Robinson+Cole

KENNETH C. BALDWIN

280 Trumbull Street Hartford, CT 06103-3597 Main (860) 275-8200 Fax (860) 275-8299 kbaldwin@rc.com Direct (860) 275-8345

Also admitted in Massachusetts and New York

June 6, 2022

Melanie A. Bachman, Esq. Executive Director/Staff Attorney Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

Re: Request of Cellco Partnership d/b/a Verizon Wireless for an Order to Approve the Shared Use of an Existing Tower at 183 Soundview Lane, New Canaan, Connecticut

Dear Attorney Bachman:

Pursuant to Connecticut General Statutes ("C.G.S.") §16-50aa, as amended, Cellco Partnership d/b/a Verizon Wireless ("Cellco") hereby requests an order from the Siting Council ("Council") to approve the shared use of an existing 90-foot monopine telecommunications tower located at 183 Soundview Lane in New Canaan, CT (the "Property"). The Property is owned by Keith and Marina Richey. The tower was approved by the Council in Docket No. 487 on September 24, 2020 for Homeland Towers LLC ("Homeland"). It was recently brought to our attention that Homeland intends to transfer the Docket No. 487 Certificate of Environmental Compatibility and Public Need to American Tower Corporation ("ATC") soon. In an excess of caution, Cellco has received authorization from Homeland and ATC to submit this application. A copy of the Docket No. 487 Decision and Order is included in Attachment 1.

Cellco requests that the Council find that the proposed shared use of the existing tower satisfies the criteria of C.G.S § 16-50aa and issue an order approving this request. A copy of this filing is being sent to New Canaan's First Selectman Kevin Moynihan and Lynn Brooks Avni, the Town Planner/Senior Enforcement Officer/Co-Director of Land Use.

Melanie A. Bachman, Esq. June 6, 2022 Page 2

Background

Cellco is licensed by the Federal Communications Commission ("FCC") to provide wireless services throughout the State of Connecticut. Cellco and Homeland have agreed to the proposed shared use of the Soundview Lane tower pursuant to mutually acceptable terms and conditions. Likewise, Homeland and Cellco have agreed to the proposed installation of equipment on the ground within the fenced compound area. ATC is aware of Cellco's intent to share the existing tower. Homeland and ATC have both authorized Cellco to apply for all permits and approvals that may be required for its shared use. (*See Attachment 2*).

Cellco proposes to install nine (9) antennas and six (6) remote radio heads ("RRHs") on new T-Arm antenna mounts at a height of 71 feet above ground level ("AGL"). Cellco will also install two equipment cabinets and a 50-kW diesel-fueled backup generator all within the existing fenced compound. Included in <u>Attachment 3</u> are Cellco's project plans showing the location of Cellco's proposed facility improvements and tower elevation drawings. <u>Attachment 4</u> contains specifications for Cellco's proposed antennas, RRHs and generator.

- C.G.S. § 16-50aa(c)(1) provides that, upon written request for approval of a proposed shared use, "if the council finds that the proposed shared use of the facility is technically, legally, environmentally and economically feasible and meets public safety concerns, the council shall issue an order approving such shared use." Cellco respectfully submits that the shared use of the tower satisfies these criteria.
- A. <u>Technical Feasibility</u>. The existing tower is structurally capable of supporting Cellco's antennas, RRHs, T-Arm mounts and related equipment. The proposed shared use of this tower is, therefore, technically feasible. A Structural Analysis Report ("SA") dated March 25, 2022 prepared by ATC confirms that the tower can support Cellco's proposed tower loading. A separate Mount Analysis Report ("MA"), also dated May 25, 2022, was also prepared for the proposed antenna and RRH mount assembly. Copies of the SA and MA are included in Attachment 5.
- **B.** <u>Legal Feasibility.</u> Under C.G.S. § 16-50aa, the Council has been authorized to issue orders approving the shared use of an existing tower, such as the existing Soundview Lane tower. This authority complements the Council's prior-existing authority under C.G.S. § 16-50p to issue orders approving the construction of new towers that are subject to the Council's jurisdiction. In addition, §16-50x(a) directs the Council to "give such consideration to other state laws and municipal regulations as it shall deem appropriate" in ruling on requests for the shared use of existing tower facilities. Under the statutory authority vested in the Council, an order by

Melanie A. Bachman, Esq. June 6, 2022 Page 3

the Council approving the requested shared use would permit the Applicant to obtain a building permit for the proposed installations.

- **C.** Environmental Feasibility. The proposed shared use of the existing tower would have minimal environmental effects, for the following reasons:
 - 1. The proposed installation of nine (9) antennas and six (6) RRHs on T-Arms at a height of 71 feet AGL on the existing 90-foot monopine tower would have an insignificant incremental visual impact on the area around the Property. As mentioned above, Cellco's ground-based equipment will be located within the existing fenced compound. Cellco's shared use of the existing tower would, therefore, not cause any significant change or alteration in the physical or environmental characteristics of the existing facility the Property or the surrounding area.
 - 2. Noise associated with Cellco's proposed facility will comply with State and local noise standards. Noise associated with the backup generator is exempt from state and local noise standards.
 - 3. Operation of Cellco's antennas at this site would not exceed the RF emissions standards adopted by the Federal Communications Commission ("FCC"). Included in <u>Attachment 6</u> of this filing are Cellco's Far Field Emissions Calculations that demonstrate that the facility will operate well within the FCC's safety standards.
 - 4. Under ordinary operating conditions, the proposed installation would not require the use of any water or sanitary facilities and would not generate air emissions or discharges to water bodies or sanitary facilities. After construction is complete the proposed installations would not generate any increased traffic to the facility other than periodic maintenance visits to the cell site.

The proposed shared use of the existing tower would, therefore, have a minimal environmental effect, and is environmentally feasible.

D. <u>Economic Feasibility</u>. As previously mentioned, Cellco has entered into an agreement with Homeland for the shared use of the existing tower subject to mutually agreeable terms. The proposed tower sharing is, therefore, economically feasible.

Melanie A. Bachman, Esq. June 6, 2022 Page 4

E. <u>Public Safety Concerns.</u> As discussed above, the tower is structurally capable of supporting Cellco's antennas, T-Arm mounts, RRHs and all tower-mounted equipment. Cellco is not aware of any public safety concerns relative to the proposed sharing of the existing the Soundview Lane tower. In fact, the provision of new and improved wireless service through Cellco's shared use of the existing tower would enhance the safety and welfare of area residents and members of the general public living in and traveling through northern New Canaan.

Conclusion

A Certificate of Mailing verifying that this filing was sent to municipal officials, the Property owners, Homeland and ATC is included in <u>Attachment 7</u>.

For the reasons discussed above, the proposed shared use of the existing tower at the Property satisfies the criteria stated in C.G.S. § 16-50aa and advances the General Assembly's and the Council's goal of preventing the unnecessary proliferation of towers in Connecticut. The Applicant, therefore, respectfully requests that the Council issue an order approving the proposed shared use.

Thank you for your consideration of this matter.

Very truly yours,

Kun & MM— Kenneth C. Baldwin

Enclosures Copy to:

Kevin Moynihan, First Selectman Lynn Brooks Avni, Town Planner/Senior Enforcement Officer/Co-Director of Land Use Keith and Marina Richey, Property Owners Homeland Towers LLC American Tower Corporation Tim Parks

ATTACHMENT 1

DOCKET NO. 487 – Homeland Towers, LLC and New Cingular	}	Connecticut
Wireless PCS, LLC d/b/a AT&T application for a Certificate of		
Environmental Compatibility and Public Need for the construction,	}	Siting
maintenance, and operation of a telecommunications facility		
located at 183 Soundview Lane, New Canaan, Connecticut.	}	Council
		Contombou 24, 2020

September 24, 2020

Decision and Order

Pursuant to Connecticut General Statutes §16-50p and the foregoing Findings of Fact and Opinion, the Connecticut Siting Council (Council) finds that the effects associated with the construction, maintenance, and operation of a telecommunications facility, including effects on the natural environment, ecological balance, public health and safety, scenic, historic, and recreational values, agriculture, forests and parks, air and water purity, and fish, aquaculture and wildlife are not disproportionate, either alone or cumulatively with other effects, when compared to need, are not in conflict with the policies of the State concerning such effects, and are not sufficient reason to deny the application, and therefore directs that a Certificate of Environmental Compatibility and Public Need, as provided by General Statutes § 16-50k, be issued to Homeland Towers, LLC, hereinafter referred to as the Certificate Holder, for a telecommunications facility at 183 Soundview Lane, New Canaan, Connecticut.

Unless otherwise approved by the Council, the facility shall be constructed, operated, and maintained substantially as specified in the Council's record in this matter, and subject to the following conditions:

- 1. The tower shall be constructed as a stealth "tree" monopole at a height of 85 feet above ground level to provide the proposed wireless services, sufficient to accommodate the antennas of New Cingular Wireless PCS, LLC and other entities, both public and private. The height of the "tree branches" at the top of the monopole shall not exceed 90 feet above ground level and the density and configuration of the "tree branches" shall conceal the antennas. The height of the tower may be extended after the date of this Decision and Order pursuant to regulations of the Federal Communications Commission.
- 2. The Certificate Holder shall prepare a Development and Management (D&M) Plan for this site in compliance with Sections 16-50j-75 through 16-50j-77 of the Regulations of Connecticut State Agencies. The D&M Plan shall be submitted to and approved by the Council prior to the commencement of facility construction and shall include:
 - a) a certified letter from a wireless telecommunications carrier with a firm commitment to install associated wireless equipment at the facility upon completion of construction;
 - b) final site plan(s) for development of the facility that employ the governing standard in the State of Connecticut for tower design in accordance with the currently adopted International Building Code and include specifications for the tower, tower foundation, antennas and equipment compound including, but not limited to, fence design including finish/color, landscaping including taller plantings to conceal the equipment cabinet, lower growth plantings in front of the taller plantings and a warranty for the plantings, ground equipment, equipment cabinet including plans to minimize the cabinet's total height above grade, access road, utility installation and emergency backup generator;
 - c) the tower shall be designed with a yield point to ensure that the tower setback radius remains within the boundaries of the subject property;
 - d) construction plans for site clearing, grading, landscaping, water drainage and stormwater control, and erosion and sedimentation controls consistent with the 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, as amended; and

- e) proposed hours and days of the week for construction activities.
- 3. Prior to the commencement of operation, the Certificate Holder shall provide the Council worst-case modeling of the electromagnetic radio frequency power density of all proposed entities' antennas at the closest point of uncontrolled access to the tower base, consistent with Federal Communications Commission, Office of Engineering and Technology, Bulletin No. 65, August 1997. The Certificate Holder shall ensure a recalculated report of the electromagnetic radio frequency power density be submitted to the Council if and when circumstances in operation cause a change in power density above the levels calculated and provided pursuant to this Decision and Order.
- 4. Upon the establishment of any new federal radio frequency standards applicable to frequencies of this facility, the facility granted herein shall be brought into compliance with such standards.
- 5. The Certificate Holder shall provide the Council with a copy of necessary permits from any other state or federal agency with concurrent jurisdiction prior to the commencement of construction.
- 6. The Certificate Holder shall permit public or private entities to share space on the proposed tower for fair consideration, or shall provide any requesting entity with specific legal, technical, environmental, or economic reasons precluding such tower sharing.
- 7. Unless otherwise approved by the Council, if the facility authorized herein is not fully constructed with at least one fully operational wireless telecommunications carrier providing wireless service within eighteen months from the date of the mailing of the Council's Findings of Fact, Opinion, and Decision and Order (collectively called "Final Decision"), this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council before any such use is made. The time between the filing and resolution of any appeals of the Council's Final Decision shall not be counted in calculating this deadline. Authority to monitor and modify this schedule, as necessary, is delegated to the Executive Director. The Certificate Holder shall provide written notice to the Executive Director of any schedule changes as soon as is practicable.
- 8. Any request for extension of the time period referred to in Condition 7 shall be filed with the Council not later than 60 days prior to the expiration date of this Certificate and shall be served on all parties and intervenors, as listed in the service list, and the Town of New Canaan.
- 9. If the facility ceases to provide wireless services for a period of one year, this Decision and Order shall be void, and the Certificate Holder shall dismantle the tower and remove all associated equipment or reapply for any continued or new use to the Council within 90 days from the one year period of cessation of service. The Certificate Holder may submit a written request to the Council for an extension of the 90 day period not later than 60 days prior to the expiration of the 90 day period.
- 10. Any nonfunctioning antenna, and associated antenna mounting equipment, on this facility shall be removed within 60 days of the date the antenna ceased to function.
- 11. In accordance with Section 16-50j-77 of the Regulations of Connecticut State Agencies, the Certificate Holder shall provide the Council with written notice two weeks prior to the commencement of site construction activities. In addition, the Certificate Holder shall provide the Council with written notice of the completion of site construction, and the commencement of site operation.

Docket No. 487 Decision and Order Page 3

- 12. The Certificate Holder shall remit timely payments associated with annual assessments and invoices submitted by the Council for expenses attributable to the facility under Conn. Gen. Stat. §16-50v.
- 13. This Certificate may be transferred in accordance with Conn. Gen. Stat. §16-50k(b), provided both the Certificate Holder/transferor and the transferee are current with payments to the Council for their respective annual assessments and invoices under Conn. Gen. Stat. §16-50v. In addition, both the Certificate Holder/transferor and the transferee shall provide the Council a written agreement as to the entity responsible for any quarterly assessment charges under Conn. Gen. Stat. §16-50v(b)(2) that may be associated with this facility. If construction has not been completed in accordance with Condition 7 of this Decision and Order at the time the Certificate is requested to be transferred, a certified letter from a wireless telecommunications carrier with a firm commitment to install associated wireless equipment at the facility upon completion of construction shall also be provided.
- 14. The Certificate Holder shall maintain the facility and associated equipment, including but not limited to, the tower, tower foundation, antennas, equipment compound, radio equipment, access road, utility line and landscaping in a reasonable physical and operational condition that is consistent with this Decision and Order and a Development and Management Plan to be approved by the Council.
- 15. If the Certificate Holder is a wholly-owned subsidiary of a corporation or other entity and is sold/transferred to another corporation or other entity, the Council shall be notified of such sale and/or transfer and of any change in contact information for the individual or representative responsible for management and operations of the Certificate Holder within 30 days of the sale and/or transfer.
- 16. This Certificate may be surrendered by the Certificate Holder upon written notification and acknowledgment by the Council.

We hereby direct that a copy of the Findings of Fact, Opinion, and Decision and Order be served on each person listed in the Service List, dated July 8, 2020, and notice of issuance published in The New Canaan Advertiser.

By this Decision and Order, the Council disposes of the legal rights, duties, and privileges of each party named or admitted to the proceeding in accordance with Section 16-50j-17 of the Regulations of Connecticut State Agencies.

ATTACHMENT 2

Letter of Authorization

Municipality:
Tax Map Number:

Town of New Canaan Map 40, Block 105, Lot 74

RE: Owner Authorization

Homeland Towers, LLC ("Homeland"), the lessee of property located at 183 Soundview Lane, New Canaan, Connecticut (identified as Map 40, Block 105, Lot 74) in the Town of New Canaan, County of Fairfield, State of Connecticut, (the "Property") does hereby authorize Cellco Partnership, a Delaware general partnership, d/b/a Verizon Wireless ("Verizon") and its agents and representatives, as Homeland's Agent for the purpose of completing, executing, and filing any application(s) with the Connecticut Siting Council and the Town of New Canaan and to obtain approvals necessary to permit Verizon's operation of a wireless communications facility on the Property.

HOMELAND TOWERS, LLC
Ву:
Name: Stand J. Vicente
Title: Plesident
Date: 5/16/2022

Sworn to before me this day of May, 2022

NOTARY PUBLIC

Rebecca Hall Notary Public-Connecticut My Commission Expires August 31, 2023

LETTER OF AUTHORIZATION

ATC SITE#/NAME/PROJECT: 209477 / New Canaan 2 / OAA768680 SITE ADDRESS: 183 Soundview Ln New Canaan, CT 06840-2734

APN: NCAN M:0040 B:105 L:00074

LICENSEE: Cellco Partnership D/B/A Verizon Wireless LLC

I, Margaret Robinson, Senior Counsel for American Tower*, owner of the tower facility located at the address identified above (the "Tower Facility"), do hereby authorize **Cellco Partnership D/B/A Verizon Wireless LLC** its successors and assigns, and/or its agent, (collectively, the "Licensee") to act as American Tower's non-exclusive agent for the sole purpose of filing and consummating any land-use or building permit application(s) as may be required by the applicable permitting authorities for Licensee's telecommunications' installation.

We understand that this application may be denied, modified or approved with conditions. The above authorization is limited to the acceptance by Licensee only of conditions related to Licensee's installation and any such conditions of approval or modifications will be Licensee's sole responsibility.

Signature:

Print Name: Margaret Robinson

Senior Counsel American Tower*

NOTARY BLOCK

Commonwealth of MASSACHUSETTS County of Middlesex

This instrument was acknowledged before me by Margaret Robinson, Senior Counsel for American Tower*, personally known to me (or proved to me on the basis of satisfactory evidence) to be the person whose name is subscribed to the within instrument and acknowledged to me that he executed the same.

WITNESS my hand and official seal, this 30th day of March 2022

NOTARY SEAL

MELISSA ANN METZLER
Notary Public
Commonwealth of Massachusetts
My Commission Expires March 14, 2025

Notary Public My Commission Expires: March 14, 2025

*American Tower includes all affiliates and subsidiaries of American Tower Corporation.

ATTACHMENT 3

verizon /

WIRELESS SERVICES FACILITY

NEW CANAAN NE2 CT 183 SOUNDVIEW LANE NEW CANAAN, CT 06840

DRAWING INDEX

T-1 TITLE SHEET

SP-1 SITE PLAN

C-1 COMPOUND PLAN & SOUTH ELEVATION

C-2 EQUIPMENT AREA PLAN & DETAILS

C-3 EQUIPMENT DETAILS

E-1 ELECTRICAL PLAN, SCHEDULES & NOTES

E-2 SCHEMATIC ONE-LINE RISER DIAGRAM, DETAILS & NOTES

E-3 EQUIPMENT GROUNDING PLANS & NOTES

E-4 GROUNDING DETAILS

B-1 RF BILL OF MATERIALS & MECHANICAL SPECIFICATIONS

N-1 NOTES & SPECIFICATIONS

SITE DIRECTIONS

START: 20 ALEXANDER DRIVE WALLINGFORD, CONNECTICUT 06492

END: 183 SOUNDVIEW LANE NEW CANAAN, CT 06840

1.	FROM ALEXANDER DRIVE TURN RIGHT ONTO BARNES INDUSTRIAL F	DS.
		0.3 MI
2.	TURN LEFT AT THE 1ST CROSS STREET ONTO CT-68W	0.4 MI
3.	TURN RIGHT	0.2 MI
4.	TURN RIGHT ONTO N COLONY RD	0.3 MI
5.	TURN LEFT TO MERGE ONTO CT-15S TOWARD NEW HAVEN	0.3 MI
6.	MERGE ONTO CT-15S	44.8 M
7.	TAKE EXIT 38 TOWARD CARTER ST	0.2 MI
8.	CONTINUE ONTO CARTER ST	2.0 MI
9.	TURN RIGHT ONTO CT-106N	43 FT
10.	TURN LEFT ONTO CANOE HILL RD	1.1 MI
11.	TUBN RIGHT ONTO LAUREL RD	1.3 MI
12.	TURN RIGHT ONTO SOUNDVIEW LN (DESTINATION ON THE RIGHT)	0.5 MI

LOCATION MAP

SITE INFORMATION

VZ SITE NAME: NEW CANAAN NE2 CT VZ PROJ. FUZE I.D.: 16474051 VZ LOCATION CODE: 691194 VZ PROJECT CODE: 20212261775

LOCATION: 183 SOUNDVIEW LANE NEW CANAAN, CT 06840

PROJECT SCOPE: INSTALLATION CONSISTS OF SIX (6) PANEL ANTENNAS, THREE (3) LS6 ANTENNAS W/INTEGRATED RRHS, SIX (6) DUAL-BAND REMOTE RADIO HEADS (RRHS) & ONE (1) 120VP MOUNTED TO AN EXIST 90°L AGL MONOPINE TOWER IN ADDITION TO BASE EQUIPMENT CABINETS & A 50kW DIESEL FUELED EMERGENCY STANDBY POWER GENERATOR LOCATED AT GRADE WITHIN EXIST. (1,763± SF) FENCED COMPOUND AREA.

MAP/BLOCK/LOT: 40-105-74

LATITUDE: 41° 11' 26.43' N (41.190675" N)

LONGITUDE: 73° 29' 42.16" W (73.495044° W)

INC. DATED JUNE 24, 2019. GROUND ELEVATION: 502.3'± AMSL TOWER OWNER: AMERICAN TOWER CORPORATION

COORDINATES & GROUND ELEVATION INDICATED HEREIN WERE ESTABLISHED FROM AN

FAA 1-A SURVEY CERTIFICATION

AS PREPARED BY LANGAN CT.

3500 REGENCY PARKWAY, SUITE 100 CARY, N.C. 27518

APPLICANT: CELLCO PARTNERSHIP d/o/a VERIZON WIRELESS 20 ALEXANDER DRIVE WALLINGFORD, CT 06492

LEGAL/REGULATORY COUNSEL: ROBINSON & COLE, LLP KENNETH C. BALDWIN, ESQ. 260 TRUMBULL STREET HARTFORD, CT 06103

> ENGINEER CONTACT: ALL-POINTS TECHNOLOGY CORP., P.C. 567 VAUXHALL STREET EXTENSION - SUITE 311 WATERFORD, CT 06385 860 663-1697

Cellco Partnership d/b/a

CONSTRUCTION DOCUMENTS NO DATE REVISION 03/18/22 FOR FILING 05/25/22 FOR FILING

DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S. TRODDEN P.E. COMP: ALL-POINTS TECHNOLOGY CORPORATION

ADD: 567 VAUXHALL STREET EXT. SUITE 311 WATERFORD, CT 06385

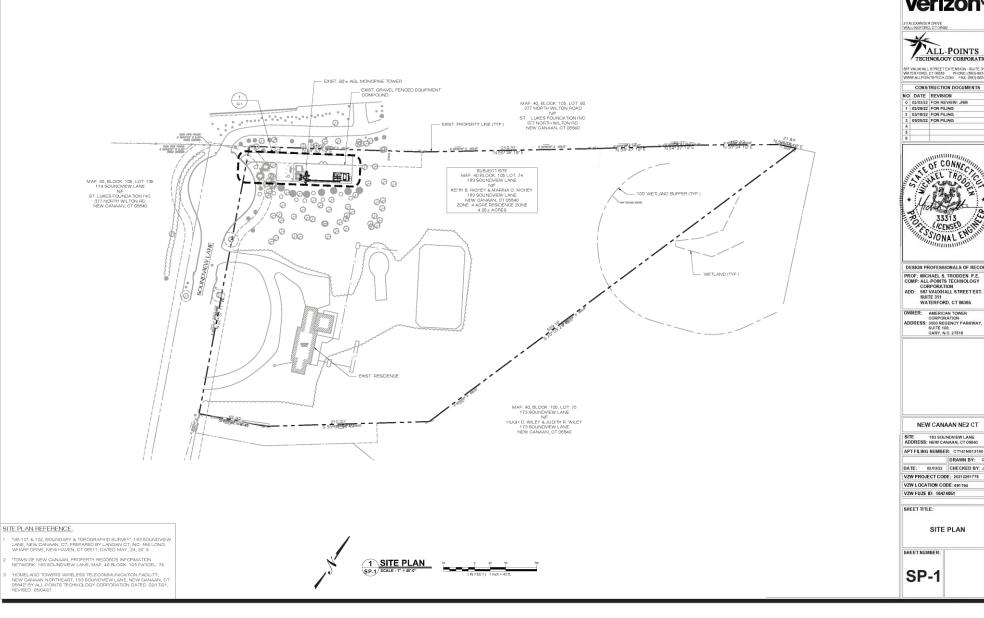
OWNER: AMERICAN TOWER ADDRESS: 3500 REGENCY PARKWAY, SUITE 100 CARY, N.C. 27518

NEW CANAAN NE2 CT

SITE 183 SOUNDVIEW LANE ADDRESS: NEW CANAAN, CT 06840

APT FILING NUMBER: CT141NB13190

DRAWN BY: CSH 02/03/22 CHECKED BY: JRM


VZW PROJECT CODE: 20212261775 VZW LOCATION CODE: 601194

VZW FUZE ID: 16474051 SHEET TITLE

TITLE SHEET

SHEET NUMBER

T-1

Cellco Partnership d/b/a

verizon

CONSTRUCTION DOCUMENTS NO DATE REVISION

0 02/03/22 FOR REVIEW: JRM

1 02/28/22 FOR FILING

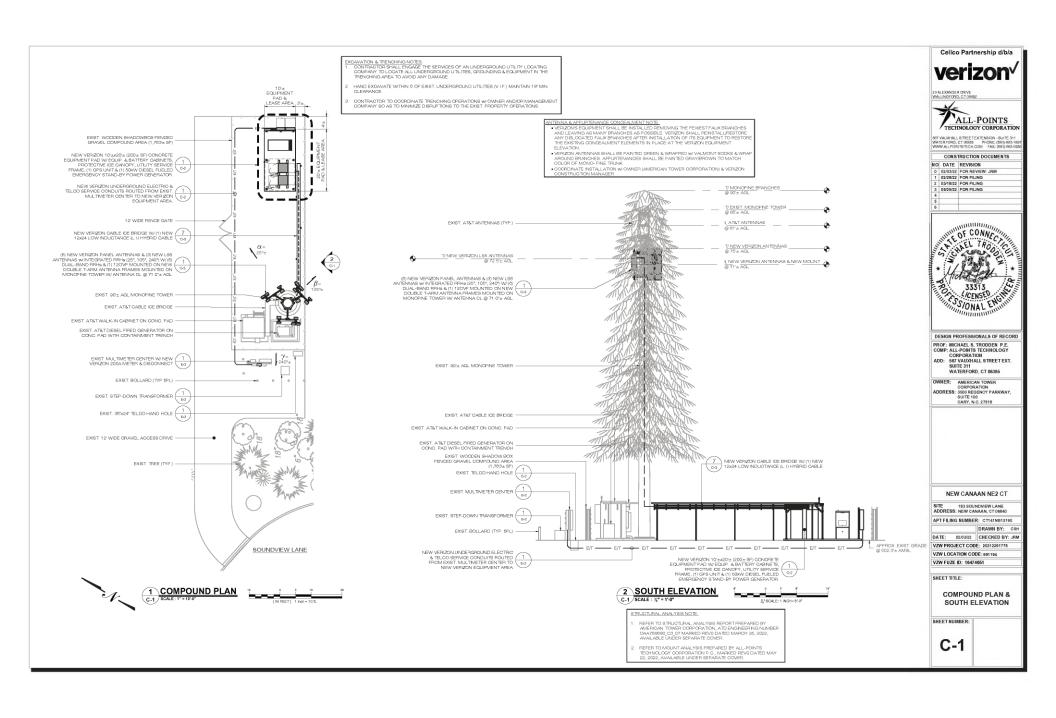
2 03/18/22 FOR FILING 05/25/22 FOR FILING

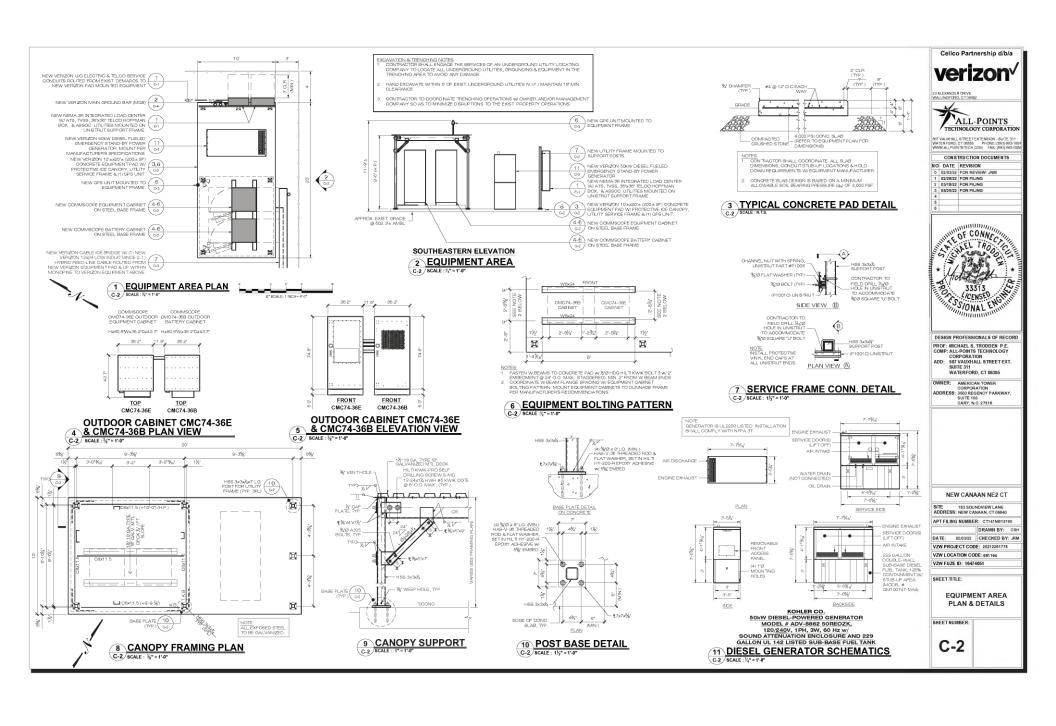
DESIGN PROFESSIONALS OF RECORD

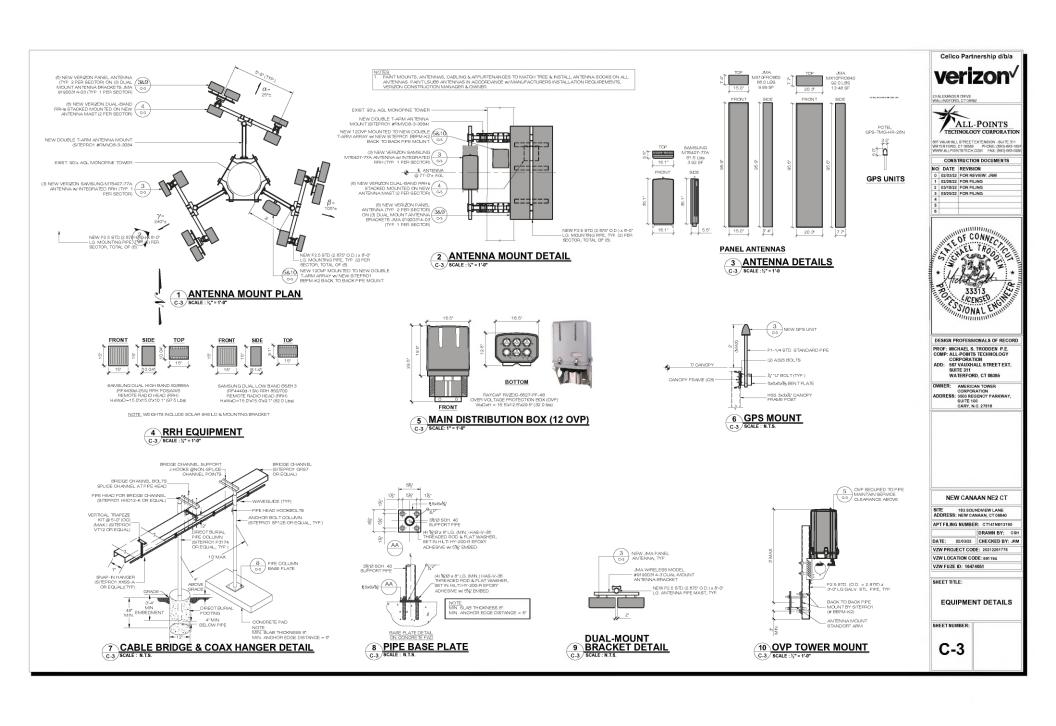
PROF: MICHAEL S. TRODDEN P.E.
COMP: ALL-POINTS TECHNOLOGY
CORPORATION
ADD: 567 VAUXHALL STREET EXT.
SUITE 311
WATERFORD, CT 06385

OWNER: AMERICAN TOWER
CORPORATION
ADDRESS: 3500 REGENCY PARKWAY,
SUITE 100
CARY, N.C. 27516

NEW CANAAN NE2 CT


SITE 183 SOUNDVIEW LANE ADDRESS: NEW CANAAN, CT 06840


DRAWN BY: CSH


DATE: 02/03/22 CHECKED BY: JRM VZW PROJECT CODE: 20212261775

VZW FUZE ID: 16474051

SITE PLAN

SYMBOL	DESCRIPTION	ABBREV.	DESCRIPTION
ď	FUSED DISCONNECT SWITCH (VOLTAGE AS PEQUIRED)	AFF	ABOVE FINISHED FLOOR
- E -	ELECTRICAL CONDUIT & CABLES	AFG	ABOVE FINISHED GRADE
- T -	TELCO/FIBER CONDUIT & DRAG LINE	AGB	ANTENNA GROUND BAR
	GROUND CONDUIT & WIRE	AWG	AMERICAN WIRE GAGE
Ф	DUPLEX RECEPTACLE WITH PANEL DP1 CIRCUIT INDICATED. (MOUNTED 42° AFF)	BCW	BARE COPPER WIRE
₩	ELECTRIC METER AND BASE. COORDINATE WITH UTILITY COMPANY	С	CONDUIT
Т	TRANSFORMER	DP	DISTRIBUTION PANEL
	NON-FUSED DISCONNECT SWITCH (VOLTAGE AS REQUIRED)	ECB	ENCLOSED CIRCUIT BREAKER
24	GROUND BAR	EGB	EQUIPMENT GROUND BAR
ூ	SPECIAL PURPOSE OUTLET	FACP	FIRE ALARM CONTROL PANEL
8	GROUND ROD	GFCI	GROUND FAULT CIRCUIT INTERRUPTER
Ť	GROUND CONNECTION	GRC	GALVANIZED RIGID CONDUIT
ILC	INTEGRATED LOAD CENTER W/ XFER SWITCH	KWH	KILO-WATT-HOUR
\$ _T	12 HR. TIMER SWITCH (MOUNTED 48" AFG.)	LFMC	LIQUID TIGHT FLEXIBLE METALLIC CONDUIT
* ₩P	DUPLEX RECEPTACLE WITH GFCI AND WEATHERPROOF COVER WHILE IN-USE	MGB	MASTER GROUND BAR
듁	GROUND BAR	MTS	MANUAL TRANSFER SWITCH
ad Da	LIGHT FIXTURE	NF	NON-FUSED
		N.O.	NORMALLY OPEN
		RGS	RIGID STEEL CONDUIT
		SA	SURGE ARRESTOR
		TL.	TWIST-LOCK
		UNO	UNLESS NOTED OTHERWISE
		WP	WEATHERPROOF

TYPE		ACTURER	GENERAL	LAMP	MOUNTING	NOTE
III	CATALOG	MODEL No.	DESCRIPTION	LAME	MCONTING	NOTE
Α		ING INC. LED BULLET2X12W	BULLET FLOOD 2X12W	LED (2490Lm)	SURFACE	1,2
-	-		-	-	-	-
		ROUND WEATH	ERPROOF BOX MO	MASTER-C	ARR MODEL:	r
	7219K71. ALUMINUM V	VEATHERPROC	F COVER MOMAST	TER-CARR I	VIODEL# 721	BK13.
		FOLUE	MENT LE	CEN		
		EQUIP	MICINI L	GEN	U	
DESK	BNATION E	DESCRIPTION				
LC	9	W, W/ 200A SE RANSFER SW/ GENERATOR). N	DAD CENTER (LC) RVICE DISCONNEC TOH AND DOUBLE IEMA 3R ENGLOSU RNISH BOLT-ON C	TVSS (NOF	AUTOMATK MAL POWER NO YEAR MA	AND
	1	WARRANTY FU OLES, 25KAK				FAL 42
\$T1	F	OLES, 25KAIO	, 12 HOUR TIMER S 14K49.	SWITCH - M	ICMASTER-C	
\$T1	\ F	20A @ 125V MODEL# 70 (SEE NOTE)	, 12 HOUR TIMER S 14K49.	OF OUTLE		

HAND EXCAVATE WITHIN 5' OF EXIST. UNDERGROUND UTILITIES (V.I.F.) MANTAN 18' MIN. CLEARANCE. CONTRACTOR TO COORDINATE TRENCHING OPERATIONS W OWNER AND/OR MANAGEMENT COMPANY SO AS TO MININZE DISEMPTIONS TO THE EXIST. PROPERTY OPERATIONS. REINSTATE FINISHED GRADE TO PRE-CONSTRUCTION CONDITIONS & STANDARDS.

				PA	NEL	SCH	IEDU	LE			
P/	MEL NAME/LOCATION: ILC/ VERIZON MAIN: 200A, 1P MC VOLTAGE/PHASE 120/240V, 12 PANEL RATING: 200A, 240 VA	B , 3W INTE			NTER (II	.C)				MOUNTING: SURFACE NUFACTURER: ASCO OR EQUAL REAKER TYPE: BOUT ON AIC RATING: 42K MIN.	
CKT NO.	LOAD DESCRIPTION	TRIP (AMPS)	Р	LOAD (AMPS)	A (kVA)	B (kVA)	LOAD (AMPS)	Р	TRIP (AMPS)	LOAD DESCRIPTION	CKT NO.
1	RECTIFIER #1	30	2	5.83	1.4		5.83	2	30	RECTIFIER #5	5
3				5.83	1.4	1.4	5.83				4
7	RECTIFIER # 2	30	2	5.83	1.4	1.4	5.83	2	30	RECTIFIER #6	8
9				5.83	1.4	1.4	5.83				10
11	RECTIFIER #3	30	2	5.83		1.4	5.83	2	30	RECTIFIER #7	12
13	RECTIFIER # 4	30	2	5.83	1.4		5.83	2	30	RECTIFIER #8	14
15	HECTIFIER # 4	30	2	5.83		1.4	5.83	2	30	RECTIFIER #8	16
17	QUADRUPLEX RECEPTAGLE	20	1	0.36	0.54		0.18	1	20	GFCI (EQUIPMENT CABINET)	18
19	GFCI (CORNER OF EQUIP, CANOPY)	20	1	0.18		0.36	0.18	1	20	GFCI (TELCO BOX)	20
21	GFOI (CORNER OF EQUIP. CANOPY)	20	1	0.18	1.62		1.44	1	15	GEN BATTERY CHARGER	22
23	GFOI (CORNER OF EQUIP. CANOPY)	20	1	0.18		1.68	1.50	1	15	GEN BLOCK HEATER	24
25	GFCI (CORNER OF EQUIP, CANOPY)	20	1	0.18	0.36		0.18	1	15	GEN GFCI RECEPTACLE	26
27						0.12	0.12	1	15	CANOPY LIGHTING	28
29					0.01		0.01	2	80	TVSS	
31						0.01	0.01			1100	32
33											34
35	SPARE	-	-					-	-	SPARE	36
37	SPARE	-						-	-	SPAPE	38
39	SPARE	-	-					-	-	SPARE	40
41	SPARE	-	-					-	-	SPARE	42
					Α	В	TOTAL				
					8.13	7.77	16.1	TOTAL	PANEL L	OAD (kW)	
							38.4	TOTAL	RATED 0	APACITY (kW)	
							22.3	TOTAL	PANEL F	IATED SPARE CAPACITY (kW)	
							67.8	PANEL	AMPS (A)	
1.	BRANCH OB AND CONDUCTOR SIZE AND CONFIRM ELECTRICAL REQUIREMENTS I	GUANTIT	Y BASEI NSTALL	ON SPEC ATION:	FIED EQ	JIPMENT		- GOPP - GOPP - INSUL - BOLT- - DIREC - LAMIN	ER BUSSI ER EQUIPI ATED CO ON BRAN TORY FR. IATED EN T DOOR (I	ESSORIES NG ONLY WENT GROUND KIT PPER SOLID NEUTRAL BAR ICH OROUT BREAKERS AME WITH GLASSPLASTIO GRAVED BRAKELIE NAMEPLATE JOOR-IN-DOOR CONSTRUCTION)	

NEW VERIZON JNDERGROUND ELECTRIC & TELCO SERVICE FROM EXIST. MULTIMETER CENTER TO NEW VERIZON EQUPMENT AREA NEW VERIZON MAIN GROUND BAR (MOB) MOUNTED TO H-FRAME ADJACENT TO VERIZON LOAD CENTER

Cellco Partnership d/b/a verizon

967 VALUE-IALL STREET EXTENSION - SUITE 31 WATER FORD, CT 96365 PHONE: (860)-463-WWW.ALLPOINTSTECH.COM FAX: (860)-863-

CONSTRUCTION DOCUMENTS

NO DATE REVISION 02/03/22 FOR REVIEW: JRM 02/28/22 FOR FILING 03/18/22 FOR FILING 05/25/22 FOR FILING

DESIGN PROFESSIONALS OF RECORD

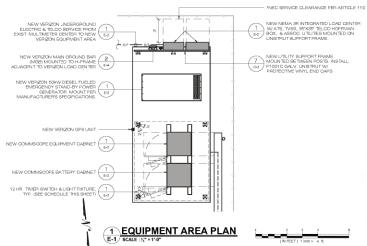
PROF: MICHAEL S. TRODDEN P.E.
COMP: ALL-POINTS TECHNOLOGY
CORPORATION
ADD: 567 VAUXHALL STREET EXT.
SUITE 311
WATERFORD, CT 06385

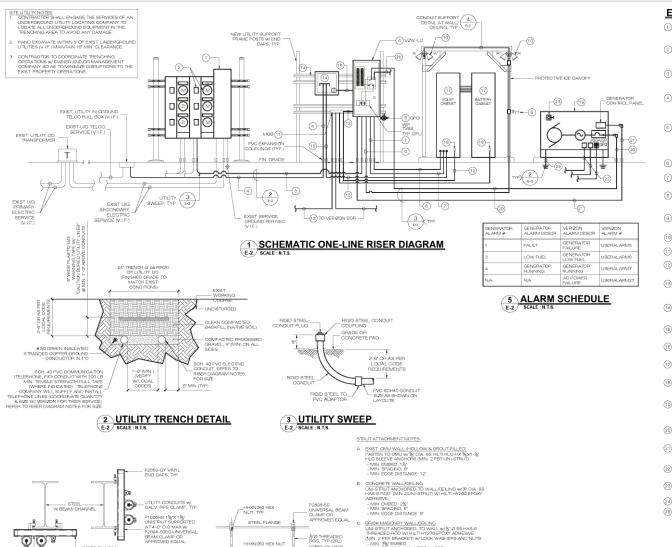
OWNER: AMERICAN TOWER CORPORATION
ADDRESS: 3500 REGENCY PARKWAY,
SUITE 100
GARY, N.C. 27518

NEW CANAAN NE2 CT

SITE 183 SOUNDVIEW LANE ADDRESS: NEW CANAAN, CT 06840

APT FILING NUMBER: CT141NB13190 DRAWN BY: CSH


DATE: 02/03/22 CHECKED BY: JRM VZW PROJECT CODE: 20212261775 VZW LOCATION CODE: 691194 VZW FUZE ID: 16474051


SHEET TITLE:

ELECTRICAL PLAN **SCHEDULES & NOTES**

SHEET NUMBER

E-1

HHXN050 HEX NUT

wP1064 SQUARE WASHER, TYP BOTH SIDES

O O P

TIES:
ALL EXTERIOR METAL COMPONENTS
OF UNISTRUT SYSTEM SHALL BE HOT
DIP GAL VANUED HIG)
CONTRACTOR SHALL COORDINATE
NISTALLATION OF THAPEZ SYSTEM W/
EXIST DUCTWOCK, PIPING, ETC.
PROVIDE ALL BROGNIG, BRACING,
FAMING, ETC. AS REQUIRED.

P1000HS 1%'X 1%' UNISTRUT SUPPORTED AT 4'-0' O.O MAX

UTILITY CONDUITS, w/ GALV. PIPE CLAMP, TYP

P2898-50EG UNIVERSAL BEAM CLAMP OR APPROVED EQUAL

UTILITY CONDUIT SUPPORT DETAILS

P2859-GY VINY END CAPS, TYP

P1000HS - 1%'x 1%' UNISTRUT SUPPORTED AT 4'-0' O.C MAX

UTILITY CONDUITS, W/ GALV. PIPE CLAMP, TYP

- MIN, 3% EMBED. - MIN, SPACING: 16" (VERT & HORZ.) - MIN, EDGE DISTANCE: 16"

WD. JOIST CELLING UNI-STRUT ANCHORED TO U/S OF EXIST. WD. JOIST @

84-0" O.C. MAX W/#10X1%* LG. SIMPSON SD CONNECTOR SCREWS W/FLAT WASHERS (MODEL NO. SD10112), TYP. 2 PER STRUT.

USE STANLESS STEEL ANCHORS INTO CONCRETE.
USE CARBON STEEL ANCHORS INTO BRICK OR
MASONRY.
INSTALL ALL ANCHORS PER MANUFACTURERS
RECOMMENDATIONS.

ELECTRICAL ONE-LINE RISER KEY NOTES:

- EXIST. 1/9, 3/W, 120/240V, 2P-900A, 65,000 AIC MAIN CIRCUIT BREAKER & (2) 1/9, 3/4
 120/240V, 1200A RATED METER CENTER BRANCH UNITS w/ LEVER BYPASS SOCKE
- NEW 120240V, 10, 3M KWH MANUAL BY-PASS METER SCHNEDER ELECTRIC (OR ECUAL) W2004, 2F TENANT CRICUIT BREAKER COCORDINATE INSTALLATION AND ACTIVATION OF METER WITH UTILITY COMPANY REFER TO 16.1 FOR LOCATION LYBEY LOCATION OF METER WITH UTILITY COMPANY AND LOCAL ELECTRICAL INSPECTION METER SOCKET BALL BE CLEARLY LEAGLED CONSISTS MANY SERVICE DE TRANCE, 2001, 120240V, 10, 30V.
- (3)#30 & (1)#6 G IN 2°C TO SUPPORT 2004, 120/240V, 16, 3W NORMAL POWER SERVICE FROM LOAD SIDE OF VERIZON COMBINATION METER SCOKET TO NORMAL TERMINAL OF VERIZON LIC.
- NEW VERIZON 24 PAIR 8 NOLE MODE FERR SERVICE IN 3YO WITH PULL, ROPE ROUTED LINDERGROUND FROM TELCO DEMARC TO NEW HOFFMAN BOX AND FIRER ITERMINATION PAREL FIFTE LOCATED AT VERIZON COUPMENT AFFER ROVICE JUNIOTON BOXIES) AND EPANISION DOUGLINGS AS REQUIRED FINAL TERMINATION BY OTHERS COORDINATE INSTALLATION WITH LOCAL UTILITY COMPANY AND AUTHORITY HAVING JURISDICTION (PLU).
- NEW VERIOU I SOURCE / EM, SW, NEWA SE INTEGRATED LICAD CRITTER W 250A-29 MAN ORQUIT REALIZED ROOF, AUTOMATION TRANSPERS SHORT OF THE SECRET OF E-1 FOR SECONDATIONS CONTRACTOR SHALL PROVIDE THE WRITTEN CARD WITH AS-BULL TERMACH OF CONTRACTOR SHALL PROVIDE THE WRITTEN CARD WITH AS-BULL TERMACH OF CONTRACTOR SHALL PROVIDE THE WRITTEN CARD WITH WITH BLACK LETTERS ON WHITE BACKGROUND MARKED VERSION MOUNT VERSION AND LOAD CENTER SET WEST ECUPRIES TO SEPORT OF SET OF PROTO CARD, VURSTBUT AND INSTALL PROTECTIVE VINYL END CAPS.
- (16) #6 AWG, (1) #96 IN 2' C TO FEED NEW EQUIPMENT CABINET, INSTALL ALL WIRING PER MANUFACTURERS SPECFICATIONS.
- (2) #12 & (1) #12G IN 3(4°C TO FEED NEW EQUIPMENT CABINET 20A/120V GFCI OUTLET.
- (2) #12 & (1) #12G IN 34° C TO FEED NEW 20A120V GFCI CUTLET (NEMA 5-20R) IN NEMA 3B ENCLOSURE LOCATED ON VERIZON LOAD CENTER SUPPORT FRAME. INSTALL APPROX 48° A F G. REFER TO EQUIPMENT LEGEND ON DRAWING E-1 FOR SPECIFICATIONS AND 2E-1 FCR LOCATION.
- (2) #12 & (1) #12G IN 3/4" C TO FEED NEW 20A/120V 12 HR TIMER SWITCH IN NEMA 3R ENCLOSURE LOCATED. INSTALL APPROX. 46" A F.G. REFER TO EQUIPMENT LEGEND ON DRAWING E-1 FOR SEOPICIATIONS AND E-1 FOR LOCATION.
- NEW SERVICE LIGHT FIXTURE. SECURE LIGHT FIXTURE TO J-BOX. REFER TO LIGHTING FIXTURE SOHEDILLE ON DRAWING E-1 FOR SPECIFICATIONS AND E-1 FOR LOCATION. WIRE SWITCH TO CONTROL ALL LIGHTS SMULTAWEQUELY (TYP.)
- (1) MAIN GROUND BAR (MGB). REFER TO E-3 FOR LOCATION AND E-4 FOR DETAILS.
- PROVIDE #6 AWG GREEN INSULATED STRANDED COPPER WIRE IN 1°C AND GROUND VERIZON
 (12) LOAD CENTER TO MAIN GROUND BAR (MGB). REFER TO DRAWING E-3 FOR LOCATION AND
 GROUNDING NOTES.
- PROVIDE #3/0 AWG GREEN INSULATED STRANDED COPPER WIRE (EGR) IN 1°C TO EGR (TYP 2PL) BOND METALLIO CONDUIT WITH #6 AWG GREEN INSULATED STRANDED COPPER WIRE AT BOTH ENDS. REFER TO 2E-1 LOCATION.
- 9'x 3' x 1'NEMA-3R HOFFMAN BOX W/HINGED COVER, LOCKABLE CLASP, %'MARINE GRADE PLYWOOD BACKBOARD PANTED WITH BLACK FIRE RETARDANT INTUMESCENT PANT (14) MOUNTED INSIDE AND () DUPLEX GROLLOGATED INSIDE ON BOTTOM RIGHT HAND CORNER MOUNT HOFFMAN BOX RETYREN EQUIPMENT CANOPY POSTS ON P10010 GALV. UNISTRUIT AND INSTALL PROTECTIVE VIYIL END CAPS.
- (5) FBER TELCO SERVICE ROUTED WITHIN 2" FROM TELCO HOFFMAN BOX TO EQUIPMENT CABINET. FINAL TERMINATION BY OTHERS. PROVIDE JUNCTION BOX(ES) WHERE REQUIRED.
- (2)#12 & (1) #12G IN 3(4" O TO FEED NEW 20A/120V GFCI OUTILET (NEMA 5-20R) IN NEMA 3R RENCLOSURE LOCATED WITHIN VERIZION HOFFMAN BOX. INSTALL APPROX. 48° A F.G. REFER TO E-1 FOR LOCATION.
- BOND EQUIPMENT & BATTERY CABINET TO MAIN GROUND BAR (MGB) PER EQUIPMENT CABINET MANUFACTURES RECORDATIONS MIN 92 AWG GREEN INBULATED STRANDED COPPER WRE INSTALL CABINET INTERAL, CACULIDING FEM MANUFACTURENS SEPECHGATIONS
- NEW VERIZON KOHLER OD. 50kW DIESEL FUELED EMERGENGY STANDBY POWER GENERATOR KOHLER MODEL ARDV-9892 50FEOZK, 120/24/07, 10, 397, 60 HZ W SOUND ATTENIATION SECULOSIVER LOCUBLE-VAULLED SUB-9468 FLEL TANK RIPPER TO GENERATOR MANUFACTURES FOR INSTALLATION RECUREMENTS PROVIDE ROCIENT SCREEN AT UNDERSIDE OF CORRESPANCE OF CONTROL AND SECULOMENT SCREEN AT UNDERSIDE OF CORRESPANCE OF CONTROL AND SECULOMENT SCREEN AT UNDERSIDE OF CORRESPANCE OF CONTROL AND SECULOMENT SCREEN AT UNDERSIDE OF CORRESPANCE OF CONTROL AND SECULOMENT SCREEN AT UNDERSIDE OF CORRESPANCE OF CONTROL AND SECULOMENT SCREEN AT UNDERSIDE OF CORRESPANCE OF CONTROL AND SECULOMENT SCREEN AT UNDERSIDE OF CORRESPANCE OF CONTROL AND SECULOMENT SCREEN AT UNDERSIDE OF CORRESPANCE OF CONTROL AND SECULOMENT SCREEN SCR
- (3) #3/0 & (1) #6G IN 2° C TO SUPPORT 200A, 120/240V, 10/, 3W SERVICE FROM VERIZON GENERATOR TO EMERGENCY TERMINAL LUGS OF ATS
- (2) #12AWG (FOR GENERATOR START SIGNAL) IN 1°C BETWEEN GENERATOR CONTROL. PANEL AND A 15 CONTROL. REFER TO MANUFACTURER'S INSTRUCTION MANUAL FOR ENGINE CONTROL AND MONITORING CIRCUITS WIRING AND TERMINATION REQUIREMENTS.
- PROVIDE (3) BRANCH OF CUIT FEEDS FOR: BLOCK HEATER, WEATHER RESISTANT DUPLEX GFO CUILLT INEMA 5-20R) & ENCLOSURE (NEMA 3R) & BATTERY CHARGER. PROVIDE (6) \$12 & (1) \$12 & N 1' CTO LC. SUPPLY FROM (3) 20A1P OR CUIT DREAKERS COMPATIBLE WITH LC.
- PROVIDE ¾* C AND CONDUCTORS TO SUPPORT REMOTE GENERATOR SHUT-OFF SWITCH WITH BREAK GLASS ENGLOSURE IN PROXIMITY TO GENERATOR COORDINATE FINAL LOCATION WITH LOCAL FIFE MARSHAL. INSTALL ALL REQUIRED SIGNAGE.
- (24) PROVIDE 3/4" C FOR ALARM WIRES ROUTED TO TELCO BOARD ALARM TERMINAL BLOCK
- (25) GROUND GENERATOR PER NEC REQUIREMENTS.

(GENERAL) USE GRO FOR ALL EXTERIOR APPLICATIONS, NOLUDING SWEEPS

(GENERAL) COORDINATE ALL OUTAGES WITH OWNER AND PROVIDE TEMPORARY POWER AS REQUIRED.

(GENERAL) PAINT ALL EXPOSED EXTERIOR CONDUITS TO MATCH EXTERIOR OF EXIST. BUILDING (WHERE APPLICABLE).

(GENERAL) CONTRACTOR SHALL VERIFY THAT ALL BUILDING/STRUCTURE GROUNDING ELECTRODES ARE BONDED WITH APPROPRIATELY SIZED CONDUCTORS PER NEC. (GENERAL) ALL ENTRY HOLE(S) TO BE SEALED WATER TIGHT (WHERE APPLICABLE).

Cellco Partnership d/b/a verizon

CONSTRUCTION DOCUMENTS

NO DATE REVISION 02/03/22 FOR REVIEW: JRM 02/28/22 FOR FILING 03/18/22 FOR FILING 05/25/22 FOR FILING

DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S. TRODDEN P.E. COMP: ALL-POINTS TECHNOLOGY CORPORATION ADD: 567 VAUXHALL STREET EXT. SUITE 311

WATERFORD, CT 06385 OWNER: AMERICAN TOWER CORPORATION
ADDRESS: 3500 REGENCY PARKWAY,
SUITE 100
CARY, N.C. 27518

NEW CANAAN NE2 CT

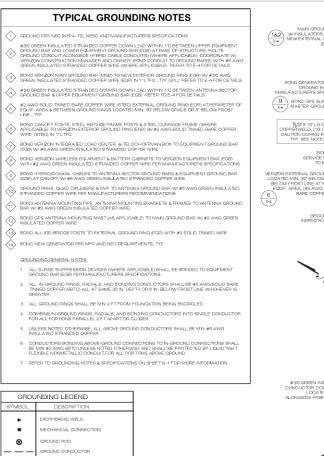
SITE 183 SOUNDVIEW LANE ADDRESS: NEW CANAAN, CT 06840

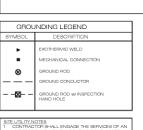
APT FILING NUMBER: CT141NB13190

DRAWN BY: CSH DATE: 02/03/22 CHECKED BY: JRM

VZW PROJECT CODE: 20212261775

VZW LOCATION CODE: 691194

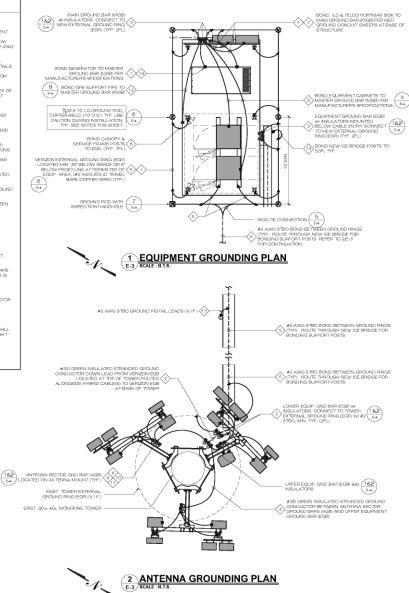

VZW FUZE ID: 16474051


SHEET TITLE

SCHEMATIC ONE-LINE RISER DIAGRAM, **DETAILS & NOTES**

SHEET NUMBER

E-2



SITE UTILITY NOTES

1. CONTRACTOR SHALL ENGAGE THE SERVICES OF AN UNDERGROUND UTILITY LOGATING COMPANY TO LOGATE ALL UNDERGROUND EQUIPMENT IN THE THENORING AREA TO AVOID ANY DAMAGE.

CONTRACTOR TO COORDINATE TRENCHING OPERATIONS W/ OWNER AND/OR MANAGEMENT COMPANY SO AS TO MINIMIZE DISRUPTIONS TO THE EXIST. PROPERTY OPERATIONS.

Cellco Partnership d/b/a verizon ALL-POINTS CONSTRUCTION DOCUMENTS NO DATE REVISION 03/18/22 FOR FILING 05/25/22 FOR FILING ALL AEL TO TROOPE TROOPE 33313 SSIONAL ENGINE

DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S. TRODDEN P.E. COMP: ALL-POINTS TECHNOLOGY CORPORATION ADD: 567 VAUXHALL STREET EXT. SUITE 311 WATERFORD, CT 06385

OWNER: AMERICAN TOWER CORPORATION
ADDRESS: 3500 REGENCY PARKWAY,
SUITE 100
CARY, N.C. 27518

NEW CANAAN NE2 CT

SITE 183 SOUNDVIEW LANE ADDRESS: NEW CANAAN, CT 06840

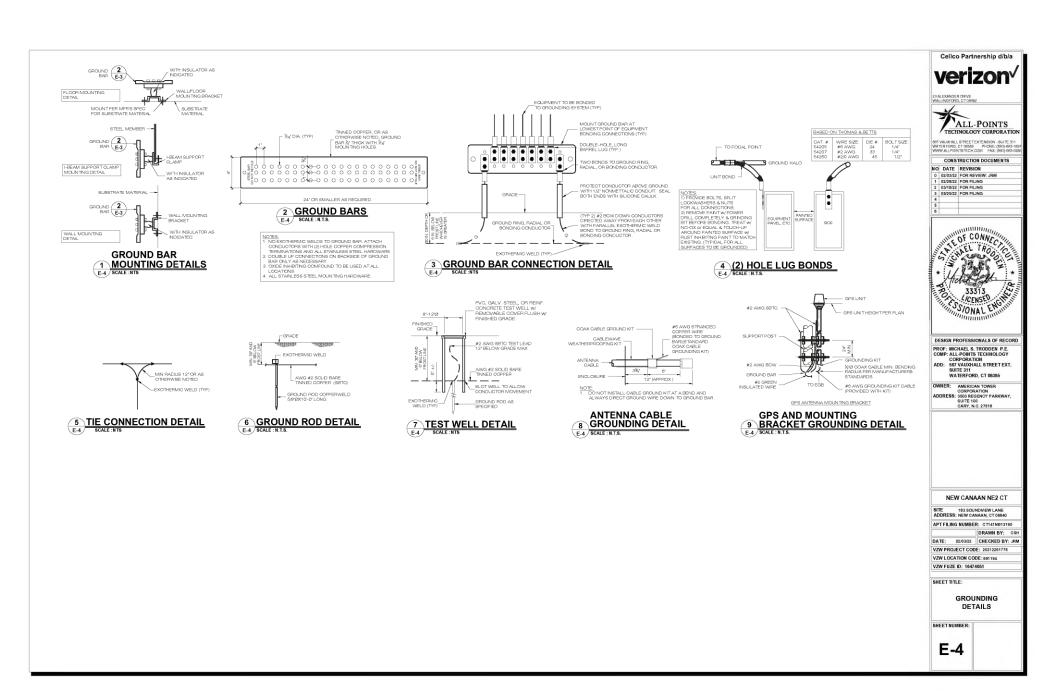
APT FILING NUMBER: CT141NB13190

DRAWN BY: CSH

DATE: 02/03/22 CHECKED BY: JRM

VZW PROJECT CODE: 20212261775

VZW LOCATION CODE: 691194


VZW FUZE ID: 16474051

SHEET TITLE

EQUIPMENT GROUNDING PLANS & NOTES

SHEET NUMBER

E-3

EQUIPMENT SPECIFICATIONS										
SECTOR	ANTENNA MAKE/MODEL	QTY	AZIMUTH	EQUIPMENT STATUS	HEIGHT (IN)	WIDTH (IN)	DEPTH (IN)	WEIGH (LBS)		
ALPHA	700/8502100: JMA MX10FRO860	1	25°	NEW	95.9	15.0	7.4	66.0		
	1900: JMA MX10FRO860	1	25°	NEW	95.9	15.0	7.4	66.0		
	SAMSUNG MT6407-77A	1	25°	NEW	35.1	16.1	5.51	87.1		
BETA	700/8502100: JMA MX10FRO840	1	105°	NEW	95.6	20.3	7.7	92.0		
	1900: JMA MX10FRO940	1	105°	NEW	95.6	20.3	7.7	92.0		
	SAMSUNG MT6407-77A	1	105°	NEW	35.1	16.1	5.51	87.1		
GAMMA	700/9502100: JMA MX10FRO980	1	240°	NEW	95.9	15.0	7.4	66.0		
	1900: JMA MX10FRO860	1	240°	NEW	95.9	15.0	7.4	66.0		
	SAMSUNG MT8407-77A	1	240°	NEW	35.1	16.1	5.51	87.1		
	APPURTENANCE MAKE,MODEL									
	SAMSUNG 82/866A RRH (RF4439d-25A)	3	-	NEW	15.0	15.0	10.1	97.5		
	SAMSUNG B5/B13 RRH (RF4440d-13A)	3	-	NEW	15.0	15.0	9.1	82.0		
	BAYCAP BVZDC-8827-PE-48	1	-	NEW	29.5	16.5	12.6	26.9		

- (1) ETR DENOTES EXIST. TO REMAIN.
 (2) WEIGHT WITHOUT MOUNTING BRACKET.
 (3) ANTENNA DATA BASED ON LATEST VERIZON RFDS.
 (4) EQUIPMENT CONFIGURATION AS VIEWED FROM BEHND.
 (6) NOT TO EXCEED

				BILL OF MATERIALS
	EQUIPMENT DESCRIPTION	QUANTITY	LENGTH	COMMENTS
1	700/850/1900/2100	4		(JNA MX10FRO980-XX)
2	700/850/1900/2100	2		(JMA MX10FRO840-XX)
3	LS6 ANTENNA W/ INTEGRATED RRH	3		(SAMSUNG MT8407-77A)
4	1/2' JUMPER CABLE	38	15 FT	ROUTED FROM RRHS TO ANTENNAS
(5)	ANTENNA LINK CABLES	6	15 M	ROUTE FROM UPPER CVP TO ANTENNAS
(6)	ANTENNA POWER CABLES	3	15 M	PROPETARY POWER CABLE FROM EXIST. OVP TO ANTENNAS
1	850/700 DUAL BAND RRH	3		SAMSUNG B5/B13 RRH (RF4440d-13A) MOUNTED TO NEW ANTENNA MOUNT
(8)	POS/AWS DUAL BAND RRH	3		SAMSUNG B2/B86 RRH (RF4439d-25A) MOUNTED TO NEW ANTENNA MOUNT
9	RRH CABLES	6	15M	PROPRETARY POWER & FIBER GABLES
(1)	UPPER 120VP	1		(RVZDC-8627-PF-49) MOUNTED TO NEW ANTENNA MOUNT
(1)	HYBRID CABLE	1	125 FT	12x24 LOW INDUCTANCE (L.I.) HYBRID FEED-LINE CABLE ROUTED FROM LOWER GVP(s) TO UPPER GVP(s)
(12)	LOWER BOVP	2		(6 OVP) RACK MOUNTED IN NEW EQUIPMENT CABINET

- INFORMATION SHOWN REPONE FOR USE BY PERION EQUIPMENT OFERATIONS

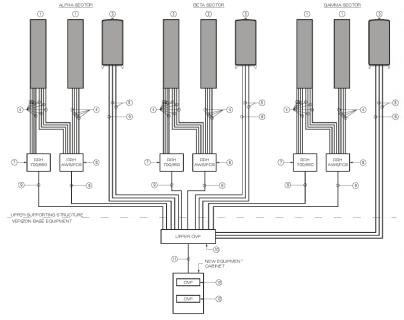
 1 NEPONATION SHOWN REPONE FOR USE BY PERION EQUIPMENT OFERATIONS

 2 DESPOTES EQUIPMENT DESIGNATED FOR LEARING ONLY TWINETE APPLICABLE;

 3 DESPOTES EQUIPMENT DESIGNATED FOR LEARING ONLY TWINETE APPLICABLE;

 4 INSTALL AURIC MAN GOARDS AT ALL ONLY MEETE REPOLIED COCKINGATE WEIGHT EQUIPMENT ENGINEERING

 5 INSTALL AURIC MAN GOARDS AT ALL ONLY TWINETE OF THE OUTED COCKINGATE WEIGHT EQUIPMENT ENGINEERING AS NECESSARY


 5 INSTALL AURIC MAN GOARDS AT ALL ONLY THE OBJECT OF THE OUTED COCKINGATE WEIGHT ENGINEERING AS NECESSARY

 5 INSTALL AURIC MAN GOARDS AT ALL ONLY THE OBJECT OF THE OUTED COCKINGATE WEIGHT ENGINEERING AS NECESSARY

 5 ONLY THE OUTED THE OUTED THE OUTED TO NETALL INSTALL INSTALL NOTIFY ENGINEER OF RECORD SHOULD EXST. PIPE MART

 FOUR ER ENTLY AUGUST THE OUTED THE NEW MOUNT PRACKETS. CONTRACTION SHALL NOTIFY ENGINEER OF RECORD SHOULD EXST. PIPE MART

 FOUR ER ENTLY AUGUST THE OUTED THE NEW MOUNT PRACKETS. CONTRACTION SHALL NOTIFY ENGINEER OF RECORD SHOULD EXST. PIPE MART

NOTE:

1 NSTALL ALARM BOARDS AT ALL 60VP WHERE REQUIRED.

2 NSTALL UP-CONVERTER(S) LOCATED WITHIN NEW OVP RACK WHERE REQUIRED.

3 COORDINATE WITH VERIZON EQUIPMENT ENGINEERING.

987 VAUX0-IALL STREET EXTENSION - SUITE 31 WATER FORD, CT 08385 PHONE: (860)-083-WWW.ALLPOINTS TECH.COM FAX: (860)-083-

CONSTRUCTION DOCUMENTS

NO DATE REVISION
0 02/03/22 FOR REVIEW: JRM
1 02/28/22 FOR FILING
2 03/18/22 FOR FILING 05/25/22 FOR FILING

DESIGN PROFESSIONALS OF RECORD PROF: MICHAEL S. TRODDEN P.E.
COMP: ALL-POINTS TECHNOLOGY
CORPORATION
ADD: 567 VAUXHALL STREET EXT.
SUITE 311
WATERFORD, CT 06385

OWNER: AMERICAN TOWER
CORPORATION
ADDRESS: 3500 REGENCY PARKWAY,
SUITE 100
CARY, N.C. 27518

NEW CANAAN NE2 CT

SITE 183 SOUNDVIEW LANE ADDRESS: NEW CANAAN, CT 06840

APT FILING NUMBER: CT141NB13190 DRAWN BY: CSH

DATE: 02/03/22 CHECKED BY: JRM VZW PROJECT CODE: 20212261775 VZW LOCATION CODE: 691194 VZW FUZE ID: 16474051

SHEET TITLE:

RF BILL OF **MATERIALS &** MECHANICAL **SPECIFICATIONS**

SHEET NUMBER

B-1

DESIGN BASIS 2016 INTERNATIONAL BUILDING CODE (IBC), AS AMPADED BY THE 2016 CODE (IBC), AS AMPADED BY THE 2016 CODE (IBC), AS AMPADED BY THE 2016 T-10)

TIA-222-H

TIA-222-H DESIGN CRITERIA RISK CATEGORY (CANOPY): II (BC 2015 TABLE 1604.5) RISK CATEGORY (MOUNTS): II (RA-222-H, TABLE 2-1) WIND LOADS ULTMATE BASIC WIND BREED, V_{ULT}: (3-SECOND GUST) | \$600000 (\$60000) | \$0.000000 (\$6000000 (\$6000000 (\$6000000 (\$6000000 (\$600000 (\$600000 (\$600000 (\$600000 (\$6 ICE LOAD BASIC WIND SPEED (V) = 50MPH (TIA-222-H, ANNEX B) W/ ICE 3-SEC GUST ISKIN ICE THICKNESS (T) = 1.00" (RA-222-H, ANNEX S) LIVE LOAD ROOF LIVE LOAD, (LUR) 20PSF (BG 2016 TABLE 1607.1) SNOW LOAD ANY EXISTING UTILITY, SERVICE, STRUCTURE, EQUIPMENT, OR RITURE OBSTRUCTING THE WORK SHALL BE REMOVED AND/OR RELOCATED AS

SEISMIC LOAD:

DI GENERAL

ARRENAN ANCIALIDAD IN THESE SECONDATIONS ROLLES THE

ARRENAN ANCIALIDAD IN THESE SECONDATIONS ROLLES THE

ARRENAN ARRENAN CONCRETE BRITTLEY

AND ARRENAN ARRENAN CONCRETE BRITTLEY

ASSOCIATION ARRENAN AR

EVERY INDIA DUAL TRADE, DISCIPLINE, AND CONTRACTOR SHALL INCLUDE THESE GENERAL SPECIFICATIONS.

ANY PERPRENCE HEREIN TO AN OR EQUAL ITEM. THAT EQUAL ITEM SHALL BE PRE-APPROVED BY THE CONSTRUCTION MANAGER BEFORE

ALL TRADES SHALL COORDNATE THEIR WORK WITH ALL OTHER TRACES AND OTHER WORK AND CONDITIONS AS APPROPRIATE OR REQUIRED TO AND OTHER WORK AND CONCENTIONS AS PROPERTIES OF TRANSPORTED AND CONTROLTS RESOLVE AND CORRESPOND WITH ALL APPECTED WORK AND SITE OFFICIATIONS. COORDINATION WITH THE SITE SHALL BE WITH THE OWNER, OR CONCERN SECURED. DECOMPOSENTATIVE. FOR EVERYTHING PICKARD TO THE INSTALLATION OF

DESIGNATION OF THE STATE AND A STATE AND A

TATIST
CONTROL TO BELL VERY MALE, BEST ON CONTROLS, BEST ALLERONS,
AND GOURMACT BELL VERY MALE, BEST ON PROPERTY BOY,
AND GOURMACT BE THE FELL PRICE TO BEG FARRACTION, AND
DISTALLANCE OF ANY MORE.

THE SEE SPECIFICATIONS SHALL INCLICE THE GENERAL SECURIORISMS
SHEETING.

INSTALLATION OF ANY WORK.

ONLYTHACTORS SHALL VERBEY ALL CHAPTER ON A RID CONTINUOUS IN THE
FILL PRIGHT OF ABRICATION AND SPECTION OF ANY WAITIFFAIL, THE
BYOMED SHALL BE NOTIFIED FOR INSPECTIONS PRIOR TO CLOSING
PENTRATURES and OF ANY CONTINUOUS WHICH PEND
COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTINUOUS
COMPLETION OF THE WORK IN ACCORDANCE WITH THE CONTINUOUS

COLLINETY SOUTH FOR THE SITE TO MARKING AND GAIN APPROVAL FOR ALL VISIT THE SITE TO MARKING AND GAIN APPROVAL FOR ALL TERMY CORPUPTION FOWER OUTLANDER WORK SOUTHOUTH FOR ALL TERMY CORPUPTION FOR THE SITE OF THE

THE TOTAL SECTION OF THE TOTAL

INBANE REPLACEMENT AND ALL COMMODITION TO CHANGE OF THE ALL DEPTIM AND CONCEPTION AND ALL COMMODITION OF THE ALL DEPTIM AND CONCEPTION AND ALL COMMODITION OF INBALLO CHANCES THE ALL COMMODITION OF THE ALL COMMODITION OF ALL COMMODITION OF COMMODITION OF ALL COMMODITION OF ALL COMMODITION OF COMMODITION OF ALL COMMODITION OF ALL COMMODITION OF THE ALL COMMODITION OF ALL COMMODITION OF ALL COMMODITION OF ALL REPRESENCE OF THE OWNER OF ALL COMMODITION OF ALL C

CHANCES IN CULLITY.

ALL NOTES THIS SHEET SHALL APPLY UNLIESS SPECIFICALLY NOTES.

ALL NOTES THIS SHEET SHALL APPLY UNLIESS SPECIFICALLY NOTES.

ON SHEET SHALL SHALL SHALL SHALL SHALL SHALL SHOULD CONSIDER SHALL SHAL

METALL

ORDINACTION BHALL PROVEE ALL CUTTED AND PATCHING AS

ORDINACTION BHALL PROVEE ALL CUTTED AND PATCHING AS

ORDINACTION BHALL PROVED AND AND AND PATCHING A

EVERY CONTRACTOR SHALL BE RESPONSIBLE FOR THEIR RESPECTIVE FEES, PERMITS, INSPECTIONS, TESTING, CERTIFICALTS, AND ALL MANAGEMENT OF SAME REQUIRED FOR COMPLETION OF AND LEGAL CUPANCY OF THE RIMBHED PROJECT.

CONTRACTORS SHALL PROVIDE ALL NECESSARY TO OLS FIXTURES VIVILE MATERIALS JOS ACIS, AND PERSONNEL PROJECTOR THE COURSE OF THE TOTAL OLS FIXTURES.

EACH CONTRACTOR SHALL QUARANTEE ALL MATERIALS AND WORKMANISHED BY THEM TO BE FREE OF DEFECTS AND MAINTAINED FOR A PERBO OF ONE YEAR AFTER ACCEPTANCE OF THE INSTALLATION BY THE OWNER AND BHIGH BEING THE OWNER AND BHIGH BHIGH BRIDGE THE OWNER AND BHIGH BEING THE OWNER AND BHIGH BHIGH BRIDGE THE OWNER AND BHIGH BHIGH BRIDGE THE OWNER AND BHIGH BHI

ANY DEVIATION, MODIFICATION, ADDITION, OR CHANGE IN DESIGN SHALL NOT BE MADE WITHOUT WRITTEN APPROVAL OF THE OWNER OR BUCANESS.

RECOMMENCATIONS OF SPECIFICATIONS ALL TEMS OF EQUIPMENT OR MATERIAL THAT ARE OF ONE OBSERVE THE SHALL SE ONE MANUFACTURED THAT ARE OF ONE OBSERVE THE SHALL SE ONE

THE PROTECTION OF THE DEPOSIT STORY ELECTROLS SHETTY, AND CONTROL OF THE DEPOSIT STORY IS SHED OF THE SHED OF THE

DEPOTED BY THE CONSTRUCTION MANAGEST

P A DESETTOR SERVICE AND THE PROCESSION OF THE CONSTRUCTION OF THE C 04 CONCRETE: THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL

ALL CONCRETE CONSTRUCTION SHALL BE DONE IN ACCOPDANCE WITH THE AMERICAN CONCRETE INSTITUTE (ACC) CODES SO! 6. S16, LATEST REVISION. ALL CONCRETE USED SHALL BE 4000PSI (28 DAY COMP STRENGTH). THE CONCRETE MIX SHALL BE BASED ON USING THE FOLLOWING MATERIALS AND PARAMETERS.

FOLLOWING MATERIALS AND PARAMETERS:
PORTLAND GEMENT: ASTM G150, T1
AGGREGATE ASTM G30, T INGH MAX.
WATER POTHBLE
ACMINITIES NON-CHLORIDE
AIR
SUMP: 4 INGH

*ALL CONGRETE EXPOSED TO PREEZING WEATHER SHALL CONTAIN ENTRAINED AR PER ACI 211 TABLE 42.1 OF ACI 318-06. ALL PERFORMING WELLED WHE PARTIC CHALL OF ANY ON A STANDARD WELLED WHE PARTIC CHALL CONFORM TO ARTHUR AND ALL HOOKE SHALL BE AND STANDARD UND. REPRODUCE OF ASS TO AND ALL HOOKE SHALL BE AND STANDARD UND. REPRODUCE ON A STANDARD UND. REPRODUCE OF ANY OWNER AND ALL BE COLD BENT WHERE PROUPED AND TIED (NOT WELLES).

RELECTION OF REPORTING STREET COVER SHALL BE HOVINGED FOR REPORTING STREET.

CONCRIDENCE OF A LANGEST EARTH - S IN SHALL BE CONCRIDENCE OF A LANGEST EARTH - S IN SHALL BE CONCRIDENCE OF A LANGEST EARTH ON WEATHER.

- SHAND SHALLES - I I (SIN).

CONCRIDENCE NOT SHOP SHALL BE SHALL BE CONCRIDENCE OF A LANGEST EARTH ON WEATHER OR NOT CASE A CANADATE HE GROUND.

- BEAMS AND COLUMNS - I I (SIN).

A SM IN CHAMPER SHALL BE PROVIDED AT ALL EXPOSED EDGES OF CONCRETE, IN ACCORDANCE WITH ACI 301 SECTION 4.2.4. CONCRETE SHALL BE PLACED IN A UNIFORM MANNER AND CONSOLIDATED IN PLACE.

CONCRETE FOOTINGS SHALL BE CAST AGAINST LEVEL, COMPACTED, NON-FROZEN BASE SOIL FREE OF STANDING

PEREIN

EXCEPT WHERE NO CATED ON THE CRAWINGS, POST-INSTALLED

ANCHORS SHALL CONSIST OF THE POLLOWING ANCHOR THES AND

NOTALLED IN ACCORDANCE WITH THIS RESPECTIVE LOC-ES REPORT

AND MAINTACTURERS PURSUES DESTRUCTURES.

APPLICATION CONCRETE ANCHORRIG SYSTEM
HETT HY 200 ADHESIVE WITH SAFE SET (HDS)

COLUMN TEACH TO THE COLUMN TEACH TO THE COLUMN TEACH TO THE COLUMN TEACH TO THE COLUMN TEACH TEA

I I I I COMMITTICATION AND DIVILATO TO ME TENALAZIO MINISTRAIO AND DIVILATO AND DIV

TEEL: E SPECIFICATIONS SHALL INCLUDE THE OBNERAL SPECIFICATIONS

ISC. STEEL. ASTIM AND (SET YOUR CONTROL OF THE STEEL S L. BUILDING CONNECTION POINTS TO BE CENTERED ON EXISTING TRUCTURAL BEARING POINTS AND THE LOCATIONS ARE TO BE VEHIF FIELD PRIOR TO THE FABRICATION OF STIEL.

LO PRIOR TO THE FARRICATION OF STEEL.

N AND CONSTRUCTION OF STRUCTURAL STEEL SHALL CONFORD
ELATEST EDITION OF AISC SPECIFICATION FOR "THE DESIGN"
CATION NAVO ERECTION OF STRUCTURAL STEEL FOR BUILDINGS".

THE OWN THAT LESS ONLY MAKED IN A CONTINUOUS WITH ARM AND IN A CONTINUOUS WITH A CON

AIRPD DURING CONSTRUCTION.

STEB. STRUCTURE SHALL BE DESIGNED TO BE SELF-SUPPORTING
DETABLE AFTER COMPLETION. IT IS THE CONTRACTORS BOLD.

BTABLE AFTER COMPLETION IT IS THE CONTRACTIONS BOLD CAMBBLITY TO DETERMINE SERVICIONS PROCEDURE AND SECUL TO MUSIFE THE SAFETY OF THE BUILDING AND ITS COMPONENT IS BURING ERECTION BUILDING AND LEVEL SERVICE BLEMENTS SHALL SEINSTALLED PLUMS AND LEVEL SER MANUPACTURERS DESIGNS SHALL SPEVAL FOR TOWER CONSTRUCTED BY ALL SE DESIGNED BY THE PASPECTOR HOWEN CONNECTIONS SHALL SE DESIGNED BY THE PASPECTOR AND CONSTRUCTED BY ACCOPICANCE WITH THE LATEST ECHTON OF THE AISC SHAWARL OF STEEL CONSTRUCTORY, CONNECTIONS SHALL BE PROMISED TO COMPOUND TO THE PECULIERATION OF THE LE

AMORISO OF THIS CONFIDENCING CONSISTING BYOLD AS CONSISTING CONSISTING BYOLD AS CONSISTING CONSISTING AS CONSISTIN

SEAL ALL PENETRATIONS AND SEAMS BETWEEN MASONRY AND STEEL WITH DOW CORMING 790 SILICONE BUILDING SEALANT OR EQUAL. 07 THERMAL & MOISTURE PROTECTION: THESE SPECIFICATIONS SHALL INCLUDE THE OBNERAL SPECIFICATIONS

No. THERMOR. BANGETIER TROTTOTTO.

THE STORY ALL PRESENTATIONS PROJECTIONS OF THE STORY ALL PRESENTATIONS OF THE STORY ALL PRESENTATIONS PROJECTIONS OF THE STORY ALL PRESENTATIONS PROJECTION OF THE STORY ALL PRESENTATIONS PROJECTION AND ACCUSATE VARIABLE TO MANDES. THE ALL PRESENTATION AND ACCUSATE VARIABLE TO MANDES. THE ALL PRESENTATION AND ACCUSATE VARIABLE TO MANDES. THE ALL PRESENTATION AND ACCUSATE VARIABLE TRANSPORT OF THE ALL PRESENTATION AND ACCUSATE VARIABLE TRANS

6 FLECTRICAL: HBBE SPECIFICATIONS SHALL INCLUDE THE OBNERAL SPECIFICATIONS SHEM.

L ELECTRONL CONDUCTORS:

**INSULATION SHALL BE MINIMUM BOBY TYPE THEN. THANN-2. OR 251-541.

ALL ELECTRONS CONDUCTIONS

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IS WITHOUT BOTH THE THAT I SHALL OR

WHICH CONTROL IN THE THAT I SHALL OR

WHICH CONTR

AND NO OUTER COMERNIO OVER THE METICAL JACKSET.

NETHER DESIGNES ALL CONCENTE PROBLEC CONCENTED TO CEST TO MANDE A THALL CROWNESTED IN DE GALFREST HOT MOLIVERED IN OR ARMET PRIBLE MATERIAL PROBLECT COST AND SERVICE AND SERVICE COST, AND SERVICE AND SERVICE AND SERVICE COST, AND SERVICE AND SER

DUCTOR

BETNO ELECTRIC SERVICE IS TO REMAIN, CONTRACTOR SHALL SE

"F HAST IT MEETS PROJECT REQUIREMENTS WITHOUT APPLY OF THIS IS CONTRACTOR. IF IT STO SE ACCESS OR REPLACED AS A PART OF THIS IS, CONTRACTOR SHALL ORDER THOM COORDINATE WITH AND A CONTRACTOR SHALL ORDER THOM COORDINATE WITH AND THIS IS CONTRACT.

WHENT SHALL SE AS SPECIAL ORDER THIS LOCAL TWANTER SHALL SHAPE. UTILITY WHERE APPLICABLE.
ALL EQUIPMENT, ENCLOSURES, ETC. SHALL SE SUITABLE FOR THE
INSTRULED DEWNORMENT, MINIMUM NEMA 38 FOR ALL EXTERIOR.

METHALORIOS.
WHISIOCONCE SHALL SE SECUCIONO SIGNO, MICHAELO SENDE MINISTOCIONE MINI

ELECTRICAL CONTRACTOR IS RESPONSIBLE FOR ALL FINAL TERMINATIONS TO ALL EQUIPMENT.

PRED MAD PROFESS

GROUNDING:

GREEN PEGROATIONS SHALL INCLUDE THE GENERAL SPECIFICATIONS

AND THE PERSON OF THE PE HEREN
GROUND ALL SYSTEMS AND EQUIPMENT IN ACCORDANCE WITH BEST
INDUSTRY PPACTICE. THE REQUIPMENTS OF THE NEPA 70 NATIONAL
BLEDTERON, CODE (NEO), AND ALL OTHER APPLICABLE CODES AND
ROOLLANDER.

FOLKING ELECTRODES PRESENT AT EACH SERVICE LOCATION LIBE BONDED TOGETHER TO FORM THE GROWNING ELECTRODE

MA
QUIPMENT ENCLOSURES, DEVICES, AND CONDUITS SHALL BE
MICED BY THE INSTALLATION OF A EXPANANT GROUNDING
MICTOR FOR ALL PRECEST AND SHAVEN OF GROUNDING
FOR CHIEF AND THE SIZE INDICATED ON THE DRAWNING, SHALL BE
MICUOS IN LEXATT, AND SHALL BE DOCKEDT DE ACH ENCLOSURE
ED THROUGH. CONDUIT SHALL NOT BE USED AS A GROUNDING CRIM
MAYBE OR DEPOLIT.

CONTRACTOR CONTRACTOR

ERVICE MAIN BONDING JUMPERS AND GROUNDING BLECTRODE ONDUCTORS SHALL BE SIZED AND INSTALLED PER THE MINIMUM OF LL APPLICABLE COCES AND REGULATIONS. 26 LIGHTNING PROTECTION:
THESE SPECIFICATIONS AND THE GENERAL SPECIFICATIONS
AND THE GROUNDING SPECIFICATIONS HEREIN.

ONDUCTORS:

MIN #2 ANG SOLID BARE TINNED COPPER (SBTC) FOR ALL IN-GROUND CONCULTORS.

I MAIR AND COPPER GREEN STRINGED OF ALL EXCUPRISH THE MERCHAN AND COPPER GREEN STRINGED ON ALL EXCUPRISH THE MAIR FORESTORM AND THAT HE DOWN THAT HE TOWN IN A COMMISSION DESCRIPTION AND THAT HE TOWN IN A COPPER C

INCE.

11 CO MINORE IN CONCULTO CONDUCTOR ARE IN THE SAME PATY OF THE COMMINION OF THE COMM

L ALL IN-GROUND RINGS, RADIALS, BONDS CONNECTING THEM. LL SIMILAR GROUNDING

METAL LE, LL M-GROUND FROM RUCKLE, SCHOOL CONNECTION THEM.

WHILE ROOM BE COME OF THE STREET BELOW THE MOST IN
WHILE ROOM BE COME OF THE STREET BELOW THE MOST IN
WHILE ROOM BE COME OF THE STREET BELOW THE MOST IN
WHILE ROOM BE COME OF THE STREET BELOW THE MOST IN
FOUNDATION AND AN ENTERTHEM STREET BELOW THE MOST IN
FOUNDATION THE STREET BELOW THE STRE

SIGHS.

BOND TO TOWER BASE, NOT TO VERRIGAL TOWER STRUCTURE, AND TOWER STRUCTURE, AND TOWER STRUCTURE, AND TOWER STRUCTURE, BASE BOND TOWER MOUNTING HAPPINARE.

BASE BOND SHALL HAVE A CORRESPONDING GROLIND RODOR THE RING.

A BOTH DODGE SHALL HAVE A CORRESPONDED GOOD THE CASE OF THE CASE O

SYSTEM PER JAPE, LOASE, VERRON OF INPA 789.

NOTICES, THE STATE OF THE

ALLGE SEGUELANDER OF THE EQUIPMENT GROUND FIND CONTRIBE IN ALLGE SEGUELANDER OF CONTRIBE IN ALLGE SEGUELANDER S

POSTS AND GATE POSTS TO THE LPGS. PREFERABLY, INSTALL A GROUND FING THAT FOLLOWS THE PENCE LINE, BONEING ALL POSTS TO THE RING.

27 ANTENNAS & CABLES:

HEREN.
THE CONTRACTOR SHALL RUPRISH AND FRETALL ALL TRANSMISSION ONE CE. JUMPINE CONNECTORS, ORGANIZATION OF STREET, ANTIDIMAR CONNECTORS, ORGANIZATION OF STREET, ANTIDIMAR CONTRACTORS, ORGANIZATION OF STREET, ALL OF THE MARTISHALE TO SEE SHIFT OWNER, ORGANIZATION OF THE MARTISHALE TO SEE SHIFT OWNER, ORGANIZATION OF THE MARTISHALE TO SEE SHIP OWNER, ORGANIZATION OF THE MARTISHALE TO SEE SHIP OWNER, ORGANIZATION, ORGANIZAT

WAS BOTH BODS OF EQUIPMENT SHELTER WALL AND JUMPS! WITEHINAS, BOTH SIDES OF EQUIPMENT SHELTER WALL, AND JUNESC CREATES AT THE COLUMNIAN.

THE CONTRACTOR SHALL, RISHIER AND RETALL ALL CONNECTORS.

AND CONTRACTOR SHALL RESIDENT AND GROUND CHARDWARE. WALL

ALL CARLES AND ANTENNAS TO THE MANUFACTURERS AND OWNERS

SECONOMICS.

DENNA CABLES SHALL BE FOAM DELECTRIC COAXIAL CABLES AS LOWIS

CALLOWS CONTROL OF CANAL CENTRAL CENTRAL CONTROL CONTROL CONTROL CONTROL CENTRAL CENTR

CABLE SHALL BE INSTALLED WITH A MINIMUM NUMBER OF BENDS MYSTRE POSSIBLE. CARLE SHALL NOT BE LEFT LINTERMINATED AND SHALL BE SAAL DO BRADCHITELY AFTER BEING INSTALLED. ALL EXTERIOR CABLE CONNECTIONS SHALL BE COVERED WITH A WATERPROOF SPLICING KIT.

WATERPROOF SELLONG MT.

CONTRACTOR SHALL VERIFIE SKACT LENGTH AND DIRECTION OF TRAM
IN FIELD PRIOR TO CONSTRUCTION.

CASE SHALL SEF FURNISHED AND INSTALLED WITHOUT SPLICES AND
WITH CONNECTORISH TE BOX OF END. VERTICAL TRANSPERS TRANSPERS THE ALL SERVICING THE ACCOUNTS THE SERVICING THE ACCOUNTS THE SERVICING THE SERVICING

28 CABLE TRAY: THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPE HEFEN.

CASE, TRAY SHALL SE MADE OF EITHER COPROSION RESISTANT METAL
OF WITH A COPROSION RESISTANT FINISH.

OMBE TRAY SHALL SE OF LADDER TRAY TYPE WITH FLAT COVER
CAMMEDTO DECERALS. CABLE LADDER SHALL BE SIZED TO FIT ALL CABLES IN ACCORDANCE

ABLE LACCER TRAYS SHALL BE NEMA CLASS 12A BY PW INDUSTRIES, CABLE LADDER TRAY SHALL BE SUPPORTED IN ACCORDANCE WITH MANUFACTURERS SPECIFICATIONS.

. WORMANDER BHALL CONFORM TO THESE REQUIREMENTS AND LOCAL CODES AND STANDARDS TO ENSURE SAFE AND ADEQUATE MANDARDS SYSTEM.

T EXCAVATION & FLL:

NO RILL OR BMBANHMENT MATERIAL SHALL BE PLACED ON PROZEN GROUND, PROZEN MATERIALS, SNOW OR ICE SHALL NOT BE PLACED IN

ANY FILL DEMPARAMENT.

ALL FILL SHALL BE PLACED IN ONE FOOT LIFTS AND COMPACTED IN FLACE. STRUCTURE, FILL SHALL BE COMPACTED TO SEX OF ITS MADILLANDER, LIFTS AND EXCEPTION OF THE MADILLANDER. THE SHALL BE COMPACTED TO SEX OF ITS MADILLANDER. WITH ASTIM.

IN LIMITER
BANK OF CRUSHED GRAVEL SHALL CONSIST OF TOUGH, CLEARLE
PARTICLES OF CRUSHED OR UNCRUSHED GRAVEL FREE OF BOFT, THIN,
BLONGATED OR LAWNATED PECES AND MEET THE SPECIFIED
READATOR.

OPADATION ACCORDANT THE SECURITY OF CONTROL AND PROFIT THE SECURITY OF COURT OF COURT AND PART THE SECURITY OF COURT OF COURT AND PART THE SECURITY OF COUR

ATTH PASS WEED SPAYEL BASE SHALL PASS WITH THE POLLOWING SIZE BOLIARE

METH GENERAL
BOTTON WITH PARCE STOP
BOTTON WI 31 SEDIMENTATION & EROSION CONTROL.
THESE SPECIFICATIONS SHALL INCLUDE THE GENERAL SPECIFICATION

COMPACTOR SHALL MANNES DEFINISHED TO DEST OF THE DUPNO CONTRACTOR SHALL MANNES DEFINISHED TO DEST OF THE DUPNO CONTRACTOR SHALL MANNES DEFINISHED TO DEST OF THE DUPNO CONTRACTOR SHALL BE NO CONFORMANCE WITH THE LOCAL WHILE AND CONTRACTOR CONT

AND SUPPLEMENTED WITH ADDITIONAL MEASURES AS NEEDED TO SOOK SHALL BE EXPRAND TO MISH GROWER AND SECRED AS SOOK AS MASHED ANABES ARE SERVICED. SO NOW AND ANABES AND SET ANABES ANABES AND SET ANABES ANAB

IMATS BUT, BUT USED WHERE THE NEW SEED IS ALLOW CONTINUE SECTION CONTINUE SECURITY SECTION CONTINUES. IN CORRECTION CONTINUES TO A CERTIFICIP ST. TOPICAL SHALL BE LOCKEDON FRANCE OF LOCKING SHOULD SECTION. AND LOCKED OF PLANCE OF THE CORRECTION CAN AND THE CONTINUES OF THE CORRECTION CAN AND THE CORRECTION CONTINUES. AND THE CORRECTION CAN AND THE CORRECTION CONTINUES OF THE CORRECTION CONTI

Cellco Partnership d/b/a verizon[,]

ALL-POINTS TECHNOLOGY CORPORATION

597 VALIXIHAI LISTREET EXTENSION - SLITE 3

CONSTRUCTION DOCUMENTS

NO DATE REVISION 03/18/22 FOR FILING 05/25/22 FOR FILING

DESIGN PROFESSIONALS OF PECOPO PROF: MICHAEL S. TRODDEN P.E. COMP: ALL-POINTS TECHNOLOGY CORPORATION ADD: 567 VAUXHALL STREET EXT. SUITE 311 WATERFORD, CT 06385

OWNER: AMERICAN TOWER CORPORATION ADDRESS: 3500 REGENCY PARKWAY, SUITE 100 CARY, N.C. 27518

NEW CANAAN NE2 CT

SITE 183 SOUNDVIEW LANE ADDRESS: NEW CANAAN, CT 06840

APT FILING NUMBER: CT141NB13190 DRAWN BY: CSH

DATE: 02/03/22 CHECKED BY: JRM VZW PROJECT CODE: 20212261775 VZW LOCATION CODE: 691194 VZW FUZE ID: 16474051

SHEET TITLE:

NOTES & SPECIFICATIONS

SHEET NUMBER

N-1

ATTACHMENT 4

Standby Power Rating 50 kW, 63 kVA, 60 Hz

Prime Power Rating* 45 kW, 56 kVA, 60 Hz

*EPA Certified Prime ratings are not available in the US or its Territories

Codes and Standards

Not all codes and standards apply to all configurations. Contact factory for details.

UL2200, UL6200, UL1236, UL142

CSA C22.2

BS5514 and DIN 6271

SAE J1349

NFPA 37, 70, 99, 110

NEC700, 701, 702, 708

ISO 3046, 7637, 8528, 9001

NEMA ICS10, MG1, 250, ICS6, AB1

ANSI C62.41

IBC 2009, CBC 2010, IBC 2012, ASCE 7-05, ASCE 7-10, ICC-ES AC-156 (2012)

Powering Ahead

For over 50 years, Generac has provided innovative design and superior manufacturing.

Generac ensures superior quality by designing and manufacturing most of its generator components, including alternators, enclosures and base tanks, control systems and communications software.

Generac gensets utilize a wide variety of options, configurations and arrangements, allowing us to meet the standby power needs of practically every application.

Generac searched globally to ensure the most reliable engines power our generators. We choose only engines that have already been proven in heavy-duty industrial applications under adverse conditions.

Generac is committed to ensuring our customers' service support continues after their generator purchase.

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

STANDARD FEATURES

ENGINE SYSTEM

- · Oil Drain Extension
- Air Cleaner
- Fan Guard
- Stainless Steel Flexible Exhaust Connection
- Factory Filled Oil and Coolant
- Radiator Duct Adapter (Open Set Only)
- Critical Silencer (Enclosed Units Only)

Fuel System

- · Fuel Lockoff Solenoid
- Primary Fuel Filter

Cooling System

- · Closed Coolant Recovery System
- UV/Ozone Resistant Hoses
- Factory-Installed Radiator
- Radiator Drain Extension
- 50/50 Ethylene Glycol Antifreeze
- 120 VAC Coolant Heater

Electrical System

- **Battery Charging Alternator**
- **Battery Cables**
- Battery Tray
- **Rubber-Booted Engine Electrical Connections**
- Solenoid Activated Starter Motor

ALTERNATOR SYSTEM

- UL2200 GENprotect[™]
- 12 Leads (3-Phase, Non 600V)
- Class H Insulation Material
- Vented Rotor
- 2/3 Pitch
- Skewed Stator
- **Auxiliary Voltage Regulator Power Winding**
- **Brushless Excitation**
- Sealed Bearing
- Automated Manufacturing (Winding, Insertion, Lacing, Varnishing)
- Rotor Dynamically Spin Balanced
- Full Load Capacity Alternator
- · Protective Thermal Switch

GENERATOR SET

- Internal Genset Vibration Isolation
- Separation of Circuits High/Low Voltage
- Separation of Circuits Multiple Breakers
- Wrapped Exhaust Piping
- Standard Factory Testing
- 2 Year Limited Warranty (Standby Rated Units)
- 1 Year Limited Warranty (Prime Rated Units)
- Silencer Mounted in the Discharge Hood (Enclosed Only)
- Silencer of Heat Shield

ENCLOSURE (If Selected)

GENERAC[®]

· Rust-Proof Fasteners with Nylon Washers to Protect Finish

INDUSTRIAL

- High Performance Sound-Absorbing Material (Sound Attenuated Enclosures)
- Gasketed Doors
- Stamped Air-Intake Louvers
- Upward Facing Discharge Hoods (Radiator and Exhaust)
- Stainless Steel Lift Off Door Hinges
- Stainless Steel Lockable Handles
- RhinoCoat™ Textured Polyester Powder Coat Paint

FUEL TANKS (If Selected)

- UL 142/ULC S-601
- Double Wall Construction
- Vents
- Sloped Top
- Sloped Bottom
- Factory Pressure Tested 2 psi
- · Rupture Basin Alarm
- · Fuel Level
- Check Valve In Supply and Return Lines
- RhinoCoat™ Textured Polyester Powder Coat Paint
- · Stainless Steel Hardware

CONTROL SYSTEM

Digital H Control Panel- Dual 4x20 Display

Program Functions

- Programmable Crank Limiter
- · 7-Day Programmable Exerciser
- Special Applications Programmable Logic Controller
- RS-232/485 Communications
- · All Phase Sensing Digital Voltage Regulator
- 2-Wire Start Capability
- Date/Time Fault History (Event Log)
- Isochronous Governor Control
- Waterproof/Sealed Connectors

- · Audible Alarms and Shutdowns
- Not in Auto (Flashing Light) Auto/Off/Manual Switch
- E-Stop (Red Mushroom-Type)
- NFPA110 Level I and II (Programmable)
- Customizable Alarms, Warnings, and Events
- Modbus® Protocol
- Predictive Maintenance Algorithm
- Sealed Boards
- Password Parameter Adjustment Protection
- Single Point Ground
- 16 Channel Remote Trending
- 0.2 msec High Speed Remote Trending
- Alarm Information Automatically Annunciated on the Display

Full System Status Display

- Power Output (kW)
- Power Factor
- kW Hours, Total, and Last Run
- Real/Reactive/Apparent Power
- All Phase AC Voltage
- All Phase Currents

- · Oil Pressure
- Coolant Temperature
- Coolant Level
- Engine Speed
- Battery Voltage Frequency

Alarms and Warnings

- Oil Pressure
- Coolant Temperature
- Coolant Level
- Engine Overspeed
- Battery Voltage
- · Alarms and Warnings Time and Date Stamped
- Snap Shots of Key Operation Parameters During Alarms and Warnings
- · Alarms and Warnings Spelled Out (No Alarm Codes)

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

CONFIGURABLE OPTIONS

ENGINE SYSTEM

- O Engine Coolant Heater
- Oil Heater
- O Industrial Silencer (Open Set)
- O Air Filter Restriction Indicator
- O Fan and Belt Guards (Enclosed Units Only)

FUEL SYSTEM

- O Flexible Fuel Lines
- O Primary Fuel Filter

ELECTRICAL SYSTEM

- O 10A UL Listed Battery Charger
- O Battery Warmer

ALTERNATOR SYSTEM

- Alternator Upsizing
- O Anti-Condensation Heater
- Tropical Coating
- O Permanent Magnet Excitation

GENERATOR SET

8 Position Load Center

CIRCUIT BREAKER OPTIONS

- O Main Line Circuit Breaker
- O 2nd Main Line Circuit Breaker
- O Shunt Trip and Auxiliary Contact
- O Electronic Trip Breakers

ENCLOSURE

- O Weather Protected Enclosure
- Level 1 Sound Attenuated
- O Level 2 Sound Attenuated
- O Level 2 Sound Attenuated with Motorized Dampers
- O Steel Enclosure
- O Aluminum Enclosure
- Up to 200 MPH Wind Load Rating (Contact Factory for Availability)
- O AC/DC Enclosure Lighting Kit
- O Door Open Alarm Switch
- Pad Vibration Isolator
- Enclosure Heater

WARRANTY (Standby Gensets Only)

- 2 Year Extended Limited Warranty
- 5 Year Limited Warranty
- 5 Year Extended Limited Warranty
- 7 Year Extended Limited Warranty
- 10 Year Extended Limited Warranty

CONTROL SYSTEM

GENERAC

O NFPA 110 Compliant 21-Light Remote Annunciator

INDUSTRIAL

- O Remote Relay Assembly (8 or 16)
- O Oil Temperature Sender with Alarm
- O Remote E-Stop (Break Glass-Type, Surface Mount)
- Remote E-Stop (Red Mushroom-Type, Surface Mount)
- O Remote E-Stop (Red Mushroom-Type, Flush Mount)
- O Remote Communication Modem
- 10A Engine Run Relay
- O Ground Fault Indication and Protection Functions
- O 100 dB Alarm Horn
- O 120V GFCI and 240V Outlets

FUEL TANKS (Size On Last Page)

- O 8 in (203.2 mm) Fill Extension
- O 13 in (330.2 mm) Fill Extension
- O 19 in (482.6 mm) Fill Extension
- Overfill Protection Valve
- Vent Extensions
- Tank Risers
- O Fuel Drop Tube
- O Return Hose
- O 90% Fuel Level Alarm

ENGINEERED OPTIONS

ENGINE SYSTEM

- Coolant Heater Ball Valves
- O Fluid Containment Pan

CONTROL SYSTEM

- O Spare Inputs (x4) / Outputs (x4)
- O Battery Disconnect Switch

ALTERNATOR SYSTEM

O 3rd Breaker System

GENERATOR SET

- Special Testing
- O IBC Seismic Certification

TANKS

- O UL2085 Tank
- Stainless Steel Tanks

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

APPLICATION AND ENGINEERING DATA

ENGINE SPECIFICATIONS

0			
l-	er	16	rai

Make	Generac
EPA Emissions Compliance	Stationary Emergency
EPA Emissions Reference	See Emission Data Sheet
Cylinder #	4
Туре	In-Line
Displacement - in ³ (L)	207.48 (3.4)
Bore - in (mm)	3.86 (98)
Stroke - in (mm)	4.45 (113)
Compression Ratio	18.5:1
Intake Air Method	Turbocharged/Aftercooled
Cylinder Head	Cast Iron OHV
Piston Type	Aluminum
Crankshaft Type	Forged Steel

Engine Governing

Governor	Electronic Isochronous
Frequency Regulation (Steady State)	±0.25%
Lubrication System	
Oil Pump Typo	Coor

Oil Pump Type Oil Filter Type

Oil Filter Type	Full Flow Cartridge
Crankcase Capacity - qt (L)	7.4 (7)

Cooling System

Cooling System Type	Closed Recovery
Water Pump Type	Pre-Lubed, Self Sealing
Fan Type	Pusher
Fan Speed - rpm	2,250
Fan Diameter - in (mm)	560 (22)

Fuel System

Fuel Type	Ultra Low Sulfur Diesel Fuel #2	
Fuel Specifications	ASTM	
Fuel Filtering (microns)	10	
Fuel Inject Pump	Bosch (VE)	
Fuel Pump Type	Engine Driven Gear	
Injector Type	Pintel - 2,100 psi (14,479 kPa)	
Fuel Supply Line - in (mm)	0.312 (7.92) NPT	
Fuel Return Line - in (mm)	0.312 (7.92) NPT	

Engine Electrical System

System Voltage	12 VDC
Battery Charger Alternator	Standard
Battery Size	See Battery Index 0161970SBY
Battery Voltage	12 VDC
Ground Polarity	Negative.

ALTERNATOR SPECIFICATIONS

Standard Model	K0050124Y21
Poles	4
Field Type	Revolving
Insulation Class - Rotor	Н
Insulation Class - Stator	Н
Total Harmonic Distortion	<5% (3-Phase)
Telephone Interference Factor (TIF)	< 50

Standard Excitation	Synchronous Brushless
Bearings	Single Sealed Cartridge
Coupling	Direct via Flexible Disc
Load Capacity - Standby	100%
Prototype Short Circuit Test	Yes
Voltage Regulator Type	Digital
Number of Sensed Phases	All
Regulation Accuracy (Steady State)	±0.25%

INDUSTRIAL DIESEL GENERATOR SET

EPA Certified Stationary Emergency

OPERATING DATA

POWER RATINGS

		Standby
Single-Phase 120/240 VAC @1.0pf	50 kW	Amps: 208
Three-Phase 120/208 VAC @0.8pf	50 kW	Amps: 173
Three-Phase 120/240 VAC @0.8pf	50 kW	Amps: 150
Three-Phase 277/480 VAC @0.8pf	50 kW	Amps: 75
Three-Phase 346/600 VAC @0.8pf	50 kW	Amps: 60

MOTOR STARTING CAPABILITIES (skVA)

skVA vs. Voltage Dip

277/480 VAC	30%	208/240 VAC	30%
K0050124Y21	98	K0050124Y21	75
K0060124Y21	124	K0060124Y21	95

FUEL CONSUMPTION RATES*

Diesel - gph (Lph)

Fuel Pump Lift - ft (m)	Percent Load	Standby	
3 (1)	25%	1.3 (4.9)	_
	50%	2.3 (8.7)	_
Total Fuel Pump Flow (Combustion + Return) - gph (Lph)	75%	3.3 (12.5)	_
3.6 (13.5)	100%	4.3 (16.4)	_

^{*} Fuel supply installation must accommodate fuel consumption rates at 100% load.

COOLING

		Standby
Coolant Flow	gpm (Lpm)	12.2 (46)
Coolant System Capacity	gal (L)	2.5 (9.5)
Heat Rejection to Coolant	BTU/hr (kW)	135,900 (39.8)
Inlet Air	scfm (m ³ /hr)	7,500 (212)
Maximum Operating Ambient Temperature	°F (°C)	122 (50)
Maximum Ambient Temperature (Before Derate)	See Bulletin	No. 0199280SSD
Maximum Radiator Backpressure	in H ₂ O (kPa)	0.5 (0.12)

COMBUSTION AIR REQUIREMENTS

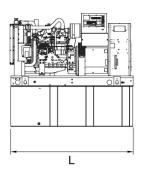
		Standby
low at Datad Dawer	oofm (m3/min)	166 (4.7)

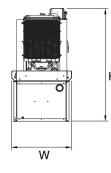
Flow at Rated Power - scfm (m³/min) 166 (4.7)

ENGINE			EXHAUST		
		Standby			Standby
Rated Engine Speed	RPM	1,800	Exhaust Flow (Rated Output)	scfm (m³/min)	448 (12.7)
Horsepower at Rated kW**	hp	86	Max. Allowable Backpressure	inHg (kPa)	1.5 (5.1)
Piston Speed	ft/min (m/min)	1,335 (406.9)	Exhaust Temp (Rated Output)	°F (°C)	1,044 (562)
BMEP	psi (kPa)	169 (1,165)			

^{**} Refer to "Emissions Data Sheet" for maximum bHP for EPA and SCAQMD permitting purposes.

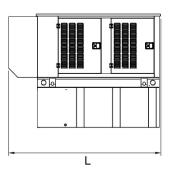
Deration – Operational characteristics consider maximum ambient conditions. Derate factors may apply under atypical site conditions.

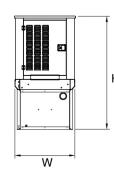

Please contact a Generac Power Systems Industrial Dealer for additional details. All performance ratings in accordance with ISO3046, BS5514, ISO8528, and DIN6271 standards. Standby - See Bulletin 0187500SSB


Prime - See Bulletin 0187510SSB

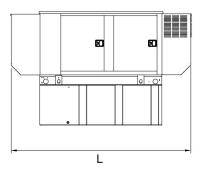
EPA Certified Stationary Emergency

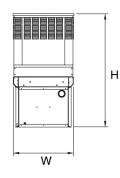
GENERAC INDUSTRIAL POWER


DIMENSIONS AND WEIGHTS*

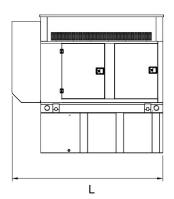


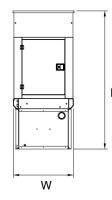
OPEN SET (Includes Exhaust Flex)


	Run Time Hours	Usable Capacity - Gal (L)	L x W x H - in (mm)	Minimum Weight - lbs (kg)	Maximum Weight - Ibs (kg)
	No Tank	-	76.7 (1,948) x 37.4 (950) x 45.2 (1,147)	1,710 (776)	1,836 (833)
Н	12	54 (204)	76.7 (1,948) x 37.4 (950) x 58.2 (1,477)	2,190 (993)	2,316 (932)
	30	132 (499)	76.7 (1,948) x 37.4 (950) x 70.2 (1,782)	2,420 (1,098)	2,546 (979)
	44	190 (719)	76.7 (1,948) x 37.4 (950) x 82.2 (2,087)	2,629 (1,192)	2,755 (1,022)
	49	211 (799)	106.0 (2,692) x 37.4 (950) x 71.2 (1,807)	2,634 (1,192)	2,760 (1,023)
	69	300 (1,136)	92.9 (2,360) x 37.4 (950) x 85.7 (2,176)	2,692 (1,221)	2,818 (1,035)



WEATHER PROTECTED ENCLOSURE


Н	Run Time - Hours	Usable Capacity - Gal (L)	L x W x H - in (mm)	Steel Weight Minimum - lbs (kg)	Steel Weight Maximum - lbs (kg)	Aluminum WeightMinimum - Ibs (kg)	Aluminum Weight Maximum - Ibs (kg)
	No Tank	-	94.8 (2,409) x 38.0 (965) x 49.5 (1,258)	2,158 (979)	2,286 (1,037)	1,935 (878)	2,965 (1,345)
	12	54 (204)	94.8 (2,409) x 38.0 (965) x 62.5 (1,588)	2,638 (1,197)	2,766 (1,255)	2,415 (1,096)	3,445 (1,563)
	30	132 (499)	94.8 (2,409) x 38.0 (965) x 74.5 (1,893)	2,868 (1,301)	2,996 (1,359)	2,645 (1,200)	3,675 (1,667)
	44	190 (719)	94.8 (2,409) x 38.0 (965) x 86.5 (2,198)	3,077 (1,396)	3,205 (1,454)	2,854 (1,295)	3,884 (1,762)
	49	211 (799)	106.0 (2,692) x 38.0 (965) x 99.0 (2,516)	4,316 (1,958)	4,572 (2,074)	3,870 (1,755)	5,930 (2,690)
	69	300 (1.136)	94.8 (2.409) x 38.0 (965) x 90.0 (2.287)	3.140 (1.424)	3.268 (1.482)	2.917 (1.323)	3.947 (1.790)



LEVEL 1 SOUND ATTENUATED ENCLOSURE

Н	Time - Hours	Capacity - Gal (L)	L x W x H - in (mm)	Steel Weight Minimum - lbs (kg)	Steel Weight Maximum - lbs (kg)	Aluminum Weight Minimum - Ibs (kg)	Aluminum Weight Maximum - Ibs (kg)
	No Tank	-	94.8 (2,409) x 38.0 (965) x 49.5 (1,258)	2,158 (979)	2,286 (1,037)	1,935 (878)	2,965 (1,345)
	12	54 (204)	94.8 (2,409) x 38.0 (965) x 62.5 (1,588)	2,638 (1,197)	2,766 (1,255)	2,415 (1,096)	3,445 (1,563)
	30	132 (499)	94.8 (2,409) x 38.0 (965) x 74.5 (1,893)	2,868 (1,301)	2,996 (1,359)	2,645 (1,200)	3,675 (1,667)
	44	190 (719)	94.8 (2,409) x 38.0 (965) x 86.5 (2,198)	3,077 (1,396)	3,205 (1,454)	2,854 (1,295)	3,884 (1,762)
	49	211 (799)	106.0 (2,692) x 38.0 (965) x 99.0 (2,516)	4,316 (1,958)	4,572 (2,074)	3,870 (1,755)	5,930 (2,690)
	60	300 (1 136)	94.8 (2.409) v 38.0 (965) v 90.0 (2.287)	3 140 (1 424)	3 268 (1 482)	2 017 (1 323)	3 947 (1 790)

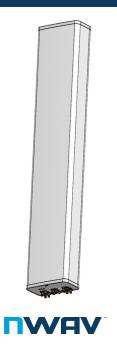
LEVEL 2 SOUND ATTENUATED ENCLOSURE

	Run Time - Hours	Usable Capacity - Gal (L)	LxWxH-in (mm)	Steel Weight Minimum - lbs (kg)	Steel Weight Maximum - lbs (kg)	Aluminum Weight Minimum - Ibs (kg)	Aluminum Weight Maximum - Ibs (kg)
Н	No Tank	-	94.8 (2,409) x 38 (965) x 70.1 (1,780)	2,389 (1,084)	2,517 (1,142)	2,035 (923)	2,163 (981)
	12	54 (204)	94.8 (2,409) x 38 (965) x 62.5 (1,588)	2,638 (1,197)	2,766 (1,255)	2,415 (1,095)	3,445 (1,563)
	30	132 (499)	94.8 (2,409) x 38 (965) x 74.5 (1,893)	2,868 (1,301)	2,996 (1,359)	2,645 (1,200)	3,675 (1,667)
	44	190 (719)	94.8 (2,409) x 38 (965) x 86.5 (2,198)	3,077 (1,396)	3,205 (1,454)	2,854 (1,295)	3,884 (1,762)
	49	211 (799)	106.0 (2,692) x 38 (965) x 99 (2,516)	4,316 (1,958)	4,572 (2,074)	3,870 (1,755)	5,930 (2,690)
	69	300 (1,136)	94.8 (2,409) x 38 (965) x 110.6 (2,809)	3,371 (1,529)	3,499 (1,587)	3,017 (1,368)	3,145 (1,427)

^{*} All measurements are approximate and for estimation purposes only. Specification characteristics may change without notice. Please contact a Generac Power Systems Industrial Dealer for detailed installation drawings.

SPEC SHEET

6 of 6


NWAV™ X-Pol Ten-Port Antenna

X-Pol Ten-Port 8 ft, 40° Fast Roll Off, with Smart Bias Ts, 698-4200 MHz:

2 ports 698-894 MHz, 4 ports 1695-2180 MHz, and 4 ports 3400-4200 MHz

- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- Fully integrated (iRETs) with independent RET control for low band and mid band
- FET configured with internal RET for high band & ease of future network optimization.
- SON-Ready array spacing supports beamforming capabilities
- Suitable for 3G, 4G, and 5G interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors . Large traditional antenna pattern overlap creates harmful interference. Non-FRO antenna JMA FRO antenna JMA's FRO antenna pattern minimizes overlap, thereby minimizing inter-Speed Speed LTE throughput SINR CQI (bps/Hz) increase 333+% >4.5 8-10 Excellent >18 15-18 3.3-4.5 277% 10-15 2-3.3 160% 4-6 Fair The LTE radio automatically selects the best throughput based on meas-

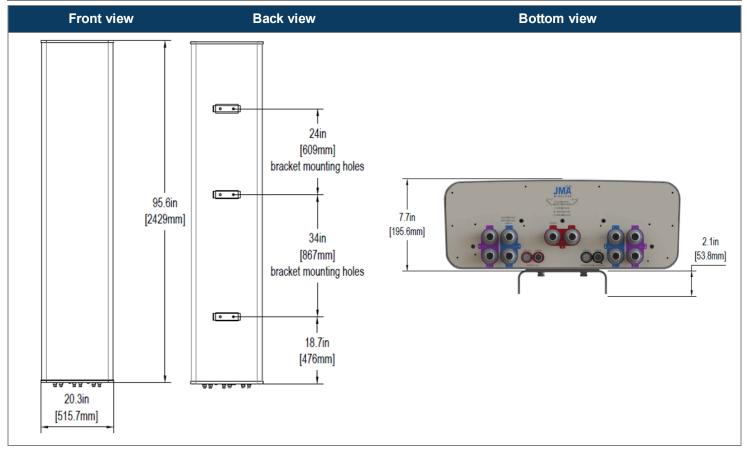
Electrical specification (minimum/maximum)	Ports	s 1, 2	Ports 3, 4, 5, 6		
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180
Polarization	± 4	15°		± 45°	
Average gain over all tilts, dBi	17.4	17.8	18.9	19.6	20.2
Horizontal beamwidth (HBW), degrees ¹	44	40	39	36	34
Front-to-back ratio, co-polar power @180°± 30°, dB	>22.0	>22.0	>25.0	>25.0	>25.0
X-Pol discrimination (CPR) at boresight, dB	>21.0	>19.0	>18	>19	>20
Vertical beamwidth (VBW), degrees ¹	9.6	8.7	5.8	5.7	5.3
Electrical downtilt (EDT) range, degrees	2-12		0-9		
First upper side lobe (USLS) suppression, dB ¹	≤-18.0	≤-19.0	≤-16.0	≤-16.0	≤-16.0
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25
Max VSWR / return loss, dB	1.5:1 / -14.0 1.5:1 / -14.0				
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153		
Max input power per any port, watts	300 250				
Total composite power all ports (1-10), watts	1500				

¹ Typical value over frequency and tilt

NWAV™ X-Pol Ten-Port Antenna

Electrical specification (minimum/maximum)		Ports 7	', 8, 9, 10		
Frequency bands, MHz	3400-3550	3550-3700	3700-3950	3950-4200	
Polarization		±	45°		
Average gain over all tilts, dBi	17.2	17.4	17.6	17.8	
Horizontal beamwidth (HBW), degrees	44	42	40	39	
Front-to-back ratio, co-polar power @180°± 30°, dB	>25	>25	>25	>25	
Vertical beamwidth (VBW), degrees ¹	9.0	8.8	8.6	8.2	
Electrical downtilt (EDT) range, degrees	2-12 orderable in 1 deg increments				
First upper side lobe (USLS) suppression, dB ¹	≤-16	≤-15	≤-16	≤-15	
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	
Max VSWR / return loss, dB	1.5:1 / -14.0				
Max input power per any port, watts		200			
Total composite power all ports (1-10), watts		1500			

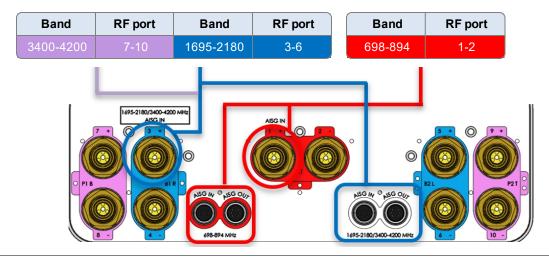
¹ Typical value over frequency and tilt


^{*} For ports 7-10, the electrical downtilt is FET configured with internal RET, where the required electrical downtilt is defined at the time of order per the ordering information below.

Ordering information				
Antenna model	Description			
	8F X- Pol 10 Port FRO 40° 2-12°/ 0-9°/ 2-12°, 4.3-10 & SBTs			
MX10FRO840-xx (xx represents the FET in one degree increments for 3.4-4.2 GHz)	xx=02 thru 12 for each 1 degree tilt 3.4-4.2GHz Examples: MX10FRO840-02 – 2deg, MX10FRO840-09 – 9deg, MX10FRO840- 12-12deg			
Optional accessories				
AISG cables	M/F cables for AISG connections			
PCU-1000 RET controller	Stand-alone controller for RET control and configurations			
91900314-03	Dual Mount Bracket (see 91900314 bracket document for details)			

NWAV™ X-Pol Ten-Port Antenna

Mechanical specifications	
Dimensions height/width/depth, inches (mm)	95.6/ 20.3/ 7.7 (2429/ 515.7/ 195.6)
Shipping dimensions length/width/height, inches (mm)	100.6/ 23.8/ 14.5(2555/ 605/ 368)
No. of RF input ports, connector type, and location	10 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	92 (41.7)
Shipping weight, lb (kg)	146.9 (66.6)
Antenna mounting and downtilt kit included with antenna	91900318, 91900319 (middle bracket)
Net weight of the mounting and downtilt kit, lb (kg)	29 (13.1)
Range of mechanical up/down tilt	-2° to 12°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	247.4 (1101), 55.3 (246), 373.7 (1662)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	4.98



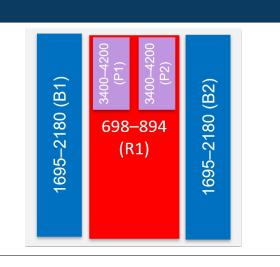
NWAV™ X-Pol Ten-Port Antenna

Remote electrical tilt (RET 1000) information	
RET location	Integrated into antenna
RET interface connector type	8-pin AISG connector per IEC 60130-9 or RF port bias-t
RET connector torque	Min 0.5 N⋅m to max 1.0 N⋅m (hand pressure & finger tight)
RET interface connector quantity	2 pairs of AISG male/female connectors and 2 RF port Bias Ts
RET interface connector location	Bottom of the antenna
Total no. of internal RETs 698-894 MHz	1
Total no. of internal RETs 1695-2180 MHz	1
Total no. of internal RETs 3400-4200 MHz	1
RET input operating voltage, vdc	10-30
RET max power consumption, idle state, W	≤ 2.0
RET max power consumption, normal operating conditions, W	≤ 13.0
RET communication protocol	AISG 2.0 / 3GPP

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF smart bias-t port as shown below:

Note: The RET Device for 3400-4200 MHz is connected via the 1695-2180 Port 3 Bias T port or 1695-2180/3400-4200 MHz AISG ports.


Array topology

5 sets of radiating arrays R1: 698-894 MHz

B2: 1695-2180 MHz P1: 3400-4200 MHz P2: 3400-4200 MHz

B1: 1695-2180 MHz

Band	RF port
698-894	1-2
1695-2180	3-4
1695-2180	5-6
3400-4200	7-8
3400-4200	9-10

NWAV™ X-Pol Ten-Port Antenna

X-Pol Ten-Port 8 ft, 60° Fast Roll Off, with Smart Bias Ts, 698-4200 MHz:

2 ports 698-894 MHz, 4 ports 1695-2180 MHz, and 4 ports 3400-4200 MHz

- Fast Roll Off (FRO™) azimuth beam pattern improves Intra- and Inter-cell SINR
- Excellent passive intermodulation (PIM) performance reduces harmful interference.
- Fully integrated (iRETs) with independent RET control for low band and mid band
- FET configured with internal RET for high band & ease of future network optimization.
- SON-Ready array spacing supports beamforming capabilities
- Suitable for 3G, 4G, and 5G interface technologies
- Integrated Smart Bias-Ts reduce leasing costs

Fast Roll-Off antennas increase data throughput without compromising coverage The horizontal beam produced by Fast Roll-Off (FRO) technology increases the Signal to Interference & Noise Ratio (SINR) by eliminating overlap between sectors . Large traditional antenna pattern overlap creates harmful interference. Non-FRO antenna JMA FRO antenna JMA's FRO antenna pattern minimizes overlap, thereby minimizing inter-Speed Speed LTE throughput SINR CQI (bps/Hz) increase >4.5 333+% Excellent >18 8-10 15-18 3.3-4.5 277% 10-15 2-3.3 160% 4-6 Fair The LTE radio automatically selects the best throughput based on meas-

Electrical specification (minimum/maximum)	Ports	s 1, 2		Ports 3, 4, 5, 6	;
Frequency bands, MHz	698-798	824-894	1695-1880	1850-1990	1920-2180
Polarization	± 4	15°		± 45°	
Average gain over all tilts, dBi	15.9	16.2	17.4	17.9	18.0
Horizontal beamwidth (HBW), degrees ¹	61.0	57.0	58.0	55.0	55.5
Front-to-back ratio, co-polar power @180°± 30°, dB	>22.0	>21.0	>25.0	>25.0	>25.0
X-Pol discrimination (CPR) at boresight, dB	>15.0	>15.0	>15	>15	>15
Vertical beamwidth (VBW), degrees ¹	9.5	8.5	5.7	5.3	5.1
Electrical downtilt (EDT) range, degrees	2-12		0-9		
First upper side lobe (USLS) suppression, dB ¹	≤-15.0	≤-15.0	≤-16.0	≤-16.0	≤-16.0
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25	25
Max VSWR / return loss, dB	1.5:1 / -14.0		1.5:1 / -14.0		
Max passive intermodulation (PIM), 2x20W carrier, dBc	-153		-153		
Max input power per any port, watts	300		250		
Total composite power all ports (1-10), watts	1500				

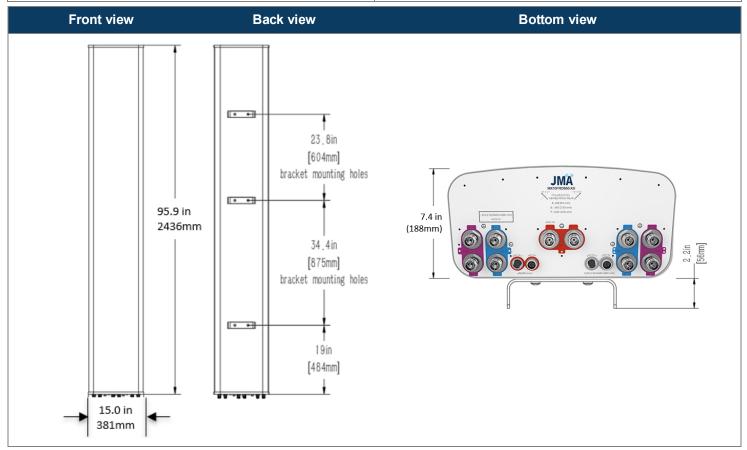
¹ Typical value over frequency and tilt

NWAV™ X-Pol Ten-Port Antenna

Electrical specification (minimum/maximum)		Ports 7	', 8, 9, 10	
Frequency bands, MHz	3400-3550	3550-3700	3700-3950	3950-4200
Polarization		±	45°	
Average gain over all tilts, dBi	16.6	16.8	17.5	17.5
Horizontal beamwidth (HBW), degrees	64	62	60	58
Front-to-back ratio, co-polar power @180°± 30°, dB	>25	>25	>25	>24
Vertical beamwidth (VBW), degrees ¹	9.0	8.2	7.7	7.2
Electrical downtilt (EDT) range, degrees	2-12 orderable in 1 deg increments			
First upper side lobe (USLS) suppression, dB ¹	≤-15	≤-15	≤-15	≤-15
Cross-polar isolation, port-to-port, dB ¹	25	25	25	25
Max VSWR / return loss, dB	1.5:1 / -14.0			
Max input power per any port, watts	200			
Total composite power all ports (1-10), watts		15	000	

¹ Typical value over frequency and tilt

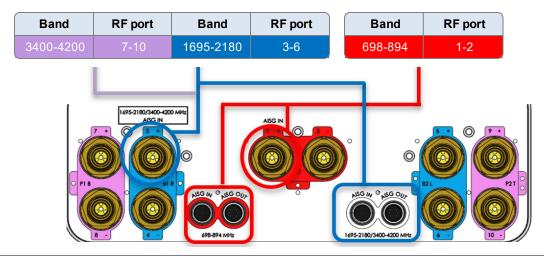
^{*} For ports 7-10, the electrical downtilt is FET configured with internal RET, where the required electrical downtilt is defined at the time of order per the ordering information below.


Ordering information				
Antenna model	Description			
	8F X- Pol 10 Port FRO 60° 2-12°/ 0-9°/ 2-12°, 4.3-10 & SBTs			
MX10FRO860-xx (xx represents the FET in one degree increments for 3.4-4.2 GHz)	xx=02 thru 12 for each 1 degree tilt 3.4-4.2 GHz Examples: MX10FRO860-02 – 2deg, MX10FRO860-09 – 9deg, MX10FRO860- 12-12deg			
Optional accessories				
AISG cables	M/F cables for AISG connections			
PCU-1000 RET controller	Stand-alone controller for RET control and configurations			
91900314-03	Dual Mount Bracket (see 91900314 bracket document for details)			

MX10FRO860-xx

NWAV™ X-Pol Ten-Port Antenna

Mechanical specifications	
Dimensions height/width/depth, inches (mm)	95.9/ 15.0/ 7.4 (2436/ 381.0/ 188.0)
Shipping dimensions length/width/height, inches (mm)	106/ 20/ 14.5 (2692/ 508/ 368)
No. of RF input ports, connector type, and location	10 x 4.3-10 female, bottom
RF connector torque	96 lbf·in (10.85 N·m or 8 lbf·ft)
Net antenna weight, lb (kg)	66.0 (29.9)
Shipping weight, lb (kg)	119.9 (54.5)
Antenna mounting and downtilt kit included with antenna	91900318, 91900319 (middle bracket)
Net weight of the mounting and downtilt kit, lb (kg)	26 (11.82)
Range of mechanical up/down tilt	-2° to 12°
Rated wind survival speed, mph (km/h)	150 (241)
Frontal, lateral, and rear wind loading @ 150 km/h, lbf (N)	114.5 (509.9), 32.5 (144.7), 124.3 (553.6)
Equivalent flat plate @ 100 mph and Cd=2, sq ft	2.63


MX10FRO860-xx

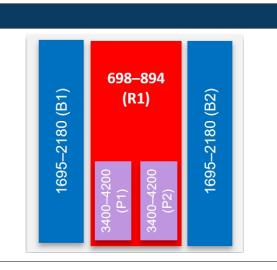
NWAV™ X-Pol Ten-Port Antenna

Remote electrical tilt (RET 1000) information			
RET location Integrated into antenna			
RET interface connector type	8-pin AISG connector per IEC 60130-9 or RF port bias-t		
RET connector torque	Min 0.5 N⋅m to max 1.0 N⋅m (hand pressure & finger tight)		
RET interface connector quantity	2 pairs of AISG male/female connectors and 2 RF port bias-ts		
RET interface connector location	Bottom of the antenna		
Total no. of internal RETs 698-894 MHz	1		
Total no. of internal RETs 1695-2180 MHz	1		
Total no. of internal RETs 3400-4200 MHz	1		
RET input operating voltage, vdc	10-30		
RET max power consumption, idle state, W	≤ 2.0		
RET max power consumption, normal operating conditions, W	≤ 13.0		
RET communication protocol	AISG 2.0 / 3GPP		

RET and RF connector topology

Each RET device can be controlled either via the designated external AISG connector or RF smart bias-t port as shown below:

Note: The RET Device for 3400-4200 MHz is connected via the 1695-2180 Port 3 Bias T port or 1695-2180/3400-4200 MHz AISG ports.

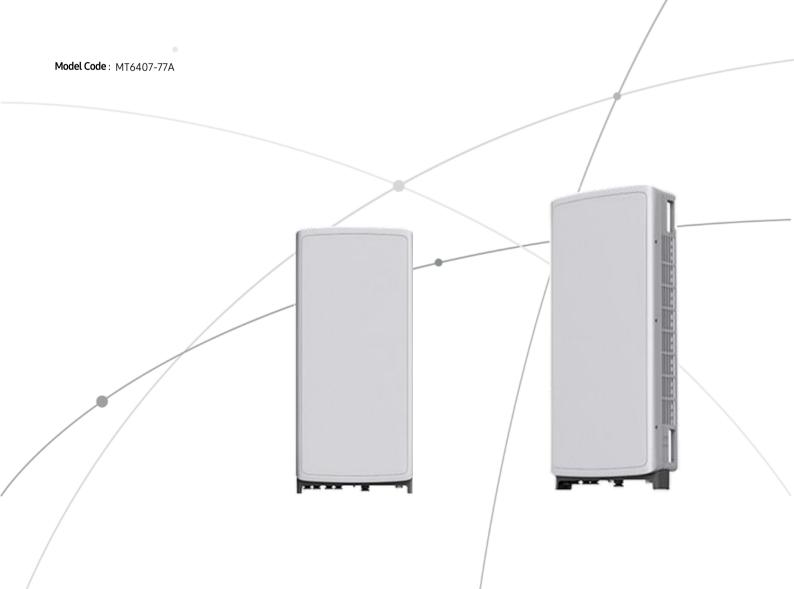

Array topology

R1: 698-894 MHz B1: 1695-2180 MHz B2: 1695-2180 MHz

5 sets of radiating arrays

P1: 3400-4200 MHz P2: 3400-4200 MHz

Band	RF port
698-894	1-2
1695-2180	3-4
1695-2180	5-6
3400-4200	7-8
3400-4200	9-10

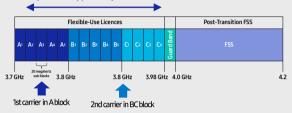


SAMSUNG

SAMSUNG C-Band 64T64R Massive MIMO Radio

for High Capacity and Wide Coverage

Samsung C-Band 64T64R Massive MIMO Radio enables mobile operators to increase coverage range, boost data speeds and ultimately offer enriched 5G experiences to users in the U.S..


Points of Differentiation

Wide Bandwidth

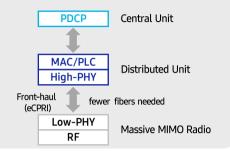
With capability to support up to 2 CC carrier configuration, Samsung C-Band massive MIMO Radio supports 200 MHz bandwidth in the C-Band spectrum.

Samsung C-Band massive MIMO Radio covers the entire C-Band 280 MHz spectrum, so it can meet the operator's needs in current A block and future B/C blocks

C-Band spectrum supported by Massive MIMO Radio

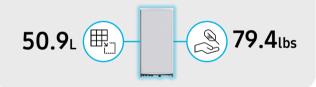
Enhanced Performance

C-Band massive MIMO Radio creates sharp beams and extends networks' coverage on the critical mid-band spectrum using a large number of antenna elements and high output power to boost data speeds.


This helps operators reduce their CAPEX as they now need less products to cover the same area than before.

Furthermore, as C-Band massive MIMO Radio supports MU-MIMO(Multi-user MIMO), it enables to increase user throughput by minimizing interference.

Future Proof Product


Samsung C-Band 64T64R Massive MIMO radio supports not only CPRI but also eCPRI as front-haul interface. It enables operators can cut down on OPEX/CAPEX by reducing front-haul bandwidth through low layer split and using ethernet based higher efficient line.

Well Matched Design

Samsung C-Band Massive MIMO radio utilizes 64 antennas, supports up to 280MHz bandwidth, and delivers a 200W output power. despite the above advanced performance, the Radio has a compact size of 50.9L and 79.4lbs. This makes it easy to install the Radio.

It is designed to look solid and compact, with a low profile appearance so that, when installed, harmonizes well with the surrounding environment..

Technical Specifications

Item	Specification
Tech	NR
Band	n77
Frequency Band	3700 - 3980 MHz
EIRP	78.5dBm (53.0 dBm+25.5 dBi)
IBW/OBW	280 MHz / 200 MHz
Installation	Pole/Wall
Size/ Weight	16.06 x 35.06 x 5.51 inch (50.86L)/ 79.4 lbs

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions.

129 Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, Korea

© 2021 Samsung Electronics Co., Ltd.

All rights reserved. Information in this leaflet is proprietary to Samsung Electronics Co., Ltd. and is subject to change without notice. No information contained here may be copied, translated, transcribed or duplicated by any form without the prior written consent of Samsung Electronics.

SAMSUNG

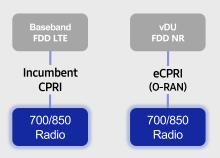
700/850MHZ **MACRO RADIO**

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This 700/850MHz 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

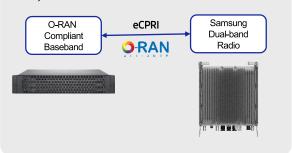
Model Code

RF4440d-13A


Homepage

Points of Differentiation

Continuous Migration


Samsung's 700/850MHz macro radio can support each incumbent CPRI interface as well as an advanced eCPRI interface. This feature provides installable options for both legacy LTE networks and added NR networks.

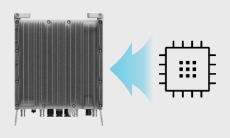
O-RAN Compliant

A standardized O-RAN radio can help when implementing cost-effective networks because it is capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). The ability to support many carriers is essential for using all frequencies that the operator has available.


The new 700/850MHz dual-band radio can support up to 2 carriers in the B13 (700MHz) band and 3 carriers in the B5 (850MHz) band, respectively.

Secured Integrity

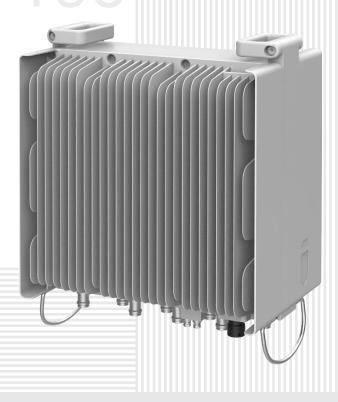
Access to sensitive data is allowed only to authorized

The Samsung radio's CPU can protect root of trust, which is credential information to verify SW integrity, and secure storage provides access control to sensitive data by using dedicated hardware (TPM).

Technical Specifications

Item	Specification
Tech	LTE / NR
Brand	B13(700MHz), B5(850MHz)
Frequency Band	DL: 746 – 756MHz, UL: 777 – 787MHz DL: 869 – 894MHz, UL: 824 – 849MHz
RF Power	(B13) 4 × 40W or 2 × 60W (B5) 4 × 40W or 2 × 60W
IBW/OBW	(B13) 10MHz / 10MHz (B5) 25MHz / 25MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 9.05inch (33.2L) / 70.33 lb

SAMSUNG


AWS/PCS MACRO RADIO

DUAL-BAND AND HIGH POWER FOR MACRO COVERAGE

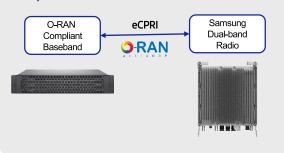
Samsung's future proof dual-band radio is designed to help effectively increase the coverage areas in wireless networks. This AWS/PCS 4T4R dual-band radio has 4Tx/4Rx to 2Tx/2Rx RF chains options and a total output power of 320W, making it ideal for macro sites.

Model Code

RF4439d-25A

Points of Differentiation

Continuous Migration


Samsung's AWS/PCS macro radio can support each incumbent CPRI interface as well as advanced eCPRI interfaces. This feature provides installable options for both legacy LTE networks and added NR networks.

O-RAN Compliant

A standardized O-RAN radio can help in implementing costeffective networks, which are capable of sending more data without compromising additional investments.

Samsung's state-of-the-art O-RAN technology will help accelerate the effort toward constructing a solid O-RAN ecosystem.

Optimum Spectrum Utilization

The number of required carriers varies according to site (region). Supporting many carriers is essential for using all frequencies that the operator has available.

The new AWS/PCS dual-band radio can support up to 3 carriers in the PCS (1.9GHz) band and 4 carriers in the AWS (2.1GHz) band, respectively.

Supports up to 7 carriers

Brand New Features in a Compact Size

Samsung's AWS/PCS macro radio offers several features, such as dual connectivity for baseband for both CDU and vDU, O-RAN capability, more carriers and an enlarged PCS spectrum, combined into an incumbent radio volume of 36.8L.

2 FH connectivity O-RAN capability

More carriers and spectrum

Same as an incumbent radio volume

Technical Specifications

Item	Specification
Tech	LTE/NR
Brand	B25(PCS), B66(AWS)
Frequency Band	DL: 1930 – 1995MHz, UL: 1850 – 1915MHz DL: 2110 – 2200MHz, UL: 1710 – 1780MHz
RF Power	(B25) 4 × 40W or 2 × 60W (B66) 4 × 60W or 2 × 80W
IBW/OBW	(B25) 65MHz / 30MHz (B66) DL 90MHz, UL 70MHz / 60MHz
Installation	Pole, Wall
Size/ Weight	14.96 x 14.96 x 10.04inch (36.8L) / 74.7lb

ATTACHMENT 5

Structural Analysis Report

Structure 94 ft Monopine

ATC Site Name New Canaan 2, CT

ATC Site Number 209477

Engineering Number : OAA768680_C3_07

Proposed Carrier : VERIZON WIRELESS

Carrier Site Name : New Canaan NE2 CT

Carrier Site Number : 691194

Site Location : 183 Soundview Lane

New Canaan, CT 06840

41.1907, -73.495

: Fairfield County

Date March 25, 2022

Max Usage **75%**

Result **Pass**

Prepared By: Reviewed By:

Nathan Lyle

Structural Engineer

Nothan Lyle

Authorized by "EOR" 25 Mar 2022 04:08:59 COSIQN

COA: PEC.0001553

Table of Contents

Introduction	3
Supporting Documents	
Analysis	
Conclusion	
Existing and Reserved Equipment	
Equipment to be Removed	
Proposed Equipment	
Structure Usages	
Foundations	
Deflection and Sway*	5
Standard Conditions	
CalculationsAttached	

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 94 ft Monopine to reflect the change in loading by VERIZON WIRELESS.

Supporting Documents

Tower Drawings Valmont Order #498211-P1, dated March 23, 2021	
Foundation Drawing	Valmont Order #498211-P1, dated March 18, 2021
Geotechnical Report Delta Oaks Group Project #GEO20-07085-08, dated October 16, 2020	

<u>Analysis</u>

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	116 mph (3-second gust)	
Basic Wind Speed w/ Ice:	50 mph (3-second gust) w/ 1.00" radial ice concurrent	
Code:	ANSI/TIA-222-H / 2015 IBC / 2018 Connecticut State Building Code	
Exposure Category:	В	
Risk Category:	II	
Topographic Factor Procedure:	Method 1	
Topographic Category:	1	
Spectral Response:	$Ss = 0.25, S_1 = 0.06$	
Site Class:	D - Stiff Soil - Default	

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please contact American Tower via email at Engineering@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Existing and Reserved Equipment

Elev.1 (ft) Qty	Equipment	Mount Type	Lines	Carrier
No loading was considered as existing or reserved as part of this analysis.				

Equipment to be Removed

Elev.1 (ft) Qty	Equipment	Mount Type	Lines	Carrier
No loading was considered as removed as part of this analysis.				

Proposed Equipment

Elev.1 (ft)	Qty	Equipment	Mount Type	Lines	Carrier
	3	Samsung RF4440d-13A			
	3	Samsung RF4439d-25A			
71.0	1 Raycap RCMDC-6627-PF-48	T-Arm	(1) 2.02 (51.2mm)	VERIZON WIRELESS	
71.0	3	Samsung MT6407-77A	I-AIIII	Hybrid	VERIZON WIRELESS
	4	JMA Wireless MX10FRO860-xx			
	2	JMA Wireless MX10FRO840-xx			

¹Contracted elevations are shown for appurtenances within contracted installation tolerances. Appurtenances outside of contract limits are shown at installed elevations.

Install proposed lines inside the pole shaft.

Structure Usages

Structural Component	Controlling Usage	Pass/Fail
Anchor Bolts	75%	Pass
Shaft	67%	Pass
Base Plate	25%	Pass
Flange	20%	Pass

Foundations

Reaction Component	Analysis Reactions	% of Usage
Moment (Kips-Ft)	4674.6	65%
Axial (Kips)	37.0	11%
Shear (Kips)	87.0	39%

The structure base reactions resulting from this analysis were found to be acceptable through analysis based on geotechnical and foundation information, therefore no modification or reinforcement of the foundation will be required.

Deflection, Twist and Sway*

Antenna Elevation (ft)	Antenna	Carrier	Deflection (ft)	Sway (Rotation) (°)
	Samsung RF4440d-13A			
	Samsung RF4439d-25A		0.367	
71.0	JMA Wireless MX10FRO840-xx	VERIZON WIRELESS		0.550
/1.0	Samsung MT6407-77A	VERIZON WIRELESS	0.367	0.550
	JMA Wireless MX10FRO860-xx			
	Raycap RCMDC-6627-PF-48			

^{*}Deflection, Twist and Sway was evaluated considering a design wind speed of 60 mph (3-Second Gust) per ANSI/TIA-222-H

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T. Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

All assets of American Tower Corporation, its affiliates, and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

10ⁱ-0" 7/32" Thick (65 KSI)

38'-10" 1/4" Thick (65 KSI)

70"

94'-0"

51'-0" 1/2" Thick

(65 KSI)

Asset: 209477, New Canaan 2
Client: VERIZON WIRELESS
Code: ANSI/TIA-222-H

8<u>7'-3"5/</u>8

80"-6"

73'-9"5/8

63'-9"5/8

5<u>3'-3"5/</u>8 51'-0"

47"-6"

4<u>5'-3"5/</u>8

42'-0"

37'-0" 36'-0"

-30'-6"-

23'-6"

19'-0"

0'0"

84'-0"

Height: 94 ft
Base Width: 55
Shape: 18 Sides

SITE PARAMETERS

Nominal Wind: 116 mph wind with no ice Topo Category: 1

Ice Wind: 50 mph wind with 1" radial Topo Method: Method 1

 $\textbf{Base Elev (ft):} \quad 0.00 \quad \textbf{Taper:} \qquad 0.31900 (\text{In/ft}) \qquad \textbf{Topo Feature:}$

SECTION PROPERTIES												
Shaft	Lenath-		eter (in) oss Flats	Thick	Joint	Overlap Length		Steel Grade				
Section	(ft)	Тор	Bottom		Туре	(in)	Shape	(ksi)				
1	51.000	38.72	55.00	0.500		0.000	18 Sides	65				
2	38.833	28.69	41.08	0.250	Slip Joint	70.000	18 Sides	65				
3	10.000	25.50	28.69	0.219	Butt Joint	0.000	18 Sides	65				

	DISCRETE APPURTENANCE									
Attach	Force	04.	Description							
Elev (ft)	Elev (ft)	Qty	Description							
97.0	97.0	1	(3) 6 ft Branches							
96.5	96.5	1	5 ft Branches							
93.0	93.0	9	8 ft Branches							
87.3	87.3	19	8 ft Branches							
80.5	80.5	19	8 ft Branches							
73.8	73.8	9	10 ft Branches							
71.5	71.5	18	8 ft Branches							
71.0	71.0	3	Samsung RF4440d-13A							
71.0	71.0	3	Samsung RF4439d-25A							
71.0	71.0	1	Raycap RCMDC-6627-PF-48							
71.0	71.0	3	Samsung MT6407-77A							
71.0	71.0	3	Generic Flat T-Arm							
71.0	71.0	4	JMA Wireless MX10FRO860-xx							
71.0	71.0	2	JMA Wireless MX10FRO840-xx							
63.8	63.8	25	10 ft Branches							
53.3	53.3	31	10 ft Branches							
47.5	47.5	4	12 ft Branches							
45.3	45.3	8	10 ft Branches							
42.0	42.0	13	12 ft Branches							
37.0	37.0	13	12 ft Branches							
36.0	36.0	5	14 ft Branches							
31.0	31.0	11	12 ft Branches							
30.5	30.5	8	14 ft Branches							
23.5	23.5	26	14 ft Branches							
19.0	19.0	3	12 ft Branches							

		LINEAR APPURTENANCE	
Elev	Elev		
From (ft)	To (ft)	Description	Exp To Wind

0.0 71.0 2.02 (51.2mm) Hybrid No

	LUAD CASES
0.9D + 1.0W	116 mph wind with no ice
1.2D + 1.0Di + 1.0Wi	50 mph wind with 1" radial ice
1.2D + 1.0Ev + 1.0Eh	Seismic
0.9D - 1.0Ev + 1.0Eh	Seismic (Reduced DL)
1.0D + 1.0W	60 mph Wind with No Ice
1.2D + 1.0W	116 mph wind with no ice

REACTIONS			
Moment	Shear	Axial	
(kip-ft)	(Kip)	(Kip)	
4674.64	86.97	37.03	
	Moment (kip-ft)	Moment Shear (kip-ft) (Kip)	

JOB INFORMATION

Asset: 209477, New Canaan 2 Client: VERIZON WIRELESS Code: ANSI/TIA-222-H Height: 94 ft Base Width: 55 Shape: 18 Sides

REACTIONS											
Load Case	Moment (kip-ft)	Shear (Kip)	Axial (Kip)								
0.9D + 1.0W	4667.33	86.95	27.73								
1.2D + 1.0Di + 1.0Wi	1249.90	23.15	47.18								
1.2D + 1.0Ev + 1.0Eh	164.59	2.83	37.00								
0.9D - 1.0Ev + 1.0Eh	164.24	2.83	25.00								
1.0D + 1.0W	1118.06	20.82	30.98								

	DISH DEFLE	CTIONS	
DISH DEFLECTIONS Attach Deflection Rotation Load Case Elev (ft) (in) (deg			
Load Case	Elev (ft)	(in)	(deg)

Model ID: 73003

Scenario: 206402 3/25/2022 9:38:17

ANALYSIS PARAMETERS

Location: Fairfield County,CT Height: 94 ft Type and Shape: Taper, 18 Sides Base Diameter: 55.00 in Manufacturer: Valmont Top Diameter: 25.50 in 0.95 0.3190 in/ft K_d (non-service): Taper: K_e: 0.98 Rotation: 0.000°

ICE & WIND PARAMETERS

Exposure Category: В Design Wind Speed w/o Ice: 116 mph Ш Design Wind Speed w/Ice: 50 mph Risk Category: **Topo Factor Procedure:** Method 1 **Operational Wind Speed:** 60 mph Topographic Category: 1 Design Ice Thickness: 1.00 in 0 ft HMSL: 502.00 ft **Crest Height:**

SEISMIC PARAMETERS

 Site Class:
 D - Stiff Soil
 Period Based on Rayleigh Method (sec):
 0.68

 T_L (sec):
 6
 P:
 1
 C_{s:}
 0.092

 $S_{s:}$ 0.250 $S_{1:}$ 0.058 C_{s} Max: 0.092 $F_{a:}$ 1.600 $F_{v:}$ 2.400 C_{s} Min: 0.030

S_{ds:} 0.267 **S**_{d1:} 0.093

Equivalent Lateral Force Method

Analysis Method:

LOAD CASES

 1.2D + 1.0W
 116 mph wind with no ice

 0.9D + 1.0W
 116 mph wind with no ice

 1.2D + 1.0Di + 1.0Wi
 50 mph wind with 1" radial ice

1.2D + 1.0Ev + 1.0Eh Seismic

0.9D - 1.0Ev + 1.0Eh Seismic (Reduced DL) 1.0D + 1.0W 60 mph Wind with No Ice

Model Id: 73003 Scenario Id: 206402 3/25/2022 9:38:20

	SHAFT SECTION PROPERTIES																		
									Е	Bottom						Тор			
Sect Info	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Slip Joint Ien (in)	Weight (lb)	Dia (in)	Elev (ft)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Dia (in)	Elev (in)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Taper (in/ft)
1-18 2-18 3-18	38.83	0.5000 0.2500 0.2188	65 65 65	Slip Butt	0.00 70.00 0.00	3,632	41.08	45.167	32.40	32,456.7 6,826.3 2,025.2	27.21	164.34	28.69	84.00		11,197.0 2,306.4 1,417.7	18.47	114.76	0.3192 0.3192 0.3192

Shaft Weight 17,035

DISCRETE APPURTENANCE PROPERTIES

Attach		Vert _					e	lce		
Elev				Ecc	Weight	EPAa	Orientation	Weight	EPAa	Orientation
(ft)	Description	Qty	Ka	(ft)	(lb)	(sf)	Factor	(lb)	(sf)	Factor
97.00	(3) 6 ft Branches	1	1.00	0.000	120.00	7.500	1.00	173.27	10.829	1.00
96.50	5 ft Branches	1	1.00	0.000	33.00	2.250	1.00	47.65	3.249	1.00
93.00	8 ft Branches	9	1.00	0.000	39.50	9.360	1.00	57.00	13.506	1.00
87.30	8 ft Branches	19	1.00	0.000	39.50	9.360	1.00	56.89	13.481	1.00
80.50	8 ft Branches	19	1.00	0.000	39.50	9.360	1.00	56.77	13.452	1.00
73.80	10 ft Branches	9	1.00	0.000	45.10	11.460	1.00	64.62	16.420	1.00
71.50	8 ft Branches	18	1.00	0.000	39.50	9.360	1.00	56.56	13.404	1.00
71.00	Samsung RF4439d-25A	3	0.80	0.000	74.70	2.500	0.67	124.22	3.148	0.67
71.00	JMA Wireless MX10FRO840-xx	2	0.80	0.000	92.00	17.197	0.73	293.33	19.475	0.73
71.00	JMA Wireless MX10FRO860-xx	4	0.80	0.000	68.40	13.716	0.67	234.70	16.019	0.67
71.00	Generic Flat T-Arm	3	0.75	0.000	312.50	12.900	0.67	474.33	17.966	0.67
71.00	Samsung MT6407-77A	3	0.80	0.000	81.60	4.709	0.61	144.74	5.650	0.61
71.00	Raycap RCMDC-6627-PF-48	1	0.80	0.000	32.00	4.056	1.00	110.73	4.901	1.00
71.00	Samsung RF4440d-13A	3	0.80	0.000	70.30	1.875	0.50	107.68	2.434	0.50
63.80	10 ft Branches	25	1.00	0.000	45.10	11.460	1.00	64.31	16.342	1.00
53.30	10 ft Branches	31	1.00	0.000	45.10	11.460	1.00	63.98	16.259	1.00
47.50	12 ft Branches	4	1.00	0.000	57.60	13.670	1.00	81.44	19.328	1.00
45.30	10 ft Branches	8	1.00	0.000	45.10	11.460	1.00	63.72	16.191	1.00
42.00	12 ft Branches	13	1.00	0.000	57.60	13.670	1.00	81.15	19.258	1.00
37.00	12 ft Branches	13	1.00	0.000	57.60	13.670	1.00	80.87	19.193	1.00
36.00	14 ft Branches	5	1.00	0.000	79.10	17.330	1.00	110.97	24.313	1.00
31.00	12 ft Branches	11	1.00	0.000	57.60	13.670	1.00	80.48	19.100	1.00
30.50	14 ft Branches	8	1.00	0.000	79.10	17.330	1.00	110.47	24.202	1.00
23.50	14 ft Branches	26	1.00	0.000	79.10	17.330	1.00	109.45	23.979	1.00
19.00	12 ft Branches	3	1.00	0.000	57.60	13.670	1.00	79.16	18.787	1.00
Totals	Num Loadings: 25	242			13,739.00			20,622.20		

LINEAR APPURTENANCE PROPERTIES

Load Case Azimuth (deg): _

									DIST			
Elev	Elev	Coax	Coax		Max	Dist	Dist		From			
From	То	Dia	Wt		Coax/	Between	Between	Azimuth	Face	Exposed		
(ft)	(ft) Qty Descrip	otion (in)	(lb/ft)	Flat	Row	Rows(in)	Cols(in)	(deg)	(in)	To Wind	Carrier	
0.00	71.00 1 2.02 (5	1 2mm) Hybrid 2 02	3 04	N	0	Λ	Λ	Λ	Λ	N	VERIZON WIREI	

	SEGMENT PROPERTIES											
		(Max	Len: 5.									
Seg Top	Description	Thick	Flat Dia	Area	lx	W/t	D/t	F'y	S	Z	Weight	
Elev (ft)	-	(in)	(in)	(in²)	(in ⁴)	Ratio	Ratio	(ksi)	(in ³)	(in ³)	(lb)	
0.00		0.5000	55.000	86.488	32,456.70	17.63	110.00	80.7	1162.3	0.0	0.0	
5.00		0.5000	53.404	83.956	29,688.40	17.07	106.81	81.3	1094.9	0.0	,450.0	
10.00		0.5000	51.809	81.424	27,082.10	16.51	103.62	82	1029.6	0.0	1,406.9	
15.00		0.5000	50.213	78.891	24,633.00	15.94	100.43	82.6	966.2	0.0	,363.8	
19.00		0.5000	48.936	76.865	22,783.60	15.49	97.87	82.6	917.0	0.0	1,060.0	
20.00		0.5000	48.617	76.359	22,336.20	15.38	97.23	82.6	904.9	0.0	260.7	
23.50		0.5000	47.500	74.586	20,816.50	14.99	95.00	82.6	863.2	0.0	898.9	
25.00		0.5000	47.021	73.827	20,186.80	14.82	94.04	82.6	845.6	0.0	378.8	
30.00		0.5000	45.426	71.294	18,180.00	14.26	90.85	82.6	788.3	0.0	,234.5	
30.50		0.5000	45.266	71.041	17,986.90	14.20	90.53		782.6	0.0	121.1	
31.00		0.5000	45.106	70.788	17,795.30	14.14	90.21		777.0	0.0	120.7	
35.00		0.5000	43.830	68.762	16,310.70	13.69	87.66		733.0	0.0	949.7	
36.00		0.5000	43.511	68.255	15,952.90	13.58	87.02		722.1	0.0	233.1	
37.00		0.5000	43.191	67.749	15,600.40	13.47	86.38		711.4	0.0	231.4	
40.00		0.5000	42.234	66.229	14,574.20	13.13	84.47		679.7	0.0	683.8	
42.00		0.5000	41.596	65.217	13,915.70	12.91	83.19		658.9	0.0	447.3	
45.00		0.5000	40.638	63.697	12,965.50	12.57	81.28		628.4	0.0	658.0	
45.17	Bot - Section 2	0.5000	40.585	63.613	12,914.00	12.55	81.17		626.7	0.0	36.1	
45.30		0.5000	40.543	63.545	12,873.00	12.53	81.09		625.4	0.0	43.5	
47.50		0.5000	39.840	62.431	12,207.60	12.29	79.68		603.5	0.0	711.8	
50.00		0.5000	39.043	61.165	11,479.80	12.01	78.09		579.1	0.0	793.6	
51.00	Top - Section 1	0.2500	39.223	30.924	5,934.50	25.90	156.89		298.0	0.0	312.9	
53.30		0.2500	38.489	30.342	5,605.50	25.38	153.96		286.9	0.0	239.7	
55.00		0.2500	37.947	29.911	5,370.30	25.00	151.79	72	278.7	0.0	174.3	
60.00		0.2500	36.351	28.645	4,716.70	23.88	145.40		255.6	0.0	498.1	
63.80		0.2500	35.138	27.683	4,257.20	23.02	140.55		238.6	0.0	364.2	
65.00		0.2500	34.755	27.379	4,118.50	22.75	139.02		233.4	0.0	112.4	
70.00		0.2500	33.160	26.113	3,573.10	21.62	132.64	76	212.2	0.0	455.1	
71.00		0.2500	32.840	25.860	3,470.20	21.40	131.36		208.1	0.0	88.4	
71.50		0.2500	32.681	25.733	3,419.50	21.29	130.72		206.1	0.0	43.9	
73.80		0.2500	31.947	25.150	3,192.50	20.77	127.79	77	196.8	0.0	199.1	
75.00		0.2500	31.564	24.847	3,078.10	20.50	126.26		192.1	0.0	102.1	
80.00		0.2500	29.968	23.580	2,631.10	19.37	119.87		172.9	0.0	412.0	
80.50	Tan Castian 2	0.2500	29.808	23.454	2,589.00	19.26	119.23		171.1	0.0	40.0	
84.00	Top - Section 2	0.2500	28.691	22.567	2,306.40	18.47	114.77		158.3	0.0	274.0	
84.00	Bot - Section 3	0.2188	28.691	19.773	2,025.20	21.36	131.13		139.0	0.0	66.0	
85.00 87.20		0.2188	28.372	19.551	1,957.90	21.10	129.67		135.9	0.0	66.9	
87.30 90.00		0.2188 0.2188	27.638 26.777	19.041	1,808.70	20.51	126.32 122.38		128.9	0.0 0.0	151.0 172.2	
93.00		0.2188	25.819	18.443 17.778	1,643.50	19.82 19.04	118.00	70.1	120.9	0.0	184.9	
		0.2188	25.500		1,472.10		116.54		112.3		60.1	
94.00		0.2188	∠5.500	17.556	1,417.70	18.79	110.54	19.3	109.5	0.0	00.1	

Totals: 17,035.0

Load Case: 1.2D + 1.0W 116 mph wind with no ice 17 Iterations

Gust Response Factor: 1.10
Dead load Factor: 1.20
Wind Load Factor: 1.00

CALCULATED FORCES

0,12002		.0_0											
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	27.02	00.07	0.00	4 674 6	0.00	4 674 64	6.070.64	4 547 07	7 470 44	7 004 50	0	0	0.674
0.00	-37.03	-86.97	0.00 0.00	-4,674.6	0.00	4,674.64	6,278.64	1,517.87	7,472.14	7,031.52	0	0	0.674
5.00	-34.98	-86.68		-4,239.8	0.00	4,239.80	6,144.82	1,473.43	7,041.04	6,678.32	0.11	-0.2	0.644
10.00	-32.99	-86.38	0.00	-3,806.4	0.00	3,806.41	6,007.97	1,428.99	6,622.75	6,330.81	0.42	-0.39	0.610
15.00 19.00	-31.08	-86.12 -84.94	0.00 0.00	-3,374.5 -3,030.0	0.00 0.00	3,374.49 3,030.04	5,861.23 5,710.71	1,384.54	6,217.27	5,982.24	0.93 1.48	-0.58 -0.72	0.573 0.543
	-29.47							1,348.99	5,902.10	5,677.45			
20.00	-29.03 -25.53	-84.81 -73.47	0.00 0.00	-2,945.1	0.00 0.00	2,945.10	5,673.09 5,541.39	1,340.10	5,824.59	5,602.50	1.64	-0.76 -0.89	0.535
23.50				-2,648.2		2,648.25	,	1,308.99	5,557.34	5,344.09	2.25		0.503
25.00	-24.93	-73.28	0.00	-2,538.0	0.00	2,538.05	5,484.94	1,295.66	5,444.72	5,235.21	2.53	-0.94	0.493
30.00	-23.32	-73.10	0.00	-2,171.6	0.00	2,171.65	5,296.80	1,251.21	5,077.66	4,880.38	3.61	-1.11	0.453
30.50	-22.46	-69.60	0.00	-2,135.1	0.00	2,135.10	5,277.99	1,246.77	5,041.66	4,845.58	3.73	-1.12	0.448
31.00	-21.55	-65.69	0.00	-2,100.3	0.00	2,100.30	5,259.17	1,242.32	5,005.79	4,810.90	3.85	-1.14	0.443
35.00	-20.31	-65.52	0.00	-1,837.5	0.00	1,837.53	5,108.66	1,206.77	4,723.41	4,537.99	4.86	-1.27	0.412
36.00	-19.57	-63.19	0.00	-1,772.0	0.00	1,772.00	5,071.03	1,197.88	4,654.10	4,471.01	5.13	-1.3	0.403
37.00	-18.44	-58.37	0.00	-1,708.8	0.00	1,708.82	5,033.40	1,188.99	4,585.30	4,404.53	5.4	-1.33	0.394
40.00	-17.54	-58.19	0.00	-1,533.7	0.00	1,533.72	4,920.52	1,162.33	4,381.97	4,208.06	6.27	-1.42	0.371
42.00	-16.16	-53.16	0.00	-1,417.3	0.00	1,417.33	4,845.26	1,144.55	4,248.98	4,079.57	6.87	-1.47	0.353
45.00	-15.32	-53.04	0.00	-1,257.9	0.00	1,257.86	4,732.38	1,117.88	4,053.33	3,890.58	7.83	-1.56	0.329
45.17	-15.27	-53.03	0.00	-1,249.0	0.00	1,249.02	4,726.11	1,116.40	4,042.60	3,880.21	7.88	-1.56	0.327
45.30	-14.83	-50.39	0.00	-1,242.0	0.00	1,241.95	4,721.09	1,115.22	4,034.02	3,871.93	7.93	-1.56	0.326
47.50	-13.69	-48.66	0.00	-1,131.1	0.00	1,131.09	4,638.31	1,095.66	3,893.82	3,736.51	8.66	-1.62	0.308
50.00	-12.70	-48.52	0.00	-1,009.4	0.00	1,009.44	4,544.23	1,073.44	3,737.51	3,585.55	9.53	-1.68	0.286
51.00	-12.29	-48.40	0.00	-960.9	0.00	960.92	1,974.29	542.72	1,910.39	1,585.46	9.89	-1.71	0.620
53.30	-10.59	-37.85	0.00	-849.6	0.00	849.60	1,953.73	532.50	1,839.11	1,539.21	10.72	-1.76	0.562
55.00	-10.30	-37.64	0.00	-785.2	0.00	785.25	1,938.13	524.94	1,787.30	1,505.11	11.37	-1.83	0.532
60.00	-9.59	-37.34	0.00	-597.1	0.00	597.06	1,890.21	502.72	1,639.20	1,405.35	13.39	-2.02	0.435
63.80	-8.08	-28.33	0.00	-455.2	0.00	455.15	1,851.77	485.83	1,530.92	1,330.21	15.05	-2.14	0.350
65.00	-7.91	-28.13	0.00	-421.2	0.00	421.16	1,839.28	480.50	1,497.50	1,306.62	15.59	-2.17	0.330
70.00	-7.32	-27.92	0.00	-280.5	0.00	280.52	1,785.33	458.28	1,362.21	1,209.22	17.93	-2.29	0.240
71.00	-4.79	-25.07	0.00	-252.6	0.00	252.60	1,774.17	453.83	1,335.92	1,189.93	18.42	-2.31	0.218
71.50	-4.09	-19.61	0.00	-240.1	0.00	240.07	1,768.55	451.61	1,322.87	1,180.30	18.66	-2.32	0.208
73.80	-3.50	-16.19	0.00	-195.0	0.00	194.96	1,742.31	441.39	1,263.67	1,136.27	19.79	-2.37	0.175
75.00	-3.37	-16.02	0.00	-175.5	0.00	175.54	1,728.36	436.06	1,233.32	1,113.44	20.39	-2.38	0.161
80.00	-2.87	-15.85	0.00	-95.4	0.00	95.44	1,668.37	413.84	1,110.84	1,019.60	22.92	-2.45	0.097
80.50	-2.18	-9.88	0.00	-87.5	0.00	87.52	1,662.21	411.61	1,098.94	1,010.33	23.18	-2.45	0.089
84.00	-1.85	-9.75	0.00	-53.0	0.00	52.95	1,618.21	396.06	1,017.46	946.11	24.99	-2.48	0.058
84.00	-1.85	-9.75	0.00	-53.0	0.00	52.95	1,357.42	347.01	892.41	795.37	24.99	-2.48	0.069
85.00	-1.77	-9.66	0.00	-43.2	0.00	43.20	1,347.53	343.12	872.52	780.66	25.51	-2.49	0.057
87.30	-0.96	-3.52	0.00	-21.0	0.00	20.98	1,324.32	334.17	827.62	747.05	26.71	-2.5	0.029
90.00	-0.76	-3.37	0.00	-11.5	0.00	11.47	1,296.25	323.67	776.42	708.06	28.12	-2.5	0.017
93.00	-0.24	-0.37	0.00	-1.4	0.00	1.35	1,264.04	312.00	721.46	665.37	29.7	-2.51	0.002
94.00	0.00	-0.36	0.00	-1.0	0.00	0.97	1,253.06	308.11	703.58	651.30	30.22	-2.51	0.001

Load Case: 0.9D + 1.0W 116 mph wind with no ice 17 Iterations

Gust Response Factor: 1.10
Dead load Factor: 0.90
Wind Load Factor: 1.00

CALCULATED FORCES

CALCULA	ATED FOR	RCES											
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		\	\ 1 /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ /	\ 1 /	· · · /	\ 1 /				
0.00	-27.73	-86.95	0.00	-4,667.3	0.00	4,667.33	6,278.64	1,517.87	7,472.14	7,031.52	0	0	0.671
5.00	-26.12	-86.63	0.00	-4,232.6	0.00	4,232.57	6,144.82	1,473.43	7,041.04	6,678.32	0.11	-0.2	0.641
10.00	-24.56	-86.31	0.00	-3,799.4	0.00	3,799.41	6,007.97	1,428.99	6,622.75	6,330.81	0.42	-0.39	0.608
15.00	-23.07	-86.02	0.00	-3,367.8	0.00	3,367.85	5,861.23	1,384.54	6,217.27	5,982.24	0.93	-0.58	0.571
19.00	-21.83	-84.84	0.00	-3,023.8	0.00	3,023.76	5,710.71	1,348.99	5,902.10	5,677.45	1.48	-0.72	0.540
20.00	-21.47	-84.70	0.00	-2,938.9	0.00	2,938.92	5,673.09	1,340.10	5,824.59	5,602.50	1.63	-0.76	0.532
23.50	-18.85	-73.36	0.00	-2,642.5	0.00	2,642.47	5,541.39	1,308.99	5,557.34	5,344.09	2.24	-0.88	0.501
25.00	-18.37	-73.16	0.00	-2,532.4	0.00	2,532.42	5,484.94	1,295.66	5,444.72	5,235.21	2.53	-0.94	0.490
30.00	-17.14	-72.97	0.00	-2,166.6	0.00	2,166.62	5,296.80	1,251.21	5,077.66	4,880.38	3.6	-1.1	0.451
30.50	-16.50	-69.48	0.00	-2,130.1	0.00	2,130.13	5,277.99	1,246.77	5,041.66	4,845.58	3.72	-1.12	0.446
31.00	-15.82	-65.57	0.00	-2,095.4	0.00	2,095.39	5,259.17	1,242.32	5,005.79	4,810.90	3.84	-1.14	0.441
35.00	-14.87	-65.40	0.00	-1,833.1	0.00	1,833.10	5,108.66	1,206.77	4,723.41	4,537.99	4.85	-1.26	0.410
36.00	-14.32	-63.07	0.00	-1,767.7	0.00	1,767.70	5,071.03	1,197.88	4,654.10	4,471.01	5.12	-1.29	0.401
37.00	-13.48	-58.25	0.00	-1,704.6	0.00	1,704.63	5,033.40	1,188.99	4,585.30	4,404.53	5.39	-1.33	0.392
40.00	-12.79	-58.07	0.00	-1,529.9	0.00	1,529.89	4,920.52	1,162.33	4,381.97	4,208.06	6.26	-1.41	0.369
42.00	-11.77	-53.04	0.00	-1,413.7	0.00	1,413.74	4,845.26	1,144.55	4,248.98	4,079.57	6.86	-1.47	0.351
45.00	-11.13	-52.92	0.00	-1,254.6	0.00	1,254.62	4,732.38	1,117.88	4,053.33	3,890.58	7.81	-1.55	0.327
45.17	-11.10	-52.91	0.00	-1,245.8	0.00	1,245.80	4,726.11	1,116.40	4,042.60	3,880.21	7.87	-1.56	0.326
45.30	-10.78	-50.27	0.00	-1,238.7	0.00	1,238.74	4,721.09	1,115.22	4,034.02	3,871.93	7.91	-1.56	0.324
47.50	-9.92	-48.55	0.00	-1,128.1	0.00	1,128.14	4,638.31	1,095.66	3,893.82	3,736.51	8.65	-1.62	0.306
50.00	-9.17	-48.41	0.00	-1,006.8	0.00	1,006.76	4,544.23	1,073.44	3,737.51	3,585.55	9.51	-1.68	0.285
51.00	-8.85	-48.30	0.00	-958.4	0.00	958.35	1,974.29	542.72	1,910.39	1,585.46	9.87	-1.71	0.617
53.30	-7.65	-37.76	0.00	-847.3	0.00	847.27	1,953.73	532.50	1,839.11	1,539.21	10.7	-1.76	0.559
55.00	-7.41	-37.54	0.00	-783.1	0.00	783.08	1,938.13	524.94	1,787.30	1,505.11	11.34	-1.83	0.529
60.00	-6.86	-37.24	0.00	-595.4	0.00	595.37	1,890.21	502.72	1,639.20	1,405.35	13.36	-2.01	0.433
63.80	-5.80	-28.24	0.00	-453.8	0.00	453.85	1,851.77	485.83	1,530.92	1,330.21	15.02	-2.13	0.348
65.00	-5.66	-28.04	0.00	-420.0	0.00	419.96	1,839.28	480.50	1,497.50	1,306.62	15.56	-2.17	0.328
70.00	-5.21	-27.83	0.00	-279.8	0.00	279.76	1,785.33	458.28	1,362.21	1,209.22	17.9	-2.29	0.238
71.00	-3.34	-25.01	0.00	-251.9	0.00	251.93	1,774.17	453.83	1,335.92	1,189.93	18.38	-2.31	0.217
71.50	-2.87	-19.56	0.00	-239.4	0.00	239.42	1,768.55	451.61	1,322.87	1,180.30	18.62	-2.32	0.206
73.80	-2.46	-16.14	0.00	-194.4	0.00	194.43	1,742.31	441.39	1,263.67	1,136.27	19.75	-2.36	0.174
75.00	-2.36	-15.98	0.00	-175.1	0.00	175.06	1,728.36	436.06	1,233.32	1,113.44	20.35	-2.38	0.160
80.00	-1.99	-15.82	0.00	-95.2	0.00	95.18	1,668.37	413.84	1,110.84	1,019.60	22.88	-2.44	0.096
80.50	-1.53	-9.85	0.00	-87.3	0.00	87.27	1,662.21	411.61	1,098.94	1,010.33	23.13	-2.45	0.088
84.00	-1.29	-9.72	0.00	-52.8	0.00	52.80	1,618.21	396.06	1,017.46	946.11	24.94	-2.47	0.057
84.00	-1.29	-9.72	0.00	-52.8	0.00	52.80	1,357.42	347.01	892.41	795.37	24.94	-2.47	0.068
85.00	-1.23	-9.64	0.00	-43.1	0.00	43.08	1,347.53	343.12	872.52	780.66	25.46	-2.48	0.057
87.30	-0.68	-3.51	0.00	-20.9	0.00	20.91	1,324.32	334.17	827.62	747.05	26.65	-2.49	0.029
90.00	-0.53	-3.36	0.00	-11.4	0.00	11.44	1,296.25	323.67	776.42	708.06	28.06	-2.5	0.017
93.00	-0.18	-0.37	0.00	-1.3	0.00	1.34	1,264.04	312.00	721.46	665.37	29.63	-2.5	0.002
94.00	0.00	-0.36	0.00	-1.0	0.00	0.97	1,253.06	308.11	703.58	651.30	30.16	-2.5	0.001

Load Case: 1.2D + 1.0Di + 1	1.0Wi	50 mph wind with	1" radial ice		16 Iterations
Gust Response Factor:	1.10	Ice Dead Load Factor	1.00		
Dead load Factor:	1.20			Ice Importance Factor	1.00
					I

1.00 Wind Load Factor: CALCULATED FORCES Phi Pu Vu Tu Phi Phi Phi Seg Mu Mu Resultant Total Elev FY (-) FX (-) MY ΜZ MX Moment Pn Vn Tn Mn Deflect Rotation (ft-kips) (ft-kips) (ft) (kips) (kips) (ft-kips) (ft-kips) (ft-kips) (kips) (kips) (ft-kips) (in) (deg) Ratio 0.00 -47.18 -23.15 0.00 -1.249.9 0.00 1.249.90 6.278.64 1.517.87 7.472.14 7.031.52 0 0 0.186 6,144.82 7,041.04 0.177 5.00 -45.14-23.07 0.00 -1,134.10.00 1,134.13 1,473.43 6,678.32 0.03 -0.0510.00 -43.13-22.98 0.00 -1,018.80.00 1,018.80 6,007.97 1,428.99 6,622.75 6,330.81 0.11 -0.1 0.168 15.00 -41.17 -22.89 0.00 -903.9 0.00 903.92 5,861.23 1,384.54 6,217.27 5,982.24 0.25 -0.150.158 19.00 -39.38 -22.590.00 -812.4 0.00 812.35 5.710.71 1.348.99 5.902.10 5.677.45 0.4 -0.190.150 20.00 -39.00-22.550.00 -789.8 0.00 789.76 5,673.09 1,340.10 5,824.59 5,602.50 0.44 -0.20.148 23.50 -34.65 -19.62 0.00 -710.8 0.00 710.85 5.541.39 1.308.99 5.557.34 5.344.09 0.6 -0.24 0.139 25.00 -34.10-19.560.00 -681.40.00 681.41 5,484.94 1,295.66 5,444.72 5,235.21 0.68 -0.250.137 -32.30 1,251.21 30.00 -19.510.00 -583.6 0.00 583.60 5.296.80 5.077.66 4,880.38 0.97 -0.30.126 30.50 -31.18 -18.600.00 -573.8 0.00 573.85 5,277.99 1,246.77 5,041.66 4,845.58 -0.3 0.125 5.005.79 31.00 -30.06 -17.580.00 -564.6 0.00 564.55 5 259 17 1,242.32 4.810.90 1.03 -0.310.123 35.00 -28.68-17.520.00 -494.2 0.00 494.25 5,108.66 1,206.77 4,723.41 4,537.99 1.3 -0.340.115 36.00 -27.74 -16.91 0.00 -476.7 0.00 476.73 5,071.03 1,197.88 4,654.10 4,471.01 1.37 -0.35 0.112 37.00 -26.28-15.640.00 -459.80.00 459.82 5,033.40 1,188.99 4,585.30 4,404.53 1.45 -0.360.110 40.00 -25.28 -15.59 0.00 -412.9 0.00 412.89 4,920.52 1,162.33 4,381.97 4,208.06 -0.38 0.103 1.68 42.00 -23.50-14.260.00 -381.7 0.00 381.71 4,845.26 1,144.55 4,248.98 4,079.57 1.84 -0.4 0.099 1,117.88 45.00 -22.54 -14.220.00 -338.9 0.00 338.93 4.732.38 4.053.33 3.890.58 2.1 -0.420.092 45.17 -22.48-14.220.00 -336.6 0.00 336.56 4,726.11 1,116.40 4,042.60 3,880.21 2.11 -0.420.092 45.30 -21.88 -13.520.00 -334.7 0.00 334.66 4,721.09 1,115.22 4.034.02 3,871.93 2.12 -0.420.091 47.50 -20.55 -13.060.00 -304.9 0.00 304.91 4,638.31 1,095.66 3,893.82 3,736.51 2.32 -0.44 0.086 50.00 -19.46-13.020.00 -272.3 0.00 272.26 4,544.23 1,073.44 3,737.51 3,585.55 2.55 -0.45 0.080 51.00 -19.02-12.980.00 -259.2 0.00 259.25 1,974.29 542.72 1,910.39 1,585.46 2.65 -0.46 0.174 53.30 -16.50-10.190.00 -229.40.00 229.40 1,953.73 532.50 1.839.11 1,539.21 2.87 -0.470.158 55.00 -16.20-10.120.00 -212.10.00 212.08 1,938.13 524.94 1,787.30 1,505.11 3.05 -0.490.150 60.00 -15.33 -10.03 0.00 -161.5 0.00 161.49 1,890.21 502.72 1,639.20 1,405.35 3.59 -0.54 0.123 63.80 -12.99-7.620.00 -123.40.00 123.40 1,851.77 485.83 1,530.92 1,330.21 4.04 -0.570.100 65.00 -12.79-7.560.00 -114.20.00 114.25 1.839.28 480.50 1.497.50 1.306.62 4.18 -0.580.095 70.00 -12.00-7.490.00 -76.5 0.00 76.47 1,785.33 458.28 1,362.21 1,209.22 4.81 -0.620.070 71.00 -7.72 0.00 -69.0 0.00 68.98 1.774.17 453.83 1.335.92 1.189.93 4.94 -0.62 0.063 -6.81 71.50 -6.57-5.35 0.00 -65.60.00 65.57 1,768.55 451.61 1,322.87 1.180.30 5.01 -0.630.059 0.00 0.050 73.80 -5.62-4.43 0.00 -53.353.26 1,742.31 441.39 1,263.67 1,136.27 -0.645.31 75.00 -5.44-4.370.00 -47.9 0.00 47.94 1,728.36 436.06 1,233.32 1,113.44 5.47 -0.640.046 80.00 -4.73-4.31 0.00 -26.1 0.00 26.08 1.668.37 413.84 1.110.84 1.019.60 6.16 -0.660.029 80.50 -3.53-2.71 0.00 -23.90.00 23.92 1,662.21 411.61 1,098.94 1,010.33 6.22 -0.660.026 84.00 -3.06 -2.66 0.00 -14.4 0.00 14.45 1.618.21 396.06 1.017.46 946.11 6.71 -0.67 0.017 84.00 -3.06-2.660.00 -14.4 0.00 14.45 1,357.42 347.01 892.41 795.37 6.71 -0.670.020 1,347.53 85.00 -2.94 -2.630.00 -11.80.00 11.79 343.12 872.52 780.66 6.85 -0.670.017 87.30 -1.53-0.970.00 0.00 5.74 1,324.32 334.17 827.62 747.05 7.18 -0.67 0.009 -5.7 90.00 -1.22-0.920.00 -3.10.00 3 12 1,296.25 323.67 776.42 708.06 7 56 -0.670.005

93.00

94.00

-0.34

0.00

-0.10

-0.10

0.00

0.00

-0.4

-0.3

0.00

0.00

0.36

0.26

1,264.04

1,253.06

312.00

308.11

721.46

703.58

665.37

651.30

7.98

8.12

-0.68

-0.68

0.001

0.000

Load Case: 1.0D + 1.0W 60 mph Wind with No Ice 16 Iterations

Gust Response Factor: 1.10
Dead load Factor: 1.00
Wind Load Factor: 1.00

CALCULATED FORCES

UALUULA	AILD I OI	COLO											
Seg	Pu	Vu	Tu	Mu	Mu	Resultant	Phi	Phi	Phi	Phi	Total		
Elev	FY (-)	FX (-)	MY	MZ	MX	Moment	Pn	Vn	Tn	Mn	Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Ratio
0.00	-30.98	-20.82	0.00	-1,118.1	0.00	1,118.06	6,278.64	1,517.87	7,472.14	7,031.52	0	0	0.164
5.00	-29.50	-20.74	0.00	-1,014.0	0.00	1,013.99	6,144.82	1,473.43	7,041.04	6,678.32	0.03	-0.05	0.157
10.00	-28.06	-20.67	0.00	-910.3	0.00	910.28	6,007.97	1,428.99	6,622.75	6,330.81	0.1	-0.09	0.149
15.00	-26.67	-20.60	0.00	-807.0	0.00	806.95	5,861.23	1,384.54	6,217.27	5,982.24	0.22	-0.14	0.140
19.00	-25.42	-20.32	0.00	-724.6	0.00	724.55	5,710.71	1,348.99	5,902.10	5,677.45	0.35	-0.17	0.132
20.00	-25.14	-20.29	0.00	-704.2	0.00	704.23	5,673.09	1,340.10	5,824.59	5,602.50	0.39	-0.18	0.130
23.50	-22.18	-17.57	0.00	-633.2	0.00	633.23	5,541.39	1,308.99	5,557.34	5,344.09	0.54	-0.21	0.123
25.00	-21.79	-17.52	0.00	-606.9	0.00	606.87	5,484.94	1,295.66	5,444.72	5,235.21	0.61	-0.22	0.120
30.00	-20.53	-17.48	0.00	-519.2	0.00	519.25	5,296.80	1,251.21	5,077.66	4,880.38	0.86	-0.26	0.110
30.50	-19.78	-16.64	0.00	-510.5	0.00	510.51	5,277.99	1,246.77	5,041.66	4,845.58	0.89	-0.27	0.109
31.00	-19.03	-15.71	0.00	-502.2	0.00	502.19	5,259.17	1,242.32	5,005.79	4,810.90	0.92	-0.27	0.108
35.00	-18.06	-15.67	0.00	-439.4	0.00	439.35	5,108.66	1,206.77	4,723.41	4,537.99	1.16	-0.3	0.101
36.00	-17.43	-15.11	0.00	-423.7	0.00	423.68	5,071.03	1,197.88	4,654.10	4,471.01	1.23	-0.31	0.098
37.00	-16.45	-13.96	0.00	-408.6	0.00	408.57	5,033.40	1,188.99	4,585.30	4,404.53	1.29	-0.32	0.096
40.00	-15.75	-13.91	0.00	-366.7	0.00	366.70	4,920.52	1,162.33	4,381.97	4,208.06	1.5	-0.34	0.090
42.00	-14.55	-12.71	0.00	-338.9	0.00	338.88	4,845.26	1,144.55	4,248.98	4,079.57	1.64	-0.35	0.086
45.00	-13.88	-12.68	0.00	-300.8	0.00	300.75	4,732.38	1,117.88	4,053.33	3,890.58	1.87	-0.37	0.080
45.17	-13.85	-12.68	0.00	-298.6	0.00	298.63	4,726.11	1,116.40	4,042.60	3,880.21	1.89	-0.37	0.080
45.30	-13.44	-12.05	0.00	-296.9	0.00	296.94	4,721.09	1,115.22	4,034.02	3,871.93	1.9	-0.37	0.080
47.50	-12.50	-11.63	0.00	-270.4	0.00	270.44	4,638.31	1,095.66	3,893.82	3,736.51	2.07	-0.39	0.075
50.00	-11.69	-11.60	0.00	-241.4	0.00	241.35	4,544.23	1,073.44	3,737.51	3,585.55	2.28	-0.4	0.070
51.00	-11.37	-11.57	0.00	-229.8	0.00	229.75	1,974.29	542.72	1,910.39	1,585.46	2.36	-0.41	0.151
53.30	-9.75	-9.05	0.00	-203.1	0.00	203.13	1,953.73	532.50	1,839.11	1,539.21	2.56	-0.42	0.137
55.00	-9.56	-9.00	0.00	-187.7	0.00	187.74	1,938.13	524.94	1,787.30	1,505.11	2.72	-0.44	0.130
60.00	-9.04	-8.93	0.00	-142.8	0.00	142.75	1,890.21	502.72	1,639.20	1,405.35	3.2	-0.48	0.107
63.80	-7.56	-6.77	0.00	-108.8	0.00	108.82	1,851.77	485.83	1,530.92	1,330.21	3.6	-0.51	0.086
65.00	-7.44	-6.72	0.00	-100.7	0.00	100.70	1,839.28	480.50	1,497.50	1,306.62	3.73	-0.52	0.081
70.00	-6.97	-6.67	0.00	-67.1	0.00	67.08	1,785.33	458.28	1,362.21	1,209.22	4.29	-0.55	0.060
71.00	-4.77	-6.00	0.00	-60.4	0.00	60.41	1,774.17	453.83	1,335.92	1,189.93	4.4	-0.55	0.054
71.50	-4.03	-4.69	0.00	-57.4	0.00	57.41	1,768.55	451.61	1,322.87	1,180.30	4.46	-0.56	0.051
73.80	-3.43	-3.87	0.00	-46.6	0.00	46.62	1,742.31	441.39	1,263.67	1,136.27	4.73	-0.57	0.043
75.00	-3.33	-3.83	0.00	-42.0	0.00	41.98	1,728.36	436.06	1,233.32	1,113.44	4.88	-0.57	0.040
80.00	-2.92	-3.79	0.00	-22.8	0.00	22.82	1,668.37	413.84	1,110.84	1,019.60	5.48	-0.59	0.024
80.50	-2.14	-2.36	0.00	-20.9	0.00	20.93	1,662.21	411.61	1,098.94	1,010.33	5.54	-0.59	0.022
84.00	-1.87	-2.33	0.00	-12.7	0.00	12.66	1,618.21	396.06	1,017.46	946.11	5.98	-0.59	0.015
84.00	-1.87	-2.33	0.00	-12.7	0.00	12.66	1,357.42	347.01	892.41	795.37	5.98	-0.59	0.017
85.00	-1.80	-2.31	0.00	-10.3	0.00	10.33	1,347.53	343.12	872.52	780.66	6.1	-0.59	0.015
87.30	-0.92	-0.84	0.00	-5.0	0.00	5.01	1,324.32	334.17	827.62	747.05	6.39	-0.6	0.007
90.00	-0.75	-0.81	0.00	-2.7	0.00	2.74	1,296.25	323.67	776.42	708.06	6.73	-0.6	0.004
93.00	-0.21	-0.09	0.00	-0.3	0.00	0.32	1,264.04	312.00	721.46	665.37	7.1	-0.6	0.001
94.00	0.00	-0.09	0.00	-0.2	0.00	0.23	1,253.06	308.11	703.58	651.30	7.23	-0.6	0.000

EQUIVALENT LATERAL FORCES METHOD ANALYSIS

(Based on ASCE7-16 Chapters 11, 12 and 15)

Spectral Response Acceleration for Short Period (S _S):	0.250
Spectral Response Acceleration at 1.0 Second Period (S ₁):	0.058
Long-Period Transition Period (T _L – Seconds):	6
Importance Factor (I _e):	1.000
Site Coefficient F _{a:}	1.600
Site Coefficient F _v :	2.400
Response Modification Coefficient (R):	1.500
Design Spectral Response Acceleration at Short Period (S _{ds}):	0.267
Design Spectral Response Acceleration at 1.0 Second Period (S _{d1}):	0.093
Seismic Response Coefficient (C _s):	0.092
Upper Limit C _s :	0.092
Lower Limit C _s :	0.030
Period based on Rayleigh Method (sec):	0.680
Redundancy Factor (p):	1.000
Seismic Force Distribution Exponent (k):	1.090
Total Unfactored Dead Load:	30.990 k
Seismic Base Shear (E):	2.840 k

1.2D + 1.0Ev + 1.0Eh

Seismic

Segment	Height Above Base (ft)	Weight (lb)	W _z (Ib-ft)	C_{vx}	Horizontal Force (lb)	Vertical Force (lb)
39	93.5	60	8	0.004	13	75
38	91.5	185	25	0.013	38	232
37	88.65	172	23	0.012	34	216
36	86.15	151	19	0.010	29	189
35	84.5	67	8	0.004	12	84
34	82.25	274	33	0.018	50	343
33	80.25	40	5	0.002	7	50
32	77.5	412	47	0.025	70	516
31	74.4	102	11	0.006	17	128
30	72.65	199	21	0.011	31	250
29	71.25	44	5	0.002	7	55
28	70.5	91	9	0.005	14	115
27	67.5	470	46	0.024	69	589
26	64.4	116	11	0.006	16	145
25	61.9	376	33	0.018	50	471
24	57.5	513	42	0.022	63	643
23	54.15	179	14	0.007	21	225
22	52.15	247	18	0.010	27	309
21	50.5	316	23	0.012	34	396
20	48.75	801	55	0.029	82	1,004
19	46.4	718	47	0.025	70	900
18	45.2333	44	3	0.002	4	55
17	45.0833	37	2	0.001	3	46
16	43.5	667	40	0.021	60	836
15	41	453	26	0.014	38	568
14	38.5	693	37	0.019	55	869
13	36.5	234	12	0.006	18	294
12	35.5	236	11	0.006	17	296
11	33	962	43	0.023	64	1,206
10	30.75	122	5	0.003	8	153
9	30.25	123	5	0.003	7	154
8	27.5	1,250	46	0.024	69	1,566
7	24.25	383	12	0.006	18	480
6	21.75	909	26	0.014	39	1,140

Segment	Height Above Base (ft)	Weight (lb)	W _z (lb-ft)	C_{vx}	Horizontal Force (lb)	Vertical Force (lb)
5	19.5	264	7	0.004	10	331
4	17	1,072	23	0.012	35	1,344
3	12.5	1,379	22	0.011	32	1,728
2	7.5	1,422	13	0.007	19	1,782
1	2.5	1,465	4	0.002	6	1,836
(3) 6 ft Branches	94	120	17	0.009	25	150
5 ft Branches	94	33	5	0.002	7	41
8 ft Branches	93	356	49	0.026	73	446
8 ft Branches	87.3	750	97	0.051	145	941
8 ft Branches	80.5	750	89	0.047	133	941
8 ft Branches	71.5	711	74	0.039	110	891
10 ft Branches	73.8	406	44	0.023	65	509
10 ft Branches	63.8	1,128	104	0.054	155	1,413
10 ft Branches	53.3	1,398	106	0.056	158	1,752
10 ft Branches	45.3	361	23	0.012	34	452
Samsung RF4440d-13A	71	211	22	0.012	33	264
Samsung RF4439d-25A	71	224	23	0.012	35	281
Raycap RCMDC-6627-PF-48	71	32	3	0.002	5	40
Samsung MT6407-77A	71	245	25	0.013	38	307
Generic Flat T-Arm	71	938	97	0.051	145	1,175
JMA Wireless MX10FRO860-xx	71	274	28	0.015	42	343
JMA Wireless MX10FRO840-xx	71	184	19	0.010	28	231
12 ft Branches	47.5	230	15	0.008	23	289
12 ft Branches	42	749	44	0.023	65	938
12 ft Branches	37	749	38	0.020	57	938
12 ft Branches	31	634	27	0.014	40	794
12 ft Branches	19	173	4	0.002	6	217
14 ft Branches	36	396	19	0.010	29	496
14 ft Branches	30.5	633	26	0.014	39	793
14 ft Branches	23.5	2,057	64	0.034	95	2,578
		30,990	1,900	1.000	2,838	38,841

0.9D - 1.0Ev + 1.0Eh	Seismic (Reduced DL)
----------------------	----------------------

	Height Above				Horizontal	Vertical
	Base	Weight	W_z	•	Force	Force
Segment	(ft)	(lb)	(lb-ft)	C _{vx}	(lb)	(lb)
39	93.5	60	8	0.004	13	51
38	91.5	185	25	0.013	38	157
37	88.65	172	23	0.012	34	146
36	86.15	151	19	0.010	29	128
35	84.5	67	8	0.004	12	57
34	82.25	274	33	0.018	50	232
33	80.25	40	5	0.002	7	34
32	77.5	412	47	0.025	70	349
31	74.4	102	11	0.006	17	86
30	72.65	199	21	0.011	31	169
29	71.25	44	5	0.002	7	37
28	70.5	91	9	0.005	14	77
27	67.5	470	46	0.024	69	398
26	64.4	116	11	0.006	16	98
25	61.9	376	33	0.018	50	318
24	57.5	513	42	0.022	63	435
23	54.15	179	14	0.007	21	152
22	52.15	247	18	0.010	27	209
21	50.5	316	23	0.012	34	268
20	48.75	801	55	0.029	82	678
19	46.4	718	47	0.025	70	608
18	45.2333	44	3	0.002	4	37
17	45.0833	37	2	0.001	3	31
16	43.5	667	40	0.021	60	565
15	41	453	26	0.014	38	384
14	38.5	693	37	0.019	55	587
13	36.5	234	12	0.006	18	198

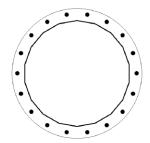
Segment	Height Above Base (ft)	Weight (lb)	W _z (Ib-ft)	C_vx	Horizontal Force (lb)	Vertical Force (lb)
12	35.5	236	11	0.006	17	200
11	33	962	43	0.023	64	814
10	30.75	122	5	0.003	8	103
9	30.25	123	5	0.003	7	104
8	27.5	1,250	46	0.024	69	1,058
7	24.25	383	12	0.006	18	325
6	21.75	909	26	0.014	39	770
5	19.5	264	7	0.004	10	223
4	17	1.072	23	0.012	35	908
3	12.5	1,379	22	0.011	32	1,168
2	7.5	1,422	13	0.007	19	1,204
<u>-</u> 1	2.5	1,465	4	0.002	6	1,241
(3) 6 ft Branches	94	120	17	0.009	25	102
5 ft Branches	94	33	5	0.002	7	28
8 ft Branches	93	356	49	0.026	73	301
8 ft Branches	87.3	750	97	0.051	145	635
8 ft Branches	80.5	750	89	0.047	133	635
8 ft Branches	71.5	711	74	0.039	110	602
10 ft Branches	73.8	406	44	0.023	65	344
10 ft Branches	63.8	1,128	104	0.054	155	955
10 ft Branches	53.3	1,398	106	0.056	158	1,184
10 ft Branches	45.3	361	23	0.012	34	305
Samsung RF4440d-13A	71	211	22	0.012	33	179
Samsung RF4439d-25A	71	224	23	0.012	35	190
Raycap RCMDC-6627-PF-48	71	32	3	0.002	5	27
Samsung MT6407-77A	71	245	25	0.013	38	207
Generic Flat T-Arm	71	938	97	0.051	145	794
JMA Wireless MX10FRO860-xx	71	274	28	0.015	42	232
JMA Wireless MX10FRO840-xx	71	184	19	0.010	28	156
12 ft Branches	47.5	230	15	0.008	23	195
12 ft Branches	42	749	44	0.023	65	634
12 ft Branches	37	749	38	0.020	57	634
12 ft Branches	31	634	27	0.014	40	536
12 ft Branches	19	173	4	0.002	6	146
14 ft Branches	36	396	19	0.010	29	335
14 ft Branches	30.5	633	26	0.014	39	536
14 ft Branches	23.5	2,057	64	0.034	95	1,741
		30,990	1,900	1.000	2,838	26,238

12D + 1	.0Fv + 1.0Fh	Seismic

					(CALCULA	ΓED FOR(CES					
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (fr-kips)	Mu Mx (ft-kips)	Resultant Moment (ft-kips)	Phi Pn (kips)	Phi Vn (kips)	Phi Tn (kips)	Phi Mn (kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00 5.00 10.00 15.00 19.00 20.00 23.50 25.00 30.00 30.50 31.00 35.00 36.00 37.00 40.00 42.00	-37.00 -35.22 -33.49 -32.15 -31.60 -30.46 -27.40 -25.68 -24.74 -22.74 -22.74 -21.65 -19.84 -17.50 -17.46	-2.83 -2.82 -2.79 -2.76 -2.74 -2.59 -2.53 -2.52 -2.47 -2.37 -2.35 -2.30 -2.19 -2.15 -2.03 -2.03	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-164.59 -150.42 -136.32 -122.37 -111.33 -108.59 -99.11 -95.23 -82.60 -81.34 -80.10 -70.63 -68.28 -65.97 -59.40 -55.09 -49.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	164.59 150.42 136.32 122.37 111.33 108.59 99.11 95.23 82.60 81.34 80.10 70.63 68.28 65.97 59.40 55.09 49.00	6,278.64 6,144.82 6,007.97 5,861.23 5,710.71 5,673.09 5,541.39 5,484.94 5,296.80 5,277.99 5,259.17 5,108.66 5,071.03 5,033.40 4,920.52 4,845.26 4,732.38	1,517.87 1,473.43 1,428.99 1,384.54 1,348.99 1,340.10 1,308.99 1,295.66 1,251.21 1,246.77 1,242.32 1,206.77 1,197.88 1,188.99 1,162.33 1,144.55 1,117.88	7,472 7,041 6,623 6,217 5,902 5,825 5,557 5,445 5,078 5,042 5,006 4,723 4,654 4,585 4,382 4,249 4,053	7,031.52 6,678.32 6,330.81 5,982.24 5,677.45 5,602.50 5,344.09 5,235.21 4,880.38 4,845.58 4,810.90 4,537.99 4,471.01 4,404.53 4,208.06 4,079.57 3,890.58	0.00 0.00 0.01 0.03 0.05 0.06 0.08 0.09 0.13 0.13 0.14 0.18 0.20 0.23 0.25 0.28	0.00 -0.01 -0.01 -0.02 -0.03 -0.03 -0.03 -0.04 -0.04 -0.04 -0.05 -0.05 -0.05 -0.05 -0.05	0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02
45.17 45.30 47.50	-17.40 -16.05 -14.75	-2.02 -1.92 -1.81	0.00 0.00 0.00	-48.67 -48.40 -44.18	0.00 0.00 0.00	48.67 48.40 44.18	4,726.11 4,721.09 4,638.31	1,116.40 1,115.22 1,095.66	4,043 4,034 3,894	3,880.21 3,871.93 3,736.51	0.29 0.29 0.32	-0.06 -0.06 -0.06	0.02 0.02 0.02

So.	D.,	Vu	Tu	Mu	Mu	Desultant	Dh:	Dh:	Phi	Phi	Total		
Seg	Pu		MY	MZ		Resultant	Phi	Phi Vn			Total	Detetion	
Elev	FY (-)	FX (-)			Mx (ft lains)	Moment	Pn		Tn	Mn (Isina)	Deflect	Rotation	D-#-
(ft)	(kips)	(kips)	(ft-kips)	(fr-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(kips)	(kips)	(in)	(deg)	Ratio
50.00	-14.36	-1.78	0.00	-39.65	0.00	39.65	4,544.23	1,073.44	3,738	3,585.55	0.35	-0.06	0.01
51.00	-14.05	-1.75	0.00	-37.88	0.00	37.88	1,974.29	542.72	1,910	1,585.46	0.36	-0.06	0.03
53.30	-12.07	-1.57	0.00	-33.85	0.00	33.85	1,953.73	532.50	1,839	1,539.21	0.39	-0.07	0.03
55.00	-11.43	-1.51	0.00	-31.18	0.00	31.18	1,938.13	524.94	1,787	1,505.11	0.42	-0.07	0.03
60.00	-10.96	-1.46	0.00	-23.65	0.00	23.65	1,890.21	502.72	1,639	1,405.35	0.49	-0.08	0.02
63.80	-9.40	-1.29	0.00	-18.11	0.00	18.11	1,851.77	485.83	1,531	1,330.21	0.55	-0.08	0.02
65.00	-8.81	-1.22	0.00	-16.57	0.00	16.57	1,839.28	480.50	1,498	1,306.62	0.57	-0.08	0.02
70.00	-8.70	-1.20	0.00	-10.48	0.00	10.48	1,785.33	458.28	1,362	1,209.22	0.66	-0.09	0.01
71.00	-6.00	-0.87	0.00	-9.28	0.00	9.28	1,774.17	453.83	1,336	1,189.93	0.68	-0.09	0.01
71.50	-4.86	-0.72	0.00	-8.85	0.00	8.85	1,768.55	451.61	1,323	1,180.30	0.69	-0.09	0.01
73.80	-4.22	-0.64	0.00	-7.18	0.00	7.18	1,742.31	441.39	1,264	1,136.27	0.73	-0.09	0.01
75.00	-3.71	-0.57	0.00	-6.42	0.00	6.42	1,728.36	436.06	1,233	1,113.44	0.76	-0.09	0.01
80.00	-3.66	-0.56	0.00	-3.56	0.00	3.56	1,668.37	413.84	1,111	1,019.60	0.85	-0.09	0.01
80.50	-2.37	-0.38	0.00	-3.28	0.00	3.28	1,662.21	411.61	1,099	1,010.33	0.86	-0.09	0.01
84.00	-2.29	-0.37	0.00	-1.96	0.00	1.96	1,618.21	396.06	1,017	946.11	0.93	-0.09	0.00
84.00	-2.29	-0.37	0.00	-1.96	0.00	1.96	1,357,42	347.01	892	795.37	0.93	-0.09	0.00
85.00	-2.10	-0.34	0.00	-1.59	0.00	1.59	1,347.53	343.12	873	780.66	0.95	-0.09	0.00
87.30	-0.94	-0.16	0.00	-0.81	0.00	0.81	1,324.32	334.17	828	747.05	0.99	-0.09	0.00
90.00	-0.71	-0.12	0.00	-0.39	0.00	0.39	1,296.25	323.67	776	708.06	1.05	-0.09	0.00
93.00	-0.19	-0.03	0.00	-0.03	0.00	0.03	1,264.04	312.00	721	665.37	1.11	-0.09	0.00
94.00	0.00	-0.03	0.00	0.00	0.00	0.00	1,253.06	308.11	704	651.30	1.13	-0.09	0.00
37.00	0.00	-0.00	0.00	0.00	0.00	0.00	1,200.00	000.11	, 04	001.00	1.10	-0.03	0.00

0.9D - 1.0Ev + 1.0Eh Seismic (Reduced DL)


					(CALCULAT	FED FOR	CES					
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (fr-kips)	Mu Mx (ft-kips)	Resultant Moment (ft-kips)	Phi Pn (kips)	Phi Vn (kips)	Phi Tn (kips)	Phi Mn (kips)	Total Deflect (in)	Rotation (deg)	Ratio
(ft) 0.00 5.00 10.00 15.00 19.00 23.50 25.00 30.00 30.50 31.00 35.00 36.00 40.00 42.00 45.17 45.30 47.50 50.00 51.00 53.30 55.00 60.00	(kips) -25.00 -23.79 -22.63 -21.72 -21.35 -20.58 -18.51 -17.45 -17.35 -16.71 -15.36 -15.16 -14.63 -13.40 -13.02 -11.82 -11.79 -11.75 -10.84 -9.97 -9.70 -9.49 -8.15 -7.72 -7.40	(kips) -2.83 -2.82 -2.79 -2.75 -2.74 -2.70 -2.59 -2.52 -2.51 -2.47 -2.36 -2.35 -2.30 -2.19 -2.15 -2.02 -2.02 -1.91 -1.81 -1.77 -1.74 -1.57 -1.50 -1.45	(ft-kips) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(fr-kips) -164.24 -150.08 -135.99 -122.05 -111.03 -108.29 -98.84 -94.96 -82.36 -81.10 -79.87 -70.42 -68.07 -65.77 -59.21 -54.92 -48.85 -48.51 -48.24 -44.04 -39.52 -37.75 -33.74 -31.08 -23.57	(ft-kips) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(ff-kips) 164.24 150.08 135.99 122.05 111.03 108.29 98.84 94.96 82.36 81.10 79.87 70.42 68.07 65.77 59.21 54.92 48.85 48.51 48.24 44.04 39.52 37.75 33.74 31.08 23.57	(kips) 6,278.64 6,144.82 6,007.97 5,861.23 5,710.71 5,673.09 5,541.39 5,484.94 5,296.80 5,277.99 5,259.17 5,108.66 5,071.03 5,033.40 4,920.52 4,845.26 4,732.38 4,726.11 4,721.09 4,638.31 4,544.23 1,974.29 1,953.73 1,938.13 1,890.21	(kips) 1,517.87 1,473.43 1,428.99 1,384.54 1,348.99 1,340.10 1,308.99 1,295.66 1,251.21 1,246.77 1,242.32 1,206.77 1,197.88 1,1188.99 1,162.33 1,144.55 1,117.88 1,116.40 1,115.22 1,095.66 1,073.44 542.72 532.50 524.94 502.72	(kips) 7,472 7,041 6,623 6,217 5,902 5,825 5,557 5,445 5,078 5,042 5,006 4,723 4,654 4,585 4,382 4,249 4,053 4,043 4,034 3,894 3,738 1,910 1,839 1,787 1,639	(kips) 7,031.52 6,678.32 6,330.81 5,982.24 5,677.45 5,602.50 5,344.09 5,235.21 4,880.38 4,845.58 4,810.90 4,537.99 4,471.01 4,404.53 4,208.06 4,079.57 3,890.58 3,880.21 3,871.93 3,736.51 3,585.55 1,585.46 1,539.21 1,505.11 1,405.35	(in) 0.00 0.00 0.01 0.03 0.05 0.06 0.08 0.09 0.13 0.13 0.14 0.17 0.18 0.19 0.23 0.25 0.28 0.29 0.31 0.35 0.36 0.39 0.41 0.49	(deg) 0.00 -0.01 -0.02 -0.03 -0.03 -0.04 -0.04 -0.05 -0.05 -0.05 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.07 -0.07 -0.08	0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03
63.80 65.00 70.00 71.00 71.50 73.80 75.00 80.00 80.50 84.00 85.00 87.30 90.00 93.00 94.00	-6.35 -5.95 -5.87 -4.05 -3.28 -2.85 -2.50 -2.47 -1.60 -1.55 -1.55 -1.42 -0.64 -0.48 -0.13 0.00	-1.28 -1.21 -1.20 -0.86 -0.72 -0.64 -0.57 -0.56 -0.38 -0.37 -0.37 -0.34 -0.16 -0.12 -0.03 -0.03	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-18.05 -16.51 -10.45 -9.25 -8.82 -7.16 -6.39 -3.55 -3.27 -1.95 -1.95 -1.58 -0.81 -0.39 -0.03	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	18.05 16.51 10.45 9.25 8.82 7.16 6.39 3.55 3.27 1.95 1.95 1.58 0.81 0.39 0.03	1,851.77 1,839.28 1,785.33 1,774.17 1,768.55 1,742.31 1,728.36 1,668.37 1,662.21 1,618.21 1,357.42 1,347.53 1,324.32 1,296.25 1,264.04 1,253.06	485.83 480.50 458.28 453.83 451.61 441.39 436.06 413.84 411.61 396.06 347.01 343.12 334.17 323.67 312.00 308.11	1,531 1,498 1,362 1,336 1,323 1,264 1,233 1,111 1,099 1,017 892 873 828 776 721 704	1,330.21 1,306.62 1,209.22 1,189.93 1,180.30 1,136.27 1,113.44 1,019.60 1,010.33 946.11 795.37 780.66 747.05 708.06 665.37 651.30	0.55 0.57 0.66 0.68 0.69 0.73 0.75 0.85 0.86 0.93 0.95 0.99 1.04 1.10	-0.08 -0.08 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00

		А	NALYSIS	SUMMAR	Υ			
			Reacti	ons			Ma:	x Usage
Load Case	Shear FX (kips)	Shear FZ (kips)	Axial FY (kips)	Moment MX (ft-kips)	Moment MY (ft-kips)	Moment MZ (ft-kips)	Elev (ft)	Interaction Ratio
1.2D + 1.0W	86.97	0.00	37.03	0.00	0.00	4674.64	0.00	0.67
0.9D + 1.0W 1.2D + 1.0Di + 1.0Wi	86.95 23.15	0.00 0.00	27.73 47.18	0.00 0.00	0.00 0.00	4667.33 1249.90	0.00 0.00	0.67 0.19
1.2D + 1.0Ev + 1.0Eh 0.9D - 1.0Ev + 1.0Eh	2.83 2.83	0.00	37.00 25.00	0.00	0.00	164.59 164.24	51.00 51.00	0.03 0.03 0.16
1.0D + 1.0W	20.82	0.00	30.98	0.00	0.00	1118.06	0.00	0

BASE PLATE ANALYSIS @ 0 FT

PLATE PARAMETERS (ID# 16601)

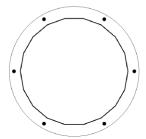
Diameter:	68	in
Shape:	Round	
Thickness:	3	in
Grade:	A572-50	
Yield Strength:	50	ksi
Tensile Strength:	65	ksi
Rod Detail Type:	d	
Clear Distance	3	in
Base Weld Size:	0.125	in
Orientation Offset:	10	0
Analysis Type:	Plastic	
Neutral Axis:	50	0

			Į.	ANCHOR ROD F	PARAMETERS				
Class	Arrangement	Quantity	Diameter (in)	Circle (in)	Grade	Fy (ksi)	Fu (ksi)	Spacing (in)	Offset (°)
Original	Radial	18	2.25	62.5	A615-75	75	100	-	-

	ANCHOR	ROD GEOMETRY A	AND APPLIED L	OADS ORIGINAL	(18) 2.25"ø [ID 169	90]	
Position	Radians	X (in)	Y (in)	Moment Arm (in)	Inertia (in ⁴)	Axial Load (k)	Shear Load (k)
1	0.349	29.36	10.69	-14.969	728.528	-158.57	6.54
2	0.698	23.94	20.09	-5.199	88.609	-158.57	7.44
3	1.047	15.62	27.06	5.199	88.609	166.80	7.44
4	1.396	5.43	30.78	14.969	728.528	166.80	6.54
5	1.745	-5.43	30.78	22.933	1708.940	166.80	4.85
6	2.094	-15.62	27.06	28.132	2571.100	166.80	2.58
7	2.443	-23.94	20.09	29.938	2911.594	166.80	0.00
8	2.793	-29.36	10.69	28.132	2571.100	166.80	2.58
9	3.142	-31.25	0.00	22.933	1708.940	166.80	4.85
10	3.491	-29.36	-10.69	14.969	728.528	166.80	6.54
11	3.840	-23.94	-20.09	5.199	88.609	166.80	7.44
12	4.189	-15.62	-27.06	-5.199	88.609	-158.57	7.44
13	4.538	-5.43	-30.78	-14.969	728.528	-158.57	6.54
14	4.887	5.43	-30.78	-22.933	1708.940	-158.57	4.85
15	5.236	15.62	-27.06	-28.132	2571.100	-158.57	2.58
16	5.585	23.94	-20.09	-29.938	2911.594	-158.57	0.00
17	5.934	29.36	-10.69	-28.132	2571.100	-158.57	2.58
18	6.283	31.25	0.00	-22.933	1708.940	-158.57	4.85

	REACTION DISTRIBU	TION		
ID	Moment Mu (k-ft)	Axial Load Pu (k)	Shear Vu (k)	Moment Factor
55"ø x 0.5" (18 Sides)	4674.6	37.03	86.97	1.000
Original (18) 2.25"ø	4674.6	-	86.97	1.000
TOTALS	4674.64	37.03	86.97	
	55"ø x 0.5" (18 Sides) Original (18) 2.25"ø	ID Moment Mu (k-ft) 55"ø x 0.5" (18 Sides) 4674.6 Original (18) 2.25"ø 4674.6	Mu (k-ft) Pu (k) 55"ø x 0.5" (18 Sides) 4674.6 37.03 Original (18) 2.25"ø 4674.6 -	ID Moment Mu (k-ft) Axial Load Pu (k) Shear Vu (k) 55"ø x 0.5" (18 Sides) 4674.6 37.03 86.97 Original (18) 2.25"ø 4674.6 - 86.97

		COMPONENT F	PROPERTIES			
Component	ID	Gross Area (in²)	Net Area (in²)	Individual Inertia (in ⁴)	Moment of Inertia (in ⁴)	Threads/in
Pole	55"ø x 0.5" (18 Sides)	85.1744	-	-	31630.80	-
Bolt Group	Original (18) 2.25"ø	3.9761	3.2477	0.8393	26211.90	4.5


		EXTERNAL BASE I	PLATE BEND LINE AN	ALYSIS @ 0 FT			
POLE PROPERTIES			PLATE PRO	PERTIES			
Flat-to-Flat Diameter:	55.12	in	Neutral Axis:		50	0	
Point-to-Point Diameter:	55.98	in	Bend Line Lo	ower Limit:	1.883	rad	
Flat Width:	9.720	in	Bend Line U	pper Limit:	3.004	rad	
Flat Radians:	0.349	rad					
Bend Line	Chord Length (in)	Additional Length (in)	Section Modulus (in³)	Applied Moment Mu (k-in)	-	nt Capacity φMn (k-in)	Ratio
Flat	36.093	0.00	81.210	724.1		3654.4	0.198
Corner	34.760	0.00	78.210	466.8		3519.4	0.133
Circumferential	46.639	0.00	104.938	1180.2		4722.2	0.250

		PLAS	STIC ANCHOR ROD AN	ALYSIS		
Class	Group Quantity	Rod Diameter (in)	Applied Axial Load Pu (k)	Applied Shear Load Vu (k)	Compressive Capacity φPn (k)	Ratio
Original	18	2.25	166.9	7.4	243.6	0.746

UPPER FLANGE PLATE ANALYSIS @ 84 FT

PLATE PARAMETERS (ID# 16602)

Diameter:	35.01	in
Shape:	Round	
Thickness:	2	in
Grade:	A572-50	
Yield Strength:	50	ksi
Tensile Strength:	65	ksi
Pole Weld Size:	0.125	in
Orientation Offset:	-	٥
Analysis Type:	Plastic	
Neutral Axis:	330	0

	FLANGE BOLT PARAMETERS								
Class	Arrangement	Quantity	Diameter (in)	Circle (in)	Grade	Fy (ksi)	Fu (ksi)	Spacing (in)	Offset (°)
Original	Radial	6	1	32.51	A325	92	120	-	-

	FLANGE BOLT GEOMETRY AND APPLIED LOADS ORIGINAL (6) 1"Ø [ID 16991]								
Position	Radians	X (in)	Y (in)	Moment Arm (in)	Inertia (in ⁴)	Axial Load (k)	Shear Load (k)		
1	1.047	8.13	14.08	15.630	148.011	10.78	0.00		
2	2.094	-8.13	14.08	7.815	37.025	10.78	2.11		
3	3.142	-16.26	0.00	-7.815	37.025	-9.55	2.11		
4	4.189	-8.13	-14.08	-15.630	148.011	-9.55	0.00		
5	5.236	8.13	-14.08	-7.815	37.025	-9.55	2.11		
6	6.283	16.26	0.00	7.815	37.025	10.78	2.11		

REACTION DISTRIBUTION					
Component	ID	Moment Mu (k-ft)	Axial Load Pu (k)	Shear Vu (k)	Moment Factor
Pole	28.6914"ø x 0.2188" (18 Sides)	53.0	1.85	9.75	1.000
Bolt Group	Original (6) 1"ø	53.0	-	9.75	1.000
	TOTALS	52.95	1.85	9.75	

COMPONENT PROPERTIES						
Component	ID	Gross Area (in²)	Net Area (in²)	Individual Inertia (in ⁴)	Moment of Inertia (in ⁴)	Threads/in
Pole	28.6914"ø x 0.2188" (18 Sides)	19.4723	-	-	1973.56	-
Bolt Group	Original (6) 1"ø	0.7854	0.6057	0.0292	444.12	8.0

EXTERNAL UPPER FLANGE PLATE BEND LINE ANALYSIS @ 84 FT

POLE PROPERTIES			PLATE PROPERTIES
Flat-to-Flat Diameter:	28 82	in	Neutral Axis

Flat-to-Flat Diameter:28.82inNeutral Axis:330°Point-to-Point Diameter:29.26inBend Line Lower Limit:0.134radFlat Width:5.081inBend Line Upper Limit:1.961rad

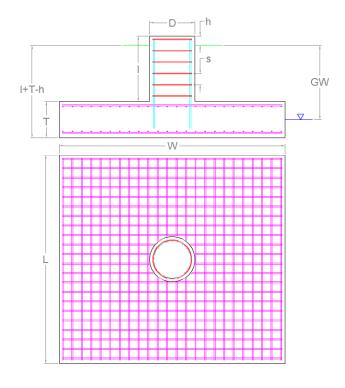
Flat Radians: 0.349 rad

Bend Line	Chord Length (in)	Additional Length (in)	Section Modulus (in³)	Applied Moment Mu (k-in)	Moment Capacity φMn (k-in)	Ratio
Flat	18.204	0.00	18.204	16.9	819.2	0.021
Corner	17.481	0.00	17.481	13.8	786.6	0.018
Circumferential	34.217	0.00	34.217	13.8	1539.8	0.009

	PLASTIC FLANGE BOLT ANALYSIS						
Class	Group Quantity	Bolt Diameter (in)	Applied Axial Load Pu (k)	Applied Shear Load Vu (k)	Compressive Capacity φPn (k)	Ratio	
Original	6	1	10.8	2.1	54.5	0.198	

Task ID: 144845 Page 4 of 4 3/25/2022 9:38:27

Asset 209477 v1.0


Monolithic Mat Foundation Analysis (ANSI/TIA-222-H)

Foundation & To	ower Parame	ters	
Ignore Mat Rebar?		N	
Ignore Pier Rebar?		N	
Foundation has Pier(s)?		Υ	
Pier Shape		Round	
Pier Diameter	D	7	ft
Pier Height Above Ground	h	0.5	ft
Pier Length	1	4.5	ft
Mat Base Depth	I+T-h	7	ft
Mat Length	L	26	ft
Mat Width	W	26	ft
Mat Thickness	T	3	ft
Unit Weight of Concrete		150	pcf
Tower Eccentricity	ecc	0	ft
Tower Face Width	FW	4.58	ft
Tower Leg Count		1	

Soil Parameters						
Water Table Depth [BGL]	GW	-	ft			
Unit Weight of Soil		130	pcf			
Unit Weight of Soil [Submerged]	67.6	pcf				
Shear Friction Coefficient		0.35				
Ultimate Bearing Pressure		30,000	psf			
Bearing Pressure Type		Net				
Conical Failure Angle		15	0			
Capacity Increase (Transient Loads	s)	1.00				
Soil Strength Reduction Factor, φ_{s}		0.75				
Dead Load Factor		1.2				

Soil Capacities						
Design Moment, M _u	5,326.92	k-ft				
Nominal Moment Capacity, $\varphi_{m}M_{n}$	8,608.59	k-ft				
$M_u/\varphi_s M_n$	61.9%					
Net Bearing Pressure	2,572	k				
Nominal Bearing Capacity, $\varphi_b P_n$	23,182	k				
Bearing Pressure Controlling Load Direction	Diagonal to Pad	Edge				
P_u/φ_sP_n	11.1%					
Ultimate Friction Resistance	242.39	k				
Ultimate Passive Pressure Resistance	55.77	k				
Nominal Shear Capacity, $\varphi_{s}V_{n}$	223.62	k				
$V_u / \varphi_s V_n$	39.0%					

Reactions		
Moment, M _u	4,674.64	k-ft
Shear, V_u	86.97	k
Axial, P _u	37.03	k
Uplift, T _u	0	k
Tower Weight	37.03	k
Tower Dead Load Factor	0.9	

Page **1** of **2**

Asset 209477 v1.0

	Mat Reinforcement Parame	eters	
Concrete Cor	npressive Strength, f'c	4,500	psi
Mat Rebar Qu	uantity [Lower]	36	
Mat Rebar Siz	ze # [Lower]	9	
Mat Single Re	ebar Area [Lower]	1	in ²
Mat Rebar Qu	uantity [Upper]	36	
Mat Rebar Siz	ze # [Upper]	6	
Mat Single Re	ebar Area [Upper]	0.44	in ²
Mat Rebar Yie	eld Strength, F _y	60	ksi
Mat Clear Co	ver	3	in
Bending Redu	uction Factor, φ _B	0.9	
Shear Reduct	ion Factor, φ _V	0.75	
Compression	Reduction Factor, ϕ_C	0.65	
Steel Elastic	Modulus	29,000	ksi

Mat Reinforcement Capacities					
Compression Zone Factor, β ₁	0.825				
Lower Reinforcement Spacing	8.73	in			
Upper Reinforcement Spacing	8.73	in			
One Way Design Shear, $V_{\rm u}$	248.53	k			
One Way Shear Capacity, ϕV_c	941.31	k			
One Way Shear Controlling Load Direction	Diagonal to Pad Edge				
V_u / ϕV_c	26.4%				
Punching Design Shear Stress, v _u	55.33	psi			
Punching Shear Capacity, $\varphi_c V_n$	201.25	psi			
v_u / $\phi_c V_n$	27.5%				
Moment Transfer Effective Flexural Width, _f	16	in			
Neutral Axis Depth	1.88	In			
Moment Transfer Flexural Capacity, $\varphi M_{\text{sc,f}}$	38,598.88	k-in			
$\gamma_f M_{sc}$ / $\phi M_{sc,f}$	0.0%				
Flexure Due to Soil Pressure, M _u	2,248.7	k-ft			
Lower Steel Mat Moment Capacity, φM_{n}	5,039.13	k-ft			
Flexural Steel Controlling Load Direction	Parallel to Pad Edge				
M_u / ϕM_n	44.6%				
Flexure Due to Uplift, M _u	1,138.05	k-ft			
Upper Steel Mat Moment Capacity, φM_n	2,247.92	k-ft			
M_u / ϕM_n	50.6%				

Pier Reinforcement Parameters				
Concrete Compressive Strength (f'c)	4,500	psi		
Pier Rebar Quantity	30			
Pier Rebar Size #	11			
Pier Single Rebar Area	1.56	in ²		
Pier Rebar Yield Strength (F _y)	60	ksi		
Tie Rebar Size #	5			
Tie Rebar Area (Single)	0.31	in ²		
Tie Rebar Spacing s	12	in		
Tie Rebar Yield Strength (F _y)	60	ksi		
Rebar Cage Diameter	75.38	in		

Pier Reinforcement Capacities				
Design Moment (M _u)	5,066	k-ft		
Nominal Moment Capacity $(\varphi_B M_n)$	7,768.29	k-ft		
M_u / $\phi_B M_n$	65.2%			
Design Shear (V _u)	86.97	k		
Nominal Shear Capacity $(\phi_V V_n)$	715.73	k		
$V_u / \varphi_V V_n$	12.2%			
Design Compression (P _u)	37.03	k		
Nominal Compression Capacity $(\phi_P P_n)$	10,978.17	k		
$P_u/\varphi_P P_n$	0.3%			
Pier Reinforcement Ratio	0.001	-		
$M_u/\phi_B M_n + T_u/\phi_T T_n$	65.2%			

Analysis 61693 Page 2 of 2

MOUNT ANALYSIS REPORT NEW CANAAN, CONNECTICUT

Prepared for Verizon Wireless

Site Ref: New Canaan NE2 CT

Site Address: 183 Soundview Lane, New Canaan, Connecticut 06840

APT Filing No. CT141NB_13190

May 25, 2022

Mount Analysis Report prepared for Verizon Wireless

EXECUTIVE SUMMARY:

All-Points Technology Corporation, P.C. (APT) performed a structural analysis of the proposed Verizon installation on the existing host tower structure located at 183 Soundview Lane in New Canaan, Connecticut. This analysis was limited to a structural evaluation of the proposed mounting assembly with the proposed equipment installation and its connection to the host tower structure.

The Verizon installation consists of one (1) proposed SitePRO1 Double T-Arm antenna mount assembly (P/N RMVD8-3-3096) to the proposed antennas and related equipment. The proposed equipment configuration is included within the table on the following page. Reference is made to the Construction Drawings prepared by APT, marked Rev 3, dated 05/25/2022.

Our analysis indicates that the proposed installation meets the requirements of IBC 2015 as amended by the 2018 Connecticut State Building Code and the ANSI/TIA-222-H standard with proposed equipment installation

REFERENCES:

The following information was utilized in the preparation of this analysis:

- Equipment manufacturer's specifications, drawings, design documentation, etc.
- Structural Analysis Report prepared by American Tower Corporation, dated 03/25/2022.

STRUCTURAL ANALYSIS:

The analysis of the modified antenna mount assembly has been prepared in accordance with the following design codes & standards:

- ANSI/TIA-222-H-2018 Structural Standard for Antenna Supporting Structures, Antennas and Small Wind Turbine Support Structures.
- ASCE/SEI 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
- AISC Manual of Steel Construction, 16th Edition.
- 2015 International Building Code (IBC) as amended by the 2018 Connecticut State Building Code

DESIGN CRITERIA FOR STRUCTURAL ANALYSIS:

The analysis of the modified antenna mount assembly was prepared utilizing the following design criteria:

- 120 mph (3-second gust) Ultimate Design Wind Speed.
- 50 mph (3-second gust) Design Wind Speed w/ 1.0" design ice thickness.
- 30 mph (3-second gust) Maintenance Wind Speed
- Risk Category II
- Exposure Category B
- Maintenance Live Load, LLm / LLv = 500 lbs / 250 lbs

Equipment Summary:

New Canaan, CT 06840

The proposed Verizon antenna/appurtenance and mount assembly loading consists of the following equipment (proposed and relocated equipment shown in **bold** text):

Antenna and Appurtenance Make/Model	Quantity	Status	Mount Type ²	Elevation
JMA MX10FRO860 panel antennas	3	Р		
JMA MX10FRO840 panel antennas	3	Р	One (1) SiteBBO1 Devible T	
Samsung MT6407-77A panel antennas	3	Р	One (1) SitePRO1 Double T- Arm with antenna pipes, PN# RMVD8-3-3096.	71.0 ft± AGL
Samsung B2/B66A (RF4439d-25A) RRH Remote Radio Heads	3	Р	PIN# RIVIVD6-3-3096.	
Samsung B5/13 (RF4440d-13A) RRH Remote Radio Heads	3	Р		
12x24 Hybrid Cable	1	Р	n/a	n/a

Notes

Antenna Mount Usage:

The following table summarizes the usage under the proposed equipment loading utilizing the local design criteria:

Component	<u>Usage</u>
Mounting Members	0.35
Connection	0.23

Note:

Conclusions and Recommendations:

In conclusion, our mount analysis indicates that the proposed Verizon mount assembly and all related connections meet the requirements of the IBC 2015/2018 Connecticut State Building Code and ANSI/TIA-222-H standard with Verizon's proposed equipment installation.

If there are any further questions regarding this project or if we may be of further assistance, please do not hesitate to call.

Sincerely,

All-Points Technology Corp., P.C.

Michael S. Trodden, P.E. Sr. Structural Engineer

OF CONNEC

Prepared by, All-Points Technology Corp., P.C.

Jeremy Vassell

Jeremy P. Vassell Project Structural Engineer

^{1.} ETR = Existing to Remain; ERL = Existing to be Relocated; P = Proposed.

[.] Usage values noted above compared to unity (i.e. < 1.0) are deemed adequate.

Mount Analysis Report Verizon Site Name: New Canaan NE2 CT 183 Soundview Lane New Canaan, CT 06840 May 25, 2022 Page 3 APT Project #CT141NB_13190

LIMITATIONS:

This report is based on the following:

- 1. Mount assembly/assemblies are properly installed and maintained.
- 2. All members are in an undeteriorated condition.
- 3. All required members are in place.
- 4. All bolts are in place and are properly tightened.
- 5. All mount assembly members were properly designed, detailed, fabricated, and installed and have been properly maintained since erection.

All-Points Technology Corporation, P.C. (APT) is not responsible for modifications completed prior to or hereafter which APT is not or was not directly involved. Modifications include but are not limited to:

- 1. Replacing or strengthening members.
- 2. Reinforcing vertical members in any manner.
- 3. Installing antenna stand-off mounts or side arms.

APT hereby states that this document represents the entire report and that it assumes no liability for any factual changes that may occur after the date of this report. All representations, recommendations, and conclusions are based upon the information contained and set forth herein. If you are aware of any information which is contrary to that which is contained herein, or you are aware of any defects arising from the original design, material, fabrication and erection deficiencies, you should disregard this report and immediately contact APT. APT disclaims all liability for any representation, recommendation, or conclusion not expressly stated herein.

Appendix A

Design Criteria

(<i>P</i>	APPEN	DIX N)	MUNIC	IPALIT	Y - SPE	CIFIC ST				ARAMET	ERS	
		D/I	CE				vvina D	esign F	aramet	ers		
Municipality	Ground Snow Load (psf)	Spe Accele	ctral eration s		imate D d Speed (mph)	ds, V_{ult}		ninal De I Speeds (mph)			-Borne Regions¹	Hurricane-Prone Regions
Munic	Ground S	Ss	S ₁	Risk Cat.I	Risk Cat.II	Risk Cat III-IV	Risk Cat. I	Risk Cat. II	Risk Cat. III-IV	Risk Cat. II & III except Occup I-2	Risk Cat III Occup I-2 & Risk Cat. IV	Hurrica Reç
Montville	30	0.165	0.059	125	135	145	97	105	112		Type A	Yes
Morris	35	0.187	0.065	110	120	125	85	93	97			Yes
Naugatuck	30	0.190	0.064	110	125	135	85	97	105			Yes
New Britain	30	0.183	0.064	115	125	135	89	97	105			Yes
New Canaan	30	0.240	0.068	110	120	130	85	93	101			Yes
New Fairfield	35	0.212	0.067	105	115	125	81	89	97			
New Hartford	40	0.180	0.065	110	120	130	85	93	101			Yes
New Haven	30	0.186	0.062	115	125	135	89	97	105		Type C	Yes
Newington	30	0.182	0.064	115	125	135	89	97	105			Yes
New London	30	0.161	0.058	125	135	145	97	105	112	Type B	Type A	Yes
New Milford	35	0.198	0.066	105	115	125	81	89	97			
Newtown	30	0.208	0.066	110	120	130	85	93	101			Yes
Norfolk	40	0.175	0.065	105	115	125	81	89	97			
North Branford	30	0.179	0.061	120	130	140	93	101	108			Yes
North Canaan	40	0.173	0.065	105	115	120	81	89	93			
North Haven	30	0.184	0.062	115	125	135	89	97	105			Yes
North Stonington	30	0.163	0.059	125	135	145	97	105	112		Type A	Yes
Norwalk	30	0.232	0.067	110	120	130	85	93	101			Yes
Norwich	30	0.168	0.060	125	135	145	97	105	112		Type A	Yes
Old Lyme	30	0.164	0.059	125	135	145	97	105	112	Type B	Type A	Yes
Old Saybrook	30	0.164	0.059	125	135	145	97	105	112	Type B	Type A	Yes
Orange	30	0.192	0.063	115	125	135	89	97	105			Yes
Oxford	30	0.196	0.064	110	125	130	85	97	101			Yes
Plainfield	35	0.170	0.061	125	135	145	97	105	112		Type A	Yes
Plainville	35	0.184	0.064	115	125	135	89	97	105			Yes
Plymouth	35	0.186	0.064	110	120	130	85	93	101			Yes
Pomfret	40	0.172	0.063	120	130	140	93	101	108			Yes
Portland	30	0.180	0.063	115	130	135	89	101	105			Yes
Preston	30	0.167	0.060	125	135	145	97	105	112		Type A	Yes
Prospect	30	0.188	0.064	115	125	135	89	97	105			Yes
Putnam	40	0.172	0.063	120	130	140	93	101	108			Yes
Redding	30	0.220	0.067	110	120	130	85	93	101			Yes
Ridgefield	30	0.230	0.068	110	120	125	85	93	97			Yes
Rocky Hill	30	0.181	0.063	115	125	135	89	97	105			Yes
Roxbury	35	0.197	0.065	110	120	125	85	93	97		_	Yes
Salem	30	0.170	0.060	120	135	140	93	105	108		Type A	Yes
Salisbury	40	0.173	0.065	105	115	120	81	89	93			V
Scotland	30	0.172	0.061	120	130	140	93	101	108			Yes
Seymour	30	0.194	0.064	115	125	135	89	97	105			Yes
Sharon	40	0.179	0.065	105	115	120	81	89	93			Voc
Shelton	30	0.199	0.064	115	125	135	89	97	105			Yes
Sherman	35	0.202	0.066	105	115	120	81	89	93			

lce

Results:

Ice Thickness: 1.00 in.

Concurrent Temperature: 15 F

Gust Speed 50 mph

Data Source: Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed: Fri May 20 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Appendix B

Mount Analysis

Project ID: Site Name:

Date:

CT141NB13190 NEW CANAAN NE2 CT

5/23/2022

(Based on ANSI/TIA-222-H-2018)

Site Name:	NEW CANAAN NE2 CT
Site Address:	183 Soundview Lane
Site Address:	New Canaan, CT 06840
Site County:	Fairfield

	Design Crite	<u>ria</u>	
Risk Category =	II		Sect. 2.2 & Table 2-1
Exposure Category =	В		Section 2.6.5
Ultimate Design Wind Speed, V =	120	mph	Fig. B-2 & ASCE 7-16 Fig. 26.5-1B
Design Wind Speed with Ice, V _i =	50	mph	Fia. B-9
besign wind speed with ree, v	30		11g. b 3
Design Ice Thickness, t_i =	1.00	in	Fig. B-9
Importance Factor, I =	1.00		Table 2-3
Basic Wind Speed, $V_m =$	30	mph	Section 16.3
Maintenance Load, L_m =	500.0	lbs	Section 16.3
Maintenance Load, L_v =	250.0	lbs	Section 16.3

Wind Pressure Analysis:

iessure Arialysis.					
$q_z = 0.00256K_zK_{zt}K_sK_eK_dV$	2 Se	ction 2.6.11.	5		
<u>K_z :</u>	Se	e Next She	eet		
	$z_g =$	1200		Table 2-4	
	α =	7		Table 2-4	
	K _{zmin} =	0.7		Table 2-4	
<u>K₂₊ :</u>	K _{zt} =	1.00		Section 2.6.6	
<u>K_s:</u>	K _s =	1.00		Section 2.6.7	
<u>K_e :</u>	$K_e =$	1.00		Section 2.6.8	
<u>K_d :</u>	K _d =	0.95		Section 16.6	
	$q_z' =$	35.02	psf		
	q _{zi} ' =	6.08	psf		
	q _{zm} ' =	2.19	psf		
$F = q_z G_h (EPA)_A = q_z G_h K_a [(example)]$	EPA) _N cos²(Θ)+	(EPA) _T sin ²	(Θ)]	Section 2.6.11.2	
// 12 11 44.	G _h =	1.00		Section 16.6	

 $K_a =$

0.90

Section 16.6

CT141NB13190 NEW CANAAN NE2 CT 5/23/2022

Project ID: Site Name: Date:

ALL-POINTS
TECHNOLOGY CORFORATION
[Based on ANS/TIA-2224-2018]

Design Criteria: (From Previous Sheet) $q_1 = 35.02 \text{ psf}$ $q_2 = 6.08 \text{ psf}$ $q_{w'} = 2.19 \text{ psf}$ $t_1 = 1.00 \text{ in}$

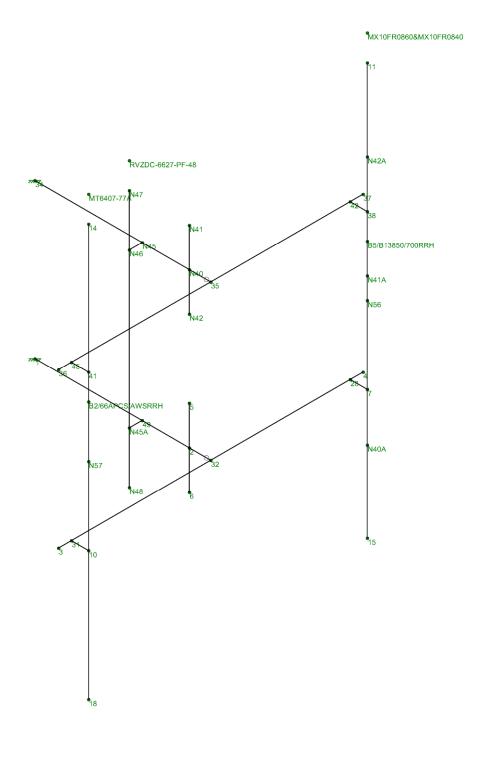
1.00 Section 16.6 0.90 Section 16.6

, A

						Dimensions	sions		El3	t Panel Fron	lat Panel Front Coefficient		"	at Panel Sid	lat Panel Side Coefficient				
		Elev			Height.	Width	Depth.	Weht	Area,	Aspect			Area,	Aspect			Front Wind Side Wind	Side Wind	
Description	#/Sector	z, ft	Ϋ́	q ₂ , psf	. u	<u>.</u> ⊆	.⊆	lbs	μ,	Ratio	రి	C _a A _a	Ħ,	Ratio	C	C,A	Force, lbs	Force, lbs	Weight, Ibs
MT6407-77A	1.0	71.0	968.0	31.38	35.1	16.1	5.5	81.6	3.92	2.180	1.20	4.71	1.341	6.382	1.37	1.840	134.0	52.0	81.6
MX10FR0860	1.0	71.0	968.0	31.38	95.9	15.0	7.4	0.99	66.6	6.393	1.37	13.72	4.928	12.959	1.60	7.878	388.0	223.0	99
MX10FR0840	1.0	71.0	968.0	31.38	92.6	20.3	7.7	104.0	13.48	4.709	1.30	17.50	5.112	12.416	1.58	8.080	495.0	229.0	104
RVZDC-6627-PF-48	1.0	71.0	968.0	31.38	29.5	16.5	12.6	32.0	3.38	1.788	1.20	4.06	2.581	2.341	1.20	3.098	115.0	88.0	32
B2/66A PCS/AWS RRH	1.0	71.0	968.0	31.38	15.0	15.0	10.0	97.5	1.56	1.000	1.20	1.88	1.046	1.494	1.20	1.255	53.0	36.0	97.5
B5/B13 850/700 RRH	1.0	71.0	0.896	31.38	15.0	15.0	9.1	82.0	1.56	1.000	1.20	1.88	0.948	1.648	1.20	1.138	53.0	33.0	82.0
						Dimensions with Ice	s with Ice		Fla	t Panel Fron	Flat Panel Front Coefficient		Œ	lat Panel Sid	Flat Panel Side Coefficient	1			
					Ice Thick.,	Height,	Dc,	Ice Wght.,	Area,	Aspect			Area,	Aspect			Front Wind Side Wind	Side Wind	
Description	#/Sector	z, ft	K ₂	d₂ı, psf	t _{iz} , in	.⊆	.⊆	g	ft ²	Ratio	S	C,A,	₩ ₂	Ratio	ం	°,A	Force, lbs	Force, lbs	Weight, Ibs
MT6407-77A	1.0	71.0	968.0	5.448	1.08	37.25	17.01	74.1	4.72	2.19	0.70	3.307	1.982	2.19	0.70	1.387	17.0	7.0	155.7
MX10FR0860	1.0	71.0	968.0	5.448	1.08	98.05	16.73	191.9	11.68	5.86	0.77	9.053	6.510	5.86	0.77	5.043	45.0	25.0	257.9
MX10FR0840	1.0	71.0	968.0	5.448	1.08	97.75	21.71	244.9	15.25	4.50	0.74	11.352	6.693	4.50	0.74	4.983	26.0	25.0	348.9
RVZDC-6627-PF-48	1.0	71.0	968.0	5.448	1.08	31.65	20.76	76.0	4.10	1.52	0.70	2.872	3.245	1.52	0.70	2.271	15.0	12.0	108.0
B2/66A PCS/AWS RRH	1.0	71.0	968.0	5.448	1.08	17.15	18.05	36.1	2.04	0.95	0.70	1.431	1.454	0.95	0.70	1.018	8.0	2.0	133.6
B5/B13 850/700 RRH	1.0	71.0	968.0	5.448	1.08	17.15	17.54	35.1	2.04	0.98	0.70	1.431	1.342	0.98	0.70	0.939	8.0	2.0	117.1
						Dimensions	sions		Fla	t Panel Fron	Flat Panel Front Coefficient		Н	lat Panel Sid	Flat Panel Side Coefficient				
	#/Coctor	Elev.			Height,	Width,	Depth,	Wght. ¹ ,	Area,	Aspect			Area,	Aspect			Front Wind Side Wind	Side Wind	
Description	11/36/10	z, ft	K ₂	q, psf	ņ	ņ	ü	sql	ft,	Ratio	ల	C_aA_a	ft,	Ratio	ී	C,A,	Force, lbs	Force, lbs	Weight, Ibs
MT6407-77A	1.0	71.0	968.0	1.96	35.1	16.1	5.5	81.6	3.92	2.180	1.20	4.71	1.341	6.382	1.37	1.840	9.0	4.0	81.6
MX10FR0860	1.0	71.0	968.0	1.96	95.9	15.0	7.4	0.99	9.99	6.393	1.37	13.72	4.928	12.959	1.60	7.878	25.0	14.0	99
MX10FR0840	1.0	71.0	968.0	1.96	92.6	20.3	7.7	104.0	13.48	4.709	1.30	17.50	5.112	12.416	1.58	8.080	31.0	15.0	104
RVZDC-6627-PF-48	1.0	71.0	968.0	1.96	29.5	16.5	12.6	32.0	3.38	1.788	1.20	4.06	2.581	2.341	1.20	3.098	8.0	0.9	32
B2/66A PCS/AWS RRH	1.0	71.0	968.0	1.96	15.0	15.0	10.0	97.5	1.56	1.000	1.20	1.88	1.046	1.494	1.20	1.255	4.0	3.0	97.5
B5/B13 850/700 RRH	1.0	71.0	968.0	1.96	15.0	15.0	9.1	82.0	1.56	1.000	1.20	1.88	0.948	1.648	1.20	1.138	4.0	3.0	82.0
				_				_		_		_							

Based on ANSI/TIA-222-H-2018)

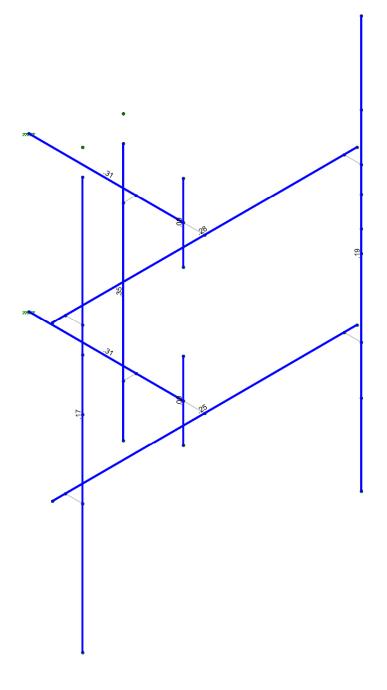
Design Criteria: (From Previous Sheet) $q_t = 35.02 \text{ psf}$ $q_n' = 6.08 \text{ psf}$ $q_{m'} = 2.19 \text{ psf}$ $t_1 = 1.00 \text{ in}$


 $G_h = 1.00$ Section 16.6 $K_a = 0.90$ Section 16.6

								Dimensions	sions		Loa	oading, No Ice				With Ice			Maintenano	ance
_	Elev.			Ice Thick.,			Width or		Thickness,	Weigh:,	Flator		Wind,	Width or		Weight,		Wind,		Wind,
Description	z, ft	K ₂	q_2 , psf t_2 , in q_3	t _a , in	d _{zir} psf	q,,, psf	Dia, in	Depth, in	ij	lbs/ft	Round	Ca	lbs/ft	Dia, in	Dc, in	lbs/ft	Ca	lbs/ft	Ca	lbs/ft
HSS4x4x3/16	109.5	1.014	35.52	1.13	6.17	2.22	4.000	4.000	0.188	9.40	HSS	1.37	14.57	6.25	2.657	9.34	1.37	3.95	1.37	0.91
3.0" STD	109.5	1.014	35.52	1.13	6.17	2.22	3.500	3.500	0.216	7.59	ROUND	1.20	11.19	5.75	3.500	6.37	1.20	3.19	1.20	0.70
2.5" STD	109.5	109.5 1.014	35.52	1.13	6.17	2.22	2.875	2.875	0.203	5.84	ROUND	1.20	9.19	5.13	2.875	5.51	1.20	2.85	1.20	0.57
4" STD	109.5	1.014	35.52	1.13	6.17	2.22	4.500	4.500	0.237	10.87	ROUND	1.20	14.38	6.75	4.500	7.75	1.20	3.75	1.20	06:0

CT141NB13190 NEW CANAAN NE2 CT 5/23/2022

Project ID: Site Name: Date:



APT		
JV	RMVD8-3-3096	
New Canaan NE2 CT	Node & Member Labels	New Canaan NE2 CT - RMVD8-3

Member Code Checks Displayed (Enveloped) Envelope Only Solution

APT		
JV	RMVD8-3-3096	
New Canaan NE2 CT	Max Bending Stresses	New Canaan NE2 CT - RMVD8-3

May 23, 2022 4:50 PM Checked By: MST

	Label	E [ksi]	G [ksi]	Nu	Therm (/1E5 F)	Density[k/ft^3]	Yield[ksi]	Ry	Fu[ksi]	Rt
1	A992	29000	11154	.3	.65	.49	50	1.1	65	1.1
2	A36 Gr.36	29000	11154	.3	.65	.49	36	1.5	58	1.2
3	A572 Gr.50	29000	11154	.3	.65	.49	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	.3	.65	.527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	.3	.65	.527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	.3	.65	.49	35	1.5	58	1.2
7	A1085	29000	11154	.3	.65	.49	50	1.4	65	1.3
8	Q235	29000	11154	.3	.65	.49	35	1.5	58	1.2

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Ru	A [in2]	lyy [in4]	Izz [in4]	J [in4]
1	HSS4x4x3/16	HSS4X4X3	Beam	SquareTu	Q235	Typical	2.58	6.21	6.21	10
2	3" STD	PIPE 3.0	Beam	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
3	2.5" STD	PIPE 2.5	Column	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
4	4" STD	PIPE 4.0	Column	Pipe	A53 Gr.B	Typical	2.96	6.82	6.82	13.6

Hot Rolled Steel Design Parameters

	Label	Shape	Length[in]	Lbyy[in]	Lbzz[in]	Lcomp top[in]	Lcomp bot[in]	L-torq	Kyy	Kzz	Cb	Function
1	M1	HSS4x4x3/16	36									Lateral
2	M2	4" STD	18									Lateral
3	М3	3" STD	71									Lateral
4	M4	2.5" STD	96									Lateral
5	M6	2.5" STD	96									Lateral
6	M11	HSS4x4x3/16	36									Lateral
7	M12	3" STD	71									Lateral
8	M19	4" STD	18									Lateral
9	M23	2.5" STD	60									Lateral

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	Area(Me	Surface(
1	DL	DĽ		-1.05	·	6	1		,	,
2	WLX	WLX				6	1	7		
3	WLZ	WLZ				6	1	7		
4	DLi	OL1				6	1	9		
5	WLXi	WL+X				6	1	7		
6	WLZi	WL+Z				6	1	7		
7	Lv	LL				4				
8	WLXm	WL-X				6	1	8		
9	WLZm	WL-Z				6	1	7		
10	Lm (1)	OL2					1			
11	Lm (2)	OL3					1			

Load Combinations

	Description	S	P	S	В	Fa	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	1.4DL	Yes	Υ		DL	1.4																		
2																								
3	1.2DL + WLX	Yes	Υ		DL	1.2	WLX	1																
4	1.2DL + 0.75WLX + 0.25	Yes	Υ		DL	1.2	WLX	.75	W	.25														
5	1.2DL + 0.25WLX + 0.75	Yes	Υ		DL	1.2	WLX	.25	W	.75														
6	1.2DL + WLZ	Yes	Υ		DL	1.2	WLZ	1																

May 23, 2022 4:50 PM Checked By: MST

Load Combinations (Continued)

	Description				Го.	DI C	Го.	Б	Г.	Ъ	Г.	Б	F	Б	Г.	Б	Г.	Б	Г.	Ъ	Г.	Б	Г.
7	Description 1.2DL + 0.25WL-X + 0.75.	٥ ٧ <u>مو</u>	V	S B		WLX					га	Б	га	Б	га	D	га	Б	га	Б	га	D	га
	1.2DL + 0.75WL-X + 0.75.		_			WLX																	
9	1.2DL + WL-X	_	•			WLX		V V	.25														
	1.2DL + VVL-X 1.2DL + 0.75WL-X + 0.25.					WLX		۱۸/	25														
	1.2DL + 0.75WL-X + 0.25.		_			WLX																	
		_				WLZ		v v	/5														
12	1.2DL + WL-Z 1.2DL + 0.25WLX + 0.75							14/	7.														
						WLX																	
	1.2DL + 0.75WLX + 0.25	. res	Υ	DL	1.2	WLX	./5	vv	25														
15	4 001 - 01 - 14 17	V		D.	4.0	01.4	4	10/	4														
16	1.2DL + DLi + WLXi					OL1				10/	0.5												
	1.2DL + DLi + 0.75WLXi +					OL1																	
	1.2DL + DLi + 0.25WLXi +					OL1				vv	./5												
19						OL1		W															
	1.2DL + DLi + 0.25WL-Xi .					OL1																	
	1.2DL + DLi + 0.75WL-Xi .					OL1				vv	.25												
22						OL1				١٨/	0-												
	1.2DL + DLi + 0.75WL-Xi .					OL1																	
	1.2DL + DLi + 0.25WL-Xi .		_			OL1				٧٧	75)											
25	1.2DL + DLi + WL-Zi					OL1																	
	1.2DL + DLi + 0.25WLXi +					OL1																	
	1.2DL + DLi + 0.75WLXi +	Yes	Υ	DL	1.2	OL1	1	VV	.75	VV	25												
28	1001 151 (1)		L.,			01.0																	
29						OL2				101													
	1.2DL + 1.5Lm(1) + 0.75					OL2																	
	1.2DL + 1.5Lm(1) + 0.25					OL2				VV	./5												
	1.2DL + 1.5Lm(1) + WLZn					OL2																	
	1.2DL + 1.5Lm(1) + 0.25					OL2																	
	1.2DL + 1.5Lm(1) + 0.75					OL2				vv	.25												
	1.2DL + 1.5Lm(1) + WL-Xr					OL2				101													
	1.2DL + 1.5Lm(1) + 0.75					OL2																	
	1.2DL + 1.5Lm(1) + 0.25					OL2				VV	75												
	1.2DL + 1.5Lm(1) + WL-Zi					OL2				101													
	1.2DL + 1.5Lm(1) + 0.25					OL2																	
	1.2DL + 1.5Lm(1) + 0.75	. Yes	Υ	DL	1.2	OL2	1.5	VV	./5	VV	25)											
41	4.0DL + 4.5L(0) + M// V	- \/-			4.0	01.0	4 =	14/															
	1.2DL + 1.5Lm(2) + WLXr					OL3				۱۸/													
	1.2DL + 1.5Lm(2) + 0.75					OL3																	
	1.2DL + 1.5Lm(2) + 0.25					OL3				٧٧	./5												
	1.2DL + 1.5Lm(2) + WLZn					OL3				101													
	1.2DL + 1.5Lm(2) + 0.25	_				OL3																	
	1.2DL + 1.5Lm(2) + 0.75					OL3				٧٧	.25												
	1.2DL + 1.5Lm(2) + WL-Xr					OL3																	
	1.2DL + 1.5Lm(2) + 0.75					OL3																	
	1.2DL + 1.5Lm(2) + 0.25					OL3				W	75)											
	1.2DL + 1.5Lm(2) + WL-Zi					OL3																	
	1.2DL + 1.5Lm(2) + 0.25					OL3																	
53	1.2DL + 1.5Lm(2) + 0.75	. Yes	Υ	DL	1.2	OL3	1.5	W	.75	W	25												
54																							
55																							
56	1.2DL + 1.5Lv	Yes	Y	DL	1.2	LL	1.5																

Joint Reactions

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
1	1	1	439.054	530.817	-46.155	58.35	137.576	1137.405
2	1	34	-439.054	531.021	46.155	58.396	-137.308	1137.193

Company Designer Job Number Model Name

: APT : JV : New Ca

: New Canaan NE2 CT : RMVD8-3-3096 May 23, 2022 4:50 PM Checked By: MST

Joint Reactions (Continued)

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
3	1	Totals:	0	1061.838	0			
4	1	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
5	3	1 ` ´	-338.709	425.107	-44.798	53.413	1100.123	959.887
6	3	34	-1240.834	485.04	44.8	30.954	886.126	985.432
7	3	Totals:	-1579.543	910.147	.002			
8	3	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
9	4	1	-159.444	435.964	-162.218	42.133	1249.897	962.445
10	4	34	-1025.214	474.183	-90.668	37.177	1065.113	982.444
11	4	Totals:	-1184.658	910.147	-252.886			
12	4	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
13	5	1 ` ´	199.079	457.698	-397.055	19.574	1548.779	967.572
14	5	34	-593.967	452.448	-361.605	49.627	1422.456	976.466
15	5	Totals:	-394.888	910.147	-758.661			
16	5	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
17	6	1 ` ´	378.337	468.574	-514.472	8.295	1697.873	970.14
18	6	34	-378.34	441.573	-497.076	55.856	1600.791	973.474
19	6	Totals:	003	910.147	-1011.548			
20	6	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
21	7	1 ` ´	556.587	472.676	-394.43	17.892	1055.976	975.1
22	7	34	-161.703	437.471	-364.231	59.203	918.795	971.117
23	7	Totals:	394.884	910.147	-758.661			
24	7	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
25	8	1 ` ´	913.067	480.888	-154.311	37.106	-229.413	985.033
26	8	34	271.59	429.259	-98.577	65.925	-446.988	966.406
27	8	Totals:	1184.657	910.147	-252.888			
28	8	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
29	9	1 1	1091.297	484.998	-34.234	46.725	-872.9	990.006
30	9	34	488.246	425.149	34.232	69.301	-1130.773	964.053
31	9	Totals:	1579.544	910.147	002			
32	9	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
33	10	1 1	912.058	474.11	83.166	57.961	-1019.202	987.421
34	10	34	272.601	436.037	169.72	63.024	-1306.108	967.039
35	10	Totals:	1184.658	910.147	252.886			
36	10	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
37	11	1 1	553.573	452.35	317.968	80.436	-1312.535	982.266
38	11	34	-158.685	457.797	440.693	50.474	-1657.476	973.009
39	11	Totals:	394.888	910.147	758.661			
40	11	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
41	12	1 1	374.326	441.479	435.371	91.674	-1459.548	979.692
42	12	34	-374.323	468.668	576.177	44.204	-1833.497	975.992
43	12	Totals:	.003	910.147	1011.548			
44	12	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
45	13	1	196.077	437.382	315.311	82.098	-818.846	974.735
46	13	34	-590.96	472.765	443.351	40.877	-1152.709	978.35
47	13	Totals:	-394.884	910.147	758.662			
48	13	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
49	14	1 1	-160.441	429.196	75.226	62.967	460.99	964.832
50	14	34	-1024.216	480.951	177.662	34.252	207.105	983.07
51	14	Totals:	-1184.657	910.147	252.888			
52	14	COG (in):	X: 46.591	Y: 9.199	Z: 41.617			
53	16	1 ` ´	636.218	913.935	-236.432	233.187	652.232	1976.277
54	16	34	-891.065	924.691	236.433	230.215	-429.84	1980.258
55	16	Totals:	-254.848	1838.626	0			
56	16	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
57	17	1	665.7	915.435	-257.392	231.622	691.838	1976.683
58	17	34	-856.836	923.191	213.193	231.111	-386.515	1979.913
59	17	Totals:	-191.136	1838.626	-44.199			

: New Canaan NE2 CT : RMVD8-3-3096

May 23, 2022 4:50 PM Checked By: MST

Joint Reactions (Continued)

		ionono (oonanaca)						
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
60	17	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
61	18	1 ` `	724.664	918.436	-299.313	228.491	771.051	1977.495
62	18	34	-788.376	920.19	166.713	232.904	-299.864	1979.225
63	18	Totals:	-63.712	1838.626	-132.599			
64	18	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
65	19	1	754.146	919.937	-320.273	226.926	810.659	1977.901
66	19	34	-754.146	918.689	143.474	233.8	-256.536	1978.88
67	19	Totals:	0	1838.626	-176.799	200.0	-200.000	1370.00
68	19	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
		. ` '				228.186	716 466	1070 021
69	20	1	783.501	920.834	-299.015		716.466	1978.831
70	20	34	-719.789	917.792	166.415	234.102	-355.691	1978.391
71	20	Totals:	63.712	1838.626	-132.6			
72	20	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
73	21	1	842.212	922.627	-256.497	230.705	528.038	1980.692
74	21	34	-651.076	915.999	212.297	234.707	-554.047	1977.411
75	21	Totals:	191.136	1838.626	-44.2			
76	21	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
77	22	1 1	871.567	923.524	-235.238	231.965	433.803	1981.623
78	22	34	-616.719	915.102	235.238	235.01	-653.248	1976.921
79	22	Totals:	254.848	1838.626	0			
80	22	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
81	23	1	842.085	922.023	-214.278	233.53	394.243	1981.217
82	23	34	-650.949	916.603	258.478	234.114	-696.524	1977.266
83	23	Totals:	191.136	1838.626	44.2	201.111	000.021	1011.200
84	23	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
85	24	1	783.122	919.021	-172.358	236.659	315.126	1980.404
86	24	34	-719.409			232.32	-783.074	1977.954
				919.605	304.958	232.32	-703.074	1977.954
87	24	Totals:	63.713	1838.626	132.6			
88	24	COG (in):	X: 46.59	Y: 8.428	Z: 36.848	200 000	075.500	4070.000
89	25	1	753.64	917.52	-151.398	238.223	275.569	1979.998
90	25	34	-753.64	921.106	328.199	231.423	-826.347	1978.299
91	25	Totals:	0	1838.626	176.8			
92	25	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
93	26	1	724.285	916.624	-172.657	236.964	369.755	1979.068
94	26	34	-787.996	922.002	305.257	231.121	-727.197	1978.788
95	26	Totals:	-63.711	1838.626	132.6			
96	26	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
97	27	1	665.574	914.831	-215.174	234.446	558.087	1977.207
98	27	34	-856.709	923.795	259.375	230.517	-528.944	1979.768
99	27	Totals:	-191.136	1838.626	44.2		020.011	
100	27	COG (in):	X: 46.59	Y: 8.428	Z: 36.848			
101	29	1	676.733	827.929	-465.502	427.516	1048.036	1860.979
102	29	34	-778.686	832.219	465.502	426.271	-920.245	1862.02
102	29	Totals:	-101.953	1660.148	0	720.21	-320.243	1002.02
	29	COG (in):		Y: 7.754	Z: 28.237			
104		COG (III).	X: 48.583			406 70F	1050 700	1064 150
105	30	24	688.232	828.632	-473.229	426.735	1058.706	1861.153
106	30	34	-764.697	831.516	456.447	426.635	-907.339	1861.839
107	30	Totals:	-76.465	1660.148	-16.782			
108	30	COG (in):	X: 48.583	Y: 7.754	Z: 28.237	405 150	1005 5 : :	1001 =
109	31	1	711.232	830.038	-488.684	425.172	1080.044	1861.5
110	31	34	-736.72	830.11	438.337	427.363	-881.527	1861.479
111	31	Totals:	-25.488	1660.148	-50.347			
112	31	COG (in):	X: 48.583	Y: 7.754	Z: 28.237			
113	32	1 ` ´	722.731	830.74	-496.411	424.391	1090.712	1861.674
114	32	34	-722.731	829.407	429.282	427.727	-868.623	1861.299
115	32	Totals:	0	1660.148	-67.129			
116	32	COG (in):	X: 48.583	Y: 7.754	Z: 28.237			
		000 (111).	7.11 101000					

: APT : JV

: New Canaan NE2 CT : RMVD8-3-3096

May 23, 2022 4:50 PM Checked By: MST

Joint Reactions (Continued)

		ionone (oontmaca)						
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
117	33	1	734.156	830.999	-488.519	425.061	1049.124	1862.022
118	33	34	-708.667	829.148	438.172	427.966	-913.138	1861.17
119	33	Totals:	25.489	1660.148	-50.347			
120	33	COG (in):	X: 48.583	Y: 7.754	Z: 28.237			
121	34	1	757.005	831.517	-472.734	426.402	965.941	1862.718
122	34	34	-680.54	828.631	455.952	428.444	-1002.177	1860.912
123	34	Totals:	76.465	1660.148	-16.782	720.777	-1002.177	1000.512
124	34	COG (in):	X: 48.583	Y: 7.754	Z: 28.237			
125	35	. ` '	768.43	831.776	-464.842	427.072	924.347	1863.066
		1 34						
126	35		-666.476	828.372	464.842	428.682	-1046.699	1860.784
127	35	Totals:	101.954	1660.148	0			
128	35	COG (in):	X: 48.583	Y: 7.754	Z: 28.237	407.054	0.40.004	4000 000
129	36	1	756.93	831.073	-457.115	427.854	913.691	1862.892
130	36	34	-680.465	829.075	473.898	428.318	-1059.592	1860.964
131	36	Totals:	76.466	1660.148	16.783			
132	36	COG (in):	X: 48.583	Y: 7.754	Z: 28.237			
133	37	1	733.931	829.667	-441.66	429.416	892.376	1862.545
134	37	34	-708.442	830.481	492.008	427.59	-1085.379	1861.324
135	37	Totals:	25.489	1660.148	50.348			
136	37	COG (in):	X: 48.583	Y: 7.754	Z: 28.237			
137	38	1 ` ´	722.432	828.964	-433.933	430.198	881.717	1862.371
138	38	34	-722.431	831.183	501.064	427.225	-1098.273	1861.504
139	38	Totals:	0	1660.148	67.131			
140	38	COG (in):	X: 48.583	Y: 7.754	Z: 28.237			
141	39	1	711.007	828.705	-441.825	429.527	923.3	1862.023
142	39	34	-736.495	831.442	492.173	426.987	-1053.763	1861.633
143	39	Totals:	-25.488	1660.148	50.348	120.007	10001100	10011000
144	39	COG (in):	X: 48.583	Y: 7.754	Z: 28.237			
145	40	1	688.158	828.188	-457.61	428.187	1006.46	1861.327
146	40	34	-764.622	831.96	474.393	426.509	-964.749	1861.891
147	40	Totals:	-76.464	1660.148	16.783	420.509	-304.743	1001.091
148	40	COG (in):	X: 48.583	Y: 7.754	Z: 28.237			
149	42	1			399.749	206 105	-642.432	1797.795
			718.843	827.818		-306.105		
150	42	34	-820.796	832.329	-399.749	-307.415	765.608	1798.926
151	42	Totals:	-101.953	1660.147	0			
152	42	COG (in):	X: 48.583	Y: 7.754	Z: 57.602	000.000	204.004	4707.007
153	43	1	730.341	828.523	392.033	-306.902	-631.804	1797.967
154	43	34	-806.806	831.625	-408.816	-307.065	778.56	1798.742
155	43	Totals:	-76.465	1660.147	-16.783			
156	43	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
157	44	1	753.337	829.932	376.602	-308.495	-610.549	1798.309
158	44	34	-778.825	830.216	-426.95	-306.365	804.463	1798.373
159	44	Totals:	-25.489	1660.147	-50.348			
160	44	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
161	45	1`´	764.835	830.636	368.887	-309.291	-599.923	1798.48
162	45	34	-764.835	829.511	-436.017	-306.016	817.413	1798.189
163	45	Totals:	0	1660.147	-67.13			
164	45	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
165	46	1	776.257	830.893	376.763	-308.612	-641.5	1798.826
166	46	34	-750.769	829.254	-427.111	-305.768	772.889	1798.059
167	46	Totals:	25.488	1660.147	-50.348			
168	46	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
169	47	1	799.102	831.407	392.516	-307.253	-724.662	1799.517
170	47	34	-722.638	828.741	-409.299	-305.274	683.835	1797.801
171	47	Totals:	76.465	1660.147	-16.783	-000.214	000.000	1707.001
172	47	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
	48	1				-306 572	-766 246	1700 862
173	40		810.525	831.664	400.392	-306.573	-766.246	1799.863

Company Designer Job Number

: JV : New Canaan NE2 CT Model Name : RMVD8-3-3096

: APT

May 23, 2022 4:50 PM Checked By: MST

Joint Reactions (Continued)

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
174	48	34	-708.572	828.484	-400.393	-305.026	639.304	1797.672
175	48	Totals:	101.953	1660.147	0			
176	48	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
177	49	1	799.027	830.959	408.108	-305.777	-776.861	1799.691
178	49	34	-722.562	829.188	-391.326	-305.376	626.366	1797.856
179	49	Totals:	76.465	1660.147	16.782			
180	49	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
181	50	1	776.031	829.55	423.539	-304.184	-798.093	1799.349
182	50	34	-750.543	830.597	-373.192	-306.076	600.488	1798.224
183	50	Totals:	25.488	1660.147	50.347			
184	50	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
185	51	1 ` `	764.533	828.845	431.255	-303.388	-808.711	1799.178
186	51	34	-764.533	831.302	-364.125	-306.426	587.548	1798.409
187	51	Totals:	0	1660.147	67.13			
188	51	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
189	52	1 ` `	753.11	828.589	423.378	-304.067	-767.138	1798.832
190	52	34	-778.599	831.559	-373.031	-306.673	632.067	1798.538
191	52	Totals:	-25.488	1660.147	50.347			
192	52	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
193	53	1	730.265	828.075	407.625	-305.426	-683.999	1798.141
194	53	34	-806.73	832.072	-390.843	-307.168	721.097	1798.797
195	53	Totals:	-76.465	1660.147	16.782			
196	53	COG (in):	X: 48.583	Y: 7.754	Z: 57.602			
197	56	1	944.827	1204.108	-25.527	71.105	164.13	2684.912
198	56	34	-944.827	1206.04	25.527	71.086	-163.226	2684.206
199	56	Totals:	0	2410.148	0			
200	56	COG (in):	X: 46.845	Y: 7.208	Z: 43.411			

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	1	max	1091.297	9	1204.108	56	435.371	12	430.198	38	1697.873	6	2684.912	56
2		min	-338.709	3	425.107	3	-514.472	6	-309.291	45	-1459.548	12	959.887	3
3	34	max	488.246	9	1206.04	56	576.177	12	428.682	35	1600.791	6	2684.206	56
4		min	-1240.834	3	425.149	9	-497.076	6	-307.415	42	-1833.497	12	964.053	9
5	Totals:	max	1579.544	9	2410.148	56	1011.548	12						
6		min	-1579.543	3	910.147	9	-1011.548	6						

Envelope AISC 14th(360-10): LRFD Steel Code Checks

	Member	Shape	Code	Loc[in]	LC	Shear .	.Loc[in]	Dir	LC phi*Pnc	phi*Pnt [.	phi*Mn	phi*Mn	Cb Eqn	1
1	M1	HSS4X4X3	.311	0	32	.112	25.5	У	38 79060.9	81270	9633.75	9633.75	1H1-1	lb
2	M2	PIPE 4.0	.000	9	3	.000	9		3 92571.3	93240	10631.25	10631.25	1H1-1	lb
3	М3	PIPE 3.0	.252	35.5	9	.044	35.5		38 54062.4	65205	5748.75	5748.75	1H1-1	lb
4	M4	PIPE 2.5	.174	65.684	51	.034	48		56 30038.4	50715	3596.25	3596.25	4H1-1	lb
5	M6	PIPE 2.5	.188	65.684	32	.040	30.3		56 30038.4	50715	3596.25	3596.25	4H1-1	lb
6	M11	HSS4X4X3	.312	0	38	.112	25.5	У	38 79060.9	81270	9633.75	9633.75	1H1-1	lb
7	M12	PIPE 3.0	.284	35.5	3	.045	35.5		35 54062.4	65205	5748.75	5748.75	1H1-1	Ιb
8	M19	PIPE 4.0	.000	9	3	.000	9		3 92571.3	93240	10631.25	10631.25	1H1-1	lb
9	M23	PIPE_2.5	.353	47.368	56	.078	47.3		35 41331.8	50715	3596.25	3596.25	1H1-1	lb

Project ID: CT141NB13190
Site Name: New Canaan NE2 CT

Prepared By: J. Vassell Checked By: M. Trodden

PROPOSED CONNECTION CHECK

>> Max Reactions per RISA Output: N34, LC6

(Axial) Fx = 378.3 lbs Mx = 55.9 lbs-ft

Fy = 441.6 lbs My = 1600.8 lbs-ftFz = 497.1 lbs Mz = 973.5 lbs-ft

>> Proposed Connection:

L, in W, in

Member Size = 4 x 4

L, in W, in t, in Plate = $8 \times 8 \times 0.75$

Bolt Spac. = 6 in Bolt Dia = 0.625 in

of Bolts = 4 Grade = A325

>> Check Proposed Bolts: 5/8" DIA A325 Bolts

Tall = 20700 lbs Vall = 12400 lbs

 $T_{My} = 1600.8 \text{ lbs}$ $V_{Fyz} = 166.22 \text{ lbs}$ $V_{MX} = 55.86 \text{ lbs}$

 $T_{Fa} = 94.59 \text{ lbs}$ Ft = 2668.9 lbs

Fv = 222.1 lbs

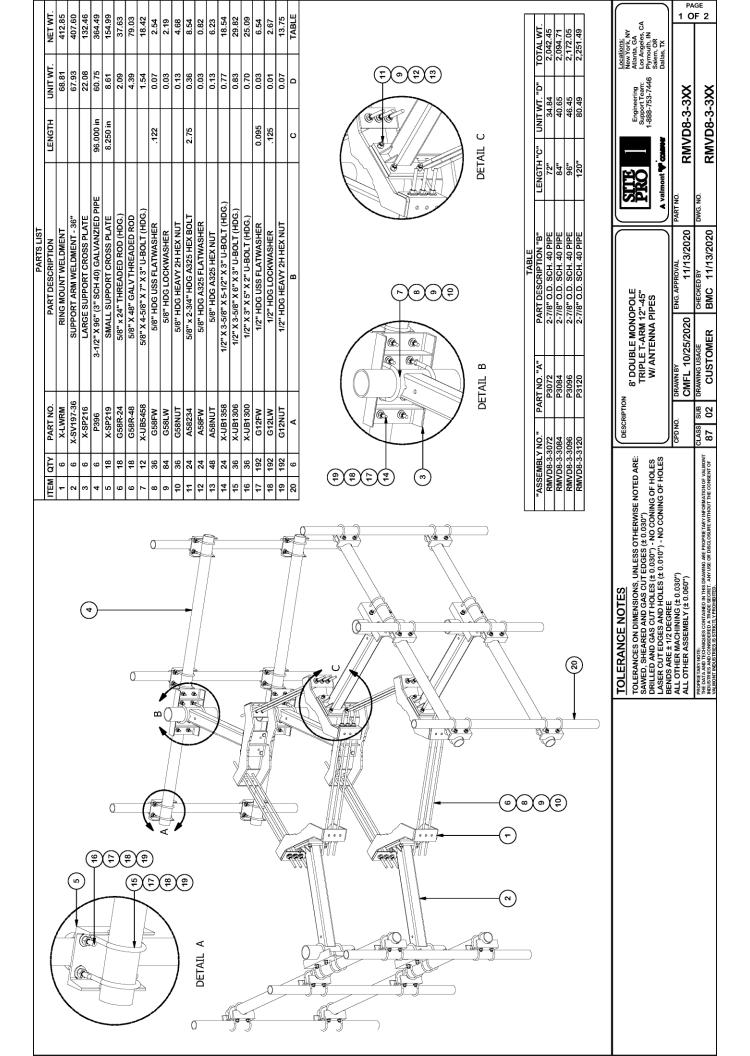
>> Bolt Interaction:

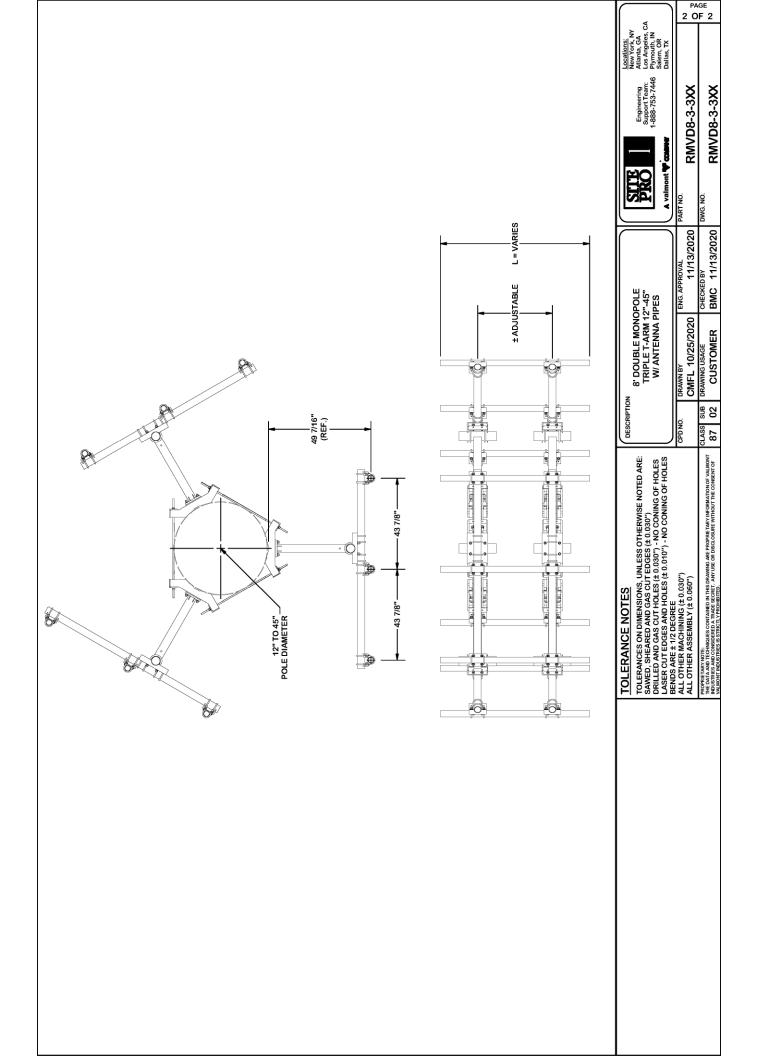
0.1289 + 0.018 = 0.147 < **1.0, OK**

>> Check Existing Plate:

 $Sx = 0.75 \text{ in}^3$

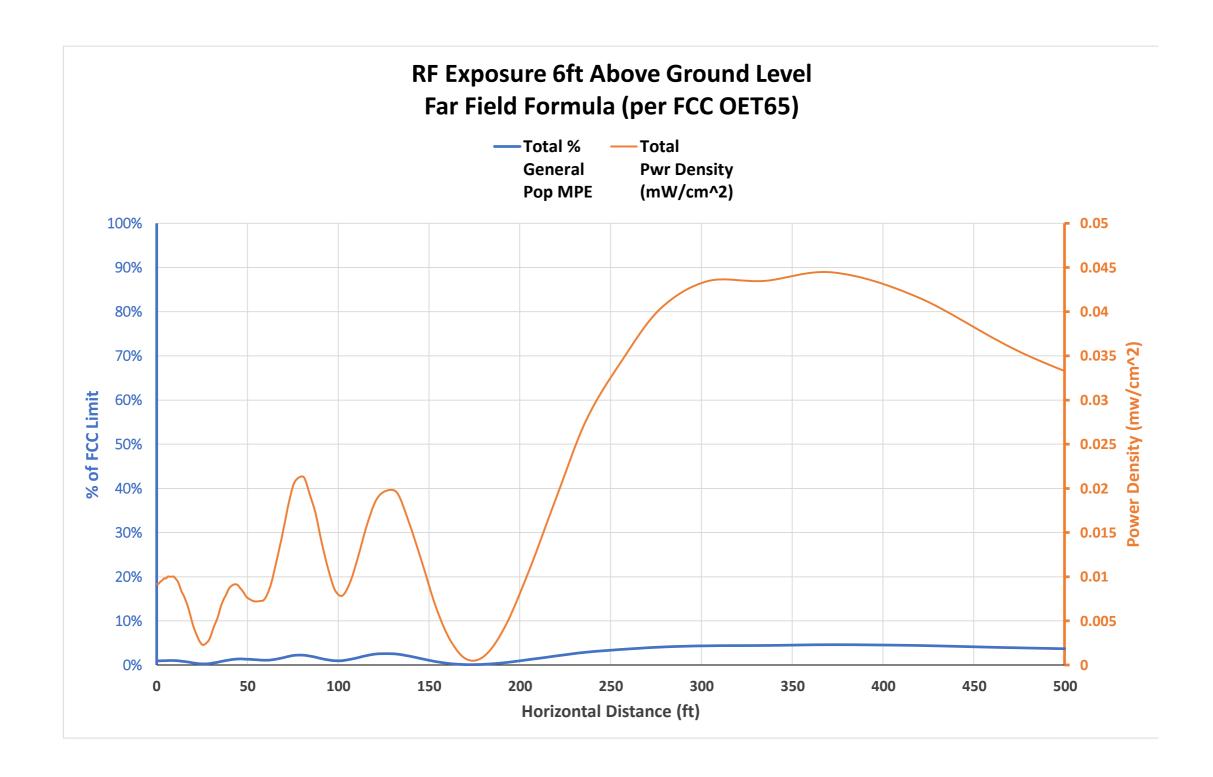
Flange Arm = 1.0 in (Face of Member to Centerline of Bolt)


Fy = 36.0 ksi


 $f_{act.} = 7.1 \text{ ksi}$ $f_{all} = 32.4 \text{ ksi}$

>> Plate Interaction: 0.220 < **1.0, OK**

Appendix C


REFERENCES

ATTACHMENT 6

Location		ı	New Canaan NE	2	
Date			6/2/2022		
Band	C-Band	AWS	PCS	850-LTE	700
Operating Frequency (MHz)	3,700	2,145	1,970	880	746
General Population MPE (mW/cm^2)	1	1	1	0.586666667	0.497333333
ERP Per Transmitter (Watts)	21,627	1,678	3,054	881	922
Number of Transmitters	1	4	4	4	4
Antenna Centerline (feet)	71	71	71	71	71
Total ERP (Watts)	21,627	6,712	12,216	3,523	3,688
Total ERP (dBm)	73	68	71	65	66
Maximum % of General Population Limit			4.6%		

Angle	Power Density (mW/cm^2)				Percent of General Population MPE												
Below Horizon	C-Band	AWS	PCS	850-LTE	700 MHz	39GHz	28GHz	C-Band	CBRS	AWS	PCS	Cellular	CDMA	700 MHz	Distance	Total Pwr Density (mW/cm^2)	Total % General Pop MPE
90	0.009099414	3.68866E-05	2.12298E-05	7.5314E-06	7.35882E-06	0.00%	0.00%	0.91%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0	0.00917242	0.92%
89	0.00909713	5.20907E-05	2.32722E-05	6.26277E-06	1.06341E-05	0.00%	0.00%	0.91%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	1.029848831	0.00918939	0.92%
88	0.00930202	8.06182E-05	2.2208E-05	5.32647E-06	1.4668E-05	0.00%	0.00%	0.93%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	2.0603254	0.009424841	0.94%
87	0.009419584	0.000108614	2.06997E-05	5.08035E-06	1.9312E-05	0.00%	0.00%	0.94%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	3.092058978	0.009573291	0.96%
86	0.009622043	0.000124487	2.06633E-05	5.07142E-06	2.48349E-05	0.00%	0.00%	0.96%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	4.125681905	0.009797099	0.98%
85	0.009600264	0.000136188	2.10968E-05	5.1778E-06	3.11945E-05	0.00%	0.00%	0.96%	0.00%	0.01%	0.00%	0.00%	0.00%	0.01%	5.161831148	0.009793921	0.98%
84	0.009796671	0.000148914	2.36054E-05	5.16346E-06	3.91627E-05	0.00%	0.00%	0.98%	0.00%	0.01%	0.00%	0.00%	0.00%	0.01%	6.201149881	0.010013516	1.01%
83	0.009764548	0.00015542	3.03099E-05	4.9149E-06	4.69296E-05	0.00%	0.00%	0.98%	0.00%	0.02%	0.00%	0.00%	0.00%	0.01%	7.244289093	0.010002123	1.01%
82	0.009727535	0.000165905	4.36451E-05	4.26447E-06	5.49285E-05	0.00%	0.00%	0.97%	0.00%	0.02%	0.00%	0.00%	0.00%	0.01%	8.291909247	0.009996277	1.01%
81 80	0.009685651 0.009419515	0.000198602 0.000226926	5.59837E-05 5.44454E-05	3.3728E-06 2.43159E-06	6.42574E-05 7.17502E-05	0.00% 0.00%	0.00% 0.00%	0.97% 0.94%	0.00% 0.00%	0.02% 0.02%	0.01% 0.01%	0.00% 0.00%	0.00% 0.00%	0.01% 0.01%	9.344681979 10.40329186	0.010007868 0.009775068	1.01% 0.98%
79	0.009419313	0.00023097	3.83383E-05	1.67325E-06	8.00746E-05	0.00%	0.00%	0.94%	0.00%	0.02%	0.01%	0.00%	0.00%	0.01%	11.46843824	0.009506932	0.96%
78 78	0.008692421	0.00023037	2.0002E-05	1.20504E-06	8.52973E-05	0.00%	0.00%	0.87%	0.00%	0.02%	0.00%	0.00%	0.00%	0.02%	12.54083714	0.009300332	0.91%
77	0.008060251	0.000213273	1.19752E-05	1.11741E-06	9.29273E-05	0.00%	0.00%	0.81%	0.00%	0.02%	0.00%	0.00%	0.00%	0.02%	13.62122328	0.008369602	0.85%
76	0.007644002	0.000192831	1.71891E-05	1.27404E-06	9.66308E-05	0.00%	0.00%	0.76%	0.00%	0.02%	0.00%	0.00%	0.00%	0.02%	14.71035217	0.007951926	0.81%
75	0.007080345	0.000195844	3.48327E-05	1.66693E-06	0.000100427	0.00%	0.00%	0.71%	0.00%	0.02%	0.00%	0.00%	0.00%	0.02%	15.80900235	0.007413115	0.75%
74	0.006405401	0.000213011	5.35154E-05	2.23053E-06	0.000101939	0.00%	0.00%	0.64%	0.00%	0.02%	0.01%	0.00%	0.00%	0.02%	16.91797776	0.006776097	0.69%
73	0.005659696	0.000226281	5.81736E-05	2.84876E-06	9.87615E-05	0.00%	0.00%	0.57%	0.00%	0.02%	0.01%	0.00%	0.00%	0.02%	18.03811021	0.006045761	0.61%
72	0.004772996	0.000229428	5.63279E-05	3.16704E-06	9.13242E-05	0.00%	0.00%	0.48%	0.00%	0.02%	0.01%	0.00%	0.00%	0.02%	19.17026208	0.005153243	0.52%
71	0.003976823	0.000202485	7.02213E-05	3.20921E-06	7.69717E-05	0.00%	0.00%	0.40%	0.00%	0.02%	0.01%	0.00%	0.00%	0.02%	20.31532918	0.00432971	0.44%
70	0.003349844	0.000162885	0.000110143	3.90739E-06	5.91315E-05	0.00%	0.00%	0.33%	0.00%	0.02%	0.01%	0.00%	0.00%	0.01%	21.47424382	0.003685911	0.37%
69	0.002755823	0.000134001	0.000164886	7.03256E-06	3.86408E-05	0.00%	0.00%	0.28%	0.00%	0.01%	0.02%	0.00%	0.00%	0.01%	22.64797807	0.003100384	0.31%
68	0.00226575	0.0001208	0.000200514	1.52081E-05	1.82813E-05	0.00%	0.00%	0.23%	0.00%	0.01%	0.02%	0.00%	0.00%	0.00%	23.83754732	0.002620553	0.26%
67	0.001935981	0.000124956	0.000198077	3.1388E-05	4.43298E-06	0.00%	0.00%	0.19%	0.00%	0.01%	0.02%	0.01%	0.00%	0.00%	25.04401416	0.002294835	0.23%
66	0.001955751	0.000138411	0.000151791	5.77E-05	2.19335E-06	0.00%	0.00%	0.20%	0.00%	0.01%	0.02%	0.01%	0.00%	0.00%	26.26849243	0.002305846	0.23%
65	0.002164928	0.000133444	9.8941E-05	9.23221E-05	1.92858E-05	0.00%	0.00%	0.22%	0.00%	0.01%	0.01%	0.02%	0.00%	0.00%	27.51215183	0.002508921	0.26%
64 62	0.002450669 0.003032709	9.75305E-05 6.64793E-05	5.74404E-05 3.18246E-05	0.000128572 0.000159475	6.44287E-05 0.000148808	0.00% 0.00%	0.00% 0.00%	0.25% 0.30%	0.00% 0.00%	0.01% 0.01%	0.01% 0.00%	0.02% 0.03%	0.00% 0.00%	0.01% 0.03%	28.77622273 30.06200152	0.002798641 0.003439296	0.30% 0.37%
63 62	0.003032709	6.64793E-05 6.69777E-05	1.43221E-05	0.000139473	0.000148808	0.00%	0.00%	0.30%	0.00%	0.01%	0.00%	0.03%	0.00%	0.05%	31.37085647	0.003439296	0.37%
61	0.003073430	0.000102062	4.77466E-06	0.000170172	0.000283073	0.00%	0.00%	0.41%	0.00%	0.01%	0.00%	0.03%	0.00%	0.10%	32.70423404	0.004210001	0.55%
60	0.004588044	0.000174375	1.29289E-05	0.000138513	0.000743742	0.00%	0.00%	0.46%	0.00%	0.02%	0.00%	0.02%	0.00%	0.15%	34.06366588	0.005657601	0.65%
59	0.005175118	0.000265324	5.29484E-05	0.000103224	0.001080724	0.00%	0.00%	0.52%	0.00%	0.03%	0.01%	0.02%	0.00%	0.22%	35.45077652	0.006677339	0.78%
58	0.005319605	0.000367904	0.000130561	9.03112E-05	0.00149856	0.00%	0.00%	0.53%	0.00%	0.04%	0.01%	0.02%	0.00%	0.30%	36.86729176	0.007406941	0.90%
57	0.005205898	0.000443968	0.000238467	0.000134078	0.001937717	0.00%	0.00%	0.52%	0.00%	0.04%	0.02%	0.02%	0.00%	0.39%	38.315048	0.007960128	1.00%
56	0.005102224	0.000523137	0.000345694	0.00027455	0.00239086	0.00%	0.00%	0.51%	0.00%	0.05%	0.03%	0.05%	0.00%	0.48%	39.79600249	0.008636466	1.12%
55	0.004556809	0.000601889	0.000436108	0.000548938	0.002814851	0.00%	0.00%	0.46%	0.00%	0.06%	0.04%	0.09%	0.00%	0.57%	41.31224475	0.008958594	1.22%
54	0.003910108	0.00064572	0.000513005	0.000977352	0.003090177	0.00%	0.00%	0.39%	0.00%	0.06%	0.05%	0.17%	0.00%	0.62%	42.86600915	0.009136362	1.29%
53	0.003179303	0.00060282	0.000501493	0.001549509	0.003236879	0.00%	0.00%	0.32%	0.00%	0.06%	0.05%	0.26%	0.00%	0.65%	44.45968896	0.009070003	1.34%
52	0.002333878	0.000467664	0.00041688	0.002238413	0.003234989	0.00%	0.00%	0.23%	0.00%	0.05%	0.04%	0.38%	0.00%	0.65%	46.09585196	0.008691824	1.35%
51	0.001575487	0.000281365	0.00028797	0.003014928	0.003084675	0.00%	0.00%	0.16%	0.00%	0.03%	0.03%	0.51%	0.00%	0.62%	47.77725796	0.008244426	1.35%
50	0.000925397	0.000125367	0.000173086	0.003786085	0.002679927	0.00%	0.00%	0.09%	0.00%	0.01%	0.02%	0.65%	0.00%	0.54%	49.50687824	0.007689862	1.31%
49	0.000568596	4.74963E-05	0.00011661	0.004535929	0.002170695	0.00%	0.00%	0.06%	0.00%	0.00%	0.01%	0.77%	0.00%	0.44%	51.28791753	0.007439327	1.28%
48	0.000516211	2.9153E-05	0.000136383	0.004950958	0.00160185	0.00%	0.00%	0.05%	0.00%	0.00%	0.01%	0.84%	0.00%	0.32%	53.12383861	0.007234554	1.23%
47	0.000776928 0.001356589	3.64953E-05 3.23076E-05	0.000210046 0.000315777	0.005155171 0.005003922	0.001005022 0.000536097	0.00% 0.00%	0.00% 0.00%	0.08% 0.14%	0.00% 0.00%	0.00% 0.00%	0.02% 0.03%	0.88% 0.85%	0.00% 0.00%	0.20% 0.11%	55.01839008 56.97563771	0.007183662 0.007244693	1.18% 1.13%
45	0.001330389	1.247E-05	0.000519777	0.003003922	0.000330037	0.00%	0.00%	0.14%	0.00%	0.00%	0.05%	0.85%	0.00%	0.04%	59	0.007244093	1.13%
44	0.003251243	7.7966E-06	0.001004575	0.003731742	9.59056E-05	0.00%	0.00%	0.33%	0.00%	0.00%	0.10%	0.64%	0.00%	0.02%	61.09628851	0.008091262	1.08%
43	0.004545091	4.44016E-05	0.001851294	0.002737819	0.000172718	0.00%	0.00%	0.45%	0.00%	0.00%	0.19%	0.47%	0.00%	0.03%	63.26975389	0.009351323	1.15%
42	0.006045999	8.96032E-05	0.002967569	0.001829491	0.000400187	0.00%	0.00%	0.60%	0.00%	0.01%	0.30%	0.31%	0.00%	0.08%	65.52613837	0.011332849	1.30%
41	0.007512804	8.44613E-05	0.00413747	0.000992348	0.000686431	0.00%	0.00%	0.75%	0.00%	0.01%	0.41%	0.17%	0.00%	0.14%	67.87173603	0.013413514	1.48%
40	0.008923166	6.0308E-05	0.005501127	0.000389387	0.000955682	0.00%	0.00%	0.89%	0.00%	0.01%	0.55%	0.07%	0.00%	0.19%	70.31346196	0.01582967	1.71%
39	0.010199789	0.000192064	0.006815912	7.64634E-05	0.0011308	0.00%	0.00%	1.02%	0.00%	0.02%	0.68%	0.01%	0.00%	0.23%	72.85893224	0.018415029	1.96%
38	0.011091474	0.000717538	0.007514879	2.11764E-05	0.001137061	0.00%	0.00%	1.11%	0.00%	0.07%	0.75%	0.00%	0.00%	0.23%	75.5165563	0.020482129	2.16%
37	0.011134771	0.001768223	0.007204669	0.000140457	0.000971574	0.00%	0.00%	1.11%	0.00%	0.18%	0.72%	0.02%	0.00%	0.20%	78.29564448	0.021219694	2.23%
36	0.011236547	0.003224694	0.005735425	0.00030796	0.000705387	0.00%	0.00%	1.12%	0.00%	0.32%	0.57%	0.05%	0.00%	0.14%	81.20653331	0.021210014	2.21%
35	0.010181385	0.004662969	0.003704585	0.000406134	0.000425208	0.00%	0.00%	1.02%	0.00%	0.47%	0.37%	0.07%	0.00%	0.09%	84.2607324	0.019380281	2.01%
34	0.009207948	0.005470393	0.001941313	0.000369849	0.000233323	0.00%	0.00%	0.92%	0.00%	0.55%	0.19%	0.06%	0.00%	0.05%	87.47109714	0.017222827	1.77%
33	0.007441443	0.005206104	0.000825258	0.00021209	0.000243474	0.00%	0.00%	0.74%	0.00%	0.52%	0.08%	0.04%	0.00%	0.05%	90.85203287	0.013928367	1.43%
32	0.006155196	0.003927331	0.000259522	4.4066E-05	0.00051765	0.00%	0.00%	0.62%	0.00%	0.39%	0.03%	0.01%	0.00%	0.10%	94.41973721	0.010903766	1.15%
31	0.005010314	0.002348122	6.46841E-05	1.82275E-05	0.00104872	0.00%	0.00%	0.50%	0.00%	0.23%	0.01%	0.00%	0.00%	0.21%	98.19248946	0.008490068	0.96%
30	0.004736627	0.00101467	5.0863E-05	0.000273106	0.001763047	0.00%	0.00%	0.47%	0.00%	0.10%	0.01%	0.05%	0.00%	0.35%	102.1909976	0.007838313	0.98%
29	0.005457476	0.000331778	7.77901E-05	0.000852813	0.002575055	0.00%	0.00%	0.55%	0.00%	0.03%	0.01%	0.15%	0.00%	0.52%	106.4388176	0.009294912	1.25%
28	0.006908178	0.000183747	0.000163793	0.001714848	0.003267068	0.00%	0.00%	0.69%	0.00%	0.02%	0.02%	0.29%	0.00%	0.66%	110.9628615	0.012237634	1.67%
27	0.008943502	0.000227176	0.000377086	0.00266913	0.003599998	0.00%	0.00%	0.89%	0.00%	0.02%	0.04%	0.45%	0.00%	0.72%	115.7940198	0.015816893	2.13%
26 25	0.010773057	0.00026742	0.000598786	0.003445094	0.003606896	0.00%	0.00%	1.08% 1.17%	0.00%	0.03% 0.03%	0.06%	0.59%	0.00%	0.73%	120.9679267	0.018691254	2.48% 2.58%
25 24	0.011661718 0.012407146	0.000273287 0.000319542	0.00064076 0.000451445	0.003860332 0.003754343	0.003285165 0.002537853	0.00% 0.00%	0.00% 0.00%	1.17% 1.24%	0.00% 0.00%	0.03% 0.03%	0.06% 0.05%	0.66% 0.64%	0.00% 0.00%	0.66% 0.51%	126.5259083 132.5161697	0.019721262 0.019470329	2.58% 2.47%
24	0.01240/140	0.000313342	0.000431443	0.003734343	0.002337033	0.00%	0.00%	1.2470	0.00%	0.05%	0.03%	0.0470	0.00%	0.31%	132.310103/	0.013470323	2.41/0

23	0.010713889	0.000427369	0.00019538	0.003096059	0.001701147	0.00%	0.00%	1.07%	0.00%	0.04%	0.02%	0.53%	0.00%	0.34%	138.9952896	0.016133843	2.00%
22	0.008193183	0.000495802	4.9589E-05	0.002066878	0.000902085	0.00%	0.00%	0.82%	0.00%	0.05%	0.00%	0.35%	0.00%	0.18%	146.0301244	0.011707536	1.41%
21	0.004742793	0.000387159	9.28896E-05	0.001066341	0.00032948	0.00%	0.00%	0.47%	0.00%	0.04%	0.01%	0.18%	0.00%	0.07%	153.7002548	0.006618663	0.77%
20	0.001881546	0.000181289	0.000223073	0.000322387	6.14199E-05	0.00%	0.00%	0.19%	0.00%	0.02%	0.02%	0.05%	0.00%	0.01%	162.1011677	0.002669714	0.30%
19	0.000158377	9.04788E-05	0.000217082	2.49203E-05	9.91941E-05	0.00%	0.00%	0.02%	0.00%	0.01%	0.02%	0.00%	0.00%	0.02%	171.3484418	0.000590052	0.07%
18	0.00050272	0.000126527	7.45176E-05	0.000166797	0.000332752	0.00%	0.00%	0.05%	0.00%	0.01%	0.01%	0.03%	0.00%	0.07%	181.5833287	0.001203314	0.17%
17	0.003343057	0.000146218	0.000124473	0.000582111	0.000595578	0.00%	0.00%	0.33%	0.00%	0.01%	0.01%	0.10%	0.00%	0.12%	192.9803045	0.004791437	0.58%
16	0.0085274	0.000146107	0.000623375	0.000987822	0.000749223	0.00%	0.00%	0.85%	0.00%	0.01%	0.06%	0.17%	0.00%	0.15%	205.7574522	0.011033927	1.25%
15	0.015522252	0.000275937	0.001320953	0.001177109	0.000693026	0.00%	0.00%	1.55%	0.00%	0.03%	0.13%	0.20%	0.00%	0.14%	220.1909976	0.018989277	2.05%
14	0.023882929	0.000579353	0.001749929	0.001054265	0.00047085	0.00%	0.00%	2.39%	0.00%	0.06%	0.17%	0.18%	0.00%	0.09%	236.6360751	0.027737326	2.90%
13	0.030948548	0.000832714	0.001586986	0.000676866	0.00019518	0.00%	0.00%	3.09%	0.00%	0.08%	0.16%	0.12%	0.00%	0.04%	255.5570766	0.034240294	3.49%
12	0.038273649	0.000799384	0.001006544	0.000264705	1.48831E-05	0.00%	0.00%	3.83%	0.00%	0.08%	0.10%	0.05%	0.00%	0.00%	277.5731765	0.040359165	4.06%
11	0.042458767	0.000477335	0.00040635	5.35586E-05	6.1484E-05	0.00%	0.00%	4.25%	0.00%	0.05%	0.04%	0.01%	0.00%	0.01%	303.5286869	0.043457494	4.36%
10	0.042627179	0.000143728	0.000154035	0.000180946	0.000377991	0.00%	0.00%	4.26%	0.00%	0.01%	0.02%	0.03%	0.00%	0.08%	334.6056274	0.043483879	4.40%
9	0.042612338	5.33815E-05	0.000227755	0.000641797	0.000906421	0.00%	0.00%	4.26%	0.00%	0.01%	0.02%	0.11%	0.00%	0.18%	372.5113394	0.044441693	4.58%
8	0.038410726	0.000146659	0.000279502	0.001248288	0.001500539	0.00%	0.00%	3.84%	0.00%	0.01%	0.03%	0.21%	0.00%	0.30%	419.8068136	0.041585713	4.40%
7	0.030870851	0.000170374	0.000141736	0.001825621	0.001955885	0.00%	0.00%	3.09%	0.00%	0.02%	0.01%	0.31%	0.00%	0.39%	480.5164393	0.034964468	3.82%
6	0.024355229	5.35116E-05	6.73791E-05	0.002081873	0.002130036	0.00%	0.00%	2.44%	0.00%	0.01%	0.01%	0.35%	0.00%	0.43%	561.3475028	0.028688028	3.23%
5	0.016750339	3.09656E-05	0.000363878	0.001999336	0.001999025	0.00%	0.00%	1.68%	0.00%	0.00%	0.04%	0.34%	0.00%	0.40%	674.3730859	0.021143543	2.46%
4	0.010253065	0.000249867	0.000907374	0.001576579	0.001576334	0.00%	0.00%	1.03%	0.00%	0.02%	0.09%	0.27%	0.00%	0.32%	843.7393091	0.01456322	1.73%
3	0.005351583	0.000499273	0.001225787	0.000973519	0.00099604	0.00%	0.00%	0.54%	0.00%	0.05%	0.12%	0.17%	0.00%	0.20%	1125.787065	0.009046202	1.07%
2	0.002021442	0.000463999	0.000969603	0.000443122	0.000463934	0.00%	0.00%	0.20%	0.00%	0.05%	0.10%	0.08%	0.00%	0.09%	1689.538944	0.004362101	0.51%
1	0.000410978	0.000179752	0.000334774	0.000103438	0.0001134	0.00%	0.00%	0.04%	0.00%	0.02%	0.03%	0.02%	0.00%	0.02%	3380.107736	0.001142342	0.13%

degree below horizon	AT1K02 (39GHz)	AT1K01 (28GHz)	MT6407-77A (3,730MHz)	XXDWMM- 12.5-65 (3,550MHz)	AWS (2,155MHz)	PCS (1,962MHz)	850-LTE (880MHz)	850-CDMA (869MHz)	700-LTE (746MHz)
0	0.08	0.08	3.28	1.8	0	0	1	2.3	0.5
1	0.39	0.39	2.19	1.3	0.7	0.6	0.3	1.5	0.1
2	0.3	0.3	1.29	0.8	2.6	2	0	0.9	0
3	0	0	0.58	0.5	5.8	4.5	0.1	0.4	0.2
4	0.31	0.31	0.25	0.2	11.3	8.3	0.5	0.1	0.7
5	0.42	0.42	0.05	0.1	22.3	14.2	1.4	0	1.6
6	0.13	0.13	0	0	21.5	23.1	2.8	0	2.9
7	0.44	0.44	0.3	0	17.8	21.2	4.7	0.2	4.6
8	0.36	0.36	0.5	0.1	19.6	19.4	7.5	0.6	6.9
9	0.09	0.09	1.06	0.2	25	21.3	11.4	1.2	10.1
10	0.4	0.4	1.96	0.3	21.6	23.9	17.8	2	14.8
11	0.52	0.52	2.79	0.7	17.2	20.5	23.9	3	23.5
12	0.26	0.26	3.98	1	15.7	17.3	17.7	4.3	30.4
13	0.57	0.57	5.58	1.5	16.2	16	14.3	6	19.9
14	0.51	0.51	7.33	2	18.4	16.2	13	8	16.7
15	0.26	0.26	9.78	2.6	22.2	18	13.1	10.4	15.6
16	0.58	0.58	12.92	3.3	25.5	21.8	14.4	13.4	15.8
17	1.07	1.07	17.49	4.2	26	29.3	17.2	17.1	17.3
18	0.55	0.55	26.19	5.3	27.1	32	23.1	21	20.3
19	0.58	0.58	31.65	6.7	29	27.8	31.8	22.7	26
20	1.08	1.08	21.32	8.2	26.4	28.1	21.1	21.4	28.5
21	0.59	0.59	17.7	9.9	23.5	32.3	16.3	20.1	21.6
22	0.65	0.65	15.7	11.8	22.8	35.4	13.8	19.4	17.6
23	1.22	1.22	14.89	14.5	23.8	29.8	12.4	19.6	15.2
24	0.99	0.99	14.59	18.2	25.4	26.5	11.9	20.5	13.8
25	0.8	0.8	15.18	23.8	26.4	25.3	12.1	22.1	13
26	1.11	1.11	15.83	33.9	26.8	25.9	12.9	23.5	12.9
27	1.12	1.12	16.93	27.7	27.8	28.2	14.3	23.1	13.2
28	0.95	0.95	18.33	21.5	29	32.1	16.5	20.6	13.9

29	1.25	1.25	19.62	18	26.7	35.6	19.8	17.9	15.2
30	2.03	2.03	20.49	15.7	22.1	37.7	25	15.7	17.1
31	3.32	3.32	20.49	14.1	18.7	36.9	37	14	19.6
32	5.21	5.21	19.83	13	16.7	31.1	33.4	12.7	22.9
33	7.88	7.88	19.23	12.3	15.7	26.3	26.8	11.8	26.4
34	11.74	11.74	18.52	12.1	15.7	22.8	24.6	11.3	26.8
35	16.19	16.19	18.29	11.9	16.6	20.2	24.4	11	24.4
36	14.94	14.94	18.06	11.7	18.4	18.5	25.8	11	22.4
37	15.07	15.07	18.29	11.7	21.2	17.7	29.4	11.3	21.2
38	16.33	16.33	18.49	11.8	25.3	17.7	37.8	11.8	20.7
39	15.38	15.38	19.03	12	31.2	18.3	32.4	12.5	20.9
40	15.03	15.03	19.78	12.5	36.4	19.4	25.5	13.5	21.8
41	15.75	15.75	20.69	13.1	35.1	20.8	21.6	14.8	23.4
42	17.49	17.49	21.79	13.7	35	22.4	19.1	16.5	25.9
43	20.55	20.55	23.18	14.2	38.2	24.6	17.5	18.7	29.7
44	21.87	21.87	24.78	14.5	45.9	27.4	16.3	21.5	32.4
45	20.56	20.56	26.65	15.1	44	30.4	15.7	25.4	29
46	20.35	20.35	28.85	15.9	40	32.7	15.3	30	25.2
47	21.02	21.02	31.4	16.8	39.6	34.6	15.3	29.1	22.6
48	21.62	21.62	33.3	17.8	40.7	36.6	15.6	24.9	20.7
49	20.49	20.49	33	18.7	38.7	37.4	16.1	21.9	19.5
50	20.28	20.28	31	19.7	34.6	35.8	17	19.8	18.7
51	20.83	20.83	28.8	20.7	31.2	33.7	18.1	18.3	18.2
52	22.1	22.1	27.2	21.6	29.1	32.2	19.5	17.3	18.1
53	22.84	22.84	25.96	22.4	28.1	31.5	21.2	16.5	18.2
54	23.96	23.96	25.16	22.9	27.9	31.5	23.3	16.1	18.5
55	25.61	25.61	24.59	23.3	28.3	32.3	25.9	15.8	19
56	24.75	24.75	24.19	23.4	29	33.4	29	15.8	19.8
57	24.54	24.54	24.19	23.3	29.8	35.1	32.2	15.9	20.8
58	24.84	24.84	24.18	22.7	30.7	37.8	34	16.2	22
59	25.6	25.6	24.38	21.9	32.2	41.8	33.5	16.6	23.5
60	25.03	25.03	24.98	21.2	34.1	48	32.3	17.2	25.2

61	24.18	24.18	25.49	20.7	36.5	52.4	31.5	18	27.2
62	23.83	23.83	26.09	20.5	38.4	47.7	31.4	18.9	29.5
63	23.88	23.88	26.99	20.3	38.5	44.3	31.9	19.9	32.4
64	24.25	24.25	27.98	20.3	36.9	41.8	32.9	21.1	36.1
65	24.7	24.7	28.58	20.5	35.6	39.5	34.4	22.4	41.4
66	24.47	24.47	29.08	20.9	35.5	37.7	36.5	23.9	50.9
67	24.47	24.47	29.18	21.3	36	36.6	39.2	25.5	47.9
68	24.68	24.68	28.55	21.7	36.2	36.6	42.4	27.3	41.8
69	25.07	25.07	27.75	21.8	35.8	37.5	45.8	29.1	38.6
70	25.64	25.64	26.95	21.6	35	39.3	48.4	30.7	36.8
71	26.36	26.36	26.25	21.2	34.1	41.3	49.3	31.9	35.7
72	27.24	27.24	25.5	21	33.6	42.3	49.4	32.1	35
73	28.26	28.26	24.8	21	33.7	42.2	49.9	31.6	34.7
74	28.68	28.68	24.3	21.2	34	42.6	51	31	34.6
75	28.98	28.98	23.9	21.6	34.4	44.5	52.3	30.5	34.7
76	29.37	29.37	23.6	22.1	34.5	47.6	53.5	30.2	34.9
77	29.83	29.83	23.4	22.8	34.3	49.2	54.1	30.2	35.1
78	30.36	30.36	23.1	23.5	34	47	53.8	30.3	35.5
79	30.94	30.94	22.9	24.5	33.8	44.2	52.4	30.5	35.8
80	30.89	30.89	22.8	25.6	33.9	42.7	50.8	30.7	36.3
81	30.44	30.44	22.7	26.8	34.5	42.6	49.4	30.9	36.8
82	30.13	30.13	22.7	28.2	35.3	43.7	48.4	31	37.5
83	29.93	29.93	22.7	29.7	35.6	45.3	47.8	31	38.2
84	29.81	29.81	22.7	31.1	35.8	46.4	47.6	31.2	39
85	29.76	29.76	22.8	31.9	36.2	46.9	47.6	31.5	40
86	29.78	29.78	22.8	32.5	36.6	47	47.7	31.9	41
87	29.85	29.85	22.9	32.9	37.2	47	47.7	32.4	42.1
88	29.97	29.97	22.96	33.3	38.5	46.7	47.5	32.9	43.3
89	30.13	30.13	23.06	33.6	40.4	46.5	46.8	33.1	44.7
90	30.33	30.33	23.06	34.4	41.9	46.9	46	33.1	46.3

ATTACHMENT 7

Name and Address of Sender Kenneth C. Baldwin, Esq. Robinson & Cole LLP 280 Trumbull Street Hartford, CT 06103	TOTAL NO. of Pieces Listed by Sender TOTAL NO. of Pieces Received at Post Office™ Postmaster, per (name of receiving employee) 7007 9 - NO	Affix Stamp Here Postmark with Date of Reco	22 TAGE \$(003.65º ZIP 06103 041L12203937	
USPS® Tracking Number Firm-specific Identifier	Address (Name, Street, City, State, and ZIP Soder)	Postage	Fee	Special Handling	Parcel Airlift
1. 2. 3.	Kevin Moynihan, First Selectman Town of New Canaan 77 Main Street New Canaan, CT 06840 Lynn Brooks Avni, Town Planner/Senior Enforce Town of New Canaan 77 Main Street New Canaan, CT 06840 Keith and Marina Richey 183 Soundview Lane New Canaan, CT 06840	ement Officer/Co-Dir	ector of L	and Use	
4.	Homeland Towers, LLC 9 Harmony Street, 2 nd Floor Danbury, CT 06810				
5.	American Tower Corporation 10 Presidential Way Woburn, MA 01801				
6.					