

November 11, 2016

Melanie Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: AT&T Wireless Modifications to Telecommunication Facility – 302 Ball Pond Rd., New Fairfield, CT 06812

Dear Ms. Bachman:

Enclosed please find and original and two (2) copies of a Notice of Exempt Modification including drawings and a check in the amount of six hundred twenty five (\$625.00) for the filing fee. In addition, I have included a single copy of each notification letter mailed this day to the municipality, and the owners of both the property and tower. Copies of the RF study and structural reports (without calculations) are also included.

I will submit electronic copies of the filings including the complete structural analysis and the RF table to you via e mail today.

Please feel free to contact me with any questions or comments. Thank you for your kind cooperation in this matter.

Respectfully submitted,

Jack Andrews
Zoning Manager, Empire Telecom
o/b/o AT&T Wireless
10130 Donleigh Drive
Columbia, MD 21046
443-677-0144
jandrews@empiretelecomm.com

Enclosures

Jack Andrews
Zoning Manager, Empire Telecom
o/b/o AT&T Wireless
10130 Donleigh Drive
Columbia, MD 21046
443-677-0144
jandrews@empiretelecomm.com

November 11, 2016

Melanie Bachman Acting Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

NOTICE OF EXEMPT MODIFICATION

302 Ball Pond Rd., New Fairfield, CT 06812

Lat: 41-27-53.2 (41.46477778) Long. 73-29-49 (-73.49694444)

Dear Ms. Bachman:

AT&T Wireless currently maintains nine (9) antennas at the 135 foot level of an existing 175 foot tall monopole tower located at 302 Ball Pond Rd., in New Fairfield, CT. The tower is owned by Town of New Fairfield. The property is owned by Town of New Fairfield. AT&T Wireless now seeks to replace three (3) existing RRU12 + A2 Remote Radio Units with three (3) new RRUS32B2 units. These replacement RRUs will be installed at the 135 foot level of the tower and be mounted on existing pipes next to the monopole, behind the antennas.

The facility was most recently approved by the Connecticut Siting Council in EM-CING-091-160310, dated March 28, 2016. Six (6) conditions were enumerated in the Council's decision:

- 1) Any deviation from the modification as specified in the Notice and supporting materials shall render this acknowledgement invalid;
- 2) Any material changes to the modification as proposed shall require the filing of a new Notice with the Council;
- 3) Within 45 days after the completion of construction the Council shall be notified in writing that the construction has been completed;
- 4) Any nonfunctioning antenna and antenna mounting equipment on this facility owned and operated by AT&T shall be removed within 60 days after the antenna ceased to function;
- 5) The validity of the action shall expire one year from the date of the letter; and
- 6) The applicant may request an extension of time beyond the one year deadline provided that such a request is submitted to the Council not less than 60 days prior to the expiration.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies section 16-50j-73 for construction that constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2). In accordance with RCSA section 16-50j-73, a copy of this letter and attachments is being sent to the Honorable Susan Chapman, First Selectman of the Town of New Fairfield, and another letter to the Town of New Fairfield as both the tower owner and the property owner.

The planned modifications to the facility fall squarely within those activities expressly provided for in RCSA section 50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in height of the existing structure.
- 2. The proposed modifications will not require an extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that will exceed state and local limits.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, AT&T Wireless respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under RCSA section 16-50j-72(b)(2).

Respectfully submitted,

Jack Andrews
Zoning Manager, Empire Telecom
o/b/o AT&T Wireless
10130 Donleigh Drive
Columbia, MD 21046
443-677-0144
jandrews@empiretelecomm.com

cc: Susan Chapman, First Selectman, Town of New Fairfield
Susan Chapman, First Selectman, Town of New Fairfield as Tower Owner and Property Owner

Jack Andrews Zoning Manager, Empire Telecom o/b/o AT&T Wireless 10130 Donleigh Drive Columbia, MD 21046 443-677-0144

November 11, 2016

The Honorable Susan Chapman, First Selectman, Town of New Fairfield New Fairfield Town Hall 4 Brush Hill Road New Fairfield, CT 06812

RE: AT&T Wireless Modifications to Telecommunication Facility – 302 Ball Pond Rd., New Fairfield, CT 06812

Dear Selectman Chapman:

In order to accommodate technological changes, implement the Uniform Mobile Telecommunications System and enhance system performance in the State of Connecticut, AT&T Wireless ("AT&T") will be changing its equipment configuration at the above referenced telecommunications facility. AT&T Wireless currently maintains nine (9) antennas at the 135 foot level of an existing 175 foot tall monopole tower located at 302 Ball Pond Rd., in New Fairfield, CT. The tower and property are owned by Town of New Fairfield. AT&T Wireless now seeks to replace three (3) existing RRU12 + A2 Remote Radio Units with three (3) new RRUS32B2 units. These replacement RRUs will be installed at the 135 foot level of the tower and be mounted on existing pipes next to the monopole, behind the antennas.

This letter is intended to serve as the required notice to the land owner and property owner. As required by the Regulations of Connecticut State Agencies ("RCSA") section 16-50j-73, the Connecticut Siting Council ("CSC") has been notified of the proposed changes and will review AT&T's proposal. Please accept this letter as notification under RCSA section 16-50j-73 of construction which constitutes an exempt modification pursuant to RCSA section 16-50j-72(b)(2).

The enclosed letter to the CSC fully describes AT&T's proposal for the above referenced site. However, if you have any questions or require any additional information concerning our plans or the CSC procedures, please contact me at 443-677-0144 or contact Melanie Bachman, Acting Executive Director of the CSC at 860-872-2935.

Respectfully submitted,

Jack Andrews
Zoning Manager, Empire Telecom
o/b/o AT&T Wireless
10130 Donleigh Drive
Columbia, MD 21046
443-677-0144
jandrews@empiretelecomm.com

Enclosures

cc: Melanie Bachman, Connecticut Siting Council

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

AT&T Existing Facility

Site ID: CT2070

New Fairfield Ctr 302 Ball Pond Road New Fairfield, CT 06812

October 31, 2016

EBI Project Number: 6216004902

Site Compliance Summary					
Compliance Status:	COMPLIANT				
Site total MPE% of FCC general public	9.22 %				
allowable limit:					

October 31, 2016

AT&T Mobility – New England Attn: Cameron Syme, RF Manager 550 Cochituate Road Suite 550 – 13&14 Framingham, MA 06040

Emissions Analysis for Site: CT2070 - New Fairfield Ctr

EBI Consulting was directed to analyze the proposed AT&T facility located at **302 Ball Pond Road, New Fairfield, CT**, for the purpose of determining whether the emissions from the Proposed AT&T Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm2). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 700 and 850 MHz Bands are approximately 467 μ W/cm² and 567 μ W/cm² respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 2300 MHz (WCS) bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed AT&T Wireless antenna facility located at **302 Ball Pond Road**, **New Fairfield**, **CT**, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since AT&T is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was focused at the base of the tower. For this report the sample point is the top of a 6-foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

- 1) 2 LTE channels (700 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 2) 2 LTE channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
- 3) 2 UMTS channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 4) 2 UMTS channels (1900 MHz (PCS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
- 5) 2 GSM channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.

- 6) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
- 7) For the following calculations the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 8) The antennas used in this modeling are the CCI HPA-65R-BUU-H6, CCI HPA-65R-BUU-H8 and the Powerwave 7770 for transmission in the 700 MHz, 850 MHz and 1900 MHz (PCS) frequency bands. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 9) The antenna mounting height centerlines of the proposed antennas are **135 feet** above ground level (AGL) for **Sector A**, **135 feet** above ground level (AGL) for **Sector B** and **135 feet** above ground level (AGL) for Sector C.
- 10) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general public threshold limits.

AT&T Site Inventory and Power Data by Antenna

Sector:	A	Sector:	В	Sector:	C
Antenna #:	1	Antenna #:	1	Antenna #:	1
Make / Model:	CCI HPA-65R-	Make / Model:	CCI HPA-65R-	Make / Model:	CCI HPA-65R-
Wiake / Wiodei.	BUU-H8	IVIAKC / IVIOUCI.	BUU-H6	Wake / Wiodei.	BUU-H6
Gain:	13.15 / 14.95 dBd	Gain:	13.15 / 14.95 dBd	Gain:	13.15 / 14.95 dBd
Height (AGL):	135 feet	Height (AGL):	135 feet	Height (AGL):	135 feet
Frequency Bands	700 MHz /	Frequency Bands	700 MHz / 1900	Frequency Bands	700 MHz / 1900
	1900 MHz (PCS)		MHz (PCS)		MHz (PCS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX	240 Watts	Total TX	240 Watts	Total TX	240 Watts
Power(W):		Power(W):		Power(W):	
ERP (W):	6,229.75	ERP (W):	5,462.56	ERP (W):	5,462.56
Antenna A1 MPE%	1.96 %	Antenna B1 MPE%	1.64 %	Antenna C1 MPE%	1.64 %
Antenna #:	2	Antenna #:	2	Antenna #:	2
Make / Model:	Powerwave 7770	Make / Model:	Powerwave 7770	Make / Model:	Powerwave 7770
Gain:	11.4 / 13.4 dBd	Gain:	11.4 / 13.4 dBd	Gain:	11.4 / 13.4 dBd
Height (AGL):	135 feet	Height (AGL):	135 feet	Height (AGL):	135 feet
Frequency Bands	850 MHz /	Frequency Bands	850 MHz /	Frequency Bands	850 MHz /
Trequency Bands	1900 MHz (PCS)	Frequency Bands	1900 MHz (PCS)	Frequency Bands	1900 MHz (PCS)
Channel Count	4	Channel Count	4	Channel Count	4
Total TX	120 Watts	Total TX	120 Watts	Total TX	120 Watts
Power(W):		Power(W):		Power(W):	
ERP (W):	2,140.89	ERP (W):	2,140.89	ERP (W):	2,140.89
Antenna A2 MPE%	0.60 %	Antenna B2 MPE%	0.60 %	Antenna C2 MPE%	0.60 %
Antenna #:	3	Antenna #:	3	Antenna #:	3
Make / Model:	Powerwave 7770	Make / Model:	Powerwave 7770	Make / Model:	Powerwave 7770
Gain:	11.4 dBd	Gain:	11.4 dBd	Gain:	11.4 dBd
Height (AGL):	135 feet	Height (AGL):	135 feet	Height (AGL):	135 feet
Frequency Bands	850 MHz	Frequency Bands	850 MHz	Frequency Bands	850 MHz
Channel Count	2	Channel Count	2	Channel Count	2
Total TX	60 Watts	Total TX	60 Watts	Total TX	60 Watts
Power(W):		Power(W):		Power(W):	
ERP (W):	828.23	ERP (W):	828.23	ERP (W):	828.23
Antenna A3 MPE%	0.32 %	Antenna B3 MPE%	0.32 %	Antenna C3 MPE%	0.32 %

Site Composite MPE%				
Carrier	MPE%			
AT&T – Max per sector	2.87 %			
Town Fire Dept	0.23 %			
Town Police Dept	0.15 %			
Town Pub Wks Dept	0.21 %			
Sprint	0.67 %			
Clearwire	0.12 %			
T-Mobile	2.08 %			
Verizon Wireless	2.89 %			
Site Total MPE %:	9.22 %			

AT&T Sector A Total:	2.87 %
AT&T Sector B Total:	2.56 %
AT&T Sector C Total:	2.56 %
Site Total:	9.22 %

AT&T _ Frequency Band / Technology (Max for Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (μW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
AT&T 700 MHz LTE	2	1,239.23	135	5.35	700 MHz	467	1.15%
AT&T 1900 MHz (PCS) LTE	2	1,875.65	135	8.10	1900 MHz (PCS)	1000	0.81%
AT&T 850 MHz UMTS	2	414.12	135	1.79	850 MHz	567	0.32%
AT&T 1900 MHz (PCS) UMTS	2	656.33	135	2.84	1900 MHz (PCS)	1000	0.28%
AT&T 850 MHz GSM	2	414.12	135	1.79	850 MHz	567	0.32%
						Total*:	2.87%

*NOTE: Totals may vary by 0.01% due to summing of remainders

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the AT&T facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

AT&T Sector	Power Density Value (%)
Sector A:	2.87 %
Sector B:	2.56 %
Sector C:	2.56 %
AT&T Maximum Total	2.87 %
(per sector):	2.07 70
Site Total:	9.22 %
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is 9.22 % of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

UMMANNED COMMUNICATIONS FACILITY MODIFICATIONS INCLUDING THE REPLACEMENT OF EXISTING, TOP MOUNTED (3) RRUSS24-AD WITH NEW (3) RRUSS-3282 LWITS, RE-USE EXISTING (1) FIBER TRUNK, EXISTING (2) DC TRUNKS, EXISTING (1) RAYCAP SURGE ARRESTOR AND MACCARED JUMPER CAGLES. PROJECT INFORMATION 302 BALL POND ROAD NEW FAIRFIELD, CT 06812 TOWN OF NEW FAIRFIELD 4 BRUSH HILL ROAD NEW FAIRFIELD, CT 06812 AT&T MOBILITY 550 COCHITUATE RD SUITES 13 & 14 FRAMINGHAM, MA 01701 TEL 866-915-5600 LAT. N41'27'52.9" LONG. W73'29'49.0" NEW FAIRFIELD CTR (NAD) 1983 ±825, × Ϋ́ HORIZONTAL DATUM: DEED REFERENCE: SITE PARCEL NO .: CURRENT ZONING: SCOPE OF WORK SROUND LEVEL: TOWER OWNER: SITE ADDRESS: NOC CONTACT: SITE NUMBER: COORDINATES SITE NAME: APPLICANT:

at&t **Mobility**

NEW FAIRFIELD CTR LTE BWE Expansion **SITE NUMBER: CT2070** SITE NAME: PROJECT:

LOCATION MAP

APPLICABLE BUILDING CODES AND STANDARDS

DIRECTIONS: FROM FOOKY HILL TAKE 1–91 SOUTH. TAKE EDIT 18, PROCEED WEST ON 1–691, CONTINUE ON 1–844 WISST ENT & PROCEED NORTH ON CY RT-37 NORTH (PADAMABAM RD), CONTINUE ON PEMBROKE RD (RT-37). TURN LET ON BUSH HILL RD (RT-39). TURN RGAT ON BALL POND RD. STE STEE ACCESSE: LOCKED CATE.

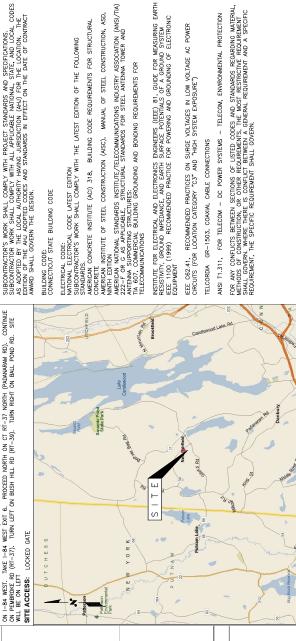
N

DRAWING INDEX

TITLE SHEET

5 8 ខ

NOTES


ELEVATION VIEW & ANTENNA LAYOUT

4

GROUNDING DETAILS

8

SITE PLAN & EQUIPMENT PLAN

•	SITE ACCESS: LOCKED GATE		EDITION OF THE AHJ ADOPTED CODES AND STANDARDS IN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE DESIGN.
. 8	0 0 U	A STATE OF THE STA	BUILDING CODE: CONNECTICUT STATE BUILDING CODE
8	diament of the state of the sta	7	ELECTRICAL CODE. NABIONALECTRICAL. CODE LATEST EDITION NABIONALIDACIONS WORK SHALL COMPLY WITH THE LATEST EDITION OF THE FOLLOWING
7	Patterson	ПЕНЕТЕГО	STANDARDS. AMERICAN CONORETE INSTITUTE (ACI) 318, BUILDING CODE REQUIREMENTS FOR STRUCTURAL
	Patifican Squartr Polid Squart	The state of the s	CONTROLL INSTITUTE OF STEEL CONSTRUCTION (AISC), MANUAL OF STEEL CONSTRUCTION, ASD, MINTH FORTON
	SE EVYORK	Lake Candewood	MERECAN NATIONAL STANDARDS INSTITUTE/TELECOMMUNICATIONS INDUSTRY ASSOCIATION (ANS/TIA) 222-F OR 6 AS APPLICABLE, STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWER AND ATTENNA SUPPORTING STRUCTURES. TH 607. COMMERCIAL BUILDING GROUNDING AND BONDING REQUIREMENTS FOR
	A L L S	Brookhed	INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) 81, GUIDE FOR MEASURING EARTH RESISTIVITY, AROUND IMPEDANCE, AND EARTH SURFACE POTENTIALS OF A GROUND SYSTEM FIEE INJURY (1999) RECOMMENDED PRACTICE FOR POWERING AND GROUNDING OF ELECTRONIC CAMBINISTICAL (1999) RECOMMENDED PRACTICE FOR POWERING AND GROUNDING OF ELECTRONIC
	Putrian Lake	Car	IEEE CESTAI, RECOMMENDED PRACTICES ON SURGE VOLTAGES IN LOW VOLTAGE AC POWER CREUTS (FOR LOCATION CATEGORY "C.3" AND "HIGH SYSTEM EXPOSINE")
	3 2 2 2	ndlewco	TELCORDIA GR-1503, COAXIAL CABLE CONNECTIONS
	25	d Lake	ANSI T1.311, FOR TELECOM - DC POWER SYSTEMS - TELECOM, ENVIRONMENTAL PROTECTION
		Rd	FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS REGARDING MATERIAL, METHODS OF CONSTRUCTION, OR OTHER REQUIREMENTS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN, WHERE THERE IS CONFLICT BETWEEN A GENERAL REQUIREMENT AND A SPECIFIC REQUIREMENT, THE SPECIFIC REQUIREMENT SHALL GOVERN.
	and the same of th	N N N N N N N N N N N N N N N N N N N	
	Bay Bras Rear of B	V. Andrews	

HONE NO. 508) 981-9590 484) 683-5349 484) 683-5349 CONTACT & LITH ITY INFORMATION

AT LEAST 2 WORKING DAYS PRIOR TO DIGGING, THE CONTRACTOR IS REQUIRED TO CONNECTICUT ONE CALL SYSTEM AT 1-800-922-4455

2	PHONE NO. (508) 981–9590 (484) 683–5349 (484) 683–5349 (800) 375–7405 (800) 941–9900
	COMPANY VRG EMPIRE EMPIRE MATIONAL GRID VERIZON
CONTACT & UTILITY INFORMATION	CONTACT MICHEL NO BRE DAVID COOPER BILL DAVIELS WORK REQUEST GROUP
י	CONTACT ENGINEERING: SITE ACQUISTION: CONSTRUCTION: UTILITIES POWER: TELCO:

	Federal Miles
telecom	SITE NUMBER: CT2070 SITE NAME: NEW FAIRFIELD CENTER

302 BALL POND ROAD NEW FAIRFIELD, CT 06812 FAIRFIELD COUNTY

EMPIRE TELECOM USA, LLC 16 ESQUIRE ROAD BILLERICA, MA 01821

EMP RE

489 Washington Street Auburn, MA 01501 Tel. (508) 981— 9590 Fax (508) 519 — 8939 mabbr@verticalresourcesgn.com

'ERTICAL RESOURCES GRP.

at&t	Mobility	550 COCHITUATE F	SUITES 13 & 14	TRANSPORTANT NA OF
)	

	10/3	10/20	10/1	å	¥
	⋖	\triangleleft	(NO.	SCALE
×	מנאנ	Mobility	, 550 COCHITUATE RD	SUITES 13 & 14	₹

	GENERAL REVISIONS	FOR CONSTRUCTION	FOR REVIEW	REVISION
	\$ 10/31/16	₹ 10/20/16	10/17/16	DATE
	⊗	\triangleleft	©	NO.
			RD	107

				CHK APP'D		
	GA.M.	GA.M.	GA.M.	¥		
	E.L.P. GA.M.	E.L.P. GA.M.	E.L.P. GA.M.	À		

\succeq	
0B	
\geq	
T&T	
\ ⊢ ∀	
,	

	REV	2
TITLE SHEET	DRAWING NUMBER	01
	NUMBER	50-145
	8	100

GENERAL NOTES

1. FOR THE DIRECTES OF CONSTRUCTION DRAWNS, THE FOLLOWING DETINITIONS SHALL APPLY:
1. GONTHOUTINE — THEM CONTROLLOW (CONSTRUCTION)
SECONTRACTOR — CEREBAL CONTROLLOW (CONSTRUCTION)
ONES:

ONE THE MELLINE CONTROLLOW (CONSTRUCTION)
ONE CONTROLLOW (CONTROLLOW)

2. PROR TO THE SABARSSON OF BOS, THE BOOMS SUBCONTRACTOR SHALL NST THE COLL STITE TO FAMILINGEZ WITH THE EXCENING COMBINIONS AND 3. FEDVORN OF THE STANDARD STILL THE PROCHAST TO STANDARD SHALL BE BROUGHT ON THE THE PROCHAST TO STANDARD SHALL BE SHALL BE STANDARD. UND. 3. ALI MATERIAS FIRRISED AND NETALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, RECOLLATIONS, AND ORDINANCES. SUBCONTACTOR SHALL ISSELLA LAPPERBALIR INDICES AND COMPEY WITH ALL LANS, DRIVINANCES, RULES, REGULATIONS, AND LANFOLL DRIBERS OF ANY RUBIC ALLIFORNING THE REPORTIONS. AND LANFOLL DRIBERS OF ANY RUBIC ALLIFORNING THE REFERENANCE OF THE WORK.

al, work carred out saal, comply with all applicable manicipa, and utility company specifications and local Jarsdictional codes. Personances and applicable regalations.

4. DRAWINGS PROMDED HERE ARE NOT TO SCALE UNLESS OTHERMISE NOTED AND ARE INTENDED TO SHOW OUTLINE ONLY.

5. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES, AND LABOR NECESSARY TO COMPLETE ALL NISTALLATIONS AS INDICATED ON THE DRAWNICS.

6. THE SUBCONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

7. IF THE SPECIFID EQUIPMENT CANNOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CONTRACTOR. B. SLECONTRACTOR STALL DETERMINE ACTUAL BOUTING OF CONDUIT, POWER AND TI CABLES, GROUNONG CABLES AS SHOWN ON THE POWER, GROUNDING AND TELCO PLAN DRAWING, ROUTING OF CONDUIT FOR POWER AND TELCO SHALL BE APPROVED BY OWNER OF SITE.

9. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAYEMENTS, CLREBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT SUBCONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

10. SUBCONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACULTY. ANTEWNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION. 11. SUBCONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION.

SITE WORK GENERAL NOTES

I. THE SUBCONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES PRIOR TO THE START OF CONSTRUCTION.

LINES ON WHITE GROUPS WHIT GAS EXCENDED, AND OTHER UNITS WHER DOCUMERS IN THE WORK SHALL OF PROTECTED AT ALL THIS SHAPE SHEETED WHITE GAS EXCENDED AS DESCRIPED AS CHARLES AND WERE CHARLES OF THE SHECKNING FOR THE WINNESS WHERE CHARLES OF THE SHECKNING FOR THE WINNESS WHERE THE SHECKNING FOR THE SHECKNING FOR THE SHECKNING FOR THE SHEETED AS DESCRIPE, THE SHEETED AS DESCRIPE, THE SHEETED AS DESCRIPE, THE SHEETED AS DESCRIPE, THE SHEETED THE SHEETED THE SHEETED THE SHEETED AS DESCRIPE, THE SHEETED THE SHEET

3. ALL SITE WORK SHALL BE AS INDICATED ON THE DRAWINGS AND PROJECT SPECIFICATIONS.

A, IF NECESSARY, RUBBISH, STUAPS, DEBRIS, STROKS, STONES, TOP SOIL AND OTHER REFUSE SHALL BE REMONED FROM THE SITE AND DISPOSED OF LEGALLY.

5. All disting inactive sener, water, gas, electric and other utulies, which interfer with the excurion of the work, shall be frenche and yor gapped, placed of difference scorling of the error distinct with the excuring of the Wark, select of the appropriate of confections, games another and coll utulities.

5. SUBCONTRACTOR SHALL MININIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION.

B. THE STE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE TRANSMISSION EQUIPMENT AND TOWER AREAS. THE SUBCONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE OWNER SPECIFICATION FOR SITE SIGNAGE.

9. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY RILL OR EMBANKMENT.

IO. THE SUB GRACE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNFORM GRACE PRICE TO FINISHED SUFFACE APPLICATION, SEE BETAL, 303.

11. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILZED TO PRESENT EROSION.

12. EROSON CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL JURISDICTION'S GJIDELINES FOR EROSION AND SEDIMENT CONTROL.

13, all earth work shall be pergamed in accordance with technical specification for construction of radio access network Stee.

STRUCTURAL STEEL NOTES:

1, ALL STEEL WORK SHALL BE GALINANZED IN ACCORDANCE WITH ASTN AT21 (HOT-DP) UNESS NOTED OTHERWES. STRUCTURAL STEEL SHALL IS ASTN-A-28 ONESS OTHERIES NOTED ON THE STEEPEND SHAMES, STEEL DEAS, INSTALLIAN AND BOLINGS SHALL BE PERFORMED IN ACCORDANCE WITH THE AUBICIAN NOTIFIEL GYSTIEL CONSTRUCTION (ANS) "MANIAL OF STEEL CONSTRUCTION".

2. ALI WEDING SHALL BE PERFORMED USING ETOXIC ELECTRODES AND WELDING SHALL CONFORM TO AISC, WHERE FILET WELD SIZES ARE NOT BYONG, PROVIDE THE MINIMAL SIZE PER TABLE AZE IN THE AISC, "MANUAL OF SITEL CONSTRUCTION". PAINTED SURFACES SHALL BE TOUGHED UPON THE AISC. "MANUAL OF SITEL CONSTRUCTION". PAINTED SURFACES SHALL BE TOUGHED UPON THE AISC. "MANUAL OF SITEL CONSTRUCTION". PAINTED SURFACES SHALL BE TOUGHED UPON THE AISC. "MANUAL OF SITEL CONSTRUCTION". PAINTED SURFACES SHALL BE TOUGHED UPON THE AISC. "MANUAL OF SITEL CONSTRUCTION". PAINTED SURFACES SHALL BE TOUGHED UPON THE AISC. "MANUAL OF SITEL CONSTRUCTION".

3. BOLTED CONNECTIONS SHALL BE ASTM 4326 BEARING TIPE (3/4*8) CONNECTIONS AND SHALL HAVE MINIMUM OF TWO BOLTS UNLESS NOTED OTHERWISE. STEEL FASTENER HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH ASTM 4153 (HOT-DIP) 4, non-structural connections for steel grating may use s/8" dia. Asta a 307 bolts unless noted otherwise.

5. INSTALLATION OF CONDETTE EDAMISON/RDDE, ANGHOR, SHALL BE FER MANUFACTIBETS' INFITTED RECOLLEDED PROCEDURE. THE ANGHOR BELL CONFIDENCE OF THE AUGUST AUGUST OF THE STANDARD IN STANDARD AUGUST. TO MANUFACTURES'S MANURAL AUGUST OF THE STANDARD AUGUST OF THE STANDAR

E. ALL SIRUCTURAL STEEL SHALL BE SUPPLED IN ACCORDANCE MITH TECHNICAL SPECIFICATION FOR CONSTRUCTION OF RADIO ACCESS NETWORK STEE.

489 Washington Street
Abunn, MA 01501
Tel. (508) 981- 9590
Fox (508) 519 - 8939
mndbr@werfolmeaucrespp.com

'ERTICAL RESOURCES GRP.

EMP RE telecom EMPIRE TELECOM USA, LLC 16 ESQUIRE ROAD BILLERICA, MA 01821

SITE NUMBER: CT2070 SITE NAME: NEW FAIRFIELD 302 BALL POND ROAD NEW FAIRFIELD, CT 06812 FAIRFIELD COUNTY CENTER

550 COCHITUATE RD SUITES 13 & 14 FRAMINGHAM, MA 01701 at&t Mobility

GENERAL REVISIONS FOR CONSTRUCTION FOR REVIEW REVISION 10/20/16 0 10/17/16 NO. DATE

ELECTRICAL INSTALLATION NOTES 1. AL ELECTROL, WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEE AND ALL APPLICABLE LOCAL OODES.

CONCRETE AND REINFORCING STEEL NOTES:

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACT 301, ACT 318, ACT

ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI CONSTRUCTION SPECIFICATION FOR CAST—IN-PLACE CONCRETE.

ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 4000 PSI AT 28 DAYS, UNLESS NOTED OTHERWISE. A HICHER Strength (4000 PS) MAY BE USED.

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS.

CONCRETE CAST AGAINST EARTH.......3 IN. CONCRETE EXPOSED TO EARTH OR WEATHER: 96 AND LARGER 22 INCH 95 AND SMALLER & WWF 17/2 INCH

CONDUIT ROUTINGS ARE SCHEMATIC, SUBCONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED.

 WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SE COMPLY WITH THE REQUIREMENTS OF THE NEC AND TELCORDIA. 4. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC AND TELCORDIA.

6. BICH DID OF DIERY POWER, PHASE CONDUCTOR (1.E., HOTS), SONDHOING, ADI IL TO ONDUCTOR AND COREE SHALL BE WELLED WITH COLOCIDED SHALLON OR ELECTRICAL, TAPE MISHING 1/2 MOST PLASTIC ELECTRICAL, TAPE WITH UN PROTECTION, OR EQUAL). THE DEATHFIGHTON METHOD SHALL CONFORM WITH NEC. & CORF. 5. CABLES SHALL NOT BE ROUTED THROUGH LADDER—STYLE CABLE TRAY RUNGS.

A 3/4" CHAMFER SHALL BE PROWDED AT ALL EXPOSED EDGES OF CONCRETE, UNO, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4.

CONCRETE NOT EXPOSED TO EARTH OR WEATHER OR NOT CAST AGAINST THE GROUND: 3/4 INCH

CONCETE CANCEN EST IS NOT FROUND FOR SLAD ON GRADE MENT CONCETE IS LESS THAN 50 CUBIC YARDS (BIC 1905.6.2.3). IN IN THE FOLLOWING RECORDS SHALLE FROUNDED BY THE CONCETE SUPPLIES. (A) RESULTS OF CONCETE COUNDER TESTS PRESTORABLY AT THE SUPPLIES PLANT.

(B) CERTIFICATION OF MINIMUM COMPRESSIVE STRENGTH FOR THE CONCRETE GRADE SUPPLIED. FOR GREATER THAN 50 CUBIC YARDS THE GC SHALL PERFORM THE CONORETE CYLINDER TEST.

7. ALL EXCIPACE, COMPONENTS SHALL BE CLEARY LUBELD WITH PERAMERIT LABELS, ALL EXPINENTS SHALL BE LUBELD WITH THE PROPARENT LABELS, ALL EXPINENT SHALL BE LUBELD, WHITH THE PROPARENT OF ANY CONFIGURATION, HOWE CONFIGURATION, EVERT OF AMENIES, AND BRANCH CRECUIT DIS, NO HAND WRITTEN LUBELS ALLOWED.

8. PANELBOARDS (ID NUMBERS) AND INTERNAL CIRCUIT BREAKERS (CIRCUIT ID NUMBERS) SHALL BE CLEARLY LABELED. NO HAND WRITTEN LABELS ALLOWED.

9. ALL TIE WRAPS SHALL BE CUT FLUSH WITH APPROVED CUTTING TOOL TO REMOVE SHARP EDGES.

10. FOMEN, CONTROL, AND EQUIPADAT GROUND WIRNING IN TUBING OR CONTROL! SHALL ES SMOOT (SIZE 14 AND OR HAVERS), ROUT, OIL RESIGNAT THAN OR HAWA-2, GLASS B STRANGED COPPER CALE PAILED FOR PO. C (WET AND DRY) OPERATION, ISTED OR U-BELED FOR THE LOCATION AND PACEMAY STITLAND USED, THE SOCIATION, AND PACEMAY STITLAND USED, THE SOCIATION, AND PACEMAY STITLAND USED, INCLESS OTHERWISE SPICIATIO.

all concrete shall be supplied in accordance with technical specification for construction of radio access network sites.

SOIL COMPACTION NOTES FOR SLAB ON GRADE:

AS AN ALTERNATIVE TO TEM 7, TEST CYLINDERS SHALL BE TAKEN INTTALLY AND THEREAFTER FOR EVERY SO YAROS OF CONCRETE FROM EACH DEFERENT BATCH PLANT. EQUIPMENT SHALL NOT BE PLACED ON NEW PADS FOR SENEN DAYS AFTER PAD IS POURED, UNLESS IT IS VERIFIED BY TESTS THAT COMPRESSIVE STRENGTH HAS BEEN ATTAINED. IT IS. SPIPELEMENT EGUIDANT GEOLOW WIND OCKET MOODES SHALL BE SNIKE CONDUCTOR (SIZE & AND OR LARGEN), GOV. SISHALL BE SINGLY HAVE OF THAT OF THAT OF STERN INSULAND, CLASS BOY, OI STRANDED COPPER CHEEL RATID FOR 80°C (WET AND DRY) DEPRINDING LISTING OF LABELE DRY THE LOCATION AND RAZIONED WINESS OTHERWISE SPICEDED.

12. POWER AND CONTROL WIRNG, NOT IN TUBING OR CONDUIT, STALL BE MULL—CONDUINED, TIPPE TO SUBJECT (SZET 14 AWG OR STRAMED), GAMES GOOV, OIL RESISSANT THAN OR THANK-2, CLASS B STRAMEDS COPPER CALE PATED FOR 90 °C (WET AND DRY) OPERATION, WITH OUTER JACKET, USED OR LABELED FOR THE LOCATION USED, UNISESS OFFERDIS.

AS AN ALTERNATIVE TO INSPECTION AND WRITTEN CERTIFICATION, THE "UNDISTURBED SOIL" BASE SHALL BE COMPACTED WITH "COMPACTION EQUIPMENT, LISTED BELOW, TO AT LEAST 90% MODIFED PROCTOR MAXIMUM DENSITY FER ASTIN D 1557 METHOD C. COMPACTED SUBBASE SHALL BE UNIFORM AND LEVELED, PROVIDE 6" WINNIAM CRUSHED STONE OR GRAVEL COMPACTED IN 3" LIFTS ABOVE COMPACTED SOIL, GRAVEL SHALL BE NATURAL OR CRUSHED WITH 100% PASSING 1" SIEVE.

COMPACTION CERTIFICATION: AN INSPECTION AND WRITTEN CERTIFICATION BY A QUALIFIED GEOTECHNICAL TECHNICIAN OR ENGINEER IS ACCEPTABLE. EXCANATE AS REQUIRED. TO REMOVE VEGETATION AND TOPSOL, EXPOSE UNDISTURBED NATURAL SUBGRADE AND PLACE CRUSHED STONE AS REQUIRED.

As an Alexandre Chiefle As and Specific Little Educations and the Foresce As the Institute State Section Personal Person

SOL COMPACTION SHALL BE PERFORMED IN ACCORDANCE WITH TECHNICAL SPECIFICATION FOR CONSTRUCTION OF RADIO ACCESS HETWORK STEE.

HAND OPERATED DOUBLE DRUM, VIBRATORY ROLLER, VIBRATORY PLATE COMPACTOR OR JUMPING JACK COMPACTOR.

COMPACTION EQUIPMENT:

COMPACTION CRITERIA FOR OTHER FILL AREAS ON SITE SHALL MEET THE SAME REQUIREMENTS AS NOTED ABOVE

13. ALL POWER AND POWER GROUNDING CONNECTIONS SHALL BE CRIMP—STYLE, COMPRESSION WIRE LUGS AND WIRENUTS BY THOMAS AND BETTS (OR EQUAL). LLUCS AND WIRENUTS SHALL BE RATED FOR OPERATION AT NO LESS THAN 75°C (90°C IF AVAILABLE).

14. RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC.

ELECTRICAL INSTALLATION NOTES (cont.)
LECTROLA ULALLATION NOTES (cont.)
(18. RICHORA URLAD TUBNO (CANDUT (18. RICHORA OF SCHEDULE 40. OR RICHO PLOS OSHEDULE 40. OR RICHORA OF SCHEDULE 40. OR RICHORA OF SCHEDULE 40. OR RICHORA CANDORS. 16. ELECTRICAL METALLIC TUBING (EMT), ELECTRICAL NONMETALLIC TUBING (ENT), OR RIGID NONMETALLIC CONDUIT (RIGID PVC, SCHEDULE 40) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS.

17. GALVANIZED STEEL INTERMEDIATE METALLIC CONDUIT (IMC) SHALL BE USED FOR OUTDOOR LOCATIONS ABOVE GRADE.

18. RIGID NONMETALLIC CONDUIT (1E., RIGID PVC SCHEDULE 40 OR RIGID PVC SCHEDULE 180) SAML BE USED UNERSKROUND, DIRECT BURIED, IN AREAS OF OCCASIONAL LIGHT VEHICLE TRAFFIC OR ENCASED IN REINFORCED CONCRETE IN AREAS OF HEAW VEHICLE TRAFFIC.

 LIQUID-TIGHT FLEXIBLE METALLC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION OCCURS OR FLEXIBILITY IS NEEDED. SETSCREW 20. CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION—TYPE AND APPROVED FOR THE LOCATION USED. FITTINGS ARE NOT ACCEPTABLE.

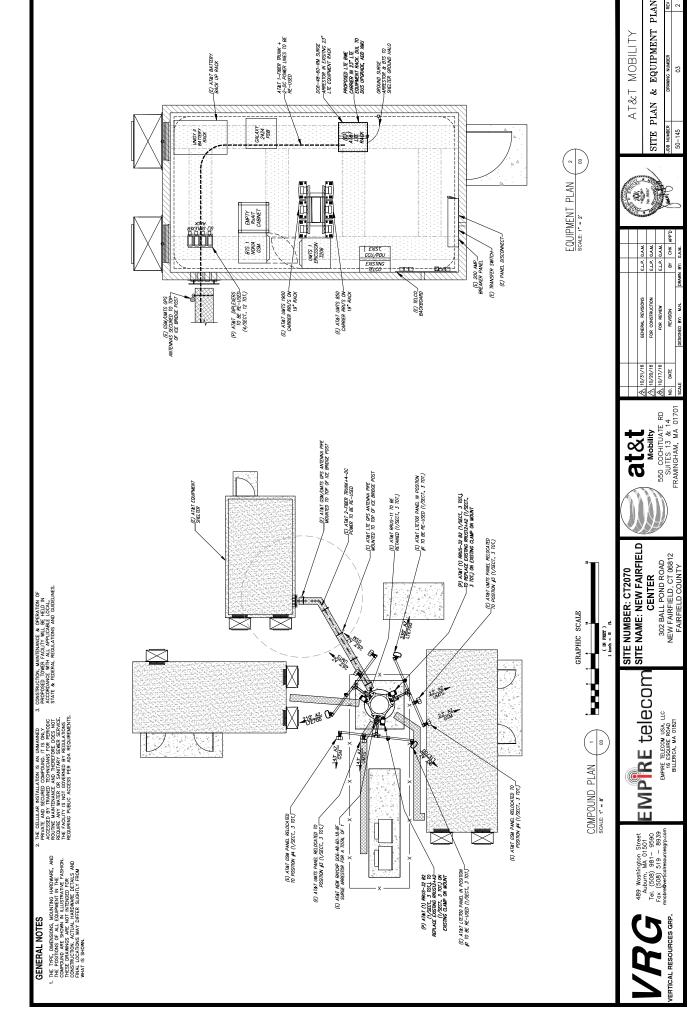
21. CABINETS, BOXES, AND WIREWAYS SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE, AND NEC.

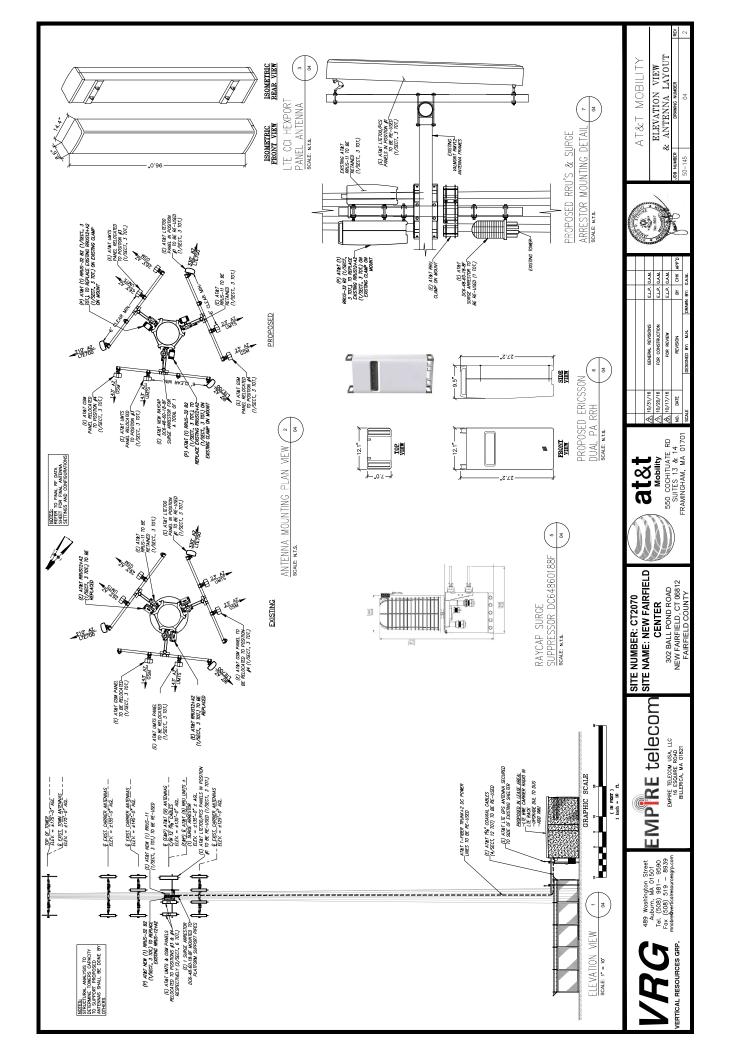
22. WREWAYS SHALL BE EPOXY-COATED (GRAY) AND INCLUDE A HINGED COVER, DESCRIDE TO SWING OPEN DOWNWARD; SHALL BE PANDUT TYPE E (OR EGUAL); AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) OUTDOORS.

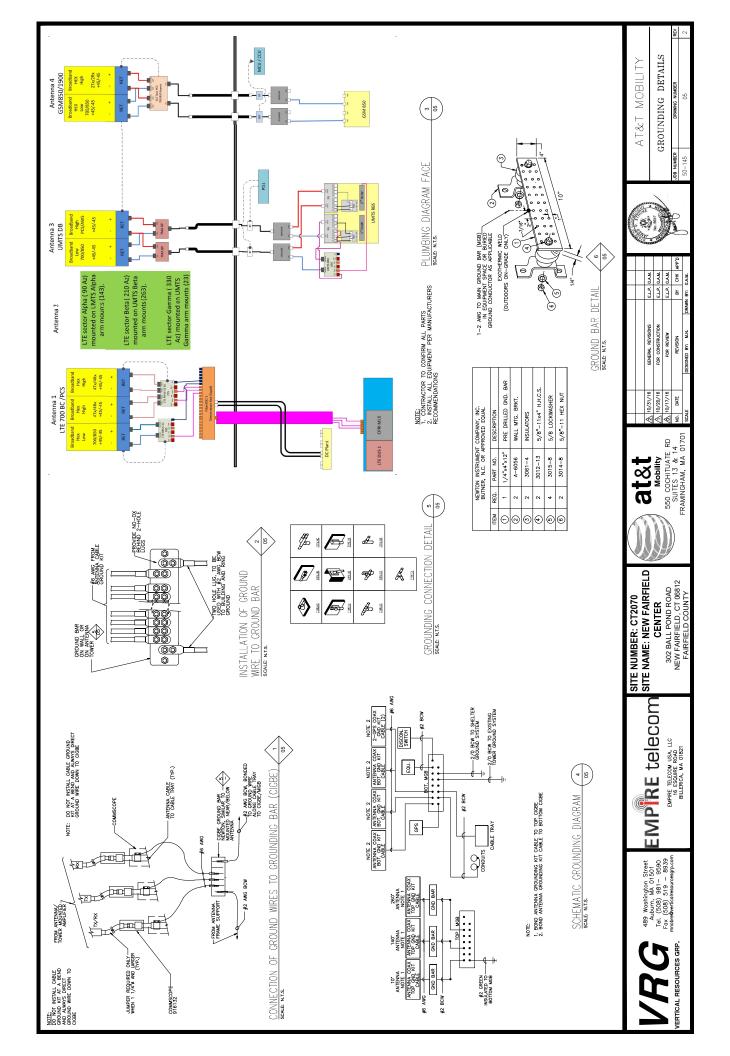
23. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES, AND PULL BOXES SHALL BE GALVANIZED OR EPOXY—COATED SHEET STEEL, SHALL MET OR EXCEED UL 50, AND RATED NEMA 1 (OR BETTER) INDOORS, OR NEMA 3R (OR BETTER) DUTDOORS.

24, METAL RECEPTACIE, SWITCH, AND DENCE BOXES SHALL BE GALUMNIZED, REDYC-CORRODING, SHALL METF OR EXCEED UL. 514A AND NEMA OS. 1, AND RAIED NEMA! (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.

25. NONMETALLIC RECEPTACLE, SWITCH, AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2; AND RATED NEMA 1 (OR BETTER) INDOORS, OR WEATHER PROTECTED (WP OR BETTER) OUTDOORS.


26. THE SUBCONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CONTRACTOR BEFORE COMMENCING WORK ON AC POWER DISTRIBUTION PANELS.


27. THE SUBCONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PAINLS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD AGAINST LIFE AND PROPERTY.


		No. Beb.		Pinned
				APP'D
	E.L.P. GA.M.	GA.M.	E.L.P. G.A.M.	¥
	E.L.P.	E.L.P. G.A.M.	E.L.P.	Æ
	S,	NC		

		L
AT&T MOBILITY	NOTES	
		ı

	ΛЭЫ	7	
NOTES	DRAWING NUMBER	70	
	JOB NUMBER	50-145	

Rigorous Structural Analysis Report

AT&T - New Fairfield Center #CT2070 / FA #10035312

Owner: Town of New Fairfield New Fairfield, Connecticut

November 02, 2016

MEI PROJECT ID: CT01113M-16V0

17950 Preston Road, Suite 720 ■ Dallas, Texas 75252 ■ Tel. 972 -783-2578 Fax 972-783-2583 **www.maloufengineering.com**

November 02, 2016

Mr. Miguel Nobre Vertical Resources Group Auburn, MA 01501

RIGOROUS STRUCTURAL ANALYSIS

Structure/Make/Model:	175 ft	175 ft Monopole		A. Nudd / MJ-180
Client/Site Name/#:	Vertical Resources Group / AT&T		New Fairfield Center #CT2070 / FA #10035312	
Owner/Site Name/#:	Town of Fairfield		New Fairfield Center	
MEI Project ID;	CT011	I3M-16V0		
Location: 302 Ball Pond Rd New Fairfield, CT 06812		Fairfield County FCC #N/A		
	LAT 41-27-52.98 N		LON	73-29-49.03 W

EXECUTIVE SUMMARY:

Malouf Engineering Int'l (MEI), as requested, has performed a rigorous structural analysis of the above mentioned structure to assess the impact of the changed condition as noted in Table 1.

Based on the stress analysis performed, the existing structure is in conformance with the Connecticut Building Code / Int'l Building Code (IBC) / ANSI/TIA-222-G Standard for the loading considered under the criteria listed and referenced in the report sections – tower rated at 73.7% - Pole.

The installation of the proposed changed condition as noted in Table 1 is structurally acceptable. Please refer to Appendix 1 for Schematic Lines Layout.

MEI appreciates the opportunity of providing our continuing professional services to you. If you have any questions or need further assistance on this or other projects please contact us.

Respectfully submitted,

MALOUF ENGINEERING INT'L, INC.

Analysis performed by:

Helder Lopez, PE Sr. Project Engineer Reviewed & Approved by:

E. Mark Malouf, PE Connecticut #17715

972-783-2578 ext. 106

mmalouf@maloufengineering.com

11/2/2016

TABLE OF CONTENTS

1.	INTRODUCTION & SCOPE	4
2.	SOURCE OF DATA	4
	Background Information:	2
3.	ANALYSIS CRITERIA	5
	Appurtenances Configuration	5
4.	ANALYSIS PROCEDURE	7
	Analysis Program	
	Assumptions	7
5 .	ANALYSIS RESULTS	8
6.	FINDINGS & RECOMMENDATIONS	9
7.	REPORT DISCLAIMER	10
APP	PENDIX 1 - ANALYSIS PRINTOUT & GRAPHICS	11
APP	PENDIX 2 – SOURCE / CHANGED CONDITION	12

1. INTRODUCTION & SCOPE

A rigorous structural analysis was performed by Malouf Engineering Int'l (MEI), as requested and authorized by Mr. Miguel Nobre, Vertical Resources Group, on behalf of AT&T, to determine the acceptance of the proposed changed conditions in conformance with the CT BC / IBC / ANSI/TIA-222-G Standard, "Structural Standard for Antenna Supporting Structures and Antennas". The scope of this independent analysis is to determine the overall stability and the adequacy of structural members, foundations, and member connections, as available and stated. This analysis considers the structure to have been properly installed and maintained with no structural defects. Installation procedures and related loading are not within the scope of this analysis and should be performed and evaluated by a competent person of the erection contractor.

The different report sections detail the applicable information used in this evaluation, relating to the tower data, the appurtenances configuration and the wind and ice loading considered.

2. SOURCE OF DATA

The following information has been used in this evaluation as source data that accurately represent the existing structure and the related appurtenances:

represent the existing sit	Source	Information	Reference	
STRUCTURE				
STRUCTURE	<u> </u>	1		
Tower	MEI Records	Previous Structural	ID CT01113M-08V0	
		Analysis	Dated 05/09/2008	
		Fredd A. Nudd Tower	Dated 03/19/2003	
		Design Drawing	Rev. C	
	Vertical Resources /	Infinigy Structural	Job #158-093	
	Mr. Miguel Nobre	Analysis	Dated 02/16/2016	
Foundation	MEI Records	Previous Structural	ID CT01113M-08V0	
		Analysis	Dated 05/09/2008	
	MEI Records	Fredd A. Nudd	Dated 03/19/2003	
		Foundation Design Dwg	Rev. C	
	No geotechnical report provided – soil parameters as per URS analysis re			
Material Grade	Available from supplied c	locuments noted above-ref	er to Appendix	
CURRENT APPURTENANCES				
	Vertical Resources /	Infinigy Structural	Job #158-093	
	Mr. Miguel Nobre	Analysis	Dated 02/16/2016	
		Tower Photos	Dated 10/15/2016	
CHANGED CONDITION				
	Vertical Resources /	E-mail Instructions	Dated 10/31/2016	
	Mr. Miguel Nobre	AT&T RF Data Sheet	Dated 06/10/2016	
		AT&T CDs	Dated 10/17/2016	

Background Information:

Based on available information, the following is known regarding this structure:

DESIGNER / FABRICATOR	Fredd A. Nudd / MJ-180
ORIGINAL DESIGN CRITERIA	TIA/EIA 222-F- 85 Mph + 0.50" Ice
PRIOR STRUCTURAL MODIFICATIONS	As per Infinigy modification design Project #379-016 dated 04/24/2015 – considered properly installed.

MALOUF ENGINEERING INT'L, INC.

MEI PROJECT ID CT01113M-16V0 - 11/02/16 - Pg. 4

This report is not to be reproduced or copied in whole or in part without MEI's written consent. 2016, MEI, Inc. @

3. ANALYSIS CRITERIA

The structural analysis performed used the following criteria:

CODE / STANDARD	2016 Connecticut Building Code / 2012 Int'l Bldg Code / ANSI/TIA-222-G-2 Standard			
LOADING CASES	Full Wind: 115 Mph ultimate gust [equiv. 90 Mph (3-sec gust)] w/No Radial Ice**			
	Iced Case: 50 Mph + 3/4" Radial Ice			
	Service:	ervice: 60 Mph		
STRUCTURE CRITERIA	Structure Classification: Class II			
	Exposure Categ	gory: 'C' - Topographic Category: 1		

Appurtenances Configuration

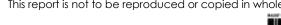

The following appurtenances configuration is denoted by the <u>summation of Tables 1 & 2</u>:

Table 1: Tenant with Changed Condition Appurtenances Configuration

Elev (ft)	Tenant	Ants Qty	Appurtenance Model / Description	Mount Description	Lines Qty	Line size & Location
135	AT&T	3	RRUS-32 B2 Boxes	[Onto Close Contact Mount]		
			Current Appurtenance	ces To Remain		
135	AT&T	6	7770.00 Panel Antennas	(3) LP T-Arm Mounts	12	1-5/8"
		1	HPA-65R-BUU-H8 Panel Antenna	tenna		5/8" DC Power
			HPA-65R-BUU-H6 Panel Antennas	<u>]</u>	1	3/8" Fiber-(I)
6		6 LGP21401 TMAs				
		3	DTMABP7819VG12A Twin TMAs		_	
		3	RRUS-11 Boxes	Close Contact Mount	7	
	1 Raycap DC6-48-60-18-8F Suppressor					
			Current Appurtenances	To Be Removed		
135	AT&T	3	RRUS-12 w/ A2 Backpack			

Table 2: Remaining Tenants Current and Reserved/Future Appurtenances

Elev (ft)	Tenant	Ants Qty	Appurtenance Model / Description	Mount Description	Lines Qty	Line size & Location
		1	Lightning Rod			
175	Town	4	PD220 Omni Antennas	LP Platform Mount	4	1-5/8" -(I)
		1	1ft Square Panel Antenna	(w/ Empty Pipes)	1	1/2" -(I)
		1	2ft Dia. Dish w/ Radome		1	1/2" -(I)
155	Sprint	2	RR65-18-02DP Panel Antennas	LP Platform Mount	4	Hybrid Cables-
		1	RR45-19-02DPL4 Panel Antenna			(1)
		1	APXVSPP18-C-A20 Panel Antenna			
		2	P40-16-XLPP-RR Panel Antennas			
		3	APXVTM14-C-120 Panel Antennas		_]	
		3	ALU-RRH 8x20 Boxes	Close Contact Mount	1	
		3	1900 Mhz – RRH Boxes			
		3	800 Mhz – RRH Boxes			
145	T-Mobile	3	LNX-6515DS-VTM Panel Antennas	(3) LP T-Arm Mounts	18	1-5/8"
		3	AIR21 B2A B4P Panel Antennas		1	HiCap Hybrid
		3	RRUS-11 Boxes			Cable-(I)
		3	AIR21 B4A B2P Panel Antennas			
		3	TMAs			
125	VzW	6	BXA-171085-12CF-EDIN-X Panel Ants.	(3) LP T-Arm Mounts	18	1-5/8"
		6	LPA-80080-6CF-x Panel Antennas		1	1-1/4" (6x12)
		3	BXA-70063-6CF Panel Antennas			Hybrid
		3	ALU-RRH 2x60 Boxes			(HFT1206-
		1	RxxDC-3315-PF-48 OVP Box			24S49-xxx) or Equiv(I)
100	Town	1	PD220 Omni Antenna	Standoff Arm w/ Collar Mount	1	1-5/8" -(I)
85	Sprint	3	GPS Antenna	Chain Collar Mount	3	1/2"-(I)

Notes:

- 1. **As per 2012 IBC for ultimate 3-sec gust wind speed converted to nominal 3-sec gust wind speed as per Sect. 1609.3.1 as required to be used in ANSI/TIA-222-G Standard per exception 5 of Sect. 1609.1.1.
- 2. All elevations are measured from tower base.
- 3. Please note appurtenances not listed above are to be removed/not present as per data supplied.
- 4. (I) = Internal; (E) = External; (FZ) = Within Face Zone; (OFZ) = Outside Face Zone as per TIA-222-G.
- 5. The above appurtenances represent MEI's understanding of the appurtenances configuration. If different than above, the analysis is invalid. Please contact MEI if any discrepancies are found.

4. ANALYSIS PROCEDURE

The subject structure is analyzed for feasibility of the installation of the proposed changed condition previously noted. The data records furnished were reviewed and a computer stress analysis was performed in accordance with the TIA-222 Standard provisions and with the agreed scope of work terms and the results of this analysis are reported.

Analysis Program

The computer program used to model the structure is a rigorous Finite Element Analysis program, tnxTower (ver. 7.07), a commercially available program by Tower Numerics Inc. The latticed structures members are modeled using beam/truss and cable members and the pole members using tubular beam elements. The structural parameters and geometry of the members are included in the model. The dead and temperature loads and the wind loads are internally calculated by the program for the different wind directions and then applied as external loads on the structure. Any applicable exemptions, as per Section 15.6 of the TIA-222-G Standard for existing structures originally designed in accordance with a previous revision of the TIA-222 Standard, have been taken.

Assumptions

This engineering study is based on the theoretical capacity of the members and is not a condition assessment of the structure. This analysis is based on information supplied, and therefore, its results are based on and as accurate as that supplied data. MEI has made no independent determination, nor is it required to, of its accuracy. The following assumptions were made for this structural stress analysis:

- This existing tower is assumed, for the purpose of this analysis, to have been properly maintained and to be in good condition with no structural defects and with no deterioration to its member capacities ('asnew' condition).
- The tower member sizes and configuration are considered accurate as supplied. The material grade is as per data supplied and/or as assumed and as stated.
- The appurtenances configuration is as supplied and/or as stated in the report. It is assumed to be complete and accurate. All antennas, mounts, coax and waveguides are assumed to be properly installed and supported as per manufacturer requirements.
- Some assumptions are made regarding antennas and mounts sizes and their projected areas based on best interpretation of data supplied and of best knowledge of antenna type & industry practice.
- Mounts/Platforms are considered adequate to support the loading. No actual analysis of the platform/mount itself is performed, with the analysis being limited to analyzing the structure.
- The soil parameters are as per data supplied or as assumed and stated in the calculations. Refer to the Appendix. If no data is available, the foundation system is assumed to support the structure with its new reactions.
- All welds and connections are assumed to develop at least the member capacity, unless determined otherwise and explicitly stated in this report.
- All prior structural modifications, if any, are assumed to be as per data supplied/available, and to have been properly installed and to be fully effective.

If any of the above assumptions are not valid or have been made in error, this analysis results may be invalided, MEI should be contacted to review any contradictory information to determine its effect.

5. ANALYSIS RESULTS

The results of the structural stress analysis based on data available and with the previous listed criteria, indicated the following:

Table 3: Stress Analysis Results

Component Type	Maximum Stress Ratio	Controlling Elev. (ft) / Component	• • • • • • • • • • • • • • • • • • • •	
POLE	73.7%	41 - 0	Pass	
REINFORCING	68.9%	5-0	Pass	
BASE PLATE	71.5%	Bending	Pass	For effective Moment After reinforcement
ANCHOR RODS	52.8%	Combined	Pass	
FOUNDATION	56.3%	Overturning Moment	Pass	No geotechnical report provided – soil parameters as per URS 02/16/2004 analysis report.

Table 4: Serviceability Requirements

	Maximum Value	TIA Requirement (10dB)	Pass/Fail	Comment
Twist/Sway	1.1838 Deg.	1.8568 Deg.	Pass	2' Dia. Dish w/ Radome Elev. 175.00ft
	1.1838 Deg.	4 Deg. from Vert. or Horiz. Axis	Pass	
HORIZONTAL DISPLACEMENT	25.028 ln./ 1.19% of Ht.	3.0% of Height	Pass	

Notes:

- 1. The Maximum Stress Ratio is the percentage that the maximum load in the member is relative to the allowable load as determined by Code requirements.
- 2. Refer to the Appendix 1 for more details on the member loads.
- 3. A maximum stress ratio between 100% and 105% may be considered as Acceptable according to industry standard practice.

6. FINDINGS & RECOMMENDATIONS

- Based on the rigorous stress analysis results, the subject structure is **rated at 73.7%** of its support capacity (controlling component: Pole) with the proposed changed condition considered. Please refer to Table 3 and to Appendix 1 for more details of the analysis results.
- Based on the stress analysis performed, the existing structure is in conformance with the IBC / ANSI/TIA 222-G Standard for the loading considered under the criteria listed and referenced in the report sections.
- Please note that no geotechnical data is available. However based on soil parameters obtained from URS analysis report dated 02/16/2004 and comparison of new reactions with the design reactions, the foundation is considered acceptable.
- The installation of the proposed changed condition as noted in Table 1 is structurally acceptable. Please refer to Appendix 1 for Schematic Lines Layout.
- This structure has limited additional support capacity for the appurtenances and loading criteria considered. However, no changes to the configuration considered should be made without performing a new proper evaluation.

Rigging and temporary supports required for the erection/modification shall be determined, documented, furnished and installed by the erector/contractor accounting for the loads imposed on the structure due to the proposed construction method.

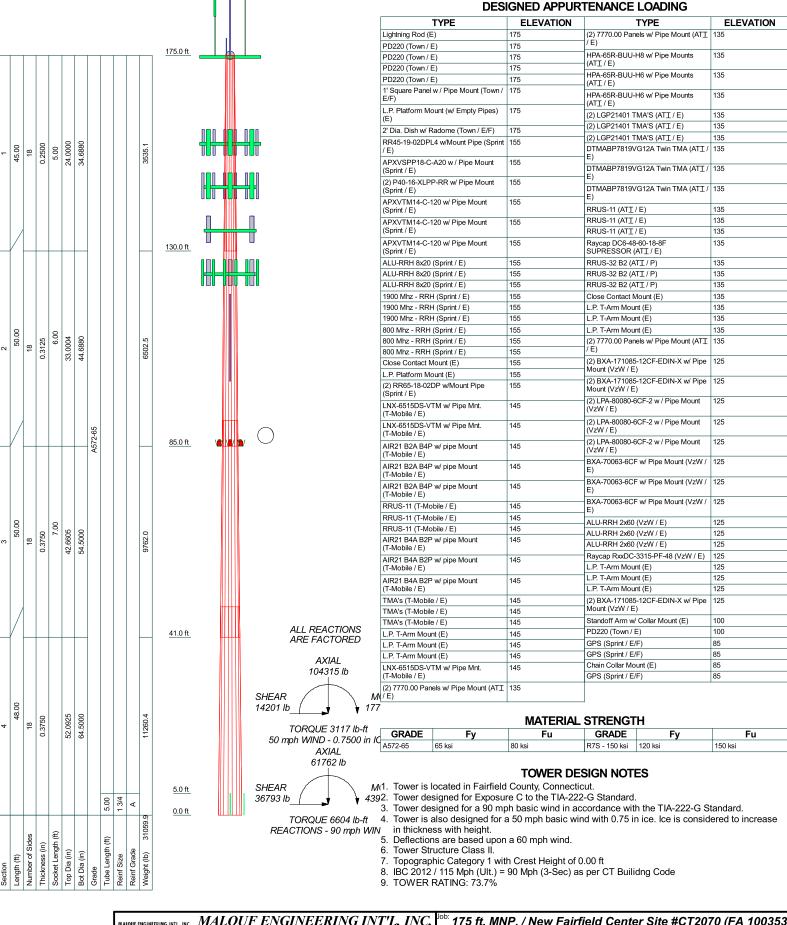
7. REPORT DISCLAIMER

The engineering services rendered by **M**alouf **E**ngineering International, Inc. ('MEI') in connection with this Structural Analysis are limited to a computer analysis of the tower structure, size and capacity of its members. MEI does not analyze the fabrication, including welding and connection capacities, except as included in this Report.

The analysis performed and the conclusions contained herein are based on the assumption that the tower has been properly installed and maintained, including, but not limited to the following:

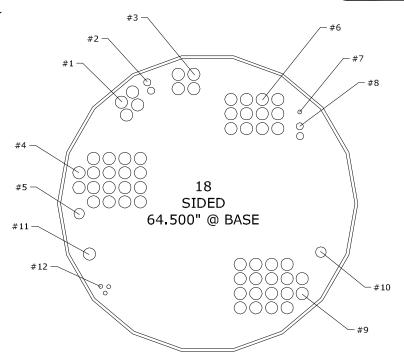
- 1. Proper alignment and plumbness.
- 2. Correct guy tensions, as applicable.
- 3. Correct bolt tightness or slip jacking of sleeved connections.
- 4. No significant deterioration or damage to any structural component.

Furthermore, the information and conclusions contained in this Report were determined by application of the current "state-of-the-art" engineering and analysis procedures and formulae. Malouf Engineering International, Inc. assumes no obligation to revise any of the information or conclusions contained in this Report in the event that such engineering and analysis procedures and formulae are hereafter modified or revised. In addition, under no circumstances will Malouf Engineering International, Inc. have any obligation or responsibility whatsoever for or on account of consequential or incidental damages sustained by any person, firm or organization as a result of any information or conclusions contained in the Report, and the maximum liability of Malouf Engineering International, Inc., if any, pursuant to this Report shall be limited to the total funds actually received by Malouf Engineering International, Inc., for preparation of this Report.


Customer has requested MALOUF ENGINEERING INTERNATIONAL, Inc. to prepare and submit to Customer an engineering analysis with respect to the Subject Tower and has further requested MALOUF ENGINEERING INTERNATIONAL, Inc. to make appropriate recommendations regarding suggested structural modifications and changes to the Subject Tower. In making such request of MALOUF ENGINEERING INTERNATIONAL, Inc., Customer has informed MALOUF ENGINEERING INTERNATIONAL, Inc. that Customer will make a determination as to whether or not to implement any of the changes or modifications which may be suggested by MALOUF ENGINEERING INTERNATIONAL, Inc. and that Customer will have any such changes or modifications made by riggers, erectors and other subcontractors of Customer's choice. MALOUF ENGINEERING INTERNATIONAL, Inc. shall have the right to rely upon the accuracy of the information supplied by the customer and shall not be held responsible for the Customer's misrepresentation or omission of relevant fact whether intentional or otherwise.

Customer hereby agrees and acknowledges that MALOUF ENGINEERING INTERNATIONAL, INC. shall have no liability whatsoever to Customer or to others for any work or services performed by any persons other than MALOUF ENGINEERING INTERNATIONAL, INC. in connection with the implementation of services including but not limited to any services rendered for Customer or for others by riggers, erectors or other subcontractors. Customer acknowledges and agrees that any riggers, erectors or subcontractors retained or employed by Customer shall be solely responsible to Customer and to others for the quality of work performed by them and that MALOUF ENGINEERING INTERNATIONAL, INC. shall have no liability or responsibility whatsoever as a result of any negligence or breach of contract by any such rigger, erector or subcontractor and that Customer and rigger, erector, or subcontractor will provide MALOUF ENGINEERING INTERNATIONAL, INC. with a Certificate of Insurance naming MALOUF ENGINEERING INTERNATIONAL, INC. as additional insured.

APPENDIX 1 - ANALYSIS PRINTOUT & GRAPHICS



MALOUF ENGINEERING INT'L. INC. 17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 maloufengineering.com Phone: (972) 783-2578 FAX: (972) 783-2583 MALOUF ENGINEERING INT'L. INC. 17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583 Date: 11/02/16 Path: CMEPPOGENSI 1113M-16/00 T01113M-16/00 T011113M-16/00 T01113M-16/00 T01113M-16/00 T01113M-16/00 T01113M-16/00 T011113M-16/00 T01113M-16/00

No.	QTY.	DESCRIPTION	ELEV.	TENANT
1	4	1 5/8	175'	Town / E
2	2	1/2	175'	Town / E
3	4	Hybrid Cab l e	155'	Sprint / E
4	18	1 5/8	145'	T-Mobile / E
5	1	HiCap Hybrid Cab l e	145'	T-Mobile / E
6	12	1 5/8	135'	AT&T / E
7	1	3/8 Fiber Cable	135'	AT&T / E
8	2	7/8" DC Power Cable	135'	AT&T / E
9	18	1 5/8	125'	VzW / E
10	1	1-1/4" (6x12) Hybrid or Equiv.	125'	VzW / E
11	1	1 5/8	100'	E
12	3	1/2	85'	Sprint / E

LEGEND:

NOTE: LINE LAYOUT IS SCHEMATIC AND FOR ILLUSTRATION PURPOSES ONLY.
ACTUAL LINE LOCATIONS WILL VARY WITHIN POLE SHAFT.

ig(101ig)

PLAN: SCHEMATIC Tx-LINE LAYOUT

SCALE: NOT TO SCALE

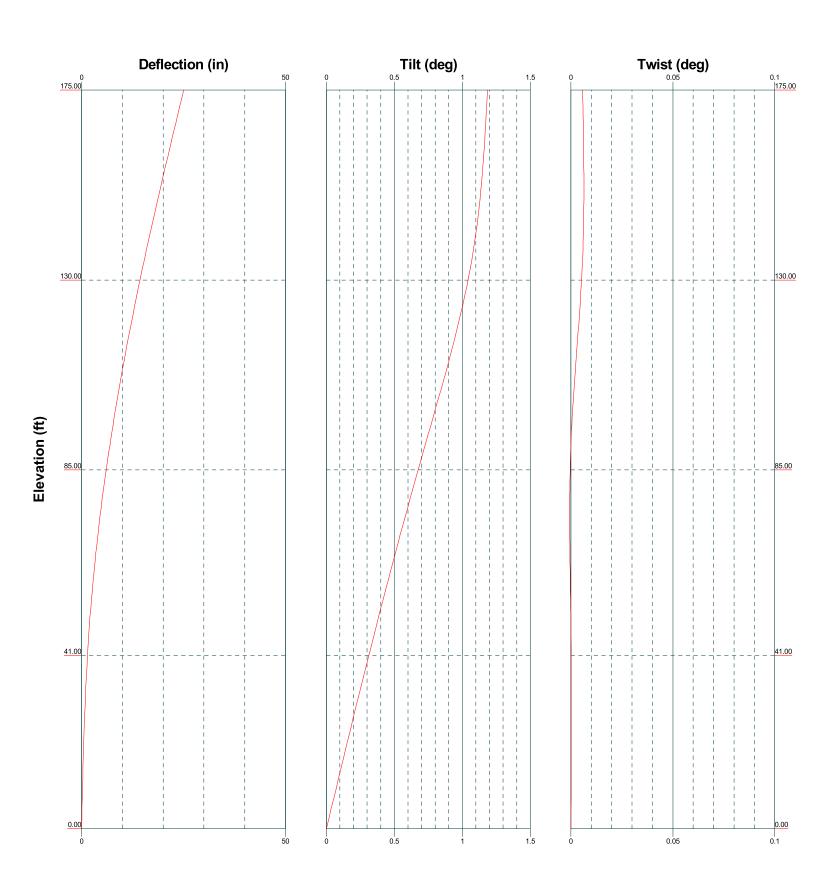
NOTES:

- 1. TX LINE LAYOUT IS SCHEMATIC ONLY, BASED UPON LIMITED DATA PROVIDED.
- . NEW BRACKET SUPPORT SPECIFICATION BY OTHERS.

NOV 02, 2016

17950 PRESTON ROAD SUITE 720 DALLAS, TEXAS 75252—5635 972—783—2578 (fax: 2583) www.maloufengineering.com

175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)


MONOPOLE TXLINE LAYOUT

MEI PROJECT ID SHEET NUMBER REV.

CT01113M-16V0 L01 0

© MEI, INC. 2016

. 2016 CT01

MALOUF ENGINEERING INT'L. INC.
17950 PRESTON RD. SHITE 720

FAX: (972) 783-2583

17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 Phone: (972) 783-2578

^{Job:} 175 ft. MNP. / New Fairfield	l Center Site	#CT2070 (FA	1003531
Project: CT01113M-16V0			
^{Client:} Vertical Resources Group / AT&T	Drawn by: HLopez	App'd:	
^{Code:} TIA-222-G	Date: 11/02/16	Scale: NTS	
Dethi		Dug No	

tnxTower	Јоь 175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)	Page 1 of 10
MALOUF ENGINEERING INT'L. INC. 17950 PRESTON RD. SUITE 720	Project CT01113M-16V0	Date 10:47:29 11/02/16
DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583	Client Vertical Resources Group / AT&T	Designed by HLopez

Tower Input Data

There is a pole section.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Fairfield County, Connecticut.

Basic wind speed of 90 mph.

Structure Class II.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 50 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

IBC 2012 / 115 Mph (Ult.) = 90 Mph (3-Sec) as per CT Builidng Code.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

	Pole Reinforcing Data										
Height Above Base ft	Segment Length ft	No. of Segments	Offset in	Grade	Туре	Size	Unbraced Length ft	K	Bolt Hole Dia. in	Bolts per Row	Shear Lag Factor U
0.00	5.00	4	6.0000	R7S - 150 ksi (120 ksi)	Solid Round	1 3/4	2.50	0.80	0.0000	0	0.000

MALOUF ENGINEERING INT'L. INC.

17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job	Page
175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)	2 of 10
Project CT01113M-16V0	Date 10:47:29 11/02/16
Client Vertical Resources Group / AT&T	Designed by HLopez

Feed Line/Linear Appurtenances - Entered As Area

Description	Component Type	Placement	Total Number
		ft	
Safety Line 3/8	CaAa (Out Of Face)	175.00 - 0.00	1
(E)			
Step Bolts	CaAa (Out Of Face)	175.00 - 0.00	1
(E)			
1 5/8	Inside Pole	175.00 - 0.00	4
(Town / E)			
1/2	Inside Pole	175.00 - 0.00	2
(Town / E)			
Hybrid Cable	Inside Pole	155.00 - 0.00	4
(Sprint / E)			
1 5/8	Inside Pole	145.00 - 0.00	18
(T-Mobile / E)			
HiCap Hybrid Cable	Inside Pole	145.00 - 0.00	1
(T-Mobile / E)			
1 5/8	Inside Pole	135.00 - 0.00	12
(AT&T / E)			
3/8 Fiber Cable	Inside Pole	135.00 - 0.00	1
(AT&T / E)			
7/8" DC Power Cable	Inside Pole	135.00 - 0.00	2
(AT&T / E)			
1 5/8	Inside Pole	125.00 - 0.00	18
(VzW / E)			
1-1/4" (6x12) Hybrid (HFT1206-	Inside Pole	125.00 - 0.00	1
24S49-xxx) or Equiv.			
(VzW / E)			
1 5/8	Inside Pole	100.00 - 0.00	1
(E)			
1/2	Inside Pole	85.00 - 0.00	3
(Sprint / E)			

MALOUF ENGINEERING INT'L. INC.

17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
	175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)	3 of 10
Proj	CT01113M-16V0	Date 10:47:29 11/02/16
Clie	nt Vertical Resources Group / AT&T	Designed by HLopez

Discrete Tower Loads

		0.00				0.00	
Description	Face	Offset	Placement	Description	Face	Offset	Placement
	or	Туре	Ω		or	Туре	Ω
I intento - D - I	Leg	Г Г	ft	I. D. Dlatfarm Manut	Leg	Ni	ft
Lightning Rod	Α	From Face	175.00	L.P. Platform Mount	A	None	155.00
(E)		т т	175.00	(E) ***** Blank Line *****			
PD220	Α	From Leg	175.00	Didnik Eme		Б Б	145.00
(Town / E)		г т	175.00	LNX-6515DS-VTM w/ Pipe	Α	From Face	145.00
PD220	Α	From Leg	175.00	Mnt.			
(Town/E)	_			(T-Mobile / E)	_		
PD220	В	From Leg	175.00	LNX-6515DS-VTM w/ Pipe	В	From Face	145.00
(Town / E)				Mnt.			
PD220	C	From Leg	175.00	(T-Mobile / E)	_		
(Town / E)				LNX-6515DS-VTM w/ Pipe	С	From Face	145.00
1' Square Panel w / Pipe	С	From Leg	175.00	Mnt.			
Mount				(T-Mobile / E)			
(Town / E/F)				AIR21 B2A B4P w/ pipe	Α	From Face	145.00
L.P. Platform Mount (w/	Α	None	175.00	Mount			
Empty Pipes)				(T-Mobile / E)			
(E)				AIR21 B2A B4P w/ pipe	В	From Face	145.00
**** Blank Line *****				Mount			
(2) RR65-18-02DP w/Mount	A	From Face	155.00	(T-Mobile / E)			
Pipe				AIR21 B2A B4P w/ pipe	C	From Face	145.00
(Sprint / E)				Mount			
RR45-19-02DPL4 w/Mount	В	From Face	155.00	(T-Mobile / E)			
Pipe				RRUS-11	Α	From Face	145.00
(Sprint / E)				(T-Mobile / E)			
APXVSPP18-C-A20 w / Pipe	В	From Face	155.00	RRUS-11	В	From Face	145.00
Mount		11011111400	100.00	(T-Mobile / E)		11011111400	1 12100
(Sprint / E)				RRUS-11	С	From Face	145.00
2) P40-16-XLPP-RR w/ Pipe	C	From Face	155.00	(T-Mobile / E)	Č	11011111400	1 15.00
Mount		1 Tom 1 acc	133.00	AIR21 B4A B2P w/ pipe	Α	From Face	145.00
(Sprint / E)				Mount	71	1 Iom 1 acc	145.00
APXVTM14-C-120 w/ Pipe	Α	From Face	155.00	(T-Mobile / E)			
Mount	Λ.	1 Ioiii 1 acc	133.00	AIR21 B4A B2P w/ pipe	В	From Face	145.00
(Sprint / E)				Mount	Ь	110m race	145.00
APXVTM14-C-120 w/ Pipe	В	From Face	155.00	(T-Mobile / E)			
Mount	ь	rioiii race	155.00	AIR21 B4A B2P w/ pipe	С	From Face	145.00
(Sprint / E)				* *	C	rioiii race	145.00
	C	Enom Eooo	155.00	Mount			
APXVTM14-C-120 w/ Pipe	С	From Face	155.00	(T-Mobile / E)		F	145.00
Mount				TMA's	Α	From Face	145.00
(Sprint / E)		E E	155.00	(T-Mobile / E)	ъ.	F F	145.00
ALU-RRH 8x20	Α	From Face	155.00	TMA's	В	From Face	145.00
(Sprint / E)	_			(T-Mobile / E)	~		
ALU-RRH 8x20	В	From Face	155.00	TMA's	С	From Face	145.00
(Sprint / E)				(T-Mobile / E)			
ALU-RRH 8x20	С	From Face	155.00	L.P. T-Arm Mount	Α	From Face	145.00
(Sprint / E)				(E)			
1900 Mhz - RRH	Α	From Face	155.00	L.P. T-Arm Mount	В	From Face	145.00
(Sprint / E)				(E)			
1900 Mhz - RRH	В	From Face	155.00	L.P. T-Arm Mount	C	From Face	145.00
(Sprint / E)				(E)			
1900 Mhz - RRH	C	From Face	155.00	***** Blank Line *****			
(Sprint / E)				(2) 7770.00 Panels w/ Pipe	Α	From Leg	135.00
800 Mhz - RRH	Α	From Face	155.00	Mount		-	
(Sprint / E)				(AT&T / E)			
800 Mhz - RRH	В	From Face	155.00	(2) 7770.00 Panels w/ Pipe	A	From Leg	135.00
(Sprint / E)				Mount		- 3	
800 Mhz - RRH	C	From Face	155.00	(AT&T / E)			
(Sprint / E)	-			(2) 7770.00 Panels w/ Pipe	Α	From Leg	135.00
Close Contact Mount	Α	None	155.00	Mount		 5	122.00
(E)	. 1	1,0110	155.00	(AT&T / E)			
(L)				(A1&1 / L)			

MALOUF ENGINEERING INT'L. INC.

17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
	175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)	4 of 10
Proj	ect CT01113M-16V0	Date 10:47:29 11/02/16
Clie	nt	Designed by

HLopez

Vertical Resources Group / AT&T

Description	Face	Offset	Placement	Description	Face	Offset	Placement
Description	or	Туре	1 tacement	Description	or	Туре	1 iucemeni
	Leg	Type	ft		Leg	Type	ft
HPA-65R-BUU-H8 w/ Pipe	A	From Leg	135.00	EDIN-X w/ Pipe Mount			
Mounts				(VzW/E)			
(AT&T / E)				(2) BXA-171085-12CF-	С	From Leg	125.00
HPA-65R-BUU-H6 w/ Pipe	В	From Leg	135.00	EDIN-X w/ Pipe Mount			
Mounts				(VzW/E)			
(AT&T / E)				(2) LPA-80080-6CF-2 w /	Α	From Leg	125.00
HPA-65R-BUU-H6 w/ Pipe	С	From Leg	135.00	Pipe Mount			
Mounts		J		(VzW / E)			
(AT&T / E)				(2) LPA-80080-6CF-2 w /	В	From Leg	125.00
(2) LGP21401 TMA'S	Α	From Leg	135.00	Pipe Mount		C	
(AT&T / E)		C		(VzW / E)			
(2) LGP21401 TMA'S	В	From Leg	135.00	(2) LPA-80080-6CF-2 w /	C	From Leg	125.00
(AT&T / E)		Č		Pipe Mount		Č	
(2) LGP21401 TMA'S	C	From Leg	135.00	(VzW / E)			
(AT&T / E)		Č		BXA-70063-6CF w/ Pipe	A	From Leg	125.00
DTMABP7819VG12A Twin	Α	From Leg	135.00	Mount		C	
TMA				(VzW / E)			
(AT&T / E)				BXA-70063-6CF w/ Pipe	В	From Leg	125.00
DTMABP7819VG12A Twin	В	From Leg	135.00	Mount			
TMA		•		(VzW / E)			
(AT&T / E)				BXA-70063-6CF w/ Pipe	C	From Leg	125.00
DTMABP7819VG12A Twin	C	From Leg	135.00	Mount		_	
TMA				(VzW / E)			
(AT&T / E)				ALU-RRH 2x60	A	From Leg	125.00
RRUS-11	Α	From Face	135.00	(VzW / E)			
(AT&T / E)				ALU-RRH 2x60	В	From Leg	125.00
RRUS-11	В	From Face	135.00	(VzW / E)			
(AT&T / E)				ALU-RRH 2x60	C	From Leg	125.00
RRUS-11	C	From Face	135.00	(VzW / E)			
(AT&T / E)				Raycap RxxDC-3315-PF-48	A	From Leg	125.00
Raycap DC6-48-60-18-8F	В	From Face	135.00	(VzW / E)			
SUPRESSOR				L.P. T-Arm Mount	Α	From Leg	125.00
(AT&T / E)				(E)			
RRUS-32 B2	A	From Face	135.00	L.P. T-Arm Mount	В	From Leg	125.00
(AT&T / P)				(E)			
RRUS-32 B2	В	From Face	135.00	L.P. T-Arm Mount	C	From Leg	125.00
(AT&T / P)				(E)			
RRUS-32 B2	С	From Face	135.00	***** Blank Line *****			
(AT&T/P)				PD220	Α	From Leg	100.00
Close Contact Mount	Α	None	135.00	(Town / E)			
(E)				Standoff Arm w/ Collar	Α	None	100.00
L.P. T-Arm Mount	Α	From Face	135.00	Mount			
(E)				(E)			
L.P. T-Arm Mount	В	From Face	135.00	GPS	A	From Leg	85.00
(E)				(Sprint / E/F)			
L.P. T-Arm Mount	С	From Face	135.00	GPS	В	From Leg	85.00
(E)				(Sprint / E/F)			
***** Blank Line *****				GPS	С	From Leg	85.00
(2) BXA-171085-12CF-	A	From Leg	125.00	(Sprint / E/F)			
EDIN-X w/ Pipe Mount				Chain Collar Mount	В	None	85.00
(VzW / E)				(E)			
(2) BXA-171085-12CF-	В	From Leg	125.00				

MALOUF ENGINEERING INT'L. INC.

17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job	175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)	Page 5 of 10
Proj	,	Date 10:47:29 11/02/16
Clie	nt Vertical Resources Group / AT&T	Designed by HLopez

Dishes

Description	Dish Type	Elevation	Outside Diameter
		ft	ft
2' Dia. Dish w/ Radome	Paraboloid w/Radome	175.00	2.00
(Town / E/F)			

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, Mz	Torque
Comoination	lb	lb	lb	lb-ft	lb-ft	lb-ft
Dead Only	51467.98	0.00	-0.00	-1340.41	-134.19	0.00
1.2 Dead+1.6 Wind 0 deg - No	61761.34	32.76	-36764.90	-4393737.98	-6156.19	398.64
Ice	01/01.54	32.70	-30704.90	-4393131.96	-0150.19	370.04
0.9 Dead+1.6 Wind 0 deg - No	46321.03	32.77	-36766.42	-4348360.90	-6035.95	402.08
Ice	40321.03	32.11	-30700.42	-4546500.90	-0033.93	402.08
1.2 Dead+1.6 Wind 30 deg - No	61761.57	18121.37	-31847.36	-3806669.44	-2159473.66	-2974.85
Ice	01701.57	16121.57	-51047.50	-3000009.44	-2139473.00	-2914.03
0.9 Dead+1.6 Wind 30 deg - No	46321.18	18121.42	-31847.44	-3767104.97	-2137235.74	-2954.91
Ice	40321.10	10121.42	-51047.44	-3/0/104.9/	-2137233.74	-2934.91
1.2 Dead+1.6 Wind 60 deg - No	61761.58	31334.98	-18385.02	-2198136.21	-3730712.29	-5512.94
Ice	01/01.36	31334.96	-10303.02	-2190130.21	-3/30/12.29	-3312.94
	46321.18	31334.92	-18384.99	-2175098.97	-3692328.13	-5481.57
0.9 Dead+1.6 Wind 60 deg - No Ice	40321.16	31334.92	-10304.99	-21/3098.97	-3092328.13	-3461.37
	61761.55	36163.75	-12.19	-3889.10	-4304452.12	-6604.35
1.2 Dead+1.6 Wind 90 deg - No Ice	01/01.55	30103.73	-12.19	-3009.10	-4304432.12	-0004.55
0.9 Dead+1.6 Wind 90 deg - No	46321.13	36163.22	-12.19	-3418.18	-4260117.88	-6569.91
ē	40321.13	30103.22	-12.19	-3418.18	-4200117.88	-0309.91
Ice	(17(1.57	21225 (0	19277.54	2101601.06	2720011 00	50(7.25
1.2 Dead+1.6 Wind 120 deg -	61761.57	31325.69	18367.54	2191601.06	-3729011.88	-5967.35
No Ice	46221 10	21225.76	10267.50	21.60500.00	2600670.21	5020.20
0.9 Dead+1.6 Wind 120 deg -	46321.18	31325.76	18367.59	2169508.09	-3690679.31	-5939.20
No Ice	(17(1.50	10005.00	21052.27	2004177 11	2152072 20	2607.62
1.2 Dead+1.6 Wind 150 deg -	61761.58	18085.89	31852.27	3804177.11	-2152973.39	-3697.62
No Ice	46221 10	10005.05	21052.21	2765492.72	2120015.06	2692.62
0.9 Dead+1.6 Wind 150 deg -	46321.18	18085.85	31852.21	3765483.73	-2130815.96	-3683.62
No Ice	(17(1.24	22.76	26701.54	4205160 10	5016.71	262.41
1.2 Dead+1.6 Wind 180 deg -	61761.34	-32.76	36791.54	4395169.19	5816.71	-362.41
No Ice	46221.02	22.76	26702.06	4250(40.69	5797.00	266.27
0.9 Dead+1.6 Wind 180 deg -	46321.03	-32.76	36793.06	4350640.68	5786.09	-366.37
No Ice	61761.50	10142.65	21005.05	2010120 41	21 (2000 21	2056.66
1.2 Dead+1.6 Wind 210 deg -	61761.58	-18142.65	31885.05	3810138.41	2162990.21	3056.66
No Ice	46221 10	10142 (1	2100400	2771270.02	2140701.04	2025.00
0.9 Dead+1.6 Wind 210 deg -	46321.18	-18142.61	31884.98	3771370.83	2140791.94	3035.99
No Ice	(17(1.57	21250 46	10424.20	220105622	2724622.00	5560.04
1.2 Dead+1.6 Wind 240 deg -	61761.57	-31358.46	18424.30	2201956.32	3734632.98	5568.94
No Ice	46221 10	21250.54	10424.25	2170722 15	2606216.20	5527.27
0.9 Dead+1.6 Wind 240 deg -	46321.18	-31358.54	18424.35	2179733.15	3696316.28	5537.37
No Ice	61761 40	2616262	52.24	0005.20	1202027.02	6560.10
1.2 Dead+1.6 Wind 270 deg -	61761.49	-36162.62	53.34	8085.28	4303937.92	6569.10
No Ice	46221.12	26162.22	52.25	0405.54	1050064.50	6525.12
0.9 Dead+1.6 Wind 270 deg -	46321.13	-36163.22	53.35	8405.54	4259864.70	6535.13
No Ice	61561.50	21202 21	100000	210555	252442545	E084 45
1.2 Dead+1.6 Wind 300 deg -	61761.58	-31302.21	-18328.26	-2187776.98	3724405.42	5876.43
No Ice			105-5			
0.9 Dead+1.6 Wind 300 deg -	46321.18	-31302.15	-18328.23	-2164870.96	3686186.54	5849.01

MALOUF ENGINEERING INT'L. INC.

 $17950\ PRESTON\ RD.\ SUITE\ 720$ DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
	175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)	6 of 10
Projec	ct CT01113M-16V0	Date 10:47:29 11/02/16
Client	t Vertical Resources Group / AT&T	Designed by

HLopez

Load	Vertical	$Shear_x$	$Shear_z$	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	lb	lb	lb	lb-ft	lb-ft	lb-ft
No Ice						
1.2 Dead+1.6 Wind 330 deg -	61761.57	-18064.61	-31814.59	-3800704.28	2148776.15	3652.47
No Ice						
0.9 Dead+1.6 Wind 330 deg -	46321.18	-18064.66	-31814.67	-3761214.93	2126758.82	3638.67
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	104314.65	-0.05	0.65	-9363.17	-650.33	-0.48
1.2 Dead+1.0 Wind 0 deg+1.0	104314.63	5.44	-14194.55	-1772727.70	-1749.43	46.69
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 30 deg+1.0	104314.63	7069.29	-12292.47	-1536459.62	-877961.24	-1525.38
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 60 deg+1.0	104314.65	12234.50	-7095.19	-890814.20	-1518240.59	-2676.03
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	104314.63	14123.69	-0.26	-9754.81	-1752305.67	-3117.05
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	104314.63	12234.53	7095.39	871439.01	-1518212.96	-2736.20
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	104314.63	7065.20	12296.48	1517824.92	-877124.33	-1616.52
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 180	104314.63	-5.44	14201.26	1754625.77	401.91	-44.93
deg+1.0 Ice+1.0 Temp				-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1.2 Dead+1.0 Wind 210	104314.63	-7074.62	12301.92	1518900.01	877639.57	1537.59
deg+1.0 Ice+1.0 Temp	10 151 1105	7071.02	12301.52	1210900.01	077003.07	1007.00
1.2 Dead+1.0 Wind 240	104314.63	-12239.97	7104.81	873301.90	1517940.63	2688.08
deg+1.0 Ice+1.0 Temp	10 151 1.05	12237.71	7101.01	075501.50	1317310.03	2000.00
1.2 Dead+1.0 Wind 270	104314.63	-14123.69	10.62	-7603.46	1750958.57	3113.44
deg+1.0 Ice+1.0 Temp	101311.03	11123.09	10.02	7003.10	1750750.57	3113.11
1.2 Dead+1.0 Wind 300	104314.65	-12229.07	-7085.77	-888951.63	1515818.25	2719.60
deg+1.0 Ice+1.0 Temp	10 151 1.05	12225.07	7005.77	000751.05	1313010.23	2715.00
1.2 Dead+1.0 Wind 330	104314.63	-7059.88	-12287.03	-1535385.00	874751.16	1605.16
deg+1.0 Ice+1.0 Temp	104314.03	-7037.00	-12207.03	-1555565.00	0/4/31.10	1005.10
Dead+Wind 0 deg - Service	51467.97	8.14	-9137.70	-1086565.34	-1619.92	97.01
Dead+Wind 30 deg - Service	51467.97	4503.41	-7914.50	-941365.89	-533555.24	-745.55
Dead+Wind 60 deg - Service	51467.97	7787.13	-4568.90	-543997.57	-921678.55	-1375.26
Dead+Wind 90 deg - Service	51467.97	8987.29	-3.03	-1966.42	-1063421.32	-1643.35
		7784.86	-3.03 4564.58		-1003421.32 -921270.26	-1484.24
Dead+Wind 120 deg - Service	51467.97			540377.33		
Dead+Wind 150 deg - Service	51467.97	4494.57	7915.69	938742.81	-531955.68	-922.23 -94.82
Dead+Wind 180 deg - Service	51467.97	-8.14	9144.32	1084924.11	1334.47	
Dead+Wind 210 deg - Service	51467.97	-4508.67	7923.83	940219.56	534228.55	757.19
Dead+Wind 240 deg - Service	51467.97	-7793.00	4578.69	542935.62	922461.49	1387.21
Dead+Wind 270 deg - Service	51467.97	-8987.29	13.26	987.98	1063135.65	1641.15
Dead+Wind 300 deg - Service	51467.97	-7778.99	-4554.80	-541439.10	919916.09	1470.09
Dead+Wind 330 deg - Service	51467.97	-4489.30	-7906.35	-939888.97	530711.36	912.78

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	175 - 130	25.028	39	1.1838	0.0072
L2	135 - 85	15.441	39	1.0692	0.0058
L3	91 - 41	6.948	39	0.7270	0.0024
L4	48 - 0	1.914	39	0.3694	0.0009

MALOUF ENGINEERING INT'L. INC.

17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
	175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)	7 of 10
Proje	ect CT01113M-16V0	Date 10:47:29 11/02/16
Clier	vertical Resources Group / AT&T	Designed by HLopez

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	٥	ft
175.00	2' Dia. Dish w/ Radome	39	25.028	1.1838	0.0072	80278
				(3 dB)	(3 dB)	
				1.8568	1.8568	
155.00	(2) RR65-18-02DP w/Mount Pipe	39	20.115	1.1446	0.0067	20069
145.00	LNX-6515DS-VTM w/ Pipe Mnt.	39	17.733	1.1137	0.0063	13379
135.00	(2) 7770.00 Panels w/ Pipe Mount	39	15.441	1.0692	0.0058	10149
125.00	(2) BXA-171085-12CF-EDIN-X w/	39	13.266	1.0080	0.0051	9015
	Pipe Mount					
100.00	PD220	39	8.441	0.8062	0.0031	7189
85.00	GPS	39	6.033	0.6748	0.0021	6532

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L1	175 - 130 (1)	TP34.688x24x0.25	45.00	175.00	177.9	26.3842	-11667.00	188320.00	0.062
L2	130 - 85 (2)	TP44.688x33.0004x0.3125	50.00	175.00	137.7	42.6238	-26516.80	508161.00	0.052
L3	85 - 41 (3)	TP54.5x42.6605x0.375	50.00	175.00	112.7	62.4494	-41553.40	1109860.00	0.037
L4	41 - 0 (4)	TP64.5x52.0925x0.375	48.00	175.00	94.1	74.7864	-59523.20	1897630.00	0.031

Pole Bending Design Data

Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.					M_{ux}			M_{uy}
	ft		lb-ft	lb-ft	ϕM_{nx}	lb-ft	lb-ft	$\frac{M_{uy}}{\phi M_{ny}}$
L1	175 - 130 (1)	TP34.688x24x0.25	314904.17	1229983.33	0.256	0.00	1229983.33	0.000
L2	130 - 85 (2)	TP44.688x33.0004x0.3125	1403516.67	2537016.67	0.553	0.00	2537016.67	0.000
L3	85 - 41 (3)	TP54.5x42.6605x0.375	2718825.00	4508725.00	0.603	0.00	4508725.00	0.000
L4	41 - 0 (4)	TP64.5x52.0925x0.375	4212158.33	5975166.67	0.705	0.00	5975166.67	0.000

Pole Shear Design Data

Section	Elevation	Size	Actual	ϕV_n	Ratio	Actual	ϕT_n	Ratio
No.			V_u		V_u	T_u		T_u
	ft		lb	lb	ϕV_n	lb-ft	lb-ft	ϕT_n
L1	175 - 130 (1)	TP34.688x24x0.25	14530.00	899151.00	0.016	225.15	2462975.00	0.000
L2	130 - 85 (2)	TP44.688x33.0004x0.3125	28269.10	1434670.00	0.020	399.71	5080233.33	0.000
L3	85 - 41 (3)	TP54.5x42.6605x0.375	32777.70	2088020.00	0.016	362.73	9028500.00	0.000
L4	41 - 0 (4)	TP64.5x52.0925x0.375	36438.90	2307960.00	0.016	362.42	11964916.00	0.000
E.	11 0(1)	1101.3832.092380.373	30130.70	2507700.00	0.010	302.12	11701710.00	0.000

MALOUF ENGINEERING INT'L. INC.

17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
	175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)	8 of 10
Proje	ect CT01113M-16V0	Date 10:47:29 11/02/16
Clier	vertical Resources Group / AT&T	Designed by HLopez

Pole	Interaction	Design	Data
------	-------------	--------	------

Section No.	Elevation	Ratio P_u	Ratio M_{ux}	Ratio M_{uy}	Ratio V_u	$Ratio$ T_u	Comb. Stress	Allow. Stress	Criteria
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	175 - 130 (1)	0.062	0.256	0.000	0.016	0.000	0.318	1.000	4.8.2
L2	130 - 85 (2)	0.052	0.553	0.000	0.020	0.000	0.606	1.000	4.8.2
L3	85 - 41 (3)	0.037	0.603	0.000	0.016	0.000	0.641	1.000	4.8.2
L4	41 - 0 (4)	0.031	0.705	0.000	0.016	0.000	0.737	1.000	4.8.2

Reinforcing Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	lb	lb	ϕP_n
L4	5 - 0	1 3/4	5.00	2.50	54.9 K=0.80	2.4053	-105532.00	153196.00	0.689 1

¹ P_u / ϕP_n controls

Reinforcing Bending Design Data

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio Muv
	ft		lb-ft	lb-ft	ϕM_{nx}	lb-ft	lb-ft	ϕM_{ny}
L4	5 - 0	1 3/4	0.00	8039.07	0.000	0.00	8039.07	0.000

Reinforcing Interaction Design Data

Section No.	Elevation	Size	$Ratio$ P_u	Ratio M_{ux}	$Ratio \ M_{uy}$	Comb. Stress	Allow. Stress	Criteria
	ft		ΦP_n	ϕM_{nx}	ϕM_{ny}	Ratio	Ratio	
L4	5 - 0	1 3/4	0.689	0.000	0.000	0.689 1	1.000	4.8.1

¹ P_u / ϕP_n controls

MALOUF ENGINEERING INT'L. INC.

17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

J	лоь 175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)	Page 9 of 10
	Project CT01113M-16V0	Date 10:47:29 11/02/16
	Client Vertical Resources Group / AT&T	Designed by HLopez

Tension Checks

		Rein	forcing	Desi	gn Da	ata (Te	nsion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P
	fŧ		ft	ft		in ²	lb	lb	ϕP_n
L4	5 - 0	1 3/4	5.00	2.50	68.6	2.4053	102083.00	259770.00	0.393 1

¹ P_u / ϕP_n controls

		Rei	nforcing E	Bending	Desi	gn Dat	а	
Section	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio	M_{uy}	ϕM_{ny}	Ratio
No.	ft		lb-ft	lb-ft	$\frac{M_{ux}}{\phi M_{nx}}$	lb-ft	lb-ft	$\frac{M_{uy}}{\phi M_{ny}}$
L4	5 - 0	1 3/4	66.72	8039.07	0.008	0.00	8039.07	0.000

		Rein	forcing l	nteract	ion De	sign D	ata	
Section No.	Elevation ft	Size	$Ratio \ P_u \ \Phi P_n$	Ratio M_{ux} ϕM_{nx}	$Ratio \ M_{uy} \ \phi M_{nv}$	Comb. Stress Ratio	Allow. Stress Ratio	Criteria
L4	5 - 0	1 3/4	0.393	0.008	0.000	0.393 1	1.000	4.8.1

 $^{^{1}}$ P_{u} / ϕP_{n} controls

Anchor Design Data

Plate Thickness	Number of Anchor Bolts	Anchor Bolt Size	Controlling Condition	Ratio
in 1.500	24	<i>in</i> 2.000	Bolt T	0.53

MALOUF ENGINEERING INT'L. INC.

17950 PRESTON RD. SUITE 720 DALLAS, TEXAS - 75252 Phone: (972) 783-2578 FAX: (972) 783-2583

Job		Page
	175 ft. MNP. / New Fairfield Center Site #CT2070 (FA 10035312)	10 of 10
Proje	CT01113M-16V0	Date 10:47:29 11/02/16
Clien	t Vertical Resources Group / AT&T	Designed by HLopez

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P lb	$ otag P_{allow} \\ lb $	% Capacity	Pass Fail
L1	175 - 130	Pole	TP34.688x24x0.25	1	-11667.00	188320.00	31.8	Pass
L2	130 - 85	Pole	TP44.688x33.0004x0.3125	2	-26516.80	508161.00	60.6	Pass
L3	85 - 41	Pole	TP54.5x42.6605x0.375	3	-41553.40	1109860.00	64.1	Pass
L4	41 - 0	Pole	TP64.5x52.0925x0.375	4	-59523.20	1897630.00	73.7	Pass
L4	5 - 0	Reinforcing	1 3/4	8	-105532.00	153196.00	68.9	Pass
							Summary	
						Pole (L4)	73.7	Pass
						Base Plate	71.5	Pass
						Reinforcing	68.9	Pass
						(L4)		
						RATING =	73.7	Pass

 $Program\ Version\ 7.0.7.0\ -\ 7/18/2016\ File: C:/MEIProjects/16 files/MNP/CT01113M-16V0/CT01113M-16V0_w-Anchor.eri$

PROJECT NO.:

DESCRIPTION:

CT01113M-16V0

Individual Spread Footing Check

175' Monopole

New Fairfield Center #CT2070

COMPUTED BY: HML
CHECKED BY: KMM
APPROVED BY: MM

DATE: 11/02/16 Page <u>1</u>

FOUNDATION DESIGN CALCULATIONS

Input:

Twr := 1 Tower Type, 1 = Monopole, 2 = SST, 3 = GT

Fdn := 1 Foundation Type, 1 = Spf, 2 = Mat, 3 = Caisson, 4 = Deadman Anchor, 5 = Pile Group w/ Head

6 = Single Pile or Anchoring Device, 7 = Non Battered Piles With Tapered Cross-Section

Class := 2 Structure Class, 1, 2, 3, Table 2-1

SoilReport := 1 Soil Report, 0 = Not Available, 1 = Available

SiteClass := "D" Seismic Site class

Geotechnical Report Source: No Geotechnical Report / Assumed soil parameters

Foundation Source: Foundation Specs as per URS analysis Proj. #CW1021 dated 2/16/04.

Wind / Seismic: DESIGN BASE SHEAR IS GOVERNED BY WIND LOADING

Foundation Loads / Tower Base Reactions

Load Case I: 1.2D+1.0Dg+1.6Wo; Load Case II: 0.9D+1.0Dg+1.6Wo; Load Case III: 1.2D+1.0Dg+1.0Di+1.0Vi+1.0Ti

Number of load cases Dead Load n := 3k := 1..nUplift **Total Shear Tower Weight** Download Shear Mom ent **Factors** $DL_k :=$ $P_k :=$ $U_{\nu} :=$ $M_k := TSh_k :=$ $TWt_{\nu} :=$ $Sh_k :=$ 36.793 · kip 31.06·kip 61.761·kip 0.0·kip 4395.17-kip-ft 0.0·kip Case I Case II 46.321 · kip 0.0·kip 36.793·kip 4350.64·kip·ft 0.0·kip 31.06·kip Case III 0.00-kip 0.0·kip 0.00·kip 0.00·kip·ft 0.0·kip 0.00·kip

Anchor Bolt Details (Verify details with tower manufacturer)

n_{bolt} := 0 No. of anchor bolts

L_{holt} := 0.00⋅in Anchor Bolt Length-Total

L_{proj} := 0.00·in Projected length of anchor bolt

dia_{anch} := 2.00⋅in Anchor bolt dia.

area_{anch} := 3.1416⋅in² Anchor bolt - Tensile Area

 $BC_{anc} := 0.00 \cdot in$ Pole bolt circle

f_{vancbolt} := 75·ksi Anchor bolt, Yield Strength, A615-75

f_{uancbolt} := 100⋅ksi Anchor bolt, Ultimate Tensile Strength, A615-75

Foundation Dimensions

n_{ped} := 1 Number of pedestals, 1, 3 or 4, Use 1 for isolated spread footings, 3 or 4 for mat

TW := 0.ft Tower Face Width, ft - enter Off for Monopole, Guyed Tower, Isolated Footings

 $col_{+} := 0$ Pedestal, 0=Round, 1=Square

 $Ped_s := 7.00 \cdot ft$ Ped diameter / side

 $E_g := 0.250 \cdot \text{ft}$ Ped Extension above soil grade $D_f := 6.00 \cdot \text{ft}$ Fdn Depth, grade to pad bottom

 $L := 27.50 \cdot ft$ Length of pad B := L Width of pad

 $T_f := 4.00 \cdot ft$ Thickness of pad

toe := 0 Has Toe = 1, No Toe = 0

PROJECT NO.: TITLE:

DESCRIPTION:

CT01113M-16V0

Individual Spread Footing Check

175' Monopole

New Fairfield Center #CT2070

COMPUTED BY: HML CHECKED BY: KMM APPROVED BY: MM

DATE: 11/02/16 Page <u>2</u>

 $ecc := 0 \cdot ft$

Eccentricity, load & pad centroid

 $cc := 3.0 \cdot in$

Concrete Cover

 $n_{\text{vbars}} := 50$

No. vert. bars in pedestal

vbar := 11

Vert. Bar Size

tbar := 4

Tie Bar Size

 $Sp_{tie} := 12 \cdot in$

Tie Bar Spacing

 $n_{\text{hbars}} := 32$

No. Horiz bars in pad

hbar := 10

Horiz. Bar Size

Material Parameters

~ ·= ($0.145 \cdot \frac{\text{kip}}{2}$
1c ·- ·	6.1 13
	11

Unit Wt. of Concrete

 $\phi_{cshear} := 0.75$

as per ACI-05, 9.3.2.3

 $f_c := 3000 \cdot psi$

Concrete Compressive Strength

 $\phi_{\text{ccompr}} := 0.65$

as per ACI-05, 9.3.2.2

 $f_{v} := 60000 \cdot psi$

Rebar yield strength

 $\phi_{\text{caxten}} := 0.9$

as per ACI-05, 9.3.2.1

Soil Properties

 $\phi := 30 \cdot \deg$

Internal angle of friction

 $\phi_{bg} := 0.6$

as per Rev. G, bearing, GT

 $c_{11} := 0.0 \cdot ksf$

Cohesion

 $\phi_{bs} := 0.75$

as per Rev. G, bearing, SS, MP

 $\sigma_{adh} := 0.0 \cdot ksf$

Adhesion

 $\phi_{up1} := 0.75$

as per Rev. G, uplift as per Rev. G, uplift

 $\sigma_{\rm p} := 0.100 \cdot \frac{\rm kip}{{\rm ft}^3}$

Passive Pressure, -1 auto calculate

 $\phi_{up2} := 0.5$

Single Rock/Soil Bolt or anchor

 $\gamma_{\rm S} := 0.100 \cdot \frac{\rm kip}{{\rm ft}^3}$

Unit weight of soil

 $\phi_{up3} := 0.4$

as per Rev. G, uplift Non-battered piles with tapered

cross-section

 $Brg_{ult} := 8.0 \cdot ksf$

Ultimate Bearing Capacity

 $\phi_{sh} := 0.75$

as per Rev. G, Shear, Friction

 $\mu_{soil} := 0.20$

Coefficient of friction Concrete to Soil

 $\phi_{lateral} := 0.75$

as per Rev. G, Lateral Resistance

 $L_{\text{neg}} := 2.00 \cdot \text{ft}$

Depth of soil neglected for lateral resistance

 $L_{\text{water}} := -1 \cdot \text{ft}$

Water Table, -1 No Water

 $\gamma_{\rm W} := 0.062428 \cdot \frac{\rm kip}{\rm c}^3$ Unit Weight of Water

 $red_{up} := 1.0$

Uplift Reduction Factor

 $flag_{up} := 0$

Flag to include Uplift reduction factor in the stability checks, $0 = N_0$, $1 = Y_{es}$

To Be Used When Ground Sloping

Re-bar Properties

No := ((0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18))^T

 $\mathbf{d_h} := \left((0 \ 0 \ 0 \ 0.375 \ 0.5 \ 0.625 \ 0.75 \ 0.875 \ 1.00 \ 1.128 \ 1.27 \ 1.41 \ 0 \ 0 \ 1.693 \ 0 \ 0 \ 2.257) \right)^{\mathrm{T}} \cdot \mathrm{in}$

 $\mathbf{A_b} := ((0 \ 0 \ 0 \ 0.11 \ 0.20 \ 0.31 \ 0.44 \ 0.60 \ 0.79 \ 1.00 \ 1.27 \ 1.56 \ 0 \ 0 \ 2.25 \ 0 \ 0 \ 4.00))^{\mathrm{T}} \cdot \mathrm{in}^2$

PROJECT NO.: TITLE:

DESCRIPTION:

CT01113M-16V0 Individual Spread Footing Check

175' Monopole

New Fairfield Center #CT2070

COMPUTED BY: HML **CHECKED BY: KMM** APPROVED BY: MM

DATE: 11/02/16 Page <u>5</u>

Total Resisting Moment - Alternate Way

$$\boldsymbol{q}_k \coloneqq \frac{\boldsymbol{T} \boldsymbol{w}_k}{\boldsymbol{B} \cdot \boldsymbol{L}}$$

$$q_c := Brg_{ult} \cdot \phi_{brg}$$

$$q_c = 6 \cdot ksf$$

$$\operatorname{Mralt}_{k} := \frac{\operatorname{L-Tw}_{k}}{2} \cdot \left(1 - \frac{\operatorname{q}_{k}}{\operatorname{q}_{c}}\right)$$

Overturning Moment

$$L_{hs} := D_f + E_g$$

Lever Arm

$$Mo_k := M_k + Sh_k \cdot L_{hs} + P_k \cdot ecc$$

Eccentricity

$$ec_k := \frac{Mo_k}{Tw_k}$$

Bearing - Combined Compression and Moment

$$\operatorname{qmax}_k := \operatorname{if} \left[\operatorname{ec}_k \leq \frac{L}{6}, \left[\frac{\operatorname{Tw}_k}{\operatorname{B} \cdot \operatorname{L}} \cdot \left(1 + \frac{6 \cdot \operatorname{ec}_k}{\operatorname{L}} \right) \right], \left[\frac{\operatorname{Tw}_k}{\operatorname{B} \cdot \left(\operatorname{L} - 2 \cdot \operatorname{ec}_k \right)} \right] \right]$$

$$\operatorname{qmin}_{k} := \operatorname{if} \left[\operatorname{ec}_{k} \le \frac{L}{6}, \left[\frac{\operatorname{Tw}_{k}}{\operatorname{B} \cdot \operatorname{L}} \cdot \left(1 - \frac{6 \operatorname{ec}_{k}}{\operatorname{L}} \right) \right], 0 \cdot \operatorname{ksf} \right]$$

$$\mathsf{qmaxalt}_k \coloneqq \frac{\left(\mathsf{Tw}_k\right)^2}{\mathsf{Tw}_k {\cdot} L^2 - 2 {\cdot} \mathsf{Mo}_k {\cdot} B}$$

$$Lp_k := if ec_k \le \frac{L}{6}, L, (L - 2 \cdot ec_k)$$

Overturning Mom ent

Resisting Mom ent

Alternate Resisting

Mom ent

Total Download Eccentricity

Contact Length

 $Mo_k =$

 $Mr_k =$

 $Mralt_k =$

 $Tw_k =$

 $ec_k =$

·kip

 $Lp_k =$

4.625 10³ 4.581 10³

·kip 1.08 10⁴ 8 134 10³ 9.951 10³

·kip·ft

8.84 103 $6.972 \cdot 10^{3}$ $8.27 \cdot 10^3$

·kip·ft 775.441 581.581 713.68

5.965 ·ft 7.876 0

·ft 15.571 11.748 27.5

Max Bearing Min Bearing

 $qmaxalt_k =$

Bearing-Alternative

·ksf

Max

 $qmax_k =$ ·ksf 1.811 1.8 0.944

 $qmin_k =$ ·ksf 0 0 0.944

1.811 1.8 0.944

PROJECT NO.: TITLE:

DESCRIPTION:

CT01113M-16V0

Individual Spread Footing Check

175' Monopole

New Fairfield Center #CT2070

COMPUTED BY: HML CHECKED BY: KMM APPROVED BY: MM

DATE: 11/02/16 **Page** <u>6</u>

Bearing Ratios

$$Rbr_k := \frac{qmax_k}{Brg_{ult} \cdot \phi_{brg}}$$

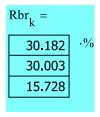
OTM - Stability Ratios

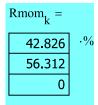
$$\mathsf{Rmom}_k \coloneqq \frac{\mathsf{Mo}_k}{\mathsf{Mr}_k}$$

$$\mathsf{Rmomalt}_k \coloneqq \frac{\mathsf{Mo}_k}{\mathsf{Mralt}_k}$$

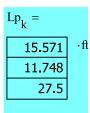
Shear Check

Total Resisting Shear


$$Shr_k := \phi_{sh} \cdot (Tw_k \cdot \mu_{soil} + Pe_p)$$


$$\mathsf{Rsh}_k \coloneqq \frac{\mathsf{Sh}_k}{\mathsf{Shr}_k}$$

Combined Bearing and Moment - Ratios


Bearing Ratio

Overturning

Contact Length

Shear Ratio

Total Shear

Sh _k =	
36.793	·kip
36.793	
0	

Shear Resistance

Shr _k =	
132.816	·kip
103.737	
123.552	

Shear Ratio

APPENDIX 2 – SOURCE / CHANGED CONDITION

From: Vertical Resources Group <mnobre@verticalresourcesgrp.com>

Sent: Monday, October 31, 2016 9:19 AM

To: 'Malouf Engr - Liz Adkins'

Cc: 'Mark Malouf'

Subject: RE: AT&T Site CT2070 FA10035312 175' Pole

AT&T coax is RFS 1.625" (4/sec, 12 tot.) existing to remain in place, (2) 5/8" DC power, (1) 3/8" fiber.

...

Miguel Nobre

Vertical Resources Group

489 Washington Street Auburn, MA 01501 P: 508-981-9590 F: 508-519-8939

From: Vertical Resources Group [mailto:mnobre@verticalresourcesgrp.com]

Sent: Sunday, October 30, 2016 10:16 AM

To: Mark Malouf

Subject: RE: AT&T Site CT2070 FA10035312 175' Pole

•••

AT&T Existing Loading:

- (6) Powerwave 7770 (UMTS & GSM existing to remain)
- (1) CCI HPA65RBUUH8 (LTE to remain)
- (2) CCI HPA65RBUUH6 (LTE to remain)
- (6) CCI LGP21401 (UMTS TMA to remain)
- (3) CCI DTMABP7819VG12A (GSM to remain)
- (3) Ericsson RRUS-11 (LTE700 to remain)
- (3) Ericsson RRUS-12+A2 (LTE PCS TO BE REPLACED)
- (1) Raycap Surge arrestor DC6-48-60-18-8F (to remain)

Mount Valmont RMV12

AT&T Existing Loading:

- (6) Powerwave 7770 (UMTS & GSM existing to remain)
- (1) CCI HPA65RBUUH8 (LTE to remain)
- (2) CCI HPA65RBUUH6 (LTE to remain)
- (6) CCI LGP21401 (UMTS TMA to remain)
- (3) CCI DTMABP7819VG12A (GSM to remain)
- (3) Ericsson RRUS-11 (LTE700 to remain)
- (3) Ericsson RRUS-32 B2 (LTE PCS NEW)
- (1) Raycap Surge arrestor DC6-48-60-18-8F (to remain)

Mount Valmont RMV12

Miguel Nobre

Vertical Resources Group

489 Washington Street

Auburn, MA 01501

P: 508-981-9590

F: 508-519-8939

		Section 17	7A - FINAL SECTOR	Section 17A - FINAL SECTOR/CELL INFORMATION - SECTOR A (OR OMNI)	N - SECTOR A (C	OR OMNI)			
ANTENNA COMMON FIELDS	ANTENNA POSITION 1	ANTENNA POSITION 2	ANTENNA POSITION 3		ANTENNA POSITION 4	ANTENNA POSITION 5	ANTENNA	ANTENNA POSITION 6	ANTENNA POSITION 7
ANTENNA MAKE - MODEL HPA-65R-BUU-H8	HPA-65R-BUU-H8		0.477	0777					
ANTENNA VENDOR CCI Antennas	CCI Antennas		Powerwave	Powerwave					
ANTENNA SIZE (H x W x D) 92.4X14.8X7	92.4X14.8X7		55X11X5	55X11X5					
ANTENNA WEIGHT 68	89		35	35					
AZIMUTH 90	06		143	143					
MAGNETIC DECLINATION									
RADIATION CENTER (feet) 135	135		135	135					
ANTENNA TIP HEIGHT									
MECHANICAL DOWNTILT	0		0	0					
FEEDER AMOUNT			2	2					
VERTICAL SEPARATION from ANTENNA ABOVE									
VERTICAL SEPARATION from ANTENNA BELOW (TIP to TIP)									
HORIZONTAL SEPARATION from CLOSEST ANTENNA to LEFT (CENTERLINE to CENTERLINE)									
HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE to CENTERLINE)									
HORIZONTAL SEPARATION from ANOTHER ANTENNA (which antenna # / # of inches)									
Antenna RET Motor (QTY/MODEL)	Bulit in		Powerwave 7020	3 7020 2	Powerwave 7020				
SURGE ARRESTOR (QTY/MODEL)	1 DC/Fiber Squid			-	POLYPHASER 1000860				
DIPLEXER (QTY/MODEL)			2 Powerway	Powerwave / LGP 21901 2	Powerwave / LGP 21901				
DUPLEXER (QTY/MODEL)									
Antenna RET CONTROL UNIT (QTY/MODEL)	LTERRH			_	Powerwave7070				
DC BLOCK (QTY/MODEL)									
TMA/LNA (QTY/MODEL)			Powerwaw (Dual Banc	Powerwave / LGP 21401 (Dual Band - 850 Bypass)	DTMABP7819VG12A (Twin 700/850 Bypass)				
CURRENT INJECTORS FOR TMA (QTY/MODEL)			2 РОLҮРНА	POLYPHASER 1000860 1	Kathrein 782-10253BTS				
PDU FOR TMAS (QTY/MODEL)			1 LGP 12104 (*	LGP 12104 (1900 AND 850 Bypass TMA)					
FILTER (QTY/MODEL)									
SQUID (QTY/MODEL)									
FIBER TRUNK (QTY/MODEL)									
DC TRUNK (QTY/MODEL)									
RRH - 700 band (QTY/MODEL)	1 RRUS-11								
RRH - 850 band (QTY/MODEL)									
RRH - 1900 band (QTY/MODEL)	1 RRUS-32 B2								
RRH - WCS band (OTY/MODE)									
Additional RRH #1 - any band (QTY/MODEL)									
Additional RRH #2 - any band (QTY/MODEL)									
Additional Component 1 (QTY/MODEL)				8	Pwav 1001983 (1) & 1001940 (1)				
Additional Component 2 (QTY/MODEL)									
Additional Component 3 (QTY/MODEL)									
Local Market Note 1	LTE BWE 1900 A3-A4 & E // Replace existing LTE 190	Local Market Note 1 LTE BWE 1900 A3-A4 & E // Replace existing LTE 1900 radio with RRUS-32 B2 on existing LTE Antenna // Add XMU.	MU.						
Local Market Note 2	LTE alpha is with UMTS Gamma Face // LTE Beta is v	Local Market Note 2 LTE alpha is with UMTS Gamma Face // LTE Beta is with UMTS Alpha Face // LTE Gamma is with UMTS Beta Face	8						
Local Market Note 3	Baseband Config - 1 DUS + XMU DUS-1 - 7A:7B:7C:X	Local Market Note 3 Baseband Config - 1 DUS + XMU DUS-1 - 7A/7B:7CX/FP1X1P2_XMU-1 - PA-PA2A/PB-PA2B-PC-PA2C	D1E:D1						
					naa				

																				-
PORT SPECIFIC FIELDS	PORT NUMBER	USEID (CSSng)	USEID (Atoll)	ATOLL TXID	ATOLL CELL ID	ATOLL CELL ID TYRK TECHNOLOGY/FREQ	ANTENNA	ANTENNA GAIN	ELECTRICAL ELE	RRH LOCATION ELECTRICAL (Top/Bottom/ AZIMUTH TILT IntegratedNo	om/ TYPE	FEEDER LENGTH (feet)	RXAIT KIT T	TRIPLEXER OF LLC (QTY)	TRIPLEXER SCP/ or LLC MOI (MODEL)	SCPA/MCPA E PC MODULE? (W.	HATCHPLAT ERP E POWER (Watts)	Antenna s) RET Name	CABLE	CABLE ID (CSSNG)
	PORT	PORT 1 27009.A.700.4G.1	27009.A.700.4G.1	27009.A.700.4G.1 CTL02070_7A_1 CTL02070_7A_1	CTL02070_7A_1	LTE 700	HPA-65R-BUU- H8_719MHz_03DT	15.3	3	Тор	FIBER	0					1044.72		E	
ANTENNA POSITION 1	PORT	PORT 3 27009.A.1900.4G.1	27009.A.1900.4G.111	27009.A.1900.4G.111 CTL02070_9A_1 CTL02070_9A_1	CTL02070_9A_1	LTE 1900	HPA-65R-BUU- H8_1948MHz_07DT	17.4 90	2 06	Тор	FIBER	0					3380.67		1	
	PORT	PORT 1 27009.A.850.3G.1	27009.A.850.3G.1	CTV20701	CTV20701	UMTS 850	17770.00.850.00	13 14	143 0	None	RFS 1-5/8	155					264.85		5	
E NOITISON A NUMBER OF	PORT	PORT 2 27009.A.850.3G.2	27009.A.850.3G.2	CTV20701	CTV2070A	UMTS 850	7770.00.850.00	13 14	143 0	воттом	RFS 1-5/8	155					264.85		9	
	PORT	PORT 3 27009.A.1900.3G.1,27009.A.1 900.3G.2	1 27009.A.1900.3G.2 CTU20707	CTU20707	CTU20707	UMTS 1900	17770.00.1900.00	15 14	143 0	None	RFS 1-5/8	155					592.93		5	
ANTENNA POSITION 4	PORT	PORT 1 27009.A.850.25G.1	27009.A.850.25G.1 321G20701		321G20701	GSM 850	17770.00.850.00	13 14	143 0	None	RFS 1-5/8	155					155		7	

					Sec	tion 17B - F	INAL SECT	OR/CEL	Section 17B - FINAL SECTOR/CELL INFORMATION - SECTOR	TION - S	ECTOR B									
ANTENNA COMMON FIELDS	ANTENNA POSITION 1	POSITION 1	AN	ANTENNA POSITION 2		ANT	ANTENNA POSITION 3		ANTENNA	ANTENNA POSITION 4		ANTENNA POSITION 5	ON 5		ANTENNA POSITION 6	TION 6		ANTENNA POSITION 7	SITION 7	
ANTENNA MAKE - MODEL HPA-65R-BUU-H6	THPA-65R-BUU-H6					7770		0222	0,											
ANTENNA VENDOR CCI Antennas	R CCI Antennas					Powerwave		Pov	Powerwave											
ANTENNA SIZE (H x W x D)	D) 72X14.8X7.4					55X11X5		X99	55X11X5											
ANTENNA WEIGHT 51	TT 51					35		35												
AZIMUTH	TH 210					263		263												
MAGNETIC DECLINATION	N.																			
RADIATION CENTER (feet) 135	t) 135					135		135												
ANTENNA TIP HEIGHT	<u> </u>																			
MECHANICAL DOWNTILT	0 <u>T.</u>					0		0												
FEEDER AMOUNT	Ŀ					2		2												
VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP)	<u> </u>																			
VERTICAL SEPARATION from ANTENNA BELOW	3.5																			
HORIZONTAL SEPARATION from CLOSEST																				
HORIZONTAL SEPARATION from CLOSEST	(<u>1</u>																			
ANTENNA to RIGHT (CENTERLINE to CENTERLINE) HORIZONTAL SEPARATION from ANOTHER	(E)																			
ANTENNA (which antenna # / # of inches	X (s																			
Antenna RET Motor (QTY/MODEL)		Bulit in				2	Powerwave 7020	30 2		Powerwave 7020										
SURGE ARRESTOR (QTY/MODEL)								-		POLYPHASER 1000860	09800						1			
DIPLEXER (QTY/MODEL)						2	Powerwave / LGP 21901	3P 21901 2		Powerwave / LGP 21901	21901									
DUPLEXER (QTY/MODEL)														$\frac{1}{1}$						
Antenna RET CONTROL UNIT (QTY/MODEL)		LTE RRH	+	+				1			+	+		+	+		+			
DC BLOCK (QTY/MODEL)			+	+							+	$\frac{1}{1}$		1	+		+			
TMA/LNA (QTY/MODEL)	<u>-</u>					2	Powerwave / LGP 21401 (Dual Band - 850 Bypass)	3P 21401 0 Bypass)		DTMABP7819VG12A (Twin 700/850 Bypass)	12A (Twin									
CURRENT INJECTORS FOR TMA (QTY/MODEL)	(-					2	POLYPHASER 1000860	1000860 1		Kathrein 782-10253BTS	3BTS									
PDU FOR TMAS (QTY/MODEL)	(r)																			
FILTER (QTY/MODEL)																				
SQUID (QTY/MODEL)																	+			
FIBER TRUNK (QTY/MODEL)			+				+	+				+			+		+			
DC TRUNK (QTY/MODEL)				1			 	+				+		+	+		+			
RRH - 700 band (QTY/MODEL)	1	RRUS-11												+						
RRH - 850 band (QTY/MODEL)							+													
RRH - 1900 band (QTY/MODEL)	(T)	RRUS-32 B2		1							1	$\frac{1}{1}$		1	$\frac{1}{1}$		+			
KRH - AWS band (QI Y/MODEL)												+			+		-			
Additional RRH #1 - any band (QTY/MODEL)																				
Additional RRH #2 - any band (QTY/MODEL)	(c.																			
Additional Component 1 (QTY/MODEL)								2		Pwav 1001983 (1) &	9,8									
Additional Component 2 (QTY/MODEL)	<u></u>																			
Additional Component 3 (QTY/MODEL	(1)																			
Local Market Note 1	TE BWE 1900 A3-A4 & E // Replace existing LTE 1900 radio with RRUS-32 B2 on existing LTE Antenna // Add XMU.	// Replace existing LTE 19	00 radio with RRUS-32	B2 on existing LTE Anter	nna // Add Xı	:MU.														
Local Market Note 2																				
	LTE alpha is with UMTS Gamma Face // LTE Beta is with UMTS Alpha Face // LTE Gamma is with UMTS Beta Face	mma Face // LTE Beta is	with UMTS Alpha Face	// LTE Gamma is with UN	MTS Beta Fa	306														
Local Market Note	Local Market Note 3 Basedand Config - 1 DUS + XMU DUS-1 - 7A/7B:7C:X/191X/192_XMU-1 - PA-PAZA-PB:PA2B-PC:PA2C	XMU DUS-1 - 7A:7B:7C;	X1P1:X1P2:_XMU-1 - I	PA:PA2A:PB:PA2B:PC:P,	A2C: :::::															
PORT SPECIFIC FIELDS PORT NUMBER	USEID (CSSng)	USEID (Atoll)	ATOLL TXID	ATOLL CELL ID	TX/RX TEC	TX/RX TECHNOLOGY/FREQ	ANTENNA	ANTENNA ELE	ELECTRICAL ELECTRICAL AZIMUTH TILT	RRH LOCATION SAL (Top/Bottom/ Integrated/No	FEEDERS	FEEDER RX LENGTH MO (feet)	RXAIT KIT TRIPL MODULE? or LLC	TRIPLEXER OF LLC (QTY) (MODEL)	ER SCPA/MCPA MODULE? L)	HATCHPLAT E POWER (Watts)	ERP (Watts) F	Antenna C. RET Name NU	CABLE C	CABLE ID (CSSNG)
raca	22000 0 200 40 4		CT 030Z0 ZB 1	CTI 030Z0 ZB 4			HPA-65R-BUU-	14 20		ne)						S	207.04	d	H	
	FOR 1 27,009:B:7,00:46:1	Z7.009.B.7.00.463.1	C1E02070_7B_1	C1E02070_7B_1	1	He He		77.	<u> </u>	do	LIBER				_	5	957.34	8	_	

PORT SPECIFIC FIELDS	PORT NUMBER	USEID (CSSng)	USEID (Atoll)	ATOLL TXID	ATOLL CELL ID	TX/RX TECHNOLOGY/FREQ	ANTENNA	ANTENNA	ELECTRICAL E	ELECTRICAL ELECTRICAL (Top/Bottom/ AZIMUTH TILT Integrated/No	RRH LOCATION (Top/Bottom/ Integrated/No	FEEDERS	FEEDER LENGTH (feet)	RXAIT KIT TRIPLEXER MODULE? or LLC (QTY)	TRIPLEXER SCF or LLC MC (MODEL)	SCPA/MCPA EF	HATCHPLAT E POWER (W	ERP Ant (Watts)	Antenna CABLE RET Name NUMBER	CABLE ID R (CSSNG)
	PORT 1	PORT 1 27009.B.700.4G.1	27009.B.700.4G.1	27009.B.700.4G.1 CTL02070_7B_1 CTL02070_7B_1	CTL02070_7B_1	LTE 700	HPA-65R-BUU- H6_719MHz_03DT	14.22	210 3	<u> </u>	Top FII	FIBER					827.94	76	6	
ANTENNA POSITION 1	PORT 3	PORT 3 27009.B.1900.4G.1	27009.B.1900.4G.111	27009.B.1900.4G.111 CTL02070_9B_1 CTL02070_9B_1	CTL02070_9B_1	LTE 1900	HPA-65R-BUU- H6_1930MHz_07DT	17.21	210 7	Т.	Top FII	FIBER					3258.37	3.37	6	
	PORT 1	PORT 1 27009.B.850.3G.1	27009.B.850.3G.1	CTV20702	CTV20702	UMTS 850	7770.00.850.00	13	263 0	Ň	Vone RF	RFS 1-5/8	155				264.85	85	13	
ANTENNA POSITION 3	PORT 2	PORT 2 27009.B.850.3G.2	27009.B.850.3G.2	CTV20702	CTV2070B	UMTS 850	7770.00.850.00	13	263 0	B	BOTTOM RF	RFS 1-5/8	155				264.85	85	14	
	PORT 3	PORT 3 900.3G.1,27009.B.1	27009.B.1900.3G.2 CTU20708	CTU20708	CTU20708	UMTS 1900	7770.00.1900.00	15	263 0	Ň	Vone RF	RFS 1-5/8	155				592.93	93	13	
ANTENNA POSITION 4	PORT 1	PORT 1 27009.B.850.25G.1	27009.B.850.25G.1 321G20702		321G20702	098 WS5	00'058'00'0222	13	263 0	ž	None RF	RFS 1-5/8	155				347		15	

						Sec	tion 17C - F	Section 17C - FINAL SECTOR/CELL INFORMATION - SECTOR C	OR/CE	LL INFORM	MATION -	SECTOR C								
ANTENNA COMMON FIELDS	ELDS	ANTENNA POSITION 1	OSITION 1	AN	ANTENNA POSITION 2		ANT	ANTENNA POSITION 3		ANTEN	ANTENNA POSITION 4		ANTENNA POSITION 5	ITION 5		ANTENNA POSITION 6	9 NOI		ANTENNA POSITION 7	TION 7
ANTENN	ANTENNA MAKE - MODEL						0222		2	0777										
AN	ANTENNA VENDOR	CCI Antennas					Powerwave		-	Powerwave										
ANTENNA	ANTENNA SIZE (H × W × D) 72X14.8X7.4	72X14.8X7.4					55X11X5		(y)	55X11X5										
AN	ANTENNA WEIGHT	51					35		63	35										
	AZIMUTH	330					23		2	23										
MAGNET	MAGNETIC DECLINATION																			
RADIATIC	RADIATION CENTER (feet)	135					135		-	135										
ANTE	ANTENNA TIP HEIGHT								1						+					
MECHAN	MECHANICAL DOWNTILT	0		+			0								+					
ű.	FEEDER AMOUNT						2		N											
VERTICAL SEPARATION from ANTENNA ABOVE (TIP to TIP)	ANTENNA ABOVE (TIP to TIP)																			
VERTICAL SEPARATION from ANTENNA BELOW	ANTENNA BELOW																			
HORIZONTAL SEPARATION from CLOSEST ANTENNA 10 I FET (CENTER) INF 10 CENTER) INF)	N from CLOSEST																			
HORIZONTAL SEPARATION from CLOSEST ANTENNA to RIGHT (CENTERLINE)	N from CLOSEST																			
HORIZONTAL SEPARATION from ANOTHER	N from ANOTHER																			
Antenna RET Motor (QTY/MODEL)	tor (QTY/MODEL)		Bulit in				2	Powerwave 7020	0		Powerwave 7020	0.								
SURGE ARRESTOR (QTY/MODEL)	OR (QTY/MODEL)								_		POLYPHASER 1000860	1000860								
DIPLEX	DIPLEXER (QTY/MODEL)						2	Powerwave / LGP 21901	3P 21901 2		Powerwave / LGP 21901	3P 21901								
DUPLEX	DUPLEXER (QTY/MODEL)																			
Antenna RET CONTROL UNIT (QTY/MODEL)	NIT (QTY/MODEL)		LTE RRH																	
DC BLOC	DC BLOCK (QTY/MODEL)								1						$\frac{1}{1}$					
TMA/L	TMA/LNA (QTY/MODEL)						2	(Dual Band - 850 Bypass)	3P 21401 0 Bypass)		DTMABP7819VG12A (Twir 700/850 Bypass)	/G12A (Twin s)								
CURRENT INJECTORS FOR TMA (QTY/MODEL)	MA (QTY/MODEL)						2	POLYPHASER 1000860	1000860 1		Kathrein 782-10253BTS	7253BTS								
PDU FOR TM	PDU FOR TMAS (QTY/MODEL)																			
FILT	FILTER (QTY/MODEL)																			
าอร	SQUID (QTY/MODEL)										+									
FIBER TRUI	FIBER TRUNK (QTY/MODEL)								1				+		+	+				
DC TRUI	DC TRUNK (QTY/MODEL)		27 0100	 -	 			<u> </u>			+				1	+				
KKH - / 00 DB	and (QI Y/MODEL)		KKUS-11												 -					
RRH - 850 ba	RRH - 850 band (QTY/MODEL)	-	000000000000000000000000000000000000000																	
RRH - AWS bar	RRH - AWS band (QTY/MODEL)		70.000																	
RRH - WCS bai	RRH - WCS band (QTY/MODEL)																			
Additional RRH #1 - any band (QTY/MODEL)	ind (QTY/MODEL)																			
Additional RRH #2 - any band (QTY/MODEL	and (QTY/MODEL)																			
Additional Component 1 (QTY/MODEL)	nt 1 (QTY/MODEL)								- 67	2	Pwav 1001983 (1) & 1001940 (1)	(1) &								
Additional Component 2 (QTY/MODEL)	it 2 (QTY/MODEL)																			
Additional Component 3 (QTY/MODEL)	nt 3 (QTY/MODEL)																			
ΓÓ	ocal Market Note 1	Local Market Note 1 LTE BWE 1900 A3-A4 & E // Replace existing LTE 1900 radio with RRUS-32 B2 on existing LTE Antenna // Add XMU.	Replace existing LTE 19	00 radio with RRUS-321	32 on existing LTE Anten	na // Add Xh	MU.													
Lor	cal Market Note 2	Local Market Note 2 LTE alpha is with UMTS Gamma Face // LTE Beta is with UMTS Alpha Face // LTE gamma is with UMTS Beta Face	nma Face // LTE Beta is n	with UMTS Alpha Face /	'LTE Gamma is with UMI	TS Beta Fac	*													
Low	cal Market Note 3	Local Market Note 3 Baseband Config - 1 DUS + XMU DUS-1 - 7A-7B-7C-X PT-X-1P2: XML1 - PA-PAZA PB-PAZB-PC-PAZC: DTE-DT	(MU DUS-1 - 7A:78:7C:)	K1P1:X1P2: XMU-1 - P.	A:PA2A:PB:PA2B:PC:PA	 	::::D1E:D1													
											наа									
PORT SPECIFIC FIELDS POR	PORT NUMBER	USEID (CSSng)	USEID (Atoll)	ATOLL TXID	ATOLL CELL ID T	TX/RX TEC.	TX/RX TECHNOLOGY/FREQ ? UENCY	ANTENNA	ANTENNA GAIN	ELECTRICAL ELECTI AZIMUTH TIL	LOCATION ELECTRICAL (Top/Bottom/ TILT Integrated/No	N FEEDERS No TYPE	FEEDER LENGTH (feet)	RXAIT KIT TRIPL MODULE? or LLC	TRIPLEXER OF LLC OF LLC (QTY) (MODEL)	SCPA/MCPA MODULE?	HATCHPLAT E POWER (Watts)	ERP Aı (Watts) RE	Antenna CABLE RET Name NUMBER	CABLE ID BER (CSSNG)
	PORT 1 27	PORT 1 27009.C.700.4G.1	27009.C.700.4G.1	CTL02070 7C 1	CTL02070 7C 1	LTE 700		HPA-65R-BUU-	14.22	330	Top	FIBER	۰				88	827.94	11	
ANTENNA POSITION 1						+					-		+	$\frac{1}{1}$	+	 -	1		+	$\frac{1}{1}$

3258.37

264.85 264.85 592.93

155

RFS 1-5/8 RFS 1-5/8 RFS 1-5/8

None BOTTOM None

HPA-65R-BUU-Hg_1930MHz_03DT 7770.00.850.00 7770.00.850.00 7770.00.1900.00

CTL02070_9C_1

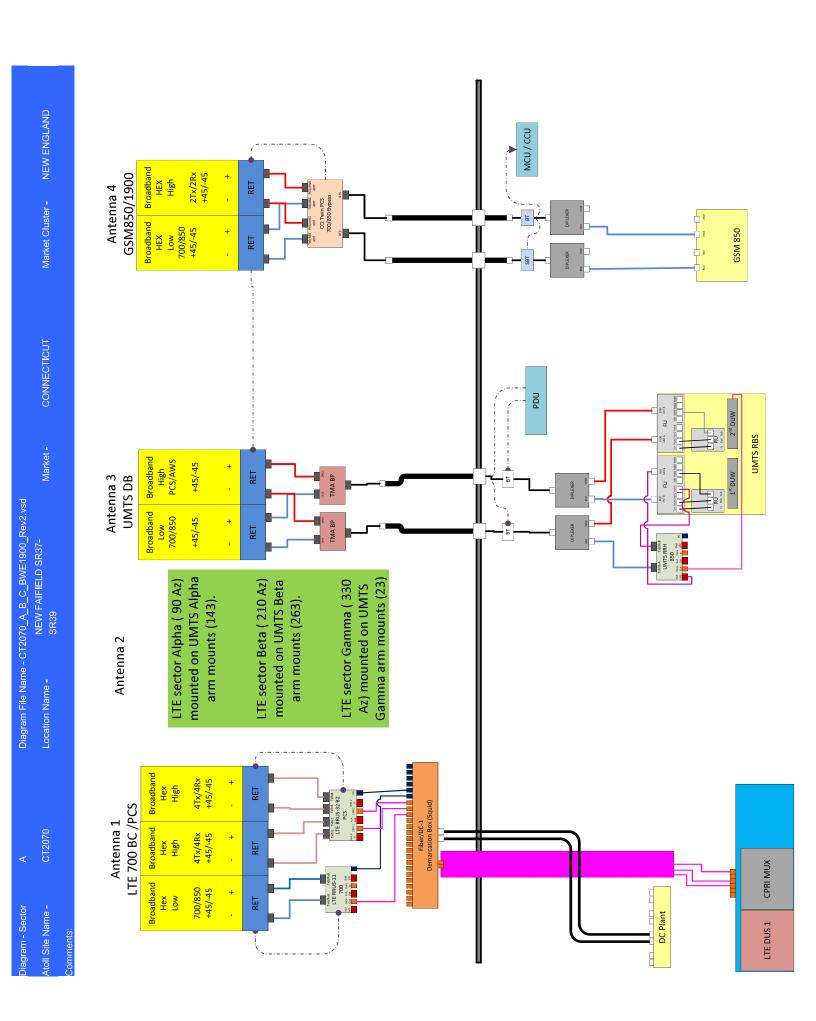
27009.C.1900.4G.111 CTL02070_9C_1

UMTS 850 UMTS 850 UMTS 1900

> CTV2070C CTU20709

CTV20703 CTU20709

27009.C.850.3G.1


PORT 3 27009.C.1900.4G.1

PORT 1 27009.C.850.3G.1

PORT 2 27009.C.850.3G.2

ANTENNA POSITION 3

PORT 2 27009.C.850.3G.2 27009.C.850.3G.2 27009.C.890.3G.2 27009.C.1900.3G.1 27009.C.1900.3G.2 27009.C.1900.3G.2 27009.C.1900.3G.2 27009.C.1900.3G.2 27009.C.1900.3G.2 27009.C.1900.3G.2 27009.C.1900.3G.2 27009.C.1900.3G.2

