August 23, 2023

Melanie A. Bachman
Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: \quad Request of DISH Wireless LLC for an Order to Approve the Shared Use of an Existing Tower 208 Valley Road, New Canaan, CT 06840
Latitude: $41.166242^{\circ} \mathrm{N} /$ Longitude: $73.470481^{\circ} \mathrm{W}$

Dear Ms. Bachman:
Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, DISH Wireless LLC ("DISH") hereby requests an order from the Connecticut Siting Council ("Council") to approve the shared use by DISH of an existing telecommunication tower at 208 Valley Road in New Canaan (the "Property"). The existing $120^{\prime}-0^{\prime \prime}$ Monopole tower is owned by Tarpon Towers II. The underlying property is owned by Silver Hill Hospital Inc. DISH requests that the Council find that the proposed shared use of the Tarpon Towers II tower satisfies the criteria of C.G.S. §16-50aa and issue an order approving the proposed shared use. This modification/proposal includes hardware that is 5 G capable through remote software configuration and either or both services may be turned on or off at various times. A copy of this filing is being sent to Kevin Moynihan, First Selectman- City of New Canaan, Daniel Radman, Planning \& Zoning Chairman - City of New Canaan, Brian Platz, Chief Building Official - City of New Canaan, Richard Canning, Chairman of Board of Directors - Silver Hill Hospital Inc., and Todd Bowman, Vice President Tarpon Towers.

Background

The existing Tarpon Towers II facility consists of a $120^{\prime}-0^{\prime \prime}$ monopole tower. DISH is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. DISH and Tarpon Towers II have agreed to the proposed shared use of the 208 Valley Road tower pursuant to mutually acceptable terms and conditions. Likewise, DISH and Tarpon Towers II have agreed to the proposed installation of equipment cabinets on the ground on the North side of the tower within the existing compound. Tarpon Towers II has authorized DISH to apply for all necessary permits and approvals that may be required to share the existing tower.

DISH proposes to install 3 antennas and 1 cable at the $75^{\prime}-0^{\prime \prime}$-foot level. In addition, DISH will install a ground equipment cabinet on a $5^{\prime} \times 7^{\prime}$ equipment platform. Included in the Construction Drawings are DISH's project specifications for locations of all proposed site improvements. The Construction Drawings also contain specifications for DISH's proposed antennas and groundwork.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modification will not result in an increase in the height of the existing structure. The top of the tower is $120^{\prime}-0^{\prime \prime}$; Dish Wireless LLC proposed antennas will be located at a center line height of $75^{\prime}-0^{\prime \prime}$.
2. The proposed modifications will not result in the increase of the site boundary as depicted on the attached site plan.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.
4. The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total power density of 7.8166% as evidenced by Exhibit E.
C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the Council finds that the proposed shared use of the facility is technically, legally, environmentally, and economically feasible and meets public safety concerns, the council shall issue an order approving such a shared use." DISH respectfully submits that the shared use of the tower satisfies these criteria.
A. Technical Feasibility. The existing Tarpon Towers II tower is structurally capable of supporting DISH's proposed improvements. The proposed shared use of this tower is, therefore, technically feasible. A Feasibility Structural Analysis Report ("Structural Report") prepared for this project confirms that this tower can support DISH's proposed loading. A copy of the Structural Report has been included in this application.
B. Legal Feasibility. Under C.G.S. § 16-50aa, the Council has been authorized to issue order approving the shared use of an existing tower such as the Tarpon Towers II tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, § 16-50x(a) directs the Council to "give such consideration to the other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.

DEVELOPMENT

C. Environmental Feasibility. The proposed shared use of the Tarpon Towers II tower would have a minimal environmental effect for the following reasons:

1. The proposed installation will have no visual impact on the area of the tower. DISH's equipment cabinet would be installed within the existing facility compound. DISH's shared use of this tower therefore will not cause any significant change or alteration in the physical or environmental characteristics of the existing site.
2. Operation of DISH's antennas at this site would not exceed the RF emissions standard adopted by the Federal Communications Commission ("FCC"). Included in the EME report of this filing are the approximation tables that demonstrate that DISH's proposed facility will operate well within the FCC RF emissions safety standards.
3. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the Tarpon Towers II facility other than periodic maintenance. The proposed shared use of the Tarpon Towers II tower would, therefore, have a minimal environmental effect, and is environmentally feasible.
D. Economic Feasibility. As previously mentioned, DISH has entered into an agreement with Tarpon Towers II for the shared use of the existing facility subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.
E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting DISH's full array of 3 antennas, 6 RRU radios, 1 OVP and 1 cable and all related equipment. DISH is not aware of any public safety concerns relative to the proposed sharing of the existing Tarpon Towers II tower.

DEVELOPMENT

Conclusion

For the reasons discussed above, the proposed shared use of the existing Tarpon Towers II tower at 208 Valley Road satisfies the criteria stated in C.G.S. §16-50aa and advances the General Assembly's and the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the proposed shared use.

Sincerely,

Michael Jones
President, M+K Development
140 Beach $137^{\text {th }}$ St
Rockaway Beach, NY 11694
732-677-8881

CC:
Kevin Moynihan, First Selectman- City of New Canaan
Daniel Radman, Planning \& Zoning Chairman - City of New Canaan
Brian Blatz, Chief Building Official - City of New Canaan
Richard Canning, Chairman of Board of Directors - Silver Hill Hospital Inc
Todd Bowman, Vice President - Tarpon Towers.

EXHIBIT A

Letter of Authorization

TARPQN
 TOWERS

July 25, 2023
Dish Wireless, LLC
5701 South Santa Fe Drive
Littleton, CO 80120

Re: Development Application Letter of Authorization - 208 Valley Road, New Canaan, CT 06840 NJJER01146D

Letter of Authorization

Dear Sir or Madam:

Tarpon Towers II, LLC ("Tarpon"), owns the tower facility at 208 Valley Road, New Canaan, CT 06840 and identified as Block \# 44, Lot \# 120 (the "Property"). Tarpon hereby authorizes Dish Wireless LLC ("DISH") and its agent, O4 Innovations and M\&K Development LLC, to file applications for the sole purpose of gaining any zoning approval and building permit(s) to install new telecommunications equipment ("Equipment") on a proposed canister tower on the Property. DISH and its aforementioned agents shall not have authority to agree to any stipulations associated with their business before the Building Department that results in a duty on the part of Tarpon that has not been expressly permitted in writing.

DISH shall not be permitted to install the Equipment on the property until DISH provides a copy of its building permit from the Town and until DISH complies with any and all requirements set forth in DISH's lease with Tarpon.

Please contact Todd Bowman, Vice President of Tarpon at (941) 757-5010 ext 108 or tbowman@tarpontowers.com should you have any questions or concerns.

Sincerely,

Brett Buggeln
COO
Tarpon Towers II, LLC

EXHIBIT B

Property Card

Google Maps 208 Valley Rd

New Search Back to Results View Property Print View Map

Location	Owner	Account	MBLU
208 VALLEY RD	SILVER HILL HOSPITAL INC	30126	$0044 / 0108 / 0120 /$

Parcel Value

Item	Appraised Value	Assessed Value
Buildings	$9,890,300$	$6,923,210$
Extra Building Features	0	0
Outbuildings	67,700	47,390
Land	$5,092,000$	$3,564,400$
Total	$\mathbf{1 5 , 0 5 0 , 0 0 0}$	$\mathbf{1 0 , 5 3 5 , 0 0 0}$

Owner of Record

SILVER HILL HOSPITAL INC

208 VALLEY RD
NEW CANAAN, CT 06840

Owner History

Name	Book/Page	Sale Date
SILVER HILL HOSPITAL INC	$702 / 281$	$11 / 09 / 2004$
SILVER HILL FOUNDATION INC	$67 / 13$	$05 / 18 / 1940$

Assessment History

Year	Total Assessment
2015	$10,535,000$
2014	$10,535,000$
2013	$10,535,000$
2012	$9,209,060$
2011	$9,209,060$
2010	$9,209,060$
2009	$9,209,100$
2008	$10,969,100$
2007	$4,710,900$
2006	$4,710,900$
2005	$4,710,900$
2004	$4,710,900$
2003	$4,710,900$
2002	$6,112,960$

Building Permits

Permit ID	Issue Date Ammo	Description	
$\begin{aligned} & 16- \\ & 00064 \end{aligned}$	01/28/2016 10,000	"REPAIR WATER DAMAGE AT MAIN HOUSE."	
$\left\lvert\, \begin{array}{\|l\|} 15- \\ 01238 \end{array}\right.$	12/09/2015 80,000	MARTIN CENTER - REPLACE EXISTING ENTRANCE STAIRS	ND ROOF.
$\left\lvert\, \begin{array}{\|l\|} 15- \\ 01184 \end{array}\right.$	11/30/2015 75,000	RENOVATE 18 EXISTING RESTROOMS (WITH NEW FINISHES CONTROLS FOR PATIENT SAFETY.) NO INCREASE IN FIXTUR	AND NEW TOILETS AND SHOWER R COUNT.
1500466	06/01/2015 300,000	MAIN HOUSE - INTERIOR RENOVATIONS TO THE 2ND FLOO	
$\left\lvert\, \begin{array}{\|l\|} 15- \\ 00280 \end{array}\right.$	04/07/2015 90,000	'ENLARGE MED ROOM AND SWAP LOUNGE \& TREATMENT ADD AC UNITS TO MED, TREATMENT AND \& NURSE STATIO	ROOMS TO FACILITATE PATIENT CARE, N."
14-1307	12/16/2014 72,000	CONSTRUCT A 12 X 24 SHELTER-FOR PROPANE GENERATOR,	R, 6 ANTENNAS, UG PROPANE TANKS

14-0244 03/24/2014 400,000	"MARTIN CENTER BUILDING OFFICE: - RENOVATE EXISTIN TO UPPER LEVEL, INCLUDES ADDING HVAC \& EXTERIOR W NEW RESTROOM TO REPLACE ONE MOVED TO CREAT DATA COMPL	\$ OFFICE SPACE INCLUDING ADA ACCESS INDOWS [**REVISION- $\$ 25,000$: CREATE A CLOSET. NEW RESTROOM TO BE ADA
14-0297 03/19/2014 175,000	WIRELESS CELL TOWER ONLY.	
14-0296 03/19/2014 30,000	INSTALLATION OF EQUIPMENT ON 12×20 CONCRETE PAD, C 86'	ONCRETE PAD \& 3 PANEL ANTENNAS AT
14-0169 02/26/2014 1,600,000	"RESIDENTIAL BUILDING" -- RENOVATION TOTHE EXISTINC INCLUDING ADA UPGRADES, NEW WINDOWS SIDING, ROOF HOUSE	7800 SQ FT RESIDENTIAL BUILDING , MECHANICALS AND FINISHES FOR THE K
14-0168 02/12/2014 20,000	REMOVE POLE MOUNTED FLOOD LIGHTS \& REPLACE WITH	CAMPUS STD LOW LIGHT POST LIGHTS.
12-0452 09/21/2012 1,500,000	COM ADDS \& ALTS	
12-0359 04/02/2012 30,000	COM ADDS \& ALTS	
11-0059 03/15/2011 1,234,000	COM ADDS \& ALTS	
11-0037 01/19/2011 65,000	ASBESTOS ABATEMENT, EXPLORATION DEMO	
10-0086 03/24/2010 735,000	COM ADDS \& ALTS	
09-0649 01/29/2010 0	SIDEWALKS \& ACCESSIBLE ROUTE	
09-0109 04/14/2009 100,000	COM ADDS \& ALTS	
08-0846 11/18/2008 25,000	INT ALTS AND DECK	
07-1210 02/28/2008 250,000	CHANGE OF USE INT. ALTS \& RAMP R-4	
07-0675 08/20/2007 6,199,000	COM ADDITIONS AND ALTERATIONS	
07-0402 05/11/2007 50,000	COM ADDS \& ALTS	
07-0309 04/25/2007 25,000	COM ADDS \& ALTS	
$\begin{array}{ll}01- & 11 / 06 / 20010\end{array}$	COM CO	
01-0773 09/17/2001 20,000	NEW OUTSIDE STAIRS	
01-0096 03/12/2001 73,000	PATIENT ROOM REMO	
20343 01/03/2001 42,000		
1914- $09 / 23 / 1998150,000$ 0120	SILVERHILL FOUNDATION, INC.	
$\begin{aligned} & \text { 1796- } \\ & 0120\end{aligned} 07 / 29 / 19961,000$	SILVERHILL FOUNDATION, INC.	

Land Line Valuation

Size	Zone	Dev Map \#	Appraised Value	Assessed Value
21.57 AC	2 AC	7319,7350	$5,092,000$	$3,564,400$

Building Details - Click Buildings Below

Building 1	Building 2	Building 3	Building 4	Building 5	Building 6

Building 1

EXHIBIT C

Construction Drawings

DISH Wireless L.L.C. SITE ID:
NJJER01146D
DISH Wireless L.L.C. SITE ADDRESS:
208 VALLEY ROAD NEW CANAAN, CT 06840
CONNECTICUT CODE OF COMPLIANCE

SHEET INDEX	
Sheet no.	Sheet title
T-1	TMLE SHEET
A-1	OVERALL ANO ENLARGED STIE PLAN
A-2	ELEVATON, ANTENNA LATOOT AND SCHEDULE
A-3	EQUPMENT PLATORM AND H-FrRME DEAALS
A-4	EQUIPMENT DEAALS
A-5	Equipment detils
E-1	Electrich/rien route Plan ano notes
E-2	Electrical dealls
E-3	ELECTRICAL ONE-LINE, FAULT CALCS \& PANEL SCHEDULE
6-1	grounolig Plans And Notes
6-2	grounong deals
6-3	grounolng detals
RF-1	RF CABE COLOR COOE
CN-1	LEGEND AND ABBREMATONS
CN-2	RF SIIGMGE
CN-3	GENERL NOTES
CN-4	GENERAL Notes
CN-5	GENERLL Notes

GENERAL NOTES

11"x17" PLOT WILL BE HALF SCALE UNLESS OTHERWISE NOTED

SITE INFORMATION		PROJECT DIRECTORY	
PROPERTY OWNER: ADDRESS:	SILVER HILL HOSPITAL INC. 208 VALLEY RD NEW CANAAN, CT 06840	APPLCAN:	DISH Wireless L.L.C. 5701 SOUTH SANTA FE DRIVE LITLLETON, CO 80120
TOWER TPE:	canster	Tower owner:	TARPON Towers
Tower co ste id:	N/A		8916 7TTH TERRANCE EAST SUITE 103 LaKEWOOD RANCH, FL 34202
countr:	Farreio count	Stie desiner:	M+K Development
Latruod (NAD 83):			140 BEACH 13TH STREET ROCKAWAY, NY 11694
	41.166242 N		
LONGTUOE (NaD 83): ZONNG JURSICOCTON:	ct stinc council	Ste Acoustion:	aUstin pappas AUSTN.PAPPASODISH.COM
zonnce distric:	${ }^{24}$	CONSTRUCTION	MANAGER: OMAR ZEERBAN OMAR.ZEERBANODISH.COM
PARCCL $\mathrm{NUMEER:}$	44/108/120		
occupancr group:	\checkmark	RF	SRI RAM GOTTUMUKKALA SRIRAM.GOTTUMUKKALAODISH.CON
CONSTRUCTION TPE:	"-B		
Power compant:	Eversource		
TELEPHONE COMPAN:			

DIRECTIONS

d́sh

MK
DEVELOMPMENT

TO ALTER THIS DOCUMENT.			
DRAWN BY: CHECKED Br: APPROVED Br:			
	TER	---	---
RFDS REV \#:			
CONSTRUCTION DOCUMENTS			
SUBMITALS			
REv	V Date	DESCRIPTIO	
A\&E PROJECT NUMBER			
NJJERO1146D			
NJJERO1146D 208 VaLLEY ROAD NEW CANAAN, CT 06840			
SHEET TTLE			
title sheet			
SHEET NUMBER			

4. Do not instril cial g ground ki at aben and alwars direct ground connuctor
5. NuT \& watchir shall be placed on the front side of the grouno bar and bolted on
6. ALL Grounolng parts and equipment to be suppled and installed er contracter
7. The countractor shall be responsile for instalng adomonal ground bar as

IYPICAL INTERIOR TWO HOLE LUG \quad no sCALE 3
No scale

5 Bot (TP) s / S SPLT WASHER (TMP)
s / S FAT WASHER (TP)

 LONG
$\square \square$ HERT INSULITOR


```
|
    *)
    \allol
    |,
SION PMCEmeNT:
```



```
    M,
```



```
NOTES:
URRHER NISTRUCTON ON HOW TO PROCEED.
    1. FOR DIIH Wiroless LLLC. LOCO, SEE IISH Wrroless LLC.C. DESIGN SPECIFCCATONS (PROMDED BY DISH Wroreses LLC.C.)
```



```
    4. Caine//heliter mountmg applcaton requires another plate appled to the face of the cainet wth water proof polvurethune adHesNe
```



```
    6. ALL SICNS To EE 8.5**1" AND MMDE WTH 0.04" of AlUMINUMMATERLL
```


INFORMATION

This is an access point to an area with transmitting antennas.

Obey all signs and barriers beyond this point. Call the DISH Wireless L.L.C. NOC at 1-866-624-6874

Site ID:

\qquad

Radio frequency fields beyond this point MAY EXCEED the FCC Occupational exposure limit.
bey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point.

Site ID
dish

 \begin{tabular}{|c|c|}
\hline DRAWN BY: \& CHECKED BY:

\hline

\hline TER \& --- \& ---

\hline
\end{tabular} RFDS REV \#:

CONSTRUCTION DOCUMENTS

AWARNING

Radio frequency fields beyond this point EXCEED the FCC Occupational exposure limit.
bey all posted signs and site guidelines for working in radio frequency environments.

Call the DISH Wireless L.L.C. NOC at 1-866-624-6874 prior to working beyond this point

Site ID
dish

A\&E PROJECT NUM
NJJER01146D

NJJERO1146D NEW CANAAN, CT 06840

SITE ACTVITY REQUIREMENTS:

1. NOTTCE TO PROCEED - NO WORK SHALL COMMENCE PRIOR TO CONTRACTOR RECEIVING A WRITEN NOTICE TO PROCEED

2. "LOOK UP" - DISH Wireless LLL.C. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRTT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLMMBING FACLITY SHALL BE CONSIDRED DURING ALL STAGES
OF DESIGN, INSTALATON, AND INSPECTION. TOWER MODFICATON, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALATIONS SHALL

 ANCHORAGE POINTS IN ANY WAY, OR TO IIPEED/BLOCK ITS INTENED USE. ANY COMPROMISED SAFETY CLIMB, INCLUDING EXIIETNG CONDITIONS MUST BE TAGGED OUT AND REEORTED TO YOUR DISH Wireless LL.L.C. AND DISH Wireles
OR CALL THE NOC TO GENERATE A SAFETY CLIMB MAITENANCE AND CONTRACTOR NOTICE TICKET.

 THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINE
ACCORDANCE WTH ANSITTA-322 (LATEST EDTION).
5. ALL SITE WORK TO COMPLY WTH DISH Wireless LL..C. AND TOWER OWNER INSTALATION STANDARDS FOR CONSTRUCTION
ACTVMTIEL ON DISH Wireless L.L.C. AND TOWER OWNER TOWER SITE AND LATEST VERSSION OF ANSI/TAA-1019-A-2012 "STANDARD FOR

6. IF THE SPECIFED EQUPMENT CAN NOT BE INSTALED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE
AN ALTIRNATVE NSTALATON FOR APPROVAL BY DISH Wireless L.L.C. AND TOWER OWNER PRIOR TO PROCEDDN WTH ANY SUCH
CHANE OF INSTALATION. AN ALTERNATIVE INLTALLAN.
CHANGE OF INTALLATION.
ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLCABLE CODES, REGLATIONS
7.
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WWTH ALL LAWS, ORDINANCES, RULESS

8. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS
9. THE CONTRACTOR Shall CONtact utlitr locating services including private locates services prior to the start
OF construction.

 FALL PROTECTIO
PROCEDURES.
11 ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS,
LATEST APPOVED REVIIION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULTING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF
THE WORK. IF NECESARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND THE WORK. IF NECESSAAK
DISPOSED OF LEEALY.
13. ALL Existing inactive sewer, water, gas, electric and other utilties, which interfere with the execution of the WORK, SHAL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINUED AT POINTS WHCICH WLL NOT INTEREERE WTH
THE EXECUTION OF THE WORK, SUBUECT TO THE APPROVAL OF DISH Wireless LLL.C. AND TOWER OWNER, AND/OR LOCAL UTLITIES.

15. THE STTE SHALL be graded to CAUSE SURFACE WATER to fLow AWAY FROM THE CARRIER'S EQUIPMENT AND TOWER AREAS.
16. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
APPLCATON.
17. THE AREAS OF THE OWNERS PROPERT DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUPMENT OR
DRVEWAY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILZED TO PREVENT EROSION AS SPECIFED ON THE CONSTRUCTON DRAWINGS AND/OR PROJECT SPECIFICATIONS
18. CONRACTOR SHALL MINIMIZ DISTURBANCE TT EXIISTING SITE DURING CONSTTUCTION. EROSION CONTROL MEASURES, IF
REQUIRED DURING CONSTRUCTNO, SHALL BE IN CONFORMANCE WITH THE LOCAL GUDELINES FOR EROSION AND SEDMENS CONTROL
19. THE CONTRACTOR SHALL PROTECT EXIITTNG IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY
20. CONTRACTOR SHELL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER TTEMS 20. CONTRACTOR SHALL LEGALY AND PROPERLY DISPPSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHE
REMOVED FROM THE EXXTSTNG FACILITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
LOCATON.
21. CONTRACTOR SHALL LeAvE PREMISES IN CLEAN CONDITION. TRASH AND DEBRIS SHOULD be removed from site on a dally
basis
22. NO FILL OR EMBANKMEN MATERILL SHALL BE PLACED ON FROZEN GROUND. FROZEN MATERILLS, SNOW OR ICE SHALL NOT
BE PLACED IN ANY FILL OR EMBANKMENT.

general notes

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION
CARRIER:DISH Wireless L.L.C.
TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALY
EXERCISED UNDER SIMILAR CIRCUMSTANCES BY REPUTABLE ENGINERS IN THIS OR SIMIAR LOCALTIES. IT IS ASSUMED THAT THE WORK DEPICTED WLLL BE PERFORMED BY AN EXPERENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE
OF THE APPLCABLE CODE STANDRDS AND REQUIREMENTS AND OF INDUSTRY ACCEPTED STANDARD GOOD PRACTCE. AS NOT EEER OF THE AP LLCALEMENT IS (OR CAN BE) EXPLCITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTED CONDITON OR ELEMENT IS OR CAN BE EXPLCILY SHOON ON THESE DRAW
STANDARD GOOD PRACTICE FOR MISCELANEOUS WORK NOT EXPLCICTY SHOWN.
THESE DRAWINGS RERRESENT THE FINSHED STRUCTURE THEY DO NOT INDICATE THE MEANS OR METHODS OF
CONSTRUCTION. THE CONTRACTOR SHALL BE SOLELY RESPONSIBE FOR THE CONSTRUCTON MEANS, MEEHODS, TECHNIQEES, SEOUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTON OF LIFE AND
 SITE VISTTS BY THE ENGINEER OR HIS REPRESENT
OBSERVATON OF THE FINIHED STRUCTURE ONLY.
NOTES AND DETALL IN THE CONSTRUCTION DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TTPICAL DEEALLS
4.
ITRE
 THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETALLS, GENERAL NOTESS AND SPECIICATIONS,
GREAER, MORE STRICT REQUREMENTS, SHALL GOVERN. IF FURTHER CLARIFCATION IS REQURED CONACT THE ENGINEER OF GREATER,
RECORD.
SUSSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SELE RESPONSIBILTT OF THE CONTRACTOR TO
 DISCREPANCIES AND/R CONFLCTS WTHT THE CONSTRUCTION DRAWINGS THE ENGINERR OF RECORD IS TO BE NOTIFED AS SOON AS Possibe.
 7. ALL MATERIALL FURNSHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTHH ALL APPLICABLE CODES, REGULATION
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRATE NOTICES AND COMPLY WTH AL LAWS, ORINANCES RULES AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES,
REGULATONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED
 8. UNLESS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHING MAI
NECESSARY TO COMPLLTE ALL INSTALATIONS AS INDICATED ON THE DRAWINGS.

10. IF THE SPECIFED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE AN ALTERNATVE
OF INSTALATION.
 DRAWINGS.
12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURES, LANDSCAPING AND STRUCTURES. ANY 13. CONTRACTOR SHALL LEGALYY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER TTEM 13. CONTRACTOR SHALL LEGGLY AND PROPERLY DISPOSE OF ALL SCRAP MATERALS SUCH AS COAAIIL CABLES AND O
REMOVED FROM THE EXISTILG FACLLITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGATTED LOCATION. ${ }_{\text {basis. }}^{14 .}$ CONtractor shall leave premises in clean condition. trash and debris should be removed from site on a daly

5701 SOUTH SANTA RE DRVE
LITLTONO, C CO 80120

位

DRAWN By:	CHECKED By:

RFDS REV \#:

CONSTRUCTION DOCUMENTS

 AEE PROUECT NUMBER
 NJJERO1146D

 NJJERO1146D NEW CANAAN, CT 06840

eneral notes
GN-3

CONCRETE, FOUNDATIONS, AND REINFORCING STEEL

1. ALL CONCRETE WORK SHALL BE IN ACCORDANCE WTTH THE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN
AND CONSTRUCTION SPECIFCATION FOR CAST-IN-PLACE CONCRETE.
2. UNLESS NOTED OTHERWIS, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO be 1000
psf.
pes.
3. ALL CONCRETE SHALL HAVE A MINMUM COMPRESSIVE STRENGTH (f'c) OF 3000 Psi AT 28 DAYS, UNLESS NOTED OTHERWISEE, NO
MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TMME OF PLACEMENT UNLESS APPROVED BY THE ENGINEER OF RECORD. MORE THAN 90 MINTES SHALL ELAPSE FROM BATCH TIME TO TIME OF P PACE
TEMPERATURE OF CONCREEE SHALL NOT EXCEED 90° AT TIME OF PLACEMENT
CONCRETE EXPOSED TO FREEZE-THAW CYCLLES SHALL CONTAN AIR ENTRANNN ADMIXTURES. AMOUNT OF AR ENTRANMENT TO BE BASED ON SIZE OF AGGREATE AND F3 CLASS EXPQ.
MAXIMUM WATER-TO-CEMENT RATO (W / C) OF 0.45.
4. aLl steel reinforcing shall conform to astm a615. all welded wire fabric (wwf) shall conform to astm alb5. all SPLICES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, SPLILES SHALL BE CLASS "B" TENSION SSLICES, UNLESS NOTTED OTHERWISE. ALL HOOKS SHALL BE
ULESS NOTED OTHERWISE. YELD STRENTH (Fy) OF STANDARD DEFRMMED AARS ARE AS FOLLOW:
\#4 BARS AND SMALLER 40 ks
\#5 BARS AND LARGER 60 ksi
${ }^{6}{ }_{\text {DRAWINGS: }}^{\text {THE }}$
Loming minmum concrete cover shall be provided for reinforcing steel unless shown otherwise on

- CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH $3^{\prime \prime}$

CONCRETE EXPOSED TO EARTH OR WEATHER:

- \#6 BARS AND LARGER $2^{\prime \prime}$
- \#5 bars and smaller 1-1/2"
- CONcrete not exposed to earth or weather:
- slab and walls $3 / 4^{\circ}$
beams and columns $1-1 / 2^{n}$

7. A Tooled edae or a $3 / 4^{* *}$ chamfer shall be provided at all exposed edges of concrete, unless noted otherwise

Electrical instalation notes:

1. ALLL ELLCCTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WTH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLCABLE

2. CONDUIT ROUTINGS ARE SCHEMATC. CONTRACTOR SHALL INSTALL CONDUTS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
AND

3. WRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WTH THE REQUIREMENTS OF THE NEC.
4. all circuits shall be segregated and maintain minimum cable separation as required by the nec.
4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRTERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF
THE NATIONAL ELECTRICAL CODE.
 CURRENT TO WHCH THEY ARE SUBJECTED, 22,000 AIC MNIMUM. VERIFY AVALLABLE SHORT CIRCUIT CURRENT DOES NOT EXCEED TH
RATING OF ELECTRICAL EQUPMENT IN ACCORDANCE WTH ARTILE 110.24 NEC OR THE MOST CURRENT ADOPTED CODE PRE THE GOVERNING JURISDCICTION.
 LABELED WTH COLOR-CODED INSULATION OR ELECTRICAL TAPE ($3 M$ BRAND,
EQUAL). THE IDENTFICATION METHOD SHALL CONFORM WITH NEC AND OSHA.
5. ALL ELECTRICAL COMPONENTS SHALL BE CLEARLY LABELED WITH LAMCOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE
CONFIGURATIN, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT config
iD's).
6. PANEL boards (ID NUMBERS) SHALL be CLEARLY LABELED with pLASTIC LABELS
7. TIE WRAPS ARE NOT ALLOWED.
8. ALL POWER AND EQUIPMENT GROUND WIRING IN TUBING OR CONDUTT SHALL BE SINGLE COPPER CONDUCTOR (\#14 OR LARGER
WITH TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATIIN UNLESS OTHERWISE SPCCIIED SUPPLEMENTAL EQUIPMENT GROUND WRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (\#6 OR LARGER) WTH
TVPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE EPECIFED. POWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULT-CONDUCTOR, TTPE SOOW CORD (\#14 OR LARGER) UNLESS
OTHERWISE SPECIFIED.
POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TTPE TC CABLE (\#14 OR LARGER), WITH
TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, 0 RHW-2 INSULATON UNLESS OTHERWISE SPECIFED. POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TPPE TC CABLE (\#14 OR L
TPPE THHW, THWN, THWN-2, XHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSUATION UNLESS OTHERWISE SPECIFED.

9. RACEWAY AND CABLE TRAY SHALL be LSted or labeled for electrical use in accordance with nema, ul, ansi/IEEe and 15. ELECTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUTT (RMC) SHALL BE USED FOR
EXPOSED INDOOR LOCAIIONS.
10. SCHEDULE 40 PVC UNDERGROUND ON STRAGHTS AND sCHEDULE 80 PVC FOR ALL ELBows/90s AND ALL APPROVED ABOVE
GRADE PVC CONDUIT.
11. LIQUID-TIGHT FLEEXBLE MEEALLIC CONDUT (LLQUID-TTIE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VIBRATION
OCCURS OR FLEXBILITTIS NEEDED. 19. CONDUUT AND tubing fitings shall be threaded or compression-țpe and approved for the location used. set 20. CAbinets, boxes and wire ways shall be labeled for electrical use in accordance with nema, ul, ansi/ieee and the 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD (WIREMOLD SPECMATE WIREWAY).
12. SLOTED Wiring duct shall be pvc and include cover (panduit tppe e or equal).
13. CONDUTS SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSVE
DEVICES (i.e. POWDER-ACTUATED) FOR ATACHING HANGERS TO STRUCTURE WILL NOT BE PERMITED. CLOSELY FOLOW THE LINES DEVICES (i.e. POWDER-ACTUATED FOR ATTACHING HANGERS TO STRUCTURE WIL NOT BE PERMITED. CLOSELY FOLLOW THE LINES OF

 MALLEABLE IRON LOCKNUT ON OUTSIDE AND INSIDE.
14. EQUPMENT CABNETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET
STEEL. SHALL MEET OR EXCEED UL 50 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND NEMA 3 (OR BETER) FOR STEEL SHALL MEET
EXTERIOR LOCATINS.
15. METAL RECEPTACLE, SWITCH AND DEVICE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODING; SHALL MEET OR
EXCEED UL $514 A$ AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR EXCEED UL 514 A AND NEMA OS
BETER) FOR EXTERIOR LOCATIONS.
16. NONMETALLIC RECEPTACLE, SWITCH AND DEVICE BOXES SHALL MEET OR EXCEED NEMA OS 2 (NEWEST REVISION) AND BE RATED NEMA 1 (OR BETER) FOR ITTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETIER) FOR EXTERIOR LOCATIONS.
THE CONTRACTOR SHALL NOTIFY AND OBTAIN NECESSARY AUTHORIIATION FROM THE CARRIER AND/OR DISH Wireless LLL.C. AND
TOWER OWNER BEFORE COMAENCING WORK ON THE AC POWER DISTRBUTION PANEIS
17. THE CONTRACTOR SHALL PROVDE NECESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRBUTION PANELS IN ACCORDANCE
WTTH THE APPLCABLL CODES AND STANDARDS TO SAFEGUARD LIFE AND PROPERTY.
18. INSTALL LAMICOID LABEL ON THE METER CENTER TO SHOW "DISH Wireless L.L.C.".
19. ALL EmpTY/SPARE CONDUits that are installed are to have a metered mule tape pull cord installed.

5701 SOUTH SANTA RE DRVE
LITLTONO, $C O 80120$

DEVELOPMENT
${ }^{40}$ ROCEACHYY, NY 11694

DRAWN BY: CHECKED BY: APPROVED BY:

TER	
RFDS REV \#:	

CONSTRUCTION DOCUMENTS

	SUBMITALS	
REV	DATE	DESCRIPTION
\wedge	006/23/2023	SSSVE Por Remem
	008/2/2023	ISSue for constu

A\&E PROJECT NUMBER
NJJERO1146D

NJJERO1146D NEW CANAAN, CT 06840

SHEET TTLLE
general notes
SHEET NUMBER

GROUNDING NOTES

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNNNG PROTECTION AND AC POWER GES'S) SHALL
BE BONDED TOGETHER AT OR BELOW GRADE, BY TWO OR MORE COPPER BONDING CONDUCTORS IN ACCORDANCE WTTH THE NEC.
2. THE CONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESISTANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR

GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALI FURNISH AND INSTALI SUPPIEMENTAL GROU (PER IEEE 1100 AND 81) FOR
hive a test result of 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBLE FOR PROPERLY SEQUENCING GROUNDING AND UNDERGROUND CONDUT INSTALLATION AS
PREVENT ANY LOSS OF CONTINUTY IN THE GROUNDING SYSTEM OR DAMAGE TO THE CONDUT AND PROVIDE TESTING RESULTS.
4. METAL CONDUTT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALL CONTNUOUS WITH LSTTED BONDING FITTINGS OR BY
BONDING ACROSS THE DISCONTINUITY WTH \#6 COPPER WIRE UL APPROVED GROUNDING TPPE CONDUIT CLAMPS.
5. METAL RACEWAY SHALL NOT BE USED AS THE NEC REQURED EQUIPMENT GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS
WTH GREEN NSULTION, SIZED IN ACCORDANCE WTTH THE NEC, SHALL BE FURNISHED AND INSTALED WTH THE POWER CIRCUTTS TO BTS
EQUPMENT
6. EACH CABINET FRAME SHALL BE DIRECTY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL
EQUPMENT GROUND WIRES, \#6 STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLD TINNED COPPER FOR OUTDOOR BTS.
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED.

OF THE GROUND BUS ARE PERMITIED.
8. ALL EXTERIOR Ground conductors between equipment/ground bars and the ground ring shall be \#2 sold tinned
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT BE USED FOR GROUNDING CONNECTIONS,
10. USE OF 90° bends in the protection grounding conductors shall be avoided when 45° bends can be adequately
Supported.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALIY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND
15. APPROVED ANTIOXIDANT COATINGS (i.e. CONDUCTVE GEL OR PASTE) SHALL BE USED ON ALL COMPRESSION AND BOLTED GROUND
16. ALL EXTERIOR GROUND CONNECTIONS SHALL be coated with a corrosion resistant material.
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND
18. Bond all metallic objects within 6 ft of main ground ring with (1) \#2 bare solid tinned copper ground
19. GROUND CONDOCTORS USED FOR THE FACILTY GROUNOING AND LIGHTNING PROTECTION SYTEEMS SHALL NOT BE ROUTED
THROUGH METALLC OBUECTS THAT FORM A RING AROUND THE CONOUCTOR, SUCH AS METALLC CONDUTS, METAL SUPORT CLIPS
 SLEEVES THROUGH WALLS OR FLLORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUREMENTS OR LOCAL
CONOTTIONS, NON-METALIC MATERAL SUCH AS PVC CONOUT SHALL BE USED. WHERE USE OF MEAL CONDUTT IS UNAVOIDABLE (i.e., NONMETALLC CONDUIT PROHBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT.
20. ALL GROUNDS THAT TRANSITION FROM BELOW GRADE TO ABOVE GRADE MUST BE \#2 BARE SOLD TINNED COPPER IN $3 / 4^{\prime \prime}$ NON-METALLIC, FLEXIBLE CONDUIT FROM $24^{4 "}$ BELOW GRADE TO WITHIN $3^{\prime \prime}$ TO $6^{\prime \prime}$ OF CAD-WELD TERMINATIN POINT.
OF THE CONDUIT MUST BE SEALED WITH SILCONE CAULK. (ADD TRANSTIONING GROUND STANDARD DETAIL AS WELL).
21. BUILDNGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQURED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE
 SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALER THAN $2 / 0$ COPPER. ROOFTOP GROUNDING RING SHAL BE BONDED TO THE EXIITING GROUNDING SYSTEM, THE BULDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILING
(FERROUS OR NONERROUS METAL PIPING ONLY). DO NOT ATACH GROUNDING TO FIRE SPRINLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRVE
LITLTON, CO 80120 ine

DEVELOPMENT

EXHIBIT D

Structural Analysis

Date: May 2, 2023
Todd Bowman
Vice President
Tarpon Towers II, LLC
(941) 757-5010
tbowman@tarpontowers.com

Subject:

Carrier Designation:

Tower Owner Designation:

Engineering Firm Designation:
Site Data:
tOWER SOLUTIONS
Engineered Tower Solutions, PLLC
3227 Wellington Court
Raleigh, NC 27615
(919) 782-2710

Structural Analysis Report

Dish Wireless Co-Locate Carrier Site Number:

NJJER01146D
Tarpon Towers Site Number: Tarpon Towers Site Name:

CT1192
New Canaan
ETS, PLLC Job Number:
22112671.STR. 6806

208 Valley Road, New Canaan, Fairfield County, CT 06840
Latitude N $41^{\circ} 09{ }^{\prime} 58.5^{\prime \prime}$, Longitude W $73^{\circ} 28^{\prime} 13.7^{\prime \prime}$
120.0 Foot - Monopole Tower

Dear Todd Bowman,
Engineered Tower Solutions, PLLC is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

Existing + Proposed Equipment Configuration

$$
\begin{array}{rr}
\text { Tower: } & 79.3 \% \\
\text { Foundation: } & 45.8 \%
\end{array}
$$

Sufficient Capacity Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 117 mph as required by the 2022 Connecticut State Building Code (2021 IBC). Applicable Standard references and design criteria are listed in Section 2 Analysis Criteria.

Structural analysis prepared by:
Hicham Anssar
Structural Engineer I
Respectfully submitted by:
Frederic G. Bost, PE
Chief Technical Officer

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided
3.1) Analysis Method
3.2) Assumptions

4) ANALYSIS RESULTS
Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

The tower is a 120.0 ft Monopole tower designed by TransAmerican Power Products in April of 2014. The tower was originally designed for an ultimate wind speed of 110 mph per ANSI/TIA-222-G-2.

2) ANALYSIS CRITERIA

TIA-222 Revision:
Risk Category:
Wind Speed:
Exposure Category:
Topographic Factor: Ice Thickness:
Wind Speed With Ice:
Service Wind Speed:

TIA-222-H
II
117 mph
B
1
1.0 in

50 mph
60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elvation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
75.0 (Dish)	75.0	3	Commscope	FFVV-65B-R3	12	$7 / 8$

Table 2-Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
117.0 (T-Mobile)	117.0	3	Commscope	FVV-65C-R3	18	$7 / 8 \mathrm{FH}$
106.0 $($ Verizon)	106.0	3	Commscope	NNH4-65B-R6H4		
102.0 (Verizon)	102.0	6	Commscope	CBC61923T-DS-43		
98.0 (Verizon)	98.0	3	JMA	MX08FIT265-01	12	$12-1 / 4$
95.0 (Verizon)	95.0	1	Samsung	R	RF4440d-13A	
93.0 (Verizon)	93.0	1	Samsung	RT-8808-77A		
86.0 (AT\&T)	86.0	3	Raycap	RHSDC-3315-PF-48		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Remarks	Reference	Source
Tower and Foundation Design Drawings	TransAmerican Power Products, Inc (Job No. 23514-0110)	$04 / 09 / 2014$	Tarpon Towers
Final Erection Drawings	TransAmerican Power Products, Inc (Drawing No. 12359-PA)	$05 / 02 / 2014$	Tarpon Towers
Extension Erection Drawings	TransAmerican Power Products, Inc (Drawing No. 12359-RA)	$04 / 26 / 2014$	Tarpon Towers
Geotechnical Investigation Report	Design Earth Technology (Job No. 2012.06/2011.08)	$06 / 01 / 2012$	Tarpon Towers
Previous Structural Analysis	ETS, PLLC (Job No. 22112671.STR.6444)	$10 / 27 / 2022$	On File
Carrier Construction Drawings	Centek Engineering (21007.21007.79)	$01 / 19 / 2022$	Tarpon Towers
Canister Design Drawings	Larson (Job No. A550147)	$08 / 10 / 2022$	Tarpon Towers

3.1) Analysis Method

tnx Tower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built and have been maintained in accordance with the manufacturer's specifications.
2) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Engineered Tower Solutions, PLLC should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	\% Capacity	Pass / Fail
L1	$120-110$	Pole	TP14x14x0.2188	1	-1.55	559.88	3.6	Pass
L2	$110-100$	Pole	TP14x14x0.2188	2	-3.27	559.88	13.7	Pass
L3	$100-90$	Pole	TP14x14x0.2188	3	-4.96	559.88	29.9	Pass
L4	$90-80$	Pole	TP14x14x0.2188	4	-7.14	559.88	52.1	Pass
L5	$80-70$	Pole	TP14x14x0.2188	5	-9.13	559.88	79.3	Pass
L6	$70-32$	Pole	TP45.16x40x0.25	6	-14.42	2045.32	20.8	Pass
L7	$32-0$	Pole	TP49x43.8113x0.25	7	-22.28	2153.74	35.5	Pass
							Summary	
						Pole (L5)	79.3	Pass
					Rating $=$	79.3	Pass	

Table 5 - Tower Component Stresses vs. Capacity

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
1	Flange Bolts	70.0	63.4	Pass
1	Flange Plates		24.9	Pass
1	Anchor Rods	0	43.8	Pass
1	Baseplate	0	34.4	Pass
1	Base Foundation Structural	0	28.0	Pass
1	Base Foundation Soil Interaction	0	45.8	Pass

Structure Rating (max from all components) $=$	79.3%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The tower and its foundation have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

APPENDIX A

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
(3) FVV-65C-R3_TIA w/ Mount Pipe	117	RT-8808-77A	95
56" dia. $\times 10$ ' Canister	115	RHSDC-3315-PF-48	93
(3) NNH4-65B-R6H4_TIA w/ Mount Pipe	106	(6) TMA2117F00V1-1	86
		(3) QS66512-2_TIA w/ Mount Pipe	86
56" dia. x 10' Canister	105	56 " dia. $\times 10^{\prime}$ Canister	85
(6) CBC61923T-DS-43	102	$56 \mathrm{\prime} \mathrm{\prime}$ dia. $\times 10^{\prime}$ Canister	75
(3) MX08FIT265-01 w/ Mount Pipe	98	FFVV-65B-R3 w/Mount pipe	75
56" dia. $\times 10$ ' Canister	95	FFVV-65B-R3 w/Mount pipe	75
RF4440d-13A	95	FFVV-65B-R3 w/Mount pipe	75
RF4439d-25A	95	SBT0003F1V2	75

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

Tower designed for Exposure B to the TIA-222-H Standard.
2. Tower designed for a 117 mph basic wind in accordance with the TIA-222-H Standard.
3. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 60 mph wind.
5. Tower Risk Category II.
6. Topographic Category 1 with Crest Height of 0.00 ft
7. TOWER RATING: 79.3%

ALL REACTIONS ARE FACTORED

50 mph WIND - 1.0000 in ICE

REACTIONS - 117 mph WIND

Client: Tarpon Towers	Drawn by: Hicham Anssar	App'd:
Code: TIA-222-H	Date: $05 / 01 / 23$	Scale: NTS
Path:		

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job	CT1192 New Canaan	$\begin{array}{ll} \hline \text { Page } \\ & 1 \text { of } 15 \end{array}$
	Project	ETS, PLLC Job No. $22112671 . S T R .6806$	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client	Tarpon Towers	Designed by Hicham Anssar

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower base elevation above sea level: 259.24 ft .
Basic wind speed of 117 mph .
Risk Category II.
Exposure Category B.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination
$\sqrt{ }$ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

Tapered Pole Section Geometry

Section	Elevation	Section	Splice	Number	Top	Bottom	Wall	Bend	Pole Grade
		Length	Length	of	Diameter	Diameter	Thickness	Radius	
	$f t$	$f t$	$f t$	Sides	in	in	in	in	

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job	CT1192 New Canaan	$\begin{aligned} & \text { Page } \\ & \\ & 2 \text { of } 15 \end{aligned}$
	Project	ETS, PLLC Job No. $22112671 . S T R .6806$	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client	Tarpon Towers	Designed by Hicham Anssar

Section	Elevation $f t$	Section Length $f t$	Splice Length $f t$	Number of Sides	Top Diameter in	\qquad	Wall Thickness in	Bend Radius in	Pole Grade
L1	120.00-110.00	10.00	0.00	18	14.0000	14.0000	0.2188	0.8750	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L2	110.00-100.00	10.00	0.00	18	14.0000	14.0000	0.2188	0.8750	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L3	100.00-90.00	10.00	0.00	18	14.0000	14.0000	0.2188	0.8750	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L4	90.00-80.00	10.00	0.00	18	14.0000	14.0000	0.2188	0.8750	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L5	80.00-70.00	10.00	0.00	18	14.0000	14.0000	0.2188	0.8750	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L6	70.00-32.00	38.00	6.25	18	40.0000	45.1600	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L7	32.00-0.00	38.25		18	43.8113	49.0000	0.2500	1.0000	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia. in	Area in 2	I in 4	r in	C in	I / C in 3	J $i n^{4}$	$I t / Q$ $i n^{2}$	w in	
L1	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502
	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502
L2	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502
	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502
L3	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502
	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502
L4	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502
	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502
L5	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502
	14.1822	9.5706	229.6428	4.8923	7.1120	32.2895	459.5877	4.7862	2.0790	9.502
L6	40.5785	31.5416	6296.4503	14.1113	20.3200	309.8647	12601.1856	15.7738	6.6000	26.4
	45.8181	35.6361	9080.5791	15.9430	22.9413	395.8183	18173.1067	17.8214	7.5082	30.033
L7	45.3095	34.5659	8286.8004	15.4643	22.2561	372.3377	16584.5047	17.2862	7.2708	29.083
	49.7173	38.6831	11614.7065	17.3062	24.8920	466.6040	23244.6960	19.3452	8.1840	32.736

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	1	1			
120.00-110.00									
L2				1	1	1			
110.00-100.00									
L3				1	1	1			
100.00-90.00									
L4 90.00-80.00				1	1	1			
L5 80.00-70.00				1	1	1			
L6 70.00-32.00				1	1	1			
L7 32.00-0.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number		$\begin{gathered} C_{A} A_{A} \\ f t^{2} / f t \end{gathered}$	Weight plf

LDF5-50A(7/8)	C	No	No	Inside Pole	117.00-0.00	18	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							1" Ice	0.00	0.33
LDF6-50A(1-1/4)	C	No	No	Inside Pole	86.00-0.00	12	No Ice	0.00	0.60
							1/2" Ice	0.00	0.60
							1 " Ice	0.00	0.60

1.55" Hybrid	C	No	No	Inside Pole	106.00-0.00	1	No Ice	0.00	1.00
							1/2" Ice	0.00	1.00
							1" Ice	0.00	1.00
LDF6-50A(1-1/4)	C	No	No	Inside Pole	106.00-0.00	6	No Ice	0.00	0.60
							1/2" Ice	0.00	0.60
							$1{ }^{\prime \prime}$ Ice	0.00	0.60
LDF6-50A(1-1/4)	C	No	No	Inside Pole	96.00-0.00	6	No Ice	0.00	0.60
							$1 / 2^{\prime \prime} \text { Ice }$	0.00	0.60
							1" Ice	0.00	0.60

LDF5-50A(7/8")	C	No	No	Inside Pole	75.00-0.00	12	No Ice	0.00	0.33
							1/2" Ice	0.00	0.33
							$1{ }^{\prime \prime}$ Ice	0.00	0.33

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Tower Section \& Tower Elevation $f t$ \& Face \& A_{R}

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{120.00-110.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{110.00-100.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.09

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{100.00-90.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.13

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{90.00-80.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.18

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{80.00-70.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.23

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation \(f t\) \& Face or Leg \& Ice Thickness in \& \(A_{R}\)
\(f t^{2}\) \& \(A_{F}\)

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$ \& Weight

K

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{120.00-110.00} \& A \& \multirow[t]{3}{*}{1.133} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.04

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{110.00-100.00} \& A \& \multirow[t]{3}{*}{1.123} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.09

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{100.00-90.00} \& A \& \multirow[t]{3}{*}{1.112} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.13

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{90.00-80.00} \& A \& \multirow[t]{3}{*}{1.099} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.18

\hline \multirow[t]{3}{*}{L5} \& \multirow[t]{3}{*}{80.00-70.00} \& A \& \multirow[t]{3}{*}{1.086} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.23

\hline \multirow[t]{3}{*}{L6} \& \multirow[t]{3}{*}{70.00-32.00} \& A \& \multirow[t]{3}{*}{1.045} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.96

\hline \multirow[t]{3}{*}{L7} \& \multirow[t]{3}{*}{32.00-0.00} \& A \& \multirow[t]{3}{*}{0.929} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.81

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation ft	$C P_{X}$ in	$C P_{Z}$ in	$\begin{gathered} C P_{X} \\ \text { Ice } \\ \text { in } \\ \hline \end{gathered}$	$\begin{gathered} C P_{Z} \\ \text { Ice } \\ \text { in } \\ \hline \end{gathered}$
L1	120.00-110.00	0.0000	0.0000	0.0000	0.0000
L2	110.00-100.00	0.0000	0.0000	0.0000	0.0000
L3	100.00-90.00	0.0000	0.0000	0.0000	0.0000
L4	90.00-80.00	0.0000	0.0000	0.0000	0.0000
L5	80.00-70.00	0.0000	0.0000	0.0000	0.0000
L6	70.00-32.00	0.0000	0.0000	0.0000	0.0000
L7	32.00-0.00	0.0000	0.0000	0.0000	0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job	CT1192 New Canaan	$\text { Page } 5 \text { of } 15$
	Project	ETS, PLLC Job No. 22112671.STR. 6806	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client	Tarpon Towers	Designed by Hicham Anssar

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
\(\circ\)
\end{tabular} \& Placement \& \& \begin{tabular}{l}
\(C_{A} A_{A}\) Front \\
\(f t^{2}\)
\end{tabular} \& \(C_{A} A_{A}\)
Side

$f t^{2}$ \& Weight

\hline \multicolumn{10}{|l|}{***}

\hline \multirow[t]{3}{*}{$56^{\prime \prime}$ dia. x 10' Canister} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{75.00} \& No Ice \& 23.33 \& 23.33 \& 0.70

\hline \& \& \& \& \& \& 1/2" Ice \& 33.53 \& 33.53 \& 1.13

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 34.40 \& 34.40 \& 1.57

\hline \multirow[t]{3}{*}{56' dia. x 10' Canister} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{85.00} \& No Ice \& 23.33 \& 23.33 \& 0.70

\hline \& \& \& \& \& \& 1/2" Ice \& 33.53 \& 33.53 \& 1.13

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 34.40 \& 34.40 \& 1.57

\hline \multirow[t]{3}{*}{56" dia. x 10' Canister} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{95.00} \& No Ice \& 23.33 \& 23.33 \& 0.70

\hline \& \& \& \& \& \& 1/2" Ice \& 33.53 \& 33.53 \& 1.13

\hline \& \& \& \& \& \& 1" Ice \& 34.40 \& 34.40 \& 1.57

\hline \multirow[t]{3}{*}{56" dia. x 10' Canister} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{105.00} \& No Ice \& 23.33 \& 23.33 \& 0.70

\hline \& \& \& \& \& \& $$
1 / 2^{\prime \prime} \text { Ice }
$$ \& 33.53 \& 33.53 \& 1.13

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 34.40 \& 34.40 \& 1.57

\hline \multirow[t]{3}{*}{56" dia. x 10' Canister} \& \multirow[t]{4}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{115.00} \& No Ice \& 23.33 \& 23.33 \& 0.70

\hline \& \& \& \& \& \& 1/2" Ice \& 33.53 \& 33.53 \& 1.13

\hline \& \& \& \& \& \& 1" Ice \& 34.40 \& 34.40 \& 1.57

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(3) FVV-65C-R3_TIA w/ Mount Pipe} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{117.00} \& No Ice \& 0.00 \& 0.00 \& 0.10

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.10

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 0.00 \& 0.10

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(3) QS66512-2_TIA w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{86.00} \& No Ice \& 0.00 \& 0.00 \& 0.14

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.14

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.14

\hline \multirow[t]{3}{*}{(6) TMA2117F00V1-1} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{86.00} \& No Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 0.00 \& 0.03

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{(3) NNH4-65B-R6H4_TIA w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{106.00} \& No Ice \& 0.00 \& 0.00 \& 0.11

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.11

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.11

\hline \multirow[t]{3}{*}{(6) CBC61923T-DS-43} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{102.00} \& No Ice \& 0.00 \& 0.00 \& 0.01

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.01

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 0.00 \& 0.01

\hline \multirow[t]{3}{*}{(3) MX08FIT265-01 w/ Mount Pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{98.00} \& No Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.03

\hline \multirow[t]{3}{*}{RF4440d-13A} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{95.00} \& No Ice \& 0.00 \& 0.00 \& 0.07

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.07

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 0.00 \& 0.07

\hline \multirow[t]{3}{*}{RF4439d-25A} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{95.00} \& No Ice \& 0.00 \& 0.00 \& 0.07

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.07

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 0.00 \& 0.07

\hline \multirow[t]{3}{*}{RT-8808-77A} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{95.00} \& No Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 0.00 \& 0.03

\hline \multirow[t]{3}{*}{RHSDC-3315-PF-48} \& \multirow[t]{4}{*}{C} \& \multirow[t]{4}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{4}{*}{93.00} \& \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.03

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.03

\hline *** \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{FFVV-65B-R3 w/Mount pipe} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{None} \& \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{75.00} \& No Ice \& 0.00 \& 0.00 \& 0.10

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.18

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.00 \& 0.00 \& 0.27

\hline FFVV-65B-R3 w/Mount pipe \& C \& None \& \& 0.0000 \& 75.00 \& No Ice \& 0.00 \& 0.00 \& 0.10

\hline
\end{tabular}

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job	CT1192 New Canaan	Page 6 of 15
	Project	ETS, PLLC Job No. 22112671.STR. 6806	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client	Tarpon Towers	Designed by Hicham Anssar

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
○
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$

Side \& Weight

\hline \multirow[b]{6}{*}{FFVV-65B-R3 w/Mount pipe
SBT0003F1V2} \& \multirow{4}{*}{C} \& \multirow{4}{*}{None} \& \& \multirow{4}{*}{0.0000} \& \multirow{4}{*}{75.00} \& 1/2" Ice \& 0.00 \& 0.00 \& 0.18

\hline \& \& \& \& \& \& 1" Ice \& 0.00 \& 0.00 \& 0.27

\hline \& \& \& \& \& \& No Ice \& 0.00 \& 0.00 \& 0.10

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.18

\hline \& \multirow{4}{*}{C} \& \multirow{5}{*}{None} \& \& \multirow{5}{*}{0.0000} \& \multirow{5}{*}{75.00} \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 0.00 \& 0.27

\hline \& \& \& \& \& \& No Ice \& 0.00 \& 0.00 \& 0.00

\hline \multirow{2}{*}{SBT0003F1V2} \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& \& \& \& 1 " Ice \& 0.00 \& 0.00 \& 0.00

\hline *** \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Dishes

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Dish Type	$\begin{aligned} & \text { Offset } \\ & \text { Type } \end{aligned}$	Offsets: Horz Lateral Vert ft	Azimuth Adjustment	$3 d B$ Beam Width	Elevation	Outside Diameter ft	Aperture Area	Weight

Load Combinations

Comb.	
No.	Description
1	Dead Only
2	1.2 Dead +1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job	CT1192 New Canaan	$\begin{aligned} & \text { Page } 7 \text { of } 15 \end{aligned}$
	Project	ETS, PLLC Job No. $22112671 . S T R .6806$	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client	Tarpon Towers	Designed by Hicham Anssar

Comb. No.		Description
26	1.2 Dead+1.0 Ice+1.0 Temp	
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp	
28	1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$ Ice+1.0 Temp	
29	1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$ Ice+1.0 Temp	
30	1.2 Dead+1.0 Wind $90 \mathrm{deg}+1.0$ Ice+1.0 Temp	
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp	
33	1.2 Dead+1.0 Wind 180 deg+1.0 Ice+1.0 Temp	
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp	
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp	
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp	
37	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp	
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 deg - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind 120 deg - Service	
44	Dead+Wind 150 deg - Service	
45	Dead+Wind 180 deg - Service	
46	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 deg - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job	CT1192 New Canaan	Page 8 of 15
	Project	ETS, PLLC Job No. 22112671.STR. 6806	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client	Tarpon Towers	Designed by Hicham Anssar

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Section No. \& Elevation $f t$ \& Component Type \& Condition \& Gov. Load Comb. \& Axial

K \& Major Axis Moment kip-ft \& Minor Axis Moment kip-ft

\hline \multirow[t]{7}{*}{L5} \& \multirow[t]{7}{*}{80-70} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& Max. Compression \& 26 \& -15.68 \& 0.00 \& 0.00

\hline \& \& \& Max. Mx \& 8 \& -9.13 \& -154.95 \& 0.00

\hline \& \& \& Max. My \& 2 \& -9.13 \& 0.00 \& 154.95

\hline \& \& \& Max. Vy \& 8 \& 5.79 \& -154.95 \& 0.00

\hline \& \& \& Max. Vx \& 2 \& -5.79 \& 0.00 \& 154.95

\hline \& \& \& Max. Torque \& 4 \& \& \& -0.00

\hline \multirow[t]{7}{*}{L6} \& \multirow[t]{7}{*}{70-32} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& Max. Compression \& 26 \& -22.74 \& 0.00 \& 0.00

\hline \& \& \& Max. Mx \& 8 \& -14.42 \& -377.79 \& 0.00

\hline \& \& \& Max. My \& 2 \& -14.42 \& 0.00 \& 377.79

\hline \& \& \& Max. Vy \& 8 \& 8.24 \& -377.79 \& 0.00

\hline \& \& \& Max. Vx \& 2 \& -8.24 \& 0.00 \& 377.79

\hline \& \& \& Max. Torque \& 4 \& \& \& -0.00

\hline \multirow[t]{7}{*}{L7} \& \multirow[t]{7}{*}{32-0} \& \multirow[t]{7}{*}{Pole} \& Max Tension \& 1 \& 0.00 \& 0.00 \& 0.00

\hline \& \& \& Max. Compression \& 26 \& -32.97 \& 0.00 \& 0.00

\hline \& \& \& Max. Mx \& 8 \& -22.28 \& -744.78 \& 0.00

\hline \& \& \& Max. My \& 2 \& -22.28 \& 0.00 \& 744.78

\hline \& \& \& Max. Vy \& 8 \& 10.92 \& -744.78 \& 0.00

\hline \& \& \& Max. Vx \& 2 \& -10.92 \& 0.00 \& 744.78

\hline \& \& \& Max. Torque \& 4 \& \& \& -0.00

\hline
\end{tabular}

		Maximum Reactions			
Location	Condition	Gov. Load Comb.	Vertical K	$\begin{gathered} \text { Horizontal, } X \\ K \end{gathered}$	$\begin{gathered} \text { Horizontal, } Z \\ K \end{gathered}$
Pole	Max. Vert	26	32.97	0.00	0.00
	Max. H_{x}	20	22.28	10.92	0.00
	Max. H_{z}	2	22.28	0.00	10.92
	Max. M_{x}	2	744.78	0.00	10.92
	Max. M_{z}	8	744.78	-10.92	0.00
	Max. Torsion	12	0.00	-5.46	-9.46
	Min. Vert	5	16.71	-5.46	9.46
	Min. H_{x}	8	22.28	-10.92	0.00
	Min. H_{z}	14	22.28	0.00	-10.92
	Min. M_{x}	14	-744.78	0.00	-10.92
	Min. M_{z}	20	-744.78	10.92	0.00
	Min. Torsion	4	-0.00	-5.46	9.46

Tower Mast Reaction Summary

Load Combination	Vertical K	Shear ${ }_{x}$ K	Shearz K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque kip-ft
Dead Only	18.57	0.00	0.00	0.00	0.00	0.00
1.2 Dead+1.0 Wind 0 deg - No	22.28	0.00	-10.92	-744.78	0.00	0.00
Ice						
0.9 Dead+1.0 Wind 0 deg - No	16.71	0.00	-10.92	-739.76	0.00	0.00
Ice						
1.2 Dead+1.0 Wind 30 deg - No	22.28	5.46	-9.46	-645.00	-372.39	0.00
Ice						
0.9 Dead+1.0 Wind 30 deg - No	16.71	5.46	-9.46	-640.65	-369.88	0.00

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job	CT1192 New Canaan	$\begin{aligned} & \text { Page } \\ & \\ & \\ & 9 \text { of } 15 \end{aligned}$
	Project	ETS, PLLC Job No. $22112671 . S T R .6806$	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client	Tarpon Towers	Designed by Hicham Anssar

Load Combination	Vertical K	Shear $_{x}$ K	Shear $_{z}$ K	Overturning Moment, M_{x} kip-ft	Overturning Moment, M_{z} kip-ft	Torque $k i p-f t$
Ice						
1.2 Dead+1.0 Wind 60 deg - No	22.28	9.46	-5.46	-372.39	-645.00	-0.00
Ice						
0.9 Dead+1.0 Wind 60 deg - No	16.71	9.46	-5.46	-369.88	-640.65	-0.00
Ice						
1.2 Dead+1.0 Wind 90 deg - No	22.28	10.92	0.00	0.00	-744.78	0.00
Ice						
0.9 Dead+1.0 Wind 90 deg - No	16.71	10.92	0.00	0.00	-739.76	0.00
Ice						
1.2 Dead+1.0 Wind 120 deg -	22.28	9.46	5.46	372.39	-645.00	0.00
No Ice						
0.9 Dead+1.0 Wind 120 deg -	16.71	9.46	5.46	369.88	-640.65	0.00
No Ice						
1.2 Dead+1.0 Wind 150 deg -	22.28	5.46	9.46	645.00	-372.39	-0.00
No Ice						
0.9 Dead+1.0 Wind 150 deg -	16.71	5.46	9.46	640.65	-369.88	-0.00
No Ice						
1.2 Dead+1.0 Wind 180 deg -	22.28	0.00	10.92	744.78	0.00	0.00
No Ice						
0.9 Dead+1.0 Wind 180 deg -	16.71	0.00	10.92	739.76	0.00	0.00
No Ice						
1.2 Dead+1.0 Wind 210 deg -	22.28	-5.46	9.46	645.00	372.39	0.00
No Ice						
0.9 Dead+1.0 Wind 210 deg -	16.71	-5.46	9.46	640.65	369.88	0.00
No Ice						
1.2 Dead+1.0 Wind 240 deg -	22.28	-9.46	5.46	372.39	645.00	-0.00
No Ice						
0.9 Dead+1.0 Wind 240 deg -	16.71	-9.46	5.46	369.88	640.65	-0.00
No Ice						
1.2 Dead+1.0 Wind 270 deg -	22.28	-10.92	0.00	0.00	744.78	0.00
No Ice						
0.9 Dead+1.0 Wind 270 deg -	16.71	-10.92	0.00	0.00	739.76	0.00
No Ice						
1.2 Dead+1.0 Wind 300 deg -	22.28	-9.46	-5.46	-372.39	645.00	0.00
No Ice						
0.9 Dead+1.0 Wind 300 deg -	16.71	-9.46	-5.46	-369.88	640.65	0.00
No Ice						
1.2 Dead+1.0 Wind 330 deg -	22.28	-5.46	-9.46	-645.00	372.39	-0.00
No Ice						
0.9 Dead+1.0 Wind 330 deg -	16.71	-5.46	-9.46	-640.65	369.88	-0.00
No Ice						
1.2 Dead+1.0 Ice+1.0 Temp	32.97	0.00	0.00	0.00	0.00	0.00
1.2 Dead+1.0 Wind 0 deg+1.0	32.97	0.00	-3.30	-225.41	0.00	0.00
Ice+1.0 Temp						
1.2 Dead+1.0 Wind $30 \mathrm{deg}+1.0$	32.97	1.65	-2.86	-195.21	-112.71	0.00
Ice +1.0 Temp						
1.2 Dead+1.0 Wind $60 \mathrm{deg}+1.0$	32.97	2.86	-1.65	-112.71	-195.21	-0.00
Ice +1.0 Temp						
1.2 Dead+1.0 Wind 90 deg+1.0	32.97	3.30	0.00	0.00	-225.41	0.00
Ice+1.0 Temp						
1.2 Dead+1.0 Wind 120	32.97	2.86	1.65	112.71	-195.21	0.00
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 150	32.97	1.65	2.86	195.21	-112.71	-0.00
deg+1.0 Ice +1.0 Temp						
1.2 Dead+1.0 Wind 180	32.97	0.00	3.30	225.41	0.00	0.00
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 210	32.97	-1.65	2.86	195.21	112.71	0.00
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 240	32.97	-2.86	1.65	112.71	195.21	-0.00
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 270	32.97	-3.30	0.00	0.00	225.41	0.00

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job	CT1192 New Canaan	$\text { Page } 10 \text { of } 15$
	Project	ETS, PLLC Job No. 22112671. STR. 6806	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client	Tarpon Towers	Designed by Hicham Anssar

Load Combination	Vertical	Shear $_{x}$	Shear		Overturning Moment, M_{x}	Overturning Moment, M_{z}
kip-ft						

Solution Summary

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job	CT1192 New Canaan	$\text { Page } 11 \text { of } 15$
	Project	ETS, PLLC Job No. 22112671. STR. 6806	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client	Tarpon Towers	Designed by Hicham Anssar

	Sum of Applied Forces			Sum of Reactions			\% Error
Load	PX	PY	$P Z$	PX	PY	$P Z$	
Comb.	K	K	K	K	K	K	
36	-3.30	-32.97	0.00	3.30	32.97	0.00	0.000\%
37	-2.86	-32.97	-1.65	2.86	32.97	1.65	0.000\%
38	-1.65	-32.97	-2.86	1.65	32.97	2.86	0.000\%
39	0.00	-18.57	-2.60	0.00	18.57	2.60	0.000\%
40	1.30	-18.57	-2.25	-1.30	18.57	2.25	0.000\%
41	2.25	-18.57	-1.30	-2.25	18.57	1.30	0.000\%
42	2.60	-18.57	0.00	-2.60	18.57	0.00	0.000\%
43	2.25	-18.57	1.30	-2.25	18.57	-1.30	0.000\%
44	1.30	-18.57	2.25	-1.30	18.57	-2.25	0.000\%
45	0.00	-18.57	2.60	0.00	18.57	-2.60	0.000\%
46	-1.30	-18.57	2.25	1.30	18.57	-2.25	0.000\%
47	-2.25	-18.57	1.30	2.25	18.57	-1.30	0.000\%
48	-2.60	-18.57	0.00	2.60	18.57	0.00	0.000\%
49	-2.25	-18.57	-1.30	2.25	18.57	1.30	0.000\%
50	-1.30	-18.57	-2.25	1.30	18.57	2.25	0.000\%

Non-Linear Convergence Results

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	4	0.00000001	0.00061862
3	Yes	4	0.00000001	0.00022788
4	Yes	5	0.00000001	0.00099458
5	Yes	5	0.00000001	0.00048367
6	Yes	5	0.00000001	0.00099458
7	Yes	5	0.00000001	0.00048367
8	Yes	4	0.00000001	0.00061862
9	Yes	4	0.00000001	0.00022788
10	Yes	5	0.00000001	0.00099458
11	Yes	5	0.00000001	0.00048367
12	Yes	5	0.00000001	0.00099458
13	Yes	5	0.00000001	0.00048367
14	Yes	4	0.00000001	0.00061862
15	Yes	4	0.00000001	0.00022788
16	Yes	5	0.00000001	0.00099458
17	Yes	5	0.00000001	0.00048367
18	Yes	5	0.00000001	0.00099458
19	Yes	5	0.00000001	0.00048367
20	Yes	4	0.00000001	0.00061862
21	Yes	4	0.00000001	0.00022788
22	Yes	5	0.00000001	0.00099458
23	Yes	5	0.00000001	0.00048367
24	Yes	5	0.00000001	0.00099458
25	Yes	5	0.00000001	0.00048367
26	Yes	4	0.00000001	0.00000001
27	Yes	5	0.00000001	0.00021423
28	Yes	5	0.00000001	0.00029580
29	Yes	5	0.00000001	0.00029580
30	Yes	5	0.00000001	0.00021423
31	Yes	5	0.00000001	0.00029580
32	Yes	5	0.00000001	0.00029580
33	Yes	5	0.00000001	0.00021423
34	Yes	5	0.00000001	0.00029580
35	Yes	5	0.00000001	0.00029580
36	Yes	5	0.00000001	0.00021423

Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job CT1192 New Canaan			Page 12 of 15
	Project ETS, PLLC Job No. 22112671.STR. 6806			$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client Tarpon Towers			Designed by Hicham Anssar
37 Yes	5	0.00000001	0.00029580	
38 Yes	5	0.00000001	0.00029580	
39 Yes	4	0.00000001	0.00002896	
40 Yes	4	0.00000001	0.00021851	
41 Yes	4	0.00000001	0.00021851	
42 Yes	4	0.00000001	0.00002896	
43 Yes	4	0.00000001	0.00021851	
44 Yes	4	0.00000001	0.00021851	
45 Yes	4	0.00000001	0.00002896	
46 Yes	4	0.00000001	0.00021851	
47 Yes	4	0.00000001	0.00021851	
48 Yes	4	0.00000001	0.00002896	
49 Yes	4	0.00000001	0.00021851	
50 Yes	4	0.00000001	0.00021851	

Maximum Tower Deflections - Service Wind

Section No.	Elevation $f t$	Horz. Deflection in	Gov. Load Comb	Tilt	Twist 。
L1	120-110	9.988	39	0.9793	0.0000
L2	110-100	7.939	39	0.9740	0.0000
L3	100-90	5.934	39	0.9305	0.0000
L4	90-80	4.094	39	0.8115	0.0000
L5	80-70	2.613	39	0.5815	0.0000
L6	70-32	1.759	39	0.2079	0.0000
L7	38.25-0	0.601	39	0.1334	0.0000

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist Comb.	in

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist Comb.	in

Compression Checks

Pole Design Data									
Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$
	$f t$		$f t$	$f t$		in ${ }^{2}$	K	K	ϕP_{n}
L1	120-110 (1)	TP14x14x0.2188	10.00	0.00	0.0	9.5707	-1.55	559.88	0.003
L2	110-100 (2)	TP14x14x0.2188	10.00	0.00	0.0	9.5707	-3.27	559.88	0.006
L3	100-90 (3)	TP14x14x0.2188	10.00	0.00	0.0	9.5707	-4.96	559.88	0.009
L4	90-80 (4)	TP14x14x0.2188	10.00	0.00	0.0	9.5707	-7.14	559.88	0.013
L5	80-70 (5)	TP14x14x0.2188	10.00	0.00	0.0	9.5707	-9.13	559.88	0.016
L6	70-32 (6)	TP45.16x40x0.25	38.00	0.00	0.0	34.9627	-14.42	2045.32	0.007
L7	32-0(7)	TP49x43.8113x0.25	38.25	0.00	0.0	38.6831	-22.28	2153.74	0.010

Pole Bending Design Data

Section	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	Ratio No.			
$M_{u x}$								

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	$\begin{gathered} \text { Ratio } \\ V_{u} \end{gathered}$	Actual T_{u}	ϕT_{n}	$\begin{gathered} \text { Ratio } \\ T_{u} \end{gathered}$
$f t$			K	K	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	120-110 (1)	TP14x14x0.2188	1.31	167.97	0.008	0.00	202.72	0.000
L2	110-100 (2)	TP14x14x0.2188	2.59	167.97	0.015	0.00	202.72	0.000
L3	100-90 (3)	TP14x14x0.2188	3.79	167.97	0.023	0.00	202.72	0.000
L4	90-80 (4)	TP14x14x0.2188	4.90	167.97	0.029	0.00	202.72	0.000
L5	80-70 (5)	TP14x14x0.2188	5.79	167.97	0.034	0.00	202.72	0.000
L6	70-32 (6)	TP45.16x40x0.25	8.24	613.60	0.013	0.00	2367.66	0.000
L7	32-0(7)	TP49x43.8113x0.25	10.92	678.89	0.016	0.00	2898.37	0.000

Pole Interaction Design Data

Section No.	Elevation	Ratio P_{u}	Ratio $M_{u x}$	Ratio $M_{u y}$	Ratio V_{u}	$\begin{gathered} \text { Ratio } \\ T_{u} \\ \hline \end{gathered}$	Comb. Stress	Allow. Stress	Criteria
$f t$		ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	
L1	120-110 (1)	0.003	0.033	0.000	0.008	0.000	0.036	1.000	4.8.2
L2	110-100 (2)	0.006	0.130	0.000	0.015	0.000	0.137	1.000	4.8.2
L3	100-90 (3)	0.009	0.290	0.000	0.023	0.000	0.299	1.000	4.8.2
L4	90-80 (4)	0.013	0.508	0.000	0.029	0.000	0.521	1.000	4.8.2
L5	80-70 (5)	0.016	0.775	0.000	0.034	0.000	0.793	1.000	4.8.2
L6	70-32 (6)	0.007	0.201	0.000	0.013	0.000	0.208	1.000	4.8.2
L7	32-0(7)	0.010	0.344	0.000	0.016	0.000	0.355	1.000	4.8.2

Section Capacity Table

| Section | Elevation
 No. | ft Component |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | | |

tnxTower Engineered Tower Solutions, PLLC 3227 Wellington Court Raleigh, NC 27615 Phone: (919) 782-2710 FAX:	Job	CT1192 New Canaan	15 of 15
	Project	ETS, PLLC Job No. 22112671.STR. 6806	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 13:01:36 05/01/23 } \end{array}$
	Client	Tarpon Towers	Designed by Hicham Anssar

$\left.\begin{array}{ccccccccc}\hline \text { Section } & \text { Elevation } & \text { Component } & \text { Size } & \text { Critical } & P & \begin{array}{c}~ \\ \text { Type }\end{array} & & \text { Element }\end{array}\right)$

Program Version 8.1.1.0-6/4/2021 File:C:/Users/user/Desktop/ETS-TOWER DIVISION/Tarpon Towers/04-28-2023/6608_Tower Reanalysis/Analysis/Tower/New Canaan_SA_050123.eri

APPENDIX B

BASE LEVEL DRAWING

Engineered Tower Solutions, PLLC ${ }^{\text {Pob: }}$ CT1192 New Canaan			
3227 Wellington Court Raleigh, NC 27615	Project: ETS, PLLC Job No. 22112671.STR. 6806		
	Client: Tarpon Towers	Drawn by: Hicham Anssar	App'd:
Phone: (919) 782-2710	Code: TIA-222-H	Date: 05/01/23	Scale: NTS
FAX:	Path:		Dwg No. E-7

APPENDIX C

ADDITIONAL CALCULATIONS

Monopole Flange Plate Connection

TIA-222 Revision	H

Top Plate - External

Elevation $=70 \mathrm{ft}$.

Applied Loads	
Moment (kip-ft)	154.95
Axial Force (kips)	9.13
Shear Force (kips)	5.79

(16) $5 / 8^{" \prime} \varnothing$ bolts (A325 N; Fy=92 ksi, Fu=120 ksi) on 34.5" BC

Top Plate Data41.25" OD x 1.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)		
Top Stiffener Data		
(8) 18 "H x $12.625 " \mathrm{~W} \times 0.5 "$ plate: Fy= 65 ksi ; weld: Fy horiz. weld: $0.5625^{\prime \prime}$ fillet vert. weld: 0.3125 " fillet		
Top Pole Data		
14 " x 0.2188" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)		
		Max L Allow Stress
Top Plate Capacity		
Max Stress (ksi):	6.45	(Roark's Flexural)
Allowable Stress (ksi):	54.00	
Stress Rating:	12.0\%	Pass
Tension Side Stress Rating:	N/A	
Top Stiffener Capacity		
Horizontal Weld:	10.8\%	Pass
Vertical Weld:	16.9\%	Pass
Plate Flexure+Shear:	7.6\%	Pass
Plate Tension+Shear:	9.8\%	Pass
Plate Compression:	21.9\%	Pass
Top Pole Capacity		
Punching Shear:	11.5\%	Pass

Bottom Plate Data
12" ID x 1.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Bottom Stiffener Data
N/A

Bottom Pole Data
$40 " \times 0.25$ " 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)
Analysis Results
Bolt Capacity

Max Load (kips)	12.90
llowable (kips)	20.33
ress Rating:	$\mathbf{6 3 . 4 \%}$

Pass

Bottom Plate Capacity		
Max Stress (ksi):	13.45	(Flexural)
Allowable Stress (ksi):	54.00	
Stress Rating:	$\mathbf{2 4 . 9 \%}$	Pass
Tension Side Stress Rating:	N/A	
Bottom Stiffener Capacity	N/A	
Horizontal Weld:	N/A	
Vertical Weld:	N/A	
Plate Flexure+Shear:	N/A	
Plate Tension+Shear:	N/A	
Plate Compression:		
		N/A

Monopole Base Plate Connection

Site Info	
Site Name	New Canaan

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
$\mathrm{I}_{\mathrm{ar}}(\mathrm{in})$	3

Applied Loads	
Moment (kip-ft)	744.78
Axial Force (kips)	22.28
Shear Force (kips)	10.92

Connection Properties

Anchor Rod Data

(6) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 56" BC

Base Plate Data

62" OD x 1.75" Plate (A572-60; Fy=60 ksi, Fu=75 ksi)

Stiffener Data

N/A

Pole Data

49 " x 0.25" 18 -sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results

Anchor Rod Summary
(units of kips, kip-in)
Pu_c = 110.04 ϕ Pn_c $^{2}=268.39$ $\phi V n=120.77$ $\phi M n=128.14$
43.8\%

$\mathrm{Vu}=1.82$	$\phi V n=120.77$	43.8\%
$\mathrm{Mu}=3.55$	$\phi \mathrm{Mn}=128.14$	

Base Plate Summary

Max Stress (ksi):	18.55	(Flexural)
Allowable Stress (ksi):	54	
Stress Rating:	$\mathbf{3 4 . 4 \%}$	Pass

Pier and Pad Foundation

$\begin{aligned} \text { TIA-222 Revision: } & \mathrm{H} \\ \text { Tower Type: } & \text { Monopole } \\ & \end{aligned}$

Superstructure Analysis Reactions			
Compression, $\mathbf{P}_{\text {comp }}:$	22.28	kips	
Base Shear, Vu_comp:	10.92	kips	
Moment, $\mathbf{M}_{\mathrm{u}}:$	744.78	$\mathrm{ft}-\mathrm{kips}$	
Tower Height, $\mathbf{H}:$	120	ft	
BP Dist. Above Fdn, $\mathbf{b p}_{\text {dist }}:$	3	in	

Pier Properties			
Pier Shape:	Circular		
Pier Diameter, dpier:	7	ft	
Ext. Above Grade, E:	0.5	ft	
Pier Rebar Size, Sc:	8		
Pier Rebar Quantity, mc:	48		
Pier Tie/Spiral Size, St:	4		
Pier Tie/Spiral Quantity, mt:	14		
Pier Reinforcement Type:	Tie		
Pier Clear Cover, cc $\mathbf{c i e r}^{2}:$	3	in	

Pad Properties			
Depth, D:	6	ft	
Pad Width, $\mathbf{W}_{\mathbf{1}}:$	16	ft	
Pad Thickness, T:	2	ft	
Pad Rebar Size (Bottom dir. 2), $\mathbf{S p}_{\mathbf{2}}:$	8		
Pad Rebar Quantity (Bottom dir. 2), $\mathbf{m p}_{\mathbf{2}}:$	16		
Pad Clear Cover, $\mathbf{c c}_{\text {pad }}:$	3	in	

Material Properties			
Rebar Grade, Fy:	60	ksi	
Concrete Compressive Strength, F'c:	4	ksi	
Dry Concrete Density, $\delta \mathbf{c}:$	150	pcf	

Soil Properties			
Total Soil Unit Weight, $\gamma:$	125	pcf	
Ultimate Gross Bearing, Qult:	31.920	ksf	
Cohesion, Cu:	0.000	ksf	
Friction Angle, $\varphi:$	30	degrees	
SPT Blow Count, $\mathbf{N}_{\text {blows }}:$	104		
Base Friction, $\mu:$	0.35		
Neglected Depth, $\mathbf{N}:$	1.00	ft	
Foundation Bearing on Rock?	Yes		
Groundwater Depth, gw:	N / A	ft	

Foundation Analysis Checks				
	Capacity	Demand	Rating	Check
Lateral (Sliding) (kips)	114.13	10.92	$\mathbf{9 . 6 \%}$	Pass
Bearing Pressure (ksf)	23.94	2.46	$\mathbf{1 0 . 3 \%}$	Pass
Overturning (kip*ft)	1786.83	818.49	$\mathbf{4 5 . 8 \%}$	Pass
Pier Flexure (Comp.) (kip*ft)	6058.99	793.92	$\mathbf{1 3 . 1 \%}$	Pass
Pier Compression (kip)	24494.62	53.45	$\mathbf{0 . 2 \%}$	Pass
Pad Flexure (kip*ft)	1076.12	186.05	$\mathbf{1 7 . 3} \%$	Pass
Pad Shear - 1-way (kips)	355.19	53.33	$\mathbf{1 5 . 0} \%$	Pass
Pad Shear - 2-way (Comp) (ksi)	0.190	0.021	$\mathbf{1 1 . 2 \%}$	Pass
Flexural 2-way (Comp) (kip*ft)	1702.84	476.35	$\mathbf{2 8 . 0} \%$	Pass

Structural Rating:	$\mathbf{2 8 . 0 \%}$
Soil Rating:	$\mathbf{4 5 . 8} \%$

Address:

No Address at This Location

ASCE 7 Hazards Report

Wind

Results:

Wind Speed	117 Vmph
10 -year MRI	75 Vmph
25 -year MRI	84 Vmph
50 -year MRI	90 Vmph
100 -year MRI	97 Vmph

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2
Fri Apr 282023

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.

AMERICAN SOCIETY OF CIVIL ENGINEERS

Seismic

Site Soil Class:

Results:

$S_{S}:$	0.248
$S_{1}:$	0.057
$F_{a}:$	1.6
$F_{V}:$	2.4
$S_{M S}:$	0.396
$S_{M 1}:$	0.138
$S_{D S}:$	0.264

$\mathrm{S}_{\mathrm{D} 1}:$	0.092
$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{PGA}:$	0.147
$\mathrm{PGA}_{\mathrm{M}}:$	0.221
$\mathrm{~F}_{\mathrm{PGA}}:$	1.506
$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{C}_{V}:$	0.795

Seismic Design Category: B

Data Accessed:
Fri Apr 282023
Date Source:
USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

AMERICAN SOCIETY OF CIVIL ENGINEERS
Ice

Results

Ice Thickness:
Concurrent Temperature:
Gust Speed
Data Source:
Date Accessed:
1.00 in.

15 F
50 mph
Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8
Fri Apr 282023

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.
Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3 -second gust speeds, for a 500 -year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

EXHIBIT E

NIERS Study

Pinnacle Telecom Group

Telecom Consulting

Antenna Site FCC RF Compliance Assessment and Report for Municipal Submission

Prepared for:
Site ID:
Site Address:

Latitude:

Longitude:
Structure type:
Report date:
Compliance Conclusion:

DISH Wireless, LLC
NJJER01146D
208 Valley Road
New Canaan, CT
N 41.166242
W 73.470481
Unipole
Auqust 23, 2023
DISH Wireless, LLC will be in compliance with the rules and requlations as described in OET Bulletin 65, Following the implementation of the proposed mitiqation as detailed in ite report.

14 Ridqedale Avenue - Suite 260 • Cedar Knolls, NJ 07927 • 973-451-1630

Contents

Introduction and Summary 3
Antenna and Transmission Data 5
Compliance Analysis 11
Compliance Conclusion 18
Certification
Appendix A. Documents Used to Prepare the Analysis
Appendix B. Backqround on the FCC MPE Limit
Appendix C. Proposed Siqnaqe
Appendix D. Summary of Expert Qualifications

Introduction and Summary

At the request of DISH Wireless, LLC ("DISH"), Pinnacle Telecom Group has performed an independent expert assessment of radiofrequency (RF) levels and related FCC compliance for existing wireless base station antenna operations in a unipole located at 208 Valley Road in New Canaan, CT. DISH refers to the antenna site by the code "NJJER01146D", and its existing antenna operation involves directional panel antennas and transmission in the $600 \mathrm{MHz}, 2000 \mathrm{MHz}$ and 2100 MHz frequency bands licensed to it by the FCC.

The FCC requires all wireless antenna operators to perform an assessment of potential human exposure to radiofrequency (RF) fields emanating from all the transmitting antennas at a site whenever antenna operations are added or modified, and to ensure compliance with the Maximum Permissible Exposure (MPE) limit in the FCC's regulations. In this case, the compliance assessment needs to take into account the RF effects of other existing antenna operations at the site by AT\&T, T-Mobile, and Verizon Wireless. Note FCC regulations require any future antenna collocators to assess and assure continuing compliance based on the cumulative effects of all then-proposed and then-existing antennas at the site.

This report describes a mathematical analysis of RF levels resulting around the site in areas of unrestricted public access, that is, at street level around the site. The compliance analysis employs a standard FCC formula for calculating the effects of the antennas in a very conservative manner, in order to overstate the RF levels and to ensure "safe-side" conclusions regarding compliance with the FCC limit for safe continuous exposure of the general public.

The results of a compliance assessment can be described in layman's terms by expressing the calculated RF levels as simple percentages of the FCC MPE limit. If the normalized reference for that limit is 100 percent, then calculated RF levels higher than 100 percent indicate the MPE limit is exceeded and there is a need to mitigate the potential exposure. On the other hand, calculated RF levels consistently below 100 percent serve as a clear and sufficient demonstration of
compliance with the MPE limit. We can (and will) also describe the overall worstcase result via the "plain-English" equivalent "times-below-the-limit" factor.

The result of the RF compliance assessment in this case is as follows:

- At street level, the conservatively calculated maximum RF level from the existing antenna operations at the site is 7.8166 percent of the FCC general population MPE limit - well below the 100-percent reference for compliance. In other words, the worst-case calculated RF level intentionally and significantly overstated by the calculations - is still more than 12 times below the FCC limit for safe, continuous exposure of the general public. Per DISH guidelines, and consistent with FCC guidance on compliance, it is recommended that three Caution signs and NOC Information signs be installed at the base of the unipole.
- The results of the calculations, along with the proposed mitigation, combine to satisfy the FCC requirements and associated guidelines on RF compliance at street level around the site. Moreover, because of the significant conservatism incorporated in the analysis, RF levels actually caused by the antennas will be lower than these calculations indicate.

The remainder of this report provides the following:

- relevant technical data on the existing DISH antenna operations at the site, as well as on the other existing antenna operations;
- a description of the applicable FCC mathematical model for calculating RF levels, and application of the relevant technical data to that model;
- analysis of the results of the calculations against the FCC MPE limit, and the compliance conclusion for the site.

In addition, four Appendices are included. Appendix A provides information on the documents used to prepare the analysis. Appendix B provides background on the FCC MPE limit. Appendix C details the proposed mitigation to satisfy the FCC requirements and associated guidelines on RF compliance. Appendix D provides
a summary of the qualifications of the expert certifying FCC compliance for this site.

Antenna and Transmission Data

The plan and elevation views that follow, extracted from the site drawings, illustrate the mounting positions of the DISH antennas at the site.

Plan View:

The table that follows summarizes the relevant data for the existing DISH antenna operations. Note that the " Z " height references the centerline of the antenna.

Ant. ID	Carrier	Antenna Manufacturer	Antenna Model	Type	$\begin{gathered} \text { Freq } \\ (M H z) \end{gathered}$	Ant. Dim. (ft.)	Total Input Power (watts)		$\begin{gathered} Z \\ A G L \\ (f t) \end{gathered}$	Ant. Gain (dBd)	B / W	Azimuth	EDT	MDT
(1)	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	75.0	12.16	71	80	2	0
(1)	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	5260	75.0	15.96	64	80	2	0
(1)	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	6546	75.0	16.26	64	80	2	0
2	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	75.0	12.16	71	200	2	0
(2)	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	5260	75.0	15.96	64	200	2	0
2	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	6546	75.0	16.26	64	200	2	0
3	DISH	Commscope	FVV-65B-R3	Panel	600	6	120	1687	75.0	12.16	71	320	2	0
3	DISH	Commscope	FVV-65B-R3	Panel	2000	6	160	5260	75.0	15.96	64	320	2	0
3	DISH	Commscope	FVV-65B-R3	Panel	2100	6	160	6546	75.0	16.26	64	320	2	0

The area below the antennas, at street level, is of interest in terms of potential "uncontrolled" exposure of the general public, so the antenna's vertical-plane emission characteristic is used in the calculations, as it is a key determinant of the relative amount of RF emissions in the "downward" direction.

By way of illustration, Figure 1 that follows shows the vertical-plane radiation pattern of the antenna model in the 600 MHz frequency band. In this type of antenna radiation pattern diagram, the antenna is effectively pointed at the three o'clock position (the horizon) and the relative strength of the pattern at different angles is described using decibel units.

Note that the use of a decibel scale to describe the relative pattern at different angles actually serves to significantly understate the actual focusing effects of the antenna. Where the antenna pattern reads 20 dB the relative RF energy emitted at the corresponding downward angle is $1 / 100^{\text {th }}$ of the maximum that occurs in the main beam (at 0 degrees); at 30 dB , the energy is only $1 / 1000^{\text {th }}$ of the maximum.

Finally, note that the automatic pattern-scaling feature of our internal software may skew side-by-side visual comparisons of different antenna models, or even different parties' depictions of the same antenna model.

Figure 1. Commscope FVV-65B-R3 - 600 MHz Vertical-plane Pattern

As noted at the outset, there are other existing wireless antenna operations to include in the compliance assessment. For each of the wireless operators, we will conservatively assume operation with maximum channel capacity and at maximum transmitter power per channel to be used by each wireless operator in each of their respective FCC-licensed frequency bands.

The table that follows summarizes the relevant data for the collocated antenna operations.

Carrier	Antenna Manufacturer	Antenna Model	Type	$\begin{gathered} \text { Freq } \\ (M H z) \end{gathered}$		Ant. Gain (dBd)	Azimuth
AT\&T	Generic	Generic	Panel	700	4945	11.26	N/A
AT\&T	Generic	Generic	Panel	850	2400	11.76	N/A
AT\&T	Generic	Generic	Panel	1900	5756	15.56	N/A
AT\&T	Generic	Generic	Panel	2100	5890	15.66	N/A
AT\&T	Generic	Generic	Panel	2300	4131	16.16	N/A
T-Mobile	Generic	Generic	Panel	600	3163	12.96	N/A
T-Mobile	Generic	Generic	Panel	700	867	13.36	N/A
T-Mobile	Generic	Generic	Panel	1900	4123	15.36	N/A
T-Mobile	Generic	Generic	Panel	1900	1452	15.60	N/A
T-Mobile	Generic	Generic	Panel	2100	4626	15.86	N/A
T-Mobile	Generic	Generic	Panel	1900	1419	15.50	N/A
T-Mobile	Generic	Generic	Panel	2500	12804	22.35	N/A
Verizon Wireless	Generic	Generic	Panel	746	2400	11.76	N/A
Verizon Wireless	Generic	Generic	Panel	869	5166	12.36	N/A
Verizon Wireless	Generic	Generic	Panel	1900	5372	15.26	N/A
Verizon Wireless	Generic	Generic	Panel	2100	5625	15.46	N/A

Compliance Analysis

FCC Office of Engineering and Technology Bulletin 65 ("OET Bulletin 65 ") provides guidelines for mathematical models to calculate the RF levels at various points around transmitting antennas. Different models apply in different areas around antennas, with one model applying to street level around a site, and another applying to the same height as the antennas. We will address each area of interest in turn in the subsections that follow.

Street Level Analysis

At street-level around an antenna site (in what is called the "far field" of the antennas), the RF levels are directly proportional to the total antenna input power and the relative antenna gain in the downward direction of interest - and the levels are otherwise inversely proportional to the square of the straight-line distance to the antenna.

Conservative calculations also assume the potential RF exposure is enhanced by reflection of the RF energy from the intervening ground. Our calculations will assume a 100% "perfect", mirror-like reflection, which is the absolute worst-case scenario.

The formula for street-level compliance assessment for any given wireless antenna operation is as follows:

$$
\text { MPE \% }=\left(100 \text { * Chans * TxPower * } 10(\text { Gmax-Vdisc/10) * } 4) /\left(\text { MPE * } 4 \pi \text { * } R^{2}\right)\right.
$$

where
\(\left.$$
\begin{array}{ll}\text { MPE\% }= & \begin{array}{l}\text { RF level, expressed as a percentage of the MPE limit } \\
\text { applicable to continuous exposure of the general } \\
\text { public }\end{array}
$$

100= \& factor to convert the raw result to a percentage

Chans= \& maximum number of RF channels per sector\end{array}\right\}\)| TxPower = maximum transmitter power per channel, in milliwatts |
| :--- |

10 (Gmax-Vdisc/10) = | numeric equivalent of the relative antenna gain in the |
| :--- |
| downward direction of interest; data on the antenna |
| vertical-plane pattern is taken from manufacturer |
| specifications |

$4=$| factor to account for a 100-percent-efficient energy |
| :--- |
| reflection from the ground, and the squared |
| relationship between RF field strength and power |
| density $\left(2^{2}=4\right)$ |

MPE = FCC general population MPE limit

R = \quad| straight-line distance from the RF source to the point |
| :--- |
| of interest, centimeters |

The MPE\% calculations are performed out to a distance of 500 feet from the facility to points 6.5 feet (approximately two meters, the FCC-recommended standing height) off the ground, as illustrated in Figure 2, below.

Figure 2. Street-level MPE\% Calculation Geometry

It is popularly understood that the farther away one is from an antenna, the lower the RF level - which is generally but not universally correct. The results of MPE\% calculations fairly close to the site will reflect the variations in the vertical-plane antenna pattern as well as the variation in straight-line distance to the antenna.

Therefore, RF levels may actually increase slightly with increasing distance within the range of zero to 500 feet from the site. As the distance approaches 500 feet and beyond, though, the antenna pattern factor becomes less significant, the RF levels become primarily distance-controlled and, as a result, the RF levels generally decrease with increasing distance. In any case, the RF levels more than 500 feet from a wireless antenna site are well understood to be sufficiently low to be comfortably in compliance.

According to the FCC, when directional antennas (such as panels) are used, compliance assessments are based on the RF effect of a single (facing) antenna sector, as the effects of directional antennas pointed away from the point(s) of interest are considered insignificant. If the different parameters apply in the different sectors, compliance is based on the worst-case parameters.

Street level FCC compliance for a collocated antenna site is assessed in the following manner. At each distance point along the ground, an MPE\% calculation is made for each antenna operation (including each frequency band), and the sum of the individual MPE\% contributions at each point is compared to 100 percent, the normalized reference for compliance with the MPE limit. We refer to the sum of the individual MPE\% contributions as "total MPE\%", and any calculated total MPE\% result exceeding 100 percent is, by definition, higher than the FCC limit and represents non-compliance and a need to mitigate the potential exposure. If all results are consistently below 100 percent, on the other hand, that set of results serves as a clear and sufficient demonstration of compliance with the MPE limit.

Note that the following conservative methodology and assumptions are incorporated into the MPE\% calculations on a general basis:

1. The antennas are assumed to be operating continuously at maximum power and maximum channel capacity.
2. The power-attenuation effects of shadowing or other obstructions to the line-of-sight path from the antenna to the point of interest are ignored.
3. The calculations intentionally minimize the distance factor (R) by assuming a 6'6" human and performing the calculations from the bottom (rather than
the centerline) of each operator's lowest-mounted antenna, as applicable.
4. The calculations also conservatively take into account, when applicable, the different technical characteristics and related RF effects of the use of multiple antennas for transmission in the same frequency band.
5. The RF exposure at ground level is assumed to be 100-percent enhanced (increased) via a "perfect" field reflection from the intervening ground.

The net result of these assumptions is to intentionally and significantly overstate the calculated RF levels relative to the levels that will actually result from the antenna operations - and the purpose of this conservatism is to allow very "safeside" conclusions about compliance.

The table that follows provides the results of the MPE\% calculations for each antenna operation, with the overall worst-case calculated result highlighted in bold in the last column. Note that the transmission parameters for each DISH antenna sector are identical, and the calculations reflect the worst-case result for any/all sectors.

Ground Distance (ft)	DISH $\mathbf{6 0 0} \mathbf{~ M H z}$ MPE\%	DISH $\mathbf{2 0 0 0} \mathbf{~ M H z ~}$ MPE\%	DISH $\mathbf{2 1 0 0 ~ M H z ~}$ MPE\%	AT\&T MPE\%	T-Mobile MPE\%	Verizon Wireless MPE\%	Total MPE\%
0	0.0734	0.0537	0.0757	0.1869	0.3512	0.0404	0.7813
20	0.1260	0.0899	0.5802	0.3650	0.5124	0.0790	1.7525
40	0.1763	0.1595	0.1034	0.7652	1.1146	0.3036	2.6226
60	0.9667	0.1957	0.5454	1.0371	1.0535	0.3010	4.0994
80	0.2048	0.2269	0.7777	0.4523	0.6887	0.2412	2.5916
100	0.1234	0.3960	0.1193	1.1952	0.7081	0.6452	3.1872
120	0.5725	0.1775	0.1192	2.0037	0.9271	0.5296	4.3296
140	0.5810	0.1083	0.1281	1.7395	1.0895	0.7554	4.4018
160	0.4101	0.0621	0.0491	1.3530	1.3101	0.6794	3.8638
180	0.3364	0.0649	0.1043	0.9918	2.3984	0.4290	4.3248
200	0.3428	0.0130	0.0331	0.5259	2.7686	0.2374	3.9208
220	0.5391	0.0138	0.0054	0.2500	3.0258	0.1105	3.9446
240	0.6409	0.0115	0.0103	0.6234	2.6437	0.0840	4.0138
260	0.7529	0.0027	0.0016	0.9375	2.7729	0.1474	4.6150
280	0.8689	0.0254	0.0137	1.2557	3.3991	0.2142	5.7770
300	0.9816	0.0949	0.0802	1.5296	4.0532	0.2999	7.0394
320	1.0821	0.1689	0.1709	1.7744	3.8841	0.4116	7.4920
340	1.1658	0.1766	0.2009	2.0487	3.6696	0.5384	7.8000
360	1.0439	0.1581	0.1799	1.8371	3.4555	0.6864	7.3609
380	1.1069	0.0884	0.1136	2.1978	3.2903	0.8371	7.6341
400	1.0018	0.0800	0.1028	2.7256	3.0243	0.7592	7.6937
420	1.0434	0.0072	0.0151	2.4805	2.9105	0.9079	7.3646
440	$\mathbf{0 . 9 5 2 7}$	$\mathbf{0 . 0 0 6 6}$	$\mathbf{0 . 0 1 3 8}$	3.1342	2.8790	$\mathbf{0 . 8 3 0 3}$	$\mathbf{7 . 8 1 6 6}$
460	0.8733	0.0060	0.0126	2.8749	2.6782	0.9636	7.4086
480	0.8972	0.0303	0.0247	2.6462	2.6240	0.8875	7.1099
500	0.8281	0.0280	0.0228	3.2994	2.4827	1.0081	7.6691

As indicated, the maximum calculated overall RF level is 7.8166 percent of the FCC MPE limit - well below the 100-percent reference for compliance.

A graph of the overall calculation results, shown below, perhaps provides a clearer visual illustration of the relative compliance of the calculated RF levels. The line representing the overall calculation results shows an obviously clear, consistent margin to the FCC MPE limit.

The graphic output for the areas at street level surrounding the site is reproduced on the next page.

Percent MPE Legend
\square 0\% - 100\% $100 \% \cdot 500 \%$ 500% - 5000% $5000 \%+$
General Population Limits
Farfield
10 foot grid size (Avg: 0 to 6 Feet)

Carrier Color Code
DISH

Compliance Conclusion

According to the FCC, the MPE limit has been constructed in such a manner that continuous human exposure to RF fields up to and including 100 percent of the MPE limit is acceptable and safe.

The conservative analysis in this case shows that the maximum calculated RF level from the existing antenna operations at street level around the site is 7.8166 percent of the FCC general population MPE limit. Per DISH guidelines, and consistent with FCC guidance on compliance, it is recommended that three Caution signs and NOC Information signs be installed at the base of the unipole.

The results of the calculations, along with the described RF mitigation, combine to satisfy the FCC's RF compliance requirements and associated guidelines on compliance.

Moreover, because of the extremely conservative calculation methodology and operational assumptions we applied in the analysis, RF levels actually caused by the antennas will be significantly lower than the calculation results here indicate.

Certification

It is the policy of Pinnacle Telecom Group that all FCC RF compliance assessments are reviewed, approved, and signed by the firm's Chief Technical Officer who certifies as follows:

1. I have read and fully understand the FCC regulations concerning RF safety and the control of human exposure to RF fields (47 CFR 1.1301 et seq).
2. To the best of my knowledge, the statements and information disclosed in this report are true, complete and accurate.
3. The analysis of site RF compliance provided herein is consistent with the applicable FCC regulations, additional guidelines issued by the FCC, and industry practice.
4. The results of the analysis indicate that the subject antenna operations will be in compliance with the FCC regulations concerning the control of potential human exposure to the RF emissions from antennas.

Appendix A. Documents Used to Prepare the Analysis

RFDS: RFDS-NJJER01146D-Preliminary-20230330-v.2_20230330123748
CD: NJJER01146D_FinalStampedCDs_20230725101113 (1)

Appendix B. Backqround on the FCC MPE Limit

As directed by the Telecommunications Act of 1996, the FCC has established limits for maximum continuous human exposure to RF fields.

The FCC maximum permissible exposure (MPE) limits represent the consensus of federal agencies and independent experts responsible for RF safety matters. Those agencies include the National Council on Radiation Protection and Measurements (NCRP), the Occupational Safety and Health Administration (OSHA), the National Institute for Occupational Safety and Health (NIOSH), the American National Standards Institute (ANSI), the Environmental Protection Agency (EPA), and the Food and Drug Administration (FDA). In formulating its guidelines, the FCC also considered input from the public and technical community - notably the Institute of Electrical and Electronics Engineers (IEEE).

The FCC's RF exposure guidelines are incorporated in Section 1.301 et seq of its Rules and Regulations (47 CFR 1.1301-1.1310). Those guidelines specify MPE limits for both occupational and general population exposure.

The specified continuous exposure MPE limits are based on known variation of human body susceptibility in different frequency ranges, and a Specific Absorption Rate (SAR) of 4 watts per kilogram, which is universally considered to accurately represent human capacity to dissipate incident RF energy (in the form of heat). The occupational MPE guidelines incorporate a safety factor of 10 or greater with respect to RF levels known to represent a health hazard, and an additional safety factor of five is applied to the MPE limits for general population exposure. Thus, the general population MPE limit has a built-in safety factor of more than 50 . The limits were constructed to appropriately protect humans of both sexes and all ages and sizes and under all conditions - and continuous exposure at levels equal to or below the applicable MPE limits is considered to result in no adverse health effects or even health risk.

The reason for two tiers of MPE limits is based on an understanding and assumption that members of the general public are unlikely to have had appropriate RF safety training and may not be aware of the exposures they receive; occupational exposure in controlled environments, on the other hand, is assumed to involve individuals who have had such training, are aware of the exposures, and know how to maintain a safe personal work environment.

The FCC's RF exposure limits are expressed in two equivalent forms, using alternative units of field strength (expressed in volts per meter, or V / m), and power density (expressed in milliwatts per square centimeter, or $\mathrm{mW} / \mathrm{cm}^{2}$). The table on the next page lists the FCC limits for both occupational and general population exposures, using the $\mathrm{mW} / \mathrm{cm}^{2}$ reference, for the different radio frequency ranges.

Frequency Range (F)
(MHz)
0.3-1.34
1.34-3.0
3.0-30

30-300
300-1,500
1,500-100,000

Occupational Exposure
($\mathrm{mW} / \mathrm{cm}^{2}$)

100
100
$900 / F^{2}$
1.0

F/300
5.0

General Public Exposure ($\mathrm{mW} / \mathrm{cm}^{2}$)

100
$180 / F^{2}$
$180 / F^{2}$
0.2

F/ 1500
1.0

The diagram below provides a graphical illustration of both the FCC's occupational and general population MPE limits.

Because the FCC's RF exposure limits are frequency-shaped, the exact MPE limits applicable to the instant situation depend on the frequency range used by the systems of interest.

The most appropriate method of determining RF compliance is to calculate the RF power density attributable to a particular system and compare that to the MPE limit applicable to the operating frequency in question. The result is usually expressed as a percentage of the MPE limit.

For potential exposure from multiple systems, the respective percentages of the MPE limits are added, and the total percentage compared to 100 (percent of the limit). If the result is less than 100, the total exposure is in compliance; if it is more than 100, exposure mitigation measures are necessary to achieve compliance.

Note that the FCC "categorically excludes" all "non-building-mounted" wireless antenna operations whose mounting heights are more than 10 meters (32.8 feet) from the routine requirement to demonstrate compliance with the MPE limit, because such operations "are deemed, individually and cumulatively, to have no significant effect on the human environment". The categorical exclusion also applies to all point-to-point antenna operations, regardless of the type of structure they're mounted on. Note that the FCC considers any facility qualifying for the categorical exclusion to be automatically in compliance.

In addition, FCC Rules and Regulations Section 1.1307(b)(3) describes a provision known in the industry as "the 5% rule". It describes that when a specific location - like a spot on a rooftop - is subject to an overall exposure level exceeding the applicable MPE limit, operators with antennas whose MPE\% contributions at the point of interest are less than 5% are exempted from the obligation otherwise shared by all operators to bring the site into compliance, and those antennas are automatically deemed by the FCC to satisfy the rooftop compliance requirement.

FCC References on RF Compliance

47 CFR, FCC Rules and Regulations, Part 1 (Practice and Procedure), Section 1.1310 (Radiofrequency radiation exposure limits).

FCC Second Memorandum Opinion and Order and Notice of Proposed Rulemaking (FCC 97-303), In the Matter of Procedures for Reviewing Requests for Relief From State and Local Regulations Pursuant to Section 332(c)(7)(B)(v) of the Communications Act of 1934 (WT Docket 97-192), Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation (ET Docket 93-62), and Petition for Rulemaking of the Cellular Telecommunications Industry Association Concerning Amendment of the Commission's Rules to Preempt State and Local Regulation of Commercial Mobile Radio Service Transmitting Facilities, released August 25, 1997.

FCC First Memorandum Opinion and Order, ET Docket 93-62, In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, released December 24, 1996.

FCC Report and Order, ET Docket 93-62, In the Matter of Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, released August 1, 1996.

FCC Report and Order, Notice of Proposed Rulemaking, Memorandum Opinion and Order (FCC 19-126), Proposed Changes in the Commission's Rules Regarding Human Exposure to Radiofrequency Electromagnetic Fields; Reassessment of Federal Communications Commission Radiofrequency Exposure Limits and Policies, released December 4, 2019.

FCC Office of Engineering and Technology (OET) Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 97-01, August 1997.

FCC Office of Engineering and Technology (OET) Bulletin 56, "Questions and Answers About Biological Effects and Potential Hazards of RF Radiation", edition 4, August 1999.

Appendix C. Proposed Siqnage

Final Compliance Configuration	-				(1)		
	GUIDELINES	NOTICE	CAUTION	WARNING	$\begin{aligned} & \text { NOC } \\ & \text { INFO } \end{aligned}$	BARRIER/MARKER	
Access Point(s)	0	0	0	0	1	0	
Alpha	0	0	1	0	0	0	
Beta	0	0	1	0	0	0	
Gamma	0	0	1	0	0	0	

Appendix D. Summary of Expert Qualifications

Daniel J. Collins, Chief Technical Officer, Pinnacle Telecom Group, LLC

Synopsis:	- 40+ years of experience in all aspects of wireless system engineering, related regulation, and RF exposure - Has performed or led RF exposure compliance assessments on more than 20,000 antenna sites since the latest FCC regulations went into effect in 1997 - Has provided testimony as an RF compliance expert more than 1,500 times since 1997 - Have been accepted as an FCC compliance expert in New York, New Jersey, Connecticut, Pennsylvania and more than 40 other states, as well as by the FCC
Education:	- B.E.E., City College of New York (Sch. Of Eng.), 1971 - M.B.A., 1982, Fairleigh Dickinson University, 1982 - Bronx High School of Science, 1966
Current Responsibilities:	- Leads all PTG staff work involving RF safety and FCC compliance, microwave and satellite system engineering, and consulting on wireless technology and regulation
Prior Experience:	- Edwards \& Kelcey, VP - RF Engineering and Chief Information Technology Officer, 1996-99 - Bellcore (a Bell Labs offshoot after AT\&T's 1984 divestiture), Executive Director - Regulation and Public Policy, 1983-96 - AT\&T (Corp. HQ), Division Manager - RF Engineering, and Director - Radio Spectrum Management, 1977-83 - AT\&T Long Lines, Group Supervisor - Microwave Radio System Design, 1972-77
Specific RF Safety/ Compliance Experience:	- Involved in RF exposure matters since 1972 - Have had lead corporate responsibility for RF safety and compliance at AT\&T, Bellcore, Edwards \& Kelcey, and PTG - While at AT\&T, helped develop the mathematical models for calculating RF exposure levels - Have been relied on for compliance by all major wireless carriers, as well as by the federal government, several state and local governments, equipment manufacturers, system integrators, and other consulting / engineering firms
Other Background:	- Author, Microwave System Engineering (AT\&T, 1974) - Co-author and executive editor, A Guide to New Technologies and Services (Bellcore, 1993) - National Spectrum Management Association (NSMA) former three-term President and Chairman of the Board of Directors; was founding member, twice-elected Vice President, long-time member of the Board, and was named an NSMA Fellow in 1991 - Have published more than 35 articles in industry magazines

EXHIBIT F

Proof of Notification

Dear Customer,

The following is the proof-of-delivery for tracking number: 773291106110

Delivery Information:

Status:	Delivered	Delivered To:	Receptionist/Front Desk
Signed for by:	C.KROLIKOWSKI	Delivery Location:	77 MAIN ST
Service type:	FedEx 2Day		
Special Handling:	Deliver Weekday	Delivery date:	NEW CANAAN, CT, 06840
			Sep 6, 2023 11:28
Shipping Information:	773291106110	Ship Date:	Weight:

Recipient:

Brian Platz, City of New Canaan
77 Main Street
Lower Level- Building Department
NEW CANAAN, CT, US, 06840

Shipper:

Michael Jones,
140 Beach 137th Street
ROCKAWAY PARK, NY, US, 11694

Reference

NJJER01146D

DELIVERED

Wednesday

9/6/23 at 11:28 AM
Signed for by: C.KROLIKOWSKI
\downarrow Obtain proof of delivery
Want updates on this shipment? Enter your email and we will do the rest!
YOUR EMAIL SUBMIT
MORE OPTIONS
Manage Delivery

TRACKING ID

773291099570 \& 目

FROM

Michael Jones
140 Beach 137th Street ROCKAWAY PARK, NY US 11694
7326778881
Label Created
9/2/23 3:56 PM

WE HAVE YOUR PACKAGE
JAMAICA, NY
9/5/23 7:04 PM

IN TRANSIT
STAMFORD, CT
9/6/23 9:16 AM

OUT FOR DELIVERY

STAMFORD, CT
9/6/23 9:35 AM

DELIVERED
Daniel Radman
City of New Canaan
77 Main Street Lower Level-
Planning \& Zoning
NEW CANAAN, CT US 06840
2035943012
Delivered
9/6/23 at 11:28 AM
\downarrow View travel history

Shipment facts

Shipment overview

TRACKING NUMBER	773291099570
DELIVERED TO	Receptionist/Front Desk
SHIPPER REFERENCE	NJJER01146D
SHIP DATE ©	$9 / 5 / 23$
STANDARD TRANSIT ©	$9 / 7 / 23$ before $5: 00$ PM
ACTUAL DELIVERY	$9 / 6 / 23$ at 11:28 AM

Ta Services

Dear Customer,

The following is the proof-of-delivery for tracking number: 773291143240

Delivery Information:

Status:	Delivered	Delivered To:	Receptionist/Front Desk
Signed for by:	K.FLYNN	Delivery Location:	77 MAIN ST
Service type:	FedEx 2Day		
Special Handling:	Deliver Weekday		NEW CANAAN, CT, 06840
		Delivery date:	Sep 6, 2023 11:35
Shipping Information:			
Tracking number:	773291143240	Ship Date:	Sep 5, 2023
		Weight:	
Kevin Moynihan, City of New Canaan 77 Main Street 2nd Floor- First Selectman NEW CANAAN, CT, US, 06840		Shipper: Michael Jones, 140 Beach 137th Street ROCKAWAY PARK, NY, US, 11694	
Reference	NJJER01146D		

Dear Customer,

The following is the proof-of-delivery for tracking number: 773291149064

Delivery Information:			
Status:	Delivered	Delivered To:	Receptionist/Front Desk
Signed for by:	T.MORALES	Delivery Location:	208 VALLEY RD
Service type:	FedEx 2Day		
Special Handling:	Deliver Weekday		NEW CANAAN, CT, 06840
		Delivery date:	Sep 6, 2023 15:20
Shipping Information:			
Tracking number:	773291149064	Ship Date:	Sep 5, 2023
		Weight:	
Recipient: Richard Canning, Silver Hill Hospital, Inc 208 Valley Road NEW CANAAN, CT, US, 06840		Shipper: Michael Jones, 140 Beach 137th Street ROCKAWAY PARK, NY, US, 11694	
Reference	NJJER0114		

Dear Customer,

The following is the proof-of-delivery for tracking number: 773291140457

