

Northeast Site Solutions
Carolyn Seeley
1053 Farmington Avenue, Farmington CT 06032
cseeley@northeastsitesolutions.com
December 9, 2021

Members of the Siting Council
Connecticut Siting Council
Ten Franklin Square
New Britain, CT 06051

RE: Tower Share Application
641 Maple Hill Road Naugatuck, CT 06770
Latitude: 41.488100 N
Longitude: -73.020200 W
Site\# BOHVN00184A_Dish_Naugatuck_TS_Zoning

Dear Ms. Bachman:

This letter and attachments are submitted on behalf of Dish Wireless LLC. Dish Wireless LLC plans to install antennas and related equipment to the tower site located at 641 Maple Hill Road Naugatuck, Connecticut.

Dish Wireless LLC proposes to install three (3) 600/19005G MHz antenna and six (6) RRUs, at the 157 -foot level of the existing 180-foot monopole tower, one (1) Fiber cables will also be installed. Dish Wireless LLC equipment cabinets will be placed within 7×5 lease area. Included are plans by Infinigy, stamped November 3, 2021, Exhibit C. Also included is a structural analysis prepared by Aerosmith Engineering, LLC, dated March 9, 2021, confirming that the existing tower is structurally capable of supporting the proposed equipment. Attached as Exhibit D. This facility was approved by the Borough of Naugatuck, Land Use Department, Zoning Compliance Permit No. 2018-133, dated October 10, 2018. Please see attached Exhibit A.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies 16-50aa, of Dish Wireless LLC intent to share a telecommunications facility pursuant to R.C.S.A. 16-50j-88. In accordance with R.C.S.A., a copy of this letter is being sent to The Honorable N. Warren "Pete" Hess, III, Mayor, for the Borough of Naugatuck, Robert S. Pease, Chairman, Planning Commission for the Borough of Naugatuck, as well as the property owner Borough of Naugatuck and Tarpon Towers II, LLC, tower owner.

The planned modifications of the facility fall squarely within those activities explicitly provided for in R.C.S.A. 16-50j-89.

1. The proposed modifications will not result in an increase in the height of the existing structure. The top of the tower is 180 -feet; Dish Wireless LLC proposed antennas will be located at a center line height of 157 feet.
2.The proposed modification will not result in the increase of the site boundary as depicted on the attached site plan.
3.The proposed modification will not increase the noise levels at the facility by six decibels or more, or to levels that exceed local and state criteria. The incremental effect of the proposed changes will be negligent.

4.The operation of the proposed antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard. As indicated in the attached power density calculations, the combined site operations will result in a total density of 3.17% as evidenced by Exhibit F.

Connecticut General Statutes 16-50-aa indicates that the Council must approve the shared use of a telecommunications facility provided it finds the shared use is technically, legally, environmentally, and economically feasible and meets public safety concerns. As demonstrated in this letter, Dish Wireless LLC respectfully indicates that the shared use of this facility satisfies these criteria.
A. Technical Feasibility. The existing monopole has been deemed structurally capable of supporting Dish Wireless LLC proposed loading. The structural analysis is included in Exhibit D.
B. Legal Feasibility. As referenced above, C.G.S. 16-50aa has been authorized to issue orders approving the shared use of an existing tower such as this support tower in Naugatuck. Under the authority granted to the Council, an order of the Council approving the requested shared use would permit Dish Wireless LLC to obtain a building permit for the proposed installation. Further, a letter of Authorization is included as Exhibit G, authorizing Dish Wireless LLC to file this application for shared use.
C. Environmental Feasibility. The proposed shared use of this facility would have a minimal environmental impact. The installation of Dish Wireless LLC equipment at the 157 -foot level of the existing 180 -foot tower would have an insignificant visual impact on the area around the tower. Dish Wireless LLC ground equipment would be installed within the existing facility compound. Dish Wireless LLC shared use would therefore not cause any significant alteration in the physical or environmental characteristics of the existing site. Additionally, as evidenced by Exhibit F , the proposed antennas would not increase radio frequency emissions to a level at or above the Federal Communications Commission safety standard.
D. Economic Feasibility. Dish Wireless LLC will be entering into an agreement with the owner of this facility to mutually agreeable terms. As previously mentioned, the Letter of Authorization has been provided by the owner to assist Dish Wireless LLC with this tower share application.
E. Public Safety Concerns. As discussed above, the tower is structurally capable of supporting Dish Wireless LLC proposed loading. Dish Wireless LLC is not aware of any public safety concerns relative to the proposed sharing of the existing tower. Dish Wireless LLC intentions of providing new and improved wireless service through the shared use of this facility is expected to enhance the safety and welfare of local residents and individuals traveling through Naugatuck.

Sincerely,

carolyn seeley

Carolyn Seeley

Mobile: 978-760-5577
Fax: 413-521-0558
Office: 1053 Farmington Avenue, Farmington, CT 06032
Email: cseeley@northeastsitesolutions.com

Attachments
Cc: The Honorable
N. Warren "Pete" Hess, III, Mayor

Borough of Naugatuck
229 Church St
Naugatuck, CT 06770

Robert S. Pease, Chairman
Planning Commission
Borough of Naugatuck
229 Church St
Naugatuck, CT 06770

Borough of Naugatuck
229 Church St
Naugatuck, CT 06770

Tarpon Towers II, LLC, Tower Owner

Exhibit A

Original Facility Approval

BOROUGH OF NAUGATUCK LAND USE DEPARTMENT

ZONING COMPLIANCE PERMIT

$$
229 \text { Church St. } 2^{\text {nd }} \mathrm{Fl}
$$

Naugatuck, CT. 06770
*074-8610

PERMIT NO: 2018-133.

Type of Permit:

\qquad Addition $\$ 150 / \$ 60$ Change of Use $\$ 75 / \$ 60$ Deck \$75/\$60 Old Use \qquad

DESCRIPTION OF PREMISES:

SingleFamily \qquad Multifamily

Sign \$75/\$60
DATE $\frac{10 / 9 / 2018}{\text { 80 monopole (iv) }} 1 / 4^{12019}$ 60 $\times 60^{\prime}$ fenced Compound

___ Swimming Pool $\$ 75 / \$ 60$ Other cell Tower municipal Tower

PROPERTY OWNER: Borough of Naugatuck
ADDRESS: 64l maple HI II Road PHONR: $203-6215$

1. A wetlands or water course area;
2. 100 feet of a stream or wetlands area;
3. A stream encroachment area
4. A flood plain area.

X Signature of Applicant
I hereby certify that the inforfinimon herein and the attached plot plan are accurate.
Keith Copping
Applicable Zoning Regulation to apply: Conforms to all setbacks

ZONING ENFORCMENT OFFICER:

Fee: $\frac{\$ 75+50}{}$ Variance \# \qquad
This approval is subject to compliance (prior to occupancy) with the provisions of the zoning and subdivision regulations of the Borough of Naugatack and as authorized under section 8 of the Connecticut General Statutes, as amended. This permit is based upon the plot plan submitted. Falsification, misrepresentation or omission shall constitute a violation of the borough regulations.

Exhibit B

Property Card

Property Information

Property Location	641 MAPLE HILL RD	
Owner	BOROUGH OF NAUGATUCK	
Co-Owner	MAPLE HILL SCHOOL	
Mailing Address	229 CHURCH ST NAUGATUCK \quad CT	06770
Land Use	$902 C \quad$ GRADE SCH	
Land Class	E	
Zoning Code	RA1	
Census Tract		

Neighborhood	6
Acreage	14.32
Utilities	
Lot Setting/Desc	
Book / Page	$0327 / 0090$
Additional Info	

Primary Construction Details

Year Built	1990
Building Desc.	GRADE SCH
Building Style	Schools-Public
Building Grade	C
Stories	1
Occupancy	1.00
Exterior Walls	Brick
Exterior Walls 2	NA
Roof Style	T+G/Rubber
Roof Cover	Drywall
Interior Walls	Minim/Masonry
Interior Walls 2	Vinyl
Interior Floors 1	
Interior Floors 2	

Heating Fuel	Gas		
Heating Type	Forced Hot Air	(*Industrial / Commercial Details)	
AC Type	None		
Bedrooms	0	Building Use	Comm/Ind
Full Bathrooms	0	Building Condition	A
Half Bathrooms	0	Sprinkler \%	NA
Extra Fixtures	0	Heat / AC	NONE
Total Rooms		Frame Type	STEEL
Bath Style	NA	Baths / Plumbing	AVERAGE
Bath Style	NA	Ceiling / Wall	SUS-CEIL \& WL
Kitchen Style	NA	Rooms / Prtns	AVERAGE
Fin Bsmt Area		Wall Height	12.00
Fin Bsmt Quality		First Floor Use	NA
Bsmt Gar	0	Foundation	NA
Fireplaces	0		
		Report Created On	10/5/2021

Town of Naugatuck, CT

Valuation Summary		$($ Assessed value $=70 \%$ of Appraised Value)		Sub Areas		
Item	Appr	sed	Assessed	Subarea Type	Gross Area (sq ft)	Living Area (sq ft)
Buildings	7700130		5390070	First Floor	52251	52251
Extras	75540		52880	Canopy	4540	0
Improvements				Lower Level,Finished	34567	34567
Outbuildings	52530		36790	Slab	15283	0
Land	944700		661290			
Total	8772900		6141030			
Outbuilding and Extra Features						
Type		Description				
Paving Asphalt		25000 S.F.				
MERC VAP/FLU		2 UNITS				
Lights (1)		7 UNITS				
W/TRIPLE LIGHT		1 UNITS				
W/DOUBLE LIGHT		2 UNITS				
Sprnklr Enclos		86800 S.F.				
CENTRAL AC		4450 S.F.		-		
Freight Elev		2 STOPS				
Shed Good		192 S.F.				
		Total Area	106641	86818		

Sales History

Owner of Record	Book/ Page	Sale Date	Sale Price
BOROUGH OF NAUGATUCK	$0327 / 0090$	$1989-01-27$	0

Exhibit C

Construction Drawings

4. Do not mstal cabl grounong kit at a beno and alwars drect ground conouctor
5. Nut d wastir shall be placed on the front side of the grouno bar and bolted on
6. All grounong parts and equipment to ee suppled and installed er contracto
7. THEE contractor shall be responsibe for intalumg adomonal grouno bar as
g. ENSURE THE WRE INSULATION TERMINATON IS WTHIN $1 / 8{ }^{\text {" }}$ of THE BaRREL (No SHINERS).
no scale

LUG DETAIL	No Scale	4		No Scale	5	NOT USED	no scale	6
NOT USED	No SCALE	7	NOT USED	No Scale	8	NOT USED	No scale	9

Exothermic connection mechanical connection buss bar insulator CHEMCAL ELEGTROLTIC GROUNOING SYSTEM test chemichl electroltic grounding system EXOTHERMC WIH INSPECTION SLEEVE grounding bar GRound rod test ground rod with inspection sleeve SINGLE POLE SWTCH		${ }^{\text {a }}$	ANCHOR Bolt	＊	${ }^{\text {NCH }}$	
	\square	${ }_{\text {ac }}^{\text {ab }}$			INTEROR Pouno S	－
	\pm	${ }^{\text {a }}$ OL	ADoorional	$\stackrel{4}{4}$	LIEER FEET	$\square 0$
	\bigcirc	${ }_{\text {ate }}^{\text {AFF }}$		$\xrightarrow[\text { mas }]{\text { LTE }}$		，
	－${ }^{\text {a }}$	Acl	ABOVE GROUNO LEvEL	max	maximum	
	－	AC AUM den		${ }_{\text {MECH }}^{\text {M }}$	MCCHINE BoLT	wireless．
	，	${ }_{\text {at }}$	Altitrnate	${ }_{\text {MrR }}$	Menvecaturer	
	吅	${ }_{\text {ANT }}^{\text {AProx }}$	${ }_{\text {ANTENNA }}$	${ }_{\text {MıB }}$	Matitr cround gar	5701 SOUTH SANTA FE RERE
	年回厂	Arch		Msc	MISCELUNEOUS	
		${ }^{\text {ats }}$	AUTOMTTC TRTNSEER SWTCH	wn	M	
	$\$$	${ }_{\text {anc }}^{\text {anc }}$	AMERICAN WRE GAUGE battery	${ }_{\text {Mrs }}^{\text {Mw }}$	MMVUNL TRANSER SWTCH	（（必））
	あ	${ }_{\text {BLK }}^{\text {810 }}$	Bulung Block	NEC	Nationl flectric COOE	CS northeist
DUPLEX RECEPTACLE	的	${ }_{\text {викG }}$	elock ${ }_{\text {blocking }}$	NM No．	NEMTON MEIERS Numer	NSS ${ }_{\text {SITE SOLUTIONS }}^{\text {NORTHEST }}$
					Number	＋1／
FLUORESCENT LIGHTING FIXTURE （2）TWO LAMPS $48-T 8$		${ }_{\text {cor }}^{\text {Bric }}$	RaRE TNNED COPPER CONOUCTOR	NTS	${ }_{\text {N }}^{\text {Not TO SCALE }}$	NFINIGYQ
				$\stackrel{\text { Ocha }}{\text { OSHa }}$		NFINISY
	（50）	${ }_{\text {cher }}^{\text {cher }}$		OPNG	OPCENG Prcast Concere	FROM ZERO TO INFINIGY
SMOKE Deticction（0C） Emergencr lohting（DC）	8	${ }_{\text {cab }}^{\text {cib }}$	celing	${ }_{\text {Pcs }}^{\text {P／C }}$	Precast concrit PERSONL comuncation servces	
SECURITY LIGHT W／PHOTOCELL LITHONIA ALXW LED－1－25A400／51K－SR4－120－PE－DDBTXD		CLR	clear counn	${ }_{\text {Pra }}^{\text {PCO }}$		
		comm conc conc	coumon concreie	${ }_{\text {Prem }}^{\text {PRC }}$		
CHAN LINK FENCE	－x	${ }^{\text {constr }}$	Constructon	${ }_{\text {PsFI }}$	pounos per square foot pound per square inch	
WOOO／WROUGHT IRON FENCE	$\rightarrow-\square-\square-\square-\square$	${ }_{0}$	DIRECT CURRENT	${ }_{\text {PWP }}^{\text {PT }}$		
WALL STRUCTURE TZ		OEPT	DEEPRRMENT DOUGLAS	$\stackrel{\text { ar }}{ }$	Poundrur	
LEASE AREA	－－－ー－ーーーーー－－	${ }^{\text {OH }}$	dinmerer	${ }_{\text {Rect }}^{\text {Red }}$	$\underset{\substack{\text { Radus } \\ \text { Rectrier }}}{ }$	
Propertr line（PL） Stitacks	－－－－－－－－	（inc	Danconl DMMESSION	Ref	Reference	
SEtaACKs	－－－－－－－－－－－－－－－－－－－－－－－－－－－1－1	ows	DRewnc	${ }_{\text {REINF }}^{\text {Reco }}$	RENFORCEMENT REOURED	
ICE BRIOE	过	${ }_{\text {en }}^{\text {oma }}$	${ }_{\text {dowel }}^{\text {DOCH }}$	Ret	remote electric tit	
CAABLE Trar WATER LINE		Ec	EEECTRCAL Conouctor	${ }_{\text {RMC }}^{\text {RF }}$		
	－w－w－w－w－w－	${ }_{\text {ELece }}^{\text {EL }}$	Elevaton	${ }_{\substack{\text { Ruc } \\ \text { RRH }}}$		
UNOERGROUND POWER UNORGROUND TELCO	－UGP－UGG－UGP－UGG－UGP－	${ }_{\text {ent }}^{\text {Eng }}$		${ }_{\text {Rew }}^{\text {RRU }}$		DRAWN BY： CHECKED Br：$^{\text {APPPROVED BY：}}$
OVERHEAD POWER		E0	Ecual	${ }_{\text {SHT }}^{\text {SHH }}$	SCHEDULE SHET	
		${ }_{\text {ExP }}^{\text {Exp }}$		Smo	Smart integated access dence	Rrfs Rev \＃：
OVERHEAD TELCO UNDERGROUND TELCO／POWER	UGT／P－UGT／P－UGT／P－UGT／P－	${ }_{\text {FAB }}^{\text {E／}}$		${ }_{\text {spec }}^{\text {sma }}$	Stimecricaton	CONSTRUCTION
above ground powerabove ground telco	${ }_{\text {AGP－}} \mathrm{AGP}^{\text {－}}$ AGP－AGP－AGP－	${ }_{\text {F }}$	${ }^{\text {FNISH }}$ fioor	so	SOUARE STANLESS Steel	DOCUMENTS
	－agt－agt－agt－agt－agt－	${ }_{\text {Fig }}$		sto	Stanorid	SUBmitals
ABOVE Ground telco／powerWorkpoint	GT／P	${ }^{\text {fn }}$	Fwnsh（E）	${ }_{\text {tremp }}^{\text {stim }}$	Stel temoparar	REV DATE DESCRIPTION
		fr fon	foorr founoation	${ }_{\text {tuk }}$	THICNEEs	
section referencedetall refrenence	$\frac{x}{x-x}$	Foc Fom	FACE OF CONCREIE	$\mathrm{TMA}_{\text {TN }}$	Tower mounte AMPuIfer	${ }^{1}$ 11／1／03／21
	（ $\frac{x}{x-x}$	${ }_{\text {ros }}$		${ }_{\text {ToA }}^{\text {ToC }}$	Top of ATENM	
detal refrence		${ }_{\text {fs }}^{\text {fow }}$	FACE Of WALL FNSH SURFACE	ToF	Top of foundoation	
		$\stackrel{\sim}{\text { Tr }}$	${ }_{\text {foot }}^{\text {footng }}$	${ }_{\text {cos }}^{\text {Top }}$	TOP Of PLITE（PARAEET）	ARE PROJECT NuMBER
		${ }^{\text {a }}$ a	gave	${ }_{\text {Tow }}^{\text {Tow }}$		2039－Z5555C
		Cral		${ }_{\text {TP }}$	${ }^{\text {Tr Prich }}$	
		${ }_{\text {cul }}^{\text {GLB }}$	Glue lammated eeam	ub	Unotergworime	BOHVNOO184A
		cep coso cos	GLLOONL Posmonnc sistem	UNO UuTs	UNLESS NOEED OHHERMSE	641 MAPLEE HILL ROAD
			cround cioan sitem for moble	ups	UNTERRUPTILELE POWER STSTEM（OC Power plant）	NAUGATUCK，CT 06770
		${ }_{\substack{\text { Hog } \\ \text { Hor }}}$		${ }_{\text {w }}^{\text {wif }}$	VERIFED IN FELD WIOE	SHEET TTLE
		Hor $\substack{\text { Her } \\ \text { HVRC } \\ \text { HaC }}$		w／	WTH	LEGEND AND ABBREVIATIONS
			неgнt		WEATHERPROOF wecht	SHEET NUMEER
	LEGEND				ABBREVIATIONS	GN－1

SITE ACTVIT REQUIREMENTS:

1. NOTICE TO PROCEED - NO WORK SHAL COMMENCE PRIOR TO CONTTACTOR RECENING A WRITEN NOTICE TO PROCEED (NTP) AND THE ISSUANCE OF A PURCHASE ORDER. PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE
WIRELESS, LLC. AND TOWER OWNER NOC \& THE DISH WRELESS, LLC. AND TOWER OWNER CONSTRUCTON MANAGER.
2. "LOOK UP" - DISH WIRELESS, LlC. AND TOWER OWNER SAFETY CLIMB REQUIREMENT:

THE INTEGRIT OF THE SAFETY CLIMB AND ALL COMPONENTS OF THE CLIMBING FACILITY SHALL BE CONSIDRED DURING ALL STAGES
OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODIFICATION, MOUNT REINFORCEMENTS, AND/OR EQUPMENT INSTALLATONS SHALL OF DESIGN, INSTALATION, AND INSPECTION. TOWER MODIFCCATON, MOUNT REENNORCEMENTS, AND/OR EQUPMENT INSTALATIONS SEALL
NOT COMPROMISE THE INTEGRITY OR FUNCTONAL USE OF THE SAFETY CLMB OR ANE COMPONENTS OF THE CLIMBING FACILTH ON

3. PRIOR TO THE START OF CONSTRUCTION, ALL REOURED JURISIICTIONAL PERMITS SHALL BE OBTAANED. THIS INCLUDES, BUT
IS NOT LIMTED TO, BULDING, ELECTRICAL, MECHANICAL, FIRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONING. AFTER ONSITE ACTVTIES

4. AL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMTED TO, ERECTION PLANS, RIGGING PLANS, CLIMBBING
PLANS, AND RESCUE PLANS SHALL BE THE RESPONIBILIT OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTANED HEREIN, ANO SHALL MEET ANSI/ASSE A10.48 (LATEST EDTION); FEDERAL, STATE, AND LOCAL REGULATIONS;
AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARS RELATED TO THE CONSTRUCTON ACTMTIES BEING PERFORMED. ALL RIGGIN PLANS SHAL ADHERE TO ANSI/ASSE A10.48 (LLTEST EDITION) AND DISH WIRELLESS, LLC. AND TOWER OWNER STANDARDS, INCLUDING
THE REQURED INVOLVEMENT OF A QUALIIED ENGINEER FOR CLASS IV CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN THE REQUURED INVOLVEMENT O F A QUALIFED ENGINE
ACCORDANCE WTH ANSI/TA- 322 (LATEST EDITION).
5. ALL SITE WORK TO COMPLY WITH DISH WIRELESS, LLC. AND TOWER OWNER INSTALLATION STANDARDS FOR CONSTRUCTION
ACTVTIES ON DISH WIRELESS, LLC. AND TOWER OWNER TOWER SITE AND LATEST VERSION OF ANSI/TIA-1019-A-2012 "STANDARD

7. AL MATERIALL FURNSHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WITH ALL APPLCABLE CODES, REGLLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH AL LAWS, ORDINANCES RUUES AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES,
REGULTIONS AND LAWFUL ORDERS OF ANY PUBLIC AUTHORITY REGARDING THE PERFORMANCE OF THE WORK. ALL WORK CARRIE, RUT SHAL COMPLY WITH ALL APPLCABLE MUUNLIPAL ANO UTLITY COMPANY SPECFICCATIONS AND LOCAL JURISICTIONAL COOESS

9. THE CONTRACTOR SHALL CONTACT UTLITT LOCATING SERVICES INCLUDING PRVATE LOCATES SERVICES PRIOR TO THE START
OF CONSTRUCTON.

 FALL PROTECTI
PROCEDURES.
11. ALL SITE WORK SHALL Be AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND DISH PROJECT SPECIFICATIONS,
LATEST APROV REVIION.
12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULTING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF
THE WORK. IF NEESSARY, RUBBISH, STUMPS, DEBRIS, STICKS, STONES AND OTHER REFUSE SHALL BE REMOVED FROM THE SITE AND THE WORK. IF NECELSAAK
DISPOSED OF LEEALLY.
13. ALL Existing inactive sewer, water, gas, electric and other utilites, which interfere with the execution of the WORK, SHALL BE REMOVED AND/OR CAPPED, PLUGGED OR OTHERWISE DISCONTINED AT POINTS WHICH WILL NOT INTERFERE WTH
THE EXECUTON OF THE WORK, SUBJECT TO THE APPROVAL OF DISH WIRELESS, LC. AND TOWER OWNER, AND/OR LOCAL UTLTIES. Th. THE CONTRACTOR SHAL PROVIDE STEE SIINAGE IN ACCORDANCE WITH THE TTCCHNICAL SPECIIFCATIN FFR STEE SIGNAGE
REQUIRED BY LOCAL JURISOICTON AND SIGNAGE REQURED ON INDNIDUAL PIECES OF EQUPMENT, ROOMS, AND SHELTERS.
15. THE SIte SHALL be graded to Cause surface water to flow away from the carrier's equipment and tower areas. THE SUB GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED SURFACE
APPICATIN

18. CONTRATTOR SHAL MINIIZE DIITURBANCE TO EXITTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF
REQURED DURING CONSTRUCTION, SHALL BE IN CONFORMACE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL 19. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY DAMAGLD PART SHALL BE REPARED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF OWNER. 20. CONTRACTOR SHALL LEGALLY AND PROPRERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTE
REMOVED FROM THE EXISTING FACLITY. ANTENNAS AND RADIOS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED
LOCATION.

22. NO FILL OR EMBANKMEN MATERIAL SHALL Be PLACED on frozen ground. frozen materials, snow or ice shall not
BE PLACED IN ANY FILL OR EMBANKMENT.

GENERAL NOTES

1.FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEFINTIONS SHALL APPLY: CONTRACTOR:GENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION
CARRIER:IISH WIRELESS, Llc.
TOWER OWNER:TOWER OWNER
2. THESE DRAWINGS HAVE BEEN PREPARED USING STANDARD OF PROFESSIONAL CARE AND COMPLETENESS NORMALY WORK DEPICTED WLL BE PERFORMED BY AN EXPERENCED CONTRACTOR AND/OR WORKPEOPLE WHO HAVE A WORKING KNOWLEDGE OONDTION OR ELEMENT IS (OR CAN BE) EXPLCITLY SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL USE INDUSTRY ACCEPTE CONDITION OR ELEMENT IS (OR CAN BEE EXPLCITLY SHOON ON TTESE DRAWWG
STANDARD GOOD PRACTICE FOR MISCELANEOUS WORK NOT EXPLCITLY SHOWN.
3. THESE DRAWINGS REPRESENT THE FINSHED STRUCTURE THEY DO NOT INDICATE THE MEANS OR METHODS OF
CONSTRUCTON THE CONTRACTOR SHALL BE SOELELY RESPONSIBLE FOR THE CONTRUCTION MEANS, METHODS, TECHNIQUES

SEQUENCES, AND PROCEDURES. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY FOR PROTECTION OF LIFE AND PROPERTO DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT BE LIMTTED TO, BRACING, FORMWORK, SHORING, ETC. SITE VISTST BY THE ENGINER OR HIS REPRESENT
OBSERVATON OF THE FINISHED STRUCTURE ONLY.
 THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DEEALLS, GENERAL NOTESS ANO SAECIFCATIONS,
GREATER, MORE STRICT REQUREMENTS, SHALL GOVERN. IF FURTHER CLARIIICATON IS REQURED CONTACT THE ENGINER OF GREATER,
RECORD.
SUBSTANTAL EFFORT HAS BEEN MADE TO PROVIDE ACCURATE DIMENSIONS AND MEASUREMENTS ON THE DRAWINGS TO ASSIST
IN THE FABRICATION AND/OR PLACEMENT OF CONSTRUCTION ELEMENTS BUT IT IS THE SELE RESPONSIBLITT OF THE CONTRACTOR TO

FABILATION OR CUTING OF ANY NEW OR ELISTING CONSTRUCTION ELLEMENTS. IF IT I I DETERMINED THAT THERE ARE
DISCREPANCIES AND/OR CONFLCTST WITH THE CONSTRUCTION DRAWIGS THE ENGINEER OF RECORD IS TO BE NOTIFED AS SOON AS
POSSILLE. Possible.
 EXISTING CONDITIONS AN TT CONFRM THAT THE WORK CAN BE ACCOMPLLSHED AS SHOWN ON THE
DISREPANY FOUND SHALL BE BROUGHT TO THE ATENTION OF CARRIER POC AND TOWER OWNER.
7. ALL MATERALS FURNISHED AND INSTALLED SHALL BE IN STRICT ACCORDANCE WTH ALL APPLICABLE CODES, REGLATIONS
AND ORDINANCES. CONTRACTOR SHALL ISSUE ALL APPROPRIATE NOTICES AND COMPLY WTH ALL LAWS, ORDINANCES, RULES, REGULATIONS AND LAWFUL ORDERS OF ANY PUBLLC AUTHORITY REGAROING THE PERFORMANCE OF THE WORK. ALL WORK CARRIED
 UNLESS NOTED OTHERWISE, THE WORK SHALL INCLLDE FURNISHHN MMAT
SECESSARY TO COMPLETE ALL INSTALATONS AS ANOCATED ON THE DRAWINGS.
9. THE CONTRACTOR SHALL INSTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATION
10. IF THE SPECIFIED EQUIPMENT CAN NOT BE INSTALLED AS SHOWN ON THESE DRAWINGS, THE CONTRACTOR SHALL PROPOSE
AN ALTERNTEV INSTALATION FOR APPROVAL BY THE CARRER AND TOWER OWNER PRIOR TO PROCEEDNG WTH ANY SUCH CHANGE CONTRACTOR IS TO PERFORM A SITE INVESTIGATION, BEFORE SUBMITING BIDS, TO DEETERMINE THE BEST ROUTING of ALL
CONOUTS FRR POWER, AND TELCO AND FOR GROUNOING CABLES AS SHOWN IN THE POWER, TELCO, AND GROUNOING PLAN
DRAWINGS. DRAWINGS.
12. THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAVEMENTS, CURBS, LANDSCAPING AND STRUCTURES. ANY 13. CONTRACTOR SHALL LLEALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER TEE
REMOVED FROM THE EXISTING FACIITY. ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LCCATON. 14.
basis. CONtractor shall leave premises in clean condition. trash and debris should be removed from site on a daly

(如)
 NSS Noprte isin
 INFINIGY\&
 EROM ZERO TO INFINIGY

DRAWN BY: CHECKED BY:/APPROVED B | RCD | SS | CJW |
| :--- | :--- | :--- |

CONSTRUCTION DOCUMENTS

SUBmitals		
Rev	DATE	DESCRIPTION
-	00/2/21	Sssum for Pegat
$\stackrel{1}{ }$	10/18/21	Remsel per commens
2	11/03/21	Rensec Per camens

2039-75555C
 NAUGATUCK 641 MAPLE HILL ROAD

SHEET TTLE
general notes

AND CONSTRUCTION SPECIFCATION FOR CAST-IN-PLACE CONCRETE ACI 301, ACI 318, ACI 336, ASTM A184, ASTM A185 AND THE DESIGN
2. UNLESS NOTED OTHERWISE, SOIL BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS IS ASSUMED TO bE 1000
ps.
 MORE THAN 90 MINTES SHAL ELAPSE FROM BATCH TIME TO TIME OF PLACE
TEMPERATURE OF CONCREE SHALL NOT EXCED $90^{\circ} \mathrm{F}$ AT TIME OF PLACEMENT.
4. CONCRETE EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN ARR ENTRANING ADMIXTURES. AMOUNT OF AIR ENTRAINMENT TO BE MAXIMUM WATER-TO-CEMENT RATO (W/C) OF 0.45.
5. all steel reinforcing shall conform to astm a615. all welded wire fabric (wwf) shall conform to astm albs. all SPLICES SHALL BE CLASS "B" TENSION SPLLCES, UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE STANDARD 90 DEGREE HOOKS, SPLLCES SHALL BE CLASS "B" TENSION SPLICES, UNLESS NNTED OTHERWISE. ALL HOOK SHALL BE
UNLESS NOTED OTHERWISE. YELD STRENGTH (Fy) OF STANARD DEFORMED BARS ARE AS FOLOWS
\#4 BARS AND SMALLER 40 ks
\#5 BARS AND LARGER 60 ksi
${ }^{6}{ }_{\text {DRAWINGS: }}^{\text {THE }}$
LLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON
CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH $3^{\prime \prime}$
CONCRETE EXPOSED TO EARTH OR WEATHER:
\#6 bars and larger 2^{n}
\#5 bars and smaller 1-1/2

- CONCRETE NOT EXPOSED TO EARTH OR WEATHER:
- slab and walls $3 / 4^{\prime \prime}$
beams and columns $1-1 / 2^{\prime \prime}$

7. A tooled edge or a $3 / 4^{n \prime}$ chamfer shall be provided at all exposed edees of concrete, unless noted otherwise,

ELECTRICAL INSTALATION NOTES:

1. ALE ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WTTH THE PROUECT SPECIFICATIONS, NEC AND ALL APPLCABLL
2. CONDUIT ROUTINGS ARE SCHEMATIC. CONTRACTOR SHALL INSTALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
AND TRIP
3. WIRING, RACEWAY AND SUPPORT METHODS AND MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE NEC.
4. all circuits shall be segregated and maintain minimum cable separation as required by the nec.
4.1. ALL EQUIPMENT SHALL BEAR THE UNDERWRTERS LABORATORIES LABEL OF APPROVAL, AND SHALL CONFORM TO REQUIREMENT OF
THE NATONAL ELECTRICAL COOE.

 GOVERNING JURISDCICTION.
5. EACH END OF EVERY POWER PHASE CONDUCTOR, GROUNDING CONDUCTOR, AND TELCO CONDUCTOR OR CABLE SHALL BE
LABELED WTH COLOR-CORED INSULATION OR ELECTRICAL TAPE (IM BRAND, $1 / 2^{2}$ " PLASTIC ELECTRICAL TAPE WTH UV PROTECTON, OR LABELED WTTH COLOR-CODED INSULATION OR ELECTRICAL TAPE (3 M BRAND,
EQUAL). THE IDENTFICATION METHOD SHALL CONFORM WTH NEC AND OSHA.
6. ALL ELECTRICAL COMPONENTS SHAL BE CLEARLY LABELLE WITH LAMICOID TAGS SHOWING THEIR RATED VOLTAGE, PHASE
CONFGURATION, WIRE CONFIGURATION, POWER OR AMPACITY RATING AND BRANCH CIRCUIT ID NUMBERS (i.e. PANEL BOARD AND CIRCUIT 10's).
7. Panel boapds (id numbers) shall be cleariy labeled with plastic labels.
8. TIE WRAPS ARE NOT ALLOWED.
9. ALL POWER AND EQUPPMENT GROUND WIRING IN TUBBNG OR CONDUUT SHAL BE SINGLE COPPER CONDCTOR (\#14 OR LARGER)
WWTH TTPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE SPECFIIED. SUPPLEMENTAL EQUIPMEN GROUND WIRING LOCATED INDOORS SHALL BE SINGLE COPPER CONDUCTOR (H6 OR LARGER) WITH
TPDE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THWW, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE EPECIFED. 11. PPWER AND CONTROL WIRING IN FLEXIBLE CORD SHALL BE MULTI-CONDUCTOR, TYPE SOOW CORD (\#14 OR LARGER) UNLESS 11. PPWER AND
OTHERWISE SPECFIED.

POWER AND CONTROL WIRING FOR USE IN CABLE TRAY SHALL BE MULTI-CONDUCTOR, TTPE TC CABLE (\#14 OR LARGER), WTH
THPE THHW, THWN, THWN-2, XHHW, XHHW-2, THW, THW-2, RHW, OR RHW-2 INSULATON UNLESS OTHERWISE SPECIFED. 13. ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STHLE, COMPRESSION WIRE LUGS AND WIRE NUTS BY THOMAS AND ALL POWER AND GROUNDING CONNECTIONS SHALL BE CRIMP-STILE, COMPRESSION WIRE LUGS AND WRE NUTS
(OR EQUAL). UUGS AND WIRE NUTS SHALL BE RATED FOR OPERATION NOT LESS THAN $75^{\circ} \mathrm{C}$ ($90^{\circ} \mathrm{C}$ IF AVALABIE).
14. RACEWAY AND CABLE TRAY SHALL be LSted or labeled for electrical use in accordance with nema, ul, ansi/IEEE and 15. ELLCTRICAL METALLIC TUBING (EMT), INTERMEDIATE METAL CONDUIT (IMC), OR RIGID METAL CONDUTT (RMC) SHALL BE USED FOR
EXPOSED INDOOR LCOATIONS.
lect 17. SCHEDULE 40
GRADE PVC CONDUT.
18. LIQUDD-TIIHH FLEEXIBLE METALLIC CONDUIT (LIQUID-TTTE FLEX) SHALL BE USED INDOORS AND OUTDOORS, WHERE VBRATION
OCCURS OR FLXXIBLITT IS NEDEDD. 19. CONDUUT AND TUBBNG FITTINGS SHALL Be THREADED OR COMPRESSION-TPPE AND APPROVED FOR THE LOCATION USED. SET
SCREW FITINGS ARE NOT ACEEPTABE. 20. Cabinets, boxes and wire wars shall be labeled for electrical use in accordance with nema, ul, ansi/ieee and the 21. WIREWAYS SHALL BE METAL WITH AN ENAMEL FINISH AND INCLUDE A HINGED COVER, DESIGNED TO SWING OPEN DOWNWARD (WIREMOLD SPECMATE WIREWAY).
22. Slotted wiring duct shall be pvC and include cover (pandut tipe e or equal).
23. CONDUTTS SHALL BE FASTENED SECURELY IN PLACE WTH APPROVED NON-PERFORATED STRAPS AND HANGERS. EXPLOSNE
DEVICES (i.e. POWDER-ACTUATED) FOR ATACHING HANGERS TO STRUCTURE WIL NOT BE PERMITED. CLOSELY FOLLO THE LINES

DEVICES (i.e. POWDER-ACTUATED) FOR ATTACHING HANGERS TO STRUCTURE WLLL NOT BE PERMITED. CLOSELY FOLOW THE LINES OF

 OBSTRUCTIONS. ENDS OF CONDUTSS SHALL BE TEMP
FROM ENTRRING CONDTS SHALL BE RIGIDY CAM
MALLEABLE ROON LOCKNUT ON OUTSIDE AND INSIDE.
24. EQUIPMENT CABINETS, TERMINAL BOXES, JUNCTION BOXES AND PULL BOXES SHALL BE GALVANIZED OR EPOXY-COATED SHEET STEEL SHALL MEET O
EXTERIOR LOCATIONS.
25. METAL RECEPTACLE, SWTTCH AND DEVCE BOXES SHALL BE GALVANIZED, EPOXY-COATED OR NON-CORRODNG; SHALL MEET OR
EXCEED UL $514 A$ AND NEMA OS 1 AND BE RATED NEMA 1 (OR BETER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR EXCCED UL 514 A AND NEMA OS
BETER) FOR EXTERIOR LOCATONS.
26. NoNMetallic receptacle, switch and device boxes shal meet or exceed nem os 2 (newest pevision) and be rated NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED (WP OR BETER) FOR EXTERIOR LOCATIONS,
THE CONTTACTOR SHALL NOTIF AND OBTAIN NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR DISH WIRELESS, LLC. AND
TOWER OWNER BEFORE COMAENCING WORK ON THE AC POWER DISTRBUTION PANEIS.
${ }^{28 .}$ THE CONTTACTOR SHALL PROVIDE NECEESSARY TAGGING ON THE BREAKERS, CABLES AND DISTRIBUTION PANELS IN ACCORDANCE the col thopertr.
30. ALL EmPT//SPARE CONDUTS that are installed are to have a metered mule tape pull cord instaled.
dish
wireless.

(((中)))
 NSS
 INFINIGY\&
 zero to infinigy The solutions are endies
 \author{

}

DRAWN BY: CHECKED Br: APPRROVED B | RCD | SS | CJW |
| :--- | :--- | :--- | RFDS REV \#

CONSTRUCTION DOCUMENTS

SUвмITALS		
Rev	DATE	DESCRIPTION
\bigcirc	00/2/21	Sssued for peamt
1	101/1/2/2	Rensed Pr commens
2	11/03/21	Rense Pr cowmens

2039-Z5555C
 NAUGATUCK
641 MAPLE HILL ROAD
SHEET TTLE
general notes

GROUNDING NOTES:

1. ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, LIGHTNING PROTECTION AND AC POWER GES'S) S
2. THE CONTRACTOR SHALL PERFORM IEEE FALLOF-POTENTIL RESITANCE TO EARTH TESTING (PER IEEE 1100 AND 81) FOR ACHEVE A TEST RESULT OF 5 OHMS OR LESS.
3. THE CONTRACTOR IS RESPONSIBE FOR PROPERLY SEQUENCING GROUNDNG AND UNDERGROUND CONDUIT INSTALLATION AS TO
PREVENT ANY LOSS OF CONTINUITY NIN THE GROUNDING SYSTEM OR DAMAGE TO THE CONOUIT AND PROVIDE TTESTING RESULTS.
4. METAL CONDUT AND TRAY SHALL BE GROUNDED AND MADE ELECTRICALY CONTINUOUS WITH LISTED BONOING FITTINGS OR BY
BONOING ARROSS THE DISCONTINUIY WITH \#G COPPER WIRE UL APPROVED GROUNOING TTPE CONDUTT CLAMPS.
5. METAL RACEWAY SHAL NOT BE USED AS THE NEC REQURED EQUPMEN GROUND CONDUCTOR. STRANDED COPPER CONDUCTORS
WTH GREN INSULATON, SIZED IN ACCORDANCE WTH THE NEC, SHALL BE FURNISHED AND INSTALLED WTH THE POWER CIRCUTS TO BTS
EOUPMENT
6. EACH CABINET FRAME SHALL BE DIRECLLY CONNECTED TO THE MASTER GROUND BAR WITH GREEN INSULATED SUPPLEMENTAL
EQUPMENT GROUND WRES, \#6 STRANDED COPPER OR LARGER FOR INDOOR BTS; \#2 BARE SOLID TINED COPPER FOR OUTOOOR BTS
7. CONNECTIONS TO THE GROUND BUS SHALL NOT BE DOUBLED UP OR STACKED BACK TO BACK CONNECTIONS ON OPPOSITE SIDE
OF THE GROUND BUS ARE PERMITED

OF THE GROUND BUS ARE PERMITIED.
8. ALL EXTERIOR GROUND CONDUCTORS Between Equipment/Ground bars and the ground ring shall be \#2 solid tinned
9. ALUMINUM CONDUCTOR OR COPPER CLAD STEEL CONDUCTOR SHALL NOT be USED FOR GROUNDING CONNECTIONS
10. Luse of 90° bends in the protection grounding conductors shall be avoided when 45° bends can be adequately
supported.
11. EXOTHERMIC WELDS SHALL be uSED FOR ALL GROUNDING CONnections below grade.
12. ALL GROUND CONNECTIONS ABOVE GRADE (INTERIOR AND EXTERIOR) SHALL BE FORMED USING HIGH PRESS CRIMPS.
13. COMPRESSION GROUND CONNECTIONS MAY BE REPLACED BY EXOTHERMIC WELD CONNECTIONS.
14. ICE BRIDGE BONDING CONDUCTORS SHALL BE EXOTHERMICALLY BONDED OR BOLTED TO THE BRIDGE AND THE TOWER GROUND
15. APPROVED antioxidant coatings (i.e. CONductive gel or paste) shall be used on all compression and bolted ground
16. ALL Exterior ground connections shall be coated with a corrosion resistant material.
17. MISCELLANEOUS ELECTRICAL AND NON-ELECTRICAL METAL BOXES, FRAMES AND SUPPORTS SHALL BE BONDED TO THE GROUND
18. BOND ALL METALLIC OBJECTS WITHIN 6 ft of MAIN GROUND RING WITH (1) \#2 BARE SOLID TINNED COPPER GROUND
CONDCTOR

19 GROUND CONDUCTORS USED FOR THE FACIITY GROUNOING AND LIGHTNING PROTECTION SYSTEMS SHALL NOT BE ROUTED
THROUGH METALIC OBJECTS THAT FORM A RING AROUND THE CONDUCTOR SUCH AS METANC
 SLEEVES THROUGH WALLS OR FLLORS. WHEN IT IS REQUIRED TO BE HOUSED IN CONDUIT TO MEET CODE REQUIREMENTS OR LOCAL
CONOITIONS, NON-METALIC MATERIAL SUCH AS PVC CONOUT SHALL BE USED. WHERE USE OF METAL CONDUIT IS UNAVODABLE (ie., NONMETALLC CONDUIT PROHBITED BY LOCAL CODE) THE GROUND CONDUCTOR SHALL BE BONDED TO EACH END OF THE METAL CONDUIT. 20. ALL GROUNDS THAT TRANSTIION FROM BELOW GRADE TO ABOVE GRADE MUST BE \#2 BARE SOLD TINNED COPPER IN 3/4" NON-METALLIC, FLEXIBLE CONDUIT FROM 24" BELOW GRADE TO WITHIN $3^{\prime \prime}$ TO $6^{\prime \prime}$ OF CAD-WELD TERMINATIN POINT.
OF THE CONDUIT MUST BE SEALED WITH SILCONE CAULK. (ADD TRANSITONING GROUND STANDARD DETAIL AS WELL).
21. BUILDINGS WHERE THE MAIN GROUNDING CONDUCTORS ARE REQUIRED TO BE ROUTED TO GRADE, THE CONTRACTOR SHALL ROUTE
 SYSTEM, THE GROUNDING CONDUCTORS SHALL NOT BE SMALER THAN $2 / 0$ COPPER. ROOFTOP GROUNDING RING SHALL BE BONDED TO THE EXISTING GROUNDING SYSTEM, THE BULDING STEEL COLUMNS, LIGHTNING PROTECTION SYSTEM, AND BUILDING
(FERROUS OR NONFERROUS METAL PIPING ONLY). DO NOT ATACH GROUNOING TO FIRE SPRINLER SYSTEM PIPES.

5701 SOUTH SANTA FE DRVE
LITLETON, $C O 80120$

| | |
| :--- | :--- | :--- | :--- | :--- | :--- |

SHEET TTLLE
general notes

Exhibit D

Structural Analysis Report

Structural Analysis Report

December 7, 2021

Tarpon Site Name:	Naugatuck
Tarpon Site ID:	CT1008
Dish Network Site ID:	BOHVN00184A
Airosmith Project ID:	Tarpon ENG 2020
	641 Maple Hill Road
	Naugatuck, CT 06770
Site Location	New Haven County
	$41^{\circ} 29^{\prime} 17.24^{\prime \prime}$ N NAD83
	$73^{\circ} 01^{\prime} 12.73^{\prime \prime}$ W NAD83
Applicable Code	2018 CT State Building Code / 2015 IBC
Applicable Design Standard	ANSI/TIA-222-H
Structure	180^{\prime} Monopole
Demand-Capacity Ratio (CSR)	79.5%
Overall Result	Pass

PREPARED FOR:

TARPQN TOWERS

APPROVED BY: Joseph R. Johnston, P.E. CT License \#: PEN. 0029460

Table of Contents

1.0 Scope 2
2.0 Supporting Documentation 2
3.0 Analysis Code Requirements 2
4.0 Existing \& Reserved Loading 3
5.0 To Be Removed Loading 3
6.0 Proposed Loading 3
7.0 Final Configuration 4
8.0 Results and Conclusions 4
9.0 Assumptions \& Limitations 5

1.0 Scope

Airosmith Engineering has been requested to perform a structural analysis on the existing 180 ft Monopole for Dish Network's proposed install. The structure was analyzed using tnxTower Version 8.0.7 analysis software. Selected output from the analysis is included in this report.

The proposed Dish Network install consists of installing (1) new platform mount, (3) new panel antennas, (6) new radio units, (1) new surge suppressor, and (1) new hybrid line.

2.0 Supporting Documentation

Collocation Application	Dish Network App, dated 3/8/2021
Tower Design Drawings	TAPP Customer Reference \#TP-16944, dated 11/7/2018
Foundation Design Drawings	TAPP Customer Job \#23518-555 dated 11/7/2018
Geotechnical Report	Welti Geotechnical, dated 9/24/2018

3.0 Analysis Code Requirements

Wind Speed	125 mph (3-Second Gust)
Wind Speed with Ice	50 mph (3-Second Gust) w/ 1.0" ice
Design Standard	ANSI/TIA-222-H
Adopted IBC	2018 CT State Building Code / 2015 IBC
Risk Category	II
Exposure Category	C
Topographic Factor Procedure	Method 1, Category 1
Crest Height	0 ft.
HSML (ft.)	690.0 ft.

4.0 Existing \& Reserved Loading

RAD Center (ft.)	Qty.	Appurtenance	Mount Type	Lines	Carrier
177.0	2	DB Spectra DS1F03F36D-D	Platform w/ Handrails	(8) $7 / 8 \prime$	Borough of Naugatuck
	2	DB Spectra DS4C06F36D-D			
167.0	4	Ericsson AIR32	Low Profile Platform	(4) $1 / 4$ " Fiber (1) $5 / 16^{\prime \prime}$ Fiber (2) CAT6	T-Mobile
	4	RFS APXVAA24_43-U-A20			
	4	RFS APX16DWV16DWVSEA20			
	1	Commscope VHLP1-23-CR4B			
	4	Ericsson RRUS-11 B12			
	4	Ericsson RRUS-11 B4			
	4	Ericsson Radio 4478 B71			
	4	Micro Data Telecom MI-554nn Diplexer			

5.0 To Be Removed Loading

RAD Center (ft.)	Qty.	Appurtenance	Mount Type	Lines	Carrier
No loading considered to be removed					

6.0 Proposed Loading

RAD Center (ft.)	Qty.	Appurtenance*	Mount Type	Lines	Carrier
157.0	3	JMA Wireless MX08FRO665-21	Platform w/ Handrails	(1) 1-5/8" Hybrid	Dish Network
	3	Fujitsu TA08025-B604			
	3	Fujitsu TA08025-B605			
	1	Generic Junction Box			

*The results of this analysis considers Dish Networks full 11,000 in² MLA loading
7.0 Final Configuration

RAD Center (ft.)	Qty.	Appurtenance	Mount Type	Lines	Carrier
177.0	2	DB Spectra DS1F03F36D-D	Platform w/ Handrails	(8) $7 / 8^{\prime \prime}$	Borough of Naugatuck
	2	DB Spectra DS4C06F36D-D			
167.0	4	Ericsson AIR32	Low Profile Platform	(4) $1 / 4 / 4$ Fiber (1) $5 / 16^{\prime \prime}$ Fiber (2) CAT6	T-Mobile
	4	RFS APXVAA24_43-U-A20			
	4	RFS APX16DWV16DWVSEA20			
	1	Commscope VHLP1-23-CR4B			
	4	Ericsson RRUS-11 B12			
	4	Ericsson RRUS-11 B4			
	4	Ericsson Radio 4478 B71			
	4	Micro Data Telecom MI-554nn Diplexer			
157.0	3	JMA Wireless MX08FRO665-21	Platform w/ Handrails	(1) 1-5/8" Hybrid	Dish Network
	3	Fujitsu TA08025-B604			
	3	Fujitsu TA08025-B605			
	1	Generic Junction Box			

*The results of this analysis considers Dish Networks full 11,000 in ${ }^{2}$ MLA loading
Coax lines are assumed to be installed inside the pole.

8.0 Results and Conclusions

Upon reviewing the results of this analysis, it is our opinion that the existing structure meets the specified code requirements. The 180^{\prime} monopole structure and foundation are considered acceptable to support the final loading configuration as listed within in this report. The controlling structure and foundation usages are displayed in the tables below:

Structure Usages

Component	Controlling Usage*
Pole	79.5%
Base Plate	55.6%
Anchor Bolts	64.8%

*Listed usage is for the controlling component. Refer to the appendix for detailed results on each individual member

Foundation Usages

Component	Design Reaction	Analysis Reaction	Usage
Axial (kips)	61.0	47.7	78.2%
Shear (kips)	44.0	33.9	77.0%
Moment (k-ft)	5932.0	4203.0	70.9%

The tower foundation is acceptable in comparison to original design reactions.

We appreciate the opportunity to be of service on this project. If you have any questions, require additional information, or actual conditions differ from those as detailed in this report, please contact me via the information below:

engineering@airosmithdevelopment.com

9.0 Assumptions \& Limitations

The following assumptions have been made for this analysis:

- Structural calculations are completed assuming all information provided to Airosmith Development is accurate and applicable to this site.
- The existing structures were designed, manufactured, and constructed in accordance with the applicable codes and standards in effect at that time
- The existing structures have been properly maintained in accordance with industry standards.
- All structural and foundation elements, unless otherwise noted, are in good condition, and are capable of supporting their original design capacity.
- Steel grades have been assumed as follows, unless otherwise noted
- Channel, Solid Round, Angle \& Plate ASTM A36 Gr. 36
- HSS (Rectangular) ASTM A500 Gr. B
- HSS (Pipe) ASTM A53 Gr. B
- Threaded Rods ASTM A36 Gr. 36
- Calculation-specific assumptions are as noted in the attached appendix

179.0 ft

	DESIGNED APPURTENANCE LOADING				
	TYPE	ELEVATION	TYPE	ELEVATION	
	Angle Platform w/ Handrails (Borough	177	(2) RRUS 11 (Band 12) (T-Mobile)	167	
17 П П П! П	of Naugatuck)		RRUS 11 (Band 12) (T-Mobile)	167	
	(2) DS1F03F36D-D (Borough of Naugatuck)	177	RRUS 11 (Band 12) (T-Mobile)	167	
			(2) RRUS 11 (Band 4) (T-Mobile)	167	
	(2) DS4C06F36D-D (Borough of Naugatuck)	177	RRUS 11 (Band 4) (T-Mobile)	167	
	Angle Low Profile Platform (T-Mobile)	167	RRUS 11 (Band 4) (T-Mobile)	167	
	(2) AIR 32 (T-Mobile)	167	(2) RRH-4478 (T-Mobile)	167	
$\square \square \square \square$	AIR 32 (T-Mobile)	167	RRH-4478 (T-Mobile)	167	
	AIR 32 (T-Mobile)	167	RRH-4478 (T-Mobile)	167	
	(2) APXVAARR24_43-U-NA20	167	(2) MI-554nn (T-Mobile)	167	
	(T-Mobile)		MI-554nn (T-Mobile)	167	
	APXVAARR24_43-U-NA20 (T-Mobile)	167	MI-554nn (T-Mobile)	167	
	APXVAARR24_43-U-NA20 (T-Mobile)	167	VHLP1-23	167	
	(2) APX16DWV-16DWVS-E-A20 (T-Mobile)	167	$\begin{array}{l}\text { Reserved Loading (} 1 / 3^{*} 11,000 \text { sq. in) } \\ \text { (Dish Network) }\end{array}$	157	
\|		APX16DWV-16DWVS-E-A20 (T-Mobile)	167	Reserved Loading ($1 / 3^{*} 11,000 \mathrm{sq} . \mathrm{in}$) (Dish Network)	157
	APX16DWV-16DWVS-E-A20 (T-Mobile)	167	Reserved Loading (1/3*11,000 sq. in) (Dish Network)	157	

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

TOWER DESIGN NOTES

1. Tower designed for Exposure C to the TIA-222-H Standard.
2. Tower designed for a 125 mph basic wind in accordance with the TIA-222-H Standard
3. Tower is also designed for a 50 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
4. Deflections are based upon a 60 mph wind.
5. Tower Risk Category II.
6. Topographic Category 1 with Crest Height of 0.00 ft
7. TOWER RATING: 79.5\%

ALL REACTIONS

ARE FACTORED

TORQUE 6 kip-ft 50 mph WIND - 1.0000 in ICE

TORQUE 25 kip-ft
REACTIONS - 125 mph WIND

Airosmith Development 318 West Avenue	${ }^{\text {Job: }}$ CT1008 Naugatuck		
	Project: Tarpon ENG 2020		
	Client: Tarpon Towers	Drawn by: BDav	
Phone: (518) 307-8700	Code: TIA-222-H	Date: 03/09/21	Scale: NTS
FAX:	Path: ${ }_{\text {c:IUsersildavenportil }}$	ст	wg No. E-1

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \quad 1 \text { of } 9 \end{aligned}$
	Project	Tarpon ENG 2020	$\begin{aligned} & \text { Date } \\ & \text { 10:36:13 03/09/21 } \end{aligned}$
	Client	Tarpon Towers	Designed by BDavenport

Tower Input Data

The tower is a monopole.
This tower is designed using the TIA-222-H standard.
The following design criteria apply:
Tower base elevation above sea level: 690.00 ft .
Basic wind speed of 125 mph .
Risk Category II.
Exposure Category C.
Simplified Topographic Factor Procedure for wind speed-up calculations is used.
Topographic Category: 1.
Crest Height: 0.00 ft .
Nominal ice thickness of 1.0000 in.
Ice thickness is considered to increase with height.
Ice density of 56 pcf .
A wind speed of 50 mph is used in combination with ice.
Temperature drop of $50^{\circ} \mathrm{F}$.
Deflections calculated using a wind speed of 60 mph .
A non-linear (P-delta) analysis was used.
Pressures are calculated at each section.
Stress ratio used in pole design is 1 .
Tower analysis based on target reliabilities in accordance with Annex S.
Load Modification Factors used: $\mathrm{K}_{\mathrm{es}}\left(\mathrm{F}_{\mathrm{w}}\right)=0.95, \mathrm{~K}_{\mathrm{es}}\left(\mathrm{t}_{\mathrm{i}}\right)=0.85$.
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs
Consider Moments - Horizontals
Consider Moments - Diagonals
Use Moment Magnification
$\sqrt{ }$ Use Code Stress Ratios
$\sqrt{ }$ Use Code Safety Factors - Guys
Escalate Ice
Always Use Max Kz
Use Special Wind Profile
$\sqrt{ }$ Include Bolts In Member Capacity
Leg Bolts Are At Top Of Section
$\sqrt{ }$ Secondary Horizontal Braces Leg
Use Diamond Inner Bracing (4 Sided)
SR Members Have Cut Ends
SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned
\checkmark Assume Rigid Index Plate
$\sqrt{ }$ Use Clear Spans For Wind Area
$\sqrt{ }$ Use Clear Spans For KL/r
\checkmark Retension Guys To Initial Tension
$\sqrt{ }$ Bypass Mast Stability Checks
$\sqrt{ }$ Use Azimuth Dish Coefficients
$\sqrt{ }$ Project Wind Area of Appurt.
$\sqrt{ }$ Autocalc Torque Arm Areas
Add IBC .6D+W Combination
$\sqrt{ }$ Sort Capacity Reports By Component
\checkmark Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules
\checkmark Calculate Redundant Bracing Forces
Ignore Redundant Members in FEA
SR Leg Bolts Resist Compression
All Leg Panels Have Same Allowable
Offset Girt At Foundation
$\sqrt{ }$ Consider Feed Line Torque
$\sqrt{ }$ Include Angle Block Shear Check
Use TIA-222-H Bracing Resist. Exemption
Use TIA-222-H Tension Splice Exemption Poles
$\sqrt{ }$ Include Shear-Torsion Interaction Always Use Sub-Critical Flow
Use Top Mounted Sockets
Pole Without Linear Attachments
Pole With Shroud Or No Appurtenances
Outside and Inside Corner Radii Are
Known

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & 2 \text { of } 9 \end{aligned}$
	Project	Tarpon ENG 2020	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:36:13 03/09/21 } \end{array}$
	Client	Tarpon Towers	Designed by BDavenport

Section	Elevation $f t$	Section Length ft	Splice Length $f t$	Number of Sides	Top Diameter in	Bottom Diameter in	Wall Thickness in	Bend Radius in	Pole Grade
L1	179.00-129.00	50.00	4.75	18	24.0000	33.8500	0.1875	0.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L2	129.00-83.75	50.00	6.00	18	32.5393	42.3892	0.3125	1.2500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$
L3	83.75-43.00	46.75	7.00	18	40.5823	49.7920	0.3750	1.5000	A572-65 (65 ksi)
L4	43.00-0.00	50.00		18	47.6630	57.5130	0.4375	1.7500	$\begin{gathered} \text { A572-65 } \\ (65 \mathrm{ksi}) \end{gathered}$

Tapered Pole Properties

Section	Tip Dia. in	Area in 2	I in 4	r in	C in	I / C $i n^{3}$	J $i n^{4}$	It/Q $i n^{2}$	w in	
L1	24.3413	14.1714	1015.2211	8.4534	12.1920	83.2694	2031.7780	7.0871	3.8940	20.768
	34.3433	20.0334	2868.0370	11.9502	17.1958	166.7871	5739.8478	10.0186	5.6276	
L2	33.9432	31.9649	4194.1497	11.4405	16.5299	253.7305	8393.8181	15.9855	5.1769	16.566
	42.9950	41.7349	9335.1426	14.9372	21.5337	433.5124	18682.5687	20.8714	6.9105	22.114
L3	42.3507	47.8567	9774.3695	14.2736	20.6158	474.1207	19561.6003	23.9329	6.4825	17.287
	50.5023	58.8186	18146.9971	17.5430	25.2943	717.4332	36317.8726	29.4149	8.1034	21.609
L4	49.7311	65.5785	18477.8792	16.7651	24.2128	763.1450	36980.0721	32.7955	7.6187	17.414
	58.3327	79.2565	32619.0722	20.2618	29.2166	1116.4567	65281.0654	39.6358	9.3523	21.377

Tower Elevation ft	Gusset Area (per face) $f t^{2}$	Gusset Thickness in	Gusset Grade	Adjust. Factor A_{f}	Adjust. Factor A_{r}	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals in	Double Angle Stitch Bolt Spacing Horizontals in	Double Angle Stitch Bolt Spacing Redundants in
L1				1	1	1			
179.00-129.00									
L2				1	1	1			
129.00-83.75									
L3 83.75-43.00				1	1	1			
L4 43.00-0.00				1	1	1			

Feed Line/Linear Appurtenances - Entered As Area

Description	Face or Leg	Allow Shield	Exclude From Torque Calculation	Component Type	Placement $f t$	Total Number		$\begin{gathered} C_{A} A_{A} \\ f t^{2} / f t \end{gathered}$	Weight plf
7/8" Coax	C	No	No	Inside Pole	177.00-0.00	8	$\begin{aligned} & \text { No Ice } \\ & \text { 1/2" Ice } \\ & \text { 1" Ice } \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.31 \\ & 0.31 \\ & 0.31 \end{aligned}$
$\begin{gathered} * * \\ 1 / 4^{*} \text { Coax } \end{gathered}$	C	No	No	Inside Pole	167.00-0.00	4	No Ice $1 / 2^{\prime \prime}$ Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.06 \\ & 0.06 \end{aligned}$
5/16" coax	C	No	No	Inside Pole	167.00-0.00	1	No Ice $1 / 2$ " Ice 1" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$
CAT6	C	No	No	Inside Pole	167.00-0.00	2	No Ice 1/2" Ice	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & \\ & \end{aligned}$
	Project	Tarpon ENG 2020	$\begin{aligned} & \text { Date } \\ & \text { 10:36:13 03/09/21 } \end{aligned}$
	Client	Tarpon Towers	Designed by BDavenport

Feed Line/Linear Appurtenances Section Areas

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Tower \\
Section
\end{tabular} \& Tower Elevation ft \& Face \& \(A_{R}\)

$f t^{2}$ \& A_{F}

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $C_{A} A_{A}$ Out Face $f t^{2}$ \& Weight
$l b$

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{179.00-129.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 161.86

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{129.00-83.75} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 175.12

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{83.75-43.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 157.70

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{43.00-0.00} \& A \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 166.41

\hline
\end{tabular}

Feed Line/Linear Appurtenances Section Areas - With Ice

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Tower Section \& \begin{tabular}{l}
Tower \\
Elevation \\
\(f t\)
\end{tabular} \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& Ice
Thickness
in \& \(A_{R}\)
\(f t^{2}\) \& \(A_{F}\)

$f t^{2}$ \& $C_{A} A_{A}$ In Face $f t^{2}$ \& $$
\begin{gathered}
C_{A} A_{A} \\
\text { Out Face } \\
\text { ft }^{2}
\end{gathered}
$$ \& Weight

$l b$

\hline \multirow[t]{3}{*}{L1} \& \multirow[t]{3}{*}{179.00-129.00} \& A \& \multirow[t]{3}{*}{0.991} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 161.86

\hline \multirow[t]{3}{*}{L2} \& \multirow[t]{3}{*}{129.00-83.75} \& A \& \multirow[t]{3}{*}{0.955} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 175.12

\hline \multirow[t]{3}{*}{L3} \& \multirow[t]{3}{*}{83.75-43.00} \& A \& \multirow[t]{3}{*}{0.907} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 157.70

\hline \multirow[t]{3}{*}{L4} \& \multirow[t]{3}{*}{43.00-0.00} \& A \& \multirow[t]{3}{*}{0.815} \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& B \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 0.00

\hline \& \& C \& \& 0.000 \& 0.000 \& 0.000 \& 0.000 \& 166.41

\hline
\end{tabular}

Feed Line Center of Pressure

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$	$C P_{Z}$
			Ice	Ice	
	in	in	in	in	

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & 4 \text { of } 9 \end{aligned}$
	Project	Tarpon ENG 2020	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:36:13 03/09/21 } \end{array}$
	Client	Tarpon Towers	Designed by BDavenport

Section	Elevation	$C P_{X}$	$C P_{Z}$	$C P_{X}$ $I c e$	$C P_{Z}$ $I c e$
			in	in	in
Lt	in	in	0.0000	0.0000	0.0000
L2	$179.00-129.00$	$129.00-83.75$	0.0000	0.0000	0.0000
L3	$83.75-43.00$	0.0000	0.0000	0.0000	0.0000
L4	$43.00-0.00$	0.0000	0.0000	0.0000	0.0000
					0.0000

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Discrete Tower Loads

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& \[
\begin{gathered}
\text { Face } \\
\text { or } \\
\text { Leg }
\end{gathered}
\] \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral \\
Vert \\
\(f t\) \\
\(f t\) \\
ft
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
○
\end{tabular} \& Placement

$f t$ \& \& | $C_{A} A_{A}$ Front |
| :--- |
| $f t^{2}$ | \& | $C_{A} A_{A}$ Side |
| :--- |
| $f t^{2}$ | \& Weight

$l b$

\hline \multirow[t]{3}{*}{Angle Platform w/ Handrails (Borough of Naugatuck)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{177.00} \& No Ice \& 42.40 \& 42.40 \& 2000.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 48.40 \& 48.40 \& 2450.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 54.40 \& 54.40 \& 2900.00

\hline \multirow[t]{3}{*}{(2) DS1F03F36D-D (Borough of Naugatuck)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{177.00} \& No Ice \& 5.58 \& 5.58 \& 63.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 7.83 \& 7.83 \& 104.18

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 10.11 \& 10.11 \& 159.39

\hline \multirow[t]{3}{*}{| (2) DS4C06F36D-D |
| :--- |
| (Borough of Naugatuck) |} \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{177.00} \& No Ice \& 6.16 \& 6.16 \& 50.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.18 \& 8.18 \& 94.30

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 10.17 \& 10.17 \& 150.92

\hline \multicolumn{9}{|l|}{***} \&

\hline \multirow[t]{3}{*}{Angle Low Profile Platform (T-Mobile)} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{167.00} \& No Ice \& 26.10 \& 26.10 \& 1500.00

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 31.60 \& 31.60 \& 1700.00

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 37.10 \& 37.10 \& 1900.00

\hline (2) AIR 32 \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{167.00} \& No Ice \& 5.80 \& 4.41 \& 108.50

\hline \multirow[t]{2}{*}{(T-Mobile)} \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.16 \& 4.75 \& 150.34

\hline \& \& \& 0.00 \& \& \& 1" Ice \& 6.52 \& 5.10 \& 197.22

\hline AIR 32 \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{167.00} \& No Ice \& 5.80 \& 4.41 \& 108.50

\hline \multirow[t]{2}{*}{(T-Mobile)} \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.16 \& 4.75 \& 150.34

\hline \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 6.52 \& 5.10 \& 197.22

\hline AIR 32 \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 4.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{167.00} \& No Ice \& 5.80 \& 4.41 \& 108.50

\hline \multirow[t]{2}{*}{(T-Mobile)} \& \& \& 0.00 \& \& \& 1/2" Ice \& 6.16 \& 4.75 \& 150.34

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 6.52 \& 5.10 \& 197.22

\hline (2) \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{167.00} \& No Ice \& 8.73 \& 3.20 \& 127.80

\hline APXVAARR24_43-U-NA20 \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.33 \& 4.11 \& 165.83

\hline (T-Mobile) \& \& \& 0.00 \& \& \& $1{ }^{1 \prime}$ Ice \& 9.93 \& 5.04 \& 210.98

\hline \multirow[t]{3}{*}{| APXVAARR24_43-U-NA20 |
| :--- |
| (T-Mobile) |} \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{167.00} \& No Ice \& 8.73 \& 3.20 \& 127.80

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.33 \& 4.11 \& 165.83

\hline \& \& \& 0.00 \& \& \& $1^{\prime \prime}$ Ice \& 9.93 \& 5.04 \& 210.98

\hline \multirow[t]{3}{*}{| APXVAARR24_43-U-NA20 |
| :--- |
| (T-Mobile) |} \& \multirow[t]{3}{*}{C} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{167.00} \& No Ice \& 8.73 \& 3.20 \& 127.80

\hline \& \& \& 0.00 \& \& \& 1/2" Ice \& 9.33 \& 4.11 \& 165.83

\hline \& \& \& 0.00 \& \& \& $1{ }^{\prime \prime}$ Ice \& 9.93 \& 5.04 \& 210.98

\hline (2) \& \multirow[t]{4}{*}{A} \& \multirow[t]{4}{*}{From Face} \& 3.00 \& \multirow[t]{4}{*}{0.0000} \& \multirow[t]{4}{*}{167.00} \& No Ice \& 8.34 \& 4.61 \& 53.90

\hline APX16DWV-16DWVS-E-A \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.75 \& 4.99 \& 106.81

\hline 20 \& \& \& 0.00 \& \& \& 1 " Ice \& 9.17 \& 5.38 \& 165.33

\hline (T-Mobile) \& \& \& \& \& \& \& \& \&

\hline APX16DWV-16DWVS-E-A \& \multirow[t]{3}{*}{B} \& \multirow[t]{3}{*}{From Face} \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \multirow[t]{3}{*}{167.00} \& No Ice \& 8.34 \& 4.61 \& 53.90

\hline 20 \& \& \& 0.00 \& \& \& 1/2" Ice \& 8.75 \& 4.99 \& 106.81

\hline (T-Mobile) \& \& \& 0.00 \& \& \& 1" Ice \& 9.17 \& 5.38 \& 165.33

\hline APX16DWV-16DWVS-E-A \& C \& From Face \& 3.00 \& 0.0000 \& 167.00 \& No Ice \& 8.34 \& 4.61 \& 53.90

\hline
\end{tabular}

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } 5 \text { of } 9 \end{aligned}$
	Project	Tarpon ENG 2020	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:36:13 03/09/21 } \end{array}$
	Client	Tarpon Towers	Designed by BDavenport

Description	$\begin{gathered} \text { Face } \\ \text { or } \\ \text { Leg } \end{gathered}$	Offset Type	Offsets: Horz Lateral Vert $f t$ $f t$ $f t$	Azimuth Adjustment 0	Placement $f t$		$C_{A} A_{A}$ Front $f t^{2}$	$C_{A} A_{A}$ Side $f t^{2}$	Weight $l b$
20			0.00			1/2" Ice	8.75	4.99	106.81
(T-Mobile)			0.00			$1{ }^{\prime \prime}$ Ice	9.17	5.38	165.33
(2) RRUS 11 (Band 12) (T-Mobile)	A	From Face	3.00	0.0000	167.00	No Ice	2.52	1.07	55.00
			0.00			1/2" Ice	2.72	1.21	74.32
			0.00			1" Ice	2.92	1.36	96.56
RRUS 11 (Band 12) (T-Mobile)	B	From Face	3.00	0.0000	167.00	No Ice	2.52	1.07	55.00
			0.00			1/2" Ice	2.72	1.21	74.32
			0.00			$1{ }^{\prime \prime}$ Ice	2.92	1.36	96.56
RRUS 11 (Band 12) (T-Mobile)	C	From Face	3.00	0.0000	167.00	No Ice	2.52	1.07	55.00
			0.00			1/2" Ice	2.72	1.21	74.32
			0.00			1" Ice	2.92	1.36	96.56
(2) RRUS 11 (Band 4) (T-Mobile)	A	From Face	3.00	0.0000	167.00	No Ice	2.57	1.07	44.00
			0.00			1/2" Ice	2.76	1.21	63.57
			0.00			1" Ice	2.97	1.36	86.08
RRUS 11 (Band 4) (T-Mobile)	B	From Face	3.00	0.0000	167.00	No Ice	2.57	1.07	44.00
			0.00			1/2" Ice	2.76	1.21	63.57
			0.00			$1{ }^{\prime \prime}$ Ice	2.97	1.36	86.08
RRUS 11 (Band 4) (T-Mobile)	C	From Face	3.00	0.0000	167.00	No Ice	2.57	1.07	44.00
			0.00			1/2" Ice	2.76	1.21	63.57
			0.00			1" Ice	2.97	1.36	86.08
(2) RRH-4478 (T-Mobile)	A	From Face	3.00	0.0000	167.00	No Ice	2.57	1.07	44.00
			0.00			1/2" Ice	2.76	1.21	63.57
			0.00			$1{ }^{\prime \prime}$ Ice	2.97	1.36	86.08
RRH-4478 (T-Mobile)	B	From Face	3.00	0.0000	167.00	No Ice	2.57	1.07	44.00
			0.00			1/2" Ice	2.76	1.21	63.57
			0.00			1" Ice	2.97	1.36	86.08
RRH-4478 (T-Mobile)	C	From Face	3.00	0.0000	167.00	No Ice	2.57	1.07	44.00
			0.00			$1 / 2^{\prime \prime} \text { Ice }$	2.76	1.21	63.57
			0.00			1" Ice	2.97	1.36	86.08
(2) MI-554nn (T-Mobile)	A	From Face	3.00	0.0000	167.00	No Ice	0.62	0.45	14.77
			0.00			1/2" Ice	0.72	0.54	20.63
			0.00			1" Ice	0.84	0.65	28.16
MI-554nn (T-Mobile)	B	From Face	3.00	0.0000	167.00	No Ice	0.62	0.45	14.77
			0.00			1/2" Ice	0.72	0.54	20.63
			0.00			1" Ice	0.84	0.65	28.16
MI-554nn (T-Mobile)	C	From Face	3.00	0.0000	167.00	No Ice	0.62	0.45	14.77
			0.00			1/2" Ice	0.72	0.54	20.63
			0.00			$1{ }^{\prime \prime}$ Ice	0.84	0.65	28.16
**									
Reserved Loading	A	From Face	4.00	0.0000	157.00	No Ice	25.46	25.46	1200.00
(1/3*11,000 sq. in)			0.00			1/2" Ice	26.83	26.83	1560.00
(Dish Network)			0.00			1" Ice	28.21	28.21	1920.00
Reserved Loading	B	From Face	4.00	0.0000	157.00	No Ice	25.46	25.46	1200.00
(1/3*11,000 sq. in)			0.00			1/2" Ice	26.83	26.83	1560.00
(Dish Network)			0.00			$1{ }^{\prime \prime}$ Ice	28.21	28.21	1920.00
Reserved Loading	C	From Face	4.00	0.0000	157.00	No Ice	25.46	25.46	1200.00
($1 / 3 * 11,000$ sq. in)			0.00			1/2" Ice	26.83	26.83	1560.00
(Dish Network)			0.00			$1{ }^{\prime \prime}$ Ice	28.21	28.21	1920.00

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } \\ & \\ & 6 \text { of } 9 \end{aligned}$
	Project	Tarpon ENG 2020	Date $10: 36: 1303 / 09 / 21$
	Client	Tarpon Towers	Designed by BDavenport

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Description \& Face or Leg \& Dish Type \& \begin{tabular}{l}
Offset \\
Type
\end{tabular} \& \begin{tabular}{l}
Offsets: \\
Horz \\
Lateral Vert \(f t\)
\end{tabular} \& \begin{tabular}{l}
Azimuth Adjustment \\
0
\end{tabular} \& \begin{tabular}{l}
\(3 d B\) \\
Beam \\
Width \\
○
\end{tabular} \& Elevation

ft \& \begin{tabular}{l}
Outside Diameter

ft

 \& \&

Aperture

Area

$f t^{2}$
\end{tabular} \& Weight

\hline \multirow[t]{3}{*}{VHLP1-23} \& \multirow[t]{3}{*}{A} \& \multirow[t]{3}{*}{Paraboloid w/Shroud (HP)} \& From \& 3.00 \& \multirow[t]{3}{*}{0.0000} \& \& \multirow[t]{3}{*}{167.00} \& \multirow[t]{3}{*}{1.27} \& No Ice \& 1.28 \& 14.00

\hline \& \& \& Face \& 0.00 \& \& \& \& \& 1/2" Ice \& 1.45 \& 21.44

\hline \& \& \& \& 0.00 \& \& \& \& \& $1{ }^{\prime \prime}$ Ice \& 1.62 \& 28.89

\hline
\end{tabular}

Load Combinations

Comb. No.	Description
1	Dead Only
2	1.2 Dead+1.0 Wind 0 deg - No Ice
3	0.9 Dead+1.0 Wind 0 deg - No Ice
4	1.2 Dead+1.0 Wind 30 deg - No Ice
5	0.9 Dead+1.0 Wind 30 deg - No Ice
6	1.2 Dead+1.0 Wind 60 deg - No Ice
7	0.9 Dead+1.0 Wind 60 deg - No Ice
8	1.2 Dead+1.0 Wind 90 deg - No Ice
9	0.9 Dead+1.0 Wind 90 deg - No Ice
10	1.2 Dead+1.0 Wind 120 deg - No Ice
11	0.9 Dead+1.0 Wind 120 deg - No Ice
12	1.2 Dead+1.0 Wind 150 deg - No Ice
13	0.9 Dead+1.0 Wind 150 deg - No Ice
14	1.2 Dead+1.0 Wind 180 deg - No Ice
15	0.9 Dead+1.0 Wind 180 deg - No Ice
16	1.2 Dead+1.0 Wind 210 deg - No Ice
17	0.9 Dead+1.0 Wind 210 deg - No Ice
18	1.2 Dead+1.0 Wind 240 deg - No Ice
19	0.9 Dead+1.0 Wind 240 deg - No Ice
20	1.2 Dead+1.0 Wind 270 deg - No Ice
21	0.9 Dead+1.0 Wind 270 deg - No Ice
22	1.2 Dead+1.0 Wind 300 deg - No Ice
23	0.9 Dead+1.0 Wind 300 deg - No Ice
24	1.2 Dead+1.0 Wind 330 deg - No Ice
25	0.9 Dead+1.0 Wind 330 deg - No Ice
26	1.2 Dead+1.0 Ice+1.0 Temp
27	1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp
28	1.2 Dead+1.0 Wind 30 deg+1.0 Ice+1.0 Temp
29	1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp
30	1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp
31	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp
32	1.2 Dead+1.0 Wind $150 \mathrm{deg}+1.0$ Ice+1.0 Temp
33	1.2 Dead+1.0 Wind $180 \mathrm{deg}+1.0$ Ice+1.0 Temp
34	1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp
35	1.2 Dead+1.0 Wind 240 deg+1.0 Ice+1.0 Temp
36	1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp
37	1.2 Dead+1.0 Wind $300 \mathrm{deg}+1.0$ Ice+1.0 Temp
38	1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp
39	Dead+Wind 0 deg - Service
40	Dead+Wind 30 deg - Service
41	Dead+Wind 60 deg - Service
42	Dead+Wind 90 deg - Service
43	Dead+Wind 120 deg - Service
44	Dead+Wind 150 deg - Service
45	Dead+Wind 180 deg - Service
46	Dead+Wind 210 deg - Service
47	Dead+Wind 240 deg - Service
48	Dead+Wind 270 deg - Service

tnxTower Airosmith Development 318 West Avenue Saratoga Springs，NY 12866 Phone：（518）307－8700 FAX：	Job	CT1008 Naugatuck	$\text { Page } 7 \text { of } 9$
	Project	Tarpon ENG 2020	$\begin{array}{\|l\|} \hline \text { Date } \\ 10: 36: 1303 / 09 / 21 \end{array}$
	Client	Tarpon Towers	Designed by BDavenport

Comb． No．	Description	
49	Dead＋Wind 300 deg - Service	
50	Dead + Wind 330 deg - Service	

Maximum Tower Deflections－Service Wind

Section No．	Elevation	Horz． Deflection	Gov． Load	Tilt	Twist
	$f t$	in	Comb．	\circ	\circ
L1	$179-129$	30.874	49	1.6653	0.0641
L2	$133.75-83.75$	16.532	49	1.2437	0.0226
L3	$89.75-43$	7.117	49	0.7708	0.0093
L4	$50-0$	2.168	49	0.3961	0.0037

Critical Deflections and Radius of Curvature－Service Wind

Elevation ft	Appurtenance	Gov． Load Comb	Deflection in	Tilt 。	Twist 。	Radius of Curvature $f t$
177.00	Angle Platform w／Handrails	49	30.195	1.6476	0.0619	36236
167.00	VHLP1－23	49	26.818	1.5586	0.0514	15098
157.00	Reserved Loading（ $1 / 3 * 11,000$ sq． in）	49	23.521	1.4681	0.0413	8235

Maximum Tower Deflections－Design Wind

Section No．	Elevation	Horz． Deflection in	Gov． Load Comb．	Tilt	\circ

Critical Deflections and Radius of Curvature－Design Wind

Elevation ft	Appurtenance	Gov． Load Comb．	Deflection in	Tilt 。	Twist 。	Radius of Curvature $f t$
177.00	Angle Platform w／Handrails	22	133.369	6.9895	0.2831	9452
167.00	VHLP1－23	22	118.867	6.6891	0.2345	3937
157.00	Reserved Loading（1／3＊11，000 sq． in）	22	104.677	6.3753	0.1887	2145

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	$\begin{aligned} & \text { Page } 8 \text { of } 9 \end{aligned}$
	Project	Tarpon ENG 2020	Date $10: 36: 1303 / 09 / 21$
	Client	Tarpon Towers	Designed by BDavenport

Compression Checks

Pole Design Data

Section No.	Elevation	Size	L	L_{u}	Kl/r	A	P_{u}	ϕP_{n}	$\begin{gathered} \text { Ratio } \\ P_{u} \\ \hline \end{gathered}$
ft			$f t$	$f t$		$i n^{2}$	$l b$	$l b$	ϕP_{n}
L1	179-129 (1)	TP33.85x24x0.1875	50.00	0.00	0.0	19.4765	-12418.60	1139380.00	0.011
L2	129-83.75 (2)	TP42.3893x32.5393x0.3125	50.00	0.00	0.0	40.5625	-19884.50	2372910.00	0.008
L3	83.75-43 (3)	TP49.792x40.5823x0.375	46.75	0.00	0.0	57.1772	-30146.20	3344870.00	0.009
L4	43-0 (4)	TP57.513x47.663x0.4375	50.00	0.00	0.0	79.2565	-47709.50	4636500.00	0.010

Pole Bending Design Data

Section No.	Elevation	Size	$M_{u x}$	$\phi M_{n x}$	$\begin{gathered} \text { Ratio } \\ M_{u x} \\ \hline \end{gathered}$	$M_{u y}$	$\phi M_{n y}$	$\begin{gathered} \text { Ratio } \\ M_{u y} \\ \hline \end{gathered}$
$f t$			kip-ft	kip-ft	$\phi M_{n x}$	kip-ft	kip-ft	$\phi M_{n y}$
L1	179-129 (1)	TP33.85x24x0.1875	609.87	781.36	0.781	0.00	781.36	0.000
L2	129-83.75 (2)	TP42.3893x32.5393x0.3125	1566.47	2307.21	0.679	0.00	2307.21	0.000
L3	83.75-43 (3)	TP49.792x40.5823x0.375	2624.61	3848.78	0.682	0.00	3848.78	0.000
L4	43-0 (4)	TP57.513x47.663x0.4375	4202.66	6298.73	0.667	0.00	6298.73	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V_{u}	ϕV_{n}	Ratio V_{u}	$\begin{gathered} \text { Actual } \\ T_{u} \end{gathered}$	ϕT_{n}	$\begin{aligned} & \text { Ratio } \\ & T_{u} \end{aligned}$
$f t$			$l b$	$l b$	ϕV_{n}	kip-ft	kip-ft	ϕT_{n}
L1	179-129 (1)	TP33.85x24x0.1875	19267.50	341813.00	0.056	2.94	979.65	0.003
L2	129-83.75 (2)	TP42.3893x32.5393x0.3125	24245.60	711872.00	0.034	2.92	2549.47	0.001
L3	83.75-43 (3)	TP49.792x40.5823x0.375	28902.50	1003460.00	0.029	2.92	4221.48	0.001
L4	43-0 (4)	TP57.513x47.663x0.4375	33895.00	1390950.00	0.024	2.91	6952.51	0.000

Pole Interaction Design Data

tnxTower Airosmith Development 318 West Avenue Saratoga Springs, NY 12866 Phone: (518) 307-8700 FAX:	Job	CT1008 Naugatuck	Page 9 of 9
	Project	Tarpon ENG 2020	$\begin{array}{\|l\|} \hline \text { Date } \\ \text { 10:36:13 03/09/21 } \end{array}$
	Client	Tarpon Towers	Designed by BDavenport

Section No.	Elevation	$\begin{gathered} \text { Ratio } \\ P_{u} \end{gathered}$	Ratio $M_{u x}$	Ratio $M_{u y}$	Ratio V_{u}	Ratio T_{u}	Comb. Stress	Allow. Stress	Criteria
	$f t$	ϕP_{n}	$\phi M_{n x}$	$\phi M_{n y}$	ϕV_{n}	ϕT_{n}	Ratio	Ratio	

Section Capacity Table

Section No.	Elevation $f t$	Component Type	Size	Critical Element	$\begin{aligned} & P \\ & l b \end{aligned}$	$\begin{gathered} \curvearrowleft P_{\text {allow }} \\ l b \end{gathered}$	$\%$ Capacity	Pass Fail
L1	179-129	Pole	TP33.85x24x0.1875	1	-12418.60	1139380.00	79.5	Pass
L2	129-83.75	Pole	TP42.3893x32.5393x0.3125	2	-19884.50	2372910.00	68.9	Pass
L3	83.75-43	Pole	TP49.792x40.5823x0.375	3	-30146.20	3344870.00	69.2	Pass
L4	43-0	Pole	TP57.513x47.663x0.4375	4	-47709.50	4636500.00	67.8	Pass
							Summary	
						Pole (L1)	79.5	Pass
						RATING =	79.5	Pass

Program Version 8.0.7.5-8/3/2020 File:C:/Users/bdavenport/Desktop/CT1008 Naugatuck.eri

Monopole Base Plate Connection

Site Info	
BU \#	
Site Name	
Order \#	

Analysis Considerations	
TIA-222 Revision	H
Grout Considered:	No
$\mathrm{I}_{\mathrm{ar}}(\mathrm{in})$	3

Applied Loads	
Moment (kip-ft)	4202.66
Axial Force (kips)	47.71
Shear Force (kips)	33.89

*TIA-222-H Section 15.5 Applied

Connection Properties

Anchor Rod Data
(18) 2-1/4" \varnothing bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 65" BC

Base Plate Data
71 OD x 2.5" Plate (A572-50; Fy=50 ksi, Fu=65 ksi)

Stiffener Data
N/A

Pole Data
57.513" x 0.4375" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Analysis Results
Anchor Rod Summary

$\mathrm{Pu} _\mathrm{c}=174.98$	$\phi P n _c=268.39$	Stress Rating
$\mathrm{Vu}=1.88$	$\phi \mathrm{Vn}=120.77$	$\mathbf{6 4 . 8 \%}$
$\mathrm{Mu}=3.67$	$\phi \mathrm{Mn}=128.14$	Pass

Base Plate Summary		
Max Stress (ksi):	26.25	(Flexural)
Allowable Stress (ksi):	45	
Stress Rating:	$\mathbf{5 5 . 6 \%}$	Pass

Exhibit E

Mount Analysis

FROM ZERO TO INFINIGY

Mount Analysis Report

October 29, 2021

Dish Wireless Site Number	BOHVN00184A
Job Number	$2039-Z 5555 \mathrm{C}$
Client	Northeast Site Solutions
Carrier	Dish Wireless
	641 Maple Hill Road,
Site Location	Naugatuck, CT 06770
	41.4881 N NAD83
	$73.0202 \quad$ W NAD83
Mount Centerline EL.	157 ft
Mount Classification	Platform
Structural Usage Ratio	$\mathbf{5 8 \%}$
Overall Result	Pass

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA and ASCE code requirements. The proposed platform for the proposed carrier is therefore deemed adequate to support the final loading configuration as listed in this report.

10-29-21

Dmitriy Albul, P.E.
Engineering Consultant to Infinigy

Mount Analysis Report

October 29, 2021

Contents

Introduction 3
Supporting Documentation. 3
Analysis Code Requirements 3
Conclusion. 3
Final Configuration Loading 4
Structure Usages. 4
Assumptions and Limitations 4
Calculations Appended

Introduction

Infinigy Engineering has been requested to perform a mount analysis of proposed antenna mount from the Dish Wireless equipment. All supporting documents have been obtained from the client and are assumed to be accurate and applicable to this site. The mount was analyzed using RISA-3D Version 19.0 analysis software.

Supporting Documentation

Platform Drawings	SitePro1 Assembly Drawings No. SNP8HR-3XX
Construction Drawings	Infinigy Engineering PLLC, Job No. 2039-Z5555C, dated April 29, 2021
RF Design Sheet	Dish Wireless, dated February 15, 2021

Analysis Code Requirements

Wind Speed	125 mph (3-second Gust, Vult.)
Wind Speed $\mathrm{w} /$ ice	50 mph (3-Second Gust) $\mathrm{w} / 0.75^{\prime \prime}$ ice
TIA Revision	ANSI/TIA-222-G
Adopted IBC	2018 Connecticut Building Code (2015 IBC)
Structure Class	II
Exposure Category	B
Topographic Method	Method 2
Topographic Category	1
Spectral Response	Ss $=0.186, \mathrm{~S}_{1}=0.062$
Site Class	D - Default (Assumed)
HMSL	690.23 ft.

Conclusion

Upon reviewing the results of this analysis, it is our opinion that the structure meets the specified TIA code requirements. The proposed platform is therefore deemed adequate to support the final loading configuration as listed in this report.

If you have any questions, require additional information, or actual conditions differ from those as detailed in this report please contact me via the information below:

Dmitriy Albul, P.E.
Professional Engineer | Engineering Consultant to Infinigy
1033 Watervliet Shaker Road, Albany, NY 12205
(O) (518) 690-0790 | (M) (518) 699-4428

Final Configuration Loading

Mount CL (ft)	Rad. HT (ft)	Vert. O/S (ft)	Horiz. O/S (ft)*	Qty	Appurtenance	Carrier
157.0	157.0	-	4.0	3	JMA WIRELESS MX08FRO665-21	Dish Wireless
			4.0	3	Fujitsu TA08025-B605	
			4.0	3	Fujitsu TA08025-B604	
			-	1	Raycap RDIDC-9181-PF-48	

*Horizontal Offset is defined as the distance from the left most edge of the mount face horizontal when viewed facing the tower.

Structure Usages

Plates	58%	Pass
Cross Arms	37%	Pass
Arms	38%	Pass
Mount Pipes	51%	Pass
Angle	32%	Pass
Handrails	21%	Pass
Frame Rails	17%	Pass
Rating	$\mathbf{5 8 \%}$	Pass

Assumptions and Limitations

Our structural calculations are completed assuming all information provided to Infinigy Engineering is accurate and applicable to this site. For the purposes of calculations, we assume an overall structure condition of "like new" and all members and connections to be free of corrosion and/or structural defects. The structure owner and/or contractor shall verify the structure's condition prior to installation of any proposed equipment. If actual conditions differ from those described in this report Infinigy Engineering should be notified immediately to complete a revised evaluation.

Our evaluation is completed using standard TIA, AISC, ACI, and ASCE methods and procedures. Our structural results are proprietary and should not be used by others as their own. Infinigy Engineering is not responsible for decisions made by others that are or are not based on our supplied assumptions and conclusions.

This report is an evaluation of the proposed carriers mount structure only and does not reflect adequacy of the existing tower, other mounts, or coax mounting attachments. These elements are assumed to be adequate for the purposes of this analysis and are assumed to have been installed per their manufacturer requirements.

INFINIGY8

FROM ZERO TO INFINIGY

Site Information		
Exposure Category:	B	
Risk Category:	11	
Ultimate Wind Speed:	125	mph
Design Wind Speed:	97	mph
Ice Thickness:	0.75	in
Ice Wind Speed:	50.0	mph
Escalated Ice Thickness:	1.75	in
Topographic Method:	1	
Topographic Category:	1	

Factors		
Gh:	1.000	
$K_{\text {zmin }}$:	0.700	
K_{z} :	1.124	
K_{d} :	0.950	
$K_{z t}$:	1.000	
Ka:	0.900	
I wind:	1.000	
I ice:	1.000	
q_{z} :	25.63	$p s f$
Surface Wind Pressure:	0.00	$p s f$

Run Seismic?	Yes	
Site Soil:	D (Default)	
Short-Period Accel. (Ss):	0.1860	
1-Second Accel. (S1):	0.0620	
Short-Period Design (SDS):	0.2020	
1-Second Design (SD1):	0.1020	
Short-Period Coeff. (Fa):	1.6000	
1-Second Coeff. (Fv):	2.4000	
Cs	0.1010	
Cs min	0.0300	
Amplification Factor (ap):	1.00	
Response Mod. (Rp):	2.50	
Overstrength (ת).:	1.00	
Service Wind:	30.0	mph
Lm (man live load) =	500.0	lb
$L v($ man live load $)=$	250.0	lb

Table 1. Equipment Specifications and Wind Pressure

Manufacturer	Model	Elevation	Pipe Label	Weight (lb)	Height (in)	Width (in)	Depth (in)	$E P A_{N}$	$E P A_{T}$	$E P A_{\text {Nw/ice }}$	$E P A_{\text {T w } / \text { cee }}$	q_{2} :	$q_{\text {zice }}$:	$q_{\text {z live }}$:
JMA WIRELESS	MX08FRO665-21	157	4, 118, 107	64.50	72	20	8	12.49	5.87	15.18	8.33	25.63	6.83	2.46
Fujitsu	TA08025-B605	157	4,118, 107	74.95	15.75	14.96	9.06	1.86	1.16	2.80	1.94	25.63	6.83	2.46
Fujitsu	TA08025-B604	157	4,118,107	63.93	15.75	14.96	7.87	1.86	1.01	2.80	1.77	25.63	6.83	2.46
Raycap	RDIDC-9181-PF-48	157	104	21.85	16	14	8	1.77	1.05	2.70	1.81	25.63	6.83	2.46

Table 2. Equipment Wind and Seismic Loads

Manufacturer	Model	Wind Load ($F_{\text {A }}$), lb		Wind Load lce Case (F_{A}) , lb			Wind Load Service Case		Seismic
JMA WIRELESS	MX08FRO665-21	288	135	93	51	306	28	13	6.5
Fujitsu	TA08025-B605	43	27	17	12	55	4	3	7.6
Fujitsu	TA08025-B604	43	23	17	11	54	4	2	6.5
Raycap	RDIDC-9181-PF-48	41	24	17	11	52	4	2	2.2

Table 3. Member Capacities

Member Name	Member Shape	Wind load (plf)	Wind Load lce (plf)	Weight Ice (pIf)	Bending Check	Shear Check	Total Capacity	Controlling Capacity
Arm	HSS4X4X4	17.09	4.56	1.37	38\%	12\%	38\%	58\%
Arm 2	HSS4.5X4.5X3	19.22	5.13	1.46	7\%	10\%	10\%	
Cross Arm	L4X4X4	17.09	4.56	1.37	37\%	8\%	37\%	
Frame Rail	PIPE_3.0	8.97	2.39	1.28	10\%	17\%	17\%	
Handrail	PIPE_2.5	7.37	1.97	1.16	16\%	21\%	21\%	
Mount Pipe	PIPE_2.0	6.09	1.62	1.07	51\%	22\%	51\%	
Plate	6" $\times 0.375^{\prime \prime}$ Plate	25.63	6.83	1.73	58\%	53\%	58\%	
Angle	L3X3X3	12.82	3.42	1.19	32\%	3\%	32\%	

Envelope Only Solution

Infinigy Engineering, PLLC	BOHVN00184A	SK-1
DVA		Oct 29, 2021
2039-Z5555C	Proposed Configuration Model	BOHVN00184A.R3D

Loads: LC 6, 1.2DL + 1.6WL AZI 120 Envelope Only Solution		
Infinigy Engineering, PLLC	BOHVN00184A	SK-2
DVA		Oct 29, 2021
2039-Z5555C	Controlling Load Case	BOHVN00184A.R3D

INFINIGY8
Company Designer Job Number Model Name

Infinigy Engineering, PLLC
10/29/2021
DVA 4:38:35 PM
2039-Z5555C
BOHVN00184A
\qquad

Solution

Members

Number of Reported Sections	5
Number of Internal Sections	100
Member Area Load Mesh Size $\left(\mathrm{in}^{2}\right)$	144
Consider Shear Deformation	Yes
Consider Torsional Warping	Yes

Wall Panels

Approximate Mesh Size (in)	12
Transfer Forces Between Intersecting Wood Walls	Yes
Increase Wood Wall Nailing Capacity for Wind Loads	Yes
Include P-Delta for Walls	Yes
Optimize Masonry and Wood Walls	Yes
Maximum Number of Iterations	3

Processor Core Utilization

Single	No
Multiple (Optimum)	Yes
Maximum	No

Axis

Vertical Global Axis

Global Axis corresponding to vertical direction	Y
Convert Existing Data	Yes

Default Member Orientation

Default Global Plane for z-axis	XZ

Plate Axis

Plate Local Axis Orientation	Nodal

Codes

Hot Rolled Steel	AISC 14th (360-10): LRFD
Stiffness Adjustment	Yes (lterative)
Notional Annex	None
Connections	AISC 14th (360-10): LRFD
Cold Formed Steel	AISI S100-12: LRFD
Stiffness Adjustment	Yes (Iterative)
Wood	AWC NDS-12: ASD
Temperature	$<$ 100F
Concrete	ACI 318-11
Masonry	ACI 530-11: Strength
Aluminum	AA ADM1-10: LRFD
Structure Type	Building
Stiffness Adjustment	Yes (Iterative)
Stainless	AISC 14th (360-10): LRFD
Stiffness Adjustment	Yes (Iterative)

Concrete

Column Design

Analysis Methodology	Exact Integration Method
Parme Beta Factor	0.65

Compression Stress Block	Rectangular Stress Block
Analyze using Cracked Sections	Yes
Leave room for horizontal rebar splices (2*d bar spacing)	No

INFINMGY	Company Designer	Infinigy Engineering, PLLC DVA	$\begin{aligned} & \text { 10/29/2021 } \\ & \text { 4:38:35 PM } \end{aligned}$
FROM ZERO TO INFINIGY the solutions are endless	Job Numbe Model Nam	$\begin{aligned} & \text { 2039-Z5555C } \\ & \text { BOHVN00184A } \end{aligned}$	Checked By

Model Settings (Continued)

List forces which were ignored for design in the Detail Report	Yes

Rebar

Column Min Steel	1
Column Max Steel	8
Rebar Material Spec	ASTM A615
Warn if beam-column framing arrangement is not understood	No

Shear Reinforcement

Number of Shear Regions	4
Region 2 \& 3 Spacing Increase Increment (in)	4

Seismic

RISA-3D Seismic Load Options

Code	ASCE 7-10
Risk Category	I or II
Drift Cat	Other
Base Elevation (ft)	
Include the weight of the structure in base shear calcs	Yes

Site Parameters

$\mathrm{S}_{1}(\mathrm{~g})$	1
$\mathrm{SD}(\mathrm{g})$	1
$\mathrm{SD} \mathrm{D}_{\mathrm{s}}(\mathrm{g})$	1
$\mathrm{~T}_{\mathrm{L}}(\mathrm{sec})$	5

> Structure Characteristics

$T Z(\mathrm{sec})$	
$T X(\mathrm{sec})$	
$C_{t} X$	0.02
C_{t} Exp. Z	0.75
C_{t} Exp. X	0.75
$R Z$	3
$R X$	3
$\Omega_{0} Z$	1
$\Omega_{0} X$	1
$C_{C} Z$	4
$C_{0} X$	4
ρZ	1
ρX	1

\qquad

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
1	M1	N1	N2		Arm	Beam	Tube	A500 Gr.B Rect	Typical
2	M2	N5	N6		Frame Rail	Beam	Pipe	A53 Gr.B	Typical
3	M3	N7	N8		Handrail	HBrace	Pipe	A53 Gr.B	Typical
4	M4	N10	N11		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
5	M5	N4	N3		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
6	M6	N15	N35	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
7	M7	N33	N13	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
8	M8	N12	N34	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
9	M9	N36	N14	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
10	M10	N18	N20		Plate	Beam	BAR	A36 Gr. 36	Typical
11	M11	N17	N19		Plate	Beam	BAR	A36 Gr. 36	Typical
12	M12	N21	N22		Plate	Beam	BAR	A36 Gr. 36	Typical
13	M13	N23	N24		Plate	Beam	BAR	A36 Gr. 36	Typical
14	M14	N28	N25	90	Angle	HBrace	Single Angle	A36 Gr. 36	Typical
15	M15	N26	N27		Plate	Beam	BAR	A36 Gr. 36	Typical
16	M16	N29	N30		Plate	Beam	BAR	A36 Gr. 36	Typical
17	M17	N31	N9		RIGID	None	None	RIGID	Typical
18	M18	N32	N16		RIGID	None	None	RIGID	Typical
19	M19	N4	N35		RIGID	None	None	RIGID	Typical
20	M20	N4	N33		RIGID	None	None	RIGID	Typical
21	M21	N3	N34		RIGID	None	None	RIGID	Typical
22	M22	N36	N3		RIGID	None	None	RIGID	Typical
23	M23	N19	N37		Plate	Beam	BAR	A36 Gr. 36	Typical
24	M24	N22	N38		Plate	Beam	BAR	A36 Gr. 36	Typical
25	M25	N39	N41		RIGID	None	None	RIGID	Typical
26	M26	N40	N42		RIGID	None	None	RIGID	Typical
27	M27	N27	N43		Plate	Beam	BAR	A36 Gr. 36	Typical
28	M28	N44	N45		RIGID	None	None	RIGID	Typical
29	M29	N20	N46		Plate	Beam	BAR	A36 Gr. 36	Typical
30	M30	N24	N47		Plate	Beam	BAR	A36 Gr. 36	Typical
31	M31	N48	N50		RIGID	None	None	RIGID	Typical
32	M32	N49	N51		RIGID	None	None	RIGID	Typical
33	M33	N30	N52		Plate	Beam	BAR	A36 Gr. 36	Typical
34	M34	N53	N54		RIGID	None	None	RIGID	Typical
35	M35	N56	N57		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
36	M36	N59	N55		RIGID	None	None	RIGID	Typical
37	M37	N60	N58		RIGID	None	None	RIGID	Typical
38	M38	N62	N63		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
39	M39	N65	N61		RIGID	None	None	RIGID	Typical
40	M40	N66	N64		RIGID	None	None	RIGID	Typical
41	M41	N67	N68		Arm	Beam	Tube	A500 Gr.B Rect	Typical
42	M42	N70	N69		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
43	M43	N74	N91	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
44	M44	N89	N72	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
45	M45	N71	N90	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
46	M46	N92	N73	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
47	M47	N76	N78		Plate	Beam	BAR	A36 Gr. 36	Typical
48	M48	N75	N77		Plate	Beam	BAR	A36 Gr. 36	Typical
49	M49	N79	N80		Plate	Beam	BAR	A36 Gr. 36	Typical
50	M50	N81	N82		Plate	Beam	BAR	A36 Gr. 36	Typical
51	M51	N86	N83	90	Angle	HBrace	Single Angle	A36 Gr. 36	Typical
52	M52	N84	N85		Plate	Beam	BAR	A36 Gr. 36	Typical
53	M53	N87	N88		Plate	Beam	BAR	A36 Gr. 36	Typical
54	M54	N70	N91		RIGID	None	None	RIGID	Typical
55	M55	N70	N89		RIGID	None	None	RIGID	Typical
56	M56	N69	N90		RIGID	None	None	RIGID	Typical
57	M57	N92	N69		RIGID	None	None	RIGID	Typical
58	M58	N77	N93		Plate	Beam	BAR	A36 Gr. 36	Typical

\qquad

Member Primary Data (Continued)

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
59	M59	N80	N94		Plate	Beam	BAR	A36 Gr. 36	Typical
60	M60	N95	N97		RIGID	None	None	RIGID	Typical
61	M61	N96	N98		RIGID	None	None	RIGID	Typical
62	M62	N85	N99		Plate	Beam	BAR	A36 Gr. 36	Typical
63	M63	N100	N101		RIGID	None	None	RIGID	Typical
64	M64	N78	N102		Plate	Beam	BAR	A36 Gr. 36	Typical
65	M65	N82	N103		Plate	Beam	BAR	A36 Gr. 36	Typical
66	M66	N104	N106		RIGID	None	None	RIGID	Typical
67	M67	N105	N107		RIGID	None	None	RIGID	Typical
68	M68	N88	N108		Plate	Beam	BAR	A36 Gr. 36	Typical
69	M69	N109	N110		RIGID	None	None	RIGID	Typical
70	M70	N111	N112		Arm	Beam	Tube	A500 Gr.B Rect	Typical
71	M71	N114	N113		Arm 2	Beam	Tube	A500 Gr.B Rect	Typical
72	M72	N118	N135	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
73	M73	N133	N116	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
74	M74	N115	N134	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
75	M75	N136	N117	90	Cross Arm	Beam	Single Angle	A36 Gr. 36	Typical
76	M76	N120	N122		Plate	Beam	BAR	A36 Gr. 36	Typical
77	M77	N119	N121		Plate	Beam	BAR	A36 Gr. 36	Typical
78	M78	N123	N124		Plate	Beam	BAR	A36 Gr. 36	Typical
79	M79	N125	N126		Plate	Beam	BAR	A36 Gr. 36	Typical
80	M80	N130	N127	90	Angle	HBrace	Single Angle	A36 Gr. 36	Typical
81	M81	N128	N129		Plate	Beam	BAR	A36 Gr. 36	Typical
82	M82	N131	N132		Plate	Beam	BAR	A36 Gr. 36	Typical
83	M83	N114	N135		RIGID	None	None	RIGID	Typical
84	M84	N114	N133		RIGID	None	None	RIGID	Typical
85	M85	N113	N134		RIGID	None	None	RIGID	Typical
86	M86	N136	N113		RIGID	None	None	RIGID	Typical
87	M87	N121	N137		Plate	Beam	BAR	A36 Gr. 36	Typical
88	M88	N124	N138		Plate	Beam	BAR	A36 Gr. 36	Typical
89	M89	N139	N141		RIGID	None	None	RIGID	Typical
90	M90	N140	N142		RIGID	None	None	RIGID	Typical
91	M91	N129	N143		Plate	Beam	BAR	A36 Gr. 36	Typical
92	M92	N144	N145		RIGID	None	None	RIGID	Typical
93	M93	N122	N146		Plate	Beam	BAR	A36 Gr. 36	Typical
94	M94	N126	N147		Plate	Beam	BAR	A36 Gr. 36	Typical
95	M95	N148	N150		RIGID	None	None	RIGID	Typical
96	M96	N149	N151		RIGID	None	None	RIGID	Typical
97	M97	N132	N152		Plate	Beam	BAR	A36 Gr. 36	Typical
98	M98	N153	N154		RIGID	None	None	RIGID	Typical
99	M99	N156	N155		RIGID	None	None	RIGID	Typical
100	M100	N157	N158		RIGID	None	None	RIGID	Typical
101	M101	N159	N157		RIGID	None	None	RIGID	Typical
102	M102	N158	N160		RIGID	None	None	RIGID	Typical
103	M103	N159	N161		RIGID	None	None	RIGID	Typical
104	M104	N162	N163		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
105	M105	N164	N165		Frame Rail	Beam	Pipe	A53 Gr.B	Typical
106	M106	N166	N167		Handrail	HBrace	Pipe	A53 Gr.B	Typical
107	M107	N169	N170		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
108	M108	N172	N168		RIGID	None	None	RIGID	Typical
109	M109	N173	N171		RIGID	None	None	RIGID	Typical
110	M110	N175	N176		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
111	M111	N178	N174		RIGID	None	None	RIGID	Typical
112	M112	N179	N177		RIGID	None	None	RIGID	Typical
113	M113	N181	N182		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
114	M114	N184	N180		RIGID	None	None	RIGID	Typical
115	M115	N185	N183		RIGID	None	None	RIGID	Typical
116	M116	N156	N186		Frame Rail	Beam	Pipe	A53 Gr.B	Typical

\qquad

Member Primary Data (Continued)

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Type	Design List	Material	Design Rule
117	M117	N187	N188		Handrail	HBrace	Pipe	A53 Gr.B	Typical
118	M118	N190	N191		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
119	M119	N193	N189		RIGID	None	None	RIGID	Typical
120	M120	N194	N192		RIGID	None	None	RIGID	Typical
121	M121	N196	N197		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
122	M122	N199	N195		RIGID	None	None	RIGID	Typical
123	M123	N200	N198		RIGID	None	None	RIGID	Typical
124	M124	N202	N203		Mount Pipe	Column	Pipe	A53 Gr.B	Typical
125	M125	N205	N201		RIGID	None	None	RIGID	Typical
126	M126	N206	N204		RIGID	None	None	RIGID	Typical

Hot Rolled Steel Properties

	Label	E [ksi]	G [ksi]	Nu	Therm. Coeff. $\left[1 \mathrm{e}^{50} \mathrm{~F}^{-1}\right]$	Density $\left[\mathrm{lb} / \mathrm{ft}^{3}\right]$	Yield [ksi]	Ry	Fu [ksi]	Rt
1	A992	29000	11154	0.3	0.65	490	50	1.1	65	1.1
2	A36 Gr. 36	29000	11154	0.3	0.65	490	36	1.5	58	1.2
3	A572 Gr. 50	29000	11154	0.3	0.65	490	50	1.1	65	1.1
4	A500 Gr.B RND	29000	11154	0.3	0.65	527	42	1.4	58	1.3
5	A500 Gr.B Rect	29000	11154	0.3	0.65	527	46	1.4	58	1.3
6	A53 Gr.B	29000	11154	0.3	0.65	490	35	1.6	60	1.2
7	A1085	29000	11154	0.3	0.65	490	50	1.4	65	1.3

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Point	Distributed	Area(Member)
1	Self Weight	DL		-1		20		3
2	Wind Load AZI 0	WLX				40	260	
3	Wind Load AZI 30	None				40	260	
4	Wind Load AZI 60	None				40	260	
5	Wind Load AZI 90	WLZ				40	260	
6	Wind Load AZI 120	None				40	260	
7	Wind Load AZI 150	None				40	260	
8	Wind Load AZI 180	None				40	260	
9	Wind Load AZI 210	None				40	260	
10	Wind Load AZI 240	None				40	260	
11	Wind Load AZI 270	None				40	260	
12	Wind Load AZI 300	None				40	260	
13	Wind Load AZI 330	None				40	260	
14	Ice Weight	OL1				20	126	3
15	Ice Wind Load AZI 0	OL2				40	260	
16	Ice Wind Load AZI 30	None				40	260	
17	Ice Wind Load AZI 60	None				40	260	
18	Ice Wind Load AZI 90	OL3				40	260	
19	Ice Wind Load AZI 120	None				40	260	
20	Ice Wind Load AZI 150	None				40	260	
21	Ice Wind Load AZI 180	None				40	260	
22	Ice Wind Load AZI 210	None				40	260	
23	Ice Wind Load AZI 240	None				40	260	
24	Ice Wind Load AZI 270	None				40	260	
25	Ice Wind Load AZI 300	None				40	260	
26	Ice Wind Load AZI 330	None				40	260	
27	Seismic Load X	ELX			-0.101	20		
28	Seismic Load Z	ELZ	-0.101			20		
29	Service Live Loads	LL						
30	Maintenance Load 1	LL				1		
31	Maintenance Load 2	LL				1		
32	Maintenance Load 3	LL				1		
33	Maintenance Load 4	LL				1		

\qquad

Basic Load Cases (Continued)

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Point	Distributed	Area(Member)
34	Maintenance Load 5	LL				1		
35	Maintenance Load 6	LL				1		
36	Maintenance Load 7	LL				1		
37	Maintenance Load 8	LL				1		
38	Maintenance Load 9	LL				1		
39	Maintenance Load 10	LL				1		
40	Maintenance Load 11	LL				1		
41	Maintenance Load 12	LL				1		
46	BLC 1 Transient Area Loads	None					144	
47	BLC 14 Transient Area Loads	None					144	

Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4DL	Yes	Y	1	1.4				
2	1.2DL + 1.6WL AZI 0	Yes	Y	1	1.2	2	1.6		
3	1.2DL + 1.6WL AZI 30	Yes	Y	1	1.2	3	1.6		
4	1.2DL + 1.6WL AZI 60	Yes	Y	1	1.2	4	1.6		
5	1.2DL + 1.6WL AZI 90	Yes	Y	1	1.2	5	1.6		
6	1.2DL + 1.6WL AZI 120	Yes	Y	1	1.2	6	1.6		
7	1.2DL + 1.6WLAZI 150	Yes	Y	1	1.2	7	1.6		
8	1.2DL + 1.6WL AZI 180	Yes	Y	1	1.2	8	1.6		
9	1.2DL + 1.6WL AZI 210	Yes	Y	1	1.2	9	1.6		
10	1.2DL + 1.6WL AZI 240	Yes	Y	1	1.2	10	1.6		
11	1.2DL + 1.6WL AZI 270	Yes	Y	1	1.2	11	1.6		
12	1.2DL + 1.6WL AZI 300	Yes	Y	1	1.2	12	1.6		
13	1.2DL + 1.6WL AZI 330	Yes	Y	1	1.2	13	1.6		
14	0.9DL + 1.6WL AZI 0	Yes	Y	1	0.9	2	1.6		
15	0.9DL + 1.6WL AZI 30	Yes	Y	1	0.9	3	1.6		
16	0.9DL + 1.6WL AZI 60	Yes	Y	1	0.9	4	1.6		
17	0.9DL + 1.6WL AZI 90	Yes	Y	1	0.9	5	1.6		
18	0.9DL + 1.6WL AZI 120	Yes	Y	1	0.9	6	1.6		
19	0.9DL + 1.6WLAZI 150	Yes	Y	1	0.9	7	1.6		
20	0.9DL + 1.6WL AZI 180	Yes	Y	1	0.9	8	1.6		
21	0.9DL + 1.6WLAZI 210	Yes	Y	1	0.9	9	1.6		
22	0.9DL + 1.6WL AZI 240	Yes	Y	1	0.9	10	1.6		
23	0.9DL + 1.6WL AZI 270	Yes	Y	1	0.9	11	1.6		
24	0.9DL + 1.6WL AZI 300	Yes	Y	1	0.9	12	1.6		
25	0.9DL + 1.6WL AZI 330	Yes	Y	1	0.9	13	1.6		
26	1.2D + 1.0Di	Yes	Y	1	1.2	14	1		
27	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 0	Yes	Y	1	1.2	14	1	15	1
28	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 30	Yes	Y	1	1.2	14	1	16	1
29	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 60	Yes	Y	1	1.2	14	1	17	1
30	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 90	Yes	Y	1	1.2	14	1	18	1
31	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 120	Yes	Y	1	1.2	14	1	19	1
32	1.2D + 1.0Di +1.0Wi AZI 150	Yes	Y	1	1.2	14	1	20	1
33	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 180	Yes	Y	1	1.2	14	1	21	1
34	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 210	Yes	Y	1	1.2	14	1	22	1
35	1.2D + 1.0Di +1.0Wi AZI 240	Yes	Y	1	1.2	14	1	23	1
36	1.2D + 1.0Di +1.0Wi AZI 270	Yes	Y	1	1.2	14	1	24	1
37	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 300	Yes	Y	1	1.2	14	1	25	1
38	$1.2 \mathrm{D}+1.0 \mathrm{Di}+1.0 \mathrm{Wi}$ AZI 330	Yes	Y	1	1.2	14	1	26	1
39	$(1.2+0.2 \mathrm{Sds}) \mathrm{DL}+1.0 \mathrm{E} \mathrm{AZI} 0$	Yes	Y	1	1.24	27	1	28	
40	$(1.2+0.2$ Sds)DL + 1.0E AZI 30	Yes	Y	1	1.24	27	0.866	28	0.5
41	$(1.2+0.2$ Sds) DL + 1.0E AZI 60	Yes	Y	1	1.24	27	0.5	28	0.866
42	(1.2 + 0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	1.24	27		28	1
43	$(1.2+0.2$ Sds) DL + 1.0E AZI 120	Yes	Y	1	1.24	27	-0.5	28	0.866
44	(1.2 + 0.2Sds) DL + 1.0E AZI 150	Yes	Y	1	1.24	27	-0.866	28	0.5
45	(1.2 + 0.2Sds) DL + 1.0E AZI 180	Yes	Y	1	1.24	27	-1	28	

FROM ZERO TO INFINIGY

Description		Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor
46	(1.2 + 0.2Sds) DL + 1.0E AZI 210	Yes	Y	1	1.24	27	-0.866	28	-0.5
47	$(1.2+0.2$ Sds) $\mathrm{DL}+1.0 \mathrm{E}$ AZI 240	Yes	Y	1	1.24	27	-0.5	28	-0.866
48	(1.2 + 0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	1.24	27		28	-1
49	(1.2 + 0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	1.24	27	0.5	28	-0.866
50	$(1.2+0.2 S d s)$ DL + 1.0E AZI 330	Yes	Y	1	1.24	27	0.866	28	-0.5
51	(0.9-0.2Sds) DL + 1.0E AZI 0	Yes	Y	1	0.86	27	1	28	
52	(0.9-0.2Sds)DL + 1.0E AZI 30	Yes	Y	1	0.86	27	0.866	28	0.5
53	(0.9-0.2Sds) DL + 1.0E AZI 60	Yes	Y	1	0.86	27	0.5	28	0.866
54	(0.9-0.2Sds)DL + 1.0E AZI 90	Yes	Y	1	0.86	27		28	1
55	(0.9-0.2Sds)DL + 1.0E AZI 120	Yes	Y	1	0.86	27	-0.5	28	0.866
56	(0.9-0.2Sds)DL + 1.0E AZI 150	Yes	Y	1	0.86	27	-0.866	28	0.5
57	(0.9-0.2Sds)DL + 1.0E AZI 180	Yes	Y	1	0.86	27	-1	28	
58	(0.9-0.2Sds)DL + 1.0E AZI 210	Yes	Y	1	0.86	27	-0.866	28	-0.5
59	(0.9-0.2Sds)DL + 1.0E AZI 240	Yes	Y	1	0.86	27	-0.5	28	-0.866
60	(0.9-0.2Sds)DL + 1.0E AZI 270	Yes	Y	1	0.86	27		28	-1
61	(0.9-0.2Sds)DL + 1.0E AZI 300	Yes	Y	1	0.86	27	0.5	28	-0.866
62	(0.9-0.2Sds)DL + 1.0E AZI 330	Yes	Y	1	0.86	27	0.866	28	-0.5
63	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1	2	0.096	29	1.5
64	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 30	Yes	Y	1	1	3	0.096	29	1.5
65	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 60	Yes	Y	1	1	4	0.096	29	1.5
66	1.0DL + 1.5LL + 1.0SWL (30 mph) AZI 90	Yes	Y	1	1	5	0.096	29	1.5
67	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 120	Yes	Y	1	1	6	0.096	29	1.5
68	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 150	Yes	Y	1	1	7	0.096	29	1.5
69	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 180	Yes	Y	1	1	8	0.096	29	1.5
70	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 210	Yes	Y	1	1	9	0.096	29	1.5
71	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 240	Yes	Y	1	1	10	0.096	29	1.5
72	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 270	Yes	Y	1	1	11	0.096	29	1.5
73	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1	12	0.096	29	1.5
74	$1.0 \mathrm{DL}+1.5 \mathrm{LL}+1.0 \mathrm{SWL}$ (30 mph) AZI 330	Yes	Y	1	1	13	0.096	29	1.5
75	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 0$	Yes	Y	1	1.2	34	1.5	2	0.154
76	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1+1.6 \mathrm{SWL}$ (30 mph) AZI 30	Yes	Y	1	1.2	34	1.5	3	0.154
77	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1$ + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	34	1.5	4	0.154
78	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 1$ + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	34	1.5	5	0.154
79	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	34	1.5	6	0.154
80	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	34	1.5	7	0.154
81	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	34	1.5	8	0.154
82	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	34	1.5	9	0.154
83	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	34	1.5	10	0.154
84	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	34	1.5	11	0.154
85	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	34	1.5	12	0.154
86	1.2DL + 1.5LM1 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	34	1.5	13	0.154
87	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 0$	Yes	Y	1	1.2	35	1.5	2	0.154
88	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 30	Yes	Y	1	1.2	35	1.5	3	0.154
89	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 60	Yes	Y	1	1.2	35	1.5	4	0.154
90	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1.2	35	1.5	5	0.154
91	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	35	1.5	6	0.154
92	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	35	1.5	7	0.154
93	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	35	1.5	8	0.154
94	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	35	1.5	9	0.154
95	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	35	1.5	10	0.154
96	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	35	1.5	11	0.154
97	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 2+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	35	1.5	12	0.154
98	1.2DL + 1.5LM2 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	35	1.5	13	0.154
99	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 0$	Yes	Y	1	1.2	36	1.5	2	0.154
100	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 30	Yes	Y	1	1.2	36	1.5	3	0.154
101	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 60	Yes	Y	1	1.2	36	1.5	4	0.154
102	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}$ (30 mph) AZI 90	Yes	Y	1	1.2	36	1.5	5	0.154
103	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	36	1.5	6	0.154

Description		Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor
104	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	36	1.5	7	0.154
105	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	36	1.5	8	0.154
106	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	36	1.5	9	0.154
107	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	36	1.5	10	0.154
108	1.2DL + 1.5LM3 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	36	1.5	11	0.154
109	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 300$	Yes	Y	1	1.2	36	1.5	12	0.154
110	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 3+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 330$	Yes	Y	1	1.2	36	1.5	13	0.154
111	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	37	1.5	2	0.154
112	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	37	1.5	3	0.154
113	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	37	1.5	4	0.154
114	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	37	1.5	5	0.154
115	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	37	1.5	6	0.154
116	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 150	Yes	Y	1	1.2	37	1.5	7	0.154
117	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	37	1.5	8	0.154
118	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 210$	Yes	Y	1	1.2	37	1.5	9	0.154
119	1.2DL + 1.5LM4 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	37	1.5	10	0.154
120	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 270$	Yes	Y	1	1.2	37	1.5	11	0.154
121	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}$ (30 mph) AZI 300	Yes	Y	1	1.2	37	1.5	12	0.154
122	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 4+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 330	Yes	Y	1	1.2	37	1.5	13	0.154
123	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	38	1.5	2	0.154
124	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	38	1.5	3	0.154
125	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	38	1.5	4	0.154
126	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	38	1.5	5	0.154
127	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	38	1.5	6	0.154
128	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	38	1.5	7	0.154
129	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	38	1.5	8	0.154
130	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	38	1.5	9	0.154
131	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	38	1.5	10	0.154
132	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	38	1.5	11	0.154
133	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	38	1.5	12	0.154
134	1.2DL + 1.5LM5 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	38	1.5	13	0.154
135	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	39	1.5	2	0.154
136	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	39	1.5	3	0.154
137	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	39	1.5	4	0.154
138	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	39	1.5	5	0.154
139	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 120	Yes	Y	1	1.2	39	1.5	6	0.154
140	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	39	1.5	7	0.154
141	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	39	1.5	8	0.154
142	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 210	Yes	Y	1	1.2	39	1.5	9	0.154
143	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}$ (30 mph) AZI 240	Yes	Y	1	1.2	39	1.5	10	0.154
144	1.2DL + 1.5LM6 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	39	1.5	11	0.154
145	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 300	Yes	Y	1	1.2	39	1.5	12	0.154
146	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 6+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 330$	Yes	Y	1	1.2	39	1.5	13	0.154
147	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7+1.6 \mathrm{SWL}$ (30 mph) AZI 0	Yes	Y	1	1.2	40	1.5	2	0.154
148	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	40	1.5	3	0.154
149	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7$ + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	40	1.5	4	0.154
150	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	40	1.5	5	0.154
151	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	40	1.5	6	0.154
152	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 150	Yes	Y	1	1.2	40	1.5	7	0.154
153	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 180	Yes	Y	1	1.2	40	1.5	8	0.154
154	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 210	Yes	Y	1	1.2	40	1.5	9	0.154
155	1.2DL + 1.5LM7 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	40	1.5	10	0.154
156	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7+1.6 \mathrm{SWL}$ (30 mph) AZI 270	Yes	Y	1	1.2	40	1.5	11	0.154
157	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 300	Yes	Y	1	1.2	40	1.5	12	0.154
158	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 7+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 330$	Yes	Y	1	1.2	40	1.5	13	0.154
159	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 0$	Yes	Y	1	1.2	41	1.5	2	0.154
160	1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	41	1.5	3	0.154
161	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8$ + 1.6SWL (30 mph $)$ AZI 60	Yes	Y	1	1.2	41	1.5	4	0.154

Description		Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor
162	1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	41	1.5	5	0.154
163	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 120	Yes	Y	1	1.2	41	1.5	6	0.154
164	1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	41	1.5	7	0.154
165	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 180	Yes	Y	1	1.2	41	1.5	8	0.154
166	1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	41	1.5	9	0.154
167	1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	41	1.5	10	0.154
168	1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	41	1.5	11	0.154
169	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 8+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 300	Yes	Y	1	1.2	41	1.5	12	0.154
170	1.2DL + 1.5LM8 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	41	1.5	13	0.154
171	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	42	1.5	2	0.154
172	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	42	1.5	3	0.154
173	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	42	1.5	4	0.154
174	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	42	1.5	5	0.154
175	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	42	1.5	6	0.154
176	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	42	1.5	7	0.154
177	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	42	1.5	8	0.154
178	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	42	1.5	9	0.154
179	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	42	1.5	10	0.154
180	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	42	1.5	11	0.154
181	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	42	1.5	12	0.154
182	1.2DL + 1.5LM9 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	42	1.5	13	0.154
183	1.2DL + 1.5LM10 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	43	1.5	2	0.154
184	1.2DL + 1.5LM10 + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	43	1.5	3	0.154
185	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10$ + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	43	1.5	4	0.154
186	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 90	Yes	Y	1	1.2	43	1.5	5	0.154
187	1.2DL + 1.5LM10 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	43	1.5	6	0.154
188	1.2DL + 1.5LM10 + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	43	1.5	7	0.154
189	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 180	Yes	Y	1	1.2	43	1.5	8	0.154
190	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10$ + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	43	1.5	9	0.154
191	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10$ + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	43	1.5	10	0.154
192	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 270$	Yes	Y	1	1.2	43	1.5	11	0.154
193	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 10+1.6 \mathrm{SWL}(30 \mathrm{mph}) \mathrm{AZI} 300$	Yes	Y	1	1.2	43	1.5	12	0.154
194	1.2DL + 1.5LM10 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	43	1.5	13	0.154
195	1.2DL + 1.5LM11 + 1.6SWL (30 mph) AZI 0	Yes	Y	1	1.2	44	1.5	2	0.154
196	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 30	Yes	Y	1	1.2	44	1.5	3	0.154
197	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	44	1.5	4	0.154
198	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	44	1.5	5	0.154
199	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	44	1.5	6	0.154
200	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 150	Yes	Y	1	1.2	44	1.5	7	0.154
201	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 180	Yes	Y	1	1.2	44	1.5	8	0.154
202	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 210	Yes	Y	1	1.2	44	1.5	9	0.154
203	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 240	Yes	Y	1	1.2	44	1.5	10	0.154
204	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 270	Yes	Y	1	1.2	44	1.5	11	0.154
205	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 11$ + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	44	1.5	12	0.154
206	1.2DL + 1.5LM11 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	44	1.5	13	0.154
207	$1.2 \mathrm{DL} \mathrm{+} \mathrm{1.5LM12} \mathrm{+} \mathrm{1.6SWL} \mathrm{(30} \mathrm{mph)} \mathrm{AZI} 0$	Yes	Y	1	1.2	45	1.5	2	0.154
208	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 30	Yes	Y	1	1.2	45	1.5	3	0.154
209	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12$ + 1.6SWL (30 mph) AZI 60	Yes	Y	1	1.2	45	1.5	4	0.154
210	1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 90	Yes	Y	1	1.2	45	1.5	5	0.154
211	1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 120	Yes	Y	1	1.2	45	1.5	6	0.154
212	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 150	Yes	Y	1	1.2	45	1.5	7	0.154
213	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 180	Yes	Y	1	1.2	45	1.5	8	0.154
214	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 210	Yes	Y	1	1.2	45	1.5	9	0.154
215	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 240	Yes	Y	1	1.2	45	1.5	10	0.154
216	$1.2 \mathrm{DL}+1.5 \mathrm{LM} 12+1.6 \mathrm{SWL}(30 \mathrm{mph})$ AZI 270	Yes	Y	1	1.2	45	1.5	11	0.154
217	1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 300	Yes	Y	1	1.2	45	1.5	12	0.154
218	1.2DL + 1.5LM12 + 1.6SWL (30 mph) AZI 330	Yes	Y	1	1.2	45	1.5	13	0.154

10/29/2021
4:38:35 PM
Checked By
\qquad

Hot Rolled Steel Section Sets

	Label	Shape	Type	Design List	Material	Design Rule	Area [in ${ }^{2}$]	lyy [in ${ }^{4}$]	Izz [in ${ }^{4}$	$J\left[\mathrm{in}^{4}\right]$
1	Arm	HSS4X4X4	Beam	Tube	A500 Gr.B Rect	Typical	3.37	7.8	7.8	12.8
2	Arm 2	HSS4.5X4.5X3	Beam	Tube	A500 Gr.B Rect	Typical	2.93	9.02	9.02	14.4
3	Cross Arm	L4X4X4	Beam	Single Angle	A36 Gr. 36	Typical	1.93	3	3	0.044
4	Frame Rail	PIPE_3.0	Beam	Pipe	A53 Gr.B	Typical	2.07	2.85	2.85	5.69
5	Handrail	PIPE_2.5	HBrace	Pipe	A53 Gr.B	Typical	1.61	1.45	1.45	2.89
6	Mount Pipe	PIPE_2.0	Column	Pipe	A53 Gr.B	Typical	1.02	0.627	0.627	1.25
7	Plate	6" x 0.375" Plate	Beam	BAR	A36 Gr. 36	Typical	2.25	0.026	6.75	0.101
8	Angle	L3X3X3	HBrace	Single Angle	A36 Gr. 36	Typical	1.09	0.948	0.948	0.014

Envelope Node Reactions

Node Label			X [Ib]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-in]	LC	MY [lb-in]	LC	MZ [lb-in]	LC
1	N1	max	1216.611	25	1562.352	27	1209.388	6	13123.468	168	25366.786	6	18757.421	20
2		min	-1372.013	8	-150.529	20	-1210.576	10	-13130.886	78	-25586.677	12	-65101.133	2
3	N67	max	1551.728	2	1663.757	35	1410.386	5	16477.687	16	32588.932	13	33378.524	12
4		min	-1458.945	20	-116.848	16	-1271.483	24	-57283.141	10	-26631.797	6	-9384.327	16
5	N111	max	1462.11	2	1562.923	31	1179.033	16	56379.485	6	25785.212	10	34708.31	137
6		min	-1369.291	20	-167.051	24	-1379.59	12	-17102.168	24	-25549.833	4	-9890.82	24
7	Totals:	max	4175.441	14	4373.535	34	3662.629	17						
8		min	-4175.444	20	1702.8	53	-3838.378	24						

Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks

Member		Shape	Code CheckLoc[in]			CheckLoc[in]		Dir LC phi*Pnc [lb]p		$\begin{gathered} \text { phi*Pnt [lb] } \\ \hline 72900 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { phi*Mn y-y [lb-in] } \\ \hline 6834.391 \\ \hline \end{array}$	$\frac{\mid \text { phi*Mn z-z [lb-in] }}{109350}$	$\begin{gathered} \mathrm{Cb} \text { Eqn } \\ 2.519 \mathrm{H} 1-1 \mathrm{~b} \end{gathered}$
1	M79	6" $\times 0.375$ " Plate	0.578	2.036	6	0.498	2.036	y	662722.329				
2	M49	6" $\times 0.375$ " Plate	0.578	2.036	10	0.497	2.036	y	1062722.329	72900	6834.391	109350	$2.519 \mathrm{H} 1-1 \mathrm{~b}$
3	M13	$6 " \times 0.375$ " Plate	0.576	2.036	2	0.498	2.036	y	262722.329	72900	6834.391	109350	$2.519 \mathrm{H} 1-1 \mathrm{~b}$
4	M12	$6 " \times 0.375$ " Plate	0.576	2.036	2	0.528	2.036	y	1362722.329	72900	6834.391	109350	$2.519 \mathrm{H} 1-1 \mathrm{~b}$
5	M78	$6 " \times 0.375$ " Plate	0.572	2.036	6	0.498	2.036	y	662722.329	72900	6834.391	109350	$2.518 \mathrm{H} 1-1 \mathrm{~b}$
6	M50	6" $\times 0.375$ " Plate	0.571	2.036	10	0.498	2.036	y	1062722.329	72900	6834.391	109350	$2.518 \mathrm{H} 1-1 \mathrm{~b}$
7	M52	$6 " \times 0.375$ " Plate	0.527	1.557	10	0.021	5.75	z	1062722.329	72900	6834.391	109350	$2.198 \mathrm{H} 1-1 \mathrm{~b}$
8	M53	6" $\times 0.375$ " Plate	0.527	1.557	10	0.021	5.75	z	1062722.329	72900	6834.391	109350	2.2 H1-1b
9	M82	$6 " \times 0.375$ " Plate	0.527	1.557	6	0.021	5.75	z	662722.329	72900	6834.391	109350	$2.195 \mathrm{H} 1-1 \mathrm{~b}$
10	M81	6" $\times 0.375$ " Plate	0.527	1.557	6	0.021	5.75	z	662722.329	72900	6834.391	109350	$2.203 \mathrm{H} 1-1 \mathrm{~b}$
11	M16	6" $\times 0.375$ " Plate	0.527	1.557	2	0.021	5.75	z	262722.329	72900	6834.391	109350	$2.199 \mathrm{H} 1-1 \mathrm{~b}$
12	M15	6" $\times 0.375$ " Plate	0.527	1.557	2	0.021	5.75	z	1362722.329	72900	6834.391	109350	$2.199 \mathrm{H} 1-1 \mathrm{~b}$
13	M110	PIPE_2.0	0.505	30	13	0.216	30		1314916.096	32130	22459.5	22459.5	$2.669 \mathrm{H} 1-1 \mathrm{~b}$
14	M113	PIPE_2.0	0.468	30	25	0.218	30		1314916.096	32130	22459.5	22459.5	3 H1-1b
15	M124	PIPE_2.0	0.453	30	3	0.209	30		214916.096	32130	22459.5	22459.5	$2.369 \mathrm{H} 1-1 \mathrm{~b}$
16	M121	PIPE_2.0	0.453	30	9	0.209	30		1014916.096	32130	22459.5	22459.5	3 H1-1b
17	M35	PIPE_2.0	0.444	30	6	0.209	30		614916.096	32130	22459.5	22459.5	3 H1-1b
18	M38	PIPE_2.0	0.444	30	10	0.209	30		1014916.096	32130	22459.5	22459.5	3 H1-1b
19	M1	HSS4X 4 X4	0.383	0	13	0.113	0	y	169133649.326	139518	194166	194166	$1.664 \mathrm{H} 1-1 \mathrm{~b}$
20	M41	HSS4X4X4	0.382	0	12	0.123	12.017	z	13133649.326	139518	194166	194166	$1.722 \mathrm{H} 1-1 \mathrm{~b}$
21	M77	6 " $\times 0.375$ " Plate	0.375	2.036	10	0.313	2.036	y	3762722.329	72900	6834.391	109350	2.2 H1-1b
22	M47	$6 " \times 0.375$ " Plate	0.374	2.036	6	0.311	2.036	y	2962722.329	72900	6834.391	109350	$2.199 \mathrm{H} 1-1 \mathrm{~b}$
23	M48	$6 " \times 0.375$ " Plate	0.371	2.036	2	0.312	2.036	y	2962722.329	72900	6834.391	109350	$2.198 \mathrm{H} 1-1 \mathrm{~b}$
24	M76	6" 0.375 " Plate	0.371	2.036	2	0.312	2.036	y	3762722.329	72900	6834.391	109350	$2.199 \mathrm{H} 1-1 \mathrm{~b}$
25	M7	L4X4X4	0.37	0	13	0.084	0	z	1254411.715	62532	37651.159	80578.632	$1.472 \mathrm{H} 2-1$
26	M70	HSS4X4X4	0.37	0	4	0.112	0	y	137133649.326	139518	194166	194166	$1.709 \mathrm{H} 1-1 \mathrm{~b}$
27	M10	6" $\times 0.375$ " Plate	0.369	2.036	10	0.311	2.036	y	3362722.329	72900	6834.391	109350	$2.198 \mathrm{H} 1-1 \mathrm{~b}$
28	M11	6" $\times 0.375$ " Plate	0.369	2.036	6	0.311	2.036	y	3362722.329	72900	6834.391	109350	$2.199 \mathrm{H} 1-1 \mathrm{~b}$
29	M107	PIPE_2.0	0.355	30	13	0.212	38		1314916.096	32130	22459.5	22459.5	3 H1-1b
30	M43	L4X4X4	0.353	24.375	12	0.084	24.375	z	1254411.715	62532	37651.159	80578.632	1.471 H2-1
31	M6	L4X4X4	0.349	24.375	4	0.083	0	z	1054411.715	62532	37651.159	80578.632	1.469 H2-1
32	M72	L4X4X4	0.349	24.375	8	0.084	0	z	1354411.715	62532	37651.159	80578.632	$1.469 \mathrm{H} 2-1$
33	M44	L4X4X4	0.348	01	153	0.083	24.375		254411.715	62532	37651.159	80578.632	1.5 H 2

\qquad
\qquad

Envelope AISC 14TH (360-10): LRFD Member Steel Code Checks (Continued)

Member			Code CheckLoc[in] L		LC S				z 10 LC phi*Pnc [lb]p	phi*Pnt [lb]	phi* $\mathrm{Mn} y$ y-y $[\mathrm{lb-in}]$ phi* ${ }^{*} \mathrm{Mn}$ z-z [lb-in 37651.159 80578.632		Cb Eqn 1.5 $\mathrm{H} 2-1$
34	M73	L4X4X4	0.348	0									
35	M74	L4X4X4	0.339	36.12	34	0.036	36.125	z	13751466.784	62532	37651.159	80578.632	1.5 H2-1
36	M45	L4X4X4	0.339	36.125	38	0.036	36.125	z	15351466.784	62532	37651.159	80578.632	1.5 H2-1
37	M9	L4X4X4	0.338	0	35	0.036	0	z	7751466.784	62532	37651.159	80578.632	1.5 H2-1
38	M75	L4X4X4	0.338	0	28	0.036	0	z	9351466.784	62532	37651.159	80578.632	1.5 H2-1
39	M8	L4X4X4	0.338	36.125	31	0.036	36.125 z	z	16951466.784	62532	37651.159	80578.632	1.5 H2-1
40	M46	L4X4X4	0.337	0	31	0.036	0	y	1351466.784	62532	37651.159	80578.632	1.5 H2-1
41	M4	PIPE_2.0	0.323	30	12	0.185	38		1214916.096	32130	22459.5	22459.5	2.137 H1-1b
42	M80	L3X3X3	0.317	27.5	12	0.028	55	z	921109.581	35316	15841.16	29014.121	$1.016 \mathrm{H} 2-1$
43	M118	PIPE_2.0	0.316	30	8	0.19	38		914916.096	32130	22459.5	22459.5	3 H1-1b
44	M51	L3X3X3	0.312	27.5	4	0.031	55	y	1321109.581	35316	15841.16	29016.181	$1.016 \mathrm{H} 2-1$
45	M14	L3X3X3	0.312	27.5	8	0.028	0	y	1221109.581	35316	15841.16	29016.232	$1.016 \mathrm{H} 2-1$
46	M94	6 " $\times 0.375$ " Plate	0.292	0	6	0.255	0	y	671110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
47	M59	$6 " \times 0.375$ " Plate	0.292	0	10	0.255	0	y	1071110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
48	M30	$6 " \times 0.375$ " Plate	0.292	0	2	0.255	0	y	271110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
49	M24	$6 " \times 0.375$ " Plate	0.291	0	2	0.274	0	y	1371110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
50	M88	$6 " \times 0.375$ " Plate	0.289	0	6	0.255	0	y	671110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
51	M65	$6 " \times 0.375$ " Plate	0.288	0	10	0.255	0	y	1071110.261	72900	6834.391	109350	$1.353 \mathrm{H} 1-1 \mathrm{~b}$
52	M93	$6 " \times 0.375$ " Plate	0.157	0	13	0.147	0	y	3771110.261	72900	6834.391	109350	$1.35 \mathrm{H} 1-1 \mathrm{~b}$
53	M106	PIPE_2.5	0.156	88	13	0.214	88		1330038.461	50715	43155	43155	$1.706 \mathrm{H} 1-1 \mathrm{~b}$
54	M64	6" $\times 0.375$ " Plate	0.15	0	4	0.147	0	y	2971110.261	72900	6834.391	109350	$1.351 \mathrm{H} 1-1 \mathrm{~b}$
55	M87	$6 " \times 0.375$ " Plate	0.15	0	12	0.148	0	y	3771110.261	72900	6834.391	109350	$1.351 \mathrm{H} 1-1 \mathrm{~b}$
56	M29	$6 " \times 0.375$ " Plate	0.149	0	8	0.147	0	y	3371110.261	72900	6834.391	109350	$1.351 \mathrm{H} 1-1 \mathrm{~b}$
57	M23	$6 " \times 0.375$ " Plate	0.149	0	8	0.147	0	y	3371110.261	72900	6834.391	109350	1.351 H1-1b
58	M58	6" $\times 0.375$ " Plate	0.149	0	4	0.148	0	y	2971110.261	72900	6834.391	109350	$1.351 \mathrm{H} 1-1 \mathrm{~b}$
59	M3	PIPE_2.5	0.147	88	6	0.205	8		1030038.461	50715	43155	43155	$1.721 \mathrm{H} 1-1 \mathrm{~b}$
60	M117	PIPE_2.5	0.147	8	2	0.205	88		1030038.461	50715	43155	43155	$1.721 \mathrm{H} 1-1 \mathrm{~b}$
61	M62	$6^{\prime \prime} \times 0.37 \overline{5}^{\prime \prime}$ Plate	0.133	0	10	0.015	0	z	1071110.261	72900	6834.391	109350	$1.35 \mathrm{H} 1-1 \mathrm{~b}$
62	M68	$6 " \times 0.375$ " Plate	0.133	0	10	0.015	0	z	1071110.261	72900	6834.391	109350	$1.35 \mathrm{H} 1-1 \mathrm{~b}$
63	M97	$6 " \times 0.375$ " Plate	0.133	0	6	0.015	0	z	671110.261	72900	6834.391	109350	$1.35 \mathrm{H} 1-1 \mathrm{~b}$
64	M91	6 6" 0.375 " Plate	0.133	0	6	0.015	0	z	671110.261	72900	6834.391	109350	$1.35 \mathrm{H} 1-1 \mathrm{~b}$
65	M33	$6 " \times 0.375$ " Plate	0.133	0	2	0.015	0	z	271110.261	72900	6834.391	109350	$1.35 \mathrm{H} 1-1 \mathrm{~b}$
66	M27	6" $\times 0.375$ " Plate	0.133	0	2	0.015	0	Z	271110.261	72900	6834.391	109350	$1.35 \mathrm{H} 1-1 \mathrm{~b}$
67	M105	PIPE_3.0	0.101	88	13	0.169	88		1360482.561	65205	68985	68985	$1.654 \mathrm{H} 1-1 \mathrm{~b}$
68	M116	PIPE_3.0	0.095	8	2	0.154	8		360482.561	65205	68985	68985	$1.672 \mathrm{H} 1-1 \mathrm{~b}$
69	M2	PIPE_3.0	0.095	88	6	0.15	8		1060482.561	65205	68985	68985	$1.672 \mathrm{H} 1-1 \mathrm{~b}$
70	M71	HSS4.5X4.5X3	0.067	20	6	0.096	8.958	y	93120246.398	121302	194994	194994	$1.495 \mathrm{H} 1-1 \mathrm{~b}$
71	M42	HSS4.5X4.5X3	0.067	20	10	0.096	8.958	y	153120246.398	121302	194994	194994	$1.495 \mathrm{H} 1-1 \mathrm{~b}$
72	M5	HSS4.5X4.5X3	0.066	20	2	0.096	8.958 y	y	169120246.398	121302	194994	194994	$1.495 \mathrm{H} 1-1 \mathrm{~b}$
73	M104	PIPE_2.0	0.032	18	7	0.009	18		1926521.424	32130	22459.5	22459.5	2.432 ${ }^{\text {H1-1b }}$

FROM ZERO TO INFINIGY the solutions are endless

BOLT CONNECTION CALCULATION

BOLT PROPERTIES

Date:	$10 / 29 / 2021$
Site:	BOHVN00184A
Engineer:	DVA
Project No:	$2039-Z 5555 \mathrm{C}$
Connection Location:	Arm to Collar

Bolt Capacity Equation
Connection Type
Bolt Size, d
Threads per Inch, n
Steel Grade
Bolt Ultimate Tensile Stress, $\mathbf{F}_{\mathbf{u}}$
Threads Exclusion
Shear Plane

TIA-222-G
Steel
$5 / 8$
11
A325
120
N
1

in
ksi
$i n^{2}$
$i n^{2}$
lbs
lbs

Loads at Center of Gravity of Bolt Group:
 $\mathrm{Pz}=$
 $\mathrm{Pz}=$ $\mathrm{Px}=$ $\mathrm{Py}=$ $\mathrm{Mx}=$ $\mathrm{My}=$ $\mathrm{Mz}=$

 lbs lbs lbs lb-in lb-in lb-in

Total Capacity of Bolt Group:

Number of Bolts

Project No:	2039-Z5555C
Connection Location:	Arm to Collar

Connection Location:

Exhibit F

Power Density/RF Emissions Report

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

Dish Wireless Existing Facility

Site ID: BOHVN00I84A

BOHVN00I84A
64I Maple Hill Road
Naugatuck, Connecticut 06770
November 16, 2021
EBI Project Number: 6221005693

Site Compliance Summary	
Compliance Status:	COMPLIANT
Site total MPE\% of FCC general population allowable limit:	$\mathbf{3 . 1 7 \%}$

environmental | engineering | due diligence

November 16, 202I
Dish Wireless

Emissions Analysis for Site: BOHVN00I84A - BOHVN00I84A

EBI Consulting was directed to analyze the proposed Dish Wireless facility located at 64I Maple Hill Road in Naugatuck, Connecticut for the purpose of determining whether the emissions from the Proposed Dish Wireless Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (\% MPE) as listed in the FCC OET Bulletin 65 Edition 97-Oland ANSI/IEEE Std C95.I. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The number of $\mu \mathrm{W} / \mathrm{cm}^{2}$ calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR I.I307(b)(I) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter ($\mu \mathrm{W} / \mathrm{cm}^{2}$). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $467 \mu \mathrm{~W} / \mathrm{cm}^{2}$, respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and II GHz frequency bands is $1000 \mu \mathrm{~W} / \mathrm{cm}^{2}$. Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure.
environmental | engineering | due diligence

Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed Dish Wireless Wireless antenna facility located at 64I Maple Hill Road in Naugatuck, Connecticut using the equipment information listed below. All calculations were performed per the specifications under FCC OET 65. Since Dish Wireless is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was focused at the base of the tower. For this report, the sample point is the top of a 6 -foot person standing at the base of the tower.

For all calculations, all equipment was calculated using the following assumptions:

1) 4 n 7 I channels (600 MHz Band) were considered for each sector of the proposed installation. These Channels have a transmit power of 30 Watts per Channel.
2) 4 n 70 channels (PCS Band - 1900 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
3) 4 n 66 channels (AWS Band -2190 MHz) were considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
4) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 - Edition 97-0I recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.
5) For the following calculations, the sample point was the top of a 6 -foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used in this direction. This value is a very conservative
environmental | engineering | due diligence
estimate as gain reductions for these particular antennas are typically much higher in this direction.
6) The antennas used in this modeling are the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector A, the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector B, the JMA MX08FRO665-2I for the $600 \mathrm{MHz} / 1900$ $\mathrm{MHz} / 2190 \mathrm{MHz}$ channel(s) in Sector C.. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications, minus 20 dB for directional panel antennas and 20 dB for highly focused parabolic microwave dishes, was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
7) The antenna mounting height centerline of the proposed antennas is 157 feet above ground level (AGL).
8) Emissions values for additional carriers were taken from the Connecticut Siting Council active database. Values in this database are provided by the individual carriers themselves.
9) All calculations were done with respect to uncontrolled / general population threshold limits.
environmental | engineering | due diligence

Dish Wireless Site Inventory and Power Data

Sector:	A	Sector:	B	Sector:	C
Antenna \#:	I	Antenna \#:	I	Antenna \#:	I
Make / Model:	$\begin{gathered} \hline \text { JMA MX08FRO665- } \\ 21 \end{gathered}$	Make / Model:	$\begin{gathered} \text { JMA MX08FRO665- } \\ 21 \end{gathered}$	Make / Model:	$\begin{gathered} \text { JMA MX08FRO665- } \\ 21 \end{gathered}$
Frequency Bands:	$\begin{aligned} & 600 \mathrm{MHz} / 1900 \\ & \mathrm{MHz} / 2190 \mathrm{MHz} \end{aligned}$	Frequency Bands:	$\begin{aligned} & 600 \mathrm{MHz} / \mathrm{I} 900 \\ & \mathrm{MHz} / 2190 \mathrm{MHz} \end{aligned}$	Frequency Bands:	$\begin{aligned} & 600 \mathrm{MHz} / 1900 \\ & \mathrm{MHz} / 2190 \mathrm{MHz} \end{aligned}$
Gain:	17.45 dBd / 22.65 dBd / 22.65 dBd	Gain:	$\begin{gathered} \hline 17.45 \mathrm{dBd} / 22.65 \\ \mathrm{dBd} / 22.65 \mathrm{dBd} \end{gathered}$	Gain:	$\begin{aligned} & \hline 17.45 \mathrm{dBd} / 22.65 \\ & \mathrm{dBd} / 22.65 \mathrm{dBd} \end{aligned}$
Height (AGL):	157 feet	Height (AGL):	157 feet	Height (AGL):	157 feet
Channel Count:	12	Channel Count:	12	Channel Count:	12
Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts	Total TX Power (W):	440 Watts
ERP (W):	5,236.3 I	ERP (W):	5,236.31	ERP (W):	5,236.3 I
Antenna AI MPE \%:	1.04\%	Antenna BI MPE \%:	1.04\%	Antenna CI MPE \%:	1.04\%

environmental | engineering | due diligence

Site Composite MPE \%	
Carrier	MPE \%
Dish Wireless (Max at Sector A):	I.04\%
T-Mobile	2.13%
Site Total MPE \%:	3.17%

Dish Wireless MPE \% Per Sector	
Dish Wireless Sector A Total:	I.04\%
Dish Wireless Sector B Total:	I.04\%
Dish Wireless Sector C Total:	I.04\%
Site Total MPE \%:	

Dish Wireless Maximum MPE Power Values (Sector A)

Dish Wireless Frequency Band / Technology (Sector A)	\# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Frequency (MHz)	Allowable MPE ($\mu \mathrm{W} / \mathrm{cm}^{2}$)	Calculated \% MPE
Dish Wireless $600 \mathrm{MHz} \mathrm{n7I}$	4	223.68	157.0	1.41	$600 \mathrm{MHz} \mathrm{n7I}$	400	0.35\%
Dish Wireless $1900 \mathrm{MHz} \mathrm{n70}$	4	542.70	157.0	3.42	$1900 \mathrm{MHz} \mathrm{n70}$	1000	0.34\%
Dish Wireless $2190 \mathrm{MHz} \mathrm{n66}$	4	542.70	157.0	3.42	$2190 \mathrm{MHz} \mathrm{n66}$	1000	0.34\%
						Total:	1.04\%

- NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.
environmental | engineering | due diligence

Summary

All calculations performed for this analysis yielded results that were within the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the Dish Wireless facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

Dish Wireless Sector	Power Density Value (\%)
Sector A:	1.04%
Sector B:	1.04%
Sector C:	1.04%
Dish Wireless Maximum MPE \% (Sector A):	1.04%
Site Total:	
Site Compliance Status:	COMPLIANT

The anticipated composite MPE value for this site assuming all carriers present is $\mathbf{3 . 1 7 \%}$ of the allowable FCC established general population limit sampled at the ground level. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.

Exhibit G

Letter of Authorization

September 27, 2021
CT - Connecticut Siting Council
10 Franklin Square
New Britain, CT 06051
Attn: Melanie A. Bachman, Executive Director

Re: Tower Share Application
Tarpon Towers II, LLC - telecommunications site at:
641 MAPLE HILL ROAD, NAUGATUCK, NEW HAVEN COUNTY, CONNECTICUT, 06770

Tarpon Towers II, LLC ("Tarpon") hereby authorizes DISH Wireless LLC, including their Agent, to act as our Agent in the processing of all zoning applications, building permits and approvals through the CT CONNECTICUT SITING COUNCIL for the existing wireless communications site described below:

Tarpon ID/Name: CT1008 Naugatuck
Customer Site ID: BOHVN00184A / TAR - Maple Hill Road Site Address: 641 MAPLE HILL ROAD, NAUGATUCK, NEW HAVEN COUNTY, CONNECTICUT, 06770

Tarpon Towers II, LLC

Brett Buggeln
COO
September 27, 2021

Exhibit H

Recipient Mailings

BOAVN OOL84A

 P PNOTTEDSTATES SERVICE.UNIONVILLE
24 MILL ST
UNIONVILLE, CT 06085-9998
(800) $275-8777$

Grand Total: $\quad \$ 0.00$
************************************wwwwww ORDER OF

Connecticut Siting Council

EXACTLY SIX HUNDRED TWENTY-FIVE DOLLARS

Connecticut Siting Council
10 Franklin Square
New Britain CT 06051

Instructions

1. Each Click-N-Ship $®$) label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®_{\text {B }}$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300087286723			
Trans. \#: Print Date Ship Date: Expected Delivery Date:	550297211	Priority Mail® Postage:	\$8.70
	: 12/07/2021	Total:	\$8.70
	: 12/07/2021		
	Date: 12/10/2021		
From: $\begin{aligned} & \text { DE } \\ & \text { NO } \\ & 42 \\ & \text { ST } \\ & \text { ST }\end{aligned}$	DEBORAH CHASE		
	NORTHEAST SITE SOLUTIONS		
	420 MAIN ST		
	STE 1		
	STURBRIDGE MA 01566-1359		
To: WA	WARREN HESS III		
	MAYOR, BOROUGH OF NAUGATUK		
	229 CHURCH ST		
	NAUGATUCK CT 06770-4145		
* Retail Pricing Pricrity Mail rates apply. There is no fee for USPS Tracking@ servi on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.			

			$\begin{array}{\|l} \hline 0 \\ 8 \\ 8 \\ \hline \end{array}$				

Cut on dotted line.

Instructions

1. Each Click-N-Ship® label is unique. Labels are to be used as printed and used only once. DO NOT РНOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage ${ }^{(1)}$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\mathrm{TM}}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship® Label Record

USPS TRACKING \# : 9405503699300087286730			
Trans. \#: Print Date Ship Date Expected Delivery Dat	550297211	Priority Mail® Postage:	
	12/07/2021		\$8.70
	: 12/07/2021		
	Date: 12/10/2021		
From: $\begin{aligned} & \text { DE } \\ & \text { NO } \\ & 42 \\ & \text { ST } \\ & \text { ST }\end{aligned}$	DEBORAH CHASE		
	NORTHEAST SITE SOLUTIONS		
	420 MAIN ST		
	STE 1		
	STURBRIDGE MA 01566-1359		
To: $\begin{aligned} & \text { RO } \\ & \text { BO } \\ & 22 \\ & \text { NA } \\ &\end{aligned}$	ROBERT SPEASE		
	BOROUGH OF NAUGATUCK, PLANNING COMMISSION		
	229 CHURCH ST		
	NAUGATUCK CT 06770-4145		
* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking(®) service on Priority Mail service with use of this electronic rate shipping label. Refunds for unused postage paid labeis can be requested online 30 days from the print date.			

\%
Cut on dotted line.

Instructions

1. Each Click-N-Ship(B) label is unique. Labels are to be used as printed and used only once. DO NOT PHOTO COPY OR ALTER LABEL.
2. Place your label so it does not wrap around the edge of the package.
3. Adhere your label to the package. A self-adhesive label is recommended. If tape or glue is used, DO NOT TAPE OVER BARCODE. Be sure all edges are secure.
4. To mail your package with PC Postage $®^{\text {B }}$, you may schedule a Package Pickup online, hand to your letter carrier, take to a Post Office ${ }^{\text {TM }}$, or drop in a USPS collection box.
5. Mail your package on the "Ship Date" you selected when creating this label.

Click-N-Ship ${ }^{\circledR}$ Label Record

USPS TRACKING \# : 9405503699300087286747			
Trans. \#:	550297211	Priority Maile Postage:	\$8.70
Print Date: Ship Date:	: 12/07/2021	Total:	\$8.70
	: 12/07/2021		
Expected Delivery Date:	Date: 12/11/2021		
From: $\begin{aligned} & \text { DE } \\ & \text { NO } \\ & 420 \\ & \text { ST } \\ & \text { ST }\end{aligned}$	DEBORAH CHASE		
	NORTHEAST SITE SOLUTIONS		
	420 MAIN ST		
	STE 1		
	STURBRIDGE MA 01566-1359		
To: $\begin{array}{ll}\text { TA } \\ & 89 \\ & \text { LA }\end{array}$	TARPON TOWERS II, LLC		
	8916 77TH TERE		
	LAKEWOOD RCH FL 34202-6415		
* Retail Pricing Priority Mail rates apply. There is no fee for USPS Tracking(8) servic on Priority Mail service with use of this elecironic rate shipping label. Refunds for unused postage paid labels can be requested online 30 days from the print date.			

