UPS CampusShip: View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356 UPS Access PointTM TOWN LINE GENERAL STORE 450 E CENTER ST WEST BRIDGEWATER ,MA 02379

FOLD HERE

October 21, 2020

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Regarding:Notice of Exempt Modification – AT&T Site CT2070Address:302 Ball Pond Road, New Fairfield, CT 06812

Dear Ms. Bachman:

New Cingular Wireless, PCS, LLC (hereinafter "AT&T") currently maintains a wireless telecommunications facility on an existing 175' monopole tower (the "Tower") at the above-referenced address, latitude 41.4647169, longitude -73.4969519. Said Tower and underlying property is owned by the Town of New Fairfield.

AT&T submitted exempt modification filing EM-AT&T-091-190730 which was approved by the Council on August 19, 2019, however, the modifications have not commenced and the period of time to request an extension has expired. Therefore, AT&T is submitting a new exempt modification filing for the previously approved modifications. Those modifications include swapping (3) antennas, adding (6) remote radio units, adding (1) surge arrestor with accompanying lines and other related modifications, as more particularly detailed and described in the enclosed Construction Drawings prepared by Maser Consulting Connecticut with a last revision date of August 17, 2020. Enclosed please also find a Mount Modification Report prepared by Maser Consulting Connecticut dated May 7, 2019. The centerline height of the antennas will be at 135 feet. Enclosed please also find the above referenced Council decision as well as the Town of New Fairfield's Tower approvals.

Please accept this letter as notification pursuant to R.C.S.A §16-50j-73 for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.S.A. § 16-50j-73, a copy of this letter is being sent to the following individuals: The Honorable Pat Del Monaco, First Selectman of the Town of New Fairfield and Evan White, Zoning Enforcement Officer of the Town of New Fairfield. Please note that the Tower and underlying property is owned by the Town of New Fairfield. Enclosed please find a property card and a GIS map of the property.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. § 16-50j-72(b)(2). Specifically:

1. The proposed modifications will not result in an increase in the height of the existing structure.

2. The proposed modifications will not require an extension of the site boundary.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.

4. The operation of the modified facility will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. *Please see the RF Emissions Compliance Report for AT&T's modified facility enclosed herewith.*

5. The proposed modifications will not cause an ineligible change or alteration in the physical or environmental characteristics of the site.

6. The existing structure and its foundation can support the proposed loading. *Please see the Structural Analysis Report dated June 12, 2020 and prepared by Maser Consulting Connecticut.*

For the foregoing reasons, AT&T respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely

Site Acquisition Consultant Centerline Communications, LLC 750 West Center Street, Suite 301 West Bridgewater, MA 02379 pnowak@clinellc.com

Enclosures:	Exhibit 1 – Construction Drawings
	Exhibit 2 - Mount Analysis
	Exhibit 3 - CSC Decision and Town Approvals
	Exhibit 4 – Property Cards and GIS Map
	Exhibit 5 – RF Emissions Analysis Report
	Exhibit 6 – Structural Analysis

cc: Honorable Pat Del Monaco, First Selectman of the Town of New Fairfield Evan White, Zoning Enforcement Officer of the Town of New Fairfield.

EXHIBIT 1

PROJECT NOTES

- SITE INFORMATION OBTAINED FROM THE FOLLOWING:
- A. PLAN ENTITLED "NEW FAIRFIELD CTR" PREPARED BY VRG OF AUBURN, MA LAST REVISED 10/31/2016.
- LIMITED FIELD OBSERVATION BY MASER CONSULTING ON 9/21/2018.
- THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE CODES, ORDINANCES, LAWS AND REGULATIONS OF ALL MUNICIPALITIES, UTILITY COMPANIES OR OTHER PUBLIC/GOVERNING AUTHORITIES.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING ALL PERMITS AND INSPECTIONS THAT MAY BE REQUIRED BY ANY FEDERAL, STATE, COUNTY OR MUNICIPAL AUTHORITIES.
- THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER, IN WRITING, OF ANY CONFLICTS, ERRORS OR OMISSIONS PRIOR TO THE SUBMISSION OF BIDS OR PERFORMANCE OF WORK.
- 5. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING ALL EXISTING SITE IMPROVEMENTS PRIOR TO COMMENCING CONSTRUCTION. THE CONTRACTOR SHALL REPAIR ANY DAMAGE AS A RESULT OF CONSTRUCTION OF THIS FACILITY AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- 5. THE SCOPE OF WORK FOR THIS PROJECT SHALL INCLUDE PROVIDING ALL MATERIALS, EQUIPMENT AND LABOR REQUIRED TO COMPLETE THIS PROJECT. ALL EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS.
- 7. THE CONTRACTOR SHALL VISIT THE PROJECT SITE PRIOR TO SUBMITTING THE BID TO VERIFY THAT THE PROJECT CAN BE CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS AND CONSTRUCTION DRAWINGS.
- 8. THE CONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THESE DRAWINGS MUST BE VERIFIED. THE CONTRACTOR SHALL NOTIFY THE CONSTRUCTION MANAGER OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- SINCE THE CELL SITE MAY BE ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMEN' SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONA RF EXPOSURE MONITORS ARE REQUIRED TO BE WORN TO ALERT OF ANY POTENTIALLY DANGEROUS EXPOSURE LEVELS.
- 0. THE PROPOSED FACILITY WILL CAUSE AN INSIGNIFICANT OR "DE-MINIMUS" INCREASE IN STORM WATER RUNOFF, THEREFORE, NO DRAINAGE STRUCTURES ARE PROPOSED.
- 11. NO NOISE, SMOKE, DUST OR ODOR WILL RESULT FROM THIS FACILITY AS TO CAUSE A NUISANCE.
- 12. THE FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION (NO HANDICAP ACCESS IS REQUIRED).
- 3. THE FACILITY DOES NOT REQUIRE POTABLE WATER OR SANITARY SERVICE.
- CONTRACTOR SHALL VERIFY ANTENNA ELEVATION AND AZIMUTHS WITH RF ENGINEERING PRIOR TO INSTALLATION.
- 15. THE TOWER, MOUNTS AND ANTENNAS SHALL BE DESIGNED TO MEET EIA/TIA-222-H AS PER IBC REQUIREMENTS.
- 16. CONTRACTOR MUST FIELD LOCATE ALL EXISTING UNDERGROUND UTILITIES PRIOR TO ANY EXCAVATION.
- CONSTRUCTION SHALL NOT COMMENCE UNTIL COMPLETION OF A PASSING STRUCTURAL ANALYSIS CERTIFIED BY A LICENSED PROFESSIONAL ENGINEER. THE STRUCTURAL ANALYSIS IS TO BE PERFORMED BY OTHERS.

COPYRIGHT © 2020, MASER CONSULTING CONNECTICUT ALI RIGHTS RESERVED

THIS DRAWING AND ALL THE INFORMATION CONTAINED HEREIN IS AUTHORIZED FOR USE ONLY BY THE PARTY FOR WHOM THE WORK WAS CONTRACTED OR TO WHOM IT IS CERTIFIED. THIS DRAWING MAY NOT BE COPIED, REUSED, DISCLOSED, DISTRIBUTED OR RELIED UPON FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN CONSENT OF MASER CONSULTING CT

PACE JOB #1:	MRCTB033566	
PACE JOB #2:	MRCTB033596	
PACE JOB #3:	MRCTB033695	

SITE NAME: NEW FAIRFIELD SR37-SR39 FA NUMBER: 10035312 SITE NUMBER: CT2070 LTE - 3C/4C - 4TX4RX SOFTWARE RETROFIT 302 BALL POND ROAD NEW FAIRFIELD, CT 06812 FAIRFIELD COUNTY

	VICINI	ГҮ МАР	PROJE	CT INFORMATION	Ш			
N	N National Action of the Actio							
	Everop	engye kan	LATITUDE: LONGITUDE: JURISDICTION:	41.4647169° N 73.4969519° W TOWN OF NEW FAIRFIELD	:			
	39	Nain Moo Rauno's Pieza & Pasta Victore	APPLICANT/LE	SSEE	:			
R.	pris Dr		COMPANY: ADDRESS: CITY, STATE, ZIP:	NEW CINGULAR WIRELESS PCS, LLC 550 COCHITUATE ROAD FRAMINGHAM, MA 01701				
	0 e e r	New Farface Food Center	STRUCTURE O	WNER				
			COMPANY: ADDRESS: CITY, STATE, ZIP:	TOWN OF NEW FAIRFIELD 4 BRUSH HILL ROAD NEW FAIRFIELD, CT 06812	PR			
		Consolitives	CLIENT REPRE	SENTATIVE				
New fairfied ligh	TION	Gilioti ild	COMPANY: ADDRESS: CITY, STATE, ZIP: CONTACT: E-MAIL:	EMPIRE TELECOM 16 ESQUIRE ROAD BILLERICA, MA 01862 DAVID COOPER DCOOPER@EMPIRETELECOM.COM				
New Fainted Dog Park	de la	Analysis (SITE ACQUISIT	ION				
	0		COMPANY: ADDRESS: CITY, STATE, ZIP:	EMPIRE TELECOM 16 ESQUIRE ROAD BILLERICA, MA 01862	SHE			
CO	DE CON	IPLIANCE	CONTACT: E-MAIL:	DAVID COOPER DCOOPER@EMPIRETELECOM.COM	GN			
ALL WORK AND MATERIALS SHALL BE PERFORM	1ED AND INSTA	LLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF	ENGINEER		C. C.			
CONSTRUED TO PERMIT WORK NOT CONFOR	MING TO THE L	ATEST EDITIONS OF THE FOLLOWING CODES.	ADDRESS:	331 NEWMAN SPRINGS ROAD	A			
INCORPORATING THE 2015 IBC	<u>.,</u> o. 20 9	ENGINEERS 81 IEEE C2 LATEST EDITION	CITY, STATE, ZIP: CONTACT:	RED BANK, NJ 07701-5669 ROBERT ANDREWS	A- G			
	10		E-MAIL:	RANDREWS@MASERCONSULTING.COM				
	TION							
4. AMERICAN INSTITUTE OF STEEL CONSTRUC 360-10	HON II.	PROPOSED USE: UNMANNED TELECOM FACILITY						
5. AMERICAN CONCRETE INSTITUTE	12.	HANDICAP REQUIREMENTS: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS NOT REQUIRED.						
6. TIA-222-G	13.	CONSTRUCTION TYPE: IIB						
7. TIA 607 FOR GROUNDING	14.	USE GROUP: U	11					

GENERAL NOTES:

- I. THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXISTING FACILITY GROUNDING SYSTEM (AS DESIGNED AND INSTALLED) FOR STRICT COMPLIANCE WITH THE NEC (AS ADOPTED BY THE AH), THE SITE-SPECIFIC (UL, LPI, OR NFPA) LIGHTING PROTECTION CODE, AND GENERAL COMPLIANCE WITH TELCORDIA AND TIA GROUNDING STANDARDS. THE SUBCONTRACTOR SHALL REPORT ANY VIOLATIONS OR ADVERSE FINDINGS TO THE CONTRACTOR FOR RESOLUTION.
- ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION, AND AC POWER GES'S) SHALL BE BONDED TOGETHER, AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.
- 3. THE SUBCONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS. THE SUBCONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 50 HMS OR LESS.
- 4. THE SUBCONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT.
- METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 AWG COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.
- 6. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.
- 7. EACH BTS CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE EQUIPMENT GROUND RING WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, 6 AWG STRANDED COPPER OR LARGER FOR INDOOR BTS; 2 AWG STRANDED COPPER FOR OUTDOOR BTS.
- 8. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED. BACK TO BACK CONNECTIONS ON OPPOSITE SIDES OF THE GROUND BUS ARE PERMITTED.
- 9. ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING, SHALL BE #2 AWG SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.
- 10. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS.
- 11. USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY SUPPORTED. ALL BENDS SHALL BE MADE WITH 12" RADIUS OR LARGER.
- 12. EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE
- 13. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS EXCEPT FOR GROUND BAR CONNECTION FROM MGB TO OUTSIDE EXTERIOR GROUND SHALL ALL BE CADWELD CONNECTIONS.
- 14. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
- 15. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED TO THE TOWER GROUND BAR.
- 16. APPROVED ANTIOXIDANT COATINGS (I.E. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.
- 17. ALL EXTERIOR AND INTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.
- MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING. IN ACCORDANCE WITH THE NEC.
- 19. BOND ALL METALLIC OBJECTS WITHIN 6 FT OF MAIN GROUND WIRES WITH 1.#2 AWG TIN-PLATED COPPER GROUND CONDUCTOR.
- 20. GROUND CONDUCTORS USED IN THE FACILITY GROUND AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR, SUCH AS METALLIC CONDUITS, METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC PLASTIC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (E.G. NON-METALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO FACH END OF THE METAL CONDUIT.
- 21. ALL NEW STRUCTURES WITH A FOUNDATION AND/OR FOOTING HAVING 20 FT. OR MORE OF 1/4" IN. OR GREATER ELECTRICALLY CONDUCTIVE REINFORCING STEEL MUST HAVE IT BONDED TO THE GROUND RING USING AN EXOTHERMIC WELD CONNECTION USING #2 AWG SOLID BARE TINNED COPPER GROUND WIRE, PER NEC 250.50.
- 22. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY:
 - CONTRACTOR EMPIRE TELECOM SUBCONTRACTOR - GENERAL CONTRACTOR (CONSTRUCTION)
 - OWNER AT&T (NEW CINGULAR WIRELESS PCS, LLC)
- 23. ALL SITE WORK SHALL BE COMPLETED AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.
- 24. DRAWINGS PROVIDED HERE ARE NOT TO BE SCALED AND ARE INTENDED TO SHOW OUTLINE ONLY.
- 25. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS, AND ORDINANCES. SUBCONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS, AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK.
- 26. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.
- 27. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.
- 28. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.
- 29. IF THE SPECIFIED EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION SPACE FOR APPROVAL BY THE CONTRACTOR.
- 30. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.
- 31. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.
- 32. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC, AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES, AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY THE RESPONSIBLE ENGINEER. EXTREME CAUTION SHOULD BE USED BY THE SUBCONTRACTOR WHEN EXCAVATING OR TRULING PIERS AROUND OR NEAR UTILITIES. SUBCONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING & EXCAVATION.
- 33. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, AS DIRECTED BY THE RESPONSIBLE ENGINEER, AND SUBJECT TO THE APPROVAL OF THE OWNER AND/OR LOCAL UTILITIES.

- 34. THE AREAS OF THE OWNER'S PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY SHALL BE GRADED TO A UNIFORM SLOPE AND STABILIZED TO PREVENT EROSION.
- 35. SUBCONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
- 36. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.
- 37. THE SUBGRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.
- 38. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE BTS EQUIPMENT AND TOWER AREAS.
- 39. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.
- 40. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE.
- 41. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.
- 42. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF THE CONTRACTOR.
- 43. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUIT, POWER AND TI CABLES, GROUNDING CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING. SUBCONTRACTOR SHALL UTILIZE EXISTING TRAYS AND/OR SHALL ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ROUTING WITH THE CONTRACTOR.
- 44. ALL CONCRETE REPAIR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN CONCRETE INSTITUTE (ACI) 301.
- 45. ANY NEW CONCRETE NEEDED FOR THE CONSTRUCTION SHALL BE AIR-ENTRAINED AND SHALL HAVE 4000 PSI STRENGTH AT 28 DAYS.
- 46. ALL STRUCTURAL STEEL WORK SHALL BE DETAILED, FABRICATED AND ERECTED IN ACCORDANCE WITH AISC SPECIFICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM A36 (Fy = 36 ksi) UNLESS OTHERWISE NOTED. PIPES SHALL BE ASTM A33 TYPE E (Fy = 36 ksi). ALL STEEL EXPOSED TO WEATHER SHALL BE HOT DIPPED GALVANIZED. TOUCHUP ALL SCRATCHES AND OTHER MARKS IN THE FIELD AFTER STEEL IS ERECTED USING A COMPATIBLE ZINC RICH PAINT.
- 47. CONSTRUCTION SHALL COMPLY WITH SPECIFICATIONS AND "GENERAL CONSTRUCTION SERVICES FOR CONSTRUCTION OF AT&T MOBILITY SITES."
- 48. SUBCONTRACTOR SHALL VERIFY ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN ON THE DRAWINGS MUST BE VERIFIED. SUBCONTRACTOR SHALL NOTIFY THE CONTRACTOR OF ANY DISCREPANCIES PRIOR TO ORDERING MATERIAL OR PROCEEDING WITH CONSTRUCTION.
- 49. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION, ANY CONSTRUCTION WORK BY SUBCONTRACTOR SHALL NOT DISRUPT THE EXISTING NORMAL OPERATION. ANY WORK ON EXISTING EQUIPMENT MUST BE COORDINATED WITH CONTRACTOR. ALSO, WORK SHOULD BE SCHEDULED FOR AN APPROPRIATE MAINTENANCE WINDOW USUALLY IN LOW TRAFFIC PERIODS AFTER MIDNIGHT.
- 50. SINCE THE CELL SITE IS ACTIVE, ALL SAFETY PRECAUTIONS MUST BE TAKEN WHEN WORKING AROUND HIGH LEVELS OF ELECTROMAGNETIC RADIATION. EQUIPMENT SHOULD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONITORS ARE ADVISED TO BE WORN ALERT OF DANGEROUS EXPOSURE LEVELS.

NOT TO SCALE

PROPOSED ANTENNA LAYOU
NOTTO COLLE

NOT	то	SCALI	3

	ANTENNA SCHEDULE																									
	SECTOR EXISTING ANTENNA PROPOSED ANTENNA TECHNOLOGY ANTENNA HEIGHT (in) WIDTH (in) DEPTH (in) WEIGHT (ibs) ANTENNA ANT. CL. ELEV. REMOTE RADIO/TMA TRANSMISSION CAP								ABLE																	
	-	OR	EMBILIO ANTENNA	TROFOSED MATERIAN	TECHNOLOGI	STATUS		wild fift (iii)	DEI III (III)		AZIMUTH (DEG.)	(ft.)	CONFIGURATION	QUANTITY	TYPE	STATUS										
		1	CCI	CCI	LTE	EXISTING	92.80	14.40	7.30	65.60	90	135'	(1) RRUS-32 B2 (EXISTING)	1/2	FIBER/DC	EXISTING										
			HPA-65R-BUU-H8	HPA-65R-BUU-H8																						
		2		KATHREIN	LTE	PROPOSED	96.00	20.00	6.90	125.70	90	135'	(1) B5/B12 4449 (PROPOSED) (1) RRUS-32 (PROPOSED)	1/2	FIBER/DC	SHARED										
ctor 1				80010966									(1) DC-6 DOME (EXISTING)													
s		3	POWERWAVE			REMOVED							-	2	1 5/8" COAX	REMAIN										
			7770																							
		4	POWERWAVE	POWERWAVE	UMTS	EXISTING	55.00	11.00	5.00	35.00	143	135'		2	1 5/8" COAX	EXISTING										
			7770	7770																						
		1	CCI	CCI	LTE	EXISTING	72.30	14.40	7.30	55.50	210	135'	(1) RRUS-32 B2 (EXISTING)	1/2	FIBER/DC	SHARED										
		Ŷ	HPA-65R-BUU-H6	HPA-65R-BUU-H6							-															
2		2			LTE PROPOSI	LTE PRO	PROPOSED	96.00	20.00	6.90	125.70	210	135'	(1) B5/B12 4449 (PROPOSED) (1) RRUS-32 (PROPOSED)	1/2	FIBER/DC	PROPOSED									
ector		-		80010966							-		(I) DC-6 DOMÈ (PROPOSED)													
s		3	POWERWAVE 7770			REMOVED					-		-	2	1 5/8" COAX	REMAIN										
			POWERWAVE	POWERWAVE	UMTS	EV/CET LC	55.00		5.00	25.00	242	125				EVICTIVIC										
		4	7770	7770			UMIS EXISTING	EXISTING	EXISTING	EXISTING	EXISTING	EXISTING	EXISTING	EXISTING	EXISTING	EXISTING	TS EXISTING	EXISTING 55.00	11.00	5.00	33.00	263	135'	-	2	I 5/8" COAX
			ССІ	са		DUCTING	72.20		7.20		220	1251		10		(111050										
			HPA-65R-BUU-H6	HPA-65R-BUU-H6	LIL	EXISTING	72.30	14.40	7.30	33.30	330	135	(1) 1003-52 82 (EXISTING)	1/2	FIBER/DC	SHAKED										
		,		KATHREIN	ITE	PROPOSED	96.00	20.00	6 90	125.70	330	135'	(1) B5/B12 4449 (PROPOSED)	1/2												
or 3		2		80010966		FROPOSED	90.00	20.00	0.70	125.70	330	135	(I) RRUS-32 (PROPOSED)	1/2	PIBER/DC	SHARED										
Sect		3	POWERWAVE			REMOVED								2	1.5/8" COAX	REMAIN										
		,	7770			NET IOVED							-	2	1 5/0 COAX	NC+PAIN										
		4	POWERWAVE	POWERWAVE	LIMATS	EXISTING	55.00	11.00	5.00	35.00	22	1251		2	1.5(0), 50434	EXISTING										
		٦	7770	7770	UMIS	EAISTING	33.00	11.00	3.00	33.00	23		-	2	, SID COAX	EAISTING										

MASER CONSULTING - CONNECTICUTtomer Loyalty through Client Satisfaction www.maserconsulting.com Engineers Planners Surveyors cape Architects Environmental Scienti uncontained herein is surdivirtation (use only by the party for whom particular by the servic, the owner is is carefield. This drawing and use only by the party for whom the servic, ted or relied upon for any other party propose without the express written consent of <u>Consulting Connecticut</u>. Existing Monopole $A1 \frac{LTE Alpha Sector}{AZ = 90^{\circ}}$ LTE ALPHA SECTOR AZ = 90° (I) PROPOSED RRUS-4449 B5/B12 AND (I) PROPOSED RRUS-RRUS-32 MOUNTED ON A PROPOSED ERICSSON SXK1250461/1 B2B RRU MOUNTING BRACKET (TYP. OF EACH SECTOR) EMPRE telecom _Existing DC-6 Dome Mounted on an Existing Pipe Mast Existing (1) RRUS-32 B2 -Mounted on an Existing Pipe 16 ESQUIRE ROAD BILLERICA, MA 01862 Mast (Typ. of Each Sector) UMIS AIDIN PROTECT YOURSEL XCAVATORS, DESIGNERS, OR ANY PERSO PREPARING TO DISTURB THE EARTHS Know what's below. FOR STATE SPECIFIC DIRECT PHONE NUMBERS VISIT: WWW.CALL811.COM AS SHOWN 18963030A DR DR 4 12/12/19 REVISED PER COMMENTS IRF DR 10/24/19 ISSUED AS FINA DR RA 2 04/26/19 AIC SUEDED NWE RA REV DATE DESCRIPTION CHECKE BY PETROS E, ISOUKALAS. CONNECTOR PROFESSIONAL ENGINEED LICENSE DUDIER 20 00 IT IS A VIOLATION OF LAW FORM WY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF THE RESPONSIBLE LICENSED PROFFESIONAL ENGINEER, TO ALTER THIS DOCUMENT. SITE NAME: NEW FAIRFIELD SR37-SR39 FA# 10035312 SITE# CT2070 302 BALL POND ROAD NEW FAIRFIELD, CT 06812 FAIRFIELD COUNTY RED BANK OFFICE 331 Newman Springs Road Suite 203 Red Bank, NJ 07701-5669 Phone: .732.383.1950 Fax: .732.383.1984 ANTENNA LAYOUT AND ANTENNA SCHEDULE

C-3

ì	BAND

RF PLUMBING DIAGRAMS

BASED ON RF ENGINEERING DESIGN ENTITLED "10035312.PM201.RFDS.AS-BUILT-IN-PROGRESS.CT2070", LAST REVISED 04/16/19.

EXHIBIT 2

Mount Modification Report

FOR

CT2070 - New Fairfield FA #: 10035312 302 Ball Pond Road New Fairfield, CT, 06812, Fairfield County 41.4647169, -73.4969519

*Sufficient upon completion of the modifications listed in the 'Recommendations' section of this report.

May 7, 2019

Prepared For

AT&T Mobility 550 Cochituate Road Framingham, MA 01701

Prepared By

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, M 07701 732 383. 950

32577 Retros Ection Radios P.E. Geographic Discipline Leader CT License No. 32577

MC Project No. 18963030A

ш

Objective:

The objective of this report is to determine the capacity of the antenna support mount at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

Introduction:

Maser Consulting Connecticut has reviewed the following documents in completing this report:

Document Type	Remarks	Source
Radio Frequency Data Sheet (RFDS)	RFDS ID: 2454216 Version 4.00 dated 2/15/19	Empire Telecom
Preliminary Construction Drawings	Maser Consulting Project #: 18963030A, dated 3/5/19	Maser Consulting
Mount Mapping	Tower Engineering Professionals Project #: 152002.242512 dated 4/10/19	Maser Consulting
Mount Analysis	Maser Consulting Project #: 18963030A dated 4/8/19	Maser Consulting
Handrail Reinforcement Kit	Site Pro 1 Part #: PRK-SFS	Site Pro 1
Crossover Plate	Site Pro 1 SCX1-K	Site Pro 1

Codes, Standards and Loading:

Jurisdictional adopted codes and standards:

- 2018 Connecticut Building Code (2015 IBC)
- Maser Consulting Connecticut utilized the following codes and standards:
 - Structural Standards for Antenna Supporting Structures and Antennas and Small Wind Turbine Support Structures ANSI/TIA-222-H
 - Ultimate Wind Speed 115 mph (3-Second Gust)
 - Exposure Category C
 - Risk Category II
 - Topographic Factor, K_{zt} 1.0
 - Mean Base Elevation (AMSL) 821.28'
 - Ice Wind Speed 50 mph (3-Second Gust)
 - Design Ice Thickness 1.0"
 - Maintenance Wind Speed –0 mph*
 - Maintenance Live Load –0 lb*
 - Maintenance Live Load 0 lb*

*In accordance with AT&T's Mount Technical Directive, AT&T forbids the addition of live loads to this type of mount.

Carrier	Mount Elevation (ft)	Quantity	Manufacturer	Model	Status	Mount
		3	Kathrein	800 10966		Modified
		3	Ericsson	RRUS 4449 B2/B12	Proposed	Sector Mounts Standoff
	135.0	3	Ericsson	RRUS-32		
		1	Raycap	DC6-48-60-18-8C-EV		
AT&T		1	Raycap	DC6-48-60-18-8F		
Mobility		3	Ericsson	RRUS-32 B2		Mount
		2	CCI	HPA-65R-BUU-H6	Evipting	Modified
		1	CCI	HPA-65R-BUU-H8	Existing	
		3	Powerwave	7770]	Mounte
		6	Powerwave	LGP 21401]	wounts

The following equipment has been considered for the analysis of the antenna mount(s):

Analysis Approach:

The antenna mount has been modeled in RAM Elements (V15 15.00.00.18), a comprehensive structural analysis program. The program performs design checks of structures under user specified loads. The user specified loads have been calculated separately based on the requirements of the above referenced codes and standards. The program performs an analysis based on the applicable steel code to determine the adequacy of the members and produces the reactions at the connection points of the mounts to the existing structure.

The scope of this assessment does not include analysis of the supporting tower structure. This mounting frame was not analyzed as an anchor attachment point for fall protection. All climbing activities are required to have a fall protection plan completed by a competent engineer.

Assumptions:

General Site Design Assumptions:

- 1. All engineering services are performed on the basis that the information provided to Maser Consulting Connecticut and used in this analysis is current and correct.
- 2. The mounting frames were properly fabricated, installed and maintained in good condition, twist free and plumb in accordance with its original design and manufacturer's specifications.
- 3. Due to site specific analysis parameters, it is assumed that wind forces will control over seismic forces and as such, seismic forces have not been considered in this analysis.
- 4. It is the responsibility of the client to ensure that the information provided to Maser Consulting Connecticut and used in the performance of our engineering services is correct and complete. In the absence of information to the contrary, we assume that the original design, material production, fabrication, and erection of the existing structure was performed in accordance with accepted industry design standards and in accordance with all applicable codes. Further, it is assumed that the existing structure and appurtenances have been properly maintained in accordance with all applicable codes and manufacturer's specifications and no structural defects and/or deterioration to the structural members has occurred.
- 5. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 6. The existing equipment loading has been applied at locations determined from the supplied documentation and field observations. Should the existing equipment configuration differ from what is utilized in this analysis, the results of this analysis are invalid.
- 7. All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. Maser Consulting Connecticut is not responsible for the conclusion, opinions, and recommendations made by others based on the information supplied.

Site Specific Assumptions and Design Parameters:

1. Structural Steel Grades have been assumed as follows, if applicable, unless otherwise noted in this analysis:

	-	, , ,
С	Plate	ASTM A36 (Gr. 36)
С	HSS (Rectangular)	ASTM 500 (Gr. B-46)
С	Pipe	ASTM A53 (Gr. B-35)
С	Bolts	ASTM A325

- 2. All proposed equipment locations are to be as depicted in the rendered diagram in Appendix A of this report. Any changes made to the proposed equipment locations will render this report invalid.
- 3. Existing equipment locations, quantities, and model numbers are considered as shown in the above referenced mount mapping for the purposes of this analysis. Antennas and ancillary equipment have been relocated as noted in the rendered diagram included in Appendix A to match the equipment layout depicted in the plumbing diagram of the above referenced RFDS.
- 4. The existing RRUS 11 was not shown in the plumbing diagram and has not been considered for the purposes of this analysis.

Discrepancies between in-field conditions and the assumptions listed above may render this analysis invalid unless explicitly approved by Maser Consulting Connecticut.

89.0%

Calculations:

Selected calculations and analysis output can be found in Appendix A of this report.

Component	Utilization %	Pass/Fail
Face Horizontal	48.0	Pass
Kicker	9.0	Pass
Mast Pipe	0.0	Pass
Mod Face Horizontal	28.0	Pass
Mount Pipe	71.0	Pass
Standoff Horizontal	44.0	Pass
Threaded Rod Standoffs	56.0	Pass
Mount Connection	89.0	Pass

Analysis Results and Conclusion:

Structure Rating – (Controlling Utilization of all Components)

Recommendation:

In order for the results of this analysis to be considered valid, the modifications listed below and shown in Appendix B shall be completed on all sectors:

 Install "handrail reinforcement kit" (Site Pro 1 Part #: PRK-SFS or EOR approved equivalent) to new 120" long P2.0 STD face horizontal members. Connect new horizontals to existing mount pipes with crossover plates (Site Pro 1 Part #: SCX1-K or EOR approved equivalent) (Typical per sector) [mount modification sketch and specification sheets attached].

The conclusions reached by Maser Consulting Connecticut in this evaluation are only applicable for the structural members supporting the AT&T Mobility telecommunications installation described herein. Further, no structural qualifications are made or implied by this document for the existing structure. The mount was checked up to, and including, the bolts that fasten it to the tower leg. However, no structural qualifications are made or implied by this document for the existing structural qualifications are made or the bolts that fasten it to the tower leg.

Maser Consulting Connecticut reserves the right to amend this report if additional information regarding the members is provided. The conclusions reached by Maser Consulting Connecticut in this report are only valid for the appurtenances listed in this report. Any change to the installation will require a revision to this structural analysis.

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.

Sincerely, Maser Consulting Connecticut

Petros E. Tsoukalas, P.E. Geographic Discipline Leader

Disclaimer of Warranties:

The engineering services rendered by Maser Consulting Connecticut in connection with this structural analysis are limited to a computer analysis of the mounting frame structure and theoretical capacity of its main structural members. No allowance has been made for any damaged, bent, missing, loose, or rusted members or connections.

Maser Consulting Connecticut will accept no liability which may arise due to any deficiency in design, material, fabrication, erection, construction, or lack of maintenance. Maser Consulting Connecticut has not performed a site visit of the mounting frame to verify member sizes or equipment loading. Contractor should inspect the condition of the existing structure, mounting frames and connections and notify Maser Consulting Connecticut of any discrepancies or deficiencies before proceeding with installation.

The attached sketch is a schematic representation of the analyzed mounting frames. The contractor shall be responsible for field verifying the existing conditions, proper fit, and clearances in the field.

Miscellaneous items such as antenna mounts, etc., have not been designed or detailed as part of our work. We recommend that material of suitable size and strength be purchased from a reputable manufacturer.

Maser Consulting Connecticut makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of the mounting frames. Maser Consulting Connecticut will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report.

05/07/2019 Page 7 of 6 Prepared by JRH Checked by PET

APPENDIX: A

18963030A 5/7/2019 10035312	
5/7/2019	
10035312	
TIA-222-H	1
Monopole Tower	
177	
11	
135	
821.28	ft AMSL
T-Frame	
115	
С	
1	1
1.00	
0.00	1
Factored ASCE 7-16 (500 - Year Return)	
1	1
50	
0	1
30	1
1.00	
1.00	
1.00	
1.00	Seismic
1.35	R
0.97	As
1.00	I (seismic)
0.90	S1
0.95	Site Class
1.15	Fa
1.15	in SDS
0.00	in Cs
	Monopole Tower II 135 621.28 F-Frame 115 C 1 1.00 0.00 Foctored ASCE 7.16 (SOO Year Return) 1 0 0 30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.35 0.97 1.15 1.15 1.15

Seismic Calcs										
R	2.0									
As	1.0									
I (seismic)	1.0									
S1	0									
Site Class	D									
Fa	1.600									
SDS	0.000									
Cs	0.030									

Wind Pressure			Seism
qz (no ice)	37.9	lb/ft2	Vert
qz (ice)	7.2	lb/ft2	Late
gz (MLL)	26	lb/ft2	

Seismic Multipliers	
Vertical Seismic Multiplier	0.000
Lateral Seismic Multiplier	0.030

Distributed Loading (Per Mount Member)

Distribution Louding (1 of mooth monibol)							
Mount Member	Mount Member	Winc	d Dist. Load	(lb/ft)	Ice Dist. Load (lb/ft)		
Description	Shape	No Ice	Ice	MLL ICe	Ice	MLL ICe	
RE	Rigid Element		-	-		-	
Standoff Horizontal	HSS_SQR 4X4X3_16	17.8	6.4	1.7	8.5	-	
Face Horizontal	P 3.00	13.3	4.2	0.9	6.5	-	
Mast Pipe	P 4.00	17.0	4.9	1.2	7.9	-	
MPRE	Rigid Element	-	-	-	-	-	
MP	P 2.00	9.0	3.3	0.6	5.0	-	
MP2	P 2.00	-	-	-	5.0	-	
MP4	P 2.00	-	-	-	5.0	-	
Threaded Rods	RndBar 1_2	1.9	2.0	0.1	2.3	-	
MP1	P 2.00	-	-	-	5.0	-	
Kicker	L 2-1_2X2-1_2X3_16	15.8	4.6	1.1	6.6	-	
Mod Face Horizontal	P 2.00	9.0	3.3	0.6	5.0	-	
	-	-	-	-	-	-	
	-	-	-	-	-	-	
	-	-	-	-	-	-	
	-		-	-		-	
	-	-	-	-	-	-	
	-		-	-		-	
	-	-	-	-	-	-	
	-		-	-		-	
	-	-	-	-	-	-	
	-		-	-		-	
	-		-	-		-	
	-		-	-		-	
	-	-	-	-	-	-	
	-		-	-		-	
	-	-	-	-	-	-	
	-	-	-	-	-	-	
	-	-	-	-	-	-	
	-	-	-	-	-	-	

List of Equipment

Manufactures.		T	Height	Width	Depth	Weight	Dia.	Front EP	A (No Ice)	Side EPA	(No Ice)	Front W	/ind (Ice)	Side W	ind (Ice)	Front Win	d (MLL ice)	Side Wind	d (MLL Ice)
Manufacturer	Appunenance	iype	(in)	(in)	(in)	(Ibs)	(in)	Ca	EPA (ft ²)	Ca	EPA (ft ²)	Ca	EPA (ft ²)	Ca	EPA (ft ²)	Ca	EPA (ft ²)	Ca	EPA (ft ²)
CCI	HPA-65R-BUU-H8	Flat	92.4	14.8	7.4	73		1.37	13.00	1.58	7.52	1.34	15.05	1.49	9.53	1.37	13.00	1.58	7.52
Kathrein	80010966	Flat	96	20	6.9	114.6		1.30	17.36	1.63	7.51	1.29	19.62	1.52	9.57	1.30	17.36	1.63	7.51
POWERWAVE TECHNOLOGIE	7770	Flat	55	11	5	35		1.31	5.51	1.53	2.93	1.28	6.80	1.43	4.16	1.31	5.51	1.53	2.93
Ericsson	RRUS-32	Flat	27.2	12.1	7	53		1.20	2.74	1.26	1.66	1.20	3.54	1.23	2.34	1.20	2.74	1.26	1.66
Ericsson	RRUS 4449 B5/B12	Flat	14.96	13.19	10.43	73		1.20	1.64	1.20	1.30	1.20	2.23	1.20	1.83	1.20	1.64	1.20	1.30
Powerwave Technologies	TME-LGP21401	Flat	14.4	9.2	2.6	14.1		1.20	1.10	1.34	0.35	1.20	1.60	1.24	0.71	1.20	1.10	1.34	0.35

v7.3.24

MASER

Equipment Loading by Member Description

Site ID: 10035312

Member ID: MP1

Mount Face:	Normal		Shield	ling %		Full Wind (lbs)			Wind with Ice (Ibs)			Wi	nd with MLL (Seismic (Ibs)		
Appurtenance #	Model #	Flipped?	Front	Side	# of cnx	Weight	Front Wind	Side Wind	Weight	Front Wind	Side Wind	Weight	Front Wind	Side Wind	Vertical	Lateral
1	HPA-65R-BUU-H8	No	0%	0%	2	36.5	246.2	142.4	90.7	53.9	34.1	0.0	16.8	9.7	0.0	1.1
2	0	No	0%	0%	0	-	-	-	-	-	-	-	-	-	-	-
3	0	No	0%	0%	0	-	-	-	-	-	-	-	-	-	-	-
4	0	No	0%	0%	0	-	-	-	-	-	-	-	-	-	-	-
5	0	No	0%	0%	0	-	-	-	-	-	-	-	-	-	-	-
6	0	No	0%	0%	0	-	-	-	-	-	-	-	-	-	-	-

Member ID:

Member ID:	MP2															
Mount Face:	Normal	Shielding %				Full Wind (Ibs)			Wind with Ice (Ibs)			Wind with MLL (lbs)		(lbs)	Seismic (Ibs)	
Appurtenance #	Model #	Flipped?	Front	Side	# of cnx	Weight	Front Wind	Side Wind	Weight	Front Wind	Side Wind	Weight	Front Wind	Side Wind	Vertical	Lateral
1	80010966	No	0%	0%	2	57.3	328.9	142.3	112.3	70.3	34.3	0.0	22.4	9.7	0.0	1.7
2	RRUS 4449 B5/B12	No	0%	0%	1	73.0	62.3	49.3	43.7	16.0	13.1	0.0	4.2	3.4	0.0	2.2
3	RRUS-32	No	0%	0%	1	53.0	103.9	63.0	53.4	25.4	16.7	0.0	7.1	4.3	0.0	1.6
4	0	No	0%	0%	0	-	-	-	-	-	-	-	-	-	-	-
5	0	No	0%	0%	0	-	-	-	-	-	-	-	-	-	-	-
6	0	No	0%	0%	0	-	-	-	-	-	-	-	-	-	-	-

MP3 Member ID:

Mount Face:	Normal		Shield	ling %		Full Wind (lbs)			Wind with Ice (Ibs)			Wir	nd with MLL (Seismic (Ibs)		
Appurtenance #	Model #	Flipped?	Front	Side	# of cnx	Weight	Front Wind	Side Wind	Weight	Front Wind	Side Wind	Weight	Front Wind	Side Wind	Vertica	Lateral
1	7770	No	0%	0%	2	17.5	104.3	55.5	41.2	24.3	14.9	0.0	7.1	3.8	0.0	0.5
2	TME-LGP21401	Yes	0%	100%	1	14.1	13.2	0.0	19.4	5.0	0.0	0.0	0.9	0.0	0.0	0.4
3	TME-LGP21401	Yes	0%	0%	1	14.1	13.2	41.8	19.4	5.0	11.5	0.0	0.9	2.8	0.0	0.4
4	0	No	0%	0%	0	-	-	-	-	-	-	-	-	-	-	-
5	0	No	0%	0%	0	-	-	-	-	-	-	-	-	-	-	-
6	0	No	0%	0%	0	_		_	_	_	_	_				

X

Stress ratio AISC/AISI/BS/AS/CSA/NDS

Z X

Z X

. N 41 Z X

Project: 18963030A Client: Empire Structural Engineer: JRH Modified: 5/7/2019

Geometry data

GLOSSARY

Cb22, Cb33	: Moment gradient coefficients
Cm22, Cm33	: Coefficients applied to bending term in interaction formula
d0	: Tapered member section depth at J end of member
DJX	: Rigid end offset distance measured from J node in axis X
DJY	: Rigid end offset distance measured from J node in axis Y
DJZ	: Rigid end offset distance measured from J node in axis Z
DKX	: Rigid end offset distance measured from K node in axis X
DKY	: Rigid end offset distance measured from K node in axis Y
DKZ	: Rigid end offset distance measured from K node in axis Z
dL	: Tapered member section depth at K end of member
lg factor	: Inertia reduction factor (Effective Inertia/Gross Inertia) for reinforced concrete members
K22	: Effective length factor about axis 2
K33	: Effective length factor about axis 3
L22	: Member length for calculation of axial capacity
L33	: Member length for calculation of axial capacity
LB pos	: Lateral unbraced length of the compression flange in the positive side of local axis 2
LB neg	: Lateral unbraced length of the compression flange in the negative side of local axis 2
RX	: Rotation about X
RY	: Rotation about Y
RZ	: Rotation about Z
ТО	: 1 = Tension only member 0 = Normal member
TX	: Translation in X
TY	: Translation in Y
TZ	: Translation in Z

Nodes

Node	X [in]	Y [in]	Z [in]	Rigid Floor
9	3.00	0.00	0.00	0
14	3.00	0.00	3.00	0
11	59.00	0.00	0.00	0
13	59.00	0.00	3.00	0
10	114.00	0.00	0.00	0
12	114.00	0.00	3.00	0
47	3.00	-12.00	0.00	0
48	3.00	-12.00	3.00	0
49	59.00	-12.00	0.00	0
50	59.00	-12.00	3.00	0
51	114.00	-12.00	0.00	0
52	114.00	-12.00	3.00	0
1	0.00	0.00	0.00	0
2	60.00	0.00	0.00	0
3	120.00	0.00	0.00	0
4	60.00	0.00	-4.00	0
5	60.00	0.00	-6.25	0
6	60.00	0.00	-28.25	0
7	60.00	9.00	-4.00	0
8	60.00	-9.00	-4.00	0
15	114.00	36.00	3.00	0

16	114.00	-36.00	3 00	Ω
10	50.00	-30.00	3.00	0
1/	59.00	60.00	3.00	0
18	59.00	-60.00	3.00	0
19	3.00	36.00	3.00	0
20	3.00	-36.00	3.00	0
21	114.00	24.00	3.00	0
22	114.00	-11.00	3.00	0
23	114.00	-29.00	3.00	0
24	114.00	24.00	9.00	0
25	114.00	-11.00	9.00	0
26	114.00	-29.00	9.00	0
27	116.00	24.00	3.00	0
28	116.00	24.00	9.00	0
29	116.00	-11.00	3.00	0
30	116.00	-11.00	9.00	0
31	116.00	-29.00	3.00	0
32	116.00	-29.00	9.00	0
33	112.00	24.00	9.00	0
34	112.00	24.00	3.00	0
35	112.00	-11.00	9.00	0
36	112.00	-11.00	3.00	0
37	112.00	-29.00	9.00	0
38	112.00	-29.00	3.00	0
39	114.00	58.00	9.00	0
41	114.00	-62.00	9.00	0
42	60.00	-30.00	-28.25	0
43	20.00	-12.00	0.00	0
44	100.00	-12.00	0.00	0
45	0.00	-12.00	0.00	0
46	120.00	-12.00	0.00	0

Restraints

Node	тх	TY	ΤZ	RX	RY	RZ
6	1	1	1	1	1	1
42	1	1	1	0	0	0

Members

Member	NJ	NK	Description	Section	Material	d0 [in]	dL [in]	lg factor
6	9	 14	MPRE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
7	11	13	MPRE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
8	10	12	MPRE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
28	47	48	MPRE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
29	49	50	MPRE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
30	51	52	MPRE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
1	2	4	RE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
2	4	5	RE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
3	5	6	Standoff Horizontal	HSS SQR 4X4X3 16	A500 GrB rectangular	0.00	0.00	0.00
4	1	3	Face Horizontal	P 3.00	A53 GrB	0.00	0.00	0.00

5	7	8	Mast Pipe	P 4.00	A53 GrB	0.00	0.00	0.00
9	15	16	MP	P 2.00	A53 GrB	0.00	0.00	0.00
24	39	41	MP1	P 2.00	A53 GrB	0.00	0.00	0.00
10	17	18	MP2	P 2.00	A53 GrB	0.00	0.00	0.00
11	19	20	MP3	P 2.00	A53 GrB	0.00	0.00	0.00
12	33	28	RE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
13	34	27	RE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
14	35	30	RE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
15	36	29	RE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
16	37	32	RE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
17	38	31	RE	Rigid Element	A36 (weightless)	0.00	0.00	0.00
18	33	34	Threaded Rods	RndBar 1_2	F1554 Gr36	0.00	0.00	0.00
19	28	27	Threaded Rods	RndBar 1_2	F1554 Gr36	0.00	0.00	0.00
20	35	36	Threaded Rods	RndBar 1_2	F1554 Gr36	0.00	0.00	0.00
21	30	29	Threaded Rods	RndBar 1_2	F1554 Gr36	0.00	0.00	0.00
22	37	38	Threaded Rods	RndBar 1_2	F1554 Gr36	0.00	0.00	0.00
23	32	31	Threaded Rods	RndBar 1_2	F1554 Gr36	0.00	0.00	0.00
25	43	42	Kicker	L 2-1_2X2-1_2X3_16	A36	0.00	0.00	0.00
26	44	42	Kicker	L 2-1_2X2-1_2X3_16	A36	0.00	0.00	0.00
27	45	46	Mod Face Horizontal	P 2.00	A53 GrB	0.00	0.00	0.00

Orientation of local axes

Member	Rotation [Deg]	Axes23	NX	NY	NZ	
25 26	90.00 180.00	0	0.00	0.00	0.00	

Hinges

	Node-J					Node-K					
Member	M33	M22	V3	V2	M33	M22	V3	V2	TOR	AXL	Axial rigidity
1	0	0	0	0	0	1	0	0	0	0	Full
25	1	1	0	0	0	0	0	0	0	0	Full
26	1	1	0	0	0	0	0	0	0	0	Full

Project: 18963030A Client: Empire Structural Engineer: JRH Modified: 5/7/2019

Analysis result

Envelope for nodal reactions

Direction of positive forces and moments

Envelope of nodal reactions for : D1=1.4DL D2=1.2DL+WLf3+1.5MLL1 D3=1.2DL+0.866WLf3+0.5WLs3+1.5MLL1 D4=1.2DL+0.5WLf3+0.866WLs3+1.5MLL1 D5=1.2DL+WLs3+1.5MLL1 D6=1.2DL-0.5WLf3+0.866WLs3+1.5MLL1 D7=1.2DL-0.866WLf3+0.5WLs3+1.5MLL1 D8=1.2DL-WLf3+1.5MLL1 D9=1.2DL-0.866WLf3-0.5WLs3+1.5MLL1 D10=1.2DL-0.5WLf3-0.866WLs3+1.5MLL1 D11=1.2DL-WLs3+1.5MLL1 D12=1.2DL+0.5WLf3-0.866WLs3+1.5MLL1 D13=1.2DL+0.866WLf3-0.5WLs3+1.5MLL1 D14=1.2DL+1.5MLL2 D15=1.2DL+WLf1 D16=1.2DL+0.866WLf1+0.5WLs1 D17=1.2DL+0.5WLf1+0.866WLs1 D18=1.2DL+WLs1 D19=1.2DL-0.5WLf1+0.866WLs1 D20=1.2DL-0.866WLf1+0.5WLs1 D21=1.2DL-WLf1 D22=1.2DL-0.866WLf1-0.5WLs1 D23=1.2DL-0.5WLf1-0.866WLs1 D24=1.2DL-WLs1 D25=1.2DL+0.5WLf1-0.866WLs1 D26=1.2DL+0.866WLf1-0.5WLs1 D27=0.9DL+WLf1 D28=0.9DL+0.866WLf1+0.5WLs1 D29=0.9DL+0.5WLf1+0.866WLs1 D30=0.9DL+WLs1 D31=0.9DL-0.5WLf1+0.866WLs1 D32=0.9DL-0.866WLf1+0.5WLs1 D33=0.9DL-WLf1 D34=0.9DL-0.866WLf1-0.5WLs1 D35=0.9DL-0.5WLf1-0.866WLs1 D36=0.9DL-WLs1 D37=0.9DL+0.5WLf1-0.866WLs1 D38=0.9DL+0.866WLf1-0.5WLs1 D39=1.2DL+Di+WLf2

D40=1.2DL+Di+0.866WLf2+0.5WLs2 D41=1.2DL+Di+0.5WLf2+0.866WLs2 D42=1.2DL+Di+WLs2 D43=1.2DL+Di-0.5WLf2+0.866WLs2 D44=1.2DL+Di-0.866WLf2+0.5WLs2 D45=1.2DL+Di-WLf2 D46=1.2DL+Di-0.866WLf2-0.5WLs2 D47=1.2DL+Di-0.5WLf2-0.866WLs2 D48=1.2DL+Di-WLs2 D49=1.2DL+Di+0.5WLf2-0.866WLs2 D50=1.2DL+Di+0.866WLf2-0.5WLs2 D51=1.2DL+Ev+Ehx D52=1.2DL+Ev+Ehz D53=1.2DL+Ev-Ehx D54=1.2DL+Ev-Ehz D55=0.9DL-Ev+Ehx D56=0.9DL-Ev+Ehz D57=0.9DL-Ev-Ehx D58=0.9DL-Ev-Ehz

				Fo	orces					Mome	ents		
Node		Fx [Lb]	lc	Fy [Lb]	lc	Fz [Lb]	lc	Mx [Lb*ft]	lc	My [Lb*ft]	lc	Mz [Lb*ft]	Ic
6	Max	1468.219	D31	1433.271	D45	1170.425	D27	940.82004	D27	2935.75260	D31	1906.43830	D21
	Min	-1468.410	D25	160.983	D27	-1728.424	D21	-3424.91740	D45	-2936.13850	D25	-1318.81260	D27
42	Max	690.981	D26	582.874	D39	877.923	D15	0.00000	D1	0.00000	D1	0.00000	D1
	Min	-690.944	D32	-154.675	D33	-320.006	D33	0.00000	D1	0.00000	D1	0.00000	D1

Project: 18963030A Client: Empire Structural Engineer: JRH Modified: 5/7/2019

Steel Code Check

Report: Summary - Group by member

Load conditions to be included in design : D1=1.4DL D2=1.2DL+WLf3+1.5MLL1 D3=1.2DL+0.866WLf3+0.5WLs3+1.5MLL1 D4=1.2DL+0.5WLf3+0.866WLs3+1.5MLL1 D5=1.2DL+WLs3+1.5MLL1 D6=1.2DL-0.5WLf3+0.866WLs3+1.5MLL1 D7=1.2DL-0.866WLf3+0.5WLs3+1.5MLL1 D8=1.2DL-WLf3+1.5MLL1 D9=1.2DL-0.866WLf3-0.5WLs3+1.5MLL1 D10=1.2DL-0.5WLf3-0.866WLs3+1.5MLL1 D11=1.2DL-WLs3+1.5MLL1 D12=1.2DL+0.5WLf3-0.866WLs3+1.5MLL1 D13=1.2DL+0.866WLf3-0.5WLs3+1.5MLL1 D14=1.2DL+1.5MLL2 D15=1.2DL+WLf1 D16=1.2DL+0.866WLf1+0.5WLs1 D17=1.2DL+0.5WLf1+0.866WLs1 D18=1.2DL+WLs1 D19=1.2DL-0.5WLf1+0.866WLs1 D20=1.2DL-0.866WLf1+0.5WLs1 D21=1.2DL-WLf1 D22=1.2DL-0.866WLf1-0.5WLs1 D23=1.2DL-0.5WLf1-0.866WLs1 D24=1.2DL-WLs1 D25=1.2DL+0.5WLf1-0.866WLs1 D26=1.2DL+0.866WLf1-0.5WLs1 D27=0.9DL+WLf1 D28=0.9DL+0.866WLf1+0.5WLs1 D29=0.9DL+0.5WLf1+0.866WLs1 D30=0.9DL+WLs1 D31=0.9DL-0.5WLf1+0.866WLs1 D32=0.9DL-0.866WLf1+0.5WLs1 D33=0.9DL-WLf1 D34=0.9DL-0.866WLf1-0.5WLs1 D35=0.9DL-0.5WLf1-0.866WLs1 D36=0.9DL-WLs1 D37=0.9DL+0.5WLf1-0.866WLs1 D38=0.9DL+0.866WLf1-0.5WLs1 D39=1.2DL+Di+WLf2 D40=1.2DL+Di+0.866WLf2+0.5WLs2 D41=1.2DL+Di+0.5WLf2+0.866WLs2 D42=1.2DL+Di+WLs2 D43=1.2DL+Di-0.5WLf2+0.866WLs2 D44=1.2DL+Di-0.866WLf2+0.5WLs2 D45=1.2DL+Di-WLf2 D46=1.2DL+Di-0.866WLf2-0.5WLs2 D47=1.2DL+Di-0.5WLf2-0.866WLs2 D48=1.2DL+Di-WLs2 D49=1.2DL+Di+0.5WLf2-0.866WLs2 D50=1.2DL+Di+0.866WLf2-0.5WLs2 D51=1.2DL+Ev+Ehx D52=1.2DL+Ev+Ehz

D53=1.2DL+Ev-Ehx D54=1.2DL+Ev-Ehz D55=0.9DL-Ev+Ehx D56=0.9DL-Ev+Ehz D57=0.9DL-Ev-Ehx D58=0.9DL-Ev-Ehz

Description	Section	Member	Ratio	Status	Reference
Face Horizontal	P 3.00	4	0.48	ОК	
<u>Kicker</u>	L 2-1_2X2-1_2X3_16	25	0.05	OK	
		26	0.09	OK	
Mast Pipe	P 4.00	5	0.00	ОК	
Mod Face Horizontal	P 2.00	27	0.28	OK	
MP		9	0.26	OK	
<u>MP1</u>		24	0.12	OK	
MP2		10	0.71	ОК	
<u>MP3</u>		11	0.28	OK	
Standoff Horizontal	HSS_SQR 4X4X3_16	3	0.44	ОК	
Threaded Rods	RndBar 1_2	18	0.55	OK	
	_	19	0.53	OK	
		20	0.50	OK	
		21	0.56	ок	
		22	0.35	OK	
		23	0.35	ОК	

RAM Model Data

Nodes (numbered per RAM)	Orientation (per graphic of typical platform)
6	180

Tower Connection Bolt Checks

Any moment resistance?	yes
Bolt Quantity per Reaction	4
$d_{x}\left(in ight)$ (Delta X of typ. bolt config. sketch)	7
$d_{y}\left(in ight)$ (Delta Y of typ. bolt config. sketch)	7
Bolt Type	A325N
Bolt Diameter (in)	0.625
Required Tensile Strength (kips)	15.1
Required Shear Strength (kips)	8.1
Tensile Strength / bolt (kips)	20.7
Shear Strength / bolt (kips)	12.4
Tensile Capacity Overall	18.3%
Shear Capacity Overall	16.2%

Note: Tension reduction not required if tension or shear capacity < 30%

Tower Connection Plate and Weld Check

Connecting Standoff Member Shape	Rect
Plate Width (in)	10
Plate Height (in)	10
W1 (in)	4
W2 (in)	4
Fy (ksi, plate)	36
t _{Plate} (in)	0.625
Weld Size (1/16 in)	2
Phi*Rn (kip/in)	2.78
Required Weld Strength (kip/in)	2.48
Plate Bending Capacity	48.8%
Weld Capacity	<mark>89.0%</mark>

Max Plate Bending Strengths

Mu _{xx} (kip-in)	8.7
Phi*Mn _{xx} (kip-in)	31.6
Mu _{vv} (kip-in)	6.7
Phi*Mn _{vv} (kip-in)	31.6

05/07/2019 Page 8 of 6 Prepared by JRH Checked by PET

APPENDIX: B

PROJECT NO: 18963030A PROJECT MANAGER: R. ANDREWS DESIGNED: J. HESSON CHECKED: P. TSOUKALAS

	DRAWING TITLE:
_	SITE # CT2070
_	
	SITE NAME: NEW FAIRFIELD
	MODIFICATION NOTES

SK-001

DRAWING NO

GENERAL NOTES

- 1. THESE MODIFICATIONS HAVE BEEN DESIGNED IN ACCORDANCE WITH THE GOVERNING PROVISIONS OF THE TELECOMMUNICATIONS INDUSTRY STANDARD ANSI/TIA-222-H. MATERIALS AND SERVICES PROVIDED BY THE CONTRACTOR SHALL CONFORM TO THE ABOVE MENTIONED CODES.
- 2. CONTRACTOR SHALL TAKE ALL PRECAUTIONS NECESSARY TO PREVENT DAMAGE TO EXISTING STRUCTURES. ANY DAMAGE TO EXISTING STRUCTURES AS A RESULT OF THE CONTRACTOR'S WORK OR FROM DAMAGE DUE TO OTHER CAUSES SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE TO THE SATISFACTION OF THE OWNER.
- 3. CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND EXISTING CONDITIONS BEFORE BEGINNING WORK AND ORDERING MATERIAL. ANY DISCREPANCIES BETWEEN FIELD CONDITIONS AND THE CONTRACT DOCUMENTS SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ENGINEER. IF THE CONTRACTOR DISCOVERS ANY EXISTING CONDITIONS THAT ARE NOT REPRESENTED ON THESE DRAWINGS, OR ANY CONDITIONS THAT WOULD INTERFERE WITH THE INSTALLATION OF THE MODIFICATIONS, NOTIFY THE ENGINEER IMMEDIATELY.
- 4. IT IS ASSUMED THAT ANY STRUCTURAL MODIFICATION WORK SPECIFIED ON THESE PLANS WILL BE ACCOMPLISHED BY KNOWLEDGEABLE WORKMEN WITH TOWER CONSTRUCTION EXPERIENCE.
- 5. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION METHODS, MEANS, TECHNIQUES, SEQUENCES, AND PROCEDURES.
- 6. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PROGRAMS IN ACCORDANCE WITH APPLICABLE SAFETY CODES.
- 7. WORK SHALL ONLY BE PERFORMED DURING CALM DRY DAYS (WINDS LESS THAN 30-MPH). THE STRUCTURE SHOWN ON THE DRAWINGS IS STRUCTURALLY SOUND ONLY IN THE COMPLETED FORM. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE STRENGTH AND STABILITY OF THE STRUCTURE DURING ERECTION. CONTRACTOR SHALL PROVIDE TEMPORARY SUPPORT, SHORING, BRACING AND ANY OTHER STRUCTURAL SYSTEMS AS REQUIRED TO RESIST ALL FORCES THAT MAY OCCUR DURING HANDLING AND ERECTION UNTIL THE STRUCTURE IS FULLY COMPLETED. TEMPORARY SUPPORTS, BRACING AND OTHER STRUCTURAL SYSTEMS REQUIRED DURING CONSTRUCTION SHALL REMAIN THE CONTRACTOR'S PROPERTY AFTER THEIR USE.
- 8. THE MOUNT UNDER NO CIRCUMSTANCES SHOULD BE USED AS A TIE OFF POINT.
- 9. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/TIA-322, ANSI A10.48 (LATEST EDITIONS), OSHA, AND GENERAL INDUSTRY STANDARDS. ALL RIGGING PLANS SHALL ADHERE TO ANSI/TIA-322, ANSI A10.48 (LATEST EDITION) INLCUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION.

DESIGN LOADS

WIND LOADS

- a. BASIC WIND SPEED (ULTIMATE 3 SECOND GUST), V =115 MPH
- ICE LOADS
 - a. ICE WIND SPEED (3 SECOND GUST), V = 50 MPH
- b. ICE THICKNESS, t = 1.00 IN

STRUCTURAL STEEL

- 1. DESIGN, DETAILING, FABRICATION AND ERECTION OF STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING PUBLICATIONS EXCEPT AS SPECIFICALLY INDICATED IN THE CONTRACT DOCUMENTS.
 - a. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) MANUAL OF STEEL CONSTRUCTION (15TH EDITION)
 - b. SPECIFICATION FOR STRUCTURAL JOINTS USING ASTM A325 OR A490 BOLTS
 - c. AISC CODE OF STANDARD PRACTICE

STRUCTURAL STEEL (CONTINUED)

2. STRUCTURAL STEEL SHALL CONFORM TO THE FOLLOWING UNLESS OTHERWISE SHOWN:

CHANNELS, ANGLES, PLATES, ETC.	ASTM A36 (GR 36)
STEEL PIPE	ASTM A53 (GR 35)
BOLTS	ASTM A325
NUTS	ASTM A563
LOCK WASHERS	LOCKING STRUCTURAL GRADE

- DRILL NO HOLES IN ANY NEW OR EXISTING STRUCTURAL STEEL MEMBERS OTHER THAN THOSE SHOWN ON STRUCTURAL DRAWINGS WITHOUT THE APPROVAL OF THE ENGINEER OF RECORD.
- 4. ALL BOLT HOLES SHALL BE STANDARD SIZE U.N.O.
- 5. GALVANIZED ASTM A325 BOLTS SHALL NOT BE REUSED.
- 6. ALL NEW STEEL SHALL BE HOT BE DIPPED GALVANIZED FOR FULL WEATHER PROTECTION. IN ADDITION ALL NEW STEEL SHALL BE PAINTED TO MATCH EXISTING STEEL. CONTRACTOR SHALL OBTAIN WRITTEN PERMISSION TO PROTECT STEEL BY ANY OTHER MEANS.
- 7. ALL EXISTING PAINTED/GALVANIZED SURFACES DAMAGED DURING REHAB INCLUDING AREAS UNDER STIFFENER PLATES SHALL BE WIRE BRUSHED CLEAN, REPAIRED BY COLD GALVANIZING BRUSH APPLIED PAINT (ZRC OR EQUAL), AND REPAINTED TO MATCH THE EXISTING FINISH (IF APPLICABLE).
- ALL BOLT ASSEMBLES FOR STRUCTURAL MEMBERS REPRESENTED IN THIS DRAWING REQUIRE LOCKING DEVICES TO BE INSTALLED IN ACCORDANCE WITH TIA-222-H SECTION 4.9.2 REQUIREMENTS.

	BOLT SCHEDULE (IN.)							
BOLT DIAMETER	STANDARD HOLE	SHORT SLOT	MIN. EDGE DISTANCE	SPACING				
1/2	9/16	9/16 x 11/16	7/8	1 1/2				
5/8	11/16	11/16 x 7/8	1 1/8	1 7/8				
3/4	13/16	13/16 x 1	1 1/4	2 1/4				
7/8	15/16	15/16 x 1 1/8	1 1/2	2 5/8				
1	1 1/16	1 1/16 x 1 5/16	1 3/4	3				

WORKABLE GAGES (IN.)							
LEG	GAGE						
4	2 1/2						
3 1/2	2						
3	1 3/4						
2 1/2	1 3/8						
2	1 1/8						

TYP. BOLT ASSEMBLY

NOTES:

- 1. ALL DIMENSIONS REPRESENTED IN THE ABOVE TABLES ARE AISC MINIMUM REQUIREMENTS. CONTRACTOR SHALL VERIFY EXISTING CONDITIONS IN FIELD AND NOTIFY ENGINEER IF DISTANCES ARE LESS THAN THOSE PROVIDED.
- 2. THE DIMENSIONS PROVIDED ARE MINIMUM REQUIREMENTS. ACTUAL DIMENSIONS OF PROPOSED MEMBERS WITHIN THESE DRAWINGS MAY VARY FROM THE AISC MINIMUM REQUIREMENTS.
- 3. SHORT SLOT HOLES SHALL ONLY BE USED WHEN DEPICTED IN THE DRAWINGS.
- 4. MATCH EXISTING GAGES WHEN APPLICABLE, UNLESS MINIMUM EDGE DISTANCES ARE COMPROMISED.

				PARTS LIST			
	ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
	1	3	X-LWRM	RING MOUNT WELDMENT		68.81	206.42
	2	3	X-TBW	T-BRACKET WELDMENT		13.60	40.80
	3	6	SHCM-T	CHAIN MOUNT TIGHTENER BRACKET	3 in	1.86	11.15
	4	6	X-232697	TRPD-HD DIAGONAL ANGLE - SITE PRO 1	52 1/2 in	14.35	86.08
	5	12	X-STU	STIFF ARM CHANNEL BRACKET	8 1/2 in	1.37	16.46
EXISTING HANDRAIL SHOWN FOR CLAIRITY	6	12	G12112	1/2" x 1-1/2" HDG HEX BOLT GR5	1/2 in	0.15	1.77
	7	3	G12212	1/2" x 2-1/2" HDG HEX BOLT GR5	2 1/2 in	0.20	0.61
	8	12	G12065	1/2" x 6-1/2" HDG HEX BOLT GR5 FULL THREAD	6 1/2 in	0.41	4.91
	9	24	G12FW	1/2" HDG USS FLATWASHER	3/32 in	0.03	0.82
	10	27	G12LW	1/2" HDG LOCKWASHER	1/8 in	0.01	0.38
	11	27	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	1.93
	12	12	A582114	5/8" x 2-1/4" HDG A325 HEX BOLT	2 1/4 in	0.31	3.75
	13	9	G58R-24	5/8" x 24" THREADED ROD (HDG.)	24 in	0.40	3.59
	13	9	G58R-48	5/8" x 48" THREADED ROD (HDG.)	48 in	0.40	3.59
	14	30	G58LW	5/8" HDG LOCKWASHER		0.03	0.78
	15	30	G58NUT	5/8" HDG HEAVY 2H HEX NUT		0.13	3.90
				· · ·		TOTAL WT. #	587.71
	6 10 11					891	0)(11)

DETAIL A

					TOLERANCE NOTES	C DES	CRIPTIO	N				
					TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE + 1/2 DEGREE		н		REINFORCI	EMENT		
					ALL OTHER MACHINING (± 0.030")	CPD N	0.	DRAWN BY		ENG. APP		
					ALL OTHER ASSEMBLY (± 0.060")	S	P1	CSI3 2	0/23/2017	3RD P		
Α	CHANGED MAX. DIA. FOR HANDRAIL CONNECTION	SP1	BC	10/23/2017					2012011			
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT	CLASS	SUB	DRAWING US	SAGE	CHECKED		
	REVISION HISTORY				INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF	81	02	SH SH	IOP	BMC		

					TOLERANCE NOTES	DESCRIPTION						
					TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE		н	IANDRAIL REINFORC	EMENT H			
					ALL OTHER MACHINING (± 0.030")	CPD N	10.	DRAWN BY	ENG. APPF			
Α	CHANGED MAX. DIA. FOR HANDRAIL CONNECTION	SP1	BC	10/23/2017	ALL OTHER ASSEMBLY (± 0.060")	S	P1	CSL3 2/23/2017	3RD PA			
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT	CLASS	SUB	DRAWING USAGE	CHECKED			
	REVISION HISTORY			•	INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.	81	02	SHOP	BMC			

PARTIAL VIEW D-D

					TOLERANCE NOTES	DES	CRIPTIO	N	
					TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE		н	IANDRAIL REINFORC	EMENT M
					ALL OTHER MACHINING (± 0.030")	CPD N	10.	DRAWN BY	ENG. APPR
Α	CHANGED MAX. DIA. FOR HANDRAIL CONNECTION	SP1	BC	10/23/2017	ALL OTHER ASSEMBLY (± 0.060")	S	P1	CSL3 2/23/2017	3RD PA
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT	CLASS	SUB	DRAWING USAGE	CHECKED
	REVISION HISTORY	•	•	•	INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF	81	02	SHOP	BMC

PARTIAL VIEW F-F

HORIZONTAL POSITION

			_			
ITEM	QTY	PART NO.	PART DESCRIPTION	LENGTH	UNIT WT.	NET WT.
1	1	SCX1	CROSSOVER PLATE 2-3/8" X 2-3/8"		3.71	3.71
2	4	X-UB1212	1/2" X 2-1/2" X 4-1/2" X 2" U-BOLT (HDG.)		0.63	2.50
3	8	G12FW	1/2" HDG USS FLATWASHER		0.03	0.27
4	8	G12LW	1/2" HDG LOCKWASHER		0.01	0.11
5	8	G12NUT	1/2" HDG HEAVY 2H HEX NUT		0.07	0.57
					TOTAL WT. #	7.16

					TOLERANCE NOTES TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.0307) DRILED AND GAS CUT HOLES (± 0.0307) - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.0107) - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE	DESC	RIPTIO	N CROSSOVER PL	ATE	STTE 1	Engineering Support Team: 1-888-753-7446	Locations: New York, NY Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX	
					ALL OTHER MACHINING (± 0.030") ALL OTHER ASSEMBLY (± 0.060")	CPD NO).	DRAWN BY CEK 6/30/2011	ENG. APPROVAL	PART NO.	SCX1-K		- P
Α	ADDED MISSING U-BOLT AND HRDWE		KC8	7/5/2012	· ·								S S
REV	DESCRIPTION OF REVISIONS	CPD	BY	DATE	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT	CLASS	SUB	DRAWING USAGE	CHECKED BY	DWG. NO.			" #
	REVISION HISTORY				INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.	81	01	CUSTOMER	CEK 8/23/2012		SCX1-K	-	_

EXHIBIT 3

STATE OF CONNECTICUT *CONNECTICUT SITING COUNCIL* Ten Franklin Square, New Britain, CT 06051 Phone: (860) 827-2935 Fax: (860) 827-2950 E-Mail: siting.council@ct.gov www.ct.gov/csc

August 19, 2019

Michelle Scharath Site Acquisition Specialist Empire Telecom USA, LLC 16 Esquire Road Billerica, MA 01862

RE: **EM-AT&T-091-190730** – AT&T Mobility notice of intent to modify an existing telecommunications facility located at 302 Ball Pond Road, New Fairfield, Connecticut.

Dear Ms. Scharath:

The Connecticut Siting Council (Council) hereby acknowledges your notice to modify this existing telecommunications facility, pursuant to Section 16-50j-73 of the Regulations of Connecticut State Agencies with the following conditions:

- 1. Any deviation from the proposed modification as specified in this notice and supporting materials with the Council shall render this acknowledgement invalid;
- 2. Any material changes to this modification as proposed shall require the filing of a new notice with the Council;
- 3. Within 45 days after completion of construction, the Council shall be notified in writing that construction has been completed;
- 4. Any nonfunctioning antenna and associated antenna mounting equipment on this facility owned and operated by AT&T shall be removed within 60 days of the date the antenna ceased to function;
- 5. The validity of this action shall expire one year from the date of this letter; and
- 6. The applicant may file a request for an extension of time beyond the one year deadline provided that such request is submitted to the Council not less than 60 days prior to the expiration.

The proposed modifications including the placement of all necessary equipment and shelters within the tower compound are to be implemented as specified here and in your notice dated July 22, 2019. The modifications are in compliance with the exception criteria in Section 16-50j-72 (b) of the Regulations of Connecticut State Agencies as changes to an existing facility site that would not increase tower height, extend the boundaries of the tower site by any dimension, increase noise levels at the tower site boundary by six decibels or more, and increase the total radio frequencies electromagnetic radiation power density measured at the tower site boundary to or above the standards adopted by the Federal Communications Commission pursuant to Section 704 of the Telecommunications Act of 1996 and by the state Department of Energy and Environmental Protection pursuant to Connecticut General Statutes § 22a-162. This facility has also been carefully modeled to ensure that radio frequency emissions are conservatively below state and federal standards applicable to the frequencies now used on this tower.

This decision is under the exclusive jurisdiction of the Council. Please be advised that the validity of this action shall expire one year from the date of this letter. Any additional change to this facility will require

explicit notice to this agency pursuant to Regulations of Connecticut State Agencies Section 16-50j-73. Such notice shall include all relevant information regarding the proposed change with cumulative worst-case modeling of radio frequency exposure at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin 65. Thank you for your attention and cooperation.

Sincerely,

Milindheel

Melanie A. Bachman Executive Director

MAB/IN/emr

c: The Honorable Patricia Del Monaco, First Selectman, Town of New Fairfield Evan White, Zoning Enforcement Officer, Town of New Fairfield

The Planning Commission

Town of New Fairfield New Fairfield, Connecticut 06812

Regular Meeting Monday, March 25, 2002 Town Hall Conference Room, 7:30pm

MINUTES - REVISED

Commissioners Present: Jim Piskura, Ron Stoddard, Chris Gould, Dale Holly

Alternates Present: Jim Mitchell, Joe Longo

Staff Present: Jeannine Fitzgerald

Commissioners Absent: Bill DiTullio, Mike Verrico

Call to Order: 7:37 pm

Appt of Alternates

Chris Gould made motion to elevate Jim Mitchell to full voting status. Seconded by Dale Holly.

Approval of Minutes:

Dale Holly made motion to accept Feb 25th minutes as is. Chris Gould seconded. All in favor. Dale Holly made motion to accept Mar 11th special minutes. Chris Gould seconded. All in favor. Ron Stoddard abstained.

Correspondence/Announcements:

- 1. Email from Tony Iadarola re: updates, etc.
- 2. Email from Tony March 24, 2002 re: Pine Hill
- 3. Email from Jeannine re: vacation next month. Need someone to take care of agenda, minutes, legal notices and votes.

Jim Piksura will not be at the April 8, 2002 Planimetrics meeting at 7pm. Jeannine to republish the notice again in CN for next Weds. April 3rd.

OLD BUSINESS

Chelsea Drive - waiting for correspondence Sonneborn Estates - pending Pine Hill Subdivision- pending

NEW BUSINESS Communication Tower - 302 Ball Pond Road Referral Location is behind Fire House & Police Station Russ Strilowich, Chairman of the Permanent Building Committee present.

8.24 Referral to Zoning sought

>Chris Gould made motion to grant a positive referral to the PBC. Dale Holly seconded. All in favor.

Planning Commission Minutes 3/25/02

I.

3:30

1

1

The Planning Commission

Town of New Fairfield New Fairfield, Connecticut 06812

MEMO

TO: Permanent Building Committee

FROM: Jeannine Fitzgerald

RE: Referral for Amendment to Zoning Regulations

DATE: March 26, 2002

The Planning Commission of New Fairfield granted a positive referral to the Communication Tower at 302 Ball Pond Road.

Call me or Jim Piskura at 746-1180 if you have any questions.

cc: Jim Piskura Maria Haussherr-Hughes First Selectman's Office

Hand Delivered to Mail Box

ZONING PERMIT

ZONING COMMISSION

TOWN OF NEW FAIRFIELD 4 BRUSH HILL ROAD NEW FAIRFIELD, CT 06812 203-746-8140

PROPERTY OWNER: Town Of New Fairfield

OWNER'S ADDRESS: 302 Ball Pond Road New Fairfield, CT 06812

PROPERTY ADDRESS: 302 Ball Pond Road

ZONE: R MAP: 23 BLOCK: 16 LOT: 15-16

LOT SIZE:

FRONTAGE:

PROJECT DESCRIPTION: CONSTRUCTION OF ACCESS ROAD TO 100' X 100' COMPOUND FOR 175 FOOT COMMUNICATION TOWER FOR TOWN EMS ANTENNAS

> CONSTRUCTION MAY NOT PROCEED UNTIL A BUILDING PERMIT HAS BEEN OBTAINED

THIS PERMIT MUST BE POSTED ON THE PREMISES

PERMIT VOID IF CONSTRUCTION AUTHORIZED IN NOT COMPLETED WITHIN ONE (1) YEAR OF ISSUANCE.

THIS PERMIT IF ISSUED, IS BASED UPON THE PLOT PLAN SUBMITTED. FALSIFICATION, BY MISREPRESENTATION OR OMISSION, OR FAILURE TO COMPLY WITH THE CONDITIONS OF APPROVAL OF THIS PERMIT SHALL CONSTITUTE A VIOLATION OF THE NEW FAIRFIELD ZONING REGULATIONS.

CONDITIONS OF APPROVAL:

Permit for structure only - Town Emergency Tower/Antenna exempt under section 2.13.10 of the New Fairfield Zoning Regulations.

PERMIT NO. 20-01-120

FEE waived	
(INCLUDES \$10. STATE SURCHARGE; ,	
Maria Houssen - them	_
Maria Haussherr-Hughes	
Zoning Enforcement Officer	

DATE ISSUED 07/03/02

2032382068

P.5

TOWN OF NEW FAIRFIELD 4 BRUSH HILL ROAD, NEW FAIRFIELD, CT 203-312-5646

BUILDING PERMIT POST THIS PERMIT CONSPICUOUSLY

Owner: Town Of New Fairfield Address: 302 Ball Pond Road Project Description: CONSTRUCTION OF ACCESS ROAD TO 100' X 100' COMPOUND FOR 175 FOOT COMMUNICATION TOWER FOR TOWN EMS ANTENNAS Map: 23 Block: 16 Lot: 15-16

In accordance with application, plans and specifications submitted to the New Fairfield building department, this project will be completed subject to the State of Connecticut building code. Otherwise this permit will be null and void. Occupancy of this new building or addition prior to issuance of certification of occupancy will be considered a violation of the state building code.

Permit No: 02-133

Fee \$: 0.00

Expires in six months if constructions is not then commenced

No Ronald N. Malmberg, Building Official

Inspections:

- Footings
 Footing Drains
 Framing (Rough)
- 4. Plumbing (Rough with Test)
- 5. Electrical
- 6. Insulation

Conditions:

Date Issued: 07/09/02

7. Gas or Oil Burner
 8. Final Elec. and Plumbing
 9. Deck
 10. Final - Fire Separation, Exits, etc.

EXHIBIT 4

302 BALL POND RD

Location	302 BALL POND RD	Mblu	23/ 16/ 15/ /
Acct#	00037200	Owner	NEW FAIRFIELD TOWN OF
Assessment	\$10,519,700	Appraisal	\$15,028,100
PID	378	Building Count	6

Current Value

Appraisal				
Valuation Year	Improvements	Land	Total	
2019	\$12,547,500	\$2,480,600	\$15,028,100	
Assessment				
Valuation Year	Improvements	Land	Total	
2019	\$8,783,300	\$1,736,400	\$10,519,700	

Owner of Record

Owner	NEW FAIRFIELD TOWN OF	Sale Price	\$0
Co-Owner	CONSOLIDATED SCHOOL & FIREHOUSE	Certificate	
Address	4 BRUSH HILL RD	Book & Page	0461/1055
NEW FAIRFIELD, CT 06812	Sale Date	03/18/2010	
		Instrument	29

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Instrument	Sale Date
NEW FAIRFIELD TOWN OF	\$0		0461/1055	29	03/18/2010
NEW FAIRFIELD TOWN OF	\$0		0000/0000		01/01/1900

Building Information

Building 1 : Section 1

Year Built:	1940
Living Area:	91,801
Replacement Cost:	\$14,753,798
Building Percent Good:	55

Replacement Cost

Less Depreciation:

\$8,114,600

Building Attributes		
Field	Description	
Style:	Public School	
Model	Commercial	
Grade	В	
Stories:	1	
Occupancy	1.00	
Exterior Wall 1	Vinyl	
Exterior Wall 2	Brick/Masonry	
Roof Structure	Gable/Hip	
Roof Cover	Asphalt Shngl.	
Interior Wall 1	Drywall/Sheet	
Interior Wall 2	Minim/Masonry	
Interior Floor 1	Inlaid Sht Gds	
Interior Floor 2	Carpet	
Heating Fuel	Oil	
Heating Type	Forced Air-Duc	
АС Туре	Partial	
Struct Class		
Bldg Use	Education	
1st Floor Use:	903	
Heat/AC	HEAT/AC SPLIT	
Frame Type	MASONRY	
Baths/Plumbing	AVERAGE	
Ceiling/Wall	SUS-CEIL & WL	
Rooms/Prtns	AVERAGE	
Wall Height	12.00	
% Comn Wall	0.00	

Building Photo

(http://images.vgsi.com/photos/NewFairfieldCTPhotos/\00\00\57\41.jpg)

Building Layout

(http://images.vgsi.com/photos/NewFairfieldCTPhotos//Sketches/378_378.

Building Sub-Areas (sq ft) Legend			
Code	Description	Gross Area	Living Area
BAS	First Floor	59,749	59,749
FRB	FRB	36,898	31,363
FBM	FBM	984	689
BSM	Basement	12,618	0
CLP	Loading Platform Covered	360	0
CRL	Crawl Space	6,604	0
СТН	Cathedral	2,804	0
FOP	Open Porch	1,204	0
PTO	Patio	360	0
		121,581	91,801

Building 2 : Section 1

Year Built:	1981
Living Area:	13,681
Replacement Cost:	\$1,868,793

Replacement Cost

532 400

preciation:	\$1
	÷ ·

Building Attributes : Bldg 2 of 6		
Field	Description	
Style:	Fire Station	
Model	Commercial	
Grade	В	
Stories:	2	
Occupancy	1.00	
Exterior Wall 1	Brick/Masonry	
Exterior Wall 2		
Roof Structure	Mansard	
Roof Cover	Wood Shingle	
Interior Wall 1	Plastered	
Interior Wall 2	Plywood Panel	
Interior Floor 1	Dirt/None	
Interior Floor 2	Vinyl/Asphalt	
Heating Fuel	Oil	
Heating Type	Hot Water	
АС Туре	None	
Struct Class		
Bldg Use	Fire Vol.	
1st Floor Use:	903	
Heat/AC	HEAT/AC SPLIT	
Frame Type	MASONRY	
Baths/Plumbing	AVERAGE	
Ceiling/Wall	CEIL & WALLS	
Rooms/Prtns	AVERAGE	
Wall Height	14.00	
% Comn Wall	0.00	

Building 3 : Section 1

Year Built:	1989		
Living Area:	11,95	1	
Replacement Cost:	\$1,50	3,675	
Building Percent Good:	86		
Replacement Cost			
Less Depreciation:	\$1,29	3,200	
Building Attributes : Bldg 3 of 6			
Field Description			
Style:		Police	
Model		Commercial	

Building Photo

(http://images.vgsi.com/photos/NewFairfieldCTPhotos//\00\00\57\42.jpg)

Building Layout

(http://images.vgsi.com/photos/NewFairfieldCTPhotos//Sketches/378_8700

Building Sub-Areas (sq ft)			
Code	Description	Gross Area	Living Area
BAS	First Floor	7,016	7,016
FUS	Finished Upper Story	7,016	6,665
FOP	Open Porch	40	0
		14,072	13,681

Grade	С
Stories:	2
Occupancy	1.00
Exterior Wall 1	Brick/Masonry
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Asphalt Shngl.
Interior Wall 1	Drywall/Sheet
Interior Wall 2	Minim/Masonry
Interior Floor 1	Ceram Clay Til
Interior Floor 2	Vinyl/Asphalt
Heating Fuel	Oil
Heating Type	Forced Air-Duc
АС Туре	Central
Struct Class	
Bldg Use	Municipal-Comm
1st Floor Use:	903
Heat/AC	HEAT/AC PKGS
Frame Type	MASONRY
Baths/Plumbing	AVERAGE
Ceiling/Wall	SUS-CEIL & WL
Rooms/Prtns	AVERAGE
Wall Height	14.00
% Comn Wall	0.00

(http://images.vgsi.com/photos/NewFairfieldCTPhotos/\00\00\57\43.jpg)

Building Layout

(http://images.vgsi.com/photos/NewFairfieldCTPhotos//Sketches/378_8701

Building Sub-Areas (sq ft)			<u>Legend</u>
Code Description		Gross Area	Living Area
BAS	First Floor	8,276	8,276
FUS	Finished Upper Story	3,868	3,675
		12,144	11,951

Building 4 : Section 1

Model

Grade

Year Built:	2004			
Living Area:	360			
Replacement Cost:	\$42,6	89		
Building Percent Good:	87			
Replacement Cost				
Less Depreciation:	reciation: \$37,100			
Building Attributes : Bldg 4 of 6				
Field		Description		
Style:		Tower support		

Commercial

С

Stories:	1
Occupancy	0.00
Exterior Wall 1	Brick Veneer
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar & Gravel
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Gas
Heating Type	Forced Air-Duc
АС Туре	Central
Struct Class	
Bldg Use	Misc
1st Floor Use:	
Heat/AC	HEAT/AC SPLIT
Frame Type	WOOD FRAME
Baths/Plumbing	AVERAGE
Ceiling/Wall	NONE
Rooms/Prtns	LIGHT
Wall Height	8.00
% Comn Wall	0.00

(http://images.vgsi.com/photos/NewFairfieldCTPhotos//default.jpg)

Building Layout

(http://images.vgsi.com/photos/NewFairfieldCTPhotos//Sketches/378_8724

Building Sub-Areas (sq ft)			
Code	Description	Gross Area	Living Area
BAS	First Floor	360	360
		360	360

Building 5 : Section 1

Year Built:	2004			
Living Area:	300			
Replacement Cost:	\$35,5	74		
Building Percent Good:	87			
Replacement Cost				
Less Depreciation:	\$30,9	00		
Building Attributes : Bldg 5 of 6				
Field		Description		
Style:		Tower support		
Model		Commercial		
Grade		С		
Stories:		1		

Occupancy	0.00
Exterior Wall 1	Brick Veneer
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar & Gravel
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Gas
Heating Type	Forced Air-Duc
АС Туре	Central
Struct Class	
Bldg Use	Misc
1st Floor Use:	
Heat/AC	HEAT/AC SPLIT
Frame Type	WOOD FRAME
Baths/Plumbing	AVERAGE
Ceiling/Wall	NONE
Rooms/Prtns	LIGHT
Wall Height	8.00
% Comn Wall	0.00

(http://images.vgsi.com/photos/NewFairfieldCTPhotos//default.jpg)

Building Layout

BAS		BAS
		12 12
	20	5

(http://images.vgsi.com/photos/NewFairfieldCTPhotos//Sketches/378_8728

Building Sub-Areas (sq ft)			
Code	Description	Gross Area	Living Area
BAS	First Floor	300	300
		300	300

Building 6 : Section 1

Year Built:	2004			
Living Area:	200			
Replacement Cost:	\$65,0	02		
Building Percent Good:	87			
Replacement Cost				
Less Depreciation:	\$56,6	00		
Building Attributes : Bldg 6 of 6				
Field		Description		
Style:		Tower support		
Model		Commercial		
Grade		С		
Stories:		1		

. . . .

Occupancy	
Exterior Wall 1	Brick Veneer
Exterior Wall 2	
Roof Structure	Flat
Roof Cover	Tar & Gravel
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Gas
Heating Type	Forced Air-Duc
АС Туре	Central
Struct Class	
Bldg Use	Municipal-Comm
1st Floor Use:	
Heat/AC	HEAT/AC SPLIT
Frame Type	WOOD FRAME
Baths/Plumbing	AVERAGE
Ceiling/Wall	NONE
Rooms/Prtns	LIGHT
Wall Height	8.00
% Comn Wall	

(http://images.vgsi.com/photos/NewFairfieldCTPhotos//default.jpg)

Building Layout

(http://images.vgsi.com/photos/NewFairfieldCTPhotos//Sketches/378_8901

Building Sub-Areas (sq ft)			
Code	Description	Gross Area	Living Area
BAS	First Floor	200	200
		200	200

4

Extra Features

Extra Features				Legend
Code	Description	Size	Value	Bldg #
SPR3	SPRINKLERS-DRY	6604.00 S.F.	\$10,000	1
ELV3	Residential Elevator	1.00 UNITS	\$16,500	1
GEN	Generator	1.00 UNITS	\$2,500	2

Land

Land Use

Use Code	909
Description	Education
Zone	2
Neighborhood	С
Alt Land Appr	No
Category	

 Size (Acres)
 38.23

 Depth
 \$1,736,400

 Asperaised Value
 \$2,480,600

Outbuildings

			Outbuildings			<u>Legend</u>
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
PAV2	PAVING-CONC			100.00 S.F.	\$300	1
PAV1	PAVING-ASPHALT			103000.00 S.F.	\$92,700	1
CNP2	CANOPY-GOOD			546.00 S.F.	\$6,800	1
SHD1	Shed			476.00 S.F.	\$3,300	1
SHD1	Shed			80.00 S.F.	\$600	1
CELL	Cell Tenant			5.00 UNITS	\$1,350,000	1

Valuation History

Appraisal								
Valuation Year	Improvements	Land	Total					
2018	\$14,116,500	\$2,070,500	\$16,187,000					
2017	\$14,116,500	\$2,070,500	\$16,187,000					
2016	\$14,116,500	\$2,070,500	\$16,187,000					

Assessment							
Valuation Year	Improvements	Land	Total				
2018	\$9,881,500	\$1,449,300	\$11,330,800				
2017	\$9,881,500	\$1,449,300	\$11,330,800				
2016	\$9,881,500	\$1,449,300	\$11,330,800				

(c) 2020 Vision Government Solutions, Inc. All rights reserved.

302 Ball Pond Road

10/20/2020 1:13:13 PM

Scale: 1"=500' Scale is approximate

The information depicted on this map is for planning purposes only. It is not adequate for legal boundary definition, regulatory interpretation, or parcel-level analyses.

EXHIBIT 5

RF EMISSIONS COMPLIANCE REPORT

Empire Telecom on behalf of AT&T Mobility, LLC

Site Name: NEW FAIRFIELD SR37-SR39 AT&T Mobility, LLC Site FA #: 10035312 AT&T Mobility, LLC Site USID: 27009 AT&T Mobility, LLC Site ID: CT2070 302 BALL POND ROAD NEW FAIRFIELD, CT 5/17/2019

Report Status:

AT&T Mobility, LLC Is Compliant

Prepared By:

Sitesafe, LLC

Vienna, VA 22182

Engineering Statement in Re: Electromagnetic Energy Analysis Empire Telecom NEW FAIRFIELD, CT

The reviewer whose signature appears below here by certifies and affirms:

That I have extensive professional experience in the wireless communications engineering industry; and

That I am an employee of Sitesafe, LLC in Arlington, Virginia; and

That I am thoroughly familiar with the Rules and Regulations of the Federal Communications Commission ("the FCC" and "the FCC Rules") both in general and specifically as they apply to the FCC's Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; and

That the technical information serving as the basis for this report was supplied by Empire Telecom (See attached Site Summary and Carrier documents), and that AT&T Mobility, LLC's installations involve communications equipment, antennas and associated technical equipment at a location referred to as the "NEW FAIRFIELD SR37-SR39" ("the site"); and

That AT&T Mobility, LLC proposes to operate at the site with transmit antennas listed in the carrier summary and with a maximum effective radiated power as specified by AT&T Mobility, LLC and shown on the worksheet, and that worst-case 100% duty cycle have been assumed; and

That this analysis has been performed with the assumption that the ground immediately surrounding the tower is primarily flat or falling; and

That at this time, the FCC requires that certain licensees address specific levels of radiofrequency energy to which workers or members of the public might possibly be exposed (at §1.1307(b) of the FCC Rules); and

That such consideration of possible exposure of humans to radio-frequency radiation must utilize the standards set by the FCC, which is the Federal Agency having jurisdiction over communications facilities; and

That the FCC rules define two tiers of permissible exposure guidelines: 1) "uncontrolled environments," defined as situations in which persons may not be aware of (the "general public"), or may not be able to control their exposure to a transmission facility; and (2) "controlled environments," which defines situations in which persons are aware of their potential for exposure (industry personnel); and

That this statement specifically addresses the uncontrolled environment (which is more conservative than the controlled environment) and the limit set forth in the FCC rules for licensees of AT&T Mobility, LLC's operating frequency as shown on the attached antenna worksheet; and

That when applying the uncontrolled environment standards, the predicted Maximum Power Density at two meters above ground level from the proposed AT&T Mobility, LLC operation is no more than 7.2% of the maximum in any accessible area on the ground and

That it is understood per FCC Guidelines and OET65 Appendix A, that regardless of the existent radio-frequency environment, only those licenses whose contributions exceed five percent of the exposure limit pertinent to their operation(s) bear any responsibility for bringing any non-compliant area(s) into compliance; and

That when applying the uncontrolled environment standards, the cumulative predicted energy density from the proposed operation is no more than 10.211% of the maximum in any accessible area up to two meters above the ground per OET-65; and

That the calculations provided in this report are based on data provided by the client and antenna pattern data supplied by the antenna manufacturer, in accordance with FCC guidelines listed in OET-65. Horizontal and vertical antenna patterns are combined for modeling purposes to accurately reflect the energy two meters above ground level where on-axis energy refers to maximum energy two meters above the ground along the azimuth of the antenna and where area energy refers to the maximum energy anywhere two meters above the ground regardless of the antenna azimuth, accounting for cumulative energy from multiple antennas for the carrier and frequency range indicated; and

That the Occupational Safety and Health Administration has policies in place which address worker safety in and around communications sites, thus individual companies will be responsible for their employees' training regarding Radio Frequency Safety.

In summary, it is stated here that the proposed operation at the site would not result in exposure of the Public to excessive levels of radio-frequency energy as defined in the FCC Rules and Regulations, specifically 47 CFR 1.1307 and that AT&T Mobility, LLC's proposed operation is completely compliant.

Finally, it is stated that access to the tower should be restricted to communication industry professionals, and approved contractor personnel trained in radio-frequency safety; and that the instant analysis addresses exposure levels at two meters above ground level and does not address exposure levels on the tower, or in the immediate proximity of the antennas.

A-M- Young Min Kim

Empire Telecom NEW FAIRFIELD SR37-SR39 Site Summary

Carrier	Area Maximum Percentage MPE
AT&T Mobility, LLC	0.219 %
AT&T Mobility, LLC	1.702 %
AT&T Mobility, LLC (Proposed)	1.473 %
AT&T Mobility, LLC (Proposed)	2.014 %
AT&T Mobility, LLC (Proposed)	1.792 %
Unknown Carrier	0.148 %
Unknown Carrier	0.994 %
Unknown Carrier	0.52 %
Unknown Carrier	0.567 %
Unknown Carrier	0.781 %

Composite Site MPE:

10.211 %

AT&T Mobility, LLC NEW FAIRFIELD SR37-SR39 Carrier Summary

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm^2
Maximum power density at ground level:	1.24343	µW/cm^2
Highest percentage of Maximum Permissible Exposure:	0.21943	%

					On Axis		Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (μW/cm^2)	Percent of MPE	
Powerwave	7770	90	143	547	0.684097	0.120723	1.066653	0.188233	
Powerwave	7770	90	263	547	0.684097	0.120723	1.066653	0.188233	
Powerwave	7770	90	23	547	0.684097	0.120723	1.066653	0.188233	

AT&T Mobility, LLC NEW FAIRFIELD SR37-SR39 Carrier Summary

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm^2
Maximum power density at ground level:	17.01923	µW/cm^2
Highest percentage of Maximum Permissible Exposure:	1.70192	%

					On /	Axis	Ar	a
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (µW/cm^2)	Percent of MPE
CCI Antennas	HPA-65R-BUU-H8	90	0	4777	13.391842	1.339184	15.079942	1.507994
CCI Antennas	HPA-65R-BUU-H6	90	210	2350	6.424754	0.642475	7.324093	0.732409
CCI Antennas	HPA-65R-BUU-H6	90	330	2350	4.292343	0.429234	5.718872	0.571887

AT&T Mobility, LLC (Proposed) NEW FAIRFIELD SR37-SR39 Carrier Summary

Frequency:	2300	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm^2
Maximum power density at ground level:	14.72504	µW/cm^2
Highest percentage of Maximum Permissible Exposure:	1.4725	%

					On Axis		Ar	ea
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (µW/cm^2)	Percent of MPE
Kathrein-Scala	800-10966	90	0	4046	5.258307	0.525831	8.17381	0.817381
Kathrein-Scala	800-10966	90	210	4046	5.258307	0.525831	8.17381	0.817381
Kathrein-Scala	800-10966	90	330	4046	5.209836	0.520984	8.17381	0.817381

AT&T Mobility, LLC (Proposed) NEW FAIRFIELD SR37-SR39 Carrier Summary

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm^2
Maximum power density at ground level:	11.41197	µW/cm^2
Highest percentage of Maximum Permissible Exposure:	2.01388	%

				-	On Axis		Area		
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (µW/cm^2)	Percent of MPE	
Kathrein-Scala	800-10966	90	0	2143	2.059846	0.363502	3.849432	0.679312	
Kathrein-Scala	800-10966	90	0	2143	2.059846	0.363502	3.849432	0.679312	
Kathrein-Scala	800-10966	90	210	2143	1.739975	0.307054	3.469076	0.61219	
Kathrein-Scala	800-10966	90	210	2143	1.739975	0.307054	3.469076	0.61219	
Kathrein-Scala	800-10966	90	330	2143	1.898192	0.334975	3.654156	0.644851	
Kathrein-Scala	800-10966	90	330	2143	1.898192	0.334975	3.654156	0.644851	

AT&T Mobility, LLC (Proposed) NEW FAIRFIELD SR37-SR39 Carrier Summary

Frequency:	737	MHz
Maximum Permissible Exposure (MPE):	491.33	µW/cm^2
Maximum power density at ground level:	8.80653	µW/cm^2
Highest percentage of Maximum Permissible Exposure:	1.79237	%

					On A	On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (μW/cm^2)	Percent of MPE	Max Power Density (µW/cm^2)	Percent of MPE	
Kathrein-Scala	800-10966	90	0	3623	4.137969	0.842192	5.730481	1.166312	
Kathrein-Scala	800-10966	90	210	3623	3.529279	0.718306	5.242523	1.066999	
Kathrein-Scala	800-10966	90	330	3623	3.83005	0.779522	5.476909	1.114703	

Unknown Carrier NEW FAIRFIELD SR37-SR39 Carrier Summary

Frequency:	150	MHz
Maximum Permissible Exposure (MPE):	200	µW/cm^2
Maximum power density at ground level:	0.2963	µW/cm^2
Highest percentage of Maximum Permissible Exposure:	0.14815	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (µW/cm^2)	Percent of MPE
Generic Generic	Omni Omni	175 175	0 0	100 100	0.148148 0.148148	0.074074 0.074074	0.148148 0.148148	0.074074 0.074074

Unknown Carrier NEW FAIRFIELD SR37-SR39 Carrier Summary

Frequency:	2100	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm^2
Maximum power density at ground level:	9.93795	µW/cm^2
Highest percentage of Maximum Permissible Exposure:	0.99379	%

	On Axis		xls	Area				
Height Orientation Antenna Make Model (feet) (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (µW/cm^2)	Percent of MPE			
Generic	Panel	125	0	3992	5.416341	0.541634	5.416341	0.541634
Generic	Panel	125	120	3992	5.416341	0.541634	5.416341	0.541634
Generic	Panel	125	240	3992	5.38442	0.538442	5.407069	0.540707
Generic	Panel	145	0	3992	3.960761	0.396076	3.960761	0.396076
Generic	Panel	145	120	3992	3.93669	0.393669	3.953785	0.395379
Generic	Panel	145	240	3992	3.960761	0.396076	3.960761	0.396076

Unknown Carrier NEW FAIRFIELD SR37-SR39 Carrier Summary

Frequency:	1900	MHz
Maximum Permissible Exposure (MPE):	1000	µW/cm^2
Maximum power density at ground level:	5.20462	µW/cm^2
Highest percentage of Maximum Permissible Exposure:	0.52046	%

					On Axis		Area		
Antenna Make	Height Orientation Model (feet) (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (µW/cm^2)	Percent of MPE			
Generic	Panel	125	0	4180	1.298241	0.129824	1.503912	0.150391	
Generic	Panel	125	120	4180	1.298583	0.129858	1.503912	0.150391	
Generic	Panel	125	240	4180	1.298241	0.129824	1.503912	0.150391	
Generic	Panel	145	0	4180	0.958621	0.095862	1.100873	0.110087	
Generic	Panel	145	120	4180	0.958621	0.095862	1.100873	0.110087	
Generic	Panel	145	240	4180	0.958916	0.095892	1.100873	0.110087	
Generic	Panel	155	0	4180	0.837956	0.083796	0.957357	0.095736	
Generic	Panel	155	120	4180	0.837956	0.083796	0.957357	0.095736	
Generic	Panel	155	240	4180	0.838271	0.083827	0.957357	0.095736	
Unknown Carrier NEW FAIRFIELD SR37-SR39 Carrier Summary

Frequency:	850	MHz
Maximum Permissible Exposure (MPE):	566.67	µW/cm^2
Maximum power density at ground level:	3.21353	µW/cm^2
Highest percentage of Maximum Permissible Exposure:	0.56709	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (µW/cm^2)	Percent of MPE
Generic	Panel	125	0	2266	1.611277	0.284343	2.024873	0.357331
Generic	Panel	125	120	2266	1.611277	0.284343	2.024873	0.357331
Generic	Panel	125	240	2266	1.613085	0.284662	2.024873	0.357331
Generic	Panel	155	0	2266	1.022965	0.180523	1.290155	0.227674
Generic	Panel	155	120	2266	1.02432	0.180762	1.290155	0.227674
Generic	Panel	155	240	2266	1.022965	0.180523	1.290155	0.227674

Unknown Carrier NEW FAIRFIELD SR37-SR39 Carrier Summary

Frequency:	700	MHz
Maximum Permissible Exposure (MPE):	466.67	µW/cm^2
Maximum power density at ground level:	3.6459	µW/cm^2
Highest percentage of Maximum Permissible Exposure:	0.78126	%

					On Axis		Area	
Antenna Make	Model	Height (feet)	Orientation (degrees true)	ERP (Watts)	Max Power Density (µW/cm^2)	Percent of MPE	Max Power Density (µW/cm^2)	Percent of MPE
Generic	Panel	125	0	1960	1.34924	0.289123	1.915804	0.410529
Generic	Panel	125	120	1960	1.34924	0.289123	1.915803	0.410529
Generic	Panel	125	240	1960	1.355527	0.29047	1.915804	0.410529
Generic	Panel	145	0	1960	0.98394	0.210844	1.403255	0.300697
Generic	Panel	145	120	1960	0.987876	0.211688	1.403255	0.300697
Generic	Panel	145	240	1960	0.98394	0.210844	1.403255	0.300697

EXHIBIT 6

Monopole Structural Analysis

FOR CT2070 – New Fairfield SR37-SR39 FA# 10035312 302 Ball Pond Road New Fairfield, CT 06812 Fairfield County 41.4647169, -73.4969519

> Monopole Utilization: 81.8% Foundation Utilization: 71.7%

> > June 12, 2020

Prepared For AT&T 550 Cochituate Road Framingham, MA 01701

Prepared By Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701 T: 732.383.1950

> Petros E: Isoukalas, P.E. Geographic Discipline Leader Connecticut License No. 32557

> > MC Project No. 18963030A

www.maserconsulting.com

Objective:

The objective of this report is to determine the capacity of the monopole and foundation at the subject facility for the final wireless telecommunications configuration, per the applicable codes and standards.

Introduction:

Maser Consulting Connecticut has reviewed the following documents in completing this report:

Document Type	Remarks	Source
Radio Frequency	RFDS ID: 2454216, Version 5.00	Empire Telecom
Data Sheet (RFDS)	Dated April 16, 2019	
Tower Design	Fred A. Nudd Corporation Drawings #02-0203-1	Maser Consulting
Documents	Dated February 14, 2003	Connecticut
Structural Analysis	Infinigy Engineering Project #158-093	Empire Telecom
	Dated February 16, 2016	
Structural Analysis	Malouf Engineering Project #CT01113M-16V0	Empire Telecom
	Dated November 2, 2016	
Mount Modification	Maser Consulting Project #18963030A	Maser Consulting
Analysis	Dated May 7, 2019	Connecticut
Tower Mapping	TEP Project No. 152002.416943	Tower Engineering
	Dated June 8, 2020	Professionals

Codes, Standards and Loading:

Maser Consulting Connecticut utilized the following codes and standards:

- 2018 Connecticut State Building Code, Incorporating the 2015 IBC
- Structural Standards for Antenna Supporting Structures and Antennas ANSI/TIA-222-G
 - Nominal Wind Speed 89 mph (Per Connecticut Building Code)
 - Exposure Category B
 - Structure Class II
 - o Ice Thickness 0.75"
 - \circ Ice Wind Speed 50 mph
 - Service Wind Speed 60 mph

Proposed Discrete and Linear Appurtenances:

Carrier	Mount Elevation (ft)	Antenna Elevation (ft)	Quantity	Antenna Manufacturer	Antenna Model	Mount	Coax	
AT&T 136.8			3	Kathrein	800-10966			
	100.0	3	Ericsson	4449 B5/B12		(1) Fiber		
	130.8 130.8	130.0	130.8	3	Ericsson	RRUS-32	-	(2) DC
			1	Raycap	DC6-48-60-08C			

Existing Discrete and Linear Appurtenances:

Carrier	Mount Elevation (ft)	Antenna Elevation (ft)	Quantity	Antenna Manufacturer	Antenna Model	Mount	Coax
		186.0	4	-	20' Omni		(0) 0 (0"
Town 1 [°]	176.0	176.0	1	-	1' Square Panel	Low Profile Platfrom	(2) 3/8″ (2) 7/8″
		170.0	1	Andrew	HPD3-4.7NS	Thatron	(2) 110
			3	-	DNR	Low Profile	
Sprint	153.0	153.0	3	KMW	ET-X-TU-42-15-37- 18-1R-RA	Platform &	(4) 1-1/4"
			6	ALU	1900MHz RRH	Collar	(3) 7/8
			6	ALU	800MHz RRH	Mount	
			3	Commscope	LNX-6515DS-VTM		
Vorizon	140 7	143.7	3	Kathrein	81010022R3B	$(2) T \Lambda rm$	(12) 1-5/8"
venzon	143.7		3	Kathrein	81010020R4B	(3) I-AIII	
			6	Ericsson	RRUS-11		
			1	CCI	HPA-65R-BUU-H8		
			2	CCI	HPA-65R-BUU-H6		(12) 1-5/8"
ΛΤΟΤ	126.9	126.9	3	Powerwave	7770.00	(3) Modified	
ΑΙαΙ	130.0	130.0	3	Ericsson	RRUS-32 B2	T-Arm	(2) DC (1) Fiber
	l I		6	Powerwave	LGP21401		(.)
			1	Raycap	DC6-48-60-18-8F		
			3	Antel	BXA-171085-12CF		
T-Mobile	123.8	123.8	6	Antel	LPA-80080-6CF	(3) T-Arm	(18) 1-5/8"
			3	Antel	BXA-70063-6CF		
Town	98.0	108.0	1	-	20' Omni	Side-Arm	(1) 7/8"
Sprint	84.3	84.3	-	-	-	Empty Collar	-

Analysis Approach:

A three-dimensional model was created using tnxTower (version 8.0.5.0), a commercially available analysis software package. This model was used to calculate member stressed for live, dead, wind and ice load cases.

Assumptions:

General Site Design Assumptions:

- 1. The tower was constructed in accordance with its original design and maintained per the manufacturer's specifications.
- 2. The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in the above tables and the referenced drawings.
- 3. Mount sizes, weights, and manufacturers are best estimates based on photos provided and determined without the benefit of a site visit by Maser Consulting.
- 4. Mount pipes are removed when the antennas they support are removed.
- 5. Coax mounting equipment (feedline ladders, T-brackets, etc.) is removed when all coax attached to the equipment is removed from the tower.
- 6. All member connections are assumed to have been designed to meet or exceed the load carrying capacity of the connected member unless otherwise specified in this report.
- 7. All foundation steel reinforcing is assumed to have been designed to meet or exceed the load carrying capacity of the surrounding soils unless otherwise specified in this report.

Site Specific Assumptions and Design Parameters:

1. Structural Steel Grades have been assumed as follows, unless otherwise noted in this analysis:

		,
0	Pole Sections	ASTM A572 (Gr. 65)
0	Base Plate	ASTM A572 (Gr. 42)
0	Anchor Rods	ASTM A615 (Gr. 75)
0	Reinforcement Bars	ASTM A1035 (Gr. 120)

• Reinforcement Bars

2. The existing tower is constructed to plumb and is properly maintained with no structural deficiencies and deteriorations.

- 3. It is assumed that the telecommunication equipment supports, antenna supports, and existing structure have been designed by a registered licensed professional engineer for the existing loads acting on the structure, as required by all applicable codes.
- 4. It is assumed that information provided by the client regarding the structure itself, the antenna models, feed lines, and other relevant information is current and correct.
- 5. It is assumed all other existing appurtenances, antennas, cables, etc. belonging to others have been installed and supported per code and per specifications so as not to damage any existing structural support members, and that any contributing loads from adjacent equipment has been taken into consideration for their design.
- 6. It is assumed the modification has been installed as intended as outlined in the referenced SA report.

Calculations:

Selected calculations and analysis output can be found in Appendix A of this report.

Analysis Results and Conclusion:

Component	Utilization %	Pass/Fail
Monopole	81.8	Pass
Anchor Rods	59.9	Pass
Foundation	71.7	Pass

Structure Rating – (Controlling Utilization of all Components)

Recommendation:

The monopole and foundation have **SUFFICIENT** capacity to carry the existing and proposed loading and do not require any modifications.

Maser Consulting Connecticut reserves the right to amend this report if additional information regarding the members is provided. The conclusions reached by Maser Consulting Connecticut in this report are only valid for the appurtenances listed in this report. Any change to the installation will require a revision to this structural analysis.

We appreciate the opportunity to be of service on this project. If you should have any questions or require any additional information, please do not hesitate to call our office.

Sincerely, Maser Consulting Connecticut

Petros E. Tsoukalas, P.E. Geographic Discipline Leader

my Andala

81.8%

Vincent DiGirolamo Senior Engineer

R:\Projects\2018\18963000A\18963030A\Structural\Tower Analysis\Rev 2\Word\CT2070.SA.Rev 2.Docx

Disclaimer of Warranties:

The engineering services rendered by Maser Consulting Connecticut in connection with this structural analysis are limited to a computer analysis of the tower structure and theoretical capacity of its main structural members. No allowance has been made for any damaged, bent, missing, loose, or rusted members or connections.

Maser Consulting Connecticut will accept no liability which may arise due to any deficiency in design, material, fabrication, erection, construction, or lack of maintenance. Maser Consulting Connecticut has not performed a site visit of the tower structure to verify member sizes or equipment loading. Contractor should inspect the condition of the existing structure, mounting frames and connections and notify Maser Consulting Connecticut of any discrepancies or deficiencies before proceeding with installation.

The attached sketch is a schematic representation of the analyzed tower. The contractor shall be responsible for field verifying the existing conditions, proper fit, and clearances in the field. Any mention of structural modifications are reasonable estimates and should not be used as a construction document. Construction documents depicting the required modification are obtainable from Maser Consulting Connecticut, but are beyond the scope of this report.

Maser Consulting Connecticut makes no warranties, expressed and/or implied, in connection with this report and disclaims any liability arising from material, fabrication, and erection of the tower. Maser Consulting Connecticut will not be responsible whatsoever for, or on account of, consequential or incidental damages sustained by any person, firm, or organization as a result of any data or conclusions contained in this report.

APPENDIX A

TYPE	ELEVATION	TYPE	ELEVATION
Platform Mount (Town)	176	HPA-65R-BUU-H8 (ATI)	136.8
PD220 (Town)	176	HPA-65R-BUU-H8 (ATI)	136.8
PD220 (Town)	176	7770.00 (ATI)	136.8
PD220 (Town)	176	7770.00 (ATI)	136.8
PD220 (Town)	176	7770.00 (ATI)	136.8
1' Square Panel (Town)	176	800-10966 (ATI)	136.8
(4) 6' x 2" Mount Pipe (Town)	176	800-10966 (ATI)	136.8
6' x 2" Mount Pipe (Town)	176	800-10966 (ATT)	136.8
6' x 2" Mount Pipe (Town)	176	RRUS 32 B2 (ATT)	136.8
HP3	176	RRUS 32 B2 (ATI)	136.8
(2) 1900MHz RRH (Sprint)	155 - 153	BRUS 32 B2 (ATT)	136.8
(2) 1900MHz RRH (Sprint)	155	RRUS 32 (ATT)	136.8
(2) 1900MHz RRH (Sprint)	155	BRUS 32 (ATT)	136.8
(2) 800MHZ RRH (Sprint)	155	PRUS 32 (ATT)	136.8
(2) 800MHZ RRH (Sprint)	155	RRUS 4449 B5/B12 (ATT)	136.8
(2) 800MHZ RRH (Sprint)	155	RRUS 4449 B5/B12 (ATT)	136.8
(2) 6' x 2" Mount Pipe (Sprint)	155	RRUS 4449 B5/B12 (ATT)	136.8
(2) 6' x 2" Mount Pipe (Sprint)	165	(2) L CP21401 (ATT)	126.0
(2) 6 X 2 Mount Pipe (Sprint)	155	(2) LGP21401 (ATT)	130.0
(2) 6 X 2" Mount Pipe (Sprint)	155	(2) LGP21401 (ATL)	130.8
Pipe (Sprint)	155	(2) LGP21401 (AT_)	130.0
ET X TIL 42 15 27 18 iP PA w/ Mount	152	DC6-48-60-18-8F (AIL)	136.8
Pipe (Sprint)	100	DC6-48-60-0-8C (AIL)	136.8
ET-X-TU-42-15-37-18-iR-RA w/ Mount Pipe (Sprint)	153	BXA-171085-12CF-EDIN-X w/ Mount Pipe (T-Mobile)	123.8
DNR w/ Mount Pine (Sprint)	153	LPA-80080-6CF-EDIN-2 w/ Mount	123.8
Platform Mount (Sprint)	153		
Coller Mount (Sprint)	153	LPA-80080-6CF-EDIN-2 w/ Mount Pine (T-Mobile)	123.8
DNB w/ Meunt Bine (Sprint)	153		102.0
DNR w/ Mount Pipe (Sprint)	153	Pipe (T-Mobile)	123.0
LNX 6515DS A1M w/ Meunt Dine	100	L PA-80080-6CE-EDIN-2 w/ Mount	123.8
(VZW)	143.7	Pipe (T-Mobile)	123.8
LNX-6515DS-A1M w/ Mount Pipe (VZW)	143.7	Pipe (T-Mobile)	123.0
81010020R4B w/ Mount Pipe (VZW)	143.7	Pine (T-Mobile)	123.8
81010020R4B w/ Mount Pipe (VZW)	143.7		102.0
81010020R4B w/ Mount Pipe (VZW)	143.7	Pipe (T-Mobile)	123.8
81010022R3B w/ Mount Pipe (VZW)	143.7	BXA-70063-6CE-EDIN-0 w/ Mount	123.8
81010022R3B w/ Mount Pipe (VZW)	143.7	Pipe (T-Mobile)	123.0
81010022R3B w/ Mount Pipe (VZW)	143.7	BXA-70063-6CF-EDIN-0 w/ Mount	123.8
(2) RRUS 11 (VZW)	143.7	Pipe (T-Mobile)	
(2) RRUS 11 (VZW)	143.7	T-Arm Mount (T-Mobile)	123.8
(2) RRUS 11 (VZW)	143.7	T-Arm Mount (T-Mobile)	123.8
T-Arm Mount (VZW)	143.7	T-Arm Mount (T-Mobile)	123.8
T-Arm Mount (VZW)	143.7	BXA-171085-12CF-EDIN-X w/ Mount	123.8
T-Arm Mount (VZW)	143.7	Pipe (T-Mobile)	
Collar Mount (Sprint)	143.7	BXA-171085-12CF-EDIN-X w/ Mount	123.8
LNX-6515DS-A1M w/ Mount Pipe	143.7	Pipe (T-Mobile) Side Arm Mount (Town)	98
Modified T-Arm Mount (ATT)	136.8	PD220 (Town)	98
	130.0	Collar Mount (Sprint)	84.3
	100.0		00
	136.8	-1	
HPA-65K-BUU-H8 (AIT)	136.8		

MATERIAL STRENGTH							
GRADE Fy Fu GRADE Fy Fu							
A572-65	65 ksi	80 ksi					

Maser Consulting Connecticut	^{Job:} 18963030A	
331 Newman Springs Road, Suite 203	Project: CT2070	
Red Bank, NJ 07701	^{Client:} AT&T / Empire Telecom ^{Drawn by:} Vincent DiGirolamo	App'd:
Phone: 732.383.1950	^{Code:} TIA-222-G Date: 06/12/20	Scale: NTS
FAX:	Path: Ilmaserconsulting.com/BWE/AIIOffices/MtLauref/Projects/2018/18963000A/18963030A/Structural/Tower Analysis/Rev 2/TNX/CT2070.er/	Dwg No. E-1

AXIAL 99 K

×۲

AXIAL 61 K

MOMENT

1394 kip-ft

MOMENT

4955 kip-ft

	MATERIAL STRENGTH										
GRADE	Fy	Fu	GRADE	Fy	Fu						
A572-65	65 ksi	80 ksi									

TOWER DESIGN NOTES

- Tower is located in Fairfield County, Connecticut.
 Tower designed for Exposure B to the TIA-222-G Standard.

3. Tower designed for a 89 mph basic wind in accordance with the TIA-222-G Standard.

4. Tower is also designed for a 50 mph basic wind with 0.75 in ice. Ice is considered to increase Tower is also designed to a soft physical way in thickness with height.
 Deflections are based upon a 60 mph wind.
 Tower Structure Class II.

Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 81.8%

Maser Consulting Connecticut	^{Job:} 18963030A	
331 Newman Springs Road, Suite 203	Project: CT2070	
Red Bank, NJ 07701	^{Client:} AT&T / Empire Telecom ^{Drawn by:} Vincent DiGirolamo	App'd:
Phone: 732.383.1950	^{Code:} TIA-222-G Date: 06/12/20	Scale: NTS
FAX:	Path: Immerconsulting.com/BWEVAIOffices/IMIL.aurelProjects/2016/169630304\159630304\StructuralTower Analysis/Rev 2(TNX)CT2070.er/	Dwg No. E-1

tnxTower	Job	10000000	Page 1 of 16
		1 01 10	
Maser Consulting Connecticut	Project		Date
331 Newman Springs Road, Suite 203		CT2070	11:02:14 06/12/20
Red Bank, NJ 07701 Phone: 732.383.1950 FAX:	Client	AT&T / Empire Telecom	Designed by Vincent DiGirolamo

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Fairfield County, Connecticut. ASCE 7-10 Wind Data is used (wind speeds converted to nominal values).

Basic wind speed of 89 mph.

Structure Class II.

Exposure Category B.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios

V Use Code Safety Factors - Guys Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned √ Assume Rigid Index Plate Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension

- ✓ Bypass Mast Stability Checks
- $\sqrt{}$ Use Azimuth Dish Coefficients
- Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles
- ✓ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	

Areas Toosus are	Job		Page		
tnx1ower		2 of 16			
Maser Consulting Connecticut 331 Newman Springs Road, Suite 203	Project	CT2070	Date 11:02:14 06/12/20		
Red Bank, NJ 07701 Phone: 732.383.1950 FAX:	Client	Client AT&T / Empire Telecom			

ļ	Section	Elevation	Section Length	Splice Length	Number	Top Diamatar	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
		ft	ft	ft	Sides	in	in	in	in	
	L1	176.00-131.00	45.00	5.00	18	24.0000	34.6880	0.2500	1.0000	A572-65
										(65 ksi)
	L2	131.00-86.00	50.00	6.00	18	33.0004	44.6880	0.3125	1.2500	A572-65
										(65 ksi)
	L3	86.00-42.00	50.00	7.00	18	42.6605	54.5000	0.3750	1.5000	A572-65
		10 00 1 00	10.00		10		< 4 5 0000	0.0550		(65 ksi)
	L4	42.00-1.00	48.00		18	52.0925	64.5000	0.3750	1.5000	A572-65
										(65 ks1)

Tapered Pole Properties

Section	Tip Dia.	Area	Ι	r	С	I/C	J	It/Q	w	w/t
	in	in^2	in^4	in	in	in ³	in^4	in^2	in	
L1	24.3317	18.8456	1342.9976	8.4313	12.1920	110.1540	2687.7623	9.4246	3.7840	15.136
	35.1846	27.3266	4094.4743	12.2255	17.6215	232.3567	8194.3362	13.6659	5.6651	22.66
L2	34.6481	32.4224	4376.8053	11.6042	16.7642	261.0801	8759.3697	16.2143	5.2581	16.826
	45.3292	44.0149	10950.2535	15.7533	22.7015	482.3581	21914.9156	22.0117	7.3151	23.408
L3	44.7034	50.3303	11369.7220	15.0114	21.6715	524.6386	22754.4046	25.1699	6.8482	18.262
	55.2829	64.4223	23843.4650	19.2144	27.6860	861.2102	47718.3038	32.2173	8.9320	23.819
L4	54.6756	61.5567	20801.1541	18.3597	26.4630	786.0475	41629.6788	30.7842	8.5083	22.689
	65.4372	76.3248	39651.3314	22.7644	32.7660	1210.1365	79354.8371	38.1696	10.6920	28.512

usset Guss	et Gusset Grade	Adjust. Factor	Adjust.	Weight Mult.	Double Angle	Double Angle	Double Angle
rea Thickr	ess	A_f	Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
r face)			A_r		Spacing	Spacing	Spacing
					Diagonals	Horizontals	Redundants
ft ² in					in	in	in
		1	1	1			
		1	1	1			
		1	1	1			
		1	1	1			
	usser Guss Area Thickn r face) ft ² in	usser Gusser Gusser Grade Area Thickness r face) ft ² in	usser Gusser Gusser Gusser Grade Adjust. Factor Area Thickness A _f ft ² in 1 1 1	usser Gusser Gusser Gusser Grade Adjust. Factor Adjust. Area Thickness A_f Factor ft^2 in 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Usset Gusset Gusset

Feed Line/Linear Appurtenances - Entered As Round Or Flat

_	Description	Sector	Exclude	Component	Placement	Total	Number	Start/End	Width or	Perimeter	Weight
			From Toraue	Туре	ft	Number	Per Row	Position	Diameter in	in	nlf
			Calculation		<i>J</i> ²						гэ

	Safety Line 3/8	С	No	Surface Ar	176.00 -	1	1	0.000	0.3750		0.22
				(CaAa)	1.00			0.000			
	Step Pegs (3/4"	С	No	Surface Ar	176.00 -	1	1	0.000	0.7500		1.50
	Diameter)			(CaAa)	1.00			0.000			

Feed Line/Linear Appurtenances - Entered As Area

	Job		Page
<i>tnx1ower</i>		18963030A	3 of 16
Manage Compating Compating	Project		Date
331 Newman Springs Road, Suite 203		CT2070	11:02:14 06/12/20
<i>Red Bank, NJ 07701</i>	Client		Designed by
<i>Phone: 732.383.1950</i> <i>FAX:</i>		AI&I / Empire Telecom	Vincent DiGirolamo

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf
7/8	С	No	No	Inside Pole	176.00 - 1.00	2	No Ice	0.00	0.54
(Town)							1/2" Ice	0.00	0.54
							1" Ice	0.00	0.54
3/8	С	No	No	Inside Pole	176.00 - 1.00	2	No Ice	0.00	0.25
(Town)							1/2" Ice	0.00	0.25
							1" Ice	0.00	0.25
1 1/4	С	No	No	Inside Pole	153.00 - 1.00	4	No Ice	0.00	0.66
(Sprint)							1/2" Ice	0.00	0.66
							1" Ice	0.00	0.66
7/8	С	No	No	Inside Pole	153.00 - 1.00	3	No Ice	0.00	0.54
(Sprint)							1/2" Ice	0.00	0.54
							1" Ice	0.00	0.54
1 5/8	С	No	No	Inside Pole	143.70 - 1.00	12	No Ice	0.00	1.04
(VZW)							1/2" Ice	0.00	1.04
							1" Ice	0.00	1.04
3/8" Fiber	С	No	No	Inside Pole	136.00 - 1.00	2	No Ice	0.00	0.58
(AT&T)							1/2" Ice	0.00	0.58
							1" Ice	0.00	0.58
7/8 DC	С	No	No	Inside Pole	136.00 - 1.00	4	No Ice	0.00	0.58
(AT&T)							1/2" Ice	0.00	0.58
· · · ·							1" Ice	0.00	0.58
1 5/8	С	No	No	Inside Pole	137.00 - 1.00	12	No Ice	0.00	1.04
(AT&T)							1/2" Ice	0.00	1.04
· · · ·							1" Ice	0.00	1.04
1 5/8	С	No	No	Inside Pole	124.00 - 1.00	18	No Ice	0.00	1.04
(T-Mobile)							1/2" Ice	0.00	1.04
· · · · ·							1" Ice	0.00	1.04
7/8	С	No	No	Inside Pole	101.00 - 1.00	1	No Ice	0.00	0.54
(Town)							1/2" Ice	0.00	0.54
× /							1" Ice	0.00	0.54

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	Κ
L1	176.00-131.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	5.063	0.000	0.49
L2	131.00-86.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	5.063	0.000	2.34
L3	86.00-42.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	4.950	0.000	2.43
L4	42.00-1.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	4.612	0.000	2.27

Feed Line/Linear Appurtenances Section Areas - With Ice

tress Tossus are	Job	Page	
<i>inx1ower</i>		4 of 16	
Maser Consulting Connecticut	Project		Date
331 Newman Springs Road, Suite 203		CT2070	11:02:14 06/12/20
Red Bank, NJ 07701	Client		Designed by
<i>Phone: 732.383.1950</i> <i>FAX:</i>		AI&I / Empire Telecom	Vincent DiGirolamo

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Thickness			In Face	Out Face	
	ft	Leg	in	ft^2	ft^2	ft^2	ft^2	K
L1	176.00-131.00	А	1.748	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	36.526	0.000	0.94
L2	131.00-86.00	А	1.689	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	36.526	0.000	2.78
L3	86.00-42.00	А	1.602	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	34.669	0.000	2.84
L4	42.00-1.00	А	1.433	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	30.888	0.000	2.61

Feed Line Center of Pressure

Section	Elevation	CP _v	CP ₂	CP _v	CP ₂
Section	Elevation		CI Z	Ice	Ice
	ft	in	in	in	in
L1	176.00-131.00	0.0000	0.9776	0.0000	2.9346
L2	131.00-86.00	0.0000	0.9888	0.0000	3.1459
L3	86.00-42.00	0.0000	0.9955	0.0000	3.2072
L4	42.00-1.00	0.0000	0.9999	0.0000	3.1804

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	Ka	K_a
Section	Record No.		Segment Elev.	No Ice	Ice
L1	12	Safety Line 3/8	131.00 -	1.0000	1.0000
		-	176.00		
L1	13	Step Pegs (3/4" Diameter)	131.00 -	1.0000	1.0000
			176.00		
L2	12	Safety Line 3/8	86.00 - 131.00	1.0000	1.0000
L2	13	Step Pegs (3/4" Diameter)	86.00 - 131.00	1.0000	1.0000
L3	12	Safety Line 3/8	42.00 - 86.00	1.0000	1.0000
L3	13	Step Pegs (3/4" Diameter)	42.00 - 86.00	1.0000	1.0000

Discrete Tower Loads

Project

Client

18963030A

Page 5 of 16 Date

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 FAX:

AT&T / Empire Telecom

CT2070

Designed by Vincent DiGirolamo

11:02:14 06/12/20

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft	o	ft		ft ²	ft^2	K
Platform Mount	<u> </u>	None	JT	0.0000	176.00	No Ice	20.80	20.80	1.80
(Town)	C	None		0.0000	170.00	1/2" Ice	20.80	20.80	2.07
(1000)						1" Ice	35.40	26.10 35.40	2.07
PD220	А	From	5.70	0.0000	176.00	No Ice	3.56	3.56	0.02
(Town)		Centroid-Fa	0.00	0.0000	1,0100	1/2" Ice	7.13	7.13	0.05
(10)		ce	10.00			1" Ice	10.70	10.70	0.07
PD220	А	From	5.70	0.0000	176.00	No Ice	3.56	3.56	0.02
(Town)		Centroid-Fa	0.00			1/2" Ice	7.13	7.13	0.05
~ /		ce	10.00			1" Ice	10.70	10.70	0.07
PD220	В	From	5.70	0.0000	176.00	No Ice	3.56	3.56	0.02
(Town)		Centroid-Fa	0.00			1/2" Ice	7.13	7.13	0.05
		ce	10.00			1" Ice	10.70	10.70	0.07
PD220	С	From	5.70	0.0000	176.00	No Ice	3.56	3.56	0.02
(Town)		Centroid-Fa	0.00			1/2" Ice	7.13	7.13	0.05
		ce	10.00			1" Ice	10.70	10.70	0.07
1' Square Panel	С	From	5.70	0.0000	176.00	No Ice	1.20	0.41	0.02
(Town)		Centroid-Fa	0.00			1/2" Ice	1.34	0.50	0.03
		ce	0.00			1" Ice	1.48	0.59	0.04
	C	N		0.0000	152.00	NT T	14.00	14.66	1.25
Platform Mount	C	None		0.0000	153.00	No Ice	14.66	14.66	1.25
(Sprint)						1/2" Ice	18.8/	18.87	1.48
Coller Mount	C	Nona		0.0000	152.00	I lee	25.08	25.08	1./1
(Sprint)	C	None		0.0000	155.00	1/2" Loo	1.30	1.30	0.03
(Sprint)						172 ICC 1" Ice	1.74	1.74	0.04
DNR w/ Mount Pine	в	From	4 00	0.0000	153.00	No Ice	5 54	6 4 9	0.04
(Sprint)	Б	Centroid-Le	0.00	0.0000	155.00	1/2" Ice	6.03	7 32	0.08
(opinit)		o controla Le	0.00			1" Ice	6.49	8.02	0.21
DNR w/ Mount Pipe	С	From	4.00	0.0000	153.00	No Ice	5.54	6.49	0.08
(Sprint)		Centroid-Le	0.00			1/2" Ice	6.03	7.32	0.14
		g	0.00			1" Ice	6.49	8.02	0.21
DNR w/ Mount Pipe	А	From	4.00	0.0000	153.00	No Ice	5.54	6.49	0.08
(Sprint)		Centroid-Le	0.00			1/2" Ice	6.03	7.32	0.14
		g	0.00			1" Ice	6.49	8.02	0.21
ET-X-TU-42-15-37-18-iR-R	А	From Face	4.00	0.0000	153.00	No Ice	7.76	4.71	0.07
A w/ Mount Pipe			0.00			1/2" Ice	8.28	5.51	0.13
(Sprint)			0.00			1" Ice	8.77	6.19	0.20
ET-X-TU-42-15-37-18-iR-R	В	From Face	4.00	0.0000	153.00	No Ice	7.76	4.71	0.07
A w/ Mount Pipe			0.00			1/2" Ice	8.28	5.51	0.13
(Sprint)	~		0.00	0.0000	1.52.00	1" Ice	8.77	6.19	0.20
ET-X-TU-42-15-37-18-1R-R	С	From Face	4.00	0.0000	153.00	No Ice	7.76	4.71	0.07
A W/ Mount Pipe			0.00			1/2" Ice	8.28	5.51	0.13
(Sprint)	٨	From Food	0.00	0.0000	153.00 155.00	I lee	8.//	0.19	0.20
(2) 1900WITZ KKII (Sprint)	A	FIOIII Face	0.00	0.0000	155.00 - 155.00	1/2" Loo	2.49	3.20	0.04
(Sprint)			0.00			172 ICC 1" Ice	2.70	3 72	0.08
(2) 1900MHz RRH	в	From Face	1.00	0.0000	155.00	No Ice	2.91	3.26	0.04
(Sprint)	Б	1 Ioni I dee	0.00	0.0000	155.00	1/2" Ice	2.70	3.48	0.08
()			0.00			1" Ice	2.91	3.72	0.11
(2) 1900MHz RRH	С	From Face	1.00	0.0000	155.00	No Ice	2.49	3.26	0.04
(Sprint)			0.00			1/2" Ice	2.70	3.48	0.08
× • /			0.00			1" Ice	2.91	3.72	0.11
(2) 800MHZ RRH	А	From Face	1.00	0.0000	155.00	No Ice	1.71	1.29	0.05
(Sprint)			0.00			1/2" Ice	1.87	1.44	0.07
. –			0.00			1" Ice	2.04	1.59	0.09
(2) 800MHZ RRH	В	From Face	1.00	0.0000	155.00	No Ice	1.71	1.29	0.05
(Sprint)			0.00			1/2" Ice	1.87	1.44	0.07

Project

Client

18963030A

Page 6 of 16 Date 11:02:14 06/12/20

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 FAX:

AT&T / Empire Telecom

CT2070

Designed by Vincent DiGirolamo

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			Vert ft ft	0	ft		ft ²	ft ²	Κ
			<u>ft</u>			1" Ioo	2.04	1.50	0.00
(2) 800MHZ RRH	С	From Face	1.00	0.0000	155.00	No Ice	2.04	1.39	0.09
(Sprint)	e	1101111000	0.00	0.0000	100100	1/2" Ice	1.87	1.44	0.07
			0.00			1" Ice	2.04	1.59	0.09
(2) 6' x 2" Mount Pipe	А	From Face	1.00	0.0000	155.00	No Ice	1.43	1.43	0.02
(Sprint)			0.00			1/2" Ice	1.92	1.92	0.03
(2) $6! \times 2!!$ Mount Dine	р	Enom Ecco	0.00	0.0000	155.00	I" Ice	2.29	2.29	0.05
(2) 6 x 2 Mount Pipe (Sprint)	D	From Face	0.00	0.0000	155.00	1/2" Ice	1.45	1.43	0.02
(Sprint)			0.00			1" Ice	2.29	2.29	0.05
(2) 6' x 2" Mount Pipe	С	From Face	1.00	0.0000	155.00	No Ice	1.43	1.43	0.02
(Sprint)			0.00			1/2" Ice	1.92	1.92	0.03
			0.00			1" Ice	2.29	2.29	0.05
***				0.0000	1 42 50			0.10	0.04
T-Arm Mount	Α	None		0.0000	143.70	No Ice	14.16	9.13	0.36
(VZW)						1/2" Ice	14.10	12.17	0.47
T-Arm Mount	в	None		0.0000	143.70	No Ice	14.16	9.13	0.36
(VZW)	_					1/2" Ice	14.16	12.17	0.47
						1" Ice	14.16	15.21	0.57
T-Arm Mount	С	None		0.0000	143.70	No Ice	14.16	9.13	0.36
(VZW)						1/2" Ice	14.16	12.17	0.47
		F F	2.00	0.0000	1 4 2 70	l" lce	14.16	15.21	0.57
LNX-0515DS-A1M W/ Mount Pipe	A	From Face	2.00	0.0000	143.70	No Ice 1/2" Ice	11.68	9.84 11.37	0.08
(VZW)			0.00			172 ICC 1" Ice	13.14	12.91	0.27
LNX-6515DS-A1M w/	В	From Face	2.00	0.0000	143.70	No Ice	11.68	9.84	0.08
Mount Pipe			0.00			1/2" Ice	12.40	11.37	0.17
(VZW)			0.00			1" Ice	13.14	12.91	0.27
LNX-6515DS-A1M w/	С	From Face	2.00	0.0000	143.70	No Ice	11.68	9.84	0.08
Mount Pipe			0.00			1/2" Ice	12.40	11.37	0.17
(VZW) 81010020P/B w/ Mount Pine	۸	From Face	2.00	0.0000	143 70	I" Ice	13.14 6.16	12.91	0.27
(VZW)	A	FIOITFace	2.00	0.0000	143.70	1/2" Ice	6.60	630	0.16
((2.1))			0.00			1" Ice	7.03	7.00	0.22
81010020R4B w/ Mount Pipe	В	From Face	2.00	0.0000	143.70	No Ice	6.16	5.55	0.10
(VZW)			0.00			1/2" Ice	6.60	6.30	0.16
			0.00			1" Ice	7.03	7.00	0.22
81010020R4B w/ Mount Pipe	С	From Face	2.00	0.0000	143.70	No Ice	6.16	5.55	0.10
(VZW)			0.00			1/2" Ice	0.00	0.30 7.00	0.16
81010022R3B w/ Mount Pipe	А	From Face	2.00	0.0000	143.70	No Ice	6.16	5.55	0.10
(VZW)		1101111000	0.00	0.0000	1 10170	1/2" Ice	6.60	6.30	0.16
			0.00			1" Ice	7.03	7.00	0.22
81010022R3B w/ Mount Pipe	В	From Face	2.00	0.0000	143.70	No Ice	6.16	5.55	0.10
(VZW)			0.00			1/2" Ice	6.60	6.30	0.16
81010022D2D yy/ Mount Ding	C	Enom Ecco	0.00	0.0000	142 70	I" Ice	7.03	7.00	0.22
(VZW)	C	From Face	2.00	0.0000	145.70	1/2" Ice	6.60	5.55	0.10
(12.11)			0.00			1" Ice	7.03	7.00	0.22
(2) RRUS 11	А	From Face	1.00	0.0000	143.70	No Ice	2.78	1.19	0.05
(VZW)			0.00			1/2" Ice	2.99	1.33	0.07
			0.00			1" Ice	3.21	1.49	0.10
(2) RRUS 11	В	From Face	1.00	0.0000	143.70	No Ice	2.78	1.19	0.05
(VZW)			0.00			1/2" Ice	2.99	1.33	0.07
(2) RRUS 11	C	From Face	0.00	0.0000	143 70	I lee	5.21 2.78	1.49	0.10
(2) KKUS 11	C	From Face	1.00	0.0000	145.70	110 100	2.70	1.17	0.05

Project

Client

18963030A

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 FAX:

AT&T / Empire Telecom

CT2070

Date 11:02:14 06/12/20 Designed by Vincent DiGirolamo

7 of 16

Page

Description	Face	Offset Type	Offsets: Horz	Azimuth Adiustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
	Leg	Type	Lateral	najasineni			110111	Shac	
			ft	0	ft		ft^2	ft^2	K
			ft ft						
(VZW)			0.00			1/2" Ice	2.99	1.33	0.07
***			0.00			1" Ice	3.21	1.49	0.10
T-Arm Mount	А	None		0.0000	123.80	No Ice	14.16	9.13	0.36
(T-Mobile)						1/2" Ice	14.16	12.17	0.47
,						1" Ice	14.16	15.21	0.57
T-Arm Mount	В	None		0.0000	123.80	No Ice	14.16	9.13	0.36
(T-Mobile)						1/2" Ice	14.16	12.17	0.47
						1" Ice	14.16	15.21	0.57
T-Arm Mount	С	None		0.0000	123.80	No Ice	14.16	9.13	0.36
(T-Mobile)						1/2" Ice	14.16	12.17	0.47
DVA 171095 12CE EDDI V		EE.	2.00	0.0000	122.90	I" Ice	14.16	15.21	0.57
BAA-1/1085-12CF-EDIN-A	А	From Face	3.00	0.0000	123.80	1/2" Loo	5.05	5.29	0.04
(T-Mobile)			0.00			1/2 ICC	5.58 6.10	7 3 5	0.09
BXA-171085-12CF-EDIN-X	в	From Face	3.00	0.0000	123.80	No Ice	5.03	5 29	0.14
w/ Mount Pine	Б	i ioni i dee	0.00	0.0000	125.00	1/2" Ice	5.58	6.46	0.09
(T-Mobile)			0.00			1" Ice	6.10	7.35	0.14
BXA-171085-12CF-EDIN-X	С	From Face	3.00	0.0000	123.80	No Ice	5.03	5.29	0.04
w/ Mount Pipe			0.00			1/2" Ice	5.58	6.46	0.09
(T-Mobile)			0.00			1" Ice	6.10	7.35	0.14
LPA-80080-6CF-EDIN-2 w/	А	From Face	3.00	0.0000	123.80	No Ice	4.56	10.27	0.05
Mount Pipe			0.00			1/2" Ice	5.10	11.44	0.11
(T-Mobile)			0.00			1" Ice	5.61	12.32	0.19
LPA-80080-6CF-EDIN-2 w/	В	From Face	3.00	0.0000	123.80	No Ice	4.56	10.27	0.05
Mount Pipe			0.00			1/2" Ice	5.10	11.44	0.11
(T-Mobile)			0.00			1" Ice	5.61	12.32	0.19
LPA-80080-6CF-EDIN-2 w/	С	From Face	3.00	0.0000	123.80	No Ice	4.56	10.27	0.05
Mount Pipe			0.00			1/2" Ice	5.10	11.44	0.11
(T-Mobile)		F F	0.00	0.0000	100.00	l" lce	5.61	12.32	0.19
LPA-80080-6CF-EDIN-2 W/	А	From Face	3.00	0.0000	123.80	No Ice	4.56	10.27	0.05
(T. Mahila)			0.00			1/2" Ice	5.10	11.44	0.11
(1 - MODIN)	D	From Food	2.00	0.0000	122.80	I ICE	5.01 4.56	12.52	0.19
Mount Pine	D	From Face	5.00	0.0000	125.80	1/2" Ice	4.30	10.27	0.03
(T-Mobile)			0.00			172 ICC	5.10	12 32	0.11
LPA-80080-6CF-EDIN-2 w/	С	From Face	3.00	0.0000	123.80	No Ice	4 56	10.27	0.05
Mount Pipe	e	1101111400	0.00	0.0000	120100	1/2" Ice	5.10	11.44	0.11
(T-Mobile)			0.00			1" Ice	5.61	12.32	0.19
BXA-70063-6CF-EDIN-0 w/	А	From Face	3.00	0.0000	123.80	No Ice	7.81	5.80	0.04
Mount Pipe			0.00			1/2" Ice	8.36	6.95	0.10
(T-Mobile)			0.00			1" Ice	8.87	7.82	0.17
BXA-70063-6CF-EDIN-0 w/	В	From Face	3.00	0.0000	123.80	No Ice	7.81	5.80	0.04
Mount Pipe			0.00			1/2" Ice	8.36	6.95	0.10
(T-Mobile)			0.00			1" Ice	8.87	7.82	0.17
BXA-70063-6CF-EDIN-0 w/	С	From Face	3.00	0.0000	123.80	No Ice	7.81	5.80	0.04
Mount Pipe			0.00			1/2" Ice	8.36	6.95	0.10
(T-Mobile)			0.00			I" Ice	8.87	7.82	0.17
*** Cida A N# (п	NT		0.0000	00 00	NI- I	0.95	1.77	0.07
Side Arm Mount	в	None		0.0000	98.00	No Ice	0.85	1.67	0.07
(10WN)						1/2" Ice	1.14	2.54	0.08
PD220	P	From Food	4 00	0.0000	08.00	No Ice	1.45	3.01	0.09
(T_{OWP})	D	FIOIII Face	4.00	0.0000	20.00	1/2" Loo	5.50 7.13	5.50 7.12	0.02
(TOWII)			10.00			172 100 1" Ice	10.70	10.70	0.05
***			10.00			1 100	10.70	10.70	0.07
Collar Mount	С	None		0.0000	84.30	No Ice	1.50	1.50	0.03
	-								

tnxTower	Job	18963030A
Maser Consulting Connecticut	Project	070070

Client

CT2070 AT&T / Empire Telecom 8 of 16 Date 11:02:14 06/12/20 Designed by Vincent DiGirolamo

Page

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 FAX:

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			ft ft ft	o	ft		ft ²	ft ²	Κ
(Sprint)						1/2" Ice 1" Ice	1.74 1.98	1.74 1.98	0.04 0.04

Modified T-Arm Mount	А	None		0.0000	136.80	No Ice	27.50	136.60	0.71
(AT&T)						1/2" Ice	41.70	23.64	0.91
				0.0000	126.00	1" Ice	54.90	29.54	1.11
Modified T-Arm Mount	В	None		0.0000	136.80	No Ice	27.50	136.60	0.71
(A1&1)						1/2 ICe	41.70 54.00	25.04	0.91
Modified T-Arm Mount	С	None		0.0000	136.80	No Ice	27 50	136.60	0.71
(AT&T)	e	rtone		0.0000	150.00	1/2" Ice	41.70	23.64	0.91
()						1" Ice	54.90	29.54	1.11
HPA-65R-BUU-H8	А	From Leg	2.00	0.0000	136.80	No Ice	12.98	7.52	0.07
(AT&T)		-	0.00			1/2" Ice	13.56	8.09	0.14
			0.00			1" Ice	14.15	8.67	0.22
HPA-65R-BUU-H8	В	From Leg	2.00	0.0000	136.80	No Ice	12.98	7.52	0.07
(AT&T)			0.00			1/2" Ice	13.56	8.09	0.14
	C	E	0.00	0.0000	126.90	I" Ice	14.15	8.67	0.22
(AT & T)	C	From Leg	2.00	0.0000	130.80	1/2" Loo	12.96	7.32	0.07
(AI&I)			0.00			1/2 ICC	13.30	8.09	0.14
7770.00	А	From Leg	2.00	0.0000	136.80	No Ice	5.51	2.93	0.04
(AT&T)	11	Tiom Leg	0.00	0.0000	150.00	1/2" Ice	5.87	3.27	0.07
× ,			0.00			1" Ice	6.23	3.63	0.11
7770.00	В	From Leg	2.00	0.0000	136.80	No Ice	5.51	2.93	0.04
(AT&T)			0.00			1/2" Ice	5.87	3.27	0.07
			0.00			1" Ice	6.23	3.63	0.11
7770.00	С	From Leg	2.00	0.0000	136.80	No Ice	5.51	2.93	0.04
(AT&T)			0.00			1/2" Ice	5.87	3.27	0.07
800 10066		Enom Log	0.00	0.0000	126.90	I" Ice	6.23	3.63	0.11
$(\Delta T \& T)$	А	FIOII Leg	2.00	0.0000	130.80	1/2" Ice	17.30	8.09	0.13
(Aldl)			0.00			1" Ice	18.63	8.69	0.32
800-10966	В	From Leg	2.00	0.0000	136.80	No Ice	17.36	7.50	0.13
(AT&T)		8	0.00			1/2" Ice	17.99	8.09	0.22
			0.00			1" Ice	18.63	8.69	0.32
800-10966	С	From Leg	2.00	0.0000	136.80	No Ice	17.36	7.50	0.13
(AT&T)			0.00			1/2" Ice	17.99	8.09	0.22
			0.00	0.0000	126.00	1" Ice	18.63	8.69	0.32
RRUS 32 B2	А	From Leg	2.00	0.0000	136.80	No Ice	2.73	1.67	0.05
(A1&1)			0.00			1/2" Ice	2.95	1.86	0.07
PDUS 32 P2	В	From Lag	2.00	0.0000	136.80	No Ice	5.10 2.73	2.03	0.10
(AT&T)	Б	110111 Leg	0.00	0.0000	150.00	1/2" Ice	2.75	1.86	0.05
(11001)			0.00			1" Ice	3.18	2.05	0.10
RRUS 32 B2	С	From Leg	2.00	0.0000	136.80	No Ice	2.73	1.67	0.05
(AT&T)		C C	0.00			1/2" Ice	2.95	1.86	0.07
			0.00			1" Ice	3.18	2.05	0.10
RRUS 32	А	From Leg	2.00	0.0000	136.80	No Ice	2.86	1.78	0.06
(AT&T)			0.00			1/2" Ice	3.08	1.97	0.08
	ъ	E. J	0.00	0.0000	126.90	1" Ice	3.32	2.17	0.10
KKUS 32	В	From Leg	2.00	0.0000	136.80	No Ice	2.86	1.78	0.06
(A1&1)			0.00			1/2" Ice	3.08	1.9/	0.08
RRUS 32	C	From Leg	2.00	0.0000	136.80	No Ice	5.52 2.86	2.17	0.10
(AT&T)	C	1 Ioni Leg	0.00	0.0000	150.00	1/2" Ice	3.08	1.97	0.08
()			0.00			1" Ice	3.32	2.17	0.10

tran Toru an	Job	
lnx1ower		18963030A
Maser Consulting Connecticut	Project	
331 Newman Springs Road, Suite 203		CT2070

Client

Page 9 of 16 Date 11:02:14 06/12/20

Red Bank, NJ 07701 Phone: 732.383.1950 FAX:

AT&T / Empire Telecom

Designed by Vincent DiGirolamo

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert ft ft	o	ft		ft^2	ft^2	Κ
RRUS 4449 B5/B12	Δ	From Leg	$\frac{\pi}{2.00}$	0.0000	136.80	No Ice	1 97	1.41	0.07
(AT&T)	Π	110111 Leg	0.00	0.0000	150.00	1/2" Ice	2.14	1.56	0.07
(mar)			0.00			1" Ice	2.14	1.30	0.05
RRUS 4449 B5/B12	В	From Leg	2.00	0.0000	136.80	No Ice	1.97	1.75	0.07
(AT&T)	D	110III Leg	0.00	0.0000	150.00	1/2" Ice	2.14	1.56	0.09
(mar)			0.00			1" Ice	2 33	1.30	0.05
RRUS 4449 B5/B12	С	From Leg	2.00	0.0000	136.80	No Ice	1.97	1.75	0.07
(AT&T)	e	110III Leg	0.00	0.0000	150.00	1/2" Ice	2.14	1.56	0.09
(0.00			1" Ice	2.33	1.73	0.11
(2) LGP21401	А	From Leg	2.00	0.0000	136.80	No Ice	1.10	0.21	0.01
(AT&T)		8	0.00			1/2" Ice	1.24	0.27	0.02
(0.00			1" Ice	1.38	0.35	0.03
(2) LGP21401	В	From Leg	2.00	0.0000	136.80	No Ice	1.10	0.21	0.01
(AT&T)	_	8	0.00			1/2" Ice	1.24	0.27	0.02
()			0.00			1" Ice	1.38	0.35	0.03
(2) LGP21401	С	From Leg	2.00	0.0000	136.80	No Ice	1.10	0.21	0.01
(AT&T)		0	0.00			1/2" Ice	1.24	0.27	0.02
()			0.00			1" Ice	1.38	0.35	0.03
DC6-48-60-18-8F	В	From Leg	2.00	0.0000	136.80	No Ice	2.20	2.20	0.02
(AT&T)		0	0.00			1/2" Ice	2.40	2.40	0.04
()			0.00			1" Ice	2.60	2.60	0.07
DC6-48-60-0-8C	С	From Leg	2.00	0.0000	136.80	No Ice	2.04	2.04	0.02
(AT&T)		U	0.00			1/2" Ice	2.23	2.23	0.04
			0.00			1" Ice	2.42	2.42	0.06
(4) 6' x 2" Mount Pipe	А	From	5.70	0.0000	176.00	No Ice	1.43	1.43	0.02
(Town)		Centroid-Fa	0.00			1/2" Ice	1.92	1.92	0.03
		ce	10.00			1" Ice	2.29	2.29	0.05
6' x 2" Mount Pipe	В	From	5.70	0.0000	176.00	No Ice	1.43	1.43	0.02
(Town)		Centroid-Fa	0.00			1/2" Ice	1.92	1.92	0.03
		ce	10.00			1" Ice	2.29	2.29	0.05
6' x 2" Mount Pipe	С	From	5.70	0.0000	176.00	No Ice	1.43	1.43	0.02
(Town)		Centroid-Fa	0.00			1/2" Ice	1.92	1.92	0.03
· · · ·		ce	10.00			1" Ice	2.29	2.29	0.05
Collar Mount	С	None		0.0000	143.70	No Ice	1.50	1.50	0.03
(Sprint)						1/2" Ice	1.74	1.74	0.04
						1" Ice	1.98	1.98	0.04

Dishes											
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				Vert ft	0	0	ft	ft		ft^2	K
HP3	С	Paraboloid	From	5.70	0.0000		176.00	3.00	No Ice	7.07	0.02
		w/Radome	Centroid	0.00					1/2" Ice	7.47	0.04
			-Face	0.00					1" Ice	7.86	0.06

tnxTower

Project

Client

18963030A

Page 10 of 16 Date 11:02:14 06/12/20

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 FAX:

AT&T / Empire Telecom

CT2070

Designed by Vincent DiGirolamo

Load Combinations

Comb.	Description
NO.	
1	Dead Only
2	1.2 Dead+1.6 Wind 0 deg - No Ice
3	0.9 Dead+1.6 Wind 0 deg - No Ice
4	1.2 Dead+1.6 Wind 30 deg - No Ice
5	0.9 Dead+1.6 Wind 30 deg - No Ice
6	1.2 Dead+1.6 Wind 60 deg - No Ice
7	0.9 Dead+1.6 Wind 60 deg - No Ice
8	1.2 Dead+1.6 Wind 90 deg - No Ice
9	0.9 Dead+1.6 Wind 90 deg - No Ice
10	1.2 Dead+1.6 Wind 120 deg - No Ice
11	0.9 Dead+1.6 Wind 120 deg - No Ice
12	1.2 Dead+1.6 Wind 150 deg - No Ice
13	0.9 Dead+1.6 Wind 150 deg - No Ice
14	1.2 Dead+1.6 Wind 180 deg - No Ice
15	0.9 Dead+1.6 Wind 180 deg - No Ice
16	1.2 Dead+1.6 Wind 210 deg - No Ice
17	0.9 Dead+1.6 Wind 210 deg - No Ice
18	1.2 Dead+1.6 Wind 240 deg - No Ice
19	0.9 Dead+1.6 Wind 240 deg - No Ice
20	1.2 Dead+1.6 Wind 270 deg - No Ice
21	0.9 Dead+1.6 Wind 270 deg - No Ice
22	1.2 Dead+1.6 Wind 300 deg - No Ice
23	0.9 Dead+1.6 Wind 300 deg - No Ice
24	1.2 Dead+1.6 Wind 330 deg - No Ice
25	0.9 Dead+1.6 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deal+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 des+1.0 Ice+1.0 Temp
33	12 Dead+10 Wind 180 des+10 Ice+10 Temp
34	1 2 Dead+1 0 Wind 210 des+1 0 Ice+1 0 Temp
35	12 Dead+10 Wind 240 des+10 Ice+10 Temp
36	1.2 Dead+1.0 Wind 270 des+1.0 Ice+1.0 Temp
37	12 Dead+10 Wind 300 dea+10 Ice+10 Temp
38	1.2 Dead+1.0 Wind 330 des+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 210 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 300 deg - Service

	Maximum Member Forces								
Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb	Axial K	Major Axis Moment kin-ft	Minor Axis Moment kin-ft		

tnxTower	Job
an Conquiting Coursestions	Project

Client

18963030A

Page 11 of 16 Date

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 FAX:

AT&T / Empire Telecom

CT2070

Designed by Vincent DiGirolamo

11:02:14 06/12/20

Section	Elevation	Component	Condition	Gov.	Axial	Maior Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
	J .			Comb.	K	kip-ft	kin-ft
L1	176 - 131	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-34.95	1.85	-0.95
			Max. Mx	20	-14.23	240.47	1.33
			Max. My	2	-14.20	0.36	246.34
			Max. Vy	20	-26.40	240.47	1.33
			Max. Vx	2	-26.58	0.36	246.34
			Max. Torque	2			1.59
L2	131 - 86	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-55.45	1.37	-1.54
			Max. Mx	20	-26.32	1593.47	2.84
			Max. My	2	-26.30	0.18	1607.00
			Max. Vy	20	-33.52	1593.47	2.84
			Max. Vx	2	-33.69	0.18	1607.00
			Max. Torque	24			1.55
L3	86 - 42	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-74.55	1.37	-2.53
			Max. Mx	20	-40.99	3105.15	4.20
			Max. My	2	-40.98	0.06	3125.87
			Max. Vy	20	-36.61	3105.15	4.20
			Max. Vx	2	-36.78	0.06	3125.87
			Max. Torque	24			0.92
L4	42 - 1	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-99.32	1.37	-3.77
			Max. Mx	20	-60.58	4926.65	5.63
			Max. My	2	-60.58	-0.09	4955.13
			Max. Vy	20	-39.13	4926.65	5.63
			Max. Vx	2	-39.30	-0.09	4955.13
			Max. Torque	24			0.91

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	Κ	Κ	Κ
		Comb.			
Pole	Max. Vert	33	99.32	0.00	-10.97
	Max. H _x	21	45.46	39.09	0.03
	Max. H _z	2	60.61	-0.00	39.25
	Max. M _x	2	4955.13	-0.00	39.25
	Max. Mz	8	4925.88	-39.09	0.04
	Max. Torsion	24	0.91	19.60	34.00
	Min. Vert	23	45.46	33.90	19.62
	Min. H _x	9	45.46	-39.09	0.04
	Min. Hz	14	60.61	0.00	-39.21
	Min. M _x	14	-4947.75	0.00	-39.21
	Min. Mz	20	-4926.65	39.09	0.03
	Min. Torsion	14	-0.89	0.00	-39.21

Tower Mast Reaction Summary									
Load Combination	Vertical	Shear _x	Shearz	Overturning Moment, M _x	Overturning Moment, M ₇	Torque			
	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft			
Dead Only	50.51	0.00	0.00	0.55	0.30	0.00			

<i>tnxTower</i>

Project

Client

18963030A

Page 12 of 16 Date

Maser Consulting Connecticut 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701 Phone: 732.383.1950 FAX:

AT&T / Empire Telecom

CT2070

Designed by Vincent DiGirolamo

11:02:14 06/12/20

Load Combination	Vertical	Shear _x	Shearz	Overturning Moment M	Overturning Moment M	Torque
Combination	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
1.2 Dead+1.6 Wind 0 deg - No Ice	60.61	0.00	-39.25	-4955.13	-0.09	-0.89
0.9 Dead+1.6 Wind 0 deg - No	45.46	0.00	-39.25	-4903.29	-0.18	-0.88
1.2 Dead+1.6 Wind 30 deg - No	60.61	19.61	-34.00	-4292.13	-2473.70	-0.63
0.9 Dead+1.6 Wind 30 deg - No	45.46	19.61	-34.00	-4247.24	-2447.84	-0.62
1.2 Dead+1.6 Wind 60 deg - No	60.61	33.90	-19.63	-2476.95	-4273.66	-0.37
0.9 Dead+1.6 Wind 60 deg - No Ice	45.46	33.90	-19.63	-2451.12	-4228.94	-0.37
1.2 Dead+1.6 Wind 90 deg - No Ice	60.61	39.09	-0.04	-6.57	-4925.88	-0.06
0.9 Dead+1.6 Wind 90 deg - No Ice	45.46	39.09	-0.04	-6.66	-4874.33	-0.06
1.2 Dead+1.6 Wind 120 deg - No Ice	60.61	33.85	19.55	2464.56	-4265.44	0.40
0.9 Dead+1.6 Wind 120 deg - No Ice	45.46	33.85	19.55	2438.55	-4220.82	0.40
1.2 Dead+1.6 Wind 150 deg - No Ice	60.61	19.56	33.93	4280.70	-2465.92	0.83
0.9 Dead+1.6 Wind 150 deg - No Ice	45.46	19.56	33.93	4235.62	-2440.16	0.82
1.2 Dead+1.6 Wind 180 deg - No Ice	60.61	-0.00	39.21	4947.75	0.84	0.89
0.9 Dead+1.6 Wind 180 deg - No Ice	45.46	-0.00	39.21	4895.66	0.74	0.88
1.2 Dead+1.6 Wind 210 deg - No Ice	60.61	-19.57	33.93	4281.17	2467.49	0.71
0.9 Dead+1.6 Wind 210 deg - No Ice	45.46	-19.57	33.93	4236.09	2441.52	0.71
1.2 Dead+1.6 Wind 240 deg - No Ice	60.61	-33.86	19.56	2465.37	4266.68	0.48
0.9 Dead+1.6 Wind 240 deg - No Ice	45.46	-33.86	19.56	2439.35	4221.84	0.48
1.2 Dead+1.6 Wind 270 deg - No Ice	60.61	-39.09	-0.03	-5.63	4926.65	0.06
0.9 Dead+1.6 Wind 270 deg - No Ice	45.46	-39.09	-0.03	-5.73	4874.90	0.06
1.2 Dead+1.6 Wind 300 deg - No Ice	60.61	-33.90	-19.62	-2476.15	4273.96	-0.52
0.9 Dead+1.6 Wind 300 deg - No Ice	45.46	-33.90	-19.62	-2450.33	4229.04	-0.51
1.2 Dead+1.6 Wind 330 deg - No Ice	60.61	-19.60	-34.00	-4291.67	2473.65	-0.91
0.9 Dead+1.6 Wind 330 deg - No Ice	45.46	-19.60	-34.00	-4246.79	2447.60	-0.91
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0	99.32 99.32	-0.00 0.00	0.00 -10.98	3.77 -1387.94	1.37 1.31	0.00 -0.50
1.2 Dead+1.0 Wind 30 deg+1.0	99.32	5.48	-9.51	-1201.73	-693.54	-0.67
1.2 Dead+1.0 Wind 60 deg+1.0	99.32	9.48	-5.49	-691.95	-1199.48	-0.69
1.2 Dead+1.0 Wind 90 deg+1.0	99.32	10.94	-0.01	2.15	-1382.97	-0.54
1.2 Dead+1.0 Wind 120	99.32	9.47	5.47	696.45	-1197.33	-0.22
1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	99.32	5.47	9.49	1206.52	-691.45	0.18

Areas Toosus are	Job		Page
thx1ower		18963030A	13 of 16
Masor Consulting Connecticut	Project		Date
<i>Maser Consulting Connecticut</i> 331 Newman Springs Road, Suite 203		CT2070	11:02:14 06/12/20
Red Bank, NJ 07701 Phone: 732.383.1950 FAX:	Client	AT&T / Empire Telecom	Designed by Vincent DiGirolamo

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
1.2 Dead+1.0 Wind 180	99.32	-0.00	10.97	1393.83	1.71	0.50
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	99.32	-5.47	9.49	1206.73	694.82	0.69
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	99.32	-9.47	5.47	696.80	1200.56	0.72
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	99.32	-10.94	-0.01	2.55	1386.00	0.54
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	99.32	-9.48	-5.49	-691.60	1202.31	0.19
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	99.32	-5.48	-9.51	-1201.53	696.22	-0.21
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	50.51	0.00	-9.98	-1251.68	0.20	-0.23
Dead+Wind 30 deg - Service	50.51	4.98	-8.64	-1084.15	-624.84	-0.16
Dead+Wind 60 deg - Service	50.51	8.62	-4.99	-625.48	-1079.65	-0.10
Dead+Wind 90 deg - Service	50.51	9.94	-0.01	-1.26	-1244.45	-0.02
Dead+Wind 120 deg - Service	50.51	8.60	4.97	623.14	-1077.57	0.10
Dead+Wind 150 deg - Service	50.51	4.97	8.62	1082.05	-622.87	0.21
Dead+Wind 180 deg - Service	50.51	-0.00	9.96	1250.60	0.44	0.23
Dead+Wind 210 deg - Service	50.51	-4.97	8.62	1082.17	623.71	0.18
Dead+Wind 240 deg - Service	50.51	-8.60	4.97	623.35	1078.33	0.12
Dead+Wind 270 deg - Service	50.51	-9.94	-0.01	-1.02	1245.08	0.02
Dead+Wind 300 deg - Service	50.51	-8.61	-4.99	-625.27	1080.17	-0.13
Dead+Wind 330 deg - Service	50.51	-4.98	-8.64	-1084.03	625.27	-0.23

Solution Summary

	Sun	n of Applied Force.	5		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-50.51	0.00	0.00	50.51	0.00	0.000%
2	0.00	-60.61	-39.25	-0.00	60.61	39.25	0.000%
3	0.00	-45.46	-39.25	-0.00	45.46	39.25	0.000%
4	19.61	-60.61	-34.00	-19.61	60.61	34.00	0.000%
5	19.61	-45.46	-34.00	-19.61	45.46	34.00	0.000%
6	33.90	-60.61	-19.63	-33.90	60.61	19.63	0.000%
7	33.90	-45.46	-19.63	-33.90	45.46	19.63	0.000%
8	39.09	-60.61	-0.04	-39.09	60.61	0.04	0.000%
9	39.09	-45.46	-0.04	-39.09	45.46	0.04	0.000%
10	33.85	-60.61	19.55	-33.85	60.61	-19.55	0.000%
11	33.85	-45.46	19.55	-33.85	45.46	-19.55	0.000%
12	19.56	-60.61	33.93	-19.56	60.61	-33.93	0.000%
13	19.56	-45.46	33.93	-19.56	45.46	-33.93	0.000%
14	-0.00	-60.61	39.21	0.00	60.61	-39.21	0.000%
15	-0.00	-45.46	39.21	0.00	45.46	-39.21	0.000%
16	-19.57	-60.61	33.93	19.57	60.61	-33.93	0.000%
17	-19.57	-45.46	33.93	19.57	45.46	-33.93	0.000%
18	-33.86	-60.61	19.56	33.86	60.61	-19.56	0.000%
19	-33.86	-45.46	19.56	33.86	45.46	-19.56	0.000%
20	-39.09	-60.61	-0.03	39.09	60.61	0.03	0.000%
21	-39.09	-45.46	-0.03	39.09	45.46	0.03	0.000%
22	-33.90	-60.61	-19.62	33.90	60.61	19.62	0.000%
23	-33.90	-45.46	-19.62	33.90	45.46	19.62	0.000%
24	-19.60	-60.61	-34.00	19.60	60.61	34.00	0.000%
25	-19.60	-45.46	-34.00	19.60	45.46	34.00	0.000%
26	0.00	-99.32	0.00	0.00	99.32	-0.00	0.000%
27	0.00	-99.32	-10.98	-0.00	99.32	10.98	0.000%
28	5.48	-99.32	-9.51	-5.48	99.32	9.51	0.000%

4	Job		Page
tnx1 ower		18963030A	14 of 16
Magar Consulting Connectiout	Project		Date
331 Newman Springs Road, Suite 203		CT2070	11:02:14 06/12/20
Red Bank, NJ 07701 Phone: 732.383.1950 FAX:	Client	AT&T / Empire Telecom	Designed by Vincent DiGirolamo

	Su	m of Applied Forces	1		Sum of Reaction	15	
Load	PX	PY	PZ	PX	ΡY	PZ	% Error
Comb.	Κ	Κ	K	K	Κ	Κ	
29	9.48	-99.32	-5.49	-9.48	99.32	5.49	0.000%
30	10.94	-99.32	-0.01	-10.94	99.32	0.01	0.000%
31	9.47	-99.32	5.47	-9.47	99.32	-5.47	0.000%
32	5.47	-99.32	9.49	-5.47	99.32	-9.49	0.000%
33	-0.00	-99.32	10.97	0.00	99.32	-10.97	0.000%
34	-5.47	-99.32	9.49	5.47	99.32	-9.49	0.000%
35	-9.47	-99.32	5.47	9.47	99.32	-5.47	0.000%
36	-10.94	-99.32	-0.01	10.94	99.32	0.01	0.000%
37	-9.48	-99.32	-5.49	9.48	99.32	5.49	0.000%
38	-5.48	-99.32	-9.51	5.48	99.32	9.51	0.000%
39	0.00	-50.51	-9.98	-0.00	50.51	9.98	0.000%
40	4.98	-50.51	-8.64	-4.98	50.51	8.64	0.000%
41	8.62	-50.51	-4.99	-8.62	50.51	4.99	0.000%
42	9.94	-50.51	-0.01	-9.94	50.51	0.01	0.000%
43	8.60	-50.51	4.97	-8.60	50.51	-4.97	0.000%
44	4.97	-50.51	8.62	-4.97	50.51	-8.62	0.000%
45	-0.00	-50.51	9.96	0.00	50.51	-9.96	0.000%
46	-4.97	-50.51	8.62	4.97	50.51	-8.62	0.000%
47	-8.60	-50.51	4.97	8.60	50.51	-4.97	0.000%
48	-9.94	-50.51	-0.01	9.94	50.51	0.01	0.000%
49	-8.61	-50.51	-4.99	8.61	50.51	4.99	0.000%
50	-4.98	-50.51	-8.64	4.98	50.51	8.64	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00002903
3	Yes	5	0.00000001	0.00001308
4	Yes	6	0.00000001	0.00004359
5	Yes	6	0.00000001	0.00001385
6	Yes	6	0.00000001	0.00004407
7	Yes	6	0.00000001	0.00001405
8	Yes	5	0.00000001	0.00001093
9	Yes	4	0.00000001	0.00012795
10	Yes	6	0.00000001	0.00004386
11	Yes	6	0.00000001	0.00001401
12	Yes	6	0.00000001	0.00004311
13	Yes	6	0.00000001	0.00001371
14	Yes	5	0.00000001	0.00002941
15	Yes	5	0.00000001	0.00001327
16	Yes	6	0.00000001	0.00004432
17	Yes	6	0.00000001	0.00001414
18	Yes	6	0.00000001	0.00004324
19	Yes	6	0.00000001	0.00001378
20	Yes	5	0.00000001	0.00001083
21	Yes	4	0.00000001	0.00012648
22	Yes	6	0.00000001	0.00004342
23	Yes	6	0.00000001	0.00001381
24	Yes	6	0.00000001	0.00004478
25	Yes	6	0.00000001	0.00001427
26	Yes	4	0.00000001	0.00000767
27	Yes	6	0.00000001	0.00003792
28	Yes	6	0.00000001	0.00004854
29	Yes	6	0.00000001	0.00004918

tnx	Tower	Job	189	963030A	Page 15 of 16
Maser Cons 331 Newman S	ulting Connecticut Springs Road, Suite 203	Project	C	CT2070	Date 11:02:14 06/12/20
Red B Phone	aank, NJ 07701 : 732.383.1950 FAX:	Client	AT&T / E	mpire Telecom	Designed by Vincent DiGirolamo
-					
30	Yes	6	0.00000001	0.00003760	
31	Yes	6	0.00000001	0.00004880	
32	Yes	6	0.00000001	0.00004877	
33	Yes	6	0.00000001	0.00003810	
34	Yes	6	0.00000001	0.00004989	
35	Yes	6	0.00000001	0.00004879	
36	Yes	6	0.00000001	0.00003781	
37	Yes	6	0.00000001	0.00004897	
38	Yes	6	0.00000001	0.00004946	
39	Yes	4	0.00000001	0.00006900	
40	Yes	5	0.00000001	0.00001800	
41	Yes	5	0.00000001	0.00001864	
42	Yes	4	0.00000001	0.00005430	
43	Yes	5	0.00000001	0.00001861	
44	Yes	5	0.00000001	0.00001766	
45	Yes	4	0.00000001	0.00006902	
46	Yes	5	0.00000001	0.00001904	
47	Yes	5	0.00000001	0.00001791	
48	Yes	4	0.00000001	0.00005438	
49	Yes	5	0.00000001	0.00001795	
50	Yes	5	0.0000001	0.00001942	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	176 - 131	28.980	39	1.3254	0.0037
L2	136 - 86	18.158	39	1.2343	0.0011
L3	92 - 42	8.227	39	0.8570	0.0003
L4	49 - 1	2.286	39	0.4367	0.0001

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
176.00	HP3	39	28.980	1.3254	0.0037	91948
155.00	(2) 1900MHz RRH	39	23.193	1.3007	0.0023	21892
154.00	(2) 1900MHz RRH	39	22.921	1.2986	0.0022	20897
153.00	Platform Mount	39	22.650	1.2964	0.0021	19988
143.70	T-Arm Mount	39	20.163	1.2689	0.0016	14232
136.80	Modified T-Arm Mount	39	18.363	1.2385	0.0012	11734
123.80	T-Arm Mount	39	15.111	1.1542	0.0008	8901
98.00	Side Arm Mount	39	9.384	0.9175	0.0004	6026
84.30	Collar Mount	39	6.854	0.7797	0.0003	5450

Maximum Tower Deflections - Design Wind

taxTower	Job		Page
inx I ower		18963030A	16 of 16
Mason Consulting Connections	Project		Date
331 Newman Springs Road, Suite 203		CT2070	11:02:14 06/12/20
Red Bank, NJ 07701 Phone: 732.383.1950 FAX:	Client	AT&T / Empire Telecom	Designed by Vincent DiGirolamo

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	176 - 131	114.808	2	5.2549	0.0146
L2	136 - 86	71.929	2	4.8948	0.0044
L3	92 - 42	32.592	2	3.3970	0.0013
L4	49 - 1	9.055	2	1.7301	0.0005

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
ft		Load Comb	in	0	0	Curvature ft
176.00	LID2	2	114 808	5 2540	0.0148	22511
170.00		2	01.077	5.2549	0.0146	25511
155.00	(2) 1900MHZ KKH	2	91.8//	5.15/8	0.0089	2222
154.00	(2) 1900MHz RRH	2	90.802	5.1496	0.0087	5341
153.00	Platform Mount	2	89.728	5.1409	0.0084	5108
143.70	T-Arm Mount	2	79.873	5.0321	0.0063	3635
136.80	Modified T-Arm Mount	2	72.744	4.9114	0.0049	2995
123.80	T-Arm Mount	2	59.861	4.5766	0.0031	2269
98.00	Side Arm Mount	2	37.177	3.6371	0.0015	1531
84.30	Collar Mount	2	27.153	3.0905	0.0012	1382

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	$\phi P_{allow} \ K$	% Capacity	Pass Fail
L1	176 - 131	Pole	TP34.688x24x0.25	1	-14.20	1798.30	20.9	Pass
L2	131 - 86	Pole	TP44.688x33.0004x0.3125	2	-26.30	2869.34	64.3	Pass
L3	86 - 42	Pole	TP54.5x42.6605x0.375	3	-40.98	4176.03	70.3	Pass
L4	42 - 1	Pole	TP64.5x52.0925x0.375	4	-60.58	4661.85	81.8	Pass
							Summary	
						Pole (L4)	81.8	Pass
						RATING =	81.8	Pass

Program Version 8.0.5.0 - 11/28/2018 File://maserconsulting.com/BWE/AllOffices/MtLaurel/Projects/2018/18963000A/18963030A/Structural/Tower Analysis/Rev 2/TNX/CT2070.eri

Monopole Base Plate Connection

Site Info	
BU #	
Site Name	
Order #	

Analysis Considerations	
TIA-222 Revision	G
Grout Considered:	Yes
l _{ar} (in)	0
Eta Factor, η	0.7

Applied Loads	
Moment (kip-ft)	4955.13
Axial Force (kips)	60.58
Shear Force (kips)	39.30

Connection Properties	A	Analysis Results	
Anchor Rod Data	Anchor Rod Summary		(units of kips, kip-in)
GROUP 1: (24) 2" ø bolts (A687 N; Fy=105 ksi, Fu=125 ksi) on 58" BC	GROUP 1:		
GROUP 2: (4) 1-3/4" ø bolts (A1035 Gr 120 N; Fy=120 ksi, Fu=150 ksi) on 73.5" BC	Pu_t = 139.68	φPn_t = 250	Stress Rating
	Vu = 1.45	φVn = n/a	56.7%
Base Plate Data	Mu = n/a	φMn = n/a	Pass
52" ID x 1.5" Plate (A572-42; Fy=42 ksi, Fu=60 ksi)			
	GROUP 2:		
Stiffener Data	Pu_t = 134.98	φPn_t = 228	Stress Rating
N/A	Vu = 1.1	φVn = n/a	59.9%
	Mu = n/a	φMn = n/a	Pass
Pole Data			
64.5" x 0.375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)	Base Plate Summary		
	Max Stress (ksi):	-	
	Allowable Stress (ksi):	-	
	Stress Rating:	N/A	

Pier and Pad Foundation

TIA-222 Revision: G Tower Type: Monopole

1	Top & Bot. Pad Rein. Different?:	
	Block Foundation?:	

Pad Shear - 2-way (Comp) (ksi)

Superstructure Analysis Reactions			
Compression, P _{comp} :	60.58	kips	
Base Shear, Vu_comp:	39.30	kips	
Moment, M _u :	4955.13	ft-kips	
Tower Height, H :	175	ft	
BP Dist. Above Fdn, bp_{dist}:	3	in	

Pier Properties			
Pier Shape:	Circular		
Pier Diameter, dpier :	7	ft	
Ext. Above Grade, E :	0.25	ft	
Pier Rebar Size, Sc :	11		
Pier Rebar Quantity, mc :	50		
Pier Tie/Spiral Size, St :	4		
Pier Tie/Spiral Quantity, mt :	3		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, cc_{pier}:	3	in	

Pad Properties		
Depth, D :	6	ft
Pad Width, W :	27.5	ft
Pad Thickness, T :	4	ft
Pad Rebar Size (Bottom), Sp :	10	
Pad Rebar Quantity (Bottom), mp :	32	
Pad Clear Cover, cc_{pad}:	3	in

Material Properties			
Rebar Grade, Fy :	60000	psi	
Concrete Compressive Strength, F'c:	3000	psi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties		
Total Soil Unit Weight, $m{\gamma}$:	100	pcf
Ultimate Gross Bearing, Qult:	8.000	ksf
Cohesion, Cu :	0.000	ksf
Friction Angle, $oldsymbol{arphi}$:	30	degrees
SPT Blow Count, Notes		
Base Friction, μ :		
Neglected Depth, N:	3.50	ft
Foundation Bearing on Rock?	No	
Groundwater Depth, gw :	N/A	ft

Foundation Analysis Checks Capacity Demand Rating Check Lateral (Sliding) (kips) 235.82 39.30 16.7% Pass Bearing Pressure (ksf) 6.00 2.52 42.0% Pass Overturning (kip*ft) 7271.42 5210.58 71.7% Pass Pier Flexure (Comp.) (kip*ft) 11243.64 5043.56 44.9% Pass Pier Compression (kip) 18370.97 76.17 0.4% Pass Pad Flexure (kip*ft) 7616.25 2181.79 28.6% Pass Pad Shear - 1-way (kips) 1168.40 279.65

0.164

Soil Rating:	71.7%
Structural Rating:	44.9%

23.9%

17.7%

0.029

Pass

Pass

<--Toggle between Gross and Net

UPS CampusShip: View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356 UPS Access PointTM TOWN LINE GENERAL STORE 450 E CENTER ST WEST BRIDGEWATER ,MA 02379

FOLD HERE

UPS CampusShip: View/Print Label

- 1. Ensure there are no other shipping or tracking labels attached to your package. Select the Print button on the print dialog box that appears. Note: If your browser does not support this function select Print from the File menu to print the label.
- 2. Fold the printed label at the solid line below. Place the label in a UPS Shipping Pouch. If you do not have a pouch, affix the folded label using clear plastic shipping tape over the entire label.

3. GETTING YOUR SHIPMENT TO UPS

Customers with a Daily Pickup

Your driver will pickup your shipment(s) as usual.

Customers without a Daily Pickup

Take your package to any location of The UPS Store®, UPS Access Point(TM) location, UPS Drop Box, UPS Customer Center, Staples® or Authorized Shipping Outlet near you. Items sent via UPS Return Services(SM) (including via Ground) are also accepted at Drop Boxes. To find the location nearest you, please visit the Resources area of CampusShip and select UPS Locations.

Schedule a same day or future day Pickup to have a UPS driver pickup all your CampusShip packages. Hand the package to any UPS driver in your area.

UPS Access PointTM CVS STORE # 972 555 WASHINGTON ST SOUTH EASTON ,MA 02375 UPS Access PointTM CVS STORE # 7232 689 DEPOT ST NORTH EASTON ,MA 02356 UPS Access PointTM TOWN LINE GENERAL STORE 450 E CENTER ST WEST BRIDGEWATER ,MA 02379

FOLD HERE

