April 30, 2018

Melanie A. Bachman
Acting Executive Director
Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051

RE: Notice of Exempt Modification for Sprint Crown Site BU: 876331 Sprint Site ID: CT03XC083
115 North Mountain Road, New Britain, Hartford County, CT 06053
Latitude: $41^{\circ} 40^{\prime} 35.72^{\prime \prime} /$ Longitude: $-72^{\circ} 49^{\prime} 17.09^{\prime \prime}$
Dear Ms. Bachman:

Sprint currently maintains (3) antennas at the 116 -foot level of the existing 116-foot monopole at 115 North Mountain Road, New Britain, Connecticut 06053. The tower and property on which it sits is owned by Crown Castle. Sprint intends to install (3) antennas, (1) hybrid, and (3) RRHs.

The Connecticut Siting Council's Telecommunications Database provides the Council approved the tower February 16,2000 , however a diligent search of the available online records was not fruitful for obtaining a copy of said decision.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies § 16-50j-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § $16-50 \mathrm{j}$ 72(b)(2). In accordance with R.S.C.A. § 16-50j-73, a copy of this letter is being sent to Ms. Erin Stewart, Mayor, City of New Britain, Ms. Marion Fischbein, Member of the City of New Britain's Zoning Board, and Crown Castle as the property and tower owner.

1. The proposed modifications will not result in an increase in the height of the existing tower.
2. The proposed modifications will not require the extension of the site boundary.
3. The proposed modification will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communication Commission safety standard.

April 30, 2018
Page 2
5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, Sprint respectfully submits that the proposed modifications to the above-reference telecommunications facility constitutes an exempt modification under R.C.S.A. § 16-50j-72(b)(2). Please send approval/rejection letter to Attn: Anne Marie Zsamba.

Sincerely,
Morr Romule
Anne Marie Zsamba, Esq.
Real Estate Specialist
3 Corporate Park Drive, Suite 101, Clifton Park, NY 12065
(518) 350-3639
annemarie.zsamba.contractor@crowncastle.com
Attachments:
Tab A: Exhibit-1: Compound plan and elevation depicting the planned changes
Tab B: Exhibit-2: Structural Modification Report
Tab C: Exhibit-3: General Power Density Table Report (RF Emissions Analysis Report)
cc: Ms. Erin Stewart, Mayor
City of New Britain
27 West Main Street
New Britain, CT 06051
(860) 826-3300

Ms. Marion Fischbein
City of New Britain Zoning Board
27 West Main Street - Room 311
New Britain, CT 06051
(860) 826-3430

Crown Castle

City of New Britain, CT

Property Information

Property Location	115 NORTH MOUNTAIN RD
Owner	OCTOBER TWENTY FOUR INC
Co-Owner	
Mailing Address	CIO A AIUDI + SONS LLC PLAINVILLE
Land Use	$4400 \quad$ Ind Ld De
Land Class	I
Zoning Code	TP
Census Tract	416500

Neighborhood	101 G	
Acreage	0.82	
Utilities	All Public	
Lot Setting/Desc		Ledge
Additional Info		

Photo

Sketch

Valuation Summary (Assessed value $=70 \%$ of Appraised Value)

Item	Appraised	Assessed
Buildings		
Extras		
Improvements		
Outbuildings		
Land		
Total		

Sub Areas

Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
		0

Sales History

Owner of Record	Book/ Page	Sale Date
OCTOBER TWENTY FOUR INC	$1826 / 309$	$9 / 29 / 2011$
OCTOBER TWENTY FOUR INC	$733 / 284$	$2 / 2 / 1978$
GIUSEPPE CACCAMO SALVATORE	$431 / 424$	$1 / 1 / 1900$

Sprint ${ }^{4}$		PROJECT: SITE NAME: SITE CASCADE: SITE NUMBER SITE ADDRESS: SITE TYPE MARKET:	MW DEPLOYMEN NEW BRITAIN GRAVEL PIT CT03XC083 876331 115 NORTH MOUNTAIN ROA NEW BRITAIN CT 06053 MONOPOLE TOWER NORTHERN CONNECTICUT		
边				?	
边				5es	
				20	찬․
\pm					-
=					
					mammem
51m					${ }^{\text {couxams }}$
\%					-
					, minmem

		Sprint ${ }^{\text {\% }}$
		NFINGY
		\cdots
		CCCRamit
		=
		=awamm
		cmaxem
		\% \#mumum
mememe	mamememer	A-3

8	

			Sprint ${ }^{\text {a }}$
			$\frac{\text { NFINGY }}{2}$
	$\underline{\sim}$		
		$=-60^{2} 0$	
	\cdots	$=0$	\cdots
5maxm			\%emmam
	$=$		cmaxas
max		-1. $=$	\%

Date: March 22, 2018
Marianne Dunst
Crown Castle
3530 Toringdon Way Suite 300
Charlotte, NC 28277
(704)-405-6850

Paul J. Ford and Company
250 East Broad st., Suite 600
Columbus, OH 43215
(614) 221-6679
skadam@pjfweb.com

Subject:
 Carrier Designation:
 Crown Castle Designation:
 Engineering Firm Designation:

Slte Data:

Structural Analysis Report

Sprint PCS Co-Locate
Carrier Site Number: CT03XC083
Carrier Site Name:
СТ03XC083
Crown Castle BU Number: 876331
Crown Castle Site Name: Crown Castle JDE Job Number:

NEW BRITAIN GRAVEL PIT
450509
1539492
399155 Rev. 5
Paul J. Ford and Company Project Number: 37518-1085.001.7805
115 North Mountain Rd, NEW BRITAIN, Hartford County, CT Latitude $41^{\circ} 40^{\prime} 35.72^{\prime \prime}$, Longitude $-72^{\circ} 49^{\circ} 17.09^{\prime \prime}$
118 Foot - Monopole

Dear Ms. Dunst,
Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1160641, in accordance with application 399155, revision 5.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment
Sufficient Capacity
Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.
This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3 -second gust wind speed of 125 mph converted to a nominal 3 -second gust wind speed of 97 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception \#5 of Section 1609.1.1. Risk Category II, Exposure Category C and Topographic Category 1 with a maximum Topographic Factor, Kzt, of 1 were used in this analysis.

We at Paul J. Ford and Company appreciate the opportunity of providing our contipuithdordestional services to
 please give us a call.

Respectfully submitted by:

Shardul Kadam
tnxTower Report - version 7.0.5.1

Date: March 22, 2018

Marianne Dunst
Crown Castle
3530 Toringdon Way Suite 300
Charlotte, NC 28277
(704)-405-6850

Paul J. Ford and Company 250 East Broad st., Suite 600 Columbus, OH 43215 (614) 221-6679 skadam@pjfweb.com
Subject:
Carrier Designation:
Crown Castle Designation:

Engineering Firm Designation:

Site Data:

Structural Analysis Report
Sprint PCS Co-Locate
Carrier Site Number: CT03XC083
Carrier Site Name: CT03XC083
Crown Castle BU Number: Crown Castle Site Name: Crown Castle JDE Job Number:
Crown Castle Work Order Number:
Crown Castle Application Number:

876331
NEW BRITAIN GRAVEL PIT
450509
1539492
399155 Rev. 5

Paul J. Ford and Company Project Number: 37518-1085.001.7805
115 North Mountain Rd, NEW BRITAIN, Hartford County, CT Latitude $41^{\circ} 40^{\prime} 35.72^{\prime \prime}$, Longitude $-72^{\circ} 49^{\prime} 17.09^{\prime \prime}$
118 Foot - Monopole
Dear Ms. Dunst,
Paul J. Ford and Company is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower. This analysis has been performed in accordance with the Crown Castle Structural 'Statement of Work' and the terms of Crown Castle Purchase Order Number 1160641, in accordance with application 399155 , revision 5.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:

LC7: Existing + Reserved + Proposed Equipment
Note: See Table I and Table II for the proposed and existing/reserved loading, respectively.
This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3 -second gust wind speed of 125 mph converted to a nominal 3 -second gust wind speed of 97 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception \#5 of Section 1609.1.1. Risk Category II, Exposure Category C and Topographic Category 1 with a maximum Topographic Factor, Kzt, of 1 were used in this analysis.

We at Paul J. Ford and Company appreciate the opportunity of providing our continuing professional services to you and Crown Castle. If you have any questions or need further assistance on this or any other projects please give us a call.

Respectfully submitted by:

Shardul Kadam
Project Engineer I
tnxTower Report - version 7.0.5.1

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Antenna and Cable Information
Table 2 - Existing and Reserved Antenna and Cable Information
Table 3 - Design Antenna and Cable Information

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided
3.1) Analysis Method
3.2) Assumptions
4) ANALYSIS RESULTS

Table 5 - Section Capacity (Summary)
Table 6 - Tower Components vs. Capacity
4.1) Recommendations
5) APPENDIX A
tnxTower Output
6) APPENDIX B

Base Level Drawing
7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 118 ft Monopole tower designed by ROHN in October of 1996. The tower was originally designed for a wind speed of 85 mph per TIA/EIA-222-E.

2) ANALYSIS CRITERIA

This analysis has been performed in accordance with the 2016 Connecticut State Building Code based upon an ultimate 3 -second gust wind speed of 125 mph converted to a nominal 3 -second gust wind speed of 97 mph per Section 1609.3 and Appendix N as required for use in the ANSI/TIA-222-G-2005 Standard, "Structural Standard for Antenna Supporting Structures and Antennas", with ANSI/TIA-222-G-1-2007 and ANSI/TIA-222-G-2-2009 Addenda per Exception \#5 of Section 1609.1.1. Risk Category II, Exposure Category C and Topographic Category 1 were used in this analysis.

Table 1 - Proposed Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Antennas } \end{array}\right\|$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	$\begin{array}{\|c\|} \text { Feed } \\ \text { Line } \\ \text { Size (in) } \end{array}$	Note
114.0	116.0	3	alcatel lucent	TD-RRH8×20-25	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 1-1 / 4 \\ 1 / 2 \end{gathered}$	-
		1	andrew	VHLP1-23			
		3	Ifs celwave	$\begin{aligned} & \text { APXVTM14-C-120 } \\ & \text { w/ Mount Pipe } \end{aligned}$			
		1	samsung telecommunications	WIMAX DAP HEAD			

Table 2 - Existing and Reserved Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
116.0	116.0	3	alcatel lucent	$800 \mathrm{MHz} 2 \times 50 \mathrm{~W}$ RRH W/FILTER	-	-	1
		3	alcatel lucent	$\begin{gathered} \text { PCS } 1900 \mathrm{MHz} 4 \times 45 \mathrm{~W}- \\ 65 \mathrm{MHz} \end{gathered}$			
		1	tower mounts	Pipe Mount [PM 601-3]			
114.0	116.0	1	rfs celwave	APXV9ERR18-C-A20 w/ Mount Pipe	3	$11 / 4$	1
		2	rfs celwave	APXVSPP18-C-A20 w/ Mount Pipe			
	114.0	1	tower mounts	Platform Mount [LP 502-1]			
108.0	108.0	3	commscope	LNX-6515DS-VTM w/ Mount Pipe	$\begin{gathered} 12 \\ 1 \end{gathered}$	$\begin{gathered} 7 / 8 \\ 15 / 8 \end{gathered}$	1
		3	ericsson	ERICSSON AIR 21 B2A B4P w/ Mount Pipe			
		3	ericsson	ERICSSON AIR 21 B4A B2P w/ Mount Pipe			
		3	ericsson	KRY 112 144/1			
		3	ericsson	RRUS 11 B12			
		1	tower mounts	Sector Mount [SM 801-3]			
98.0	98.0	2	cci antennas	HPA-65R-BUU-H6 w/ Mount Pipe	-	-	2
		1	cci antennas	HPA-65R-BUU-H8 w/ Mount Pipe			
		3	ericsson	RRUS 32 B2			
		6	powerwave technologies	7020.00			
		3	powerwave technologies	TT19-08BP111-001			
		1	andrew	SBNH-1D6565C w/ Mount Pipe	$\begin{gathered} 1 \\ 12 \\ 2 \end{gathered}$	$\begin{aligned} & 3 / 8 \\ & 7 / 8 \\ & 3 / 4 \end{aligned}$	1
		3	communication components inc.	DTMABP7819VG12A			
		3	ericsson	RRUS 11 B12			
		2	kmw communications	$\begin{aligned} & \text { AM-X-CD-16-65-00T-RET } \\ & \text { w/ Mount Pipe } \end{aligned}$			
		3	powerwave technologies	7770.00 w/ Mount Pipe			
		1	raycap	DC6-48-60-18-8F			
		1	tower mounts	Platform Mount [LP 712-1]			
85.0	86.0	3	alcatel lucent	RRH2X60-AWS	13	1-5/8	1
		3	alcatel lucent	RRH2X60-PCS			
		6	andrew	CBC721-DF			
		6	andrew	HBXX-6517DS-A2M w/ Mount Pipe			

Mounting Level (ft)	Center Line Elevation (ft)	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Antennas } \end{gathered}$	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)	Note
		2	antel	BXA-70040-6CF-EDIN-2 w/ Mount Pipe			
		4	antel	BXA-70063-6CF-2 w/ Mount Pipe			
		1	rfs celwave	DB-B1-6C-12AB-0Z			
	85.0	1	tower mounts	Platform Mount [LP 303-1]			
80.0	81.0	1	lucent	KS24019-L112A	1	1/2	1
	80.0	1	tower mounts	Side Arm Mount [SO 701-1]			
72.0	74.0	2	argus technologies	LLPX310R w/ Mount Pipe	-	-	1
		1	dragonwave	HORIZON COMPACT			
		1	samsung telecommunications	WIMAX DAP HEAD			
	73.0	1	andrew	VHLP1-23	-	-	3
		1	samsung telecommunications	WIMAX DAP HEAD			
	72.0	1	argus technologies	LLPX310R w/ Mount Pipe	$\begin{aligned} & 3 \\ & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 5 / 8 \\ & 1 / 2 \end{aligned}$	1
		1	dragonwave	A-ANT-18G-2-C			
		1	dragonwave	HORIZON COMPACT			
		1	samsung telecommunications	WIMAX DAP HEAD			
		1	tower mounts	Side Arm Mount [SO 101-3]			

Notes:

1) Existing Equipment
2) Reserved Equipment
3) Equipment Relocated to 114' Elevation

Table 3 - Design Antenna and Cable Information

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
-	-	-	-	-	-	-

3) ANALYSIS PROCEDURE

Table 4 - Documents Provided

Document	Remarks	Reference	Source
GEOTECHNICAL REPORTS	FDH, 07-11435G, 01/23/2008	2192549	CCISITES
POST-MODIFICATION INSPECTION	TEP, 126879, 03/07/2013	3684848	CCISITES
TOWER FOUNDATION DRAWINGS/DESIGN/SPECS	Rohn, 34738SW, 10/24/1996	1947809	CCISITES
TOWER MANUFACTURER DRAWINGS	Rohn, 34738SW, 10/24/1996	1947800	CCISITES
POST-MODIFICATION INSPECTION	SGS, 145041, 11/21/2014	5407775	CCISITES
POST-MODIFICATION INSPECTION	SGS, 146127, 3/12/2015	5596857	CCISITES
POST-MODIFICATION INSPECTION	TEP, 25663.40942, 3/9/2016	6131239	CCISITES
TOWER REINFORCEMENT DESIGN/DRAWINGS/DATA	PJF, 41707-0508, 5/23/2008	2268906	CCISITES

3.1) Analysis Method

tnxTower (version 7.0.5.1), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases.
Selected output from the analysis is included in Appendix A.

3.2) Assumptions

1) Tower and structures were built in accordance with the manufacturer's specifications.
2) The tower and structures have been maintained in accordance with the manufacturer's specification.
3) The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.
4) Monopole was reinforced in conformance with the referenced modification drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. Paul J. Ford and Company should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

Table 5-Section Capacity (Summary)

Elevation (ft)	Component Type	Size	Critical Element	\% Capacity	Pass / Fail
118-113	Pole	TP24×24×0.25	Pole	3.5\%	Pass
113-108	Pole	TP24×24×0.25	Pole	10.6\%	Pass
108-103	Pole	TP24x24×0.25	Pole	23.9\%	Pass
103-98	Pole	TP $24 \times 24 \times 0.25$	Pole	37.4\%	Pass
98-93	Pole	TP $24 \times 24 \times 0.25$	Pole	58.2\%	Pass
93-90	Pole	TP24×24×0.25	Pole	70.5\%	Pass
90-85	Pole	TP24×24×0.375	Pole	58.5\%	Pass
85-80	Pole	TP24×24×0.375	Pole	77.7\%	Pass
80-76.5	Pole	TP24×24×0.375	Pole	90.8\%	Pass
76.5-76.25	Pole + Reinf.	TP24×24×0.5875	Reinf. 18 Tension Rupture	66.2\%	Pass
76.25-74	Pole + Reinf.	TP24×24×0.5875	Reinf. 18 Tension Rupture	72.4\%	Pass
74-73.75	Pole + Reinf.	TP24×24×0.8375	Reinf. 18 Tension Rupture	53.4\%	Pass
73.75-68.88	Pole + Reinf.	TP $24 \times 24 \times 0.8375$	Reinf. 18 Tension Rupture	63.8\%	Pass
68.88-68.63	Pole + Reinf.	TP $24 \times 24 \times 0.825$	Reinf. 13 Tension Rupture	64.5\%	Pass
68.63-64.5	Pole + Reinf.	TP $24 \times 24 \times 0.825$	Reinf. 13 Tension Rupture	73.7\%	Pass
64.5-64.25	Pole + Reinf.	TP $24 \times 24 \times 1.025$	Reinf. 9 Compression	67.4\%	Pass
64.25-63	Pole + Reinf.	TP24x24×1.025	Reinf. 9 Compression	70.0\%	Pass
63-62.75	Pole + Reinf.	TP24x24×0.9625	Reinf. 12 Tension Rupture	73.6\%	Pass
62.75-60	Pole + Reinf.	TP24×24×0.9625	Reinf. 12 Tension Rupture	79.6\%	Pass
60-59.75	Pole + Reinf.	TP30×30×0.6375	Pole	64.3\%	Pass
59.75-54.75	Pole + Reinf.	TP30×30×0.6375	Pole	73.4%	Pass
54.75-49.75	Pole + Reinf.	TP30×30×0.6375	Pole	82.8\%	Pass
49.75-49.25	Pole + Reinf.	TP30×30×0.6375	Pole	83.7\%	Pass
49.25-49	Pole + Reinf.	TP30×30×0.7875	Reinf. 17 Tension Rupture	76.0\%	Pass
49-44	Pole + Reinf.	TP30×30×0.7875	Reinf. 17 Tension Rupture	84.7\%	Pass
44-42	Pole + Reinf.	TP30x30×0.7875	Reinf. 17 Tension Rupture	88.3\%	Pass
42-41.75	Pole + Reinf.	TP30x30x0.9125	Reinf. 11 Tension Rupture	78.8\%	Pass
41.75-36.75	Pole + Reinf.	TP30×30×0.9125	Reinf. 11 Tension Rupture	86.9\%	Pass
36.75-34.5	Pole + Reinf.	TP30x30×0.9125	Reinf. 11 Tension Rupture	90.6\%	Pass
34.5-34.25	Pole + Reinf.	TP30×30×1.025	Reinf. 8 Compression	82.2\%	Pass
34.25-34	Pole + Reinf.	TP30×30×1.025	Reinf. 8 Compression	82.6\%	Pass
34-33.75	Pole + Reinf.	TP30×30×0.925	Reinf. 8 Compression	93.1\%	Pass
33.75-30	Pole + Reinf.	TP30×30×0.925	Reinf. 8 Compression	99.5\%	Pass
30-29.75	Pole + Reinf.	TP36x36x0.6875	Pole	80.8\%	Pass
29.75-28.5	Pole + Reinf.	TP36x36x0.6875	Pole	82.5\%	Pass
28.5-28.25	Pole + Reinf.	TP36x36×0.8375	Reinf. 16 Tension Rupture	70.1\%	Pass

tnxTower Report - version 7.0.5.1

28.25-23.25	Pole + Reinf.	TP36x36x0.8375	Reinf. 16 Tension Rupture	76.2\%	Pass
23.25-23	Pole + Reinf.	TP36x36x0.95	Reinf. 16 Tension Rupture	69.6\%	Pass
23-21.5	Pole + Reinf.	TP36x36x0.95	Reinf. 16 Tension Rupture	71.3\%	Pass
21.5-21.25	Pole + Reinf.	TP36×36×0.8	Pole	84.7\%	Pass
21.25-19	Pole + Reinf.	TP36x36x0.8	Pole	87.7\%	Pass
19-18.75	Pole + Reinf.	TP36x36x0.95	Pole	73.8\%	Pass
18.75-18.5	Pole + Reinf.	TP36x36x0.95	Pole	74.1\%	Pass
18.5-18.25	Pole + Reinf.	TP36x36x0.85	Pole	80.9\%	Pass
18.25-13.25	Pole + Reinf.	TP36x36x0.85	Pole	87.1\%	Pass
13.25-12.7	Pole + Reinf.	TP36x36x0.85	Pole	87.8\%	Pass
12.7-12.45	Pole + Reinf.	TP36x36x0.85	Pole	89.6\%	Pass
12.45-11.5	Pole + Reinf.	TP36x36x0.85	Pole	90.8\%	Pass
11.5-11.25	Pole + Reinf.	TP36x36×0.9	Reinf. 4 Compression	87.0\%	Pass
11.25-10.5	Pole + Reinf.	TP $36 \times 36 \times 0.9$	Reinf. 4 Compression	87.9\%	Pass
10.5-10.25	Pole + Reinf.	TP36x36×1.35	Reinf. 24 Compression	82.8\%	Pass
10.25-7.5	Pole + Reinf.	TP36x36x1. 35	Reinf. 24 Compression	86.0\%	Pass
7.5-7.25	Pole + Reinf.	TP36x36x1.4	Reinf. 24 Compression	83.9\%	Pass
7.25-6.25	Pole + Reinf.	TP36x36x1.4	Reinf. 24 Compression	85.1\%	Pass
6.25-6	Pole + Reinf.	TP36x36x1.425	Reinf. 24 Compression	85.2\%	Pass
6-3.73	Pole + Reinf.	TP36x36x1.8	Reinf. 24 Compression	72.5\%	Pass
3.73-3.48	Pole + Reinf.	TP36×36×1.8	Reinf. 24 Compression	72.7\%	Pass
3.48-2.75	Pole + Reinf.	TP36x36x1.8	Reinf. 24 Compression	73.4\%	Pass
2.75-2.5	Pole + Reinf.	TP36x36x1.675	Reinf. 24 Compression	78.8\%	Pass
2.5-2	Pole + Reinf.	TP36x36x1.675	Reinf. 24 Compression	79.3\%	Pass
2-1.75	Pole + Reinf.	TP $36 \times 36 \times 1.475$	Reinf. 24 Compression	88.0\%	Pass
1.75-0	Pole + Reinf.	TP36x36×1.475	Reinf. 24 Compression	90.0\%	Pass
				Summary	
			Pole	90.8\%	Pass
			Reinforcement	99.5\%	Pass
			Overall	99.5\%	Pass

Table 6 - Tower Component Stresses vs. Capacity - LC7

Notes	Component	Elevation (ft)	\% Capacity	Pass / Fail
$\mathbf{1}$	Flange Connection	90	36.8	Pass
1	Flange Connection	60	77.8	Pass
1	Flange Connection	30	72.8	Pass
1	Anchor Rods	0	82.2	Pass
1	Base Plate	0	75.4	Pass
1	Base Foundation Steel	0	70.7	Pass
1	Base Foundation Soil Interaction	0	58.1	Pass

Structure Rating (max from all components) $=$	99.5%

Notes:

1) See additional documentation in "Appendix C - Additional Calculations" for calculations supporting the \% capacity consumed.

4.1) Recommendations

The monopole and its foundation have sufficient capacity to carry the proposed loading configuration. No modifications are required at this time.

EBI Consulting

environmental | engineering | due diligence

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

SPRINT Existing Facility

Site ID: CT03XC083

New Britain Gravel Pit
115 North Mountain Road
New Britain, CT 06053
April 24, 2018
EBI Project Number: 6218002920

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{2 2 . 9 1} \%$

environmental | engineering | due diligence

April 24, 2018
SPRINT
Attn: RF Engineering Manager
1 International Boulevard, Suite 800
Mahwah, NJ 07495

Emissions Analysis for Site: CT03XC083 - New Britain Gravel Pit

EBI Consulting was directed to analyze the proposed SPRINT facility located at $\mathbf{1 1 5}$ North Mountain Road, New Britain, CT, for the purpose of determining whether the emissions from the Proposed SPRINT Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm} 2$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits, therefore it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR $1.1307(b)(1)-(b)(3)$, to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

General population exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$. The general population exposure limits for the 850 MHz Band is approximately $567 \mu \mathrm{~W} / \mathrm{cm}^{2}$. The general population exposure limit for the 1900 MHz (PCS), 2500 MHz (BRS) and the 23 GHz microwave bands are $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.
environmental | engineering | due diligence

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed SPRINT Wireless antenna facility located at $\mathbf{1 1 5}$ North Mountain Road, New Britain, CT, using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65 . Since SPRINT is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 1 CDMA channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
2) 2 LTE channels (850 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
3) 5 CDMA channels ($1900 \mathrm{MHz}(\mathrm{PCS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 16 Watts per Channel.
4) 2 LTE channels ($1900 \mathrm{MHz}(\mathrm{PCS})$) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
5) 8 LTE channels (2500 MHz (BRS)) were considered for each sector of the proposed installation. These Channels have a transmit power of 20 Watts per Channel.
6) 1 microwave backhaul channel (23 GHz) was analyzed for this facility. This channel has a transmit power of 1 Watt.

EBI Consulting

environmental | engineering | due diligence
7) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
8) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
9) The antennas used in this modeling are the RFS APXV9ERR18-C-A20, RFS

APXVSPP18-C-A20 and RFS APXVTM14-C-I20 for transmission in the $850 \mathrm{MHz}, 1900$ MHz (PCS) and 2500 MHz (BRS) frequency bands and the Andrew VHLP1-23 for the 23 GHz microwave backhaul. This is based on feedback from the carrier with regards to anticipated antenna selection. Maximum gain values for all antennas are listed in the Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufactures supplied specifications, minus 10 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
10) The antenna mounting height centerlines of the proposed antennas are $\mathbf{1 1 6}$ feet above ground level (AGL) for Sector A, 116 feet above ground level (AGL) for Sector \mathbf{B} and $\mathbf{1 1 6}$ feet above ground level (AGL) for Sector C.
11) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.

All calculations were done with respect to uncontrolled / general population threshold limits.

EBI Consulting

environmental | engineering | due diligence

SPRINT Site Inventory and Power Data by Antenna

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	1	Antenna \#:	1	Antenna \#:	1
Make/Model	APXV9ERR18-C- A20	Make / Model	$\begin{gathered} \text { RFS } \\ \text { APXVSPP18-C-A20 } \end{gathered}$	Make/ Model	$\begin{gathered} \text { RFS } \\ \text { APXVSPP18-C-A20 } \end{gathered}$
-, \% , , \% Gain	$11.9 / 14.9 \mathrm{dBd}$		$13.4 / 15.9 \mathrm{dBd}$		$13.4 / 15.9 \mathrm{dBd}$
4, Height (AGL).	116 feet	- Height (AGL).	116 feet	WWanght (AGL).	116 feet
Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) \\ \hline \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) \end{gathered}$	Frequency Bands	$\begin{gathered} 850 \mathrm{MHz} / \\ 1900 \mathrm{MHz}(\mathrm{PCS}) \end{gathered}$
- Charnel Count	10	- Channel Count	10	W, Chamnel Count.	10
Y Yower(W).	220 Watts		220 Watts	, Bower(W)	220 Watts
\%, \%, ERP(W)	5,873.76		7,537.38	W, <, <kRP(W)	7,537.38
Mntenna Al	1.96 \%	KAntenna B1	2.54 \%	AntennaC1	2.54 \%
Antenna.\#:	2	Antenna \#:-	2	Antenna \#\%:	2
Make / Model:	RFS APXVTM14-C-I20	Make/Model:	$\begin{gathered} \text { RFS } \\ \text { APXVTM14-C-I20 } \end{gathered}$	Make / Model	$\begin{gathered} \text { RFS } \\ \text { APXVTM14-C-I20 } \end{gathered}$
W, \%/ \% ${ }^{\text {a }}$, Gam.	15.9 dBd	\% - 1.4 Gain,	15.9 dBd		15.9 dBd
V Merght (AGL):	116 feet	V Height (AGL)	116 feet	W Weight (AGL)	116 feet
Frequency Bands.	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)	Frequency Bands	2500 MHz (BRS)
\%. Channel Count.	8	V, Channel Count	8	C. Channel Count	8
Kower(W)	160 Watts	, Power(W)	160 Watts	- Rower(W)	160 Watts
\% ${ }^{*}$, ERP, (W)	6,224.72	Y, ERP(W)	6,224.72	S. Whe ERP(W)	6,224.72
- Antenia A2	1.85 \%	Antenna B2 MPE	1.85 \%	Antennac2	1.85 \%

Microwave Backhaul Data									
Make Model	Gain	Height (AGL):	Frequency Bands	Channel Count	Total TX Power(W)	ERP(W)	MPE \%	Sector	
Andrew									
VHPPl-23	33.45 dBd	116	23 GHz	1	1	$2,213.09$	$\mathbf{0 . 0 7}$	A	

Site Composite MPE\%	
Carrier	MPE $\%$
SPRINT - Sectors B \& C	$\mathbf{4 . 3 9 \%}$
AT\&T	6.68%
Clearwire	0.43%
T-Mobile	2.65%
Verizon Wireless	8.76%
Site Total MPE \%:	$\mathbf{2 2 . 9 1 \%}$

SPRINT Sector A Total:	3.88%
SPRINT Sector B Total:	4.39%
SPRINT Sector C Total:	4.39%
Site Total:	

SPRINT Frequency Band/ Technology Max Power Values (Sectors B \& C)	$\begin{gathered} \# \\ \text { Channels } \end{gathered}$	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MIIz)	Allowable MPE $\left(\mu \mathrm{W} / \mathrm{cm}^{2}\right)$	Calculated \% MPE
Sprint 850 MHz CDMA	1	437.55	116	1.30	850 MHz	567	0.23\%
Sprint 850 MHz LTE	2	437.55	116	2.60	850 MHz	567	0.47\%
Sprint 1900 MHz (PCS) CDMA	5	622.47	116	9.25	1900 MHz (PCS)	1000	0.92\%
Sprint 1900 MHz (PCS) LTE	2	1,556.18	116	9.25	1900 MHz (PCS)	1000	0.92\%
Sprint 2500 MHz (BRS) LTE	8	778.09	116	18.49	2500 MHz (BRS)	1000	1.85\%
						Total:	4.39\%

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the SPRINT facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

SPRINT Sector	Power Density Value (\%)
Sector A:	3.81%
Sector B:	4.39%
Sector C:	4.39%
SPRINT Maximum	4.39%
Total (per sector):	
Site Total:	22.91%
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{2 2 . 9 1} \%$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

From:
Sent:
To:
Subject:

TrackingUpdates@fedex.com
Wednesday, May 2, 2018 9:04 AM
Zsamba, Anne Marie (Contractor)
FedEx Shipment 772108309199 Delivered

Your package has been delivered

Tracking \# 772108309199

Shipment Facts

Our records indicate that the following package has been delivered.

Tracking number:	$\underline{772108309199}$
Status:	Delivered:
	05/02/2018 09:01 AM Signed for By: C.BAILEY
Door Tag number:	DT104897134092
Invoice number:	982896
Reference:	$\mathbf{1 7 6 5 . 6 6 8 0}$

Delivery location: NEW BRITAIN,

CT	
Delivered to:	Receptionist/Front Desk
Service type:	FedEx Priority Overnight
Packaging type:	FedEx Pak
Number of pieces:	1
Weight:	1.00 lb.
Special	
handling/Services:	Required Signature
	Deliver Weekday
Standard transit:	$5 / 1 / 2018$ by $10: 30$ am

Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 8:04 AM CDT on 05/02/2018.

All weights are estimated.
To track the latest status of your shipment, click on the tracking number above. Standard transit is the date and time the package is scheduled to be delivered by, based on the selected service, destination and ship date. Limitations and exceptions may apply. Please see the FedEx Service Guide for terms and conditions of service, including the FedEx Money-Back Guarantee, or contact your FedEx Customer Support representative.
© 2018 Federal Express Corporation. The content of this message is protected by copyright and trademark laws under U.S. and international law. Review our privacy polley. All rights reserved.
Thank you for your business.

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and couid result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

From:
Sent:
To:
Subject:

TrackingUpdates@fedex.com
Wednesday, May 2, 2018 9:04 AM
Zsamba, Anne Marie (Contractor)
FedEx Shipment 772108316720 Delivered

Your package has been delivered

Tracking \# 772108316720

Shipment Facts

Our records indicate that the following package has been delivered.

Tracking number:	772108316720
Status:	Delivered:
	05/02/2018 09:01 AM Signed for By: C.BAILEY
Door Tag number:	DT104897134092
Invoice number:	982896
Reference:	1765.6680

Signed for by:	C.BAILEY
Delivery location:	NEW BRITAIN, CT
Delivered to:	Receptionist/Front Desk
Service type:	FedEx Priority Overnight
Packaging type:	FedEx Pak
Number of pieces:	1
Weight:	1.00 lb .
Special handling/Services:	Adult Signature Required
	Deliver Weekday
Standard transit:	5/1/2018 by $10: 30$ am
Please do not respond to this message. This email was sent from an unattended mailbox. This report was generated at approximately 8:04 AM CDT on 05/02/2018.	
All weights are estimated.	
Standard transit is the date and time the package is scheduled to be delivered by, based on the selected service, destination and ship date. Limitations and exceptions may apply. Please see the FedEx Service Guide for terms and conditions of service, including the FedEx Money-Back Guarantee, or contact your FedEx Customer Support representative.	
(c) 2018 Federal Express Corporation. The content of this message is protected by copyright and trademark laws under U.S. and international law. Review our prlvacy policy. All rights reserved.	
Thank you for your business.	

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.
2. Fold the printed page along the horizontal line.
3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of $\$ 100$ per package, whether the result of loss, damage, delay, non-delivery,misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of $\$ 100$ or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is $\$ 1,000$, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

 ‘ио!решлоди!

