

August 23, 2023

Melanie A. Bachman Executive Director Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Request of DISH Wireless LLC for an Order to Approve the Shared Use of an Existing Tower 208 Valley Road, New Canaan, CT 06840 Latitude: 41. 166242° N / Longitude: 73.470481° W

Dear Ms. Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, DISH Wireless LLC ("DISH") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use by DISH of an existing telecommunication tower at 208 Valley Road in New Canaan (the "Property"). The existing 120'-0" Monopole tower is owned by Tarpon Towers II. The underlying property is owned by Silver Hill Hospital Inc. DISH requests that the Council find that the proposed shared use of the Tarpon Towers II tower satisfies the criteria of C.G.S. §16-50aa and issue an order approving the proposed shared use. This modification/proposal includes hardware that is 5G capable through remote software configuration and either or both services may be turned on or off at various times. A copy of this filing is being sent to Kevin Moynihan, First Selectman– City of New Canaan, Daniel Radman, Planning & Zoning Chairman – City of New Canaan, Brian Platz, Chief Building Official – City of New Canaan, Richard Canning, Chairman of Board of Directors – Silver Hill Hospital Inc., and Todd Bowman, Vice President – Tarpon Towers.

Background

The existing Tarpon Towers II facility consists of a 120'-0" monopole tower. DISH is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. DISH and Tarpon Towers II have agreed to the proposed shared use of the 208 Valley Road tower pursuant to mutually acceptable terms and conditions. Likewise, DISH and Tarpon Towers II have agreed to the proposed installation of equipment cabinets on the ground on the North side of the tower within the existing compound. Tarpon Towers II has authorized DISH to apply for all necessary permits and approvals that may be required to share the existing tower.

DISH proposes to install 3 antennas and 1 cable at the 75'-0"-foot level. In addition, DISH will install a ground equipment cabinet on a 5'x7' equipment platform. Included in the Construction Drawings are DISH's project specifications for locations of all proposed site improvements. The Construction Drawings also contain specifications for DISH's proposed antennas and groundwork.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is 120'-0"; Dish Wireless LLC proposed antennas will be located at a center line height of 75'-0".

2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.

3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 7.8166% as evidenced by Exhibit E.

C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the Council finds that the proposed shared use of the facility is technically, legally, environmentally, and economically feasible and meets public safety concerns, the council shall issue an order approving such a shared use." DISH respectfully submits that the shared use of the tower satisfies these criteria.

A. <u>Technical Feasibility</u>. The existing Tarpon Towers II tower is structurally capable of supporting DISH's proposed improvements. The proposed shared use of this tower is, therefore, technically feasible. A Feasibility Structural Analysis Report ("Structural Report") prepared for this project confirms that this tower can support DISH's proposed loading. A copy of the Structural Report has been included in this application.

B. <u>Legal Feasibility.</u> Under C.G.S. § 16-50aa, the Council has been authorized to issue order approving the shared use of an existing tower such as the Tarpon Towers II tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to the other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.

C. <u>Environmental Feasibility.</u> The proposed shared use of the Tarpon Towers II tower would have a minimal environmental effect for the following reasons:

1. The proposed installation will have no visual impact on the area of the tower. DISH's equipment cabinet would be installed within the existing facility compound. DISH's shared use of this tower therefore will not cause any significant change or alteration in the physical or environmental characteristics of the existing site.

2. Operation of DISH's antennas at this site would not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). Included in the EME report of this filing are the approximation tables that demonstrate that DISH's proposed facility will operate well within the FCC RF emissions safety standards.

3. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the Tarpon Towers II facility other than periodic maintenance. The proposed shared use of the Tarpon Towers II tower would, therefore, have a minimal environmental effect, and is environmentally feasible.

D. <u>Economic Feasibility.</u> As previously mentioned, DISH has entered into an agreement with Tarpon Towers II for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.

E. <u>Public Safety Concerns.</u> As discussed above, the tower is structurally capable of supporting DISH's full array of 3 antennas, 6 RRU radios, 1 OVP and 1 cable and all related equipment. DISH is not aware of any public safety concerns relative to the proposed sharing of the existing Tarpon Towers II tower.

Conclusion

For the reasons discussed above, the proposed shared use of the existing Tarpon Towers II tower at 208 Valley Road satisfies the criteria stated in C.G.S. §16-50aa and advances the General Assembly's and the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the proposed shared use.

Sincerely,

Michael Jones President, M+K Development 140 Beach 137th St Rockaway Beach, NY 11694 732-677-8881

CC:

Kevin Moynihan, First Selectman– City of New Canaan Daniel Radman, Planning & Zoning Chairman – City of New Canaan Brian Platz, Chief Building Official – City of New Canaan Richard Canning, Chairman of Board of Directors – Silver Hill Hospital Inc Todd Bowman, Vice President – Tarpon Towers.

EXHIBIT A

Letter of Authorization

🕩 Belle Harbor, NY 🥵 Atlanta, GA 🥵 Brick, NJ 🥵 Lewes, DE 📌 Tampa, FL 📌 Detroit, MI

July 25, 2023

Dish Wireless, LLC 5701 South Santa Fe Drive Littleton, CO 80120

Re: Development Application Letter of Authorization - 208 Valley Road, New Canaan, CT 06840 - NJJER01146D

Letter of Authorization

Dear Sir or Madam:

Tarpon Towers II, LLC ("Tarpon"), owns the tower facility at 208 Valley Road, New Canaan, CT 06840 and identified as Block # 44, Lot # 120 (the "Property"). Tarpon hereby authorizes Dish Wireless LLC ("DISH") and its agent, O4 Innovations and M&K Development LLC, to file applications for the sole purpose of gaining any zoning approval and building permit(s) to install new telecommunications equipment ("Equipment") on a proposed canister tower on the Property. DISH and its aforementioned agents shall not have authority to agree to any stipulations associated with their business before the Building Department that results in a duty on the part of Tarpon that has not been expressly permitted in writing.

DISH shall not be permitted to install the Equipment on the property until DISH provides a copy of its building permit from the Town and until DISH complies with any and all requirements set forth in DISH's lease with Tarpon.

Please contact Todd Bowman, Vice President of Tarpon at (941) 757-5010 ext 108 or tbowman@tarpontowers.com should you have any questions or concerns.

Sincerely,

Brett Buggeln COO Tarpon Towers II, LLC

Google Maps 208 Valley Rd

New Search Back to Results View Property Print View Map

Location	Owner	Account	MBLU
208 VALLEY RD	SILVER HILL HOSPITAL INC	30126	0044/ 0108/ 0120/

Parcel Value

Item	Appraised Value	Assessed Value
Buildings	9,890,300	6,923,210
Extra Building Features	0	0
Outbuildings	67,700	47,390
Land	5,092,000	3,564,400
Total	15,050,000	10,535,000

Owner of Record

SILVER HILL HOSPITAL INC
208 VALLEY RD
NEW CANAAN, CT 06840

Owner History

Name	Book/Page	Sale Date	Sale Price
SILVER HILL HOSPITAL INC	702/ 281	11/09/2004	0
SILVER HILL FOUNDATION INC	67/13	05/18/1940	136,567

Assessment History

Year	Total Assessment
2015	10,535,000
2014	10,535,000
2013	10,535,000
2012	9,209,060
2011	9,209,060
2010	9,209,060
2009	9,209,100
2008	10,969,100
2007	4,710,900
2006	4,710,900
2005	4,710,900
2004	4,710,900
2003	4,710,900
2002	6,112,960

Building Permits

Permit ID	Issue Date Ammoun	t Description	
16- 00064	01/28/2016 10,000	"REPAIR WATER DAMAGE AT MAIN HOUSE."	
15- 01238	12/09/2015 80,000	MARTIN CENTER - REPLACE EXISTING ENTRANCE STAIRS A	ND ROOF.
15- 01184	11/30/2015 75,000	RENOVATE 18 EXISTING RESTROOMS (WITH NEW FINISHES CONTROLS FOR PATIENT SAFETY.) NO INCREASE IN FIXTUR	AND NEW TOILETS AND SHOWER E COUNT.
15- 00466	06/01/2015 300,000	MAIN HOUSE - INTERIOR RENOVATIONS TO THE 2ND FLOOD	R
15- 00280	04/07/2015 90,000	'ENLARGE MED ROOM AND SWAP LOUNGE & TREATMENT I ADD AC UNITS TO MED, TREATMENT AND & NURSE STATIC	ROOMS TO FACILITATE PATIENT CARE, N."
14-1307	12/16/2014 72,000	CONSTRUCT A 12 X 24 SHELTER- FOR PROPANE GENERATOR	R, 6 ANTENNAS, UG PROPANE TANKS

14-0244	03/24/2014	400,000	"MARTIN CENTER BUILDING OFFICE: - RENOVATE EXISTING TO UPPER LEVEL, INCLUDES ADDING HVAC & EXTERIOR W NEW RESTROOM TO REPLACE ONE MOVED TO CREAT DATA COMPL	GOFFICE SPACE INCLUDING ADA ACCESS INDOWS [**REVISION- \$25,000: CREATE A CLOSET. NEW RESTROOM TO BE ADA
14-0297	03/19/2014	175,000	WIRELESS CELL TOWER ONLY.	
14-0296	03/19/2014	30,000	INSTALLATION OF EQUIPMENT ON 12x20 CONCRETE PAD, C 86'	ONCRETE PAD & 3 PANEL ANTENNAS AT
14-0169	02/26/2014	1,600,000	"RESIDENTIAL BUILDING" RENOVATION TOTHE EXISTING INCLUDING ADA UPGRADES, NEW WINDOWS SIDING, ROOF HOUSE	7800 SQ FT RESIDENTIAL BUILDING - , MECHANICALS AND FINISHES FOR THE K
14-0168	8 02/12/2014	20,000	REMOVE POLE MOUNTED FLOOD LIGHTS & REPLACE WITH	CAMPUS STD LOW LIGHT POST LIGHTS.
12-0452	2 09/21/2012	1,500,000	COM ADDS & ALTS	
12-0359	04/02/2012	30,000	COM ADDS & ALTS	
11-0059	03/15/2011	1,234,000	COM ADDS & ALTS	
11-0037	01/19/2011	65,000	ASBESTOS ABATEMENT, EXPLORATION DEMO	
10-0086	03/24/2010	735,000	COM ADDS & ALTS	
09-0649	01/29/2010	0	SIDEWALKS & ACCESSIBLE ROUTE	
09-0109	04/14/2009	100,000	COM ADDS & ALTS	
08-0846	0 11/18/2008	25,000	INT ALTS AND DECK	
07-1210	02/28/2008	250,000	CHANGE OF USE INT. ALTS & RAMP R-4	
07-0675	08/20/2007	6,199,000	COM ADDITIONS AND ALTERATIONS	
07-0402	2 05/11/2007	50,000	COM ADDS & ALTS	
07-0309	04/25/2007	25,000	COM ADDS & ALTS	
01- 0773A	11/06/2001	0	СОМ СО	
01-0773	09/17/2001	20,000	NEW OUTSIDE STAIRS	
01-0096	03/12/2001	73,000	PATIENT ROOM REMO	
20343	01/03/2001	42,000		
1914- 0120	09/23/1998	150,000	SILVERHILL FOUNDATION, INC.	
1796- 0120	07/29/1996	1,000	SILVERHILL FOUNDATION, INC.	

Land Line Valuation

Size	Zone	Dev Map #	Appraised Value	Assessed Value
21.57 AC	2 AC	7319, 7350	5,092,000	3,564,400

Building Details - Click Buildings Below

	Building 1 Building 2 Building 3 Building 4 Building 5 Building 6 Building 7 Building 7	uilding 8
]	Building 1	
	0044-0108-0120-00000	

EXHIBIT C

Construction Drawings

🕩 Belle Harbor, NY 🕩 Atlanta, GA 🥵 Brick, NJ 📌 Lewes, DE 📌 Tampa, FL 📌 Detroit, MI

DISH Wireless L.L.C. SITE ID:

NJJER01146D

DISH Wireless L.L.C. SITE ADDRESS:

208 VALLEY ROAD NEW CANAAN, CT 06840

CONNECTICUT CODE OF COMPLIANCE

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES CODE 2022 CT STATE BUILDING CODE/2015 IBC W/ CT AMENDMENTS CODE TYPE BUILDING MECHANICAL 2022 CT STATE BUILDING CODE/2015 IMC W/ CT AMENDMENTS 2022 CT STATE BUILDING CODE/2017 NEC W/ CT AMENDMENTS ELECTRICAL

	SHEET INDEX	
SHEET NO.	SHEET TITLE	
T-1	TITLE SHEET	
A-1	OVERALL AND ENLARGED SITE PLAN	
A-2	ELEVATION, ANTENNA LAYOUT AND SCHEDULE	
A-3	EQUIPMENT PLATFORM AND H-FRAME DETAILS	Sec. A.
A-4	EQUIPMENT DETAILS	
A-5	EQUIPMENT DETAILS	
E_1	ELECTRICAL/FIBER ROUTE PLAN AND NOTES	
E-2	ELECTRICAL DETAILS	
E-3	ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE	
G-1	GROUNDING PLANS AND NOTES	
G-2	GROUNDING DETAILS	
G-3	GROUNDING DETAILS	
RF-1	RF CABLE COLOR CODE	
	LEGEND AND ABBREVIATIONS	
GN-2	RF SIGNAGE	
GN-3	GENERAL NOTES	
GN-4	GENERAL NOTES	
GN-5	GENERAL NOTES	
		FOR ROUTINE
		DRAINAGE. NO
		11"\

DISH Wireless L.L.C. TEMPLATE VERSION 49 - 5/05/2022

SITE INFORMATION

SCOPE (OF V	NORK	
---------	------	------	--

INCLUSIVE LIST. CONTRACTOR SHALL UTILIZE SPECIFIED EQUIPMENT PART OR ENGINEER CONTRACTOR SHALL VERIFY ALL NEEDED EQUIPMENT TO PROVIDE A FUNCTIONAL SITE. ILLY CONSISTS OF THE FOLLOWING:

OSED PANEL ANTENNAS (1 PER SECTOR) JUMPERS POSED 7/8" COAX CABLES OSED DIPLEXERS OSED CABLE CLAMP ORK: OSED METAL PLATFORM OSED RRHs (2 PER SECTOR) OSED ICE BRIDGE OSED PPC CABINET OSED EQUIPMENT CABINET OSED POWER CONDUIT OSED TELCO CONDUIT OSED TELCO-FIBER BOX OSED GPS UNIT OSED SAFETY SWITCH (IF REQUIRED) POSED FIBER NID (IF REQUIRED) OSED METER SOCKET OSED DIPLEXERS LIGHT E FENCE

SITE PHOTO

UNDERGROUND SERVICE ALERT CBYD 811 UTILITY NOTIFICATION CENTER OF CONNECTICUT (800) 922-4455	8
WWW.CBYD.COM	

CALL 2 WORKING DAYS UTILITY NOTIFICATION PRIOR TO CONSTRUCTION

GENERAL NOTES

IS UNMANNED AND NOT FOR HUMAN HABITATION. A TECHNICIAN WILL VISIT THE SITE AS REQUIRED MAINTENANCE. THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT DISTURBANCE OR EFFECT ON SANITARY SEWER SERVICE, POTABLE WATER, OR TRASH DISPOSAL IS REQUIRED AND NO COMMERCIAL

(17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

CONTRACTOR SHALL VERIFY ALL PLANS, EXISTING DIMENSIONS, AND CONDITIONS ON SITE, AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK.

PROPERTY OWNER: ADDRESS:	SILVER HILL HOSPITAL INC. 208 VALLEY RD NEW CANAAN, CT 06840	APPLICANT:	DISH Wireless L.L.C. 5701 South Santa fe Drive Littleton, co 80120
TOWER TYPE:	CANISTER		
TOWER CO SITE ID:	N/A	TOWER OWNER.	8916 77TH TERRANCE EAST SUITE 103
TOWER APP NUMBER:	N/A		LAKEWOOD RANCH, FL 34202
COUNTY:	FAIRFIELD COUNTY	SITE DESIGNER:	M+K DEVELOPMENT 140 BEACH 137TH STREET
LATITUDE (NAD 83):	41°09'58.5"N 41.166242N		ROCKAWAY, NY 11694
LONGITUDE (NAD 83):	73° 28' 13.7" W	SITE ACQUISITION	• AUSTIN PAPPAS
ZONING JURISDICTION:	CT SITING COUNCIL		AUSTIN.PAPPAS@DISH.COM
ZONING DISTRICT:	2AC	CONSTRUCTION N	IANAGER: OMAR ZEERBAN
PARCEL NUMBER:	44/108/120		OMAR.ZEERBANGDISH.COM
OCCUPANCY GROUP:	U	RF ENGINEER:	SRI RAM GOTTUMUKKALA SRIRAM.GOTTUMUKKALA O DISH.COM
CONSTRUCTION TYPE:	II-B		
POWER COMPANY:	EVERSOURCE		
TELEPHONE COMPANY:	TBD		

DIRECTIONS

DIRECTIONS FROM 3 ADP BOULEVARD, ROSELAND, NJ: HEAD NORTHEAST TOWARD ADP BLVD, TURN LEFT, TURN LEFT TOWARD ADP BLVD, TURN LEFT TOWARD ADP BLVD, TURN LEFT ONTO ADP BLVD, TURN RIGHT TOWARD CHOCTAW WAY, SLIGHT RIGHT ONTO CHOCTAW WAY, USE THE LEFT LANE TO TURN RIGHT ONTO LIMINGSTON AVE, USE THE RIGHT LANE TO TAKE THE RAMP ONTO 1-280 E. MERGE ONTO 1-280 E, KEEP RIGHT TO STAY ON 1-280 E, FOLLOW SIGNS FOR NJ-21/NEWARK/HARRISON, TAKE EXIT 15X AND 16E TOWARD LINCOLN TUNL, MERGE ONTO 1-95 N, KEEP LEFT TO STAY ON 1-95 N, USE THE LEFT 2 LANES TO TAKE THE 1-95 EXIT TOWARD GEORGE WASHINGTON BR, CONTINUE ONTO INTERSTATE 95 UPPER LEVEL N/NJ TPKE N, CONTINUE ONTO US-9 N/INTERSTATE 95 UPPER LEVEL N, CONTINUE ONTO INTERSTATE 95 UPPER LEVEL N/US-1 UPPER LEVEL N, CONTINUE ONTO 1-95 N, TAKE EXIT 1C-D TO MERGE ONTO 1-87 N TOWARD ALBANY, TAKE EXIT 4 TOWARD CROSS CNTY PKWY, MERGE ONTO CENTRAL PARK AVE. TAKE THE CROSS COUNTY PKWY RAMP, KEEP LEFT AT THE FORK, FOLLOW SIGNS FOR HUTCHINSON PKWY AND MERCE ONTO CROSS COUNTY PKWY, MERCE ONTO HUTCHINSON RIVER PKWY N, KEEP RIGHT AT THE FORK TO STAY ON HUTCHINSON RIVER PKWY N, CONTINUE ONTO CT-15 N, TAKE EXIT 38 TOWARD NEW CANAAN AVE, TURN RIGHT ONTO NEW CANAAN AVE, TURN RIGHT ONTO CARTER ST. TURN RIGHT ONTO CT-106 N. TURN LEFT ONTO VALLEY RD. CONTINUE STRAIGHT TO STAY ON VALLEY RD.

PRO IECT DIRECTORY

DISH Wireless L.L.C. TEMPLATE VERSION 49 - 5/05/2022

ROUTE.	RED MARKINGS SHALL IDENTIFY +24V AND BLUE MARKINGS
PATH DEPICTED ON A-1 AND E-1 ARE BASED ON BEST AVAILABLE INFORMATION INCLUDING HER REAL PROPERTY RIGHTS DOCUMENTS. WHEN INSTALLING THE UTILITIES PLEASE LOCATE (TOWER OWNER AS FURTHER COORDINATION MAY BE NEEDED.	1. CONTRACTOR SHALL INSPECT THE EXISTING CONDITIONS PRIC DURING THE BID PERIOD IN REGARDS TO THE CONTRACTOR' OTHER ISSUE RELATED TO THIS PROJECT SHALL BE BROUGH MANAGER FOR CLARIFICATION, NOT AFTER THE CONTRACT HA
PROPOSED DISH Wireless L.L.C.	 ALL ELECTRICAL WORK SHALL BE DONE IN ACCORDANCE WIT STATE AND LOCAL CODES, LAWS, AND ORDINANCES. PROVIDI REQUIRED TO MEET NEC STANDARDS. LOCATION OF EQUIPMENT, CONDUIT AND DEVICES SHOWN ON COORDINATED WITH FIELD CONDITIONS PRIOR TO CONSTRUCT CONDUIT ROUGH—IN SHALL BE COORDINATED WITH THE MECHANICAL EQUIPMENT CONTRACTOR AND CONTRACTOR SHALL PROVIDE ALL BREAKERS, CONDUITS AND CONTRACTOR SHALL PROVIDE PULL BOXES AND JUNCTION E
GPS UNIT MOUNTED ON NEW H-FRAME PROPOSED DISH Wireless L.L.C. (1) HYBRID CABLE & (12) COAX CABLES ROUTED ON ICE BRIDGE PROPOSED DISH Wireless L.L.C. ICE BRIDGE 8'-6" AGL PROPOSED 6'-0" WIDE FENCE SECTION	 CONTRACTOR SHALL PROVIDE ALL STRAIN RELIEF AND CABLE INSTALLATION SHALL BE IN ACCORDANCE WITH MANUFACTURE ALL DISCONNECTS AND CONTROLLING DEVICES SHALL BE PRINDICATING EQUIPMENT CONTROLLED, BRANCH CIRCUITS INST INSTALL AN EQUIPMENT GROUNDING CONDUCTOR IN ALL COI THE EQUIPMENT GROUNDING CONDUCTORS SHALL BE BONDED DISCONNECT SWITCHES, AND EQUIPMENT CABINETS. ALL NEW MATERIAL SHALL HAVE A U.L. LABEL. PANEL SCHEDULE LOADING AND CIRCUIT ARRANGEMENTS REI 2. CONTRACTOR SHALL BE RESPONSIBLE FOR AS-BUILT PANEL ALL TRENCHES IN COMPOUND TO BE HAND DUG INSTALL MOUNTED MOTION ACTIVE WORK LIGHT.
TISTING T-CONCRETE	 SERVICE PLAN KEY NOTES: EQUIPMENT CABINET. DISH Wireless L.L.C. TO TAP THE CUSTOMER SIDE OF THE EXISTING SERV BY CON EDISON. PROVIDE AND INSTALL NEW 200A, 1Ø, UTILITY APPROVED BY-PASS METE PROVIDE AND INSTALL A NEW 200A, 1Ø, 250V, NEMA 1, FUSED DISCONNEG GROUNDING PER NEC. PROVIDE NEW 2" CONDUIT WITH (3) #4/0 AWG & (1) #4 AWG EQUIP-GRD. IN DISCONNECT AND RAYCAP PPC. CONDUIT DISTANCE IS APPROX.: 75' TOT RAYCAP PPC. MODEL #RDIAC-6512-240-MTS. PROVIDED BY DISH Wireless I PANEL SCHEDULE. CONTRACTOR TO INSTALL A NEW 48"X48"X3/4" PLYWOOD BACKBOARD. B RESISTANT, INTUMESCENT PRIMER AND PAINTED FLAT BLACK. CONTRACTOR TO INSTALL CHARLES INDUSTRIES FIBER CABINET MODEL PROVIDE AND INSTALL 120V, 20A GFI RECEPTACLE INSIDE THE TELCO BACKB CONDUIT DISTANCE IS APPROX. : 75' TOTAL INSTALL CONDUIT UP AND OVER UNDERGROUND IN TRENCH. SEE DETAIL 10. INSTALL MOUNTED MOTION ACTIVATED WORK LIGHT.SEE DETAIL 1/EN-03
XISTING BOLLARDS (TYP)	
8' 4' 0 8' 16' 1/8"=1'-0"	ELECTRICAL NOTES

D FOR IDENTIFYING +24V AND -48V CONDUCTORS. S SHALL IDENTIFY -48V.

PRIOR TO SUBMITTING A BID. ANY QUESTIONS ARISING DR'S FUNCTIONS, THE SCOPE OF WORK, OR ANY UGHT UP DURING THE BID PERIOD WITH THE PROJECT HAS BEEN AWARDED.

WITH CURRENT NATIONAL ELECTRICAL CODES AND ALL IDE ALL COMPONENTS AND WIRING SIZES AS

ON THE DRAWINGS ARE APPROXIMATE AND SHALL BE UCTION.

ECHANICAL EQUIPMENT TO AVOID LOCATION CONFLICTS. ND COMPLY AS REQUIRED.

ND CIRCUITS AS REQUIRED FOR A COMPLETE SYSTEM.

BOXES AS REQUIRED BY THE NEC ARTICLE 314.

BLE SUPPORTS FOR ALL CABLE ASSEMBLIES. JRER'S SPECIFICATIONS AND RECOMMENDATIONS.

PROVIDED WITH ENGRAVED PHENOLIC NAMEPLATES ISTALLED ON, AND PANEL FIELD LOCATIONS FED FROM.

CONDUITS PER THE SPECIFICATIONS AND NEC 250. NDED AT ALL JUNCTION BOXES, PULL BOXES, AND ALL

REFLECT POST-CONSTRUCTION EQUIPMENT.

NEL SCHEDULE AND SITE DRAWINGS.

RVICE END BOX. DESIGN TO BE APPROVED

ETER IN EXISTING SOCKET.

NECT WITH (2) 200A, 250V FUSES. PROVIDE

. INSTALL CONDUIT BETWEEN THE OTAL

ss L.L.C.. PROVIDE CIRCUIT BREAKERS PER

. BACKBOARD SHALL BE PRIMED WITH FIRE

DEL # MP1818WB-A.

SECTION OF THE PPC.

KBOARD AND CHARLES FIBER CABINET.

TAIL 7/EN-030

-030

NO SCALE	2	
NO SOME	2	

					<u>NOTES</u>			
ENERATOR GEN PLUG		PROPOSED POWER PROTECTIVE O 120/240V, 1 PH, SERVICE RATEL OVERALL UL LISTED POWER CENT	CABINET D, TER,	DELTA NETWORK CABINET DELTA ELITE-X DC PLANT	THE (2) CONDUITS WITH (4) CURRENT CARRYING CONDUCTORS THE ADJUSTMENT FACTOR OF 80% PER 2020 NEC TABLE 310.1 WIRE. (ALL WIRE AND TERMINATION HARDWARE TO BE RATED 75	EACH, SHALL AP 15(C)(1) FOR UL 5°C)	PPLY .1015	
RVICE		N3R, 65K/10K AIC SERIES RATE	D.		#12 FOR 20A OCPD WIRE DERATING: 0. #8 FOR 40A OCPD WIRE DERATING: 0.	8 x 25A = 20.0 8 x 50A = 40.0	DA DA	
65K		FEED, 200A INTERLOCKED GENERATOR FEED, 200A 10K AIC	(2) PROPOSED 1.0" EMT CONDUIT		CONDUIT SIZING: AT 40% FILL PER NEC CHAPTER 9, TABLE 4,	ARTICLE 358.		wireless.
OKA MOV					3.0° CONDUIT - 3.538 SQ. IN AREA			5701 SOUTH SANTA FE DRIVE
15Å	$\begin{array}{c c} 01 & 02 \\ \hline 03 & 04 \\ \hline 05 & 06 \\$	OA PROPOSED 2#8, 1#8 SHARED	D GND.	→ FOR RECTIFIER 1	(2 CONDUIT): USING THWN-2, CU. RECTIFIER CONDUCTORS #8 - 0.0366 SQ. IN X 4 = 0.1464 SQ #8 - 0.0366 SQ. IN X 1 = 0.0366 SQ	. IN . IN <ground< td=""><td></td><td>LITTLETON, CO 80120</td></ground<>		LITTLETON, CO 80120
SPA	CE 09 10			- FOR RECITFIER 2	$\frac{1}{\text{TOTAL}} = 0.1830 \text{ SQ.}$	IN		
SPA SPA SPA	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CE PROPOSED WORK LIGHT BREA		→ FOR RECTIFIER 2	$ \begin{array}{c} \#12 - 0.0133 \text{ SQ. IN } X \ 2 = 0.0266 \text{ SQ.} \\ \#8 - 0.0366 \text{ SQ. IN } X \ 2 = 0.0732 \text{ SQ.} \\ \#8 - 0.0366 \text{ SQ. IN } X \ 1 = 0.0366 \text{ SQ.} \\ \#8 - 0.0366 \text{ SQ. IN } X \ 1 = 0.0366 \text{ SQ.} \\ \end{array} $	Q. IN Q. IN Q. IN <ground< td=""><td></td><td></td></ground<>		
SPÅ	$\begin{array}{c c} 17 & 18 \\ \hline 19 & 20 \\ \hline 19 & 20 \\ \hline 19 & 20 \\ \hline 21 & 22 \\ \hline 21 & 22 \\ \hline 24 & SPA \\ \hline 24$				TOTAL = 0.1364 SQ. 1.0" EMT CONDUIT IS ADEQUATE TO HANDLE THE TOTAL OF (5) INCLUDING GROUND WIRE, AS INDICATED ABOVE.	IN WIRES,		DEVELOPMENT 140 BEACH 137TH STREET ROCKAWAY, NY 11694
SPÅ	<u>23 24</u> Ce SPA	CE PROPOSED 2#12		→ FOR CONVENIENCE OUTLET	PPC FEED CONDUCTORS (1 CONDUIT): USING THWN, CU.			
			V		$ \int \frac{370 - 0.2679 \text{ SQ. IN X 3} = 0.8037 \text{ SQ}}{\#6 - 0.0507 \text{ SQ. IN X 1} = 0.0507 \text{ SQ}} $ $ TOTAL = 0.8544 \text{ SO} $. IN . IN <ground< td=""><td></td><td>UNITE OF CONNECTION</td></ground<>		UNITE OF CONNECTION
RCUIT WIRI E—LINE DI/ REQUIRED:	NG SUPPLYING AGRAM. CONTRAC (OR EQUIVALEN	RECTIFIERS ARE TO BE RATED UL10 CTOR MAY SUBSTITUTE UL1015 WIRE	015, 105°C, 600V, AND PVC INS E FOR THWN-2 FOR CONVENIENC	ULATED, IN THE SIZES SHOWN CE OUTLET BRANCH CIRCUIT.	3.0" SCH 40 PVC CONDUIT IS ADEQUATE TO HANDLE THE TOTAL INCLUDING GROUND WIRE, AS INDICATED ABOVE.	L OF (4) WIRES,		Sonet ellugarian
P BREAKE P BREAKE	R – SQUARE D R – SQUARE D	P/N:Q0240 P/N:Q0115			1 OPTIONAL ALUMINUM SERVICE CONDUCTOR: • 4/0 AL + #2 GRD MAY BE USED INSTEAD OF 3/0 CU LENGTH OF THE CONDUCTOR IS LESS THAN 300 FT FROM • ALUMINUM CONDUCTORS MUST BE 90°C TO CARRY THE F • ALUMINUM TO COPPER BUSS CONNECTIONS MUST MEET A BE UL LISTED. USE ANTI CORROSION CONDUCTIVE LUBRIC	+ #6 GRD IF THE 1 M THE TRANSFORME TULL 200A LOAD RE IND CONFORM TO A MANT ON CONNECTIO	total R. Quired Insi And Ins	* 8/23/2023 S/ONAL EMILITY
								IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER,
								TO ALTER THIS DOCUMENT.DRAWN BY:CHECKED BY:TER
	PPC 0	NE-LINE DIAGRAM				NO SCALE	1	RFDS REV #:
RFACE/NEMA	\ 3R							CONSTRUCTION DOCUMENTS
000 / 10,000 S								SUBMITTALS REV DATE DESCRIPTION
SEE ONE	POLES LINE 40/2 LINE 40/2							A06/23/2023ISSUED FOR REVIEW008/21/2023ISSUED FOR CONSTRUCTION
SEE ONE	LINE 40/2							
								A&E PROJECT NUMBER NJJER01146D
9.4 kV/ 9.4 kV/	A 39 A A 39 A							DISH Wireless L.L.C. PROJECT INFORMATION
								NJJER01146D 208 VALLEY ROAD NEW CANAAN, CT 06840
								SHEET TITLE ELECTRICAL ONE-LINE, FAULT CALCS & PANEL SCHEDULE
								SHEET NUMBER
	NO SCALE	2		NOT USED		NO SCALE	3	E-3
							-	

DISH Wireless L.L.C. TEMPLATE VERSION 49 - 5/05/2022

 EXOTHERMIC WELD (2) TWO, #2 AWG BARE TINNED SOLID COPPER CONDUCTORS TO G BAR. ROUTE CONDUCTORS TO BURIED GROUND RING AND PROVIDE PARALLEL EXOTHER WELD. ALL EXTERIOR GROUNDING HARDWARE SHALL BE STAINLESS STEEL 3/8" DIAMETER OR ALL HARDWARE 18-8 STAINLESS STEEL INCLUDING LOCK WASHERS, COAT ALL SURFACE AN ANTI-OXIDANT COMPOUND BEFORE MATING. FOR GROUND BOND TO STEEL ONLY: COAT ALL SURFACES WITH AN ANTI-OXIDANT COM BEFORE MATING. DO NOT INSTALL CABLE GROUNDING KIT AT A BEND AND ALWAYS DIRECT GROUND CON DOWN TO GROUNDING BUS. NUT & WASHER SHALL BE PLACED ON THE FRONT SIDE OF THE GROUND BAR AND BE THE BACK SIDE. ALL GROUNDING PARTS AND EQUIPMENT TO BE SUPPLIED AND INSTALLED BY CONTRACT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSTALLING ADDITIONAL GROUND BAR AN REQUIRED. ENSURE THE WIRE INSULATION TERMINATION IS WITHIN 1/8" OF THE BARREL (NO SHIN 	EXTERNAL TOOTHED 3/8" DIA x1 1/2" S/S NUT S/S NUT S/S LOCK WASHER S/S FLAT WASHER S/S FLAT WASHER S/S FLAT WASHER S/S BOLT (1 OF 2) 1/16" MINIMUM SPACE		
TYPICAL GROUNDING NOTES	NO SCALE	1	<u>TYP</u>
NOTE: MINIMUM OF 3 THREADS TO BE VISIBLE (TYP) 2 HOLE LONG BARREL TINNED SOLD COPPER LUG (TYP) TIN COATED SOLD COPPER BUS BAR COPPER BUS BAR COPPER BUS BAR S/S FLAT W S/S FLAT W S/S FLAT W	(TYP) Washer (Typ) /Asher (Typ) /Asher (Typ) YP)		FINS SI BELOW SI PORTER IS BUD TINE COPPER CONDUCTOR EXTERIOR GROUND R
LUG DETAIL	NO SCALE	4	TYPICAL TEST
NOT USED	NO SCALE	7	

CLEAR HEAT SHRINK BUTT U CONNE CONNE TINNED COPPER GROUNDING BAR	CTOR INSULATIO JP AGAINST THE CTOR BARREL		displays a constraint of the second strain of the s
LE LUG	NO SCALE	3	
			T IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.
			RFDS REV #:
			CONSTRUCTION DOCUMENTS
	NO SCALE	6	SUBMITTALS
			REVDATEDESCRIPTIONA06/23/2023ISSUED FOR REVIEW
			0 08/21/2023 ISSUED FOR CONSTRUCTION
			A&E PROJECT NUMBER
			NJJER01146D
			PROJECT INFORMATION
			NJJER01146D 208 VALLEY ROAD NEW CANAAN, CT 06840
			SHEET TITLE GROUNDING DETAILS
			SHEET NUMBER
			G-3
	NO SCALE	9	

			•	
LOW_RAND RRH		ALPHA RRH		BETA
(600 MHz N71 BASEBAND) + (850 MHz N26 BAND) + (700 MHz N29 BAND) – OPTIONAL PER MARKET	PORT 1 POR + SLANT - SI	T 2 PORT 3 PO LANT + SLANT - 3	RT 4 PORT 1 SLANT + SLANT	PORT 2 - SLANT
ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL USE YELLOW BAND)	RED RE	ED RED F	RED BLUE	BLUE
	ORANGE ORA	NGE RED F	RED ORANGE	ORANGE
	(_)	ORANGE OR (-)	ANGE HITE PORT	(-) Port
MID-BAND RRH	RED	D RED F	RED BI UE	BLUE
(AWS BANDS N66+N70) ADD FREQUENCY COLOR TO SECTOR BAND (CBRS WILL LISE YELLOW BANDS)	PURPLE			PURPLE
(CDRS WILL OSE TELEOW DAMDS)	wh		RPLE	
			HITE PORT	
HYBRID/DISCREET CABLES	EXAMPLE 1	EXAMPLE 2	EXAMPLE 3 COAX#1	CANISTER COAX #2
INCLUDE SECTOR BANDS BEING SUPPORTED ALONG WITH FREQUENCY BANDS.			(ALPHA)	(ALPHA)
EXAMPLE 1 – HYBRID, OR DISCREET, SUPPORTS ALL SECTORS, BOTH LOW-BANDS AND MID-BANDS.	RED BLUE	RED BLUE	RED	RED
EXAMPLE 2 – HYBRID, OR DISCREET, SUPPORTS CBRS ONLY, ALL SECTORS.	GREEN	GREEN		RED
EXAMPLE 3 — MAIN COAX WITH GROUND MOUNTED RRHs.	ORANGE PURPLE	YELLOW		
FIBER JUMPERS TO RRHs	LOW BAND RRH	MID BAND RRH	LOW BAND R	RH MIC
LOW-BAND HHR FIBER CABLES HAVE SECTOR STRIPE ONLY.	RED ORANGE	RED PURPLE	BLUE ORANGE	
POWER CABLES TO RRHs	LOW BAND RRH	MID BAND RRH	LOW BAND R	RH MIC
LOW-BAND RRH POWER CABLES HAVE SECTOR STRIPE ONLY	RED ORANGE	RED PURPLE	BLUE ORANGE	
RET MOTORS AT ANTENNAS	ANTENNA 1 ANTEN MID BAND LOW	NNA 1 BAND	ANTENNA 1 MID BAND	ANTENNA 1 LOW BAND
RET CONTROL IS HANDLED BY THE MID-BAND RRH WHEN ONE SET OF RET PORTS EXIST ON ANTENNA.	IN II	N	IN	IN
SEPARATE RET CABLES ARE USED WHEN ANTENNA PORTS PROVIDE INPUTS FOR BOTH LOW AND MID BANDS.	REDREPURPLEORA	ED NGE	BLUE PURPLE	BLUE ORANGE
MICROWAVE RADIO LINKS	FORWARD AZIM	IUTH OF 0-120 DEGR	EES FORWARD	AZIMUTH OF
LINKS WILL HAVE A 1.5–2 INCH WHITE WRAP WITH THE AZIMUTH COLOR OVERLAPPING IN THE MIDDLE.				
ADD ADDITIONAL SECTOR COLOR BANDS FOR EACH ADDITIONAL MW RADIO.	RED RE		BLUE	BLUE
MICROWAVE CABLES WILL REQUIRE P-TOUCH LABELS INSIDE THE CABINET TO IDENTIFY THE LOCAL AND REMOTE SITE ID's.	WHITE WH RE WH		WHITE	WHITE BLUE WHITE

RF CABLE COLOR CODES

TOR	AWS (N66+N70+H-BLOCK) PURPLE NEGATIVE SLANT PORT ON ANT/RRH WHITE GAMMA SECTOR		displaying the second s
	GREEN	2	DEVELOPMENT 140 BEACH 137TH STREET ROCKAWAY, NY 11694
			Image: State of the state
	NO SCALE	3	SUBMITTALS
			REV DATE DESCRIPTION A 06/23/2023 ISSUED FOR REVIEW 0 06/21/2023 ISSUED FOR CONSTRUCTION - - -
	NO SCALE	4	

	AB
	ABV
BUSS BAR INSULATOR	ADDL
CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	AFF
TEST CHEMICAL ELECTROLYTIC GROUNDING SYSTEM	AFG
EXOTHERMIC WITH INSPECTION SLEEVE	AIC
GROUNDING BAR	ALUM ALT
	ANT
TEST GROUND ROD WITH INSPECTION SLEEVE	APPROX
SINGLE POLE SWITCH	ARCH ATS AWG
	BATT BLDG
DUPLEX GFCI RECEPTACLE	BLK BLKG
FLUORESCENT LIGHTING FIXTURE (2) TWO LAMPS 48-T8	BM BTC
SMOKE DETECTION (DC)	BOF CAB
EMERGENCY LIGHTING (DC)	CANT CHG
SECURITY LIGHT W/PHOTOCELL LITHONIA ALXW LED-1-25A400/51K-SR4-120-PE-DDBTXD	CLG CLR
CHAIN LINK FENCE x x x x	COL
WOOD/WROUGHT IRON FENCE	CONC
WALL STRUCTURE	CONSTR
LEASE AREA	DBL
PROPERTY LINE (PL)	DEPT
SETBACKS	DF
ICE BRIDGE	DIAG
CABLE TRAY	DIM
WATER LINE W	DWG
UNDERGROUND POWER UGP UGP UGP UGP UGP	EA
UNDERGROUND TELCO UGT UGT UGT UGT UGT UGT	EC
OVERHEAD POWER	EL. FI FC
OVERHEAD TELCO OHT OHT OHT OHT	EMT
UNDERGROUND TELCO/POWER UGT/P UGT/P UGT/P UGT/P	ENG
ABOVE GROUND POWER AGP AGP AGP AGP AGP AGP	EQ
ABOVE GROUND TELCO — AGT — AGT — AGT — AGT — AGT — AGT —	EXT
ABOVE GROUND TELCO/POWER AGT/P AGT/P AGT/P AGT/P	EW
WORKPOINT W.P.	FAB
	FG
	FIF
	FIN FI R
	FDN
X-X	FOC
	FOM
	FOW
	FS
	FT
	FIG GA
	GEN
	GFCI
	GLB
	GLV GPS
	GND
	GSM
	HDG
	HDR HGR
	HVAC
	НТ
	IGR
<u>LEGEND</u>	

DISH Wireless L.L.C. TEMPLATE VERSION 49 - 5/05/2022

ABBREVIATIONS

ANCHOR BOLT	IN	INCH
ABOVE	INT	INTERIOR
ALTERNATING CURRENT	LB(S)	POUND(S)
ADDITIONAL		
ABOVE FINISHED FLOOR	LTE	
ABOVE GROUND LEVEL	MAS	MASUNRT
AMPERAGE INTERRUPTION CAPACITY	MB	MACHINE BOLT
ALUMINUM	MECH	MECHANICAL
ALTERNATE	MFR	MANUFACTURER
ANTENNA	MGB	MASTER GROUND BAR
APPROXIMATE	MIN	MINIMUM
ARCHITECTURAL	MISC	MISCELLANEOUS
	MTL	METAL
AMERICAN WIRE GAUGE	MTS	MANUAL TRANSFER SWITCH
BUILDING	MW	
BLOCK	NEC	NEWTON METERS
BLOCKING	NO.	NUMBER
BEAM	#	NUMBER
BARE TINNED COPPER CONDUCTOR	" NTS	NOT TO SCALE
BOTTOM OF FOOTING	oc	ON-CENTER
CABINET	OSHA	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION
CANTILEVERED	OPNG	OPENING
	P/C	PRECAST CONCRETE
	PCS	PERSONAL COMMUNICATION SERVICES
	PCU	PRIMARY CONTROL UNIT
COMMON	PRC	PRIMARY RADIO CABINET
CONCRETE	PP	POLARIZING PRESERVING
CONSTRUCTION	PSF	POUNDS PER SQUARE FOUT
DOUBLE	PT	PRESSURE TREATED
DIRECT CURRENT	PWR	POWER CABINET
DEPARTMENT	QTY	QUANTITY
DOUGLAS FIR	RAD	RADIUS
	RECT	RECTIFIER
DIAGONAL	REF	REFERENCE
DRAWING	REINF	REINFORCEMENT
DOWEL	REQ'D	REQUIRED
EACH	RET	REMOTE ELECTRIC TILT
ELECTRICAL CONDUCTOR	RF	RADIO FREQUENCY
ELEVATION		RIGID METALLIC CONDUIT
ELECTRICAL	RRII	REMOTE RADIO LINIT
ELECTRICAL METALLIC TUBING	RWY	RACEWAY
ENGINEER	SCH	SCHEDULE
	SHT	SHEET
EXTERIOR	SIAD	SMART INTEGRATED ACCESS DEVICE
EACH WAY	SIM	SIMILAR
FABRICATION	SPEC	SPECIFICATION
FINISH FLOOR	SQ	SQUARE
FINISH GRADE	SS	STANDARD
FACILITY INTERFACE FRAME	SID	STANDARD
FINISH(ED)	TEMP	TEMPORARY
FLOOR	ТНК	THICKNESS
FOUNDATION	TMA	TOWER MOUNTED AMPLIFIER
FACE OF CONCRETE	TN	TOE NAIL
FACE OF MASUNRY	TOA	TOP OF ANTENNA
FACE OF WALL	TOC	TOP OF CURB
FINISH SURFACE	TOF	TOP OF FOUNDATION
FOOT	TOP	TOP OF PLATE (PARAPET)
FOOTING	TOS	TOP OF STEEL
GAUGE		
GENERATOR	TYP	
GROUND FAULT CIRCUIT INTERRUPTER	UG	UNDERGROUND
GLUE LAMINATED BEAM	UL	UNDERWRITERS LABORATORY
CI ORAL POSITIONING SYSTEM	UNO	UNLESS NOTED OTHERWISE
GROUND	UMTS	UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
GLOBAL SYSTEM FOR MOBILE	UPS	UNITERRUPTIBLE POWER SYSTEM (DC POWER PLANT)
HOT DIPPED GALVANIZED	VIF	VERIFIED IN FIELD
HEADER	W	WIDE
HANGER	W/	WITH
HEAT/VENTILATION/AIR CONDITIONING	WD	WOOD
HEIGHT	WP	WEATHERPROOF
	WT	WEICHT

		SIGN TYPES
TYPE	COLOR	COLOR CODE PURPOSE
INFORMATION	GREEN	"INFORMATIONAL SIGN" TO NOTIFY OTHERS OF SITE OWNERSHIP & CONTACT NUMBER A
NOTICE	BLUE	*NOTICE BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC O POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDA COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)
CAUTION	YELLOW	*CAUTION BEYOND THIS POINT" RF FIELDS BEYOND THIS POINT MAY EXCEED THE FCC POSTED SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS. IN ACCORDA COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.1307(b)
WARNING	ORANGE/RED	*WARNING BEYOND THIS POINT" RF FIELDS AT THIS SITE EXCEED FCC RULES FOR HUI SIGNS AND SITE GUIDELINES FOR WORKING IN RF ENVIRONMENTS COULD RESULT IN SE COMMUNICATIONS COMMISSION RULES ON RADIO FREQUENCY EMISSIONS 47 CFR-1.130

SIGN PLACEMENT:

- RF SIGNAGE PLACEMENT SHALL FOLLOW THE RECOMMENDATIONS OF AN EXISTING EME REPORT, CREATED BY A THIRD Wireless L.L.C.

- INFORMATION SIGN (GREEN) SHALL BE LOCATED ON EXISTING DISH Wireless L.L.C EQUIPMENT.

A) IF THE INFORMATION SIGN IS A STICKER, IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C EQUIPMENT B) IF THE INFORMATION SIGH IS A METAL SIGN IT SHALL BE PLACED ON EXISTING DISH Wireless L.L.C H-FRAMI

- IF EME REPORT IS NOT AVAILABLE AT THE TIME OF CREATION OF CONSTRUCTION DOCUMENTS; PLEASE CONTACT DISH FURTHER INSTRUCTION ON HOW TO PROCEED.

NOTES:

1. FOR DISH Wireless L.L.C. LOGO, SEE DISH Wireless L.L.C. DESIGN SPECIFICATIONS (PROVIDED BY DISH Wireless L.L.C.)

2. SITE ID SHALL BE APPLIED TO SIGNS USING "LASER ENGRAVING" OR ANY OTHER WEATHER RESISTANT METHOD (DISH Wireless L.L.C. APPROVAL REQUIRED)

- 3. TEXT FOR SIGNAGE SHALL INDICATE CORRECT SITE NAME AND NUMBER AS PER DISH Wireless L.L.C. CONSTRUCTION MANAGER RECOMMENDATIONS.
- 4. CABINET/SHELTER MOUNTING APPLICATION REQUIRES ANOTHER PLATE APPLIED TO THE FACE OF THE CABINET WITH WATER PROOF POLYURETHANE ADHESIVE
- 5. ALL SIGNS WILL BE SECURED WITH EITHER STAINLESS STEEL ZIP TIES OR STAINLESS STEEL TECH SCREWS
- 6. ALL SIGNS TO BE 8.5"x11" AND MADE WITH 0.04" OF ALUMINUM MATERIAL

NOTICE		
Transmitting Antenna(s)		
Radio frequency fields beyond this point MAY EXCEED the FCC Occupational exposure limit.	es only	
Obey all posted signs and site guidelines for working in radio frequency environments.	ENCE PURPOS	
Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.	S FOR REFER	
Site ID:	SIGN	
dish	THS	

ND POTENTIAL RF EXPOSURE.
ENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL NCE WITH FEDERAL COMMUNICATIONS
GENERAL PUBLIC EXPOSURE LIMIT. OBEY ALL NCE WITH FEDERAL COMMUNICATIONS
AAN EXPOSURE. FAILURE TO OBEY ALL POSTED RIOUS INJURY. IN ACCORDANCE WITH FEDERAL 7(b)
PARTY PREVIOUSLY AUTHORIZED BY DISH
CABINET. E WITH A SECURE ATTACH METHOD.
I Wireless L.L.C. CONSTRUCTION MANAGER FOR
c)

INFORMAT

This is an access point area with transmitting ar

Obey all signs and barriers beyond Call the DISH Wireless L.L.C. NOC at 1-8

Site ID:

THIS SIGN IS FOR REFERENCE PURPOSES ONLY

•))

CAUT	ION
Λ	

Transmitting Antenna(s)

Radio frequency fields beyond this point MAY **EXCEED** the FCC Occupational exposure limit.

Obey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID:

dish

Transmitting Antenna(s)

Radio frequency fields beyond this po **EXCEED** the FCC Occupational expos

Obey all posted signs and site guidel working in radio frequency environme

Call the DISH Wireless L.L.C. NOC at prior to working beyond this point.

Site ID:

<u>RF SIGNAGE</u>

	digital displayed by the second secon
t to an ntennas.	5701 SOUTH SANTA FE DRIVE LITTLETON, CO 80120
this point. 866-624-6874	DEVELOPMENT 140 BEACH 137TH STREET ROCKAWAY, NY 11694
	A CONVECTION OF
	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT. DRAWN BY: CHECKED BY: APPROVED BY: TER RFDS REV #: CONSTRUCTION DOCLIMENTS
	SUBMITTALS
	REV DATE DESCRIPTION
	A 06/23/2023 ISSUED FOR REVIEW 0 08/21/2023 ISSUED FOR CONSTRUCTION
5	
oint ଟ sure limit. ପ୍ଲ	
ines for	A&E PROJECT NUMBER
ents.	DISH Wireless LLC
1-866-624-6874	
Sign is For	208 VALLEY ROAD NEW CANAAN, CT 06840
	SHEET TITLE RF SIGNAGE
	SHEET NUMBER
	GN-2

SITE ACTIVITY REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITTEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE DISH Wireless L.L.C. AND TOWER OWNER NOC & THE DISH Wireless L.L.C. AND TOWER OWNER CONSTRUCTION MANAGER.

2. "LOOK UP" - DISH Wireless L.L.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRITY OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDERED DURING ALL STAGES OF DESIGN, INSTALLATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUIPMENT INSTALLATIONS SHALL NOT COMPROMISE THE INTEGRITY OR FUNCTIONAL USE OF THE SAFETY CLIMB OR ANY COMPONENTS OF THE CLIMBING FACILITY ON THE STRUCTURE. THIS SHALL INCLUDE, BUT NOT BE LIMITED TO: PINCHING OF THE WIRE ROPE, BENDING OF THE WIRE ROPE FROM ITS SUPPORTS, DIRECT CONTACT OR CLOSE PROXIMITY TO THE WIRE ROPE WHICH MAY CAUSE FRICTIONAL WEAR, IMPACT TO THE ANCHORAGE POINTS IN ANY WAY, OR TO IMPEDE/BLOCK ITS INTENDED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXISTING CONDITIONS MUST BE TAGGED OUT AND REPORTED TO YOUR DISH Wireless L.L.C. AND DISH Wireless L.L.C. AND TOWER OWNER POC OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAINTENANCE AND CONTRACTOR NOTICE TICKET.

3. PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTIVITIES AND CONSTRUCTION ARE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFIED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

4. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN, AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND DISH WIRELESS L.L.C. AND TOWER OWNER STANDARDS, INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH DISH Wireless L.L.C. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION ACTIVITIES ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD FOR INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS."

6. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

9. THE CONTRACTOR SHALL CONTACT UTILITY LOCATING SERVICES INCLUDING PRIVATE LOCATES SERVICES PRIOR TO THE START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROPER EXECUTION OF THE WORK, SHALL BE RELOCATED AS DIRECTED BY CONTRACTOR. EXTREME CAUTION SHOULD BE USED BY THE CONTRACTOR WHEN EXCAVATING OR DRILLING PIERS AROUND OR NEAR UTILITIES. CONTRACTOR SHALL PROVIDE SAFETY TRAINING FOR THE WORKING CREW. THIS WILL INCLUDE BUT NOT BE LIMITED TO A) FALL PROTECTION B) CONFINED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCAVATION E) CONSTRUCTION SAFETY PROCEDURES.

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS, LATEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK. IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND DISPOSED OF LEGALLY.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES, WHICH INTERFERE WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHICH WILL NOT INTERFERE WITH THE EXECUTION OF THE WORK, SUBJECT TO THE APPROVAL OF DISH Wireless L.L.C. AND TOWER OWNER, AND/OR LOCAL UTILITIES.

14. THE CONTRACTOR SHALL PROVIDE SITE SIGNAGE IN ACCORDANCE WITH THE TECHNICAL SPECIFICATION FOR SITE SIGNAGE REQUIRED BY LOCAL JURISDICTION AND SIGNAGE REQUIRED ON INDIVIDUAL PIECES OF EQUIPMENT, ROOMS, AND SHELTERS.

15. THE SITE SHALL BE GRADED TO CAUSE SURFACE WATER TO FLOW AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.

16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE APPLICATION.

17. THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PREVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS.

 CONTRACTOR SHALL MINIMIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.
 THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES, ANY

19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUC DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER.

20. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

21. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

22. NO FILL OR EMBANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES:

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION

CARRIER:DISH Wireless L.L.C.

TOWER OWNER: TOWER OWNER

2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINEERS IN THIS OR SIMILAR LOCALITIES. IT IS ASSUMED THAT THE WORK DEPICTED WILL BE PERFORMED BY AN EXPERIENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OF THE APPLICABLE CODE STANDARDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTICE. AS NOT EVERY CONDITION OR ELEMENT IS (OR CAN BE) EXPLICITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED STANDARD GOOD PRACTICE FOR MISCELLANEOUS WORK NOT EXPLICITLY SHOWN.

3. THESE DRAWINGS REPRESENT THE FINISHED STRUCTURE. THEY DO NOT INDICATE THE MEANS OR METHODS OF CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTY DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMITED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISITS BY THE ENGINEER OR HIS REPRESENTATIVE WILL NOT INCLUDE INSPECTION OF THESE ITEMS AND IS FOR STRUCTURAL OBSERVATION OF THE FINISHED STRUCTURE ONLY.

4. NOTES AND DETAILS IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED FOR IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL NOTES, AND SPECIFICATIONS, THE GREATER, MORE STRICT REQUIREMENTS, SHALL GOVERN. IF FURTHER CLARIFICATION IS REQUIRED CONTACT THE ENGINEER OF RECORD.

5. SUBSTANTIAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR TO FIELD VERIFY THE DIMENSIONS, MEASUREMENTS, AND/OR CLEARANCES SHOWN IN THE CONSTRUCTION DRAWINGS PRIOR TO FABRICATION OR CUTTING OF ANY NEW OR EXISTING CONSTRUCTION ELEMENTS. IF IT IS DETERMINED THAT THERE ARE DISCREPANCIES AND/OR CONFLICTS WITH THE CONSTRUCTION DRAWINGS THE ENGINEER OF RECORD IS TO BE NOTIFIED AS SOON AS POSSIBLE.

6. PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING CONTRACTOR SHALL VISIT THE CELL SITE TO FAMILIARIZE WITH THE EXISTING CONDITIONS AND TO CONFIRM THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION DRAWINGS. ANY DISCREPANCY FOUND SHALL BE BROUGHT TO THE ATTENTION OF CARRIER POC AND TOWER OWNER.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLICABLE CODES, REGULATIONS AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH ALL APPLICABLE MUNICIPAL AND UTILITY COMPANY SPECIFICATIONS AND LOCAL JURISDICTIONAL CODES, ORDINANCES AND APPLICABLE REGULATIONS.

8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MATERIALS, EQUIPMENT, APPURTENANCES AND LABOR NECESSARY TO COMPLETE ALL INSTALLATIONS AS INDICATED ON THE DRAWINGS.

9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATIVE INSTALLATION FOR APPROVAL BY THE CARRIER AND TOWER OWNER PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

11. CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITTING BIDS, TO DETERMINE THE BEST ROUTING OF ALL CONDUITS FOR POWER, AND TELCO AND FOR GROUNDING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNDING PLAN DRAWINGS.

12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF DISH Wireless L.L.C. AND TOWER OWNER

13. CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER ITEMS REMOVED FROM THE EXISTING FACILITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.
14. CONTRACTOR SHALL LEAVE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

SHEET NUMBER

SHEET NUMBER

GN-3

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL: ELECTRICAL METALLIC TUBING (EMT) OR METAL-CLAD CABLE (MC) SHALL BE USED FOR CONCEALED INDOOR LOCATIONS. 16. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN SCHEDULE 40 PVC UNDERGROUND ON STRAIGHTS AND SCHEDULE 80 PVC FOR ALL ELBOWS/90s AND ALL APPROVED ABOVE 17. AND CONSTRUCTION SPECIFICATION FOR CAST-IN-PLACE CONCRETE. GRADE PVC CONDUIT. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO BE 1000 2. LIQUID-TIGHT FLEXIBLE METALLIC CONDUIT (LIQUID-TITE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION psf. OCCURS OR FLEXIBILITY IS NEEDED. ALL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH (f'c) OF 3000 psi AT 28 DAYS, UNLESS NOTED OTHERWISE. NO CONDUIT AND TUBING FITTINGS SHALL BE THREADED OR COMPRESSION-TYPE AND APPROVED FOR THE LOCATION USED. SET MORE THAN 90 MINUTES SHALL ELAPSE FROM BATCH TIME TO TIME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. SCREW FITTINGS ARE NOT ACCEPTABLE. TEMPERATURE OF CONCRETE SHALL NOT EXCEED 90°F AT TIME OF PLACEMENT. 20. CABINETS, BOXES AND WIRE WAYS SHALL BE LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND THE CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE NEC. BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TYPE II PORTLAND CEMENT WITH A WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER. DESIGNED TO SWING OPEN DOWNWARDS 21. MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45. (WIREMOLD SPECMATE WIREWAY). ALL STEEL REINFORCING SHALL CONFORM TO ASTM A615. ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTM A185. ALL SLOTTED WIRING DUCT SHALL BE PVC AND INCLUDE COVER (PANDUIT TYPE E OR EQUAL). 22. SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, UNLESS NOTED OTHERWISE. YIELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE AS FOLLOWS: CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSIVE 23. DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WILL NOT BE PERMITTED. CLOSELY FOLLOW THE LINES OF #4 BARS AND SMALLER 40 ksi THE STRUCTURE, MAINTAIN CLOSE PROXIMITY TO THE STRUCTURE AND KEEP CONDUITS IN TIGHT ENVELOPES. CHANGES IN DIRECTION TO ROUTE AROUND OBSTACLES SHALL BE MADE WITH CONDUIT OUTLET BODIES. CONDUIT SHALL BE INSTALLED IN A NEAT AND WORKMANLIKE #5 BARS AND LARGER 60 ksi MANNER. PARALLEL AND PERPENDICULAR TO STRUCTURE WALL AND CEILING LINES. ALL CONDUIT SHALL BE FISHED TO CLEAR THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON OBSTRUCTIONS. ENDS OF CONDUITS SHALL BE TEMPORARILY CAPPED FLUSH TO FINISH GRADE TO PREVENT CONCRETE, PLASTER OR DIRT DRAWINGS: FROM ENTERING. CONDUITS SHALL BE RIGIDLY CLAMPED TO BOXES BY GALVANIZED MALLEABLE IRON BUSHING ON INSIDE AND GALVANIZED MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE. CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH 3" EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET • CONCRETE EXPOSED TO EARTH OR WEATHER: STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETTER) FOR EXTERIOR LOCATIONS. • #6 BARS AND LARGER 2" METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR • #5 BARS AND SMALLER 1-1/2" EXCEED UL 514A AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR • CONCRETE NOT EXPOSED TO EARTH OR WEATHER: BETTER) FOR EXTERIOR LOCATIONS. SLAB AND WALLS 3/4" NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED 26. NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETTER) FOR EXTERIOR LOCATIONS. BEAMS AND COLUMNS 1-1/2" THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH Wireless L.L.C. AND A TOOLED EDGE OR A 3/4" CHAMFER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, UNLESS NOTED OTHERWISE, 27. TOWER OWNER BEFORE COMMENCING WORK ON THE AC POWER DISTRIBUTION PANELS. IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY. **ELECTRICAL INSTALLATION NOTES:** INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.". 29. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE FEDERAL, STATE, AND LOCAL CODES/ORDINANCES. ALL EMPTY/SPARE CONDUITS THAT ARE INSTALLED ARE TO HAVE A METERED MULE TAPE PULL CORD INSTALLED. 30. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED AND TRIP HAZARDS ARE ELIMINATED. WIRING. RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC. 3. ALL CIRCUITS SHALL BE SEGREGATED AND MAINTAIN MINIMUM CABLE SEPARATION AS REQUIRED BY THE NEC. ALL EQUIPMENT SHALL BEAR THE UNDERWRITERS LABORATORIES LABEL OF APPROVAL. AND SHALL CONFORM TO REQUIREMENT OF THE NATIONAL ELECTRICAL CODE. 4.2. ALL OVERCURRENT DEVICES SHALL HAVE AN INTERRUPTING CURRENT RATING THAT SHALL BE GREATER THAN THE SHORT CIRCUIT CURRENT TO WHICH THEY ARE SUBJECTED, 22,000 AIC MINIMUM. VERIFY AVAILABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED THE RATING OF ELECTRICAL EQUIPMENT IN ACCORDANCE WITH ARTICLE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDICTION. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE 5. LABELED WITH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3M BRAND, 1/2" PLASTIC ELECTRICAL TAPE WITH UV PROTECTION, OR EQUAL). THE IDENTIFICATION METHOD SHALL CONFORM WITH NEC AND OSHA. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE. PHASE CONFIGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT ID'S). PANEL BOARDS (ID NUMBERS) SHALL BE CLEARLY LABELED WITH PLASTIC LABELS. TIE WRAPS ARE NOT ALLOWED. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUIT SHALL BE SINGLE COPPER CONDUCTOR (#14 OR LARGER) 9 WITH TYPE THHW. THWN. THWN-2. XHHW. XHHW-2. THW. THW-2. RHW. OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. SUPPLEMENTAL EQUIPMENT GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (#6 OR LARGER) WITH 10. TYPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (#14 OR LARGER) UNLESS 11. OTHERWISE SPECIFIED. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TYPE TC CABLE (#14 OR LARGER), WITH TYPE THHW. THWN. THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATION UNLESS OTHERWISE SPECIFIED. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STYLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND BETTS (OR EQUAL). LUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN 75° C (90° C IF AVAILABLE). RACEWAY AND CABLE TRAY SHALL BE LISTED OR LABELED FOR ELECTRICAL USE IN ACCORDANCE WITH NEMA, UL, ANSI/IEEE AND 14. NEC.

ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUIT (RMC) SHALL BE USED FOR EXPOSED INDOOR LOCATIONS.

GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) SHALL BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WITH THE NEC.

THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTIAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL FURNISH AND INSTALL SUPPLEMENTAL GROUND ELECTRODES AS NEEDED TO ACHIEVE A TEST RESULT OF 5 OHMS OR LESS.

THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUIT INSTALLATION AS TO PREVENT ANY LOSS OF CONTINUITY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUIT AND PROVIDE TESTING RESULTS.

METAL CONDUIT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALLY CONTINUOUS WITH LISTED BONDING FITTINGS OR BY BONDING ACROSS THE DISCONTINUITY WITH #6 COPPER WIRE UL APPROVED GROUNDING TYPE CONDUIT CLAMPS.

METAL RACEWAY SHALL NOT BE USED AS THE NEC REQUIRED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS WITH GREEN INSULATION, SIZED IN ACCORDANCE WITH THE NEC, SHALL BE FURNISHED AND INSTALLED WITH THE POWER CIRCUITS TO BTS EQUIPMENT.

EACH CABINET FRAME SHALL BE DIRECTLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL EQUIPMENT GROUND WIRES, #6 STRANDED COPPER OR LARGER FOR INDOOR BTS; #2 BARE SOLID TINNED COPPER FOR OUTDOOR BTS.

CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE OF THE GROUND BUS ARE PERMITTED.

ALL EXTERIOR GROUND CONDUCTORS BETWEEN EQUIPMENT/GROUND BARS AND THE GROUND RING SHALL BE #2 SOLID TINNED COPPER UNLESS OTHERWISE INDICATED.

ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS. 9 USE OF 90° BENDS IN THE PROTECTION GROUNDING CONDUCTORS SHALL BE AVOIDED WHEN 45° BENDS CAN BE ADEQUATELY 10. SUPPORTED.

EXOTHERMIC WELDS SHALL BE USED FOR ALL GROUNDING CONNECTIONS BELOW GRADE. 11.

ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS. 12. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS. 13.

ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND 14. BAR.

APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTIVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND CONNECTIONS.

ALL EXTERIOR GROUND CONNECTIONS SHALL BE COATED WITH A CORROSION RESISTANT MATERIAL.

17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND RING, IN ACCORDANCE WITH THE NEC.

BOND ALL METALLIC OBJECTS WITHIN 6 ft OF MAIN GROUND RING WITH (1) #2 BARE SOLID TINNED COPPER GROUND 18. CONDUCTOR.

GROUND CONDUCTORS USED FOR THE FACILITY GROUNDING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED THROUGH METALLIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR. SUCH AS METALLIC CONDUITS. METAL SUPPORT CLIPS OR SLEEVES THROUGH WALLS OR FLOORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL CONDITIONS, NON-METALLIC MATERIAL SUCH AS PVC CONDUIT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVOIDABLE (i.e., NONMETALLIC CONDUIT PROHIBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.

20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE #2 BARE SOLID TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN 3" TO 6" OF CAD-WELD TERMINATION POINT. THE EXPOSED END OF THE CONDUIT MUST BE SEALED WITH SILICONE CAULK. (ADD TRANSITIONING GROUND STANDARD DETAIL AS WELL).

21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE TWO GROUNDING CONDUCTORS FROM THE ROOFTOP, TOWERS, AND WATER TOWERS GROUNDING RING, TO THE EXISTING GROUNDING SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALLER THAN 2/0 COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BUILDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING MAIN WATER LINE (FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATTACH GROUNDING TO FIRE SPRINKLER SYSTEM PIPES.

EXHIBIT D

Structural Analysis

🕩 Belle Harbor, NY 🕩 Atlanta, GA 🥵 Brick, NJ 📌 Lewes, DE 📌 Tampa, FL 📌 Detroit, MI

Date: May 2, 2023

Todd Bowman Engineered Tower Solutions, PLLC Vice President 3227 Wellington Court Tarpon Towers II, LLC Raleigh, NC 27615 (941) 757-5010 (919) 782-2710 tbowman@tarpontowers.com Subject: **Structural Analysis Report Carrier Designation:** Dish Wireless Co-Locate **Carrier Site Number:** NJJER01146D Tarpon Towers Site Number: Tower Owner Designation: CT1192 Tarpon Towers Site Name: New Canaan **Engineering Firm Designation: ETS, PLLC Job Number:** 22112671.STR.6806 Site Data: 208 Valley Road, New Canaan, Fairfield County, CT 06840 Latitude N 41° 09' 58.5", Longitude W 73° 28' 13.7" 120.0 Foot – Monopole Tower

Dear Todd Bowman,

Engineered Tower Solutions, PLLC is pleased to submit this **"Structural Analysis Report"** to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

Existing + Proposed Equipment Configuration	Tower:	79.3%	Sufficient Capacity
	Foundation:	45.8%	Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 117 mph as required by the 2022 Connecticut State Building Code (2021 IBC). Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by:

Hicham Anssar Structural Engineer I

Respectfully submitted by:

Frederic G. Bost, PE Chief Technical Officer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment ConfigurationTable 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

- 3.1) Analysis Method
- 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary) Table 5 - Tower Component Stresses vs. Capacity

4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

The tower is a 120.0 ft Monopole tower designed by TransAmerican Power Products in April of 2014. The tower was originally designed for an ultimate wind speed of 110 mph per ANSI/TIA-222-G-2.

2) ANALYSIS CRITERIA

TIA-222 Revision:	TIA-222-H
Risk Category:	II
Wind Speed:	117 mph
Exposure Category:	В
Topographic Factor:	1
Ice Thickness:	1.0 in
Wind Speed With Ice:	50 mph
Service Wind Speed:	60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
75.0	75.0	3	Commscope	FFVV-65B-R3	10	7/0
(Dish)	75.0	1	Kaelus	SBT0003F1V2	12	110

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
117.0 (T-Mobile)	117.0	3	Commscope	FVV-65C-R3	18	7/8 FH
106.0 (Verizon)	106.0	3	Commscope	NNH4-65B-R6H4		
102.0 (Verizon)	102.0	6	Commscope	CBC61923T-DS-43		
98.0 (Verizon)	98.0 (Verizon) 98.0	3	JMA	MX08FIT265-01	12	1-1/4
95.0 (Verizon) 95.0	1	Samsung	RF4439d-25A	1	6X12 Hybrid	
	0 95.0	1	Samsung	RF4440d-13A		Tryona
		1	Samsung	RT-8808-77A	-	
93.0 (Verizon)	93.0	1	Raycap	RHSDC-3315-PF-48		
86.0		.0		QS66512-2	10	
(AT&T)	00.0	6	Kaelus	TMA2117F00V1-1	ΙZ	1-1/4 FN

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Tower and Foundation Design Drawings	TransAmerican Power Products, Inc (Job No. 23514-0110)	04/09/2014	Tarpon Towers
Final Erection Drawings	TransAmerican Power Products, Inc (Drawing No. 12359-PA)	05/02/2014	Tarpon Towers
Extension Erection Drawings	TransAmerican Power Products, Inc (Drawing No. 12359-RA)	04/26/2014	Tarpon Towers
Geotechnical Investigation Report	Design Earth Technology (Job No. 2012.06/2011.08)	06/01/2012	Tarpon Towers
Previous Structural Analysis	ETS, PLLC (Job No. 22112671.STR.6444)	10/27/2022	On File
Carrier Construction Drawings	Centek Engineering (21007.21007.79)	01/19/2022	Tarpon Towers
Canister Design Drawings	Larson (Job No. A550147)	08/10/2022	Tarpon Towers

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

- 1) Tower and structures were built and have been maintained in accordance with the manufacturer's specifications.
- 2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Engineered Tower Solutions, PLLC should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Section No.	Elevation (ft)	Component Type	Size	Critical Element	Р (К)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	120 - 110	Pole	TP14x14x0.2188	1	-1.55	559.88	3.6	Pass
L2	110 - 100	Pole	TP14x14x0.2188	2	-3.27	559.88	13.7	Pass
L3	100 - 90	Pole	TP14x14x0.2188	3	-4.96	559.88	29.9	Pass
L4	90 - 80	Pole	TP14x14x0.2188	4	-7.14	559.88	52.1	Pass
L5	80 - 70	Pole	TP14x14x0.2188	5	-9.13	559.88	79.3	Pass
L6	70 - 32	Pole	TP45.16x40x0.25	6	-14.42	2045.32	20.8	Pass
L7	32 - 0	Pole	TP49x43.8113x0.25	7	-22.28	2153.74	35.5	Pass
							Summary	
						Pole (L5)	79.3	Pass
						Rating =	79.3	Pass

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1	Flange Bolts	70.0	63.4	Pass
1	Flange Plates	70.0	24.9	Pass
1	Anchor Rods	0	43.8	Pass
1	Baseplate	0	34.4	Pass
1	Base Foundation Structural	0	28.0	Pass
1	Base Foundation Soil Interaction	0	45.8	Pass

Structure Rating (max from all components) =	79.3%
--	-------

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the % capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.
APPENDIX A

TNXTOWER OUTPUT

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
(3) FVV-65C-R3_TIA w/ Mount Pipe	117	RT-8808-77A	95
56" dia. x 10' Canister	115	RHSDC-3315-PF-48	93
(3) NNH4-65B-R6H4_TIA w/ Mount	106	(6) TMA2117F00V1-1	86
Pipe		(3) QS66512-2 TIA w/ Mount Pipe	86
56" dia. x 10' Canister	105	56" dia. x 10' Canister	85
(6) CBC61923T-DS-43	102	56" dia. x 10' Canister	75
(3) MX08FIT265-01 w/ Mount Pipe	98	FFVV-65B-R3 w/Mount pipe	75
56" dia. x 10' Canister	95	FFVV-65B-R3 w/Mount pipe	75
RF4440d-13A	95	FFVV-65B-R3 w/Mount pipe	75
RF4439d-25A	95	SBT0003F1V2	75

MATERIAL STRENGTH

Fu

GRADE	Fy	Fu	GRADE	Fy	
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

- Tower designed for Exposure B to the TIA-222-H Standard.
 Tower designed for a 117 mph basic wind in accordance with the TIA-222-H Standard.
 Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- 4. Deflections are based upon a 60 mph wind.

ALL REACTIONS ARE FACTORED

AXIAL 33 K

1

AXIAL 22 K

.

MOMENT

MOMENT 745 kip-ft

225 kip-ft

- Tower Risk Category II.
 Topographic Category 1 with Crest Height of 0.00 ft
 TOWER RATING: 79.3%

Engineered Tower Solutions, PLLC	CT1192 New Cana	an				
3227 Wellington Court	Project: ETS, PLLC Job No. 22112671.STR.6806					
Raleigh, NC 27615	Client: Tarpon Towers	^{Drawn by:} Hicham Anssar	App'd:			
Phone: (919) 782-2710	Code: TIA-222-H	Date: 05/01/23	Scale: NTS			
FAX:	Path: C:Usersiuser/Desktop/ETS-TOWER DIVISION(Tarpon Tower	Dwg No. E-1				

trax Towar	Job		Page
inxTower		1 of 15	
Engineered Tower Solutions, PLLC 3227 Wellington Court	Project	ETS, PLLC Job No. 22112671.STR.6806	Date 13:01:36 05/01/23
Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Client	Tarpon Towers	Designed by Hicham Anssar

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower base elevation above sea level: 259.24 ft. Basic wind speed of 117 mph. Risk Category II. Exposure Category B. Simplified Topographic Factor Procedure for wind speed-up calculations is used. Topographic Category: 1. Crest Height: 0.00 ft. Nominal ice thickness of 1.0000 in. Ice thickness is considered to increase with height. Ice density of 56 pcf. A wind speed of 50 mph is used in combination with ice. Temperature drop of 50 °F. Deflections calculated using a wind speed of 60 mph. A non-linear (P-delta) analysis was used. Pressures are calculated at each section. Stress ratio used in pole design is 1. Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification Use Code Stress Ratios Use Code Safety Factors - Guys Escalate Ice

 $\sqrt{}$

Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform

- Assume Legs Pinned $\sqrt{}$ Assume Rigid Index Plate
- ✓ Assume Right index Flate
 ✓ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Patterning Comparison To Initial Transition
- Retension Guys To Initial Tension √ Bypass Mast Stability Checks
- $\sqrt{}$ Bypass Mast Stability Checks $\sqrt{}$ Use Azimuth Dish Coefficients
- $\sqrt{\frac{1}{2}}$ Project Wind Area of Appurt.
- Autocalc Torque Arm Areas Add IBC .6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

- ✓ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles
- √ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	

Engineered Tower Solutions, Project

Job

Client

ETS, PLLC Job No. 22112671.STR.6806

CT1192 New Canaan

PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Tarpon Towers

Date 13:01:36 05/01/23 Designed by Hicham Anssar

2 of 15

Page

Section	Elevation	Section	Splice	Number	Тор	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	ft	ft	ft	Sides	in	in	in	in	
L1	120.00-110.00	10.00	0.00	18	14.0000	14.0000	0.2188	0.8750	A572-65
									(65 ksi)
L2	110.00-100.00	10.00	0.00	18	14.0000	14.0000	0.2188	0.8750	A572-65
									(65 ksi)
L3	100.00-90.00	10.00	0.00	18	14.0000	14.0000	0.2188	0.8750	A572-65
									(65 ksi)
L4	90.00-80.00	10.00	0.00	18	14.0000	14.0000	0.2188	0.8750	A572-65
									(65 ksi)
L5	80.00-70.00	10.00	0.00	18	14.0000	14.0000	0.2188	0.8750	A572-65
									(65 ksi)
L6	70.00-32.00	38.00	6.25	18	40.0000	45.1600	0.2500	1.0000	A572-65
									(65 ksi)
L7	32.00-0.00	38.25		18	43.8113	49.0000	0.2500	1.0000	A572-65
									(65 ksi)

	Tapered Pole Properties										
Section	Tin Dia	1400	I		C		I	It/()	10	/t	
Section	in	in ²	in ⁴	in	in	in^3	in^4	in^2	w in	W/L	
L1	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502	
	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502	
L2	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502	
	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502	
L3	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502	
	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502	
L4	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502	
	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502	
L5	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502	
	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502	
L6	40.5785	31.5416	6296.4503	14.1113	20.3200	309.8647	12601.1856	15.7738	6.6000	26.4	
	45.8181	35.6361	9080.5791	15.9430	22.9413	395.8183	18173.1067	17.8214	7.5082	30.033	
L7	45.3095	34.5659	8286.8004	15.4643	22.2561	372.3377	16584.5047	17.2862	7.2708	29.083	
	49.7173	38.6831	11614.7065	17.3062	24.8920	466.6040	23244.6960	19.3452	8.1840	32,736	

Tower	Gusset	Gusset	Gusset Grade Adjust.	Factor Adjust.	Weight M	ult. Double Angle	Double Angle	Double Angle
Elevation	Area	Thickness	A	l _f Factor		Stitch Bolt	Stitch Bolt	Stitch Bolt
	(per face)			A_r		Spacing	Spacing	Spacing
						Diagonals	Horizontals	Redundants
ft	ft^2	in				in	in	in
L1]	1	1			
120.00-110.00								
L2			1	1	1			
110.00-100.00								
L3			1	1	1			
100.00-90.00								
L4 90.00-80.00			1	1	1			
L5 80.00-70.00]	1	1			
L6 70.00-32.00]	1	1			
L7 32.00-0.00			1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

	Job		Page
tnx1ower		3 of 15	
Engineered Tower Solutions, PLLC 3227 Wellington Court	Project	ETS, PLLC Job No. 22112671.STR.6806	Date 13:01:36 05/01/23
Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Client	Tarpon Towers	Designed by Hicham Anssar

Description	Face	Allow	Exclude	Component	Placement	Total	Number	Clear	Width or	Perimeter	Weight
	or	Shield	From	Туре		Number	Per Row	Spacing	Diameter		
	Leg		Torque Calculation		ft			in	in	in	plf
			Culculuion								

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		$C_A A_A$	Weight
	Leg		Torque Calculation		ft			ft²/ft	plf

LDF5-50A(7/8)	С	No	No	Inside Pole	117.00 - 0.00	18	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33
LDF6-50A(1-1/4)	С	No	No	Inside Pole	86.00 - 0.00	12	No Ice	0.00	0.60
							1/2" Ice	0.00	0.60
							1" Ice	0.00	0.60

1.55" Hybrid	С	No	No	Inside Pole	106.00 - 0.00	1	No Ice	0.00	1.00
							1/2" Ice	0.00	1.00
							1" Ice	0.00	1.00
LDF6-50A(1-1/4)	С	No	No	Inside Pole	106.00 - 0.00	6	No Ice	0.00	0.60
							1/2" Ice	0.00	0.60
							1" Ice	0.00	0.60
LDF6-50A(1-1/4)	С	No	No	Inside Pole	96.00 - 0.00	6	No Ice	0.00	0.60
							1/2" Ice	0.00	0.60
							1" Ice	0.00	0.60

LDF5-50A(7/8")	С	No	No	Inside Pole	75.00 - 0.00	12	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33

Feed Line/Linear Appurtenances Section Areas

Tower	Tower	Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft ²	K
L1	120.00-110.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.04
L2	110.00-100.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.09
L3	100.00-90.00	Α	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.13
L4	90.00-80.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.18
L5	80.00-70.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.23

470.70	Tanaa	Job					Page
Inx	Tower			4 of 15			
Engineered	Tower Solutions, PLLC Yellington Court	Project	ETS, P	Date 13:01:36 05/01/23			
Raleig Phone:	gh, NC 27615 (919) 782-2710 FAX:	Client		Tarpo	n Towers		Designed by Hicham Anssar
Tower T	'ower Face	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight	

Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
L6	70.00-32.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.96
L7	32.00-0.00	А	0.000	0.000	0.000	0.000	0.00
		В	0.000	0.000	0.000	0.000	0.00
		С	0.000	0.000	0.000	0.000	0.81

Feed Line/Linear Appurtenances Section Areas - With Ice

Tower	Tower	Face	Ice	A_R	A_F	$C_A A_A$	$C_A A_A$	Weight
Section	Elevation	or	Inickness	a.2	. 2	In Face	OutFace	
	ft	Leg	in	ft²	ft²	ft²	ft²	K
L1	120.00-110.00	А	1.133	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.04
L2	110.00-100.00	А	1.123	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.09
L3	100.00-90.00	А	1.112	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.13
L4	90.00-80.00	А	1.099	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.18
L5	80.00-70.00	А	1.086	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.23
L6	70.00-32.00	А	1.045	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.96
L7	32.00-0.00	А	0.929	0.000	0.000	0.000	0.000	0.00
		В		0.000	0.000	0.000	0.000	0.00
		С		0.000	0.000	0.000	0.000	0.81

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
				Ice	Ice
	ft	in	in	in	in
L1	120.00-110.00	0.0000	0.0000	0.0000	0.0000
L2	110.00-100.00	0.0000	0.0000	0.0000	0.0000
L3	100.00-90.00	0.0000	0.0000	0.0000	0.0000
L4	90.00-80.00	0.0000	0.0000	0.0000	0.0000
L5	80.00-70.00	0.0000	0.0000	0.0000	0.0000
L6	70.00-32.00	0.0000	0.0000	0.0000	0.0000
L7	32.00-0.00	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

tnxTower

Job

Project

Client

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX: ETS, PLLC Job No. 22112671.STR.6806

Date 13:01:36 05/01/23

5 of 15

Page

Tarpon Towers

CT1192 New Canaan

Designed by Hicham Anssar

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft ft	o	ft		ft ²	ft ²	K

56" dia. x 10' Canister	С	None		0.0000	75.00	No Ice	23.33	23.33	0.70
						1/2" Ice	33.53	33.53	1.13
	C	N		0.0000	05.00	I ⁿ Ice	34.40	34.40	1.57
56" dia. x 10 Canister	C	None		0.0000	85.00	No Ice	23.33	23.33	0.70
						1/2" Ice	33.33 24.40	33.33	1.13
56" dia x 10' Conjeter	C	Nono		0.0000	05.00	I Ice	34.40	22 22	0.70
50 dia. x 10 Callister	C	None		0.0000	95.00	1/2" Loo	23.33	23.33	0.70
						1/2 ICC	33.33	33.33	1.15
56" dia x 10' Canister	C	None		0.0000	105.00	No Ice	23 33	23 33	0.70
50 ula. x 10 Callister	C	None		0.0000	105.00	1/2" Ice	33 53	33 53	1 13
						1" Ice	34 40	34 40	1.15
56" dia x 10' Canister	С	None		0.0000	115.00	No Ice	23 33	23 33	0.70
	e	rtone		0.0000	115.00	1/2" Ice	33.53	33.53	1.13
						1" Ice	34.40	34.40	1.57
***							• · · · ·		
(3) FVV-65C-R3 TIA w/	С	None		0.0000	117.00	No Ice	0.00	0.00	0.10
Mount Pipe						1/2" Ice	0.00	0.00	0.10
1						1" Ice	0.00	0.00	0.10

(3) QS66512-2_TIA w/	С	None		0.0000	86.00	No Ice	0.00	0.00	0.14
Mount Pipe						1/2" Ice	0.00	0.00	0.14
						1" Ice	0.00	0.00	0.14
(6) TMA2117F00V1-1	С	None		0.0000	86.00	No Ice	0.00	0.00	0.03
						1/2" Ice	0.00	0.00	0.03
						1" Ice	0.00	0.00	0.03
	C	N 7		0.0000	106.00	NT T	0.00	0.00	0.11
(3) NNH4-65B-R6H4_11A	C	None		0.0000	106.00	No Ice	0.00	0.00	0.11
w/ Mount Pipe						1/2" Ice	0.00	0.00	0.11
(() CDC(1022T DS 42	C	News		0.0000	102.00	I" Ice	0.00	0.00	0.11
(6) CBC019231-D8-43	C	None		0.0000	102.00	1/2" Lee	0.00	0.00	0.01
						1/2 ICe	0.00	0.00	0.01
(2) MV08EIT265 01 $w/$	C	Nono		0.0000	08.00	No Ioo	0.00	0.00	0.01
(5) WIA08F11205-01 W/ Mount Pine	C	None		0.0000	98.00	1/2" Ice	0.00	0.00	0.03
Would Tipe						1/2 ICC	0.00	0.00	0.03
RF4440d-13A	С	None		0.0000	95.00	No Ice	0.00	0.00	0.05
		110110		010000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1/2" Ice	0.00	0.00	0.07
						1" Ice	0.00	0.00	0.07
RF4439d-25A	С	None		0.0000	95.00	No Ice	0.00	0.00	0.07
						1/2" Ice	0.00	0.00	0.07
						1" Ice	0.00	0.00	0.07
RT-8808-77A	С	None		0.0000	95.00	No Ice	0.00	0.00	0.03
						1/2" Ice	0.00	0.00	0.03
						1" Ice	0.00	0.00	0.03
RHSDC-3315-PF-48	С	None		0.0000	93.00	No Ice	0.00	0.00	0.03
						1/2" Ice	0.00	0.00	0.03
						1" Ice	0.00	0.00	0.03

FFVV-65B-R3 w/Mount pipe	С	None		0.0000	75.00	No Ice	0.00	0.00	0.10
						1/2" Ice	0.00	0.00	0.18
	~			0.0000		l" Ice	0.00	0.00	0.27
FFVV-65B-R3 w/Mount pipe	C	None		0.0000	75.00	No Ice	0.00	0.00	0.10

Anna Tanu an	Job		Page
tnx1ower		6 of 15	
Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Project	ETS, PLLC Job No. 22112671.STR.6806	Date 13:01:36 05/01/23
	Client	Tarpon Towers	Designed by Hicham Anssar

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		$C_A A_A$ Front	C _A A _A Side	Weight
			ft ft ft	0	ft		ft ²	ft^2	Κ
						1/2" Ice	0.00	0.00	0.18
						1" Ice	0.00	0.00	0.27
FFVV-65B-R3 w/Mount pipe	С	None		0.0000	75.00	No Ice	0.00	0.00	0.10
						1/2" Ice	0.00	0.00	0.18
						1" Ice	0.00	0.00	0.27
SBT0003F1V2	С	None		0.0000	75.00	No Ice	0.00	0.00	0.00
						1/2" Ice	0.00	0.00	0.00
						1" Ice	0.00	0.00	0.00

Dishes										
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter	Aperture Area	Weight
***				Vert ft	0	0	ft	ft	ft^2	K

Load Combinations

Comb.	Description
No.	1
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice

Anna Tanu an	Job		Page
tnx1ower		7 of 15	
Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Project	ETS, PLLC Job No. 22112671.STR.6806	Date 13:01:36 05/01/23
	Client	Tarpon Towers	Designed by Hicham Anssar

Comb.	Description
No.	
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service
49	Dead+Wind 300 deg - Service
50	Dead+Wind 330 deg - Service

			Maximum Member Forces					
Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft	
L1	120 - 110	Pole	Max Tension	8	0.00	0.00	0.00	
			Max. Compression	26	-2.84	0.00	0.00	
			Max. Mx	8	-1.55	-6.59	0.00	
			Max. My	2	-1.55	0.00	6.59	
			Max. Vv	8	1.31	-6.59	0.00	
			Max. Vx	2	-1.31	0.00	6.59	
			Max. Torque	4			-0.00	
L2	110 - 100	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-5.83	0.00	0.00	
			Max. Mx	8	-3.27	-26.08	0.00	
			Max. Mv	2	-3.27	0.00	26.08	
			Max. Vv	8	2.59	-26.08	0.00	
			Max. Vx	2	-2.59	0.00	26.08	
			Max. Torque	4			-0.00	
L3	100 - 90	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-8.75	0.00	0.00	
			Max. Mx	8	-4.96	-57.99	0.00	
			Max. My	2	-4.96	0.00	57.99	
			Max. Vv	8	3.79	-57.99	0.00	
			Max. Vx	2	-3.79	0.00	57.99	
			Max. Torque	4			-0.00	
L4	90 - 80	Pole	Max Tension	1	0.00	0.00	0.00	
			Max. Compression	26	-12.08	0.00	0.00	
			Max. Mx	8	-7.14	-101.49	0.00	
			Max. Mv	2	-7.14	0.00	101.49	
			Max. Vy	8	4.90	-101.49	0.00	
			Max. Vx	2	-4.90	0.00	101.49	
			Max. Torque	4			-0.00	

Job

Project

Client

CT1192 New Canaan

Page 8 of 15

Date

Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

ETS, PLLC Job No. 22112671.STR.6806

Tarpon Towers

Designed by Hicham Anssar

13:01:36 05/01/23

Continu	Elaustion	Common out	Condition	Cau	Anial	Maion Ania	Min on Ania
Section	Elevation	Component	Conallion	Gov.	Axiai	Major Axis	MINOF AXIS
INO.	JI	Туре		Loaa	77	Moment	Moment
				Comb.	K	kip-ft	kip-ft
L5	80 - 70	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-15.68	0.00	0.00
			Max. Mx	8	-9.13	-154.95	0.00
			Max. My	2	-9.13	0.00	154.95
			Max. Vy	8	5.79	-154.95	0.00
			Max. Vx	2	-5.79	0.00	154.95
			Max. Torque	4			-0.00
L6	70 - 32	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-22.74	0.00	0.00
			Max. Mx	8	-14.42	-377.79	0.00
			Max. My	2	-14.42	0.00	377.79
			Max. Vy	8	8.24	-377.79	0.00
			Max. Vx	2	-8.24	0.00	377.79
			Max. Torque	4			-0.00
L7	32 - 0	Pole	Max Tension	1	0.00	0.00	0.00
			Max. Compression	26	-32.97	0.00	0.00
			Max. Mx	8	-22.28	-744.78	0.00
			Max. My	2	-22.28	0.00	744.78
			Max. Vy	8	10.92	-744.78	0.00
			Max. Vx	2	-10.92	0.00	744.78
			Max. Torque	4			-0.00

Maximum Reactions

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, Z
		Load	K	K	K
		Comb.			
Pole	Max. Vert	26	32.97	0.00	0.00
	Max. H _x	20	22.28	10.92	0.00
	Max. H _z	2	22.28	0.00	10.92
	Max. M _x	2	744.78	0.00	10.92
	Max. M _z	8	744.78	-10.92	0.00
	Max. Torsion	12	0.00	-5.46	-9.46
	Min. Vert	5	16.71	-5.46	9.46
	Min. H _x	8	22.28	-10.92	0.00
	Min. Hz	14	22.28	0.00	-10.92
	Min. M _x	14	-744.78	0.00	-10.92
	Min. Mz	20	-744.78	10.92	0.00
	Min. Torsion	4	-0.00	-5.46	9.46

Tower Mast Reaction Summary

Load	Vertical	<i>Shear</i> _x	Shear _z	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	-
	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
Dead Only	18.57	0.00	0.00	0.00	0.00	0.00
1.2 Dead+1.0 Wind 0 deg - No	22.28	0.00	-10.92	-744.78	0.00	0.00
Ice						
0.9 Dead+1.0 Wind 0 deg - No	16.71	0.00	-10.92	-739.76	0.00	0.00
Ice						
1.2 Dead+1.0 Wind 30 deg - No	22.28	5.46	-9.46	-645.00	-372.39	0.00
Ice						
0.9 Dead+1.0 Wind 30 deg - No	16.71	5.46	-9.46	-640.65	-369.88	0.00

tnxTower

Job

Client

Engineered Tower Solutions, PLLC 3227 Wellington Court

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Project ETS, PLLC Job No. 22112671.STR.6806

CT1192 New Canaan

Date 13:01:36 05/01/23 Designed by

9 of 15

Page

Tarpon Towers

Hicham Anssar

Load	Vertical	Shear _x	Shear _z	Overturning	Overturning	Torque
Combination	V	V	V	Moment, M_x	Moment, M_z	
Ice	Λ	Λ	Λ	кір-јі	кір-јі	кір-јі
1.2 Dead+1.0 Wind 60 deg - No	22.28	9.46	-5.46	-372.39	-645.00	-0.00
0.9 Dead+1.0 Wind 60 deg - No	16.71	9.46	-5.46	-369.88	-640.65	-0.00
1.2 Dead+1.0 Wind 90 deg - No Ice	22.28	10.92	0.00	0.00	-744.78	0.00
0.9 Dead+1.0 Wind 90 deg - No Ice	16.71	10.92	0.00	0.00	-739.76	0.00
1.2 Dead+1.0 Wind 120 deg - No Ice	22.28	9.46	5.46	372.39	-645.00	0.00
0.9 Dead+1.0 Wind 120 deg - No Ice	16.71	9.46	5.46	369.88	-640.65	0.00
1.2 Dead+1.0 Wind 150 deg - No Ice	22.28	5.46	9.46	645.00	-372.39	-0.00
0.9 Dead+1.0 Wind 150 deg - No Ice	16.71	5.46	9.46	640.65	-369.88	-0.00
1.2 Dead+1.0 Wind 180 deg - No Ice	22.28	0.00	10.92	744.78	0.00	0.00
0.9 Dead+1.0 Wind 180 deg - No Ice	16.71	0.00	10.92	739.76	0.00	0.00
1.2 Dead+1.0 Wind 210 deg - No Ice	22.28	-5.46	9.46	645.00	372.39	0.00
0.9 Dead+1.0 Wind 210 deg - No Ice	16.71	-5.46	9.46	640.65	369.88	0.00
1.2 Dead+1.0 Wind 240 deg - No Ice	22.28	-9.46	5.46	372.39	645.00	-0.00
0.9 Dead+1.0 Wind 240 deg - No Ice	16.71	-9.46	5.46	369.88	640.65	-0.00
1.2 Dead+1.0 Wind 270 deg - No Ice	22.28	-10.92	0.00	0.00	744.78	0.00
0.9 Dead+1.0 Wind 270 deg - No Ice	16.71	-10.92	0.00	0.00	739.76	0.00
1.2 Dead+1.0 Wind 300 deg - No Ice	22.28	-9.46	-5.46	-372.39	645.00	0.00
0.9 Dead+1.0 Wind 300 deg - No Ice	16.71	-9.46	-5.46	-369.88	640.65	0.00
1.2 Dead+1.0 Wind 330 deg - No Ice	22.28	-5.46	-9.46	-645.00	372.39	-0.00
0.9 Dead+1.0 Wind 330 deg - No Ice	16.71	-5.46	-9.46	-640.65	369.88	-0.00
1.2 Dead+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 0 deg+1.0	32.97 32.97	$\begin{array}{c} 0.00\\ 0.00\end{array}$	0.00 -3.30	0.00 -225.41	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$
Ice+1.0 Temp 1.2 Dead+1.0 Wind 30 deg+1.0	32.97	1.65	-2.86	-195.21	-112.71	0.00
1.2 Dead+1.0 Wind 60 deg+1.0	32.97	2.86	-1.65	-112.71	-195.21	-0.00
1.2 Dead+1.0 Wind 90 deg+1.0	32.97	3.30	0.00	0.00	-225.41	0.00
1.2 Dead+1.0 Wind 120	32.97	2.86	1.65	112.71	-195.21	0.00
1.2 Dead+1.0 Vind 150	32.97	1.65	2.86	195.21	-112.71	-0.00
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	32.97	0.00	3.30	225.41	0.00	0.00
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	32.97	-1.65	2.86	195.21	112.71	0.00
deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	32.97	-2.86	1.65	112.71	195.21	-0.00
1.2 Dead+1.0 Wind 270	32.97	-3.30	0.00	0.00	225.41	0.00

Job

Client

Engineered Tower Solutions, PLLC

3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:

Project ETS, PLLC Job No. 22112671.STR.6806

CT1192 New Canaan

Tarpon Towers

Date 13:01:36 05/01/23 Designed by Hicham Anssar

10 of 15

Page

Load	Vertical	Shear _x	Shearz	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, M_z	
	Κ	Κ	Κ	kip-ft	kip-ft	kip-ft
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 300	32.97	-2.86	-1.65	-112.71	195.21	0.00
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	32.97	-1.65	-2.86	-195.21	112.71	-0.00
deg+1.0 Ice+1.0 Temp						
Dead+Wind 0 deg - Service	18.57	0.00	-2.60	-177.42	0.00	0.00
Dead+Wind 30 deg - Service	18.57	1.30	-2.25	-153.65	-88.71	0.00
Dead+Wind 60 deg - Service	18.57	2.25	-1.30	-88.71	-153.65	-0.00
Dead+Wind 90 deg - Service	18.57	2.60	0.00	0.00	-177.42	0.00
Dead+Wind 120 deg - Service	18.57	2.25	1.30	88.71	-153.65	0.00
Dead+Wind 150 deg - Service	18.57	1.30	2.25	153.65	-88.71	-0.00
Dead+Wind 180 deg - Service	18.57	0.00	2.60	177.42	0.00	0.00
Dead+Wind 210 deg - Service	18.57	-1.30	2.25	153.65	88.71	0.00
Dead+Wind 240 deg - Service	18.57	-2.25	1.30	88.71	153.65	-0.00
Dead+Wind 270 deg - Service	18.57	-2.60	0.00	0.00	177.42	0.00
Dead+Wind 300 deg - Service	18.57	-2.25	-1.30	-88.71	153.65	0.00
Dead+Wind 330 deg - Service	18.57	-1.30	-2.25	-153.65	88.71	-0.00

Solution Summary

	Sui	m of Applied Forces	3		Sum of Reaction	S	
Load	PX	PY	PZ	PX	ΡŶ	PZ	% Error
Comb.	K	K	Κ	K	K	K	
1	0.00	-18.57	0.00	0.00	18.57	0.00	0.000%
2	0.00	-22.28	-10.92	0.00	22.28	10.92	0.000%
3	0.00	-16.71	-10.92	0.00	16.71	10.92	0.000%
4	5.46	-22.28	-9.46	-5.46	22.28	9.46	0.000%
5	5.46	-16.71	-9.46	-5.46	16.71	9.46	0.000%
6	9.46	-22.28	-5.46	-9.46	22.28	5.46	0.000%
7	9.46	-16.71	-5.46	-9.46	16.71	5.46	0.000%
8	10.92	-22.28	0.00	-10.92	22.28	0.00	0.000%
9	10.92	-16.71	0.00	-10.92	16.71	0.00	0.000%
10	9.46	-22.28	5.46	-9.46	22.28	-5.46	0.000%
11	9.46	-16.71	5.46	-9.46	16.71	-5.46	0.000%
12	5.46	-22.28	9.46	-5.46	22.28	-9.46	0.000%
13	5.46	-16.71	9.46	-5.46	16.71	-9.46	0.000%
14	0.00	-22.28	10.92	0.00	22.28	-10.92	0.000%
15	0.00	-16.71	10.92	0.00	16.71	-10.92	0.000%
16	-5.46	-22.28	9.46	5.46	22.28	-9.46	0.000%
17	-5.46	-16.71	9.46	5.46	16.71	-9.46	0.000%
18	-9.46	-22.28	5.46	9.46	22.28	-5.46	0.000%
19	-9.46	-16.71	5.46	9.46	16.71	-5.46	0.000%
20	-10.92	-22.28	0.00	10.92	22.28	0.00	0.000%
21	-10.92	-16.71	0.00	10.92	16.71	0.00	0.000%
22	-9.46	-22.28	-5.46	9.46	22.28	5.46	0.000%
23	-9.46	-16.71	-5.46	9.46	16.71	5.46	0.000%
24	-5.46	-22.28	-9.46	5.46	22.28	9.46	0.000%
25	-5.46	-16.71	-9.46	5.46	16.71	9.46	0.000%
26	0.00	-32.97	0.00	0.00	32.97	0.00	0.000%
27	0.00	-32.97	-3.30	0.00	32.97	3.30	0.000%
28	1.65	-32.97	-2.86	-1.65	32.97	2.86	0.000%
29	2.86	-32.97	-1.65	-2.86	32.97	1.65	0.000%
30	3.30	-32.97	0.00	-3.30	32.97	0.00	0.000%
31	2.86	-32.97	1.65	-2.86	32.97	-1.65	0.000%
32	1.65	-32.97	2.86	-1.65	32.97	-2.86	0.000%
33	0.00	-32.97	3.30	0.00	32.97	-3.30	0.000%
34	-1.65	-32.97	2.86	1.65	32.97	-2.86	0.000%
35	-2.86	-32.97	1.65	2.86	32.97	-1.65	0.000%

tnx Tower	Job		Page
		11 01 15	
Engineered Tower Solutions, PLLC 3227 Wellington Court	Project	ETS, PLLC Job No. 22112671.STR.6806	Date 13:01:36 05/01/23
Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Client	Tarpon Towers	Designed by Hicham Anssar

	Su	m of Applied Forces	5		Sum of Reaction	\$	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	Κ	K	K	K	
36	-3.30	-32.97	0.00	3.30	32.97	0.00	0.000%
37	-2.86	-32.97	-1.65	2.86	32.97	1.65	0.000%
38	-1.65	-32.97	-2.86	1.65	32.97	2.86	0.000%
39	0.00	-18.57	-2.60	0.00	18.57	2.60	0.000%
40	1.30	-18.57	-2.25	-1.30	18.57	2.25	0.000%
41	2.25	-18.57	-1.30	-2.25	18.57	1.30	0.000%
42	2.60	-18.57	0.00	-2.60	18.57	0.00	0.000%
43	2.25	-18.57	1.30	-2.25	18.57	-1.30	0.000%
44	1.30	-18.57	2.25	-1.30	18.57	-2.25	0.000%
45	0.00	-18.57	2.60	0.00	18.57	-2.60	0.000%
46	-1.30	-18.57	2.25	1.30	18.57	-2.25	0.000%
47	-2.25	-18.57	1.30	2.25	18.57	-1.30	0.000%
48	-2.60	-18.57	0.00	2.60	18.57	0.00	0.000%
49	-2.25	-18.57	-1.30	2.25	18.57	1.30	0.000%
50	-1.30	-18.57	-2.25	1.30	18.57	2.25	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination	Convergeu?	of Cycles	Tolerance	Tolerance
1	V		0.0000001	0.0000001
1	Yes	4	0.0000001	0.00000001
2	Yes	4	0.0000001	0.00001802
3	Yes	4	0.0000001	0.00022788
4	Yes	5	0.0000001	0.00099458
5	Yes	5	0.00000001	0.00048367
6	Yes	5	0.0000001	0.00099458
7	Yes	5	0.00000001	0.00048367
8	Yes	4	0.00000001	0.00061862
9	Yes	4	0.00000001	0.00022788
10	Yes	5	0.00000001	0.00099458
11	Yes	5	0.00000001	0.00048367
12	Yes	5	0.00000001	0.00099458
13	Yes	5	0.00000001	0.00048367
14	Yes	4	0.00000001	0.00061862
15	Yes	4	0.00000001	0.00022788
16	Yes	5	0.00000001	0.00099458
17	Yes	5	0.00000001	0.00048367
18	Yes	5	0.00000001	0.00099458
19	Yes	5	0.00000001	0.00048367
20	Yes	4	0.00000001	0.00061862
21	Yes	4	0.00000001	0.00022788
22	Yes	5	0.00000001	0.00099458
23	Yes	5	0.00000001	0.00048367
24	Yes	5	0.00000001	0.00099458
25	Yes	5	0.00000001	0.00048367
26	Yes	4	0.00000001	0.00000001
27	Yes	5	0.00000001	0.00021423
28	Yes	5	0.00000001	0.00029580
29	Yes	5	0.00000001	0.00029580
30	Yes	5	0.00000001	0.00021423
31	Yes	5	0.00000001	0.00029580
32	Yes	5	0.00000001	0.00029580
33	Yes	5	0.00000001	0.00021423
34	Yes	5	0.00000001	0.00029580
35	Yes	5	0.00000001	0.00029580
36	Yes	5	0.00000001	0.00021423
20		2	0.00000001	5.00021.25

tnx	:Tower	Job	CT1192	New Canaan	Page 12 of 15
Engineerea 3227 W	Engineered Tower Solutions, PLLC 3227 Wellington Court		ETS, PLLC Job N	Date 13:01:36 05/01/23	
Ralei Phone:	igh, NC 27615 (919) 782-2710 FAX:	Client	Tarp	on Towers	Designed by Hicham Anssar
37	Yes	5	0.00000001	0.00029580	
38	Yes	5	0.00000001	0.00029580	
39	Yes	4	0.00000001	0.00002896	
40	Yes	4	0.00000001	0.00021851	
41	Yes	4	0.00000001	0.00021851	
42	Yes	4	0.00000001	0.00002896	
43	Yes	4	0.00000001	0.00021851	
44	Yes	4	0.00000001	0.00021851	
45	Yes	4	0.00000001	0.00002896	
46	Yes	4	0.00000001	0.00021851	
47	Yes	4	0.00000001	0.00021851	
48	Yes	4	0.00000001	0.00002896	
49	Yes	4	0.00000001	0.00021851	
50	Yes	4	0.00000001	0.00021851	

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
L1	120 - 110	9.988	39	0.9793	0.0000
L2	110 - 100	7.939	39	0.9740	0.0000
L3	100 - 90	5.934	39	0.9305	0.0000
L4	90 - 80	4.094	39	0.8115	0.0000
L5	80 - 70	2.613	39	0.5815	0.0000
L6	70 - 32	1.759	39	0.2079	0.0000
L7	38.25 - 0	0.601	39	0.1334	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
117.00	(3) FVV-65C-R3_TIA w/ Mount	39	9.372	0.9794	0.0000	94080
	Pipe					
115.00	56" dia. x 10' Canister	39	8.962	0.9789	0.0000	94080
106.00	(3) NNH4-65B-R6H4_TIA w/	39	7.126	0.9637	0.0000	14732
	Mount Pipe					
105.00	56" dia. x 10' Canister	39	6.925	0.9598	0.0000	12586
102.00	(6) CBC61923T-DS-43	39	6.327	0.9444	0.0000	8753
98.00	(3) MX08FIT265-01 w/ Mount Pipe	39	5.549	0.9132	0.0000	6273
95.00	56" dia. x 10' Canister	39	4.985	0.8811	0.0000	5199
93.00	RHSDC-3315-PF-48	39	4.621	0.8556	0.0000	4631
86.00	(3) QS66512-2_TIA w/ Mount Pipe	39	3.438	0.7397	0.0000	2399
85.00	56" dia. x 10' Canister	39	3.285	0.7184	0.0000	2178
75.00	56" dia. x 10' Canister	39	2.121	0.3923	0.0000	2291

Maximum Tower Deflections - Design Wind

tı	nxTower	Job		OT4402 Nove		Page
•••				CTT192 New C	Janaan	15 61 15
Enginee 322	rred Tower Solutions, PLLC 27 Wellington Court	Project	ETS, PLL	12671.STR.6806	Date 13:01:36 05/01/23	
R Pho	aleigh, NC 27615 one: (919) 782-2710 FAX:	Client		Tarpon Tov	vers	Designed by Hicham Anssar
Section	Elevation	Horz	Gov	Tilt	Twist	
No.	ft	Deflection in	Load Comb.	0	0	
L1	120 - 110	42.045	2	4.1306	0.0000	
L2	110 - 100	33.411	2	4.1081	0.0000	
L3	100 - 90	24.965	2	3.9238	0.0000	
L4	90 - 80	17.211	2	3.4200	0.0000	
L5	80 - 70	10.975	2	2.4480	0.0000	
L6	70 - 32	7.382	2	0.8728	0.0000	
L7	38.25 - 0	2.521	2	0.5600	0.0000	

Critical Deflections and Radius of Curvature - Design Wind

Elayation	Apputtonance	Gau	Deflection	Tilt	Twist	Pading of
Lievation	Appunenunce	Gov.	Deflection	1111	1 WISI	Curvatura
ft		Comb	in	0	0	ft
117.00	(2) EVV (5C D2 TLA $m/M_{\rm const}$	2	20.450	4 1 2 0 9	0.0000	22417
117.00	(3) FVV-65C-R3_TIA W/ Mount	2	39.450	4.1308	0.0000	22417
	Pipe					
115.00	56" dia. x 10' Canister	2	37.721	4.1289	0.0000	22417
106.00	(3) NNH4-65B-R6H4_TIA w/	2	29.986	4.0643	0.0000	3512
	Mount Pipe					
105.00	56" dia. x 10' Canister	2	29.137	4.0480	0.0000	3000
102.00	(6) CBC61923T-DS-43	2	26.617	3.9828	0.0000	2086
98.00	(3) MX08FIT265-01 w/ Mount Pipe	2	23.340	3.8507	0.0000	1494
95.00	56" dia. x 10' Canister	2	20.966	3.7146	0.0000	1238
93.00	RHSDC-3315-PF-48	2	19.431	3.6068	0.0000	1103
86.00	(3) QS66512-2 TIA w/ Mount Pipe	2	14.446	3.1166	0.0000	571
85.00	56" dia. x 10' Canister	2	13.802	3.0264	0.0000	518
75.00	56" dia. x 10' Canister	2	8.902	1.6500	0.0000	544

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_u	Kl/r	Α	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in ²	Κ	Κ	ϕP_n
L1	120 - 110 (1)	TP14x14x0.2188	10.00	0.00	0.0	9.5707	-1.55	559.88	0.003
L2	110 - 100 (2)	TP14x14x0.2188	10.00	0.00	0.0	9.5707	-3.27	559.88	0.006
L3	100 - 90 (3)	TP14x14x0.2188	10.00	0.00	0.0	9.5707	-4.96	559.88	0.009
L4	90 - 80 (4)	TP14x14x0.2188	10.00	0.00	0.0	9.5707	-7.14	559.88	0.013
L5	80 - 70 (5)	TP14x14x0.2188	10.00	0.00	0.0	9.5707	-9.13	559.88	0.016
L6	70 - 32 (6)	TP45.16x40x0.25	38.00	0.00	0.0	34.9627	-14.42	2045.32	0.007
L7	32 - 0 (7)	TP49x43.8113x0.25	38.25	0.00	0.0	38.6831	-22.28	2153.74	0.010

Pole Bending Design Data

	tnxTower	Job	C	:T1192 Ne	w Canaa	n		Page	14 of 15
Eng	ineered Tower Solutions, PLLC 3227 Wellington Court	Project	ETS, PLLC Job No. 22112671.STR.6806					Date 13:0 ⁻	1:36 05/01/23
	Raleigh, NC 27615 Phone: (919) 782-2710 FAX:			Tarpon	Towers			Design Hic	ned by ham Anssar
Section	Elevation Si:	ze	Mux	ϕM_{nr}	Ratio	Muv	ϕM_{m}	Ratio	

Section	Breration	0120	17 u u u u u u u u u u u u u u u u u u u	φ_{1}	10000	11 1 uy	φ_{1}, η_{y}	100000
No.					M_{ux}			M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{ny}
L1	120 - 110 (1)	TP14x14x0.2188	6.59	199.91	0.033	0.00	199.91	0.000
L2	110 - 100 (2)	TP14x14x0.2188	26.08	199.91	0.130	0.00	199.91	0.000
L3	100 - 90 (3)	TP14x14x0.2188	57.99	199.91	0.290	0.00	199.91	0.000
L4	90 - 80 (4)	TP14x14x0.2188	101.50	199.91	0.508	0.00	199.91	0.000
L5	80 - 70 (5)	TP14x14x0.2188	154.95	199.91	0.775	0.00	199.91	0.000
L6	70 - 32 (6)	TP45.16x40x0.25	377.79	1878.46	0.201	0.00	1878.46	0.000
L7	32 - 0 (7)	TP49x43.8113x0.25	744.78	2164.90	0.344	0.00	2164.90	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V _u	ϕV_n	Ratio V_u	Actual T_u	ϕT_n	Ratio T_u
	ft		K	K	ϕV_n	kip-ft	kip-ft	ϕT_n
L1	120 - 110 (1)	TP14x14x0.2188	1.31	167.97	0.008	0.00	202.72	0.000
L2	110 - 100 (2)	TP14x14x0.2188	2.59	167.97	0.015	0.00	202.72	0.000
L3	100 - 90 (3)	TP14x14x0.2188	3.79	167.97	0.023	0.00	202.72	0.000
L4	90 - 80 (4)	TP14x14x0.2188	4.90	167.97	0.029	0.00	202.72	0.000
L5	80 - 70 (5)	TP14x14x0.2188	5.79	167.97	0.034	0.00	202.72	0.000
L6	70 - 32 (6)	TP45.16x40x0.25	8.24	613.60	0.013	0.00	2367.66	0.000
L7	32 - 0 (7)	TP49x43.8113x0.25	10.92	678.89	0.016	0.00	2898.37	0.000

Pole Interaction Design Data

Section	Elevation	Ratio	Ratio	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.		P_u	M_{ux}	M_{uy}	V_u	T_u	Stress	Stress	
	ft	ϕP_n	ϕM_{nx}	ϕM_{ny}	ϕV_n	ϕT_n	Ratio	Ratio	
L1	120 - 110 (1)	0.003	0.033	0.000	0.008	0.000	0.036	1.000	4.8.2
L2	110 - 100 (2)	0.006	0.130	0.000	0.015	0.000	0.137	1.000	4.8.2
L3	100 - 90 (3)	0.009	0.290	0.000	0.023	0.000	0.299	1.000	4.8.2
L4	90 - 80 (4)	0.013	0.508	0.000	0.029	0.000	0.521	1.000	4.8.2
L5	80 - 70 (5)	0.016	0.775	0.000	0.034	0.000	0.793	1.000	4.8.2
L6	70 - 32 (6)	0.007	0.201	0.000	0.013	0.000	0.208	1.000	4.8.2
L7	32 - 0 (7)	0.010	0.344	0.000	0.016	0.000	0.355	1.000	4.8.2

Section Capacity Table

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	øP _{allow} K	% Capacity	Pass Fail
L1	120 - 110	Pole	TP14x14x0.2188	1	-1.55	559.88	3.6	Pass
L2	110 - 100	Pole	TP14x14x0.2188	2	-3.27	559.88	13.7	Pass
L3	100 - 90	Pole	TP14x14x0.2188	3	-4.96	559.88	29.9	Pass
L4	90 - 80	Pole	TP14x14x0.2188	4	-7.14	559.88	52.1	Pass
L5	80 - 70	Pole	TP14x14x0.2188	5	-9.13	559.88	79.3	Pass
L6	70 - 32	Pole	TP45.16x40x0.25	6	-14.42	2045.32	20.8	Pass

tuxTowar	Job		Page
tha i ower		15 of 15	
Engineered Tower Solutions, PLLC 3227 Wellington Court	Project	ETS, PLLC Job No. 22112671.STR.6806	Date 13:01:36 05/01/23
Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Client	Tarpon Towers	Designed by Hicham Anssar

Section	Elevation	Component	Size	Critical	Р		%	Pass
No.	ft	Туре		Element	Κ	K	Capacity	Fail
L7	32 - 0	Pole	TP49x43.8113x0.25	7	-22.28	2153.74	35.5	Pass
							Summary	
						Pole (L5)	79.3	Pass
						RATING =	79.3	Pass

Program Version 8.1.1.0 - 6/4/2021 File:C:/Users/user/Desktop/ETS-TOWER DIVISION/Tarpon Towers/04-28-2023/6608_Tower Reanalysis/Analysis/Tower/New Canaan_SA_050123.eri

APPENDIX B

BASE LEVEL DRAWING

Feed Line Plan

Engineered Tower Solutions, PLLC	^{Job:} CT1192 New Cana	an	
3227 Wellington Court	Project: ETS, PLLC Job No.	22112671.STR.6806	
Raleigh, NC 27615	^{Client:} Tarpon Towers	Drawn by: Hicham Anssar	App'd:
Phone: (919) 782-2710	^{Code:} TIA-222-H	Date: 05/01/23	Scale: NTS
FAX:	Path: C:Usersiuser/Desktop/ETS-TOWER DIVISION/Tarpon Tower	s104-28-2023/6608 Tower Reanalysis/Analysis/Tower/New Canaan SA 050123.e	Dwg No. E-7

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Flange Plate Connection

Site Name	New Canaan
TIA-222 Revision	Н

Top Plate - External

Applied Loads			
Moment (kip-ft)	154.95		
Axial Force (kips)	9.13		
Shear Force (kips)	5.79		

Elevation = 70 ft.

Connection Properties

Bolt Data

(16) 5/8" ø bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 34.5" BC

Top Plate Data

41.25" OD x 1.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Top Stiffener Data

(8) 18"H x 12.625"W x 0.5"T, Notch: 1" plate: Fy= 65 ksi ; weld: Fy= 80 ksi horiz. weld: 0.5625" fillet vert. weld: 0.3125" fillet

Top Pole Data

14" x 0.2188" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Bottom Plate Data

12" ID x 1.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Bottom Stiffener Data

N/A

Bottom Pole Data

40" x 0.25" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

		Anal	ysis Results			
		Bol	t Capacity			
		Max Load (kips)	12.90			
		Allowable (kips)	20.33			
		Stress Rating:	63.4%	Pass		
Top Plate Capacity				Bottom Plate Capacity		
Max Stress (ksi):	6.45	(Roark's Flexural)		Max Stress (ksi):	13.45	(Flexural)
Allowable Stress (ksi):	54.00			Allowable Stress (ksi):	54.00	
Stress Rating:	12.0%	Pass		Stress Rating:	24.9%	Pass
Tension Side Stress Rating:	N/A			Tension Side Stress Rating:	N/A	

Top Stiffener Capacity

Horizontal Weld:	10.8%	Pass
Vertical Weld:	16.9%	Pass
Plate Flexure+Shear:	7.6%	Pass
Plate Tension+Shear:	9.8%	Pass
Plate Compression:	21.9%	Pass
Top Pole Capacity		
Punching Shear:	11.5%	Pass

Bottom Stiffener Capacity		
Horizontal Weld:	N/A	
Vertical Weld:	N/A	
Plate Flexure+Shear:	N/A	
Plate Tension+Shear:	N/A	
Plate Compression:	N/A	
Bottom Pole Capacity		
Punching Shear:	N/A	

Monopole Base Plate Connection

Site Info	
Site Name	New Canaan

Analysis Considerations	
TIA-222 Revision	Н
Grout Considered:	No
l _{ar} (in)	3

Applied Loads		
Moment (kip-ft)	744.78	
Axial Force (kips)	22.28	
Shear Force (kips)	10.92	

Connection Properties

Anchor Rod Data

(6) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 56" BC

Base Plate Data

62" OD x 1.75" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data

N/A

Pole Data

49" x 0.25" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary		(units of kips, kip-in)
Pu_c = 110.04	фРn_c = 268.39	Stress Rating
Vu = 1.82	φVn = 120.77	43.8%
Mu = 3.55	φMn = 128.14	Pass
Base Plate Summary		
Max Stress (ksi):	18.55	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	34.4%	Pass

Analysis Date: 5/1/2023

Pier and Pad Foundation

Site Name:	New Canaan

TIA-222 Revision: Н Тс - т onopole

ower	I ype:	Mo

Superstructure Analysis Reactions									
Compression, P_{comp} :	22.28	kips							
Base Shear, Vu_comp:	10.92	kips							
Moment, M _u :	744.78	ft-kips							
Tower Height, H :	120	ft							
BP Dist. Above Fdn, bp_{dist}:	3	in							

Foundation Analysis Checks										
	Capacity	Demand	Rating	Check						
Lateral (Sliding) (kips)	114.13	10.92	9.6%	Pass						
Bearing Pressure (ksf)	23.94	2.46	10.3%	Pass						
Overturning (kip*ft)	1786.83	818.49	45.8%	Pass						
Pier Flexure (Comp.) (kip*ft)	6058.99	793.92	13.1%	Pass						
Pier Compression (kip)	24494.62	53.45	0.2%	Pass						
Pad Flexure (kip*ft)	1076.12	186.05	17.3%	Pass						
Pad Shear - 1-way (kips)	355.19	53.33	15.0%	Pass						
Pad Shear - 2-way (Comp) (ksi)	0.190	0.021	11.2%	Pass						
Flexural 2-way (Comp) (kip*ft)	1702.84	476.35	28.0%	Pass						

Pier Properties		
Pier Shape:	Circular	
Pier Diameter, dpier :	7	ft
Ext. Above Grade, E :	0.5	ft
Pier Rebar Size, Sc :	8	
Pier Rebar Quantity, mc :	48	
Pier Tie/Spiral Size, St :	4	
Pier Tie/Spiral Quantity, mt :	14	
Pier Reinforcement Type:	Tie	
Pier Clear Cover, cc_{pier}:	3	in

Pad Properties									
Depth, D :	6	ft							
Pad Width, W ₁ :	16	ft							
Pad Thickness, T :	2	ft							
Pad Rebar Size (Bottom dir. 2), Sp ₂ :	8								
Pad Rebar Quantity (Bottom dir. 2), mp ₂ :	16								
Pad Clear Cover, cc_{pad}:	3	in							

Material Properties									
Rebar Grade, Fy :	60	ksi							
Concrete Compressive Strength, F'c:	4	ksi							
Dry Concrete Density, $\delta \mathbf{c}$:	150	pcf							

Soil Properties								
Total Soil Unit Weight, $m{\gamma}_{\mathbb{C}}$	125	pcf						
Ultimate Gross Bearing, Qult:	31.920	ksf						
Cohesion, Cu :	0.000	ksf						
Friction Angle, $oldsymbol{arphi}$:	30	degrees						
SPT Blow Count, N _{blows} :	104							
Base Friction, μ :	0.35							
Neglected Depth, N:	1.00	ft						
Foundation Bearing on Rock?	Yes							
Groundwater Depth, gw:	N/A	ft						

Structural Rating: 28.0% Soil Rating: 45.8%

<--Toggle between Gross and Net

ASCE 7 Hazards Report

Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Stiff Soil

Latitude: 41.16625 Longitude: -73.47047 Elevation: 259.32758390215696 ft (NAVD 88)

Wind

Results:

Wind Speed	117 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	90 Vmph
100-year MRI	97 Vmph
Data Source:	ASCE/SEI 7-16. Fig. 26.5-1B and Figs. CC.2-1–CC

Data Source:ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2Date Accessed:Fri Apr 28 2023

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

Site Soil Class:

Results:

S _s :	0.248	S _{D1} :	0.092
S ₁ :	0.057	Τ _L :	6
F _a :	1.6	PGA :	0.147
F _v :	2.4	PGA M :	0.221
S _{MS} :	0.396	F _{PGA} :	1.506
S _{M1} :	0.138	l _e :	1
S _{DS} :	0.264	C _v :	0.795

Data Accessed:

Fri Apr 28 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

....

Results:	
Ice Thickness:	1.00 in.
Concurrent Temperature:	15 F
Gust Speed	50 mph
Data Source:	Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Date Accessed:	Fri Apr 28 2023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Pinnacle Telecom Group

Professional and Technical Services

ANTENNA SITE FCC RF Compliance Assessment and Report for Municipal Submission

Prepared for:

Site ID: Site Address:

Latitude: Longitude: Structure type: Report date:

Compliance Conclusion:

DISH Wireless, LLC

NJJERO1146D 208 Valley Road New Canaan, CT

N 41.166242 W 73.470481 Unipole August 23, 2023

DISH Wireless, LLC will be in compliance with the rules and regulations as described in OET Bulletin 65, following the implementation of the proposed mitigation as detailed in the report.

14 Ridgedale Avenue - Suite 260 • Cedar Knolls, NJ 07927 • 973-451-1630

Contents

Introduction and Summary	3
Antenna and Transmission Data	5
Compliance Analysis	11
Compliance Conclusion	18

Certification

Appendix A. Documents Used to Prepare the Analysis

Appendix B. Background on the FCC MPE Limit

Appendix C. Proposed Signage

Appendix D. Summary of Expert Qualifications

Introduction and Summary

At the request of DISH Wireless, LLC ("DISH"), Pinnacle Telecom Group has performed an independent expert assessment of radiofrequency (RF) levels and related FCC compliance for existing wireless base station antenna operations in a unipole located at 208 Valley Road in New Canaan, CT. DISH refers to the antenna site by the code "NJJER01146D", and its existing antenna operation involves directional panel antennas and transmission in the 600 MHz, 2000 MHz and 2100 MHz frequency bands licensed to it by the FCC.

The FCC requires all wireless antenna operators to perform an assessment of potential human exposure to radiofrequency (RF) fields emanating from all the transmitting antennas at a site whenever antenna operations are added or modified, and to ensure compliance with the Maximum Permissible Exposure (MPE) limit in the FCC's regulations. In this case, the compliance assessment needs to take into account the RF effects of other existing antenna operations at the site by AT&T, T-Mobile, and Verizon Wireless. Note FCC regulations require any future antenna collocators to assess and assure continuing compliance based on the cumulative effects of all then-proposed and then-existing antennas at the site.

This report describes a mathematical analysis of RF levels resulting around the site in areas of unrestricted public access, that is, at street level around the site. The compliance analysis employs a standard FCC formula for calculating the effects of the antennas in a very conservative manner, in order to overstate the RF levels and to ensure "safe-side" conclusions regarding compliance with the FCC limit for safe continuous exposure of the general public.

The results of a compliance assessment can be described in layman's terms by expressing the calculated RF levels as simple percentages of the FCC MPE limit. If the normalized reference for that limit is 100 percent, then calculated RF levels higher than 100 percent indicate the MPE limit is exceeded and there is a need to mitigate the potential exposure. On the other hand, calculated RF levels consistently below 100 percent serve as a clear and sufficient demonstration of

compliance with the MPE limit. We can (and will) also describe the overall worstcase result via the "plain-English" equivalent "times-below-the-limit" factor.

The result of the RF compliance assessment in this case is as follows:

- At street level, the conservatively calculated maximum RF level from the existing antenna operations at the site is 7.8166 percent of the FCC general population MPE limit well below the 100-percent reference for compliance. In other words, the worst-case calculated RF level intentionally and significantly overstated by the calculations is still more than 12 times below the FCC limit for safe, continuous exposure of the general public. Per DISH guidelines, and consistent with FCC guidance on compliance, it is recommended that three Caution signs and NOC Information signs be installed at the base of the unipole.
- The results of the calculations, along with the proposed mitigation, combine to satisfy the FCC requirements and associated guidelines on RF compliance at street level around the site. Moreover, because of the significant conservatism incorporated in the analysis, RF levels actually caused by the antennas will be lower than these calculations indicate.

The remainder of this report provides the following:

- relevant technical data on the existing DISH antenna operations at the site, as well as on the other existing antenna operations;
- a description of the applicable FCC mathematical model for calculating RF levels, and application of the relevant technical data to that model;
- analysis of the results of the calculations against the FCC MPE limit, and the compliance conclusion for the site.

In addition, four Appendices are included. Appendix A provides information on the documents used to prepare the analysis. Appendix B provides background on the FCC MPE limit. Appendix C details the proposed mitigation to satisfy the FCC requirements and associated guidelines on RF compliance. Appendix D provides

a summary of the qualifications of the expert certifying FCC compliance for this site.

ANTENNA AND TRANSMISSION DATA

The plan and elevation views that follow, extracted from the site drawings, illustrate the mounting positions of the DISH antennas at the site.

Plan View:

Elevation View:

The table that follows summarizes the relevant data for the existing DISH antenna operations. Note that the "Z" height references the centerline of the antenna.

Ant. ID	Carrier	Antenna Manufacturer	Antenna Model	Туре	Freq (MHz)	Ant. Dim. (ft.)	Total Input Power (watts)	Total ERP (watts)	Z AGL (ft)	Ant. Gain (dBd)	B/W	Azimuth	EDT	MDT
0	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	75.0	12.16	71	80	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	5260	75.0	15.96	64	80	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	6546	75.0	16.26	64	80	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	75.0	12.16	71	200	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	5260	75.0	15.96	64	200	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	6546	75.0	16.26	64	200	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	75.0	12.16	71	320	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	5260	75.0	15.96	64	320	2	0
0	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	6546	75.0	16.26	64	320	2	0

The area below the antennas, at street level, is of interest in terms of potential "uncontrolled" exposure of the general public, so the antenna's vertical-plane emission characteristic is used in the calculations, as it is a key determinant of the relative amount of RF emissions in the "downward" direction.

By way of illustration, Figure 1 that follows shows the vertical-plane radiation pattern of the antenna model in the 600 MHz frequency band. In this type of antenna radiation pattern diagram, the antenna is effectively pointed at the three o'clock position (the horizon) and the relative strength of the pattern at different angles is described using decibel units.

Note that the use of a decibel scale to describe the relative pattern at different angles actually serves to significantly understate the actual focusing effects of the antenna. Where the antenna pattern reads 20 dB the relative RF energy emitted at the corresponding downward angle is 1/100th of the maximum that occurs in the main beam (at 0 degrees); at 30 dB, the energy is only 1/1000th of the maximum.

Finally, note that the automatic pattern-scaling feature of our internal software may skew side-by-side visual comparisons of different antenna models, or even different parties' depictions of the same antenna model.

Figure 1. Commscope FVV-65B-R3 – 600 MHz Vertical-plane Pattern

As noted at the outset, there are other existing wireless antenna operations to include in the compliance assessment. For each of the wireless operators, we will conservatively assume operation with maximum channel capacity and at maximum transmitter power per channel to be used by each wireless operator in each of their respective FCC-licensed frequency bands.

The table that follows summarizes the relevant data for the collocated antenna operations.
Carrier	Antenna Manufacturer	Antenna Model	Туре	Freq (MHz)	Total ERP (watts)	Ant. Gain (dBd)	Azimuth
AT&T	Generic	Generic	Panel	700	4945	11.26	N/A
AT&T	Generic	Generic	Panel	850	2400	11.76	N/A
AT&T	Generic	Generic	Panel	1900	5756	15.56	N/A
AT&T	Generic	Generic	Panel	2100	5890	15.66	N/A
AT&T	Generic	Generic	Panel	2300	4131	16.16	N/A
T-Mobile	Generic	Generic	Panel	600	3163	12.96	N/A
T-Mobile	Generic	Generic	Panel	700	867	13.36	N/A
T-Mobile	Generic	Generic	Panel	1900	4123	15.36	N/A
T-Mobile	Generic	Generic	Panel	1900	1452	15.60	N/A
T-Mobile	Generic	Generic	Panel	2100	4626	15.86	N/A
T-Mobile	Generic	Generic	Panel	1900	1419	15.50	N/A
T-Mobile	Generic	Generic	Panel	2500	12804	22.35	N/A
Verizon Wireless	Generic	Generic	Panel	746	2400	11.76	N/A
Verizon Wireless	Generic	Generic	Panel	869	5166	12.36	N/A
Verizon Wireless	Generic	Generic	Panel	1900	5372	15.26	N/A
Verizon Wireless	Generic	Generic	Panel	2100	5625	15.46	N/A

COMPLIANCE ANALYSIS

FCC Office of Engineering and Technology Bulletin 65 ("OET Bulletin 65") provides guidelines for mathematical models to calculate the RF levels at various points around transmitting antennas. Different models apply in different areas around antennas, with one model applying to street level around a site, and another applying to the same height as the antennas. We will address each area of interest in turn in the subsections that follow.

Street Level Analysis

At street-level around an antenna site (in what is called the "far field" of the antennas), the RF levels are directly proportional to the total antenna input power and the relative antenna gain in the downward direction of interest – and the levels are otherwise inversely proportional to the square of the straight-line distance to the antenna.

Conservative calculations also assume the potential RF exposure is enhanced by reflection of the RF energy from the intervening ground. Our calculations will assume a 100% "perfect", mirror-like reflection, which is the absolute worst-case scenario.

The formula for street-level compliance assessment for any given wireless antenna operation is as follows:

MPE% = (100 * Chans * TxPower * 10 (Gmax-Vdisc/10) * 4) / (MPE * 4π * R²)

where

MPE%	=	RF level, expressed as a percentage of the MPE limit applicable to continuous exposure of the general public
100	=	factor to convert the raw result to a percentage
Chans	=	maximum number of RF channels per sector
TxPower	=	maximum transmitter power per channel, in milliwatts

10 (Gmax-Vdisc/10)	=	numeric equivalent of the relative antenna gain in the downward direction of interest; data on the antenna vertical-plane pattern is taken from manufacturer specifications			
4	=	factor to account for a 100-percent-efficient energy reflection from the ground, and the squared relationship between RF field strength and power density $(2^2 = 4)$			
MPE	=	FCC general population MPE limit			
R	=	straight-line distance from the RF source to the point of interest. centimeters			

The MPE% calculations are performed out to a distance of 500 feet from the facility to points 6.5 feet (approximately two meters, the FCC-recommended standing height) off the ground, as illustrated in Figure 2, below.

Figure 2. Street-level MPE% Calculation Geometry

It is popularly understood that the farther away one is from an antenna, the lower the RF level – which is generally but not universally correct. The results of MPE% calculations fairly close to the site will reflect the variations in the vertical-plane antenna pattern as well as the variation in straight-line distance to the antenna.

Therefore, RF levels may actually increase slightly with increasing distance within the range of zero to 500 feet from the site. As the distance approaches 500 feet and beyond, though, the antenna pattern factor becomes less significant, the RF levels become primarily distance-controlled and, as a result, the RF levels generally decrease with increasing distance. In any case, the RF levels more than 500 feet from a wireless antenna site are well understood to be sufficiently low to be comfortably in compliance.

According to the FCC, when directional antennas (such as panels) are used, compliance assessments are based on the RF effect of a single (facing) antenna sector, as the effects of directional antennas pointed away from the point(s) of interest are considered insignificant. If the different parameters apply in the different sectors, compliance is based on the worst-case parameters.

Street level FCC compliance for a collocated antenna site is assessed in the following manner. At each distance point along the ground, an MPE% calculation is made for each antenna operation (including each frequency band), and the sum of the individual MPE% contributions at each point is compared to 100 percent, the normalized reference for compliance with the MPE limit. We refer to the sum of the individual MPE% contributions as "total MPE%", and any calculated total MPE% result exceeding 100 percent is, by definition, higher than the FCC limit and represents non-compliance and a need to mitigate the potential exposure. If all results are consistently below 100 percent, on the other hand, that set of results serves as a clear and sufficient demonstration of compliance with the MPE limit.

Note that the following conservative methodology and assumptions are incorporated into the MPE% calculations on a general basis:

- 1. The antennas are assumed to be operating continuously at maximum power and maximum channel capacity.
- 2. The power-attenuation effects of shadowing or other obstructions to the line-of-sight path from the antenna to the point of interest are ignored.
- 3. The calculations intentionally minimize the distance factor (R) by assuming a 6'6" human and performing the calculations from the bottom (rather than

the centerline) of each operator's lowest-mounted antenna, as applicable.

- 4. The calculations also conservatively take into account, when applicable, the different technical characteristics and related RF effects of the use of multiple antennas for transmission in the same frequency band.
- 5. The RF exposure at ground level is assumed to be 100-percent enhanced (increased) via a "perfect" field reflection from the intervening ground.

The net result of these assumptions is to intentionally and significantly overstate the calculated RF levels relative to the levels that will actually result from the antenna operations – and the purpose of this conservatism is to allow very "safeside" conclusions about compliance.

The table that follows provides the results of the MPE% calculations for each antenna operation, with the overall worst-case calculated result highlighted in bold in the last column. Note that the transmission parameters for each DISH antenna sector are identical, and the calculations reflect the worst-case result for any/all sectors.

Ground	DISH	DISH	DISH	AT&T	T-Mobile	Verizon	Total
Distance (ft)	600 MHz MPE%	2000 MHz MPE%	2100 MHz MPE%	MPE%	MPE%	Wireless MPE%	MPE%
(11)							
0	0.0734	0.0537	0.0757	0.1869	0.3512	0.0404	0.7813
20	0.1260	0.0899	0.5802	0.3650	0.5124	0.0790	1.7525
40	0.1763	0.1595	0.1034	0.7652	1.1146	0.3036	2.6226
60	0.9667	0.1957	0.5454	1.0371	1.0535	0.3010	4.0994
80	0.2048	0.2269	0.7777	0.4523	0.6887	0.2412	2.5916
100	0.1234	0.3960	0.1193	1.1952	0.7081	0.6452	3.1872
120	0.5725	0.1775	0.1192	2.0037	0.9271	0.5296	4.3296
140	0.5810	0.1083	0.1281	1.7395	1.0895	0.7554	4.4018
160	0.4101	0.0621	0.0491	1.3530	1.3101	0.6794	3.8638
180	0.3364	0.0649	0.1043	0.9918	2.3984	0.4290	4.3248
200	0.3428	0.0130	0.0331	0.5259	2.7686	0.2374	3.9208
220	0.5391	0.0138	0.0054	0.2500	3.0258	0.1105	3.9446
240	0.6409	0.0115	0.0103	0.6234	2.6437	0.0840	4.0138
260	0.7529	0.0027	0.0016	0.9375	2.7729	0.1474	4.6150
280	0.8689	0.0254	0.0137	1.2557	3.3991	0.2142	5.7770
300	0.9816	0.0949	0.0802	1.5296	4.0532	0.2999	7.0394
320	1.0821	0.1689	0.1709	1.7744	3.8841	0.4116	7.4920
340	1.1658	0.1766	0.2009	2.0487	3.6696	0.5384	7.8000
360	1.0439	0.1581	0.1799	1.8371	3.4555	0.6864	7.3609
380	1.1069	0.0884	0.1136	2.1978	3.2903	0.8371	7.6341
400	1.0018	0.0800	0.1028	2.7256	3.0243	0.7592	7.6937
420	1.0434	0.0072	0.0151	2.4805	2.9105	0.9079	7.3646
440	0.9527	0.0066	0.0138	3.1342	2.8790	0.8303	7.8166
460	0.8733	0.0060	0.0126	2.8749	2.6782	0.9636	7.4086
480	0.8972	0.0303	0.0247	2.6462	2.6240	0.8875	7.1099
500	0.8281	0.0280	0.0228	3.2994	2.4827	1.0081	7.6691

As indicated, the maximum calculated overall RF level is 7.8166 percent of the FCC MPE limit – well below the 100-percent reference for compliance.

A graph of the overall calculation results, shown below, perhaps provides a clearer *visual* illustration of the relative compliance of the calculated RF levels. The line representing the overall calculation results shows an obviously clear, consistent margin to the FCC MPE limit.

The graphic output for the areas at street level surrounding the site is reproduced on the next page.

COMPLIANCE CONCLUSION

According to the FCC, the MPE limit has been constructed in such a manner that continuous human exposure to RF fields up to and including 100 percent of the MPE limit is acceptable and safe.

The conservative analysis in this case shows that the maximum calculated RF level from the existing antenna operations at street level around the site is 7.8166 percent of the FCC general population MPE limit. Per DISH guidelines, and consistent with FCC guidance on compliance, it is recommended that three Caution signs and NOC Information signs be installed at the base of the unipole.

The results of the calculations, along with the described RF mitigation, combine to satisfy the FCC's RF compliance requirements and associated guidelines on compliance.

Moreover, because of the extremely conservative calculation methodology and operational assumptions we applied in the analysis, RF levels actually caused by the antennas will be significantly lower than the calculation results here indicate.

Certification

It is the policy of Pinnacle Telecom Group that all FCC RF compliance assessments are reviewed, approved, and signed by the firm's Chief Technical Officer who certifies as follows:

- 1. I have read and fully understand the FCC regulations concerning RF safety and the control of human exposure to RF fields (47 CFR 1.1301 *et seq*).
- 2. To the best of my knowledge, the statements and information disclosed in this report are true, complete and accurate.
- 3. The analysis of site RF compliance provided herein is consistent with the applicable FCC regulations, additional guidelines issued by the FCC, and industry practice.
- 4. The results of the analysis indicate that the subject antenna operations will be in compliance with the FCC regulations concerning the control of potential human exposure to the RF emissions from antennas.

Daniel J. Collins Chief Teennical Officer Pinnacle Telecom Group, LLC

8/23/23 Date

Appendix A. Documents Used to Prepare the Analysis

RFDS: RFDS-NJJER01146D-Preliminary-20230330-v.2_20230330123748

CD: NJJER01146D_FinalStampedCDs_20230725101113 (1)

Appendix B. Background on the FCC MPE Limit

As directed by the Telecommunications Act of 1996, the FCC has established limits for maximum continuous human exposure to RF fields.

The FCC maximum permissible exposure (MPE) limits represent the consensus of federal agencies and independent experts responsible for RF safety matters. Those agencies include the National Council on Radiation Protection and Measurements (NCRP), the Occupational Safety and Health Administration (OSHA), the National Institute for Occupational Safety and Health (NIOSH), the American National Standards Institute (ANSI), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA). In formulating its guidelines, the FCC also considered input from the public and technical community – notably the Institute of Electrical and Electronics Engineers (IEEE).

The FCC's RF exposure guidelines are incorporated in Section 1.301 *et seq* of its Rules and Regulations (47 CFR 1.1301-1.1310). Those guidelines specify MPE limits for both occupational and general population exposure.

The specified continuous exposure MPE limits are based on known variation of human body susceptibility in different frequency ranges, and a Specific Absorption Rate (SAR) of 4 watts per kilogram, which is universally considered to accurately represent human capacity to dissipate incident RF energy (in the form of heat). The occupational MPE guidelines incorporate a safety factor of 10 or greater with respect to RF levels known to represent a health hazard, and an additional safety factor of five is applied to the MPE limits for general population exposure. Thus, the general population MPE limit has a built-in safety factor of more than 50. The limits were constructed to appropriately protect humans of both sexes and all ages and sizes and under all conditions – and continuous exposure at levels equal to or below the applicable MPE limits is considered to result in no adverse health effects or even health risk.

The reason for *two* tiers of MPE limits is based on an understanding and assumption that members of the general public are unlikely to have had appropriate RF safety training and may not be aware of the exposures they receive; occupational exposure in controlled environments, on the other hand, is assumed to involve individuals who have had such training, are aware of the exposures, and know how to maintain a safe personal work environment.

The FCC's RF exposure limits are expressed in two equivalent forms, using alternative units of field strength (expressed in volts per meter, or V/m), and power density (expressed in milliwatts per square centimeter, or mW/cm²). The table on the next page lists the FCC limits for both occupational and general population exposures, using the mW/cm² reference, for the different radio frequency ranges.

Frequency Range (F) (MHz)	Occupational Exposure (mW/cm ²)	General Public Exposure (mW/cm ²)
0.3 - 1.34	100	100
1.34 - 3.0	100	180 / F ²
3.0 - 30	900 / F ²	180 / F ²
30 - 300	1.0	0.2
300 - 1,500	F / 300	F / 1500
1,500 - 100,000	5.0	1.0

The diagram below provides a graphical illustration of both the FCC's occupational and general population MPE limits.

Because the FCC's RF exposure limits are frequency-shaped, the exact MPE limits applicable to the instant situation depend on the frequency range used by the systems of interest.

The most appropriate method of determining RF compliance is to calculate the RF power density attributable to a particular system and compare that to the MPE limit applicable to the operating frequency in question. The result is usually expressed as a percentage of the MPE limit.

For potential exposure from multiple systems, the respective percentages of the MPE limits are added, and the total percentage compared to 100 (percent of the limit). If the result is less than 100, the total exposure is in compliance; if it is more than 100, exposure mitigation measures are necessary to achieve compliance.

Note that the FCC "categorically excludes" all "non-building-mounted" wireless antenna operations whose mounting heights are more than 10 meters (32.8 feet) from the routine requirement to demonstrate compliance with the MPE limit, because such operations "are deemed, individually and cumulatively, to have no significant effect on the human environment". The categorical exclusion also applies to *all* point-to-point antenna operations, regardless of the type of structure they're mounted on. Note that the FCC considers any facility qualifying for the categorical exclusion to be automatically in compliance.

In addition, FCC Rules and Regulations Section 1.1307(b)(3) describes a provision known in the industry as "the 5% rule". It describes that when a specific location – like a spot on a rooftop – is subject to an overall exposure level exceeding the applicable MPE limit, operators with antennas whose MPE% contributions at the point of interest are less than 5% are exempted from the obligation otherwise shared by all operators to bring the site into compliance, and those antennas are automatically deemed by the FCC to satisfy the rooftop compliance requirement.

FCC References on RF Compliance

47 CFR, FCC Rules and Regulations, Part 1 (Practice and Procedure), Section 1.1310 (Radiofrequency radiation exposure limits).

FCC Second Memorandum Opinion and Order and Notice of Proposed Rulemaking (FCC 97-303), In the Matter of Procedures for Reviewing Requests for Relief From State and Local Regulations Pursuant to Section 332(c)(7)(B)(v) of the Communications Act of 1934 (WT Docket 97-192), Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation (ET Docket 93-62), and Petition for Rulemaking of the Cellular Telecommunications Industry Association Concerning Amendment of the Commission's Rules to Preempt State and Local Regulation of Commercial Mobile Radio Service Transmitting Facilities, released August 25, 1997.

FCC First Memorandum Opinion and Order, ET Docket 93-62, *In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation*, released December 24, 1996.

FCC Report and Order, ET Docket 93-62, *In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation*, released August 1, 1996.

FCC Report and Order, Notice of Proposed Rulemaking, Memorandum Opinion and Order (FCC 19-126), Proposed Changes in the Commission's Rules Regarding Human Exposure to Radiofrequency Electromagnetic Fields; Reassessment of Federal Communications Commission Radiofrequency Exposure Limits and Policies, released December 4, 2019.

FCC Office of Engineering and Technology (OET) Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 97-01, August 1997.

FCC Office of Engineering and Technology (OET) Bulletin 56, "Questions and Answers About Biological Effects and Potential Hazards of RF Radiation", edition 4, August 1999.

Appendix C. Proposed Signage

<u>Final</u> <u>Compliance</u> <u>Configuration</u>	CONTROL OF A	NOTICE	The CALUTION CALUTION The Sector of Control of Control Control of Control of Control of Control Control of Control of Control of Control of Control Control of Control of Control of Control of Control Control of Control of Con	Construction of the second sec	INFORMATION The is an access point to an are with manufacture in the two the source and the other interventional intervention to the two the source interventions in the source intervention in the source intervention intervention in the source intervention in the source intervention intervention in the source intervention intervention in the source intervention in the source intervention in the source intervention intervention in the source intervention interventinterven	String Station	
	GUIDELINES	NOTICE	CAUTION	WARNING	NOC INFO	BARF	RIER/MARKER
Access Point(s)	0	0	0	0	1	0	
Alpha	0	0	1	0	0	0	
Beta	0	0	1	0	0	0	
Gamma	0	0	1	0	0	0	

Appendix D. Summary of Expert Qualifications

Synopsis:	 40+ years of experience in all aspects of wireless system engineering, related regulation, and RF exposure Has performed or led RF exposure compliance assessments on more than 20,000 antenna sites since the latest FCC regulations went into effect in 1997 Has provided testimony as an RF compliance expert more than 1,500 times since 1997 Have been accepted as an FCC compliance expert in New York, New Jersey, Connecticut, Pennsylvania and more than 40 other states, as well as by the FCC
Education:	 B.E.E., City College of New York (Sch. Of Eng.), 1971 M.B.A., 1982, Fairleigh Dickinson University, 1982 Bronx High School of Science, 1966
Current Responsibilities:	• Leads all PTG staff work involving RF safety and FCC compliance, microwave and satellite system engineering, and consulting on wireless technology and regulation
Prior Experience:	 Edwards & Kelcey, VP – RF Engineering and Chief Information Technology Officer, 1996-99 Bellcore (a Bell Labs offshoot after AT&T's 1984 divestiture), Executive Director – Regulation and Public Policy, 1983-96 AT&T (Corp. HQ), Division Manager – RF Engineering, and Director – Radio Spectrum Management, 1977-83 AT&T Long Lines, Group Supervisor – Microwave Radio System Design, 1972-77
<i>Specific RF Safety / Compliance Experience:</i>	 Involved in RF exposure matters since 1972 Have had lead corporate responsibility for RF safety and compliance at AT&T, Bellcore, Edwards & Kelcey, and PTG While at AT&T, helped develop the mathematical models for calculating RF exposure levels Have been relied on for compliance by all major wireless carriers, as well as by the federal government, several state and local governments, equipment manufacturers, system integrators, and other consulting / engineering firms
Other Background:	 Author, <i>Microwave System Engineering</i> (AT&T, 1974) Co-author and executive editor, <i>A Guide to New</i> <i>Technologies and Services</i> (Bellcore, 1993) National Spectrum Management Association (NSMA) – former three-term President and Chairman of the Board of Directors; was founding member, twice-elected Vice President, long-time member of the Board, and was named an NSMA Fellow in 1991 Have published more than 35 articles in industry magazines

Daniel J. Collins,	, Chief Technical	Officer, Pinnacle	Telecom Gr	oup, LLC
--------------------	-------------------	-------------------	------------	----------

EXHIBIT F

Proof of Notification

🕩 Belle Harbor, NY 🥵 Atlanta, GA 🥵 Brick, NJ 🥵 Lewes, DE 👘 Tampa, FL 👘 Detroit, MI

The following is the proof-of-delivery for tracking number: 773291106110

Status:	Delivered	Delivered To:	Receptionist/Front Desk
Signed for by:	C.KROLIKOWSKI	Delivery Location:	77 MAIN ST
Service type:	FedEx 2Day		
Special Handling:	Deliver Weekday		NEW CANAAN, CT, 06840
		Delivery date:	Sep 6, 2023 11:28
Shipping Information:			
Tracking number:	773291106110	Ship Date:	Sep 5, 2023
		Weight:	1.8 LB/0.82 KG
Recipient: Brian Platz, City of New Canaa 77 Main Street Lower Level- Building Departn NEW CANAAN, CT, US, 0684	an nent 10	Shipper: Michael Jones, 140 Beach 137th Stree ROCKAWAY PARK, N	it Y, US, 11694
Reference	NJJER01146D		

Fed 🗙 Shippin	g 🏹 Tracking 🗸 Design & Print 🗸 Locatio	ons ∽ Support ∽	Michael 🔕 🔍
FedEx* Tracking	Т	rack Another Shipment Local So	can Time 💙 Help
DELIVERED	DELIVERY STATUS	TRACKING ID	
Wednesdav	Delivered 🗸	773291099570 🧷	☆ 🗐
9/6/23 at 11:28 AM Signed for by: C.KROLIKOWSKI ↓ Obtain proof of delivery Want updates on this shipment? En	nter your email and we will do the rest!	FROM FedEx FedEx	nes 137th Street Y PARK, NY US 11694 31 ted
YOUR EMAIL	SUBMIT	9/2/23 3:5	6 PM
MORE OPTIONS		WE HAVE Y JAMAICA, 9/5/23 7:0	' OUR PACKAGE NY 4 PM
Manage Delivery		STAMFORI 9/6/23 9:1	г), СТ 6 АМ

OUT FOR DELIVERY STAMFORD, CT 9/6/23 9:35 AM

DELIVERED Daniel Radman City of New Canaan 77 Main Street Lower Level-Planning & Zoning NEW CANAAN, CT US 06840

2035943012 Delivered 9/6/23 at 11:28 AM

 \downarrow View travel history

Shipment facts

Shipment overview

TRACKING NUMBER DELIVERED TO SHIPPER REFERENCE SHIP DATE ? STANDARD TRANSIT ? ACTUAL DELIVERY 773291099570 Receptionist/Front Desk NJJER01146D 9/5/23 9/7/23 before 5:00 PM 9/6/23 at 11:28 AM

SERVICE

FedEx 2Day

The following is the proof-of-delivery for tracking number: 773291143240

Status:	Delivered	Delivered To:	Receptionist/Front Desk
Signed for by:	K.FLYNN	Delivery Location:	77 MAIN ST
Service type:	FedEx 2Day		
Special Handling:	Deliver Weekday		NEW CANAAN, CT, 06840
		Delivery date:	Sep 6, 2023 11:35
Shipping Information:			
Tracking number:	773291143240	Ship Date:	Sep 5, 2023
		Weight:	
Recipient: Kevin Moynihan, City of New (77 Main Street 2nd Floor- First Selectman NEW CANAAN, CT, US, 0684	Canaan 10	Shipper: Michael Jones, 140 Beach 137th Stree ROCKAWAY PARK, N	t Y, US, 11694
Reference	NJJER01146D		

The following is the proof-of-delivery for tracking number: 773291149064

Status:	Delivered	Delivered To:	Receptionist/Front Desk
Signed for by:	T.MORALES	Delivery Location:	208 VALLEY RD
Service type:	FedEx 2Day		
Special Handling:	Deliver Weekday		NEW CANAAN, CT, 06840
		Delivery date:	Sep 6, 2023 15:20
Shipping Information:			
Tracking number:	773291149064	Ship Date:	Sep 5, 2023
		Weight:	
Recipient: Richard Canning, Silver Hill H 208 Valley Road NEW CANAAN, CT, US, 0684	lospital, Inc IO	Shipper: Michael Jones, 140 Beach 137th Street ROCKAWAY PARK, NY, US	, 11694
Reference	NJJER01146D		

The following is the proof-of-delivery for tracking number: 773291140457

Status:	Delivered	Delivered To:	Receptionist/Front Desk	
Signed for by:	T.BOWMAN	Delivery Location:	8916 77TH TER E 103	
Service type:	FedEx 2Day			
Special Handling:	Deliver Weekday		LAKEWOOD RANCH, FL, 34202	
		Delivery date:	Sep 7, 2023 16:00	
Shipping Information:				
Tracking number:	773291140457	Ship Date:	Sep 5, 2023	
		Weight:	2.0 LB/0.91 KG	
Recipient: Todd Bowman, Tarpon Tower II 8916 77th Terrace East Suite 103 LAKEWOOD RANCH, FL, US, 34202		Shipper: Michael Jones, 140 Beach 137th Street ROCKAWAY PARK, NY	Shipper: Michael Jones, 140 Beach 137th Street ROCKAWAY PARK, NY, US, 11694	
Reference	NJJER01146D			

