AM-X-CD-14-65-00T-RET w/ Mount Pipe	12	
118.0		1	kmw communications	AM-X-CD-16-65-00T-RET w/ Mount Pipe		
		6	powerwave technologies	7020.00	2 1	7/16 3/8
		3	powerwave technologies	7770.00 w/ Mount Pipe		
		12	powerwave technologies	LGP2140X		
		1	raycap	DC6-48-60-18-8F		
	118.0	1	tower mounts			
74.0	75.0	1	lucent	KS24019-L112A		
74.0	74.0	74.0 1 tower mounts		Side Arm Mount [SO 702-1]	1	1/2

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source	
4-GEOTECHNICAL REPORTS	Criscuolo Shepard Associates	1532994	CCISITES	
4-TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Summit / Paul J. Ford	1616556	CCISITES	
4-TOWER MANUFACTURER DRAWINGS	Summit / Paul J. Ford	1441325	CCISITES	
4-POST-MODIFICATION INSPECTION	GPD	2808249	CCISITES	
4-POST-MODIFICATION INSPECTION	TEP	3839078	CCISITES	
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	GPD	3027354	CCISITES	
4-TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	Paul J. Ford	3375536	CCISITES	

3.1) Analysis Method

tnxTower (version 8.0.7.5), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) Tower and structures were maintained in accordance with the TIA-222 Standard.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Crown Castle should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	168 - 158	Pole	TP14x14x0.25	1	-1.66	357.18	23.0	Pass
L2	158 - 116.5	Pole	TP29.139x22x0.1875	2	-9.26	1034.76	80.9	Pass
L3	116.5 - 80.25	Pole	TP35x28.119x0.25	3	-18.28	1656.01	99.9	Pass
L4	80.25 - 39.75	Pole	TP41.467x33.726x0.3125	4	-30.14	2452.35	99.8	Pass
L5	39.75 - 0	Pole	TP47.68x39.939x0.375	5	-48.36	3458.52	93.5	Pass
							Summary	
						Pole (L3)	99.9	Pass
	Approximation Ap					Rating =	99.9	Pass

Table 5 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	ent Elevation (ft)		Pass / Fail	
1	Flange Bolts	158	25.4	Pass	
1	Flange Plate	158	60.2	Pass	
1	Anchor Rods	0	72.5	Pass	
1	Base Plate	0	79.8	Pass	
1	Base Foundation Structural	0	62.5	Pass	
1	Base Foundation Soil Interaction	0	62.6	Pass	

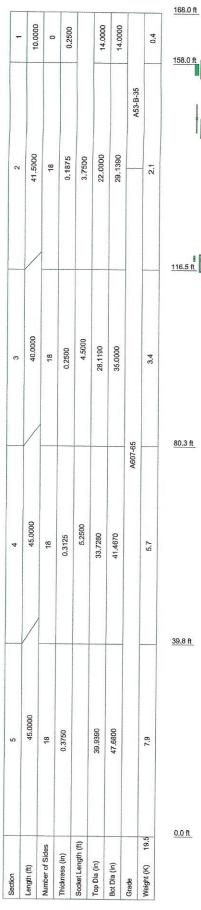
	Structure Rating (max from all components) =	99.9%
NI-t		

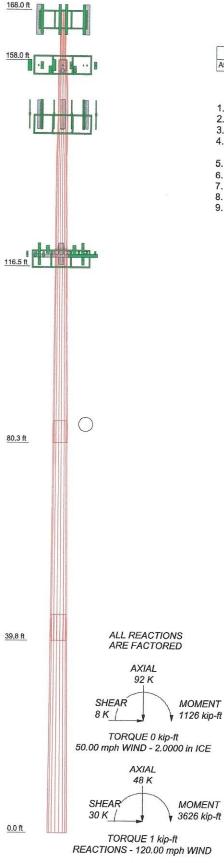
Notes:

1) See additional documentation in "Appendix C – Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. In order for the results of this analysis to be considered valid, the loading modification, as follows, must be completed.


Loading Changes:


a) The (3) antennas, pipe mounts, and (6) 1-5/8" external coax to the 102ft elevation shall be removed.

No structural modifications are required at this time provided that the above-listed changes are completed.

APPENDIX A

TNXTOWER OUTPUT

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-35	35 ksi	60 ksi	A607-65	65 ksi	80 ksi

TOWER DESIGN NOTES

- Tower is located in Litchfield County, Connecticut.
 Tower designed for Exposure C to the TIA-222-H Standard.
- Tower designed for a 120.00 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50.00 mph basic wind with 2.00 in ice. Ice is considered to increase in thickness with height.
- 5. Deflections are based upon a 60.00 mph wind.
- 6. Tower Risk Category II.
- 7. Topographic Category 1 with Crest Height of 0.0000 ft 8. TIA-222-H Annex S
- 9. TOWER RATING: 99.9%

CDOWN	Crown Castle	^{Job:} BU# 876392		
CROWN	2000 Corporate Drive	Project:		
CASTLE	Canonsburg PA 15317	Client: Crown Castle	Drawn by: phimes	App'd:
The Pathway to Possible	Phone: (724) 416-2000	Code: TIA-222-H	Date: 12/10/20	Scale: NTS
	FAX:	Path: C:Users\phimes\Desktop\Work Are	Dwg No. E-1	

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

- Tower is located in Litchfield County, Connecticut.
- Tower base elevation above sea level: 567.0000 ft.
- 5) Basic wind speed of 120.00 mph.
- Risk Category II.
- Exposure Category C.
- 8) Simplified Topographic Factor Procedure for wind speed-up calculations is used.
- 9) Topographic Category: 1.
- 10) Crest Height: 0.0000 ft.
- 11) Nominal ice thickness of 2.0000 in.
- Ice thickness is considered to increase with height.
- 13) Ice density of 56.00 pcf.
- 14) A wind speed of 50.00 mph is used in combination with ice.
- 15) Temperature drop of 50.00 °F.
- 16) Deflections calculated using a wind speed of 60.00 mph.
- 17) TIA-222-H Annex S.
- 18) A non-linear (P-delta) analysis was used.
- 19) Pressures are calculated at each section.
- 20) Stress ratio used in pole design is 1.05.
- 21) Tower analysis based on target reliabilities in accordance with Annex S.
- 22) Load Modification Factors used: Kes(Fw) = 0.95, Kes(ti) = 0.85.
- 23) Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

✓ Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile

Include Bolts In Member Capacity

Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

- ✓ Assume Rigid Index Plate
- ✓ Use Clear Spans For Wind Area Use Clear Spans For KL/r
- Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- $\sqrt{1}$ Project Wind Area of Appurt.

Autocalc Torque Arm Areas

Add IBC .6D+W Combination √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption

Poles

✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

	Tapered Pole Section Geometry									
Section	Elevation ft	Section Length ft	Splice Length ft	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade	
L1	168.0000-	10.0000	0.00	Round	14.0000	14.0000	0.2500		A53-B-35	
L2	158.0000 158.0000- 116.5000	41.5000	3.75	18	22.0000	29.1390	0.1875	0.7500	(35 ksi) A607-65 (65 ksi)	
L3	116.5000- 80.2500	40.0000	4.50	18	28.1190	35.0000	0.2500	1.0000	A607-65 (65 ksi)	
L4	80.2500- 39.7500	45.0000	5.25	18	33.7260	41.4670	0.3125	1.2500	A607-65	
L5	39.7500- 0.0000	45.0000		18	39.9390	47.6800	0.3750	1.5000	(65 ksi) A607-65 (65 ksi)	

Tapered Pole Properties

Section	Tip Dia. in	Area in²	l in⁴	r	C	I/C	J	It/Q	W	w/t
1.4				in	in	in ³	in⁴	in²	in	
L1	14.0000	10.7992	255.3004	4.8622	7.0000	36.4715	510.6008	5.3964	0.0000	0
	14.0000	10.7992	255.3004	4.8622	7.0000	36.4715	510.6008	5.3964	0.0000	0
L2	22.3105	12.9812	780.3007	7.7434	11.1760	69.8193	1561.6281	6.4918	3.5420	18.891
	29.5596	17.2298	1824.5630	10.2778	14.8026	123.2595	3651.5267	8.6165	4,7985	25.592
L3	29.1693	22.1141	2169.9441	9.8935	14,2845	151.9095	4342,7434	11.0591	4,5089	18.036
	35.5014	27.5741	4206.7704	12.3363	17,7800	236.6013	8419.0762	13,7897	5,7200	22.88
L4	34.9841	33.1420	4674.7706	11.8618	17.1328	272.8549	9355.6924	16.5742	5.3858	17.234
	42.0585	40.8201	8734.6676	14.6098	21.0652	414.6485	17480.828 5	20.4139	6.7482	21.594
L5	41.4143	47.0911	9312.7130	14.0452	20.2890	459.0028	18637.679 9	23.5500	6.3693	16.985
	48.3577	56.3048	15918.303 5	16.7933	24.2214	657.1989	31857.552 7	28.1577	7.7317	20.618

Tower	Gusset	Gusset	Gusset Grade Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
Elevation	Area (per face)	Thickness	Ar	Factor Ar		Stitch Bolt Spacing	Stitch Bolt Spacing	Stitch Bolt Spacing
ft	ft²	in				Diagonals in	Horizontals in	Redundants in
L1 168.0000-			1	1	1	No. of the second s		
158.0000					<i>b</i> i			
L2 158.0000-			1	1	1			
116.5000			5		1			
L3 116.5000-			1	1	1			
80.2500			5.T.	•				
L4 80.2500-			1	1	1			
39.7500				•	I.			
L5 39.7500-			1	1	1			
0.0000				10.4.5	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector		Componen	Placement	Total	Number			Perimete	Weigh
		From	T	~	Number	Per Row	d	Diamete	r	
		Torque	Туре	ft			Position	r		plf
***		Calculation						in	in	
561(1-5/8)	в	No			13	6	-0.333	1.6250		1.35
***			(CaAa)	0.0000			-0.125			

MS-650 (W)	В	No	Surface Af	30.5000 -	1	1	0.000	6.5000	16.0000	27.65
			(CaAa)	0.0000		<u> </u>	0.000	0.0000	10.0000	21.00
MS-650 (W)	А	No	Surface Af	30.5000 -	1	1	0.000	6.5000	16.0000	27.65

tnxTower Report - version 8.0.7.5

168 Ft Monopole Tower Structural Analysis Project Number 1902062, Order 479857, Revision 4

Description	Sector		Componen	Placement	Total	Number	Start/En	Width or	Perimete	Weigh
		From	t		Number	Per Row	d	Diamete	r	rioigin
		Torque	Type	ft			Position	r		plf
		Calculation						in	in	<i>[</i>
MO 050 (M)	~		(CaAa)	0.0000			0.000			
MS-650 (W)	С	No	Surface Af	30.5000 -	1	1	0.000	6.5000	16.0000	27.65
110 000 000	121		(CaAa)	5.5000			0.000			
MS-600 (W)	С	No	Surface Af	55.7500 -	1	1	0.000	6.0000	14,0000	20,42
			(CaAa)	25.7500			0.000			
MS-600 (W)	В	No	Surface Af	55.7500 -	1	1	0.000	6.0000	14.0000	20.42
			(CaAa)	25.7500			0.000			
MS-600 (W)	A	No	Surface Af	55.7500 -	1	1	0.000	6.0000	14.0000	20.42
			(CaAa)	25.7500			0.000			
MS-600 (W)	С	No	Surface Af	71.7500 -	1	1	0.000	6.0000	14.0000	20.42
110 000 010			(CaAa)	51.7500			0.000			
MS-600 (W)	В	No	Surface Af	71.7500 -	1	1	0.000	6.0000	14.0000	20.42
140,000,010			(CaAa)	51.7500			0.000			
MS-600 (W)	A	No	Surface Af	71.7500 -	1	1	0.000	6.0000	14.0000	20.42
MS-450 (L)	C	NI-	(CaAa)	51.7500			0.000			
M3-450 (L)	С	No	Surface Af	93.0000 -	1	1	0.000	4.5000	11.0000	15.31
MS-450 (L)	В	No	(CaAa)	83.0000			0.000			
MO-400 (L)	Ъ	No	Surface Af	93.0000 -	1	1	0.000	4.5000	11.0000	15.31
MS-450 (L)	А	No	(CaAa) Surface Af	83.0000	4		0.000	1 5000		
10 400 (L)	A	NO		93.0000 -	1	1	0.000	4.5000	11.0000	15.31
**			(CaAa)	83.0000			0.000			

Feed Line/Linear Appurtenances - Entered As Area

M5J(11/4") 0.0000 1/2" Ice 0.0000 HB058-M12- XXXF(5/8") C No No Inside Pole 157.0000 - 0.0000 1 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 1/2" Ice 0.0000 FB-L98B-002- 75000(3/8) C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 WR-VG122ST- BRDA(7/16) C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 1''' Ice 0.0000 1'''' Ice	Description	Face or	Allow Shield	Exclude From	Componen	Placement	Total Number		CAAA	Weight
*** HB114-1-0813U4- M5J(11/4") C No No Inside Pole 157.0000 - 0.0000 3 No lce 0.0000 HB058-M12- XXXF(5/8") C No No Inside Pole 157.0000 - 0.0000 1 No lce 0.0000 *** C No No Inside Pole 157.0000 - 0.0000 1 No lce 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 0.0000 12 No lce 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 0.0000 1/2" lce 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 0.0000 1/2" lce 0.0000 *** Z" lce 0.0000 1" lce 0.0000 1" lce 0.0000 *** Z" lce 0.0000 1" lce 0.0000 1" lce 0.0000 *** Z" lce 0.0000 1" lce 0.0000 1" lce 0.0000		Leg				ft			ft²/ft	plf
M5J(1 1/4") No No Inside Pole 157.0000 - 1 No Ice 0.0000 HB058-M12- XXXF(5/8") C No Inside Pole 157.0000 - 1 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 145.0000 - 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 145.0000 - 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 145.0000 - 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 1 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 1 No Ice 0.0000 *** C No Inside Pole 118.0000 - 2 No Ice 0.0000 1"'Ice 0.0000 1"'Ice	***	****		Calculation						
M5J(1114") 0.0000 1/2" loc 0.0000 HB058-M12- XXXF(5/8") C No Inside Pole 157.0000 - 0.0000 1 No loc 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 145.0000 - 0.0000 12 No loc 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 0.0000 12 No loc 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 148.0000 - 0.0000 12 No loc 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No loc 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 0.0000 12 No loc 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 0.0000 1 No loc 0.0000 *** C No Inside Pole 118.0000 - 0.0000 1 No loc 0.0000 1 1 No loc 0.0000 2" loc	HB114-1-0813U4-	С	No	No	Inside Pole	157.0000 -	3	No Ice	0.0000	1.20
HB058-M12- XXXF(5/8") C No Inside Pole 157.0000 - 0.0000 1 No Ice 0.0000 2" Ice 0.0000 11/2" Ice 0.0000 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 0.0000 12 No Ice 0.0000 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 0.0000 12 No Ice 0.0000 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 *** C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 ''' Ice 0.0000 1/2" Ice 0.0000	M5J(11/4")						0			1.20
HB058-M12- XXXF(5/8") C No Inside Pole 157.0000 - 0.0000 1 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 145.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 145.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 *** C No No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 2" Ice 0.0000 1" Ice 0.0000 1/2" Ice 0.0000 2" Ice 0.						0.0000				1.20
HB058-M12- XXXF(5/8") C No Inside Pole 157.0000 - 0.0000 1 No Ice 0.0000 1/2" Ice 0.0000 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 *** LDF3-50A(1-5/8") C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 *** C No Inside Pole 118.0000 - 0.0000 2 No Ice 0.0000 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
XXXF(5/8") 0.0000 1/2" Ice 0.0000 *** 0.0000 1" Ice 0.0000 *** 2" Ice 0.0000 1" Ice 0.0000 *** 2" Ice 0.0000 1" Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 1 No Ice 0.0000 *** LDF3-50A(1-5/8") C No No Inside Pole 118.0000 - 1 No Ice 0.0000 *** C No Inside Pole 118.0000 - 1 No Ice 0.0000 *** C No Inside Pole 118.0000 - 1 No Ice 0.0000	HB058-M12-	С	No	No	Inside Pole	157 0000	1			1.20
**** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 2" Ice 0.0000 - 2" Ice 0.0000 **** LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 0.0000 12 No Ice 0.0000 **** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 1/2" Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No Ice 0.0000 *** LDF3 C No No Inside Pole 118.0000 - 1 No Ice 0.0000 *** C No No Inside Pole 118.0000 - 2 No Ice 0.0000 *** C No No Inside Pole 118.0000 - 1 No Ice 0.0000 2" Ice 0.0000 1/2" Ice 0.0000 1/2" Ice 0.0000 1/2" Ice 0.0000 2" Ice 0.0000 <td< td=""><td></td><td></td><td></td><td>110</td><td>molde i ole</td><td></td><td>1</td><td></td><td></td><td>0.24</td></td<>				110	molde i ole		1			0.24
**** 2" Ice 0.0000 LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No Ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 *** C No No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 1 "'' Ice 0.0000 1 ''' Ice <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.0000</td><td></td><td></td><td></td><td>0.24</td></t<>						0.0000				0.24
LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - LDF7-50A(1-5/8") C No No Inside Pole 145.0000 - LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 2" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 2" Ice 0.0000 1"										0.24
*** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No ice 0.0000 *** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 0.0000 12 No ice 0.0000 FB-L98B-002- 75000(3/8) C No Inside Pole 118.0000 - 0.0000 1 No ice 0.0000 WR-VG122ST- BRDA(7/16) C No Inside Pole 118.0000 - 0.0000 1 No ice 0.0000 2" ice 0.0000 1/2" ice 0.0000 1" ice 0.0000 WR-VG122ST- BRDA(7/16) C No Inside Pole 118.0000 - 0.0000 2" ice 0.0000 2" (Nominal) Conduit C No Inside Pole 118.0000 - 0.0000 1 No ice 0.0000 **** LDF4-50A(1/2") C No Inside Pole 74.0000 - 0.0000 1 No ice 0.0000	***							2" Ice	0.0000	0.24
**** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No ice 0.0000 **** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No ice 0.0000 **** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No ice 0.0000 **** LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No ice 0.0000 **** C No Inside Pole 118.0000 - 1 No ice 0.0000 #WR-VG122ST- C No No Inside Pole 118.0000 - 2 No ice 0.0000 WR-VG122ST- C No No Inside Pole 118.0000 - 2 No ice 0.0000 WR-VG122ST- C No No Inside Pole 118.0000 - 2 No ice 0.0000 2" ice 0.0000 1" ice 0.0000 1" ice 0.0000 1" ice 0.0000 2" ice 0.0000 1" ice 0.0000 1" ice 0.0000 1" ice 0.	LDF7-50A(1-5/8")	С	No	No	Inside Pole	145 0000	10	No loo	0.0000	0.00
**** 1" Ice 0.0000 LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No Ice 0.0000 FB-L98B-002- C No No Inside Pole 118.0000 - 1 No Ice 0.0000 FB-L98B-002- C No No Inside Pole 118.0000 - 1 No Ice 0.0000 FB-L98B-002- C No No Inside Pole 118.0000 - 1 No Ice 0.0000 WR-VG122ST- C No No Inside Pole 118.0000 - 2" Ice 0.0000 WR-VG122ST- C No No Inside Pole 118.0000 - 2 No Ice 0.0000 2" (Nominal) C No Inside Pole 118.0000 - 1 No Ice 0.0000 2" Ice 0.0000 2" Ice 0.0000 2" Ice 0.0000 0 2" (Nominal) C No Inside Pole 118.0000 - 1 No Ice 0.0000 0 **** LDF4-50A(1/2") C No No I	(/			110	molde i ole		12			0.82
*** 2" Ice 0.0000 LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No Ice 0.0000 FB-L98B-002- 75000(3/8) C No No Inside Pole 118.0000 - 1 No Ice 0.0000 WR-VG122ST- BRDA(7/16) C No No Inside Pole 118.0000 - 2 No Ice 0.0000 2" Ice 0.0000 1/2" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 WR-VG122ST- BRDA(7/16) C No Inside Pole 118.0000 - 2 No Ice 0.0000 1" Ice 0.000						0.0000				0.82
LDF7-50A(1-5/8") C No No Inside Pole 118.0000 - 12 No Ice 0.0000 1/2" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 2" Ice 0.0000 1/2" Ice 0.0000 2" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 2" Ice 0.0000 1" Ice 0.0000 2" Ice 0.0000 1" Ice 0.00										0.82
FB-L98B-002- 75000(3/8) C No Inside Pole 118.0000 - 0.0000 1/2" Ice 0.0000 WR-VG122ST- BRDA(7/16) C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 2" Ice 0.0000 1/2" Ice 0.0000 1 No Ice 0.0000 WR-VG122ST- BRDA(7/16) C No Inside Pole 118.0000 - 0.0000 2 No Ice 0.0000 2" (Nominal) Conduit C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 **** LDF4-50A(1/2") C No No Inside Pole 74.0000 - 1 1 No Ice 0.0000	***							2° ice	0.0000	0.82
FB-L98B-002- 75000(3/8) C No Inside Pole 118.0000 - 0.0000 1/2" Ice 0.0000 11" Ice 0.0000 2" 2" Ice 0.0000 2" 2" Ice 0.0000 2" 1" Ice 0.0000 2" 1" Ice 0.0000 2" 1" Ice 0.0000 2" 1" Ice 0.0000 11" 1" Ice 0.0000 2" 1" Ice 0.0000 1" Ice 0	LDF7-50A(1-5/8")	С	No	No	Inside Pole	118 0000 -	12	No loo	0.0000	0.00
FB-L98B-002- 75000(3/8) C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 2" Ice 0.0000 1/2" Ice 0.0000 0.0000 WR-VG122ST- BRDA(7/16) C No Inside Pole 118.0000 - 0.0000 2 No Ice 0.0000 2" (Nominal) Conduit C No Inside Pole 118.0000 - 0.0000 2 No Ice 0.0000 4*** LDF4-50A(1/2") C No No Inside Pole 74.0000 - 0.0000 1 No Ice 0.0000 0	()			no	molde i die		12			0.82
FB-L98B-002- 75000(3/8) C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 WR-VG122ST- BRDA(7/16) C No No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 2" Ice 0.0000 1" Ice 0.0000 1" Ice 0.0000 WR-VG122ST- BRDA(7/16) C No Inside Pole 118.0000 - 0.0000 2 No Ice 0.0000 2" (Nominal) Conduit C No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 1" Ice 0.0000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0000</td> <td></td> <td></td> <td></td> <td>0.82</td>						0.0000				0.82
FB-L98B-002- 75000(3/8) C No No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 WR-VG122ST- BRDA(7/16) C No No Inside Pole 118.0000 - 0.0000 2 No Ice 0.0000 2" (Nominal) Conduit C No No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 1 **** LDF4-50A(1/2") C No No Inside Pole 74.0000 - 0.0000 1 No Ice 0.0000 0										0.82
75000(3/8) 1.00 1.00 1.10	FB-L98B-002-	С	No	No	Inside Polo	119 0000	4			0.82
WR-VG122ST- BRDA(7/16) C No No Inside Pole 118.0000 - 0.0000 2 No Ice 0.0000 0 2" (Nominal) Conduit C No No Inside Pole 118.0000 - 0.0000 2 No Ice 0.0000 0 2" (Nominal) Conduit C No No Inside Pole 118.0000 - 118.0000 - 0.0000 1 No Ice 0.0000 0 **** LDF4-50A(1/2") C No No Inside Pole 74.0000 - 0.0000 1 No Ice 0.0000 0		0		NO	Inside Pole		1			0.06
WR-VG122ST- BRDA(7/16) C No Inside Pole 118.0000 - 0.0000 2 No Ice 0.0000 1/2" Ice 0.0000 1/2" Ice 0.0000 1/2" Ice 0.0000 1" Ice 0.0000 1 1 Ice 1 Ice<						0.0000				0.06
WR-VG122ST- BRDA(7/16) C No Inside Pole 118.0000 - 0.0000 2 No Ice 0.0000 2" (Nominal) Conduit C No No Inside Pole 118.0000 - 0.0000 1 2" Ice 0.0000 1 2" (Nominal) Conduit C No No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 0 **** LDF4-50A(1/2") C No Inside Pole 74.0000 - 0.0000 1 No Ice 0.0000 0										0.06
BRDA(7/16) 0.0000 1/2" Ice 0.0000 1/2" Ice 0.0000 2" (Nominal) C No Inside Pole 118.0000 - 1 No Ice 0.0000 2" (Nominal) C No Inside Pole 118.0000 - 1 No Ice 0.0000 0 2" (Nominal) C No Inside Pole 118.0000 - 1 No Ice 0.0000 0 4*** 2" Ice 0.0000 1/2" Ice 0.0000 0 0 0 4*** LDF4-50A(1/2") C No Inside Pole 74.0000 - 1 No Ice 0.0000 0	WR-VG122ST-	С	No	No	Inside Pole	118 0000	2			0.06
2" (Nominal) C No Inside Pole 118.0000 - 1 No Ice 0.0000 (0) 2" (Nominal) C No Inside Pole 118.0000 - 1 No Ice 0.0000 (0) Conduit 0.0000 1/2" Ice 0.0000 (0) 11" Ice 0.0000 (0) *** LDF4-50A(1/2") C No Inside Pole 74.0000 - 1 No Ice 0.0000 (0)	BRDA(7/16)				maide i ole		2			0.14
2" (Nominal) C No No Inside Pole 118.0000 - 0.0000 1 No Ice 0.0000 0 *** *** LDF4-50A(1/2") C No Inside Pole 74.0000 - 0.0000 1 No Ice 0.0000 0	(0.0000				0.14
2" (Nominal) C No No Inside Pole 118.0000 - 1 No Ice 0.0000 0 Conduit 0.0000 1/2" Ice 0.0000 1/2" Ice 0.0000 0 **** LDF4-50A(1/2") C No Inside Pole 74.0000 - 1 No Ice 0.0000 0										0.14
Conduit 10.0000 11.0000 10.0000 11.0000 10.0000 <t< td=""><td>2" (Nominal)</td><td>С</td><td>No</td><td>No</td><td>Inside Pole</td><td>118 0000</td><td>4</td><td></td><td></td><td>0.14</td></t<>	2" (Nominal)	С	No	No	Inside Pole	118 0000	4			0.14
*** 11" loc 0.0000 0 *** 2" loc 0.0000 0 LDF4-50A(1/2") C No Inside Pole 74.0000 1 No loc 0.0000 0							1			0.72
*** 2" Ice 0.0000 0 LDF4-50A(1/2") C No Inside Pole 74.0000 - 1 No Ice 0.0000 0						0.0000				0.72
LDF4-50A(1/2") C No No Inside Pole 74.0000 - 1 No Ice 0.0000 (0.72
	***							Z" ICe	0.0000	0.72
	LDF4-50A(1/2")	С	No	No	Inside Pole	74 0000	1	No los	0.0000	0.45
		-		NO	Halde Fole	0.0000 -	1	1/2" Ice	0.0000	0.15
						0.0000				0.15
										0.15 0.15

or Shield From t Number Leg Torque Type ft		
Log forque Type n	ft²/ft	plf
Calculation		Pin

Feed Line/Linear Appurtenances Section Areas

Tower Sectio	Tower Elevation	Face	A _R	A _F	C _A A _A In Face	C _A A _A Out Face	Weight
п	ft		ft²	ft²	ft ²	ft ²	К
L1	168.0000-	A	0.000	0.000	0.000	0.000	0.00
	158.0000	В	0.000	0.000	7.800	0.000	0.14
18.13251		С	0.000	0.000	0.000	0.000	0.00
L2	158.0000-	Α	0.000	0.000	0.000	0.000	0.00
	116.5000	В	0.000	0.000	40.462	0.000	0.73
		С	0.000	0.000	0.000	0.000	0.45
L3	116.5000-	Α	0.000	0.000	7.500	0.000	0.15
	80.2500	В	0.000	0.000	42.844	0.000	0.79
		С	0.000	0.000	7.500	0.000	1.04
L4	80.2500-39.7500	A	0.000	0.000	36.000	0.000	0.74
		В	0.000	0.000	75.487	0.000	1.45
		С	0.000	0.000	36.000	0.000	1.74
L5	39.7500-0.0000	A	0.000	0.000	47.042	0.000	1.13
		В	0.000	0.000	85.798	0.000	1.83
		С	0.000	0.000	41.083	0.000	1.96

Feed Line/Linear Appurtenances Section Areas - With Ice

CONTRACTOR OF THE OWNER WATER								
Tower Sectio	Tower Elevation	Face or	lce Thickness	A _R	AF	CAAA	CAAA	Weight
n	ft	Leg	in	ft ²	ft^2	In Face ft ²	Out Face ft ²	14
L1	168.0000-	A	and the second				and the second se	K
			1.994	0.000	0.000	0.000	0.000	0.00
	158.0000	В		0.000	0.000	13.739	0.000	0.37
		С		0.000	0.000	0.000	0.000	0.00
L2	158.0000-	A	1.959	0.000	0.000	0.000	0.000	0.00
	116.5000	В		0.000	0.000	70.906	0.000	1.89
		С		0.000	0.000	0.000	0.000	0.45
L3	116.5000-	A	1.895	0.000	0.000	9,695	0.000	0.29
	80.2500	в		0.000	0.000	71.630	0.000	1.94
		С		0.000	0.000	9,695	0.000	1.18
L4	80.2500-39.7500	A	1.804	0.000	0.000	49.647	0.000	1.30
		в		0.000	0.000	118,197	0.000	3.10
		С		0.000	0.000	49.647	0.000	2.30
L5	39.7500-0.0000	A	1.618	0.000	0.000	63.097	0.000	1.82
		в		0.000	0.000	129,469	0.000	3.54
		С		0.000	0.000	55.154	0.000	2.57

Feed Line Center of Pressure

Elevation	CPx		The second s	
	CFX	CPz	CPx	CPz
			Ice	Ice
ft	in	in	in	in
168.0000-	2.6726	-4.1948	1.8658	-2.9284
158.0000				210201
158.0000-	3.1241	-4 9034	2 5943	-4.0719
116.5000			2.0040	-4.0715
116.5000-80.2500	2,7025	-4.2418	2 4753	-3.8851
80.2500-39.7500				-2.9815
39,7500-0.0000				-3.3735
	168.0000- 158.0000 158.0000- 116.5000 116.5000-80.2500	168.0000- 2.6726 158.0000 158.0000- 158.0000- 3.1241 116.5000 2.7025 80.2500-39.7500 1.8758	168.0000- 2.6726 -4.1948 158.0000 3.1241 -4.9034 116.5000 2.7025 -4.2418 80.2500-39.7500 1.8758 -2.9442	ft in in in 168.0000- 2.6726 -4.1948 1.8658 158.0000 158.0000- 3.1241 -4.9034 2.5943 116.5000 116.5000 2.7025 -4.2418 2.4753 80.2500-39.7500 1.8758 -2.9442 1.8996

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

7		I management			
Tower	Feed Line	Description	Feed Line	Ka	Ka
Section	Record No.		Segment	No Ice	Ice
			Elev.		
L1	2	561(1-5/8)	158.00 -	1.0000	1.0000
			166.00		
L2	2	561(1-5/8)	116.50 -	1.0000	1.0000
			158.00		
L3	2	561(1-5/8)	80.25 -	1.0000	1.0000
			116.50		
L3	27	MS-450 (L)	83.00 -	1.0000	1.0000
			93.00		
L3	28	MS-450 (L)	83.00 -	1.0000	1.0000
10			93.00		
L3	29	MS-450 (L)	83.00 -	1.0000	1.0000
			93.00		1
L4	2	561(1-5/8)	39.75 -	1.0000	1.0000
1.4			80.25		1
L4	21	MS-600 (W)	39.75 -	1.0000	1.0000
1.4	00		55.75		
L4	22	MS-600 (W)	39.75 -	1.0000	1.0000
			55.75		1
L4	23	MS-600 (W)	39.75 -	1.0000	1.0000
			55.75		
L4	24	MS-600 (W)	51.75 -	1.0000	1.0000
L4	25	NO 000 (11)	71.75		
L4	25	MS-600 (W)	51.75 -	1.0000	1.0000
L4	26	NO 000 (11)	71.75		[
L4	20	MS-600 (W)	51.75 -	1.0000	1.0000
L5	2	504(4.5/0)	71.75		
L5	2	561(1-5/8)	0.00 - 39.75	1.0000	1.0000
L5	18	MS-650 (W)	0.00 - 30.50	1.0000	1.0000
L5 L5	19	MS-650 (W)	0.00 - 30.50	1.0000	1.0000
L5 L5	20	MS-650 (W)	5.50 - 30.50	1.0000	1.0000
LO	21	MS-600 (W)	25.75 -	1.0000	1.0000
L5	00	10 000 010	39.75		1
LO	22	MS-600 (W)	25.75 -	1.0000	1.0000
L5	22	140.000 000	39.75		
LO	23	MS-600 (W)	25.75 -	1.0000	1.0000
States of the local division of the local di			39.75		1

Shielding Factor Ka

Effective Width of Flat Linear Attachments / Feed Lines

Tower	Attachment	Description	Attachmant	Deffe	FT (7
Section	Record No.	Description	Attachment	Ratio	Effective
Occuon	Record No.		Segment	Calculatio	Width
			Elev.	n	Ratio
				Method	
L3	27	MS-450 (L)	83.00 -	Auto	0.0000
			93.00		
L3	28	MS-450 (L)	83.00 -	Auto	0.0000
			93.00		
L3	29	MS-450 (L)	83.00 -	Auto	0.0000
			93.00		
L4	21	MS-600 (W)	39.75 -	Auto	0.0000
			55.75		
L4	22	MS-600 (W)	39.75 -	Auto	0.0000
			55.75		
L4	23	MS-600 (W)	39.75 -	Auto	0.0000
			55.75	, 1010	0.0000
L4	24	MS-600 (W)	51.75 -	Auto	0.0067
			71.75	, 1010	0.0007
L4	25	MS-600 (W)	51.75 -	Auto	0.0067
			71.75	Auto	0.0007
L4	26	MS-600 (W)	51.75 -	Auto	0.0067
			71.75	Auto	0.0087
L5	18	MS-650 (W)	0.00 - 30.50	Auto	0.0000
L5	19	MS-650 (W)			0.0000
Lol	10	1013-030 (00)]	0.00 - 30.50	Auto	0.0000

Tower Section	Attachment Record No.	Description	Attachment Segment Elev.	Ratio Calculatio n Method	Effective Width Ratio
L5	20	MS-650 (W)	5.50 - 30.50		0.0000
L5	21	MS-600 (W)	25.75 -	Auto	0.0000
			39.75		
L5	22	MS-600 (W)	25.75 -	Auto	0.0000
			39.75	1000 100	
L5	23	MS-600 (W)	25.75 -	Auto	0.0000
			39.75		

Discrete Tower Loads

Lightning Rod 5/8x4' APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	C A C	None From Leg From Leg	Vert ft ft ft ft ft ft ft 1.5000 0.00 0.00 0.00 1.5000 0.00 0.00	° 0.0000 0.0000 0.0000	ft 170.0000 166.0000 166.0000	No Ice 1/2" Ice 1" Ice 2" Ice No Ice 1" Ice	ft ² 0.2500 0.6635 0.9732 1.4936 14.6900 15.4600 16.2300 17.8200 14.6900 15.4600 16.2300 17.8200	ft ² 0.2500 0.6635 0.9732 1.4936 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500 8.2500 8.2500	K 0.03 0.04 0.06 0.18 0.31 0.45 0.78 0.18 0.31 0.45 0.78 0.18 0.31
APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	A B C	From Leg From Leg	1.5000 0.00 0.00 1.5000 0.00 0.00 1.5000 0.00	0.0000	166.0000 166.0000	1/2" Ice 1" Ice 2" Ice 1/2" Ice 1" Ice 2" Ice 1" Ice 2" Ice 1" Ice 2" Ice 1" Ice 2" Ice 1" Ice 2" Ice	0.6635 0.9732 1.4936 14.6900 15.4600 16.2300 17.8200 14.6900 15.4600 17.8200 14.6900 15.4600	0.6635 0.9732 1.4936 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500	0.03 0.04 0.06 0.18 0.31 0.45 0.78 0.18 0.31 0.45 0.78 0.18 0.31
APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	B	From Leg	0.00 0.00 1.5000 0.00 0.00 1.5000 0.00	0.0000	166.0000	Ice 1" Ice 2" Ice 1/2" Ice 1" Ice 2" Ice 1" Ice 1" Ice 2" Ice 1" Ice 2" Ice 1" Ice 1" Ice 1" Ice 1/2" Ice	0.9732 1.4936 14.6900 15.4600 16.2300 17.8200 14.6900 15.4600 17.8200 14.6900 15.4600	0.9732 1.4936 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500	0.03 0.04 0.06 0.18 0.31 0.45 0.78 0.18 0.31 0.45 0.78 0.18 0.31
APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	B	From Leg	0.00 0.00 1.5000 0.00 0.00 1.5000 0.00	0.0000	166.0000	1" Ice 2" Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice No Ice 1/2" Ice	1.4936 14.6900 15.4600 16.2300 17.8200 14.6900 15.4600 17.8200 14.6900 15.4600	1.4936 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500	0.04 0.06 0.18 0.31 0.45 0.78 0.18 0.31 0.45 0.78 0.18 0.31
APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	B	From Leg	0.00 0.00 1.5000 0.00 0.00 1.5000 0.00	0.0000	166.0000	2" Ice No Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice 1" Ice 2" Ice	14.6900 15.4600 16.2300 17.8200 14.6900 15.4600 16.2300 17.8200 14.6900 15.4600	6.8700 7.5500 8.2500 9.6700 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500	0.18 0.31 0.45 0.78 0.18 0.31 0.45 0.78 0.18 0.31
APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	B	From Leg	0.00 0.00 1.5000 0.00 0.00 1.5000 0.00	0.0000	166.0000	No Ice 1/2" Ice 1" Ice 2" Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice	15.4600 16.2300 17.8200 14.6900 15.4600 16.2300 17.8200 14.6900 15.4600	7.5500 8.2500 9.6700 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500	0.31 0.45 0.78 0.18 0.31 0.45 0.78 0.18 0.31
APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	B	From Leg	0.00 0.00 1.5000 0.00 0.00 1.5000 0.00	0.0000	166.0000	1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice	15.4600 16.2300 17.8200 14.6900 15.4600 16.2300 17.8200 14.6900 15.4600	7.5500 8.2500 9.6700 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500	0.31 0.45 0.78 0.18 0.31 0.45 0.78 0.18 0.31
A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	B	From Leg	0.00 0.00 1.5000 0.00 0.00 1.5000 0.00	0.0000	166.0000	1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice	15.4600 16.2300 17.8200 14.6900 15.4600 16.2300 17.8200 14.6900 15.4600	7.5500 8.2500 9.6700 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500	0.31 0.45 0.78 0.18 0.31 0.45 0.78 0.18 0.31
APXVAALL24_43-U- A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	С		0.00 1.5000 0.00 0.00 1.5000 0.00			Ice 1" Ice 2" Ice No Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice	16.2300 17.8200 14.6900 15.4600 16.2300 17.8200 14.6900 15.4600	8.2500 9.6700 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500	0.45 0.78 0.18 0.31 0.45 0.78 0.18 0.31
A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	С		1.5000 0.00 0.00 1.5000 0.00			1" Ice 2" Ice No Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice	17.8200 14.6900 15.4600 16.2300 17.8200 14.6900 15.4600	9.6700 6.8700 7.5500 8.2500 9.6700 6.8700 7.5500	0.78 0.18 0.31 0.45 0.78 0.18 0.31
A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	С		0.00 0.00 1.5000 0.00			2" Ice No Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice	14.6900 15.4600 16.2300 17.8200 14.6900 15.4600	6.8700 7.5500 8.2500 9.6700 6.8700 7.5500	0.18 0.31 0.45 0.78 0.18 0.31
A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	С		0.00 0.00 1.5000 0.00			No Ice 1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice	15.4600 16.2300 17.8200 14.6900 15.4600	7.5500 8.2500 9.6700 6.8700 7.5500	0.31 0.45 0.78 0.18 0.31
A20_TMO w/ Mount Pipe APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	С		0.00 0.00 1.5000 0.00			1/2" Ice 1" Ice 2" Ice No Ice 1/2" Ice	15.4600 16.2300 17.8200 14.6900 15.4600	7.5500 8.2500 9.6700 6.8700 7.5500	0.31 0.45 0.78 0.18 0.31
APXVAALL24_43-U- A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-		From Leg	0.00 1.5000 0.00	0.0000	166.0000	Ice 1" Ice 2" Ice No Ice 1/2" Ice	16.2300 17.8200 14.6900 15.4600	8.2500 9.6700 6.8700 7.5500	0.45 0.78 0.18 0.31
A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-		From Leg	1.5000 0.00	0.0000	166.0000	1" Ice 2" Ice No Ice 1/2" Ice	17.8200 14.6900 15.4600	9.6700 6.8700 7.5500	0.78 0.18 0.31
A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-		From Leg	0.00	0.0000	166.0000	2" Ice No Ice 1/2" Ice	14.6900 15.4600	6.8700 7.5500	0.18 0.31
A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-		From Leg	0.00	0.0000	166.0000	No Ice 1/2" Ice	15.4600	7.5500	0.31
A20_TMO w/ Mount Pipe PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-		Log	0.00	0.0000	100.0000	1/2" Ice	15.4600	7.5500	0.31
PX16DWV-16DWV-S-E- A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	۵					Ice			
A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	۵		0.00				10.2000	0.2:100	
A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	۵					1" 100	17.8200	9.6700	0.45 0.78
A20 w/ Mount Pipe PX16DWV-16DWV-S-E-	Δ					1" Ice 2" Ice	17.0200	9.0700	0.78
PX16DWV-16DWV-S-E-	A	From Leg	1.5000	0.0000	166.0000	No Ice	6.2900	2.7600	0.06
			0.00			1/2"	6.8600	3.2700	0.11
			0.00			Ice	7.4500	3.7900	0.16
						1" Ice	8.6800	4.9000	0.29
						2" Ice			0.20
	В	From Leg	1.5000	0.0000	166.0000	No Ice	6.2900	2.7600	0.06
A20 w/ Mount Pipe			0.00			1/2"	6.8600	3.2700	0.11
			0.00			Ice	7.4500	3.7900	0.16
						1" Ice	8.6800	4.9000	0.29
PX16DWV-16DWV-S-E-	0	Crows Law	4 5000	0.0000	100 0000	2" Ice	12 22000		
A20 w/ Mount Pipe	С	From Leg	1.5000	0.0000	166.0000	No Ice	6.2900	2.7600	0.06
AZO W/ MOUTIL Pipe			0.00			1/2"	6.8600	3.2700	0.11
			0.00				7.4500	3.7900	0.16
						1" Ice	8.6800	4.9000	0.29
(2) RADIO 4449 B71	А	From Leg	1.5000	0.0000	166.0000	2" Ice No Ice	1.9701	1 5965	0.07
B85A_T-MOBILE		Log	0.00	0.0000	100.0000	1/2"	2.1466	1.5865 1.7488	0.07
warrat Netariya - Antonia California Aliana Alian			0.00			lce	2.3306	1.9185	0.09 0.12
						1" Ice	2.7207	2.2800	0.12
						2" Ice		2.2000	0.17
ADIO 4449 B71 B85A_T-	В	From Leg	1.5000	0.0000	166.0000	No Ice	1.9701	1.5865	0.07
MOBILE			0.00			1/2"	2.1466	1.7488	0.09
			0.00			Ice	2.3306	1.9185	0.12
						1" Ice	2.7207	2.2800	0.17
(2) KDV 440 400/C		-				2" Ice			
(2) KRY 112 489/2	A	From Leg	1.5000	0.0000	166.0000	No Ice	0.5592	0.3651	0.02
			0.00			1/2"	0.6579	0.4484	0.02

tnxTower Report - version 8.0.7.5

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement	nun Persinen sekter in duem demonst	C _A A _A Front	C _A A _A Side	Weigl
			ft ft ft	o	ft		ft²	ft²	К
			0.00			Ice	0.7640	0.5420	0.03
						1" Ice	0.9984	0.7524	0.05
						2" Ice			
KRY 112 489/2	В	From Leg	1.5000	0.0000	166.0000	No Ice	0.5592	0.3651	0.02
			0.00			1/2"	0.6579	0.4484	0.02
			0.00			Ice	0.7640	0.5420	0.03
						1" Ice	0.9984	0.7524	0.05
KRY 112 144/1	В	From Leg	1 5000	0.0000	400 0000	2" Ice			
	D	r tom Leg	1.5000 0.00	0.0000	166.0000	No Ice	0.3500	0.1750	0.01
			0.00			1/2"	0.4259	0.2343	0.01
			0.00			Ice	0.5093	0.3009	0.02
						1" Ice 2" Ice	0.6981	0.4565	0.03
(2) KRY 112 144/1	С	From Leg	1.5000	0.0000	166.0000	No Ice	0.3500	0.1750	0.01
		5	0.00	0.0000	100.0000	1/2"	0.4259	0.1750	0.01 0.01
			0.00			lce	0.5093	0.3009	0.01
						1" Ice	0.6981	0.4565	0.02
						2" Ice	0.0001	0.4000	0.00
T-Arm Mount [TA 702-3]	С	None		0.0000	166.0000	No Ice	4.7500	4.7500	0.34
						1/2"	5.8200	5.8200	0.43
						Ice	6.9800	6.9800	0.55
						1" Ice	9.7200	9.7200	0.87
						2" Ice			
10' horizontal x 2" Pipe	A	From Leg	1.5000	0.0000	166.0000	No Ice	1.9000	0.0100	0.03
Mount			0.00			1/2"	2.9200	0.0400	0.04
			0.00			Ice	3.9700	0.0900	0.06
						1" Ice	5.6500	0.2100	0.13
10' horizontal y 2" Bino	D	Ensue Law	4 5000	0.0000		2" Ice			
10' horizontal x 2" Pipe Mount	В	From Leg	1.5000	0.0000	166.0000	No Ice	1.9000	0.0100	0.03
WOULL			0.00			1/2"	2.9200	0.0400	0.04
			0.00			Ice	3.9700	0.0900	0.06
						1" Ice	5.6500	0.2100	0.13
10' horizontal x 2" Pipe	С	From Lon	4 5000	0.0000	100 0000	2" Ice			
Mount	U	From Leg	1.5000	0.0000	166.0000	No Ice	1.9000	0.0100	0.03
Would			0.00			1/2"	2.9200	0.0400	0.04
			0.00			Ice	3.9700	0.0900	0.06
						1" Ice	5.6500	0.2100	0.13
***						2" Ice			
APXVTM14-C-120 w/	А	From Leg	4.0000	0.0000	157.0000	No Ice	4 0000	2 8600	0.00
Mount Pipe			0.00	0.0000	137.0000	1/2"	4.0900 4.4800	2.8600 3.2300	0.08 0.13
			0.00			Ice	4.8800	3.6100	0.13
						1" Ice	5.7100	4.4000	0.19
						2" Ice	0.1100	4.4000	0.55
APXVTM14-C-120 w/	в	From Leg	4.0000	0.0000	157.0000	No Ice	4.0900	2.8600	0.08
Mount Pipe			0.00			1/2"	4.4800	3.2300	0.13
			0.00			Ice	4.8800	3.6100	0.19
						1" Ice	5.7100	4.4000	0.33
	~	<u></u>	21.0			2" Ice			
APXVTM14-C-120 w/	С	From Leg	4.0000	0.0000	157.0000	No Ice	4.0900	2.8600	0.08
Mount Pipe			0.00			1/2"	4.4800	3.2300	0.13
			0.00			Ice	4.8800	3.6100	0.19
						1" Ice	5.7100	4.4000	0.33
0T465B-2XR w/ Mount	А	From Log	1 0000	0.0000	457 0000	2" Ice			
Pipe	A	From Leg	4.0000 0.00	0.0000	157.0000	No Ice	5.5000	4.3800	0.09
			0.00			1/2"	5.9700	4.8400	0.16
			0.00			Ice	6.4500	5.3000	0.25
						1" Ice	7.4400	6.2600	0.45
		Faces 1 a.e.	4.0000	0.0000	157.0000	2" Ice No Ice	5 5000	1 2000	0.00
0T465B-2XR w/ Mount	в	From Lea		0.0000	101.0000		5.5000	4.3800	0.09
)T465B-2XR w/ Mount Pipe	В	From Leg				1/2"	5 0700	4 9400	0 40
	В	From Leg	0.00			1/2" Ice	5.9700	4.8400	0.16
	В	From Leg	0.00			Ice	6.4500	5.3000	0.25
	В	From Leg	0.00						

tnxTower Report - version 8.0.7.5

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weigh
			ft ft ft	o	ft		ft²	ft²	К
Pipe			0.00			1/2"	5.9700	4.8400	0.16
			0.00			Ice	6.4500	5.3000	0.25
						1" Ice	7.4400	6.2600	0.25
						2" Ice	1.4400	0.2000	0.45
(3) ACU-A20-N	А	From Leg	4.0000	0.0000	157,0000	No Ice	0.0667	0.1167	0.00
			0.00	0.0000	157.0000	1/2"			0.00
			0.00			lce	0.1037	0.1620	0.00
			0.00			1" Ice	0.1481	0.2148	0.00
							0.2593	0.3426	0.01
(3) ACU-A20-N	В	From Leg	4.0000	0.0000	157 0000	2" Ice	0.0007		
(0)/100/12011	D	110III Leg	0.00	0.0000	157.0000	No Ice	0.0667	0.1167	0.00
			0.00			1/2"	0.1037	0.1620	0.00
			0.00			Ice	0.1481	0.2148	0.00
						1" Ice	0.2593	0.3426	0.01
(3) ACU-A20-N	С		4 0000	0.0000		2" Ice			
(J) ACO-AZO-N	C	From Leg	4.0000	0.0000	157.0000	No Ice	0.0667	0.1167	0.00
			0.00			1/2"	0.1037	0.1620	0.00
			0.00			lce	0.1481	0.2148	0.00
						1" Ice	0.2593	0.3426	0.01
						2" Ice			
TD-RRH8X20-25	A	From Leg	4.0000	0.0000	157.0000	No Ice	4.0455	1.5345	0.07
			0.00			1/2"	4.2975	1.7142	0.10
			0.00			Ice	4.5570	1.9008	0.13
						1" Ice	5.0981	2.2951	0.20
						2" Ice	0.0001	2.2001	0.20
(2) TD-RRH8X20-25	С	From Leg	4.0000	0.0000	157.0000	No Ice	4.0455	1.5345	0.07
			0.00	0.0000	107.0000	1/2"	4.2975	1.7142	
			0.00			Ice	4.2975		0.10
			0.00			1" Ice		1.9008	0.13
						2" Ice	5.0981	2.2951	0.20
(2) RRH2X50-800	В	From Leg	4.0000	0.0000	157.0000		1 7000	4 0000	0.05
(-)	-	1 tom Log	0.00	0.0000	157.0000	No Ice	1.7008	1.2822	0.05
						1/2"	1.8640	1.4275	0.07
			0.00			Ice	2.0345	1.5803	0.09
						1" Ice	2.3979	1.9081	0.14
	~			10 STOTES		2" Ice			
RRH2X50-800	С	From Leg	4.0000	0.0000	157.0000	No Ice	1.7008	1.2822	0.05
			0.00			1/2"	1.8640	1.4275	0.07
			0.00			Ice	2.0345	1.5803	0.09
						1" Ice	2.3979	1.9081	0.14
						2" Ice			
atform Mount [LP 712-1]	С	None		0.0000	157.0000	No Ice	24.5600	24.5600	1.34
						1/2"	27.9200	27.9200	1.91
						Ice	31.2700	31.2700	2.55
						1" Ice	37.9800	37.9800	3.97
						2" Ice	07.3000	57.5000	3.97
375" OD x 4' Mount Pipe	A	From Leg	4.0000	0.0000	157.0000	No Ice	0.8657	0.8657	0.00
negative concentration of concentration of the		209	0.00	0.0000	137.0000	1/2"			0.02
			0.00				1.1106	1.1106	0.03
			0.00			Ice	1.3648	1.3648	0.04
						1" Ice	1.9008	1.9008	0.06
375" OD x 4' Mount Pipe	В	From Log	4 0000	0.0000	153 0000	2" Ice			
or o ob x + Mount Pipe	Б	From Leg	4.0000	0.0000	157.0000	No Ice	0.8657	0.8657	0.02
			0.00			1/2"	1.1106	1.1106	0.03
			0.00			Ice	1.3648	1.3648	0.04
						1" Ice	1.9008	1.9008	0.06
375" OD x 4' Mount Pipe	C	From	1 0000	0.0005		2" Ice			
STO OD X4 WOULL PIPE	С	From Leg	4.0000	0.0000	157.0000	No Ice	0.8657	0.8657	0.02
			0.00			1/2"	1.1106	1.1106	0.03
			0.00			Ice	1.3648	1.3648	0.04
						1" Ice	1.9008	1.9008	0.06
						2" Ice			

00 EXTERNAL NOTCH	А	From Leg	2.0000	0.0000	155.0000	No Ice	0.6601	0.3211	0.01
		0							
FILTER			0.00				0/0//	1 3083	
						1/2" Ice	0.7627	0.3983	0.02
			1.00			lce 1" lce	0.7627 0.8727 1.1149	0.3983 0.4830 0.6744	0.02 0.02 0.04

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	٥	ft		ft²	ft²	К
800 EXTERNAL NOTCH	В	From Leg	2.0000	0.0000	155.0000	No Ice	0.6601	0.3211	0.01
FILTER		-	0.00			1/2"	0.7627	0.3983	0.02
			1.00			Ice	0.8727	0.4830	0.02
						1" Ice	1.1149	0.6744	0.02
AND IN TRACK STREET						2" Ice		0.0144	0.04
800 EXTERNAL NOTCH	С	From Leg	2.0000	0.0000	155.0000	No Ice	0.6601	0.3211	0.01
FILTER			0.00			1/2"	0.7627	0.3983	0.02
			1.00			Ice	0.8727	0.4830	0.02
						1" Ice	1.1149	0.6744	0.04
COOMIL DOLLARS HILL						2" Ice		-025	0.01
900MHz RRH (65MHz) w/	A	From Leg	2.0000	0.0000	155.0000	No Ice	2.7273	3.2407	0.07
Mount Pipe			0.00			1/2"	3.0489	3.6916	0.11
			-1.00			Ice	3.3824	4.1590	0.15
						1" Ice	4.0848	5.1440	0.24
	_					2" Ice			
900MHz RRH (65MHz) w/	В	From Leg	2.0000	0.0000	155.0000	No Ice	2.7273	3.2407	0.07
Mount Pipe			0.00			1/2"	3.0489	3.6916	0.11
			-1.00			Ice	3.3824	4.1590	0.15
						1" Ice	4.0848	5.1440	0.24
	0	-				2" Ice			
900MHz RRH (65MHz) w/	С	From Leg	2.0000	0.0000	155.0000	No Ice	2.7273	3.2407	0.07
Mount Pipe			0.00			1/2"	3.0489	3.6916	0.11
			-1.00			Ice	3.3824	4.1590	0.15
						1" Ice	4.0848	5.1440	0.24
800MHZ RRH	А	Erom Law	0.0000			2" Ice	5.464 bentiveneous		
	A	From Leg	2.0000	0.0000	155.0000	No Ice	2.1342	1.7730	0.05
			0.00			1/2"	2.3195	1.9461	0.07
			1.00			Ice	2.5123	2.1267	0.10
						1" Ice	2.9201	2.5100	0.16
800MHZ RRH	В	From Low	0.0000	0.0000		2" Ice			
	D	From Leg	2.0000	0.0000	155.0000	No Ice	2.1342	1.7730	0.05
			0.00			1/2"	2.3195	1.9461	0.07
			1.00			Ice	2.5123	2.1267	0.10
						1" Ice	2.9201	2.5100	0.16
800MHZ RRH	С	From Leg	2.0000	0.0000	155 0000	2" Ice	0 40 40	1 7700	
	0	1 Iom Leg	0.00	0.0000	155.0000	No Ice	2.1342	1.7730	0.05
			1.00			1/2"	2.3195	1.9461	0.07
			1.00			Ice 1" Ice	2.5123	2.1267	0.10
							2.9201	2.5100	0.16
ide Arm Mount [SO 102-	С	None		0.0000	155.0000	2" Ice No Ice	2 6000	0.0000	0.07
3]		110110		0.0000	155.0000	1/2"	3.6000	3.6000	0.07
						lce	4.1800 4.7500	4.1800 4.7500	0.11
						1" Ice	5.9000	5.9000	0.14
						2" Ice	5.9000	5.9000	0.20
***						2 100			
(2) LPA-80080/6CF w/	А	From Leg	4.0000	0.0000	145.0000	No Ice	4.5639	10.2588	0.05
Mount Pipe		-	0.00			1/2"	5.1051	11.4274	0.05
			2.00			Ice	5.6116	12.3118	0.11
			2010/01/02/02/02/02			1" Ice	6.6508	14.1293	0.19
(2) DA 00000/007						2" Ice	2.3000	11.1200	0.00
(2) LPA-80080/6CF w/	В	From Leg	4.0000	0.0000	145.0000	No Ice	4.5639	10.2588	0.05
Mount Pipe			0.00			1/2"	5.1051	11.4274	0.11
			2.00			Ice	5.6116	12.3118	0.19
						1" Ice	6.6508	14.1293	0.36
(2) LPA-80080/6CF w/	С	From	1.0000	0.0000		2" Ice			
Mount Pipe	C	From Leg	4.0000	0.0000	145.0000	No Ice	4.5639	10.2588	0.05
mount Pipe			0.00			1/2"	5.1051	11.4274	0.11
			2.00			Ice	5.6116	12.3118	0.19
						1" Ice	6.6508	14.1293	0.36
BXA-70063-6CF-2 w/	٨	Erors I	1 0000	0.0000		2" Ice			
UNT-10003-00F-2W/	A	From Leg	4.0000	0.0000	145.0000	No Ice	7.8065	5.8008	0.04
Mount Pine						1 111	0 0000	0000	0 10
Mount Pipe			0.00			1/2"	8.3569	6.9529	0.10
Mount Pipe			2.00			lce 1" lce	8.8720 9.9271	6.9529 7.8191 9.6015	0.10 0.17 0.34

168 Ft Monopole Tower Structural Analysis Project Number 1902062, Order 479857, Revision 4

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft²	ft²	К
BXA-70063-6CF-2 w/	В	From Leg	4.0000	0.0000	145 0000	2" Ice	7 0005	E 0000	
Mount Pipe	Б	From Leg	0.00	0.0000	145.0000	No Ice 1/2"	7.8065	5.8008	0.04
			2.00			lce	8.3569 8.8720	6.9529	0.10
			2.00			1" Ice	9.9271	7.8191 9.6015	0.17 0.34
						2" Ice	3.3211	9.0015	0.54
BXA-70063-6CF-2 w/	С	From Leg	4.0000	0.0000	145.0000	No Ice	7.8065	5.8008	0.04
Mount Pipe			0.00			1/2"	8.3569	6.9529	0.10
			2.00			Ice	8.8720	7.8191	0.17
						1" Ice	9.9271	9.6015	0.34
						2" Ice			
BXA-171085-12BF-2 w/	A	From Leg	4.0000	0.0000	145.0000	No Ice	4.9710	5.2283	0.04
Mount Pipe			0.00			1/2"	5.5211	6.3892	0.09
			2.00			Ice	6.0361	7.2610	0.14
						1" Ice	7.0911	9.0462	0.27
BXA-171085-12BF-2 w/	P	F arme 1	1 0000			2" Ice			
Mount Pipe	В	From Leg	4.0000	0.0000	145.0000	No Ice	4.9710	5.2283	0.04
Mount Tipe			0.00 2.00			1/2"	5.5211	6.3892	0.09
			2.00			Ice	6.0361	7.2610	0.14
						1" Ice 2" Ice	7.0911	9.0462	0.27
BXA-171085-12BF-2 w/	С	From Leg	4.0000	0.0000	145.0000	No Ice	4.9710	F 2202	0.04
Mount Pipe	-	. Tom Log	0.00	0.0000	143.0000	1/2"	5.5211	5.2283 6.3892	0.04
			2.00			lce	6.0361	7.2610	0.09
						1" Ice	7.0911	9.0462	0.14 0.27
						2" Ice	7.0311	9.0402	0.27
(2) FD9R6004/2C-3L	А	From Leg	4.0000	0.0000	145.0000	No Ice	0.3142	0.0762	0.00
			0.00			1/2"	0.3862	0.1189	0.00
			2.00			Ice	0.4656	0.1685	0.01
						1" Ice	0.6468	0.2940	0.02
						2" Ice			olon.
(2) FD9R6004/2C-3L	в	From Leg	4.0000	0.0000	145.0000	No Ice	0.3142	0.0762	0.00
			0.00			1/2"	0.3862	0.1189	0.01
			2.00			Ice	0.4656	0.1685	0.01
						1" Ice	0.6468	0.2940	0.02
(2) FD9R6004/2C-3L	С	From Leg	4.0000	0.0000	445 0000	2" Ice			
(2)1 D31(0004/20-32	C	From Leg	4.0000	0.0000	145.0000	No Ice	0.3142	0.0762	0.00
			2.00			1/2"	0.3862	0.1189	0.01
			2.00			Ice 1" Ice	0.4656	0.1685	0.01
						2" Ice	0.0468	0.2940	0.02
Platform Mount [LP 403-1]	С	None		0.0000	145.0000	No Ice	18.9400	18.9400	1 50
na z na z na okona zanada de na na da kana na kana na kana na						1/2"	23.3100	23.3100	1.50 1.90
						Ice	27.7400	27.7400	2.37
						1" Ice	36.7700	36.7700	3.53
***						2" Ice			0.00
RRUS 11	•	-	0.0000						
11100 11	A	From Leg	2.0000	0.0000	120.0000	No Ice	2.7845	1.1872	0.05
			0.00			1/2"	2.9919	1.3342	0.07
			0.00			Ice	3.2066	1.4897	0.09
						1" Ice	3.6584	1.8326	0.15
RRUS 11	в	From Leg	2.0000	0.0000	120.0000	2" Ice No Ice	2 70AF	1 4070	0.05
	10.000	209	0.00	0.0000	120.0000	1/2"	2.7845 2.9919	1.1872 1.3342	0.05 0.07
			0.00			lce	3.2066		
						1" Ice	3.6584	1.4897 1.8326	0.09 0.15
						2" Ice	0.0004	1.0020	0.15
RRUS 11	С	From Leg	2.0000	0.0000	120.0000	No Ice	2.7845	1.1872	0.05
			0.00			1/2"	2.9919	1.3342	0.07
			0.00			Ice	3.2066	1.4897	0.09
						1" Ice	3.6584	1.8326	0.15
Side Arm Mount [SO 102-	С	None		0.0000	100 0000	2" Ice			
3]	C	None		0.0000	120.0000	No Ice	3.6000	3.6000	0.07
U						1/2"	4.1800	4.1800	0.11
						Ice	4.7500	4.7500	0.14

168 Ft Monopole Tower Structural Analysis Project Number 1902062, Order 479857, Revision 4

December 10, 2020 CCI BU No 876392 Page 18

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C₄A₄ Front	C _A A _A Side	Weight
			ft ft ft	o	ft		ft²	ft²	К
						1" Ice 2" Ice	5.9000	5.9000	0.20
***						2 100			
7770.00 w/ Mount Pipe	А	From Leg	4.0000	0.0000	118.0000	No Ice	5.7460	4.2543	0.06
			0.00			1/2"	6.1791	5.0137	0.10
			1.00			Ice	6.6067	5.7109	0.16
						1" Ice	7.4880	7.1553	0.29
7770 00 w/ Mount Pine	в	From Log	4 0000	0.0000	119 0000	2" Ice	E 7460	4 2542	0.06
7770.00 w/ Mount Pipe	Б	From Leg	4.0000	0.0000	118.0000	No Ice 1/2"	5.7460	4.2543 5.0137	0.06
			0.00			lce	6.1791 6.6067	5.7109	0.10 0.16
			1.00			1" Ice	7.4880	7.1553	0.18
						2" Ice	7.4000	7.1555	0.29
7770.00 w/ Mount Pipe	С	From Leg	4.0000	0.0000	118.0000	No Ice	5.7460	4.2543	0.06
7770.00 W/ Would Fipe	U	FIUITLEY	0.00	0.0000	110.0000	1/2"	6.1791	5.0137	0.00
			1.00			lce	6.6067	5.7109	0.16
			1.00			1" Ice	7.4880	7.1553	0.29
						2" Ice	7.4000	1.1000	0.23
AM-X-CD-16-65-00T-RET	А	From Leg	4.0000	0.0000	118.0000	No Ice	4.6300	3.2700	0.07
w/ Mount Pipe		Troin Log	0.00	0.0000	110.0000	1/2"	5.0600	3.6900	0.13
in mount ipo			1.00			lce	5.5100	4.1200	0.20
						1" Ice	6.4300	5.0000	0.38
						2" Ice		0.0000	0.00
AM-X-CD-14-65-00T-RET	в	From Leg	4.0000	0.0000	118,0000	No Ice	2,9900	2,1400	0.05
w/ Mount Pipe		Ũ	0.00			1/2"	3.3000	2.4300	0.10
2.0			1.00			Ice	3.6200	2.7300	0.14
						1" Ice	4.2800	3.3600	0.27
						2" Ice			
800 10764 w/ Mount Pipe	С	From Leg	4.0000	0.0000	118.0000	No Ice	4.3300	3.1200	0.07
			0.00			1/2"	4.7700	3.5300	0.11
			1.00			Ice	5.2200	3.9600	0.17
						1" Ice	6.1500	4.8500	0.31
						2" Ice			
HPA-65R-BUU-H6 w/	A	From Leg	4.0000	0.0000	118.0000	No Ice	9.2200	6.2500	0.07
Mount Pipe			0.00			1/2"	9.9800	6.9600	0.14
			1.00			Ice	10.7600	7.7000	0.22
						1" Ice	12.3600	9.2200	0.42
	_					2" Ice		2 10001010	
SBNHH-1D65A w/ Mount	в	From Leg	4.0000	0.0000	118.0000	No Ice	3.0400	2.4500	0.05
Pipe			0.00			1/2"	3.3400	2.7500	0.10
			1.00			Ice	3.6500	3.0500	0.16
						1" Ice	4.3100	3.6800	0.31
SBNHH-1D65A w/ Mount	С	From Log	4.0000	0.0000	110 0000	2" Ice	2 0 4 0 0	0 4500	0.05
Pipe	C	From Leg	0.00	0.0000	118.0000	No Ice	3.0400	2.4500	0.05
Fipe			1.00			1/2"	3.3400 3.6500	2.7500 3.0500	0.10
			1.00			Ice 1" Ice	4.3100		0.16
						2" Ice	4.3100	3.6800	0.31
(4) LGP2140X	А	From Leg	4.0000	0.0000	118.0000	No Ice	1.0800	0.3580	0.02
(4) 201 2140		Tom Leg	0.00	0.0000	110.0000	1/2"	1.2137	0.3560	0.02
			1.00			lce	1.3548	0.5563	0.03
						1" Ice	1.6593	0.7825	0.06
						2" Ice		3.000 (February)	
(4) LGP2140X	в	From Leg	4.0000	0.0000	118.0000	No Ice	1.0800	0.3580	0.02
			0.00			1/2"	1.2137	0.4536	0.03
			1.00			Ice	1.3548	0.5563	0.04
						1" Ice	1.6593	0.7825	0.06
						2" Ice			
(4) LGP2140X	С	From Leg	4.0000	0.0000	118.0000	No Ice	1.0800	0.3580	0.02
			0.00			1/2"	1.2137	0.4536	0.03
			1.00			Ice	1.3548	0.5563	0.04
						1" Ice	1.6593	0.7825	0.06
		- Countration - Marcan				2" Ice		12 (220)220000	1200000000000
DO0 40 05 10 05								4 0447	0 00
DC6-48-60-18-8F	В	From Leg	4.0000 0.00	0.0000	118.0000	No Ice 1/2"	1.2117 1.8924	1.2117 1.8924	0.02 0.04

tnxTower Report - version 8.0.7.5

December 10, 2020 CCI BU No 876392 Page 19

168 Ft Monopole Tower Structural Analysis Project Number 1902062, Order 479857, Revision 4

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustmen t	Placement		C _A A _A Front	C _A A _A Side	Weigh
			ft ft ft	٥	ft		ft²	ft²	К
			1.00			Ice	2.1051	2,1051	0.07
						1" Ice 2" Ice	2.5703	2.5703	0.13
(2) 7020.00	А	From Leg	4.0000	0.0000	118.0000	No Ice	0.1021	0.1750	0.00
			0.00			1/2"	0.1469	0.2393	0.01
			1.00			Ice	0.1991	0.3109	0.01
						1" Ice 2" Ice	0.3258	0.4765	0.02
(2) 7020.00	в	From Leg	4.0000	0.0000	118.0000	No Ice	0.1021	0.1750	0.00
(2) 7020.00	D	From Leg	0.00	0.0000	118.0000	1/2"	0.1469	0.2393	0.00
			1.00			lce	0.1991	0.3109	0.01
			1.00			1" Ice	0.3258	0.4765	0.02
						2" Ice	0.0200	0.1100	0.02
(2) 7020.00	С	From Leg	4.0000	0.0000	118.0000	No Ice	0.1021	0.1750	0.00
(-)			0.00			1/2"	0.1469	0.2393	0.01
			1.00			Ice	0.1991	0.3109	0.01
						1" Ice	0.3258	0.4765	0.02
						2" Ice			
RRUS 4415 B25	Α	From Leg	4.0000	0.0000	118.0000	No Ice	1.6444	0.6788	0.04
			0.00			1/2"	1.8044	0.7911	0.06
			1.00			Ice	1.9719	0.9129	0.07
						1" Ice	2.3292	1.1834	0.11
RRUS 4415 B25	P	Franklas	4 0000	0.0000	110,0000	2" Ice	4 6 4 4 4	0.0700	0.04
RRUS 44 15 B25	В	From Leg	4.0000	0.0000	118.0000	No Ice	1.6444	0.6788	0.04
			0.00 1.00			1/2" Ice	1.8044 1.9719	0.7911 0.9129	0.06 0.07
			1.00			1" Ice	2.3292	1.1834	0.07
						2" Ice	2.02.02	1.1054	0.11
RRUS 4415 B25	С	From Leg	4.0000	0.0000	118.0000	No Ice	1.6444	0.6788	0.04
			0.00	0.0000		1/2"	1.8044	0.7911	0.06
			1.00			Ice	1.9719	0.9129	0.07
						1" Ice	2.3292	1.1834	0.11
						2" Ice			
Platform Mount [LP 303-1]	С	None		0.0000	118.0000	No Ice	14.6900	14.6900	1.25
						1/2"	18.0100	18.0100	1.57
						Ice	21.3400	21.3400	1.94
						1" Ice	28.0800	28.0800	2.85
*****						2" Ice			

KS24019-L112A	С	From Leg	3.0000	0.0000	74.0000	No Ice	0.1000	0.1000	0.01
			0.00			1/2"	0.1800	0.1800	0.01
			1.00			Ice	0.2600	0.2600	0.01
						1" Ice	0.4200	0.4200	0.01
0.4. 1	6					2" Ice			
Side Arm Mount [SO 702-	С	None		0.0000	74.0000	No Ice	0.6200	1.4900	0.03
1]						1/2"	0.7400	2.0700	0.04
						Ice	0.8900	2.5400	0.06
						1" Ice 2" Ice	1.2500	3.5500	0.12
***						∠ ICE			
**									

			Contraction of the local division of the loc		_						-
Section	Z	Kz	q _z	Ag	F	AF	AR	Aleg	Leg	CAAA	CAAA
Elevation					а				%	In	Out
					C					Face	Face
ft	ft		psf	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft ²
L1 168.0000-	163.0000	1.403	45.72	11.667	Α	0.000	11.667	11.667	100.00	0.000	0.000
158.0000					В	0.000	11.667		100.00	7.800	0.000
					С	0.000	11.667		100.00	0.000	0.000
L2 158.0000-	136.4479	1.351	44.01	89.692	A	0.000	89.692	89.692	100.00	0.000	0.000
116.5000					В	0.000	89.692		100.00	40.462	0.000
					С	0.000	89.692		100.00	0.000	0.000
L3 116.5000-	97.9594	1.26	41.03	97.680	A	0.000	97.680	97.680	100.00	7.500	0.000
80.2500					В	0.000	97.680		100.00	42.844	0.000
					С	0.000	97.680		100.00	7.500	0.000
L4 80.2500-	59.7435	1.136	36.88	130.00	A	0.000	130.009	130.009	100.00	36.000	0.000
39.7500		10000000000000		9	В	0.000	130.009		100.00	75.487	0.000
					С	0.000	130.009	2	100.00	36.000	0.000
L5 39.7500-	20.0692	0.903	29.74	148.68	Α	0.000	148.685	148.685	100.00	47.042	0.000
0.0000				5	В	0.000	148.685		100.00	85.798	0.000
					С	0.000	148.685		100.00	41.083	0.000

Tower Pressures - No Ice

GH = 1.100

Tower Pressure - With Ice

$G_H=1.100$

Section	Z	Kz	qz	tz	Ag	F	AF	A _R	Aleg	Leg	CAAA	CaAa
Elevation				1		а				%	ln	Out
						C					Face	Face
ft	ft		psf	in	ft ²	е	ft ²	ft ²	ft ²		ft ²	ft ²
L1 168.0000-	163.0000	1.403	7.94	1.9944	14.991	Α	0.000	14.991	14.991	100.00	0.000	0.000
158.0000						В	0.000	14.991	×	100.00	13.739	0.000
						С	0.000	14.991		100.00	0.000	0.000
L2 158.0000-	136.4479	1.351	7.64	1.9593	103.244	Α	0.000	103.244	103.244	100.00	0.000	0.000
116.5000						В	0.000	103.244		100.00	70.906	0.000
						С	0.000	103.244		100.00	0.000	0.000
L3 116.5000-	97.9594	1.26	7.12	1.8954	109.517	Α	0.000	109.517	109.517	100.00	9.695	0.000
80.2500						В	0.000	109.517		100.00	71.630	0.000
						С	0.000	109.517		100.00	9.695	0.000
L4 80.2500-	59.7435	1.136	6.40	1.8040	142.803	Α	0.000	142.803	142.803	100.00	49.647	0.000
39.7500						в	0.000	142.803		100.00	118.197	0.000
						С	0.000	142.803		100.00	49.647	0.000
L5 39.7500-	20.0692	0.903	5.16	1.6175	160.636	А	0.000	160.636	160.636	100.00	63.097	0.000
0.0000						В	0.000	160.636		100.00	129.469	0.000
						С	0.000	160.636		100.00	55.154	0.000

Tower Pressure - Service

 $G_H = 1.100$

Section Elevation	z	Kz	q _z	Ag	F a	AF	A _R	A _{leg}	Leg %	C _A A _A In	C _A A _A Out
ft	ft		psf	ft²	c e	ft²	ff ²	ft²	70	Face ft ²	Face ft ²
L1 168.0000-	163.0000	1.403	10.77	11.667	A	0.000	11.667	11.667	100.00	0.000	0.000
158.0000					В	0.000	11.667		100.00	7.800	0.000
					C	0.000	11.667		100.00	0.000	0.000
L2 158.0000-	136.4479	1.351	10.36	89.692	A	0.000	89.692	89.692	100.00	0.000	0.000
116.5000					В	0.000	89.692		100.00	40.462	0.000
					C	0.000	89.692		100.00	0.000	0.000
L3 116.5000-	97.9594	1.26	9.66	97.680	A	0.000	97.680	97.680	100.00	7.500	0.000
80.2500				9	В	0.000	97.680		100.00	42.844	0.000

tnxTower Report - version 8.0.7.5

168 Ft Monopole Tower Structural Analysis Project Number 1902062, Order 479857, Revision 4

Section	Z	Kz	qz	AG	F	AF	AR	Aleg	Leg	CAAA	CAAA
Elevation					а				%	In	Out
					С					Face	Face
ft	ft		psf	ft²	е	ft ²	ft ²	ft²		ft²	ft ²
					С	0.000	97.680		100.00	7.500	0.000
L4 80.2500-	59.7435	1.136	8.68	130.00	A	0.000	130.009	130.009	100.00	36.000	0.000
39.7500				9	В	0.000	130.009		100.00	75.487	0.000
					С	0.000	130.009		100.00	36.000	0.000
L5 39,7500-	20,0692	0.903	7.00	148.68	A	0.000	148.685	148.685	100.00	47.042	0.000
0.0000				5	В	0.000	148.685		100.00	85.798	0.000
					С	0.000	148.685		100.00	41.083	0.000

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	
8	0.9 Dead+1.0 Wind 60 deg - No Ice 1.2 Dead+1.0 Wind 90 deg - No Ice
o 9	0.9 Dead+1.0 Wind 90 deg - No Ice
	-
10 11	1.2 Dead+1.0 Wind 120 deg - No Ice
12	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
16	0.9 Dead+1.0 Wind 180 deg - No Ice
17	1.2 Dead+1.0 Wind 210 deg - No Ice
	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30 31	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39 40	Dead+Wind 0 deg - Service
40 41	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service Dead+Wind 90 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
45	Dead+Wind 180 deg - Service
45	Dead+Wind 100 deg - Service
40 47	3
47	Dead+Wind 240 deg - Service
48 49	Dead+Wind 270 deg - Service Dead+Wind 300 deg - Service
	0
50	Dead+Wind 330 deg - Service

Sectio n No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
L1	100 150	Dala	Mar Taralan	Comb.	<u>K</u>	kip-ft	kip-ft
LT	168 - 158	Pole	Max Tension	20	0.00	-0.00	-0.00
			Max. Compression	26	-6.78	-0.67	0.81
			Max. Mx	8	-1.70	-28.91	0.26
			Max. My	2	-1.82	-0.22	26.44
			Max. Vy	8	3.93	-28.91	0.26
			Max. Vx	24	-3.47	14.21	25.48
14525	20200 - 1070 Mar	13 11	Max. Torque	10			0.51
L2	158 - 116.5	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-31.57	-2.17	1.35
			Max. Mx	8	-9.40	-515.23	3.37
			Max. My	2	-9.64	-3.65	484.76
			Max. Vy	8	16.18	-515.23	3.37
			Max. Vx	2	-15.27	-3.65	484.76
			Max. Torque	8			0.60
L3	116.5 - 80.25	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-49.94	-5.65	3.96
			Max. Mx	8	-18.43	-1266.59	7.16
			Max. My	2	-18.63	-7.85	1202.74
			Max. Vy	8	22.89	-1266.59	7.16
			Max. Vx	2	-21.87	-7.85	1202.74
			Max. Torque	8			0.79
L4	80.25 - 39.75	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-67.36	-9.20	6.07
			Max. Mx	8	-30.23	-2251.90	11.38
			Max. My	2	-30.35	-12.63	2143.81
			Max. Vy	8	26.44	-2251.90	11.38
			Max. Vx	2	-25.27	-12.63	2143.81
			Max. Torque	8			0.79
L5	39.75 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-92.19	-13.14	8.92
			Max. Mx	8	-48.36	-3511.21	16.43
			Max. My	2	-48.37	-18.03	3348.66
			Max. Vy	8	29.11	-3511.21	16.43
			Max. Vx	2	-27.90	-18.03	3348.66
			Max. Torque	8	21.00		0.77

Maximum Member Forces

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	ĸ	ĸ	K
		Comb.			
Pole	Max. Vert	26	92.19	0.00	-0.00
	Max. H _x	21	36.30	29.05	-0.08
	Max. Hz	3	36.30	-0.08	27.85
	Max. M _x	2 8	3348.66	-0.08	27.85
	Max. M _z		3511.21	-29.05	0.08
	Max. Torsion	8 9 8	0.77	-29.05	0.08
	Min. Vert	9	36.30	-29.05	0.08
	Min. H _x	8	48.40	-29.05	0.08
	Min. Hz	15	36.30	0.08	-27.85
	Min. M _x	14	-3341.88	0.08	-27.85
	Min. Mz	20	-3500.87	29.05	-0.08
	Min. Torsion	20	-0.76	29.05	-0.08

Tower Mast Reaction Summary

Load	Vertical	Shearx	Shearz	Overturning	Overturning	Torque
Combination	к	К	к	Moment, M _x kip-ft	Moment, Mz kip-ft	kip-ft
Dead Only 1.2 Dead+1.0 Wind 0 deg -	40.33 48.40	-0.00 0.08	0.00 -27.85	-2.72 -3348.66	-3.96 -18.03	-0.00 -0.08
No Ice						-0.09
0.9 Dead+1.0 Wind 0 deg - No Ice	36.30	0.08	-27.85	-3283.15	-16.42	
1.2 Dead+1.0 Wind 30 deg - No Ice	48.40	13.95	-24.16	-2907.91	-1682.89	-0.39
0.9 Dead+1.0 Wind 30 deg - No Ice	36.30	13.95	-24.16	-2850.53	-1648.91	-0.40
1.2 Dead+1.0 Wind 60 deg - No Ice	48.40	24.08	-14.00	-1687.88	-2898.18	-0.60
0.9 Dead+1.0 Wind 60 deg - No Ice	36.30	24.08	-14.00	-1654.20	-2840.58	-0.60
1.2 Dead+1.0 Wind 90 deg -	48.40	29.05	-0.08	-16.43	-3511.21	-0.77
No Ice 0.9 Dead+1.0 Wind 90 deg -	36.30	29.05	-0.08	-15.25	-3441.64	-0.75
No Ice 1.2 Dead+1.0 Wind 120 deg	48.40	26.01	15.02	1807.38	-3143.02	-0.72
- No Ice 0.9 Dead+1.0 Wind 120 deg	36.30	26.01	15.02	1773.18	-3080.83	-0.69
- No Ice 1.2 Dead+1.0 Wind 150 deg	48.40	14.85	25.89	3097.96	-1781.49	-0.40
- No Ice 0.9 Dead+1.0 Wind 150 deg	36,30	14.85	25.89	3038.74	-1745,74	-0.37
- No Ice						
1.2 Dead+1.0 Wind 180 deg - No Ice	48.40	-0.08	27.85	3341.88	8.05	0.08
0.9 Dead+1.0 Wind 180 deg - No Ice	36.30	-0.08	27.85	3278.15	9.08	0.10
1.2 Dead+1.0 Wind 210 deg - No Ice	48.40	-13.95	24.16	2901.16	1672.94	0.40
0.9 Dead+1.0 Wind 210 deg - No Ice	36.30	-13.95	24.16	2845.56	1641.59	0.40
1.2 Dead+1.0 Wind 240 deg - No Ice	48.40	-24.08	14.00	1681.11	2888.28	0.60
0.9 Dead+1.0 Wind 240 deg	36.30	-24.08	14.00	1649.22	2833.30	0.60
- No Ice 1.2 Dead+1.0 Wind 270 deg	48.40	-29.05	0.08	9.63	3500.87	0.76
- No Ice 0.9 Dead+1.0 Wind 270 deg	36.30	-29.05	0.08	10.24	3434.38	0.74
- No Ice 1.2 Dead+1.0 Wind 300 deg	48.40	-26.01	-15.02	-1814.21	3133.12	0.71
- No Ice 0.9 Dead+1.0 Wind 300 deg	36.30	-26.01	-15.02	-1778.21	3073.55	0.68
- No Ice 1.2 Dead+1.0 Wind 330 deg	48.40	-14.85	-25.89	-3104.79	1771.53	
- No Ice						0.40
0.9 Dead+1.0 Wind 330 deg - No Ice	36.30	-14.85	-25.89	-3043.76	1738.42	0.37
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0	92.19 92.19	-0.00 0.02	0.00 -8.20	-8.92 1114.08-	-13.14 -16.18	-0.00 0.02
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 30	92.19	4.10	-7.11	-967.49	-567.02	-0.07
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 60	92.19	7.09	-4.11	-564.07	-969.47	-0.15
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 90	92.19	8.23	-0.02	-11.92	-1125.57	-0.20
deg+1.0 lce+1.0 Temp 1.2 Dead+1.0 Wind 120	92.19	7.13	4.12	547.28	-977.39	-0.20
deg+1.0 lce+1.0 Temp						
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	92.19	4.10	7.14	956.13	-567.46	-0.14
1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	92.19	-0.02	8.20	1096.11	-10.32	-0.02
1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	92.19	-4.10	7.11	949.53	540.53	0.07

Load Combination	Vertical	Shearx	Shearz	Overturning Moment, M _x	Overturning Moment, Mz	Torque
	К	К	к	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 240	92.19	-7.09	4.11	546.11	942.99	0.14
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	92.19	-8.23	0.02	-6.06	1099.10	0.20
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	92.19	-7.13	-4.12	-565.27	950.90	0.20
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	92.19	-4.10	-7.14	-974.12	540.96	0.14
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	40.33	0.02	-6.56	-783.46	-7.15	-0.02
Dead+Wind 30 deg - Service	40.33	3.28	-5.69	-680.39	-395.54	-0.10
Dead+Wind 60 deg - Service	40.33	5.67	-3.29	-395.77	-679.04	-0.14
Dead+Wind 90 deg - Service	40.33	6.84	-0.02	-5.86	-822.58	-0.18
Dead+Wind 120 deg -	40.33	6.12	3.54	419.91	-736.69	-0.17
Service						
Dead+Wind 150 deg -	40.33	3.50	6.09	721.09	-418.78	-0.09
Service						
Dead+Wind 180 deg -	40.33	-0.02	6.56	777.82	-1.07	0.02
Service	10.00					
Dead+Wind 210 deg -	40.33	-3.28	5.69	674.75	387.31	0.10
Service						0.000
Dead+Wind 240 deg -	40.33	-5.67	3.29	390.13	670.81	0.14
Service	40.00	0.04		0.00		
Dead+Wind 270 deg -	40.33	-6.84	0.02	0.22	814.36	0.18
Service	40.00	0.40	0.54	405 55	700 17	0.17
Dead+Wind 300 deg - Service	40.33	-6.12	-3.54	-425.55	728.47	0.17
	40.22	2 50	C 00	700 74	140 55	0.00
Dead+Wind 330 deg - Service	40.33	-3.50	-6.09	-726.74	410.55	0.09

Solution Summary

	Sun	n of Applied Force	9S		Sum of Reactio	ns	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	К	K	к	ĸ	к	ĸ	
1	0.00	-40.33	0.00	0.00	40.33	-0.00	0.002%
2 3	0.08	-48.40	-27.86	-0.08	48.40	27.85	0.014%
	0.08	-36.30	-27.86	-0.08	36.30	27.85	0.011%
4	13.95	-48.40	-24.16	-13.95	48.40	24.16	0.000%
5	13.95	-36.30	-24.16	-13.95	36.30	24.16	0.000%
6	24.08	-48.40	-14.00	-24.08	48.40	14.00	0.000%
7	24.08	-36.30	-14.00	-24.08	36.30	14.00	0.000%
8	29.06	-48.40	-0.08	-29.05	48.40	0.08	0.009%
9	29.06	-36.30	-0.08	-29.05	36.30	0.08	0.011%
10	26.01	-48.40	15.02	-26.01	48.40	-15.02	0.000%
11	26.01	-36.30	15.02	-26.01	36.30	-15.02	0.000%
12	14.85	-48.40	25.89	-14.85	48.40	-25.89	0.000%
13	14.85	-36.30	25.89	-14.85	36.30	-25.89	0.000%
14	-0.08	-48.40	27.86	0.08	48.40	-27.85	0.014%
15	-0.08	-36.30	27.86	0.08	36.30	-27.85	0.011%
16	-13.95	-48.40	24.16	13.95	48.40	-24.16	0.000%
17	-13.95	-36.30	24.16	13,95	36.30	-24.16	0.000%
18	-24.08	-48.40	14.00	24.08	48.40	-14.00	0.000%
19	-24.08	-36.30	14.00	24.08	36.30	-14.00	0.000%
20	-29.06	-48.40	0.08	29.05	48.40	-0.08	0.015%
21	-29.06	-36.30	0.08	29.05	36.30	-0.08	0.011%
22	-26.01	-48.40	-15.02	26.01	48.40	15.02	0.000%
23	-26.01	-36.30	-15.02	26.01	36.30	15.02	0.000%
24	-14.85	-48.40	-25.89	14.85	48.40	25.89	0.000%
25	-14.85	-36.30	-25.89	14.85	36.30	25.89	0.000%
26	0.00	-92.19	0.00	0.00	92.19	-0.00	0.000%
27	0.02	-92.19	-8.20	-0.02	92.19	8.20	0.002%
28	4.11	-92.19	-7.11	-4.10	92.19	7.11	0.002%
29	7.10	-92.19	-4.11	-7.09	92.19	4.11	0.002%
30	8.23	-92.19	-0.02	-8.23	92.19	0.02	0.002%
31	7.13	-92.19	4.12	-7.13	92.19	-4.12	0.002%
32	4.11	-92.19	7.14	-4.10	92.19	-7.14	0.002%

	Sur	n of Applied Force	S		Sum of Reaction	าร	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	ĸ	ĸ	ĸ	
33	-0.02	-92.19	8.20	0.02	92.19	-8.20	0.002%
34	-4.11	-92.19	7.11	4.10	92.19	-7.11	0.002%
35	-7.10	-92.19	4.11	7.09	92.19	-4.11	0.002%
36	-8.23	-92.19	0.02	8.23	92.19	-0.02	0.002%
37	-7.13	-92.19	-4.12	7.13	92.19	4.12	0.002%
38	-4.11	-92.19	-7.14	4.10	92.19	7.14	0.002%
39	0.02	-40.33	-6.56	-0.02	40.33	6.56	0.004%
40	3.28	-40.33	-5.69	-3.28	40.33	5.69	0.004%
41	5.67	-40.33	-3.30	-5.67	40.33	3.29	0.004%
42	6.84	-40.33	-0.02	-6.84	40.33	0.02	0.004%
43	6.12	-40.33	3.54	-6.12	40.33	-3.54	0.004%
44	3.50	-40.33	6.10	-3.50	40.33	-6.09	0.004%
45	-0.02	-40.33	6.56	0.02	40.33	-6.56	0.004%
46	-3.28	-40.33	5.69	3.28	40.33	-5.69	0.004%
47	-5.67	-40.33	3.30	5.67	40.33	-3.29	0.004%
48	-6.84	-40.33	0.02	6.84	40.33	-0.02	0.004%
49	-6.12	-40.33	-3.54	6.12	40.33	3.54	0.004%
50	-3.50	-40.33	-6.10	3.50	40.33	6.09	0.004%

Load ombination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	10	0.00000001	0.00001058
2	Yes	20	0.00014403	0.00013563
3	Yes	20	0.00009233	0.00010277
4	Yes	28	0.0000001	0.00010811
5	Yes	27	0.00000001	0.00011532
6	Yes	28	0.00000001	0.00010891
7	Yes	27	0.00000001	0.00011627
8	Yes	21	0.00008827	0.0001108
9	Yes	20	0.00009087	0.00013118
10	Yes	20	0.00000001	0.00012560
11	Yes	20	0.00000001	0.00012500
12	Yes	28	0.00000001	0.00013273
12	Yes	20	0.00000001	0.00012994
14	Yes	20	0.00014408	0.0001263
15	Yes	20	0.00009235	0.00009993
16	Yes	28	0.0000001	0.00010769
17	Yes	27	0.0000001	0.00011523
18	Yes	28	0.0000001	0.0001068
19	Yes	27	0.0000001	0.00011420
20	Yes	20	0.00014197	0.00012366
21	Yes	20	0.00009091	0.0000958
22	Yes	28	0.0000001	0.00012693
23	Yes	27	0.0000001	0.00013422
24	Yes	28	0.0000001	0.00012159
25	Yes	27	0.0000001	0.0001288
26	Yes	19	0.0000001	0.00000353
27	Yes	26	0.00010589	0.0000201
28	Yes	26	0.00010528	0.0000849
29	Yes	26	0.00010528	0.0000853
30	Yes	26	0.00010586	0.00002040
31	Yes	26	0.00010531	0.00008249
32	Yes	26	0.00010530	0.0000844
33	Yes	26	0.00010592	0.0000196
34	Yes	26	0.00010539	0.00007830
35	Yes	26	0.00010539	0.0000777
36	Yes	26	0.00010593	0.00001979
37	Yes	26	0.00010533	0.0000836
38	Yes	26	0.00010533	0.0000830
39	Yes	20	0.00012314	0.0000356
40	Yes	20	0.00012314	0.00003566
41	Yes	20	0.00012278	0.00007090
41	Yes	20	0.00012307	0.0000379

44	Yes	20	0.00012260	0.00008389
45	Yes	20	0.00012315	0.00003540
46	Yes	20	0.00012280	0.00006761
47	Yes	20	0.00012280	0.00006451
48	Yes	20	0.00012309	0.00003730
49	Yes	20	0.00012256	0.00008844
50	Yes	20	0.00012261	0.00008047

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	O	0
L1	168 - 158	49.056	43	2.5562	0.0026
L2	158 - 116.5	43.722	43	2.5263	0.0016
L3	120.25 - 80.25	25.112	43	2.0629	0.0014
L4	84.75 - 39.75	12.059	43	1.3902	0.0006
L5	45 - 0	3.306	43	0.6764	0.0002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	o	o	ft
170.0000	Lightning Rod 5/8x4'	43	49.056	2.5562	0.0026	24473
166.0000	APXVAALL24_43-U-NA20_TMO	43	47.986	2.5519	0.0024	24473
	w/ Mount Pipe					
157.0000	APXVTM14-C-120 w/ Mount	43	43.193	2.5213	0.0015	11444
	Pipe					
155.0000	800 EXTERNAL NOTCH FILTER	43	42.137	2.5097	0.0014	9914
145.0000	(2) LPA-80080/6CF w/ Mount	43	36.942	2.4241	0.0012	6011
	Pipe					
120.0000	RRUS 11	43	25.003	2.0586	0.0014	3086
118.0000	7770.00 w/ Mount Pipe	43	24.139	2.0233	0.0014	3055
74.0000	KS24019-L112A	43	9.066	1.1865	0.0004	3045

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
	ft	in	Comb.	o	o
L1	168 - 158	208.608	10	10.9293	0.0119
L2	158 - 116.5	186.025	10	10.8026	0.0076
L3	120.25 - 80.25	107.110	10	8.8252	0.0061
L4	84.75 - 39.75	51.530	10	5.9499	0.0028
L5	45 - 0	14.141	10	2.8947	0.0010

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	٥	o	ft
170.0000	Lightning Rod 5/8x4'	10	208.608	10.9293	0.0119	6215
166.0000	APXVAALL24_43-U-NA20_TMO w/ Mount Pipe	10	204.078	10.9111	0.0109	6215
157.0000	APXVTM14-C-120 w/ Mount Pipe	10	183.782	10.7814	0.0072	2895
155.0000	800 EXTERNAL NOTCH FILTER	10	179.309	10.7323	0.0067	2501
145.0000	(2) LPA-80080/6CF w/ Mount	10	157.300	10.3671	0.0056	1511

December 10, 2020 CCI BU No 876392 Page 27

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	D	٥	ft
	Pipe					
120.0000	RRUS 11	10	106.646	8.8066	0.0061	763
118.0000	7770.00 w/ Mount Pipe	10	102.974	8.6558	0.0061	754
74.0000	KS24019-L112A	10	38.753	5.0784	0.0019	725

Compression Checks

ection No.	Elevation	Size	L	Lu	Kl/r	А	Pu	φPn	Ratio Pu
	ft		ft	ft		in ²	K	к	φPn
L1	168 - 167	TP14x14x0.25	10.000	0.0000	0.0	10.799	-0.19	340.18	0.001
	167 - 166		0			2 10.799	-0.12	340.18	0.000
	166 - 165					2 10.799	-1.37	340.18	0.004
	165 - 164					2 10.799	-1.42	340.18	0.004
	164 - 163					2 10.799 2	-1.46	340.18	0.004
	163 - 162					10.799	-1.50	340.18	0.004
	162 - 161					2 10.799 2	-1.55	340.18	0.005
	161 - 160					10.799 2	-1.59	340.18	0.005
	160 - 159					10.799 2	-1.63	340.18	0.005
	159 - 158					10.799 2	-1.66	340.18	0.005
L2	158 - 156.013	TP29.139x22x0.1875	41.500 0	0.0000	0.0	13.184 6	-3.95	771.30	0.005
	156.013 -		Ū			13.388	-4.49	783.20	0.006
	154.026 154.026 -					0 13.591	-4.64	795.10	0.006
	152.039 152.039 -					4 13.794	-4.79	807.00	0.006
	150.053 150.053 -					8 13.998	-4.94	818.89	0.006
	148.066 148.066 -					2 14.201	-5.09	830.79	0.006
	146.079 146.079 -					6 14.405	-6.93	842.69	0.008
	144.092 144.092 -					0 14.608	-7.10	854.59	0.008
	142.105 142.105 -					4 14.811	-7.27	866.49	0.008
	140.118 140.118 - 138.132					8 15.015 2	-7.45	878.39	0.008
	138.132 - 136.145					15.218 6	-7.64	890.29	0.009
	136.145 - 134.158					15.422 0	-7.82	902.19	0.009
	134.158 - 132.171					15.625 4	-8.02	914.09	0.009
	132.171 - 130.184					15.828 8	-8.21	925.99	0.009
	130.184 - 128.197					16.032 2	-8.41	937.89	0.009
	128.197 - 126.211					16.235 6	-8.62	949.78	0.009
	126.211 -					16.439	-8.83	961.68	0.009

Section No.	Elevation	Size	L	Lu	Kl/r	А	Pu	φPn	Ratio Pu
110.	ft		ft	ft		in²	К	К	 φ Ρ n
	124.224 124.224 -					0 16.642	-9.04	973.58	0.009
	122.237 122.237 -					4 16.845	-9.26	985.48	0.009
	120.25					9			
	120.25 - 116.5					17.229 8	-6.19	1007.94	0.006
L3	120.25 - 116.5	TP35x28.119x0.25	40.000 0	0.0000	0.0	22.625 9	-6.19	1323.62	0.005
	116.5 - 114.736					22.866 7	-12.68	1337.70	0.009
	114.736 -					23.107	-12.98	1351.79	0.010
	112.972 112.972 -					5 23.348	-13.29	1365.87	0.010
	111.208 111.208 -					3 23.589	-13.60	1379.96	0.010
	109.444 109.444 -					0 23.829	-13.91	1394.04	0.010
	107.681 107.681 -					8 24.070	-14.22	1408.13	0.010
	105.917 105.917 -					6 24.311	-14.54	1422.21	0.010
	104.153 104.153 -					4			
	102.389					24.552 1	-14.87	1436.30	0.010
	102.389 - 100.625					24.792 9	-15.19	1450.38	0.010
	100.625 - 98.8611					25.033 7	-15.52	1464.47	0.011
	98.8611 - 97.0972					25.274 4	-15.86	1478.56	0.011
	97.0972 - 95.3333					25.515	-16.19	1492.64	0.011
	95.3333 -					2 25.756	-16.53	1506.73	0.011
	93.5694 93.5694 -					0 25.996	-16.87	1520.81	0.011
	91.8056 91.8056 -					8 26.237	-17.22	1534.90	0.011
	90.0417 90.0417 -					5 26.478	-17.57	1548.98	0.011
	88.2778 88.2778 -					3 26.719	-17.92	1563.07	0.011
	86.5139 86.5139 -					1 26.959	-18.28	1577.15	0.012
	84.75 84.75 - 80.25					9			
		TD44 407-00-700-0-0405	15 000	0.0000		27.574 1	-8.91	1613.09	0.006
L4	84.75 - 80.25	TP41.467x33.726x0.3125	45.000 0	0.0000	0.0	33.909 8	-10.80	1983.72	0.005
	80.25 - 78.2917					34.244 0	-20.26	2003.27	0.010
	78.2917 - 76.3333					34.578 1	-20.81	2022.82	0.010
	76.3333 - 74.375					34.912 2	-21.36	2042.37	0.010
	74.375 - 72.4167					35.246 4	-21.95	2061.91	0.011
	72.4167 - 70.4583					35.580	-22.51	2081.46	0.011
	70.4583 -					5 35.914	-23.07	2101.01	0.011
	68.5 68.5 -					7 36.248	-23.64	2120.56	0.011
	66.5417 66.5417 -					8 36.582	-24.22	2140.10	0.011
	64.5833 64.5833 -					9 36.917	-24.79	2159.65	0.011
	62.625 62.625 -					1 37.251	-25.37	2179.20	0.012
	60.6667					2	20.01		0.012

No. ft f	$\begin{array}{c} P_{u} \\ \hline P_{n} \\ 0.012 \\ 0.012 \\ 0.012 \\ 0.012 \\ 0.012 \\ 0.013 \\ 0.013 \\ 0.013 \\ 0.006 \end{array}$	2198.74 2218.29 2237.84 2257.39 2276.93 2296.48 2316.03	-25.95 -26.54 -27.13 -27.73 -28.33 -28.93 -29.53	37.585 4 37.919 5 38.253 6 38.587 8 38.921 9 39.256 1		ft	ft		60.6667 -	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012 0.012 0.012 0.012 0.012 0.013 0.013 0.013	2218.29 2237.84 2257.39 2276.93 2296.48 2316.03	-26.54 -27.13 -27.73 -28.33 -28.93 -29.53	4 37.919 5 38.253 6 38.587 8 38.921 9 39.256 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012 0.012 0.012 0.012 0.013 0.013	2218.29 2237.84 2257.39 2276.93 2296.48 2316.03	-26.54 -27.13 -27.73 -28.33 -28.93 -29.53	4 37.919 5 38.253 6 38.587 8 38.921 9 39.256 1					58,7083	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012 0.012 0.012 0.013 0.013 0.013	2237.84 2257.39 2276.93 2296.48 2316.03	-27.13 -27.73 -28.33 -28.93 -29.53	5 38.253 6 38.587 8 38.921 9 39.256 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012 0.012 0.012 0.013 0.013 0.013	2237.84 2257.39 2276.93 2296.48 2316.03	-27.73 -28.33 -28.93 -29.53	5 38.253 6 38.587 8 38.921 9 39.256 1					58.7083 -	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012 0.012 0.013 0.013 0.013	2257.39 2276.93 2296.48 2316.03	-27.73 -28.33 -28.93 -29.53	6 38.587 8 38.921 9 39.256 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012 0.012 0.013 0.013 0.013	2257.39 2276.93 2296.48 2316.03	-27.73 -28.33 -28.93 -29.53	6 38.587 8 38.921 9 39.256 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012 0.013 0.013 0.013	2276.93 2296.48 2316.03	-28.33 -28.93 -29.53	38.587 8 38.921 9 39.256 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012 0.013 0.013 0.013	2276.93 2296.48 2316.03	-28.33 -28.93 -29.53	8 38.921 9 39.256 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.013 0.013 0.013	2296.48 2316.03	-28.93 -29.53	38.921 9 39.256 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.013 0.013 0.013	2296.48 2316.03	-28.93 -29.53	9 39.256 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.013 0.013	2316.03	-29.53	39.256 1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.013 0.013	2316.03	-29.53	1						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.013									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.013									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2335.57								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2000.07	20 1/							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.006		-30.14						40.9000 - 40	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	2207 00	15 16						45 20 75	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2301.90	-15.10						45 - 39.75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.006	2017 71	17 54		0.0	0 0000	45 000	TD47 69,20 020,0 275	AE 20.7E	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	2011.11	-17.54		0.0	0.0000		1747.00239.93920.375	45 - 59.75	LU
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012	2042 77	22 40				U		20.75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012	2042.11	-33.49							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.041	2067 02	24.20							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012	2007.03	-34.20							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.044	0000.00	05.00							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012	2892.89	-35.08							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012	2917.95	-35.88							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.012	2943.00	-36.68							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.00							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.013	2968.06	-37.49							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
25.1053 - 51.592 -39.11 3018.18 23.0132 8	0.013	2993.12	-38.30							
23.0132 8 23.0132 - 52.021 -39.94 3043.24 20.9211 2 20.9211 - 52.449 -40.76 3068.30 18.8289 6 18.8289 - 52.877 -41.59 3093.36			0.000							
23.0132 -52.021-39.943043.2420.9211220.9211 -52.449-40.763068.3018.8289618.8289 -52.877-41.593093.36	0.013	3018.18	-39.11							
20.9211 2 20.9211 - 52.449 -40.76 3068.30 18.8289 6 6 18.8289 - 52.877 -41.59 3093.36										
20.9211 - 52.449 -40.76 3068.30 18.8289 6 18.8289 - 52.877 -41.59 3093.36	0.013	3043.24	-39.94							
18.8289 6 18.8289 - 52.877 -41.59 3093.36										
18.8289 - 52.877 -41.59 3093.36	0.013	3068.30	-40.76	52.449						
16 7368	0.013	3093.36	-41.59	52.877						
10.7500 9				9					16.7368	
16.7368 - 53.306 -42.42 3118.42	0.014	3118.42	-42.42	53.306					16.7368 -	
14.6447 3				3					14.6447	
14.6447 - 53.734 -43.26 3143.48	0.014	3143.48	-43.26	53.734					14.6447 -	
12.5526 6				6					12.5526	
12.5526 - 54.163 -44.10 3168.53	0.014	3168.53	-44.10	54.163					12.5526 -	
10.4605 0				0					10.4605	
10.4605 - 54.591 -44.94 3193.59		3193.59	-44.94	54.591					10.4605 -	
8.36842 3	0.014			3					8.36842	
8.36842 - 55.019 -45.79 3218.65	0.014	3218.65	-45.79	55.019					8.36842 -	
6.27632 7	0.014								6.27632	
			-46.65							
4.18421 1	0.014	3243.71	0.000007070707							
		3243.71								
2.09211 4	0.014 0.014		-47.50							
2.09211 - 0 56.304 -48.36 3293.83	0.014	3243.71 3268.77	-47.50	4						
8	0.014 0.014	3268.77							L.OOLII V	
Ŭ	0.01 0.01 0.01	3268.77		56.304					2.00211 0	

		Pole	Bendir	ng Desi	gn Da	ta		
Section	Elevation	Size	Mux	φM _{nx}	Ratio	Muy	φM _{ny}	Ratio
No.					Mux			Muy
	ft		kip-ft	kip-ft	φM _{nx}	kip-ft	kip-ft	φ <i>M_{ny}</i>
L1	168 - 167	TP14x14x0.25	0.09	124.09	0.001	0.00	124.09	0.000
	167 - 166		0.29	124.09 124.09	0.002 0.030	0.00	124.09 124.09	0.000 0.000
	166 - 165 165 - 164		3.69 7.03	124.09	0.057	0.00	124.09	0.000
	164 - 163		10.47	124.09	0.084	0.00	124.09	0.000
	163 - 162		14.01	124.09	0.113	0.00	124.09	0.000
	162 - 161		17.65	124.09	0.142	0.00	124.09	0.000
	161 - 160		21.39	124.09	0.172	0.00	124.09	0.000
	160 - 159 159 - 158		25.23 29.18	124.09 124.09	0.203 0.235	0.00	124.09 124.09	0.000 0.000
L2	158 - 156.013	TP29.139x22x0.1875	40.62	420.15	0.097	0.00	420.15	0.000
	156.013 - 154.026		56.52	431.17	0.131	0.00	431.17	0.000
	154.026 - 152.039		73.82	442.26	0.167	0.00	442.26	0.000
	152.039 - 150.053		91.52	453.42	0.202	0.00	453.42	0.000
	150.053 - 148.066		109.67	464.64	0.236	0.00	464.64	0.000
	148.066 - 146.079		128.23	475.93	0.269	0.00	475.93	0.000
	146.079 - 144.092		157.55	487.28	0.323	0.00	487.28	0.000
	144.092 - 142.105		185.89	498.69	0.373	0.00	498.69	0.000
	142.105 - 140.118		214.65	510.15	0.421	0.00	510.15	0.000
	140.118 - 138.132		243.81	521.66	0.467	0.00	521.66	0.000
	138.132 - 136.145		273.38	533.23	0.513	0.00	533.23	0.000
	136.145 - 134.158		303.36	544.84	0.557	0.00	544.84	0.000
	134.158 - 132.171		333.75	556.49	0.600	0.00	556.49	0.000
	132.171 - 130.184		364.56	568.18	0.642	0.00	568.18	0.000
	130.184 - 128.197		395.78	579.91	0.682	0.00	579.91	0.000
	128.197 - 126.211		427.42	591.67	0.722	0.00	591.67	0.000
	126.211 - 124.224		459.47	603.47	0.761	0.00	603.47	0.000
	124.224 - 122.237		491.94	615.29	0.800	0.00	615.29	0.000
	122.237 - 120.25		524.83	627.14	0.837	0.00	627.14	0.000
	120.25 - 116.5		262.99	649.57	0.405	0.00	649.57	0.000
L3	120.25 - 116.5	TP35x28.119x0.25	333.13	937.85	0.355	0.00	937.85	0.000
	116.5 - 114.736		632.59	954.94	0.662	0.00	954.94	0.000
	114.736 - 112.972		669.37	972.12	0.689	0.00	972.12	0.000
	112.972 - 111.208		706.46	989.38	0.714	0.00	989.38	0.000
	111.208 - 109.444		743.87	1006.72	0.739	0.00	1006.72	0.000
	109.444 - 107.681		781.60	1024.13	0.763	0.00	1024.13	0.000
	107.681 - 105.917		819.64	1041.63	0.787	0.00	1041.63	0.000
	105.917 - 104.153		857.98	1059.19	0.810	0.00	1059.19	0.000
	104.153 -		896.64	1076.83	0.833	0.00	1076.83	0.000

Section No.	Elevation	Size	Mux	φ́M _{nx}	Ratio M _{ux}	Muy	ф <i>М_{пу}</i>	Ratio Muy
NO.	ft		kip-ft	kip-ft	φ <i>M_{nx}</i>	kip-ft	kip-ft	φ <i>M</i> _n
	102.389		005.00	4004.50		0.00	1004 50	
	102.389 - 100.625		935.62	1094.53	0.855	0.00	1094.53	0.00
	100.625 -		974.89	1112.31	0.876	0.00	1112.31	0.00
	98.8611 98.8611 -		1011 10	1120 15	0 000	0.00	1130.15	0.00
	97.0972		1014.48	1130.15	0.898	0.00	1130.15	0.00
	97.0972 -		1054.36	1148.06	0.918	0.00	1148.06	0.00
	95.3333 95.3333 -		1094.55	1166.03	0.939	0.00	1166.03	0.00
	93.5694		1125.05		0.050	0.00	1104.05	0.00
	93.5694 - 91.8056		1135.05	1184.05	0.959	0.00	1184.05	0.00
	91.8056 - 90.0417		1175.84	1202.13	0.978	0.00	1202.13	0.00
	90.0417 -		1216.94	1220.27	0.997	0.00	1220.27	0.00
	88.2778		1258.33	4000 40	1.010	0.00	1000.40	0.00
	88.2778 - 86.5139		1200.00	1238.46	1.016	0.00	1238.46	0.00
	86.5139 - 84.75		1300.03	1256.70	1.034	0.00	1256.70	0.00
	84.75 - 80.25		643.15	1303.46	0.493	0.00	1303.46	0.00
L4	84.75 - 80.25	TP41.467x33.726x0.3125	764.90	1705.27	0.449	0.00	1705.27	0.00
	80.25 - 78.2917		1455.80	1734.32	0.839	0.00	1734.32	0.00
	78.2917 -		1503.92	1763.51	0.853	0.00	1763.51	0.00
	76.3333 76.3333 -		1552.39	1792.83	0.866	0.00	1792.83	0.00
	74.375							
	74.375 - 72.4167		1601.33	1822.30	0.879	0.00	1822.30	0.00
	72.4167 -		1650.65	1851.90	0.891	0.00	1851.90	0.00
	70.4583 70.4583 -		1700.32	1881.63	0.904	0.00	1881.63	0.00
	68.5							
	68.5 - 66.5417		1750.34	1911.49	0.916	0.00	1911.49	0.00
	66.5417 -		1800.69	1941.47	0.927	0.00	1941.47	0.00
	64.5833 64.5833 -		1851.39	1971.58	0.939	0.00	1971.58	0.00
	62.625							
	62.625 - 60.6667		1902.42	2001.81	0.950	0.00	2001.81	0.00
	60.6667 -		1953.77	2032.16	0.961	0.00	2032.16	0.00
	58.7083 58.7083 -		2005.45	2062.61	0.972	0.00	2062.61	0.00
	56.75							
	56.75 - 54.7917		2057.45	2093.18	0.983	0.00	2093.18	0.00
	54.7917 -		2109.76	2123.86	0.993	0.00	2123.86	0.00
	52.8333 52.8333 -		2162.38	2154.64	1.004	0.00	2154.64	0.00
	50.875							
	50.875 - 48.9167		2215.32	2185.53	1.014	0.00	2185.53	0.00
	48.9167 -		2268.56	2216.51	1.023	0.00	2216.51	0.00
	46.9583 46.9583 - 45		2322.09	2247.59	1.033	0.00	2247.59	0.00
	45 - 39.75		1153.04	2331.38	0.495	0.00	2331.38	0.00
L5	45 - 39.75	TP47.68x39.939x0.375	1314.47	2877.82	0.457	0.00	2877.82	0.00
	39.75 -		2526.20	2922.19	0.864	0.00	2922.19	0.00
	37.6579 37.6579 -		2585.19	2966.76	0.871	0.00	2066 76	0.00
	35.5658		2000.19	2300.10	0.071	0.00	2966.76	0.00
	35.5658 - 33.4737		2644.47	3011.52	0.878	0.00	3011.52	0.00
	33.4737 -		2704.03	3056.47	0.885	0.00	3056.47	0.00
	31.3816							
	31.3816 -		2763.87	3101.63	0.891	0.00	3101.63	0.00

Section No.	Elevation	Size	Mux	φMnx	Ratio M _{ux}	Muy	φM _{ny}	Ratio M _{uy}
	ft		kip-ft	kip-ft	φMnx	kip-ft	kip-ft	φ <i>M</i> _{ny}
	29.2895							
	29.2895 -		2823.97	3146.96	0.897	0.00	3146.96	0.000
	27.1974							
	27.1974 -		2884.32	3192.47	0.903	0.00	3192.47	0.000
	25.1053							
	25.1053 -		2944.93	3238.18	0.909	0.00	3238.18	0.000
	23.0132							
	23.0132 -		3005.78	3284.05	0.915	0.00	3284.05	0.000
	20.9211							
	20.9211 -		3066.85	3330.09	0.921	0.00	3330.09	0.000
	18.8289		0400.40	0070.04	0.007	0.00	0070 04	0.000
	18.8289 -		3128.16	3376.31	0.927	0.00	3376.31	0.000
	16.7368 16.7368 -		3189.68	3422.69	0.932	0.00	3422.69	0.000
	14.6447		3109.00	3422.09	0.952	0.00	3422.09	0.000
	14.6447 -		3251,40	3469.23	0.937	0.00	3469.23	0.000
	12.5526		5251.40	0400.20	0.007	0.00	0400.20	0.000
	12.5526 -		3313.32	3515.94	0.942	0.00	3515.94	0.000
	10.4605		0010102	0010101	01012	0100	0010101	0.000
	10.4605 -		3375.43	3562.80	0.947	0.00	3562.80	0.000
	8.36842							
	8.36842 -		3437.73	3609.81	0.952	0.00	3609.81	0.000
	6.27632							
	6.27632 -		3500.20	3656.97	0.957	0.00	3656.97	0.000
	4.18421							
	4.18421 -		3562.83	3704.28	0.962	0.00	3704.28	0.000
	2.09211		0005 00	0751 70	0.000	0.00	0754 70	0.000
	2.09211 - 0		3625.63	3751.72	0.966	0.00	3751.72	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual Vu	φVn	Ratio Vu	Actual Tu	ϕT_n	Ratio Tu
	ft		ĸ	к	φVn	kip-ft	kip-ft	ϕT_n
L1	168 - 167	TP14x14x0.25	0.05	102.05	0.001	0.00	123.37	0.000
	167 - 166		0.24	102.05	0.002	0.04	123.37	0.000
	166 - 165		3.30	102.05	0.032	0.32	123.37	0.003
	165 - 164		3.40	102.05	0.033	0.33	123.37	0.003
	164 - 163		3.50	102.05	0.034	0.35	123.37	0.003
	163 - 162		3.60	102.05	0.035	0.36	123.37	0.003
	162 - 161		3.70	102.05	0.036	0.38	123.37	0.003
	161 - 160		3.80	102.05	0.037	0.39	123.37	0.003
	160 - 159		3.90	102.05	0.038	0.40	123.37	0.003
	159 - 158		4.03	102.05	0.039	0.51	123.37	0.004
L2	158 - 156.013	TP29.139x22x0.1875	7.51	231.39	0.032	0.51	448.93	0.001
	156.013 -		8.62	234.96	0.037	0.10	462.89	0.000
	154.026							
	154.026 -		8.82	238.53	0.037	0.10	477.06	0.000
	152.039							
	152.039 -		9.03	242.10	0.037	0.10	491.45	0.000
	150.053							
	150.053 -		9.23	245.67	0.038	0.10	506.05	0.000
	148.066							
	148.066 -		9.44	249.24	0.038	0.10	520.86	0.000
	146.079		10112 10101	No. 100 (100 (100 (100 (100 (100 (100 (100				
	146.079 -		14.16	252.81	0.056	0.10	535.89	0.000
	144.092							
	144.092 -		14.37	256.38	0.056	0.10	551.13	0.000
	142.105					Carterinancartin	Li strefens nativiti de bi sed	500000000000000000000000000000000000000
	142.105 -		14.57	259.95	0.056	0.10	566.59	0.000
	140.118		14 70	000 50	0.050	0.40	500.05	0.000
	140.118 -		14.78	263.52	0.056	0.10	582.25	0.000
	138.132		11.00	007.00	0.050	0.40	500.40	0.000
	138.132 - 136.145		14.99	267.09	0.056	0.10	598.13	0.000

ft K K K Ko Hor Kor Kor 134.158 15.20 270.86 0.056 0.10 614.23 0.000 134.158 15.40 274.23 0.0565 0.10 630.54 0.000 132.171 15.61 277.80 0.0566 0.10 647.06 0.000 130.184 15.82 281.37 0.0666 0.10 680.75 0.000 128.197 16.24 286.51 0.056 0.10 680.75 0.000 122.237 16.45 292.07 0.056 0.10 732.88 0.000 122.237 16.66 295.64 0.056 0.10 732.88 0.000 120.25 9.84 302.38 0.033 0.55 766.67 0.001 120.25 1795x28.119x0.25 10.74 397.08 0.027 0.20 99.157 0.000 116.5 116.5 20.77 401.31 0.052 0.75 1042.2	Section No.	Elevation	Size	Actual Vu	φVn	Ratio Vu	Actual T _u	φTn	Ratio T _u
136.145 15.20 270.66 0.066 0.10 614.23 0.000 134.158 15.40 274.23 0.056 0.10 630.54 0.000 132.171 15.61 277.80 0.056 0.10 647.06 0.000 132.171 15.61 277.80 0.056 0.10 683.80 0.000 130.184 15.82 281.37 0.056 0.10 683.80 0.000 128.197 16.03 284.94 0.056 0.10 782.29 0.000 122.237 16.45 292.07 0.056 0.10 712.29 0.000 120.25 172.237 16.66 295.64 0.052 0.75 1012.78 0.001 131.252 10.74 397.08 0.027 0.20 991.57 0.000 142.372 20.95 405.54 0.052 0.75 1012.78 0.001 112.972 20.95 405.54 0.052 0.75 102.89 0.001 <	740.	ft			к	and the second s		kin-ft	
134.158 134.158 154.0 274.23 0.056 0.10 630.54 0.000 132.171 132.171 15.61 277.80 0.056 0.10 663.80 0.000 130.184 130.184 15.82 281.37 0.056 0.10 663.80 0.000 128.197 156.3 284.94 0.056 0.10 697.91 0.000 128.211 16.24 288.51 0.056 0.10 715.29 0.000 122.237 16.66 295.64 0.058 0.10 715.29 0.000 120.25 TP35x28.119x0.25 10.74 397.08 0.027 0.20 991.57 0.000 116.5 116.5 20.77 401.31 0.052 0.75 1012.78 0.001 114.735 21.31 409.76 0.052 0.75 1034.22 0.001 114.735 21.31 413.99 0.051 0.75 1077.78 0.001 111.208 21.31 413.99					the second s	Distant in the second se			φ1 _n 0.000
132.171 132.171 132.171 132.171 132.171 132.171 132.171 133.184 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
132.171 - 15.61 277.80 0.056 0.10 647.06 0.000 130.184 - 15.82 281.37 0.068 0.10 663.80 0.000 128.197 16.03 284.94 0.066 0.10 667.5 0.000 128.197 16.03 284.94 0.066 0.10 680.75 0.000 128.211 16.24 288.51 0.066 0.10 715.29 0.000 122.237 16.66 295.64 0.056 0.10 732.88 0.000 120.25 9.84 302.38 0.033 0.55 766.77 0.001 147.36 20.77 401.31 0.052 0.75 1034.22 0.001 114.736 21.31 499.76 0.052 0.75 1055.89 0.001 112.072 21.13 409.76 0.051 0.75 1077.78 0.001 111.208 10.239 0.051 0.75 1095.89 0.001 10.0.611 0.7				15.40	274.23	0.056	0.10	630.54	0.000
130.164 - 15.82 281.37 0.066 0.10 663.80 0.000 128.197 16.03 284.94 0.065 0.10 680.75 0.000 128.211 16.03 284.94 0.056 0.10 697.91 0.000 128.221 16.24 288.51 0.056 0.10 715.29 0.000 122.237 16.66 295.64 0.066 0.10 715.29 0.000 120.25 . 9.84 302.38 0.033 0.55 766.67 0.001 114.730 . 10.74 397.08 0.027 0.20 991.57 0.000 116.5 . 20.77 401.31 0.052 0.75 1055.89 0.001 114.730 . 21.31 413.99 0.051 0.75 1077.78 0.001 112.027 . 21.31 413.99 0.051 0.75 1099.89 0.001 114.709 . 21.64 422.44 0.051<				15.61	277.80	0.056	0.10	647.06	0.000
128.197 128.097 16.03 284.94 0.056 0.10 680.75 0.000 128.211 16.24 288.51 0.056 0.10 697.91 0.000 124.224 16.45 292.07 0.056 0.10 715.29 0.000 120.25 9.84 302.38 0.033 0.55 766.67 0.001 110.5 TP35x28.119x0.25 10.74 397.08 0.027 0.20 991.57 0.000 111.5 20.77 401.31 0.052 0.75 1012.78 0.001 114.736 20.95 405.54 0.052 0.75 1034.22 0.001 112.972 111.208 21.13 409.76 0.052 0.75 1098.99 0.001 111.208 21.31 413.99 0.051 0.75 1099.89 0.001 111.208 21.49 418.21 0.051 0.75 1122.23 0.001 100.444 21.49 418.21 0.051 0.75									
128.197- 126.211 16.03 284.94 0.056 0.10 680.75 0.000 126.211- 124.224 16.24 288.51 0.056 0.10 697.91 0.000 124.224 16.65 292.07 0.056 0.10 715.29 0.000 122.237 16.66 295.64 0.056 0.10 732.88 0.001 120.25 9.84 302.38 0.033 0.55 766.67 0.001 110.5 110.5 20.77 401.31 0.052 0.75 1012.78 0.001 114.736 20.95 405.54 0.052 0.75 1094.22 0.001 112.277 21.13 409.76 0.052 0.75 1095.89 0.001 112.277 21.66 422.44 0.051 0.75 1192.83 0.001 112.277 21.66 422.44 0.051 0.75 1192.23 0.001 111.208 21.49 418.21 0.051 0.75 1192.23 0.001 <td></td> <td></td> <td></td> <td>15.82</td> <td>281.37</td> <td>0.056</td> <td>0.10</td> <td>663.80</td> <td>0.000</td>				15.82	281.37	0.056	0.10	663.80	0.000
126.211- 16.24 288.51 0.056 0.10 697.91 0.000 124.224 16.45 292.07 0.056 0.10 715.29 0.000 122.237 16.66 295.64 0.056 0.10 732.88 0.001 120.25 .9.84 302.38 0.033 0.55 766.67 0.001 116.5 .0.77 401.31 0.052 0.75 1012.78 0.001 116.5 .0.77 401.31 0.052 0.75 1034.22 0.001 114.736 .11.3 409.76 0.052 0.75 1055.89 0.001 111.2072 .2.1.31 413.99 0.051 0.75 1077.78 0.001 111.207 .111.208 .2.1.49 418.21 0.051 0.75 1199.89 0.001 107.681 .2.1.49 418.21 0.051 0.75 1122.23 0.001 107.681 .2.2.9 430.89 0.051 0.75 1126.58 0.001		128.197 -		16.03	284.94	0.056	0.10	680.75	0.000
124.224 16.45 292.07 0.056 0.10 715.29 0.000 122.237 16.66 295.64 0.056 0.10 732.88 0.000 120.25 120.25 9.84 302.38 0.033 0.55 766.67 0.001 116.5 116.5 10.74 397.08 0.027 0.20 991.57 0.000 116.5 116.5 20.77 401.31 0.052 0.75 1034.22 0.001 114.736 20.95 405.54 0.052 0.75 1034.22 0.001 111.208 111.208 21.31 413.99 0.051 0.75 1077.78 0.001 107.681 21.66 422.44 0.051 0.75 112.23 0.001 102.389 22.02 430.89 0.051 0.75 1144.80 0.001 102.389 22.02 430.89 0.051 0.75 1144.80 0.001 100.625 22.37 439.34 0.051 0.75				16 24	288 51	0.056	0.10	697 91	0.000
122.237 16.66 295.64 0.056 0.10 732.88 0.000 120.25 9.84 302.38 0.033 0.55 766.67 0.001 116.5 116.5 1074 397.08 0.027 0.20 991.57 0.000 116.5 116.5 20.77 401.31 0.052 0.75 1012.78 0.001 114.736 20.95 405.54 0.052 0.75 1034.22 0.001 112.972 21.31 409.76 0.052 0.75 1077.78 0.001 111.208 21.31 413.99 0.051 0.75 1099.89 0.001 109.444 21.31 413.99 0.051 0.75 1199.89 0.001 105.917 21.66 422.44 0.051 0.75 1144.80 0.001 102.389 22.02 430.89 0.051 0.75 1144.80 0.001 102.389 22.19 435.12 0.051 0.75 123.83 0.001<					200.01	0.000	0.10	001.01	0.000
122.237 - 16.66 285.64 0.066 0.10 732.88 0.000 120.25 - 9.84 302.38 0.033 0.55 766.67 0.001 130.25 - 17935x28.119x0.25 10.74 397.08 0.027 0.20 991.57 0.000 116.5 - 20.77 401.31 0.052 0.75 1012.78 0.001 114.736 - 20.95 405.54 0.052 0.75 1034.22 0.001 111.207 - 21.31 413.99 0.051 0.75 1077.78 0.001 111.208 - 21.31 413.99 0.051 0.75 1122.23 0.001 107.681 - 21.66 422.44 0.051 0.75 1144.80 0.001 104.153 - 22.02 430.89 0.051 0.75 1144.80 0.001 106.25 - 22.37 439.34 0.051 0.75 1148.80 0.001 106.25 - 22.37 439.34 0.051 0.75 120.80				16.45	292.07	0.056	0.10	715.29	0.000
120.25 9.84 302.38 0.033 0.55 766.67 0.001 L3 120.25 TP35x28.119x0.25 10.74 397.08 0.027 0.20 991.57 0.000 116.5 116.5 20.77 401.31 0.052 0.75 1012.78 0.001 114.736 20.95 405.54 0.052 0.75 1034.22 0.001 112.972 21.13 409.76 0.052 0.75 1075.78 0.001 112.972 21.31 413.99 0.051 0.75 1077.78 0.001 112.972 21.31 413.99 0.051 0.75 1077.78 0.001 107.681 21.49 418.21 0.051 0.75 1122.23 0.001 104.153 22.02 430.89 0.051 0.75 1144.80 0.001 104.239 22.19 435.12 0.051 0.75 1160.58 0.001 105.917 21.84 426.66 0.051 0.75				16.66	295.64	0.056	0.10	732.88	0.000
116.5 116.5 116.5 116.5 TP35x28.119x0.25 10.74 397.08 397.08 0.027 0.20 991.57 0.000 0.052 114.736 114.736 20.77 401.31 0.052 0.75 1012.78 0.001 112.972 20.95 405.54 0.052 0.75 1053.89 0.001 111.208 21.31 413.99 0.051 0.75 1077.78 0.001 109.444 21.49 418.21 0.051 0.75 1122.23 0.011 107.681 21.66 422.44 0.051 0.75 1122.23 0.011 105.917 21.84 426.66 0.051 0.75 1144.80 0.001 104.153 22.02 430.89 0.051 0.75 1138.3 0.001 100.625 22.19 435.12 0.051 0.75 123.83 0.001 100.625 22.37 439.34 0.051 0.75 123.83 0.001 100.625 23.33 22.89 452.02 0.051 <t< td=""><td></td><td></td><td></td><td>0.04</td><td>202.20</td><td>0.000</td><td>0.55</td><td>700.07</td><td>0.001</td></t<>				0.04	202.20	0.000	0.55	700.07	0.001
L3 120.25 TP35x28.119x0.25 10.74 397.08 0.027 0.20 991.57 0.000 116.5 116.5 20.77 401.31 0.052 0.75 1012.78 0.001 114.736 20.95 405.54 0.052 0.75 1034.22 0.001 112.972 21.13 409.76 0.052 0.75 1055.89 0.001 111.208 0.051 0.75 1077.78 0.011 109.444 21.49 418.21 0.051 0.75 1079.78 0.001 107.681 107.681 107.681 10.75 1122.23 0.001 105.917 21.84 428.66 0.051 0.75 1144.80 0.001 102.389 22.02 430.89 0.051 0.75 1144.80 0.001 102.389 22.02 430.89 0.051 0.75 1167.58 0.001 100.625 22.19 435.12 0.051 0.75 1190.60 0.001 100.625 22.19 435.12 0.051 0.75 1190.60 0.001 100.625 22.37 439.34 0.051 0.75 1237.30 0.011 98.8611 99.8611 22.54 443.57 0.051 0.75 1237.30 0.011 97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 98.8611 22.54 443.57 0.051 0.75 1260.98 0.001 97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 98.8611 22.54 443.57 0.051 0.75 1260.98 0.001 97.0972 22.71 447.79 0.051 0.74 1309.03 0.001 97.0972 23.23 460.47 0.050 0.74 1333.39 0.001 98.8613 23.33 23.2 23.34 40.47 0.050 0.74 1333.39 0.001 98.8619 23.333 23.2 23.57 468.92 0.050 0.74 1333.39 0.001 93.5694 23.357 468.92 0.050 0.74 1367.97 0.001 88.2778 88.2778 23.77 453.33 0.023 0.34 1472.70 0.000 84.75 84.75 80.25 TP41.467x33.726x0.312 13.07 595.12 0.051 0.74 1369.03 0.001 97.6333 76.333 24.86 612.71 0.041 0.74 1868.67 0.000 74.375 77 42.467 60.25 TP41.467x33.726x0.312 13.07 595.12 0.021 0.74 1369.90 0.000 74.375 77 4.375 74.468 606.85 0.041 0.74 1868.67 0.000 74.375 77 72.4167 74.375 75 72.4167 70.4180.74 1868.67 0.000				9.84	302.38	0.033	0.55	/66.67	0.001
116.5- 20.77 401.31 0.052 0.75 1012.78 0.001 114.736 20.95 405.54 0.052 0.75 1034.22 0.001 112.972 21.13 409.76 0.052 0.75 1055.89 0.001 111.208 111.208 0.051 0.75 1077.78 0.011 109.444 21.49 418.21 0.051 0.75 1099.89 0.011 107.681 21.66 422.44 0.051 0.75 1144.80 0.001 105.917 21.84 426.66 0.051 0.75 1167.58 0.001 102.389 22.02 430.89 0.051 0.75 1190.60 0.001 100.625 21.9 435.12 0.051 0.75 123.83 0.01 100.625 22.37 439.34 0.051 0.75 123.83 0.01 98.8611 25.4 443.57 0.051 0.75 1260.98 0.01 97.0972 23.7	L3		TP35x28.119x0.25	10.74	397.08	0.027	0.20	991.57	0.000
114.736 114.736 112.972 20.95 405.54 0.052 0.75 1035.22 0.001 112.972 21.13 409.76 0.052 0.75 1055.89 0.001 111.208 21.31 413.99 0.051 0.75 1077.78 0.001 109.444 21.49 418.21 0.051 0.75 1122.23 0.001 107.681 21.66 422.44 0.051 0.75 1122.23 0.001 105.917 21.84 426.66 0.051 0.75 1144.80 0.001 104.153 22.02 430.89 0.051 0.75 1167.58 0.001 100.625 22.37 439.34 0.051 0.75 1213.83 0.001 100.625 22.37 439.34 0.051 0.75 123.83 0.001 98.8611 98.8611 22.54 443.57 0.051 0.75 1260.98 0.001 97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 95.333 <t< td=""><td></td><td></td><td></td><td>20.77</td><td>401.31</td><td>0.052</td><td>0.75</td><td>1012.78</td><td>0.001</td></t<>				20.77	401.31	0.052	0.75	1012.78	0.001
112.972 112.972 21.13 409.76 0.052 0.75 1055.89 0.001 111.208 21.31 413.99 0.051 0.75 1077.78 0.001 109.444 21.49 418.21 0.051 0.75 1099.89 0.001 107.681 21.66 422.44 0.051 0.75 1122.23 0.001 105.917 21.66 422.44 0.051 0.75 1144.80 0.001 105.917 21.84 426.66 0.051 0.75 1167.58 0.001 104.153 22.02 430.89 0.051 0.75 1167.58 0.001 100.625 22.37 439.34 0.051 0.75 123.83 0.001 98.8611 22.54 443.57 0.051 0.75 1260.89 0.001 97.0972 22.71 447.79 0.051 0.75 1260.89 0.001 93.5694 23.06 456.24 0.051 0.74 1309.03 0.01 91.8056 333.3 22.89 452.02 0.050 <				00.05	105 51	0.050	0.75	100100	0.004
111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 111.208 1007.78 0.001 0.75 1077.78 0.001 109.444 21.49 418.21 0.051 0.75 1122.23 0.001 107.681 21.66 422.44 0.051 0.75 1142.23 0.001 105.917 21.84 426.66 0.051 0.75 1167.58 0.001 104.153 22.02 430.89 0.051 0.75 1167.58 0.001 100.625 22.37 439.34 0.051 0.75 1213.83 0.001 98.8611 22.54 443.57 0.051 0.75 1237.30 0.01 97.0972 2 27.71 447.79 0.051 0.75 1260.98 0.001 95.3333 23.69 452.02 0.051 0.74 1309.03				20.95	405.54	0.052	0.75	1034.22	0.001
111.208 - 21.31 413.99 0.051 0.75 1077.78 0.001 109.444 21.49 418.21 0.051 0.75 1099.89 0.001 107.681 21.66 422.44 0.051 0.75 1122.23 0.001 107.681 21.84 426.66 0.051 0.75 1144.80 0.001 104.153 22.02 430.89 0.051 0.75 1167.58 0.001 102.389 22.19 435.12 0.051 0.75 1190.60 0.001 100.625 22.37 439.34 0.051 0.75 123.33 0.001 97.0972 22.54 443.57 0.051 0.75 1260.98 0.001 95.3333 22.89 452.02 0.051 0.75 1280.98 0.001 95.3333 23.66 456.24 0.051 0.74 1309.03 0.001 93.5694 3.056 23.36 466.47 0.050 0.74 1333.39 0.001 91.8056 23.40 466.469 0.050 0.74 1382.78				21.13	409.76	0.052	0.75	1055.89	0.001
109.444 21.49 418.21 0.051 0.75 1099.89 0.001 107.681 21.66 422.44 0.051 0.75 1122.23 0.001 105.917 21.84 426.66 0.051 0.75 1144.80 0.001 104.153 22.02 430.89 0.051 0.75 1167.58 0.001 102.389 22.19 435.12 0.051 0.75 1190.60 0.001 100.625 22.37 439.34 0.051 0.75 123.33 0.001 98.8611 22.54 443.57 0.051 0.75 1260.98 0.001 97.0972 22.71 447.79 0.051 0.75 1280.98 0.001 95.3333 22.89 452.02 0.051 0.74 1399.33 0.001 93.5694 23.23 460.47 0.050 0.74 1333.39 0.001 93.5694 23.23 460.47 0.050 0.74 1382.78 0.001				21.31	413 99	0.051	0.75	1077 78	0.001
107.681 21.66 422.44 0.051 0.75 1122.23 0.001 105.917 21.84 426.66 0.051 0.75 1144.80 0.001 104.153 22.02 430.89 0.051 0.75 1167.58 0.001 102.389 22.02 430.89 0.051 0.75 1167.58 0.001 100.625 22.37 439.34 0.051 0.75 1190.60 0.001 98.8611 22.54 443.57 0.051 0.75 123.730 0.001 97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 22.89 452.02 0.051 0.74 1284.89 0.001 93.664 23.06 456.24 0.051 0.74 1309.03 0.001 91.8056 23.23 460.47 0.050 0.74 1333.39 0.001 91.8056 23.74 473.15 0.050 0.74 1382.78 0.001 91.8056 23.74 473.15 0.050 0.74 1382.78 0.001 <		109.444							
107.681 - 21.66 422.44 0.051 0.75 1122.23 0.001 105.917 - 21.84 426.66 0.051 0.75 1144.80 0.001 104.153 22.02 430.89 0.051 0.75 1167.58 0.001 102.389 22.19 435.12 0.051 0.75 1190.60 0.001 100.625 22.37 439.34 0.051 0.75 1213.83 0.01 98.8611 22.54 443.57 0.051 0.75 1260.98 0.001 97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 22.89 452.02 0.051 0.74 1284.89 0.001 91.8056 23.36 23.23 460.47 0.050 0.74 133.39 0.01 91.8056 23.74 473.15 0.050 0.74 1333.39 0.001 90.0417 23.40 464.69 0.050 0.74 1357.97 0.001 84.75 80.2778 23.74 473.15 0.050 0.74				21.49	418.21	0.051	0.75	1099.89	0.001
105.917 - 21.84 426.66 0.051 0.75 1144.80 0.001 104.153 22.02 430.89 0.051 0.75 1167.58 0.001 102.389 22.19 435.12 0.051 0.75 1190.60 0.001 100.625 22.37 439.34 0.051 0.75 1213.83 0.001 98.8611 22.54 443.57 0.051 0.75 1237.30 0.001 97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 22.89 452.02 0.051 0.74 1284.89 0.001 93.5694 23.06 456.24 0.051 0.74 1309.03 0.001 93.5694 23.23 460.47 0.050 0.74 1333.39 0.001 93.5694 23.40 464.69 0.050 0.74 1382.78 0.001 90.0417 90.0417 23.40 464.69 0.050 0.74 1382.78 0.001 86.5139 83.2778 23.74 473.15 0.050 0.74				21.66	422.44	0.051	0.75	1122.23	0.001
104.153 22.02 430.89 0.051 0.75 1167.58 0.001 102.389 22.19 435.12 0.051 0.75 1190.60 0.001 100.625 22.37 439.34 0.051 0.75 1213.83 0.001 98.8611 22.54 443.57 0.051 0.75 1237.30 0.001 97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 22.89 452.02 0.051 0.74 1389.03 0.001 93.5694 23.06 456.24 0.051 0.74 1399.03 0.001 91.8056 91.8056 33.39 0.001 0.050 0.74 1333.39 0.001 90.0417 23.40 464.69 0.050 0.74 1382.78 0.001 90.0417 23.40 464.89 0.050 0.74 1382.78 0.001 84.778 23.74 473.15 0.050 0.74 1382.78				21.84	126 66	0.051	0.75	11// 90	0.001
102.389 22.19 435.12 0.051 0.75 1190.60 0.001 100.625 22.37 439.34 0.051 0.75 1213.83 0.001 98.8611 22.54 443.57 0.051 0.75 1237.30 0.001 97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 22.89 452.02 0.051 0.74 1284.89 0.001 93.5694 33.5694 23.06 456.24 0.051 0.74 1309.03 0.001 91.8056 23.23 460.47 0.050 0.74 133.39 0.001 91.8056 23.23 460.47 0.050 0.74 1382.78 0.001 90.0417 23.40 464.69 0.050 0.74 1382.78 0.001 88.2778 23.57 468.92 0.050 0.74 1382.78 0.001 84.75 80.25 11.23 483.93 0.023 0.34 1472.70 0.000 84.75 80.25 24.49 600.98 0.041 <t< td=""><td></td><td>104.153</td><td></td><td></td><td>420.00</td><td>0.001</td><td>0.75</td><td>1144.00</td><td></td></t<>		104.153			420.00	0.001	0.75	1144.00	
102.389- 100.625 22.19 435.12 0.051 0.75 1190.60 0.001 100.625 22.37 439.34 0.051 0.75 1213.83 0.001 98.8611 22.54 443.57 0.051 0.75 1237.30 0.001 97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 22.89 452.02 0.051 0.74 1284.89 0.001 93.5694 23.06 456.24 0.051 0.74 1309.03 0.001 91.8056 23.23 460.47 0.050 0.74 1333.39 0.001 91.8056 23.23 460.47 0.050 0.74 1333.39 0.001 91.8056 23.23 460.47 0.050 0.74 1382.78 0.001 84.2778 23.40 464.69 0.050 0.74 1382.78 0.001 84.75 80.25 11.23 483.93 0.023 0.34 1472.70 0.000 84.75 80.25 TP41.467x33.726x0.3125 13.07 595.12				22.02	430.89	0.051	0.75	1167.58	0.001
100.625 - 22.37 439.34 0.051 0.75 1213.83 0.001 98.8611 - 22.54 443.57 0.051 0.75 1237.30 0.001 97.0972 - 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 - 22.89 452.02 0.051 0.74 1284.89 0.001 93.5694 - 23.06 456.24 0.051 0.74 1309.03 0.001 91.8056 - 23.23 460.47 0.050 0.74 1333.39 0.001 90.0417 - 23.40 464.69 0.050 0.74 1357.97 0.001 88.2778 - 23.74 473.15 0.050 0.74 1382.78 0.001 86.5139 - 23.74 473.15 0.050 0.74 1382.78 0.001 84.75 - 80.25 11.23 483.93 0.023 0.34 1472.70 0.000 84.75 - 80.25 11.23 483.93 0.023 0.34 1472.70 0.000 80.251- 24.49 600.98 0.041 0.74 1817.06<				22.19	435.12	0.051	0.75	1190.60	0.001
98.8611 22.54 443.57 0.051 0.75 1237.30 0.001 97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 95.3333 22.89 452.02 0.051 0.74 1284.89 0.001 93.5694 23.06 456.24 0.051 0.74 1309.03 0.001 93.5694 23.23 460.47 0.050 0.74 1333.39 0.001 90.0417 23.40 464.69 0.050 0.74 1382.78 0.001 88.2778 23.57 468.92 0.050 0.74 1382.78 0.001 86.5139 23.74 473.15 0.050 0.74 1382.78 0.001 84.75 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 84.75 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 78.2917 74.375 24.48 606.85 0.041 0.74 1882.69 0.000 <				22 27	120 24	0.051	0.75	1010 00	0.001
97.0972 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 22.89 452.02 0.051 0.74 1284.89 0.001 93.5694 23.06 456.24 0.051 0.74 1309.03 0.001 91.8056 23.23 460.47 0.050 0.74 1333.39 0.001 90.0417 23.40 464.69 0.050 0.74 1357.97 0.001 90.0417 23.40 464.69 0.050 0.74 1382.78 0.001 90.0417 23.40 464.69 0.050 0.74 1382.78 0.001 90.0417 23.40 464.69 0.050 0.74 1382.78 0.001 88.2778 23.57 468.92 0.050 0.74 1382.78 0.001 84.75 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 78.2917 24.49 600.98 </td <td></td> <td></td> <td></td> <td>22.51</td> <td>400.04</td> <td>0.001</td> <td>0.75</td> <td>1215.05</td> <td>0.001</td>				22.51	400.04	0.001	0.75	1215.05	0.001
97.0972 - 22.71 447.79 0.051 0.75 1260.98 0.001 95.3333 - 92.89 452.02 0.051 0.74 1284.89 0.001 93.5694 - 23.06 456.24 0.051 0.74 1309.03 0.001 93.5694 - 23.06 456.24 0.051 0.74 1309.03 0.001 91.8056 - 90.0417 23.23 460.47 0.050 0.74 1333.39 0.001 90.0417 - 23.40 464.69 0.050 0.74 1357.97 0.001 88.2778 - 88.2778 23.57 468.92 0.050 0.74 1382.78 0.001 86.5139 - 23.74 473.15 0.050 0.74 1382.78 0.001 84.75 - 80.25 11.23 483.93 0.023 0.34 1472.70 0.000 80.25 - 7941.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 - 782.917 24.68 606.85 0.041 0.74 1852.69 0.000 76.3333 -				22.54	443.57	0.051	0.75	1237.30	0.001
95.3333 22.89 452.02 0.051 0.74 1284.89 0.001 93.5694 23.06 456.24 0.051 0.74 1309.03 0.001 91.8056 23.23 460.47 0.050 0.74 1333.39 0.001 91.8056 23.23 460.47 0.050 0.74 1333.39 0.001 90.0417 23.40 464.69 0.050 0.74 1357.97 0.001 88.2778 23.57 468.92 0.050 0.74 1382.78 0.001 86.5139 23.74 473.15 0.050 0.74 1382.78 0.001 84.75 82.778 23.74 473.15 0.050 0.74 1407.82 0.001 84.75 82.778 23.74 473.15 0.050 0.74 1407.82 0.001 84.75 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 78.2917 24.68 606.85 0.041 0.74 1852.69 0.000 76.3333 24.86 612.				22.71	447.79	0.051	0.75	1260.98	0.001
93.5694 23.06 456.24 0.051 0.74 1309.03 0.001 93.5694 - 23.06 456.24 0.051 0.74 1333.39 0.001 91.8056 - 23.23 460.47 0.050 0.74 1333.39 0.001 90.0417 23.40 464.69 0.050 0.74 1357.97 0.001 90.0417 - 23.40 464.69 0.050 0.74 1382.78 0.001 88.2778 - 23.57 468.92 0.050 0.74 1382.78 0.001 86.5139 - 23.74 473.15 0.050 0.74 1407.82 0.001 84.75 - 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 - 24.49 600.98 0.041 0.74 1817.06 0.000 76.3333 - 24.68 606.85 0.041 0.74 188.67 0.000 76.3333 - 24.86 612.71 0.041 0.74 188.67 0.000 76.3333 - 24.86 612.71 0.041				00.00	450.00	0.054	0.74	4004.00	
93.5694 - 23.06 456.24 0.051 0.74 1309.03 0.001 91.8056 23.23 460.47 0.050 0.74 1333.39 0.001 90.0417 23.40 464.69 0.050 0.74 1357.97 0.001 88.2778 23.57 468.92 0.050 0.74 1382.78 0.001 88.2778 23.74 473.15 0.050 0.74 1382.78 0.001 86.5139 23.74 473.15 0.050 0.74 1407.82 0.001 84.75 80.25 11.23 483.93 0.023 0.34 1472.70 0.000 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 78.2917 74.24167 24.68 606.85 0.041 0.74 1852.69 0.000 76.3333 24.86 612.71 0.041 0.74 188.67 0.000 74.375 25.11 </td <td></td> <td></td> <td></td> <td>22.89</td> <td>452.02</td> <td>0.051</td> <td>0.74</td> <td>1284.89</td> <td>0.001</td>				22.89	452.02	0.051	0.74	1284.89	0.001
91.8056 - 23.23 460.47 0.050 0.74 1333.39 0.001 90.0417 23.40 464.69 0.050 0.74 1357.97 0.001 88.2778 23.57 468.92 0.050 0.74 1382.78 0.001 86.5139 23.57 468.92 0.050 0.74 1382.78 0.001 84.75 23.74 473.15 0.050 0.74 1407.82 0.001 84.75 84.75 11.23 483.93 0.023 0.34 1472.70 0.000 84.75 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 78.2917 24.49 600.98 0.041 0.74 1852.69 0.000 78.2917 24.68 616.85 0.041 0.74 1852.69 0.000 76.3333 24.68 612.71 0.041 0.74 1888.67 0.000 74.375 25.11 618.57 0.041 0.74 1924.99 0.000 72.4167 25.29 624.4				23.06	456.24	0.051	0.74	1309.03	0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				23.23	460.47	0.050	0.74	1333.39	0.001
88.2778 23.57 468.92 0.050 0.74 1382.78 0.001 86.5139 23.74 473.15 0.050 0.74 1407.82 0.001 84.75 84.75 11.23 483.93 0.023 0.34 1472.70 0.000 84.75 84.75 11.23 483.93 0.022 0.40 1781.77 0.000 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 78.2917 24.49 600.98 0.041 0.74 1852.69 0.000 76.3333 24.86 612.71 0.041 0.74 1888.67 0.000 74.375 25.11 618.57 0.041 0.74 1924.99 0.000 72.4167 25.29 624.44 0.041 0.72 1961.67 0.000 <td></td> <td></td> <td></td> <td>00.40</td> <td>404.00</td> <td>0.050</td> <td>0.74</td> <td>1057 07</td> <td></td>				00.40	404.00	0.050	0.74	1057 07	
88.2778 - 23.57 468.92 0.050 0.74 1382.78 0.001 86.5139 23.74 473.15 0.050 0.74 1407.82 0.001 84.75 84.75 80.25 11.23 483.93 0.023 0.34 1472.70 0.000 84.75 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 - 78.2917 24.49 600.98 0.041 0.74 1852.69 0.000 76.3333 76.3333 24.86 612.71 0.041 0.74 1888.67 0.000 74.375 25.11 618.57 0.041 0.74 1924.99 0.000 72.4167 25.29 624.44 0.041 0.72 1961.67 0.000				23.40	404.09	0.050	0.74	1357.97	0.001
86.5139 - 23.74 473.15 0.050 0.74 1407.82 0.001 84.75 84.75 11.23 483.93 0.023 0.34 1472.70 0.000 L4 84.75 - 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 - 24.49 600.98 0.041 0.74 1817.06 0.000 78.2917 76.3333 24.68 606.85 0.041 0.74 1852.69 0.000 76.3333 76.3333 - 24.86 612.71 0.041 0.74 1888.67 0.000 74.375 - 25.11 618.57 0.041 0.74 1924.99 0.000 72.4167 - 25.29 624.44 0.041 0.72 1961.67 0.000		88.2778 -		23.57	468.92	0.050	0.74	1382.78	0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				23.74	473.15	0.050	0.74	1407.82	0.001
L4 84.75 - 80.25 TP41.467x33.726x0.3125 13.07 595.12 0.022 0.40 1781.77 0.000 80.25 - 24.49 600.98 0.041 0.74 1817.06 0.000 78.2917 78.2917 24.68 606.85 0.041 0.74 1852.69 0.000 76.3333 76.3333 24.86 612.71 0.041 0.74 1888.67 0.000 74.375 25.11 618.57 0.041 0.74 1924.99 0.000 72.4167 25.29 624.44 0.041 0.72 1961.67 0.000 70.4583 25.29 624.44 0.041 0.72 1961.67 0.000		84.75							
80.25 - 24.49 600.98 0.041 0.74 1817.06 0.000 78.2917 24.68 606.85 0.041 0.74 1852.69 0.000 76.3333 76.3333 - 24.86 612.71 0.041 0.74 1888.67 0.000 74.375 25.11 618.57 0.041 0.74 1924.99 0.000 72.4167 25.29 624.44 0.041 0.72 1961.67 0.000 70.4583	L4		TP41.467x33.726x0.3125						
78.2917 - 24.68 606.85 0.041 0.74 1852.69 0.000 76.3333 76.3333 - 24.86 612.71 0.041 0.74 1888.67 0.000 74.375 74.375 - 25.11 618.57 0.041 0.74 1924.99 0.000 72.4167 25.29 624.44 0.041 0.72 1961.67 0.000 70.4583 70.4583 70.4583 70.4583 70.4583 612.71 0.041 0.72 1961.67 0.000									0.000
76.3333 76.3333 - 24.86 612.71 0.041 0.74 1888.67 0.000 74.375 74.375 - 25.11 618.57 0.041 0.74 1924.99 0.000 72.4167 72.4167 - 25.29 624.44 0.041 0.72 1961.67 0.000 70.4583 70.4583 70.4583 70.4583 70.4583 70.4583 10.041 0.72 1961.67 0.000				24.68	606.85	0.041	0.74	1852 69	0.000
74.375 25.11 618.57 0.041 0.74 1924.99 0.000 72.4167 72.4167 25.29 624.44 0.041 0.72 1961.67 0.000 70.4583 25.29 624.44 0.041 0.72 1961.67 0.000		76.3333							
74.375 - 25.11 618.57 0.041 0.74 1924.99 0.000 72.4167 72.4167 - 25.29 624.44 0.041 0.72 1961.67 0.000 70.4583 70.4583 70.4583 70.4583 624.44 0.041 0.72 1961.67 0.000				24.86	612.71	0.041	0.74	1888.67	0.000
72.4167 - 25.29 624.44 0.041 0.72 1961.67 0.000 70.4583		74.375 -		25.11	618.57	0.041	0.74	1924.99	0.000
70.4583				25.29	624 44	0.041	0.72	1961 67	0 000
70.4383 - 25.47 630.30 0.040 0.72 1998.68 0.000		70.4583							
		10.4583 -		25.47	630.30	0.040	0.72	1998.68	0.000

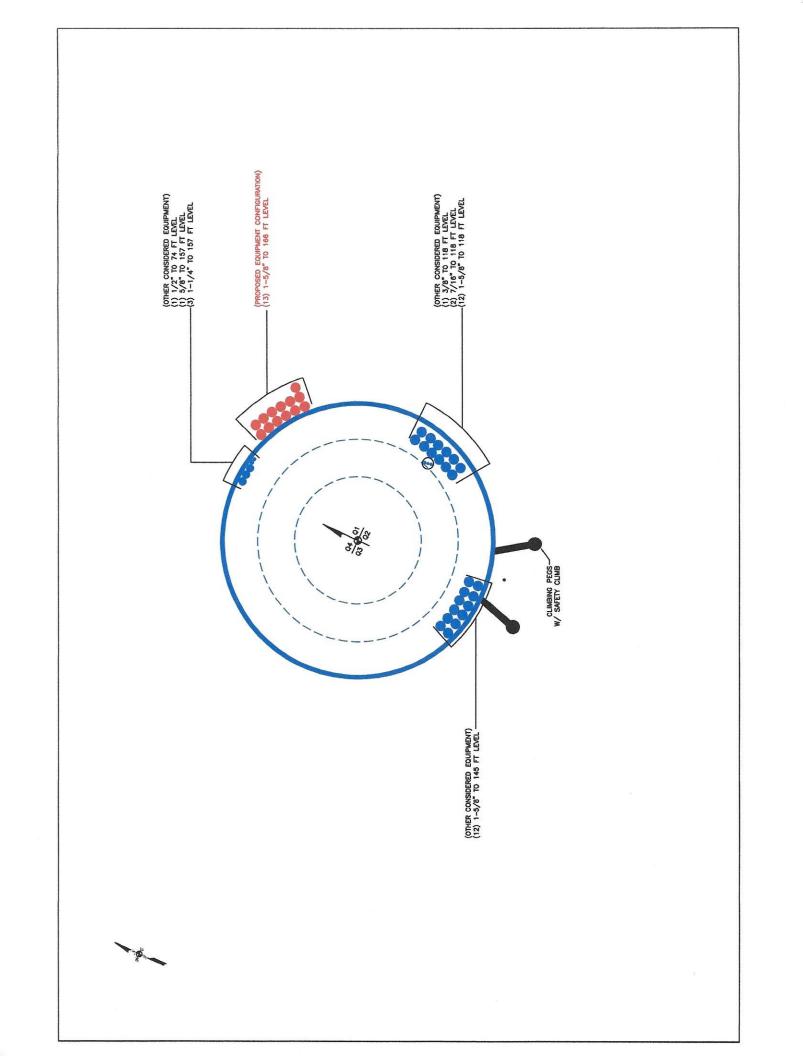
Section No.	Elevation	Size	Actual Vu	φVn	Ratio Vu	Actual T _u	φTn	Ratio T _u
	ft		ĸ	К	$\frac{\nabla q}{\Phi V_n}$	kip-ft	kip-ft	φT _n
	68.5							<u>t : "</u>
	68.5 -		25.65	636.17	0.040	0.72	2036.05	0.000
	66.5417		05.00	0.40.00	0.040	0.70	0070 70	0.000
	66.5417 - 64.5833		25.82	642.03	0.040	0.72	2073.76	0.000
	64.5833 -		25.99	647.89	0.040	0.72	2111.81	0.000
	62.625		20.00	011.00	0.010	0.12		0.000
	62.625 -		26.16	653.76	0.040	0.72	2150.21	0.000
	60.6667					0.70	0400.00	0.000
	60.6667 -		26.33	659.62	0.040	0.72	2188.96	0.000
	58.7083 58.7083 -		26.49	665.49	0.040	0.72	2228.05	0.000
	56.75		20.10	000.10	01010	0111		0.000
	56.75 -		26.65	671.35	0.040	0.72	2267.49	0.000
	54.7917				10.000			
	54.7917 -		26.82	677.22	0.040	0.72	2307.28	0.000
	52.8333 52.8333 -		26.97	683.08	0.039	0.72	2347.41	0.000
	50.875		20107					
	50.875 -		27.13	688.94	0.039	0.72	2387.88	0.000
	48.9167		07.00	004.04	0.000	0.70	0400 74	0.000
	48.9167 - 46.9583		27.28	694.81	0.039	0.72	2428.71	0.000
	46.9583 - 45		27.44	700.67	0.039	0.72	2469.88	0.000
	45 - 39.75		13.24	716.39	0.018	0.34	2581.96	0.000
L5	45 - 39.75	TP47.68x39.939x0.375	14.78	845.31	0.017	0.38	2995.71	0.000
	39.75 -		28.15	852.83	0.033	0.72	3049.23	0.000
	37.6579		00.00	000.05	0.000	0.70	0400.00	0.000
	37.6579 - 35.5658		28.29	860.35	0.033	0.72	3103.22	0.000
	35.5658 -		28.43	867.87	0.033	0.72	3157.69	0.000
	33.4737							
	33.4737 -		28.56	875.38	0.033	0.72	3212.63	0.000
	31.3816		28.60	882.00	0.022	0.70	2269.05	0.000
	31.3816 - 29.2895		28.69	882.90	0.032	0.72	3268.05	0.000
	29.2895 -		28,82	890.42	0.032	0.72	3323.94	0.000
	27.1974							
	27.1974 -		28.94	897.94	0.032	0.72	3380.31	0.000
	25.1053		00.00	005 45	0.000	0.70	040744	0.000
	25.1053 - 23.0132		29.06	905.45	0.032	0.72	3437.14	0.000
	23.0132 -		29.17	912.97	0.032	0.72	3494.46	0.000
	20.9211							
	20.9211 -		29.28	920.49	0.032	0.72	3552.24	0.000
	18.8289		00.00	000.04	0.000	0.70	3610.50	0.000
	18.8289 - 16.7368		29.39	928.01	0.032	0.72	3010.00	0.000
	16.7368 -		29.49	935.52	0.032	0.72	3669.23	0.000
	14.6447							
	14.6447 -		29.59	943.04	0.031	0.72	3728.44	0.000
	12.5526		00.00	050 50	0.004	0.70	0700 40	0.000
	12.5526 - 10.4605		29.68	950.56	0.031	0.72	3788.13	0.000
	10.4605 -		29,77	958.08	0.031	0.72	3848.28	0.000
	8.36842							
	8.36842 -		29.86	965.60	0.031	0.72	3908.91	0.000
	6.27632 6.27632 -		29.94	973.11	0.031	0.72	3970.01	0.000
	4.18421		20.07	0.0.11	0.001	0.12	0010.01	0.000
	4.18421 -		30.02	980.63	0.031	0.72	4031.58	0.000
	2.09211		00.00	000 15	0.000	0 70	1000 01	0.00-
	2.09211 - 0		30.09	988.15	0.030	0.72	4093.64	0.000

Pole Interaction Design Data

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	and the state of the		1 01	c mici	action	Dealgh	Data		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ection	Elevation	Patio	Patio	Patio	Patio	Datio	Comb	Allow	Critoria
t dB_{2} dM_{2} dV_{2} dV_{1} $Ratio$ Ratio 168 167 166 0.001 0.000 0.003 1.050 4.8.2 185 165 164 0.04 0.030 0.000 0.032 0.003 0.035 1.050 4.8.2 185 164 0.044 0.057 0.000 0.033 0.003 0.060 1.150 4.8.2 185 162 0.004 0.064 0.000 0.033 0.003 0.160 4.8.2 185 162 0.005 0.112 0.000 0.033 0.003 0.179 1.050 4.8.2 180 189 0.005 0.233 0.000 0.033 0.003 0.133 1.050 4.8.2 180 180 0.005 0.233 0.000 0.037 0.000 1.163 4.8.2 180 0.051 0.020 0.037 0.000 0.138 1.050 4.8.2	No.	Lievalion								Criteria
168 - 167 0.001 0.001 0.000 0.001 0.000 0.001 1.050 4.8.2 166 - 165 0.004 0.030 0.000 0.002 0.003 0.055 1.050 4.8.2 166 - 164 0.004 0.067 0.000 0.033 0.003 0.056 1.050 4.8.2 163 - 162 0.004 0.064 0.000 0.035 0.003 0.148 1.050 4.8.2 161 - 160 0.005 0.172 0.000 0.037 0.003 0.148 1.050 4.8.2 160 - 158 0.005 0.235 0.000 0.032 0.011 1.050 4.8.2 156 - 158 0.005 0.235 0.000 0.327 0.000 0.138 1.050 4.8.2 156.013 0.006 0.167 0.000 0.037 0.000 0.134 1.050 4.8.2 152.039 0.006 0.226 0.000 0.038 0.000 0.134 1.050 4.8.2		ft			and the second s		and the second se			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L1	168 - 167						0.001	1.050	4.8.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.000	0.002			0.000	0.003	1.050	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
160 - 158 0.005 0.203 0.000 0.039 0.004 0.242 1.050 4.8.2 158 - 156.013 0.006 0.037 0.000 0.032 0.001 0.103 1.050 4.8.2 154.026 0.006 0.131 0.000 0.037 0.000 0.174 1.050 4.8.2 154.026 0.006 0.167 0.000 0.037 0.000 0.174 1.050 4.8.2 152.039 0.006 0.220 0.000 0.037 0.000 0.243 1.050 4.8.2 150.053 0.006 0.226 0.000 0.038 0.000 0.243 1.050 4.8.2 148.066 0.006 0.228 0.000 0.038 0.000 0.335 1.050 4.8.2 144.092 146.079 0.008 0.323 0.000 0.056 0.000 0.335 1.050 4.8.2 142.105 0.008 0.421 0.000 0.056 0.000 0.432 1.0										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
						0.039				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L2	158 - 156.013	0.005	0.097	0.000	0.032	0.001	0.103	1.050	4.8.2
152.039 0.006 0.202 0.000 0.037 0.000 0.209 1.050 $4.8.2$ 150.053 0.006 0.226 0.000 0.038 0.000 0.243 1.050 $4.8.2$ 148.066 0.006 0.2263 0.000 0.038 0.000 0.277 1.050 $4.8.2$ 144.092 0.006 0.323 0.000 0.056 0.000 0.335 1.050 $4.8.2$ 144.092 0.006 0.373 0.000 0.056 0.000 0.384 1.050 $4.8.2$ 142.105 0.008 0.421 0.000 0.056 0.000 0.432 1.050 $4.8.2$ 136.132 0.009 0.513 0.000 0.556 0.000 0.524 1.050 $4.8.2$ 136.145 0.009 0.557 0.000 0.656 0.000 0.612 1.050 $4.8.2$ 134.158 0.009 0.662 0.000 0.656 0.000 0.612 1.050 $4.$		154.026								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		152.039								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		150.053								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		148.066								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		146.079								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		144.092								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		142.105								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		140.118								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		138.132								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.009							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		134.158 -	0.009	0.600	0.000	0.056	0.000		1.050	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		132.171 -	0.009	0.642	0.000	0.056	0.000	0.654	1.050	4.8.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		130.184 -	0.009	0.682	0.000	0.056	0.000	0.695	1.050	4.8.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		128.197 -	0.009	0.722	0.000	0.056	0.000	0.735	1.050	4.8.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		126.211 -	0.009	0.761	0.000	0.056	0.000	0.774	1.050	4.8.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		122.237			0.000	0.056	0.000	0.812	1.050	4.8.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		120.25								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	116.5								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L3	116.5								
112.972 0.010 0.714 0.000 0.052 0.001 0.727 1.050 4.8.2 111.208 0.010 0.739 0.000 0.051 0.001 0.751 1.050 4.8.2 111.208 0.010 0.739 0.000 0.051 0.001 0.751 1.050 4.8.2 109.444 0.010 0.763 0.000 0.051 0.001 0.776 1.050 4.8.2 107.681 0.010 0.787 0.000 0.051 0.001 0.800 1.050 4.8.2 105.917 0.010 0.810 0.000 0.051 0.001 0.823 1.050 4.8.2 104.153 0.010 0.810 0.000 0.051 0.001 0.823 1.050 4.8.2		114.736								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		112.972 112.972 -								
109.444 0.010 0.763 0.000 0.051 0.001 0.776 1.050 4.8.2 107.681 0.010 0.787 0.000 0.051 0.001 0.800 1.050 4.8.2 107.681 0.010 0.787 0.000 0.051 0.001 0.800 1.050 4.8.2 105.917 0.010 0.810 0.000 0.051 0.001 0.823 1.050 4.8.2 104.153 0.010 0.810 0.000 0.051 0.001 0.823 1.050 4.8.2		111.208 -	0.010	0.739	0.000					
107.681 - 0.010 0.787 0.000 0.051 0.001 0.800 1.050 4.8.2 105.917 105.917 - 0.010 0.810 0.000 0.051 0.001 0.823 1.050 4.8.2 104.153 0.010 0.810 0.000 0.051 0.001 0.823 1.050 4.8.2		109.444 -	0.010	0.763	0.000	0.051	0.001	0.776	1.050	4.8.2
105.917 - 0.010 0.810 0.000 0.051 0.001 0.823 1.050 4.8.2 104.153		107.681 -	0.010	0.787	0.000	0.051	0.001	0.800	1.050	4.8.2
		105.917 -	0.010	0.810	0.000	0.051	0.001	0.823	1.050	4.8.2
			0.010	0.833	0.000	0.051	0.001	0.846	1.050	4.8.2

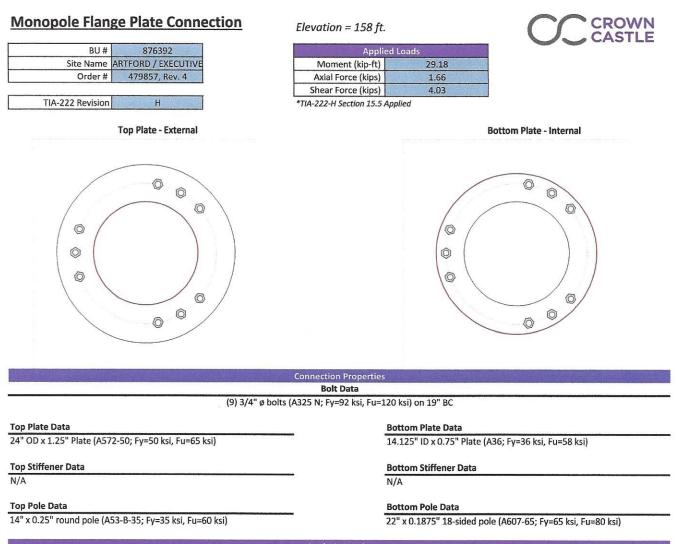
Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio Muy	Ratio Vu	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
	ft	φ P n	φM _{nx}	φM _{ny}	φVn	φ <i>T</i> _n	Ratio	Ratio	
	102.389	<u> </u>	<u>I</u>	19	1	<u>T.</u>			
	102.389 -	0.010	0.855	0.000	0.051	0.001	0.868	1.050	4.8.2
	100.625	0.044	0.070	0.000	0.054	0.004	0.000	1.050	
	100.625 - 98.8611	0.011	0.876	0.000	0.051	0.001	0.890	1.050	4.8.2
	98.8611 -	0.011	0.898	0.000	0.051	0.001	0.911	1.050	4.8.2
	97.0972	0.011	0.000	0.000	0.001	0.001	0.011	1.000	4.0.2
	97.0972 -	0.011	0.918	0.000	0.051	0.001	0.932	1.050	4.8.2
	95.3333								
	95.3333 -	0.011	0.939	0.000	0.051	0.001	0.952	1.050	4.8.2
	93.5694 93.5694 -	0.011	0.959	0.000	0.051	0.001	0.972	1.050	4.8.2
	91.8056	0.011	0.000	0.000	0.001	0.001	0.572	1.000	4.0.2
	91.8056 -	0.011	0.978	0.000	0.050	0.001	0.992	1.050	4.8.2
	90.0417						0.000		12/12/12
	90.0417 -	0.011	0.997	0.000	0.050	0.001	1.011	1.050	4.8.2
	88.2778 88.2778 -	0.011	1.016	0.000	0.050	0.001	1.030	1.050	4.8.2
	86.5139	0.011	1.010	0.000	0.000	0.001	1.000	1.050	4.0.2
	86.5139 -	0.012	1.034	0.000	0.050	0.001	1.049	1.050	4.8.2
	84.75	0.000	0.400						
L4	84.75 - 80.25 84.75 - 80.25	0.006 0.005	0.493 0.449	0.000	0.023	0.000 0.000	0.499	1.050	4.8.2
L4	80.25 -	0.005	0.449	0.000 0.000	0.022 0.041	0.000	0.454 0.851	1.050 1.050	4.8.2 4.8.2
	78.2917	0.010	0.000	0.000	0.041	0.000	0.001	1.000	4.0.2
	78.2917 -	0.010	0.853	0.000	0.041	0.000	0.865	1.050	4.8.2
	76.3333	0.040	0.000	0.000	0.044	0.000	0.070	1.050	
	76.3333 - 74.375	0.010	0.866	0.000	0.041	0.000	0.878	1.050	4.8.2
	74.375 -	0.011	0.879	0.000	0.041	0.000	0.891	1.050	4.8.2
	72.4167	0.011	0.010	0.000	0.011	0.000	0.001	1.000	4.0.2
	72.4167 -	0.011	0.891	0.000	0.041	0.000	0.904	1.050	4.8.2
	70.4583								
	70.4583 - 68.5	0.011	0.904	0.000	0.040	0.000	0.916	1.050	4.8.2
	68.5 -	0.011	0.916	0.000	0.040	0.000	0.928	1.050	4.8.2
	66.5417						0.010		
	66.5417 -	0.011	0.927	0.000	0.040	0.000	0.940	1.050	4.8.2
	64.5833 64.5833 -	0.011	0.020	0.000	0.040	0.000	0.050	1.050	4.0.0
	62.625	0.011	0.939	0.000	0.040	0.000	0.952	1.050	4.8.2
	62.625 -	0.012	0.950	0.000	0.040	0.000	0.964	1.050	4.8.2
	60.6667								
	60.6667 -	0.012	0.961	0.000	0.040	0.000	0.975	1.050	4.8.2
	58.7083 58.7083 -	0.012	0.972	0.000	0.040	0.000	0.096	1 050	400
	56.75	0.012	0.372	0.000	0.040	0.000	0.986	1.050	4.8.2
	56.75 -	0.012	0.983	0.000	0.040	0.000	0.997	1.050	4.8.2
	54.7917	121121121121	Proceeding of the second	1510 MERCENNIC					
	54.7917 - 52.8333	0.012	0.993	0.000	0.040	0.000	1.007	1.050	4.8.2
	52.8333 -	0.012	1.004	0.000	0.039	0.000	1.018	1.050	4.8.2
	50.875	0.012	1.004	0.000	0.000	0.000	1.010	1.050	4.0.2
	50.875 -	0.013	1.014	0.000	0.039	0.000	1.028	1.050	4.8.2
	48.9167 48.9167 -	0.013	1.023	0.000	0.020	0.000	1 000	1.050	400
	46.9583	0.015	1.025	0.000	0.039	0.000	1.038	1.050	4.8.2
	46.9583 - 45	0.013	1.033	0.000	0.039	0.000	1.048	1.050	4.8.2
	45 - 39.75	0.006	0.495	0.000	0.018	0.000	0.501	1.050	4.8.2
L5	45 - 39.75	0.006	0.457	0.000	0.017	0.000	0.463	1.050	4.8.2
	39.75 - 37.6579	0.012	0.864	0.000	0.033	0.000	0.877	1.050	4.8.2
	37.6579 -	0.012	0.871	0.000	0.033	0.000	0.884	1.050	4.8.2
	35.5658					51000	5,001		1.0.2
	35.5658 -	0.012	0.878	0.000	0.033	0.000	0.891	1.050	4.8.2
	33.4737 33.4737 -	0.012	0.885	0.000	0.033	0.000	0.898	1 050	100
	31.3816	0.012	0.000	0.000	0.033	0.000	0.090	1.050	4.8.2
				0.000		0.000	0.905	1.050	

Section No.	Elevation	Ratio Pu	Ratio M _{ux}	Ratio M _{uy}	Ratio V _u	Ratio T _u	Comb. Stress	Allow. Stress	Criteria
110.	ft						Ratio	Ratio	
		φPn	φM _{nx}	φM _{ny}	φVn	φTn	11000	/1000	
	29.2895	0.040	0.007	0.000	0.000	0.000	0.044	1.050	400
	29.2895 -	0.013	0.897	0.000	0.032	0.000	0.911	1.050	4.8.2
	27.1974							4 9 5 9	
	27.1974 -	0.013	0.903	0.000	0.032	0.000	0.917	1.050	4.8.2
	25.1053								
	25.1053 -	0.013	0.909	0.000	0.032	0.000	0.923	1.050	4.8.2
	23.0132								
	23.0132 -	0.013	0.915	0.000	0.032	0.000	0.929	1.050	4.8.2
	20.9211								
	20.9211 -	0.013	0.921	0.000	0.032	0.000	0.935	1.050	4.8.2
	18.8289	0.010	0.007	0.000	0.000	0.000	0.044	4 050	100
	18.8289 -	0.013	0.927	0.000	0.032	0.000	0.941	1.050	4.8.2
	16.7368	0.014	0.000	0.000	0.000	0.000	0.047	1 050	4.8.2
	16.7368 -	0.014	0.932	0.000	0.032	0.000	0.947	1.050	4.0.2
	14.6447	0.014	0.007	0.000	0.004	0.000	0.050	4 050	4.8.2
	14.6447 -	0.014	0.937	0.000	0.031	0.000	0.952	1.050	4.0.2
	12.5526	0.014	0.040	0.000	0.004	0.000	0.057	4 050	400
	12.5526 -	0.014	0.942	0.000	0.031	0.000	0.957	1.050	4.8.2
	10.4605	0.044	0.047	0.000	0.004	0.000	0.000	1.050	4.8.2
	10.4605 -	0.014	0.947	0.000	0.031	0.000	0.962	1.050	4.0.2
	8.36842 8.36842 -	0.014	0.952	0.000	0.031	0.000	0,968	1.050	4.8.2
	6.27632	0.014	0.952	0.000	0.031	0.000	0.900	1.050	4.0.2
	6.27632 -	0.014	0.957	0.000	0.031	0.000	0.972	1.050	4.8.2
	4.18421	0.014	0.301	0.000	0.001	0.000	0.312	1.000	7.0.2
	4.18421 -	0.015	0.962	0.000	0.031	0.000	0.977	1.050	4.8.2
	2.09211	0.015	0.302	0.000	0.001	0.000	0.311	1.000	4.0.2
	2.09211 - 0	0.015	0.966	0.000	0.030	0.000	0.982	1.050	4.8.2
	2.03211-0	0.015	0.300	0.000	0.050	0.000	0.302	1.000	4.0.2


Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	168 - 158	Pole	TP14x14x0.25	1	-1.66	357.18	23.0	Pass
L2	158 - 116.5	Pole	TP29.139x22x0.1875	2	-9.26	1034.76	80.9	Pass
L3	116.5 - 80.25	Pole	TP35x28.119x0.25	3	-18.28	1656.01	99.9	Pass
L4	80.25 - 39.75	Pole	TP41.467x33.726x0.3125	4	-30.14	2452.35	99.8	Pass
L5	39.75 - 0	Pole	TP47.68x39.939x0.375	5	-48.36	3458.52	93.5	Pass
							Summary	
						Pole (L3)	99.9	Pass
						RATING =	99.9	Pass

December 10, 2020 CCI BU No 876392 Page 38


APPENDIX B

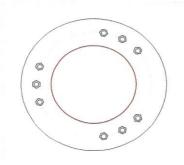
BASE LEVEL DRAWING

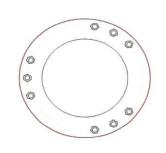
APPENDIX C

ADDITIONAL CALCULATIONS

		Ana	lysis Results		
		Bo	It Capacity		
		Max Load (kips)	8.00		
		Allowable (kips)	30.05		
		Stress Rating:	25.4%	Pass	
Top Plate Capacity				Bottom Plate Capacity	
Max Stress (ksi).	10.22	(Eloxurol)		May Strong (kai)	20.40 (Elamont)

Max Stress (ksi):	10.22	(Flexural)	Max Stress (ksi):	20.49	(Flexural)
Allowable Stress (ksi):	45.00		Allowable Stress (ksi):	32.40	
Stress Rating:	21.6%	Pass	Stress Rating:	60.2%	Pass
Tension Side Stress Rating:	17.4%	Pass	Tension Side Stress Rating:	N/A	


CCIplate


Elevation (ft) 158 (Flange)

Bolt Group	Resist Axial	Resist Shear	Induce Plate Bending
1	Yes	Yes	Yes

Bolt	Bolt Group ID	Location (deg.)	Diameter (in)	Material	Bolt Circle (in)	Eta Factor, n:	l _{ar} (in):	Thread Type	Area Override, in^2	Tension Only
1	1	40	0.75	A325	19	0.5	0	N-Included	and the second second	No
2	1	60	0.75	A325	19	0.5	0	N-Included	A State of the second	No
3	1	80	0.75	A325	19	0.5	0	N-Included		No
4	1	160	0.75	A325	19	0.5	0	N-Included		No
5	1	180	0.75	A325	19	0.5	0	N-included	And the second second	No
6	1	200	0.75	A325	19	0.5	0	N-Included	Constitution and the	No
7	1	280	0.75	A325	19	0.5	0	N-Included	CONTRACTORIAL	No
8	1	300	0.75	A325	19	0.5	0	N-Included	No. 2 House and and	No
9	1	320	0.75	A325	19	0.5	0	N-Included	and the second	No

Plot Graphic

Monopole Base Plate Connection

Site Info BU # 876392 Site Name ARTFORD / EXECUTIVE Order # 479857, Rev. 4

Analysis Considerations		
TIA-222 Revision	Н	
Grout Considered:	No	
l _{ar} (in)	1.25	

625.63
48.36
30.09
The second

0 0 0 0 0 0 0 0 \bigcirc 0 Ø 0 0 0 0 0

Connection Properties

Anchor Rod Data

(16) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 54" BC Anchor Spacing: 6 in

Base Plate Data

54" W x 2.5" Plate (A572-55; Fy=55 ksi, Fu=70 ksi); Clip: 6 in

Stiffener Data

N/A

Pole Data

47.68" x 0.375" 18-sided pole (A607-65; Fy=65 ksi, Fu=80 ksi)

Anchor Rod Summary (units of kips, kip-in) Pu c = 204.3 φPn c = 268.39 Stress Rating

Analysis Results

Pu_c = 204.3	φPn_c = 268.39	Stress Rating
Vu = 1.88	φVn = 120.77	72.5%
Mu = n/a	φMn = n/a	Pass
Base Plate Summary		
Max Stress (ksi):	41.49	(Flexural)
Allowable Stress (ksi):	49.5	
Stress Rating:	79.8%	Pass

CCCROWN

Pier and Pad Foundation

CROWN

	876392
	NEW HARTFORD
App. Number:	479857, Rev. 4

TIA-222 Revision: H Tower Type: Monopole

wei Type.

	Capacity	Demand	Rating*	Check
Lateral (Sliding) (kips)	343.18	30.00	8.3%	Pass
Bearing Pressure (ksf)	9.00	3.58	39.7%	Pass
Overturning (kip*ft)	6309.92	3949.75	62.6%	Pass
Pier Flexure (Comp.) (kip*ft)	5871.80	3851.00	62.5%	Pass
Pier Compression (kip)	23390.64	114.15	0.5%	Pass
Pad Flexure (kip*ft)	3390.85	1421.80	39.9%	Pass
Pad Shear - 1-way (kips)	648.20	260.75	38.3%	Pass
Pad Shear - 2-way (Comp) (ksi)	0.164	0.040	22.9%	Pass
Flexural 2-way (Comp) (kip*ft)	5107.10	2310.60	43.1%	Pass

Superstructure Analysis Rea	actions	a la la a
Compression, P _{comp} :	48	kips
Base Shear, Vu_comp:	30	kips
Moment, M _u :	3626	ft-kips
Tower Height, H:	168	ft
BP Dist. Above Fdn, bp _{dist} :	3.5	lin

Pier Properties	M. Jung and	States -
Pier Shape:	Square	
Pier Diameter, dpier:	7	ft
Ext. Above Grade, E:	0.5	ft
Pier Rebar Size, Sc:	11	
Pier Rebar Quantity, mc:	24	
Pier Tie/Spiral Size, St:	5	
Pier Tie/Spiral Quantity, mt:	21	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc _{pier} :	3	in

Pad Properties	at the second	-1.
Depth, D:	10	ft
Pad Width, W ₁ :	21	ft
Pad Thickness, T:	3	ft
Pad Rebar Size (Bottom dir. 2), Sp2:	9	
Pad Rebar Quantity (Bottom dir. 2), mp2:	25	
Pad Clear Cover, cc _{pad} :	3	in

Material Properties		
Rebar Grade, Fy:	60	ksi
Concrete Compressive Strength, F'c:	3	ksi
Dry Concrete Density, δc:	150	pcf

Soil Properties		
Total Soil Unit Weight, γ :	125	pcf
Ultimate Gross Bearing, Qult:	12.000	ksf
Cohesion, Cu :		ksf
Friction Angle, φ :	30	degrees
SPT Blow Count, Nblows:	21	
Base Friction, μ :		
Neglected Depth, N:	3.50	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw:	N/A	ft

<--Toggle between Gross and Net

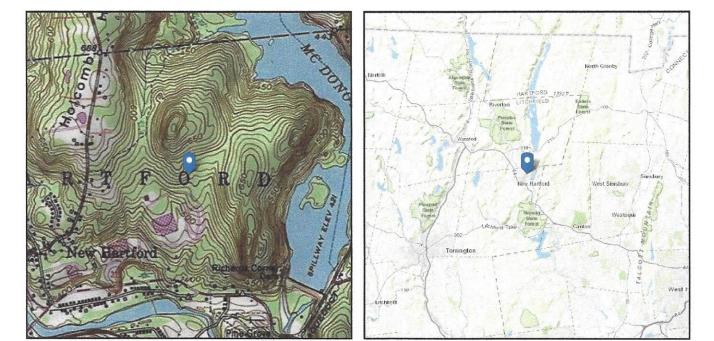
Top & Bot. Pad Rein. Different?:

Block Foundation?:

Rectangular Pad?:

*Rating per TIA-222-H Section 15.5

Soil Rating*:	62.6%
Structural Rating*:	62.5%


Location

ASCE 7 Hazards Report

No Address at This

Standard: ASCE/SEI 7-10 Risk Category: II Soil Class: D - Stiff Soil

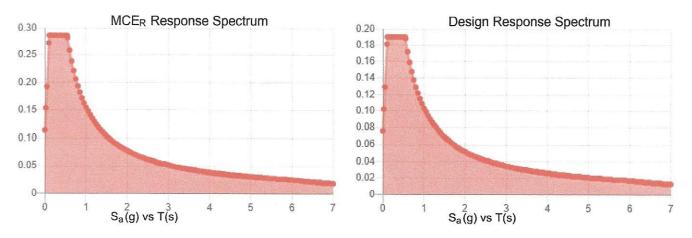
Elevation: 566.99 ft (NAVD 88) Latitude: 41.886244 Longitude: -72.966139

Wind

Results:

Wind Speed:	118 Vmph	*New Hartford Design Wind Speed for Risk Category II: 120 mph
10-year MRI	76 Vmph	
25-year MRI	85 Vmph	
50-year MRI	90 Vmph	
100-year MRI	97 Vmph	
Data Source:	ASCE/SEI 7-1 March 12, 201	0, Fig. 26.5-1A and Figs. CC-1–CC-4, incorporating errata of 4
Date Accessed:	Mon Dec 07 20	020

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).


Site is in a hurricane-prone region as defined in ASCE/SEI 7-10 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

Site Soil Class: Results:	D - Stiff Se *New Hartford MCE Sp		IS	
Ss :	0.178 0	.180 S _{DS} :	0.19	
S ₁ :	0.065 0	.065 S _{D1} :	0.103	
F _a :	1.6	T _L :	6	
F _v :	2.4	PGA :	0.089	
S _{MS} :	0.286	PGA M	: 0.142	
S _{M1} :	0.155	F _{PGA}	: 1.6	
		l _e :	1	

Seismic Design Category B

Data Accessed: Date Source:

Mon Dec 07 2020

USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-10 Ch. 21 are available from USGS.

Results:

Ice Thickness:	1.00 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-10, Figs. 10-2 through 10-8
Date Accessed:	Mon Dec 07 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 50-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Kimley »Horn

es, Inc. ite 600 n.com
TIVE GREET
06057

Dear Kevin Morrow,

Kimley-Horn is pleased to submit this "**Mount Analysis Report**" to determine the structural integrity of T-Mobile's antenna mounting system with the proposed appurtenance and equipment addition on the abovementioned supporting tower structure. Analysis of the existing supporting tower structure is to be completed by others and therefore is not part of this analysis. Analysis of the antenna mounting system as a tie-off point for fall protection or rigging is not part of this document.

The purpose of the analysis is to determine acceptability of the mount stress level. Based on our analysis we have determined the mount stress level to be:

T-Frames Sufficient * *Sufficient capacity once changes described in Section 4.1 Recommendations of this report are completed.

This analysis has been performed in accordance with the 2018 Connecticut State Building Code and Appendix N based upon an ultimate 3-second gust wind speed of 120 mph. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Mount analysis prepared by: Jesse Schnurman, E.I. under the supervision of Steven C. Ball, P.E., S.E.

theBl

Respectfully Submitted by:

Steven C. Ball, P.E., S.E.

12.3.20

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity 4.1) Recommendations

5) APPENDIX A

Wire Frame and Rendered Models

6) APPENDIX B

Software Input Calculations

7) APPENDIX C Software Analysis Output

8) APPENDIX D Additional Calculations

9) APPENDIX E

Supplemental Drawings

1) INTRODUCTION

The mounting configuration consists of (3) existing 5 ft T-Frames designed by Site Pro 1 with a proposed support rail kit.

2) ANALYSIS CRITERIA

Building Code:	2018 Connecticut State Building Code and Appendix N
TIA-222 Revision:	TIA-222-H
Risk Category:	II
Ultimate Wind Speed:	120 mph
Exposure Category:	С
Topographic Factor at Base:	1.0
Topographic Factor at Mount:	1.0
Ice Thickness:	1.5 in
Wind Speed with Ice:	50 mph
Seismic S₅:	0.184
Seismic S ₁ :	0.065
Live Loading Wind Speed:	30 mph
Man Live Load at Mount Pipes:	500 lb

Table 1 – Proposed Equipment Configuration

Elevation (ft)		Antennas			Mount /
Mount	Centerline	#	# Manufacturer Model		Modification Details
		3	RFS Celwave	APXVAALL24_43-U-NA20_TMO	
	3	RFS Celwave	APX16DWV-16DWV-S-E-A20	5 ft T-Arms designed	
166	166 166	3	Ericsson	RADIO 4449 B71 B85A_T-MOBILE	by Site Pro 1 w/ proposed
		3	Ericsson	KRY 112 489/2	support rail kit
		3	Ericsson	KRY 112 144/1	

3) ANALYSIS PROCEDURE

Table 2 - Documents Provided

Document	Remarks	Reference	Source
Supplemental Loading	T-Mobile RFDS	9/10/2020	TSA
Site Photos	-	-	CCISites
Mount Analysis Report	Kimley-Horn	8472847	CCISites

3.1) Analysis Method

RISA-3D (version 17.02.00), a commercially available analysis software package, was used to create a three-dimensional model of the antenna mounting system and calculate member stresses for various loading cases.

A proprietary tool internally developed by Kimley-Horn was used to calculate wind loading on all appurtenances, dishes and mount members for various load cases. Selected output from the analysis is included in Appendix B.

This analysis was performed in accordance with Crown Castle's ENG-SOW-10208 *Mount Analysis* (Revision B).

3.2) Assumptions

- 1) The antenna mounting system (including any considered modifications) was properly fabricated, installed and maintained in good condition in accordance with its original design, TIA standards, and manufacturer's specifications.
- 2) The configuration of antennas, mounts, and other appurtenances are as specified in Table 1 and the provided reference information.
- 3) All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 4) The analysis will be required to be revised if the existing conditions in the field differ from those shown in the above-referenced documents or assumed in this analysis. No allowance was made for any damaged, missing, or rusted members that could not be verified at this time.
- 5) Steel grades have been assumed as follows, unless noted otherwise:

Channel, Solid Round, Angle, Plate	ASTM A36 (Gr. 36)
HSS (Rectangular)	ASTM A36 (Gr. 36)
Pipe	ASTM A53 (Gr. B-35)
Threaded Rods	ASTM A36 (Gr. 36)
Connection Bolts	ASTM A325

This analysis may be affected if any assumptions are not valid or have been made in error. Kimley-Horn should be notified to determine the effect on the structural integrity of the antenna mounting system.

4) ANALYSIS RESULTS

Table 3 - Mount Component Stresses vs. Capacity

Notes	Component	Critical Member	Centerline (ft)	% Capacity	Pass / Fail
1	Mount Pipes	M5		57%	Pass
1	Face Horizontals	M3	166	35%	Pass
2	Connections	-	100	25%	Pass
1	Stand Off Horizontals	M45		16%	Pass

Structure	Rating (max	from	all	com	ponents) =
				•••••		pene	, _

57%

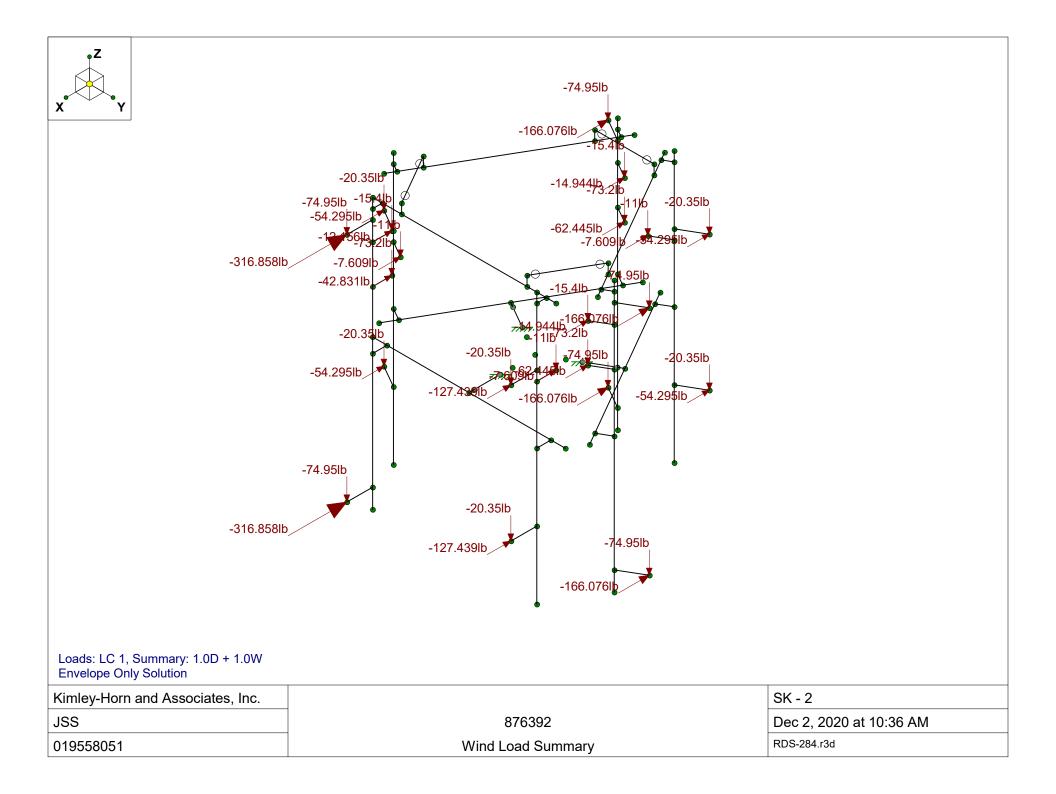
Notes:

1) See additional documentation in "Appendix C - Software Analysis Output" for calculations supporting the % capacity consumed.

2) See additional documentation in "Appendix D – Additional Calculations" for calculations supporting the % capacity consumed.

3) Rating per TIA-222-H, Section 15.5.

4.1) Recommendations


The mounting configuration will have sufficient design capacity to carry the referenced loading once the following modifications are completed:

- Existing mount assumed to be (3) Site Pro 1 RDS-284 T-Arms per previous analysis by Kimley-Horn (CCISites Doc #8472847)
- Install NeWave Face Frame Stiffener Kit 3" below top mount pipe end. Triangulated pipes to be 9" from member ends, field cut to length. See appendix E.
 - (1) NeWave FSK-126-X22

APPENDIX A

WIRE FRAME AND RENDERED MODELS

	<image/>	
Envelope Only Solution		
Kimley-Horn and Associates, Inc.	4	SK - 1
JSS	876392	Dec 2, 2020 at 10:36 AM
019558051	3D Rendering	RDS-284.r3d

APPENDIX B

SOFTWARE INPUT CALCULATIONS

General Criteria	
TIA Standard	Н
IBC Edition	2018
Structure Class	-
Risk Category	=

Site-Specific Criteria	
Exposure Category	С
Topographic Factor, K _{zt}	1.00
Structure Base Elev. (AMSL), zs (ft)	567.00
Ground Effect Factor, Ke	0.98

Mount & Structure Criteria		
Mount Elevation	(AGL) (ft)	166.00
Structure Height	(ft)	168.00
Structure Type	Мо	nopole

Constants	
Wind Direction Probability Factor, \mathbf{K}_{d}	0.95
Gust Effect Factor, Gh	1
Shielding Factor, Ka (antenna)	0.9
Shielding Factor, K _a (mount)	0.9

Wind Summary	
Basic Wind Speed w/o Ice, V (mph)	120.00
Velocity Pressure Coeff., Kz	1.41
Velocity Pressure, qz (w/o lce) (psf)	48.31

Ice Load Summary	
Basic Wind Speed w/ Ice, V _i (mph)	50.00
Design Ice Thick. (ASCE 7-16) , t_i (in)	1.5
Velocity Pressure, qz (w/ Ice) (psf)	8.39
Escalated Ice Thick. @ Mount, tiz (in)	1.76

Seismic Load Summary	
Spectral Response (Short Periods), $\boldsymbol{S_s}$	0.184
Spectral Response (1-Sec. Period), $\mathbf{S_1}$	0.065
Site Class	D
Seismic Design Category	В
Seismic Risk Category	Ш

Snow Load Summary	
Ground Snow Load, pg (psf)	-
Snow Load on Flat Roofs, $\mathbf{p}_{\mathbf{f}}$ (psf)	

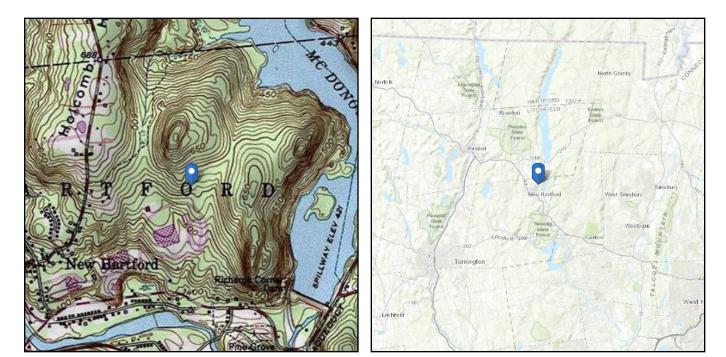
L

Vim		Uarn	Date	D	
	ley»		Client	С	
			Sito #	8	

Date	December 02, 2020						
Client	Crown Castle						
Site #	876392						
Site Name	NEW HARTFORD / EXECUTIVE GREET						
Project #	19558051						

Antenna Name	Qty	Shape	Dimensions (in)		Weight (Ib)	Joint Labels						EPA (ft²)		Wind Force, F _A (lb)						
			Dimensions (iii)			Some Labers								No Ice		With Ice				
			Н	W	D	(10)	Alp	oha	Be	eta	Gan	nma	De	lta	Front	Side	Front	Side	Front	Side
APX16DWV-16DWV-S-E-A20	3	Flat	55.9	13.3	3.2	40.7	A1T	A1B	B1T	B1B	G1T	G1B			5.86	1.38	254.88	59.83	58.12	19.48
APXVAALL24_43-U-NA20_TMO	3	Flat	95.9	24	8.5	149.9	A2T	A2B	B2T	B2B	G2T	G2B			14.57	5.33	633.72	231.63	129.06	55.14
KRY 112 144/1	3	Flat	7	6	3	11	A1R		B1R		G1R				0.18	0.18	7.61	7.61	3.15	4.32
KRY 112 489/2	3	Flat	11	6.1	3.9	15.4	A2R_1		B2R_1		G2R_1				0.28	0.37	12.16	15.87	4.4	6.82
RADIO 4449 B71 B85A_T-MOBILE	3	Flat	17.9	13.2	10.6	73.2	A2R_2		B2R_2		G2R_2				0.99	1.59	42.83	68.98	11.28	19.09

Location


ASCE 7 Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Default (see
Section 11.4.3)

 Elevation:
 566.99 ft (NAVD 88)

 Latitude:
 41.886244

 Longitude:
 -72.966139

Wind

Results:

Wind Speed: 120 mph - State Requirement

Data Source: Date Accessed:

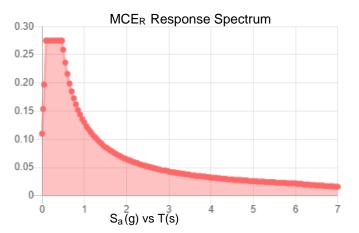
ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4 Wed Dec 02 2020

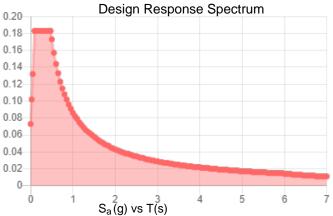
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

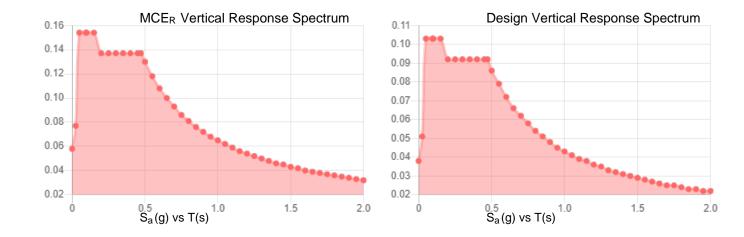
Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Mountainous terrain, gorges, ocean promontories, and special wind regions should be examined for unusual wind conditions.

D - Default (see Section 11.4.3)


Results:


Site Soil Class:


S _S : S ₁ :	0.184 - State Require 0.065 - State Require		0.086 6
F _a :	1.6	PGA :	0.09
F _v :	2.4	PGA M:	0.144
S _{MS} :	0.275	F _{PGA} :	1.6
S _{M1} :	0.13	l _e :	1
S _{DS} :	0.183	C, :	0.7

В

Seismic Design Category

Data Accessed: Date Source: Wed Dec 02 2020 USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:	1.50 in.
Concurrent Temperature:	5 F
Gust Speed:	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Wed Dec 02 2020

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

APPENDIX C

SOFTWARE ANALYSIS OUTPUT

: :

Kimley-Horn and Associates, Inc. JSS : 019558051 : 876392

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm (\1E	.Density[lb/f	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	490	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	490	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	490	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	490	35	1.6	60	1.2
7	A1085	29000	11154	.3	.65	490	50	1.4	65	1.3

Hot Rolled Steel Section Sets

	Label	Shape	Туре	Design List	Material	Design	A [in2]	lyy [in4]	lzz [in4]	_J [in4]
1	Stand-Off Horiz	HSS4X4X3	Beam	None	A500 Gr	Typical	2.58	6.21	6.21	10
2	Face Horiz	PIPE 3.0	Beam	None	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
3	Mount Pipe	PIPE 2.0	Column	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
4	FSK-126-X22: Front Face	PIPE 2.0	Beam	None	A53 Gr.B	Typical	1.02	.627	.627	1.25
5	FSK-126-X22: Triangulated Pipe	PIPE_1.5	Beam	None	A53 Gr.B	Typical	.749	.293	.293	.586

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in] L-1	torqu	Kyy	Kzz	Cb	Function
1	M1	Stand-Off H	8		-	Lbyy						Lateral
2	M3	Face Horiz	60			Lbyy						Lateral
3	M5	Mount Pipe	84									Lateral
4	M10	Mount Pipe	84									Lateral
5	M15	Stand-Off H	8			Lbyy						Lateral
6	M17	Face Horiz	60			Lbyy						Lateral
7	M19	Mount Pipe	84									Lateral
8	M24	Mount Pipe	84									Lateral
9	M29	Stand-Off H	8			Lbyy						Lateral
10	M31	Face Horiz	60			Lbyy						Lateral
11	M33	Mount Pipe	84									Lateral
12	M38	Mount Pipe	84									Lateral
13	M45	FSK-126-X2	. 57			Lbyy						Lateral
14	M50	FSK-126-X2	. 57			Lbyy						Lateral
15	M55	FSK-126-X2	. 57			Lbyy						Lateral
16	M58	FSK-126-X2				Lbyy						Lateral
17	M59	FSK-126-X2				Lbyy						Lateral
18	M60	FSK-126-X2	18.449			Lbyy						Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	DistributedArea(Me	eSurface(
1	Dead	DĹ			-1	21			, , , , , , , , , , , , , , , , , , ,
2	Dead of Ice	RL				21		18	
4	Structure Wind (0)	None						36	
5	Structure Wind (30)	None						36	
6	Structure Wind (45)	None						36	
7	Structure Wind (60)	None						36	
8	Structure Wind (90)	None						36	
9	Structure Wind (120)	None						36	
10	Structure Wind (135)	None						36	
11	Structure Wind (150)	None						36	
12	Structure Wind w/ Ice (0)	None						36	
13	Structure Wind w/ Ice (30)	None						36	

Kimley **»Horn**

Company Designer Job Number Model Name

: Kimley-Horn and Associates, Inc. : JSS : 019558051 : 876392

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	DistributedArea(M	eSurface(
14	Structure Wind w/ Ice (45)	None						36	
15	Structure Wind w/ Ice (60)	None						36	
16	Structure Wind w/ Ice (90)	None						36	
17	Structure Wind w/ Ice (120)	None						36	
18	Structure Wind w/ Ice (135)	None						36	
19	Structure Wind w/ Ice (150)	None						36	
20	Antenna Wind (0)	None				42			
21	Antenna Wind (30)	None				42			
22	Antenna Wind (45)	None				42			
23	Antenna Wind (60)	None				42			
24	Antenna Wind (90)	None				42			
25	Antenna Wind (120)	None				42			
26	Antenna Wind (135)	None				42			
27	Antenna Wind (150)	None				42			
28	Antenna Wind w/ Ice (0)	None				42			
29	Antenna Wind w/ Ice (30)	None				42			
30	Antenna Wind w/ Ice (45)	None				42			
31	Antenna Wind w/ Ice (60)	None				42			
32	Antenna Wind w/ Ice (90)	None				42			
33	Antenna Wind w/ Ice (120)	None				42			
34	Antenna Wind w/ Ice (135)	None				42			
35	Antenna Wind w/ Ice (150)	None				42			
36	Seismic X	ELX				21		18	
37	Seismic Y	ELY				21		18	
38	Maintenance Live Lm (1)	OL1				1			
39	Maintenance Live Lm (2)	OL2				1			

Load Combinations

	Description		P S.	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. В	Fa	В	Fa	В	Fa
1	Summary: 1.0D + 1.0W	Yes		DL		20	1																
2	1.4D		Υ	DL	1.4																		
3	1.2D + 1.0W(0)	Yes		DL	1.2	4	1	20	1														
4	1.2D + 1.0W(30)	Yes		DL		5	1	21	1														
5	1.2D + 1.0W(45)	Yes		DL	1.2	6	1	22	1														
6	1.2D + 1.0W(60)	Yes		DL	1.2	7	1	23	1														
7	1.2D + 1.0W(90)	Yes		DL		8	1	24	1														
8	1.2D + 1.0W(120)	Yes		DL	1.2	9	1	25	1														
9	1.2D + 1.0W(135)	Yes		DL	1.2	10	1	26	1														
10	1.2D + 1.0W(150)	Yes	Υ	DL	1.2	11	1	27	1														
11	1.2D + 1.0W(180)	Yes		DL	1.2	4	-1	20	-1														
12	1.2D + 1.0W(210)	Yes	Υ	DL	1.2	5	-1	21	-1														
13	1.2D + 1.0W(225)	Yes	Υ	DL	1.2	6	-1	22	-1														
14	1.2D + 1.0W(240)	Yes	Y	DL		7	-1	23	-1														
15	1.2D + 1.0W(270)	Yes	Υ	DL	1.2	8	-1	24	-1														
16	1.2D + 1.0W(300)	Yes	Υ	DL		9	-1	25	-1														
17	1.2D + 1.0W(315)	Yes	Y	DL	1.2	10	-1	26	-1														
18	1.2D + 1.0W(330)	Yes	Υ	DL	1.2	11	-1	27	-1														
19	1.2D + 1.0Di + 1.0Wi(0)	Yes	Υ	DL	1.2	RL	1	12	1	28	1												
20	1.2D + 1.0Di + 1.0Wi(30)	Yes	Υ	DL	1.2	RL	1	13	1	29	1												
21	1.2D + 1.0Di + 1.0Wi(45)	Yes	Y	DL	1.2	RL	1	14	1	30	1												
22	1.2D + 1.0Di + 1.0Wi(60)		Υ	DL	1.2		1	15	1	31	1												
23	1.2D + 1.0Di + 1.0Wi(90)		Υ	DL			1	16	1	32	1												
24	1.2D + 1.0Di + 1.0Wi(120)	Yes		DL	1.2	RL	1	17	1	33	1												
25	1.2D + 1.0Di + 1.0Wi(135)	Yes	Y	DL	1.2		1	18	1	34	1												
26	1.2D + 1.0Di + 1.0Wi(150)	Yes	Υ	DL	1.2		1	19	1	35													

Kimley **»Horn**

Company Designer Job Number Model Name

: Kimley-Horn and Associates, Inc. : JSS : 019558051 : 876392

Load Combinations (Continued)

<u>=000</u>																							
		S P										. В	Fa	В	Fa.								
27		Yes Y			1.2		1	12															
28		Yes Y			1.2			13															
29		Yes Y			1.2				-1														
30		Yes Y			1.2			15															
31	1.2D + 1.0Di + 1.0Wi(270)	Yes Y		DL	1.2	RL	1	16															
32		Yes Y			1.2			17															
33		Yes Y			1.2			18															
34		Yes Y			1.2				-1	35	-1												
35	<u>1.2D + 1.0E(0)</u>	Yes Y			1.2				_														
36	<u>1.2D + 1.0E(30)</u>	Yes Y			1.2																		
37	<u>1.2D + 1.0E(45)</u>	Yes Y							.707														
38	<u>1.2D + 1.0E(60)</u>	Yes Y		DL	1.2	E	5	E	.866														
39		Yes Y			1.2				1														
40	<u>1.2D + 1.0E(120)</u>	Yes Y		DL	1.2	E			.866														
41	1.2D + 1.0E(135)	Yes Y		DL	1.2	E	.707	E	.707														
42	<u>1.2D + 1.0E(150)</u>	Yes Y			1.2																		
43	<u>1.2D + 1.0E(180)</u>	Yes Y			1.2				4.5														
44	<u>1.2D + 1.0E(210)</u>	Yes Y							5														
45	<u>1.2D + 1.0E(225)</u>	Yes Y							7														
46	<u>1.2D + 1.0E(240)</u>	Yes Y			1.2				8														
47	<u>1.2D + 1.0E(270)</u>	Yes Y			1.2																		
48	<u>1.2D + 1.0E(300)</u>	Yes Y			1.2	E	5	E	8														
49		Yes Y							7														
50	<u>1.2D + 1.0E(330)</u>	Yes Y							5										-				
51	0.9D + 1.0E(0)	Yes Y			1.2				-														
52	0.9D + 1.0E(30)	Yes Y			1.2	E	ŏ	E	.5										-				
53	0.9D + 1.0E(45)	Yes Y							.707														
54	0.9D + 1.0E(60)	Yes Y			1.2																		
55	0.9D + 1.0E(90)	Yes Y			1.2				1														
56	0.9D + 1.0E(120)	Yes Y			1.2					_													
57	0.9D + 1.0E(135)	Yes Y Yes Y		DL	1.2 1.2	E	.707	E															
58	0.9D + 1.0E(150)	Yes Y			1.2				. . 4.5										-				
59		Yes Y							5	1													
60	$\frac{0.9D + 1.0E(210)}{0.0D + 1.0E(225)}$	Yes Y							3 7										-				
61	$\frac{0.9D + 1.0E(225)}{0.0D + 1.0E(240)}$	Yes Y			1.2		.707	E	8														
62	$\frac{0.9D + 1.0E(240)}{0.0D + 1.0E(270)}$	Yes Y			1.2																		
63	0.9D + 1.0E(270)	Yes Y							- I 8														
64	<u>0.9D + 1.0E(300)</u> 0.9D + 1.0E(315)	Yes Y							o 7														
65 66		Yes Y			1.2																		
	1.2D + 1.5Lm(1) + 1.0Wm(0)								.063		1 5												
	1.2D + 1.5Lm(1) + 1.0Wm(0)								.063														
	1.2D + 1.5Lm(1) + 1.0Wm(30) 1.2D + 1.5Lm(1) + 1.0Wm(45)								.063														
	1.2D + 1.5Lm(1) + 1.0Wm(43) 1.2D + 1.5Lm(1) + 1.0Wm(60)								.063														
	1.2D + 1.5Lm(1) + 1.0Wm(90)								.063														
	1.2D + 1.5Lm(1) + 1.0Wm(120)								.063														
	$\frac{1.2D}{1.2D} + 1.5Lm(1) + 1.0Wm(120)$.063										-				
	1.2D + 1.5Lm(1) + 1.0Wm(133) 1.2D + 1.5Lm(1) + 1.0Wm(150)								.063														
	1.2D + 1.5Lm(1) + 1.0Wm(130) 1.2D + 1.5Lm(1) + 1.0Wm(180)								0										-				
	1.2D + 1.5Lm(1) + 1.0Wm(100) 1.2D + 1.5Lm(1) + 1.0Wm(210)								0														
	1.2D + 1.5Lm(1) + 1.0Wm(210) 1.2D + 1.5Lm(1) + 1.0Wm(225)								0														
	1.2D + 1.5Lm(1) + 1.0Wm(220) 1.2D + 1.5Lm(1) + 1.0Wm(240)								0														
	1.2D + 1.5Lm(1) + 1.0Wm(240) 1.2D + 1.5Lm(1) + 1.0Wm(270)								0 0														
	1.2D + 1.5Lm(1) + 1.0Wm(270) 1.2D + 1.5Lm(1) + 1.0Wm(300)		_						0														
	1.2D + 1.5Lm(1) + 1.0Wm(300) 1.2D + 1.5Lm(1) + 1.0Wm(315)								0														
	1.2D + 1.5Lm(1) + 1.0Wm(330) 1.2D + 1.5Lm(1) + 1.0Wm(330)								0														
	1.2D + 1.5Lm(2) + 1.0Wm(0)								.063														
			1						1.000	· • · · ·	тт. Э	1	1	1		1		1	1	1	1	1	

RISA-3D Version 17.0.2 [\...\...\Crown\876392\KHRAL-8666 (MAR)\Model\RDS-284.r3d]

Load Combinations (Continued)

	Description	S	P	S	B I	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
84	1.2D + 1.5Lm(2) + 1.0Wm(30)	Yes	Υ		DL	1.2	5	.063	21	.063	O	1.5												
85	1.2D + 1.5Lm(2) + 1.0Wm(45)	Yes	Υ		DL	1.2		.063																
86	1.2D + 1.5Lm(2) + 1.0Wm(60)	Yes	Υ		DL	1.2		.063																
87	1.2D + 1.5Lm(2) + 1.0Wm(90)					1.2		.063																
	1.2D + 1.5Lm(2) + 1.0Wm(120)				DL																			
89	1.2D + 1.5Lm(2) + 1.0Wm(135)	Yes	Υ		DL																			
90	1.2D + 1.5Lm(2) + 1.0Wm(150)	Yes	Υ		DL	1.2	11	.063	27	.063	O	1.5												
	1.2D + 1.5Lm(2) + 1.0Wm(180)				DL	1.2	4	0	20	0	O	1.5												
	1.2D + 1.5Lm(2) + 1.0Wm(210)				DL	1.2	5	0	21	0	O	1.5												
93	1.2D + 1.5Lm(2) + 1.0Wm(225)	Yes	Υ		DL	1.2																		
94	1.2D + 1.5Lm(2) + 1.0Wm(240)	Yes	Υ		DL	1.2	7	0	23	0	O	1.5												
95	1.2D + 1.5Lm(2) + 1.0Wm(270)	Yes	Υ		DL	1.2	8	0	24	0	O	1.5												
96	1.2D + 1.5Lm(2) + 1.0Wm(300)	Yes	Y		DL																			
	1.2D + 1.5Lm(2) + 1.0Wm(315)				DL	1.2	10	0	26	0	0	1.5												
98	1.2D + 1.5Lm(2) + 1.0Wm(330)	Yes	Υ		DL	1.2	11	0	27	0	O	1.5												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N2	max	1163.701	3	701.733	13	1391.726	23	1053.808	70	-275.561	6	1477.282	17
2		min	-1096.003	11	-702.898	5	400.164	1	-1898.195	94	-1574.554	30	-1480.543	9
3	N31	max	848.417	4	1103.409	15	1391.723	28	1996.343	24	225.031	18	1464.928	12
4		min	-880.979	12	-1044.381	7	399.933	1	200.736	16	-441.653	10	-1465.635	4
5	N59	max	948.26	18	957.615	15	1391.72	29	-43.152	17	1883.262	19	1464.878	7
6		min	-983.078	10	-1015.382	7	399.671	1	-819.915	30	71.994	11	-1465.578	15
7	Totals:	max	2668.562	3	2668.505	15	4174.933	23						
8		min	-2668.556	11	-2668.497	7	1199.768	1						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code Ch.	Loc[in]	LC	Shear C	.Loc[in]		phi*Pnc [l	phi*Pnt [phi*Mn y-y [l	phi*Mn z-z [lb-ft]	Cb	Eqn
1	M5	PIPE_2.0	.569	41.576	3	.088	41.576	17	17855.085	32130	1871.625	1871.625	4.329	H1-1b
2	M19	PIPE_2.0	.569	41.576	14	.085	41.576	12	17855.085	32130	1871.625	1871.625	1.49	H1-1b
3	M33	PIPE_2.0	.569	41.576	8	.085	41.576	7	17855.085	32130	1871.625	1871.625	1.501	H1-1b
4	M3	PIPE_3.0	.348	29.697	91	.119	29.697	19	57037.472	65205	5748.75	5748.75	1.661	H1-1b
5	M31	PIPE_3.0	.312	29.697	20	.119	29.697	24	57037.472	65205	5748.75	5748.75	1.652	H1-1b
6	M17	PIPE_3.0	.312	29.697	26	.119	29.697	30	57037.472	65205	5748.75	5748.75	1.652	H1-1b
7	M38	PIPE_2.0	.259	42.424	10	.067	42.424	7	17855.085	32130	1871.625	1871.625	2.407	H1-1b
8	M10	PIPE_2.0	.259	42.424	4	.067	42.424	18	17855.085	32130	1871.625	1871.625	1.772	H1-1b
9	M24	PIPE_2.0	.259	42.424	15	.069	42.424	13	17855.085	32130	1871.625	1871.625	2.386	H1-1b
10	M1	HSS4X4	.164	0	18	.221	0	y 94	106665.8	106812	12661.5	12661.5	1.236	H1-1b
11	M15	HSS4X4	.164	0	12	.167	0	y 25	106665.8	106812	12661.5	12661.5	1.236	H1-1b
12	M29	HSS4X4	.164	0	7	.166	0	y 19	106665.8	106812	12661.5	12661.5	1.236	H1-1b
13	M45	PIPE_2.0	.130	3.455	5	.095	8.636	10	24514.617	32130	1871.625	1871.625	2.117	H1-1b
14	M55	PIPE_2.0	.122	3.455	11	.095	8.636	15	24514.617	32130	1871.625	1871.625	2.014	H1-1b
15	M50	PIPE_2.0	.122	3.455	16	.100	8.636	5	24514.617	32130	1871.625	1871.625	2.014	H1-1b
16	M58	PIPE_1.5	.005	9.318	28	.145	18.449	11	22565.846	23593.5	1105.125	1105.125	1.14	H1-1b
17	M59	PIPE_1.5	.005	9.318	33	.145	18.449	16	22565.846	23593.5	1105.125	1105.125	1.14	H1-1b
18	M60	PIPE_1.5	.005	9.318	23	.145	0	6	22565.846	23593.5	1105.125	1105.125	1.14	H1-1b

APPENDIX D

ADDITIONAL CALCUATIONS

CCI Mount Analysis Square Plate Connection 1.0.1

CROWN

30

А				
TA				
SITE DATA BU Number: 876392				
NEW HARTFORD / EXECUTIVE GREET				
479857				
	876392 New Hartford / executive greet			

BOLT DATA				
Quantity: 4				
Diameter: 0.625		in		
Material:	A449 (1/4 to 1 Incl.)	Select		
Fy:	92	ksi		
Fu:	120	ksi		
Bolt Spacing:	8.485	in		

PLATE DATA			
Width:	8	in	
Thickness:	0.625	in	
Fy:	36	ksi	

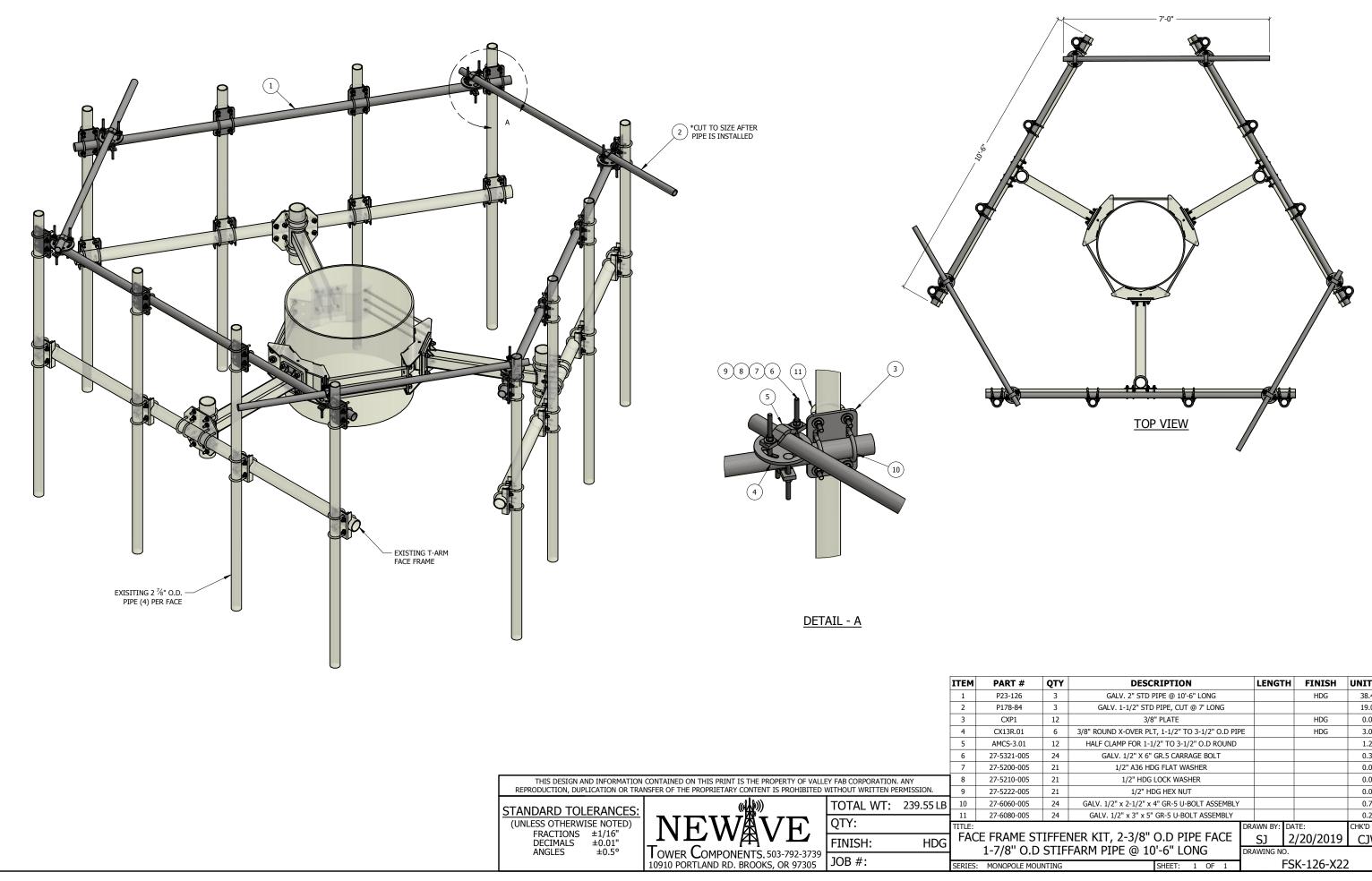
SUPPORT ARM DATA				
Туре:	HSST	Select		
Diameter/Width:	4	in		
Thickness	0.25	in		
Fy:	36	ksi		
Number of Sides:	4			

TIA Revision:	TIA Revision: TIA-222-H		
Normalizing to 100	% per TIA-222-H Section 15.5		
REACTIO	NS		
Moment:	1.517	kip-ft	
Axial:	0.016	kips	
Shear:	1.392	kips	
		-	

BOLT RESULTS				
Max Bolt (Cu+ Vu/η):	1.52	kips		
Axial Design Strength:	21.70	kips		
Stress Ratio	6.68%			

PLATE RESULTS				
Base Plate Stress:	8.52	ksi		
Bending Strength:	32.40	ksi		
Stress Ratio:	25.04%			

Controlling Load Combination


Load Combination

30

APPENDIX E

SUPPLEMENTAL DRAWINGS

x Y		Proposed NeWave FSK-126-X22
Kimley-Horn and Associates, Inc.		SK - 1
JSS	876392	Dec 2, 2020 at 10:40 AM
019558051	Conditional Pass Details - FSK-126-X22	ModModel.r3d

	QTY	DESCRIPTION		LENGT	Ή	FINISH	UNIT WT
	3	GALV. 2" STD PIPE @ 10'-6" LONG				HDG	38.40
	3	GALV. 1-1/2" STD PIPE, CUT @ 7' LONG					19.04
	12	3/8" PLATE				HDG	0.00
	6	3/8" ROUND X-OVER PLT, 1-1/2" TO 3-1/2" O.D PIF	ΡE			HDG	3.09
	12	HALF CLAMP FOR 1-1/2" TO 3-1/2" O.D ROUND					1.23
5	24	GALV. 1/2" X 6" GR.5 CARRAGE BOLT				0.37	
5	21	1/2" A36 HDG FLAT WASHER					0.04
5	21	1/2" HDG LOCK WASHER					0.01
5	21	1/2" HDG HEX NUT				0.04	
5	24	GALV. 1/2" x 2-1/2" x 4" GR-5 U-BOLT ASSEMBLY					0.76
5	24	GALV. 1/2" x 3" x 5" GR-5 U-BOLT ASSEMBLY					0.20
			DR/	AWN BY:			CHK'D BY:
		NER KIT, 2-3/8" O.D PIPE FACE		SJ	2	/20/2019	CJW
.D	STIF	FARM PIPE @ 10'-6" LONG	DR/	AWING NO	Э.		
MOU	NTING	SHEET: 1 OF 1		I	=S	K-126-X22)

Wireless Network Design and Deployment

Radio Frequency Emissions Analysis Report

T-MOBILE Existing Facility

Site ID: CTNH414A

Litchfield 10 - Crown 115 Industrial Park New Hartford, CT 06057

May 28, 2019

Transcom Engineering Project Number: 737001-0045

Site Compliance Summary				
Compliance Status:	COMPLIANT			
Site total MPE% of FCC general population allowable limit:	11.32 %			

Wireless Network Design and Deployment

May 28, 2019

T-MOBILE Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, CT 6009

Emissions Analysis for Site: CTNH414A – Litchfield 10 - Crown

Transcom Engineering, Inc ("Transcom") was directed to analyze the proposed upgrades to the T-MOBILE facility located at **115 Industrial Park**, **New Hartford**, **CT**, for the purpose of determining whether the emissions from the Proposed T-MOBILE Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

<u>General population/uncontrolled exposure</u> limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 & 700 MHz bands are approximately 400 μ W/cm² and 467 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Wireless Network Design and Deployment

<u>Occupational/controlled exposure</u> limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over this or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

Wireless Network Design and Deployment

CALCULATIONS

Calculations were performed for the proposed upgrades to the T-MOBILE antenna facility located at **115 Industrial Park, New Hartford, CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-MOBILE is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. All power values expressed and analyzed are maximum power levels expected to be used on all radios.

All emissions values for additional carriers were taken from the Connecticut Siting Council (CSC) active MPE database. Values in this database are provided by the individual carriers themselves

For each sector the following channel counts, frequency bands and power levels were utilized as shown in *Table 1*:

Technology	Frequency Band	Channel Count	Transmit Power per Channel (W)
LTE	1900 MHz (PCS)	4	40
GSM	1900 MHz (PCS)	1	15
UMTS	2100 MHz (AWS)	1	40
LTE / 5G NR	600 MHz	2	40
LTE	700 MHz	2	20

Table 1: Channel Data Table

Wireless Network Design and Deployment

The following antennas listed in *Table 2* were used in the modeling for transmission in the 600, 700 MHz, 1900 MHz (PCS) and 2100 MHz (AWS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.

			Antenna
	Antenna		Centerline
Sector	Number	Antenna Make / Model	(ft)
А	1	RFS APX16DWV-16DWV-S-E-ACU	134
А	2	RFS APXVAARR24_43-U-NA20	134
В	1	RFS APX16DWV-16DWV-S-E-ACU	134
В	2	RFS APXVAARR24_43-U-NA20	134
С	1	RFS APX16DWV-16DWV-S-E-ACU	134
С	2	RFS APXVAARR24_43-U-NA20	134

Table 2: Antenna Data

All calculations were done with respect to uncontrolled / general population threshold limits.

Cable losses were factored in the calculations for this site. Since all **1900 MHz (PCS) & 2100 MHz** (AWS) radios are ground mounted the following cable loss values were used. For each ground mounted **1900 MHz (PCS)** radio there was **1.95 dB** of cable loss calculated into the system gains / losses for this site. For each ground mounted **2100 MHz (AWS)** radio there was **2.06 dB** of cable loss calculated into the system gains / losses for this site. These values were calculated based upon the manufacturers specifications for **160 feet** of **1-1/4**" coax.

Wireless Network Design and Deployment

RESULTS

Per the calculations completed for the proposed T-MOBILE configurations *Table 3* shows resulting emissions power levels and percentages of the FCC's allowable general population limit.

					Total TX		
Antenna			Antenna Gain	Channel	Power		
ID	Antenna Make / Model	Frequency Bands	(dBd)	Count	(W)	ERP (W)	MPE %
Antenna	RFS	1900 MHz (PCS) /	(uDu)	Count	(**)		WII L 70
			15.0	6	215	5 212 90	1.16
A1	APX16DWV-16DWV-S-E-ACU	2100 MHz (AWS)	15.9	6	215	5,313.89	1.16
Antenna	RFS						
A2	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	12.95 / 13.35	4	120	2,443.03	1.28
				Se	ector A Comp	osite MPE%	2.44
Antenna	RFS	1900 MHz (PCS) /					
B1	APX16DWV-16DWV-S-E-ACU	2100 MHz (AWS)	15.9	6	215	5,313.89	1.16
Antenna	RFS						
B2	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	12.95 / 13.35	4	120	2,443.03	1.28
				Se	ector B Comp	osite MPE%	2.44
Antenna	RFS	1900 MHz (PCS) /					
C1	APX16DWV-16DWV-S-E-ACU	2100 MHz (AWS)	15.9	6	215	5,313.89	1.16
Antenna	RFS						
C2	APXVAARR24_43-U-NA20	600 MHz / 700 MHz	12.95 / 13.35	4	120	2,443.03	1.28
Sector C Composite MPE%					2.44		

Table 3: T-MOBILE Emissions Levels

Wireless Network Design and Deployment

The Following table (*table 4*) shows all additional carriers on site and their MPE% as recorded in the CSC active MPE database for this facility along with the newly calculated maximum T-MOBILE MPE contributions per this report. FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. For this site, all three sectors have the same configuration yielding the same results on all three sectors. *Table 5* below shows a summary for each T-MOBILE Sector as well as the composite MPE value for the site.

Site Composite MPE%				
Carrier	MPE%			
T-MOBILE – Max Per Sector Value	2.44 %			
Sprint	2.33 %			
MetroPCS	0.61 %			
Verizon Wireless	1.65 %			
AT&T	4.29 %			
Site Total MPE %:	11.32 %			

Table 4: All Carrier MPE Contributions

T-MOBILE Sector A Total:	2.44 %
T-MOBILE Sector B Total:	2.44 %
T-MOBILE Sector C Total:	2.44 %
Site Total:	11.32 %

Table 5: Site MPE Summary

Wireless Network Design and Deployment

FCC OET 65 specifies that for carriers utilizing directional antennas that the highest recorded sector value be used for composite site MPE values due to their greatly reduced emissions contributions in the directions of the adjacent sectors. *Table 6* below details a breakdown by frequency band and technology for the MPE power values for the maximum calculated T-MOBILE sector(s). For this site, all three sectors have the same configuration yielding the same results on all three sectors.

T-MOBILE _ Frequency Band / Technology Max Power Values (Per Sector)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm ²)	Frequency (MHz)	Allowable MPE (µW/cm ²)	Calculated % MPE
T-Mobile 1900 MHz (PCS) LTE	4	993.25	134	8.72	1900 MHz (PCS)	1000	0.87%
T-Mobile 1900 MHz (PCS) GSM	1	372.47	134	0.82	1900 MHz (PCS)	1000	0.08%
T-Mobile 2100 MHz (AWS) UMTS	1	968.41	134	2.12	2100 MHz (AWS)	1000	0.21%
T-Mobile 600 MHz LTE / 5G NR	2	788.97	134	3.46	600 MHz	400	0.87%
T-Mobile 700 MHz LTE	2	432.54	134	1.90	700 MHz	467	0.41%
						Total:	2.44%

Table 6: T-MOBILE Maximum Sector MPE Power Values

Wireless Network Design and Deployment

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-MOBILE facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-MOBILE Sector	Power Density Value (%)
Sector A:	2.44 %
Sector B:	2.44 %
Sector C:	2.44 %
T-MOBILE Maximum	2.44 %
Total (per sector):	
Site Total:	11.32 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is **11.32 %** of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

/A Alf

Scott Heffernan RF Engineering Director Transcom Engineering, Inc PO Box 1048 Sterling, MA 01564

T-MOBILE SITE NUMBER: CTNH414AT-MOBILE SITE NAME:LITCHFIELD 10SITE TYPE:MONOPOLETOWER HEIGHT:168'-0"

R:CTNH414ABUSINESS UNIT #: 876392LITCHFIELD 10SITE ADDRESS:MONOPOLECOUNTY:168'-0"JURISDICTION:T-MOBILE L600 SITE CONFIGURATION: 67D04GHARTFORD

• • • Mobile • •

COL

NO₁

NOT

REF

SITE INFORMATION

SITE NAME:	NEW HARTFORD / EXECUTIVE GREET
SITE ADDRESS:	115 INDUSTRIAL PARK RD NEW HARTFORD, CT 06057
COUNTY:	LITCHFIELD
MAP/PARCEL #:	NHAR-000038-000134-000015C
AREA OF CONSTRUCTION:	EXISTING
LATITUDE:	41.886244°
LONGITUDE:	-72.966139°
LAT/LONG TYPE:	NAD83
GROUND ELEVATION:	558 FT.
CURRENT ZONING:	NOT REQUIRED
JURISDICTION:	TOWN OF NEW HARTFORD
OCCUPANCY CLASSIFICATION:	U
TYPE OF CONSTRUCTION:	IIB
A.D.A. COMPLIANCE: PROPERTY OWNER:	FACILITY IS UNMANNED AND NOT FO HUMAN HABITATION GLOBAL SIGNAL ACQUISITIONS IV LLO DO DOX 27545
	PO BOX 277455 Atlanta, GA 30389-7455
TOWER OWNER:	GLOBAL SIGNAL ACQUISITIONS II LLC 2000 CORPORATE DRIVE CANONSBURG, PA 15317
CARRIER/APPLICANT:	T-MOBILE 35 GRIFFIN ROAD BLOOMFIELD, CT 06002
CROWN CASTLE USA INC. APPLICATION ID:	479857
ELECTRIC PROVIDER:	NORTHEAST UTILITIES (800) 286-2000
TELCO PROVIDER:	AT&T (866) 620-6900

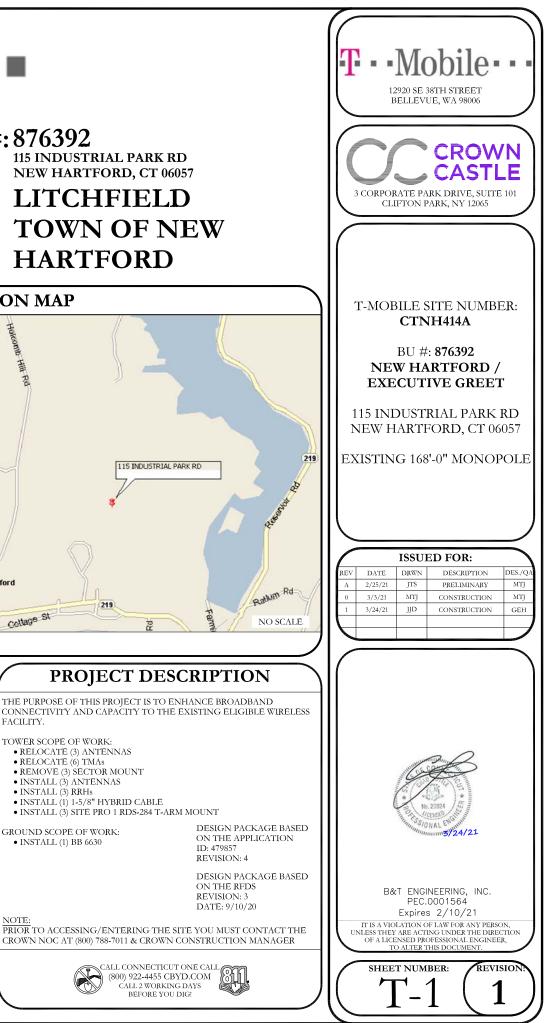
PROJECT TEAM

	U
A&E FIRM:	B+T GROUP 1717 S BOULDER AVE, SUITE 300 TULSA, OK 74119 JENNY PAUL (918) 587-4630
CROWN CASTLE USA INC. DISTRICT CONTACTS:	3 CORPORATE PARK DRIVE, SUITE 101 CLIFTON PARK, NY 12065
CONTACTS:	CATHERINE COVINGTON - PROJECT MANAGER (518) 373-3499
	JASON D'AMICO - CONSTRUCTION MANAGER (860) 209-0104

DRAWING INDEX

SHEET #	SHEET DESCRIPTION
T-1	TITLE SHEET
T-2	GENERAL NOTES
C-1	SITE PLAN AND ENLARGED SITE PLAN
C-2	FINAL ELEVATION AND ANTENNA PLANS
C-3	ANTENNA AND CABLE SCHEDULE
C-4	PLUMBING DIAGRAM
C-5	EQUIPMENT SPECIFICATIONS
G-1	ANTENNA GROUNDING DIAGRAM
G-2	GROUNDING DETAILS
G-3	GROUNDING DETAILS
ATTACHED	MOUNT SPECIFICATIONS
ATTACHED	MOUNT MOD SPECIFICATIONS
CONTRACTOR AND CONDITIC THE ENGL	NGS CONTAINED HEREIN ARE FORMATTED FOR 11x17. X SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS ONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY INEER IN WRITING OF ANY DISCREPANCIES BEFORE NG WITH THE WORK OR BE RESPONSIBLE FOR SAME.

APPROVALS


APPROVAL	SIGNATURE	DATE
PROPERTY OWNER OR REP.		
LAND USE PLANNER		
T-MOBILE		
OPERATIONS		
RF		
NETWORK		
BACKHAUL		
CONSTRUCTION MANAGER		
THE PARTIES ABOVE HERE		

THE PARTIES ABOVE HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL CONSTRUCTION DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AND ANY CHANGES AND MODIFICATIONS THEY MAY IMPOSE.

		LOC	CATION MA	P
	A Old Hom Rd		Horoomt, Hill Pol	
Europyne Heights Rd	d this man the state to	Hillside Are Unam St	Hew Hartford	115 INC *

APPLICABLE CODES/REFERENCE DOCUMENTS ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING

	BY THE LOCAL GOVERNING AUTHORITIES. PLANS IS TO BE CONSTRUED TO PERMIT WORK	TOWER SCOPE OF WORK:
	TO THESE CODES:	RELOCATE (3) ANTENNAS RELOCATE (6) TMAs
CODE TYPE	CODE	REMOVE (3) SECTOR MOUNT
BUILDING	2018 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS	• INSTALL (3) ANTENNAS • INSTALL (3) RRHs
MECHANICAL	2018 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS	• INSTALL (1) 1-5/8" HYBRID • INSTALL (3) SITE PRO 1 RDS
ELECTRICAL	2018 CT STATE BUILDING CODE/2017 NEC W/ CT	
	AMENDMENTS	GROUND SCOPE OF WORK: • INSTALL (1) BB 6630
ERENCE DOCUM	ENTS:	
STRUCTURAL A	NALYSIS: CROWN CASTLE	
	12/10/2020	
MOUNT AI	NALYSIS: KIMLEY-HORN AND ASSOCIATES, INC.	
	12/2/2020	NOTE:
	INSTALLER NOTE:	PRIOR TO ACCESSING/ENTER CROWN NOC AT (800) 788-7011 &
	NO PROPOSED LOADING TO BE ADDED UNTIL MOUNT SWAP IS COMPLETE. CONTRACTOR TO INSTALL MOUNT PER	CALL CO (800) 9
	MANUFACTURER'S SPECIFICATIONS.	CAL

SITE WORK GENERAL NOTES:

- THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF
- 2. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES, SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHIN AND EXCAVATION.
- ALL SITE WORK TO COMPLY WITH QAS-STD-10068 "INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON CROWN CASTLE USA INC. TOWER SITE" AND LATEST VERSION OF TIA 1019 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."
- ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND PROJECT SPECIFICATIONS
- IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 6. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, OWNER AND/OR
- 7. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 8. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 10. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION
- 11. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE PROJECT SPECIFICATIONS. OPE, AND
- 12. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- NOTICE TO PROCEED- NO WORK TO COMMENCE PRIOR TO COMPANY'S WRITTEN NOTICE TO PROCEED AND THE ISSUANCE OF A PURCHASE ORDER.
- 14 ALL CONSTRUCTION MEANS AND METHODS: INCLUDING BUT NOT LIMITED TO ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS: AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND CROWN CASTLE USA INC. STANDARD STANDARD CED-STD-10253 INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH THE ANSI/TIA-322 (LATEST EDITION).

STRUCTURAL STEEL NOTES:

- 1. ALL STEEL WORK SHALL BE PAINTED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS AND IN ACCORDANCE WITH ASTM A36 UNLESS OTHERWISE NOTED.
- 2. BOLTED CONNECTIONS SHALL BE ASTM A325 BEARING TYPE $(3/4" \emptyset)$ CONNECTIONS AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE.
- 3. NON-STRUCTURAL CONNECTIONS FOR STEEL GRATING MAY USE 5/8" ASTM A307 BOLTS UNLESS NOTED OTHERWISE
- INSTALLATION OF CONCRETE EXPANSION/WEDGE ANCHOR, SHALL BE PER MANUFACTURER'S RECOMMENDED PROCEDURE. THE ANCHOR BOLT, DOWEL OR ROD SHALL CONFORM TO MANUFACTURER'S RECOMMENDATION FOR EMBEDMENT DEPTH OR AS SHOWN ON THE DRAWINGS. NO REBAR SHALL BE CUT WITHOUT PRIOR CONTRACTOR APPROVAL WHEN DRILLING HOLES IN CONCRETE. SPECIAL INSPECTIONS, REQUIRED BY GOVERNING CODES, SHALL BE PERFORMED IN ORDER TO MAINTAIN MANUFACTURER'S MAXIMUM ALLOWABLE LOADS

CONCRETE AND REINFORCING STEEL NOTES:

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE.
- 2. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 3000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE. SLAB FOUNDATION DESIGN ASSUMING ALLOWABLE SOIL BEARING PRESSURE OF 2000 PSF.
- 3. REINFORCING STEEL SHALL CONFORM TO ASTM A615. GRADE 60. DEFORMED UNLESS NOTED OTHERWISE. WELDED WIRE FABRIC SHALL CONFORM TO ASTM A185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE. SPLICES SHALL BE CLASS AND ALL HOOKS SHALL BE STANDARD, UNO.
- 4. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS
- CONCRETE CAST AGAINST FARTH. ..3 IN. #5 AND SMALLER & WWF 1 1/2 IN CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE
- SLAB AND WALLS BEAMS AND COLUMNS 1 1/2 IN
- 5. A CHAMFER 3/4" SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE. IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

MASONRY NOTES:

- HOLLOW CONCRETE MASONRY UNITS SHALL MEET A.S.T.M. SPECIFICATION C90, GRADE N. TYPE 1. THE SPECIFIED DESIGN COMPRESSIVE STRENGTH OF CONCRETE MASONRY (F'm) SHALL BE 1500 PSL
- MORTAR SHALL MEET THE PROPERTY SPECIFICATION OF A.S.T.M. C270 TYP. "S" MORTAR AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 2000 PSI.
- 3. GROUT SHALL MEET A.S.T.M. SPECIFICATION C475 AND HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 2000 PSI.
- 4. CONCRETE MASONRY SHALL BE LAID IN RUNNING (COMMON) BOND
- 5. WALL SHALL RECEIVE TEMPORARY BRACING. TEMPORARY BRACING SHALL NOT BE REMOVED UNTIL GROUT IS FULLY CURED.

GENERAL NOTES:

- FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR-SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)
- T-MOBILE CROWN CASTLE USA INC. ORIGINAL EQUIPMENT MANUFACTURER OWER OWNER-
- 2. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CONTRACTOR AND CROWN CASTLE USA INC.
- ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS
- 4. DRAWINGS PROVIDED HERE ARE NOT TO SCALE AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS
- 6. "KITTING LIST" SUPPLIED WITH THE BID PACKAGE IDENTIFIES ITEMS THAT WILL BE SUPPLIED BY CONTRACTOR. ITEMS NOT INCLUDED IN THE BILL OF MATERIALS AND KITTING LIST SHALL BE SUPPLIED BY THE SUBCONTRACTOR.
- THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE
- 8. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CONTRACTOR AND CROWN CASTLE USA INC. PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.
- 9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND T1 CABLES GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWINGS. CABLES.
- 10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 11. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
- 12. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

SYMBOLS:

-•S/N•

.....

ABBREVIATIONS AND SYMBOLS:

ABBREVIATIONS

- ABOVE GRADE LEVEL BASE TRANSCEIVER STATION AGL BTS EXISTING (E) MINIMUM
- REFERENCE RADIO FREQUENCY TO BE DETERMINED TO BE RESOLVED
- T.B.D T.B.R TYP
- TYPICAL RFQ REQUIRED
- FGR FOUIPMENT GROUND RING AWG MGB EG BCW SIAD GEN IGR

RBS

- EQUIPMENT GROUND RING AMERICAN WIRE GAUGE MASTER GROUND BAR EQUIPMENT GROUND BARE COPPER WIRE SMART INTEGRATED ACCESS DEVICE CONFERTOR
- GENERATOR INTERIOR GROUND RING (HALO) RADIO BASE STATION
- \Box \otimes METER

 $\mathbf{\Theta}$

 \otimes

EXOTHERMIC WELD (CADWELD) \mathbb{Z} (UNLESS OTHERWISE NOTED)

DISCONNECT SWITCH

CIRCUIT BREAKER

CHEMICAL GROUND ROD

MECHANICAL CONNECTION

-SOLID GROUND BUS BAR

SOLID NEUTRAL BUS BAR

SUPPLEMENTAL GROUND CONDUCTOR

SINGLE-POLE THERMAL-MAGNETIC

2-POLE THERMAL-MAGNETIC CIRCUIT

GROUNDING WIRE

TEST WELL

ELECTRICAL INSTALLATION NOTES:

- 1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
- CONDUIT ROUTINGS ARE SCHEMATIC. SUBCONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED.
- WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. HILTI EPOXY ANCHORS ARE REQUIRED BY CROWN CASTLE USA INC
- 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC
- 5. CABLES SHALL NOT BE ROUTED THROUGH LADDER-STYLE CABLE TRAY RUNGS
- TI CONDUCTOR AND CABLE SHALL BE LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
- BRANCH CIRCUIT ID NUMBERS (I.E. PANEL BOARD AND CIRCUIT ID'S).
- 8. PANEL BOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS.
- 9. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.
- 10 POWER CONTROL AND FOULPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE CONDUCTOR (#14 AWG OR LARGER), 600 V, OLI RESISTANT THINN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90° C (WET & DRY) OPERATION LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED UNLESS OTHERWISE SPECIFIED
- 11. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE CONDUCTOR (#6 AWG OR LARGER), 600V, OIL RESISTANT THHN OR THWN-2 GREEN INSULATION CLASS B STRANDED COPPER CABLE RATED FOR 90° C (WET AND DRY) OPERATION LISTED OR LABELED FOR THE LOCATION AND RACEWAY SYSTEM USED INLESS OTHERWISE SPECIFIED.
- 12. POWER AND CONTROL WIRING, NOT IN TUBING OR CONDUIT, SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 AWG OR LARCER), 600 V, OIL RESISTANT THHN OR THWN-2, CLASS B STRANDED COPPER CABLE RATED FOR 90° C (WET AND DRY) OPERATION WITH OUTER JACKET LISTED OR LABELED FOR THE LOCATION USED UNLESS OTHERWISE SPECIFIED.
- 1.3 ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE COMPRESSION NIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75 C (90° C IF AVAILABLE).
- 14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL. ANSI/IEEE AND NEC.
- 15. ELECTRICAL METALLIC TUBING (EMT) OR RIGID NONMETALLIC CONDUIT (I.E. RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 80 FOR LOCATIONS SUBJECT TO PHYSICAL DAMAGE) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.
- 16. ELECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT) OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.
- 17. SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE GRADE PVC CONDUIT.
- 18 LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS. WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED.
- CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET SCREW FITTINGS ARE NOT ACCEPTABLE.
- 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND NEC.
- 21. WIREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARDS; SHALL BE PANDUIT TYPE E (OR EQUAL); AND RATED
- 22. CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE DEVICES FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF THE STRUCTURE, WAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLKE MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE ISTMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCERTE. PLASTER OR DIRT FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHIN ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
- 23. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL; SHALL MEET OR EXCEED UL 50 AND RATED NEMA 1 (OR BETTER) INDOORS OR NEMA 3R (OR BETTER) OUTDOORS.
- 24. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR EXCEED UL 514A AND NEMA OS 1; AND RATED NEMA 1 (OR BETTER) INDOORS OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.
- 25. NONMETALLIC RECEPTACLE. SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.
- 26. THE SUBCONTRACTOR SHALL NOTICY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CONTRACTOR BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS
- 27. THE SUBCONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
- 28. INSTALL PLASTIC LABEL ON THE METER CENTER TO SHOW "T-MOBILE".
- 29. ALL CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED.

BTS EQUIPMENT

SUPPORTED

AS WELL).

- 6. EACH END OF EVERY POWER, POWER PHASE CONDUCTOR (I.E., HOTS), GROUNDING AND
- ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH PLASTIC TAPE PER COLOR SCHEDULE. ALL EQUIPMENT SHALL BE LABELED WITH THEIR VOLTAGE RATING, PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND

GREENFIELD GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION. RADIO, LIGHTNING PROTECTION AND AC POWER GELS'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE SUBCONTRACTOR SHALL FURNIS AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS. FURNISH

THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMP

5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO THE COMPANY.

6 FACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 AWG SOLID TINNED COPPER FOR OUTDOOR BTS

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF GROUND BUS ARE PERMITTED.

8. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.

10. USE OF 90" BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45' BENDS CAN BE ADEQUATELY

11. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE.

12 ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.

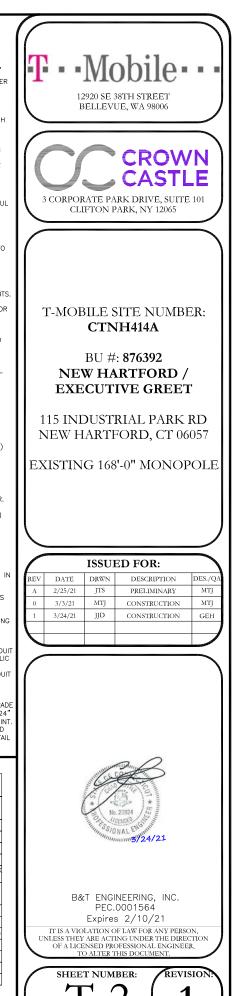
COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.

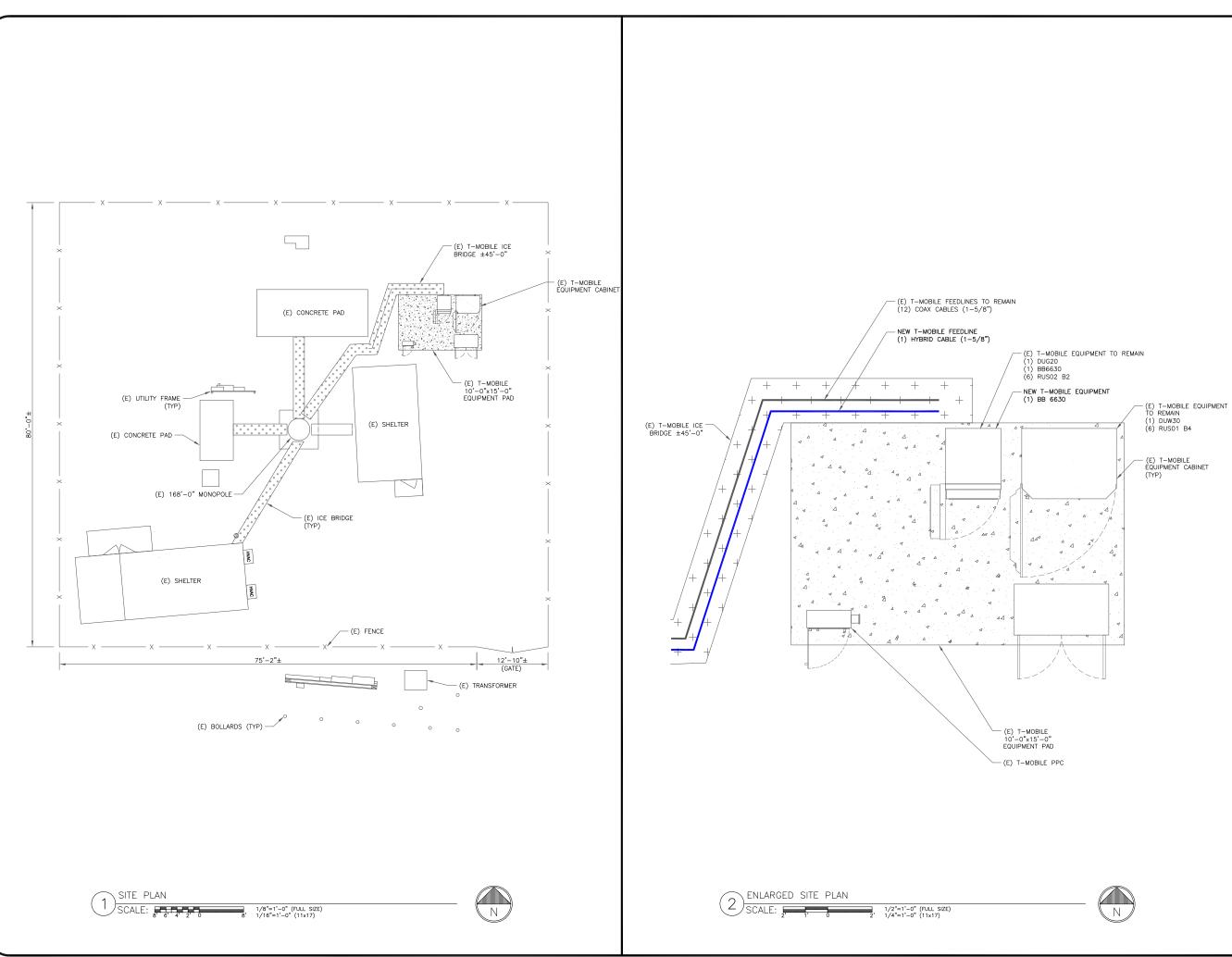
14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND BAR.

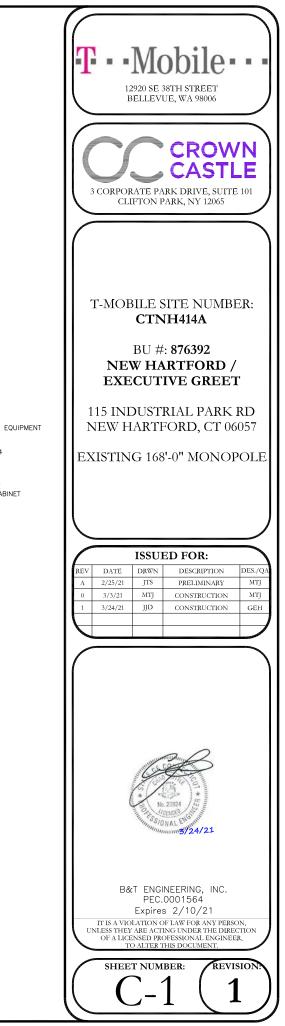
15. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

16. ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

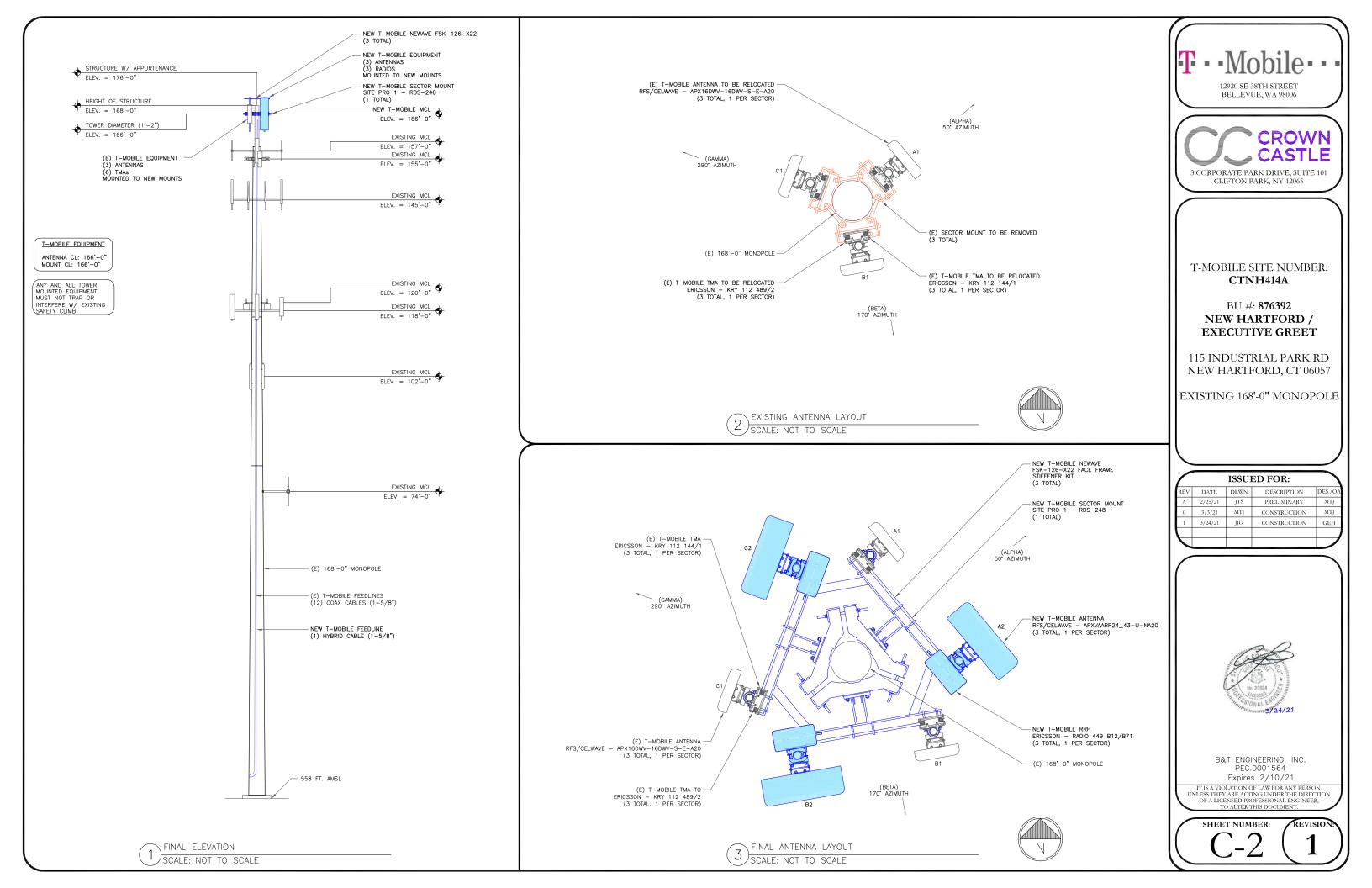
MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, I ACCORDANCE WITH THE NEC.

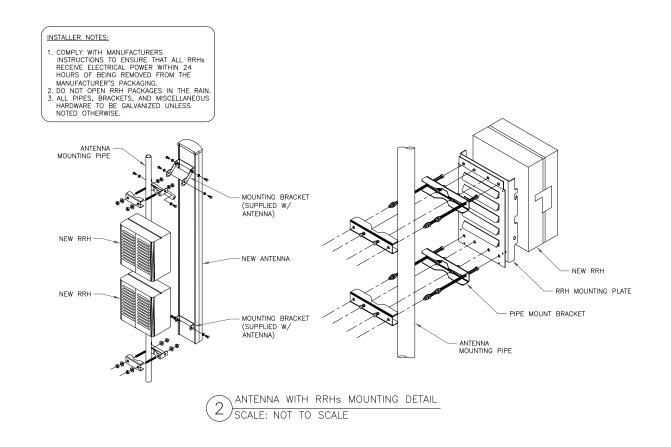

18. BOND ALL METALLIC OBJECTS WITHIN 6 FT, OF MAIN GROUND WIRES WITH 1-#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR

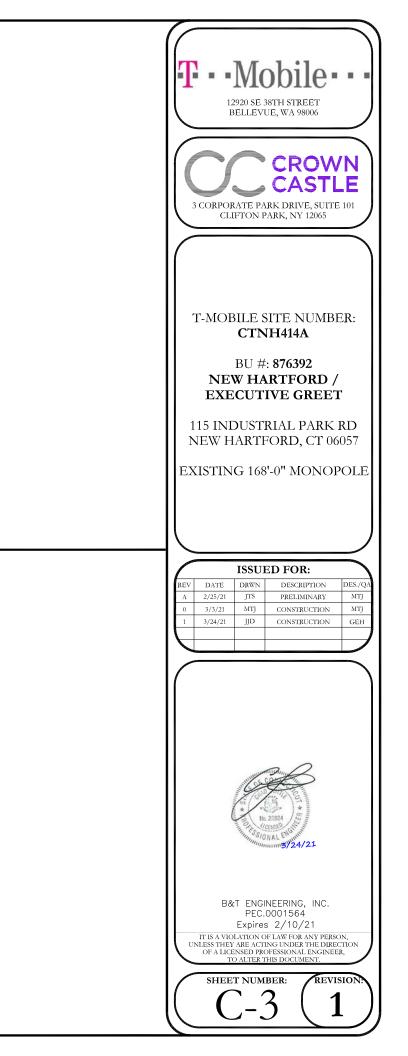

19. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS, WHEN IT IS REQUIRED TO BE HOUSED IN CONDUI VALUES OR FLOORS, WHEN IT IS REQUIRED TO BE HOUSED IN CONDUINT. TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT


20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 TINNED SOLID IN 3/4" LIQUID TIGHT CONDUIT FROM 24' BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT THE EXPOSED END OF THE LIQUID TIGHT CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL

NEC INSULATOR COLOR CODE							
DESCRIPTION	PHASE/CODE LETTER	WIRE COLOR					
240/120 1Ø	LEG 1	BLACK					
240/120 10	LEG 2	RED					
AC NEUTRAL	N	WHITE					
GROUND (EGC)	G	GREEN					
VDC POS	+	*RED-POLARITY MARK AT TERMINATION					
VDC NEG	-	*BLACK-POLARITY MARK AT TERMINATION					
	PHASE A	BLACK					
240V OR 208V, 3Ø	PHASE B	RED(ORG. IF HI LEG)					
	PHASE C	BLUE					
	PHASE A	BROWN					
480V, 3Ø	PHASE B	ORANGE OR PURPLE					
	PHASE C	YELLOW					
SEE NEC 210 5(C)(1) AND (2)							


* SEE NEC 210.5(C)(1) AND (2)





						ANTENNA SCHEDULE				
SECTOR	POS.	TECHNOLOGY	RAD CENTER	AZIMUTH	ANTENNA MANUFACTURER	ANTENNA MODEL	MECH. TILT	ELECT. TILT	TOWER MOUNTED EQUIPMENT	FEEDLINE TYPE
ALPHA	A1	L1900/G1900/U2100	166'-0"	50*	RFS/CELWAVE	APX16DWV-16DWV-S-E-A20	0.	2./2.	(1) ERICSSON – KRY 112 489/2 (1) ERICSSON – KRY 112 144/1	COAX
ALPHA	A2	L700/L600/N600	166'-0"	50 °	RFS/CELWAVE	APXVAARR24_43-U-NA20	0.	2./2.	(1) ERICSSON – RADIO 4449 B12/B71	HYBRID
BETA	B1	L1900/G1900/U2100	166'-0"	170'	RFS/CELWAVE	APX16DWV-16DWV-S-E-A20	0.	2./2.	(1) ERICSSON – KRY 112 489/2 (1) ERICSSON – KRY 112 144/1	COAX
BETA	B2	L700/L600/N600	166'-0"	170	RFS/CELWAVE	APXVAARR24_43-U-NA20	0.	2'/2'	(1) ERICSSON – RADIO 4449 B12/B71	HYBRID
GAMMA	C1	L1900/G1900/U2100	166'-0"	290'	RFS/CELWAVE	APX16DWV-16DWV-S-E-A20	0.	2./2.	(1) ERICSSON – KRY 112 489/2 (1) ERICSSON – KRY 112 144/1	COAX
GAMMA	C2	L700/L600/N600	166'-0"	290'	RFS/CELWAVE	APXVAARR24_43-U-NA20	0.	2'/2'	(1) ERICSSON – RADIO 4449 B12/B71	HYBRID

ANTENNA AND CABLE SCHEDULE

1) SCALE: NOT TO SCALE

CABLE SCHEDULE

SIZE

1-5/8"

1-5/8"

UANTIT

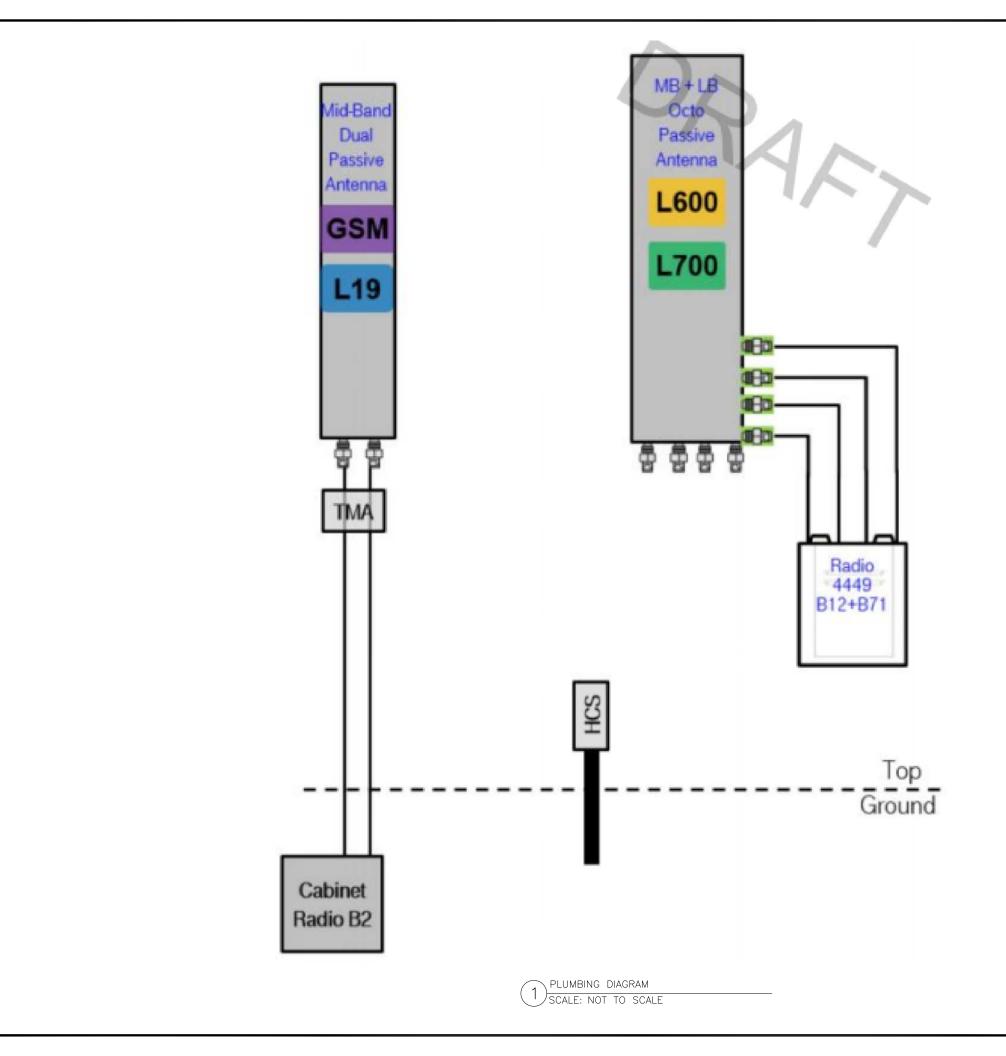
12

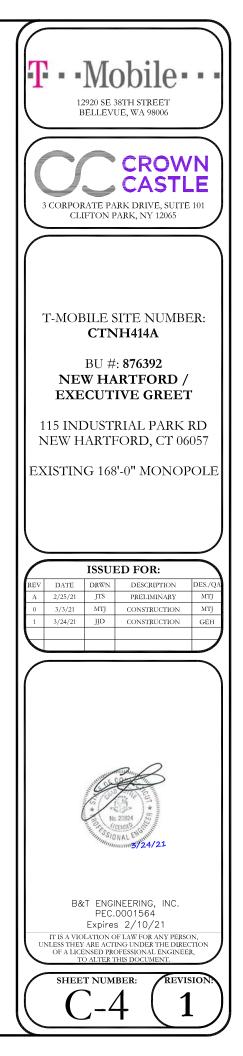
1

13

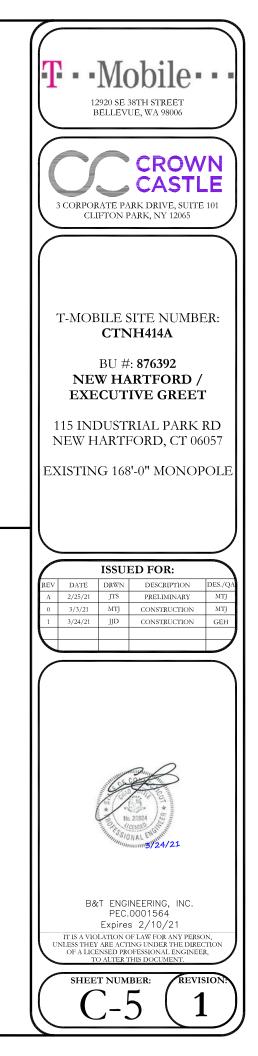
CABLE TYPE

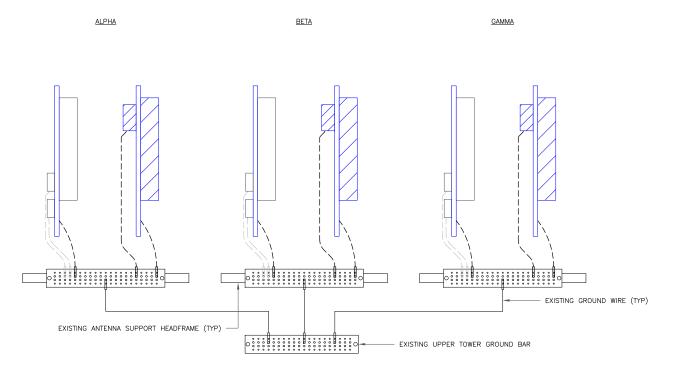
COAX

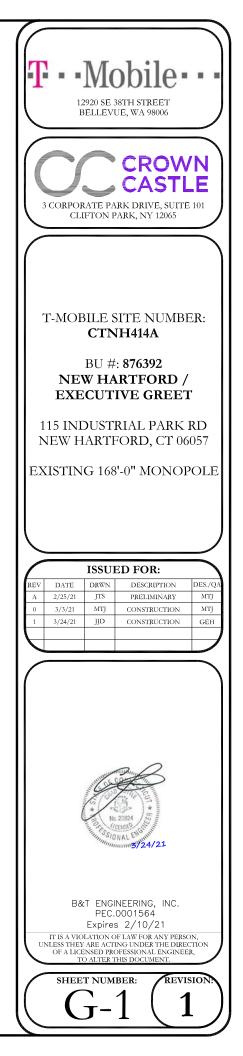

HYBRID

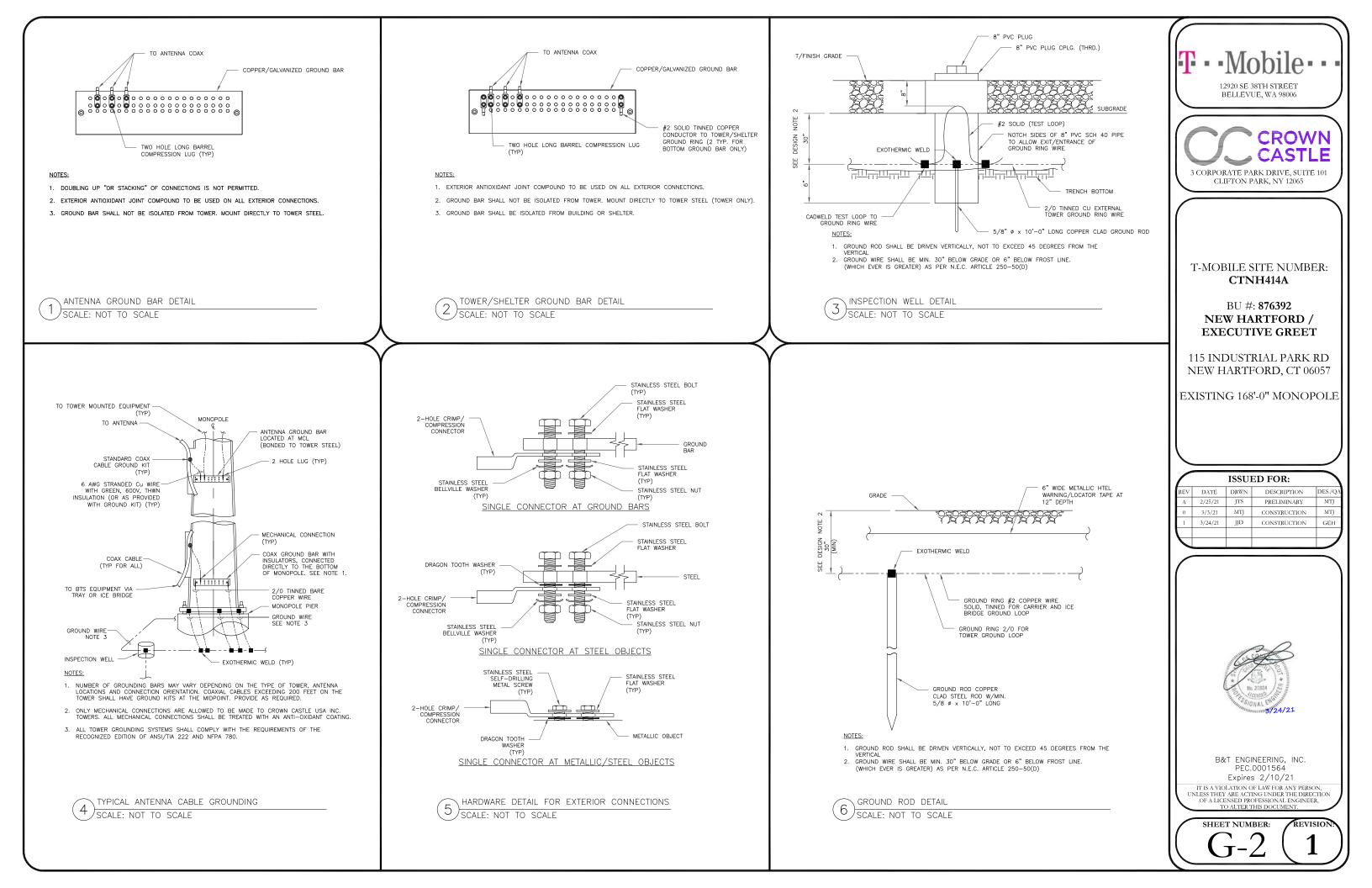

CABLE QUANTITY

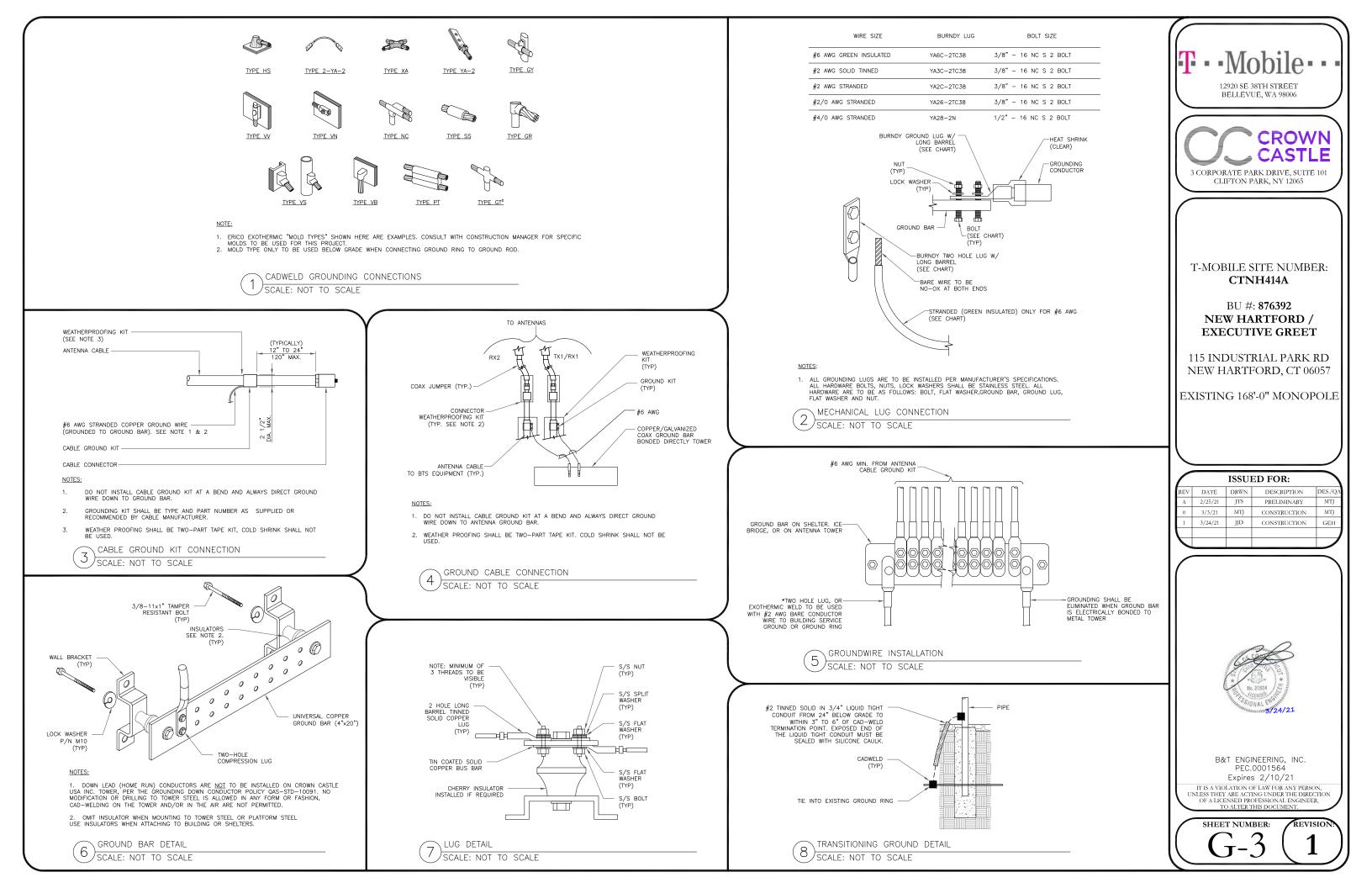
STATUS

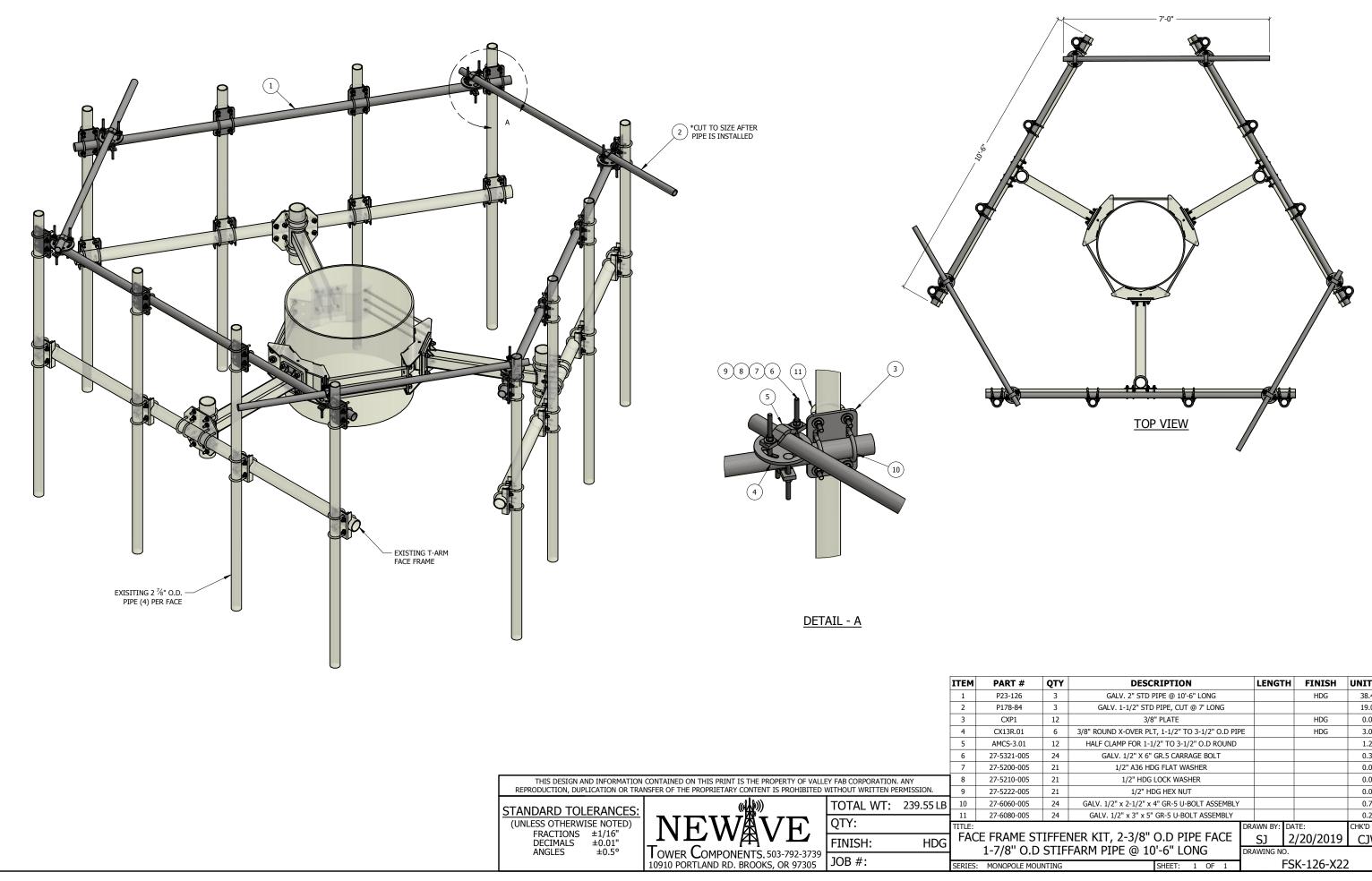

EXISTING


NEW




ANTENNA SPECS MANUFACTURER RFS/CELWAVE MODEL # APXVAALL24_43-U-NA20 WIDTH 24.00" DEPTH 8.50" HEIGHT 95.90 WEIGHT 149.90	RRU SPECIFICATIONS MANUFACTURER ERICCSON MODEL # 4449 WIDTH 13.20" DEPTH 10.63" HEIGHT 17.91" WEIGHT 73.21 LBS	NOT USED SCALE: NOT TO SCALE
4 NOT USED SCALE: NOT TO SCALE	5 NOT USED SCALE: NOT TO SCALE	6 NOT USED SCALE: NOT TO SCALE





ANTENNA GROUNDING DIAGRAM SCALE: NOT TO SCALE

	QTY	DESCRIPTION		LENGTH		FINISH	UNIT WT
	3	GALV. 2" STD PIPE @ 10'-6" LONG				HDG	38.40
	3	GALV. 1-1/2" STD PIPE, CUT @ 7' LONG					19.04
	12	3/8" PLATE				HDG	0.00
	6	3/8" ROUND X-OVER PLT, 1-1/2" TO 3-1/2" O.D PIF	ΡĒ			HDG	3.09
	12	HALF CLAMP FOR 1-1/2" TO 3-1/2" O.D ROUND					1.23
5	24	GALV. 1/2" X 6" GR.5 CARRAGE BOLT					0.37
5	21	1/2" A36 HDG FLAT WASHER					0.04
5	21	1/2" HDG LOCK WASHER					0.01
5	21	1/2" HDG HEX NUT					0.04
5	24	GALV. 1/2" x 2-1/2" x 4" GR-5 U-BOLT ASSEMBLY					0.76
5	24	GALV. 1/2" x 3" x 5" GR-5 U-BOLT ASSEMBLY					0.20
STIFFENER KIT, 2-3/8" O.D PIPE FACE				AWN BY:			CHK'D BY:
				SJ	2	/20/2019	CJW
.D	STIF	FARM PIPE @ 10'-6" LONG	DRAWING NO.				
MOUNTING SHEET: 1 OF 1				FSK-126-X22			