Transcend Wireless

10 Industrial Ave,

July 20, 2016
Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
Notice of Exempt Modification
35 Wildwood Street, New Britain, CT 06051
Latitude- 41.66823900
Longitude- -72.75495500
Dear Ms. Bachman,
T-Mobile currently maintains (9) existing antennas at the 100^{\prime} level of the existing 110^{\prime} monopole at 35 Wildwood Street in New Britain. The tower is owned by AT\&T Wireless. The property is owned by the City of New Britain. T-Mobile now intends to replace (3) of its existing antennas with (3) new 1900 MHz antennas. These antennas would be installed at the same 100' level of the tower. T-Mobile also intends to install (1) new hybrid fiber cable.

This facility was approved by the Council in Petition No. 850 on March 13, 2008. This approval did not include conditions that would be violated by this modification. This modification complies with the approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. 16-50j-72(b)(2). In accordance with R.C.S.A. 16-50j-73, a copy of this letter is being sent to Ms. Erin Stewart, Mayor of the City of New Britain, as well as the property owner and tower owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-72(b)(2).

1. The proposed modification will not result in an increase in the height of the existing structure
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
5. The proposed modification will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the abovereferenced telecommunications facility constitute an exempt modification under R.C.S.A. 16-50j-72(b)(2).

Sincerely,

Kyle Richers

Kyle Richers
Transcend Wireless
10 Industrial Ave., Suite 3
Mahwah, New Jersey 07430
908-447-4716
krichers@transcendwireless.com
cc: Erin Stewart- as elected official
AT\&T- as tower owner
City of New Britain- as property owner

City of New Britain, Connecticut - Assessment Parcel Map

MBL: A8B 1
Address: 35 WILDWOOD ST

$\begin{array}{clll}\text { Location } & 35 \text { WILDWOOD ST } & \text { Mblu } & \text { A8B/ } 1 / / / \\ \text { Acct\# } & 91200035 & \text { Owner } & \begin{array}{l}\text { NEW BRITAIN CITY OF - } \\ \end{array}\end{array}$

Assessment \$1,632,330

PID 1830
Building Count 1

Current Value

Appraisal			
Valuation Year	Improvements	Land	Total
2012	\$1,646,900	\$685,000	\$2,331,900
Assessment			
Valuation Year	Improvements	Land	Total
2012	\$1,152,830	\$479,500	\$1,632,330

Owner of Record

Owner	NEW BRITAIN CITY OF - PARK	Sale Price	$\$ 0$
Co-Owner	CHESLEY PARK	Certificate	
Address	27 WEST MAIN ST	Book \& Page	
	NEW BRITAIN, CT 06051	Sale Date	$01 / 01 / 1900$

Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book \& Page	Sale Date	
NEW BRITAIN CITY OF - PARK	$\$ 0$			$01 / 01 / 1900$	

Building Information

Building 1 : Section 1

Year Built:

Living Area:
0
Replacement Cost: \$0
Building Percent
Good:
Replacement Cost
Less Depreciation: $\$ 0$

Building Attributes	
Field	Description

Style	Outbuildings
Model	
Grade	
Stories	
Occupancy	
Exterior Wall 1	
Exterior Wall 2	
Roof Structure	
Roof Cover	
Interior Wall 1	
Interior Wall 2	
Interior Flr 1	
Interior Flr 2	
Central Heat Sys	
AC Type	
Total Bedrooms	
Total Full Baths	
Total Half Baths	
Total Xtra Fixtrs	
Total Rooms	
Bath Style	
Kitchen Style	
Whirlpool Tub	
Fireplaces	
Rec Room Finish	
Rec Room Qual	
Bsmt Garages	
Bldg Nbhd	

Building Photo

(http://images.vgsi.com/photos/NewBritainCTPhotos//\00\02\1،

Building Layout

Building Layout

Building Sub-Areas (sq ft)

No Data for Building Sub-Areas

Extra Features

Extra Features	Legend	
	No Data for Extra Features	

Land

Land Use

Use Code	903 A
Description	Mun Park MDL-00
Zone	T
Neighborhood	107

Land Line Valuation
Size (Acres) $\quad 11.85$
Depth
Assessed Value \$479,500
Appraised Value $\$ 685,000$

Alt Land Appr
 No

Category

Outbuildings

Outbuildings						$\begin{gathered} \text { Legend } \\ \hline \text { Bldg \# } \end{gathered}$
Code	Description	Sub Code	Sub Description	Size	Value	
TEN1	Tennis Crt Asp			4 Units	\$96,600	1
PAV1	Paving Asphalt			50000 S.F.	\$48,000	1
FN5	Fence-10' Chai			888 L.F.	\$13,600	1
TR2	RestRoom stone			2697 S.F.	\$354,000	1
TR2	RestRoom stone			1875 S.F.	\$246,100	1
FN1	Fence - Chain			4000 L.F.	\$28,600	1
CAN4	Canopy rf/slb			800 S.F.	\$9,600	1
CB3	PreCastConcCel			240 S.F.	\$55,400	1
FN1	Fence - Chain			100 L.F.	\$700	1
CB4	PreCastConcCel			360 S.F.	\$74,300	1
SPL7	Pool			10000 S.F.	\$720,000	1

Valuation History

Appraisal			
Valuation Year	Improvements	Land	Total
2015	\$1,646,900	\$685,000	\$2,331,900
2014	\$1,646,900	\$685,000	\$2,331,900
2013	\$1,646,900	\$685,000	\$2,331,900

Assessment					
Valuation Year					
Improvements	Land	Total			
2015	$\$ 1,152,830$	$\$ 479,500$	$\$ 1,632,330$		
2014	$\$ 1,152,830$	$\$ 479,500$	$\$ 1,632,330$		
2013	$\$ 1,152,830$	$\$ 479,500$	$\$ 1,632,330$		

(c) 2016 Vision Government Solutions, Inc. All rights reserved.
environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility
Site ID: CT11634C
CT634/Cing/ChesleyPark_ET
35 Wildwood Street
New Britain, CT 06051
July 13, 2016
EBI Project Number: 6216003229

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general public allowable limit:	$\mathbf{1 5 . 5 7} \%$

July 13, 2016

T-Mobile USA
Attn: Jason Overbey, RF Manager
35 Griffin Road South
Bloomfield, CT 06002

Emissions Analysis for Site: CT11634C - CT634/Cing/ChesleyPark_ET

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 35 Wildwood Street, New Britain, CT, for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limit for the 700 MHz Band is approximately 467 $\mu \mathrm{W} / \mathrm{cm}^{2}$, and the general population exposure limit for the 1900 MHz (PCS) and 2100 MHz (AWS) bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at $\mathbf{3 5}$ Wildwood Street, New Britain, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 2 GSM channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 2 UMTS channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
3) 2 UMTS channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
4) 2 LTE channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel.
5) 2 LTE channels (AWS Band - 2100 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 60 Watts per Channel
6) 1 LTE channel (700 MHz Band) was considered for each sector of the proposed installation. This channel has a transmit power of 30 Watts.
7) Since the 2100 MHz UMTS radios are ground mounted there are additional cabling losses accounted for. For each ground mounted 2100 MHz UMTS RF path an additional 1.57 dB of additional cable loss was calculated for all ground mounted 2100 MHz channels. This is based on manufacturers Specifications for 148 feet of $1-5 / 8$ " coax cable on each path.
8) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
9) For the following calculations the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications minus 10 dB was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
10) The antennas used in this modeling are the Ericsson AIR32 B66Aa/B2P \& Ericsson AIR21 B2A/B4P for 1900 MHz (PCS) and 2100 MHz (AWS) channels and the Commscope LNX-6515DS-VTM for 700 MHz channels. This is based on feedback from the carrier with regards to anticipated antenna selection. The Ericsson AIR32 B66Aa/B2P has a maximum gain of $\mathbf{1 5 . 9} \mathbf{~ d B d}$ at its main lobe at 1900 MHz and 2100 MHz . The Ericsson AIR21 B2A/B4P has a maximum gain of $\mathbf{1 5 . 9} \mathbf{~ d B d}$ at its main lobe at 1900 MHz and 2100 MHz . The Commscope LNX-6515DS-VTM has a maximum gain of $\mathbf{1 4 . 6} \mathbf{d B d}$ at its main lobe at 700 MHz . The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB , was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
11) The antenna mounting height centerline of the proposed antennas is $\mathbf{1 0 0}$ feet above ground level (AGL)
12) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
13) All calculations were done with respect to uncontrolled / general public threshold limits.

EBI Consulting

environmental | engineering | due diligence

T-Mobile Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make / Model:	$\begin{gathered} \text { Ericsson AIR32 } \\ \text { B66Aa/B2P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR32 } \\ \text { B66Aa/B2P } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR32 } \\ \text { B66Aa/B2P } \\ \hline \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	100	Height (AGL):	100	Height (AGL):	100
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz}(\mathrm{AWS}) \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	4	Channel Count	4	Channel Count	4
Total TX Power(W):	240	Total TX Power(W):	240	Total TX Power(W):	240
ERP (W):	9,337.08	ERP (W):	9,337.08	ERP (W):	9,337.08
Antenna A1 MPE\%	3.80	Antenna B1 MPE\%	3.80	Antenna C1 MPE\%	3.80
Antenna \#:	2	Antenna \#:	2	Antenna \#:	2
Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B2A/B4P } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B2A/B4P } \end{gathered}$	Make / Model:	$\begin{gathered} \text { Ericsson AIR21 } \\ \text { B2A/B4P } \end{gathered}$
Gain:	15.9 dBd	Gain:	15.9 dBd	Gain:	15.9 dBd
Height (AGL):	100	Height (AGL):	100	Height (AGL):	100
Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz}(\mathrm{AWS}) \\ & \hline \end{aligned}$	Frequency Bands	$\begin{aligned} & \hline 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz}(\mathrm{AWS}) \\ & \hline \end{aligned}$	Frequency Bands	$\begin{aligned} & 1900 \mathrm{MHz}(\mathrm{PCS}) / \\ & 2100 \mathrm{MHz} \text { (AWS) } \end{aligned}$
Channel Count	6	Channel Count	6	Channel Count	6
Total TX Power(W):	180	Total TX Power(W):	180	Total TX Power(W):	180
ERP (W):	6,294.66	ERP (W):	6,294.66	ERP (W):	6,294.66
Antenna A2 MPE\%	2.56	Antenna B2 MPE\%	2.56	Antenna C2 MPE\%	2.56
Antenna \#:	3	Antenna \#:	3	Antenna \#:	3
Make / Model:	$\begin{gathered} \hline \text { Commscope LNX- } \\ \text { 6515DS-VTM } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \hline \text { Commscope LNX- } \\ \text { 6515DS-VTM } \\ \hline \end{gathered}$	Make / Model:	$\begin{gathered} \hline \text { Commscope LNX- } \\ \text { 6515DS-VTM } \\ \hline \end{gathered}$
Gain:	14.6 dBd	Gain:	14.6 dBd	Gain:	14.6 dBd
Height (AGL):	100	Height (AGL):	100	Height (AGL):	100
Frequency Bands	700 MHz	Frequency Bands	700 MHz	Frequency Bands	700 MHz
Channel Count	1	Channel Count	1	Channel Count	1
Total TX Power(W):	30	Total TX Power(W):	30	Total TX Power(W):	30
ERP (W):	865.21	ERP (W):	865.21	ERP (W):	865.21
Antenna A3 MPE\%	0.75	Antenna B3 MPE\%	0.75	Antenna C3 MPE\%	0.75

Site Composite MPE\%	
Carrier	MPE \%
T-Mobile (Per Sector Max)	$\mathbf{7 . 1 1} \%$
AT\&T	2.77%
Clearwire	0.22%
Clearwire MW dishes	0.46%
Verizon Wireless	5.01%
Site Total MPE \%:	$\mathbf{1 5 . 5 7} \%$

T-Mobile Sector A Total:	7.11%
T-Mobile Sector B Total:	7.11%
T-Mobile Sector C Total:	7.11%
Site Total:	
15.57%	

T-Mobile _per sector	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
T-Mobile AWS - 2100 MHz LTE	2	2,334.27	100	18.99	AWS - 2100 MHz	1000	1.90 \%
T-Mobile PCS - 1900 MHz LTE	2	2,334.27	100	18.99	PCS - 1900 MHz	1000	1.90 \%
T-Mobile AWS - 2100 MHz UMTS	2	813.06	100	6.62	AWS - 2100 MHz	1000	0.66 \%
T-Mobile PCS - 1950 MHz UMTS	2	1,167.14	100	9.50	PCS - 1950 MHz	1000	0.95 \%
T-Mobile PCS - 1950 MHz GSM	2	1,167.14	100	9.50	PCS - 1950 MHz	1000	0.95 \%
T-Mobile 700 MHz LTE	1	865.21	100	3.52	700 MHz	467	0.75 \%
Total: 7.11 \%							

environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general public exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general public exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (\%)
Sector A:	7.11%
Sector B:	7.11%
Sector C:	7.11%
T-Mobile Per Sector	
Maximum:	7.11%
Site Total:	15.57%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{1 5 . 5 7 \%}$ of the allowable FCC established general public limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Ms. Deborah Krenc
AT\&T Towers
2300 Northlake Center Drive, Suite 405
Tucker, GA 30084-4032
(404) 532-5837

Date: June 30, 2016

Morrison Hershfield
1455 Lincoln Parkway, Suite 500
Atlanta, GA 30346
(770) 379-8500

Subject: Structural Analysis Report

AT\&T Designation:

Site USID: 88241-A
Site FA: 10050945

Site Name: NEW BRITAIN WILDWOOD STREET
Carrier: T-Mobile
Carrier Site Number: CT11634C
Carrier Site Name: CT634/Cing/Chesley Park_ET
Site Address: Wildwood Street, New Britain, Hartford County, CT 06051
Site Coordinates: Latitude: $41^{\circ} 40^{\prime} 5.47$ " N, Longitude: $72^{\circ} 45^{\prime} 18.72^{\prime \prime} \mathrm{W}$
Tower Description: 110 ft - Monopole Tower
Morrison Hershfield Project Number: ATT-664 / 7160003
Dear Ms. Krenc,
Morrison Hershfield has carried out a structural analysis of the above referenced structure for the existing and proposed antenna and equipment noted. This analysis has been performed in accordance with the TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph , meeting the requirements of 2005 CT State Building Code with 2009 Amendment. This analysis is subject to the assumptions noted.

Our analysis demonstrates that the existing tower and foundation ARE in conformance (tower at 99.7\% and foundation at $\mathbf{7 6 . 1 \%}$) with the requirements of the above noted standards under the effects of loading described.

We at Morrison Hershfield appreciate the opportunity of providing our continuing professional services to you and AT\&T Towers. If you have any questions or need further assistance on this or any other projects, please give us a call.

Respectfully Submitted by:
Morrison Hershfield

G. Lance Cooke, P.E. (CT License No. PEN.0028133)

Senior Engineer

INTRODUCTION

This tower is a 110 ft monopole, and the original drawings are not available. The tower geometry and member sizes have been obtained from the structural analysis completed by B+T Group, Project \#: 84498.003.01a, dated $03 / 04 / 2015$ and are considered to be accurate. Yield strengths of 65-ksi for the monopole shaft, 50-ksi for the base plate and $75-\mathrm{ksi}$ anchor bolts have been assumed based on experience with similar towers.

This structural analysis was performed in accordance with the requirements of 2005 CT State Building Code with 2009 Amendment and the TIA/EIA-222-F Structural Standards for Steel Antenna Towers and Antenna Supporting Structures using a fastest mile wind speed of 80 mph with no radial ice, 38 mph with 1 " radial ice thickness and 50 mph under service conditions.

The structural analysis was based on the following documentation:

Documentation

Document	Description	Source
Previous Structural Analysis	B+T Group, Project \#: 84498.003.01a, dated $03 / 04 / 2015$	Siterra
Previous Structural Analysis	B+T Group, Project \#: 85026.001, dated $08 / 23 / 2012$	Siterra
Previous Structural Analysis	GPD Associates, Project \#: 2009285.35, dated 11/09/2009	Siterra
Site Lease Application	T-Mobile, Site \#: CT11634C, dated 04/27/2016	Siterra

1.0 ANALYSIS LOADING

The existing and proposed antennas, transmission lines, and other equipment considered in this analysis were provided by the client and are noted in the attachments.

ANALYSIS PROCEDURE

tnxTower Version 7.0.6.2, a commercially available analysis software package, was used to create a threedimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is attached at the end of this report.

2.0 ASSUMPTIONS

The analysis provided by Morrison Hershfield is based on the theoretical capacity of the structure and is not a condition assessment of the tower. Morrison Hershfield has not performed an engineering inspection of the tower and the analysis was completed based on information supplied by the client. Morrison Hershfield has not made any independent determination of the accuracy of the information provided.

1) Tower and structures were built in accordance with the manufacturer's specifications and the applicable ANSI/TIA/EIA standard.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The tower is assumed to be in good condition and capable of supporting its full design capacity.
4) The foundation was properly designed and constructed for the original design loads.
5) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in the attached Tower Analysis Summary Form.
6) All existing/proposed antennas and antenna mounts are assumed to be adequate for the existing/proposed loads. Analysis of these antennas and antenna mounts is considered to be outside of the scope of this analysis. Morrison Hershfield has not performed an analysis of the existing/proposed antennas or antenna mounts.
7) Existing and proposed loading for T-Mobile is per their Site Lease Application, Site \#: CT11634C, dated 04/27/2016, and is considered to be correct
8) The remaining existing loading is taken from the previous structural analysis completed by $\mathrm{B}+\mathrm{T}$ Group, Project \#: 84498.003.01a, dated 03/04/2015, and is considered to be correct.
9) Future loading for AT\&T Mobility is per Generic AT\&T Reserve Loading Requirements, and is considered to be correct.
10) Original tower and foundation drawings were not available. The tower geometry and foundation details has been taken from the previous structural analysis completed by B+T Group, Project \#: 4498.003.01a, dated 03/04/2015.

If any assumptions are not valid or have been made in error, this analysis is invalid. Morrison Hershfield should be notified to determine the effect on the structural integrity of the tower.

3.0 SUMMARY OF RESULTS

The following tables summarize the location and utilized percentage of available capacity for each component of the tower. With consideration to the appropriate safety factors, 100% represents the full capacity of the component. Percentages below 100% indicate available capacity and conformance of the component. Percentages above 100% indicate an overstressed situation requiring structural modification to ensure conformance with the applicable codes and standards.

Based on our analysis results, the tower and foundation ARE within capacity to support the loads under the current loading scenario.

Tower Section Capacity

Section No.	Elevation $f t$	Component Type	Size	\% Capacity	Pass Fail
L1	$110-88.75$	Pole	TP24.83x21x0.19	38.6	Pass
L2	$88.75-47$	Pole	TP31.99x23.87x0.25	87.0	Pass
L3	$47-0$	Pole	TP39.93x30.77x0.31	99.7	Pass
				Summary	
			99.7	Pass	
				99.7	Pass

Capacity of Additional Components

Component	\% Capacity	Pass/Fail
Anchor Bolts	72.2	Pass
Base Plate	86.5	Pass
Spread Footing Bearing	50.4	Pass
Spread Footing Overturning	76.1	Pass

4.0 RECOMMENDATIONS

1. All assumptions made in this analysis should be carefully reviewed. Morrison Hershfield should be contacted for any discrepancies so that a full assessment may be made to validate the results of this analysis.

ATTACHMENTS: Tower Loading, Tower Profile, Program Output, Coax Sketch, Additional Calculations and Site Lease Application Form

Tower Analysis Summary Form

	NEW BRITAIN WILDWOOD STREET	
Site Number	88241-A	
FA Number	10050945	
Date of Analysis	06/3012016	
Company Performing Analysis	Morrison Hershfield	
Tower Info	Description	Date
Tower Type (G, SST, MP)	MP	
Tower Height (top of steel AGL)	110 ft	
Tower Manufacturer	N/A	
Tower Model	N/A	
Tower Design	N/A	
Foundation Design	N/A	
Geotechnical Report	N/A	
Tower Mapping	N/A	
Previous Structural Analysis	B+T Group, Project \#: 84498.003.01a	3/4/2015
Previous Structural Analysis	B+T Group, Project \# : 85026.001	8/23/2012
Previous Structural Analysis	GPD Associates, Project \#: 2009285.35	11/9/2009
Previous Structural Analysis	N/A	
Foundation Mapping	N/A	

Steel Yield Strength (ksi)

PPele	65
Base	
Alate	50
Anchor Rods	75
A Assumed based on experience with similar towers.	

11 Existing and proposed loading for T-Mobile is per their Site Le
Site \#: CT11634C, dated $04 / 27 / 2016$ and is considered to be correct
Site \#: CT11634C, dated 04/27/2016, and is considered to be correct 2) The remaining existing loading is taken from the previous structural analysi completed by B+T Group, Project \#: 84498.003.01a, dated 03/04/2015, and is
considered to be correct. considered to be correct.
3 B Future loading for AT\&T Mobility is per Generic AT\&T Reserve Loadin
Requirements, and is considered to be correct.

Existing / Reserved Loading

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \end{gathered}$	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	size	Attachment Leg/Face
ATET Mobility	110	114	6	Panel	Powewave	7770	0/120/240	1	Unknown	14' Low Profile Platorm	12	Unknown	$1.5 / 8^{\prime \prime}$	Internal
AT\&T Mobility	110	114	3	Panel	KMW	AM-X-CD-16-65-00T	0/120/240				3	Unkn	$1 / 2^{\prime \prime}$	External
ATET Mobility	110	114	6	TMA	Powewave	LGP 21401								
ATET Mobility	110	112	6	RRH	Ericsson	RBS6601								
ATET Mobility	110	112	1	Surge Arrestor	Raycap	DC6-48-60-18-8F								
T-Mobile*	100	100	3	Panel	Ericsson	AIR 21 B4A B2P	60/160/310	1	Unknown	12.5' Platform w/ Handrails	15	Unknown	1-5/8"	Internal\|External
T-Mobile	100	100	3	Panel	Eicsson	AIR 21 B2A B4P	$60 / 160 / 310$				1	Hybrid Cable	1-5/8"	Internal
T-Mobile*	100	100	3	Panel	Commscope	LNX-6515DS-A1M	60/160/310				1	Unknown	3/8"	Internal
T-Mobile*	100	100	3	TMA	RFS	1412D-1520				Behind Antennas	3	Unknown	1/4"	Internal
T-Mobile	100	100	3	RRU	Ericsson	RRUS11-B12				Behind Antennas				
Verizon Wireless	90	90	3	Panel	Antel	BXA-80063/4CF	$60 / 180 / 300$	3	Unknown	10^{\prime} T-Arm Mount	12	Unknown	$1-5 / 8{ }^{\prime \prime}$	
Verizon Wireless	90	90	3	Panel	Antel	BXA-171063/88F	601600		Unknown	10 -Arm Mount	12	Unknown	${ }^{1-5 / 5 / 8^{\prime \prime}}$	External
Verizon Wireless	90	90	3	Panel	Antel	BXA-70063-6CF_2								
Town	60	60	10	Lights	-	Stadium Lights	-	1	Unknown	Stadium Light Mount	-	-	-	-

Proposed Loading

Antenna								Mount			Transmission Line			
Antenna Owner	Mount Height (ft)	Antenna CL (ft)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Leg/Face
T-Mobile	100	100	3	Panel	Ericsson	AIR 32 B66AaB2a	$60 / 160 / 310$	-	.	Same as existing	1	Hybrid Cable	7/8"	Internal

名

Antenna								Mount			Transmission Line			
Antenna Owner	$\begin{gathered} \text { Mount } \\ \text { Height (ft) } \\ \hline \end{gathered}$	$\underset{\text { (ft) }}{\text { Ant }}$ (f)	Quantity	Type	Manufacturer	Model	Azimuth	Quantity	Manufacturer	Type	Quantity	Model	Size	Attachment Leg/Face
AT\&T Mobility	110	114	3	Panel	KMW	AM-X-CD-16-65-00T	$0 / 120 / 240$.	-	Same as existing	6	Unknown	1-5/8"	Internal

tnxTower Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500 FAX: (770) 379-8501	Job	ATT-664 / 7160003	$\text { Page } \quad 1 \text { of } 9$
	Project	88241-A / NEW BRITAIN WILDWOOD STREET	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:53:28 06/28/16 } \end{array}$
	Client	AT\&T Towers	Designed by MK

Tower Input Data

There is a pole section.
This tower is designed using the TIA/EIA-222-F standard.
The following design criteria apply:
Tower is located in Hartford County, Connecticut.
Basic wind speed of 80 mph .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56.00 pcf .
A wind speed of 38 mph is used in combination with ice.
Temperature drop of $50.000^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 50 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1.333 .
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

[^0]Distribute Leg Loads As Uniform Assume Legs Pinned
$\sqrt{ }$ Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area Use Clear Spans For KL/r Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder

Use ASCE 10 X-Brace Ly Rules
Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
Include Angle Block Shear Check
Use TIA-222-G Bracing Resist. Exemption
Use TIA-222-G Tension Splice Exemption Poles
$\sqrt{ }$ Include Shear-Torsion Interaction
Always Use Sub-Critical Flow
Use Top Mounted Sockets

Tapered Pole Section Geometry

| Section | Elevation | Section
 Length
 ft | Splice
 Length
 $f t$ | Number
 of
 Sides | Top
 Diameter
 in | Bottom
 Diameter
 in | Wall
 Thickness
 in | Bend
 Radius |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in | | | | | | | | |

tnxTower Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500 FAX: (770) 379-8501	Job	ATT-664 / 7160003	$\text { Page } \quad 2 \text { of } 9$
	Project	88241-A / NEW BRITAIN WILDWOOD STREET	$\begin{aligned} & \text { Date } \\ & \text { 19:53:28 06/28/16 } \end{aligned}$
	Client	AT\&T Towers	Designed by MK

Tapered Pole Properties

Section	Tip Dia. in	$\begin{gathered} \text { Area } \\ i n^{2} \end{gathered}$	$\begin{gathered} I \\ i n^{4} \end{gathered}$	$\begin{aligned} & r \\ & \text { in } \end{aligned}$	$\begin{aligned} & C \\ & \text { in } \end{aligned}$	$\begin{gathered} I / C \\ i n^{3} \end{gathered}$	$\underset{i n^{4}}{J}$	$\begin{aligned} & I t / Q \\ & i n^{2} \end{aligned}$	$\begin{aligned} & w \\ & \text { in } \end{aligned}$	w / t
L1	21.3240	12.3860	677.8263	7.3884	10.6680	63.5383	1356.5444	6.1942	3.3660	17.952
	25.2080	14.6624	1124.4381	8.7463	12.6111	89.1626	2250.3558	7.3326	4.0392	21.542
L2	24.8289	18.7385	1320.2258	8.3833	12.1234	108.8988	2642.1889	9.3710	3.7602	15.041
	32.4815	25.1841	3204.9632	11.2670	16.2499	197.2297	6414.1436	12.5944	5.1899	20.76
L3	31.9704	30.2060	3539.1921	10.8110	15.6291	226.4488	7083.0411	15.1059	4.8648	15.567
	40.5460	39.2956	7792.1193	14.0642	20.2844	384.1427	15594.4917	19.6515	6.4777	20.729

Tower Elevation ft	Gusset Area (perface) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	1	1			
110.00-88.75									
L2 88.75-47.00				1	1	1			
L3 47.00-0.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Allow Shield	Component Type	Placement $f t$	Total Number		$\begin{aligned} & C_{A} A_{A} \\ & f t^{2} / f t \end{aligned}$	Weight plf
*** AT\&T Mobility ***								
1-5/8"	A	No	Inside Pole	110.00-6.00	18	No Ice	0.00	0.82
(12E+6F)						1/2" Ice	0.00	0.82
						1" Ice	0.00	0.82
						2" Ice	0.00	0.82
						4" Ice	0.00	0.82
$\begin{aligned} & 1 / 2^{\prime \prime} \\ & (\mathrm{E}) \end{aligned}$	A	No	CaAa (Out Of	110.00-6.00	1	No Ice	0.06	0.15
			Face)			1/2" Ice	0.16	0.84
						$1{ }^{\prime \prime}$ Ice	0.26	2.14
						2" Ice	0.46	6.58
						4 " Ice	0.86	22.78
1/2"	A	No	CaAa (Out Of	110.00-6.00	2	No Ice	0.00	0.15
(E (Shielded))			Face)			1/2" Ice	0.00	0.84
						$1{ }^{\prime \prime}$ Ice	0.00	2.14
						2 " Ice	0.00	6.58
						4 " Ice	0.00	22.78
*** T-Mobile ***								
1-5/8"	B	No	Inside Pole	100.00-6.00	13	No Ice	0.00	0.82
(E)						1/2" Ice	0.00	0.82
						$1{ }^{\prime \prime}$ Ice	0.00	0.82
						2 " Ice	0.00	0.82
						4 " Ice	0.00	0.82
7/8"	B	No	Inside Pole	100.00-6.00	1	No Ice	0.00	0.33
(P)						1/2" Ice	0.00	0.33
						$1{ }^{\prime \prime}$ Ice	0.00	0.33
						2 " Ice	0.00	0.33
						4 " Ice	0.00	0.33
*** Verizon Wireless								
1-5/8"	C	No	CaAa (Out Of	90.00-6.00	1	No Ice	0.20	0.82
(E)			Face)			1/2" Ice	0.30	2.33
						$1^{\prime \prime}$ Ice	0.40	4.46
						2 " Ice	0.60	10.54

tnxTower Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500 FAX: (770) 379-8501	Job Project ATT-664 / 7160003 $88241-A ~ / ~ N E W ~ B R I T A I N ~ W I L D W O O D ~ S T R E E T ~$		Page 3 of 9
			Date 19:53:28 06/28/16
	Client	AT\&T Towers	Designed by MK

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg } \\
\hline
\end{gathered}
\] \& Allow Shield \& Component Type \& Placement
ft \& \begin{tabular}{l}
Total \\
Number
\end{tabular} \& \& \(C_{A} A_{A}\)

$f t^{2} / f t$ \& Weight
plf

\hline \multirow{5}{*}{$$
\begin{gathered}
1-5 / 8^{\prime \prime} \\
\text { (E (Shielded)) }
\end{gathered}
$$} \& \multirow{3}{*}{C} \& \multirow{3}{*}{No} \& \multirow{4}{*}{\[

$$
\begin{gathered}
\mathrm{CaAa}(\text { Out Of } \\
\text { Face) }
\end{gathered}
$$
\]} \& \multirow[t]{3}{*}{90.00-6.00} \& \multirow{3}{*}{5} \& 4" Ice \& 1.00 \& 30.04

\hline \& \& \& \& \& \& No Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 2.33

\hline \& \multirow{8}{*}{C} \& \multirow{8}{*}{No} \& \& \multirow{7}{*}{90.00-2.00} \& \multirow{7}{*}{12} \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 4.46

\hline \& \& \& \multirow{6}{*}{Inside Pole} \& \& \& 2" Ice \& 0.00 \& 10.54

\hline \multirow{6}{*}{$$
\begin{gathered}
1-5 / 8^{\prime \prime} \\
(\mathrm{E})
\end{gathered}
$$} \& \& \& \& \& \& 4" Ice \& 0.00 \& 30.04

\hline \& \& \& \& \& \& No Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 1/2" Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& $1{ }^{1 \prime}$ Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 2" Ice \& 0.00 \& 0.82

\hline \& \& \& \& \& \& 4 " Ice \& 0.00 \& 0.82

\hline \multicolumn{9}{|l|}{*** Tower Hardware ***}

\hline Safety Line 3/8" \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{$$
\begin{gathered}
\mathrm{CaAa} \text { (Out Of } \\
\text { Face) }
\end{gathered}
$$} \& \multirow[t]{5}{*}{110.00-6.00} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.04 \& 0.22

\hline \multirow[t]{4}{*}{(Tower)} \& \& \& \& \& \& 1/2" Ice \& 0.14 \& 0.75

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.24 \& 1.28

\hline \& \& \& \& \& \& 2" Ice \& 0.44 \& 2.34

\hline \& \& \& \& \& \& 4" Ice \& 0.84 \& 4.46

\hline \multirow[t]{5}{*}{Climbing Pegs (Tower)} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{No} \& \multirow[t]{5}{*}{CaAa (Out Of Face)} \& \multirow[t]{5}{*}{110.00-6.00} \& \multirow[t]{5}{*}{1} \& No Ice \& 0.07 \& 1.80

\hline \& \& \& \& \& \& 1/2" Ice \& 0.17 \& 2.54

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.27 \& 3.89

\hline \& \& \& \& \& \& 2" Ice \& 0.47 \& 8.41

\hline \& \& \& \& \& \& 4 " Ice \& 0.87 \& 24.80

\hline
\end{tabular}

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ |
| :--- |
| Front |
| $f t^{2}$ | \& | $C_{A} A_{A}$ |
| :--- |
| Side |
| $f t^{2}$ | \& Weight

\hline \multirow[t]{5}{*}{| *** AT\&T Mobility *** |
| :--- |
| (2) $7770.00 \mathrm{w} /$ pipe mount (E) |} \& \multirow[t]{4}{*}{A} \& \multirow[t]{3}{*}{From Leg} \& 4.00 \& \multirow[t]{3}{*}{0.00} \& \multirow[t]{3}{*}{114.00} \& No Ice \& 6.22 \& 4.35 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.77 \& 5.20 \& 0

\hline \& \& \& \multirow[t]{2}{*}{0.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.30 \& 5.92 \& 0

\hline \& \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.00} \& \multirow{5}{*}{114.00} \& 2 " Ice \& 8.38 \& 7.41 \& 0

\hline \& \multirow{4}{*}{B} \& \& \& \& \& 4" Ice \& 10.69 \& 10.76 \& 1

\hline \multirow[t]{5}{*}{| (2) $7770.00 \mathrm{~W} /$ pipe mount |
| :--- |
| (E) |} \& \& \& 4.00 \& \& \& No Ice \& 6.22 \& 4.35 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.77 \& 5.20 \& 0

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.30 \& 5.92 \& 0

\hline \& \multirow{6}{*}{C} \& \multirow{6}{*}{From Leg} \& \& \multirow{5}{*}{0.00} \& \multirow{5}{*}{114.00} \& 2 " Ice \& 8.38 \& 7.41 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 10.69 \& 10.76 \& 1

\hline \multirow[t]{5}{*}{| (2) $7770.00 \mathrm{~W} /$ pipe mount |
| :--- |
| (E) |} \& \& \& 4.00 \& \& \& No Ice \& 6.22 \& 4.35 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.77 \& 5.20 \& 0

\hline \& \& \& \multirow[t]{3}{*}{} \& \& \& $1{ }^{\prime \prime}$ Ice \& 7.30 \& 5.92 \& 0

\hline \& \& \& \& \multirow{5}{*}{0.00} \& \multirow{5}{*}{114.00} \& $2^{\prime \prime}$ Ice \& 8.38 \& 7.41 \& 0

\hline \& \multirow{6}{*}{A} \& \multirow{6}{*}{From Leg} \& \& \& \& 4" Ice \& 10.69 \& 10.76 \& 1

\hline \multirow[t]{5}{*}{| AM-X-CD-16-65-00T w/ pipe mount |
| :--- |
| (E) |} \& \& \& 4.00 \& \& \& No Ice \& 8.50 \& 6.30 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2' Ice \& 9.15 \& 7.48 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.77 \& 8.37 \& 0

\hline \& \& \& \& \multirow{7}{*}{0.00} \& \multirow{7}{*}{114.00} \& 2 " Ice \& 11.03 \& 10.18 \& 0

\hline \& \& \& \& \& \& $4{ }^{\text {" Ice }}$ \& 13.68 \& 14.02 \& 1

\hline \multirow[t]{5}{*}{| AM-X-CD-16-65-00T w/ pipe mount |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \& \& No Ice \& 8.50 \& 6.30 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.15 \& 7.48 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.77 \& 8.37 \& 0

\hline \& \& \& \& \& \& 2 " Ice \& 11.03 \& 10.18 \& 0

\hline \& \& \& \& \& \& 4 " Ice \& 13.68 \& 14.02 \& 1

\hline
\end{tabular}

tnxTower Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500 FAX: (770) 379-8501	Job Project ATT-664 / 7160003 88241-A / NEW BRITAIN WILDWOOD STREET		Page 4 of 9
			$\begin{aligned} & \text { Date } \\ & \text { 19:53:28 06/28/16 } \end{aligned}$
	Client	AT\&T Towers	Designed by MK

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
\(f t\)
\end{tabular} \& Azimuth Adjustment \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[t]{5}{*}{AM-X-CD-16-65-00T w/ pipe mount (E)} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{114.00} \& No Ice \& 8.50 \& 6.30 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.15 \& 7.48 \& 0

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.77 \& 8.37 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 11.03 \& 10.18 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 13.68 \& 14.02 \& 1

\hline \multirow[t]{5}{*}{| (2) LGP21401 |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{114.00} \& No Ice \& 1.29 \& 0.23 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.45 \& 0.31 \& 0

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.61 \& 0.40 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 1.97 \& 0.61 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 2.79 \& 1.12 \& 0

\hline \multirow[t]{5}{*}{| (2) LGP21401 |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{114.00} \& No Ice \& 1.29 \& 0.23 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.45 \& 0.31 \& 0

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.61 \& 0.40 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 1.97 \& 0.61 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 2.79 \& 1.12 \& 0

\hline \multirow[t]{5}{*}{| (2) LGP21401 |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{114.00} \& No Ice \& 1.29 \& 0.23 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.45 \& 0.31 \& 0

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.61 \& 0.40 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 1.97 \& 0.61 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 2.79 \& 1.12 \& 0

\hline \multirow[t]{5}{*}{| (2) RBD 6601 |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{112.00} \& No Ice \& 0.48 \& 0.35 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.63 \& 0.46 \& 0

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.77 \& 0.58 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 1.11 \& 0.84 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 1.88 \& 1.47 \& 0

\hline \multirow[t]{5}{*}{| (2) RBD 6601 |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{112.00} \& No Ice \& 0.48 \& 0.35 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.63 \& 0.46 \& 0

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1{ }^{\text {" Ice }}$ \& 0.77 \& 0.58 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 1.11 \& 0.84 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 1.88 \& 1.47 \& 0

\hline \multirow[t]{5}{*}{| (2) RBD 6601 |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{112.00} \& No Ice \& 0.48 \& 0.35 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 0.63 \& 0.46 \& 0

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 0.77 \& 0.58 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 1.11 \& 0.84 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 1.88 \& 1.47 \& 0

\hline \multirow[t]{5}{*}{| DC6-48-60-18-8F |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 1.00 \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{112.00} \& No Ice \& 1.60 \& 1.60 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.81 \& 1.81 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.02 \& 2.02 \& 0

\hline \& \& \& \& \& \& $2{ }^{\prime \prime}$ Ice \& 2.49 \& 2.49 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 3.56 \& 3.56 \& 0

\hline \multirow[t]{5}{*}{| 14' Low Profile Platform |
| :--- |
| (E) |} \& \multirow[t]{5}{*}{C} \& \multirow[t]{5}{*}{None} \& \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 23.10 \& 23.10 \& 2

\hline \& \& \& \& \& \& 1/2" Ice \& 26.80 \& 26.80 \& 3

\hline \& \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 30.50 \& 30.50 \& 3

\hline \& \& \& \& \& \& 2" Ice \& 37.90 \& 37.90 \& 4

\hline \& \& \& \& \& \& 4" Ice \& 52.70 \& 52.70 \& 5

\hline \multirow[t]{5}{*}{| 6' x 2" Mount Pipe |
| :--- |
| (E-Photos) |} \& \multirow[t]{5}{*}{A} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 1.43 \& 1.43 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.29 \& 2.29 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 3.06 \& 3.06 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 4.70 \& 4.70 \& 0

\hline \multirow[t]{5}{*}{| 6' x 2" Mount Pipe |
| :--- |
| (E-Photos) |} \& \multirow[t]{5}{*}{B} \& \multirow[t]{5}{*}{From Leg} \& 4.00 \& \multirow[t]{5}{*}{0.00} \& \multirow[t]{5}{*}{110.00} \& No Ice \& 1.43 \& 1.43 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0

\hline \& \& \& \multirow[t]{3}{*}{0.00} \& \& \& $1{ }^{\prime \prime}$ Ice \& 2.29 \& 2.29 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 3.06 \& 3.06 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 4.70 \& 4.70 \& 0

\hline 6' x 2" Mount Pipe \& C \& From Leg \& 4.00 \& 0.00 \& 110.00 \& No Ice \& 1.43 \& 1.43 \& 0

\hline (E-Photos) \& \& \& 0.00 \& \& \& 1/2" Ice \& 1.92 \& 1.92 \& 0

\hline
\end{tabular}

tnxTower Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500 FAX: (770) 379-8501	Job Project ATT-664 / 7160003 $88241-A ~ / ~ N E W ~ B R I T A I N ~ W I L D W O O D ~ S T R E E T ~$		Page 5 of 9
			$\begin{aligned} & \hline \text { Date } \\ & \text { 19:53:28 06/28/16 } \end{aligned}$
	Client	AT\&T Towers	Designed by MK

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment 0	Placement ft		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight
			0.00			$\begin{aligned} & \text { 1" Ice } \\ & \text { 2" Ice } \\ & \text { 4" Ice } \end{aligned}$	$\begin{aligned} & 2.29 \\ & 3.06 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 2.29 \\ & 3.06 \\ & 4.70 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{gathered} * * * \\ \text { AM-X-CD-16-65-00T w/ } \\ \text { pipe mount } \\ \text { (F-Generic) } \end{gathered}$	A	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00	114.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 8.50 \\ 9.15 \\ 9.77 \\ 11.03 \\ 13.68 \end{gathered}$	$\begin{gathered} 6.30 \\ 7.48 \\ 8.37 \\ 10.18 \\ 14.02 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$
AM-X-CD-16-65-00T w/ pipe mount (F-Generic)	B	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00	114.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 8.50 \\ 9.15 \\ 9.77 \\ 11.03 \\ 13.68 \end{gathered}$	$\begin{gathered} 6.30 \\ 7.48 \\ 8.37 \\ 10.18 \\ 14.02 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$
AM-X-CD-16-65-00T w/ pipe mount (F-Generic)	C	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00	114.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 8.50 \\ 9.15 \\ 9.77 \\ 11.03 \\ 13.68 \end{gathered}$	$\begin{gathered} 6.30 \\ 7.48 \\ 8.37 \\ 10.18 \\ 14.02 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$
*** T-Mobile *** AIR 21 B2A B4P w/ pipe mount (E)	A	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00	100.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 6.90 \\ 7.46 \\ 8.00 \\ 9.10 \\ 11.44 \end{gathered}$	$\begin{gathered} 5.74 \\ 6.64 \\ 7.44 \\ 9.09 \\ 12.59 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$
AIR 21 B2A B4P w/ pipe mount (E)	B	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00	100.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 6.90 \\ 7.46 \\ 8.00 \\ 9.10 \\ 11.44 \end{gathered}$	$\begin{gathered} 5.74 \\ 6.64 \\ 7.44 \\ 9.09 \\ 12.59 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$
AIR 21 B2A B4P w/ pipe mount (E)	C	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00	100.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{gathered} 6.90 \\ 7.46 \\ 8.00 \\ 9.10 \\ 11.44 \end{gathered}$	$\begin{gathered} 5.74 \\ 6.64 \\ 7.44 \\ 9.09 \\ 12.59 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$
LNX-6515DS-A1M w/ pipe mount (E)	A	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00	100.00	No Ice $1 / 2^{\text {" Ice }}$ 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 11.72 \\ & 12.44 \\ & 13.15 \\ & 14.61 \\ & 17.87 \end{aligned}$	$\begin{aligned} & 10.28 \\ & 11.81 \\ & 13.16 \\ & 15.49 \\ & 20.37 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
LNX-6515DS-A1M w/ pipe mount (E)	B	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00	100.00	No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice 2 " Ice 4 Ice	$\begin{aligned} & 11.72 \\ & 12.44 \\ & 13.15 \\ & 14.61 \\ & 17.87 \end{aligned}$	$\begin{aligned} & 10.28 \\ & 11.81 \\ & 13.16 \\ & 15.49 \\ & 20.37 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
LNX-6515DS-A1M w/ pipe mount (E)	C	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00	100.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 11.72 \\ & 12.44 \\ & 13.15 \\ & 14.61 \\ & 17.87 \end{aligned}$	$\begin{aligned} & 10.28 \\ & 11.81 \\ & 13.16 \\ & 15.49 \\ & 20.37 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$
1412D-1S20 (E-Behind Antennas)	A	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	0.00	100.00	No Ice 1/2" Ice 1" Ice 2" Ice 4" Ice	$\begin{aligned} & 0.71 \\ & 0.83 \\ & 0.97 \\ & 1.26 \\ & 1.95 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 0.52 \\ & 0.64 \\ & 0.90 \\ & 1.54 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\begin{gathered} \text { 1412D-1S20 } \\ \text { (E-Behind Antennas) } \end{gathered}$	B	From Leg	$\begin{aligned} & 4.00 \\ & 0.00 \end{aligned}$	0.00	100.00	$\begin{aligned} & \text { No Ice } \\ & 1 / 2^{2} \text { Ice } \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.83 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 0.52 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$

tnxTower Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500 FAX: (770) 379-8501	Job	ATT-664 / 7160003	$\text { Page } 6 \text { of } 9$
	Project	88241-A / NEW BRITAIN WILDWOOD STREET	$\begin{aligned} & \text { Date } \\ & \text { 19:53:28 06/28/16 } \end{aligned}$
	Client	AT\&T Towers	Designed by MK

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$		$f t$		$f t^{2}$	$f t^{2}$	K
$\begin{gathered} \text { 1412D-1S20 } \\ \text { (E-Behind Antennas) } \end{gathered}$	C	From Leg	0.00	0.00	100.00	1" Ice	0.97	0.64	0
						2" Ice	1.26	0.90	0
						4" Ice	1.95	1.54	0
			4.00			No Ice	0.71	0.41	0
			0.00			1/2" Ice	0.83	0.52	0
			0.00			$1{ }^{\prime \prime}$ Ice	0.97	0.64	0
	A	From Leg		0.00	100.00	2 " Ice	1.26	0.90	0
RRUS 11 B12 (E-Behind Antennas)						4 " Ice	1.95	1.54	0
			4.00			No Ice	3.31	1.36	0
			0.00			1/2" Ice	3.55	1.54	0
			0.00			$1{ }^{\prime \prime}$ Ice	3.80	1.73	0
	B	From Leg		0.00	100.00	2 " Ice	4.33	2.13	0
RRUS 11 B12 (E-Behind Antennas)						4" Ice	5.50	3.04	0
			4.00			No Ice	3.31	1.36	0
			0.00			1/2" Ice	3.55	1.54	0
			0.00			$1{ }^{\prime \prime}$ Ice	3.80	1.73	0
	C	From Leg		0.00	100.00	2 " Ice	4.33	2.13	0
RRUS 11 B12 (E-Behind Antennas)						4" Ice	5.50	3.04	0
			4.00			No Ice	3.31	1.36	0
			0.00			1/2" Ice	3.55	1.54	0
			0.00			$1{ }^{\prime \prime}$ Ice	3.80	1.73	0
12.5' Platform w/Handrails (E)	C	None		0.00	100.00	$2^{\prime \prime}$ Ice	4.33	2.13	0
						$4{ }^{\prime \prime}$ Ice	5.50	3.04	0
						No Ice	19.46	19.46	1
						1/2" Ice	25.57	25.57	2
						$1{ }^{\prime \prime}$ Ice	31.68	31.68	2
						2 " Ice	43.90	43.90	3
*** AIR 32 B66AaB2a w/pipe mount (P)						4 " Ice	68.34	68.34	4
	A	From Leg		0.00	100.00				
			4.00			No Ice	7.09	4.78	0
			0.00			1/2" Ice	7.54	5.21	0
			0.00			1" Ice	8.00	5.64	0
	B	From Leg		0.00	100.00	2" Ice	8.95	6.54	0
AIR 32 B66AaB2a w/pipe mount (P)						4" Ice	10.96	8.44	1
			4.00			No Ice	7.09	4.78	0
			0.00			1/2" Ice	7.54	5.21	0
			0.00			$1{ }^{\prime \prime}$ Ice	8.00	5.64	0
	C	From Leg		0.00	100.00	2" Ice	8.95	6.54	0
AIR 32 B66AaB2a w/pipe mount (P)						4 " Ice	10.96	8.44	1
			4.00			No Ice	7.09	4.78	0
			0.00			1/2" Ice	7.54	5.21	0
			0.00			$1{ }^{\prime \prime}$ Ice	8.00	5.64	0
						2" Ice	8.95	6.54	0
						4 " Ice	10.96	8.44	1
*** Verizon Wireless $* * *$									
BXA-80063/4CF w/ pipe mount (E)	A	From Leg	4.00	0.00	90.00	No Ice	5.65	3.87	0
			0.00			1/2" Ice	6.20	4.67	0
			0.00			1" Ice	6.72	5.34	0
	B	From Leg		0.00	90.00	$2{ }^{\prime \prime}$ Ice	7.80	6.79	0
						4 " Ice	10.08	10.00	1
BXA-80063/4CF w/ pipe mount (E)			4.00			No Ice	5.65	3.87	0
			0.00			1/2" Ice	6.20	4.67	0
			0.00			1" Ice	6.72	5.34	0
						2 l Ice	7.80	6.79	0
	C	From Leg		0.00	90.00	4 " Ice	10.08	10.00	1
BXA-80063/4CF w/ pipe mount			4.00			No Ice	5.65	3.87	0
			0.00			1/2" Ice	6.20	4.67	0

tnxTower Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500 FAX: (770) 379-8501	Job Project ATT-664 / 7160003 88241-A / NEW BRITAIN WILDWOOD STREET		Page 7 of 9
			$\begin{aligned} & \text { Date } \\ & \text { 19:53:28 06/28/16 } \end{aligned}$
	Client	AT\&T Towers	Designed by MK

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
-
\end{tabular} \& Placement

$f t$ \& \& $C_{A} A_{A}$ Front

$$
f t^{2}
$$ \& $C_{A} A_{A}$

Side

$f t^{2}$ \& Weight

\hline \multirow[t]{3}{*}{(E)} \& \multirow{6}{*}{A} \& \multirow{6}{*}{From Leg} \& 0.00 \& \multirow{6}{*}{0.00} \& \multirow{6}{*}{90.00} \& 1" Ice \& 6.72 \& 5.34 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 7.80 \& 6.79 \& 0

\hline \& \& \& \& \& \& 4 " Ice \& 10.08 \& 10.00 \& 1

\hline \multirow[t]{5}{*}{| BXA-171063/8BF w/ pipe mount |
| :--- |
| (E) |} \& \& \& 4.00 \& \& \& No Ice \& 3.37 \& 3.74 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.84 \& 4.54 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 4.30 \& 5.22 \& 0

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.00} \& \multirow{5}{*}{90.00} \& 2 " Ice \& 5.31 \& 6.64 \& 0

\hline \& \& \& \& \& \& 4 " Ice \& 7.47 \& 9.85 \& 1

\hline \multirow[t]{5}{*}{| BXA-171063/8BF w/ pipe mount |
| :--- |
| (E) |} \& \& \& 4.00 \& \& \& No Ice \& 3.37 \& 3.74 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.84 \& 4.54 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{\text {" }}$ Ice \& 4.30 \& 5.22 \& 0

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.00} \& \multirow{5}{*}{90.00} \& 2" Ice \& 5.31 \& 6.64 \& 0

\hline \& \& \& \& \& \& 4 " Ice \& 7.47 \& 9.85 \& 1

\hline \multirow[t]{5}{*}{| BXA-171063/8BF w/ pipe mount |
| :--- |
| (E) |} \& \& \& 4.00 \& \& \& No Ice \& 3.37 \& 3.74 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 3.84 \& 4.54 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 4.30 \& 5.22 \& 0

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.00} \& \multirow{5}{*}{90.00} \& 2" Ice \& 5.31 \& 6.64 \& 0

\hline \& \& \& \& \& \& 4 " Ice \& 7.47 \& 9.85 \& 1

\hline \multirow[t]{5}{*}{| BXA-70063-6CF-2 w/ pipe mount |
| :--- |
| (E) |} \& \& \& 4.00 \& \& \& No Ice \& 7.97 \& 5.80 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.61 \& 6.95 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 9.22 \& 7.82 \& 0

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.00} \& \multirow{5}{*}{90.00} \& 2" Ice \& 10.46 \& 9.60 \& 0

\hline \& \& \& \& \& \& 4 " Ice \& 13.07 \& 13.37 \& 1

\hline \multirow[t]{5}{*}{| BXA-70063-6CF-2 w/ pipe mount |
| :--- |
| (E) |} \& \& \& 4.00 \& \& \& No Ice \& 7.97 \& 5.80 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.61 \& 6.95 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.22 \& 7.82 \& 0

\hline \& \multirow{5}{*}{C} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.00} \& \multirow{5}{*}{90.00} \& 2" Ice \& 10.46 \& 9.60 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 13.07 \& 13.37 \& 1

\hline \multirow[t]{5}{*}{| BXA-70063-6CF-2 w/ pipe mount |
| :--- |
| (E) |} \& \& \& 4.00 \& \& \& No Ice \& 7.97 \& 5.80 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.61 \& 6.95 \& 0

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 9.22 \& 7.82 \& 0

\hline \& \multirow{5}{*}{A} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.00} \& \multirow{5}{*}{90.00} \& 2" Ice \& 10.46 \& 9.60 \& 0

\hline \& \& \& \& \& \& 4" Ice \& 13.07 \& 13.37 \& 1

\hline \multirow[t]{5}{*}{10' T-Arm Mount (E)} \& \& \& 2.00 \& \& \& No Ice \& 6.67 \& 3.02 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.82 \& 4.20 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.97 \& 5.38 \& 0

\hline \& \multirow{5}{*}{B} \& \multirow{5}{*}{From Leg} \& \& \multirow{5}{*}{0.00} \& \multirow{5}{*}{90.00} \& 2" Ice \& 15.27 \& 7.74 \& 1

\hline \& \& \& \& \& \& 4" Ice \& 23.87 \& 12.46 \& 1

\hline \multirow[t]{5}{*}{| 10' T-Arm Mount |
| :--- |
| (E) |} \& \& \& 2.00 \& \& \& No Ice \& 6.67 \& 3.02 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.82 \& 4.20 \& 0

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 10.97 \& 5.38 \& 0

\hline \& \multirow{7}{*}{C} \& \multirow{7}{*}{From Leg} \& \& \multirow{5}{*}{0.00} \& \multirow{6}{*}{90.00} \& 2" Ice \& 15.27 \& 7.74 \& 1

\hline \& \& \& \& \& \& 4 " Ice \& 23.87 \& 12.46 \& 1

\hline \multirow[t]{5}{*}{| 10' T-Arm Mount |
| :--- |
| (E) |} \& \& \& 2.00 \& \& \& No Ice \& 6.67 \& 3.02 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.82 \& 4.20 \& 0

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 10.97 \& 5.38 \& 0

\hline \& \& \& \& \& \& 2" Ice \& 15.27 \& 7.74 \& 1

\hline \& \& \& \& \& \& 4" Ice \& 23.87 \& 12.46 \& 1

\hline \multirow[t]{6}{*}{| *** Town *** |
| :--- |
| Stadium Light Mount |
| (E) |} \& \multirow{6}{*}{C} \& \multirow{6}{*}{From Leg} \& \& \multirow{6}{*}{0.00} \& \multirow{6}{*}{60.00} \& \& \& \&

\hline \& \& \& 0.50 \& \& \& No Ice \& 16.40 \& 10.28 \& 0

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 21.70 \& 14.27 \& 0

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 27.00 \& 18.26 \& 1

\hline \& \& \& \& \& \& 2" Ice \& 37.60 \& 26.24 \& 1

\hline \& \& \& \& \& \& 4" Ice \& 58.80 \& 42.20 \& 2

\hline
\end{tabular}

tnxTower Morrison Hershfield 1455 Lincoln Parkway, Suite 500 Atlanta, GA 30346 Phone: (770) 379-8500 FAX: (770) 379-8501	Job	ATT-664 / 7160003	$\text { Page } 8 \text { of } 9$
	Project	88241-A / NEW BRITAIN WILDWOOD STREET	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 19:53:28 06/28/16 } \end{array}$
	Client	AT\&T Towers	Designed by MK

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & K \end{aligned}$	$\begin{gathered} S F * P_{\text {allow }} \\ K \end{gathered}$	\% Capacity	Pass Fail
L1	110-88.75	Pole	TP24.825x21x0.1875	1	-6	744	38.6	Pass
L2	88.75-47	Pole	TP31.988x23.865x0.25	2	-14	1279	87.0	Pass
L3	47-0	Pole	TP39.93x30.766x0.3125	3	-23	2043	99.7	Pass
						Pole (L3) RATING =	$\begin{gathered} \text { Summary } \\ 99.7 \\ \mathbf{9 9 . 7} \end{gathered}$	Pass Pass

\qquad
\qquad

MORRISON HERSHFIELD

Base Plate \& Anchor Rod Analysis Summary

Base Reactions:		
Mu:	1640	ft-kips
Axial, Pu:	23	kips
Shear, Vu:	20	kips
Eta Factor, η	0.5	TIA G (Fig. 4-4)
Anchor Rod Data:		
Number of Anchor Rods:	12	$E A$
Anchor Rod Diam:	2.25	in
Anchor Strength (Fu):	100	ksi
Anchor Yield (Fy):	75	ksi
Bolt Circle:	46	in
Base Plate Data:		
Base Plate Diam:	45	in
Base Plate Thickness:	2.5	in
Base Plate Grade (Fy):	50	$k s i$
Stiffener Data:		
Is Stiffened?	NO	
Stiffener Configuration:	N/A	
Stiffener Height:		in
Stiffener Width:		in
Notch:		in
Stiffener Grade:		ksi
Weld Type:		
Weld Electrode:		
Grrove Depth:		in
Groove Angle:		in
Horz. Fillet Weld Size:		in
Vert. Fillet Weld Size:		in
Pole Data:		
Pole Base Diameter:	39.93	in
Pole Shell Thickness:	0.3125	in
Pole Number of Sides:	18	
Pole Grade (Fy):	65	ksi
Pole Strength (Fu):	80	Ksi
Analysis Results:		
Anchor Rod Capacity	72.2\%	PASS
Base Plate Capacity	86.5\%	PASS
Stiffener Weld Capacity	0.0\%	PASS
Stiffener Structural Capacity	0.0\%	PASS

Pad \& Pier Analysis Summary

Base Reactions:		
TIA Revision : Unfactored DL Axial, PD: Unfactored WL Axial, PW: Unfactored WL Shear, V: Unfactored WL Moment, M:	$\begin{gathered} F \\ 23 \\ 0 \\ 20 \\ 1640 \end{gathered}$	kips kips kips ft-kips
Pad and Pier Data:		
Base PL Dist. Above Pier: Pier Dist. Above Grade: Pad Bearing Depth, D: Pad Thickness, T: Pad Width/Length, L: Pier Cross Section Shape: Enter Pier Side Width: Concrete Density: Pier Cross Section Area: Pier Height: Soil (above pad) Height:	0 6 6 3 21.5 Square 6 150 36.00 3.5 3	in in ft ft ft ft $p c f$ $f t^{2}$ ft ft
Soil Parameters:		
Unit Weight, γ : Ultimate Bearing Capacity, qn: Strength Reduct. factor, φ : Angle of Friction, Φ : Undrained Shear Strength, Cu: Design Bearing: $\varphi^{*} q n$: Passive Pres. Coeff., Kp:	$\begin{gathered} 100 \\ 6 \\ 0.75 \\ 0 \\ 0 \\ 4.5 \\ 1.00 \end{gathered}$	$p c f$ ksf degrees ksf ksf

Bearing Results:			
	Orthogonal Direction $=$	42.9%	Pass
	Diagonal Direction $=$	50.4%	Pass
Overturning Stability Results:			
Moment Orthogonal $=$	76.1%	Pass	
	Moment Diagonal $=$	76.1%	Pass

FINAL INSTALL CONFIGURATION (ALL EQUIPMENT)					EXISTING EQUIPMENT CONFIGURATION (IF ANY)				
ANTENNA DESCRIPTION	SECTOR 1	SECTOR 2	SECTOR 3	SECTOR 4	ANTENNA DESCRIPTION	SECTOR 1	SECTOR 2	SECTOR 3	SECTOR 4
Manufacturer	Ericsson/Commsc ope	Ericsson/Commsc ope	$\begin{aligned} & \text { Ericsson/Comms } \\ & \text { cope } \end{aligned}$		Manufacturer	Ericsson/Commsc ope	Ericsson/Commsc ope	Ericsson/Commsc ope	
Model Number	$\begin{array}{\|c\|} \text { AIR } 32 \\ \text { B66AaB2a/AIR } 21 \\ \text { B2A B4P/ LNX } \\ \text { 6515DS-A1M } \\ \hline \end{array}$	$\begin{gathered} \text { AIR } 32 \\ \text { B66AaB2a/AIR } 21 \\ \text { B2A B4P/LNX } \\ \text { 6515DS-A1M } \end{gathered}$	AIR 32 B66AaB2a/AIR 21 B2A B4P/LNX 6515DS-A1M		Model Number	AIR 21 B4A B2P/ AIR 21 B2A B4P/ LNX 6515DS-A1M	AIR 21 B4A B2P/ AIR 21 B2A B4P/ LNX 6515DS-A1M	AIR 21 B4A B2P/ AIR 21 B2A B4P/ LNX 6515DS-A1M	
Antenna Quantity Per Sector	3	3	3		Antenna Quantity Per Sector	3	3	3	
Antenna Type	Panel	Panel	Panel		Antenna Type	Panel	Panel	Panel	
Antenna Dimensions ($\mathrm{HxW} \times \mathrm{D}$) show dimensions in "inches"	$\left\lvert\, \begin{array}{c\|} 56.5^{\prime \prime} \times 12.9^{\prime \prime} \times \\ 8.7{ }^{\prime \prime} 54.3^{\prime \prime} \times 12^{\prime \prime} \times \\ 7.9 / 96.6^{\prime \prime} \times 11.9^{\prime \prime} \\ \times 7.1 \end{array}\right.$	$\left\lvert\, \begin{array}{c\|} 56.5^{\prime \prime} \times 12.9^{\prime \prime \prime} \times \\ 8.7^{\prime \prime} 54.3^{\prime \prime} \times 12^{\prime \prime} \times \\ 7.9 / 96.6^{\prime \prime} \times 11.9^{\prime \prime} \\ \times 7.1^{\prime \prime} \end{array}\right.$			Antenna Dimensions ($\mathrm{HxW} \times \mathrm{D}$) show dimensions in "inches"	$\begin{gathered} 54.3^{\prime \prime} \times 12 " \times 7.9^{" \prime} \\ \text { (AIR)/ } 96.6^{\prime \prime} \times \\ 11.9^{\prime \prime} \times 7.1^{\prime \prime} \\ \text { (Commscope) } \end{gathered}$	$\begin{gathered} 54.3^{\prime \prime} \times 12 " \times 7.9^{" \prime} \\ \text { (AIR)/ } 96.6^{\prime \prime} \times \\ 11.9^{\prime \prime} \times 7.1^{\prime \prime} \\ (\text { Commscope) } \end{gathered}$	$\begin{gathered} 54.3^{\prime \prime} \times 12^{\prime \prime} \times 7.9^{\prime \prime} \\ \text { (AIR)/ } 96.6^{\prime \prime} \times \\ 11.9^{\prime \prime} \times 7.1^{\prime \prime} \\ \text { (Commscope) } \end{gathered}$	
Weight (bs)	132.2/80/85.1	132.2/ $80 / 85.1$	132.21 80/ 85.1		Weight (bs)	80/85.1	80/85.1	80/85.1	
Number of Coax Feed Lines per Sector and Diameter					Number of Coax Feed Lines per Sector and Diameter				
Number of Fiber Lines per Sector and Diameter	(4) 1-5/8",	(4) $1-5 / 8 \mathrm{l}$	(4) $1-5 / 8^{\prime \prime}$		Number of Fiber Lines per Sector and Diameter	$\begin{aligned} & \text { (5) } 1-5 / 8^{\prime \prime}, \text { (1) } 1 / 4 ", \\ & \text { (1) } 3 / 8^{\prime \prime} \end{aligned}$	(5) 1-5/8", (1) 1/4"	(5) 1-5/8", (1) 1/4"	
Number of Hybrid Lines per Sector and Diameter (include DC and RET cables in any)	(1) 1-5/8", (1) 7/7"				Number of Hybrid Lines per Sector and Diameter (include DC and RET cables if any)	(1) 1-5/8"			
Number of OTHER Lines per Sector and Diameter					Number of OTHER Lines per Sector and Diameter				
Antenna Center Line - (in feet AGL)	100.00	100.00	100.00		Antenna Center Line (in feet AGL)	100.00	100.00	100.00	
Mount Height (in feet AGL)	100.00	100	100		Mount Height (in feet AGL)	100	100	100	
Mount Type \& Model					Mount Type \& Model				
Mount Face/Leg (If Rooftop, then indicate Parapet, Penthouse, Platform, or attachment)	Select One	Select One	Select One	Select One	Mount Face/Leg (If Rooftop, then indicate Parapet, Penthouse, Platform, or attachment)	Select One	Select One	Select One	Select One
Antenna Gain (in dB)					Antenna Gain (in dB)				
Dual/Multi-Mode/Band:					Dual/Multi-Mode/Band:				
Orientation or Azimuth (in degrees)	60	160	310		Orientation or Azimuth degrees)	60	160	310	
Down Tilt Type	Electrical	Electrical	Electrical	Select One	Down Tilt Type	Electrical	Electrical	Electrical	Select One
Down Tilt Degrees					Down Tilt Degrees				
ALL Other Structure Mounted Equipment Detail (BTS, TMA, TTA, MHA, GPS, NEMA, ODU, RRU, Diplexers, etc., use row 90 if you need additional space)									
OTHER EQUIPMENT DESCRIPTION	SECTOR 1	SECTOR 2	SECTOR 3	SECTOR 4	OTHER EQUIPMENT DESCRIPTION	SECTOR 1	SECTOR 2	SECTOR 3	SECTOR 4
Type (Amplifiers, Diplexers, BTS, GPS, ODU, RRU, etc)	TMA/RRU	TMA/RRU	TMA/RRU		Type (Amplifiers, Diplexers, BTS, GPS, ODU, RRU, etc)	TMARRU	TMARRU	TMARRU	
Manufacturer	(1)RFS/(1) Ericsson	(1)RFS/ (1)Ericsson	(1)RFS/ (1)Ericsson		Manufacturer	RFS/ Ericsson	RFS/ Ericsson	RFS/ Ericsson	
Model Number	$\begin{gathered} \text { 1412D- } \\ \text { 1S20/RRUS11- } \\ \text { B12 } \end{gathered}$	$\begin{gathered} \text { 1412D- } \\ \text { 1S20/RRUS11- } \\ \text { B12 } \end{gathered}$	$\begin{gathered} \text { 1412D- } \\ \text { 1S20/RRUS11- } \\ \text { B12 } \end{gathered}$		Model Number	$\begin{gathered} \text { 1412D- } \\ \text { 1S20/RRUS11- } \\ \text { B12 } \end{gathered}$	$\begin{gathered} \text { 1412D- } \\ \text { 1S20/RRUS11- } \\ \text { B12 } \end{gathered}$	$\begin{gathered} \text { 1412D- } \\ \text { 1S20/RRUS11- } \\ \text { B12 } \end{gathered}$	
Quantity	2	2	2		Quantity	2	2	2	
Dimensions (HxWxD) and Weight (lbs) show dimensions in "inches"	$\begin{array}{\|c\|} \hline 13.2^{\prime \prime} \times 5.5^{\prime \prime} \times 3.2^{\prime \prime}, \\ 13 \mathrm{lbs} / 20 " \times 17 " \times \\ 7 ", 50 \mathrm{lbs} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13.2^{\prime \prime} \times 5.5^{\prime \prime} \times 3.2^{\prime \prime}, \\ 13 \mathrm{lbs} / 20 " \times 17^{\prime \prime} \times \\ 7{ }^{\prime \prime}, 50 \mathrm{lbs} \end{array}$	$13.2^{\prime \prime} \times 5.5^{\prime \prime} \times$ $3.2^{\prime \prime}, 13 \mathrm{lbs} / 200^{\prime \prime} \times$ $17^{\prime \prime} \times 7$ " 50 lbs		Dimensions ($\mathrm{HxW} \times \mathrm{D}$) and Weight (lbs) show dimensions in "inches"		$\begin{gathered} 13.2^{\prime \prime} \times 5.5^{\prime \prime} \times 3.2^{\prime \prime} \\ 13 \mathrm{lbs} / 20 " \times 17{ }^{\prime \prime} \times \\ 7 \text { ", } 50 \mathrm{lbs} \end{gathered}$	$\begin{gathered} 13.2^{\prime \prime} \times 5.5^{\prime \prime} \times 3.2^{\prime \prime}, \\ 13 \mathrm{lbs} / 20 " \times 17^{\prime \prime} \times \\ 7 ", 50 \mathrm{lbs} \end{gathered}$	
Mount Height and Mount Location	100	100	100		Mount Height and Mount Location	100	100	100	

Microwave (MW) Equipment									
FINAL INSTALL CONFIGURATION (ALL EQUIPMENT)					EXISTING EQUIPMENT CONFIGURATION (IF ANY)				
MICROWAVE DESCRIPTION	SECTOR 1	SECTOR 2	SECTOR 3	SECTOR 4	MICROWAVE DESCRIPTION	SECTOR 1	SECTOR 2	SECTOR 3	SECTOR 4
Manufacturer					Manufacturer				
Model Number					Model Number				
Antenna Quantity Per Sector					Antenna Quantity Per Sector				
Antenna Dimensions ($\mathrm{H} \times W \times \mathrm{D}$) show dimensions in "inches"					Antenna Dimensions (HxWxD) show dimensions in "inches"				
Weight (lbs)					Weight (lbs)				
Feed Line Diameter					Feed Line Diameter				
Number of Feed Lines per MW					Number of Feed Lines per MW				
MW Center Line - (in feet AGL)					Rad Center Line (in feet AGL)				
Mount Height (in feet AGL)					Mount Height (in feet AGL)				
Mount Face/Leg (If Rooftop, then indicate Parapet, Penthouse, Platform, or attachment)	Select One	Select One	Select One	Select One	Mount Face/Leg (If Rooftop, then indicate Parapet, Penthouse, Platform, or attachment)	Select One	Select One	Select One	Select One
Orientation or Azimuth (in degrees)					Orientation or Azimuth (in degrees)				
EQUIPMENT NOTES: Use this space for notes or to detail other structure mounted equipment. If you intend to install any type of tower CONDUIT or INNERDUCT for your transmission cables you MUST indicate the quantity, diameter, and type in this space.									
Describe overall project scope of work and technology involved, including all equipment to be installed at this site. All existing and proposed configuration changes should be called out. (include: Manufacturer/Model, Dimensions, Weight, and Location on the Tower) Please include any equipment to be removed as well.	Removal and replacement of (3) existing antennas with (3) new antennas. Addition of (1) 7/8" hybrid line.								
Applicant Project Type: (examples: 2.5, L700, AWS, UMTS 3C, LTE 2C, Modernization, etc.)									
Transmitter Equipment - Final Install (ALL EQUIPMENT)									
Frequency Filings (Notice of Change or Alteration to the FAA): AT\&T Towers will arrange for any frequency filing using the "Acceptable FAA Blanket Frequency Bands" in addition to Applicants indicated microwave frequencies and power levels, if any.									
DESCRIPTION	Transmitter 1		Transmitter 2		Transmitter 3	Transmitter 4		Transmitter 5 /OTHER	
Type of Service: (REQUIRED)	Voice \& Data		Select One		Select One	Select One		Select One	
Call Sign(s) (if applicable): (REQUIRED)	WQGA731, WQGB373, WQKF358, WQPZ696								
Tx Frequency (MHz): (REQUIRED)	$\begin{gathered} \text { 1710-1780, 2110-2180, 1850- } \\ 1910,1930-1990,2110-2155,698 \\ 906,806-896 \end{gathered}$								
Rx Frequency (MHz): (REQUIRED)	$\begin{gathered} 1 / 10-1 / 80,2110-2180,1850- \\ 1910,1930-1990,2110-2155,806- \\ 896.698-806 \\ \hline \end{gathered}$								
Max Tx Output Power: watts)									
Max Power Output / Radio: (in watts) (REQUIRED)	60								
Max ERP: (in watts) (REQUIRED)	2000								
Is this unlicensed spectrum?	No		Select One		Select One	Select One		Select One	
Filtering Information:									

Ground or Equipment Space - Power \& Telco Requirements (you must complete row 105)

Equipment/Ground Space Requirements:	Existing Tower Site - No Additional Ground Space	Adding Generator?	No	Equipment Detail	Cabinets	Inside Lessor Building?:	Select One
	Building or Equipment Dimensions (HxWxL):	Equipment Pad Dimensions (WxL):		Leased Area Total Width	Leased Area Total Length	Subtotal Square Feet	Total Square Feet
Equipment Space 1:				10.00	20.00	200	200
Generator Space 2:						0	
Other Space 3:						0	
Power (Volts/Amps) (Only if provided by AT\&T)		Telco Requirements: (Only if provided by AT\&T)		Select One		Number of New Exterior Cabinet(s) (REQUIRED)	0
Notes for All Equipment Above (Rows 104-110)							
Notes	Removal and replacement of (3) existing antennas with (3) new antennas. Removal of (6) 1-5/8" lines. Addition of (1) HCS $6 \times 127 / 8$ " line.						
Equipment To Be Removed (if any)							
Do you require a PAL (Programmatic Agreement Letter)?				Select One			

SITE NUMBER: CT11634C

35 WILDWOOD STREET

T-MOBILE TECHNICIAN STE SAFETY NOTES	
LOCATION	\| SPECIAL RESTRICTIONS
	ACCESS NOT PERMITED
ANTENNA/TMA/RRH	
SECTOR B: ANTENNA/TMA/R	access not permited
SECTOR C:	
ANTENNA/TMA/RRH	ACCESS NOT PERMITED
GPS/LMU:	UNRESTRICTED
RAdIo Cabinets:	UNRESTRICTED
PPC DISCONNECT:	UnRESTRICTED
MAIN CIRCUIT d/C:	UNRESTRICTED
NU/T DEmarc:	UnRESTRICTED
OTHER/SPECIAL:	NONE

SITE NAME: CT634/CING/CHESLEY PARK_ET

RF DESIGN GUIDELINE: 792DB

PROJECT SUMMARY	
SCOPE OF WORK:	unmanned telecommunications facility t-mobile EQUIPMENT INSTALLATION
ZONING JURISDICTION: (CITY OF NEW BRITAIN)	based on information provided by t-mobile, this -TELECOMMUNICATIONS EQUIPMENT DEPLOYMENT IS AN ELIGIBLE FACILTTY UNDER THE TAX RELIEF ACT OF 2012, 47 USC 1455(A), AND IS SUBJECT TO AN EXPEDITED ELIGIBLE FACILITIES REQUEST/REVIEW AND ZONING PRE-EMPTION FOR local discretionary permits (variance, special permit, SITE PLAN REVIEW).
SITE ADDRESS:	35 WILDWOOD STREET NEW BRITAIN, CT 06051
Latitude:	41. $40^{\prime} 05.666^{\prime \prime} \mathrm{N}$
Longitude:	72. $45^{\prime} 17.84{ }^{\prime \prime} \mathrm{w}$
JURISICTION:	national, state \& local codes or ordinances
CURRENT USE:	TELECOMMUNCATIONS FACILITY
PROPOSED USE:	telecommunications facility

GENERAL NOTES THIS DOCUMENT IS THE CREATION, DESIGN, PROPERTY AND COPYRIGHTED WORK OF T-MOBLLE. ANY DUPLICATION OR USE WITHOUT EXPRESS WRITEEN CONSENT IS STRICTLY PROHBITED. DUPLICATION AND USE BY GOVERNMENT AGENCIES FOR THE PURPSES OF CONDUCTING THEIR LAWFULLY AUTHORIZED REGULATORY AND ADMINSTRATIVE FUNCTIONS IS SPECIFICALLY ALLOWED. THE FACILITY IS AN UNMANNED PRIVATE AND SECURED EQUIPMENT INSTALLATION. MAINTENANCE AND THEREFORE DOES NOT REQUIRE ANY WATER OR SANITARY SEWER SERVICE. THE FACILITY IS NOT GOVERNED BY REGULATIONS REQUIRING PUBLIC ACCESS PER ADA REQUIREMENTS. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CNDITIONS ON THE JOB SATE AND SHALL IMMEDIATELY NOTIIY THE T-MOBILE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME. SPECIAL STRUCTURAL NOTES TOWER OWNER SHALL PROVIDE GLOBAL STRUCTURAL STABILITY ANALYSIS OF EXISTING ANTENNA SUPPORT STRUCTURE. GENERAL CONTRACTOR SCOPE OF WORK SHALL INCLUDE ALL REQUIRED STRUCTURAL MODFIFATIONS, RE-BUNLING STRUCTURAL DESIGNS AND DETALLS FOR ANTENNA MOUNTS COMPLETED BY HUDSON DESIGN ON BEHALF OF T-MOBILE ARE INCLUSIVE OF THE ENTIRE ANTENNA SUPPORT STRUCTURE (GLOBAL STRUCTURAL STABILTTY ANALYSIS OTHERS), EXISTING TOWER PLATFORM, EXISTING ANTENNA MOUNTS AND ALL OTHER ASPECTS OF THE STRUCTURE THAT WILL SUPPORT THE T-MOBLLE MODERNIZATION EQUIPMENT DEPLOYMENT AS DEPICTED HEREIN. HUDSON DESIGN ASSUMES THAT THE TOWER IS PROPERLY CONSTRUCTED AND MAINTAINED. ALL STRUCTURAL MEMEERS AND THEIR CONNECTION ARE ASSUMED TO BE IN GTON TO ITS MEMBER CAPACITIES DETERIORATION

APPROVALS	
PROJECT MANAGER	DATE
CONSTRUCTION	DATE
RF ENGINEERING	DATE
ZONING / SITE ACQ.	DATE
OPERATIONS	DATE
TOWER OWNER	DATE

DRIVNG DIRECTIONS:

 AVE. TURN LEFT ONTO WLLDWOOD ST. DESSTNATION WLL BE ON THE LEFT.
arrive at 35 Wllowood street new britaln, ct 06051

DRAWING INDEX		
$\begin{aligned} & \text { SHEET } \\ & \text { Not } \end{aligned}$	DESCRIPTION	REV.
T-1	tite Sheet	1
GN-1	GENERAL NOTES	1
A-1	COMPOUND PLAN \& EQUIPMENT PLAN	1
A-2	antenna layout \& elevation	1
A-3	detalls	1
E-1	grounding diagram	1

GROUNDING NOTES

THE SUBCONTRACTOR SHALL REVIEW AND INSPECT THE EXXSTIN FAACLIT

2. All ground electrool shtems (incluong teleommuncation, raion,

acoorane nitir ne . THE SUECONTRACTOR SHALL PERFORM IEEE FALL-OF-POTENTAL RESITAACE TO

4. MITAL RACCWYY SHALL NOT BE USEED AS THE NEC RREQURED EQUIPMENT GROUND

5. EACH BTS CABNE FRAME SAALL EEDRECTY CONNECTED TO THE MASTER

-omer mor
6. EXOTHHERMC WELDS SHALL be used for All grounong connectons below
7. Approved anioxiant coating (iec conouctiv gel or patie) shall be

9. Aluminu convuctor or coper clad stel conouctor shall not be used
10. MSCELLANEOUS ELECTRCALAND NON-ELEGTRCAL METAL BOXES. FRRMES AND NEC.
 UL APPROVED GROUNDNG TPTE CONOUTI CLAMPS.
12. ALL NEW STTUCTURES WTH A FOUNDTTIN ANO/OR FOOTTMG HAVNG 20 fr. or
 CoONMAVIN
250.50

GENERAL NOTES

FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIONS
CONTRACTOR - TRANSEEN WIRELESS
SUCCONTRACTOR
OWNER - T-MOBILE GEREAL CONTRACTOR (CONSTRUCTION)
PRIOR TO THE SUBMISSION OF BIDS, THE BIDDING SUBCONTRACTOR SHALL VIIT
THE CELL SITE TAM AMLARIE WTH THE E EISTING CNOTIONS AND TO COOFIRM
THAT THE WORK CAN BE ACCOMPLISHED AS SHOWN ON THE CONSTRUCTION
 DRANTACSTOR.
3. ALL MATERIALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ISSUE ALL APR ROPRIATE ROTICES AND COMPLY WTH ALL LAWS, RRDINANCES, RULES,
 PERFORMANCE OF THE WORK. ALL WORK CARRIED OUT SHALL COMPLY WITH AL
APPLCABLE MUNCIPAL AND UTLTHTCOMPANY SPECIFCATIONS AND LOCAL
4. DRAWINGS provided here are not to be scaled and are intended to show
OUTLINE ONLY.
5. UNLLSS NOTED OTHERWISE, THE WORK SHALL INCLUDE FURNISHMNG MATERIALS,
EQUPMENT, APPURTENANGES, AND LABOR NECESSARY TO COMPLETE ALL EQUPMENT, APPURTENANCES, AND LABOR NECES
INSTALIATONS AS INOICATED ON THE DRAWINGS.

7. THE SUBCONTRACTOR SHALL INSTALL ALL EQUPMENT AND MATERALL IN
ACORDANCE WTH MANAFACTURER'S RECOMMENDATIONS UNLESS SPECIFICALLY
STATED OTHERWISE.
8. IF THE SPECIFED EQUPMENT CANNOT BE INSTALLED AS SHOWN ON THESE
DRAWINGS, THE SUBCONTRACTOR SHALL PROPOSE AN ALTERNATVE INSTALLATON SAACE FOR APPROVAL BY THE CONTRACTOR.
9. SUBCONTRACTOR SHALL DETERMINE ACTUAL ROUTING OF CONDUT, POWER AND T1 PLAN DRAWING. SUBCONTRACTOR SHALL UTIUIZE EXISTNG TTAYY AND/OR SHALL
ADD NEW TRAYS AS NECESSARY. SUBCONTRACTOR SHALL CONFIRM THE ACTUAL ADD NEW TRAYS AS NECESSARY.
ROUTING WTH THE CONTRACTOR.
10. THE SUBCONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS,
LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE REPARED AT LANDSCAPING AND STRUCTURES. ANY DAMAGED PART SHALL BE
SUBCONTRACTOR'S EXPENSE TO THE SATISACTION OF OWNER.
11. SUBCOOTRACTOR SHALL LEGALLY AND PRORERY DIIPPOSE OF ALL SCRAP MMTERALS SUCH AS COAXAL CABLES AND OTHER TTEM R REMOVED FROM THE EXXTSTING
FACILITM. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
2. subconta
13. ALL CONCRETE REPAR WORK SHALL BE DONE IN ACCORDANCE WITH AMERICAN
CONCRETE INSTTTUTE (ACI)
301

15. ALL STRUCTURAL STEEL WORK SHALL BE DETALED, FABRICATED AND ERECTED IN
ACCORDANCE WTH AISC SPCIFICATINS. ALA STRUCTURAL STEL SHALL BE ASTM ACCORDANCE WTH ASC SPECIICATIONS. ALL STRUCTURAL STEEL SHALL BE ASTM
A36 (Fy $=36$ ski) UNLESS OHERWISE NOTED. PIPES SHALL BE ASTM A53 TTPE
 GAVANZED TSUCUUP ALL SERACCES AND OTHER MARK
STEEL IS ERECTED USING A COMPATBLE ZINC RICH PANT.
16. CONSTRUCTION SHALL COMPLY WITH SPECIIICATIONS AND "GENERAL CONSTRUCTION
SERVICES FOR CONSTRUCTION OF T-MOBILE SITES."
17. SUBCONTRACTOR SHALL VERIF ALL EXISTING DIMENSIONS AND CONDITIONS PRIOR
TO COMMENCING ANY WORK. ALL DIMENSIONS OF EXITTING CONSTRUCTION SHOWN
 CONTRACTOR OF ANY
WTH CONSTRUCTION.
18. THE EXISTING CELL SITE IS IN FULL COMMERCIAL OPERATION. ANY CONSTRUCTION
 ALSO, WORK SHOULD BE SCHEDLED FOR AN APPR
USUALLY IN LOW TRAFIC PERIIODS AFTER MIDNGHT
19. SINCE THE CELL SITE II ACTVE, ALL SAFET PRECAUTIONS MUST BE TAEEN WHEN SHOLD BE SHUTDOWN PRIOR TO PERFORMING ANY WORK THAT COULD EXPOSE THE WORKERS TO DANGER. PERSONAL RF EXPOSURE MONTOA
BE WORN TO ALERT OF ANY DANGEROUS EXPOSURE LEVELS.
20. APPLICABLE BUILDING CODES: AND LOCAL CODES AS ADOPIED BYM THE WITH ALL APPLICABLE NATIONAL, STATE
AUTHORITY HAVING JURISICTION (AHJ) FOR THE LOCATION. THE EDTION OF THE AHJ ADOPTED CODES AND
STANDRRD IIN EFFECT ON THE DATE OF CONTRACT AWARD SHALL GOVERN THE
DESIGN DESIGN
BULLING CODE: 2003 IBC WTH 2005 CT SUPPLEMENT, $+2009 \& 2013$ CT

SUBContractor's work shall comply with the latest edition of the
following standaros:
AMERRCAN CONCRETE INSTITUTE (ACC) 318; BUILDING CODE
REQUIREMENTS FOR STRUCTURAL CONCRETE;
american institute of steel construction (AISC)
manual of steel construction, Asd, fourteenth edition;
TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TAA) 222-F,
STRUCTURAL STANDARDS FOR STEEL
EQUIPMENT AND ANTENA SUPPORTING STRUCTURES; REFER
TO ELECTRICAL DRAWINGS FOR SPECIFIC ELECTRICAL STANDARDS.
FOR ANY CONFLCTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS MOST RESTRICTIVE REQUREMENT SHALL GOVERN. WHERE THERE IS CONFLLCT BETMEEN A GENERAL REQUIREM
REQUIREMENT SHALL GOVERN.

T-MOBILE
NORTHEAST LLC

Transcend Wireless

Hudson

APPROVED BY: DJC

SUBMITTALS

CT11634C
CT634/CITE NAME/
CT634/CING/
CHESLEY PARK_ET
STE ADORES:
35 WLDWOOD STREET
NEW WRTTAN, CTREO51
HARTFORD COUNTY

ENERAL NOTES

$\begin{array}{ll}\text { AGL } & \text { ABOVE GRADE LEVEL } \\ \text { aWg } & \text { AMERICAN WIRE }\end{array}$

bin batert backup unt
BTCW
CARE TINNED SOLD
COPER WRE
BGR buried ground ring
bts base transceiver station Existing
egb equipment ground bar
b bround bar
EQUIPMENT GROUND RING

ABBREVIATIONS

oc general contractor GRC GALVANIZED RIGID CONDUT mgb master ground bar Min minimum PRoposed NTS NOT to SCALE rad radiation center line (ANTENNA)

REQ REQUIRED

To
br to be removed
brr To be removed and
TBR REPLACE
TTP TPPICAL
ug Under ground
VIF VERIFY IN FIEL

[^0]: Consider Moments - Legs
 Consider Moments - Horizontals
 Consider Moments - Diagonals Use Moment Magnification
 $\sqrt{ }$ Use Code Stress Ratios
 $\sqrt{ }$ Use Code Safety Factors - Guys
 $\sqrt{ }$ Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
 Include Bolts In Member Capacity
 Leg Bolts Are At Top Of Section
 Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

